COHERENT

A Multi-User, Multi-Tasking Operating System
for the IBM-PC/AT and Compatible 286 or
386 Based Computers.

Mark Williams
Company

© 1982, 1990 by Mark Williams Company.

All rights reserved.

This publication conveys information that is the property of Mark Williams Company. It shall not be copied,
reproduced or duplicated in whale or in part without the express written permission of Mark Williams Company.
Mark Williams Company makes no warranty of any kind with Tespect to this material and disclaims any implied war-
ranties of merchantability or fitness for any particular purpose, .

COHERENT and csd are trademarks of Mark Williams Company. Unix is a trademark of AT&T. All other
products are trademarks or registered trademarks of the respective holders,

Revision 3 Printing 54321

Fublished by Mark Williams Company, 60 Revere Drive, Northbrook, Ilinois 60062,

E-mail: uunet!mwelsupport (Technical Support)
uunet!mwelsales (Gereral Information)

BIX: join mwe

CompuServ: - 76256427

Printed in the US.A.

Preface

COHERENT is the work of a large number of exceptionally talented people. The
development of a multi-user, multi-tasking operating system is a daunting task. Creating

TCOHERENT took an enormous effort by all involved: The systéem and tianual are

dedicated to those who dedicated themselves to COHERENT,
These people include the following:

Jay Alter

Bob Beals
Luddyne Blue
Fred Butzen
Allan Cornish
Ella Dashevsky
Michael Farley
Johann George
Walter Grogan
Randall Howard
J.T. Kittridge
Dave Levine
Scott Moody
Gerson Negron
Douglas Peterson
Vladimir Smelyansky
Julie Stewart
Trevor Thompson
Bill Witt

Riyaz Asaria
James Behr
Barry Bowen
Henry Cejtin
Roger Critchlow
Tom Duff

Kim Fruin
Daniel Glasser
Robert Hemedinger
Mary Karabatsos
William Lederer
Jeanne Lewis
Esther Munoz
Steve Ness
Frank Pfeiffer
Hal Snyder
Robert Swartz
Diane Tracey
Jim Yonan

Norman Bariek

- Chris Berrios

Denise Buirge
David Conroy
Richard Critchlow
Mark Epstein
Charles Fiterman
Michael Griffin
Scott Hermes
Nancy Kenston
Irene Lee

Karen McBride
Tim Murphy -
Ciarain O’Donnell
Norma Reyes
Michael Spertus
Angus Telfer

Rico Tudor

Contents

1. Introduction o v e e s st e i e e 1
Hardware Requirements, .. cvve o P 1
How ToUse ThisManual v v v v v v nn v o nnvrosoonsassonaoeassonanes 2

The LeXie0n. & v o v v o o v e s e n s e n s s s s s o asanssssrstosnsssasass 2
User Registration and Reaction Report vo v v einin e eeenn 2
Technical SUPPOTE . o . v v v i it it i e et n s s e e s e 2
Instaling COHERENTo iiiiie i e iiieie e tas it 8

What Does Installation Do? . . . o . v v v vt it e st s s 4

Getting Started. cv v N J R 4

Entering the Serial Number, oo oo B e e e 5

Settingthe Dateand Time. o v i i e ciiir e 5

BackUpthe Hard Disk.o ot ii vt oo mien e 7

Usethe COHERENT Bootstrap?. . . . o v v o v v v v s v s s amonaaanono e saeenn 7

HowaDiskIsOrganized.o vt i it st e s 8

Partitioningthe Disk'. vt oo ettt e 10

ChangmgOneLogmalPartmon...........................L_ 12

Changing All Logical Partitions.o oo ien o 12

Scanning for Bad BlockS . . o v v v v v v e it 13

Creating COHERENT File_ Sysbems T S TP S I I o 13

Mounting File Systems.. v oo v n s e e e e e e 13—

Rebooting . . . oo i ie ittt ea s e e ... 138

CopyingFiles.cuoivneennn s e e e 14

Touring the COHERENT File System.o cvviinene s ... 14
Whereto GoFromHere o v vt v et v e n s o s anns e 14

2. Using the COHERENT System av v vrenn e e ar e “.. 15

Whatis COHRRENT?ttt s cea et sassr s st astorama e 15

What is an Operating System?o v i 15

COHERENT’s Design Philosophy v v v v v vin o men s 16

COHERENT Propertigscoeovenmranenson et a e 17
HowDolBegin?. ...t o o vniannnensarnrennoassonen e e e Lo 17

Terminals and COHERENT. . 4. vt vt v cmnn st enan e e e o ansan 17

SpeclalTermmalKeys...............................' 18

loginLoggingIn. . . oo i v et e 18

Try COHERENT Commandsv0 - i e e e 19

Commandsto COHERENT | i e m s .. 20

help, man: Help with Commands,o v v v a i rnrs i 21

LoggingOut. . ..o v o n v i e ine s s 21

e

ii The COHERENT System

Features of COHERENTt 22
Information Storage and Retrieval e s e 22
Redirecting Input and OQutput. e 28
L 23
Processing Informationin Files. 24
DocumentPreparaﬁon......................................,.. 25
ProgrammingTools i o 25
Electronic Commumication. 25
Other COHERENT Features oo v it 26

Filesand Directories. 0ttt 26
FilleNames i 26
YourDirectory 27
PathNames. e i 27
mkdir, cd, pwd: More Dirvectories. e 28
my, ep: Moving Files Between Directories e R 1 |
chmod: File Protection Mode, P ..., 88
rm, rmdir: Removing Files and Directories. LU ER P
du, df How Much Space?o 34
In:Linking Files 36

Introduction to COHERENT Commands0.''oovvoonnn 35
Lower-Case Sensitivity in Commands 35
cat: List Contentsofa File. 36
scat: List FilesontheScreen 0.0 .. 36
who:WholsOntheSystem. 0000 36
Is, le: Listing Your Directory. e e e et e a7
msg: Send a Message e e e 39
mesg: Hear No Messages. it nie e, 39
write: Electronic Dialogue 39
mail: Send an Electronic Letter., e e e e 40
prlpe:Print Files, 42
echo; Echothe Command Line 43
ed: TextLineEditor. i, 43
MicroEMACS: Text Screen Editor e e 43
grep: Find Patternsin Text Files. 45
date: Printthe Date. 46
time: Measure Command Execution Time 46
passwd: Change Your Password. 47
stty: Change Terminal Behavior 47

Introducing sh, the COHERENT Shell.0 v en s 48
Simple Commands. e 48
Special Characters, 49
Running Commands in the Background 49
L 12 50
Substitutions e 52
File Name Substitution. 52
Parameter Substitution., 55
Shell Variable Substitution0 .. 56
Command Substitution. 59

Table of Contents iii

dot.:Read Commands. v vt it oot m s s me oo s e B0
Values Returned by Commands. e e e e e 61
i test; Condition Testingo v v i it st it i i e 61
Executing Commands Conditionallyo iiieen s nn.nn 62
i ControlFlow , e e i et m e e ey 63
i for: Execmte A 00D . o v v v vt e s i it et 63
| if; Execute Conditionally o ittt e e e 64
| while: Execute a Loop. i ittt i e e e AP 66
‘ until: Another Looping Comstruct. vt e it it et 66
i case: Serial Conditional Executioni ity 66
SUIMIMATY . v v o o v v enmemes o se s ama e s a s o amaees e s ... 67
Creating and Using Programs oonet e 68
Basic Steps in COHERENT Programming v v e v oo oo aann 68
Creating the Program SoUree v oo i v e it i i e 68
cc: Compilingthe Program,o ii ittt e 69
md: Macro Processing. o .o v v ittt e e 70
make: Building Larger Programs,o oo v o v i e it o it 70
db: Debuggingthe Program v v it te v e v n e mun o 70
e A-Samiple-Problem-Solved -With - COHERENT . §) I
BulldaDicHomary v v v v v vt v i v i et s e s e a s e e 71
Maintaining the Dietionaryo e e 74
Usingthe Dictionaryt 75
L0775 T e + SR AR 75
3. COHERENT Administrator’s Guide i, 77
Shutting Down COHERENT. it ai e e 77
Booting COHERENTt nrennnn e e e Y £ -
SUPEIUSEL . . . v o i v vt a e vt teae s es s aa e s s 79
Dayto-DayOperation. e e e m e we. . 80
Preparing System Dumpso e e 80
Preparingthe Diskettes.o it e 81
Backingup Information Daily. oo 82
Restoring Information.ottt s 84
Conserving Disk Spacet i vt e e e e e 84
System Haltso v e v st i e 85
System Error Messages. v oo v v en e nen e enan e 86
Establishinga UserBase vttt i it ii e 86
Maintainingthettys File o e 87
Configuring Terminals oo v v v v i v i e r it a e ae s e e 88
ttys: FileFormat. v sttt i e e e 88
Communicating With Users oo e e e e e e 89
wall: Broadeast Messageo o v v s v ntee e nnnr o e e e e 89
motd: Messageof theDay it it i 90
msgs: Cumulative Message Board i i 90
System Accotnbing.0 vt i ittt e 91
ac: Login ACCOUNEINE © o v ot v v b e et tee ot ea et o e 91
sa: Processing Accounting oo vttt i e i e 92
cron; Scheduling Events. o0 i v ot it ittt e e 95
File System Backlp v oo v v et vmires i e an e e 06

S e s .- E O R R .. 97

iv The COHERENT System

Dump Levels oo 97
dumpdate: Dump Dates., .. e 28
restor: Restoring Files., 98
dumpdir: List Dump Directoryttt 99
Tools for the Administrator, 98
Ps: List Active Processeso ...ttt e e e e 29
kill: Terminate Processes.t in it 101
System Security. e 101
Passwords., .. 10
FileProtectont 102
Changing File Protectionsot 102
Eneryption. 103

A Tour Through the File System e e e e e e, 103
' General File System Layout.00, 103
R 103
OB, e, 103
B o e e e e e e e SR R R 104
JOC e 104
b 104
JUBT. o e, 104

DU e e, 105
How Booting Works, 105
Startup Bvemts e e . 105
Files Used During Startup. e e 106
Devices, Files,and Drivers . ., FEPE. 107
Character—SpeclalFiles................................'...-.... 108
tty Processing. e e e e e 108
Creating and Mounting F11e Bystems. 108
fdformat: Formata Diskette. it 108
mkfs:Createa File System, i 108
mount: Mounting File Systems0 . 111
File System Integrity. e, 111
HowaFileSystemIsBuilt., 112
fsck: Check File System Consistency. 0., 113
Conclusion. 114
4. Introduction tothe awk Language. 0@\ 115
Using awk e 115
Program Structure. ittt e e 116
Recordsand Fields. ittt 116
Command Line Argumentst i, 118
Printingwithawk 119
Printing Individval Fields 119
Changing the Output Field and Record Separators. 126
Printing Predefined Variables. uuuu.. ... 120
Redirecting Qutput 121

.- FormattingOutput e 121
Piping Output. e .. 122
awk Pattern Scanming. 122

Table of Contents v

PaEEIIIS .« & o s v a e v v m e ae et aa e 123
Arithmetic Relational EXpressions . . v v o v o v v r e v vt n v oo aeennnesannon 125
Boolean Combinationsof Egpressions oo v v oo, 125
Pattern RANEES. o o . o v v v e v n v vesa s o e s s sas et n s e 126
Specifying awk ACHONSot i i e 126
FUNCHOMS. © . . v s v v o v o v s o me e rasma s smas st s as s oaasmoaasssasas 128
Assignmentof Variablest 128
Field Variables v v v vt e s et e e e e s e e e e 129
String Concatenation e e A 22
ATTAYS o v v v e e en ot i aesaem et e e 128
Control Staterments. . . o . . v o v o v v v v s ettt e e E e e s s 130
if (condifion) else,ot e h e e e e e 131
while (condition)o O 11
oy < O T I I T G 131
L < I 132
COMTIIIUR © . o v v s v e oo s em s men s amanmas s n st e e s 132
e TR R T T T LI PR 132
o P T R 132
For MoreInformation e S 4 5
5. be Desk Calenlator Language. - oo v v v e e v o i n i o e nmr oo 135
Entryand EXit. . .o oovuvin vt ce i 135
Exampleof SimpleUse.o v i e i 135
Simple Statements oo v i i 137
Numbers with Fractions oo vt oo o ioia i es 140
The Scale of NUMDbEIS . . o o oo v vve oot iaem e as e e e 140
Addition and Subtraction. e e e 140
Scale During Multiplication oo e e 140
Setting the Scaleof Resultsoy e e e 141
Seale for DIVISIONS . « v v v v vt v v e e ae st m e e 141
Scale From Exponentiationot 142
What Isthe Current Scale? . . . v v v v et it it v s s e e 142
Thef Statement o v v v vt a v st e s et tnns v anmaassannesans PR 142
UsingtheifStatemento v v oo e e e e 142
CompariSons . .. o v oo v vv v n e e e e 143
Grouped Statements. 144
Many Statements Per Line, , . . oo oo oo venn v i it 144
The while Statement. . . . v v v v v vt e ot s s e oo s s e 145
Abbreviations in the while Statement oo i 146
The for Statement o v v vt o v am vt s e et e e 147
Three Parts of the for Statement, oo oo vt v it e i i 147
Similarities Between the for and while Statements.o 148
FuncHomE TN B .+ o v ot et b oo ettt a et e e 148
Example of Function Use.o viii it 148
Funetions Using Other Functions ; 150
Functions That Call Themselves oottt it i e ot a s e aa s 150
Theauto Statement v v v vttt e m s s sn s scn s s e e s o s a s s ins 151
ProgramsinaFile.ottt i e 152
Usinga Program FromaFile. v P v ... 1b2

Using LibFamies, o « v v v v v v v et ma e v 152

vi The COHERENT System

ThebeLibrary it e e e 153
Summary, e e e e 154
6. TheCLanguage.uuuniniinnnn e 155
Compiling C Programs under COHERENT. 155
TrytheCompiler. «.. 185
Phases of Compilation. ,~ 156
Renaming ExecutableFiles~ 157
Floating-Point Numbers~ 157
Compiling Multiple Source Files " 158
Wildeards 159
Linking Without Compiling~" 159
CompilingWithoutIinking...................................5 160
Assembly-LanguageFiles, 160
Changingthe Size of the Stack 160
Where ToGoFromHere. onmn. 0] .. 161

C for Beginners.- ... e e e e e e e e e e e e e, 1681
Programming Languagesand C. 161
Assembly and High-Level Languages~ 162
So,What1sC? o 182
Structured Programming. 163
Writinga CProgram~ 164

A Sample C ProgrammingSession 164
Designinga Program, e e e e 165
ThemainQ Function e e 166
OpenaFileandShow Text 187
AcceptingFileNames.~ 169
ErrorChecking. 1711
PrintaPortionofaFile~ 174
Checkingforthe Endof File. 175
Pollingthe Keyboard 178
For More Information.~ 180
Bibliography. 180
7. Introduction to ed, Interactive Line Editor, e e e e e 183
WhyYouNeedanEditor.~ 183
Learning ToUsethe Editor e 183
General Topies e e 184
ed, Files,and Text. 184
CreatingaFile....... v 185
Changingan Existing File 0.0 vo .. 135
WorkingonLines 188
ErrorMessages.t e e 186
Basic Editing Techniques. " 187
CreatingaNewFile. e e e 187
ChangingaFile. i ... e 188
PrintingLines 190
Abbreviating Line Numbers. " 190
HowMany Lines? 19
Removinglines 192

Table of Contents vii

Substituting Text Withina Lineo vt i e in oo 193
Undoing Substifutionso it i e s 196
Global Substitutions. v oo v v e e et e 196
Special Characters. v . v oo v e it e e e 197
Rangesof Substitutiont it i e 197
Intermediate BAING.0 oo vt vt e e e . 198
Relative Line Numbering. . . . v . o v v ot s it vt tn oot an s ronens 198
Changing Lines. v v o v vt i i e m e i e e 200
Moving Blocks of TeXt . . . oo v oo v ir e e m i e te i 200
Copying Blocks of TeXt o v v v v i i e i s e 1. 202
Sring Searches. . . . v v v v v b e 202
Remembered Search Arguments e e e s L., 204
Usesof Special Characters.o vt 205
Global Commands oo v v v v e eva e ... 206
Joining Lines , @ e e e e e e e 206
Spliting Lineso vt en i e e 207
Marking Linesot v v it i e e 208
Searching in Reverse Direction v e ... 209
T T T EzpertEditing D T T 210
File Processing Commands. it e e e s 210
BT e 1 1< I 212
Matching Many With One Character oo ennnn 213
Beginning and Endingof Lines it 213
Replacing Matched Part L e e e 214
Replacing Parts of Matched String. e e e e A 214
ListingFunny Lines.o o v it in i e 217
Keeping Track of Current Lineo i e eii s 217
When Current LineIsChanged. vttt o it m ot 218
More About Global Commands e e e e 219
Issuing COHERENT Commands Withinedo 220
ForMore Information , . . o v v v v v vt s e n et ae s s s a e n s 221
8. Introduction to lex, the Lexieal Analyzer.o il e e .. 223
How ToUse X, . . . o vt e ot s ier e n e s st oo nae s aares s onnsensen 223
Translating Strings0 it ittt e e e e 223
Remove Blanks FromInput e e e e e C.. 224
Trimming Blanks 0ot it e e e e e 224
lex Specification Form. it e 225
SIMPleFOIIM . . . o i v vt et e ee ot e mn e e 225
RUIEE I IBE . o o v v et et oo e v am e e n o e e o e 225
SlatementS N 1EX . . . v i it i e e e s 226
Groups of Statements. i it i e 227
UsingtheSame Action v v it in vt et e 229
PatleIms . & « v s v v e oo e e s ns o s e e e e e 229
Simple PatteXns v v vv v vt i 229
Classes of Characters & . .« v v v v i e e e st e st s e s st e s e a st oo e e 230
Repetition oo i it i e e 232
Choices and Grouping.« -t v i i et e e 234
Matching Non-Graphic Characters. oo v inen 234

More Pattermis. « v v v v v ot ot e e e e s e et E e 235

viii The COHERENT System

Line Context e e e, 235
Context Matching 235
Maero Abbreviationsttt 237
Context: Start Rules.t i, 237
Separate Contextst 239
More About Writing Actions. e e e 240
BCHO . . . 240
Processing Overlapping Strings, .. 241
2 - 242
Header Section. i, 243
Additional Routines, 243
UsinglexWithyace, i, 243
SUMIALY. . . . e e e e e 245
9. Introduction to the m4 Macro Processoro . 247
Definitions and Synfax, e e e e e e e e e e 247
DefiningMaceros¢c..,... e e e i e e 248
Input Control. i e e 250
Output Comtrol., 261
String Manipulation. 252
Numeric Manipulation 253
COHERENT System Interface. 255
Brrors e 256
“ForMoreInformation. 00, 257
10. The make Programming Diseipline f e e e e 259
How Does make Work?. 259
Trymake e, 260
Essential make e, 262
Themakefile 262
Buildinga Simplemakefile. 263
Commentsand Macros. 263
Settingthe Time. i, 264
Buildinga Large Program0uuuumm i, 264
Command Line Options i ... 26b
Other Command Line Features. 266
Advanced make. e e 267
Default Rules. 267
Double-Colon Target Tines. oin s e e e, 268
Alternative Uses 269
Special Targets.ottt e 270
Brrors . ..o 270
ExitStatus 270

11. Introduction to MicroEMACS. i, 271
What is MicroEMACS? 271
Keystrokes: <ctrl>, <ese>., 271
Becoming Acquainted with MicroEMACS.o ien . 272
BeginningaDocument 273
Movingthe Cursor. vt ottt i i e e 274
Movingthe Cursor Forward., 275

Table of Contents ix

Trom Line to LANe. « o v o v e e s et s e s e 275
Repetitive MOHOD . . . o0 v vvee oo vaac e 276
Moving Up and Down by a Screenful of Textcvovvranneneeen- 276
Moving to Beginningor End of Text. vvvvnveaen v e 276
Saving Textand QUIthng.+ oo vvvii e 277
Killingand Deleting . . o0 o oo ven e e v omnnnsnss e rme e 277
Deleting Ve . Killing oo ev v i e i easee e L. 277
ErasingTexttotheRight........................;....'.- 278
Erasing Text to the Left R 278
Erasing Lines of TEXt. . . . v v v v e v uvenn e omenm e 279
Yanking Back (Restoring) Texto vvevenn s 279
QUILHNE + . o oo v ecc o vmnnrm s e 279
Block Killingand Moving Text. . . . v oo v o v v oo s oarmcennemmme e 279
Moving One Line of Text. . . o o v oo iveiunvomiammee e e 280
Multiple Copying of Killed Text.o oovvvvvevnrammmnvr e 280
Killand Movea Block of TeXt. oo v v v vnen s me v e s 280
Capitalization and Other TOOIS.« oo v en v i 281
___Capitalization and Lowercasing« - oo om oo v v amr b e e et 281
" Transpose Characters. s e T - -
Qereen REAIAW . + v o o v v oo e m e s e e e 282
Return TRAEnt . o v v oot v e v e v e e e st e e e s 283
WOrd WIAD « . 2 v v e e m e e s eaacas i ne s s o m s e 283
Searchand Reverse Search.o o i ii o 285
Search Forwardo v v v e e et i e tacam s s 285
Reverse Search. o o o v v v vt e e it i e a e 286
Cancel a Command e e e e e i 287
Searchand Replace v oo v s o nmrr oo 287
Saving Text and EXILING. . . .4« oo v v v e nanrar e 288
Write TexttoaNew File.o oo i e ia it Ve ae 288
Save Textand BEXit . . . v v o v e vn e oo nrams s nan oo 289
Advanced BAINE. . . v v v v v v vn oo e man oo a e 289
R T T A AL 290
Arguments: Default Values e e e 200
Selecting Vallles« oo e v iaac e 291
Deleting With Arguments: An Exceptiono v enn e e 201
Buffers anA FIleS . . .« o oo v ee e s it e e e s 201
DIfinIONS, . & o o oo oo vt s s e e 202
File and Buffer Commandso v vvennnrmemeeroaanecerees 292
Write and Rename Commands oo oo ve o n oo 292
Replace Textina Buffer oo vvvncnrnnannr e 203
Visiting Another Buffer. e 203
Move Text From One Bufferto Another vn oo 204
‘Checking Buffer Status. o e e e e e e e e e 294
RenamingaBuffer. oo v vt iiiii e 295
Delete a BUIOr. . o v v v v v s oo e e st astao s .. 295
TVINAOWS « - v v o e s v oo iee i n s 206
Creating Windows and Moving Between Them . . v v v v v e v n e n s s n e s s 297
Enlarging and Shrinking Windows. S e 297

Displaying Text Withina Window« . ovivvn e 298

x The COHERENT System

OmeBuffer 299
MultlpleBuffers 299
Moving and Copying Text AmongBuffers, 300
Checking Buffer Status.t 300
Saving Text From Windows. , '7ttoret 300
ReplacingaMaero.2 RPN 301
Sending Commands to COHERENT . , /""" 301
Compiling and Debugging Through MicroEMACS =" 302
The MicroEMACS Help Facility 7" e 303
Where ToGoFromHere.o "m0 304
12.nroff,TheText—FormattingLanguage............................._... 305
Whatisnroff2. L LT . 305
nroff‘inputandoutput................................- 306
ThemsMacroPackage...............................; 307
Using this Tutorial. B e 308
The ms Macro Package e P Y e e iive et . 3, 308
Textand Commands e e e . 309
CommandNameso 310
Paragraphs ., e e e e 311
Section Headings.~ e e e e 316
TitlePage 318
Headersand Footers~ e e 319
Fomts 321
Special Charaeters. e e 322
Footnotes..._. 322
Displaysand Keeps e e e e .. 328
OtherCommands.............................., 325
Introducing nroff’s Primitives0t 325
PageFormat~ e e e 325
Breaks L 326
Filland Adjust Modes./ 327
DeﬁningParagraphs............-...........................-.. 329
Centering 331
Tabs 331
PageBreaks 332
Macrosand Trapso 332
WhatlsaMaero? e, 332
Introducing Trapso0o0 334
HeadersandFooters....................-.......;..-......._.-.. 335
MaeroArgumentso 337
Double vs. Single Backslashes., """ ..., 838
Designing and InstallingMacros.~ 339
Strings e e e 342
Strings Within Strings 0T 343
Number Registers/ 344
Incrementing and Decrementing " 347
Units of Measurement" 349
Conditional Input. 352

Table of Contents xi

BT OIS . & . v v v s ven e s e e s e e e 362
Headers and Footers .. 362
More About Fonts. e e e e e e e s e e 363
DHVESIONE . + & o o v s oo s s st s e e n s s e ey 364
ATootnote Macro . . o v v v v e v s e v e s mne s ms s ssossossarsssssssnny 367

Command Line Options.o i iv e ot e e e 368

For Further Information v v i v it v it mn e e nm s oo mas s 370

13 Introduction to the sed Stream Edltor 371

Gettingto Know sed. . . . oo i v inie v e e e 37
Getting Started. v ot it e e e e e 372
Simple Commands. oiu it e 373
SUDSHEULNE. . o v v v v v e norse e mae e 373
Selecting Lines e e e e e e e i 375
p: Print Lines. e e e e e e e e e e e 376
Line Loation . + o v v v ot e s e e e b e m e ek e s e 379
T T i -+ A R I L 380
Delete LiNes. « o v v v v s v ot e r e e s s nne e ey 381

oo Changelines. ., .o o oo oo S S I T .
Incdlude Lines From aFile.......ouiernnnn FE T 383
QUit ProcessiNg. . . v v v v v v e v e i e 3584
NERELIME &« o v v oo v o et e sen e msa s sa s aa s o nm s ms e s 385

Advanced sed Commands. . . . o v« v v n e v st o e e 386
TVOTE ATBA, + v v v v o b o s m e me e e e 386
AddtOWOLrK ATOA . « v v o v v v v s e st s a s st 387
Prnt FIrst Line. © o v o o v v ot et it e it i e s e e e s 389
Save WOLK AYOa . . o v v v vt v e m e st g mm st ... 3890
Transform Characters. o v oo v v n v vn s o s o s s sman oo ey 393
Command Control, . . . v v v v e v e et v s s e m e s e e -394
{}:Command Grouping . . . oo v v i e e me i e 394
N T LI 395

Print Line Number, v v iv i v vvien oo 395
Skipping Commands. oo v i i e e e 395

' t:Test Command. oo v i vt i mm st e e e e 397

ForMore INformation v v v oo v v oot s o anas e mmme e 397

14, Introduction to sh, the BourneShell. e nn e 399

Getting Started With the Shell o vt 399
Simple Commands.« v v v v e e 399
Constructing Shell Commands« ... v it i “ ... 400
CommandsinaFile.......... e e e e e 401
Executable FIles v v o v vt v v s s s e s sa e e e 401
Dot: Read Commands. v v v v o v v s v nennosas s seresansssssssnss 402
Background Commands. e e e e e e e 402

Substitution in Commands. . . .« v v v et v it 403
File-Name Substitution. oot vt i it e st e ce i 403
Special Characters, v v v v e oo e e 406
Redirechion . . . v oo v et it ememm i e e 406
Output Redirectiono v i i e e e e e 406
Input Redirection vv v 407

Redirecting the Standard BITOT . « o o v o s e e e e e e et e 408

xii The COHERENT System

Plpes 409
Parameter Substitution e e 409
Shell Variable Substitution S
Command Substitution. 415
Special Shell Variables 415
Command Decisions 418
Values Returned by Commands. """ 416
The test Command: Condition Testing 417
Conditional Command Processing " 418
ControlFlow 419
Advanced Parameter Substitution c.. 423

15. UUCP, Remote Communieations Utility_ " 427
Contents of This Manwal./ 428
AnOverviewof UUCP. 428
ThePrograms.00 ... e e 428

. Directoriesand Files e e e e e e e e e b e 429
Attaching 2 Modem to Your Computer. " ... 431
InstallingUUCP i 439
Setting Up Your Loeal Site. 433
Describinga Remote Site. 435
Day and Time of Connection~ 436
TheChatSeript 437
Granting Permissions. 438
Settinga PollingTime v e ... 440
Sendingfilessvia UUCP 441
UUCPAdministration..............................., 442
WheretoGoFromHere e aeaa .. 443
16. Introduction toyace. cee . 44D
Ezamples.o v i aa. 446
Phrases and Parentheses. """ ..., 446
Simple Expression Processing. 448
Background.......................‘................_ 450
LRParsing e 450
Input Specification. 450
ParserOperation. 451
FormofyacePrograms 451
Rules 452
Definitions, e e e b e e e 452
UserCode.ovit ittt e e 453
Rules 453
GeneralFormofRules..................................-'..... 453
‘SuggestedStyle. e e e 458
ACHOMS 455
Basic Action Statements e e r e e 455
Action Values. 455
Structured Values 458
Handling Ambiguities. I 5 ¢
HowyaccReacts.00 ..o 460

Table of Contents xiii

L L e N I T I 462
Error Handling v oo v v e vttt ie it sa s amaas e e aotnnaas 463
SUDMATY. + 4 v e v e v e e n o ms e m o s e s 464

Helpful HERES. . . 4 o oo i i ie e it i ie i n e e e 485
Example . ., . u v vt v it ie e e 466

17, The LeXiCOm, . . v v v v v vt e o i e m s oo v e o e s s e s h o e s b se s tss 473
example. Give an example of Mark Williams Lexicon format 474
F e e String-ize operator.o e e e 476

S e Token-pasting operator - ¥ (]
#define.Defineanidentifierasamacro 477
#elif, e Include code conditionally 478
#Felse Include code conditionalfly o . 479
#endif. End conditional inclusion of code’, 479
#if, . e e Include code conditionally v 479
#fdef............ .. Tnelude code conditionallyo v v i a i oo 480
#ifndef Include code conditionally ¢ 480
#inelude Read another file and includedt, 480
#line e e e s Resetlinenumber v oot vt v v e n v v oo 481
Hundef Undefine @ THACTO .+ « o s v v v s s s s s e s sn s 482—
_DATE__........... Date of translation.o 482
—FILE ., Sourcefilename vt vt i e e 482
IINE e Current line withina sourcefile 483
~8TDC_ Mark a conforming tramslator i . e 483
TIME Time source fileis translated 483
exit). .. e Terminate a Programl . . . o o v v v v v v m o v o o n s os 484
abortQ) End program immediately oo .. 485
absO. Return the absolute value of an‘integer. e e 485
BC v v et e Summarize login accounting information 488
aceessQ . .o oo o it Check if a file can be accessed in a givenmode 487
access.h. Checkaccessibility oo v v i e e e 488
acct() e Enable/disable process accounting 488
accth.............. Format for process-accountingfile 480
aceton. Enable/disable process accounting 490
acos() e e Calculate inverse cosine. . . . v v v v v e v v e m i i 490
actionh....... e Describe parsing action and gototables 4N
address 492
alarmQ) . . .00 Set a timer. e e e e e e 492
glignmentt e ve.s . 498
alloeh, Definetheallocator oo v v v v v v oo e e on .. 492
- The libravian/archiver.o v et v oy 493
arhc.o0... Format for archivefiles. 495
ATEIIE . o v v o o s m v s st oo st e e e 495
AUge . . v o v m e Argument passed fomain() 496
ATEV . o o v v v e e v v v a e Argument passed to main() .., e 496
array .. 496

