TURBO PASGAL ..

The world standard in

Pascal compilers is
PRE— now faster than ever

before—compiles

27, 000 lines per

minute.

PS/2" PC, XT® AT® & True Compatibles

IBM’ VERSION

TURBO PASCAL

Owner's Handlbook

Version 4.0

Borland Intemational
4585 Scotts Valley Crive
Scotts Valley, CA 95066

This manual was produced in its entirety with
Sprint:® The Professional Word Processor,
available from Borland.

Al Borland products are frademarks or registered frademarks of
Borland International, inc. or Borland/Analytica, Inc. Other brand and product
names are trademarks or registered frademarks of their respective holders.
Copyright ©1987 Borlond International.

Copyright ©1987
All rights reserved
Printed in the USA.

109876543

Table of Contents

Introduction 1
Understanding 4.0 i e e 2
Integrated Environment and Command-Line Compilers 2
Separate Compilation il 2
Programsand Unitsccoiiiiiiiiiiiiiiiiiiaiiannnnnn. 2
Compile, Make,and Buildcoiiiiiiiiiiiiiie, 3
PickFileListcoiiiuniiii e 3
File Extensionsc.cciiiiiiiiiiiiiiiiiiiiiiiiiiniannns 3
About ThisManual i i 4
The User'sGuidecciiiiiiiiiiiiiiiiiiiiiiiiiia.a, 5
The ReferenceManual o i, 6
Appendices ... e e e 6
Typographyviiiiii e e 7
How to ContactBorland i, 7
Part1
Chapter 1. Getting Started 11
What'sOnYourDisksl 12
Installing Turbo Pascal On Your System oot 14
Setting Up On a Floppy Disk Systemt 14
SettingUpOnaHardDisko o oot 15
Choosing From Two Compilerscooviiiiiiiiiiii... 15
Using ThisManual oot 16
Chapter 2. Beginning Turbo Pascal 19
Using the Integrated Environment, 19
Using Hotkeys ... 21
Loading TurboPascal il 25
Creating Your First Programccoooiiiiiiiiiiiinn, 25
Analyzing Your First Program 26
Saving Your First Program et eeeaiia et 26
Compiling Your First Programccooiiiiiiiiiiiiin.n.. 26
Running Your First Program, 27
Checking the Files You'veCreatedcc..ooio... 28
Stepping Up: Your Second Program 28
Programming Pizazz: Your Third Program 29
The Turbo Pascal Compiler 31

So, What's a Compiler Anyway?cccoiiiii.an. 32

What Gets Compiled? ...t 32
Where'stheCode?o i 33
Compile, Make,and Build ool 34
Compile-TimMe Errorsc.c.oviviiiiiiiii it 35
Runtime Errors i i 35
Chapter 3. Programming in Turbo Pascal 37
The Seven Basic Elements of Programming 38
DataTypes ...ooviiiiii i i e e 39
Integer DataTypes ... 39
RealData Typesccoiiiiiiiiiiiiii i, 40
Character and String Data Typest 41
Defininga String ... 42
BooleanData Type 43
Pointer Data Typeoovniini it 44
Identifiers i e 45
Operatorso e e 45
AssignmentOperators ...ttt i, 46
Unary and Binary Operatorsccoiiiiiiiininee... 46
Bitwise Operators 47
Relational Operators ..., 47
Logical Operatorsccoiiiiiiiiiiiiiiiiiiiiin i innnns 48
Address Operatorsoiiiiiiiiiiiiiiiiii i 49
SetOperators i 49
String Operators ... 49
Output ... 49
The Writeln Procedureo i, 49
Input ... 51
Conditional Statements i il 51
ThelfStatement 51
TheCaseStatemento, 52
LoOPS .o 53
TheWhileLoopo i 53
The Repeat..Until Loopoiiiiiiiiii i, 54
TheForLoopooi i 55
Proceduresand Functionso, 56
Program Structure i 56
Procedure and Function Structureooill 57
Sample Program ... 58
Program Commentsccoviiiiiiiiiiiiiriinianns 59

Chapter 4. Units and Related Mysteries

What's a Unit, Anyway?
A Unit'sStructure00....
Interface Section
Implementation Section
Initialization Section
How Are Units Used?
Referencing Unit Declarations
TURBO.TPL ...,
Writing Your Own Units
CompilingaUnit
AnExample
Units and Large Programs
TPUMOVER ...,

Chapter 5. Getting the Most from Your PC

Writing Textbook Programs
Turbo Pascal Extensions
Data-Type Extensions
Built-In Procedures and Functions
Using MS-DOSCalls
ScreenRoutines
Graphics Routines
Getting Down to Assembly Language
The Inline Statement
The Inline Directive
External Procedures and Functions

Chapter 6. Project Management

Program Organization
Initialization
The Build and Make Options
The Make Option
The Build Option
The Stand-Alone Make Utility
A QuickExample
Creating a Makefile
UsingMAKE
Conditional Compilation
The DEFINE and UNDEF Directives
Defining at the Command Line

Defining in the Integrated Environment

.........................

.........................

.........................

.........................

Predefined Symbols il 93

The VER40Symbolo, 93

The MSDOS and CPU86 Symbolscccovvivviinn.. 93

The CPU87 Symbolo, 94

The IFxxx, ELSE, and ENDIF Symbols 94

The IFDEF and IFNDEF Directivesccoviiiniiiiiiian, 95

The IFOPT Directivec.cciiiiiiiiiiiiiiiiiiiiiiiaeen, 96
OptimizingCodeot i 97
Chapter 7. Using the Unit Mover 99
AReviewof UnitFileso oo i, 99
Using TPUMOVERo i i 100
TPUMOVER Commandsc.ciiiiiiiiiiiiiiiinninieneenenn 101
Moving Units into TURBO.TPLt 102
Deleting Units from TURBO.TPL, 103
Moving Units Between TPLFiles 103
Command-LineShortcuts ool 104
Chapter 8. Converting from Turbo Pascal 3.0 105
UsingUPGRADE ittt ieniaan 105
/3 Activate Turbo3 Unitttt i 107
/Y ActivateJournal File i 108
/N NoSourceMarkupccoiiiiiiiiiiiiiiiii s, 109
/0 [d:][path] Output Destinationcoooina... 109
JUUNZE oo e i e 109
What UPGRADE Can Detectccociiiiiiiiiiiiinnnn... 111
What UPGRADE Cannot Detect 113
An UPGRADE Checklistccooiiiiiiiiiiiiiiiinnn... 113
Using Turbo3and Graph3coiiiiiiii i, 114
TheTurbo3 Unit ... i 115
TheGraph3 Unit ... 116
Primary Conversion Taskscoiiiiiiiiiiiiiiinn, 116
Predefined Identifiers o i, 117
DataTypes ...t e 117
LanguageFeatures i, 119
Inputand Output ... i 119
Program and Memory Organization 120
Compiler Directives and Error-Checking 121
Assembly LanguageUsageooiiiiiiiiiin... 122
Chapter 9. Debugging Your Turbo Pascal Programs 125
Compile-Time Errorso.a.. e 125
RuntimeErrors il P 126

Input/Output Error-Checkingl 126

Range-Checking i, 128
Tracing Errorso 130
Using .TPM and MAPFilesciiiiiiiiiiiiia... 132
UsingaDebuggert 135

Preparing to Use Periscopec.ooiiiiiiiiiiiiii... 135

Starting Periscope i 136

Basic Periscope Commandsooiiiiiiiiiiiiiiainnn. 138

The Trace (T) Commandcoviiiiiiiiiin... 138

The Jump (Jand JL) Commands coiinnn... 138

The Go (G)Commandccoviiiiiiiiiiiiiiiinneeinnn, 138

The Unassemble (U, US, UB) Commands 139

The Display (D, Dx) Commandscoovviiinann.. 140

The View (V) Commandcoiiiiiiiiiiinaa... 140

The Enter (E) Commandcoooiiiiiiiia... 140

The Registers (R) Command, 141

The Breakpoint (BC, BR, BM) Commands 141
Chapter 10. The Turbo Pascal Menu Reference 143
MenuStructureoviiiiiiiiiii i 143
TheBottomLine o i i il 146
TheEditWindowt 146
How to Work with Source Files in the Edit Window 148
Creating a New SourceFilecooiae, 148
Loading an Existing Source File 149
SavingaSourceFile i i i, 149
WritinganOutputFile oot 149

The Output Windowottt 150
The Fle Menu . .o.vnenttit it 150
Load ... e e 151

Pick oo 151

NeW e e e e 152

AV 152
Writeto 152
Directory ... e 152
Changedir 152
OSshello 153

Quit ..o 153

The Edit Command 153
TheRunCommandcciiiiiiiiiiiiiiii i 153
TheCompileMenu i i i 153
Compileoooiiiiii 154

Make ... e 154

Build ... 154

Destination e 155

Finderroro 155
Primaryfile o i 155
Getinfo ..ot e e 155
TheOptionsMenu ...ttt 156
Compileroi i 156
Environment e 159
DIrectoriescoviiiiii i e e 160
Parametersot e 162

Load Optionsoouuiiiiiiiiiiiiii e, 162
SaveOptionst 162
About the Pick Listand PickFilecociiiiiiiin... 162
ThePick Listottt 163
ThePickFile it 163
LoadingaPickFileoooiiiiiiiiiiiii i 163
Saving PickFileso i 164
Configuration Files and the Pick File 164
Chapter 11. Using the Editor 165
QuickIn, Quick Out ...t i it e e 165
The Edit Window StatusLineo iiiiiiiiirieinnnnnn 166
EditorCommandsoiiiiiiiiiiii i 166
Basic Movement Commandscooiiiiiiiiiiiiien.. 168
Extended Movement Commandsccvvevvvnnenrnrennnnn. 169
Insert and Delete Commandsc.ccoeeeeiienennnnennnn.. 170
Block Commands:vvviiiiiirenereeeeeeenneeennnnnnnnns 171
Miscellaneous Editing Commandscoviviiiin.., 172
The Turbo Pascal Editor Versus WordStar 176
Chapter 12. Command-Line Reference 179
Usingthe Compiler il 179
Compiler Options ...ttt 180
The Compiler Directive (/$) Command 181
Compiler Mode Optionscooiiiiiiiiiiiiiiienennnn.. 182
TheMake (/M)Optionottt 182

The Build Al (/B)Optioncoiiiiiiiiiiiiinne, 183

The Quiet Mode (/Q)Optioncoooiiiiiiiiia... 183

The Find Error (/F)Optiont 183
Directory Options ... 185
The Executable Directory (/E) Option 186

The Include Directories (/) Option 186

The Object Directories (/O)Optionccoevviin.... 186

The Turbo Directory (/T) Optionoo... 187

Vi

The Unit Directories (/U) Option,
Program Execution Optionsol
The Run In Memory (/R)Optionooooiiiia.t.

The eXecute (/X)OpHoncooviiiiiiiiiiiiiiiiin..

The TPC.CEGHEHleoiiiiiiiii i e i e

Part 2

Chapter 13. Tokens and Constants

Special Symbols and Reserved Wordsol
Identifierso
Labels .. oo e
NUIMDbEIs ..o i e e e
Character Stringsc.oiiiiiiiiiii i
Constant Declarationscoiiiiiiiiiiiiiiii i,
Commentsoiiiiii e
ProgramLines i i

Chapter 14. Blocks, Locality, and Scope

SYNEAX .. e e e
Rulesof Scope ..ot e
Scope of Interface and Standard Identifiers

Chapter 15. Types
SIMPle TYPES ..ottt i e e e
Ordinal Types ... e
TheInteger Typeo i
TheBoolean Typecouuiiiiiiiiiiiiiiii i
TheCharTypecoiiiniiiiiii i
The Enumerated Typeoo i,
TheSubrange Type ...t
TheReal Typecoieiiiiii it
Software Floating Pointot
Hardware Floating Point,
String Types e
Structured Types ...
Array Types ... e
Record TYPesviiniii i e e
Set Ty PeS o e e
FileTypes ... cvuiiii i e e
Pointer Types ...t
Identical and Compatible Types coiiiiiias.
Typeldentity ...
Type Compatibilityo i

vVii

Assignment Compatibilityl 218

The Type DeclarationParto i, 219
Chapter 16. Variables 221
Variable Declarationscoiiiiiiiiiiiii i 221
TheDataSegmentcciiiiiiiiiiiiiiiiiiiiaan, 222
The Stack Segment e e 222
Absolute Variableso i, 223
Variable Referencesttt 223
(@3 5 T=) ¢ PP 224
Arrays, Strings,and Indexesl 225
Records and Field Designatorsoooiviiiiiiiina., 226
Pointers and Dynamic Variables00 il 226
Variable Typecastsc...iiiiiiiiiiiiiiiiiiiiiiiineaan 226
Chapter 17. Typed Constants 229
Simple-TypeConstantsc.ooiiiiiiiiiiiiiiiiii ... 230
String-TypeConstants ...ttt 230
Structured-TypeConstantscoiiiiiiiiiiiii i, 230
Array-TypeConstantsoiiiiiiiiiiiiiiiiin e, 231
Record-Type Constantscoiiiiiiiiiii i, 232
Set-Type Constantsuuuunnniiiiiiiiiinnereineeennn 232
Pointer-Type Constantst 233
Chapter 18. Expressions 235
ExpressionSyntax i 236
OPErators ...ttt i e i e i i s 239
ArithmeticOperatorsot 239
Logical Operatorso, 240
Boolean Operators P 241
String Operatoroiiiiiiiii i 242
Set Operatorsc.eiiiiiiiiii i 242
Relational Operatorsccoiiiiiiiiiiiiiii .. 243
Comparing Simple Typesccoiiiiiiiiiiiiiiiiin.. 244
Comparing Stringsoiiiiiiiii i 244
Comparing Packed Stringsccoooiiiiiiii i 244
Comparing Pointersc i 244
Comparing Sets 245
Testing Set Membershipol 245
The@Operatorccoviiiiiiiiiiiiiiiiiiiii i, 245
@withaVariable i 245

@ with a Value Parameteroooiiiiiiiiia., 246

@ with a Variable Parameter 246

Viii

@ with a Procedureor Functionot
FunctionCalls e e e e e et e et
Set Constructors e e e
Value Typecasts e

Chapter 19. Statements
Simple Statements e
Assignment Statementsc.o il i
Procedure Statementsc.c.ciiiiiiiiiii it
GotoStatementsiiiii it i i i e i
Structured StatemMentsviiteit i i et
Compound Statementsol
Conditional Statements S R
IfStatementscoio... T
CaseStatementscoiiiiiiiin e iiiinnannnaaannn.
Repetitive Statementso i i
Repeat Statementsccoiiiiiiiniiiiiniiiiiiaa
WhileStatementscoitiiiiiiiireninnenenenenneenns
ForStatementsi ittt i e
WithStatementsoiiiiiiiiiniin e inereenennnnens

Chapter 20. Procedures and Functions

Procedure Declarationsc.coiiiiiiieiniinnnaninnenenns
Forward Declarationsc.cciiiiiiiiiiiiieiinnennnnn
External Declarationsc.cooiiiiiiineennennenneneennenns
Inline Declarationsciuiiiiiiiiiei it iiieiienenenn.

Function Declarationsitiniiienintiienenennnanannns

Parameterst e ettt it
Value Parameters e e e e
Variable Parametersoiiiiniiinii it iiieinenennnns
Untyped Variable Parametersccooiiiiiiiiinn,

Chapter 21. Programs and Units

Program Syntax i
The Program Heading oo i,
TheUsesClausecoiiumniiiiiiiiiiiii e

UnitSyntax ... i i
TheUnitHeadingcoo it
ThelnterfacePart ...
The Implementation Partottt
The Initialization Parto i
Units that Use Other Unitst

Chapter 22. Input and Output
AnlIntroductiontoI/O ... it i e e e
Standard Procedures and Functions for AllFiles
Standard Procedures and Functions for TextFiles
Standard Procedures and Functions for Untyped Files
FileMode Variableccviiiiiiiininnnninnn. [
Devicesin TurboPascalccciiiiiii i,
DOS DeVICES .ttt ittt ittt et et e
The CON DevICe . .oiiiiii ittt ittt e et et e eie e
The LPT1, LPT2, and LPT3 Devicesvviinrinennennnnnnn.
The COM1 and COM2Devicesoviieeirnenrnenennnannn.
The NUL DeVICE . ..vvi ittt it ettt et e i
Text-File Devicesouuiiiiiiii ittt et et i i

Chapter 23. Standard Procedures and Functions

Exitand Halt Proceduresc.cuiiiiiiieiniinennnnennnnnn,
Dynamic Allocation Procedures and Functions
Transfer FUNCconsc.ciiiiiiiin ittt iiieieeennnn,
Arithmetic Functionsot i iiiiinn,
Ordinal Procedures and Functionsccivviiiinvenn..
String Procedures and Functions
Pointer and Address Functionsccoiiiiiiiniiiinnnnn..
Miscellaneous Procedures and Functions

Chapter 24. Standard Units
Standard Unit Dependencies e
TheSystem Unit
ThePrinter Unit i
TheDosUnitcooiiiii i
Constants, Types, and Variablesooiiiiian,
FlagsConstants i i,
File Mode Constantscoiiiiiinneiiiiiinneennns
FileRecord Typesc.ooiiiiiiiiiiiiiiiii i,
File Attribute Constants it
The Registers Type ...
The DateTime Typeooiiiiiiiiiiiiiiiiii .,
The SearchRecType ...,
The DosError Variable o it
Interrupt Support Proceduresol
Date and Time Procedures
Disk Status Functions o il
File-Handling Procedureso i,
Process-Handling Procedures and Functions

The Crt Unit . .ooii it e e e e ettt et e 298

The Inputand OutputFileso it 298
WiNAoWSs ..o e e 298
Special Characters oottt 299
Linelnput i 299
Constantsand Types ...ttt 300
CrtMode Constantsoivniininin i ieiinenenenns 300
Text Color Constantsc.eueineinennieinennennennnnnns 300
CrtVariablesc. i i e 301
CheckBreakc oottt iiiieiieenenn, 301
CheckEOF .. i e e e 301
CheCKS oW ottt it e et e e 302
DirectVIideooiiiiiii i e 302
LastModeooiiii i e e e 302

X AT o e 303
WindMinand WindMax ...ttt 303
Procedures ..ottt e 303
Functions i et 304
TheGraphUnit ... s 305
DIVEIS oot e 305
CoordinateSystemcoii i 306
Current PoINteroitiirit it it i 306
=5 At 307
Figuresand Styles i 308
Viewportsand BitImages oo il 308
Pagingand Colors 308
ErrorHandling i i 308
Getting Started 310
User-Written Heap Management Routines 311
Graph Interface Section: Constants, Types, & Variables 313
Proceduresouiiinii i e e 318
Functionst e 321
The Turbo3 Unitc i et i e 322
Interface Sectionciiiriiiiii i e e 322
Kbd .. e 323
Cbreak ..o e e e 324
Proceduresc.oiiiiiii i e 324
Functions ... e e 324
TheGraph3Unit o i i i 324
Proceduresoiiii it e e e 325
Chapter 25. Using the 8087 329
The 8087 Data Typesvvviiiii it 330
Extended Range Arithmetic o il 331

Xi

ComparingReals e 332

The 8087 Evaluation Stacko, 332
Writing Reals with the 8087o il 334
Units Using the 8087 334
Chapter 26. Inside Turbo Pascal 335
TheHeapManagerc.coiiiiiiiiiiiiiiiiiiiinna.n. 337
Disposal Methods i 337
TheFreeListccooiiiiiiiiiiiiii i 341
The Heap Error Function, 343
Internal Data Formats, 344
Integer Typescooiiiiiiiiiiiiiiii i 344
Char Types ...ttt e it e 344
Boolean TYPesoiruniii i i e 344
Enumerated Types ... 344
Floating-Point Typeso, 345
TheReal Type ... 345
TheSingle Type ...t 345
TheDouble Typeoiiiiiiiiiiiiiiiiiii e 346

The Extended Type, 346

The CompTypeovviinii i i 346
Pointer Types ... e 347
SNG TYPES oot ir it i 347
Set Types . .eii i e 347
ATray TYPes . v e e 348
Record Types ..ot ieie e 348
File Types .. .viiiii i i e i e 348
Calling Conventionsciiiiiiiiiiiiiiiiiiieennn.. 349
Variable Parameters i i 350
Value Parametersccoiiiiiiiiiiiiiiiiiii i 350
FunctionResultso 351
NearandFarCalls i i, 351
Entryand ExitCode i 353
Register-Saving ConventionsooaialL 353
Linking with Assembly Language 353
Examples of Assembly Language Routines 355
Inline MachineCodeo i i, 358
Inline Statementscciiiiiiiiii i 358
Inline Directivescoiiiiiiiiiiiiiiiiiiiiiiiiii 360
Direct Memory and Port Accessciiiiiiiiiiii i, 361
The Mem, MemW, and MemL Arrayscoo.... 361
The Port and PortW Arrayscciiiiiiiiiiniiin ... 361
InterruptHandlingo 362
Writing Interrupt Proceduresl 362

Xii

Text File Device Driverscvviiiiiiiiiiiiii it iiieeiinennnnns 363

TheOpenFunction i 364
TheInOutFunctionco i ... 365
The Flush Functiono i, 365
TheClose Functionccoiiiiiiiiiii i, 365
Examples of Text File Device Drivers 365
Exit Procedures ... e 368
Automatic Optimizationso, 370
Constant Folding o i 370
Constant Mergingciiiiiiiiiiiiiiiiiiiiiii 371
Short-Circuit Evaluationol 371
Order of Evaluation i, 371
Range-Checking ... 372
Shift instead of Multiply oo 372
Dead CodeRemovalt 372
SmartLinking i i 372
Chapter 27. Turbo Pascal Reference Lookup 373
Sample procedureoiii i e 373
Absfunction i 374
Addrfunction 374
Append procedure 374
Arcprocedureiiiiiiiii e e e 375
ArcTanfunction o i i i 376
AsSign procedureo 377
AssignCrtprocedureot 378
Bar procedurec.oiiiiiii e 378
Bar3D procedureo e 379
BlockRead procedurec.coiiiiiiiiiiii 380
BlockWrite procedure ...t 381
ChDir procedureciiiiiiiiiiiiiii i 382
Chrfunctionccoiiiiiiiii i, 383
Circleprocedureottt 383
ClearDevice procedureooiiiiiininiiiiiiinininna... 384
ClearViewPort procedure i, 384
Close procedurec.uiiiiuiiiiiiieiiieenieniianns 385
CloseGraph procedureccoiiiiiiiiiiiiiiiiiiiiinnn, 386
ClIrEol procedurettt 386
ClrScrprocedureo s 387
Concat function ... e 387
Copyfunctiono 388
Cosfunctioncoiiiiiiii i 388
CSeg functionoiiiiiiiiii i 389
Decprocedure ... e 389

Delay procedureot 389

Delete procedurec.oiiiiiiiiiiiiiiiiiii i 390
DelLine procedureottt 390
DetectGraph procedurecooiiiiiiiii i, 391
DiskFree functioncooiiiiiiiiiiiiiiiiii i 392
DiskSize function i il 392
Dispose procedure 393
DosExitCode functionooiiiiiiiiiiiiiiiiiiiiin., 393
DrawPoly procedure it 394
DSeg functioncoiiiiiiiiiii 395
Ellipse procedurec.oiiiiiiiiiiiiiiiiiiiie i 395
Eof function (text files) il 396
Eof function (typed, untyped files)o 396
Eolnfunctiono 397
Eraseprocedurec.iiiiiiiiiiiiiiiiii 397
Execprocedure i 398
Exitprocedure il 399
Expfunctiono i 400
FilePos function 400
FileSize function i 400
FillChar procedureoooiiiiiiiiiiiiiin .. 401
FillPoly procedurecciiiiiiiniiniiiiiiiiieiinnnn. 402
FindFirst procedureot 403
FindNext procedureciiiiiiiiiii i, 404
FloodFill procedureo i 404
Flushprocedure i 406
Fracfunction 406
FreeMemprocedureoiiiiiiiiiiiiiiiiii i 406
GetArcCoords procedurec.coiiiiiiiiiiiiiiiiiiiannnn. 407
GetAspectRatio procedure i, 408
GetBkColor function i 409
GetColor function il 410
GetDate procedureoiiiiiiiiiiii it 411
GetDir procedureo 411
GetFAttrprocedureccoiiiiiiiiiiiiiiiiiii i 411
GetFillPattern procedure i 412
. GetFillSettings procedureooiiiiiiiiiiiiiiiii e 413
GetFTime proceduret 414
GetGraphMode function iiiiiiiiiiiiiiii ... 414
Getlmage procedurel 416
GetIntVecprocedure i il 417
GetLineSettings procedure i i, 417
GetMaxColor functiono 418
GetMaxX functiono 419

Xiv

GetMaxY functionvvi ittt e e e e 419

GetMem procedure i 420
GetModeRange procedureoiiiiiiiiiiiiiiiiian, 421
GetPalette procedure il 421
GetPixel function e e 422
GetTextSettings procedure oottt 423
GetTime procedurecoiiiiiiiiiii i, 424
GetViewSettings procedurel 424
GetXfunctonoiiiiiiiii 425
GetY function ... 426
GotoXY procedureoiiiiiiiii e 427
GraphDefaults procedureccooiiiiiiiiiiiiiiiii i, 428
GraphErrorMsg function it 428
GraphResult functiono il 429
Halt procedureoiiiiiiiiiiiiiiiii it 431
Hifunction 431
HighVideo procedure il 432
ImageSize functionttt 432
Incprocedure 433
InitGraph procedure i 434
Insert procedure 436
InsLine procedure i il 437
Intfunction i 437
Intrprocedure 437
IOResult function i 438
Keepproceduret 439
KeyPressed functioncoiiiiiiiiiiiiiiiiiiiiiia 439
Lengthfunction i 440
Lineprocedure il 440
LineRel procedureottt 441
LineToprocedure it 442
Lnfunction i 443
Lofunctionot 443
LowVideo proceduret 444
Mark procedureo 444
MaxAvail function i 445
MemAvail function o i i i 445
MKDir procedure 446
Move procedure 447
MoveRel procedure i 447
MoveToprocedureottt 448
MsDo0s procedure 449
New procedureottt 449
NormVideo procedure oot 450

XV

NoSound procedure e, 450

Odd function ... 450
Ofsfunction ...ttt e 451
Ordfunctionoiiiiniiiiiiiiiiiiii it 451
OutText procedureooiiiiiiiiiiiiiiii i, 451
OutTextXY procedure e e 453
PackTime procedureol 455
ParamCount function i, 455
ParamStr function i 455
Pifunction i 456
PieSliceprocedureottt 456
Posfunction i i 457
Pred function i 457
Ptrfunctionoi i e 458
Putlmage procedureot 458
PutPixel procedure i 461
Random function o il 461
Randomize procedure oo, 462
Read procedure (textfiles)c.oiiiiiiiiiiiiiiiiiin., 462
Read procedure (typed files)o i, 464
ReadKey functionottt 464
Readln procedurecoiiiiiiiiii i 465
Rectangle procedure - i 466
RegisterBGIdriver functionccoiiiiiiiiiiiiiiiiii o, 467
RegisterBGlIfont function o oo, 468
Release procedureottt 471
Rename procedureoo il 472
Reset procedureo i 472
RestoreCrtMode procedureooiiiiiiiiiiiiiinennn.. 473
Rewrite proceduret 474
RmDir procedureottt 475
Round functiono 476
Seek procedureoiiiiiiiiii 476
SeekEof function ...t 477
SeekEoln function o i 477
Segfunction il 477
SetActivePage procedure ool 478
SetAllPalette procedurecoiiiiiiiiiiii i 479
SetBkColor procedureciiiiiiiiiii e 480
SetColor procedureiiiiiiiiii i e 481
SetDate procedure il 482
SetFAttr procedureoiiiiiii i e 482
SetFillPattern procedurec.cciiiiiiiiiiiiiiiiiiea 483
SetFillStyle procedurecoiiiiiiiiiiii 484

XVi

SetFTime procedurec.ouiiiniiiiiiiiiiiianiennannann, 485

SetGraphBufSize procedureo il 486
SetGraphMode procedurec.o i,486
SetIntVecprocedure il 488
SetLineStyle procedure i, 488
SetPalette procedure i 490
SetTextBuf procedure i, 491
SetTextJustify procedureo, 493
SetTextStyleprocedureo, 494
SetTime procedurecoiiiii ittt 496
SetUserCharSize procedurec.coiiiiiiiiiiina... 496
SetViewPort procedurecoiiiiiiiiiiiiiiiiiiaiiiia.. 497
SetVisualPage procedurecoiiiiiiiiiiiiiiiiiiiiie., 499
Sinfunction e 500
SizeOf functiono i 500
Sound procedure i i e 501
SPtrfunctionoiiiiiiiiii e 501
Sqrfunction e 502
Sqrtfunction e 502
SSegfunction 502
Strprocedure 502
Succfunction ... i 502
Swap function i e 503
TextBackground procedure il 504
TextColor procedure i 504
TextHeight functiono il 505
TextMode procedure o i 506
TextWidth functiono il 508
Truncfunction i 509
Truncate procedure il 509
UnpackTime procedurec.oiiiiiiiiiiiiiiiianiann, 510
UpCasefunctioncoiiiiiiiiiiiiiiiiiiiiiiiineenen.. 510
Valprocedureo e 510
WhereX function i i 512
WhereY function o i 512
Window procedure i 512
Write procedure (text files) i il 513
Write procedure (typed files) il 516
Writeln procedureottt 516
Part 3

Appendix A. Differences Between Version 3.0 and 4.0 521
Program Declarationsol 521

Compiler Directivesccoiiiiiiiiiiiiiiiiiiiiiiiinn
Predeclared Identifiers ool
Programming Changeso i
Other Additions and Improvements,

Appendix B. Comparing Turbo Pascal 4.0 with ANSI Pascal

Exceptions to ANSI Pascal Requirements
Extensions to ANSIPascalccooiiiiiiiiiiiian,
Implementation-Dependent Features
Treatmentof Errors i

Appendix C. Compiler Directives
Switch Directives oo i i
Boolean Evaluation o i i,
Debug Informationocoii i
ForceFarCallsottt
Input/Output Checkingoviiiiiiiiiiiiiiiiiii...
LinkBuffer i
Numeric Processingcooiiiiiiiiiiiiiiiiiiniaeii..,
Range-Checkingcooiiiiiiiiiiiiiiii ...
Stack Overflow Checkingt
TPM File Generationoiieeuiiniiiiiiiniineennnn.
Var-String Checkingo i
Parameter Directives ...t
IncludeFile ...
LinkObjectFile
Memory Allocation SizesooiiiiiiiiiiiiiioniL
UnitFileName ...
Conditional Compilation i
Conditional Symbols ...t
The DEFINE Directivecooiiiiiiiiiiiiiii i,
The UNDEF Directivecooiiiiiiiiiiiiiiiiinnnniinnnn.
The IFDEF Directive i,
The IFNDEF Directive ...t
The IFOPT Directive i,
The ELSE Directiveccoiiiiiiiiiiiiiiiiiiii
The ENDIF Directivec..iiiiiiiiiiiiiiiiiiiiiiiinnn..

XViii

Appendix D. The Turbo Pascal Utilities
The Stand-Alone MAKE Utility,
Creating Makefiles i
L0 s o ¥ 141 11 TG
ExplicitRules i i i i
Implicit Rules i
Command Listsciiiiiiii ittt iiaannn
1 F= Vel o - PP
Defined Test Macro ($3d)coiiiiiin i,
Base File Name Macro ($%)ccoiiiiiiiiiiiiinannn.,
Full File Name Macro ($<) .o vvvii i i ie i
File Name PathMacro ($:)oviiiiriiiiii i,
File Name and Extension Macro ($.)coiiiiiinnann...
File Name Only Macro ($&)cooviiiiiiiii e,
DHreCtiVES . ot i i e et e e
Using MAKE e e
The BUILTINS.MAK File ...t iie e
How MAKE SearchesforFilesccoiiiiiiinnnion..
MAKE Command-Line Optionso,
MAKE Error Messagesc.coviiiiiiiiiniiinniiieninann.
Fatals ... e e
3 5 e) U
The TOUCHUtilitycoviiiiiiiiiiiiii i
The GREP Utilityt
The GREP SWitches ...ttt i it i i i e
How toSearch in GREP
Examples of Using GREP i,
The BINOBJ Utilitycooiiiiiiiiiiiiiiiiii i

Appendix E. Reference Materials
ASCITCOdES .. v vttt e e e e e e
Extended Key Codesot
Keyboard ScanCodes,

Appendix F. Customizing Turbo Pascal
What Is TINST? ... e
Running TINST e
The Turbo Pascal Directories Option
Object directories, Include directories, and Unit directories
Executable directory and Turbo directory
Pick filenameco i e
The Editor Commands Optionoiaa..

XiX

WordStar-Like Selectionl
Ignore CaseSelectioncccoiiiiiiiiiiiiia.,.
Verbatim Selection o ool
Allowed Keystrokescooiiiiiiiiiiiiiiiiiiiia..
GlobalRules
Turbo Pascal Editor Keystrokesccooiiiun,
The Options/Environment Optioncooiine.
The Display Mode Optionc.cciiiiiiiiiiiiinn...
The Color Customization Optionooiiiia.,
The Resize Windows Optionot
Quitting theProgram i il

Appendix G. A DOS Primer

WhatIsDOS? e i
HowtoLoadaProgramcooiiiiiiiiiiiiiiiian,
Directoriesoiiiiiiii i e e
Subdirectories o
Where AmI? The $p $g Prompt t
The AUTOEXEC.BAT Fileot
Changing Directoriesciiiiiiiiiiiiiiiiiiiiinn...

Appendix H. Glossary

Appendix I. Error Messages and Codes

Compiler Error Messagesccoiiiiieiiiiniiininnennn...

RuntimeErrors i
DOSErrors ... e
/O BITOrS ittt ittt e e e e e e e
Critical Exrors ...t
FatalErrors i

Welcome to version 4.0 of Turbo Pascal! Turbo Pascal is designed to meet
the needs of all types of users of IBM PCs and compatibles. It's a structured,
high-level language you can use to write programs for any type or size
application.

The current version of Turbo Pascal is the fourth generation of Borland’s
flagship language product. With Turbo Pascal 1.0, Borland pioneered the
high-speed microcomputer language compiler; version 4.0 strengthens
Turbo Pascal in its role as a serious development language. With 4.0, you’ll

get

mtwo to three times faster compilation speed (lines per minute) than
version 3.0 (on an SMHz IBM AT).

m much improved code generation, producing faster execution.

m a smart built-in linker that removes unused code at link time, producing
smaller code.

m .EXE files that allow programs larger than 64K.
m the ability to perform separate compilation using units.

m built-in project management that performs automatic recompilation of
dependent source files (including units).

m several standard units, including System, Dos, Crt, and Graph.

ma more powerful assembly language interface and inline assembly
options.

a the ability to nest Include files to eight levels deep.

mseveral new data types, including longint, shortint, word, and IEEE
floating-point types (single, double, extended, and comp) if you're using
an 8087 chip.

m several new built-in procedures and functions, including Inc() and Dec().
m ANSI standard compatibility.

@& built-in 8087/80287 coprocessor support.

m short-circuit Boolean expression evaluation.

m conditional compilation directives.

Introduction 1

ma high degree of compatibility with version 3.0, and utilities and units to
aid in converting 3.0 programs to 4.0.

m command-line and integrated environment versions of the compiler.

Understanding 4.0

As you're reading through this manual, several major concepts will be
introduced. To help clarify these ideas, here’s a summary of some of 4.0’s
highlights.

Integrated Environment and Command-Line
Compilers

The Turbo Pascal compiler is actually two compilers: a command-line
compiler and an integrated environment version. The traditional
command-line or batch mode compiler allows you to use your own editor
to create and modify program source code. You then run the compiler from
either the command line or a batch file, giving the file name and any other
compiler options. This compiler is the TPC.EXE file on your disk.

There is also a Borland-style integrated environment that combines a text
editor and compiler. The environment provides pull-down menus,
windows, input boxes, configuration control, and context-sensitive help.
This compiler is the TURBO.EXE file on your disk.

Separate Compilation

Separate compilation lets you break programs into parts and compile them.
That way you can test each part to make sure it works. You can then link all
the parts together to build a program. This is useful, since you don’t have
to recompile everything that makes up a program each time you use it. In
addition, this feature lets you build up a toolbox of precompiled, tested
code that you can use in all your programs.

Programs and Units

A program is the main piece of Pascal source code that you write and
execute. In order to provide for separate compilation and still maintain
Pascal’s strict checking among program parts, units are used. A unit is a

2 Turbo Pascal Owner’s Handbook

piece of source code that can be compiled as a stand-alone entity. You can
think of units as a library of data and program code. They provide a
description of the interface between the unit’'s code and data and other
programs that will use that unit. Programs and other units can use units;
units don’t use programs.

Compile, Make, and Build

It’s probable that you may change the source code of several of the units
you're using without recompiling them; however, you'll definitely want
your main program to use the absolute latest units. How do you make sure
you're using the most recently modified units? We’ve provided two ways
for you to make sure the unit files are brought up to date.

The Make option tells the compiler to go and look at the date and time of
any source and compiled unit file used by your main program (or another
unit, since units can use units). If the source file was modified since the unit
was compiled, the compiler will recompile the unit to bring it up to date.

The Build option is similar to Make except that it will recompile all of the
units used by your main program (or unit) without checking date and time.
Use this option if you want to make absolutely sure you have all the latest
compiled units.

Pick File List

The pick file contains the state of the integrated environment so that when
you leave TURBO.EXE and return to it later, you are placed at the spot in
the file where you left off previously. The pick file list also offers you easy
access to files when you are editing multiple files. The last eight file names
and the state of each respective file that you've edited are kept in the pick
list. When you select a file from the pick list, the file is loaded and the
cursor is placed at the point in the file where you were when you left it. You
can enable or disable pick file (TURBO.PCK) generation.

File Extensions

There are all kinds of file name extensions used in the DOS world; most are
usually application- or program-specific. (Remember that a file name
consists of up to eight characters with an optional three-character
extension.) Turbo Pascal uses several different file name extensions:

Introduction 3

m .EXE: an executable file. The two compilers themselves are .EXE files. The
compiled programs you’ll build with the compilers will be .EXE files.
(Turbo Pascal 3.0 created .COM files that were also executable files.)

m.TPU: a precompiled unit file. When you compile a Pascal unit, the
compiler generates a .TPU file with the same first eight characters of the
source file. A .TPU file contains the symbol information and compiled
code for the unit.

m.TPL: a Turbo Pascal library file. You can use only one of these at a time.
The standard library file on the disk is called TURBO.TPL. You can
modify TURBO.TPL to suit your needs.

m.TP and .CFG: configuration files for the two compilers. These files allow
you to override default settings in the compilers and customize compiler
default values to your own needs.

A TP file is a binary file containing the options you set for the integrated
environment. You can have multiple .TP files for different settings.

TPC.CFG is the configuration file for the command-line version of the
compiler. There can be only one TPC.CFG file. It is a text file that contains
directories to the compiler, command-line switches, etc.

. TPM: a Turbo MATP file. This file is generated if you use the {$T+}
compiler option. It contains information about your program that can be
useful for finding runtime errors and doing source-level debugging. The
TPMAP.EXE utility on the disk will convert the .TPM file to a MAP file
that can be used with most standard symbolic debuggers.

m.PAS: Use this for your Pascal source code files. You can use other file
name extensions, but traditionally .PAS is used.

m.BAK: backup source file extension. The editor in the integrated
environment renames the existing file on disk to a .BAK file when you
save a modified version of the file. You can enable or disable .BAK file
generation.

m .PCK: the Turbo Pascal pick file extension. The pick file contains the state
of the integrated environment so that when you leave TURBO.EXE and
return later on, you are placed at the spot in the file where you were last
working. You can enable or disable pick file generation.

About This Manual

This manual walks you through writing, compiling, and saving Turbo
Pascal programs. It explains in detail the many new features and how to
use them. It also teaches you how to take existing version 3.0 programs and
convert them to run under Turbo Pascal version 4.0.

4 Turbo Pascal Owner’s Handbook

Sample programs are provided on your distribution disks for you to study.
You can also tailor these sample exercises to your particular needs.

Before you get started, you should be somewhat familiar with the basics of
operating an IBM PC (or compatible) under MS-DOS (or PC-DOS). You'll
need to know how to run programs, copy and delete files, and how to use
other basic DOS commands. If you're not sure about how to do these
things, spend some time playing with your PC and reviewing the MS-DOS
user’s manual that came with it; you can also look at Appendix G, “A DOS
Primer,” to learn some basics. Appendix H lists many of the terms
introduced in this manual.

This manual is divided into three main sections: “The User’s Guide” (Part
1), “The Reference Section” (Part 2), and “The Appendices” (Part 3).

The User’s Guide

“The User’s Guide” introduces you to Turbo Pascal, shows you how to use
it, and includes chapters that focus on such specific features as units and
debugging. Here’s a breakdown of the chapters:

m Chapter 1: Getting Started explains how to make backup copies of your
Turbo Pascal disks, describes the different files on the disks, and tells you
how to set up Turbo Pascal for your particular system.

m Chapter 2: Beginning Turbo Pascal leads you directly from loading
Turbo Pascal into writing simple programs, and then on to compiling
and running them. A discussion of a few common programming errors
and how to avoid them is also presented. You'll learn some basics about
getting around in the integrated environment. We then suggest how to
go about reading the rest of the manual, depending on your familiarity
with Pascal.

m Chapter 3: Programming in Turbo Pascal introduces you to the Pascal
programming language.

m Chapter 4: Units and Related Mysteries tells you what a unit is, how it’s
used, what predefined units (libraries) Turbo Pascal provides, and how
to write your own. It also describes the general structure of a unit and its
interface and implementation portions, as well as how to initialize and
compile a unit.

m Chapter 5: Getting the Most from Your PC describes how to use units
and the built-in Turbo Pascal extensions, and also explains how to use
inline and external assembly language.

Infroduction 5

m Chapter 6: Project Management tells how to develop large programs
using multiple source files and libraries, and discusses conditional
compilation.

m Chapter 7: Using the Unit Mover explains the use of TPUMOVER for
copying units from file to file.

m Chapter 8: Converting from Turbo Pascal 3.0 provides guidelines for
converting Turbo Pascal 3.0 programs to Turbo Pascal 4.0.

m Chapter 9: Debugging Your Turbo Pascal Programs gives suggestions
on how to track down and eliminate errors in your programs, and also
tells how to use Periscope, a symbolic debugger.

m Chapter 10: The Turbo Pascal Menu Reference is a complete guide to
the menu commands in Turbo Pascal’s integrated environment.

m Chapter 11: Using The Editor explains how to use the built-in editor to
open, edit, change, save a file, and more.

m Chapter 12: The Command-Line Reference is a complete guide to the
command-line version of Turbo Pascal.

The Reference Manual

Part 2 of the manual offers technical information on the following features:

m Chapter 13: Tokens and Constants

m Chapter 14: Blocks, Locality, and Scope

m Chapter 15: Types

m Chapter 16: Variables

m Chapter 17: Typed Constants

m Chapter 18: Expressions

m Chapter 19: Statements

m Chapter 20: Procedures and Functions

m Chapter 21: Programs and Units

m Chapter 22: Input and Output

m Chapter 23: Standard Procedures and Functions
m Chapter 24: Standard Units

m Chapter 25: Using the 8087

m Chapter 26: Inside Turbo Pascal

m Chapter 27: Turbo Pascal Reference Lookup

6 Turbo Pascal Owner’s Handbook

Appendices

Finally, Part 3 of this manual contains nine appendices that deal with the
following topics:

m Appendix A: Differences Between Version 3.0 and 4.0

m Appendix B: Comparing Turbo Pascal 4.0 with ANSI Pascal
m Appendix C: Compiler Directives

m Appendix D: The Turbo Pascal Utilities

m Appendix E: Reference Materials

m Appendix F: Customizing Turbo Pascal

m Appendix G: A DOS Primer

n Appendix H: A Glossary

m Appendix I: Error Messages and Codes

Typography

This manual was produced entirely by Borland’s Sprint: The Professional
Word Processor, on an Apple LaserWriter Plus. The different typefaces
displayed are used for the following purposes:

Italics In text, this typeface represents constant identifiers, field
identifiers, and formal parameter identifiers, as well as
unit names, labels, types, variables, procedures, and

functions.
Boldface Turbo Pascal’s reserved words are set in this typeface.
Monospace This type represents text that appears on your screen.
Keycaps This typeface indicates a key on your keyboard. It is

often used when describing a key you have to press to
perform a particular function; for example, “Press Esc to
exit from a menu.”

How to Contact Borland

If, after reading this manual and using Turbo Pascal, you would like to
contact Borland with comments or suggestions, we suggest the following
procedures:

Introduction 7

m The best way is to log on to Borland’s forum on CompuServe: Type GO
BORPRO at the main CompuServe menu and follow the menus to
section 4. Leave your questions or comments here for the support staff to
process.

mIf you prefer, write a letter detailing your problem and send it to
Technical Support Department, Borland International, 4585 Scotts Valley
Drive, Scotts Valley, CA 95066 U.S.

m As a last resort, you can telephone our Technical Support department. To
help us handle your problem as quickly as possible have these items
handy before you call: product name and version number, product serial
number, computer make and model number, and operating system and
version number.

If you're not familiar with Borland’s No-Nonsense License statement,
now’s the time to read the agreement at the front of this manual and mail in
your completed product registration card.

8 Turbo Pascal Owner’s Handbook

10

Turbo Pascal Owner’s Handbook

Getting Started

In this chapter, we’ll get you started using Turbo Pascal by providing
instructions for loading it on systems with floppy disk or hard disk drives.
We’ll also offer some guidance on how to go about reading this manual,
based on your programming experience.

The three distribution disks that accompany this manual are formatted for
standard 5 1/4-inch disks, 360K disk drives, and can be read by IBM PCs
and compatibles (those with 3 1/2-inch disk, 720K disk drives will receive
two distribution disks). Now, before you do anything else, we want you to
make backup copies of these three disks and then put the originals away.
Since there’s a replacement charge if you erase or damage the original
disks, take heed and use your originals only to make work or backup
copies. Here’s how:

B Get three new (or unused) floppy disks.
m Boot up your computer.

@ At the system prompt, type diskcopy A: B: and press Enter. The message
Insert source diskette in drive A: will be displayed on your screen.
Remove your system disk from drive A and put distribution disk 1 into
drive A.

mIf your system has two floppy disk drives, your screen will also say
Insert destination diskette into drive B. In that case you’ll need to
remove any disk in drive B, replacing it with a blank disk. If your system
only has one floppy drive, then you'll be swapping disks in drive A. Just
remember that the distribution disk is the source disk, the blank disk is
the destination disk.

mIf you haven’t done it already, press Enter. The computer will start
reading from the source disk in drive A.

Chapter 1, Getting Started 11

mIf you have a two-drive system, it will then write out to the destination
disk in drive B and continue reading from A and writing to B until
copying is complete. If you have a one-drive system, you'll be asked to
put the destination disk in A, then the source disk, then the destination
disk, and so on and so forth until it's finished.

m When copying is completed, remove the distribution (source) disk from
drive A, and put it away. Remove the copy (destination) disk from drive
B and label it “Disk #1.”

m Repeat the preceding process with the second and third distribution
disks and the other blank floppies.

Now that you’ve made your backup copies, we can get on to the meat of
this chapter.

What's On Your Disks

The two distribution disks that come with this manual include two
different versions of the Pascal compiler: an integrated environment
version and a stand-alone, command-line version.

You won’t need to put all the files on your distribution disks onto your
Turbo Pascal system disk—in fact, you'll probably only need TURBO.TPL
(the resident library) and either TURBO.EXE (the integrated environment)
or TPC.EXE (the command-line compiler), depending on which compiler
you prefer to use. For your reference, here’s a summary of most of the files
on disks and how to determine which ones to retain:

TURBO.EXE This is the integrated (menu-driven) environment
version of Turbo Pascal. If you want to use the
development environment of Turbo Pascal to edit,
compile, and run your program, be sure to copy this.

TURBO.TPL This contains the units (program libraries) that come
with Turbo Pascal, including System, Crt, Dos, Printer,
Turbo3, and Graph3—this is a must!

TINST.EXE This utility allows you to customize certain features of
TURBO.EXE. If you're using TURBO.EXE, copy this file.
You can delete it once you've modified TURBO.EXE to
your liking,.

GRAPH.TPU This contains the Graph unit (the Borland Graphics
Interface unit).

12 Turbo Pascal Owner’s Handbook

TPC.EXE

TPMAP.EXE

TPUMOVER.EXE

README.COM

README

UPGRADE.EXE

TPCONFIG.EXE

MAKE.EXE

TOUCH.COM

GREP.COM

This is the command-line version of Turbo Pascal. If you
use a separate editor, make heavy use of batch files, and
so on, you'll probably want to copy this.

This utility creates a symbolic debugger-compatible
.MAP file from a .TPM file. TPMAP also creates a .DEP
file, which is a comprehensive list of all the unit, include,
and .OBJ file dependencies. If you aren’t using a
symbolic debugger, then you don’t need this file.

This utility allows you to move units between .TPL files;
more specifically, you can use it to add units (that you
write) to TURBO.TPL or to remove units from that file.
Copy it if you plan to modify TURBO.TPL.

This is the program to display the README file. Once
you've read the README, you can delete this.

To see any updated information, run this file by typing
README at the system prompt. (If you have a printer,
you can print it out.) Once you review this material, you
can delete this.

This utility does a quick upgrade of Turbo Pascal
version 3.0 source files, modifying them for compati-
bility with Turbo Pascal version 4.0. If you don’t have
3.0 programs to convert, don’t copy it.

This utility takes your integrated environment
configuration file and converts it to work with the
command-line compiler (as TPC.CFG). It’s helpful if you
want to use the integrated environment to set all your
options, but want to compile with the command-line
version. This utility will also convert a TPC.CFG file to a
TP file.

This is an intelligent program manager that allows you
to automatically update files (via assembly and
compilation) you’ve modified. It only works with the
command-line compiler (TPC.EXE).

This utility changes the date and time of one or more
files to the current date and time, making it “newer”
than the files that depend on it.

This is a powerful search utility that can look for several
files at once.

Chapter 1, Geftting Started 13

* PAS files These include the MicroCalc source files, as well as other
sample programs. You can ignore these unless you want
to read or experiment with them.

BINOB]J.EXE Use this utility to convert a binary file to an .OB] file.

*.DOC files These include the interface section listings for all the
standard units.

*.BGI files BGI graphics device drivers.

*.CHR files BGI graphics stroked character fonts.

Installing Turbo Pascal On Your System

Your Turbo Pascal package includes all the files and programs necessary to
run both the integrated environment and command-line versions of the
compiler. The files you copy depend on which version of the compiler you
want to use.

Setting Up On a Floppy Disk System

The basic files you need for Turbo Pascal are small enough to be easily run
from a one-floppy system; though, you may want to use only one version
of the compiler (TURBO.EXE or TPC.EXE), rather than have both on disk.

First, you're going to create a bootable (system) disk. Get yourself another
blank disk and at the DOS prompt, type

format b:/s

Your system will ask you to insert a DOS disk into drive A; just insert your
regular system boot disk. If you have a two-drive system, place a blank
disk into drive B and press Enter when prompted. If you have a one-drive
system, place your blank disk into the drive whenever you are asked to
insert a blank disk into drive B, and place your original boot disk into the
drive whenever you are asked to insert a DOS disk into drive A.

When you're finished, your blank disk will be formatted and will contain a
copy of MS-DOS (the operating system). Label it as your Turbo Pascal
system disk and continue to the next step.

Put your Turbo Pascal system disk into drive A. If you have a second drive,
put your Turbo Pascal distribution disk 1 into drive B and type

A>dir b:

14 Turbo Pascal Owner’s Handbook

That will list all the files on the first distribution disk. You can copy them
one at a time from your Turbo Pascal distribution disk onto your system

disk by typing
A>copy b:filename a:

where filename is the name of the file you wish to copy. As mentioned, the
two files you absolutely must copy are TURBO.TPL, and either
TURBO.EXE or TPC.EXE (or both).

Setting Up On a Hard Disk

The first thing you want to do is to create a subdirectory called TP (or
whatever you choose) off of your root directory. Assuming that your hard
disk is designated as drive C, use the following commands:

c:

cd c:\
mkdir tp

Now place each Turbo Pascal distribution disk into drive A and type the
following command:

copy a:*.* c:\tp

Now put your distribution disks in a safe place. If you'd like, you can
delete from your hard disk any of the files you don’t need. (Refer to the
preceding section for which files you might not need.)

Choosing From Two Compilers

Believe it or not, you've bought two complete versions of the Turbo Pascal
compiler. The first, TURBO.EXE, is known as the integrated environment. It
provides a pull-down menu- and keystroke-driven multiwindow
environment. You can load, edit, save, compile, and run your programs
without ever leaving it. Most of the chapters that follow this one are
devoted to using the integrated environment.

The second version, TPC.EXE, is known as the command-line compiler. It
presumes that you have created your Pascal program with some other
editor (MicroStar, BRIEF, EDLIN, even the integrated environment). You
run it from the MS-DOS system prompt; for example, if your program is in
a file named MYFIRST.PAS, you would type at the prompt

tpc myfirst

Chapter 1, Getting Started 15

and then press Enter. TPC.EXE compiles and links your program, producing
an .EXE file (just like TURBO.EXE). Command-line options allow you to
specify a number of things, such as where the system library (TURBO.TPL)
resides and whether to recompile any files upon which MYFIRST.PAS
depends.

Which version should you use? Chances are you’ll find the integrated
environment best suits your needs. It provides a complete development
system in which you can quickly build and debug programs. On the other
hand, if you are currently using a command-line Pascal compiler, if you
have another editor that you prefer, or if you are making heavy use of an
assembler (for external subroutines), you may want to use the command-
line compiler in conjunction with a batch file or Make utility.

Using This Manual

Now that you’ve loaded the Turbo Pascal files and libraries onto the
appropriate floppy disks or hard disk directories, you can start digesting
this manual and using Turbo Pascal. But, since this user’s guide is written
for three different types of users, certain chapters are written with your
particular Turbo Pascal programming needs in mind. Take a few moments
to read the following, then take off programming.

m Programmers Learning Pascal: If you're a beginning Pascal programmer,
you will want to read Chapters 2 through 7. These are written in tutorial
fashion and take you through creating and compiling your first Pascal
programs. Along the way, they teach you how to use the integrated
environment. (You may want to also look at the Turbo Pascal Tutor
manual.)

mExperienced Pascal Programmers: If you're an experienced Pascal
programmer, you should have little difficulty porting your programs to
this implementation. You’ll want to skim Chapters 10 and 11 to get
familiar with the integrated environment, and take some time to read
Chapter 4 to understand the role of units. You'll also want to study “Part
2: The Reference Section,” and note the differences between Turbo Pascal
4.0 and your Pascal compiler. Appendix B, “Comparing Turbo Pascal 4.0
With ANSI Pascal,” will offer you some additional insights.

m Turbo Pascal Programmers: Chapter 8, “Converting from 3.0 Programs,”
is written specifically for you; here’s where we provide guidelines on the
things you’ll need to convert your 3.0-produced programs to version 4.0.
(Appendix A highlights the differences between 3.0 and 4.0.) You'll also
need to glance at Chapter 10 to get familiar with the integrated
environment and Chapter 12 to learn the command-line version.

16 Turbo Pascal Owner’s Handbook

Whatever your approach, welcome to the world of Turbo Pascal 4.0!

‘Chapter 2, Beginning Turbo Pascal

17

18

Turbo Pascal Owner’s Handbook

Beginning Turbo Pascal

Turbo Pascal is more than just a fast Pascal compiler; it is an efficient Pascal .
compiler with an easy-to-learn and easy-to-use integrated development
environment. With Turbo Pascal, you don’t need to use a separate editor,
compiler, and linker in order to create and run your Pascal programs
(although, you can use the command-line version). All these features are
built into Turbo Pascal, and they are all accessible from the Turbo Pascal
integrated environment:

Now that you're set up, you can begin writing your first Turbo Pascal
program using the integrated environment compiler. By the end of this
chapter, you'll have learned the basics of this development environment,
written three small programs, saved them, and learned a few basic
programming skills.

Using the Integrated Environment

In this section, we describe the components of the Turbo Pascal main
screen, and explain briefly how to move around in the environment. For
greater detail, refer to Chapter 10, “The Turbo Pascal Menu Reference”; for
more on the editor, refer to Chapter 11.

Turbo Pascal provides context-sensitive onscreen help at the touch of a
single key. You can get help at any point (except when executing a
program) by pressing F1. The Help window details the functions of the
item on which you’re currently positioned. Any Help screen can contain
one or more keywords (a highlighted item) on which you can get more
information. Use the arrow keys to move to any keyword, and press Enter to

Chapter 2, Beginning Turbo Pascal 19

get more detailed help on the selected item. You can use the Home and End
keys to go to the first and last keywords on the screen, respectively.

To get to the Help index, press F1 again once you're in the Help system. The
Help index lets you access both language and environment help. While
‘you're in the editor, you can also get help on a particular procedure,
function, variable, constant, type, or unit by positioning the cursor on the
item and pressing Cirl-F1. (Note: Cirl-F1 is an editor command that can be
redefined using TINST described in Appendix F.)

- If you want to return to a previous Help screen while either in or out of the
Help system, press Alt-F1. (You can back up through 20 previous Help
screens.) Within a help group (a series of related help screens), Alt-F1
remembers the group as one screen viewed rather than remembering each
screen individually. In a help group, wherever PgUp and PgDn occur, PgUp
takes you back a screen, and PgDn takes you forward. To exit from Help and
return to your menu selection, press Esc (or any of the hotkeys described in
the next section).

When you load Turbo Pascal (type turbo and press Enter at the DOS
prompt), the program’s first screen includes the main screen and product
version information (pressing Alt-F10 any time will bring up this
information). When you press any key, the version information disappears,
but the main screen remains.

Edit Run Compiler .. Options
it
Line 1 Col 1 Insert Indent C:NONAME.PAS

Qutput

Fl-Help F2-Save F3-Load F5-Zoom F6-Edit F9-Make F10-Main menu

Look closely at the main screen; it consists of four parts: the main menu, the
Edit window, the Output window, and the bottom line (which indicates
which keys do what at that particular instance).

To get familiar with the Turbo Pascal system, here are some navigating
basics.

20 Turbo Pascal Owner’s Handbook

From within a menu:

m Use the highlighted capital letter to select a menu item or use the arrow
keys to move to the item and press Enter.

m Press Esc to leave a menu.

m Press Esc when in the main menu to go to the previously active window.
(When active, the window will have a double bar at its top, and its name
will be highlighted.)

m Press F6 to get from any menu level to the previously active window.

m Use the Right and Left arrow keys to move from one pull-down menu to
another.

From anywhere in Turbo Pascal:

m Press F1 to get information about your current position (help on running, .
compiling, and so on).

m Press F10 to invoke the main menu.

@ Pressing Alf plus the first letter of any main menu command (F, E, R, C,
0) invokes the command specified. For example, from anywhere in the
system, pressing Al-E will take you to the Edit window; Alf-F takes you to
the File menu.

From within the Edit or Output window:
m Press F5 to zoom/unzoom the active window.
m Press F6 to switch windows.

Note: To exit Turbo Pascal and return to DOS, press Alt-X or go to the File
menu and select Quit (press Q or move the selection bar to Quit and press
Enten). If you select Quit without saving your current work file, the editor
will query whether you want to save it.

Using Hotkeys

There are a number of hotkeys (shortcuts) you can use. Hotkeys are keys set
up to perform a certain function. For example, as discussed previously,
pressing Alt and the first letter of a main menu command will take you to
the specified option’s menu or perform an action (see Figure 2.1 for a
graphic example); these are all considered hotkeys. The only other Alt/first-
letter command is Al-X, which is really just a shortcut for File/Quit.

In general, hotkeys work from anywhere; but there are two exceptions.

Chapter 2, Beginning Turbo Pascal 21

One is that hotkeys are disabled in error boxes and verify boxes. In these
cases, you are required to press the key specified.

The second exception is in the editor. If you use TINST to install editor key
commands, you can define hotkeys as edit commands. This means that
while you are in the editor, the hotkey will behave as an edit command,
and when you are not in the editor, the hotkey will work as originally
defined. For example, if you define Alt-R to be Pglp in the editor, it will not
run your programs from the editor. So you must somehow exit the editor
(F10 or F6) before Alt-R will run your program. This gives you the flexibility
to define the keys you prefer to use when editing. (Refer to Appendix F for
a complete discussion of redefining the editor keys.)

22 Turbo Pascal Owner’s Handbook

The Active Window _ (Active window is either Edit or Output
window; when active, it has a double bar
above it)

Output Window

>

E F10 from
either ESC
window I
Alt-E to go * F6 to go from an
from an Main Menu Bar (Fi0takes you here me?m level to Y
menu level to from anywhere) previous‘y active
Edit window window

Pull-down Menus
and Submenus

The initial oo
(highlighted) letter —
always selects

the menu item. —

Press Esc
to exita

From anywhere in Turbo Pascal, Alt plus the first letter of any main menu command (F, E, R, C, or O)
invokes that command, and F1 calls up context-sensitive help information. Press Alt and hold for
a list of Alt-key shortcuts.

Figure 2.1: A Sample Use of Hotkeys

Chapter 2, Beginning Turbo Pascal 23

Table 2.1 lists all the hotkeys you can use while in Turbo Pascal. Remember
that when these keys are pressed, their specific function is carried out no
matter where you are in the Turbo Pascal environment.

Table 2.1: Turbo Pascal’s Hotkeys

Key(s) Function

F1 Brings up a Help window with information about
our current position

F2 gaves the file currently in the editor

F3 Lets you load a file (an input box will appear)

F5 Zooms and unzooms the active window

F6 Switches to the active window

F9 Performs a “Make”

F10 Invokes the main menu

Alt-F1 Brings up the last Help screen you referenced

Alt-F3 Lets you pick a file to load

Alt-F5 Takes you to the saved screen

Alt-F9 Compiles your program

Alt-F10 Displays the version screen

Alt-C Takes you to the Compile menu

AltE Puts you in the editor

Alt-F Takes you to the File menu

Alt-0 Takes you to the Options menu

Alt-R Runs your program

Alt-X Quits Turbo Pascal and takes you to DOS

Ctrl-F6 Next window

In this book, we will refer to all menu items by an abbreviated name. The
abbreviated name for a given menu item is represented by the sequence of
letters you type to get to that item from the main menu. For example:

m At the main menu, the menu offering compile-time options related to
memory sizes is the Options/Compiler/Memory sizes; we'll tell you to
select O/C/Memory (press O CM).

m At the main menu, the menu for specifying the name of the Include di-
rectories is the Options/Directories/Include directories; we'll tell you to
select O/D/Include (press O D)).

If you feel like you need more help using the integrated environment, look
at Chapter 10. If you're comfortable with what you’ve learned to date, let’s
get on to actually writing some programs in Turbo Pascal.

24 Turbo Pascal Owner’s Handbook

Loading Turbo Pascal

If you're using a floppy disk drive, put your Turbo Pascal system disk into
drive A: and type the following command at the system prompt:

A>turbo

and press Enter. This runs the program TURBO.EXE, which brings up the
integrated environment, placing you in the main menu.

If you're using a hard disk, get into the Turbo Pascal subdirectory you
created in the previous chapter and run TURBO.EXE by typing the
following:

C>cd tp
C:\TP>turbo

You're now ready to write your first Turbo Pascal program.

Creating Your First Program

When you first get into Turbo Pascal, you're placed at the main menu.
Press E to get to the Edit window (or you can use the arrow keys and press
Enter when positioned at the Edit command). You’'ll be placed in the editor
with the cursor in the upper left-hand corner. You can start typing in the
following program, pressing Enter at the end of each line:
program MyFirst;
var

A,B : integer;

Ratio : real;
begin

Write(’Enter two numbers: ’);

Readln(A,B);

Ratio := A / B;

Writeln('The ratio is ’,Ratio)
end.

To move around in the Edit window, you can use the arrow keys. (If you're
unfamiliar with editing commands, Chapter 11 discusses all the editing
commands you have at your disposal.) Note the semicolon at the end of
most lines, as well as the period at the end of the last line—these are
necessary. If you make any errors, you can use the arrows keys on the
keyboard to move around; you can use the Backspace key to make deletions;
and you can simply type new text to make insertions.

Chapter 2, Beginning Turbo Pascal 25

Analyzing Your First Program

You can type in and run this program without ever knowing how it works,
but here’s a brief explanation. The first line gives the program the name
MyFirst. This is an optional statement, but it’s a good practice to include it.

The next three lines declare some variables, with the word var signaling the
start of variable declarations. A and B are declared to be of type integer;
that is, they can contain whole numbers, such as 52, —421, 0, 32283, and so
on. Ratio is declared to be of type real, which means it can hold fractional
numbers such as 423.328, -0.032, and so on (in addition to all integer values
as well).

The rest of the program contains the statements to be executed. The word
begin signals the start of the program. The statements are separated by
semicolons and contain instructions to write to the screen (Write and
Writeln), to read from the keyboard (Readln), and to perform calculations
(Ratio := A / B). Execution starts with the first instruction after begin and
continues until end. is encountered.

Saving Your First Program

Having entered your first program, it’s a good idea to save it to disk. To do
this, press F2 while you're still in the Edit window. By default, your file will
have been been given the name NONAME.PAS. You can rename it now by
typing in MYFIRST.PAS, and then pressing Enter. Any time you press F2
after that, your program will be saved as MYFIRST.PAS.

An alternate method of saving your program uses the File menu. Press F10
(or Ctrl-K D) to get out of the Edit window and invoke the main menu. Then
press F to bring up the File menu and S to select the Save command. Like
pressing F2, you’ll be queried whether you want to save this file as
NONAME.PAS. Again, enter in the name MYFIRST.PAS as your file name.

Compiling Your First Program

To compile your first program, get back to the main menu; if you're still in
the Edit window, press F10 (or Ctr-K D) to do so. Press C to bring up the
Compile menu, then press C again to select the Compile command from
that menu; otherwise press F9. (The Compile menu has several options; see
Chapter 10.)

