Tandy 1000SX

Technical Reference Manual

TANDY 1000 SX
TECHNICAL REFERENCE MANUAL

Tandy 1000 SX Technical Reference Manual Copyright 1986, Tandy Corporation.

All rights reserved.
Reproduction or use without the express written permission from Tandy Corporation, of any portion of this manual is prohibited. While reasonable efforts have been taken in the preparation of this manual to assure its accuracy, Tandy Corporation assumes no liability resulting from any errors or omissions in this manual, or from the use of the information obtained herein.

TANDY 1000 SX

 CONTENTS```
MAIN LOGIC BOARD
POWER SUPPLIES
KEYBOARD
8087 COPROCESSOR
RS-232 INTERFACE BOARD
MOUSE CONTROLLER/CALENDAR
PLUS NETWORK 4 INTERFACE
DEVICES
```

Note: Complete information for the Disk Drives for this unit is available through your local store. They will order the desired Service Manual from Radio Shack National Parts, Fort Worth, Texas.

# Foldout Page Insertion Guide 

To Be Inserted after Page 12
of the Main Logic Section

| Light Blue to System | Sheets 1 of 2 and 2 of 2 |
| :--- | :--- |
| Timing Diagram |  |
| Big Blue To System | Sheets 1 of 2 and 2 of 2 |
| Timing Diagram |  |
| Tan to System | Sheet 1 of 1 |

To Be Inserted at the end of the Main Logic Section

PCB Art (Silkscreen,
1700337 Rev. A Component and Solder Sides)

Main Logic Schematic
8000272
Sheets 1 of 10 thru 10 of 10

To Be Inserted at the end of the
67 Watt Single Input Power Supply
Schematic

$$
8790085
$$

3P-M1-0164

To Be Inserted at the end of the
67 Watt Dual Input Power Supply
Schematic
8790084
3P-M1-0165

```
To Be Inserted just before WD 8250 Asynchronous Communication Element Specification of RS-232 Section
```

Schematic of RS-232
Board

8000253 (Rev. A)
Sheet 1 of 1

To Be Inserted after Page 22 of the Mouse Controller/Calendar Section

Schematic

To Be Inserted at the end of the
PLUS Network 4 Interface Section

8000254
Sheet 1 of 1

D-8000279
Sheets 1,2 and 3 of 3

MAIN LOGIC BOARD

## MAIN LOGIC BOARD CONTENTS

INTRODUCTION .....  1
SPECIFICATIONS .....  3SYSTEM TIMING14
THEORY OF OPERATION ..... 19
PARTS LIST
PCB ARTSCHEMATICS

## INTRODUCTION TO THE TANDY 1000 SX COMPOTER

The Tandy 1000 SX Computer is modular in design to allow maximum flexibility in system configuration. The computer consists of a Main Unit, a detachable keyboard with coiled cable, and a monitor. The Main Unit is supplied with two internal floppy disk drives. The standard types of monitors used with the Tandy 1000 SX are the monochrome composite and the color RGB monitor. Since these units are modular, they may be placed on top of the Main Unit or at any convenient location.

The Tandy 1000 SX comes standard with 384 K of system RAM. An optional 8 additional 256 K RAM chips may be added on the system board to expand the memory to a full 640 K bytes, the maximum RAM allowed by the system memory map.

Other features include a parallel printer port, two built-in joystick interfaces, a speaker for audio feedback, and a light pen interface.

The Main Unit is the heart of the Tandy 1000 SX. It houses the Main Logic Assembly, system power supply, and floppy disk drives.

The Main Logic Assembly is a large board mounted to the bottom of the Main Unit and interconnected to the keyboard, power supply, and disk drives by a series of cables. The illustration in Figure 1 shows the major components of a Tandy 1000 SX system.

The Power Supply is a 67 W switching regulator type, designed to provide adequate power capacity for a fully configured system using all the option slots.

The Floppy Disk Drive uses 5 l/4" double-sided, double-density diskettes to read, write, or store data. These are soft sector diskettes. The Disk Drive assembly is installed in the main unit. The floppy disk stores approximately 360 K bytes (formatted) of data. All system programs, with the exception of the system startup sequence, are stored on disk.

Either a monochrome or a color display may be used with the Tandy 1000 SX. The monochrome monitor is a high-resolution green phosphor display which provides excellent visual quality. It features a $12^{\prime \prime}$ screen with an anti-glare surface. Each display is capable of 25 lines of 80 characters. The character matrix is 8 wide $x 9$ high.


Figure 1. TANDY 1000 SX Interconnect Diagram

```
SPECIFICATIONS (Computer and Keyboard)
Processor: Intel 8088 - 2
Dimensions: Computer - l6 3/4" x l3 1/2" x 5 3/4"
 Keyboard - 16 l/4" x 8" x l.5"
Weight: Computer - 18 lbs (with 2 Floppy Disk Drives)
 Keyboard - 3 lbs 4 oz.
```


## Power Requirements:

Range: 105 VAC to 135 VAC
Nominal: 120 VAC, $60 \mathrm{~Hz}, 3$ Amp maximum
With 2 Floppy Disk Drives, 640K Memory:
AC current: $350-400 \mathrm{~mA}$ with Floppy doing $R / W$ tests. Leakage Current: 0.5 mA
Disk Drive:
Idle
$+5 \mathrm{VDC}$

| +12 VDC |
| :--- |
| 160 mA |
| 330 mA |
| 600 mA (Max.) |
| 360 mA |

Main Logic Board:
300 mA
(Min.)
600 mA (Max.)
R/W
220 mA
1700 mA 360 mA
Option Cards: -l2VDC, 9 m,A
Operating Environment:
Temperature: 55 to 85 degrees $F$ ( 13 to 30 degrees $C$ )
Humidity: $40 \%$ to $80 \%$ non-condensing

Non-Operating Environment:
Temperature: -40 to +160 degrees $F(-40$ to 71 degrees $C$ ) Humidity: 20\% to $90 \%$ non-condensing

## Disk Drive Specifications

## Power:

Supply
Voltage $\quad+5$ VDC Input +12 VDC Input
Ripple
0 to $50 \mathrm{kHz} 100 \mathrm{mV} \quad 100 \mathrm{mV}$
Tolerance
Including Ripple $+/-5 \% \quad+/-5 \%$
Standby Current
Nominal $190 \mathrm{~mA} \quad 160 \mathrm{~mA}$
Worst Case 220 mA 190 mA
Operating Current
Nominal $260 \mathrm{~mA} \quad 600 \mathrm{~mA}$
Worst Case $300 \mathrm{~mA} \quad 1000 \mathrm{~mA}$

## Environment:

Temperature
Operating 40 to 115 degrees $F$ ( 4 to 46 C )
Nonoperating -8 to 140 degrees $F(-22$ to $60 C)$
Relative Humidity
Operating $20 \%$ to $80 \%$ (noncondensing)
Nonoperating 5\% to 95\% (noncondensing)

## Connector Pin Assignments

Jl -- Speaker Interface
(2-Pin Vertical Header)
1 -- Sound 2 -- Ground
J2 -- Right Joystick
(6-pin Rt. Angle Circular Din)
l -- Y Axis
2 -- X Axis

3 -- Ground
4 -- Switch 1
5 -- +5 VDC
6 -- Switch 2
J3 -- Left Joystick
(6-Pin Rt. Angle Circular Din)
l -- Y Axis
2 -- X Axis
3 -- Ground
4 -- Switch 1
5 -- +5 VDC
6 -- Switch 2

J4 -- Keyboard Interface
(8-pin Rt. Angle Circular Din)
l -- KBDDATA
2 -- KBDBUSY*
3 -- Ground
4 -- KBDCLK
5 -- +5 VDC
6 -- KBDRST
4 -- MULTIDATA
8 -- MULTICLK

| J5 -- | Floppy Disk Interface (Dual 17-Pin Vertical |  |
| :---: | :---: | :---: |
|  | 1 -- Ground | 2 -- NC |
|  | 3 -- Ground | 4 -- NC |
|  | 5 -- Ground | 6 -- NC |
|  | 7 -- Ground | 8 -- INDEX* |
|  | 9 -- Ground | 10 -- DSO* |
|  | 11 -- Ground | 12 -- DSI* |
|  | 13 -- Ground | 14 -- NC |
|  | 15 -- Ground | 16 -- MTRON* |
|  | 17 -- Ground | 18 -- DIR* |
|  | 19 -- Ground | 20 -- STEP* |
|  | 21 -- Ground | 22 -- WRDATA* |
|  | 23 -- Ground | 24 -- WEN* |
|  | 25 -- Ground | 26 -- TRK0* |
|  | 27 -- Ground | 28 -- WRPRT* |
|  | 29 -- Ground | 30 -- RDDATA* |
|  | 31 -- Ground | 32 -- SIDESELECT* |
|  | 33 -- Ground | 34 -- DRVRDY* |
| J6 -- | DC POWER <br> (9-PIN VERTICAL HEADER) |  |
|  | $1-+5$ VDC | $2-\mathrm{+5}$ VDC |
|  | $3--+5$ VDC | 4 -- Ground |
|  | 5 -- Ground | 6 -- Ground |
|  | 7 -- +12 VDC | 8 -- -12 VDC |

J7 -- Parallel Interface
(34-Pin Card Edge)
1 -- PPSTROBE*
2 -- Ground
3 -- PPDATAO
5 -- PPDATA1
4 -- Ground
7 -- PPDATA2
6 -- Ground
9 -- PPDATA3
8 -- Ground
11 -- PPDATA4
10 -- Ground
13 -- PPDATA5
15 -- PPDATA6
17 -- PPDATA7
19 -- PPACK*
21 -- PPBUSY
23 -- PPPAEM
25 -- PSEL*
12 -- Ground
14 -- NC
16 -- Ground
18 -- Ground

27 -- PPAUTOF*
29 -- NC
20 -- Ground

31 -- Ground
22 -- Ground

33 -- Ground
24 -- Ground
26 -- NC
28 -- PPFAULT
30 -- PPINIT*
32 -- NC
$34--+5 \mathrm{~V}$
J8 -- Light Pen
(9-Pin Connector Male Rt. Angle D-Subminiature)
1 -- +5 VDC
2 -- Ground
3 -- LPIN
4 -- LPSW*
5 -- NC
6 -- NC
7 -- NC
8 -- NC
9 -- NC

J9 -- RGBI video
(9-Pin Socket Rt. Angle D-Subminiature)

| $1--$ Ground | 2 -- Ground |
| :--- | :--- |
| $3--$ Red | 4 -- Green |
| $5--$ Blue | $6--$ Intensity |
| $7--$ Video | $8--$ HSYNC |
| $9--$ VSYNC |  |

Jl0 -- Composite Output
(Dual Rt. Angle RCA-Type Phone Jack)
A -- Video
B -- Audio

Jll, Jl2, Jl3, Jl4, Jl5 -- Expansion Interface Connectors (Dual 31-Pin Card Edge)

A01 -- NMI B01 -- Ground
A02 -- D7 B02 -- BRESET
A03 -- D6
A04 -- D5
A05 -- D4
A06 -- D3
A07 -- D2
A08 -- Dl
A09 -- Dl
Al0 -- READY
All -- AEN
Al2 -- Al9
Al3 -- Al8
Al4 -- Al7
Al5 -- Al6
Al6 -- Al5
Al7 -- Al4
Al8 -- Al3
Al9 -- Al2
A20 -- All
A2l -- Al0
A22 -- A09
A23 -- A08
A24 -- A07
A25 -- A06
A26 -- A05
A27 -- A04
A28 -- A03
A29 -- A02
A30 -- A01
A31 -- A00
B03 -- +5 VDC
B04 -- IR2
B05 -- -5 VDC
B06 -- FDCDMARQ*
B07 -- -12 VDC
B08 -- AUDIOIN
B09 -- +12 VDC
BlO -- Ground
Bll -- MEMW*
Bl2 -- MEMR*
Bl3 -- IOW*
B14 -- IOR*
Bl5 -- DACK3*
B16 -- DRQ3*
Bl7 -- DACK1*
B18 -- DRQ1*
Bl9 -- REFRESH*
B20 -- CLK
B2l -- IR7
B22 -- IR6*
B23 -- IR5
B24 -- IR4
B25 -- IR3
B26 -- FDCDACK*
B27 -- DMATC
B28 -- ALE
B29 -- +5 VDC
B30 -- OSC
B31 -- Ground


Note: All other pins are identical to the IBM PC. See Section 3 for the connector pin assignments.

## BUS INTERFACE SPECIFICATIONS

This specification is for the primary bus on the Tandy 1000 SX main logic board, which also is available to the option board connectors. The specification describes the signals in the following manner. See Figures 2-4.

- The following signal nomenclature is used in the schematic and literature. Signals designated with the suffix "*" are logically "true low" (normal inactive state is high); if they are not so designated, the signal is logically "true high."
- Direction -- input or output -- is referenced to the CPU .
- Brief functional description of the signal.
- Description of the "drive" or "load" characteristics of the signal. This includes the specific source by IC type and reference designator, drive capability for "output" signals, and actual ioad for "input" signals. The drive/load is defined in "unit loads" and specified as "high/low." This specification is for the main logic board only. Some signals have an alternate source, an external bus master such as the DMA.
- $\quad 1$ Unit Load (UL) is defined as: Ioh $=.04 \mathrm{~mA}$ @ 2.4 V Iol $=1.6 \mathrm{~mA} @ 0.5 \mathrm{~V}$


## Signal Listing

| A00 - Al9 | 0 | ADDRESS | SOURCE: 43,42,U54 <br> Drive - 65/15 UL <br> Latch Strobe - ALE <br> Output Enable - AEN <br> Alternate external <br> source |
| :---: | :---: | :---: | :---: |
| D0-D7 | I/O | DATA | ```SOURCE: U52 Drive - 37/l5 UL Direction Control - READ* (CPU read signal) Enable - DEN*``` |
| ALE | 0 | ADDRESS LATCH STROBE | SOURCE: U56 |
| IOW* | 0 | I/O WRITE STROBE | Drive - 50/7.5 UL |
| IOR* | 0 | I/O READ STROBE | Output Enable - AEN |
| MEMW* | 0 | MEMORY WRITE STROBE | Pull-Up - 4.7K Ohms |


| MEMR* | 0 | MEMORY READ STROBE | Alternate external source |
| :---: | :---: | :---: | :---: |
| CLK | 0 | CPU CLOCK | ```4.77MHz, 33% duty cycle, 7.16MHz, 50% duty cycle. SOURCE: U54 Drive - 75/7.5 UL``` |
| OSC | 0 | OSCILLATOR | $\begin{aligned} & \text { 14.32MHz, } 50 \% \text { duty } \\ & \text { cycle } \\ & \text { SOURCE: U54 } \\ & \text { Drive }-75 / 7.5 \text { UL } \end{aligned}$ |
| NMI | I | NON-MASKABLE INTERRUPT | To System NMI Load: l/l UL, Ull7 |
| READY | I | SYSTEM WAIT | SOURCE: OPEN-COLLECTOR OR 3-STATE BUFFERS Load: 1 UL and 1.0 K ohm pull-up. 10/0.9 UL Set Low by Peripherals (I/O or Memory) to extend READ or WRITE cycles. |
| BRESET | 0 | SYSTEM RESET | Power On or Manual SOURCE: U54 Drive: 75/7.5 UL |
| AEN | 0 | BUS GRANT | To external masters SOURCE: U82 <br> Drive - 75/7.5 UL |
| IR2 | I | INTERRUPT REQUEST\#2 | To system interrupt controller |
| IR3 | I | INTERRUPT REQUEST\#3 | Load: 1 UL and 2.2 K pull-down |
| IR4 | I | INTERRUPT REQUEST\#4 |  |
| IR5 | I | INTERRUPT REQUEST\#5 |  |
| IR6 | I | INTERRUPT REQUEST\#6 |  |
| IR7 | I | INTERRUPT REQUEST\#7 |  |
| AUDIO IN | 1 |  | From External Sound Source Load: 10 k ohms. |


| AUDIO | 0 |  | To External Source <br> Drive: l. 25 Volts P-P <br> into 10 K |
| :---: | :---: | :---: | :---: |
| DRQ1 | I | REQUEST DMA |  |
|  |  | CHANNEL\# 1 | Load: 8237A-5/9517A |
| FDCDMARQ | I | REQUEST DMA CHANNEL\# 2 | 1 MOS load 40/160 UL |
| DRQ3 | I | REQUEST DMA CHANNEL\# 3 |  |
| REFRESH* | 0 | ACKNOWLEDGE DRQ0* | Dedicated output |
| DACKl* | 0 | ACKNOWLEDGE DRQl* | acknowledges from DMA. |
| FDCDACK* | 0 | ACKNOWLEDGE DRQ2* | Drive: 8237A-5/9517A |
| DACK3* | 0 | ACKNOWLEDGE DRQ3* | 2/2 UL |
| DMATC | 0 | TERMINAL COUNT | Used by DMA Controller to indicate Terminal count reached. Drive: 2/2 UL |
| +5VDC | +5VDC | 48 0.6 Amps per sis | available on the bus. |
| +12VDC | +12VDC | $5 \% 0.1$ Amps per s | available on the bus. |
| -12VDC | -12VDC | +8.3\%-25\% 0.06 | available on the bus. |
| GROUND | Power | Return for +5, +12 | 2 VDC. |



Figure 2. Light Blue to System Timing (1 of 2)

## Reference Manual



Figure 2. Light Blue to System Timing (2 of 2)


Figure 3. Big Blue to System Timing (1 of 2 )


Figure 3. Big Blue to System Timing (2 of 2 )


Figure 4. Tan to System Timing


## Tandy 1000 SX Theory of Operation

The block diagram for the Tandy 1000 SX (sheet 1 of the schematic) shows the main elements of the computer system. The most important single element is the Central processor Unit (CPU). The other major elements of the Tandy 1000 SX are the Timing and CPU Control chip, the video interface, the Direct Memory Access controller (DMA) and system memory, system Read Only Memory (ROM), system timer (8253), expansion bus, and five input/output (I/O) interfaces (keyboard, printer, floppy disk, joystick, and sound).

The CPU section of the Tandy 1000 SX consists of the 8088 CPU chip, the 8259A interrupt controller chip, and an optional 8087 numeric co-processor. These three devices share the CPU address/data bus, which is buffered before being supplied to the rest of the computer.

The CPU data bus is buffered by U52 (74LS245) before being supplied to the rest of the computer. The address bus is buffered as follows: 16 of 22 address bus lines are latched and buffered by U42 and U43 ( 74 LS 373 ). Four lines (Al2-Al5) are buffered by $1 / 2$ of U54 (74LS244).

## CPU Bus

The 8087 numeric data co-processor option provides up to 100 times the performance of the CPU alone on numeric applications. To install this option in your Tandy 1000 SX, simply remove the jumper connecting E3 to $E 4$ and install the 8087-2 part in the socket for U33.

Also on the CPU bus, the 8259 A interrupt controller chip supplies the maskable interrupt input to the CPU. The 8259A has eight interrupt inputs controlled through software commands. It can mask (disable) and prioritize (arrange priority) to generate the interrupt input to the CPU. The eight interrupts are assigned as follows:

Timer Channel 0
\#1
\#2
\#3
\#4
\#5
\#6
\#7

Keyboard
Interrupt on the Bus Interrupt on the Bus Interrupt on the Bus Vertical Sync
Floppy Disk Controller Printer

Software Timer
Keyboard Code Receiver Hard Disk Controller Modem RS-232 Optional Bus Interrupt Optional Bus Interrupt Optional Bus Interrupt

Interrupts 0 and 1 are connected to system board functions as indicated in the chart. Interrupts 2-4 are connected directly to the expansion bus, with the normally assigned functions listed in the chart. Interrupts 5-7 are connected through a switch to the system board function listed, and are also connected to the expansion bus. To use interrupt 5, 6, or 7 on the bus, the system board function must be disconnected (set the appropriate switch to off). Please note that disconnecting the normal system board function may cause some application programs to fail or operate incorrectly.

After being buffered, the CPU address/data bus is connected directly to the 5 expansion bus connectors. Also, the address bus is directly connected to the rest of the system board. The data bus is separately buffered by (U40) before being supplied to system board.

Ul8 is a programmed logic device that is used to provide the ROM chip select signal, enable gating for the non-maskable interrupt, and chip select and direction signals for $U 40$ (the system board data buffer). Table lists the equations for U40.

The Tandy 1000 SX uses a 128 K ROM to store the BIOS and diagnostic operating code. The ROM chip select enables the ROM for the top 64 K of memory (F0000 - FFFFF).

The next major functional block of the Tandy 1000 SX is the CPU control and timing chip (light blue). A block diagram of this 40 pin custom part is shown in Figure 5. This chip accepts 16 MHz and 28.6 MHz clock signals from the master oscillator circuits and generates clocks for all of the other circuitry on the board. This chip also generates the system reset signal and derives the CPU control signals based on status inputs from the CPU chip. The last major function of this part is to generate timing signals and a chip select signal for the FDC.

The next major block of the Tandy 1000 SX is the video interface circuitry. A block diagram of the video interface custom circuitry is shown in Figure 6. This custom part contains all of the logic necessary to generate an IBM compatible color video display. The video interface logic consists of the 84 pin custom video circuit, $4-64 \mathrm{KX} 4$ RAMS, a 74 LS 244 buffer, and associated logic for generation of composite video.

## System Control IFL

Inputs

| PIN | 1 | = | !mio |
| :---: | :---: | :---: | :---: |
| PIN | 2 | $=$ | ! memr |
| PIN | 3 | = | al9 |
| PIN | 4 | = | al8 |
| PIN | 5 | = | al7 |
| PIN | 6 | = | ! memios |
| PIN | 7 | = | !fdcack |
| PIN | 8 | = | !ior |
| PIN | 9 | = | !refresh |
| PIN | 11 | $=$ | nmien |
| PIN | 12 | = | nmi |
| PIN | 13 | = | al6 |

Outputs