................ I8086assembler: . . . v v v e n e e e .. 408
ASC]I .. 518
asciih. Define non-printable ASCII characters. 520

agetime(). Convert time structure to ASCII string , b21

xiv The COHERENT System

asin() Calculate inversesine. 522
ASKCC............. Force prompting prompting for CC names -522
assertQ Check assertionatruntime . . . ,,........... ... b22
asserth. Defineassert)c0vurnn.. 523
. 1 Drivers for hard-disk partitions 523
at Execute commands at giventime., 524
atanQ.............. Calculate inverse tangent. e e e e e e e 526
atan2(),.,..... Calculate inversetangent. 526
ATclock, ,........... Read or set the AT realtimeclock,........... 526
atof) Convert ASCII strings to floating point 027
atol) Convert ASCII strings tointegers. 5217
atol), Convert ASCII strings to long integers. 528
atran L. Execute commands at a presettime 529
awto. Note an automatic variable. ‘629
awk, Pattern-scanninglanguage. i 629
bad- Maintain list of bad blocks. R 731 |
badscan,............ ‘Buildbadblock list 531
banner Printlargeletters 532
basename,, .. Stripfilename, b532
be Interactive caleulator with arbitrary precision 532
B . 535
bit-flelds 535
o 536
block 536
hoot............... Boot block for hard-disk partition/nine-sector diskette . 536
boottha, Boot block for floppy disk. : 538
boottime . ., Time the system waslastbooted 539
bre. - Perform maintenance chores, single-usermode . , 539
break Exit from loop or switch statement. . . ., 539
break Exit from shell construet 539
brk(). Change size of dataarea . ..,................... 540
bufh Bufferheader. 540
buffer. . . 540
“build. L ..., Install COHERENT ontoa hard disk 541
Byte . 541
byte ordering Machine-dependent ordering of bytes ;. D42
C o e e e Print multi-column output. - 543
Ckeywords e e e et e e e e e e e e 543
Clanguage.t i 544
CPreprocessor\ttt e 545
cabsQ.............. Complex absolute value function 547
eal, Printacalendar, e e e e 548
calendar Reminderservice. 548
callingconventions. 549
calloc) Allocate dynamicmemory, 568
candaddr(}, Convert a daddr_t to canonical format. 554
éandev() Convert a dev_t to canonical format 554
canino(). Convert an ino_t to canonical format, 5564

canint(Q).,. Convert an int to canonical format , , 665

|

1

Table of Contents xv

ecanlong(}. Convert a long to canonicalformat. 555
camonh., Portable layout of binary data. 555
canshort() Convert a short to canonical format , 557
cangize() Convert an fsize_t to canonical format. 557
cantimeQ. Convert a time_t to canonieal format. 558
canvaddr() Convert a vaddr_t to canonical format. 558
CASE . o v e v v me e Execute commands conditionally according to pattern 558
CASE « v v v v h e e e n e Introduce entry in switch statement 559
e 11 AR P LI 559
cat.c.. Concatenate/print ﬁles 560
L ... Compilercontroller 560
P, | U T
s 1 565
P 3 A IR S 565
s S S T R 565
ed ... e Change dlrectory 565
ceil). Set numericeeiling in .. DBB
char. S we.... BB7
charsh............. Charaeter definifions -« .. - -« o« oo v nnoroeoen 667
chdirQ) Change working directory oo 567
check Check filesystem. v oo v vt v mn e e .. b67
chgrp Change the group owner offiles,,.. 568
echmod(). Change file-protectionmodes 568
chmod. Changethe modesofafile., 569
chown(). e Change ownershipofafile. 571
chown, Change the cwner of files. 571
chroot(). Change process’s root directory, b7
clearerr) Present stiream status, , oo v v v s v v e ... D72
cdose(y. Closeafile. . .. v oo i i v et v seen s ssen s snnenas 572
cln Cleari-node. .« o v v v v m i e eaa s s s s e ne e 572
............... Comparebytesoftwoﬁles..................... 573
COI-IERENT systemealls, e e 573
T Remove reverse and halfJinemotions, b7
COIML . v b ooavnwm e nnss Device drivers for asynchronous serial lines 576
comlDevice driver for asynchronous serial line COM1 877
eom2 ... e Device driver for asynchronons serial line COM2 , 577
com3 e Device driver for asynchronous serial line COM3 . .., ... 578
comd , e Device driver for asynchronous serial line COM4 578
{47141 1 R Printcommonlinesot eennnnons 579
COMIMADAS &« &+ & o v v e v e o s e s e s e e e e e 579
COMPLESS .« v v v v e v v oo Compressafile.y 583
conth ,............. Configure device drivers oo v oo 583
console Consoledevice driver: . . ¢ v v v v v v ot o v et i e 583
(7o 111 A Qualify an identifier as not modifiable. 588
consth Declare machine-dependent constants, 588
continne Force next iterationofaloop oo 588
continue Terminate current iteration of shell construct 588
(V7111 Numericbaseconverter. oo e v v v ooy ..., D89
(V117 x - R Coredump fileformat.0y 589

xvi The COHERENT System

cosQ. L. ..., Caleulatecosine. 890
eoshQ.............. Caleulate hyperboliccosine, 590
1« Copyafile.0c oo, e 591
epdir. Copy directory hierarchy 592
L3 1] o CPreprocessoro vt inin oo e e 593
creat(). Createftiuncateafile. 594
51)« Execute commands periodically 594
eryptQ. Encryption using rotor algorithm. . ., 595
erypt., Encrypt/decrypttext 595
et .. e, Controlling terminal driver, 596
ctimeQ Convert systeni time to an ASCI string. 597
e 597
eypeh Header filefor datatests 599
CUFSES. cuvun. Library of screen-handling funetions. 600
cursesh. Define funct:lons and macros in curses hbraly 609
daemom. ol e e e, T T R - 3 £ | I}
data formats.' I .' e e e e e e 610
data ypes e e 610
date............... Print/setthe dateandtime . ., 611
db Assembler-level symbolic debugger. 612
de Deskealewdator. 616
‘deheck Directory consisteney check 618
dd Fileconversion 619
defandt Default label in switch statement. 620
definttions e e e 620
defttyh. Define defaulttty settings S 621
deroff Remove text formatting control information 622
devicedrivers B22
................ Measure free spaceondisk. 623
s 3 Summarize differences between twofiles, 624
diff3............... Summarize differences amongthreefiles 626
dich,.............. Directoryformat 0 vi v 626
ArectOry e e e e, 626
direnth. Definedirent 626
disable Disable terminalport 627
do................ Introducealoop0cuuuunun.n. 627
dos. Transfer files to/from an MS- DOS fillegystem,.... 628
double. e Datatype 629
devid, Load a loadable driver intomemory - 629
do................ Summarize diskusage. 630
dump.............. Filesystemdump 630
dumpdate Print dump dates., e e e e e 631
dumpdir Print the directoryofadump 632
dumptapeh ". Define data structures used on dump tapes. 632
dupQ Duplicate a file deseriptor. 633
dup20. Duplicate a filedeseriptor. 633
eébedich. Constants for EBCDIC characters 634
echo............... Repeat/expand an argument. 634

ed Interactive lineeditor 634

Table of Contents xvii

w BETED - 2 s - ca s s s annan Extended patternsearch-c .. 638
ElBe . i i e e Introduce a conditional statement. 640
enable. it ne Enableterminal porto v o v i v o et vt s e 640
Pt E U T U IR 641
endgrent() Close group 1 R 642
‘endpwent() Closepasswordfile. 642
| GO . . o s vvaaam e Declare a type and 1dent1ﬁers 642
‘ EOVIEOIL . . o v o i v v w e w v s Process enVIironment oo v v o st u e n e 643
‘ environmental variables. i . i s e e r e s e e s e e s 643
’ BNVP. « v v v e v e s nnaens Argument passed fomainQ e 644
EOF.ouvvunonn Indicateend ofafile. i i 645
] P21 11+ R External integer for return of error status 646
| errnoh . L Errornumbersusedbyerrno0 i i 646
f B>« 7 L I I NI A R 649
i eval Evaluate aTguments . . . v v o v v v v s s mamsinan o 649
| EXBC o i v n v e b e s Execute command directly oo 650
J execl(), Executealoadmodule v 650
_cexeddleQ.0, Execute & Joad module e e a e 651
execlp(y. e e Execute a load modu]e L T L i o Tebl
egxecutablefile., e e e e e e e 651
eXecttion. i e i e et a e e e e et e s e e 6562
execV(l oo v v e Executealoadmoduleo 653
execve(. . .. v h e Executealoadmodule cvi v s 653
exeevp(. e Execute a load module e e e 655
(=57« | AR Exit from a noninteractiveshell. 855
exit) 0. Terminate a program gracefully. 655
exp(. . .o vv i .. .Compute eXponent. . .4 .. i i e e e 656
export.t a e Add shell variables to envn:onment 857
1>:41) (A Compute a command line expressmn 867
EXEEIN. o v v v v s Declare storage class. v oo v m i i i e . 659
fabs(» Compute abgolute value.o ... 660
factor e Factor a NUINDET . o v v v v v e e e e et s st e v s ntus s e e 660
false. Unconditional failure ., e e e 660
fhlkh.............. Define the disk-freeblock. v oot 660
felose() un ClosE a SLFEAME . . o v vt v v e e oot o m e s e 661
fentlh. S Manifest constants for file-handling funetions, €61
(5 (A Floppyd:skdnver.......................;..661
fdh Declare file-descriptor structure, , L. 862
fdformat Formatafloppydisk. v 663
fdipetlh. Control floppy-disk /O i i i 664
fdisk. Change hard disk partitioning. 664
fdiskh, Fized-disk constants and structures 665
fdopenQ).o . Open a stream for standard 1/O.o v et n 665
feof(} vnn Discover stream status ¢ o o v oo o b e e e 666
ferror) Discover stream statlis v v v v v e vt v v e e 666
fllashQ) Flush output stream’s buffer. 668
702170 S Read character from stream ovv et 669
fets(, . ..o Read line from stream. G ras e e e n e e 670

fgetw(}Readintegerfromstream 671

xviii The _COHERENT System

fleld.,....... e e e i e e e e e 672

file................ Guessafilestype 0 672
file. ... e e e e e 672
FILE Descriptor for a file stream. 673
filedeseriptor 673
fileformats., . . 674
fileno)) Getfiledeseriptor 674
filsyah Structures and constants for superblock 675
filter. . . 675
find............... Search for files satisfyinga pattern. 675
fixstack. Change stack alloeation. 677
float............... Datatype it .. 677
floor(). Setanumericfloor 680
floppy disks 681
fokey Set/print functionkeys. 682
fopen() Open a stream for standard 1/O, - 682
B+ ~vemeoy -Control aloop, |, oL T T e Y e e e e e e .. 684
for.,............... Execute commands for tokensinlist. 654
forkQ Create anmew process 685
fortume Print random selected, hopefully humorous, text , . 686
fperrh1 Constants used with floating-point exception codes 686
fprintf(). Print formatted output into file stream 686
fpute(). Write character into file stream, 687
fputs(h. Write string into filestream 688
fputw() Write an integer intoastream . .., 688
fread). Read data from filestream. 688
free) Return dynamic memory to free memory pool. 689
freopen(Q Open file stream for standard1/0,.......... 689
frexp() Separate fraction and exponent 690
from, Generate listof numbers 691
fscanf() Format input from afilestream. 691
fack Check and repair file systems interactively 692
fseek(. Seek on filestream. 694
fstatQ Findfileattributes. 695
ftell) Return current position of file pointer. 697
Mime(y L. ..., Get the current time from the operating system. . . . , . . . 697
function. e e et e e e e e e e 697
fariteQ Writeinto filestream . . , 698
ged. Set variable to greatest common divisor. 699
gemeralfunctions. 699
geteQ Read character from file stream. 700
getchar() Read character from standardinput,....... 701
getegid) Get effective group identifier. 702
getenv(}. Read environmental variable. 702
getenid() Get effective user identifier. . ., 703
getgidQ Get real group identifier . . ., 703
getgrent(), Get group file information 704
getgrgid(. Get group file information, by gronp name . ., 704

Table of Contents xix

getloginQ. LoGetloginmame. i e i e e e 705
getoptQ............. Get option letter fromargv.+ oo v e i oo 705
getpass() Get password with prompting. 707
getpidQ Get processidentifier i a e 708
getpw(. Search passwordfile. i 708
getpwent() Get password file information 708
getpwnam(. Get password file information, by name. , 709
getpwaid(. Get password file information, byid 709
TgetsQ L. Read string from standard input e e e 710
getty. Terminal initialization. vt .1
getwid(),, .. Get real useridentifier, 712
getw(, e Read word from filestreamo uvnn.. 712
getwd() Get current working directoryname.0 .- 713
L2, 1 A 713
gmtime(). Convert system time to calendar structure: 714
BOLO . . . o i Unconditionally jump withina function 714
20 + N ... Patternsearch ,...... e e e e s 715
BTOUP s s i —GrOUP file format. , . PRSP b | :
grph Declare group structire. Lo - 917
gty Device-dependent control,0 N i
hdioetlh Control hard-disk I/O. oo v e i e o 719
head. e e e Print the beginningofafile 718
Beader fleE. - . . . o v bttt v e e sty e 719
help............... Print concise deseription of command 721
HOME ,............ User’s home directory. e e e e 722
hp........ 00 Prepare files for HP LaserJet-compatible printer 722
hpd Hewlett-Packard Laserdet printer spooler daemon , , 722
hpr e Send file to Hewlett-Packard LaserJet printer spooler 723
“hpskip, Lol Abort/restart current listing on Hewlett-Packard LaserJet . 724
hypot(} Compute hypotenuse of right triangle 724
jnode COHERENT system file identifier 726
icheek.............. i-node consistency check e e e e e 725
if....... e Introduce a conditional statement. 726
| .. Conditional command execution. 726
index() Tind a characterinastiing . ., 0o i v e 727
inft, ... e e ‘.-, System initialization.o i 727
inthalization v v vttt e e e e 728
inoh., Constants and structures for digk i-nodes.. 7381
inodeh Constants and structures for memory-residenti-nodes. . .. 731
install. Install COHERENT update P 781
int.o Datatype e e e, 182
010y .1 o1 S P I I IR 732
ioh Constants and structures used by 1/O. 732
ioctl) ., Device-dependent contral.o vh i i 782
ipch, Definitions for process communications. 733
isalpum(. Check if a character is a number or letter, 733
< dsalpba() Check if 2 characterisaletter. 734
isaseliQ Check if & character is-an ASCII character 734
isattyQ Check ifa deviceisaterminal. 734

xx The COHERENT System

isentrl). Check if a character is a control character 784
isdigitQ............. Check if a characterisa numeral. eiven 138
islower(Q Check if a character is a lower-case letter, 135
ispos(). Return if variable ig positive or.negative. 735
isprintQ. Check if a character is printable, e 736
ispunetQ Check if a character is a punctuation mark. . . ., 736
isspace() Check if a character prints whitespace 736
isupper() Check if a character is an upper-case letter. 737
itomQ.............. Create a multiple-precision integer. 737
00. e Compute Bessel function 738
JEO. ..o o . Compute Bessel function 739
mG ... Compute Bessel function. 739
joim Lol . Jointwodatabases 739
kermit. Remote system communication and file transfer. L. 741
KHO. ...,, Kill a system process see. 144
Kl - Signalaprocess.\ ..., .., .. T44
Louth. ..., o Object file format. .. .00 L L S L 746
BolO. Convert file system block number to long integer 747
LASTERROR Program that last generated anerror 747
le. Categorize filesina directory 747
. Link relocatable objectfiles. 748
ldexp() Combine fraction and exponent. 750
lex. Lexical analyzer generator 750
LexiCom. e 753
libraries. I 7
link() Createalink e e e 756
linker-defined symbols, R I T T T T 766
L Createalinktoafile 756
Jocaltime() ., + ... Convert system time to calendar structure , 757
lockQ) Prevent process from swapping 758
log)............... Compute natural logarithm 759
logl0Q, Compute common logarithm. 759
login. Login or change username - 760
logmsg Hold COHERENT Login Message 760
long............... Datatype e e e e e 761
longimp(y. Return from a non-localgoto 761
look Find matching lines in a sorted file. 761
Ipo o Lineprinterdriver. 762
2 Line printer spoolerdaemon., 763
Ipioctlh, ". . Definitions for line-printer I/QO control.763
Ipr................ Send to line printerspooler 763
Ipskip. Terminate/restart current line printer listing 764
TR List directory’s contents. 764
Clseek(). Set read/write position 766
Lol30 Convert long integer to file system block number . , 766
value. . .. 767
md., Macro processor e e 768
machineh, Machine-dependent definitions ., ,............... 770

Table of Contents xxi

madd() Add multiple-precisionintegers. oo 771
maill e e Computermail0 - 771
main). Introduce program’s main function. 773
make et Program building discipline 774
malloc(), Allocate dynamic MEMOLY . . o v v v v v v v v v oo e e 777
malloch Definitions for memory-allocation functions 778
1117 11 SR Manual macropackageo i e 779
MAN , o o v v e e Print online manual sections.« o v v v v v oo 779
manifest constant, e e e e e e e e e 780
mathh Declare mathematics fanetions ™. o . oo - 780
mMAthematics TIBEATY . . v v v oot e oo e e oo n s e 780
cmboot, Master boot block forhard disk, 781
11701111410 2 Compare multiple-precision integers. 782
meopy(. « o - o v u e Copy a multiple-precisioninteger. 782
mdatah. Define machine-specific magic numbers. L. 782
mdiv(). Divide multiple-precision integers. 782
011 YA MicroEMACS screen editor e e e 783
MO « v oovvoneeenn s an Physicalmemoryﬁle...................."...... 790
“memehr() . . T, ———Search-a region of memory-for-a character . 791 __
mememp(.- Compare tWo TegIONS . . v o v v v v oo v v v v n et n s oo 792
memepy(. . .. oo e - - Copy one region of memory into another e.. 193
memmove() Copy region of memory into area it overlaps e 793
memok(.........- . Testifthe arenaiscorrupted oo 794
memory allocationy 4 i 794
memset(). - Tillan areawithacharacter.o unn 796
MESE . . v v v v veenes . . Permit/deny messages from other users. 796
mingdcecoeean Read multiple-precision integer from stdin........... 796
minit)) 000 Condition global or auto multiple-precision integer Co797
mintfrQ. Free a multiple-precisioninteger v 797
mitom(). Reinitialize a multiple-precision integer 797
mkdir.............. Create a diTectOry . . . v v oo v v v v v v e 797
mifs, . o e Makeanewfilesystem. v v v v e v v v m v v o oo an 798
mknodQ Createaspecialfile ,o venennn.n 800
mknod Make a special file or named pipe. 801
mktemp(). e e e Generate a temporary filename. o0 ool 801
111 11:710 J Negate multiple-precisioninteger. 801
mnttabh............ Structure for mounttable« oo 802
modemeap ., - Modem description language. . .,o e 802
moedf). Separate integral part and fraction. e e 804
modulug e e e e e e e e 805
mon.h. e Read profile cutput fileso 806
motd0 ... Tile that holds message of theday 806
mount()., Mountafilesystemo v ov v v e v oo ... 806
mount. W ...Mountafilesystermo 806
mounth Definethemounttable.o v v v v i oo 807
mout) Write multiple-precision integer to stdout. 807
mprech. Multiple-precision arithmetic 808
117 SO Manuseript macro package.o oo a e e 808

117" S Message device driver. e e e ey .. 810

xxii The COHERENT System

Mmsgc000..., Send a one-line message to anotheruser,
msgh.............. Definitions for message facility
msgetl). Message control operations.
msgget() Getmessagequene0......
msgrev() Receivoamessage
MSES. . .y v e v e e Read messages intended for all COHERENT users . . . N
msgsnd() Send a message,, .. e e e e e e e e
msigh. Machine-dependentsignals.
msqri(}, Compute square root of multiple-precision integer
msabQ, Subtract multiple-precision integers,
mitabh .., ., Currently mounted file systems.
mtioctlh, Magnetic-tape I/O control , .., e e e
mtoi) . ..,, Convert multiple-precision integer to integer. ,
mtosQ. Convert multiple-precision integer to string
mtypeQ. Return symbolic machinetype
miypeh,, List processor code numbers. PN .-
mult)., .. Multiply multiple-precision integers . . , . . e e e .
- -multiple-precision mathematics,, 7"
MV, ottt et e e Rename files or directories.
mviree() Free multiple-precision integer
nouth,.. Define nout filestructure
ncheck ..., Print file names corresponding to i-numbers.
DEWEIP . .« v v v v w e e s Changetecanewgroup.
newuosr Add new user to COHERENT system.
nlist). Symbol tablelookup.
41 21 Print a program’s symboltable
notmem(). Check if memory isallocated.
mroff, ,, TeXLProcessOro i s ees s,
NULL. . e e e
wall L L, The “bitbucket”.
mybble.
objectformat B T T S
od................ Print an octal dump ofafile.
openQ.............. Openafile.
OPETAIOL . . L L e
paramb.,, Define machine-specific parameters
passwd Password fileformat.
passwd Set/change loginpassword.
PATH.............. Directories that hold executable files.
pathQ. Path nameforafile.............,......... . . .
pathh., Define/declare constants and functions used with path . ..
Pattern e
pause() Waitforsignal,
peloseQ) Closeapipe.00 .
perror(y. System call error messages.
phone. Print numbers and addresses from phone directory.
pipe), Openapipe...............
BIDE . . e e

Table of Contents xxiii

e 11 S I LRI 847

pollhl Define structures/constants used with polling devices . 850

I popen() OpenapiPe. . - v v vnen e ton oo 850

] A R R IR 850

portability e e e e e e e e e 850

‘ POWO .ottt e "Raise multiple-precision mteger TOPOWEr.t us 851

! pow() ... e Compute a power of anumber 851

12 Paginateand printfiles. oo 852

Precedence. . o o v v v a v e e e e e e e e ... 853

PLEP . . v v v e Produce a word list e e e e e m e e 854

printf) " Printformattedtext. L. e i e e 854

| proch. Define structures/constants used with processes 857

PIOCESS « o v v v meem s s oanna s o saale s it 8567

\ profile. Set user’s environment e e e e e 857

| P5 v v oe e Print processstatuso .o e 857

| PS1.......covueenn Usersdefanltprompt. oo v v ve v v oo 859

| PRS20.... . . Prompt when user continues command onto additional lines 859

! . ptraee)............. Trace process execuhon. e e e .. 859
l PUDen i T S e BB —— ———

J pute) a e Wntecharactermtostream.................'... 861

/ putcharQ. Write a eharacter onto the standard output 862

putsQo o el Write string onto standard output “... 862

| putw(. e Writeword into stream. i 863

\; pwd ..o Print the name of the current directory. L. 863

| pwdh.......... Declare password structure« v . 863

\ gsoriQy. i Sort arrays it MEMOTY . . . 'v v v v ve v v i e .. 86b

‘ quot........ e e e Summarize file-system usage 865

{ 721 1 RAM device driver. U e e e e e ... 867

| randQ). 00 Generate pseudo-random numbers. e e e e 868

FATIAOM BOCEEE. « « » o v o v v n e m e e b na e N e e e 869

1 Tanlib e e e e e B A Y 869

i ranlib. e e e e Createindexforlibrary.o v c v an 869

S Perform standard maintenance chores. 870

read(). ~Readfromafileivvveein i onnnneennnns 870

read e Assign values to shell varlables 871

readonly= L Storageclasso e b e e B . Y i |

read-only memory e e e e e s e 872

realloe(). Reallocate dynamic MEMOXY .+ v v v v v v v v e v s n v n e nns 872

veboot. . . . oo v oo Rehoot the COHERENT system 872

register Storageclass 0o e e e e e e e e 872

register variable. oo e e e e s 873

Tesior . v v v v vt e e Restorefilesystem. v iv v e ve v i vnnee e 873

return, Return a value and control to calling function, 875

4 -1 Reverse textin linesof files , ;. oo 875

rewind)- Resetfilepointer. oo v v e v i oo oo n et 875

rindex(Q. Find a characterinastringo v v v et i e o a 876

o 1« AN Remove files. v v v vt v me s as e e 876

rmdir..............Removedirectories. i 877

s 1) AP e e e e e e s 877

¥xiv_The COHERENT System:

powl). Raise mmltiple-precision integertopower. 878
rvralue.r............“......,....‘........k...........-..= 878
S8 e e Processaceounting. 879
sbrk(y., .. Inevease a program’s data space. 880
scanf(). Accept and formatinput 880
seat et e e Print text files one screenful at atime. 882
schedbk _...... Define constants used with scheduling. 884
sdiv L. Divide multiple-precisionintegers. 884
L 884
sed. Stream editor... B e e ettty 886
segh Definitions used with segmentation 889
Sem e Semaphore devicedriver, 889
sem B, . ..,, .. Definitions used by semaphore facility. 890
semetly, Control semaphore operations. e .. 890
semget(y Get @ set of semaphores. e . 892
csemop€Y., Perform semaphore operations . C e et et e, 893
oset.............,..Setshel option flags and pesitional parameters-., . 895
setbuf(y. Set alternative streambuffers._ ... 896
sefgid(y, Set groupidanduserid 896
setgrent®y. Rewindgroupfile 000 uuuu... 897
seffmpl). Perform nonlecalgoto 897
seffmpbh, Define setjmp() and longimp®. 898
getpwent() Rewind password file . ., ... e e e e e 898
settz(y. Setloeal timezone. 899
sebuid(y. Setwserid. 899
sgityh Definitions used to control terminal 1/O. 899
sh Command language interpreter._ . . 906
SHELL. Name the defaultshelf 908
shellsort(}Sort arraysinmemeory e e e 908
shift, Shift pesitional parameters. 209
shm¥ ., Shared memory devicedriver .., 909
shmb,, Definitions used: with shared memory 911
shmetlQ, Control shared-memory operations. 911
ghmget(} Get shared-memorysegment 912
short Datatype e s e ettt eea v e.. 913
shutdown. Shut down the COHERENT system 914
signal(y Specify disposition of a signal e e e 914
signalh. Declare signals . ., e e it e e e e e 915
signame. Array ef namesof signals, 916
s}, L., W.Caleulatesine. 916
sinh().............. Calculate hyperbolicsine a16
size, Print size of an objectfile. 917
sizeof Return size of a dataelement 917
sleepO. Suspend execution forinterval 918
sleep. Stop execuiing for a specified me 918
sload(). Load devicedriver.cvvuuonn.. 918
smult) . ., Multiply multiple-precision integers 919
sort Sort linesoftext PO 919

Table of Contents xxv

gplit.o e Split a large file into smallerfiles. 921
SPOW(), » - o v e Raise multiple-precision integer to power. 922
sprintfQ. Tormat output . . o oo i v v s n v ot e s L. 922
sqreQ) ..o 00mputesquareront........................-923
srand() e .. . Seed random number generator. 023
geeanf() Format a string. L 923
O I I B IO 024
gtandard eXror.00 o e e et e e . 924
Standard NPUL . o oo v v v e i e e e 926
standard output. e e e e e e e e e 925
17:17 0 N Find file attributes. e e e 925
stath , Definitions and declarations used to obtain file status 927
static Declare storageclass.o o i 927
stddefh. Header for standard definitions 928
B = N I I IR I AL I ... 928
B U P I I I I I I 928
STDIOc... e e T 929
ostdioh. ... el Declarations and definitionsfor IOo 930
. stdout. . . .es e RS SRR SRS L TL LN S i O A 930
SHEKF DI o v v v v weem s i e e E e R OO A AP
stime()0o0n Setthe mE. . . . v v v vt e et e o anaasnsessasenn 930
Storage elass. eu et e e e .. 931
streatd)o Concatenate strings oo e 931
strehr()00 Find a characterinastring oo v aan 931
CogtrempQ L. e Comparetwo strings.o oo v oo .e.. 932
gtreol).o Compare two strings, using locale-specific information. . . . 932
Strepy) . « « v v v v i Copy one string into another,0 933
strespnQ) . . .w oo e e Return length a string excludes characters in another . . , . 933
1ne 1 | R f e e e e e e 033
streamh , Definitions for message faeility 00 934
strerrorQ . ..o Translate an error number intoastring. 934
stringh. T I 934
string functions. e e i . 935
11 w1 + SO Strip tables from executablefile. 937
stilen() o0 Measure the length of astring.o vveno ... 938
strneat() Append one string onto another. 938
cgtrnempQ. Compare two strings. e e 938
CogtrnepyQ) .. - o e o e Copy one string into another. . .,oty 239
strpbrk()o .o Find first occurrence of a character from another string. . . 940
strrehe) .. .00 e e Search for rightmost occurrence of a character in a string. . 941
=10) 1) 110 SO Return length a string includes characters in another 941
stestr(Q) e Find one string withinanother 941
strtok oo Break a stringintotokenso 942
struet DatafyPe . o« v v vv v e s a e e e 943
SEERELUTE . . . v v v e e et n e e m e e s e e 943
structure assignment PO b e m e e 943
strefrm() Transform a string. oo v v av i 944
sty f e e Set/print termipal modes. ool PO 944
B s se e e e e e Substitnfe user id, become superuser 946

L9830

xxvi The COHERENT System

suload(. Unload devicedriver, 947
Sum Print checksum ofafile. . ., 847
soperuser, T 947
swab(. Swapapairofbytes. 948
switch., Test a variable againstatable, 948
Sy0C. Flush systembuffers 949
SYBC.uvuu.., Flush system buffers e e e e 950
gystem() Pass a command to the shell for execution . . ., 950
System maintenance T 950
L 11 Printtheendofafile.............,........ ... 952
tanQ............... Caleulatetangent.~ 952
tanh(y. Calculate hyperboliccosine, 952
tape. Magnetic tapedevices. 953
tar., Tape archive manager. 954
technical informationol 956
tee. Branchpipeoutput........................,_:,956
tempnam(Q. .,, . . Generate a unique name fora temporary file .., 956
TERM Name the default terminaltype. 957
termeap. Terminal description language. 957
terminal-independent operations 7" 965
termio.,......... General terminal interface 9686
termioh Definitions used with terminal input and output, ., 973
test Evaluate conditional expression. 973
tgetent() Read termeap entry e e e e e e 975
tgetflagQ Get termeap BooleanentryR. 976
tgethum(} ..., ... e Get termeap numeric feature 976
tgetstr. Get termeap stringentry. 976
tgote(). Read/interpret termeap cursor-addressing string . . , 976
dmeQ.............. Getewrrenttime. 977
tme. 977
time,, Time the execution of 2 command 978
timeh, Give time-description structure 978
timebh............. Declare timeb structure. 978
timefh Definitions for user-level timed functions 978
timeouth. Define the timer queue. 979
times() ,............ Obtain process execution times 979
times Print total user and system times. 979
timesh............, Definitions used with times() system call 980
" TIMEZONE Time zone information . , 980
tmpnam(),...... (enerate a unique name for a temporary file, ... 981
tolower() Convert characters to lowercase 082
touch Update modification time of afile. 983
toupper()............ Convert characters to uppercase. 983
tputs) Read/decode leading padding information. 983
tr. ... Translate characters. . ., 983
trap, Execute command on receipt of signal 984
troff, Format proportionally spaced text 985
true Unconditional suécess. 987

tsort., Topological sort. 987

Table of Contents xxvii

................ Print the user’sterminalnameo on ... 987
tyho o o oo Define flags used with tty processing. 988
tyname(). Identifyaterminal, oo e 088
Hys oo e e Activeterminal poxts oo v h it e 088
tyslotQ. Return a terminal’slinenumbero 989
typecheckingt il e 990
typedef Deﬁneanewdatatype......................,990
tYPe PrOmOtiOn . . . oo v vty e e e 990
typesh 0L Declare system-specificdatatypes 291
PO . v v v et en e Detect possible typographical and spelling.errors 991
wmask(.00 Setfilecreationmask , v 993
wmount(y. . ..ol Unmountafilesystem c.v v v e v s anans 003
umount. e e a s Unmount file SYStED. . . o v v v v v v v v e v e 963
UNCOMPIESS . o 2 v v s e v v e Uncompress a compressed file. 994
ungete(). Return character to input stream. 994
111111071 SRR Multiply declare a variable. oo 994
mig. . ..o Remove/count repeated lines in a sorted file. 995
units, L .. e Convert Measurements . . . o v v v v s o a v v o o n o s o u o 996

o ynliokO. evae e .. Removeafile ... a e 997
‘ unmkfs'Create a prototype file system. I -2 1
unsigned Datatype . ..o v v v v v v mnesn o v s 998
until, e Execute commands repeatedly, e e 998
update Update file systems periodically.o 999
uproch ., e Definitions nsed with TIser Processes. . . . o+« -« e v v o v - 999
USER...... e Nameuser'sID.............. e e e e 999
utime()l Change file access and modification times. 999
utmp.bh Login accounting information e e 1000
utspameh Define uisSname SEFUEHUTE . . o« v v v v v o v v v v v v v s s s 1000
wueieo. . L. e e Transmit data to or fromaremotesite 1001
TUUCP. v v vunn Unattended communication with remote systems. 1001
21117 + O A Ready files for transmission to other systems 1002
nudecode. Decode a binary file sent from a remote system 1003
uuencode, Encode a binary file for transmission to a remote system . . 1003
voingtall Install UUCP . . .t v v et e et e e s mearnas s 1005
aalog e Examine UUCPoperations. v o v oo v v on.n 1005
wumviog e Examine UUCP operations.o v oo v v v v v v v v v ans 10056
MUNAME, - « o v o vv o e v n List uucp names of known systems, 1006
wutouch. Touch a file to trigger nucicopoll. oo nt 1006
£11075:41 | S Execute commands requested by a remote system 1006
visgttyh UNIX Version 7-style terminal /O, o0 1008
void i i Datatype . .« oo v e v cieni e 1008
volatile Qualify an identifier as frequently changing 1008
wait)o Await completion of a child process. 1009
walt, . .0 Await completion of background process 1009
wall Send a message to all loggedinusers 1010
R Count words, Yines, and charactersinfiles , 1010
while Introduce 8 100D . . o v o ot it e e 1011
while Execute commands repeatedly. o 1011

WHO .0 o s v Print who isloggedin. . o v o v v veo s sseeaz.... 1011

xxviii The COHERENT System

wildeards. 1012
writeQ Writetoafile.. 00 ... 1012
write, Conduct interactive conversation with another user 1013
xgedO Extended greatest-common-divisor function 1014
yace Parsergemerator 1015
Yes. Print infinitely many responses. 1016
-4 Concatenate a compressed file. 1017
zerop() Indicate if multi-precision integer is zero 1017
18 Appendices L L L 1019
Appendix 1: The Logie Treeo 1019
Appendix 2: Error Messages 1034
Compiler Error Messages.= 1034
make Error Messages. 1050

nroff BrrorMessages o 1052

Section 1: .
Introduction

COHERENT is a professional operating system designed for use on the PC-AT and com-
patibles. Tt has many of the same features and functionality of the UNIX operating sys-
tem, but is the creation of Mark Williams Company. -COHERENT gives your computer
multi-tasking, multi-user capabilities without the tremendous overhead, both in
hardware and money, required by current editions of UNIX. COHERENT is what UNIX
once was: an efficient system of selected tools and well-designed utilities, that brings out

the best in modest computer systems.
The COHERENT system consists of the following:. _
¢ A fully multi-tasking, multi-user kernel and Bourne shell.

e The Mark Williams C compiler, a linker, an a_ssembler, a préprocessor, and other
tools. T

o« A Suiﬁe of commands, ‘including editors, languages, tools, and utilities.

o Drivers for peripheral devices, including terminals, ASCII printers, and the Hewlett-
Packard Laserdet printer. - .

e Libraries, including the standard C library and the mathematics library.
. ® Bample programs, including full source code for the MicroEMACS editor.

Hardware Requirements

COHERENT runs on an IBM PC-AT or any totally compatible computer that has at
leagt 640 kilobytes of RAM and at least one high-density floppy disk drive and a hard
" disk. . . .

Before you begin to install COI-IERENT, be sure to check the release notes that accom-
pany this manual for a list of tested hardware and known incompatibilities.

2 The COHERENT System

How To Use This Manual

This manual is in two parts. The first part consists of a set of tutorials that introduce
COHERENT and its utilities,

If you are new to COHERENT, you should first read the following tutorial, Using the
COHERENT System. This gives you an overview of COHERENT, and will get you up
and rinning, ‘

I you will be administering your COHERENT system, you should read the next tutorial,
the COHERENT Administrator’s Guide. This contains essential information for cor-
rectly running COHERENT on your computer.

The following tutorials introduce many of the COHERENT tools and utilities, including

the editors MicroEMACS, ed, and sed; the C language; the language tools awk, lex, and

yacc; be, the multi-precision calculator; make, the COHERENT programming dis-
- cipline; and many others. e - : .

The Lexicon

Part 2 of this manual is the Lexicon. The Lexicon consists of more than 700 brief ar-
ticles that summarize all library routines, system calls, and commands available under
the COHERENT system. It also includes numerous articles that define terminology and
give technical information. The articles are arranged in alphabetical order, to make it

- eagy for you to find information on any topic. If you are unfamiliar with a technical term
used in this manual, look it up in the Lexicon. Chances are, you will find a full explana-
tion. If you are not sure how to use the Lexicon, look up. the entry for Lexicon within
the Lexicon. This will help you get started. If you have struggled with multi-volume
manuals for other operating systems, we think you will quickly come to appreciate the
Lexicon, =

User Registration and Reaction Report

Before you continue, fill out the User Registration Card that came with your copy of
COHERENT. When you return this card, you become eligible for direct telephone sup-
port from the Mark Williams Company technical staff, and you will automatically receive
information about all new releases and updates.

If you have comments or reactions to the COHERENT software or documentation, please
fill out and mail the User Reaction Report included at the end of the manual. We
especially wish to know if you found errors in this manual. Mark Williams Company
needs your comments to continiie to improve COHERENT,

Technical Support

Mark Williams Company provides free technical support to all registered users of
COHERENT. If you are experiencing difficulties with COHERENT, outside the area of
programming errors, feel free to contact the Mark Williams Technical Support Staff. You
can telephone during business hours (Central time), send electronic mail, or write. This
support is available only if you have returned your User Registration Card for

Introduction 3

COHERENT,

If you telephone Mark Williams Company, please have at hand your manual for
COHERENT, as well as your serial number and version number. Please collect as much
information as you can concerning your difficulty before you call. If you write, be sure to
include the product serial number (from the sticker on the floppy disks) and your return

address. '

Installing COHERENT

This section describes how to install COHERENT onto your computer. Installation of
COHERENT is straightforward, and Mark Williams Company has prepared a suite of
programs that automate much of the work for you. However, installation requires that
you make a few decisions regarding how you want your system to be configured. We
strongly urge you to read this section through at least once hefore you begin, so-you can
‘decide correctly whenever an installation program asks you to make a decision.

Before you begin, please note the following caveats:

___First, the following conditions must be met if COFERENT is to work on your system:

1, COHERENT is designed for use on the IBM AT, or on computel:s that are totally
compatible with the IBM AT. I does not work on any MicroChannel computer, or
on any computer that is not 100% compatible with the IBM AT. :

9. Your system must have at least one high-density, 3.5-inch or 5.25-inch floppy-disk
drive. The distribution disks for COHERENT cannot be read by a low-density flop-
py-disk drive.

8. Your system must have a hard disk, and the hard disk must have at least ten
megabytes of space free on it. More is recommended, but seven megabytes is the
minimum space required by COHERENT. If you do not have enough space on your
hard disk, you will have to clear space by removing or compressing existing files.

4 COHERENT works with RLL, MFM and most ESDI hard-disk controllers, It also
works with some SCSI host adapters. Please check the release notes for a list of
supported hard disk controllers and host adapters. - "

If you are unsure whether your system meets any or all of these conditions, check the
documentation that came with your system, or contact the dealer from whom you pur-
chased your system, The release notes that accompany this manual list hardware that is
known to be compatible, as well as known incompatibilities. Be. sure to check these
notes before you begin installation. If you helieve that your computer cannot run
COHERENT, please contact Mark Williams Company. o

Second, Mark Williams Company has made every effort to ensure thai the instellation
process will not destroy data on your hard disk. Note, however, that the installation
process requires that you assign at least one partition of your hard disk to COHERENT.
If you have any files on that partition that you wish to save, you must back them up or
they will be Iost. It is also recommended that you keep a copy, on paper, of your com-
puter’s partition table. If you do not know how to obtain a copy of the partition table,
one will be displayed for you during installation. We recommended that you jot it down
at that time; if something should go wrong, this information will help to recover the data

4 The COHERENT System

on your disk,

Note, too, that installation may require that the entire disk be repartitioned; in this case,
you must back up all of your hard disk, or your data will be lost. The installation
program will walk you. through this process, so you do not have to decide ahead of time
what partitions, if any, need to be backed up. :

With these caveats in mind, please continue — and we hape you enjoy working with
COHERENT!

What Does Installation Do?

The point of the installation procedure is to create one or more partitions on your hard
disk o contain COHERENT and its files.

When you (or your dealer) installed MS-DOS on your computer, you (or he) divided your
computer’s hard disk into logical partitions. A hard disk on the IBM AT can have
anywhere from one to four logical partitions.. Not every partition has to be used — your
hard disk may be divided into four partitions, but have MS-DOS file systems in only
three of them, with the fourth partition being idle. Note, too, that the four- logical par-
titions do not necessarily have to encompass the entire hard disk — a disk may have
space that is outside any logical partition and so just sits there unused.

The file systems for COHERENT and MS-DOS are very different, so it is not possible to
have both systems use the same logical partition — each must have one or more logical
partitions completely to itself.

As you can see, installation must cope with a number of variables: the size of your disk,
the number of partitions into which it is divided, and the number of partitions that are
in use. Installation thus will follow any of a number of possible scenarios, depending on
how your disk is organized and how much space you wish to give over to COHERENT.
The installation process will walk you through these decigions, to make them as painless
as possible. ‘

It may well be that you do not know the configuration of your hard disk. COHERENT
can figure this out, and the information will be displayed for you at the appropriate point
in installation, '

You can ahort the installation procedure at any time by typing <ctrl-C>, Note,
however, that aborting installation does nof mean that your hard disk will be returned to
the state it was in bhefore installation was begun, When a disk is repartitioned, the files
that were on any modified partitions are gone for good. '

The following sections describe the installation process in some detail. Be sure to read
them through before you begin.