26 Turbo Pascal Owner’s Handbook

Turbo Pascal compiles your program, changing it from Pascal (which you
can read) to 8086 machine code for the microprocessor (which your PC can
execute). You don’t see the 8086 machine code; it’s stored in memory
somewhere (or on disk).

When you start compiling, a box appears in the middle of the screen, giving
information about the compilation taking place. A message flashes across
the box to press Ctrl-Break to quit compilation. If compilation is successful,
the message Success: Press any key flashes across the box. The box
remains visible until you press a key. See how fast that went?

If an error occurs during compilation, Turbo Pascal stops, positions the
cursor at the point of error in the editor, and displays an error message at
the top of the editor. Press any key to clear the error message. (Note: The
keystroke you select is used by the editor.) Then make the correction, save
the updated file, compile it again.

Running Your First Program

After you've fixed any errors that might have occurred, go to the main
menu and select Run to run it.

The Output window is displayed full screen, and the message
Enter two numbers:

appears on the screen. Type in any two integers (whole numbers), with a
space between them, and press Enter. The following message will appear:

The ratio is
followed by the ratio of the first number to the second.
Once your program has finished running, the prompt
Press any key to return to Turbo Pascal

appears at the bottom of the screen. Notice that your program output is
displayed in the Output window so you can refer to it while looking at
your program.

If an error occurs while your program is executing, you'll get a message on
the screen that looks like this:

Runtime error <errnum> at <segment>:<offset>

where <errnum> is the appropriate error number (see Appendix I), and
<segment>:<offset> is the memory address where the error occurred.(If you
need this number later, look for it in the Ouptput window.) The rest of the
program is skipped over, and you'll be asked to press any key to return to

Chapter 2, Beginning Turbo Pascal 27

Turbo Pascal. Once you're there, Turbo Pascal automatically finds the
location of the error and displays it to you. If you need to find the error
location again, select the Find error command from the Compile menu.

When your program has finished executing, you press any key and the PC
returns control to Turbo Pascal, and you're back where you started. You
can now modify your program if so desired. If you select the Run com-
mand before you make any changes to your program, Turbo Pascal
immediately executes it, without recompiling.

Checking the Files You've Created

If you exit Turbo Pascal (select Quit from the File menu), you can see a
listing of the source (Pascal) file you've created. Press O for OS shell in the
File menu or, alternatively, press Q and type the following command at the
DOS prompt:

dir myfirst.*
You’ll get a listing that looks something like this:

MYFIRST PAS 171 7-10-87 11:07a
The file MYFIRST.PAS contains the Pascal program you just wrote.

(Note: You'll only see the executable file if you’ve changed your default
Destination setting in the Compile menu to Disk. You would then get a file
called MYFIRST.EXE, which would contain the machine code that Turbo
Pascal generated from your program. You could then execute that program
by typing MYFIRST followed by Enter at the DOS system prompt.)

Stepping Up: Your Second Program

Now you're going to write a second program, building upon the first. If
you've exited from Turbo Pascal, return to the integrated environment by
typing the following command at the prompt:

turbo myfirst.pas

This will place you directly into the editor. Now, modify your
MYFIRST.PAS program to look like this:

program MySecond;
var

A,B : integer;

Ratio : real;

Ans : char;
begin

28 Turbo Pascal Owner’s Handbook

repeat
Write(’Enter two numbers: ');
Readln(A,B);
if B = 0 then
Writeln(’Division by zero is not allowed.’)
else
begin
Ratio := A / B;
Writeln(’The ratio is ’,Ratio:8:2)

end;
Write(’Are you done? ’);
Readln (Ans)
until UpCase(Ans) = 'Y’
end.

You want to save this as a separate program, so go to the main menu (press
F10), select the File menu (press F), and then Write to (press W). When
prompted for a new name, type MYSECOND.PAS and press Enter. Exit
from the File menu by pressing Esc.

Now here’s a shortcut: To compile and run your second program, just press
R for Run (at the main menu). This tells Turbo Pascal to run your updated
program. And since you've made changes to the program, Turbo Pascal
knows to compile the program before running it.

Two major changes have been made to the program. First, most of the
program has been enclosed in the repeat..until loop. This causes all the
statements between repeat and until to be executed until the expression
following until is True. Also, a test is made to see if B has a value of zero or
not. If B has a value of zero, then the message

Division by zero is not allowed

appears; otherwise, the ratio is calculated and displayed. Note that the ratio
has a more readable format now; it looks like this:

The ratio is 2.43
rather than this:
The ratio is 2.4338539929E+00

If you enter Y to the Are you done? message, you'll get the Press any key
to return to Turbo Pascal message at the bottom of the screen.
Press any key and you’'ll be returned to Turbo’s main menu.

Programming Pizazz: Your Third Program

For the last program, let’s get a little fancy and dabble in graphics. This
program assumes that you have some type of graphics card or adapter for

Chapfter 2, Beginning Turbo Pascal 29

your system, and that you are currently set up to use that card or adapter. If
in doubt, try the program and see what happens. If an error message
appears, then you probably don’t have a graphics adapter (or you have one
that’s not supported by our Graph unit). In any case, pressing Enter twice
should get you back to the integrated environment.

At the main menu, press File/Load. Enter the program MYTHIRD.PAS at
the prompt, and you'll be placed in the editor. Here’s the program to enter:

program MyThird;
uses
Graph;
const
Start
Finish
Step
var
GraphDriver : integer; { Stores graphics driver number
GraphMode : integer; { Stores graphics mode for the driver
ErrorCode : integer; { Reports an error condition
X1,Y1,X2,Y2 : integer;
begin
GraphDriver := Detect; { Try to autodetect Graphics card
InitGraph (GraphDriver, GraphMode, '');
ErrorCode := GraphResult;
if ErrorCode <> grOk then { Error?
begin
Writeln(’'Graphics error: ', GraphErrorMsg(ErrorCode));
Writeln(’ (You probably don’’t have a graphics card!)’);
Writeln('Program aborted...’};
Halt (1);
end;

25;
175;
2;

— e~

1= Start;
Y2 := Finish;

1= Start;
while X1 <= Finish do

X2 := (Start+Finish) - X1;
Line (X1, Y1, X2, Y2);
X1 := X1 + Step;
end;
X1 := Start;
X2 := Finish;
1= Start;
while Y1 <= Finish do

Y2 := (Start+Finish) - Y1;
Line (X1, Y1, X2, Y2);
Y1l := Y1 + Step;
end;
OutText (’Press <RETURN> to quit:’);
Readln;
CloseGraph;
end. { MyThird }

30 Turbo Pascal Owner’s Handbook

After you finish entering this program, press F2 to save it and then C to
compile. If you have no errors during compilation, press A to run it. This
program produces a square with some wavy patterns along the edges.
When execution is over, you'll get the message Press any key to
return to Turbo Pascal at the bottom of your screen. Let’s look at
how it works.

The uses statement says that the program uses a unit named Graph. A unit
is a library, or collection, of subroutines (procedures and functions) and
other declarations. In this case, the unit Graph contains the routines you
want to use: InitGraph, Line, CloseGraph.

The section labeled const defines three numeric constants—Start, Finish,
and Step—that affect the size, location, and appearance of the square. By
changing their values, you can change how the square looks.

Warning: Don’t set Step to anything less than 1; if you do, the program will
get stuck in what is known as an infinite loop (a loop that circles endlessly).
You won’t be able to exit except by pressing Ctr-Alt-Del or by turning your
PC off.

The variables X1, Y1, X2, and Y2 hold the values of locations along
opposite sides of the square. The square itself is drawn by drawing a
straight line from X1,Y1 to X2,Y2. The coordinates are then changed, and
the next line drawn. The coordinates always start out in opposite corners:
The first line drawn goes from (25,25) to (175,175).

The program itself consists primarily of two loops. The first loop draws a
line from (25,25,) to (175,175). It then moves the X (horizontal) coordinates
by two, so that the next line goes from (27,25) to (173,175). This continues
until the loop draws a line from (175,25) to (25,175).

The program then goes into its second loop, which pursues a similar
course, changing the Y (vertical) coordinates by two each time. The routine
Line is from the Graph unit and draws a line between the endpoints given.

The final Readln statement causes the program to wait for you to press a
key before it goes back into text mode and exits to the integrated
environment.

The Turbo Pascal Compiler

You now know how to enter, compile, and run your programs. And
because of Turbo Pascal’s method of locating errors and high compilation
speed, the cycle of entering, testing, and correcting your program takes
little time. Let’s look at the different aspects of that cycle in more detail.

Chapter 2, Beginning Turbo Pascal 31

So, What’s a Compiler Anyway?

Your PC, like most microcomputers, has a central processing unit (CPU)
that is the workhorse of the machine. On your PC, the CPU is a single chip
from a “family” of chips: the iAPx86, a series of microprocessors designed
by Intel. The actual chip in your machine could be an 8088, an 8086, an
80186, an 80286, or even an 80386; it doesn’t matter, since the code Turbo
Pascal produces will run on all of them.

The iAPx86 family has a set of binary-coded instructions that all the chips
can execute. By giving the iAPx86 the right set of instructions, you can
make it put text on the screen, perform math, move text and data around,
draw pictures—in short, do all the things that you want it to do. These
instructions are known collectively as machine code.

Since machine code consists of pure binary information, it’s neither easy to
write nor easy to read. You can use a program known as an assembler to
write machine-level instructions in a form that you can read, which means
you would then be programming in assembly language. However, you still
have to understand how the iAPx86 microprocessors work. You'll also find
that to perform simple operations—such as printing out a number—often
requires a large number of instructions.

If you don’t want to deal with machine code or assembly language, you use
a high-level language such as Pascal. You can easily read and write
programs in Pascal because it is designed for humans, not computers. Still,
the PC understands only machine code. The Turbo Pascal compiler
translates (or compiles) your Pascal program into instructions that the
computer can understand. The compiler is just another program that moves
data around; in this case, it reads in your program text and writes out the
corresponding machine code.

What Gets Compiled?

You can only edit one Turbo Pascal program at a time, and under normal
circumstances that’s the only program that would be compiled. So when
you select the Compile, Make, or Build commands from the Compile
menu, or the Run command from the main menu, Turbo Pascal compiles
the program you’re currently editing, producing an .EXE file, a .TPU file, or
code in memory.

There are two exceptions to this rule. First, you can specify a primary file,
using the Primary file command in the Compile menu. Once you've done
that, then the primary file will be compiled for Makes and Builds, but the
edit file will be compiled for Compiles.

32 Turbo Pascal Owner’s Handbook

Second, you can ask Turbo Pascal to recompile any units that the program
you're compiling might use. You actually have two options here:

1. You can tell Turbo Pascal to recompile any units that have been changed
since the last time you compiled your program. This is called a “make.”

2. You can tell Turbo Pascal to recompile all units that your program uses.
This is called a “build.”

Where’s the Code?

When you use the Run command, Turbo Pascal (by default) saves the
resulting machine code in memory (RAM). This has several advantages.
First, the compiler runs much faster because it takes less time to write the
machine code out to RAM than out to a floppy or hard disk. Second, since
your program is already loaded into RAM, Turbo Pascal tells the PC to
execute your code. Third, the PC more easily returns to Turbo Pascal once
your program stops executing, since Turbo Pascal also stays in RAM the
whole time.

If compiling to RAM is so wonderful, why wouldn’t you want to do it
every time? Two reasons. First, because the resulting machine code is never
saved on disk, you could only run your programs from Turbo Pascal. There
would be no way to execute your program from MS-DOS, nor would you
be able to copy your program.

The second problem is memory—you might not have enough. This could
happen if your system doesn’t have much memory, if your program is very
large, or if your program uses a lot of memory for dynamic data allocation.

It's easy to produce an .EXE file (application) you can run from outside
Turbo Pascal: Select the Destination option from the Compile menu. This
option allows you to toggle between Disk and Memory for your desti-
nation. If you select Disk and then recompile, Turbo Pascal produces a code
file that you can run from MS-DOS by typing its name at the prompt.

The file produced has the same name as your source file but with the
extension .EXE; for example, the resulting code file of a program named
MYFIRST.PAS would be MYFIRST.EXE.

Regardless of whether you are compiling to disk or to memory, the Run
command still executes the resulting program once the compilation is done.

Chapter 2, Beginning Turbo Pascal 33

Compile, Make, and Build

The Compile menu has many options, three of which are compilation
commands: Compile, Make, and Build. All three take a source file and
produce an .EXE file (if Destination is set to Disk) or a .TPU file. Let’s look
at the differences between them.

The Compile command compiles the file in the editor.

The Make command checks to see whether you have specified a primary
file. Once it has determined that, it checks the time and date of the .PAS
and .TPU (precompiled unit files) files for every unit referenced in the uses
statement (if there is one) in the program being compiled. (A unit is a
collection of constants, data types, variables, and procedures and functions;
see Chapter 4 for more information.) If the .PAS file has been modified
since the corresponding .TPU file was created, then Turbo Pascal will
automatically recompile that unit’s .PAS file, creating a new .TPU file.
Turbo also recompiles any unit that uses a unit whose interface has
changed, whose include files have been changed, or any unit that links an
.OBJ file that has been modified since the unit’s .TPU file was built. In short,
Turbo Pascal ensures that all units your program depends on are up to
date. Once it’s done that, Turbo Pascal compiles and links your program,
producing an .EXE file.

The Build command acts just like the Make command but with one
important exception: It recompiles all units used by your program (and all
units used by those units, and so on), regardless of whether they are
current.

Here are some notes you should know about using Make and Build:

m If Make or Build cannot find the .PAS file corresponding to a given unit,
then the unit is considered valid. That way, if your program uses any of
the standard units, Turbo Pascal won't try to recompile them.

m When Turbo looks for a unit called unitname, it assumes that it is located
in a file called unitname. PAS. However, you can store the unit in a file
with another name by using the {$U othername} compiler directive in
your code. For example, if your program uses a unit called
UtilityRoutines, but you store it in a file called MYUTILS.PAS, then you
would put the following in your program (assuming that your program
also uses Dos and Crt):

uses Dos, Crt, {$U MYUTILS.PAS} UtilityRoutines;

Note that the $U directive comes right before the corresponding unit
name.

34 Turbo Pascal Owner’s Handbook

Compile-Time Errors

Like English, Pascal has rules of grammar you must follow. However,
unlike English, Pascal’s structure isn’t lenient enough to allow for slang or
poor syntax—the compiler won’t understand what you want. In Pascal,
when you don’t use the appropriate words or symbols in a statement or
when you organize them incorrectly, it results in a compile-time (syntax)
error.

What compile-time errors are you likely to get? Probably the most common
error novice Pascal programmers will get is Unknown identifier or
" ;" expected. Pascal requires that you declare all variables, data types,
constants, and subroutines—in short, all identifiers—before using them. If
you refer to an undeclared identifier or if you misspell it, you'll get this
error. Other common errors are unmatched begin..end pairs, assignment of
incompatible data types (such as assigning reals to integers), parameter
count and type mismatches in procedure and function calls, and so on.

Runtime Errors

In programming, sometimes just following the rules governing correct
syntax isn’t enough. For example, suppose you write a simple program that
prompts you for two integer values, adds them together, then prints out the
result. The entire program might look something like this:
program AddSum;
var

A,B,Sum : integer;
begin

Write('Enter two integer values: ’);

Readln(A,B);

Sum := A + B;

Writeln{’'The sum is ’,Sum,’.’)
end.

In response to the prompt, Enter two integer values:, say you type in real
numbers (numbers with decimal points), integer values that are too large,
or even character strings instead of numbers. What happens? You'll get a
message that looks something like this:

Runtime error 106 at 1F9C:0062

and your program will halt.

Chapter 2, Beginning Turbo Pascal 35

If you are running from within Turbo Pascal, you’ll get the Press any key to
return to Turbo Pascal prompt; after pressing any key, you'll be returned to
Turbo Pascal’s integrated environment, which will then automatically
locate the error for you in the Edit window.

What if the runtime error occurred in a unit used by your program? Turbo
Pascal can still locate the error if the unit was compiled with the $D+
compiler option. (This is the Debug info toggle in the Options/Compile
menu; it is on by default.)

In either case, Turbo Pascal loads that source code file into the editor and
positions the cursor at the appropriate spot. (You may be prompted to save
the current .edit file.) You can then make the appropriate changes,
recompile, and run it again.

If you need to relocate the error after having moved to another section of
your file, use the Ctr-Q W command. If you change files, you can find the
error again by loading the main program and using the Find error
command in the Compile menu. It will ask you for the segment and offset
values displayed when the error occurred, but will default to the last error
address that was found.

36 Turbo Pascal Owner’s Handbook

Programming in Turbo Pascal

The Pascal language was designed by Niklaus Wirth in the early 1970s to
teach programming. Because of that, it's particularly well-suited as a first
programming language. And if you’ve already programmed in other
languages, you'll find it easy to pick up Pascal.

To get you started on the road to Pascal programming, in this chapter we'll
teach you the basic elements of the Pascal language, and show you how to
use them in your programs. Of course, we won’t cover everything about
programming in Pascal in this chapter. So if you're a Pascal novice, your
best bet would be to pick up a copy of the Turbo Pascal Tutor, a complete
book-plus-disk tutorial about programming in Pascal and using version 4.0
of Turbo Pascal.

Before you work through this chapter, you might want to read Chapters 10
and 11 to learn how to use the menus and text editor in Turbo Pascal. You
should have installed Turbo Pascal (made a working copy of your Turbo
Pascal disk or copied the files onto your hard disk) as described in Chapter
1. Make sure that you've created the file TURBO.TP or installed the .EXE
file using TINST.EXE (see Appendix F); otherwise, Turbo Pascal won't
know the location of the standard units in TURBO.TPL and the
configuration file. (Unless you happen to own MS-DOS 3.x and you have
those files in the same directory as TURBO.EXE.)

Once you’ve done all that, get ready to learn about programming in Turbo
Pascal.

Chapter 3, Programming in Turbo Pascal 37

The Seven Basic Elements of Programming

Most programs are designed to solve a problem. They solve problems by
manipulating information or data. What you as the programmer have to do
is

m get the information into the program—input.
m have a place to keep it—data.
m give the right instructions to manipulate the data—operations.

mbe able to get the data back out of the program to the user (you,
usually)—output.

You can organize your instructions so that

m some are executed only when a specific condition (or set of conditions) is
True—conditional execution.

m others are repeated a number of times—loops.

m others are broken off into chunks that can be executed at different
locations in your program—subroutines.

We've just described the seven basic elements of programming: input, data,
operations, output, conditional execution, loops, and subroutines. This list is not
comprehensive, but it does describe those elements that programs (and
programming languages) usually have in common.

Many programming languages, including Pascal, have additional features
as well. And when you want to learn a new language quickly, you can find
out how that language implements these seven elements, then build from
there. Here’s a brief description of each element:

Input
This means reading values in from the keyboard, from a disk, or from an
1/0 port.

Data

These are constants, variables, and structures that contain numbers (integer
and real), text (characters and strings), or addresses (of variables and
structures).

Operations
These assign one value to another, combine values (add, divide, and so
forth), and compare values (equal, not equal, and so on).

Output
This means writing information to the screen, to a disk, or to an1/O port.

38 Turbo Pascal Owner’s Handbook

Conditional Execution

This refers to executing a set of instructions if a specified condition is True
(and skipping them or executing a different set if it is False) or if a data item
has a specified value or range of values.

Loops
These execute a set of instructions some fixed number of times, while some
condition is True or until some condition is True.

Subroutines
These are separately named sets of instructions that can be executed any-
where in the program just by referencing the name.

Now we’ll take a look at how to use these elements in Turbo Pascal.

Data Types

When you write a program, you’'re working with information that
generally falls into one of five basic types: integers, real numbers, characters
and strings, boolean, and pointers.

Integers are the whole numbers you learned to count with (1, 5, -21, and
752, for example).

Real numbers have fractional portions (3.14159) and exponents
(2.579x10%%). These are also sometimes known as floating-point numbers.

Characters are any of the letters of the alphabet, symbols, and the numbers
0-9. They can be used individually (g, Z, !, 3) or combined into character
strings ("This is only a test.”).

Boolean expressions have one of two possible values: True or False. They
are used in conditional expressions, which we'll discuss later.

Pointers hold the address of some location in the computer’s memory,
which in turn holds information.

Integer Data Types

Standard Pascal defines the data type integer as consisting of the values
ranging from —MaxInt through 0 to MaxInt, where MaxInt is the largest
possible integer value allowed by the compiler you're using. Turbo Pascal
supports type integer, defines MaxInt as equal to 32767, and allows the
value —32768 as well. A variable of type integer occupies 2 bytes.

Turbo Pascal also defines a long integer constant, MaxLongInt, with a value
of 2,147,483,647.

Chapter 3, Programming in Turbo Pascal 39

Turbo Pascal also supports four other integer data types, each of which has
a different range of values. Table 3.1 shows all five integer types.

Table 3.1: Integer Data Types

Type Range Size in Bytes
byte 0..255 1
shortint -128..127 1
integer —32768..32767 2
word 0..65535 2
longint —2147483648..2147483647 4

A final note: Turbo Pascal allows you to use hexadecimal (base-16) integer
values. To specify a constant value as hexadecimal, place a dollar sign ($) in
front of it; for example, $27 = 39 decimal.

Real Data Types

Standard Pascal defines the data type real as representing floating-point
values consisting of a significand (fractional portion) multiplied by an
exponent (power of 10). The number of digits (known as significant digits) in
the significand and the range of values of the exponent are compiler-
dependent. Turbo Pascal defines the type real as being 6 bytes in size, with
11 significant digits and an exponent range of 102 to 10%.

In addition, if you have an 8087 math coprocessor and enable the numeric
support compiler directive or environment option ({$N+}), Turbo Pascal
also supports the IEEE Standard 754 for binary floating-point arithmetic.
This includes the data types single, double, extended, and comp. Single
uses 4 bytes, with 7 significant digits and an exponent range of 10~ to 10%;
double uses 8 bytes, with 15 significant digits and an exponent range of
10 to 10%; and extended uses 10 bytes, with 19 significant digits and an
exponent range of 107! to 1041,

Table 3.2: Real Data Types

Type Range Significant Digits Size in Bytes
real 2.9 x 10E-39 .. 1.7 x 10E38 11-12 6
single 1.5 x 10E-45 .. 3.4 x 10E38 7-8 4
double 5.0 x 10E-324 .. 1.7 x 10E308 15-16 8
extended 1.9 x 10E-4951 .. 1.1 x 10E4932 19-20 10
comp* ~2E+63+1..2E+63-1 19-20 8

* comp only holds integer values.

40 Turbo Pascal Owner’s Handbook

Get into the Turbo Pascal editor and enter the following program:

program DoRatio;

var
A,B : integer;
Ratio : real;
begin
Write(’Enter two numbers: ');
Readln(A,B);

Ratio := A div B;
Writeln(’The ratio is ’,Ratio)
end.

Save this as DORATIO.PAS by bringing up the main menu and selecting
the File/Write to command. Then press R to compile and run the program.
Enter two values (such as 10 and 3) and note the result (3.000000).

You were probably expecting an answer of 3.3333333333, and instead you
received a 3. That’s because you used the div operator, which performs
integer division. Now go back and change the div statement to read as
follows:

Ratio := A / B;

Save the code (press F2), then compile and run. The result is now
3.3333333333, as you expected. Using the division operator (/) gives you
the most precise result—a real number.

Character and String Data Types

You’'ve learned how to store numbers in Pascal, now how about characters
and strings? Pascal offers a predefined data type char that is 1 byte in size
and holds exactly one character. Character constants are represented by
surrounding the character with single quotes (for example, ‘A’, ‘e’, 7", 2').
Note that 2" means the character 2, while 2 means the integer 2 (and 2.0
means the real number 2).

Here’s a modification of DORATIO that allows you to repeat it several
times (this also uses a repeat..until loop, which we'll discuss a little later):

program DoRatio;
var
A,B : integer;
Ratio : real;
Ans : char;
begin
repeat
Write(’Enter two numbers: ');
Readln(A,B);
Ratio := A / B;
Writeln(’The ratio is ’,Ratio);

Chapter 3, Programming in Turbo Pascal 41

Write('Do it again? (Y/N) ');
Readln (Ans)
until UpCase(Ans) = 'N’
end.

After calculating the ratio once, the program writes the message
Do it again? (Y/N)

and waits for you to type in a single character, followed by pressing Enter. If
you type in a lowercase n or an uppercase N, the until condition is met and
the loop ends; otherwise, the program goes back to the repeat statement
and starts over again. -

Note that n is not the same as N. This is because they have different ASCII
code values. Characters are represented by the ASCII code: Each character
has its own 8-bit number (characters take up 1 byte, remember). Appendix
E lists the ASCII codes for all characters.

Turbo Pascal gives you two additional ways of representing character
constants: with a caret (*) or a number symbol (#). First, the characters
with codes 0 through 31 are known as control characters (because historically
they were used to control teletype operations). They are referred to by their
abbreviations (CR for carriage return, LF for linefeed, ESC for escape, and
so on) or by the word Ctrl followed by a corresponding letter (meaning the
letter produced by adding 64 to the control code). For example, the control
character with ASCII code 7 is known as BEL or Ctrl-G. Turbo Pascal lets you
represent these characters using the caret (*), followed by the corre-
sponding letter (or character). Thus, AG is a legal representation in your
program of Cirl-G, and you could write statements such as Writeln("G),
causing your computer to beep at you. This method, however, only works
for the control characters.

You can also represent any character using the number symbol (#), followed
by the character’s ASCII code. Thus, #7 would be the same as "G, #65
would be the same as “A’, and #233 would represent one of the special IBM
PC graphics characters.

Defining a String

Individual characters are nice, but what about strings of characters? After
all, that’s how you will most often use them. Standard Pascal does not
support a separate string data type, but Turbo Pascal does. Take a look at
this program:

42 Turbo Pascal Owner’s Handbook

program Hello;
var
Name : string[30];
begin
Write(’What is your name? ');
Readln (Name) ;
Writeln(’Hello, ’,Name)
end.

This declares the variable Name to be of type string, with space set aside to
hold 30 characters. One more byte is set aside internally by Turbo Pascal to
hold the current length of the string. That way, no matter how long or short
the name is you enter at the prompt, that is exactly how much is printed
out in the Writeln statement. Unless, of course, you enter a name more than
30 characters long, in which case only the first 30 characters are used, and
the rest are ignored.

When you declare a string variable, you can specify how many characters
(up to 255) it can hold. Or you can declare a variable (or parameter) to be of
type string with no length mentioned, in which case the default size of 255
characters is assumed.

Turbo Pascal offers a number of predefined procedures and functions to
use with strings; they can be found in Chapter 27.

Boolean Data Type

Pascal’s predefined data type boolean has two possible values: True and
False. You can declare variables to be of type boolean, then assign the
variable either a True or False value or (more importantly) an expression
that resolves to one of those two values.

A Boolean expression is simply an expression that is either True or False. It is
made up of relational expressions, Boolean operators, Boolean variables,
and/or other Boolean expressions. For example, the following while
statement contains a Boolean expression:

while {Index <= Limit) and not Done do ...

The Boolean expression consists of everything between the keywords while
and do, and presumes that Done is a variable (or possibly a function) of
type boolean.

Chapter 3, Programming in Turbo Pascal 43

Pointer Data Type

All the data types we’ve discussed until now hold just that—data. A pointer
holds a different type of information—addresses. A pointer is a variable
that contains the address in memory (RAM) where some data is stored,
rather than the data itself. In other words, it points to the data, like an
address book or an index.

A pointer is usually (but not necesarily) specific to some other data type.
Consider the following declarations:

type
Buffer = string(255];
BufPtr = “Buffer;
var
Bufl : Buffer;
Buf2 : BufPtr;

The data type Buffer is now just another name for string[255], while the
type BufPtr defines a pointer to a Buffer. The variable Bufl is of type Buffer;
it takes up 256 bytes of memory. The variable Buf2 is of type BufPtr; it
contains a 32-bit address and only takes up 4 bytes of memory.

Where does Buf2 point to? Nowhere, currently. Before you can use BufPtr,
you need to set aside (allocate) some memory and store its address in Buf2.
You do that using the New procedure:

New (Buf2);

Since Buf2 points to the type Buffer, this statement creates a 256-byte buffer
somewhere in memory, then puts its address into Buf2.

How do you use the data pointed to by Buf2? Via the indirection operator
~. For example, suppose you want to store a string in both Bufl and the
buffer pointed to by Buf2. Here’s what the statements would look like:

Bufl := 'This string gets stored in Bufl.’
Buf2* := 'This string gets stored where Buf2 points.’

Note the difference between Buf2 and Buf2”. Buf2 refers to a 4-byte pointer
variable; Buf2” refers to a 256-byte string variable whose address is stored
in Buf2.

How do you free up the memory pointed to by Buf2? Using the Dispose
procedure. Dispose makes the memory available for other uses. After you
use Dispose on a pointer, it’s good practice to assign the (predefined) value
nil to that pointer. That lets you know that the pointer no longer points to
anything:

44 Turbo Pascal Owner’s Handbook

Dispose (Buf2) ;
Buf2 := nil;

Note that you assign nil to Buf2, not to Buf2".

This ends our brief discussion on pointers; a good Pascal text will tell you
how and when they’re useful.

Identifiers

Up until now, we’ve given names to variables without worrying about
what restrictions there might be. Let’s talk about those restrictions now.

The names you give to constants, data types, variables, and functions are
known as identifiers. Some of the identifiers used so far include

. integer, real, string Predefined data types
Hello,DoSum,DoRatio Main function of program
Name, A, B, Sum, Ratio User-defined variables
Write,Writeln,Readln Predeclared procedures

Turbo Pascal has a few rules about identifiers; here’s a quick summary:

m All identifiers must start with a letter (a...z or A...Z). The rest of an
identifier can consist of letters, underscores, and/or digits (0...9); no
other characters are allowed.

m Identifiers are case-insensitive, which means that lowercase letters (a...z)
are considered the same as uppercase letters (A...Z). For example, the
identifiers indx, Indx, and INDX are identical.

mIdentifiers can be of any length, but only the first 63 characters are
significant.

Operators

Once you get that data into the program (and into your variables), you'll
probably want to manipulate it somehow, using the operators available to
you. There are eight types: assignment, unary/binary, bitwise, relational,
logical, address, set, and string.

Most Pascal operators are binary, taking two operands; the rest are unary,
taking only one operand. Binary operators use the usual algebraic form, for
example, a + b. A unary operator always precedes its operand, for example,
-b.

Chapter 3, Programming in Turbo Pascal 45

In more complex expressions, rules of precedence clarify the order in which
operations are performed (see Table 3.3).

Table 3.3: Precedence of Operators

Operators Precedence Categories

@, not First (high) Unary operators

* /, div, mod, and, shl, shr Second Multiplying operators
+,-, OT, XOr Third Adding operators

=, <>, <, >, <=,>=,in Fourth (low) Relational operators

Operations with equal precedence are normally performed from left to
right, although the compiler may at times rearrange the operands to
generate optimum code.

Sequences of operators of the same precedence are evaluated from left to
right. Expressions within parentheses are evaluated first and independently
of preceding or succeeding operators.

Assignment Operators

The most basic operation is assignment, as in Ratio := A | B. In Pascal, the
assignment symbol is a colon followed by an equal sign (:=). In the example
given, the value of A / B on the right of the assignment symbol is assigned
to the variable Ratio on the left.

Unary and Binary Operators

Pascal supports the usual set of binary arithmetic operators—they work
with type integer and real values:

m Multiplication (*)

m Integer division (div)
m Real division (/)

m Modulus (mod)

m Addition (+)

m Subtraction (-)

Also, Turbo Pascal supports both unary minus (a + (-b)), which performs a
two’s complement evaluation, and unary plus (a + (+b)), which does nothing
at all but is there for completeness.

46 Turbo Pascal Owner’s Handbook

Bitwise Operators

For bit-level operations, Pascal has the following operators:

m shl (shift left) Shifts the bits left the indicated number of bits,
filling at the right with 0's.

m shr (shift right) Shifts the bits right the indicated number of bits,
filling at the left with 0’s.

m and Performs a logical and on each corresponding pair
of bits, returning 1 if both bits are 1, and 0
otherwise.

mor Performs a logical or on each corresponding pair of
bits, returning 0 if both bits are 0, and 1 otherwise.

u Xor Performs a logical, exclusive or on each

corresponding pair of bits, returning 1 if the two
bits are different from one another, and 0
otherwise.

m not Performs a logical complement on each bit,
changing each 0 to a 1, and vice versa.

These allow you to perform very low-level operations on type integer
values.

Relational Operators

Relational operators allow you to compare two values, yielding a Boolean
result of True or False. Here are the relational operators in Pascal:

> greater than

>= greater than or equal to
< less than

<= less than or equal to

= equal to

<> not equal to

in is a member of

So why would you want to know if something were True or False? Enter
the following program:
program TestGreater;
var
A,B : integer;
Test : boolean;

Chapter 3, Programming in Turbo Pascal 47

begin
Write(’Enter two numbers: ');
Readln(a,B);
Test := A > B;
Writeln(’A is greater than B’, Test);
end.

This will print True if A is greater than B or False if A is less than or equal
to B.

Logical Operators

There are four logical operators—and, xor, or, and not—which are similar
to but not identical with the bitwise operators. These logical operators work
with logical values (True and False), allowing you to combine relational
expressions, Boolean variables, and Boolean expressions.

They differ from the corresponding bitwise operators in this manner:

m Logical operators always produce a result of either True or False (a
Boolean value), while the bitwise operators do bit-by-bit operations on
type integer values.

m You cannot combine boolean and integer-type expressions with these
operators; in other words, the expression Flag and Indx is illegal if Flag is
of type boolean, and Indx is of type integer (or vice versa).

- mThe logical operators and and or will short-circuit by default; xor and not
will not. Suppose you have the expression expl and exp2. If expl is False,
then the entire expression is False, so exp2 will never be evaluated.
Likewise, given the expression expl or exp2, exp2 will never be evaluated
if expl is True. You can force full Boolean expression using the {$B+}
compiler directive or environment option.

Address Operators

Pascal supports two special address operators: the address-of operator (@)
and the indirection operator ().

The @ operator returns the address of a given variable; if Sum is a variable
of type integer, then @Sum is the address (memory location) of that
variable. Likewise, if ChrPtr is a pointer to type char, then ChrPtr” is the
character to which ChrPtr points.

48 Turbo Pascal Owner’s Handbook

Set Operators

Set operators perform according to the rules of set logic. The set operators
and operations include:

+ union

- difference

* multiplication
String Operators

The only string operation is the + operator, which is used to concatenate
two strings.

Output

It may seem funny to talk about output before input, but a program that
doesn’t output information isn’t of much use. That output usually takes the
form of information written to the screen (words and pictures), to a storage
device (floppy or hard disk), or to an I/O port (serial or printer ports).

The Writeln Procedure

You've already used the most common output function in Pascal, the
Writeln routine. The purpose of Writeln is to write information to the screen.
Its format is both simple and flexible:

Writeln(item,item,...);

where each item is something you want to print to the screen. item can be a
literal value, such as an integer or a real number (3, 42, -1732.3), a character
(a’, "Z’), a string ("Hello, world’), or a Boolean value (True). It can also be a
named constant, a variable, a dereferenced pointer, or a function call, as
long as it yields a value that is of type integer, real, char, string, or boolean.
All the items are printed on one line, in the order given. The cursor is then
moved to the start of the next line. If you wish to leave the cursor after the
last item on the same line, then use the statement

Write(item,item,...);

When the items in a Writeln statement are printed, blanks are not
automatically inserted; if you want spaces between items, you'll have to
put them there yourself, like this:

Chapter 3, Programming in Turbo Pascal 49

Writeln(item,’ ', item,’ ',...);
So, for example, the following statements produce the indicated output:

A:=1;,B:=2;C:=3;

Name := ’Frank’;

" Writeln(a,B,C); 123
Writeln(a,’ ’,B," ',C); 123
Writeln('Hi’,Name); HiFrank
Writeln(’Hi, ',Name,’.’); Hi, Frank.

You can also use field-width specifiers to define a field width for a given item.
The format for this is

Writeln(item:width,...);

where width is an integer expression (literal, constant, variable, function
call, or combination thereof) specifying the total width of the field in which
item is written. For example, consider the following code and resulting
output:

A :=10; B :=2; C := 100;

Writeln(a,B,C); 102100
Writeln(A:2,B:2,C:2); 10 2100
Writeln(A:3,B:3,C:3); - 10 2100
Writeln{(A,B:2,C:4); 10 2 100

Note that the item is padded with leading blanks on the left to make it
equal to the field width. The actual value is right-justified.

What if the field width is less than what is needed? In the second Writeln
statement given earlier, C has a field width of 2 but has a value of 100 and
needs a width of 3. As you can see by the output, Pascal simply expands
the width to the minimum size needed.

This method works for all allowable items: integers, reals, characters,
strings, and booleans. However, real numbers printed with the field-width
specifier (or with none at all) come out in exponential form:

X := 421.53;
Writeln(X); 4.2153000000E+02
Writeln(X:8); 4,2E+02

Because of this, Pascal allows you to append a second field-width specifier:
item:width:digits. This second value forces the real number to be printed out
in fixed-point format and tells how many digits to place after the decimal
point:

50 Turbo Pascal Owner’s Handbook

X := 421.53;

Writeln(X:6:2); 421.53

Writeln(X:8:2); 421.53

Writeln(X:8:4); 421.5300
Input

Standard Pascal has two basic input functions, Read and Readln, which are
used to read data from the keyboard. The general syntax is

Read(item, item,...);
or
Readln(item,item,...);

where each item is a variable of any integer, real, char, or string type.
Numbers must be separated from other values by spaces or by pressing
Enter.

Conditional Statements

There are times when you want to execute some portion of your program
when a given condition is True or not, or when a particular value of a given
expression is reached. Let’s look at how to do this in Pascal.

The If Statement

Look again at the if statement in the previous examples; note that it can
take the following generic format:

if expr
then statementl
else statement2

where expr is any Boolean expression (resolving to True or False), and
statementl and statement2 are legal Pascal statements. If expr is True, then
statement1 is executed; otherwise, statement?2 is executed.

We must explain two important points about if/then/else statements:

First, else statement2 is optional; in other words, this is a valid if statement:

if expr
then statementl

Chapter 3, Programming in Turbo Pascal 51

In this case, statement1 is executed if and only if expr is True. If expr is False,
then statement1 is skipped, and the program continues.

Second, what if you want to execute more than one statement if a particular
expression is True or False? You would use a compound statement. A
compound statement consists of the keyword begin, some number of
statements separated by semicolons (;), and the keyword end.

The ratio example uses a single statement for the if clause

if B = 0.0 then
Writeln(’Division by zero is not allowed.’)

and a compound statement for the else clause

else
begin

Ratio = A / B;

Writeln(’The ratio is ',Ratio)
end;

You might also notice that the body of each program you’ve written is
simply a compound statement followed by a period.

The Case Statement

This statement gives your program the power to choose between
alternatives without having to specify lots of if statements.

The case statement consists of an expression (the selector) and a list of
statements, each preceded by a case label of the same type as the selector. It
specifies that the one statement be executed whose case label is equal to the
current value of the selector. If none of the case labels contain the value of
the selector, then either no statement is executed or, optionally, the
statements following the reserved word else are executed. (else is an
extension to standard Pascal.)

A case label consists of any number of constants or subranges, separated by
commas and followed by a colon; for example:

case BirdSight of
'C', 'c’ : Curlews := Curlews + 1;

"H’, 'h' : Herons := Herons + 1;

'E', 'e' : Egrets := Egrets + 1;

T, 't’ : Terns := Terns + 1;
end; { case }

A subrange is written as two constants separated by the subrange delimiter
‘.. The constant type must match the selector type. The statement that

52 Turbo Pascal Owner’s Handbook

follows the case label is executed if the selector’s value equals one of the
constants or if it lies within one of the subranges.

Loops

Just as there are statements (or groups of statements) that you want to
execute conditionally, there are other statements that you may want to
execute repeatedly. This kind of construct is known as a loop.

There are three basic kinds of loops: the while loop, the repeat loop, and
the for loop. We'll cover them in that order.

The While Loop

You can use the while loop to test for something at the beginning of your
loop. Enter the following program:

program Hello;

var
Count : integer;
begin
Count := 1;
while Count <= 10 do
begin
Writeln(’Hello and goodbye!’);
Inc(Count)
end;
Writeln(’This is the end!’)
end.

The first thing that happens when you run this program is that Count is set
equal to 1, then you enter the while loop. This tests to see if Count is less
then or equal to 10. Count is, so the loop’s body (begin..end) is executed.
This prints the message Hello and goodbye! to the screen, then increments
Count by 1. Count is again tested, and the loop’s body is executed once
more. This continues as long as Count is less than or equal to 10 when it is
tested. Once Count reaches 11, the loop exits, and the string This is the
end! is printed on the screen.

The format of the while statement is
while expr do statement

where expr is a Boolean expression, and statement is either a single or a
compound statement.

Chapter 3, Programming in Turbo Pascal 53

The while loop evaluates expr. If it’s True, then statement is executed, and
expr is evaluated again. If expr is False, the while loop is finished and the
program continues.

The Repeat..Until Loop

The second loop is the repeat..until loop, which we’ve seen in the program
DORATIO.PAS:

program DoRatio;
var
A,B : integer;
Ratio : real;
Ans : char;
begin
repeat
Write(’Enter two numbers: ');
Readln(A,B);
Ratio := A / B;
Writeln(’The ratio is ’,Ratio);
Write(’Do it again? (Y/N) ');
Readln (Ans)
until UpCase(Ans) = 'N’
end.

As described before, this program repeats until you answer n or N to the
question Do it again? (Y/N). In other words, everything between repeat
and until is repeated until the expression following until is True.

Here's the generic format for the repeat..until loop:

repeat
statement;
statement;

statement
until expr

There are three major differences between the while loop and the repeat
loop. First, the statements in the repeat loop always execute at least once,
because the test on expr is not made until after the repeat occurs. By
contrast, the while loop will skip over its body if the expression is initially
False.

Next, the repeat loop executes until the expression is True, where the while
loop executes while the expression is True. This means that care must be
taken in translating from one type of loop to the other. For example, here’s
the HELLO program rewritten using a repeat loop:

54 Turbo Pascal Owner’s Handbook

program Hello;

var
Count : integer;
begin
Count :=1;
repeat
Writeln(’Hello and goodbye!’);
Inc(Count)

until Count > 10;
Writeln(’This is the end!’)
end.

Note that the test is now Count > 10, where for the while loop it was Count
<=10.

Finally, the repeat loop can hold multiple statements without using a
compound statement. Notice that you didn’t have to use begin..end in the
preceding program, but you did for the earlier version using a while loop.

Again, be careful to note that the repeat loop will always execute at least
once. A while loop may never execute depending on the expression.

The For Loop

The for loop is the one found in most major programming languages,
including Pascal. However, the Pascal version is simultaneously limited
and powerful.

Basically, you execute a set of statements some fixed number of times while
a variable (known as the index variable) steps through a range of values. For
example, modify the earlier HELLO program to read as follows:
program Hello;
var
Count : integer;
begin
for Count := 1 to 10 do
Writeln(’Hello and goodbye!’);
Writeln{’This is the end!’)
end.

When you run this program, you can see that the loop works the same as
the while and repeat loops already shown and, in fact, is precisely
equivalent to the while loop. Here’s the generic format of the for loop
statement:

for index := exprl to expr2 do statement

Chapter 3, Programming in Turbo Pascal 55

where index is a variable of some scalar type (any integer type, char,
boolean, any enumerated type), exprl and expr2 are expressions of some
type compatible with index, and statement is a single or compound
statement. Index is incremented by one after each time through the loop.

You can also decrement the index variable instead of incrementing it by
replacing the keyword to with the keyword downto.

The for loop is equivalent to the following code:

index := exprl;
while index <= expr2 do
begin
statement;
Inc(index)
end;

The main drawback of the for loop is that it only allows you to increment
or decrement by one. Its main advantages are conciseness and the ability to
use char and enumerated types in the range of values.

Procedures and Functions

You've learned how to execute code conditionally and iteratively. Now, what
if you want to perform the same set of instructions on different sets of data
or at different locations in your program? Well, you simply put those
statements into a subroutine, which you can then call as needed.

In Pascal, there are two types of subroutines: procedures and functions. The
main difference between the two is that a function returns a value and can
be used in expressions, like this:

X := 8in(A);
while a procedure is called to perform one or more tasks:
Writeln(’This is a test');

However, before you learn any more about procedures and functions, you
need to understand Pascal program structure.

Program Structure

In Standard Pascal, programs adhere to a rigid format:

56 Turbo Pascal Owner’s Handbook

program ProgName;
label

labels;
const

constant declarations;
type

data type definitions;
var

variable declarations;
procedures and functions;
begin

main bedy of program
end.

The five declaration sections—label, const, type, var, and procedures and
functions—do not all have to be in every program. But in standard Pascal,
if they do appear, they must be in that order, and each section can appear
only once. The declaration section is followed by any procedures and
functions you might have, then finally the main body of the program,
consisting of some number of statements.

Turbo Pascal gives you tremendous flexibility in your program structure.
All it requires is that your program statement (if you have one) be first and
that your main program body be last. Between those two, you can have as
many declaration sections as you want, in any order you want, with
procedures and functions freely mixed in. But things must be defined
before they are used, or else a compile-time error will occur.

Procedure and Function Structure

As mentioned earlier, procedures and functions—known collectively as
subprograms—appear anywhere before the main body of the program.
Procedures use this format:

procedure ProcName (parameters);
label

labels;
const

constant declarations;
type

data type definitions;
var

variable declarations;
procedures and functions;
begin

main body of procedure;
end;

Chapter 3, Programming in Turbo Pascal 57

Functions look just like procedures except that they start with a function
header and end with a data type for the return value of the function:

function FuncName (parameters) : data type;

As you can see, there are only two differences between this and regular
program structure: Procedures or functions start with a procedure or
function header instead of a program header, and they end with a semi-
colon instead of a period. A procedure or function can have its own
constants, data types, and variables, and even its own procedures and
functions. What's more, all these items can only be used with the procedure
or function in which they are declared.

Sample Program

Here’s a version of the DORATIO program that uses a procedure to get the
two values, then uses a function to calculate the ratio:

program DoRatio;
var
A,B : integer;
Ratio : real;
procedure GetData(var X,Y : integer);
begin
Write("Enter two numbers: ');
Readln(X,Y)
end;

function GetRatio(I,J : integer) : real;
begin

GetRatio := I/J
end;

begin
GetData(a,B);
Ratio := GetRatio(A,B);
Writeln(’The ratio is ',Ratio)
end.

This isn’t exactly an improvement on the original program, being both
larger and slower, but it does illustrate how procedures and functions
work.

When you compile and run this program, execution starts with the first
statement in the main body of the program: GetData (3, B). This type of
statement is known as a procedure call. Your program handles this call by
executing the statements in GetData, replacing X and Y (known as formal
parameters) with A and B (known as actual parameters). The keyword var in
front of X and Y in GetData’s procedure statement says that the actual

58 Turbo Pascal Owner’s Handbook

parameters must be variables and that the variable values can be changed
and passed back to the caller. So you can’t pass literals, constants,
expressions, and so on to GetData. Once GetData is finished, execution
returns to the main body of the program and continues with the statement
following the call to GetData.

That next statement is a function call to GetRatio. Note that there are some
key differences here. First, GetRatio returns a value;, which must then be
used somehow; in this case, it’s assigned to Ratio. Second, a value is
assigned to GetRatio in its main body; this is how a function determines
what value to return. Third, there is no var keyword in front of the formal
parameters I and J. This means that the actual parameters could be any two
integer expressions, such as Ratio := GetRatio(A + B,300); and that even if
you change the values of the formal parameters in the function body, the
new values will not be passed back to the caller. This, by the way, is not a
distinction between procedures and functions; you can use both types of
parameters with either type of subprogram.

Program Comments

Sometimes you want to insert notes into your program to remind you (or
inform someone else) of what certain variables mean, what certain
functions or statements do, and so on. These notes are known as comments.
Pascal, like most.other programming languages, lets you put as many
comments as you want into your program.

You can start a comment with the left curly brace ({), which signals to the
compiler to ignore everything until after it sees the right curly brace (}).

Comments can even extend across multiple lines, like this:

{ This is a long
comment, extending
over several lines. }

Pascal also allows an alternative form of comment, beginning with a left
parenthesis and an asterisk, (*, and ending with a right parenthesis and an
asterisk, *). This allows for a limited form of comment nesting, because a
comment beginning with (* ignores all curly braces, and vice versa.

Now that we’ve gotten you off to a fine start, we recommend that you buy
a good tutorial on Turbo Pascal (for instance, Turbo Pascal Tutor).

Chapter 3, Programming in Turbo Pascal 59

60

Turbo Pascal Owner’s Handbook

Units and Related Mysteries

In Chapter 3, you learned how to write standard Pascal programs. What
about non-standard programming—more specifically, PC-style program-
ming, with screen control, DOS calls, and graphics? To write such
programs, you have to understand units or understand the PC hardware
enough to do the work yourself. This chapter explains what a unit is, how
you use it, what predefined units are available, how to go about writing
your own units, and how to compile them.

What'’s a Unit, Anyway?

Turbo Pascal gives you access to a large number of predefined constants,
data types, variables, procedures, and functions. Some are specific to Turbo
Pascal; others are specific to the IBM PC (and compatibles) or to MS-DOS.
There are dozens of them, but you seldom use them all in a given program.
Because of this, they are split into related groups called units. You can then
use only the units your program needs.

A unit is a collection of constants, data types, variables, procedures, and
functions. Each unit is almost like a separate Pascal program: It can have a
main body that is called before your program starts and does whatever
initialization is necessary. In short, a unit is a library of declarations you can
pull into your program that allows your program to be split up and
separately compiled.

All the declarations within a unit are usually related to one another. For
example, the Crt unit contains all the declarations for screen-oriented
routines on your PC.

Chapter 4, Units and Related Mysteries 61

Turbo Pascal provides seven standard units for your use. Five of
them—System, Graph, Dos, Crt, and Printer—provide support for your
regular Turbo Pascal programs. The other two—Turbo3 and Graph3 are
designed to help maintain compatibility with programs and data files
created under version 3.0 of Turbo Pascal. All but Graph are stored in the
file TURBO.TPL. Some of these are explained more fully in Chapter 5, but
we'll look at each one here and explain its general function.

A Unit’s Structure

A unit provides a set of capabilities through procedures and functions—
with supporting constants, data types, and variables—but it hides how
those capabilities are actually implemented by separating the unit into two
sections: the interface and the implementation. When a program uses a unit,
all the unit’s declarations become available, as if they had been defined
within the program itself.

A unit’s structure is not unlike that of a program, but with some significant
differences. Here’s a unit, for example:
unit <identifier>;
interface
uses <list of units>; { Optional }
{ public declarations }
implementation
{ private declarations }
{ procedures and functions }
begin
{ initialization code }
end.

The unit header starts with the reserved word unit, followed by the unit’s
name (an identifier), exactly like a program has a name. The next item in a
unit is the keyword interface. This signals the start of the interface section
of the unit—the section visible to any other units or programs that use this
unit.

A unit can use other units by specifying them in a uses clause. If present,
the uses clause appears immediately after the keyword interface.

Interface Section
The interface portion—the “public” part—of a unit starts at the reserved

word interface, which appears after the unit header and ends when the
reserved word implementation is encountered. The interface determines

62 Turbo Pascal Owner’s Handbook

what is “visible” to any program (or other unit) using that unit; any
program using the unit has access to these “visible” items.

In the unit interface, you can declare constants, data types, variables,
procedures, and functions. As with a program, these can be arranged in
any order, and sections can repeat themselves (for example, type ... var ...
<procs> ... const ... type ... const ... var).

The procedures and functions visible to any program using the unit are
declared here, but their actual bodies—implementations—are found in the
implementation section. forward declarations are neither necessary nor
allowed. The bodies of all the regular procedures and functions are held in
the implementation section after all the procedure and function headers
have been listed in the interface section.

Implementation Section

The implementation section—the “private” part—starts at the reserved
word implementation. Everything declared in the interface portion is
visible in the implementation: constants, types, variables, procedures, and
functions. Furthermore, the implementation can have additional
declarations of its own, although these are not visible to any programs
using the unit. The program doesn’t know they exist and can’t reference or
call them. However, these hidden items can be (and usually are) used by
the “visible” procedures and functions—those routines whose headers
appear in the interface section.

If any procedures have been declared external, one or more {$L filename}
directive(s) should appear anywhere in the source file before the final end
of the unit.

The normal procedures and functions declared in the interface—those that
are not inline—must reappear in the implementation. The
procedure/function header that appears in the implementation should
either be identical to that which appears in the interface or should be in the
short form. For the short form, type in the keyword (procedure or
function), followed by the routine’s name (identifier). The routine will then
contain all its local declarations (labels, constants, types, variables, and
nested procedures and functions), followed by the main body of the routine
itself. Say the following declarations appear in the interface of your unit:

procedure ISwap(var V1,V2 : integer);
function IMax(V1,V2 : integer) : integer;

The implementation could look like this:

Chapter 4, Units and Related Mysteries 63

procedure ISwap;
var

Temp : integer;
begin

Temp := V1; V1 := V2; V2 := Temp
end; { of proc ISwap }
function IMax(V1,V2 : integer) : integer;
begin

if V1 > V2 then

IMax := V1

else IMax := V2

end; { of func IMax }

Routines local to the implementation (that is, not declared in the interface
section) must have their complete procedure/function header intact.

Initialization Section

The entire implementation portion of the unit is normally bracketed within
the reserved words implementation and end. However, if you put the
reserved word begin before end, with statements between the two, the
resulting compound statement—looking very much like the main body of a
program—Dbecomes the initialization section of the unit.

The initialization section is where you initialize any data structures
(variables) that the unit uses or makes available (through the interface) to
the program using it. You can use it to open files for the program to use
later. For example, the standard unit Printer uses its initialization section to
make all the calls to open (for output) the text file Lst, which you can then
use in your program’s Write and Writeln statements.

When a program using that unit is executed, the unit’s initialization section
is called before the program’s main body is run. If the program uses more
than one unit, each unit’s initialization section is called (in the order
specified in the program’s uses statement) before the program’s main body
is executed.

How Are Units Used?

The units your program uses have already been compiled, stored as
machine code not Pascal source code; they are not Include files. Even the
interface section is stored in the special binary symbol table format that
Turbo Pascal uses. Furthermore, certain standard units are stored in a
special file (TURBO.TPL) and are automatically loaded into memory along
with Turbo Pascal itself.

64 Turbo Pascal Owner’s Handbook

As a result, using a unit or several units adds very little time (typically less -
than a second) to the length of your program’s compilation. If the units are
being loaded in from a separate disk file, a few additional seconds may be
required because of the time it takes to read from the disk.

As stated earlier, to use a specific unit or collection of units, you must place
a uses clause at the start of your program, followed by a list of the unit
names you want to use, separated by commas:

program MyProg;
uses thisUnit,thatUnit,theOtherUnit;

When the compiler sees this uses clause, it adds the interface information in
each unit to the symbol table and links the machine code that is the
implementation to the program itself.

The ordering of units in the uses clause is not important. If thisUnit uses
thatUnit or vice versa, you can declare them in either order, and the
compiler will determine which unit must be linked into MyProg first. In
fact, if thisUnit uses thatUnit but MyProg doesn’t need to directly call any of
the routines in thatUnit, you can “hide” the routines in thatUnit by omitting
it from the uses clause:

unit thisUnit;
uses thatUnit;

program MyProg;
uses thisUnit, theOtherUnit;

In this example, thisUnit can call any of the routines in thatUnit, and
MyProg can call any of the routines in thisUnit or theOtherUnit. MyProg
cannot, however, call any of the routines in thatUnit because thatUnit does
not appear in MyProg’s uses clause.

If you don’t put a uses clause in your program, Turbo Pascal links in the
System standard unit anyway. This unit provides some of the standard
Pascal routines as well as a number of Turbo Pascal-specific routines.

Referencing Unit Declarations

Once you include a unit in your program, all the constants, data types,
variables, procedures, and functions declared in that unit’s interface
become available to you. For example, suppose the following unit existed:

Chapter 4, Units and Related Mysteries 65

unit MyStuff;
interface
const
MyValue
type
MyStars
var
MyWord : string[20];
procedure SetMyWord(Star : MyStars);
function TheAnswer : integer;

915;

(Deneb, Antares, Betelgeuse) ;

What you see here is the unit’s interface, the portion that is visible to (and
used by) your program. Given this, you might write the following
program:

program TestStuff;
uses MyStuff;

var
I : integer;
AStar : MyStars;
begin

Writeln(MyValue);
AStar := Deneb;
SetMyWord (AStar) ;
Writeln(MyWoxd);
I := TheAnswer;
Writeln(I)

end.

Now that you have included the statement uses MyStuff in your program,
you can refer to all the identifiers declared in the interface section in the
interface of MyStuff (MyWord, MyValue, and so on). However, consider the
following situation:

program TestStuff;
uses MyStuff;

const

MyValue = 22;
var

I : integer;

AStar : MyStars;
function TheAnswer : integer;
begin

TheAnswer := -1
end;

begin
Writeln (MyValue);
AStar := Deneb;
SetMyWord (AStar) ;
Writeln (MyWord);
I := TheAnswer;
Writeln(I)

end.

66 Turbo Pascal Owner’s Handbook

This program redefines some of the identifiers declared in MyStuff. It will
compile and run, but will use its own definitions: for MyValue and The-
Answer, since those were declared more recently than the ones in MyStuff.

You're probably wondering whether there’s some way in this situation to
still refer to the identifiers in MyStuff? Yes, preface each one with the
identifier MyStuff and a period (.). For example, here’s yet another version
of the earlier program:

program TestStuff;
uses MyStuff;

const

MyValue = 22;
var

I : integer;

AStar : MyStars;
function TheAnswer : integer;
begin

TheAnswer := -1;
end;

begin
Writeln(MyStuff.MyValue);
AStar := Deneb;
SetMyWord (AStar) ;
Writeln (MyWord);
I := MyStuff.TheAnswer
Writeln(I)

end.

This program will give you the same answers as the first one, even though
you've redefined MyValue and TheAnswer. Indeed, it would have been.
perfectly legal (although rather wordy) to write the first program as
follows: v

program TestStuff;
uses MyStuff;

var

I : integer;

AStar : MyStuff.MyStars;
begin

Writeln (MyStuff.MyValue);
AStar := MyStuff.Deneb;
MyStuff.SetMyWord (AStar) ;
Writeln(MyStuff.MyWord);
I := MyStuff.TheAnswer;
Writeln(I)

end.

Note that you can preface any identifier—constant, data type, variable, or
subprogram—with the unit name.

Chapter 4, Units and Related Mysteries 67

‘TURBO.TPL

The file TURBO.TPL contains all the standard units except Graph: System,
Crt, Dos, Printer, Turbo3, and Graph3. These are the units loaded into
memory with Turbo Pascal; they’re always readily available to you. You
will normally keep the file TURBO.TPL in the same directory as
TURBO.EXE (or TPC.EXE). However, you can keep it somewhere else, as
long as that “somewhere else” is.defined as the Turbo directory. That's
done using TINST.EXE to install the Turbo directory directly in the
TURBO.EXE file.

System Units used: none
System contains all the standard and built-in procedures and functions of
Turbo Pascal. Every Turbo Pascal routine that is not part of standard Pascal
and that is not in one of the other units is in System. This unit is always
linked into every program.

Dos Units used: none

Dos defines numerous Pascal procedures and functions that are equivalent
to the most commonly used DOS calls, such as GetTime, SetTime, DiskSize,
and so on. It also defines two low-level routines, MsDos and Intr, which
allow you to directly invoke any MS-DOS call or system interrupt. Registers
is the data type for the parameter to MsDos and Intr. Some other constants
and data types are also defined.

Crt Units used: none

Crt provides a set of PC-specific declarations for input and output:
constants, variables, and routines. You can use these to manipulate your
text screen (do windowing, direct cursor addressing, text color and
background). You can also do “raw” input from the keyboard and control
the PC’s sound chip. This unit provides a lot of routines that were standard
in version 3.0.

68 Turbo Pascal Owner’s Handbook

Printer Units used: none

Printer declares the text-file variable Lst and connects it to a device driver
that (you guessed it) allows you to send standard Pascal output to the
printer using Write and Writeln. For example, once you include Printer in
your program, you could do the following;:

Write(Lst,’The sum of ’,A:4,’ and /,B:4,’ is ');
C:=A+ B;
Writeln(Lst,C:8);

Graph3 Units used: Crt

Graph3 supports the full set of graphics routines—basic, advanced, and
turtlegraphics—from version 3.0. They are identical in name, parameters,
and function to those in version 3.0.

Turbo3 Units used: Crt

This unit contains two variables and several procedures that are no longer
supported by Turbo Pascal. These include the predefined file variable Kbd,
the Boolean variable CBreak, and the original integer versions of MemAuwil
and MaxAvail (which return paragraphs free instead of bytes free, as do the
current versions).

Graph Units used: none

The Graph unit is not built into TURBO.TPL, but instead resides on the
same disk with the .BGI and .CHR support files. Place GRAPH.TPU in the
current directory or use the unit directory to specify the full path to
GRAPH.TPU.

Graph supplies a set of fast, powerful graphics routines that allow you to
make full use of the graphics capabilities of your PC. It implements the
device-independent Borland graphics handler, allowing support of CGA,
EGA, Hercules, AT &T 400, MCGA, 3270 PC, and VGA graphics.

Now that you've been introduced to units, let’s see about writing your
own.

Chapter 4, Units and Related Mysteries 69

Writing Your Own Units

Say you’ve written a unit called IntLib, stored it in a file called INTLIB.PAS,
and compiled it to disk; the resulting code file will be called INTLIB.TPU.
To use it in your program, you must include a uses statement to tell the
compiler you're using that unit. Your program might look like this:

program MyProg;
uses IntLib;

Note that Turbo Pascal expects the unit code file to have the same name (up
to eight characters) of the unit itself. If your unit name is MyUtilities, then
Turbo is going to look for a file called MYUTILIT.PAS. You can override
that assumption with the $U compiler directive. This directive is passed the
name of the .PAS file and must appear just before the unit’s name in the
uses statement. For example, if your program uses Dos, Crt, and
MuyUtilities, and the last one is stored in a file called UTIL.PAS, then you
would write

uses Dos, Crt, {SU UTIL.PAS} MyUtilities;

Compiling a Unit

You compile a unit exactly like you’d compile a program: Write it using the
editor and select the Compile/ Compile command (or press Alt-C). However,
instead of creating an .EXE file, Turbo Pascal will create a .TPU (Turbo
Pascal Unit) file. You can then leave this file as is or merge it into
TURBO.TPL using TPUMOVER.EXE (see Chapter 7).

In any case, you probably want to move your .TPU files (along with their
source) to the unit directory you specified with the O/D/Unit directories
command. That way, you can reference those files without having to give a
{$U} directive (The Unit directories command lets you give multiple
directories for the compiler to search for in unit files.)

You can only have one unit in a given source file; compilation stops when
the final end statement is encountered.

An Example

Okay, now let’s write a small unit. We'll call it IntLib and put in two simple
integer routines—a procedure and a function:

70 Turbo Pascal Owner’s Handbook

unit IntLib;
interface
procedure ISwap(var I,J : integer);
function IMax(I,J : integer) : integer;
implementation
procedure ISwap;
var
Temp : integer;
begin
Temp :=I; I :=J; J := Temp
end; { of proc ISwap }

function IMax;
begin
if I > J then
IMax := 1
else IMax := J
end; { of func IMax }
end. { of unit IntLib }

Type this in, save it as the file INTLIB.PAS, then compile it to disk. The
resulting unit code file is INTLIB.TPU. Move it to your unit directory
(whatever that might happen to be).

This next program uses the unit IntLib:

program IntTest;
uses IntLib;
var
A,B : integer;
begin
Write(’Enter two integer values: ');
Readln(A,B);
ISwap(A,B);
Writeln(’a = ’,A," B = ’,B);
Writeln{’The max is ’,IMax(A,B));
end. { of program IntTest }

Congratulations! You've just created your first unit!

Units and Large Programs

Up until now, you’ve probably thought of units only as libraries—-
collections of useful routines to be shared by several programs. Another
function of a unit, however, is to break up a large program into modules.

Two aspects of Turbo Pascal make this modular functionality of units work:
(1) its tremendous speed in compiling and linking and (2) its ability to
manage several code files simultaneously, such as a program and several
units.

Chapter 4, Units and Related Mysteries 71

Typically, a large program is divided into units that group procedures by
their function. For instance, an editor application could be divided into
initialization, printing, reading and writing files, formatting, and so on.
Also, there could be a “global” unit—one used by all other units, as well as
the main program—that defines global constants, data types, variables,
procedures, and functions.

The skeleton of a large program might look like this:

program Editor;

uses
Dos,Crt,Printer { Standard units from TURBO.TPL }
EditGlobals, { User-written units }
EditInit,
EditPrint,
EditRead, EditWrite,
EditFormat;

{ Program’s declarations, procedures, and functions }
begin { main program }
end. { of program Editor }

Note that the units in this program could either be in TURBO.TPL or in
their own individual .TPU files. If the latter is true, then Turbo Pascal will
manage your project for you. This means when you recompile the program
Editor, Turbo Pascal will check the last update for each of the .TPU files and
recompile them if necessary.

Another reason to use units in large programs has to do with code segment
limitations. The 8086 (and related) processors limit the size of a given
chunk, or segment, of code to 64K. This means that the main program and
any given segment cannot exceed a 64K size. Turbo Pascal handles this by
making each unit a separate code segment. Your upper limit is the amount
of memory the machine and operating system can support—640K on most
PCs. Without units, you're limited to 64K of code for your program. (See
Chapter 6, “Project Management,” for more information about how to deal
with large programs.)

TPUMOVER

You don’t have to use a {$U <filename>} directive when using the standard
runtime units (System, Dos, and so on). That’s because all those units have
been moved into the Turbo Pascal unit file (TURBO.TPL). When you
compile, those units are always ready to be used when you want them.

Suppose you want to add a well-designed and thoroughly debugged unit
to the standard units so that it’s automatically loaded into memory when

72 Turbo Pascal Owner’s Handbook

you run the compiler. Is there any way to move it into the Turbo Pascal
standard unit library file? Yes, by using the TPUMOVER.EXE utility.

