

Conditional symbols are best compared to Boolean variables: They are
either True (defined) or False (undefined). The {$DEFINE} directive sets a
given symbol to True, and the {$UNDEF} directive sets it to False.

Conditional symbols follow the exact same rules as Pascal identifiers: They
must start with a letter, followed by any combination of letters, digits, and
underscores. They can be of any length, but only the first 63 characters are
significant.

Note: Conditional symbols and Pascal identifiers have no correlation
whatsoever. Conditional symbols cannot be referenced in the actual
program, and the program's identifiers cannot be referenced in conditional
directives. For example, the construct

const
Debug = True;

begin
{$IFDEF Debug}

Writeln('Debug is on');
{$ENDIF}

end;

will not compile the Writeln statement. Likewise, the construct

{$DEFINE Debug}
begin

if Debug then
Writeln('Debug is on');

end;

will result in an unknown identifier error in the if statement.

Turbo Pascal defines the following standard conditional symbols:

VER40 Always defined, indicating that this is version 4.0 of Turbo
Pascal. Future versions will instead define their corresponding
version symbol, for instance, VER41 for version 4.1.

MSDOS Always defined, indicating that the operating system is MS­
DOS or PC-DOS. Versions of Turbo Pascal for other operating
systems will instead define a symbolic name for that particular
operating system.

CPU86 Always defined, indicating that· the CPU belongs to the 80x86
family of processors. Versions of Turbo Pascal for other CPU s
will instead define a symbolic name for that particular CPU.

CPU87 Defined if an 8087 numeric coprocessor is present at compile
time. If the construct

{$IFDEF CPUB7} {$N+} {$ELSE} {$N-} {$ENDIF}

546 Turbo Pascal Owner's Handbook

appears at. the beginning of a compilation, Turbo Pascal will
automatically select the appropriate model of floating-point
code generation for that particular computer.

Other conditional symbols can be defined before a compilation using the
0/ C/ Conditional defines menu, or the /D command-line option if you are
using TPC.

The DEFINE Directive

Syntax: {$DEFINE name}

Defines a conditional symbol of the given name. The symbol is known for
the remainder of the compilation or until it appears in an {$UNDEF name}
directive. The {$DEFINE name} directive has no effect if name is already
defined.

The UNDEF Directive

Syntax: {$UNDEF name}

Undefines a previously defined conditional symbol. The symbol is
forgotten for the remainder of the compilation or until it reappears in a
{$DEFINE name} directive. The {$UNDEF name} directive has no effect if
name is already undefined.

The IFDEF Directive

Syntax: {$ IFDEF name}

Compiles the source text that follows it if name is defined.

The IFNDEF Directive

Syntax: {$ IFNDEF symbol}

Compiles the source text that follows it if name is not defined.

Appendix C, Compiler Directives 547

The IFOPT Directive

Syntax: {$IFOPT switch}

Compiles the source text that follows it if switch is currently in the specified
state. switch consists of the name of a switch option, followed by a + or a -.
For example, the construct

{$IFOPT Nt}
type real = extended;

{$ENDIF}

will compile the type declaration if the $N option is currently active.

The ELSE Directive

Syntax: {$ELSE}

Switches between compiling and ignoring the source text delimited by the
last {$IFxxx} and the next {$ENDIF}.

The ENDIF Directive

Syntax: {$ENDIF}

Ends the conditional compilation initiated by the last {$IFxxx} directive.

548 Turbo Pascal Owner's Handbook

A p p E N D x

D

The Turbo Pascal Utilities

This appendix describes in detail the three stand-alone utility programs
that come with Turbo Pascal: MAKE, TOUCH, and GREP.

The Stand-Alone MAKE Utility

This section contains complete documentation for creating makefiles and
using MAKE.

Creating Makefiles

A makefile contains the definitions and relationships needed to help MAKE
keep your program(s) up-to-date. You can create as many makefiles as you
want and name them whatever you want. If you don't specify a makefile
when you run MAKE (using the -[option), then MAKE looks for a file with
the default name MAKEFILE.

You create a makefile with any ASCII text editor, such as Turbo Pascal's
built-in interactive editor. All rules, definitions, and directives end with a
carriage return; if a line is too long, you can continue it to the next line by
placing a backslash (\) as the last character on the line.

Whitespace-spaces and tabs-is used to separate adjacent identifiers (such
as dependencies) and to indent commands within a rule.

Creating a makefile is almost like writing a program-with definitions,
commands, and directives. Here's a list of the constructs allowed in a
makefile:

Appendix 0, The Turbo Pascal Utilities 549

• comments
• explicit rules
• implicit rules
• macro definitions
• directives: file inclusion, conditional execution, error detection, macro

undefinition

Let's look at each of these in more detail.

Comments

Comments begin with a number sign (#); the rest of the line following the #
is ignored by MAKE. Comments can be placed anywhere and never have to
start in a particular column.

A backslash (\) will not continue a comment onto the next line; instead, you
must use a # on each line. In fact, you cannot use a backslash as a
continuation character in a line that has a comment. That's because if the
backs lash precedes the #, it is no longer the last character on the line; if it
follows the #, it is part of the comment itself.

Here are some examples of comments in a makefile:

makefile for GETSTARS.EXE
does complete project maintenance
implicit rule
.asm.obj

masm $*.asm,$*.obj;
unconditional rule
getstars.exe:

tpc getstars 1m
dependencies
slib2.obj: slib2.asm
slibl.obj: slibl.asm

masm slibl.asm,slibl.obj;
end of makefile

Explicit Rules

Explicit rules take the form

target [target ...]: [source source ...]
[command]
[command]

550

#.OBJ files depend on >ASM files
command to create them

always create GETSTARS.EXE
command to create it

uses the implicit rule above
recast as an explicit rule

Turbo Pascal Owner's Handbook

where target is the file to be updated, source is a file upon which target
depends, and command is any valid MS-DOS command (including
invocation of .BAT files and execution of .COM and .EXE files).

Explicit rules define one or more target names, zero or more source files,
and an optional list of commands to be performed. Target and source file
names listed in explicit rules can contain normal MS-DOS drive and
directory specifications, but they cannot contain wildcards.

Syntax here is important. target must be at the start of a line (in column 1),
and each command must be indented (preceded by at least one space
character or tab). As mentioned before, the backslash (\) can be used as a
continuation character if the list of source files or a given command is too
long for one line. Finally, both the source files and the commands are
optional; it is possible to have an explicit rule consisting only of target
[target .. .] followed by a colon.

The idea behind an explicit rule is that the command or commands listed
will create or update target, usually using the source files. When MAKE
encounters an explicit rule, it first checks to see if any of the source files are
target files elsewhere in the makefile. If so, those rules are evaluated first.

Once all the source files have been created or updated based on other
explicit (or implicit) rules, MAKE checks to see if target exists. If not, each
command is invoked in the order given. If target does exist, its time and date
of last modification are compared against the time and date for each source.
If any source has been modified more recently than target, the list of
commands is executed.

A given file name can occur on the left side of an explicit rule only once in a
given execution of MAKE.

Each command line in an explicit rule begins with whitespace. MAKE
considers all lines following an explicit rule to be part of the command list
for that rule, up to the next line that begins in column 1 (without any
preceding whitespace) or up to the end of the file. Blank lines are ignored.

An explicit rule, with no command lines following it, is treated a little
differently than an explicit rule with command lines .

• If an explicit rule exists for a target with commands, the only files that the
target depends on are the ones listed in the explicit rule .

• If an explicit rule has no commands, the targets depend on the files given
in the explicit rule, and they also depend on any file that matches an
implicit rule for the target(s).

Appendix 0, The Turbo Pascal Utilities 551

Here is a makefile with examples of explicit rules:

myutil.obj: myutil.asm
masm myutil.asm,myutil.obj;

myapp.exe: myapp.pas myglobal.tpu myutils.tpu
tpc myapp /Tc:\tp4\bin

myglobal.tpu: myglobal.pas
tpc myglobal /Tc:\tp4\bin

myutils.tpu: myutils.pas myglobal.tpu myutil.obj
tpc myutils /Tc:\tp4\bin

• The first explicit rule states that MYUTIL.OB] depends upon
MYUTIL.ASM, and that MYUTIL.OB] is created by executing the given
MASM command. (The IT plus path name in all these examples will be
explained later.)

• The second rule states that MYAPP.EXE depends upon MYAPP.PAS,
MYGLOBAL.TPU, and MYUTILS.TPU, and is created by the given TPC
command .

• The third rule states that MYGLOBAL.TPU depends upon
MYGLOBAL.P AS, and is created by the given TPC command.

• The last rule states that MYUTILS.TPU depends upon MYUTILS.P AS,
MYGLOBAL.TPU, and MYUTIL.OB], and is created by the given TPC
command.

• If you reorder the rules so that the one for MYAPP.EXE comes first,
followed by the others, MAKE will recompile (or reassemble) only the
files that it has to in order to correctly update everything. This is because
MAKE with no target on the command line will try to execute the first
explicit rule it finds in the makefile.

• In practice, you would usually omit the last two explicit rules and simply
append a / M directive to the command under the explicit rule for
MYAPP .EXE. You will need to add, however, all the source dependencies
from MYGLOBAL.TPU and MYUTILS.TPU to the source for
MYAPP.EXE.

Implicit Rules

MAKE also allows you to define implicit rules, which are generalizations of
explicit rules. What does that mean? Here's an example to illustrate the
relationship between the two types. Consider this explicit rule from the
previous sample program:

myutil.obj: myutil.asm
masm myutil.asm,myutil.obj;

552 Turbo Pascal Owner's Handbook

This rule is a common one, because it follows a general principle: An .OB}
file is dependent on the .ASM file with the same file name and is created by
executing MASM. In fact, you might have a makefile where you have
several (or even several dozen) explicit rules following this same format.

By redefining the explicit rule as an implicit rule, you can eliminate all the
explicit rules of the same form. As an implicit rule, it would look like this:

.asrn.obj:
rnasrn $*.asrn,$*.obji

This rule means, "any file ending with .OB} depends on the file with the
same name that ends in .ASM, and the .OB} file is created using the com­
mand rnasm $* .asm, $* .obj, where $* represents the file's name with no
extension./I (The symbol $* is a special macro and is discussed in the next
section.)

The syntax for an implicit rule follows:

. source_extension. target_extension:
{command}
{command}

Note the commands are optional and must be indented. The
source_extension (which must begin in column 1) is the extension of the
source file, that is, it applies to any file having the format

fnarne.source extension

Likewise, the target_extension refers to the the file

fnarne.target_extension

where fname is the same for both files. In other words, this implicit rule
replaces all explicit rules having the format

fnarne.target_extension:fnarne.source_extension
[command]
[command]

for any fname.

Implicit rules are used if no explicit rule for a given target can be found or
if an explicit rule with no commands exists for the target.

The extension of the file name in question is used to determine which
implicit rule to use. The implicit rule is applied if a file is found with the
same name as the target, but with the mentioned source extension. For
example, suppose you had a makefile (named MAKEFILE) whose contents
were

Appendix 0, The Turbo Pascal Utilities 553

· asm. obj:
masm $*.asm,$*.obj;

If you had an assembly language routine named RATIO.ASM that you
wanted to compile to RATIO.OB], you could use the command

make ratio.obj

MAKE would take RATIO.OB] to be the target. Since there is no explicit
rule for creating RATIO.OB], MAKE applies the implicit rule and generates
the command

masm ratio.asm,ratio.obj;

which, of course, does the step necessary to create RATIO.OB].

Implicit rules are also used if an explicit rule is given with no commands.
Suppose, as mentioned before, you had the following implicit rule at the
start of your makefile:

.pas.tpu:
tpc $<

You could then rewrite the last two explicit rules as follows:

myglobal.tpu: myglobal.pas
myutils.tpu: myutils.pas myglobal.tpu myutil.obj

Since you don't have explicit information on how to create these .TPU files,
MAKE applies the implicit rule defined earlier.

Several implicit rules can be written with the same target extension, but
only one such rule can apply at a time. If more than one implicit rule exists
for a given target extension, each rule is checked in the order the rules
appear in the makefile, until all applicable rules are checked.

MAKE uses the first implicit rule that it discovers for a file with the source
extension. Even if the commands of that rule fail, no more implicit rules are
checked.

All lines following an implicit rule are considered to be part of the
command list for the rule, up to the next line that begins without
whitespace or to the end of the file. Blank lines are ignored. The syntax for
a command line is provided later in this appendix.

Unlike explicit rules, MAKE does not know -the full file name with an
implicit rule. For that reason, special macros are provided with MAKE that
allow you to include the name of the file being built by the rule. (For
details, see the discussion of macro definitions later in this appendix.)

Here are some examples of implicit rules:

554 Turbo Pascal Owner's Handbook

.pas.exe:
tpc $<

.pas.tpu:
tpc $<

.asm.obj:
masm $* /mx;

In the first example, the target files are .EXE files and their source files are
.P AS files. This example has one command line in the command list
(command-line syntax is covered later). Likewise, the second implicit rule
creates·.TPU files from .PAS files.

The last example directs MAKE to assemble a given file from its .ASM
source file, using MASM with the /mx option.

Command Lists

We've talked about both explicit and implicit rules, and how they can have
lists of commands. Let's talk about those commands and your options in
setting them up.

Commands in a command list must be indented-that is,preceded by at
least one space character or tab-and take the form

[prefix ... 1 command_body

Each command line in a command list consists of an (optional) list of
prefixes, followed by a single command body.

The prefixes allowed in a command modify the treatment of these
commands by MAKE. The prefix is either the at (@) sign or a hyphen (-)
followed immediately by a number.

@ Keeps MAKE from displaying the command before executing it.
The display is hidden even if the -5 option was not given on the
MAKE command line. This prefix applies only to the command
on which it appears.

-num Affects how MAKE treats exit codes. If a number (num) is
provided, then MAKE will abort processing only if the exit
status exceeds the number given. In this example, MAKE will
abort only if the exit status exceeds 4:

-4 myprog sample.x

If no -num prefix is given, MAKE checks the exit status for the
command. If the status is nonzero, MAKE will stop and delete
the current target file.

Appendix 0, The Turbo Pascal Utilities 555

With a hyphen but no number, MAKE will not check the exit
status at all. Regardless of what the exit status was, MAKE will
continue.

The command body is treated exactly as if it were entered as a line to
COMMAND. COM, with the exception that redirection and pipes are not
supported. MAKE executes the following built-in commands by invoking a
copy of COMMAND. COM to perform them:

break cd chdir cIs copy
md mkdir path prompt ren
rename set time type ver
verify vol

MAKE searches for any other command name using the MS-DOS search
algorithm:

• The current directory is searched first, followed by each directory in the
path.

• In each directory, first a file with the extension .COM is checked, then an
.EXE file, and finally a .BAT.

• If a .BAT file is found, a copy of COMMAND. COM is invoked to execute
the batch file.

Obviously, if an extension is supplied in the command line, MAKE searches
only for that extension.

This command will cause COMMAND. COM to execute the change­
directory command:

cd c:\include

This command will be searched for using the full search algorithm:

tpc myprog.pas /$Bt,Rt,It

This command will be searched for using only the .COM extension:

myprog.com geo.xyz

This command will be executed using the explicit file name provided:

c:\myprogs\fil.exe -r

Macros

Often certain commands, file names, or options are used again and again in
your makefile. In an example earlier in this appendix, all the TPC
commands used the switch jTc:\tp4\bin, which means that the files
TPC.CFG and TURBO.TPL are in the subdirectory C: \ TP4 \BIN. Suppose

556 Turbo Pascal Owner's Handbook

you wanted to switch to another subdirectory for those files; what would
you do? You could go through and modify all the IT options, inserting the
appropriate path name. Or, you could define a macro.

A macro is a name that represents some string of characters (letters and
digits). A macro definition gives a macro name and the expansion text;
thereafter, when MAKE encounters the macro name, it replaces the name
with the expansion text.

Suppose you defined the following macro at the start of your makefile:

TURBO=c:\tp4\bin

You've defined the macro TURBO, which is equivalent to the string
c:\tp4\bin. You could now rewrite the makefile as follows:

TURBO=c:\tp4\bin
myapp.exe: myapp.pas myglobal.tpu myutils.tpu

tpc myapp /T$(TURBO)

myutils.tpu: myutils.pas myglobal.tpu myutil.obj
tpc myutils /T$(TURBO)

myglobal.tpu: myglobal.pas
tpc myglobal /T$(TURBO)

myutil.obj: myutil.asm
masm myutil.asm,myutil.obj;

Everywhere the Turbo directory is specified, you use the macro invocation
$(TURBO). When you run MAKE, $(TURBO) is replaced with its expansion
text, m. The result is the same set of commands you had before.

So what have you gained? Flexibility. By changing the first line to

TURBO=c:\tp4\project

you've changed all the commands to use the configuration and library files
in a different subdirectory. In fact, if you leave out the first line altogether,
you can specify which subdirectory you want each time you run MAKE,
using the -D (Define) option:

make -DTURBO=c:\tp4\project

This tells MAKE to treat TURBO as a macro with the expansion text
c:\tp4\project.

Macro definitions take the form

macro _name=expansion text

where macro_name is the name of a macro made up of a string of letters and
digits with no whites pace in it, though you can have whitespace between
macro_name and the equal sign (=). expansion text is any arbitrary string

Appendix 0, The Turbo Pascal Utilities 557

containing letters, digits, whitespace, and punctuation; it is ended by a
carriage return.

If macro_name has previously been defined, either by a macro definition in
the makefile or by the -D option on the MAKE command line, the new
definition replaces the old.

Case is significant in macros; that is, the macros names turbo, Turbo, and
TURBO are all considered to be different.

Macros are invoked in your makefile with the format

$ (macro_name)

The parentheses are required for all invocation, even if the macro name is
just one character, with the exception of three special predefined macros
that we'll talk about in just a minute. This construct-$(macro_name)-is
known as a macro invocation.

When MAKE encounters a macro invocation, it replaces the invocation
with the macro's expansion text. If the macro is not defined, MAKE
replaces it with the null string.

Macros in macros: Macro cannot be invoked on the left (macro_name) side
of a macro definition. They can be used on the right (expansion text) side,
but they are not expanded until the macro being defined is invoked. In
other words, when a macro invocation is expanded, any macros embedded
in its expansion text are also expanded.

Macros in rules: Macro invocations are expanded immediately in rule
lines.

Macros in directives: Macro invocations are expanded immediately in lif
and lelif directives. If the macro being invoked in an lif or lelif directive is
not currently defined, it is expanded to the value 0 (False).

Macros in commands: Macro invocations in commands are expanded
when the command is executed.

MAKE comes with several special predefined macros built-in: $d, $*, $<, $:,
$., and $&. The first is a defined test macro, used in the conditional
directives lif and lelif; the others are file name macros, used in explicit and
implicit rules. The various file name macros work in similar ways,
expanding to some variation of the full path name of the file being built. In
addition, the current SET environment strings are automatically loaded as
macros, and the macro _MAKE_ is defined to be 1 (one).

558 Turbo Pascal Owner's Handbook

Defined Test Macro ($d)

This macro expands to 1 if the given macro name is defined, or to 0 if it is
not. The content of the macro's expansion text does not matter. This special
macro is allowed only in lif and lelif directives. For example, if you wanted
to modify your make file so that it would use a particular Turbo Pascal
directory if you didn't specify one, you could put this at the start of your
makefile:

! if ! $d (TURBO)
TURBO=c:\tp4\bin
!endif

If you invoke MAKE with the command line

make -DTURBO=c:\tp4\project

if TURBO is not defined
define it to C:\TP4\BIN

then TURBO is defined as c:\tp4\project. If, however, you just invoke
MAKE by itself

make

then TURBO is defined as c: \ tp4 \bin, your "default" subdirectory.

Base File Name Macro ($*)

This macro is allowed in the commands for an explicit or an implicit rule.
The macro expands to the file name being built, excluding any extension,
like this:

File name is A:\P\TESTFILE.PAS
$* expands to A:\P\TESTFILE

For example, you could modify the explicit MYAPP.EXE rule already given
to look like this:

myapp.exe: myapp.pas myglobal.tpu myutils.tpu
tpc $* /T$(TURBO)

When the command in this rule is executed, the macro $* is replaced by the
target file name (without an extension), myapp. This macro is very useful for
implicit rules. For example, an implicit rule for TPC might look like this
(assuming that the macro TURBO has been or will be defined):

.pas.exe:
tpc $* /T$(TURBO)

Appendix 0, The Turbo Pascal Utilities 559

Full File Name Macro ($<)

The full file name macro ($<) is also used in the commands for an explicit
or implicit rule. In an explicit rule, $< expands to the full target file name
(including extension), like this:

File name is A:\P\TESTFILE.PAS
$< expands to A:\P\TESTFILE.PAS

For example, the rule

starlib.tpu: starlib.pas
copy $< \oldtpus
tpc $* /T$(TURBO)

will copy STARLIB.TPU to the directory \OLDTPUS before compiling
STARLIB.P AS.

In an implicit rule, $< takes on the file name plus the source extension. For
example, the previous implicit rule

.asm.obj:
masm $*.asm,$*.obj;

can be rewritten as

.asm.obj:
masm $<, $* . obj;

File Name Path Macro ($:)

This macro expands to the path name {without the file name),like this:

File name is A:\P\TESTFILE.PAS
$: expands to A:\P\

File Name and Extension Macro ($.)

This macro expands to the file name, with extension, like this:

File name is A:\P\TESTFILE.PAS
$. expands to TESTFILE.PAS

File Name Only Macro ($&)

This macro expands to the file name only, without path or extension, like
this:

560 Turbo Pascal Owner's Handbook

File name is A:\P\TESTFILE.PAS
$& expands to TESTFILE

Directives

The version of MAKE bundled with Turbo Pascal allows something that
other versions of MAKE don't: conditional directives similiar to those
allowed for Turbo Pascal. You can use these directives to include other
makefiles, to make the rules and commands conditional, to print out error
messages, and to "undefine" macros.

Directives in a makefile begin with an exclamation point (!). Here is the
complete list of MAKE directives:

!include
!if
!else
!elif
!endif
!error
!undef

A file-inclusion directive (!include) specifies a file to be included into the
make file for interpretation at the point of the directive. It takes the
following form:

!include "filename"

or

!include <filename>

These directives can be nested arbitrarily deep. If an include directive
attempts to include a file that has already been included in some outer level
of nesting (so that a nesting loop is about to start), the inner include
directive is rejected as an error.

How do you use this directive? Suppose you created the file PATH.MAC so
it contained the following:

! if ! $d (TURBO)
TURBO=c:\tp4\bin
!endif

You could then make use of this conditional macro definition in any
makefile by including the directive

!include "PATH.MAC"

Appendix 0, The Turbo Pascal Utilities 561

When MAKE encounters the !include directive, it opens the specified file
and reads the contents as if they were in the makefile itself.

Conditional directives (lif, lelif, lelse, and lendif) give a programmer a measure
of flexibility in constructing makefiles. Rules and macros can be
"conditionalized" so that a command-line macro . definition (using the -D
option) can enable or disable sections of the makefile.

The format of these directives parallels, but is more extensive than, the
conditional directives allowed by Turbo Pascal:

!if expression
[lines 1

!endif

!if expression
[lines 1

!else
[lines

!endif

!if expression
[lines 1

!elif expression
[lines 1

!endif

Note: [lines] can be any of the following:

macro definition
explicitJule
implicitJule
include directive
if_group
error directive
undef directive

The conditional directives form a group, with at least an !if directive
beginning the group and an ! endif directive closing the group.

• One lelse directive can appear in the group.

• !elif directives can appear between the lif and any lelse directives.

• Rules, macros, and other directives can appear between the various
conditional directives in any number. Note that complete rules, with their
commands, cannot be split across conditional directives.

• Conditional directive groups can be nested arbitrarily deep.

Any rules, commands, or directives must· be complete within a single
source file.

562 Turbo Pascal Owner's Handbook

Any lif directives must have matching !endif directives within the same
source file. Thus the following include file is illegal regardless of what is
contained in any file that might include it, because it does not have a
matching lendif directive:

!if $(FILE_COUNT) > 5
some rules
!else
other rules
<end-of-file>

The expression allowed in an Iif or an lelif directive uses a syntax similar to
that found in the C programming language. The expression is evaluated as
a simple 32-bit signed integer expression.

Numbers can be entered as decimal, octal, or hexadecimal constants. For
example, these are legal constants in an expression:

4536
0677
Ox23aF

decimal constant
octal constant (note the leading zero)

hexadecimal constant

and any of the following unary operators:

negation
bit complement
logical not

An expression can use any of the following binary operators:

+ addition
subtraction

* multiplication
/ division
% remainder
» right shift
« left shift
& bitwise and
I bitwise or

A bitwise exclusive or
&& logical and
I I logical or
> greater than
< less than
>= greater than or equal to
<= less than or equal to

equality
!= inequality

Appendix 0, The Turbo Pascal Utilities 563

An expression can contain the following ternary operator:

? : The operand before the? is treated as a test.

If the value of that operand is nonzero, then the second operand (the part
between the? and the colon) is the result. If the value of the first operand is
zero, the value of the result is the value of the third operand (the part after
the :).

Parentheses can be used to group operands in an expression. In the absence
of parentheses, binary operators are grouped according to the same
precedence given in the C language.

As in C, grouping is from left to right for operators of equal precedence,
except for the ternary operator (? :), which is right to left.

Macros can be invoked within an expression, and the special macro $dO is
recognized. After all macros have been expanded, the expression must
have proper syntax. Any words in the expanded expression are treated as
errors.

The error directive (ferror) causes MAKE to stop and print a fatal diagnostic
containing the text after ferror. It takes the format

! error any_text

This directive is designed to be included in conditional directives to allow a
user-defined abort condition. For example, you could insert the following
code in front of the first explicit rule:

! if ! $d (TURBO)
if TURBO is not defined
!error TURBO not defined
!endif

If you reach this spot without having defined TURBO, then MAKE will
stop with this error message:

Fatal rnakefile 5: Error directive: TURBO not defined

The undefine directive (fundef) causes any definition for the named macro to
be forgotten. If the macro is currently undefined, this directive has no
effect. The syntax is

!undef macro name

564 Turbo Pascal Owner's Handbook

Using MAKE

You now know a lot about how to write makefiles; now's the time to learn
how to use them with MAKE. The simplest way to use MAKE is to type the
command

make

at the MS-DOS prompt. MAKE then looks for MAKEFILE; if it can't find it,
it looks for MAKEFILE.MAK; if it can't find that, it halts with an error
message.

What if you want to use a file with a name other than MAKE FILE or
MAKEFILE.MAK? You give MAKE the file (-f> option, like this:

make -fstars.mak

The general syntax for MAKE is

make option option ... target target

where option is a MAKE option (discussed later) and target is the name of a
target file to be handled by explicit rules.

Here are the syntax rules:

• The word make is followed by a space, then a list of make options.
• Each make option must be separated from its adjacent options by a space.

Options can be placed in any order, and any number of these options can
be entered (as long as there is room in the command line).

• After the list of make options comes a space, then an optional list of
targets.

• Each target must also be separated from its adjacent targets by a space.
MAKE evaluates the target files in the order listed, recompiling their
constituents as necessary.

If the command line does not include any target names, MAKE uses the
first target file mentioned in an explicit rule. If one or more targets are
mentioned on the command line, they will be built as necessary.

Here are some more examples of MAKE command lines:

make -n -fstars.mak
make -s
make -linclude -DTURBO=c:\tp4\project

MAKE will stop if any command it has executed is aborted via a etr/-Break.
Thus, a Ctr/-C will stop the currently executing command and MAKE as
well.

Appendix 0, The Turbo Pascal Utilities 565

The BUlL TINS.MAK File

When using MAKE, you will often find that there are macros and rules
(usually implicit ones) that you use again and again. You've got three ways
of handling them. First, you can put them in each and every makefile you
create. Second, you can put them all in one file and use the !include
directive in each makefile you create. Third, you can put them all in a file
named BUlL TINS.MAK.

Each time you run MAKE, it looks for a file named BUILTINS.MAK; if it
finds the file, MAKE reads it in before handling MAKEFILE (or whichever
makefile you want it to process).