Getting Started

To begin installation, insert the Boot disk from your installation kit into drive A on your
system. Reboot the system by pressing the reset button. In a moment, you will be
prompted with a question mark ‘?. Type:

e ————

Imtroduction 5

begin

followed by the <return> or <enter> key. The installation program will clear the
screen and display some copyright information. After you press <return>, you will see.

_ the following greeting:

Welcome to the GCOHERENT operating system!

Your computer is mnow running COHERENT from the floppy disk.
This program will install COHERENT onto your hard disk,

You can interrupt installation at any time by typing <Ctrl-C>;
then reboot to begin the installation procedure again.

Please be patient and read the instructions on the screen
carefully. R

As the instructions say, you can interrupt installation at any point by typing <etrl-C>.
Be sure, as well, to read the instructions carefully. :

Epterigg}he Serial N}lmber

The next screen will ask you to enter a nine-digit serial number. This number is in-
cluded on a paper supplied with your copy of the COHERENT system. The installation
process cannot continue until you enter this number correctly.

Setting the Date and Time

The next screen asks you to set the date and time for COHERENT. Setting the date and
time is vital to the correct operation of COHERENT; however, COHERENT records the
date and time quite differently from the way MS-DOS does it.

Time under COHERENT ig recorded as the number of seconds since January 1, 1970, at
exactly midnight. Internally, COHERENT always stores time as Greenwich Mean Time.
GMT is used to make it easy for COHERENT systems around the globe to coordinate
time with each other, When COHERENT time-stamps a file or displays the time, it con-
verts Greenwich Mean Time to your local time, depending on what time zone you live in
and whether Daylight Savings Time is in effect. (For a detailed discussion of this topic,
see the Lexicon’s entry for TIMEZONE.)

The installation program will display the following text: .

‘It is important for the COHERENT system to know the
correct date and time. You imust provide information
, about your timezone and daylight savings time.

According to your computer system clock, your current
local date and time are: : '
date and time

You will be asked if this is correct. If it is not correct, the installation program will
prompt you for the correct date and time.

6 The COHERENT System

You will then be asked about daylight savings time:

You can run COHERENT with or without daylight savings

time conversion. You should normally run with daylight
savings time conversion. However, if you are going to use
both COHERENT and MS-DOS and you choose to rum with daylight
savings time conversion, your time will be wrong (by one
hour) during daylight savings time while you are running
under MS5-DOS. ‘

You will be asked if you want to run in daylight-savings mode. You should answer yes
unless you have an overwhelming reason ngot to.

The instailation program then describe the default daylight-savings settings:

By default, COHERENT assumes daylight savings time begins
on the first Sunday in April and ends on the last Sunday

in October. If you want to change the defaults, edit.the
file "/etc/timezone" after you finish installing GOHERENT.

The default settings are those enacted by law for the United States. COHERENT will
then agk you what time zone you live in:

Please choose one of the following timezones:

1 Greenwich

2 Newfoundland

3 Atlantic

4 Eastern

5 Central

6 Mountain

7 Pacific
.8 Yukon

9 Alaska

10 Bering

11 Hawaifi

12 Other

If you select 1 through 11, COHERENT will set your local time automatically. If you
select “Other”, you will be asked how many minutes of time you live east or west of
Greenwich, and then asked to name your time zone. If you are unclear on these con-
cepts, consult the Lexicon article on TIMEZONE. If yon are unsure about how your local
time relates to Greenwich time, consult an atlas, or check with your local library.,

COHERENT will then display the corrected local time and ask if it is correct. If not, you
can repeat the process until the time is correct.

Introduction 7

Back Up the Hard Disk _ _
After the time is set, installation moves on to its next phase, partitioning the hard disk.

“Before you become seriously involved in partitioning, however, you have one last chance

to back up your hard disk. As you enter the partition phase of installation, you will see
the following text: '

This installation procedure allows you to create one
or more partitions on your hard disk to contain the
COMERENT system and its files. Each disk drive may
contain no more than four logical partitions. If all
four partitions on your disk are already in use, you will
have to overwrite at least one of them to install COHERENT.
If your disk uses fewer than four partitions and has enough
unused space for COHERENT (7 megabytes), you can install
- COHERENT into the unused space. If you intend to imstall
. M8-DOS, you should install 1 before you install COHERENT,

The mext part of the installation procedure will 1lét you
change the partitions on your hard disk. - Data on unchanged
hard disk partitions will not be changed. However, data
already on your hard disk may be destroyed if you change
the base or the size of a logical partition, or if you
change the order of the partition table éntries. If you
need to back up existing data from the hard disk, type
<Ctrl-C> now to interrupt COHERENT installation; then
reboot your system and back up your hard disk data onto
diskettes.

If you need to back up your hard disk and have not yet done so, please do so now.

Use the COHERENT Bootstrap?

If you have airea&y backed up your hard disk, continue to the next phase, deciding
whether to use the COHERENT master bootstrap. When you press <return>, you will
see the following text: o ' _

8 The COHERENT System

COHERENT initialization normally writes a new master
bootstrap program onto your hard disk: The GOHERENT
master boot allows you to boot the operating system on

one selected disk.partitidn_automatically; it also allows
you to boot the‘opérating_system on any disk partition by
typing a key when you reboot. However, the COHERENT master
boot may not work with all operating systems. If you do
not use the COHERENT boot, you must understand how to

boot the COHERENT partition using your existing bootstrap
program. .

As explained in the prompt text, a bootstrap is a program that pulls an operating system
into memory and sets it to running — the name relates to the fact that the operating sys-
tem “pulls itself up by its boot straps”. The COHERENT master bootstrap can boot
COHERENT as well as many other operating systems, including MS-DOS (at least, the
many versions of MS-DOS that have been tested). If you chaoose .not. to-use-the
COHERENT master bootstrap, you must consult the documentation that came with your
system to see how you can use your operating system’s current bootstrap routine to boot
another operating system. If, however, you choose to use the COHERENT master
bootstrap and find that it has trouble booting your current operating system, you should
be able to boot your current operating system by using a hoot floppy disk; you will not be
able to boot it off of the hard disk, but at least it will be available to you.

For these reasons, we strongly suggest that you use the COHERENT master bootstrap
routine. When yon answer the prompt, you will move into the next phase, partitioning
the disk. - . : . ‘

How a Disk Is Organized

Installation then moves into the next phase: selecting a disk partition for COHERENT.
As described above, partitioning can vary greatly from disk to disk; how the disk is par-
titioned will determine how much space is allocated to COHERENT and how mueh to
MS-DOS. This is the trickiest part of installation, so be sure to read carefully.

This phase begins by displaying the current layout of your hard disk: the number of par-
titions, the size of each partition, and the operating system mounted on each partition.
The following gives the printout for a typical hard disk. This hard disk, called disk 0, has
approximately 83 megabytes on it organized into four approximately equal partitions, as

follows:
Drive 0 Current has the following configuration:

[In Cylinders] [1In Tracks]
Number Type Start End Size Start End Size Megabytes Name
0 Boot MS-DOS 0 149 150 0O 899 900 7.83 /dev/at0a
1 M5-DOS 1350 299 150 900 1799 900 7.83 /dev/at0b
2 MS-DOS 300 449 150 1800 2699 900 7.83 /dev/atOc
3 MS-DOS 450 614 165 2700 3689 990 8.62 /dev/atOd

As mentioned above, we suggest that you copy down this table before continuing; if an

Introduction 9

_ error were to occur, this information will help you recover the data on your disk.

If you have more than one hard disk on your machine, you will see more than one table:
one for each hard disk. ‘

As you can see, this disk has four partitions, number 0 through 3. Partition 0 is marked:
as the boot partition; what this means is explained below. COHERENT has given each
partition a name, /dev/atDa through /dev/at0d; you will not be working with these,
however, so you can safely ignore them for now.

Note that the middle columns of the table give the size of each partition in three ways: in
cylinders, in tracks, and in megabytes. How do these differ? Megabytes is the easiest to
understand: that the number of bytes that can be written into the partition. Cylinders
and tracks, however relate to the way a hard disk is built. A moment spent here on
background can make what is to come much easier to understand.

Consider a floppy disk. Its surface is organized into 80 concentric rings, or tracks, num-
bered 0 through 79. Each track holds a fixed amount of data, with the amount depen-
ding upon the density of the disk. When the disk is in your disk drive, a head moves.
back and forth, reading tracks as directed. Unlike a phonograph cartridge, however, the

head jumps from track to track discretely — it does not spiral in.” This, yol can wmeasure
space on a disk simply by counting the tracks. Note, too, that the term “head” is often
used to describe one surface of a multi-sided disk.

As youw've probably noticed, a floppy disk has two surfaces: the top and the bottom. The
top is usually refered to as side 0, the bottom as side 1. Bach surface has its own system
of tracks, each numbered 0 through 79, giving a floppy disk a total of 160 tracks. Also, to
read the disk a floppy disk drive actually has two heads, one for each surface.

A cylinder is the set of identically numbered tracks from both surfaces of the disk. A
floppy disk organizes its 160 tracks into 80 cylinders: side 0 track O plus side 1 track 0
form cylinder 0; side 0 track 1 plus side 1 track 1 form cylinder 1, ete. If you think of a
track as heing a ring on the disk, then origin of the term “cylinder” ghould be obvious.

Now, consider a hard disk.- The term “hard disk” is somewhat incorrect, hecause one
hard disk actually contains many hard disks, or platters, inside itself. The platters are
stacked on a spindle, much like a set of 45-rpm records stacked on a record changer —
except that heads move between the platters, one head for each platter surface (or two
per platter). The number of platters and the number of tracks on each platter determine
both the number of cylinders and the amount of data that can be written to the disk.
Consider the disk described in the above table, which is a fairly typical device. It has
three platters (six heads). Each head has 615 tracks, each of which holds 8,704 bytes.
Thus, the device has a total of 3,690 tracks (6 times 615), organized into 615 cylinders,
with each cylinder holding 52,224 bytes (6 times 8,704).

Different operating systems organize disk partitions in different ways. MS-DOS, for his-
torical reasons, organizes partitions along track boundaries; under this schems, the
tracks of a cylinder can be divided between two partitions. UNIX, COHERENT, and
similar operating systems prefer to organize partitions along cylinder boundaries: all of
the tracks of a cylinder belong to only one partition. This lessens movement of the
heads, which in turn speeds up reading of the disk. Note that, strictly speaking,
“megabytes” has no meaning when thinking about disk partitioning: partitioning must

10 The COHERENT System

be done either in tracks, or in cyliniders. Humans tend to think of partitions in terms of
megabytes, that is; in terms of the amount of data we can write into a partition, but
when organizing your disk it is much easier to think in terms of cylinders. However, it
is simple to translate cylinders into megabytes, which gives you the hest of both worlds;
this will be discussed in the following sub-section, ‘ -

Partitioning the Disk
When you enter the partitioning phase of installation, the installation programs will dis-

play the configuration of your hard disk for you, using a table like the one shown above.
It then displays the following menu: :

Possible actions:

1 = Change active partition

2 = Change one logical partition
3 = Change all logical partitions
4 = Display drive information

5 = Quit

The following describes each option in detail.

1. The active partition is the partition that the bootstrap program reads by defautt.
When a partition is made the active partition, the operating system mounted on that
partition is booted automatieally when your turn on your computer, This option
allows you to change the active partition, or to designate no active partition, in
‘which case the computer will prompt you at boot time for the partition number to
boot. You will need this option only if your hard disk has more than one logical par-
tition, and the partitions contain different gperating systems. Note that if later you
wish to change the active partition, you can use the COHERENT command fdisk to
do so. See the Lexicon entry on fdisk for details. :

2. This option lets you change one logical partition — in effect, it lets you select a logi-
cal partition for COHERENT. You should use this option if your hard disk has
more than one partition and you wish to install COHERENT on only one of them.
The partition you select must hold at least seven megabytes. Note that the contents
of the partition will be deleted. - .

3. This reconfigures the entire disk. You can reset the number of partitions, and the
" size of each. ‘ : o

4. Give summary information about the disk.
Option 5 is self-explanatory. '

Begin by entering option 4, to receive more information about your disk. The following
display gives the display for the hard disk described in the above table:

Introduction 11

Drive 0 has 615 cylinders, 6 heads, and 17 secteors per track.
It contains:

615 cylinders of 52224 bytes each,

3690 tracks of 8704 bytes each,

62730 sectors of 512 bytes each
or a total of 32117760 bytes (32.12 megabytes).

If the owner of this hard disk wanted to organize his hard disk by megabytes, all he

- would have to do is divide 1 million by 52,224 to find that one megabyte is approximately

equal to 20 cylinders; thus, to make a ten-megabyte partition, he would assign it 200
cylinders. The size of a cylinder may be different on your system, but the principle is the
same.

The next step depends on two factors: the current organization of your hard disk, and
the amount of space you wish to give to COHERENT. If your disk has only one logical
partition, you must use option 3 to create at least one new logical partition, at least one
for each operating system. If your disk already has more than one logical partition, you
can use option 2 to assign one to COHERENT or use option 3 to assign more than one,

reserving the rest for your current operating system. Of the partition(s) that you-assign
to COHERENT, one must hold at least seven megabytes — you cannot use two four-
megabyte partitions; thus, if no partition on your disk holds seven megabytes, must use
option 3. ‘ ' -

How much space should you give COHERENT? COHERENT is a multi-user, multi-tas-
king operating system; the more space you assign to it on your disk, the more users and
the more .processes it can support. COHERENT, via UUCP and other communications
programs, also gives you access to information on other COHERENT and UNIX systems
throughout the world; you will want to exchange mail with other users and possibly
downlead news and information. All of this takes up space. You must have one seven-
megabyte partition to hold COHERENT’s root file system (that is, the file system that
holds the files that make COHERENT go), and you would be well advised to assign at
least one more partition of at least the same size to hold ugers’ accounts and their files —
or one 15-megabyte partition to hold both.

If you have a large disk drive that is organized into one partition that you wish to assign
to COHERENT, you are well advised to divide it into two smaller partitions. For ex-
ample, if you wish to allocate 40 megabytes 1o COHERENT, you should create two 20-
megabyte partitions rather than one 40-megabyte partition. In addition, if you anticipate
wanting to perform a full restore of a dumped root partition, you are well advised to have
a spare COHERENT partition in addition to the root partition. An alternative strategy
would be to boot from the COHERENT Boot diskette and then restore your root parti-
tion. This assumes that the device you dump and restore from is different than your

boot floppy!
The following two sub-sections describe what happen when you invoke options 2 or 8.

12 The COHERENT System

Changing One Logical Partition

You will first be asked which partition you wish to change. Reply by entering the parti-
tion you want. The system replies with the following text:

Existing data on a partition will be lost if you change
the base or the size of the partition. Be sure you have
backed up all data from any partition which you are going
to change. ' .

You may specify partition bages in cylinders or in tracks.
Reply ‘y’, to use cylinders, The system then asks: :

- You may specify partition sizes in cylinders or
in;megabytes. - - e : S
Reply ‘y’, again to use cylinders. Next, the system says whethei the partition is in-
itialized to MS-DOS or is unused. It then asks you whether you wish to install
COHERENT into the partition, leave the partition unchanged, or mark the partition as
unused. You must select one of these possibilities: install cannot install any operating
system other than COHERENT into a partition. To install COHERENT into this parti-
tion, reply ‘y’ when asked if you want this to be a COHERENT partition.

The final two questions ask you to enter the new base cylinder for the partition and the
size of the partition in cylinders. “Each question will prompt you with the currént value
for the partition. Simply pressing <return > would leave this cuirent value unchanged.
It is possible to make the partition smaller, but this serves no practical purpose if you
simply intend to install COHERENT into this partition. '

If you have made a mistake during this process, the system will prompt you and ask you
to correet it. Otherwise, you will proceed to the next phase of installation,

Changing All Logical Partitions

This process mirrors what occurs when only one partition is changed, except that it is
iterated for every existing partition. If you have four partitions and wish to eliminate
- _one, simply set its size to zero. If you have fewer than four partitions, you will be asked

if you wish to create any additional ones.

Note one additional feature: the table that- displays, the layout of partitions (an example
of which is shown above) is redisplayed after every partition, showing the changes you
have made (if any). By locking at the table, you will find it easy to-keep straight just
what you have done — when you work with this table, you will see the value of working
in cylinders.

If you make a mistake, the system will prompt you to correct it. A common error is re-
questing overlapping partitions — that is, setting the base cylinder of a partition within
an ares already allocated to another partition. Another error would be to request an im-
possibly large partition,

Introduction 13

___Creating COHERENT File Systems -

It is strongly recommended that you not include the last cylinder of your hard disk in
any partition. This cylinder is often used by diagnostic programs, and, as such, is not

. available for general use. 7
. This concludes the discussion of partitioning the disk. The system will then moves 1o the

next phase of installation.

Scanning for Bad Blocks

‘When a partition is assigned to COHERENT, it must be: scanned- for bad-i:locks. (The

terms block and sector are often used interchangeably.) Most hard disks have at least a
few blocks in which the disk’s surface is flawed and therefore cannot be trusted to hold
data reliably. '

COHERENT keeps a list of bad blocks for each partition, to ensure that it does not write
data into an unreliable area. This checking is performed automatically, but takes a few
minutes. Patience is recommended. o ’

Once COHERENT has created a list of bad blocks, it can generate a file system for each
of the partitions that you have assigned to it. One partition must be assigned the root
file system; the root file system is the one that holds the files owned by COHERENT it-
self, the files that make the system go. If you are assigning more than one partition to
COHERENT, you will be asked which you want to hold the root file system.

Mounting File Systems

The next step is to mount the file system assigned to the physical partition. You are not
required to mount any file system except the root file system, although for most purposes
there is no reason not to mount a file system that you have created. The system will ask
you to assign a name to each file system. For historical reasons, a file system is given
the name of a single letter from the lower end of the alphabet, such as v’ or °x', although

" there’s no reason not to name a file system ‘work’ or ‘usr’.’ Each name must be preceded

by.a slash °/".

Rebooting

Now that partitions have been allocated and file systems have been created and
mounted, the next step requires that COHERENT be booted from the. hard disk. If you
have elected to use the COHERENT bootstrap, and if you have the COHERENT boot
partition the active partition, all you have to do is remove the Boot disk from the floppy-
disk drive when prompted, and then reset your computer.

If you have made an MS-DOS partition the active partition, you must perform one addi-
tional step: type the number of the partition that helds the COHERENT root file system
as the system is attempting to read the floppy disk for the bootstrap program. The num-
ber must be typed from the numeric keys at the top of the keyboard, not from the
keypad. Before it begins the rebooting process, the system will tell you which number to
press.

14 The COHERENT System

Copying Files _

If rebooting occurs correctly, you will then be running COHERENT off of the hard disk.
Now comes the event for which 4ll of this preparation has ocenrred: the system copies
the COHERENT files onto your hard disk. The system will prompt you to insert the
three disks that hold the COHERENT files, oxie after the other.

The system will ask you whether you want the full set of manual pages on line in un-
compressed form, and whether you want the dictionaries used by the COHERENT
spelling checker also in uncompressed form. These files must be uncompressed before
they can be used, but take up much more room on the disk. You must decide whether
the extra convenience of having on-line manual pages and a spelling checker is worth the
extra space. they require.

Touring the COHERENT File System =~
Finally, for the last step in installation the system will ask you i you wish to take a tour
of the COHERENT file system. We suggest you answer yes, for this is the best way to
become familiar with the layout of your newly installed COHERENT system.

And with that, the installation of COHERENT is ﬁniéhed!
If at some later time you wish to review the tour, simply run /etc/coh_intro.

Where to Go From Here

The next step should be to become familiar with COHERENT. We suggest that you
read the following tutorials, Using the COHERENT System and Administering the
COHERENT System. Read them carefully, and work their exercises. They will help you
become familiar with COHERENT, its features and its capabilities, .

One last note: Numerouns references have been made to the Lexicon. This is the die-
tionary-format reference that occupies the second half of your COHERENT manual. It
describes every COHERENT command, library routine, operating-system call, and
header file, and also contains numerous articles on technical aspects of the system,
definitions, system maintenance, and general good advice. The Lexicon is in a tree for-
mat, and by following the chain of cross-references it is possible to work your way from
any one article to any other. Although it will never replace a good novel for bed-time
readling, we think that you will find it well organized and occasionally even enjoyable to
work with. ‘

Section 2: .

Using the COHERENT System

_COHERENT is a multiuser, multitasking operating system. Multiuser means that with

This tutorial introduces the COHERENT system. It serves both as a tutorial, and as a
reference manual for the COHERENT system.

What is COHERENT?

COHERENT, more than one person can use your computer af any given time.” Mulfifas-—
king means that with COHERENT, any user can run more than one program at any
given time, The design of COHERENT employs a few elegant concepts to give you a
powerful and flexible system that is easy to use. _

What is an Operating System?

An operating system is the master program that controls the operation of all other
programs. It loads programs into memory, controls their -execution, and controls a
program’s access to peripheral devices, such as printers, modems, and terminals,

Some operating systems permit only one user to use the computer at a time; and that
user can run only one program at a time. For example, ‘MS-DOS, the operating system
most commonly used on the IBM PC and its clones, can run only one program at a time.
However, you may well want your computer to support more than one user at a time,
and run more than one program at a time. Sharing not only yields many economies
(such as allowing a group of users to share one printer), but also allows the users to

_¢communicate with each other and so work together more efficiently.

Any multitasking operating system must be able o do the following tasks efficiently:

15

16 The COHERENT System

® Schedule computer time

¢ Control mass-storage devices (disks and tape drives)
® Organize disk-storage space

® Protect programs from conflict

® Protect stored information from destruction

¢ Ease cooperation among users

Today’s operating systems also provide #ools. These are programs that are bundled with
the operating system, and that are designed to help you do your work more efficiently.
For example, you need editors, compilers, debuggers, and assemblers to develop and test
programs. Text formatters and spelling checkers help you write memoranda, manuals,
or books. Command processors help you control the computer. easily. Status checkers
tell you what programs are being run, who is using-the system, and how much space is
left on your disk.

The combination of operating system and its tools transforms a boxful of wires and cir-
cuits into a nseful machine, : : T R

COHERENT’s Design Philosophy

The COHERENT system combines a multitasking operating system with a full set of
tools. But the quality and quantity of the features provided by the COHERENT
operating system distinguishes it from other, similar operating systems.

All but a very small part of the operating system software is written in C, a high-level
language, rather than assembly language. The result is a reliable operating system, with
no observable loss in execution speed. The choice of a high-level langunage also provides
portability. The C language has been implemented on practically every computer, from
mainframe to miero;

An important guiding principle in the design and implementation of the COHERENT
operating system is that good performance is the direct result of dedication to eareful
design and implementation of algorithms and systems, rather than coding tricks.

A computer system is not an end in itself; rather, it is a “bench” for constructing tools to
.solve specific problems, If the operating system is toc specialized or limited, the range of
problems it can help you solve will be narrow. On the other hand, if the operating sys-
tem is too detailed, then it becomes complex, idiosyncratic, and potentially unreliable.

The following: quotation from John Conway summarizes well the ph}los'ophy that under-
lies the design of the COHERENT system:

“The engineer who wants a machine for some specific purpose will nor-
mally approve the simplest machine that does the job. He will not usu-
ally prefer a multiplicity of parts with the same effect, nor will he coun-
tenance the insertion of components with no function.”

The COHERENT system follows this approach throughout. For example, consider
device-independent 1/0. COHERENT does not distinguish between a program, a device
(such as a terminal or floppy disk), or a file. Programs can move data among devices and
files without knowing any of the physical characteristics of the device. This device in-
dependence comes from designing the I/O system using a consistent view of files, devices,

Using COHERENT 17

and programs. Each appears like a stream of bytes, so each can communicate directly
with all others. If an application requires a more complex file structure, it can be added
at a higher level. This approach makes COHERENT simple and easy to maintain, yet
powerful. a ' :

You may wonder whether this design compromises the performance of the system. On
the contrary, the speed at which the COHERENT system transfers data between files on
a disk is very nearly the hardware speed of disk-to-disk transfers. This is achieved
through the use of simple but ingenious algorithms.

Throughout, the COHMERENT system uses this principle of using a few primitive
operators to provide easy communication among programs, files, and devices. With
these, any user of the COHERENT system can construct the tools to solve nearly all of
his eomputing problems. ' ' : '

COHERENT Properties _

The COHERENT file system uses a tree-structured directory. This means that direc-
tories hold files, which in turn may be data files or other directories. The:fact that a

"~ directory can contain more divectories is a Significant hielp in managing large numbers of ——
files. .
The COHERENT operating system is modularly designed, using certain mathematieal
concepts. This results in an efficient design for the system. Using this simple but
elegant approach, features are designed to fit well together. This means that
COHERENT does not repeatedly reinvent the wheel — each feature is carefully designed
to function well by itself and work readily with other features. COHERENT avoids the
“creeping feature” syndrome common to usual operating systems. '

How Do I Begin? ' . '
This section introduceg a few concepts that you must grasp before you can use the
. COHERENT system. - . - .

Termjnals and COHERENT

You will use a ferminal to send commands to the COHERENT system and view its
responses.

A terminal uses a sereen that resembles a television screen, called a video display or CRT
(for cathode ray tube). Typically, this is the console of your personal computer. The
CRT displays the dialogue between yourself and the computer system. A typical video
display shows 24 lines of characters, with each line having up to 80 characters. All of
your work with the COHERENT system will be done through typing commands and
data on your terminal. .

18 The COHERENT System

Special Terminal Keys

One special key on the keyboard will be used frequently in your work: the <return>
key. This key signals that the end of a line has been reached, and that you want the
COHERENT system to process a command. Not all terminals label the key <return>:
some call it enter, linefeed, newline, or eol. The key is usually larger than other keys
(except the space bar). From here on, this key will be called <return>.

Note that every command to the COHERENT system ends with a <return>. Your
command is not executed until you type this key.

_Ancther speciﬁl key is the control key, usually labeled ctrl or entl or cont. Most ter-
minals place it on the left side of the keyboard. This is an important key used in sending
certain special characters,

To use the ctrl key, hold it down while you press another key. ‘For example, to send the
- computer a <ctrl-D> character, hold down the ctrl key, strike the D key, then release
both keys. o ' '

Because control characters have no corresponding printable characters, in this tutorial
they will be represented in the form:

<ctrl-D>
' for the character etrl-D.

While you are typing information into the COHERENT system, you can correct the in-
formation before it is processed. Two keys will help you do this. The first is the <kill>
character, which erases the line entirely and allows you to begin again. This is usually
<ctrl-U>, but you can easily change the <kill> character with the command stty,
which is disenssed in a later section. '

The other key is the <erase> character, normally <ctrl-H>. This erases the most
recently typed character. You can erase several characters with <etrl-H> by striking it
several times. <ctrl-H> also serves as the backspace key.

One more special key is the <interrupt> key. This key aborts a command before it
normally finishes. By default, this key is <ctrl-C> on your terminal, .

login: Logging In

Before you use the COHERENT system, you must install it on your computer. During
the installation procedure, you will establish your personal login account and the
password with which you access it. You need these in order to log in to COHERENT. If
~you' have not yet installed COHERENT on your computer; return to the release notes
and follow its directions.

Once you have installed COHERENT on your system, you must log in to COHERENT
before you can begin to use it. When you log in, you establish a connection with the
computer and prepare the system to execute your commands.

3 Using COHERENT 19

Your first step after turning on the terminal is to send the <etrl-D> command. It
replies;

Coherent login:

Type your user name, followed by <return>. ‘Next, COHERENT will prompt you to
type your password: '

Password:

Note that your password does -not-appear-on- the.screen as. you. type it.. This prevents
kibbitzers from seeing your password without your permission. Follow the password
with <return>. If you enter the password incorrectly, COHERENT will ask you to try
again. ' -

When you enter your password correctly, COHERENT logs you in. You will be greeted
by the message of the day, if there is any. The COHERENT system is now ready to ac-
cept your commands and execute them. To indicate readiness, COHERENT prints a
prompt character on the screen: :

—]

e == ————— == ——m===s

When COHERENT has finished executing a command, it prints ‘another prompt, which
means that it is ready for your next command. '

- Try COHERENT Commands)
To see how easy it is to nse COHERENT, type the following lines. Be sure to end each
Jine with a <return> . '
ed

i
This is a sample COHERENT file.
w file0l
q o :

The characters ed tell COHERENT to invoke an editor program, with which you can

build and change files. The information that you type is then processed by the
COHERENT editor. When you are finished with the editor, you return to COHERENT

by typing q. Now type:
" cat file0l _
~ This command types out the contents of the file fileO1 that you just created. Finally,

type:
le

This command Yists the files that you have. It replies
Files:

fileOl

20 The COHERENT System

Congratulations! You have just made COHERENT work for you.

To review: The first command, ed, created a file and filled it with some ‘text, while the
second command cat typed the file out on your terminal, Finally, the command le listed
the name of each of your files. See following sections for full descriptions of each of these
commands.

Commands to COHERENT

Once you have logged into the system, all the resources of the COHERENT system are
at your fingertips. COHERENT’s commands give you control over these resources.

Every COHERENT command has the same structure: the command name, which tells
COCHERENT which command You want it to execute; and the arguments, which detail
what you want done and to what you want it done.

- Some commands only have the first part, For examp_le, to list the names of files that you
" have, type - : R S

le

and COHERENT prints their names in columns across the screen. (A file is a mass of
information that is given a name and stored on the disk. They will be described in detail
later in this tutorial.)

I you have no files, Ic prints nothing. If you have logged in for the first time, you may
or may not have files, depending upon your installation. Try it. In any event,
COHERENT will prompt you for another command after it finishes le,

The second part of a command is a list of parameters or arguments to that command.
Think of parameters as controlling either the bhehavior of the commarnd, or as the target
of the command’s action. .

The parts of a command are separated by spaces or tab characters.

The parameters of the command are further divided into options (or controls) and
names. Names are usually the names of files; options change the action of the command,
An option is usually indicated by being prefized with a hyphen *’.

An example of a name parameter is shown in this example of a cat eommand:
cat file(Ql '

This command types the contents of file01 on your terminal. The name argument is
fileQ1.

For an example of options, consider the command ls. ls lists your file names one name
per line. Thus, typing

1s

produces a list of the form:

Using COHERENT 21

U

.profile

compu

fileO1l

mailbox
However, Is can tell you more ahout a file than just its name. To see additional informa-
tion about each file, fype: C

ls -1 ... L
Is print the following information:
-rw-r--r-- 1 you 17 Sat Aug 15 17:20 fileOl

This listing shows the size of the file, the date it was created or last modified, and its de-
gree of protection. The letters to the Jeft of the listing are described in detail in the
tutorial Administering the COHERENT System or in the Lexicon article for the com-
mand chmod. _ ' ,

~ " help, man: Help with Commands f:_";”"’ el T —

The COHERENT system has a help command
' help -
which gives you a brief description of COHERENT commands. To introduce yourself to
these commands, type help by itself, or: .
' help help |
Both tell you how to use the help command. To get'inforinaﬁon on the l¢e command,
type: :
help le

To obtain detailed information on a command, use the man (abbreviation for manual)
command. Each command has an on-line description that the man command will print
out for you. To find out about the man command, type:

man man

I your CRT screen fills with information, man will wait for you to type <returm> to
continue. This is to prevent you from missing information should it scroll too fast. man
will also wait for a <return> after it puts out the last line of the description.

The command descriptions provided by the man command are available in printed form
in the Lexicon. It provides a concise description of each available command.

Logging Out = . ‘. _ _
When you are finished using the computer, you must tell the COHERENT system that
you are done, and freelthe terminal for other use. This step is called logging out.

22

The COHERENT System

There are two ways to log out. The first is to type <ctrl-D> when COHERENT is ex-
pecting a command. The second is to type the command:

login

which logs you out and prepares for another login.

Features of COHERENT

This section présents some hasic concepts, such as files, directories, and pipes, which are
important in using the COHERENT system.

Information Storage and Retrieval

' Computer systenis store information in ﬁleé. A file is a mass of data that has been

named ard stored on disk. It is analogous to a file in a file cabinet: both contain data,

- and aré stored by name in a storage device. A file, once created, can be invoked,

changed, or removed. All operating systems let you create and use files; however, sys-
tems differ greatly in the way they organize files and give you access to them.

To keep track of files, you need something that performs the same function as the index
tab on a file folder. A directory is COHERENT’s way of doing this. A directory holds
the names of files and marks where the files are located on the disk, The COHERENT
system does not limit you to one directory. You can have as many as you wish, as long
as you don’t run out of disk space.

Directories for COHERENT are tree-structured. The following example will clarify this
concept. If you have three separate projects, and each has files of its own, then you can
set up your directory to look like this:

¥ourname

4
4 i 4
projl proj2 proj3
{
1 4
proijla source.k

projl, proj2, and, proj3 are all subdirectories of directory yourname. Directory proj3,
in turn, holds files proj3a and source.k.

Each user of the COHERENT computer system has his own directory, The
COHERENT system makes sure that you automatically use the directory created for you
and not that of another user. It protects your files from accidental damage by another
user. However, if you wish, you can allow other users to examine or change your files.

Whether others can examine or change your files depends upon the type of protection
that you chaose for your file. In the usual case, you will not specify any protection and
the COHERENT system will create the file unprotected. Since directories are also files,
you may prevent other users from examining the files in your directory or subdirectory

Using COHERENT 23

using the same protection mechanism. (The mechanism by whif':h'you grant or deny
permission to files is described below, and in the Lexicon article on the ¢command

chmod.)

A file in the COHERENT system can contain any of several different kinds of informa-
tion, ranging from programs to electronic mail. Later sections will present examples of
each kind of file. R :

Redirecting Input and Output

 Most COHERENT commands write their output to the standard output device, which is

normally your terminal’s screen. For example, who prints on your terminal the name of

~ each user currently logged into your COHERENT system:

who .

By) using the special character >, you can redirect the output of who into a file. The
command

who >vhofile

standard output. Later, you can list the information on your terminal using cat:
cat whofile ‘ . Co

Once the information is in a ﬁlé, you can process it in other ways, For example
sort whofile ' o '

sorts the contents of whofile and prints the results on your screen. In this way, you can
display the users’ names on your terminal in alphabetical order.

- You can also redirect the standard input to accept inﬁtt from a file rather than from

your terminal, To redirect the standard input, use the special character < before the

“name of the file that you want read as the standard input. For example, the command

mail sends electronic mail to another user; normally, it “mails” what you type on the
standard input, but you can use ‘<’ to tell it to mail the contents of a file instead.

mail fred <whofile
mails the contents of whofile to user fred.

Pipes _

The pipe is an important feature of the COHERENT system. Pipes allow you'to hook
several programs together by redirecting the output of one into the input of the next. A
pipe is represented by the character ‘|’ in the command line.

Most COHERENT programs are written to act as filters. A filter is a program that reads
jts input one line at a time or one character at a time, performs some transformation
upon what it has read, and then writes the transformed data to the standard output
device. You can easily perform complex transformations on data by hooking a number of
simple filters together with pipes. Consider, for example, the command:

" writes this information into whofile. The operator > tells COHERENT to redirect the

24 The COHERENT System

who | sort

Here, the command whe generates a list of persons who are logged into the system.
The output of who is then piped to the program sort, which sorts the list of users into
alphabetical order and prints them on the standard error device,

The power and flexibility of the COHERENT operating system owes much to the pipe.

Processing Information in Files

The COHERENT system includes many toals with which Yyou can process files of data.
- Each of the tools introduced here is described in detail the Lexicon.

Computer applications, such as general ledger or inventory control, are hased on data
files and transactions that involve them. COHERENT has capacities for processing data
files that can help you implement such an application easily. The following paragraphs
describe a few COHERENT commands for processing text,

- sori sorts the lines or records in a file. With it, you can sort a file based on any field or
set of fields in each line, as well as select the field separator. You can also discard

elements that are not unique. You can sort several input files and redirect the output
into one file; this lets you merge files. , ‘

awk is a language with which you can sean text for patterns and alter it depending upon
which pattern is found. You can use it to write reports, to detect patterns in files, and to
validate data as they are entered into the computer. awk treats its input as lines consis-
ting of fields. It processes numeric data as well as strings. Totals and averages can he
easily computed on any of the input fields. Associative memory arrays are provided,
where array indices may be inteégers, strings, or even floating-point numbers.