You can also use TPUMOVER to remove units from the Turbo Pascal
standard unit library file, reducing its size and the amount of memory it
takes up when loaded. (More details on using TPUMOVER can be found in
Chapter 7.)

As you've seen, it’s really quite simple to write your own units. A well-
designed, well-implemented unit simplifies program development; you
solve the problems only once, not for each new program. Best of all, a unit
provides a clean, simple mechanism for writing very large programs.

Chapfter 4, Units and Related Mysteries 73

74

Turbo Pascal Owner’s Handbook

Getting the Most from Your PC

Now that you've learned about Pascal and units, it’s time to see how to put
it all together. :

In this chapter, you'll start off learning about writing “textbook” programs
in Turbo Pascal, then move on to some of the extensions that Turbo Pascal
offers over standard Pascal. After that, we’ll look at the standard units,
- giving some sample programs of how to use the routines in them. Finally,
we’ll touch on how to access machine and assembly language in your
Pascal program.

Writing Textbook Programs

Turbo Pascal supports most aspects of ANSI standard Pascal (refer to
Appendix B, “Comparing Turbo Pascal 4.0 With ANSI Pascal”). As a result,
it’s easy for you to use Turbo Pascal with most Pascal textbooks. All you
need to do is type in the program found in your textbook, compile it, and
run it.

The only major difference between Turbo Pascal and standard Pascal you
are likely to encounter is in reading from and writing to typed files. Turbo
Pascal does not support the original Get and Put procedures, nor does it
support file window variables. It does fully support (as defined in standard
Pascal) Read and Write for typed file I/O.

Another area of clarification also deals with file I/O. Standard Pascal does
not define any mechanism for associating a file variable (of any type) with
an actual disk file. As a result, every Pascal compiler has its own means of

Chapter 5, Getting the Most from Your PC 75

performing this task. In Turbo Pascal, you use the Assign procedure, which
has the format

Assign(filevar,filestr);

where filevar is a file variable of any type, and filestr any string expression
containing the name of a disk file (including its path name if desired or
necessary).

Turbo Pascal Extensions

Turbo Pascal offers a large number of built-in extensions to standard
Pascal. Here’s a quick look at some of them.

Data-Type Extensions

Turbo Pascal 4.0 has some significant data-type extensions to standard
Pascal. These consist of new integer and floating-point data types that give
you greater control over variable precision and size.

In addition to the standard type integer (-32768..32767), Turbo Pascal
supports shortint (-128..127), byte (0..255), word (0..65535), and longint
(-2147483648..2147483647). This variety of integer types allows you to
precisely define the variables and data structures you need, rather than
having to fit everything into the type integer.

Turbo Pascal 4.0 now has an option to support the 8087/80287/80387 math
coprocessor. When you enable the {$N+} compiler directive or environment
option, you then have access to four new data types: single (4-byte real),
double (8-byte real), extended (10-byte real), and comp (8-byte integer). All
floating-point operations are compiled as calls to the 8087 coprocessor, so
that a program compiled using the {$N+} option can run only on a
computer equipped with that processor.

Built-In Procedures and Functions

Besides supporting all the defined procedures and functions in standard
Pascal, Turbo Pascal 4.0 offers many additional built-in procedures and .
functions for your use. These are documented in Chapter 24. Also, note that
many of the procedures and functions that were “standard” in version 3.0
are now in the various units found in TURBO.TPL.

76 Turbo Pascal Owner’s Handbook

Using MS-DOS Calls

One of the units found in TURBO.TPL is Dos, which contains definitions,
procedures, and functions designed to help you make greater use of MS-
DOS. To use this unit, place the statement

uses Dos;

at the start of your program, after your program statement but before any
of your declarations. If you are using more than this one unit, you can list
all the units in this uses statement, separated by commas.

Let’s start by writing a directory program. Here’s the initial main body:

program GetDirectory;
uses Dos;
var
Path : string;
SRec : SearchRec;

{ Rest of program }
begin
repeat
Write(’Enter path name: ’); Readln(Path);
if Path <> '’ then
begin
FindFirst (Path,AnyFile, SRec) ;
while DosError = 0 do
begin
PutSRec(SRec) ;
FindNext (SRec)
end;
Writeln
end
until Path = '
end. { of proc GetDirectory }

Note that the uses Dos statement is after the program statement, and also
that the global variables Path and SRec are declared. In this program
fragment, you are using five items from Dos: SearchRec, AnyFile, FindFirst,
DosError, and FindNext.

The procedure PutSRec is user-defined; it’ll go right where the Rest of
program comment is. Let’s look at that procedure:

procedure PutSRec(SRec : SearchRec);
var
DT : DateTime;
begin
with SRec do
begin
PutName (Name) ;

Chapter 5, Getting the Most from Your PC 77

if (Attr and Directory) <> 0 then
Write(’ <DIR>')

else

begin
Write(Size:10,’ "
UnpackTime (Time,DT) ;
PutDateTime (DT)

end;

Writeln

end
end; { of proc PutSRec }

Again, you borrow from Dos: the data types SearchRec and DateTime, the
constant Directory, and the procedure UnpackTime. Name, Attr, Size, and

Time are all fields of SRec.

PutName and PutDateTime are both user-defined procedures. They, and
their support routines, all go in front of PutSRec and look like this:

procedure PutlLead(I : integer);
begin
if T >= 10 then
Write(I:2)
else Write('0’,I:1)
end; { of proc PutLead }

procedure PutDateTime (DT : DateTime);
var
H : integer;
Ch : char;
begin
with DT do
begin
Write (Month:2,’'-");
PutLead(Day); Write(’'-');

PutLead(Year mod 100); Write(’ ');

if Hour >= 12 then
Ch := 'p’
else Ch := 'a’;
H := Hour mod 12;
if H = 0 then
H :=12;
Write(H:2,’:');
PutLead (Min); Write(Ch);
end
end; { of proc PutDateTime }

procedure PutName (Name : string);
var

DotPos : integer;

Ext : string(3];
begin

DotPos := Pos(’.’,Name);

78

Turbo Pascal Owner’s Handbook

if DotPos <> 0 then
begin
Ext := Copy(Name,DotPos+l,Length (Name)-DotPos) ;
Delete (Name,DotPos,1+Length (Name)-DotPos)
end
else Ext :='’;
Write (Name,’ ’:(10-Length(Name)),Ext,’ ’:(5-Length(Ext)))
end;

PutLead writes out an integer with a leading zero if it’s less than 10.
PutDateTime prints out the date and time in the same format used by the
Dir command. Likewise, PutName writes out the file (or directory) name
using a Dir-like format.

This is just a small sample of what Turbo Pascal allows you to do with the
Dos unit. In addition to the file and clock manipulation routines, Dos offers
two general routines that let you make any DOS call or system software
interrupt: MsDos and Intr. Full details on this unit are found in Chapter 24.

Screen Routines

Another unit, Crt, gives you full control over your text display. It contains
many of the routines offered in version 3.0, but adds a number of new,
powerful routines. As with other features of Turbo Pascal, the emphasis is
on flexibility and user control. For example, you can now enable (or dis-
able) program abort on Ctrl-Break, end-of-file recognition of Ctrl-Z, direct
output to video RAM (as opposed to using BIOS calls), and limiting direct
video RAM output to the period during horizontal retrace to avoid “snow”
onscreen.

To show you what you can do with the Crt unit, here’s a simple “editing”
program that brings up a window on the screen and lets you type in text,
including some very simple editing commands. The main body of the pro-
gram looks like this:

program Edit;

uses Crt;
const
X1 = 50;
Yl = 5;
X2 =175;
Y2 = 22;
var
Ch : char;
{ More code goes here }
begin
CheckBreak := False;
CheckEOF = False;
DirectVideo := True;

Chapter 5, Getting the Most from Your PC 79

SetWindow (X1, Y1,X2,Y2);
GoToXY(1,1);
repeat
Ch := ReadKey;
if Ch <> #0 then
HandleKey (Ch)
else HandleFuncKey (ReadKey)

until Ch = *Z; { End of file character }
Window (1,1, 80,25);
ClrScr

end.

First, you turn off CheckBreak and CheckEOF and turn on DirectVideo. You
then set up your own window (SetWindow is a user-defined routine) and
enter an input/output loop. This consists of reading in a character straight
from the keyboard (using ReadKey), checking to see if it’s a function key or
not, then handling it appropriately. Note that if ReadKey returns a #0 (NUL
character), it means the user has pressed a function key, and the next call to
ReadKey gives the scan code. This loop continues until the user types a Cirl-
Z, at which point the program resets the screen.

The SetWindow procedure (which follows) uses the special line-drawing
characters of the IBM PC to draw a border around the requested window
area. It clears that window and then sets the cursor in the upper left-hand
corner of the actual text area.

Note that once you've called Window, GotoXY (1, 1) always goes to the
upper left screen. Here's the code:

procedure SetWindow(X1,Y1,X2,Y2 : integer);

const
UpLeftCorner = #201;
HorzBar = $205;
UpRightCorner = #187;
VertBar = $186;
LowLeftCorner = #200;
LowRightCorner = #188;

var
I : integer;

begin
Window (X1-1,Y1-1,X2+1,Y241);
ClrScr;

Window(1,1,80,25);

GotoXY (X1-1,Y1-1);

Write (UpLeftCorner);

for I := X1 to X2 do
Write(HorzBar);

Write (UpRightCorner);

for I := Y1 to Y2 do

begin
GoToXY (X1-1,I); Write(VertBar);
GoToXY (X2+1,1I); Write (VertBar)

end;

80 Turbo Pascal Owner’s Handbook

GoToXY (X1-1,Y2+1);
Write (LowLeftCorner);
for I := X1 to X2 do
Write(HorzBar);
Write (LowRightCorner);
Window (X1,Y1,%2,Y2)
end; { of proc SetWindow }

The last two procedures called in the main program are HandleKey and
HandleFuncKey. These execute an action based on the character value or
scan code. Note that only the arrow keys are used for HandleFuncKey, and
the user-defined routines SetXY and Condition limit the movement of the
cursor. These routines appear before the main body of the program.

procedure HandleKey(Ch : char);

const
BEL = #7;
BS = #8;
CR = #13;
SP = #32;
begin
if Ch = BS

then Write(BS, SP,BS)
else if Ch = CR
then Writeln
else if Ch >= SP
then Write(Ch)
else if Ch <> "2
then Write(BEL)
end; { of proc HandleKey }

procedure Condition(Low : integer; var X : integer; High : integer);

begin
if X < Low then
X := Low
else if X > High then
X := High
end; { of proc Condition }

procedure SetXY (NewX,NewY : integer);
begin
Condition{l,NewX, (1+X2-X1});
Condition(l,NewY, (14Y2-Y1));
GotoXY (NewX, NewY)
end; { of proc SetXY }

procedure HandleFuncKey(Ch : char);

const
UpArrow = #72;
LeftArrow = #75;
RightArrow = #77;
DownArrow = #80;

Chapter 5, Getting the Most from Your PC

{ Bell

{ Backspace
{ Enter

{ Space bar

— e e e

{ Enter }

81

begin
case Ch of
UpArrow : SetXY (WhereX,WhereY-1);
LeftArrow : SetXY(WhereX-1,WhereY);
RightArrow : SetXY(WhereX+l,WhereY);
DownArrow : SetXY (WhereX,WhereY¥+1l)
end
end; { of proc HandleFuncKey }

Again, this is only a sample of what you can achieve using the Crt unit. For
full documentation, see Chapter 24.

Graphics Routines

Turbo Pascal 4.0 contains the Graph unit, which supports the new Borland
device-independent standard for graphics devices; Graph implements more .
than 50 graphics procedures and functions.

For an example of the use of graphics, take a look at the sample program
with Graph in Chapter 2. Also, several example programs are given on your
distribution disks; full documentation can be found in Chapter 24.

Getting Down to Assembly Language

Turbo Pascal is‘a powerful, flexible language, but for those times when you
want to perform very low-level operations with direct control of the
machine’s hardware, the answer is to write them in assembly language.
That way you can give small, precise ‘instructions to the computer’s
microprocessor. Turbo Pascal, of course, allows you to do just that, and in
fact gives you three ways to do it: inline statements, inline directives, and
external procedures and functions. Full details on these methods are given
in Chapter 26, but here’s a quick discussion of each.

The Inline Statement

The inline statement lets you put machine instructions into your program.
You can use the inline statement anywhere you can use a regular
statement—in the main body of your program or inside any procedure or
function.

The format of the inline statement is

inline(item/item/item/.../item);

82 Turbo Pascal Owner’s Handbook

where item is an expression that resolves to either-an 8-bit (byte) or 16-bit
(word) value. Each item is composed of the following:

m An optional size specifier, either < or >. < means only the least-significant
byte of the expression’s value is in use; > means the expression is always
treated as a word, with 0 in the most-significant byte if necessary.

m A constant or a variable identifier. A constant can be either decimal or
hexadecimal—the latter is usually more convenient—and resolves to
either a byte or word value. A variable identifier is the name of any
global variable, typed constant, or local variable, and resolves to the
offset (within the appropriate segment) of that variable.

m Zero or more offset specifiers, which consist of either + or — followed by a
constant.

See Chapter 26 for more details and examples.

The Inline Directive

Turbo Pascal 4.0 allows a new use of the inline keyword: to create inline
directives. These are like procedures and functions that consist entirely of
an inline statement; they have no local declarations, and no begin..end
block. They consist only of the procedure (or function) header, followed by
an inline statement:

procedure procname (parms);
inline(item/.../item);

function funcname(parms) : ftype;
inline(item/.../item);

You can then use these procedures and functions as you would any others.
However, you are not actually calling subroutines. Instead, the Turbo
Pascal compiler replaces each call with the given inline code. Because of
that, inline directives are typically not very large. See Chapter 26 for more
details and examples.

External Procedures and Functions

Yes, Turbo Pascal now lets you link in external subroutines written in 8086
assembly language. The full details, including how to pass parameters and
return function values, can be found in Chapter 26. Here’s a quick
explanation of how to call assembly language routines.

Chapter 5, Getting the Most from Your PC 83

Before using an external procedure or function in a program, you must
define it by writing its procedure or function header, followed by the
keyword external:

procedure LowToUp(var Str : string); external;
function RotLeft (var L : longint; D : integer) : longint; external;

Note that there is no body to the procedure or function, only the header
statement.

The procedure/function headers go wherever a regular procedure or
function can go. If they’re in a program, you can place them anywhere (as
long as you define them before you use them). If they’re in a unit, they can
go either in the interface (if you want the user to be able to call them) or in
the implementation (if you don’t) section.

Next, write the appropriate routines using an assembler that generates
standard .OB]J files. Two assemblers that Turbo Pascal works with are A86
and MASM. (A86 is a shareware assembler available from Eric Isaacson of
Bloomington, Indiana. A86 is downloadable from CompuServe and many
bulletin board systems. MASM is Microsoft’s macro-assembler.) Refer to
Chapter 26 for details on how Turbo Pascal passes parameters to external
routines, and how external functions should pass values back.

Finally, you must tell the compiler what file to link to it, using the {$L}
‘compiler directive. If you had assembled your assembly language routines
into a file called MYSTUFF.OB]J, then you'd put the following directive
somewhere in your program:

{$L MyStuff}

This directive can appear anywhere before the begin of the main body of
your program or the begin of the initialization section in your unit (if
you're writing your own unit).

When you compile your program, Turbo Pascal goes to MYSTUFF.OB],
copies the machine code into your application file, and creates the
necessary links.

This chapter gave you an idea of the kinds of programs you can write for
the IBM PC; what you actually decide to write is limited only by your
system memory and your imagination. There are more examples on the
distribution disks and in Chapter 27.

84 Turbo Pascal Owner’s Handbook

Project Management

So far, you've learned how to write Turbo Pascal programs, how to use the
predefined units, and how to write your own units. At this point, your
program has the capability of becoming large and separated into multiple
source files. How do you manage such a program? This chapter suggests
how to organize your program into units, how to take advantage of the
built-in Make and Build options, how to use the stand-alone Make utility,
how to use conditional compilation within a source code file, and how to
optimize your code for speed.

Program Organization

Turbo Pascal 4.0 allows you to divide your program into code segments.
Your main program is a single code segment, which means that after
compilation, it can have no more than 64K of machine code. However, you
can exceed this limit by breaking your program up into units. Each unit can
also contain up to 64K of machine code when compiled. The question is
how should you organize your program into units?

The first step is to collect all your global definitions—constants, data types,
and variables—into a single unit; let’s call it MyGlobals. This is necessary if
your other units reference those definitions. Unlike include files, units can’t
“see” any definitions made in your main program; they can only see what's
in the interface section of their own unit and other units they use. Your
units can use MyGlobals and thus reference all your global declarations.

A second possible unit is MyUtils. In this unit you could collect all the
utility routines used by the rest of your program. These would have to be

Chapter 6, Project Management 85

routines that don’t depend on any others (except possibly other routines in
Myutils).

Beyond that, you should collect procedures and functions into logical
groups. In each group, you'll often find a few procedures and functions
that are called by the rest of the program, and then several (or many)
procedures/functions that are called by those few. A group like that makes
a wonderful unit. Here’s how to convert it over:

m Copy all those procedures and functions into a separate file and delete
them from your main program.

1 Open that file for editing.
m Type the following lines in front of those procedures and functions:

unit unitname;
interface

uses MyGlobals;
implementation

where unitname is the name of your unit (and also the name of the file
you're editing).

m Type end. at the very end of the file.

m Into the space between interface and implementation, copy the proce-
dure and function headers of those routines called by the rest of the
program. Those headers are simply the first line of each routine, the one
that starts with procedure (or function).

mIf this unit needs to use any others, type their names (separated by
commas) between MyGlobals and the semicolon in the uses statement.
m Compile the unit you've created.

m Go back to your main program and add the unit’s name to the uses
statement at the start of the program.

Ideally, you want your program organized so that when you are working
on a particular aspect of it, you are modifying and recompiling a single
segment (unit or main program). This minimizes compile time; more
importantly, it lets you work with smaller, more manageable chunks of
code.

Initialization

Remember in all this that each unit can (optionally) have its own
initialization code. This code is automatically executed when the program
is first loaded. If your program uses several units, then the initialization
code for each unit is executed. The order of execution follows in which the

86 Turbo Pascal Owner’s Handbook

units are listed in your program’s uses statement; thus, if your program
had the statement

uses MyGlobals,MyUtils,EditLib,GraphLib;

then the initialization section (if any) of MyGlobals would be called first,
followed by that of MyUtils, then EditLib, then GraphLib.

To create an initialization section for a unit, put the keyword begin above
the end that ends the implementation section. This defines the initialization
section of your unit, much as the begin..end pair defines the main body of
a program, a procedure, or a function. You can then put any Pascal code
you want in here. It can reference everything declared in that unit, in both
the public (interface) and private (implementation) sections; it can also
reference anything from the interface portions of any units that this unit
uses.

The Build and Make Options

Turbo Pascal has an important feature to aid you in project management: a
built-in Make utility. To discuss its significance, let's look at the previous
example again.

Suppose you have a program, MYAPP.PAS, which uses four units:
MyGlobals, MyUtils, EditLib, and GraphLib. Those four units are contained in
the four text files MYGLOBAL.PAS, MYUTILS.PAS, EDITLIB.PAS, and
GRAPHLIB.PAS, respectively. Furthermore, MyUtils uses MyGlobals, and
EditLib and GraphLib use both MyGlobals and MyUtils.

When you compile MYAPP.PAS, it looks for the files MYGLOBAL.TPU,
MYUTILS.TPU, EDITLIB.TPU, and GRAPHLIB.TPU, loads them into
memory, links them with the code produced by compiling MYAPP.PAS,
and writes everything out to MYAPP.EXE (if you're compiling to disk). So
far, so good.

Suppose now you make some modifications to EDITLIB.PAS. In order to
recreate MYAPP.EXE, you need to recompile both EDITLIB.PAS and
MYAPP.PAS. A little tedious, but no big problem.

Now, let’s suppose you modify the interface section of MYGLOBAL.PAS.
To update MYAPP.EXE, you have to recompile all four units, as well as
MYAPP.PAS. That means five separate compilations each time you make a
change to MYGLOBAL.PAS—which could be enough to discourage you
from using units to any great extent. But wait...

Chapter 6, Project Management 87

The Make Option

As you probably guessed, Turbo Pascal offers a solution. By using the
Make option (in the Compile menu), you can get Turbo Pascal to do all the
work for you. The process is simple: After making any changes to any units
and/or the main program, just recompile the main program.

Turbo Pascal then makes three kinds of checks.

m First, it checks and compares the date and time of the .TPU file for each
unit used by the main program against the unit’s corresponding .PAS
file. If the .PAS file has been modified since the .TPU file was created,
Turbo Pascal recompiles the .PAS file, creating an updated .TPU file. So,
as in the first example, if you modified EDITLIB.PAS and then
recompiled MYAPP.PAS (using the Make option), Turbo Pascal would
automatically recompile EDITLIB.PAS before compiling MYAPP.PAS.

m The second check is to see if you changed the interface portion of the
modified unit. If you did, then Turbo Pascal recompiles all other units
using that unit.

Like in the second example, if you modified the interface portion of
MYGLOBAL.PAS and then recompiled MYAPP.PAS, Turbo Pascal
would automatically recompile MYGLOBAL.PAS, MYUTILS.PAS,
EDITLIB.PAS, and GRAPHLIB.PAS (in that order) before compiling
MYAPP.PAS. However, if you only modified the implementation
portion, then the other dependent units don’t need to be recompiled,
since (as far as they’re concerned) you didn’t change that unit.

mThe third check is to see if you changed any Include or .OBJ files
(containing assembly language routines) used by any units. If a given
.TPU file is older than any of the Include or .OB]J files it links in, then that
unit is recompiled. That way, if you modify and assemble some routines
used by a unit, that unit is automatically recompiled the next time you
compile a program using that unit.

To use the Make option under the integrated environment, either select the
Make command from the Compile menu, or press F9. To invoke it with the
command-line compiler, use the option /M. Note that the Make option
does not apply to any units found in TURBO.TPL.

The Build Option

The Build option is a special case of the Make option. When you compile a
program using Build, it automatically recompiles all units used by that

88 Turbo Pascal Owner’s Handbook

program (except, of course, those units in TURBO.TPL). This is an easy way
of ensuring everything is up to date.

To use the Build option under the integrated environment, select the Build
command from the Compile menu. To invoke it with the command-line
compiler, use the option /B.

The Stand-Alone Make Utility

Turbo Pascal places a great deal of power and flexibility at your fingertips.
You can use it to manage large, complex programs that are built from
numerous unit, source, and object files. And it can automatically perform a
Build or a Make operation, recompiling units as needed. Understandably,
though, Turbo Pascal has no mechanism for recreating .OB]J files from
assembly code routines (.ASM files) that have changed. To do that, you
need to use a separate assembler. The question then becomes, how do you
keep your .ASM and .OB] files updated?

The answer is simple: You use the MAKE utility that’s included on the disk.
MAKE is an intelligent program manager that—given the proper
instructions—does all the work necessary to keep your program up to date.
In fact, MAKE can do far more than that. It can make backups, pull files out
of different subdirectories, and even automatically run your programs
should the data files that they use be modified. As you use MAKE more
and more, you'll see new and different ways it can help you to manage
your program development.

MAKE is a stand-alone utility; it is different from the Make and Build
options that are part of both the integrated environment and the
command-line compiler. Full documentation of MAKE is given in
Appendix D, but we'll give an example here to show how you might use it.

A Quick Example

Suppose you're writing some programs to help you display information
about nearby star systems. You have one program—GETSTARS.PAS—that
reads in a text file listing star systems, does some processing on it, then
produces a binary data file with the resulting information in it.

GETSTARS.PAS uses three units: STARDEFS.TPU, which contains the
global definitions; STARLIB.TPU, which has certain utility routines; and
STARPROC.TPU, which does the bulk of the processing. The source code
for these units are found in STARDEFS.PAS, STARLIB.PAS, and
STARPROC.PAS, respectively.

Chapter 6, Project Management 89

The next issue is dependencies. STARDEFS.PAS doesn’t use any other
- units; STARLIB.PAS uses STARDEFS; STARPROC.PAS uses STARDEFS
and STARLIB; and GETSTARS.PAS uses STARDEFS, STARLIB, and
STARPROC.

Given that, to produce GETSTARS.EXE you would simply compile
GETSTARS.PAS. Turbo Pascal (in either the integrated environment or the
command-line version) would recompile the units as needed.

Suppose now that you convert a number of the routines in STARLIB.PAS
into assembly language, creating the files SLIB1.ASM and SLIB2.ASM.
When you assemble these files, you create SLIB1.OB] and SLIB2.OBJ. Each
time STARLIB.PAS is compiled, it links in those .OB]J files. And, in fact,
Turbo Pascal is smart enough to recompile STARLIB.PAS if STARLIB.TPU
is older than either of those .OB]J files.

However, what if either .OB]J file is older than the .ASM file upon which it
depends? That means that the particular .ASM file needs to be re-

assembled. Turbo Pascal can’t assemble those files for you, so what do you
do?

You create a make file and let MAKE .do the work for you. A make file
consists of dependencies and commands. The dependencies tell MAKE which
files a given file depends upon; the commands tell MAKE how to create
- that given file from the other ones.

Creating a Makefile

Your makefile for this project might look like this:

getstars.exe: getstars.pas stardefs.pas starlib.pas slibl.asm \
slib2.asm slibl.obj slib2.o0bj
tpc getstars /m

slibl.obj: slibl.asm
A86 'slibl.asm slibl.obj

slib2.obj: slib2.asm
A86 slib2.asm slib2.obj

OkKay, so this looks a bit cryptic. Here’s an explanation:

s The first two lines tell MAKE that GETSTARS.EXE depends on three
Pascal, two assembly language, and two .OB]J files (the backslash at the
end of line 1 tells- MAKE to ignore the line break and continue the
dependency definition on the next line).

90 Turbo Pascal Owner’s Handbook

m The third line tells MAKE how to build a new GETSTARS.EXE. Notice
that it simply invokes the command-line compiler on GETSTARS.PAS
and uses the built-in Turbo Pascal Make facility (/M option).

m The next two lines (ignoring the blank line) tell MAKE that SLIB1.OB]
depends on SLIB1.ASM and show MAKE how to build a new SLIB1.OB].

m Similarly, the last two lines define the dependencies (only one file,
actually) and MAKE procedures for the file SLIB2.OBJ.

Using MAKE

Let’s suppose you’ve created this file using the Turbo Pascal integrated
environment editor (or any other ASCII editor) and saved it as the file
STARS.MAK. You would then use it by issuing the command

make -fstars.mak

where ~f£ is an option telling MAKE which file to use. MAKE works from
the bottom of the file to the top. First, it checks to see if SLIB2.0BJ is older
than SLIB2.ASM. If it is, then MAKE issues the command

A86 SLIB2.asm SLIB2.obj

which assembles SLIB2.ASM, creating a new version of SLIB2.0OB]J. It then
makes the same check on SLIB1.ASM and issues the same command if
needed. Finally, it checks all of the dependencies for GETSTARS.EXE and, if
necessary, issues the command

tpc getstars /m

The /M option tells Turbo Pascal to use its own internal MAKE routines,
which will then resolve all unit dependencies, including recompiling
STARLIB.PAS if either SLIB1.OBJ or SLIB2.OBJ is newer than
STARLIB.TPU.

This is only a simple example using MAKE; more complete documentation
can be found in Appendix D.

Conditional Compilation

To make your job easier, Turbo Pascal version 4.0 offers conditional
compilation. This means that you can now decide what portions of your
program to compile based on options or defined symbols.

The conditional directives are similar in format to the compiler directives
that you're accustomed to; in other words, they take the format

Chapter 6. Project Management 91

{$directive arg}

where directive is the directive (such as DEFINE, IFDEF, and so on), and arg
is the argument, if any. Note that there must be a separator (blank, tab)
between directive and arg. Table 6.1 lists all the conditional directives, with
their meanings.

Table 6.1: Summary of Compiler Directives

{$DEFINE symbol} Defines symbol for other directives

{SUNDEF symbol} Removes definition of symbol

{$IFDEF symbol} Compiles following code if symbol is defined
{$IFNDEF symbol} Compiles following code if symbol is not defined

{$IFOPT x+ Compiles following code if directive x is enabled
{$IFOPT x-} Compiles following code if directive x is disabled
{$ELSE} Compiles following code if previous IFxxx is not True
{SENDIF} Marks end of IFxxx or ELSE section

The DEFINE and UNDEF Directives

The IFDEF and IFNDEF directives test to see if a given symbol is defined.
These symbols are defined using the DEFINE directive and undefined
UNDEEF directives. (You can also define symbols on the command line and
in the integrated environment.)

To define a symbol, insert the directive
{$DEFINE symbol}

into your program. symbol follows the usual rules for identifiers as far as
length, characters allowed, and other specifications. For example, you
might write

{SDEFINE debug}

This defines the symbol debug for the remainder of the program, or until the
statement

{SUNDEF debug}

is encountered. As you might guess, UNDEF “undefines” a symbol. If the
symbol isn’t defined, then UNDEF has no effect at all.

Defining at the Command Line

If you're using the command-line version of Turbo Pascal (TPC.EXE), you

can define conditional symbols on the command line itself. TPC accepts a
/D option, followed by a list of symbols separated by semicolons:

92 Turbo Pascal Owner’s Handbook

tpc myprog /Ddebug;test;dump

This would define the symbols debug, test, and dump for the program
MYPROG.PAS. Note that the /D option is cumulative, so that the following
command line is equivalent to the previous one:

tpc myprog /Ddebug /Dtest /Ddump

Defining in the Integrated Environment

Conditional symbols can be defined by using the O/C/Conditional defines
option. Multiple symbols can be defined by entering them in the input box,
separated by semicolons. The syntax is the same as that of the command-
line version.

Predefined Symbols

In addition to any symbols you define, you also can test certain symbols
that Turbo Pascal has defined. Table 6.2 lists these symbols; let’s look at
each in a little more detail.

Table 6.2: Predefined Conditional Symbols

VER40 Always defined (TP 4.1 will define VER41, etc.)
MSDOS Always defined

CPU86 Always defined

CPU87 Defined if an 8087 is present at compile time

The VER40 Symbol

The symbol VER40 is always defined (at least for Turbo Pascal version 4.0).
Each successive version will have a corresponding predefined symbol; for
example, version 4.1 would have VER41 defined, version 5.0 would have
VER50 defined, and so on. This will allow you to create source code files
that can use future enhancements while maintaining compatibility with
version 4.0.

The MSDOS and CPU86 Symbols

These symbols are always defined (at least for Turbo Pascal version 4.0
running under MS-DOS). The MSDOS symbol indicates you are compiling
under the MS-DOS operating system. The CPU86 symbol means you are

Chapter 6, Project Management 93

compiling on a computer using an Intel iAPx86 (8088, 8086, 80186, 80286,
80386) processor.

As future versions of Turbo Pascal for other operating systems and
processors become available, they will have similar symbols indicating
which operating system and/or processor is being used. Using these
symbols, you can create a single source code file for more than one
operating system or hardware configuration.

The CPUS87 Symbol

Turbo Pascal 4.0 supports floating-point operations in two ways: hardware
and software. If you have an 80x87 math coprocessor installed in your
computer system, you can use the IEEE floating-point types (single, double,
extended, comp), and Turbo Pascal will produce direct calls to the math
chip. If you don’t, then you can use the floating-point type real (6 bytes in
size), and Turbo Pascal will support all your operations with software
routines. You can use the $N directive to indicate which you wish to use.

When you load the Turbo Pascal compiler, it checks to see if an 80x87 chip
is installed. If it is, then the CPU87 symbol is defined; otherwise, it's un-
defined. You might then have the following code at the start of your
program:

{SIFDEF CPU87} { If there’s an 80x87 present }
{SN+} { Then use the inline 8087 code }
{$ELSE}

{$N-} { Else use the software library }
{SENDIF}

You can use a similar construct to define variables, or you could use the
{$IFOPT N+} directive to handle those.

The IFxxx, ELSE, and ENDIF Symbols

The idea behind conditional directives is that you want to select some
amount of source code to be compiled if a particular symbol is (or is not)
defined or if a particular option is (or is not) enabled. The general format
follows:

{SIFxxx}
source code
{SENDIF}

where IFxxx is IFDEF, IFNDEF, or IFOPT, followed by the appropriate
argument, and source code is any amount of Turbo Pascal source code. If the

94 Turbo Pascal Owner’s Handbook

expression in the IFxxx directive is True, then source code is compiled;
otherwise, it is ignored as if it had been commented out of your program.

Quite often you have alternate chunks of source code. If the expression is
True, you want one chunk compiled, and if it's False, you want the other
one compiled. Turbo Pascal lets you do this with the $ELSE directive:

{$IFxxx)

source code A
{$ELSE}

source code B
{SENDIF}

If the expression in IFxxx is True, then source code A is compiled, else source
code B is compiled.

Note that all IFxxx directives must be completed within the same source
file, which means they cannot start in one source file and end in another.
However, an IFxxx directive can encompass an include file:

{SIFxxx}

{$1 filel.pas}
{SELSE}

{$I file2.pas}
{SENDIF}

That way, you can select alternate include files based on some condition.

You can nest IFxxx..ENDIF constructs so that you can have something like
this:

{$IFxxx} { First IF directive }
iéinxx} { Second IF directive }
iééNDIF} { Terminates second IF directive }
iééNDIF} { Terminates first IF directive }

Let’s look at each of the IFxxx directives in more detail.

The IFDEF and IFNDEF Directives

You've learned how to define a symbol, and also that there are some pre-
defined symbols. The IFDEF and IFNDEF directives let you conditionally
compile code based on whether those symbols are defined or undefined.
You saw this example earlier:

{SIFDEF CPU87} { If there's an 80x87 present }

Chapter 6, Project Management 95

{SN+} { Then use the inline 8087 code }
{$ELSE})

{$N-} { Else use the software library }
{SENDIF}

By putting this in your program, you can automatically select the $N option
if an 8087 math coprocessor is present when your program is compiled.
That’s an important point: This is a compile-time option. If there is an 8087
coprocessor in your machine when you compile, then your program will be
compiled with the $N+ compiler directive or environment option, selecting
direct calls to the 8087 and allowing you to use only the IEEE floating-point
types. Otherwise, it will be compiled with the $N- directive or option, using
the software floating-point package and allowing you to use only the usual
Turbo Pascal 6-byte real data type. If you compile this program on a
machine with an 8087, you can’t run the resulting .EXE file on a machine
without an 8087.

Another typical use of the IFDEF and IFNDEF directives is debugging. For
example, you could put the following code at the start of each procedure:

{SIFDEF debug}

Writeln(’Now entering proc name’);

Readln; { Pause until user presses Enter }
{SENDIF}

where proc name is the name of that procedure. If you put the following
directive at the start of your program:

{$DEFINE debug}

and compile your program, then those statements will be included at the
start of each procedure. If you remove the DEFINE directive or follow it
with an UNDEF directive, then those statements at the start of each
procedure won’t be compiled. In a similar fashion, you may have sections
of code that you want compiled only if you are not debugging; in that case,
you would write

{$IFNDEF debug}
source code
{SENDIF}

where source code will be compiled only if debug is not defined at that point.

The IFOPT Directive

You may want to include or exclude code, depending upon which compiler
options (range-checking, I/O-checking, numeric processing, and so on)

96 Turbo Pascal Owner’s Handbook

have been selected. Turbo Pascal lets you do that with the IFOPT directive,
which takes two forms:

{SIFOPT x+}
and
{$IFOPT x-}

where x is one of the compiler options: B, D, F, I, L, N, R, S, T, or V (see
Appendix C for a complete description). With the first form, the following
code is compiled if the compiler option is currently enabled; with the
second, the code is compiled if the option is currently disabled. So, as an
example, you could have the following;:

var

{SIFOPT N+}

Radius,Circ,Area : double;
{SELSE}

Radius,Circ,Area : real;
{SENDIF}

This selects the data type for the listed variables based on whether or not
8087 support is desired. If you combine this with the {$IFDEF CPU87}
example given earlier, then your source code will automatically select the
proper compiler option and data type(s) based on whether there’s an 8087
coprocessor in the machine on which you're compiling.

An alternate example might be

Assign(F,Filename);
Reset (F);

{SIFOPT I-}
I0Check;

{SENDIF}

where IOCheck is a user-written procedure that gets the value of IOResult,
and prints out an error message as needed. There’s no sense calling IOCheck
if you’ve selected the $I+ option since, if there’s an error, your program will
halt before it ever calls IOCheck.

Optimizing Code

A number of compiler options influence both the size and the speed of the
code. This is because they insert error-checking and error-handling code
into your program. They are best left enabled while you are developing
your program, but you may want to disable them for your final version.
Here are those options, with their settings for optimization:

Chapter 6, Project Management 97

m {$B-} uses short-circuit Boolean evaluation. This produces code that can
run faster, depending upon how you set up your Boolean expressions.
The default equals B-.

m {$I-} turns off I/O error-checking. By calling the predefined function
IOResult, you can handle I/O errors yourself. The default equals I+.

m {$R-} turns off range-checking. This prevents code generation to check for
array subscripting errors and assignment of out-of-range values. The
default equals R-.

m {$S5-} turns off stack-checking. This prevents code generation to ensure
that there is enough space on the stack for each procedure or function
call. The default equals S+.

m {$V-} turns off checking of var parameters that are strings. This lets you
pass actual parameters strings that are of a different length than the type
defined for the formal var parameter. The default equals V+.

Disabling each of these options has two advantages. First, it usually makes
your code smaller and faster. Second, it allows you to get away with
something that you couldn’t normally. However, they all have corre-
sponding risks as well, so use them carefully, and reenable them if your
program starts behaving strangely.

Note that besides embedding the compiler options in your source code
directly, you can also set them using the Options/Compiler menu in the
integrated environment or the /$x option in the command-line compiler
(where x represents a letter for a compiler directive).

98 Turbo Pascal Owner’s Handbook

Using the Unit Mover

When you write units, you want to make them easily available to any
programs that you develop. Chapter 4 explains what a unit is and tells how
to create your own units. This chapter shows you how to use TPUMOVER
to remove seldom-used units from TURBO.TPL, and how to insert often-
used units into TURBO.TPL.

A Review of Unit Files

There are two types of unit files: .TPU files and .TPL files. When you
compile a unit, Turbo Pascal puts the resulting object code in a .TPU (Turbo
Pascal Unit) file, which always contains exactly one unit.

A .TPL (Turbo Pascal Library) file, on the other hand, can contain multiple
units. For example, all the units that come on your Turbo Pascal disk are in
the file TURBO.TPL. The file TURBO.TPL is currently the only library file
Turbo Pascal will load units from.

The naming distinction becomes important during compilation. If a
particular unit used is not found in TURBO.TPL, then Turbo Pascal looks
for the file unitname. TPU; if that file is not found, then compilation halts
with an error. If you are using the Build option, then Turbo Pascal first
looks for unitname.PAS and recompiles it, using the resulting .TPU file. If
you are using the Make option, then Turbo Pascal looks for both
unitname.PAS and unitname. TPU, compares their latest modification dates
and times, and recompiles the .PAS file if it has been modified since the
.TPU file was created.

Chapter 7, Using the Unit Mover 99

Normally, when you write your own unit, it gets saved to a .TPU file; to use
that unit, you must tell Turbo Pascal where to find it. If you're using the
integrated environment, you must set the Unit directories option in the
Options/Directories menu. (TURBO.TPL is loaded from the Turbo
directory in the same menu.) If you're using the command-line environ-
ment, you must use the /U option. (Use the /T option to load the Turbo
library from another subdirectory in the command-line compiler.)

You may have noticed, though, that you can use the standard Turbo Pascal
units without giving a file name. That’s because these units are stored in
the Turbo Pascal standard unit file—TURBO.TPL on your distribution disk.
Because the units are in that file, any program can use them without
“knowing” their location.

Suppose you have a unit called TOOLS.TPU, and you use it in many
different programs. Though adding Tools to TURBO.TPL takes up memory
(TURBO.TPL is automatically loaded into memory by the compiler),
adding it to the resident library makes “using” Tools faster because the unit
is in memory instead of on disk.

There are six standard units already in TURBO.TPL: System, Printer, Crt,
Dos, Turbo3, and Graph3.

You probably won’t ever use Turbo3 or Graph3 unless you have a lot of
programs written with version 3.0 and haven’t yet converted them. So, you
might as well use TPUMOVER to remove them from TURBO.TPL and
recover about 10K of memory.

Using TPUMOVER

TPUMOVER is a display-oriented program, much like the integrated
environment. It shows you the units contained in two different files and
allows you to copy units back and forth between them or to delete units
from a given file. It’s primarily used for moving files in and out of
TURBO.TPL, but it has other useful functions.

Note that the TPUMOVER display consists of two side-by-side windows.
The name of the file appears at the top of the window, followed by a list of
the units in that file. Each line in a window gives information for a single
unit: unit name, code size, data size, symbol table size, and the name(s) of
any unit(s) that this unit uses. The sizes are all in bytes, and the unit names
are all truncated to seven characters. If the list of units being used is too
long to fit, it ends with three dots; press F4 to see a pop-up window to see
the names of the other unit dependencies. Finally, two lines of information

100 Turbo Pascal Owner’s Handbook

appear in that window, giving (in bytes) the current size of that file and the
amount of free space on the disk drive containing that file.

At any time, one of the two windows is the “active” window. This is
indicated by a double line around the active window. Also, only the active
window contains a highlighted bar that appears within the list of units in
that file; the bar can be moved up or down using the arrow keys All
commands apply to the active window; pressing F6 switches back and forth
between the two windows.

To use TPUMOVER, simply type
TPUMOVER filel file2

where filel and file2 are .TPL or .TPU files. The extension .TPU is assumed,
so you must explicitly add .TPL for .TPL files.

TPUMOVER loads and displays two windows—with filel in the left
window of the display and file2 in the right window. Note that both filel
and file2 are optional. If you only specify filel, then the right window has
the default name NONAME.TPU. If you don’t specify either file,
TPUMOVER will attempt to load TURBO.TPL (in the left window with
nothing in the right window). If that file cannot be found, TPUMOVER will
display a directory of all files on the current disk that end in .TPL.

TPUMOVER Commands

The basic commands are listed at the bottom of the screen. Here’s a brief
description of each:

m F1brings up a help screen.

m F2 saves the current file (the file associated with the active window) to
disk.

m F3lets you select a new file for the active window.

m F4 displays a pop-up window showing you all the unit dependencies for
that unit. Only the first unit dependency is shown in the main window. If
there are three dots following it, there are additional ones to be found by
pressing F4.

m F6 allows you to switch between the two windows, making the inactive
window the active window (and vice versa).

a + (plus sign) marks a unit (for copying or deletion). You can have
multiple units marked simultaneously; also, you can unmark a marked
unit by pressing the + key again.

Chapter 7, Using the Unit Mover 101

m Ins copies all marked units from the active window to the inactive
window.

m Del deletes all marked units from the active window.

m Esc lets you exit from TPUMOVER. Note that this does not automatically
save any changes that were made; you must explicitly use F2 to save
modifications before leaving TPUMOVER.

Moving Units into TURBO.TPL

Let’s suppose you've created a unit Tools, which you’ve compiled into a file
named TOOLS.TPU. You like this unit so much you want to put it into
TURBO.TPL. How do you do this? To start, type the command

A>tpumover turbo tools

This will bring up the TPUMOVER display with TURBO.TPL in the left
window (the active one) and TOOLS.TPU in the right window. Note that
this example assumes that TURBO.TPL and TOOLS.TPU are both in the
current directory; if they are not, then you need to supply the appropriate
path name for each.

Now perform the following steps:

Press F6 to make the right window (TOOLS.TPU) active.

Press + to mark IntLib (the only unit in the right-hand window).
Press Ins to copy IntLib into TURBO.TPL.

Press F6 to make the left window (TURBO.TPL) active.

Press F2to save the changes in TURBO.TPL to disk.

Press Esc to exit TPUMOVER.

S e i

The unit Tools is now part of TURBO.TPL and will be automatically loaded
whenever you use Turbo Pascal.

If you want to add other units to TURBO.TPL, you can do so without
exiting TPUMOVER. After pressing F2 to save TURBO.TPL to disk,
perform the following steps:

1. Press F6 to make the right window active.
2. Press F3to select a new file for the right window.

3. Repeat the preceding steps two through five to mark the appropriate
unit, copy it into TURBO.TPL, make the left window active, and save
TURBO.TPL to disk.

102 Turbo Pascal Owner’s Handbook

You can repeat this as many times as desired in order to build up your
library.

Deleting Units from TURBO.TPL

Now let’s remove those unused units from TURBO.TPL: Turbo3 and
Graph3. To do this, first type

tpumover turbo

This brings up TPUMOVER with TURBO.TPL in the left window and
NONAME.TPU (the default name) in the right. The left window is the
active one, so do the following;:

m Use the Down arrow key to move the highlighted bar over Turbo3.

m Press + to select Turbo3.

m Press Del to delete Turbo3.

m Press F2to save the changes to TURBO.TPL.

m Press Esc to exit TPUMOVER.

You can repeat this procedure to remove Graph3.

Moving Units Between .TPL Files

Suppose a friend has written a number of units and has given you the file
(MYSTUFF.TPL) containing them. You want to copy only the units
GameStuff and RandStuff into TURBO.TPL. How do you do this? Your
command line would read like this:

tpumover mystuff.tpl turbo.tpl

This brings up TPUMOVER with MYSTUFF.TPL in the left (active)
window and TURBO.TPL in the right window. Now use the following
commands:

m Use the Up arrow and Down arrow keys to move the highlighted bar to
GameStuff.
m Press + to select GameStuff.

m Use the Up arrow or the Down arrow key to move the highlighted bar to
RandStuff.

m Press + to select RandStuff.
m Press Ins to copy GameStuff and RandStuff to TURBO.TPL.
m Press F6 to make the TURBO.TPL window active.

Chapter 7, Using the Unit Mover 103

m Press F2 to save the changes made to TURBO.TPL.
m Press Esc to exit TPUMOVER.

Command-Line Shortcuts

You can use several command-line parameters that let you manipulate
units quickly. The format for these parameters is

TPUMOVER TURBO /parameter unitname
where parameter is either +, —, or *.

These commands perform the following functions without displaying the
side-by-side windows of the TPUMOVER program:

/+ Adds the named unit to TURBO.TPL
/- Deletes the named unit from TURBO.TPL

/* Extracts (copies) the named unit from TURBO.TPL and saves it in
a file named unitname. TPU

/? Displays a small help window

104 Turbo Pascal Owner’s Handbook

Converting from Turbo Pascal 3.0

Turbo Pascal 4.0 contains some exciting new features. This chapter
discusses the tools we've provided to help you convert your 3.0 programs
to 4.0. Note that in some cases, changes in your source code may be
necessary.

We’ve provided a few upgrading tools: UPGRADE.EXE and two
compatibility units, Turbo3 and Graph3.

UPGRADE reads in a version 3.0 source code file and makes a series of
changes to convert it for compilation under version 4.0. Some of these
changes include commenting out obsolete buffer sizes, inserting appro-
priate uses statements, and optionally splitting large applications into
separate units.

Turbo3 offers several predefined identifiers from version 3.0 that version 4.0
no longer supports. Graph3 supports the full set of graphics calls (basic,
extended, turtlegraphics) from version 3.0.

In this chapter, we've also provided a checklist of conversion tasks that you
may need to perform in addition to using these utilities. If you have a lot of
code, don’t worry—conversion usually goes very quickly, and the high
speed of the version 4.0 compiler helps that along. (Appendix A has more
information on converting.)

Using UPGRADE

The UPGRADE program will aid in converting Turbo Pascal programs
written for earlier versions of the compiler. UPGRADE scans the source
code of an existing program, and performs the following actions:

Chapter 8, Converting from Turbo Pascal 3.0 105

-m Places warnings in the source where Turbo Pascal 4.0 differs in syntax or
runtime behavior from earlier versions of the compiler.

m Automatically fixes some constructions that have new syntactic
requirements.

m Optionally writes a journal file that contains detailed warnings and
advice for upgrading a program to 4.0.

m Automatically inserts a uses statement to pull in needed routines from
the standard units.

-mOptionally divides large programs into multiple units, to remove
overlays or take advantage of separate compilation.

In order to use UPGRADE, you must access two files from your Turbo
Pascal distribution disk. Copy the files UPGRADE.EXE and UP-
GRADE.DTA into your working drive and directory, or copy them into a
subdirectory that is listed in the MS-DOS path.

UPGRADE is command-line driven; its format from the DOS prompt is
UPGRADE [options] filename

filename specifies the name of an existing Pascal source file, which should be
present in the current drive and directory. If no extension is specified,
UPGRADE assumes “.PAS’ as the file’s extension.

If UPGRADE is executed with no command-line parameters (that is, with
no options and no file name), it will write a brief help message and then
halt.

The specified file must contain a complete Pascal program, not just a
fragment. If the file contains include directives, the specified include files
must also be present, either in the current directory or in another directory
specified by the include directive.

The specified file must be a syntactically correct program, as determined by
Turbo Pascal 3.0 or 2.0. UPGRADE does not perform a complete syntax
check of source code—syntax errors in its input will cause unpredictable
results. If you are uncertain whether a program contains syntax errors,
compile it first with an earlier version of Turbo Pascal before proceeding
with UPGRADE.

By default, UPGRADE will write a new version of the source code,
overwriting the old version but saving it under a new name. Each old
version saved will have the same name as the original, but with the
extension “.3TP’ attached. In the event that the extension “.3TP” would cause
UPGRADE to overwrite an existing file, UPGRADE will try using the
extensions ‘.4TP’, *.5TP’, and so on, until it finds a safe extension.

106 Turbo Pascal Owner’s Handbook

UPGRADE, by default, inserts comments into the source program; an
example follows:

TextMode;
{! 20. " TextMode requires a parameter (Mode:integer) in Turbo Pascal 4.0.}

In this example, TextMode; is a statement found in the program being
upgraded. UPGRADE’s comments always begin with {/, which makes it
easy to find UPGRADE’s warnings. UPGRADE numbers each comment
with a sequential value, 20 in this example, which corresponds to the
comments found in the optional journal file (described later). UPGRADE’s
comments contain a short statement describing the upgrade issue.
UPGRADE inserts into the comment a caret (*) pointing to the exact
location that triggered the warning in the preceding line of source code.

In a few cases, UPGRADE will make active changes to the source code; for
example:
var

fitext{[$1000]};
{! 6. Us”e the new standard procedure SetTextBuf to set Text buffer size.}

This comment refers to the fact that Turbo Pascal 4.0 uses a new syntax to
specify buffering of text files. Instead of the optional bracketed buffer size
in the data declaration, Turbo Pascal 4.0 provides a new standard
procedure SetTextBuf, which should be called to specify a buffer area and
buffer size. Note that in this case UPGRADE automatically comments out
the obsolete buffer size, and inserts a comment notifying you to call the
SetTextBuf procedure at the appropriate location in your program.

UPGRADE accepts the following options on the command line:

3 Use Turbo3 compatibility unit when needed
/] Write a detailed journal file
IN No descriptive markup in source code

/O [d:llpath] ~ Send output to d:path
u Unitize the program based on .U switches in source

A description of each option follows.

/3 Activate Turbo3 Unit

A special unit, Turbo3, is provided with the new compiler. This unit defines
several variables and routines that cause new programs to mimic the
behavior of Turbo Pascal 3.0 programs. The following identifiers defined
within the Turbo3 unit result in special handling by UPGRADE:

Chapter 8, Converting from Turbo Pascal 3.0 107

m Kbd

» CBreak

m MemAuvail

m MaxAvail

m LongFileSize
m LongFilePos
m LongSeek

If your program uses any of these identifiers and you specify the /3 option,
UPGRADE will insert the Turbo3 unit name into the uses statement
generated for the program.

Although the Turbo3 unit and the /3 option can minimize the time required
to convert an existing application, in the long run it may be better to make
the (small) additional effort to use Turbo Pascal 4.0’s new facilities. If you
don’t specify the /3 option, you will cause UPGRADE to generate warnings
for each instance of the identifiers. With these warnings and the journal file
(described next), you can achieve a complete upgrade in a short time.

/] Activate Journal File

When you specify the /] option, UPGRADE writes an additional file called
the journal file. This file has the same name as your main program file but
has the extension .JNL.

The journal file contains detailed descriptions of each warning UPGRADE
produces, along with advice on how to go about upgrading your program.
Here’s an excerpt from a typical journal file:

4. MYPROG.PAS (6)
s:byte absolute Cseg:$80;

Cseg and Dseg can no longer be used in absolute statements.

Variables in Turbo Pascal 4.0 may be made absolute to other variables or typed
constants (for example, StrLen : byte absolute Stringl), or to a fixed location in
memory (for example, KeyBoardFlag : byte absolute $40:$17).

Given the action of Turbo Pascal 4.0's separate compilation and smart linker, it is
unlikely that variables absolute to Cseg or Dseg would have the intended effect.
(See Chapter 16 for more details.)

Each journal entry begins with a numeric identifier, corresponding to the
numbered comment inserted by UPGRADE into the actual source code.
The journal file number is followed by the name of the original source file
and the line number (within the original source file) of the statement that
caused the warning. Note that the line number reported may be different

108 Turbo Pascal Owner’s Handbook

than the line number in a marked-up or unitized source file. UPGRADE
also inserts the actual source line and a pointer to the problem to make
identification complete.

/N No Source Markup

Use this option is you don’t want UPGRADE’s comments inserted into
your source code. UPGRADE will still perform any automatic fixes: the
uses statement, Turbo Pascal 3.0 default compiler directives, mapping of
compiler directives to Turbo Pascal 4.0 standards, and deactivation of
Overlay, Ouvrpath, and text buffer sizes.

Generally, you should use the /N option in combination with the /] (journal
file) or /U (unitize) option.

/0 [d:l[path] Output Destination

Use this option to send UPGRADE'’s output to another drive or directory.
When you activate this option, UPGRADE will not overwrite existing
source files, nor will it rename them after processing. All UPGRADE
output, including the journal file if activated, will go to the drive and
directory specified.

/U Unitize

The /U option activates a second major function of UPGRADE. In
combination with directives you place into your existing source code,
UPGRADE will automatically split a large application into separate units.

You should use the /U option only if your program is large enough to
require overlays in Turbo Pascal 3.0, or if compilation times are long
enough to be bothersome.

Before using the /U option, you must make minor additions to your
existing source program. These additions take the form of special
comments that serve as directives to the UPGRADE utility. Each directive
must have the following form:

{.U unitname}
unitname is a name that meets the following requirements:

n It is a legal Pascal identifier.

Chapter 8, Converting from Turbo Pascal 3.0 109

m It is a legal MS-DOS file name.

mIt does not match the name of any existing global identifier in the
program being upgraded.

It should begin with an alphabetic character and be limited to eight
characters. Here are some examples of legal unit name directives:

{.U UNIT1}
(*.U ScrnUnit *)
{.u heapstuf}

Wherever UPGRADE encounters a unit name directive in your program’s
source code, it will route source code following that directive to the unit
named. UPGRADE performs all necessary steps to prepare the unit source
code for compilation, including

@ Inserting the unit and uses statements

Interfacing all global routines and data declarations
s Implementing the source code

m Generating an empty initialization block

In order to make the unitized program fit the structure of Turbo Pascal 4.0’s
units, certain restrictions apply to the placement and use of unit name
directives:

m Unit name directives can be placed only in the main file of a program,
not within any include file. This restriction avoids the need to split
existing Include files into parts. In any case, Include files generally
contain related routines that should reside within the same unit.

m Each unit name can be specified at most once. This restriction avoids the
generation of mutual dependencies between units, something that the
Turbo Pascal 4.0 compiler does not allow.

® A unit name directive must be placed outside of the scope of any
procedure or function, that is, it must be placed at the global level of the
program. This restriction enforces Turbo Pascal 4.0’s definition of units as
global entities.

m UPGRADE predefines one unit name, Initial. UPGRADE will auto-
matically route to Initial any declarations or routines that precede the
first unit name directive you place into your source code. UPGRADE
defines the Initial unit so that later units will have access to any global
identifiers defined prior to the first unit name. If you specify a unit name
directive prior to any global declarations, Initial will be empty, and
UPGRADE will delete it automatically.

B Each Turbo Pascal 4.0 unit is limited to at most 64K of code. You must
place unit name directives so that this restriction is met.

110 Turbo Pascal Owner’s Handbook

mn UPGRADE cannot deal effectively with global forward declarations,
placing a warning into the source code whenever it encounters one. You
must determine how to treat forwards and manually modify the source
code after UPGRADE is finished. The best strategy is to absolutely
minimize the use of forwards in the original program.

The /U option automatically deletes all overlay keywords that may have
appeared in the original source code.

After UPGRADE has unitized a program, the main unit will be in the
simplest possible form. It will contain the program statement and a uses
statement that lists required system units as well as units you defined via
unit name directives, and the original main block of code. All other
procedures, functions, and data declarations will have been routed to other
units.

UPGRADE interfaces user identifiers to the maximum extent possible. This
means that all global procedures and functions will appear in the interface
section of a unit, and that all global types, variables, and constants will
appear in the interface. After your program is converted to the unit
structure of Turbo Pascal 4.0, you may wish to hide selected global
identifiers within the implementation sections of their units.

Although the /U option of UPGRADE cannot deal with the more subtle
issues of breaking a program into well-structured units, it does automate
the otherwise time-consuming process of generating syntactically correct
unit files.

What UPGRADE Can Detect

Here is a full list of the short warnings that UPGRADE generates:

m Use the new standard procedure SetTextBuf to set the text buffer size.
m New stack conventions require that many inlines be rewritten.

B Assure that Cseg refers to the intended segment.

m Cseg and Dseg no longer can be used in absolute statements.

m Restructure Chain and Execute programs to use units or Exec.

m Convert BIN files to .OB] files or convert them to typed constants.

® Use the new ExitProc facility to replace ErrorPtr references.

m Use new textfile device drivers to replace I/O Ptr references.

& Use units and/or the DOS Exec procedure to remove overlays.

m OvrPath is not needed when overlays are not used.

Chapter 8, Converting from Turbo Pascal 3.0 111

m The Form function (and BCD arithmetic) are not supported in Turbo
Pascal 4.0.

& BufLen (for restricting ReadIn) is not supported in Turbo Pascal 4.0.

m The TextMode procedure requires a parameter (Mode:integer) in Turbo
Pascal 4.0.

m interrupt, unit, interface, implementation, and uses are now reserved
words.

m System, Dos, and Crt are standard unit names in Turbo Pascal 4.0.

B Special file names INP:, OUT:, ERR: are not supported in Turbo Pascal
4.0.

m Assign unsigned values of $8000 or larger only to word or longint types.

mUse Turbo3 unit in order for MemAvail and MaxAwvail to return
paragraphs.

m Use Turbo3 unit to perform LongFile operations.

m Cbreak has been renamed to CheckBreak in Turbo Pascal 4.0.

m JOResult now returns different values corresponding to DOS error codes.

m Use Turbo3 unit for access to Kbd, or instead use Crt and ReadKey.

m The $! include file directive must now be followed by a space.

m Directives A, B, C, D, F, G, P, U, W, and X are obsolete or changed in
meaning.

u Stack-checking directive K has been changed to S in Turbo Pascal 4.0.

m The effects of HighVideo, LowVideo, and NormVideo are different in Turbo
Pascal 4.0.

m Special file name LST: is not supported now. Use Printer Lst file.
m Special file name KBD: is not supported now. Use Turbo3 Kbd file.

m Special file names CON:, TRM:, AUX:, USR: are not supported in Turbo
Pascal 4.0.

® Special devices Con, Trm, Aux, Usr are not supported in Turbo Pascal
4.0.

m An identifier duplicating a program/unit name is not allowed in Turbo
Pascal 4.0; instead use the Registers type from the Turbo Pascal 4.0 Dos
unit.

m forwards will require manual modification after unitizing.
m Include directives cannot be located within an executable block.
m The CrtInit and CrtExit procedures are not supported in Turbo Pascal 4.0.

u for loop counter variables must be pure locals or globals in Turbo Pascal
4.0.

m All defined labels within the current routine must be used.

112 Turbo Pascal Owner’s Handbook

What UPGRADE Cannot Detect

Here are descriptions of the various types of things that UPGRADE cannot
detect in your source file:

m Mixing of String and char types in a way not allowed by Turbo Pascal
4.0; for example:
Ch:=Copy (S,1,1)

m Type mismatches due to Turbo Pascal 4.0’s more stringent checking; for
example:

var

a : “integer;

b : “integer;
begin

a :=b; { Invalid assignment }
end.

m Unexpected runtime behavior due to side-effects of short-circuited
Boolean expressions; for example:
{$B-}
if HaltOnError and (IoResult <> 0) then
Halt;

Turbo Pascal 3.0 would have always called the built-in IOResult function,
and thus cleared it to zero when the Boolean expression was evaluated.
With short-circuiting activated in Turbo Pascal 4.0, the IOResult function
would not be called if HaltOnError were False, and thus IOResult would
potentially be left holding an error code from the previous I/0
operation.

Note that UPGRADE automatically inserts compiler directives that
deactivate Boolean short-circuiting, thus avoiding problems such as. that
just described. Use caution before changing the Boolean evaluation
directive.

An UPGRADE Checklist

Here is a summary of the basic steps for using UPGRADE:

1. Copy the files UPGRADE.EXE and UPGRADE.DTA from the compiler
distribution disk to your current directory or to a directory in the DOS
path.

2. If necessary, go to the directory where the Pascal source files for the
program you wish to upgrade are located.

3. Decide which UPGRADE options, if any, you wish to use.

Chapter 8, Converting from Turbo Pascal 3.0 113

. If you decide to unitize the program, you must first edit the main source
file to insert {.U unitname} directives, subject to the restrictions outlined
previously.

. From the DOS command line, enter the appropriate UPGRADE
command, using the following syntax:

UPGRADE [options] filename
Examples of acceptable command lines follow:

upgrade MYPROG.PAS /J /3
UPGRADE bigprog /n /u /o c:\turbo4
. UPGRADE will make two passes through the source code: one pass to
detect areas of the program that may require modification, and a second
pass to insert the appropriate uses statement, and optionally complete
the process of unitization. At the end of the second pass, it will report
the number of warnings that it generated.

. When UPGRADE is finished, change to the directory where output was
sent (if other than the current directory). If you specified the /] option,
you may wish to browse through the journal file first to see the detailed
explanations of UPGRADE'’s warnings. After doing so, use the Turbo
Pascal editor to edit each source file that UPGRADE produced. Search
for the string {!. Each match will display a warning produced by
UPGRADE. In many cases, you will be able to change the source code
immediately—when you do so, you may wish to delete UPGRADE's
warning.

. Once you have looked at all of UPGRADE’s warnings and made
changes to your source code as appropriate, you are ready to compile
with Turbo Pascal 4.0.

Using Turbo3 and Graph3

Turbo3 and Graph3 were designed to help you support programs written for
version 3.0. These units contain constants, data types, variables, and
procedures and functions that were supported in version 3.0 but have
changed or no longer exist in version 4.0. If your programs rely on them
heavily, you may want to continue to use them.

Both units are already in TURBO.TPL; if you plan on using one or both,
place the statement

uses unitname;

114 Turbo Pascal Owner’s Handbook

at the start of your program, following your program header (if you have
one). If you use more than one unit, then the unit names should be
separated by commas, like this:

uses Crt,Turbo3,Graph3;

The Turbo3 Unit

The Turbo3 unit restores some low-level I/O and system items found in
version 3.0 but not found in version 4.0. (Chapter 27 contains more details
on all these items.) These include the following:

m Kbd: Version 4.0 doesn’t have the predefined file variable Kbd; instead, it
provides the function ReadKey. However, for those of you who don’t
want to change your program, you can use Kbd instead.

B CBreak: This was an undocumented Boolean variable in version 3.0. It is
named CheckBreak in version 4.0 and is documented in Chapter 24.
Turbo3 declares CBreak to be at the same address so that you can use it
instead.

m MemAvail: Version 4.0 has MemAuvail, but it is a function of type longint
and returns the memory available in bytes. The Turbo3 version returns
the amount available in paragraphs (groups of 16 bytes), as version 3.0
did. Note that if you use Turbo3, this will now be the default version of
MemAvail; to access the version 4.0 MemAuvail, you must refer to
System.MemAvail.

m MaxAvail: returns the size of the largest chunk of available memory. in
paragraphs, while version 4.0 returns it in bytes. Again, if you use
Turbo3, you'll need to refer to System.MaxAvail to get the one in version
4.0.

m LongFileSize: The FileSize function in version 4.0 is of type longint and can
handle any file. Turbo3 supports this function (of type real) for version 3.0
compatibility.

m LongFilePos: The LongFilePos function in version 4.0 is of type longint and
can handle any file. Turbo3 supports this function (of type real) for
version 3.0 compatibility.

m LongSeek: The LongSeek function in version 4.0 is of type longint and can
handle any file. Turbo3 supports this function (of type real) for version 3.0
compatibility.

m IOResult: The 4.0 IOResult returns different error codes. Turbo3’s IOResult
simply calls System.IOResult, and re-maps the 4.0 error codes in the same
way Turbo Pascal 3.0 did (wherever possible).

Chapter 8, Converting from Turbo Pascal 3.0 118

m NormVideo, LowVideo, and HighVideo: By using the Turbo3 unit, these three
routines will set the foreground and background colors to the same as
3.0:

Mono/B&W Color
LowVideo light gray light
gray
NormVideo white yellow
HighVideo white yellow

m These same three routines are implemented differently in 4.0 (see
Chapter 27).

The Graph3 Unit

This unit provides the basic, advanced, and turtlegraphics support
routines, which are too lengthy to list here. If you use Graph3, however, you
have full access to all the constants, types, variables, procedures, and
functions described in Chapter 19 of the Turbo Pascal Owner’s Handbook,
version 3.0.

Note that a powerful new library of device-independent graphics routines
is contained in the Graph standard unit. Unless you have programs that
make extensive use of 3.0 graphics, you should use the new Graph unit
instead.

Primary Conversion Tasks

Even with UPGRADE and Turbo3 and Graph3, you may still need to make
changes in your source code. This section will look at what those changes
are, how you might go about making them, and how vital they are to your
program. When tasks are listed, they’ll be flagged as one of these three

types:
m HELPFUL: These take advantage of some feature in version 4.0 that
makes life easier; they are discretionary.

m RECOMMENDED: These really should be done, though you may be
able to get by without doing so; ignore these at your own risk.

m ESSENTIAL: No two ways about it; these must be done or your program
won't correctly compile and run under version 4.0.