```
PIN l4 =
PIN l5 = enbnmi
PIN l6 = !romcs
PIN 17 = !bufenb
PIN 18 = bufdir
PIN 19 =
```


## Logic Equations

```
!bufdir = memr & !mio & !fdcack
 #memr & !mio & memios
 #memr & !mio & ior
 #ior & mio
 #ior & fdack & !memios & ! memr;
!bufenb = !memios & !romcs & !fdcack
 #memios & fdcack;
romcs = memr & !refresh & al9 & al8 & al7 & al6;
enbnmi - nmien & nmi;
```

Table 1


Figure 5. Timing Control Generator Block Diagram


Figure 6. Video Controller Block Diagram

The Tandy 1000 SX video interface circuitry controls 128 K of memory. This RAM is shared by the CPU and the video. Normally, the video only requires 16 K or 32 K for the video screen and the remainder of the 128 K is available for system memory uses.

The Tandy 1000 SX video interface custom circuit is composed of a 6845 equivalent design, dynamic RAM address generation/timing, and video attribute controller logic.

Normal functioning of the video interface custom circuit is as follows. After the 6845 is programmed with a correct set of operating values (Table 2), the address inputs to the dynamic RAMs are generated by a 4:l multiplexer. This Mux switches between video (6845) addresses and CPU address as well as between row and column address. Also, the video interface chip provides the RAM timing signals and generates a wait signal to CPU for proper synchronization with the video RAM access cycles.

The outputs from the RAM chips are only connected to the video interface custom circuit, so all CPU read/write operations are buffered by this part. During a normal display cycle, video data from the RAM chips is first latched in the Video Attribute latch and the Video Character latch. The video interface requires a memory organization of 64 K X 16 and will latch 16 bits of memory during each access to RAM. From the output of the two latches, the data is supplied to the character ROM for the Alpha modes or to the shift registers for graphics modes. A final 2:l Mux is used to switch between foreground or background in the alpha modes.

From the 2:1 Mux the RGBI data is combined with the PC color select data and latched in the Pre-Palette latch. This latch synchronizes the RGBI data before it is used to address the Palette. The palette mask Mux is used to switch between incoming RGBI data and the palette address register. During a CPU write to the palette, this address register selects one of the 16 palette locations. Also, the Palette mask Mux allows any of the input RGBI bits to be set to zero.

The palette allows the 16 colors to be remapped in any desired organization. Normally, the palette is set for a 1:l mapping (red = red, blue = blue, etc.) for PC compatibility. However, instantly changing the on-screen colors is a very powerful tool for animation or graphics programs.

PROGRAMMING TABLE FOR THE 6845 AIl Values in Hex (Decimal)


After the Palette, the RGBI data is resynchronized in the Post Palette register. The final logic before the RGBI data is buffered off the chip is the Border Mux. This Mux allows the Border to be replaced with any color selected by the border color latch. This latch is normally disabled in PC modes, but it is used in all PC jr modes.

The next major functional block in the Tandy 1000 SX is the DMA/Memory controller chip. A block diagram for this part is shown in Figure 7. This custom part is composed of the equivalent of an $8237 \mathrm{~A}-5$ Direct Memory Access chip and a small amount of additional logic to complete the DMA function. Also, this chip provides timing and refresh addresses to the system memory. In the Tandy 1000 SX, this system memory is 256 K and may be expanded to 512 K of memory (with the video/system memory, this is a total of 640 K on the main logic board). To expand the memory to 640 K total, simply remove the jumper connecting El to $E 2$ and add the 8 additional RAM chips in Bank 1.

The final system function other than $I / O$ is the 8253 timer chip. This part is composed of three independent programmable counters. The clock for all three counters is 1.1925 MHz . Counter 0 and 1 are permanently enabled. Counter 2 is controlled by port Hex 0062, bit 0 . Counter \#0 is connected to system interrupt \#0 and is used for software timing functions. Counter \#l is used for timing of the refresh function. Counter 2 is connected to the sound circuit and also to port Hex 0061, bit 5.

The sound circuit is one of the five $1 / 0$ functions of the Tandy 1000 sx. The circuit provides sound output for the internal speaker and also for an external sound circuit. A functional block diagram of this circuit is shown in Figure 8.

The main source of sound in the Tandy 1000 SX is the 76496 complex sound generator. This device has 3 tone generators and 1 white noise generator. Each tone generator may be programmed for frequency and attenuation. Also, this device has an audio input pin which is connected to the gated output of timer channel 2. This audio input signal is mixed with the sound generator signal and supplied to the audio output pin.

From the output of the 76496 , the sound signal is connected to a dual analog multiplexer. The multiplexer is switched by port 61, bits 5 and 6 . One section of the multiplexer is used for the internal speaker, and the other section is used for the external audio signal. The section controlling the internal speaker may be disabled by port 6l, bit 4.


Figure 7. DMA/Memory Controller Chip Block Diagram


Figure 8. Sound Functional Block Diagram

The next $1 / 0$ function of the Tandy 1000 SX is the Keyboard interface custom circuit. A block diagram of this part is shown in Figure 9. The heart of this custom part is several read-write registers that are used to control the keyboard interface logic, sound circuitry, and FDC circuitry. For the interface to the keyboard connector, a l64 type shift register is used to load the serial data and allow the CPU to read it as 8 parallel bits. The FDC circuitry consists of a write-only latch for the FDC control signal plus additional circuitry to allow the 2 drive select signals to be switched.

## Joystick Interface

The joystick interface converts positional information from hand-held joysticks (1 or 2) into CPU data. Each joystick provides 1 or 2 push-buttons and $X, Y$ position for a total of 4 bits each. You can use 2 joysticks. The joystick handle is connected to two potentiometers mounted perpendicular to each other; one for $X$ position, one for $Y$ position. Through the cable, the main logic board applies +5 VDC to one side and ground to the other of the pots. The pot wiper is the position signal: a voltage between 0 and +5 VDC. This signal is applied to one input of a comparator Ul7. The other comparator input is the reference signal ( a ramp between 0.0 to +5.0 volts.) When the position signal is equal or less than the reference signal, the comparator output goes true. This comparator output is the $X$ or $Y$ position data bit. The ramp is reset to 0.0 VDC whenever a "write" is made at port $200 / 201$ Hex. The IOW* signal turns on Q2, which drains Cll8 to 0.0 volts. When $Q 2$ is turned off, Ql, Rl2, Rl3, R14, and CRl create a constant-current source that linearly charges cll8 to +5.0 VDC in 1.12 milliseconds. The joystick information is "read" by the CPU at Port 200/201 Hex through U2l. See Figure 10.

One of the most important I/O functions of the Tandy 1000 SX is the floppy disk interface. This I/O function consists of the 765 controller and support circuitry. In the Tandy 1000 SX , the support circuitry is broken up and located in several of the other custom circuits. The clock and chip select signals for the rest of the FDC circuit are generated by Light Blue. The motor on and drive select signals are supplied from the keyboard interface custom circuit. Also, the logic to switch between the DMA terminal count and the CPU terminal count is located in the printer interface custom chip.


Figure 9. Keyboard Interface Block Diagram


PROGRAMMING CONSIDERATIONS


IOR's

@ REGULAR INTERVALS
ONCE TRIGGERED BY SOFTWARE THE INTERGRATOR CIRCUIT PRODUCES A PULSE THE DURATION OF WHICH IS DEPENDENT ON JOYSK POSITION.

Figure 10. Joystick Interface Block Diagram

The bulk of the FDC interface is handled by the 765 controller chip and the 9216 digital data separator. The 765 generates write data which has pre-compensation added by U50. Read data from the floppy drive is separated into data and clock for the 765 by the 9216 data separator.

The final I/O interface of the Tandy 1000 SX is the Printer Interface, shown in block diagram form in Figure ll. This part supplies all of the signals required to interface to a typical parallel printer. These signals are 8 data out lines, plus various handshake control signals. Also, the printer interface will generate an interrupt to the CPU if enabled.


Figure ll. Printer Interface Block Diagram

## 1/O MAP SUMMARY

| Block | Usage |
| :--- | :--- |
| $0000-001 \mathrm{~F}$ | $0000-000 \mathrm{~F}$ |
| $0020-003 \mathrm{~F}$ | $0020-0021$ |
| $0040-005 \mathrm{~F}$ | $0040-0043$ |
| $0060-007 \mathrm{~F}$ | $0060-0063$ |
| $0080-009 \mathrm{~F}$ | $0080-0083$ |
| $00 \mathrm{~A} 0-00 \mathrm{BF}$ | $00 \mathrm{A0}$ |
| $00 \mathrm{C} 0-00 \mathrm{DF}$ | $00 \mathrm{C} 0-00 \mathrm{Cl}$ |
| $00 \mathrm{E} 0-01 \mathrm{FF}$ |  |
| $0200-020 \mathrm{~F}$ | $0200-0201$ |
| $0210-031 \mathrm{~F}$ |  |
| $0320-032 \mathrm{~F}$ |  |
| $0330-036 \mathrm{~F}$ | $0378-037 \mathrm{~B}$ |
| $0370-037 \mathrm{~F}$ |  |
| $0380-03 \mathrm{CF}$ | All |
| $03 \mathrm{DO} 0-03 \mathrm{DF}$ |  |
| $03 \mathrm{E} 0-03 \mathrm{EF}$ | $03 \mathrm{~F} 2, \mathrm{~F} 4, \mathrm{~F} 5$ |
| $03 \mathrm{~F} 0-03 \mathrm{FF}$ |  |
| $0400-\mathrm{FFFF}$ |  |

## Function

DMA Function
Interrupt Controller Timer
PIO Function
DMA Page Register
NMI Mask Register
Sound Generator Reserved
Joystick Interface Reserved Reserved Hard Disk Not Assigned
Printer Not Used
System video
Reserved
Floppy Disk Controller Not Usable

## Address

0000

0001

0002

Description
DMA Controller
IOW* $=0$ : Channel 0 Base and Current Address Internal Flip/Flop $=0$ : Write A0-A7
Internal Flip/Flop $=1$ : Write A8-Al5
IOR* $=0$ : Channel 0 Current Address
Internal Flip/Flop $=0$ : Read A0-A7
Internal Flip/Flop $=1$ : Read A8-Al5
DMA Controller
IOW* $=0$ : Channel 0 Base and current word Count
Internal Flip/Flop $=0$ : Write w 0 -W7
Internal Flip/Flop $=1$ : Write W8-Wl5
IOR* $=0$ : Channel 0 Current Word Count
Internal Flip/Flop $=0$ : Read W0-W7
Internal Flip/Flop = 1: Read W8-Wl5
DMA Controller
IOW* $=0$ : Channel 1 Base and Current Address
Internal Flip/Flop $=0$ : Write A0-A7
Internal Flip/Flop $=1$ : Write A8-Al5
IOR* $=0$ : Channel 1 Current Address
Internal Flip/Flop $=0$ : Read A0-A7
Internal Flip/Flop $=1$ : Read A8-Al5

Address
0003

0004

0005

0006

0007

Description

```
DMA Controller
IOW* = 0: Channel 1 Base and Current Word Count Internal Flip/Flop \(=0\) : Write W0-W7 Internal Flip/Flop \(=1\) : Write A8-Al5
IOR* \(=0\) : Channel il Current Word Count Internal Flip/Flop \(=0\) : Read \(\mathrm{W} 0-\mathrm{W} 7\)
Internal Flip/Flop \(=1:\) Read W8-Wl5
DMA Controller
IOW* = 0: Channel 2 Base and Current Address Internal Flip/Fiop \(=0\) : Write A0-A7
Internal Flip/Flop = 1: Write A8-Al5
IOR* \(=0\) : Channel 2 Current Address
Internal Flip/Flop \(=0\) : Read A0-A7
Internal Flip/Flop = 1: Read A8-Al5
```

DMA Controller
IOW* = 0: Channel 2 Base and Current Word Count
Internal Flip/Flop $=0$ : Write W0-W7
Internal Flip/Flop $=1$ : Write w8-wl5
IOR* $=0$ : Channel 2 Current Word Count Internal Flip/Flop $=0$ : Read W0-W7 Internal Flip/Flop $=1$ : Read W8-Wl5

DMA Controller
IOW* = 0: Channel 3 Base and Current Address Internal Flip/Flop $=0$ : Write A0-A7 Internal Flip/Flop = 1: Write A8-Al5
IOR* $=0$ : Channel 3 Current Address
Internal Flip/Flop $=0$; Read A0-A7
Internal Flip/Flop $=1: \quad$ Read A8-Al5
DMA Controller
IOW* $=0$ : Channel 3 Base and Current Word Count Internal Flip/Flop $=0$ : Write W0-W7 Internal Flip/Flop = 1: Write w8-Wl5
IOR* $=0$ : Channel 3 Current Word Count Internal Flip/Flop $=0$ : Read w0-W7
Internal Flip/Flop $=1$ : Read W8-Wl5

```
0 0 0 8
Bit
 0
 l
 2
 3
 4
 5
6
 7
Bit
 0
 l
 2
 3
 4
 5
 6
 7
0 0 0 9
Bit
0-1
 2
3-7
```

DMA Controller IOW* $=0$, Write Command Register

Description
0

1

2

3

4

5

6
7

Bit
0-1
$0=$ Memory to Memory Disable
1 = Memory to Memory Enable
$0=$ Channel 0 Address Hold Disable
1 = Channel 0 Address Hold Enable
$X$ If bit $0=0$
$0=$ Controller enable
$1=$ Controller disable
$0=$ Normal timing
$1=$ Compressed timing
$x$ If bit $0=1$
$0=$ Fixed priority
$1=$ Rotating priority
$0=$ Late write selection
$1=$ Extended write selection
$X=I f$ bit $3=1$
$0=$ DREQ sense active high
$1=$ DREQ sense active low
$0=$ DACK sense active low
1 = DACK sense active high
IOR* $=0$, Read Status Register
Description
$1=$ Channel 0 has reached TC
$1=$ Channel 1 has reached TC
$1=$ Channel 2 has reached $T C$
$1=$ Channel 3 has reached TC
1 = Channel 0 Request
$1=$ Channel 1 Request
$1=$ Channel 2 Request
1 = Channel 3 Request
DMA Controller
IOW* $=0$, Write Request Register
Description
Bitl Bit0

```
\begin{tabular}{llll}
0 & 0 & Select channel & 0 \\
0 & 1 & Select channel & 1 \\
1 & 0 & Select channel & 2 \\
1 & 1 & Select channel & 3 \\
0 & Reset request bit \\
1 & Set request bit \\
Don't Care \\
IOR* \(=\) & 0, & \\
\end{tabular}
```

| 000A | DMA Controller <br> IOW* $=0$, Write Single Mask Register |
| :---: | :---: |
| Bit | Description |
| 0-1 | Bitl Bit0 |
|  | $0 \quad 0 \quad$ Select channel 0 mask bit |
|  | 0 l Select channel l mask bit |
|  | 10 Select channel 2 mask bit |
|  | $11 . \quad$ Select channel 3 mask bit |
| 2 | $0 \quad$ Clear mask bit (Disable Channel) |
|  | 1 Set mask bit (Disable Channel) |
| 3-7 | Don't care |
|  | IOR* $=0$, Illegal |
| 000B | DMA Controller |
|  | IOW* $=0$, Write Mode Register |
| $\begin{aligned} & \text { Bit } \\ & 0-1 \end{aligned}$ | Description |
|  | Bitl Bit0 |
|  | 0 0 Channel 0 select |
|  | 011 Channel 1 select |
|  | 10 Channel 2 select |
|  | 11 Channel 3 select |
| 2-3 | Bit3 Bit2 |
|  | $0 \quad 0 \quad$ Verify transfer |
|  | 011 Write transfer to memory |
|  | 10 Read transfer to memory |
|  | 1 l Illegal |
|  | $\mathrm{X} \quad$ If bits 6 and $7=11$ |
| 4 | 0 Autoinitialization disable |
|  | 1 Autoinitialization enable |
| 5 | 0 Address increment select |
|  | 1 Address decrement select |
| 6-7 | Bit7 Bit6 |
|  | 0 0 Demand mode select |
|  | 0 1 Single mode select |
|  | 10 Block mode select |
|  | 111 Cascade mode select |
|  | IOR* $=0$, Illegal |
| 000C | DMA Controller |
|  | IOW* $=0$, Clear Byte Pointer Flip/Flop |
|  | IOR* $=0$, Illegal |



Bit4 $=0 \&$
Bit $3=0$
OPERATION CONTROL WORD 2
Bit0 - 2: Determine the interrupt level acted on when the SL bit is active

| Interrupt | Level | $=0$ |  | 1 | 2 | 3 | 4 | S | 5 | 6 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bit0 | (L0) : | 0 | , | 1 | 0 | 1 | 0 |  | 1 | 0 |  |
| Bitl | (L1) : | 0 |  | 0 | 1 | 1 | 0 | 0 | 0 | 1 |  |
| Bit2 | (L2): |  | 0 | 0 | 0 | 0 | 1 |  | 1 |  |  |

Bit5-7 Control Rotate and End of Interrupt modes

| B7 B6 B5 |  |  |
| :---: | :---: | :---: |
| 0 0 1 | Non-specific EOI command | End of Interrupt |
| 011 | Specific EOI command | End of Interest |
| 1001 | Rotate on non-specific EOI command | Automatic Rotation |
| 100 | Rotate in Automatic EOI Mode (set) | Automatic Rotation |
| $0 \quad 0$ | Rotate in Automatic EOI Mode (clear) | Automatic Rotation |
| 1 l 1 | *Rotate on Specific EOI command | Specific Rotation |
| 1110 | *Set priority command | Specific Rotation |
| 0 1 0 | No operation |  |
| *LO - L2 are used |  |  |
| Bit4 $=0$ \%Bit3 | OPERATION CONTROL WORD 3 |  |
|  |  |  |
|  |  |  |
|  | $0 \quad 0$ - No Action |  |
|  | $0 \quad 1$ - No Action |  |
|  | 10 - Read IR Register on next IOR* Pulse |  |
|  | 1 1-Read IS Register on next IOR* Pulse |  |
|  | Bit2 $=0$ : No Poll Command |  |
|  | Bit5 - 6 : |  |
|  | Bit6 Bit5- Special Mask Mode |  |
|  | 00 - No Action |  |
|  | 01 - No Action |  |
|  | 10 - Reset Special Mask |  |
|  | 11 - Set Special Mask |  |
| Bit $7=0$ |  |  |

0021
8259A Interrupt Controller