If you have two text files that contair almost the samie inférmation, the command diff
will summarize for you just how the files differ. diff can, for example, show you how
two versions of a document or a program differ, or show you how today’s inventory file
relates to yesterday’s. When used with the text editor ed, diff can help you maintain a
master file ahd a series of automatic update commands to produce other versions of the
file. :

A gimilar program, emp, performs the same work with non-text files, -
A related program, comm, processes sorted files and shows how they are similar.
The command uniq reads a sorted file and removes all duplicate lines.

The command grep finds patterns within text files. If, for example, you wish to find
every document on your system that contains the word succotash, grep will find them
for you. :

J ' Using COHERENT 25

‘ Document Preparation

The COHERENT system can be used to prepafe documents as well as develop programs.
It has been used to write computer documentation, tutorials, and books, including this

manual,

nroff is the COHERENT system’s text-processing language. To use nroff, type its com-
mands directly into your text file, then run the file through nroff to “compile” your text.
nroff will follow your commands to format the text on the page, to create (with the aid
of a little skill on your part) an attractive, printed doeument.

nroff lets you do this in such a way that a manuscript can appear in any of several dif-
ferent formats, without _chan_ging the content of the manuseript. .

A related program, troff, does the same work as nroff, except that its output that can
be printed on the Hewlett-Packard Laserdet, using multiple fonts, sizes of type, and
proportional spacing. In general, you should use nroff to process files that you will print
on the screen or on a simple dot-matrix or daisy-wheel printer; but use troff if you want
— -~~~ = - to print-your output on a sophisticated laser printer. ..« .

Programming Tools

" The COHERENT design not only makes it easy to run programs, but easy tb write them
as well,

The COHERENT system has a compiler for the C language, and an assembler for your
machine’s native assembly language.

To invoke the C compiler, use the command ce. The command as assembles files of as-
sembly language. _ : ‘

To help you debug programs, the COHERENT system comes with a symbolic debugger,
dh. This program can be invaluable in helping you find where your C or assembly-lan-
guage program has “jumped the rails”. . R _

Finally, the programs lex and yaec implement sophisticated programming languages,
that can be used to develop entire computer systems quickly. Each comes with its own
tutorial, as well as full entries in the Lexicon. . o

Electronic Communication
COHERENT has several features that can provide electronic communication.

. The command msg lets you send messages to other iJeople who are logged into the sys-
tem. write allows you and another user to carry on a typed “conversation” between
your two terminals.

If you wish to communicate with someone who is not logged into the system, you can use
the program mail to send him electronic mail.. The next time that user logs into the
gystem, he can read the message in his “mailbox”, save it into a file, and reply to it if he
wishes. o '

26 The COHERENT System

The UUCP utility gives you a “window on the world”. With UUCP, you can exchange
mail via modem with all COHERENT or UNIX systems that are enrolled in the
USENET. UUCP operates automatically: it will exchange mail late at night, when
telephone rates are low, without your having to be at your computer. In this way, you
can exchange mail and download news and source code automatically from thousands of
other systems.

Other COHERENT Features

COHERENT provides many interesting tools that do not fit easily into any particular
category. i
The program units computes a formula that lets you convert one unit of measure to
another. For example, you can use units to convert centimeters to hands or rods to
fathoms. - S : S

.. The program be turns your computer into a desk calculator. This “caleulator” works in-

- teractively, and is fully programmable, -~ -

The program cal prints a calendar for any month or year you ask, with the current year
as default. It correctly converts from Gregorian to Julian calendars, using September 3,
1752 as the date of conversion (i.e., the date when the Gregorian calendar was adopted in
England and its possessions), so you can print correct historieal calendars back throngh
-the year 1 AD, e
Ancther COHERENT tool, erypt, allows you to encrypt files, to protect them from
prying eyes (even those of the system administrator). _

Files and Directories

Earlier, we introduced files as the cornerstone of the COHERENT system of storing and
retrieving information. This section discusses files and directories in more detail.

File Names
Each file has a name, such as; -

.profile
FileOl
cmd. sh
£fileO1
test.c

File names are generally made up of upper-case and lower-case letters and numbers.
COHERENT treats capital letters differently from lower-case letters. The file names
File01 and file01 are therefore different.

Any character can be used to nanie a file, including a control character. It is recom-
mended, however, that you names files using only upper- or lower-case alphabetic
characters, numerals, and the punctuation marks ¢’ or ",

Using COHERENT 27

_ . minigtrator.

The file name should not be more than 14 characters long. If you specify a longer name,
characters beyond the 14th will be ignored. Thus, COHHERENT will regard the file

names

this.is_very_long—file.name 1

and
this_is_very-long_file_name_2

as being identical.

Your Directory .

You can inspect the contents of the current directory with the commands Is and lec.
When you specify a file name, COHERENT looks it up in the directory and connects the
file to the program using it. _

There are many directories on the COHERENT systeml.' “When you log in to the system,
COHERENT sets up your home directory, which is determined by the system ad-

You may sometimes need a program or a data file in another user’s difectofy. Ais:o, the
commands that you use frequently come from another directory.

To examine or use files in a directory other than your own, you will need to specify the
name of the directory as well as the name of the file. Separate the parts of the name of

the directory by a slash: _

/ _
To see the files in another user’s directory, you should use the change direcfory com-
mand ed. For example, to switch to Henry’s home dirvectory, issue the command:

ed fusr/henry ‘
Path Names
The COHERENT file system is tree structured. This means that all files in the system
branch from a common origin, called the root. The name of the root directory is:

/

One file in the root directory is msr. This is a subdirectory that normally contains the
directories of all users. To list the names of all user directories, type the command:

le¢ fusr

If one of the user names is henry as above, the command
le fusr/henry

lists the names of the files in henry’s directory.

28 The COHERENT System

The parameter /usr/henry is called a path name. Path names may be fully or partially
specified. All fully-specified path names begin with / for root, and continue with further
subdirectory names.

Path names that do not begin with a slash are partially specified, and are automatically
prefixed with the path name of the current directory to make them complete hefore the
system uses them.

The elements of path names are separated by slashes, so if there were a file in new-
directory named newfile, you would refer to it as

newdirectory/newfile

The absence of a beginning slash indicates that the path name begins in the current
directory. Thus, if your home directory name is henry, then an alternate but less con-
venient way to specify the path name to newfile is o

/usr/henry/newdirectory/newfile

Thus, a path name is a list of all the subdirectories ‘leading from the root to the file in
question. newfile is a file in subdirectory newdirectory, which in turn is a file in the
home directory henry, which is further a file in the directory usr. The directory usris a
file in the master or root directory for the system.

You don’t need to specify all of this, fortunately, whenever you want to specify a filein a
subdirectory, COHERENT assumes that partially specified path names are within the
current divectory. Therefore, you can specify a subdirectory by specifying the name of
the directory first, followed by the rest of the path name.

mkdir, ed, pwd: More Directories
You can easily create more directories within your primary, or home directory.

Directories are useful in organizing masses of files. Related files can be kept with each
other in a directory, whose contents are suggested by its name. For example, you may
wish to create a directory to hold source files for your programs, another to hold com-
pleted programs, a third to hold text files, and a fourth to hold commands; and to tell
them apart, you may wish to name them, respectively, sre, prog, text, and emd.

The following exercise shows how to manipulate files and directories. To begin, use the
command cat to create file file01, as follows:

cd

cat >file(Ql

This is another sample file.
<ctrl-D>

cd returns you to your home directory, for this exercise. Now, you can use the copy
command ep:

cp fileOl file02

to create file02. Naw, type le to list the files in the current directory. It will show the
following:

Using COHERENT 29

Files: o
file0l file02

Other files may be present, depending upon your installation.

The command mkdir creates a new directory. For example, to create a new directory
named newdirectory, type the following command:

mkdir newdirectory

If you follow this command with le, it lists your regular files, but it also lists newdirec-
tory separately as a directory:

Directories:
newdirectory
Files:
file0l fileO2

To refer to any files in newdirectory, use its name in specifying the path name.

Now;, create a file in the new directory: .- o U

cat >newdirectory/newfile
lines to be

contained in newfile
<ctrl-D>

This command copies lines to the file described by the partial path name newdirec-
tory/newfile. :

One way to avoid specifying all of the subdirectories in a long path name is to change the
current (or working) directory. When you log in, the currént directory is set to your
home directory. :

If you have used the command ed to change your current directory, you can find what
the current directory is by typing the print working directory command pwd. If you have
a subdirectory backup in your directory, and change directories with

_cd backup
then the command
pwd
displays:
- fust/yourname/backup

The change-directory command cd changes the current 'directory. To change to new-
directory, type the command:

cd newdirectory

If your current directory had been /usr/henry before you typed the cd command shown
above, it will be /usr/henry/newdirectory after you type it. :

30 The COHERENT System

Now, if you type the le command, the listing will display only

Files:
newfile

since le with no parameters lists the current directory.

To change back to the directory that you had when you logged in to the system, use the
cd command with no parameters:

cd .

This directory is often referred to as the home directory. To change to another user’s
directory, you would say '

ed fusr/other
or use the abbreviation
cd-.-, fother- - -

Here “.’ is a special COHERENT system abbreviation for parent directory, which in this
case is the /usr directory. In other words, ‘..’ stands for the directory in which the cur-
rent directory resides. Every directory in the system except the root directory has a
parent. For the root directory, ‘.." refers to itself,

Another directory abbreviation is ‘., which means the current directory.

Assuming that your user name is henry, and your current directory is your home direc-
tory, part of the file-system structure is

/

' "
bin usr(..)

4 4
henry(.) other

Here .’ is /usr, the parent directory path, and ., the current directory path name
Jusr/henry. Both °’ and ‘.’ change when you invoke the c¢d command.

To see what your current directory is, you can use the print working directory command
pwd

and COHERENT replies with the full description of your working directory name. For
example, if your user name is henry and your installation uses the user name as the
directory name, theri pwd will reply :

/usr/henry

o e have—the--same—-eﬁ'ect'— TS s s s men s

Using COI—I_ERENT 31

mv, cp: Moving Files Between Directories

Once you have created your new directory, you can move files into it with the move com-
mand mv, or you can create new files there with commands such as ed.

To move file01 to newdirectory, the mv command is useful.

mv has two parameters: the first is the file to be moved, and the second is either the
new name of the file or the destination directory of the file. So, to move file file01 to

the new directory, you can say:
mv f£ile0l newdirectory/file0l

In this case, both parameters are file names. In an alternative approach, the second
parameter can be a directory path name:

mv £ile02 newdirectory

The second parameter is the directory that is to contain the file, and th,e name of the file
in newdirectory will be the same as it was in the current directory. These two forms

To see where the files are now, type the two commands:

lec
le newdirectory

The result is
Directories:
newdirectory
followed by '

Files:
£file0l file02 mnewfile

To move the files back, use a combination of the commands already shown. Type:

mv newdirectory/file0l £ileOl

cd newdirectory ’

nv file02 .,

cd
Note, too, that if you move a file to another file in the same directory, this, in effect,
merely renames the file.
You can copy files with the copy command cp. This command has two parameters: the
first is the file to be copied, and the second is the path name of the new copy. To copy
file01 to nfile01 in newdirectory, type the eommand:

cp £ileOl newdirectory/nfile0l

The difference between mv and ep is that after the ep command both the original file
and the copy exist, whereas after mv only one copy exists.

32 The COHERENT System

Now, an illustration of what has been discussed so far about directories and files with an
example.)

Continning with the user name of henry, assume that you have some documents that
you have entered with ed, and you want to make backup copies of these files for
safekeeping. The document file names are docl and doc2 and are in your home direc-
tory. For the purposes of this example, create docl with cat by typing:

cat >docl
a few
lines of
text
<ctrl-D>

and similarly doc2:
cat >doc2
second-file-
with some text
<ctrl-D>

{Don’t forget that <ctrl-D> means to hold the control key down and simultaneously
type the D.) The l¢ command tells you the file names and directory names:

Directories:
newdirectory
Files:
docl doc2 file0l file02

The first step is to create the directory to hold the backup copies. 'To help remind your-
self what the directory is for, name it backup.

mkdir backup
Now, le shows you:

Directories:
backup newdirectory
Files:
docl doc2 file0l £ile02

Now, you can use ¢p to copy your files into backup:

cp docl backup
cp doe? backup

After you issue these commands, le still says:

. _ Using COHERENT 33

: Directories:
! backup newdirectory

| Files:
' ' docl doc? file0l £ile02
/ However, if you list the contents of subdirectory backup
’ - 1lc backup o '
| you will see:
J Files:
docl doc2 f
The files have been successfully copied into the back-up directory.

chmod: File Protection Mode

As part of the directory entfy, COHERE_NT keeps information about the attributes of
~ . .gach file, The attributes includ

and the file’s mode. The mode determine just who can do what with the file.

For example, by resetting the mode you can stop other users from deleting, reading, or
writing to your files. You can even stop yourself from reading one of your own files, al-
though this is not often done. . : .

Although there are many combinations of these attributes and different sets of users that
they apply to, this document will cover only the hasic combinations.

To change the mode of a file, use the change-mode command chmod. For example, to
protect file docl in directory backup, use the command '

chmod -w backup/docl
where the -w means “remove write permission” and is followed by the file name.
To allow other users to read the backup file doc2, type:

chmod o+r backup/doc?2
where the letter o signifies “other users”, and the +r tells chmod to grant read permis-
sion. L I :
When COHERENT creates a new file, it ‘gives it your installation’s standard levels of
protection. To see the protection properties for a given file, use the command:

1s -1
1s prints the mode as the first column for each file in the current directory. To informa-
tion on how to interpret the protection codes, see the Lexicon entry for chmed; they are
also described below. =~ _ S
By default, the COHERENT system permits others to read your files but not change
them. H you wish, you can change this default; to do so, use the command umask. See
the Lexicon entry for umask for details. :

e the time and date of creation or modification of the file, =~

34 The COHERENT System

rm, rmdir: Removing Files and Directories

You will need to remove files to make way for new files. Old copies that you no longer
need may clutter your directory, or you may accidentally create a file that you do not
really want.

To remove a file, use the remove command rm. The parameter is the path name of the
file that you want to remove. For example, if you wish to remove file doc2 in directory
backup, type:

rm backup/doc2

You can remove several files with one command by listing them as consecutive
parameters: :

rm file0l fileO2

Files that have been protected as unwritable cannot be deleted, For exan-lple,' suppose
you created a file tough by typing

cat >tough
linel
line2
<etrl-D>
and protected it by typing
chmod -w tough
If you try to delete the file with rm, the COHERENT system will type:
tough: unwritable

This is done to prevent you from deleting a file unintentionally. If you do want to delete
it, use the -f option for rm:

rm -f tough
and the file will be deleted,

You can also delete directories using the command rmmdir, But before you delete any
directory, it must be empty of files. Otherwise, you will get an error messdge and the
directory will not be deleted. The form of this command is:

rmdir newdirectory

du, df: How Much Space?

If you wish to see how much disk space the files in the current directory are using, using
the disk-usage command du. If you have subdirectories, they are listed separately. du
lists disk usage in blocks; each block is 512 bytes (half a kilobyte).

Using COHERENT 35

On the other hand, you may wish to discover how much space is available on your disk.
To do so, use the disk-free command df. It tells you how many blocks are left free on
your disk.

In: Linking Files

COHERENT has a unique feature that allows a file to have several names. When you
create a file, you give it a name; COHERENT links the name you give the file with its
internal system of managing files. -(For more information on how COHERENT identifies
files, see the Lexicon entry for i-node.) COHERENT allows you to give a file more than
one name; another way of expressing this is to say that you can give a file multiple links..

To ereate another link to an existing file, use the comrri_and In. For example, if you have
a file named docl (as you will if you have performed the previous examples), you can
create a new link to it with the following command: -

1n docl another

The “new” file has the same prolections and data as the “old” ﬁle; in this example,

~—another assumes the same permissions and-data as-doel—-—-————

If you use rm to remove one of the links to the file, the other link and the file’s data
remain in existence. If both names are removed, however, then the data are also
removed. The data remain in ¢xistence as long ag they have a link to COHERENT.

Introduction to COHERENT Commands -

The commands that you enter into COHERENT are interpreted and acted upon by the
special COHERENT program sh, otherwise called the shell.

This section introduces some commands commonly used by COHERENT users. For
more information on these or other commands see help and man, Also, consult the
Lexicon. ’ '

You will need to be aware of the following special punctuation characters:

*?2 [1] (1
(Y §=1:"""<>K>>

‘Avoid these characters until you have read the following section, which discusses their
use, or until they are presented in examples.

Lower-Case Sensitivity in Commands

The commands shown in this manual are all in lower-case 'characters. COHERENT
treats upper-case characters as distinct from their lower-case equivalents. Therefore, the
commands ’

Cat
CAT
caT
cat

36 The COHERENT System

are all different, and COHERENT recognizes only the last.

cat: List Contents of la File

The command cat can be used to list the contents of a text file — a program’s source
code, a document, or a message file, To list the contents of file pem, type:

- cat pgm _
This command types the file’s contents on the terminal using the standard output.

Another purpose for eat — the use from which it gets its name — is to concatenate
several files on the standard output. For example, the command

" cat one two three

prints the files one, two, and three, one after the other, on the terminal. The files can
be concatenated into another file by redirecting the standard output to the file. Using
the special character ‘>’ before the file name tells COHERENT to redirect the output.
For example, the command ’

cat one two three >four

concatenates files one two three into file four. four need not exist prior to this com-
mand; if it does, its previous contents are deleted.

scat: List Files on the Screen

- If the file you list with cat is more than 24 lines long and your terminal is directly con-
nected to the computer, the beginning lines of the file scroll off the screen too quickly for
you to read them. To ensure that you see all of the lines of the file output, use the com-
mand scat. : ‘ ‘

' scat prints a.ﬁle in 24-line chunks, After it has listed a chunk of text, it paﬁses and
waits for you to hit <return>. If you call scat with an option of -s,

scat -s file

it will not show blank lines on your screen.

who: Who Is On the System

To find who is logged into the system, use the COHERENT command who. This com-
mand lists who is logged into the COHERENT system, one name per line. You will see
your own user name there as well.

If you sit down at a temiinai that is not in use, but at which someone has already logged
in, the following command tells you who is logged in:

who am i
COHERENT replies with the name of the user logged in at that terminal.

Using COHERENT 37

Is, le: Listing Your Directory

The previous section discussed two of the more 'commonly used commands: 1s and le.
Each lists the files in a directory. ' '

To see how these commands work, presume that your directory has the files created in
previous sections and that you did not remove directory newdirectory. . To list the files
in your directory, simply use the command with no parameters:.

ls
This produces:

another
backup
“ docl
doc2
fileOL

e s 1——fil-e-02—- e e R i i e e

newdirectory
stuff

1c also lists file names, but it pﬁnts the files and directories éeparately, in columns across
the screen. The command

. le
~ gives:
Directories: _ _
backup newdirectory
Files: -

another docl doc2 f£ile01l fileO2
stuff

If you want to lst files in a directory other than your own, name that directory as an ar-
gument to the command. For example, /bin is'a directory in the COHERENT system
that contains commands. Type :

le /bin ‘
and le will print the contents of /bin.

Both Is and le can take options: precede the option. with a hyphen (and no intervening
space). The option must appear before any other argument. For example, to list only
the files in the directory for user carol, leaving out any directories, use the f option with
le: .

le -f fusr/carol
Or, if you type the command .

38 The COHERENT System

lc -f
for your directory, the COHERENT system replies:
 Files: docl doc2 fileO1 fileD?2

The commonly used options for le are;

-d List directories only, omitting files
-f List files only, omitting directories
-1 (Numeral 1): List files one per line, not in columns

1s produces a list of file names, one per line, and optionally much more information, To
produce all the information, use the 1 option (note that this is an “gl”, not a numeral 1):

1s -1

The following gives a sample of the long list that this option produces. Headings have
been added to show the meaning of each colimn: SR

size, modification
node # owner bytes date time name
-rw-r--r-- 1 you 17 Wed Aug 19 17:51 fileOl
drwxrwxrwx 2 you 32 Wed Aug 19 17:53 backup
-rw-r--r-- 1 you 17 Wed Aug 19 17:53 docl

The mode column consists up of four subfields, This field describes the access permis-
sions for the file and whether the file is a directory. Taking the entry for file file01 as
an example, we have:

-rw-r--r-- 1 you 17 Sat Aug 15 17:20 fileOl
IN /\ /\ / # owner date time file name

o]
12 3 4

The leftmost position has been labeled 1. If the file were a directory, this would contain
a d; otherwise, it contains a hyphen. : :

The remainder of the mode field is three subfields, each with three characters, Subfields
2 through 4 contain three positions each. These fields represent permissions to he
granted to different groups of users. Subfield 2 is for the owner of the file, Subfield 3 is
for members of the the owner’s group; for more information on groups, see the Lexicon
entry for group. Subfield 4 is for all other users.

The three positions within each of these subfields represent the permissions to read,
write, or execute the file:

Iwx

If the permission is granted, the corresponding letter is printed. A hyphen indicates that
the permission is denied. Read permission means that the file can he read, for example
by ecat. If write permission is granted, the file can be written to, as well as deleted.

Using COHERENT 39

Execute permission signifies that the file contains a command and can be executed.

The column labeled # represents the number of links to the file for non-directory files.
In almost every instance, this will be one.

The column labeled owner names the user who owns the file. You usually own the files
in your directory.

size shows the number of bytes used in the file,

‘Next comes the date and time that the file -was last modified, for example, by ed or
MicroEMACS. If the file is more than one year old, the time field is replaced with the
year the file was created.

TFinally, the name of the file is shown.

msg: Send a Message

The command msg lets you send a short message to a user logged into the system. To
1Ilustrate send a message to yourself Type

msg you
this is a test message

substituting your user name for "you" in the msg command. You will see:

you: this is a test message

‘mesg: Hear No Messages

If you do not wish to receive on-lme messages, the command mesg prevents other users
from interrupting your work:

mesg n
Later, you can allow messages again by typing:

mesg y

To determine which of the two mesg options is in effect, use the mesg command with
no option:

mesg

It will tell you the current setting. Try it.

write: Electronic Dialogue

The command write lets you carry on a “conversation” with another user. The conver-
sation continues until you or the other user type <ctrl- D> on his terminal,

For example, user fred can begin a conversation with user anne by typing:
write anne

On anne’s terminal, the message

40 The COHERENT System

Méssage from fred. ..
" will appéar. "To establish the other half of the commuﬁicatiop, anne should then say
write fred
and a similar notification appears on fred’s terminal.

At this point, both users simply type lines on their terminal and ‘write sends the mes-
sage to the other mser. To avoid typing at the same time, each user should end a
“speech” by typing a line that has the single letter o

o]

to signify “over”, or “go ahead”. When the other user sends you this, you know it is
your turn to “talk”, and viee versa.

_When_yo_l_u' communication is finished, you should type
Do I lIii T
<ctrl-D>

Here, 00 means “over and out”, and the <ctrl-D> terminates the write command.
Note that o and oo are polite conventions, and are not necessary to using write,

mail: Send an Electronic Letter

You can electronic mail to another user on your COHERENT system by using the com-
mand mail. This command works whether or not that person is logged into the system
at the time you type your message. The message is stored in an electronic “mailbox”,
and the user will notified that a message is waiting for him the next time he logs into
your system, Cos : '

To mail a message to user anne, just type:
mail anne

mail immediately prompts you for a title for your message:
Subject:

You can type the message’s subject, which will be used to tifle the message, Or You can
just press <return>.

Once you have titled your message, type the body of the message. You can conclude
your message in any of three ways: you can type <ctrl-D>, type a period * at the begin-
ning of a line, or a question mark ‘" at the beginning of a line. The first two methods
end the message immediately; the last method, however, invokes an editor, and lets you
edit the message further before sending it on to the intended recipient.

For example, to send your message to user anne, you might do the following. First, in-
voke mail: : . : :

mail anne

Next, give your message a title:

Using COHERENT 41

Subject: 1I'll be working late
Finally, type the body of the message:

1’11 be working late. I hope to get home before Catherine
and George go to bed. Please remind Ivan and Marian to do
their homework. Marian should remember to practice her
violin.

<cirl-D> : R

If you wish, you can first type your message into a file and then mail it. For example:

ed

a .

All come to the birthday party at four
next to the pump room.

w hb.msg

To mail the message to user jill, type:
mail jill <hb.msg

You can send a mail message to several users at one time by listing each user’s name on
the command line. For example, the command

mail 'j ill jack ted barb <hb,.party

mails the contents of file hb.party to jill, jack, ted, and barb. To illustrate the use of
the mail command, send yourself a mail message. Type the following; substitute your
yser name for “you” in the mail command: :

mail you

Subject: test the COHERENT mail system
This is a note to

myself to test

mail.

If someone has sent you -mail, the COHERENT system will fell you:
You have mail. ’

when you log in.

To receive mail, type the mail command with no parameters:
mail

If you have no mail, COHERENT will tell you:

No mail.

42 The COHERENT System

If you do have mail, the system will print each message on your terminal, along with the
user name of the sender, and the date and time that the message was mailed,

After each message, the mail program types a question mark ? and waits for your reply.
Type a d if you wish to delete the message that you have just read, a <return> to go
onto, the next message without deleting the message you just read, ann s command to
save the mail message in the file mbox, or the command q to exit the mail program.

You will know that you are finished with all of your messages when mail sends you a ?
without typing anything bhefore it.

mail can also send messages to other COHERENT or UNIX systems, via the UUCP
utility, See the accompanying documentation on UUCP to see how you can set up mail
to do this.

pr, Ipx: Print Files

The command lpr prints files for you, making sure that. your request. does not. conflict
with other uses of the printer. To print a file, type the command

lpr file

substituting the name of the file to be printed for “file”. Normally, the gystem prints a
banner page before it prints a job; if you wish to suppress the banner page, use the -B
option:

lpr -B file

K no file is given, the standard input is printed. Thus, lpr can be used in pipes; this
allows you to print immediately matter that you type on your keyboard.

Ipr will take your file and try to print it on any printer you have plugged into your com-
puter’s parallel port. If you do not have a printed plugged in, or if it is not turned on,
lpr will hold onto your files until the printer becomes ready; it will wait days, if neces-
sary, until the printer becomes available.

Ipr is also intelligent enough to handle requests from several different users: if more
than one user wants to print a file, Ipr will print them one at a time. Ir this way, the
COHERENT system lets several users share one printer.

Ipr does nothing to the file other than print it. This means that no page headings are
printed, nor does it break it the file up neatly into page-sized chunks. Another com-
mand, pr, does this for you. It paginates the standard input, giving a header with date,
file name, page number, and line numbers. The paginated output appears on the stan-
dard output.

To print a paginated file on the line printer, type:
pr file | Ipr -b banner
Note the use of the pipe ‘|’, which passes the output of pr as input to lpr.

Using COHERENT 43

__parameter string to echo:

echo: Echo the Command Line

The command echo repeats its arguments on the standard output. For example, the
command

echo five six
types on the terminal: -
five six o

Although this may not seem to be such a big deal, echo can help you find out exactly
what the arguments to any command would be if any special characters are involved.

For example, if you had problems with a command of the form
cat %%

and you wanted to be sure what the arguments were going to be, give the same

echo **%

echo shows you how the shell transforms the wildcard characters into arguments. In
this case, the wildcards are transformed into a list of file names in the current directory.
To be sure that the double asterisk itself is used as a parameter, enclose it between
apostrophes:

acho %’ .
The result will be
*k

on the terminal.

ed: Text Line Editor

There are many uses for files on the COHERENT system — user manuals, notes, source
programs, mail, and so on. The COHERENT system includes a number of tools to
create and modify files, especially files of text. The interactive line editor ed lets you
create or change text files.

With ed you can create files interactivély, add text to files, rearrange paragraphs in a file,
and correct spelling errors.

For a full description of all the ed features, see the ed Interactive Editor Tutorial..

MicroEMACS: Text Screen Editor

COHERENT includes a full-featured screen editor, called MicroEMACS. MicroEMACS
allows you to divide the sereen into sections, called windows, and display and edit a dif-
ferent file in each one. It has a full search-and-replace function, allows you to define
keyboard macros, and has a large set of commands for killing and moving text.

44 The COHERENT System

Also, MicroEMACS has a full help function for C programming. Should you need infor-
mation about any macro or library function that is included with COHERENT, all you
need to do is move the text cursor over that word and press a special combination of
keys; MicroEMACS will then open a window and display information about that macro
or function,

For a list of the MicroEMACS commands, see the Lexicon entry for me, the
MicroEMACS command. A following section of this manual gives a full tutorial on
MicroEMACS. In the meantime, however, you can begin to use MicroEMACS by lear-
ning a half-dozen or so commands,

To invoke MicroEMACS, type the command
me hello.c

at the COHERENT prompt. This invokes MicroEMACS to edit a file called hello.c.
Now, type the following text, as it is shown here. If you make a mistake, simply back-
space over it and type it correctly; the backspace key will wrap around lines; -

main()
{

printf("hello, world\n");
}

When you have finished, save the file by typing <ctrl-X> <ctrl-8> (that is, hold down
the control key and type ‘X’, then hold down the control key and type ‘S"). MicroEMACS
will tell you how many lines of text it just saved. Exit from the editor by typing <ctrl-
X> <ctrl-C>. ’

Now, re-invoke MicroEMACS by typing
me hello.c

The text of the file you just typed is now displayed on the screen. Try changing the
word hello to Hello, as follows: First, type <ctrl-N>. That moves you to the next line.
(The command <etrl-P> would move you to the previous line, if there were one.) Now,
type the command <etrl-F>. As you can see, the cursor moved forward one space. Con-
tinve to type <etrl-F> until the cursor is located over the letter ‘h’ in hello. If you over-
shoot the character, move the cursor backwards by typing <ctrl-B>.

When the cursor is correctly positioned, delete the ‘h’ by typing the defefe command
<ctrl-D>; then type a capital ‘H’ to take its place.

With these few commands, you can load files into memory, edit them, create new files,
save them to disk, and exit. This just gives you a sample of what MicroEMACS can do,
but it is enough so that you can begin to do real work.

Now, again save the file by typing <eirl-X> <etrl-S>, and exit from MicroEMACS by
typing <etrl-X> <etrl-C>.

Just as a reminder, the following table gives the MicroEMACS commands presented
above:

Using COHERENT 45

o

<etrl-N> or § Move cursor to the next line
<ctrl-P> or t Move cursor to the previous line
<ctrl-F> or -+ Move cursor forward one character
<cirl-B> or + Move cursor backward one character
<ctrl-D> Delete a character

<ctrl-X> <ctrl-S> Save the edited file
<etrl-X> < ctrl-C> Exit from MicroEMACS
<ctrl-Z> Save a file and exit

Note that on some terminals, the arrow keys will not work. Note, too, that some remote
terminals may have trouble using <ectrl-S>, if they use XON/XOFF to control flow, In
this case, uge <ctrl-Z> instead.

For more information, see the tutorial for MicroEMACS included with in this manual,

__grep: Find Patterns in Text Files

The command grep lets you ‘iiild --liﬁés_filat-éoﬁtaiﬂré.?&-ifef;i“{ﬁthiﬂ"('J'né_"éi" ‘more files.

Patterns are sometimes called regular expressions.
To illustrate grep, create file docl by typing:

cat >docl
a few lines
of text.
<ctrl-D>

Then the command
grep text docl

prints the second line of file docl:
of text.

The first parameter to grep is the pattern for which you are looking; the rest of the ar-
guments are the names of files to be examined. text is the pattern and docl is the file.

To find if a particular user is on the system, pipe who into grep:
who | grep you

(Substitute the user name in guestion for you.) Try it with your user name. The pat-
tern is you, but no file name is specified. grep reads input from the standard input,
which in this example is connected to the output of the who command.

You can specify several files to be searched; simply put the additional file names after the
first:

grep pattern docl doc2
Or, you can search all files in the current directory for the pattern with

46 The COHERENT System

grep pattern *
The asterisk will be interpreted to mean all files, and grep will look for patterr in each.
The search pattern can be a pattern. Patterns are fully discussed in the tutorial for ed.
The name grep is derived from the ed command

g/re/p

where “re” means regular expression; or pattern. In giving a pattern to grep, be sure
that you enclose it between apostrophes. Otherwise, the shell will interpret the pattern
expression hefore grep sees it.

You can also locate lines that do nof contain given patterns by using the grep option -v.
grep -v bugs progl prog?2

This command finds and prints all lines in files progl and prog2 that do not contain the

pattern bugs, ' '

date: Print the Date

The COHERENT system keeps track of the time and date. To find the date and time,
use the command:

date

COHERENT responds with the day of the week, the month day and year, and the time
of day.

Internally, the COHERENT system records the date and time as the number of seconds
since January 1, 1970, 00:00:00 Greenwich Mean Time (GMT). This means that files
created in one time zone and referenced in another time zone will bear the correct time.
The time and date printed out is converted from the internal form to the local time,

time: Measure Command Execution Time

The command time lets you measure how long a command takes to execute. This can
be useful if you are improving a program and need to time its execution, or are deter-
mining how long a program takes under different conditions.

To use time, precede the command that you are timing with the time keyword. For ex-
ample, to time how long it takes to list the nsers on the system, type:

time who >temp

When who is finished, time prints the time the command required to execute, the time
spent in who, and the amount of time spent in COHERENT itself. The results
resemble:

Using COHERENT 47

-...sure, that the system gets the password as you want it. If you

Real: 0.9
User: 0.1
Sys: 0.2

This command gives different results, depending on the size of your computer and the
number of users on it when you type the command. The Real number (0.9) is the
amount of elapsed time taken by the command. The User time (0.1) is the amount of
time spent in the command who itself, and the Sys time (0.2) is the amount of time that
COHERENT itself spent processing the job. .

passwd: Change Your Password

You should change your password from time to time, to ensure that no unauthorized
person can gain access to your files (or to the system as a whole).

It is easy to change passwords on the COHERENT system: just type the command
passwd. passwd first asks you for your current password (if you have one), and then
asks you to enter your new password twice, Entering the new password twice helps en-

way both times, COHERENT will say:
Password not changed.

You must then begin again with the command passwd.

Be sure the password is something that you can remember. It is recommended that the
password be at least six characters long. Do not write it down, but memorize it. You
can use a four-letter password, but if you do, you should mix upper-case and lower-case
letters to make it more difficult for outsiders to gness.

stty: Change Terminal Behavior

Becanse a wide variety of terminals can be used with the COHERENT system, you must
pass some information to the COHERENT system so it can handle your terminal cor-
rectly.

The command stty describes the information COHERENT currently has for you; you
can then use stty with arguments to change how COHERENT handles your terminal.

For example, COHERENT normally echoes each character you type, as you type it.
However, if your terminal also echoes what you type, you will'see double characters. To
prevent, this, issue the command:

[

stty -echo

The program login uses this feature when you type your password, to help keep it secret
from anyone who is kibbitzing at your desk.

To set the echo feature again, type:
stty echo

When you first log in, the system presumes that your terminal does not directly handle
the tab character, so when COHERENT sends a tab to your terminal it simulates it

do not type it the same

48 The COHERENT System

with spaces. If your terminal does handle tabs, issue the command:

stty tahs
The COHERENT system will no longer substitute spaces for tabs. To go back to sub-
stitution,

stty -tabs

The <erase> character lets you delete the previously typed character. The <kill>
character lets you delete the line that you have been typing but have not yet finighed.
By default, COHERENT sets these to, respectively, <ctrl-H> and <ectrl-U>. To change
them to, respectively, <¢trl-E> and <ctrl-K>, use the stty command as follows:

stty erase “E kill “K
The carat “** tells stty that you want to specify a control character.
To reset erase and kil to the default values at login, the command
stty ek - -
suffices. This is equivalent to:
stty erase "H kill “U
To see what your current terminal parameter settings are, type
stty

with no arguments.

Introducing sh, the COHERENT Shell

There is more to a COHERENT command than simply typing it and seeing the results
on your screen. You can hook commands together to form complex seripts, redirect the
output of commands, run commands conditionally, and write files of commands (called
scripts) that can be run as commands themselves. These and other features enable you
to construct command programs and save them in a script file that is easy for you or
another COHERENT user to call upor, yet performs a complex sequence of steps.

This and much more is made possible by sh, the COHERENT shell. sh is the program
that accepis what you type at your terminal, interprets it, and passes it on to the
COHERENT system’s command executor for execution. sh is an intricate and subtle
program, and from it comes much of the COHERENT system’s power and flexibility.