116 Turbo Pascal Owner’s Handbook

Predefined Identifiers

Version 4.0 doesn’t support all the predefined identifiers (constants, types,
variables, procedures, functions) that version 3.0 did. Some have been
dropped; others have been superseded by new identifiers; still others have
been moved into the units found in TURBO.TPL.

m Use Crt as needed.

Use Turbo3 and/or Graph3 as needed. This is a great stop-gap measure,
but ultimately you may want to completely convert to version 4.0
identifiers. (HELPFUL)

m Take advantage of the new routines found in the standard units, such as
ReadKey (returns a scan code). (HELPFUL)

B Use the appropriate units for certain data types, variables, procedures,
and functions that were “built-in” in version 3.0. For example, the
procedures Intr and MsDos are no longer predeclared; instead, they are
found in the Dos unit. Similarly, the Lst device (text file associated with
the printer) is defined in the Printer unit. (ESSENTIAL)

Data Types

Version 4.0 introduces a number of new data types and language functions
involving data types. Many of these will help you to drop some of the
“kludges” you've had to use in the past.

m Use typecasting in place of the Move() routine to copy the contents of one
variable into the space of another variable of an incompatible type. For
example, use

Realvar := real (BuffPtr”);
instead of

Move (BufferPtr”,RealVar, SizeOf (Realvar));
With extended typecasting, you can handle most such transfers as long
as the destination is the exact same size as the source. (HELPFUL)

m Convert to new data types where appropriate and practical. These
include longint and word (to replace integer); pointer as a generic pointer
type; and string, with an assumed maximum length of 255 characters.
(RECOMMENDED)

m Be aware that hexadecimal (base 16) constants are considered to be of

type word rather than type integer, so that the hex constant $FFFF
represents 65535 instead of —1. You should consider converting any

Chapter 8, Converting from Turbo Pascal 3.0 117

variables that are assigned hex constants to type word. (RE-
COMMENDED)

m Likewise, be aware that version 4.0 now allows you to assign -32768 to a
variable of type integer. Previously, the only way you could do that was
by assigning it the hex constant $8000. However, that hex constant now
represents the value 32768 (which is of type word), and assigning it to an
integer variable will cause a compile-time error, convert the constant to
-32768, convert the constant to $FFFF8000, or convert the variable to type
word. (RECOMMENDED)

m Use string library routines (such as Length and Copy) instead of directly
accessing the internal string structure (such as Ord(SVar[0]) or absolute-
addressed byte variables on top of strings). (RECOMMENDED)

m Be aware that version 4.0 has stricter type-checking on strings, characters,
and arrays of characters. The assignment

CharVar := StringVar

is no longer acceptable, even if StringVar is declared as string[1]. The
assignment

StringVar := ArrayVar
is still acceptable, but
ArrayVar := StringVar

is not. (ESSENTIAL)

m Version 4.0 enforces stricter type-checking on derived types, which
means that variables must have identically named types or be declared
together in order to be assignment compatible. For example, given

var
A : “integer;
B : “integer;

then A and B are not assignment-compatible (that is, the statement & := B
will cause a compile-time error) because they are separately derived
types. In order to be assignment compatible, they must be declared
together:

var
A,B : “integer;

or they must be of the the same named data type:
type
IntPtr = “integer;
var
A : IntPtr;
B : IntPtr;

118 Turbo Pascal Owner’s Handbook

Either of these solutions will work just fine; the second one is more
general and is preferred (allowing other variables, parameters, and
functions to be of the same data type). (ESSENTIAL)

aThe BCD data type (and the Form routine) are not supported in this
version. Consider using the longint data type; if you have a math
coprocessor, then use the {$N+} directive and use the IEEE type comp (8-
byte integer). (See the sample program on disk, BCD.PAS.) (ESSENTIAL)

Language Features

Version 4.0 introduces some restrictions and some enhancements. The
restrictions are geared to help it conform to the ANSI standard definition of
Pascal, while the enhancements are there to make your life as a
programmer easier.

m Version 4.0 assumes short-circuit Boolean evaluation. This means that
evaluation of Boolean expressions is halted as soon as possible. For
example, consider the expression

if exprl and expr2 ...

If expr1 is False, then the entire expression will be False, regardless of the
value of expr2. If Boolean expression evaluation is short-circuit, then if
exprl is False, expr2 won’t be evaluated. This means, for example, if expr2
contains a function call, then that function won't be called if exprl is
False. You can enable complete (nonshort-circuit) Boolean evaluation
with the {$B+} compiler directive or the environment option in the
Options/Compiler menu. Be aware of the implications of enabling
short-circuit evaluation. (HELPFUL)

B Keeping in line with the ANSI standard, Turbo Pascal version 4.0 allows
you to use only global and local variables as for loop control variables.
For example, if the statement

for Indx := Start to Finish ...
appears in a procedure (or function), then Indx must be declared either
globally or within that procedure. Indx cannot be a formal parameter of

that procedure, nor can it be declared within an enclosing procedure.
(ESSENTIAL)

Input and Output

Turbo Pascal version 4.0 has made some significant changes in I/O
handling, many of which are intended to increase ANSI compatibility.

Chapter 8, Converting from Turbo Pascal 3.0 119

® Read(IntVar) now waits for an integer value to be entered; pressing Enter
will no longer cause the program to continue, leaving IntVar unchanged.
Revise your program appropriately. (RECOMMENDED)

m If you are reading and writing real values with data files, be aware of the
differences between the standard type real (6 bytes, compatible with
version 3.0) and the IEEE floating-point types supported by the {$N+}
directive (single, double, extended and comp). Use the latter types only if
you are sure that your program and any resulting data files will be used
exclusively on systems equipped with a math coprocessor. (RECOM-
MENDED)

mIn version 3.0, you could call the procedure Close on a file that was
already closed with no results. In version 4.0, it produces an I/O error,
which you can trap by using {$I-} and testing the value returned by
IOResult.

m You can no longer directly declare variable-length buffers for text files in
the format var F : text[length]; instead, you must use the predefined
procedure SetTextBuf (see Chapter 27).

Program and Memory Organization

One significant change in version 4.0 is the introduction of units. (If you
aren’t clear what units are, go back and read Chapter 4.) Units give you
four important capabilities:

m They allow you to create tools that you can use in many different
programs.

m They allow you to break up a large program into manageable chunks by
collecting related declarations and subprograms (procedures and
functions) together. ,

m They allow you to “hide” declarations and subprograms that you don’t
need (or want) to be “visible” to the rest of the program.

m They allow you to break the 64K code barrier, since each unit can contain
up to 64K of code.

As a consequence, significant changes have been made in memory
organization as well. Chapter 26 explains more of the details; here are some
of the tasks you need to consider.

m Convert your libraries from include files to units. This is by no means
necessary, but it has several advantages. For one, you don’t have to
recompile the routines in the unit each time; for another, you can
distribute your library routines without distributing source code. The
UPGRADE program can help you with this conversion. (HELPFUL)

120 Turbo Pascal Owner’s Handbook

m Version 4.0 has a new compiler directive, {$M], that allows you to set the
stack and heap sizes within your program. The format is as follows:

{$M stacksize,heapmin, heapmax}

where all three values are in bytes. The default values are {$M
16384,0,655360}. You can also set the default values in the integrated
environment (O/C/Memory sizes) and use the command-line compiler
(/$M). (HELPFUL)

m Convert large programs from overlays to units. You must do this,
because version 4.0 does not support overlays. If you have been using
overlays to get around the 64K code limit, then you won’t have to worry
anymore: The main program and each unit can be up to 64K in size. If
you've been using overlays because all your code wouldn't fit into
memory at once anyway, then you’ll have to do some rewriting—the
main program and all units must fit into memory at the same time.
(ESSENTIAL)

m Be aware that MemAvail and MaxAvail are now of type longint and return
their values in bytes instead of paragraphs. You should make the
appropriate changes to your program (or use Turbo3, which supplies the
original versions of MemAuvail and MaxAvail). (ESSENTIAL)

Compiler Directives and Error-Checking

Version 4.0’s compiler directives and error codes have been extensively
redefined. UPGRADE helps to modify the compiler directives, but you
have to be sure you’ve caught all of them, and that you've also changed
over to the new error codes.

mIf an existing program doesn’t work correctly, try setting Boolean
evaluation to “complete” with the {$B+} directive; the default is {$B-}.
(HELPFUL)

m Range-checking is now off by default; if you want it on, place the {$R+}
directive at the start of your program. If you're unsure, leave it off for
now. If your program is halting with range-checking errors, turn it on
and figure out the problems or turn it off. (RECOMMENDED)

m Review all use of error codes (for example, I/O error codes), especially
when the check is more than simply zero or nonzero. Define all error
codes as constants in a global location so you can deal more easily with
future changes. (RECOMMENDED)

m Review all compiler directives. Of special note are {$B}, {$D}, and {$F},
since they are still valid but now have different meanings. Appendix C
details all the directives. (ESSENTIAL)

Chapter 8, Converting from Turbo Pascal 3.0 121

m ErrorPtr is gone; you should now use ExitProc. User-written error
handlers must be modified; refer to Chapter 26 for more details.
(ESSENTIAL)

m The {$I} include file directive is no longer allowed between a begin/end
pair. In addition, an include file directive must always have a space
between the I and the file name.

Assembly Language Usage

We still support inline in assembly language; it now includes the inline
directive for procedure and function definitions, which defines an inline
macro rather than a separate, callable routine.

m For short assembly language code, consider using the inline directive
(which differs from the inline statement). This.generates actual inline
macros in the resulting object code. (See Chapter 26 for more details.)
(HELPFUL)

m Convert from inline to external subroutines where appropriate and
practical; use inline only when necessary. (RECOMMENDED)

m The inline statement (within a subroutine) no longer allows references to
the location counter (*), nor does it allow references to procedure and
function identifiers. In order to refer to a procedure identifier, for
example, declare a local pointer variable, assign it the address of the
procedure (a procedure name), and refer to the pointer in the inline
statement.(ESSENTIAL)

m External subroutines must be reassembled and incorporated in .OB]J
format. (ESSENTIAL)

m Typed constants now reside in the data segment (DS) and so must be
accessed differently by any external subroutines. (ESSENTIAL)

mInline/external procedures and functions that used byte value
parameters in version 3.0 often took advantage of the fact that the high
byte of the word pushed on the stack was initialized to 0. This
initialization is not done in version 4.0, so you’ll need to make sure
inline/external routines don’t assume that the high byte is 0.

There are many changes to the conventions for passing parameters and
function results on the stack; see Chapter 26 for more details.

This list is not exhaustive. Many of your programs will run with little or no
modification; others will work fine with the processing UPGRADE
performs. Likewise, this list doesn’t cover all possible compatibility issues,
since many Turbo Pascal programs take advantage of undocumented or
unsupported features of version 3.0. Be sure to check the README file on

122 Turbo Pascal Owner’s Handbook

your Turbo Pascal verion 4.0 distribution disk for any additional
conversion notes.

Chapter 8, Converting from Turbo Pascal 3.0 123

124 Turbo Pascal Owner’s Handbook

Debugglng Your Turbo Pascal
Programs

The term debugging comes from the early days of computers, when actual
bugs (moths and the like) sometimes clogged up the machinery. Nowadays,
it means correcting errors in a program.

You’ll undoubtedly have bugs to contend with—errors of syntax,
semantics, and logic within your program—and you’ll have to fix them by
trial and error. However, there are tools and methods to make it less of a
trial and to cut down on the errors. In this chapter, we'll look at common
errors and the different ways to debug them.

Compile-Time Errors

A compile-time, or syntax, error occurs when you forget to declare a
variable, you pass the wrong number of parameters to a procedure, or you
assign a real value to an integer variable. What it really means is that you're
writing Pascal statements that don’t follow the rules of Pascal.

Pascal has strict rules, especially compared to other languages, so once
you've cleaned up your syntax errors, much of your debugging will be
done.

Turbo Pascal won’t compile your program (generate machine code) until all
your syntax errors are gone. If Turbo Pascal finds a syntax error while
compiling your program, it stops compiling, goes into your program,
locates the error, positions the cursor there, and prints what the error
message was in the Edit window. Once you've corrected it, you can start
compiling again.

Chapter 9, Debugging Your Turbo Pascal Programs 125

Runtime Errors

Another type of error that can occur is a runtime (or semantic) error. This
happens when you compile a legal program but then try to do something
illegal while executing it, such as open a nonexistent file for input or divide
an integer by 0. In that case, Turbo Pascal prints an error message to the
screen that looks like this:

Runtime error ## at seg:ofs

and halts your program. If you ran your program from the MS-DOS
prompt, you'll be returned to MS-DOS. If you ran it under Turbo Pascal,
you'll get the usual Press any key... message.

If you're running under the integrated environment, then Turbo Pascal
automatically finds the location of the runtime error, pulling in the
appropriate source file. You'll also notice that the output from your
program appears in the Output window at the bottom of the screen.

If you're running under the command-line environment (TPC), you can
find the error using the /F option. (See Chapter 12 for a complete
explanation and tour of finding runtime errors by using TPC.EXE when
running an .EXE program.)

Input/Output Error-Checking

Let’s look again at a program given in an previous chapter:

program DoSum;
var
A,B,Sum : integer;

begin
Write('Enter two numbers: ');
Readln(A,B);
Sum := A + B;
Writeln(’The sum is ’,Sum)
end.

Suppose you ran this program and entered the following values:

Enter two numbers: 45 8x

then pressed Enter. What would happen? You'd get a runtime error (106, in
fact) like we described in the previous section. And if you used the Find
error command, you'd discover that it occurred at the statement

Readln(A,B);

126 Turbo Pascal Owner’s Handbook

What happened? You entered non-numeric data—8x—when the program
was expecting an integer value, which generated the appropriate runtime
error.

In a short program like this, such an error isn’t a big bother. But what if you
were entering a long list of numbers and had gotten through most of it
before making this mistake? You’'d be forced to start all over again. Worse
yet, what if you wrote the program for someone else to use, and they
slipped up?

Turbo Pascal allows you to disable automatic I/O error-checking and test
for it yourself within the program. To turn off I/O error-checking at some
point in your program, include the compiler directive {$I-} in your program
(or the O/C/1/0 error-checking option). This instructs the compiler not to
produce code that checks for I/O errors.

Let’s revise the preceding program so that it does its own I/O checking:

program DoSum;

var
A,B,Sum : integer;
I0Code : integer;
begin
repeat
Write('Enter two numbers: ');
{$1-} { Disable automatic I/0 error-checking }
Readln(A,B);

{$I+} { Enable automatic I/0 error-checking }
I10Code := IOResult;
if I0Code <> 0 then
Writeln(’Bad data: please enter again’)
until I0Code = 0;

Sum := A + B;
Writeln('The sum is ’,Sum)
end.

First, you disable automatic I/O error-checking with the {$I-} compiler
directive. Then you put the input code into a repeat..until loop, because
you're going to repeat the input until the user gets it right. The Write and
ReadIn statements are the same, but after them comes the statement

I0Code := IOResult;

You’ve declared IOCode as a global variable, but what’s IOResult? It's a
predefined function that returns the error code from the last I/O operation,
in this case, Readln. If no error occurred, then the value returned is 0;
otherwise, a nonzero value is returned, indicating what happened. Once
you’'ve called IOResult, it “clears” itself and will return O until another I/O
error occurs. This is why you assign IOResult to IOCode—so that you can
test the result in both the if statement and the until clause.

Chapter 9, Debugging Your Turbo Pascal Programs 127

A similar structure can be used for error-checking while opening files for
input. Look at the following code sample:

var
FileName : string{40];
F : text;
begin

Write('Enter file name: ’);
Readln (FileName) ;
Assign(F,Filename);

Reset (F);

This code fragment asks you to enter a file name, then tries to open that file
for input. If the file you name doesn’t exist, the program will halt with a
runtime error (02). However, you can rewrite the code like this:

var
FileName : string[40];
F ¢ text;
I0Code : integer;
begin
{$I-}
repeat
Write(’Enter file name: ');
Readln(FileName);
Assign (F,Filename);
Reset (F);

I0Code := IOResult;
if I0Code <> 0 then
Writeln(‘File’, FileName, 'does not exist, try again’)
until I0Code = 0;
{$1+}

Using these and similar techniques, you can create a crash-proof program
that lets you make mistakes without halting your program.

Range-Checking

Another common class of semantic errors involves out-of-range or out-of-
bounds values. Some examples of how these can occcur include assigning
too large a value to an integer variable or trying to index an array beyond
its bounds. If you want it to, Turbo Pascal will generate code to check for
range errors. It makes your program larger and slower, but it can be
invaluable in tracking down any range errors in your program.

Suppose you had the following program:

128 Turbo Pascal Owner’s Handbook

program RangeTest;

var
List : array[l..10) of integer;
Indx : integer;

begin
for Indx := 1 to 10 do
List[Indx] := Indx;

Indx := 0;
while (Indx < 11) do
begin

Indx := Indx + 1;
if List{Indx] > 0 then
List[Indx] := -List[Indx]
end;
for Indx :=1 to 10 do
Writeln(List [Indx])
end.

If you type in this program, it will compile and run. And run. And run. It
will, in fact, get stuck in an infinite loop. Look carefully at this code: The
while loop executes 11 times, not 10, and the variable Indx has a value of 11
the last time through the loop. Since the array List only has 10 elements in
it, List[11] points to some memory location outside of List. Because of the
way variables are allocated, List[11] happens to occupy the same space in
memory as the variable Indx. This means that when Indx = 11, the statement

List{Indx] := -List[Indx]
is equivalent to
Indx := -Indx

Since Indx equals 11, this statement sets Indx to —11, which starts the
program through the loop again. That loop now changes additional bytes
elsewhere, at the locations corresponding to List[-11..0].

In other words, this program can really mess itself up. And because Indx
never ends the loop at a value greater than or equal to 11, the loop never
ends. Period.

How do you check for things like this? You can insert {$R+} at the start of
the program to turn range-checking on. Now when you run it, the program
will halt with runtime error 201 (out of range error, because the array index
is out of bounds) as soon as you hit the statement if List[Indx] > 0 with Indx
= 11. If you were running under the integrated environment, it will
automatically take you to that statement and display the error. (Range-
checking is off by default; turning range-checking on makes your program
larger and slower.)

Chapter 9, Debugging Your Turbo Pascal Programs 129

There are some situations—usually in advanced programming—in which
you might want or need to violate range bounds, most notably when
working with dynamically allocated arrays, or when using Succ and Pred
with enumerated data types.

You can selectively implement range-checking by placing the {$R-} directive
at the start of your program. For each section of code that needs range
checking, place the {$R+} directive at the start of it, then place the {$R-}
directive at the end of the code. For example, you could write the preceding
loop like this:

while Indx < 11 do

begin
Indx := Indx + 1;
{$R+} { Enable range-checking }
if List[Indx] > 0 then
List[Indx] := -List[Indx]
{$R-} { Disable range-checking }
end;

Range-checking will be performed only in the if..then statement and
nowhere else. Unless, of course, you have other {$R+} directives elsewhere.

Tracing Errors

A tried-and-true debugging practice is to insert trace statements within
your program. A trace statement is usually a statement that writes variable
values to the screen, telling you where you are and listing some current
values. Often a trace is set up to execute only if a global Boolean variable
has been set to True (so that you can turn tracing on or off).

Suppose you have a large program in which some variables are set to
incorrect (but not necessarily illegal) values. The program consists of
several procedures, but you haven't figured out which one is causing the
problem. You might do something like this for each procedure:

procedure ThisOne({any parameters});
{ any declarations }
begin
if Trace then
Writeln(’entering ThisOne: A = ',A,’ =',B);
{ rest of procedure ThisOne }
if Trace then
Writeln(’exiting ThisOne: A="',1a" =',B)
end; { of proc ThisOne }

130 Turbo Pascal Owner’s Handbook

This code assumes that Trace is a global variable of type boolean, and that
you set it to True or False at the start of the program. It also assumes that A
and B are parameters to ThisOne or global variables of some sort.

If Trace is True, then each time ThisOne is called, it writes out the values of
A and B after it is called and again just before it returns to where it was
called from. By putting similar statements in other procedures, you can
trace the values of A and B and find out where and when they change to
undesired values.

Once the wrong values of A and B come out in a trace statement, you know
that the changes occurred somewhere before that statement but after the
previously executed one. You can then start moving those two trace
statements closer together, or you can insert additional trace statements
between the two. By doing this, you can eventually pinpoint where the
error is and take appropriate steps.

As another example of tracing, you could have modified the program listed
in the previous section to look like this:

program RangeTest;

var
List : array[l..10] of integer;
Indx : integer;

begin
for Indx := 1 to 10 do
List[Indx] := Indx;

Indx := 0;

while {Indx < 11) do

begin
Indx := Indx + 1;
Writeln('Indx = ’,Indx:2); { <-- TRACING STATEMENT }
if List[Indx] > 0 then

List[Indx] := -List[Indx]

end;

for Indx := 1 to 10 do
Writeln(List[Indx])

end.

The addition of the Writeln(’Indx = ’,Indx:2) statement in the loop does
two things. First, it shows you that Indx is acting crazy: It gets up to 11 and
then suddenly jumps back down to —10 (yes, Indx was —11, but it had 1
added to it before the Writeln statement). Second, Turbo Pascal will (by
default) allow you to interrupt an infinite loop with a Ctr-C or Ctrl-Break if
you are doing input or output.

Chapter 9, Debugging Your Turbo Pascal Programs 131

Using .TPM and .MAP Files

When you compile a Turbo Pascal program, the resulting .EXE file has
information in it about line numbers, procedure names, variable names,
and so on. This is because the {$D+} directive is on by default. If you enable
the option to generate a .TPM file (using the O/C/Turbo pascal map file
toggle or the /$T+ command-line option), you can have the compiler
generate a .TPM (Turbo Pascal Map) file for your program if you're
compiling it to disk. This is a specially encoded file that contains
information about the addresses within the .EXE file of procedures and
functions, and about the data segment offsets of global variables.

Note, however, that in order to get information about the entire .EXE file,
you must compile all the units used by your program with the {$D+}
directive enabled. The easiest way to do that is to turn it on (via a menu
option or a command-line switch), then do a Build, which forces all units to
be recompiled.

To get this into human- and program-readable form, you must run the
program TPMAP.EXE (included on your Turbo Pascal distribution disk).
The result is a .MAP file that shows the memory layout (or map) of your
program.

Suppose you had the following program, saved as MAPTEST.PAS:

{$T+} { Generate .TPM file }
{$D+} { Put line numbers in .TPM }

program MapTest;
var
A, B, C : integer;
procedure Test;
begin
Writeln(’Enter two values: ');
Readln (A, B);
C := A div B;
Writeln(’The answer is ’, C);
end;
begin
Test;
end.

When you compile this program to disk, it produces the file TEST.TPM.
You can then generate a .MAP file with the following command:

tpmap Maptest

Note that you need not put test.tpm after tpmap. This is because TPMAP
always assumes the .TPM extension.

132 Turbo Pascal Owner’s Handbook

The result of this command is an ASCII file named MAPTEST.MAP. If you
then look at it (using the Turbo editor), you'll see something like this:

Start Stop Length Name Class
00000H 000B2H 000B3H MAPTEST CODE
000C0H 00995H 008D6H SYSTEM CODE
009AOH OOBEEH 0024FH DATA DATA
00BFOH 04BEFH 04000H STACK STACK
04BFOH 04BFOH 00000H HEAP HEAP
Address Publics by Value

0000:0022 TEST

0000:00A0 @

000C:0000 @

009A:0000 A

009A:0002 B

009A:0004 o

009A:0006 INPUT

009A:0106 OUTPUT

009A:0206 PREFIXSEG

009A:0208 HEAPORG

009A:020C HEAPPTR

009A:0210 FREEPTR

009A:0214 FREEMIN

009A:0216 HEAPERROR

009A:021A EXITPROC

009A:021E EXITCODE

009A:0220 ERRORADDR

009A:0224 RANDSEED

009A:0228 SAVEINTO0

009A:022C SAVEINTO02

009A:0230 SAVEINT23

009A:0234 SAVEINT24

009A:0238 SAVEINT75

009A:023C FILEMODE

Line numbers for MAPTEST (MAPTEST.PAS) segment MAPTEST

9 0000:0022 10 0000:002C 11 0000:0048 12 0000:0067
13 0000:0072 14 0000:009C 16 0000:00R0 17 0000:00A7
18 0000:00AA

Program entry point at 0000:00A0

The first section of the .MAP file shows the memory map for the entire .EXE
file, with all addresses and values shown in hexadecimal (base 16). First
comes the code for the program MapTest itself, 179 bytes long. This is
followed by whatever routines have been linked in from the unit System
(2262 bytes). Next comes the data segment, which takes up 591 bytes. That
is followed by the stack, which is 16K in size. After that comes the heap,
which occupies (in theory) all the rest of memory.

Chapter 9, Debugging Your Turbo Pascal Programs 133

The second part of the MAP file lists all the public (global) symbols:
procedures, functions, and variables. All values are given in hexadecimal.
The first three records refer to code entry points, the remaining references
are addresses for variables.

The first code record describes procedure Test, which resides at offset 34 in
MapTest’s code segment. Next, the two @ symbols represent the beginning
of the initialization code for each program module in this program (in this
case, program MapTest and the System unit). The first @ record points to
the main program of MapTest, the second points to the beginning of the
System unit’s code segment.

There are three publics variables in MapTest: A, B, and C. The rest of the
publics are variables in the System unit. All the variables reside in the
DATA segment, which begins 2464 bytes from the start of the code.

The third section correlates line numbers in the source code with the
machine code in the .EXE file. There is one line number record for each line
of code in each program file. (In this simple example, MAPTEST.PAS is the
only source code module.) Each record consists of the line number of a
source code statement, and the segment and offset of the corresponding
machine code.

The last line in the .MAP file tells you that program execution starts at
address 0000:00A0, or 160 bytes from the start of the code segment.

In addition to converting a .TPM file to a .MAP file, the TPMAP program
now also produces a text file that contains a complete list of all
dependencies (units, Include and .OB]J files) in the Turbo Pascal program.

For example, given a file named TEST.PAS:

program Test;
uses Crt;
begin
ClrScr;
Write(’Turbo Pascal’);
end.

then the commands

tpc test /St+
tpmap test

will (1) compile TEST.EXE and produce a TEST.TPM file and (2) convert
TEST.TPM to TEST.MAP and produce TEST.DEP.

Here’s a dump of TEST.DEP:

program TEST in TEST.PAS;

134 Turbo Pascal Owner’s Handbook

uses
Crt;

unit Crt in CRT.PAS;
Links
CRT.O0BJ;

As you can see, the listing contains the module names (TEST, Crt), the
corresponding file names (TEST.PAS and CRT.PAS), and a list of .OB]J files
linked in using the {$L} compiler directive (CRT.OBJ). TPMAP will produce
a .MAP file only if you use the /M command-line option. Similarly, the /D
option will only produce a .DEP file.

Using a Debugger

Sometimes none of the traditional Pascal language-based approaches work.
The nature of the problem is such that either you can’t track down where
the errors are or, having located them, you can’t figure out why they’re
occurring or what’s causing them. Then it’s time to call in the heavy
artillery: a debugger.

A debugger is a program designed to allow you to trace the execution of
your program step by step, one instruction at a time. There are many
varieties of debuggers, but most require some familiarity with assembly
language (machine code) instructions and with the architecture (registers,
memory map, and so on) of your computer’s microprocessor.

One such debugger, Periscope, is described in the next section. (Periscope is
published by The Periscope Company, Inc., of Atlanta, Georgia.)

Preparing to Use Periscope

Periscope is especially well suited for debugging programs written in
Turbo Pascal and is also a symbolic debugger. Periscope allows you to view
your source code while debugging, and to limit the amount of machine
code that is displayed. Full instructions on how to use Periscope can be
found in its accompanying manual. This section simply describes how to
prepare your Turbo Pascal programs for use with Periscope, as well as a
few of the debugger’s basic instructions.

In order to use Periscope, you must first generate a .MAP file by doing the
following:

Chapter 9, Debugging Your Turbo Pascal Programs 135

m Turn on both the {$D+} and {$T+} compiler directives via the Options
menu, a command-line switch, or by inserting the directives at the start
of your program.

m Compile your program to disk, which will create .EXE and .TPM files.
m Run the TPMAP utility (as described previously) to create a . MAP file.

For example, if your program were named TEST.PAS, you would now have
three other files: TEST.EXE, TEST.TPM, and TEST.MAP.

You are now ready to debug your program with Periscope.

Starting Periscope

Periscope is a memory-resident program, much like SideKick and
SuperKey. If you have these or other memory-resident programs installed
in your system, you will need to exercise some caution when loading the
debugger. Consult the Periscope manual for more details on how to
configure the debugger for your computer, as well as how to load it safely
when other memory-resident programs are present. In the simplest case,
however, you can load Periscope simply by entering

ps
at the DOS prompt.

Once Periscope is loaded into memory, you can debug a program such as
TEST.PAS by typing

run test.exe

As explained in the Periscope manual, RUN.COM is a “program loader.” It
loads a program into memory, finds and loads the contents of the
corresponding .MAP file, and ultimately passes control to the debugger
itself. Once control has been passed, you’ll see something like this on your
screen:

AX=0000 BX=0000 CX=08CO DX=0000 SP=2000 BP=0000 SI=0000 DI=0000

DS=46AA ES=46AA SS=476A CS=46BA IP=0031 FL=0246 NV UP EI PL ZR NA PE NC

WR SS:1FFC = 46BA CFFQ

@:
46BA:0031 9A0000C846 CALL @
>

The first two rows show you the contents of the CPU registers. The third
row shows you the contents of the region of memory that will be altered
(WRitten to) when the CALL instruction is executed. The fourth and fifth
rows show you (1) that you have reached an address that corresponds to an

136 Turbo Pascal Owner’s Handbook

unnamed entry in the symbol table, and (2) that the call is being made to
another such address. The last line shows Periscope’s command prompt, a
greater than (>) sign.

Although this display will make long-time users of DOS DEBUG feel right
at home, you will probably prefer using Periscope’s “windowed” display
instead. To switch to a windowed display, press Ctr-F10 (if you have a color
monitor) or Cirl-F9 (if you have a monochrome monitor). Now you can see
much more information at a glance:

46AA:0100 11 45 6E 74 65 72 20 74-77 6F 20 76 61 6C 75 65 .Enter two val>|0000

46AA:0110 73 3A 00 80 FF FF FF 7F-00 00 OE 74 68 65 20 61 s:......... the10000
46AA:0120 6E 73 77 65 72 20 69 73-20 00 00 00 80 FF FF FF answer is|0000
46AA:0130 7F 92 00 00 C8 46 89 E5-BF 06 01 1E 57 BF 00 00HF.e?...W?|0000
DO” 10000
AX=0000 BX=052E CX=0552 DX=80D3 SP=2000 BP=2000 SI=00BA DI=0106 10000
DS=4746 ES=4746 SS=476A CS=46BA IP=0038 FL=0246 NV UP EI PL ZR NA PE N{0000
R* __WR §S:1FFC = 46BA CFF0 0000

@: 10000
46BA: 0031 9A0000C846 CALL @ 10000
46BA: 0036 89ES MoV BP, SP [0000
Ab6: Write(’Enter two values:’); 10000
46BA:0038 BF0601 MOV DI, 0106 ; OUTPUT 10000
46BA:003B 1E PUSH DS 10000
46BA:003C 57 PUSH DI 10000
46BA: 003D BF0000 MOV DI, 0000 ;A [0000
0" In C:\PERI\RUN.COM 0000

>

The screen is now divided into five distinct sections, or windows. At the
top of the screen is the Display window, used for examining memory;
below it is the Registers window. To the right is the Stack window, which
shows you the contents of the stack and, using the arrow now seen at the
top, the location pointed to by the BP (Base Page) register. At the bottom of
the screen is the Command window, where commands are entered and in
many cases command output is displayed. In the middle of the screen is the
Unassemble window. Here you can see a mixture of source code and
machine code, and the instruction that is about to be executed is always
highlighted by a reverse video bar.

Like most things in Periscope, the size and color of these windows can be
changed at your discretion (consult the manual for details). Once you have
the display configured to your liking, you can begin to experiment with
some of the basic debugging commands. In the sections that follow, it is
assumed that you will be using a windowed display while debugging and
that you are using version 3.0 or greater of Periscope.

Chapter 9, Debugging Your Turbo Pascal Programs 137

Basic Periscope Commands

From Periscope’s command prompt, you can get a complete list of the
available commands by typing a question mark (?) followed by Enter. The
following, however, are the ones you’ll most likely need when you get
started.

The Trace (T) Command

The Trace command executes a specified number of machine language
instructions, then stops. It allows you to single-step through your code
slowly and carefully, and to monitor the results as you go.

This command takes the format
>t [<number>]
If no number is specified, a single instruction is executed.

‘Useful tip: There’s no need to repeatedly press T and Enter while single-
stepping. Once you have entered a command, you can repeat it simply by
pressing the F4 key.

The Jump (] and JL) Commands

. The Jump (J) command is somewhat like the Trace command, but it allows
you to execute the next instruction in its entirety. For example, if the next
instruction is a CALL to a procedure, entering J tells the debugger to
execute the CALLed procedure, then stop at the instruction following the
CALL. Jump can also be used to avoid stepping through interrupt (INT)
calls, as well as instructions that tell the CPU to repeat a certain task, such
as LOOP or REPZ MOVSB.

The Jump Line (JL) command can be used to jump from the current
instruction to the next one that corresponds to a Turbo Pascal source-code
line. It thus allows you to move rapidly through programs written in a high
level language such as Pascal.

The Go (G) Command

When you want to move even more rapidly to a particular point in your
program, use the Go command. If you type G and press Enter, Periscope will
execute your program until one of two things happens: the program ends
or a breakpoint is encountered. Actually, there is a third event that could
stop the execution of the program: You could press either the breakout
switch (if you have one) or a special hotkey (if you have. the auxiliary

138 Turbo Pascal Owner’s Handbook

program PSKEY installed). PSKEY and Periscope’s optional breakout
switch, both very useful debugging aids, are beyond the scope of this
chapter, so you'll need to consult the Periscope manual for more on their
use.

The Go command has the following format:
>g [<address>] [...]

The address parameter(s) are optional, and you can specify as many as four
of them at a time. If you do specify a parameter, Periscope will set a
temporary breakpoint at the specified address, causing the execution of the
program to stop if the instruction pointer (IP) ever points to that address.
You can specify an address either as an offset within the current code
segment or as a 32-bit pointer in segment:offset format. You can also specify
an address by using a symbolic identifier. For example, the following
command would set three temporary breakpoints:

>g 003D 46C8:0000 MyProc

Another way to specify an address is to refer to a line of source code. For
example,

>g A6

would set a temporary breakpoint at the address corresponding to line 6 of
source file A (the first one listed in the MAP file, the second file is
designated as B, and so on). Note that the period (.) in .26 is optional, but
by using it, you can clearly distinguish between line A6 and the
hexadecimal offset A6 (00A6).

The Go command is useful both for skipping over sections of code that
have been thoroughly debugged and for getting quickly to a particular
procedure or line of source code.

The Unassemble (U, US, UB) Commands

When using Periscope’s windowed display, you can frequently locate a
section of code that interests you by using the PgUp and PgDn keys to scroll
through the Unassemble window. In some cases, however, it is faster and
easier to use the Unassemble command to instruct Periscope to display the
code at a particular address. For example, if the next instruction is a CALL
to a procedure (call it TheirProc) in another unit, and you don’t know
whether you should bother to single-step through it, you could glance at it
briefly by entering

>u TheirProc

Chapter 9, Debugging Your Turbo Pascal Programs 139

The optional parameter to an Unassemble command can be a symbol, an
offset, or an address in segment:offset format.

Two related commands are of particular interest to Turbo Pascal program-
mers. The Unassemble Source (US) command tells the debugger to display
only source code in the Unassemble window whenever possible. The
Unassemble Both (UB) command restores the display to its default state, in
which case both source code and machine code are displayed.

The Display (D, Dx) Commands

Periscope also has a host of Display commands that you can use to change
both the contents and the format of the Display window. The most useful
ones for Turbo Pascal programmers are Display Ascii (DA), Display Bytes
(DB), Display Double words (DD, for pointers and long integers), Display
unsigned Integer (DI), Display Number (DN, for signed integers), and
Display Word (DW). Like the Unassemble commands, these have the
format

>d [<address>]

where address can be specified either numerically or symbolically. The
Display (D) command is generally used to change the contents of the
Display window, where the Dx commands are used to change the format in
which memory is displayed.

The View (V) Command

The View command allows you to examine your source files while inside
the debugger. The format for the View command is

>v filename.ext

When you give the View command, the specified file is displayed in the
command window, and you can scroll through it using the cursor keys.
This command is particularly useful when you want to glance at type or
variable declarations, or at the interface section of a unit without disturbing
the contents of the Unassemble window.

The Enter (E) Command

The Enter command lets you make changes to memory while debugging.
You might use it, for example, if you had determined that a particular
routine would behave correctly ‘if a pointer variable was set to nil, if a
string variable was empty, or if a loop counter started at 1 rather than 0.

140 Turbo Pascal Owner’s Handbook

Using Enter, you could change the contents of the variable to test your
theory.

The format of the Enter command looks like this:
>e <address> [<list>]

where address points to the region of memory to be changed. The optional
list parameter is used to specify the changes to be made. If you omit it, you
can make changes in the interactive mode, a byte at a time.

The Registers (R) Command

If the wrong value has already been loaded into a register, you can still
change it using the Registers command. For example, if a variable that now
equals 0, but should equal 1, has just been loaded into the AX register, you
can enter

>r ax 1

to set the AX register to 1. You can also use the Registers command
(carefully) to prevent certain instructions from being executed. For
example, a near CALL that is about to be executed can be avoided by
entering

>r ip ip+3

Finally, and less dangerously, you can use the Registers command without
a parameter to reset the display in the Unassemble window to point to the
instruction about to be executed.

The Breakpoint (BC, BR, BM) Commands

Periscope has an impressive variety of commands for setting breakpoints,
which come in two flavors: permanent and conditional.

Permanent breakpoints are usually set with the Breakpoint on Code (BC)
command. For example:

>bc MyProc

would set a breakpoint at the start of the procedure named MyProc. Any
time MyProc was called, the debugger would stop the execution of the
program so that you could examine memory or single-step through the
procedure. This command, like most of the earlier ones, takes an address as
a parameter.

There are several conditional breakpoint commands, but the more common
ones are Breakpoint on Register (BR) and Breakpoint on Memory (BM).

Chapter 9. Debugging Your Turbo Pascal Programs 141

Unlike permanent breakpoints, conditional breakpoints occur only when a
specified condition is met. For example:

>br cs ne cs

would tell the debugger to stop the program if CS does Not Equal CS—that
is, if the value in the code segment (CS) register changes. Similarly,

>bm 0:0 0:3FC w

would tell the debugger to stop the execution of the program as soon as
any change is made to the interrupt vector table at the bottom of memory
(the W stands for Write, as opposed to R for Read).

The conditional breakpoint commands are powerful indeed, and so require
a more complete explanation than can be given here. One final and
important point should be made, however.

Conditional breakpoints generally require the debugger to monitor the
execution of the program very carefully. Although the rewards can be
great, the process is time-consuming. For that reason, Periscope requires
you request this special treatment specifically by issuing a special
command to watch for conditional breakpoints: either the Go Trace (GT) or
the Go Monitor (GM) command (see the Periscope manual for details).

You have numerous options and tools to use in debugging your
programming: syntax error handling, runtime error handling, range-
checking, I/O error-checking, tracing, map files, and debuggers. The
combination of these and the speed of Turbo Pascal create a powerful
development environment for even the most serious programmer.

142 Turbo Pascal Owner’s Handbook

10

The Turbo Pascal Menu Reference

This chapter is designed to help you quickly review all the menu com-
mands available in the Turbo Pascal integrated environment. You'll learn
how to select menu commands, then we’ll discuss each menu item in detail.

Menu Structure

Figure 10.1 shows the complete structure of Turbo Pascal’s main menu and
its successive pull-down menus.

Chapter 10, The Turbo Pascal Menu Reference 143

lFile Edit Run Compile Options |
("R" runs current program.)
o
“E” activates the Editor;
F10 returns to menu bar.
4
Load Compile
Pick Make
New Build
Save Destination Memory
Write to Find error
Directory Primary file:
Change dir Get info
0s shell .
Quit 4
Conmpiler
Envir
3 Di ies
P arameters
Recent filles Load options
C€:\TURBO4\NONAME . PAS S ave options
-- load file --
L 4
| Information =
Range checking on
Primary file: Stack checking on
Current file : C:\TURBO4\NONAME.PAS I/0 checking On
File size : 0 Available Memory 302K Debug information Off
Line compiled: 0 Run code Turbo pascal map file Off
Force far calls Off
Code size 0 bytes Var-string checking Strict
Data size 0 bytes Boolean evaluation Short-Circuit
Stack size 16384 bytes Numeric processing Software
Minimum heap size 0 bytes Link buffer Memory
Maximum heap size 655360 bytes Conditional defines
Memory Sizes s
Program exit code 0
Error Message Unexpected end of text
Error module C:\TURBO4 N
Error address Stack size 16384
Low heap limit 0
Press any key High heap limit 655360
Turbo directory:
Executable directory:
Include directories: L
Unit directories:
Object directories: L4
Pick file name: i
. Backup source files On
Current pick file: Edit auto save on
Config auto save Ooff
- Retain saved screen On
25 line standard display Tab size 8
43 line EGA display Zoom windows Off
50 line VGA display &= _1Screen size

144

Figure 10.1: Turbo Pascal’s Menu Structure

Turbo Pascal Owner’s Handbook

Menu commands can be selected several ways. First, you can get to the
main menu by pressing F10. If you're in the Edit window, you can get to the
main menu by pressing Ctr-K D or Ctrl-K Q. You can also press an Alt key and
the first letter of the main menu item you’d like to get to; for example, Alf-O
to get to the Options menu.

Once you're at the main menu, you can select an item by pressing the key
corresponding to the first letter of the menu name: File, Edit, Run, Compile,
and Options. File, Compile, and Options have several other items in their
pull-down menus; Edit and Run have no other options. You can also use
the Up arrow and Down arrow keys on your keyboard to move the highlight bar
up and down the list of commands, pressing Enter when the bar is on the
command you want. To close a menu, just press Esc.

Here's the five main menu selections:

File
Handles files (loading, saving, picking, creating, writing to disk), manipu-
lates directories (listing, changing), quits the program, and invokes DOS.

Edit
Lets you create and edit source files in the built-in text editor.

Run
Automatically compiles, links, and runs your program.

Compile
Compiles and makes your programs into object and executable files, and
more.

Options

Allows you to select compiler options (such as range-checking, debugging
information, and memory sizes) and define an input string of parameters.
Also records the Turbo, Executable, Include, Unit file and Object
directories, saves compiler options, and loads options from the con-
figuration file.

There are three general types of items on the Turbo Pascal menus:

m Commands perform a task (running, compiling, storing options, and so
on).

m Toggles let you switch a Turbo Pascal feature on or off (Range-checking,
Edit auto save, and so on) or cycle through and select one of several
options by repeatedly pressing the Enter key till you reach the item
desired (such as Destination or Boolean evaluation).

m Settings allow you to specify certain compile-time and runtime
information to the compiler, such as directory locations, primary files,
and so forth.

Chapter 10, The Turbo Pascal Menu Reference 145

The Bottom Line

Whether you're in one of the windows or one of the menus, the line at the
bottom of the screen provides at-a-glance function-key help for your
current position.

To see what other key combinations do in a different setting, hold down the
Alt key for a few seconds. The bottom line changes to describe what
function will be performed when you combine other keys with this key.

When you're in the main menu and the Edit window is active, the bottom
line looks like this:

Fl-Help F2-Save F3-Load F5-Zoom F6-Edit F9-Make F10-Main menu

When you hold down the Alt key, a summary of Alf-key combinations is
displayed, like this:

Alt-Fl-Last-Help Alt-F3-Pick Alt-F5-Saved Screen Alt-F9-Compile Alt-X-Exit

The Edit Window

In this section, we describe the components of the Turbo Pascal Edit
window and explain how to work in the window.

First off, to get into the Edit window, press Enter when positioned at the
Edit option on the main menu (or press E from anywhere on the main
menu). To get into the Edit window from anywhere in the system,
including the Output window, just press Alt-E. (Remember, Alt-E is just a
shortcut for F10-E)) Once you’re in the Edit window, notice that there are
double lines at the top of it, and its name is highlighted—that means it’s the
active window.

A new editor key, Ctrl-F7, expands the integrated environment’s compiler
directive settings into text and inserts them at the beginning of the current
edit file. Try loading a file into the editor and pressing Ctrl-F7. If you haven’t
changed any of the default switch settings on the Options/Compiler menu,
the following text will be inserted at the top of the file in the editor:

{$R-,S+,1+,D+,T-,F~,V+,B-,N-, L+ }
{$M 16384,0,655360 }

These are all the options found on the Options/Compiler and Memory
sizes menus. In addition, any conditional defines from the
Options/Compiler/Conditional defines menu item would have been
inserted as {$DEFINE xxxx } directives.

146 ' Turbo Pascal Owner’s Handbook

Besides the body of the Edit window, where you can see and edit several
lines of your source file, the Turbo Pascal Edit screen has two information
lines you should note: an Edit status line and the bottom line.

The status line at the top of the Edit window gives information about the
file you are editing, where in the file the cursor is located, and which
editing modes are activated:

Line n Col n Insert Indent Tab C:FILENAME.EXT

Line n Cursor is on file line number n.

Coln Cursor is on file column number 7.

Insert Insert mode is on; toggle Insert mode on and off with
Insert or Ctrl-V.

Indent Autoindent is on. Toggle it off and on with Ctr-O /.

Tab Tab mode is enabled. Toggle it on and off with Ctr-O T.

C:FILENAME.EXT The drive (C:), name (FILENAME), and extension
(.EXT) of the file you are editing.

The line at the bottom of the screen displays which hotkeys perform which
action:

Fl-Help F2-Save F3-Load F5-Zoom F6-Output F9-Make F10-Main Menu

To select one of these functions, press the listed key:

F1-Help Opens a Help window that provides information about
the Turbo Pascal editor commands.

F2-Save Saves the file loaded in the Edit window.

F3-Load Loads a new file into the Editor.

F5-Zoom Makes the active window full screen. Toggle F5 to get -

back to the split-screen environment.

F6-Output In this case, F6 takes you to the Output window; in
general, F6 switches between windows. Press it once
more to make the Edit window active again.

F9-Make Makes your .EXE file.

F10-Main menu Invokes the main menu.

The editor uses a command structure similar to that of SideKick’s NotePad
and the orginal Turbo Pascal’s editor; if you're unfamiliar with the editor
these products use, Chapter 11 describes the editor commands in detail.

Chapter 10, The Turbo Pascal Menu Reference 147

If you're entering code in the editor, you can press Enter to end a line (the
editor has no wordwrap). The maximum line width is 249 characters; you'll
get a beep if you try to type past that. (Note that the compiler only
recognizes characters out to column 128.) The Edit window is 77 columns
wide. If you type past column 77, the text you've already entered moves to
the left as you type. The Edit window’s status line gives the cursor’s
location in the file by line and column.

After you’ve entered your code into the Edit window, press F10 to invoke
the main menu. Your file will remain onscreen; you need only press E (for
Edit) at the main menu to return to it, or Alt-E from anywhere.

How to Work with Source Files in the Edit Window

When you invoke the Edit window before loading a particular file, the

Turbo Pascal editor automatically names the file NONAME.PAS. At this

point you have all the features of the editor at your fingertips. You can:

= create a new source file either as NONAME.PAS or another file name

m load and edit an existing file

m pick a file from a list of edit files, and then load it into the Edit window

. msave the file viewed in the Edit window

m write the file in the editor to a new file name

m alternate between the Edit window and the Output window to find and
correct runtime mistakes

While you are creating or editing a source file but before you have
compiled and run it, you don’t need the Output window. So you can press
F5 to zoom the Edit window to full screen. Press F5 again to unzoom the
Edit window (return to split-screen mode).

Creating a New Source File
To create a new file, select one of the following methods:

m If you have just entered Turbo Pascal and don’t have an active pick file,
you need only press E to create the file NONAME.PAS in the editor.

m At the main menu, select File/New, then press Enter. This opens the Edit
window with a file named NONAME.PAS.

m At the main menu, select File/Load. The Load File Name prompt box
opens; type in the name of your new source file. (Pressing the shortcut F3
from within the Edit window will accomplish the same thing.)

148 Turbo Pascal Owner’s Handbook

Loading an Existing Source File
To load and edit an existing file, you can select two options: File/Load or
File/Pick.

If you select File/Load at the main menu, you can

m Type in the name of the file you want to edit; paths are accepted—for

example,
C:\TP\TESTFILE.PAS

mEnter a mask in the Load File Name prompt box (using the DOS
wildcards * and ?), and press Enter. Entering * . * will display all of the
files in the current directory as well as any other directories. Directory
names are followed by a backslash (\). Selecting a directory displays the
files in that directory. Entering C:*.PAS, for example, will bring up
only the files with that extension in the root directory. You can change the
wildcard mask by pressing F4. (For more on directories, look at
Appendix G.)

B Press the Up, Down, Left, and Right arrow keys to highlight the file name
you want to select. Then press Enter to load the selected file; you are
placed in the Edit window. If you press Enter when you’re positioned on
a directory name, you'll get a new directory box.

Pick lets you quickly pick the name of a previously loaded file. So, if you
select File/Pick or Alt-F3 (see the discussion of the Pick option later in this
chapter), you can

m Press Alt-F then P to bring up your pick list (or press the shortcut Alt-F3).

m Use the Up and Down arrow keys to move the selection bar to the file of
your choice.

Saving a Source File
In order to save a source file from anywhere in the system, press F2. If
you're at the main menu, you can select File/Save.

Writing an Output File

You can write the file in the editor to a new file or overwrite an existing file.
You can write to the current (default) directory or specify a different drive
and directory.

At the main menu, select File/Write to. Then, in the New Name prompt
box, enter the full path name of the new file name and press Enter:

C:\DIR\SUBDIR\FILENAME.EXT

Chapter 10, The Turbo Pascal Menu Reference 149

where C: (optional) is the drive; \DIR\SUBDIR\ represent optional
directories; ILENAME.EXT is the name of the output file and its extension
(the extension .PAS is assumed; append a period (.) at the end of your file
name if you don’t want an extension name).

Press Esc once to return to the main menu, twice to go back to the active
window (the editor). You can also press £6 or Alt-E.

If FILENAME.EXT already exists, the editor will verify that you want to
overwrite the existing file before proceeding.

The Output Window

The Output window contains program-generated output. At startup, it will
display the last screen from DOS. You can scroll through this window using
the cursor keys, as well as Home, End, PgUp and PgDn. When the Output
window is active, the 25th line looks like this:

Fl-Help F2-Save F3-Load F5-Zoom F6-Edit F9-Make F10-Main menu

To use one of these features, press the desired key:

F1-Help Opens a Help window that offers info about the
Output window.

F2-Save Saves the file currently in the editor.

F3-Load Loads a new file into the editor.

F5-Zoom Expands the Output window to full screen.

F6-Edit Makes the Edit window active.

F9-Make Makes the .EXE file.

F10-Main menu Invokes the main menu.

The File Menu

The File pull-down menu offers various choices for loading existing files,
creating new files, and saving files. When you load a file, it is automatically
placed in the editor. When you finish with a file, you can save it to any
directory or file name. In addition, from this pull-down you can change to
another directory, temporarily go to the DOS shell, or exit Turbo Pascal.

180 Turbo Pascal Owner’s Handbook

Fila] Edit Run Compile _ .
7]|Col 1 Insert Indent C:NONAME.PAS

Options

Pick
New
Save
Write to
Directory
Change dir
OS shell
Quit

Qutput

Fl-Help F2-Save F3-Load F5-Zoom F6-Edit F9-Make Fl10-Main menu

Figure 10.2: The File Menu

Load

Loads a file. You can use DOS-style masks to get a listing of file choices, or
you can load a specific file. Simply type in the name of the file you want to
load.

You can move through the directory box by using first letter selection.
Pressing the Bkey, for example, takes you to the first file name starting with
B. Pressing B again takes you to the next file name, and so on. If there are
no other file names beginning with the letter B, you will be taken back to
the first one. If no file names start with the letter B, then the cursor will not
move. Holding down the Shift key and pressing B will take you to the first
subdirectory that begins with the letter B.

Note: If you enter an incorrect drive or directory, you'll get an error box
onscreen. You'll get a verify box if you have an unsaved, modified file in
the editor while you're trying to load another file. In either case, the hot
keys are disabled until you press the key specified in the error or verify
box.

Pick

Lets you pick a file from a list of the previous eight files loaded into the
Edit window. At the top of list, you'll find the file that is currently in the
editor. This provides an easy way to reload the current file if you wish to
abandon changes. The file selected is loaded into the Editor and the cursor

Chapfter 10, The Turbo Pascal Menu Reference 151

is positioned at the location where you last edited that file. Note that the
block marks and state is saved for each file, as are each of the four markers.
If you select the “—load file—" item from the pick list, you'll get a Load
File Name prompt box exactly as if you had selected File/Load or F3. Alf-F3
is a short cut to get this list.

You can define the pick file name from the O/D/Pick file name menu item
from within Turbo Pascal’s installation program (TINST). This will have
Turbo Pascal automatically save the current pick list when you exit Turbo
Pascal and then reload that file upon reentering the program. For more
information, see the O/D/Pick file name option.

New

Specifies that the file is to be a new one. You are placed in the editor; by
default, this file is called NONAME.PAS. (You can change this name later
on when you save the file.)

Save

Saves the file in the Editor to disk. If your file is named NONAME.PAS and
you go to save it, the editor will ask if you want to rename it. From
anywhere in the system, pressing F2 will accomplish the same thing.

Write to

Writes the file to a new name or overwrites an existing file. If a file by that
name already exists, you'll be asked to verify the overwrite.

Directory |
Displays the directory and file set you want (to get the current directory,
just press Enter).

You can move through the directory box by using first letter selection.
Pressing the B key, for example, takes you to the first file name starting with
B. Pressing B again takes you to the next file name, and so on. If there are
no other file names beginning with the letter B, you will be taken back to
the first one. If no file names start with the letter B, then the cursor will not
move. Holding down the Shift key and pressing B will take you to the first
subdirectory that begins with the letter B.

Change dir
Displays the current directory and allows you to change to a specified drive
and/or directory.

152 Turbo Pascal Owner’s Handbook

OS shell

Leaves Turbo Pascal temporarily and takes you to the DOS prompt. To
return to Turbo Pascal, type exit. This is useful when you want to run a
DOS command without quitting Turbo Pascal.

Quit
Quits Turbo Pascal and returns you to the DOS prompt to the currently
active directory.

The Edit Command

The Edit command invokes the built-in screen editor.

You can invoke the main menu from the editor by pressing F10 (or Alt and
the first letter of the main menu command you desire). Your source text
remains displayed on the screen; you need only press Esc or E at the main
menu to return to it (or Alt-E from anywhere).

The Run Command

Run invokes the compiler if you have changed the file you're currently
editing since the last time you compiled it. It then runs your program using
the arguments given in Options/Parameters. After your program’s finished
running, you'll get a Press any key to return to Turbo Pascal message.

When the compiler is invoked because you have changed the edit file, it is
the same as doing a Make (F9), followed by a Run (Alt-R or F10 R).

The Compile Menu

Use the items on the Compile menu to Compile a program, to. Make a
program, to Build a program, to set the Destination of the object code (disk
or memory), to Find a runtime error, to set a Primary file, or to Get
information about the current source file.

Chapter 10, The Turbo Pascal Menu Reference 153

File Edit -Run
Line 1 Col 1 Ins:

Options

ake
Build
Destination Memory
Find error

Primary file:

Get info

Qutput

Fl-Help F2-Save F3-Load F5-Zoom F6-Edit F9-Make F10-Main menu

Figure 10.3: The Compile Menu

Compile
This menu item is a command. The last file you loaded into the editor is
compiled.

Make

Invokes Turbo Pascal’s Make sequence. If a primary file has been named,
then that file is compiled; otherwise the last file loaded into the editor is
compiled. Turbo Pascal checks all files upon which the file being compile
depends. If the source file for a given unit has been modified since the .TPU
(object code) file was created, then that unit is recompiled. If the interface
for a given unit has been changed, then all other units that depend upon it
-are recompiled. If a unit links in an .OB]J file (external routines), and the
.OB] file is newer than the unit’s .TPU file, then the unit is recompiled. If a
unit includes an Include file and the Include file is newer than that unit’s
.TPU file, then the unit is recompiled.

Build

Recompiles all your files regardless of whether they are out of date or not.
This option is similar to Make except that it is unconditional; Make
rebuilds only the files that aren’t current.

154 Turbo Pascal Owner’s Handbook

Destination

Use this option to specify whether the executable code will be saved to disk
(as an .EXE file) or whether it will just be saved in memory (and thus lost
when you exit from Turbo Pascal). Note that even if Destination is set to
Memory, any units that are recompiled during a Make or a Build have their
.TPU files updated on disk. If the code is being saved to disk, then the .EXE
file name listed is derived from one of two names, in the following order:

m the Primary file name, or if none is specified
m the name of the last file you loaded into the Edit window.

Find error

Finds the location of a runtime error. When a runtime error occurs, the
address in memory of where it occurred is given in the format seg:ofs. When
you return to Turbo Pascal, Turbo locates the error automatically for you.
This command allows you to find the error again, given the seg and ofs
values.

For this to work, you must turn on the Debug information menu item.
When entering the error address, you must give it in hexadecimal, segment
and offset notation. The format is “xxxx:yyyy”; for example, “2BE0:FFD4.”

If runtime errors occur when running within the integrated environment,
the default values for error address is set automatically. This allows you to
re-find the error location after changing files. (Note that if you just move
around in the same file, you can get back to the error location with the Cir-Q
W command.)

When runtime errors occur under DOS, you should note the segment offset
displayed on the screen. Then load the main program into the editor or
specify it as the Primary file. Be sure to set the Destination to Disk. Then
type in the segment offset value.

Primary file
Use this option to specify which .PAS file will be compiled when you use
Make (F9) or Build (Alt-C B).

Get info

Brings up a window of information about the current .PAS file you're
working with, including the size (in bytes and lines) of the source code, the
size (in bytes of code and data) of the resulting .EXE (or .TPU) file, available
memory, state of code, and error information.

Chapter 10, The Turbo Pascal Menu Reference 155

When Turbo Pascal is compiling, a window pops up to display the com-
pilation results. When compiling/making is complete, press any key to
remove this compiling window. If an error occurs, you are automatically
placed in the Edit window at the error.

The Options Menu

The Options menu contains settings that determine how the integrated
environment works. The settings affect things like compiler options, unit,
object, and include directories, program runtime arguments, and so on.

File Edit Run Compile
Ed

Line 1 Col 1 Insert Indent
Environment
Directories
Parameters
Load Options
Save Option
Output

Fl-Help F2-Save F3-load F5-Zoom F6-Edit F9-Make F10-Main menu

Figure 10.4: The Options Menu

Compiler

These options allow you to specify different compiler options, including
range-checking, stack-checking, I/O checking, and so on. These same
options can also be specified directly in your source code using compiler
directives (see Appendix C). Note that the first letter of each menu item
corresponds to its equivalent compiler directive; for example, Range-
checking corresponds to {$R}. (The only exception is compiler defines,
which is /Dxxx.)

156 Turbo Pascal Owner’s Handbook

File Edit Run Compile
Edit

Line 1 Col 1 Insert Indent
1/O checking On
Debug information On
Turbo pascal map file Off
Force far calls Off
Var-string checking Strict
Boolean evaluation Short Circuit
Numeric processing Software
Link buffer Memory
Conditional defines
Memory sizes

Output

Fl-Help F2-Save F3-Load F5-Zoom F6-Edit F9-Make F10-Main menu

Figure 10.5: The Options/Compiler Menu

& Range-checking: Allows you to enable or disable range-checking. When
enabled, the compiler generates code to check that array and string
subscripts are within bounds, and that assignments to scalar-type
variables don’t exceed the defined range. If the check fails, then the
program halts with a runtime error. When disabled, no such checking is
done. This is equivalent to the $R compiler directive.

m Stack checking: Allows you to enable or disable stack checking. When
enabled, the compiler generates code to check that space is available for
local variables on the stack before each call to a procedure or function. If
the check fails, then the program halts with a runtime error. When
disabled, no such checking is done. This is equivalent to the $5 compiler
directive.

m I/O checking: Allows you to enable or disable input/output (I/O) error
checking. When enabled, the compiler generates code to check for I/O
errors after every I/0O call. If the check fails, then the program halts with
a runtime error. When disabled, no such checking is done; however, the
user can then test for I/O errors via the system function IOResult. This is
equivalent to the $I compiler directive.

mDebug information: Allows you to ask the compiler to generate
debugging information for the program being compiled. If you are
compiling to disk, the information is stored in the resulting .EXE or .TPU
file. This allows the Compile/Find Error command to locate runtime
errors in units previousy compiled. This must be on for the
Compile/Find error item to work.

Chapter 10, The Turbo Pascal Menu Reference 157

m Turbo pascal map file: Causes the compiler to generate a MAP file
during the linking phase. the MAP file generated has a .TPM extension.
This file is used by Find error when information is not in memory. You
can also use this file with symbolic debuggers. TPMAP.EXE will convert
the .TPM file to a MAP file.

m Force far calls: Allows you to force all procedure/function calls to be far
calls. If not enabled, then the compiler will generate near calls for any
procedures and functions within the file being compiled. This is
equivalent to the $F compiler directive.

m Var-string checking: Allows you to choose between strict or relaxed
string parameter error checking. With strict checking, the compiler
compares the declared size of a var-type string parameter with the actual
parameter being passed. If the declared size of the actual parameter is
smaller than that of the formal parameter, then a compiler error occurs.
With the relaxed option, no such checking is done. This is equivalent to
the $V compiler directive.

mBoolean evaluation: Allows you to select between short-circuit and
complete Boolean evaluation. With short-circuit evaluation, the compiler
generates code to terminate evaluation of a Boolean expression as soon as
possible; for example, in the expression if False and MyFunc..., the
function MyFunc would never be called. With complete evaluation, all
terms in a Boolean expression are evaluated. This is equivalent to the $B
compiler directive.

m Numeric processing: Allows for two options—Hardware, which
generates direct 8087 inline code and allows the use of IEEE floating-
point types (single, double, extended, comp); and Software, which allows
only the standard Turbo Pascal 6-byte real data type. This is equivalent to
the $N compiler directive.

m Link buffer: Allows you to tell Turbo to use memory or disk for the link
buffer. Using memory speeds things up, but you may run out of memory
for large programs; using disk frees up memory but slows things down.
This is equivalent to the $L compiler directive.

m Conditional defines: Defines symbols referenced in conditional compi-
lation directives in your source code. Symbols are defined by typing in
their name. Multiple symbols are separated by semicolons; for example,
you may define the two symbols Test and Debug by entering
Test;Debug.

When the compiler runs across a sequence like

{SIFDEF Test}
Writeln("x =",x:1);
{SENDIF}

158 Turbo Pascal Owner’s Handbook

then the code for the Writeln will be generated. This is equivalent to
defining symbols on the command line with the /Dxxx directive under
TPC.EXE.

m Memory sizes: Lets you configure the memory map for the resulting
code file. All three settings here can be specified in your source code
using the $M compiler directive.

Stack size: Allows you to specify the size (in bytes) of the stack segment.
The default size is 16K, the maximum size is 64K.

Low heap limit: Allows you to specify the minimum acceptable heap
size (in bytes). The default minimum size is OK. If you attempt to run
your program and there is not enough heap space to satisfy the
minimum requirement, then the program aborts with a runtime error.

High heap limit: Allows you to specify the maximum amount of
memory (in bytes) to allocate to the heap. The default is 655360, which
(on most systems) will allocate all available memory to the heap. This
value must be greater than or equal to the smallest heap size.

Environment

This menu’s entries tell Turbo Pascal where to find the files it needs to
compile, link, and provide Help. Some miscellaneous options permit you to
tailor the Turbo Pascal working environment to suit your programming
needs.

File Edit Run Compile
Edit,
Line 1 Col 1 Insert Indent

Edit auto save Ooft
Config auto save Oft
Retain saved screen On
Tab size

Zoom windows off
Screen size

Output

Fl-Help F2-Save F3-Load FS5-Zoom F6-Edit F9-Make F10-Main menu

Figure 10.6: The Options/Environment Menu

Chapter 10, The Turbo Pascal Menu Reference 159

m Backup source files: By default, Turbo Pascal automatically creates a
backup of your source file when you do a Save. It saves the backup copy
using the same file name and a .BAK extension. This activity can be
turned off and on with this option.

m Edit auto save: Helps prevent loss of your source file by automatically
saving your edit file (if it’s been modified) when you use Run or OS
shell.

m Config auto save: Helps prevent loss of options you have changed, such
as compiler settings or environment settings. Whenever you exit, the
current configuration file is updated if it has been changed.

B Retain saved screen: Tells the environment how long to save the last
output from a Run or OS shell. When on, the saved screen will be kept
the entire session. When off, the saved screen will be kept until the
compiler needs to use the memory taken up by one saved screen.

m Tab size: Sets the hard tab size in the editor. The tab size can be set from
2 to 16. Note that Tab mode (Ctr-O T) must be on for you to be able to use
the Tab key to enter hard tabs.

m Zoom windows: Zoom on expands the Edit and Output windows to full
screen. You can still switch between them, but only one window at a time
will be visible. Zoom off returns to the split-screen environment
containing both the Edit and Output windows.

m Screen size: Lets you choose between a 25-line standard display, a 43-line
EGA display, and a 50-line VGA display. These options are only available
on hardware that supports them.

Directories

This menu lets you direct Turbo Pascal to the location of any directories
listed, as well as to the pick file.