The BUILTINS.MAK file is intended for any rules (usually implicit rules) or
macros that will be commonly used in files anywhere on your computer.

There is no requirement that any BUILTINS.MAK file exist. If MAKE finds
a BUlL TINS.MAK file, it interprets that file first. If MAKE cannot find a
BUILTINS.MAK file, it proceeds directly to interpreting MAKE FILE (or
whatever makefile you specify).

How MAKE Searches for Files

MAKE will search for BUILTINS.MAK in the current directory or in the
exec directory if your computer is running under DOS 3.x. You should
place this file in the same directory as the MAKE.EXE file.

MAKE always searches for the makefile in the current directory only. This
file contains the rules for the particular executable program file being built.
The two files have identical syntax rules.

MAKE also searches for any !include files in the current directory. If you use
the -/ (Include) option, it will also search in the specified directory.

MAKE Command-Line Options

We've alluded to several of MAKE's command-line options; now we'll
present a complete list of them. Note that case (upper or lower) is
significant; the option -d is not a valid substitute for -D.

-Didentifier Defines the named identifier to the string consisting of
the single character 1.

-Diden=string Defines the named identifier iden to the string after the
equal sign. The string cannot contain any spaces or tabs.

566 Turbo Pascal Owner's Handbook

-Idirectory

-Uidentifier

-s

-n

-ffi1ename

-? or-h

MAKE will search for include files in the indicated
directory (as well as in the current directory).

Undefines any previous definitions of the named
identifier.

Normally, MAKE prints each command as it is about to
be executed. With the -s option, no commands are
printed before execution.

Causes MAKE to print the commands, but not actually
perform them. This is useful for debugging a makefile.

Uses filename as the MAKE file. If filename does not exist
and no extension is given, tries filename.MAK.

Prints help message.

MAKE Error Messages

MAKE diagnostic messages fall into two classes: fatals and errors. When a
fatal error occurs, execution immediately stops. You must take appropriate
action and then restart the execution. Errors will indicate some sort of
syntax or semantic error in the source makefile. MAKE will complete
interpreting the makefile and then stop.

Fatals

Don't know how to make XXXXXXXX
This message is issued when MAKE encounters a nonexistent file name
in the build sequence, and no rule exists that would allow the file name
to be built.

Error directive: XXXX
This message is issued when MAKE processes an #error directive in the
source file. The text of the directive is displayed in the message.

Incorrect command line argument: XXX
This error occurs if MAKE is executed with incorrect command-line
arguments.

Not enough memory
This error occurs when the total working storage has been exhausted.
You should try this on a machine with more memory. If you already
have 640K in your machine, you may have to simplify the source file.

Appendix D, The Turbo Pascal Utilities 567

Unable to execute command
This message is issued after attempting to execute a command. It could
be caused because the command file could not be found, or because it
was misspelled. A less likely possibility is that the command exists but is
somehow corrupted.

Unable to open makefile
This message is issued when the current directory does not contain a file
named MAKEFILE.

Errors

Bad file name format in include statement
Include file names must be surrounded by quotes or angle brackets. The
file name was missing the opening quote or angle bracket.

Bad undef statement syntax
An lundef statement must contain a single identifier and nothing else as
the body of the statement.

Character constant too long
Character constants can be only one or two characters long.

Command arguments too long
The arguments to a command executed by MAKE were more than 127
characters-a limit imposed by MS-DOS.

Command syntax error
This message occurs if

• the first rule line of the makefile contained any leading whitespace.

• an implicit rule did not consist of .ext.ext:.
• an explicit rule did not contain a name before the: character.

• a macro definition did not contain a name before the = character.

Division by zero
A divide or remainder in an lif statement has a zero divisor.

Expression syntax error in lit statement
The expression in an lif statement is badly formed-it contains a
mismatched parenthesis, an extra or missing operator, or a missing or
extra constant.

File name too long
The file name given in an linclude directive was too long for MAKE to
process. File path names in MS-DOS must be no more than 78 characters
long.

568 Turbo Pascal Owner's Handbook

Illegal character in constant expression X
MAKE encountered some character not allowed in a constant
expression. If the character is a letter, this indicates a (probably)
misspelled identifier.

Illegal octal digit
An octal constant was found containing a digit of 8 or 9.

Macro expansion too long.
A macro cannot expand to more than 4096 characters. This error often
occurs if a macro recursively expands itself. A macro cannot legally
expand to itself.

Misplaced elif statement
An leUf directive was encountered without any matching lif directive.

Misplaced else statement
An lelse directive was encountered without any matching lif directive.

Misplaced endif statement
An lendif directive was encountered without any matching lif directive.

No file name ending
The file name in an include statement was missing the correct closing
quote or angle bracket.

Redefinition of target XXXXXXXX
The named file occurs on the left-hand side of more than one explicit
rule.

Unable to open include file XXXXXXXXX~XXX
The named file could not be found. This could also be caused if an
include file included itself. Check whether the named file exists.

Unexpected end of file in conditional started on line #
The source file ended before MAKE encountered an I endif. The I endif was
either missing or misspelled.

Unknown preprocessor statement
A ! character was encountered at the beginning of a line, and the
statement name following was not error, undef, if, elif, include, else, or
endif.

The TOUCH Utility

There are times when you want to force a particular target file to be
recompiled or rebuilt, even though no changes have been made to its
sources. One way to do this is to use the TOUCH utility included with

Appendix 0, The Turbo Pascal Utilities 569

Turbo Pascal. TOUCH changes the date and time of one or more files to the
current date and time, making it "newer" than the files that depend on it.

To force a target file to be rebuilt, "touch" one of the files that target
depends on. To touch a file (or files), enter

touch filename [filename ...]

at the DOS prompt. TOUCH will then update the file's creation date(s).

Once you do this, you can invoke MAKE to rebuild the touched target
file(s). (You can use the DOS.wildcards * and? with TOUCH.)

The GREP Utility

Also included on your Turbo Pascal disks is a stand-alone utility program
called GREP. This is a powerful search utility that can look for text in
several files at once. For example, if you have forgotten what program you
defined a procedure called SetUpMyModem, you could use GREP to search
the contents of all the .P AS files in your directory to look for the string
SetUpMyModem.

The command-line syntax for GREP follows:

GREP [options] searchstring filers]

where options consists of one or more single characters preceded by a
hyphen; searchstring definds the pattern to search for.

The GREP Switches

Each individual switch character can be followed by the symbol" +" to turn
the option on, or by another hyphen (-) to turn the option off. The default is
+ (that is, -r means the same thing as -r+). 'Here is a list of the option
characters used with GREP:

-r The text defined by searchstring is treated as a regular expression
instead of a literal string.

-1 Only the name of each file containing a match is printed. After a
match is found, the file name is printed and processing imme­
diately moves on to the next file.

-c Only a count of matching lines is printed. For each file that contains
at least one matching line, the file name and a count of the number
of matching lines is printed. Matching lines are not printed.

570 Turbo Pascal Owner's Handbook

-n Each matching line that is printed is preceded by its line number.

-v Only non-matching lines are printed. Only lines that do not contain
the search string are considered to be matching lines.

-i Ignore uppercase/lowercase differences (case folding). All letters
a-z are treated identically to the corresponding letters A-Z in all
situations.

-d Search subdirectories. For each file set specified on the command
line, all files that match the wildcard file specification are searched
in the directory specified and all subdirectories below the specified
directory. If a file-set is given without a path, it is assumed to be the
current directory.

-z Verbose. The file name of every file searched is printed. Each
matching line is preceded by its line number. A count of matching
lines in each file is given, even if it's zero.

-w Write Options. Combine the options given on the command line
with the default options and write these to a new .COM file as the
new defaults. This option allows you to tailor the default option
settings to your own taste.

Several of these options are in direct conflict with each other. In these cases,
the following order applies (the first one is the one that takes precedence):

-z -1 -c -n

Each occurrence of an option overrides the previous definition. The default
setting for each option can be installed.

How to Search in GREP

The search string can be enclosed in quotation. marks to prevent spaces and
tabs from being treated as delimiters. Matches will not cross line
boundaries. When the -r switch is used, the search string is treated as a
regular expression (as opposed to a literal expression) and the following
symbols take on special meanings:

1\

$

*

A circumflex at the start of the expression matches the start of a
line.

A dollar sign at the end of the expression matches the end of a line.

A period matches any character.

An expression followed by an asterisk wildcard matches zero or
more occurrences of that expression: fo* matches f, fo, faa, etc.

Appendix 0, The Turbo Pascal Utilities 571

+ An expression followed by a plus sign matches one or more
occurrences of that expression: fo+ matches fo, foo, etc., but not f.

[] A string enclosed in brackets matches any character in that string,
but no others. If the first character in the string is a circumflex (1\),
the expression matches any character except the characters in the
string. For example, [xyzJ matches x, y, and z, while [l\xyzJ matches
a and b, but not x or y. A range of characters can be specified by
two characters separated by a hyphen (-). These can be combined to
form expressions like [a-bd-z?J to match any letter except c, and?

Note: Four characters ($, +, *, and .) do not have any special
meaning when used in a set. The character 1\ is only treated
specially if it immediately follows the beginning of the set (that is,
immediately after the D.

\ The backslash "escape character" tells GREP to seach for the literal
character that follows it. For example, \. matches a period instead
of any character.

Any ordinary character not mentioned in this list matches that character. A
concatenation of regular expressions is a regular expression.

Examples of Using GREP

The following examples assume all options default to off.

grep main(*.pas

Matches: main ()
mymain(

Does not match: mymainfunc ()
MAIN(i: integer);

Searches: *.pas in current directory

Note: By default, search is case-sensitive.

grep -r[Aa-z]main \ *(* .pas

Matches: main(i:integer)
main(i,j:integer)
if (main ()) halt;

Does not match: mymain ()

572 Turbo Pascal Owner's Handbook

Searches:

Note:

MAIN(i:integer);

*.pas in current directory

Since spaces and tabs are normally considered to be
command-line delimiters, you must quote them if you
wish to include them as part of a regular expression. In
this case, the space after main was quoted using the
backslash escape character. You could also accomplish
this by placing the space or the entire regular expression
in double quotes (1/).

grep -ri [a-cl:\ \data\.fil *.pas *.inc

Matches: A:\data.fil
c:\Data.Fil
B: \DATA.FIL

Does not match: d:\data.fil

Searches:

a:data.fil
Writeln("c:\\data.fil");

*.pas and *.inc in current directory

Note: If you wish to search for the characters 1/\" and 1/.", you
must quote them by placing the backslash (\) escape
character immediately in front of them.

grep -ri [Aa-zlword[Aa-zl *.doc

Matches: every new word must be on a new line.
MY WORD!
word--smallest unit of speech.
In the beginning there was the WORD, and the WORD

Does not match: Each file has at least 2000 words.
He misspells toward as toward.

Searches: *.doc in the current directory

Note: This format basically defines a word search.

grep "search string with spaces" *.doc *.asm
a: \ work \myfile. *

Matches: This is a search string with spaces in it.

Does not match: THIS IS A SEARCH STRING WITH SPACES IN IT.
This is a search string with many spaces in it.

Appendix 0, The Turbo Pascal Utilities 573

Searches:

Note:

*.doc and *.asm in the current directory, and myfile.* in a
directory called \ work on drive A:

Example of how to search for a string with embedded
spaces.

grep -rd "[,.:?'\"]"$ \ * .doc

Matches: He said hi to me.
Where are you going?
Happening in anticipation of a unique situation,
Examples include the following:
"Many men smoke, but fu man chu."

Does not match: He said "Hi" to me

Searches:

Note:

Where are you going? I'm headed to the beach this

*.doc in the root directory and all its subdirectories on
the current drive

Searches for ,.:?' and" at the end of a line. Notice that
the double quote within the range has an escape
character in front of it so it is treated as a normal
character instead of the ending quote for the string.
Also, notice the $ character appears outside of the
quoted string, which demonstrates how regular
expressions can be concatenated together to form a
longer expression.

grep -ild " the" \ * .doc
grep -i -1 -d " the" \ * .doc
grep -il -d " the" \ * .doc

Matches: Anyway, this is the time we have
do you think? The main reason we are

Does not match: He said "Hi" to me just when I
Where are you going? I'll bet you're headed to

Searches: * .doc in the root directory and all its subdirectories on
the current drive

Note: Ignores case and prints the names of any files that
contain at least one match. The examples show the
different ways of specifying multiple switches.

574 Turbo Pascal Owner's Handbook

The BINOBJ Utility

A utility program BINOBJ.EXE has been added that converts any file to an
.OBJ file so it can be linked into a Turbo Pascal program as a "procedure."
This is useful if you have a binary data file that must reside in the code
segment or is too large to make into a typed constant array. For example,
you can use BINOBJ with the Graph unit to link the graphics driver or font
files directly into your .EXE file. Then, to use your graph program, you
need only have the .EXE file (see the example GRLINK.PAS on Disk 2).

BINOBJ takes three parameters:

BINOBJ <source[.BINl> <destination[.OBJl> <public name>

source is the binary file to convert; destination is the name of the .OBJ to be
produced; and public name is the name of the procedure as it will be
declared in your Turbo Pascal program.

The following example, the procedure ShowScreen, takes a pointer as a
parameter and moves 4000 bytes of data to screen memory. The file called
MENU.DTA contains the image of the main menu screen (80 * 25 * 2 = 4000
bytes).

Here's a simple (no error-checking) version of MYPROG.P AS:

program MyProg;

procedure ShowScreen(var ScreenData : pointer);
{ Display a screenful of data--no error-checking!
var

ScreenSegrnent: word;

begin
if (Lo(LastMode) = 7) then

ScreenSegrnent := $BOOO
else

ScreenSegrnent := $B800;
Move (ScreenDataA,

Ptr(ScreenSegment, O)A,
4000);

end;

var
MenuP pointer;
MenuF file;

begin
Assign (MenuF, 'MENU.DTA');
Reset (MenuF, 1);
GetMem(MenuP, 4000);
BlockRead(MenuF, Menup A

, 4000);
Close(MenuF);
ShowScreen(MenuP);

end.

Appendix 0, The Turbo Pascal Utilities

{ Mono? }

{ From pointer
To video memory

{ 80 * 25 * 2

{ Open screen data file

{ Allocate buffer on heap
{ Read screen data

{ Display screen

575

The screen data file (MENU.DTA) is opened and then read into a buffer on
the heap. Both MYPROG.EXE and MENU.DTA must be present at runtime
for this program to work. You can use BINOBJ to convert MENU.DTA to an
.OBJ file (MENUDTA.OBJ) and tell it to associate the data with a procedure
called MenuData. Then you can declare the fake external procedure
MenuData, which actually contains the screen data. Once you link in the
.OBJ file with the {$L} compiler directive, MenuData will be 4000 bytes long
and contain your screen data. First, run BINOBJ on MENU.DTA:

binobj MENU.DTA MENUDTA MenuData

The first parameter, MENV.DTA, shows a familiar file of screen data; the
second, MENUDTA, is the name of the .OBJ file to be created (since you
didn't specify an extension, .OBJ will be added). The last parameter,
MenuData, is the name of the external procedure as it will be declared in
your progam. Now that you've converted MENU.DTA to an .OBJ file,
here's what the new MYPROG.P AS looks like:

program MyProg;

procedure ShowScreen(ScreenData : pointer);
{ Display a screenful of data--no error checking!
var

ScreenSegment: word;
begin

if (Lo(LastMode) = 7) then
ScreenSegment := $BOOO

else
ScreenSegment := $B800;

Move(ScreenData~,

Ptr(ScreenSegment, O)~,

4000);
end;

procedure MenuData; external;
{$L MENUDTA.OBJ }
begin

ShowScreen(@MenuData);
end.

{ Mono? }

{ From pointer }
{ To video memory }

{ 80 * 25 * 2 }

{ Display screen }

Notice that ShowScreen didn't change at all, and that the ADDRESS of your
procedure is passed using the @ operator.

The advantage of linking the screen data into the .EXE is apparent: You
don't need any support files in order to run the program. In addition, you
have the luxury of referring to your screen by name (MenuData). The
disadvantages are that (1) every time you modify the screen data file, you
must reconvert it to an .OBJ file and recompile MYPROG and (2) you have
to have a separate .OBJ file (and external procedure) for each screen you
want to display.

576 Turbo Pascal Owner's Handbook

BINOB] is especially useful when the binary file you wish to link in is fairly
stable. One of the sample graphics programs uses BINOB] to build two
units that contain the driver and font files; refer to the extensive comment
at the beginning of GRLINK.P AS on Disk 2.

Appendix E, Reference Materials 577

578 Turbo Pascal Owner's Handbook

A p p E N D x

E

Reference M'aterials

This chapter is devoted to certain reference materials, including an ASCII
table, keyboard scan codes, and extended codes.

ASCII Codes

The American Standard Code for Information Interchange (ASCII) is a
code that translates alphabetic and numeric characters and symbols and
control instructions into 7-bit binary code. Table E.1 shows both printable
characters and control characters.

Appendix E, Reference Materials 579

Table E.l: ASCII Table

DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR

0 0 32 20 64 40 @ 96 60 .
1 1 @ 33 21 I 65 41 A 97 61 a
2 2 • 34 22 It 66 42 B 98 62 b
3 3 • 35 23 # 67 43 C 99 63 c
4 4 • 36 24 $ 68 44 D 100 64 d

5 5 .. 37 25 % 69 45 E 101 65 e

6 6 • 38 26 & 70 46 F 102 66 f

7 7 • 39 27 . 71 47 G 103 67 9
8 8 a 40 28 (72 48 H 104 68 h
9 9 0 41 29) 73 49 I 105 69 i

10 A I 42 2A * 74 4A J 106 6A j

11 B cJ 43 2B + 75 4B K 107 6B k
12 C 9 44 2C . 76 4C L 108 6C 1
13 D l' 45 20 - 77 4D M 109 6D m
14 E J' 46 2E 78 4E N 110 6E n
15 F a 47 2F / 79 4F 0 111 6F 0

16 10 ~ 48 30 a 80 50 P 112 70 .p

17 11 ... 49 31 1 81 51 Q 113 71 q
18 12 1 50 32 2 82 52 R 114 72 r
19 13 II 51 33 3 83 53 S 115 73 S

20 14 ~ 52 34 4 84 54 T 116 74 t

21 15 § 53 35 5 85 55 U 117 75 U

22 16 • 54 36 6 86 56 V 118 76 v
23 17 1 55 37 7 87 57 W 119 77 W

24 18 T 56 38 8 88 58 X 120 78 x
25 19 ! 57 39 9 89 59 Y 121 79 Y
26 1A . -+ 58 3A : 90 5A Z 122 7A z
27 1B 4- 59 3B ; 91 5B [123 7B {

28 1C L 60 3C < 92 5C \ 124 7C I
29 1D ++ 61 3D = 93 5D] 125 7D }

30 1E A 62 3E > 94 5E ... 126 7E -
31 1F ... 63 3F ? 95 5F 127 7F ll. -

580 Turbo Pascal Owner's Handbook

Table E.': ASCII Table, continued

DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR

128 80 C; 160 AO a. 192 CO L 224 EO ex
129 81 ii 161 A1 i 193 C1 ..L 225 E1 ~
130 82 e 162 A2. 6 194 C2 T 226 E2 r
131 83 a 163 A3 11 195 C3 ~ 227 E3 1T

132 84 a. 164 A4 fi 196 C4 - 228 E4 1:
133 85 a. 165 AS N 197 C5 + 229 E5 (j'

134 86 a 166 A6 §. 198 C6 F 230 E6 II
135 87 9 167 A7 Q 199 C7 I~ 231 E7 T

136 88 ~ 168 A8 l, 200 C8 l!: 232 E8 ~

137 89 e 169 A9 r 201 C9 rr 233 E9 e
138 8A e 170 AA -. 202 CA :!!: 234 EA n
139 8B i 171 AB ~ 203 CB iF 235 EB cS

140 8C 1 172 AC % 204 CC I~ 236 EC 00

141 8D 1 173 AD i 205 CD = 237 ED ¢

142 8E it 174 AE « 206 CE JL 238 EE E lr

143 8F A 175 AF » 207 CF :!: 239 EF n
144 90 E 176 BO [~ 208 DO II 240 FO =

145 91 ~ 177 B1 II 209 D1 T 241 F1 ±
146 92 If. 178 B2 I 210 D2 1T 242 F2 ~

147 93 8 179 B3 I 211 D3 Ii 243 F3 ::;

148 94 0 180 B4 ~ 212 04 I: 244 F4 r
149 95 0 181 B5 ~ 213 05 F 245 F5 J
150 96 11 182 B6 ~I 214 06 IT 246 F6

151 97 U 183 B7 11 215 07 ~~ 247 F7 :::

152 98 Y 184 B8 216 08 .L 248 F8 · 9 T

153 99 0 185 B9 ~I 217 09 J 249 F9 ·
154 9A ti 186 BA II 218 OA r 250 FA ·
155 9B ¢ 187 BB il 219 DB • 251 FB .,
156 9C £ 188 BC :!J 220 DC 252 FC n •
157 90 Y 189 BO .1J 221 DO I 253 FO 2

158 9E Pt 190 BE ::I 222 DE I 254 FE ·
159 9F f 191 BF 1 223 OF • 255 FF

Appendix E, Reference Materials 581

Extended Key Codes

Extended key codes are returned by those keys or key combinations that
cannot be represented by the standard ASCII codes listed in Table E.l. (See
ReadKey in Chapter 27 for a description about how to determine if an
extended key has been pressed.)

Table E.2 shows the second code and what it means.

Second Code

582

3
15
16-25
30-38
44-50
59-68
71
72
73
75
77
79
80
81
82
83
84-93
94-103
104-113
114
115
116
117
118
119
120-131
132
133
134
135
136
137
138
139
140

Table E.2: Extended Key Codes

Meaning

NUL (null character)
Shift Tab (-<vv)
Alt-Q/W/ E/ R/ T / Y/ U/ 1/ 0/ P
Alt-A/ S/ 0/ F / G/ H/ 1/ J/ K/ L
Alt-Z/ X/ C/ V / B/ N/ M
Keys FI-F1O (disabled as softkeys)
Home
Uparrow
PgUp
Left arrow
Right arrow
End
Down arrow
PgDn
Ins
Del
FII-F20 (Shift-FI to Shift-FlO)
F21-F30 (Ctrl-FI through FlO)
F31-F40 (AIt-FI through FlO)
Ctr/-PrtSc
Ctrl-Left arrow
CtrJ-Right arrow
Ctr/-End
Ctr/-PgDn
Ctrl-Home
Alt-1 /2/3/ 4/ 5/6/7/ 8/9/0/ -/ =
Ctr/-PgUp
FII
F12
Shift-FII
Shift-Fl2
Ctr/-FII
Ctrl-Fl2
Alt-FII
Alt-F12

Turbo Pascal Owner's Handbook

Keyboard Scan Codes

Keyboard scan codes are the codes returned from the keys on the IBM PC
keyboard, as they are seen by Turbo Pascal. These keys are useful when
you're working at the assembly language level. Note that the keyboard
scan codes displayed in Table E.3 on page 584 are in hexadecimal values.

Appendix E, Reference Materials 583

Table E.3: Keyboard Scan Codes

Scan Code Scan Code
Key in Hex Key in Hex

Esc 01 Left/ Right arrow OF
11 02 Q 10
@2 03 W 11
#3 04 E 12
$4 05 R 13
%5 06 T 14
"6 07 Y 15
&7 08 U 16
"'8 09 I 17
(9 OA 0 18
)0 OB P 19
- OC {[lA
+= 00 }] IB
Backspace OE Return lC
Gtrl 10 /1 2B
A IE Z 2C
S IF X 20
D 20 G 2E
F 21 V 2F
G 22 B 30
H 23 N 31
J 24 M 32
K 25 <, 33
L 26 >. 34 .. 27 ?/ 35 . ,
.11 28 RightShift 36
",' 29 PrtSc'" 37
LeftShift 2A Alt 38
SpaceBar 39 7Home 47
Gaps Lock 3A 8Uparrow 48
F1 3B 9PgUp 49
F2 3C Minus sign 4A
F3 3D 4Left arrow 4B
F4 3E 5 4C
F5 3F 6Right arrow 40
F6 40 + 4E
F7 41 1 End 4F
F8 42 2Downarrow 50
F9 43 3PgDn 51
F10 44 Olns 52
F11 09 Del 53
F12 OA NumLock 45
Scroll Lock 46

584 Turbo Pascal Owner's Handbook

A p p E N D x

F

Customizing Turbo Pascal

This appendix explains how to customize Turbo Pascal and install your
customizations in the TURBO.EXE file.

What Is TINST?

TINST is the Turbo Pascal installation program that you can use to
customize TURBO.EXE (the integrated environment version of Turbo
Pascal). Through TINST, you can change various default settings in the
Turbo Pascal operating environment, such as the screen size, editing
commands, menu colors, and default directories. It directly modifies certain
default values within your copy of TURBO.EXE.

With TINST, you can do any of the following:

• set up paths to the directories where your include files, unit files,
configuration files, Help files, Pick file, and executable files are located

• customize the Editor command keys

• set up Turbo Pascal's editor defaults and on screen appearance

• set up the default video display mode

• change screen colors
• resize Turbo Pascal's Edit and Output windows

• change the defaults of any of the settings accessible through the
Options/Compiler menu or the Options/Compiler/Memory sizes menu

• change the defaults of any of the settings accessible through the
Options/Environment menu or the Options/Environment/Screen size
menu

Appendix F, Customizing Turbo Pascal 585

• change the destination setting (menu equivalent: Compile/Destination)
, • determine the primary file (menu equivalent: Compile/Primary file)

Turbo Pascal comes ready to run; there is no installation per se. You can
copy the files from the distribution disks to your working floppies (or hard
disk) as described in Chapter 1, then run Turbo Pascal.

You will need to also run TINST if you want to do any of the following:

• automatically load a configuration file (TURBO.TP) that does not reside
in the current directory

• change Turbo Pascal's default menu colors

• force the display mode or snow checking

If you want to store path names (to all the different directories you use
when running Turbo Pascal) directly in TURBO.EXE, you'll need to use one
of the menu options (off of Options/Directories) from within the TINST
program.

You can use the Editor commands option to reconfigure (customize) the
interactive editor's keystrokes to your liking.

The Environment option is for setting various defaults for the default
editing modes and the appearance of the Turbo Pascal integrated
environment.

With Display mode, you can specify the video display mode that Turbo
Pascal will operate in, and whether your display is a "snowy" video
adapter.

You can customize the colors of almost every part of Turbo Pascal's
integrated environment through the Set colors option.

The Resize windows option allows you to change the sizes of the Edit and
Output windows.

Running TINST

1. To get started, type tinst Enter at the DOS prompt. TURBO.EXE must be
in the same directory as TINST; if it isn't, you must add the path name
of TURBO.EXE to the command invoking TINST.

586

Note: TINST comes up in black and white by default. If you have a color
monitor and want to run TINST in color rather than black and white,
type tinst Ie Enter at the DOS prompt.

, Turbo Pascal Owner's Handbook

Note that you can use one version of TINST to customize several
different copies of Turbo Pascal on your system. These various copies of
TURBO.EXE can have different executable program names. Simply
invoke TINST and give a (relative or absolute) path name to the copy of
TURBO.EXE you're customizing; for example,

tinst e:\turboOO\tpOO.exe
tinst .. \ .. \bwtp.exe
tinst Ie c:\borland\eolortp.exe

In this way, you can customize the different copies of Turbo Pascal on
your system to use different editor command keys, different menu
colors, and so on, if you're so inclined.

2. From the main TINST installation menu, you can select Compile,
Options, Editor commands, Display mode, Set colors, Resize windows,
or Quit/save. You can either press the highlighted capital letter of a
given option, or use the Up and Down arrow keys to move to your
selection and then press Enter. For instance, press S to Set the colors of
the Turbo Pascal integrated environment.

3. In general, pressing Esc (more than once if necessary) will return you
from a submenu to the main installation menu.

The Turbo Pascal Directories Option

With the Directories option, you can specify a path to each of the
TURBO.EXE default directories. These are the directories Turbo Pascal
searches when looking for an alternate configuration file, the Help file, and
the object, include, and unit files, along with the directory where it will
place your executable program.