Simple Commands

The shell command language is built around simple commands. Many have been shown
in examples already, such as the command to list your directory:

lc

You can combine several simple commands on one line by separating them with semi-
colons:

Using COHERENT 49

who ; du;mail
The shell executes the commands in sequence as if they had been typed:

who

du

mail
In both of these examples, du does not begin execution until who is finished, and mail
does not begin until du is done. '

Special Characters

The shell treats the following characters specially; if you want to use them without their
special meaning, you must precede them with the backslash character \, or enclose them
within quotation marks: :

*x2 [1] €Y ()
= '"' "< K>

"' Function of These tharacters will be explairied Jater-in this-section. -To use-one-of -~
these characters in a command, for example ‘7, type:

echo \7

In addition, the shell treats the following words in a special way when they appear as the
first word of a command:

case do done elif else esac
fi if in then until while

Running Commands in the Background

The shell can execute commands simultaneously as well as sequentially, This means
that while the shell is executing one command, it lets you type and execute another com-
mand. Under the shell, the number of commands you can execute at the same fime is
limited mainly by the amount of memory and disk space on your system.

If a command is followed by the special character ‘&’, the shell begins to execute it im-
mediately, and prompts you to enter another command. For example, if you need to
sort a large file but want to continue with other commands while the sort is executing,
you can type:

sort >bigfile.sorted bigfile.unsorted &
ed prog

This allows you to edit file prog while your computer quietly executes the sort in the
background.

When you run a command with &, the shell types the process id of the command started
in background, When the COHERENT system runs a command, it assigns that com-
mand a process id, which is a number that uniquely identifies that command to
COHERENT. Normally, there is no need to be concerned about these numbers.

50 The COHERENT System

However, when you run commands in the background, the shell tells you the id of the
background process so you can keep track of its execution.

The command
ps

lists the processes you are currently running. If yon have no background jobs, the
response is:

ITY PID
30: 362 -sh
30: 399 ps

The first column shows the number that COHERENT has assigned to your terminal,
This is the same terminal number printed out by who. The second column shows the
process id; the third column shows the program or command executing, The characters -
sh in the third column means the login shell. There are two processes because the shell
is running the ps command as a separate process.) o

Once you have started a background command, ps shows you the process entry, which
has the process id that the shell typed out for you.

If you need the results from a background job, you can wait for it to finish by issuing the
command:

wait

The shell will then accept no further commands until all your background jobs are
finished. If there are no background jobs, there will be no:delay. :

Scripts

Many of the commands that you use in COHERENT are programs, such as ed. Others,
like the man command, are scripts, or files that merely call other commands. You cax
write scripts on your own, simply by using a text editor to type into a file the commands
you wish to execute. If you frequently use a set of commands, you can save yourself
from having to type them over and over by simply typing them once into a script.

For example, suppose that you wish to check periodically the amount of disk space that
you have used, the amount of disk space still available, and see who is using the system.
You can write a script to do all of this automatically. Create the script good.am by
typing the following commands:

Using COHERENT 51

ed

a

du

df

who | sort
mail

w good,am
q
From now on, to execute the above-listed commands, you need only type:

sh good.am

where sh is a command that means: read commands from a file, in this case good.am.
If you can issue a command from your terminal, you can also execute it from within a

seript.

e You.can make a command file directly executable by using the command chmod. For ex-
. ample, the command . : CoTTTmT T T

chmod +x good.am
lets you execute the script good.am by typing
.good.am

and leaving off the sh. Once you have done the chmod command, you can still issue the
commands by typing: :

sh good.am
as well as use ed or MicroEMACS to change the contents of the seript.

Notice that the commands called by a script may themselves be scripts. This is
illustrated by the following script, second.sh:

ed

a

sh good.am
lc

w second.sh
q

Thus, typing:
sh second.sh

calls the script good.am, and also calls the command le.

52 The COHERENT System

.profile: Login Shell Seript

When you log into the system and before you are issued your first prompt, COHERENT
checks your home directory for a file named .profile; if it is present, the shell executes
the commands it contains,

This enables you to have COHERENT execute commands as soon as you log in, Check
if your installation provides one for you by doing an le (be sure that your current direc-
tory is the home directory). If the file is there, print it by saying:

cat .profile

Some of the commands may be of the form:
PATH=': /bin: fusr/bin’

This sort of command will be discussed below.

Substitutioﬁs |

Scripts of the form shown above are processed by the COHERENT shell without change.
However, the COHERENT shell increases the power of commands by performing three
kinds of substitutions within commands before it executes them.

First, it replaces special characters in commands with file names from the current or
other directories. This allows you to issue a single command that processes several files,

Second, you can give a seript arguments, much like arguments that are passed to a Pas-
cal, Algol, or C procedure. This lets you target the action of the script to a specific file
name specified when you call it

Third, the output of one command can be “piped” into another command to serve as its
input.

We will use the command echeo to illustrate these kinds of substitution. Remember that
substitutions take place for all commands in the same way that they do for echo.

File Name Substitution

File names are often used as command parameters. That is, you will often tell a com-
mand to do something to one or more files. By using special shell characters, you can
substitute file names in commands. These special characters describe file name batterns
for the shell to look for in the directory. When the shell finds the file names, it replaces
the pattern with them.

The asterisk * matches any number of any characters in file names. Thus,
echo *

echoes all the file names in the current directory, whereas
echo f*

gives all file names that begin with the letter f, and

Using COHERENT 53

—_—

echo a%®z
lists all names that begin with a and end with z.
To iltustrate more clearly, create two files by typing

|
cat >zzl
<etrl-D>
| cat >zz2
| <ctrl-D>

| Then the echo command
echo zz*
produces the output:
zzl zz2

Thus, by using a single *, you can substitute several file names into a command. In
— e ——other-words, the commavd e

echo zz¥*
is equivalent to
echo zzl =zz2

If no file names fit the pattern, the special characters are not changed, but left in the
command exactly as you typed them. To illustrate, type the command

Tm zZz¥
echo zz*

The first command will remove all files whose names begin with zz, and is therefore
equivalent to:

rm zzl zz2
The echo command that follows, however, echoes
zz¥
because no files begin ﬁth zz; they were just removed.

Enclosing command words within apostrophes prevents the shell from matching file
pames with the enclosed characters. In the unlikely event that you have a file whose

name is
z2z%
that you want to remove, use the command
-rm 'zzd'
The * is enclosed within apostrophes, and therefore is not changed by the shell.

54 The COHERENT System

Another special character ? match any one letter. To see how this works, create empty
files filel, file2, and file33 by typing:

>filel
>file2
>file33

The command
echo file?
replies
filel file2
because ? does not match 38.
. You can use brackets [and] to indicate a choice of single characters in a pattern:
_ echo file[12]
This command reialies: |
filel file?2

To match a range of characters, separate the beginning and end of the range with a
hyphen. The command

echo [a-m]*

prints any file name beginning with a lower-case letter from the first half of the alphabet,
and is exactly equivalent to;

echo [abedefghijklm]=*
When such patterns find several file names, they are inserted in alphabetical order,

Because the character / is important in path names, the shell does not match it with * or
? in patterns. The slash must be matched explicitly; that is, it is matched only by a / it-
self. Therefore, to find &l the files in the fusr directories with the name notes; type:

echo fusr/*/notes
The asterisk matches all the subdirectories of /usr that contain a file named notes.

In addition, a leading period in a file name must be matched explicitly. If you have a file
in your current directory with the name .profile, the command

echo *file
does not match it.
These patterns can appear anywhere within a command or a command file.

Using COHERENT 55

Parameter Substituftion

Each shell script can have up to nine positional parameters. This lets you write seripts
that can be used for many circumstances. Recall that command parameters follow the
command itself and are separated by tabs or spaces. An example of a command
reference with two parameters is:

show first second
where first and second are the parameters.

To substitute the positional parameters in the script, use the character $ followed by the
decimal number of the parameter. For example, build the script show by typing:

ed
a
cat $S1
cat 52
oo e e - Gl G mn o e e e e e e
w show
q

chmod +x% show
$1 and $2 refer to the first and second parameters, respectively. Create two sample files:

cat >first
line 1

line two
line 3
<ctrl-D>
cat >second
line 1

line 2

line 3
<ctrl-D>

Then, issue the show command
show first second
which has the same effect as typing:

cat first
cat second
diff First second

If you issue the show command with fewer than the required number of parameters, the
shell substitutes an empty string in its place. For example, using the command with
only one parameter ‘

56 The CQHERENT System

show first
is equivalent to

cat first
cat
diff first

where the null string has been substituted for $2.

The example above shows the parameter references separated from each other by a
space. In some uses, you may wish to prefix a substituted parameter to a name or a
number. When more than one digit follows a $, the shell picks up the first digit as the
number of the parameter, To illustrate, build a shell file pos:

ed
a

echo $167

W pos

q
chmod +x pos

Then call the script with
pos five

and the result will be:
fiveb?7

Shell Variable Substitution

In addition to positional parameters, the shell provides variables. You can assign values
to variables, test them, and substitute them in commands.

The variable name can be built from letters, numbers, and the underscore character; for
example:

high tension
a

directory
167

Note that keywords must not be single digits, because the shell then treats them as posi-
tional parameters. Be aware that the shell treats upper-case and lower-case letters dif-
ferently in variable names.

An assignment statement gives a value to a shell variable:
a=welcome

You can inspect their value with the echa command:

Using COHERENT 57

echo $a

The shell substitutes the value of the variable a in the echo command, which then ap-
pears as

echo welcome

COHERENT responds to this command by printing:
welcome

Don’t forget the $ when referring to the value.

Notice that the shell looks for speeial characters in any command that it sees — this in-
cludes the space character. To avoid problems, enclose the value to be assigned in
apostrophes:

phrase='several words long'

There are several uses for variables. One is to hold a long string that you expect to type

.. repeatedly as part of a command. If you are editing files in a subdirectory like

/usr/wisdbm/source/widget
you can abbreviate i you set a variable pw to:
pw='/usr/wisdom/source/widget'
Then simply using $pw in a command
_echo Spw
substitutes the long path name.

Another use of shell variables is as keyword parameters to commands. These then can
be used the same way as positional parameters. To see how this works, create another
script resembling show:

ed

a

cat Sone

cat $two

diff $one Stwo

w show2

chmod +x show2

To use show2, issue;

one=first two=second show?

This is equivalent in effect to:

58 The COHERENT System

cat first
cat second
diff first second

Unlike positional parameters, keyword parameters may be several characters in length.
If you want some text to follow immediately a keyword parameter, enclose the keyword
parameter in braces. To illustrate this, build a command file called brace, as follows:

ed
a
echo ‘with brace:' $({albe
echo ‘without brace:' $abe

w brace

chmod +x brace

Call the command file with a set:
a=567 brace

The result is:

with brace: 567bc
without brace:

When used in this way, the keyword parameters must be assigned before the command
and on the same line as the command. In this case, the assignment of keyword
parameters does not affect the variable after the command is executed. For example, if

you type: '
' one=ordinal
one=first two=second show?
echo ’'wvalue of one is ' $Sone

echo produces:
value of one is ordinal

Variables set other than on the line of a command are not normally accessible to a seript.
To illustrate, build a parameter display script: :
ed

a
echo 1 $1 2 %2 pl $pl p2 $p2

W pars

q
chmod +x pars

This will be used to show the behavior of parameters. The parameters to echo without
a § help to read the output. To pass positional parameters, type:

Using COHERENT &9

pars ay bee
The output is:

1 ay 2 bee pl p2
To pass keyword parameters, type:

pl=start p2=begin pars
The result is:

1 2 pl start p2 begin
To illustrate that the setting of p1 and p2 did not “stick”, type:

echo %pl %p2 'to show'
echo repﬁes:

to show
" This indicates that p1 and p2 are not set. - T 7T
Iustrating that variables set separately from a command are not seen by the ‘command,
type: _
“ pl=cutsidel p2=outside2
pars

This replies:
12 pl p2

By nsing the export command, however, such variables can be made available to com-
mands. The commands

export pl p2
pl='see me’ p2=hello
pars

produce;
1 2 pl see me p2 hello

This indicates that after the export of p1 and p2, they are available to other commands.
Once a variable has appeared in an export eommand, its value can be changed without a

need to export it again.

Command Substitution

By enclosing a command between ¢ characters, you can feed its output onto the command
line of another command. For example

echo 'l1s‘

echoes the output of the Is command,

60 The COHERENT System

Special Shell Variables

When you log into the COHERENT system, it sets the shell variable HOME to your
home or default directory path. If your user name is henry, then the command

echo SHOME
on most systems prints:

/usr/henry

The change directory command cd sets the working directory to the path found in
HOME if no argument is given,

The shell normally prompts you with $ for commands, and with > if more information is
needed. These two prompts are taken by the shell from the variables PS1 and PS2.
You can change these if you want different prompts, for example _

PS1="Fred's Software Palace: "
Ps2="1"

To have these take effect each time you log in, put the assignment statements in your
.profile file.

The shell variable PATH lists the path names of directories that ¢contain commands. To
show the contents of PATH, type:

echo $PATH
It typically will show:

:/bin: fusr/bin
This means that the shell looks for a command first in the current directory, then in
/bin, and, if not found there, then in /usr/bin. The path names are separated by .
This means that an empty string precedes the first *’, the current directory. Another
common setting for PATH is:

:..:/bin: fusr/bin

This means that the shell secks commands first in the current directory, then in .’ (the
parent divectory of the current directory), then in /bin, and finally in /usr/bin.

dot . : Read Commands

Similar to the command sh is the . command. The command
. efil

causes the shell to read and execute commands from cfil.

This differs from the sh command in several respects. First, there’s no way to pass
parameters to efil with the ‘.’ command. Second, the sh command executes another
shell to read the commands, whereas ¢ simply reads the commands directly. Finally, all
the string variables and parameters are accessible by cfil,

Using COHERENT 61

The command file good.am created earlier can be executed with:-

. good.am

This has the same effect. Similarly, the ‘.’ can be itself be used within a command file:
ed
a

. good.am
le

w third.sh
q
Then, the command
. third.sh
has the same result as the command:

" “sh third.sh =

Values Returned by Commands

Most COHERENT commands return a value that indicates success or failure. For ex-
ample, if grep cannot find your file, it issues a diagnostic message and returns a value
that tells the shell that something went wrong. You can examine this value by typing

the command:
echo §?

This tells you the value returned by the last command executed. Zero indicates success
(true), whereas a non-zero value indicates failure (false). Note that this convention is the
opposite of that in the C language (a fact that has led to confusion on occasion).

You can use the value returned by a command to affect decisions ahout executing other
commands.

test: Condition Testing

For most commands, the return value is a side-effect of their operation. However, the
test command’s only task is to return a value. This command can test many conditions,
and return a value to indicate whether the requested condition is true or false.

To determine if a file exists, the command

test -f fileOl
returns true (zero) if fileD1 exists and is not a directory. To check if a file is a directory,
use:

test -d fileOl

62 The COHERENT System

test can also test strings. This is useful when you are using parameter substitution. To
illustrate, build the following command:

ed

a

test §1 = %2

echo 'test 1 & 2 for equal:’ §?
test $1 1= $2

echo ‘test 1 & 2 for not equal:’' §7

w test.ed

q

chmod +x test.ed
Because the ‘=’ is a parameter, be sure to surround it with space characters.
This command file tests its two parameters for equality. Try the commands:.

test.ed one two
test.ed one one

The test command has many other options; see the Lexicon entry for test for details.

Executing Commands Conditionally
Type the following commands to create two files;

cat >filel

line one

line two

line three
<ctrl-D>

cat >file?2

line one

two is different
line three
<ctrl-D>

Now, compare the files and print the return value:

cmp -s filel file2
echo $7

The command emp compares two files byte-by-byte; the -s option tells emp merely to in-
dicate whether the files were the same. This prints 1 (false) because the files are not the
same.

To process a second command based on the result returned by the first, type:
emp -s filel file2 || cat file2
The characters || signify that the following command eat should be executed if the cmp

Using COHERENT 63

command returns a non-zero value, which it will for this example.

The two characters && execute the command that follows them only if the preceding
command returns {rue (zero),

Now, create a third file with the command:
ep Filel file3
Type the command:
' cmp -s Filel file3 && rm file3

This command removes file3 if cmp indicates that filel and file3 are identical.
Because emp is preceded by the copy command ep, the files filel and file3 are identi-

cal, and so file3 is removed.

Control Flow

Because the shell is a programming language as well as a program, it provides constructs

for conditional execution and loops. These are for, if, while, until, and case. Also,a __

subshell can be execitted within ‘C and).

for: Execute a Loop
The for construct processes a set of commands once for each element in a list of items.

To illustrate for, type the following commands to COHERENT:

for i inabec
do echo $1
done

The items a, b, and ¢ form the list of value that the variable i assumes. The shell ex-
ecutes echo with i assuming each value in turn. The result of these commands is:

a
b
c
Notice that after you type the line containing for, COHERENT prompts with a different
character > (on most COHERENT systems). The shell does this to remind you that you
must type more information. After you type the line containing done, the prompt again
becomes $. : '
The for command is usually used within a script. Also, you can leave off the Iist of value
1o the index variable; when you do this, the shell by default uses the arguments typed on
the script’s command line as the values for the index variable. To illustrate, type:

I

64 The COHERENT System

ed

a

for i

do echo $i
echo '---7
done

w script.for

q
chmod +x script.for

The
for i
statement is equivalent to:
' for 1 in &%
where $* means “all positional parameters”. Notice that two commands are repeated for
each value of i. Now, call script.for with the following command line:
script.for 1 2 3 4 test
The result is;
1

2

3

4

test

if: Execute Conditionally

if tests the result of a command and conditionally executes other commands based upon
that result. It can be used instead of && and ||, as shown above. Instead of:

emp -s filel file? && cat file?
Yyou can use:

if cmp -s filel file2
then cat file?2
fi

This means that the ghell executes

66 The COHERENT System

ed

a

if test -f §1

then cat §1

elif test -f $2

then cat $2

elif test -f $3

then cat 83

else echo ’'None are files’
fi

w cat.l

q
chmed +x cat.l

while: Execute a Loop
Another looping or repetitive shell statement is the while statement. The commands

while commandl
do command?
done

first performs commandl!. If its result is true, command? is executed, and command! is
again executed. This process continues until command! returns false (non-zero).

until: Another Looping Construct

The construct until resembles while. For example, the commands:

until commandl
do command2
done

execute command2 until command! returns true (zero).

case: Serial Conditional Execution

The case statement resembles the if statement in that it offers a multiple choice. To
illustrate, type the following script, which lets you choose one of several ways to list the
contents of a directory:

Using COHERENT 67

_._is equivalent to:

ed
a
case $1 in
1)y 1s -1;;
2) ls;;
3) le;s
" %) echo unknown parameter $1;;
esac

w dir

q . ‘ .
chmod +x dir .
The words case and esae bracket the entire case statement. The effect of the command

dir 2

1s

Each choice within the case statement is indicated by a string followed by):
2)

indicates what is to be executed if argument $1 has the value 2.

The strings that select the choices may be patterns. The choice “*)’ signifies that a
match can be made on any string. Notice that this resembles the use of * to substitute

any file name. An expression of the form
[1-91)
in a case statement matches any digit from 1 through 9. A list of alternatives can be
presented by separating the choices with a vertical bar:
~a|ble) command
Eéich ¢ommand or command list in the case choice must be terminated by a double semi-
colon 3.

Summary

The shell is a command programming language that handles simple commands as well as
complex commands that can iterate as well as make decisions. Three kinds of substitu-

tion are provided to increase the power of your commands.

For more information about the shell, see the tutorial for the shell that follows in this
manual. For more information about a given command, see its entry in the Lexicon.

68 The COHERENT System

Creating and Using Programs

The COHERENT system provides C and assembly language for programming, C is a
high-level language that has replaced assembly language in most environments where it
is available. Programming in C gives a dramatic improvement in programmer produe-
tivity, with little loss in execution speed relative to assembly language. The COHERENT
system has both native C compilers and cross compilers., Compilers are available for
78000, PDP-11, 8088, 8086, 80286, and M68000.

as gives you the assembler for the host machine. Assembly language is used for those
few programs that require a special hardware access beyond what C can give. Because of
the power and flexibility of C, assembly language is now effectively dead except for cer-
tain routines deep within the system. Assemblers for other computer architectures are
also available with the COHERENT system; such assemblers are called cross assemblers,

Each compiler reads the program source from a file. The resulting compiled program is
placed in an object file. To run a program, you simply type the name of an object file as
if it were a command. In fact, most COHERENT commands that you will enter are ac-
turally object programs.

Basic Steps in COHERENT Programming
The steps that are necessary to generate a program are:

1. Edit the program scurce file

2. Compile the source program, correcting any errors
8. Test and dehug the program

4. Run the program

If you have compilation errors in step 2, or program errors in step 3 or 4, return to step
1.

Use ed or MicrcEMACS to build and change the source program, the ee command to
compile the source program and produce an object program, and db to help debug the
program. Although the C compiler provides a macro facility, other languages do not.
Therefore, if the source program uses macros, you can use m4 to expand the macros.

This section covers each of these steps and provides some example programs.

Creating the Program Source

Details on the use of ed and MicroEMACS are covered in their respective tutorials,
which follow in this manual. This section assumes that you have basic knowledge of ed’s
commands and principles of operation.

For the first program, try a simple program that prints a short message on your ter-
minal. To build the program, enter:

Using COHERENT 69

ed
a
main ()

{
printf ("The COHERENT operating system\n");

}

w small.c
q

" With the first line, you call the editor ed, You add lines to the (initally empty) file vsing

the a command, and signal the end of these lines with a line containing only a period or
dot. The file is then written to file small.c with the w command. The q command exits
from ed and returns to COHERENT. ' . -

The program itself begins with the special word main which defines a function and must
appear in every C program. The parentheses, here with nothing hetween them, enclose

...any arguments that are passed to the function. They are required even if there are no
‘arguments. The body of the program appears between the braces { and }. T

The function printf is part of the standard library of C programs. It prints formatted in-
formation on the terminal. In this case it will produce the string enclosed between
quotation marks. The special character string

\n
means “newline”. Two lines of output to the terminal can be produced by
*line 1\nline 2\n" o o
as an argument to printf. This appears in the output as:

line 1
line 2

For a fuller introduction to the C language, see the tutorial on the The € Language,
which follows in this manual.

cc: Compiling the Program |

The command ec compiles C programs. It executes all the parts of the C compiler and
the associated linker 1d. The linker combines pieces of programs and includes necessary
elements from the library, such as printf. The linker is occasionally called from the
command line, but only for more complex problems than you are trying here. To com-
pile our test program, type the command '

cec small.c

If the compiler detects any errors, it prints a message on the terminal, along with the
Jine number that contains the errcr. You can use this line number to find the error with
your editor and fix it. You can now use the program by simply typing:

70 The COHERENT System

small

The tutorial on The C Language describes cc in greater detail; also see its entry in the
Lexicon for a full summary of its many capabilities.

m4: Macro Processing

To extend the capabilities of all languages, the COHERENT system provides a macro
processor, called m4,

Program source for all languages consists of character strings. Macro processors perform
string replacement, whereby a string in the input file may be replaced by another string,
m4 provides parameter substitution, as well as testing values of currently available
strings and conditional processing. - m4 is unique in that you can rearrange large sections
of the input text by using the macros. For more information on md, see the tutorial
Introduction to the m4 Macro Processor, which follows in this manual,

make: Building Larger Programs
All the examples of programs thus far have been self-contained. As programs grow
larger, it is usual to divide the source program into smaller files. This simplifies editing,

speeds compilation, increases modularity, and lets several different programs share com-
mon functions.

Thus, in developing the larger program, you may have several source files in your direc-
tory, possibly an header file or two, and the object files that result from compilation.
From these are built the executable file that runs when you type its name.

To change or fix the program, you must edit the source programs or header files in ques-
tion with ed, recompile the required source, and relink all the modules, But, with a
change that affects several modules, it can be tricky to remember-exactly which modules
need recompilation, and it can be time-consuming to recompile all modules.

COHERENT provides a command called make, which solves this problem. make
examines the time a file was last modified, and the time of modification of files that it
depends upon, and performs the necessary compilation or other processing.
(COHERENT file system directories contain the time that each file was created or
modified.)

The tutorial The make Programming Discipline, which follows in this manual, fully intro-
duces this powerful and useful program.

db: Debugging the Program

The first and most critical step to debugging programs is to not put bugs in them! The
methods of structured analysis, design, and programming, or the method of stepwise
refinement can substantially reduce the number of errors in a program,

One can also place printf statements at strategic points throughout the program to dis-
play logic flow and key data values. These display statements should be designed so that
they can be turned off for normal operation without removing them from the program,

Using COHERENT 71

On occasion, however, you may find that it is necessary to debug at the machine level. If
you must, COHERENT’s db will make it possible to do so. '

db provides tools that make the machine program instructions visible in the most
natural notation. That is, instructions are displayed in a fashion that resembles as-
semhly language, numbers can be displayed in hexadecimal, octal, or decimal as needed,
and strings of characters displayed in familiar graphic form. db can also paich a
program to be run again, as well as to control the execution of a program with break-

_ points and one step at a time. B
Briefly, to use db on a program like our sample small above, use the command:
db small

Now you can inspect and display instructions and data in the system, control execution,
and even change the instructions in the program if you are bald encugh.

To examine a data segment location in the program, simply type the address of the loca-
tion. db knows about symbols in the program, so if you want to examine the location
_ corresponding to main, type:

main
db types out the value in hexadecimal or octal (depending upon which is appropriate for
your machine).
You can expand the display command to print many locations at one time, and choose
the format of printout. To print five locations interpreted as instructions, type

main, 571 .

where the format character i follows the guestion mark indicating format, and 5 is the
count of locations to be printed. To exit db, type

iq
For a complete list of the format that db recognizes, and other details about dh, see its
entry in the Lexicon.

A Sample Problem Solved With COHERENT

This section outlines an information-processing problem and demonstrates a simple solu-
tion for it implemented with the COHERENT system.

Build a Dictionary

Many word-processing systems check your spelling. Some of them do so by consulting
an internal dictionary. How might you build such a dictionary? The following illustrates
a simple way of building a dictionary using COHERENT tools. This exercise emphasizes
ease of construction.

The format of the dictionary is to be one word per line, all letters lower case, excluding

punctuation characters and spaces. Of course, the input document can be expected to
have capital letters, many punctuation marks, many words on each line, and it will cer-

72 The COHERENT System

tainly not be in anything resembling alphabetical order! Thus, our problem is to trans-
form the raw input into a dictionary,

The first step is to create a program to translate every word into lower case. The follow
C program, called trans.e, does just that. Type the following commands, to create
trans.c: :

ed trans.c

a

#include <stdio.h>
#include <ctype.h>

/*
* Translate input to lower case,
* removing punctuation
*/
main()
{ .
int ¢;
while ((e¢ = getchar()) != EOF) {
if (isascii(e))
if (ispunct(c))
c = r;
else
c = tolower(e);
putchar(c);
}
}
wq

This programs transforms upper-case letters to lower case, and all punctuation and
graphic characters to spaces. The newline character \n remains untranslated.

Once you have typed in this program, use the following command to compile it:
ce trans.c '

This creates an executable program, called trans. trans takes its input from the stan-
dard input, and writes the output upon the standard output.

Now, we are faced with the problem of many words per line. Another small C program,
word.c, will solve this problem for us. Type the following to create word.c:

Using COHERENT 73

ed word.c

a

J#Hinclude <stdio.h>

/*

* Copy input to output with
* only one word per line

*/
main()

{

int ¢;

¢ = getchar();
while (¢ != EOF) {

if (e > " ") |
/% output graphic character */:
do :
putchar(e);
mm s e e s = R] @ (((C = -ge-tchar-(-).) oL '__) Gl o - o e i
(c '= EOF));
putchar('\n");
} else
while (((e¢ = getchar()) <= "' ') &&
(¢ 1= EOF))

)
wq
Note that the program transforms strings of spaces, newline, and control characters to

newlines. Thus, if a pair of words on the input line are separated by three spaces, the
output will have one newline character between them.

To compile word.c, type:
ce word.c
This ereates an executable file called word.
Now, type the following commands to test the newly compiled program:

word
this is a test of word.
<¢trl-D>

The result should be:

74 The COHERENT System

this
is

a
test
of
word,

If it is not, you may have made a mistake in transcribing the program.

The next step is to use a pipe to feed the standard output of trans into the standard in-
put of word:

trans <raw.doc | word

This command lists on the terminal one word per line, entirely in lower case and with
punctuation removed.,

The next step is to sort the output of word into ascending order. The command to do so
is simply:

sort
The full command now reads:
trans <raw.doc | word | sort

Only one more item remains to be solved: dictionaries should contain only unique
entries. The output produced so far contains each word in the raw document, which
means that there are many instances of such words as “the”. To perform this final bit of
processing, you can use the COHERENT program uniq to detect and eliminate duplicate
lines. To eliminate duplicate lines, just pipe the output of sort into unig. The com-
mand now reads:

trans <raw.doc | word | sort | uniq

The last step is to capture the dictionary in a file, which we will call dict.s. The redirec-
tion operator ‘>’ performs that task nice. With' this last flourish added, our finished
command now reads:

trans <raw.doc | word | sort | uniq >dict.s

You can feed a large text file to this command fo begin building your dictionary.

Maintaining the Dictionary

Before you use the dictionary, you should list it and check for extra words that you do
not want. For example, if the input document contains an example program, the resul-
ting dictionary will contain program variables. You should delete any of these and other
unwanted words in the dictionary,

To delete or add a few new words to the dictionary, use ed or sed.

Using COHERENT 75

Using the Dictionary

You can use the dictionary to check the spelling of words in a new document. To make
matters easier for yourself, place the command into a script, which we will call dict.sh.
Type the following to do so: :

ed dict.sh

a
trans <§l.doc | word | sort | unig >§l.u
wq
chmod +x dict.sh

Now, process your new document with the command:
dict.sh new

This 1_)_1:!i1ds a ﬁ}_e_nampd new.u of unique words found in the file new.doc.

Now, you can use the dictionary to verify words in later documents. First, create a shell ~—

file named checksp:

ed
a
comm -13 diect.s §1l.u

w checksp
q
chmod +x checksp

This command checks a file of words, such as new.u, to see if there are any words that
are not in your master dictionary file diet.s. Now use the program comm to give you a
list of words in new.doc that were not in the dictionary. Type:

checksp new

and any words from your document new.doc that were not found in the dictionary will
be listed.

Conclusion

The dictionary problem illustrates how you can use the COHERENT system’s tools to
solve easily a task that would otherwise be difficult and time-consuming to perform.
COHERENT’s principle of modularity lets you hook together any number of small,
powerful programs — some supplied with COHERENT and others you write yourself —
into powerful systems for processing information. You will find as you use COHERENT
that the main limitation is your imagination!

The rest of this manual describes the COHERENT system in detail. The COHERENT

System Administrator’s Guide describes the operation of COHERENT in detail. You
should read this if you will be responsible for operation of your COHERENT system, or

76 The COHERENT System

if you are simply interested in how COHERENT operates internally. Numerous
COHERENT tools, such as the editors, the shell, and others, are presented in tutorials
that teach you how to use them in full. Finally, the Lexicon presents full, brief sum-
maries of all system calls, library routines, and commands available with the
COHERENT system, in an easy-to-use dictionary format, It also deseribes technical in-
formation and definitions, to help you cope with unfamiliar terminology.

Section 3:

C OHERENT Administrator’s Guide

' The COHERENT system can be used by many people at the same time. One person

inust coordinate its use, like a key operator does for an office copier. This person is
called the system administrator, and he sees to it that the COHERENT system runs
smoothly every day. The administrator can also customize the COHERENT system to
the needs of an individual installation.

" "Although you may be the only person to use your COHERENT system, many of the

ideas discussed here are important for making your system work at its best. Please
spend a few minutes reading this manual to familiarize yourself with the elementary con-
cepts of COHERENT system maintenance.

The first part of the manual instruets you on how to care for the COHERENT system
and keep it working smoothly. Even if you are working with the COHERENT system
for the first time, this part contains all the information you will need. The second part
presents detailed information about the inner workings of COHERENT. Use this section
to find information that will help you customize your COHERENT system.

If you are new to the COHERENT system, we suggest that you first read Using the
COHERENT System, which precedes this tutorial in your COHERENT manual. You
can follow the instructions in this manual without reading Using the COHERENT Sys-
tem, but you probably will save time if you start by reading it first. '

Shutting Down COHERENT

For the COHERENT system to support multiple users and multiple processes, it must
use a complex system of buffering. At any given moment, large amounts of data are are
stored in temporary files; for this reason, suddenly shutting down the COHERENT sys-
tem could well result in catastrophic loss of data. Unlike single-user operating systems
ke MS-DOS, where it is normal practice to reboot the system if something appears to go

wrong, rebooting the COHERENT system must not be done suddenly or on a whim.

77

78 The COHERENT System

On occasions, however, it is necessary to shut down the COHERENT gystem; for ex-
ample, you may wish to install a new device or perform preventative maintenance on the
hardware. On other occasions, you may wish to return to single-user mode; this must he
done in order to dump the COHERENT file system (as will be described later in this
tutorial). To shut down the system, perform the following steps:

1. Log in as the superuser root. root will be described in detail below.

2, If other people are using the system, ask them to log off. If they are using your sys-
tem from remote sites, use the command wall to ask them to log off. wall prints a mes-
sage on the screen of every user who is logged into the system,; for example;

/etc/wall
Please log off now!
<ctrl-D>

. will ask every user to log off. Use the who command to see who is logged into the sys-
tem; when who shows that only root is logged in; then it is safe to continue.

3. Type sync to synchronize the system. This command forces the COHERENT to write
to the disk all data that it has stored in temporary buffers.

4. Type /ete/shutdown. Thus returns COHERENT to single-uger mode.
5. Type synec twice more, just to make sure.
6. It is now safe to turn off your computer, if you wish to do so.

Booting COHERENT

Booting a multi-user, multi-tasking operating system like COHERENT is somewhat
more complex than booting a single-user operating system. COHERENT, however, in-
cludes tools that make it easy to reboot your system.

K your computer is turned off, all you have to do is turn it on. COHERENT will
automatically boot itself if it is the active partition on your hard disk (which you set
when you installed COHERENT), will check the file system and fix it if necessary, and
invoke multi-user mode. .

If you are booting from single-user mode, type the command /etc/rebaat, reboot will
automatically invoke the command fsck to check the file system and repair it if neces-
sary, and then return the system to multi-user mode,

If you wish to boot using a disk partition that is not marked as active (such as, say, a
partition which hold an MS-DOS file ‘system), you must type the partition number (0
through 7) when the COHERENT hboot program tries to read the floppy-disk drive. You
must type the number on the numeric keys above the alphabetic keys, not on the
numeric keypad.

If you do not remember how your disk is partitioned or what file systems reside on
which partition, you ean use the command fdisk to display the structure of your hard
disk. To do so, log in as the superuser root, and then type the command Jete/fdisk. In
a moment, fdisk prints some information on your screen and then displays the structure
of your hard disk. When you have finished, be sure to type 6 {for Quit) in response to

Administering COHERENT 79

the prompt; otherwise, something untoward may happen to the data on your hard disk.

Superuser

A special user in the COHERENT system, called the superuser, has privileges greater
than those of other users. The superuser can read all files (except encrypted files) and
execute all programs. You must be logged in as the superuser during certain phases of
your work as system administrator. _ ‘

There are two ways to access the-COHERENT system -as the superuser. The first is to
login under the user name root. When the system prompts

Coherent login:
reply:
root

This automatically makes you superuser. To remind you that you are superuser, the
COHERENT system prompts you with root: instead of the usual $.

The second way to acquire the privileges of supernser is to issue the command =
su

when you are logged in as a user other than root. You must have privileges to access
root to do this, and you must know the password for root. When you type

<ctrl-D> | _

in this mode, COHERENT returns you to your previous status.

To be the superuser for only one command, use the form of the command
su root command

command is the command to be executed as superuser. For example, to edit the mes-
sage of the day file /ete/motd if you are not the superuser, type

su root me Jetc/motd
When you finish using MicroEMACS, your original vger id will be unchanged.

To limit access to privileged resources, the COHERENT system requires users to enter
passwords before being granted that privilege. Users may be required to enter
passwords before logging in,

If the root user has a password, you will be prompted for it. If you do not enter it cor-
rectly, the system will tell you ‘

Sorry
and not allow you to become the superuser.

It is normal practice to protect access to superuser status by setting the password. If you
are the only user of your COHERENT system, or if you deeply trust all other users, you
do not have to do so. However, because the superuser can perform any sort of mayhem

80 The COHERENT System

on your system, it is advisable to set the password, especially if outsiders can dial into
your system via modem.

Day-to-Day Operation

This section discusses activities that you should perform each day to maintain your
COHERENT system.

Check the system console each day for error messages or requests from users. You
should also check your mailbox each day for letters from your users. If you are not
familiar with mail, see the discussion in Using the COHERENT System.

If there are error messages on the console, or the system has stopped running, this in-
dicates that something has gone wrong with the COHERENT system, and you must cor-
rect the situation. Follow the directions given in the section below on system halts.