160 Turbo Pascal Owner’s Handbook

File Edit Run Compile

Edit

Linel Coll Insert Indent Compiler
Environment

Y
Include directories
Unit directories:
Object directories:
Pick file name:
Current pick file:

Qutput

Fl-Help F2-Save F3-Load F5-Zoom F6-Edit F9-Make F10-Main menu

Figure 10.7: The Options/Directories Menu

B Turbo directory: This is used by the Turbo Pascal system to find the
configuration file (.TP) and the help file (TURBO.HLP). For Turbo Pascal
to find your default configuration file (TURBO.TP) at startup you must
install this path using this command.

m Executable directory: .EXE files are stored here. If the entry is blank, the
files are stored in the current directory.

m Include directories: Specifies the directories that contain your standard
include files. Standard include files are those specified with the {$I
filename} compiler directive. Multiple directories are separated by
semicolons (;), like in the DOS path command.

m Unit directories: Specifies the directories that contain your Turbo Pascal
unit files. Multiple directories are separated by semicolons (;), like in the
DOS path command.

m Object directories: Specifies the directories that contain .OB]J files
(assembly language routines). When Turbo Pascal encounters a {$L
filename} directive, it looks first in the current directory, then in the
directories specified here. Multiple directories are separated by
semicolons (;), like in the DOS path command.

m Pick file name: Defines the name and location of a pick file. When this
field is defined, a pick file will always be written. If it is not defined, then
a pick file is written only if the Current pick file entry is non-blank. Since
any name can be used, you must save the pick file name in your
configuration file if it is not the default name of TURBO.PCK. For more

Chapter 10, The Turbo Pascal Menu Reference 161

information about this option, see the later section entitled “About the
Pick File and the Pick List.”

m Current pick file: Shows the file name and location of the current pick
file, if any. This is where the current pick list information will be stored if
the pick file name changes or if you exit the integrated environment. This
item is always disabled and is for informational purposes. For more
information, see the later section entitled “About the Pick File and the
Pick List.”

Parameters

This setting allows you to give your running programs command-line
parameters (or arguments) exactly as if you had typed them on the DOS
command line (redirection is not supported). It is only necessary to give the
arguments here; the program name is omitted.

Load Options

Loads a configuration file (the default file is TURBO.TP) previously saved
with the Save options command.

Save Options

Saves all your selected Compiler, Environment, and Directories options in a
configuration file (the default file is TURBO.TP). On start-up, Turbo Pascal
looks in the current directory for TURBO.TP; if the file’s not found, then
Turbo Pascal looks in the Turbo directory for the same file. If the file’s not
found there and you’re running DOS 3., it will search the exec directory
(or the directory where TURBO.EXE was started from).

About the Pick List and Pick File

The pick list and pick file work together to save the state of your editing
sessions. The pick list remembers what you do while you are in the
integrated environment, and the pick file remembers after you have left the
integrated environment or changed contexts with in it.

162 Turbo Pascal Owner’s Handbook

The Pick List

The pick list is a pop-up menu located in the File menu. It provides a list of
the eight most recent files that were loaded into the editor. Also, the first
file in the list is the current file in the editor.

When you select File/Pick, the selection bar is placed on the second item in
the menu; this would be the last file that was loaded into the editor. By
selecting this file or scrolling down and selecting one of the other files on
the menu, you will load that file into the editor. At this point, the editor will
position the cursor where you were last. In addition, any markers and
marked blocks will be as you left them.

The pick list is a handy way to move back and forth from one file to
another. The hotkey Alt-F3 takes you directly to the pick list, so pressing Alt-
F3 Enter in succession swaps between two files. If the file you want is not on
the pick list, you can select the last entry on the pick list menu, which is
"--load file--" or press F3(Load file) to load that file.

The Pick File

The pick file is used to store editor related information, including the
contents of the pick list. For each entry in the pick list, its file name, file
position, marked block, and markers are stored. In addition to information
about each file, the pick file contains data on the state of the editor when
you last exited. This includes the last search-and-replace strings and search
options.

To create a pick file, you must define a pick file name. This is done by
entering a file name in the Pick file name menu item found on the
Options/Directories menu. When this field is defined the pick list is
updated on disk when you exit the integrated environment.

Loading a Pick File

If a pick file name is defined, the integrated environment will try to load it.

The pick file name can be defined in several ways. TINST—the Turbo
Pascal integrated environment program—can be used to permanently
install a pick file name into the TURBO.EXE file. A configuration file can be
loaded that contains a pick file name. Or you can type in a pick file name. If
a pick file name is defined but the integrated environment cannot find it,
then an error message is issued.

Chapter 10, The Turbo Pascal Menu Reference 163

If no pick file name is defined, then the integrated environment searches for
the default pick file name, TURBO.PCK, first in the current directory, then
in the Turbo directory, and if you are running under DOS 3.x, it will then
search the executable directory.

Once a pick file is loaded, the integrated environment remembers the name
and location of that file so that it can update that file when you exit after
changing directories.

Saving Pick Files

If a pick file has not been loaded and the Pick file name option is blank,
then the integrated environment will not save a pick file to disk when you
exit.

Usually, pick files are only saved on exit from the integrated environment.
However, there are certain times when the current pick file is updated and
a new pick file is started (or restarted).

Whenever you change the pick file name, the integrated environment will
cause the current pick list to be written to the last pick file and then the
newly named pick file will be in effect.

Configuration Files and the Pick File

Since the pick file name is stored in the configuration file, it is possible to
change pick files by loading a new configuration file. If the pick file name
from the configuration file is different than the current pick file, then the
current pick file is updated and the new pick file is loaded.

Note that two configuration files can easily use the same pick file; thus
loading a configuration file with the same pick file name as the current one
does not affect the pick file or the current pick list.

164 Turbo Pascal Owner’s Handbook

11

Using the Editor

Turbo Pascal’s built-in editor is specifically designed for creating program
source text in the integrated environment. If you use the command-line
version of the compiler, however, you'll be using another editor and can
therefore skip this chapter.

The Turbo Pascal editor lets you enter up to 64K of text, 248 character lines,
and any characters in the ASCII character set, extended character set, and
control characters.

If you are familiar with WordStar, the version 3.0 Turbo Pascal editor, or the
SideKick editor, you already know how to use the Turbo Pascal editor. At
the end of this chapter, there’s a summary of the few differences between
Turbo Pascal’s editor commands and the ever-familiar WordStar
commands.

Quick In, Quick Out

To invoke the editor in the integrated environment, choose Edit from Turbo
Pascal’s main menu by pressing E from anywhere on the main menu or by
using the arrow keys to move to the Edit command and then pressing Enter.
The Edit window becomes the “active” window; meaning the Edit
window’s title is highlighted and has a double line at the top, and the
cursor is positioned in upper left-hand corner.

To enter text, you can type as though you were using a typewriter. To end a
line, press the Enter key.

Chapter 11, Using the Editor 165

To invoke the main menu from within the editor, press F10, Ctrl-K D, or Ctrl-K
Q. The data in the Edit window remains on screen, but the menu bar now
becomes active. To get back to editing, press E again.

The Edit Window Status Line

The status line at the top of the Edit window gives you information about
the file you are editing: where in the file the cursor is located and which
editing modes are activated:

Line n Col n Insert Indent Tab C:FILENAME.TYP

Line n Cursor is on file line number n.
Col n Cursor is on file column number #.
Insert Tells you that the editor is in Insert mode; characters

entered on the keyboard are inserted at the cursor
1E_)L(l)sition, and text to the right of the cursor is moved
rther right.

Use the Ins key or Cirl-V to toggle the editor between
Insert mode and Overwrite mode.

In Overwrite mode, text entered at the keyboard
overwrites characters under the cursor instead of
inserting them before existing text.

Indent Indicates the autoindent feature is on. You can toggle
it off and on with the command Ctrl-O I.

Tab Indicates whether or not you can insert tabs; toggle it
on or off with Ctr-O T.

C:FILENAME.EXT Indicates the drive (C:), name (FILENAME), and
extension (.EXT) of the file you are editing. If the file
name and extension is NONAME.PAS, then you have
not specified a file name yet. (NONAME.PAS is
Turbo Pascal’s default file name.)

Editor Commands

The editor uses approximately 50 commands to move the cursor around,
page through text, find and replace strings, and so on. These commands
can be grouped into four main categories:

166 Turbo Pascal Owner’s Handbook

m cursor movement commands (basic and extended)

m insert and delete commands

m block commands
m miscellaneous commands

Table 11.1 summarizes the commands. Each entry in the table consists of a
command definition, followed by the default keystrokes used to activate
the command. The remainder of the chapter details each editor command.

Table 11.1: Summary of Editor Commands

Basic Movement Commands

Character left
Character right
Word left
Word right
Line up

Line down
Scroll up

Scroll down
Pageu

I’age dgwn

Extended Movement Commands

Beginning of line
End of line

Top of window
Bottom of window
Top of file

End of file fblock
Beginning of bloc
En%lut;rflbl%ck

Last cursor position
Last error position

Insert and Delete Commands

Insert mode on/off

Insert line

Delete line

Delete to end of line

Delete character left of cursor
Delete character under cursor
Delete word right of cursor

Chapfter 11, Using the Editor

Ctrl-S or Left arrow
Ctrl-D or Right arrow
Ctrl-A or Ctrl-Left arrow
Ctrl-F or Ctrl-Right arrow
Ctrl-E or Up arrow
Ctrl-X or Down arrow
Ctrl-w

cirl-Z

Ctrl-R or PgUp

Ctrl-C or PgDn

Ctrl-Q S or Home
Cirl-Q D or End
Ctrl-Q E or Ctrl-Home
Ctrl-Q X or Ctrl-End
Ctrl-Q R or Ctrl-PgUp
Ctrl-Q C or Ctrl-PgDn
Ccrl-QB

Citl-QK

Crl-QP

Ctrl-QWwW

Ctrl-V or Ins

Ctrl-N

Ctrl-Y

Ctrl-QY

Ctrl-H or Backspace
Ctrl-G or Del

Cirl-T

167

Table 11.1: Summary of Editor Commands, continued

Block Commands

Mark block-begin
Mark block-engi
Mark single word
Print block

CoFy block

Delete block
Hide/display block
Move block

Read block from disk
Write block to disk

Miscellaneous Commands

Abort operation
Autoindent on/off
Control character prefix
Pair braces forward
Pair braces backward
Find

Find and replace

Find place marker
Invoke main menu
Load file

Exit editor, no save
Repeat last find

Restore line

Save and edit

Set place marker

Tab

Tab mode

Language help

Insert compiler directives

Ctrl-KBor F7
Ctrl-K K or F8
Ctrl-K T
Ctrl-K P
Ctrl-K C
Ctrl-KY
Ctrl-KH
Ctrl-KV
Ctrl-K R
Ctrl-K W

ctrl-U

Ctrl-O lor Ctrl-Q |
Cirl-P

cil-Qf

Cctrl-Q]

Cirl-QF

Ctl-QA

Ctrl-Qn

F10

F3

Ctrl-K D or Ctrl-K Q
Ctrl-L

Cirl-Q L

Ctrl-K S or F2
Ctrl-K n

Ctrl-I ox Tab
CrlOTor Ctll-QT
Ctrl-F1

Ctrl-F7

Basic Movement Commands

The editor uses control-key commands to move the cursor up, down, right,
and left on the screen (you can also use the arrow keys). To control cursor
movement in the part of your file currently onscreen, use the sequences

shown in Table 11.2.

168

Turbo Pascal Owner’s Handbook

Table 11.2: Control Cursor Sequences

When you press: The cursor does this:

Ctrl-A or Ctrl-Left arrow Moves to first letter in word to left of cursor
Cir-S Moves to first position to left of cursor

Ctrl-D Moves to first position to right of cursor

Ctrl-F or Ctrl-Rightarrow ~ Moves to first letter in word to right of cursor
Ctrl-E or Ctrl-Up arrow Moves up one line

Cirl-R Moves up one full screen

Ctrl-X or Ctrl-Down arrow ~ Moves down one line

Ctrl-C Moves down one full screen

Ctr-W Scrolls screen down one line; cursor stays in line
Ctrl-Z Scrolls screen up one line; cursor stays in line

Extended Movement Commands

The editor also provides six commands to move the cursor quickly to either
ends of lines, to the beginning and end of the file, and to the last cursor
position (see Table 11.3).

Table 11.3: Quick Movement Commands

When you press: The cursor does this:
Cirl-Q S or Home Moves to column one of the current line
Cirl-Q D or End Moves to the end of the current line

Ctr-Q Eor Ctrl-Home ~ Moves to the top of the screen

Ctrl-Q X or Ctrl-End Moves to the bottom of the screen
Ctl-QR Moves to the first character in the file
ctl-QC Moves to the last character in the file

The Ctr-Q prefix with a B, K, or P character allows you to jump to certain
points in a document.

Beginning of block Cir-K B
Moves the cursor to the block-begin marker set with Ctrl-K B. The command
works even if the block is not displayed (see “Hide/display block” under
“Block Commands”) or if the block-end marker is not set.

End of block Cil-K K
Moves the cursor to the block-end marker set with Cirl-K K. The command
works even if the block is not displayed (see “Hide/display block”) or the
block-begin marker is not set.

Chapter 11, Using the Edifor 169

Last cursor position Ctrl-QP
Moves to the last position of the cursor before the last command. This
command is particularly useful after a Find or Find/replace operation has
been executed and you’d like to return to the last position before its
execution.

Last error position Ctrl-Q W
After the compiler has placed you in the editor with an error showing on
the status line, you can later return to this position and redisplay the error
by pressing Ctr-Q W.

Insert and Delete Commands

To write a program, you need to know more than just how to move the
cursor around. You also need to be able to insert and delete text. The
following commands insert and delete characters, words, and lines.

Insert mode on/off Ctrl-V or Ins
When entering text, you can choose between two basic entry modes: Insert
and Overwrite. You can switch between these modes with the Insert mode
toggle, Ctrl-V or Ins. The current mode is displayed in the status line at the
top of the screen.

Insert mode is the Turbo Pascal editor’s default; this lets you insert new
characters into old text. Text to the right of the cursor moves further right
as you enter new text.

Use Overwrite mode to replace old text with new; any characters entered
replace existing characters under the cursor.

Delete character left of cursor Ctrl-H or Backspace
Moves one character to the left and deletes the character positioned there.
Any characters to the right of the cursor move one position to the left. You
can use this command to remove line breaks.

Delete character under cursor Ctrl-G or Del
Deletes the character under the cursor and moves any characters to the
right of the cursor one position to the left. You can use this command to
remove line breaks.

Delete word right of cursor Ctrl-T
Deletes the word to the right of the cursor. A word is defined as a sequence
of characters delimited by one of the following characters:

space <>, ;. OO [IA"*+-/%

This command works across line breaks, and can be used to remove them.

170 Turbo Pascal Owner’s Handbook

Insert line Ctr-N
Inserts a line break at the cursor position.

Delete line CtrlY
Deletes the line containing the cursor and moves any lines below it one line
up. There’s no way to restore a deleted line, so use this command with care.

Delete to end of line c-Qy
Deletes all text from the cursor position to the end of the line.

Block Commands

The block commands also require a control-character command sequence.
A block of text is any amount of text, from a single character to hundreds of
lines, that has been surrounded with special block-marker characters. There
can be only one block in a document at a time.

You mark a block by placing a block-begin marker before the first character
and a block-end marker after the last character of the desired portion of
text. Once marked, you can copy, move, or delete the block, or write it to a
file.

Mark block begin Cti-K Bor F7
Marks the beginning of a block. The marker itself is not visible, and the
block only becomes visible when the block-end marker is set. Marked text
(a block) is displayed in a different intensity.

Mark block end Ctl-K K or F8
Marks the end of a block. The marker itself is invisible, and the block
becomes visible only when the block-begin marker is also set.

Mark single word Cirl-K'T
Marks a single word as a block, replacing the block-begin/block-end
sequence. If the cursor is placed within a word, then the word will be
marked. If it is not within a word, then the word to the left of the cursor
will be marked.

Print block Ctrl-K P
Prints the marked block.
Copy block Ctrl-K C

Copies a previously marked block to the current cursor position. The
original block is unchanged, and the markers are placed around the new
copy of the block. If no block is marked or the cursor is within the marked
block, nothing happens.

Chapter 11, Using the Editor 171

Delete block Cir-K'Y
Deletes a previously marked block. There is no provision to restore a
deleted block, so be careful with this command.

Hide/display block Ctr-K H
Causes the visual marking of a block to be alternately switched off and on.
The block manipulation commands (copy, move, delete, and write to a file)
work only when the block is displayed. Block-related cursor movements
(jump to beginning/end of block) work whether the block is hidden or
displayed.

Move block Ctrl-KV
Moves a previously marked block from its original position to the cursor
position. The block disappears from its original position, and the markers
remain around the block at its new position. If no block is marked, nothing
happens.

Read block from disk Ctr-K R
Reads a previously marked disk file into the current text at the cursor
position, exactly as if it were a block. The text read is then marked as a
block of different intensity.

When you issue this command, Turbo Pascal’s editor prompts you for the
name of the file to read. You can use DOS wildcards to select a file to read; a
directory appears in a small window onscreen. The file specified can be any
legal file name. If you don’t specify a file type (.PAS, .TXT), the editor
appends .PAS. To read a file without an extension, append a period to the
file name.

Write block to disk Ctrl-K W
Writes a previously marked block to a file. The block is left unchanged in
the current file, and the markers remain in place. If no block is marked,
nothing happens.

When you issue this command, Turbo Pascal’s editor prompts you for the
name of the file to write to. To select a file to overwrite, use DOS wildcards;
a directory appears in a small window onscreen. If the file specified already
exists, the editor issues a warning and prompts for verification before
overwriting the existing file. You can give the file any legal name (the
default extension is .PAS). To write a file without an extension, append a
period to the file name. '

Miscellaneous Editing Commands

This section describes commands that do not fall into any of the categories
already covered.

172 Turbo Pascal Owner’s Handbook

Abort operation Ctrl-U
Lets you abort any command in progress whenever it pauses for input,
such as when Find/replace asks Replace Y/N? or when you are entering a
search string or a file name (block read and write).

Autoindent on/off Ctr-Olor Ctl-Q |
Provides automatic indenting of successive lines. When autoindent is
active, the cursor does not return to column one when you press Enter;
instead, it returns to the starting column of the line you just terminated.

When you want to change the indentation, use the space bar and Left arrow
key to select the new column. When autoindent is on, the message Indent
shows up in the status line; when off, the message disappears. Autoindent
is on by default. (When Tab is on, it works the same way, but it will use tabs
if possible when indenting.)

Control character prefix Ctrl-P
Allows you to enter control characters into the file by prefixing the desired
control character with a Cirl-P; that is, first press Cirl-P, then press the desired
control character. Control characters will appear as low-intensity capital
letters on the screen (or inverse, depending on your screen setup).

Go to error position Cc-Qw
Displays the last error generated in the Edit window and places you in the
editor at the point of error.

Find Ctl-QF
Lets you search for a string of up to 30 characters. When you enter this
command, the status line is cleared, and the editor prompts you for a
search string. Enter the string you are looking for and then press Enter.

The search string can contain any characters, including control characters.
You enter control characters into the search string with the Ctrl-P prefix. For
example, enter a Cirl-T by holding down the Ctrl key as you press P, and then
press T. You can include a line break in a search string by specifying Ctr-M J
carriage return/line feed). Note that Ctr-A has a special meaning: It matches
any character and can be used as a wildcard in search strings.

You can edit search strings with the Character left, Character right, Word
left, and Word right commands. Word right recalls the previous search
string, which you can then edit. To abort (quit) the search operation, use the
Abort command (Ctrl-U).

When you specify the search string, Turbo Pascal’s editor asks which
search options you'd like to use. The following options are available:

B Searches backward from the current cursor position toward the
beginning of the text.

Chapter 11, Using the Editor 173

G Globally searches the entire text, irrespective of the current cursor
position, stopping only at the last occurrence of the string,.

L Locally searches the marked block for the next occurrence of the
string.
n Where n equals a number, finds the nth occurrence of the search

string, counted from the current cursor position.

c

Ignores uppercase/lowercase distinctions.

W Searches for whole words only, skipping matching patterns
embedded in other words.

Examples:

W Searches for whole words only. The search string term will match
term, for example, but not terminal.

BU Searches backward and ignores uppercase/lowercase differences.
Block matches both blockhead and BLOCKADE, and so on.

125 Finds the 125th occurrence of the search string.

You can end the list of find options (if any) by pressing Enter; the search
starts. If the text contains a target matching the search string, the editor
positions the cursor on the target. The search operation can be repeated
with the Repeat last find command (Ctrl-L).

Find and replace Cirl-QA
This operation works identically to the Find command except that you can
replace the “found” string with any other string of up to 30 characters.
Note that Ctr-A has a special meaning: It matches any character and can be
used as a wildcard in search strings.

After you specify the search string, the editor asks you to enter a
replacement string. Enter up to 30 characters; control-character entry and
editing is performed as stated in the Find command. If you press Enter, the
editor replaces the target with nothing, effectively deleting it.

Your options are the same as those in the Find command, with the addition
of the following:

N Replaces without asking; does not ask for confirmation of each
occurrence of the search string.

n Replaces the next n cases of the search string. When you’re also
using the G option, the search starts at the top of the file and
ignores the n; otherwise it starts at the current cursor position.

L Only replaces those strings local to a marked block.

174 Turbo Pascal Owner’s Handbook

Examples:

N10 Finds the next ten occurrences of the search string and replaces
each without asking.

GW Finds and replaces whole words in the entire text, ignoring
uppercase/lowercase. It prompts for a replacement string.

GNU Finds (throughout the file) uppercase and lowercase small,
antelope-like creatures and replaces them without asking.

Again, you can end the option list (if any) by pressing Enter; the Find/
replace operation starts. When the editor finds the item (and if the N option
is not specified), it then positions the cursor at one end of the item, and asks
Replace (Y/N)? in the prompt line at the top of the screen. You can abort the
Find /replace operation at this point with the Abort command (Ctri-U). You
can repeat the Find/replace operation with the Repeat last find command
(Ctrl-L).

Find place marker Cirl-Qn
Finds up to four place markers (0-3) in text; n is a user-determined number
from 0-3. Move the cursor to any previously set marker by pressing Ctr-Q
and the marker number, n.

Pair braces Cirl-Q[or Ctr-Q]
Moves the cursor to a matching {, [, *, “, *, <, >, *), }, or]. The cursor must
be positioned on the character you want to match; in the case of (* or *), on

the (or).

This command accounts for nested braces. If a match for the brace you are
on cannot be found, then the cursor does not move. For (* *), {},[], and < >,
both Ctr-Q [and Ctrl-Q] have the same effect. This is because the direction of
the matching symbol can be determined. With “ and ’, the direction to
search is determined by the key you select. Press Cirl-Q [to find a match to
the right; press Ctrl-Q] to find a match to the left.

Load file F3
Lets you edit an existing file or create a new file.
Exit editor, no save Ctrl-K Dor Ctr-K Q

Quits the editor and returns you to the main menu. You can save the edited
file on disk either explicitly with the main menu’s Save option under the
File command or manually while in the editor (Ctr-K S or F2).

Repeat last find Ctrl-L
Repeats the latest Find or Find/replace operation as if all information had
been reentered.

Chapter 11, Using the Editor 175

Restore line Ctr-QL
Lets you undo changes made to a line, as long as you have not left the line.
The line is restored to its original state regardless of any changes you have
made.

Save file Ctrl-K S or F2
Saves the file and remains in the editor.

Set place marker Ctrl-Kn
You can mark up to four places in text; n is a user-determined number from
0-3. Press Ctrl-K, followed by a single digit n (0-3). After marking your
location, you can work elsewhere in the file and then easily return to the
marked location by using the Ctr-Q N command.

Tab Ctr-l or Tab
Tabs default to eight columns apart in the Turbo Pascal editor. You can
change the tab size in the Options/Environment menu.

Tab mode Ct-OTor Ctr-QT
With Tab mode on, a tab is placed in the text using a fixed tab stop of 8.
Toggle it off, and it spaces to the beginning of the first letter of each word in
the previous line.

Language help Ctrl-F1
While in the editor and with the cursor positioned on a constant, variable,
procedure, function, or unit, pressing Cirl-F1 will bring up help on the
specified item.

Insert compiler directives Ctrl-F7
If you haven’t changed any of the default switch settings on the
Options/Compiler menu, pressing Cirl-F7 will insert the default compiler
directives at the top of the file in the editor.

The Turbo Pascal Editor versus WordStar

A few of the Turbo Pascal editor's commands are slightly different from
WordStar. The Turbo Pascal editor contains only a subset of WordStar’s
commands, several features not found in WordStar have been added to
enhance program source-code editing. These differences are discussed here,
in alphabetical order.

Autoindent
The Turbo Pascal editor’s Cir-O | command toggles the autoindent feature
on and off.

176 Turbo Pascal Owner’s Handbook

Cursor movement

Turbo Pascal’s cursor movement controls—Ctrl-S, Ctrl-D, Citrl-E, and Ctrl-
X—move freely around on the screen without jumping to column one on
empty lines. This does not mean that the screen is full of blanks, on the
contrary, all trailing blanks are automatically removed. This way of moving
the cursor is especially useful for program editing, for example, when
matching indented statements.

Delete to left
The WordStar sequence Cirl-Q Del (delete from cursor position to beginning
of line) is not supported.

Mark word as block

Turbo Pascal allows you to mark a single word as a block using Ctr-K T. This
is more convenient than WordStar’s two-step process of separately marking
the beginning and the end of the word.

Movement across line breaks
Ctrl-S and Ctrl-D do not work across line breaks. To move from one line to
another you must use Cir-E, Cirl-X, Ctrl-A, or Ctrl-F.

Quit edit

Turbo Pascal’s Ctrl-K Q does not resemble WordStar’s Ctrl-K Q (quit edit)
command. In Turbo Pascal, the changed text is not abandoned—it is left in
memory, ready to be compiled and saved.

Undo
Turbo Pascal’s Ctr-Q L command restores a line to its pre-edit contents as
long as the cursor has not left the line.

Updating disk file
Since editing in Turbo Pascal is done entirely in memory, the Ctrl-K D
command does not change the file on disk as it does in WordStar. You must

explicitly update the disk file with the Save option within the File menu or
by using Cir-K S or F2 within the editor.

Chapter 11, Using the Editor 177

178 Turbo Pascal Owner’s Handbook

12

Command-Line Reference

For you die-hard hackers using .custom editors and extended batch
files—good news: Turbo Pascal 4.0 comes with a command-line version of
the compiler so you can use the Turbo Pascal compiler without entering the
integrated environment (TURBO.EXE). This version of the compiler—-
identical to the one in TURBO.EXE—is called TPC.EXE and is found on
your distribution disk.

Using the Compiler-

Using TPC.EXE is easy; at the prompt, type
tpc [options] filename [options]

If filename does not have an extension, then TPC will assume .PAS. If you
don’t want the file you're compiling to have an extension, then append a
period (.) to the end of filename. If you omit both options and filename, then
TPC outputs a summary of its syntax and command-line options.

You can specify a number of options for TPC. An option consists of a slash
(/) followed by one or two characters, either a letter or a dollar sign,
followed by a letter. In some cases, the option is then followed by
additional information, such as a path or a file name. Options can be given
in any order and can come before and/or after the file name.

When you type the command, TPC compiles the file, links in the necessary
runtime routines, and produces a file named filename.EXE. TPC has the
same “smart” linker as TURBO, removing “dead” code and only linking in
those routines actually needed. (If you compile a unit, it doesn’t link, it
produces a .TPU file.)

Chapter 12, Command-Line Reference 179

Compiler Options

The integrated environment (TURBO) allows you to set various options
using the menus. The command-line compiler (TPC) gives you access to
most of those same options using the slash/command method described
earlier. Alternately, you can precede options with a dash (-) instead of a
slash (/). However, options that start with a dash must be separated from
each other by blanks; those starting with a slash don’t need to be separated
but it’s legal to do so. So, for example, the following two command lines
are equivalent and legal:

tpc -ic:\tp\include -xnames.dta sortname -$r- -$f+
tpc /ic:\tp\include/xnames.dta sortname /S$r-/$f+

The first uses dashes, and so at least one blank separates options from each
other; the second uses slashes, so no separation is needed.

Table 12.1 lists all the command-line options and gives their integrated
environment equivalents. In some cases, a single command-line option
corresponds to two or three menu commands.

Table 12.1: Command-Line Options

Command line Menu selection

/$B+ Options/Compiler/Boolean evaluation...Complete

/$B- Options/Compiler/Boolean evaluation...Short Circuit

/$D+ Options/Compiler/Debug information...On

/$D- Options/Compiler/Debug information...Off

/$F+ Options/Compiler/Force far calls...On

/$E- Options/Compiler/Force far calls...Off

/$1+ Options/Compiler/I/O checking...On

/$I- Options/Compiler/I/0O checkin%\.d. .Off

/$L+ Options/Compiler/Link buffer..Memory

/$L- Options/Compiler/Link buffer...Disk

/$Msss,min,max Options/Compiler/ Memory sizes

/$N+ Options/Compiler/Numeric processing...Hardware

/$N- Options/Compiler/Numeric processing...Software

/$R+ Options/Compiler/Range checking...On

/$R- Options/Compiler/Range checking...Off

/$5+ Options/Compiler/Stack checking...On

/$S- Options/Compiler/Stack checking...Off

/$T+ Options/Compiler/Turbo pascal map file

eneration..On

/$T- ptions/ Comffiler/ Turbo pascal map file
generation..O

/$V+ Options/Compiler/ Var-string checking...On

/$V- Options/Compiler/ Var-string checking...Off

180 Turbo Pascal Owner’s Handbook

Table 12.1: Command-Line Options, continued

Command line Menu selection

/B Compile/Build
/Epath Options/Directories/Executable directory
/Fseg:ofs Compile/Find error
/Ipat Options/Directories/Include directories
/M Compile/Make
/Opath Options/Directories/Object directories
/Rparms Compile/Destination...Memory
Run
Options/Parameters
Run
/Tpath Options/Directories/Turbo directory
/Upath Options/Directories /Unit directories
/Xparms Compile/Destination...Disk
Options/Parameters
Run
/Ddefines Options/Compiler/Conditional defines
/Q (none)

The Compiler Directive (/$) Command

Turbo Pascal supports several compiler directives, some of which have
been discussed in previous chapters, and all of which are described in
Appendix C. These directives are usually embedded in the source code,
taking one of the following forms:

{$directive+}
{Sdirective-}
{$directive info}

where directive is a single letter. These directives can also be specified on the
command line, using the /$ or —$ option. Hence,

tpc mystuff /$r-
would compile MYSTUFF.PAS with range-checking turned off, while
tpc mystuff /Sr+

would compile it with range-checking turned on. You can, of course, repeat
this option in order to specify multiple compiler directives:

tpe mystuff /$r-/$i-/$v-/$f+

Remember, though, that if you use the dash instead of the slash, you must
separate directives with at least one blank:

Chapter 12, Command-Line Reference 181

tpc mystuff -$r- -$i- -$v- -$f+

Alternately, TPC will allow you to put a list of directives (except for $M),
separated by commas:

tpc mystuff /$r-,i-,v-,f+
Note that no dollar signs ($) are needed after the first one.

The one exception to this format is the memory allocation options ($M). It
takes the format

/$mstack, heapmin, heapmax

where stack is the stack size, heapmin is the minimum heap size, and
heapmax is the maximum heap size. All three values are in bytes, and each
is a decimal number unless it is preceded by a dollar sign ($), in which case
it is assumed to be hexadecimal. So, for example, the following command
lines are equivalent:

tpc mystuff /$m16384,0,655360
tpc mystuff /m4000,50, 520000

Note that because of this format, you cannot use the $M option in a list of
directives separated by commas.

Compiler Mode Options

A few options affect how the compiler itself functions. These are /M
(Make), /B (Build), /Q (Quiet), and /F (Find error). As with the other
options, you can use the dash format but must remember to separate the
options with at least one blank.

The Make (/M) Option

Just like TURBO, TPC has a built-in MAKE utility to aid in project
maintenance. The /M option instructs TPC to check the dependencies of
the program you're compiling. If it makes use of any units, then TPC
searches for the .PAS file for each unit. If the unit is found, TPC checks the
time and date of its last modification against the time and date of the . TPU
file created. If the .PAS file has been more recently modified, then TPC
recompiles the unit. Units in TURBO.TPL are excluded from this process.

While recompiling the unit, TPC checks for any dependencies that it might
have on other units, and deals with those units in the same manner. The
result is that all units used by your program are brought up to date before
your program is compiled.

182 Turbo Pascal Owner’s Handbook

If you were applying this option to the previous example, the command
would be

tpc mystuff /m

This option is the same as the Compile/Make command within the
integrated environment (TURBO.EXE).

The Build All (/B) Option

What if you’re unsure about what has been updated or what hasn’t?
Instead of relying upon the /M (Make) option to determine what needs to
be updated, you can tell TPC to update all files (units) upon which your
program depends. To do that, use the /B option. Note that you can’t use
/M and /B at the same time (and, in fact, it wouldn’t make any sense).

If you were using this option in the previous example, the command would
be

tpc mystuff /b

This option is the same as the Compile/Build command within the
integrated environment (TURBO.EXE).

The Quiet Mode (/Q) Option

A quiet mode option has been added to the command-line compiler. With
the default switches, TPC will display the file name and line number of the
program module currently being compiled. It also displays the total time
required at the end of the compilation. In quiet option,

TPC mystuff /Q

will suppress the printing of file names and line numbers during the
compilation. Normally, TPC reports elapsed compilation time based on the
IBM PC’s internal timer. On generic MS-DOS machines using the /Q
option, the current file name and line number is only updated when files
are opened and closed, and the compiler does not calculate the elapsed
time.

The Find Error (/F) Option

This command is equivalent to the Compile/Find error within TURBO.
When you encounter a runtime error, you're given both the error code and
the offset where it occurred. This option tells TPC to find where that error
occurred, provided you’ve created a .TPM file with Debug info (via the $T
and $D compiler directives).

Chapter 12, Command-Line Reference 183

Suppose you have a file called TEST.PAS that contains the following
program:

program 0ops;

var
i : integer;
begin
i:=0;
i =1 div i; { Force a divide by zero error }
end.

Go ahead and compile this program using the command-line compiler, and
at the same time have the compiler generate a Turbo Pascal Map file
(.TPM):

tpc test /St+
If you do a DIR TEST.*, DOS lists three files:

TEST.PAS - your source code
TEST.EXE - executable file
TEST.TPM - Turbo Pascal Map for TEST.EXE

Now, run TEST and get a runtime error:

C:\ > test
Runtime error 200 at 0000:0010

Notice that you’re given an error code (200) and the segment and offset
(0000:0010 in hex) of the instruction pointer (IP) where the error occurred.
How do you figure out which line in your source code caused the error?
Since you already have a .TPM file, simply invoke the compiler, use the
find runtime error option, and specify the segment and offset as reported in
the error message:

C:\ >tpc test /£0000:0010
Turbo Pascal Version 4.0 Copyright (c) 1987 Borland International
TEST.PAS(6) : Target address found.
i :=1DIV i;
Note that test refers to the .TPM file name. The compiler gives you the file
name and line number, and points to the offending line in your source
code.

If a .TPM file had not been present, here’s what the screen would look like:

C:\ >tpc test /£0000:0010)
Turbo Pascal Version 4.0 Copyright (c) 1987 Borland International
Error 133: 01d or missing map file (TEST.TPM).

When a program is executed from disk and a runtime error occurs, a .TPM
file must be present in order to find the location of the error in the source

184 Turbo Pascal Owner’s Handbook

code. In that case, you would have to first re-compile TEST.PAS with the
/$T+ option. Then you’d invoke TPC again and specify
/ f<segment>:<offset>, as done earljer.

The /$T directive determines whether a .TPM file is created. The /$D
directive controls whether line number information is put into that .TPM
file. It is possible to generate a .TPM file that contains only symbols and no
line numbers by typing

C:\ >tpc test /S$t+ /$d-

Then, when the now-familiar runtime error occurs, you'll have problems
when trying to find its location using the /f option:

C:\ >tpc test /£0000:0010
Turbo Pascal Version 4.0 Copyright (c) 1987 Borland International
Error 125: Module has no debug information (OOPS).

Since no line numbers were placed in the file (you specified /$D-), the
compiler can only provide the module name where the runtime error
occurred (inside program OOPS).

By the way, you can also compile this program using the command- line
compiler, and run it at the same time. Then, just like when we’re running a
program from inside the integrated environment, you don’t need a .TPM
file to find the runtime error:

C:\ >tpc test /r
Turbo Pascal Version 4.0 Copyright (c) 1987 Borland International
TEST.PAS(7)
7 lines, 0.1 seconds, 32 bytes code, 587 bytes data.
Runtime error 200 at 0000:0010.
TEST.PAS(6): Division by zero.
i :=1 DIV i;

A

O~ S U W N

On line 1, you compile TEST.PAS and run it in memory (/r). Program
execution begins on line 5—there’s that darn runtime error again. Since you
compiled to memory and ran, all the symbol and line number information
is still available to the compiler. So, when a runtime error occurs, the
compiler has all the information it needs to locate the error in the source
code.

Directory Options

TPC supports several options that are equivalent to commands in the
Options/Directories menu in the integrated environment. These options

Chapter 12, Command-Line Reference 185

allow you to specify the five directories used by TPC: executable, include,
object, Turbo, and unit.

The first option tells TPC where to put the executable (.EXE) file it creates;
the other four tell it where to search for certain types of files.

The Executable Directory (/E) Option

This option lets you tell TPC where to put the .EXE and .TPM files it
creates. It takes a path name as its argument:

tpc mystuff /ec:\tp\exec

If no such option is given, then TPC creates the .EXE and .TPM files in the
current directory. This option is the same as the O/D/Executable
directories command within TURBO.

The Include Directories (/I) Option

In addition to units, Turbo Pascal supports include files, specified using the
{$I filename} compiler directive. You can, in turn, specify a given directory
(or directories) to be searched for any include files. For example, if your
program has some include directives, and the files are located in
C:\TPC\INCLUDE, then you could use the following option:

tpc mystuff /ic:\tp\include

TPC will search for those include files in C:\TPC\INCLUDE after searching
the current directory. You can specify more than one path name by
separating them with semicolons (). The directories will then be searched
in the order given. This option is identical to the O/D/Include directories
command in TURBO. If multiple /I directives are given, the directories are
concatenated together. Thus

tpc mystuff /ic:\tp\include;d:\move
is the same as

tpc mystuff /ic:\tp\include/id:\move

The Object Directories (/O) Option

Turbo Pascal allows you to link in external assembly language routines, as
explained in Chapters 5 and 26. The source code directive {$L} allows you
to specify the .OBJ file name to link in. The /O compiler option tells TPC
where to look for those files, much like the /I option.

186 Turbo Pascal Owner’s Handbook

For example, if your program used some assembly language routines that
had already been assembled and whose .OB]J files were stored in
CA\TPC\ASM, then you could say

tpc mystuff /oc:\tp\asm

If TPC didn’t find any files requested by MYSTUFF.PAS in the current
directory, it would look for them in that subdirectory. Like the $I option,
you can specify multiple subdirectories by separating the path names with
semicolons (;). This is identical to the O/D/Object directories command
within TURBO.

If multiple /O directives are given, the directories are concatenated
together. Thus

tpc mystuff /oc:\tp\include;d:\move
is the same as

tpc mystuff /oc:\tp\include/id:\move

The Turbo Directory (/T) Option

TPC needs to find two files when it is executed: TPC.CFG, the configuration
file; and TURBO.TPL, the resident library file. TPC automatically searches
the current directory; if you're running under version 3.x (or later) of MS-
DOS, then it also searches the directory containing TPC.EXE. The /T option
lets you specify one other directory in which to search. For example, you
could say

tpc mystuff /tc:\tp\bin

Note: If you want the /T option to affect the search for TPC.CFG, it must be
the very first command-line argument. This is identical to the O/D/Turbo
directory command within TURBO.

The Unit Directories (/U) Option

When you compile a program that uses units, TPC first checks if the units
are in TURBO.TPL (which is loaded along with TPC). If they aren’t, then
TPC searches for unitname.TPU in the current directory. With the /U
option, you tell TPC what other locations to search for units. As with the
previous options, you can specify more than one path name as long as you
separate them with semicolons. For example, if you had units in two
different directories, you might type something like this:

tpc mystuff /uc:\tp\unitsl;c:\tp\units2

Chapter 12, Command-Line Reference 187

This tells TPC to look in C:\TP\UNITS1 and C:\TP\UNITS2 for any units
it doesn’t find in TURBO.TPL and the current directory. This is identical to
the O/D/Unit directories command within TURBO.

If multiple /IU directives are given, the directories are concatenated
together. Thus

tpc mystuff /uc:\tp\include;d:\move
is the same as

tpc mystuff /uc:\tp\include/ud:\move

Program Execution Options

The last two options direct TPC to execute your program if it successfully
compiles. You can tell it to either execute it in memory or to create an .EXE
file and then execute it. In both cases, you can pass command-line
parameters to the program if desired.

The Run In Memory (/R) Option

Often when you're developing a program, you enter a modify-and-test
cycle during which you make small, incremental changes and then view
the effects. Since you're often debugging at the same time, you may not
want to constantly produce .EXE files for all your test versions. TPC helps
to support that cycle by accepting an option that tells it to compile your
program to memory—keep it in RAM instead of creating an .EXE file on the
disk—and then run it. For example, if you enter the command

tpc mystuff /r

then TPC will compile and execute MYSTUFF, but won’t write any code
out to disk. If a runtime error occurs, TPC automatically finds the runtime
error, tells you the error number, address, and message, offending file name
and line number, and then prints the source line on the screen.

Should your program require a parameter line, you can give one after the
/R option, making sure to enclose it in double quotes:

tpc mystuff /r"filel file2"

Everything after the /R and up to (but not including) the next option is
passed to the program as the parameter line.

If you need to pass multiple parameters to a program, enclose all
parameters in double quotes. You can embed slashes and dashes in your
parameter line:

188 Turbo Pascal Owner’s Handbook

tpc mystuff /m /r"filel/x file2/x -2"

In this case, three parameters would be passed to program mystuff: filel/x,
file2[x, and -2.

The eXecute (/X) Option

TPC normally compiles your program, links in any units needed, creates an
.EXE file, and then halts. This option instructs TPC to execute the resulting
.EXE file:

tpc mystuff /x

Execution, of course, does not take place if an error has occurred during
compilation and linking. As with the /R option, you can also specify a
parameter line:

tpc mystuff /x"filel file2"

The TPC.CFG File

You can set up a list of options in a configuration file called TPC.CFG,
which can be used in addition to the options entered on the command line.
Each line in TPC.CFG corresponds to an extra command-line argument
inserted before the actual command-line arguments. Thus, by creating a
TPC.CFG file, you can change the default setting of any command-line
option.

TPC allows you to enter the same command-line option several times,
ignoring all but the last occurrence. This way, even though you've changed
some settings with a TPC.CFG file, you can still override them on the
command line.

When TPC starts, it looks for TPC.CFG in the current directory. If it doesn’t
find it there and if you are running DOS 3.x, it looks in the start directory
(where TPC.EXE resides). To force TPC to look in a specific list of
directories (in addition to the current directory), specify a /T command-
line option as the first option on the command line.

If TPC.CFG contains a line that does not start with a slash (/) or a dash (-),
that line defines a default file name to compile. In that case, starting TPC
with an empty command line (or with a command line consisting of
command-line options only) will compile the default file name, instead of
displaying a syntax summary.

Here’s an example TPC.CFG file, defining some of the directories:

Chapter 12, Command-Line Reference 189

/tc:\tpc\bin\turbo
/uc:\tpc\units
/oc:\tpc\asm

Now, if you type
tpc mystuff
at the system prompt, TPC acts as if you had typed in the following;:

tpc /te:\tpe\bin/turbo /uc:\tpcl\units /uc:\tpc\asm mystuff
compiles MYSTUFF with the indicated directories specified.
You could also set up your configuration file with certain sets of options
already given; for example, if you always wanted range-checking off and

wanted the program to be executed after compilation, you could modify
TPC.CFG to contain

/tei\tpc\bin\turbo
/uc:\tpc\units
/oc:\tpc\asm

/$R-

/r

Then you could simply type
tpc mystuff

to generate the command line
tpc /te:\tpc\bin/turbo /uc:\tpc\units /oc:\tpc\asm /$R- /r mystuff

190 Turbo Pascal Owner’s Handbook

191

192 Turbo Pascal Owner’s Handbook

13

Tokens and Constants

Tokens are the smallest meaningful units of text in a Pascal program, and
they are categorized as special symbols, identifiers, labels, numbers, and
string constants.

A Pascal program is made up of tokens and separators, where a separator is
either a blank or a comment. Two adjacent tokens must be separated by one
or more separators if each token is a reserved word, an identifer, a label, or
a number.

Separators cannot be part of tokens except in string constants.

Special Symbols and Reserved Words

Turbo Pascal uses the following subsets of the ASCII character set:

m Letters—the English alphabet, A through Z and a through z.
m Digits—the Arabic numerals 0 through 9.

m Hex digits—the Arabic numerals O through 9, the letters A through F,
and the letters a through f.

m Blanks—the space character (ASCII 32) and all ASCII control characters
(ASCII 0 to 31), including the end-of-line or return character (ASCII 13).

TXX)

Chapter 13, Tokens and Constants 193

letter

digit

G0O6696 060

hex digit =l' digit II

v

v

Special symbols and reserved words are characters that have one or more
fixed meanings. These single characters are special symbols:

+-*/=<>[1.,0):; @} $#
These character pairs are also special symbols:
<= >= = . ** ()

Some special symbols are also operators. A left bracket ([) is equivalent to
the character pair of left parentheses and a period ((.). Similarly, a right
bracket (]) is equivalent to the character pair of a period and a right
parentheses (.)).

Following are Turbo Pascal’s reserved words:

absolute end inline procedure type
and external interface program unit -
array file interrupt record until
begin for label repeat uses
case forward mod set var
const function nil shl while .
div goto not shr with
do if of string Xor
downto implementation or then

else in packed to

194 Turbo Pascal Owner’s Handbook

Reserved words appear in lowercase boldface throughout this manual.
Turbo Pascal isn’t case sensitive, however, so you can use either uppercase
or lowercase letters in your programs.

Identifiers

Identifiers denote constants, types, variables, procedures, functions, units,
programs, and fields in records. An identifier can be of any length, but only
the first 63 characters are significant.

You’ll notice that Turbo Pascal syntax is illustrated by diagrams. To read a
syntax diagram, follow the arrows. Alternative paths are often possible;
paths that begin at the left and end with an arrow on the right are valid. A
path traverses boxes that hold the names of elements used to construct that
portion of the syntax.

The names in rectangular boxes stand for actual constructions. Those in
circular boxes—reserved words, operators, and punctuation—are the actual
terms to be used in the program.

An identifier must begin with a letter and cannot contain spaces. Letters,
digits, and underscore characters (ASCII $5F) are allowed after the first
character. Like reserved words, identifiers are not case sensitive.

When several instances of the same identifier exist, you may need to-
qualify the identifier by a unit identifier in order to select a specific instance

(units are described in Chapter 24). For example, to qualify the identifier

Ident by the unit identifier UnitName, you would write UnitName.Ident. The

combined identifier is called a qualified identifier.

Chapter 13, Tokens and Constants 195

identifier ——»| |etter >

underscore

underscore ——{ _ }—p

program identifier,

unit identifier, —»_—» [identifer |
field identifier

qualified identifier

I—» unit identifier ‘

Here are some examples of identifiers:

Writeln

Exit
Real2String
System.MemAvail
Dos.Exec
Crt.Window

In this manual, standard and user-defined identifiers are italicized when
they are referred to in text.

196 Turbo Pascal Owner’s Handbook

Labels

A label is a digit sequence in the range 0 to 9999. Leading zeros are not
significant. Labels are used with goto statements.

identifier

label

As an extension to standard Pascal, Turbo Pascal also allows identifiers to
function as labels.

Numbers

Ordinary decimal notation is used for numbers that are constants of type
integer and real. A hexadecimal integer constant uses a dollar sign ($) as a
prefix. Engineering notation (E or ¢, followed by an exponent) is read as
“times ten to the power of” in real types. For example, 7E-2 means 7 x 10
12.25e+6 or 12.25e6 both mean 12.25 x 10*%. Syntax diagrams for writing

numbers follow.
hex digit sequence —-7 hex digit —>

digit sequence -ﬂ—*

—P{ digit sequence } —p
——»L hex digit sequence

sign ——

unsigned integer

Chapter 13, Tokens and Constants 197

unsigned real

digit sequence

\J

digit sequence

| scale factor

scale factor

unsigned integer

signed number H unsigned number l—»

Numbers with decimals or exponents denote real-type constants. Other
decimal numbers denote integer-type constants; they must be within the
range —2147483648 to 2147483647.

unsigned number

Hexadecimal numbers denote integer-type constants; they must be within
the range $00000000 to $FFFFFFFF. The resulting value’s sign is implied by
the hexademical notation.

Character Strings

A character string is a sequence of zero or more characters from the
extended ASCII character set (Appendix E), written on one line in the
program and enclosed by apostrophes. A character string with nothing
between the apostrophes is a null string. Two sequential apostrophes in a
character string denote a single character, an apostrophe. The length
attribute of a character string is the actual number of characters within the
apostrophes.

As an extension to standard Pascal, Turbo Pascal allows control characters
to be embedded in character strings. The # character followed by an
unsigned integer constant in the range 0 to 255 denotes a character of the
corresponding ASCII value. There must be no separators between the #

198 Turbo Pascal Owner’s Handbook

character and the integer constant. Likewise, if several control characters
are part of a character string, there must be no separators between them.

character string —>C} =<) ,
string character !

\

string character »| any char except O or CR

—O—0—

A character string of length zero (the null string) is compatible only with
string types. A character string of length one is compatible with any char
and string type. A character string of length n, where #n is greater than or
equal to 2, is compatible with any string type and with packed arrays of n
characters.

Here are some examples of character strings:

" TURBO "You'll see’ Y o
#13410 'Line 1'#13'Line2’ #747' Wake up!’ #747

Constant Declarations

A constant declaration declares an identifier that marks a constant within
the block containing the declaration. A constant identifier cannot be
included in its own declaration.

Chapter 13, Tokens and Constants 199

constant declaration —¢ e 0 —

constant »{ constant identifier hr—D

g e
sign
character string

A constant identifier following a sign must denote a value of an integer or
real type.

Comments

The following constructs are comments and are ignored by the compiler:

{ Any text not containing right brace }
(* Any text not containing star/right parenthesis *)

A comment that contains a dollar sign ($) immediately after the opening
{or (* is a compiler directive. A mnemonic of the compiler command
follows the $ character. The compiler directives are summarized in
Appendix C.

Program Lines

Turbo Pascal program lines have a maximum length of 126 characters.

200 Turbo Pascal Owner’s Handbook

14

Blocks, Locality, and Scope

A block is made up of declarations, which are written and combined in any
order, and statements. Each block is part of a procedure declaration, a
function declaration, or a program or unit. All identifiers and labels
declared in the declaration part are local to the block.

Syntax

The overall syntax of any block follows this format:

block ——{ declaration part |—>l§tement part I—>

v

declaration part i

—>| label declaration part‘—l—————

_.l constant declaration paL}———
_Mpe declaration part 1____

—>[variab|e declaration part l—

—»I procedure and function declaration part IJ

Chapter 14, Blocks, Locality. and Scope 201

The label declaration part is where labels that mark statements in the
corresponding statement part are declared. Each label must mark only one
statement.

label declaration part —mrl label |—->®_>

The digit sequence used for a label must be in the range 0 to 9999.

The constant declaration part consists of constant declarations local to the
block.

constant declaration part —> constant declaration —>
typed constant declaration

The type declaration part includes all type declarations to the block.

type declaration part y type declaration ——»

The variable declaration part is composed of variable declarations local to the
block.

variable declaration part r»l variable declaration |——>

The procedure and function declaration part comprises procedure and function
declarations local to the block.

v

procedure and function declaration part #l‘ procedure declaration |L

—-bl function declaration I——

The statement part defines the statements or algorithmic actions to be
executed by the block.

202 Turbo Pascal Owner’s Handbook

statement part —.I compound statement l—b

‘Rules of Scope

The presence of an identifier or label in a .declaration defines the identifier
or label. Each time the identifier or label occurs again, it must be within the
scope of this declaration. The scope of an identifier or label encompasses its
declaration to the end of the current block, including all blocks enclosed by
the current block; some exceptions follow.

m Redeclaration in an enclosed block: Suppose that Exterior is a block that
encloses another block, Interior. If Exterior and Interior both have an
identifier with the same name, for example, j, then Interior can only
access the j it declared, and similarly Exterior can only access the j it
declared.

m Position of declaration within its block: Identifiers and labels cannot be
used until after they are declared. An identifier or label’s declaration
must come before any occurrence of that identifier or label in the
program text, with one exception.

The base type of a pointer type can be an identifier that has not yet been
declared. However, the identifier must eventually be declared in the
same type declaration part that the pointer type occurs in.

m Redeclaration within a block: An identifier or label can only be declared
once in the outer level of a given block. The only exception to this is when
it is declared within a contained block or is in a record’s field list.

A record field identifier is declared within a record type and is significant
only in combination with a reference to a variable of that record type. So,
you can redeclare a field identifier (with the same spelling) within the
same block but not at the same level within the same record type.
However, an identifier that has been declared can be redeclared as a field
identifier in the same block.

Scope of Interface and Standard Identifiers

Programs or units containing uses clauses have access to the identifiers
belonging to the interface parts of the units in those uses clauses.

Each unit in a uses clause imposes a new scope that encloses the remaining
units used and the entire program. The first unit in a uses clause represents

Chapter 14, Blocks, Locality, and Scope 203

the outermost scope, and the last unit represents the innermost scope. This
implies that if two or more units declare the same identifier, an unqualified
reference to the identifier will select the instance declared by the last unit in
the uses clause. However, by writing a qualified identifier, every instance of
the identifier can be selected.

The identifiers of Turbo Pascal’s predefined constants, types, variables,
procedures, and functions act as if they were declared in a block enclosing
all used units and the entire program. In fact, these standard objects are
defined in a unit called System, which is used by any program or unit
before the units named in the uses clause. This suggests that any unit or
program can redeclare the standard identifiers, but a specific reference can
still be made through a qualified identifier, for example, System.Integer or
System.Writeln.

204 Turbo Pascal Owner’s Handbook

O
T
>
o
—
m
)

15

Types

When you declare a variable, you must state its type. A variable’s type
circumscribes the set of values it can have and the operations that can be
performed on it. A type declaration specifies the identifier that denotes a

type.

type declaration e m o

!

type — simple type —>

pointer type —

structured type

string type

type identifier

I

When an identifier occurs on the left side of a type declaration, it is
declared as a type identifier for the block in which the type declaration
occurs. A type identifier's scope does not include itself except for pointer

types.

Following are the seven types of identifiers:
m simple type

m structured type

m pointer type

Chapter 15, Types 205

m ordinal type
m integer type
mreal type

m string type

Simple Types

Simple types define ordered sets of values.

simple type

ordinal type

real type

real type real type identifier

A type real identifier is one of the standard identifiers: real, single, double,
extended, or comp. Refer to the sections entitled “Numbers” and “String
Constants” in Chapter 13 to find out how to denote constant type integer
and real values.

Ordinal Types

Ordinal types are a subset of simple types. All simple types other than real
types are ordinal types, which are set off by four characteristics:

m All possible values of a given ordinal type are an ordered set, and each
possible value is associated with an ordinality, which is an integral value.
Except for type intege values, the first value of every ordinal type has
ordinality 0, the next has ordinality 1, and so on for each value in that
ordinal type. An type integer value’s ordinality is the value itself. In any
ordinal type, each value other than the first has a predecessor, and each
value other than the last has a successor based on the ordering of the
type.

m The standard function Ord can be applied to any ordinal type value to
return the ordinality of the value.

m The standard function Pred can be applied to any ordinal-type value to
return the predecessor of the value. If applied to the first value in the
ordinal type, Pred produces an error.

206 Turbo Pascal Owner’s Handbook

m The standard function Succ can be applied to any ordinal-type value to
return the successor of the value. If applied to the last value in the
ordinal type, Succ produces an error.

The syntax of an ordinal type follows.

subrange type
ordinal type identifie;l——

ordinal type

Turbo Pascal has seven predefined ordinal types: integer, shortint, longint,
byte, word, boolean, and char. In addition, there are two other classes of user-
defined ordinal types: enumerated types and subrange types.

The Integer Type
There are five predefined integer types: shortint, integer, longint, byte, and

word. Each type denotes a specific subset of the whole numbers, according
to the following table:

Table 15.1: Predefined Integer Types

Type Range Format

shortint -128 .. 127 Signed 8-bit
integer -32768 .. 32767 Signed 16-bit
longint —2147483648 .. 2147483647 Signed 32-bit
byte 0..255 Unsigned 8-bit
word 0..65535 Unsigned 16-bit

Chapter 15, Types 207

Arithmetic operations with type integer operands use 8-bit, 16-bit, or 32-bit
precision, according to the following rules:

m The type of an integer constant is the predefined integer type with the
smallest range that includes the value of the integer constant.
For a binary operator (an operator that takes two operands), both

perands are converted to their common type before the operation. The

common type is the predefined integer type with the smallest range that
includes all possible values of both types. For instance, the common type
of integer and byte is integer, and the common type of integer and word
is longint. The operation is performed using the precision of the common
type, and the result type is the common type.

m The expression on the right of an assignment statement is evaluated
independently from the size or type of the variable on the left.

m Any byte-signed operand is converted to an intermediate word-signed
operand that is compatible with both integer and word before any
arithmetic operation is performed.

A type integer value can be explicitly converted to another integer type
through typecasting. (Typecasting is described in Chapters 16 and 18.)

The Boolean Type

Type boolean values are denoted by the predefined constant identifiers
False and True. Because boolean is an enumerated type, these relationships
hold:

m False < True

u Ord(False) =0

a1 Ord(True) =1

m Succ(False) = True

m Pred(True) = False

The Char Type

This type’s set of values are characters, ordered according to the extended
ASCII character set (Appendix E). The function call Ord(Ch), where Ch is a
char value, returns Ch’s ordinality.

A string constant of length 1 can denote a constant char value. Any value of
type char can be generated with the standard function Chr.

208 Turbo Pascal Owner’s Handbook

The Enumerated Type
Enumerated types define ordered sets of values by enumerating the

identifiers that denote these values. Their ordering follows the sequence in
which the identifiers are enumerated.

enumerated type ‘ 0 identifier list 0

identifier list —'—‘——P

When an identifier occurs within the identifier list of an enumerated type, it
is declared as a constant for the block in which the enumerated type is
declared. This constant’s type is the enumerated type being declared.

An enumerated constant’s ordinality is determined by its position in the
identifier list in which it is declared. The enumerated type in which it is
declared becomes the constant’s type. The first enumerated constant in a
list has an ordinality of 0.

An example of an enumerated type follows:
suit = (club,diamond,heart, spade)
Given these declarations, diamond is a constant of type suit.

When the Ord function is applied to an enumerated type’s value, Ord
returns an integer that shows where the value falls with respect to the other
values of the enumerated type. Given the preceding declarations, Ord(club)
returns 0, Ord(diamond) returns 1, and so on.

The Subrange Type
A subrange type is a range of values from an ordinal type called the host

type. The definition of a subrange type specifies the least and the largest
value in the subrange; its syntax follows:

©

Both constants must be of the same ordinal type. Subrange types of the
form a..b require that a is less than or equal to b.

Examples of subrange types:

Chapter 15, Types 209

0..99
-128..127
club. .heart

A variable of a subrange type has all the properties of variables of the host
type, but its runtime value must be in the specified interval.

The Real Type

A real type has a set of values that is a subset of real numbers, which can be
represented in floating-point notation with a fixed number of digits. A
value’s floating-point notation normally comprises three values—m, b, and
e—such that m x b° = n, where b is always 2, and both m and e are integral
values within the real type’s range. These m and e values further prescribe
the real type’s range and precision.

There are five kinds of real types: real, single, double, extended, and comp. The
single, double, extended, and comp types can only be operated on if you
have an 8087 numeric coprocessor (explained later).

The real types differ in the range and precision of values they hold (see
Table 15.2).

Table 15.2: Real Data Types

Type Range Significant Digits Size in Bytes
real 2.9 X 10E-39 .. 1.7 X 10E38 11-12 6
single 1.5 X 10E-45 .. 3.4 X 10E38 7-8 4
double 5.0 X 10E-324 .. 1.7 X 10E308 15-16- 8
extended 1.9 X 10E-4951 .. 1.1 X 10E4932 19-20 10
comp* —2E+63+1..2E+63-1 19-20 8

* comp only holds integer values.

The comp type holds only integral values within the range 2%+1 to 2%-1,
which is approximately —9.2 x 10'® t0 9.2 x 10,

Turbo Pascal supports two models of code generation for performing real-
type operations: software floating point and hardware floating point. The
appropriate model is selected through the $N compiler directive.

Software Floating Point
In the $N- state, which is selected by default, the code generated performs

all type real calculations in software by calling runtime library routines. For
reasons of speed and code size, only operations on variables of type real are

210 Turbo Pascal Owner’s Handbook

allowed in this state. Any attempt to compile statements that operate on the
single, double, extended, and comp types generate an error.

Hardware Floating Point

In the $N+ state, the code generated performs all type real calculations
using the 8087 numeric. coprocessor. This state permits the use of all five
real types, but it requires the presence of an 8087 coprocessor at runtime
and compile time.

For further details on hardware floating-point code generation, refer to
Chapter 25, “Using the 8087 with Turbo Pascal.”

String Types

A type string value is a sequence of characters with a dynamic length
attribute (depending on the actual character count during program
execution) and a constant size attribute from 1 to 255. A string type
declared without a size attribute is given the default size attribute 255. The
length attribute’s current value is returned by the standard function Length.

string type ——@ >
o unsigned integer o

The ordering between any two string values is set by the ordering
relationship of the character values in corresponding positions. In two
strings of unequal length, each character in the longer string without a
corresponding character in the shorter string takes on a higher or greater-
than value; for example, ‘Xs’ is greater than ‘X’. Null strings can only be
equal to other null strings, and they hold the least string values.

Characters in a string can be accessed as components of an array, as
described in “Arrays, Strings, and Indexes” in Chapter 16. Type string
operators are described in “String Operators” and “Relational Operators”
in Chapter 20. Type string standard procedures and functions are described
in “String Procedures and Functions” in Chapter 25.

Chapter 15, Types 211

Structured Types

A structured type, characterized by its structuring method and by its
component type(s), holds more than one value. If a component type is
structured, the resulting structured type has more than one level of
structuring. A structured type can have unlimited levels of structuring.

e

structured type

file type

record type

The word packed in a structured type’s declaration tells the compiler to
compress data storage, even at the cost of diminished access to a
component of a variable of this type. The word packed has no effect in
Turbo Pascal; instead packing occurs automatically whenever possible.

Note: The maximum permitted size of any structured type in Turbo Pascal
is 65520 bytes.

Array Types

Arrays have a fixed number of components of one type—the component
type. In the following syntax diagram, the component type follows the
word of.

® D@
O

index type ordinal type

The index types, one for each dimension of the array, specify the number of
elements. Valid index types are all ordinal types except longint and
subranges of longint. The array can be indexed in each dimension by all
values of the corresponding index type; the number of elements is therefore
the number of values in each index type. The number of dimensions is
unlimited.

212 Turbo Pascal Owner’s Handbook

The following is an example of an array type:
array(1..100] of real

If an array type’s component type is also an array, you can treat the result
as an array of arrays or as a single multidimensional array. For instance,

array[boolean] of array[l..10] of array[Size] of real
is interpreted the same way by the compiler as

array[boolean,1..10,5ize] of real
You can also express

packed array([l..10] of packed array([l..8]) of boolean
as

packed array(l..10,1..8] of boolean

You access an array’s components by supplying the array’s identifier with
one or more indexes in brackets (see “Arrays, Strings, and Indexes” in
Chapter 16).

An array type of the form
packed array([m..n] of char

where m is less than 7 is called a packed string type (the word packed may
be omitted, because it has no effect in Turbo Pascal). A packed string type
has certain properties not shared by other array types (see “Identical and
Compatible Types” later in this chapter).

Record Types

A record type comprises a set number of components, or fields, that can be
of different types. The record type declaration specifies the type of each
field and the identifier that names the field.

record type —»| record
field list

end

Chapter 15, Types 213

»

field list ——>| fixed part l o
o o

fixed part - identifier list ° —>
M
N/

The fixed part of a record type sets out the list of fixed fields, giving an
identifier and a type for each. Each field contains information that is always
retrieved in the same way.

The following is an example of a record type:

record
year: integer;
month: 1..12;
day: 1..31;
end

The variant part shown in the syntax diagram of a record type declaration
distributes memory space for more than one list of fields, so the
information can be accessed in more ways than one. Each list of fields is a
variant. The variants overlay the same space in memory, and all fields of all
variants can be accessed at all times.

=i tag field typel m —
-0 5

tag field type —>| ordinal type identifier |——>

variant part —»(case

identifier

. — oo (>0 O
O
You can see from the diagram that each variant is identified by at least one

constant. All constants must be distinct and of an ordinal type compatible
with the tag-field type. Variant and fixed fields are accessed the same way.

214 Turbo Pascal Owner’s Handbook

An optional identifier, the tag-field identifier, can be placed in the variant
part. If a tag-field identifier is present, it becomes the identifier of an
additional fixed field—the tag field—of the record. The program can use
the tag field’s value to show which variant is active at a given time.
Without a tag field, the program selects a variant by another criterion.

Some record types with variants follow.

record
firstName, lastName : string[40];
birthDate : Date;
case citizen : boolean of
True : (birthPlace: string[40]);
False : (country : string[20];
entryPort : string[20];
entryDate : Date;
exitDate : Date);
end

record
X,y @ real;
case kind : Figure of
rectangle : (height,width: real);
triangle : (sizel,side2,angle: real);
circle : (radius: real);
end

Set Types

A set type’s range of values is the power set of a particular ordinal type (the
base type). Each possible value of a set type is a subset of the possible
values of the base type.

A variable of a set type can hold from none to all values of the set.

Se——) E)

The base type must not have more than 256 possible values, and the ordinal
values of the upper and lower bounds of the base type must be within the
range 0 to 255. For these reasons, the base type of a set cannot be shortint,
integer, longint, or word.