```
INITIALIZATION CONTROL WORD 2
Bit0 - 7: Not Used
Bit3 - 7: T3 - T7 of Interrupt Vector Address
 (8086/8088 Mode)
INITIALIZATION CONTROL WORD 3 (Master Device)
Bit0 - 7: =1 Indicated IR input has a slave
 =0 Indicated IR input does not have
 a slave
```

INITIALIZATION CONTROL WORD 3 (Slave Device)
Bit0 - $2=$ IDO - 2
Bit0 Bitl Bit2 - Slave ID \#

| 0 | 0 | 0 | - | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | - | 1 |
| 0 | 1 | 0 | - | 2 |
| 0 | 1 | 1 | - | 3 |
| 1 | 0 | 0 | - | 4 |
| 1 | 0 | 1 | - | 5 |
| 1 | 1 | 0 | - | 6 |
| 1 | 1 | 1 | - | 7 |

Bit3-7=0(Not Used)
INITIALIZATION CONTROL WORD 4
Bit0: Type of Processor
$=0 \quad$ MCS $-80 / 85$ Mode
$=1 \quad 8086 / 8088$ Mode
Bitl: Type of End of Interrupt
$=0$ Normal EOI
=l Auto EOI
Bit2 - 3: Buffering Mode
Bit3 Bit 2
0 X Non-buffered Mode
10 Buffered Mode/Slave
1 l Buffered Mode/Master
Bit4: Nesting Mode
$=0 \quad$ Not Special Fully Nested Mode
=l Special Fully Nested Mode
Bit5 - 7: $=0$ (Not Used)
OPERATION CONTROL WORD 1 (IOR*/IOW*)
Bit0 - 7: Interrupt Mask for IRQ0 - IRQ7
$=0 \quad$ Mask Reset (Enable)
$=1$ Mask Set (Disable)

NOTE: Peripherals Requesting an interrupt service must generate a low to high edge and then remain at a logic high level service, must generate a low to high edge and then remain at a high until service is acknowledged. Failure to do so will result in a Default Service for IRQ7

| 0022-003F | Not Used |
| :---: | :---: |
| Address | Description |
| 0040/0044 | 8253-5 Timer |
|  | IoW* $=0$ : Load Counter No. 0 |
|  | IOR* $=0$ : Read Counter No. 0 |
| 0041/0045 | 8253-5 Timer |
|  | Iow* $=0$ : Load Counter No. 1 |
|  | IOR* $=0$ : Read Counter No. 1 |
| Address | Description |
| 0040/0044 | 8253-5 Timer |
|  | IOW* $=0$ : Load Counter No. 0 |
|  | IOR* $=0$ : Read Counter No. 0 |
| 0041/0045 | 8253-5 Timer |
|  | IOW* $=0$ : Load Counter No. 1 |
|  | IOR* $=0$ : Read Counter No. 1 |
| 0042/0046 | 8253-5 Timer |
|  | IOW* $=0$ : Load Counter No. 2 |
|  | IOR* $=0$ : Read Counter No. 2 |
| 0043/0047 | 8253-5 Timer |
|  | IOW* $=0$ : Write Mode Word |
|  | Control Word Format |
|  | Bit0: BCD |
|  | = 0: BCD Counter ( 4 Decades) |
|  | = l: Binary Counter 16 bits |
|  | BITl - 3: Mode Selection Bit3 Bit2 Bitl |
|  | $\begin{array}{llll}0 & 0 & 0 & \text { Mode } 0\end{array}$ |
|  | $0 \quad 0 \quad 0 \quad$ Mode 1 |
|  | $\mathrm{X} \quad 1 \quad 0 \quad$ Mode 2 |
|  | $\mathrm{X} \quad 1 \quad 1 \quad$ Mode 3 |
|  | 1000 Mode 4 |
|  | 100 Mode 5 |
|  | BIT4-5: Read/Load |
|  | Bit5 Bit4 |
|  | 000 Counter Latching Operation |
|  | 011 Read/Load LSB only |
|  | 10 Read/Load MSB only |
|  | 11 l ( 1 ead/Load LSB first, then MSB |
|  | BIT6-7: Select Counter |
|  | Bit7 Bit6 |
|  | 000 Select Counter 0 |
|  | 011 Select Counter 1 |
|  | 100 Select Counter 2 |
|  | 1 l Illegal |
|  | IOR* $=0$ : No-Operation 3-State |
| 0048-005F | Not Used |

0060

0061
BIT

BIT Description
0 (Output) Not Used
1 (Output) Multi-Data
2 (Output) Multi-Clock

Address
0080 (READ ONLY)
Description
Keyboard Bit 0-LSB
Keyboard Bit 1
Keyboard Bit 2
Keyboard Bit 3
Keyboard Bit 4
Keyboard Bit 5
Keyboard Bit 6
Keyboard Bit 7-MSB
PORT B - READ or WRITE
Description
$1=8253$ Gate \#2 Enable
$1=$ Speaker Data Out Enable
Not Used
Not Used
1 = Disable Internal Speaker
(Sound Control
2)
$0=$ Sound Control 0
$0=$ Sound Control 1
$1=$ Keyboard Clear

BITS 4-7
(Output) CPU Clock Rate

Video Ram Size
$0=128 \mathrm{~K}$ Video
$1=256 \mathrm{~K}$ Video
8253 Out \#2
Monochrome Mode
$0=$ Color Monitor
$1=350$ Line Monitor, Mono
0 = Reserved
Not Used
Description
DMA Page Reg. (Not Used)

PORT A / KEYBOARD INTERFACE CONTROL PORTS

PORT C - READ/WRITE: Bits 0-3; READ ONLY:
$0=4.77 \mathrm{MHz}$ (PC Compatible Rate)
$1=7.16 \mathrm{MHz}$ (Default by Boot ROM)

0081
Address
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
0082
Address
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
0083
Address
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
0084-008F
00A0-00A7
Bit
0

7

WRITE ONLY
Description
DMA Ch 2 Address Al6
DMA Ch 2 Address Al7
DMA Ch 2 Address Al8
DMA Ch 2 Address Al9
Not Used
Not Used
Not Used
Not Used
WRITE ONLY
Description
DMA Ch 3 Address Al6
DMA Ch 3 Address Al7
DMA Ch 3 Address Al8
DMA Ch 3 Address Al9
Not Used
Not Used
Not Used
Not Used
WRITE ONLY
Description
DMA Ch 0 - 1 Address Al6
DMA Ch 0-1 Address Al7
DMA Ch 0-1 Address Al8
DMA Ch 0-1 Address Al9
Not Used
Not Used
Not Used
Not Used
Not Used
NMI Mask Register, Write only

## Description

External Video
0 = Normal Operation
$1=$ All Video Addresses and Ports are Disabled
MEMCONFIG 1 - Al7 128K SW
MEMCONFIG 2 - Al8 256K SW
MEMCONFIG 3 - Al9 5l2K SW
"l" Enable 256 K of Video RAM
Not Used
Not Used
1 = Enable NMI
$0=$ Disabled

| BIT | BIT | BIT | BIT | MEMORY | MEMORY | MEMORY |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 3 | 2 | 1 | START | LENGTH | RANGE |  |
| 256K |  |  |  |  |  |  |  |
| Enable | Al9 | Al8 | Al7 |  |  |  |  |
| 0 | 0 | 0 | 0 | 00000 | 128 K | 0 0000-1 | FFFF |
| 0 | 0 | 0 | 1 | 20000 | 128 K | 2 0000-3 | FFFF |
| 0 | 0 | 1 | 0 | 40000 | 128 K | 4 0000-5 | FFFF |
| 0 | 0 | 1 | 1 | 60000 | 128 K | 6 0000-7 | FFFF |
| 0 | 1 | 0 | 0 | 80000 | 128K | 8 0000-9 | FFFF |
| 1 | 0 | 0 | 1 | 00000 | 256 K | 0 0000-3 | FFFF |
| 1 | 0 | 1 | 0 | 20000 | 256 K | 2 0000-5 | FFFF |
| 1 | 0 | 1 | 0 | 40000 | 256K | 4 0000-7 | FFFF |
| 1 | 1 | 0 | 0 | 60000 | 256K | 6 0000-9 | FFFF |

NOTE: To turn off on-board video, be sure Port AOH, Data Bit 0 is a "l" AND Video Array Register 3 (Selected by writing 03 into 3DAH) Data Bit 0 (Write to Port 3DEH) must be $=00$ to disable 3 B 8 H and 3 BAH .

00A8 - 00AF Not Used

```
Address
00C0-00C7
```

Description
Sound SN76496

Bit7 Bit6 Bit5 Bit4 Bits Bit2 Bitl Bit0

| $=1$ | 0 | 0 | 0 | F6 | F7 | F8 | F9 | Update Tone Frequency 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $=0$ | X | F0 | F1 | F2 | F3 | F4 | F5 | Additional Frequency Data |
| $=1$ | 0 | 0 | 1 | A0 | A1 | A2 | A3 | Update Tone Attenuation 1 |
| $=1$ | 0 | 1 | 0 | F6 | F7 | F8 | F9 | Update Tone Frequency 2 |
| $=0$ | X | F0 | F1 | F2 | F3 | F4 | F5 | Additional Frequency Data |
| $=1$ | 0 | 1 | 1 | A0 | A1 | A2 | A3 | Update Tone Attenuation 2 |
| $=1$ | 1 | 0 | 0 | F6 | F7 | F8 | F9 | Update Tone Frequency 3 |
| $=0$ | X | F0 | F1 | F2 | F3 | F4 | F5 | Additional Frequency Data |
| $=1$ | 1 | 0 | 1 | A0 | A1 | A2 | A3 | Update Tone Attenuation 3 |
| $=1$ | 1 | 1 | 0 | X | FB | NFO | NFI | Update Noise Control |
| $=1$ | 1 | 1 | 1 | AO | A1 | A2 | A3 | Update Noise Attenuation |