As your system is vsed, more information is being stored on the disk. If large amounts
are stored, all available space on the disk can be used up. You should monitor the
amount of disk space yet unused with the command

df

which means “disk free”. The df command reports the number of free blocks on the
current file system, To see how much disk is free across all file systems, type:

df -a

Each block containg 512 characters or bytes of information. I df replies with a number
less than 1,000 on a hard disk or 200 on a diskette-based system, you may be running
too low on digk space. Read the section on conserving disk space and follow its recom-
mendations.

At the end of each day, you should back up information to protect your system from loss
of valuable information. Doing so regularly will allow you to retrieved from the saved
copy any data that have been destroyed accidentally. The section on file-system backup
will tell yon how to save information.,

Preparing System Dumps

As soon as your system has been delivered and is functional, you must prepare system
dumps to save information on a daily, weekly, and monthly basis, These dumps can be
done to magnetic tape or diskette. As most AT COHERENT systems do not have tape
drives, the following instructions assume that backups will be made to high-density
floppy disks.

Each month, you should dump all information in the system. You should prepare at
least three sets of diskettes for the monthly saves, giving you three months of full
backup. You will use the diskettes in rotation, with the oldest always tised next.

Once a week, you should dump information in the system that is new or has been
changed since the beginning of the month. You will need five sets of diskettes, since
some months have five weekends in them.

Administering COHERENT 81

Finally, every day you should save information that has been changed or is new since the
beginning of the week. For these dumps, you will need five sets of diskettes: one for
each working day. You will need extras in case of weekend work,

Label each set of diskettes carefully as monthly, weekly, or daily. Label the daily disket-
tes Monday through Friday, the weekly diskettes Week 1 through Week 5, and the
monthly diskettes Month 1 through Month 3. When you do the dump, write the date on
the label. '

Preparing the Diskettes

To prepare diskettes to receive files, use the command mlfs as described below to build
empty file systems on diskettes. To create a default file system on a high-density, 5.25-
inch diskette that is in drive 0 (atherwise known as drive A), log in as the superuser
root, insert a 5.25-inch diskette into drive 0, and then type the following commands:

The command fdformat formats the diskette. badscan checks the diskette for bad sec-
tors, and writes a map of them into file protol. mkfs creates the COHERENT file sys-
tem; it takes into account the map of bad sectors that badscan wrote into protol. You
must perform this task of formatting a diskette and building a file system on it only
before it is used the first time.

To copy files to the diskette, first use the command Jetc/mount to mount the diskette
as a COHERENT file system: o -

/etc/mount /dev/fhal /f0

Here /dev/fha0 is the name of the diskette and f0 is the directory to contain files on
the diskette. Never mount a diskette which you have not first prepared with mlfs and
fdformat. . : _

Copy files to the diskette with commands of the form
cp £ile01 /£0 ,
or copy complete directories with the command
cpdir fust/stuff /f0/stuff
The following gives the commands for formatting and moﬁnting a high;density, 3.5-inch
diskette:
/etc/fdformat /dev/fval-
/etc/badscan -o protol /dev/fval 2880

/ete/mkfs /dev/fval protol
/etc/mount /dev/fval /0

Finally, the following gives the commands for formatting and mounting a low-density,
5.25-inch diskette:

Jetc/fdformat /dev/fhad P\M{ﬂ’ £ 3,38 1441
/etc/badscan -o protol /dev/fha0 2400) 1\]
o 7etc/mkfs /dev/fhad protol B L ﬁ\d .

82 The COHERENT System

/ete/fdformat /dev/f9a0 :
/ete/badscan -o protol /dev/f9a0 720
/ete/mkfs /dev/f9a0 protol
-/ete/mount /dev/f9a0 /0

The cp and cpdir commands work the same, regardless of the type of diskette to which
you are copying files or directories.

When you have finished working with the diskette, use the command Jetc/umounnt to
unmount that diskette:

/ete/umount /dev/fha0

The following command unmounts a low-density, 5.25-inch diskette:
/ete/umount /dev/f9a0 . .

The following unmounts a high-density, 3.5-inch diskette: .
/ etc Jumount /dev/fva0 ' '

Lastly, the foﬂowing unmounts a low-density, 3.5-inch diskette:
/ete /umouﬁt /dev/fqal

One final point should be borne in mind: when you mount a file system on a diskette,
you are working with the diskette itself, not with the diskette drive. Thus, when you
have mounted a file system on a diskette, you can’t simply pull the diskette out of the
drive, place another diskette in its place, and expect it to work — not even if both disket-
tes have already been formatted as COHERENT file systems, Every time you use
COHERENT to manipulate a diskette, you must mount that diskette using /ete/mount,
and every time yon want to remove a diskette from a diskette drive, you must first un-
mount that diskette using /ete/umount. :

Backing-up Information Daily

This section describes how to save disk informatibn each day. This process, called
backup, protects information from inadvertent modification or destruction. The following
examples assume that youn are using high-density, 5.25-inch diskettes, If you wish to use
low-density, 5.25-inch diskettes or 8.5-inch diskettes, simply change the name of the
device, as shown above,

1, Log into the system as root. You must have superuser privileges to perform a
“dump.

2. If you have not yet done so, use the command fdformat to format a set of diskettes,
as shown above. With high-density, 5.25-inch diskettes, a rule of thumb is to
prepare one diskette for each megabyte of data to be dumped.

3. Tell other users to log off the system by typing:

Administering COHERENT 83

8.
9.

Jete/wall

Please log off.
Time for file dump.
<ctrl-D>

Be sure that all users are logged off the system by typing the command:

who
Thig command lists the names of all users that are still on the system.,

If they have not logged off in a few minutes, gend another message. Repeat the
process until who shows no users except yourself. Note that a user may have left
for the day without logging out, even though this is not a recommended practice. If
backups are performed each day at the same time, users will develop the habit of
logging off in time.

When all others have logged off, execute /ete/shutdown as described above.

_If this is the last workday of the month, perform a monthly dump. Insert the first

" yolume of the correct monthiy dump diskette into the floppy drive, after adding -~

today’s date to the label, and type the command;
dump OufS /dev/fhal 2400 /dev/root

This will dump all files on the first hard disk partition /dev/rbot to the 2400-block
digkette /dev/fha0.

If more floppies are needed, the computer will ask you to insert them. Be sure to
label each with its volume number.

If this is the last work day of the week, but not the last workday of the month, per-
form a weekly dump. Prepare the correct weekly dump diskettes, add today’s date
to the label, insert the first diskette, and type the command;

dump 6ufs /dev/fha0 2400 /dev/root
This will dump files that have been changed or created this month to the diskette.

If this is neither the last workday of the month nor the last workday of the week,
you will perform a daily dump. Prepare the daily dump diskette with today’s day of
the week, add today’s date to the label, insert the first diskette into the drive, and

type the command:
dump 9ufS /dev/fha0 2400 /dev/root
This will dump files that have been changed or created this week to the diskette.
Type syne to ensure that all buffers are flushed.
You can now power down the system, or continue working by typing <ctrl-D>.

For more information on how to use dump, see its entry in the Lexicon.

84 The COHERENT System

Restoring Information

If a user finds a file has been inadvertently destroyed, you can restore the information to
disk from backup diskettes.

Because you back up data daily, you must determine the date and time that the file was
last known to be good. ¥rom this date, determine on which set of diskettes the file was
last correctly dumped., Find the diskettes labeled with the date determined and mount
the first one in the set. The command

dumpdir £ /dev/fha0 _

lists files dumped on the high-density 5.25-inch diskette.

Once you have found the file, type the following command to restore the file:
restor xf /dev/fhal file

where file is the full path name of the file in question. 'The file will be restored into the
current directory with a name matching the i-node number of the original file when it
was dumped. - You can then rename the restored file to its original name or to a new
name of your choice.

Please note that, as previously mentioned, certain precautions must be taken when per-
forming a mass restore to the root partition. See the Lexicon article for restor for fur-
ther information,

Conserving Disk Space

If disk space begins to get low, you must tell users to remove unneeded files from the

- system. If space on the disk remains a problem, you might request that users place files
that have not heen accessed for some length of time onto backup storage. Encourage
users to remove unneeded files prompily. :

In addition, the COHERENT system provides two commands that help you save space
on a file system. The archive command ar can collect a mass of files into one large file.
This program, which is normally used to build libraries of relocatable object modules, can
be quite useful if you are running low on i-nodes on your system. . (If you do not know
what an i-node is, see the entry for it in the Lexicon.) For example, to archive all files in
directory source, use the following command:

ar rv backup.ar source/*
For more information on how to use ar, see its entry in the Lexicon.

The second command for saving space is compress. This command uses the Lempel-Ziv
compression algorithm to squeeze files into a smaller space without loss of information,
Such files cannot be read directly, but must first be uncompressed before they can be
read or executed by COHERENT. To compress all files in directory hugefiles, use the
command:

compress hugefiles/*

Administering COHERENT 85

compress appends .Z onto the end of every compressed file’s name.

To uncompress a compressed file, use the command uncompress. The command zcat
lets you read a compressed file without having to uncompress it; by piping the output of
zecat to other filters, you can perform sophisticated work with compressed files without

having to uncompress them. For more information on these commands, see their respec-
tive entries in the Lexicon.

A later section in this tutorial describes how to use the computer time accounting com-
mands. If in use, these commands consume disk space as work progresses on the sys-
tem. If the files they use are not properly attended, they can -become ‘huge. -If you use
accounting, you should condense the accounting files often.

System Halts

If your system stops running unexpectedly, you have a system crash. This occurs either if
the COHERENT system has detected a problem and halted processing, or some
hardware has failed.

Should this happen, examine the system console for any ervor messages. If there are

any, carefully record them. This information will help COHERENT system experts diag- -~~~ -

noge the problem. The following messages diagnose conditions that you can fix yourself.
The following section gives error messages for more serious conditions.

Out of i-nodes

A COHERENT file system has one i-node for each file it maintains. The number
of i-nodes is set when the file system is created. If you have numerous small
files on a file system, it is possible to exhaust that file system’s resources even
though the command df shows that space remains on the file system. To get
around thig problem, you must delete files, one file for each. i-node needed; or
you must use ar to archive a mass of files. To do this, first use /ete/shutdown
to return the system to single-user mode, as described above. Delete files, or use
ar as described above. Then use sync to flush all buffers, and use the command
pmount to unmount the affected file system. Then run fsek on the affected file
system before rebooting. fsek checks COHERENT file systems and fixes them if
necessary, Consult the Lexicon entry on fsck before you use this program for
the first time. '

Out of space (m,n)

When this error message appears, your file system still has i-nodeg but the
alloted disk space has been exhausted; perhaps you have a few large files that are
eating up disk space. To get around this problem, you must delete or compress
files to clear up disk space. First, use /etc/shutdown to return to single-user
mode, as described above; then delete files or compress them as described above
until enough space has been cleared to allow you to continue your work, Use
syne to flush buffer, use umount to unmount the affected file gystem, and run
fsck on the affected file system. Then reboot.

86 The COHERENT System

Bad freelist :
The freelist is a list of free blocks on the disk. The COHERENT system main-
tains this list so it can see where it can write data on the disk, Thig message in-
dicates that the freelist has been corrupted somehow. To fix this problem, run
/ete/shutdown to return to single-use mode; use syne to flush the buffers; use
umount to unmount the affected file system; and then run feck to repair the
file system.

System Error Messages

COHERENT may generate the following error messages. These messages indicate
serious problems with your system hardware. If any appears, you need to contact a rep-
resentative of the hardware manufacturer.

Note that the symbol # in the following messages will be replaced by a number when
the message appears on the console. When reporting the. problem, be sure to include the
number actnally printed out,

Arena # too small
Corrupt arena

Bad free #

Raw I/0 from non user
Inode table overflow
Inode # busy

Bad block # (alloc)

Bad block # (free)
Cannot allocate stack
Cannot create process
System too large

Not a separate I/D machine
System too large

Bad segment count

Swapio bad parameter
Swaplo error

Random trap

Bus error at 4

Illegal instruction at #

Establishing a User Base

Each user allowed to use your COHERENT system must have a user name and a user
id; the user may also have a password. The user name is usually the user’s initials or a
nickname. The user id is an integer number used to identify the user internally to the
system. As system administrator, you will assign bath of these for each user. This sec-
tion tells you how.

Administering COHERENT 87

The user’s home directory is normally : :

To log in to the system, a user must have an entry in the password file /etc/passwd.
The password file contains each user’s name, id, and password if any, As system ad-
ministrator, you will maintain this file.

Likewise, each group of users is assigned a group name, as well as a group id. Groups
are not necessary to use the COHERENT system, but some installations prefer to set up

- groups by project or department.

Tt is simple to add a new user to the system. The command newusr takes care of all the
details, and makes an entry in the password file. You must be logged in as root. For ex-
ample, to create an entry for a user named Henty, log ifi as root, and then issue the
command:

/etc/newusr henry "Henry Smith" /u

.profile: Login Script

When a user logs in, the shell first reads the file .profile from the user’s home directory.

Jusx/name/

where name is the user’s user name.
You can give each user a .profile file when you establish his password. This may have
only a command to set PATH. The user may later add more commands to .profile to
tailor it to his taste. A typical .profile reads like this:

PATH=:/bin: /usr/bin:..:/usr/benty/bin

stty kill “u erase “h int "¢

MAIL=/ustr/spool/mail /henry
These commands control the hehavior of the terminal and the shell, PATH Ilists the

directories that contain commands, and MAIL gives the name of the user’s “mail box,”
i.e., the file in which his mail is stored. The shell examines MAIL after each command

and reports
-You have mail.
if anyone has sent you mail.

The command sity defines special terminal keys that the user needs in communiecating
with the system. For a description of these commands and the COHERENT shell, see
Using the COHERENT System, which precedes this tutorial, or Introduction to sh, the
Bourne Skell, which follows. '

Maintaining the ttys File

The file /etc/ttys describes the kinds of terminals that can be attached to the
COHERENT operating system. You must customize ttys to fit your system and when
you add new terminals. :

88 The COHERENT System

Because COHERENT is a flexible system, many different kinds of terminals can be at-
tached to it. Because the collection of terminals varies from installation to installation,
you must tell the system what configurations to expect.

Each terminal has one of several possible speeds of transmission. To communicate with
each terminal, the COHERENT: system must know the speed. To keep track of the in-
formation flowing between the computer and the terminal, the system uses a terminal
name. All this information is contained in a COHERENT file named [etc/itys.

Configuring Terminals

Terminals attach to the computer by a cable plugged into a terminal port. Each line in
the fetc/ttys file defines one terminal port. AT COHERENT normally can support
multiple terminals: the console which is attached directly to the computer, plus one ter-
minal (or modem) for each of the serial ports. Additional ports can be attached using
multiplexors, but most installations do not use such devices.

To configure /ete/ttys, first deterine what kind of terminals will be attached to-your
computer. Also determine the speed of each port, whether each port is to be in use, and
the device name of each port. AT COHERENT describes the serial ports as devices of
the form /dev/com1* thru /dev/comd4*, See Lexicon entry com for further details,

Now, log in to the COHERENT system as root and type the command:
ed /etc/ttys

Add or change information that you have written down. The following section describes
how to construct lines in this file.

ttys: File Format
The following presents an example of the ttys file:

11Pconsole
lrPcomly
113com?2l

Although all the numbers and letters are jammed together, each line is consists of four
separate parts, or fields. In the line

11Pconsole
the four ﬁelc_ls are 1, 1, P, and console.

The first, field tells whether the terminal port is in use: 1 means in use, 0 means not in
use.

The second field specifies whether the port is local or remote: 1 indicates local, r indicates
remaote.

The third field describes the type of terminal port it is. Ports that have modems plugged
inte them must run on a variable speed, because a user can call using a modem that
operates at anywhere from 300 baud to 9600 baud. Local terminals, which are cabled to
a specific terminal that runs at a specific speed, have a fixed speed.

Administering COHERENT 89

The terminal type P signifies 9600 baud. The numeral 3 signifies a variable-speed port,
which would be used for a modem.

The common fixed-speed termiﬁal types are as follows:

type baud
c 110
G 300
1 1200
L 2400
N 4800
P 9600
Q 19200
The variable speed possihilities are:
0 300, 1200, 150, 110
3 2400, 1200, 300

" When a user dials into a variable speed line, a message is sent to thié terminal using the ~

first speed listed. If the result is unintelligible, the user hits the <break> key, and the
system tries the next speed. Once the speed is established, the login command com-
pletes the sign on process. For more information, see the Lexicon’s entries for ity or
getty.

Finally, the fourth field gives the name of the device being defined. console indicates
the computer’s console, ie., the keyboard and CRT that are plugged direcily into it
comlr and com2l define the serial ports.

To make the changes to /etc/ttys effective, log in as the superuser and then issue the
command:

kill quit 1

Once a user logs into the system successfully, he can use the command stty to change
the characteristics of his terminal. For details, see the Lexicon’s entry for stty.

Communicating With Users

As system administrator, you must communicate with users of the system. This section
discusses several ways the COHERENT system lets you to do this. Others, including
msg, write, and mail, are described in Using the COHERENT System.

wall: Broadcast Message

If you need to communicate quickly with all users logged in to the system, use wall, or
write to all users. The message that you send will appear on the terminal of each user.
For example, to inform users that the system will be shut down, type:

90 The COHERENT System

/ete/wall

The system will bé going down
at 5pm to backup files.
<ctrl-D>

This message will appear on user’s terminals as

Broadcast message
The system will be going down
at Spm to backup files,

motd: Message of the Day

The COHERENT system provides two convenient ways to give users news about the sys-
tem. The first is called the “message of the day”, and it is printed on each user’s ter-
minal when he logs in. To provide such a message, put information in the file
Jete/motd. - ' o T e

For example, to tell the users that the system will be unavailable because new hardware
is being installed in the afternoon, edit the file /ete/motd to contain:

The system will be unavailable in the afternoon
because new hardware is being installed.
It will go down at 2 pm.

When a user logs on, login prints the information in /etc/motd.

msgs: Cumulative Message Board

The message of the day is deleted when a new message is inserted. If a user does not log
in for several days, the message of the day may no longer be there. For items that you
want everyone to see, such as hours of operation or new operating procedures, you
should use msgs instead of motd,

msgs helps users get all important messages, even if they don’t log in every day. The
system remembers which users have seen each message. After a user logs in, invoking
msgs will show the number, date, and author of each message written since the user
last logged in. Therefore it is easy for the user to stay up to date with the system-wide
messages.

To add a message to the file, simply mail the message to msgs. To title the message,
write it as the first line in the message, afier the “Subject:” prompt from mail.

The home directory for msgs will grow over time, as more and more messages accumu-
late. Also, if a new user is enrolled on your COHERENT system, he may have to wade
through several hundred messages when he first logs in. Therefore, you should purge
the home directory for msgs every now and again; you may wish to throw away the an-
nouncements of office parties three Christmases ago, and save important information on
diskette.

Administering COHERENT 91

msgs keeps track of what messages each user has read by recording the number of the
last message read in the file $HOME/.msgsrc. When each user logs on, his version of
.msgsre is inspected to determine the ast message seen. If messages were added after
that, msgs prints the ones the user wants to see, and then updates .msgsre.

System Accounting

. counting file. An example of the result is

The COHERENT system provides two types of computer time aecounting to help you
track the use of the system, Three commands control the accounting and provide reports
at various levels of detail. S

ac: Login Accounting

Whenever a user logs into the COHERENT system, it records the user’s name, the ter-
minal number, and the date and time of the login. It also records when he logs out.

You can use this information to compute the time each user, or all users, were logged
into the system. The command ac prints the total of all login times recorded in the ac-

Total: 8357:00

You can ask for a summary of total login times for each day by typing:
ac -d

An example result would be:
Friday November 13:

Total: 53:08
Saturday November 14:

Total: 75:36
Sunday November 15:

Total: 73:15

Finally, you can snmmarize the times for individual users with the command:
ac -p jack ted fred
This will show the total login times for these users:

fred 1100:42

jack 910:41

ted 641:58

Total: 2653:21
Also,

ac -pd

gives the time for each user, for each day that he logged in.

92 The COHERENT System

Login accounting is not automatically operational, The login information is collected only
if the file /usr/adm/wtmp exists.

To start login accounting if it is not working, type the command
>/usr/adm/wtmp

while logged in as root. This creates the file /usr/adm/wtmp if it does not exist (and
destroys existing information if it does) and thereby enables login accounting.

To turn off login accounting while it is running, you can type:
rm /usr/adm/wtmp

After you activate login accounting, you should purge /usr/adm/wtmp periodically as it
grows continuously, and on an active system will eventually consume much disk space.
To purge the current information but leave accounting turned on, type:

>/usy/adm/wtmp

sa: Processing Accounting

While login accounting tells you how much time a user spends logged into the system, it
does not tell you the individual commands used. Process accounting does so. Under
COHERENT, each execution of each command constitutes a separate process.
(COHERENT’s ability to maintain & list of processes and swap each in and out of
memory until all are executed, is what gives COHERENT its multi-tasking capability.)
Process accounting records system time, user time, and real time for each command ex-
ecuted by each user on the system. The command sa reports this information for you,
uging a format that you set.

sa has several options, to generate different reports. When used with no options, sa lists
the number of times each call is made, the total CPU time, and the total real time used
by the command, ordered by decreasing CPU time. This is a summary by command; the
following gives an example:

#CALL CPU REAL

sh 61 1 832
1d 5 1 7
ar 5 0 1
ranlib 3 0 1
P 16 0 11
dld 2 0 1
lc 19 0 1
ce 4 0 8
atrun 43 0 1
find 1 0 0
ed 1 0 2
cat 4 0 1
xm 3 0 0
j 1 0 0
spin 2 0 1

Administering COHERENT 93

grep
msg
ps

pr
watch
who
stty
chowmn
sort
mv
pwd
nm

df

1s
echo
accton

The listing will depend on what commands are used in your system, and the characteris-

HWHBEHRENHEHWRERRNE RN
CO0C000CCODOODOODO
CoD0OCDOOCOOOOOOD

e = - Hics of your hardware. . To summarize by user, use.the -m option:........ o

s5a -l

The option -1 separates CPU time expended by users from that expended by the system.
This command

sa -1
prodices:
#CALL USER SYSREAL

sh 61 0 1832
1d 5 0 07
ar 5 0 01
ranlib 3 0 01
P 16 0 011
dld 2 0 01
lc 19 0 01
ce 4 0 08
atrun 43 0 01
find 1 0] 00
ed 1 0 02
cat 4 0 01
rm 3 0 00
i 1 0 00
spin 2 0 01
grep 2 0 00
msg 4 0 00
ps 1 0 00
pr 2 0 00
watch 4 0 00
who 2 0 00

94 The COHERENT System

stty 3 0 00
chown 1 0 00
sort 1 0 00
mv 2 0 00
pwd 1 0 00
hain} 1 0 00
df 1 0 00
1s 1 0 00
echo 3 0 00
accton 1 0 00

To list the user name and the command name, use sa with the option -u. No times or
counts are given. The command:

sa -u

produces output of the form:

£ P

t]j 1c
tj find
tj PL
bin 1lec

t] spin
t]j sh
bin ce
bin cat
bin 14
bin dld
farl who
farl sh

This report has been truncated and edited to save space. In practice, it is longer. The -u
option overrides other options.

Process accounting is on only if you turn it on. To turn on process accounting, type the
command:

/etc/accton Jusr/adm/acct
while logged in as root. The file /usr/adm/acct holds the raw accounting information.
To turn off process accounting, use the same command with no file name:
/etec/accton

If accounting is not on when you type this command, you will get an error message. No
information is gathered when accounting is turned off.

When process aceounting is in use, the file /fusr/adm/usraecct grows with each user
command issued. You should regularly condense or remove the information, to keep the
file from devouring all free space on your disk. To condense the information, invoke sa
with the -s option. You must turn off accounting while condensing information.

Administering COHERENT 95

The information summarized by user will appear in /usr/adm/usracct, and informa-
tion saved by command is placed in fusr/adm/savacct. These summarized files are
used in future requests to sa. After condensing, you can turn accounting back on.

Additional options give flexibility to the report. See the entry for sa in the Lexicon for
additional details on these options.

cron: Scheduling Events

A valuable tool for you in your role as system administrator is the command eron. With
it, you can schedule commands to be executed, even in your ahsence. '

To specify a command to be executed at some later time, simply enter one line of infor-
mation in the file /usr/lib/crontab. You must be logged in as root to modify this file.

For example, assume that you want to greet all users logged into the system on Monday
morning. You can do this by sending them a message at 8:13 on Monday. Use ed or
MicroEMACS to add the following lines to the file fusr/lib/erontab:

o e 13- 8 % %1 . fete/walliAm Monday! o o e

The numbers and * at the beginning specify the time:
138 % % 1

The 13 means “13 minutes past the hour”. (cron numbers the minutes zero through
59.) The 8 means “8 AM”. (cron numbers the hours of the day zero through 28, with
zero indicating 12 AM.) The positions containing * normally specify the day and month.
The two * characters mean “any day”’ and “any month”. Finally, the 1 means “day 1 of
the week,” which is Monday. (cron numbers the days of the week zero through six,
with zero indicating Sunday.) The breakdown of this command is shown as follows:

minute 13

hour 8

day of month * — all days
month * — all months

day of week 1 — Monday

Because each entry in crontab must be on one line, the symbol % represents the begin-
ning of the input string, If the information is too long for one line, enter a backslash
character before the <return> at the end of the line. The backslash tells cron to ig-
nore the <return>. :

With this information in the file, eron executes the command

/etc/wall
Am Monday!

¢

© at 8:13 every Monday morning.

cron expects time to be in the 24-hour clock, so 1 PM is represented as 13 hours. If you
need to print a literal percent sign ‘%’, precede it with a backslash:

96 The COHERENT System

\%

The times for cron commands can be even more complex than the numbers and *
shown above.

You can express a range for any of the five parts of a time by separating two numbers
with a hyphen, For example, to send everyone a lunch break message on week days, use
the command:

59 11 * * 1.5 * /ete/walliLunch! !
To list a choice of times, separate single numbers or ranges with commas but no spaces.
To call a meeting on Monday, Wednesday, and Friday at 3 PM, use:
015 % * 1,3,5 /etc/wallimeeting. .
The time specification
015 % % 1,3,5 -
represents the time 1500 (3 PM) on every Monday, Wednesday, and Fridéy.

A recommended use of cron is to remind the users that it is time for a file-system
backup. With the flexibility of the date and time specification available with cron, you
can encode your backup plan into the times. This includes the different level of hackup
on different days, weeks, and months. As the time for backup approaches, a warning
message should be sent to all users.

wall is just one example of commands that can be used with cron; many others can be
used. If you want to do periodic accounting reports, a command like

sa -s | lpr

prints the accounting information,

File System Backup

This section discusses the principles behind saving and restoring files. An earlier section
detailed a standard backup procedure. If you wish to tailor your own backup procedure,
information in this section can help.

For the best understanding of this section, you should be familiar with COHERENT
files. Using the COHERENT System covers the basics of files.

You will use the programs dump and restor to secure your disk-based information
against hardware failure or inadvertent user destruction.

The command dump dumps selected file systems to a diskette or other backup media.
restor copies files back from the external media to an existing COHERENT file gystem,
You can restore all files, or just one or twe. The regular use of these two commands
provides you with a secure backup eopy of your files.

This section first discusses the concepts behind dumping and restoring files. Then, the
specific uses of the commands are detailed.

Administering COHERENT 97

Strategies

To minimize the overhead of daily backups, you must use a backup strategy suited to
your environment and computer usage. The strategy presented above, in the section on
day-to-day operations, will work for most COHERENT installations, but with experience
you may wish to tailor the procedure for your installation.

Whatever your strategy, stick to it rigorously. Then your users will know that files are

~ protected with a predictable-level -of reliability. Even if you-are the only person using

your COHERENT system, a disciplined program of backups can save you untold grief
should you accidentally damage or delete a valuable file.

Some hardware implementations of the system have “streaming” tape drives that save
the contents of a disk in a matter of minutes. Other systems have conventional tape
drives or diskettes. For systems with diskettes alone, saving the entire disk takes too
long to be done daily. Saving only recently changed files will make daily backup more
convenient.

. dump can perform incremental dumps: only files that have changed since a dump date

are saved, and files that have not changed are not durniped.

To keep track of dump dates, dump maintains a file of dump dates, Dump dates are
kept for each dump level.

Dump Leirels

dump provides ten levels of incremental dump, numbered zero through nine. By defini-
tion, the level-0 dump contains all files. All other levels define the dump date as the date
that the next highest level was dumped. Only files changed or created gffer the dump
date are dumped. ' '

To give an example of the levels and dates, assume that a level-0 dump was taken on
January 1, a level-8 dump on January 3, and a level-6 dump on January 10:

level date
0 January 1
3 January 3
6 January 10

Assume that you do a level-9 dump. The next highest level previously dumped is 6. The
level-6 dump was done on January 10, so this is the dump date. - Thus, a level-9 dump
dumps all files changed or created after January 10.

The dump dates actually include the time of day as well, but for the purposes of illustra-
tion that has been omitted.

A level-4 dump saves all files changed or created after the date of the level-3 dump.

This level feature can help you design your overall backup strategy. An alternative to
the backup strategy presented above includes a quarterly dump:

98 The COHERENT System

level 0 Quarterly
level 3 Monthly
level 6 Weekly
level 9 Daily

If you implement this strategy, the level-0-floppies can be kept for as long as is reason-
able, perhaps one year. A level-0 dump (and possibly other levels) will require more
than a number of diskettes, depending upon your hardware, how many files you have,
and how often they change. Thus, you will need four sets of level-0 floppies to keep a
year-long cycle. With this scheme, take a level-0 dump at the end of each calendar
quarter. At the end of each month that does not end a calendar quarter, perform a level-
8 dump, Files changed since the quarterly dump was taken will be dumped, You will
need only two sets of level 8 floppies.

Level-6 dumps should be taken at the end of each week. Level-9 dumps should be taken
_each day except for the day that you take the level-6, -3, or -0 dumps.

~As noted earlier, you need to design- your dump strategy to suit your installation’s in-
dividual needs. The above strategy is an example; use it as the starting point to design
your own,

dumpdate: Dump Dates

dump keeps a list of dates for each level on each device, so that it can determine what
the dump dates for any level are.

You can list these on your terminal with the command:
dumpdate

A typical reply is:
Level O Wed Feb 10 21:13:36 1990 fha(
Level O Wed Feb 10 21:47:39 1990 fhaO

Llevel 9 Thu Feb 25 23:01:59 1990 fhal
Level 9 Thu Feb 25 23:05:51 1990 fhaO

Here fha0 is the name of the high-density, 5.25-inch diskette device.

restor: Restoring Files

Now that your files are being saved regularly, what do you do if a file is inadvertently
destroyed? For example, a user may accidentally remove or change a vital file and needs
to recover the original. You can restore the file individually from the dump diskettes or
tapes with the command restor. :

Tao restore the file or files, you need to know which set of dump diskettes the file is on.
To start, determine the latest date that the file was known to be correct, Then, locate
the latest set of diskettes dumped before that date. (You will do yourself a favor if you
label each dump set of diskettes with its level and the date and time that it was
dumped.) To verify that the file is on a given set of diskettes, insert the first diskette and
issue the command:

Administering COHERENT 99

dumpdir £ /dev/fhal

If an entire file system must be restored, you can start with an empty partition. To clear
a partition, see the Lexicon entry for mldfs.

To completely restore a file system from various levels of diskettes, begin with the level-0
set of diskettes. Then restore the next higher level, and so on, until you have restored
the highest level of dump, probably level 9.

restor does a full or partial restore of files previously saved by dump. To restore an in-
dividual file from a high-density, 5.25-inch diskette, use this command:

restor xf /dev/fha0 fileQl £ile02

This restores files file01 and file02 from the dump diskette. Be sure to include the
complete path name of the file. If you are using a device other than the high-density,
5.25-inch diskette, replace fha0 with the name of the the device you are nsing.

To restore a complete set of dumped {files, type:

i~ pagstor TE- /dev/fhaO -/dev—/ﬁlesystem-- e et et e e = e e 1 e

where filesystem is the name of the filesystem to restore. This command must be used
with caution: it will overwrite the disk.

When using restor to recover the entire root partition (mass restore), you will need to
first boot from an alternate filesystem such as the COHERENT Boot floppy or another
hootable partition before performing the restore.

dumpdir: List Dump Directory
dumpdir can help you analyze the contents of a dump diskette. The command
dumpdir £ /dev/fhal '

lists all file names on a dump diskette on the fha0 device. If the dump diskette was part
of a multi-volume set, dumpdir may ask you to mount each diskette in succession.,
When you have mounted the diskette, press <return> to signal dumpdir to continue.

Tools for the Administrator

This section discusses tools to make your job as system administrator easier. Other
nseful tools for communicating with users, such as mail, write, and msg, are described
in Using the COHERENT System.

ps: List Active Processes

Each command or program in the COHERENT system is a separate process. Each
process in the system is assigned a number called the process id, or PID. You may need
1o control the actions of users occasionally, and you will do so by controlling processes.

Each user logged into the system has one or more processes. Except in special cir-
cumstances, the first process that he has is the shell, or command-line interpreter. The
commands he types are run by the shell.

100 The COHERENT System

The shell normally waits for a command to terminate before it begins to process the next
command. However, if you use the ‘&’ operator, the shell creates simultaneous proces-
ses: that is, while it executes one command it will let you type another, Thus, you can
execute numerous commands simultaneously.

You can examine the processes associated with your login, or all processes in the system,
with the command ps, Type:

Ps
The result will resemble:
TTY PID
31: 37 -sh
31: 4010 ps
The first column
TTY
31:
31:

is the terminal number. This number is taken from the file /etc/ttys, with the tty
removed from the beginning. The tty number is also printed by the command whao.
The second ¢column

PID
37
4010

lists the corresponding process identifier (PID). The third column containg the name of
the command and command parameters:

-sh

Ps
-sh represents the shell process, and ps represents the ps command itself,
To see all the processes, type:

Ps -a
The result will resemble;
TTY PID
3a: 41 -sh
39: 42 -sh
32: 47 - 3
31: 48 - 3
34: 193 -sh
36: 634 -sh
3e:r 1738 -sh
20: 2568 -sh

3e: 2581 su

Administering COHERENT 101

3e¢: 6317 -sh

3¢: 6322 su
3f; 7333 - P
35: 7789 - P
3e: 8058

3d: 9053 - P
33: 9076 - P
30: 9814 -sh

30: 9829 ps -a .

This display will, of course, differ quite a bit from system to system
and from minute to minute.

For a fuoll description of all options to ps, see its entry in the Lexicon.

kill: Terminate Processes

Occasions will arise when, as system administrator, you must log other users out of the
system. For example, you may need to bring the system down quickly; or perhaps a user
forgot to log out before leaving thé terminal and did not see your broadcast message re--
guesting that all users log out.

The command kill, when used by the superuser, terminates processes. To log out a user
whose shell has process number 300, use the command:

kill -9 300

You must be logged in as root or use the command su to kill a process that belongs to
another user. Each user can kill all processes that he owns, including his own shell
process (which antomatically logs him out).

Ill has other uses as well — see the Lexicon’s entry for kill for more information.

System Security

Many COHERENT system installations have different groups of users whose tasks are
separate. Consider a class of students, all doing homework on the computer. No student
should be able to read another student’s files, but the teacher should be allowed to check
each student’s progress.

By using the flexible protection mechanisms provided as part of the COHERENT system,
you can set up system security to suit the needs of your users.

Passwords
Passwords provide the first level of COHERENT system security.

For systems with passwords, each user with a password must type his password as part
of the login process. If he enters the password incorrectly, he cannot log in.

You, as system administrator, assign a password when you create a user’s log-in account;
this is deseribed above in the section on establishing a user base. If you do not assign a
password, anyone will be able to log in as that user.

102 The COHERENT System

In any system with passwords, it is especially important to assign a password to the
root, or superuser. If the superuser does not require a pagsword, any user can log in as
root and automatically have access to the powerful tools that control the operation of the
gystem.

Any user with a password can restrict access to his files. Once you assign him his
password, the nser can change it with the command passwd. However, because of
higher privileges, root can always access everyone’s files,

The passwords are kept in file / ete/passwd, with the rest of the user login information.
Passwords are encrypted, so reading /etc/passwd will not reveal passwords.

File Protection

The second level of COHERENT system security is file protection. A user can set each.
of three categories of protection for each of his files. A standard protection, or access per-
mission, is given to each file when it is created, :

The three categories of permissions are for the user himself, for other users in his group,
and for all other users. To see the levels of protection of your files, type the command

1s -1
For more details on the meaning of each column in this printout, see the Lexicon entry
for the change-mode command echmod.