Set-type operators are described in the section entitled “Set Operators” in
Chapter 18. “Set Constructors” in the same chapter shows how to construct
set values.

Every set type can hold the value [], which is called the empty set.

Chapter 15, Types 215

File Types

A file type consists of a linear sequence of components of the component
type, which can be of any type except a file type or any structured type
with a file-type component. The number of components is not set by the
file-type declaration.

oo ——(TIe Yra(a)

If the word of and the component type are omitted, the type denotes an
untyped file. Untyped files are low-level I/O channels primarily used for
direct access to any disk file regardless of its internal format.

The standard file type Text signifies a file containing characters organized
into lines. Text files use special input/output procedures, which are
discussed in Chapter 24.

Pointer Types

A pointer type defines a set of values that point to dynamic variables of a
specified type called the base type. A type pointer variable contains the
memory address of a dynamic variable.

pintr oo ——> ()

base type type identifier

If the base type is an undeclared identifier, it must be declared in the same
type declaration part as the pointer type.

You can assign a value to a pointer variable with the New procedure, the @
operator, or the Ptr function. The New procedure allocates a new memory
area in the application heap for a dynamic variable and stores the address
of that area in the pointer variable. The @ operator directs the pointer
variable to the memory area containing any existing variable, including
variables that already have identifiers. The Ptr function points the pointer
variable to a specific memory address.

The reserved word nil denotes a pointer-valued constant that does not
point to anything.

216 Turbo Pascal Owner’s Handbook

\

The predefined type pointer denotes an untyped pointer, that is, a pointer
that does not point to any specific type. Variables of type Pointer cannot be
dereferenced; writing the pointer symbol * after such a variable is an error.
Like the value denoted by the word nil, values of type pointer are
compatible with all other pointer types.

See Chapter 16’s section entitled “Pointers and Dynamic Variables” for the
syntax of referencing the dynamic variable pointed to by a pointer variable.

Identical and Compatible Types

Two types may be the same, and this sameness (identity) is mandatory in
some contexts. At other times, the two types need only be compatible or
merely assignment-compatible. They are identical when they are declared
with, or their definitions stem from, the same type identifier.

Type Identity

Type identity is required only between actual and formal variable
parameters in procedure and function calls.

Two types—say, T1 and T2—are identical if one of the following is True: T1
and T2 are the same type identifier; T1 is declared to be equivalent to a type
identical to T2.

The second condition connotes that T1 does not have to be declared directly
to be equivalent to T2. The type declarations

T1 = integer;
T2 = T1;
T3 = integer;
T4 = T2;

result in T1, T2, T3, T4, and integer as identical types. The type declarations

T5 = set of integer;
T6 = set of integer;

don’t make T5 and T6 identical, since set of integer is not a type identifier.
Two variables declared in the same declaration, for example:

V1, V2: set of integer;

are of identical types—unless the declarations are separate: The
declarations

Chapter 15, Types 217

V1: set of integer;
V2: set of integer;
V3: integer;
V4: integer;

mean V3 and V4 are of identical type, but not V1 and V2.

Type Compatibility

Compatibility between two types is sometimes required, such as in
expressions-or in relational operations. Type compatibility is important,
however, as a precondition of assignment compatibility.

Type compatibility exists when at least one of the following conditions is
True:

m Both types are the same.

m Both types are real types.

m Both types are integer types.

- mOne type is a subrange of the other.

m Both types are subranges of the same host type.

m Both types are set types with compatible base types.

mBoth types are packed string types with an identical number of
components.

m One type is a string type and the other is a string type, packed string
type, or char type.

m One type is pointer and the other is any pointer type.

Assignment Compatibility

Assignment compatibility is necessary when a value is assigned to some-
thing, such as in an assignment statement or in passing value parameters.

A value of type T, is assignment-compatible with a type T, (that is, T, := T,
is allowed) if any of the following are True:

m T, and T, are identical types and neither is a file type or a structured type
* that contains a file-type component at any level of structuring.

m T, and T, are compatible ordinal types, and the values of type T, falls
within the range of possible values of T,.

m T, and T, are real types, and the value of type T, falls within the range of
possible values of T;.

218 Turbo Pascal Owner’s Handbook

m T, is a real type, and T, is an integer type.

a T, and T, are string types.

m T, is a string type, and T, is a char type.

m T, is a string type, and T, is a packed string type.
m T, and T, are compatible, packed string types.

m T, and T, are compatible set types, and all the members of the value of

type T, fall within the range of possible values of T;.

m T, and T, are compatible pointer types.

A compile or runtime error occurs when assignment compatibility is

necessary and none of the items in the preceding list are True.

The Type Declaration Part

Programs, procedures, and functions that declare types have a type
declaration part. An example of this follows:

type
Range = integer;
Number = integer;
Color = (red,green,blue};
TestIndex = 1..100;
TestValue = -99..99;
TestList = array|[TestIndex] of TestValue;
TestListPtr = *TestList;
Date = record
year: integer;
month: 1..12;
day: 1..31;
end;
MeasureData = record
when: Date;
count: TestIndex;
data: TestListPtr;
end;
Measurelist = array[l..50] of MeasureData;
Name = string([80];
Sex = (male,female);
Person = "“PersonData;
PersonData = record
name, firstName: Name;
age: integer;
married: boolean;
father,child, sibling: Person;
case s: Sex of
male: (bearded: boolean);
female: (pregnant: boolean);
end;
People = file of PersonData;
IntFile = file of integer

Chapter 15, Types

219

In the example, Range, Number, and integer are identical types. TestIndex is
compatible and assignment-compatible with, but not identical to, the types
Number, Range, and integer.

220 Turbo Pascal Owner’s Handbook

16

Variables

Variable Declarations

A variable declaration embodies a list of identifiers that designate new
variables and their type.

absolute clause

variable declaration identifier list w I I ;@_>

The type given for the variable(s) can be a type identifier previously
declared in a type declaration part in the same block, in an enclosing block,
or in a unit, or it can be a new type definition.

When an identifier is specified within the identifier list of a variable
declaration, that identifier is a variable identifier for the block in which the
declaration occurs. The variable can then be referred to throughout the
block, unless the identifier is redeclared in an enclosed block. Redeclaration
causes a new variable using the same identifier, without affecting the value
of the original variable.

An example of a variable declaration part follows:

var
X,Y,Z: real;
I,J,K: integer;
Digit: 0..9;
C: Color;
Done, Error: boolean;
Operator: {(plus, minus, times);
Huel, Hue2: set of Color;

Chapter 16, Variables 221

Today: Date;

Results: Measurelist;

P1,P2: Person;

Matrix: array[l..10,1..10] of real;

Variables declared outside procedures and functions are called global
variables, and reside in the data segment. Variables declared within pro-
cedures and functions are called local variables, and reside in the stack
segment.

The Data Segment

The maximum size of the data segment is 65520 bytes. When a program is
linked (this happens automatically at the end of the compilation of a
program), the global variables of all units used by the program, as well as
the program’s own global variables, are placed in the data segment.

If you need more than 65520 bytes of global data, you should allocate the
larger structures as dynamic variables. For further details on this subject,
see “Pointers and Dynamic Variables” later in this chapter.

The Stack Segment

The size of the stack segment is set through a $M compiler directive—it can
be anywhere from 1024 to 65520 bytes. The default stack segment size is
16384 bytes.

Each time a procedure or function is activated (called), it allocates a set of
local variables on the stack. On exit, the local variables are disposed. At any
time during the execution of a program, the total size of the local variables
allocated by the active procedures and functions cannot exceed the size of
the stack segment.

The $S compiler directive is used to include stack overflow checks in the
code. In the default {$5+} state, code is generated to check for stack
overflow at the beginning of each procedure and function. In the {$5-} state,
no such checks are performed. A stack overflow may very well cause a
system crash, so don’t turn off stack checks unless you are absolutely sure
that an overflow will never occur.

222 Turbo Pascal Owner’s Handbook

Absolute Variables

Variables can be declared to reside at specific memory addresses, and are
then called absolute variables. The declaration of such variables must include
an absolute clause following the type:

absolute clause absolute unsigned intege ° unsigned integer —

variable identifier

Note that the variable declaration’s identifier list can only specify one
identifier when an absolute clause is present.

The first form of the absolute clause specifies the segment and offset at
which the variable is to reside:

CrtMode : byte absolute $0040:5$0049;

The first constant specifies the segment base, and the second specifies the
offset within that segment. Both constants must be within the range $0000
to $FFFF (0 to 65535).

The second form of the absolute clause is used to declare a variable “on
top” of another variable, meaning it declares a variable that resides at the
same memory address as another variable.

var

Str: string[32];
StrLen: byte absolute Str;

This declaration specifies that the variable StrLen should start at the same
address as the variable Str, and because the first byte of a string variable
contains the dynamic length of the string, StrLen will contain the length of
Str.

Variable References

A variable reference signifies one of the following:

m a variable
m a component of a structured- or string-type variable
m a dynamic variable pointed to by a pointer-type variable

Chapter 16, Variables 223

The syntax for a variable reference is

variable reference variable identifier —»

I | variable type cast ‘
function call m

Note that the syntax for a variable reference allows a function call to a
pointer function. The resulting pointer is then dereferenced to denote a
dynamic variable.

Qualifiers

A variable reference is a variable identifier with zero or more qualifiers that
modify the meaning of the variable reference.

qualifier —r-»
field designator

An array identifier with no qualifier, for example, references the entire
array:

Results

An array identifier followed by an index denotes a specific component of
the array—in this case a structured variable:

Results[Current+1]

With a component that is a record, the index can be followed by a field
designator; here the variable access signifies a specific field within a specific
array component.

Results[Current+l].data

The field designator in a pointer field can be followed by the pointer
symbol (a #) to differentiate between the pointer field and the dynamic
variable it points to.

Results[Current+l].data”

If the variable being pointed to is an array, indexes can be added to denote
components of this array.

224 Turbo Pascal Owner’s Handbook

Results[Current+l].data”[J]

Arrays, Strings, and Indexes

A specific component of an array variable is denoted by a variable
reference that refers to the array variable, followed by an index that
specifies the component.

A specific character within a string variable is denoted by a variable
reference that refers to the string variable, followed by an index that
specifies the character position.

RN N) B (O

The index expressions select components in each corresponding dimension
of the array. The number of expressions can’t exceed the number of index
types in the array declaration. Furthermore, each expression’s type must be
assignment-compatible with the corresponding index type.

When indexing a multidimensional array, multiple indexes or multiple
expressions within an index can be used interchangeably. For example:

Matrix[I][J]
is the same as
Matrix[I,J]

You can index a string variable with a single index expression, whose value
must be in the range 0..n, where n is the declared size of the string. This
accesses one character of the string value, with the type char given to that
character value.

The first character of a string variable (at index 0) contains the dynamic
length of the string; that is, Length(S) is the same as Ord(S[0]). If a value is
assigned to the length attribute, the compiler does not check whether this
value is less than the declared size of the string. It is possible to index a
- string beyond its current dynamic length. The characters thus read are
random, and assignments beyond the current length will not affect the
actual value of the string variable.

Chapter 16, Variables 225

Records and Field Designators

A specific field of a record variable is denoted by a variable reference that
refers to the record variable, followed by a field designator specifying the
field.

field designator . field identifier

Some examples of a field designator include:

Today.year
Results[1l].count
Results[l].when.month

In a statement within a with statement, a field designator doesn’t have to
be preceded by a variable reference to its containing record.

Pointers and Dynamic Variables

The value of a pointer variable is either nil or the address of a value that
points to a dynamic variable.

The dynamic variable pointed to by a pointer variable is referenced by
writing the pointer symbol (*) after the pointer variable.

You create dynamic variables and their pointer values with the standard
procedures New and GetMem. You can use the @ operator and the standard
function Ptr to create pointer values that are treated as pointers to dynamic
variables.

nil does not point to any variable. The results are undefined if you access a
dynamic variable when the pointer’s value is nil or undefined.
Some examples of references to dynamic variables:

pP1*

P1%*.sibling”®

Results[l].data”

Variable Typecasts

A variable reference of one type can be changed into a variable reference of
another type through a variable typecast.

226 Turbo Pascal Owner’s Handbook

variable typecast type identifier o o

When a variable typecast is applied to a variable reference, the variable
reference is treated as an instance of the type specified by the type
identifier. The size of the variable (the number of bytes occupied by the
variable) must be the same as the size of the type denoted by the type
identifier. A variable typecast can be followed by one or more qualifiers, as
allowed by the specified type.

Some examples of variable typecasts follow:

type

Point = record

X,y: integer;
end;

List = array[l..2] of integer;
var

P: Point;

L: longint;

N: integer;
begin

P := Point(L);

N := Point (L) .x;

longint (P) := longint (P) + $00080008;

List (P) [N] := 32;
end.

|

[

The built-in functions Hi and Lo return the high- and low-order bytes of a
word or integer variable. To determine the high- and low-order words of a
long integer variable, you should use a value typecast:

type
WordRec = record { used for typecast }
Low, High : word;
end;

var
L : longint;
begin
L := $10000; { 65536 decimal }
Writeln (WordRec(L).Low); {0}
Writeln (WordRec(L).High); {1}
end.

Similarly, here’s an inexpensive (code-wise) alternative to the Seg and Ofs
functions:
type

PtrRec = record { used for typecast }
0fs, Seg : word;

Chapter 16, Variables 227

end;

var
P : pointer;

begin
P := Ptr($1234, $4567);
Writeln(PtrRec{(P).0fs); { $4567 }
Writeln(PtrRec(P).Seq); { $1234 }

end.

This generates less code and is faster than using the standard functions Seg
and Ofs. Value typecasting is described in more detail in Chapter 18.

228 Turbo Pascal Owner’s Handbook

17

Typed Constants

Typed constants can be compared to initialized variables—variables whose
values are defined on entry to their block. Unlike an untyped constant (see
the section entitled “Constant Declarations” in Chapter 13), the declaration
of a typed constant specifies both the type and the value of the constant.

typed constant declaration ° e typed constant

typed constant —— constant >

o B

record constant

e{n | —

Typed constants can be used exactly like variables of the same type, and
can appear on the left-hand side in an assignment statement. Note that
typed constants are initialized only once—at the beginning of a program.
Thus, for each entry to a procedure or function, the locally declared typed
constants are not reinitialized.

Chapter 17, Typed Constants 229

Simple-Type Constants

Declaring a typed constant as a simple type simply specifies the value of
the constant:

const
Maximum : integer = 9999;
Factor : real = -0.1;

Breakchar : char = #3;

Because a typed constant is actually a variable with a constant value, it
cannot be interchanged with ordinary constants. For instance, it cannot be
used in the declaration of other constants or types.

const
Min : integer = 0;
Max : integer = 99;
type
Vector = array([Min..Max] of integer;

The Vector declaration is invalid, because Min and Max are typed constants.

String-Type Constants

The declaration of a typed constant of a string type specifies the maximum
length of the string and its initial value:

const
Heading : string[7] = ’'Section’;
NewLine : string[2] = #13410;
TrueStr : string{5] = 'Yes’;
FalseStr : string[5] = "No’;

Structured-Type Constants

The declaration of a structured-type constant specifies the value of each of
the structure’s components. Turbo Pascal supports the declaration of type
array, record, set, and pointer constants; type file constants, and constants
of array and record types that contain type file components are not
allowed.

230 Turbo Pascal Owner’s Handbook

Array-Type Constants

The declaration of an array-type constant specifies, enclosed in parentheses
and separated by commas, the values of the components.

array constant —»@-7 typed constant —>®—>

An example of an array-type constant follows:

type
Status = (Active,Passive,Waiting);
StatusMap = array{Status] of string(7];
const
StatStr: StatusMap = (’Active’,’Passive’,’Waiting’);

This example defines the array constant StatStr, which can be used to con-
vert values of type Status into their corresponding string representations.
The components of StatStr are

StatStr[Active] = ’Active’
StatStr[Passive] = ’Passive’
StatStr{Waiting] = ‘Waiting’

The component type of an array constant can be any type except a file type.
Packed string-type constants (character arrays) can be specified both as
single characters and as strings. The definition

const
Digits: array[0..9] of char = ('0’,’1’,"2","3",74",'5","¢6","7","8",'9");
can be expressed more conveniently as

const
Digits: array[0..9] of char = ’0123456789';

Multidimensional array constants are defined by enclosing the constants of
each dimension in separate sets of parentheses, separated by commas. The
innermost constants correspond to the rightmost dimensions. The
declaration

type

Cube = array[0..1,0..1,0..1} of integer;
const

Maze: Cube = (((0,1),(2,3)),((4,5),(6,7)));

provides an initialized array Maze with the following values:

Maze[0,0,0] =0

Chapter 17, Typed Constants 231

Maze[0,0,1] =
Maze{0,1,0] =
Maze[0,1,1] =
Maze[l1,0,0] =
Maze[1,0,1] =
Maze[l,1,0] =
Maze[l1,1,1] =

~ oY s W N

Record-Type Constants

The declaration of a record-type constant specifies the identifier and value
of each field, enclosed in parentheses and separated by semicolons.

record constant —>®1r> field identifier ° —.®_>

(N
AN
Some examples of record constants follow:
type
Point = record
X,y: real;
end;
Vector = array[0..1] of Point;
Month = (Jan,Feb,Mar,Apr,May, Jun,Jly,Aug, Sep, Oct,Nov,Dec) ;
Date = record
d: 1..31; m: Month; y: 1900..1999;
end;
const
Origin : Point = (x: 0.0; y: 0.0);
Line ¢ Vector = ((x: -3.1; y: 1.5),(x: 5.8; y: 3.0));

SomeDay : Date = (d: 2; m: Dec; y: 1960);

The fields must be specified in the same order as they appear in the
definition of the record type. If a record contains fields of file types, the
constants of that record type cannot be declared. If a record contains a
variant, only fields of the selected variant can be specified. If the variant
contains a tag field, then its value must be specified.

Set-Type Constants

The declaration of a set-type constant specifies zero or more member
constants, enclosed in square brackets and separated by commas. A
member constant is a constant, or a range consisting of two constants,
separated by two periods.

232 Turbo Pascal Owner’s Handbook

set constant —D@* _T‘]

4@‘___

member constant ——>| constant I T >
Lo

Some examples of set constants follow:

type
Digits = set of 0..9;
Letters = set of 'A'..'2';
const
EvenDigits: Digits = [0,2,4,6,8];
Vowels : Letters = ['A’,'E’,'17,70','U','Y'];
| -

!
HexDigits : set of '0'..'z [(70"..79",'A" .J'F! Tl L LU

Pointer-Type Constants

The declaration of a pointer-type constant can only specify the value nil.

Some examples include

type
NamePtr = “NameRec;
NameRec = record
Next: NamePtr;
Name: string[31];
end;
const

NameList: NamePtr = nil;
NoName: NameRec = (Next: nil; Name: '’);

Chapter 17, Typed Constants

233

234 Turbo Pascal Owner’s Handbook

18

Expressions

Expressions are made up of operators and operands. Most Pascal operators
are binary, that is, they take two operands; the rest are unary and take only
one operand. Binary operators use the usual algebraic form, for example, a
+ b. A unary operator always precedes its operand, for example, -b.

In more complex expressions, rules of precedence clarify the order in which
operations are performed (see Table 18.1).

Table 18.1: Precedence of Operators

Operators Precedence Categories

@, not first (high) unary operators

*, /,div, mod, and, shl, shr second multiplying operators
+,-, OT, XOr third adding operators

=, <>, <, >, <=,>=,in fourth (low) relational operators

There are three basic rules of precedence:

1. First, an operand between two operators of different precedence is
bound to the operator with higher precedence.

2. Second, an operand between two equal operators is bound to the one on
its left.

3. Third, expressions within parentheses are evaluated prior to being
treated as a single operand.

Chapter 18, Expressions 235

Operations with equal precedence are normally performed from left to
right, although the compiler may at times rearrange the operands to
generate optimum code.

Expression Syntax

The precedence rules follow from the syntax of expressions, which are built
from factors, terms, and simple expressions.

A factor’s syntax follows:

factor . =|' variable reference Iﬁ‘——"

procedure identifier |

-b| unsigned constant I

0 expression o

—P| function call I
—>| set constructor i
—Fi value type cast i

A function call activates a function and denotes the value returned by the
function (see “Function Calls” later in this chapter). A set constructor
denotes a value of a set type (see the section entitled “Set Constructors”). A
value typecast changes the type of a value (see “Value Typecasts”). An
unsigned constant has the following syntax:

236 Turbo Pascal Owner’s Handbook

unsigned constant — unsigned number

character string

!

constant identifier

nil

Some examples of factors include

X

@x

15

(X+Y+2Z)

Sin(X/2)
['0..79",'a"..'2"]
not Done

char (Digit+48)

Terms apply the multiplying operators to factors:

term factor —>

;‘

ST

Here’s some examples of terms:

X*y

z/(1-2)

Done or Error

(X <= Y) and (Y < Z)

Chapter 18, Expressions

{ Variable reference

{ Pointer to a variable
{ Unsigned constant

{ Subexpression

{ Function call

{ Set constructor

{ Negation of a boolean
{ Value typecast

—— —— e

237

Simple expressions apply adding operators and signs to terms:

simple expression term —>

Here’s some examples of simple expressions:

X+Y

-X

Huel + Hue2
I*J+1

An expression applies the relational operators to simple expressions:

expression —’I simple expression i >
T’I simple expression }—T

3060909

Here’s some examples of expressions:

X=1.5

Done <> Error

(I <J) = (J<K)
C in Huel

238 Turbo Pascal Owner’s Handbook

Operators

The operators are classified as arithmetic operators, logical operators, string
operators, set operators, relational operators, and the @ operator.

Arithmetic Operators

The following tables show the types of operands and results for binary and
unary arithmetic operations.

Table 18.2: Binary Arithmetic Operations

Operator Operation Operand Types Result Type
+ addition integer type integer type
real type real type
- subtraction integer type integer type
real type real type
* multiplication integer type integer type
real type real type
division integer type real type
real type real type
div integer division integer type integer type
mod remainder integer type integer type

Note: The + operator is also used as a string or set operator, and the +, —,
and * operators are also used as set operators.

Table 18.3: Unary Arithmetic Operations

Operator Operation Operand Types Result Type

+ sign identity integer type integer type
real type real type

- sign negation integer type integer type
real type real type

Any operand whose type is a subrange of an ordinal type is treated as if it
were of the ordinal type.

If both operands of a +, —, ¥, div, or mod operator are of an integer type, the
result type is of the common type of the two operands. (See the section
“The Integer Type” in Chapter 15 for a definition of common types.)

Chapter 18, Expressions 239

If one or both operands of a +, —, or * operator are of a real type, the type of
the result is real in the $N- state or extended in the $N+ state.

If the operand of the sign identity or sign negation operator is of an integer
type, the result is of the same integer type. If the operator is of a real type,
the type of the result is real or extended.

The value of x/y is always of type real or extended regardless of the
operand types. An error occurs if y is zero.

The value of i div j is the mathematical quotient of i/j, rounded in the
direction of zero to an integer-type value. An error occurs if j is zero.

The mod operator returns the remainder obtained by dividing its two
operands, that is,

imod j =1 - (idiv j) * j

The sign of the result of mod is the same as the sign of i. An error occurs if j
is zero.

Logical Operators

The types of operands and results for logical operations are shown in Table
18.4.

Table 18.4: Logical Operations

Operator Operation Operand Types Result Type
not Bitwise negation integer type integer type
and Bitwise and integer type integer type
or Bitwise or integer type integer type
Xor Bitwise xor integer type integer type
shl Shift left integer type integer type
shr Shift right integer type integer type

Note: The not operator is a unary operator.

If the operand of the not operator is of an integer type, the result is of the
same integer type.

If both operands of an and, or, or xor operator are of an integer type, the
result type is the common type of the two operands.

The operations i shl j and i shr j shift the value of i to the left or to the right
by j bits. The type of the result is the same as the type of i.

240 Turbo Pascal Owner’s Handbook

Boolean Operators

The types of operands and results for boolean operations are shown in
Table 18.5.

Table 18.5: Boolean Operations

Operator Operation = Operand Types Result Type

not negation boolean boolean
and logical and boolean boolean
or logical or boolean boolean
xor logical xor boolean boolean

Note: The not operator is a unary operator.

Normal Boolean logic governs the results of these operations. For instance,
a and b is True only if both 2 and b are True.

Turbo Pascal supports two different models of code generation for the and
and or operators: complete evaluation and short-circuit (partial) evaluation.

Complete evaluation means that every operand of a Boolean expression,
built from the and and or operators, is guaranteed to be evaluated, even
when the result of the entire expression is already known. This model is
convenient when one or more operands of an expression are functions with
side effects that alter the meaning of the program.

Short-circuit evaluation guarantees strict left-to-right evaluation and that
evaluation stops as soon as the result of the entire expression becomes
evident. This model is convenient in most cases, since it guarantees
minimum excution time, and usually minimum code size. Short-circuit
evaluation also makes possible the evaluation of constructs that would not
otherwise be legal; for instance:

while (I<=Length(S)) and (S[I]<>' ') do Inc(I);
while (P<>nil) and (P".Value<>5) do P:=P".Next;

In both cases, the second test is not evaluated if the first test is False.

The evaluation model is controlled through the $B compiler directive. The
default state is {$B-} (unless changed using the Options/Compiler menu),
and in this state, short-circuit evaluation code is generated. In the {$B+}
state, complete evaluation code is generated.

Since standard Pascal does not specify which model should be used for
Boolean expression evaluation, programs depending on either model being

Chapter 18, Expressions 241

in effect are not truly portable. However, sacrificing portability is often
worth gaining the execution speed and simplicity provided by the short-
circuit model.

String Operator

The types of operands and results for string operation are shown in Table
18.6.

Table 18.6: String Operation

Operator Operation Operand Types Result Type
+ concatenation string type, string type
char t}épe, or
packed string type

Turbo Pascal allows the + operator to be used to concatenate two string
operands. The result of the operation s + f, where s and ¢t are of a string
type, a char type, or a packed string type, is the concatenation of s and .
The result is compatible with any string type (but not with char types and
packed string types). If the resulting string is longer than 255 characters, it
is truncated after character 255.

Set Operators.

The types of operands for set operations are shown in Table 18.7.

Table 18.7: Set Operations

Operator Operation Operand Types
+ union compatible set types
- difference compatible set types
* intersection compatible set types

The results of set operations conform to the rules of set logic:

m An ordinal valuecisina + bonlyif cisinaorb.
m An ordinal value c is in 2 — b only if c is in 2 and not in b.
m An ordinal value cis in a * b only if c is in both 2 and b.

242 Turbo Pascal Owner’s Handbook

If the smallest ordinal value that is a member of the result of a set operation
is a and the largest is b, then the type of the result is set of a..b.

Relational Operators

The types of operands and results for relational operations are shown in

Table 18.8.
Table 18.8: Relational Operations
Operator
Type Operation Operand Types Result Type
= equal compatible simple, boolean
pointer, set, string,
or packed string types
<> not equal compatible simple, boolean
pointer, set, string,
or packed string types
< less than compatible simple, boolean
string, or packed
string types
> greater than compatible simple, boolean
string, or packed
string types
<= less or equal compatible simple, boolean
string, or packed
string types
>= greater or compatible simple, boolean
equal string, or packed
string types
<= subset of compatible set types boolean
>= superset of compatible set types boolean
in member of left operand: any boolean
ordinal type t;
right operand: set whose
base is compatible with ¢.
Chapter 18, Expressions 243

Comparing Simple Types

When the operands =, <>, <, >, >=, or <= are of simple types, they must be
compatible types; however, if one operand is of a real type, the other can be
of an integer type.

Comparing Strings

The relational operators =, <>, <, >, >=, and <= compare strings according
to the ordering of the extended ASCII character set. Any two string values
can be compared, because all string values are compatible.

A char-type value is compatible with a string-type value, and when the two
are compared, the char-type value is treated as a string-type value with
length 1. When a packed string-type value with n components is compared
with a string-type value, it is treated as a string-type value with length 7.

Comparing Packed Strings

The relational operators =, <>, <, >, >=, and <= can also be used to compare
two packed string-type values if both have the same number of
components. If the number of components is n, then the operation
corresponds to comparing two strings, each of length n.

Comparing Pointers

The operators = and <> can be used on compatible pointer-type operands.
Two pointers are equal only if they point to the same object.

Note: When comparing pointers, Turbo Pascal simply compares the
segment and offset parts. Because of the segment mapping scheme of the
80x86 processors, two logically different pointers can in fact point to the
same physical memory location. For instance, $0040:50049 and $0000:$0449
are two pointers to the same physical address. Pointers returned by the
standard procedures New and GetMem are always normalized (offset part
in the range $0000 to $000F), and will therefore always compare correctly.
When creating pointers with the Ptr standard function, special care must be
taken if such pointers are to be compared.

244 Turbo Pascal Owner’s Handbook

Comparing Sets

If a and b are set operands, their comparisons produce these results:

ma = b is True only if a and b contain exactly the same members; otherwise,
a<>b.

ma <= b is True only if every member of a is also a member of b.
ma >= b is True only if every member of b is also a member of 4.

Testing Set Membership

The in operator returns True when the value of the ordinal type operand is
a member of the set-type operand; otherwise, it returns False.

The @ Operator

A pointer to a variable can be created with the @ operator. Table 18.9 shows
the operand and result types.

Table 18.9: Pointer Operation

Operator Operation Operand Types Result Type
@ Pointer formation Variable reference ~ Pointer (same
or procedure or as nil)

function identifier

@ is a unary operator that takes a variable reference or a procedure or
function identifier as its operand, and returns a pointer to the operand. The
type of the value is the same as the type of nil, therefore it can be assigned
to any pointer variable.

@ with a Variable

The use of @ with an ordinary variable (not a parameter) is uncomplicated.
Given the declarations

type

TwoChar = array(0..1] of char;
var

Int: integer;

TwoCharPtr: “TwoChar;

Chapter 18, Expressions 245

then the statement
TwoCharPtr := QInt;

causes TwoCharPtr to point to Int. TwoCharPtr” becomes a re-interpretation
of the value of Int, as though it were an array[0..1] of char.

@ with a Value Parameter

Applying @ to a formal value parameter results in a pointer to the stack
location containing the actual value. Suppose Foo is a formal value
parameter in a procedure and FooPtr is a pointer variable. If the procedure
executes the statement

FooPtr := @Foo;

then FooPtr”™ references Foo’'s value. However, FooPtr™ does not reference
Foo itself, rather it references the value that was taken from Foo and stored
on the stack.

@ with a Variable Parameter

Applying @ to a formal variable parameter results in a pointer to the actual
parameter (the pointer is taken from the stack). Suppose One is a formal
variable parameter of a procedure, Two is a variable passed to the
procedure as One’s actual parameter, and OnePtr is a pointer variable. If the
procedure executes the statement

OnePtr := @One;

then OnePtr is a pointer to Two, and OnePtr” is a reference to Two itself.

@ with a Procedure or Function

You can apply @ to a procedure or a function to produce a pointer to its
entry point. Turbo Pascal does not give you a mechanism for using such a
pointer. The only use for a procedure pointer is to pass it to an assembly
language routine or to use it in an inline statement.

Function Calls

A function call activates the function specified by the function identifier.
Any identifier declared to denote a function is a function identifier.

246 Turbo Pascal Owner’s Handbook

The function call must have a list of actual parameters if the corresponding
function declaration contains a list of formal parameters. Each parameter
takes the place of the corresponding formal parameter according to
parameter rules set forth in Chapter 22.

function call —-bi function identifier Ir

\J

actual parameter list ——>®ﬁr>L actual parameter]——»@—»

actual parameter

@.__

expression

—-bl variable reference

Some examples of function calls follow:

Sum(A, 63)

Maximum (147, J)
Sin(X+Y)

Eof (F)

Volume {Radius, Height)

Set Constructors

actual parameter list '—T

A set constructor denotes a set-type value, and is formed by writing
expressions within brackets ([1). Each expression denotes a value of the set.

set constructor —>® |1

]
At
S

member group

Chapter 18, Expressions

expression

expression

v

247

The notation [] denotes the empty set, which is assignment-compatible
with every set type. Any member group x..y denotes as set members all
values in the range x..y. If x is greater than y, then x..y does not denote any
members and [x..y] denotes the empty set.

All expression values in member groups in a particular set constructor
must be of the same ordinal type.

Some examples of set constructors follow:

[red, C, green]
[1, 5, 10..K mod 12, 23]
['ar..'z', 'a'.."z', Chr(Digit+48)]

Value Typecasts

The type of an expression can be changed to another type through a value
typecast.

value typecast type identfier |-{() 0)

The expression type and the specified type must both be either ordinal
types or pointer types. For ordinal types, the resulting value is obtained by
converting the expression. The conversion may involve truncation or
extension of the original value if the size of the specified type is different
from that of the expression. In cases where the value is extended, the sign
- of the value is always preserved; that is, the value is sign-extended.

The syntax of a value typecast is almost identical to that of a variable type-
cast (see Chapter 16, “Variable Typecasts”). However, value typecasts
operate on values not on variables, and can therefore not participate in
variable references; that is, a value typecast may not be followed by
qualifiers. In particular, value typecasts cannot appear on the left-hand side
of an assignment statement.

Some examples of value typecasts include

integer(’A’)

char (48)

boolean(0)

Color(2)

Longint (€Buffer)
BytePtr(Ptr($40,549))

248 Turbo Pascal Owner’s Handbook

19

Statements

Statements describe algorithmic actions that can be executed. Labels can
prefix statements, and these labels can be referenced by goto statements.

statement r
simple statementJ——‘

structured statement J—

As you saw in Chapter 13, a label is either a digit sequence in the range 0 to
9999 or an identifier.

v

There are two main types of statements: simple statements and structured
statements.

Simple Statements

A simple statement is a statement that doesn’t contain any other statements.

simple statement —-—F| assignment statement hﬁ—’
__.I procedure statementJ__
L—p| goto statement

Chapter 19, Statements 249

Assignment Statements

Assignment statements either replace the current value of a variable with a
new value specified by an expression or specify an expression whose value
is to be returned by a function.

assignment statement variable reference

expression

function identifier

The expression must be assignment-compatible with the type of the vari-
able or the result type of the function (see Chapter 15, “Type
Compeatibility”).

Some examples of assignment statements follow:

X = Y4Z;

Done := (I>=1) and (I<100);
Huel := [blue,Succ(C)];

I Sqr(J) -~ I*K;

Procedure Statements

A procedure statement specifies the activation of the procedure denoted by
the procedure identifier. If the corresponding procedure declaration con-
tains a list of formal parameters, then the procedure statement must have a
matching list of actual parameters (parameters listed in definitions are
formal parameters; in the calling statement, they are actual parameters). The
_ actual parameters are passed to the formal parameters as part of the call.

procedure statement —-|Trocedure identifier >
l—bl?lctual parameter list —T

Some examples of procedure statements follow:

PrintHeading;
Transpose (A, N, M) ;
Find (Name, Address) ;

250 Turbo Pascal Owner’s Handbook

Goto Statements

A goto statement transfers program execution to the statement prefixed by
the label referenced in the goto statement. The syntax diagram of a goto
statement follows:

goto statement —(goto)—»' label J—b

The following rules should be observed when using goto statements:

m The label referenced by a goto statement must be in the same block as the
goto statement. In other words, it is not possible to jump into or out of a
procedure or function.

mJumping into a structured statement from outside that structured
statement (that is, jumping to a “deeper” level of nesting) can have
undefined effects, although the compiler will not indicate an error.

Structured Statements

Structured statements are constructs composed of other statements that are
to be executed in sequence (compound and with statements), conditionally
(conditional statements), or repeatedly (repetitive statements).

_>| compound statement Hh’
._>| conditional statement I_
—hlﬂetitive statemenﬂ——-

structured statement

Compound Statements

The compound statement specifies that its component statements are to be
executed in the same sequence as they are written. The component
statements are treated as one statement, crucial in contexts where the Pascal
syntax only allows one statement. begin and end bracket the statements,
which are separated by semicolons.

Chapter 19, Statfements 251

compound statement ——("pegin rblm—'— end

Here’s an example of a compound statement:

begin
Z =X
X:=Y;
Y :=7;
end;

Conditional Statements

A conditional statement selects for execution a single one (or none) of its
component statements.

if statement “—>

conditional statement

If Statements

The syntax for an if statement reads like this:

if statement —»@—bl expressim—{then]—bl statement I—I—'
=) .

The expression must yield a result of the standard type boolean. If the
expression produces the value True, then the statement following then is
executed.

If the expression produces False and the else part is present, the statement
following else is executed; if the else part is not present, nothing is
executed.

The syntactic ambiguity arising from the construct

252 Turbo Pascal Owner’s Handbook

if el then if e2 then sl else s2

is resolved by interpreting the construct as follows:

if el then
begin
if e2 then
sl
else
s2
end

In general, an else is associated with the closest if not already associated
with an else.

Two examples of if statements follow:

if X < 1.5 then

Z 1= X+Y
else
7 := 1.5;

if P1 <> nil then
Pl := Pl”.father;

Case Statements

The case statement consists of an expression (the selector) and a list of
statements, each prefixed with one or more constants (called case constants)
or with the word else. The selector must be of an ordinal type, and the
ordinal values of the upper and lower bounds of that type must be within
the range -32768 to 32767. Thus, string types and the integer types longInt
and word are invalid selector types. All case constants must be unique and
of an ordinal type compatible with the selector type.

case statement case expression 0 rbl case i

| »(end
et Lot 0

Chapter 19, Statements 253

—_ Ofrmoman

)
M
O

else part —»(elseH statement }—P

The case statement executes the statement prefixed by a case constant equal
to the value of the selector or a case range containing the value of the
selector. If no such case constant of the case range exists and an else part is
present, the statement following else is executed. If there is no else part,
nothing is executed.

Examples of case statements follow:

case Operator of

plus: X := X+Y;
minus: X := X-Y;
times: X := X*Y;
end;
case I of

0,2,4,6,8: Writeln('Even digit’);

1,3,5,7,9: Writeln('0dd digit’);

10..100: Writeln(’Between 10 and 1007);
else

Writeln(’Negative or greater than 100');
end;

Repetitive Statements

Repetitive statements specify certain statements to be executed repeatedly.

—{ repeat statement |-
—>| while statement I—
for statement)

If the number of repetitions is known beforehand, the for statement is the
appropriate construct. Otherwise, the while or repeat statement should be
used.

repetitive statement

254 Turbo Pascal Owner’s Handbook

Repeat Statements

A repeat statement contains an expression that controls the repeated
execution of a statement sequence within that repeat statement.

rpeatsatement —>(repeat) >{ sement J{until J=>[orpession >

The expression must produce a result of type boolean. The statements
between the symbols repeat and until are executed in sequence until, at the
end of a sequence, the expression yields True. The sequence is executed at
least once, because the expression is evaluated after the execution of each
sequence.

Examples of repeat statements follow:

repeat
K :=1 mod J;
I:=3J;
J :=K;
until J = 0;

repeat
Write('Enter value (0..9): ’);
Readln(I};

until (I >= 0) and (I <= 9);

While Statements

A while statement contains an expression that controls the repeated
execution of a statement (which can be a compound statement).

while statement while expression m

The expression controlling the repetition must be of type boolean. It is
evaluated before the contained statement is executed. The contained
statement is executed repeatedly as long as the expression is True. If the
expression is False at the beginning, the statement is not executed at all.

Examples of while statements include:

Chapter 19, Statements 255

while Data[I] <> Xdo I :=1 + 1;

while I > 0 do

begin
if 0dd(I) then Z := Z * X;
I:=1div 2;
X := Sqr(X);

end;

while not Eof (InFile) do

begin
Readln(InFile,Line);
Process(Line);

end;

For Statements
The for statement causes a statement (which can be a compound statement)

to be repeatedly executed while a progression of values is assigned to a
control variable.

for statement @ control variable (: =)~ initial value

final value

control variable variable identifier
initial value expression

The control variable must be a variable identifier (without any qualifier)
that signifies a variable declared to be local to the block containing the for
statement. The control variable must be of an ordinal type. The initial and
final values must be of a type assignment-compatible with the ordinal type.

When a for statement is entered, the initial and final values are determined
once for the remainder of the execution of the for statement.

The statement contained by the for statement is executed once for every
value in the range initial value to final value. The control variable always

256 Turbo Pascal Owner’s Handbook

starts off at initial value. When a for statement uses to, the value of the
control variable is incremented by one for each repetition. If initial value is
greater than final value, the contained statement is not executed. When a for
statement uses downto, the value of the control variable is decremented by
one for each repetition. If initial value value is less than final value, the
contained statement is not executed.

It’s an error if the contained statement alters the value of the control
variable. After a for statement is executed, the value of the control variable
value is undefined, unless execution of the for statement was interrupted
by a goto from the for statement.

With these restrictions in mind, the for statement
for V := Exprl to Expr2 do Body;

is equivalent to

begin
Templ := Exprl;
Temp2 := Expr2;
if Templ <= Temp2 then
begin
V := Templ;
Body;
while V <> Temp2 do
begin
V := Succ(V);
Body;
end;
end;
end;

and the for statement
for V := Exprl downto Expr2 do Body;

is equivalent to

begin
Templ := Exprl;
Temp2 := Expr2;
if Templ >= Temp2 then
begin
V := Templ;
Body;
while V <> Temp2 do
begin
V := Pred(V);
Body;
end;
end;
end;

Chapter 19, Statements 257

where Templ and Temp2 are auxiliary variables of the host type of the
variable V and don’t occur elsewhere in the program.

Examples of for statements follow:

for I := 2 to 63 do
if Data[I] > Max then Max := Data[I]

for I := l o 10 do

for J 1 to 10 do
hegm
X 1= 0;
for K := 1 to 10 do
X :=X + Matl[I,K] * Mat2[X,J];
Mat(I,J] := X;
end;

for C := red to blue do Check(C);

With Statements

The with statement is shorthand for referencing the fields of a record.
Within a with statement, the fields of one or more specific record variables
can be referenced using their field identifiers only. The syntax of a with
statement follows:

with statement wr»rrecord variable reference }—

(Dea—
(7

record variable reference —-l variable reference |—>

Following is an example of a with statement:

with Date do
if month = 12 then

begin

month := 1;

year := year + 1
end
else

month := month + 1;

This is equivalent to

258 Turbo Pascal Owner’s Handbook

if Date.month = 12 then
begin

Date.month := 1;

Date.year := Date.year + 1
end
else

Date.month := Date.month + 1;

Within a with statement, each variable reference is first checked as to
whether it can be interpreted as a field of the record. If so, it is always
interpreted as such, even if a variable with the same name is also accessible.
Suppose the following declarations have been made:
type
Point = record
X,y: integer;
end;
var
x: Point;
y: integer;

In this case, both x and y can refer to a variable or to a field of the record. In
the statement

with x do
begin
x := 10;
y = 25;
end;

the x between with and do refers to the variable of type Point, but in the
compound statement, x and y refer to x.x and x.y.

The statement
with V1,V2, ... Vn do s;
is equivalent to

with V1 do
with V2 do

with Vn do
Sy

In both cases, if Vn is a field of both V1 and V2, it is interpreted as V2.Vn,
not V1.Vn.

If the selection of a record variable involves indexing an array or
dereferencing a pointer, these actions are executed once before the
component statement is executed.

Chapter 19, Statements 259

260 Turbo Pascal Owner’s Handbook

20

Procedures and Functions

Procedures and functions allow you to nest additional blocks in the main
program block. Each procedure or function declaration has a heading
followed by a block. A procedure is activated by a procedure statement; a
function is activated by the evaluation of an expression that contains its call
and returns a value to that expression.

This chapter discusses the different types of procedure and function
declarations and their parameters.

Procedure Declarations

A procedure declaration associates an identifier with a block as a
procedure; that procedure can then be activated by a procedure statement.

procedure declaration —»rprocedure heading ° procedure body o

; dentifier | >
procedure heading ——P(procedur@—b’ identifier — __T >
formal parameter list l

The procedure heading names the procedure’s identifier and specifies the
formal parameters (if any).

parameter type type identifier ik

Chapter 20, Procedures and Functions 261

\

procedure body T —l block

:II inline directive IJ

The syntax for a formal parameter list is shown in the section “Parameters”
later in this chapter.

A procedure is activated by a procedure statement, which states the
procedure’s identifier and any actual parameters required. The statements
to be executed on activation are noted in the statement part of the
procedure’s block. If the procedure’s identifier is used in a procedure
statement within the procedure’s block, the procedure is executed
recursively (it calls itself while executing).

Here’s an example of a procedure declaration:

procedure NumString(N: integer; var S: string);
var
V: integer;
begin
V := Abs(N);
S .= II'.
repeat
S = Chr(N mod 10 + Ord('0")) + S;
N := N div 10;
until N = 0;
if N <O then S :='-" +5;
end;

A procedure declaration can optionally specify an interrupt directive
before the block, and the procedure is then considered an interrupt
procedure. Interrupt procedures are described in full in Chapter 26, “Inside
Turbo Pascal.” For now, note that interrupt procedures cannot be called
from procedure statements, and that every interrupt procedure must
specify a parameter list exactly like the following;:

procedure MyInt (Flags,CS,IP,AX,BX,CX,DX,SI,DI,DS,ES,BP : word);
interrupt;

Instead of the block in a procedure or function declaration, you can write a
forward, external, or inline declaration.

262 Turbo Pascal Owner’s Handbook

Forward Declarations

A procedure declaration that specifies the directive forward instead of a
block is a forward declaration. Somewhere after this declaration, the
procedure must be defined by a defining declaration—a procedure
declaration that uses the same procedure identifier but omits the formal
parameter list and includes a block. The forward declaration and the
defining declaration must appear in the same procedure and function
declaration part. Other procedures and functions can be declared between
them, and they can call the forward-declared procedure. Mutual recursion
is thus possible.

The forward declaration and the defining declaration constitute a complete
procedure declaration. The procedure is considered declared at the forward
declaration.

An example of a forward declaration follows:

procedure Walter(m,n : integer); forward;

procedure Clara(x,y : real);
begin

Walter(4,5);
end;

procedure Walter;
begin

Clara(8.3,2.4);

end;

A procedure’s defining declaration can be an external declaration;
however, it cannot be an inline declaration or another forward declaration.
Likewise, the defining declaration cannot specify an interrupt directive.

Forward declarations are not allowed in the interface part of a unit.

External Declarations

External declarations allow you to interface with separately compiled
procedures and functions written in assembly language. The external code
must be linked with the Pascal program or unit through {$L filename}
directives. For further details on linking with assembly language, refer to
Chapter 26.

Chapter 20, Procedures and Functions 263

Examples of external procedure declarations follow:

procedure MoveWord(var source,dest; count: longInt); external;
procedure Movelong(var source,dest; count: longInt); external;

procedure FillWord(var dest; data: integer; count: longInt); external;
procedure Filllong(var dest; data: longInt; count: longInt); external;

{$L BLOCK.OBJ}

You should use external procedures when you need to incorporate
substantial amounts of assembly code. If you only require small amounts of
code, use inline procedures instead.

Inline Declarations

The inline directive permits you to write machine code instructions instead
of the block. When a normal procedure is called, the compiler generates
code that pushes the procedure’s parameters onto the stack, and then
generates a CALL instruction to call the procedure. When you “call” an
inline procedure, the compiler generates code from the inline directive
instead of the CALL. Thus, an inline procedure is “expanded” every time
you refer to it, just like a macro in assembly language. Here’s a short
example of two inline procedures:

procedure DisableInterrupts; inline($FA); { CLI }
procedure EnableInterrupts; inline($FB); { STI }

Inline procedures are described in full in Chapter 26, “Inside Turbo Pascal.”

Function Declarations

A function declaration defines a part of the program that computes and
returns a value.

function declaration function heading o function body o

The function heading specifies the identifier for the function, the formal
parameters (if any), and the function result type.

264 Turbo Pascal Owner’s Handbook

function heading m identifier |
L.‘ formal parameter Iist"—T

(O—[rtoge |

resulttype = — type identifier >

A function is activated by the evaluation of a function call. The function
call gives the function’s identifier and any actual parameters required by
the function. A function call appears as an operand in an expression. When
the expression is evaluated, the function is executed, and the value of the
operand becomes the value returned by the function.

The statement part of the function’s block specifies the statements to be
executed upon activation of the function. The block should contain at least
one assignment statement that assigns a value to the function identifier. The
result of the function is the last value assigned. If no such assignment
statement exists or if it is not executed, the value returned by the function is
unspecified.

If the function’s identifier is used in a function call within the function’s
block, the function is executed recursively.

Following are examples of function declarations:

function Max(a: Vector; n: integer): extended;
var

x: extended;

i: integer;
begin

x := alll;

for i :=2 ton do

if x < a[i] then x := a[i];

Max := X;

end;

function Power(x: extended; y: integer): extended;
var

z: extended;

i: integer;
begin

z :=1.0; 1 :=y;

while i > 0 do

Chapter 20, Procedures and Functions 265

begin
if Odd(i) then z := z * x;

i=1div 2;
x = Sqr(x);
end;
Power := z;
end;

Like procedures, functions can be declared as forward, external, or inline;
however, interrupt functions are not allowed.

function body »| block

v

inline directive

i

Parameters

The declaration of a procedure or function specifies a formal parameter list.
Each parameter declared in a formal parameter list is local to the procedure
or function being declared, and can be referred to by its identifier in the
block associated with the procedure or function.

formal parameter list -——>®7r>| parameter declaration |——>@—>

parameter declaration

H identifier list >
@ ° parameter type

There are three kinds of parameters: value, variable, and untyped variable.
They are characterized as follows:

‘m A parameter group without a preceding var and followed by a type is a
list of value parameters.

m A parameter group preceded by var and followed by a type is a list of
variable parameters.

m A parameter group preceded by var and not followed by a type is a list of
untyped variable parameters.

266 Turbo Pascal Owner’s Handbook

Value Parameters

A formal value parameter acts like a variable local to the procedure or
function, except that it gets its initial value from the corresponding actual
parameter upon activation of the procedure or function. Changes made to a
formal value parameter do not affect the value of the actual parameter.

A value parameter’s corresponding actual parameter in a procedure
statement or function call must be an expression, and its value must not be
of file type or of any structured type that contains a file type.

The actual parameter must be assignment-compatible with the type of the
formal value parameter. If the parameter type is string, then the formal
parameter is given a size attribute of 255.

Variable Parameters

A variable parameter is employed when a value must be passed from a
procedure or function to the caller. The corresponding actual parameter in a
procedure statement or function call must be a variable reference. The
formal variable parameter represents the actual variable during the
activation of the procedure or function, so any changes to the value of the
formal variable parameter are reflected in the actual parameter.

Within the procedure or function, any reference to the formal variable
parameter accesses the actual parameter itself. The type of the actual
parameter must be identical to the type of the formal variable parameter
(you can bypass this restriction through untyped variable parameters). If
the formal parameter type is string, it is given the length attribute 255, and
the actual variable parameter must be a string type with a length attribute
of 255.

File types can only be passed as variable parameters.

If referencing an actual variable parameter involves indexing an array or
finding the object of a pointer, these actions are executed before the
activation of the procedure or function. '

Untyped Variable Parameters

When a formal parameter is an untyped variable parameter, the
corresponding actual parameter may be any variable reference, regardless
of its type.

Chapter 20, Procedures and Functions 267

Within the procedure or function, the untyped variable parameter is
typeless; that is, it is incompatible with variables of all other types, unless it
is given a specific type through a variable typecast.

An example of untyped variable parameters follows:

function Equal (var source,dest; size: word): boolean;
type
Bytes = array([0..MaxInt] of byte;
var
N: integer;
begin
N = 0;
while (N<size) and (Bytes(dest)[N] <> Bytes(source)[N]) do Inc(N);
Equal := N = size;
end;

This function can be used to compare any two variables of any size. For
instance, given the declarations

type
Vector = array[l..10] of integer;
Point = record
X,y: integer;
end;
var
Vecl,Vec2: Vector;
N: integer;
P: Point;

then the function calls

Equal (Vecl,Vec2, SizeOf (Vector))

Equal (Vecl,Vec2, SizeOf (integer) *N)
Equal (Vec[1],Vecl[6]},SizeOf (integer) *5)
Equal (Vecl[1],P,4)

compare Vecl to Vec2, compare the first N components of Vecl to the first N
components of Vec2, compare the first five components of Vecl to the last
five components of Vecl, and compare Vecl[1] to P.x and Vec1[2] to P.y.

268 Turbo Pascal Owner’s Handbook

21

Programs and Units

Program Syntax

A Turbo Pascal program takes the form of a procedure declaration except
for its heading and an optional uses clause.

program —|—>| program heading |—>@ T @—»@

The Program Heading

The program heading specifies the program’s name and its parameters.

program heading —b(program)—-, identifier IL >
I-—@.-Iprogram parametersl-.@-f

program parameters g identifier list

The program heading, if present, is purely decorative and is ignored by the
compiler.

Chapter 21, Programs and Units 269

The Uses Clause

The uses clause identifies all units used by the program, including units
used directly and units used by those units.

uses clause —»(uses)jr—bﬁentiﬁer }-———»@—»

The System unit is always used automatically. System implements all low-
level, runtime support routines to support such features as file I/O, string
handling, floating point, dynamic memory allocation, and others.

Apart from System, Turbo Pascal implements many standard units, such as
Printer, Dos, and Crt. These are not used automatically; you must include
them in your uses clause, for instance,

uses Dos,Crt; { Can now access facilities in Dos and Crt }

The standard units are described in Chapter 24, “Standard Units.”

To locate a unit specified in a uses clause, the compiler first checks the
resident units—those units loaded into memory at startup from the
TURBO.TPL file. If the unit is not among the resident units, the compiler
assumes it must be on disk. The name of the file is assumed to be the unit
name with extension .TPU. It is first searched for in the current directory,
and then in the directories specified in the O/D/Unit directories menu or
in a /U directive on the TPC command line. For instance, the construct

uses Memory;

where Memory is not a resident unit, causes the compiler to look for the file
MEMORY.TPU in the current directory, and then in each of the unit
directories.

The {$U filename} directive allows you to override the compiler’s file name
selection. If a {$U filename} directive appears just before a unit name in a
uses clause, the compiler uses that file name instead of the unit name. For
instance, the construct

uses {SU MEM} Memory;

will cause the compiler to look for Memory in the file MEM.TPU. If the {$U
filename} directive specifies a drive letter and/or a directory path, the unit is
only searched for in that directory.

270 Turbo Pascal Owner’s Handbook

When the Compile/Make and Compile/Build commands compile the
units specified in a uses clause, the source files are searched for in the same
way as the .TPU files, and the name of a given unit’s source file is assumed
to be the unit name with extension .PAS. If you want a different extension,
you can specify it in a {$U filename} directive. For example, the construct

uses {$U MEMORY.LIB} Memory;

will cause the compiler to look for Memory’s source text in the file
MEMORY.LIB.

Unit Syntax

Units are the basis of modular programming in Turbo Pascal. They are
used to create libraries that you can include in various programs without
making the source code available, and to divide large programs into
logically related modules.

unit unit heading ° interface part implementation part [#initialization part

The Unit Heading

The unit heading specifies the unit’s name.

The unit name is used when referring to the unit in a uses clause. The name
must be unique—two units with the same name cannot be used at the same
time.

The Interface Part

The interface part declares constants, types, variables, procedures, and
functions that are public, that is, available to the host (the program or unit
using the unit). The host can access these entities as if they were declared in
a block that encloses the host.

Chapter 21, Programs and Units 271

interface part

(interface) ‘
_.I constant declaration part Ii
_>| type declaration part I.____

—>| variable declaration part |7

>| procedure and function heading part I

v

procedure and function

procedure heading ; »
heading part — — ?
function heading o

Unless a procedure or function is inline, the interface part only lists the
procedure or function heading. The block of the procedure or function
follows in the implementation part. Note: the procedure and function
heading can be duplicated from the interface part. You don’t have to
specify the formal parameter list, but if you do, the compiler will issue a
compile-time error if the interface and implementation declarations don’t
match.

The Implementation Part

The implementation part defines the block of all public procedures and
functions. In addition, it declares constants, types, variables, procedures,
and functions that are private, that is, not available to the host.

272 Turbo Pascal Owner’s Handbook

implementation part

(implementation)} y

v

| label declaration part |

_,‘ constant declaration part |_____
.>| type declaration part—l—
—>| variable declaration part |—
L.Wocedure and function declaration parﬂ—

procedure and function procedure declaraticﬁlﬁ
declaration part)

function declaration j——

In effect, the procedure and function declarations in the interface part are
like forward declarations, although the forward directive is not specified.
Therefore, these procedures and functions can be defined and referenced in
any sequence in the implementation part.

The Initialization Part

The initialization part is the last part of a unit. It consists either of the
reserved word end (in which case the unit has no initialization code) or of a
statement part to be executed in order to initialize the unit.

end
statement part

The initialization parts of units used by a program are executed in the same
order that the units appear in the uses clause.

initialization part

\J

Chapter 21, Programs and Units 273

Units that Use Other Units

The uses clause in the host need not name all units used directly or
indirectly by the host. Consider the following example:

program Host; unit Unitl; unit Unit2;

uses Unit2; interface interface

const a = b; const ¢ = 1; uses Unitl;

begin implementation const b = c;

end. const d = 2; implementation
end. end.

Unit2 uses Unitl, so for Host to use Unit2, it first names Unitl in its uses
clause. Because Host does not directly reference any identifiers in Unitl, it
doesn’t have to name Unit1.

The uses statement of program Host can be written in several ways:

uses Unitl, Unit2; The identifiers in the interface sections of both
units may be referenced in program Host.

uses Unit2; Only the identifiers in the interface section of
Unit2 may be referenced in program Host.

In the second example, the compiler will recursively analyze unit
dependencies and will correctly determine that Unit2 is dependent on
Unitl, and that program Host is dependent on both. Note that none of the
identifiers declared in the interface section of Unitl are available to Host
because it does not use Unit1 explicitly.

When changes are made in the interface part of a unit, other units using the
unit must be recompiled. However, if changes are only made to the
implementation or the initialization part, other units that use the unit need
not be recompiled. In the preceding example, if the interface part of Unit1 is
changed (for example, ¢ = 2) Unit2 must be recompiled; changing the
implementation part (for example, d = 1) doesn’t require the recompilation
of Unit2.

When a unit is compiled, Turbo Pascal computes a unit version number,
which is basically a checksum of the interface part. In the preceding
example, when Unit2 is compiled, the current version number of Unitl is
saved in the compiled version of Unit2. When Host is compiled, the version
number of Unitl is checked against the version number stored in Unit2. If
the version numbers do not match, indicating that a change was made in
the interface part of Unitl since Unit2 was compiled, the compiler shows an
error or recompiles Unit2, depending on the mode of compilation.

274 Turbo Pascal Owner’s Handbook

22

Input and Output

This chapter briefly describes the standard (or built-in) input and output
(I/0) procedures and functions of Turbo Pascal; for more detailed
information, refer to Chapter 27.

An Introduction to I/O

A Pascal file variable is any variable whose type is a file type. There are
three classes of Pascal files: typed, text, and untyped. The syntax for writing
file types is given in the section “Structured Types” in Chapter 15.

Before a file variable can be used, it must be associated with an external file
through a call to the Assign procedure. An external file is typically a named
disk file, but it can also be a device, such as the keyboard or the display.
The external file stores the information written to the file or supplies the
information read from the file.

Once the association with an external file is established, the file variable
must be “opened” to prepare it for input and/or output. An existing file
can be opened via the Reset procedure, and a new file can be created and
opened via the Rewrite procedure. Text files opened with Reset are read-
only, and text files opened with Rewrite and Append are write-only. Typed
files and untyped files always allow both reading and writing regardless of
whether they were opened with Reset or Rewrite.

The standard text-file variables Input and Output are opened automatically
when program execution begins. Input is a read-only file associated with
the keyboard and Output is a write-only file associated with the display.

Chapter 22, Input and Output 275

Every file is a linear sequence of components, each of which has the
component type (or record type) of the file. Each component has a
component number. The first component of a file is considered to be
component zero.

Files are normally accessed sequentially; that is, when a component is read
using the standard procedure Read or written using the standard procedure
Write, the current file position moves to the next numerically-ordered file
component. However, typed files and untyped files can also be accessed
randomly via the standard procedure Seek, which moves the current file
position to a specified component. The standard functions FilePos and
FileSize can be used to determine the current file position and the current
file size.

When a program completes processing a file, the file must be closed using
the standard procedure Close. After closing a file completely, its associated
external file is updated. The file variable can then be associated with
another external file.

By default, all calls to standard 1I/O procedures and functions are
automatically checked for errors: If an error occurs, the program terminates
displaying a runtime error message. This automatic checking can be turned
on and off using the {$I+} and {$I-} compiler directives. When I/O checking
is off—that is, when a procedure or function call is compiled in the {$I-}
state—an I/O error does not cause the program to halt. To check the result
of an I/O operation, you must instead call the standard function IOResult.

Standard Procedures and Functions for All
Files

Here’s a summary of the procedures and functions you can use in all files.

Procedures

Assign Assigns the name of an external file to a file variable.
ChDir Changes the current directory.

Close Closes an open file.

Erase Erases an external file.

GetDir Returns the current directory of a specified drive.
MKkDir Creates a subdirectory.

276 Turbo Pascal Owner’s Handbook

Rename Renames an external file.

Reset Opens an existing file.

Rewrite Creates and opens a new file.

RmDir Removes an empty subdirectory.
Functions

Eof Returns the end-of-file status of a file.

IOResult Returns an integer value that is the status of the last I/O
function performed.

Standard Procedures and Functions for Text
Files

This section summarizes input and output using file variables of the
standard type Text. Note that in Turbo Pascal the type Text is distinct from
the type file of char.

When a text file is opened, the external file is interpreted in a special way: It
is considered to represent a sequence of characters formatted into lines,
where each line is terminated by an end-of-line marker (a carriage-return
character, possibly followed by a line-feed character).

For text files, there are special forms of Read and Write that allow you to
read and write values that are not of type char. Such values are auto-
matically translated to and from their character representation. For
example, Read(f,i), where i is a type integer variable, will read a sequence of
digits, interpret that sequence as a decimal integer, and store it in i.

As noted previously there are two standard text-file variables, Input and
Output. The standard file variable Input is a read-only file associated with
the operating system’s standard input file (typically the keyboard), and the
standard file variable Output is a write-only file associated with the
operating system’s standard output file (typically the display). Input and
Output are automatically opened before a program begins execution, as if
the following statements were executed:

Assign(Input,’’); Reset(Input);
Assign(Output,’’); Rewrite(Output);

Likewise, Input and Output are automatically closed after a program
finishes executing.

Chapter 22, Input and Output 277

Note: If a program uses the Crt standard unit, Input and Output will no
longer by default refer to the standard input and standard output files. For
further details, refer to the description of the Crt unit in Chapter 24,
“Standard Units”).

Some of the standard procedures and functions listed in this section need
not have a file variable explicitly given as a parameter. If the file parameter
is omitted, Input or Output will be assumed by default, depending on
whether the procedure or function is input- or output-oriented. For
instance, Read(x) corresponds to Read(Input,x) and Write(x) corresponds to
Write(Output,x).

If you do specify a file when calling one of the procedures or functions in
this section, the file must have been associated with an external file using
Assign, and opened using Reset, Rewrite, or Append. An error message is
generated if you pass a file that was opened with Reset to an output-
oriented procedure or function. Likewise, it’s an error to pass a file that was
opened with Rewrite or Append to an input-oriented procedure or function.

Procedures

Append Opens an existing file for appending.

Flush Flushes the buffer of an output file.

Read Reads one or more values from a text file into one or more
variables.

Readln Does what a Read does and then skips to the beginning of
the next line in the file.

SetTextBuf Assigns an I/O buffer to a text file.

Write Writes one or more values to a text file.

Writeln Does the same as a Write, and then writes an end-of-line
marker to the file.

Functions

Eoln Returns the end-of-line status of a file.

SeekEof Returns the end-of-file status of a file.

SeekEoln Returns the end-of-line status of a file.

278 Turbo Pascal Owner’s Handbook

Standard Procedures and Functions for
Untyped Files

Untyped files are low-level I/O channels primarily used for direct access to
any disk file regardless of type and structuring. An untyped file is declared
with the word file and nothing more, for example:

var
DataFile: file;

For untyped files, the Reset and Rewrite procedures allow an extra
parameter to specify the record size used in data transfers.

For historical reasons, the default record size is 128 bytes. The preferred
record size is 1, because that is the only value that correctly reflects the
exact size of any file (no partial records are possible when the record size is
1.

Except for Read and Write, all typed file standard procedures and functions
are also allowed on untyped files. Instead of Read and Write, two
procedures called BlockRead and BlockWrite are used for high-speed data
transfers.

BlockRead Reads one or more records into a variable.
BlockWrite Writes one or more records from a variable.

With the exception of text files, the following procedures and
functions may be used on a file variable of any type:

FilePos Returns the current file position of a file.

FileSize Returns the current size of a file.

Seek Moves the current position of a file to a specified
component.

Truncate Truncates the file size at the current file position.

FileMode Variable

The FileMode variable defined by the System unit determines the access code
to pass to DOS when typed and untyped files (not text files) are opened
using the Reset procedure.

The default FileMode is 2, which allows both reading and writing.
Assigning another value to FileMode causes all subsequent Resets to use that
mode.

Chapter 22, Input and Output 279

The range of valid FileMode values depends on the version of DOS in use.
However, for all versions, the following modes are defined:

0: Read only
1: Write only
2: Read/Write

DOS version 3.x defines additional modes, which are primarily concerned
with file-sharing on networks. (For further details on these, please refer to
your DOS Programmer’s Reference manual.)

Note: New files created using Rewrite are always opened in Read/Write
mode, corresponding to FileMode = 2.

Devices in Turbo Pascal

Turbo Pascal and the DOS operating system regard external hardware,
such as the keyboard, the display, and the printer, as devices. From the
programmer’s point of view, a device is treated as a file, and is operated on
through the same standard procedures and functions as files.

Turbo Pascal supports two kinds of devices: DOS devices and text file
devices.

DOS Devices

DOS devices are implemented through reserved file names that have a
special meaning attached to them. DOS devices are completely
transparent—in fact, Turbo Pascal is not even aware when a file variable
refers to a device instead of a disk file. For example, the program

var
Lst: Text;

begin
Assign(Lst,’LPT1’); Rewrite(Lst);
Writeln(Lst,’Hello World...’);
Close(Lst);

end.

will write the string Hello World... on the printer, even though the syntax
for doing so is exactly the same as for a disk file.