```
00C8-00DF
00E0-01FF
WRITE (IOW*)
0200 - 0207
0208 - 020F
```

Not Used
Reserved
Joystick
Clear (Resets Integrator to Zero)
Not Used


Addresses

| 0370-0377 | Not Used |
| :---: | :---: |
| 0378 | Printer - Data Latch |
| Bit | Description |
| 0 | Data Bit 0 - LSB |
| 1 | Data Bit 1 - |
| 2 | Data Bit 2 - |
| 3 | Data Bit 3 - |
| 4 | Data Bit 4 - |
| 5 | Data Bit 5 - |
| 6 | Data Bit 6 - |
| 7 | Data Bit 7 - MSB |
| 0379 | Printer - Read Status |
| Bit | Description |
| 0 | Not Used |
| 1 | Not Used |
| 2 | Not Used |
| 3 | 0 = Error |
| 4 | 1 = Printer Select |
| 5 | $0=$ End of Form |
| 6 | 0 = Acknowledge |
| 7 | 0 = Busy |
| 037A (037E) | Printer - Control Latch |
| Bit | Description |
| 0 | $0=$ Strobe |
| 1 | $0=$ Auto FD XT |
| 2 | $0=$ Initialize |
| 3 | $0=$ Select Printer |
| 4 | 1 = Enable Interrupt |
| 5 | 0 = Enable Output Data |
| 6 | Not Used |
| 7 | Not Used |


| 037 B | Not Used |
| :---: | :---: |
| 037C | Printer - Data Latch |
| 037D | Printer - Read Status |
| 037F - 03D3 | Not Used |
| 03D4 | 6845 Address Register |
| 03D5 | 6845 Data Register |
| 03D6 | Not Used |
| 03D7 | Not Used |
| 03D8 | Mode Select Register |
| Bit 0 | High Resolution Clock <br> =0: Selects 40 by 25 Alphanumeric Mode |
|  | =1: Selects 80 by 25 Alphanumeric Mode |
| Bit 1 | Graphics Select |
|  | $=0$ : Selects Alphanumeric Mode <br> =l: Selects 320 by 200 Graphics Mode |
| Bit 2 | Black and White |
|  | =0: Selects Color Mode |
|  | =l: Selects Black and White Mode |
| Bit 3 | Video Enable <br> =0: Disables Video Signal |
|  | =1: Enables Video Signal |
| Bit 4 | 640 Dot Graphics |
|  | =0: Disables 640 by 200 B\&W Graphics Mode $=1$ : Enables 640 by 200 B\&W Graphics Mode |
| Bit 5 | Blink Enable |
|  | =0: Disables Blinking |
|  | =l: Enables Blinking |
| 03D9 | Color Select Register |
| Bit 0 | Background Blue |
| Bit 1 | Background Green |
| Bit 2 | Background Red |
| Bit 3 | Background Intensity |
| Bit 4 | Foreground Intensity |
| Bit 5 | Color select |
| 03DA, 03DE | Write Video Array Address \& Read Status (3DA) |
|  | Write Video Array Data (3DE) |

READ (3DA)
00 Bit 0
00 Bit 1
00 Bit 2
00 Bit 3
00 Bit 4
01 Bit 0
01 Bit 1
01 Bit 2
01 Bit 3
02 Bit 0
02 Bit 1
02 Bit 2
02 Bit 3
02 Bit 5
03 Bit 0
03 Bit 1
03 Bit 2
03 Bit 3
03 Bit 4
03 Bit 5
10-1F Bit 0
10-1F Bit 1
$10-1 \mathrm{~F}$ Bit 2
10-1F Bit 3
Bits 4 - 7
03 DB
03DC
03DD
Bit
0
1
2
3
4
5
6
7

Display Inactive
Light Pen Set
Light Switch Status Vertical Retrace Not Used

WRITE (3DE)
Not Used
Not Used
Not Used
Not Used
Not Used
Palette Mask 0
Palette Mask l
Palette Mask 2
Palette Mask 3
Border Blue
Border Green
Border Red
Border Intensity
Reserved $=0$
Mono Enable = "l"
Reserved = 0
Border Enable
4-Color High Resolution
16 Color Mode
Extra Video Mode
Palette Blue
Palette Green
Palette Red
palette Intensity
Not Used

Clear Light Pen Latch (Not Used on Tandy 1000 EX) Preset Light Pen Latch (Not Used on Tandy 1000 EX)

Extended Ram Page Register - CPU Relative Description
Extended Addressing Modes
Not Used
Not Used
CRT Video Page Address "17"
CRT Video page Address "18"
CPU Page Address " 17 "
CPU Page Address "18"
Select 64 K or 256 K Ram

| 03DF | CRT Processor Page Register - Video Mem Relative |
| :---: | :---: |
| Bit 0 | Al4 CRT Page 0 |
| Bit 1 | Al5 CRT Page l |
| Bit 2 | Al6 CRT Page 2 |
| Bit 3 | Al4 Processor Page 0 |
| Bit 4 | Al5 Processor Page 1 |
| Bit 5 | Al6 Processor Page 2 |
| Bit 6 | Video Address Mode 0 |
| Bit 7 | Video Address Mode l |
| 03 Fl | Drive Select Switch |
|  | "1" DSO = DSO |
|  | "0" DSO = DSI |
| 03F2, 3F0, 3F3 | DOR Register (Write Only) |
|  | Bit0 - 1: Drive Select |
|  | Bitl Bit0 |
|  | 0 0 Drive Select $A^{*}$ |
|  | 01 Drive Select $B^{*}$ |
|  | Bit 2: $0=$ FDC Reset |
|  | Bit3: $1=$ Enable DMA Req/Interrupt |
|  | Bit 4 : $1=$ Drive A Motor On |
|  | Bit5: l = Drive B Motor on |
|  | Bit6: $1=$ FDC Terminal Count |
|  | Bit7: Not Used |
| 03F4, 3F6 | FDC - Status (Read Only) - See FDC Specification |
| 03F5, 3F7 | FDC - Data (R/W) - See FDC Specification |
| 03F8-03FF | Not Used |
| ```For Ports 3F0 - 3F7, the following general conditions apply: Al = Don't Care For DOR, A2 = 0 For FDC, A2 = 1``` |  |
|  |  |
|  |  |
|  |  |

Cl-16,18,19,21-23, Capacitor 0.1 MFD 50V Axial
$25,26,28-32,29 \mathrm{~A}$, $30 \mathrm{~A}, 34,35,37,37 \mathrm{~A}$, 39-45,47,48,5057,124,126,128, 134,143,144,146, 147,149,150,178, 180

Cl00,119,120,145, Capacitor 22 MFD l6V Elec Axial 148,151,157, 181
Cl01,117,125,137-
Cl02-109
Cllo
Cll1-116,152-154, 159-161,168
Cll 8
Cl21,129,135,175, 179
Cl22,130
Cl23
Cl27
Cl31,132,136,176
Cl33
Cl55,156,162-167
Cl57 A
C169-174,177
Cl76
CR1
CR2
El-6
FBl-4
J1
J2,3
J4
J5
J6

Capacitor 1000 PFD C. Disk
8301474
Capacitor 68 PFD 50V C. Disk
Capacitor . 01 MFD 50V. C. Disc El. 8303104
Capacitor 20 PFD 50V +80-20\% Disk 8300204
Capacitor . 022 MFD 63V 108 Poly 8393225
Capacitor 10 MFD 16V Elec Axial 8316101
Capacitor 100 MFD 16V Elec Axial 8317101
Capacitor 330 PFD 50V C. Disk 8301332
Capacitor 100 PF 50V C. Disk 8301104
Capacitor . 47 MFD 50V Mono. Rad. 8384475
Capacitor 180 PF 50V C. Disk 8301184
Capacitor 2200 PFD C. Disk 8302224
U5l Between Pins 15 \& 26
Capacitor . 001 MFD C. Disk
8382104
Capacitor 470 PFD 50V C. Disk 8301474
Capacitor . 47 MFD 50V Mono. Rad. 8384475
Diode lN5235 6.8V 8150235
Diode 1N4148 8150148
Staking Pins 8529014
Ferrite Bead 8419013
Connector, 2-Pin Stra. Header 8519193
Connector, 6-Pin Rt. Angle 8519289
Connector, 8-Pin Rt. Angle
8519288
Connector, Dual l7-pin Str.Header
8519120
Connector, 9-Pin St. Friction Lock

8519191

J11-15
Q1
Q2
Q3
R1-4, 22-24, 27-29, 34,35,38,53
R6,61
R7
R8-11
R12
R13
R14
R15,17,25,26,39, 50-52
R16
R18,19
R20, 33, 36, 37,41-43, 48,54-56,63
R21,45,47,49,57,67
R26A
R30,31
R32
R40
R44,46
R51
R58
R59
R60
R62
R64
R65
R66

## RPl

RP2
RP3
RP4-9
RP10
RP1l
RP12
RP13

Connector, 9-Pin Rt. Angle Male 8519235 "D" Sub
Connector, 9-Pin Rt. Angle Female 8519245 Female "D" Sub
Connector, Dual RCA Pho. Jack Rt. Angle
Connector, Dual 31-Pin Str. Card Edge 8519236
Transistor 2N3906 8100906
Transistor VN0104N3 8190104
Transistor 2N3904 8110904
Resistor lok Ohm 1/4 Watt 5\% 8207310
Resistor 680 Ohm 1/4 Watt 5\% 8207168
Resistor 2.7 K Ohm 1/4 Watt $5 \% \quad 8207227$
Resistor 1 Meg Ohm 1/4 Watt 5\% 8207510
Resistor 680 K Ohm 1/4 Watt $5 \% 8207468$
Resistor 82.5 K Ohm 1/4 Watt 1\% 8200382
Resistor 560 Ohm 1/4 Watt 5\% 8207156
Resistor 4.7K Ohm 1/4 Watt 5\% 8207247
Resistor 330 Ohm 1/4 Watt 5\% 8207133
Resistor 100 K Ohm 1/4 Watt 5\% 8207410
Resistor 33 Ohm 1/4 Watt 5\% 8207033
Resistor 2.2K Ohm 1/4 Watt 5\% 8207222
Resistor Variable lk 8279411
Resistor 10 Ohm l/4 Watt 5\% 8207010
Resistor 3.9 K Ohm 1/4 Watt 5\% 8207239
Resistor lK Ohm 1/4 Watt 5\% 8207210
Resistor 47 Ohm 1/4 Watt 5\% 8207047
Resistor 470K Ohm 1/4 Watt 5\% 8207447
Resistor 750 Ohm 1/4 Watt 5\% 8207175
Resistor 1.1K Ohm 1/4 Watt 5\% 8207211
Resistor 1.2 K Ohm 1/4 Watt $58 \quad 8207212$
Resistor 3.3 K Ohm 1/4 Watt $58 \quad 8207233$
Resistor 620 Ohm 1/4 Watt 5\% 8207162
Resistor 270 ohm 1/4 Watt 5\% 8207127
Resistor 75 Ohm 1/4 Watt 5\% 8207075
Resistor Pak lK Ohm 6-Pin SIP 5R 8290210
Resistor Pak 10K Ohm 6-Pin SIP 5R 8290032
Resistor Pak lok Ohm 8-Pin SIP 7R 8292310
Resistor Pak 33 Ohm 8-Pin SIP 4R 8295033
Resistor Pak 150 Ohm 8-Pin SIP 7R 8290016
Resistor Pak 4.7K Ohm 8-Pin SIP 7R 8292246
Resistor Pak 33 Ohm 16-Pin DP 8R 8290044
Resistor Pak l0K Ohm l0-Pin SIP 9R 8290010

Sl
S2
U1-4,9-12
Ul-16, 37A
Ul7
U18
U18, 40,52
U19
U20
U21,54,56,57
U22
U22,33, 36, 37,51,55
U23
U23
U24, 31, 34, 35
U24,31,34,35
U25
U26
U27
U28,47
U29
U29
U30
U30
U36
U37
U37A
U38
U38
U39,*40,*52
U41
U41,44
U42,43
U44
U45
U45
U46
U48
U49
U50
U51
U53
U55
VR1
VR2

Switch, reset
Switch, 4-Pos. DIP
IC 256 K Dram
Socket 16-Pin DIP
IC LM 339
IC PLSI53
Socket 20-Pin DIP
IC 74 HCT 138
IC 74 HCT 32
IC 74 LS 244
IC Custom Keyoard I/F Array
Socket 40-Pin DIP
IC 8253-5 Timer
Socket 24-Pin DIP
IC 64 K X 4 Dram
Socket 18-Pin DIP
IC 14529
IC LM358
IC LM386
IC 74 HCTO
IC DMA Custom
Socket 68-Pin, PLCC
IC Big Blue (Video/Mem)
Socket 84-Pin PLCC
IC 80888 MHz
IC UPD765A
IC SN76496 Tone Generator
IC FDC9216
Socket 8-Pin DIP
IC 74 LS 245 (U52 Socketed)
IC 128 K ROM
Socket 28-Pin DIP
IC 74LS 373
IC 8259 A
Socket 14-Pin DIP
IC 74 HCTl 4 Socketed
IC 74 HCT 08
IC 7416
IC 7417
IC 74 HCT 195
IC CPU Support (Lt. Blue)
IC 74 HCT 02
IC Parallel Port Array
Regulator 78 L 05
Regulator 79 MO5CT

8489065
8489090
8049008
8509003
8050339
8
8509009
8026138
8026032
8020244
8075069
8509002
8040253
8509001
8040464
8509006
8030529
8050358
8050386
8026004
8075711
8509020
8040684
8509031
8041088
8040272
8040496
8040216
8509011
8020245
8040328
8509007
8020373
8040259
8509008
8026014
8026008
8000016
8000017
8026195
8075306
8026002
8075068
8052805
8190005

## TANDY COMPUTER PRODUCTB

*U40 \& U52 Socketed

CHASSIS SUBASSEMBLY

| QUANTITY | DESCRIPTION | NUMBER |
| :---: | :---: | :---: |
| 11 | Bi-Mount | 8 |
| 1 | Cable - Ground | 8 |
| 1 | Cable - Speaker 4.50" long | 8709574 |
| 1 | Chassis - Main | 8729581 |
| 1 | Clamp | 8 |
| 1 | Faston - Male . $250{ }^{\prime \prime}$ | 8529018 |
| 4 | Foot - Chassis (Adhesive Back) | 8 |
| 3 | Jumper Plug | 8519098 |
| 2 | Nut - Jack | 8589070 |
| 5 | Panel - Slot Cover | 8729312 |
| 1 | PC Board - Proj. 682 | 8709699 |
| 2 | Rivit - 1/8' ${ }^{\text {² }}$ Dia. | 8 |
| 5 | Screw \#4-40 X 1/4" Zinc | 8569254 |
| 9 | Screw \#6-32 X 1/4" | 8569258 |
| 2 | Screw \#6-32 X 1/4" | 8 |
| 1 | Screw \#6-32 X 5/l6" PPH | 8569266 |
| 1 | Shield - Main Logic Bd. | 8 |
| 1 | Shield - Side | 8 |
| 1 | Shield - Top | 8 |
| 1 | Speaker | 8490010 |


DISK DRIVE SUBASSEMBLY

| 1 | Cable - Signal Floppy | 8709673 |
| :---: | :---: | :---: |
| 1 | Clamp | 8 |
| 2 | Disk Drive - $51 / 4^{\prime \prime}$ | 8790132 |
| 2 | Rivit - 1/8" Dia. | 8 |
| 5 | Screw - \#6-32 X 1/4" | 8569258 |
| 6 | Screw - M 3X5X6 MM PPH | 8569293 |
| 4 | Screw - \#4-40 X 1/4", Nylon | 8 |
| 1 | Support - Disk Drive | 8729582 |

KEYBOARD SUBASSEMBLY

| 1 | Cable - Keyboard 11.5" | 8709567 |
| :---: | :---: | :---: |
| 1 | Case - Bottom | 8719335 |
| 1 | Case - top | 8719334 |
| 2 | Guide - center | 8719371 |
| 1 | Guide - left | 8719373 |
| 1 | Guide - right | 8719372 |
| 1 | Keyboard 640 | 8790056 |
| 2 | Pad - Friction | 8591004 |
| 9 | Screw - \#6 X 7/16" | 8569229 |
| 4 | Spring | 8739015 |
| 2 | Support - Legs | 8719336 |

POWER SUPPLY ASSEMBLY


| QUANTITY | DESCRIPTION | NUMBER |
| :---: | :---: | :---: |
| 1 | ```Assy - Switch, Voltage Select``` | 8 |
| 1 | Cable - DC Power | 8709558 |
| 1 | Cable - Ground Wire | 8709674 |
| 1 | Clip - Plastic W/AD | 8559010 |
| 1 | Enclosure - Power Supply | 8729583 |
| 1 | Fan - 80MM; l2VDC | 8 |
| 1 | Harness - AC Power | 8790424 |
| 1 | Nut - \#6 KEPS | 8579004 |
| 1 | Plug - Receptical | 8519246 |
| 1 | Power - Supply $65 \mathrm{~W} /$ | 8 |
| 4 | Screw - \#6-32 x 1/4" Zinc | 8569258 |
| 4 | Screw - "10 Tapit Thread Form. P. Washer Hex Head | 8569303 |
| 1 | Switch Plate | 8729584 |
| 1 | Switch - Power | 8 |
| 1 | Toroid Core | 8419030 |
| 1 | Tubing - Insulated 3/4" | 8539065 |
| FINAL ASSEMBLY |  |  |
| 1 | Button - Reset Front | 8719440 |
| 1 | Button - Reset Rear | 8719441 |
| 1 | Button - Spring Reset | 8739018 |
| 1 | Case - Top | 8719527 |
| 3 | Card - Function Key | 87891012 |
| 1 | Cord - Power 18/3 60/C | 8709584 |
| 1 | Insert - Accessory | 8779227 |
| 1 | Panel - Rear | 8719526 |
| 4 | Screw -\#6-32 X 1/4" | 8569258 |
| 2 | Screw -\#8-32 X 5/8" PPH | 8569256 |




301s y3070s a yaky





2. ALL RESSTTORS ARE IN OHMS, $1 / 4 \mathrm{w}, \pm 5 \%$.

1. capactrors are o.luf.

NOTE : (unless otherwise spegiled)











1000 SX POWER SUPPLIES
(SINGLE AND DOAL INPUT)

1000 SX 67 Watt Single Input Power Supply

# 1000 SX 67 WATT SIEGLE INPDT POWER SUPPLY CONTENTS 

OPERATING CHARACTERISTICS<br>BLOCK DIAGRAM<br>THEORY OF OPERATION<br>TROUBLESHOOTING<br>PARTS LIST<br>PCB ART<br>SCHEMATIC

OPERRATING CHARACTERISTICS
MINIMUM TYPICAL MAXIMUM UNITS

Operating Voltage Range
Line Frequency
Output Voltages
Vol
Vo2
Vo3
Output Loads
Iol
Io2
Io3
Over Current Protection
Current Limit ICLI - - 14.0 A
ICL2 - - 4.8 A
ICL3 - $\quad 1.0$ A
Over Voltage Protection Crowbar
5.8

- 6.8 V

Output Noise
Vol
Vo2
Vo3
Efficiency
Holdup Time
Full Load at Nominal Line 16 - mSec.
Insulation Resistance
Input to Output
Input to Ground
Isolation
Input to Ground
1.7 -


Theory of Operation

## AC Input Circuit

This circuit is composed of an AC Power Switch, a fuse, a line filter, and an inrush current limiting circuit and rectifying smoothing circuit. The inrush current limiting circuit controls the charging current to electrolytic capacitors when power is ON. The line filter reduces noise that leaks from the power source to the AC line or that returns from the unit to the power souce; it satisfies the specifications of noise regulations.

## Control Circuit \& Power Converter Circuit

This circuit is a self oscillation switching system, generally called an R.C.C. (Ringing Choke Converter). The R.C.C. circuit does not fix the oscillating frequency. Whenever input voltage is high or the load becomes light, the oscillating frequency will be high.

The current through R2 supplies transistor Ql's base, then Ql turns ON. When transistor Ql is On, the Ql current excites the transformer $T l$ and voltage rises in the bias coil of $T l(5-6)$ which leads transistor Ql positive bias, then transistor Ql turns ON.

When transistor Ql turns ON, collector current charges the energy to primary inductance of transformer $T l(1-3)$. Increasing the collector current of transistor $Q 1$ to the point of:

$$
\begin{gathered}
I>I_{B} . \text { hfe } \\
C=e^{2}
\end{gathered}
$$

Then, transistor Ql immediately turns OFF. In a moment, transformer Tl will have negative voltage which will be supplied to the secondary circuit through a rectifier. A Short circuit Protector is provided to protect transistor Ql from excess amounts of current when the secondary circuit becomes shorted. When transistor Q2 detects the voltage drop at R12, the collector of $Q 2$ shorts the base and emitter of Q1. Then Ql stops working so that the circuit protects $Q 1$ from over current.

The over current protector in the -12 V line is provided by the three terminal positive voltage regulator ICl (built-in current fold back protection ), which protects Ql against excessive current from the -l2V line.

## 5v Output Voltage Detecting Circuit

The circuit detects the change of output load current compared with the output voltage and AC line input voltage, which feeds back to the control circuit through a photo coupler PHCl to keep the output voltage stable. The Photo coupler isolates the primary and secondary circuits.

Over-Voltage Protection
When the +5 output voltage rises, between 5.8 V to 6.8 V , a control signal turns on the photo coupler PHC2 (Photo Thyristor) with the current of zener diode (Dll) and stops oscillation by turning on Q3, which turns off Ql in the switching circuit.

In the case of stopped oscillation, correct the cause of the failure, and reinput the power. The overvoltage protection circuit will reset automatically under good conditions.

The Photo Thyristor isolates the primary and secondary circuits.

## Troubleshooting

Equipment for Test Set-Up
Isolation Transformer (minimum of 500 VA rating)

## CAUTION

Dangerously high voltages are present in this power supply. For the safety of the individual doing the testing, please use an isolation transformer. The 500 VA rating is needed to keep the AC waveform from being clipped off at the peaks. These power supplies have peak charging capacitors and draw full power at the peak of the $A C$ waveform.

0-280V Variable Transformer (Variac)- Used to vary input voltage. Recommend $10 \mathrm{amp}, 1.4 \mathrm{KVA}$ rating, minimum.

Voltmeter- Need to measure DC voltages to 50 VDC and AC voltages to 200 VAC. Recommend two digital multimeters.

Oscilloscope- Need x 10 and x 100 probes.
Load board with connectors- See Table 1 for values of loads required. The entry on the table for safe Load Power is the minimum power ratings for the load resistors used.

NOTE: Because of its design, this power supply must have a load present or damaging oscillations may result. Never test the power supply without a suitable load.

Ohmmeter

## Set-Up Procedure

Set up as shown in Figure l. You will want to monitor the input voltage and the output voltage of the regulated bus, which is the +5 output, with DVM's. Also monitor the +5 output with the oscilloscope using $500 \mathrm{mv} / \mathrm{div}$ sensitivity. The DVM monitoring the +5 output can also be used to check the other outputs. See text of "No output" section for the test points within the power supply.

## Visual Inspection

Check power supply for any broken, burned, or obviously damaged components. Visually check fuse, if any question check with ohmmeter.

| OUTPUT | MINLOAD | LOAD R | SAFE <br> LOAD POWER | MAX <br> LOAD | LOAD R | SAFE <br> LOAD POWER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| +5 V | 1.25 A | 40 hms | 20 W | 7.0 A | 0.7 ohms | 60 W |
| +12 V | 0.15 A | 80 ohms | 5 W | 2.4 A | 5 ohms | 50 W |
| -12 V | 0 | 0 | 0 | 0.25 A | 48 ohms | 5 W |

Table 1 Load Board Values ( 67 watt)


Figure 1 Test Setup

## Start-Up

Load power supply with minimum load as specified in Table l. Bring up power slowly with the Variable Transformer while monitoring the +5 output with the oscilloscope and DVM. Supply should start with approximately 40-60 VAC applied, and should regulate when 90 VAC is reached. If output has reached 5 volts, do a performance test on operating characteristics, if there is no output, refer to "No output" section.

## Waveforms

## Power Converter Circuit



Collector Voltage Waveform


Collector Current Waveform

The input and output voltage are represented by the following equations:
$\mathrm{Vo}=\mathrm{n} \mathrm{x} \mathrm{Vf}$
Vo : Output voltage
n : Turn ratio of the transformer Tl
Vf : Collector Voltage at turn-off time
Vin $x$ Ton $=$ Vf $x$ Toff
Vin : Input voltage
Ton : Turn-on time of transistor
Toff: Turn-off time of transistor

## No Output

l. Check fuse:

If fuse is blown, replace it but do not apply power until the cause of the failure is found.
2. Preliminary Check on Major Primary Components:

Check diode bridge (Dl), power transistor (Ql), and drive transistor (Q2,Q3) for shorted junctions. If any component is found shorted, replace it.
3. Preliminary Check on Major Secondary Components:

Using an ohmmeter from an output that is common to each output and with output loads disconnected, check for shorted rectifiers or capacitors.
4. Check Over Voltage Protector:

Read the output voltage with a DVM at the +5 output terminals by increasing the input voltage from 0 V . Output voltage will appear at some input voltage and then go down to 0 V again. Check the Diode Dll or Photo Coupler (PHC2).
5. Check Ql Waveforms:

Read waveform of Q Collector with oscilloscope at $\mathbf{x} 100$ probe.

Figure 2 is Ql Collector normal waveform.
Figure 3 is Ql Base normal waveform.
Figure 4 is the waveforms when shorted circuits of the secondary parts as listed in Table 2. Check listed parts according to the waveform.

| Collector Waveforms | Shorted Secondary Components |
| :--- | :--- |
| Figure 4 | D8, D9, D10, C16, C17, C19, C20, C21, <br> C22, C23 |

Table 2. List of Shorted Circuits

$50 \mathrm{~V} / \mathrm{DIV}$
$5 \mu \mathrm{~s} / \mathrm{DIV}$

Q1 Collector Waveforms (Input 90 VAC Minimum Load)

$0.5 \mathrm{~V} / \mathrm{DIV}$
$5 \mu \mathrm{~s} / \mathrm{DIV}$

Q1 Base Waveforms (Input 90 VAC Minimum Load)

$50 \mathrm{~V} / \mathrm{DIV}$
$5 \mu \mathrm{~s} / \mathrm{DIV}$

Q1 Collector Waveforms -
Shorted Secondary Components (Input 90 VAC)

PART NO. 8790085

| Symbol | Descr | ription |  | QTY | Mfr's Part No. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CAPACITORS |  |  |  |  |  |
| Cl | Flim | 0.14 F | 250VAC | 1 | XE-104 |
| C2 | Film | $0.22 u F$ | 250VAC | 1 | XE-224 |
| c3/4/11 | Ceramic | 2200pF | 400VAC | 3 | DE7100F222MVAI-KC or CS13-E2GA222MYAS |
| C5 | Ceramic | 10000pF | 400VAC | 1 | DE7150FZ103PVAl-KC or CS17-F2GA103ZYAS |
| c6 | Electrolytic | 680uF | 200wV | 1 | CETSW2D681 or 200LPSS680 |
| c7/8/9 | Film | 0.047uF | 50 V | 3 | $\begin{aligned} & 50 \mathrm{~F} 2 \mathrm{D} 473 \mathrm{~K} \\ & \text { or } \mathrm{AMZF} 473 \mathrm{~K} 50 \mathrm{~V} \end{aligned}$ |
| Clo | Film (0, | $\begin{aligned} & 0.1 u F \\ & (0.1-0.22 u \end{aligned}$ | ${ }_{(F)}^{50 V}$ | 1 | 50F2D104K <br> or AMZFIO4K50V <br> (Adjust $104 \mathrm{~K}-224 \mathrm{~K}$ ) |
| C12 | Film | $0.22 u F$ | 250V | 1 | 250MW224K |
| Cl3 | Ceramic | 1500pF | 2KV | 1 | DE1210R152K2K <br> or CK45-B3DDI52KYAR |
| C15/25 | Electrolytic | 14 F | 50WV | 2 | CEUSMIHOIO |
| Cl6 | Electrolytic | 2200uF | 25WV | 1 | ceusmezez2 |
| C17/23/24 | Electrolytic | 470uF | 25WV | 3 | CEUSME477 |
| C18 | Electrolytic | 1000uF | 16WV | 1 | CEusmacioz |
| c19/20/21 | Electrolytic | 4700uF | 10wV | 3 | CEUSMIA472 |
| C22 | Electrolytic | 2200uF | 10WV | 1 | CEUSMLA222 |
| CONNECTORS |  |  |  |  |  |
| SKI | Connector, 2 con | conductors | Input | 1 | 5277-02A |
| SK2 | Connector, 2 co | onductors | Fan-out | 1 | 5045-02F |
| SK3-1 | Connector, 10 | conductor | S Output | 1 | 5277-10A |
| SK3-2 | Connector, 4 co | conductors | Output | 1 | 5273-04A |
| DIODES |  |  |  |  |  |
| D1 | Silicon, Stack | 400 V | 4A | 1 | S4VB40 <br> or RB404 <br> or DBA40E |
| D2/11 | Silicon | 5 V | 400mW | 2 | HZ5B3 |
| D3/4/5 | Silicon | 600 V | 1A | 3 | $\begin{aligned} & \text { FI }-06 \\ & \text { or V19G } \end{aligned}$ |
| D6/7 | Silicon | 100V | 200 mA | 2 | DS446 <br> or 15954 |
| D8 | Silicon, Stack | 200V | 5A | 1 | $\begin{aligned} & \text { D5LCAZO } \\ & \text { or 5CH2SM } \end{aligned}$ |



## FUSE

FI
Fuse, $\quad 250 \mathrm{~V} \quad 3 A$
Fuse Clip

1
2
MT4 3A250V
P\#5722113

40-08440-01
4P-D2-0180

> T0-9161-1 or TD-9161 PSC-156

TL431CLPB or uA431AWC L78M12 or NJMT 8 M 12 M5236L

TLP521-1 or PC817
TLP541G or S22MD1

PRINTED CIRCUIT BOARD
$\begin{array}{lll}\text { PCl } & \begin{array}{l}\text { Printed Circuit Board } \\ 105^{\circ} \mathrm{C}\end{array} \quad X P C\end{array}$

RESISTORS

| R1 | Thermistor | 8 | 1.6 A | 1 | $117-080-45202$ <br> or $8 \mathrm{D}-11$ <br> or D4FFL8ROP |
| :--- | :--- | :---: | :--- | :--- | :--- |
| R2/3 | Carbon | 100 K | $1 / 2 \mathrm{~W}$ | 2 | RD50P100KohmsJ <br> or RD50S100KohmsJ |
| R4 | Metal-oxide | 27 | 2 W | 1 | RSF2B27ohmsJ <br> (Adjust 10-560hms) |
| R5/6/19/20 Metal-oxide | 27 K | 2 W | 4 | RSF2B27KohmsJ |  |


| Symbol | Description |  |  | QTY | Mfr's Part No. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R7/8 | Metal-oxide | - 470 | 2W | 2 | RSF2B4700hmsJ |
| R9 | Carbon | $\begin{gathered} 560 \\ (330-750) \end{gathered}$ | 1/4W | 1 | RD25P5600hmsJ or RD25S5600hmsJ (Adjust 330-750ohms) |
| R10 | Carbon | $\begin{gathered} 270 \\ (180-470) \end{gathered}$ | 1/4W | 1 | RD25P270ohmsJ or RD25S2700hmsJ (Adjust 180-4700hms) |
| Rll | Carbon | 47 | 1/4W | 1 | RD25P470hmsJ or RD25S47ohmsJ |
| R12 | Cement | 0.27 | 5W | 1 | MPC7I 0.270 hmsK |
| Rl3 | Carbon | 27 K | 1/4W | 1 | RD25P27KohmsJ or RD25S27KohmsJ |
| R14 | Carbon | 39 | 1/4W | 1 | RD25P390hmsJ or RD25S390hmsJ |
| R15 | Carbon | 180 | 1/4W | 1 | RD25P180ohmsJ or RD25S180ohmsJ |
| R16 | Carbon | 100 | 1/4W | 1 | RD25P1000hmsJ or RD25S1000hmsJ |
| $\mathrm{Rl} 7 / 18 /$ | 24 Carbon | 2.2K | 1/4W | 4 | RD25P2.2KohmsJ or RD25S2.2KohmsJ |
| R22/27 | Carbon | 220 | 1/4W | 2 | RD25P2200hmsJ or RD25S2200hmsJ |
| R23 | Carbon | 18K | 1/4W | 1 | RD25P18KohmsJ <br> or RD25SI8KohmsJ |
| R25 | Carbon | 1 K | 1/4W | 1 | RD25P1KohmsJ or RD25S1KohmsJ |
| R26 | Carbon | 15K | 1/4W | 1 | RD25P15KohmsJ or RD25S15KohmsJ |
| R28 | Carbon | 1 K | 1/6W | 1 | RD16P1KohmsJ or RDI6S1KohmsJ |
| VRI/2 | Variable | 2K | 0.5W | 2 | V6EK-PV(1S)202B or H0615-222B |
| TRANSFORMER |  |  |  |  |  |
| T1 | Transformer |  |  | 1 | T0-4342 |
| TRANSISTORS |  |  |  |  |  |
| Q1 | Transistor | 400 V | 12A | 1 | $\begin{aligned} & 2 \operatorname{sc} 2833 \\ & \text { or } 2 \operatorname{Sc} 2938 \end{aligned}$ |
| Q2/3 | Transistor | 50V | 2A | 2 | $\begin{aligned} & \text { 2SD1207 } \\ & \text { or } 2 \text { Sc2655 } \end{aligned}$ |
| Q4 | Transistor | 60V | 5A | 1 | 2SA1441 <br> or 2SBl019 |




Power Supply PCB - Component Side


TAMURA SEISAKUSHO CO., LTD.

1000 SX 67 Watt Dual Input Power Supply

## 1000 SX 67 WATT DUAL INPUT POWER SUPPLY CONTENTS