For each attempt to access a file, the COHERENT system first checks if the file belongs
to the user, to someone in the user’s group, or neither. The system then checks the cor-
responding permission field before it grants access to the file.

The permissions granted depend upon the type of access: read, write, or execute. Execute
permission is needed to execute scripts or commands, Read permission means that the
file can be read. Write permission means that the file can be changed or deleted.

If a file is a directory (rather than a text file or executable program), the meaning of each
term changes somewhat. Here, read permission means that the user may read the file
names in the directory. Write permission means that the user may create fileg in the
directory. ‘Finally, execute permission means that the user can access a specific name in
the directory. Thus, if a directory denies read permission and grants execute permission,
the names in the directory may not be read, but a specific name may be referenced.

Changing File Protections

The command chmod changes the access permission of a file. The owner of 2 file and
the superuser can always change the permission of a file.

To make a file unwritable, type the command:
chimmod -w file

To make a shell command file executable, type:
chmod +x script

Administering COHERENT 103

For a full discussion of the option to chmod, see its entry in the Lexicon,

Encryption

The command crypt provides a third level of system security. It lets a user encode and

decode information in a file. The superuser has access fo every file in the system; so to

protect sensitive information even from his prying eyes, a user can disguise it with

encryption, Sensitive system information, guch as passwords, are also encrypted for
. security purposes; and the mail command lets users send encrypted mail to each other.

For details about encryption, see the entry on erypt in the Lexicon.

A Tour Through the File System
This section describes the layout of the COHERENT file system, and points out files of
interest to the system administrator. ‘

General File System Layout

. The base of the file system is the root directory, whose name is simply: e

/
Most of the files in the root are directories. To list the files in the root directory, type:

le /

/bin

Most of the commonly used commands are programs co
mand Ie used in the above example. Foreign commands,
mit, are placed in directory /usr/bin.

The shell does not automatically look in /bin for commands, but consults the variable
PATH to determine where commands are to be found. A typical value for PATH is:

/bin: fusy/bin:.
This tells the shell to look for commands in three places (in this order): /bin, fusr/bin,

and finally ., the current directory. The shell does not consult PATH if the command
contains one or more / characters, indicating a complete or partial path specification.

ntained in /bin, such as the com-
such as MicroEMACS and ker-

/dev

Devices in the COHERENT system are accessed through files in the directory Jdev. If
there is a line printer available on the system named lp, you can print characters from a

file named testdata by typing the command:
cat testdata >/dev/lp

All devices on the system ave represented in the /dev directory. Note that it is not
recommended you access devices directly, but use the COHERENT system’s utilities that
“spool files to them. This will prevent two users atternpting to write material to a device

104 The COHERENT System

simultaneously, and so garbling the output. For example, to access the line-printer
device, use the spooler Ipr. See the Lexicon’s entrieg on Ipr and device drivers.

/drv

A unique feature of the COHERENT system is the concept of loadable device drivers.
This feature lets COHERENT system programmers write their own device drivers
without modifying the rest of the system. Drivers can be unloaded, modified, and
reloaded without halting and rebooting the system. Loadable drivers are kept in direc-
tory /drv. To load a driver, type:

/ete/drvld /drv/driver

where driver is the driver to load. See the Lexicon’s entry on drvld for more informa-
tion.

/ete

Several commands that you will use in your role as system administrator are kept in
directory /ete. These are described in detail elsewhere in this guide. They include com-
mands for system accounting, booting the system, mounting the systemn, create file sys-
tems, and control system time,

Also in fetc are several data files used in system administration. These include
/etc/passwd, the file containing user names, ids, and passwords; news files; and file
/ete/tiys, which describes the properties of each user terminal attached to the system.

/lib
The COHERENT system provides many useful functions for performing input and out-
put (I/0} and mathematics, for use in your C programs. These and other libraries, along
with the phases of the C compiler itself, are kept in directory /lib. This directory in-
cludes files containing standard system calls, standard I/0O, and mathematical routines
such as sin, cos, and log.

Jusr

The directory /usr contains user directories, along with a few system directories.
/usr/adm contains additional information of interest to the system administrator,
/usr/bin contains commands that were not entirely created by Mark Williams Company.
/usr/games contains computer games.

Jusr/games/lib/fortunes holds a set of witty bor mots; the game fortune will select
one at random and prints it on your screen. A call to this game can be placed in a nser’s
.profile, so he will see a new fortune each time that he logs on. To add fortunes of your
own, just edit the file /usr/games/lib/fortunes.

Jusr/games/moo is a number-guessing game. The program generates a number with
four digits, all different. It then asks you to enter a number with four different digits. If
you have guessed the number with the digits in the proper order, the program responds:

Administering COHERENT 105

" header files defifie formats

Right!

and invites you to play again.

If your guess is incorrect, the program tells you how many digits you guessed in their
proper positions — labeled “bulls” — and how many digits you guessed, but not in their
proper positions — called “cows”. You can keep guessing until your guess is correct.

The directory /usr/include contains header files for C programs, such as stdio.h. Other
of files and other important-data structures in the system.

Jusr/lib contains the macro files ms and man used the nroff text processor; the unit
conversion tables for the command units; and the file Jusr/lib/crontab used to hold
commands for eron. This directory also holds the C libraries.

Jusr/man contains manual sections referenced by the commands man and help com-
mands.
/usr/msgs stores messages displayed by the command msgs.

- - Jusr/pub contains public files, such as telephone numbers and a copy of the ASCII table, ..___. ...

Jusr/spool contains information for line-printer spooling, and mail that has not yet been
delivered.

Jail
In some systems, users’ directories are
Because a separate device has a separate file system, the directory

Ju.

placed on a separate device to save space.
on that devics is called

How Booting Works

This section discusses the events that take place while starting, Ior booting, the
COHERENT system. You do not need to read this section to know how to boot

" COHERENT, as all booting details are handled by COHERENT automatically. However,

if you are interested in the details, or want to tailor the system to your needs, this sec-
tion will help.

Two I/O devices are involved in bootstrapping. The first device is called the boot device;
it contains the program necessary to invoke the COHERENT system and start it run-
ning. The second device is called the root device; it contains the root file system after
the system is running. In most cases, these two devices are the same physical device.

Startup Events ,
This seetion briefly describes what takes place when you perform the startup of the
COHERENT system.

The initial installation of the system loads information from tape, floppy disk, or other
medium to the hard disk. The release notes for your specific version of the COHERENT

system describe the installation procedure in detail.

106 The COHERENT System

The above section “Regular Startup” described a startup procedure that first loads a
small program from a floppy disk, This program, called the bootstrap program, then
reads in the COHERENT system itself. The boot procedure may be different on your
system.

If the bootstrap finds a file called autoboot in the root directory of the device being
booted, this program is loaded into memory and started. If this file does not exist, the
system will prompt the user to enter the name of the COHERENT image to boot,

After it loads the system image /coherent from the root device, the bootstrap program
starts a program named idle. This program uses all leftover computer time and performs
other control functions.

The program init controls the operation of the system from this point on, It first ex-
ecutes the command /etc/bre (i.e., boot r¢), which ray run commands like fsek, The
file bre can request a reboot, stay single-user, or go multi-user antomatically, Then it
calls the shell to handle commands from the system console, The shell fesponds by
prompting with #, expecting regular commands. At this time, the system is in single-
user mode, meaning that no other users can log in to the system. The shell is running in
superuser mode and only the console’s user is logged in.

At this point, you can enter commands to the system in a normal fashion. One dif-
ference from normal operation is that the system is in single-user mode, to allow special
processing to take place before other users log in. Being in single-user mode gives you
the opportunity to run fsck to check the file system and perform other administrative
tasks before other users log into the system.

When administrative activities are finished, you should type <ectrl-D>. This terminates
single user operation; init then opens the system to other users.

The file /ete/re contains shell commands which the system executes just before making
the system available to other users. This file typically includes commands to delete tem-
porary files and mount standard devices. [t also performs any installation-specific com-
mands you require. As systém administrator, you maintain this file. You must be sure
that it is properly updated and never removed.

One command that must be included in /etc/re is /etc/update, which periodically calls
sync to update buffered data to the disk. On a small number of systemns, /etc/re also
loads /dxv/swap, called the swapper. The swapper writes inactive program images to
the swapping dévice to make room for other user programs that are ready to run.

init also maintains the file /etc/utmp, noting users’ login and logout.

Files Used During Startup

The following files are used when the system is in single-user mode:

! | Administering COHERENT 107

Jete/drvld Load device drivers
[ete/init Initiate a process on each terminal
line, call login when appropriate

Jete/bre Shell commands for booting
Jetc/checklist List of partitions for fsek
/bin/sh Shell

The following files are needed after the system has gone multi-user:
Jete/re Shell commands for thulti-user startup
[ete/ttys Information about terminals
/bin/login Login program :
[etefutmp “who” file
[etc/logmsg . Login prompt
[etc/motd Message of the day

Jete/mount.all Shell script to mount partitions

"Devices, Files, and Drivers ~
This section discusses files, special files, and devices.

The COHERENT system provides device-independent 1/0. Devices and files are bandled
in a consistent way. Each I/O device is represented as a special file in directory Jdev.
For example, if your system has a line printer device named 1Ip, you can list a file, named
prog for example, on the printer by saying

cat prog >/dev/lp
Another example is to copy the file prog with the cp command to your terminal:

cp prog /dev/tty
There are two types of special files represented in /dev, and when you list /dev with le
it will separate them. ' '
The first type is a block special file. This type includes disks and magnetic tape, These
devices are read and written in blocks of 512 bytes, and can be randomly accessed. (Asa

practical note, note that magnetic tape can be read in a random fashion only by
positioning backwards and forwards one record at atime; disks can be read or written in
a totally random fashion.)

The 1/0O to and from block devices is buffered to improve overall system performance.
When a program writes a block of data, the data are held in a buffer to be written at a
later time. If the same block is read twice in a row, the data for it is still available in
memory and does not have to be fetched from the physical device.

A special program named Jete/update forces all buffered data to the physical device
periodically by calling the command sync, to protect against losing data in the case of an
accident, such as a power failure. If you must bring the system down, you must force
the latest data to be written by typing the command syne.

108 The COHERENT System

Character-Special Files

The second kind of special file is called a character-special file. Included in this class are
devices that are not block special: terminals, printers, and so on. Digks and tapes can
also be treated as character special files. For every block special file for a disk, such as

/dev/at0c
there is usually a character-special file:
/dev/ratle

Character-special files are sometimes called raw files, hence the prefix r in ratOc. A raw
file has no buffering or other intermediate processing performed on its information. This
difference is an efficient benefit to the dump, restor, and fsck commands, which do
their own buffering.

tty Processing

One special set of devices has other processing — the tty or terminal files. A terminal-
special file with this special processing is called a cooked device, The processing includes
handling the kill, erase, interrupt, quit, stop, start, and end-of-file characters,
Processing can be disabled with the command stty so the program deals with the raw
device. However, using a raw tty device generally has negative effects on performance of
the COHERENT system.

Creating and Mounting File Systems

This section discusses how to create a file system on an empty device. You must do this
to prepare a new diskette before mounting it on your system. You may also do this if
you want to rebuild one of your file systems from scratch,

Because most AT COHERENT systems work with high-density, 5.25-inch floppy disks,
this section will concentrate on this device.

fdformat: Format a Diskette

The command fdformat formats a diskette. When a digkette is formatted, COHERENT
writes information on each track that makes it possible for the diskette to hold a file sys-
tem.

Idformat uses the following syntax:
setc/fdformat device

where device is the name of the device to be formatted. To format a high-density, 5.25-
inch diskette, use the command:

/ete/fdformat /dev/fha0
To format a high-density, 8.b-inch diskette, type:

Administering COHERENT 109

Jetc/Edformat /dev/fval
To format a low-density, 5.25-inch diskette, type:
/ete/fdformat /dev/f£9al
To create a COHERENT file system on a formatted diskette, use the command mkfs.

See the Lexicon entry for fdformat for more information on this command and its op-
tions.

mkfs: Create a File System
To create a file system, issue the command:
Jetc/mkfs special proto

special is the special device-node file on which the file system is to be built. proto is
either a number or a file name. If it is a number, mkfs builds a file system of that size

in blocks. For example, to create a file system on a high-density, 5.25-inch diskette, type:

Jetc/mkfs /dev/fha0 2400 ~
Otherwise, proto is presumed to be a file, called a protofype file, which describes the file
system to be built. The following gives a sample proto prototype file:

/dev/null
800 128
d--755 3 1
dev d--555 3 1

$
ete d--755 3 1

$
bin d--755 3 1

$
drv d--755 3 1

$
1ib d4--755 3 1

$

usr d--755 3 1

$.

tmp 4--777 3 1

$

$

The file must consist of a set of character strings that are separated by spaces and
newlines, and that deseribe how the file system is to be built. These strings are
delineated by blanks or appear on different lines.
The first string mlkfs looks for is the path name of the file that contains the hootstrap
program to be written onto the first block of the device. In this case, the string is
/dev/null, or the null device, so there will be no bootstrap written.

110 The COHERENT System

Next is the decimal number of blocks to be included in the file system,; in this example,
800. This may be fewer than the total number of blocks on the device.

Third is the number of i-nodes to be on the i-list, in this case, 128, There must be one i-
node available for each file that will reside on the disk.

The next strings describe the root file. Generally, this root file is a directory, and there-
fore mkfs must be told about other files to be created in this directory. Each of the files
described to mkfs will be of the same form.

The strings
d--755 31

describe the properties of the root file. d--755 describe the mode of the file, and the 3
and 1 describe the owner of the file,

The string deseribing the mode of the file is six characters long. The first of these
characters specifies the type of the file: d means directory, b block-special file, and ¢
character-special file. Thus, the root file is a directory file.

The second character must be u if the set user id mode is to be in effect, and “-* if not.
The third character must be g if the set group id mode is to be in effect, and *-’ if not,

The remaining three characters 755 specify the file access permissions. These are
described fully in the Lexicon’s entry for chmod.

The user id and group id are both integers as defined in the password file, After these
numbers comes the contents of the file. Because the root in this example is a directory,
the contents are other files. These files are described in a similar fashion, except that
the file name comes before the mode specification.

To make the prototype file more readable, files in a directory are indented. At the end of
each file description is a $.

Consider the description of the file:

dev d--555 3 1
$

First comes a string dev, specifying the name of the file. Next is the mode description d-
-555. Third is the user id 3. Fourth is the group id 1. Next comes the description of
the contents of the directory. In this instance, no initial contents are given. Finally, the
character $ signifies the end of the directory description.

If the type of file is either a block special file or a character special file, the next strings
are the major and minor device numbers, in that order.

The final § in this example signals the end of the description of the root file on the
device.

If the file is a regular file, the contents is the path name of a file that is to be copied to
the file being created.

be Desk Caleculator 147

The for Statement

for is a statement that controls the execution of other be statements. You should use
for to write a formula to control the number of times a value is computed.

The previous section demonstrated how to print the numbers one to ten using a while
statement, The following does the same task with a for statement:

for (i=l; i <= 10; ++i) i

Three Parts of the for Statement
The for statement is more complex than the while statement; its controlling expressions
have three parts.
The first part, shown here in italics
for (i=1; i <= 10; ++i) 1

‘sets up the initial condition. The second part
for (i=1; i <=10; ++i) i

tests whether more iterations should be performed. be performs this test before it ex-

ecutes the statements that are subordinate to the for statement. If the fest fails, no

more iterations are performed. L

The third part

for (i=1; i <= 10; ++i) 1
is performed at the end of each iteration. In practically every instance, this part of the
for statement modifies the value of the variable that the second part tests.

Taken together, these statements (1) set i to zero; (2) check whether i ig less than or
equal to ten; (3) if i proves to be so, prints i, and then increases it by one.

The following example of the for statement adds the squares of the numbers one
through ten, prints each square, and then prints the sum of the squares at the end.

sum = 0

for (n=1; n <= 10; +m) (
sq =n¥%¥n

sq
sum += sq
}

sum

The result is:

148 The COHERENT System

1

&

9
16
25
36
49
64
81
100
385

Similarities Between the for and while Statements

To illustrate the similarity between the for statement and the simpler while statement, - -

the following rewrites the above example, substituting the while for the for:
sum = 0O
n=1
while (n <= 10) {
S =mn%n
sq
sum += sq
++n
}

Sum

You should notice one difference when you enter this example. In the while version of
the example, the

+Hn

prints out the new value of n, whereas in the for example, the value is not printed.

Functions in be

bc allows you to name routines that you use repeatedly. You can then call them by
name without having to retype them; obviously, this can be a great time-saver. These
named routines are called functions. This section shows you how to define and use
functions for your be calculations.

Example of Function Use

The following example defines a function that caleulates the area of a cirde from its
radius.

be Desk Calenlator 149

scale = 5

pi = 3.14158

define area (radius) {

r2 = radius * radius

‘ return (pi * r2);

}
| area (1.00);

area (2.00);

area (56);

The results will be:

3.14159
12.56636
9852.02624

The define keyword tells be that you are defining a function. The name of the fanetion
follows. Then, in parentheses, come the parameters of the function. In this example, the

Only parameter, or argument, of the tuncuon i radiug” Most Tunctions ave arguments;
but they are not mandatory.

The retarn statement defines the value of the funetion. In the area example, the ex-
pression: :

area (1.00)

references the function area. be then performs the calenlation described by your defini-
tion of the function area. The number

1,00
is substituted wherever the parameter radius is shown.,
The statement
r2 = radius * radius
is then executed, yielding this result:
1.00
Then, the statemeni;
return (pi * r2)
calculates the area and returns its value. The statement
area (1.00)
then has the value calenlated in the return statement.

150 The COHERENT System

Functions Using Other Functions

Functions in be perform calculations using the same expressions as the rest of the be
program. This includes the use of functions. The area program can be written using
another function, sq, to caleculate the square of a number:

scale = 5

pi = 3.14159

define =q (number) ({
return (number * number)
}

define area (radius) {
return (sq (radius) * pi)
}

area (1.00);

area (2.00);

area (56);

Again, the results will be identical:

3.14159
12.56636
9852.02624

Functions That Call Themselves

Not only can functions call other functions and perform regular calculations; a function
can use itself in calculations. An example of this is the Fibonacci calculation:

define fib (f) {
if (£==0) return (0)
if (f==1) return (1)
if (£ > 1) return (fib (£-1) + fib (£-2))
}
fib (5)
fib (20)

Fibonacei numbers are defined in the following way: Fibonacei number zero is Zero;
similarly, Fibonacei number one is one. Any other Fibonacei number is defined as the
sum of the two previous Fibonacci numbers. Fibonacei numbers are defined only for
non-negative integers.

The defined function fib follows this definition by returning zero if the number re-
quested is zero and one if the argument is one. If the number is neither of these, then
the function calls itself to calculate the previous two numbers of the series and adds
them together.

be Desk Caleculator 151

The auto Statement

Many functions that call other functions, including themselves, may require variables
that are not changeable by the rest of the program. This is signalled to be by the auto

statement:
auto varl, var2
This declares varl and var2 ag local to the function that contains them.
%‘o illustrate the use of auto, the following be program calculates the factorial of a num-
er:

define factorial (number) {
auto value, i

value = 1
for (i = 1; i <= number; ++i) value %= i

return (value)

. S

value = 3
factorial (wvalue)
i=99

factorial (20)
value

i

The result is:

6
2432902008176640000

3
99

The first number, 6, results from:
factorial {(value)

The second number is from:
factorial (20)

The last two numbers are from value and i, and are included to demonstrate that the
variables in the function factorial appearing in this statement:

auto value, 1
are separate from the variables of the same name in the rest of the program.

If the function calls itself, as the fib example does above, any variable names noted in
the auto statement are handled separately for each call of the function.

152 The COHERENT System

Programs in a File

Because its programs can be quite complex, be lets you keep them in files. This lets you
build a library of be programs and functions that can be called up easily, .

Using a Program From a File

To illustrate the use of programs stored in a file, type the following example into file
fib.bc COHERENT using the editor of your choice. The program defines the funetion
fih;

define Ffib (f) {
if (f==0) return (0)
if (f==1) return (1)
if (f > 1) return (fib (£-1) + fib (£-2))

To use a be program that has been stored in a file, enter the file name on the be com-
mand line, like this:

be £ib.be

The function definition will be read in by be and ready for your use. To use the fune-
tion, simply type the function name with parameters.

So, if you type:
be fib.be
fib (6)
quit

be will reply:
8

Using Libraries
You can enter several useful programs in their own files and call them into be at the
same time. The following example creates another function that calculates the sum of

the squares of integers up to a given number. Enter it into COHERENT, and name it
sumsq.be:

define sumsq (number) {
auto i, sum
sum = 0
for (i = number; i > 0; --i) sum += i * 2
return (sum)

}

Now, you can use the sumsq function to print the sum of the squares for each number
from one to ten:

be Desk Calculator 153

be sumsq.bc ‘
for (i = 1; i <= 10; ++i) sumsq (1)

quit
The resulf is:

1

5

14
30
55
91
140
204
285
385
quit

You can use the two functions stored in a file to print the difference between the sum of T

the squares of numbers, and the Fibonacei number:

be fib.be sumsg.be
for (1 = 1; 1 <= 10; ++i) sumsq (1) - fib (i)
quit o
The result of this questionable computation is: .
0
4
12
27
50
83
127
183
251
330

The be Library
COHERENT provides an extended library to go with be. It includes the following
funetions:

154 The COHERENT System

atan(z) arctangent of z

cos(z) cosine of z

exp(z) exponential function of z
j(»,2) nth order Bessel functicn of 2
In(z) natural logarithm of z

pi the value of pi to 100 digits
sin(z) sine of z

The library is stored in file fusr/lib/lib.b. To use the library, invoke the be command
with the -1 option.

To show how the library can be used in your work the following example computes the
sine of an angle of one-third radian with scale set to 20:

be -1
scale = 20
sin (1/3)
quit
The result is:
.32719469679615224418

Summary

The Lexicon entry for bc summarizes its commands, features, and libraries. It will also
you refer you to related commands and functions.

Section 6:

The C Language

C is a computer language invented by Dennis Ritchie and Ken Thompson at AT&T Bell
Lahoratories in the early 1970s. In the apprommately 20 years since its creation, C has
become one of the most popular compter languages in the world. C is powerful, ﬂe:nble,
it is highly portable, and has been 1mplemen1:ed on practically every computer and under
practically every operating system, in the world.

"0 is the “native language” ‘of the COHERENT system., COHERENT is written in C,and

it includes a powerful C compiler among its suite of language tools for your use. You do
not need to know C to use COHERENT to great advantage; however, if you plan to
program under COHERENT, you would be well advised to become at least passably ac-
quainted with C.

This tuterial is an introdiiction t6 the COHERENT C coinpiler 4nd 16 the C lanigiage it-
gelf, The first part of this section describes how to compile programs under
COHERENT The second part is a brief tutorial in the C langunage ltse]f

Compllmg C Programs under COI—IERENT

A C compiler is a program that transforms files of C source code into machine code.
Compilation is a complex process that involves several steps; however, COHERENT
simplifies it with the command ee, which controls all the actions of the compiler.

Try the Compiler

Before we launch into a lengthy explanation of what cc is and what it does; you can get a
feel for it by trying it with a simple example. To begin, type the following to create a

simple C program:

155

156 The COHERENT System

ed hello.c
a
main() {
printf("Hello, world\n");
}
W
q

This creates a simple C program called hello.c. Now, compile your program by typing
the following command:

¢c -V hello.c

If you typed the program correctly, cc will print somet}ung like the followmg on your
screern:

/lib/ccO D23400000100 hello.c /tmp/ccl5029b

/lib/cel D23000000100 /tmp/ccl5029b /tmp/ccl502%a
/1lib/ce2 D23000000100 /tmp/cclSOZga hello.o /tmp/cel5029b
m /tmp/ccl5029a

‘rm /tmp/eccl5029h

/bin/ld -X /lib/crts0.o0 hello.o /lib/libe.a .

rm hello.o

What each of these messages mea_l_lé will be described beldw. If you receive an error
message, iry re-typing the program, and then re-compile it. When compilation is sue-
cessfully completed, yon will now have an executable program called hello, To invoke it,
type: _ ,
hello
It should print the following on your screen:
Hello, world

As you can see, cc makes it easy to transform a file of C code into an executable
program.

Phases of Compilation

As you noticed, ce printed a number of messages on your screen as it compiled hello.c.
The reason you saw the messages was that compilation was performed with the -V op-
tion to ee; this tells cc to print a verhose output that describes each of its actions. ec
prints numerous messages because the COHERENT C compiler is not just one program,
but a number of different programs that work together. Each program performs a phase
of compilation. The following summarizes each phase:

The C Language 157

"¢pp The C preprocessor. This processes any of the ‘#’ directives, such as #ineclude or
#ifdef, and expands macros. :

cc0 The parser. This phase parses programs. It translates the program into a parse-
tree format, which is independent of both the language of the source code and the
microprocessor for which code will be generated.

ccl The code generator. This phase reads the parse tree generated by ec0 and trans-
lates it into machine code. The code generation is table driven, with entijes for

each operator and addressing mode.

cc2 The optimizer/object generator. This phase optimizes the generated code and
writes the object module. ‘ ‘

cc8 COHERENT also includes a fifth phase, called ee3, which can be run after the ob-
ject generator, cc2. ce3 generates a file of assembly language instead of a relocat-
“able object module. cc3 allows you to examine the code generated by the com-
piler. You did not see this phase when you compiled hello.c because this phase is
optional and you did-not request it. If you want COHERENT to generate as-
e e e eeeegem by language; use-the=S-option-on-the-ce command-Bne; e e

Unless you specify the -S option, cc creates an object module that is named after the
source file being compiled. This module has the suffix .0. An object module is not
executable; it contains only the code generated by compiling a C source file, plus informa-
tion needed to link the module with other program modules and with the library

functions. . N Lo

As the final step in its execution, cc calls the linker ld to produce an executable
program. -

Ag you can see, ce also removes the temporary files it creates to pass information from

one compiler phase to another. I your program is built out of only one file of C source
code, it also deletes the object module that it creates after that module is linked to create

an executable program.

Renaming Executable Files

When cec compiles a source file, by default it names the executable program after the
first source file named on the ce command line. If you wish, you can give the executable
file a different name. Use the -0 (output) option, followe_d by the desired name,

Floating-Point Numbers

Often, you will need to use ﬂoating—poi'nt numbers in your programs. If you are unsure
what a floating-point number is, see the Lexicon entry for float.

The routines that print floating-point numbers are large, and most C programs do not
need to print floating-point numbers; therefore, the code to perform floating-point arith-
metic is not included in a program by default. You must ask ce to include these routines
with your program by using the -f option to ce.

158 The COHERENT System

To see how this works, let’s modify hello.c to use floating-point numbers. Edit hello.c
by typing the following commands:

ed hello.c
2
c ‘
printf("Hello, world %f\n", 123.4);

w
q ,
Now, compile the program with the same command line as before:
cc -V hello.c
When compilation has finished, type hello. You'll see the following output:

You must compile with the -f flag -
to include printf() floating point.
Hello, world ‘

COHERENT is telling you that you are using a floating-point number but that you did
not compile the program to include code to process floating-point numbers. Now, recom-
pile the program using the -f option to ce:

cc -V -f hello.c

* When compilation has finished, type hello. If you typed the program correctly, you will
see the following:

Hello, world 123.400000

As you can sée, hello is now displaying the ﬂoating—poinf number 123.4 for you. For
detailed information on printf, see its entry in the Lexicon; printf is also discussed in
the tutorial section below.

Compiling Multiple Source Files

Many programs are built from more than one file of C source code. For example, the
program factor, which is provided with COHERENT, is built from the C source files
factor.c and atod.c. To produce the executable program factor, both source files must
be compiled; the linker Id then joins them to form an executable file,

To compile a program that uses more than one source file, type all of the source files
onto the cc command line, For example, to compile factor you would type the following:

ec -0 factor -f factor.c atod.c¢ -lm
This command compiles both C source files to create the program factor.

In the above example, ce produces the non-executable object modules factor.o and
atod.o, and then links them to produce the executable file factor.

The C Language 159

The argument -Im tells e 1o include routines from the mathematics library when the
object modules are linked. This option must come after the names of all of the source
files, or the program will not be linked correctly.

Wildcards

A wildeard character is one that represents a variety of characters. The two most com-
monly used wildcards are the asterisk “** and the question mark ‘”’. The asterisk can
represent any string of characters of any length (including no character at all), whereas
the question mark can represent any one character.

For example, if the current diréctory held the following files:

a,c.
ab.c
abc.c
abed.c

Tiyping IsTat.e wollaprint:T T T

ab.c
whereas typing ls a*.c would print all four files.

The cc command lets you use wildeards in your command line to save you time and ef-
fort. For example, you can compile all of the C source files in the current directory
simply hy typing:

eec *.c . .
Thls command compiles all of the files with the suffix .c and links the resultlng object
modules to form the executable file named a (after the first source file on the command
line), '

In another example, if the program example were built from the source files
examplel.c, example2.¢, and example3.c, you could compile them with the following
command:

~cc -0 example example?.c

Linking Without Compiling

When you are writing a program that consists of several source files, you will need to
compile the program, test it, and then change one or more of the source files. Rather
than recompile all of the source files, you can save time by recompﬂ.mg only the modified
files and relinking the program.

For example, if you modify the factor program by changing the source file factor.c, you
can recompile factor.c and relink the entire program with the following command:

ce -0 factor -f factor.ec atod.o -1lm

This ece command refers to the C source file factor.c and the object module atod.o. ce

160 The COHERENT System

recognizes that atod.o is an object module and simply passes it to the linker Id without
re-compiling it. You will find this particularly useful when your programs consist of
many source files and you need to compile only a few of them.

To simplify compiling, especially if you are developing systems that use many source
modules, you should consider unsing the make utility that is included with COHERENT,
For more information on make, see its entry in the Lexicon, or see the tutorial for
make that appears later in this manual,

Compiling Without Linking

At times, you will need to compile a source file but not link the resulting object module
to the other object modules. You will do this, for example, to compile a module that you
wish to insert into a library. Use ec’s option -¢ to tell cc not to link the compiled
program. This option is often used to create relocatable object modules that ean be ar-
chived into a library for later use.

For example, if you wanted just to compile factor.c without linking it, you would type:
cec -¢ factor.c

To link the resulting object module with the object module atod.o and with the ap-
propriate libraries, type the following command:

ce -0 factor -f factor.o atod.o -1m

Assem‘bly—Language Files

C makes most assembly language pr Oglammlng unnecessary. However, you may wish to
write small parts of your programs in assembly language for greater speed or to access
processor features that C cannot use directly. COHERENT includes an assembler,
named as, which is described in detail in the Lexicon.

To compile a program that consists of the C source file example.c and the assembly-lan-
guage source file example.s, simply use the eec command as usnal;

cc -0 example examplel.c examplel.s

cc recognizes that the suffix .s indicates an assembly-language source file, and assembles
it with as; then it links both object modules to produce an executable file,

Changing the Size of the Stack

The stack.is the segment of memory that holds funetion arguments, local variables, and
function return addresses. COHERENT by default sets the size of the stack to two
kilobytes (2,048 bytes). This is enough stack space for most programs; however, some
programs, such as the example program on page 26 of the first edition of The C
Programming Language, require more than two kilobytes of stack. A program that uses
more than its allotted amount of stack will cause a stack overflow, which will cause your
program to crash.

‘The C Language 161

The sizé of the stack cannot be altered while a program is running, Should your
program need more than two kilobytes of stack, use the COHERENT command
fixstack. For more information, see the entry for fixstack in the Lexicon.

Where To Go From Here

This discussion of the cc command is by no means complete, but it includes enough in-
formation for you to begin to compile your programs. The Lexicon’s entry for cc gives all
of the command-line options available with cc. The Lexicon also has entries for cpp, the

" compiler phases, and for the linker ld, and describes them at greater length. All error

messages generated by cc and by the assembler as appear in the appendix to this
manual.

The next section in this tutoﬁal introduces the C programming language.

C for Beginners

This section briefly introduces the C programming language. It is in two parts. The first

~part deseribes what a programming language-is,-and-gives the:history of the-C-program-= = w

ming language. This section also introduces some concepts hasic to C, such as structured

- programming, pointer, and operafor, The second part walks through a C programming

session. It emphasizes how a C programmer deals with a real problem, and
demonstrates some aspects of the language, _

This chaptei is not designed to teach you the entire C language. It introduces you to C,
so you can read the rest of this manual with some understanding. We urge you to look
up individual topics of C programming in the Lexicon, and especially to study the ex-
ample programs given there. ‘ __ : —

Prog‘ramming Languages and C

Before beginning with C, it is worthwhile to review how a microprocessor and a com-
puter language worlk. : ‘

A microprocessor is the part of your computer that actually computes. Built into it is a
group of instructions. Each instruction tells the microprocessor to perform a task; for ex-
ample, one instruction adds two numbers together, another stores the result of an arith-
metic operatiofi in memory, and a third copies data from one point in memory to
another. - S : _ .

Togsther, a microprocessor’s instructions form its instruction set. The instruction set is,

o C6

in effect, the microprocessor’s “native language”.

A microprocessor also contains areas of very fast storage, called registers, The registers
are essential to arithmetic and data handling within the mieroprocessor. How many
registers a microprocessor has, and how they are designed, help to determine how much
memory the microprocessor can read and write, or address, and how the microprocessor
handles data.

A computer languoge, as the name implies, lets a human being use the microprocessor’s
instruction set. The lowest level language is called “assembly language”. In assembly
language, the programmer calls instructions direetly from the microcomputer’s instruc-

162 The COHERENT System

tion set, and manipulates the registers within the microprocessor. To write programs in
assembly language, a programmer must know both the microprocessor’s instruction set
and the configuration of its registers. -

Assembly and High-Level Langnages

With agsembly language, the programmer can tailor the program specifically to the
" microprocessor. However, because each microprocessor has a unique instruction set and
configuration of registers, a program written in one microprocessor’s assembly language
cannot be run on another microprocessor. For example, no program written in the as-
sembly language for the Mdtorela 68000 microprocessor can be run on the IBM PC or
any PC-compatible computer. The program must be entirely rewritten in the assembly
language for the Intel 18086 microprocessor, which is difficult and time consuming.

A high-level language helps programmers to avoid these problems, The programmer
does not need to know the microprocessor in detail; instead of spécific microprocessor in-
structions, he writes a set of logical constructions. These constructions are then handed
to another program, which translates them into the instructions and registers calls used
by a specific microprocessor. In theory, a program written in a high-level language can
be run on any mieroprocessor for which someone has written a translation program,

A high-level langnage allows the programmer to concentrate on the task being executed,
rather than on the details of registers and instructions. This means that programs can
he written more quickly than in assembly language, and can be maintained more easily.

So, What Is C? . | |

As noted earlier, C was invented at AT&T Bell Laboratories by Dennis Ritchie and Ken
Thompson. They created C specifically to re-write the UNIX operating system from
PDP-11 assembly language. Ritchie designed C to have the power, speed, and flexihility
of assembly language, but the portability of high-level languages.

In 1978, Ritchie and Brian W, Kernighan published The € Programming Language,
which deseribes and defines the C language. The C Programming Language is the
“bible” of C, a standard work to which all programmers can refer when writing their
programs.

Because C is modeled aftér assembly language, it has been called a “medium-level” lan-
guage. The programmer doesn’t have to worry about specific registers or specific instrue-
tions, but he can use all of the power of the computer almost as directly as he can with
assembly language. ‘ '

Because C was written by experienced programmers for experienced programmers, it
makes little effort to protect a programmer from himself,. A programmer can easily write
a C program that is legal and compiles correctly but crashes the program, Also, C’s
punctuation marks, or. “operators”, closely resemble each other. Thus, a mistake in
typing can create a legal program that compiles correctly but behaves. very differently
from what you expect.

The C Language 163

b

Structured Programming

C is a structured language. This means that a C program is assembled from a number of
sub-programs, or functions, each of which performs a discrete task. If this concept is dif-
ficult to grasp, consider the following example. |

Suppose you want to turn a file of text into upper-case letters and print it on the screen.
This job seems simple, but a program to do it must perform five tasks:

1. Read the name of the file to open.

2. Open the file so it can he read, in much the same way that you must open a book
before you can read it.

Read the text from the file.

Turn what is read into upper-ease letters.

AN

Print the transformed text onto the screen.

\ good program will al5o péifoird the Tollowing tasks: ™™
Check that the file requested actually exists.

Check that the file requested is actually 2 text file rather than a file of binary infor-
mation; the latter makes very little sense when printed on the screen.

o

8.~ Close the program néatly when the work is finished. .-

4, _S.top_processing and print an error message if a problem occurs.

- A structured language like C allows you to write a separate function.' for each of these

tasks.