The devices implemented by DOS are used for obtaining or presenting
legible input or output. Therefore, DOS devices are normally used only in
connection with text files. On rare occasions, untyped files can also be
useful for interfacing with DOS devices.

280 Turbo Pascal Owner’s Handbook

Each of the DOS devices is described in the next section. Other DOS
implementations can provide additional devices, and still others cannot
provide all the ones described here.

The CON Device

CON refers to the CONsole device, in which output is sent to the display,
and input is obtained from the keyboard. The Input and Output standard
files and all files assigned an empty name refer to the CON device when
input and/or output is not redirected.

Input from the CON device is line-oriented and uses the line-editing
facilities described in the DOS manual. Characters are read from a line
buffer, and when the buffer becomes empty, a new line is input.

An end-of-file character is generated by pressing Ctr-Z, after which the.Eof
function will return True.

The LPT1, LPT2, and LPT3 Devices

The line printer devices are the three possible printers you can use. If only
one printer is connected, it is usually referred to as LPT1, for which the
synonym PRN can also be used.

The line printer devices are output-only devices—an attempt to Reset a file
assigned to one of these generates an immediate end-of-file.

Note: The standard unit Printer declares a text-file variable called Lst, and
makes it refer to the LPT1 device. To easily write something on the printer
from one of your programs, include Printer in the program’s uses clause,
and use Write(Lst,...) and Writeln(Lst,...) to produce your output.

The COM1 and COM2 Devices

The communication port devices are the two serial communication ports.
The synonym AUX can be used instead of COM1.

The NUL Device

The null device ignores anything written to it, and generates an immediate
end-of-file when read from. You should use this when you don’t want to

Chapter 22, Input and Output 281

create a particular file, but the program requires an input or output file
name.

Text-File Devices

Text-file devices are used to implement devices unsupported by DOS or to
make available another set of features other than those provided by a
similar DOS device. A good example of a text file device is the CRT device
implemented by the Crt standard unit. Its main function is to provide an
interface to the display and the keyboard, just like the CON device in DOS.
However, the CRT device is much faster and supports such invaluable
features as color and windows (for further details on the CRT device, see
Chapter 24, “Standard Units”).

Contrary to DOS devices, text-file devices have no reserved file names; in
fact, they have no file names at all. Instead, a file is associated with a text-
file device through a customized Assign procedure. For instance, the Crt
standard unit implements an AssignCrt procedure that associates text files
with the CRT device.

In addition to the CRT device, Turbo Pascal allows you to write your own
text file device drivers. A full description of this is given in the section
“Writing Text File Device Drivers” in Chapter 26, “Inside Turbo Pascal.”

282 Turbo Pascal Owner’s Handbook

23

Standard Procedures and Functions

This chapter briefly describes all the standard (built-in) procedures and
functions in Turbo Pascal, except for the I/O procedures and functions
discussed in Chapter 22, “Input and Output.” Additional procedures and
functions are provided by the standard units described in Chapter 24,
“Standard Units.” For more detailed information, refer to Chapter 27,
“Turbo Pascal Reference Lookup.”

Standard procedures and functions are predeclared. Since all predeclared
entities act as if they were declared in a block surrounding the program, no
conflict arises from a declaration that redefines the same identifier within
the program.

Exit and Halt Procedures

Exit Exits immediately from the current block.

Halt Stops program execution and returns to the operating system.

Dynamic Allocation Procedures and
Functions

These procedures and functions are used to manage the heap—a memory
area that occupies all or some of the free memory left when a program is
executed. A complete discussion of the techniques used to manage the heap
is given in the section “The Heap Manager” in Chapter 26, “Inside Turbo
Pascal.”

Chapter 23, Standard Procedures and Functions 283

Procedures

Dispose Disposes a dynamic variable.

FreeMem Disposes a dynamic variable of a given size.

GetMem Creates a new dynamic variable of a given size and sets a
pointer variable to point to it.

Mark Records the state of the heap in a pointer variable.

New Creates a new dynamic variable and sets a pointer variable
to point to it.

Release Returns the heap to a given state.

Functions

MaxAvail Returns the size of the largest contiguous free block in the

heap, corresponding to the size of the largest dynamic
variable that can be allocated at the time of the call to
MaxAvail.

MemAvail Returns the number of free bytes of heap storage available.

Transfer Functions

The procedures Pack and Unpack, as defined in standard Pascal, are not
implemented by Turbo Pascal.

Chr Returns a character of a specified ordinal number.
Ord Returns the ordinal number of an ordinal-type value.
Round Rounds a type real value to a type longint value.

Trunc Truncates a type real value to a type longint value.

Arithmetic Functions

Note: When compiling in numeric processing mode, {$N+}, the return
values of the floating-point routines in the System unit (Sqrt, Pi, Sin, and so
on) are of type extended instead of real:

{$N+}

begin
Writeln(Pi); { 3.14159265358979E+0000 }

284 Turbo Pascal Owner’s Handbook

end.

{$N-}
begin
Writeln(pi) { 3.1415926536E+00 }
end. o
Abs Returns the absolute value of the argument.

ArcTan Returns the arctangent of the argument.

Cos Returns the cosine of the argument.

Exp Returns the exponential of the argument.

Frac Returns the fractional part of the argument.

Int Returns the integer part of the argument.

Ln Returns the natural logarithm of the argument.
Pi Returns the value of Pi (3.1415926535897932385).
Sin Returns the sine of the argument.

Sqr Returns the square of the argument.

Sqrt Returns the square root of the argument.

Ordinal Procedures and Functions

Procedures

Dec Decrements a variable.

Inc Increments a variable.

Functions

Odd Tests if the argument is an odd number.
Pred Returns the predecessor of the argument.
Succ Returns the successor of the argument.

Chapter 23, Standard Procedures and Functions

285

String Procedures and Functions

Procedures

Delete Deletes a substring from a string,.

Insert Inserts a substring into a string.

Str Converts a numeric value to its string representation.
Val Converts the string value to its numeric representation.
Functions

Concat Concatenates a sequence of strings.
Copy Returns a substring of a string.
Length Returns the dynamic length of a string.

Pos Searches for a substring in a string.

Pointer and Address Functions

Addr Returns the address of a specified object.
CSeg Returns the current value of the CS register.

DSeg Returns the current value of the DS register.

Ofs Returns the offset of a specified object.

Ptr Converts a segment base and an offset address to a pointer-type
value.

Seg Returns the segment of a specified object.

SPtr Returns the current value of the SP register.

SSeg Returns the current value of the SS register.

286 Turbo Pascal Owner’s Handbook

Miscellaneous Procedures and Functions

Procedures
FillChar

Move

Randomize

Functions
Hi
Lo

ParamCount

ParamStr
Random
SizeOf
Swap
UpCase

Chapter 23, Standard Procedures and Functions

Fills a specified number of contiguous bytes with a
specified value.

Copies a specified number of contiguous bytes from a
source range to a destination range.

Initializes the built-in random generator with a random
value.

Returns the high-order byte of the argument.
Returns the low-order byte of the argument.

Returns the number of parameters passed to the program
on the command line.

Returns a specified command-line parameter.

Returns a random number.

Returns the number of bytes occupied by the argument.
Swaps the high- and low-order bytes of the argument.

Converts a character to uppercase.

287

288 Turbo Pascal Owner’s Handbook

24

Standard Units

Chapters 20 and 23 described all the built-in procedures and functions of
Turbo.Pascal, which can be referred to without explicitly requesting them
(as standard Pascal specifies). It’s through Turbo Pascal’s standard units,
though, that you'll get the most programming power (see Chapter 27 for
more information).

Standard units are no different from the units you can write yourself. The
following standard units are available to you:

Crt

Dos

Graph3
Printer

System

Turbo3

Graph

Exploits the full power of your PC’s display and keyboard,
including screen mode control, extended keyboard codes, color,
windows, and sound.

Supports numerous DOS functions, including date-and-time
control, directory search, and program execution.

Implements Turbo Pascal 3.0 Turtlegraphics.
Allows you to easily access your printer.

Turbo Pascal’s runtime library. This unit is automatically used
by any unit or program.

Provides an even higher degree of compatibility with Turbo
Pascal 3.0.

A powerful graphics package with device-independent graphics
support for CGA, EGA, VGA, HERC, IBM 3270 PC, MCGA, and
AT&T 6300.

Chapter 24, Standard Units 289

To use one of the standard units, simply include its name in your uses
clause, for instance:

uses Dos,Crt,Graph;

The standard units usually all reside in the TURBO.TPL library, which is
automatically loaded when you start up Turbo Pascal. To save memory,

you can move seldom-used units, such as Turbo3 and Graph3, out of the
TURBO.TPL file by using the TPUMOVER utility.

Standard Unit Dependencies

Both the compatibility units, Turbo3 and Graph3, depend on facilities made
available by the Crt unit. So, when using Turbo3 and Graph3, you must first
specify Crt in your uses clause. Table 24.1 lists the standard units.

Table 24.1: Standard Units

Unit Uses
System None
Printer None
Dos None
Crt None
Graph None
Turbo3 Crt

Graph3 Crt

We purposefully didn’t indicate in the table that all units use the System
unit; that’s because System is always used implicitly, and need never be
specified in a uses clause.

The System Unit

The System unit is, in fact, Turbo Pascal’s runtime library. It implements
low-level, runtime support routines for all built-in features, such as file
I/0, string handling, floating point, and dynamic memory allocation. The
System unit is used automatically by any unit or program, and need never
be referred to in a uses clause.

The procedures and functions provided by System are described in
Chapters 22, “Input and Output,” and 23, “Standard Procedures and
Functions.” A number of predeclared variables are also available,
including;:

290 Turbo Pascal Owner’s Handbook

var

Input . text;
Output o otext;
PrefixSeqg : word;
HeapOrg : pointer;
HeapPtr : pointer;
FreePtr . pointer;
FreeMin : word;

HeapError : pointer;
ExitProc : pointer;
RandSeed : longint;
FileMode : byte;

Input and Output are the standard I/0O files required by every Pascal
implementation. By default, they refer to the standard input and output
files in DOS. For further details, refer to Chapter 23.

PrefixSeg is a word variable containing the segment address of the Program
Segment Prefix (PSP) created by DOS when the program was executed. For
a complete description of the PSP, refer to your DOS manual.

HeapOrg, HeapPtr, FreePtr, FreeMin, and HeapError are used by the heap
manager to implement Turbo Pascal’s dynamic memory allocation
routines. The heap manager is described in full in Chapter 26, “Inside
Turbo Pascal.”

The ExitProc pointer variable is used to implement exit procedures. This is
also described in Chapter 26.

RandSeed stores the built-in random number generator’s seed. By assigning
a specific value to RandSeed, the Random function can be made to generate a
specific sequence of random numbers over and over. This is useful in
applications that deal with data encryption, statistics, and simulations.

The FileMode variable allows you to change the access mode in which typed
files and untyped files are opened. For further details, refer to Chapter 22,
“Input and Output.”

The System unit “steals” several interrupt vectors. Before installing its own
interrupt handling routines, System stores the old vectors in five global
pointer variables:

SavelInt00, { $00)
SavelInt02, { 502 }
Savelnt23, { 923}
Savelnt24, { $24 }
SaveInt75 : pointer; { $75 }

Note that the System unit contains an INT 24 handler for trapping critical
errors. When running an .EXE program created by Turbo Pascal, a DOS
critical error will be treated like any other I/O error: The program counter

Chapter 24, Standard Units 291

and an error number will display, and the program will terminate. Disk
errors are detected by using {$I-} and checking IOResult. Here’s a simple
program that re-installs the original vector:

program Restore;
uses Dos;
begin
SetIntVec($24, SavelInt24); { Restore original vector }
end.
Note that the original INT 24 vector is saved in a pointer variable in the
System unit (Savelnt24).

The Printer Unit

The Printer unit is a very small unit designed to make life easier when
you're using the printer from within a program. Printer declares a text file
called Lst, and associates it with the LPT1 device. Using Printer saves you
the trouble of declaring, assigning, opening, and closing a text file yourself.
Here’s an example of a short program using Printer:
program HelloPrinter;
uses Printer;
begin

Writeln(Lst,’Hello Printer...’);
end.

The Dos Unit

The Dos unit implements a number of very useful operating system and
file-handling routines. None of the routines in the Dos unit are defined by
standard Pascal, so they have been placed in their own module.

For a complete description of DOS operations, refer to the IBM DOS
Technical Manual.

Constants, Types, and Variables

Each of the constants, types, and variables defined by the Dos unit are
briefly discussed in this section. For more detailed information, see the
descriptions of the procedures and functions that depend on these objects
in Chapter 27, “Turbo Pascal Reference Lookup.”

292 Turbo Pascal Owner’s Handbook

Flags Constants

The following constants are used to test individual flag bits in the Flags
register after a call to Intr or MsDos:

const
FCarry = $0001;
FParity = $0004;
FAuxiliary = $0010;
FZero = $50040;
FSign = $0080;

FOverflow = $0800;
For instance, if R is a register’s record, the tests

R.Flags and FCarry <> 0
R.Flags and FZero = 0

are True respectively if the Carry flag is set and if the Zero flag is clear.

File Mode Constants

These constants are used by the file-handling procedures when opening
and closing disk files. The mode fields of Turbo Pascal’s file variables will
contain one of the values specified below.

const
fmClosed = $D7BO;
fmInput = $D7BI1;
fmOutput = $D7B2;
fmInOut = $D7B3;

File Record Types

The record definitions used internally by Turbo Pascal are also declared in
the Dos unit. FileRec is used for both typed and untyped files, while TextRec
is the internal format of a variable of type text.

type

{ Typed and untyped files }

FileRec = record
Handle: word;
Mode: word;
RecSize: word;
Private: array[l..26] of byte;
UserData: array[l..16] of byte;
Name: array(0..79] of char;

end;

Chapter 24, Standard Units 293

{ Textfile record }
TextBuf = array(0..127] of char;
TextRec = record

Handle : word;
Mode : word;
BufSize : word;
Private : word;
BufPos . word;
BufEnd : word;
BufPtr : “TextBuf;

OpenFunc : pointer;
InOutFunc : pointer;
FlushFunc : pointer;
CloseFunc : pointer;
UserData : array(l..16] of Byte;

Name : array(0..79] of Char;
Buffer . TextBuf;
end;

File Attribute Constants

These constants are used to test, set, and clear file attribute bits in
connection with the GetFAttr, SetFAttr, FindFirst, and FindNext procedures:

const
ReadOnly = $01;
Hidden = 502;
SysFile = $04;
VolumeID = $08;
Directory = $10;
Archive = $20;
AnyFile = $3F;

The constants are additive, that is, the statement
FindFirst (‘*.*’, ReadOnly + Directory, S);

will locate all normal files as well as read-only files and subdirectories in
the current directory. The AnyFile constant is simply the sum of all
attributes.

The Registers Type
Variables of type Registers are used by the Intr and MsDos procedures to

specify the input register contents and examine the output register contents
of a software interrupt.

294 Turbo Pascal Owner’s Handbook

type
Registers = record
case integer of
0: (AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: word);
1: (AL,AH,BL,BH,CL,CH,DL,DH: byte);
end;

Notice the use of a variant record to map the 8-bit registers on top of their
16-bit equivalents.

The DateTime Type

Variables of DateTime type are used in connection with the UnpackTime and
PackTime procedures to examine and construct 4-byte, packed date-and-
time values for the GetFTime, SetFTime, FindFirst, and FindNext procedures.
type
DateTime = record
Year,Month, Day, Hour,Min, Sec: integer;
end;

Valid ranges are Year 1980..2099, Month 1..12, Day 1..31, Hour 0..23, Min
0..59, and Sec 0..59.

The SearchRec Type

Variables of type SearchRec are used by the FindFirst and FindNext
procedures to scan directories.
type
SearchRec = record
Fill: array(l..21] of byte;
Attr: byte;
Time: longint;
Size: longint;
Name: string(12];
end;

The information for each file found by one of these procedures is reported
back in a SearchRec. The Attr field contains the file’'s attributes (constructed
from file attribute constants), Time contains its packed date and time (use
UnpackTime to unpack), Size contains its size in bytes, and Name contains its
name. The Fill field is reserved by DOS and should never be modified.

Chapfter 24, Standard Units 295

The DosError Variable

DosError is used by many of the routines in the Dos unit to report errors.
var DosError: integer;

The values stored in DosError are DOS error codes. A value of 0 indicates
no error; other possible error codes include:

2 = File not found

3 = Path not found

5 = Access denied

6 = Invalid handle

8 = Not enough memory
10 = Invalid environment
11 = Invalid format
18 = No more files

Interrupt Support Procedures

Here's a brief listing of the interrupt support procedures:

GetIntVec Returns the address stored in a specified interrupt
vector.

Intr Executes a specified software interrupt.

MsDos Executes a DOS function call.

SetIntVec Sets a specified interrupt vector to a specified address.

Date and Time Procedures

GetDate Returns the current date set in the operating system.
GetFTime Returns the date and time a file was last written.
GetTime Returns the current time set in the operating system.
PackTime Converts a DateTime record into a 4-byte, packed date-

and-time character longint used by SetFTime. The fields
of the DateTime record are not range-checked.

SetDate Sets the current date in the operating system.
SetFTime Sets the date and time a file was last written.
SetTime Sets the current time in the operating system.

296 Turbo Pascal Owner’s Handbook

UnpackTime Converts a 4-byte, packed date-and-time character
longint returned by GetFTime, FindFirst, or FindNext into
an unpacked DateTime record.

Disk Status Functions

DiskFree Returns the number of free bytes of a specified disk
drive.
DiskSize Returns the total size in bytes of a specified disk drive.

File-Handling Procedures

FindFirst Searches the specified (or current) directory for the first
entry matching the specified file name and set of
attributes.

FindNext Returns the next entry that matches the name and
attributes specified in a previous call to FindFirst.

GetFAttr Returns the attributes of a file.

SetFAttr Sets the attributes of a file.

Process-Handling Procedures and Functions

Procedures

Execute Executes a specified program with a specified command
line.

Keep Keep (or Terminate Stay Resident) terminates the
program and makes it stay in memory.

Functions

DosExitCode Returns the exit code of a subprocess.

Chapter 24, Standard Units 297

The Crt Unit

The Crt unit implements a range of powerful routines that give you full
control of your PC’s features, such as screen mode control, extended key-
board codes, colors, windows, and sound. Crt can only be used in
programs that run on IBM PCs, ATs, PS/2s, and true compatibles.

One of the major advantages to using Crt is the added speed and flexibility
of screen output operations. Programs that do not use the Crt unit send
their screen output through DOS, which adds a lot of overhead. With the
Crt unit, output is sent directly to the BIOS or, for even faster operation,
directly to video memory.

The Input and Output Files

The initialization code of the Crt unit assigns the Input and Output standard
text files to refer to the CRT instead of to DOS'’s standard input and output
files. This corresponds to the following statements being executed at the
beginning of a program:

AssignCrt (Input); Reset(Input);
AssignCrt (Output); Rewrite(Output);

This means that I/O redirection of the Input and Output files is no longer
possible unless these files are explicitly assigned back to standard input
and output by executing

Assign(Input,’’); Reset(Input);
Assign (Output,’’); Rewrite(Output);
Windows

Crt supports a simple yet powerful form of windows. The Window
procedure lets you define a window anywhere on the screen. When you
write in such a window, the window behaves exactly as if you were using
the entire screen, leaving the rest of the screen untouched. In other words,
the screen outside the window is not accessible. Inside the window, lines
can be inserted and deleted, the cursor wraps around at the right edge, and
the text scrolls when the cursor reaches the bottom line.

All screen coordinates, except the ones used to define a window, are
relative to the current window, and screen coordinates (1,1) correspond to
the upper left corner of the screen.

298 Turbo Pascal Owner’s Handbook

The default window is the entire screen.

Screen modes for EGA (43 line) and VGA (50 line) are also supported (see
the TextMode description in Chapter 27).

Special Characters
When writing to Output or to a file that has been assigned to the CRT, the
following control characters have special meanings:

#7 Bell—emits a beep from the internal speaker.

#8 Backspace—moves the cursor left one character. If the cursor is
-already at the left edge of the current window, nothing happens.

#10 Line feed—moves the cursor one line down. If the cursor is
already at the bottom of the current window, the window scrolls
up one line.

 #13 Carriage return—returns the cursor to the left edge of the current
window.

All other characters will appear on the screen when written.

Line Input

When reading. from Input or from a text file that has been assigned to Crt,
text is input one line at a time. The line is stored in the text file’s internal
buffer, and when variables are read, this buffer is used as the input source.
Whenever the buffer has been emptied, a new line is input.

When entering lines, the following editing keys are available:

BackSpace Deletes the last character entered.

Esc Deletes the entire input line.

Enter Terminates the input line and stores the end-of-line marker
“(carriage return/line feed) in the buffer.

Ctr-S Same as BackSpace

Ctrl-D Recalls one character from the last input line.

Ctrl-A Same as Esc.

Ctrl-F Recalls the last input line.

Ctrl-Z Terminates the input line and generates an end-of-file
marker.

Chapter 24, Standard Units 299

Cirl-Z will only generate an end-of-file marker if the CheckEOF variable has
been set to True; it is False by default.

To test keyboard status and input single characters under program control,
use the KeyPressed and ReadKey functions.

Constants and Types

Each of the constants, types, and variables defined by the Crt unit are
briefly discussed in this section.

Crt Mode Constants

The following constants are used as parameters to the TextMode procedure:

const
BW40 = 0; { 40x25 B/W on color adapter }
BW80 = 2; { 80x25 B/W on color adapter }
Mono = 7; { 80x25 B/W on monochrome adapter }
c040 = 1; { 40x25 color on color adapter }
c080 = 3; { 80x25 color on color adapter }
Font8x8 = 256; { For EGA/VGA 43 and 50 line }
Cc40 = C040; { For 3.0 compatibility }
C80 = C080; { For 3.0 compatibility }

BW40, C040, BW80, and C080 represent the four color text modes supported
by the IBM PC Color/Graphics Adapter (CGA). The Mono constant repre-
sents the single black-and-white text mode supported by the IBM PC
Monochrome Adapter. Font8x8 represents EGA/VGA 43- and 50-line
modes. The C40 and C80 constants are for 3.0 compatibility.

Text Color Constants

The following constants are used in connection with the TextColor and
TextBackground procedures:

const
Black
Blue
Green
Cyan
Red
Magenta
Brown
LightGray

o n

U | | | R
~ oy U W NP O

300 Turbo Pascal Owner’s Handbook

DarkGray 8;

LightBlue =9;

LightGreen = 10;
LightCyan = 11;
LightRed =12;
LightMagenta = 13;
Yellow = 14;
White = 15;
Blink = 128;

Colors are represented by the numbers between 0 and 15; to easily identify
each color, these constants can be used instead of numbers. In the color text
modes, the foreground of each character is selectable from 16 colors, and
the background from 8 colors. The foreground of each character can also be
made to blink.

Crt Variables
Here are the variables in Crt:
var
CheckBreak : boolean;
CheckEof : boolean;
CheckSnow : boolean;
DirectVideo : boolean;
LastMode : word;
TextAttr : byte;
WindMin : word;
WindMax : word;
SaveIntlB : pointer;
CheckBreak

Enables and disables checks for Ctrl-Break.

var CheckBreak: boolean;

When CheckBreak is True, pressing Ctrl-Break will abort the program when it
next writes to the display. When CheckBreak is False, pressing Ctrl-Break has
no effect. CheckBreak is True by default. (At runtime, Crt stores the old
Control-Break interrupt vector, $1B, in a global pointer variable called
Savelnt1B.)

CheckEOF

Enables and disables the end-of-file character:

Chapter 24, Standard Units 301

var CheckEOF: boolean;

When CheckEOF is True, an end-of-file character is generated if you press
Ctrl-Z while reading from a file assigned to the screen. When CheckEOF is
False, pressing Ctrl-Z has no effect. CheckEOF is False by default.

CheckSnow

Enables and disables “snow-checking” when storing characters directly in
video memory.

var CheckSnow: boolean;

On most CGAs, interference will result if characters are stored in video
memory outside the horizontal retrace intervals. This does not occur with
Monochrome Adapters or EGAs.

When a color text mode is selected, CheckSnow is set to True, and direct
video-memory writes will occur only during the horizontal retrace
intervals. If you are running on a newer CGA, you may want to set
CheckSnow to False at the beginning of your program and after each call to
TextMode. This will disable snow-checking, resulting in significantly higher
output speeds.

CheckSnow has no effect when DirectVideo is False.

DirectVideo

Enables and disables direct memory access for Write and Writeln statements
that output to the screen.

var DirectVideo: boolean;

When DirectVideo is True, Writes and Writelns to files associated with the
CRT will store characters directly in video memory instead of calling the
BIOS to display them. When DirectVideo is False, all characters are written
through BIOS calls, which is a significantly slower process.

DirectVideo always defaults to True. If, for some reason, you want char-
acters displayed through BIOS calls, set DirectVideo to False at the
beginning of your program and after each call to TextMode.

LastMode

Each time TextMode is called, the current video mode is stored in LastMode.
In addition, LastMode is initialized at program startup to the then-active
video mode.

302 Turbo Pascal Owner’s Handbook

var LastMode: word;

TextAttr
Stores the currently selected text attributes.
var TextAttr: byte;

The text attributes are normally set through calls to TextColor and
TextBackground. However, you can also set them by directly storing a value
in TextAttr. The color information is encoded in TextAttr as follows:

where ffff is the 4-bit foreground color, bbb is the 3-bit background color,
and B is the blink-enable bit. If you use the color constants for creating
TextAttr values, note that the background color can only be selected from
the first 8 colors, and that it must be multiplied by 16 to get it into the
correct bit positions. The following assignment selects blinking yellow
characters on a blue background:

TextAttr := Yellow + Blue * 16 + Blink;

WindMin and WindMax
Store the screen coordinates of the current window.
var WindMin, WindMax : word;

These variables are set by calls to the Window procedure. WindMin defines
the upper left corner, and WindMax defines the lower right corner. The X
coordinate is stored in the low byte, and the Y coordinate is stored in the
high byte. For example, Lo(WindMin) produces the X coordinate of the left
edge, and Hi(WindMax) produces the Y coordinate of the bottom edge. The
upper left corner of the screen corresponds to (X,Y) = (0,0). Note, however,
that for coordinates passed to Window and GotoXY, the upper left corner is
at (1,1).

Procedures
AssignCrt Associates a text file with the CRT.

Chapter 24, Standard Units 303

ClrEol
ClrScr

Delay
DelLine

GotoXY

HighVideo
InsLine
LowVideo
NoSound
Sound
TextBackground
TextColor
TextMode

Window

Functions

KeyPressed

NormVideo
ReadKey
WhereX

WhereY

304

Clears all characters from the cursor position to the
end of the line without moving the cursor.

Clears the screen and places the cursor in the upper
left-hand corner.

Delays a specified number of milliseconds.

Deletes the line containing the cursor and moves all
lines below that line one line up. The bottom line is
cleared.

Positions the cursor. X is the horizontal position. Y is
the vertical position.

Selects high intensity characters.

Inserts an empty line at the cursor position.
Selects low intensity characters.

Turns off the internal speaker.

Starts the internal speaker.

Selects the background color.

Selects the foreground character color.
Selects a specific text mode.

Defines a text window on the screen.

Returns True if a key has been pressed on the
keyboard, and False otherwise.

Selects normal characters.
Reads a character from the keyboard.

Returns the X-coordinate of the current cursor
position, relative to the current window. X is the
horizontal position.

Returns the Y-coordinate of the current cursor
position, relative to the current window. Y is the
vertical position.

Turbo Pascal Owner’s Handbook

The Graph Unit

The Graph unit implements a complete library of more than 50 graphics
routines that range from high-level calls, like SetViewPort, Circle, Bar3D,
and DrawPoly, to bit-oriented routines, like GetImage and Putlimage. Several
fill and line styles are supported, and there are several fonts that may be
magnified, justified, and oriented horizontally or vertically.

To compile a program that uses the Graph unit, you'll need your program’s
source code, the compiler, access to the standard units in TURBO.TPL and
the Graph unit in GRAPH.TPU. To run a program that uses the Graph unit,
in addition to your .EXE program, you'll need one or more of the graphics
drivers (.BGI files, see below). In addition, if your program uses any
stroked fonts, you'll need one or more font (CHR) files as well.

(Pursuant to the terms of the license agreement, you can distribute the
.CHR and .BGI files along with your programs.)

Drivers

Graphics drivers are provided for the following graphics adapters (and true
compatibles):

n CGA

n MCGA

n EGA

n VGA

= Hercules

m AT&T 400 line
m 3270 PC

Each driver contains code and data and is stored in a separate file on disk.
At runtime, the InitGraph procedure identifies the graphics hardware, loads
and initializes the appropriate graphics driver, puts the system into
graphics mode, and then returns control to the calling routine. The
CloseGraph procedure unloads the driver from memory and restores the
previous video mode. You can switch back and forth between text and
graphics modes using the RestoreCrtMode and SetGraphMode routines. To
load the driver files yourself or link them into your .EXE, refer to
RegisterBGIdriver in Chapter 27.

Graph supports computers with dual monitors. When Graph is initialized by
calling InitGraph, the correct monitor will be selected for the graphics driver
and mode requested. When terminating a graphics program, the previous
video mode will be restored. If auto-detection of graphics hardware is

Chapter 24, Standard Units 305

requested on a dual monitor system, InitGraph will select the monitor and
graphics card that will produce the highest quality graphics output.

CGA.BGI Driver for IBM CGA, MCGA
EGAVGA.BGI Driver for IBM EGA, VGA
HERC.BGI Driver for Hercules monochrome
ATT.BGI Driver for AT&T 6300 (400 line)
PC3270.BGI Driver for IBM 3270 PC

Coordinate System

By convention, the upper left corner of the graphics screen is (0,0). The x
values, or columns, increment to the right. The y values, or rows, increment
downward. Thus, in 320x200 mode on a CGA, the screen coordinates for
each of the four corners with a specified point in the middle of the screen
would look like this:

0.0) (319.0)
" (159,99)
(0.199) (319,199)
Current Pointer

Many graphics systems support the notion of a current pointer (CP). The
CP is similar in concept to a text mode cursor except that the CP is not
visible.

Write (’'ABC’);

In text mode, the preceding Write statement will leave the cursor in the
column immediately following the letter C. If the C is written in column 80,
then the cursor will wrap around to column 1 of the next line. If the C is
written in column 80 on the 25th line, the entire screen will scroll up one
line, and the cursor will be in column 1 of line 25.

306 Turbo Pascal Owner’s Handbook

MoveTo (0, 0)
LineTo{20,20)

In graphics mode, the preceding LineTo statement will leave the CP at the
last point referenced (20,20). The actual line output would be clipped to the
current viewport if clipping is active. Note that the CP is never clipped.

The MoveTo command is the equivalent of GoToXY. It's only purpose is to
move the CP. Only the commands that use the CP move the CP: InitGraph,
MoveTo, MoveRel, LineTo, LineRel, OutText, SetGraphMode,* GraphDefaults*
ClearDevice,* SetViewPort,* and ClearViewPort*. (The * indicates procedures
that move the CP to (0,0).)

Text

An 8x8 bit-mapped font and several “stroked” fonts are included for text:
output while in graphics mode. A bit-mapped character is defined by an
8x8 matrix of pixels. A stroked font is defined by a series of vectors that tell
the graphics system how to draw the font.

The advantage to using a stroked font is apparent when you start to draw
large characters. Since a stroked font is defined by vectors, it will still retain
good resolution and quality when the font is enlarged.

When a bit-mapped font is enlarged, the matrix is multiplied by a scaling
factor and as the scaling factors becomes larger, the characters’ resolution
becomes coarser. For small characters, the bit-mapped font should be
sufficient, but for larger text you will want to select a “stroked” font.

The justification of graphics text is controlled by the SetText]ustify
procedure. Scaling and font selection is done with the SetTextStyle
procedure. Graphics text is output by calling either the OutText or
OutTextXY procedures. Inquiries about the current text settings are made
by calling the GetTextSettings procedure. The size of stroked fonts can be
customized by the SetUserCharSize procedure.

Stroked fonts are each kept in a separate file on disk with a .CHR file
extension. Font files can be loaded from disk automatically by the Graph
unit at runtime (as described), or they can also be linked in or loaded by the
user program and “registered” with the Graph unit.

A special utility, BINOBJ.EXE, is provided that converts a font file (or any
binary data file, for that matter) to an .OB] file that can be linked into a unit
or program using the {$L} compiler directive. This makes it possible for a
program to have all its font files built into the .EXE file. (Read the
comments at the beginning of the GRLINK.PAS sample program Disk 3.)

Chapter 24, Standard Units ; 307

Figures and Styles

All kinds of support routines are provided for drawing and filling figures,
including poinfs, lines, circles, arcs, ellipses, rectangles, polygons, bars, 3-D
bars, and pie slices. Use SetLineStyle to control whether lines are thick or
thin, or whether they are solid, dotted, or built using your own pattern.

Use SetFillStyle and SetFillPattern, FillPoly and FloodFill to fill a region or a
polygon with cross-hatching or other intricate patterns.

Viewports and Bit Images

The ViewPort procedure makes all output commands operate in a
rectangular region on the screen. Plots, lines, figures—all graphics
output—are viewport-relative until the viewport is changed. Other
routines are provided to clear a viewport and read the current viewport
definitions. If clipping is active, all graphics output is clipped to the current
port. Note that the CP is never clipped.

GetPixel and PutPixel are provided for reading and plotting pixels. GetImage
and Putlmage can be used to save and restore rectangular regions on the
screen. They support the full complement of BitBlt operations (normal, xor,
or, and, not).

Paging and Colors

There are many other support routines, including support for multiple
graphic pages (EGA, VGA, and Hercules only; especially useful for doing
animation), palettes, colors, and so on.

Error Handling

Internal errors in the Graph unit are returned by the function GraphResult.
GraphResult returns an error code that reports the status of the last graphics
operation. The following error return codes are defined:

m 0: No error
‘m-1: (BGI) graphics not installed (use InitGraph)
m-2: Graphics hardware not detected
m -3: Device driver file not found
m —4: Invalid device driver file

308 Turbo Pascal Owner’s Handbook

m-5: Not enough memory to load driver
m —6: Out of memory in scan fill

m-7: Out of memory in flood fill

m -8: Font file not found
m-9: Not enough memory to load font

m -10: Invalid graphics mode for selected driver
m —11: Graphics error

m —12: Graphics I/0O error

m»-13: Invalid font file
m -14: Invalid font number
m -15: Invalid device number

The following routines set GraphResult:

Bar

Bar3D
ClearViewPort
DetectGraph
DrawPoly
FillPoly
FloodFill
ImageSize

InitGraph
PieSlice
RegisterBGldriver
RegisterBGlfont
SetAllPalette
SetFillPattern
SetFillStyle
SetGraphBufSize

SetGraphMode
SetLineStyle
SetPalette
SetText[ustify
SetTextStyle
SetViewPort
ValidMode

Note that GraphResult is reset to zero after it has been called. Therefore, the
user should store the value of GraphResult into a temporary variable and
then test it. The following return code constants are defined:

const

{ GraphResult error return codes }

grok
grNoInitGraph
grNotDetected
grFileNotFound
grinvalidDriver
grNoLoadMem
grNoScanMem
grNoFloodMem
grFontNotFound
grNoFontMem
grInvalidMode
grError
grIOError
grinvalidFont
grinvalidFontNum
grInvalidDeviceNum

Chapter 24, Standard Units

L {1 I O 1 [N 1 N | B {1

0;

|
—

309

Getting Started

Here’s a simple graphics program:

program GraphTest;
uses

Graph;
var

GraphDriver : integer;

GraphMode : integer;

ErrorCode : integer;
begin

GraphDriver := Detect; { Set flag: do detection
10 InitGraph(GraphDriver, GraphMode, ’C:\DRIVERS’);
11 ErrorCode := GraphResult;

OO~y U s W N

12 if ErrorCode <> grOk then { Error? }
13 begin

14 Writeln(’Graphics error: ', GraphErrorMsg(ErrorCode));

15 Writeln{’'Program aborted...’);

16 Halt (1);

17 end;

18 Rectangle(0, 0, GetMaxX, GetMaxY); { Draw full screen box }
19 SetTextJustify(CenterText, CenterText); { Center text }
20 SetTextStyle(DefaultFont, HorizDir, 3);

21 OutTextXY(GetMaxX div 2, GetMaxY div 2, { Center of screen }
22 'Borland Graphics Interface (BGI)');

23 Readln;

24 CloseGraph;
25 end. { GraphTest }

The program begins with a call to InitGraph, which autodetects the hard-
ware and loads the appropriate graphics driver (located in C:\DRIVERS). If
no graphics hardware is recognized or an error occurs during initialization,
an error message is displayed and the program terminates. Otherwise, a
box is drawn along the edge of the screen and text is displayed in the center
of the screen.

Note: The AT&T 400 line card is not autodetected. You can still use the
AT&T graphics driver by overriding autodection and passing InitGraph the
AT&T driver code and a valid graphics mode. Replace lines 9 and 10 in the
preceding example with the following three lines of code:

GraphDriver := ATT400;
GraphMode := ATT400Hi;
InitGraph (GraphDriver, GraphMode, ‘C:\DRIVERS’);

This instructs the graphics system to load the AT&T 400 line driver located
in C:\DRIVERS and set the graphics mode to 640 by 400.

Here’s another example that demonstrates how to switch back and forth
between graphics and text modes:

310 Turbo Pascal Owner’s Handbook

1 program GraphTest;

2 uses

3 Graph;

4 wvar

5 GraphDriver : integer;

6 GraphMode : integer;

7 ErrorCode : integer;

8 begin

9 GraphDriver := Detect; { Set flag: do detection }

10 InitGraph(GraphDriver, GraphMode, ’C:\DRIVERS');
11 ErrorCode := GraphResult;

12 if ErrorCode <> grOk then { Error? }
13 begin

14 Writeln(’Graphics error: !, GraphErrorMsg(ErrorCode});

15 Writeln(’Program aborted...’);

16 Halt(1);

17 end;

18 OutText('In Graphics mode. Press <RETURN>');

19 Readln;

20 RestoreCRTMode;

21 Write('Now in text mode. Press <RETURN>');

22 Readln;

23 SetGraphMode (GraphMode) ;

24 OutText('Back in Graphics mode. Press <RETURN>'};
25 Readln;

26 CloseGraph;

27 end. { GraphTest }

Note that the SetGraphMode call on line 23 resets all the graphics parameters
(palette, current pointer, foreground, and background colors, and so on) to
the default values.

The call to CloseGraph restores the video mode that was detected initially by
InitGraph and frees the heap memory that was used to hold the graphics
driver.

User-Written Heap Management Routines

Two heap management routines are used by the Graph unit: GraphGetMem
and GraphFreeMem. GraphGetMem allocates memory for graphics device
drivers, stroked fonts, and a scan buffer. GraphFreeMem deallocates the
memory allocated to the drivers. The standard routines take the following
form:

procedure GraphGetMem(var P : pointer; Size : word);
{ Allocate memory for graphics }

procedure GraphFreeMem(var P : pointer; Size : word);
{ Deallocate memory for graphics }

Chapter 24, Standard Units 311

Two pointers are defined by Graph that by default point to the two
standard routines described here. The pointers are defined as follows:

var
GraphGetMemPtr : pointer; { Pointer to memory allocation routine }
GraphFreeMemPtr : pointer { Pointer to memory deallocation routine }

The heap management routines referenced by GraphGetMemPtr and
GraphFreeMemPtr are called by the Graph unit to allocate and deallocate
memory for three different purposes:

ma multi-purpose graphics buffer whose size can be set by a call to
SetGraphBufSize (default = 4K)

m a device driver that is loaded by InitGraph (*.BGI files)
m a stroked font file that is loaded by SetTextStyle (*.CHR files)

The graphics buffer is always allocated on the heap. The device driver is
allocated on the heap unless your program loads or links one in and calls
RegisterBGlIdriver, and the font file is allocated on the heap when you select
a stroked font using SetTextStyle—unless your program loads or links one
in and calls RegisterBGIfont.

Upon initialization of the Graph unit, these pointers point to the standard
graphics allocation and deallocation routines that are defined in the
implementation section of the Graph unit. You can insert you own memory
management routines by assigning these pointers the address of your own
routines. The user-defined routines must have the same parameter lists as
the standard routines and must be far procedures. The following is an
example of user-defined allocation and deallocation routines; notice the use
of MyExitProc to automatically call CloseGraph when the program
terminates:

program UserHeapManagement;

{ Illustrates how the user can steal the heap }
{ management routines used by the Graph unit. }

uses
Graph;
var
GraphDriver, GraphMode : integer;
ErrorCode . integer; { Used to store GraphResult return code }
PreGraphExitProc : pointer; { Used to save original exit proc }

{$F+} { User routines must be far call model }

procedure MyGetMem(var P : pointer; Size : word);

{ Allocate memory for graphics device drivers, fonts, and scan buffer }

begin)
GetMem (P, Size)

end; { MyGetMem }

procedure MyFreeMem(var P : pointer; Size : word);

312 Turbo Pascal Owner’s Handbook

{ Deallocate memory for graphics device drivers, fonts, and scan buffer }
begin
if P <> Nil then { Don’t free Nil pointers! }
begin
FreeMem(P, Size);
P := Nil;
end;
end; { MyFreeMem }

procedure MyExitProc;
{ Always gets called when program terminates }
begin
ExitProc := PreGraphExitProc; { Restore original exit proc }
CloseGraph; { Do heap clean up }
end; { MyExitProc }
{$F-}
begin
{ Install clean-up routine }
PreGraphExitProc := ExitProc;
ExitProc := @MyExitProc;

GraphGetMemPtr := @MyGetMem; { Steal memory allocation }
GraphFreeMemPtr := @MyFreeMem; { Steal memory deallocation }

GraphDriver := Detect;
InitGraph (GraphDriver, GraphMode, '');
ErrorCode := GraphResult;
if ErrorCode <> grOk then
begin
Writeln(’Graphics error: ', GraphErrorMsg(ErrorCode));
Readln;
Halt (1);
end;
Line (0, 0, GetMaxX, GetMaxY);
OutTextXY(l, 1, ’Press <Return>:’);
Readln;
end. { UserHeapManagment }

Graph Interface Section: Constants, Types, and
Variables

There are many useful constant and type declarations in the Graph unit.
Here is an excerpt from the interface section of GRAPH.TPU for your
reference:

const
{ GraphResult error return codes }
grOk = 0;
grNoInitGraph = -1;
grNotDetected = -2;
grFileNotFound = -3;
grinvalidDriver = -4;
grNoLoadMem = -5;
grNoScanMenm = -6;

Chapter 24, Standard Units 313

grNoFloodMem = -T;
grFontNotFound = -8;
grNoFontMem = -9;
grInvalidMode = -10;
grError = -11; { Generic error }
grlQerror = -12;
grInvalidFont = -13;
grinvalidFontNum = -14;
grInvalidDeviceNum = -15;

{ Define graphics drivers }
Detect = 0; { Requests autodetection }
CGA =1;

MCGA =2;

EGA =3;

EGA64 =4;

EGAMono = 5;

RESERVED = 6;

HercMono = 7;

ATT400 = 8;

VGA =9;

PC3270 = 10;

{ Graphics modes for each driver }

CGACO =0; { 320x200 palette 0: LightGreen, LightRed, Yellow; 1 page }
CGAC1 =1; { 320x200 palette 1: LightCyan, LightMagenta, White; 1 page }
CGAC2 =2; { 320x200 palette 2: Green, Red, Brown; 1 page }
CGAC3 =3; { 320x200 palette 3: Cyan, Magenta, LightGray; 1 page }
CGAHi = 4; { 640x200 1 page }
MCGACO =0; { 320x200 palette 0: LightGreen, LightRed, Yellow; 1 page }
MCGAC1 =1; { 320x200 palette 1: LightCyan, LightMagenta, White; 1 page }
MCGAC2 =2; { 320x200 palette 2: Green, Red, Brown; 1 page }
MCGAC3 =3; { 320x200 palette 3: Cyan, Magenta, LightGray; 1 page }
MCGAMed = 4; { 640x200 1 page }
MCGAHi =5; { 640x480 1 page }
EGALo =0; { 640x200 16 color 4 page }
EGAHi =1; { 640x350 16 color 2 page }
EGA64Lo = 0; { 640x200 16 color 1 page }
EGA64H1 =1; { 640x350 4 color 1 page }
EGAMonoHi = 3; { 640x350 64K on card, 1 page; 256K on card, 2 page }
HercMonoHi = 0; { 720x348 2 page }
ATT400CO0 = 0; { 320x200 palette 0: LightGreen, LightRed, Yellow; 1 page }
ATT400C1 = 1; { 320x200 palette 1: LightCyan, LightMagenta, White; 1 page }
ATT400C2 = 2; { 320x200 palette 2: Green, Red, Brown; 1 page }
ATT400C3 = 3; { 320x200 palette 3: Cyan, Magenta, LightGray; 1 page }
ATT400Med = 4; { 640x200 1 page }
ATT400HLI = 5; { 640x400 1 page }
VGALo = 0; { 640x200 16 color 4 page }
VGAMed =1; { 640x350 16 color 2 page }
VGAHi =2; { 640x480 16 color 1 page }
PC3270Hi = 0; { 720x350 1 page }
{ Colors for SetPalette and SetAllPalette }

Black =0;

Blue =1

Green =2;

Cyan =3

Red = 4;

314 Turbo Pascal Owner’s Handbook

Magenta =35
Brown = 6;
LightGray =1;
DarkGray = §;
LightBlue =9;
LightGreen = 10;
LightCyan = 11;
LightRed = 12;
LightMagenta = 13;
Yellow = 14;
White = 15;

{ Line styles and widths for Get/SetLineStyle' }
SolidLn

DottedLn
CenterLn
DashedLn
UserBitLn

’

LU T |
WO

NormWidth
ThickWidth

’

3;

won
[

{ Set/GetTextStyle constants }
DefaultFont 0;

TriplexFont H

SmallFont
SansSerifFont
GothicFont

’

’

W RO =

’

HorizDir
VertDir

non
—

UserCharSize = 0;

{ Clipping constants }
ClipOn = True;
ClipOff = False;
{ Bar3D constants }
TopOn = True;
TopOff = False;

{ Fill patterns for Get/SetFillStyle }
EmptyFill
SolidFill
LineFill
LtSlashFill
SlashFill
BkSlashFill
LtBkSlashFill
HatchFill
XHatchFill
InterleaveFill
WideDotFill
CloseDotFill
UserFill

o now

Chapter 24, Standard Units

{ User-defined line style }

{ 8x8 bit-mapped font
{ "Stroked" fonts

—~— ——

{ Left to right
{ Bottom to top

———

{ User-defined character size

{ Fills area in background color
{ Fills area in solid fill color
{ --- fill

{ /// fill

{ /// £i11 with thick lines

{ \\\ fill with thick lines

{ W\ fill

Light hatch fill
{ Heavy cross hatch fill
{ Interleaving line fill
{ Widely spaced dot fill
{ Closely spaced dot fill
{ User-defined fill

v vt g g Tt Sy et gt Ayt e St At gt

315

{ BitBlt operators for PutImage)}

NormalPut =0; { MOV }
XORPut =1; { XOR }
OrPut = 2; { OR }
AndPut = 3; { AND }
NotPut = 4; { NOT }
{ Horizontal and vertical justification for SetTextJustify }
LeftText = 0;
CenterText = 1; { CenterText = 1; already defined above }
RightText = 2;
BottomText = 0;
TopText =2;
const
MaxColors = 15;
type
PaletteType = record
Size : byte;
Colors : array(0..MaxColors] of shortint;
end;
LineSettingsType = record
LineStyle : word;
Pattern : word;
Thickness : word;
end;
TextSettingsType = record
Font : word;
Direction : word;
CharSize : word;
Horiz : word;
Vert . word;
end;
FillSettingsType = record { Predefined fill style }
Pattern : word;
Color : word;
end;
FillPatternType = array[l..8] of byte; { User-defined fill style }

PointType = record
X, Y : integer;
end;

ViewPortType = record
x1, yl, x2, y2 : integer;
Clip : boolean;
end;

ArcCoordsType = record

X, Y : integer;

Xstart, Ystart : integer;

Xend, Yend : integer;
end;

316 Turbo Pascal Owner’s Handbook

var
GraphGetMemPtr : pointer; { Allows user to steal heap allocation }
GraphFreeMemPtr : pointer; { Allows user to steal heap deallocation }

{ *** High-level error handling *** }
function GraphErrorMsg(ErrorCode : integer) : string;
function GraphResult : integer;

{ *** Detection, initialization, and CRT mode routines *** }
procedure DetectGraph(var GraphDriver, GraphMode : integer);
procedure InitGraph(var GraphDriver : integer;

var GraphMode : integer;

PathToDriver : string);

function RegisterBGIfont (font : pointer) : integer;
function RegisterBGIdriver (driver : pointer) : integer;
procedure SetGraphBufSize (BufSize : word);
procedure GetModeRange (GraphDriver : integer; var LoMode, HiMode : integer);
procedure SetGraphMode (Mode : integer);
function GetGraphMode : integer;
procedure GraphDefaults;
procedure RestoreCrtMode;
procedure CloseGraph;
function GetX : integer;
function GetY : integer;
function GetMaxX : integer;
function GetMaxY : integer;

{ *** Screen, viewport, page routines *** }

procedure ClearDevice;

procedure SetViewPort (x1, yl, x2, y2 : integer; Clip : boolean);
procedure GetViewSettings(var ViewPort : ViewPortType);
procedure ClearViewPort;

procedure SetVisualPage (Page : word);

procedure SetActivePage (Page : word);

{ *** Point-oriented routines *** }
procedure PutPixel(X, Y : integer; Pixel : word);
function GetPixel(X, Y : integer) : word;

{ *** Line-oriented routines *** }
procedure LineTo(X, Y : integer);
procedure LineRel (Dx, Dy : integer);
procedure MoveTo(X, Y : integer);
procedure MoveRel (Dx, Dy : integer);
procedure Line(xl, yl, x2, y2 : integer);
procedure GetLineSettings(var LineInfo : LineSettingsType);
procedure SetLineStyle(LineStyle : word;
Pattern : word;
Thickness : word);

{ *** Polygon, fills and figures *** }

procedure Rectangle(xl, yl, x2, y2 : integer);

procedure Bar(xl, yl, %2, y2 : integer);

procedure Bar3D(xl, yl, x2, y2 : integer; Depth : word; Top : boolean);
procedure DrawPoly (NumPoints : word; var PolyPoints);

procedure FillPoly (NumPoints : word; var PolyPoints);

procedure GetFillSettings(var Filllnfo : FillSettingsType);

procedure GetFillPattern(var FillPattern : FillPatternType);

Chapter 24, Standard Units 317

procedure SetFillStyle(Pattern : word; Color : word);
procedure SetFillPattern(Pattern : FillPatternType; Color : word);
procedure FloodFill(X, Y : integer; Border : word);

{ *** Arc, circle, and other curves *** }

procedure Arc(X, Y :

integer; StAngle, EndAngle, Radius : word);

procedure GetArcCoords (var ArcCoords : ArcCoordsType);
procedure Circle(X, Y : integer; Radius : word);
procedure Ellipse(X, Y : integer;

StAngle, EndAngle : word;
XRadius, YRadius : word);

procedure GetAspectRatio(var Xasp, Yasp : word);
procedure PieSlice(X, Y : integer; StAngle, EndAngle, Radius : word);

{ *** Color and palette routines *** }
procedure SetBkColor{Color : word);
procedure SetColor (Color : word);
function GetBkColor : word;

function GetColor :

word;

procedure SetAllPalette(var Palette);

procedure SetPalette(ColorNum : word; Color : shortint);
procedure GetPalette(var Palette : PaletteType);
function GetMaxColor : word;

{ *** Bit-image routines *** }

function ImageSize(xl, yl, x2, y2 : integer) : word;
procedure GetImage(xl, yl, x2, y2 : integer; var BitMap);
procedure PutImage(X, Y : integer; var BitMap; BitBlt : word);

{ *** Text routines *** }

procedure GetTextSettings(var TextInfo : TextSettingsType);
procedure OutText (TextString : string);

procedure OutTextXY(X, Y : integer; TextString : string);
procedure SetTextJustify(Horiz, Vert : word);

procedure SetTextStyle (Font, Direction : word; CharSize : word);
procedure SetUserCharSize(MultX, DivX, MultY, DivY : word);
function TextHeight (TextString : string) : word;

function TextWidth(TextString : string) : word;

Procedures
Arc

Bar
Bar3D

Circle

ClearDevice

318

Draws a circular arc from start angle to end angle,
using (x,y) as the center point.

Draws a bar using the current fill style and color.

Draws a 3-D bar using the current fill style and
color.

Draws a circle using (x,y) as the center point.

Clears the currently selected output device and
homes the current pointer.

Turbo Pascal Owner’s Handbook

ClearViewPort
CloseGraph
DetectGraph

DrawPoly
Ellipse

FillPoly
FloodFill

GetArcCoords

GetAspectRatio

GetFillPattern

GetFillSettings

Getlmage
GetLineSettings
GetModeRange

GetPalette
GetTextSettings

GetViewSettings

GraphDefaults

Clears the current viewport.
Shuts down the graphics system.

Checks the hardware and determines which
graphics driver and mode to use.

Draws the outline of a polygon using the current
line style and color.

Draws an elliptical arc from start angle to end angle,
using (X,Y) as the center point.

Fills a polygon, using the scan converter.

Fills a bounded region using the current fill pattern
and fill color.

Allows the user to inquire about the coordinates of
the last Arc command.

Returns the effective resolution of the graphics
screen from which the aspect ratio (Xasp:Yasp) can
be computed.

Returns the last fill pattern set by a call to
SetFillPattern.

Allows the user to inquire about the current fill
pattern and color as set by SetFillStyle or
SetFillPattern.

Saves a bit image of the specified region into a
buffer.

Returns the current line style, line pattern, and line
thickness as set by SetLineStyle.

Returns the lowest and highest valid graphics mode
for a given driver.

Returns the current palette and its size.

Returns the current text font, direction, size, and
justification as set by SetTextStyle and SetTextJustify.

Allows the user to inquire about the current
viewport and clipping parameters.

Homes the current pointer (CP) and resets the
graphics system.

Chapter 24, Standard Units 319

InitGraph

Line
LineRel

LineTo
MoveRel

MoveTo
OutText

OutTextXY
PieSlice

Putlmage
PutPixel
Rectangle

RestoreCrtMode

SetActivePage
SetAllPalette
SetBkColor
SetColor
SetFillPattern
SetFillStyle
SetGraphBufSize

SetGraphMode

SetLineStyle
SetPalette

320

Initializes the graphics system and puts the
hardware into graphics mode.

Draws a line from the (x1, y1) to (x2, y2).

Draws a line to a point that is a relative distance
from the current pointer (CP).

Draws a line from the current pointer to (x,y).

Moves the current pointer (CP) a relative distance
from its current position.

Moves the current graphics pointer (CP) to (x,y).

Sends a string to the output device at the current
pointer.

Sends a string to the output device.

Draws and fills a pie slice, using (X,Y) as the center
point and drawing from start angle to end angle.

Puts a bit image onto the screen.
Plots a pixel at x,y.

Draws a rectangle using the current line style and
color.

Restores the original screen mode before graphics is
initialized.

Set the active page for graphics output.

Changes all palette colors as specified.

Sets the current background color using the palette.
Sets the current drawing color using the palette.
Selects a user-defined fill pattern.

Sets the fill pattern and color.

Allows you to change the size of the buffer used for
scan and flood fills.

Sets the system to graphics mode and clears the
screen.

Sets the current line width and style.

Changes one palette color as specified by ColorNum
and Color.

Turbo Pascal Owner’s Handbook

SetTextJustify
SetTextStyle
SetUserCharSize
SetViewPort

SetVisualPage

Functions
GetBkColor
GetColor
GetGraphMode
GetMaxColor

GetMaxX
GetMaxY

GetPixel
GetX

GetY
GraphErrorMsg'
GraphResult

ImageSize

RegisterBGIdriver

RegisterBGIfont

Sets text justification values used by OutText and
OutTextXY.

Sets the current text font, style, and character
magnification factor.

Lets you change the character width and height for
stroked fonts.

Sets the current output viewport or window for
graphics output.

Sets the visual graphics page number.

Returns the current background color.

Returns the current drawing color.
Returns the current graphics mode.

Returns the highest color that can be passed to
SetColor. '

Returns the rightmost column (x resolution) of the
current graphics driver and mode.

Returns the bottommost row (y resolution) of the
current graphics driver and mode.

Gets the pixel value at X,Y.

Returns the X coordinate of the current position
(CP).

Returns the Y coordinate of the current position
(CP).

Returns an error message string for the specified
ErrorCode.

Returns an error code for the last graphics
operation.

Returns the number of bytes required to store a
rectangular region of the screen.

Registers a valid BGI driver with the graphics
system.

Registers a valid BFI font with the graphics system.

Chapter 24, Standard Units 321

TextHeight Returns the height of a string in pixels.
TextWidth Returns the width of a string in pixels.

For a detailed description of each procedure or function, refer to Chapter
27.

The Turbo3 Unit

Every routine in this unit is duplicated or improved upon in other standard
units. The Turbo3 unit is provided for backward compatibility only. By
using Turbo3, you gain more 3.0-compatibility, but lose direct access to
important new features built into some of the standard routines duplicated
here. (Note that you can still call these standard routines by using the unit
override syntax; for example, Turbo3's MemAwail calls the System.MemAuwail
function even if you are using the Turbo3 unit in your program. For more
information about referring to routines with the same name in other units,
look at Chapter 4, “Units and Related Mysteries.”)

Note: The routines that follow are not described in Chapter 27, the lookup
section. For more detailed information about Turbo3 routines, refer to your
Turbo Pascal 3.0 reference manual.

Interface Section

Here's a look at the interface section of the Turbo3 unit:

unit Turbo3;
interface
uses Crt;
var
Kbd . Text;
CBreak : boolean absolute CheckBreak;

function MemAvail: integer;

function MaxAvail: integer;

function LongFileSize(var F): real;
function LongFilePos (var F): real;
procedure LongSeek (var F; Pos: real);
procedure HighVideo;

procedure NormVideo;

procedure LowVideo;

function IOResult : integer;

As you can see, there are two global variables, five functions, and four
procedures declared in the Turbo3 unit.

322 Turbo Pascal Owner’s Handbook

Kbd

This is provided for 3.0 programs that read from the keyboard device; for
example, Read(Kbd, CharVar). Note that there is now a function in the Crt
unit called ReadKey that should be used in place of Read(Kbd, CharVar). Here
are two programs that read a character and report whether an extended
key was typed (F1, F2, Left arrow, and so on):

In version 3.0:

program TestKbd;
uses Crt, Turbo3;
var
¢ : char;
begin
Read(Kbd, c};
if (c = #27) and KeyPressed then
begin
Read (Kbd, c);
Writeln(’Extended key: ', c);
end
else
Writeln{(c);
end.

Notice that the Kbd device handler converts extended keys from (null +
character) to (ESC + second character). Since Esc (#27) is a perfectly valid
key to enter from the keyboard, a call to KeyPressed must be made to
determine whether the #27 is the first key from an extended key or an
actual Esc typed on the keyboard. If an Esc is typed, followed quickly by
another character before the program detected the Esc, the two keys would
be mistaken as an extended keystroke.

In version 4.0:

program TestReadKey;
uses Crt;
var

¢ : char;

begin
¢ := ReadKey;
if (c = #0) then
Writeln(’Extended key: ’, ReadKey);
else
Writeln(c);
end.

The code in 4.0 is smaller (and faster), and contains none of the ambiguity
about the leading character of an extended keystroke. (It is impossible to
generate a null character from the keyboard except when using the
extended keys.)

Chapter 24, Standard Units 323

Cbreak

Cbreak has been renamed to CheckBreak in version 4.0. Backward
compatibility is achieved by giving Cbreak the same address as CheckBreak,
which is declared in the Crt unit. The statement Cbreak := False turns off
Control-Break checking; Cbreak := True turns it back on.

Procedures

LongSeek

HighVideo

NormVideo

LowVideo

Functions
MemAvail

MaxAvail
LongFileSize
LongFilePos

IOResult

Moves the current position of a file to a specified

component. Uses a real number parameter to specify the

component number.

Sets the video attribute to yellow on black (color
systems) or white on black (black and white, mono
systems).

Same as HighVideo. Sets the video attribute to yellow on
black (color systems) or white on black (black and white,
mono systems).

Sets the video attribute to LightGray on black.

Returns the number of free paragraphs of heap storage
available.

Returns the size of the largest contiguous free block in
the heap (in paragraphs).

Returns the size of the file. The value returned is a real
number.

Returns the current file position of a file. The value
returned is a real number.

IOResult returns an integer value that is the status of the
last I/O operation performed. The Turbo3 IOResult
function returns 3.0-compatible return codes wherever
possible.

The Graph3 Unit

The Graph3 unit is a direct implementation of the turtlegraphics driver
provided by Turbo Pascal 3.0. In Turbo Pascal 3.0, the turtlegraphics driver

324

Turbo Pascal Owner’s Handbook

was made up of two files, GRAPH.P and GRAPH.BIN that supported the
IBM CGA and compatibles. GRAPH.P actually defines the external
machine code routines contained in GRAPH.BIN.

Graph3 combines GRAPH.P and GRAPH.BIN into a single unit, still
retaining the same functionality. The only modification you need to make
to a Turbo Pascal 3.0 program that uses the turtlegraphics driver is to
remove the {$ GRAPH.P} compiler directive, replacing it with a reference
to Crt and Graph3 in your program’s uses clause.

Note: The routines that follow are not described in Chapter 27, the lookup
section. For more detailed information about Graph3] routines, refer to your
Turbo Pascal 3.0 reference manual.

Here are Graph3’s constants:

const
North = 0;
East = 90;
South = 180;
West = 270;

Procedures

Arc Draws an arc using the given parameters.

Back Moves the turtle backward by the given distance.
(Turtlegraphics)

Circle Draws a circle.

ClearScreen Clears the active window and homes the turtle.
(Turtlegraphics)

ColorTable Defines a color translation table that lets the
current color of any given point determine the new
color of that point when it is redrawn.

Draw Draws a line between the specified endpoints and
in the specified color.

FillPattern Fills a rectangular area with the current pattern
using the specified color.

FillScreen Fills the entire active window with the indicated
color.

FillShape Fills an area of any shape with the specified color.

Forwd Moves the turtle forward by the given distance.
(Turtlegraphics)

Chapter 24, Standard Units 325

GetDotColor

GetPic

GraphBackground
GraphColorMode

GraphMode

GraphWindow

Heading

HideTurtle
HiRes

HiResColor
Home
NoWrap

Palette
Pattern
PenDown
PenUp

Plot

PutPic
SetHeading

326

Returns the color value of the dot at the indicated
location.

Copies the contents of an area on the screen into a
buffer; the contents can later be restored using
PutPic.

Sets background color of screen.
Sets you in 320x200 color graphics mode.

Sets you in 320x200 black-and-white graphics -
mode.

Lets you define an area of the screen as the active
window in any of the graphics modes.

Returns the current heading of the turtle.
(Turtlegraphics)

Hides the turtle. (Turtlegraphics)

Sets screen in 640x200 high-resolution graphics
mode.

Selects the color used for drawing in high-
resolution graphics.

Puts the turtle in its home position.
(Turtlegraphics)

Disables “wrapping” for the turtle.
(Turtlegraphics)

Activates the color palette specified.
Defines an 8x8 pattern to be used by Fill Pattern.

Puts the turtle’s pen “down” so that any
movement of the turtle results in drawing.
(Turtlegraphics)

Puts the turtle’s pen “up” so that the turtle can be
moved without drawing. (Turtlegraphics)

Plots a point at the specified coordinates and in the
specified color. !
Copies the contents of a buffer. r
Turns the turtle to the specified anglle.
(Turtlegraphics) ’

Turbo Pascal Owner’s Handbook

SetPenColor
SetPosition

ShowTurtle
TurnLeft

TurnRight
TurtleWindow
TurtleThere
TurtleDelay

Wrap

XCor

YCor

Sets the color used for the turtle’s pen.
(Turtlegraphics)

Moves the turtle to the given coordinates without
drawing a line. (Turtlegraphics)

Makes the turtle visible. (Turtlegraphics)

Turns the turtle’s heading to the left (counter-
clockwise). (Turtlegraphics)

Turns the turtle’s heading to the right (clockwise).
(Turtlegraphics)

Defines an area of the screen as the active turtle
graphics screen. (Turtlegraphics)

Tests if the turtle is visible and in the active
window. (Turtlegraphics)

Sets a delay between each step of the turtle.
(Turtlegraphics)

Forces wraparound when the turtle attempts to
move past the boundaries of the active window.
(Turtlegraphics)

Returns the current X-coordinate of the turtle.
(Turtlegraphics)

Returns the current Y-coordinate of the turtle.
(Turtlegraphics)

Chapter 24, Standard Units 327

328 Turbo Pascal Owner’s Handbook

25

Using the 8087

There are two kinds of numbers you can work with in Turbo Pascal:
integers (shortint, integer, longint, byte, word) and reals (real, single,
double, extended, comp). Reals are also known as floating-point numbers.
The 8086 processor is designed to easily handle integer values, but it takes
considerably more time and effort to handle reals. The 8086 family of
processors has a corresponding family of math coprocessors, the 8087s.

The 8087 is a special hardware numeric processor that can be installed in
your PC. It executes floating-point instructions very quickly, so if you use
floating point a lot, you’ll probably want a coprocessor.

Turbo Pascal is designed to provide optimal floating-point performance
whether or not you have an 8087.

m For programs running on any PC, with or without an 8087, Turbo Pascal
provides the real type and an associated library of software routines that
handle floating-point operations. The real type occugies 6 bytes of
memory, providing a range of 2.9 x 10 to 1.7 x 10 with 11 to .12
significant digits. The software floating-point library is optimized for
speed and size, trading in some of the fancier features provided by the
8087 processor.

mIf you're only writing programs for systems that have a math
coprocessor, you can instruct Turbo Pascal to produce code that uses the
8087 chip. This gives you access to four additional real types (single,
double, extended, and comp), and an extended floating-point range of 1.9
x 10E-4951 .. 1.1 x 10E4932 with 19 to 20 significant digits.

You can switch between the two different models of floating-point code
generation with the $N compiler directives or with the O/C/Numeric

Chapter 25, Using the 8087 329

processing menu item. {$N-} indicates software floating point (the default),
and {$N+} indicates hardware floating point.

The remainder of this chapter discusses special issues concerning Turbo
Pascal programs that use the 8087 coprocessor.

The 8087 Data Types

For programs that use the 8087, Turbo Pascal provides four new real types
in addition to the type real.

. mThe single type is the smallest format you can use with floating-point
numbers. It occupies 4 bytes of memory, providing a range of 1.5 x 10
to 3.4 x 10 with 7 to 8 significant digits.

- mThe double type occupies 8 bytes of memory, providing a range of 5.0
x 102 to 1.7 x 103® with 15 to 16 significant digits.

m The extended type is the largest floating-point type supported by the
8087. It occupies 10 bytes of memory, providing a range of 1.9 x 10E-4951
to 1.1 x 10E4932 with 19 to 20 significant digits. Any arithmetic involving
real-type values is performed with the range and precision of the
‘extended type.

mThe comp gpe stores integral values in 8 bytes, g)roviding a range of
-28341 to 2%-1, which is approximately -9.2 x 10'® to 9.2 x 108, Comp
may be compared to a double-precision longint, but it is considered a
real type because arithmetic done with comp uses the 8087 coprocessor.
Comp is well suited for representing monetary values as integral values
of cents or mils (thousands) in business applications.

Whether or not you have an 8087, the 6-byte real type. is always available,
so you need not modify your source code when switching to the 8087, and
you can still read data files generated by programs that use software
floating point.

Note, however, that hardware floating-point calculations on variables of
type real are slightly slower than on other types. This is because the 8087
cannot directly process the real format—instead, calls must be made to
library routines to convert real values to extended before operating on
them. If you are concerned with optimum speed and never need to run on
a system without an 8087, you may want to use the single, double,
extended, and comp types exclusively.

330 Turbo Pascal Owner’s Handbook

Extended Range Arithmetic

The extended: type.is the basis of all floating-point computations with the
8087. Turbo Pascal uses the extended format to store all non-integer
numeric constants and evaluates all non-integer numeric expressions to
extended. The entire right side of the following assignment, for instance,
will be computed in extended before being converted to the type on the left
side:

var
X,A,B,C : real;
begin
X := (B+Sqrt(B * B- A *C)) / A;
. end;

With no special effort by the programmer, Turbo Pascal performs compu-
tations using the precision and range of the extended type. The added
precision means smaller round-off errors, and the additional range means
overflow and underflow are less common, so that programs work more
often.

You can go beyond Turbo Pascal’s automatic extended capabilities. For
example, you can declare variables used for intermediate results to be of
type extended. The following example computes a sum of products:

var
Sum : single;
X,Y : array(l..100] of single;

I : integer;

T : extended; { For intermediate results }
begin

T :=0.0;

for I :=1to100do T :=7T + X[I] * Y{I];

Sum := T;
end;

Had T been declared single, the assignment to T would have caused a
round-off error at the limit of single precision at each loop entry. But
because T is extended, all round-off errors are at the limit of extended
precision, except for the one resulting from the assignment of T to Sum.
Fewer round-off errors mean more accurate results.

You can also declare formal value parameters and function results to be of
type extended. This avoids unnecessary conversions between numeric
types, which can result in loss of accuracy. For example:

Chapter 25, Using the 8087 331

function Area(Radius: extended): extended;
begin

Area := Pi * Radius * Radius;
end;

Comparing Reals

Because real-type values are approximations, the results of comparing
values of different real types are not always as expected. For example, if X
is a variable of type single and Y is a variable of type double, then the
following statements will output False:

X :=1/3;
Y :=1/3;
Writeln(X = Y);

The reason is that X is accurate only to 7 to 8 digits, where Y is accurate to
15 to 16 digits, and when both are converted to extended, they will differ
after 7 to 8 digits. Likewise, the statements

X :=1/3;
Writeln(X = 1/3);

will output False, since the result of 1/3 in the Writeln statement is
calculated with 20 significant digits.

The 8087 Evaluation Stack

The 8087 coprocessor has an internal evaluation stack that can be up to
eight levels deep. Accessing a value on the 8087 stack is much faster than
accessing a variable in memory; so to achieve the best possible perfor-
mance, Turbo Pascal uses the 8087’s stack for storing temporary results and
passing parameters to procedures and functions.

The implication of using the 8087 stack for parameter transfers is that a
procedure or function cannot have more than eight value parameters of the
8087 types (single, double, extended, or comp). The compiler will not give
an error if you attempt to declare more, but the program will terminate
with a runtime error when you call the subprogram. There are no limits to
the number of parameters of type real you can have, and likewise, you can
declare any number of var parameters.

Note: As part of its entry code, a procedure or function stores any 8087-
type value parameters in temporary locations allocated on the 8086 stack.

332 Turbo Pascal Owner’s Handbook

The parameters only occupy 8087 stack space during the call, not during
execution of the procedure or function.

In theory, very complicated real-type expressions can cause an 8087 stack
overflow. However, this is not likely to occur, since it would require the
expression to generate more than eight temporary results.

A more tangible danger lies in nested function calls. If such constructs are
not coded correctly, they can very well cause an 8087 stack overflow.

Assuming function Test is an extended function that takes three extended
value parameters, then the construct

X := Test(A,B,Test(C,D,Test (E,F,Test (X,Y,2))));

will cause an 8087 stack overflow. This is because at the innermost call to
Test, six floating-point values have already been pushed on the 8087 stack,
leaving room for only two more. The correct construct in this case is

1= Test(X,Y,2);
Test (E,F,X);
Test (C,D,X);
Test (A,B,X);

b b b B
il

A corresponding situation can arise in functions that execute recursively.
Consider the following procedure that calculates Fibonacci numbers using
recursion:

function Fib(N: integer): extended;

begin
if N = 0 then Fib := 0.0 else
if N = 1 then Fib := 1.0 else
Fib := Fib{(N-1) + Fib(N-2);
end;

A call to this version of Fib will cause an 8087 stack overflow for values of N
larger than 8. The reason is that the calculation of the last assignment
requires a temporary on the 8087 stack to store the result of Fib(N-1). Each
recursive invocation allocates one such temporary, causing an overflow the
ninth time. The correct construct is this case is

function Fib(N: integer): extended;
var
F1,F2: extended;

begin
if N = 0 then
Fib := 0.0
else
if N = 1 then
Fib := 1.0

Chapter 25, Using the 8087 333

else
begin
Fl := Fib(N-1); F2 := Fib(N-2);
Fib := F1 + F2;
end;
end;

The temporary results are now stored in variables allocated on the 8086
stack. (The 8086 stack can of course also overflow, but this would typically
require significantly more recursive calls.)

Writing Reals with the 8087

In the {$N+} state, the Write and Writeln standard procedures output four
digits, not two, for the exponent in a floating-point decimal string to
provide for the extended numeric range. Likewise, the Str standard
procedure returns a four-digit exponent when floating-point format is
selected.

Units Using the 8087

Units that use the 8087 can only be used by other units or programs that are
compiled in the {$N+} state.

The fact that a unit uses the 8087 is determined by whether it contains 8087
instructions—not by the state of the $N compiler directive at the time of its
compilation. This makes the compiler more forgiving in cases where you
accidentally compile a unit (that doesn’t use the 8087) in the {$N+} state.

Note that the use of 8087 instructions from object code linked in from .OBJ
files is not detected. If you link with an .OB]J file that uses the math
coprocessor, the .OBJ] must do its own initialization and error-checking.

334 Turbo Pascal Owner’s Handbook

26

Inside Turbo Pascal

In this chapter, we provide technical information for advanced Turbo
Pascal programmers. We'll cover such topics as memory maps, the heap
manager, internal data formats, calling conventions, and more.

Figure 26.1 (on page 336) depicts the memory map of a Turbo Pascal
program.

The Program Segment Prefix (PSP) is a 256-byte area built by MS-DOS
when the .EXE file is loaded. The segment address of PSP is stored in the
predeclared word variable PrefixSeg.

Each module (which includes the main program and each unit) has its own
code segment. The main program occupies the first code segment; the code
segments that follow it are occupied by the units (in reverse order from
how they are listed in the uses clause), and the last code segment is
occupied by the runtime library (the System unit). The size of a single code
segment cannot exceed 64K, but the total size of the code is limited only by
the available memory.

Chapter 26, Inside Turbo Pascal 335

Top of DOS Memory

l The free list
keeps track of available heap space

FreePir —

Free memory

HeapPir —

The Heap
grows
toward high
memory . . .

HeapOrg — « Sptr
toward low

The Stack Segment The Stack grows
memory . . .

+ SSeg
Global Variables

The Data Segment

Typed Constants

DSeg —
Runtime Library Code Segment

Unit ‘A’ Code Segment

Contents
{Other Unit Code Segments) : File

Unit ‘e’ Code Segment

Main Program Code Segment

. Program Segment Prefix (PSP)
PrefixSeg — ——————

Figure 26.1: Turbo Pascal Memory Map

The data segment (addressed through DS) contains all typed constants
followed by all global variables. The DS register is never changed during
program execution. The size of the data segment cannot exceed 64K.

On entry to the program, the stack segment register (SS) and the stack
pointer (SP) are loaded so that SS:SP points to the first byte past the stack
segment. The SS register is never changed during program execution, but
SP can move downward until it reaches the bottom of the segment. The size
of the stack segment cannot exceed 64K; the default size is 16K, but this can
be changed with a $M compiler directive.

The heap stores dynamic variables, that is, variables allocated through calls
to the New and GetMem standard procedures. It occupies all or some of the
free memory left when a program is executed. The actual size of the heap
depends on the minimum and maximum heap values, which can be set

336 Turbo Pascal Owner’s Handbook

with the $M compiler directive. Its size is guaranteed to be at least the
minimum heap size and never more than the maximum heap size. If the
minimum amount of memory is not available, the program will not
execute. The default heap minimum is 0 bytes, and the default heap
maximum is 640 Kb; this means that by default the heap will occupy all
remaining memory.

As you might expect, the heap manager (which is part of Turbo Pascal’s
runtime library) manages the heap. It is described in detail in the following
section.

The Heap Manager

The heap is a stack-like structure that grows from low memory in the heap
segment. The bottom of the heap is stored in the variable HeapOrg, and the
top of the heap, corresponding to the bottom of free memory, is stored in
the variable HeapPtr. Each time a dynamic variable is allocated on the heap
(via New or GetMem), the heap manager moves HeapPtr upward by the size
of the variable, in effect stacking the dynamic variables on top of each other.

HeapPtr is always normalized after each operation, thus forcing the offset
part into the range $0000 to $000F. The maximum size of a single variable
that can be allocated on the heap is 65521 bytes (corresponding to $10000
minus $000F), since every variable must be completely contained in a single
segment.

Disposal Methods

The dynamic variables stored on the heap are disposed of in one of two
ways: (1). through Dispose or FreeMem or (2) through Mark and Release. The
simplest scheme is that of Mark and Release; for example, if the following
statements are executed:

New (Ptrl);
New (Ptr2);
Mark (P);

New (Ptr3);
New (Ptrd);
New (Ptr5);

the layout of the heap will then look like Figure 26.2.

Chapter 26, Inside Turbo Pascal 337

Ptri — Low

Contents of Ptr1” Memory
Ptr2 —»
Contents of Ptr2”
Pir3 —
Contents of Ptr3”
Pir4 —
Contents of P4~
Pir5 -
Contents of PS5
HeapPtr —
High
Memory

Figure 26.2: Disposal Method Using Mark and Release

The Mark(P) statement marks the state of the heap just before Ptr3 is
allocated (by storing the current HeapPtr in P). If the statement Release(P) is
executed, the heap layout becomes like that of Figure 26.3, effectively.
disposing of all pointers allocated since the call to Mark.

Ptr1 — l'cl)w
Contents of Ptr1~ emory
Ptr2 —
Contents of Ptr2~
HeapPir —

High
Memory

Figure 26.3: Heap Layout with Release(P) Executed

Note: Executing Release(HeapOrg) completely disposes of the entire heap
because HeapOrg points to the bottom of the heap.

For applications that dispose of pointers in exactly the reverse order of
allocation, the Mark and Release procedures are very efficient. Yet most

338 Turbo Pascal Owner’s Handbook

programs tend to allocate and dispose of pointers in a more random
manner, requiring the more-sophisticated management technique imple-
mented by Dispose and FreeMem. These procedures allow an application.to
dispose of any pointer at any time.

When a dynamic variable that is not the topmost variable on the heap is
disposed of through Dispose or FreeMem, the heap becomes fragmented.
Assuming that the same statement sequence has been executed, then after
executing Dispose(Ptr3), a “hole” is created in the middle of the heap (see
Figure 26.4).

Pir4 — L@w
Contents of Ptr41* emory
Ptr2 —
Contents of Pr2”
Ptr4 —
) Contents of Pir4™
Ptrt5 -
Contents of Ptr5”
HeapPir —
High
Memory

Figure 26.4: Creating a "Hole" in'the Heap

If at this time New(Ptr3) has been executed, it would again occupy the same
memory area. On the other hand, executing Dispose(Ptr4) enlarges the free
block, since Ptr3 and Ptr4 were neighboring blocks (see Figure 26.5).

Chapter 26, Inside Turbo Pascal 339

Ptr4 — L'&w
Contents of Ptr1” emory

Pir2 —»

Contents of Pr2"

Ptr5 —
Contents of Pir5”

HeapPtr —

High
Memory

Figure 26.5: Enlarging the Free Block

Finally, executing Dispose(Ptr5) first creates an even bigger free block, and
then lowers HeapPtr. This, in effect, releases the free block, since the last
valid pointer is now Ptr2 (see Figure 26.6).

Ptr4 — L’\ﬁw
Contents of Ptr1~ emory
Ptr2 —
Contents of Pir2”
HeapPtr —
High
Memory

Figure 26.6: Releasing the Free Block

The heap is now in the same state as it would be after executing Release(P),
as shown in Figure 26.2. However, the free blocks created and destroyed in
the process were tracked for possible reuse.

340 Turbo Pascal Owner’s Handbook

The Free List

The addresses and sizes of the free blocks generated by Dispose and
FreeMem operations are kept on a free list, which grows downward from
high memory in the heap segment. Whenever a dynamic variable is
allocated, the free list is checked before the heap is expanded. If a free block
of adequate size (greater than or equal to the size of the requested block
size) exists, it is used.

Note: The Release procedure always clears the free list, thus causing the
heap manager to “forget” about any free blocks that might exist below the
heap pointer. If you mix calls to Mark and Release with calls to Dispose and
FreeMem, you must ensure that no such free blocks exist.

The free list pointer is stored in a variable called FreePtr. Although declared
to be of type pointer, FreePtr is actually a pointer to an array of free-list
records, as indicated by the FreeListP type:

type
FreeRec = record
OrgPtr,EndPtr: pointer;
end;

FreelList = array[0..8190] of FreeRec;
FreeListP = “Freelist;

The OrgPtr and EndPtr fields of each record define the origin and end of
each free block. (EndPtr is in fact a pointer to the first byte after the block.)
Both are normalized pointers. The number of entries in the FreeList array is
calculated from

FreeCount = (8192 - Ofs(FreePtr”) div 8) mod 8192

This means that there can be up to 8191 entries in the free list. When the
offset part of FreePtr is 0, the free list is empty. FreePtr can be compared to
the stack pointer in the sense that it grows downward, and that all bytes
from FreePtr to the end of the heap segment are part of the “free stack.”

Note: Trying to dispose of a pointer when the free list is full causes a
runtime error. However, a full free list is a highly unlikely situation—it
would reqire 8191 completely noncontiguous blocks to be disposed of and
not reused.

FreePtr also serves to mark the top of free memory in the heap (the bottom
of which is pointed to by HeapPtr). Note, though, that when the offset part
of FreePtr is 0, $1000 must be added to the segment part to produce the true
top-of-heap pointer. (In fact, the segment part of FreePtr always contains the
segment address of top-of-memory minus $1000.)

Chapter 26, Inside Turbo Pascal 341

When disposing of a range of noncontiguous pointers, the free list grows
(expands downward) to make room for an entry for each block. As long as
there is enough room between HeapPtr and FreePtr, this presents no
problem. However, when the heap is almost full, there may not be enough
room to cater to the larger free list, in which case a runtime error will occur.

In particular, imagine that the free list is empty and that the heap is almost
full. In that situation, disposing of a range of pointers other than the
topmost pointer will cause a block expansion of the free list.

To prevent, or foresee, such problems, the heap manager provides a word
variable FreeMin that can be set to control the minimum allowable size of
the memory region between HeapPtr and FreePtr. You cannot use New or
GetMem to allocate a variable that would make the size of that region less
than FreeMin. Likewise, MemAvail and MaxAuvail will subtract FreeMin from
the size of that region before returning their results.

The value stored in FreeMin is in bytes. To ensure room for a specific
number of free-list entries, multiply that number by 8 and store it in
FreeMin.

A final note on the free list concerns a potential problem with “granularity.”
The granularity of Turbo Pascal’s heap manager is 1 byte; that is, if you
allocate 1 byte, it will only occupy that 1 byte. In most situations, and
especially when using Mark and Release or when not disposing of anything
at all, this guarantees optimum use of the memory available. However, it
can also be deceiving.

When randomly allocating and disposing of a ot of blocks of differing
sizes, such as line records in a text-processing program, a number of very
small free blocks can result and possibly cause the free list to overflow. As
an example, assume a block of 50 bytes is allocated and disposed of, thus
becoming an entry on the free list. If the next allocation request is for a
block of 49 bytes, that block will be reused, leaving a 1-byte free block entry
on the free list. Until one of the neighboring blocks are disposed of (thereby
merging the 1-byte block into a bigger block), the 1-byte block is very
unlikely to become re-allocated. Thus, it will occupy a free-list entry for a
long time, if not for the program’s duration.

If a free list overflow occurs because of this, you can introduce a “resolution
factor” to round upward the size specified by each call to GetMem and
FreeMem to a factor of some number. In general, the higher the number, the
less likely unusable free blocks will occur. To do this you would write your
own GetMem and FreeMem routines that would modify the Size parameter
and then call System.GetMem or System.FreeMem:

342 Turbo Pascal Owner’s Handbook

procedure GetMem(var P : pointer; Size : word);
begin

System.GetMem(P, (Size + 15) and $FFFO0); { 16 byte blocks }
end;

procedure FreeMem(var P : pointer; Size : word);
begin

System.FreeMem(P, (Size + 15) and $FFFO0); { 16 byte blocks }
end;

The Heap Error Function

The HeapError variable allows you to install a heap error function, which
gets called whenever the heap manager cannot complete an allocation
request. HeapError is a pointer that points to a function with the following
header:

{$F+} function HeapFunc({Size: word): integer; {S$F-}

Note that the {$F+} compiler directive forces the heap error function to use
the far call model.

The heap error function is installed by assigning its address to the
HeapError variable:

HeapError:=@HeapFunc;

The heap error function gets called whenever a call to New or GetMem
cannot complete the request. The Size parameter contains the size of the
block that could not be allocated, and the heap error function should
attempt to free a block of at least that size.

Depending on its success, the heap error function should return0, 1, or 2. A
return of 0 indicates failure, causing a runtime error to occur immediately.
A return of 1 also indicates failure, but instead of a runtime error, it causes
New or GetMem to return a nil pointer. Finally, a return of 2 indicates
success and causes a retry (which could also cause another call to the heap
error function).

The standard heap error function always returns 0, thus causing a runtime
error whenever a call to New or GetMem cannot be completed. However, for
many applications, the simple heap error function that follows is more
appropriate:

{$F+} function HeapFunc(Size: word) integer; {S$F-}
begin

HeapFunc:=1;
end;

Chapter 26, Inside Turbo Pascal 343

When installed, this function causes New or GetMem to return nil when
they cannot complete the request, instead of aborting the program.

Internal Data Formats

Integer Types

The format selected to represent an integer-type variable depends on its
minimum and maximum bounds:

m If both bounds are within the range -128..127 (shortint), the variable is
stored as a signed byte.

m If both bounds are within the range 0..255 (byte), the variable is stored as
an unsigned byte.

m If both bounds are within the range -32768..32767 (integer), the variable
is stored as a signed word.

mIf both bounds are within the range 0..65535 (word), the variable is
stored.

m Otherwise, the variable is stored as a signed double word (longint).

Char Types

A char, or a subrange of a char type, is stored as an unsigned byte.

Boolean Types

A boolean type is stored as a byte that can assume the value of 0 (False) or
1 (True).

Enumerated Types

An enumerated type is stored as an unsigned byte if the enumeration has
256 or fewer values; otherwise, it is stored as an unsigned word.

344 Turbo Pascal Owner’s Handbook

Floating-Point Types

The floating-point types (real, single, double, extended, and comp) store the
binary representations of a sign (+ or -), an exponent, and a significand. A
represented number has the value

+/- significand x 28%Ponent

where the significand has a single bit to the left of the binary decimal point
(that is, 0 <= significand < 2).

Note: In the figures that follow, msb means most significant bit, and Isb
means least significant bit. The left-most items are stored at the highest.
addresses. For example, for a real-type value, ¢ is stored in the first byte, fin
the following five bytes, and s in the most significant bit of the last byte.

The Real Type
A 6-byte (48-bit) Real number is divided into three fields:
1 39 8 width
$ f e
msb Isb msb Isb order

The value v of the number is determined by

if 0 < e <= 255, then v = (-1)% * 217129 % (1 ¢),
if e = 0, then v = 0.

Note: The real type cannot store denormals, NaNs, and infinities.
Denormals become zero when stored in a real, and NaNs and infinities
produce an overflow error if an attempt is made to store them in a real.

The Single Type
A 4-byte (32-bit) Single number is divided into three fields:
1 8 23 width
s e : f
msb Isb msb Isb order

The value v of the number is determined by
if 0 < e < 255, then v = (-1)° * 2(&7127 « (1 1),

Chapter 26, Inside Turbo Pascal 345

ife=0 andf < 0, thenv = (-1)5 * 20126 « (0 ¢),
ife=0 and f=0, thenv = (-1)° * 0.
ife=255and f = 0, then v = (-1)° * Inf.
if e = 255 and f <> 0, then v is a NaN.
The Double Type
An 8-byte (64-bit) Double number is divided into three fields:
1 11 52 width
s e f
msb Isb msb Isb order

The value v of the number is determined by

if 0 < e < 2047, then v = (-1)° * 2(e71023) & 7 ¢y
ife=0 andf < 0, thenv = (-1)° * 20-2022) « (g f),
ife=0 and f = 0, then v = (-1)° * 0.
if e = 2047 and £ = 0, then v = (-1)° * Inf.
if e = 2047 and f <> 0, then v is a NaN.

The Extended Type

A 10-byte (80-bit) Extended number is divided into four fields:

A 15 63 width
$ e i f

msb Isb msb Isb order

The value v of the number is determined by
if 0 <= e < 32767, then v = (-1)° * 2€7188) w (4),

if e = 32767 and £ = 0, ‘then v = (-1)° * Inf.
if e = 32767 and f <> 0, then v is a NaN.
The Comp Type
An 8-byte (64-bit) Comp number is divided into two fields:
1 63 width
s d
msb Isb order

346 Turbo Pascal Owner’s Handbook

The value v of the number is determined by
if s=1andd =0, then v is a NaN

Otherwise, v is the two’s complement 64-bit value.

Pointer Types

A pointer type is stored as a double word, with the offset part in the low
word and the segment part in the high word. The pointer value nil is
stored as a double-word zero.

String Types

A string occupies as many bytes as its maximum length plus one. The first
byte contains the current dynamic length of the string, and the following
bytes contain the characters of the string. The length byte and the
_characters are considered unsigned values. Maximum string length is 255
characters plus a length byte (string[255]).

Set Types

A setis a bit array, where each bit indicates whether an element is in the set
or not. The maximum. number of elements in a set is 256, so a set never
occupies more than 32 bytes. The number of bytes occupied by a particular
set is calculated as

ByteSize = (Max div 8) - (Min div 8) + 1

where Min and Max are the lower and upper bounds of the base type of
that set. The byte number of a specific element E is

ByteNumber = (E div 8) - (Min div 8)
and the bit number within that byte is
BitNumber = E mod 8

where E denotes the ordinal value of the element.

Chapter 26, Inside Turbo Pascal 347

Array Types

An array is stored as a contiguous sequence of variables of the component
type of the array. The components with the lowest indexes are stored at the
lowest memory addresses. A multidimensional array is stored with the
right-most dimension increasing first.

Record Types

The fields of a record are stored as a contiguous sequence of variables. The
first field is stored at the lowest memory address. If the record contains
variant parts, then each variant starts at the same memory address.

File Types

File types are represented as records. Typed files and untyped files occupy
128 bytes, which are laid out as follows:

type
FileRec = record
Handle : word;
Mode . word;

RecSize : word;

Private : array([l..26] of byte;

UserData : array[l..16] of byte;

Name : array[0..79] of char;
end;

Text files occupy 256 bytes, which are laid out as follows:

type
CharBuf = array[0..127] of char;
TextRec = record
Handle : word;
Mode 1 word;

BufSize : word;

Private : word;

BufPos . word;

BufEnd : word;

BufPtr : “CharBuf;

OpenFunc : pointer;

InOutFunc: pointer;

FlushFunc: pointer;

CloseFunc: pointer;

UserData : array([l..16] of byte;

Name : array(0..79] of char;
Buffer : CharBuf;
end;

348 Turbo Pascal Owner’s Handbook

Handle contains the file’s handle (when open) as returned by MS-DOS.
The Mode field can assume one of the following “magic” values:

const
fmClosed = $D7BO;
fmInput = $D7BI;
fmOutput = $D7B2;
fmInOut = $D7B3;

fmClosed indicates that the file is closed. fmInput and finOutput indicate that
the file is a text file that has been reset (fmInput) or rewritten (fmOutput).
fmInOut indicates that the file variable is a typed or an untyped file that has
been reset or rewritten. Any other value indicates that the file variable has
not been assigned (and thereby not initialized).

The UserData field is never accessed by Turbo Pascal, and is free for user-
written routines to store data in.

Name contains the file name, which is a sequence of characters terminated
by a null character (#0).

For typed files and untyped files, RecSize contains the record length in
bytes, and the Private field is unused but reserved.

For text files, BufPtr is a pointer to a buffer of BufSize bytes, BufPos is the
index of the next character in the buffer to read or write, and BufEnd is a
count of valid characters in the buffer. OpenFunc, InOutFunc, FlushFunc, and
CloseFunc are pointers to the I/O routines that control the file. The
upcoming section entitled “Text File Device Drivers” provides information
on that subject.

Calling Conventions

Parameters are transferred to procedures and functions via the stack.
Before calling a procedure or function, the parameters are pushed onto the
stack in their order of declaration. Before returning, the procedure or
function removes all parameters from the stack.

The skeleton code for a procedure or function call looks like this:

PUSH Paraml
PUSH Param?

PUSH ParamX
CALL ProcOrFunc

v Chapter 26, Inside Turbo Pascal 349

Parameters are passed either by reference or by value. When a parameter is
passed by reference, a pointer that points to the actual storage location is
pushed onto the stack. When a parameter is passed by value, the actual
value is pushed onto the stack.

Variable Parameters

Variable parameters (var parameters) are always passed by reference—a
pointer points to the actual storage location.

Value Parameters

Value parameters are passed by value or by reference depending on the
type and size of the parameter. In general, if the value parameter occupies
1, 2, or 4 bytes, the value is pushed directly onto the stack. Otherwise a
pointer to the value is pushed, and the procedure or function then copies
the value into a local storage location.

Note: The 8086 does not support byte-sized PUSH and POP instructions, so
byte-sized parameters are always transferred onto the stack as words. The
low-order byte of the word contains the value, and the high-order byte is
unused (and undefined).

An integer type or parameter is passed as a byte, a word, or a double word,
using the same format as an integer-type variable. (For double words, the
high-order word is pushed before the low-order word so that the low-order
word ends up at the lowest address.)

A char-type parameter is passed as an unsigned byte.
A boolean-type parameter is passed as a byte with the value 0 or 1.

An enumerated-type parameter is passed as an unsigned byte if the
enumeration has 256 or fewer values; otherwise it is passed as an unsigned
word.

A real-type parameter (type real) is passed as 6 bytes on the stack, thus
being an exception to the rule that only 1, 2, and 4 byte values are passed
directly on the stack.

An 8087-type parameter (type single, double, extended, or comp) is not
passed on the 8086 stack. Instead, 8087-type parameters are pushed in
order of appearance onto the internal stack of the 8087 numeric co-
processor. This limits to eight the allowable number of 8087-type value

350 Turbo Pascal Owner’s Handbook

parameters of a procedure or function (the 8087 stack is only eight levels
deep).

A pointer-type parameter is passed as a double word (the segment part is
pushed before the offset part so that the offset part ends up at the lowest
address).

A string-type parameter is passed as a pointer to the value.

A set-type parameter is passed as a pointer to an “unpacked” set that
occupies 32 bytes.

Arrays and records with 1, 2, or 4 bytes are passed directly onto the stack.
Other arrays and records are passed as pointers to the value.

Function Results

Ordinal-type function results (integer, char, boolean, and enumeration
types) are returned in the CPU registers: Bytes are returned in AL, words
are returned in AX, and double words are returned in DX:AX (high-order
word in DX, low-order word in AX).

Real-type function results (type real) are returned in the DX:BX:AX
registers (high-order word in DX, middle word in BX, low-order word in
AX).

8087-type function results (type single, double, extended, and comp) are
returned in the 8087 coprocessor’s top-of-stack register (ST(0)).

Pointer-type function results are returned in DX:AX (segment part in DX,
offset part in AX).

For a string-type function result, the caller pushes a pointer to a temporary
storage location before pushing any parameters, and the function returns a
string value in that temporary location. The function must not remove the
pointer.

Near and Far Calls

The 8086 CPU supports two kinds of call and return instructions: near and
far. The near instructions transfer control to another location within the
same code segment, and the far instructions allow a change of code
segment.

A near CALL instruction pushes a 16-bit return address (offset only) onto
the stack, and a far CALL instruction pushes a 32-bit return address (both

Chapter 26, Inside Turbo Pascal 351

segment and offset). The corresponding RET instructions pop only an offset
or both an offset and a segment.

Turbo Pascal will automatically select the correct call model based on the
procedure’s declaration. Procedures declared in the interface section of a
unit are far—they can be called from other units. Procedures declared in a
program or in the implementation section of a unit are near—they can only
be called from within that program or unit.

For some specific purposes, a procedure may be required to be far; for
instance, exit procedures, text file device drivers, and other features that
involve procedure pointers. The $F compiler directive forces the far model
into effect. Procedures and functions compiled in the {$F+]} state are always
far; Turbo Pascal automatically selects the correct model in the {$F-} state.
The default state is {$F-}.

A procedure or function is said to be nested when it is declared within
another procedure or function. Nested procedures and functions always
use the near call model regardless of the setting of the {$F} compiler switch,
since they are only “visible” within a specific procedure or function in the
same code segment.

When calling a nested procedure or function, the compiler generates a
PUSH BP instruction just before the CALL, in effect passing the caller's BP
as an additional parameter. Once the called procedure has set up its own
BP, the caller’s BP is accessible as a word stored at [BP+4]. Using this “link”
at [BP+4], the called procedure can access the local variables in the caller’s
stack frame. If the caller itself is also a nested procedure, it also has a link at
[BP+4], and so on. The following demonstrates how to access local
variables from an inline statement in a nested procedure:

procedure A;
var IntA: Integer;
procedure B;
var IntB: Integer;
procedure C;
var IntC: Integer;

begin inline(
$8B/5$46/<IntC/ { MOV AX,IntC[BP] ;AX = IntA
$8B/$5E/504/ { MOV BX, [BP+4] ;BX = B’s stack frame
$36/%$8B/547/<IntB/ { MOV AX,SS:IntB[BX] ;AX = IntB
$8B/S5E/$04/ { MOV BX, [BP+4] ;BX = B’s stack frame
$36/$8B/S5F/504/ { MOV BX,SS:[BX+4] ;BX = C's stack frame
$36/$8B/$47/<Inth); { MOV AX,SS:IntA[BX] ;AX = IntA

end; {C}

begin (B}

end; (B}

begin {A}

end; (A}

—— e o v

362 Turbo Pascal Owner’s Handbook

Note: Nested procedures and functions cannot be declared with the
external directive.

Entry and Exit Code

Each Pascal procedure and function begins and ends with standard entry
and exit code that creates and removes its activation.

The standard entry code is

PUSH BP ;Save BP
MOV BP,SP ;Set up stack frame
SUB SP,LocalSize ;Allocate local variables

where LocalSize is the size of the local variables. The SUB instruction is only
present if LocalSize is not 0. If the procedure’s call model is near, the
parameters start at BP + 4; if it is far, they start at BP + 6.

The standard exit code is

MOV SP,BP ;De-allocate local variables
POP BP ;Restore BP
RET ParamSize ;Remove parameters and return

where ParamSize is the size of the parameters. The RET instruction is either
a near or a far return, depending on the procedure’s call model.

-Register-Saving Conventions

Procedures and functions should preserve the BP, SP, SS, and DS registers.
All other registers may be modified.

Linking with Assembly Language

Procedures and functions written in assembly language can be linked with
Turbo Pascal programs or units using the $L compiler directive. The
assembly language source file must be assembled into an object file
(extension .OBJ) using an assembler. Multiple object files can be linked with
.a program or unit through multiple $L directives.

Procedures and functions written in assembly language must be declared
as external in the Pascal program or unit, for example,

function LoCase(Ch: char): char; external;

Chapter 26, Inside Turbo Pascal 353

In the corresponding assembly language source file, all procedures and
functions must appear in a segment named CODE, and -the names of the
external procedures and functions must appear in PUBLIC directives.
(CSEG is also accepted as a segment name in place of CODE.)-

You must ensure that an assembly language procedure or function matches
its Pascal definition with respect to call model (near or far), number of
parameters, types of parameters, and result type.

An assembly language source file can declare variables in a segment named

DATA. Such variables are private to the assembly language source file and
cannot be referenced from the Pascal program or unit. However, they

reside in the same segment as the Pascal globals, and can be accessed

through the DS segment register. (DSEG is also accepted as a segment name

in place of DATA.)

All procedures, functions, and variables declared in the Pascal program or
unit, and the ones declared in the interface section of the used units, can be
referenced from the assembly language source file through EXTRN
directives. Again, it is up to you to supply the correct type in the EXTRN
definition.

When an object file appears in a $L directive, Turbo Pascal converts the file
from the Intel relocatable object module format (.OB]) to its own internal
relocatable format. This conversion is possible only if certain rules are
observed:

m All procedures and functions must be placed in a segment named CODE,
and all private variables must be placed in a segment named DATA. All
other segments are ignored, and so are GROUP directives. The segment
definitions can specify BYTE or WORD alignment; when linked, they are
always word-aligned. The segment definitions can optionally specify
PUBLIC (which is ignored), but they should not specify a class name.
(CSEG is also accepted as a segment name in place of CODE, and DSEG
is accepted as a segment name in place of DATA.)

m When declaring variables in the DATA or DSEG segment, always use a
question mark (?) to specify the value, for instance:

Count DW ?
Buffer DB 128 DUP(?)

Turbo Pascal ignores any request to create initialized variables in the
DATA or DSEG segment.

m When referring to EXTRN procedures and functions, do not specify an
offset. For example, the following construct is not allowed:

EXTRN MyProc : NEAR
CALL MyProc + 8

354 Turbo Pascal Owner’s Handbook

Note that this restriction does not apply to EXTRN variables.

m Byte-sized references to EXTRN symbols are not allowed. For example,
this means that the HIGH and LOW operators cannot be used with
EXTRN symbols.

Examples of Assembly Language Routines

The following code is an example of a unit that implements two assembly
language string-handling routines. The UpperCase function converts all
characters in a string to uppercase, and the StringOf function returns a
string of characters of a specified length.

unit.Strings;

interface

function UpperCase (S: string): string;

function StringOf (Ch: char; Count: byte): string;

implementation

{$L STRS}

function UpperCase; external;

function StringOf; external;

end. .

The assembly language file that implements the UpperCase and StringOf
routines is shown next. It must be assembled into a file called STRS.OB]J
before the Strings unit can be compiled. Note that the routines use the far
call model because they are declared in the interface section of the unit.

CODE SEGMENT BYTE PUBLIC
ASSUME CS:CODE
PUBLIC UpperCase,StringOf ;Make them known

; function UpperCase(S: string): string

UpperRes EQU DWORD PTR [BP+10]

UpperStr EQU DWORD PTR [BP+6]

UpperCase PROC FAR
PUSH BP ;Save BP
Mov BP, SP ;Set up stack frame
PUSH DS ;Save DS
LDS SI,UpperStr ;Load string address
LES DI, UpperRes ;Load result address
CLD ;Forward string-ops
LODSB ;Load string length
STOSB ;Copy to result
MOV CL,AL ;String length to CX
XOR CH,CH
JCXZ U3 ;Skip if empty string

Chapter 26, Inside Turbo Pascal

355

Ul: LODSB

SUB
v2: STOSB
LOOP
U3: POP
POP
RET

UpperCase

; function StringOf (Ch: char; Count: byte):

StrOfRes
StrOfchar
StrOfCount

StringOf

PUSH
MOV
LES
MOV
CLD
STOSB
MoV
XOR
MOV
REP
POP
RET

StringOf
CODE ENDS

END

ENDP

EQU DWORD PTR [BP+10]
EQU BYTE PTR [BP+8]
EQU BYTE PTR [BP+6]

PROC FAR

BP

BP, SP

DI, StrOfRes
AL, StrOfCount

CL,AL
CH,CH
AL, StrOfChar
STOSB

4

ENDP

string

;Load character
;Skip if not 'a’..’z’

;Convert to uppercase

;Store in result

;Loop for all characters
;Restore DS

;Restore BP

;Remove parameter and return

;Save BP

;Set up stack frame
;Load result address
;Load count

;Forward string-ops
;Store length

;Count to CX

;Load character

;Store string of characters
;Restore BP

;Remove parameters and return

The next example shows how an assembly language routine can refer to
Pascal routines and variables. The Numbers program reads up to 100
integer values, and then calls an assembly language procedure to check the
range of each of these values. If a value is out of range, the assembly
language procedure calls a Pascal procedure to print it.

program Numbers;

{$L CHECK}
var

Data: array(l..100] of integer;
Count,I: integer;

procedure RangeError (N: integer);

begin

Writeln(’Range error: ',N);

356

Turbo Pascal Owner’s Handbook

end;

procedure CheckRange (Min,Max: integer); external;
begin

Count := 0;

while not Eof and (Count<100) do

begin

Count := Count+l; Readln(Data[Count]);

end;

CheckRange (10,10} ;
end.

The assembly language file that implements the CheckRange procedure is
shown next. It must be assembled into a file called CHECK.OB] before the
NUMBERS program can be compiled. Note that the procedure uses the
near call model because it is declared in a program.

DATA SEGMENT WORD PUBLIC

EXTRN Data:WORD, Count :WORD ;Pascal variables
DATA ENDS
CODE SEGMENT BYTE PUBLIC
ASSUME CS:CODE,DS:DATA
EXTRN RangeError:NEAR ;Implemented in Pascal
PUBLIC CheckRange ;Implemented here
CheckRange PROC NEAR
MOV BX, SP ;Get parameters pointer
MoV AX, SS: [BX+4] ;Load Min
MoV DX, SS: [BX+2) ;Load Max
XOR BX, BX ;Clear Data index
MOV CX, Count ;Load Count
JCXZ SD4 ;Skip if zero
SD1: CMP Data[BX],AX ;Too small?
JL SD2 ;Yes, jump
CMP Data[BX],DX ;Too large?
JLE SD3 ;No, jump
SD2: PUSH AX ;Save registers
PUSH BX
PUSH CcX
PUSH DX
PUSH Data[BX) ;Pass offending value to Pascal
CALL RangeError ;Call Pascal procedure
POP DX ;Restore registers
pop CcX
POP BX
POP AX
SD3: INC BX ;Point to next element
INC BX
L0O0P SDl ;Loop for each item

Chapter 26, Inside Turbo Pascal

357

SD4: RET 4 ;Clean stack and return

CheckRange ENDP
CODE ENDS
END

Inline Machine Code

For very short assembly language subroutines, Turbo Pascal’s inline
statements and directives are very convenient. They allow you to insert
machine code instructions directly into the program or unit text instead of
through an object file.

Inline Statements

An inline statement consists of the reserved word inline followed by one
or more inline elements, separated by slashes and enclosed in parentheses:

inline (10/$2345/Count+1/Data-0ffset);

Here's the syntax of an inline statement:

inline statement

inline element

Each inline element consists of an optional size specifier, < or >, and a
constant or a variable identifier, followed by zero or more offset specifiers
(see the syntax that follows). An offset specifier consists of a + or a —
followed by a constant.

inline element

constant

v

variable identifier

358 Turbo Pascal Owner’s Handbook

Each inline element generates 1 byte or one word of code. The value is
computed from the value of the first constant or the offset of the variable
identifier, to which is added or subtracted the value of each of the constants
that follow it.

An inline element generates 1 byte of code if it consists of constants only
and if its value is within the 8-bit range (0..255). If the value is outside the
8-bit range or if the inline element refers to a variable, one word of code is
generated (least-significant byte first).

The < and > operators can be used to override the automatic size selection
we described earlier. If an inline element starts with a < operator, only the
least-significant byte of the value is coded, even if it is a 16-bit value. If an
inline element starts with a > operator, a word is always coded, even
though the most-significant byte is 0. For example, the statement

inline(<$1234/>$44);
generates 3 bytes of code: $34,$44,$00.

The value of a variable identifier in an inline element is the offset address of
the variable within its base segment. The base segment of global
variables—variables declared at the outermost level in a program or a
unit—and typed constants is the data segment, which is accessible through
the DS register. The base segment of local variables—variables declared
within the current subprogram—is the stack segment. In this case the
variable offset is relative to the BP register, which automatically causes the
stack segment to be selected.

Note: Registers BP, SP, SS, and DS must be preserved by inline statements;
all other registers can be modified.

The following example of an inline statement generates machine code for
storing a specified number of words of data in a specified variable. When
called, procedure FillWord stores Count words of the value Data in memory,
starting at the first byte occupied by Dest.

procedure FillWord(var Dest,Count,Data: word);

begin
inline(

$C4/S$BE/Dest/ : { LES DI,Dest[BP] }
$8B/$8E/Count/ { MOV CX,Count [BP] }
$8B/$86/Data/ { MOV AX,Data[BP] }
$FC/ { CLD }
$F3/$AB); { REP STOSW }

end;

Inline statements can be freely mixed with other statements throughout the
statement part of a block.

Chapter 26, Inside Turbo Pascal 359

Inline Directives

Inline directives let you write procedures and functions that expand into a
given sequence of machine code instructions whenever they are called.
These are comparable to macros in assembly language. The syntax for an
inline directive is the same as that of an inline statement:

inline directive ——» |inline statement

When a normal procedure or function is called (including one that contains
inline statements), the compiler generates code that pushes the parameters
(if any) onto the stack, and then generates a CALL instruction to call the
procedure or function. However, when you call an inline procedure or
function, the compiler generates code from the inline directive instead of
the CALL. Here’s a short example of two inline procedures:

procedure DisableInterrupts; inline($FA); { CLI }
procedure EnableInterrupts; inline($FB); { STI }

When DisableInterrupts is called, it generates 1 byte of code—a CLI
instruction.

Procedures and functions declared with inline directives can have
parameters; however, the parameters cannot be referred to symbolically in
the inline directive (other variables can, though). Also, because such
procedures and functions are in fact macros, there is no automatic entry
and exit code, nor should there be any return instruction.

The following function multiplies two integer values, producing a longint
result:

function LongMul (X,Y : integer): longint;

inline(
$58/ { POP AX ;Pop Y }
$5a/ { POP DX ;Pop X }
SF7/SEA) ; { IMUL DX ;DX : AX = X*Y }

Note the lack of entry and exit code and the missing return instruction.
These are not required, because the 4 bytes are inserted into the instruction
stream when LongMul is called.

Inline directives are intended for very short (less than 10 bytes) procedures
and functions only.

Because of the macro-like nature of inline procedures and functions, they
cannot be used as arguments to the @ operator and the Addr, Ofs, and Seg
functions.

360 Turbo Pascal Owner’s Handbook

Direct Memory and Port Access

The Mem, MemW, and MemL Arrays

Turbo Pascal implements three predefined arrays, Mem, MemW, and MemL,
which are used to directly access memory. Each component of Mem is a
byte, each component of MemW is a word, and each component of MemL is
a longint.

The Mem arrays use a special syntax for indexes: Two expressions of the
integer-type word, separated by a colon, are used to specify the segment
base and offset of the memory location to access. Some examples include

Mem[$0040:$0049] := 7;
Data := MemW[Seg(V):0fs(V)];
MemLong := MemL[64:3*4];

The first statement stores the value 7 in the byte at $0040:$0049. The second
statement moves the word value stored in the first 2 bytes of the variable V
into the variable Data. The third statement moves the longint value stored
at $0040:5000C into the variable MemLong.

The Port and PortW Arrays

For access to the 80x86 CPU data ports, Turbo Pascal implements two
predefined arrays, Port and PortW. Both are one-dimensional arrays, and.
each element represents a data port, whose port address corresponds to its
index. The index type is the integer-type word. Components of the Port
array are of type byte, and components of the PortW array are of type word.

When a value is assigned to a component of Port or PortW, the value is
output to the selected port. When a component of Port or PortW is
referenced in an expression, its value is input from the selected port. Some
examples include:

Port{$20] := $20;
Port [Base] := Port[Base] xor Mask;
while Port{$B2] and $80 = 0 do { Wait };

Use of the Port and PortW arrays is restricted to assignment and reference
in expressions only, that is, components of Port and PortW cannot be -used
as variable parameters. Furthermore, references to the entire Port or Port W
array (reference without index) are not allowed.

Chapter 26, Inside Turbo Pascal 361

Interrupt Handling

The Turbo Pascal runtime library and the code generated by the compiler
are fully interruptible. Also, most of the runtime library is reentrant, which
allows you to write interrupt service routines in Turbo Pascal.

Writing Interrupt Procedures

Interrupt procedures are declared with the interrupt directive. Every
interrupt procedure must specify the following procedure header (or a
subset of it, as explained later):

procedure IntHandler(Flags,CS,IP,AX,BX,CX,DX,SI,DI,DS,ES,BP: word);
- interrupt;
begin

end;

As you can see, all the registers are passed as pseudo-parameters so you

-can use and modify them in your code. You can omit some or all of the
parameters, starting with Flags and moving towards BP. It is an error to
- declare more parameters than are listed in the preceding example or to
omit a specific parameter without also omitting the ones before it (although
no error is reported). For example:

procedure IntHandler (DI,ES,BP : word);
procedure IntHandler(SI,DI,DS,ES,BP : word);

On entry, an interrupt procedure automatically saves all registers
(regardless of the procedure header) and initializes the DS register:

PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH SI
PUSH DI
PUSH DS
PUSH ES
PUSH BP
MOV BP,SP

SUB SP,LocalSize
MoV AX,SEG DATA
MOV DS, AX

362 Turbo Pascal Owner’s Handbook

‘Notice the lack of a STI instruction to enable further interrupts. You should
code this yourself (if required) using an inline statement. The exit code
restores the registers and executes an interrupt-return instruction:

MoV Sp,BP
POP BP
POP ES
POP DS
POP DI
POP SI
POP DX
POP cX
POP BX
POP AX
IRET

An interrupt procedure can modify its parameters. Changing the declared
parameters will modify the corresponding register when the interrupt
handler returns. This can be useful when you are using an interrupt
handler as a user service, much like the DOS INT 21H services.

Interrupt procedures that handle hardware-generated interrupts should
refrain from using any of Turbo Pascal’s input and output or dynamic
memory allocation routines, because they are not reentrant. Likewise, no
DOS functions can be used, because DOS is not reentrant.

Text File Device Drivers

As mentioned in Chapter 8, Turbo Pascal allows you to define your own
‘text file device drivers. A text file device driver is a set of four functions that
completely implement an interface between Turbo Pascal’s file system and
some device.

The four functions that define each device driver are Open, InOut, Flush,
and Close. The function header of each function is

function DeviceFunc(var F: TextRec): integer;

where TextRec is the text file record type defined in the earlier section, “File
Types.” Each function must be compiled in the {$F+} state to force it to use
the far call model. The return value of a device interface function becomes
the value returned by IOResult. The return value of 0 indicates a successful
operation.

To associate the device interface functions with a specific file, you must
write a customized Assign procedure (like the AssignCrt procedure in the
Crt unit). The Assign procedure must assign the addresses of the four
device interface functions to the four function pointers in the text file

Chapter 26, Inside Turbo Pascal 363

variable. In addition, it should store the fmClosed “magic” constant in the
Mode field, store the size of the text file buffer in BufSize, store a pointer to
the text file buffer in BufPtr, and clear the Name string.

Assuming, for example, that the four device interface functions are called
DevOpen, DevinOut, DevFlush, and DevClose, the Assign procedure might
look like this:

procedure AssignDev(var F: Text);

begin
with TextRec(F) do
begin
Mode = fmClosed;
BufSize = 5izeOf (Buffer);
BufPtr := @Buffer;
OpenFunc := @DevOpen;
InQutFunc := @DevInOut;
FlushFunc := @DevFlush;
CloseFunc := @DevClose;
Name[0] = #0;
end;
end;

The device interface functions can use the UserData field in the file record to
store private information. This field is not modified by the Turbo Pascal file
system at any time.

The Open Function

The Open function is called by the Reset, Rewrite, and Append standard
procedures to open a text file associated with a device. On entry, the Mode
field contains fmlnput, fmOutput, or fmInOut to indicate whether the Open
function was called from Reset, Rewrite, or Append.

The Open function prepares the file for input or output, according to the
Mode value. If Mode specified fmInOut (indicating that Open was called from
Append), it must be changed to fmOutput before Open returns.

Open is always called before any of the other device interface functions. For
that reason, Assign only initializes the OpenFunc field, leaving initialization
of the remaining vectors up to Open. Based on Mode, Open can then install
pointers to either input- or output-oriented functions. This saves the InOut,
Flush, and Close functions from determining the current mode.

364 Turbo Pascal Owner’s Handbook

The InOut Function

The InOut function is called by the Read, Readln, Write, Writeln, Page, Eof,
Eoln, SeekEof, SeekEoln, and Close standard procedures and functions
whenever input or output from the device is required.

When Mode is fmInput, the InOut function reads up to BufSize characters
into BufPtr”, and returns the number of characters read in BufEnd. In
addition, it stores 0 in BufPos. If the [nOut function returns 0 in BufEnd as a
result of an input request, Eof becomes True for the file.

When Mode is fmOutput, the InOut function writes BufPos characters from
BufPtr”, and returns 0 in BufPos.

The Flush Function

The Flush function is called at the end of each Read, Readlh, Write, and
Writeln. It can optionally flush the text file buffer.

If Mode is fmInput, the Flush function can store 0 in BufPos and BufEnd to
flush the remaining (un-read) characters in the buffer. This feature is
seldom used.

If Mode is fmOutput, the Flush function can write the contents of the buffer,
exactly like the InOut function, which ensures that text written to the device
appears on the device immediately. If Flush does nothing, the text will not
appear on the device until the buffer becomes full or the file is closed.

The Close Function

The Close function is called by the Close standard procedure to close a text
file associated with a device. (The Reset, Rewrite, and Append procedures
also call Close if the file they are opening is already open.) If Mode is
fmOutput, then before calling Close, Turbo Pascal’s file system calls InOut to
ensure that all characters have been written to the device.

Examples of Text File Device Drivers

The following unit implements a text file device driver for the
communication ports (serial ports) of an IBM PC:

unit AuxInOut;
interface
uses Dos;

Chapter 26, Inside Turbo Pascal 365

procedure AssignAux({var F: Text; Port,Params: word);
implementation
{$R-,S-}
type
AuxRec = record
Port,Params: word;
Unused: array{l..12] of byte;
end;

procedure AuxInit (Port,Params: word);

inline(
$58/ { POP AX ;Pop parameters }
$58/ { POP DX ;Pop port number }
$B4/500/ { MOV AH,0 ;Code for initialize }
$CD/$14); { INT 14H ;Call BIOS }
function AuxInChar (Port: word): char;
inline(
$58/ { POP DX ;Pop port number }
$B4/$02/ { MOV AH,2 ;Code for input }
$CD/$14); { INT 14H ;Call BIOS }
procedure AuxOutChar (Port: word; Ch: char);
inline(
$58/ { POP AX ;Pop character }
$51/ { POP DX ;Pop port number }
$B4/$01/ { MOV RH,1 ;Code for output }
$CD/$14); { INT 14H ;Call BIOS }
function AuxInReady(Port: word): boolean;
inline(
$58/ { POP DX ;Pop port number }
$B4/$03/ { MOV AH,3 ;Code for status }
$CD/$14/ { INT 14H ;Call BIOS }
$88/SE0/ { MOV AL,AH ;Get line status in AH }
$24/501); { AND AL,1 ;Isolate Data Ready bit }
{SF+}
function AuxInput (var F: TextRec): integer;
var
P: word;
begin
with F,AuxRec (UserData) do
begin
P = 0;
while AuxInReady (Port) and (P<BufSize) do
begin
BufPtr”[P] := AuxInChar(Port); Inc(P);
end;
BufPos := 0; Bufend := P;
end;
AuxInput := 0;
end;

function AuxOutput (var F: TextRec): integer;
var
P: word;

366 Turbo Pascal Owner’s Handbook

begin
with F,AuxRec(UserData) do

begin
P := 0;
while P<BufPos do
begin

AuxOutChar (Port, BufPtr”[P]); Inc(P);

end;
BufPos := 0;

end;

AuxOutput := 0;

end;

function AuxIgnore(var F: TextRec): integer;

begin
AuxIgnore := 0;
end;

function AuxOpen(var F: TextRec): integer;

begin
with F,AuxRec{UserData) do
begin
AuxInit (Port,Params);
if Mode=fmInput then
begin
InOutFunc := @AuxInput;
FlushFunc := @AuxIgnore;
end else
begin
Mode := fmOutput;
InOutFunc := @AuxOutput;
FlushFunc := @AuxOutput;
end;
CloseFunc := @AuxIgnore;
end;
AuxOpen := 0;
end;

{5F-}

procedure AssignAux;
begin
with TextRec(F) do
begin
Handle := SFFFF;
Mode := fmClosed;
BufSize := Sizeof (Buffer);
BufPtr := @Buffer;
OpenFunc := @GAuxOpen;
AuxRec (UserData) .Port := Port;
AuxRec (UserData) .Params := Params;
Name[0] := #0;
end;
end;
end.

Chapter 26, Inside Turbo Pascal

367

The TextRec record is defined in the Dos unit. The first two words of the 16-
byte UserData array are used for storing the communications port number
and parameter byte. The remaining 12 bytes are not used. Note that the
AuxRec record is used only for typecasting.

The AuxInit procedure initializes a specified communications port
according to a specified parameter byte. The AuxInChar function reads a
character from the specified port. The AuxOutChar procedure outputs a
character to the specified port. The AuxInReady function returns True if a
character is ready to be read from the specified port. Notice the use of inline
directives to implement these procedures and functions. For further details
on the communication ports, refer to the IBM PC Technical Reference Manual.

AssignAux initializes a specified text file variable to refer to a specified
communication port with a specified parameter byte. Port numbers 0 and 1
correspond to COM1 and COM2. The parameter byte is described in the
IBM PC Technical Reference Manual.

AuxOpen initializes the selected communication port and sets up the
function pointers according to the Mode field. Note that for output,
FlushFunc is set to the same address as InOutFunc, causing the text file
buffer to be flushed after each Write or Writeln.

AuxInput inputs up to BufSize characters from the selected port, and
AuxOutput outputs the contents of the buffer to the selected port.

AuxIgnore is used in those cases where no special action is required, such as
for Close and for Flush (when in input mode).

The following short program uses the AuxInOut unit to write a string to
one of the communication ports. Through the AssignAux procedure, the
Coml1 file is associated with the COM1 port using 1200 baud, no parity, 1
stop bit, and 8 data bits:

program TestAux;
uses AuxInOut;
var
Coml: Text;
begin
AssignAux (Coml,0,$83);
Rewrite (Coml);
Writeln(Coml,’Device Drivers are fun!’);
Close{Coml);
end.

Exit Procedures

By installing an exit procedure, you can gain control over a program’s
termination process. This is useful when you want to make sure specific

368 Turbo Pascal Owner’s Handbook

actions are carried out before a program terminates; a typical example is
updating and closing files.

The ExitProc pointer variable allows you to install an exit procedure. The
exit procedure always gets called as a part of a program’s termination,
whether it is a normal termination, a termination through a call to Halt, or a
termination due to a runtime error.

An exit procedure takes no parameters, and must be compiled in the {$F+}
state to force it to use the far call model.

When implemented properly, an exit procedure actually becomes part of a
chain of exit procedures. This chain makes it possible for units as well as
programs to install exit procedures. Some units install an exit procedure as
part of their initialization code, and then rely on that specific procedure to
be called to clean up after the unit; for instance, to close files or to restore
interrupt vectors. The procedures on the exit chain get executed in reverse
order of irstallation. This ensures that the exit code of one unit does not get
executed before the exit code of any units that depend upon it.

To keep the exit chain intact, you must save the current contents of ExitProc
before changing it to the address of your own exit procedure. Furthermore,
just before returning, your exit procedure must re-install the saved value of
ExitProc. The following program demonstrates a skeleton method of
implementing an exit procedure:

program Testexit;

var
ExitSave: pointer;

{$F+}

procedure MyExit; {S$F-}
begin

ExitProc := ExitSave;

end;
begin
ExitSave := ExitProc;
ExitProc := @MyExit;
end.

On entry, the program saves the contents of ExitProc in ExitSave, and then
installs the MyExit exit procedure. After having been called as part of the
termination process and just before returning, MyExit re-installs the
previous exit procedure.

The termination routine in the runtime library keeps calling exit procedures
until ExitProc becomes nil. To avoid infinite loops, ExitProc is set to nil

Chapter 26, Inside Turbo Pascal 369

before every call, so the next exit procedure is called only if the current exit
procedure assigns an address to ExitProc. If an error occurs in an exit
procedure, the exit procedure will not yet have assigned a new value to
ExitProc, since this is done just before it returns.

An exit procedure may learn the cause of termination by examining the
ExitCode integer variable and the ErrorAddr pointer variable.

In case of normal termination, ExitCode is zero and ErrorAddr is nil. In case
of termination through a call to Halt, ExitCode contains the value passed to
Halt and ErrorAddr is nil. Finally, in case of termination due to a runtime
error, ExitCode contains the error code and ErrorAddr contains the address
of the statement in error.

The last exit procedure (the one installed by the runtime library) closes the
Input and Output files, and restores the interrupt vectors that were captured
by Turbo Pascal. In addition, if ErrorAddr is not nil, it outputs a runtime
error message.

If you wish to present runtime error messages yourself, install an exit
procedure that examines ErrorAddr and outputs a message if it is not nil. In
addition, before returning, make sure to set ErrorAddr to nil, so that the
error is not reported again by other exit procedures.

Once the runtime library has called all exit procedures, it returns to DOS,
passing as a return code the value stored in ExitCode.

Automatic Optimizations

Turbo Pascal performs several different types of code optimizations,
ranging from constant folding and short-circuit Boolean expression
evaluation all the way up to smart linking. Here are some of the types of
optimizations performed.

Constant Folding

If the operand(s) of an operator are constants of an ordinal type, Turbo
Pascal evaluates the expression at compile time. For example, X := 3 + 4 * 2
produces the exact same code as X := 11.

Likewise, if the operand of an Abs, Sqr, Succ, Pred, Odd, Lo, Hi, or Swap
function call is a constant of an ordinal type, the function is evaluated at
compile time.

370 Turbo Pascal Owner’s Handbook

If an array index expression is a constant, the address of the component is
evaluated at compile time. For example, accessing Data[5,5] is just as
efficient as accessing a simple variable.

Constant Merging

Using the same string constant two or more times in a statement part
generates only one copy of the constant. For example, two or more
Write(’Done’) statements in the same statement part will reference the same
copy of the string constant ‘Done’.

Short-Circuit Evaluation

Turbo Pascal implements short-circuit Boolean evaluation, which means
that evaluation of a Boolean expression stops as soon as the result of the
entire expression becomes evident. This guarantees minimum execution
time, and usually minimum code size. Short-circuit evaluation also makes
possible the evaluation of constructs that would not otherwise be legal; for
instance:

while (I<=Length(S)) and (S[I]<>’ ’) do Inc(I);
while (P<>nil) and (P".Value<>5) do P:=P".Next;

In both cases, the second test is not evaluated if the first test is False.

The opposite of short-circuit evaluation is complete evaluation, which is
selected through a {$B+} compiler directive. In this state, every operand of a
Boolean expression is guaranteed to be evaluated.

Order of Evaluation

As permitted by the Pascal standards, operands of an expression are
frequently evaluated differently from the left to right order in which they
are written. For example, the statement

I:=F(J) div G(J);

where F and G are functions of type integer, causes G to be evaluated before
F, since this enables the compiler to produce better code. Because of this, it
is important that an expression never depend on any specific order of
evaluation of the embedded functions. Referring to the previous example, if
F must be called before G, use a temporary variable:

T:=F(J); I:=T div G(J);

Chapter 26, Inside Turbo Pascal 371

Note: As an exception to this rule, when short-circuit evaluation is enabled
(the {$B-} state), boolean operands grouped with and or or are always
evaluated from left to right.

Range-Checking

Assignment of a constant to a variable and use of a constant as a value
parameter is range-checked at compile time; no runtime range-check code
is generated. For example, X:=999, where X is of type Byte, causes a
compile-time error.

Shift instead of Multiply

The operation X * C, where C is a constant and a power of 2, is coded using
a Shl instruction.

Likewise, when the size of an array’s components is a power of 2, a Shl
instruction (not a Mul instruction) is used to scale the index expression.

Dead Code Removal

Statements that are known never to execute do not generate any code. For
example, these constructs don’t generate any code:

if False then statement
while False do statement

Smart Linking

The linker automatically removes unused code on a per-procedure basis;
that is, procedures and functions that are part of a compilation but never
get called are removed in the .EXE file.

372 Turbo Pascal Owner’s Handbook

27

Turbo Pascal Reference Lookup

This chapter describes all the procedures and functions of Turbo Pascal 4.0.
For your convenience, they're arranged alphabetically. Here’'s a sample
layout so you can easily understand the format of the lookup; note that
only the relevant items are listed in each entry.

Sample procedure What unit it occupies
Function What it does

Declaration How it’s declared; italicized items are user-defined
Result type What it returns if it’s a function

Remarks General information about the procedure or function
Restrictions Things to be aware of

Differences From 3.0

See also Related procedures/functions, etc.

Example Sample program or code fragment

Note: When compiling in numeric processing mode, {$N+}, the return
values of the floating point routines in the System unit (Sqrt, Pi, Sin, and so
on) are of type extended instead of real.

Chapter 27, Turbo Pascal Reference Lookup 373

Abs function

Function Returns the absolute value of the argument.
Declaration Abs (x)
Result type Same type as parameter.
Remarks x is an integer-type or real-type expression. The result,
of the same type as x, is the absolute value of x.
Example var
r: real;
i: integer;
begin
r := Abs(-2.3); { 2.3}
i := Abs(-157); { 157 }
end.
Addr function
Function Returns the address of a specified object.
Declaration Addr (x)
Result type pointer
Remarks x is any variable, or a procedure or function identifier.
The result is a pointer that points to x. Like nil, the result
of Addr is assignment compatible with all pointer types.
Note: The @ operator produces the same result as Addr.
See also Ptr
Example var p: pointer;

begin
p := Addr(p);
end.

{ Now points to itself }

Append procedure

Function

374

Opens an existing file for appending.

Turbo Pascal Owner’s Handbook

Declaration

Remarks

See also

Example

Append (var f: text)

f is a text-file variable that must have been associated
with an external file using Assign.

Append opens the existing external file with the name
assigned to f. It is an error if there is no existing external
file of the given name. If f was already open, it is first
closed and then re-opened. The current file position is
set to the end of the file.

If a Ctrl-Z (ASCII 26) is present in the last 128-byte block
of the file, the current file position is set to overwrite the
first Ctr-Z in the block. In this way, text can be appended
to a file that terminates with a Cirl-Z

If f was assigned an empty name, such as Assign(f,”),
then, after the call to Append, f will refer to the standard
output file (standard handle number 1).

After a call to Append, f becomes write-only, and Eof(f) is
always True.

With {$I-}, IOResult will return a 0 if the operation was
successful; otherwise, it will return a nonzero error code.

Reset, Rewrite

var f: text;
begin
Assign(f, ‘TEST.TXT');
Rewrite(f); { Create new file }
Writeln(f, 'original text’);
Close(f); { Close file, save changes }
Append(f); { Add more text onto end }
Writeln(f, 'appended text’);
Close (f); { Close file, save changes }
end.

Arc procedure Graph

Function

Declaration

Draws a circular arc around start angle to end angle,
using (x,y) as the center point.

Arc(X, Y: integer; StAngle, EndAngle, Radius: word)

Chapter 27, Turbo Pascal Reference Lookup 375

Remarks Draws a circular arc around (x,y), with a radius of
Radius. The Arc travels from StAngle to EndAngle and is
drawn in the current drawing color.

Each graphics driver contains an aspect ratio that is used
by Circle, Arc, and PieSlice. A start angle of 0 and an end
angle of 360 will draw a complete circle. The angles for
Arc, Ellipse, and PieSlice are counterclockwise with 0
degrees at 3 o’clock, 90 degrees at 12 o’clock, and so on.
Information about the last call to Arc can be retrieved
with a call to Get ArcCoords.

Restrictions Must be in graphics mode.
See also Circle, Ellipse, Get ArcCoords, Get AspectRatio, PieSlice
Example uses Graph;

var

Gd, Gm: integer;
Radius: integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, '’);
if GraphResult <> grOk then
Halt (1);
for Radius := 1 to