```
OPERATING CHARACTERISTICS
BLOCK DIAGRAM
THEORY OF OPERATION
TROUBLESHOOTING
PARTS LIST
PCB ART
SCHEMATIC
```

|  | MINIMUM | TYPICAL | MAXIMUM | UNITS |
| :---: | :---: | :---: | :---: | :---: |
| Operating Voltage Range | $\begin{array}{r} 90 \\ 198 \end{array}$ | $\begin{aligned} & 120 \\ & 240 \end{aligned}$ | $\begin{aligned} & 135 \\ & 264 \end{aligned}$ | VAC |
| Line Frequency | 47 | 50/60 | 63 | Hz |
| Output Voltages |  |  |  |  |
| Vol | 4.85 | 5.00 | 5.15 | V |
| Vo2 | 11.40 | 12.00 | 12.60 | V |
| Vo3 | -13.20 | -120.00 | -10.80 | v |
| Output Loads |  |  |  |  |
| Iol | 1.25 | - | 7.0 | A |
| Io2 | 0.15 | - | 2.4 | A |
| Io3 | 0 | - | 0.25 | A |
| Over Current Protection |  |  |  |  |
| Current Limit ICLI | - | - | 14.0 | A |
| ICL2 | - | - | 4.8 | A |
| ICL 3 | - | - | 1.0 | A |
| Over Voltage Protection |  |  |  |  |
| Crowbar | 5.8 | - | 6.8 | v |
| Output Noise |  |  |  |  |
| Vol | - | - | 50 | mV P-P |
| Vo2 | - | - | 100 | mV P-P |
| Vo3 | - | - | 150 | mV P-P |
| Efficiency | 63 | 65 | - | \% |
| Holdup Time |  |  |  |  |
| Full Load at Nominal Line | 16 | - | - | mSec. |
| Insulation Resistance |  |  |  |  |
| Input to Output | 7 | 1000 | - | M ohms |
| Input to Ground | 7 | 1000 | - | M ohms |
| Isolation |  |  |  |  |
| Input to Ground | 1.25 | - | - | KVAC |
| Input to Output | 3.75 | - | - | KVAC |



## AC Input Circuit

This circuit is composed of an AC Power Switch, a fuse, a line filter, and an inrush current limiting circuit and rectifying smoothing circuit. The inrush current limiting circuit controls the charging current to electrolytic capacitors when power is ON. The line filter reduces noise that leaks from the power source to the AC line or that returns from the unit to the power souce; it satisfies the specifications of noise regulations.

## Control Circuit \& Power Converter Circuit

This circuit is a self oscillation switching system, generally called an R.C.C. (Ringing Choke Converter). The R.C.C. circuit does not fix the oscillating frequency. Whenever input voltage is high or the load becomes light, the oscillating frequency will be high.

The current through R4 and R5 supplies transistor Ql's base, then Ql turns $O N$. When transistor Q1 is On, the Ql current excites the transformer $T l$ and voltage rises in the bias coil of $T l(2-3)$ which leads transistor Ql positive bias, then transistor Ql turns ON .

When transistor Ql turns ON, collector current charges the energy to primary inductance of transformer $T 1$ (4-6). Increasing the collector current of transistor Q1 to the point of:

$$
I_{C}=I_{B} \cdot h f e
$$

Then, transistor Ql immediately turns OFF. In a moment, transformer Tl will have negative voltage which will be supplied to the secondary circuit through a rectifier. A Short circuit Protector is provided to protect transistor $Q 1$ from excess amounts of current when the secondary circuit becomes shorted. When transistor Q2 detects the voltage drop at Rl3, the collector of Q2 shorts the base and emitter of Q1. Then Q1 stops working so that the circuit protects $Q 1$ from over current.

The over current protector in the -12 V line is provided by the three terminal positive voltage regulators IC2, IC3 (built-in current fold back protection ), which protects Ql against excessive current from the -l2V line.

## 5v Output Voltage Detecting Circuit

The circuit detects the change of output load current compared with the output voltage and AC line input voltage, which feeds back to the control circuit through a photo coupler PHCl to keep the output voltage stable. The Photo coupler isolates the primary and secondary circuits.

## Over-Voltage Protection

When the +5 output voltage rises, between 5.8 V to 6.8 V , a control signal turns on the photo coupler PHC2 (Photo Thyristor) with the current of zener diode (Dll) and stops oscillation by turning on Q3, which turns off Ql in the switching circuit.

In the case of stopped oscillation, correct the cause of the failure, and reinput the power. The overvoltage protection circuit will reset automatically under good conditions.

The Photo Thyristor isolates the primary and secondary circuits.

## Troubleshooting

Equipment for Test Set-Up
Isolation Transformer(minimum of 500 VA rating)

## CAUTION

Dangerously high voltages are present in this power supply. For the safety of the individual doing the testing, please use an isolation transformer. The 500 VA rating is needed to keep the AC waveform from being clipped off at the peaks. These power supplies have peak charging capacitors and draw full power at the peak of the AC waveform.

0-280V Variable Transformer (Variac)- Used to vary input voltage. Recommend $5 \mathrm{amp}, 1.4 \mathrm{KVA}$ rating, minimum.

Voltmeter- Need to measure DC voltages to 50 VDC and AC voltages to 300 VAC . Recommend two digital multimeters.

Oscilloscope- Need x 10 and x 100 probes.
Load board with connectors- See Table 1 for values of loads required. The entry on the table for Safe Load Power is the minimum power ratings for the load resistors used.

NOTE: Because of its design, this power supply must have a load present or damaging oscillations may result. Never test the power supply without a suitable load.

## Ohmmeter

## Set-Up Procedure

Set up as shown in Figure l. You will want to monitor the input voltage and the output voltage of the regulated bus, which is the +5 output, with DVM's. Also monitor the +5 output with the oscilloscope using $500 \mathrm{mv} / \mathrm{div}$ sensitivity. The DVM monitoring the +5 output can also be used to check the other outputs. See text of "No output" section for the test points within the power supply.

## Visual Inspection

Check power supply for any broken, burned, or obviously damaged components. Visually check fuse, if any question check with ohmmeter.

## Start-Up

Load power supply with minimum load as specified in Table 1. Check up on the voltage selector jumper and don't apply over voltage. Bring up power slowly with the Variable Transformer while monitoring the +5 output with the oscilloscope and DVM. Supply should start with approximately 40-60/80-120 VAC applied, and should regulate when $90 / 180$ VAC is reached. If output has reached 5 volts, do a performance test on operating characteristics, if there is no output, refer to "No output" section.

| OUTPUT | MINLOAD | LOAD R | SAFE <br> LOAD POWER | MAX <br> LOAD | LOAD R | SAFE <br> LOAD POWER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| +5 V | 1.25 A | 40 ohms | 20 W | 7.0 A | 0.7 ohms | 60 W |
| +12 V | 0.15 A | 80 ohms | 5 W | 2.4 A | 50 hms | 50 W |
| -12 V | 0 | 0 | 0 | 0.25 A | 48 ohms | 5 W |

Table 1 Load Board Values ( 67 watt)


Figure 1 Test Setup

## No Output

1. Check fuse:

If fuse is blown, replace it but do not apply power until the cause of the failure is found.
2. Preliminary Check on Major Primary Components:

Check diode bridge (Dl), power transistor (Q1), and drive transistors (Q2,Q3) for shorted junctions. If any component is found shorted, replace it.
3. Preliminary Check on Major Secondary Components:

Using an ohmmeter from an output that is common to each output and with output loads disconnected, check for shorted rectifiers or capacitors.
4. Check Over Voltage Protector:

Read the output voltage with a DVM at the +5 output terminals by increasing the input voltage from $0 V$. Output voltage will appear at some input voltage and then go down to $0 V$ again. Check the Diode Dil or Photo Coupler (PHC2).
5. Check Ql Waveforms:

Read waveform of Ql Collector with oscilloscope at x 100 probe.

Figure 2 is Ql Collector normal waveform.
Figure 3 is Ql Base normal waveform.
Figure 4 is the waveforms when shorted circuits of the secondary parts as listed in Table 2. Check listed parts according to the waveform.

| Collector Waveforms | Shorted Secondary Components |
| :--- | :--- |
| Figure 4 | D8, D9, C17, C18, C20, C21, C22, C23, |

Table 2. List of Shorted Circuits
6. Check Resistor (R26)

If R26 is open, check D10, C24, and IC2.

## Waveforms

## Power Converter Circuit



Collector Voltage Waveform


Collector Current Waveform

The input and output voltage are represented by the following equations:
$\mathrm{Vo}=\mathrm{n} \times \mathrm{Vf}$
Vo : Output voltage
n : Turn ratio of the transformer Tl
Vf : Collector Voltage at turn-off time
Vin $x$ Ton $=$ Vf $x$ Toff
Vin : Input voltage
Ton : Turn-on time of transistor
Toff: Turn-off time of transistor


100V/DIV $5 \mu \mathrm{~s} / \mathrm{DIV}$

Q1 Collector Waveforms (Input 90 VAC Minimum Load)

$0.5 \mathrm{~V} / \mathrm{DIV}$
$5 \mu \mathrm{~s} / \mathrm{DIV}$


100V/DIV<br>$5 \mu \mathrm{~s} /$ DIV

Q1 Collector Waveforms -
Shorted Secondary Components (Input 90 VAC)

PART NO. 8790084
Symbol
Description
QTY RS Part No. Mfr's Part No. CAPACITORS

| C2 | Film | 0.22uF | 400 VAC | 1 | XE-224 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| c3/4 | Ceramic | 4700pF | 400 VAC | 2 | DE7150F472MVA1-KC or CSI7-E2GA472MYAS |
| 65 | Ceramic | 10000 pF | 400VAC | 1 | DE7150FZ103PVA1-KC or CSI7-F2GAI03ZYAS |
| C6/7 | Electrolytic | 330 FF | 200WV | 2 | CETSW2D331 or 200LPSS330 |
| 68/9/10/15 | Film | 0.047uF | 50 V | 4 | $\begin{aligned} & 50 \mathrm{~F} 2 \mathrm{D} 473 \mathrm{~K} \\ & \text { or AMZ } 4473 \mathrm{~K} 50 \mathrm{~V} \end{aligned}$ |
| Cll | Film (0.1 | $\begin{gathered} 0.1 \mathrm{uF} \\ -0.22 u F) \end{gathered}$ | 50V | 1 | 50F2D104K or AMZF104K50V |
| $\mathrm{Cl2}$ | Ceramic | 470pF | 2KV | 1 | DE0907R471K2K <br> or CK45-B3DD471KYAR |
| Cl 3 | Film | 0.01uF | 630 V | 1 | CF921L2J103K or MDDZ2J103K |
| C14 | Ceramic | 680pF | 2KV | 1 | DE1010R681K2K <br> or CK45-B3DD681KYAR |
| C16/26 | Electrolytic | luF | 50WV | 2 | CEUSMLH010 |
| Cl 7 | Electrolytic | 2200uF | 25WV | 1 | CEUSME222 |
| C18/24/25 | Electrolytic | 470uF | 25WV | 3 | CEUSME471 |
| C19 | Electrolytic | 1000uF | 16WV | 1 | CEUSMICl02 |
| C20/21/22 | Electrolytic | 4700uF | 10WV | 3 | CEUSMAA472 |
| C23 | Electrolytic | 2200uF | lowv | 1 | CEUSMAL222 |

CONNECTORS

| SK1 | Connector, 2 conductors Input | 1 | $5277-02 \mathrm{~A}$ |
| :--- | :--- | :--- | :--- |
| SK2 | Connector, 2 conductors Fan-out | 1 | $5045-02 \mathrm{~F}$ |
| SK3-1 | Connector, 10 conductors Output | 1 | $5277-10 \mathrm{~A}$ |
| SK3-2 | Connector, 4 conductors Output | 1 | $5273-04 \mathrm{~A}$ |
|  | Pin Terminal, Voltage Selector | 2 | RT-01N-2.3A |
|  | Jumping Connector | 1 | $4 P-M 3-0017$ |

DIODES

| D1 | Silicon, Stack | 600 V | 3 A | 1 | S3WB60 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| D2/11 | Silicon, Zener | 5 V | 400 mW | 2 | H25B3 |
| D3/10 | Silicon | 600 V | 1 A | 2 | FI-06 <br> or V19G |
| D4/5 | Silicon | 800 V | 1 A | 2 | FI-08 <br> or RU2B |
| D6/7/13 | Silicon | 100 V | 200 mA | 3 | DS446 <br> or $1 S 954$ |


| Symbol | Description |  |  |  |  | Mfr's Part No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D8 | Silicon, | Stack | 200 V | 5A | 1 | D5LCA20 or 5CH2SM |
| D9 | Silicon, | Stack | 40 V | 10A | 1 | DIOSC4M <br> or 10CS04SM |

FUSE

F1 | Fuse | $250 \mathrm{~V} \quad 3 \mathrm{~A}$ |  |
| :--- | :--- | :--- |
|  | Fuse Clip |  |

HEATSINK
HSl
HS2
Heatsink, for QI
Heatsink, for D8/D9/Q4/IC2
1
2
MT4 3A250V
P\#5722113

40-08440-01
4P-D2-0180

INDUCTORS

| L1/2 | Choke Coil | 0.5 mH | 2 | TO-9175 |
| :--- | :--- | :--- | :--- | :--- |
| L3 | Choke Coil | 8 mH | 1 | T0-9161 |
| I4 | Choke Coil | 4.3 uH | 1 | PSC-156 |

INTEGRATED CIRCUITS

| IC1 | IC, Regulator | 37 V | 150 mA | 1 | TL431GLPB <br> or uA431AWC |
| :--- | :--- | :--- | :--- | :--- | :--- |
| IC2 | IC, Regulator | 12 V | 0.5 A | 1 | L78M12 <br> or NJM78M12 |
| IC3 | IC, Regulator | 36 V | 30 mA | 1 | M5236L |

PHOTO COUPLER

| PHC1 | Photo Coupler | 55 V | 60 mA | 1 | TLP732 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| PHC2 | Photo Coupler | 600 V | 150 mA | 1 | or PCl11 |

PRINTED CIRCUIT BOARD

| PCI | Printed Circuit Board <br> $105^{\circ} \mathrm{C}$ | XPC | 1 | $2 \mathrm{P}-\mathrm{Pl}-0178$ |
| :--- | :--- | :--- | :--- | :--- |
| RESISTORS |  |  |  |  |
| R1 | Thermister | 16 | 1.2 A | 1 |


| Symbol | Description |  |  | QTY | RS Part No. | Mfr's Part No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R7/29 | Metal-oxide | 100K | 2W | 2 |  | RSF2BIOOKohmsJ |
| R8/9 | Metal-oxide | 100 | 2W | 2 |  | RSF2B1000hmsJ |
| R10 | Carbon | $\begin{gathered} 560 \\ (330-680) \end{gathered}$ | 1/4W | 1 |  | RD25P5600hmsJ or RD25S5600hmsJ (Adjust 330-680ohms) |
| R11 | Carbon | $\begin{gathered} 330 \\ (220-560) \end{gathered}$ | 1/4W | 1 |  | RD25P330ohmsJ or RD25S3300hmsJ (Adjust 220-560ohms) |
| R12 | Carbon | 47 | 1/4W | 1 |  | RD25P47ohmsJ or RD25S47ohmsJ |
| R13 | Cement | 0.56 | 5W | 1 |  | MPC71 0.560hmsK |
| R14 | Carbon | 27 K | 1/4W | 1 |  | RD25P27Kohms or RD25S27KohmsJ |
| R15 | Carbon | 39 | 1/4W | 1 |  | RD25P39ohmsJ or RD25S390hmsJ |
| Rl6 | Carbon | 180 | 1/4W | 1 |  | RD25P1800hmsJ or RD25S1800hmsJ |
| R17 | Carbon | 100 | 1/4W | 1 |  | RD25P1000hmsJ or RD25S1000hmsJ |
| R18/19/22 | Carbon | 2.2 K | 1/4W | 3 |  | RD25P2.2KohmsJ or RD25S2.2KohmsJ |
| R20/27 | Carbon | 1 K | 1/4W | 2 |  | RD25P1KohmsJ or RD25SlKohmsJ |
| R21/23 | Carbon | 220 | 1/4W | 2 |  | RD25P2200hmsJ or RD25S2200hmsJ |
| R24 | Carbon | 18K | 1/4W | 1 |  | RD25P18KohmsJ or RD25Sl8KohmsJ |
| R26 | Fusing | 1 | 1/4W | 1 |  | RF25SlohmsJ |
| R28 | Carbon | 15K | 1/4W | 1 |  | RD25P15KohmsJ or RD25Sl5KohmsJ |
| VRI/2 | Variable | 2 K | 0.5W | 2 |  | V6EK-PV(1S)202B or H0615-222B |
| TRANSFORMER |  |  |  |  |  |  |
| T1 | Transformer |  |  | 1 |  | T0-4341 |
| TRANSISTORS |  |  |  |  |  |  |
| Q1 | Transistor | 800V | 6A | 1 |  | $\begin{aligned} & 2 S C 3460 \\ & \text { or } 2 S C 3680 \end{aligned}$ |
| Q2/3 | Transistor | 50V | 2A | 2 |  | $\begin{aligned} & 2 \text { SD1207 } \\ & \text { or } 2 \text { Sc2655 } \end{aligned}$ |
| Q4 | Transistor | 60 V | 5A | 1 |  | 2SA1441 <br> or 2SB1019 |




Power Supply PCB - Component Side


1000 SX KEYBOARD

KEYBOARD CONTENTS

SPECIFICATION
KEYBOARD TIMING
KEYBOARD LAYOUT

## KEYBOARD ASSEMBLY

The Tandy 1000 has a 90-key keyboard that includes 12 function keys, a numeric keypad, and special purpose keys for paging. The keyboard is connected to the Main Unit by a coiled cable and operated at a maximum distance of 4 feet from the main unit. Figure shows the interconnecting cable connector to the keyboard assembly. The cable assembly can be disconnected from the keyboard assembly during repair.


Figure 1

## Keyboard Specifications

The keyboard is fully encoded with microprocessor control, and requires +5 VDC supplied from the Main Unit.

1. Key Type - all keys generate "make" and "break" codes. See the Key Code Chart. Break codes are formed by adding 80 H to the make code. Keys 49 and 71 have alternate action that "makes" on one actuation of the key and "breaks" on succeeding actuation. No code is generated for these two keys when the key is released.
2. Number of Keys - 90
3. Repeat Strobe - there is a repeat strobe of 66 to 111 mSec when any key is depressed for more than 1 second, with the exception of SHIFT, CTRL, CAPS, ENTER, and NUMBER LOCK.

## Keyboard Timing

Figure 2 is the timing chart for the Tandy 1000 Keyboard Assembly.


Keyboard Assembly Timing Chart

Figure 2

Key Code Chart

| Key Number | Legend | Scan Code |
| :---: | :---: | :---: |
| 1 | F $\dagger$ | 3B |
| 2 | F2 | 3 C |
| 3 | F3 | 3D |
| 4 | F4 | 3E |
| 5 | F5 | 3 F |
| 6 | F6 | 40 |
| 7 | F7 | 41 |
| 8 | F8 | 42 |
| 9 | F9 | 43 |
| 10 | F10 | 44 |
| 11 | F11 | 59 |
| 12 | F12 | 5A |
| 13 | INSERT + | 55 |
| 14 | DELETE - | 53 |
| 15 | BREAK | 54 |
| 16 | ESC | 01 |
| 17 | 1! | 02 |
| 18 | 2 @ | 03 |
| 19 | 3 \# | 04 |
| 20 | 4 \$ | 05 |
| 21 | $5 \%$ | 06 |
| 22 | $6^{\wedge}$ | 07 |
| 23 | 7 \& | 08 |
| 24 | 8 * | 09 |
| 25 | 9 ( | OA |
| 26 | $0)$ | OB |
| 27 | - | 0 C |
| 28 | $=+$ | OD |
| 29 | BACKSPACE | OE |
| 30 | ALT | 38 |
| 31 | PRINT | 37 |
| 32 | 7 (backslash) | 47 |
| 33 | 8 (Tilde) | 48 |
| 34 | 9 PG UP | 49 |
| 35 | TAB | OF |
| 36 | Q | 10 |
| $37^{1}$ | W | 11 |
| 38 | E | 12 |
| 39 | R | 13 |
| 40 | T | 14 |
| 41 | Y | 15 |
| 42 | U | 16 |
| 43 | 1 | 17 |
| 45 | P | 19 |


| Key Number | Legend | Scan Code |
| :---: | :---: | :---: |
| 46 | \{ [ | 1 A |
| 47 | \} ] | 1 B |
| 48 | HOLD | 46 |
| 49 | NUM LOCK | 45 |
| 50 | 4 | 4 B |
| 51 | 5 | 4 C |
| 52 | 6 | 4D |
| 53 | CTRL | 1D |
| 54 | A | 1 E |
| 55 | S | 1F |
| 56 | D | 20 |
| 57 | F | 21 |
| 58 | G | 22 |
| 59 | H | 23 |
| 60 | J | 24 |
| 61 | K | 25 |
| 62 | L | 26 |
| 63 | , | 27 |
| 64 | ' " | 28 |
| 65 | ENTER | 1 C |
| 66 |  | 29 |
| 67 | HOME | 58 |
| 68 | 1 END | 4F |
| 69 | 2 (Grave) | 50 |
| 70 | 3 PG DN | 51 |
| 71 | CAPS | 3A |
| 72 | SHIFT | 2 A |
| 73 | Z | 2C |
| 74 | $x$ | 2 D |
| 75 | C | 2 E |
| 76 | V | 2 F |
| 77 | B | 30 |
| 78 | N | 31 |
| 79 | M | 32 |
| 80 | , < | 33 |
| 81 | . $\ddagger$ | 34. |
| 82 | 1? | 35 |
| 83 | SHIFT | 36 |
| 84 |  | 2 B |
| 85 |  | 4A |
| 86 |  | 4 E |
| 87 | 0 | 52 |
| 88 |  | 56 |
| 89 | ENTER | 57 |
| 90 (Space Key) |  |  |
| 91 thru 95 - reserved for International |  |  |

## Keyboard Layout

Shown below is the keyboard layout and number designation of the keys on the Tandy 1000 keyboard. They should be used with the Key Code Chart for determining data value transmitted by the keyboard.


Figure 3 Keyboard Identification

| 1 | 2 | 3 |  | 4 |  |  | 5 |  | 6. | 7 |  | 8 |  |  | 9 |  |  | 1 | 12 |  |  |  | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16 | 17 |  | 8 | 19 |  | 20 | 21 |  | 22 | 23 |  |  | 25 | 2 |  |  | 8 |  | 29 | 30 | 31 | 32 | 33 | 34 |
| 35 |  | 36 | 37 |  | 38 | 39 |  | 40 | 4 |  | 4 | 4 |  |  | 5 |  |  | 47 |  | 48 | 49 | 50 | 51 | 52 |
| 5 |  | 54 |  |  | 56 |  |  | 58 |  | 9 | 60 |  |  |  | 63 |  |  |  | 55 | 66 | 67 | 68 | 69 | 70 |
| 71 | 72 |  | 73 |  | 4 | 75 | 76 | 6 | 77 | 78 |  | 19 | 80 |  |  | 82 |  | 03 | 84 | 65 | 66 | 57 | 88 | 89 |
|  | 9 |  | 92 | 90 |  |  |  |  |  |  |  |  |  |  |  | 93 |  | 4 | 95 |  |  |  |  |  |

NOTE: KEYS 9I THRU 95 NOY USED ON U S VERSION, USEO ON international version only

Figure 4 Key Number Identification


Figure 5

8087 NUMIRRIC DATA COPROCESSOR

## 8087 Coprocessor Operation

The 8087 executes instructions as a coprocessor to the 8086 processor while in the maximum mode (MN/MX pin is connected to ground). The processors status (S0-Sl) and queue status lines (QSO-QSl) enable the coprocessor to monitor and decode instructions in synchronization with the microprocessor. An instruction opcode is sent to the coprocessor and the processor. The processor calculates the memory addresss and the co-processor checks the instruction simultaneously. The coprocessor then accesses the memory location through the local bus from the processor when the processor finishes its current instruction. After the coprocessor is finished with a memory transaction, it returns local bus to the processor. The BUSY signal is used to inform the processor that the coprocessor is performing an operation. The processor WAIT instruction tests this signal to ensure that the coprocessor is ready to excute subsequent instructions.

The control unit (CU) keeps the coprocessor operation synchronized with the processor. The processor and the coprocessor fetch all instructions at the same time from a single stream of mixed instructions. The processor's status lines (S0-Sl, S6) are used by the control unit to determine when an instruction is being fetched.

The coprocessor sends an error signal which generates an interrupt through the NMI interrupt logic when the correct execution mask for the coprocessor is not set. The following two conditions will disable the coprocessor interrupt to the processor:

1. Interrupt Enable bits and the exception of the control word are set to l's.
2. NMI Mask Register is set to zero. During Power on the NMI Mask Reg. is cleared to disable the NMI. This condition (NMI mask Reg. is set to zero) causes the processor to wait indefinitely for a BUSY* signal from the coprocessor, while the coprocessor expects an interrupt signal from the processor.

For additional information on the the 8087 coprocessor see the 8087 Numeric Data Coprocessor information sheet in this manual.

Tandy 1000 PLUS RS-232 Interface Board
1/ Introduction ..... 1
2/ Jumper Configuration ..... 3
Domestic ..... 3
International ..... 4
3/ Theory of Operation ..... 7
Block Diagram of RS-232 Adapter (Figure l.) ..... 8
$82 \mathrm{Sl53}$ Pin Functions (Figure 2.) ..... 9
82Sl53 IFL Equations (Figure 3.) ..... 10
4/ Troubleshooting ..... 11
5/ Component Layout ..... 13
Silkscreen ..... 13
Component Side ..... 14
Solder Side ..... 15
6/ Parts List ..... 17
Domestic ..... 17
International ..... 18
7/ Schematic ..... 19
8/ WD8250 Asynchronous Communications Element

## 1/ Introduction to RS-232 Interface Board

The RS-232 board is a single-channel asynchronous serial communications board. The heart of the board is the WD8250 Asynchronous Communications Element (ACE), that functions as a serial data input/output interface. It performs serial-to-parallel conversion on data characters received from a peripheral device or a modem and parallel-to-serial conversion on data characters received from the CPU.

Status information reported includes the type and condition of the ACE's transfer operations as well as any error conditions. The WD8250 includes a programmable baud rate generator that allows operation from 50 to 9600 baud. The WD8250 can be software tailored to the user's requirements. It can add and remove start bits, stop bits, and parity bits. It supports 5-,6-,7- or 8-bit characters with l, l $1 / 2$, or 2 stop bits. Diagnostic capabilities provide loopback functions of transmit/receive and input/output signals.

This manual covers both domestic and international RS-232 boards. The main difference between the domestic and international boards is the jumper configuration and the programming of the receiving baud rate. This information is covered in section 2. An international parts list is also included in section 5 .

Other features include:

- Full double buffering which eliminates the need for precise synchronization.
- Independent receiver clock input.
- False start bit detection.
- Line break generation and detection.
- Modem control functions: Clear To Send (CTS), Request To Send (RTS), Data Set Ready (DSR), Data Terminal Ready (DTR), Ring Indicator (RI), and Carrier Detect (CD).


## 2/ Jumper Configuration

Most commercially available terminal or communications programs use the primary addresses. Points E2 and E3 should be jumpered for primary operation. Points El and E2 should be jumpered for secondary operation.

## International RS-232 Board

The RS-232 serial communications board for the Tandy 1000 has two versions. One board is a domestic version which cannot be altered and is used for domestic operations only. Domestic operations means that the board transmits and receives at the same baud rate. The other board is an international version which can be used as either a domestic board or easily modified to accommodate international operations. International operations means that the board can be programmed to transmit at one baud rate while receiving at another baud rate. This is known to be a common mode of operation in Europe. In order for the board to operate in the international mode, some jumpers on the board will have to be changed. The jumper arrangements for domestic and international operation as well as operation in the primary and secondary address spaces are as follows:

Domestic operation in the primary address (3F8-3FF) Jumper E2 to E3
Jumper E4 to E6
Jumper E7 to E9, E8 and El0 empty
Domestic operation in the secondary address (2F8-2FF) Jumper El to E2
Jumper E4 to E6
Jumper E7 to E9, E8 and El0 empty
International operation in the primary address -
Jumper E2 to E3
Jumper E4 to E5
Jumper E7 to E8
Jumper E9 to El0
International operation in the secondary address -
Jumper E1 to E2
Jumper E4 to E5
Jumper E7 to E8
Jumper E9 to El0
While the board is jumpered to the international mode of operation, the user can select between domestic and international operation. This can be done as follows:

Primary address - 3FC, or secondary address - 2FC, Bit 2.
Set low for domestic operation, set high for international operation.

NOTE: This bit is low on power up and reset.

Programming the Baud Rates for International Operation
While the Board is setup for international operation, two baud rate generators will have to be programmed. One for the transmit baud rate and the other for the receive baud rate. The transmit baud rate is supplied from the internal baud rate generator on the 8250 UART and is programmed the same as before with the domestic board. The receive baud rate is supplied from an external baud rate generator and is totally independent from the programming for the internal transmit baud rate generator. This external receive baud rate generator is enabled through address 3 FF (primary) or 2 FF (secondary). The baud rate generator is then programmed by sending the appropriate bits via the data bus (D0-D3). Refer to the following table for selecting the various baud rates.

Frequency Options

| Transmit/Receive Address |  |  |  | Baud Rate | Theortical | Actual | PercentError | Duty Cycle$\qquad$ | Divisor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D | C | B | A | (16X Clock) | Freq. (kHz) | Freg. (kHz) |  |  |  |
| 0 | 0 | 0 | 0 | 50 | 0.8 | 0.8 | -- | 50/50 | 6336 |
| 0 | 0 | 0 | 1 | 75 | 1.2 | 1.2 | -- | 50/50 | 4224 |
| 0 | 0 | 1 | 0 | 110 | 1.76 | 1.76 | -- | 50/50 | 2880 |
| 0 | 0 | 1 | 1 | 134.5 | 2.152 | 2.1523 | 0.016 | 50/50 | 2355 |
| 0 | 1 | 0 | 0 | 150 | 2.4 | 2.4 | -- | 50/50 | 2112 |
| 0 | 1 | 0 | 1 | 300 | 4.8 | 4.8 | -- | 50/50 | 1056 |
| 0 | 1 | 1 | 0 | 600 | 9.6 | 9.6 | -- | 50/50 | 528 |
| 0 | 1 | 1 | 1 | 1200 | 19.2 | 19.2 | -- | 50/50 | 264 |
| 1 | 0 | 0 | 0 | 1800 | 28.8 | 28.8 | -- | 50/50 | 176 |
| 1 | 0 | 0 | 1 | 2000 | 32.0 | 32.081 | 0.253 | 50/50 | 158 |
| 1 | 0 | 1 | 0 | 2400 | 38.4 | 38.4 | -- | 50/50 | 132 |
| 1 | 0 | 1 | 1 | 3600 | 57.6 | 57.6 | -- | 50/50 | 88 |
| 1 | 1 | 0 | 0 | 4800 | 76.8 | 76.8 | -- | 50/50 | 66 |
| 1 | 1 | 0 | 1 | 7200 | 115.2 | 115.2 | -- | 50/50 | 44 |
| 1 | 1 | 1 | 0 | 9600 | 153.6 | 153.6 | -- | 48/52 | 33 |
| 1 | 1 | 1 | 1 | 19,200 | 307.2 | 316.8 | 3.125 | 50/50 | 16 |

Crystal Frequency $=5.0688 \mathrm{MHZ}$

## 3/ Theory of Operation

The user's manual for the TRS-80 RS-232-C Interface (Cat. No. 26-1145) has a general discussion of the EIA RS-232-C Standard. The RS-232 asynchronous communications board has various modes of operation that can be selected by programming the WD8250 ACE. The WD8250 is programmed by selecting the I/O address (3F8 to 3FE primary, and 2FB to 2 FE secondary), and writing data out to the board. Address bits A0, A1, and A2 are used to define the modes of operation by selecting the different registers to be programmed or read.

One interrupt is provided to the system from IRQ4 for primary operation, and IRQ3 for secondary operation. This interrupt is active high. Bit 3 of the modem control register must be set high in order to send interrupts to the system. When this bit is high, any interrupts allowed by the interrupt enable register will cause an interrupt.

Refer to Section 8 for the Functional Pin Definitions and Timing Diagrams for the WD8250.

Figure 1 shows the Block Diagram for the RS-232 Adapter.
Figure 2 shows the Functional Pin Definitions for the 82 sl 153 IFL.

Figure 3 shows the IFL equations for the 82Sl53 IFL.


Figure 1. Block Diagram for the RS-232 Adapter.

| $\begin{aligned} & \text { PIN } \\ & \text { NUMBER } \end{aligned}$ | PIN NAME | SYMBOL | FUNCTION |
| :---: | :---: | :---: | :---: |
| 1 | ADDRESS ENABLE | $\overline{\text { AEN }}$ | DMA cycle when high, CPU cycle when low. |
| 2-8 | ADDRESS LINES | A3-A9 | These address lines are used for decoding the address space $2 \mathrm{~F} 8-2 \mathrm{FF}$ (secondary) or $3 \mathrm{~F} 8-3 \mathrm{FF}$ (primary). |
| 9 | SECONDARY INTERRUPT REQUEST | IORQ 3 | Sends interrupts to the CPU while operating in the secondary address space. |
| 10 | GROUND |  |  |
| 11 | PRIMARY INTERRUPT REQUEST | IORQ4 | Sends interrupts to the CPU while operating in the primary address space. |
| 12 | PRIMARY OR SECONDARY UARTS | $P$ or $S$ | An input that determines which address space will be used. Primary (3F8-3FF) when high or secondary (2F8-2FF) when low. |
| 13 | UART INTERRUPT | INT | Receives interrupt signal from the 8250 . |
| 14 | UART CHIP SELECT | $\overline{\text { UCS }}$ | Enables the 8250 ACE when low. |
| 15 | NOT USED |  |  |
| 16 | NOT USED |  |  |
| 17 | DATA CHIP SELECT | DCS | Enables the data bus buffers when low. |
| 18 | NOT USED |  |  |
| 19 | NOT USED |  |  |
| 20 | VCC |  |  |

Figure 2. Functional Pin Definitions for the 82S153 IFL.

## INPUTS

PRI_PORT $=$ IOADDRESS $3 \mathrm{~F} 8-3 \mathrm{FF}$
SEC_PORT $=$ IOADDRESS $2 \mathrm{~F} 8-2 \mathrm{FF}$

OUTPUTS


Figure 3. IFL Equations for the 82S153 IFL.

## 4/ Troubleshooting

The RS-232 board can be tested by using the IOTEST program included with the Tandy 1000 diagnostics diskette. The following is an excerpt from the IOTEST reference quide.

Equipment Needed

1. Computer: Tandy 1000 or 1200 HD
2. RS-232 card
3. Loopback connector test fixture in the following configuration:

| DB-25 | Signal |
| :--- | :--- |
|  | -3 |
| $4-5$ | TX-RX |
| $6-8-20-22$ |  |
| RTS-CTS | DTR-DSR-CD-RI |

4. Tandy 1000 Diagnostic Diskette

Troubleshooting Hints

- If some of the control functions are bad:

Check the loopback connector. Check the line drivers/receivers for activity. Check the 8250 UART (U2) for any bent pins.

- The BRG fails:

Check for correct configuration of the jumpers. The 8250 UART may be malfunctioning.

- The RX test fails:

Check for interrupts on the bus.
Check the 8250 and jumper configurations.

- Break detect fails:

The 8250 UART may be malfunctioning.
RX and Break detect fails:
Check the data path through the loopback connector and the line drivers/receivers. Check the 8250 and jumper configurations.

If the above tests are negative:
Check the 82Sl53 (U5).
Check the 8250 UART and jumper configurations.
Check the 74LS245 (Ul).

## 5/ Component Layout



Silkscreen



Solder Side

## 6/ Parts List RS-232 Board Catalog Number 25-1014

| SYMBOL | QTY | DESCRIPTION | PART NO. |
| :---: | :---: | :---: | :---: |
|  | 1 | RS-232 COMBO/ Tl000 REV. A |  |
|  | 3 | JUMPER PLUG | AJ-6908 |
|  | 3 | STANDOFF | AHC-24 29 |
|  | 4 | SCREW - 4-40 X l/4 PAN H, MACHINE | AHD-2991 |
|  | 2 | NUTS - 4-40 | AHD-7143 |
|  | 1 | PANEL BRACKET, RS-232 | AHC-3192 |
| Cl-8,22 | 9 | CAPACITOR 330 PF 5/50V C. DISK | CF-7412 |
| C9 | 1 | CAPACITOR $22 \mathrm{PF} / \pm .5 \mathrm{PF} / 50 \mathrm{~V}$ | CC-220DJCP |
| C10 | 1 | CAPACITOR $56 \mathrm{PF} \overline{8} 0 \% 50 \mathrm{~V}$ C. DISK | CC-560QJCP |
| C11-12 | 2 | CAPACITOR 4.7 MFD 20\% 50V ELEC. AXIAL | CC-475MJAA |
| C13 | 1 | CAPACITOR $10 \mathrm{MFD} \pm 20 / 25 \mathrm{~V}$ ELEC. AXIAL | CC-106MFAA |
| C14-18 | 5 | CAPACITOR 0.1 MFD ${ }^{-} 50 \mathrm{~V}$ AXIAL | CC-104JJLA |
| E1-10 | 10 | STAKING PINS | AHB-9682 |
| J1 | 1 | RECEPTICAL | AJ-4052 |
| J2 | 1 | CONNECTOR, DB25 FEMALE RT. ANGLE metal shell, ground strap 4-40 THREADED INSERTS | AJ-6983 |
| R1-2 | 2 | RESISTOR 4.7K OHM $1 / 4$ WATT 5\% | N-0247EEC |
| R3 | 1 | RESISTOR 1.5K OHM 1/4 WATT 5\% | N-0206EEC |
| R4 | 1 | RESISTOR 1 MEG OHM 1/4 WATT 5\% | N-0445EEC |
| U1 | 1 | IC 74LS 245 OCTAL BUS TRANSCEIVER | AMX-4470 |
| U2 | 1 | IC 8250 SINGLE CHIP UART | MX-6859 |
| U2 | 1 | SOCKET 40-PIN DIP | AJ-6580 |
| U3-4 | 2 | IC MCl489 RECEIVER | MX-2143 |
| U5 | 1 | IC 82S153 IFL, MOD UART | MX-6858 |
| U5 | 1 | SOCKET 20-PIN DIP | AJ-6760 |
| U6 | 1 | IC 1488 DRIVER | AMX-3867 |
| Y1 | 1 | CRYSTAL 1.8432 MHz | MX-0097 |

RS-232 Board--International
Catalog Number 25-1014X

| SYMBOL | QTY | DESCRIPTION | PART NO. |
| :---: | :---: | :---: | :---: |
|  | 1 | RS-232 COMBO/ Tl000 REV. A |  |
|  | 4 | JUMPER PLUG | AJ-6908 |
|  | 3 | STANDOFF | AHC-24 29 |
|  | 4 | SCREW - 4-40 X l/4 PAN H, MACHINE | AHD-2991 |
|  | 2 | NUTS - 4-40 | AHD-7143 |
|  | 1 | PANEL BRACKET, RS-232 | AHC-3192 |
| Cl-8,22 | 9 | CAPACITOR $330 \mathrm{PF} 5 / 50 \mathrm{~V}$ C. DISK | CF-7412 |
| C9 | 1 | CAPACITOR $22 \mathrm{PF} / \pm .5 \mathrm{PF} / \mathrm{50V}$ | CC-220DJCP |
| Cl0 | 1 | CAPACITOR $56 \mathrm{PF} \overline{8} 0 \% 50 \mathrm{~V}$ C. DISK | CC-560QJCP |
| C11-12 | 2 | CAPACITOR 4.7 MFD $20 \% 50 \mathrm{~V}$ ELEC. AXIAL | CC-475MJAA |
| Cl3 | 1 | CAPACITOR $10 \mathrm{MFD} \pm 20 / 25 \mathrm{~V}$ ELEC. AXIAL | CC-106MFAA |
| Cl4-21 | 8 | CAPACITOR 0.1 MFD 50 V AXIAL | CC-104JJLA |
| El-10 | 10 | STAKING PINS | AHB-9682 |
| J1 | 1 | RECEPTICAL | AJ-4052 |
| J2 | 1 | CONNECTOR, DB25 FEMALE RT. ANGLE METAL SHELL, GROUND STRAP 4-40 THREADED INSERTS | AJ-6983 |
| R1,2,5 | 3 | RESISTOR 4.7K OHM 1/4 WATT $5 \%$ | N-0247EEC |
| R3 | 1 | RESISTOR 1.5K OHM 1/4 WATT 5\% | N-0206EEC |
| R4 | 1 | RESISTOR 1 MEG OHM 1/4 WATT 5\% | N-0445EEC |
| Ul | 1 | IC 74 LS 245 OCTAL BUS TRANSCEIVER | AMX-4470 |
| U2 | 1 | IC 8250 SINGLE CHIP UART | MX-6859 |
| U2 | 1 | SOCKET 40-PIN DIP | AJ-6580 |
| U3-4 | 2 | IC MCl489 RECEIVER | MX-6859 |
| U5 | 1 | IC 82Sl53 IFL, MOD UART | MX-6858 |
| U5 | 1 | SOCKET 20-PIN DIP | AJ-6760 |
| U6 | 1 | IC 1488 DRIVER | AMX-3867 |
| U7 | 1 | IC BRI943-00 | AMX-3921 |
| U8 | 1 | IC 74LS21 DUAL 4-IN AND | MX-6502 |
| U9 | 1 | IC 74 LSOO QUAD 2-IN NAND | MX-3495 |
| Y 1 | 1 | CRYSTAL 1.8432 MHZ | MX-0097 |
| Y 2 | 1 | CRYSTAL 5.0688 | AMX-2395 |

8/ WD8250 Asynchronous Communications Element



## WESTERN DIGITAL

## WD8250 Asynchronous Communications Element

## FEATURES

- Designed to be Easily Interfaced to Most Popular Microprocessors (Z-80, 8080A, 6800, etc.)
- Full Double Buffering
- Independently Controlled Transmit, Receive, Line Status, and Data Set Interrupts
- Programmable Baud Rate Generator Allows Division of Any Input Clock by 1 to (216 - 1 ) and Generates the Internal 16x Clock
- Independent Receiver Clock Input
- Fully Programmable Serial-Interface Characteristics
-5-, 6-, 7-, or 8-Bit Characters
-Even, Odd, or No-Parity Bit Generation and Detection
-1-, $11 / 2-$, or 2 -Stop Bit Generation
-Baud Rate Generation (DC to 56K Baud)
- False Start Bit Detector
- Complete Status Reporting Capabilities
- THREE-STATE TTL Drive Capabilities for Bidirectional Data Bus and Control Bus
- Line Break Generation and Detection
- Internal Diagnostic Capabilities
-Loopback Controls for Communications Link Fault isolation
-Break, Parity, Overrun, Framing Error Simulation
- Full Prioritized Interrupt System Controls
- Single +5 -Volt Power Supply


## GENERAL DESCRIPTION

The WD8250 is a programmable Asynchronous Communication Element (ACE) in a 40-pin package. The device is fabricated in N/MOS silicon gate technology.
The ACE is a software-oriented device using a three-state 8-bit bi-directional data bus.

The ACE is used to convert parallel data to a serial format on the transmit side, and convert serial data to parallel on the receiver side. The serial format, in order of transmission and reception, is a start bit, followed by five to eight data bits, a parity bit (if programmed) and one, one and one half (five bit format only) or two stop bits. The maximum recommended data rate is 56 K baud.
Internal registers enable the user to program various types of interrupts, modem controls, and character formats. The user can read the status of the ACE at any time monitoring word conditions, interrupts and modem status.
An additional feature of the ACE is a programmable baud rate generator that is capable of dividing an internal XTAL or TTL signal clock by a division of 1 to $2^{16}-1$.

The ACE is designed to work in either a polling or interrupt driven system, which is programmable by users software controlling an internal register.


WD8250 GENERAL SYSTEM CONFIGURATION

## PIN DEFINITIONS

| $\begin{aligned} & \text { PIN } \\ & \text { NUMBER } \end{aligned}$ | PIN NAME | SYMBOL | FUNCTION |
| :---: | :---: | :---: | :---: |
| 1-8 | DATA BUS | DO-D7 | 3-state input/output lines. Bi-directional communication lines between WD8250 and Data Bus. All assembled data TX and RX, control words, and status information are transferred via the DO-D7 data bus. |
| 9 | RECEIVE CLK. | RCLK | This input is the 16X baud rate clock for the receiver section of the chip (may be tied to BAUDOUT pin 15). |
| 10 | SERIAL INPUT | SIN | Received Serial Data In from the communications link (Peripheral device, modem or data set). |
| 11 | SERIAL OUTPUT | SOUT | Transmitted Serial Data Out to the communication link. The SOUT signal is set to a (logic 1) marking condition upon a MASTER RESET. |