A structured programming language offers two major advantages over a non-structured
language. First, it is easier to debug a function than an entire program because the
function can be unplugged from the program as a whole, made to work correctly, and
then plugged back in again. Second, once a function works, it can be used again and
again in different programs. This allows you to create a library of reliable functions that
you can pull off the shelf whenever you need them. ' - S -

The functions within a program communicate by passing valués to each other. The
value being passed can be an integer, a character, or — most commonly — an address
within memory where a function can find data to manipulate. This passing of addresses,
or pointers, is the most efficient way to manipulate data because by receiving one num-
ber, a function can find its way to a large amount of data. This speeds up a program’s
execution.

¢ adds some extra tools to help you construct programs. To begin, C allows you to store
functions in compiled form. These precompiled functions are added only when the
program is finally loaded into memory; this spares you the trouble of haying to recompile
the same code again and again. Second, C adds a preprocessor that expands definitions,
or macros, and pulls in special material stored in header files. This allows you to store
often-used definitions in one-file 'and use them just by adding oiie line-to your program.

164 The COHERENT System

Writing a C Program

As noted above, a C program consists of a bundle of sub-programs, or functions, which
link together to perform the task you want dene. Every C program must have one fune-
tion that is called main. This is the main function; when the computer reads this, it
knows that it must begin to execute the program. All other functions are subordinate to
main. Wher the main function is finished, the program is over. ‘

To see how these elements work, review the program hello.c, which you worked with
earlier in this tutorial: '

main()
{

printf("Hello, world\n");
}

As you can see, this program begins with the word main. The program begins to work
at this point. The parentheses after main enclose all of the arguments to main — or
would, if this program’s main took any. An argument is an item of information that a
function uses in its work.

The braces *{’ and ‘}’ enclose all the material that is subsidiary to main,

The word “printf” calls a function called printf. This function performs formatted prin-
ting. The line of characters (or “string™} Hello, world is the argnment to printf: this ar-
gument is what prinif is to print. '

The characters ‘\n’ stand for a newline character. This character “tosses the carriage”,

- or moves the cursor to a new line and returns it to the leftmost column on your screen.
Using this character ensures that when printing is finished, the cursor is not left fixed in
the middle of the screen, Finally, the semicolon % at the end of the command indicates
ihat the function call is finished. ‘

One point to remember is that printf is not part of the C language, Rather, it is a func-
tion that was written by Mark Williams Company, then compiled and stored in a library
for your use. This means that you do not have to re-invent a formattéed printing function
to perform this simple task: all you have to do is call the one that Mark Williams has
written for you.

Although most C programs are more complicated than this example, every C program
has the same elements: a function called main, which marks where exection begins and
ends; braces that fence off blocks of code; functions that are called from libraries; and
data passed to functions in the form of arguments.

A Sample C Programming Session
This section walks you through a C programming session. It shows how you can go
about planning and writing a program in C.

C allows you to be precise in your programming, which should make you a stronger
programmer. Be careful, however; because C does exactly what you tell it to do, nothing
more and nothing less. If you make a mistake, you can produce a legal C program that ‘

The C Language 165

does very unexzpected things.

Designing a Program

Most programmers prefer to work .on a program that does something fun or useful.
Therefore, we will write something useful: a version of the COHERENT utility scat, that
we’ll call display. It will do the following:

1. Open a text file on disk.
2. . Display its contents in 23-line chunks (one full screen).

3. After displaying a chunk, wait to see if the user wants to see another chunk. If the
user presses the <return> key alone, display another chunk; if the user types any
other key before pressing the <return> key, exit.

4. Exit automatically when the end of file is reached, _
As you can see, the first step in writing a program is to write down what the program is

____to do, in as much detail a5 you can manage, and preferably in complete sentences.

Now, invoke ed or MicroEMACS aﬂd' get ready to type in the program '
ed display.c
or:

me display.c ... i

We suggest that you use the MicroEMACS editor, because this tutorial will make
numerous changes to the program as it progresses and it will be easier to see these chan-
ges in context if you use a screen editor rather than a line editor. The rest of this
tutorial assumes that you are using MicroEMACS. I you are not familiar with
MicroEMACS, it is briefly described in Using the COHERENT System. A tutorial for
MicroEMACS also appears in this manual, or you may wish to see the entry for me in
the Lexicon. '

In the sbove commands, the suffix .c on the file name indicates that this is a file of C
code. If you do not use this suffix, the cc command will not recognize that this is a file
of C code and will refuse to compile it. : o

Begin by inserting a description of the program into the top of the file in the form of a
comment. When a C compiler sees the symbol ‘/*’, it throws away everything it reads un-
4l it sees the symbol “*/”. This lets you insert text into your program to explain what
the program does. ‘

Type the following:

166 The COHERENT System

Ve

* Truncated version of the ’scat’ utility.

* Open a file, print out 23 lines, wait.

#* If user types <return>, print another 23 lines.
* If user types any other key, exit. :

% Exit when EOF is read.

*/

Save what you have typed by pressing <e¢trl-X> and then <etrl-S>. Now, anyone, in-
cluding you, who looks at this program will know exactly what it is mearit to do.

The main() Function

As described earlier, the C language permits structured programming. This means that
you can break your program into a group of discrete functions, each of which performs
one task. Each function can be perfected by itself, and then used again and again when
you need to execute its task. C requires, however, that you signal which function is the
main function, the one that controls the operation of the other functions. Thus, each C
program must have a function called main().

Now, add main() to your program. Type the code that is shaded, below:

/*

* Truncated version of the ‘scat’ utility.

* Open a file, print out 23 lines, wait.

* If user types <return>, print another 23 lines.
% If user types any other key, exit, oo

* Exit whén EOF is read.

*/

The parentheses “()” show that main is a function, If main ‘were to take any ar-
guments, they would be named between the parentheses. The braces “{}” delimit all
code that is subordinate to main; this will be explained in more detail below. ..

Note that the shortest legal C program is main(){}. This program doesn’t do anything
when you run it, but it will compile correctly and generate an executablé file:

Now, try compiling the program. Save your text by typing <ctrl-X> <e¢trl-S> , and then
exit from the editor by typing <ctrl-X> <ctrl-C>. Compile the program by typing:

cc display.c

When compilation is finished, type display. The shell will pause briefly, then return the
prompt to your screen. As you can see, you now have a legal, compilable C program, but
one that does nothing.

The C Language 167

Open a File and Show Text N

The next step is to install routines that open a file and pﬁnt its contents. For the
moment, the program will read only s file called tester, and not break it into 23-line por-
tions. o

Type the shaded lines into your program, as follows:
- /* - N "

Truncated version of the 'scat’' utility.

Open a file, print out 23 lines, wait.

If user types <teturn>, print another 23 lines.
If user types any other key, exit. :
Exit when EOF is read. '

% ok ok ¥

} :
Note first how comments are inserted into the text, to guide the reader.
Now, note the lines ' ' ' '

char string[128];
FILE *fileptr; :

These declare two data structures. That is, they tell COHERENT to set aside a specific
amount of memory for them. '

The first declaration, char string[128];, declares an array of 128 chars. A char is a
data entity that is exactly one hyte long; this-is enough space to store exactly one al-
phanumeric character in memory, hence its name. An array is a set of data elements
that are recorded together in memory. In this instance, the declaration sets aside 128

168 The COHERENT System

chars-worth of memory. This declaration reserves space in memory to hold the data
that your program reads. : .

The second declaration, FILE *fileptr, declares a pointer to a FILE structure. The as-
terisk shows that the data element points to something, rather than being the thing it-
self. When a variable is declared to be a pointer, the C compiler sets aside enough space
in memory to hold an address. When your program reads that address, it then knows
where the actual data are residing, and looks for them there. C uses pointers exten-
sively, because it is much more efficient to pass the address of data than to pass the data
themselves. You may find the concept of pointers to be a little diffienlt to grasp;
however, as you gain experience with C, you will find that they become easy to use.

The FILE structure is the data entity that holds all the information your program needs
to read information from or write information to & file on the disk. For a detailed discus-
sion of the FILE structure, see its entry in the Lexicon. For now, all you need to
remember is that this declaration sets aside a place to hold a pointer to such a structure,
and the structure itself holds all of the information your program needs to manipulate a
file on disk. In effect, the variable fileptr is used within your program as a synonym for
the file itself.

Now, the line

fileptr = fopen("display.c", "r");
opens the file to be read. The function fopen opens the file, fills the FILE structure,
and fills the variable fileptr with the address of where that structure resides in memory.

fopen takes two arguments. The first is the name of the file to be opened, within quota-
tion marks. The second argument indicates the mode in which to open the file; r in-
dicates that the file will be read rather than written into.

The lines

for(;;)
{

begin a loop. A loop is a section of code that is executed repeatedly until a condition that
you set is fulfilled. For example, you may define a laop that exeeutes until the value of a
particular variable becomes greater than zero.

for is built into the C language. Note that it has braces, just like main() does; these
braces mean that the following lines, up to the next right brace (}) are part of this loop.
You can set conditions that control how a for loop operates; in its present form, it will
loop forever. This will be explained in more detail shortly.

Two library functions are executed within the loop. The first,
fgets(string, 128, fileptr);

reads a line from the file named in the fileptr variable, and writes it into the character
array called string. The middle argument enstires that no more than 128 charaeters will
be read at a time. The second line within this loop, f :

The C Language 169

printf("%s", string);

prints the line. printf is a powerful and subtle function; in its present form, it prints on
the screen the string contained in the variable string. ‘

Finally, the line at the top of the program:
#include <stdio.h>

tells C preprocessor cpp to read the header file called stdio.h. The term “STDIO” stands
for “standard input and output”; stdio.h declares and defines a number of routines that
will be used to read data from a file and write them onto the screen.

When you have finished typing in this code, again compile the program as you did ear-
Yier, If an error oceurs, check what you have typed and make sure that it exactly
matches the code shown on the previous page. If you find any errors, fix them and then
recompile. If errors persist, check it in the table of error messages that appear at the
end of this tutorial.

- When compilation is finished, execute display as you did earlier. You will see the text

T e m” display.c seroll across the sereen. " When' the -text-is finished, however; the~-~ -
COHERENT prompt does not return; you have not yet inserted code that tells the
program to recognize that the file is finished. Type <etrl-C> to break the program and

return to COHERENT

Accepting File Names _

~ Of course, you will want display to be able to display the contents of any file, not just
files named display.c. The next step is to add code that lets you pass arguments to the
‘program through its command line. This task requires that you give the main() func-
tion two arguments. By tradition, these are always called arge and argv, How they
work will be described in a moment.

The enhanced program appears as follows. You should change or insert the lines that

are shaded:

/:'r

% Truncated version of the 'scat' utility.

% Open a file, print out 23 lines, wailt.

%* If user types <return>, print another 23 lines.
% If user types any other key, exit, !

* Exit when EOF is read.

74

#include <stdio.h>

170 The COHERENT System

pt

/% Open file */

/* Read material and display it %/
for (;3) ¢ - >

printf("%s", stf‘i"ng);

First, a small change has been added: the line
#define MAXCHAR 128

defines the rianifest constant MAXCHAR to be equivalent to 128. This is done because
the “magi¢ number” 128 is used throughout the program. If you decide to change the
number of characters that this program can handle at once, all you would have to do is
“to change this one line to alter the entiré program. This cuts down on mistakes in al-
tering and updating the program. If you look lower in the program, you will see that the
declaration . . : R S

char string[128]
has been changed to read
char string[MAXCHAR]

The two forms are equivalent; the only difference is that the latter is easier to use. It is
a good idea to use manifest constants wherever possible, to streamling changes to your
program,

Now, look at the line that declares main(). You will see that main¢) now has two ar-
guments: arge and argv,

The first is an int, or integer, as shown by its declaration — int arge;. afgc gives the
number of entries typed on a command line. For example, when you typed

display filename

the value of arge was set to two: one for the command name itself, and one for the file-
name argument. arge and its value are set by the compiler. You do not have to do any-

The C Language 171

thing to ensure that this value is set correctly.

argv, on the other hand, is an array of pointers to the command line’s arguments. In
this instance, argv[1] points to name of the file that you want display to read. This,
too, is set by COHERENT, and works automatically.

If you look below at the line that declares fopen(), you will see that tester has been
replaced with argv[1]; this means that you want fopen() to open the file named in the
first argument to the display command. _ '
Now, try running the program by typing

display display.c
display will open display.c and print its contents on the screen. You still need to type
<ctrl-C> when printing is finished; the code to recognize the end of the file will be in-
serted later.

Also, be sure that you give the command only one file nanie as an argument, no more

and no less. Code that checks against errors has not yet been inserted, and handing it

e e e el Wrong nmber of arguments could cause problems foryou; T

Error Checking

Obviously, the program runs at this stage, but is still fragile, aﬁd could cause problems.
The next step is to stabilize the program by writing code to check for errors. To do so, a

© programmmer must first write code to capture erroi-conditions,-and then-write a routine

1o react appropriately to an error. ‘

Our edited program now appears as follows:

/* o

* Truncated version of the 'scat' utility.

% Open a file, print out 23 lines, wait. o
* If user types <return>, print another 23 lines.
* If user types any other key, exit. ' ‘

% Exit when EOF is read.’

*/

. #include <stdio,h>
- #define MAXCHAR 128 -

main(arge, argv)

- /% define afgu'me'nts to main() */
- int arge; o

i

char *argv[];
{
: char string[MAXCHAR];
FILE *fileptr;

172 The COHERENT System

/% Open file */

/* Read material and display it */
foxr (5;) {
* fgets(string, MAXCHAR, fileptr);
printf("%s", string);

The additions to the program are introduced by comments.
The first addition

if (argec 1= 2)
error("Usage: display filename");

checks to see if the correct number of arguments was passed on the command line; that
is to say, it checks to make sure that you named a file when you typed the display com-
mand.

Asp noted above, arge is the number of arguments on the command line, or rather, the
number of arguments plus one, because the command name itself is always considered to
be an argument. The statement if(arge 1= 2) checks this. The if statement is built into
C. If the condition defined between its parentheses is true, then do something, but if it
iz not true, do nothing at all. The operator != means “does not equal”, Therefore, our
statement means that if arge is not equal to two (in other words, if there are not two
and only two arguments to the display command — the command name itself plus a file
name), execute the function error. error is defined below.

Our fopen function also has some error checking added (which will be deseribed in a
moment):

The C Language 173

if ((fileptr = fopen(argv[l], "x")) == NULL)
error ("Cammot open file");

fopen returns a value called “NULL” if, for any reason, it cannot open the file you re-
quested. Thus, our new if statement says that if fopen cannot open the file named on
the command line (that is, argv[1]), it should invoke the error function.

C always executes nested functions from the “inside out”, That means that the inner-
most function (that is, the function that is enclosed most deeply within the pairs of
parentheses) is executed first. Its result, or what it returns, is then passed to next outer-
most function as an argument; that fanction is then executed and what it returns is, in
turn, passed to the function that encloses it, and so on. In this instance, the innermost
function is . . : :

fileptr = fopen(argv[l], "r")

fopen is executed and what it refurns is written into fileptr. What fopen returned is
then passed to the next outer operation; in this case, it is compared with NULL, as

Jollows: '

(fileptr = fopen(afgvil], "r")) == NULL)
What that operation returns is then passed to the outermost function, in this case the if
statement, which evaluates what it is passed, and acts accordingly. If fileptr is NULL
(that is, if fopen couldn’t open the file), the if statement will be true and the error
funetion ealled. If, however, the file was opened, fileptr will not equal NULL and the
program will proceed. S

As this example shows, C allows a programmer to nest functions quite deeply. Although
nested functions are sometimes difficult to untangle when you read them, they make
programming much more convenient.

Finally, at the bottom of the file is a new function, called error:

error(message)
char *message;
{
printf("%s", message);
cexit(l);
)

This function stands outside of main, as you can tell because it appears outside of
main’s closing brace. This function is called only when your program needs it. If there
are no errors, the program progresses only until the closing brace in main and the er-
ror Tunction is never called.

error takes one argument, the message that is to be printed on the screen. This mes-
sage is defined by the routine that calls error. error uses the function printf to print
the message, then calls the exit function; this, as its name implies, causes the program
to stop. The argument 1 is a special signal that tells COHERENT that something went
wreng with your program.

174 The COHERENT System

When the error checking codé is inserted, recompile the program without an argument,
Previously, this would cause the program to crash; now, all it does is print the message

"Usage: display filename
and terminate the program,

Print a Portion of a File

So far, our utlhty just opens a file and streams its contents over the screen. Now, you
must insert code to print a 23-line portion of the file. At present, it will only print the
first 23 lines, and then exit.

To do so, you must insert another for loop. Unlike our first loop, which ran forever, this
one will cycle only 23 times, and then stop. Our updated program appears as follows:
/* o R L

% Truncated version of the 'scat’ utility.

* Open a file, print out 23 lines, wait.

* If user types <return>, print another 23 lines.

* If user types any other key, exit,

* Exit when EOF is read.

*/
#include <stdio.h>
#define MAXCHAR 128

main{arge,. argv)
int arge;
char *argv][};

char string[MAXCHAR] ;
FILE #fileptr;

/* Check if right number of arguments was passed %/
if (arge 1= 2)
error("Usage: display filename");

/% Open file %/ '
if ((fileptr = fopen(argv[l], "r")) == NULL)
error{"Cannot open file");

The C Language 175

fgets(string, MAXCHAR, fileptr);
printf("%s", string);

}

/% Process error messages %/
error(message)
char *message;
{

printf("¥%s", message);
S w_—-v'rv:pv_r.r:exi—t:(_ﬁlﬁ)f; S — e TR e s s e e

}

The new for loop is nested inside the loop governed by for(;;). The program also
declares a new variable, ctr, at the beginning of the program. ctr keeps track of how
many times the loop has executed. Now, lock at the line:

“for (etyr = 0; ctr < 23] Etrd)

It has three sub-statements, which are separated by semicolons. The first sub-statement
sets etr to zero; the second says that execution is to continue as long as ctr is less than
23; and the third says that ctr is to be increased by one every time the loop executes
(this is indicated by the ++ appended to etr). With each iteration of this loop, fgets
reads a line from the file named on the display command line, and printf prints it on
the screen. ' o

Also, an exit call has been set after this new loop. ‘Thig ensures that the program will
exit automatically after the loop has finished executing. This is a temporary measure, to
make sure that you no longer have to type <etrl-C> to return to the shell.-

When you have updated the program, recompile it in the usual way. When you run it,
display will show the first 23 lines of the file, and then the shell’s prompt will return.

The program is now approaching its final form.

Checking for the End of File

The next-to-last step in preparing the program is teaching it to recognize the end of a file
when it sees it. This does not appear to be needed now because the program exits
automatically after 23 lines or fewer, but it will be quite necessary when the program
begins to display more than one 23-line portion of text.

The function fgets checks to see if it has arrived at the end of a file, and returns a
special value if it has. fgets normally returns the address of the string into which it

176 The COHERENT System

writes its output; however, if it runs into the end of a file (or if any other error occurs), it
returns the special value NULL. By reading the value of what fgets returns, display
can detect if the end of the file has been encountered, and stop reading. To do so, the
fgels statement must be set within an if statement. The if statement will capture what
fgets returns, and continue execution as long as the value of the number returned is not
NULL.

The updated program now appears as follows:

/*

* Truncated version of the ‘scat’ utility.

* Open a file, print out 23 lines, wait.

* If user types <return>, print another 23 lines.
* If user types any other key, exit.

* Exit when EOF is read,

*/

#include <stdio.h>
#define MAXCHAR 128

main(arge, argv)
" int arge;
char *argv[];
{
char string[MAXCHAR];
FILE *fileptx; -
int ctr;

Ve Check if right number of arguments was passed %/
if (arge 1=.2)
error("Usage: display filename");

" /* Open file %/
if ((fileptr = fopen{argv[l], "r")) == NULL)
error("Cannot open file");

The C Language 177

leptr) != NULL)

I
printf("%s", string);

exit(0);
}

/% Process error messages */
error(message)
char *message;

I

printf("%s", message);
exit(l);

H
First, note that the comment that describes the program’s output has been changed to

yeflect our changes to the program. It is important for a programmer to ensure that the

comments and the code are in step with each other.
Our new if statement '
if (fgets(string, MAXCHAR, fileptr) != NULL)

checks what fgets returns: if it does not return NULL, the end of the file has not been
reached, the if statement is true and the program prints out the next line. (The
operator != indicates “not equal”.) If it returns NULL, however, the end of file has been
reached, the if statement is false so the else statement is executed, which causes
display to exit. '

Note, too, that a new control statemnent is introduced: else. This, like if, is built into the
C language. An else statement is always paired with an if statement; together, they
mean that if the condition for which if is testing is true, the program should do one
thing; otherwise, it should do something else. In this case, the program says that if the
end of file has not been reached, another line should be read from the file and printed on
the screen; however, if it has been reached, then the program should exit. As you can
imagine, if/else pairs are common in C programming; they are logical and useful.

One more task must be done on our program; then it is finished.

178 The COHERENT System

Polling the Keyboard

For the program to be combiete, it has to ask you if you want to see another 23-line por-
tion of text. The program should write another portion if you press the <return> key
alone; if you type any other key before you press <return >, then it should exit.

To do so, we will print a query on the screen, then read what the user has typed and in-
terpret it. When these changes are inserted, the program is complete;

/¥

* Truncated version of the ’'scat’ utility.

* Open a file, print out 23 lines, wait.

* If user types <return>, print another 23 lines.

* If user types any other key, exit.

* Exit when EOF is read,.

*/

#include <stdio.h>
f#define MAXCHAR 128

main{arge, argv)
int arge;
chdr *argv([];

char string[MAXCHAR];
FILE *fileptr;
int ctr;

/¥* Check if right number of arguments was passed */
-if (arge 1= 2)
error("Usage: display filename");

/* Open file %/ _
if ((fileptr = fopen(argv[l], "r")) == NULL)
error("Cannot open file");

Thg(}Language 179

/* Output 23 lines, while checking for EOF */
for (;;) {
for (ctr = 0; ctr < 23; ctr+) {
if (fgets(string, MAXCHAR, fileptr} != NULL)
printf("%s", string);
else

exit{0);

/* Process error messages ¥
error{message) :
char *message;
{
printf("%s", message);
exit(1l);
}

Thege new lines introduce a few new twists. The lines

printf("Continue? ");

fflush(stdout);
print the prompt Continue? on the screen. Note that no “\n’ appears after the the
prompt; this ensures that the cursor does not jump to the next line, but stays next to the

prompt. Because no “\n’ appears after the line, however, you have to force it to appears
on the screen; this is accomplished with the statement:

fflush(stdout});

fflush flushes matter to an output device. - stdout points to a file stream, just like the
stream that you opened with the call to fopen, earlier in the program. stdout is opened
in the header file stdio.h, which was read at the beginning of the program; it always
points to the user’s screen.

The next line reads the user’s keyboard:
fgets(string, MAXCHAR, stdin);

This version of fgets reads matter into our array string; however, instead of reading the
file pointed to by fileptr, it reads what is pointed to by stdin. stdin is a stream that is

180 The COHERENT System

also defined in stdio.h; it always points to the user’s keyboard.
Finally, the statement
if (string[0] != '\n')

checks what the user typed by reading the first (that is, the zero-th) character written in
the array string by the preceding call to fgets. (Note that with C, counting always
begins with zero rather than one.) If the user just types <return>, then string[0] will
hold ‘\n’; and the if statement will not be true, the program jumps to the preceding for
statement, and more text is written to the screen. However, if the user types anything
before typing <return>, the if statement will succeed and the program will exit. This
may seem a little convoluted, but it actually is a straightforward and efficient way to
receive information from the user. :

After you have inseried these changes, again compile the program.
When compilation is finished, try typing
display display.c

The first 28 lines of the source code to the program now appear on your screen. Hit
<return>; the next 23 lines appear. Now, type any other key, and then press
<return>: the program exits.

You now have a simple but helpful display utility.

For More Information

This section has given you a brief, concentrated introduction to writing a C program. If
you are new to programming, much of what happened must seemed strange, but we
hope it helped you to appreciate the logic of how C works.

Numerous books are on the market to teach beginners how to program in C; the
following section gives a small bibliography of books on C. Also, look at the sample C
programs in the Lexicon. These demonstrate how to use many of the functions available
to you with COHERENT,

Bibliography

The following books may be helpful in developing your skills with C, This list also con-
tains all books that are referenced in this manual. It is by no means exhaustive;
however, it should prove helpful to both beginners and experienced programmers.

American National Standards Institute: Draft Programming Language C (October 1986
Draft). Washington, D.C.: X3 Secretariat, Computer and Business Equipment Manufac-
turers Associdtion, 1986, - -

AT&T Bell Laboratories: The C Programmer’s Handbook. Englewood Cliffs, N.J.:
Prentice-Hall, Inc., 1985.

Chirlin, P.M.: Introduction to C. Beaverton, Or.. Matrix Publishers, Inc., 1984.

s o e e = Kernighan, B.W.; Plauger, P.J.:_ The Elements of . Programmmg Style, ed. 2. New York:

The C Language 181

Derman, B. (ed.): Applied C. New York: Van Nostrand Reinhold Co., Inc., 19886.
Feuer, AR.: The C Puzzle Book. Englewood Cliffs, N.d.: Prentice-Hall, Inc., 1982,

Gehani, G.: Advanced C: Food for the Educated Palate. Rockvllle Md.: Compnuter
Science Press, 1985.

Hancock, L.: Krieger, M.: The C Primer. New York: MecGraw-Hill Book Publishers,
Inc., 1982,

Harbison, 8.; Steele, G.: C: A Reference Manual. Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1984.

Hogan, T.: The C Programmer’s Handbook. Bowie, Md.: Brady Publishing, 1984.

Kelley, A.; Pohl, L: C by Dissection: The Essentials of C Programming. Menlo Park, Ca.:
The Benjamln/Cummlngs Publishing Company, Inc., 1987,

Kernighan, B.W.; Ritchie, D.M.: The C Programming Language Englewood Cliffs, N.dJ.:
Prentice-Hall, Inc 1978.

MecGraw-Hill Book Co., 1878.

Kochan, S.G.: Programming in C. Hasbrouck Heights, N.J.: Hayden Bock Co., Inc,
1983.

Knuth, D.E.: The Art of Computer Programming, vol. 1: Basic Algarzthms Reading,
Ma.: Addlson-Wesley Publishing Co., 1969. . .

Knuth, D.E: The Art of Computer Programming, v vol. 2: Semznumencal Alganthms.
Reachng, Ma.: Addison-Wesley Publishing Co., 1962.

Knuth, D.E.: The Art of Computer Programming, vol. 3: Sorting and Searching.
Reading, Ma.: Addison-Wesley Publishing Co., 1969.

Mark Williams Company: ANSI C: A Lexical Guide. Englewood Cliffs, NiJ: Prentice-Hall,
1988,

Plum, T.: C Programming Guidelines. Cardiff, N.J.: Plum Hall, Inc., 1984.
Plum, T.; Brodie, J.: Efficient C. Cardiff, NJ: Plum Hall, Inc., 1985.
Purdum, J.. C Programming Guide. Indianapolis: Que Corp., 1983.

Purdum, J.; Leslie, T.C.; Stegemoller, A.L: C Programmer’s Library. Indianapolis: Que
Corp., 1984,

Traister, R.J.: Programming in C for the Microprocessor User. Englewood Cliffs, N.dJ.:
Prentice-Hall, Inc., 1984.

Traister, R.J.: Going from BASIC to C. Englewood Cliffs, N.J.: Prentice-Hall, Inc.,
1984.

Vile, R.C., Jr.: Programming in C with Let’s C. Glenview, IL: Scott, Foresman and
Company, 1988,

182 The COHERENT System

Waite, M.; Prata, S.; Martin, D.: € Primer Plus. Indianapolis: Howard W. Sams, Inc,,
1984, .

- Weber Sj(stems, Inc.: € Language User’s Handbook. New York: Ballantine Books, 1984.
Zahn, C.T.: C Notes. New York: Yourdan Press, 1979,

Section 7: |
Introduction to ed, Interactive Line Editor

This tutorial introduces the interactive editor ed. It is intended both for readers who
want a tutorial introduction to ed, and those who want to use specific sections as a
reference.

Related tutorialé include include those for sed, the stream editor, and for me, the

_MicroEMACS screen editor, This tutorial assumes that you already understand the

"basics of using the COHERENT system; such as what a file is, what it means to edit = "~

text, and how to issue commands to the operating system. If you not yet know your way
around the COHERENT system, we suggest that you first' study the Using the
COHERENT System, which appears in the front of this manual. It covers the basics of

. using COHERENT and introduees many useful programs.

Why You Need an Editor

A significant feature of computers is the capacity to store, retrieve, and operate upon in-
formation. A computer can store many different kinds of information: programs, com-
puter commands and instructions, data for programs, financial information, electronie
mail, or natural-langnage text (e.g., French, English) destined for a manuscript or book.

ed is a program with which you can enter and edit text on your computer. You can use
ed to create or change computer programs, natural-language manuscripts, files of com-
mands, or any other file that consists of text that you can read. .

ed is designed to be easy to use, and requires little training-to get started. The fun-
damental commands are simple, but have enough flexibility to perform complex tasks.

Learning To Use the Editor ‘

Practice on your part will help you learn quickly. The following sections contain ex-
amples that illustrate each topic discussed. We strongly recommend that you type each
example presented as you encounter it in the text. Even if you understand the concept
presented, performing the example reinforces the lesson, and you will learn more quickly
how to use ed.

183

184 The COHERENT System

In addition to reading the text and doing the examples as you encounter them in the
text, try your own variations on the commands, and branch out on your own. Try things
that you suspect might work, but are not shown as examples.

General Topics

This section presents the backround information you will need to understand how ed
works. C :

To help illustrate the discussion to follow, log into your COHERENT system and type
the following commands: ‘

ed

a

this is a sample
ed session

w test

q
This example calls ed, then uses the a command to add lines to the text kept in memory.
The period signals the end of the additions. The w command writes the lines of text to

file test, and the command q tells ed to return to COHERENT. You will notice that
after you type the w command, ed will respond with

28
which is the nimber of characters in.the file.
- Thus, to enter ed, simply type: |
ed
and to exit, type
q

You can also exit by typing <ectrl-D>: that is, hold down the contrel key on your
keyhoard, and at the same time strike the D key.

Notice that you are issuing two different kinds of commands in the above example, The
command ed is an COHERENT command, whereas the rest are commands to the editor.
After ed is given thé q command, it exits, and following commands are processed by
COHERENT. . -

-ed, Files, and Text

ed works with one file at a time. With ed, you can create a file, add to a file, or change
a file previously created.

ed Interactive Line Editor 185

1 As you use ed to create or change files, you will type both text and controlling commands
into the editor. Text is, of course, the matter that you are creating or changing. Com-
mands, on the other hand, tell ed what you want it to do. As you will see shortly, there
is a simple way to tell ed whether what you are typing is text or commands.

they may seem terse, they are easy 1o learn. You will appreciate the brevity of the com-
mands once you begin to use ed regularly,

You must end each command to ed by striking the <return> key. This key is present
on all terminals. However, the labeling of the key may vary. It may be called newline,
linefeed, enter, or eol, and is larger than any key on the keyboard except for the space

|

]

\ ed has about two dozen commands. Almost every one is only one letter long. Although
’ bar. This key will be called the <yeturn> key in the remainder of this document.

Creating a File

J The example shown above created a file. Here is another example of file creation —
/ here, creating a file called twoline:

T P o h“;fn-vv—ed O — P
a
Two line Example,
thank you.

_w twoline

q ‘

The letter a tells ed to add lines to the file.. You are creating a new file withi this ex-

ample; and when ed creates a new file, it is initially empty. The w command writes the

Jines you have added to file twoline. The command q tells the editor that you are

finished, whereupon it returns to COHERENT. You can use the COHERENT command
cat to list the contents of the new file: '

cat twoline
the reply will be:

Two line Example,
thank you.

Each command used here will be described in detail in laier sections.

Changing an Existing File

Suppose that a manuscript file of yours needs a few spelling corrections. ed will help
you make them. To begin, simply name the file to correct when you issue the
COHERENT command:

ed filename

where filename stands for the hame of the file that you wish to edit. For example, the
following adds a Jine to the file fwwoline, which we just created:

186 The COHERENT System

ed twoline
$a’,
This is the third line of the file.
W
q
Listing the file with cat gives:
Two line Example,

thank you.
This is the third line of the Ffile.

The command $a tells ed to add one or more lines at the end of the file.

. Correcting the spelling of a misspelled word is easy with ed. You can rearrange groups
~ of words in a manuscript, and you can move or copy larger portions of text, such as a
paragraph, from one spot to another. ' o

Working on Lines

ed uses the line as the basic unit of information; for this reason, it is called a line-
oriented editor. A line is defined as a group of characters followed by an end-ofline
character, which is invisible. When you type out a file on your terminal, each line in the
file will be shown on your terminal as one line. The commands for ed are based upon
lines. When you add material to a file, you will be adding lines. If you remove or change
items, you will do so to_groups of lines. : -

- ed knows each line by its number. A line’s number, in turn, indicates its position within
the file: the first line is number 1, the second lire is number 2, and 50 on.

ed remembers the line you worked on most recently. This can help shorten the com-
mands you type, as well as reduce the need for you to remember line numbers, The line
most recently worked on is called the current line. ed commands use a shorthand sym-
bol for the current line: the period °.".

Another shorthand symbol used in ed commands is $, which represents the number of
the last line in the file.

Many of the ed commands operate on more than one line at a time. Groups of lines are
denoted by a range of line numbers, which appears as a prefix to the command.

Error Messages
If you type a command to ed incorrectly, ed respond with:

7

This indicates that it has detect an error. Many times, this error will be evident to you
when you review the command that you just typed.

ed Interactive Line Editor 187

If you do not see what the error is, you can get a more lengthy descnphon by typing to
ed:

?

It will reply with an error message.

Basic Editing Techniques

This section discusses in more detail the elementary techniques and commands that you
need to use ed. With the material presented in this section, you will be able to do most
basic editing tasks.

Again, it is recommended that you type each example This will help you understand
each example, as well as remember the technique it demonstrates.

Creating a New File
To begin, let us presume that you need to create an entlrely new file named ﬁrst Per—

haps you only want one lingin-thefile;and it istoréad - T mT
This is my first example
These are the steps that you will need to go through to create this file.

The first step is to invoke the ed program, To do this, simply type .
ed

Remember that you must end each line of commands or text line by pressing the

. <return> key, because ed will not act upon it until you do. Thus, you invoke the editor

by typing ed and a <return>. Notice that these two characters must be lower case.

ed is now ready for commands. The first command that you will use is the append com-
mand a. This tells ed to add lines to the text in memory, which will later be written to
the file. The number of lines that ed can hold in memory depends upon the amount of
memory in your computer. For editing very large files, you should use sed, the
COHERENT stream editor, which is descr 1bed in in its own tutorial.

ed will continue to add lines until you type a line that contains only a period. While it is
adding lines, ed does not recognize commands.

After you issue the a command, you can type the lines 1:0 be included, concluding with a
line that consists only of a period. This special line signals ed that you want to stop ap-
pending lines. The information that you have typed so far is:

ed
a
This is my first example

Next, you must tell ed to write the edited text into a file. Do so hy issuing the write
command w, plus the name of the file that is to hold the edited text. For example, if you
wish to store this example in a file named first, issue the command:

188 The COHERENT System

w first
ed will write the file and tell you how many characters were written, in this case 25.
Finally, to quit the edifor issue the quit command:

q .
The commands you fype after this will be interpreted and acted upon by COI-]ERENT

Now, review the example in its entirety. First you invoked ed by typmg at the
COHERENT prompt. Then you issued the add cémmand a to add lines to the file.
added lines with the a command, and finished the adding by typing a line that consists
only of a period. You then wrote the editing text into a file by issuing the write com-
mand w, and finally you exited from ed by issuing the quit.command q. The complete
example is:

ed

a

This is my first example

w first
q

ed replied to the w command by printing the number of characters it wrote into the file.
After you typed g, COHERENT prompted you for a command again.

Changing a File

Suppese that you wish to change the file that you have Just created: you want to add two
more lines to the file so that the original line will be sandwiched between the new lines.
You want the file to contain:

Example two, added last
This is my first example
Example two, added first

You will do this with ed using two new commands.

Again, you start by tellmg COI—[ERENT to run ed. This time, however, you must type
the name of the file that you are cha.ngmg after the characters ed:

aed first
ed will remember this file nare for ater use with the w ¢command.

ed reads the file in preparation for editing, and tells you the number of characters that it
read in, again 25,

After reading the file, ed automatically sets the current line to the last line read in.
Now, add the third line shown in the secend example by entering:

