

Tandy 1000 HX Technical Reference Manual Copyright 1987, Tandy Corporation. All Rights Reserved.

Reproduction or use of any portion of this manual without express written permission from Tandy Corporation and/or its licensor, is prohibited. While reasonable efforts have been taken in the preparation of this manual to assure its accuracy, Tandy corporation assumes no liability resulting from any errors in or omissions from this manual, or from the use of the information obtained herein.

Tandy 1000 HX
Technical Reference Manual
Contents

Sections
Main Logic Board
Devices
Power Supply
Keyboard
Disk Drive
Options

Important Customer Note:

A gray stripe has been printed along the right edge of the title page of each of the sections to facilitate your finding the beginning of the section. Also, a tabbed divider for each section has been provided for insertion at this point.

1000 HX Main Logic Board Contents

Section Page
Introduction 1
Specifications 3
Connector Pin Assignments 4
Option Card Description 8
Bus Interface Specifications 13
Signal Listing 13
System Timing 17
Theory of Operation 21
Main Logic Board 21
CPU Function 21
Non-CPU Function, Main Logic Board 21
Processor Address/Data Interface 21
CPU Control Signal Generation 24
IFL Equations 25
System Control Signal Generation 25
Bus Specification 25
Interrupt Function 28
Bus Interface 30
Keyboard/Timer/Sound Timer Circuits 30
Keyboard Interface 30
Timer Function 32
Sound Function 32
Joystick Interface 35
Printer Interface 35
Floppy Disk Controller Interface 38
Video System Logic 39
Main System Board RAM Timing 42
I/O Map Summary 45
Video/System Memory Address Map 62
Schematic Diagrams 63

INTRODUCTION TO THE TANDY 1000 HX COMPUTER

The Tandy 1000 HX Computer is modular in design to allow maximum flexibility in system configuration. The computer consists of a Main Unit, and monitor. The Main Unit is supplied with one $3 \mathrm{l} / \mathrm{Z}^{\prime \prime}$ internal disk drive. A second internal $31 / 2^{\prime \prime}$ disk drive is optional. Each disk drive has a capacity of 720 K bytes formatted. The standard types of monitors used with the Tandy 1000 HX are the monochrome composite and the color RGB monitor.

The Tandy 1000 HX has a standard 256 K of system RAM. An optional DMA/RAM board allows the Tandy 1000 HX to be expanded by 128 K or 384 K of RAM. This board will fit onto the expansion slot. With a fully populated RAM board installed, the Tandy 1000 HX will have 640 K bytes of RAM allowed by the system memory map.

Other features include a parallel printer port, two built-in joystick interfaces, and a headphone connection for private listening.

The Main Unit is the heart of the Tandy 1000 HX. It houses the Main Logic Assembly, system power supply, internal 3 1/2" disk drive, and keyboard.

The Main Logic Assembly is a large board mounted to the bottom of the Main Unit and interconnected to the keyboard, power supply, and disk drive by a series of cables. Figure 1 shows the Tandy 1000 HX.

The Power Supply is a 28 W switching regulator type, designed to provide adequate power capacity for a fully configured system.

The Internal 3 l/2" Disk Drive uses double-sided, double-density diskettes to read, write, or store data. These are soft sector diskettes. The Disk Drive assembly is installed in the standard unit. All system programs, with the exception of the system startup sequence, are stored on disk.

Either a monochrome or a color display may be used with the Tandy 1000 HX . The monochrome monitor is a high-resolution green phosphor display which provides excellent visual quality. It features a $12^{\prime \prime}$ screen with an anti-glare surface. Each display is capable of 25 lines of 80 characters. The character matrix is 8 wide $x 9$ high.

Figure 1. TANDY 1000 HX

SPECIFICATIONS

Processor: Intel 8088-2

Dimensions: $31 / 4 \times 17 \times 141 / 2$ (HWD)
Weight: 11 lbs
Power Requirements: $120 \mathrm{VAC}, 60 \mathrm{~Hz}$
With 3 1/2" Disk Drives, Memory Cards, and RS-232:
AC Current: 0.7-0.8 Amps with Floppy doing R / W tests. Leakage Current: 0.5 mA
Power Supply output:
+5 VDC 3.0 Amps max., 1.9 Amps Typ.
+12 VDC 2.0 Amps max. 1.2 Amps continuous
-12 VDC . 1 Amp max.

Environment:

Air Temperature
System ON: 55 to 85 degrees $F(13$ to 30 degrees C)
System OFF: -40 to 150 degrees F (-40 to 69 degrees C)
Humidity: System ON-OFF: 88 to 80%
Disk Drive Specifications
Power:
Supply
Voltage $\quad+5$ VDC Input $\quad+12$ VDC Input
Ripple
0 to 50 kHz 0.1 Vpp 0.1 Vpp
Tolerance
Including Ripple $+/-5 \% \quad+/-5 \%$
Standby Current Nominal 50 mA 0.3 mA
Average Current 130 mA (Read)
Peak Current 500 mA
(Motor Start)
Peak Current 450 mA
(Stepping during Motor On)
Operating Current
Nominal 240 mA

```
Connector Pin Assignments
Jl -- Speaker Interface
    (2-Pin Vertical Header)
    1 -- Sound 2 -- Ground
    J2 -- PWR, NUM, CAP
    1 -- Power Indicator 2 -- Gnd
    3 -- Num Indicator
    5 -- CAPS Indicator
4 -- NUMLOCK Control
6 -- CAPS Control
J3 -- Keyboard Interface
    l -- xl
    2 -- X5
        7 -- x0
    8 -- X7
    3 -- X4
    9 -- X3
    4 -- X3
    5 -- x2
    6 -- X6
    10 -- XI
    11 -- X5
    12 -- X4
    J4 -- Fan
    1 -- +12V
    2 -- GND
J5 -- DC POWER
    (6-Pin Vertical Header)
1 -- +5 VDC
    2 -- +5 VDC
3 -- GND
4 -- Ground
5 -- +12V
6 -- -12v
J6 -- Keyboard Interface
```

1 -- Y0
2 -- Y1
3 -- Yll
4 -- Y2
5 -- Y3
6 -- Y4
7 -- Y5
J7 --

8 -- Y6
9 -- Y7
10 -- Y8
11 -- Y9
12 -- Y10
13 -- Y11

2 -- AUDIOOUT

Jll -- Expansion Interface Connectors (Dual 3l-Pin Header)


```
J12 -- Parallel Interface
(34-Edge Card)
1 -- PPSTROBE* 2 -- Ground
PPDATAO
6 -- Ground
5 -- PPDATA1
7 -- PPDATA2
g -- PPDATA3
11 -- PPDATA4
13 -- PPDATA5
15 -- PPDATA6
17 -- PPDATA7
19 -- PPACK*
21 -- PPBUSY
23 -- PPE
25 -- PPSEL*
27 -- PPAUTOF*
29 -- NC
31 -- Ground
33-- Ground
-- Ground
8 -- Ground
10 -- Ground
12 -- Ground
14 -- NC
16 -- Ground
18 -- Ground
20 -- Ground
22 -- Ground
24 -- Ground
26 -- NC
28 -- PPFAULT
30 -- PPINIT*
32 -- NC
34 -- +5v
J13 -- Floppy Disk Interface External
\begin{tabular}{rrl}
\(1--+12 V\) & \(2--+5 V\) \\
\(3--+12 V\) & \(4--+5 V\) \\
\(5--\) GND & \(6--+5 V\) \\
\(7--\) GND & \(8--+5 V\) \\
\(9--\) GND & \(10--\) INDEX* \\
\(11--\) GND & \(12--\) TK0* \\
\(13--\) GND & \(14--\) STEP* \\
\(15--\) SIDESELECT* & \(16--\) MTRON* \\
\(17--\) DIR* & \(18--\) GND \\
\(19--\) WRPRT* & \(20--\) GND \\
\(21--\) RDDATA* & \(22--\) GND \\
\(23--\) WRDATA* & \(24--\) GND \\
\(25--\) WEN* & \(26--\) GND \\
\(27--\) NC & \(28--\) +12V \\
\(29--~ D S E X T * ~\) & \(30--~+12 V\)
\end{tabular}
Jl4 -- Composite Output
    (Rt. Angle RCA-Type Phone Jack)
1 -- Compvid 2 -- Ground
Jl5 -- RGBI Video
(9-Pin Socket Rt. Angle D-Subminiature)
\begin{tabular}{ll}
\(1--\) Ground & \(2--\) Ground \\
\(3--\) Red & \(4--\) Green \\
\(5--\) Blue & \(6--\) Intensity \\
\(7--\) Green (Monochrome Video) & \(8--\) HSYNC \\
\(9--\) VSYNC & \\
\hline
\end{tabular}
```


Option Card Description

D0-D7	I/0	Data Bits 0 to 7: These lines provide data bus bits 0 to 7 for the processor, memory, and $1 / O$ devices. DO is the least significant bit (LSB) and D7 is the most significant bit (MSB). These lines are active high.
ALE	0	Address Latch Enable: This line is provided by the Bus Controller and is used on the system board to latch valid addresses from the processor. It is available to the $1 / 0$ channel as an indicator of a valid processor address (when used with AEN). Processor addresses are latched with the falling edge of ALE.
NMI	I	-Nonmaskable Interrupt: This line provides the processor with parity (error) information on memory or devices in the $1 / O$ channel. When this signal is active low, a parity error is indicated.
RDYIN	I	Ready In: This line, normally high (ready), is pulled low (not ready) by a memory or 1/O device to lengthen $1 / 0$ or memory cycles. It allows slower devices to attach to the I / O channel with a minimum of difficulty. Any slow device using this line should drive it low immediately upon detecting a valid address and a read or write command. This line should never be held low longer than 10 clock cycles. Machine cycles (I/O or memory) are extended by an integral number of CLK cycles (210 ns or 140 ns , depending upon CPU speed).
$\begin{aligned} & \text { IR2-IR4 } \\ & \text { BREQ, RFSH* } \end{aligned}$	I	Interrupt Request: These lines are used to signal the processor that an I/O device requires attention. They are prioritized with IRQ2 as the highest priority and RFSH* as the lowest. An Interrupt Request is generated by raising an IRQ line (low to high) and holding it high until it is acknowledged by the processor (interrupt service routine).
IOR*	0	-I/O Read command: This command line instructs an I /O device to drive its data

		onto the data bus. It may be driven by the processor or the DMA controller. This signal is active low.
IOW*	0	-I/O Write command: This command line instructs an I/O device to read the data on the data bus. It may be driven by the processor or the DMA controller. This signal is active low.
MEMR*	0	Memory Read command: This command line instructs the memory to drive its data onto the data bus. It may be driven by the processor or the DMA controller. This signal is active low.
MEMW*	0	Memory Write command: This command line instructs the memory to store the data present on the data bus. It may be driven by the processor or the DMA controller. This signal is active low.
FDCDMRQ*	0	FDC DMA Request: This line is an asynchronous channel request used by a floppy disk to gain DMA service. A request is generated by bringing the line to an active level (high). The line must be held high until the FDCDACK* line goes active.
$\begin{aligned} & \text { REFRESH* } \\ & \text { FDCDACK* } \end{aligned}$	I	-DMA Acknowledge: These lines are used to acknowledge FDC DMA requests and to refresh system dynamic memory. They are active low.
AEN	0	Address Enable: This line is used to de-gate the processor and other devices from the I/O channel to allow DMA transfers to take place. When this line is active (high), the DMA controller has control of the address bus, data bus, read commad lines (memory and I / O), and the write command lines (memory and I/O).
DMATC	I	Terminal Count: This line provides a pulse when the terminal count for any DMA channel is reached. This signal is active high.
Voltages: $+5 \mathrm{vdc}+/-5 \%$,		located on 2 connector pins (.45A per option board).

```
+12vdc+/-5%, 0.1A, located on l connector pin (0.03A per
-12Vdc+/-10%, 0.1A, located on l connector pin (0.03A per
option board).
GND (Ground), located on 3 connector pins
```


BUS INTERFACE SPECIFICATIONS

This specification is for the primary bus on the Tandy 1000 HX main logic board, which also is available to the option board connectors. The specification describes the signals in the following manner. See Figures 2 and 3.

- The following signal nomenclature is used in the schematic and literature. Signals designated with the suffix "*" are logically "true low" (normal inactive state is high); if they are not so designated, the signal is logically "true high."
o Direction -- input or output -- is referenced to the CPU.
- Brief functional description of the signal.
o Description of the "drive" or "load" characteristics of the signal. This includes the specific source by IC type and reference designator, drive capability for "output" signals, and actual load for "input" signals. The drive/load is defined in "unit loads" and specified as "high/low." This specification is for the main logic board only. Some signals have an alternate source, an external bus master such as the DMA.
- 1 Unit Load (UL) is defined as: Ioh $=.04 \mathrm{~mA} @ 2.4 \mathrm{~V}$ Iol $=1.6 \mathrm{~mA}$ a 0.5 V

Signal Listing

A00 - Al9 O ADDRESS

D0-D7 I/O DATA

SOURCE: U23,U32,U36
Drive - 65/15 UL
Latch Strobe - ALE Output Enable - AEN Alternate external source

SOURCE: U40 Drive - $37 / 15$ UL Direction Control - RD* (CPU read signal) Enable - DEN*

SOURCE: U6
Drive - 50/7.5 UL Output Enable - AEN Pull-Up - 4.7K ohms

MEMR*	0	MEMORY READ STROBE	Alternate external source
CLK	0	CPU CLOCK	```7.16MHz, 50% duty cycle or 4.77MHz, 33% duty cycle SOURCE: U23 Drive - 75/7.5 UL```
OSC	0	OSCILLATOR	```14.32MHz, 50% duty cycle SOURCE: U23 Drive - 75/7.5 UL```
NMI	I	NON-MASKABLE INTERRUPT	To System NMI Load: 1/l UL, Ul6
RDYIN	I	SYSTEM WAIT	SOURCE: OPEN-COLLECTOR OR 3-STATE BUFFERS Load: 1 UL and 1.0 K ohm pull-up. 10/0.9 UL Set Low by Peripherals (I/O or Memory) to extend READ or WRITE cycles.
RESET	0	SYSTEM RESET	Power On or Manual SOURCE: U23 Drive: 75/7.5 UL
BREQ*	I	BUS REQUEST	From external masters Load: 1 UL and l0K ohm pull-up. 10/0.9 UL
AEN	0	BUS GRANT	To external masters SOURCE: U23 Drive - 75/7.5 UL
IR2	I	INTERRUPT REQUEST\#2	To system interrupt controller
IR3	I	INTERRUPT REQUEST\#3	Load: 1 UL and 2.2 K pull-down
IR4	I	INTERRUPT REQUEST\#4	

The following are not sourced by the CPU but are to be SOURCED (O) Output or Loaded (I) Input by an external DMA source:

SYSTEM TIMING DIAGRAMS

Figure 2. Light Blue to System Timing (1 of 2)

Figure 2 (Cont.) Light Blue to System Timing (2 of 2)

Figure 3. Big Blue to System Timing (1 of 2)

Figure 3 (Cont.) Big Blue to System Timing (2 of 2)

THEORY OF OPERATION

Main Logic Board

The Block Diagram of the main logic board (Figure 4) shows the basic functional divisions.

CPU Function

The CPU function consists of the CPU (Intel 8088-2) U-28, the address interface, data interface, the CPU control signal generator, the bus control signal generator and the interrupt controller (Intel 8259A) U-37.

Non-CPU Function, Main Logic Board

The non-CPU functions can be divided into two main parts: memory and I/O. Memory consists of RAM and ROM. RAM or Video/System Memory (Figure 5) serves as storage for both the video data and program data. ROM memory contains the BIOS and diagnostics. I/O consists of all the peripheral functions: keyboard, floppy disk controller, printer, joystick and sound.

Processor Address/Data Interface

The 8088 has three groups of Address/Data lines; AD0 - AD7, A8 - Al5 and Al6 - Al9. AD0 - AD7 are multiplexed address and data lines. To separate and save the address that comes out first, the signals are applied to U36 (74HCT373) and latched by ALE. Additionally, the signals are applied to data transceiver U40 (74HCT245). U40 is enabled only during the data portion of the CPU cycle. (The exception is during an Interrupt Acknowledge cycle.) Direction of transmission is controlled by the RD* (READ) signal from the Timing Control Generator. Address lines A8 - Al5 are present during the entire CPU cycle and need only to be buffered. Address lines Al6 - Al9 are multiplexed with status signals S4-S7 and need to be latched. The results are: A8 - All, Al6 - Al9 are latched into U31 (74HCT373) by ALE and Al2 Al5 are buffered by half of U23 (74HCT244). The outputs from these latches/buffers/transceivers are the BUS Signals A0 - Al9, D0 - D7.

Figure 4. Main Logic Block Diagram

Figure 5. Memory Map

CPU Control Signal Generation

The 8088 CPU uses a 4.77 (7.16) MHz clock with a special duty cycle $(4.77 \rightarrow 33 \%$ high, 67% low, $-7.16 \rightarrow 50 \% \mathrm{high}$, 50\% low). This clock is produced by the Timing Control Generator. The Timing Control Generator receives a 28.63636 MHz input clock and divides it by 6 to produce 4.77 MHz CPUCLK or by 4 to produce 7.16 MHz CPUCLK, and by 24 to produce D4CLK (1.193 MHz). In addition to being used by the control signal logic, the clocks are buffered by U 20
(74 HCT 244) for the bus signals OSCY (14 MHz), CLKY (CPU clock: $4.77 / 7.16 \mathrm{MHz}$). (See the Bus Interface
Specification).
The RESET signals (RESET and BRESET) originate at U20 (Timing Control Generator) which synchronizes the input RSTIN*. RSTIN* originates from Cl32 which is discharged to 0 volts by diode CR2 when the power is off.

The READY circuit synchronizes the system "ready" signals with the CPU clock and generates the CPU input READY. If a function needs one or more "wait" states added to its access, it must set the RDYIN line low. From the main logic board, RDYIN is set low by the sound IC for 32 extra "wait states" and the video/system memory sets RDYIN low for typically one or two "wait" cycles. The READY circuit of the Timing Control Generator (U20) is operated in the non-asynchronous mode; i.e. two sequential edges of clock (a rising edge first) are required to set the READY signal true. RDYIN is pulled-up by R20.

IFL Equations

Ul6 Buffer Control
Inputs

PIN $1=$!mio	PIN $7=$! fdcack
PIN $2=$! memr	PIN $8=$! ior
PIN $3=a 19$	PIN 9 = !refresh
PIN $4=$ al8	PIN 11 = nmien
PIN $5=a 17$	PIN $13=\mathrm{nmi}$
PIN $6=$! memios	PIN $14=$!romdis

Checksum: FF6C
Outputs
PIN $15=$!disnmi
Pin $16=$! romes
PIN $17=$! bufenb PIN $18=$! bufdir

Equations:

```
/** Logic Equations **/
disnmi = !nmien # !nmi;
romcs = memr & !refresh & al9 & al8 & al7 & !romdis;
bufenb = !memios & romcs
    # memios & fdcack;
bufdir = memr & !mio & !fdcack
    # memr & !mio & memios
    # memr & !mio & ior
    # mio & ior
    # ior & fdcack & !memios & !memr;
```


System Control Signal Generation

The Timing Control Generator (U20) provides the timing strobes required by the system. These include IIOW*, LIOR*, LMEMW*, LMEMR*, LALE, LDEN* and LIO/M*. They are buffered by U6 and become IOW*, IOR*, MEMW*, MEMR*, ALE, DEN* and IO/M*. All external devices, except the 8259A Interrupt Controller, are buffered by a HCT244 (U6) that is controlled by the DEN* signal. Since the 8259A is not buffered, the DEN* signal must remain inactive during access to the 8259A. The signals LIOW*, LIOR*, LMEMW*, LMEMR*, LALE, LDEN* and LIO/M* are synthesized 8088 status signals S0*, S1*, S2* and INTCS* (8259A chip select). See Figure 6.

Bus Specification

Specifications for the bus will include the expansion connector pin/signal assignments and the signal characteristics. Refer to the Expansion I/F Connector diagram. See Figure 7.

Figure 6. System Control Timing

Figure 7. Expansion I/F Connector

Interrupt Function

The 8088 supports two types of interrupts: maskable (by the CPU, INT) and non-maskable (NMI). See Figure 8. The 8259A Interrupt Controller is the source of the INT for the 8088. The 8259A has eight interrupt inputs controlled through software commands. It can mask (disable) and prioritize (arrange priority) to the inputs which can generate INT. These eight interrupts are:

\# 0	Timer Channel 0	Software Ti
\# 1	Keyboard	Keyboard Code Received
\# 2	Hard Disk Controller	Optional Function, Interrupt on Bus
\# 3	Comm 2	Optional Function, Interrupt on Bus
\# 4	Comm 1	Optional Function, Interrupt on Bus
\# 5	Vertical Sync	Software Timer for video
\#6	Disk Controller, Floppy	Ready to Receive/Transmit Data
\# 7	Printer	Data Transmission Complete
The NMI interrupt is not maskable by the CPU but it can be enabled/disabled by hardware. The enable is at port 00A0 Bit 7. The enable is cleared by RESET. There is no specific function assigned to NMI and it is available on the bus.		

8259A INTERRUPT CONTROLLER

INTERRUPT	FUNCTION
NMI	AVAILABLE ON BUS
\emptyset	8253 TIMER CH \emptyset (REFRESH)
1	KEYBOARD
2	HARD DISK
3	SECONDARY COMM.
5	PRIMARY COMM.
6	VERTICAL SYNC.
7	FLOPPY DISK CONTROLLER
	PARALLEL PORT

Figure 8. Interrupt Structure

Bus Interface

The interface to the main bus is divided into three parts: address/control strobes, memory data and I/O data. The address/control strobe part (A0 - Al9, MEMR*, MEMW*, IOR*, IOW*) is shared by both the I/O and the memory sections. The address buffers are U23, U32 and U36. One function of the address bus is the select logic for each of the functions. U27 decodes all the I/O chip selects except those for the Video/System Memory I/O ports which are decoded by U31. The memory selects are decoded by U31 except the ROMCS*, which is decoded by Ul6. The I/O data transceiver is $U 44$ with its output enable and direction control decoded by Ul6.

Keyboard / Timer / Sound Circuits

The Keyboard Interface consists of an 8048 CPU (U9) and a Keyboard Controller (Ol3), which is a Custom Gate Array. Included in Ul3 is an 8255 programmable peripheral interface equivalent design. It has three 8 bit parallel ports, A, B and C. Port A is configured as an input port and is used for keyboard data. Port B is configured as an output port and is used for control signals for the sound, keyboard and timer functions. Port C is split into 4 inputs, including the timer channel and \#2 monitor and 4 outputs including the keyboard/multifunction interface signals.

The 8048 generates strobes to the keyboard. Data from the keyboard is received by the 8048, translated to an 8 bit asynchronous serial format, and transmitted to the Keyboard Controller. The Keyboard Controller translates this serial data into a parallel format and makes it available to the data bus. The serial data from the 8048 consists of a clock signal and a data signal. The clock consists of 8 consecutive positive pulses (signal normal state is logic low). The rising edge of each pulse is centered in the middle of each data period. The data signals consists of 8 data periods and an "end-of-character" bit. Normal state of the data signal is logic high which represents a logic 1. Thus, the data signal will change only if the data bit is a 0 . The ninth and last data bit is always a 0 . In the absence of a ninth clock, it will set the interrupt and busy signals. See Figure 9 for the Keyboard Timing Chart.

Figure 9. Keyboard Timing Chart

Timer Function

The Timer is an 8253 Timer/Counter consisting of three independent counters. The clock for all three counters is 1.1925 MHz . The gates for counters \#0 and \#l are permanently "on". The gate for counter \#2 is controlled by a bit of the keyboard interface (8255 Port B). The output of counter \#0 is dedicated to system interrupt \#0 (8259 IR0) for software timing functions. The output of counter \#l is dedicated to the REFRESH function. When the optional DMA/Memory board is installed, DMA channel \#0 is used for refreshing the RAM memory. Counter \#l sets RFSHRQ* (DRQ0) every 15 micro-seconds to initiate a single "dummy" memory read. The output of counter \#2 is routed to the sound circuit and into the 8255 Port C for monitoring by the CPU. See Figure 10.

Sound Function

The sound function consists of an internal and an external sound circuit. These are directly connected to the Headphone Output via U5. The source of the sound frequencies is U19, a Complex Sound Generator. Internally, U19 has three programmable tone generators and a noise generator. The frequency and output level of each is controlled by software. The four internal generators are summed with an external input into a single output. The external source is from the 8253 counter \#2 (programmable frequency and fixed amplitude). It is one of two selectable sources for the external audio out signal. This signal is intended as an input into an external earplug. The two sound frequency sources are:

1. Complex sound generator Ul9.
2. The 8253 counter at channel 2 .

The output driver for Audio Out is U5. See Figure 11.

CHANNEL © : MODE \emptyset, INTERRUPT ON T/C
1: MODE \emptyset, NEGATIVE PULSE ON T/C
2: MODE 3, SQUARE WAVE OUTPUT

Figure 10. System Timer 8253-5

Figure 11. Sound Functional Block Diagram

Joystick Interface

The joystick interface converts positional information from hand-held joysticks (l or 2) into CPU data. Each joystick provides 1 or 2 push-buttons and X, Y position for a total of 4 bits each. Two joysticks can be used. The joystick handle is connected to two potentiometers mounted perpendicular to each other; one for X position, one for Y position. Through the cable, the main logic board applies +5 VDC to one side and ground to the other of the pots. The pot wiper is the position signal: a voltage between 0 and +5 VDC. This signal is applied to one input of a comparator $\mathbf{U} 24$. The other comparator input is the reference signal (a ramp between 0.0 to +5.0 volts.) When the position signal is equal to or greater than the reference signal, the comparator output goes true. This comparator output is the X or Y position data bit. The ramp is reset to 0.0 VDC whenever a "write" is made at port 200/201 Hex. The IOW* signal turns on Q2, which discharges Cl29 to 0.0 volts. When Q2 is turned off, Q1, R22, R28, R35, and CR3 create a constant-current source that linearly charges Cl29 to +5.0 VDC in 1.12 milliseconds. The joystick information is "read" by the CPU at Port 200/201 Hex through U26. See Figure 12.

Printer Interface

The printer interface is totally contained in a custom Gate Array U37 and is shown in Figure 13. Functionally, the printer interface consists of an output data latch (write port 378) and accompanying input data buffer. The data written to the output port latch may be read at port 37A. The input data from the printer connector may be read back at port 378. The input buffer is for reading printer input signals (read port 379), I/O address decoding, data transceiver, and interrupt logic. The interrupt is logically connected to ACKNOWLEDGE* if interrupts are enabled (37A Bit 4).

ONCE TRIGGERED BY SOFTWARE THE INTERGRATOR CIRCUIT PRODUCES A PULSE THE DURATION OF WHICH IS DEPENDENT ON JOYSK POSITION.

Figure 12. Joystick I/F

Figure 13. Printer Block Diagram

Pin Definitions of the FDSL:

Pin	Name	Type	Description
1.	CLK 16M	Input	Raw clock 16 MHz
2.	WCK	Output	Write Clock
3.	FDCCLK	Output	FDC Clock
4.	RDDATA*	Input	Serial Data From FDD
5.	RDD	Output	Serial Data From FDC
6.	RDW	Output	Read Data Window
7.	FRES/S	Input	Step Pulses to Move the Head
8.	RW*/SEER	Input	Specifies Seek Mode When High
9.	TRK0*	Input	From FDD Indicating Head a Track 0
10	F/TRK0	Output	To FDC Indicating Head e Track 0
11.	STEP*	Output	Moves Head of FDD
13.	WRDATA*	Output	Serial Data To FDD
14.	WRE	Input	Write Enable
15	WRD	Input	Write Data From FDC
16.	PS 1	Input	Write Precompensation Status
17.	PS 0	Input	Write Precompensation Status
18.	FDCDMRQ*	Output	DRQ Delayed By $1 \mu \mathrm{sec}$.
19.	FDCINT	Output	Interrupt Request
20.	DRQ	Input	FDC DMA Request
21.	DMA/INTE	Input	DMA Request \& FDC Interrupt Enable
22.	INT+	Input	Interrupt Request Generated By FDC
23	SWITCH	Input	$\begin{aligned} & 0=\text { Low Density Drive } \\ & 1=\text { High Density Drive } \end{aligned}$

Table l.

Floppy Disk Controller Interface

The FDC interface consists of the NEC uPD765A controller and Custom FDC Support Chip (FDSL). The clocks are generated by the FDSL. The FDSL receives a raw clock of 16 MHz. The clock outputs to the FDC Controller consist of Write Clock (WCK) at 250 nsec every 2 usec, and FDC Clock (FDCCLK) at 4.00 MHz which is applied to the FDC Controller for its internal processor clock (CLK pin 19).

The FDSL receives the step signal (FRES/S) from the FDC Controller and generates the step pulses (STEP*) to the FDD to move the heads. The FDSL receives the Track 0 signal from the FDD (TRK0*) and relays it to the FDC Controller with the F/TRKO signal.

The FDSL also handles DMA Request and Interrupt Enable (DMA/INTE) as well as Interrupt Request (INT+) generated by the FDC Controller. The FDSL receives DMA Request (DRQ) from the FDC Controller and generates a 1 usec delayed DMA Request (FDCDMRQ*) to the Expansion Bus.

The FDSL converts Serial Read Data (RDDATA*) from the FDD into Serial Read Data (RDD) and Read Data Window (RDW) and sends it on to the FDC Controller.

The FDC Controller supplies Write Enable (WRE), Serial Data (WRD) and Write Pre-compensation (PSO, PSI) to the FDSL to produce Serial output Data (WRDATA*) to the FDD. The FDC Controller also generates the ($\mathrm{RW}^{*} /$ SEEK) signal to the FDSL to put the FDC in Seek Mode. (High signal to indicate Seek Mode).

Pin Definitions for the FDSL are found in Table l. Pin definitions for the uPD765A may be found in the Device Specifications Section.

Video System Logic

A major block of the Tandy 1000 HX is the video interface circuitry. A block diagram of the video controller circuit is shown in Figure 14. This custom part contains all of the logic necessary to generate an IBM compatible color video display. The video interface logic consists of the 84 pin custom video circuit, 8 - 64 KX 4 RAMs, a 74 LS 244 buffer, and associated circuitry for generation of composite video.

The Tandy 1000 HX video interface circuitry controls 256 K of memory. See Video System Memory Map, figure 15. This RAM is shared by the CPU and the video. Normally, the video only requires 16 K or 32 K for the video screen and the remainder of the 256 K is available for system memory uses.

The Tandy 1000 HX video interface custom circuit is composed of a 6845 equivalent design, dynamic RAM address generation/ timing (see Figure 16.), and video attribute controller logic.

Normal functioning of the video interface custom circuit is as follows: After the 6845 is programmed with a correci set of operating values (see Table 2), the address inputs to the dynamic RAMs are generated by a 4:l multiplexer. This MUX switches between video (6845) addresses and CPU addresses as well as between row and column addresses. In addition, the video interface chip provides the RAM timing signals and generates a wait signal to CPU for proper synchronization with the video RAM access cycles.

The outputs from the RAM chips are only connected to the video interface custom circuit, so all CPU read/write operations are buffered by this part. During a normal display cycle, video data from the RAM chips is first latched in the Video Attribute latch and the Video Character latch. The video interface requires a memory organization of 64 K X 16 and will latch 16 bits of memory during each access to RAM. From the output of the two latches, the data is supplied to the character ROM for the Alpha modes or to the shift registers for graphics modes. A final 2:1 MUX is used to switch between foreground or background in the alpha mode.

From the 2:1 MUX, the RGBI data is combined with the PC color select data and latched in the Pre-Palette latch. This latch synchronizes the RGBI data before it is used to address the palette.

Figure 14. Video Controller Block Diagram

Figure 15. Video System Memory Map

Main System Board Ram Timing Specification

AC Operating Conditions and Characteristics

Parameter	Symbol	Min.	Max.	Units
Random Read or Write Cycle Time	tRC	279	--	ns
Read Write Cycle Time	tRWC	279	--	ns
Access Time from Row Address Strobe	tRAC	-	200	ns
Access Time from Column Address	tCAC	--	100	ns
Output Buffer and Turn-off Delay	tofe	0	30	ns
Row Address Strobe Precharge Time	tRP	100	--	ns
Row Address Strobe Pulse Width	tRASl	170	--	ns
Column Address Strobe Pulse Width	tCAS	130	--	ns
Row Address Setup Time	tASR	0	--	ns
Row Address Hold Time	tRAH	20	--	ns
Column Address Setup Time	tASC	0	--	ns
Column Address Hold Time	tCAH	35	--	ns
Transition Time (Rise and Fall)	tT	--	50	ns
Read Command Setup Time	tRCS	0	--	ns
Read Command Hold Time	tRCH	0	--	ns
Read Command Hold Time Referenced to RAS	tRRH	0	--	ns
Write Command Hold Time	tWCH	35	--	ns
Write Command Hold Time Referenced to RAS	tWCR	95	--	ns
Write Command Pulse Width	tWP	35	--	ns
Write Command to Row Strobe Lead Time	tRWL	45	--	ns
Write Command to Column Strobe Lead Time	tCWL	45 0	--	ns
Data in Setup Time	tDS	3		ns
Data in Hold Time	tDH	35	--	ns
Data in Hold Time Referenced to RAS	tDHR	95	--	ns
Column to Row Strobe Precharge Time	tCRP	0	--	ns
RAS Hold Time	tRSH	85	--	ns
Refresh Period	tRFSH	--	2.0	ns
WRITE Command Setup Time	tWCS	0	--	ns
CAS to WRITE Delay	tCWD	45	--	ns
RAS to WRITE Delay	tRWD	120	--	ns
CAS Hold Time	tCSH	200	--	ns

Figure 16. Main System Board RAM Timing Specification

PROGRAMMING TABLE FOR THE 6845 All Values in Hex (Decimal)

Register Address	$\begin{gathered} 40 \times 25 \\ \text { Alpha } \end{gathered}$	$\overbrace{80 \times 25}^{8 l p h a}$	Low Res. Graphics	$\left\|\begin{array}{l}\text { High Res } \\ \text { Graphics }\end{array}\right\|$	$\left\|\begin{array}{ccc} 40 & x & 25 \\ \text { Alpha } \end{array}\right\|$	$\left[\begin{array}{c} 80 \times 25 \\ \text { Alpha } \end{array}\right.$	Low Res Graphies	High Res Graphics
wu Horizontal Total	$\overline{38}(56)$	7 L (113)	38 (56)	71 (113)	उप (56)	71 (113)	38 (56)	71 (113)
01 Displayed	28(40)	50 (80)	28 (40)	50 (80)	28 (40)	50 (80)	28 (40)	50 (80)
Horizontal 02 Sync Position	2D (45)	59 (89)						
- Horizontal 03 Sync width	00 (8)	10 (16)	48 (8)	10 (16)	08 (8)	10 (16)	08 (8)	10 (16)
U4 Verticai Total	$\overline{1 C \quad(28)}$	IC (26)	$\overline{7 F}$ (127)	3F-(63)	$\overline{1 F(31)}$	IF (31)	$\overline{7 F}$ (127)	$\overline{3 \mathrm{~F}-(63)}$
Vertical Uj Total Aajust	01 (1)	01 (1)	06 (6)	06 (6)	06 (6)	06 (6)	06 (6)	06 (6)
$\begin{aligned} & \text { Vertical } \\ & 06 \text { Displayed } \end{aligned}$	19 (25)	19 (25)	64 (100)	32 (50)	19 (25)	19 (25)	64 (100)	32 (5u)
Vertical 07 Sync Position	la (26)	1 A (26)	70 (112)	38 (56)	1c (28)	1 C (28)	70 (112)	38 (56)
08 Interlace Mode	02 (2)	02 (2)	02 (2)	02 (2)	$\overline{02}$ (2)	02 (2)	02 (2)	02 (2)
O9 Max Scan	O¢ (8)	08 (8)	01 (1)	03 (3)	07 (7)	07 (7)	01 (1)	03 (3)
Io cursor start	$\overline{06 \text { (6) }}$	06 (6)	06 (6)	06 (6)	06 (6)	06 (6)	06 (6)	06 (b)
II Cursor End	07 (7)	07 (7)	07 (7)	07 (7)	$\overline{07}$ (7)	07 (7)	07(7)	07 (7)
12 Adart (High)	00 (0)	00 (0)	00 (0)	00 (0)	00 (0)	00 (0)	00 (0)	00 (0)
I3 Address (Low)	00 (u)	00 (0)	00 (0)	00 (0)	00 (0)	00 (0)	00 (0)	00 (0)

Table 2

The palette mask MUX is used to switch between incoming RGBI data and the palette address register. During a CPU write to the palette, this address register selects one of the 16 palette locations. Also, the palette mask MUX allows any of the input RGBI bits to be set to zero.

The palette allows the 16 colors to be remapped in any desired organization. Normally the pallete is set for a l:l mapping (red = red, blue = blue, etc.) for PC compatibility. However, instantly changing the on-screen colors is a very powerful tool for animation or graphics programs.

After the palette, the RGBI data is resynchronized in the Post Palette register. The final logic before the RGBI data is buffered off the chip is the Border MUX. This MUX allows the Border to be replaced with any color selected by the border color latch. This latch is normally disabled in PC modes, but it is used in all PCjr modes.

1/O MAP SUMMARY

Address	Description
0003	DMA Controller
	IOW* = 0: Channel 1 Base and Current word count
	Internal Flip/Flop $=0$: Write W0-W7
	Internal Flip/Flop = 1: Write A8-Al5
	IOR* $=0$: Channel 1 Current Word Count
	Internal Flip/Flop $=0$: Read W0-W7
	Internal Flip/Flop $=1$ 1: Read W8-Wl5
0004	DMA Controller
	IOW* $=0$: Channel 2 Base and Current Address
	Internal Flip/Flop = 0: Write A0-A7
	Internal Flip/Fiop = 1: Write A8-Al5
	IOR* $=0$: Channel 2 current Address
	Internal Fiip/Flop $=0$: Read $\mathrm{A} 0-\mathrm{A} 7$
	Internal Flip/Flop $=1: \quad$ Read A8-Al5
0005	DMA Controller
	IOW* $=0$: Channel 2 Base and current word Count
	Internal Flip/Flop $=0$: Write W0-W7
	Internal Flip/Flop = 1: Write W8-Wl5
	IOR* $=0$: Channel 2 current Word count
	Internal Flip/Flop $=0$: Read w0-w7
	Internal Flip/Flop = 1: Read W8-Wl5
0006	DMA Controller
	IOW* $=0$: Channel 3 Base and Current Address
	Internal Flip/Flop $=0$: Write A0-A7
	Internal Flip/Flop = 1: Write A8-Al5
	IOR* $=0$: Channel 3 current Address
	Internal Flip/Flop $=0$: Read A0-A7
	Internal Flip/Flop $=1: \quad$ Read A8-Al5
0007	DMA Controller
	IOW* $=0$: Channel 3 Base and Current Word Count
	Internal Flip/Flop $=0$: Write $\mathrm{W} 0-\mathrm{W} 7$
	Internal Flip/Flop = I: Write W8-Wl5
	IOR* $=0$: Channel 3 Current Word Count
	Internal Flip/Flop $=0$: Read wo-w7
	Internal Flip/Flop $=1$: Read W8-Wl5

0008	DMA Controller IOW* $=0$, Write Command Register
Bit	Description
0	$0=$ Memory to Memory Disable
	$1=$ Memory to Memory Enable
1	$0=$ Channel 0 Address Hold Disable
	$1=$ Channel 0 Address Hold Enable
	X If bit $0=0$
2	$0=$ Controller enable
	$1=$ Controller disable
3	$0=$ Normal timing
	$l=$ Compressed timing
	X If bit $0=1$
4	$0=$ Fixed priority
	1 = Rotating priority
5	$0=$ Late write selection
	$1=$ Extended write selection
	$X=$ If bit $3=1$
6	$0=$ DREQ sense active high
	$1=$ DREQ sense active low
7	$0=$ DACK sense active low
	1 = DACK sense active high
	IOR* $=0$, Read Status Register
Bit	Description
0	$1=$ Channel 0 has reached $T C$
1	1 = Channel 1 has reached TC
2	$I=C h a n n e l 2$ has reached TC
3	1 = Channel 3 has reached TC
4	1 = Channel 0 Request
5	1 = Channel 1 Request
6	$1=$ Channel 2 Request
7	1 = Channel 3 Request
0009	DMA Controller
	IOW* $=0$, Write Request Register
Bit	Description
0-1	Bitl Bit0
	0 0 Select channel 0
	01 Select channel l
	10 Select channel 2
	11 Select channel 3
2	0 Reset request bit
	1 Set request bit
3-7	Don't Care
	IOR* $=0$, IIlegal

000A	DMA Controller IOW* $=0$, Write Single Mask Register
Bit	Description
0-1	Bitl Bit0
	0 0 Select channel 0 mask bit
	011 Select channel 1 mask bit
	10 Select channel 2 mask bit
	11. Select channel 3 mask bit
2	0 Clear mask bit (Disable Channel)
	1 Set mask bit (Disable Channel)
3-7	Don't care
	IOR* $=0$, Illegal
000B	DMA Controller
	IOW* $=0$, Write Mode Register
Bit	Description
0-1	Bitl Bit0
	0 0 Channel 0 select
	011 Channel 1 select
	100 Channel 2 select
	11 Channel 3 select
2-3	Bit 3 Bit2
	$0 \quad 0 \quad$ Verify transfer
	$01 . \quad$ Write transfer to memory
	10 Read transfer to memory
	1 1 Illegal
	X If bits 6 and $7=11$
4	$0 \quad$ Autoinitialization disable
	1 Autoinitialization enable
5	0 Address increment select
	1 Address decrement select
6-7	Bit7 Bit6
	0 0 Demand mode select
	0 I Single mode select
	10 Block mode select
	$11 . \quad$ Cascade mode select
	IOR* $=0$, Illegal
000C	DMA Controller
	IOW* $=0$, Clear Byte Pointer Flip/Flop
	IOR* $=0$, Illegal

0081	WRITE ONLY
Address	Description
Bit 0	DMA Ch 2 Address Al6
Bit 1	DMA Ch 2 Address Al7
Bit 2	DMA Ch 2 Address Al8
Bit 3	DMA Ch 2 Address Al9
Bit 4	Not Used
Bit 5	Not Used
Bit 6	Not Used
Bit 7	Not Used
0082	WRITE ONLY
Address	Description
Bit 0	DMA Ch 3 Address Al6
Bit 1	DMA Ch 3 Address Al7
Bit 2	DMA Ch 3 Address Al8
Bit 3	DMA Ch 3 Address A19
Bit 4	Not Used
Bit 5	Not Used
Bit 6	Not Used
Bit 7	Not Used
0083	WRITE ONLY
Address	Description
Bit 0	DMA Ch 0-1 Address Al6
Bit 1	DMA Ch 0-1 Address Al7
Bit 2	DMA Ch 0-1 Address Al8
Bit 3	DMA Ch 0-1 Address Al9
Bit 4	Not Used
Bit 5	Not Used
Bit 6	Not Used
Bit 7	Not Used
0084-008F	Not Used
OOAO-00A7	NMI Mask Register, Write only
Bit	Description
0	External Video
	$0=$ Normal Operation
	```l = All Video Addresses and Ports are Disabled```
1	MEMCONFIG 1-Al7 128K SW
2	MEMCONFIG 2 - Al8 256K SW
3	MEMCONFIG 3 - Al9 512K SW
4	"l" Enable 256K of Video RAM
5	Not Used
6	Not Used
7	1 = Enable NMI
	0 = Disabled



NOTE: To turn off on-board video, be sure Port $A O H$, Data Bit 0 is a "l" AND Video Array Register 3 (Selected by writing 03 into 3DAH) Data Bit 0 (Write to Port 3DEH) must be $=" 0 "$ to disable 3 B 8 H and 3 BAH .

00A8 - 00AF Not Used

$\begin{aligned} & \text { Add } \\ & 00 \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { ess } \\ & -00 \mathrm{c} \end{aligned}$				Desc Soun	ripti   d SN7	$\begin{aligned} & \text { ion } \\ & 76496 \end{aligned}$	
Bit 7	Bit6	Bit 5	Bit4	Bit 3	Bit2	Bitl	Bit0	
1	0	0	0	F6	F7	F8	F9	Update Tone Frequency
0	X	F0	Fl	F2	F3	F4	F5	Additional Frequency Data
$=1$	0	0	1	A0	Al	A2	A3	Update Tone Attenuation 1
1	0	1	0	F6	F7	F8	F9	Update Tone Frequency 2
$=0$	X	F0	Fl	F2	F3	F4	F5	Additional Frequency Data
$=1$	0	1	1	A0	Al	A2	A3	Update Tone Attenuation 2
1	1	0	0	F6	F7	F8	F9	Update Tone Frequency 3
$=0$	X	F0	Fl	F2	F3	F4	F5	Additional Frequency Data
$=1$	1	0	1	A0	Al	A2	A3	Update Tone Attenuation 3
= 1	1	1	0	X	FB	NFO	NFI	Update Noise Control
1	1	1	1	AO	Al	A2	A3	Update Noise Attenuation


$00 C 8-00 D F$	Not Used
$00 E 0-01 F F$	Reserved
WRITE (IOW*)	
$0200-0207$	Joystick   Clear (Resets Integrator to zero)
$0208-020 F$	Not Used


0201 READ	$\mathrm{R}=$ Right Joystick, $L=$ Left Joystick
Bit	Description
0	R - X Horizontal Position
1	R - Y Vertical Position
2	L - X Horizontal Position
3	L - Y Vertical Position
4	R Button \#l (Logic 0 = Button Depressed)
5	R Button \#2 (Logic 0 = Button Depressed)
6	L Button \#1 (Logic 0 = Button Depressed)
7	L Button \#2 (Logic 0 = Button Depressed)
Addresses	
0370-0377	Not Used
0378	Printer - Data Latch
Bit	Description
0	Data Bit 0-LSB
1	Data Bit 1 -
2	Data Bit 2 -
3	Data Bit 3 -
4	Data Bit 4 -
5	Data Bit 5 -
6	Data Bit 6 -
7	Data Bit 7 - MSB
0379	Printer - Read Status
Bit	Description
0	Not Used
1	Not Used
2	Not Used
3	$0=$ Error
4	$1=$ Printer Select
5	$0=$ End of Form
6	$0=$ Acknowledge
7	$0=\mathrm{Busy}$
037A (037E)	Printer - Control Latch
Bit	Description
0	$0=$ Strobe
1	$0=$ Auto FD XT
2	$0=$ Initialize
3	$0=$ Select Printer
4	1 = Enable Interrupt
5	$0=$ Enable Output Data
6	Not Used
7	Not Used


$\begin{aligned} & 037 \mathrm{~B} \\ & 037 \mathrm{C} \end{aligned}$	Not Used
	D0 - Serial Data Write
	Dl - EEPROM Chip Enable
	D2 - Serial Data Clock
037D - 03D3	Not Used
03 D 4	6845 Address Register
03D5	6845 Data Register
03D6	Not Used
03D7	Not Used
03D8	Mode Select Register
Bit 0	High Resolution Clock
	=0: Selects 40 by 25 Alphanumeric Mode
	=l: Selects 80 by 25 Alphanumeric Mode
Bit 1	Graphics Select
	=0: Selects Alphanumeric Mode
	=1: Selects 320 by 200 Graphics Mode
Bit 2	Black and White
	=0: Selects Color Mode
	=1: Selects Black and White Mode
Bit 3	Video Enable
	=0: Disables Video Signal
	=1: Enables Video Signal
Bit 4	640 Dot Graphics
	=0: Disables 640 by 200 B\&W Graphics Mode
	=l: Enables 640 by 200 B\&W Graphics Mode
Bit 5	Blink Enable
	=0: Disables Blinking
	=1: Enables Blinking
03D9	Color Select Register
Bit 0	Background Blue
Bit 1	Background Green
Bit 2	Background Red
Bit 3	Background Intensity
Bit 4	Foreground Intensity
Bit 5	Color Select
03DA, 03DE	Write Video Array Address \& Read Status (3DA)
	Write Video Array Data (3DE)


READ (3DA)	WRITE (3DE)
00 Bit 0	Display Inactive Not Used
00 Bit 1	Light Pen Set Not Used
00 Bit 2	Light Switch Status Not Used
00 Bit 3	Vertical Retrace Not Used
00 Bit 4	Not Used Not Used
01 Bit 0	Palette Mask
01 Bit l	Palette Mask
01 Bit 2	Palette Mask
01 Bit 3	Palette Mask
02 Bit 0	Border Blue
02 Bit 1	Border Green
02 Bit 2	Border Red
02 Bit 3	Border Intensity
02 Bit 5	Reserved $=0$
03 Bit 0	Mono Enable = "l"
03 Bit 1	Reserved $=0$
03 Bit 2	Border Enable
03 Bit 3	4-Color High Resolution
03 Bit 4	16 Color Mode
03 Bit 5	Extra Video Mode
10-1F Bit 0	Palette Blue
10-1F Bit 1	Palette Green
10-1F Bit 2	Palette Red
10-1F Bit 3	Palette Intensity
Bits 4-7	Not Used
03DB	Clear Light Pen Latch   (Not Used on Tandy 1000 HX )
03DC	Preset Light Pen Latch   (Not Used on Tandy 1000 HX )
03DD	Extended Ram Page Register - CPU Relative
Bit	Description
0	Extended Addressing Modes
1	Not Used
2	Not Used
3	CRT Video Page Address "17"
4	CRT Video Page Address "18"
5	CPU Page Address "17"
6	CPU Page Address "18"
7	Select 64 K or 256 K Ram



DATA	$\begin{aligned} & \text { IBM PC } \\ & 0062 \text { P- PORT C -- } \\ & \text { READ ONLY } \end{aligned}$	$0062 \begin{aligned} & \text { IBM PCju } \\ & -- \text { PORT C }-- \\ & \text { READ ONLY } \end{aligned}$	TANDY 1000 HX $0062 \text {-- PORT C -- }$
$\overline{\text { BIT } 0}$	CONFIG SWI6 OR (R/W)	$1=$ KEYbOARD LATCHED	(OUT) NOT USED
	CONFIG SWl2 (R/W)		
	SEE PORT 0061, BIT 2 $(R / W)$		
$\overline{\text { BIT I }}$	CONFIG SW15 (R/W)	$\begin{aligned} 0 & = \\ & \text { INTERNAL MODEM } \\ & \text { INSTALLED } \end{aligned}$	(OUT) NOT USED
$\overline{\text { BIT } 2}$	CONFIG SWIT (R/W)	$\begin{aligned} & 0= \text { DISKETTE DRIVE } \\ & \text { INSTALLED } \end{aligned}$	(OUT) NOT USED
$\overline{\text { BIT } 3}$	CONFIG SWl3 (R/W)	$\begin{aligned} 0 & =64 \mathrm{~K} \text { RAM } \\ & \text { EXPANSION } \end{aligned}$	FAST ( $0=$ STD OPERATION) read/write "0"=4.77MHz   " 1 " $=7.16 \mathrm{MHz}$
		INSTALLED	
$\overline{\mathrm{BIT}} 4$	CASSETTE DATA IN (R)	SAME VIDEO	EEPROM SERIAL DATAREAD ONLY
$\overline{\text { BIT } 5}$	8253 OUT \#2 (R)	SAME	(IN) SAME
$\overline{\text { BIT } 6}$	$\begin{gathered} 1=1 / O \text { CHECK (PARITY } \\ \text { ERROR) (R) } \end{gathered}$	$\begin{aligned} & \text { KEYBOARD } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { MONOCHROME MODE } \\ & 0=\text { COLOR MONITOR } \\ & 1=350 \text { LINE MONITOR } \\ & \text { MONO } \end{aligned}$
$\overline{\text { BIT } 7}$	l=RAM PARITY ERROR   (R)	KEYBOARD CABLE INSTALLED	RESERVED $=0$
	HARDWARE LOGIC ATTACHED   IS FOR INPUT ONLY.		IN TANDY 1000 THE HARDWARE LOGIC IS CONFIGURED SO THAT PORT C IS SPLIT WITH INPUT: PC4 -- PC7 OUTPUT: PC0 -- PC3


DATA	$\begin{aligned} & \text { IBM PC } \\ & 0061 \text {-- PORT B -- } \\ & \text { READ OR WRITE } \end{aligned}$	$\begin{gathered} \text { IBM PCjr } \\ 0061-- \text { PORT B }-- \\ \text { READ OR WRITE } \end{gathered}$	TANDY 1000 HX 0061 -- PORT B -READ OR WRITE
$\overline{\text { BIT } 0}$	$\mathrm{l}=8253 \mathrm{GATE}$   \# 2 ENABLED	SAME	SAME
$\overline{\text { BIT }}$	SPEAKER DATA OUT	SAME	SAME
$\overline{\text { BIT }} \mathbf{2}$	I=ENABLE READING	l=ALPHA (GRAPHICS)	NO FUNCTION
	CONFIG SWI3 THRU 16		
	(I/O CHAN ROM SIZE) OR		
	$0=$ ENABLE READING		
$\overline{\text { BIT } 3}$	$1=$ CASSETTE MOTOR OFF	SAME	NO FUNCTION
$\overline{\text { BIT }} 4$	$\overline{0}=\overline{\text { ENABLE }}$ ( $\overline{\text { Rä }}$ P PARITY	l=DISABLE CASSETTE MTR RELAY, INTERNAL BEEPER	I=DİS̄ĀBLE INTERNAL SPEAKER (SOUNDCONT2)
$\overline{\text { BIT } 5}$	0=ENABLE I/O Ch Pärity	SPKR SW 0	
$\overline{\text { BIT } 6}$	$\begin{aligned} \overline{0}=\text { HOLD } & \text { KEYBOARD CLK } \\ & \text { LOW } \end{aligned}$	SPKR SW I	
$\left.\right\|_{-} ^{B I T}$	0=ENABLE KEYBOARD	1=KEYBOARD CLEAR	$1=\mathrm{KEYBOARD}$ CLEAR
	I=CLEAR KEYBOARD AND		
	ENABLE CONFIG SW 1-8		

## VIDEO / SYSTEM MEMORY ADDRESS MAP

OA0	MC3	MC2	MCl	VIDEO/SYSTEM MEMORY	VIDEO/SYSTEM MEMORY	VIDEO/SYSTEM MEMORY
BIT	BIT	BIT	BIT	START	LENGTH	ADDRESS
4	3	2	1	ADDRESS		RANGE
	A19	Al 8	Al7			
0*	0	0	0	00000	128 K	00000-1FFFF
0	0	0	1	$\begin{aligned} & 20 \overline{000} \\ & (128 \mathrm{~K}) \end{aligned}$	128 K	20000-3FFFF
0	0	1	0	$\begin{aligned} & 40000 \\ & (256 \mathrm{~K}) \end{aligned}$	128 K	40000-5FFFF
0	0	1	1	$\begin{aligned} & 60000 \\ & (324 \mathrm{~K}) \end{aligned}$	128K	$60000-7 \mathrm{FFFF}$
0	1	0	0	$\begin{aligned} & 80000 \\ & (512 \mathrm{~K}) \end{aligned}$	128 K	80000-9FFFF
1	0	0	1	$\begin{gathered} 00000 \\ (0) \end{gathered}$	256K	00000-3FFFF
1	0	1	0	$\begin{aligned} & 20000 \\ & (128 \mathrm{~K}) \end{aligned}$	256K	20000-5FFFF
I	0	1	1	$\begin{aligned} & 40000 \\ & (156 \mathrm{~K}) \end{aligned}$	256K	40000-7FFFF
1	1	0	$\overline{0}$	$\begin{aligned} & 60000 \\ & (384 \mathrm{~K}) \end{aligned}$	256K	60000-9FFFF

* ENDBIP 256K OF VIDEO ROM IF "l"














## 1000 HX Devices Contents

Device	Manufacturer
8088 (CPU)	intel
8253 Interval Timer	intel
8259A Interrupt Controller	intel
Floppy Disk Support	Motorola
Keyboard Interface	Motorola
8048	NEC
HPD765 (FDC)	NEC
Direct Memory Access (DMA)	Tandy
Printer Interface	Tandy
Timing Control Generator	Tandy
Video Controller	Tandy
8496 Sound Generator	

Note: All Intel Chip Specifications are reprinted by permission of Intel Corporation, Copyright 1987.

8088
8-BIT HMOS MICROPROCESSOR 8088/8088-2

\author{

- 8-Bit Data Bus Interface <br> - 16-Bit Internal Architecture <br> - Direct Addressing Capability to 1 Mbyte of Memory <br> - Direct Software Compatibility with $\mathbf{8 0 8 6}$ CPU <br> - 14-Word by 16-Bit Register Set with Symmetrical Operations <br> - 24 Operand Addressing Modes
}
- Byte, Word, and Block Operations
- 8-Bit and 16-Bit Signed and Unsigned Arithmetic in Binary or Decimal, Including Multiply and Divide
- Two Clock Rates:
- 5 MHz for 8088
- 8 MHz for 8088-2
- Available in EXPRESS
-Standard Temperature Range
- Extended Temperature Range

The intel 8088 is a high performance microprocessor implemented in N -channel, depletion load, silicon gate technology (HMOS), and packaged in a 40-pin CERDIP package. The processor has attributes of both 8-and 16-bit microprocessors. It is directly compatible with 8086 software and 8080/8085 hardware and peripherals.


Figure 1. 8088 CPU Functional Block Dlagram

## Table 1. Pin Description

The following pin function descriptions are for 8088 systems in either minimum or maximum mode. The "local bus" in these descriptions is the direct multiplexed bus interface connection to the 8088 (without regard to additional bus buffers).

Symbol	Pin No.	Type	Name and Function		
AD7-AD0	9-16	1/0	ADDRESS DATA BUS: These lines constitute the time multiplexed memory/1O address ( T 1 ) and data ( $\mathrm{T} 2, \mathrm{~T} 3, \mathrm{Tw}, \mathrm{T} 4$ ) bus. These lines are active HIGH and float to 3 -state OFF during interrupt acknowledge and local bus "hold acknowledge".		
A15-A8	2-8, 39	0	ADDRESS BUS: These lines provide address bits 8 through 15 for the entire bus cycle (T1-T4). These lines do not have to be latched by ALE to remain valid. A15-A8 are active HIGH and float to 3 -state OFF during interrupt acknowledge and local bus "hold acknowledge".		
A19/S6, A18/S5, A17/S4, A16/S3	35-38	0	ADDRESS/STATUS: During T1, these are the four most significant address lines for memory operations. During I/O operations, these lines are LOW. During memory and I/O operations, status information is available on these lines during T2, T3, Tw, and T4. S6 is always low. The status of the interrupt enable flag bit (S5) is updated at the beginning of each clock cycle. S4 and S3 are encoded as shown.   This information indicates which segment register is presently being used for data accessing.   These lines float to 3 -state OFF during local bus "hold acknowledge".		
			S4	S3	Characteristics
			$\begin{aligned} & \hline 0 \text { (LOW) } \\ & 0 \\ & 1 \text { (HIGH) } \\ & 1 \\ & S 6 \text { is } 0 \text { (LOW) } \\ & \hline \end{aligned}$	0 1 0 1	Alternate Data Stack Code or None Data
$\overline{\text { RD }}$	32	0	READ: Read strobe indicates that the processor is performing a memory or I/O read cycle, depending on the state of the IO/M pin or S2. This signal is used to read devices which reside on the 8088 local bus. RD is active LOW during T2, T3 and Tw of any read cycle, and is guaranteed to remain HIGH in T2 until the 808B local bus has floated. This signal floats to 3-state OFF in "hold acknowledge".		
READY	22	1	READY: is the acknowledgement from the addressed memory or I/O device that it will complete the data transfer. The RDY signal from memory or I/O is synchronized by the 8284 clock generator to form READY. This signal is active HIGH. The 8088 READY input is not synchronized. Correct operation is not guaranteed if the set up and hold times are not met.		
INTR	18	1	INTERRUPT REQUEST: is a level triggered input which is sampled during the last clock cycle of each instruction to determine if the processor should enter into an interrupt acknowledge operation. A subroutine is vectored to via an interrupt vector lookup table located in system memory. It can be internally masked by software resetting the interrupt enable bit. INTR is internally synchronized. This signal is active HIGH.		
TEST	23	1	TEST: input is examined by the "wait for test" instruction. If the TEST input is LOW, execution continues, otherwise the processor waits in an "idle" state. This input is synchronized internally during each clock cycle on the leading edge of CLK.		

Table 1. Pin Deseription (Continued)

Symbol	Pin No.	Type	Name and Function
NMI	17	1	NON-MASKABLE INTERRUPT: is an edge triggered input which causes a   type 2 interrupt. A subroutine is vectored to via an interrupt vector lookup   table located in system memory. NMI is not maskable internally by   software. A transition from a LOW to HIGH initiates the interrupt at the end   of the current instruction. This input is internally synchronized.
RESET	21	1	RESET: causes the processor to immediately terminate its present activity.   The signal must be active HIGH for at least four clock cycles. It restarts   execution, as described in the instruction set description, when RESET   returns LOW. RESET is internally synchronized.
CLK	19	1	CLOCK: provides the basic timing for the processor and bus controller. It is   asymmetric with a 33\% duty cycle to provide optimized internal timing.
VCC	40		Vcc: is the +5V $\pm 10 \%$ power supply pin.
GND	1,20		GND: are the ground pins.
MN/MX	33	1	MINIMUM/MAXIMUM: indicates what mode the processor is to operate in.   The two modes are discussed in the following sections.

The following pin function descriptions are for the 8088 minimum mode (i.e., $M N / \overline{M X}=V_{C C}$. Only the pin functions which are unique to minimum mode are described; all other pin functions are as described above.

Symbol	Pin No.	Type	Name and Function
10/M	28	0	STATUS LINE: is an inverted maximum mode $\mathrm{S2}$. It is used to distinguish a memory access from an $1 / O$ access. $10 / \bar{M}$ becomes valid in the $T 4$ preceding a bus cycle and remains valid until the final T4 of the cycle (I/O = HIGH, M = LOW. $10 / \mathrm{M}$ floats to 3 -state OFF in local bus "hold acknowledge".
$\bar{W}$	29	0	WRITE: strobe indicates that the processor is perfiorming a write memory or write I/O cycle, depending on the state of the $10 / \mathrm{M}$ signal. WR is active for $\mathrm{T} 2, \mathrm{~T} 3$, and Tw of any write cycle. It is active LOW, and floats to 3 -state OFF in local bus "hold acknowledge".
NTTA	24	0	INTA: is used as a read strobe for interrupt acknowledge cycles. It is active LOW during T2, T3, and Tw of each interrupt acknowledge cycle.
ALE	25	0	ADDRESS LATCH ENABLE: is provided by the processor to latch the address into an address latch. It is a HIGH pulse active during clock low of T1 of any bus cycle. Note that ALE is never floated.
DT/R	27	0	DATA TRANSMIT/RECEIVE: is needed in a minimum system that desires to use a data bus transceiver. It is used to control the direction of data flow through the transceiver. Logically, DT/A is equivalent to $\overline{S 1}$ in the maximum mode, and its timing is the same as for $10 / M(T=H I G H, R=L O W)$. This signal floats to 3-state OFF in local "hold acknowledge".
$\overline{\text { DEN }}$	26	0	DATA ENABLE: is provided as an output enable for the data bus transceiver in a minimum system which uses the transceiver. DEN is active LOW during each memory and I/O access, and for INTA cycles. For a read or INTA cycle, it is active from the middle of T2 until the middle of T4, while for a write cycle, it is active from the beginning of T2 until the middle of T4. DEN floats to 3-state OFF during local bus "hold acknowledge".

Table 1. Pin Description (Continued)

Symbol	Pin No.	Type	Name and Function   HOLD,   HLDA		

The following pin function descriptions are for the 8088/8288 system in maximum mode (i.e., $M N / \overline{M X}=$ GND). Only the pin functions which are unique to maximum mode are described; all other pin functions are as described above.

Symbol	Pin No.	Type	Name and Function			
$\overline{\text { S2, }} \overline{\text { S1, }} \overline{\text { s0 }}$	26-28	0	STATUS: is active during clock high of T4, T1, and T2, and is returned to the passive state $(1,1,1)$ during T3 or during Tw when READY is HIGH. This status is used by the 8288 bus controller to generate all memory and I/O access control signals. Any change by $\overline{\mathbf{S 2}}, \mathbf{\$ 1}$, or $\mathbf{S 0}$ during $\mathbf{T 4}$ is used to indicate the beginning of a bus cycle, and the return to the passive state in T3 and Tw is used to indicate the end of a bus cycle.   These signals float to 3-state OFF during "hold acknowledge". During the first clock cycle after RESET becomes active, these signals are active HIGH. After this first clock, they float to 3-state OFF.			
			S2	S1	So	Charact
			O(LOW)   0   0   0   1 (HIGH)   1   1   1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1	Interrupt Acknowledge   Read I/O Port   Write I/O Port   Halt   Code Access   Read Memory   Write Memory   Passive

Table 1. Pin Description (Continued)

Symbol	Pin No.	Type	Name and Function		
$\begin{aligned} & \overline{\mathrm{RO} / \overline{\mathrm{GTO}},} \\ & \hline \mathrm{RO} / \mathrm{GTI} \end{aligned}$	30,31	1/0	REQUEST/GRANT: pins are used by other local bus masters to force the processor to release the local bus at the end of the processor's current bus $\frac{c y c l e}{} \mathrm{GTt}$. Each pin is bidirectional with $\overline{\mathrm{RQ}} / \mathrm{GTO}$ having higher priority than $\overline{\mathrm{RQ}}$ / $\overline{G T 1}$. $\overline{R Q} / \bar{G} \dagger$ has an internal pull-up resistor, so may be left unconnected. The request/grant sequence is as follows (See Figure 8):   1. A pulse of one CLK wide from another local bus master indicates a local bus request ("hold") to the 8088 (pulse 1).   2. During a T4 or TI clock cycle, a puise one clock wide from the 8088 to the requesting master (pulse 2), indicates that the 8088 has allowed the local bus to float and that it will enter the "hold acknowiedge" state at the next CLK. The CPU's bus interface unit is disconnected logically from the local bus during "hold acknowledge". The same rules as for HOLD/HOLDA apply as for when the bus is released.   3. A pulse one CLK wide from the requesting master indicates to the 8088 (pulse 3) that the "hold" request is about to end and that the 8088 can reclaim the local bus at the next CLK. The CPU then enters T4.   Each master-master exchange of the local bus is a sequence of three pulses. There must be one idle CLK cycle after each bus exchange. Pulses are active LOW.   If the request is made while the CPU is performing a memory cycle, it will release the local bus during T 4 of the cycle when all the following conditions are met:   1. Request occurs on or before T 2.   2. Current cycle is not the low bit of a word.   3. Current cycle is not the first acknowledge of an interrupt acknowledge sequence.   4. A locked instruction is not currently executing.   If the local bus is idle when the request is made the two possible events will follow:   1. Local bus will be released during the next clock.   2. A memory cycle will start within 3 clocks. Now the four rules for a currently active memory cycle apply with condition number 1 already satisfied.		
LOCK	29	0	LOCK: indicates that other system bus masters are not to gain control of the system bus while LOCK is active (LOW). The LOCK signal is activated by the "LOCK" prefix instruction and remains active until the completion of the next instruction. This signal is active LOW, and floats to 3-state off in "hold acknowledge".		
QS1, QS0	24, 25	0	QUEUE STATUS: provide status to allow external tracking of the internal 8088 instruction queue.   The queue status is valid during the CLK cycle after which the queue operation is performed.		
			QS1	aso	Characteristics
			O(LOW) 0 1 (HIGH) 1	0	No Operation   First Byte of Opcode from Queue Empty the Queue   Subsequent Byte from Queue
	34	0	Pin 34 is always high in the maximum mode.		



Figure 3. Memory Organization

## FUNCTIONAL DESCRIPTION

## Memory Organization

The processor provides a 20-bit address to memory which locates the byte being referenced. The memory is organized as a linear array of up to 1 million bytes, addressed as $00000(\mathrm{H})$ to $\operatorname{FFFFF}(\mathrm{H})$. The memory is logically divided into code, data, extra data, and stack segments of up to 64 K bytes each, with each segment falling on 16-byte boundaries (See Figure 3).

All memory references are made relative to base addresses contained in high speed segment registers. The segment types were chosen based on the ad-
dressing needs of programs. The segment register to be selected is automatically chosen according to the rules of the following table. All information in one segment type share the same logical attributes (e.g. code or data). By structuring memory into relocatable areas of similar characteristics and by automatically selecting segment registers, programs are shorter, faster, and more structured.

Word (16-bit) operands can be located on even or odd address boundaries. For address and data operands, the least significant byte of the word is stored in the lower valued address location and the most significant byte in the next higher address location. The BIU will automatically execute two fetch or write cycles for 16-bit operands.

Memory   Reference Used	Segment   Reglater Used	Segment Selection Rule
Instructions	CODE (CS)	Automatic with all instruction prefetch.
Stack	STACK (SS)	All stack pushes and pops. Memory references   relative to BP base register except data references.
Local Data	DATA (DS)	Data references when: relative to stack, destination   of string operation, or explicity overridden.
External (Global) Data	EXTRA (ES)	Destination of string operations: Explicitly selected   using a segment override.

Certain locations in memory are reserved for specific CPU operations (See Figure 4). Locations from addresses FFFFOH through FFFFFH are reserved for operations including a jump to the initial system initialization routine. Following RESET, the CPU will always begin execution at location FFFFOH where the jump must be located. Locations 00000 H through 003FFH are reserved for interrupt operations. Fourbyte pointers consisting of a 16 -bit segment address and a 16 -bit offset address direct program flow to one of the 256 possible interrupt service routines. The pointer elements are assumed to have been stored at their respective places in reserved memory prior to the occurrence of interrupts.

## Minimum and Maximum Modes

The requirements for supporting minimum and maximum 8088 systems are sufficiently different that they cannot be done efficiently with 40 uniquely defined pins. Consequently, the 8088 is equipped with a strap pin (MN/MX) which defines the system con-


Figure 4. Reserved Memory Locations
figuration. The definition of a certain subset of the pins changes, dependent on the condition of the strap pin. When the MN/MX pin is strapped to GND, the 8088 defines pins 24 through 31 and 34 in maximum mode. When the $M N / M X$ pin is strapped to $V_{\text {cc }}$, the 8088 generates bus control signals itself on pins 24 through 31 and 34.

The minimum mode 8088 can be used with either a multiplexed or demultiplexed bus. The multiplexed bus configuration is compatible with the MCS-85TM multiplexed bus peripherals. This configuration (See Figure 5) provides the user with a minimum chip count system. This architecture provides the 8088 processing power in a highly integrated form.

The demultiplexed mode requires one latch (for 64 K addressability) or two latches (for a full megabyte of addressing). A third latch can be used for buffering if the address bus loading requires it. A transceiver can also be used if data bus buffering is required (See Figure 6). The 8088 provides DEN and DT/R to control the transceiver, and ALE to latch the addresses. This configuration of the minimum mode provides the standard demultiplexed bus structure with heavy bus buffering and relaxed bus timing requirements.

The maximum mode employs the 8288 bus controller (See Figure 7). The 8288 decodes status lines $\overline{\mathbf{S 0}}, \overline{\mathbf{5 1}}$, and $\overline{\mathbf{5} 2}$, and provides the system with all bus control signals. Moving the bus control to the 8288 provides better source and sink current capability to the control lines, and frees the 8088 pins for extended large system features. Hardware lock, queue status, and two request/grant interfaces are provided by the 8088 in maximum mode. These features allow co-processors in local bus and remote bus configurations.



Flgure 5. Multiplexed Bus Configuration


Figure 6. Demultiplexed Bus Configuration


231456-7
Figure 7. Fully Buffered System Using Bus Controller

## Bus Operation

The 8088 address/data bus is broken into three parts-the lower eight address/data bits (AD0AD7), the middle eight address bits (AB-A15), and the upper four address bits (A16-A19). The address/data bits and the highest four address bits are time multiplexed. This technique provides the most efficient use of pins on the processor, permitting the use of a standard 40 lead package. The middle eight address bits are not multiplexed, i.e. they remain val-
id throughout each bus cycle. In addition, the bus can be demultiplexed at the processor with a single address latch if a standard, non-multiplexed bus is desired for the system.

Each processor bus cycle consists of at least four CLK cycles. These are referred to as T1, T2, T3, and T4 (See Figure 8). The address is emitted from the processor during T1 and data transfer occurs on the bus during T3 and T4. T2 is used primarily for chang-


Figure 8. Basic System Timing
ing the direction of the bus during read operations. In the event that a "NOT READY" indication is given by the addressed device, "wait" states (Tw) are inserted between T3 and T4. Each inserted "wait" state is of the same duration as a CLK cycle. Periods can occur between 8088 driven bus cycles. These are referred to as "idle" states (Ti), or inactive CLK cycles. The processor uses these cycles for internal housekeeping.

During T1 of any bus cycle, the ALE (address latch enable) signal is emitted (by either the processor or the 8288 bus controller, depending on the MN/MX strap). At the trailing edge of this pulse, a valid address and certain status information for the cycle may be latched.

Status bits $\overline{\mathbf{S O}}, \overline{\mathbf{S 1}}$, and $\overline{\mathbf{S 2}}$ are used by the bus controller, in maximum mode, to identify the type of bus transaction according to the following table:

$\overline{\mathbf{S 2}}$	$\overline{\mathbf{S 1}}$	$\overline{\mathbf{5 0}}$	Characteristics
O(LOW)	0	0	Interrupt Acknowledge
0	0	1	Read I/O
0	1	0	Write I/O
0	1	1	Halt
$\mathbf{1}$ (HIGH)	0	0	Instruction Fetch
1	0	1	Read Data from Memory
1	1	0	Write Data to Memory
1	1	1	Passive (No Bus Cycle)

Status bits S3 through S6 are multiplexed with high order address bits and are therefore valid during T2 through T4. S3 and S4 indicate which segment register was used for this bus cycle in forming the address according to the following table:

$\mathbf{S}_{4}$	$\mathbf{S}_{3}$	Characteristics
$\mathbf{0}($ LOW $)$	0	Alternate Data (Extra Segment)
0	1	Stack
1 (HIGH)	0	Code or None
1	1	Data

S5 is a reflection of the PSW interrupt enable bit. S6 is always equal to 0 .

## I/O Addressing

In the 8088, 1/O operations can address up to a maximum of 64 K I/O registers. The I/O address appears in the same format as the memory address on bus lines A15-A0. The address lines A19-A16 are zero in I/O operations. The variable I/O instructions,
which use register $D X$ as a pointer, have full address capability, while the direct I/O instructions directly address one or two of the 256 I/O byte locations in page 0 of the I/O address space. I/O ports are addressed in the same manner as memory locations.

Designers familiar with the 8085 or upgrading an 8085 design should note that the 8085 addresses 1/O with an 8 -bit address on both halves of the 16bit address bus. The 8088 uses a full 16 -bit address on its lower 16 address lines.

## EXTERNAL INTERFACE

## Processor Reset and Initialization

Processor initialization or start up is accomplished with activation (HIGH) of the RESET pin. The 8088 RESET is required to be HIGH for greater than four clock cycles. The 8088 will terminate operations on the high-going edge of RESET and will remain dormant as long as RESET is HIGH. The low-going transition of RESET triggers an internal reset sequence for approximately 7 clock cycles. After this interval the 8088 operates normally, beginning with the instruction in absolute locations FFFFOH (See Figure 4). The RESET input is internally synchronized to the processor clock. At initialization, the HIGH to LOW transition of RESET must occur no sooner than $50 \mu \mathrm{~s}$ after power up, to allow complete initialization of the 8088.

NMI asserted prior to the 2nd clock after the end of RESET will not be honored. If NMI is asserted after that point and during the internal reset sequence, the processor may execute one instruction before responding to the interrupt. A hold request active immediately after RESET will be honored before the first instruction fetch.

All 3-state outputs float to 3-state OFF during RESET. Status is active in the ide state for the first clock after RESET becomes active and then floats to 3-state OFF. ALE and HLDA are driven low.

## Interrupt Operations

Interrupt operations fall into two classes: software or hardware initiated. The software initiated interrupts and software aspects of hardware interrupts are specified in the instruction set description in the IAPX 88 book or the IAPX 86,88 User's Manual. Hardware interrupts can be classified as nonmaskable or maskable.

Interrupts result in a transfer of control to a new program location. A 256 element table containing address pointers to the interrupt service program locations resides in absolute locations 0 through 3FFH (See Figure 4), which are reserved for this purpose. Each element in the table is 4 bytes in size and corresponds to an interrupt "type." An interrupting device supplies an 8 -bit type number, during the interrupt acknowledge sequence, which is used to vector through the appropriate element to the new interrupt service program location.

## Non-Maskable Interrupt (NMI)

The processor provides a single non-maskable interrupt (NMI) pin which has higher priority than the maskable interrupt request (INTR) pin. A typical use would be to activate a power failure routine. The NM1 is edge-triggered on a LOW to HIGH transition. The activation of this pin causes a type 2 interrupt.

NMI is required to have a duration in the HIGH state of greater than two clock cycles, but is not required to be synchronized to the clock. Any higher going transition of NMI is latched on-chip and will be serviced at the end of the current instruction or between whole moves (2 bytes in the case of word moves) of a block type instruction. Worst case response to NMI would be for multiply, divide, and variable shift instructions. There is no specification on the occurrence of the low-going edge; it may occur betore, during, or after the servicing of NMI. Another highgoing edge triggers another response if it occurs after the start of the NMI procedure. The signal must be free of logical spikes in general and be free of bounces on the low-going edge to avoid triggering extraneous responses.

## Maskable Interrupt (INTR)

The 8088 provides a single interrupt request input (INTR) which can be masked internally by software with the resetting of the interrupt enable (IF) flag bit. The interrupt request signal is level triggered. It is internally synchronized during each clock cycle on the high-going edge of CLK. To be responded to, INTR must be present (HIGH) during the clock period preceding the end of the current instruction or the end of a whole move for a block type instruction. During interrupt response sequence, further interrupts are disabled. The enable bit is reset as part of the response to any interrupt (INTR, NMI, software interrupt, or single step), although the FLAGS register which is automatically pushed onto the stack reflects the state of the processor prior to the interrupt. Until the old FLAGS register is restored, the
enable bit will be zero unless specifically set by an instruction.

During the response sequence (See Figure 9), the processor executes two successive (back to back) interrupt acknowledge cycles. The 8088 emits the LOCK signal (maximum mode only) from T2 of the first bus cycle until T2 of the second. A local bus "hold" request will not be honored until the end of the second bus cycle. In the second bus cycle, a byte is fetched from the external interrupt system (e.g., 8259A PIC) which identifies the source (type) of the interrupt. This byte is multiplied by four and used as a pointer into the interrupt vector lookup table. An INTR signal left HIGH will be continually responded to within the limitations of the enable bit and sample period. The interrupt return instruction includes a flags pop which returns the status of the original interrupt enable bit when it restores the flags.

## HALT

When a software HALT instruction is executed, the processor indicates that it is entering the HALT state in one of two ways, depending upon which mode is strapped. In minimum mode, the processor issues ALE, delayed by one clock cycle, to allow the system to latch the halt status. Halt status is available on $1 \mathrm{O} / \overline{\mathrm{M}}, \mathrm{DT} / \overline{\mathrm{R}}$, and $\overline{\mathrm{SSO}}$. In maximum mode, the processor issues appropriate HALT status on $\overline{\mathbf{S 2}}$, $\overline{\mathrm{ST}}$, and $\overline{\mathrm{SO}}$, and the 8288 bus controlier issues one AL.E. The 8088 will not leave the HALT state when a local bus hold is entered while in HALT. In this case, the processor reissues the HALT indicator at the end of the local bus hold. An interrupt request or RESET will force the 8088 out of the HALT state.

## Read/Modify/Write (Semaphore) Operations via LOCK

The LOCK status information is provided by the processor when consecutive bus cycles are required during the execution of an instruction. This allows the processor to perform read/modify/write operations on memory (via the "exchange register with memory" instruction), without another system bus master receiving intervening memory cycles. This is useful in multiprocessor system configurations to accomplish "test and set lock" operations. The LOCK signal is activated (LOW) in the clock cycle following decoding of the LOCK prefix instruction. It is deactivated at the end of the last bus cycle of the instruction following the LOCK prefix. While LOCK is active, a request on a $\overline{R Q} / \overline{G T}$ pin will be recorded, and then honored at the end of the LOCK.


Figure 9. Interrupt Acknowledge Sequence

## External Synchronization via TEST

As an alternative to interrupts, the 8088 provides a single software-testable input pin (TEST). This input is utilized by executing a WAIT instruction. The single WAIT instruction is repeatedly executed until the TEST input goes active (LOW). The execution of WAIT does not consume bus cycles once the queue is full.

If a local bus request occurs during WAIT execution, the 80883 -states all output drivers. If interrupts are enabled, the 8088 will recognize interrupts and process them. The WAIT instruction is then refetched, and reexecuted.

## Basic System Timing

In minimum mode, the MN/ $\overline{\mathrm{MX}}$ pin is strapped to $V_{C C}$ and the processor emits bus control signals compatible with the 8085 bus structure. In maximum mode, the MN/MX pin is strapped to GND and the processor emits coded status information which the 8288 bus controller uses to generate MULTIBUS compatible bus control signals.

## System Timing-Minimum System

## (See Figure 8)

The read cycle begins in T1 with the assertion of the address latch enable (ALE) signal. The trailing (low
going) edge of this signal is used to latch the address information, which is valid on the address/ data bus (ADO-AD7) at this time, into the 8282/8283 latch. Address lines A8 through A15 do not need to be latched because they remain valid throughout the bus cycle. From $T 1$ to $T 4$ the $1 O / \bar{M}$ signal indicates a memory or I/O operation. At T2 the address is removed from the address/data bus and the bus goes to a high impedance state. The read control signal is also asserted at T2. The read ( $\overline{\mathrm{RD}}$ ) signal causes the addressed device to enable its data bus drivers to the local bus. Some time later, valid data will be available on the bus and the addressed device will drive the READY line HIGH. When the processor returns the read signal to a HIGH level, the addressed device will again 3-state its bus drivers. If a transceiver is required to buffer the 8088 local bus, signals DT/ $\bar{R}$ and $\overline{\text { DEN }}$ are provided by the 8088.

A write cycle also begins with the assertion of ALE and the emission of the address. The $10 / \bar{M}$ signal is again asserted to indicate a memory or I/O write operation. In T2, immediately following the address emission, the processor emits the data to be written into the addressed location. This data remains valid until at least the middle of T4. During T2, T3, and Tw, the processor asserts the write control signal. The write (WR) signal becomes active at the beginning of T2, as opposed to the read, which is delayed somewhat into T2 to provide time for the bus to float.

The basic difference between the interrupt acknowledge cycle and a read cycle is that the interrupt acknowledge (INTA) signal is asserted in place of the read (RD) signal and the address bus is floated. (See Figure 9) in the second of two successive INTA cycles, a byte of information is read from the data bus, as supplied by the interrupt system logic (i.e. 8259A priority interrupt controller). This byte identifies the source (type) of the interrupt. It is multiplied by four and used as a pointer into the interrupt vector lookup table, as described earlier.

## Bus Timing-Medium Complexity Systems

(See Figure 10)
For medium complexity systems, the MN/ $\overline{M X}$ pin is connected to GND and the 8288 bus controller is added to the system, as well as a latch for latching the system address, and a transceiver to allow for bus loading greater than the 8088 is capable of handling. Signals ALE, $\overline{D E N}$, and DT/ $\bar{R}$ are generated by the 8288 instead of the processor in this configuration, although their timing remains relatively the same. The 8088 status outputs ( $\overline{\mathrm{S} 2,51, ~ a n d ~} \overline{\mathrm{SO}}$ ) provide type of cycle information and become 8288 inputs. This bus cycle information specifies read (code, data, or 1/O), write (data or I/O), interrupt acknowledge, or software halt. The 8288 thus issues control signals specifying memory read or write, I/O read or write, or interrupt acknowledge. The 8288 provides two types of write strobes, normal and advanced, to be applied as required. The normal write strobes have data valid at the leading edge of write. The advanced write strobes have the same timing as read strobes, and hence, data is not valid at the leading edge of write. The transceiver receives the usual $T$ and $\overline{O E}$ inputs from the 8288's DT/F and DEN outputs.

The pointer into the interrupt vector table, which is passed during the second INTA cycle, can derive from an 8259A located on either the local bus or the system bus. If the master 8289A priority interrupt controller is positioned on the local bus, a TTL gate is required to disable the transceiver when reading from the master 8259A during the interrupt acknowledge sequence and software "poll".

## The 8088 Compared to the 8086

The 8088 CPU is an 8 -bit processor designed around the 8086 internal structure. Most internal functions of the 8088 are identical to the equivalent 8086 functions. The 8088 handies the external bus
the same way the 8086 does with the distinction of handling only 8 bits at a time. Sixteen-bit operands are fetched or written in two consecutive bus cycles. Both processors will appear identical to the software engineer, with the exception of execution time. The internal register structure is identical and all instructions have the same end result. The differences between the 8088 and 8086 are outlined below. The engineer who is unfamiliar with the 8086 is referred to the iAPX 86, 88 User's Manual, Chapters 2 and 4, for function description and instruction set information. Internally, there are three differences between the 8088 and the 8086. All changes are related to the 8 -bit bus interface.

- The queue length is 4 bytes in the 8088 , whereas the 8086 queue contains 6 bytes, or three words. The queue was shortened to prevent overuse of the bus by the BIU when prefetching instructions. This was required because of the additional time necessary to fetch instructions 8 bits at a time.
- To further optimize the queue, the prefetching algorithm was changed. The 8088 BIU will fetch a new instruction to load into the queue each time there is a 1 byte hole (space available) in the queue. The 8086 waits until a 2 -byte space is available.
- The internal execution time of the instruction set is affected by the 8 -bit interface. All 16-bit fetches and writes from/to memory take an additional four clock cycles. The CPU is also limited by the speed of instruction fetches. This latter problem only occurs when a series of simple operations occur. When the more sophisticated instructions of the 8088 are being used, the queue has time to fill and the execution proceeds as fast as the execution unit will allow.

The 8088 and 8086 are completely software compatible by virtue of their identical execution units. Software that is system dependent may not be completely transferable, but software that is not system dependent will operate equally as well on an 8088 and an 8086.

The hardware interface of the 8088 contains the major differences between the two CPUs. The pin assignments are nearly identical, however, with the following functional changes:

- A8-A15-These pins are only address outputs on the 8088. These address lines are latched internally and remain valid throughout a bus cycle in a manner similar to the 8085 upper address lines.
- BHE has no meaning on the 8088 and has been eliminated.
- $\overline{\mathrm{SSO}}$ provides the $\overline{\mathrm{SO}}$ status information in the minimum mode. This output occurs on pin 34 in minimum mode only. DT/R, IO/ $\bar{M}$, and SSO provide the complete bus status in minimum mode.

IO/M has been inverted to be compatible with the MCS-85 bus structure.

- ALE is delayed by one clock cycle in the minimum mode when entering HALT, to allow the status to be latched with ALE.


Figure 10. Medium Complexity System Timing

ABSOLUTE MAXIMUM RATINGS*
Ambient Temperature Under Bias $\ldots 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Case Temperature (Plastic) $\ldots \ldots . . .0^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$
Case Temperature (CERDIP) ......... $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin with
Respect to Ground . . . . . . . . . . . . . . . . 1.0 to +7 V
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . 2.5 Watt
*Notice: Stresses above those listed under "AbsoIute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## D.C. CHARACTERISTICS

$\left(T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \text {, } \mathrm{T}_{\text {CASE }} \text { (Plastic) }=0^{\circ} \mathrm{C} \text { to } 95^{\circ} \mathrm{C}, \mathrm{T}_{\text {CASE }} \text { (CERDIP) }=0^{\circ} \mathrm{C} \text { to } 75^{\circ} \mathrm{C}\right)^{*}$
$\mathrm{N}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ for $8088, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ for $8088-2$ )

Symbol	Parameter	Min	Max	Units	Test Conditions
$V_{\text {IL }}$	Input Low Voltage	-0.5	+0.8	V	(Note 1)
$V_{\text {IH }}$	Input High Voltage	2.0	$V_{C C}+0.5$	V	(Notes 1, 2)
$\mathrm{V}_{\mathrm{OL}}$	Output Low Voltage		0.45	V	$\mathrm{IOL}=2.0 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
icc	8088 Power Supply Current: $8088-2$ P8088		$\begin{aligned} & 340 \\ & 350 \\ & 250 \\ & \hline \end{aligned}$	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
lıI	Input Leakage Current		$\pm 10$	$\mu \mathrm{A}$	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$
lo	Output and I/O Leakage Current		$\pm 10$	$\mu \mathrm{A}$	$0.45 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\mathrm{CL}}$	Clock Input Low Voltage	-0.5	+0.6	V	
$\mathrm{V}_{\mathrm{CH}}$	Clock input High Voltage	3.9	$\mathrm{V}_{\mathrm{CC}}+1.0$	V	
$\mathrm{C}_{\text {IN }}$	Capacitance If Input Buffer (All Input Except $\left.A D_{0}-A D_{7}, R Q / G T\right)$		15	pF	$\mathrm{fc}=1 \mathrm{MHz}$
$\mathrm{ClO}_{10}$	Capacitance of $/ / O$ Buffer $\left.A D_{0}-A D_{7}, R Q / G T\right)$		15	pF	$\mathrm{fc}^{\text {c }}=1 \mathrm{MHz}$

## NOTES:

*For Extended Temperature EXPRESS VCC $=5 \mathrm{~V} \pm 5 \%$
7. $\mathrm{V}_{\mathrm{IL}}$ tested with MN/ $\overline{\mathrm{MX}}$ Pin $=\mathrm{OV}$
$V_{I H}$ tested with $M N / \overline{M X} \operatorname{Pin}=5 \mathrm{~V}$
MN/ $\overline{M X}$ Pin is a strap Pin
2. Not applicable to $\overline{\mathrm{RQ}} / \overline{\mathrm{GTO}}$ and $\overline{\mathrm{A} Q / G T 1}$ Pins (Pin 30 and 31)

8088
A.C. CHARACTERISTICS
$\left(T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C}, \mathrm{T}_{\text {CASE }} \text { (Plastic) }=0^{\circ} \mathrm{C} \text { to } 95^{\circ} \mathrm{C}, \mathrm{T}_{\text {CASE }} \text { (CERDIP) }=0^{\circ} \mathrm{C} \text { to } 75^{\circ} \mathrm{C}\right)^{*}$
$\left(V_{C C}=5 \mathrm{~V} \pm 10 \%\right.$ for $8088, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ for $8088-2$ )
MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS

Symbol	Parameter	8088		8088-2		Units	Test Conditions
		Min	Max	Min	Max		
TCLCL	CLK Cycle Period	200	500	125	500	ns	
TCLCH	CLK Low Time	118		68		ns	
TCHCL	CLK High Time	69		44		ns	
TCH1CH2	CLK Rise Time		10		10	ns	From 1.0V to 3.5V
TCL2CL2	CLK Fall Time		10		10	ns	From 3.5V to 1.0 V
TDVCL	Data in Setup Time	30		20		ns	
TCLDX	Data in Hold Time	10		10		ns	
TRIVCL	RDY Setup Time into 8284 (Notes 1, 2)	35		35		ns	
TCLR1X	RDY Hold Time into 8284 (Notes 1, 2)	0		0		ns	
TRYHCH	READY Setup Time into 8088	118		68		ns	
TCHRYX	READY Hold Time into 8088	30		20		ns	
TRYLCL	READY Inactive to CLK (Note 3)	-8		-8		ns	
THVCH	HOLD Setup Time	35		20		ns	
TINVCH	INTR, NMI, TEST Setup Time (Note 2)	30		15		ns	
TILIH	Input Rise Time (Except CLK)		20		20	ns	From 0.8V to 2.0V
TIHIL	Input Fall Time (Except CLK)		12		12	ns	From 2.0 V to 0.8 V

## A.C. CHARACTERISTICS (Continued)

TIMING RESPONSES

Symbol	Parameter	8088		8088-2		Units	Teat Conditions
		Min	Max	Min	Max		
TCLAV	Address Valid Delay	10	110	10	70	ns	
TCLAX	Address Hold Time	10		10		ns	
TCLAZ	Address Float Delay	TCLAX	80	TCLAX	50	ns	
TLHLL	ALE Width	TCLCH-20		TCLCH-10		ns	
TCLLH	ALE Active Delay		80		50	ns	
TCHLL	ALE Inactive Delay		85		55	ns	
TLLAX	Address Hold Time to ALE Inactive	TCHCL-10		TCHCL-10		ns	
TCLDV	Data Valid Delay	10	110	10	60	ns	
TCHDX	Data Hold Time	10		10		ns	
TWHDX	Data Hold Time after WR	TCLCH-30		TCLCH-30		ns	
TCVCTV	Control Active Delay 1	10	110	10	70	ns	
TCHCTV	Control Active Delay 2	10	110	10	60	ns	
TCVCTX	Control Inactive Delay	10	110	10	70	ns	
TAZRL	Address Float to READ Active	0		0		ns	
TCLRL	FD Active Delay	10	165	10	100	ns	
TCLRH	$\overline{\text { RD Inactive Delay }}$	10	150	10	80	ns	
TRHAV	$\overline{R D}$ Inactive to Next Address Active	TCLCL-45		TCLCL-40		ns	
TCLHAV	HLDA Valid Delay	10	160	10	100	ns	
TRLRH	RD Width	2TCLCL-75		2TCLCL-50		ns	
TWLWH	WR Width	2TCLCL-60		2TCLCL-40		ns	
TAVAL	Address Valid to ALE Low	TCLCH-60		TCLCH-40		ns	
TOLOH	Output Rise Time		20		20	ns	From 0.8 V to 2.0 V
TOHOL	Output Fall Time		12		12	ns	From 2.0 V to 0.8 V

## NOTES:

*For Extended Temperature EXPRESS VCC $=5 \mathrm{~V} \pm 5 \%$

1. Signal at 8284A shown for reference only. See 8284A data sheet for the most recent specifications.
2. Set up requirement for asynchronous signal only to guarantee recognition at next CLK.
3. Applies only to T2 state (8 ns into T3 state).
A.C. TESTING INPUT, OUTPUT WAVEFORM


231456-11
A.C. Testing; Inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ". Timing measurements are made at 2.0 V for a logic " 1 " and 0.8 V tor a logic " 0 ".

## WAVEFORMS

BUS TIMING-MINIMUM MODE SYSTEM


## 8088

## WAVEFORMS (Continued)

BUS TIMING-MINIMUM MODE SYSTEM (Continued)


231456-14

## NOTES:

1. All signals switch between $V_{O H}$ and $V_{O L}$ unless otherwise specified.
2. RDY is sampled near the end of $T_{2}, T_{3}, T_{w}$ to determine if $T_{w}$ machines states are to be inserted.
3. Two INTA cycles run back-to-back. The 8088 local ADDR/DATA bus is floating during both INTA cycles. Control signals are shown for the second INTA cycle.
4. Signals at 8284 are shown for reference only.
5. All timing measurements are made at 1.5 V unless otherwise noted.

## A.C. CHARACTERISTICS

## MAX MODE SYSTEM (USING 8288 BUS CONTROLLER)

## TIMING REQUIREMENTS

Symbol	Parameter	8088		8088-2		Units	Test Conditions
		Min	Max	Min	Max		
TCLCL	CLK Cycle Period	200	500	125	500	ns	
TCLCH	CLK Low Time	118		68		ns	
TCHCL	CLK High Time	69		44		ns	
TCH1CH2	CLK Rise Time		10		10	ns	From 1.0V to 3.5 V
TCL2CL1	CLK Fall Time		10		10	ns	From 3.5V to 1.0V
TDVCL	Data in Setup Time	30		20		ns	
TCLDX	Data in Hold Time	10		10		ns	
TR1VCL	RDY Setup Time into 8284 (Notes 1, 2)	35		35		ns	
TCLR1X	RDY Hold Time into 8284 (Notes 1, 2)	0		0		ns	
TRYHCH	READY Setup Time into 8088	118		68		ns	
TCHRYX	READY Hold Time into 8088	30		20		ns	
TRYLCL	READY Inactive to CLK (Note 4)	-8		-8		ns	
TINVCH	Setup Time for Recognition (INTR, NMI, TEST) (Note 2)	30		15		ns	
TGVCH	RQ/GT Setup Time	30		15		ns	
TCHGX	RQ Hold Time into 8088	40		30		ns	
TILIH	Input Rise Time (Except CLK)		20		20	ns	From 0.8 V to 2.0 V
TIHIL	Input Fail Time (Except CLK)		12		12	ns	From 2.0V to 0.8V

## A.C. CHARACTERISTICS (Continued)

TIMING RESPONSES

Symbol	Parameter	8088		8088-2		Units	Test Conditions
		Min	Max	MIn	Max		
TCLML	Command Active Delay (Note 1)	10	35	10	35	ns	
TCLMH	Command Inactive Delay (Note 1)	10	35	10	35	ns	
TRYHSH	READY Active to Status Passive (Note 3)		110		65	ns	
TCHSV	Status Active Delay	10	110	10	60	ns	
TCLSH	Status Inactive Deiay	10	130	10	70	ns	
TCLAV	Address Valid Delay	10	110	10	70	ns	
TCLAX	Address Hold Time	10		10		ns	
TCLAZ	Address Float Delay	TCLAX	80	TCLAX	50	ns	
TSVLH	Status Valid to ALE High (Note 1)		15		15	ns	
TSVMCH	Status Valid to MCE High (Note 1)		15		15	ns	
TCLLH	CLK Low to ALE Valid (Note 1)		15		15	ns	
TCLMCH	CLK Low to MCE (Note 1)		15		15	ns	
TCHLL	ALE Inactive Delay (Note 1)		15		15	ns	
TCLMCL	MCE Inactive Delay (Note 1)		15		15	ns	
TCLDV	Data Valid Delay	10	110	10	60	ns	
TCHDX	Data Hold Time	10		10		ns	
TCVNV	Control Active Delay (Note 1)	5	45	5	45	ns	All 8088 Outputs in Addition to
TCVNX	Control Inactive Delay (Note 1)	10	45	10	45	ns	Internal Loads
TAZRL	Address Float to Read Active	0		0		ns	
TCLRL	$\overline{R D}$ Active Delay	10	165	10	100	ns	
TCLRH	$\overline{\mathrm{RD}}$ Inactive Delay	10	150	10	80	ns	
TRHAV	RD Inactive to Next Address Active	TCLCL-45		TCLCL-40		ns	
TCHDTL	Direction Control Active Delay (Note 1)		50		50	ns	
TCHDTH	Direction Control Inactive Delay (Note 1)		30		30	ns	
TCLGL	GT Active Delay		85		50	ns	
TCLGH	GT Inactive Delay		85		50	ns	
TRLRH	RD Width	2TCLCL-75		2TCLCL-50		ns	
TOLOH	Output Rise Time		20		20	ns	From 0.8V to 2.0 V
TOHOL	Output Fall Time		12		12	ns	From 2.0 V to 0.8 V

## NOTES:

1. Signal at 8284 or 8288 shown for reference only.
2. Setup requirement for asynchronous signal only to guarantee recognition at next CLK.
3. Applies only to T3 and wait states.
4. Applies only to T 2 state ( 8 ns into T 3 state).
A.C. TESTING INPUT, OUTPUT WAVEFORM
A.C. Testing; Inputs are driven at 2.4 V for a togic " 1 " and 0.45 V
for a logic " 0 ". Timing measurements are made at 2.0 V for a logic
"1"' and 0.8 V for a logic "0".
A.C. TESTING LOAD CIRCUIT


## WAVEFORMS

BUS TIMING-MAXIMUM MODE SYSTEM


## WAVEFORMS (Continued)

BUS TIMING-MAXIMUM MODE SYSTEM (USING 8288)


WAVEFORMS (Continued)
ASYNCHRONOUS SIGNAL RECOGNITION


BUS LOCK SIGNAL TIMJNG (MAXIMUM MODE ONLY)


REQUEST/GRANT SEQUENCE TIMING (MAXIMUM MODE ONLY)


HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLY)


8086/8088 Instruction Set Summery				
Mnemonic and Description	Instruction Code			
DATA TRAMSFER				
Register/Memory to/from Register	100010 dw	mod reg r/m		
Immediate to Register/Memory	1100011 w	$\bmod 000 \mathrm{r} / \mathrm{m}$	data	data if $w=1$
Immediate to Register	1011 wreg	data	data 17 w $=1$	
Memory to Accumulator	1010000 w	addr-low	sadr-high	
Accumulator to Memory	1010001 w	addrtow	addr-high	
Register/Memory to Segment Register	10001110	mod 0 reg $/$ /m		
Segment Register to Register/Memory	10001100	mod 0 reg r/m		
PUSH = Pueh:				
Register/Memory	11111111	mod $110 \mathrm{r} / \mathrm{m}$		
Register	01010 reg			
Segment Register	000 reg 110			
$\mathrm{POP}=\mathrm{POp}:$				
Register/Memory	10001111	$\bmod 000 \mathrm{r} / \mathrm{m}$		
Register	01011 reg			
Segment Fegister	000 reg 111			
XCHG = Exchange:				
Register/Memory with Register	1000011 w	mod reg r/m		
Register with Accumulator	10010 reg			
IN = input from:				
Fixed Port	1110010 w	port		
Variable Port	1110110 w			
OUT $=$ Output to:				
Fixed Port	1110011 w	port		
Variable Port	1110111 w			
XLAT $=$ Translate Byte to AL	11010111			
LEA = Load EA to Register	10001101	mod reg r/m		
LDS = Load Pointer to DS	11000101	modreg $\mathrm{r} / \mathrm{m}$		
LES = Load Pointer to ES	11000100	modregr/m		
LAHF = Load AH with Flags	10011111			
SAHF = Store AH into Flags	10011110			
PUSHF = Push Flags	10011100			.
POPF $=$ Pop Flags	10011101			

All mnemonics copyright Intel Corporation 1987.

8086/8088 Instruction Set Summary (Continued)

Mnemonic and Deecription	Inatruction Code			
ARITHMETIC	76543210	76543210	76543210	76543210
ADD = Add:				
Reg./Memory with Register to Either	000000 dw	mod reg $\mathrm{f} / \mathrm{m}$		
Immediate to Register/Memory	1000008 w	mod $000 \mathrm{f} / \mathrm{m}$	data	data if s:w $=01$
Immediate to Accumulator	0000010 w	data	data if $w=1$	
ADC $=$ Add with Carry:				
Reg./Memory with Register to Either	000100 dw	modreg $\mathrm{r} / \mathrm{m}$		
Immediate to Register/Memory	1000008 w	$\bmod 010 \mathrm{r} / \mathrm{m}$	data	deta if s:w $=01$
Immediate to Accumulator	0001010 w	data	data if $w=1$	
INC $=$ Increment				
Register/Memory	1111111 w	mod $000 \mathrm{r} / \mathrm{m}$		
Register	01000 reg			
AMA $=$ ASCll Adjust for Add	00110111			
BAA $=$ Decimal Adjust for Add	00100111			
SUB = Subtract				
Reg./Memory and Register to Either	001010 dw	mod reg f/m		
Immediate from Register/Memory	1000008 w	mod $101 \mathrm{r} / \mathrm{m}$	data	data if $\mathrm{s}: \mathbf{w}=01$
Immediate from Accumulator	0010110 w	data	data $\begin{aligned} & \text { f } \\ & \mathrm{w}\end{aligned} \mathrm{=}$	
8sB $=$ Subtract with Borrow				
Reg./Memory and Register to Either	000110dw	mod reg $\mathrm{r} / \mathrm{m}$		
immediate from Register/Memory	100000sw	$\bmod 011 \mathrm{r} / \mathrm{m}$	data	data if $8: w=01$
Immediate from Accumutator	000111 w	data.	data if $w=1$	
DEC = Decrement:				
Register/memory	1111111 w	mod $001 \mathrm{r} / \mathrm{m}$		
Register	01001 reg			
NEG = Change sign	1111011 w	$\bmod 014 \mathrm{r} / \mathrm{m}$		
CMP = Compare:				
Register/Memory and Register	001110 dw	mod reg r/m		
Immediate with Register/Memory	100000sw	mod $111 \mathrm{r} / \mathrm{m}$	data	data if s:w $=01$
irmmediate with Accumulator	0011110 w	data	data if $w=1$	
AAS = ASCH Adjust for Subtract	00111111			
DAS $=$ Decimal Adjust for Subtract	00101111			
MUL $=$ Multiply (Unsigned)	1111011w	$\bmod 100 \mathrm{r} / \mathrm{m}$		
IMUL $=$ Integer Mulitiply (Signed)	1111011 w	$\bmod 101 \mathrm{r} / \mathrm{m}$		
AAM = ASCII Adjust for Multiply	11010100	00001010		
DIV = Divide (Unsigned)	1111011 w	mod $110 \mathrm{r} / \mathrm{m}$		
IDIV = integer Divide (Signed)	1111011 w	mod $111 \mathrm{r} / \mathrm{m}$		
AAD $=$ ASCII Adjust for Divide	11010101	00001010		
CBW = Convert Byte to Word	10011000			
CWD $=$ Convert Word to Double Word	10011001			

All mnemonics copyright Intel Corporation 1987.

8086/8088 Instruction Set Summary (Continued)

Mnemonic and Descriptlon	Instruction Code			
LOGIC	78543210	76543210	76543210	76543210
MOT $=1$ Invert	1111011 w	mod $010 \mathrm{r} / \mathrm{m}$		
SHL/SAL $=$ Shift Logical/Arithmetic Left	110100 vw	$\bmod 100 \mathrm{r} / \mathrm{m}$		
SHR $=$ Shitt Logical Right	110100 vw	$\bmod 101 \mathrm{r} / \mathrm{m}$		
SAR $=$ Shift Arithmetic Right	110100 vw	mod $111 \mathrm{r} / \mathrm{m}$		
ROL $=$ Rotate Left	110100 vw	mod $000 \mathrm{r} / \mathrm{m}$		
ROR $=$ Rotate Right	110100 vw	$\bmod 001 \mathrm{r} / \mathrm{m}$		
RCL $=$ Rotate Through Carry Flag Left	110100 vw	$\bmod 010 \mathrm{r} / \mathrm{m}$		
RCR $=$ Rotate Through Carry Right	110100 vw	modotir/m		
AND = Anct				
Reg./Memory and Register to Either	001000 dw	mod reg r/m		
Immediate to Register/Memory	1000000 w	$\bmod 100 \mathrm{r} / \mathrm{m}$	data	data if $w=1$
Immediate to Accumulator	0010010w	data	data if $w=1$	
TEST = And Function to Flags. No Resut				
Register/Memory and Register	1000010 w	mod regr/m		
Immediate Data and Register/Memory	1111011 w	$\bmod 000 \mathrm{r} / \mathrm{m}$	data	data if $w=1$
Immediate Data and Accumulator	1010100 w	data	dataliw $=1$	
$\mathrm{OR}=\mathrm{Or}$				
Reg./Memory and Register to Either	000010dw	modregr/m		
Immediate to Register/Memory	1000000 w	mod $001 \mathrm{r} / \mathrm{m}$	data	data if w $=1$
Immediate to Accumulator	0000110 w	data	data if $w=1$	
XOR = Exclualve or:				
Reg./Memory and Register to Either	001100 dw	mod regr $/ \mathrm{m}$		
Immediate to Register/Memory	1000000 w	mod $110 \mathrm{r} / \mathrm{m}$	data	data if $w=1$
Immediate to Accurnulator	0011010 w	data	data if $w=1$	
STRING MANIPULATION				
REP $=$ Repeat	11110012			
MOVS = Move Byte/Word	1010010 w			
CMPS = Compare Byte/Word	1010011 w			
SCAS $=$ Scan Byte/Word	1010111 w			
LODS = Load Byte/Wd to AL/AX	1010110w			
STOs = Stor Byte/Wd from AL/A	1010101 w			
CONTROL TRANSFER				
CALL $=$ Calt:				
Direct Within Segment	11101000	disp-low	disp-high	
Indirect Within Segment	11111111	mot $010 \mathrm{r} / \mathrm{m}$		
Direct intersegment	10011010	offset-Iow	offset-high	
		seg-low	seg-high	
Indirect Intersegment	11111111	mod $011 \mathrm{r} / \mathrm{m}$		

All mnemonics copyright Intel Corporation 1987.

## 8086/8088 Instruction Set Summary (Continued)

Mnemonic and Deacription	Instruction Code		
JMP $=$ Unconditionas Jump:	76543210	78543210	76543210
Direct Within Segment	11101001	disp-low	disp-high
Direct Within Segment-Short	11101011	disp	
Indirect Within Segment	11111111	mod $100 \mathrm{f} / \mathrm{m}$	
Direct Intersegment	11101010	oftiset-low	offset-high
		seg.low	seg-high
Indirect Intersegment	11111111	$\bmod 101 \mathrm{r} / \mathrm{m}$	
RET = Return from CALL:			
Within Segment	11000011		
Within Seg Adding immed to SP	11000010	data-low	data-high
Intersegment	11001011		
Intersegment Adding Immediate to SP	11001010	data-low	data-high
JE/JI $=$ Jump on Equal/Zero	01110100	disp	
JL/JNGE $=$ Jump on Less/Not Greater or Equal	01111100	disp	
$\begin{aligned} \text { JLE/JNG }= & \text { Jump on Less or Equal/ } \\ & \text { Not Greater } \end{aligned}$	01111110	disp	
$\begin{aligned} & \text { JE/JNAE }=\text { Jump on Betow/Not Above } \\ & \text { or Equal } \end{aligned}$	01110010	disp	
JBE/JNA $=\begin{gathered}\text { Jump on Below or Equal/ } \\ \\ \text { Not Above }\end{gathered}$	01110110	disp	
JP/JPE = Jump on Parity/Parity Even	01111010	disp	
JO $=$ Jump on Overilow	01110000	disp	
Js = Jump on Sign	01111000	disp	
JNE/JNZ = Jump on Not Equal/Not Zero	01110101	disp	
$\text { JNL/JGE }=\underset{\text { Or Equal }}{ } \begin{aligned} & \text { Jump on Not Less/Greater } \end{aligned}$	01111101	disp	
JNLE/JG $=\underset{\text { Greater }}{\text { Jump on }}$	01111111	disp	
JNB/JAE = Jump on Not Below/Above or Equal	01110011	disp	
$\text { JNBE/JA }=\underset{\text { Equal/ } / \text { Nobove }}{\text { Jump on Nelow or }}$	01110111	disp	
JNP/JPO $=$ Jump on Not Par/Par Odd	01111011	disp	
JNO = Jump on Not Overtiow	01110001	disp	
JNs $=$ Jump on Not Sign	01111001	disp	
LOOP = Loop CX Times	11100010	disp	
LOOPZ/LOOPE $=$ Loop While Zero/Equal	11100001	disp	
$\begin{aligned} \text { LOOPNZ/LOOPNE }= & \text { Loop While Not } \\ & \text { Zero/Equal } \end{aligned}$	11100000	disp	
JCXZ $=$ Jump on CX Zero	11100011	disp.	
INT $=$ Interrupt			
Type Spectited	11001101	type	
Type 3	11001100		
INTO = Interrupt on Overflow	11001110		
IRET $=$ Interrupt Return	11001111		

All mnemonics copyright Intel Corporation 1987.

8088

8086/8088 Instruction Set Summary (Continued)

Minemonic and Description		
	76543210	76543210
PROCESSOR CONTROL		
ClC $=$ Clear Cary	11111000	
CMC = Complement Carry	11110101	
STC $=$ Set Carry	11111001	
CLD $=$ Clear Direction	11111100	
STD $=$ Sat Direction	11111101	
CLI $=$ Clear Interrupt	11111010	
STI $=$ Set Intermpt	11111011	
HLT $=$ Helt	11110100	
WAIT = Weit	10011011	
ESC = Escape (to External Device)	$11011 \times \times \mathrm{x}$	$\bmod \times \times \times 5 / m$
LOCK = Bus Lock Prefix	11110000	

## NOTES:

If $\mathrm{s}: \mathrm{w}=01$ then 16 bits of immediate data form the oper-
AL $=8$-bit accumulator
$A X=16$-bit accumulator and

CX = Count register
DS = Data segment
if $s: w=11$ then an immediate data byte is sign extended to form the 16-bit operand
$E S=$ Extra segment
Above/below refers to unsigned value
if $v=0$ then "count" $=1$; if $v=1$ then "count" in (CL) register

Greater $=$ more positive:
$x=$ don't care
Less $=$ less positive (more negative) signed values
$z$ is used for string primitives for comparison with ZF FLAG
if $d=1$ then " $t 0$ " reg; if $d=0$ then "from" reg
if $w=1$ then word instruction; if $w=0$ then byte instruction
if mod $=11$ then $\mathrm{r} / \mathrm{m}$ is treated as a REG field
if mod $=00$ then DISP $=0^{*}$, disp-low and disp-high are absent
if mod $=01$ then DISP $=$ disp-low sign-extended to 16 bits, disp-high is absent
If mod $=10$ then DISP $=$ disp-high; disp-low
if $\mathrm{r} / \mathrm{m}=000$ then $E A=(B X)+(S I)+$ DISP
if $\mathrm{r} / \mathrm{m}=001$ then $E A=(B X)+(D I)+$ DISP
if $\mathrm{r} / \mathrm{m}=010$ then EA $=(\mathrm{BP})+(\mathrm{SI})+$ DISP
if $\mathrm{r} / \mathrm{m}=011$ then $E A=(B P)+(D)+$ DISP
if $\mathrm{r} / \mathrm{m}=100$ then EA $=(\mathrm{Si})+$ DISP
if $\mathrm{r} / \mathrm{m}=101$ then $E A=(\mathrm{DI})+$ DISP
if $\mathrm{r} / \mathrm{m}=110$ then $E A=(B P)+$ DISP*
if $\mathrm{r} / \mathrm{m}=111$ then $E A=(B X)+$ DISP
DISP follows 2nd byte of instruction (before data if required)
*except if mod $=00$ and $\mathrm{r} / \mathrm{m}=$ then $E A=$ disp-high: disp-low.


REG is assigned according to the following table:

16-Bit (w $=1$ )		$8-\mathrm{Blt}(\mathrm{w}=0$ )		Segment	
000	$A X$	000	AL	00	ES
001	CX	001	CL	01	CS
010	DX	010	DL	10	SS
011	BX	011	BL		
100	SP	100	AH		
101	BP	101	CH		
110	SI	110	DH		
111	DI	111	BH		

Instructions which reference the flag register file as a 16-bit object use the symbol FLAGS to represent the file:
FLAGS =
$\mathrm{X}: \mathrm{X}: \mathrm{X}: \mathrm{X}:(\mathrm{OF}):(\mathrm{DF}):(\mathrm{IF}):(\mathrm{TF}):(\mathrm{SF}):(\mathrm{ZF}): \mathrm{X}:(\mathrm{AF}): \mathrm{X}:(\mathrm{PF}): \mathrm{X}:(\mathrm{CF})$
Mnemonics © Intel, 1978

## 8253/8253-5 PROGRAMMABLE INTERVAL TIMER

■ MCS-85TM Compatible 8253-5<br>- 3 Independent 16-Bit Counters<br>- DC to 2.6 MHz<br>- Programmable Counter Modes

- Count Binary or BCD
- Single +5 V Supply
- Available in EXPRESS
- Standard Temperature Range
- Extended Temperature Range

The Intel 8253 is a programmable counter/timer device designed for use as an Intel microcomputer peripheral. It uses NMOS technology with a single +5 V supply and is packaged in a 24 -pin plastic DIP.
it is organized as 3 independent 16 -bit counters, each with a count rate of up to 2.6 MHz . All modes of operation are software programmable.



Figure 2. Pin Conflguration

Figure 1. Block Dlagram

## FUNCTIONAL DESCRIPTION

## General

The 8253 is programmable interval timer/counter specifically designed for use with the intelTM Microcomputer systems. Its function is that of a general purpose, multi-timing element that can be treated as an array of I/O ports in the system software.

The 8253 solves one of the most common problems in any microcomputer system, the generation of accurate time delays under software control. Instead of setting up timing loops in systems software, the programmer configures the 8253 to match his requirements, initializes one of the counters of the 8253 with the desired quantity, then upon command the 8253 will count out the delay and interrupt the CPU when it has completed its tasks. It is easy to see that the software overhead is minimal and that multiple delays can easily be maintained by assignment of priority levels.

Other counter/timer functions that are non-delay in nature but also common to most microcomputers can be implemented with the 8253.

- Programmable Rate Generator
- Event Counter
- Binary Rate Multiplier
- Real Time Clock
- Digital One-Shot
- Complex Motor Controller


## Data Bus Buffer

The 3 -state, bi-directional, 8 -bit buffer is used to interface the 8253 to the system data bus. Data is transmitted or received by the buffer upon execution of INput or OUTput CPU instructions. The Data Bus Buffer has three basic functions.

1. Programming the MODES of the 8253 .
2. Loading the count registers.
3. Reading the count values.

## Read/Write Logic

The Read/Write Logic accepts inputs from the system bus and in turn generates control signals for overall device operation. It is enabled or disabled by CS so that no operation can occur to change the function unless the device has been selected by the system logic.

## $\overline{\text { DD (Read) }}$

A "low" on this input informs the 8253 that the CPU is inputting data in the form of a counters value.

## $\overline{W R}$ (Write)

A "low" on this input informs the 8253 that the CPU is outputting data in the form of mode information or loading counters.

## A0, A1

These inputs are normally connected to the address bus. Their function is to select one of the three counters to be operated on and to address the control word register for mode selection.

## $\overline{\mathbf{C S}}$ (Chip Select)

A "low' on this input enables the 8253. No reading or writing will occur unless the device is selected. The CS input has no effect upon the actual operation of the counters.


Figure 3. Block Dlagram Showing Data Bus Buffer and Read/Write Loglc Functions

$\overline{\mathbf{C S}}$	$\overline{\mathbf{R D}}$	$\overline{\mathrm{WR}}$	$\mathbf{A}_{1}$	$\mathbf{A}_{\mathbf{0}}$	
0	1	0	0	0	Load Counter No. 0
0	1	0	0	1	Load Counter No. 1
0	1	0	1	0	Load Counter No. 2
0	1	0	1	1	Write Mode Word
0	0	1	0	0	Read Counter No. 0
0	0	1	0	1	Read Counter No. 1
0	0	1	1	0	Read Counter No. 2
0	0	1	1	1	No-Operation 3-State
1	X	X	X	X	Disable 3-State
0	1	1	X	X	No-Operation 3-State

## Control Word Register

The Control Word Register is selected when A0, A1 are 11. It then accepts information from the data bus buffer and stores it in a register. The information stored in this register controls the operation MODE of each counter, selection of binary or BCD counting and the loading of each count register.

The Control Word Register can only be written into; no read operation of its contents is available.

## Counter \# 0, Counter \# 1, Counter \# 2

These three functional blocks are identical in operation so only a single counter will be described. Each Counter consists of a single, 16 -bit, pre-settable, DOWN counter. The counter can operate in either binary or BCD and its input, gate and output are configured by the selection of MODES stored in the Control Word Register.

The counters are fully independent and each can have separate MODE configuration and counting operation, binary or BCD. Also, there are special features in the control word that handle the loading of the count value so that software overhead can be minimized for these functions.

The reading of the contents of each counter is available to the programmer with simple READ operations for event counting applications and special commands and logic are included in the 8253 so that the contents of each counter can be read "on the fly" without having to inhibit the clock input.

## 8253 SYSTEM INTERFACE

The 8253 is a component of the IntelTM Microcomputer systems and interfaces in the same manner as all other peripherals of the family. It is treated by the
systems software as an array of peripheral 1/O ports; three are counters and the fourth is a control register for MODE programming.

Basically, the select inputs AO, A1 connect to the A0, A1 address bus signals of the CPU. The CS can be derived directly from the address bus using a linear select method. Or it can be connected to the output of a decoder, such as an Intel 8205 for larger systems.


Figure 4. Block Diagram Showing Control Word Register and Counter Functions


Figure 5. 8253 System Interface

## OPERATIONAL DESCRIPTION

## General

The complete functional definition of the 8253 is programmed by the systems software. A set of control words must be sent out by the CPU to initialize each counter of the 8253 with the desired MODE and quantity information. Prior to initialization, the MODE, count, and output of all counters is undefined. These control words program the MODE, Loading sequence and selection of binary or BCD counting.

Once programmed, the 8253 is ready to perform whatever timing tasks it is assigned to accomplish.

The actual counting operation of each counter is completely independent and additional logic is provided on-chip so that the usual problems associated with efficient monitoring and management of external, asynchronous events or rates to the microcomputer system have been eliminated.

## Programming the 8253

All of the MODES for each counter are programmed by the systems software by simple I/O operations.

Each counter of the 8253 is individually programmed by writing a control word into the Control Word Register. (A0, A1 = 11)

## Control Word Format

$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$
SC1	SCO	RL1	RLO	M2	M1	M0	BCD

## Definition Of Control

SC-SELECT COUNTER:

SCO		
0	0	Select Counter 0
0	1	Select Counter 1
1	0	Select Counter 2
1	1	Illegal

## RL-READ/LOAD:

RL1 RLO

0	0	Counter Latching operation (see   READ/WRITE Procedure Section).
1	0	Read/Load most significant byte only.
0	1	Read/Load least significant byte only.
1	1	Read/Load least significant byte first,   then most significant byte.

## M-MODE:

M2	M1	M0	
0	0	0	Mode 0
0	0	1	Mode 1
X	1	0	Mode 2
X	1	1	Mode 3
1	0	0	Mode 4
1	0	1	Mode 5

BCD:

0	Binary Counter 16-Bits
1	Binary Coded Decimal (BCD) Counter   (4 Decades)

## Counter Loading

The count register is not loaded until the count value is written (one or two bytes, depending on the mode selected by the RL bits), followed by a rising edge and a falling edge of the clock. Any read of the counter prior to that falling clock edge may yield invalid data.

## MODE DEFINITION

MODE 0: Interrupt on Terminal Count. The output will be initially low after the mode set operation. After the count is loaded into the selected count register, the output will remain low and the counter will count. When terminal count is reached, the output will go high and remain high until the selected count register is reloaded with the mode or a new count is loaded. The counter continues to decrement after terminal count has been reached.

Rewriting a counter register during counting results in the following:
(1) Write 1st byte stops the current counting.
(2) Write 2nd byte starts the new count.

MODE 1: Programmable One-Shot. The output will go low on the count following the rising edge of the gate input.

The output will go high on the terminal count. If a new count value is loaded while the output is low it will not affect the duration of the one-shot pulse until the succeeding trigger. The current count can be read at any time without affecting the one-shot pulse.

The one-shot is retriggerable, hence the output will remain low for the full count after any rising edge of the gate input.

MODE 2: Rate Generator. Divide by $N$ counter. The output will be low for one period of the input clock. The period from one output pulse to the next equals the number of input counts in the count register. If the count register is reloaded between output pulses the present period will not be affected, but the subsequent period will reflect the new value.

The gate input, when low, will force the output high. When the gate input goes high, the counter will start from the initial count. Thus, the gate input can be used to synchronize the counter.

When this mode is set, the output will remain high until after the count register is loaded. The output then can also be synchronized by software.

MODE 3: Square Wave Rate Generator. Similar to MODE 2 except that the output will remain high until one half the count has been completed (or even numbers) and go low for the other half of the count. This is accomplished by decrementing the counter by two on the falling edge of each clock pulse. When the counter reaches terminal count, the state of the output is changed and the counter is reloaded with the full count and the whole process is repeated.

If the count is odd and the output is high, the first clock pulse (after the count is loaded) decrements the count by 1 . Subsequent clock pulses decrement the clock by 2. After timeout, the output goes low and the full count is reloaded. The first clock pulse (following the reload) decrements the counter by 3. Subsequent clock pulses decrement the count by 2 until timeout. Then the whole process is repeated. In this way, if the count is odd, the output will be high for $(\mathbf{N}+1) / 2$ counts and low for $(\mathbf{N}-1) / 2$ counts.

In Modes 2 and 3, if a CLK source other than the system clock is used, GATE should be pulsed immediately following $\overline{W R}$ of a new count value.

MODE 4: Software Triggered Strobe. After the mode is set, the output will be high. When the count is loaded, the counter will begin counting. On terminal count, the output will go low for one input clock period, then will go high again.

If the count register is reloaded during counting, the new count will be loaded on the next CLK pulse. The count will be inhibited while the GATE input is low.

MODE 5: Hardware Triggered Strobe. The counter will start counting after the rising edge of the trigger input and will go low for one clock period when the terminal count is reached. The counter is retriggerable. The output will not go low until the full count after the rising edge of any trigger.

Slgnal   Status   Modes	Low   Or Going   Low	Rising	High
0	Disables   counting	-	Enables   counting
1	-	1) Initiates   counting   Resets output   after next   clock	-
2	1) Disables   counting   2) Sets output   immediately   high	1) Reloads   counter   2) Initiates   counting	Enables   counting
3	1) Disables   counting   2) Sets output   immediately   high	1) Reloads   counter   2) Initiates   counting	Enables   counting
4	Disables   counting	-	Enables   counting
5	-	Initiates   counting	-

Figure 6. Gate Pin Operations Summary


Figure 7. 8253 Timing Dlagrams

## 8253 READ/WRITE PROCEDURE

## Write Operations

The systems software must program each counter of the 8253 with the mode and quantity desired. The programmer must write out to the 8253 a MODE control word and the programmed number of count register bytes ( 1 or 2 ) prior to actually using the selected counter.

The actual order of the programming is quite flexible. Writing out of the MODE control word can be in any sequence of counter selection, e.g., counter \#0 does not have to be first or counter \#2 last. Each counter's MODE control word register has a separate address so that its loading is completely sequence independent. (SC0, SC1).

The loading of the Count Register with the actual count value, however, must be done in exactly the sequence programmed in the MODE control word (RLO, RL1). This loading of the counter's count register is still sequence independent like the MODE control word loading, but when a selected count register is to be loaded it must be loaded with the number of bytes programmed in the MODE control word (RLO, RL1). The one or two bytes to be loaded in the count register do not have to follow the associated MODE control word. They can be programmed at any time following the MODE control word loading as long as the correct number of bytes is loaded in order.

All counters are down counters. Thus, the value loaded into the count register will actually be decremented. Loading all zeros into a count register will result in the maximum count ( $2^{16}$ for Binary or 104 for BCD). In MODE 0 the new count will not restart until the load has been completed. It will accept one of two bytes depending on how the MODE control words (RLO, RL1) are programmed. Then proceed with the restart operation.

	MODE Control Word   Counter $\mathbf{n}$
LSB	Counter Register byte   Counter $n$
MSB	Counter Register byte   Counter $n$

NOTE:
Format shown is a simple example of loading the 8253 and does not imply that it is the only format that can be used.

Flgure 8. Programming Format

No. 1	MODE Control Word Counter 0		A1	AO
			1	1
No. 2		MODE Control Word Counter 1	1	1
No. 3		MODE Control Word Counter 2	1	1
No. 4	LSB	Count Register Byte Counter 1	0	1
No. 5	MSB	Count Register Byte Counter 1	0	1
No. 6	LSB	Count Register Byte Counter 2	1	0
No. 7	MSB	Count Register Byte Counter 2	1	0
No. 8	LSB	Count Register Byte Counter 0	0	0
No. 9	MSB	Count Register Byte Counter 0	0	0

## NOTE:

The exclusive addresses of each counter's count register make the task of programming the 8253 a very simple matter, and maximum effective use of the device will result if this feature is fully initilized.

Figure 9. Alternate Programming Formate

## Read Operations

In most counter applications it becomes necessary to read the value of the count in progress and make a computational decision based on this quantity. Event counters are probably the most common application that uses this function. The 8253 contains logic that will allow the programmer to easily read the contents of any of the three counters without disturbing the actual count in progress.

There are two methods that the programmer can use to read the value of the counters. The first method involves the use of simple I/O read operations of the selected counter. By controlling the AO, A1 inputs to the 8253 the programmer can select the counter to be read (remember that no read operation of the mode register is allowed A0, A1-11). The only requirement with this method is that in order to assure a stable count reading the actual operation of the selected counter must be inhibited either by controlling the Gate input or by external logic that inhibits the clock input. The contents of the counter selected will be available as follows:

First I/O Read contains the least significant byte (LSB).

Second I/O Read contains the most significant byte (MSB).

Due to the internal logic of the 8253 it is absolutely necessary to complete the entire reading procedure. If two bytes are programmed to be read, then two bytes must be read before any loading WR command can be sent to the same counter.

## Read Operation Chart

A1	AO	RD	
0	0	0	Read Counter No. 0
0	1	0	Read Counter No. 1
1	0	0	Read Counter No. 2
1	1	0	Illegal

## Reading While Counting

In order for the programmer to read the contents of any counter without effecting or disturbing the counting operation the 8253 has special internal logic that can be accessed using simple WR commands to the MODE register. Basically, when the programmer wishes to read the contents of a selected counter "on the fly" he loads the MODE register with a special code which latches the present count value into a storage register so that its contents contain an accurate, stable quantity. The programmer then issues a normal read command to the selected counter and the contents of the latched register is available.

## MODE Reglster for Latching Count

$A 0, A 1=11$

$\mathrm{D7}$	D 6	D 5	D 4	D 3	D 2	D 1	D 0
SC 1	$\mathrm{SC0}$	O	0	X	X	X	X

SC1, SC0- specity counter to be latched.
D5, D4 - 00 designates counter latching operation.
X — don't care.
The same limitation applies to this mode of reading the counter as the previous method. That is, it is mandatory to complete the entire read operation as programmed. This command has no effect on the counter's mode.


231306-12
-If an 8085 clock output is to drive an 8253-5 clock input, it must be reduced to 2 MHz or less.
Figure 10. MCS-85TM Clock Interface*

## ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias . . . . . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Storage Temperature $\qquad$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin
with Respect to Ground . . . . . . . . . . . . -0.5 V to 7 V
Power Dissipation ............................. 1 Watt
*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D.C. CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V} \pm 10 \%$ *

Symbol	Parameter	Min	Max	Unit	Test Conditions
$V_{\mathrm{IL}}$	Input Low Voltage	-0.5	0.8	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.2	$\mathrm{~V}_{\mathrm{CC}}+.5 \mathrm{~V}$	V	
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage		0.45	V	(Note 1)
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage	2.4		V	(Note 2)
$\mathrm{I}_{\mathrm{IL}}$	Input Load Current		$\pm 10$	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ to 0 V
$\mathrm{I}_{\mathrm{OFL}}$	Output Float Leakage		$\pm 10$	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}}$ to 0.45 V
$\mathrm{I}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}$ Supply Current		140	mA	

CAPACITANCE $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=\mathrm{OV}$

Symbol	Parameter	Min	Typ	Max	Unit	Test Conditions
$\mathrm{C}_{\mathbb{I}}$	Input Capacitance			10	pF	fc $=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	I/O Capacitance			20	pF	Unmeasured pins returned to $V_{S S}$

A.C. CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}^{*}$

## Bus Parameters(3)

## mead cycle

Symbol	Parameter	8253		8253-5		Unit
		Min	Max	Min	Max	
$t_{\text {AR }}$	Address Stable before $\overline{\mathrm{READ}}$	50		30		ns
$t_{\text {RA }}$	Address Hold Time for READ	5		5		ns
$t_{\text {RR }}$	READ Pulse Width	400		300		ns
$t_{\text {RD }}$	Data Delay from READ(4)		300		200	ns
$t_{\text {DF }}$	$\overline{\text { FEAD to Data Floating }}$	25	125	25	100	ns
$t_{\text {t }}$	Recovery Time between $\overline{R E A D}$ and Any Other Control Signal	1		1		$\mu s$

8253/8253-5

## A.C. CHARACTERISTICS (Continued)

WRITE CYCLE

Symbol	Parameter	8253		8253-5		Unit
		Min	Max	Min	Max	
taw	Address Stable before WRITE	50		30		ns
twa	Address Hold Time for WRITE	30		30		ns
tww	WRITE Pulse Width	400		300		ns
tow	Data Set Up Time for WRITE	300		250		ns
two	Data Hold Time for WRITE	40		30		ns
$\mathrm{t}_{\mathrm{RV}}$	Recovery Time between WRITE and Any Other Control Signal	1		1		$\mu \mathrm{s}$

CLOCK AND GATE TIMING

Symbol	Parameter	8253		8253-5		Unit
		Min	Max	Min	Max	
tclk	Clock Period	380	dc	380	dc	ns
towh	High Pulse Width	230		230		ns
$\mathrm{t}_{\text {PWL }}$	Low Pulse Width	150		150		ns
$\mathrm{t}_{\text {GW }}$	Gate Width High	150		150		ns
$\mathrm{t}_{\mathrm{GL}}$	Gate Width Low	100		100		ns
tas	Gate Set Up Time to CLK $\uparrow$	100		100		ns
$\mathrm{t}_{\mathrm{GH}}$	Gate Hold Time after CLK $\uparrow$	50		50		ns
too	Output Delay from CLK $\downarrow$ (4)		400		400	ns
todg	Output Delay from Gate $\downarrow$ (4)		300		300	ns

## NOTES:

1. $1 \mathrm{OL}=2.2 \mathrm{~mA}$.
2. $\mathrm{IOH}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$.
3. $A C$ timings measured at $V_{O H} 2.2, V_{O L}=0.8$.
4. $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$.
*For Extended Temperalure EXPRESS, use M8253 electrical parameters.

## A.C. TESTING INPUT, OUTPUT WAVEFORM


A.C. Testing: Inputs are driven at 2.4V for a Logic "1" for a Logic "0". Timing measurements are made at 2.2 V for a Logic "1" and 0.8V for a Logic " 0 ".

## A.C. TESTING LOAD CIRCUIT



## WAVEFORMS



CLOCK AND GATE TIMING


# 8259A <br> PROGRAMMABLE INTERRUPT CONTROLLER 8259A/8259A-2/8259A-8 

- 8086, 8088 Compatible
- MCS-80®, MCS-85 ${ }^{\text {® }}$ Compatible
- Eight-Level Priority Controller
- Expandable to 64 Levels
- Programmable Interrupt Modes
- Individual Request Mask Capability
- Single +5 V Supply (No Clocks)
- 28-Pin Dual-In-Line Package
- Avalable in EXPRESS
- Standard Temperature Range
- Extended Temperature Range

The Intel 8259A Programmable Interrupt Controller handles up to eight vectored priority interrupts for the CPU. It is cascadable for up to 64 vectored priority interrupts without additional circuitry. It is packaged in a 28 -pin DIP, uses NMOS technology and requires a single +5 V supply. Circuitry is static, requiring no clock input.

The 8259A is designed to minimize the software and real time overhead in handling multi-level priority interrupts. It has several modes, permitting optimization for a variety of system requirements.

The 8259A is fully upward compatible with the Intel 8259. Software originally written for the 8259 will operate the 8259A in all 8259 equivalent modes (MCS-80/85, Non-Buffered, Edge Triggered).



Figure 2. Pin Configuration

Figure 1. Block Diagram
231468-1

Table 1 Pin Description

Symbol	Pin No.	Type	Name and Function
$V_{\text {CC }}$	28	1	SUPPLY: + 5V Supply.
GND	14	1	GROUND
CS	1	1	CHIP SELECT: A luw on this pin enables $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WF}}$ communication between the CPU and the 8259A. INTA functions are independent of CS.
W $\overline{\text { F }}$	2	1	WRITE: A low on this pin when CS is low enables the 8259A to accept command words from the CPU.
RD	3	1	READ: A low on this pin when CS is low enables the 8259A to release status onto the data bus for the CPU.
$\mathrm{D}_{7}-\mathrm{D}_{0}$	4-11	1/0	BIDIRECTIONAL DATA BUS: Control, status and interrupt-vector information is transterred via this bus.
$\mathrm{CAS}_{0}-\mathrm{CAS}_{2}$	12, 13, 15	1/0	CASCADE LINES: The CAS lines form a private 8259A bus to control a multiple 8259A structure. These pins are outputs for a master 8259A and inputs for a slave 8259A.
SP/EN	16	1/0	SLAVE PROGRAM/ENABLE BUFFER: This is a dual function pin. When in the Buffered Mode it can be used as an output to control bufier transceivers (EN). When not in the buffered mode it is used as an input to designate a master ( $S P=1$ ) or slave ( $S P=0$ )
INT	17	$\bigcirc$	INTERRUPT: This pin goes high whenever a valid interrupt request is asserted. It is used to interrupt the CPU, thus it is connected to the CPU's interrupt pin.
$\mathbf{1 R}_{\mathbf{0}-1 \mathbf{R}_{7}}$	18-25	1	INTERRUPT REQUESTS: Asynchronous inputs. An interrupt request is executed by raising an IR input (low to high), and holding it high until it is acknowledged (Edge Triggered Mode), or just by a high level on an IR input (Level Triggered Mode).
INTA	26	1	INTERRUPT ACKNOWLEDGE: This pin is used to enable 8259A interrupt-vector data onto the data bus by a sequence of interrupt acknowledge pulses issued by the CPU.
$A_{0}$	27	1	AO ADDRESS LINE: This pin acts in conjunction with the $\overline{C S}, \mathrm{WF}$, and RD pins. It is used by the 8259A to decipher various Command Words the CPU writes and status the CPU wishes to read. It is typically connected to the CPU A0 address line (A1 for 8086, 8088).

## FUNCTIONAL DESCRIPTION

## Interrupts in Microcomputer Systems

Microcomputer system design requires that 1.0 devices such as keyboards, displays, sensors and other components receive servicing in a an efficient manner so that large amounts of the total system tasks can be assurned by the microcomputer with little or no effect on throughput.

The most common method of servicing such devices is the Polled approach. This is where the processor must test each device in sequence and in effect "ask' each one if it needs servicing. It is easy to see that a large portion of the main program is looping through this continuous polling cycle and that such a method would have a serious detrimental effect on system throughput, thus limiting the tasks that could be assumed by the microcomputer and reducing the cost effectiveness of using such devices.

A more desirable method would be one that would allow the microprocessor to be executing its main program and only stop to service peripheral devices when it is told to do so by the device itself. In effect, the method would provide an external asynchronous input that would inform the processor that it should complete whatever instruction that is currently being executed and fetch a new routine that will service the requesting device. Once this servicing is complete, however, the processor would resume exactly where it left off.

This method is called Interrupt. It is easy to see that system throughput would drastically increase, and thus more tasks could be assumed by the microcomputer to further enhance its cost effectiveness.

The Programmable Interrupt Controller (PIC) functions as an overall manager in an interrupt-Driven system environment. It accepts requests from the peripheral equipment, determines which of the incoming requests is of the highest importance (priority), ascertains whether the incoming request has a higher priority value than the level currently being serviced, and issues an interrupt to the CPU based on this determination.

Each peripheral device or structure usually has a special program or "routine" that is associated with its specific functional or operational requirements; this is referred to as a "service routine". The PIC, after issuing an Interrupt to the CPU, must somehow input information into the CPU that can "point" the Program Counter to the service routine associated with the requesting device. This "pointer" is an address in a vectoring table and will often be referred to, in this document, as vectoring data.


Figure 3a. Polled Method


Figure 3b. Interrupt Method

The 8259A is a device specifically designed for use in real time, interrupt driven microcomputer systems. It manages eight levels or requests and has built-in features for expandability to other 8259A's (up to 64 levels). It is programmed by the system's software as an I/O peripheral. A selection of priority modes is available to the programmer so that the manner in which the requests are processed by the 8259A can be configured to match his system requirements. The priority modes can be changed or reconfigured dynamically at any time during the main program. This means that the complete interrupt structure can be defined as required, based on the total system environment.

## INTERRUPT REQUEST REGISTER (IRR) AND IN-SERVICE REGISTER (ISR)

The interrupts at the IR input lines are handled by two registers in cascade, the Interrupt Request Register (IRR) and the In-Service (ISR). The IRR is used to store all the interrupt levels which are requesting service; and the ISR is used to store all the interrupt levels which are being serviced.

## PRIORITY RESOLVER

This logic block determines the priorites of the bits set in the IRR. The highest priority is selected and strobed into the corresponding bit of the ISR during INTA pulse.

## INTERRUPT MASK REGISTER (IMR)

The IMR stores the bits which mask the interrupt lines to be masked. The IMR operates on the IRR. Masking of a higher priority input will not affect the interrupt request lines of lower quality.

## INT (INTERRUPT)

This output goes directly to the CPU interrupt input. The VOH level on this line is designed to be fully compatible with the 8080A, 8085A and 8086 input levels.

## INTA (INTERRUPT ACKNOWLEDGE)

INTA pulses will cause the 8259A to release vectoring information onto the data bus. The format of this data depends on the system mode ( $\mu \mathrm{PM}$ ) of the 8259A.

## DATA BUS BUFFER

This 3-state, bidirectional 8-bit buffer is used to interface the 8259A to the system Data Bus. Control words and status information are transferred through the Data Bus Buffer.

## READ/WRITE CONTROL LOGIC

The function of this block is to accept OUTput commands from the CPU. It contains the Initialization Command Word (ICW) registers and Operation Command Word (OCW) registers which store the various control formats for device operation. This function block also allows the status of the 8259A to be transferred onto the Data Bus.

## $\overline{\mathbf{C S}}$ (CHIP SELECT)

A LOW on this input enables the 8259A. No reading or writing of the chip will occur unless the device is selected.

## $\overline{W B}$ (WRITE)

A LOW on this input enables the CPU to write control words (ICWs and OCWs) to the 8259A.

## RD (READ)

A LOW on this input enables the 8259A to send the status of the Interrupt Request Register (IRR), In Service Register (ISR), the Interrupt Mask Register (IMR), or the Interrupt level onto the Data Bus.

## A0

This input signal is used in conjunction with WR and $\overline{R D}$ signals to write commands into the various command registers, as well as reading the various status registers of the chip. This line can be tied directly to one of the address lines.


Figure 4a. 8259A Block Diagram
inter


Figure 4b. 8259A Block Diagram

## THE CASCADE BUFFER/COMPARATOR

This function block stores and compares the IDs of all 8259A's used in the system. The associated three I/O pins (CAS0-2) are outputs when the 8259A is used as a master and are inputs when the 8259A is used as a slave. As a master, the 8259A sends the ID of the interrupting slave device onto the CASO-2 lines. The slave thus selected will send its preprogrammed subroutine address onto the Data Bus during the next one or two consecutive INTA pulses. (See section "Cascading the 8259A".)

## INTERRUPT SEQUENCE

The powerful features of the 8259A in a microcomputer system are its programmability and the interrupt routine addressing capability. The latter allows direct or indirect jumping to the specific interrupt routine requested without any polling of the interrupting devices. The normal sequence of events during an interrupt depends on the type of CPU being used.

The events occur as follows in an MCS-80/85 system:

1. One or more of the INTERRUPT REQUEST lines (IR7-0) are raised high, setting the corresponding IRR bit(s).
2. The 8259A evaluates these requests, and sends an INT to the CPU, if appropriate.
3. The CPU acknowledges the INT and responds with an INTA pulse.
4. Upon receiving an INTA from the CPU group, the highest priority ISR bit is set, and the corresponding IRR bit is reset. The 8259A will also release a CALL instruction code (11001101) onto the 8 -bit Data Bus through its D7-0 pins.
5. This CALL instruction will initiate two more INTA pulses to be sent to the 8259A from the CPU group.
6. These two INTA pulses allow the 8259A to release its preprogrammed subroutine address onto the Data Bus. The lower 8 -bit address is released at the first INTA pulse and the higher 8-bit address is released at the second INTA pulse.
7. This completes the 3-byte CALL instruction released by the 8259A. In the AEOI mode the ISR bit is reset at the end of the third INTA pulse. Otherwise, the ISR bit remains set until an appropriate EOI command is issued at the end of the interrupt sequence.

The events occuring in an 8086 system are the same until step 4.
4. Upon receiving an INTA from the CPU group, the highest priority ISR bit is set and the corresponding IRR bit is reset. The 8259A does not drive the Data Bus during this cycle.
5. The 8086 will initiate a second INTA pulse. During this pulse, the 8259A releases an 8 -bit pointer onto the Data Bus where it is read by the CPU.
6. This completes the interrupt cycle. In the AEOI mode the ISR bit is reset at the end of the second INTA pulse. Otherwise, the ISR bit remains set until an appropriate EOI command is issued at the end of the interrupt subroutine.

If no interrupt request is present at step 4 of either sequence (i.e., the request was too short in duration) the 8259A will issue an interrupt level 7. Both the vectoring bytes and the CAS lines will look like an interrupt level 7 was requested.


Figure 4c. 8259A Block Diagram


Figure 5. 8259A Interface to Standard System Bus

## INTERRUPT SEQUENCE OUTPUTS

## MCS-80®, MCS-85 ${ }^{\circledR}$

This sequence is timed by three INTA pulses. During the first INTA pulse the CALL opcode is enabled onto the data bus.

Content of First Interrupt Vector Byte
D7 D6 D5 D4 D3 D2 D1 D0
CALL CODE

$$
\begin{array}{|llllllll|}
\hline 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
\hline
\end{array}
$$

During the second INTA pulse the lower address of the appropriate service routine is enabled onto the data bus. When Interval $=4$ bits $A_{5}-A_{7}$ are programmed, while $A_{0}-A_{4}$ are automatically inserted by the 8259A. When Interval $=8$ only $A_{6}$ and $A_{7}$ are programmed, while $A_{0}-A_{5}$ are automatically inserted.

## Content of Second Interrupt Vector Byte

IR	Interval $=4$							
	D7	D6	D5	D4	D3	D2	D1	D0
7	A7	A6	A5	1	1	1	0	0
6	A7	A6	A5	1	1	0	0	0
5	A7	A6	A5	1	0	1	0	0
4	A7	A6	A5	1	0	0	0	0
3	A7	A6	A5	0	1	1	0	0
2	A7	A6	A5	0	1	0	0	0
1	A7	A6	A5	0	0	1	0	0
0	A7	A6	A5	0	0	0	0	0


IR	Interval $=8$							
	D7	D6	D5	D4	D3	D2	D1	D0
7	A7	A6	1	1	1	0	0	0
6	A7	A6	1	1	0	0	0	0
5	A7	A6	1	0	1	0	0	0
4	A7	A6	1	0	0	0	0	0
3	A7	A6	0	1	1	0	0	0
2	A7	A6	0	1	0	0	0	0
1	A7	A6	0	0	1	0	0	0
0	A7	A6	0	0	0	0	0	0

During the third INTA pulse the higher address of the appropriate service routine, which was programmed as byte 2 of the initialization sequence $\left(A_{8}-A_{15}\right)$, is enabled onto the bus.

Content of Third Interrupt Vector Byte

D7	D6	D5	D4	D3	D2	D1	D0
A15	A14	A13	A12	A11	A10	A9	A8

## 8086, 8088

8086 mode is similar to MCS-80 mode except that only two Interrupt Acknowledge cycles are issued by the processor and no CALL opcode is sent to the processor. The first interrupt acknowledge cycle is similar to that of MCS-80, 85 systems in that the 8259A uses it to internally freeze the state of the interrupts for priority resolution and as a master it issues the interrupt code on the cascade lines at the end of the INTA pulse. On this first cycle it does not issue any data to the processor and leaves its data bus buffers disabled. On the second interrupt acknowledge cycle in 8086 mode the master (or slave if so programmed) will send a byte of data to the processor with the acknowledged interrupt code
composed as follows (note the state of the ADI mode control is ignored and $\mathrm{A}_{5}-\mathrm{A}_{11}$ are unused in 8086 mode):

Content of Interrupt Vector Byte for $\mathbf{8 0 8 6}$ System Mode

	D7	D6	D5	D4	D3	D2	D1	D0
IR7	T7	T6	T5	T4	T3	1	1	1
IR6	T7	T6	T5	T4	T3	1	1	0
IR5	T7	T6	T5	T4	T3	1	0	1
IR4	T7	T6	T5	T4	T3	1	0	0
IR3	T7	T6	T5	T4	T3	0	1	1
IR2	T7	T6	T5	T4	T3	0	1	0
IR1	T7	T6	T5	T4	T3	0	0	1
IR0	T7	T6	T5	T4	T3	0	0	0

## PROGRAMMING THE 8259A

The 8259A accepts two types of command words generated by the CPU:

1. Initialization Command Words (ICWs): Before normal operation can begin, each 8259A in the system must be brought to a starting point-by a sequence of 2 to 4 bytes timed by WR pulses.
2. Operation Command Words (OCWs): These are the command words which command the 8259A to operate in various interrupt modes. These modes are:
a. Fully nested mode
b. Rotating priority mode
c. Special mask mode
d. Polled mode

The OCWs can be written into the 8259A anytime after initialization.

## INITIALIZATION COMMAND WORDS (ICWS)

## General

Whenever a command is issued with AO = 0 and D4 $=1$, this is interpreted as Initialization Command Word 1 (ICW1). ICW1 starts the intiitalization sequence during which the following automatically occur.
a. The edge sense circuit is reset, which means that following initialization, an interrupt request (IR) input must make a low-to-high transistion to generate an interrupt.
b. The Interrupt Mask Register is cleared.
c. IR7 input is assigned priority 7.
d. The slave mode address is set to 7 .
e. Special Mask Mode is cleared and Status Read is set to IRR.
f. If ICA $=0$, then all functions selected in ICW4 are set to zero. (Non-Buffered mode*, no AutoEOI, MCS-80, 85 system).

## *NOTE:

Master/Slave in ICW4 is only used in the buffered mode.

## Initialization Command Words 1 and 2 (ICW1, ICW2)

$\mathrm{A}_{5}-\mathrm{A}_{15}$ : Page starting address of service routines. In an MCS 80/85 system, the 8 request levels will generate CALLs to 8 locations equally spaced in memory. These can be programmed to be spaced at intervals of 4 or 8 memory locations, thus the 8 routines will occupy a page of 32 or 64 bytes, respectively.

The address format is 2 bytes long $\left(A_{0}-A_{15}\right)$. When the routine interval is $4, A_{0}-A_{4}$ are automatically inserted by the 8259A, while $A_{5}-A_{15}$ are programmed externally. When the routine interval is $8, A_{0}-A_{5}$ are automatically inserted by the 8259A, while $A_{6}-A_{15}$ are programmed externally.

The 8-byte interval will maintain compatibility with current software, while the 4-byte interval is best for a compact jump table.

In an 8086 system $A_{15}-A_{11}$ are inserted in the five most significant bits of the vectoring byte and the 8259A sets the three least significant bits according to the interrupt level. $A_{10}-A_{5}$ are ignored and $A D I$ (Address interval) has no effect.
LTIM: If LTIM $=1$, then the 8259A will operate in the level interrupt mode. Edge detect logic on the interrupt inputs will be disabled.
ADI: CALL address interval. $\mathrm{ADI}=1$ then interval $=4 ; \mathrm{ADI}=0$ then interval $=8$.
SNGL: Single. Means that this is the only 8259A in the system. If SNGL $=1$ no ICW3 will be issued.
IC4: If this bit is set-ICW4 has to be read. If ICW4 is not needed, set IC4 $=0$.

## Initialization Command Word 3 (ICW3)

This word is read only when there is more than one 8259A in the system and cascading is used, in which
case $\mathrm{SNGL}=0$. It will load the 8 -bit slave register. The functions of this register are:
a. In the master mode (either when $S P=1$, or in butiered mode when M/S = 1 in ICW4) a " 1 " is set for each slave in the system. The master then will release byte 1 of the call sequence (for MCS80/85 system) and will enable the corresponding slave to release bytes 2 and 3 (for 8086 only byte 2) through the cascade lines.
b. In the slave mode (either when $\overline{\mathrm{SP}}=0$, or if BUF $=1$ and $M / S=0$ in ICW4) bits 2-0 identify the slave. The slave compares its cascade input with these bits and, if they are equal, bytes 2 and 3 of the call sequence (or just byte 2 for 8086) are released by it on the Data Bus.


Figure 6. Indialization Sequence

8259A

Initialization Command Word 4 (ICW4)
SFNM: If SFNM $=1$ the special fully nested mode is programmed.
BUF: If BUF $=1$ the buffered mode is programmed. In buffered mode SP/EN becomes an enable output and the master/ slave determination is by M/S.
M/S: If buffered mode is selected: M/S $=1$ means the 8259A is programmed to be a
master, $M / S=0$ means the 8259A is programmed to be a slave. If BUF $=0, M / S$ has no function.
AEOI: If AEOI $=1$ the automatic end of interrupt mode is programmed.
$\mu \mathrm{PM}$ : Microprocessor mode: $\mu \mathrm{PM}=0$ sets the 8259A for MCS-80, 85 system operation, $\mu \mathrm{PM}=1$ sets the 8259A for 8086 system operation.


231468-10


Figure 7. Initlalization Command Word Format


231468-12


231468-13


231468-14

## NOTE:

Slave ID is equal to the corresponding master IR input.
Figure 7. Inittalization Command Word Format (Continued)

## OPERATION COMMAND WORDS (OCWS)

After the Initialization Command Words (ICWs) are programmed into the 8259A, the chip is ready to accept interrupt requests at its input lines. However, during the 8259A operation, a selection of algorithms can command the 8259A to operate in various modes through the Operation Command Words (OCWs).
Operation Control Words (OCWs)

## OCW1

A0	77	D6	D5	D4	D3	D2	D1	D0
1	17	M6	M5	M4	M3	M2	M1	M0
	Ocw 2							
0	R	SL	EOI	0	0	L2	L1	LO
	OCW3							
0	0	ESMM	SMM	0	1	P	RR	RIS



231468-15


Figure 8. Operation Command Word Format

## Operation Control Word 1 (OCW1)

OCW1 sets and clears the mask bits in the interrupt Mask Register (IMR). $M_{7}-M_{0}$ represent the eight mask bits. $M=1$ indicates the channel is masked (inhibited), $M=0$ indicates the channel is enabled.

## Operation Control Word 2 (OCW2)

R, SL, EOI-These three bits control the Rotate and End of Interrupt modes and combinations of the two. A chart of these combinations can be found on the Operation Command Word Format.
$L_{2}, L_{1}, L_{0}$-These bits determine the interrupt level acted upon when the SL bit is active.


Figure 8. Operation Command Word Format (Continued)

## Operation Control Word 3 (OCW3)

ESMM-Enable Special Mask Mode. When this bit is set to 1 it enables the SMM bit to set or reset the Special Mask Mode. When ESMM $=0$ the SMM bit becomes a "don't care".

SMM-Special Mask Mode. If ESMM $=1$ and SMM $=1$ the 8259A will enter Special Mask Mode. If $E S M M=1$ and $S M M=0$ the 8259A will revert to normal mask mode. When ESMM $=0$, SMM has no effect.

## Fully Nested Mode

This mode is entered after initialization unless another mode is programmed. The interrupt requests are ordered in priority from 0 through 7 ( 0 highest). When an interrupt is acknowledged the highest priority request is determined and its vector placed on the bus. Additionally, a bit of the Interrupt Service register (ISO-7) is set. This bit remains set until the microprocessor issues an End of Interrupt (EOI) command immediately before returning from the service routine, or if AEOI (Automatic End of Interrupt) bit is set, until the trailing edge of the last INTA. While the is bit is set, all further interrupts of the same or lower priority are inhibited, while higher levels will generate an interrupt (which will be acknowledged only if the microprocessor internal Interupt enable flip-flop has been re-enabled through software).

After the initialization sequence, IRO has the highest prioirity and IR7 the lowest. Priorities can be changed, as will be explained, in the rotating priority mode.

## End of Interrupt (EOI)

The in Service (IS) bit can be reset either automatically following the trailing edige of the last in sequence INTA pulse (when AEOI bit in ICW1 is set) or by a command word that must be issued to the 8259A before returning from a service routine (EOI command). An EOI command must be issued twice if in the Cascade mode, once for the master and once for the corresponding slave.

There are two forms of EOI command: Specific and Non-Specific. When the 8259A is operated in modes which perserve the fully nested structure, it can determine which is bit to reset on EOI. When a NonSpecific EOI command is issued the 8259A will automatically reset the highest is bit of those that are set, since in the fully nested mode the highest is level was necessarily the last level acknowledged and serviced. A non-specific EOI can be issued with OCW2 ( $\mathrm{EOI}=1, \mathrm{SL}=0, R=0$ ).

When a mode is used which may disturb the fully nested structure, the 8259A may no longer be able to determine the last level acknowledged. In this case a Specific End of Interrupt must be issued which includes as part of the command the IS level to be reset. A specific EOI can be issued with OCW2 ( $\mathrm{EOI}=1, S L=1, R=0$, and LO-L2 is the binary level of the IS bit to be reset).

It should be noted that an is bit that is masked by an IMR bit will not be cleared by a non-specific EOI if the 8259A is in the Special Mask Mode.

## Automatic End of Interrupt (AEOI) Mode

If $A E O I=1$ in ICW4, then the 8259A will operate in AEO mode continuously until reprogrammed by ICW4. in this mode the 8259A will automatically perform a non-specific EOI operation at the trailing edge of the last interrupt acknowledge pulse (third pulse in MCS-80/85, second in 8086). Note that from a system standpoint, this mode should be used only when a nested multilevel interrupt structure is not required within a single 8259A.

The AEOI mode can only be used in a master 8259A and not a slave.

## Automatic Rotation (Equal Priority Devices)

In some applications there are a number of interrupting devices of equal priority. In this mode a device, after being serviced, receives the lowest priority, so a device requesting an interrupt will have to wait, in the worst case until each of 7 other devices are serviced at most once. For example, if the priority and "in service" status is:

Before Rotate (IR4 the highest proirity requiring service)


After Rotate (IR4 was serviced, all other priorities rotated correspondingly)


There are two ways to accomplish Automatic Rotation using OCW2, the Rotation on Non-Specific EOI Command ( $R=1, S L=0, E O I=1$ ) and the Rotate in Automatic EOI Mode which is set by ( $R=1$, $S L=0, E O I=0)$ and cleared by $(R=0, S L=0$, $\mathrm{EOI}=0$ ).

## Specific Rotation (Specific Priority)

The programmer can change priorities by programming the bottom priority and thus fixing all other priorities; i.e., if IR5 is programmed as the bottom priority device, then IR6 will have the highest one.

The Set Priority command is issued in OCW2 where: $R=1, S L=1, L 0-L 2$ is the binary priority level code of the bottom priority device.

Observe that in this mode internal status is updated by software control during OCW2. However, it is independent of the End of Interrupt (EOI) command (also executed by OCW2). Priority changes can be executed during an EOI command by using the Rotate on Specific EOI command in OCW2 $(R=1, S L$ $=1, \mathrm{EOI}=1$ and LO-L2 = IR level to receive bottom priority).

## Interrupt Masks

Each Interrupt Request input can bem masked individually by the Interrupt Mask Register (IMR) programmed through OCW1. Each bit in the IMR masks one interrupt channel if it is set (1). Bit 0 masks IRO, Bit 1 masks IR1 and so forth. Masking an IR channel does not affect the other channels operation.

## Special Mask Mode

Some applications may require an interrupt service routine to dynamically alter the system priority struc-
ture during its execution under software control. For example, the routine may wish to inhibit lower priority requests for a portion of its execution but enable some of them for another portion.

The difficulty here is that if an interrupt Request is acknowledged and an End of Interrupt command did not reset its is bit (i.e., while executing a service routine), the 8259A would have inhibited all lower priority requests with no easy way for the routine to enable them.

That is where the Special Mask Mode comes in. In the special Mask Mode, when a mask bit is set in OCW1, it inhibits further interrupts at that level and enables interrupts from all other levels (lower as well as higher) that are not masked.

Thus, any interrupts may be selectively enabled by loading the mask register.

The special Mask Mode is set by OWC3 where: SSMM = 1, SMM = 1, and cleared where SSMM $=$ $1, S M M=0$.

## Poll Command

In this mode the INT output is not used or the microprocessor internal Interrupt Enable flip-flop is reset, disabling its interrupt input. Service to devices is achieved by software using a Poll command.

The Poll command is issued by setting $P=$ ' 1 ' in OCW3. The 8259A treats the next RD pulse to the 8259A (i.e., $\overline{R D}=0, \overline{C S}=0$ ) as an interrupt acknowledge, sets the appropriate is bit if there is a request, and reads the priority level. Interrupt is frozen from $\overline{W A}$ to $\overline{R D}$.

The word enabled onto the data bus during $\overline{R D}$ is:

D7	D6	D5	D4	D3	D2	D1	D0
1	-	-	-	-	W2	W1	wo

W0-W2: Binary code of the highest priority level requesting service.
I: Equal to " 1 " if there is an interrupt.
This mode is useful if there is a routine command common to several levels so that the INTA sequence is not needed (saves ROM space). Another application is to use the poll mode to expand the number of priority levels to more than 64.

## Reading the 8259A Status

The input status of several internal registers can be read to update the user information on the system.

8259A


Figure 9. Priority Cell-Simplified Logic Dlagram

The following registers can be read via OCW3 (IRR and ISR or OCW1 [IMR]).

Interrupt Request Registor (IRR): 8-bit register which contains the levels requesting an interrupt to be acknowledged. The highest request level is reset from the IRR when an interrupt is acknowiedged. (Not affected by IMR.)

In-Senvice Register (ISR): 8-bit register which contains the priority levels that are being serviced. The ISR is updated when an End of Interrupt Command is issued.

Intermupt Mask Register: 8-bit register which contains the interrupt request lines which are masked.

The IRR can be read when, prior to the RD pulse, a Read Register Command is issued with OCW3 (RR $=1$, RIS $=0$.)

The ISR can be read, when, prior to the RD pulse, a Read Register Command is issued with OCW3 (RR $=1$, RIS = 1)

There is no need to write an OCW3 before every status read operation, as long as the status read corresponds with the previous one; i.e., the 8259A "remembers" whether the IRR or ISR has been previously selected by the OCW3. This is not true when poll is used.

After initialization the 8259A is set to IRR.
For reading the IMR, no OCW3 is needed. The output data bus will contain the IMR whenever RD is active and $A 0=1$ (OCW1).

Polling overrides status read when $P=1, R R=1$ in OCW3.

## Edge and Level Triggered Modes

This mode is programmed using bit 3 in ICW1.
If $L T M=$ ' 0 ', an interrupt request will be recognized by a low to high transition on an IR input. The IR input can remain high without generating another interrupt.


Figure 10. IR Triggering Timing Requirements

If LTIM = ' 1 ', an interrupt request will be recognized by a 'high' level on IR Input, and there is no need for an edge detection. The interrupt request must be removed before the EOI command is issued or the CPU interrupts is enabled to prevent a second interrupt from occurring.

The priority cell diagram shows a conceptual circuit of the level sensitive and edge sensitive input circuitry of the 8259 A . Be sure to note that the request latch is a transparent D type latch.

In both the edge and level triggered modes the IR inputs must remain high until after the falling edge of the first INTA. If the IR input goes low before this time a DEFAULT IR7 will occur when the CPU acknowledges the interrupt. This can be a useful safeguard for detecting interrupts caused by spurious noise glitches on the IR inputs. To implement this feature the IR7 routine is used for "clean up" simply executing a return instruction, thus ignoring the interrupt. If IR7 is needed for other purposes a default IR7 can still be detected by reading the ISR. A normal IR7 interrupt will set the corresponding ISR bit, a default IR7 won't. If a default IR7 routine occurs during a normal IR7 routine, however, the ISR will remain set. In this case it is necessary to keep track of whether or not the IR7 routine was previously entered. If another IR7 occurs it is a default.

## The Special Fully Nest Mode

This mode will be used in the case of a big system where cascading is used, and the priority has to be conserved within each slave. In this case the fully nested mode will be programmed to the master (us-
ing ICW4). This mode is similar to the normal nested mode with the following exceptions:
a. When an interrupt request from a certain slave is in service this slave is not locked out from the master's priority logic and further interrupt requests from higher priority IR's within the slave will be recognized by the master and will initiate interrupts to the processor. (in the normal nested mode a slave is masked out when its request is in service and no higher requests from the same slave can be serviced.)
b. When exiting the Interrupt Service routine the software has to check whether the interrupt serviced was the only one from that slave. This is done by sending a non-specific End of Interrupt (EOI) command to the slave and then reading its In-Service register and checking for zero. If it is empty, a non-specific EOI can be sent to the master too. If not, no EOI should be sent.

## Buffered Mode

When the 8259A is used in a large system where bus driving buffers are required on the data bus and the cascading mode is used, there exists the problem of enabling buffers.

The buffered mode will structure the 8259A to send an enable signal on SP/EN to enable the buffers. In this mode, whenever the 8259A's data bus outputs are enabled, the SP/EN output becomes active.

This modification forces the use of soltware programming to determine whether the 8259A is a master or a slave. Bit 3 in ICW4 programs the buffered mode, and bit 2 in ICW4 determines whether it is a master or a slave.

## CASCADE MODE

The 8259A can be easily interconnected in a system of one master with up to eight slaves to handle up to 64 priority levels.

The master controls the slaves through the 3 line cascade bus. The cascade bus acts like chip selects to the slaves during the INTA sequence.

In a cascade configuration, the slave interrupt outputs are connected to the master interrupt request inputs. When a slave request line is activated and afterwards acknowiedged, the master will enable the corresponding slave to release the device routine address during bytes 2 and 3 of INTA. (Byte 2 only for 8086/8088).

The cascade bus lines are normally low and will contain the slave address code from the trailing edge of the first INTA pulse to the trailing edge of the third pulse. Each 8259A in the system must follow a separate initialization sequence and can be programmed to work in a different mode. An EOI command must be issued twice: once for the master and once for the corresponding slave. An address decoder is required to activate the Chip Select (CS) input of each 8259A.

The cascade lines of the Master 8259A are activated only for slave inputs, non-slave inputs leave the cascade line inactive (low).


Figure 11. Cascading the 8259A

## ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin
with Respect to Ground. . . . . . . . . . -0.5 V to +7 V
Power Dissipation ................................... . 1 W
*Notice: Stresses above those listed under "Absofute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D. C. CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \%(8259 \mathrm{~A}-8), \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (8259A, 8259A-2))

Symbol	Parameter	Min	Max	Units	Test Conditions
$V_{\mathrm{IL}}$	Input Low Voltage	-0.5	0.8	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	$2.0^{*}$	$\mathrm{~V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	V	
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage		0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OH}(\mathrm{INT}}$	Interrupt   Voltage	3.5		V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{LI}}$	Input Load Current	-10	+10	$\mu \mathrm{~A}$	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$
$\mathrm{I}_{\mathrm{LOL}}$	Output Leakage Current	-10	+10	$\mu \mathrm{~A}$	$0.45 \mathrm{~V} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{CC}}$
$\mathrm{I}_{\mathrm{CC}}$	$V_{\mathrm{CC}}$ Supply Current		85	mA	
$\mathrm{I}_{\mathrm{LIR}}$	IR Input Load Current		-300	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0$

-NOTE:
For Extended Temperature EXPRESS $V_{\mathbb{H}}=2.3 \mathrm{~V}$.

CAPACITANCE $T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=\mathrm{GND}=0 \mathrm{~V}$

Symbol	Parameter	Min	Typ	Max	Unlt	Test Conditions
$\mathrm{C}_{\mathrm{IN}}$	Input Capacitance			10	pF	$\mathrm{fc}=1 \mathrm{MHz}$
$\mathrm{C}_{1 / \mathrm{O}}$	I/O Capacitance			20	pF	Unmeasured Pins Returned to $\mathrm{V}_{\mathrm{SS}}$

## A.C. CHARACTERISTICS

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \%(8259 \mathrm{~A}-8), \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%(8259 \mathrm{~A}, 8259 \mathrm{~A}-2)$
TIMING REQUIREMENTS

Symbol	Parameter	8259A-8		8259A		8259A-2		Units	Test Conditions
		Min	Max	Min	Max	Min	Max		
TAHRL	AO/CS Setup to RD/INTA $\downarrow$	50		0		0		ns	
TRHAX	AO/CS Hold after RD/INTA $\uparrow$	5		0		0		ns	
TRLRH	RD Pulse Width	420		235		160		ns	
TAHWL	AO/CS Setup to WF $\downarrow$	50		0		0		ns	
TWHAX	AO/CS Hold after WR $\uparrow$	20		0		0		ns	
TWLWH	WR Pulse Width	400		290		190		ns	
TDVWH	Data Setup to WR $\uparrow$	300		240		160		ns	
TWHDX	Data Hold after WR $\uparrow$	40		0		0		ns	
TJLJH	Interrupt Request Width (Low)	100		100		100		ns	See Note 1
TCVIAL	Cascade Setup to Second or Third INTA $\downarrow$ (Slave Only)	55		55		40		ns	
TRHRL	End of RD to Next $\overline{\text { RD }}$ End of INTA to Next INTA within an INTA Sequence Only	160		160		160		ns	
TWHWL	End of WF to Next WR	190		190		190		ns	
*TCHCL	End of Command to Next Command (Not Same Command Type)   End of INTA Sequence to Next INTA Sequence.	500		500		500		ns	

*Worst case timing for TCHCL in an actual microprocessor system is typically much greater than 500 ns (i.e. 8085A $=$ $1.6 \mu \mathrm{~s}, 8085 \mathrm{~A}-2=1 \mu \mathrm{~s}, 8086=1 \mu \mathrm{~s}, 8086-2=625 \mathrm{~ns})$
NOTE:
This is the low time required to clear the input latch in the edge triggered mode.

TIMING RESPONSES

Symbol	Parameter	8259A-8		8259A		8259A-2		Units	Test Conditions
		Min	Max	Min	Max	Min	Max		
TRLDV	Data Valid from RD/INTA $\downarrow$		300		200		120	ns	C of Data Bus = 100 pF   C of Data Bus Max Test $\mathrm{C}=100 \mathrm{pF}$ Min Test $C=15 \mathrm{pF}$ $\mathrm{C}_{\mathbf{I N T}}=100 \mathrm{pF}$ $C_{\text {CASCADE }}=100 \mathrm{pF}$
TRHDZ	Data Float after $\overline{\text { RD/ } / \mathbb{N T A} \uparrow}$	10	200	10	100	10	85	ns	
TJHIH	Interrupt Output Delay		400		350		300	ns	
TIALCV	Cascade Valid from First INTA $\downarrow$ (Master Only)		565		565		360	ns	
TRLEL	Enable Active from RD $\downarrow$ or INTA $\downarrow$		160		125		100	ns	
TRHEH	Enable Inactive from RD $\uparrow$ or INTA $\uparrow$		325		150		150	ns	
TAHDV	Data Valid from Stable Address		350		200		200	ns	
TCVDV	Cascade Valid to Valid Data		300		300		200	ns	

## A.C. TESTING INPUT/OUTPUT WAVEFORM



## A.C. TESTING LOAD CIRCUIT



## WAVEFORMS

## White



8259A

WAVEFORMS (Continued)
READ/INTA


OTHER TIMING


8259A

WAVEFORMS (Continued)

## INTA sequence



NOTES:
Interrupt output must remain HIGH at least until leading edge of first INTA.

1. Cycle 1 in 8086, 8088 systems, the Data Bus is not active.

Floppy Disk Support Chip Specification

## Floppy Disk Support Chip Specification Contents

Section Page
General Description ..... 1
Pin Description ..... 2
Block Diagram ..... 3
Environmental Specifications ..... 5
DC Electrical Specifications ..... 5
AC Characteristics ..... 6
Timing Diagrams ..... 9

```
Floppy Disk Support Logic
Tandy Part # 8xxxxxx
Jan 29, 1987
Preliminary
1.0 GENERAL DESECRIPTION
1.l The Tandy Part # 8xxxxxx - Floppy Disk Support logic:
 - Generates the clock to the 765 Floppy Disk Controller.
 - Generates the write clock to the Floppy Disk Controller.
 - Generaters step pulses, track 0 indicator, DMA request,
 and FDC interrupt signals.
 - Generates the Read Data and Read Data Window signals.
 - Generates the Write Data to the Floppy Disk.
\begin{tabular}{|c|c|c|c|}
\hline 1-- & CLK16M & +5V & --24 \\
\hline 2-- & WCK & SWITCH & --23 \\
\hline 3-- & FDCCLK & INT+ & --22 \\
\hline 4-- & RDDATA* & DMA/INTE & --21 \\
\hline 5-- & RDD & DRQ & --20 \\
\hline 6-- & RDW & FDCINT & --19 \\
\hline 7-- & FRES/S & FDCDMRQ* & --18 \\
\hline 8-- & RW* / SEEK & PS0 & --17 \\
\hline 9-- & TRK0* & PSI & --16 \\
\hline 10-- & F/TRK0 & WRD & --15 \\
\hline 11-- & STEP* & WRE & --14 \\
\hline 12-- & GND & WRDATA* & --13 \\
\hline
\end{tabular}
FIGURE 1. Pin Assignment
```

PIN \#	PIN NAME	TYPE	DESCRIPTION
1	CLK16M	INPUT	Frequency $=16.0000$ Tolerance $=100 \mathrm{pmm}$
2	WCK	OUTPUT	If $\mathrm{SWITCH}=0$, period $=2$ us, 250 ns pulse   If $\operatorname{SWITCH}=1$, period $=1$ us, 250 ns pulse
3	FDCCLK	OUTPUT	If $\operatorname{SWITCH}=0$, then CLKl6M/4   If $\operatorname{SWITCH}=1$, then CLK16M/2
4	RDDATA	INPUT	Serial data from FDD
5	RDD	OUTPUT	Serial data from FDC
6	RDW	OUTPUT	Read Data Window
7	FRES/S	INPUT	Step pulses to move head to another cylinder
8	RW*/SEEK	INPUT	Specifies seek mode when high
9	TRK0*	INPUT	From FDD, indicating head is on track 0
10	F/TRR0	OUTPUT	To FDC, indicating head is on track 0
11	STEP*	OUTPUT	Moves head of FDD
12	GND		Ground
13	WRDATA*	OUTPUT	Serial Data to FDD
14	WRE	INPUT	Write Enable
15	WRD	INPUT	Serial Data from FDC
16	PS1	INPUT	Write precompensation status
17	PS0	INPUT	Write precompensation status
18	FDCDMRQ*	OUTPUT	DRQ delayed by 1.0 usec.
19	FDCINT	OUTPUT	Interrupt request
20	DRQ	INPUT	FDC DMA Request
21	DMA/INTE	INPUT	DMA request and FDC interrupt enable
22	INT+	INPUT	Interrupt request generated by FDC
23	SWITCH	INPUT	$\begin{aligned} & 0=\text { low density drive } \\ & 1=\text { high density drive } \end{aligned}$
24	$+5 \mathrm{~V}$		+5 Volts



BLOCK DIAGRAM

### 2.0 ENVIROMENTAL SPECIFICATIONS

2.1 Storage temperature: $-65^{\circ} \mathrm{C}$ min., $\quad+150^{\circ} \mathrm{C}$ max.
2.2 Operating temperature: $0^{\circ} \mathrm{C}$ min., $+25^{\circ} \mathrm{C}$ typ, $+70^{\circ} \mathrm{C}$ max.
3.0 DC ELECTRICAL SPECIFICATIONS
3.1 Absolute Maximum Rating:
Voltage on any pin
w.r.t. Ground:
3.2 Operating Electrical Specifications:

Min. Typ. Max. Units
3.2.1 Operating Ambient:

Air Temperatue Range
$\begin{array}{llll}0 & 25 & 70 & { }^{\circ} \mathrm{C}\end{array}$
3.2.2 Power Supplies:

VCC
VSS
ICC

4.5	5.0	5.5	volts
0	0	0	volts   milli-
		amps   milli-   watts	
-10	micro-   amps		
	+10	micro-   amps	

3.2.4 Input voltages:

$3.2 .4 .1$	```Except RDDATA*, TRK* Logic "0" Logic "l"```	2.0		. 8	volts volts
3.2.4.2	RDDATA*, TRK*				
	Positive going threshold		1.8		volts
	Negative going threshold		1.2		volts
	Hysteresis voltage	220			milli-

3.2.5 Output Voltages:
3.2 .5 .1 Except WRDATA*, STEP*
Logic "0" Q 4.0 mA load
Logic "l" @ 4.0 mA load 2.4
3.2.5.2 WRDATA*, STEP*

Logic "O" @ 48 mA . 5 volts
3.2.6 Input Capacitance ( $0.0<$ Vin < 5.0)

All inputs
10 pf
3.2.7 Output Capacitance All loads

50 pf

### 4.0 AC CHARACTERISTICS

4.1 FDCCLK Timing

Parameter
$t_{H}$
$t_{R}, t_{F}$
$t_{L}^{L}$
$t_{C Y}$
4.2 WCK Timing


4.3 WRDATA* Timing

$\mathrm{WCK}_{H}-\mathrm{WE}_{\mathrm{H}}$	20	
$W^{\text {W }} \mathrm{K}_{\text {H }}-\mathrm{WE}_{\text {L }}$	20	
PSD ${ }^{\text {L }}$ L	20	100
WDD	20	100
$W^{W} A_{\text {W }}$		$\mathrm{WCK}_{\mathrm{H}}-50$
WRD ${ }_{\text {w }}$	115	125135
$W^{W} D_{H}^{W}-W R D_{L}$ early	150	250
WDD ${ }_{H}^{H}-W R D_{L}^{L}$ nominal	275	375
WDD ${ }_{H}-\mathrm{WRD}_{L}$ late	400	500

4.4 DMA/INTERRUPT Timing

$\mathrm{I}_{\mathrm{H}}-\mathrm{F} \mathrm{I}_{\mathrm{H}}$		30	nSec
$\mathrm{I}_{\mathrm{H}}^{\mathrm{H}} \mathrm{FI} \mathrm{I}_{\text {H }}$		30	nsec
D ${ }^{\text {I }}$		30	nsec
$\mathrm{WCK}_{\mathrm{H}}-\mathrm{DR} \mathrm{Q}_{\mathrm{H}}$	0		nSec
$\mathrm{WCK}_{L}-\mathrm{DRQ}_{H}$			nSec
$\mathrm{DRQ}_{\mathrm{H}}-\mathrm{FDRQ}_{\mathrm{H}}$	750	1050	nsec
$\mathrm{DRQ}_{\mathrm{L}}-F D R \mathrm{Q}_{\mathrm{L}}$		30	nsec
DI ${ }^{-} \mathrm{FDRQ}_{\text {I }}$		30	nSec
$\mathrm{FCK}_{\mathrm{H}}-\mathrm{FDRQ}_{\mathrm{H}}$		30	nSec

4.5 CONTROL Timing

Parameter	Min. Typ.	Max
$\mathrm{T}_{\mathrm{L}}-\mathrm{FT} \mathrm{T}_{\mathrm{H}}$		30
$\mathrm{T}_{\mathrm{H}}^{\mathrm{L}}$ - $\mathrm{FT}_{\text {H }}$		30
$\mathrm{RS}_{L}-\mathrm{FH}_{L}$		30
$\mathrm{F}_{\mathrm{H}}=\mathrm{S}_{\mathrm{L}}$		30
$\mathrm{F}_{\mathrm{L}}-\mathrm{S}_{\mathrm{H}}^{\mathrm{L}}$		30
$\mathrm{RS}_{\mathrm{L}}-\mathrm{S}_{\mathrm{H}}$		30

4.6 DATA SEPARATOR Timing

$\mathrm{RDA}_{\mathrm{W}}$	200	350	550	nsec
$\mathrm{RDA}_{\mathrm{L}}-\mathrm{RDD}_{\mathrm{H}}$	188		313	nSec
$\mathrm{RDD}_{\mathrm{W}}^{\mathrm{L}} \mathrm{H}^{\text {d }}$	240	250	260	nSec
$\mathrm{RDD}^{-}$-RDW ${ }_{\text {c }}$	850	875	900	nSec
RDW ${ }^{\text {( }}$ ( $)^{\text {W }}$		2.0		$\mu \mathrm{Sec}$
"A"				
$\mathrm{RDA}_{S}$	3062			nSec
$\mathrm{RDW}_{\mathrm{C}}-\mathrm{RDD}_{\mathrm{H}}$	15			nSec
"B"				
$\mathrm{RDA}_{\mathrm{S}}^{\mathrm{RDW}_{\mathrm{C}}^{-\mathrm{RDD}_{\mathrm{H}}}}$	4812		1938	nsec nsec
"C"				
$\mathrm{RDA}_{\mathrm{S}}^{\mathrm{RDW}_{\mathrm{C}}-\mathrm{RDD}_{\mathrm{H}}}$	5062 15			nsec

## FDSL AC TIMING

FIG. 1 FDCCLK


FIG. 2 WCK


FIG. 3 WRITE DATA TIMING.


FIG. 4 DMA/INTERRUPT TIMING.


FIG. 5 CONTROL LOGIC TIMING.


FIG. 6 DATA SEPARATOR TIMING.

## Keyboard Interface Chip Specification Contents

Section Page
General Description ..... 1
Specifications ..... 3

## KEYBOARD INTERFACE SPECIFICATION <br> TANDY PART \# 8075069 <br> MAY 05, 1986

## 1. GENERAL DESCRIPTION

1.1 The Tandy part\# B075069 - Keyboard Interface I.C prouides twa functions:
a. Interface between the system $1 / 0$ bus and keyboard. b. FDC support logic that generates DRIVE SELECT SIGNAL, MOTOR ON SIGNAL, FDC TERMINAL COUNT, FDC RESET and DMA/I.
Figure 1. shows block diagram of Keyboard Interfate chip Flgure 2. shows pin configuration of Keyboard Interface chlp.


Figure 1.

1--KBOCLK	VOD-40
2--K8DOATA	MULTICLK--39
3-KBD日USYB	MULTIDAT-38
4-KEDINT	FAST- -37
5--RSI20	TCH2G-36
6--年S121	PPITIM-35
7-100	DS0--34
e-101	D51--33
7-102	FDCRST-32
10-03	DMA/1-31
11-04	MTRON-30
12-105	FOCTC--29
13-06	SNDCNJL2-28
14--D7	SNDCNTLD-27
15--F10C58	SNOCNTL1-26
16--BADD	TMROUT2--25
17-EAO1	PC4--24
18-EIORB	SYSRSTB- 23
19-610WE	KBDRSTB--22
20-U5S	DORCLK-21

Figure 2.

## 1．2 DESCRIPTION OF EACH PINS：

Pin\＃	Pin Name	Type	Description
1	KBOCLK	input	Keyboard clock
2	KBDDATA	input	Keyboard data
3	KBDBUSYB	output	Keyboard busy signal
4	KBDINT	－utput	Keyboard interrupt signal
5	RSIZO	input	Manachrome／calar monitor mode
6	RSIZ1	input	Reserved
7	DO	input／autput	Data 1／0 line
8	D1	input／ロutput	Data I／O line
9	D2	input／output	Data I／O line
10	D3	input／هutput	Data I／0 line
11	D4	input／output	Data I／O line
12	DS	input／output	Data 1／0 line
13	D6	input／autput	Data 1／0 line
14	D7	input／autput	Data 1／0 line
15	PIOCSB	input	Chip select strabe
16	BADI	input	CPU address line
17	BAO1	input	CPU address line
18	BIORB	input	CPU 1／O read strobe
19	BIOWB	input	CPU 1／0 write strabe
$2 \square$	VSS	graund	Ground
21	DORCLK	input	Decode latch clock
22	KBDRSTB	output	Keyboard reset signal
23	SYSRSTB	input	System reset signal
24	PC4	input	Video memary size mode
25	TMROUTZ	input	Timer counter fram 8253 out2
26	SNDCNTL1	םutput	Sound control 1
27	SNDCNTLI	唯保	Sound cantral 0
28	SNDCNTL2	qutput	Sound contral 2
29	FDCTC	Qutput	FDC terminal count
30	MTRON	वutput	Motor ON signal ta disk drive
31	DMA／I	qutput	DMA Request \＆FDC Interrupt enable
32	FDCRSTB	qutput	FDC reset signal
33	DS1	－utput	Drive select 1 signal
34	DSO	output	Drive select 0 signal
35	PPITIM	－utput	Timer Video signal
36	TCH2G	－utput	Timer chanmel 2 gate
37	FAST	input	4．77Mhz or 7.16 Mhz mode select
38	MULTIDAT	－utput	Multi－data
39	MULTICLK	qutput	Multi－c！ack
40	VDD	power	＋5 Volt Power Supply

2. ENUIRONMENTAL SPECIFICATIONS
2.1 Storage Temperature -65 C to 150 C
2.2 Operating Temperature $\square \subset$ to 70 C

## 3. ELECTRICAL SPECIFICATIONS

3.1 Absalute Maximum Rating

3.2 D.C. Electrical Characteristics

Symb.	Parameter	Min.	Typ.	Max.	Units	Cond
VDD	Supply Voltage	4.5	5.0	5.5	Valts	
Ife(q)	Quiescent current			50	UA	
Icc (0)	Operating Current			40	mA	
Vil	Input Low Voltage			0.0	Volts	TTL inputs
Vih	Input High Voltage	2.0			Volts	TTL inputs
I in	Input Leakage	-10		10	$\omega A$	
cin	Input Capacitance			7	pF	
Vol   Voh	Output Low Valtage Output High Voltage	2.4		0.4	Volts Volts	$\begin{aligned} & 04 \mathrm{~mA} \\ & \mathrm{a}-2 \mathrm{~mA} \end{aligned}$
102	High Impedance Leak	$-10$		10	$u A$	

3.3 A.C Electrical Characteristics
3.3.1 Write Cycle


DATA


Symb. Parameter	Min. Typ. Max. Units Cond.		
-	Masu	Adress Setup	15
Tas	nS		
Twpw Write Pulse Width	69	$n S$	
Tdsu Data Setup	29	$n S$	
Tdh	Data Hald	6	$n S$



## Description

The $\mu \mathrm{PD} 8035 \mathrm{HL}$ and the $\mu \mathrm{PD} 8048 \mathrm{H}$ make up the $\mu$ PD8048H family of single-chip 8-bit microcomputers. The processors in this family differ only in their internal program memory options: the $\mu \mathrm{PD} 8048 \mathrm{H}$ with $1 \mathrm{~K} \times 8$ bytes of mask ROM and the $\mu$ PD8035HL with external memory.
The NEC $\mu \mathrm{PD} 8035 \mathrm{HL}$ and $\mu \mathrm{PD} 8048 \mathrm{H}$ are single component, 8 -bit, parallel microprocessors using $n$-channel silicon gate MOS technology. The $\mu$ PD8048H family of components functions efficiently in control as well as in arithmetic applications. Standard logic function implementation is facilitated by the large variety of branch and table look-up instructions.
The $\mu \mathrm{PD} 8035 \mathrm{HL} / 48 \mathrm{H}$ instruction set comprises 1 and 2 byte instructions with over $70 \%$ of them single-byte. Execution requires only 1 or 2 cycles per instruction and over $50 \%$ are single-cycle instructions.
The functions of the $\mu \mathrm{PD} 8048 \mathrm{H}$ series of microprocessors can easily be expanded using standard 8080A/8085A peripherals and memories.
The $\mu \mathrm{PD} 8048 \mathrm{H}$ contains the following functions usually found in external peripheral devices: $1024 \times 8$ bits of ROM program memory; $64 \times 8$ bits of RAM data memory; 27 I/O lines; an 8 -bit interval timer/event counter; oscillator and clock circuitry.

The $\mu \mathrm{PD} 8035 \mathrm{HL}$ is intended for applications using external program memory only. It contains all the features of the $\mu$ PDD8048H except the $1024 \times 8$-bit internal ROM. The external program memory can be implemented using standard 8080A/8085A memory products.

## Features

Fully compatible with industry standard 8048/8748/8035$2.5 \mu \mathrm{~s}$ cycle time: all instructions 1 or 2 bytesInterval timer/event counter$64 \times 8$-byte RAM data memoryExternal and timer interrupts96 instructions: $70 \%$ single byte27 I/O linesInternal clock generator8 level stackCompatible with 8080A/8085A peripheralsHMOS silicon gate technologySingle +5 V power supplyOrdering Information

Part   Number	Package Type	Max Frequency   of Operalion
$\mu$ PD8035HLC	40 -pin plastic DIP	6 MHz
$\mu$ PO8048HC	40 -pin plastic DIP	6 MHz

Pin Configuration


Pin Identification

Me.	Symbol	Punction
1	T0	Test 0 input/output
2	XTAL1	Grystal 1 input
3	XTAL2	Crystal 2 input
4	RESET	Reset input
5	$\overline{S S}$	Single step input
6	INT	Interrupt input
7	EA	Externat access input
8	$\overline{\mathrm{RD}}$	Read output
9	PSEN	Program store enable output
10	Wh	Write output
11	ALE	Address latch enable output
12-19	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$	Bidirectional data bus
20	$V_{S S}$	Ground
21-24, 35-38	$\mathrm{P}_{2}{ }^{-\mathrm{P}^{-}}$	Quasi-bidirectional Port 2
25	PROG	Program output

## Pin Identification (cont)

Mo.	Symbol	Function
26	$\mathrm{~V}_{\mathrm{DD}}$	RAM power supply
$27-34$	$\mathrm{Pi}_{0}-\mathrm{P1}_{7}$	Quasi-bidirectional Port 1
39	$\mathrm{T1}$	Test 1 input
40	$\mathrm{~V}_{\mathrm{CC}}$	Primary power supply

## Pin Functions

## XTAL 1 (Crystal 1)

XTAL1 is one side of the crystal, LC, or external frequency source (non-TTL-compatible $\mathrm{V}_{\mathrm{IH}}$ ).

## XTAL 2 (Crystal 2)

XTAL2 is the other side of the crystal or frequency source.

## TO (Test 0)

TO is the testable input using conditional transfer functions JT0 and JNTO. The internal state clock (CLK) is available to TO using the ENTO CLK instruction. TO can also be used during programming as a testable flag.

## T1 (Test 1)

T1 is the testable input using conditional transfer functions JT1 and JNT1. T1 can be made the counter/timer input using the STRT CNT instruction.

## RESET (Reset)

An active low on $\overline{R E S E T}$ initializes the processor. $\overline{\operatorname{RE}}$ $\overline{S E T}$ is also used for PROM programming verification and power-down (non-TTL compatible $\mathrm{V}_{\mathrm{IH}}$ ).

## $\overline{\mathbf{S S}}$ (Single Step)

An active low on $\overline{\mathrm{SS}}$, together with ALE, causes the processor to execute the program one step at a time.

## $\overline{\mathrm{INT}}$ (Interrupt)

An active low on $\overline{\mathbb{N T}}$ starts an interrupt if interrupts are enabled. A reset disables an interrupt. INT can be tested with the JNI instruction and, depending on the results, a jump to the specified address can occur.

## EA (External Access)

An active high on EA disables internal program memory and fetches and accesses external program memory. EA is used for system testing and debugging.

## $\overline{\mathrm{BD}}$ (Read)

FD will pulse low when the processor periorms a bus read. An active low on $\overline{R D}$ enables data onto the processor bus from a peripheral device and functions as a read strobe for external data memory.

## WR (Write)

$\overline{\text { WR }}$ will pulse low when the processor performs a bus write. WR can also function as a write strobe for external data memory.

## $\overline{\text { PSEN }}$ (Program Store Enable)

$\overline{\text { PSEN }}$ becomes active only during an external memory fetch. (Active low).

## ALE (Address Latch Enable)

ALE occurs at each cycle. ALE can also be used as a clock output. The falling edge of ALE addresses external data memory or external program memory.

## $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ (Data Bus)

$D B_{0}-D B_{7}$ is a bidirectional port. Synchronous reads and writes can be performed on this port using $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ strobes. The contents of the $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ bus can be latched in a static mode.
During an external memory fetch, $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ output the low-order eight bits of the memory address. PSEN fetches the instruction. $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ also output the address of an external data memory fetch. The addressed data is controlled by ALE, $\overline{R D}$, and $\overline{W R}$.

## $\mathrm{P1}_{0}-\mathrm{P1}_{7}$ (Port 1)

$\mathrm{P}_{0}-\mathrm{Pl}_{7}$ is an 8 -bit quasi-bidirectional port.

## $\mathrm{P2}_{2}-\mathrm{P}_{27}$ (Port 2)

$\mathrm{P}_{2}-\mathrm{P} 2_{7}$ is an 8 -bit quasi-bidirectional port. $\mathrm{P}_{2}{ }_{0}-\mathrm{P}_{2}$ output the high-order four bits of the address during an external program memory fetch. $\mathrm{P}_{2}-\mathrm{P}_{2}$ also function as a 4-bit I/O bus for the $\mu \mathrm{PD} 82 \mathrm{C} 43 \mathrm{I} / \mathrm{O}$ port expander.

## $\overline{\text { PROG }}$ (Program Pulse)

$\overline{\text { PROG }}$ is used as an output pulse during a fetch when interfacing with the $\mu$ PD82C43 I/O port expander.

## $\mathbf{V}_{\mathrm{CC}}$ (Primary Power Supply)

$V_{C C}$ is the primary power supply. $V_{C C}$ is +5 V during normal operation.

## VDD (RAM Power Supply)

$V_{D D}$ must be set to +5 V for normal operation. $V_{D D}$ supplies power to the internal RAM during standby mode.
$\mathrm{V}_{\mathrm{SS}}$ (Ground)
$V_{S S}$ is ground potential.

## Block Diagram



## Loglc Symbol



## Absolute Maximum Ratings

$T_{A}=25^{\circ} \mathrm{C}$

Operating temperature, $\mathrm{T}_{\text {OPT }}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on any pin, $\mathrm{V}_{1 / 0}$	-0.5 V to +7 V (Note 1)
Power dissipation, $\mathrm{P}_{\mathrm{D}}$	1.5 W
Note:	
(i) With respect to ground.	

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## DC Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=V_{D D}=+5 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}$

Parambier	Symbol	Units			Unit	Tout Conditions
		min	TYP	max		
Input low   voltage (All except XTAL1, XTAL2)	VIL	-0.5		0.8	V	
Input low voltage (RESET, $\mathrm{X} 1, \mathrm{X} 2$ )	$\mathrm{V}_{\text {ILI }}$	-0.5		0.8	$V$	
Input high voltage (All except XTAL1, XTAL2, RESET)	$\mathbf{V}_{\mathbf{H}}$	2.0		$V_{\text {cc }}$	V	
Input high voltage (XTALI, XTAL2, RESET)	$\mathrm{V}_{\mathrm{H} 1}$	3.8		$V_{C C}$	V	
Output low voltage (bus)	$\mathrm{V}_{01}$			0.45	$v$	$10 \mathrm{LL}=2.0 \mathrm{~mA}$
Output Iow voltage ( $\overline{R D}$. WR, FSEN, ALE)	$\mathrm{V}_{0.1}$			0.45	V	$10 \mathrm{~L}=2.0 \mathrm{~mA}$
Output low voltage (PROG $)$	$\mathrm{V}_{0} 2$			0.45	V	$10 \mathrm{~L}=2.0 \mathrm{~mA}$

DC Characteristics (cont)
$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=\mathrm{V}_{D D}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}$

Parameter	Symbol	Lmits			Unit	Toat Conditions
		Imm	7 p	max		
Output low voltage (all other outputs)	$V_{013}$			0.45	V	$\mathrm{I}_{0 \mathrm{~L}}=2.0 \mathrm{~mA}$
Output high voltage (bus)	$\mathrm{V}_{\mathrm{OH}}$	2.4			$V$	$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Output high voltage (RD), WR, PSEN, $\overline{\text { ALE }}$	$\mathrm{V}_{\mathrm{OH} 1}$	2.4			V	$\mathrm{IOH}^{2}=-400 \mu \mathrm{~A}$
Output high voltage (all other outputs)	$\mathrm{V}_{\mathrm{OH} 2}$	2.4			V	$\mathrm{IOH}_{\mathrm{OH}}=-40 \mu \mathrm{~A}$
Imput leakage current (T1, /NT)	$I_{I L}$			$\pm 10$	$\mu \mathrm{A}$	$V_{S S} \leqslant V_{I N} \leqslant V_{C C}$
$\begin{aligned} & \text { Input leakage } \\ & \text { current } \\ & \text { ( } \mathrm{PP}_{0}-\mathrm{P} 1_{7}, \\ & \mathrm{P} 20-\mathrm{P} 27, \mathrm{EA} \text {, } \\ & \mathrm{SS} \text { ) } \end{aligned}$	IL11			-500	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C} \geqslant V_{\text {IN }} \geqslant \\ & V_{S S}+0.45 \mathrm{~V} \end{aligned}$
Output leakage current (bus, TO, high impedance state)	10 L			$\pm 10$	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C} \geqslant V_{\mathbb{N N}} \geqslant \\ & V_{S S}+0.45 \mathrm{~V} \end{aligned}$
Power down supply current	100		4	8	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Total supply current	$\begin{aligned} & \mathrm{I}_{\mathrm{ODO}} \\ & \mathrm{ICC} \\ & \hline \end{aligned}$		50	80	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
RAM standby voltage	$V_{D D}$	2.2		5.5	V	Standby mode.   Reset $<0.6 \mathrm{~V}$

## AC Characterlstics

$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parmanter	Symbol	Lmits			Unit	Test Condtitions
		Win	TyP	Max		
ALE puise width		410			ns	(Note 1)
Address setup to ALE	$t_{\text {AL }}$	220			ns	(Note 1)
Address hold from ALE	tha	120			ns	(Note 1)
Control puise width (RD, WR)	${ }^{\text {c Ccl }}$	1050			ns	(Note 1)
Control pulse width (PSEN)	tcC	800			ns	(Note 1)
Data setup WR	tow	880			ns	(Note 1)
Data hold after WR	two	110			ns	(Note 2)
$\begin{aligned} & \text { Data hold ( } \overline{R D}, \\ & \overline{P S E N}) \end{aligned}$	IOR	0		220	ns	(Note 1)
$\overline{\overline{R D}}$ to data in	$\mathrm{t}_{\text {RD1 }}$			800	ns	(Note 1)
PSEN to data in	$\mathrm{t}_{\text {DD2 }}$			550	ns	(Note 1)

AC Characteristics (cont)

Parameter	Symbor	Linits			Unh	Toat Conditions
		Min	7yp	Max		
Address setup to WR	taw	680			fis	(Note 1)
Address setup   to data ( $\overline{\mathrm{K}}$ )	${ }_{\text {tap1 }}$			1570	ns	(Note 1)
Address setup   to data (PSEN)	$\mathrm{t}_{\text {AD2 }}$			1090	ns	(Note 1)
Address float to $\overline{\mathrm{RD}}, \overline{\mathrm{W}}$	$t_{\text {AFCl }}$	290			ns	(Note 1)
Address float to PSEN	$\mathrm{t}_{\text {AFC2 }}$	40			ns	(Note 1)
ALE to control ( $\overline{\mathrm{DD}}, \mathrm{WR}$ )	t AFCl	420			ns	(Note 1)
ALE 10 control (PSEN)	${ }_{\text {LafC2 }}$	170			ns	(Note 1)
Control to ALE (드․ WR, $\overline{\text { PROG }}$ )	$t_{C A 1}$	120			ns	(Note 1)
$\begin{aligned} & \text { Control to ALE } \\ & \text { ("िSEN) } \end{aligned}$	$\mathrm{t}_{\text {ca2 }}$	620			ns	(Note 1)
Port control setup to $\overline{\text { PROG }}$	$\mathrm{t}_{\mathrm{GP}}$	210			ns	(Note 1)
Port control hold to $\overline{\text { PROG }}$	tpc	460			ns	(Note 1)
PROG to P2 input valid	tPR			1300	лs	(Note 1)
Input data hold from PROG	$\mathrm{t}_{\text {PF }}$			250	ns	(Note 1)
Dutput data setup	${ }^{\text {toP }}$	850			ns	(Note 1)
Output data hold	$t_{\text {PD }}$	200			ns	(Note 1)
PROG puise width	tpp	1500			ns	(Note 1)
Port $21 / 0$ data setup to ALE	tpl	450			$n \mathrm{~s}$	(Note 1)
Port $21 / 0$ data hold to ALE	LLP	150			ns	(Note 1)
Port output from ALE	tpv			850	ns	(Note 1)
Cycie time	${ }^{\text {t }} \mathrm{CY}$	2.5		15	$\mu \mathrm{S}$	(Note 1)
TO rep rate	topRR	500			ns	(Note 1)

## Note:

(1) Control outputs: $\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}$, bus outputs: $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
(2). Bus high impedance, load $=20 \mathrm{pF}$

## Timing Waveforms

Instruction Fetch from External Memory


Read from External Data Memory


Write to External Memory


## Timing Waveforms (cont)

## Port 2 Timing



## Bus Timing Requirements

Symbol	Fiming Formula	Min/Max	Unit
$\mathrm{ILL}^{\text {l }}$	$(7 / 30) \mathrm{I}_{\mathrm{Cr}}-770$	Min	ns
$t_{\text {AL }}$	$(2 / 15)$ tcr -110	Min	ns
liA	$(1 / 15) \mathrm{t}_{\mathrm{CY}}-40$	Min	ns
$\mathrm{tcCl}^{\text {cher }}$	(1/2) t $\mathrm{tcy}^{\text {- } 200}$	Min	ns
tcc2	$(2 / 5) \mathrm{C}$ CY-200	Min	ns
$\mathrm{t}_{\text {DW }}$	$(13 / 30) \mathrm{t}_{\text {CY }}-200$	Min	ns
two	$(1 / 15) \mathrm{t}_{\text {cr }}-50$	Min	ns
$t_{\text {DR }}$	(1/10) $\mathrm{ICr}^{-30}$	Max	ns
tro1	$(2 / 5) \mathrm{t}_{\mathrm{Cr}}-200$	Max	ns.
$\mathrm{t}_{\mathrm{RO} 2}$	$(3 / 10) \mathrm{t}_{\text {Cr }}-200$	Max	ns
taw	(1/3) t $\mathrm{t}_{\text {c }}-150$	Min	ns
tad1	(11/15) tcy-250	Max	ns
$t_{\text {AD2 }}$	$(8 / 15) \mathrm{t}_{\mathrm{CY}}-250$	Max	ns
${ }_{\text {taFC1 }}$	$(2 / 15) \mathrm{tcy}^{\text {c }} 40$	Min	ns
$t_{\text {afC2 }}$	$(1 / 30) \mathrm{trr}-40$	Min	ns
${ }^{\text {L LaFC1 }}$	(1/5) t Cr -75	Min	ns
t LAFC2	$(1 / 10) \mathrm{ICY}^{\text {- } 75}$	Min	ns
${ }_{\text {CCA1 }}$	$(1 / 15)$ I $\mathrm{CY}-40$	Min	ns
${ }^{\text {c }}$ CA2	$(4 / 15)$ ter -40	Min	ns
${ }_{\text {t }}^{\text {cP }}$	(1/10) $\mathrm{Cly}_{\mathrm{Cr}} 40$	Min	ns
${ }_{\text {tPC }}$	$(4 / 15) \mathrm{t}_{\mathrm{c} Y}-200$	Min	ns
tPR	(17/30) $\mathrm{ICY}_{\text {C }} 120$	Max	ns
${ }_{\text {tPF }}$	$(1 / 10) \mathrm{t}_{\mathrm{Cr}}$	Max	ns
$t_{\text {d }}$	(2/5) $\mathrm{t}_{\mathrm{CY}}-150$	Min	ns
tPD	$(1 / 10) \mathrm{t}_{\mathrm{Cr}}-50$	Min	ns
tpp	$(7 / 10) \mathrm{tcy}-250$	Min	ns
$t_{\text {PL }}$	(4/15) $\mathrm{I}_{\mathrm{CY}}-200$	Min	ns
tLP	$(1 / 10) \mathrm{t}_{\text {cy }}-100$	Min	ns
tpy	$(3 / 10) \mathrm{t}_{\mathrm{cr}}-100$	Max	ns
topRR	$(3 / 15) t_{\text {cy }}$	Min	ns
ter	6 MHz		$\mu \mathrm{S}$


Mnamonic	Function	Description	Operation Code								Cycles	Bytos	Flags			
			$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$			c	AC	FO	F1
Accumulator																
ADD A. \# data	$(\mathrm{A})-(\mathrm{A})+$ data	Add immediate the specified data to the accumulator.	$\begin{aligned} & 0 \\ & \mathbf{d}_{7} \end{aligned}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} \mathbf{0} \\ d_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & d_{1} \end{aligned}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2	-			
$\overline{A D O A}$, Rr	$\begin{aligned} & (A)-(A)+(R r) \\ & r=0-7 \end{aligned}$	Add contents of designated register to the accumulator.	0	1	1	0	1	「	r	r	1	1	-			
ADDA.@Rr	$\begin{aligned} & (A)-(A)+((\mathrm{Rr})) \\ & r=0-1 \end{aligned}$	Add indirect the contents of the data memory location to the accumulator.	0	1	1	0	0	0	0	r	1	1	-			
ADDC A, \# data	(A) $-(\mathrm{A})+(\mathrm{C})+$ data	Add immediate with carry the specified data to the accumulator.	$\begin{aligned} & 0 \\ & d_{7} \end{aligned}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & d_{1} \end{aligned}$	$\begin{gathered} \overline{1} \\ d_{0} \end{gathered}$	2	2	-			
ADDCA, Rr	$\begin{aligned} & \text { (A) }-(A)+(C)+(R r) \\ & \text { for } r=0-7 \end{aligned}$	Add with carry the contents of the designated register to the accumulator.	0	1	1	1	1	$r$	r	r	1	1	-			
$\overline{A D O C A, ~}{ }^{\text {ar }}$	$\begin{aligned} & (A)-(A)+(C)+((\mathrm{Rr})) \\ & \text { for } r=0-1 \end{aligned}$	Add indirect with carry the contents of data memory location to the accumulator.	0	1	1	1	0	0	0	r	1	1	-			
ANL A, \# data	(A) - (A) AND data	Logical AND specified immediate data with accumulator.	$\begin{gathered} 0 \\ d_{7} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{d}_{6} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} \hline 0 \\ d_{3} \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 \\ \mathbf{d}_{2} \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & d_{1} \end{aligned}$	$\begin{gathered} \mathbf{1} \\ \mathrm{d}_{0} \\ \hline \end{gathered}$	2	2				
ANL A, Rr	$\begin{aligned} & (\mathrm{A})-(\mathrm{A}) \mathrm{AND}(\mathrm{Rr}) \\ & \mathrm{r}=0-7 \end{aligned}$	Logical AND contents of designated register with accumulator.	0	1	0	1	1	1	「	r	1	1				
ANLA, © Rr	$\begin{aligned} & (A)-(A) \text { AND }((\mathrm{Ar})) \\ & r=0-1 \end{aligned}$	Logical AND indirect the contents of data memory with accumulator.	0	1	0	1	0	0	0	r	1	1				
CPLA	(A) $-\mathrm{NOT}(\mathrm{A})$	Complement the contents of the accumulator.	0	0	1	1	0	1	1	1	1	1				
CLRA	(A) -0	Clear the contents of the accumulator.	0	0	1	0	0	1	1	1	1	1				
DAA		Decimal adjust the contents of the accumulator.	0	1	0	1	0	1	1	1	1	1	-			
DEC A	(A) $-(\mathrm{A})-1$	Decrement by 1 the accumulator's contents.	0	0	0	0	0	1	1	1	1	1				
INC A	(A) $-(A)+1$	Increment by 1 the accumulator's contents.	0	0	0	1	0	1	1	1	1	1				
ORL A, \# data	$(A)-(A) O R$ data	Logical OR specitied immediate data with accumulator.	$\begin{gathered} 0 \\ d_{7} \end{gathered}$	$\begin{gathered} 1 \\ d_{6} \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & d_{5} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{4} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{3} \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{~d}_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & d_{1} \\ & \hline \end{aligned}$	1   $d_{0}$	2	2				
$\overline{\text { ORL A, Rr }}$	$\begin{aligned} & (A)-(A) O R(R r) \text { for } \\ & r=0-7 \end{aligned}$	Logical OR contents of designated register with accumulator.	0	1	0	0	1	r	r	r	1	1				
ORLA, © Rr	$\begin{aligned} & \text { (A) }-(A) O R((\mathrm{Rr})) \text { for } \\ & r=0-1 \end{aligned}$	Logical OR indirect the contents of data memory location with accumulator.	0	1	0	0	0	0	0	r	1	1				
RLA	$\begin{aligned} & (A N+1)-(A N) ; N=0-6 \\ & \left(A_{0}\right)-\left(A_{7}\right) \end{aligned}$	Rotate accumulator left by 1 bit without carry.	1	1	1	0	0	1	1	1	1	1				
$\overline{\text { RLCA }}$	$\begin{aligned} & (A N+1)-(A N): N=0-6 \\ & \left(A_{0}\right)-(C) \\ & (C)-\left(A_{7}\right) \end{aligned}$	Rotate accumulator left by 1 bit through carry.	1	1	1	1	0	1	1	1	1	1	$\bullet$			
RRA	$\begin{aligned} & (A N)-(A N+1) ; N=\overline{0-6} \\ & \left(A_{7}\right)-\left(A_{0}\right) \end{aligned}$	Rotate accumulator right by 1 bit without carry.	0	1	1	1	0	1	1	1	1	1				

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Amomonte} \& \multirow[b]{2}{*}{Function} \& \multirow[b]{2}{*}{Deseription} \& \multicolumn{8}{|c|}{Operation Code} \& \multirow[b]{2}{*}{Cycles} \& \multirow[b]{2}{*}{Bytes} \& \multicolumn{4}{|c|}{Flogs} \\
\hline \& \& \& \(\mathrm{D}_{7}\) \& \(\mathrm{D}_{6}\) \& \(\mathrm{D}_{5}\) \& \(\mathrm{D}_{4}\) \& \(\mathrm{D}_{3}\) \& \(\mathrm{D}_{2}\) \& \(0_{1}\) \& \(\mathrm{D}_{0}\) \& \& \& c \& AC \& P0 \& P1 \\
\hline \multicolumn{17}{|l|}{Accumuldoter (cont)} \\
\hline RRC A \& \[
\begin{aligned}
\& (A N)-(A N+1) ; N=0-6 \\
\& \left(A_{7}\right)-(C) \\
\& (C)-\left(A_{0}\right)
\end{aligned}
\] \& Rotate accumulator right by 1 bit through carry. \& 0 \& 1 \& 1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \& \& \& \\
\hline SWAPA \& \(\left(A_{4}-A_{7}\right)-\left(A_{0}-A_{3}\right)\) \& Swap the two 4-bit nibbles in the accumulator. \& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& \\
\hline XRL A, \# data \& \((\mathrm{A}) \sim(\mathrm{A}) \times \mathrm{OR} \mathrm{data}\) \& Logical XOR specified immediate data with accumulator. \& \[
\begin{gathered}
1 \\
d_{7}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{6}
\end{gathered}
\] \& \[
\begin{aligned}
\& 0 \\
\& d_{5}
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& \boldsymbol{d}_{4}
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& d_{3}
\end{aligned}
\] \& \[
\begin{gathered}
0 \\
d_{2}
\end{gathered}
\] \& \[
\begin{aligned}
\& 1 \\
\& d_{1}
\end{aligned}
\] \& \[
\begin{gathered}
1 \\
d_{0}
\end{gathered}
\] \& 2 \& 2 \& \& \& \& \\
\hline XRLA, Rr \& \[
\begin{aligned}
\& (\mathrm{A}) \leftarrow(\mathrm{A}) \times O R(\mathrm{Rr}) \text { for } \\
\& \mathrm{r}=0-7
\end{aligned}
\] \& Logical XOR contents of designated register with accumulator. \& 1 \& 1 \& 0 \& 1 \& 1 \& 1 \& 「 \& r \& 1 \& 1 \& \& \& \& \\
\hline XRLA, @ Rr \& \[
\begin{aligned}
\& (A)-(A) \times O R((\mathrm{Rr})) \text { for } \\
\& r=0-1
\end{aligned}
\] \& Logical XOR indirect the contents of data memory location with accumulator. \& 1 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& \& \& \& \\
\hline \multicolumn{17}{|l|}{Branch} \\
\hline OJNZ \(\mathrm{Rr}_{1}\) addr \& \[
\begin{aligned}
\& (\mathrm{Rr})-(\mathrm{Rr})-1 ; \mathrm{r}=0-7 \\
\& \mathrm{If}(\mathrm{Rr})=0 ; \\
\& \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-\text { addr }
\end{aligned}
\] \& Decrement the specified register and test contents. \& \[
\begin{gathered}
1 \\
a 7
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{6}
\end{gathered}
\] \& \[
\begin{aligned}
\& 1 \\
\& a_{5}
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& a_{4}
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& a_{3}
\end{aligned}
\] \& \[
\begin{gathered}
\mathbf{r} \\
a_{2}
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { r } \\
\& a_{1}
\end{aligned}
\] \& \[
\begin{gathered}
\mathbf{r} \\
a_{0}
\end{gathered}
\] \& 2 \& 2 \& \& \& \& \\
\hline JBb addr \& \[
\begin{aligned}
\& \left(\mathrm{PC}_{0}-P_{7}\right)-\operatorname{addr} \text { if } \mathrm{B}_{\mathrm{b}}=1 \\
\& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{B}_{\mathrm{b}}=0
\end{aligned}
\] \& Jump to specitied address if accumulator bit is set. \& \[
\begin{aligned}
\& \mathrm{b}_{2} \\
\& \mathrm{a}_{7}
\end{aligned}
\] \& \[
\begin{aligned}
\& \overline{b_{1}} \\
\& a_{6}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{b}_{0} \\
\& \mathrm{a}_{5}
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& a_{4}
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& a_{3}
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& a_{2}
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 1 \\
\& a_{1}
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 0 \\
\& a_{0}
\end{aligned}
\] \& 2 \& 2 \& \& \& \& \\
\hline JC addr \& \[
\begin{aligned}
\& \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-\text { addr if } \mathrm{C}=1 \\
\& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{C}=0
\end{aligned}
\] \& Jump to specitied address if carry flag is set. \& \[
\begin{aligned}
\& 1 \\
\& a_{7}
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& a_{6}
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& a_{5}
\end{aligned}
\] \& \[
\begin{gathered}
1 \\
a_{4}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{3}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
\mathrm{a}_{2}
\end{gathered}
\] \& \[
\begin{aligned}
\& 1 \\
\& a_{1}
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 0 \\
\& a_{0}
\end{aligned}
\] \& 2 \& 2 \& \& \& \& \\
\hline JF0 addr \& \[
\begin{aligned}
\& \left(\mathrm{PC}_{0}-P_{7}\right)-\text { addr if } F 0=1 \\
\& (P C)-(P C)+2 \text { if } F 0=0
\end{aligned}
\] \& Jump to specitied address if flag F0 is set. \& \[
\begin{aligned}
\& 1 \\
\& a_{7}
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& a_{6}
\end{aligned}
\] \& \[
\begin{gathered}
1 \\
a_{5}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{4}
\end{gathered}
\] \& \[
\begin{aligned}
\& 0 \\
\& a_{3}
\end{aligned}
\] \& \[
\begin{gathered}
1 \\
a_{2}
\end{gathered}
\] \& \[
\begin{aligned}
\& 1 \\
\& a_{1}
\end{aligned}
\] \& \[
\begin{gathered}
\hline 0 \\
a_{0} \\
\hline
\end{gathered}
\] \& 2 \& 2 \& \& \& \& \\
\hline JF1 addr \& \[
\begin{aligned}
\& \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-\text { addr if } \mathrm{F}=1 \\
\& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{F}=0
\end{aligned}
\] \& Jump to specified address if flag F1 is set. \& \[
\begin{aligned}
\& \hline \mathbf{0} \\
\& \mathbf{a}_{7}
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& a_{6}
\end{aligned}
\] \& \[
\begin{gathered}
1 \\
a_{5}
\end{gathered}
\] \& \[
\begin{aligned}
\& 1 \\
\& a_{4}
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& \mathbf{a}_{3}
\end{aligned}
\] \& \[
\begin{gathered}
1 \\
a_{2}
\end{gathered}
\] \& \[
\begin{aligned}
\& 1 \\
\& a_{1}
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 0 \\
\& a_{0}
\end{aligned}
\] \& 2 \& 2 \& \& \& \& \\
\hline JMP addr \& \[
\begin{aligned}
\& \left(\mathrm{PC}_{8}-\mathrm{PC}_{10}\right)-\left(\text { addr }_{8}-\text { addr }_{10}\right) \\
\& \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-\left(\text { addr }_{0} \text { addd }_{7}\right) \\
\& \left(\mathrm{PC}_{11}\right)-\mathrm{DBF} \\
\& \hline
\end{aligned}
\] \& Direct jump to specified address within the 2 K address block. \& \[
\begin{aligned}
\& a_{10} \\
\& a_{7}
\end{aligned}
\] \& \[
\begin{aligned}
\& a_{9} \\
\& a_{6}
\end{aligned}
\] \& \[
\begin{aligned}
\& a_{8} \\
\& a_{5}
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& a_{4}
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& a_{3}
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& a_{2}
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& \mathbf{a}_{1}
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& a_{0}
\end{aligned}
\] \& 2 \& 2 \& \& \& \& \\
\hline JMPP @ A \& \(\left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-(\mathrm{A})\) ) \& Jump indirect to specified address with address page. \& 1 \& 0 \& 1 \& 1 \& 0 \& 0 \& 1 \& 1 \& 2 \& 1 \& \& \& \& \\
\hline JNC addr \& \[
\begin{aligned}
\& \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-\text { addr if } \mathrm{C}=0 \\
\& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{C}=1
\end{aligned}
\] \& Jump to specified address if carry flag is low. \& \[
\begin{gathered}
1 \\
a_{7} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{6} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{5} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{4} \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& 0 \\
\& a_{3}
\end{aligned}
\] \& \[
\begin{gathered}
1 \\
a_{2}
\end{gathered}
\] \& \[
\begin{array}{r}
1 \\
a_{1} \\
\hline
\end{array}
\] \& \& 2 \& 2 \& \& \& \& \\
\hline JNI addr \& \[
\begin{aligned}
\& \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-\text { addr if } \mathrm{I}=0 \\
\& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{I}=1
\end{aligned}
\] \& Jump to specified address if interrupt is low. \& \[
\begin{gathered}
1 \\
a_{7}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{6}
\end{gathered}
\] \& \[
\begin{aligned}
\& 0 \\
\& a_{5}
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& a_{4}
\end{aligned}
\] \& \[
\begin{gathered}
0 \\
a_{3}
\end{gathered}
\] \& \[
\begin{aligned}
\& 1 \\
\& a_{2}
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& a_{1}
\end{aligned}
\] \& \& 2 \& 2 \& \& \& \& \\
\hline JNT0 addr \& \[
\begin{aligned}
\& \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-\text { addr if } \mathrm{TO}=0 \\
\& (P C) \leftarrow(P C)+2 \text { if } \mathrm{T}=1
\end{aligned}
\] \& Jump to specitied address if test 0 is low. \& \[
\begin{aligned}
\& 0 \\
\& 0 \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
0 \\
a_{6}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{5}
\end{gathered}
\] \& \[
\begin{aligned}
\& \hline 0 \\
\& \mathrm{a}_{4}
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& a_{3}
\end{aligned}
\] \& \[
\begin{gathered}
1 \\
a_{2}
\end{gathered}
\] \& \& \& 2 \& 2 \& \& \& \& \\
\hline JNT1 addr \& \[
\begin{aligned}
\& \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-\operatorname{addr} \text { if } \mathrm{T} 1=0 \\
\& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{T}=1=1
\end{aligned}
\] \& Jump to specified address if test 1 is low. \& \[
\begin{gathered}
0 \\
a_{7}
\end{gathered}
\] \& \& \[
\begin{gathered}
0 \\
a_{5} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{4} \\
\hline
\end{gathered}
\] \& \begin{tabular}{c}
0 \\
\(a_{3}\) \\
\hline
\end{tabular} \& \& 1
\(a_{1}\)
1 \& 0
\(a_{0}\) \& 2 \& 2 \& \& \& \& \\
\hline JNZ addr \& \[
\begin{aligned}
\& \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-\text { addr it } \mathrm{A}=0 \\
\& (\mathrm{PC})-(\mathrm{PC})+2 \text { it } \mathrm{A}=1
\end{aligned}
\] \& Jump to specified address if accumulator is non-zero. \& \[
\begin{gathered}
1 \\
a_{7}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{6}
\end{gathered}
\] \& \[
\begin{aligned}
\& \hline 0 \\
\& a_{5}
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& a_{4}
\end{aligned}
\] \& \[
\begin{gathered}
0 \\
a_{3}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{2}
\end{gathered}
\] \& 1
\(a_{1}\)
1 \& 0
\(a_{0}\)

0 \& 2 \& 2 \& \& \& \& <br>

\hline JTF addr \& $$
\begin{aligned}
& \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-\text { addr if } \mathrm{TF}=1 \\
& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } T F=0
\end{aligned}
$$ \& Jump to specified address if timer flag is set to 1 . \& \[

$$
\begin{aligned}
& 0 \\
& a_{7}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& a_{6}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& a_{4}
\end{aligned}
$$
\] \& 0

$a_{3}$ \& \[
$$
\begin{gathered}
1 \\
a_{2}
\end{gathered}
$$

\] \& | 1 |
| :---: |
| $a_{1}$ | \& 0

$a_{0}$ \& 2 \& 2 \& \& \& \& <br>
\hline
\end{tabular}

## Instruction Set (cont)

Mnomonic	Funotion	Doscripition	Operation Code								Cycles	Bytes	Fiags			
			$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$D_{1}$	$\mathrm{D}_{0}$			c	AC	F0	F1
Branch (cont)																
JT0 addr	$\begin{aligned} & \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-\text { addr if } \mathrm{TO}=1 \\ & (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{TO}=0 \end{aligned}$	Jump to specified address if test 0 is a 1.	$\begin{aligned} & 0 \\ & a_{7} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & a_{6} \end{aligned}$	$\begin{gathered} 1 \\ a_{5} \end{gathered}$	$\begin{gathered} 1 \\ a_{4} \end{gathered}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{3} \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{a}_{2} \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2				
JT1addr	$\begin{aligned} & \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-\text { addr if } \mathrm{T}=1 \\ & (\mathrm{PC})-(\mathrm{PC})+2 \text { if } T 1=0 \end{aligned}$	Jump to specified address if test 1 is a 1.	$\begin{gathered} 0 \\ \mathrm{a}_{7} \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ a_{5} \end{gathered}$	$\begin{array}{r} 1 \\ a_{4} \\ \hline \end{array}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{array}{r} 1 \\ a_{1} \\ \hline \end{array}$	$\begin{gathered} 0 \\ a_{0} \\ \hline \end{gathered}$	2	2				
JZ addr	$\begin{aligned} & \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-\text { addrif } \mathrm{A}=0 \\ & (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{A}=1 \end{aligned}$	Jump to specified address if accumulator is 0 .	$\begin{gathered} 1 \\ a_{7} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{0} \\ a_{5} \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 \\ a_{4} \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 \\ a_{3} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \\ \hline \end{gathered}$	$\begin{array}{r} 1 \\ \mathrm{a}_{1} \\ \hline \end{array}$	$\begin{gathered} 0 \\ a_{0} \\ \hline \end{gathered}$	2	2				
Control																
EN:		Enable the external interrupt input.	0	0	0	0	0	1	0	1	1	1				
DIS 1		Disable the external interrupt input.	0	0	0	1	0	1	0	1	1	1				
ENTO CLK		Enable the clock output pin $\mathbf{T O}$.	0	1	1	1	0	1	0	1	1	1				
SEL MBO	$(\mathrm{DBF})-0$	Select bank 0 (locations 0-2047) of program memory.	1	1	1	0	0	1	0	1	1	1				
SEL MB1	(DBF) -1	Select bank 1 (locations 2048-4095) of program memory.	1	1	1	1	0	1	0	1	1	1				
SEL RB0	(BS) -0	Select bank 0 (locations 0-7) of data memory.	1	1	0	0	0	1	0	1	1	1				
SEL RB1	(BS) $\leqslant 1$	Select bank 1 (locations 24-31) of data memory.	1	1	0	1	0	1	0	1	1	1				
Data Moves																
MOV A. \# data	(A) - data	Move immediate the specified data into the accumulator.	$\begin{gathered} 0 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{aligned} & 0 \\ & \mathfrak{d}_{4} \end{aligned}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & d_{1} \end{aligned}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2				
MOV A, Ar	(A) $-(\mathrm{Rr}) ; \mathrm{r}=0-7$	Move the contents of the designated registers into the accumulator.	1	1	1	1	1	r	r	「	1	1				
MOVA, Ar	$(\mathrm{A})-(\mathrm{Pr})\} ; \mathrm{r}=0-1$	Move indirect the contents of data memory location into the accumulator.	1	1	1	1	0	0	0	r	1	1				
MOV A, PSW	$(\mathrm{A}) \leftarrow(\mathrm{PSW})$	Move contents of the program status word into the accumulator.	1	1	0	0	0	1	1	1	1	1				
MOV Rr, \# data	$(\mathrm{Pr}) \leftarrow$ data; $\mathrm{r}=0-7$	Move immediate the specified data into the designated register.	$\begin{gathered} 1 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{d}_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ 0_{3} \end{gathered}$	$\begin{gathered} \mathrm{r} \\ \mathrm{~d}_{2} \end{gathered}$	$\begin{aligned} & \mathrm{r} \\ & \mathrm{~d}_{1} \end{aligned}$	$\begin{gathered} \mathrm{r} \\ \mathrm{~d}_{0} \end{gathered}$	2	2				
MOV Rr, A	$(\mathrm{Rr})-(\mathrm{A}) ; \mathrm{r}=0-7$	Move accumulator contents into the designated register.	1	0	1	0	1	r	1	I	1	$\dagger$				
MOV ©Rr, A	$((\mathrm{Rr})) \leftarrow(\mathrm{A}) ; \mathrm{r}=0-1$	Move indirect accumulator contents into data memory location.	1	0	1	0	0	0	0	I	1	1				
$\overline{\mathrm{MON} @ \mathrm{Rr}}$ \# data	$((\mathrm{Rr}))-$ data; $\mathrm{r}=0-1$	Move immediate the specified data into data memory.	$\begin{gathered} \mathrm{c} \\ \mathrm{~d}_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} \mathbf{0} \\ \mathrm{d}_{2} \end{gathered}$	$\begin{aligned} & 0 \\ & d_{1} \end{aligned}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2				
MOV PSW, A	$(\mathrm{PSW})-(\mathrm{A})$	Move contents of accumulator into the program status word.	1	1	0	1	0	1	1	1	1	1				
MOVP A, @ A	$\begin{aligned} & \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-(\mathrm{A}) \\ & (\mathrm{A})-((\mathrm{PC})) \end{aligned}$	Move data in the current page into the accumulator.	1	0	1	0	0	0	1	1	2	1				
MOVP3 A, @ A	$\begin{aligned} & \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-(\mathrm{A}) \\ & \left(\mathrm{PC}_{8}-\mathrm{PC}_{10}\right)-011 \\ & (\mathrm{~A})-((\mathrm{PC})) \end{aligned}$	Move program data in page 3 into the accumulator.	1	1	1	0	0	0	1	1	2	1				


Mremonic	Function	Doscription	Operation Code								Cycles	Bytes	Flags			
			$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$			c	AC	F0	F1
Data Moves (cont)																
MOVX A. @R	$(\mathrm{A})-((\mathrm{Rr})): \mathrm{r}=0-1$	Move indirect the contents of external data memory into the accumulator.	1	0	0	0	0	0	0	r	2	1				
MOVX @ R, A	$((\mathbf{R r}))-(\mathrm{A}) ; \mathrm{r}=0-1$	Move indirect the contents of the accumulator into external data memory.	1	0	0	1	0	0	0	$r$	2	1				
XCH A, Rr	$(\mathrm{A}) \leftrightarrow(\mathrm{Rr}) ; \mathrm{r}=0-7$	Exchange the accumulator and designated register's contents.	0	0	1	0	1	1	1	1	1	1				
$\overline{\mathrm{XCHA}}$ @ Rr	$(\mathrm{A}) \rightarrow((\mathrm{Rr}) ; ; \mathrm{r}=0-1$	Exchange indirect contents of accumulator and location in data memory.	0	0	1	0	0	0	0	r	1	1				
XCHDA, @ Rr	$\begin{aligned} & \left(A_{0}-A_{3}\right) \leftrightarrow\left((\mathrm{Ar})_{0}-((\mathrm{Rr}))_{3} ;\right. \\ & r=0-1 \end{aligned}$	Exchange indirect 4-bit contents of accumulator and data memory.	0	0	1	1	0	0	0	1	1	1				
Flags																
CPLC	$(\mathrm{C}) \sim \mathrm{NOT}(\mathrm{C})$	Complement contents of carry bit.	1	0	1	0	0	1	1	1	1	1	-			
CPL F0	(FO) - $\mathrm{NOT}(\mathrm{FO}$ )	Complement contents of flag FO.	1	0	0	1	0	1	0	1	1	1			-	
CPLF1	(F1) - NOT (F1)	Complement contents of flag F1.	1	0	1	1	0	1	0	1	1	1				-
CLRC	(C) -0	Clear contents of carry bit to 0 .	1	0	0	1	0	1	1	1	1	1	-			
CLR FO	(F0) -0	Clear contents of flag 0 to 0 .	1	0	0	0	0	1	0	1	1	1			-	
CLRFI	(F1) -0	Clear contents of flag 1 to 0.	1	0	1	0	0	1	0	1	1	1				$\bullet$
Input / Output																
ANL BUS, \# data	(bus) - (bus) AND data	Logical AND immediate specified data with contents of bus.	$\begin{aligned} & 1 \\ & d_{7} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & d_{6} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{4} \end{aligned}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{2} \end{gathered}$	$\begin{gathered} 0 \\ d_{1} \end{gathered}$	$\begin{gathered} 0 \\ d_{0} \end{gathered}$	2	2				
ANL $\mathrm{Pp}_{\text {. }}$   \# data	$\begin{aligned} & (P P)-(P D) \text { AND data } \\ & p=1-2 \end{aligned}$	Logical AND immediate specified data with designated port (1 or 2).	$\begin{gathered} 1 \\ d_{7} \end{gathered}$	$\begin{aligned} & 0 \\ & d_{6} \end{aligned}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{aligned} & 1 \\ & d_{4} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{3} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{2} \end{aligned}$	$\begin{aligned} & p \\ & d_{1} \end{aligned}$	$\begin{gathered} \mathrm{p} \\ \mathrm{~d}_{0} \end{gathered}$	2	2				
ANLD Pp, A	$\begin{aligned} & (\mathrm{Pp}) \leftarrow(\mathrm{Pp}) \mathrm{AND}\left(\mathrm{~A}_{0}-\mathrm{A}_{3}\right) ; \\ & \mathrm{P}=4-7 \end{aligned}$	Logical AND contents of accumulator with designated port $(4-7)$	1	0	0	1	1	1	P	$p$	2	1				
INA, Pp	(A) *-(Pp); $p=1-2$	Input dała from designated port (1-2) into accumulator.	0	0	0	0	1	0	p	p	2	1				
INS A, BUS	(A) - (bus)	Input strobed bus data into accumulator.	0	0	0	0	1	0	0	0	2	1				
MOVD A, Pp	$\begin{aligned} & \left(A_{0}-A_{3}\right)-(P D) ; D=4-7 \\ & \left(A_{4}-A_{7}\right)-0 \end{aligned}$	Move contents of designated port (4-7) into accumulator.	0	0	0	0	1	1	p	p	2	1				
MOVD PD. A	$(\mathrm{PP})-\left(A_{0}-A_{3}\right) ; p=4-7$	Move contents of accumulator to designated port (4-7).	0	0	1	1	1	1	p	$p$	2	1				
ORL BUS,   \# data	(bus) - (bus) 0 d data	Logical OR immediate specified data with contents of bus.	$\begin{gathered} 1 \\ \mathrm{~d}_{7} \end{gathered}$	$\begin{gathered} \hline 0 \\ d_{6} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{5} \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & d_{1} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \mathrm{~d}_{0} \end{aligned}$	2	2				
ORLD Pp, A	$\begin{aligned} & (P D) \leftarrow(P D) O R\left(A_{0}-A_{3}\right) ; \\ & p=4-7 \end{aligned}$	Logical $O R$ contents of accumulator with designated port (4-7).	1	0	0	0	1	1	p	$p$	2	1				
ORL Pp, \# data	$\begin{aligned} & (P p)-(P p) \text { OR data } \\ & p=1-2 \end{aligned}$	Logical OR immediate specified data with designated port (1-2).	$\begin{gathered} 1 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{2} \\ \hline \end{gathered}$	$\begin{gathered} \bar{p} \\ d_{1} \end{gathered}$	$\begin{gathered} p \\ d_{0} \end{gathered}$	2	2				
OUTL BUS. A	(bus) -(A)	Output contents of accumulator onto bus.	0	0	0	0	0	0	1	0	2	1				
OUTL Pp,A	$(P \mathrm{P})-\mathrm{C}(\mathrm{A}) ; \mathrm{P}=1-2$	Output contents of accumulator to designated port (1-2).	0	0	1	1	1	0	p	$p$	2	1				

## Instruction Set (cont)

Mnemenic	Function	Description	Operation Code								Cycles	Bytes	Flogs			
			$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$D_{0}$			c	$A C$	FO	F1
Subroutine																
Registiors																
DEC Rr (Rr)	$(\mathrm{Rr})-(\mathrm{Rr})-1 ; \mathrm{r}=0-7$	Decrement by 1 contents of designated register.	1	1	0	0	1	r	「	r	1	1				
ING Rr	$(\mathrm{Rr})-(\mathrm{Rr})+1 ; r=0-7$	Increment by 1 contents of designated register.	0	0	0	1	1	r	r	r	1	1				
INC@Rr	$\begin{aligned} & ((\mathrm{Rr}))-((\mathrm{Rr}))+1 \\ & r=0-1 \end{aligned}$	Increment indirect by 1 the contents of data memory location.	0	0	0	1	0	0	0	r	1	1				
CALL addr	$\left.\left.\begin{array}{l} ((S P))-(\mathrm{PC}), \\ (\mathrm{PSW} \\ 4 \end{array}\right)-\mathrm{PSW} W_{7}\right), 1 .$	Cail designated subroutine.	$\begin{aligned} & \hline a_{10} \\ & a_{7} \end{aligned}$	$\begin{aligned} & a_{9} \\ & a_{6} \end{aligned}$	$\begin{aligned} & a_{8} \\ & a_{5} \end{aligned}$	$\begin{gathered} 1 \\ a_{4} \end{gathered}$	$\begin{aligned} & 0 \\ & \mathrm{a}_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{a}_{1} \end{aligned}$	${ }_{0}^{0}{ }_{0}$	2	2				
RET	$\begin{aligned} & (S P)-(S P)=1 \\ & (P C)-((S P)) \end{aligned}$	Return from subroutine without restoring program status word		0	0	0	0	0	1	1	2	1				
RETR	$\begin{aligned} & (\mathrm{SP})-(\mathrm{SP})=1 \\ & (P \mathrm{P})-((\mathrm{SP})) \\ & \left(\mathrm{PSW}_{4}-\mathrm{PSW}\right)-((\mathrm{SP})) \end{aligned}$	Return from subroutine restoring program status word.	1	0	0	1	0	0	1	1	2	1				
Timer / Counter																
EN TCNTI		Enable internal interrupt flag tor timer / counter output.	0	0	1	0	0	1	0	1	1	1				
OIS TCNTI		Disabie internal interrupt flag for timer / counter output.	0	0	1	1	0	1	0	1	1	1				
MOV A, T	$(\mathrm{A}) \leftarrow(\mathrm{T})$	Move contents of timer / counter into accumulator.	0	1	0	0	0	0	1	0	1	1				
MOV T, A	(T) $-(\mathrm{A})$	Move contents of accumulator into timer / counter.	0	1	1	0	0	0	1	0	1	1				
STOP TCNT		Stop count for event counter.	0	1	1	0	0	1	0	1	1	1				
STRT CNT		Start count for event counter.	0	1	0	0	0	1	0	1	1	1				
STRT T		Start count for timer.	0	1	0	1	0	1	0	1	1	1				
Miscedlaneous																
NOP		No operation performed.	0	0	0	0	0	0	0	0	1	1				
Note:   (1) Operation code designations $r$ and $p$ form the binary representation of the registers and ports involved.																
(2) The dot under the appropriate flag bit indicates that its content is subject to change by the instruction it appears in.																
(4) Numerical subscripts appearing in the function column reference the specific bits affected.																

## Instruction Set Symbol Definitions

Symbol	Deseription
A	Accumulator
AC	Auxiliary carry flag
addr	Program memory address (12 bits)
$\mathrm{B}_{\mathrm{b}}$	Bit designator ( $\mathrm{b}=0-7$ )
BS	Bank switch
BUS	Bus port
C	Carry flag
CLK	Clock signal
CNT	Event counter
D	Nibble designator (4 bits)
data	Number of expression (8 bits)
DBF	Memory Dank flip-ilop
F0, F1	Flags 0, 1
1	Interrupt
$P$	'In-page"' operation designator
Pp	Port designator ( $\mathrm{p}=1,2$ or 4-7)
PSW	Program status word
Rr	Register designator ( $\mathrm{r}=0,1$ or 0-7)
SP	Stack pointer
$T$	Timer
TF	Timer flag
T0, T1	Testable flags 0.1
X	External RAM
\#	Prefix for immediate data
(13)	Prefix for indirect address
\$	Program counter's current value
(x)	Contents of external RAM location
( $(\mathrm{x})$ )	Contents of memory location addressed by the contents of external RAM location
$\leftarrow$	Replaced by
AND	Logical product (logical AND)
OR	Logical sum (logical OR)
XOR	Exclusive-OR

Operating Characteristics

Bus Output High Voltage vs. Source Current


Port P1 \& P2 Output High Voliage vs. Source Current


Bus Output Low Voltage vs. Sink Current

$\mu$ PD80G35/C48, $\mu$ PD488
8-BIT, SINGLE-CHIP
CMOS MICROCOMPUTERS

## Description

The $\mu \mathrm{PD} 80 \mathrm{C} 35, \mu \mathrm{PD} 80 \mathrm{C} 48$, and $\mu \mathrm{PD} 48$ are true standalone 8 -bit microcomputers fabricated using CMOS technology. All of the functional blocks necessary for an integrated microcomputer are incorporated, including a 1K-byte ROM ( $\mu$ PD80C48 only), a 64-byte RAM, 27 I/O lines, an 8-bit timer/event counter, and a clock generator. This integrated capability permits use in stand-alone applications. For designs requiring extra capability, the $\mu$ PD80C35/ $\mu$ PD80C48 can be expanded using peripherals and is memory compatible with industry-standard 8080A/8085A processors.
Providing compatibility with industry-standard 8048 , 8748, and 8035 processors, the $\mu$ PD80C35/ $\mu$ PD80C48 features significant savings in power consumption. In addition to the power savings gained through CMOS technology, the $\mu$ PD80C35/ $\mu$ PD80C48 offers two standby modes (Halt and Stop modes) to further minimize power drain.

## Features

8-Bit CPU with memory and I/O on a single-chipHardware/software-compatible with industrystandard 8048, 8748, and 8035 processors$1 \mathrm{~K} \times 8$ ROM ( $\mu$ PD80C48 only)$64 \times 8$ RAM27 I/O lines$2.5-\mu \mathrm{s}$ cycle time ( $6-\mathrm{MHz}$ crystal)All instructions executable in 1 or 2 cycles97 instructions: 70 percent are single-byte instructionsInternal timer/event counterTwo interrupts (external and timer)Easily expandable memory and I/OBus compatible with 8080A/8085A peripheralsPower-efficient CMOS technology requiring a single +2.5 to +6.0 V power supplyHalt modeStop mode
## Pin Configurations

40-Pin Plastic DIP


## 52.Pin Plastic Miniflat



## Pin Configurations (cont)

## 44-Pin Plastic Miniflat



## Ordering Information

Part   Humber	Package   Type	Max Frequency   of Oparation	ROM
$\mu$ PD80C35C	40 -pin plastic DIP	6 MHz	None
$\mu$ PD80C48C	40 -pin plastic DIP	6 MHz	$1 \mathrm{~K} \times 8$
$\mu$ PD80C48G-00	52 -pin plastic   miniflat	6 MHz	$1 \mathrm{~K} \times 8$
$\mu$ PD48G-22	44-pin plastic   miniflat	6 MHz	$1 \mathrm{~K} \times 8$

## Note:

$\mu \mathrm{PD} 80 \mathrm{C} 48 \mathrm{C}, \mu \mathrm{PD} 80 \mathrm{C} 48 \mathrm{G}-00$, and $\mu \mathrm{PD} 48 \mathrm{G}-22$ have two optional port types: type 0, $\mathrm{I}_{\mathrm{OH}}=-5 \mu \mathrm{~A}$; type 1, $\mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$. Type 0 or 1 can be selected independently for $\mathrm{P1}_{0}-\mathrm{P1}_{7}, \mathrm{P}_{2}-\mathrm{P}_{3}$, and $\mathrm{P}_{4}-\mathrm{P} 2_{7}$.

Pin Identification

Symbol	Functien
T0	Test 0 input/clock output
XTAL1	Crystal 1 input
XTAL2	Crystal 2 input
$\overline{\text { RESET }}$	Reset input
$\overline{\overline{S S}}$	Software stop input
INT	Interrupt input
EA	External access input
$\overline{\overline{R D}}$	Read output
$\overline{\overline{P S E N}}$	Program store enable output
WR	Write output
ALE	Address latch enable output
$\mathrm{DB}_{0}-\mathrm{DB}_{7}$	Bidirectional data bus
$\mathrm{V}_{\text {SS }}$	Ground
$\mathrm{P}_{2}-\mathrm{P} 2_{7}$	Quasi-bidirectional port 2
PROG	Program output
$\mathrm{V}_{\mathrm{DO}}$	Oscillator control voltage
$\xrightarrow{\mathrm{P1}_{0}-\mathrm{P} 1_{7}}$	Quasi-bidirectional port 1
T1	Test 1 input
VCC	Primary power supply
NC	No connection

## Pin Functions <br> XTAL1, XTAL2 [Crystals 1, 2]

XTAL1 and XTAL2 are the crystal inputs for the internal clock oscillator. XTAL1 is also used as an input for external clock signals.

## TO [Test 0]

The JT0 and JNT0 instructions test the level of T0 and, if it is high, the program address jumps to the specified address. TO becomes a clock output when the ENTO CLK instruction is executed.

## T1 [Test 1]

The JT1 and JNT1 instructions test the level of T1 and, if it is high, the program address jumps to the specified address. T1 becomes an internal counter input when the STRT CNT instruction is executed.

## $\overline{\text { RESET }}$ [Reset]

$\overline{\text { RESET }}$ initializes the processor and is also used to verify the internal ROM. RESET determines the oscillation stabilizing time during the release of STOP mode. The RESET pulse width requires at least 5 machine cycles when the supply voltage is within specifications and the oscillation frequency is stable.

## $\overline{\mathbf{S S}}$ [Single Step]

$\overline{\mathrm{S}} \overline{\mathrm{S}}$ causes the processor to execute the program one step at a time.

## INT [Interrupt]

INT starts an interrupt if interrupts are enabled. A reset disables an interrupt. INT can be tested with the JNI instruction and, depending on the results, a jump to the specified address can occur.

## EA [External Access]

EA disables internal program memory and fetches and accesses external program memory. EA is used for system testing and debugging.

## $\overline{\mathrm{RD}}$ [Read]

$\overline{R D}$ enables a data read from external memory.

## $\overline{W R}$ [Write]

WR enables a data write to external memory.

## PSEN [Program Store Enable]

$\overline{\text { PSEN }}$ fetches instructions only from external program memory.

## ALE [Address Latch Enable]

ALE occurs at each cycle. The falling edge of ALE addresses external data memory or external program memory. ALE can also be used as a clock output.

## $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ [Data Bus]

$\mathrm{DB}_{0}-\mathrm{DB}_{7}$ is a bidirectional port, which reads and writes data using RD and WR for latching. During an external program memory fetch, $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ output the low-order eight bits of the memory address. PSEN fetches the instruction. $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ also output the address of an external data memory fetch. The addressed data is read and written by $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$.

## $\mathrm{P1}_{0}-\mathrm{P} 17$ [Port 1]

$\mathrm{P}_{10}-\mathrm{P} 1_{7}$ is an 8 -bit quasi-bidirectional port.

## $\mathrm{P}_{2} \mathbf{0}-\mathrm{P}_{7}$ [Port 2]

$\mathrm{P}_{0}-\mathrm{P} 2_{7}$ is an 8 -bit quasi-bidirectional port. $\mathrm{P}_{2}-\mathrm{P} 2_{3}$ output the high-order four bits of the address during an external program memory fetch. $\mathrm{P}_{2}-\mathrm{P}_{3}$ also function as a 4-bit I/O bus for the $\mu$ PD82C43 I/O port expander.

## PROG [Program Pulse]

PROG is used as an output pulse during a fetch when interfacing with the $\mu$ PD82C43 //O port expander.

## VDD [Oscillator Control Voltage]

$V_{D D}$ stops and starts the oscillator in STOP mode. STOP mode is enabled by forcing $V_{D D}$ low during a rest.

VCC [Primary Power Supply]
$V_{C C}$ is the primary power supply. $V_{C C}$ must be between +2.5 V and +6.0 V for normal operation. In STOP mode, $V_{C C}$ must be at least +2.0 V to ensure data retention.

## $\mathbf{V}_{\mathbf{S S}}$ [Ground]

$V_{S S}$ is ground potential.

## NC [No Connection]

NC is no connection.

## Block Dlagram



Absolute Maximum Ratings
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Power supply voltage, $\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{SS}}-0.3$ to +10 V
Input voltage, $\mathrm{V}_{\mathrm{IN}}$	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Output voltage, $\mathrm{V}_{0}$	$\mathrm{~V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Operating temperature, $\mathrm{T}_{0 \mathrm{PT}}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\mathrm{STG}}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## DC Characteristics

## Standard Voltage Range

Parmmeter	Symbol	Limits		Unit	Tout Conditions
		Minn Typ	Max		
Input voltage low	$V_{\text {iL }}$	-0.3	+0.8	V	
Input voltage high	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {CC }}-2$	VCC	V	$\begin{aligned} & \text { Except XTAL1, } \\ & \text { XTAL2, } \overline{\text { RESET }} \end{aligned}$
	$\overline{V_{H 1}}$	$V_{C C}-1$	V cc	V	$\begin{aligned} & \text { "िESET, XTAL1, } \\ & \text { XTAL2 } \end{aligned}$
Output voltage low	$V_{0 L}$		+0.45	$V$	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output voltage high	$\mathrm{V}_{\mathrm{OH}}$	2.4		V	Bus, $\overline{\text { RD }}, \overline{\mathrm{WR}}$, PSEN, ALE, PROG, TO; $I_{O H}=-100 \mu \mathrm{~A}$
	$\overline{\mathrm{VOH}_{\text {( }}(1)}$	2.4		V	$\mathrm{OH}^{2}=-5 \mu \mathrm{~A} \text { (type }$   0) port 1, port 2
		2.4		$V$	$I_{O H}=-50 \mu \mathrm{~A}$ (type 1) port 1 . port 2
	$\overline{\mathrm{V}_{\mathrm{OH} 2}}$	$\mathrm{V}_{\mathrm{CC}}-0.5$		V	All outputs. $\mathrm{I}_{\mathrm{OH}}=-0.2 \mu \mathrm{~A}$
Input current	IILP(1)	-15	-40	$\mu \mathrm{A}$	$\begin{aligned} & \text { Port 1, port 2; } \\ & V_{\text {IN }} \leqslant V_{\text {IL }} \text { (type 0) } \\ & \hline \end{aligned}$
			-500	$\mu \mathrm{A}$	Port 1, port 2; $V_{1 N} \leqslant V_{1 L}$ (ype I)
	ILCC		-40	иA	$\begin{aligned} & \overline{\mathrm{SS}}, \overline{\mathrm{RESET}} ; \\ & \mathrm{V}_{\mathbb{N}} \leqslant \mathrm{V}_{\mathrm{IL}} . \end{aligned}$
Input leakage current	Jli		$\pm 1$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{T}, \overline{N T}, V_{C C} ; \\ & V_{S S} \leqslant V_{N W} \leqslant V_{C C} \end{aligned}$
	LI2		$\pm 3$	$\mu \mathrm{A}$	$\begin{aligned} & E A ; V_{S S} \leqslant V_{I N} \leqslant \\ & V_{C C} \end{aligned}$
Output leakage current	L6O		$\pm 1$	$\mu \mathrm{A}$	$V_{S S} \leqslant V_{0} \leqslant V_{C C}$ High impedance. bus, T0
Standby current	CCl	0.4	0.8	mA	Halt mode $\mathrm{t}_{\mathrm{CY}}=2.5 \mu \mathrm{~s}$
	$1 \mathrm{CC2}$	1	20	$\mu \mathrm{A}$	Stop mode (Note 2)
Supply current	${ }_{\text {l }} \mathrm{C}$	4	8	mA	$\mathrm{t}_{\mathrm{CY}}=2.5 \mu \mathrm{~s}$
Data retention woltage	$V_{\text {CCDR }}$	2.0		V	$\text { Stop mode ( } \mathrm{V}_{\mathrm{DD}}$ $\overline{\operatorname{RESE}} \leqslant 0.4 \mathrm{~V})$

Extended Voltage Range

| $T_{A}=-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}$ to $+6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{OV}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note:
(1) Types 0,1 for $\mu$ PD80C48 only.

Type 0 for $\mu$ PD80C35 only.
(2) Input pin voltage is $V_{I N} \leqslant V_{I L}$, or $V_{I N} \geqslant V_{I H}$.

## AC Characteristics

Read, Write and instruction Fetch: External Data and

## Program Memory



Control pulse   width (RD, WK,	tCC	700	3700	ns
$\overline{\text { PSEN }}$ )				


Data setup before WR	${ }^{\text {I }}$ WW	500		3500		ns	
Data hold atter $\overline{W R}$	two	120		370		ns	(Note 2)
Cycle time	$\mathrm{t}_{\mathrm{CV}}$	2.5	150	10	150	$\mu s$	$6 \mathrm{MHz} \times$ XTAL
Data hold	tor	0	200	0	950	ns	
$\overline{\text { PSEN, }}, \overline{R D}$ to data in	$t_{R D}$		500		2750	ns	
Address setup before WR	$t_{\text {AW }}$	230		3230		ns	(Note 1)
Address setup before data in	$t_{A D}$		950		5450		
Address float to $\overline{\text { RD }}, \overline{\text { PSEN }}$	$t_{\text {AFC }}$	0		500		ns	
Control pulse to ALE	tCA	10		10		ns	

ALE

## Bus Timing Requirements (Note 1)

Symbol	Timing Formela	Min/ Max	Unlt
${ }_{\text {ti }}$	$(7 / 30) \mathrm{C}_{\mathrm{CY}}-170$	Min	ns
$\mathrm{t}_{\mathrm{AL}}$	(1/5) tcy-380	Min	ns
LIA	$(1 / 30)$ l $\mathrm{C} Y$	Min	ns
tcc	(2/5) tcr -300	Min	ns
tow	(2/5) ter -500	Min	ns
twD	$(1 / 30) t_{\text {cy }}+40$	Min	ns
tor	$(1 / 70) \mathrm{ICY}^{-50}$	Max	ns
tro	$(3 / 10)$ tcr -250	Max	ns
taw	(2/5) $\mathrm{t}_{\mathrm{Cr}}-770$	Min	ns
${ }_{\text {A }}^{\text {AD }}$	(3/5) $\mathrm{t}_{\text {cy- }}$ - 550	Max	ns
${ }^{t_{\text {AFC }}}$	$(1 / 15)$ t $_{\text {c } Y}-165$	Min	ns

Port 2 Timing
$T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Lindts				Tost Unit Conditions	
	$\begin{gathered} Y_{c c}= \\ +5 Y \pm 10 \% \end{gathered}$		$\begin{gathered} \text { Vec }= \\ 2.5 Y_{\text {to }} 6.0 \mathrm{~V} \end{gathered}$			
	Wlin	Max	Min	Max		
Port control setup betore talling edige of PROG	110		860		ns	
Port control hold $\mathrm{t}_{\mathrm{PC}}$ after talling edge of PROG	0	80	0	200	ns	(Note 4)
PROG to time P2 tPR input must be valid		810		5310	ns	
$\begin{aligned} & \text { Output data } \quad t_{0 P} \\ & \text { setup time } \end{aligned}$	250		3250		ns	(Note 3)
Output data hold tPD time	65		820		ns	
Input data hold tpf time	0	150	0	900	ns	
PROG pulse tpp width	1200		6450		ns	
Port $21 / 0$ data $t_{p L}$ setup time	350		2100		ns	
Port 2 I/ 0 data LLP hold time	150		1400		ns	
Note:						(1) Control outputs: $\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}$, bus outputs: $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
(2) $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$						
(3) Control outputs: $\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}$						
(4) Refer to the operating port control hold.	g char	orist	s cun	s for s	pply	oltage and


Symbol	Timing Formola	Nin/Man	Unit
${ }^{\text {teP }}$	$(1 / 10) t_{C r}-140$	Min	ns
${ }_{\text {tPC2 }}$	$(4 / 15) \mathrm{t}_{\mathrm{CY}}-200$	Min	IS
${ }^{\text {PPR }}$	$(3 / 5) t_{\text {cY }}-690$	Max	ns
tpF	$(1 / 10) t_{\text {c }}-100$	Max	ns
$\mathrm{t}_{\mathrm{D} P}$	(2/5) t $\mathrm{CrY}-750$	Min	ns
$\mathrm{tPD}^{\text {P }}$	$(1 / 10)$ tcy - 180	Min	ns
tpp	$(7 / 10) \mathrm{t}_{\mathrm{CY}}-550$	Min	ns
$\mathrm{t}_{\text {PL }}$	$(7 / 30) \mathrm{t}_{\mathrm{CY}}-230$	Min	ns
$t_{L P}$	(1/6) $\mathrm{tcr}_{\mathrm{Cr}} 265$	Min	ns
Nole:			

## Timing Waveforms

Instruction Fetch From External Memory


Read From External Data Memory


Write to External Memory


## Low Power Standby Operation

1) Halt Mode (When EI)

2) Stop Mode


Port 2 Timing


## Functional Description

## Standby Function

## Halt Mode

In Halt mode, the oscillator continues to operate, but the internal clock is disabled. The status of all internal logic just prior to execution of the HALT instruction is maintained by the CPU. In Halt mode, power consumption is less than 10 percent of normal $\mu$ PD80C48 operation and less than 1 percent of normal 8048 operation.
The Halt mode is initiated by execution of the HALT instruction, and is released by either INT or RESET input.
INT Input. When the $\overline{\text { INT }}$ pin receives a low-level input, if interrupts are enabled, the internal clock is restarted and the interrupt is executed after the first or second instruction following the HALT instruction. However, if interrupts are disabled, program operation is resumed from the next address following the HALT instruction. The first instruction following a HALT instruction should be a NOP instruction to ensure proper program execution.

If the Halt mode is released when interrupts are enabled, the interrupt service routine is usually executed after the first or second instruction following the release of Halt mode. However, if either a timer or external interrupt is accepted within one machine cycle prior to a HALT instruction, the corresponding timer or external interrupt service routine is executed immediately following the release of Halt mode. It is important to note this sequence of execution when considering interrupt service routine execution following a HALT instruction.

RESEI Input. When a low-level input is received by the RESET pin, Halt mode is released and the normal reset operation is activated, restarting program operation from address 0 .

## Stop Mode

In Stop mode, the oscillator is deactivated and only the contents of RAM are maintained. The operation status of the $\mu$ PDBOC35 $/ \mu$ PD80C48 resembles that of a reset condition. Because only the contents of RAM are maintained, Stop mode provides even lower power consumption than Halt mode, only requiring a minimum $\mathrm{V}_{\mathrm{CC}}$ as low as +2 V .
Stop mode is initiated by setting $V_{D D}$ to low when $\overline{R E}$ SET is low, to protect the contents of RAM. Stop mode is released by first raising the supply voltage at the VCC pin from standby level to correct operating level and setting $V_{D D}$ to high when RESET is low. After the oscillator has been restarted and the oscillation has stabilized, RESET must be set to high, whereby program operation is started from address 0 . Figure 1 shows the Stop mode circuit.

Figure 1. Stop Mode Circuit


Stop Mode Circuit. Since VDD controls the restarting of the oscillator, it is important that $V_{D D}$ be protected from noise interference. The time required to reset the CPU is represented by $t_{1}$ (see figure 2 ), which is a minimum of 5 machine cycles. The reset operation will not be completed in less than 5 machine cycles. In Stop mode, it is important to note that if $V_{D D}$ goes low before 5 machine cycles have elapsed, the CPU will be deactivated and the output of ALE, $\overline{R D}, \overline{W R}, \overline{\text { PSEN, }}$, and PROG will not have been stabilized.

Figure 2. Stop Mode Timing


Oscillation stabilization time is represented by $t_{2}$ (see figure 2). When VDD goes high, oscillator operation is reactivated, but it takes time before oscillation can be stabilized. In particular, such high $Q$ resonators as crystals require longer periods to stabilize. Because there is a delay between restarting of the oscillator and oscillator stabilization, $\mathrm{t}_{2}$ should be long enough to ensure that the osciliator has been fully stabilized.

To facilitate Stop mode control, an external capacitor can be connected to the RESET pin (see figure 3), affecting only $\mathrm{t}_{\mathbf{2}}$, allowing control of the oscillator stabilization time. When $V_{D D}$ is asserted in Stop mode, the capacitor begins charging, pulling up RESET. When RE. SET reaches a threshold level equivalent to a logic 1 , Stop mode is released. The time it takes RESET to reach the threshold level of logic 1 determines the oscillator stabilization time, which is a function of the capacitance and pull-up resistance values.

Figure 3. Stop Mode Control Circuit


83-002872A

## Port Operation

A port-loading option is offered at the time of ordering the mask. Individual source current requirements for Port 1 and the upper and lower halves of Port 2 may be factory set at either $-5 \mu \mathrm{~A}$ or $-50 \mu \mathrm{~A}$ (see Port-Loading Options table). The $-50 \mu \mathrm{~A}$ option is required for interfacing with TTL/NMOS devices. The $-5 \mu \mathrm{~A}$ option is recommended for interfacing to other CMOS devices. The CMOS option results in lower power consumption and greater noise immunity.

Port lines $\mathrm{P}_{10}-\mathrm{P1}_{7}$ and $\mathrm{P}_{2}-\mathrm{P} 27$ include a protective circuit "E" to prevent a signal conflict at the port. The circuit prevents a logic 1 from being written to a line that is being pulled down externally (see figure 4, Port Protection Circuit E diagram). When a logic 0 is detected at the port line and a logic 1 is written from the bus, the NOR gate sends a logic 1 to the D input of the flip-flop. The output is inverted, forcing the NAND gate to send a high-level output. This turns off transistor A, preventing the output of a logic 1 from the port.

Figure 4. Port Protection Circult E


## Port-Loading Options

Option Selectod	$\mathrm{Pl}_{6}-\mathrm{Pl}_{7}$	$\mathrm{P2}_{8}-\mathrm{P}_{2}$	$\mathrm{P2}_{4}-\mathrm{P}_{2}{ }_{7}$	Unit
A	-5	-5	-5	$\mu \mathrm{A}$
B	-50	-5	-5	$\mu \mathrm{A}$
C	-5	-50	-5	$\mu \mathrm{A}$
D	-50	-50	-5	$\mu \mathrm{A}$
E	-5	-5	-50	$\mu \mathrm{A}$
F	-50	-5	-50	$\mu \mathrm{A}$
$G$	-5	-50	-50	$\mu \mathrm{A}$
H	-50	-50	-50	$\mu A$

Note:
(1) The selection of $\mathrm{I}_{\mathrm{OH}}=-5 \mu \mathrm{~A}$ will result in a port source current of illp $=-40 \mu \mathrm{~A}$ max when used as input port
(2) The selection of $\mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$ will result in a port source current of illp $=-500 \mu \mathrm{~A}$ max when used as input port.

## Oscillator Operation

The oscillator maintains an internal frequency for clock generation and controls all system timing cycles. The oscillation is initiated by either a self-generating external resonator or external clock input. The oscillator acts as a high-gain amplifier which produces square-wave pulses at the frequency determined by the resonator or clock source to which it is connected.

To obtain the oscillation frequency, an external LC network (figure 5) may be connected to the oscillator, or, a ceramic or crystal external resonator (figure 6) may be connected.

Figure 5. LC Frequency Reference Circuit


Note:
Cpp $=5-10 p \mathrm{~F}$. Pin to phn capmeitance should be approximately 20pF, including stray captelitanee.

Figure 6. Crystal Frequency Reference Circuit


As the crystal frequency is lowered, there is an equivalent reduction in series resistance ( R ). As the temperature of the crystal is lowered, $R$ is increased. Due to this relationship, it becomes difficult to stabilize oscillation when there is low power supply voltage. When $\mathrm{V}_{\mathrm{Cc}}$ is less than 2.7 V and the oscillator frequency is 3 MHz or less, $\mathrm{T}_{\mathrm{A}}$ (ambient temperature) should not be less than $-10^{\circ} \mathrm{C}$.
Figures 7 and 8 show the ceramic resonator and external clock frequency reference circuits. Figure 9 shows the $\mu$ PD80C35 $/ \mu$ PD80C48 major I/O signals.

Figure 7. Ceramic Resonator Frequency Reforence Circuit


Note:
$C_{1}>c_{2}$
$\left|C_{1}-C_{2}\right| \geqslant 20 \mathrm{pF}$
For example, $\mathrm{C}_{1}=30 \mathrm{pF}$, and $\mathrm{C}_{2}=10 \mathrm{pF}$.
Vatues of $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ do not include stray capaeltance.
23002878A

Figure 8. External Clock Frequency Reference Circuit


## Instruction Set

Instruction Set Symbol Definitions

Symbol	Deseription
A	Accumulator
AC	Auxiliary carry flag
addr	Program or data memory address (a0-a7) or ( $a_{0}-a_{10}$ )
D	Accumulator bit ( $\mathrm{b}=0-7$ )
BS	Bank switch
BUS	Bus
C	Carry flag
CLK	Clock
CNT	Counter
data	8 -bit binary data ( $\left.\mathrm{d}_{0}-\mathrm{d}_{7}\right)$
DBF	Memory dank tlip-ilop
F0, F1	Flag 0, flag 1
INT	Interrupt pin
n	Indicates the hex number of the specified register or port
PC	Program counter
Po	Port 1, port 2, or ports 4-7 ( $p=1,2$ or 4-7)
PSW	Program status word
Rr	Register ( $\mathrm{r}=0-7$ )

Figure 9. Major Input and Output Signals


Symbol	Description
SP	Stack pointer
T	Timer
TF	Timer flag
T0, T1	Test 0, test 1 pin
\#	Prefix for immediate data
@	Prefix for indirect address
$\times$	Indicates the hex number corresponding to the accumulator bit or page number specified in the operand
(x)	Contents of RAM
( X ) )	Contents of memory location addressed by ( x )
-	Transfer direction, result
AND	Logical product (logicat AND)
OR	Logical sum (logical OR)
EXOR	Exclusive-OR
	Complement

## Instruction Set (cont)

Mnemenic	Punctlon	Deseription	$\underset{\text { Code }}{\text { Max }}$	Operation Code								Cycles	Bytos
				$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$D_{1}$	$D_{0}$		
Accumulator													
ADD A, \# data	$(\mathrm{A}) \leftarrow(\mathrm{A})+$ data	Adds immediate data $\mathrm{d}_{0}-\mathrm{d}_{7}$ to the accumulator. Sets or ciears both carry flags. (Note 2)	03	$\begin{gathered} 0 \\ \mathrm{~d}_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{aligned} & \mathbf{0} \\ & d_{5} \end{aligned}$	$\begin{aligned} & 0 \\ & \sigma_{4} \end{aligned}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} \mathbf{0} \\ \mathrm{d}_{2} \end{gathered}$	$\begin{gathered} 1 \\ d_{1} \end{gathered}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2
ADO A, Rr	$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{Rr}) \\ & \mathrm{r}=0-7 \end{aligned}$	Adds the contents of register Rr to the accumulator. Sets or clears both carry flags. (Note 2)	6n(4)	0	1	1	0	1	$\stackrel{1}{ }$	I	$r$	1	1
ADDA, @ Rr	$\begin{aligned} & (\mathrm{A})-(\mathrm{A})+((\mathrm{Rr})) \\ & \mathrm{t}=0-1 \end{aligned}$	Adds the contents of the internal data memory location specified by bits 0-5 of register Rr to the accumulator. Sets or clears both carry flags. (Note 2)	6n(4)	0	1	1	0	0	0	0	r	1	1
ADDC A, \# data	(A) - (A) + (C) + data	Adds, with carry, immediate data $\mathrm{d}_{0}-\mathrm{d}_{7}$ to the accumulator. Sets or clears both carry flags. (Note 2)	13	$\begin{gathered} 0 \\ d_{7} \end{gathered}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{6} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{5} \end{aligned}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & d_{1} \end{aligned}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2
ADOC A, Rr	$\begin{aligned} & (\mathrm{A})-(\mathrm{A})+(\mathrm{C})+(\mathrm{Rr}) \\ & r=0-7 \end{aligned}$	Adds, with carry, the contents of register Rir to the accumulator. Sets or clears both carry flags. (Note 2)	7n(4)	0	1	1	1	1	1	r	r	1	1
ADOCA, @ Rr	$\begin{aligned} & (A)-(A)+(C)+((\mathrm{Rr})) \\ & r=0-1 \end{aligned}$	Adds, with cary, the contents of the internal data memory location specitiod by bits $0-5$ of register Rr, to the accumulator. Sets or clears both carry flags. (Note 2)	7n(4)	0	1	1	1	0	0	0	r	1	1
ANLA, \# data	(A) - (A) AND data	Takes the togical product (logical AND) of immediate data $\mathrm{d}_{0}-\mathrm{d}_{7}$ and the contents of the accumulator, and stores the result in the accumulator.	53	$\begin{gathered} \mathbf{0} \\ \mathbf{d}_{7} \end{gathered}$	$\begin{gathered} 1 \\ d_{6} \end{gathered}$	$\begin{aligned} & 0 \\ & d_{5} \end{aligned}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{aligned} & \hline 0 \\ & d_{3} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{2} \end{aligned}$	$\begin{gathered} 1 \\ d_{1} \end{gathered}$	$\begin{aligned} & t \\ & d_{0} \end{aligned}$	2	2
ANLA, Rr	$\begin{aligned} & (\mathrm{A})-(\mathrm{A}) \mathrm{AND}(\mathrm{Rr}) \\ & \Gamma=0.7 \end{aligned}$	Takes the logical product (iogical AND) of the contents of register Rr and the accumulator, and stores the result in the accumulator.	5n(4)	0	1	0	1	1	$r$	$\boldsymbol{r}$	r	1	1
ANLA, @Rr	$\begin{aligned} & (A)-(A) \text { AND }((\operatorname{Rr})) \\ & r=0-1 \end{aligned}$	Takes the logical product (logical AND) of the contents of the internal data memory location specified by bits $0-5$ of register Rr , and the accumulator, and stores the result in the accumulator.	5n(4)	0	1	0	1	0	0	0	r	1	1
CPLA	$(\mathrm{A})-(\bar{A})$	Takes the complement of the contents of the accumulator.	37	0	0	1	1	0	1	1	1	1	1
CLRA	(A) -0	Clears the contents of the accumulator.	27	0	0	1	0	0	1	1	1	1	1
DAA		Converts the contents of the accumulator to $8 C D$. Sets or clears the carry flags. When the lower 4 bits $\left(A_{0}-A_{3}\right)$ are greater than 9 , or if the auxiliary carry flag has been set, adds 6 to $\left(A_{0}-A_{3}\right)$. When the upper 4 bits $\left(A_{4}-A_{7}\right)$ are greater than 9 or if the carry flag (C) has been set, adds 6 to $\left(\mathrm{A}_{4}-\mathrm{A}_{7}\right)$. If an overflow occurs at this point, C is set. (Note 2)	57	0	1	0	1	0	1	1	1	1	1
DEC A	$(A)-(A)-1$	Decrements the contents of the accumulator by 1.	07	0	0	0	0	0	1	1	1	1	1
INCA	$(\mathrm{A})-(\mathrm{A})+1$	Increments the contents of the accumulator by 1.	17	0	0	0	1	0	1	1	1	1	1
ORL A, \# data	$(\mathrm{A})-(\mathrm{A})$ OR data	Takes the logical sum (logical $O R$ ) of immediate data $\mathrm{d}_{0}-\mathrm{d}_{7}$ and the contents of the accumulator, and stores the result in the accumulator.	43					$\begin{gathered} 0 \\ d_{3} \end{gathered}$		1 $d_{1}$	1 0 0	2	2
$\overline{\text { ORL A, Rr }}$	(A) - (A) OR (Rr) $\mathrm{r}=0-7$	Takes the logical sum (logical OR) of register Rr and the contents of the accumulator, and stores the result in the accumulator.	4n(4)	0	1	0	0	1	r	r	r	1	1


Mnemsonic	Function	Deseription	$\begin{gathered} \text { Mex } \\ \text { Code } \end{gathered}$	Operation Code								Cyclos	Bytos
				$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$D_{1}$	$\mathrm{D}_{0}$		
Accumulator (cont)													
ORLA, @ Rr	$\begin{aligned} & (A)-(A) O R((R \mathrm{R})) \\ & \mathrm{r}=0-1 \end{aligned}$	Takes the logical sum (logical OR ) of the contents of the internal data memory location specified by bits $0-5$ in register Rr , and the contents of the accumulator, and stores the resull in the accumulator.	4n(4)	0	1	0	0	0	0	0	「	1	1
RLA	$\begin{aligned} & (A N+1)-(A N) \\ & \left(A_{0}\right)-\left(A_{7}\right) N=0-6 \end{aligned}$	Rotates the contents of the accumulator one bit to the left. The MSB is rotated into the LSB.	$E 7$	1	1	1	0	0	1	1	1	1	1
RLCA	$\begin{aligned} & (A N+1)-(A N) ; N=0-6 \\ & \left(A_{0}\right)-(C) \\ & (C) \leftarrow\left(A_{7}\right) \end{aligned}$	Rotates the contents of the accumulator one bit to the left through carry.	F7	1	1	1	1	0	1	1	1	1	1
RR A	$\begin{aligned} & (A N)-(A N+1) ; N=0-6 \\ & \left(A_{7}\right)-\left(A_{0}\right) \end{aligned}$	Rotates the contents of the accumulator one bit to the right. The LSB is rotated into the MSB.	77	0	1	1	1	0	1	1	1	1	1
RRC A	$\begin{aligned} & (A N)-(A N+1) ; N=0-6 \\ & \left(A_{7}\right)-(C) \\ & (C)-\left(A_{0}\right) \end{aligned}$	Rotates the contents of the accumulator one bit to the right through carry.	67	0	1	1	0	0	1	1	1	1	1
SWAPA	$\left(A_{4}-A_{7}\right) \longrightarrow\left(A_{0}-A_{3}\right)$	Exchanges the contents of the lower 4 bits of the accumulator with the upper 4 bits of the accumulator.	47	0	1	0	0	0	1	1	1	1	1
XRLA, \# data	$(\mathrm{A})-(\mathrm{A}) \times \mathrm{O}$ data	Takes the exclusive OR of immediate data $\mathrm{d}_{0}-\mathrm{d}_{7}$ and the contents of the accumulator, and stores the result in the accumulator.	D3	$\begin{gathered} 1 \\ d_{7} \end{gathered}$	$\begin{gathered} 1 \\ d_{6} \end{gathered}$	$\begin{aligned} & 0 \\ & d_{5} \end{aligned}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{aligned} & 0 \\ & d_{3} \end{aligned}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 1 \\ d_{1} \end{gathered}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2
XRLA. Rr	$\begin{aligned} & (A)-(A) \times O R(R r) \\ & r=0-7 \end{aligned}$	Takes the exclusive OR of the contents of register Rr and the accumulator, and stores the result in the accumulator.	Dn(4)	1	1	0	1	1	r	I	r	1	1
XRLA, © Rr	$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A}) \times 0 \mathrm{R}((\mathrm{Rr})) \\ & \mathrm{r}=0-1 \end{aligned}$	Takes the exclusive OR of the contents of the location in data memory specified by bits $0-5$ in register Rr , and the accumulator, and stores the result in the accumulator.	Dn(4)	1	1	0	1	0	0	0	r	1	1
Branch													
DJNZ Rr, addr	$\begin{aligned} & (\mathrm{Rr})-(\mathrm{Rr})-1 ; \mathrm{r}=0-7 \\ & \mathrm{If}(\mathrm{Rr}) \neq 0 \\ & \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right) \leftarrow \text { addr } \end{aligned}$	Decrements the contents of register Rr by 1 , and if the result is not equal to 0 , jumps to the address indicated by a $0-\mathrm{a} 7$.	En	$\begin{gathered} 1 \\ a_{7} \end{gathered}$	1 $a_{6}$	1 $a_{5}$	$\begin{aligned} & 0 \\ & a_{4} \end{aligned}$	$\begin{gathered} \overline{1} \\ a_{3} \end{gathered}$	$\begin{aligned} & \bar{r} \\ & a_{2} \end{aligned}$	${ }^{+}$	r $a_{0}$	2	2
JBb addr	$\begin{aligned} & \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-\text { addr if } \mathrm{b}=1 \\ & (\mathrm{PC})=(\mathrm{PC})+2 \text { if } \mathrm{D}=0 \end{aligned}$	Jumps to the address specified by $\mathrm{a}_{0}-\mathrm{a}_{7}$ if the bit in the accumulator specified by $b_{0}-D_{2}$ is set.	$\times 2(6)$	$\begin{aligned} & b_{2} \\ & a_{7} \end{aligned}$	$\mathrm{b}_{1}$ $\mathrm{a}_{6}$	$\begin{aligned} & b_{0} \\ & a_{5} \end{aligned}$	1 $a_{4}$	$a_{3}$	$\begin{gathered} 0 \\ a_{2} \end{gathered}$	1 $a_{1}$	${ }_{0}^{0}{ }_{0}$	2	2

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Mromonic} \& \multirow[b]{2}{*}{Function} \& \multirow[b]{2}{*}{Description} \& \multirow[t]{2}{*}{Mex Code} \& \multicolumn{8}{|c|}{Operation Code} \& \multirow[b]{2}{*}{Cyclos} \& \multirow[b]{2}{*}{Bytos} \\
\hline \& \& \& \& \(\mathrm{D}_{7}\) \& \(\mathrm{D}_{6}\) \& D \& \(\mathrm{D}_{4}\) \& \(\mathrm{D}_{3}\) \& \(\mathrm{D}_{2}\) \& \(\mathrm{D}_{1}\) \& \(\mathrm{D}_{0}\) \& \& \\
\hline \multicolumn{14}{|l|}{Branch (cont)} \\
\hline JG addr \& \[
\begin{aligned}
\& \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right) \leftarrow \text { addr if } \mathrm{C}=1 \\
\& (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{C}=0
\end{aligned}
\] \& Jumps to the address specitied by \(\mathrm{a}_{0}-\mathrm{a}_{7}\) if the carry flag is set. \& F6 \& \[
\begin{aligned}
\& 1 \\
\& a_{7}
\end{aligned}
\] \& \[
\begin{gathered}
1 \\
a_{6}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{5}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{4}
\end{gathered}
\] \& \[
\begin{gathered}
\hline 0 \\
a_{3}
\end{gathered}
\] \& \[
\begin{gathered}
\hline 1 \\
\mathrm{a}_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{1}
\end{gathered}
\] \& \[
\begin{aligned}
\& \hline 0 \\
\& a_{0}
\end{aligned}
\] \& 2 \& 2 \\
\hline JF0 addr \& \[
\begin{aligned}
\& \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-\text { addr if } \mathrm{FO}=1 \\
\& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{FO}=0
\end{aligned}
\] \& Jumps to the address specified by \(\mathrm{a}_{0}-\mathrm{a}_{7}\) if F 0 is set. \& B6 \& \[
\begin{gathered}
1 \\
a_{7}
\end{gathered}
\] \& \[
\begin{aligned}
\& 0 \\
\& a_{6}
\end{aligned}
\] \& \[
\begin{gathered}
1 \\
a_{5}
\end{gathered}
\] \& \[
\begin{aligned}
\& 1 \\
\& a_{4}
\end{aligned}
\] \& \[
\begin{gathered}
0 \\
a_{3}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{1}
\end{gathered}
\] \& \[
\begin{aligned}
\& 0 \\
\& \mathbf{a}_{0}
\end{aligned}
\] \& 2 \& 2 \\
\hline JFl addr \& \[
\begin{aligned}
\& \left(\mathrm{PC}_{0}-\mathrm{PC} \mathrm{C}_{7}-\text { addr if } \mathrm{F} 1=1\right. \\
\& (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{F}=0
\end{aligned}
\] \& Jumps to the address specified by \(\mathrm{a}_{0}-\mathrm{a}_{7}\) if F 1 is set. \& 76 \& \[
\begin{gathered}
0 \\
{ }^{2} 7 \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{6}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{5} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{4}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{3} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\hline 1 \\
a_{2} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{1}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{0} \\
\hline
\end{gathered}
\] \& 2 \& 2 \\
\hline JMP addr \& \[
\begin{aligned}
\& \left(\mathrm{PC}_{8}-\mathrm{PC}_{10}\right) \leftarrow\left(\text { addr }_{8}-\text { addr }_{10}\right) \\
\& \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-\left(\text { addr }_{0}-\text { addr }_{7}\right) \\
\& \left(\mathrm{PC}_{11}\right)-\mathrm{OBF}
\end{aligned}
\] \& Jumps directly 10 the address specified by \(\mathrm{a}_{0}-\mathrm{a}_{10}\) and the OBF. \& \(\times 4\) (6) \& \[
\begin{aligned}
\& a_{10} \\
\& a_{7}
\end{aligned}
\] \& \[
\begin{aligned}
\& a_{9} \\
\& a_{6}
\end{aligned}
\] \& \[
\begin{aligned}
\& a_{8} \\
\& a_{5}
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& a_{4}
\end{aligned}
\] \& \[
\overline{0}
\] \& \[
\begin{gathered}
1 \\
a_{2}
\end{gathered}
\] \& \[
\begin{aligned}
\& 0 \\
\& a_{1}
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& a_{0}
\end{aligned}
\] \& 2 \& 2 \\
\hline JMPP@A \& \(\left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-((\mathrm{A})\) ) \& Replaces the lower 8 bits of the program counter with the contents of program memory specified by the contents of the accumulator, producing a jump to the specified address within the current page. \& B3 \& 1 \& 0 \& 1 \& 1 \& 0 \& 0 \& 1 \& 1 \& 2 \& 1 \\
\hline JNC addr \& \[
\begin{aligned}
\& \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-\text { addr if } \mathrm{C}=0 \\
\& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{C}=1
\end{aligned}
\] \& Jumps to the address specitied by \(a_{0}-\mathrm{a}_{7}\) if the carry fiag is not set. \& E6 \& \[
\begin{gathered}
1 \\
a_{7}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{6}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{5}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{4}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{3}
\end{gathered}
\] \& \[
\begin{array}{r}
1 \\
a_{2}
\end{array}
\] \& \[
\begin{aligned}
\& 1 \\
\& a_{1}
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& a_{0}
\end{aligned}
\] \& 2 \& 2 \\
\hline JNI addr \& \[
\begin{aligned}
\& \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-\text { addr if }=0 \\
\& (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \mathrm{if} \mid=1
\end{aligned}
\] \& Jumps to the address specified by ao-ap if the interrupt flag is not set. \& 86 \& \[
\begin{array}{r}
1 \\
a_{7} \\
\hline
\end{array}
\] \& \[
\begin{gathered}
\hline 0 \\
a_{6} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\hline 0 \\
a_{5} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\hline 0 \\
a_{4} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\hline 0 \\
a_{3} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
\mathrm{a}_{2} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{1} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{0} \\
\hline
\end{gathered}
\] \& 2 \& 2 \\
\hline JNT0 addr \& \[
\begin{aligned}
\& \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-\operatorname{addr} \text { if } T 0=0 \\
\& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } T 0=1
\end{aligned}
\] \& Jumps to the address specified by \(\mathrm{a}_{0}-\mathrm{a}_{7}\) if test 0 is low. \& 26 \& \[
\begin{aligned}
\& 0 \\
\& a_{7}
\end{aligned}
\] \& \[
\begin{gathered}
\hline 0 \\
a_{6} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{5}
\end{gathered}
\] \& \[
\begin{aligned}
\& 0 \\
\& a_{4}
\end{aligned}
\] \& \[
\begin{gathered}
\hline 0 \\
a_{3} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{2} \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& 1 \\
\& a_{1} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 0 \\
\& a_{0} \\
\& \hline
\end{aligned}
\] \& 2 \& 2 \\
\hline JNT1 addr \& \[
\begin{aligned}
\& \left(\mathrm{PC}_{0}-P C_{7}\right)-\text { add if } \mathrm{Tl}=0 \\
\& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } T 1=1
\end{aligned}
\] \& Jumps to the address specified by \(\mathrm{a}_{0}-\mathrm{a}_{7}\) if test 1 is low. \& 46 \& \[
\begin{gathered}
0 \\
a_{7}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{6} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\hline 0 \\
a_{5} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
\mathrm{a}_{4} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\hline 0 \\
a_{3} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{2} \\
\hline
\end{gathered}
\] \& \[
\begin{array}{r}
1 \\
a_{1} \\
\hline
\end{array}
\] \& \[
\begin{gathered}
\hline 0 \\
a_{0} \\
\hline
\end{gathered}
\] \& 2 \& 2 \\
\hline JNZ addr \& \[
\begin{aligned}
\& \left(\mathrm{PC}_{6}-\mathrm{PC}_{7}\right)-\text { addr it } \mathrm{A} \neq 0 \\
\& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{A}=0
\end{aligned}
\] \& Jumps to the address specilied by \(a_{0}-\mathrm{a}_{7}\) if the contents of the accumulator are not equal to 0 . \& 96 \& \[
\begin{gathered}
1 \\
a_{7}
\end{gathered}
\] \& \[
\begin{gathered}
\hline 0 \\
a_{6} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\hline 0 \\
a_{5} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{4}
\end{gathered}
\] \& \[
\begin{gathered}
\hline 0 \\
\mathbf{a}_{3} \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& 1 \\
\& a_{2}
\end{aligned}
\] \& \[
\begin{array}{r}
1 \\
a_{1} \\
\hline
\end{array}
\] \& \[
\begin{gathered}
\hline 0 \\
\mathbf{a}_{0}
\end{gathered}
\] \& 2 \& 2 \\
\hline JTF addr \& \[
\begin{aligned}
\& \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-\text { addr if } T F=1 \\
\& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } T F=0
\end{aligned}
\] \& Jumps to the address specified by \(a_{0}-a_{7}\) if the timer flag is set. The timer flag is cleared after the instruction is executed. \& 16 \& \[
\begin{gathered}
0 \\
a_{7}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{6} \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& 0 \\
\& a_{5}
\end{aligned}
\] \& \[
\begin{gathered}
1 \\
a_{4}
\end{gathered}
\] \& \[
\begin{gathered}
\hline 0 \\
a_{3} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{2}
\end{gathered}
\] \& \[
\begin{aligned}
\& 1 \\
\& a_{1}
\end{aligned}
\] \& \begin{tabular}{c}
0 \\
\(\mathrm{a}_{0}\) \\
\hline
\end{tabular} \& 2 \& 2 \\
\hline JT0 addr \& \[
\begin{aligned}
\& \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-\text { addr if } \mathrm{T} 0=1 \\
\& (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{T} 0=0
\end{aligned}
\] \& Jumps 10 the address specitied by \(\mathrm{a}_{0}-\mathrm{a}_{7} \mathrm{If}\) test 0 is high. \& 36 \& \[
\begin{gathered}
\hline 0 \\
a_{7} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{6}
\end{gathered}
\] \& \[
\begin{array}{r}
1 \\
a_{5} \\
\hline
\end{array}
\] \& \[
\begin{gathered}
1 \\
a_{4}
\end{gathered}
\] \& \[
\begin{aligned}
\& \hline 0 \\
\& a_{3} \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
1 \\
a_{2}
\end{gathered}
\] \& \[
\begin{aligned}
\& 1 \\
\& a_{1}
\end{aligned}
\] \& \begin{tabular}{c}
0 \\
\(a_{0}\) \\
\hline
\end{tabular} \& 2 \& 2 \\
\hline JT1 addr \& \[
\begin{aligned}
\& \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right) \leftarrow \operatorname{addrif~} \mathrm{T} 1=1 \\
\& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{T}=0
\end{aligned}
\] \& Jumps to the address specified by \(\mathrm{a}_{0}-\mathrm{a}_{7}\) if test 1 is high. \& 56 \& \[
\begin{gathered}
0 \\
a_{7}
\end{gathered}
\] \& \begin{tabular}{c}
1 \\
\(a_{6}\) \\
\hline
\end{tabular} \& \[
\begin{gathered}
0 \\
a_{5}
\end{gathered}
\] \& \begin{tabular}{c}
1 \\
\(a_{4}\) \\
\hline
\end{tabular} \& \[
\begin{aligned}
\& \hline 0 \\
\& a_{3}
\end{aligned}
\] \& \[
\begin{gathered}
1 \\
a_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{1}
\end{gathered}
\] \& 0
\(a_{0}\)
0 \& 2 \& 2 \\
\hline JZ \& \[
\begin{aligned}
\& \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right) \leftarrow \operatorname{addr} \text { it } \mathrm{A}=0 \\
\& (\mathrm{PC})-(\mathrm{PC})+2 \text { if }=1
\end{aligned}
\] \& Jump to the address specified by \(\mathrm{a}_{0}-\mathrm{a}_{7}\) if the contents of the accumulator are equal to 0 . \& C6 \& \[
\begin{gathered}
1 \\
a_{7}
\end{gathered}
\] \& 1
\(a_{6}\) \& 0

5 \& \begin{tabular}{c}
0 <br>
$a_{4}$ <br>
\hline

 \& 

0 <br>
$a_{3}$ <br>
\hline

 \& 

1 <br>
$a_{2}$ <br>
\hline

 \& 

1 <br>
$a_{1}$ <br>
\hline
\end{tabular} \& 0

$a_{0}$ \& 2 \& 2 <br>
\hline
\end{tabular}

## Instruction Set (cont)

Minemonic	Function	Descripition	$\begin{aligned} & \text { Hex } \\ & \text { Code } \end{aligned}$	Operation Codo								Cycles	Bytos
				$\mathrm{D}_{7}$	$D_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$D_{1}$	$D_{0}$		
Control													
ENI		Enables external interrupts. When external interrupts are enabled, a low-level input to the INT pin causes the processor to vector to the interrupt service routine.	05	0	0	0	0	0	1	0	1	1	1
DIS I		Disables external interrupts. When external interrupts are disabled, low-level inputs to the INT pin have no effiect on program execution.	45	0	0	0	1	0	1	0	1	1	1
ENTO CLK		Enables clock output to pin TO.	75	0	1	1	1	0	1	0	1	1	1
SEL MBO	$(D B F)=0$	Clears the memory bank flip-flop, selecting program memory bank 0 (program memory addresses $0-2047_{(10)}$ ). Clears $\mathrm{PC}_{11}$ atier the next JMP or CALL instruction.	E5	1	1	1	0	0	1	0	1	1	1
SEL MB1	$(\mathrm{OBF})-1$	Sets the memory bank $1 \mathrm{lip-flop}$, selecting program memory bank 1 (program memory addresses 2048-4095(10)). Sets ${ }^{\mathrm{P}} \mathrm{C}_{11}$ atter the next JMP or CALL instruction.	F5	1	1	1	1	0	1	0	1	1	1
SEL RBO	$(\mathrm{BS})-0$	Selects data memory bank 0 by clearing bit 4 (bank switch) of the PSW. Specifies data memory addresses $0-7_{(10)}$ as registers 0-7 of data memory bank 0 .	C5	1	1	0	0	0	1	0	1	1	1
SEL RB1	(BS) -1	Selects data memory bank 1 by setting bit 4 (bank switch) of the PSW. Specifies data memory $24-31$ (10) as registers 0-7 of data memory bank 1.	DS	1	1	0	1	0	1	0	1	1	1
HALT		Initiates halt mode.	01	0	0	0	0	0	0	0	1	1	1
Data Moves													
MOV A, \# data	(A) - data	Moves immediate data $\mathrm{d}_{0}-\mathrm{d}_{7}$ into the accumulator.	23	$\begin{gathered} 0 \\ \mathrm{~d}_{7} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{d}_{5} \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{d}_{1} \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2
MOV A, Rr	$(\mathrm{A})-(\mathrm{Rr}) ; \mathrm{r}=0-7$	Moves the contents of register Rr into the accumulator.	Fn(4)	1	1	1	1	1	r	r	r	1	1
MOVA, © Rr	$(\mathrm{A})-(\mathrm{Pr})$ ) $\mathrm{r}=0-1$	Moves the contents of internal data memory specified by bits 0-5 in register Rr , into the accumulator.	Fn(4)	1	1	1	1	0	0	0	r	1	1
MOV A, PSW	$(\mathrm{A})-($ PSW $)$	Moves the contents of the program status word into the accumulator.	67	$\dagger$	1	0	0	0	1	1	1	1	1
MOV Ar, \# data	$(\mathrm{Rr})-$ data; $r=0-7$	Moves immediate data $\mathrm{d}_{0}-\mathrm{d}_{7}$ into register Rr.	Bn(4)	$\begin{gathered} 1 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{6} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} \hline r \\ d_{2} \end{gathered}$	$\begin{aligned} & \mathbf{r} \\ & d_{1} \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathrm{p} \\ \mathrm{~d}_{0} \end{gathered}$	2	2
MOV Rr, A	$(\mathrm{Rr})-(\mathrm{A}) ; \mathrm{r}=0-7$	Moves the contents of the accumulator into register Rr.	An(4)	1	0	1	0	1	「	1	「	1	1
MOV @ Rr, A	$((\mathrm{Rr})) \leftarrow(\mathrm{A}) ; \mathrm{r}=0-1$	Moves the contents of the accumulator into the data memory location specilied by bits 0-5 in register Rr.	An(4)	1	0	1	0	0	0	0	r	1	1
MOV @ Rr, \# data	$((\mathrm{Rr}))$ - data; $\mathrm{r}=0-1$	Moves immediate data $\mathrm{d}_{0}-\mathrm{d}_{7}$ into the data memory location specified by bits 0-5 in register Rr.	Bn(4)	$\begin{gathered} 1 \\ d 7 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 \\ d_{6} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} \hline \mathbf{0} \\ \mathbf{d}_{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline r \\ d_{0} \end{gathered}$	2	2


Mnemonic	Function	Descriplion	$\begin{aligned} & \operatorname{mex} \\ & \operatorname{Cod} \end{aligned}$	Operation cose								Cyclos	Bytes
				87	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$		
Data Moves（cont）													
MOV PSW，A	$($ PSW $)-(\mathrm{A})$	Moves the contents of the accumulator into the program status word．	07	1	1	0	1	0	1	1	1	1	1
MOVPA，＠A	$\begin{aligned} & \left(P C_{0}-P C_{7}\right) \leftarrow(A) \\ & (A)-(P C)) \end{aligned}$	Moves the contents of the program memory location specified by $\mathrm{PC}_{8}-\mathrm{PC}_{11}$ concatenated with the contents of the accumulator，into the accumulator．	A3	1	0	1	0	0	0	1	1	2	1
MOVP3 A，© A	$\begin{aligned} & \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right) \leftarrow(\mathrm{A}) \\ & \left(\mathrm{PC}_{8}-\mathrm{PC}_{11}\right) \leftarrow 001 \\ & (\mathrm{~A}) \leftarrow((\mathrm{PC})) \end{aligned}$	Moves the contents of the program memory location specified by $0011\left(\mathrm{PC}_{8}-\mathrm{PC}_{11}\right.$ ．page 3 of program memory bank 0 ）and the contents of the accumulator，into the accumulator．	E3	1	1	1	0	0	0	1	1	2	1
MOVXA．（3） R	（A）－（ $(\mathrm{Rr})$ ）； $\mathrm{r}=0-1$	Moves the contents of the external data memory location specified by register Rr ，into the accumulator．	8n（4）	1	0	0	0	0	0	0	r	2	1
MOVX＠R，A	$((\mathrm{Rr}))-(\mathrm{A}) ; \mathrm{r}=0-1$	Moves the contents of the accumulator into the external data memory location specified by register Rr．	9n（4）	1	0	0	1	0	0	0	r	2	1
XCH A，Rr	$(\mathrm{A}) \longrightarrow(\mathrm{Rr}) ; \mathrm{r}=0-7$	Exchanges the contents of the accumulator and register Rr．	2n（4）	0	0	1	0	1	r	r	「	1	1
XCHA ，＠Rr	$(\mathrm{A}) \longrightarrow((\mathbf{R r}) ; \mathrm{r}=0-1$	Exchanges the contents of the accumulator and the contents of the data memory location specified by bits $0-5$ in register Rr．	2n（4）	0	0	1	0	0	0	0	「	1	1
$\overline{X C H D A, ~}{ }^{\text {ar }}$	$\begin{aligned} & \left(\mathrm{A}_{0}-\mathrm{A}_{3}\right) \longrightarrow((\mathrm{Rr}))_{0}-\left((\mathrm{Rr})_{3} ;\right. \\ & r=0-1 \end{aligned}$	Exchanges the contents of the lower 4 bits of the accumulator with the contents of the lower 4 bits of the internal data memory location specified by bits $0-5$ in register Rr．	3n（4）	0	0	1	1	0	0	0	「	1	1
Flags													
CPLC	（C）$-(\overline{\mathrm{C}})$	Takes the complement of the carry bit．	A7	1	0	1	0	0	1	1	1	1	1
CPL FO	$(\mathrm{F} 0)-(\overline{\mathrm{F}})$	Takes the complement of flag 0 ．	95	1	0	0	1	0	1	0	1	1	1
CPL F1	$(\mathrm{F} 1)-(\overline{\mathrm{F}}$ ）	Takes the complement of flag 1.	B5	1	0	1	1	0	1	0	1	1	1
CLR C	（C）-0	Clears the carry bit．	97	1	0	0	1	0	1	1	1	1	1
CLR F0	（FO）-0	Clears flag 0 ．	85	1	0	0	0	0	1	0	1	1	1
CLRF1	（F1）-0	Clears flag 1.	A5	1	0	1	0	0	1	0	1	1	1

## Instruction Set (cont)

Anomonic	Function	Description	Hox Code	Operation Code								Cycles	Bytos
				$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$D_{1}$	$\mathrm{D}_{0}$		
Input/ Output													
ANL BUS, \# data	(bus) - (bus) AND data	Takes the logical AND of the contents of the bus and immediate data $\mathrm{d}_{0}-\mathrm{d}_{7}$, and sends the result to the bus.	98	$\begin{gathered} 1 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{d}_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{2} \end{gathered}$	$\begin{gathered} 0 \\ d_{1} \end{gathered}$	$\begin{gathered} 0 \\ d_{0} \end{gathered}$	2	2
ANL Pp. \# data	$(\mathrm{Pp}) \leftarrow(\mathrm{Pp})$ AND data; $p=1-2$	Takes the logical AND of the contents of designated port Pp and immediate data $\mathrm{d}_{0}-\mathrm{d}_{7}$, and sends the resuli to port Pp for output.	$9 \mathrm{n}(5)$	$\begin{gathered} 1 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{aligned} & 1 \\ & d_{4} \end{aligned}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{aligned} & 0 \\ & d_{2} \end{aligned}$	$\begin{gathered} p \\ d_{1} \end{gathered}$	$\begin{gathered} \mathrm{p} \\ \mathrm{~d}_{0} \end{gathered}$	2	2
ANLD Pp, A	$\begin{aligned} & \left(P_{0}\right)-(P p) \text { AND }\left(A_{0}-A_{3}\right) ; \\ & p=4-7 \end{aligned}$	Takes the logical AND of the contents of designated port Pp and the lower 4 bits of the accumulator, and sends the result to port Pp for output.	9n(5)	1	0	0	1	1	1	p	$\rho$	2	1
INA, Pp	(A) - (Pp): $p=1-2$	Loads the accumulator with the contents of designated port Pp.	On(5)	0	0	0	0	1	0	p	$p$	2	1
INS A, BUS	$(\mathrm{A})-$ (bus)	Loads the contents of the bus into the accumulator on the rising edge of $\overline{R D}$.	08	0	0	0	0	1	0	0	0	2	1
MOVD A. Pp	$\begin{aligned} & \left(A_{0}-A_{3}\right)-\left(\mathrm{PD}_{0}\right): P=4-7 \\ & \left(A_{4}-A_{7}\right) \leftarrow 0 \end{aligned}$	Moves the contents of designated port Pp to the lower 4 bits of the accumulator, and clears the upper 4 bits.	On(5)	0	0	0	0	1	1	$p$	P	2	1
MOVD Pp, A	$(P p)-\left(A_{0}-A_{3}\right) ; p=4-7$	Moves the lower 4 bits of the accumulator to designated port Pp . The upper 4 bits of the accumulator are not changed.	3n(5)	0	0	1	1	1	1	D	p	2	1
ORL BUS, \# data	(bus) - (bus) OR data	Takes the logical OR of the contents of the bus and immediate data $\mathrm{d}_{0}-\mathrm{d}_{7}$, and sends the result to the bus.	88	$\begin{gathered} 1 \\ d_{7} \end{gathered}$	$\begin{aligned} & 0 \\ & d_{6} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{5} \end{aligned}$	$\begin{gathered} 0 \\ 0_{4} \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 0 \\ d_{1} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{d}_{0} \end{gathered}$	2	2
ORLD Pp, A	$\begin{aligned} & \langle P D\rangle \amalg(P p) O R\left(A_{0}-A_{3}\right) ; \\ & p=4-7 \end{aligned}$	Takes the logical $O R$ of the contents of designated port Pp and the lower 4 bits of the accumulator, and sends the result to port Pp for output.	$8 \mathrm{n}(5)$	1	0	0	0	1	1	$p$	p	2	1
ORLPD, \# data	$\begin{aligned} & (P p)-(P p) \text { OR data; } \\ & p=1-2 \end{aligned}$	Takes the togical OR of the contents of designated port Pp and immediate data $\mathrm{d}_{0}-\mathrm{d}_{7}$, and sends the result to port Pp for output.	$9 \mathrm{n}(5)$	$\begin{gathered} 1 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{aligned} & \mathbf{0} \\ & d_{5} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{4} \end{aligned}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{aligned} & 0 \\ & d_{2} \end{aligned}$	$\begin{aligned} & p \\ & d_{1} \end{aligned}$	$\begin{aligned} & \mathrm{p} \\ & \mathrm{~d}_{0} \end{aligned}$	2	2
OUTL BUS. A	(bus) - (A)	Latches the contents of the accumulator onto the bus on the rising edge of $\overline{W R}$.   Note: Never use the OUTL BUS instruction when using external program memory, as this will permanently latch the bus.	02	0	0	0	0	0	0	1	0	2	1
OUTL Pp,A	$(P \mathrm{P})-(\mathrm{A}): \mathrm{p}=1-2$	Latches the contents of the accumulator into designated port Pp for output.	$3 n(5)$	0	0	1	1	1	0	p	D	2	1
Reoglstars													
DEC Rr	$(\mathrm{Rr})-(\mathrm{Rr})-1 ; r=0-7$	Decrements the contents of register Rr by 1.	$\mathrm{Cn}(4)$	1	1	0	0	1	r	r	「	1	1
INC Rr	$(\mathrm{Rr})-(\mathrm{Rr})+1 ; r=0-7$	Increments the contents of register Rr by 1.	in(4)	0	0	0	1	1	1	$r$	r	1	1
INC © $\mathrm{Rr}^{\text {r }}$	$\begin{aligned} & ((\mathrm{Rr}))-((\mathrm{Rr}))+\mathrm{t} ; \\ & \mathrm{r}=0-1 \end{aligned}$	Increments by 1 the contents of the data memory location specitied by bits 0-5 in register Rr.	in(4)	0	0	0	1	0	0	0	r	1	1


Monmonic	Function	Doscription	Mox Code	Opperation Code								Cycles	Bytes
				$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$		
Subroutine													
CALL addr	$\begin{aligned} & ((\mathrm{SP}))-(\mathrm{PC}) .\left(\mathrm{PSW}_{4}-\mathrm{PSW}_{7}\right) \\ & (\mathrm{SP})-(\mathrm{SP})+1 \\ & \left(\mathrm{PC}_{8}-\mathrm{PC}_{10}\right)-\left(\text { addr }_{8}-\text { addr }_{10}\right) \\ & \left(\mathrm{PC}_{0}-\mathrm{PC}_{7}\right)-\left(\text { addr }_{0}-\text { addr }_{7}\right) \\ & \left(\mathrm{PC}_{11}\right)-\mathrm{DBF} \end{aligned}$	Stores the contents of the program counter and the upper 4 bits of the PSW in the address indicated by the stack pointer, and increments the contents of the stack pointer, calling the subroutine specified by address $\mathrm{a}_{0}-\mathrm{a}_{10}$ and the $D B F$.	x4(6)	$\begin{aligned} & a_{10} \\ & a_{7} \end{aligned}$	$\begin{aligned} & a_{9} \\ & a_{6} \end{aligned}$	$\begin{aligned} & a_{8} \\ & a_{5} \end{aligned}$	$\begin{gathered} 1 \\ a_{4} \end{gathered}$	$\begin{aligned} & \hline 0 \\ & \mathrm{a}_{3} \end{aligned}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{aligned} & 0 \\ & a_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & a_{0} \end{aligned}$	2	2
RET	$\begin{aligned} & (S P)-(S P)-1 \\ & (P C)-((S P)) \end{aligned}$	Decrements the contents of the stack pointer by 1 and stores, in the program counter, the contents of the location specified by the stack pointer, executing a return from subroutine without restoring the PSW.	83	1	0	0	0	0	0	1	1	2	1
RETR	$\begin{aligned} & (\mathrm{SP})-(\mathrm{SP})-1 \\ & (\mathrm{PC})-((\mathrm{SP})) \\ & \left(\mathrm{PSW} W_{4}-\mathrm{PS} W_{7}\right)-((\mathrm{SP})) \end{aligned}$	Decrements the contents of the stack pointer by 1 and stores, in the program counter, the contents of the upper 4 bits of the PSW and the contents of the location specified by the stack pointer, executing a return from subroutine with restoration of the PSW.	93	1	0	0	1	0	0	1	1	2	1
Timer / Counter													
EN TCNT		Enables internal interrupt of timer / event counter. It an overilow condition occurs, then an interrupt will be generated.	25	0	0	1	0	0	1	0	1	1	1
DIS TCNTI		Disables internal interrupt of timer / event counter.	35	0	0	1	1	0	1	0	1	1	1
MOVA, T	$(\mathrm{A})-(\mathrm{T})$	Moves the contents of the timer/ counter into the accumulator.	42	0	1	0	0	0	0	1	0	1	1
MOV T, A	(T) $-(\mathrm{A})$	Moves the contents of the accumulator into the timer/ counter.	62	0	1	1	0	0	0	1	0	1	1
STOP TCNT		Stops the operation of the timer/ event counter:	65	0	1	1	0	0	1	0	1	1	1
STRT GNT		Starts the event counter operation of the timer / counter when T1 changes from a low-level input to a high-level input.	45	0	1	0	0	0	1	0	1	1	$\dagger$
STRT T		Starts the timer operation of the timer / counter. The timer is incremented every 32 machine cycles.	55	0	1	0	$t$	0	1	0	1	1	1
Miscellaneous													
NOP		Uses one machine cycle without performing any operation.	00	0	0	0	0	0	0	0	0	1	1

## Instruction Set (cont)

Note:
(1) Binary operation code designations rand p represent encoded values or the lowest-order bit value of specified registers and ports, respectively.
(2) Execution of the ADD,$~ A D D C$, and DA instructions affect the carry flags, which are not shown in the respective function equations. These instructions set the carry flags when there is an overflow in the accumulator (the auxiliary carry flag is set when there is an overflow of bit 3 of the accumulator) and clear the carry flags when there is no overflow. Flags that are specifically addressed by flag instructions are shown in the function equations for those instructions.
(3) References to addresses and data are specifled in byte 1 and/or 2 in the opcode of the corresponding instruction.
(4) The hex value of $n$ for specific registers is as follows:
a) Direct addressing

RO: $n=B \quad$ R2: $n=A \quad R 4: n=C \quad R 6: n=E$ $\begin{array}{llll}\text { R1: } \mathrm{n}=9 & \text { R3: } \mathrm{n}=\mathrm{B} & \text { R5: } \mathrm{n}=\mathrm{D} & \text { R7: } \mathrm{n}=\mathrm{F}\end{array}$
HO: $n=0$ sing
(4) $\mathrm{R}=1$
(J) The hex value of $n$ for specific ports is as follow:

P1: $n=9 \quad$ P4: $n=C \quad P 6: n=E$
P2: $n=A \quad$ PS: $n=0 \quad$ P7: $n=F$
(6) The hex value of x for specific accumulator or address bits is as follows: a) JBb instruction
$B_{0}: X=1 \quad B_{2}: X=5 \quad B_{4}: x=9 \quad B_{6}: X=D$
$\begin{array}{llll}B_{0}: x=1 & B_{2}: x=5 & B_{4}: x=9 & B_{6}: x=D \\ B_{1}: x=3 & B_{3}: x=7 & B_{5}: x=B & B_{7}: x=F\end{array}$
b) JMP instruction

Page $0: x=0 \quad$ Page $2: x=4 \quad$ Page $: x=8$
$\begin{array}{lll} & \text { Page } 1: x=0 & x=0\end{array}$
CALL instruction
$\begin{array}{llll}\text { Page 0: } x=1 & \text { Page 2: } x=5 & \text { Page 4: } x=9 & \text { Page 6: } x=0\end{array}$
$\begin{array}{lll}\text { Page 1: } x=3 & \text { Page 3: } x=7 & \text { Page 5: } x=B\end{array} \quad$ Page 7: $x=F$

## Operating Characteristics



## Operating Characteristics (cont)








## Operating Characteristics (cont)



## $\mu$ PD765A/ $\mu$ PD7265 SINGLEIDOUBLE DENSITY FLOPPY DISK CONTROLLER

## Description

The $\mu$ PD765A is an LSI floppy disk controller (FDC) chip which contains the circuitry and control functions for interfacing a processor to 4 floppy disk drives. It is capable of either IBM 3740 single density format (FM), or IBM System 34 double density format (MFM) including double-sided recording. The $\mu$ PD765A provides control signals which simplify the design of an external phaselocked loop and write precompensation circuitry. The FDC simplifies and handles most of the burdens associated with implementing a floppy disk interface.
The $\mu$ PD7265 is an addition to the FDC family that has been designed specifically for the Sony Micro Floppydisk ${ }^{\text {® }}$ drive. The $\mu$ PD7265 is pin-compatible and electrically equivalent to the 765A but utilizes the Sony recording format. The $\mu$ PD7265 can read a diskette that has been formatted by the $\mu$ PD765A.
Each of these devices is also available in a $\mathbf{- 2}$ version. The $\mathbf{- 2}$ versions represent a reduction from 4-micron to 3 -micron design rule. Functionality is the same. Minor differences between the two versions are detailed in the AC Characteristics table. The -2 versions are only available in the plastic package at this time.
Hand-shaking signals are provided in the $\mu$ PD765A/ $\mu$ PD7265 which make DMA operation easy to incorporate with the aid of an external DMA controller chip, such as the $\mu$ PD8257. The FDC will operate in either the DMA or non-DMA mode. In the non-DMA mode the FDC generates interrupts to the processor every time a data byte is to be transferred. In the DMA mode, the processor need only load the command into the FDC and all data transfers occur under control of the FDC and DMA controllers.

There are 15 commands which the $\mu$ PD765A/ $\mu$ PD7265 will execute. Each of these commands requires multiple 8 -bit bytes to fully specify the operation which the processor wishes the FDC to perform. The following commands are available:

Read Data	Read Deleted Data
Read ID	Write Data
Specify	Format Track
Read Track	Write Dele'ed Data
Scan Equal	Seek
Scan High or Equal	Recalibrate
Scan Low or Equal	Sense Interrupt Status
	Sense Drive Status.

## Features

Address mark detection circuitry is internal to the FDC which simplifies the phase-locked loop and read electronics. The track stepping rate, head load time, and head unload time are user-programmable. The $\mu$ PD765A/ $\mu$ PD7265 offers additional features such as multi-track and multi-side read and write commands and single and double density capabilities.Sony (EMCA)-compatible recording format ( $\mu$ PD7265)IBM-compatible format (single and double density) ( $\mu$ PD765A)Multi-sector and multi-track transfer capability
Drive Up to 4 floppy or micro floppydisk drivesData scan capability - will scan a single sector or an entire cylinder comparing byte-for-byte host memory and disk data
Data transfers in DMA or non-DMA mode
Parallel seek operations on up to four drivesCompatible with $\mu$ PD8080/85, $\mu$ PD8086/88 and $\mu$ PD780 (Z80) microprocessors
Single-phase clock ( 8 MHz )
+5 V only

- Z8O is a registered trademark of the Zilog Corporation.


## Pin Configuration



## Ordering information

Device Mumber	Packege Type	Mar Froq.   of Operation
$\mu$ PD765AC, $\mu$ PD765A-2C	40 -Pin plastic DIP	8 MHz
$\mu$ PD7265C, $\mu$ PD7265-2C	40 -Pin plastic DIP	8 MHz
$\mu$ PD765AD	40 -Pin ceramic DIP	8 MHz
$\mu$ PD72650	40 -Pin ceramic DIP	8 MHz

## Pin Identification

No.	8ymbol	Function
1	RESET	Reset input
2	RD	Read control input
3	WR	Write control input
4	$\overline{\mathrm{CS}}$	Chip select input
5	$\mathrm{A}_{0}$	Data or status select input
6-13	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$	Bidirectional data bus
14	DRQ	DMA request output
15	${ }^{\text {DACK }}$	DMA acknowledge input
16	TC	Terminal count input
17	IDX	Index input
18	INT	Interrupt request output
19	CLK	Clock input
20	GND	Ground
21	WCK	Write clock input
22	RDW	Read data window input
23	RDD	Read data input
24	VCO	VCO sync output
25	WE	Write enable output
26	MFM	MFM output
27	HD	Head select output
28,29	US $\mathrm{S}_{0}$ US $\mathrm{S}_{1}$	FDD unit select output
30	WDA	Write data output
31, 32	$\mathrm{PS}_{0} . \mathrm{PS} \mathrm{S}_{1}$	Preshift output
33	FLT/ $\mathrm{TR}_{0}$	Fault / track zero input
34	WP/TS	Write protect / two side input
35	RDY	Ready input
36	HDL	Head load output
37	FR/STP	Fautt reset/step output
38	LCT / DIR	Low current direction output
39	RW/ SEEK	Read/write/seek output
40	$V_{C C}$	DC power

## Pin Functions

## RESET (Reset)

The RESET input places the FDC in the idle state. It resets the output lines to the FDD to 0 (low). It does not affect SRT, HUT, or HLT in the Specify command. If the RDY input is heid high during reset, the FDC will generate an interrupt within 1.024 ms . To clear this interrupt, use the Sense Interrupt Status command.

## $\overline{\mathrm{RD}}$ (Read Strobe)

The $\overline{\mathrm{AD}}$ input allows the transfer of data from the FDC to the data bus when low. Disabled when $\overline{\mathrm{CS}}$ is high.

## $\overline{\text { WR }}$ (Write Strobe)

The $\overline{W R}$ input allows the transfer of data to the FDC from the data bus when low. Disabled when $\overline{\mathrm{CS}}$ is high.

## $A_{0}$ (Data/Status Select)

The $A_{0}$ input selects the data register $\left(A_{0}=1\right)$ or status register $\left(A_{0}=0\right)$ contents to be sent to the data bus.

## CS (Chip Select)

The FDC is selected when $\overline{C S}$ is low, enabling $\overline{R D}, \overline{W R}$, and $A_{0}$.

## $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ (Data Bus)

$\mathrm{DB}_{0}-\mathrm{DB}_{7}$ are a bidirectional 8-bit data bus. Disabled when CS is high.

## DRQ (DMA Request)

The FDC asserts the DRQ output high to request a DMA transfer.

## DACK (DMA Acknowledge)

When the $\overline{\text { DACK }}$ input is low, a DMA cycle is active and the controller is performing a DMA transfer.

## TC (Terminal Count)

When the TC input is high, it indicates the termination of a DMA transfer. It terminates data transfer during Read/ Write/Scan commands in DMA or interrupt mode.

## IDX (Index)

The IDX input goes high at the beginning of a disk track.

## INT (Interrupt)

The INT output is FDC's interrupt request.

## CLK (Clock)

CLK is the input for the FDC's single-phase, 8 MHz squarewave clock.

## WCK (Write Clock)

The WCK input sets the data write rate to the FDD. It is 500 kHz for $\mathrm{FM}, 1 \mathrm{MHz}$ for MFM drives, with a 250 ns pulse for both FM and MFM.

## RDW (Read Data Window)

The RDW input is generated by the phase-locked loop (PLL). It is used to sample data from the FDD.

## RDD (Read Data)

The RDD input is the read data from the FDD, containing clock and data bits.

## WDA (Write Data)

WDA is the serial clock and data output to the FDD.

## WE (Write Enable)

The WE output enables write data into the FDD.

## VCO (VCO Sync)

The VCO output inhibits the VCO in the PLL. when low, enables it when high.

## MFM (MFM Mode)

The MFM output shows the FDD's mode. It is high for MFM, low for FM.

## HD (Head Select)

Head 1 is selected when the HD output is 1 (high), head 0 is selected when HD is 0 (low).

## $\mathbf{U S}_{0}, \mathbf{U S} \mathbf{H}$ (Unit Select $\mathbf{0 , 1}$ )

The $U S_{0}$ and $U S_{1}$ outputs select the floppy disk drive unit.

## PS $_{\mathbf{0}}$, PS $_{\mathbf{1}}$ (Preshift 0,1)

The $\mathrm{PS}_{0}$ and $\mathrm{PS}_{1}$ outputs are the write precompensation status for MFM mode. They determine early, late, and normal times.

## RDY (Ready)

The RDY input indicates that the FDD is ready to receive data.

## HDL (Head Load)

The HDL output is the command which causes the read/write head in the FDD to contact the diskette.

## FLT/TR0 (Fault/Track 0)

In the read/write mode, the FLT input detects FDD fault conditions. In the seek mode, TRO detects track 0.

## WP ITS (Write Protect/Two Side)

In the read/write mode, the WP input senses write protected status. In the seek mode, TS senses two-sided media.

## FRISTP (Fault Reset/Step)

In the read/write mode, the FR output resets the fault flip-flop in the FDD. In the seek mode, STP outputs step pulses to move the head to another cylinder. A fault reset pulse (FR) is issued at the beginning or each Read or Write command prior to the HDL signal.

## LCT/DIR (Low Current/Direction)

In the read/write mode, the LCT output lowers the write current on the inner tracks. In the seek mode, the DIR output determines the direction the head will move in when it receives a step pulse.

## $\overline{\text { RW/SEEK (Read/Write/Seek) }}$

The KW/SEEK output specifies the read/write mode when low, and the seek mode when high.

## GND (Ground)

Ground.
$\mathrm{V}_{\mathrm{cc}}(+5 \mathrm{~V})$
+5 V power supply.

## Block Diagram



## Absolute Maximum Ratings <br> $T_{A}=25^{\circ} \mathrm{C}$

Power supply voitage. $V_{C C}$	-0.5 to +7 V
Input voltage, $V_{1}$	-0.5 to +7 V
Output voltage, $V_{0}$	-0.5 to +7 V
Operating temperature, $T_{O P T}$	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage temperature, $T_{\text {STG }}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power dissipation, $\mathrm{P}_{\mathrm{D}}$	1 W
Commer	

Comment: Exposing the device to stresses above those listed in the Absolute Maximum Ratings could cause permanent damage. The device should not be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristles
$T_{A}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified

Parmeter	Symbol	Limits			Unit	Tost Conditions
		Hin	Typ	Max		
Input vollage low	VIL	-0.5		+0.8	$V$	
tnput voltage high	$\mathrm{V}_{\mathrm{IH}}$	2.0		$V_{C C}+0.5$		
Output voltage low	$V_{0 L}$			0.45	V	$10 \mathrm{~L}=2.0 \mathrm{~mA}$
Output voltage high	$\mathrm{V}_{\mathrm{OH}}$	2.4		$V_{C C}$	V	$1 \mathrm{OH}^{2}=-200 \mu \mathrm{~A}$
Input voitage Jow (CLK + Wh clock)	$V_{\text {IL }}(\Phi)$	-0.5		0.65	V	
Input voltage high $(C L K+W R$ clock)	$V_{1 H}(\Phi)$	2.4		$v_{C C}+0.5$		
Supply current ( $\mathrm{V}_{\mathrm{CC}}$ )	${ }^{\text {Icc }}$			150	mA	
Input load curfent high	ILH			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$
Thput load current low	Lill			-10	$\mu \mathrm{A}$	$V_{1 N}=0 \mathrm{~V}$
Output leakage current high	$\mathrm{I}_{\mathrm{LOH}}$			10	$\mu \mathrm{A}$	$V_{\text {OUT }}=V_{\text {CC }}$
Output leakage current low	'LOL			- 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+0.45 \mathrm{~V}$

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}, V_{C C}=0 \mathrm{~V}$

Parameter	Symbel	Limit			Unit	Tost Conditions
		Min	Typ	Max		
Input clock capacitance	$\mathrm{C}_{\text {IN }}(\Phi)$			20	pF	(Note 1)
Input capacitance	$\mathrm{Cl}_{\mathrm{IN}}$			10	pF	(Note 1)
Output capacitance	Cout			20	pF	(Note 1)

Note:
(t) All pins except pin under test tied to $A C$ ground

AC Characteristics
$T_{A}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified

Parametor	Symbol	Limits						Unit	Tost Conditions
		765A, 7268			765A-2, 7265-2				
		Min	Typ(1)	Max	Min	Typ (1)	Max		
Clock period	$\Phi_{C Y}$	120	125	500	120	125	500	ns	(Note 4)
			125			125		ns	8" FDD
			250			250		ns	51/4"FDD
			125			125		ns	31/2" Sony (3)
Clock active (high)	$\Phi_{0}$	40			40			ns	
Clock rise time	$\Phi_{r}$			20			20	ns	
Clock fall time	$\Phi_{1}$			20			20	ns	
$A_{0}, \overline{C S}, \overline{D A C K}$ setup time to $\overline{\mathrm{R}} \overline{\mathrm{D}} \downarrow$	$t_{A R}$	0			0			ns	
$A_{0}, \overline{C S}, \overline{D A C K}$ hold time from $\overline{\mathrm{RD} \uparrow}$	$t_{\text {RA }}$	0			0			ns	
$\overline{\mathrm{RD}}$ width	$\mathrm{t}_{\text {RR }}$	250			200			ns	
Data access time from $\overline{\mathrm{RD}} \downarrow$	$\mathrm{t}_{\text {RD }}$			200			140	ns	$C_{L}=100 \mathrm{pF}$
DB to float delay time from $\overline{\mathrm{R}}$ ¢	tof	20		100	10		85	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
$\mathrm{A}_{0}, \overline{C S}, \overline{\text { DACK }}$ setup time to $\overline{W R} \downarrow$	$t_{\text {AW }}$	0			0			ns	
$\overline{A_{0}, \overline{C S}, \overline{D A C K}}$ nold time to $\overline{W R}$ t	twa	0			0			ns	
$\overline{\text { Wh width }}$	tww	250			200			ns	
Data setup time to $\bar{W} \overline{\mathrm{R}} \mathbf{t}$	$\mathrm{t}_{\text {OW }}$	150			100			ns	
Data hold time from WR $\uparrow$	two	5			0			ns	
INT delay time from $\overline{\mathrm{RD}} \uparrow$	$t_{\text {Ai }}$			500			400	ns	
INT delay time from $\bar{W} R 1$	tw			500			400	ns	
DRQ cycle time	$\mathrm{t}_{\text {MCY }}$	13			13			$\mu \mathrm{s}$	$\Phi_{C Y}=125 \mathrm{~ns} \mathrm{(4)}$
$\overline{\text { DACK }} \downarrow \rightarrow$ ORO $\downarrow$ delay	tam			200			140	ns	
DROt $\rightarrow \overline{\text { DACK }} \downarrow$ delay	ima	200			200			ns	$\Phi_{\mathrm{CY}}=125 \mathrm{~ns}(4)$
$\overline{\text { DACK width }}$	${ }_{t}{ }^{\text {A }}$	2			2			$\Phi_{\text {CY }}$	
TC width	${ }_{1} \mathrm{C}$	1			1			$\Phi_{C r}$	
Reset width	trist	14			14			$\Phi_{\text {Cr }}$	
WCK cycle time	$\mathrm{t}_{\mathrm{CY}}$		4			16		$\Phi_{C Y}$	MFM $=0.51 / 4^{\prime \prime}$
			2			8		$\Phi_{\text {Cr }}$ -	MFM $=1.51 / 4^{\prime \prime}$
			2			8		$\Phi_{\text {CY }}$	MFM $=0,8^{\prime \prime}$
			1			4		$\Phi_{\text {CY }}$	MFM $=1,8^{\prime \prime}$
			2			8		$\Phi_{\text {cy }}$	MFM $=0.31 / 2^{\prime \prime}$ (3)
			1			4		$\Phi_{\text {CY }}$	MFM $=1,31 / 2^{\prime \prime}(3)$
WCK active time (high)	$\mathrm{t}_{0}$		2			2		$\Phi_{\text {CY }}$	
CLK $\uparrow \rightarrow$ WCK $\uparrow$ delay	$t_{\text {CWH }}$	0		40	0		40	ns	
CLK $\dagger \rightarrow$ WCK $\downarrow$ delay	$\mathrm{t}_{\text {CWL }}$	0		40	0		40	ns	
WCK rise time	$\mathrm{t}_{\mathrm{r}}$			20			20	ns	
WCK fall time	$\mathrm{t}_{\mathrm{t}}$			20			20	ns	
Preshift delay time from WCK $\dagger$	$\mathrm{t}_{\mathrm{CP}}$	20		100	20		100	ns	
WCKt - WEt delay	towe	20		100	20		100	ns	
WDA delay time from WCK $\uparrow$	$\mathrm{t}_{\mathrm{CO}}$	20		100	20		100	ns	
RDD active time (high)	$\mathrm{t}_{\text {RDD }}$	40			40			ns	

## AC Characteristles (cont)

$T_{A}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified

Pertinetor	8 ymbol	Limits						Untt	Toat Conditions
		7854, 7285			765A-2, 7265-2				
		Min	Typ(1)	Max	min	Typ(1)	max		
Window cycle time	twcy		4			4		$\mu \mathrm{S}$	MFM $=0,51 / 4^{\prime \prime}$
			2			2		$\mu \mathrm{s}$	MFM $=1.51 / 4^{\prime \prime}$
			2			2		$\mu \mathrm{S}$	MFM $=0,8^{\prime \prime}$
			1			1		$\mu \mathrm{S}$	MFM $=1,8^{\prime \prime}$
			2			2		$\mu \mathrm{S}$	MFM $=0,31 / 2^{\prime \prime}(3)$
			1			1		$\mu \mathrm{s}$	MFM $=1,31 / 2^{\prime \prime}(3)$
Window hold time to RDD	trow	15			15			ns	
Window hold time from RDD	twRD	15			15			ns	
$\mathrm{US}_{0, t}$ thold time to $\overline{\mathrm{FW}} / \mathrm{seek}$ t	tus	12			12			$\mu \mathrm{S}$	8 MHz clock period(4)
$\overline{\text { RWI }}$ / seek hold time to low current / directiont	${ }_{\text {t }}$ D	7			7			$\mu s$	8 MHz clock period(4)
Low current / direction hold time to fault reset/stept	toST	1.0			1.0			$\mu \mathrm{s}$	8MH2 clock period(4)
$\mathrm{US}_{0,1}$ hold time from fault reset / step 1	tstu	5.0			5.0			$\mu \mathrm{s}$	8 MHz clock period(4)
Step active time (high)	tstp	6	7	8	6	7	8	$\mu \mathrm{s}$	(Note 4)
Step cycle time	${ }_{\text {I }} \mathrm{C}$	33	(Note 2)	(Note 2)	33	(Note 2)	(Note 2)	$\mu \mathrm{s}$	(Note 4)
Faut reset active time (high)	$1_{\text {FR }}$	8.0		10	8.0		10	$\mu \mathrm{s}$	(Note A)
Write data width	TWD	$\mathrm{t}_{0}-50$			to-50			ns	
$\mathrm{US}_{0,1}$ hold time after seek	tsu	15			15			$\mu \mathrm{S}$	8 MHz clock period (4)
Seek hold time from D!R	tos	30			30			$\mu \mathrm{S}$	8 MHz clock period(4)
DIR hold time atter step	${ }_{\text {ISTD }}$	24			24			$\mu \mathrm{S}$	8 MHz clock period(4)
Index pulse width	tox	4			4			$\Phi_{C Y}$	
$\overline{R D}+$ delay from DRO	${ }_{\text {IMR }}$	800			800			ns	8 MHz clock period(4)
$\overline{\text { Wh }} \downarrow$ delay from DRO	$\mathrm{I}_{\text {MW }}$	250			250			ns	8 MHz clock period(4)
WE or $\overline{\text { RD }}$ response time from DRO4	$\mathrm{t}_{\text {MRW }}$			12			12	$\mu \mathrm{s}$	8 MHz clock period(4)

Note:
(1) Typical values for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(2) Under software control. The range is from 1 ms to 16 ms at 8 MHz clock period, and 2 ms to 32 ms at 4 MHz clock period.
(3) Sony Micro Floppydisk 31/2" drive.
(4) Double these values for a 4 MHz clock period.

## Timing Waveforms

## Processor Read Operation



Processor Write Operation


## Timing Waveforms (cont)

## Clock



DMA Operation


## FDD Write Operation



Seek Operation


## FLT Reset

Fault Roped = File Unstife Reest



FDD Read Operation


## Terminal Count

tc


## Reset


Write Clock


## Internal Registers

The $\mu$ PD765A $/ \mu$ PD7265 contains two registers which may be accessed by the main system processor: a status register and a data register. The 8 -bit main status register contains the status information of the FDC, and may be accessed at any time. The 8 -bit data register (which actually consists of four registers, ST0-ST3, in a stack with only one register presented to the data bus at a time), stores data, commands, parameters, and FDD status information. Data bytes are read out of, or written into, the data register in order to program or obtain the results after a particular command (table 3). Only the status register may be read and used to facilitate the transfer of data between the processor and $\mu$ PD765Al $\mu$ PD7265.
The relationship between the status/data registers and the signals $\overline{\mathrm{RD}}, \overline{\mathrm{WF}}$, and $\mathrm{A}_{0}$ is shown in table 1.

Table 1. Status/Data Register Addressing

$\boldsymbol{a}_{0}$	R	Wh	Punetion
0	0	1	Read main status register
0	1	0	illegal
0	0	0	Illegal
1	0	0	Illegal
1	0	1	Read from data register
1	1	0	Write into data register

The bits in the main status register are defined in table 2.

Table 2. Main Status Register

Pn		Function
No.	Name	
$\mathrm{DB}_{0}$	$\begin{aligned} & D_{0} B \\ & (\text { FDD } 0 \text { Busy) } \end{aligned}$	FDD number 0 is in the seek mode. If any of the $D_{n} B$ bits is set FDC will not accept sead or write command.
DB1	$\begin{aligned} & D_{1} B \\ & \text { (FDD i Busy) } \end{aligned}$	FDD number 1 is in the seek mode. If any of the $\mathrm{D}_{\mathrm{n}} \mathrm{B}$ bits is set FDC will not accept read or write command
$\mathrm{DB}_{2}$	$\begin{aligned} & \mathrm{D}_{2} \mathrm{~B} \\ & \text { (FDD } 2 \text { Busy) } \end{aligned}$	FDD number 2 is in the seek mode. It any of the $D_{n} B$ bits is set FOC will not accept read or write command
$\mathrm{DB}_{3}$	$\begin{aligned} & \mathrm{O}_{3} \mathrm{~B} \\ & \text { (FDD B Busy) } \end{aligned}$	FOO number 3 is in the seek mode. If any of the $D_{n} B$ bits is set FDC will not accept read or write command.
$\mathrm{DB}_{4}$	$\begin{aligned} & \hline C B \\ & \text { (FDC Busy) } \end{aligned}$	A Read or Write command is in process. FDC will not accept any other command.
$\mathrm{DB}_{5}$	EXM   (Execution Mode)	This bit is set only during execution phase in non-DMA mode. When $\mathrm{DB}_{5}$ goes low, execution phase has ended and result phase has started. It operates only during non-DMA mode of operation.

Table 2. Main Status Register (cont)

Pin		Function
Ne.	Mame	
$0 \mathrm{~B}_{6}$	DIO   (Data Input/Output)	Indicates direction of data transter between FDC and data register. If $\mathrm{DIO}=1$. then transter is from data register to the processor. If $\mathrm{OIO}=0$, then transier is from the processor to data register.
$\mathrm{DB}_{7}$	ROM   (Request for Master)	Indicates data register is ready to send or receive data to or from the processor. Both bits DIO and ROM should be used to perform the hand-shaking functions of 'ready" and "direction" to the processor.

The DIO and RQM bits in the status register indicate when data is ready and in which direction data will be transferred on the data bus. The maximum time between the last $\overline{\text { RD }}$ or WR during a command or result phase and DIO and RQM getting set or reset is $12 \mu \mathrm{~s}$. For this reason every time the main status register is read the CPU should wait $12 \mu \mathrm{~s}$. The maximum time from the trailing edge of the last $\overline{R D}$ in the result phase to when $\mathrm{DB}_{4}$ (FDC busy) goes low is $12 \mu \mathrm{~s}$. See figure 1 .

Figure 1. DIO and RQM

$\mu$ PD765A/ $\mu$ PD7265

Table 3. Status Register Identification

Pm		Function
Ho.	Mame	
Status Register 0		
$\mathrm{D}_{7}, \mathrm{D}_{6}$	$\begin{aligned} & \text { IC } \\ & \text { (Interrupt Code) } \end{aligned}$	$\mathrm{D}_{7}=0 \text { and } \mathrm{D}_{6}=0$   Normal termination of command. (NT) Command was completed and properly executed.
		$D_{7}=0 \text { and } D_{6}=1$   Abnormal termination of command, (AT). Execution of command was started but was not successfuliy completed.
		$\mathrm{D}_{7}=1 \text { and } \mathrm{D}_{6}=0$   Invalid command issue. (IC). Command which was issued was never started.
		$D_{7}=1 \text { and } D_{6}=1$   Abnormal termination because during command execution the ready signal from FDD changed state.
$\mathrm{D}_{5}$	SE (Seek End)	When the FDC completes the Seek command, this tlag is set to 1 (high).
$\mathrm{D}_{4}$	EC (Equipment Check)	It a fault signal is received from the FDD, or it the track 0 signal fails to occur after 77 step puises (Recalibrate Command) then this flag is set.
$\mathrm{D}_{3}$	NR (Not Ready)	When the FDD is in the not-ready state and a Read or Write command is issued, this flag is set. If a Read or Write command is issued to side 1 of a single-sided drive. then this flag is set.
$\mathrm{D}_{2}$	HD   (Head Address)	This flag is used to indicate the state of the head at interrupt.
$\mathrm{D}_{1}$	$\begin{aligned} & U S_{1} \\ & \text { (Unit Select 1) } \end{aligned}$	This flag is used to indicate a drive unit number at interrupt.
$D_{0}$	$\begin{aligned} & U S_{0} \\ & (\text { Unit Select 0) } \end{aligned}$	This flag is used to indicate a drive unit number at interrupt.
Status Register 1		
$\mathrm{D}_{7}$	$\begin{aligned} & \text { EN } \\ & \text { (End of Cylinder) } \end{aligned}$	When the FOC tries to access a sector beyond the final sector af a cylinder, this flag is set.
$\mathrm{D}_{6}$		Not used. This bit is always 0 (low).
$D_{5}$	DE (Data Error)	When the FDC detects a CRC(1) error in either the ID field or the data field, this flag is set.
$\mathrm{D}_{4}$	OR (Overrun)	If the FDC is not serviced by the host system during data transters within a certain time interval. this tlag is set.
$\mathrm{D}_{3}$		Not used. This bit is always 0 (tow).

Table 3. Status Register Identification (cont)

Mo.	Pin
Status Register 1 (cont)	During execution of Read Data, Write De-   leted Data or Scan command, if the FDC   (No Data)   cannot find the sector specified in the   IDR(2) Register, this flag is set.

Table 3. Status Register Identification (cont)

No.	Name	Function

## Note:

(1) $\mathrm{CRC}=$ Cyclic Redundancy Check
(2) $I D R=$ Internal Data Register
(3) Cylinder (C) is described more fully in the Command Symbot Description.

## Command Sequence

The $\mu \mathrm{PD} 765 \mathrm{~A} / \mu \mathrm{PD} 7265$ is capable of performing 15 different commands. Each command is initiated by a multibyte transfer from the processor, and the result after execution of the command may also be a multibyte transfer back to the processor. Because of this multibyte interchange of information between the $\mu$ PD765A/ $\mu$ PD7265 and the processor, it is convenient to consider each command as consisting of three phases:

Command	The FDC receives all information re-   quired to perform a particular opera-   Phase:
tion from the processor.	

Table 4 shows the required preset parameters and results for each command. Most commands require 9 command bytes and return 7 bytes during the result phase. The "W" to the left of each byte indicates a command phase byte to be written, and an " R " indicates a result byte. The definitions of other abbriviations used in table are given in the Command Symbol Description table.

Command Symbol Description

Name	Function
$\mathrm{A}_{0}$ (Address Line 0)	$A_{0}$ controls selection of main status register ( $A_{0}=0$ ) or data register ( $A_{0}=1$ ).
C   (Cylinder Number)	$C$ stands for the current/selected cylinder (track) numbers 0 through 76 of the medium.
$\begin{aligned} & 0 \\ & \text { (Data) } \end{aligned}$	0 stands for the data pattern which is going to be written into a sector.
$\begin{aligned} & \mathrm{D}_{7}-\mathrm{O}_{0} \\ & \text { (Oata Bus) } \end{aligned}$	8 -bit data bus, where $D_{7}$ stands for a most significant bit, and $D_{0}$ stands for a least significant bit.
OTL (Data Length)	When $N$ is defined as 00 . DTL stands for the data length which users are going to read out or write into the sector:
EOT   (End of Track)	EOT stands for the final sector number on a cylinder. During read or write operations, FOC will stop data transter after a sector number equal to EOT.
GPL (Gap Length)	GPL stands tor the length of gap 3. During Read/ Write commands this value determines the number of bytes that VCO sync will stay low after two CRC bytes. During Format command it determines the size of gap 3.
H (Head Address)	$H$ stands for head number 0 or 1 , as specified in ID field.
HD   (Head)	HD stands for a selected head number 0 or 1 and controls the polarity of pin 27. $\mathrm{H}=\mathrm{HD}$ in all command words.)
HLT (Head Load Time)	HLT stands tor the head load time in the FOO ( 2 to 254 ms in 2 ms increments).
HUT   (Head Unload Time)	HUT stands for the head unload time after a Read or Write operation has occurred ( 16 to 240 ms in 16 ms increments).
MF   (FM or MFM Mode)	If MF is low, FM mode is selected, and if it is high. MFM mode is selected.
MT   (Multitrack)	IF MT is high, a multitrack operation is performed. If MT = 1 after tinishing read / write operation on side 0 . FDC will automatically start searching for sector 1 on side 1 .
$\begin{aligned} & \mathrm{N} \\ & \text { (Number) } \end{aligned}$	N stands for the number of data bytes written in a sector.
NCN   (New Cylinder Number)	NCN stands for a new cylinder number which is going to be reached as a result of the seek operation; desired position of head.
$\begin{aligned} & \text { ND } \\ & \text { (Non-DMA Mode) } \end{aligned}$	ND stands for operation in the non-DMA mode.
PCN (Present Cylinder Number)	PCN stands for the cylinder number at the completion of Sense Interrupl Status command, position of head at present time.
$\begin{aligned} & \text { R } \\ & \text { (Record) } \end{aligned}$	R stands for the sector number which will be read or written.
R/W (Read/Write)	R/W stands for either Read ( $R$ ) or Write (W) signal.
$\begin{aligned} & \hline \text { SC } \\ & \text { (Sector) } \end{aligned}$	SC indicates the number of sectors per cylinder.
$\begin{aligned} & \hline \text { SK } \\ & \text { (Skip) } \end{aligned}$	SK stands for skip deieted data address mark.

## Command Symbol Description (cont)

Mame	Function
SAT   (Step Rate Time)	SRT stands for the stepping rate for the FDD (1 to 16 ms in 1 ms increments). Stepping rate applises to all drives ( $\mathrm{FH}=1 \mathrm{~ms}$. $E H=2 \mathrm{~ms}$, etc.).
ST0-ST3   (Status 0-3)	STO-ST3 stands for one of four registers which store the status information atter a command has been executed. This information is available during the result phase atter command execution. These registers should not be confused with the main status register (selected by $\mathrm{A}_{0}=0$ ). STO-ST3 may be read only atter a command has been executed and contains information relevant to that particular command.

## Command Symbol Description (cont)

Mame	Function
STP	During a Scan operation, if STP $=1$, the data in   contiguous sectors is compared byte by byte with   data sent from the processor (or DMA); and if   $S T P=2$, then alternate sectors are read and com-   pared.
US stands for a selected drive number 0 or 1.   (Unit Select)	

## Table 4. Instruction Set (Notes 1, 2)

	(1)w	Instruction Code								Remarks
		$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{8}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$D_{0}$	
Read Oath										
Command	$\begin{aligned} & W \\ & W \end{aligned}$	MT $X$ $\square$ $\square$	$\begin{gathered} \mathrm{MF} \\ \mathrm{X} \end{gathered}$	$\begin{gathered} \hline \mathrm{SK} \\ \mathrm{X} \end{gathered}$	$\begin{gathered} \hline 0 \\ \mathrm{X} \\ \hline \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & \mathrm{x} \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{HD} \end{gathered}$	$\stackrel{1}{U S_{1}}$		Command codes   (Note 3)   Sector ID information prior to command execution. The 4 bytes are compared against header on tloppy disk.
Execution										Data transler between the FDD and main system
Result	$\begin{aligned} & \mathbf{R} \\ & \mathbf{R} \end{aligned}$									Status information after command execution   Sector 10 information after command execution
Road Doleted Data										
Command	$\begin{aligned} & W \\ & W \end{aligned}$	$\begin{gathered} \text { MT } \\ X \\ \\ \\ \\ \end{gathered}$	$\begin{gathered} M F \\ X \end{gathered}$	$\begin{gathered} \mathrm{SK} \\ \mathrm{X} \end{gathered}$		$\begin{aligned} & 1 \\ & x \end{aligned}$	$\begin{gathered} 1 \\ H D \end{gathered}$	$\begin{gathered} \overline{0} \\ U S_{1} \end{gathered}$	$\xrightarrow{{ }^{{ }_{U}^{0}} \mathrm{~s}_{0}}$	Command codes   Sector 10 information prior to command execution. The 4 bytes are compared against header on tloppy disk.
Execution										Data transter between the FDD and main system
Result	$\begin{aligned} & \mathbf{R} \\ & \mathbf{R} \end{aligned}$				$\begin{array}{r} -\mathrm{ST} \\ -\mathrm{SI} \\ -\mathrm{ST} \end{array}$					Status information atter command execution   Sector ID information after command execution

Note:
(1) Symbols used in this table are described at the end of this section.t
(2) $\mathrm{A}_{0}$ should equal 1 for all operations.
(3) $\mathrm{X}=\mathrm{O}$ n't care, usually made to equal 0 .

Table 4. Instruction Set (Notes 1, 2) (cont)

Phese	W $\overline{\text { W }}$	instruetion Codo								Aomarks
		$D_{1}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	0	$D_{0}$	
Write Data										
Command	$\begin{aligned} & W \\ & w \end{aligned}$		$\begin{gathered} M F \\ X \end{gathered}$	$\begin{aligned} & 0 \\ & \mathrm{x} \end{aligned}$	0   X   -  	$\begin{aligned} & 0 \\ & \mathrm{X} \end{aligned}$	$\begin{gathered} 1 \\ \text { HD } \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{US}_{1} \end{gathered}$	$\xrightarrow{\stackrel{1}{\mathrm{US}_{0}}} \xrightarrow{\longrightarrow}$	Command codes   Sector 10 information prior to command execution. The 4 bytes are compared against header on floppy disk.
Execution										Data transfer between the main system and FDD
Result	$\begin{aligned} & \text { R } \\ & \mathbf{R} \end{aligned}$									Status information atter command execution   Sector ID information after command execution
Write Deluted Data										
Command	$\begin{aligned} & W \\ & W \end{aligned}$	$\begin{gathered} \text { MT } \\ X \\ \leftarrow \\ \leftarrow \\ \leftarrow \end{gathered}$	$\begin{gathered} \text { MF } \\ \mathrm{X} \end{gathered}$	$\begin{aligned} & 0 \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & 0 \\ & x \\ & -1 \\ & -1 \\ & -6 \\ & -0 \\ & -0 \end{aligned}$	$\begin{aligned} & \overline{1} \\ & x \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{HD} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ U S_{1} \end{gathered}$	$\xrightarrow{\begin{array}{c} 1 \\ U S_{0} \end{array}}$	Command codes   Sector ID information prior to command execution. The 4 bytes are compared against header on floppy disk.
Execution										Data transfer between the FDO and main system
Result	$\begin{aligned} & R \\ & R \end{aligned}$				$\begin{aligned} & -\mathrm{ST} \\ & -\mathrm{ST} \\ & -\mathrm{ST} \end{aligned}$					Status information after command execution   Sector ID information after command execution
Roed A Track										
Command	$W$ $W$ $W$ $W$ $W$ $W$ $W$ $W$ $W$		$\begin{gathered} M F \\ X \end{gathered}$	$\begin{gathered} \hline S K \\ X \end{gathered}$	$\begin{aligned} & \overline{0} \\ & \times \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \mathrm{x} \end{aligned}$	$\begin{gathered} \hline 0 \\ H D \end{gathered}$	$\begin{gathered} 1 \\ U S_{1} \end{gathered}$	$\xrightarrow{\stackrel{+}{{ }^{0}}{ }^{\text {US }}+}$	Command codes   Sector ID information prior to command execution
Execution										Data transfer between the FDD and main system. FDC reads all data fields trom index hole to EOT.
Result	$\begin{aligned} & \mathrm{R} \\ & \mathbf{R} \\ & \mathrm{R} \\ & \mathbf{R} \\ & \mathbf{R} \\ & \mathbf{R} \\ & \mathbf{R} \end{aligned}$				$\begin{aligned} & \text { ST } \\ & \text { ST } \\ & \text { ST } \end{aligned}$					Status information after command execution   Sector ID information after command execution

Table 4. Instruction Set (Notes 1, 2) (cont)


## Note:

(1) Symbols used in this table are described at the end of this section.
(2) $A_{0}$ should equal 1 for all operations.
(3) $\mathrm{X}=$ Don't care, usually made to equal 0 .

Trable 4. Instruction Set (Notes 1, 2) (cont)

Phate	W17	Inatruetion Code								Momarks
		$\mathrm{D}_{1}$	$\mathrm{D}_{4}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$D_{1}$	$\mathrm{D}_{0}$	
Scan Low or Equal										
Command	$\begin{aligned} & W \\ & W \end{aligned}$	MT $\times$ $\pm$ $\square$	$\begin{gathered} \mathrm{MF} \\ \mathrm{X} \end{gathered}$	$\begin{gathered} \text { SK } \\ \text { X } \end{gathered}$	$\begin{gathered} 1 \\ x \\ - \\ -6 \\ \hline \end{gathered}$	1 $x$	$\begin{gathered} 0 \\ \mathrm{HO} \end{gathered}$	$\begin{gathered} 0 \\ U S_{1} \end{gathered}$		Command codes   Sector ID information prior to command execution
Execution										Data compared between the FDD and main system
Result	$\begin{aligned} & \text { R } \\ & \text { B } \end{aligned}$									Status information after command execution   Sector ID information after command execution
Scan High or Equal										
Command	$\begin{aligned} & \hline W \\ & W \end{aligned}$	MT $X$ $\sim$ $\sim$	$\underset{\mathrm{X}}{\mathrm{MF}}$	$\begin{gathered} \mathrm{SK} \\ \mathrm{X} \end{gathered}$		$\begin{aligned} & 1 \\ & x \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{HD} \end{gathered}$	$\begin{array}{r} 0 \\ U S_{1} \\ \hline \end{array}$	$\xrightarrow{\substack{1 \\ \mathrm{US}_{0}}}$	Command codes   Sector iD information prior to command execution
Execution										Data compared between the FDD and main system
Result	$\begin{aligned} & R \\ & R \end{aligned}$									Status information atter command execution   Sector ID information after command execution
Recalibrate										
Command	$\begin{aligned} & W \\ & w \end{aligned}$	$\begin{aligned} & 0 \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & x \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & 0 \\ & x \end{aligned}$	$\begin{aligned} & 0 \\ & x \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ U S_{1} \end{gathered}$	$\begin{gathered} \dagger \\ u s_{0} \\ \hline \end{gathered}$	Command codes
Execution										Head retracted to track 0
Sense Interrupt Status										
Command	W	0	0	0	0	$\dagger$	0	0	0	Command cades
Result	$\begin{aligned} & \mathrm{R} \\ & \mathrm{R} \end{aligned}$				$\begin{aligned} & -\mathrm{ST} \\ & -\mathrm{PC} \end{aligned}$					Status information about the FDC at the end of seek operation
Specity										
Command	$\begin{aligned} & w \\ & w \\ & w \end{aligned}$	$\stackrel{0}{\leftarrow}$	${ }^{0} \text { SRT }$				${ }^{0} \mathrm{HU}$	$T \xrightarrow{1}$	$\xrightarrow[N D]{\stackrel{1}{\longrightarrow}}$	Command codes
Sense Drive Status										
Command	$\begin{aligned} & W \\ & W \end{aligned}$	$\begin{aligned} & 0 \\ & x \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \times \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \times \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & x \end{aligned}$	$\begin{gathered} 1 \\ H D \end{gathered}$	$\begin{gathered} 0 \\ U S_{1} \end{gathered}$	$\begin{gathered} 0 \\ U S_{0} \\ \hline \end{gathered}$	Command codes
Result	R				- ST	-	-	-	$\cdots$	Status information about FDD

Table 4. Instruction Set (Notes 1, 2)(cont)


## System Configuration

Figure 2 shows an example of a system using a $\mu$ PD765A/ $\mu$ PD7265.

Figure 2. System Configuration


## Processor Interface

During command or result phases the main status register (described earlier) must be read by the processor before each byte of information is written into or read from the data register. After each byte of data read or written to the data register, CPU should wait for $12 \mu \mathrm{~s}$ before reading main status register, bits $D_{6}$ and $D_{7}$ in the main status register must be in a 0 and 1 state, respectively, before each byte of the command word may be written into the $\mu$ PD765A/ $\mu$ PD7265. Many of the commands require multiple bytes and, as a result, the main status register must be read prior to each byte transfer
to the $\mu \mathrm{PD} 765 \mathrm{~A} / \mu \mathrm{PD7265}$. On the other hand, during the result phase, $D_{6}$ and $D_{7}$ in the main status register must both be 1's ( $\mathrm{D}_{6}=1$ and $\mathrm{D}_{7}=1$ ) before reading each byte from the data register. Note that this reading of the main status register before each byte transfer to the $\mu$ PD765A/ $\mu$ PD7265 is required only in the command and result phases, and not during the execution phase.
During the execution phase, the main status register need not be read. If the $\mu$ PD765A/ $\mu$ PD7265 is in the nonDMA mode, then the receipt of each data byte (if $\mu$ PD765A/ $\mu$ PD7265 is reading data from FDD) is indicated by an interrupt signal on pin 18 (INT = 1). The generation of a read signal ( $\overline{R D}=0$ ) or write signal $(\overline{\mathrm{WR}}=0$ ) will clear the interrupt as well as output the data onto the data bus. If the processor cannot handle interrupts fast enough (every $13 \mu \mathrm{~s}$ for the MFM mode and $27 \mu \mathrm{~s}$ for the FM mode), then it may poll the main status register and bit $D_{7}$ (RQM) functions as the interrupt signal. If a write command is in process then the WR signal negates the reset to the interrupt signal.
Note that in the non-DMA mode it is necessary to examine the main status register to determine the cause of the interrupt, since it could be a data interrupt or a command termination interrupt, either normal or abnormal.
If the $\mu \mathrm{PD} 765 \mathrm{~A} / \mu \mathrm{PD} 7265$ is in the DMA mode, no interrupts are generated during the execution phase. The $\mu$ PD765A/ $\mu$ PD7265 generates DRQs (DMA requests) when each byte of data is available. The DMA controller responds to this request with both a $\overline{\mathrm{DACK}}=0$ (DMA acknowledge) and an RD $=0$ (read signal). When the DMA acknowledge signal goes low ( $\overline{\mathrm{DACK}}=0$ ), then the DMA request is cleared ( $\mathrm{DRQ}=0$ ). If a write command has been issued then a WR signal will appear instead of $\overline{R D}$. After the execution phase has been completed (terminal count has occurred) or the EOT sector read/written, then an interrupt will occur ( $\mathrm{NT}=1$ ). This signifies the beginning of the result phase. When the first byte of

## $\mu$ PD765A/ $\mu$ PD7265

data is read during the result phase, the interrupt is automatically cleared (INT $=0$ ).
The $\overline{R D}$ or $\overline{W R}$ signals should be asserted while $\overline{\mathrm{DACK}}$ is true. The $\overline{C S}$ signal is used in conjunction with $\overline{\mathrm{RD}}$ and WR as a gating function during programmed I/O opera. tions. CS has no effect during DMA operations. If the non-DMA mode is chosen, the DACK signal should be pulled up to $V_{c c}$.
It is important to note that during the result phase all bytes shown in the command table (table 4) must be read. The read data command, for example, has seven bytes of data in the result phase. All seven bytes must be read in order to successfully complete the Read Data command. The $\mu$ PD765A/ $\mu$ PD7265 will not accept a new comand until all seven bytes have been read. Other commands may require fewer bytes to be read during the result phase.
The $\mu$ PD765A/ $\mu$ PD7265 contains five status registers. The main status register mentioned above may be read by the processor at any time. The other four status registers (ST0, ST1, ST2, and ST3) are available only during the result phase and may be read only after completing a command. The particular command that has been executed determines how many of the status registers will be read.
The bytes of data which are sent to the $\mu$ PD765A/ $\mu$ PD7265 to form the command phase and are read out of the $\mu \mathrm{PD} 765 \mathrm{~A} / \mu \mathrm{PD} 7265$ in the result phase must occur in the order shown in table 4. That is, the command code must be sent first and the other bytes sent in the prescribed sequence. No foreshortening of the command or result phases is allowed. After the last byte of data in the command phase is sent to the $\mu$ PD765A/ $\mu$ PD7265, the execution phase automatically starts. In a similar fashion, when the last byte of data is read out in the result phase, the command is automatically ended and the $\mu \mathrm{PD} 765 \mathrm{~A} / \mu \mathrm{PD} 7265$ is ready for a new command.

## Polling

After reset has been sent to the $\mu \mathrm{PD} 765 \mathrm{~A} / \mu \mathrm{PD} 7265$, the unit select lines $U S_{0}$ and $U S_{1}$ will automatically go into a polling mode. In between commands (and between step pulses in the Seek command) the $\mu \mathrm{PD} 765 \mathrm{~A} / \mu \mathrm{PD} 7265$ polls all four FDDs looking for a change in the ready line from any of the drives. If the ready line changes state (usually due to a door opening or closing), then the $\mu$ PD765A/ $\mu$ PD7265 will generate an interrupt. When status register 0 (STO) is read (after Sense interrupt Status is issued), not ready ( $N R$ ) will be indicated. The polling of the ready line by the $\mu$ PD765A/ $\mu$ PD7265 occurs continuously between commands, thus notifying the processor which drives are on or off line. Each drive is polled every 1.024 ms except during the Read/Write com-
mands. When used with a 4 MHz clock for interfacing to minifloppies, the polling rate is 2.048 ms . See figure 3.

Figure 3. Polling Feature


## Read Data

A set of nine (9) byte words are required to place the FDC into the read data mode. After the Read Data command has been issued the FDC loads the head (if it is in the unloaded state), waits the specified head settling time (defined in the Specify command), and begins reading ID address marks and ID fields. When the current sector number ( R ) stored in the ID register (IDR) compares with the sector number read off the diskette, then the FDC outputs data (from the data field) byte-to-byte to the main system via the data bus.
After completion of the read operation from the current sector, the sector number is incremented by one, and the data from the next sector is read and output on the data bus. This continuous read function is called a multi-sector read operation. The Read Data command may be terminated by the receipt of a terminal count signal. TC should be issued at the same time that the $\overline{\text { DACK }}$ for the last byte of data is sent. Upon receipt of this signal, the FDC stops outputting data to the processor, but will continue to read data from the current sector, check CRC (cyclic redundancy count) bytes, and then at the end of the sector terminate the Read Data command. The amount of data which can be handled with a single command to the FDC depends upon MT (multi-track), MF (MFM/FM), and $N$ (number of bytes/ sector). Table 5 shows the transfer capacity.
The "multi-track" function (MT) allows the FDC to read data from both sides of the diskette. For a particular cylinder, data will be transferred starting at sector 1 , side 0 and completing at sector $L$, side 1 (sector $L=$ last sector on the side). Note, this function pertains to only one cylinder (the same track) on each side of the diskette.
When $N=0$, then DTL defines the data length which the FDC must treat as a sector. If DTL is smaller than the actual data length in a sector, the data beyond DTL in the sector is not sent to the data bus. The FDC reads (internally) the complete sector performing the CRC check and, depending upon the manner of command
termination, may perform a multi-sector read operation. When $N$ is non-zero, then DTL has no meaning and should be set to FFH.
Table 5. Transfer Capacity

MulthTrack WT	MFWII FMF MF	Bytes/ Sector N	Maximum Iransfar Capacity (Bytes/sector) (Number of Sectors)	Final Sector Rasd from Diskettes
0	0	00	$(128)(26)=3,328$	26 at side 0
0	1	01	$(256)(26)=6.656$	or 26 at side 1
1	0	00	$(128)(52)=6,656$	26 at side 1
1	1	01	$(256)(52)=13,312$	
0	0	01	$(256)(15)=3.840$	15 at side 0
0	1	02	$(512)(15)=7.680$	or 15 at side 1
1	0	01	$(256)(30)=7,680$	15 at side 1
1	1	02	$(512)(30)=15.360$	
0	0	02	$(512)(8)=4.096$	8 at side 0
0	1	03	$(1024)(8)=8,192$	or 8 at side 1
1	0	02	$(512)(16)=8,192$	8 at side 1
1	1	03	$(1024)(16)=16,384$	

At the completion of the Read Data command, the head is not unloaded until after head unload time interval (specified in the Specify command) has elapsed. If the processor issues another command before the head unloads then the head settling time may be saved between subsequent reads. This time out is particularly valuable when a diskette is copied from one drive to another.
If the FDC detects the index hole twice without finding the right sector, (indicated in " $R$ "), then the FDC sets the ND (No data) flag in status register 1 to a 1 (high), and terminates the Read Data command. (Status register 0 also has bits 7 and 6 set to 0 and 1, respectively.)
After reading the ID and data fields in each sector, the FDC checks the CRC bytes. If a read error is detected (incorrect CRC in ID field), the FDC sets the DE (data error) flag in status register 1 to a 1 (high), and if a CRC error occurs in the data field, the FDC also sets the DD (data error in data field) flag in status register 2 to a 1 (high), and terminates the Read Data command. (Status register 0 also has bits 7 and 6 set to 0 and 1 , respectively.)
If the FDC reads a deleted data address mark off the diskette, and the SK bit (bit $\mathrm{D}_{5}$ in the first command word) is not set ( $\mathrm{SK}=0$ ), then the FDC sets the CM (control mark) flag in status register 2 to 1 (high), and terminates the Read Data command, after reading all the data in the sector. If SK=1, the FDC skips the sector with the deleted data address mark and reads the next sector. The CRC bits in the deleted data field are not checked when $\mathrm{SK}=1$.
During disk data transfers between the FDC and the processor, via the data bus, the FDC must be serviced by the processor every $27 \mu \mathrm{~s}$ in the FM mode, and every $13 \mu \mathrm{~s}$ in the MFM mode, or the FDC sets the OR (Overrun)
flag in status register 1 to a 1 (high), and terminates the Read Data command.
If the processor terminates a read (or write) operation in the FDC, then the ID information in the result phase is dependent upon the state of the MT bit and EOT byte. Table 2 shows the values for $\mathrm{C}, \mathrm{H}, \mathrm{R}$, and N , when the processor terminates the command.

## Functional Description of Commands

## Write Data

A set of nine (9) bytes is required to set the FDC into the write data mode. After the Write Data command has been issued the FDC loads the head (if it is in the unloaded state), waits the specified head settling time (defined in the Specify command), and begins reading ID fields. When all four bytes loaded during the command ( $C, H, R, N$ ) match the four bytes of the ID field from the diskette, the FDC takes data from the processor byte-bybyte via the data bus and outputs it to the FDD. See table 6.

Table 6. Command Description

HT	HD	Final Sactor Tranaforred to Processor	ID Information at Result Phate			
			C	H	月	N
0	0	Less than EOT	NC	NC	R+1	NC
0	0	Equal to EOT	C+1	NC	$\mathrm{R}=01$	NC
0	1	Less than EOT	NC	NC	R+1	NC
0	1	Equal to EOT	C+1	NC	R=01	NC
1	0	Less than EOT	NC	NC	$\mathrm{R}+1$	NC
1	0	Equal to EOT	NC	LSB	$\mathrm{R}=01$	NC
1	1	Less than EOT	NC	NC	$\mathrm{R}+1$	NC
1	1	Equal to EOT	C+1	LSB	$\mathrm{R}=01$	NC

Note:
(1) NC (No Change): The same value as the one at the beginning of command execution.
(2) LSB (Least Significant Bit): The least significant bit of H is complemented.

After writing data into the current sector, the sector number stored in R is incremented by one, and the next data field is written into. The FDC continues this multisector write operation until the issuance of a terminal count signal. If a terminal count signal is sent to the FDC it continues writing into the current sector to complete the data field. If the terminal count signal is received while a data field is being written then the remainder of the data field is filled with zeros.
The FDC reads the ID field of each sector and checks the CRC bytes. If the FDC detects a read error (CRC error) in one of the ID fields, it sets the DE (Data Error) flag of status register 1 to a 1 (high) and terminates the Write

Data command. (Status register 0 also has bits 7 and 6 set to 0 and 1 , respectively.)
The Write command operates in much the same manner as the Read command. The following items are the same, and one should refer to the Read Data command for details:

- Transfer capacity
- EN (end of cylinder) flag
- ND (no data) flag
- Head unload time interval
- ID information when the processor terminates command
- Definition of DTL when $\mathrm{N}=0$ and when $\mathrm{N} \neq 0$

In the write data mode, data transfers between the processor and FDC, via the data bus, must occur every $27 \mu s$ in the FM mode and every $13 \mu$ s in the MFM mode. If the time interval between data transfers is longer than this, the FDC sets the OR (overrun) flag in status register 1 to a 1 (high) and terminates the Write Data command. (Status register 0 also has bits 7 and 6 set to 0 and 1, respectively.)

## Write Deleted Data

This command is the same as the Write Data command except a deleted data address mark is written at the beginning of the data field instead of the normal data address mark.

## Read Deleted Data

This command is the same as the Read Data command except that when the FDC detects a data address mark at the beginning of a data field (and SK $=0$ (low), it will read all the data in the sector and set the CM flag in status register 2 to a 1 (high), and then terminate the command. If $S K=1$, then the $\operatorname{FDC}$ skips the sector with the data address mark and reads the next sector.

## Read a Track

This command is similar to the Read Data command except that this is a continuous read operation where the entire data field from each of the sectors is read. Immediately after sensing the index hole, the FDC starts reading all data fields on the track as continuous blocks of data. If the FDC finds an error in the ID or data CRC check bytes, it continues to read data from the track. The FDC compares the ID information read from each sector with the value stored in the IDR and sets the ND flag of status register 1 to a 1 (high) if there is no comparison. Multi-track or skip operations are not allowed with this command.
This command terminates when the number of sectors read is equal to EOT. If the FDC does not find an ID ad-
dress mark on the diskette after it senses the index hole for the second time, it sets the MA (missing address mark) flag in status register 1 to a 1 (high) and terminates the command. (Status register 0 has bits 7 and 6 set to 0 and 1, respectively.)

## Read ID

The Read ID command is used to give the present position of the recording head. The FDC stores the values from the first ID field it is able to read. If no proper ID address mark is found on the diskette before the index hole is encountered for the second time, then the MA (missing address mark) flag in status register 1 is set to a 1 (high), and if no data is found then the ND (No data) flag is also set in status register 1 to a 1 (high). The command is then terminated with bits 7 and 6 in status register 0 set to 0 and 1 , respectively. During this command there is no data transfer between FDC and the CPU except during the result phase.

## Format a Track

The Format a Track command allows an entire track to be formatted. After the index hole is detected, data is written on the diskette; gaps, address marks, ID fields, and data fields, all per the IBM System 34 (double density) or System 3740 (single density) format, are recorded. The particular format which will be written is controlled by the values programmed into N (number of bytes/sector), SC (sectors/cylinder), GPL (gap length), and D (data pattern) which are supplied by the processor during the command phase. The data field is filled with the byte of data stored in D. The ID field for each sector is supplied by the processor; that is, four data requests per sector are made by the FDC for C (cylinder number), H (head number), R (sector number), and N (number of bytes/sector). This allows the diskette to be formatted with nonsequential sector numbers, if desired.
The processor must send new values for $C, H, R$, and $N$ to the $\mu \mathrm{PD} 765 \mathrm{~A} / \mu \mathrm{PD} 7265$ for each sector on the track. If FDC is set for the DMA mode, it will issue four DMA requests per sector. If it is set for the interrupt mode, it will issue four interrupts per sector and the processor must supply C, H, R, and $N$ loads for each sector. The contents of the $R$ register are incremented by 1 after each sector is formatted; thus, the R register contains a value of $R$ when it is read during the result phase. This incrementing and formatting continues for the whole track until the FDC detects the index hole for the second time, whereupon it terminates the command.
If a fault signal is received from the FDD at the end of a write operation, then the FDC sets the EC flag of status register 0 to a 1 (high) and terminates the command after setting bits 7 and 6 of status register 0 to 0 and 1 , respec-
tively. Also, the loss of a ready signal at the beginning of a command execution phase causes bits 7 and 6 of status register 0 to be set to 0 and 1 , respectively.
Table 7 shows the relationship between N, SC, and GPL for various sector sizes.

Table 7. Sector Size

Pormat	Seator \$130	M	36	OPL (1)	GPL 2,3 )
8" Standard Floppy					
FM Mode	128 Bytes / Sector	00	1A	07	1B
	256	01	OF	OE	2A
	512	02	08	18	3A
	1024	03	04	47	8 A
	2048	04	02	C8	FF
	4096	05	01	C8	FF
MFM Mode(4)	256	01	1A	OE	36
	512	02	OF	18	54
	1024	03	08	35	74
	2048	04	04	99	FF
	4096	05	02	C8	FF
	8192	06	01	C8	FF
51/4" Minitioppy					
FM Mode	128 Byles / Sector	00	12	07	09
	128	00	to	10	19
	256	01	08	18	30
	512	02	04	46	87
	1024	03	02	C8	FF
	2048	04	01	C8	FF
MFM Mode(4)	256	01	12	0A	0 C
	256	01	10	20	32
	512	02	08	2 A	50
	1024	03	04	80	F0
	2048	04	02	C8	FF
	4096	05	01	C8	FF
31/2" Sony Micro Floppydisk					
FM Mode	128 Bytes / Sector	0	0F	07	1 B
	256	1	09	OE	2 A
	512	2	05	18	3 A
MFM Mode(4)	256	1	OF	OE	36
	512	2	09	18	54
	1024	3	05	35	74

## Note:

(1) Suggested values of GPL in Fead or Write commands to avoid splice point between data field and ID field of contiguous sections.
(2) Suggested values of GPL in format command.
(3) All values except sector size are hexidecimal.
(4) In MFM mode FDC cannot perform a Read/Write/format operation with 128 bytes/ sector. $(\mathrm{N}=00)$.

## Scan Commands

The Scan commands allow data which is being read from the diskette to be compared against data which is being supplied from the main system. The FDC compares the data on a byte-by-byte basis and looks for a sector of data which meets the conditions of $D_{F D D}=D_{\text {Processor, }} D_{F D D}$ <DProcessor, or DFDD> Dprocessor. The hexidecimal byte of FF either from memory or from FDD can be used as a mask byte because it always meets the condition of the comparison. One's complement arithmetic is used for comparison (FF = largest number, $00=$ smallest number). After a whole sector of data is compared, if the conditions are not met, the sector number is incremented ( $R+$ STP $\rightarrow$ $R$ ), and the scan operation is continued. The scan operation continues until one of the following conditions occur: the conditions for scan are met (equal, low, or high), the last sector on the track is reached (EOT), or the terminal count signal is received.
If the conditions for scan are met, then the FDC sets the SH (scan hit) flag of status register 2 to a 1 (high) and terminates the Scan command. If the conditions for scan are not met between the starting sector (as specified by R) and the last sector on the cylinder (EOT), then the FDC sets the SN (scan not satisfied) flag of status register 2 to a 1 (high) and terminates the Scan command. The receipt of a terminal count signal from the processor or DMA controller during the scan operation will cause the FDC to complete the comparison of the particular byte which is in process and then to terminate the command. Table 8 shows the status of bits SH and SN under various conditions of Scan.

## Table 8. Scan Conditions

Command	Status Rogistor 2		Comments
	Bit $2=8 \mathrm{~N}$	Bit 3 = \$ ${ }^{\text {H }}$	
Scan Equal	0	1	$\mathrm{D}_{\text {FOD }}=\mathrm{O}_{\text {Processor }}$
	1	0	$D_{\text {FOO }} \neq D_{\text {Processor }}$
Scan Low or Equa:	0	1	$\mathrm{DFOD}=\mathrm{DPracessor}$
	0	0	$\mathrm{D}_{\text {FDD }}<\mathrm{D}_{\text {Processar }}$
	1	0	$\mathrm{D}_{\mathrm{FOD}}>\mathrm{DProcessor}$
Scan High or Equal	0	1	$\mathrm{D}_{\mathrm{FDO}}=$ Processor
	0	0	$\mathrm{DFOOD}>0$ Processor
	1	0	$0_{\text {FDD }}<\mathrm{DPProcessor}$

If the FDC encounters a deleted data address mark on one of the sectors (and $S K=0$ ), then it regards the sector as the last sector on the cylinder, sets the CM (control mark) flag of status register 2 to a 1 (high) and terminates the command. If SK = 1 , the FDC skips the sector with the deleted address mark and reads the next sector. In the second case (SK = 1), the FDC sets the CM
(control mark) flag of status register 2 to a 1 (high) in order to show that a deleted sector has been encountered.

When either the STP (contiguous sectors $=01$, or alternate sectors $=02$ ) sectors are read or the MT (multitrack) is programmed, it is necessary to remember that the last sector on the track must be read. For example, if STP $=02, \mathrm{MT}=0$, the sectors are numbered sequentially 1 through 26 and the Scan command is started at sector 21, the following will happen: sectors 21, 23, and 25 will be read, then the next sector (26) will be skipped and the index hole will be encountered before the EOT value of 26 can be read. This will result in an abnormal termination of the command. If the EOT had been set at 25 or the scanning started at sector 20 , then the Scan command would be completed in a normal manner.
During the Scan command, data is supplied by either the processor or DMA controller for comparison against the data read from the diskette. In order to avoid having the OR (overrun) flag set in status register 1, it is necessary to have the data available in less than $27 \mu \mathrm{~S}$ (FM mode) or $13 \mu \mathrm{~S}$ (MFM mode). If an overrun occurs, the FDC ends the command with bits 7 and 6 of status register 0 set to 0 and 1 , respectively.

## Seek

The read/write head within the FDD is moved from cylinder to cylinder under control of the Seek command. FDC has four independent present cylinder registers for each drive. They are cleared only after the Recalibrate command. The FDC compares the PCN (present cylinder number) which is the current head position with the NCN (new cylinder number), and if there is a difference, performs the following operations:
PCN < NCN: Direction signal to FDD set to a 1 (high), and step pulses are issued. (Step in)
PCN > NCN: Direction signal to FDD set to a 0 (low), and step pulses are issued. (Step out)
The rate at which step pulses are issued is controlled by SRT (stepping rate time) in the Specify command. After each step pulse is issued NCN is compared against PCN, and when NCN = PCN, the SE (seek end) flag is set in status register 0 to a 1 (high), and the command is terminated. At this point FDC interrupt goes high. Bits $\mathrm{D}_{0} \mathrm{~B}-\mathrm{D}_{3} \mathrm{~B}$ in the main status register are set during the seek operation and are cleared by the Sense Interrupt Status command.
During the command phase of the seek operation the FDC is in the FDC busy state, but during the execution phase it is in the non-busy state. While the FDC is in the non-busy state, another Seek command may be issued, and in this manner parallel seek operations may be done on up to four drives at once. No other command
can be issued for as long as the FDC is in the process of sending step pulses to any drive.
If an FDD is in a not ready state at the beginning of the command execution phase or during the seek operation, then the NR (not ready) flag is set in status register 0 to a 1 (high), and the command is terminated after bits 7 and 6 of status register 0 are set to 0 and 1 , respectively.
If the time to write three bytes of Seek command exceeds $150 \mu \mathrm{~s}$, the timing between the first two step pulses may be shorter than set in the Specify command by as much as 1 ms .

## Recalibrate

The function of this command is to retract the read/ write head within the FDD to the track 0 position. The FDC clears the contents of the PCN counter and checks the status of the track 0 signal from the FDD. As long as the track 0 signal is low, the direction signal remains 0 (low) and step pulses are issued. When the track 0 signal goes high, the SE (seek end) flag in status register 0 is set to a 1 (high) and the command is terminated. If the track 0 signal is still low after 77 step pulses have been issued, the FDC sets the SE (seek end) and EC (equipment check) flags of status register 0 to both is (highs) and terminates the command after bits 7 and 6 of status register 0 are set to 0 and 1 , respectively.
The ability to do overlapping Recalibrate commands to multiple FDDs and the loss of the ready signal, as described in the Seek command, also applies to the Recalibrate command. If the diskette has more than 77 tracks, then Recalibrate command should be issued twice, in order to position the read/write head to the track 0.

## Sense Interrupt Status

An interrupt signal is generated by the FDC for one of the following reasons:
(1) Upon entering the result phase of:
(a) Read Data command
(b) Read a Track command
(c) Read ID command
(d) Read Deleted Data command
(e) Write Data command
(f) Format a Cylinder command
(g) Write Deleted Data command
(h) Scan commands
(2) Ready line of FDD changes state
(3) End of Seek or Recalibrate command
(4) During execution phase in the non-DMA mode

Interrupts caused by reasons 1 and 4 above occur during normal command operations and are easily discernible by the processor. During an execution phase in non-

DMA mode, $\mathrm{DB}_{5}$ in the main status register is high. Upon entering the result phase this bit gets cleared. Reasons 1 and 4 do not require Sense Interrupt Status commands. The interrupt is cleared by reading/writing data to the FDC. Interrupts caused by reasons 2 and 3 above may be uniquely identified with the aid of the Sense Interrupt Status command. This command, when issued, resets the Interrupt signal and, via bits 5, 6, and 7 of status register 0 , identifies the cause of the interrupt. See table 9.

Table 9. Interrupt Status

Sook End既 5	Intarrupt Code		Cause
	Etr 6	817	
0	1	1	Ready line changed state either polarity
$\dagger$	0	0	Normal termination of Seek or Recalibrate command
1	1	0	Abnormal termination of Seek or Recalibrate command

The Sense Interrupt Status command is used in conjunction with the Seek and Recalibrate commands which have no result phase. When the disk drive has reached the desired head position the $\mu$ PD765A/ $\mu$ PD7265 will set the interrupt line true. The host CPU must then issue a Sense Interrupt Status command to determine the actual cause of the interrupt, which could be seek end or a change in ready status from one of the drives. A graphic example is shown in figure 4.

## Specify

The Specify command sets the initial values for each of the three internal timers. The HUT (head unload time) defines the time from the end of the execution phase of one of the Read/Write commands to the head unioad state. This timer is programmable from 16 to 240 ms in increments of $16 \mathrm{~ms} \quad(01=16 \mathrm{~ms}, \quad 02=32 \mathrm{~ms}$... $0 \mathrm{FH}=\mathbf{2 4 0 \mathrm { ms } \text { ). The SRT (step rate time) defines the time }}$ interval between adjacent step pulses. This timer is programmable from 1 to 16 ms in increments of 1 ms ( $F=1 \mathrm{~ms}, E=2 \mathrm{~ms}, \mathrm{D}=3 \mathrm{~ms}$, etc.). The HLT (head load time) defines the time between when the head load signal goes high and the Read/Write operation starts. This timer is programmable from 2 to 254 ms in increments of $2 \mathrm{~ms} \quad 01=2 \mathrm{~ms}, \quad 02=4 \mathrm{~ms}, \quad 03=6 \mathrm{~ms} .$. $7 \mathrm{~F}=254 \mathrm{~ms}$ ).
The time intervals mentioned above are a direct function of the clock (CLK on pin 19). Times indicated above are for an 8 MHz clock; if the clock was reduced to 4 MHz (minifloppy application), then all time intervals are increased by a factor of 2 .
The choice of a DMA or non-DMA operation is made by the ND (non-DMA) bit. When this bit is high ( $N D=1$ ) the non-DMA mode is selected, and when ND $=0$ the DMA mode is selected.

## Sense Drive Status

This command may be used by the processor whenever it wishes to obtain the status of the FDDs. Status regis-

Figure 4. Seek, Recalibrate, and Sense Interrupt Status

ter 3 contains the drive status information stored internally in FDC registers.

## Invalid

If an Invalid command is sent to the FDC (a command not defined above), then the FDC will terminate the command after bits 7 and 6 of status register 0 are set to 1 and 0 , respectively. No interrupt is generated by the $\mu$ PD765A/ $\mu$ PD 7265 during this condition. Bits 6 and 7 (DIO and RQM) in the main status register are both 1 (high), indicating to the processor that the $\mu$ PD765A/ $\mu$ PD7265 is in the result phase and the contents of status register 0 (ST0) must be read. When the processor
reads status register 0 it will find an 80 H , indicating an Invalid command was received.
A Sense Interrupt Status command must be sent after a seek or recalibrate interrupt, otherwise the FDC will consider the next command to be an Invalid command. In some applications the user may wish to use this command as a No-Op command to place the FDC in a standby or no operation state.

## Data Format

Figure 5 shows the data transfer format for the $\mu$ PD765A and $\mu$ PD 7265 in various modes.

Figure 5. Data Format (Sheet 1 of 2)


Note: It is suggested that the user refer to the following application notes:
(1) "8 - for an example of an actual interface, as well as a "theoretical" data separator.
(2) \#10 - for a well documented example of a working phase-locked loop.

Figure 5. Data Format (Sheet 2 of 2)


## Packaging Information

40.Pin Plastic Package


## Packaging Information (cont)

40-Pin Ceramic Packago


NEC
NEC Electronics Inc.

CORPORATE HEADOUARTERS
No part of thus document may be copred or reproduced in any form or by any means without the prior writen consent of NEC
Eisectronics inc. The information in this document is subject to change without notice Devices sold by NEC Efectronics inc. Eiectronics inc. The information in this document is subject to change without notice. Devices sold by NEC Electronics inc. are covered by the warranty and patent indemnitication provisions appasing in NEC Electronics ine. Terms and Conditions
of Sale only NEC Electromics Inc. makes no warranty, express, statutory, implied, or by description, regarding the intormation set forth nerein or regarding the freedom of the described devices from patent inftingement. NEC Efectronics inc. makes no warranty of merchantability or fitness for any purpose. NEC Electronics Inc. assumes no responsibility for any errors that may appear in this document. NEC Electronics Inc. makes no commitment to update or to keep current the information contained in this document.

[^0]DMA Chip Specification

## DMA Chip Specification Contents

Section Page
General Description ..... 1
Address Decode ..... 1
Pin List ..... 5
Pin Functions ..... 6
Logic Block Diagram ..... 10
Electrical Specifications ..... 11
Timing ..... 14

## DMA CHIP SPECIFICATION

## GENERAL DESCRIPTION

The DMA Chip is an Intel 8237A-5 (AMD 9517) DMA Controller plus associated support circuity to integrate the TANDY 1000 External Memory function into a single ASIC part. The support circuity is divided into the five functional sections. The ADDRESS DECODE-MEMORY and ADDRESS DECODE-IO are independent of the DMA function and interface directly into the bus. The TIMING and DMA RDY sections are DMA support functions. The BUFFERS support the in/out pins.

The functional configuration of the 8237 for the DMA Chip is a fixed subset of its total capability. It is configured via the BIOS ROM for: normal timing, fixed priority, late write, high DREQ sense, low DACK sense.

## ADDRESS DECODE - MEMORY

Provides RAM Memory access decode and address generation. Bus addresses Al9-Al5 determine which segment (bank) of memory is being accessed based on one of four possible memory configurations. (see memory map Figure 1). This is combined with Bus strobes MEMWB or MEMRB and CLK to create one of the three RAS strobes (RASOB, RASIB or RAS2B), MUX, CAS, data directional controls DBDIR, DBENB and the multiplexed RAM addresses MAO-MA8. The signals CAS and MUX will occur for all access's except REFRESH. The address lines MA0-MAS are Bus addresses A0-A8 and A9-Al7 multiplexed together by the signal MUX. These will occur for all access's including REFRESH (since MUX does not occur during REFRESH, MA0-MA8 will be only A0-A8). The selection of MA8 will be made externally since Bank 0 and Bank 1 can be either 64 K or 265 K DRAM IC's.


EQUATIONS FOR MULTIPLEXED ADDRESSES MA-

		ROW ADDRESS (FIRST)	COLUNR ADDRESS   (SECOND)	
MAO	:	A0	A8	Since these addresses will
MA1	:	Al	A9	be used for either/both
MA2	:	A2	Al0	64 K and 256K DRAMS, MA8
MA3	:	A3	All	will be Al6,Al7 instead
MA4	:	A4	Al2	of two sets of MAs.
MA5	:	A5	Al3	(i.e. 64K MA0=A0/A8,
MA6	:	A6	Al4	256K MA0=A0/A9,...etc.)
MA7	:	A7	Al5	
MA8	:	Al6	Al7	

## ADDRESS DECODE - I/O

Provides I/O decode for generating the chip selects for the DMA Controller and the DMA Segment Address Register plus the data directional control signals DBDIR and DBENB. Bus addresses A0-Al5 are decoded and combined with Bus strobes IORB or IOWB to create the chip selects.


Figure 2 I/O CONFIGURATION MAP

DMA READY
A system requirement is to have one WAIT cycle automatically inserted into each I/O transfer. When an IORB occurs, WAIT cycles will continually be inserted until IORB returns inactive or until a MEMWB or MEMRB occurs.

This one WAIT cycle is inserted automatically when the CPU is Bus Master. Therefore when the DMA is a Bus Master, it is necessary to insert one WAIT cycle into each DMA I.O transfer (that is every transfer) and honor any additional WAIT requests from the system.

## TIMING GENERATOR

The input clock is OSC (= $=14.31818 \mathrm{MHZ})$.
1.) It is divided by three to recreate the 4.77 MHz system processor clock which is used as the clock for the 8237.
2.) It is used to delay the memory access strobe MEM-B twice to create the timing for RAS-, MUX, and CAS.

## BUFFERS

Provide isolation and drive capability since this circuit will interface directly onto the system bus. These buffers include the bi-directional buffers for address and control strobes (CPU Bus Master - Receive control,address, DMA Bus Master - transmit control,address) but excludes the bi-directional data buffer. Since it must be shared by the memory, this part will be provided externally. Decoding from the ADDRESS DECODE $I / O$ and MEMORY circuitry are combined to provide directional control signals DBDIR, DBENB for this data bus buffer.


ADDRESS BUS, CONTROL BUS DIRECTIONAL DMAAENB $=8257$ Signal AEN inverted CONTROL

Figure 3 BUFFER CONTROL SIGNALS

## PIN LIST



DESCRIPTION OF EACH PIN FUNCTION

| FUNCTION | PIN | NUMBER | FUNCTION |
| :--- | :---: | :--- | :---: | PIN NUMBER

## PIN DEFINITIONS

NOTE: All negative true signals use the suffix "B".
INPUTS: (ll pins)
MCF0 Memory configuration OPTION select. MCFl (See Figure 1 for details.)
RFSH 8237 CHANNEL 0 REQUEST (DREQ2) Input from timer. Set up as 16 microsec interval timer for REFRESH.
DRQ1 8237 CHANNEL 1 REQUEST (DREQI)
FDCDMARQ 8237 CHANNEL 2 REQUEST (DREQ2) dedicated to FDC.
DRQ3 8237 CHANNEL 3 REQUEST (DREQ 3 )
READY System READY signal for DMA.
RESET System hardware master RESET.
OSC Memory timing clock. Currently CLK14M. AEN CPU Bus Grant ( 8237 HLDA)
TEST Input for TEST mode used by IC mfg.
BI-DIRECTIONAL: (32 pins)
BUSA19-BUSAl6 System Segment Address (CPU BUS MASTERINPUT, DMA BUS MASTER- OUTPUT)
BUSA15-BUSA0 System Address (CPU BUS MASTERINPUT, DMA BUS MASTER- OUTPUT)
D00-D07 System Data Bus (WRITE-OUTPUT, READ- INPUT)
MRB System Memory Read strobe (CPU BUS MASTER- INPUT, DMA BUS MASTER- OUTPUT)
MWB System Memory write strobe (CPU BUS MASTER- INPUT, DMA BUS MASTER- OUTPUT)
IRB System Memory Read strobe (CPU BUS MASTER- INPUT, DMA BUS MASTER- OUTPUT)
IWB System Memory Write strobe (CPU BUS MASTER- INPUT, DMA BUS MASTER- OUTPUT)

```
OUTPUTS: (20 pins)
MA00-MA08 External Memory multiplexed address
RASOB-RAS2B External Memory ROW strobes.
CASB External Memory COLUMN strobe.
WRB External Memory WRITE strobe.
DBDIR Data Buffer directional control (Read=1).
DBENB Data Buffer enable.
REFRESHB 8237 CHANNEL 0 ACKNOWLEDGE (DREQO)
 Acknowledge from DMA channel 0 setup for
 refresh.
DACKlB 8237 CHANNEL 1 ACKNOWLEDGE (DREQ1)
FDCDMACKB 8237 CHANNEL 2 ACKNOWLEDGE (DREQ2)
DACK3B 8237 CHANNEL 3 ACKNOWLEDGE (DREQ3)
DMATC 8237 EOP (output only)
BREQB CPU Bus Request (8237 HRQ)
```

```
POWER: (4 pins)
```

    VDD +5 VDC
    VSS GND
    TOTAL PIN COUNT $=68$
PIN SENSE DMA PINOUT 8237 PINOUT

BIDIR	A0	-		A0	-		
BIDIR	Al		(BIDIR ENA	Al		(BIDIR E	ENA
BIDIR	A2		= DMAAEN)	A2	-	$=8237$	CNTL)
BIDIR	A 3	-		A3	-		
TSFBAK	A4	-		A4	-		
TSFBAK	A5		(TS ENA	A5		(TS ENA	
TSFBAK	A6		= DMAAEN)	A6		$=$ LOGIC	C 1)
TSFBAK	A7	-		A7	-		

TSFBAK A8
TSFBAK A9
TSFBAK Al0
TSFBAK All
TSFBAK Al2
TSFBAR Al3
TSFBAK Al4
TSFBAK Al5
TSFBAK Al6
TSFBAK Al7
TSFBAK Al8
TSFBAK Al9

PIN SENSE	DMA PINOUT	8237 PINOUT
BIDIR	D0	D0
BIDIR	Dl	D1
BIDIR	D2	D2
BIDIR	D3	D3
BIDIR	D4	D4
BIDIR	D5	D5
BIDIR	D6	D6
BIDIR	D7	D7
OUTPUT	MAD0	
OUTPUT	MAD1	
OUTPUT	MAD 2	
OUTPUT	MAD 3	
OUTPUT	MAD 4	
OUTPUT	MAD5	
OUTPUT	MAD 6	
OUTPUT	MAD 7	
TRISTATE	MAD 8	
INPUT	RESET	RESET
INPUT	READY	RDY (MUXED)
OUTPUT	DMATC	EOP* (INVERTED)
OUTPUT	BREQ*	HRQ (INVERTED)
INPUT	OSC	CLR (MUXED)
INPUT	DRQ 3	DREQ3
INPUT	FDCDMARQ*	DREQ2
INPUT	DRQ1*	DREQ1
INPUT	RFSH*	DREQ0 (MUXED)
OUTPUT	REFRESH*	DACK0
OUTPUT	DACKI*	DACK1
OUTPUT	FDCDMACK*	DACK 2
OUTPUT	DACK3*	DACK 3
OUTPUT	RAS 0	
OUTPUT	RAS 1	
OUTPUT	RAS 2	
OUTPUT	CAS	AS (MUXED)
OUTPUT	WR*	AEN (MOXED)
INPUT	MCF 1	CS (MUXED)
INPUT	MCF 0	
OUTPUT	DBDIR	
OUTPUT	DBEN	
INPUT	AEN (SYSTEM)	HLDA
BIDIR	MEMW* -	MW* -
BIDIR	MEMR* ${ }^{\text {* }}$ (BIDIR ENA	MR* ${ }^{\text {* }}$ (BIDIR ENA
BIDIR	IOW* ( ${ }^{\text {( }}$ ( DMAAEN)	IOW* ${ }^{-}$- $=8237$ CNTL)
BIDIR	IOR* -	IOR* -
POWER	VDD	VDD
POWER	VDD	VDD
GROUND	VSS	VSS
GROUND	VSS	
	68 PINS	40 PINS




OUTPUT VOLTAGES CURRENT LOADING|MIN TYP MAX UNITS
LOGIC "0" (Vol) 0.4 volts
e 4.0 MA LOAD
LOGIC "l" (Voh)
2.4
volts
e 0.4 MA LOAD

## INPUT CAPACITANCE

All inputs $0.0<\operatorname{Vin}<5.0$
MIN
10

50
All outputs
Except Data (bi-directional)
BI-DIRECTIONAL CAPACITANCE
SEE NOTES 3-6 IN THE FOLLOWING SECTION.

## TIMING SPECIFICATION

## MAXIMUM LOADING FOR EACH OUTPUT

> Capacitive Load: 50 pf Current Load: Ioh $=4.0 \mathrm{MA}$

## INPUT/OUTPUT TIMING

(NOTE: ALL AC TESTING AND TIMING MEASUREMENTS WILL BE AT THE FOLLOWING CONDITIONS: VOH (OUTPUT 1 LEVEL) $=2.0 \mathrm{~V}$, AND VOL (OUTPUT 0 LEVEL $)=.8 \mathrm{~V}$ )


Figure 1. MEMORY TIMING PARAMETERS, READ

MEMORY TIMING PARAMETERS , READ			
		min typ max	
$\begin{aligned} & \text { to R } \\ & \text { tOSC } \end{aligned}$	Reference time zero, STROBE lo Period of 14.31818 MHz	69.8	
tl	ADDRESS Setup to STROBE 10	50	
t2	STROBE lo Setup to OSC hi	15	
t2A	STROBE lo Length	250	
t2B	STROBE hi Length	250	
t3	STROBE hi Setup to OSC hi	don't care	
t4 R	RAS*B lo Delay from OSC hi	$0 \quad 40$	
t5 R	RAS*B hi Delay from STROBE hi	$0 \quad 40$	
t5A R	RAS*B hi Length	100	
t6	CAS*B lo Delay from OSC hi	$0 \quad 40$	
t6A	CAS*B lo Length	75	
t6B	CAS*B lo Delay from RAS*B lo	69.870	
t7	CAS*B hi Delay from STROBE hi	69.870	
	MA*-Row Address   Valid Setup to RAS*B lo	20	NOTE 2
t9 M	MA*-Column Address   valid Setup to CAS*B lo	20	NOTE 2
t10 M	MA*-Column Address Hold	35	
t11 D	DATA Valid Delay from RAS*B True (reference)	150	NOTE 6
t12 D	DATA Valid setup to STROBE hi	70	NOTE
tl3 D	DATA Hold from STROBE False hi	0	
tl4 D	DBDIR lo Delay from STROBE 10	40	
t15 D	DBENB lo Delay after DBDIR hi	70	NOTE
t16 D	DBENB Hold from STROBE hi	0	
$t 17$ D	DBDIR Hold from DBENB hi	0	NOTE
NOTE 1 Setup time t2 will be defined by the ASIC design. It should be of sufficient length to allow clear on RAS flip-flop to go false and still meet setup time before next clock rising edge.			
x $8 \mathrm{pf}=192 \mathrm{pf}$. each.			
NOTE	3 Additional delay through LS 24 match Bus Specs.   Bus requires +75 ns setup. 20 ns. Therefore $75+20=95 \mathrm{~ns}$	eeds to be add 5 into 45 pf re	ed to quires
NOTE	4 Applying the DIRection signal allowing the part to settle b ENable reduces Bus and power ENable should be removed firs	the LS 245 and applying ou   e. Also OUTp	Tput ut
NOTE	5 OUTput ENable should be remov changing DIRection.	first before	
NOTE	6 Depends upon DRAM used.		



Figure 2. MBMORY TIMING PARAMBTERS, WRITE

MEMORY TIMING PARAMETERS, WRITE



Figure 3. I/O CHIP SELECT PARAMETERS, READ

I/O CHIP SELECT PARAMETERS, READ



Figure 4. I/O CHIP SELECT PARAMETERS, WRITE I/O CHIP SELECT PARAMETERS, WRITE

|  |  |  |
| :--- | :--- | :---: | :---: |
| t1 ADDRESS Valid Setup to STROBE lo | min typ max |  |
| t2 STROBE lo Setup to OSC hi | 50 |  |
| t2A STROBE lo Length | 15 |  |
| t3 STROBE hi Setup to OSC hi | 420 |  |
| t4 DATA Valid Setup to STROBE lo | 20 |  |
| t5 DATA Hold from STROBE hi |  |  |
| t6 DBENB Delay after STROBE lo | 0 |  |
| t7 DBENB Hold from STROBE hi | 0 |  |



Figure 5. DMA BUS MASTER TIMING, READ / WRITE

DMA BUS MASTER TIMING, READ / WRITE

	min typ max	
tl DRQ* True Setup to CLK 10	30	
t2 DRQ* False Setup to CLK lo	30	
t3 BREQB True Delay from CLK hi	120	$8237 \mathrm{~A}-5$ tDQ1
t4 BREQB False Delay from CLK hi	120	8237A-5 tDQ1
t5 AEN True Delay after BREQB True	N x tey $\mathrm{C}+30$	$\mathrm{N}=$
t6 AEN True setup to CLK Hi	40	
t7 AEN False delay from CLK hi	40	
t8 DACK*B True Delay from Clk lo	170	8237A-5 tak
t9 DACK*B True Hold from and True	0	8237A-5 NOTE
tl0 DACK*B False delay from Clk 10	170	$8237 \mathrm{~A}-5$ t AK
tll ADDRESS valid Setup to CLK Hi	50	System Spec
tl2 ADDRESS False delay from clk hi	0	
tl2 MEMRB or IORB True Delay from CLK hi	40	
tl3 MEMRB or IORB False Delay after CLK hi	40	
tl4 MEMWB or IOWB True Delay from CLK hi	40	
tl5 MEMWB or IOWB False Delay after CLK hi	40	
tl6 EOP True Delay after CLK hi	40	
tl7 EOP False Delay after CLK hi	40	
tl8 BRDY False Setup to CLK hi	30	
t19 BRDY False Hold after CLK hi	30	

Printer Interface Chip Specification

## Printer Interface Chip Specification Contents

Section ..... Page
General Description ..... 1
Specifications ..... 3

## PRINTER INTERFACE SPECIFICATION TANDY PART \# 8075068 APRIL 30, 1986

1. GENERAL DESCRIPTION
1.1 The Tandy part\# 8075068 - Printer Intertace I.C provides the interface between the system $1 / 0$ bus and the printer. Figure 1 shows Block diagram of Printer Interface chip. Figure 2 shows pin contigurations of Printer intertace


Figure 1.

1--INT	VOD--40
2--SWITCH	07-39
3--AD1	05--38
4--400	03--37
5--0UT0	11--36
6--but1	00--35
7--OUT2	D2--34
8--OUT3	04--33
9--OUT?	0s--32
10--0UT6	cse--31
11--outs	10WE--30
12-OUT4	10RE--29
13--STROEEA	RSTE--20
14- $\triangle$ - ${ }^{\text {B }}$	NC- -27
15--INIT	SLCTINE-26
16--SELB	TC--25
17-FAULT	DMATC--24
18-PE	FDCDACKE-23
19--BUSY	FOCTG-22
20-USS	ACKE--21

Figure 2.

### 1.2 DESCRIPTION OF EACH PINS:

Pin\#	Pin Name	Type	Descriptian
1	INT	output	Interrupt signal
2	SWITCH	input	Switch for tatem pale output or open callector output on INITB, AF, STROBEB.
3	AD1	input	CPU address line
4	ADO	input	CPU address line
5	OUTO	input/output	Data I/O Iine
6	OUT 1	input/autput	Data 1/0 line
7	OUT2	input/autput	Data 1/0 line
8	OUT3	input/autput	Data I/O I ine
9	OUT 7	input/autput	Data I/0 line
10	OUT6	input/autput	Data 1/0 line
11	OUTS	input/autput	Data 1/0 line
12	OUT4	input/autput	Data $1 / 0$ line
13	STROBEB	output	Printer Strobe sisnal
14	AFB	םutput	Printer Autateed sismal
15	INITB		Printer lnitialize signal
16	SEL	Qutput	Printer Select signal
17	FALLTB	input	Printer Fault signal
18	PE	input	Printer Paper empty signal
19	BUSY	input	Printer Busy signal
20	USS	ground	Ground
21	ACKB	input	Printer Acknowledge signal
22	FDCTC	input	FDC Terminal Count
23	FDCDACKB	input	FDC-OMA Acknowledge signal
24	DMATC	input	DMA Terminal Count
25	TC	output	FDC Terminal Count signal
26	SLCTINB	input	Printer Select input
27	NC	--	Not used
28	RSTB	input	System Reset
29	I ORB	input	CPU 1/O Read strobe
30	10 WB	input	CPU 1/0 Write strobe
31	CSB	input	Chip select signal
32	D6	Input/output	CFU Data I/O
33	D4	Input/autput	CPU Data 1/0
34	D2	Input/autput	CPU Data 1/0
35	D0	Input/autput	CPU Data 1/0
36	D1	Input/output	CPU Data 1/0
37	D3	Input/autput	CPU Data 1/0
38	D5	Input/output	CPU Data I/O
37	D7	Input/output	CPU Data 1/0
40	VDD	power	+5 Volt Power Supply

2. ENUIRONMENTAL SPECIFICATIONS
2.1 Storage Temperature -65 C to 150 C
2.2 Operating Temperature 0 C ta 70 C
3. ELECTRICAL SPECIFICATIONS
3.1 Absolute Maximum Rating

Parameter	Min.	TYP.	Max.	Units	Cond.
Voltage, any pin	-1.0		7.0	Volts	W.R.T ground
Power Dissipation			0.5	Watts	

3. 2 D.C. Electrical Characteristics

Symb.	Parameter	Min.	Typ.	Max.	Units Cand.
vob	Supply Voltage	4.5	5.0	5.5	Volts
Icc (a)	Quiescent current			50	$山 A$
lec(a)	Operating Current			40	mA
Vil	Input Low Voltage			$\square .8$	Volts TTL inputs
Vih	Input High Valtage	2.0			Volts TTL inputs
Ifin	Input Leakage	-10		10	UA
Cin	Input Capacitance			7	of
Vol	Output Law Voltage			0.4	Volts $\square 4 \mathrm{~mA}$
Voh	Output High Voltage	2.4			Volts $\mathrm{d}-2 \mathrm{~mA}$
102	High Impedance Leak	$-10$		10	UA

3.3 A.C Electrical Characteristics
3.3.1 Write Cycle



Symb. Parameter
---- --------
Tasu Address Setup
Twpw Write Pulse Width Data Setup Data Hold

Min. Typ. Max. Units Cond.
---- ---- ---- ----- ---------
15
nS
69
n5
nS
nS


Symb. Parameter
----
Tespw Chip Select Width
Trpw Read Pulse Width
Tda Data Access
Tdz Bus Holdrelease

Min. Typ. Max. Units Cond.

69 ns
69
69
$n 5$
69 nS
25 ns

## Timing Control Generator Chip Specification Contents

Section Page
General Description ..... 1
Block Diagram ..... 3
Specifications ..... 4
Timing Diagrams ..... 5

TIMING CONTROL GENERATOR<br>TANDY PART \# 8075306<br>MAY 07,1986<br>REV DS0886

### 1.0 GENERAL DESCRIPTION

```
1.1 The Tandy part # 8075306 - Timing Contral Generator:
 - creates eight clack autputs fram twa independent
 oscillator inputs.
 - synchronizes the ready signals.
 - synthesizes the system contral strobes fram the CPU
 status signals.
 - interfaces the system signals (HOLD, HLDA) with the
 CPU signals (RQ/GT).
 - creates two FDC chip selects and the DMA request
 delay.
```

1--: VIDWAITB	HOLDB : -4.40
Z-- FAST	CLK4M :--39
3--: D4CLK	FDCWCK :--38
4--: FDCDRQ	FDCCHPB : - - 37
S--: DFDCDRQ	DORCLK : - - 36
6--1 AD2	FDCCS8 :--35
7--: ALE	RDYIN :--34
B--: DENB	IOB/M : $-\mathbf{- 3 3}$
9--: 10WB	MEMRB :--32
10--: IORB	MEMWB : $-\mathbf{- 3 1}$
11--: CLK ${ }^{\text {(1) }}$	INTCSB :--30
12--: CLK14M	READY 1--29
13--: CLK3580K	HLDA : - -28
14--: OSC16M	OSC2BM i--27
15-- VCC	GND :--26
16--: CPUCLK	RQ/GTB : -25
17--: CLK4770K	INTAB : --24
18--: 52B	READ :--23
19--: 518	RESET :--22
20--: SDB	RSTINB : --21

Figure 1. Pin Assignment
1.2 DESCRIPTION OF PINS：

Pin\＃	Pin Name	Type	Description
1	VIDWAITB	INPUT	Wait signal fram videa system（ $\square=$ Wait）
2	FAST	INPUT	Clack speed select
3	D4CLK	OUTPUT	CLK477M／4，Squarewave
4	FDCDRQ	INPUT	FDC DMA Request
5	DFDCDRQ	OUTPUT	Beginning of FDCDRQ delayed 1.0 microsec
6	A02	INPUT	System Address
7	ALE	OUTFUT	Address Latch Enable
8	DENB	OUTPUT	Data Enable
9	IOWB	OUTPUT	1／0 Write
10	IOR日	OUTPUT	1／0 Read
11	CLKBM	OUTPUT	OSC16M／2，Squarewave
12	CLK14M	OUTPUT	OSC28M／2，Squarewave
13	CLK 3580K	OLTPLT	OSC2BM／日，Squarewave
14	OSC16M	INPUT	Input Frequency $=16.00000 \mathrm{MHz}$
15	VDD	POWER	
16	CPUCLK	OUTPUT	$\begin{aligned} & \text { FAST=1, CPUCLK=7. } 16 \mathrm{MHz} \text { (OSC } 28 \mathrm{M} / 4,50-50 \text { cycle) } \\ & \text { FAST=1, } \quad \text { CPUCLK }=4.77 \mathrm{MHz} \text { (OSC } 28 \mathrm{M} / 6,33-67 \text { cycle) } \end{aligned}$
17	CLK4770K	OLTPUT	CLK14M／3，33\％duty eycle
18	S2B	INPUT	8088 Status Sisnal
19	S1B	INPUT	B0日尤 Status Signal
20	SaB	INPUT	808日 Status Signal
21	RSTINB	INPUT	Asynchronous system input
22	RESET	OUTPUT	B0B8 CPU Reset input
23	READ	OUTPUT	Directional Contral for CPU Data butfer
24	INTAB	OUTPUT	Interrupt Acknawledge
25	RQ／GTB	INPUT／OUTPUT	Request／Acknowledge／Release
26	VSS	GROUND	
27	OSC2BM	INPUT	Input frequency $=28.63636 \mathrm{MHz}$
28	HLDA	OUTPUT	Bus Acknowledge
29	READY	OUTPUT	8088 CFU READY input
30	INTCSE	INPUT	8257 Interrupt Contraller Chip Seleet
31	MEMWB	OUTPUT	Memory Write
32	MEMRB	OUTPUT	Memory Read
33	IOB／M	OUTPUT	$1=$ Memary access，$\quad=1 / 0$ access
34	RDYIN	INPUT	Asynchromous system input（ $0=$ Wait candition）
35	FDCCSB	INPUT	Previously decoded FDC Function $1 / 0$ chip select
36	DORCLK	OUTPUT	Configuration register Chip Select
37	FDCCHPB	OLTPUT	FDC Chip Select
38	FDCWCK	OUTPUT	Pulse，Period＝ 2 microsec ， 250 （nom）pulse
37	CLK4M	OUTPUT	OSCi6M／4，Squarewave
40	HOLDB	INPUT	Bus Request


2.0 ENUIRONMENTAL SPECIFICATIONS
2.1 Storage Temperature: $\quad-65 \mathrm{~min} \quad+150$ max degrees $C$ 2.2 Operating temperature: $\quad$ min, +25 typ, +70 max degrees $C$
3.0 ELECTRICAL SPECIFICATIONS

3.2.2 Power Supplies:

VDD
4.5
$5 . \square$
5.5
valts
ICC 0 0

D valts
100 milliamps 700 milliwatts
3.2.3 Leakage Current, All Inputs:
vin $=\square .0 v$
-10 microamps
vin $=5 . \square v$
+10 micramps
3.2.4 Input valtages:
Lagic "G"
Except RSTIN
Logic "1"
Except RSTIN
. 8 valts
.5 valts
Logic "1"
Except RSTIN
2.0
volts
volts
3.2.5 Output Valtages:

except all clocks 4.
volts
3.2.6 INPUT CAPACITANCE (0.0<Vin< 5.0)

All inputs
10 pf
3.2.7 OUTPUT CAPACITANCE

All loads 50 pf
TIMING DIAGRAMS

FIGURE 2. RESET

tl RSTIN Setup to CPUCLK Iow I Asynchronous input t2 RESET Delay from CPUCLK low I 40 ns max

FIGURE 3. READY

(REFERENCE ONLY, SEE FIGURE 3

$$
\text { REFERENCE ONLY, SEE FIGURE } 3
$$

for timing infol

CONTROL GENERATOR



```
t3 CPUCLK low to RQ/GTB Inactive (REQ/REL Pulso)
ROGF (True) setup to CPUCLK hi (ACK PUlse) I 2%
5 RO/GTB (False) hold from CPUCLK low {ACK pulse)
t6 CPUCLK hi to HLDA Delay CPUCLK low
```

``` 7 HOLDB (False) Setup to CPUCLK low
```

IGURE 6. OSCILLATOR/CLOCK RELATIONSHIPS, 28 MHZ


CPUCLK (See fig. 1 for Specs)



## FIGURE 7. OSCILLATOR/CLOCK RELATIONSHIPS, 8MHZ




```
 CLOCK PARAMETER
lon
```

Asynchronous

Video Controller Chip Specification

## Video Controller Chip Specification contents

Section Page
General Description ..... 1
Block Diagram ..... 2
Operating Modes ..... 3
Pin List ..... 24
Logic Block Diagram ..... 27
Electrical Specifications ..... 29
Timing ..... 30

## VIDEO CONTROLLER CHIP SPECIFICATION

## GENERAL DESCRIPTION

The Tandy 1000 video controller chip is designed to operate with three types of display devices: A standard TV using an RF modulator, a composite monitor, and an RGBI 200 line Color monitor. This custom controller chip implements all of the video logic for the Tandy 1000 plus most of the system decode logic. Figure 1 shows a block diagram of the controller chip.

The video display system is very flexible and can be programmed for a number of video modes. These modes use varying numbers of colors (2,4 or 16 ). These 16 colors are defined by combinations of the RGBI as shown in the color chart below and can be used for the foreground color or background color. If you are using a black and white monitor, these colors will appear as shades of gray. In addition, any 1 of the 16 colors or shades of gray can be used for the screen border.

$|$| I | R | G | B | Color |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | Black |
| 0 | 0 | 0 | 1 | Blue |
| 0 | 0 | 1 | 0 | Green |
| 0 | 0 | 1 | 1 | Cyan |
| 0 | 1 | 0 | 0 | Red |
| 0 | 1 | 0 | 1 | Magenta |
| 0 | 1 | 1 | 0 | Brown |
| 0 | 1 | 1 | 1 | Light Gray |
| 1 | 0 | 0 | 0 | Dark Gray |
| 1 | 0 | 0 | 1 | Light Blue |
| 1 | 0 | 1 | 0 | Light Green |
| 1 | 0 | 1 | 1 | Light Cyan |
| 1 | 1 | 0 | 0 | Pink |
| 1 | 1 | 0 | 1 | Light Magenta |
| 1 | 1 | 1 | 0 | Yellow |
| 1 | 1 | 1 | 1 | White |

## TABLE 1 AVAILABLE COLORS TABLE



Figure 1. VIDEO CONTROLLER CHIP BLOCK DIAGRAM

## OPERATING MODES

The sperating modes supported by the Tandy 1000 video controller may be grouped in two categories: Alphanumeric and Graphic.

## ALPHANUMERIC MODE

The Alphanumeric mode has two basic types of operation: 80 character by 25 rows, and 40 character by 25 rows. In both modes the characters are generated by a 256 character ROM. The character ROM is divided into the following groups:

* 96 Standard ASCII characters
* 48 Block Graphics characters
* 64 Foreign Language/Greek characters
* 16 Special Graphics characters.
* 32 Word Processing/Scientific Notation characters

In both modes all characters are 7 dots wide by 7 dots high and are placed in an 8 dot wide by 8 or 9 dot high matrix. In both the $40 \times 25$ and the $80 \times 25$ modes, two bytes of data are used to define each character on the screen. The even address $(0,2,4$ etc.) is the character code and is used in addressing the character generating ROM. The odd address ( $1,3,5$ etc.) is the attribute byte, that defines the foreground and the background color of the character. The following chart shows how the attribute byte controls colors.


Table 2 ALPHANUMBRIC MODE ATTRIBUTE BYTE DEFINITION

* Writing a 1 in bit 5 of register 'H3D8 enables Blinking


## GRAPHICS MODE

The Tandy 1000 Video Controller chip can be programmed for a variety of modes.
The Tandy 1000 Computer family supports the following Graphics Modes:

MODE							IBM	PCJR	IBM PC
4	Color	Medium	Resolution	320	x	200		X	X
16	color	Medium	Resolution	320	x	200		X	
16	Color	Low Res	olution	160	x	200		X	
2	color	High R	esolution	640	x	200		X	X
4	Color	High R	esolution	640	x	200		X	

## GRAPHICS MEMORY USAGE

* 200 line Graphics Memory uses either 2 or 4 banks of 8000 bytes. In either case, pixel information for the display's upper left corner is found at address 0000 .


```
\#\#\# \# The \(\cdot 2\) Color High Resolution 640 X 200 and
\#\#\#\# The 4 Color Medium Resolution 640 X 200 and
\#\#\#\# The 16 Color Low Resolution 640 X 200
\#\#\#\# use only 2 banks of 8000 bytes as follows
```

(Hex)	<-80 Bytes->	
0000		Even Scans $(0,2,4,6,8, \ldots, 198)$
1F3F		
2000	- -	Odd Scans $(1,3,5,7,9, \ldots, 199)$
3F3F	-	

## 2 COLOR HIGH RESOLUTION 640 X 200 GRAPHICS MODE

The 2 Color High Resolution $640 \times 200$ Graphics mode may require a high resolution monitor for proper operation. Available in the IBMPC and IBM PCjr, this mode has the following characteristics:

Contains a maximum of 200 rows of 640 PELS Can display 2 of 16 possible colors Requires 16 K bytes of read/write memory Formats 8 pels per byte for each byte in the following manner:

7	6	5	4	3	2	1	0
PA3	PA2	PA1	PA0	PA3	PA2	PA1	PAO


	Second Display PEL	$\begin{gathered} \text { Third } \\ \text { Display } \\ \text { PEL } \end{gathered}$	$\begin{gathered} \text { Fourth } \\ \text { Display } \\ \text { PEL } \end{gathered}$	Fifth Display PEL	Sixth Display PEL	Seventh Display PEL	Eighth   Display   PEL

## 4 COLOR HIGH RESOLUTION 640 X 200 GRAPHICS MODE

The 4 Color High Resolution 640 X 200 Graphics mode may require a high resolution monitor for proper operation. Only supported on the IBM PCjr, this mode has the following characteristics:

```
 Contains a maximum of 200 rows of 640 PELs
 Can display 4 of 16 possible colors
 Each pixel selects l of 4 colors
 Requires 32K bytes of read/write memory
 Formats }8\mathrm{ PELs per two bytes (l even byte and l odd
 byte) in the following manner:
```

EVEN BYTES							
7	6	5	4	3	2	1	0
PAO	PAO	PAO	PAO	PAO	PAO	PAO	PAO


First Display PEL	$\begin{gathered} \text { Second } \\ \text { Display } \\ \text { PEL } \end{gathered}$	Third Display PEL	Fourth Display PEL	Fifth Display PEL		Seventh Display PEL	$\begin{gathered} \text { Eighth } \\ \text { Display } \\ \text { PEL } \end{gathered}$
PAl	PAl	PAl	PAl	PAl	PAl	PAl	PAI
7	6	5	4	3	2	1	0

## 16 COLOR MEDIUM RESOLUTION $320 \times 200$ GRAPHICS MODE

The 16 Color Medium Resolution 320 X 200 Graphics mode works with all types of display devices. This mode is available in the IBM PCjr only and has the following characteristics:

Contains a maximum of 200 rows of 320 PELs
Can display 16 of 16 possible colors
Each pixel selects 1 of 16 colors
Requires 32 K bytes of read/write memory
Formats 2 PELs per byte in the following manner:

$\begin{gathered} 7 \\ \text { PA3 } \end{gathered}$	$\begin{gathered} 6 \\ \text { PA2 } \end{gathered}$	$\begin{gathered} 5 \\ \text { PAl } \end{gathered}$	$\begin{gathered} 4 \\ \text { PAO } \end{gathered}$	$\begin{gathered} 3 \\ \text { PA3 } \end{gathered}$	$\begin{gathered} 2 \\ \text { PA2 } \end{gathered}$	$\begin{gathered} 1 \\ \text { PA1 } \end{gathered}$	$\begin{gathered} 0 \\ \text { PAO } \end{gathered}$
$\begin{aligned} & \text { First } \\ & \text { Display } \\ & \text { PEL } \end{aligned}$				Second Display PEL			
16 COLOR LOW RESOLUTION 160 X 200 GRAPEICS MODE   The 16 Color Low Resolution 160 X 200 Graphics mode works with all types of display devices. This mode is available in the IBM PCjr only, with the following characteristics:   Contains a maximum of 200 rows of 160 PELS Can display 16 of 16 possible colors Each pixel selects 1 of 16 colors Requires 16 K bytes of read/write memory Formats 2 PELs per byte in the following manner:							
$\begin{gathered} 7 \\ \text { PA3 } \end{gathered}$	$\begin{gathered} 6 \\ \text { PA2 } \end{gathered}$	$\begin{gathered} 5 \\ \mathrm{PAl} \end{gathered}$	$\begin{gathered} 4 \\ \text { PA0 } \end{gathered}$	$\begin{gathered} 3 \\ \text { PA3 } \end{gathered}$	$\begin{gathered} 2 \\ \mathrm{PA} 2 \end{gathered}$	$\begin{gathered} 1 \\ \text { PAl } \end{gathered}$	$\begin{gathered} 0 \\ \text { PAO } \end{gathered}$
$\begin{aligned} & \text { First } \\ & \text { Display } \\ & \text { PEL } \end{aligned}$				Second Display PEL			

## 4 COLOR MEDIUM RESOLUTION 320 X 200 GRAPHICS MODE

The 4 Color Medium Resolution 320 X 200 Graphics mode works with all types of display devices. It is available in the IBM PC and PCjr. This mode has the following characteristics:

Contains a maximum of 200 rows of 320 PELs
Can display 4 of 16 possible colors
Each pixel selects 1 of 4 colors
Requires 16 K bytes of read/write memory
Formats 4 PELs per byte in the following manner:

7	6	5	4	3	2	1	0
PAL	PAO	PA1	PAO	PA1	PA0	PAI	PAO


First   Display   PEL	Second   Display   PEL	Third   Display   PEL	Fourth   Display   PEL

VIDEO MEMORY MAP AND GRAPHICS USAGE


## vIDEO ARRAY REGISTERS

The following registers can be accessed by writing their Hex Address to 3DA and their Data to 3DE

Hex Address	Video Array Register
01	Palette Mask
02	Border Color
03	Mode Control
$10-1 F$	Palette Registers

## ARRAY PALETTE MASK REGISTER

Bit Programming


## ARRAY BORDER COLOR


|Hex Address |Array Register



## ARRAY MODE CONTROL REGISTER

Bit Programming





## ARRAY PALETTE REGISTERS

There are sixteen 4 bit wide palette registers implemented by a $16 x 4$ bit RAM. These registers are 'write' only; they cannot be 'read'. Their address in the Video Array are from hex 10 to lF. They can be used to redefine any color.

To load the palette, write the hex address to the Video Array register at 3DA. Then, the new palette color is written to 3DE.

Palette address hex 10 is accessed whenever the color code from memory is a hex 0 , address hex 11 is accessed whenever the color code from memory is a hex 1 , and so forth. A description of the color codes is in Table l "Available Colors Table" at the beginning of this section.

Note: The palette address can be 'masked' by using the palette mask register.

The following is a description of the register's bit functions:

```
Bit Number Function
```

0	Blue
1	Green
2	Red
3	Intensity

When loading the palette, the video is 'disabled' and the color viewed on the screen is the data contained in the register being addressed by the processor.

When the program has completed loading the palette, it must change the hex address to some address less than hex 10 for video to be 'enabled' again.

If a programmer does not wish a user to see the adverse effects of loading the palette, the palette should be loaded during the vertical retrace time. The program must modify the palette and change the address to less than hex 10 within the vertical retrace time. A vertical retrace interrupt and a status bit are provided to facilitate this procedure.

In two color modes, the palette is defined by using one bit (PAO), with the following logic:

PALETTE ADDRESS BIT


In four color modes, the palette is defined by using two bits (PAl and PAO), with the following logic:

## PALETTE ADDRESS BITS

PA1.	PA0	Function		
0	0	Palette	Register	0
0	1	Palette	Register	1
1	0	Palette	Register	2
1	1	Palette	Register	3

In sixteen color modes, the palette is defined by using four bits (PA3,PA2,PAl and PAO), with the following logic:

## PALETTE ADDRESS BITS

PA3	PA2	PAl	PA0	Function	
(I)	(R)	(G)	(B)		
0	0	0	0	Palette	Register 0
0	0	0	1	Palette	Register 1
0	0	1	0	Palette	Register 2
0	0	1	1	Palette	Register 3
0	1	0	0	Palette	Register 4
0	1	0	1	Palette	Register 5
0	1	1	0	Palette	Register 6
0	1	1	1	Palette	Register 7
1	0	0	0	Palette	Register 8
1	0	0	1	Palette	Register 9
1	0	1	0	Palette	Register 10
1	0	1	1	Palette	Register 11
1	1	0	0	Palette	Register 12
1	1	0	1	Palette	Register 13
1	1	1	0	Palette	Register 14
1	1	1	1	Palette	Register 15

## DETAILED I/O REGISTER INFORMATION

## Bit Programming



Bit Programming

Hex Address	Register $\|$l 7 6 5 4 3	Notes
3D8	Mode Register X X   $\mid$	$\begin{aligned} & \text { Write } \\ & \text { _Only } \end{aligned}$
ENABLINKCR	Alpha Blink Enable. A logical 1 selects blink if attribute bit 7 is set. A logical 0 selects 16 background colors. A logical 1 selects 0 background colors.	
HRESAD	640 Dot Graphics. A logical 1] selects $640 \times 200$ ( 2 or 4 Color)	
VIDENBCR	Video Enable. A logical 1 enables the Video display.	
BW	Black \& White Select. Selects B\&W or $\qquad$ color mode for TV or composite monitors. In RGB monitors, a different color palette is selected by this bit in $320 \times 2004 \mathrm{Col}$ Mode. This bit will have no other effect on RGB operation	
GRPH	Graphics Select. A logical 0 selects Alphanumeric Mode. A logical selects Graphics Mode.	
HRESCK	High Resolution Dot Clock.   A logical 0 selects the lower speed for 40 text or low resolution graphics mode.   A logical 1 selects the lower speed for 8 text or low resolution graphics mode.	

Bit Programming


Bit Programming


Bit Programming


Bit Programming


Bit Programming


## 6845 PROGRAMMING TABLE FOR ALL HODES

*	REGISTER	$\left\|\begin{array}{l} 40 \times 25 \\ \text { ALPHANUM } \end{array}\right\|$	$\begin{gathered} 80 \times 25 \\ \text { ALPHANUM } \end{gathered}$	$\left\|\begin{array}{rrr} 160 \times 200 & 16 & \mathrm{Col} \\ 320 \times 200 & 4 & \mathrm{Col} \\ 640 \times 200 & 2 & \mathrm{Col} \end{array}\right\|$	$640 \times 2004 \mathrm{Col}$ $320 \times 20016 \mathrm{Col}$
==x			=- 71 (113)		
1	Horiz. Displayed	28 (40)	$\begin{array}{ll}71 & 113\end{array}$	28 (40)	50 (80)
2	Horiz. Sync. Pos	2D (45)	5A (90)	2D (45)	5A (90)
3	Horiz. Sync. Width	08 (8)	OE (14)	08 (8)	OE (14)
4	Vertical Total-1	1 C (28)	1c (28)	7 F (127)	$3 F$ (63)
5	Vert. Total Adjust	01 (1)	01 (1)	06 (6)	06 (6)
6	Vertic. Displayed	19 (25)	19 (25)	64 (100)	32 (50)
7	Vert. Sync pos.	1 A ( 26)	$1 A$ (26)	70 (112)	38 (56)
8	Interlace Mode	02 (2)	02 (2)	02 (2)	02 (2)
9	MaxScanLineAdd -1	08 (8)	08 (8)	01 (1)	03 (3)
10	Cursor Start	06 (6)	06 (6)	06 (6)	06 (6)
11	Cursor End	07 (7)	07 (7)	07 (7)	07 (7)
12	StartAddresss High	00 (0)	00 (0)	00 (0)	00 (0)
13	StartAddress Low	00 (0)	00 (0)	00 (0)	00 (0)

MODE SELECTION SUMMARY

MODE	$\begin{gathered} \text { H3D8 } \\ \text { BIT } 0 \\ \text { HRESCK } \\ ======= \end{gathered}$		$\begin{gathered} \text { H3DE REG3 } \\ \text { BIT } 3 \\ \text { C4COLHR } \\ ========= \end{gathered}$	$\begin{gathered} \text { 'H3DE REG3 } \\ \text { BIT 4 } \\ \text { Cl6COL } \\ ==========x=1 \end{gathered}$	'H3DE REG3 BIT 5 NVDM	$\begin{aligned} & \text { H3D8 } \\ & \text { BIT 1 } \\ & \text { GRPH } \\ & ====== \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \text { H3DD } \\ \text { BIT } \\ \text { EXTADR } \\ \text { Eximen } \end{array}$	$\begin{aligned} & \mathrm{H} 3 \mathrm{DF} \\ & \text { BIT } 7 \\ & \text { ADRM1 } \\ & ======1 \end{aligned}$	'H3DF   BIT 6   ADRM0  
$40 \times 25 \mathrm{ALPHA}$	0	0	0	0	0	0	0	0	0
$80 \times 25$ ALPHA	1	0	0	0	0	0	0	0	0
$160 \times 20016 \mathrm{COL}$	0	0	0	1	0	1	0	0	1
$320 \times 2004 \mathrm{COL}$	0	0	0	0	0	1	0	0	1
$320 \times 20016 \mathrm{COL}$	1	0	0	1	0	1	0	1	1
$640 \times 2002 \mathrm{COL}$	0	1	0	0	0	1	0	0	1
$640 \times 2004$ COL	1	1	1	0	0	1	0	1	1

## VIDEO/SYSTEM MBMORY ADDRESS MAP

$\begin{gathered} \text { HOAO BITS } \\ 4321 \end{gathered}$	VIDEO/SYSTEM MEMORY START ADDRESS	VIDEO/SYSTEM MEMORY LENGTH	VIDEO/SYSTEM MEMORY ADDRESS RANGE
00000	00000	128 K	$00000-1 \mathrm{FFFF}$
0001	20000	128K	$20000-3 \mathrm{FFFF}$
00110	40000	128K	$40000-5$ FFFF
0011	60000	128 K	$60000-7$ F F F F
0100	80000	128 K	$80000-9$ F F F F
1001	00000	256K	$00000-3$ FFFF
10010	20000	256K	$20000-5 \mathrm{~F}$ F F F
1011	40000	256K	$40000-7 \mathrm{FFFF}$
1100	60000	256K	$60000-9 \mathrm{~F}$ F F

VIDEO MBMORY ADDRESSING MODES


## OTHER CHIP FUNCTIONS

In addition to the video controller functions, the Tandy 1000 video controller chip also provides most of the system address decode functions. These decode and chip select functions are described as follows:
A, B, C outputs are encoded device select lines and are connected to an external LS138.

CBA IOMB BAO-15(HEX)
111
$110 \quad 1$ 0020-0027 INTCSB
$101110040-0047$ TMRCSB
$1000 \quad 1 \quad 0060-0067 \quad$ PIOCSB
011 1 0200-0207 JOYSTKCSB
$\begin{array}{llllll}0 & 1 & 0 & 1 & 00 \mathrm{C} 0-00 \mathrm{C} 7 & \text { SNDCSB }\end{array}$
$\begin{array}{lllll}0 & 0 & 1 & 1 & 03 F 0-03 F 7 \\ F D C C S B\end{array}$
000 l $10378-037 \mathrm{~F}$ PRINTCSB

DESCRIPTION

The output signal ROMIOSELB is the enable signal for an LS 245 that controls all of the data flow to devices on the main logic board. This signal is active low and will be activated for any of the following conditions:
l. Video/System Memory Read or Write
2. Video Access at B8000-BFFFF
3. Rom Access at F0000-FFFFF
4. Video $I / O$ access at 03D0-03DF
5. I/O access to any of the following addresses:

0040-0047
0060-0067
$00 \mathrm{~A} 0-00 \mathrm{~A} 7$
00C0-00C7
0200-0207
0378-037F
03F0-03F7
$\begin{array}{lllllllllllllllllllll}1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 8 & 8 & 8 & 8 & 7 & 7 & 7 & 7 & 7\end{array}$
$\begin{array}{lllllllllllllllllllll}1 & 0 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 4 & 3 & 2 & 1 & 0 & 9 & 8 & 7 & 6 & 5\end{array}$


DESCRIPTION OF EACH PIN FUNCTION

PIN*	PIN NAME	TYPE	DESCRIPTION
1	VSS	Ground	Ground
2	XMD [ 2]	Input/Output	External Memory Data I/O Bank 0
3	XMD [ 3]	Input/Output	External Memory Data I/O Bank 0
4	XMD[ 4 ]	Input/Output	External Memory Data I/O Bank 0
5	XMD [ 5]	Input/Output	External Memory Data I/O Bank 0
6	XMD[6]	Input/Output	External Memory Data I/O Bank 0
7	XMD [ 7 ]	Input/output	External Memory Data I/O Bank 0
8	YMD [ 0 ]	Input/Output	External Memory Data I/O Bank 1
9	YMD[ [1]	Input/Output	External Memory Data I/O Bank 1
10	YMD[ 2 ]	Input/Output	External Memory Data I/O Bank 1
11	YMD[ 3 ]	Input/Output	External Memory Data I/O Bank 1
12	YMD[ 4 ]	Input/Output	External Memory Data I/O Bank l
13	YMD[ 5 ]	Input/Output	External Memory Data I/O Bank 1
14	YMD [ 6]	Input/Output	External Memory Data I/O Bank 1
15	YMD[ 7 ]	Input/Output	External Memory Data I/O Bank 1
16	RFSHB	Input	Memory Refresh Strobe Input
17	MWEIB	Output	Ram Bank 1 Write Enable Signal
18	MWE 0B	Output	Ram Bank 0 Write Enable Signal
19	RASB	Output	Ram Row Address Strobe
20	CASB	Output	Ram Column Address Strobe
21	BMEMRB	Input	CPU Memory Read Strobe
22	VDD	Power	5 Volts Supply
23	BMEMWB	Input	CPU Memory Write Strobe
24	CK 28 M	Clock	28.63636 Mhz Clock Input
25	VIDEOWAIT	Output (OpenDrain	) Video Wait Signal
26	SYSRSTB	Input	System Reset
27	IOMB	Input	```CPU I/O-Memory Signal (Memory ->1, I/O -> 0)```
28	A	Output	Encoded Peripheral Select Line
29	B	Output	Encoded Peripheral Select Line
30	C	Output	Encoded Peripheral Select Line
31	IOMEMSELB	Output	External Buffer Enable
32	NMI EN	Output	Nonmaskable Interrupt Enable
33	BIORB	Input	CPU I/O Read Strobe
34	BIOWB	Input	CPU I/O Write Strobe
35	LPIN	Input	Not Used
36	LPSWB	Input	Not Used
37	OUTVSYNC	Output	Vertical sync output
38	OUTHSYNC	Output	Horizontal Sync Output
39	COMPCOLOR	Output	Composite Color Signal
40	COMPSYNC	Output	Composite Sync Signal
41	OUTI	Output	Intensity Out
42	OUTR	Output	Red Video Out
43	VSSl	Ground	Ground
44	OUTB	Output	Blue Video Out/Monochrome Dotclock


45	OUTG	Output	Green Video Out/Monochrome Video
46	BA[19]	Input	CPU Address Line
47	BA[18]	Input	CPU Address Line
48	BA[17]	Input	CPU Address Line
49	BA[16]	Input	CPU Address Line
50	BA[157	Input	CPU Address Line
51	BA[14]	Input	CPU Address Line
52	BA[13]	Input	CPU Address Line
53	BA[12]	Input	CPU Address Line
54	BA[11]	Input	CPU Address Line
55	BA[10]	Input	CPU Address Line
56	BA[9]	Input	CPU Address Line
57	BA[8]	Input	CPU Address Line
58	BA[7]	Input	CPU Address Line
59	BA[6]	Input	CPU Address Line
60	BA[5]	Input	CPU Address Line
61	BA[4]	Input	CPU Address Line
62	BA[3]	Input	CPU Address Line
63	BA[ 2 ]	Input	CPU Address Line
64	BA[1]	Input	CPU Address Line
65	BA[0]	Input	CPU Address Line
66	DB[7]	Input/Output	CPU Data I/O
67	DB[6]	Input/Output	CPU Data I/O
68	DB[5]	Input/Output	CPU Data I/O
69	DB[4]	Input/Output	CPU Data I/O
70	DB[3]	Input/Output	CPU Data I/O
71	DB[2]	Input/Output	CPU Data I/O
72	DB[1]	Input/Output	CPU Data I/O
73	DB[0]	Input/Output	CPU Data I/O
74	MA [0]	Output	Memory Address Line
75	MA[1]	Output	Memory Address Line
76	MA[ 2]	Output	Memory Address Line
77	MA[ 3]	Output	Memory Address Line
78	MA[ 4 ]	Output	Memory Address Line
79	MA[5]	Output	Memory Address Line
80	MA[6]	Output	Memory Address Line
81	MA[ 7 ]	Output	Memory Address Line
82	BANKSL	Output	Memory Address Line
83	XMD[0]	Input/Output	External Memory Data I/O Bank 0
84	XMD [1]	Input/Output	External Memory Data I/O Bank 0

LOGIC BLOCR DIAGRAM

## TEST MODES ARD THEIR OPERATIONS

There are four Test Modes that the chip can be placed into to make the part easily and efficiently testable. All these Test Modes use conditions that can never occur in a System environment, therefore avoiding accidental entry in Test Mode. All the test modes are entered when both MEMRB and MEMWB are active. The selection of the different tests is done by an additional decode on some bits of the BA lines according to the following chart:

	ENABLED WHEN						OPERATION PERFORMED
MODE	BMEMRB	BMEMWB	BAl5	BAl4	BAl3	BAl2	
1	0	0	1	X	X	X	Pinout the 6845 Megacell on external pins and/or Start Self Test Rom. While the testing of the Megacell is in progress, the Rom is performing a signature analysis. At the end of 4500 clocks, a PASS/FAIL bit is set, if the Self Test was successful.
2	0	0	0	1	X	X	Enable a Software Reset on the 6845 .
3	0	0	0	X	1	X	Clear the Clock generators \& blink counter to start from a known condition.
4	0	0	0	X	X	0/1	A logical 1 writes a bit that forces Display Enable constantly. A 0 removes forced Display Enable. Cleared by SYSRSTB.

## test mode 1 pINOUT that EmULATES TEE 6845 STANDARD PRODUCT

The following signals of the Megacell are available on the following pins in Test Mode l:

6845 SIGNAL
RESETB
LPSTB ( Not Used)
MA[7:0]
MA[ 8 ]
MA[9]
MA[10]
MA[11]
MA[12]
MA[13]
DE
CURSOR
CLK
RNW
E
RS
CSB
DB[7:0]
RA[0]
RA[1]
RA[2]
RA[3]
RA[4]
HS
VS

VIDEO SIGNAL
SYSRSTB
LPIN (Not Used)
MA[7:0]
BANKSL
MWE1 B
ROMIOSELB
A
B
C
COMPSYNC
COMPCOLOR
IOMB (See Note ***)
BIOWB
RFSHB
BA[0]
LPSWB (Not Used)
DB[7:0]
RASB
CASB
OUTR
OUTI
MWEOB
OUTHSYNC
OUTVSYNC

Also the Pass/Fail bit for the Self Test ROM can be tested on the OUTG outputpin during TEST MODE 1. Note that at least 4,500 clocks must be given in Test Mode 1 before checking the Pass/Fail bit. These clock times could be used to exercise the 6845 as a standard part according to the previous pinout.

Note***: IOMB is in fact CLK Bar so in order to test it using the standard part's test program, there is a need to invert the clock coming in the Test program.

## ELECTRICAL SPECIFICATIONS

ABSOLUTE MAX RATINGS (NON-OPERATING, VSS=0v)

	MIN	MAX	UNITS
STORAGE TEMPERATURE	-65	150	DEGREES $C$.
VOLTAGE ON ANY PIN			
W.R.T.GROUND	-0.5	7.0	VOLTS

OPERATING ELECTRICAL SPECIFICATIONS


TIMING SPECIFICATION

## MAXIMUM LOADING FOR EACH OUTPUT

MA[ 8 ]-MA[0]	100 pF
ALL OTHER OUTPUTS	20 pF

CHARACTERISTICS

READ Operation


I/O TIMING
|

## READ OPERATION

READ OPERATION

WRITE OPERATION AND I/O OUTPDT TIMING


DESCRIPTION		\|MIN	MAX	TS	NOTE]	
6	ADDRESS VALID TO BIOWB ACTIVE SETUP	50\|	NS			
7	ADDRESS VALID HOLD AFTER BIOWB INACTIVE	501	NS			
81	BIOWB PULSE WIDTH LOW	\| 250		NS		
1	data in valid to biowb inactive setup	2001	NS			
\|10		BIOWB INACTIVE to data in valid hold	501	NS		
\|11		address valid to C,B,A,ROMIOSELB OUTPUT delay	801	NS		
\| 12	ADDRESS NOT VALID TO ROMIOSELB INACTIVE OUT DELA					
\|13		BIOWB INACTIVE TO NMIEN LATCAED OUTPUT DELAY	\|100		NS 1	

## MEMORY DBCODE TIMING

MRMORY READ OR WRITE OPERATION



CRTC TIMING


## CRTC TIMING

	Characteristics	Symbol	Min	Nom	Max	Units
28	CCLK frequency	Fcyc			2	MHz
29	CCLK width	PWcl	100			ns
30	CCLK rise and fall time	Tcr,tef			5	ns
31	CLK fall to   MA 7:0]RA0-4 delay time	Tmad, Trad			50	nS
32	CLK fall to HS, VS,					
	DE, CURSOR delay time	Thsd,Tvsd Tdtd,Tcdd			50	ns
33	MA[7:0],BANKSL setup to		40			ns
34	MA[7:0],BANKSL setup to		10			nS
35	MA[7:0],BANRSL hold from RASB low		30			ns
36	MA[7:0],BANKSL hold from CASB low		40			ns
37	RASB, CASB fall				20	ns
38	RASB, CASB rise				5	ns

OTHER TIMING SPECS


## MEGACELL 6845RI SPECIFICATION DATASHEET FOR 6845 MEGACELL <br> VE 68C45 MEGACELL DESIGN KIT CRT CONTROLLER MEGACELL

## FEATURES

- Completely integrated with VTI's extensive IC design tools and libraries
- CMOS (2-micron) M68C45 Megacell configurable as:
-- 68C45R - CMOS equivalent of Motorola 6845R CRTC
-- 68C45R1 - CMOS equivalent of Motorola 6845R1 Enhanced
CRTC
-- $68 \mathrm{C45S}$ - CMOS equivalent of Hitachi 6845 S CRTC
-- 68C45SY - CMOS CRTC similar to Synertek 6545 CRTC
- 4.5 MHz video memory interface
- 3 MHz system processor interface
- Compatible with the VTI bus architecture
- Programmable Display Enable and Cursor delays
(standard for $S$ and $S Y$ versions -- optional for $R$ and Rl versions)
- Programmable Vertical Sync pulse width
(standard for $S$ version -- optional for R, Rl and SY versions)
o Row/Column display memory addressing (SY version)
- Double Width character control


## OPTIONAL FEATURES

- $16 \mathrm{~K}, 32 \mathrm{~K}$, or 64 K display Memory Address range (14, l5, or 16 bits)
- 7, 8, or 9-bit Vertical Row counter


## VTI megacells

Megacells are building block equivalents of standard LSI
functions that can be combined with other megacells, standard cells or compiled cells to create custom User-Specific ICs (USICs). Megacells are fully compatible with VTI's other cell technologies and design tools.

The VTI bus (TM) architecture allows multiple megacells to be combined on a single IC, along with additional cells from VTI's extensive libraries -- decreasing the design time, design cost, and size of complex systems. A detailed Functional Model provided with each megacell further reduces design verification time.

## SIGNAL DESCRIPTIONS

The following signals function the same on the M68C45 Megacells and on the standard VL6845 family of CRT Controller ICs.

Signal	I/O	Description
RS	IP	Register Select
E	IP	Enable   Specify READ (high) or WRITE (low)   RN
IP	Operation	
CSB	IP	Chip (6845 megacell) select, low true
CCLK	IP	Character Clock
LPSTB	IP	Not Used
D0-D7	I/O	Data Bus
RAO-RA4	OP	Raster Address
HS	OP	Horizontal Sync
RESETB	IP	Reset, low true

The following signals are unique to the VE68C45 Megacells, or are functionally different on the VE68C45 Megacells and the VL6845 ICs.

Signal	1/O	Description
DE	OP	Display Enable output - active (DE = "l") when the VE68C45 is generating active display information. The $S$ version can be programmed with a 0 , l, or 2 character delay. The SY version can be programmed for a 0 or 1 character delay.
CURSOR	OP	Cursor output - this signal is high when the raster scan coincides with the programmed cursor position. The $S$ version can be programmed with a 0 , l, or 2 character delay. The SY version can be programmed for a 0 or 1 character delay.
Vs	OP	Vertical Sync output - active high pulse which determines the vertical placement of the video data. An optional feature permits programming the Vertical sync pulse width.


$\begin{aligned} & \text { MA0-MA13, } \\ & 14,15 \end{aligned}$	OP	14, 15, or 16 - bit video Memory Address bus. These tri-state outputs provide the binary address to the external video RAM. If row/column addressing is selected (SY version only) this bus will provide row/column addressing to the external RAM instead of binary addressing. The AENB input signal can be used to place the MA bus in the high impedance state.
AENB	IP	Address Enable input - when asserted low (AENB $=$ "0") the MA outputs are enabled. $A E N B=" 1 "$ forces the MA outputs into a high impedance state.
$\begin{aligned} & \text { LD0-LD13, } \\ & 14,15 \end{aligned}$	I/O	14, 15, or 16-bit Advanced Memory Address bus - separate video memory address information on this bus precedes the information on the MA bus by one character clock. This bus is provided to interface with a separate strip of logic for split display capability.
LOAD	IP	When asserted (high) a new value is loaded into the RA counter. Tie to VSs when not used.
BREAK	IP	To be used for splitted screen format. Tie to VSS when not used.
READB	OP	This signal goes LOW during a legitimate read operation.
VDRA   (reserved)	$n / \mathrm{c}$	Reserved for future expansion. To be left unconnected.
DW	IP	Double Width input - this input puts the vE68C45 in a double-width display mode. Tie to VSS when not used.


$\begin{aligned} & 6845 \mathrm{R}, \\ & 6845 \mathrm{~S}, \\ & 6545 \mathrm{SY} \end{aligned}$	IP	One of these three inputs is tied high to select the version of the VE68C45 used in your application. The remaining two inputs must be grounded. NOTE: the VE68C45SY does not provide 6545 transparent addressing or the 6545 status register.

## ELECTRICAL SPECIFICATIONS

## Absolute Maximum Ratings


$D C$ characteristics ( $T a=0-70$ degree $C, V s s=0 v, V C c=+5$ +/- 10\%)


Capacitance


AC CHARACTERISTICS (VCC=+5v $+/-10 \%$, Vss $=0 \mathrm{~V}$, $\operatorname{Ta=0} \mathrm{C}$ to 70 C ) VTI bos timing


WRITE


	MIN(ns)	MAX (ns)
TAC address to CS delay	0	
TARW address to read/write delay	0	
TAEN address to enable set up	40	
TCEN CS to enable delay	10	
TRWEN read/write to enable set up	10	
TENW enable pulse width	100	
TENA enable to address hold time	10	
TENC enable to cs hold time	10	
TENRW enable to read/write hold time	10	
read:		
TEND enable to read data delay		50
TENDF enable to data bus float	5	30
write:		
TDEN write data to enable setup time	50	
TENDH enable to write data hold time	10	



CRTC TIMING

	Characteristics	Symbol	Min	Nom	Max	Units
20	CLK Erequency	Fcyc	100		4.5	MHz
21	CLK width	PWcl				nS
22	CLK rise and fall time	Tcr, Tcf			5	nS
23	CLK Eall to					
	MA0-15,RA0-4 delay time	Tmad, Trad			50	nS
24	CLK fall to HS, VS,					
	DE, CURSOR delay time	Thsd,Tvsd Tdtd,Tcdd			50	nS

## NCR

MICROELECTRONICS DIVISION

NCR 8496
SOUND GENERATOR
DATA SHEET

## NCR 8496 SOUND GENERATOR <br> TABLE OF CONTENTS

SECTION PAGE
1 GENERAL DESCRIPTION ..... 2
2 FUNCTIONAL DESCRIPTIONS ..... 4
2.1 Control Registers ..... 4
2.2 Tone Generation ..... 4
2.3 Noise Generation ..... 5
2.4 Data Transfer ..... 6
2.5 CPU Interface ..... 7
2.6 Output Circuitry ..... 8
3 INTERFACE DEFINITIONS ..... 9
3.1 Microprocessor Interface ..... 9
3.2 Audio Application Interface ..... 10
3.3 Power Interface ..... 10
4 ELECTRICAL CHARACTERISTICS ..... 11
4.l Operating Conditions ..... 11
4.2 Input Characteristics ..... 11
4.3 Output Characteristics ..... 12
4.4 Audio Characteristics ..... 12
5 TIMING REQUIREMENTS ..... 13
LIST OF ILLUSTRATIONS

1. FUNCTIONAL PIN GROUPING ..... 2
2. FUNCTIONAL PIN OUT ..... 2
3. FUNCTIONAL BLOCK DIAGRAM ..... 3
4. DATA TRANSFER TIMING ..... 13

## SECTION 1

## GENERAL DESCRIPTION

The NCR 8496 is an NMOS digital sound generator capable of providing applications with a low cost solution for noise and sound generation.

## FEATURES

- Functionally and Pin compatible with the SNR76496
- Programmable white or periodic noise generator
- Three programmable tone generators
- Programmable attenuation values
- Simultaneous multiple sound generation
- TTL compatible
- 4 MHz maximum clock input
- External audio input added to Internal Generators



NCR 8496 FUNCTIONAL BLOCK DIAGRAM

## SECTION 2

## FUNCTIONAL DESCRIPTIONS

### 2.1 Control Registers

The NCR 8496 Sound Generator has eight (8) internal registers used to control three (3) tone generators and one (1) noise generator. A three (3) bit data word used to determine the destination control register is contained in the first byte of data for all data transfers. The internal register designations are as follows:

Address Bits		Register Destination	
RO	Rl	R2	Description
0	0	0	Tone 1: Frequency
0	0	1	Tone 1: Attenuation
0	1	0	Tone 2: Frequency
0	1	1	Tone 2: Attenuation
1	0	0	Tone 3: Frequency
1	0	1	Tone 3: Attenuation
1	1	0	Noise : Control
1	1	1	Noise : Attenuation

Note: RO is the most significant address bit

### 2.2 Tone Generation

The NCR 8496 sound generator has three (3) programmable tone generators, each with separate frequency synthesis and attenuation sections. The frequency synthesis section requires ten (10) bits of data (F0 to F9) to define half the period of the desired frequency. This data is entered into a ten (10) stage tone counter, which is decremented at a rate of $N / 16$ where $N$ is the clock input frequency. A signal is produced when this tone counter decrements to one, which toggles a divide by two counter and reloads the tone counter. Therefore, the period of the desired frequency is twice the value of the tone generator.

The frequency of each tone generation is calculated using the equation:

$$
f=N / 32 n
$$

```
 N = the clock input frequency
n = a l0 bit binary number [2< n < 1023]
```

The divide by two counter is directly connected to a four stage attenuator whose values and bit position in the data word are shown in the following table:

ATTENUATION CONTROL

Data				
A0	A1	$\underline{A 2}$	A3	dB
0	0	0	0	0
0	0	0	1	-2
0	0	1	0	-4
0	0	1	1	-6
0	1	0	0	-8
0	1	0	1	-10
0	1	1	0	-12
0	1	1	1	-14


Data				Value
A 0	$\underline{\mathrm{~A} 1}$	$\underline{\mathrm{~A} 2}$	A 3	dB
1	0	0	0	-16
1	0	0	1	-18
1	0	1	0	-20
1	0	1	1	-22
1	1	0	0	-24
1	1	0	1	-26
1	1	1	0	-28
1	1	1	1	OFF

Note: AO is the most significant bit of data

### 2.3 Noise Generation

The NCR Sound Generator has two (2) noise sources (periodic and white), which share a common attenuator. These noise sources are shift registers with an exclusive NOR feedback network. One (l) of four (4) noise generator shift rates, each rate being derived from the input clock, will be controlled by the two (2) NF bits, as is shown in the following table:

## NOISE GENERATOR FREQUENCY CONTROL

NF BITS		FREQUENCY CONTROL
NFO	NF1	SHIFT RATE
0	0	N/512
0	1	N/1024
1	0	N/2048
1	1	TOne Generator

Note: NFO is the most significant bit

The choice of either periodic or white noise is controlled by the noise feedback control bit FB , as is shown in the following table:

NOISE FEEDBACK CONTROL

FB	CONFIGURATION
0	Periodic Noise
1	White Noise

### 2.4 Data Transfer

The NCR 8496 Sound Generator is enabled by the CPU by asserting a low logic level to $\overline{\mathrm{CE}}$. $\overline{\mathrm{WE}}$ strobes the contents of the data bus to the appropriate control register. Data bus contents must be valid at this time. Data transfers cannot occur unless CE is true.

Thirty two (32) clock cycles are required by the NCR 8496 to load data into the control register. The READY output used as a handshake signal to synchronize the CPU, is asserted to a low logic level immediately following the leading edge of $\overline{C E}$. READY assumes a true state via an external pull up register once the data transfer has been completed.

Formats for Data Transfer are as follows:

## FREQUENCY UPDATE (Double Byte Transfer)

FIRST BYTE


SECOND BYTE


NOISE SOURCE UPDATE (Single Byte Transfer)

| SHIFT RATE | FEEDBACK |  | REGISTER ADDRESS | BIT 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NF1 NFO | FB | X | R2 R1 RO | 1 |
| D7 |  |  |  |  |

ATTENOATOR UPDATE (Single Byte Transfer)

DATA			REGISTER ADDRESS	BIT 0	
A3	A2 $\quad$ A1	A0	R2	R1	R0
D7		1			

### 2.5 CPU INTERFACE

Eight (8) data lines (D0-D7) and three (3) control lines
 the CPU. As indicated in Section 2.2, Tone Generation, ten (10) bits of data are required by each tone generator in selecting frequency values. Frequency updates require double byte data transfers. An additional four (4) bits of data are required to select the attenuation values. Attenuation updates require only single byte data transfers. (See Section 2.4: Data Transfer).

Tone generators can be quickly updated by initially sending both bytes of frequency and register data, followed by only the second byte of data for succeeding values only if no other control registers are accessed at the time of generator updating. This action is accomplished by latching the register address and permitting the continued transfer of data into the same register. This updating feature permits the expedited modification of the six (6) most significant bits of data needed for frequency sweeps.

### 2.6 OUTPUT CIRCUITRY

The NCR 8496 Sound Generator output circuitry, emulating a conventional op amp summing circuit, sums the three (3) tone and one (l) noise generator outputs, and will source/sink current to 2 mA . The 0 dB output signal per generator is nominally a 450 mV square in the negative direction from a 2V quiescent level. The output should be OR coupled into the application audio circuit via a filtering network similar to the following:


The upper and lower frequency poles for the application are determined from the following equations:

Lower Pole
Upper Pole
$f \cong \frac{1}{2 \pi\left(R_{A}+R_{B}\right) C_{A}}$
$f \cong \frac{1}{2 \pi\left(R_{A} / / R_{B}\right) C_{B}}$

Attenuation of the output signal is:


Typically $R_{B} \geqslant 10 R_{A}$ so that the attenuation can be small while achieving desired filtering at the same time.

### 2.7 AUDIO INPUT CIRCUIT

This input node can be biased on with a current to give an approximate transfer function at the output of :
$V_{O}=R_{A m p} I_{i n}$ where $R_{A m p}$ is on the order of $l \mathrm{~K}$ Ohms Typical input application:

$R_{B}$ provides the bias current to put the amplifier in the linear range.
$\mathrm{R}_{\text {sig }}$ controls the input current causing the signal swing.

## SECTION 3

## INTERFACE DEFINITION

### 3.1 MICROPROCESSOR INTERFACE

Signal	Pin	Description
READY	4	OUTPUT: Open collector, READY indicates that data has been read when true (high). The CPU must be placed in a wait state until READY is true.
WE	5	INPUT: Write Enable $\overline{\mathrm{WE}}$ indicates that data is available to the NCR 8496 when true (low).
CE	6	INPUT: Chip Enable $\overline{C E}$ indicates that data may be transferred to the NCR 8496.
RST	9	INPUT: Master Reset $\overline{R S T}$ is used for testing purposes only. This pin is a no connect on the SN 76489A and is internally pulled high.
D7	10	Inputs: D0-D7 is the data bust
D6	11	through which data is
D5	12	transferred. D0 is the most
D4	13	significant data bit. D7 is the
D3	15	least significant data bit.
D2	1	
Dl	2	
D0	3	
CLK	14	Input Clock

### 3.2 AUDIO APPLICATION INTERFACE

Signal	Pin	Description
Audio	7	ouTpUT: Audio signal to   application. Refer to section   2.6 . Output Circuitry for   recommended output connections.
Audio In	9	INPUT: Audio input signal from   application. Refer to section   2.7.

### 3.3 POWER INTERFACE

Signal	Pin	Description
VCC	16	Supply Voltage
GND	8	Ground Reference

## SECTION 4

ELECTRICAL CHARACTERISTICS

### 4.1 OPERATING CONDITIONS

Parameter	Symbol	Conditions	Min	Max	Units
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$		4.5	5.5	V
Supply Current	$I_{\mathrm{CC}}$	Outputs Open		40	mA
Operating Temperature	$\mathrm{T}_{0}$		0	+70	${ }^{\circ} \mathrm{C}$
Storage   Temperature	$\mathrm{T}_{\mathrm{S}}$		$-65$	+150	${ }^{\circ} \mathrm{C}$
Absolute   Maximum	$\mathrm{V}_{\text {max }}$	To Any Pin		7.0	V

### 4.2 INPUT CHARACTERISTICS

Parameter	Symbol	Conditions	Min	Max	Units
Input   Voltage Low	$\mathrm{V}_{\text {IL }}$	$\frac{\mathrm{D} 0-\mathrm{D} 7, \overline{\mathrm{WE}}}{\mathrm{CE}, ~}$		0.8	V
Input   Voltage High	$\mathrm{V}_{\text {IH }}$	$\begin{aligned} & \mathrm{DO} 0-\mathrm{D} 7, \overline{\mathrm{WE}}, \\ & \overline{\mathrm{CE}}, \mathrm{CLK} \end{aligned}$	2.0		V
Input   Current	$\mathrm{I}_{\text {I }}$	$\mathrm{v}_{\text {in }}-\mathrm{GND} \rightarrow \mathrm{v}_{\mathrm{CC}}$	-10	+10	UA
Input   Capacitance	$\mathrm{C}_{\text {I }}$			15	pf

4.3 OUTPUT CHARACTERISTICS

Parameter	Symbol	Conditions Min	Max	Units
Output   Voltage Low	$V_{\text {OL }}$	$I_{\text {OUT }}=-2 \mathrm{~mA}$ (READY)	0.4	V

4.4 AUDIO CHARACTERISTICS

Parameter	Symbol	Conditions	TYP	Max	Units
Audio Input Current		Causing half scale output swing		2.0	mA
Source Current	$\mathrm{I}_{\text {SO }}$	Over Output Voltage Swing		-3	mA
sink Current	$\mathrm{I}_{\text {SO }}$	Over Output Voltage Swing		2	mA
Quiescent Output	$\mathrm{V}_{\mathrm{OQ}}$		2.1		V
Maximum Output	$\mathrm{V}_{\text {OM }}$	Generators at 0dB	0.5		V
Signal Swing	$\mathrm{V}_{\text {SW }}$	Generators at 0dB	450		mV
Capacitance Loading *	$\mathrm{C}_{\mathrm{OL}}$	From Pin 7 to Ground for Stability		200	pf
Audio Input Bias Voltage		$\mathrm{R}=4.7 \mathrm{k}$ ohms	1.0 V	1.2 V	

* Does not apply to coupling capacitors which are connected to loads $>500$ ohms. It is recommended that capacitors to ground be isolated by a series resistance of 500 ohms for stability.


## SECTION 5

## TIMING REQUIREMENTS

Parameter	Symbol	Conditions	Min	Max	Units
CE READY	$\mathrm{t}_{\text {CER }}$	CL=225pf   RL=2K to VCC		150	ns
Frequency   Input	CLOCK	Transition   Time	.05	4	MHz
Set up Time	$\mathrm{t}_{\text {Su2 }}$	Data $\rightarrow \overline{\mathrm{WE}}$   CE $\rightarrow \mathrm{WE}$	0		ns
Hold Time	$\mathrm{t}_{\mathrm{h}}$	Data $\rightarrow$ READY	0		ns

DATA TRANSFER TIMING


## 1000 HX 28 Watt Single Input Power Supply Contents

Section Page
Operating Characteristics ..... 1
Block Diagram ..... 2
Theory of Operation ..... 3
Schematic ..... 5

OPrrating characteristics				
	kinImum	TYPICAL	maximum	UNITS
Operating Voltage Range	90	120	135	vac
Line Prequency	47	50/60	63	Hz
Output Voltage				
Vol	4.85	5.00	5.15	$v$
Vo2	11.40	12.00	12.60	V
vo3	-13.20	-12.00	-10.80	v
Output Loads				
Iol	1.25	-	3.0	A
102	0.1	-	1.25	A
103	0	-	0.1	A
Over Current Protection				
Current Limit ICLI	-	-	6.0	A
ICL2	-	-	2.5	A
ICL3	-	-	1.0	A
Over Voltage Protection				
Crowbar	5.8	-	6.8	v
Output Noise				
Vol	-	-	50	mV P-P
Vo2	-	-	100	IV P-P
Vo3	-	-	150	mV P-P
Efficiency	65	69	-	8
Holdup Time				
Full Load at Nominal Line	16	-	-	mSec
Insulation Resistance				
Input to Output	7	1000	-	M ohms
Input to Ground	7	1000	-	M ohms
Isolation				
Input to Ground	1.7	-	-	KVDC



## Theory of Operation

## AC Input Circuit

This circuit is composed of an AC power Switch, a fuse, a line filter, and an inrush current limiting circuit and rectifying smoothing circuit. The inrush current limiting circuit controls the charging current to electrolytic capacitors when power is on. The line filter reduces noise that leaks from the power source to the AC line or that returns from the unit to the power souce; it satisfies the specifications of noise regulations.

## Control Circuit \& Power Converter Circuit

This circuit is a self oscillation switching system, generally called an R.C.C. (Ringing Choke Converter). The R.C.C. circuit does not fix the oscillating frequency. Whenever input voltage is high or the load becomes light, the oscillating frequency will be high.

The current through R2 supplies transistor Ql's base, then Ql turns ON. When transistor Ql is On, the Ql current excites the transformer $T 1$ and voltage rises in the bias coil of $T 1(5-6)$ which leads transistor Ql positive bias, then transistor Ql turns ON

When transistor Ql turns oN, collector current charges the energy to primary inductance of transformer Tl (1-3). Increasing the collector current of transistor $Q 1$ to the point of:

I > I .hfe
$C=B$
Then, transistor Ql immediately turns OFF. In a moment, transformer $T l$ will have negative voltage which will be supplied to the secondary circuit through a rectifier. A Short Circuit protector is provided to protect transistor Ql from excess amounts of current when the secondary circuit becomes shorted. When transistor Q2 detects the voltage drop at R8, the collector of Q2 shorts the base and emitter of Ql. Then Ql stops working so that the circuit protects Ql from over current.

The over current protector in the -12 V line is provided by the three terminal positive voltage regulator icl (built-in current fold back protection ), which protects $Q 1$ against excessive current from the -l2V line.

## 5v Output Voltage Detecting Circuit

The circuit detects the change of output load current comparing with the output voltage and AC line input voltage, which feeds back to the control circuit through a photo coupler to keep the output voltage stable. The Photo coupler isolates the primary and secondary circuits.

Over-Voltage Protection
When the +5 output voltage rises, between 5.8 V to 6.8 V , the +12 V circuit will be shorted by the Thyristor SCRI under the control of zener diode Dl2, and then the supply shuts down because of the over current protection. In the above case, correct the cause of the failure, and reinput the power. The overvoltage protection circuit will reset automatically under good conditions.


TAMURA SEISAKUSHO CO. LTD.

1000 HX 28 Watt Dual Input Power Supply
1000 HX 28 Watt Dual Input Power Supply Contents
Section Page
Operating Characteristics ..... 1
Block Diagram ..... 2
Theory of Operation ..... 3
Schematic ..... 5

OPERATING CHARACTERISTICS				
	minimum	TYPICAL	maximum	UNITS
Operating Voltage Range	$\begin{array}{r} 90 \\ 198 \end{array}$	$\begin{aligned} & 120 \\ & 240 \end{aligned}$	$\begin{aligned} & \frac{135}{264} \end{aligned}$	vac
Line Prequency	47	50/60	63	Hz
Output Voltages				
Vol	4.85	5.00	5.15	v
Vo2	11.40	12.00	12.60	$v$
vo3	-13.20	-12.00	-10.80	v
Output Loads				
Iol	1.25	-	3.0	A
Io2	0.1	-	1.25	A
103	0	-	0.1	A
Over Current Protection				
Current Limit ICLI	-	-	6.0	A
ICL2	-	-	2.5	A
ICL3	-	-	1.0	A
Over Voltage Protection				
Crowbar	5.8	-	6.8	v
Output Noise				
Vol	-	-	50	mV P-P
Vo2	-	-	100	n ${ }^{\text {P }}$-P
Vo3	-	-	150	mV P-P
Efficiency	65	69	-	\%
Holdup Time				
Full Load at Nominal Line	16	-	-	mSec
Insulation Resistance				
Input to Output	7	1000	-	M ohms
Input to Ground	7	1000	-	M ohms
Isolation				
Input to Ground	1.25	-	-	KVAC
Input to Output	3.75	-	-	KVAC

DC OUTPUT


POWER SUPPLY BLOCK DIAGRAM

## AC Input Circuit

This circuit is composed of an AC Power Switch, a fuse, a line filter, and an inrush current limiting circuit and rectifying smoothing circuit. The inrush current limiting circuit controls the charging current to electrolytic capacitors when power is ON. The line filter reduces noise that leaks from the power source to the $A C$ line or that returns from the unit to the power souce; it satisfies the specifications of noise regulations.

## Control Circuit \& Power Converter Circuit

This circuit is a self oscillation switching system, generally called an R.C.C. (Ringing Choke Converter). The R.C.C. circuit does not fix the oscillating frequency. Whenever input voltage is high or the load becomes light, the oscillating frequency will be high.

The current through R3 supplies transistor Ql's base, then Q1 turns ON. When transistor Ql is On, the Ql current excites the transformer Tl and voltage rises in the bias coil of $\mathrm{Tl}(5-6)$ which leads transistor Ql positive bias, then transistor Ql turns ON.

When transistor Q1 turns ON, collector current charges the energy to primary inductance of transformer $T l(1-3)$. Increasing the collector current of transistor $Q 1$ to the point of:

```
I > I .hfe
C=B
```

Then, transistor Q1 immediately turns OFF. In a moment, transformer $T l$ will have negative voltage which will be supplied to the secondary circuit through a rectifier. A Short circuit Protector is provided to protect transistor Ql from excess amounts of current when the secondary circuit becomes shorted. When transistor Q2 detects the voltage drop at R8, the collector of $Q 2$ shorts the base and emitter of Q1. Then Q1 stops working so that the circuit protects $Q 1$ from over current.

The over current protector in the -12 V line is provided by the three terminal positive voltage regulator ICl (built-in current fold back protection ), which protects Ql against excessive current from the -12 V line.

## 5V Output Voltage Detecting Circuit

The circuit detects the change of output load current compared with the output voltage and AC line input voltage, which feeds back to the control circuit through a photo coupler to keep the output voltage stable. The Photo coupler isolates the primary and secondary circuits.

## Over-Voltage Protection

When the +5 output voltage rises, between 5.8 V to 6.8 V , the +12 V circuit will be shorted by the Thyristor SCRI under the control of zener diode D14, and then the supply shuts down because of the over current protection. In the above case, correct the cause of the failure, and reinput the power. The overvoltage protection circuit will reset automatically under good conditions.


TAMURA SEISAKUSHO CO. LTD.

## 1000 EX 25.6 Watt Power Supply Contents

PageSpecifications ..... 1
Block Diagram ..... 4
Theory of Operation ..... 5
Schematic ..... 9

## ELECTRICAL SPECIFICATION

## INPOT VOLTAGE:

Min. 90 at 47 Hz
Nominal 120 at 60 Hz
Max. 135 at 63 Hz
INPUT SURGE CURRENT:
Limit --------------- 25A max.

## EFFICIENCY:

At full rated load with 120 VAC input at $50 / 60 \mathrm{~Hz}$. Nominal ------------ 69 \% Limit -------------- $65 \% \mathrm{~min}$.

## OUTPUT VOLTAGE:

$\left.\begin{array}{lllllll}\begin{array}{lllll}\text { NOMINAL } \\ \text { VOLTAGE }\end{array} & \begin{array}{l}\text { REGULATION } \\ \text { TOLERANCE }\end{array} & & \text { LIMITS }\end{array}\right]$

OUTPUT RIPPLE AND NOISE VOLTAGE:
OUTPUT RIPPLE AND NOISE VOLTAGE
Vol $+5 \mathrm{~V} \quad 50 \mathrm{mV} \mathrm{p}-\mathrm{p}$
Vo2 +12V 100 mV p-p
Vo3 -12V $150 \mathrm{mV} p-\mathrm{p}$
Note: Ripple is defined as a composite of a power line frequency component plus a high frequency component due to the power oscillator. Common mode noise which may be observed due to oscilloscope connections will be ignored.

OUTPUT OVER VOLTAGE PROTECTION:
The +5 V output shall be protected from over voltage fault conditions crowbar circuitry that is set to trip in the range of 5.6 to 6.8 V .

## OUTPUT STABILITY:

The power supply must remain stable for any step load current change during any combination of input line voltage and output current loading between and including rated minimum and maximum values. The output loads may include capacitance of up to 500 microfarads on the +5 V output, up to 250 microfarads on either $+/-12 \mathrm{~V}$ output.

## OUTPUT TRANSIENT RESPONCE:

For a step load current change of the positive twelve volt output between rated minimum and maximum values, the maximum voltage excursion of the positive twelve volt output shall be 600 millivolts and of the positivre five volt output shall be 150 millivolts.

## OUTPUT HOLDUP TIME

Nominal Line ------- 16 msec . min. Low Line ----------- 10 msec . min.

## OUTPUT CURRENT

OUTPUT MINIMUM LOAD MAXIMUM LOAD

Vol	$-5 V$	$1.25 A$	$2.6 A(3.2 A$	Surge for 400 msec.$)$
Vo2	-12 V	0.1 A	$1.0 \mathrm{~A}(1.8 \mathrm{~A}$ Surge for $400 \mathrm{msec)}$.	
Vo3	+12 V	0	0.05 A	

The maximum continuous output is 25.6 Watts.

## OUTPUT CURRENT LIMITING

Over current protection wil prevent damage to the power supply when any output is short circuited continuously with 100 milliohms or less. Protection circuitry shall shutdown the output if the continuous output current level should exceed $200 \%$ or more of its maximum output rating. Damage to the power supply should not occur if operated up to its maximum over current limit.

## ENVIRONMEMTAL REQUIREMENTS

Operating Temperature Range $0{ }^{\circ} \mathrm{C}$ to $+50{ }^{\circ} \mathrm{C}$ Storage Temperature Range $-40^{\circ} \mathrm{C}$ to $+70^{\circ}$

Operating Humidity $\quad 90 \% \mathrm{RH}$ at $50^{\circ} \mathrm{C}$ Storage Humidity $95 \% \mathrm{RH}$ at $50^{\circ} \mathrm{C}$

## SAFTEY REQUIREMENT

The P.S.U. is compiled with U.L. standard 114 and compiled with CSA standard 22.2 No. 154-M1983.

## LINE CONDUCTED EMI

For l20VAC input operation the power supply must exceed the FCC Part $15 J$ class $B$, computing device with 3 dB margin at 450 kHz increasing linearly to 8 dB margin at 1.0 MHz and with 8 dB margin from 1.0 to 30 MHz . Line conducted noise is measured at the operating $A C$ input for all output loads from minimum to maximum. Line conducted EMI shall be measured in a configuration representative of the intended application and in compliance with the required standards.

## LINE TRANSIENT

The power supply shall meet the line transient requirements of IEE 472-1974 for the Common Mode and Differential Mode operation.

## MECHANICAL SPECIFICATIONS

Dimension: 3P-Kl-0268 Weight: Approx. 220 g


POWER SUPPLY BLOCK DIAGRAM

## Theory of Operation

## AC Input Circuit

This circuit is composed of an AC power switch, a fuse, a line filter, an inrush current limiting circuit and rectifying smoothing circuit. The inrush current limiting circuit controls the charging current to the electrolytic capacitors when power is ON.
The line filter reduces noise from the power source to the $A C$ line and return noise from the unit to the power source; it satisfies the specifications of the noise regulations.

## Control Circuit and Power Converter Circuit

This circuit is an oscillation switching system, generally called R.C.C. (Ringing Choke Converter). The R.C.C. circuit does not operate at a fixed oscillating frequency. Whenever the input increases and the load decreases, the oscillating frequency will increase.
The circuit system feeds the current through R2 suppling transistor Ql's base, then Ql turns ON. When transistor Ql is set to $O N$, the Ql current excites transformer $T l$ and the voltage rises in the bias coil of $T 1$ (4-5) which leads transistor Ql positive bias, then transistor Ql turns ON.

When the transistor Ql becomes ON, the Collector current changes the energy to primary inductance of transformer Tl (l-3). Increasing the collector current of transistor $Q 1$ to the point of:
$I_{C}>I_{B}$ :hfe
The C , transistor Q1 immediately turns OFF. In a moment, transformer $T l$ will have negative voltage which will be supplied to the secondary circuit.
A Short Circuit Protector is provided for protection of transistor Ql from excess amounts of current when the secondary circuit is shorted. When transistor $Q 2$ detects the voltage drop at $R 8$, the collector of $Q 2$ shorts the base and emitter of Ql. Then Ql stops working so that the circuit protects Ql from excess current.
The over current protector in the -12 V line is provided by the three terminal positive voltage regulator ICl (built-in current fold back protection), which protects Ql against excessive current from the -12 V line.

## Power Converter Circuit



The input and output voltage are represented by the following equations:
$\mathrm{V} 0=\mathrm{n} \times \mathrm{Vf}$
Vo : Output Voltage
n : Turn ratio of transformer Tl
Vf : Collector voltage at turn-off time
Vin $\times$ Ton $=\mathbf{V f} \mathbf{x}$ Toff
Vin : Input voltage
Ton : Turn-on time of transistor
Toff: Turn-off time of transistor

## 5v Output Voltage Detecting Circuit

The circuit detects the change of output load current by comparing the output voltage and $A C$ line input voltage, which feeds back to the control circuit through a photo coupler to keep the output voltage stable.

## Over Voltage protection

When the output voltage is 5.8 V to 6.8 V , the +12 V circuit is shorted by thyristor SCRI under the control of zener diode D12, and then the supply shuts down because of the over current protection.

model no. 8790093

## 1000 HX Keyboard Contents

Section Page
Keyboard Specificatins ..... 2
Keyboard Circuit ..... 5
Keyboard Key Layout ..... 7


REV.	DESCRIPTION	date	APPD
c	PAGE 6: 11/5/85 REMOVED LEDS FROM KEYCAPS; DELETED NOTE OF LEDS; ADDED LED FLANGE \& . 150 SLOTS; . 438 WAS . 563 ; ADDED SH. 2.   11/5/85 RELEASED FOR QUOTATION ONLY   12/2/85 ADDED 3RD LED MOUNTING HOLE; MOVED J1 OFF C.L.; 5.81 WAS 5.75; ADDED SPLIT CABLE OPTION AND INCREASED OVERALL WIDTH \& MOUNTING DIMS; DWG. WAS \#8010010.   1/10/86 DELETED SINGLE CABLE OPTION; CHG'D $8 \& 12$ POSITION CABLES TO $12 \& 13$ POSITION CABLES, RESPECTIVELY. 2/20/86 SPACE BAR WAS CHANGED FROM 9 KEY LENGTH TO 8 KEY LENGTH.   4/11/86 ADDED PAGE 7.   4/11/86 REVISED CABLE ASSY., ADDED "JI" \& "J2" DETAIL. RELEASED FOR PRODUCTION	4/11/36	
D	REVISED CAble lengths: 5.84 WAS $6.43,6.11$ WAS $6.70,6.39$ WAS 6.98, 6.63 WAS 7.22.	5/15/86	

SHEET 1A of $T$

```
 SPECIFICATION
 NON-ENCODED KEYROARD MATRIX
1. Scope
 This specification covers a keyboard.
2. Electrical Characteristics
 2-1 Contact Resistance:
 500 Ohm Max.,5Vdc 1mA
2-2 Contact Bounce :
 10msec Max. (operating speed at 250 mm/sec)
 2-3 Insulation Resistance :
 S0Mohm Min. at 2S0Vdc (between switch contacts)
2-4 Dielectric Withstand Voltage :
 250 Vdc for 1 minute (betweem PCE pattern and iron panel)
 150 Vdc for 1 minute (between switch contacts)
3. Mechanical Characteristics
3-1 Operating Force :
 70g+/-259 at full stroke (at center of keycap)
3-2 Plunger Stroke :
 3. Bmm+/-0.5
3-3 Operating Point :
 0. 5mm Mim. to full stroke
3-4 Release Point :
 0.Smm Min. to free position
\begin{tabular}{|c|c|c|c|}
\hline 1 & 0.5 mita & ! & off region \\
\hline ! & & & \\
\hline \(!\) & & ! & \\
\hline ! & & ! & on - off \\
\hline 3.8 & \(m\) & ! & switching \\
\hline ! & & \(!\) & region \\
\hline ! & & ! & \\
\hline ! & ----3--m & & \\
\hline / & 0.5 mm & ! & on region \\
\hline
\end{tabular}
4. Operating Life *
4-1 Life:
 IOMeg (10 million operation)
4-2 Contact Resistance :
 500ohm Max. (upto 10million), B0Dohm (after 10milliom)
4-3 Contact Rounce :
 10msec Max. (after 10Meg)
```

```
 * Conditions
 (1) SVdc imA (resistive load)
 (2) Operation Speed : 5 Hz
 (3) Depression Force: 200g Max. (at center of keyboard)
5. Environmental Chamacteristics
 5-1 Operating Temperature Range:
 to 55 degrees C
 5-2 Storage temperature Range :
 -10 to 6.5 degrees C
5-3 Humidity:
 10% to 95% RH (non-condensing), 45 degrees C Max.
5-4 Altitude:
 -1000ft to 100ロ0ft
5-5 Vibration :
 10 to 55 Hz 1.5mm (along each of the orthogonal axis)
5-6 Shoct: :
 50G, 11 msec 1/2 sine wave, 3 directions each 3 times.
6. Safety Standards
 Keyboard must meet; UL standard 114
 CSA 5PEC: C22.2 NO.D-M1992
 CSA SPEC: C22.2 NO.154-M1983
 Detailed material specification will be determimded at the
 approval time.
7. Keycaps
 7-1 Keycaps Configuration :
 Keycaps must be detachable. Keycaps are preferred to look exactly
 the same as they are shown on, D-size drawing NO. g0g0079.
7-2 Keycaps Color:
 Keycaps colors are specified on the D-size drawing No.g080079
```

7-3 Legends :
Legends must be in black and are printed flat on the keycaps as they appear on the D-size drawing. Twa shot molding or swblimation printing is preferred.

日. Drawings
B-1 Mechanical Specifications \& Keytop Arrangement :
D-80800079 Sheets 6 and 7 of 7

E-2 Circuit Specification :
B-8080079 Sheet 5 of 7



## 1000 HX Disk Drive Contents

Section Page
Specifications ..... 1
Exploded View ..... 23
Schematics ..... 25

## Specifications

of
MP-P63W-72D

> Double Sided 80 Tracks Recording capacity lMBytes Transfer Rate $250 \mathrm{Kbits/sec}$ [TiL interface, without Ready signal]

VALID for MP-F63W-72D, with the following serial numbers :


## SONY CORPORATION

1. Description
2. Specifications
2.1 Configuration
2.2 Physical Dimensions
2.3 Performance
2.3.1 Capacity
2.3.2 Transfer Rate
2.3.3 Access Time
2.3.4 Functional
2.3.5 Reliability
2.4 Input Power Requirements
2.4.1 Power Consumption
2.4.2 Supply Voltages
2.5 Environmental Limits and Orientation
2.5.1 Temperature
2.5.2 Humidity
2.5.3 Vibration
2.5.4 Shock
2.5.5 Orientation
3. Interface
3.1 Pin Assignment
3.1.1 Signal Connector
3.1.2 Signal Connector Pin Assignment
3.1.3 Power Supply Connector
3.1.4 Power Supply Connector Pin Assignment
3.2 DC Characteristics of Interface Signals
3.2.1 Output Signals from Drive
3.2.2 Inputs Signals to Drive
```
 3.3 Signal Definitions
 3.3.1 DRIVE SELECT 0,1,2,3
 3.3.2 MOTOR ON
 3.3.3 STEP
 3.3.4 DIRECTION
 3.3.5 HEAD SELECT
 3.3.6 WRITE GATE
 3.3.7 WRITE DATA
 3.3.8 INDEX
 3.3.9 TRACK 00
 3.3.10 WRITE PROTECT
 3.3.11 READ DATA
 3.3.12 DISK CHANGE
 3.4 Timing Requirements
 3.4.1 Head Access
 3.4.2 TRACK 00 Signal
 3.4.3 Write Data Timing
 3.4.4 Read Data Timing
 3.4.5 Index Pulse
 3.4.6 Disk Change
 3.5 Power on and Power off Requirements
 3.5.1 Data Protection
 3.5.2 Power Supply Sequencing
 3.6 Disk Motor Rotation and Disk Insertion.
 3.7 Power-On Reset Timing
4. Safety
5. Power On Initialization
6. Test Points
```

1. Description

This document describes the specifications for the MP-F63W-72D of whicn the recording capacity is lMB, the maximum track-to-track access time is 3 msec and a TTL compatible signal interface.
The main features of the MP-F63W-72D are low power consumption, low heigit, and nigh reliability with a simple mechanism and electric circuit.

NB: The specifications defined in this booklet are valid only if the drive is used with Sony nedia or any other ANSI specification media agreed upon by Sony and the drive customer.
2. Specifications

### 2.1 Configuration

The drive consists of Read/Write neads, head positioning mechanism, disk motor, interface logic circuit and Read/Write circuit.
2.2 Pinysical Dimensions

The detailed pnysical dimensions are shown in Figure 2.1. The main dimensions are:

1) Height : 30 mm
2) Width : 101.6 mm
3) Depth : 150 mm
4) Weight : 480 g max.

### 2.3 Performance

2.3.1 Recording Capacity

Unformated capacity : 1.0 mbyte/disk for AFM 0.5 Nbyte/surface for MFM 6.25 Kbyte/track for MFM

2.3.2 Transfer Rate<br>Burst transfer rate : 250 Kbits/sec for MFM



Figure 2.1. PHYSICAL DIMENSIONS

### 2.3.3 Access Time

a. Track to Track Slew Rate : 3 msec max.
b. Head Settling Time : 15 msec max.
c. Motor Start Time : 500 msec max.
(7.00 msec max.*)

Motor start time is defined as the time period necessary to stabilise the Motor Rotational Speed variance to less than $+/-1.5 \%$ after turning the MOTOR ON signal on.

NB. When a disk is inserted in the drive, the Motor Start Time will be 700 msec at maximum, but, after that it will be 500 msec max. as the disk is kept inserted.

### 2.3.4 Functional

a. Rotation Speed : 300 rpm

The continuous speed variation is within +/-1.5\%. The instantanuous speed variation is within $+/-1.0 \%$.
b. Recording Density : 8717 BPI (Side l, Track 79) in a 1 MB mode
c. Track Density : 135 TPI
d. Cylinders : 80
e. Tracks : 160
f. R/W Heads : 2
2.3.5 Reliability
a. Mean Time Between Failures (MTBF) : $10,000 \mathrm{POH}$
b. Mean Time to Repair (MTTR) : 30 minutes
c. Preventive Maintenance (PM) : Not Required
d. Components life : 5 years or 15000 POH
e. Error Rate :

1. Soft Read Error : Less than 1 per $10^{9}$ bits read
2. Hard Read Error : Less than 1 per $10^{12}$ bits read
3. Seek Error : Less than 1 per $10^{6}$ seeks

### 2.4 Input Power Requirements

### 2.4.1 Power Consumption

TTL Interface
Standby
250 mW

Operation (read/write mode)
2.8 W
2.4.2 Supply Voltages

2.5 Environmental Limits
2.5.1 Temperature Range

Operating	$: 5^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ ambient $\left(40^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$	
Transportation	$=-40^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$	$\left(-40^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
Storage	$=-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$	$\left(-20^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$

2.5.2 Humidity Range

Operating : $8 \%$ to $80 \%$ relative humidity with a wet bulb temperature of $29^{\circ} \mathrm{C}$ (85F) and no condensation.

Transportation
and Storage : $5 \%$ to $95 \%$ relative humidity and no condensation
2.5.3 Vibration

Operating : The unit can perform Read/Write operations without errors at continuous vibration from 10 to 500 Hz at a maximum of 0.5 G along each of the three mutually perpendicular axes.

Transportation
and Storage
: The unit can withstand continuous vibration from 10 to 300 Hz with a maximum level of 2.0 G along each of the three mutually perpendicular axes without any degradation of any characteristics below the performance specifications.

### 2.5.4 Shock



### 2.5.5 Orientation

The drive does not necessarily need to be horizontally positioned. In fact, as seen in figure 2-3, there are many other possible orientations.
3. Signal Interface
3.1 Connector and Pin Assignments
3.1.1 Signal connector

Receptacle $: 3 \mathrm{M} \mathrm{3414-6500xx}$ or Equivalent	
Cable	$: 3 \mathrm{M} 3365 / 34$ or Equivalent



Figure 3.1. PIN ASSIGNMENT (REAR VIEW OF DRIVE)


Figure 3-2. ORIVE SELECT SWITCH


Figure 2-3. ORIENTATIONS

### 3.1.2 Signal Connector Pin Assignment

PIN	SIGNAL DESCRIPTION	PIN	SIGNAL DESCRIPTION
1	CN	2	N. C.
3	5V	4	N. C.
5	5 V	6	DRIVE SELECT 3
7	5V	8	INDEX
9	5 V	10	DRIVE SELECT 0
11	5 V	12	DRIVE SELECT 1
13	RETURN	14	DRIVE SELECT 2
15	RETURN	16	MOTOR ON
17	RETURN	18	DIRECTION
19	RETURN	20	STEP
21	RETURN	22	WRITE DATA
23	RETURN	24	WRITE GATE
25	RETURN	26	TRACK 00
27	RETURN	28	WRITE PROTECT
29	12 V	30	READ DATA
31	12 V	32	HEAD SELECT
33	12 V	34	DISK CHANGE

### 3.1.3 Power Supply Connector

Receptacle	: AMP 171822-4 or Equivalent
Contact	: AMP 170262-1 or Equivalent
Wire	: AWG 20

3.1.4 Power Supply Connector Pin Assignment

PIN	SIGNAL DESCRIPTION
1	+5 V
2	GND (+5V Return)
3	GND $(+12 \mathrm{~V}$ Return)
4	+12 V

3.2 DC Characteristics of Interface Signals
3.2.1 Output Signal from Drive

Name	Output   IOH(mA)	Current   IOL(mA)	Output   TTL interface	0.25

3.2.2 Input Signal to Drive


### 3.2.3 Recommended Circuit for Signal Interface



The Interface signals in parethesis are only for MP-F63W-72D The line from the drive to the controller should be pulled up by a resistor of 1 K ohm.

The cable length must be less than 1.5 m. (4.92ft.)
Recommended driver IC : 7406, 7438

### 3.3 Signal Definitions

### 3.3.1 DRIVE SELECT $0,1,2,3$

The select lines are used to enable or disable all other interface lines except a MOTOR ON line. When the SELECT line is true (low), the drive is enabled and is considered active. When the SELECT line is false (high), all controller inputs except the MOTOR ON line are ignored and all output lines are disabled.

NB. IN USE (LED) Lamp:
When a drive is selected, the IN USE lamp on the selected drive is turned on, and when a drive is not selected, it is turned off.

### 3.3.2 MOTOR ON

When this input is true (low) and a disk is inserted, the spindle motor will start to run. When this line is made false (high) or a disk is ejected, the spindle motor will decelerate and stop.

However, if the MOTOR ON signal becomes false (high) during either a write or erase operation, the disk motor will not stop rotating until both the ERASE GATE signal and the WRITE GATE signal become false (high).

### 3.3.3 STEP

When a drive is selected, a true (low) pulse on this line will cause the Read/Write head to move to the adjacent track. The direction of the head movement is determined by the DIRECTION input at the trailing edge of the pulse. The step operation can be performed even if there is no disk inserted in the drive.

### 3.3.4 DIRECTION

When a drive is selected, a false (high) level on this input will cause a STEP pulse input to move the Read/Write head away from the disk spindle. A true (low) level will cause a STEP input to move the Read/Write head toward the drive spindle.

### 3.3.5 HEAD SELECT

When a drive is selected, a true (low) level on this input will cause Head 1 (upper) to be selected. A false (high) level on this input will cause Head 0 (lower) to be selected.

If the HEAD SELECT signal changes during either write or erase operation, the head will not be changed until both ERASE GATE and WRITE GATE signal becomes high (false).

### 3.3.6 WRITE GATE

When this line is made true (low) while a drive is selected, the write current circuits are enabled and information may be written under control of the WRITE DATA input.

### 3.3.7 WRITE DATA

If the WRITE GATE is true (low), a true pulse (low) on the WRITE DATA line causes a bit to be written on the disk. Pulses on this line are neglected when WRITE GATE signal is false (high). No pre-compensation is required.

### 3.3.8 INDEX

When the drive is selected, a true (low) pulse is generated on this line by each revolution of the spindle.

### 3.3.9 TRACK 00

This line is true (low) when the drive is selected and the Read/Write head is positioned on track 00 .

### 3.3.10 WRITE PROTECT

If a write-protect disk is inserted while a drive is selected, this line will be true (low) and the drive will not be able to write data. At all other times, except when a disk is ejected while the drive is selected, this line will be false (high).

### 3.3.11 READ DATA

When the drive is selected, a true (low) pulse is generated on this line every time a bit is detected.

### 3.3.12 DISK CHANGE

This line is true (low) whenever a disk is removed from the drive. The line remains true (low) until both the following conditions have been met:

1. A disk is inserted,
and
2. A STEP pulse has been received when the drive is selected.

### 3.4 Timing Requirements

3.4.1 Head Access


$$
\begin{aligned}
\mathrm{T} 1 & : 0.5 \text { us min. } \\
\mathrm{T} 2 & : 1.3 \text { us min. } \\
\mathrm{T} 3 & : 3.0 \mathrm{~ms} \text { min. } \\
\mathrm{T} 4 & : 2.4 \text { us min. } \\
\mathrm{T} 5 & : 0.5 \text { us min. } \\
\mathrm{T} 6 & : 18 \mathrm{~ms} \text { min. } \\
\mathrm{T} 7 & : 2.5 \text { us min. }
\end{aligned}
$$

### 3.4.2 TRACK 00 Signal



Tl : 2.9 msec max.
T2 : 2.9 msec max.

### 3.4.3 Write Data Timing




[^1]3.4.4 Read Data Timing


```
Tl : 0.5 us max. T4 : }1050\mathrm{ us max,
T2 : 500 ms max.* T5 : }100\mathrm{ us max.
T3: 18 ms max. T6 : 550 ns min., l200 ns max.
 NB. When a disk is inserted in the drive, the T2 is
 700 msec at maximum, but, after that it is 500 msec
 max. as the disk is kept inserted.
```


### 3.4.5 Index Pulse



Tl* : 197 ms min., 203 ms max.
$T 2$ : 1.25 ms min. $\quad 1.45 \mathrm{~ms}$ max.
*When the disk motor rotation is at the stable state.
3.4.6 Disk Change

$T 1: 0.5$ us max. $T 2: 1.6$ us max.
*DISK IN, the disk-in sensor signal inside the drive, is high when a disk is inserted in the drive.
3.5 Power On and Power off Requirements
3.5.1 Data Protection
Turning power on or off does not cause any damage torecorded data on the disk as the drive is not in themidst of writing when the power is shut off or supplied.
3.5.2 Power Supply Sequencing
No special supply sequencing is required by the disk driveas long as both the 5 V and 12 V power supplies have amonotonic rise time of less than loomsec. When the power isturned off, although there are no sequencing or timingrequirements, both power supplies must fall monotonically to0 V .
3.6 Disk motor rotation and Disk Insertion.
Even if the MOTOR ON signal is true (low), the disk motor does not rotate until a disk is inserted.
4. Safety
MP-F63W-00D will meet the following product safety regulations:
U.L. 478
C.S.A. C. 22.2, No.154
U.L. $94 \mathrm{~V}-0$ for Front Bezel

## 5. Power On Initialization

In order to reduce the peak current requirement when used in a daisy chain, the MP-F63W-72D has been disigned not to seek track 00 automatically. If all the drives connected in the daisy chain sought track 00 simultaneously, this would place a significant power drain on the host system. Thus, the host system must perform the following routine just after power on in order to reset the track counter inside the drive.

Power On Initialization




1000 HX Options

SOFTWARE

## Software Contents

BIOS Services
Device I/O Services ..... 1
Keyboard ..... 3
Video Display ..... 5
Serial Communications ..... 13
Line Printer ..... 16
System Clock ..... 17
Floppy Disk I/O Support ..... 19
Equipment ..... 22
Memory Size ..... 22
EEROM ..... 23
Keyboard ASCII and Scan Codes
Keyboard ASCII and Scan Codes ..... 24
MS-DOS Memory Map
ROM BIOS Data Area ..... 29
Additional Data Area ..... 33

## BIOS Services

## Device I/O Services

## Introduction

The BIOS (Basic Input/Output System) is the lowest-level interface between other software (application programs and the operating system itself) and the hardware. The BIOS routines provide various device input/output services, as well as boot strap and print screen and other services. Some of the services that BIOS provides are not available through the operating system, such as the graphics routines.

All calls to the BIOS are made through software interrupts (that is, by means of assembly language "INT x" instructions). Each I/O device is provided with a software interrupt, which transfers execution to the routine.

Entry parameters to BIOS routines are normally passed in CPU registers. Similarly, exit parameters are generally returned from these routines to the caller in CPU registers. To insure BIOS compatibility with other machines, the register usage and conventions are, for the most part, identical.

The following pages describe the entry and exit requirements for each BIOS rutine. To execute a BIOS call, load the registers as indicated under the "Entry Conditions." (Register AH will contain the function number in cases where a single interrupt can perform more than one operation.) Then issue the interrupt given for the call. The example, the following can be used to read a character from the keyboard:

$$
\begin{aligned}
& \text { MOV AH, } \varnothing \\
& \text { INT } 16 H
\end{aligned}
$$

Upon return, AL contains the ASCII character and AH the keyboard scan code.

Note: All registers except those used to return parameters to the caller are saved and restored by the BIOS routines.

Below is a quick reference list of software interrupts for all device I/O and system status services.

Service
Keyboard
Video Display
Serial Communications
Line Printer
System Clock
Floppy Disk
Equipment
Memory Size

Software Interrupts
16 hex ( 22 dec )
10 hex ( 16 dec )
14 hex ( 20 dec )
17 hex ( 23 dec )
1 A hex ( 26 dec )
13 hex ( 19 dec )
11 hex ( 17 dec )
12 hex ( 18 dec )

## Keyboard

16 hex (22 dec)

## Function Summary:

AH = 0: Read Keyboard (destructive with wait)
AH = 1: Scan Keyboard (nondestructive, no wait)
AH $=2$ : Get Current Shift Status

## Function Descriptions:

## Read Keyboard

Read the next character typed at the keyboard. Return the ASCII value of the character and the keyboard scan code, removing the entry from the keyboard buffer (destructive read).

## Entry Conditions:

$\mathrm{AH}=0$

## Exit Conditions:

AL $=$ ASCII value of character
$\mathrm{AH}=$ keyboard scan code

## Scan Keyboard

Set up the zero flag ( Z flag) to indicate whether a character is available to be read from the keyboard or not. If a character is available, return the ASCII value of the character and the keyboard scan code. The entry remains in the keyboard buffer (nondestructive read).

## Entry Conditions:

$\mathrm{AH}=1$

## Exit Conditions:

$\mathrm{Z}=$ no character is available
$\mathrm{NZ}=$ a character is available, in which case:
$\mathrm{AL}=$ ASCII value of character
$\mathrm{AH}=$ keyboard scan code

## Get Shift Status

Return the current shift status.

## Entry Conditions:

$\mathrm{AH}=2$

## Exit Conditions:

AL = current shift status (bit settings: set=true, reset=false)
bit $0=$ RIGHT SHIFT key depressed
bit $1=$ LEFT SHIFT key depressed
bit $2=$ CTRL (control) key depressed
bit $3=$ ALT (alternate mode) key depressed
bit $4=$ SCROLL state active
bit 5 = NUMBER lock engaged
bit $6=$ CAPS lock engaged
bit $7=$ INSERT state active

## Video Display

These routines provide an interface to the video display, which is the output half of the console (CON) device. MS-DOS considers the video display to be the default standard output (STDOUT) device.

## Software Interrupts:

10 hex ( 16 dec )

## Function Summary:

Control Routines:
AH = $\emptyset$ : Set CRT Mode
AH $=1$ : Set Cursor Type
AH $=2$ : Set Cursor Position
AH = 3: Get Cursor Position
$\mathrm{AH}=4$ : Read Light Pen Position
AH = 5: Select Active Page
AH $=6$ : Scroll Active Page Up
AH = 7: Scroll Active Page Down
Text Routines:
$\mathrm{AH}=8$ : Read Attribute/Character
$\mathrm{AH}=9$ : Write Attribute/Character
AH $=10$ : Write Character Only
Graphics Routines:
AH = 11: Set Color Palette
AH $=12$ : Write Dot
$\mathrm{AH}=13$ : Read Dot
Other Routines:
AH = 14: Write TTY* to active page
AH $=15$ : Get CRT Mode
$\mathrm{AH}=16$ : Set Palette Registers
*Screen width is determined by the mode previously set. Some "control" characters (ASCII $00 \mathrm{H}-1 \mathrm{FH}$ ) perform the usual special terminal function. These include (but are not limited to) BEL ( 07 H ), BS ( 08 H ), LF ( 0 AH ), and CR ( 0 DH ).

## Function Descriptions:

## Set CRT Mode

## Entry Conditions:

$\mathrm{AH}=\emptyset$
$\mathrm{AL}=$ mode value, as follows:

## Alpha Modes

$\mathrm{AL}=0: 40 \times 25$ black and white
$\mathrm{AL}=1: 40 \times 25$ color
$\mathrm{AL}=2: 80 \times 25$ black and white
$\mathrm{AL}=3: 80 \times 25$ color
Graphics Modes
$\mathrm{AL}=4: 320 \times 200$ color graphics
$A L=5: 320 \times 200$ black and white graphics with 4 shades
$\mathrm{AL}=6: 640 \times 200$ black and white graphics with 2 shades
$\mathrm{AL}=7$ : Reserved
Additional Modes
AL $=8: 160 \times 200$ color graphics with 16 colors
AL $=9: 320 \times 200$ color graphics with 16 colors
$A H=A: 640 \times 200$ color graphics with 4 colors
Note: If the high order bit of the AL register is 1 then the video buffer is not cleared.

## Set Cursor Type

Set the cursor type and attribute.

## Entry Conditions:

$\mathrm{AH}=1$
$\mathrm{CH}=$ bit values:
bits 5-6 = cause an invisible or erratically blinking cursor
bits 5-6 $=00$ produces a visible, blinking cursor.
bits $4-0=$ start line for cursor within character cell
$\mathrm{CL}=$ bit values:
bits 4-0 = end line for cursor within character cell

## Set Cursor Position

Write (set) cursor position.

## Entry Conditions:

$\mathrm{AH}=2$
$\mathrm{BH}=$ page number (must be 0 for graphics modes)
$\mathrm{DH}=\operatorname{row}(0=t o p r o w)$
$\mathrm{DL}=\operatorname{column}(0=$ leftmost column)

## Get Cursor Position

Read (get) cursor position.

## Entry Conditions:

$\mathrm{AH}=3$
$\mathrm{BH}=$ page number (must be 0 for graphics modes)

## Exit Conditions:

$\mathrm{DH}=$ row of current cursor position (0 $=$ top row)
DL $=$ column of current cursor position ( $0=$ leftmost column)
CX $=$ cursor type currently set [1]:
See Set Cursor Type (AH = 1) above.

## Read Light Pen Position

Reads light pen position.

## Entry Conditions:

$\mathrm{AH}=4$

## Exit Conditions:

$\mathrm{AH}=0$ : light pen switch not activated
$\mathrm{AH}=1$ : light pen values in registers
$\mathrm{DH}=$ row of current light pen position
$\mathrm{DL}=$ column of current light pen position
$\mathrm{CH}=$ raster line (0-199)
$\mathrm{BX}=$ pixel column (0-319 or 0-639)

## Select Active Page

Select active display page (valid in alpha mode only).

## Entry Conditions:

$\mathrm{AH}=5$
$\mathrm{AL}=\emptyset$ through 7: new page value for modes 0,1
$\mathrm{AL}=0$ through 3: new page value for modes 2,3
$\mathrm{AL}=80 \mathrm{H}:$ read $C R T / C P U$ page registers
$\mathrm{AL}=81 \mathrm{H}$ : set CPU page register to value in $B L$
$\mathrm{AL}=82 \mathrm{H}$ : set CRT page register to value in $B H$
AL $=83 \mathrm{H}$ : set both CRT and CPU page registers in BH and BL

## Exit Conditions:

If bit 7 of $\mathrm{AL}=1$ upon entry, $\mathrm{BH}=$ contents of CRT page register $\mathrm{BL}=$ contents of CPU page register

## Scroll Up

Scroll active page up.

## Entry Conditions:

$\mathrm{AH}=6$
$\mathrm{AL}=$ numbers of lines to scroll. The number of lines that will be left blank at the bottom of the window. (0 means blank entire window)
$\mathrm{CH}=$ row of upper left corner of scroll window
$\mathrm{CL}=$ column of upper left corner of scroll window
$\mathrm{DH}=$ row of lower right corner of scroll window
$\mathrm{DL}=$ column of lower right corner of scroll window
$\mathrm{BH}=$ attribute (alpha modes) or color (graphics modes) to be used on blank line

## Attributes:

Color modes:
foreground color:
bit $0=$ blue
bit $1=$ green
bit $2=$ red
bit $3=$ intensity
All bits off = black
background color:
bit $4=$ blue
bit $5=$ green
$\operatorname{bit} 6=\operatorname{red}$
bit 7 = blink
All bits off = white

## Scroll Down

Scroll active page down.

## Entry Conditions:

$\mathrm{AH}=7$
$\mathrm{AL}=$ number of lines to scroll (0 means blank entire window)
$\mathrm{CH}=$ row of upper left corner of scroll window
CL $=$ column of upper left corner of scroll window
$\mathrm{DH}=$ row of lower right corner of scroll window
$\mathrm{DL}=$ column of lower right corner of scroll window
$\mathrm{BH}=$ attribute (alpha modes) or color (graphics modes) to be used on blank line. See Scroll Up $(A H=6)$ for attribute values and Set Color Palette ( $A H=11$ ) for color values.

## Read Attribute or Color/Character

Read a character and its attribute or color at the current cursor position.

## Entry Conditions:

$\mathrm{AH}=8$
$\mathrm{BH}=$ display page number (not used in graphics modes)

## Exit Conditions:

$\mathrm{AL}=$ character read
$\mathrm{AH}=$ attribute of character (alpha modes only)

## Write Attribute or Color/Character

Write a character and its attribute or color at the current cursor position.

## Entry Conditions:

AH $=9$
$\mathrm{BH}=$ display page number (not used in graphics modes)
$\mathrm{CX}=$ number of characters to write
$\mathrm{AL}=$ character to write
$\mathrm{BL}=$ attribute of character (for alpha modes) or color of character (for graphics modes; if bit 7 of BL is set, the color of the character is XOR'ed with the color value). See Scroll Up ( $\mathrm{AH}=6$ ) for attribute values and Set Color Palette ( $\mathrm{AH}=$ 11) for color values.

## Write Character Only

Write character only at current cursor position.

## Entry Conditions:

$\mathrm{AH}=10$
$\mathrm{BH}=$ display page number (valid for alpha modes only
$\mathrm{CX}=$ number of characters to write
$\mathrm{AL}=$ character to write
BL $=$ color of character (graphics mode)

## Set Color Palette [3]

Select the color palette.

## Entry Conditions:

$\mathrm{AH}=11$
$\mathrm{BH}=0$ Set background color ( $0-15$ ) to color value in BL.
$\mathrm{BL}=$ color value $(0=$ black $/ 1=$ blue / $2=$ green $/ 3=$ cyan $/ 4=$ red $/ 5=$ magenta $/ 6=$ yellow $/ 7=$ gray $/ 8$ $=$ dark gray $/ 9=$ light blue $/ 10=$ light green $/ 11=$ light cyan / $12=$ light red $/ 13=$ light magenta $/ 14=$ light yellow $/ 15=$ white)

[^2]In black and white modes:
BL = 0: 1 for white
$\mathrm{BL}=1: 1$ for black
In 4 color graphics modes:
$\mathrm{BL}=0(1=$ green $/ 2=\mathrm{red} / 3=$ yellow $)$
$\mathrm{BL}=1(1=$ cyan $/ 2=$ magenta $/ 3=$ white $)$
In 16 color graphics modes:
( $1=$ blue $/ 2=$ green $/ 3=$ cyan $/ 4=$ red $/ 5=$ magenta
$/ 6=$ yellow $/ 7=$ light gray $/ 8=$ dark gray $/ 9=$ light blue / $10=$ light green / $11=$ light cyan / $12=$ light red /
$13=$ light magenta $/ 14=$ yellow $/ 15=$ white)
Note: For alpha modes palette entry $\emptyset$ indicates the border color. For graphics mode palette entry 0 indicates the border and the background color.

## Write Dot

Write a pixel (dot).
Entry Conditions:
AH $=12$
$\mathrm{DX}=$ row number
$\mathrm{CX}=$ column number
$\mathrm{AL}=$ color value (When bit 7 of $A L$ is set, the resultant color value of the dot is the exclusive $O R$ of the current dot color value and the value in AL.)

## Read Dot

Read a pixel (dot).

## Entry Conditions:

$\mathrm{AH}=13$
DX = row number
$\mathrm{CX}=$ column number

## Exit Conditions:

$\mathrm{AL}=$ color value of dot read

## Write TTY

Write a character in teletype fashion. (Control characters are interpreted in the normal manner.)

## Entry Conditions:

$\mathrm{AH}=14$
$\mathrm{AL}=$ character to write
$\mathrm{BL}=$ foreground color (graphics mode)

## Get CRT Mode

Get the current video mode.

## Entry Conditions:

$\mathrm{AH}=15$

## Exit Conditions:

$\mathrm{AL}=$ current video mode; see $\operatorname{Set} \operatorname{CRT}$ Mode $(A H=0)$ above for values
$\mathrm{AH}=$ number of columns on screen
$\mathrm{BH}=$ current active display page

## Set Palette Registers

Sets palette registers.

## Entry Conditions:

$\mathrm{AH}=16$
AL $=\emptyset$ Set Palette register
$\mathrm{BL}=$ number of the palette register (0-15) to set
$\mathrm{BH}=$ color value to store
$\mathrm{AL}=1$ Set border color register
$\mathrm{BH}=$ color value to store
AL $=2$ Set palette color value to store and border registers ES:DX :points to a 17 byte list.
bytes $0-15=$ values for palette registers 0-15
byte $16=$ value for the border register
Note: CS,SS,DS,ES,BX,CX,DX are preserved.

## Serial Communications

These routines provide asynchronous byte stream I/O from and to the RS-232C serial communications port. This device is labeled the auxiliary (AUX) I/O device in the device list maintained by MS-DOS.

## Software Interrupts:

14 hex ( 20 dec )

## Function Summary:

AH = 0: Reset Comm Port
$\mathrm{AH}=1:$ Transmit Character
$\mathrm{AH}=2:$ Receive Character
$\mathrm{AH}=3:$ Get Current Comm Status
$\mathrm{DX}=$ communication port number ( 0 or 1 ).

## Function Descriptions:

## Reset Comm Port

Reset (or initialize) the communication port according to the parameters in AL, DL, and DH.

## Entry Conditions:

AH $=0$
$\mathrm{AL}=R S-232 C$ parameters, as follows:
$\mathrm{DX}=$ port number (0 or 1)

7	6	5	4	3	2	1	0
Baud Rate	Parity	Stop Bits	Word Length				

$000=110$ baud $\quad \mathrm{x} 0=$ none $\quad 0=1$ bit $\quad 10=7$ bits
$001=150$ baud $01=$ odd $\quad 1=2$ bits $\quad 11=8$ bits
$010=300$ baud
$11=$ even
$011=600$ baud
$100=1200$ baud
$101=2400$ baud
$110=4800$ baud
$111=9600$ baud

## Exit Conditions:

AX $=$ RS-232 status; see Get Current Comm Status (AH = 3) following

## Transmit Character

Transmit (output) the character in AL (which is preserved).

## Entry Conditions:

AH $=1$
$\mathrm{AL}=$ character to transmit
DX = port number (0 or 1)

## Exit Conditions:

AH $=$ RS-232 status; see Get Current Comm Status (AH = 3) below (If bit 7 is set, the routine was unable to transmit the character because of a timeout error.)
AL is preserved.

## Receive Character

Receive (input) a character in AL (wait for a character, if necessary). On exit, AH will contain the RS-232 status, except that only the error bits ( $1,2,3,4,7$ ) may be set; the timeout bit (7), if set, indicates that data set ready was not received and the bits in AH are not meaningful. Thus, AH is non-zero only when an error occurred.

## Entry Conditions:

$\mathrm{AH}=2$
DX = port number (0 or 1)

## Exit Conditions:

```
\(\mathrm{AL}=\) character received
AH \(=\) RS-232 status; see Get Current Comm Status (AH = 3) below
```


## Get Current Comm Status

Read the communication status into AX.

## Entry Conditions:

$\mathrm{AH}=3$
DX = port number (0 or 1)

## Exit Conditions:

```
AH = RS-232 status, as follows (set = true):
 bit 0 = data ready
 bit 1 = overrun error
 bit 2 = parity error
 bit 3 = framing error
 bit 4 = break detect
 bit 5 = transmitter holding register empty
 bit 6 = transmitter shift register empty
 bit 7 = timeout occurred
AL = modem status, as follows (set = true):
 bit \emptyset = delta clear to send
 bit 1 = delta data set ready
 bit 2 = trailing edge ring detector
 bit 3 = delta receive line signal detect
 bit 4 = clear to send
 bit 5 = data set ready
 bit 6 = ring indicator
 bit 7 = receive line signal detect
```


## Line Printer

These routines provide an interface to the parallel line printer. This device is labeled "PRN" in the device list maintained by the operating system.

## Software Interrupts:

17 hex ( 23 dec )

## Function Summary:

AH = Ø: Print Character
AH = 1: Reset Printer Port
AH $=2$ : Get Current Printer Status

## Function Descriptions: <br> Print Character

Print a character.

## Entry Conditions:

$\mathrm{AH}=\emptyset$
$\mathrm{AL}=$ character to print
$\mathrm{DX}=$ printer to be used (0-2)

## Exit Conditions:

ØAH = printer status; see Get Current Printer Status (AH = 2) below
(If bit $\emptyset$ is set, the character could not be printed because of a timeout error.)

## Reset Printer Port

Reset (or initialize) the printer port.

## Entry Conditions:

$\mathrm{AH}=1$
$\mathrm{DX}=$ printer to be used (0-2)

## Exit Conditions:

AH = printer status; see Get Current Printer Status (AH = 2) below

## Get Current Printer Status

Read the printer status into AH.

## Entry Conditions:

$\mathrm{AH}=2$

## Exit Conditions:

$\mathrm{DX}=$ printer to be used (0-2)
$\mathrm{AH}=$ printer status, as follows $($ set $=$ true $):$
bit $0=$ timeout occurred
bit $1=$ [unused]
bit $2=$ [unused]
bit $3=\mathrm{I} / \mathrm{O}$ error
bit $4=$ selected
bit $5=$ out of paper
bit $6=$ acknowledge
bit $7=$ not busy

## System Clock

These routines provide methods of reading and setting the clock maintained by the system. This device is labeled CLOCK in the device list of the operating system. An interface for setting the multiplexer for audio source is also provided.

## Software Interrupts:

1 A hex ( 26 dec )

## Function Summary:

$\mathrm{AH}=0: \quad$ Get Time of Day
AH = 1: $\quad$ Set Time Of Day
AH $=80 \mathrm{H}:$ Set Up Sound Multiplexer
The clock runs at the rate of $1,193,180 / 65,536$ per second (about 18.2 times per second).

## Function Descriptions: <br> Get Time Of Day

Get (read) the time of day in binary format.

## Entry Conditions:

$\mathrm{AH}=0$

## Exit Conditions:

CX $=$ high (most significant) portion of clock count
DX $=$ low (least significant) portion of clock count
$\mathrm{AL}=\emptyset$ of the clock was read or written (via $\mathrm{AH}=0,1$ ) within the current 24 -hour period; othrwise, AL >0

## Set Time Of Day

Set (write) the time of day using binary format.

## Entry Conditions:

$\mathrm{AH}=1$
CX $=$ high (most significant) portion of clock count
DX = low (least significant) portion of clock count

## Sound Multiplexer

Sets the multiplexer for audio source.

## Entry Conditions:

$\mathrm{AH}=80$
$\mathrm{AL}=$ source of sound
$00=8253$ channel 2
$02=$ audio in
03 = complex sound generator chip

## Disk I/O Support for the Floppy Only System Configuration

Software Interrupt:
$13 \mathrm{hex}(19 \mathrm{dec})$

## Function Summary:

$\mathrm{AH}=\emptyset$ : Reset Floppy Disk
AH $=1$ : Return Status of Last Floppy Disk Operation
$\mathrm{AH}=2$ : Read Sector(s) from Floppy Disk
AH = 3: Write Sector(s) to Floppy Disk
AH $=$ 4: Verify Sector(s) on Floppy Disk
AH $=5$ : Format Track on Floppy Disk

## Function Descriptions: <br> Reset Floppy Disk

Reset the diskette system. Resets associated hardware and recalibrates all diskette drives.

## Entry Conditions:

## $\mathrm{AH}=\emptyset$

## Exit Conditions:

See "Exits From All Calls" below.

## Return Status of Last Floppy Disk Operation

Return the diskette status of the last operation in AH.

## Entry Conditions

$\mathrm{AH}=1$

## Exit Conditions:

$\mathrm{AL}=$ status of the last operation; see "Exits From All Calls" below for values

## Read Sector(s) from Floppy Disk

Read the desired sector(s) from disk into RAM.

## Entry Conditions:

$\mathrm{AH}=2$
$\mathrm{DL}=$ drive number (0-1)
$\mathrm{DH}=$ head number (0-1)
$\mathrm{CH}=$ track number (0-79)
$\mathrm{CL}=$ sector number (1 to 9)
$\mathrm{AL}=$ sector count (1 to 9)
ES:BX = pointer to disk buffer

## Exit Conditions:

See "Exits From All Calls" below.
$\mathrm{AL}=$ number of sectors read

## Write Sector(s) to Floppy Disk

Write the desired sector(s) from RAM to disk.

## Entry Conditions:

$\mathrm{AH}=3$
$\mathrm{DL}=$ drive number (0-1)
$\mathrm{DH}=$ head number (0-1)
$\mathrm{CH}=$ track number (0-79)
$\mathrm{CL}=$ sector number ( 1 to 9 )
$\mathrm{AL}=$ sector count (1 to 9)
ES:BX = pointer to disk buffer

## Exit Conditions:

See "Exits From All Calls" below.
$\mathrm{AL}=$ number of sectors written
Verify Sector(s) on Floppy Disk
Verify the desired sector(s).

## Entry Conditions:

$\mathrm{AH}=4$
$\mathrm{DL}=$ drive number (0-1)
$\mathrm{DH}=$ head number (0-1)
$\mathrm{CH}=$ track number (0-79)
$\mathrm{CL}=$ sector number (1 to 9)
$\mathrm{AL}=$ sector count (1 to 9)

## Exit Conditions:

See "Exits From All Calls" below.
$\mathrm{AL}=$ number of sectors verified

## Format on Floppy Disk

Format the desired track.

## Entry Conditions:

$\mathrm{AH}=5$
$\mathrm{DL}=$ drive number (0-1)
$\mathrm{DH}=$ head number (0-1)
$\mathrm{CH}=$ track number (0-79)
$\mathrm{CL}=$ sector number (1-9)
ES:BX = pointer to a group of address fields for each track. Each address field is made up of 4 bytes. These are $C, H, R$, and N , where:
$\mathrm{C}=$ track number
$\mathrm{H}=$ head number
$\mathrm{R}=$ sector number
$\mathrm{N}=$ the number of bytes per sector $(\emptyset \emptyset=128,01=$ $256,02=512,03=1024$ )
There is one entry for every sector on a given track.

## Exit Conditions:

See "Exits From All Calls" below.

## Exits From All Calls:

$\mathrm{AH}=$ Status of operation, where set $=$ true:

## Error Code Condition

01H Illegal Function
02H Address Mark Not Found
03H Write Protect Error
04H Sector Not Found
08H DMA Overrun
09H Attempt To DMA Across A 64K Boundary
10H Bad CRC on Disk Read
20H Controller Failure
40H Seek Failure
80H Device Timeout, Device Failed To Respond
[ NC ] $=$ operation successful $(\mathrm{AH}=\emptyset)$
$[\mathrm{C}]=$ operation failed $(\mathrm{AH}=$ error status $)$

## Equipment

This service returns the "equipment flag" (hardware configuration of the computer system) in the AX register.

## Software Interrupts:

11 hex ( 17 dec )
The "equipment flag" returned in the AX register has the meanings listed below for each bit:

Reset $=$ the indicated equipment is not in the system
Set $=$ the indicated equipment is in the system
bit 0 diskette installed
bit 1 math coprocessor
bit 2,3 always $=11$
bit 4,5 initial video mode
$01=40 \times 25 \mathrm{BW}$
$10=80 \times 25 \mathrm{BW}$
bit 6,7 number of diskette drives (only if bit $0=1$ )
$\emptyset 0=1$
$01=2$
bit $8 \quad \emptyset=$ dma present
1 = no dma on system
bit $9,10,11$ number of RS 232 cards
bit 12 game I/O attached
bit 13 not used
bit 14, 15 number of printers

## Memory Size

This service returns the total number of kilobytes of RAM in the computer system (contiguous starting from address $\emptyset$ ) in the AX register. The maximum value returned is 640 .

## Software Interrupts:

12 hex ( 18 dec )

## EEROM (Tandy 1000 HX only)

15 hex ( 21 dec )

## Function Summary

$\mathrm{AH}=70 \mathrm{H}, \mathrm{AL}=\emptyset:$ Read a 16 bit word from EEROM
$\mathrm{AH}=70 \mathrm{H}, \mathrm{AL}=1$ : Write a 16 bit word to EEROM

## Function Descriptions <br> Read From EEROM

Read the 16 bit value from the indicated EEROM word.

## Entry Conditions:

$\mathrm{AH}=70 \mathrm{H}$
$\mathrm{AL}=0$
$\mathrm{BL}=$ word number to read ( $0-15$ )

## Exit Conditions:

DX = word value
Carry Flag set indicates EEROM call not supported, system is not a 1000 HX

## Write To EEROM

Write a 16 bit value to the indicated EEROM word
Entry Conditions:
$\mathrm{AH}=70 \mathrm{H}$
AL $=1$
$\mathrm{BL}=$ word number to write (0-15)
DX = word value to write

## Exit Conditions:

Carry Flag set indicates EEROM call not supported, system is not a 1000 HX

## KEYBOARD ASCII AND SCAN CODES

The table in this appendix lists the keys on the Tandy 1000 keyboard in scan code order, along with the ASCII codes they generate. For each key, the following entries are given:

Scan Code - A value in the range 01H-5AH which uniquely identifies the physical key on the keyboard that is pressed.

Keyboard Legend - The physical marking(s) on the key. If there is more than one marking, the upper one is listed first.
ASCII Code - The ASCII codes associated with the key. The four modes are:

Normal - The normal ASCII value (returned when only the indicated key is depressed).

SHIFT - The shifted ASCII value (returned when SHIFT is also depressed).

CTRL - The control ASCII value (returned when CTRL is also depressed).

ALT - The alternate ASCII value (returned when ALT is also depressed).

Remarks - Any remarks or special functions.
The following special symbols appear in the table:
$x$ Values preceded by "x" are extended ASCII codes (codes preceded by an ASCII NUL, 00).

- No ASCII code is generated.
* No ASCII code is generated, but the special function described in the Remarks column is performed. If no comment is included, the key does not generate a code and no function is performed.

Note: All numeric values in the table are expressed in hexadecimal.

QWERTY (USA) - MODEL 1000						
Scan Code	Keyboard Legend	Normal	ASCII Codes		ALT	As of Oct. 221984   Remarks
			SHIFT	CTRL		
01	ESC	1B	1B	1B	x8B	
02	1 !	31	21	xE 1	x78	
03	2 @	32	40	x03	$\times 79$	
04	3 \#	33	23	xE3	x7A	
05	4 \$	34	24	xE4	$\times 7 \mathrm{~B}$	
06	5 \%	35	25	xE5	x7C	
07	5	36	5 E	1E	$\times 7 \mathrm{D}$	
08	7 \&	37	26	xE 7	$x 7 \mathrm{E}$	
09	8 *	38	2A	xE8	x 7 F	
0 A	9	39	28	xE9	x80	
0 B	0	30	29	xE0	$\times 81$	
0 C	-	2D	5 F	1F	$\times 82$	
0 D	$={ }^{+}$	3D	2B	$\times \mathrm{xF}$	x83	
0 E	BACK SPACE	08	08	7F	x8C	
0 F	TAB	09	x 0 F	x8D	x8E	
10	Q	71	51	11	$\times 10$	
11	W	77	57	17	x11	
12	E	65	45	05	x12	
13	R	72	52	12	x13	
14	T	74	54	14	x14	
15	Y	79	59	19	x15	
16	U	75	55	15	x16	
17	I	69	49	09	x17	
18	O	6 F	4 F	0 F	x18	
19	P	70	50	10	x19	
1A	[	5B	7B	B	xEB	
1B	] \}	5D	7D	1D	$\mathrm{xF0}$	
1 C	ENTER	9D	0D	0 A	x8F	Main Keyboard
1D	CTRL	*	*	*	*	Control Mode
1 E	A	61	41	01	$\times 1 \mathrm{E}$	
1 F	S	73	53	13	x1F	
20	D	64	44	04	x20	
21	F	66	46	06	x 21	
22	G	67	47	07	$\times 22$	
23	H	68	48	08	$\times 23$	
24	J	6A	4A	0A	$\times 24$	
25	K	6B	4 B	0 B	x25	
26	L	6C	4 C	0 C	x26	
27	; :	3B	3A	xF6	xF8	
28	' " ${ }^{\text {' }}$	27	22	$\times \mathrm{x} 7$	xF1	
29	UP ARROW	$\times 48$	$\times 85$	$\times 90$	x91	
2A	SHIFT	*	*	*	*	Left SHIFT
2B	LEFT ARROW	x4B	x87	x73	x92	
2 C	Z	7A	5A	1A	$\times 2 \mathrm{C}$	
2 D	X	78	58	18	X2D	
2 E	C	63	43	03	x2E	
2 F	V	76	56	16	x2F	


Scan Code	Keyboard Legend	Normal	ASCII Code		As of Oct. 221984	
			SHIFT	CTRL	ALT	Remarks
30	B	62	42	02	$\times 30$	
31	N	6 E	4 E	0 E	x31	
32	M	6D	4D	0D	x32	
33	$<$	2 C	3C	xF9	$\times 89$	
34	>	2E	3E	xFA	X8A	
35	1 ?	2 F	3 F	xFB	xF2	
36	SHIFT	*	*	*	*	Right SHIFT
37	PRINT	10	*	$\times 72$	$\times 46$	SCR Print Toggle
38	ALT	*	*	*	*	Alternate Mode
39	space bar	20	20	20	20	
3A	CAPS	*	*	*	*	Caps lock
3B	F1	x3B	$\times 54$	$\times 5 \mathrm{E}$	$\times 68$	
3 C	F2	x3C	$\times 55$	$\times 5 \mathrm{~F}$	$\times 69$	
3D	F3	x3D	x56	$\times 60$	x6A	
3E	F4	x3E	$\times 57$	$\times 61$	x6B	
3 F	F5	x3F	$\times 58$	$\times 62$	x6C	
40	F6	$\times 40$	$\times 59$	$\times 63$	x6D	
41	F7	x41	x5A	x64	x6E	
42	F8	$\times 42$	x5B	x65	x6F	
43	F9	x43	$\times 5 \mathrm{C}$	x66	x70	
44	F10	x44	$\times 50$	$\times 67$	$\times 71$	
45	NUM LOCK	*	*	*	*	number lock
46	HOLD	*	*	*	*	Freeze display
47	7 \}	37	5 C	x93	*	
48	8	38	7E	$\times 94$	*	
49	9 PG UP	39	x49	x84	*	
4A	DOWN ARROW	$\times 50$	x86	$\times 96$	x97	
4B	4	34	7 C	x95	*	
4 C	5	35	xF3	xFC	*	
4D	6	36	xF4	xFD	*	
4 E	RIGHT ARROW	x4D	x88	x74	xEA	
4 F	1 END	31	x4F	$\times 75$	*	
50	2	32	60	x9A	*	
51	$3 \quad$ PG DN	33	$\times 51$	$\times 76$	*	
52	0	30	x9B	x9C	*	
53	DELETE	2D	x53	x9D	x9E	
54	BREAK	x00	x00	*	*	scroll lock bit toggle control brk routine (INT 1BH)
55	$+\quad$ INSERT	2B	x 52	x9F	$\times \mathrm{A} 0$	
56		2 E	xA1	xA4	xA5	Numeric keypad
57	ENTER	0D	OD	0A	x8F	Numeric keypad
58	HOME	$\times 47$	x4A	$\times 77$	xA6	
59	F11	x98	xA 2	xAC	xB6	
5A	F12	x99	xA3	xAD	xB7	

* Indicates special functions performed
- means this key combination is suppressed in the keyboard driver

X values preceded by " X " are extended ASCII codes (codes preceded by an ASCII NUL)
$\dagger$ The ALIT key provides a way to generate the ASCII codes of decimal numbers between 1 and 255 . Hold down the ALT key while you type on the numeric keypad any decimal number between 1 and 255. When you release ALT, the ASCII code of the number typed is generated and displayed.

Note: When the NUM LOCK light is off, the Normal and SHIFT columns for these keys should be reversed.

## MS-DOS Memory Map

HEXADECIMAL
STARTING ADDRESS
(SEGMENT:OFFSET)
000:00
000:80
0040:001
0050:00
0070:00
$0190.00^{2}$
05B0:00 ${ }^{2}$
X800:00 ${ }^{3}$
XC00:00 ${ }^{3}$
B800:004
F000:00
FC00:00

## DESCRIPTION

BIOS Interrupt Vectors
Available Interrupt Vectors
ROM BIOS Data Area
MSDOS and BASIC Data Area
I/O.SYS Drivers
MS-DOS
Available to user
Video RAM in 32K video modes
Video RAM in 16 K video modes
Video RAM Window (32K)
Reserved for system ROM
System BIOS ROM

## Notes:

1. Detailed description in following pages.
2. Approximate address; subject to change.
3. " X " is defined as follows:

Memory Size	X Value
128 K	1
256 K	3
384 K	5
512 K	7
640 K	9
768 K	B

4. Video memory accessed through the B800:0 window for all video modes.

## ROM BIOS Data Area

The following table gives the starting offset, and length of each BIOS device driver. This area is located at segment 40:00.

Comm card addresses	$\emptyset 000$	8 (1 word per card)
Printer addresses	$\emptyset 008$	8 (1 word per printer)
Devices installed	0010	$2(16$ bits)
Not used	$\emptyset 012$	1
Memory size	$\emptyset 013$	2 (1 word)
I/ channel RAM size	0015	2 (1 word)
KBD data area	0017	39
Disk data area	$\emptyset 03 \mathrm{E}$	11
Video data area	$\emptyset 049$	30
Not used	$\emptyset 067$	5
Clock data area	$\emptyset 06 \mathrm{C}$	5
KBD Break \& Reset flags 0071	3	
Not used	$\emptyset 074$	4
Printer Timeout counter	$\emptyset 078$	4 (1 byte per printer)
Comm Timeout counter	$\emptyset 07 \mathrm{C}$	4 (1 byte per card)
KBD extra data area	$\emptyset 080$	4 (2 words)

The structure and usage of the Video driver RAM data area is as follows:

HEX Offset From
Segment 0040:000
49H
4AH
4 CH
4EH
50H

60H

62H
63H
65 H
66 H

Length and Intended Use

1 byte - current CRT mode (0-7)
1 word - screen column width
1 word - byte length of screen
1 word - address/offset of beginning of current display page
8 words - row/col coordinates of the cursor for each of up to 8 display pages
1 word - current cursor type (See "set cursor type" for correct encoding)
1 byte - current display page
1 word - base address +4 of the CRT controller card
1 byte - copy of value written to the Mode Select Register
1 byte - current color palette setting

The equipment check BIOS call (INT 11 H ) and memory size BIOS call (INT 12H) return information from the following data areas:

HEX Offset From
Segment 0040:000
$\begin{array}{ll}10 \mathrm{H} & \text { Devices installed word } \\ 13 \mathrm{H} & \text { Memory installed word }\end{array}$

Length and Intended Use

The structure and usage of the floppy disk driver RAM data area is as follows:

## HEX Offset From <br> Segment 0040:0000

3EH

3FH

40H
41H
42H

Value
01 H
02 H
03H
04H
08H
09H
10H
20 H
40 H
80H

Length and
Intended Use
1 byte - drive recalibration status bit 3-0, if 0 then drive $3-0$ needs recal before next seek bit 7 indicates interrupt occurrence
1 byte - motor status - bit 3-0 drive $3-0$ motor is on/off, bit 7 current operation is write, requires delay
1 byte - motor turn off time out counter (see Timer ISR)
1 byte - disk status - codes defined below
7 bytes - 7 bytes of status returned by the controller during result phase of operation

## Error Condition

Illegal Function
Address Mark Not Found
Write Protect Error
Sector Not Found
DMA Overrun
Attempt to DMA Across a 64 K Boundary
Bad CRC on Disk Read
Controller Failure
Seek Failure
Device Timeout, Device Failed to Respond

The structure and usage of the RS232 driver RAM data area is as follows:

## HEX Offset From Segment 0040:00

00 H	4 words -Base address of each one of   4 possible comm cards
7 CH	4 words -1 word timeout count for
each of 4 possible comm	
cards	

The structure and usage of the Keyboard driver RAM data area is as follows:

## HEX Offset From Segment 0040:0010

1 byte -Secondary shift state flag bits INSERT key depressed, 6 - CAPS LOCK depressed, 5 - NUM LOCK depressed, 4 - SCROLL LOCK NUM LOCK depressed,
4 - SCROLL depressed, 4 - SCROLL LOCK depressed, 3 - Pause on/off, depressed, 3 - Pause on/off, $2,1, \emptyset$ - not used

1E

## Length and

 Intended Use$\left.\begin{array}{ccc}17 & 1 \text { byte } & \text { - Keyboard shift state flag } \\ \text { returned by function } \emptyset 2\end{array}\right]$

The structure and usage of the clock service routine is as follows:

## HEX Offset From <br> Segment 0040:0000

## Length and

 Intended Use| 6 CH | 1 word |
| :--- | :--- |
| 6 EH | 1 - Least significant 16 bits |
| of clock count |  |
| 70 H | 1 byte- Most significant <br> of clock count <br> -Twenty four hour rollover <br> flag |

## ADDITIONAL DATA AREA

## HEX Offset From

Segment 0040:000

B 0 H	2 words international support	
B4H	1 byte	$\emptyset=$ No monochrome monitor
		FFH = monochrome monitor
B5H	1 byte	Bit $\emptyset: \emptyset=$ drive $A$ is $5-1 / 4$
		$1=$ drive $A$ is $3-1 / 2$
		Bit 1: $\emptyset=$ drive B is $5-1 / 4$
		$1=$ drive $B$ is $3-1 / 2$
		Bit 2: $\emptyset=$ Tandy 1000 keyboard layout
		$1=$ IBM keyboard layout
		Bit 3: $\emptyset=$ Slow CPU speed mode
		$1=$ Fast CPU speed mode
		Bit 4: $0=$ Internal color video support enabled
		1 = Internal color video
		support disabled,
		external color video enabled
		Bit 5: $\emptyset=$ No external
		monochrome video
		installed
		1 = External monochrome
		video installed
B6H	1 byte	Bit $\emptyset: \emptyset=$ drive C is 5-1/4
		$1=$ drive C is $3-1 / 2$

Tandy 1000 Hx<br>Page Insertion Guide

## Important Customer Note:

A gray stripe has been printed along the right edge of the title page of each of the sections to facilitate your finding the begining of the section. Also, a tabbed divider for each section has been provided for insertion at this point.

## Foldout Pages To Be Inserted after page 16 of the Main Logic Section



## Foldout Page To Be Inserted at the end of the 25.6 Watt Power Supply

## Schematic

8790093 3P-M1-0345A

Foldout Pages To Be Inserted At The End of the Keyboard Section

Keyboard Circuit
B-8080079
Sheets 5 and 6 of 7

Foldout Page To Be Inserted At The End of the Disk Drive Section

Exploded View	8790142
	Sheets 1 of 1
Schematic	8790142
	Sheets 1 of 1


[^0]:    NECEL-000324-1183

[^1]:    *NB. When a disk is inserted in the drive, the Motor Start Time is 700 msec at maximum, but, after that, it is 500 msec max. as the disk is kept inserted.

[^2]:    or
    $\mathrm{BH}=1$ Set default palette to the number ( 0 or 1 ) in BL.