| $\begin{aligned} & 12 \\ & 13 \\ & 14 \end{aligned}$ | CHIP SELECT CHIP SELECT CHIP SELECT | $\begin{aligned} & \text { cs0 } \\ & \text { CS1 } \\ & \hline \text { CS2 } \end{aligned}$ | When CS0 and CS1 are high, and CS2 is low, chip is selected. Selection is complete when the address strobe $\overline{\text { ADS }}$ latches the chip select signals. |
| 15 | BAUDOUT | BAUDOUT | 16X clock signal for the transmitter section of the WD8250. The clock rate is equal to the oscillator frequency divided by the divisor loaded into the divisor latches. The BAUDOUT signal may be used to clock the receiver by tying to (pin 9) RCLK. |
| $\begin{aligned} & 16 \\ & 17 \end{aligned}$ | EXTERNAL CLOCK IN EXTERNAL CLOCK OUT | $\begin{aligned} & \text { XTAL } 1 \\ & \text { XTAL } 2 \end{aligned}$ | These pins connect the crystal or signal clock to the WD8250 baud rate divisor circuit. See Fig. 3 and Fig. 4 for circuit connection diagrams. |
| $\begin{aligned} & 18 \\ & 19 \end{aligned}$ | DATA OUT STROBE dATA OUT STROBE | $\begin{aligned} & \overline{\text { DOSTR }} \\ & \text { DOSTR } \end{aligned}$ | When the chip has been selected, a low DOSTR or high DOSTR will latch data into the selected WD8250 register (a CPU write). Only one of these lines need be used. Tie unused line to its inactive state. DOSTR - high or DOSTR - low. |
| 20 | GROUND | Vss | System signal ground. |
| $\begin{aligned} & 21 \\ & 22 \end{aligned}$ | DATA IN STROBE DATA IN STROBE | DISTR DISTR | When chip has been selected, a low DISTR or high DISTR will allow a read of the selected WD8250 register (a CPU read). Only one of these lines need be used. Tie unused line to its inactive state. DISTR - high or DISTR - low. |
| 23 | DRIVER DISABLE | DDIS | Output goes low whenever data is being read from the WD8250. Can be used to reverse data direction of external transceiver. |
| 24 | CHIP SELECT OUT | CSOUT | Output goes high when chip is selected. No data transfer can be initiated until CSOUT is high. |
| 25 | ADDRESS STROBE | $\overline{\mathrm{ADS}}$ | When low, provides latching for register. Select (A0, A1, A2) and chip select (CS0, CS1, CS2) <br> NOTE: An active $\overline{A D S}$ signal is required when the Register Select (A0, A1, A2) signals are not stable for the duration of a read or write operation. If not required, the $\overline{\text { ADS }}$ input can be tied permanently low. |


| PIN NUMBER | PIN NAME | SYMBOL | FUNCTION |
| :---: | :---: | :---: | :---: |
| 26 | REGISTER SELECT A2 | A2 | These three inputs are used to select a WD8250 |
| 27 | REGISTER SELECT A1 | A1 | internal register during a data read or write. See |
| 28 | REGISTER SELECT A0 | AO | Table below. |
| 29 | NO CONNECT | NC | No Connect |
| 30 | INTERRUPT | INTRPT | Output goes high whenever an enabled interrupt is pending. |
| 31 | OUTPUT 2 | $\overline{\text { OUT2 }}$ | User-designated output that can be programmed by Bit 3 of the modem control register $=1$, causes OUT2 to go low. |
| 32 | REQUEST TO SEND | $\overline{\text { RTS }}$ | Output when low informs the modem or data set that the WD8250 is ready to transmit data. See Modem Control Register. |
| 33 | DATA TERMINAL READY | $\overline{\text { DTR }}$ | Output when low informs the modem or data set that the WD8250 is ready to communicate. |
| 34 | OUTPUT 1 | OUT1 | User designated output can be programmed by Bit 2 of Modem Control Register $=1$ causes OUT1 to go low. |
| 35 | MASTER RESET | MR | When high clears the registers to states as indicated in Table 1. |
| 36 | CLEAR TO SEND | $\overline{\text { CTS }}$ | Input from DCE indicating remote device is ready to transmit. See Modem Control Register. |
| 37 | DATA SET READY | $\overline{\text { DSR }}$ | Input from DCE used to indicate the status of the local data set. See Modem Control Register. |
| 38 | RECEIVED LINE SIGNAL DETECT | $\overline{\text { RSLD }}$ | Input from DCE indicating that it is receiving a signal which meets its signal quality conditions. See Modem Control Register. |
| 39 | RING INDICATOR | $\overline{\mathrm{RI}}$ | Input, when low, indicates that a ringing signal is being received by the modem or data set. See Modem Control Register. |
| 40 | $+5 \mathrm{~V}$ | $V_{\text {cc }}$ | + 5 Volt Supply. |

## CHIP SELECTION AND REGISTER ADDRESSING

Address Strobe (ADS pin 25): When low provides latching for register select (A0, A1, A2) and chip select (CS0, CS1, $\overline{\mathrm{CS}}$ ).
NOTE: An active $\overline{\operatorname{ADS}}$ input is required when register select (A0, A1, A2) signals are not stable for the duration of a read or write operation. If $\overline{\text { ADS }}$ is not required for latching, tie this input permanently low.
Chip Select (CS0, CS1, $\overline{\mathrm{CS} 2}$ ) pins 12-14: The definition of chip selected is CS0, CS1 both high and CS2 is low. Chip selection is complete when latched by $\overline{\mathrm{ADS}}$ or $\overline{\mathrm{ADS}}$ is tied low.
Register Select (A0, A1, A2) pins 26-28: To select a register for read or write operation, see Register Table.

NOTE: (DLAB) Divisor Latch access bit is the MSB of the Line Control Register. DLAB must be programmed high logic 1 by the system software to access the Baud Rate Generator Divisor Latches.

| DLAB | A2 | A1 | AO | Register |
| :---: | :---: | :---: | :---: | :--- |
| 0 | 0 | 0 | 0 | Receiver Buffer (read), Transmitter <br> Holding Register (write) |
| 0 | 0 | 0 | 1 | Interrupt Enable |
| $\mathbf{X}$ | 0 | 1 | 0 | Interrupt Identification (read only) |
| $\mathbf{X}$ | 0 | 1 | 1 | Line Control |
| $\mathbf{X}$ | 1 | 0 | 0 | MODEM Control |
| $\mathbf{X}$ | 1 | 0 | 1 | Line Status |
| $\mathbf{X}$ | 1 | 1 | 0 | MODEM Status |
| $\mathbf{X}$ | 1 | 1 | 1 | None |
| $\mathbf{1}$ | 0 | 0 | 0 | Divisor Latch (least significant byte) |
| $\mathbf{1}$ | 0 | 0 | 1 | Divisor Latch (most significant byte) |

WD8250 OPERATIONAL DESCRIPTION

## Master Reset

A high-level input on pin 35 causes the WD8250 to reset to the condition listed in Table 1.

## WD8250 Accessible Registers

The system programmer has access to any of the registers summarized in Table 2. For individual register descriptions, refer to the following pages under register heading.


WD8250 BLOCK DIAGRAM
Table 1. Reset Control of Registers and Pinout Signals

| Register/Signal | Reset Control | Reset State |
| :---: | :---: | :---: |
| Receiver Buffer Register | First Word Received | Data |
| Transmitter Holding Register | Writing into the Transmitter Holding Register | Data |
| Interrupt Enable Register | Master Reset | All Bits Low (0-3 forced and 4-7 permanent) |
| Interrupt Identification Register | Master Reset | Bit 0 is High and Bits 1-7 Are Permanently Low |
| Line Control Register | Master Reset | All Bits Low |
| MODEM Control Register | Master Reset | All Bits Low |
| Line Status Register | Master Reset | All Bits Low. Except Bits 5 and 6 Are High |
| Modem Status Register | Master Reset MODEM Signal Inputs | Bits 0-3 Low Bits 4-7 - Input Signal |
| Divisor Latch (low order bits) | Writing into the Latch | Data |
| Divisor Latch (high order bits) | Writing into the Latch | Data |
| SOUT | Master Reset | High |
| BAUDOUT | Writing into either Divisor Latch | Low |
| CSOUT | $\overline{A D S}$ Strobe Signal and State of Chip Select Lines | High/Low |
| DDIS | DDIS = CSOUT • RCLK . DISTR <br> (At Master Reset. the CPU sets RCLK and DISTR low.) | High |
| INTRPT | Master Reset | Low |


| $\overline{\overline{O U T} 2}$ | Master Reset | High |
| :---: | :---: | :---: |
| $\overline{\mathrm{RTS}}$ | Master Reset | High |
| $\overline{\mathrm{DTR}}$ | Master Reset | High |
| $\overline{\text { OUT } 1}$ | Master Reset | High |
| D7-D0 Data Bus Lines | In THREE-STATE Mode. <br> Unless CSOUT. DISTR $=$ High <br> or CSOUT | THREE-STATE <br> Data (ACE to CPU) <br> Data (CPU to ACE) High |

Table 2. Summary of WD8250 Accessible Registers

|  | Register Address |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ODLAB $=0$ | ODLAB 0 | 1DLAB $=0$ | 2 | 3 | 4 | 5 | 6 | ODLAB 1 | 1DLAB $=1$ |
| $\begin{aligned} & \text { But } \\ & \text { No. } \end{aligned}$ | Receiver Buffer Register (Read Only) | Transmitter <br> Holding <br> Register <br> (Write <br> Only) | interrupt <br> Enable Register | interrupt cation Register | Line Control Register | MODEM Control Register | Line Status Register | MODEM Status Register | Divisor Latch (LS) | Divisor Latch (MS) |
| 0 | Data Bit $0^{\circ}$ | Data Bit 0 * | Enable Received Data Available Interrupt (ERBFI) | - <br> Interrupt <br> Pending | Word <br> Length Select Bit 0 (WLSO) | Data Terminal Ready (DTR) | Data <br> Ready <br> (DR) | Delta Clear to Send (DCTS) | Bit 0 | Bit 8 |
| 1 | Data Bit 1 | Da*a Bit 1 | Enable Transmitter Holding Register Empty Interrupt (ETBEI) | $\begin{aligned} & \text { Interrupt } \\ & \text { ID } \\ & \text { Bit }(0) \end{aligned}$ | Word <br> Length <br> Select <br> Bit 1 <br> WLS1) | Request to Send (RTS) | Overrun Error (OR) | Delta Data Set Ready (DDSR) | Bit 1 | Bit 9 |
| 2 | Data Bit 2 | Data Bit 2 | Enable Receiver Line Status Interrupt (ELSI) | Interrupt ID Bit (1) | Number of Stop (STB) | Out 1 | Parity Error (PE) | Traling Edge Ring (TERI) | Bit 2 | Bit 10 |
| 3 | Data Bit 3 | Data Bit 3 | Enable MODEM Status Interrupt (EDSSI) | 0 | Parity Enable (PEN) | Out 2 | Framing Error (FE) | Delta Receive Line Signat Detect (DSLSD) | Bit 3 | Bit 11 |
| 4 | Data Bit 4 | Data Bit 4 | 0 | 0 | $\begin{aligned} & \text { Even } \\ & \text { Parity } \\ & \text { Select } \\ & \text { (EPS) } \end{aligned}$ | Loop | Break Interrupt (BI) | Clear to Send (CTS) | Bit 4 | Bit 12 |
| 5 | Data Bit 5 | Data Bit 5 | 0 | 0 | Stick Parity | 0 | Transmitter Holding Register Empty (THRE) | Data Set Ready (DSR) | Bit 5 | Bit 13 |
| 6 | Data Bit 6 | Data Bıl 6 | 0 | 0 | Set Break | 0 | Transmitter Shift Register Empty (TSRE) | Ring Indicator (RI) | Bit 6 | Bit 14 |
| 7 | Data Bit 7 | Data Bit 7 | 0 | 0 | Divisor <br> Latch <br> Access Bit <br> (DLAB) | 0 | 0 | Received Line Signal Detect (RLSD) | Bit 7 | Bit 15 |

-Bit 0 is the least significant bit it is the first bit serially transmitted or received

## Line Control Register

Bits 0 and 1: These two bits specify the number of bits in each transmitted or received serial character. The encoding of bits 0 and 1 is as follows:

| Bit $\mathbf{1}$ | Bit $\mathbf{0}$ | Word Length |
| :---: | :---: | :---: |
| 0 | 0 | 5 Bits |
| 0 | 1 | 6 Bits |
| 1 | 0 | 7 Bits |
| 1 | 1 | 8 Bits |

Bit 2: This bit specifies the number of stop bits in each transmitted or received serial character. If bit 2 is a logic 0,1 Stop bit is generated or checked in the transmit or receive data, respectively. If bit 2 is a logic 1 when a 5 -bit word length is selected via bits 0 and $1,1 \frac{1}{2}$ Stop bits are generated or checked. If bit 2 is a logic 1 when either a 6-, 7 -, or 8-bit word length is selected, 2 Stop bits are generated or checked.
Bit 3: This bit is the Parity Enable bit. When bit 3 is a logic 1. a Parity bit is generated (transmit data) or checked (receive data) between the last data word bit and Stop bit of the serial data. (The Parity bit is used to produce an even or odd number of 1 s when the data word bits and the Parity bit are summed.)
Bit 4: This bit is the Even Parity Select bit. When bit 3 is a logic 1 and bit 4 is a logic 0 , an odd number of logic 1s is transmitted or checked in the data word bits and Parity bit. When bit 3 is a logic 1 and bit 4 is a logic 1, an even number of bits is transmitted or checked.
Bit 5: This bit is the Stick Parity bit. When bit 3 is a logic 1 and bit 5 is a logic 1 , the Parity bit is transmitted and then detected by the receiver in the opposite state indicated by bit 4 .
Bit 6: This bit is the Set Break Control bit. When bit 6 is a logic 1 , the serial output (SOUT) is forced to the
Table 3. Baud Rates Using $\mathbf{1 . 8 4 3 2} \mathbf{M H z}$ Crystal.

| Desired <br> Baud <br> Rate | Divisor Used <br> to Generate <br> 16x Clock | Percent Error <br> Difference Between <br> Desired and Actual |
| :---: | :---: | :---: |
| 50 | 2304 | - |
| 75 | 1536 | - |
| 110 | 1047 | 0.026 |
| 1345 | 857 | 0.058 |
| 150 | 768 | - |
| 300 | 384 | - |
| 600 | 192 | - |
| 1200 | 96 | - |
| 1800 | 64 | -69 |
| 2000 | 58 | - |
| 2400 | 48 | - |
| 3600 | 32 | - |
| 4800 | 24 | - |
| 7200 | 16 | - |
| 9600 | 12 | - |
| 19200 | 6 | 2.86 |
| 38400 | 3 | 2 |
| 56000 | 2 |  |

Spacing (logic 0) state and remains there (until reset by a low-level bit 6) regardless of other transmitter activity. The feature enables the CPU to alert a terminal in a computer communications system.
Bit 7: This bit is the Divisor Latch Access Bit (DLAB). It must be set high (logic 1) to access the Divisor Latches of the Baud Rate Generator during a Read or Write operation. It must be set low (logic 0) to access the Receiver Buffer, the Transmitter Holding Register, or the Interrupt Enable Register.

## WD8250 Programmable Baud Rate Generator

The WD8250 contains a programmable Baud Rate Generator that is capable of taking any clock input (DC to 3.1 MHz ) and dividing it by any divisor from 1 to $\left(2^{16}-1\right)$. The output frequency of the Baud Generator is $16 x$ the Baud rate. Two 8-bit latches store the divisor in a 16 -bit binary format. These Divisor Latches must be loaded during initialization in order to insure desired operation of the Baud Rate Generator. Upon loading either of the Divisor Latches, a 16 -bit Baud counter is immediately loaded. This prevents long counts on initial load.
Tables 3 and 4 illustrate the use of the Baud Generator with two different driving frequencies. One is referenced to a 1.8432 MHz crystal. The other is a 3.072 MHz crystal.

## NOTE

The maximum operating frequency of the Baud Generator is 3.1 MHz . However, when using divisors of 6 and below, the maximum frequency is equal to $1 / 2$ the divisor in MHz . For example, if the divisor is 1 , then the maximum frequency is $1 / 2 \mathrm{MHz}$. In no case should the data rate be greater than 56K Baud.

## Line Status Register

This 8-bit register provides status information to the CPU concerning the data transfer. The contents of

Table 4. Baud Rates Using $\mathbf{3 . 0 7 2} \mathbf{~ M H z}$ Crystal.

| Desired <br> Baud <br> Rate | Divisor Used <br> to Generate <br> 16x Clock | Percent Error <br> Difference Between <br> Desired and Actual |
| :---: | :---: | :---: |
| 50 | 3840 | - |
| 75 | 2560 | - |
| 110 | 1745 | 0.026 |
| 134.5 | 1428 | 0.034 |
| 150 | 1280 | - |
| 300 | 640 | - |
| 600 | 320 | - |
| 1200 | 160 | - |
| 1800 | 107 | - |
| 2000 | 96 | - |
| 2400 | 80 | 0.628 |
| 3600 | 53 | - |
| 4800 | 40 | 1.23 |
| 7200 | 27 | - |
| 9600 | 20 | - |
| 19200 | 10 | - |
| 38400 | 5 | 14285 |
| 56000 | 3 |  |

[^0]the Line Status Register are indicated in table 2 and are described below.
Bit 0 : This bit is the receiver Data Ready (DR) indicator. Bit 0 is set to a logic 1 whenever a complete incoming character has been received and transferred into the Receiver Buffer Register. Bit 0 may be reset to a logic 0 either by the CPU reading the data in the Receiver Buffer Register or by writing a logic 0 into it from the CPU.
Bit 1: This bit is the Overrun Error (OE) indicator. Bit 1 indicates that data in the Receiver Buffer Register was not read by the CPU before the next character was transferred into the Receiver Buffer Register, thereby destroying the previous character. The OE indicator is reset whenever the CPU reads the contents of the Line Status Register.
Bit 2: This bit is the Parity Error (PE) indicator. Bit 2 indicates that the received data character does not have the correct even or odd parity, as selected by the even-parity-select bit. The PE bit is set to a logic 1 upon detection of a parity error and is reset to a logic 0 whenever the CPU reads the contents of the Line Status Register.
Bit 3: This bit is the Framing Error (FE) indicator. Bit 3 indicates that the received character did not have a valid Stop bit. Bit 3 is set to a logic 1 whenever the Stop bit following the last data bit or parity bit is detected as a zero bit (Spacing level).
Bit 4: This bit is the Break Interrupt ( BI ) indicator. Bit 4 is set to a logic 1 whenever the received data input is held in the Spacing (Logic 0) state for longer than a full word transmission time (that is, the total time of Start bit + data bits + Parity + Stop bits).

## NOTE

Bits 1 through 4 are the error conditions that produce a Receiver Line Status interrupt whenever any of the corresponding conditions are detected.
Bit 5: This bit is the Transmitter Holding Register Empty (THRE) indicator. Bit 5 indicates that the WD8250 is ready to accept a new character for transmission. In addition, this bit causes the WD8250 to issue an interrupt to the CPU when the Transmit Holding Register Empty Interrupt enable is set high. The THRE bit is set to a logic 1 when a character is transferred from the Transmitter Holding Register into the Transmitter Shift Register. The bit is reset to logic 0 concurrently with the loading of the Transmitter Holding Register by the CPU.
Bit 6: This bit is the Transmitter Shift Register Empty (TSRE) indicator. Bit 6 is set to a logic 1 whenever the Transmitter Shift Register is idle. It is reset to logic 0 upon a data transfer from the Transmitter Holding Register to the Transmitter Shift Register. Bit 6 is a read-only bit.
Bit 7: This bit is permanently set to logic 0 .

## Interrupt Identification Register

The WD8250 has an on chip interrupt capability that allows for complete flexibility in interfacing to all popular microprocessors presently available. In order to provide minimum software overhead during data character transfers, the WD8250 prioritizes interrupts into four levels. The four levels of interrupt conditions are as follows: Receiver Line Status (priority 1): Received Data Ready (priority 2); Transmitter Holding Register Empty (priority 3); and MODEM Status (priority 4).
Information indicating that a prioritized interrupt is pending and source of that interrupt are stored in the Interrupt Identification Register (refer to table 5). The Interrupt Identification Register (IIR), when addressed during chip-select time, freezes the highest priority interrupt pending and no other interrupts are acknowledged until the particular interrupt is serviced by the CPU. The contents of the IIR are indicated in table 2 and are described below.