When you select Options/Directories, TINST brings up a menu with the
following items:

• Turbo directory
• Executable directory
• Include directories
• Unit directories
• Object directories
• Pick file name

Appendix F, Customizing Turbo Pascal 587

Object directories, Include directories, and Unit directories

You can enter multiple directories in Include directories and Unit
directories. You must separate these "ganged" directory path names with a
semicolon (;), and can enter a maximum of 127 characters with either
menu item. You can enter absolute or relative path names.

For example, if you have three directories of include files, you could enter
the following in the Include directories pop-up input window:

c:\turbo\include;c:myincld;a: .. \ .. \include2

If, in addition, you have divided your unit files among four different
directories, and want Turbo Pascal to search each of those directories when
looking for units, you could enter the following in the Unit· directories
pop-up input window:

c:\turbo\startups;c:\turbo\stdunits;c: .. \myunits2;a:newunits3

Executable directory and Turbo directory

The Executable directory and Turbo directory menu items each take one
(absolute or relative) directory path name; each item accepts a maximum of
64 characters.

The Turbo directory is where Turbo Pascal will look for the Help files, the
default pick file, and TURBO.TP (the default configuration file) if they
aren't located in the current directory.

For example, you could type the following path name at the Turbo
directory menu item:

c:\turbo\cfgsnhlp

Then, if Turbo Pascal can't find the configuration and Help files in the
current directory, it will look for them in the directory called TURBO\
CFGSNHLP (off the root directory of the C drive).

Pick file name

When you select this menu item, an input window pops up. Type in the
path name of the Pick file you want Turbo Pascal to load or create. The
default Pick file name is TURBO.PCK.

After typing a path name (or names) for any of the Environment menu
items, press Enter to accept, then press Esc to return to the main TINST
installation menu. When you exit the program, TINST prompts whether

588 Turbo Pascal Owner's Handbook

you want to save the changes. Once you save the Turbo directory paths, the
locations are written to disk and become part of TURBO.EXE's default
settings.

The Editor Commands Option

Turbo Pascal's interactive editor provides many editing functions,
including commands for

• cursor movement
• text insertion and deletion
• block and file manipulation
• string search (plus search-and-replace)

These editing commands are assigned to certain keys (or key combi­
nations), which are explained in detail in Chapter II.

When you select Editor commands from TINST's main installation menu,
the Install Editor screen comes up, displaying three columns of text:

• The left-hand column describes all the functions available in Turbo
Pascal's interactive editor.

• The middle column lists the Primary keystrokes; what keys or special key
combinations you press to invoke a particular editor command.

• The right-hand column lists the Secondary keystrokes; these are optional
alternate keystrokes you can also press to invoke the same editor
command.

Note: Secondary keystrokes always take precedence over primary key­
strokes.

The bottom lines of text in the Install Editor screen summarize the keys you
use to select entries in the Primary and Secondary columns.

Appendix F, Customizing Turbo Pascal 589

Key Legend What It Does

Left, Right, Select Selects the editor command you
Up, and Down want to re-key
Arrow keys

PgUpand Page Scrolls up or down one full
PgDn screen page

Enter Modify Enters the keystroke-modifying
mode

R Restore factory Resets all editor commands to
defaults the factory default keystrokes

Esc Exit Leaves the Install Editor screen
and returns to the main TINST
installation menu

F4 Key Modes Toggles between the three flavors
of keystroke combinations

After you press Enter to enter the modify mode, a pop-up window appears
on screen, listing the currently defined keystrokes for the selected
command. The bottom lines of text in the Install Editor screen summarize
the keys you use to change those keystrokes.

590 Turbo Pascal Owner's Handbook

Key

Backspace

Enter

Esc

F2

F3

F4

Legend

Backspace

Accept

Abandon
changes

Restore

Clear

Key Modes

What It Does

Deletes keystroke to left of cursor

Accepts newly defined
keystrokes for selected
editor command

Abandons changes to the current
selection, restoring the
command's original keystrokes,
and returns to the Install Editor
screen (ready to select another
editor command)

Abandons changes to current
selection, restoring the
command's original keystrokes,
but keeps the current command
selected for redefinition

Clears the current selection's
keystroke definition, but keeps
the current command selected for
redefinition

Toggles between the three flavors
of keystroke combinations:
WordStar-like, Ignore case, and
Verbatim

Note: To enter the keys F2, F3, F4, or the backquote (') character, as part of
an editor command key sequence, first press the backquote key, then the
appropriate function key.

Keystroke combinations come in three flavors: WordStar-like, Ignore case,
and Verbatim. These are listed on the bottom line of the screen; the
highlighted one is the current selection.

WordS tar-Like Selection

All commands must begin with a special key or a control key. Subsequent
characters can be any key.

Appendix F, Customizing Turbo Pascal 591

If you type a letter (or one of these five characters: [,], \, '\ -) in this mode,
it will automatically be entered as a control-character combination. For
example:

• Typing a or A or Ctrl-A will yield < Ctrl A >

• Typing yor Yor Ctrl-y will yield < Ctrl Y>

• Typing [will yield <Ctrl [>

In the Turbo Pascal editor, you must then explicitly press the special key or
Ctrl key when entering the first keystroke of a command-key sequence, but
for the subsequent keystrokes of that command you can use a lowercase,
uppercase, or control key.

For example, if you customize an editor command to be < Ctrl A > < Ctrl B > <
Ctrl C > in WordStar-like mode, you can type any of the following in the
Turbo Pascal editor to activate that command:

• < Ctrl A > < Ctrl B > < Ctrl C>
.<CtrIA><CtrlB><C>
.<CtrIA><CtrIB><c>
• <CtrlA > < B> <CtrIC>
.<CtrIA><C>
.<CtrIA><c>
• < CtrlA > <CtrIC>
.<CtrIA><C>
• < CtrlA > <c>

In WordStar-like keystrokes, any letter you type is converted to a control­
uppercase-letter combination. Five other characters are also converted to
control-character combinations:

• left square bracket ([)
• backslash (\)
• right square bracket (])
• caret (1\, also known as Shift 6)
• minus (-)

Ignore Case Selection

In Ignore case keystrokes, the only character conversions are from
lowercase to uppercase (letters only). All commands must begin with a
special key or a control key. Subsequent characters can be any key. In this
mode all alpha (letter) keys you enter are converted to their uppercase
equivalents. When you type a letter in this mode, it is not automatically

592 Turbo Pascal Owner's Handbook

entered as a control-character combination; if a keystroke is to be a control­
letter combination, you must hold down the Ctr! key while typing the letter.
For example:

• Typing a or A will yield A (if this is the first keystroke, you'll get an error
message)

• Typing Ctr! y or Ctr! Y will yield < Ctr! Y>

• Typing Ctr! [will yield < Ctr! [>

In Ignore case keystrokes, the only character conversions are from
lowercase to uppercase (letters only).

Verbatim Selection

These keystrokes must always explicitly begin with a character that is a
special key or control key. If you type a letter in this mode, it will be
entered exactly as you type it.

• Typing a will yield a (if this is the first keystroke, you'll get an error
message)

• Typing A will yield A (if this is the first keystroke, you'll get an error
message)

• Typing Ctr! Y will yield < Ctr! Y>

• Typing Ctr! y will yield < Ctr! y >

• Typing Ctr! [will yield < Ctr! [>

In Verbatim keystrokes, what you enter in the Install Editor screen for a
command's keystroke sequence is exactly what you must type in the Turbo
Pascal editor when you want to invoke that command. If, for example, you
enter < Ctr! A > band < Crt! H > B as the Verbatim primary and secondary
keystroke sequences for some editor command, you will only be able to
type those keys to invoke the command. Using the same letters but in
different cases-< Ctr! A> Band < Ctr! H > b-won't work.

Allowed Keystrokes

Although TINST provides you with lots of flexibility for customizing the
Turbo Pascal editor commands to your own taste, there are a few rules
governing the keystroke sequences you can define. Some of the rules apply
to any keystroke definition, while others only come into effect in certain
keystroke modes.

Appendix F, Customizing Turbo Pascal 593

Global Rules

1. You can enter a maximum of six keystrokes for any given editor
command. Certain key combinations are equivalent to two keystrokes,
such as Alt (any valid key), the cursor-movement keys (Up arrow, PgDn, Del,
etc.) and all function keys or function key combinations (F4, Shift-F7, Alt­
FB, etc.).

2. The first keystroke must be a character that is non-alphanumeric, non-
punctuation; in other words, it must be a control key or a special key.

3. To enter the Esc key as a command keystroke, type Gtrl{.
4. To enter the Backspace key as a command keystroke, type Gtrl H.
5. To enter the Enter key as a command keystroke, type Gtrl M.
6. The Turbo Pascal predefined Help function keys (F1 and Alt F2) can't be

reassigned as Turbo Pascal editor command keys. Any other function
key can, however. If you enter a hotkey as part of an editor command
key sequence, TINST will issue a warning that you are overriding a
hotkey in the editor and will verify whether you want to override that
key.

Turbo Pascal Editor Keystrokes

Command name Primary Secondary
............... _---_

New Line * <CtrlM> • <CtrlM>
Cursor Left * <CtrlS> • <Lft>
Cursor Right * <CtrlD> • <Rgt>
Word Left * <CtrlA> • <CtrlLft>
Word Right * <CtrlF> • <CtrlRgt>
Cursor Up * <CtrlE> • <Up>
Cursor Down * <CtrlX> • <Dn>
Scroll Up * <CtrlW>
Scroll Down * <CtrlZ>

594 Turbo Pascal Owner's Handbook

Cormnand name Primary Secondary
- ---------- ---------
Page Up * <CtrlR> • <PgUp>
Page Down * <CtrIC> • <PgDn>
Left of Line * <CtrIQ><CtrIS> • <Home>
Right of Line * <CtrIQ><CtrID> • <End>
Top of Screen * <CtrIQ><CtrIE> • <CtrlHome>
Bottom of Screen * <CtrIQ><CtrIX> • <CtrIEnd>
Top of File * <CtrIQ><CtrIR> • <CtrlPgUp>
Bottom of File * <CtrIQ><CtrIC> • <CtrlPgDn>
Move to error * <CtrIQ><CtrIW>
Move to Block Begin * <CtrIQ><CtrIB>
Move to Block End * <CtrIQ><CtrIK>
Move to Block End * <CtrlQ><CtrIK>
Move to Previous Pos * <CtrIQ><CtrIP>
Move to Marker 0 * <CtrlQ>O
Move to Marker 1 * <CtrlQ>l
Move to Marker 2 * <CtrlQ>2
Move to Marker 3 * <CtrlQ>3
Toggle Insert * <CtrlV> • <Ins>
Insert Line * <CtrlN>
Delete Line * <CtrlY>
Delete to End of Line * <CtrIQ><CtrIY>
Delete Word * <CtrIT>
Delete Char * <CtrIG> •
Delete Char Left * <CtrlBkSp> • <CtrlH>
Set Block Begin * <CtrIK><CtrIB>
Set Block End * <CtrIK><CtrIK>
Mark Word * <CtrIK><CtrIT>
Hide Block * <CtrlK><CtrlH>
Set Marker 0 * <CtrIK>O
Set Marker 1 * <CtrlK>l
Set Marker 2 * <CtrlK>2
Set Marker 3 * <CtrIK>3
Copy Block * <CtrIK><CtrIC>
Move Block * <CtrIK><CtrIV>
Delete Block * <CtrlK><CtrlY>
Read Block * <CtrIK><CtrIR>
Write Block * <CtrIK><CtrIW>
Print Block * <CtrIK><CtrIP>
Exit Editor * <CtrIK><CtrID> • <CtrIK><CtrIQ>
Tab * <CtrlI>
Toggle Autoindent * <CtrIO><CtrII> • <CtrlQ><CtrlI>
Toggle Tabs * <CtrIO><CtrIT> • <CtrIQ><CtrlT>
Restore Line * <CtrIQ><CtrIL>
Find String * <CtrIQ><CtrIF>
Find and Replace * <CtrIQ><CtrIA>

Appendix F, Customizing Turbo Pascal 595

Command name

Search Again
Insert Control Char
Save file
Match pair
Match pair backward

Primary

* <CtrlL>
* <CtrlP>
* <CtrlK><CtrlS>
* <CtrlQ><Ctrl[>
* <CtrlQ><Ctrl]>

The Options/Environment Option

Secondary

You can install several editor default modes of operation with this option.
The items on the menu, and their significance, are described here.

First, take a look at the bottom status line for directions on how to select
these options: Either use the arrow keys to move the selection bar to the
option and then press Enter, or press the key that corresponds to the
highlighted capital letter of the option.

You can change the operating environment defaults to suit your preferences
(and your monitor) then save them as part of Turbo Pascal. Of course,
you'll still be able to change these settings from inside Turbo Pascal's
editor.

Note: Any option you install with TINST that also appears as a menu­
settable option in TURBO.EXE will be overridden whenever you load a
configuration file that contains a different setting for that option.

Backup source files (default = on)
With Backup source files on, Turbo Pascal automatically creates a backup
of your source file when you do a File/Save. It uses the same file name, and
adds a .BAK extension: the backup file for FILENAME, FILENAME.C or
FILENAME.XYZ would be FILENAME.BAK. With Backup source files off,
no .BAK file is created.

Edit auto save (default = on)
With Edit auto save on, Turbo Pascal automatically saves the file in the
editor (if it's been modified since last saved) whenever you use Run (or Alt­
R) or as shell. This helps prevent the loss of your source files in the event
of some calamity. With Edit auto save off, no such automatic saving occurs.

Config auto save (default = on)
With Config auto save on, Turbo Pascal automatically saves the
configuration file (if it's been modified since last saved) whenever you use
Run (or AIt-R), File/OS shell, or File/Quit (or Alt >0. Which file it saves the
current (recently modified) configuration to depends on three sets of
factors.

596 Turbo Pascal Owner's Handbook

Zoom state (default = off)
With Zoom state on, Turbo Pascal starts up with the Edit window
occupying the full screen; when you switch to the Output window, it will
also be full-screen. With Zoom state off, the Edit window occupies the top
portion of the screen, above the Output window. (You can resize the
windows with the Resize windows option from the main installation
menu.)

Insert mode (default = on)
With Insert mode on, the editor inserts anything you enter from the
keyboard at the cursor position, and pushes existing text to the right of the
cursor even further right. Toggling Insert mode off allows you to overwrite
text at the cursor.

Autoindent mode (default = on)
With Autoindent mode on, the cursor returns to the starting column of the
previous line when you press Enter. When autoindent mode is toggled off,
the cursor always returns to column one.

Use tabs (default = off)
With Use tabs on, when you press the Tab key, the editor places a tab
character (A 1) in the text using the tab size specified with Tab size. With Use
tabs off, when you press the Tab key, the editor inserts enough space
characters to align the cursor with the first letter of each word in the
previous line.

Screen size
When you select Screen size, a menu pops up. The items in this menu allow
you to set the Turbo Pascal integrated environment display to one of three
sizes (25-, 43-, or 50-line). The available sizes depend on your hardware:
25-line mode is always available; 43-line mode is for systems with an EGA,
while 50-line mode is for PS/2 or other VGA-equipped systems.

The Display Mode Option

Normally, Turbo Pascal will correctly detect your system's video mode.
You should only change the Display mode option if

• you want to select a mode other than the current video mode

• you have a Color/Graphics Adapter that doesn't "snow"

• you think Turbo Pascal is incorrectly detecting your hardware

• your system has a composite screen, which acts like a CGA with only one
color-for this situation, select Black and white

Appendix F, Customizing Turbo Pascal 597

Press D to select Display mode from the installation menu. A pop-up menu
will appear; from this menu you can select the screen mode Turbo Pascal
will use during operation. Your options include Default, Color, Black and
white, or Monochrome.

Default
By default, Turbo Pascal always operates in the mode that is active when
you load it.

Color

Turbo Pascal uses SO-column color mode no matter what mode is active
when you load TURBO.EXE, and switches back to the previously active
mode when you exit.

Black and white

Turbo Pascal uses SO-column black and white mode characters no matter
what mode is active, and switches back to the previously active mode when
you exit. This is required for composite monitors.

Monochrome

Turbo Pascal uses monochrome mode if you're currently in monochrome
mode, and switches back to the previously active mode when you exit.

When you select one of the first three options, the program conducts a
video test on your screen; look at the bottom status line for instructions
about what to do.

When you press any key, a window comes up with the query

Was there Snow on the screen?

You can choose

• Yes, the screen was "snowy"
• No, always turn off snow checking
• Maybe, always check the hardware

Look to the status line for more about Maybe. Press Esc to return to the
main installation menu.

The Color Customization Option

Pressing C from the main installation menu allows you to make extensive
changes to the Colors of your version of Turbo Pascal. After pressing C, you
will see a menu with these options:

• Customize colors

598 Turbo Pascal Owner's Handbook

• Default color set
• Turquoise color set
• Magenta color set

Because there are nearly 50 different screen items that you can color­
customize, you will probably find it easier to choose a preset set of colors.
Three preset color sets are on disk.

Press D, T, or M, and scroll through the colors for the Turbo Pascal screen
items using the PgUp and PgDn keys. If you don't like any of the preset color
sets, you can design your own.

To make custom colors, press C to Customize colors. Now you have a
choice of 12 items that can be color-customized in Turbo Pascal; some of
these are text items, some are screen lines and boxes. Choose one of these
items by pressing a letter A through L.

Once you choose a screen item to color-customize, you will see a pop-up
menu and a viewport. The viewport is an example of the screen item you
chose, while the pop-up menu displays the components of that selection.
The viewport also reflects the change in colors as you scroll through the
color palette.

For example, if you chose H to customize the colors of Turbo Pascal's error
boxes, you would see a new pop-up menu with the four different parts of
an error box: Title, Border, Normal text, and Highlighted text.

You must now select one of the components from the pop-up menu. Type
the appropriate highlighted letter, and you're treated to a color palette for
the item you chose. Using the arrow keys, select a color to your liking from
the palette. Watch the viewport to see how that item looks in that color.
Press Enter to record your selection.

Repeat this procedure for every screen item you want to color-customize.
When you are finished, press Esc until you are back at the main installation
menu.

Note: Turbo Pascal maintains three internal color tables: color, black and
white, and monochrome. TINST only allows you to change one of these
three color sets at a time, based upon your current video mode. So, for
example, if you wanted to change to the black and white color table, you
must set your video mode to BW80 at the DOS prompt and then load
TINST.

Appendix F, Customizing Turbo Pascal 599

The Resize Windows Option

This option allows you to change the respective sizes of Turbo Pascal's Edit
and Output windows. Press R to choose Resize windows from the main
installation menu.

Using the Up arrow and Down arrow keys, you can move the bar dividing the
Edit window from the Output window. Neither window can be smaller
than three lines. When you have resized the windows to your liking, press
Enter. You can discard your changes and return to the Installation menu by
pressing Esc.

Note: If you are running Turbo Pascal in 43- or 50-line mode, the ratio of
the lines in 25-line mode will be used.

Quitting the Program

Once you have finished making all desired changes, select Quit/ save at the
main installation menu. The message

Save changes to TURBO.EXE? (YIN)

will appear at the bottom of the screen .

• If you press Y (for Yes), all the changes you have made will be
permanently installed into Turbo Pascal. (Of course, you can always run
TINST again if you want to change them.)

• If you press N (for No), your changes will be ignored and you will be
returned to the operating system prompt without changing Turbo
Pascal's defaults or startup appearance. If you press Esc, you'll be
returned to the menu.

If you decide you want to restore the original Turbo Pascal factory defaults,
simply copy TURBO.EXE from your master disk onto your work disk. You
can also restore the Editor commands by selecting the E option at the main
menu, then press R (for restore factory defaults) and Esc.

600 Turbo Pascal Owner's Handbook

A p p E N D x

G

A DOS Primer

If you are new to computers or to DOS, you may have trouble
understanding certain terms used in this manual. This appendix provides
you with a brief overview of the following DOS concepts and functions:

• what DOS is and does

• the proper way to load a program

• directories, subdirectories, and the path command

• using AUTOEXEC.BAT files

This information is by no means a complete explanation of the DOS
operating system. If you need more details, please refer to the MS-DOS or
PC-DOS user's manual that came with your computer system.

Turbo Pascal runs under the MS-DOS or PC-DOS operating system, version
2.0 or later.

What"ls DOS?

DOS is shorthand for Disk Operating System. MS-DOS is Microsoft's
version of DOS, while PC-DOS is IBM's rendition. DOS is the traffic
coordinator, manager, and operator for the transactions that occur between
the parts of the computer system and the computer system and you. DOS
operates in the background, taking care of may of the menial computer
tasks you wouldn't want to have to think about-for instance, the flow of
characters between your keyboard and the computer, between the
computer and your printer, and between your disk(s) and internal memory
(RAM).

Appendix G, A DOS Primer 601

Other transactions are initiated by entering commands on the DOS
command line; in other words, immediately after the DOS prompt. Your
DOS prompt probably looks like one of the following:

A>
B>
C>

The capital letter refers to the active disk drive (the one DOS and you are
using right now). For instance, if the prompt is A>, it means you are
working with the files on drive A, and that commands you give DOS will
refer to that drive. When you want to switch to another disk, making it the
active disk, all you do is type the letter of the disk, followed by a colon and
·press Enter. For instance, to switch to drive B, just type

B: Enter

There are a few commands you will use often with DOS, if you haven't
alread y, such as

DEL or ERASE

DIR

COpy

TURBO

To erase a file

To see a list of files on the logged disk

To copy files from one disk to another

To load Turbo Pascal

DOS doesn't care whether you type in uppercase or lowercase letters, or a
combination of both, so you can enter your commands however you like.

We'll assume you know how to use the first three commands listed; if you
don't, refer to your DOS manual. Next, we will explain the proper way to
load a program like Turbo Pascal, which is the last command-TURBO.

How to Load a Program

On your distribution disk, you'll find the main Turbo Pascal program
under the file name TURBO.EXE. This program file is necessary for all
functions, so you always need it when you start the program. A file name
,with the extension, or "last name," .COM or .EXE is a program file you can
load and run (use, start) by typing its first name at the DOS prompt. To
start Turbo Pascal, you simply type TURBO and press Enter, and Turbo
Pascal will be loaded into your computer's memory.

There's one thing you need to remember about loading Turbo Pascal and
other similar programs: You must be logged onto the disk and directory where

602 Turbo Pascal Owner's Handbook

the program is located in order to load it; unless you have set up a DOS path
(described shortly), DOS won't know where to find the program.

For instance, if your distribution disk with the TURBO.EXE program is in
drive A but the prompt you see on your screen is B>, DOS won't know
what you're talking about if you type TURBO and press Enter. Instead of
starting Turbo Pascal, it will give you the message Bad command or file
name.

It's as if you were shuffling through the "Pet Records" file in your file
cabinet looking for information about your home finances. You're in the
wrong place. So if you happen to get that DOS message, simply switch to
drive A by typing A: and then press Enter. Then type TURBO and press Enter
to load Turbo Pascal.

You can set up a "path" to the Turbo Pascal files so that DOS can find them,
using the DOS path command. See the section titled "The AUTOEXEC.BAT
File" for more information.

Directories

A directory is a convenient way to organize your floppy or hard disk files.
Directories allow you to subdivide your disk into sections, much the way
you might put groups of manila file folders into separate file boxes. For
instance, you might want to put all your file folders having to do with
finance-a bank statement file, an income tax file, or the like-into a box
labeled "Finances."

On your computer, it would be convenient to make a directory to hold all
your Turbo Pascal files, another for your SideKick files, another for your
letters, and so on. That way, when you type DIR on the DOS command line,
you don't have to wade through hundreds of file names looking for the file
you want. You'll get a listing of only the files on the directory you're
currently logged onto.

Although you can make directories on either floppy or hard disks, they are
used most often on hard disks. Because hard disks can hold a greater
volume of data, there is a greater need for organization and
compartmentalization.

When you're at the DOS level, rather than in Turbo Pascal or another
program, you can tell DOS to create directories, move files around between
directories, and display which files are in a particular directory.

In the examples that follow, we assume you are using a hard disk system,
and that you are logged onto the hard disk so that the prompt you see on

Appendix G, A DOS Primer 603

your screen is C>. If you want to create directories on your floppy disks,
substitute A or B for C in the example.

To make a directory for your Turbo Pascal files, do the following:

1. At the C> prompt, type MKDIR Turbo and press Enter. The MKDIR
command tells DOS to make a directory called TURBO.

2. Type CHDIR TURBO and press Enter. The CHDIR command tells DOS to
move you into the TURBO directory.

3. Now, put the Turbo Pascal disk you want to copy from into one of your
floppy drives-let's say A for this example-and type COPY A: * . * Enter.
(The asterisks are wildcards that stand for all files.) The COPY command
tells DOS to copy all files on the A drive to the TURBO directory on the
C drive. As each file on the disk is copied, you will see it listed on the
screen.

That's all there is to it. Treat a directory the same way you would a disk
drive: To load Turbo Pascal, you must be in the TURBO directory before
typing TURBO and pressing Enter or DOS won't be able to find the
program.

Subdirectories

If you are someone who really likes organization, you can subdivide your
directories into subdirectories. You can create as many directories and
subdirectories as you like-just don't forget where you put your files!

A subdirectory is created the same way as a directory. To create a
subdirectory from the TURBO directory (for instance, for storing your unit
files), do the following:

1. Be sure you are in the TURBO directory.

2. Type MKDIR UNITS Enter.

3. Type CHDIR UNITS. You are now in the UNITS subdirectory.

4. Copy your unit files to the new subdirectory.

Where Am I? The $p $g Prompt

You've probably noticed when you change directories that you still see the
C> prompt; there is no evidence of the directory or subdirectory you are
currently in. This can be confusing, especially if you leave your computer
for a while. It's easy to forget where you were when you left.

604 Turbo Pascal Owner's Handbook

DOS gives you an easy way to find out. Just type

prompt=$p $g

and from now on (until you turn your computer off or reboot), the prompt
will show you exactly where you are. Try it. If you are still in the UNITS
subdirectory, your DOS prompt will look like

C:\TURBO\UNITS >

The AUTOEXEC.BAT File

To avoid typing the prompt command (discussed in the previous section)
to see where you are every time you turn on your computer, you can set up
an AUTOEXEC.BAT file to do it for you. The AUTOEXEC.BAT file is a
useful tool to set your computer to do things automatically when it starts
up. There are many more things it can do, but rather than go into great
detail here, we suggest referring to your DOS manual for more
information. We will show you how to create an AUTOEXEC.BAT file that
will automatically change your prompt so you know where you are in your
directory structure, set a path to the TURBO directory, and then load Turbo
Pascal.

The DOS path command tells your computer where to look for commands it
doesn't recognize. DOS only recognizes programs in the current (logged)
directory, unless there is a path to the directory containing pertinent
programs or files.

In the following example, we will set a path to the TURBO directory.

If you have an AUTOEXEC.BAT file in your root (main) directory, your
computer will do everything in that file when you first tum your computer
on. (The root directory is where you see the C> or C: \ prompt, with no
directory names following it.)

Here's how to create an AUTOEXEC.BAT file.

1. Type CHOIR \ to get to the root directory.

2. Type COPY CON AUTOEXEC.BAT Enter. This tells DOS to copy
whatever you type next into a file called AUTO EXEC. BAT.

3. Type

PROMPT=$P $G Enter
PATH=C:\TURBO
CHOIR TURBO
Ctrl-Z Enter

The Ctrl-Z sequence saves your commands in the AUTOEXEC.BAT file.

Appendix G, A DOS Primer 605

To test your new AUTOEXEC.BAT file, reboot your computer by holding
down the Gtrl and Aft keys and then pressing Del. You should see
C:\TURBO>.

Changing Directories

How do you get from one directory to another? It depends on where you
want to go. The basic DOS command for changing directories is CHOIR.
Use it like this:

• To move from one directory to another: For example, to change from the
TURBO directory to one called SPRINT, type the following from the
TURBO directory:

C:\TURBO> CHOIR \SPRINT Enter

Notice the backslash (\) before the directory name. Whenever you are
moving from one directory to another unrelated directory, type the name
of the directory, preceded by a backslash.

• To move from a directory to its subdirectory: For example, to move
from the TURBO directory to the UNITS subdirectory, type the following
from the TP directory:

C:\TP> CHOIR UNITS Enter

In this case, you did not need the backslash, because the UNITS directory
is a direct offshoot of the TP directory. In fact, DOS would have
misunderstood what you meant if you had used the backslash-OOS
would have thought that UNITS was a directory off the main (root)
directory.

• To move from a subdirectory to its parent directory: For example, to
move from the UNITS subdirectory to the TP directory, type the
following from the UNITS subdirectory:

C:\TP\UNITS> CHDIR •• Enter

DOS will move you back to the TP directory. Any time you want to move
back to the parent directory, use a space followed by two periods after
the CHOIR command.

• To move to the root directory: The root directory is the original directory.
It is the parent (or grandparent) of all directories (and subdirectories).
When you are in the root directory, you'll see this prompt: C:\ >.

To move to the root directory from any other directory, simply type
CHOIR \ Enter

The backslash without a directory name signals DOS that you want to
return to the root directory.

606 Turbo Pascal Owner's Handbook

This appendix has presented only a quick look at DOS and some of its
functions. Once you're familiar with the information given here, you may
want to study your DOS manual and discover all the other things you can
do with your computer's operating system. There are many DOS functions
not mentioned here that can simplify and enhance your computer use.

Appendix G, A DOS Primer 607

608 Turbo Pascal Owner's Handbook

A p p E N D x

H

Glossary

Here are some quick glossary ideas. Enjoy.

absolute variable A variable declared to exist at a fixed location in
memory rather than letting the compiler determine its location.

ANSI The acronym for the the American National Standards Institute, the
organization that, among other things, describes the elements of so-called
standard Pascal.

ASCII character set The American Standard Code for Information
Interchange's standard set of numbers to represent the characters and
control signals used by computers.

actual parameter A variable, expression, or constant that is substituted for
a formal parameter in a procedure or function call.

address A specific location in memory.

algorithm A set of rules that defines the solution to a problem.

allocate To reserve memory space for a particular purpose, usually from
the heap.

array A sequential group of identical data elements that are arranged in a
single data structure and are accessible by an index.

argument An alternative name for a parameter (see actual parameter).

assignment operator The symbol :=, which gives a value to a variable or
function of the same type.

assignment statement A statement that assigns a specific value to an
identifier.

Appendix H, Glossary 609

assembler A program that converts assembly-language programs into
machine language.

assembly language The first language level above machine language.
Assembly language is specific to the microprocessor it is running on. The
major difference between assembly language and machine language is that
assembly language provides mnemonics, making it easier to read and
write.

base type The type of values in an array.

binary Base 2; a method of representing numbers using only two digits, 0
and 1.

bit A binary digit with a value of either 0 or 1. The smallest unit of data in
a computer.

block The associated declaration and statement parts of a program or
subprogram.

body The instructions pertaining to a program or a subprogram (a
procedure or function).

boolean A data type that can have a value of True or False.

braces The characters { and }, used to delimit comments; sometimes called
curly brackets.

brackets The characters [and]; sometimes called square brackets.

buffer An area of memory allocated as temporary storage.

bug An error in a program. Syntax errors refer to incorrect use of the rules
of the programming language; logic errors refer to incorrect strategy in the
program to accomplish the intended result.

build The process of recompiling all the units used by a program.

byte A sequence of 8 bits.

call To cause a subprogram (procedure or function) to execute by referring
to its name.

case label A constant, or list of constants, that label a component statement
in a case statement.

case selector An expression whose result is used to select which
component statement of a case statement will be executed.

central processing unit (CPU) The ''brain'' of a computer system, which
interprets and executes instructions and controls the other components of
the system.

610 Turbo Pascal Owner's Handbook

chaining The passing of control from one program to another.

char A Pascal type that represents a single character.

code Instructions to a computer. Code is made up of algorithms.

code segment A portion of a compiled program up to 32767 bytes in
length.

comment An explanatory statement in the source code enclosed by the
symbols (* *) or { }.

compiler A program that translates a program written in a high-level
language into machine language.

compiler directive An instruction to the compiler that is. embedded within
the program; for example, {$R+} turns on range-checking.

compound statement A series of statements surrounded by a matching set
of the reserved words begin and end.

concatenate The joining of two or more strings.

constant A fixed value in a program.

control character A special nonprinting character in the ASCII character set
designed originally to control a printing device or communications link.

control structure A statement that manages the flow of execution of a
program.

crash A sudden computer failure due to a hardware problem or program
error.

data segment The segment in memory where the static global variables are
stored.

data structures Areas of related items in memory, represented as arrays,
records, or linked lists.

debugger A special program that provides capabilities to start and stop
execution of a program at will, as well as analyze values that the program
is manipulating .

. debugging Thr process of finding and removing bugs from programs.

decimal A method of representing numbers using base 10 notation, where
legal digits range from 0 to 9.

declare The act of explicitly defining the name and type of an identifier in
a program .

. dereferencing The act of accessing a value pointed to by a pointer variable
(rather than the pointer variable itself).

Appendix H, Glossary 611

definition part The part of a program where constants, labels, and
structured types are defined.

delimiter A boundary marker that can be a word, a character, or a symbol.

directory A work area on a disk or a listing of files (or directories) on a
disk.

documentation A written explanation of a computer program.
Documentation can vary from manuals hundreds of pages long to a one­
line comment embedded in the program itself.

dynamic Something that varies while the program is running.

dynamic allocation The allocation and deallocation of memory from the
heap at runtime.

dynamic variable A variable on the heap.

element One of the items in an array.

enumerated type A user-defined scalar type that consists of an arbitrary
list of identifiers.

evaluate To compute the value of an expression.

expression Part of a statement that represents a value or can be used to
calculate a value.

extension Any addition to the standard definition of a language. Also, the
optional three-character ending (following the period) in a standard DOS
file name.

execute To carry out the program's instructions.

external A file of one or more subprograms that have been written in
assembly language and assembled to native executable code.

field list The field name and type definition of a record.

field width The number of place holders in an output statement.

file A collection of data that can be stored on and retrieved from a disk.

file pointer A pointer that tracks where the next object will be retrieved
from within a file.

file variable An identifier in a program that represents a file.

fixed-point notation The representation of real numbers without decimal
points.

flag A variable, usually of type integer or boolean, that changes value to
indicate that an event has taken place.

612 Turbo Pascal Owner's Handbook

floating-point notation The representation of real numbers using decimal
points.

formal parameter An identifier in a procedure or function declaration
heading that represents the arguments that will be passed to the
subprogram when it is called.

forward declaration The declaration of a procedure or function and its
parameters in advance of the actual definition of the subroutine.

function A subroutine that computes and returns a value.

global variable A variable declared in the main program block that can be
accessed from anywhere within the program.

high-level language A programming language that more closely
resembles human language than machine language. Pascal is a high-level
language.

heap An area of memory reserved for the dynamic allocation of variables.

hexadecimal A method of representing numbers using base 16 notation,
where legal digits range from 0 to 9 and A to F.

identifier A user-defined name for a specific item (a constant, type,
variable, procedure, function, unit, program, and field). It must begin with
a letter and cannot contain spaces.

implementation The particular embodiment of a programming language.
Turbo Pascal is an implementation of standard Pascal for IBM-compatible
computers.

increment To increase the value of a variable.

index A position within a list of elements.

index type The type of indexes in an array.

initialize The process of giving a known initial value to a variable or data
structure.

input The information a program receives from some external device, such
as a keyboard.

integer A numeric variable that is a whole number from -32768 to +32767.

interactive A program that communicates with a user through some I/O
device.

interrupt The temporary halting of a program in order to process an event
of higher priority.

Appendix H, Glossary 613

interpreter A program that sequentially interprets each statement in a
program into machine code and then immediately executes it.

liD Short for Input/Output. The process of receiving or sending data.

liD error An error that occurs while trying to input or output data.

lID redirection The DOS ability to direct input/output to access devices
other than the default DOS devices.

iteration The process of repetition or looping.

keyword A reserved word in Pascal. In this manual, keywords are shown
in boldface type (for example, begin, end, nil).

label An identifier that marks a place in the program text for a goto
statement. Labels have digit sequences whose values range from 0 to 9999.

level The depth of nesting prcedures or control structures.

linked list A dynamic data structure that is made up of elements, each of
which point to the next element in the list through a pointer variable.

literal An unnamed constant in a program.

local identifier An identifier declared within a procedure or a function.

local variable A variable declared within a procedure or a function.

long word A location in memory occupying 4 adjacent bytes; the storage
required for a variable of type longint.

loop A set of statements that are executed repeatedly.

main procedure The program part enclosed by the outermost begin and
end.

machine language A language consisting of strings of Os and 1s that the
computer interprets as instructions; compare the glossary entry for
"assembly language."

main program The begin/ end block terminated by a period that appears
at the end of a program; also called the statement part.

make The process of recompiling only those units whose source code has
been modified since the last compile. A program that manages this process.

memory The space within the computer for holding information and
running programs.

module A self-contained routine or group of routines.

nesting The placement of one unit within another.

614 Turbo Pascal Owner's Handbook

nil pointer A pointer having the special value nil; a nil pointer doesn't
point to anything.

node An individual element of a tree or list.

object code The output of a compiler.

offset An index within a segment.

operand An argument that is combined with one or more operands and
opera tors to form an expression.

operating system A program that manages all operations and resources of
the computer.

operator A symbol, such as +, that is used to form expressions.

operator hierarchy The rules that determine the order in which operators
in an expression are evaluated.

ordinal type An ordered range of values; same as scalar type.

output The result of running a program. Output can be sent to a printer,
displayed on screen, or written to disk.

overflow The condition that results when an operation produces a value
that is more positive or negative than the computer can represent, given the
allocated space for the value or expression.

parameter A variable or value that is passed to a procedure or function.

parameter list The list of value and variable parameters declared in the
heading of a procedure or function declaration.

Pascal, Blaise A French mathematician and philosopher (1623-66) who
built a mechanical adding machine, considered to be an early predecessor
to calculators and computers.

pass To use as a parameter.

pointer A variable that points to a specific memory location.

pop The removal of the topmost element from a stack.

port An I/O device that can be accessed through the CPU's data bus.

precedence The order in which operators are executed.

predefined identifier A constant, type, file, logical device, procedure, or
function that is available to the programmer without having to be defined
or declared.

procedure A subprogram that can be called from various parts of a larger
program.

Appendix H, Glossary 615

procedure call The invocation of a procedure.

program A set of instructions for a computer to carry out.

prompt A string printed by a program to signal to the user that input is
desired and (sometimes) what kind of input is expected.

push The addition of an element to the top of a stack.

random access Directly accessing an element of a data structure without
sequentially searching the entire structure for the element.

random-access memory (RAM) Memory devices that can be read from
and written to.

range-checking A Turbo Pascal feature that checks a value to make sure it
is within the legal range defined.

read-only memory (ROM) The memory device from which data can be
read but not written.

real number A number represented by decimal point and/or scientific
notation.

record A structured data type referenced by one identifier that consists of
several different fields.

recursion A programming technique in which a subprogram calls itself.

relational operator The operators =, <>, <, >, <=, >=, and in, all of which
are used to form Boolean expressions.

reserved word An identifier reserved by the compiler. A word whose use
and meaning is reserved for use only by the program. You cannot redefine
the meaning of a reserved word.

result The value returned by a procedure, function, or program.

runtime During the execution of a program.

scalar type Any Pascal type consisting of ordered components (for
example, integer, char, longint, enumerated types, and so forth).

scientific notation A description of a number that uses a number between
1 and 10 (called the mantissa) multiplied by a power of 10 (called the
exponent). Because computers cannot easily display exponents on the
screen, scientific notation on computers is usually written using an E, as in
24El5-which means 24 multiplied by 10 to the 15th power.

scope The visibility of an identifier within a program.

segment On 8088-based machines, RAM is divided into several segments,
or parts, each made up of 64K of memory.

616 Turbo Pascal Owner's Handbook

separate compilation The ability to break a large program into several
discrete modules, compile each module separately, then link them into a
large, executable (.EXE) file.

separator A blank or a comment.

sequential access The ordered access of each element of a data structure,
starting at the first element of the structure.

set An unordered group of elements, all of the same scalar type.

set operator The symbols +, -, *, =, <=, >=, <>, and in, all of which return
set-type results when used with set-type operands.

simple type A type that contains only a single value.

source code The input to a compiler.

stack A data structure in which the last element stored is the first to be
removed.

stack overflow An error condition that occurs when the amount of space
allocated to the computer's stack is used up.

stack segment The segment in memory allocated as the program's stack.

statement The simplest unit in a program; statements are separated by
semicolons.

static variable A variable with a lifetime that exists the entire length of the
program. Memory for static variables is allocated in the data segment (or
area).

string A sequence of characters that can be treated as a single unit.

structured type One of the predefined types (array, set, record, file, or
string) that are composed of structured data elements.

subprogram A procedure or function within a program; a subroutine.

sub range A continuous range of any scalar type.

subscript An identifier used to access a particular element of an array.

syntax error An error caused by violating the rules of a programming
language.

termin-al An I/O device for communication between a human being and a
computer.

tracing Manually stepping through each statement in a program in order
to understand the program's behavior-an important debugging technique.

Appendix H, Glossary 617

transfer function A function that converts a value of one type to a value of
another type.

tree A dynamic data structure in which a node (branch of a tree) may point
to one or more other nodes.

type definition The specification of a non-predefined,type. Defines the set
of values a variable can have and the operations that can be performed on
it.

typed constant A variable with a value that is defined at compile time but
can be modified at runtime. (Think of it as a preinitialized variable.)

type conversion The reformulation of a value in another form, for
example, the conversion of integer values to real.

type coercion Technique also known as typecasting in which one variable
is forced to be read as another type.

underlying type The scalar type corresponding to a particular subrange.

unit A program module that makes it possible to do separate compilation.
A unit can contain code, data, type and/or constant declarations. A unit
can use other units, and is broken into interface (public) and
implementation (private) sections.

untyped parameter A formal parameter that allows the actual parameter
to be of any type.

value parameter A procedure or function parameter that is passed by
value; that is, the value of the parameter is passed and cannot be changed.

vanilla Programmer's lingo for standard or basic.

variable declaration A declaration that consists of the variable and its
associated type.

variable parameter A procedure or function parameter that is passed by
reference; that is, the address of the parameter is passed so that the value of
the parameter can be accessed and modified.

variant record A record in which some fields share the same area in
memory.

word A location in memory occupying 2 adjacent bytes; the storage
required for a variable of type integer.

618 Turbo Pascal Owner's Handbook

A p p E N D x

I

Error Messages and Codes

Compiler Error Messages

The following lists the possible error messages you can get from the
compiler during program development. Whenever possible, the compiler
will display additional diagnostic information in the form of an identifier or
a file name, for example:

Error 15: File not found (WINDOW.TPU).

When an error is detected, Turbo Pascal (in the integrated environment)
automatically loads the source file and places the cursor at the error. The
command-line compiler displays the error message and number and the
source line, and uses a caret (A) to indicate where the error occurred. Note,
however, that some errors are not detected until a little later in the source
text. For example, a type mismatch in an assignment statement cannot be
detected until the entire expression after the := has been evaluated. In such
cases, look for the error to the left of or above the cursor.

lOut of memory.

This error occurs when the compiler has run out of memory. There are a
number of possible solutions to this problem:

• If Compile/Destination is set to Memory, set it to Disk in the integrated
environment.

• If Options/Compiler/Link buffer in the integrated environment is set to
Memory, set it to Disk. Alternatively, place a {$L-} directive at the
beginning of your program. Use / $L- option to link to disk in the
command-line compiler.

Appendix /, Error Messages and Codes 619

• If you are using any memory-resident utilities, such as SideKick and
SuperKey, remove them from memory .

• If you are using TURBO.EXE, try use TPC.EXE instead-it takes up less
memory.

If none of these suggestions help, your program or unit may simply be too
large to compile in the amount of memory available, and you may have to
break it into two or more smaller units.

2 Identifier expected.

An identifier was expected at this point. You may be trying to redeclare a
reserved word.

3 Unknown identifier.

This identifier has not been declared.

4 Duplicate identifier.

The identifier has already been used within the current block.

5 Syntax error.

An illegal character was found in the source text. You may have forgotten
the quotes around a string constant.

6 Error in real constant.

The syntax of real-type constants is defined in Chapter 13, "Tokens and
Constants."

7 Error in integer constant.

The syntax of integer-type constants is defined in Chapter 13, "Tokens and
Constants." Note that whole real numbers outside the maximum integer
range must be followed by a decimal point and a zero; for example,
12345678912.0.

8 String constant exceeds line.

You have most likely forgotten the ending quote in a string constant.

620 Turbo Pascal Owner's Handbook

9 Too many nested files.

The compiler allows no more than five nested source files. Most likely you
have more than four nested include files.

10 Unexpected end of file. You might have gotten this error message
because of one of the following:

• Your source file ends before the final end of the main statement part.
Most likely, your begins and ends are unbalanced.

• An include file ends in the middle of a statement part. Every statement
part must be entirely contained in one file.

• You didn't close a comment.

11 Line too long.

The maximum line length is 126 characters.

12 Type identifier expected.

The identifier does not denote a type as it should.

13 Too many open files.

If this error occurs, your CONFIG.SYS file does not include a FILES=xx
entry or the entry specifies too few files. Increase the number to some
suitable value, for instance, 20.

14 Invalid file name.

The file name is invalid or specifies a nonexistent path.

15 File not found.

The file could not be found in the current directory or in any of the search
directories that apply to this type of file.

16 Disk full.

Delete some files or use a new disk.

Appendix /, Error Messages and Codes 621

17 Invalid compiler directive.

The compiler directive letter is unknown, one of the compiler directive
parameters is invalid, or you are using a global compiler directive when
compilation of the body of the program has begun.

18 Too many files.

There are too many files involved in the compilation of the program or
unit. Try not to use that many files, for instance, by merging include files or
making the file names shorter.

19 Undefined type in pointer definition.

The type was referenced in a pointer-type declaration previously, but it was
never declared.

20 Variable identifier expected.

The identifier does not denote a variable as it should.

21 Error in type.

This symbol cannot start a type definition.

22 Structure too large.

The maximum allowable size of a structured type is 65520 bytes.

23 Set base type out of range.

The base type of a set must be a subrange with bounds in the range 0 .. 255
or an enumerated type with no more than 256 possible values.

24 File components may not be files.

file of file constructs are not allowed.

25 Invalid string length.

The declared maximum length of a string must be in the range 1 .. 255.

622 Turbo Pascal Owner's Handbook

26 Type mismatch.

This is due to

• incompatible types of the variable and the expression in an assignment
statement

• incompatible types of the actual and formal parameter in a call to a
procedure or function

g an expression type that is incompatible with index type in array indexing

• incompatible types of operands in an expression

27 Invalid sub range base type.

All ordinal types are valid base types.

28 Lower bound greater than upper bound.

The declaration of a subrange type specifies a lower bound greater than the
upper bound.

29 Ordinal type expected.

Real types, string types, structured types, and pointer types are not allowed
here.

30 Integer constant expected.

31 Constant expected.

32 Integer or real constant expected.

33 Type identifier expected.

The identifier does not denote a type as it should.

34 Invalid function result type.

Valid function result types are all simple types, string types, and pointer
types.

35 Label identifier expected.

The identifier does not denote a label as it should.

Appendix /, Error Messages and Codes 623

36 BEGIN expected.

37 END expected.

38 Integer expression expected.

The preceding expression must be of an integer type.

39 Ordinal expression expected.

The preceding expression must be of an ordinal type.

40 Boolean expression expected.

The preceding expression must be of type boolean.

41 Operand types do not match operator.

The operator cannot be applied to operands of this type, for example, 'A'
div'2'.

42 Error in expression.

This symbol cannot participate in an expression in the way it does. You
may have forgotten to write an operator between two operands.

43 Illegal assignment .

• Files and untyped variables cannot be assigned values .

• A function identifier can only be assigned values within the statement
part of the function.

44 Field identifier expected.

The identifier does not denote a field in the preceding record variable.

45 Object file too large.

Turbo Pascal cannot link in .OBJ files larger than 64K.

624 Turbo Pascal Owner's Handbook

46 Undefined external.

The external procedure or function did not have a matching PUBLIC
definition in an object file. Make sure you have specified all object files in
{$L filename} directives, and check the spelling of the procedure or function
identifier in the .ASM file.

47 Invalid object file record.

The .OBJ file contains an invalid object record; make sure the file is in fact
an .OBJ file.

48 Code segment too large.

The maximum size of the code of a program or unit is 65520 bytes. If you
are compiling a program, move some procedures or functions into a unit. If
you are compiling a unit, break it into two or more units.

49 Data segment too large.

The maximum size of a program's data segment is 65520 bytes, including
data declared by the used units. If you need more global data than this,
declare the larger structures as pointers, and allocate them dynamically
using the New procedure.

50 DO expected.

51 Invalid PUBLIC definition.

• The identifier was made public through a PUBLIC directive in assembly
language, but is has no matching external declaration in the Pascal
program or unit.

• Two or more PUBLIC directives in assembly language define the same
identifier.

• The .OBJ file defines PUBLIC symbols that do not reside in the CODE
segment.

52 Invalid EXTRN definition.

• The identifier was referred to through· an EXTRN directive in assembly
language, but it is not declared in the Pascal program or unit, nor in the
interface part of any of the used units.

• The identifier denotes an absolute variable.

• The identifier denotes an inline procedure or function.

Appendix /, Error Messages and Codes 625

·53 Too many EXTRN definitions.

Turbo Pascal cannot handle .OB} files with more than 256 EXTRN
definitions.

54 OF expected.

55 INTERFACE expected.

56 Invalid relocatable reference.

• The .OB} file contains data and relocatable references in segments other
than CODE. For example, you are attempting to declare initialized
variables in the DATA segment.

• The .OB} file contains byte-sized references to relocatable symbols. This
error occurs if you use the HIGH and LOW operators with relocatable
symbols or if you refer to relocatable symbols in DB directives.

• An operand refers to a relocatable symbol that was not defined in the
CODE segment or in the DATA segment.

• An operand refers to an EXTRN procedure or function with an offset, for
example, CALL SortProc+8.

57 THEN expected.

58 TO or DOWNTO expected.

59 Undefined forward.

• The procedure or function was declared in the interface part of a unit,
but its definition never occurred in the implementation part.

• The procedure or function was declared with forward, but its definition
was never found.

60 Too many procedures.

Turbo Pascal· does not allow more than 512 procedures or functions per
module. If you are compiling a program, move some procedures or
functions into a unit. If you are compiling a unit, break it into two or more
units.

626 Turbo Pascal Owner's Handbook

61 Invalid typecast.

• The sizes of the variable reference and the destination type differ in a
variable typecast.

• You are attempting to typecast an expression where only a variable
reference is allowed.

62 Division by zero.

The preceding operand attempts to divide by zero.

63 Invalid file type.

The file type is not supported by the file-handling procedure; for example,
readln with a typed file or Seek with a text file.

64 Cannot Read or Write variables of this type.

• Read and Readln can input variables of char, integer, real, and string
types.

• Write and Writeln can output variables of char, integer, real, string, and
boolean types.

65 Pointer variable expected.

The preceding variable must be of a pointer type.

66 String variable expected.

The preceding variable must be of a string type.

67 String expression expected.

The preceding expression must be of a string type.

68 Circular unit reference.

Two units are not allowed to use each other:

unit U1;

uses U2;
unit U2;
uses U1;

In this example, doing a Make on either unit will generate error 68.

Appendix /, Error Messages and Codes 627

69 Unit name mismatch.

The name of the unit found in the .TPU file does not match the name
specified in the uses clause.

70 Unit version mismatch.

One or more of the units used by this unit have been changed since the unit
was compiled. Use Compile/Make or Compile/Build in the integrated
environment and / M or / B options in the command-line compiler to
automatically compile units that need recompilation.

71 Duplicate unit name.

You have already named this unit in the uses clause.

72 Unit file format error.

The .TPU file is somehow invalid; make sure it is in fact a .TPU file.

73 Implementation expected.

74 Constant and case types do not match.

The type of the case constant is incompatible with the case statement's
selector expression.

75 Record variable expected.

The preceding variable must be of a record type.

76 Constant out of range.

• You are trying to index an array with an out-of-range constant.

• You are trying to assign an out-of-range constant to a variable.

• You are trying to pass an out-of-range constant as a parameter to a
proced ure or function.

77 File variable expected.

The preceding variable must be of a file type.

78 Pointer expression expected.

The preceding expression must be of a pointer type.

628 Turbo Pascal Owner's Handbook

79 Integer or real expression expected.

The preceding expression must be of an integer or a real type.

80 Label not within current block.

A goto statement cannot reference a label outside the current block.

81 Label already defined.

The label already marks a statement.

82 Undefined label in preceding statement part.

The label was declared and referenced in the preceding statement part, but
it was never defined.

83 Invalid @ argument.

Valid arguments are variable references and procedure or function
identifiers.

84 UNIT expected.

85 "i" expected.

86 ":" expected.

87 "," expected.

88 "(" expected.

89 ")" expected.

90 "=" expected.

91 ":=" expected.

92 "[" or "(." expected.

93 "]" or ".)" expected.

Appendix /, Error Messages and Codes 629

94 "." expected.

95 " .• " expected.

96 Too many variables .

• The total size of the global variables declared within a program or unit
cannot exceed 64K .

• The total size of the local variables declared within a procedure or
function cannot exceed 64 Kb.

97 Invalid FOR control variable.

The for statement control variable must be a simple variable defined in the
declaration part of the current subprogram.

98 Integer variable expected.

The preceding variable must be of an integer type.

99 Files are not allowed here.

A typed constant cannot be of a file type.

100 String length mismatch.

The length of the string constant does not match the number of components
in the character array.

101 Invalid ordering of fields.

The fields of a record-type constant must be written in the order of
declaration.

102 String constant expected.

103 Integer or real variable expected.

The preceding variable must be of an integer or real type.

104 Ordinal variable expected.

The preceding variable must be of an ordinal type.

630 Turbo Pascal Owner's Handbook

105 INLINE error.

The < operator is not allowed in conjunction with relocatable references to
variables-such references are always word-sized.

106 Character expression expected.

The preceding expression must be of a char type.

107 Too many relocation items.

The size of the relocation table part of the .EXE file exceeds 64K, which is
Turbo Pascal's upper limit. If you encounter this error, your program is
simply too big for Turbo Pascal's linker to handle. It is probably also too big
for DOS to execute. You will have to split the program into a "main" part
that executes two or more "subprogram" parts using the Exec procedure in
the Dos unit.

108 Not enough memory to run program.

There is not enough memory to run the program from within the TURBO
environment. If you are using any memory-resident utilities, such as
SideKick and SuperKey, remove them from memory. If that doesn't help,
compile the program to disk, and exit TURBO to execute.

109 Cannot find EXE file.

For some reason, the .EXE file previously generated by the compiler has
disappeared.

110 Cannot run a unit.

You cannot run a unit. To test a unit, write a program that uses the unit.

111 Compilation aborted.

The compilation was aborted by etr/-Break.

112 CASE constant out of range.

For integer type case statements, the constants must be within the range
-32768 . .32767.

113 Error in statement.

This symbol cannot start a statement.

Appendix " Error Messages and Codes 631

114 Cannot call an interrupt procedure.

You cannot directly call an interrupt procedure.

115 Must have an 8087 to compile this.

The compiler requires an 8087 coprocessor to compile programs and units
in the {$N+} state.

116 Must be in 8087 mode to compile this.

This construct can only be compiled in the {$N+} state. Operations on the
8087 real types, single, double, extended, and comp, are not allowed in the
{$N-} state.

117 Target address not found.

The Compile/Find error command in the integrated environment or the / F
option in the command-line version could not locate a statement that
corresponds to the specified address.

118 Include files are not all()wed here.

Every statement part must be entirely contained in one file.

119 TPM file format error.

The .TPM file is somehow invalid; make sure it is in fact a .TPM file.

120 NIL expected.

121 Invalid qualifier.

• You are trying to index a variable that is not an array.

• You are trying to specify fields in a variable that is not a record.

• You are trying to dereference a variable that is not a pointer.

122 Invalid variable reference.

The preceding construct follows the syntax of a variable reference, but it
does not denote a memory location. Most likely, you are calling a pointer
function, but forgetting to dereference the result.

632 Turbo Pascal Owner's Handbook

123 Too many symbols.

The program or unit declares more than 64K of symbols. If you are
compiling with {$D+}, try turning it off-note, however, that this will
prevent you from finding runtime errors in that module. Otherwise, you
could try moving some declarations into a separate unit.

124 Statement part too large.

Turbo Pascal limits the size of a statement part to about 24K. If you
encounter this error, move sections of the statement part into one or more
procedures. In any case, with a statement part of that size, it's worth the
effort to clarify the structure of your program.

125 Module has no debug information

A runtime error occurred in a module (program or unit) that has no debug
information, and for that reason Turbo Pascal cannot show you the
corresponding statement. Recompile the module with Debug info on, and
use Compile/Find error to locate the error in the integrated environment or
the /F option in the command-line compiler.

126 Files must be var parameters

You are attempting to declare a file type value parameter. File type
parameters must be var parameters.

127 Too many conditional symbols

There is not enough room to define further conditional symbols. Try to
eliminate some symbols, or shorten some of the symbolic names.

128 Misplaced conditional directive

The compiler encountered an {$ELSE} or {$ENDIF} directive without a
matching {$IFDEF}, {$IFNDEF}, or {$IFOPT} directive.

129 ENDIF directive missing

The source file ended within a conditional compilation construct. There
must be an equal number of {$IFxxx}s and {$ENDIF}s in a source file.

Appendix /, Error Messages and Codes 633

130 Error in initial conditional defines

The initial conditional symbols specified in 0 I CI Conditional defines or in
a I D directive are invalid. Turbo Pascal expects zero or more identifiers
separated by blanks, commas, or semicolons.

131 Header does not match previous definition

• The procedure or function header specified in the interface part does not
match this header .

• The' procedure or function header specified in the forward declaration
does not match this header.

132 Critical disk error

A critical error occurred during compilation (for example, drive not ready
error).

133 Old map file

The .TPM file is older than the corresponding .EXE file. This indicates that
the 'last time you compiled your program, a .TPM file was not produced.
For example, if TEST.TPM is older than TEST.EXE, you must recompile
TEST.PAS with the {$T} compiler directive in order to find a runtime error.

Runtime Errors

Certain ·errors at runtime cause the program to display an error message
and terminate:

Runtime error nnn at xxxx:yyyy

where nnn is the runtime error number, and xxxx:yyyy is the runtime error
address (segment and offset).

The runtime errors are divided into four categories: DOS errors 1-99; 1/0
errors, 100-149; critical errors, 150-199; and fatal errors, 200-255.

DOS Errors

2 File not found.

Reported by Reset, Append, Rename, or Erase if the name assigned to the file
variable does not specify an existing file.

634 Turbo Pascal Owner's Handbook

3 Path not found.

• Reported by Reset, Rewrite, Append, Rename, or Erase if the name assigned
to the file variable is invalid or specifies an unexisting subdirectory.

• Reported by ChDir, MkDir, or RmDir if the path is invalid or speficies an
unexisting subdirectory.

4 Too many open files.

Reported by Reset, Rewrite, or Append if the program has too many open
files. DOS never allows more than 15 open files per process. If you get this
error with less than 15 open files, it may indicate that the CONFIG.SYS file
does not include a FILES=xx entry or that the entry specifies too few files.
Increase the number to some suitable value, for instance, 20.

5 File access denied.

• Reported by Reset or Append if FileMode allows writing and the name
assigned to the file variable specifies a directory or a read-only file.

• Reported by Rewrite if the directory is full or if the name assigned to the
file variable specifies a directory or an existing read-only file.

• Reported by Rename if the name assigned to the file variable specifies a
directory or if the new name specifies an existing file.

• Reported by Erase if the name assigned to the file variable specifies a
directory or a read-only file.

• Reported by MkDir if a file with the same name exists in the parent
directory, if there is no room in the parent directory, or if the path
specifies a device.

• Reported by RmDir if the directory isn't empty, if the path doesn't specify
a directory, or if the path specifies the root directory.

• Reported by Read or BlockRead on a typed or untyped file if the file is not
open for reading.

• Reported by Write or Block Write on a typed or untyped file if the file is
not open for writing .

. 6 Invalid file handle.

This error is reported if an invalid file handle is passed to a DOS system
call. It should never occur; if it does, it is an indication that the file variable
is somehow trashed.

Appendix /, Error Messages and Codes 635

12 Invalid file access code.

Reported by Reset or Append on a typed or untyped file if the value of
FileMode is invalid.

15 Invalid drive number.

Reported by GetDir if the drive number is invalid;

16 Cannot remove current directory.

Reported by RmDir if the path specifies the current directory.

17 Cannot rename across drives.

Reported by Rename if both names are not on the same drive.

I/O Errors

These errors cause termination if the particular statement was compiled in
the {$I+} state. In the {$I-} state, the program continues to execute, and the.
error is reported by the JOResult function;

100 Disk read error.

Reported by Read on a typed file if you attempt to read past the end of the
file.

101 Disk write error.

Reported by Close, Write, Writeln, Flush, or Page if the disk becomes full.

102 File not assigned.

Reported by Reset, Rewrite, Append, Rename, and Erase if the file variable has
not been assigned a name through a call to Assign.

103 File not open.

Reported by Close, Read, Write, Seek, Eot, FilePos, FileSize, Flush, BlockRead, or
Block Write if the file is not open.

104 File not open for input.

Reported by Read, Readln, Eot, Eoln, SeekEot, or SeekEoln on a text file if the
file is not open for input.

636 Turbo Pascal Owner's Handbook

105 File not open for output.

Reported by Write, Writeln, and Page on a text file if the file is not open for
output.

106 Invalid numeric format.

Reported by Read or Readln if a numeric value read from a text file does not
conform to the proper numeric format.

Critical Errors

150 Disk is write-protected.

151 Unknown unit.

152 Drive not ready.

153 Unknown command.

154 CRC error in data.

155 Bad drive request structure length.

156 Disk seek error.

157 Unknown media type.

158 Sector not found.

159 Printer out of paper.

160 Device write fault.

161 Device read fault.

162 Hardware failure.

Refer to your DOS programmer's reference manual for more information
about critical errors.

Appendix /, Error Messages and Codes 637

Fatal Errors

These errors always immediately terminate the program.

200 Division by zero.

201 Range check error.

This error is reported by statements compiled in the {$R+} state when one
of the following situations arise:

• The index expression of an array qualifier was out of range.

• An attempt was made to assign an out of range value to a variable.

• An attempt was made to pass an out of range value as a parameter to a
procedure or function.

202 Stack overflow error.

This error is reported on entry to a procedure or function compiled in the
{$S+} state when there is not enough stack space to allocate the
subprogram's local variables. Increase the size of the stack by using the $M
compiler directive.

203 Heap overflow error.

This error is reported by New or GetMem when there is not enough free
space in the heap to allocate a block of the requested size. For a complete
discussion of the heap manager, refer to Chapter 26, "Inside Turbo Pascal."

204 Invalid pointer operation.

This error is reported by Dispose or FreeMem if the pointer is nil or points to
a location outside the heap, or if the free list cannot be expanded.

205 Floating point overflow.

A floating-point operation produced an overflow.

638 Turbo Pascal Owner's Handbook

206 Floating point underflow

A floating-point operation produced an underflow. This error is only
reported if you are using the 8087 numeric coprocessor with a control word
that unmasks underflow exceptions. By default, an underflow causes a
result of zero to be returned.

207 Invalid floating point operation

• The real value passed to Trunc or Round could not be converted to an
integer within the longint range (-2147483648 to 2147483647).

• The argument passed to the Sqrt function was negative.

• The argument passed to the Ln function was zero or negative.

• An 8087 stack overflow occurred. For further details on correctly
programming the 8087, refer to Chapter 25.

Appendix /, Error Messages and Codes 639

640 Turbo Pascal Owner's Handbook

Borland
. Software

INTERNATIONAL 4585 Scotts Valley Drive, Scotts Valley, CA 95066

Available at bettBr dealers nationwide.
To order by credit card, call (BOO) 255-8008; CA (800) 742-1133;
CANADA (BOO) 237-1136.

OUATTRO~
THE PROFESSIONAL SPREADSHEET

Borland's super graphic new genera­
tion spreadsheet: Twice the power at
half the price! 'Jen types of presen­
tation-quality graphs. Compatible with
1-2-3®, dBASE®, Paradox® and other
spreadsheets and databases.

Quattro, Borland's new generation professional
spreadsheet, proves there are better and faster
ways to get your work done-whether it's gra­
phics, recalculations, macros, or search and sort.

Presentation-quality graphics
Quattro has excellent built-in graphics capabili­

ties that help you create a wide variety of graphs.
Bar graphs, line graphs, pie charts, XY graphs,
area charts-you can create up to 10 types of
graphs, and print them directly from the spread­
sheet or store them for future use.

Smarter recalculation
When a formula needs to be recalculated,

Quattro uses "intelligent recalc" to recalculate
only those formulas whose elements have changed.
This makes Quattro smarter and faster than other
spreadsheets.

Greater macro capability
You can create macros instantly by recording

your actions and storing them in the spreadsheet.
The number of macros is limited only by memory.
A built-in macro debugging environment makes it
easy to find and correct problem areas. Quattro
also includes a set of over 40 macro commands
which make up a programming language.

Suggested retail price $195.00
(not copy protected)

Direct compatibility
Quattro can directly load and use data files

created with other spreadsheet and database pro­
grams like 1-2-3, dBASE, and Paradox. Quattro can
read and even write WKS, WKl, and WKE files. You
can also import ASCII and other text files into the
spreadsheet.

Easy installation
Quattro can detect most computers and screen

types, so it's always ready to load and run!
Plus, like all other Borland products, Quattro is

not copy protected!

'Jechnical Features
o Understands your 1-2-3 macros
o 100 built-in financial and statistical functions
o Menu Builder add-in for customizing menus
o Supports 8087/80287 math coprocessors
o Supports EGA, CGA. and VGA graphics adapters
o Pop-up menus
o Shortcuts to menu commands
o Context-sensitive online help
o Three types of choice lists: @functions and syn­

tax, macro commands, and existing block names
o Pointing lets you specify a block of cells using

arrow keys
o Search (or Query) lets you find speCific records

or cells
o Lets you arrange/rearrange data in alphabetical,

numerical, or chronological order
o Supports Expanded Memory Specification to

create spreadsheets larger than 640K
o Supports PostScript"" printers and typesetters

Minimum system requirements: For the IBM PS/2~ and the IBM· and
Compaq- families of personal computers and all 100% compatibles. PC­
DOS (MS-DOS·) 2.0 or later. Two floppies or a hard disk. 384K.

Quattro and Paradox are trademarks of Borland International. Inc. Lotus and 1-2-3 are regis­
tered trademarks of Lotus Development Corp Other brand and product names are trade­
marks or registered trademarks of their respective holders. Copynght C1987 Berland Interna­
IiOnal, Inc BOR 0414

,..'E8 AND DEVElIfl'8 IIBIAIY

An unsurpassed col/ection of TURBO
PASCAL TOOLS that make you the
expert, now upgraded to Version 4.0!

Turbo Pascal Tutor:
For both the novice programmer and the profes­

sional. Everything you need to write a simple pro­
gram or handle advanced concepts like using
assembly language routines with your Thrbo Pascal
programs. The programmer's guide covers the fine
points of Thrbo Pascal programming with lots of
examples; and on accompanying disk gives you all
the source code. A real education for just $69.95!

Turbo Pascal Editor lbolbox:
Everything you need to build your own custom

text editor or word processor including easy-to­
install modules, source code and plenty of know­
how. Includes all the popular features like word­
wrap, auto indent, find/replace. Just $99.95!

Turbo Pascal Database lbolbox:
A complete library of Pascal procedures that let

you sort and search your data and build powerful
applications. Includes Thrbo Access files that use
B+ trees to organize and search your data, and
ThrboSort to sort it. GINST even gets your pro­
grams up and running on other terminals! Includes
a free database that you can use as is or modify to
suit your needs. Just $99.95!

Turbo Pascal Graphix lbolbox:
Gives you all the high-resolution graphics and

graphic window management capabilities you need,
with tools to draw and hatch pie charts, bar charts,
circles, rectangles and a full range of geometric
shapes. Save and restore graphic images to and
from disk, plot precise curves, and create anima­
tion.* All for just $99.95!

Turbo Pascal GameWorks:
Secrets and strategies of the masters with easy­

to-understand examples that teach you how to
quickly create your own computer games using
Thrbo Pascal. For instant excitement, play the three
great computer games included on disk-Thrbo
Chess, Thrbo Bridge and Thrbo Go-Moku. They're
all compiled and ready to run. Just $99.95!

Turbo Pascal Numerical
Methods lbolbox:

All the state-of-the-art applied mathematical
tools you'll ever need. A collection of Thrbo Pascal
mathematical routines and programs and ten inde­
pendent modules that you can easily adapt to dif­
ferent programs. Gives you the kind of mathemati­
cal routines IMSL8 and NAG libraries provide for
FORTRAN. Complete with sample programs and
source code for each module. All for just $99.95!

Buy them separately or get The
Developer's Library, which includes
all six, for just $395 suggested retail
price! Not copy protected!

System Requirements: For the IBM PS/2- and the I BM- and Compaq­
families of personal computers and all 100% compatibles.
Operating System: PC-DOS (MS-DOS) 2.0 or later.
*'lIlrbo Pascal Graphix 1bo/box also requires one of the following
graphics adapters: CGA. EGA. Hercules. or IBM 3270.

All Borland products are trademarks or registered trademarks of Borland International, Inc.
Borland Turbo Too/box- products. Other brand and product name are trademarks or regis­
tered trademarks of their respective holders. Copyright 01987 Borland International,lnc.

BOA 0486

.11,rll'lIlI ® THE IEII1I1'
lJ,j In'lIn: IIIIA.,IEI
Whether you're running WordStar,® Lotus,® dBASE,®

or any other program, SideKick puts all these desktop
accessories at your fingertips-Instantly!

A lull-screen WordStar-Jike Editor to jot
down notes and edit files up to 25 pages
long.

A Phone Directory for names, addresses,
and telephone numbers. Finding a name or a
number is a snap.

An Autodialer for all your phone calls. It will
look up and dial telephone numbers for you.
(A modem is required to use this function.)

All the SideKick windows stacked up over Lotus 1-2-3.­
From bottom to top: SideKick's "Menu Window," ASCII
Table, Notepad, Calculator, Appointment Calendar, Monthly
Calendar, and Phone Dialer.

A Monthly Calendar from 1901 through
2099.

Appointment Calendar to remind you
of important meetings and appointments.

A lull-Ieatured Calculator ideal for
business use. It also performs decimal
to hexadecimal to binary conversions.

An ASCII Table for easy reference.

Here's SideKick running over Lotus 1-2-3. In the
SideKick Notepad you'll notice data that's been imported
directly from the Lotus screen. In the upper right you can
see the Calculator.

The Critics' Choice
"In a simple, beautiful implementation of WordStar's
block copy commands, SideKick can transport all
or any part of the display screen (even an area
overlaid by the notepad display) to the notepad."

-Charles Petzold, PC MAGAZINE

"SideKick deserves a place in every PC."
-Gary Ray, PC WEEK

"SideKick is by far the best we've seen. It is also
the least expensive."

-Ron Mansfield, ENTREPRENEUR

"If you use a PC, get SideKick. You'll soon become
dependent on it." -Jerry Pournelle, BYTE

Suggested Retail Price: $84.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, PCjr and true compatibles. PC-DOS (MS-DOS) 2.0 or greater. 128K RAM. One disk
drive. A Hayes-compatible modem, IBM PCjr internal modem, or AT&T Modem 4000 is required for the autodialer function.

SideKick is a registered trademark of Bortilld tnternational. Inc. dBASE is a registered trademark of
Ashton- Tate. IBM, XT, AT, and PCjr are registered trademarks of International Business Machines Corp
AT&T is a registered trademark of Americill Telephone & Telegraph Company. Lotus and 1-2-3 are
registered trademarks of Lotus Development Corp WordStar is a registered trademark of MicroPro
International Corp Hayes is a trademark of Hayes Microcomputer Products, Inc.
Copyright 1987 Borland International BOR0060C

BIIPEIIEY:® :~:::IIt:'''"'r
RAM-resident

Increased productivity lor IBM®PCs or compatibles
SuperKey's simple macros are electronic shortcuts to success.

By letting you reduce a lengthy paragraph into a single . keystroke
01 your choice, SuperKey eliminates repetition.

SuperKey turns 1,000 keystrokes into 11
SuperKey can record lengthy keystroke sequences and play them back at the touch of a single key.
Instantly. Like magic.

In fact, with SuperKey's simple macros, you can turn "Dear Customer: Thank you for your inquiry.
We are pleased to let you know that shipment will be made within 24 hours. Sincerely," into the
one keystroke of your choice!

SuperKey keeps your confidential files-confidential!
Without encryption, your files are open secrets. Anyone can walk up to your PC and read your
confidential files (tax returns, business plans, customer lists, personal letters, etc.).

With SuperKey you can encrypt any file, even while running another program. As long as you keep
the password secret, only you can decode your file correctly. Super Key aTso implements the U.S.
government Data Encryption Standard (DES).

~ RAM resident-accepts new macro files ~ Keyboard buffer increases 16 character
keyboard "type-ahead" buffer to 128
characters

even while running other programs
~ PUll-down menus
~ Superfast file encryption
~ Choice of two encryption schemes
~ On-line context-sensitive help
~ One-finger mode reduces key

commands to single keystroke

~ Real-time delay causes macro playback
to pause for specified interval

~ Transparent display macros allow
creation of menus on top of application
programs

~ Screen OFF/ON blanks out and restores
screen to protect against "burn in"

~ Data entry and format control using
"fixed" or "variable" fields

~ Command stack recalls last 256
characters entered ~ Partial or complete reorganization of

keyboard

Suggested Retail Price: $99.95 (not copy protected)

Minimum system configuration: IBM PC, Xl, AT, PCjr, and true compatibles. PC-DOS (MS-DOS)
2.0 or greater. 128K RAM. One disk drive.

SuperKey is a registered trademark of Borland tnternational, Inc. IBM, Xl AT, and PCjr are
registered trademarks of International Business Machines Corp. MS-DOS is a registered
trademark of Microsoft Corp. BOR 0062C

If you use an IBM® PC, you need

T U R B 0

Lightning®
Turbo Lightning teams up
with the Random House
Concise Word List to
check your spelling as
you type!

Turbo Lightning, using the
BO,OOO-word Random House
Dictionary, checks your spelling
as you type. If you misspell a
word, it alerts you with a
"beep." At the touch of a key,
Turbo Lightning opens a
window on top of your
application program and
suggests the correct spelling.
Just press one key and the
misspelled word is instantly
replaced with the correct word.

Turbo Lightning works
hand-in-hand with the
Random House Thesaurus
to give you instant access
to synonyms

Turbo Lightning lets you
choose just the right word from
a list of alternates, so you
don't say the same thing the
same way every time. Once
Turbo Lightning opens the
Thesaurus window, you see a
list of alternate words; select
the word you want, press
ENTER and your new word will
instantly replace the original
word. Pure magic!

If you ever write a
word, think a word, or
say a word, you need
Turbo Lightning

~~~~ ~~Ht:'. it k~') ~j.'~.af tlt.l:t d~'~:"$ ~~ ad:l .. !h 
hl~lItd iI' "ht-ih hJ ~{I! M~t i~~ <I.!"'<MlM tJ)E: '¥:i>1' ~~ >l ,II 

The Turbo Lightning Proofreader 

The Turbo Lightning Thesaurus 

Suggested Retail Price: $99.95 (not copy protected) 

You can teach Turbo 
Lightning new words 

You can teach your new Turbo 
Lightning your name, business 
associates' names, street 
names, addresses, correct 
capitalizations, and any 
specialized words you use 
frequently. Teach Turbo 
Lightning once, and it 
knows forever. 

Turbo Lightning is the 
engine that powers 
Borland's Turbo Lightning 
Library® 

Turbo Lightning brings 
electronic power to the 
Random House Concise Word 
List and Random House 
Thesaurus. They're at your 
fingertips-even while you're 
running other programs. Turbo 
Lightning will also "drive" 
soon-to-be-released 
encyclopedias, extended 
thesauruses, specialized 
dictionaries, and many other 
popular reference works. You 
get a head start with this 
first volume in the Turbo 
Lightning Library. 

Minimum system configuration: IBM PC, Xl, Al, PCjr, and true compatibles with 2 floppy disk drives. PC-DOS (MS-DOS) 2.0 or greater. 
256K RAM. Hard disk recommended. 

BORLAND 
INTERNATIONAL 

Turbo lightning and Turbo Lightning library are registered trademarks of Borland International. Inc 
IBM. Xl. AT. and PCjr are registered trademarks of International Business Machines Corp Random 
House is a registered trademark of Random House. Inc Copyright 1987 Borland International 

BOR 0070B 



Your Development Toolbox and Technical Reference Manual for Thrbo Lightning® 

l I G H T N I N G 

Lightning Word Wizard includes complete, commented Turbo 
Pascal® source code and all the technical information you'll 

need to understand and work with Turbo Lightning's "engine." 
More than 20 fully documented Turbo Pascal procedures 

reveal powerful Turbo Lightning engine calls. Harness the full power 
of the complete and authoritative Random House® Concise 

Word List and Random House Thesaurus. 

Turbo Lightning's "Reference 
Manual" 
Developers can use the versatile on-line 
examples to harness Turbo Lightning's 
power to do rapid word searches. Lightning 
Word Wizard is the forerunner of the data­
base access systems that will incorporate 
and engineer the Turbo Lightning Library® 
of electronic reference works. 

The ultimate collection of word 
games and crossword solvers! 
The excitement, challenge, competition, 
and education of four games and three 
solver utilities-puzzles, scrambles, spell­
searches, synonym-seekings, hidden words, 
crossword solutions, and more. You and 
your friends (up to four people total) can 
set the difficulty level and contest the high­
speed smarts of Lightning Word Wizard! 

Turbo Lightning-Critics' Choice 
"Lightning's good enough to make programmers and users cheer, executives of other 
software companies weep." Jim Seymour, PC Week 

"The real future of Lightning clearly lies not with the spelling checker and thesaurus currently 
included, but with other uses of its powerful look-up engine." Ted Silveira, Profiles 

"This newest product from Borland has it all." Don Roy, Computing Now! 

Minimum system configuration: IBM PC, Xl, AT, PCjr, Portable, and true compatibles. 256K RAM minimum. PC·DOS (MS·DOS) 2.0 
or greater. Turbo Lightning software required. Optional-Turbo Pascal 3.0 or greater to edit and compile Turbo Pascal source code. 

Suggested Retail Price: $69.95 
(not copy protected) 

Turbo Pascal. Turbo Lightning and Turbo Lightning Library are registered trademarks and Lightning Word Wizard is a trademark of Borland International. Inc. Random 
House is a registered trademark of Random House. Inc. IBM. XT. AT, and PCjr are registered trademarks of International Business Machines Corp. MS-DOS is a 
registered trademark at Microsoft Corp. Copyright 1987 Borland International BOR0087B 



1'££1 £11 ® THE IATABASE 
~r'~II: .AIASE' 

The high-performance database manager 
that's so advanced it's easy to use! 

Lets you organize, analyze and report information faster than ever before! If you manage mailing lists, 
customer files, or even your company's budgets-Reflex is the database manager for you! 

Reflex is the acclaimed, high-performance database manager you've been waiting for. Reflex extends 
database management with business graphics. Because a picture is often worth a 1000 words, Reflex 
lets you extract critical information buried in mountains of data. With Reflex, when you look, you see. 

The REPORT VIEW allows you to generate everything from mailing labels to sophisticated reports. 
You can use database files created with Reflex or transferred from Lotus 1-2-3,e dBASE,e PFS: File,e 
and other applications. 

Rellex: The Critics' Choice 

'.' ... if you use a PC, you should know about Reflex ... may be the best bargain in software today." 
Jerry Pournelle, BYTE 

"Everyone agrees that Reflex is the best-looking database they've ever seen." 
Adam B. Green, Info World 

"The next generation of software has officially arrived." Peter Norton, PC Week 

Reflex: don't use your PC without itl 
Join hundreds of thousands of enthusiastic Reflex users and experience the power and ease of use of 
Borland's award-winning Reflex. 

Suggested Retail Price: $149.95 (not copy protected) 

Minimum system configuration: IBM PC, Xl, AT, and true compatibles. 384K RAM minimum. IBM Color Graphics Adapter, Hercules 
Monochrome Graphics CArd, or equivalent. PC-DOS (MS-DOS) 2.0 or greater. Hard disk and mouse optional. Lotus 1-2-3, dBASE, 
or PFS: File optional. 

Reflex is a trademark 01 Borland/Analytica Inc. Lotus 1-2-3 is a registered trademark 01 Lotus 
Development Corporation. dBASE is a registered trademark of Ashton-Tate. PFS: File is a 
registered trademark 01 SOf1ware Publishing Corporation. tBM, XT. AT, and IBM Color Graphics 
Adapter are registered trademarks of International Business Machines Corporation. Hercules 
Graphics Card is a trademark 01 Hercules Computer Technology. MS-DOS is a registered 
trademark of Microsoft Corp Copyright 1987 Borland International BOR 0066C 



BEILE1'HE WIIISHIP" 
Includes 22 "instant templates" covering a broad range of 

business applications (listed below). Also shows you how to 
customize databases, graphs, crosstabs, and reports. It's an invaluable 

analytical tool and an important addition to another one of 
our best sellers, Reflex: The Database Manager. 

Fast-start tutorial examples: 
Learn Reflex® as you work with practical business applications. The Reflex Workshop Disk supplies 
databases and reports large enough to illustrate the power and variety of Reflex features. Instructions in each 
Reflex Workshop chapter take you through a step-by-step analysis of sample data. You then follow simple 
steps to adapt the files to your own needs. 
22 practical business applications: 
Workshop's 22 "instant templates" give you a wide range of analytical tools: 

Administration 
• Scheduling Appointments 
• Planning Conference Facilities 
• Managing a Project 
• Creating a Mailing System 
• Managing Employment Applications 

Sales and Marketing 
• Researching Store Check Inventory 
• Tracking Sales Leads 
• Summarizing Sales Trends 
• Analyzing Trends 

Production and Operations 
• Summarizing Repair Turnaround 

• Tracking Manufacturing Quality Assurance 
• Analyzing Product Costs 

Accounting and Financial Planning 
• Tracking Petty Cash 
• Entering Purchase Orders 
• Organizing Outgoing Purchase Orders 
• Analyzing Accounts Receivable 
• Maintaining Letters of Credit 
• Reporting Business Expenses 
• Managing Debits and Credits 
• Examining Leased Inventory Trends 
• Tracking Fixed Assets 
• Planning-Commercial Real Estate Investment 

Whether you're a newcomer learning Reflex basics or an experienced "power user" looking for tips, Reflex: 
The Workshop will help you quickly become an expert database analyst. 

Minimum system configuration: IBM PC, AI, and Xl, and true compatibles. PC-DOS (MS-DOS) 2.0 or greater. 384K RAM minimum. Requires Reflex: 
The Database Manager, and IBM Color Graphics Adapter, Hercules Monochrome Graphics Card or equivalent. 

Suggested Retail Price: $69.95 
(not copy protected) 

Reflex is a registered trademark and Reflex: The Workshop is a trademark of Borland/ Analytica, Inc. IBM, AT, and XT are registered trademarks of International Business 
Machines Corp. Hercules is a trademark of Hercules Computer Technology. MS-DOS is a registered trademark of Microsoft Corp. Copyright 1987 Borland International 

BOR 0088B 



TURBO 

the natural language of ArtifICial Intelligence 

Turbo Prolog brings fifth-generation supercomputer 
power to your IBM®PC! 

Turbo Prolog takes 
programming into a new, 
natural, and logical 
environment 
With Turbo Prolog, 
because of its natural, 
logical approach, both 
people new to programming 
and professional programmers 
can build powerful applica­
tions such as expert systems, 

Turbo Prolog provides 
a fully integrated pro­
gramming environment 
like Borland's Turbo 
Pascal,® the de facto 
worldwide standard. 
You get the 
complete Turbo 
Prolog programming 
system 
You get the 200-page 
manual you're holding, 
software that includes 

customized knowledge 
bases, natural language 
interfaces, and smart ;~~~~~~~it] the lightning-fast Turbo 
information management systems. 
Turbo Prolog is a declarative language which 
uses deductive reasoning to solve 
programming problems. 

Turbo Prolog's development system 
includes: 
o A complete Prolog compiler that is a variation 

of the Clocksin and Mellish Edinburgh 
standard Prolog. 

o A full-screen interactive editor. 
o Support for both graphic and text windows. 
o All the tools that let you build your own 

expert systems and AI applications .with 
unprecedented ease. 

--..=.. 
BORLAND 

--:::"' INTERNATIONAL 

Prolog six-pass 
compiler and interactive editor, and the 
free GeoBase natural query language 
database, which includes commented 
source code on disk, ready to compile. 
(GeoBase is a complete database designed 
and developed around U.S. geography. 
You can modify it or use it "as is.") 

Minimum system configuration: IBM PC, Xl, AT, Portable, 3270, PCjr 
and true compatibles. PC-DOS (MS-DOS) 2.0 or later. 384K RAM 
minimum. 

Suggested Retail Price: $99.95 
(not copy protected) 

Turbo Prolog is a trademark and Turbo Pascal is a registered trademark of Borland International, Inc 
IBM, AT, Xl and PCjr are registered trademarks of International Business Machines Corp MS-DOS is a 
registered trademark of Microsoft Corp. Copyright 1987 Borland International BOR 00160 



"IIII',IIIIIST. 

"'11" 
Enhances Turbo Prolog with more than 80 tools 

and over 8,000 lines of source code 

Turbo Prolog, the natural language of Artificial Intelligence, is the 
most popular AI package in the world with more than 100,000 users. 

Our new Turbo Prolog Toolbox extends its possibilities. 

The Turbo Prolog Toolbox enhances Turbo Prolog-our 5th-generation computer programming 
language that brings supercomputer power to your IBM PC and compatibles-with its more than 80 
tools and over 8,000 lines of source code that can be incorporated into your programs, Quite easily. 

Turbo Prolog Toolbox features include: 
@ Business graphics generation: boxes, circles, ellipses, bar charts, pie charts, scaled graphics 
@ Complete communications package: supports XModem protocol 
@ File transfers from Reflex,@> dBASE III,@> Lotus 1-2-3,@> Symphony" 
@ A unique parser generator: construct your own compiler or Query language 
@ Sophisticated user -interface design tools 
@ 40 example programs 
@ Easy-to-use screen editor: design your screen layout and liD 
@ Calculated fields definition 
@ Over 8,000 lines of source code you can incorporate into your own programs 

Suggested Retail Price: $99.95 (not copy protected) 

Minimum system configuration: IBM PC, XT, AT or true compatibles. PC-DOS (MS-DOS) 2.0 or later. Requires Turbo Prolog 1.10 
or higher. Dual-floppy disk drive or hard disk. 512K. 

Turbo Prolog Toolbox and Turbo Prolog are trademarks 01 Borland International, Inc. Rellex 
is a registered trademark of Borland/Analytica, Inc. dBASE III is a registered trademark of 
Ashlon-Tate. Lotus 1-2-3 and SYfTllhony are registered trademarks of Lotus Development 
Corp. IBM, XT. and AT are registered trademarks of International Business Machines Corp. 
MS-DOS is a registered trademark of Microsoft Corp. BOR 0240 



TUBIII IABIC® 
The high-speed BASIC you've been waiting lor! 

You probably know us for our Turbo Pascal® and Turbo Prolog.® Well, we've done 
it again! We've created Turbo Basic, because BASIC doesn't have to be slow. 

If BASIC taught you how to walk, Turbo Basic will teach you how to run! 
With Turbo Basic, your only speed is "Full Speed Ahead"! Turbo Basic is a complete development envir-
0nment with an amazingly fast compiler, an interactive editor and a trace debugging system. And because 
Turbo Basic is also compatible with BASICA, chances are that you already know how to use Turbo Basic. 

Turbo Basic ends the basic confusion 
There's now one standard: Turbo Basic. And because Turbo Basic is a Borland product, the price is right, 
the quality is there, and the power is at your fingertips. Turbo Basic is part of the fast-growing Borland 
family of programming languages we call the "Turbo Family." And hundreds of thousands of users are 
already using Borland's languages. So, welcome to a whole new generation of smart PC users! 

Free spreadsheet included with source code! 
Yes, we've included MicroCalc,'" our sample spreadsheet, complete with source code. So you can get 
started right away with a "real program." You can compile and run it "as is," or modify it. 

A technical look at Turbo Basic 
s' Full recursion supported 
s' Standard IEEE floating-point format 
s' Floating-point support, with full 8087 copro­

cessor integration. Software emulation if no 
8087 present 

s' Program size limited only by available 
memory (no 64K limitation) 

s' EGA, CGA, MCGA and VGA support 
s' Full integration of the compiler, editor, and 

executable program, with separate windows 
for editing, messages, tracing, and execution 

s' Compile and run-time errors place you in 
source code where error occurred 

s' Access to local, static and global variables 
s' New long integer (32-bit) data type 
s' Full 80-bit precision 
s' PUll-down menus 
s' Full window management 

Suggested Retail Price: $99.95 (not copy protected) 
Minimum system configuration: IBM PC. AT, XT, PS/2 or true compatibles. 320K. One floppy drive. PC-DOS (MS-DOS) 2.0 or later. 

liJrbo BaSic. Turbo Prolog and Turbo Pascal are registered trademarks and MicroCalc is a trade­
mark of Borland International. Inc. Other brand and product names are trademarks or registered 
trademarks of their respective holders. 
Copyright 1987 Borland International BOA 0265B 



"RBII BABIC
e 

DATABASE TOOLBOX'· 
With the Turbo Basic Database Toolbox you can build your own 

powerful, professional-quality database programs. And like aI/ other 
Borland Toolboxes, it's advanced enough for professional 

programmers yet easy enough for beginners. 

Three ready-to-use modules 
The Toolbox enhances your program­

ming with three problem-solving 
modules: 
Turbo Access quickly locates, inserts, 
or deletes records in a database using 
B+ trees-the ,fastest method for finding 
and retrieving database information. 
(Source code is included.) 
Turbo Sort uses the Quicksort 
method to sort data on single items 
or on multiple keys. Features virtual 
memory management for sorting large 
data files. (Commented source code 
is on disk.) 
TRAINER is a demonstration program 
that graphically displays how B+ trees 
work. You can key in sample records and 
see a visual index of B+ trees being 
built. 

Free sample database 
Included is a free sample database 

with source code. Just compile it, and it's 
ready to go to work for you-you can 
use it as is or customize it. You can 
search the database by keywords or 
numbers, update records, or add and 
delete them, as needed. 

Saves you lime and money 
If you're a professional programmer 

writing software for databases or other 
applications where search-and-sort capa­
bilities are important, we can save you 
time and money. Instead of writing the 
same tedious but essential routines over 
and over again, you can simply include 
any of the Toolbox's modules 
in your own compiled programs. 

Technical Features 
@ Maximum number of files open: 15 files, 

or 7 data sets 
@ Maximum file size: 32 Mb 
@ Maximum record size: 32K 

@ Maximum number of records: +2 billion 
@ Maximum field size: 32K 
@ Maximum key size: 128 bytes 
@ Maximum number of keys: +2 billion 

Suggested Retail Price: $99.95 (not copy protected) 

Minimum system requirements: For the IBM PS/2 and the IBM~ and CompaQ~ families of personal computers and all 100% compatibles. running 
Turbo Basic 1.0. PC-~OS (Ms-oose) 2.0 or later. Memory: 640K. 

All Borland products are registered trademarks or trademarks 01 Borland 
Inlernational, Inc. or Borland/ Analytica, Inc. A Borland Turbo Too/box pro­
duct. Other brand and product names are trademarks or regislered trade­
marks 01 their respective holders. Copyright 1987 Borland International. 

BOR 0384A 



',IBI BABIC® 
EI1111B 11111lllll" 

With Turbo Basic we gave you the fastest BASIC around. Now the 
Turbo Basic Editor Toolbox will help you build your own superfast 

editor to incorporate into your Turbo Basic programs. We provide all 
the editing routines. You plug in the features you want! 

Two sample editors with source code 
To demonstrate the tremendous power of the Toolbox, we've included two sample editors 

with complete source code: 
FirstEd. A compl~te editor with windows, block commands, and memory-mapped screen 
routines, all ready to include in your programs. 

MicroSta"-: A full-blown text editor with a pull-down menu user interface and all the standard 
features you'd expect in any word processor. Plus features other word processors can't begin 
to match: 

g RAM-based editor for superfast editing 
g View and edit up to eight windows at a 

time 
g Support for line, stream, and column 

block mode 
g Instant paging, scrolling, and text 

display 
g Up to eight hidden buffers at a time to 

edit, swap, and call text from 

Build the word processor of your choice! 

g Multitasking to let you print in the 
"background" 

g Keyboard installation for customizing 
command keys 

g Custom designing of colors for text, 
windows, menus, and status line 

g Support for DOS functions like Copy 
file, Delete file, Change directory, and 
Change logged drive 

We give you easy-to-install modules. Use them to build yourself a full-screen editor with 
pull-down menus, and make it work as fast as most word processors-without having to 
spend hundreds of dollars! 

Source code for everything in the Toolbox is provided. Use any of its features in your own 
Turbo Basic programs or in programs you develop for others. You don't even have to pay 
royalties! 

Suggested Retail Price: $99.95 (not copy protected) 

Minimum system requirements: For the IBM PS/2~ and the IBM" and CompaQ~ families of personal computers and all 100% 
compatibles running Turbo Basic 1.0. PC-DOS (MS-DOS@)) 2.0 or greater. Memory: 640K. 

=, ~- =- BORLAND EJ INTERNATIONAL 

All Borland products are trademarks or registered trademarks of Borland 
International. Inc. or Borland/Analytica. Inc. Other brand and product names 
are trademarks or registered trademarks of their respective holders. A Bor­
land Turbo Toolbox product. Copyright 1987 Borland International BOR 0383 



',1111 C· Includes tree 
MicroCalc spreadsheet 

with source code 

A complete interactive development environment 
With Turbo C, you can expect what only Borland delivers: 
Quality, Speed, Power and Price. And with its compilation 
speed of more than 1000 lines a minute, Turbo C makes 

everything else look like an exercise in slow motion. 

Turbo C: The C compiler for both amateurs and professionals 
If you're just beginning and you've "kinda wanted to learn C," now's your chance to do it the easy way. 
Turbo C's got everything to get you going. If you're already programming in C, switching to Turbo C will 
considerably increase your productivity and help make your programs both smaller and faster. 

Turbo C: a complete interactive development environment 
Like Turbo Pascale and TlJ'bo Prolog," Turbo C comes with an interactive editor that will show 
you syntax errors right in your source code. Developing, debugging, and running a Turbo C 
program is a snap! 

Technical Specifications 
5r' Compiler: One-pass compiler generating native in- 5r' Development Environment: A powerful "Make" is 

line code, linkable object morules and assembler. included so that managing Turbo C program 
The object module format is compatible with the development is easy. Borland's fast "Turbo 
PC-DOS linker. Supports small, medium, compact, Linker" is also included. Also includes pull-down 
large, and huge memory model libraries. Can mix menus and windows. Can run from the environ-
models with near and far pOinters. Includes ment or generate an executable file. 
floating point emulator (utilizes 8087/80287 if 5r' Links with relocatable object modules created 
installed). using Borland's Turbo Prolog into a 

5r' Interactive Editor: The system includes a powerful, single program. 
interactive full-screen text editor. If the compiler 5r' ANSI C compatible. . 
detects an error, the editor automatically positions 5r' Start-up routine ~ource ~ode Included .. 
the cursor appropriately in the source code. 5r' Both. co~mand lIne and Integrated enVIronment 

versIOns Included. 

"Sieve" benchmark (25 iterations) 

Turbo C Microsoftf'J C Lattice C 

Compile time 3.89 16.37 13.90 

Compile and link time 9.94 29.06 27.79 

Execution time s.n 9.51 13.79 

Object code size 214 297 301 

Price $99.95 $450.00 $500.00 

Benchmark run on a 6 Mhz IBM AT USing Turbo eversion 1.0 and the Turbo Linker version 1.0; Microsoft eversion 4.0 and the 
MS overlay linker version 3.51; Lattice eversion 3.1 and the MS object linker version 3.05. 

Suggested Retail Price: $99.95* (not copy protected) "IntroductOl)' offer good through July 1. 1987 

Minimum system configuration: IBM PC, XT, AT and true compatibles. PC-DOS (MS-DOS) 2.0 or later. One floppy drive. 320K. 

Turbo C and Turbo Pascal are registered trademarks and Turbo Prolog is a trademark of Borland 
International. Inc. Microson C and MS-DOS ife registered trademarks of Microson Corp. Lattice C 
is a registered trademark of Lattice. Inc. IBM. Xl. and AT are registered trademarks of International 
Business Machines Corp. BOR 0243 



EIREIA: lIE "lVER" 
The solution to your most complex 

equations-in seconds! 
If you're a scientist, engineer, financial analyst, student, teacher, or any other professional working with 
equations, Eureka: The Solver can do your Algebra, Trigonometry and Calculus problems in a snap. 

Eureka also handles maximization and minimization problems, plots functions, generates reports, and 
saves an incredible amount of time. Even if you're not a computer specialist, Eureka can help you 
solve your real-world mathematical problems fast, without having to learn numerical approximation 
techniques. Using Borland's famous pull-down menu design and context-sensitive help screens, Eureka 
is easy to learn and easy to use-as simple as a hand-held calculator. 

X + exp(X) = 10 solved instantly instead of eventually! 
Imagine you have to "solve for X," where X + exp(X) = 10, and you don't have Eureka: The Solver. 
What you do have is a problem, because it's going to take a lot of time guessing at "X." With Eureka, 
there's no guessing, no dancing in the dark-you get the right answer, right now. (Ps: X = 2.0705799, 
and Eureka solved that one in .4 of a second!) 

How to use Eureka: The Solver 
It's easy. 
1. Enter your equation into the 

full-screen editor 
2. Select the "Solve" command 
3. Look at the answer 
4. You're done 

Some of Eureka's key features 
You can key in: 
~ A formula or formulas 
~ A series of equations-and solve for 

all variables 
~ Constraints (like X has to be 

< or = 2) 
~ A function to plot 
~ Unit conversions 
~ Maximization and minimization problems 
~ Interest Rate/Present Value calculations 
~ Variables we call "What happens?," like 

You can then tell Eureka to 
• Evaluate your solution 
• Plot a graph 
• Generate a report, then send the output 

to your printer, disk file or screen 
• Or all of the above 

Eureka: The Solver includes 
~ A full-screen editor 
~ Pull-down menus 
~ Context-sensitive Help 
~ On-screen calculator 
00 Automatic 8087 math co-processor 

chip support 
~ Powerful financial functions 
~ Built-in and user-defined math and 

financial functions 
~ Ability to generate reports complete with 

plots and lists 
"What happens if I change this variable to 
21 and that variable to 27?" 

~ Polynomial finder 
~ Inequality solutions 

Minimum system configuration: IBM PC. AT, XT, PS/2. Portable. 
3270 and true compatibles. PC-DOS (MS-DOS) 2.0 and 
later. 384K. 

Suggested Retail Price: $167.00 
(not copy protected) 

Eureka: The Solver is a trademark of Borland International, Inc. IBM, AT, and XT are registered 
trademarks of International BUSiness Machines Corp. MS-DOS is a registered trademark of 
Microsoft Corp. Copyright 1987 Borland International BOR 0221 B 



.,nrll'PI® THE DESKTOP 
1J'"~n' .. ~ : ORBAN/IER Release 2.0 

Macintosh'M 

The most complete and comprehensive collection of 
desk accessories available for your Macintosh! 

Thousands of users already know that SideKick is the best collection of desk accessories available 
for the Macintosh. With our new Release 2.0, the best just got better. 

We've just added two powerful high-performance tools to SideKick-Outlook'": The Outliner 
and MacPlan'": The Spreadsheet. They work in perfect harmony with each other and while you 
run other programs! 

Outlook: The Outliner 
• It's the desk accessory with more power than a stand-alone outliner 
• A great desktop publishing tool, Outlook lets you incorporate both text and graphics 

into your outlines 
• Works hand-in-hand with MacPlan 
• Allows you to work on several outlines at the same time 

MacPlan: The Spreadsheet 
• Integrates spreadsheets and graphs 
• Does both formulas and straight numbers 
• Graph types include bar charts, stacked bar charts, pie charts and line graphs 
• Includes 12 example templates free! 
• Pastes graphics and data right into Outlook creating professional memos and reports, complete 

with headers and footers. 

SideKick: The Desktop Organizer, 
Release 2.0 now includes 

~ Outlook: The Outliner 
~ MacPlan: The Spreadsheet 
~ Mini word processor 
~ Calendar 
~ Phone Log 
~ Analog clock 
~ Alarm system 
~ Calculator 
~ Report generator 
~ Telecommunications (new version now 

supports XModem file transfer protocol) 

• 1361~ Sall's ~ 
01594'£ Sooll'sB 

II 2HHiS Tohl R"'l'fl"lUfS 

[] ((1 

• 0:1 £X,fflm 
o Q3114 Labor 

[D 4(.e.1i Natff'\ill; 

~ 621-;11 Ovtl'h.~1f 

o 111&'E TOl<1lllxl'fflSIS 

IJ ". 
• 1843'6 Hf.tF'ro(lt 

MacPlan does both spreadsheets and business 
graphs. Paste them into your Oul/ook files and 

generate professional reports. 

Suggested Retail Price: $99.95 (not copy protected) 
Minimum system configurations: Macintosh 512K or Macintosh Plus with one disk drive. One BOOK or two 400K drives are recommended. 
With one 400K drive, a limited number of desk accessories will be installable per disk. 

SideKick is a registered trademark and Outlook and MacPlan are trademarks of Borland 
International. Inc. Macintosh is a trademark of Mcintosh Laboratory, Inc. licensed to Apple 
Computer. Inc. Copyright 1987 Borland International BOA 00690 



The ultimate Pascal development environment 

Borland's new Turbo Pascal lor the Mac is so incredibly last that it can 
compile 1,420 lines 01 source code in the 7.1 seconds it took you to read this! 

And reading the rest of this takes about 5 minutes, which is plenty of time for Turbo Pascal for the Mac 
to compile at least 60,000 more lines of source code! 

Turbo Pascal lor the Mac does both Windows and "Units" 
The separate compilation of routines offered by Turbo Pascal for the Mac creates modules called "Units," 
which can be linked to any Turbo Pascal program. This "modular pathway" gives you "pieces" which can 
then be integrated into larger programs. You get a more efficient use of memory and a reduction in the 
time it takes to develop large programs. 

Turbo Pascal lor the Mac is so compatible with Lisae that they should be living together 
Routines from Macintosh Programmer's Workshop Pascal and Inside Macintosh can be compiled and run 
with only the subtlest changes. Turbo Pascal for the Mac is also compatible with the Hierarchical File 
System of the Macintosh. 

The 27 -second Guide to Turbo Pascal for the Mac 
• Compilation speed of more than 12,000 lines 

per minute 
• "Unit" structure lets you create programs in 

modular form 
• Multiple editing windows-up to 8 at once 

Workshop Pascal (with minimal changes) 
• Compatibility with Hierarchical File System of 

your Mac 
• Ability to define default volume and folder names 

used in compiler directives 
• Compilation options include compiling to disk or 

memory, or compile and run 
• Search and change features in the editor speed up 

and simplify alteration' of routines 
• No need to switch between programs to compile 

or run a program 
• Ability to use all available Macintosh memory 

without limit 
• Streamlined development and debugging • "Units" included to call all the routines provided by 
• Compatibility with Macintosh Programmer's Macintosh Toolbox 

'Suggested Retail Price: $99.95* (not· copy protected) 
·Inlroductory price expires July 1. 1987 

Minimum system configuration: Macintosh 512K or Macintosh Plus with one disk drive. 

Turbo Pascal and SideKick are registered trademarks of Borland International. Inc. and Reflex is a 
registered trademark of Borland/Analytica. Inc. Macintosh is a trademark of Mcintosh Laboratories, Inc. licensed 
to Apple Computer with its express permission. Lisa is a registered trademark of Apple Computer, Inc. Inside 
MaCintosh is a copyright of Apple Computer. Inc. 
Copyright 1987 Borland International BOA 0167A 



1URBB PABCAl® 

TIITI' 
From the folks who created Turbo Pascal. Borland's new 
Turbo Pascal Tutor is everything you need to start pro­
gramming in Turbo Pascal on the MacintoshtM It takes 

you from the bare basics to advanced programming in a 
simple, easy-to-understand fashion. 

No gimmicks. It's all here. 

The manual, the Tutor application, and 30 sample 
programs provide a step-by-step tutorial in three 
phases: programming in Pascal, programming on 
the Macintosh, and programming in Turbo Pascal 
on the Macintosh. Here's how the manual is set 
up: 

Turbo Pascal for the Absolute Novice 
delivers the basics-a concise history of Pascal, 
key terminology, your first program. 

A Programmer's Guide to Turbo Pascal 
covers Pascal specifics-program structure, 
procedures and functions, arrays, strings, and so 
on. We've also included Turbo Typist, a textbook 
sample program. 

Advanced Programming 
takes you a step higher into stacks, queues, 
binary trees, linked structures, writing large pro­
grams, and more. 

Using the Power of the Macintosh 
discusses the revolutionary hardware and soft-
ware features of this machine. It introduces the 
600-plus utility routines in the Apple Toolbox. 

Programming the Macintosh in Turbo Pascal 
shows you how to create true Macintosh pro-
grams that use graphics, pull-down menus, dia-
log boxes, and so on. Finally, MacTypist, a com­
plete stand-alone application featuring animated 
graphics, builds on Turbo Typist and demon-
strates what you can do with all the knowledge 
you've just acquired. 

The disk contains the source code for all the 
sample programs, including Turbo Typist, MacTy­
pist, and Turbo Tutor. The Tutor's split screen lets 
you run a procedure and view its source code 
simultaneously. After running it, you can take a 
test on the procedure. If you're stuck for an 
answer, a Hint option steers you in the right 
direction. 

Macintosh topics included are 
g memory management g menus 
g resources and resource files g desk accessory support 
g QuickDraw g dialogs 
g events g File Manager 
g windows g debugging 
g controls 

Suggested Retail Price: $69.95 

Minimum system requirements: Any Macintosh with at least 512K of RAM. Requires Turbo Pascal. 

~:;o BORLAND ~_. INTERNATIONAL 
Turbo Pascal and Turbo Tulor are reglslered Irademarks 01 Borland Inlernatlonal.lnc Other brand and product names 
are trtidemarks or registered trademarks 01 the" respect"e holders Copyrlqht 1987 Borland Inlernallonal BaR 0381 



fIlBfKA: THE SBlVE'" 
If you're a scientist, engineer, financial analyst, student, teacher, or any 

other professional working with equations, Eureka: The Solver can do 
your Algebra, Trigonometry and Calculus problems in a snap. 

Eureka also handles maximization and minimiza­
tion problems, plots functions, generates reports, 
and saves an incredible amount of time. Even if 
you're not a computer specialist, Eureka can help 
you solve your real-world mathematical problems 
fast, without having to learn numerical approximation 
techniques. Eureka is easy to learn and easy to 
use-as simple as a hand-held calculator. 

x + exp(X) = 10 solved instantly instead 
of eventually! 

Imagine you have to solve for X, where X + 
exp(X) = 10, and you don't have Eureka: The Solver. 
What you do have is a problem, because it's going 
to take a lot of time guessing at X. With Eureka, 
there's no guessing, no dancing in the dark-
you get the right answer, right now. (PS: X = 
2.0705799, and Eureka solved that one in less than 
5 seconds!) 

Some of Eureka's key features 
You can key in: 
51 A formula or formulas 
51 A series of equations-and solve for 

all variables 
51 Constraints (like X must be < or = 2) 
51 Functions to plot 
51 Unit conversions 
51 Maximization and minimization problems 
51 Interest Rate/Present Value calculations 
51 Variables we call "What happens?," like 

"What happens if I change this variable to 
21 and that variable to 27?" 

How to use Eureka: The Solver 
It's easy. 
1. Enter your equation into a problem 

text window 
2. Select the "Solve" command 
3. Look at the answer 
4. You're done 

You can then tell Eureka to: 
• Verify the solutions 
• Draw a graph 
• Zoom in on interesting areas of the graph 
• Generate a report and send the output to 

your printer or disk file 
• Or all of the above 

Eureka: The Solver includes: 
51 Calculator+ desk accessory 
51 Powerful financial functions 
51 Built-in and user-defined functions 
51 Reports: generate and save them as 

MacWrite'· files-complete with graphs 
and lists-or as Text Only files 

51 Polynomial root finder 
51 Inequality constraints 
51 Logging: keep an up-to-the-minute record 

of your work 
51 Macintosh'· text editor 
51 On-screen Help system 

Suggested Retail Price: $195.00 (not copy protected) 

Minimum system configuration: Macintosh 512K. MaCintosh Plus, SE, or II with one BOOK disk drive or two 400K disk drives. 

Eureka The Solver is a trademark 01 Borland International. Inc. Macintosh is 
a trademark 01 Mcintosh Laboratory. Inc. licensed to Apple Computer, Inc. 
Copyright 1987 Borland International BOR 0415 



"BBII PASCAl ll1l1lBlIlTM 

1'.ERICAl.ETIII's 
Turbo Pascal Numerical Methods Toolbox for the Macintosh 

implements the latest high-level mathematical methods to solve 
common scientific and engineering problems. Fast. 

So every time you need to calculate an integral, work with Fourier transforms, or incorporate any of 
the classical numerical analysis tools into your programs, you don't have to reinvent the wheel, because 
the Numerical Methods Toolbox is a complete collection of Turbo Pascal routines and programs that 
gives you applied state-of-the-art math tools. It also includes two graphics demo programs that use 
least-square and Fast Fourier Transform routines to give you the picture along with the numbers. 

The Turbo Pascal Numerical Methods Toolbox is a must if you're involved with any type of scientific or 
engineering computing on the Macintosh. Because it comes with complete source code, you have total 
control of your application at all times. 

What Numerical Methods Toolbox will do lor you: 

• Find solutions to equations • Differential equations 
• Interpolations • Least-squares approximations 
• Calculus: numerical derivatives and integrals • Fourier transforms 
• Matrix operations: inversions, determinants, and eigenvalues • Graphics 

Five free ways to look at Least-Squares Fit! 
As well as a free demo of Fast Fourier Transforms, you also get the Least-Squares Fit in 

five different forms-which gives you five different methods of fitting curves to a collection 
of data pOints. You instantly get the picture! The five different forms are 

1. Power 4. 5-term Fourier 
2. Exponential 5. 5-term 
3. Logarithm Poynomial 

They're all ready to compile and run as is. 

Suggested Retail Price: $99.95 (not copy protected) 
Minimum system requirements: Macintosh 512K, Macintosh Plus, SE, or II, with one 800K disk drive (or two 400K). 

All Borland products are trademarks or registered trademarks of Borland International, 
Inc or Borlandl Analytlca, Inc. Macintosh IS a trarJemark licensed to Apple Computer, 
Inc. Copyrrght 1987 Borland International A Borland Turbo Toolbox product 

BOR 0419 



Borland 
Software 
OBDEll rODAY 

------
I 4585 Scot~ Valley Drive Scotts Valley, Califomia 95066 

I In I To Orde~ ,"'-", California 
By Credit call . 

I Card, ' ... ,' (800) 
I (~:g) 742-1133 
I 255-8008 In Canada call 

(800) 237-1136 

-------
BOA023~ 



Index 

Index 



! makefile directive, 561 
# makefile comment, 550 
# character, 199 
$, See Compiler directives 

See also Hexadecimal constants 
?: operator, 564 

in makefiles, 567 
@ operator, 216, 226, 245-246, 525 

versus A symbol, 531 
versus Addr, 374 

A pointer symbol, 216 

A 
A86 assembler, 84 
Abs, 285, 374 
Absolute clause, 223 
Active window, 165 
Actual parameters, 247 

defined, 59 
Addr, 286, 374 

in version 3.0, 525 
Address operators, 49 
And operator, 241,308 
AndPut constant, 316,459 
ANSI Pascal, 75, 531-536 

compatibility with 4.0, 119 
errors in, 536 

Append procedure, 275, 278, 374 
Arc procedure, 318, 325, 375 
ArcTan function, 285, 376 
Arithmetic functions, 285 
Arithmetic operators, 239 
Arrays, 212, 231 

types, 348 
variables, 225 

ASCII codes, 579-581 
.ASM files, Make utility and, 89 
Aspect ratio, 408 
Assembler, 353 
Assembly language, 82, 122, 353-361, 

530,543 
A86 and, 84 
examples, 355-358 
external procedures and functions, 

83 
inline directive, 83, 360-361 

inline statement, 83, 358-359 
$L compiler directive and, 84 
linking routines, 88 
Make utility and, 89 
MASM assembler and, 84 
routines, 82 

AssignCrt procedure, 303, 364, 378 
Assignment operators, 46 
Assign procedure, 76,275-276,364, 

377 
AUTOEXEC.BAT file, 605 
Autoindent mode default, 597 
Auto save default option, 596 
Aux, version 3.0, 365-369, 523 
AUX:, version 3.0, 112 
AUXINOUT.PAS,365-367 
AX register, 351, 360 

B 
Back procedure, 325 
Backup disks, 12-14 
Backup source files option, 4, 160 

default, 592 
.BAK files, 4 
Bar procedure, 318, 378 
Bar3D procedure, 305, 318,379 
Basic editor commands, 166 
BCD arithmetic, 112, 119,527 
BCD.PAS,119 
$B compiler directive, 48, 98, 119, 

121,158,522,529 
.BCI files, 305 
Binary floating-point arithmetic, 40 
.BIN files, 111,530 
BINOBJ, 14,467-471 
BIOS, 298 
BitBlt operations, 308, 316, 458 
Bit images, 308, 416 
Bit-mapped fonts, 307 
Bit-oriented routines, 305 
Bitwise operators, 47, 240 
Block commands, 171 
BlockRead procedure, 279, 380 
Blocks, program, 201 
BlockWrite procedure, 279, 381 
Boolean, 39 

Turbo Pascal Owner's Handbook 



evaluation, 98, 538 
evaluation option, 158 
expressions, 43, 119,529 
operators, 241 
types, 43, 344 
values, 208 

/B option, 183 
Bottom line, 20 
BP register, 353, 359, 362 
Brackets, in expressions, 247-248 
Buffering, link, 540 
Buffers, flushing, 406 
BufLen function, in 3.0, 112 
Build all option, 183 
Build command, 3, 32, 34, 88,154 
BUILTINS.MAK, 566 
BX register, 351, 360 
Byte data type, 40, 76 

c 
Calling conventions, 349 
Case statement, 52, 253 
CBreak variable, 108, 112, 115,324, 

523 
.CFG files, 4 
CGA, 300, 305, 314, 434-435 

CheckSnow and, 302 
Chain programs, 111,522 
Change dir option, 152 
Characters 

reading, See ReadKey 
special, 299, See also 

Char data types 
strings, 198 

Char data types, 41, 208, 344 
defined,39 

ChDir procedure, 276, 382 
CheckBreak variable, 112, 115, 301 
CheckEOF variable, 301 
CheckSnow variable, 302 
.CHR files, 305 
Chr function, 284, 383 
Circle procedure, 305, 318, 325, 383 
ClearDevice procedure, 318, 384 
ClearScreen procedure, 325 
ClearViewPort procedure, 318, 384 

Index 

Clipping parameters, 424 
Close procedure, 276, 363, 385, 526 
CloseGraph procedure, 305, 318, 386 
ClrEol procedure, 386,523 
ClrScr procedure, 304, 387, 523 . 
CODE, 354, See also CSEG 
Code size, 522 
Color customization option, in 

TINST,598 
Color graphics adapter, See CGA 
Colors, 413 

background, 409 
drawing, 410 

ColorTable procedure, 325 
COM devices, 281, 365 
.COM files, 3 
Command-line compiler, 2, 13, 15 

directory options, 185 
mode options, 182-184 
program execution options, 188 
reference, 179-189 

Command lists, in makefiles, 555-556 
Comments 

makefile, 550 
program, 59, 200 

Communications, serial, 365 
Compilation, 26-27, 32 

See also Conditional compilation 
separate, 2 
unit, 70 
window, 156 

Compile command, 26, 145, 154 
menu, 153-156 

Compiler, 32-36 
command-line, 2, 13, 15 
conditional, 91-96, 544-548 
directive command, 181 
directives, 157-159,200,522,537 

$B,48,98, 119, 121, 158,529 
$D,36, 121, 132, 183,530,539 
$ELSE,95 
$F, 121, 158,352,530 
$1,98, 112, 157, 161, 526 
IFDEF,96 
IFNDEF,96 
IFOPT,97 
$IFOPT N+,94,97 



$L, 63, 84, 158,353,530 
$~, 121, 159, 182,337,445-446 
$N, 40, 76, 119, 158,527,529 
parameter, 543 
$R, 98, 121, 157 
$S,98,157 
switches, 538-542 
$T,132,183,530 
$U, 34, 70, 544 
$V,98,158 

error messages, 619-638 
integrated environment, 2, 12, 15 
mode options, 182-185 
options, 180 

Compile-time errors, 125 
See also Errors, syntax 

Compiling, See Compilation 
Complete Boolean evaluation option, 

158 
Compound statement, 52 
Comp type, 76, 330, 345 
Con, 524 
CON:, 112 
Concatenation, 242 
Concat function, 286, 387 
CON devices, 281 
Conditional compilation, 91-98, 544 
Conditional defines option, 158 
Conditional directives, in makefiles, 

561-564 
Conditional execution, defined, 39 
Conditional statements, 51-52 
Conditional symbols, 93-95, 545-548 
Config auto save option, 160, 596 
Configuration files, 4 

menu option, 160, 162 
pick file and, 164 
TPC.CFG, 189 

ConInPtr (version 3.0), 523 
ConOutPtr (version 3.0), 523 
Constants, 292 

array type, 231 
Crt mode, 300 
declaration part, 202 
declarations, 199 
file attribute, 294 
folding, 370 
merging, 371 

pointer type, 233 
record type, 232 
set type, 232 
simple type, 230 
string type, 230 
structured type, 230 
text color, 300 
typed, 122,229, 528 

ConStPtr (version 3.0), 523 
Context-sensitive help, 19 
Control characters, 42, 199, 579 
Converting from 3.0, See Turbo 

Pascal 3.0, converting from 
Coprocessors, See ~ath coprocessors 
Copy function, 286, 388, 526 
Copy string library routine, 118 
Cos function, 285,388 
CPU symbols, 94, 546 
Critical errors 

messages, 637 
trapping, 292 

CrtExit procedure, 112, 523 
CrtInit procedure, 112, 523 
Crt unit, 62, 68, 79, 112, 117,278,282, 

289,290,298,323 
AssignCrt, 378 
ClrEoI,386 
ClrScr,387 
constants, 300 
Delay, 389 
DelLine, 390 
functions, 304 
GotoXY,427 
High Video, 432 
InsLine, 437 
KeyPressed,439 
line input in, 299 
LowVideo,444 
mode constants, 300 
NormVideo,450 
NoSound, 450 
procedures, 303-304 
ReadKey,464 
Sound, 501 
special characters in, 299 
TextBackground, 504 
text color, 300 
TextColor,504 

Turbo Pascal Owner's Handbook 



TextMode, 506 
variables, 301-303 
WhereX, 512 
WhereY, 512 
Window,512 

CSEG354 
CSeg function, 111,286,354,389,526 
CS register, 362, 389 
Current pick option, 162 
Current pointer, 306 
Cursor position 

reading, 512 
setting, 427 

Customizing Turbo Pascal, 12, 22, 
585-600 

CX register, 362 

D 
DATA, 354, See also DSEG 
Data 

defined, 38 
ports, 361 
segment, 222 

Data types, 39-45,117 
BCD,119 
boolean, 39, 43,344 
byte, 76 
char, 39, 344 
defined,39 
8087,330 
enumerated,344 
integer, 39,76,344 
longint,76 
pointers, 39, 44 
real numbers, 39 
shortint, 76 
string, 43 
typecasting, 528 
word, 76 

Date and time procedures, 296-297 
GetDate, 411 
GetFfime, 414 
GetTime, 424 
SetDate, 482 
SetFfime, 485 
SetTime, 496 

Index 

DateTime type, 295 
$D compiler directive, 36, 121, 132, 

183,522,539,542 
/$D directive, 185 
Dead code removal, 372 
Debug information option, 36, 157, 

183,539,633 
Debuggers, using, 135 
Debugging, 4, 96, 530 

compile-time errors, 125 
IFDEF and, 95-96 
input/ output error-checking, 126 
IOResult, 127 
.MAP files, 132-142,539,542 
range-checking, 128 
range errors, 541 
runtime errors, 126 
runtime error messages, 634-638 
stack overflow, 541 
syntax errors, 125 
.TPM files, 132-142,539,542 
tracing errors, 130 

Decimal notation, 197 
Declaration part, block, 201 
Dec procedure, 285, 389 
Default settings, Turbo Pascal, 4 

changing, 585-600 
restoring, 600 

$DEFINE, 92, 541-546 
Delay procedure, 304, 389, 523 
Delete procedure, 286, 390 
DelLine procedure, 390, 523 
Destination setting command, 28, 155 
DetectGraph procedure, 319, 391 
Devices, 280, 384 

drivers, 363 
handlers, 362 

. Directives, See also Compiler 
directives 
makefile, 561 

Direct memory, 361 
Directories, 411 

changing, 152,382 
command-line options, 185 
DOS, 603, 606 
option, 152, 160-162,587-589 
procedures, 475 



saving option, 162 
scan procedures for, 295 
searching, 403 

DirectVideo variable, 302 
DI register, 362 
DiskFree function, 297, 392 
Disk space, 392 
Disk status func.tions, 297 
Disks 

backup, 11 
distribution, 12-14 

DiskSize function, 297, 392 
Display mode option, TINST, 597 
Dispose procedure, 45, 284, 337, 339, 

393 
Distribution disks, 11-14 
Div operator, 41, 240 
DOS, 93, 112, 546 

basics, 601 
calls, 77 
device handling, 363 
devices, 280 
directories in, 603, 606 
environment, 335 
error level, 370 
exit code, 368-370 
go to, 153 
operating system routines, 292 
Pascal functions for, 449 
returning from, 153 
Registers and, 294 
symbol, 93 

Dos unit, 62, 68, 77, 117,289,292,523 
constants, 292 
date and time procedures, 296 
DiskFree, 392 
DiskSize, 392 
disk status functions, 297 
DosError in, 296 
DosExitCode, 393 
Exec, 398 
file-handling procedures, 297 
FindFirst, 403 
FindNext,404 
GetDate,411 
GetF Attr, 411 
GetFTime, 414 
GetIntVec,417 

GetTime, 424 
interrupt support procedures, 296 
Intr, 79,437 
Keep, 439 
MsDos, 79, 449 
PackTime, 455 
process-handling procedures and 

functions, 297 
SetFTime, 485 
SetIntVec,488 
SetTime, 496 
types, 293 
UnpackTime,510 

DosError, 296, 398-399, 403, 412, 414, 
483,485 

DosExitCode, 297, 393 
Double type, 76, 330, 345 
Draw procedure, 325 
DrawPoly procedure, 305, 319, 394 
Drivers, 305 
DSeg function, 111, 286, 354, 395, 526 
DS register, 354, 359, 362, 395 
DX register, 351, 362 
Dynamic memory allocation, 290-291 

functions, 283-284 
Dynamic variables, See Heap 

E 
East constant, 325 
Edit auto save option, 160 
Edit window, 20, 25,146,165 

creating source files in, 148 
status line, 166 
working in, 148 

Editor commands, 145, 153, 166-176 
option in TINST, 589-596 
specifications, 165 
summary of, 166-168 

EGA, 29-31, 598-600 
CheckSnow and, 302 

8087, See Math coprocessor 
Ellipse, 319, 395 
ELSE 

directive, 548 
symbol, 94 

$ELSE directive, 92, 94, 548 

Turbo Pascal Owner's Handbook 



Empty set, 215 
End of file 

error messages, 621 
status, 396-397 

$ENDIF,94 
directive, 548 
symbol,94 

Enhanced Graphics Adapter, See 
EGA 

Entry code, procedures and 
functions, 353 

Enumerated types, 344 
Environment option, See Compiler 

directive 
Eoffunction,277,396 
Eoln function, 278, 397 
IE option, 186 
Erase procedure, 276, 397 
ERR:, 112 
Error, DOS standard, See TextRec 
Errors, 27 

ANSI Pascal, 536 
checking, 121, 158 
codes for graphics operations, 

428 
converting from 3.0 and, 111-112 
handling, 97, 308, 529 
messages, 428,567,619-638 
reporting, 369 

with graphics, See 
GraphErrorMsg 

runtime, 126, 155, 157,369,634-638 
syntax, 35 
trapping, See ExitProc, 

GraphResult, HeapError, 
IOResult 

ErrorAddr variable, 370 
Error messages 

critical,637 
ErrorPtr (version 3.0), 111, 122,523, 

529 
ES register, 362 
Exclamation point (!), makefile 

directives, 561 
Exec procedure, 111,398,524 
Executable code 

saving, 155 

Index 

Executable directories option, 161, 
186 

eXecute option, 189 
Execute procedure, 297, 524 
.EXE files, 3 
Exit 

codes, 393 
functions, 353 
procedures, 283,291,353,368-370, 

399 
ExitCode variable, 370 
Exiting a program, 368 
ExitProc variable, 111, 122,291,369, 

529 
Exp function, 285, 400 
Exponents, 345 
Expressions, 235, 238 
Extended key codes, 298, 582 
Extended movement commands, 169 
Extended type, 76, 330, 331, 345 
Extensions 

ANSI Pascal, 531-536 
data type, 76 
Turbo Pascal, 76 

External 
declarations, 263, 353, 543 
procedure errors, 625-626 
procedures and functions, 82 

EXTRN definition errors, 354-355, 
625-626 

F 
Factor (syntax), 236 
Far calls, 351, 530 

menu option, 158 
model, 539 

Fatal runtime errors, 638 
See also Errors 

$F compiler directive, 121, 158,352, 
522,530 

Field designators, 226 
Field list (of records), 214 
Field-width specifiers, 50 
File access denied error, 635 
File attribute constants, 294 



File menu, 26 
Files 

Assign procedure, 76, 377 
attributes, 411 
backup source, 4 
buffer, 348-349 
closing, 385 
commands, 150-153 
configuration, 4 
debugging, 4 
default settings, 4 
erasing, 397 
extension names, 3 
handles, 348-349 
1/0,290 
library, 4 
.MAP, 4 
mode, 348-349 

constants, 293 
name macros, 559-561 
pick,4 
primary, 32 
Read,75 
record types, 293 
saving, 152 
source code, 4 
text, 277 
TPC.CFG,4 
TPMAP.EXE,4 
Turbo Pascal 3.0, 4 
TURBO.TPL,4 
typed,291 
types, 348 
unit, 3 
untyped, 279, 291 
Write, 75 

File-handling procedures, 297, 534 
Rename, 472 
Reset, 472 
Rewrite, 474 
routines, 291 
Seek,476 
SetFAttr, 297, 482 
Truncate, 509 

FileMode variable, 279, 291 
FilePos function, 279, 400, 524 
FileRec, 293, 348 
FileSeek function, 524 

FileSize function, 115,279,400,524 
FillChar procedure, 287, 401 
Filling areas, 404 
FillPattern procedure, 325 
Fill patterns, 404, 412-413 
FillPoly procedure, 308, 319, 402 
FillScreen procedure, 325 
FillShape procedure, 325 
Find error command, 28, 36 
Find error option, 155, 157, 183 
FindFirst, 294, 297, 403 

SearchRec and, 295 
FindNext, 294, 297, 404 

SearchRec and, 295 
Fixed part (of records), 214 
Flags constants, 293 
Floating-point, See also Real numbers 

errors, 635 
hardware, 158,211 
numbers, 329-334 
routines, 290 
software, 158,210 
types, 345-347 

FloodFill procedure, 308, 319, 404 
Flush function, 364, 365 
Flush procedure, 278, 406 
IF option, 183 
Font8x8 variable, 300, 505-506, 508 
Font files, 312 
Force far calls, 539 

option, 158 
Formal parameters 

defined,59 
list, 266 

Form function, 112, 119 
For statement 

loop, 55, 526 
syntax, 256 

Forward declarations, 111,263 
Forwd procedure, 325 
Frac function, 285, 406 
Fractions, returning, 406 
Free list 

overflow, 342 
record, 341 

FreeMem procedure, 284, 337, 339, 
341,406 

FreeMin variable, 291, 342 

Turbo Pascal Owner's Handbook 



FreePtr, 291, 341 
Full file name macro (MAKE), 560 
Functions, 261 

address, 286 
arithmetic, 284 
body, 266 
built-in, 76 
calls, 246, 349 
declarations, 264 
defined, 56 
dynamic allocation, 283 
headings, 265 
miscellaneous, 287 
non-ANSI, 535 
ordinal, 285 
pointer, 286 
results, 349, 351 
standard, 283 
string, 286 
transfer, 284 

G 
GetArcCoords procedure, 319, 407 
GetAspectRatio procedure, 319,408 
GetBkColor function, 321, 409 
GetColor function, 321, 410 
GetDate procedure, 296, 411 
GetDir procedure, 276, 411 
GetDotColor procedure, 326 
GetFAttr procedure, 294,297,411 
GetFillPattern procedure, 319, 412 
GetFillSettings procedure, 319, 413 
GetFfime procedure, 296, 414 
GetGraphMode function, 321, 414 
GetImage procedure, 305, 319,416 
Get info option, 155 
GetIntVec procedure, 296, 417 
GetLineSettings procedure, 319, 417 
GetMaxColor function, 321,418 
GetMaxX function, 321,419 
GetMaxY function, 321, 419 
GetMem procedure, 284,342-343,420 
GetModeRange procedure, 319, 421 
GetPalette procedure, 319, 421 
GetPic procedure, 326 
GetPixel function, 308, 321, 422 

Index 

Get procedure, 75 
GetTextSettings procedure, 307, 319, 

423 
GetTime procedure, 296, 424 
GetViewSettings procedure, 319,424 
GetX function, 321, 425 
GetY function, 321, 426 
Global declarations, 111 
Glossary, 609-618 
GotoXY procedure, 304, 427,523 
Graph3 unit, 62, 69, 105, 116,289, 

290, 324-327 
GraphBackground procedure, 326 
GRAPH.BIN, 325 
GraphColorMode procedure, 326 
GraphDefaults procedure, 319,428 
GraphErrorMsg function, 321, 428 
GraphFreeMem, 311 
Graphics, 29 

bit-image operations, 458 
cards, 391,434-436 
CloseGraph, 305 
current pointer in, 306 
drawing operations, 440-443, 458, 

466,488 
drivers, 305, 434-436 
figures and styles in, 308 
fill operations, 483-485 
InitGraph in, 305 
mode, 414, 434-436,441-442 
page operations, 478, 499 
palette operations, 479-481, 490 
plotting operations, 461 
pointer operations, 448 
polygon,drawing, 394 
routines, 82 
sample program, 310-311 
system operations, 486 
text operations, 451-454, 493, 505 
turtlegraphics, 116, 324-327 
video mode operations, 473 
viewport operations, 497 

GraphMode procedure, 326 
GraphMode variable, 433 
GRAPH.P,325 
GraphResult function, 308-309, 321, 

429 



Graph unit, 31, 62, 69, 82, 116,289, 
305,451-454,458 

Are, 375 
Bar, 378 
Bar3D,379 
bit images in, 308 
Circle, 383 
ClearDevice,384 
ClearViewPort, 384 
CloseGraph, 386 
colors in, 308 
DetectGraph,391 
DrawPoly, 394 
Ellipse, 395 
error handling in, 308 
figures and styles in, 308 
FillPattern, 325 
FillPoly, 402 
FloodFill, 404 
functions, 321 
GetArcCoords, 407 
GetAspectRatio,408 
GetBkColor, 409 
GetColor, 410 
GetFillPattern,412 
GetFillSettings, 413 
GetGrap~ode,414 
GetImage, 416 
GetLineSettings,417 
GetMaxColor, 418 
GetMaxX, 419 
GetMaxY,419 
GetModeRange, 421 
GetPalette, 421 
GetPixel, 422 
GetTextSettings, 423 
GetViewSettings, 424 
GetX,425 
GetY,426 
GraphDefaults, 428 
GraphErrorMsg, 428 
GraphResult, 429 
heap management routines, 311 
ImageSize, 432 
InitGraph, 434 
interface section, 313-318 
Line, 440 
LineRel, 441 

LineTo,442 
MoveRel, 447 
MoveTo,448 
OutText, 451 
OutTextXY, 453 
paging in, 308 
PieSlice, 456 
procedures, 318-321 
PutImage, 458 
PutPixel, 461 
Rectangle, 466 
RegisterBGIdriver, 467 
RegisterBGIfont, 468 
RestoreCrtMode, 473 
sample program, 310-311 
SetActivePage, 478 
SetAllPalette, 479 
SetBkColor, 480 
SetColor, 481 
SetFillPattern, 483 
SetFillStyle, 484 
SetGraphBufSize, 486 
SetGraphMode,486 
SetLineStyle, 488 
SetPalette, 490 
SetTextJustify, 493 
SetTextStyle, 494 
SetUserCharSize, 496 
SetViewPort, 497 
SetVisualPage, 499 
TextHeight, 505 
text in, 307 
TextWidth, 508 
viewports in, 308 

Graph Window procedure, 326 
GREP.COM,13,570-574 
grError, 314, 430 
grInvalidDeviceNum, 314, 430 
grInvalidFont, 314, 430 
grInvalidFontNum, 314, 430 
grIOError, 314, 430 
GROUP directives, 354 

H 
HaltOnError, 113 
Halt procedure, 283, 369,431 

Turbo Pascal Owner's Handbook 



Handles 
DOS, 377-378 
file, 348, See also 

FileRec, TextRec 
Hardware interrupts,362 
Hardware numeric processing 

option, 158,210,211 
Heading procedure, 326 
HeapError, 291, 343 
Heap management, 335,337-344 

allocating, 337, 338, 341-343 
deallocating, 337-343 
error trapping, See HeapError 
fragmenting, 337-343 
free list, 341-343 
granularity,342 
map,336 
pointers, 336 
procedures, 469 
routines, 311 
sizes, 121, 159, 182,544 
trapping errors, 343 

Heapmax, 544 
Heapmin, 544 
HeapOrg variable, 291, 338 
HeapPtr variable, 291, 337-340, 341 
Help, Turbo Pascal, 19 
Hexadecimal constants, 40, 117, 197 
HideTurtle procedure, 326 
Hi function, 287, 431 
High heap limit setting, 159 
High-intensity characters, 432 
High-order bytes, 431 
High Video procedure, 112, 116, 304, 

324,432 
HiResColor procedure, 326 
HiRes procedure, 326 
Home procedure, 326 
Hotkeys, 21-24 

I 
$1 compiler directive, 98, 112, 157, 

161,276,438,522-523,526 
Identifiers, 195-197 

defined,45 
Turbo3,107 

Index 

IEEE floating-point, 540 
$IFDEF, 92, 95, 547 
$IFNDEF, 92, 95, 547 
$IFOPT, 92, 94, 96, 548 
If statement, 51, 252 
IFxxx symbol, 94 
ImageSize function, 321, 432 
Implementation-dependent features, 

Pascal,535 
Implementation part (program), 272, 

352 
Include directive, 522-523 
Include directories option, 161, 186, 

543 
Include files, 110,522-523 

connecting to units, 120 
nesting, 543 

Include option, in version 3.0, 522 
Inc procedure, 285, 433 

. Index expressions, 225 
Index variable, 55 
InitGraph procedure, 305, 319, 434 

SetGraphMode and, 486 
Initialization 

program part, 273 
units, 86-87 
variables, 64 

Initial unit (UPGRADE), 110 
Inline 

declarations, 264 
directives, 83, 122,360-361 
machine code, 358 
statements, 82, 122, 358-359, 530 

In operator, 243, 245 
InOut function, 365 
INP:, 112 
Input and output, See I/O 
Insert and delete commands, 170 
Insert mode, 597 
Insert procedure, 286, 436 
Inserting 

lines, 436 
strings, 436 

InsLine procedure, 304, 437, 523 
Installation, Turbo Pascal, 11 

floppy disk, 14 
hard disk, 15 



Integers 
defined, 39-40 
types, 344 

Integrated environment 
Build command, 32, 34 
Compile menu, 26 
compiling in, 27 
context-sensitive help, 19 
Debug command, 36 
Destination setting command, 28 
Edit window, 20, 25, 146 
editor in, 165 
File menu, 26 
Find error command, 28, 36 
Graph and, 31 
graphics in, 29 
hotkeys in, 21-24, 147 
loading Turbo Pascal, 25 
machine code in, 32 
main menu commands, 145 
main screen, 20 
Make command, 32, 34 
menu reference, 143-164 
.OBJ files in, 34 
Output window, 20, 27, 150 
Primary file command, 32 
quitting 21 
Run command, 27, 29, 33 
runtime errors, See Errors, runtime 
saving files in, 26 
selecting menu items, 24 
syntax errors, See Errors, syntax 
TINST and, 22 
. TPU files in, 34 
Tutorial, 25-36 
using, 2, 12, 15, 19-36 
variables, 26 
Write to command, 29 

Interface section (program), 271, 313, 
322,352,354 

Internal data formats, 335, 344 
Interrupt 

directives, 262 
handlers, 362, 529 
handling routines, 292, 362 
procedures, 488 
routines (lSR's), 362 
support procedures, 296 

vectors, 292, 417 
Int function, 285, 437 
Intr procedure, 117,296,437,523-524 

registers and, 294 
Invalid typecasting errors, 627 
I/O, 119,275-282 

checking,436,540 
checking option, 157 
defined,38 
devices, 363 
DOS standard, 377-378 
error checking, 98, 126,276,540 
errors, 126, 524, 636 
files, 290, 298 
real numbers and, 120 
variable, 275 

/1 option, 186 
10Result, 112-113, 115, 127,277,324, 

438,524,540 
I/O checking with, 157 

IP flag, 362 
ISR's, 362 

J 
Journal file, UPGRADE's, 108 
Justification, font, 423 

K 
Kbd, 108, 112, 115,323,523,527 

See also ReadKey 
KBD:, 112 
Keep procedure, 297, 439 
Keyboard 

operations, 439,464 
scan codes, 583 
status, 300 
See also ReadKey 

Key codes, 582 
KeyPressed function, 300, 304, 439, 

523 
Keystrokes 

changing commands, 589 
changing control keys, 591-592 
changing function keys, 591 

Turbo Pascal Owner's Handbook 



L 
Labels, 197,527 

declaration part, 202 
Language help 

online, 176 
Large programs, 631 

managing, 85-98 
Last text mode constant, 525 
$L compiler directive, 63, 84, 158, 

161,353,522,530,540 
Length function, 118,286,440 
Libraries 

files, 4 
program, 12 
routines, 120 

Line input, Crt, 299 
Line numbers, in .MAP files, 539 
Line procedure, 320, 440 
LineRelprocedure,320,441 
Line settings, 417 
LineTo procedure, 320, 442 
Link 

assembly language, 353 
buffer, 158,540 
$L directive, 63 
object file, 543 

Ln function, 285, 443 
Loading 

options, 151, 162 
pick files, 163 
programs in 005, 602 
Turbo Pascal, 25 

Load options, 151, 162 
Lo function, 287, 443 
Logical operators, 48, 240 
LongFile functions (3.0), 112, 524 
LongFilePos function, 108, 115,324, 

523 
LongFileSize function, 108, 115,324, 

523-524 
Longint data type, 40, 76, 207 
LongSeek function, 108, 115, 324, 524 
Loops 

defined, 39 
for, 55 
repeat..until,54 

Index 

while, 53 
Low heap limit setting, 159 
LowVideo procedure, 112, 116, 304, 

324,444,523 
LPT devices, 281, 292 
LST:,l12 
Lstfunction,l17,292,523 
LstOutPtr, 523 

M 
Machine code, 32,358-361 
Macros 

inline,360-361 
makefile,556-561 

Main screen, integrated environment, 
20 

Make command, 3, 32, 34, 88, 154, 
182 

MAKE utility, 13,89-91 
command-line options, 89-91, 549, 

566 
error messages, 567-569 
syntax, 565 
using, 565 

Makefiles, creating, 549 
.MAP files, 4,132-142,539,542 

menu option, 158 
Mark procedure, 284, 337-338, 444 
MASM assembler, 84 
Math coprocessor, 40, 76, 94,96, 119, 

329-334,350,526-527,540 
data types, 76 
error messages, 632 
evaluation stack, 332 
menu option, 158 
mode, 632 
$N+ directive, 76, 119 

MaxAvail function, 108, 112, 115, 121, 
284,324,342,445,523 

Maxlnt,39 
$M compiler directive, 121, 159, 182, 

336,438,445-446,522 
Mem array, 361,530 
MemAvail function, 108, 112, 115, 

121,284,322,324,342,445,523 
MemL array, 361, 530 



Memory, 406, 420 
access, 515 
allocation, 182, 544 
DirectVideo and, 302 
error messages, 619, 631 
link buffer, 158 
map, 336 
menu option, 159 
size, 544 

Memory sizes option, 159 
MemW array, 361 
Menu 

commands, 145 
selecting items, 24 
settings, 145 
structure of, 144 
toggles, 145 

MicroCalc, 14 
MkDir procedure, 276, 446 
Mod operator, 240 
Modular programming, 271 
Monochrome Adapters 

CheckSnow and, 302 
/M option, 182 
Move procedure, 117,287,447,528 
MoveRel procedure, 320, 447 
MoveTo procedure, 307, 320, 448 
MS-DOS, See DOS 
MsDos procedure, 117, 449 
MsDos unit, 296, 522-523 

N 
$N compiler directive, 40, 76, 96, 

119-120,158,373,522,527,529,632 
Near calls, 351, 530 
Nesting files, 522, 543 
New option, 152 
New procedure, 216, 284, 337, 343, 

449 
Nil,216,226,347 
NormalPut constant, 316, 459 
NormVideo procedure, 112, 116,304, 

324,450,523 
North constant, 325 
NoSound procedure, 304, 450, 523 
Not operator, 241, 308 

NotPut constant, 316, 459 
NoWrap procedure, 327 
NUL,281 
Null string, 199, 211 
Numbers, counting, 39-40, 197,344 
Numeric processing option, 158, 540 

o 
Object directories option, 161, 186, 

543 
Object files, 353 

linking with, 543 
.OBJ files, 34, 353, 530 

linking with, 543 
MAKE utility and, 89 
.P AS files, 4, 14 

Odd function, 285, 450 
Ofs function, 286, 451 
Online help, 176 
/0 option, 186 
Op code, 358-360 
Open function, 364 
Operands, 235 
Operations, defined, 38 
Operators, 194,239-246 

@,49 
address, 49 
arithmetic, 239 
assignment, 46 
binary, 46 
bitwise, 47, 240 
boolean, 241 
defined,46 
logical, 48, 240 
makefile directives, 561 
precedence of, 239 
relational,47 
set, 49 
string, 49 
unary, 46 

Optimization of code, 97, 370-372 
Options command, 143, 156-164 
Options/Environment, in TINST, 596 
Order of evaluation, 371 
Ord function, 206, 209, 284, 451 
Ordinal functions, 285 

Turbo Pascal Owner's Handbook 



Ordinal procedures, 285 
Or operator, 241, 308 
OrPut constant, 316, 459 
OS shell option, 153 
OUT:, 112 
Out-of-bounds errors, 128 
Out-of-memory errors, 128,540, 628 
Output 

defined,38 
devices, 49 
DOS standard, 377-378 
files, 149,275-276,291 
~indo~,20,27, 150 
Writeln,49 

OutText procedure, 307, 320, 451 
OutTextXY procedure, 320, 453 
Overlays, 109-111, 121, 522 
Ovrpath, 109, 111 

p 
Packed (reserved ~ord), 212 
Pack procedure, 284 
PackTime procedure, 296, 455 

DateTime and, 295 
Palette procedure, 326 
ParamCount function, 287, 455 
Parameters, 266 

actual,250 
formal, 250 
passing, 250, 349 
untyped variables, 267 
value, 267 
variable, 267 

Parameters option, 162 
Parameter transfers, 332 
ParamStr, 287, 455 
.PAS files, 4,14 
Pattern procedure, 326 
PC-DOS, 601 
.PCK file, 4 
PenDo~n procedure, 326 
PenUp procedure, 326 
Periscope, 135-141 
Pick files, 4, 162-164 

list, 3 
Pick list, 163-165 

Index 

Pick option, 151 
PieSlice procedure, 320, 456 
Pi function, 285, 456 
Pixel values, 422 
Plot procedure, 326 
Pointer and address functions, 286 
Pointers, 44 

comparing, 244 
defined, 39 
symbol, 226 
types, 347 
values, 226 
variable, 246 

Polygons, dra~ing, 394 
Port access, 361 
Port array, 361 
PortW array, 361 
Posfunction,286,457 
Precedence of operators, 235 
Predeclared identifiers, 117,523 
Pred function, 206, 285, 457 
PrefixSeg variable, 291, 335 
Primary file option, 32, 155 
Printer devices, 281 
Printer Lst file, 112 
Printer unit, 62, 69, 117,289,292 
PRN,281 
Procedure and function declaration 

part (program), 202 
Procedures, 59 

arithmetic, 284 
body, 262 
built-in, 76 
declarations, 261 
defined, 56 
dynamic allocation, 283 
Exit,283 
Halt, 283 
headings, 261 
non-ANSI, 535 
ordinal, 285 
pointers, 352 
string, 286 

Process-handling routines, 297, 439 
Programs 

compiling, 26-27 
declarations, 521 



editing, 25 
execution options, 188 
halting, 431 
heading of, 269 
lines, 200 
parameters, 269 
running, 27-32 
saving, 26 
structure of, 57, 85-97, 120, 521 
syntax, 269 
termination, 368 
updating, 28 

Program Segment Prefix (PSP), 291, 
335 

Project management, 85-97 
Ptr, 286, 458 
PUBUC,354 

definition errors, 625 
PutImage procedure, 305, 308, 320, 

458 
PutPic procedure, 326 
PutPixel procedure, 308,320,461 
Put procedure, 75 

Q 
Qualified identifiers, 196,204 
Quiet mode UQ), 183 
Quitting, Turbo Pascal, 21, 153 

R 
Random function, 287, 291, 461 
Randomize procedure, 287, 462 
Random number generator, 291 
RandSeed function, 291 
Range-checking, 98, 121, 157, 181,541 

compile time, 372 
errors, 128 
Val and, 510 

$R compiler directive, 98, 121, 
156-157,522 

Reading records, 380 
Reading the keyboard, See ReadKey 
ReadKey function, 112, 115, 117,300, 

304,323,464 

Readln procedure, 51, 112, 278,465 
README.COM,13 
Read procedure 

text files, 51, 276, 278, 462 
typed files, 464 

Real numbers, 40, 210, 329-334, 
344-347 

Records, 213, 232, 348 
Rectangle procedure, 320, 466 
Redec1aration, 203, 221 
Reentrant code, 362-363 
Referencing errors, 632 
RegisterBGldriver function, 305, 312, 

321,467 
RegisterBGIfont function, 312, 321, 

468 
Register-saving conventions, 353 
Registers 

type, 294 
use of, 351, 353, 359, 362-363 

Relational operators, 47, 243 
Relaxed error-checking, 158 
Relaxed string parameter checking, 

542 
Release procedure, 284,337-338,471 
Relocatable reference errors, 626 
Rename procedure, 277, 472 
Repeat (syntax), 255 
Repeat..until loop, 54 
Reserved words, 62-63, 194, 533 
Reset procedure, 275, 277, 472 
Resize windows option, TINST, 600 
Resolution, graphics, 408 
RestoreCrtMode procedure, 305, 320, 

473 
Retain saved screen option, 160 
Rewrite procedure, 275, 277, 474 
RmDir procedure, 277, 475 
/R option, 188 
Round function, 284, 476 
Routines 

file-handling, 297 
operating system, 297 

Rules 
explicit, 550 
implicit, 552 
makefile, 550-555 

Turbo Pascal Owner's Handbook 



scope, 203 
Run command, 27, 29, 33, 145, 153 
Run in memory option, 188 
Runtime errors, 126, 157, 634-638 

Debug info option and, 155 
Find error option and, 155 
finding, 183-185 
handling, See ExitProc 

Runtime support routines, 290 

s 
SavelntOO, 291 
Savelnt02, 291 
Savelnt23,291 
Savelnt24, 291-292 
Savelnt75, 291 
Save option, 152, 162 
Saving 

files, See Close option 
pick files, 164 
programs, 26 

Scale factor, 198 
Scan codes, keyboard, 583 
$S compiler directive, 98, 157, 522 
Scope (of declaration), 203-204 
Screen 

editor, 146-148, 153 
mode control, 298 
output operations, 298 
routines, 79 
size, 160, 597 

Search utility, 13, 570 
Searching directories, 403 
SearchRec type, 295 
Seek procedure, 276,279,476,525 
SeekEof function, 278, 477 
SeekEoln function, 278, 477 
Seg function, 286, 477 
Separate compilation, 2, 61-73, 99-104 
Serial communications, 365 
Serial ports, 365 
SetActivePage procedure, 320, 478 
SetAllPalette procedure, 320, 479 
SetBkColor procedure, 320, 480 
SetColor procedure, 320, 481 
SetDate procedure, 296, 482 

Index 

SetFAttr procedure, 294, 297, 482 
SetFillPattern procedure, 320, 483 
SetFillStyle procedure, 308, 320, 484 
SetFfime procedure, 296, 485 
SetGraphBufSize procedure, 312, 320, 

486 
SetGraphMode procedure, 305, 320, 

486 
SetHeading procedure, 326 
SetIntVec procedure, 296,488 
SetLineStyle procedure, 320, 488 
SetPalette procedure, 320,490 
SetPenColor procedure, 327 
SetPosition procedure, 327 
Sets 

comparing, 245 
constructors, 236, 247 
membership, 245 
operators, 49, 242 
types, 347 

SetTextBuf procedure, 111, 120, 278, 
491,527 

SetTextJustify procedure, 307, 320, 
493 

SetTextStyle procedure, 307, 321, 494 
OutText and, 451 
OutTextXY and, 453 

SetTime procedure, 296, 496 
SetUserCharSize procedure, 307, 321, 

496 
SetViewPort procedure, 305, 321, 497 
SetVisualPage procedure, 321, 500 
Shl operator, 240 
Short-circuit Boolean expressions, 

113,119,158,371,529,538 
Shortint type, 40, 76 
ShowTurtle procedure, 327 
Shr operator, 240 
SI register, 362 
Signed number (syntax), 198 
Significand, 345 
Significant digits, defined, 40 
Sin function, 285, 500 
Single type, 76, 330, 345 
SizeOf function, 287, 401, 498 
Smart linking, 372 
Snow-checking, 302 



Software interrupts, 362, 437 
Software numeric processing, 158 
Sound operations 

NoSound, 450 
Sound, 304 

Sound procedure, 304, SOl, 523 
Source files, 4 

menu option, 160 
working with, 148-150 

South constant, 325 
Space characters, 193 
SP register, 353, 359 
SPtr function, 286, 501 
Sqrfunction,285,502 
Sqrt function, 285, 295, 502 
SSeg function, 286, 502 
SS register, 353, 359 
Stack 

checking, 98, 541 
checking option, 157 
8087,332 
overflow, 222 
segment, 222 
size, 120,544 
size setting, 159 

Standard Pascal, 531-536 
Standard units, 289-327 
Statement part (program), 203 
Statements, 26 

assignment, 250 
case, 253 
compound, 251 
conditional, 252 
for, 256 
goto,251 
if, 252 
procedure, 250 
repeat, 255 
simple, 249 
structured, 251 
with, 258 
while, 255 

Status line, 166 
Strict error-checking, 158 
Strings, 43, 230 

character, 198 
comparing, 244 
construction, 387 

deletion, 390 
functions, 286, 436, 502, 510 
handling, 290 
initializing, 401 
length byte, 347, 401 
library routines, 118 
maxrrnum length, 347 
operator, 49, 242 
parameters, relaxed checking, 542 
procedures, 286 
types, 347 
variables, 225 

Stroked fonts, 305, 307 
Str procedure, 286, 502 
Subdirectories, OOS, 604 
Subroutines, 56 

defined, 39 
See also procedures and functions 

Substrings 
copying, 388 
deleting, 390 
inserting, 436 
position of, 457 

Succ function, 207,285,502 
Swap function, 287, 503 
Symbol definition, menu option, 158 
Symbolic debugging, 13, 132,530 

.MAP files, 539, 542 
Symbols, 193 
Syntax diagrams, reading, 195 
Syntax errors, See Errors, syntax 
Syntax, MAKE, 565 
System unit, 62, 65,68,112,270, 

289-292, 373 

T 
Tabs default, 597 
Tab size option, 160 
Tag field (of records), 214 
$T compiler directive, 4, 132, 183, 

522,530 
/$T directive, 185 
Terminating a program, 368, 399 
Terms (syntax), 237 
Text, 307 

attributes, 423 

Turbo Pascal Owner's Handbook 



color constants, 300 
TextAttr variable, 303 

ClrEOL and, 386 
ClrScr and, 387 
High Video and, 432 
LowVideo and, 444 
NormVideo and, 450 
TextBackground and, 501 
TextColor and, 502 

TextBackground procedure, 300, 304, 
504,523 

Textbook programs, 75 
TextColor procedure, 300, 304, 504, 

523 
Text files, 396 

device drivers, 352, 363 
devices, 282 
records, 349 
variable-length buffers, 120 

TextHeight function, 321, 505 
TextMode procedure, 112, 300, 304, 

506,523-524 
restoring, See RestoreCrtMode 

TextRec record, 293, 348, 363 
TextWidth function, 321, 508 
Time procedures 

GetFfime, 414 
GetTime, 424 
SetFfime, 485 
SetTime, 496 

TINST, 12, 22, 37, 585-600 
Toggles, 145 
Tokens, 193-200 
Top of memory, See FreePtr 
IT option, 187 
TOUCH utility, 13, 569 
TPC.CFG file, 4, 189 
TPC.EXE, 2, 13, 15, 179-190 
TPCONFIG.EXE, 13 
.TP file, 4 
.TPL files, 4, 99 
TPMAP.EXE utility, 4,13,132,539, 

542 
. TPM files, 4, 132, 539 

generation of, 542 
.TPU files, 3, 34, 71 
TPUMOVER, 13, 70, 72, 290 
Tracing errors, 130 

Index 

Transfer functions, 284 
Trapping 

critical errors, 292 
interrupts, 362 
I/O errors, 126,540 

Trm,523 
TRM:,112 
Trunc function, 509 
Truncate procedure, 279, 509 
Turbo3 unit, 62, 69, 105, 107, 112, 

114-116, 121,289-290, 
322-324 

CBreak, 324 
functions, 324 
interface section, 322 
Kbd in, 323 
procedures, 324 

Turbo directory option, 161, 187 
TURBO.EXE, 2, 12, 15 
TURBO.HLP, 161 
Turbo Pascal 3.0, 13, 62, 76, 79 

compatibility with 4.0, 289 
conversion, 16, 69, 105-123,521-530 

ANSI compatibility, 119,531-536 
assembly language, 122 
BCD arithmetic, 112, 119,527 
BCDREAL.PAS, 119 
.BIN files, 112, 530 
Boolean expressions, 113, 119, 

529 
CBreak, 108, 115,523 
chaining, 511 
CheckBreak, 115 
Close, 526 
code size, 522 
compiler directives, 121 
Copy, 118, 526 
Crt, 116 
CSeg, 111, 526 
data types, 117 
$D compiler directive, 530 
debugging, 530 
Dos unit, 117 
ERR:, 112 
error-checking, 121 
ErrorPtr, 122, 529 
Execute, 524 
ExitProc, 122,529 



far calls, 530 
$F compiler directive, 530 
file names and, 106 
FilePos, 524 
FileSeek,524 
FileSize, 115,524 
for loop, control variables in, 526 
Form, 119 
forward declarations, 111 
global declarations, 111 
GotoXY, 523 
Graph3 unit, 69,105,116 
HaltOnError,113 
hexadecimal constants, 117 
HighVideo,116 
I/O errors, 119,524 
include directive, 523 
include files, 110, 120,523 
include option, 523 
initial unit, 110 
inline directive, 122 
inline statement, 122, 530 
interrupt handler, 529 
Intr, 117,524 
10Result, 115, 524 
journal file, 108 
FCbd, 108, 115,524,527 
KBD:, 115 
KeyPressed, 523 
labels, 527 
LastMode, 525 
$L compiler directive, 530 
LongFile, 524 
LongFilePos, 108, 115,524 
LongFileSize, 108, 115,524 
LongSeek,108, 115,524 
Lo~Video, 115,524 
Lst, 117, 524 
math coprocessor, 119 
MaxAvail, 108, 115, 121,524 
Mem, 530 
MemAvail,108,115,121,524 
MemL,530 
memory access, 530 
MemW,530 
Move, 117,528 
MsDos,117 
$N compiler directive, 527 

near calls, 530 
nesting files, 523 
Norm Video, 116 
.OBI files, 530 
overlays, 121, 522 
predeclared identifiers, 523 
predefined identifiers, 117,523 
Printer unit, 117 
program declarations, 521 
program structure, 521 
range-checking, 121 
ReadKey, 115, 117 
Seek, 525 
SetTextBuf, 120,527 
short-circuit Boolean evalution, 

113, 121,529 
string library routines, 118 
symbolic debugging, 530 
System.MaxAvail, 115 
$T compiler directive, 530 
TextMode, 525 
Turbo3 unit, 69, 105, 107-108, 

114, 121, 524 
typecasting, 528 
type-checking, 118,525 
typed constants, 122, 528 
type mismatches, 113 
units, 522 
UPGRADE.DTA,106 
UPGRADE.EXE,105-123 

versus 4.0, 438-439, 444-446, 
521-530 

Turbo Pascal map file, 158, 542 
TURBO.PCK, 3,161 
TURBO.TP, 37,161-162 
TURBO.TPL, 4, 12,37,62,68,76,99, 

290 
TurnLeft procedure, 327 
TurnRight procedure, 327 
TurtleDelay procedure, 327 
Turtlegraphics, 324, 324-327, 523 
TurtleThere procedure, 327 
TurtleWindo~ procedure, 327 
Tutorial, 19-59 
T~O' s complement, 47 
Typecasting, 117, 528 
Type-checking, 118, 525 

strings and, 542 

Turbo Pascal Owner's Handbook 



Type compatibility, 218 
Typed constants, 122, 229, 528 
Type declaration, 205 
Type declaration part, 202, 219 
Typed files, 291, 348 
Type identity, 217 
Type mismatch, error messages, 623 
Types, 205 

array, 212 
boolean, 208 
byte, 207 
char, 208 
common, 208 
comp,210 
data, See Data types 
double, 210 
enumerated,209 
extended,210 
file,216 
host, 209 
integer, 207 
longint, 207 
ordinal, 206 
pointer, 216 
real, 210 
record,213 
set, 215 
shortint, 207 
simp~e, 206 
single, 210 
standard,212 
string, 211 
subrange, 209 
word,207 

u 
$U compiler directive, 34, 70, 270, 

522,544 
$UNDEF directive, 92, 546-547 
Unit directories option, 70, 100, 161, 

187,544 
Units, 2, 3, 12-13, 61-73 

Build option, 88 
compiling, 34, 70, 88-91 
converting from 3.0 and, 106, 

109-111,522 

Index 

dependencies, 290 
8087 and, 334 
file name, 544 
forward declarations and, 63 
global, 72, 85 

large programs and, 72, 85-97 
heading, 271 
identifier, 196 
implementation section, 63 
initialization section, 64 
initializing, 86 
inserting, 102 
interface section, 62 

Turbo 3.0 and, 111 
large programs and, 71, 85-97 
Make option, 88 
merging, 70 
mover utility, 99-104 
overlays and, 109, 111 
removing, 103 
scope of, 203 
specify location of, 544 
standard, 289 

Crt, 62, 68, 79, 298 
Dos, 62, 68, 77 
Graph,31,62,69,82,305 
Graph3,62;69, 105, 116,324 
Printer, 62, 69 
System, 62, 65, 68 
Turbo3, 62,69, 105, 107,322-324 

syntax, 271 
.TPL file, 99 
.TPU file, 70-71, 99 
TPUMOVER,72 
TURBO.TPL file, 62, 68, 70, 72 

inserting into, 102 
removing from, 103 

Unit directories option, 70, 100 
uses statement, 62, 65, 70 
using units, 274 

version mismatch errors, 628 
version number, 274 
writing, 70 

Unpack procedure, 284 
UnpackTime, 297, 510 

DateTime and, 295 



Unsigned 
constant, 237 
integer, 198 
number, 198 
real, 198 

Untyped files, 291, 348 
variable, 380-381 

Untyped var parameters, 267 
IU option, 187 
UpCase function, 287, 510 
UPGRADE.DTA,106 
UPGRADE.EXE, 13 

comments, 109, 111 
options, 110 
using, 105-114 
warnings, 108, 111-112 

Uses statement, 34, 65, 70,270,290 
path to units, 544 

Usr,523 
USR:,l12 
UsrInPtr,523 
UsrOutPtr,523 
Utilities 

BINOB}, 575-577 
Build, 3 
GREP, 13,570-574 
MAKE, 3, 89-98, 549-569 
TINST, 12, 585-600 
TOUCH, 13,569-570 
TPMAP, 13,542 
TPUMOVER, 13, 72-73 
UPGRADE, 13, 105-113 

v 
Val procedure, 286, 510 

range-checking and, 510 
Value parameters, 267,350-351 
Value typecasts, 248 
Variable-length buffers, 120 
Variables, 26, 221-228 

absolute, 223 
CheckBreak, 301 
CheckEOF,301 
CheckSnow, 302 
declaration part, 201-202 
declarations, 221 

decrementing, 389 
DirectVideo, 302 
disposing of, 392, 406 
DosError, 296, 398, 403, 412, 414, 

483,485 
dynamic, 216, 226 
global, 222 
incrementing, 433 
initializing; 64,229 
local, 222 
Lst,292 
parameters, 267, 350 
pointer, 226 
record, 226 
reference, 223 
TextAttr, 303 
typecast, 226 
Wind Max, 303 
WindMin, 303 

Variant part (syntax), 214 
Var parameter checking, 98 
Var parameters, 267, 350 
Var-string checking option, 158,542 
$V compiler directive, 98, 158,542 
VER40, 93, 546 
Version 3.0, See Turbo Pascal 3.0 
VGAHi, 421, 435, 480 
VGALo, 421, 435, 480 
VGAMed, 421, 435, 480 
VGA modes, 421, 435, 480 
Video memory, 298 
Video modes, changing, 597 
Video operations 

AssignCrt, 378 
CirEoI,386 
CisScr,387 
DelLine, 390 
GoToXY,427 
High Video, 432 
InsLine,437 
LowVideo,444 
Norm Video, 450 
RestoreCrtMode, 473 
TextBackground, 504 
TextColor, 504 
WhereX,512 
WhereY,512 

Turbo Pascal Owner' s Handbook 



Window, 512 
Write (text), 513 
Write (typed), 516 
Writeln, 516 

Viewport parameter, 424 
Viewports, 308, 384 

w 
West constant, 325 
WhereX function, 304, 512 
WhereY function, 304,512 
While (syntax), 255 

loop, 53 
WindMax variable, 303 
WindMin variable, 303 
Window procedure, 298, 303, 512, 

523 
current coordinates, 303 

Windows, 298, 600 
active, 165 
compilation, 156 
Edit, 146, 156, 165 
graphics, See SetViewPort 
Output, 150 
zoom, 160 

With statements, 258 
Word alignment, 354 
Word data type, 40, 76 
WordStar, Turbo Pascal editor vs. 176 

Index 

Wrap procedure, 327 
Writeln statement, 49, 278, 516 

DirectVideo and, 302 
8087 and, 334 
field-width specifiers and, 50 

Write procedures, 275-282, 513-516 
Write statement 

AUX devices and, 365 
BIOS, 302 
DirectVideo and, 302 
DOS, 377-378 

Write to command, 28, 152 
Writing records, 381 

x 
XCor procedure, 327 
IX option, 189 
Xor operator, 241, 308 
XorPut, 316, 459 

y 
YCor procedure, 327 

z 
Zoom windows option, 160, 597 















~ ..• 

I 

urbo Pascal 4.0 now provides an amazing compilation spee 
27,000 lines per minute, * support for programs larger than 
a library of powerful standard units, separate compilation, 

and much more. 

The single-pass, native code compiler 
offers improved code generation, smart link­
ing to remove unused code from your pro­
grams, built-in project management, sepa­
rate compilation using units, output screen 
saved in a window, MAP files for use with 
standard debuggers, a command-line ver­
sion of the compiler and MAKE utility, and 
built -in support for 8087/80287/80387 
math corrocessors. 

All these advanced features, plus the 
integrated programming environment, on­
line help, and Borland's famous pull-down 
menus, make Turbo Pascal 4.0 the high­
speed, high-performance development 
tool every programmer hopes for. 

-an improved, full­
screen editor for editing, compiling, and 
finding and correcting errors from inside 
the integrated development environment. 
Supports 25, 43, and 50 lines per 
screen, tabs, colors, and new command 
installation. 

:.1 I, .,'( ,,-the 
compiler instantly locates errors, auto­
matically activates the editor, and shows 
you the location of the error in the source 
code. 

,Ii I'-Iets you pick a file from a list 
of the last eight files loaded into the edi­
tor and opens it at the exact spot where 
you last edited the file. It even remembers 
your last search string and search options. 

a new and improved version of the full-

'Run on an BMHz IBM AT 

fledged spreadsheet included on y 
Turbo Pascal disk, absolutely free l 

get the complete, revised source c 
ready to compile and run. 

c Several powerful standard units 
(System Dos, Crt, and Graph) 

c Device-independent graphics supp 
CGA, MCGA, EGA, VGA, Hercules, 
6300, and IBM 3270 PC 

1:1 Extended data types, including Lon 
c Optional range- and stack-checkin( 

short-circuit Boolean expression 
evaluation 

[J Support for inline statements, inline 
macros, and powerful assembly Ian 
interface 

1:1 Faster software-only floating point; 
switch for 80x87 support including 
gte, Doub/e, Extended, and Camp If 
reals (with numeric coprocessor) 

c Automatic execution of initialization 
exit code for each unit 

1:1 Nested include files up to 8 levels ( 
including main module and units 

1:1 Operating system calls and interrupt 
1:1 Interrupt procedure support for ISR~ 
1:1 Variable and value typecasting 
1:1 Shell to DOS transfer 

1:1 A conversion program and compati­
bility units help convert version 3.0 
programs to 4.0. 

Minimum system requirements: For the IBM PS/2'· and the IBM® and Compaq® families of personal computers 
100% compatibles Integrated environment 384K, command line 256K. one floppy drive 

All Borland products are trademarks or registered trademarks of Borland International. Inc. Other brand and product na 
are trademarks or registered trademarks of their respective holders Copyright ©1987 Borland International. Inc BOR 

(g~;;tm,~. ' " . {f&fJj]m 
(J]lJ[jj§j§fii!J1:f ;11f!i!1[jj 