Bit 0: This bit can be used in either a hardwired prioritized or polled environment to indicate whether an interrupt is pending. When bit 0 is a logic 0 , an interrupt is pending and the IIR contents may be used as a pointer to the appropriate interrupt service routine. When bit 0 is a logic 1 , no interrupt is pending and polling (if used) continues.
Bits 1 and 2: These two bits of the IIR are used to identify the highest priority interrupt pending as indicated in table 5.

Bits 3 through 7: These five bits of the IIR are always logic 0.

## Interrupt Enable Register

This 8-bit register enables the four interrupt sources of the WD8250 to separately activate the chip Interrupt (INTRPT) output signal. It is possible to totally disable the interurpt system by resetting bits 0 through 3 of the Interrupt Enable Register. Similarly, by setting the appropriate bits of this register to a logic 1 , selected interrupts can be enabled. Disabling the interrupt system inhibits the Interrupt Identification Register and the active (high) INTRPT output from the chip. All other system functions operate in their normal manner, including the setting of the Line Status and MODEM Status Registers. The contents of the Interrupt Enable Register are indicated in table 2 and are described below.

Bit 0: This bit enables the Received Data Available Interrupt when set to logic 1 . Bit 0 is reset to logic 0 upon completion of a read of the Receiver Buffer Register.
Bit 1: This bit enables the Transmitter Holding Register Empty Interrupt when set to a logic 1 . Bit 1 is reset to logic 0 upon a write to the Transmitter Holding Register.

Table 5. Interrupt Control Functions.

| Interrupt Identification <br> Register |  |  | Interrupt Set and Reset Functions |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| Bit 2 | Bit 1 | Bit 0 | Priority <br> Level | Interrupt <br> Flag <br> None | Interrupt <br> Source <br> None | Interrupt <br> Reset Control <br> - |
| 1 | 1 | 0 | Highest | Receiver <br> Line Status | Overrun Error or <br> Parity Error or <br> Framing Error or <br> Break Interrupt | Reading the <br> Line Status Register |
| 1 | 0 | 0 | Second | Received <br> Data Available | Receiver <br> Data Available | Reading the <br> Receiver Buffer <br> Register |
| 0 | 1 | 0 | Third | Rolding Register <br> Transmiter <br> Hmpty | Transmitter <br> Holding Register <br> Empty | Reading the IIR <br> Register (if source <br> of interrupt) or <br> Writing into the <br> Transmitter Holding <br> Register |
| 0 | 0 | 0 | Fourth | MODEM <br> Status | Clear to Send or <br> Data Set Ready or <br> Ring Indicator or <br> Received Line <br> Signal Detect | Reading the <br> MODEM Status <br> Register |

Bit 2: This bit enables the Receiver Line Status Interrupt when set to logic 1 . Bit 2 is reset to logic 0 upon completion of the associated interrupt service routine.

Bit 3: This bit enables the MODEM Status Interrupt when set to logic 1. Bit 3 is reset to logic 0 upon completion of the associated interrupt service routine.
Bits 4 through 7: These four bits are always logic 0.

## MODEM Control Register

This 8-bit register controls the interface with the MODEM or data set (or a peripheral device emulating a MODEM). The contents of the MODEM Control Register are indicated in table 2 and are described below.
Bit 0: This bit controls the Data Terminal Ready ( $\overline{\mathrm{DTR}}$ ) output. When bit 0 is set to a logic 1 , the $\overline{\text { DTR }}$ output is forced to a logic 0 . When bit 0 is reset to a logic 0 , the $\overline{D T R}$ output is forced to a logic 1.

## NOTE

The DTR output of the WD8250 may be applied to an EIA inverting line driver (such as the DS1488) to obtain the proper polarity input at the succeeding MODEM or data set.

Bit 1: This bit controls the Request to Send ( $\overline{\mathrm{RTS}}$ ) output. Bit 1 affects the RTS output in a manner identical to that described above for bit 0 .
Bit 2: This bit controls the Output 1 ( $\overline{\text { OUT } 1) ~ s i g n a l, ~}$ which is an auxiliary user-designated output. Bit 2
affects the $\overline{\text { OUT }} 1$ output in a manner identical to that described above for bit 0 .
Bit 3: This bit controls the Output 2 ( $\overline{\text { OUT 2 }}$ ) signal, which is an auxiliary user-designated output. Bit 3 affects the OUT 2 output in a manner identical to that described above for bit 0 .
Bit 4: This bit provides a loopback feature for diagnostic testing of the WD8250. When bit 4 is set to logic 1 , the following occur: the transmitter Serial Output (SOUT) is set to the HIGH IMPEDANCE state; the receiver Serial Input (SIN) is disconnected; the output of the Transmitter Shift Register is "looped back" into the Receiver Shift Register input; the four MODEM Control inputs ( $\overline{\mathrm{CTS}}, \overline{\mathrm{DSR}}, \overline{\mathrm{RLSD}}$, and $\overline{\mathrm{RI}}$ ) are disconnected; and the four MODEM Control outputs ( $\overline{D T R}$, $\overline{R T S}, \overline{\text { OUT } 1}$, and OUT 2 ) are internally connected to the four MODEM Control inputs. In the diagnostic mode, data that is transmitted is immediately received. This feature allows the processor to verify the transmit- and receive-data paths of the WD8250.
In the diagnostic mode, the receiver and transmitter interrupts are fully operational. The MODEM Control Interrupts are also operational but the interrupts' sources are now the lower four bits of the MODEM Control Register instead of the four MODEM Control inputs. The interrupts are still controlled by the Interrupt Enable Register.
The WD8250 interrupt system can be tested by writing into the lower six bits of the Line Status Register
and the lower four bits of the MODEM Status Register. Setting any of these bits to a logic 1 generates the appropriate interrupt (if enabled). The resetting of these interrupts is the same as in normal WD8250 operation. To return to this operation, the registers must be reprogrammed for normal operation and then bit 4 must be reset to logic 0 .
Bits 5 through 7: These bits are permanently set to logic 0 .

## MODEM Status Register

This 8-bit register provides the current state of the control lines from the MODEM (or peripheral device) to the CPU. In addition to this current-state information, four bits of the MODEM Status Register provide change information. These bits are set to a logic 1 whenever a control input from the MODEM changes state. They are reset to logic 0 whenever the CPU reads the MODEM Status Register.
The contents of the MODEM Status Register are indicated in table 2 and are described below.
Bit 0: This bit is the Delta Clear to Send (DCTS) indicator. Bit 0 indicates that the $\overline{\mathrm{CTS}}$ input to the chip has changed state since the last time it was read by the CPU.

Bit 1: This bit is the Delta Data Set Ready (DDSR) indicator. Bit 1 indicates that the $\overline{\mathrm{DSR}}$ input to the chip has changed state since the last time it was read by the CPU.
Bit 2: This bit is the Trailing Edge of Ring Indicator (TERI) detector. Bit 2 indicates that the $\overline{\mathrm{RI}}$ input to the chip has changed from an On (logic 1) to an Off (logic 0 ) condition.
Bit 3: This bit is the Delta Received Line Signal Detector (DRLSD) indicator. Bit 3 indicates that the $\overline{\mathrm{RLSD}}$ input to the chip has changed state.

## NOTE

Whenever bit $0,1,2$, or 3 is set to logic 1 , a MODEM Status Interrupt is generated.

Bit 4: This bit is the complement of the Clear to Send ( $\overline{\mathrm{CTS}}$ ) input.
Bit 5: This bit is the complement of the Data Set Ready ( $\overline{\mathrm{DSR}}$ ) input.
Bit 6: This bit is the complement of the Ring Indicator ( $\overline{\mathrm{RI})}$ input.
Bit 7: This bit is the complement of the Received Line Signal Detect ( $\overline{\mathrm{RLSD}}$ ) input.

## Typical Applications

Figures 1 and 2 show how to use the WD8250 chip in an 8080A system and in a microcomputer system with a high-capacity data bus.


FIGURE 1. TYPICAL 8-BIT MICROPROCESSOR/RS-232 TERMINAL INTERFACE USING THE ACE.

Typical Applications (continued)


FIGURE 2. TYPICAL INTERFACE FOR A HIGH-CAPACITY DATA BUS.

## ABSOLUTE MAXIMUM RATINGS

Temperature Under Bias $\ldots \ldots . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ (Ceramic)
$-50^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Plastic) All Input or Output Voltages with

Respect to $\mathrm{V}_{\mathrm{SS}} \ldots . . . . . . . . .$.
Power Dissipation ........................ 750 mW
Absolute maximum ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not intended; operation should be limited to those conditions specified under DC Electrical Characteristics.

## DC Electrical Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, V_{C C}=+5 \mathrm{~V} \pm 5 \%, V_{S S}=0 \mathrm{~V}$, unless otherwise specified.

| Symbol | Parameter | Min. | Typ. | Max. | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VILX | Clock. Input Low Voltage | -0.5 |  | 0.8 | V |  |
| VIHX | Clock Input High Voltage | 2.0 |  | VCC | V |  |
| VIL | Input Low Voltage | -0.5 |  | 0.8 | V |  |
| VIH | Input High Voltage | 2.4 |  | $\mathrm{V}_{\mathrm{CC}}$ | V |  |
| VOL | Output Low Voltage |  |  | 45 | V | ${ }^{\prime} \mathrm{OL}=1.6 \mathrm{~mA}$ on all outputs |
| VOH | Output High Voltage | 2.4 |  |  | V | ${ }^{\prime} \mathrm{OH}^{\prime}=-100 \mu \mathrm{~A}$ |
| ICC(AV) | Avg Power Supply Current (VCC) |  |  | 150 | ma |  |
| IIL | Input Leakage |  |  | $\pm 10$ | $\mu \mathrm{A}$ |  |
| ICL | Clock Leakage |  |  | $\pm 10$ | $\mu \mathrm{A}$ |  |
| I DL | Data Bus Leakage |  |  | $\pm 10$ | $\mu \mathrm{A}$ | $\left\{\begin{array}{l}V_{\text {OUT }}=0.4 \mathrm{~V} \\ V_{\text {OUT }}=4.6 \mathrm{~V}\end{array}\right\}$Data Bus is at <br> High-Impedance <br> State |

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{VSS}=0 \mathrm{~V}$


AC Electrical Characteristic $\mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$
Test Conditions

| Symbol | Parameter |  | Units | Min | Max |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| taw | Address Strobe Width |  | ns | 120 |  | 1TTL Load |
| ${ }^{\text {t }}$ ACS | Address and Chip Select Setup Time |  | ns | 100 |  | 1 TTL Load |
| ${ }_{\text {ta }}$ | Address Hold Time |  | ns | 0 |  | 1TTL Load |
| ${ }^{\text {t }}$ CSS | Chip Select Output Delay from Latch |  | ns |  | 160 | 1TTL Load |
| ${ }^{\text {t DID }}$ | DISTR/DISTR Delay from Latch |  | ns | 50 |  | 1TTL Load |
| t DIW | DISTR/DISTR Strobe Width |  | ns | 300 |  | 1TTL Load |
| $\mathrm{t}_{\text {RC }}$ | Read Cycle Delay |  | ns | 655 |  | 1TTL Load |
| RC | Read Cycle $=t_{\text {ACS }}+t_{\text {DID }}+t_{\text {DIW }}+t_{\text {RC }}+20 \mathrm{~ns}$ |  | ns | 1125 |  | 1TTL Load |
| tod | $\overline{\text { DISTR/DISTR to Driver Disable Delay }}$ |  | ns |  | 200 | 1 TTL Load |
| tod | Delay from DISTR/DISTR to Data |  | ns |  | 300 | 1TTL Load |
| ${ }^{\text {t }} \mathrm{HZ}$ | DISTR/DISTR to Floating Data Delay |  | ns | 60 |  | 1TTL Load |
| ${ }^{\text {t DOD }}$ | DOSTR/DOSTR Delay From Latch |  | ns | 20 |  | 1TTL Load |
| toow | DOSTR/DOSTR Strobe Width |  | ns | 175 |  | 1TTL Load |
| twC | Write Cycle Delay |  | ns | 685 |  | 1TTL Load |
| WC | Write Cycle $=t_{A C S}+t_{D O D}+t_{D O W}+t_{W C}+20 \mathrm{~ns}$ |  | ns | 1000 |  | 1TTL Load |
| ${ }^{\text {t }}$ DS |  |  | ns | 175 |  | 1TTL Load |
| ${ }^{\text {t }} \mathrm{DH}$ |  |  | ns | 60 |  | 1TTL Load |
| ${ }^{\text {t CSC }}$ | Chip Select Output Delay from Select |  | ns |  | 260 | 1TTL Load |
| toic | DISTR/DISTR Delay from Select |  | ns | 150 |  | 1TTL Load |
| tooc | $\overline{\text { DOSTR/DOSTR Delay from Select }}$ |  | ns | 150 |  | 1TTL Load |
| Symbol | Parameter | Min. | Max. | Units |  | Test Conditions |
| Baud Generator |  |  |  |  |  |  |
| N | Baud Rate Divisor | 1 | 216-1 |  |  |  |
| ${ }^{\text {t }}$ BLD | Baud Output Negative Edge Delay |  | 250 typ | ns |  | 100pF Load |
| tBHD | Baud Output Positive Edge Delay |  | 250 typ | ns |  | 100pF Load |
| tLW | Baud Output Down Time | 425 Typ |  | ns |  | 100pF Load |
| thw | Baud Output Up Time | 330 Typ |  | ns |  | 100pF Load |
| Receiver |  |  |  |  |  |  |
| ${ }^{\text {t }}$ SCD | Delay from RCLK to Sample Time |  | 2 typ | $\mu \mathrm{S}$ |  |  |
| ${ }^{\text {t }}$ SINT | Delay from Stop to Set Interrupt |  | 2 typ | $\mu s$ |  | OpF Load |
| ${ }^{\text {trint }}$ | Delay from $\overline{\text { DISTR }} /$ DISTR (RD RBR) to Reset Interrupt | . 250 | 1 typ | $\mu \mathrm{S}$ |  | 100pF Load |
| Transmitter |  |  |  |  |  |  |
| ${ }^{\text {thR }}$ | Delay from $\overline{\text { DOSTR/DOSTR (WR THR) to Reset }}$ Interrupt | . 250 | 1 typ | $\mu \mathrm{s}$ |  | 100pF Load |
| tiRS | Delay from Initial INTR Reset to Transmit Start |  | 16 typ | BAUDO Cycl |  |  |
| tSI | Delay from Initial Write to Interrupt |  | 24 typ | BAUD Cycl |  |  |
| ${ }^{\text {t SS }}$ | Delay from Stop to Next Start | . 250 | 1 typ | $\mu \mathrm{S}$ |  |  |
| ${ }^{\text {tS }}$ St | Delay from Stop to Interrupt (THRE) |  | 8 typ | BAUDO Cycl |  |  |
| TIR | Delay from $\overline{\text { DISTR/DISTR (RD IIR) to Reset }}$ Interrupt (THRE) | . 250 | 1 typ | $\mu \mathrm{S}$ |  | 100pF Load |
| Modem Control |  | . 250 |  |  |  |  |
| tMDO | Delay from DOSTR/ $\overline{\text { DOSTR }}$ (WR MCR) to Output |  | 1 typ | $\mu \mathrm{S}$ |  | 100pF Load |


| t SIM <br> tRIM | Delay to Set Interrupt from MODEM Input <br> Delay to Reset Interrupt from DISTR/DISTR <br> RD MSR) | .250 | 1 typ <br> 1 typ | $\mu \mathrm{s}$ <br> $\mu \mathrm{s}$ | 100pF Load <br> 100pF Load |
| :--- | :--- | :--- | :--- | :--- | :--- |



| Timing | Min | Unitr |
| :---: | :---: | :---: |
| $\mathbf{X X H}$ | 100 | ns |
| $\mathbf{I X L}$ | 115 | ns |

FIGURE 3. EXTERNAL CLOCK INPUT (3.1 MHz MAX.)


FIGURE 4. TYPICAL CRYSTAL OSCILLATOR NETWORK


FIGURE 5. READ CYCLE TIMING


FIGURE 6. WRITE CYCLE TIMING


FIGURE 7. BAUDOUT TIMING


FIGURE 8. RECEIVER TIMING


Notes
See Write Cycle Timing
'See Read Cycle Timing

FIGURE 9. TRANSMITTER TIMING


FIGURE 10. MODEM CONTROLS TIMING

ORDERING INFORMATION

| Part Number | Max Clock <br> Rate $^{1}$ | Bits/Character |
| :--- | :---: | :---: |
| WD8250*-00 | 3.1 MHz | $5,6,7,8$ |
| WD8250*-20 | 3.1 MHz | $6,7,8$ |
| WD8250*-30 | 500 kHz | $5,6,7,8$ |

## NOTES:

1. This is the maximum clock rate that can be applied to pins 16 or 17.

* Consult your local Western Digital Sales Representative for information regarding package availability, price, and delivery.


40 LEAD CERAMIC "A" or "AL"
40 LEAD RELPACK "B" or "BL"


40 LEAD CERDIP "CL"
40 LEAD PLASTIC "P" or "PL"

Information furnished by Western Digital Corporation is betieved to be accurate and reliable. However, no responsibility is assumed by Western Digital Corporation for its use; nor for any infringements of patents or other rights of third parties which may result trom its use. No license is granted by implication or otherwise under any patent or patent rights of Western Digital Corporation. Western Digital Corporation reserves the right to change specifications at anytime without notice.

2445 McCABE WAY
IRVINE, CALIFORNIA 92714
(714) 557.3550, TWX 910-595-1139

Tandy 1000 Mouse Controller/Calendar
CONTENTS PAGE
1/ INTRODUCTION ..... 1
2/ SPECIFICATIONS ..... 3
3/ THEORY OF OPERATION (HARDWARE) ..... 5
4/ THEORY OF OPERATION (SOFTWARE) ..... 7
BLOCK DIAGRAM (FIGURE l) ..... 14
5/ ALIGNMENTS ..... 15
6/ TROUBLESHOOTING ..... 17
7/ PRINTED CIRCUIT BOARDS
COMPONENT SIDE (FIGURE 2) ..... 19
SOLDER SIDE (FIGURE 3) ..... 20
SILKSCREEN (FIGURE 4) ..... 21
8/ SCHEMATIC ..... 23
9/ PARTS LIST ..... 25

## 1/ Introduction

The Mouse Controller/Calender Board interfaces the DIGI-Mouse pointing device (Cat. No. 26-1197) to the Tandy 1000. The application programs that require the DIGI-Mouse pointing device can be used on the Tandy l000. Also the battery backed clock/calendar allows the user to run the software provided on the diskette that comes with the owner's manual.

## 2/ Specifications

Dimensions: Standard half size board (5 x 4.2 inches).
Battery: 3.0-Volt Lithium coin cell, type CR2320 (Cat. No. 23-163). The battery life is one year.

Processor: 8042 -bit single chip processor.
Clock Speed: 7.16 MHz
Ambient Temperature Range:
$55^{\circ}$ to $95^{\circ} \mathrm{F}\left(12^{\circ}\right.$ to $35^{\circ} \mathrm{C}$ )
Storage Temperature Range:

$$
-40^{\circ} \text { to }+160^{\circ} \text { F }\left(-40^{\circ} \text { to } 71^{\circ} \mathrm{C}\right)
$$

## 3/ Theory of Operation (Hardware)

Look at the block diagram (Figure 1) and the clock/calendar schematic while reading the information below.

Bus I/F
Data, address, and control signals of the 1000 interface bus are buffered by U9 (an octal bus transceiver) and U7 (an octal buffer/line driver with 3-state outputs).

Chip Select and Reset Logic
The address lines are decoded by U2, U5, and U6. When the 1000 writes or reads to Ports 2 FC or 2 FE , a chip select signal is generated at Pin 6 of U2. The chip select controls U9 (the data buffer) and U3 (the 8042 processor).

During DMA cycles, the AEN signal from the 1000 bus, disables the chip select signal at Pin 1 of $U 7$. An active AEN signal disables the ly outputs of 47 , causing the A08 signal from Pin 12 of $U 7$ to float and be pulled high by R20. U5 then inverts the A08 signal, ensuring that the chip select is disabled during DMA.

One half of Ul (a dual D-type flip-flop) is used in a "divide by $2 "$ configuration. The 14.32 MHz oscillator signal from the 1000 interface bus is divided in half for a clock speed of 7.14 MHz , to be used by the 8042 processor. The 7.14 MHz clock is at Pin 5 of Ul.

The other half of $U 1$ is used as a reset latch. A reset signal is provided for the 8042 processor by ORing together the System Reset signal from the computer interface bus and the signal from the reset latch at Pin 11 of U2. The 8042 processor can be reset by a system reset or a write to $1 / 0$ port $2 F F$. A write to I/O port 2FD clears the reset signal.

## 8042 Processor

In the heart of the option board is the 8042 processor (U3). This processor acts as an input port for serial information from the DIGI-Mouse and the Clock/Calendar chip (U8). It then translates this information to a parallel format and controls its transfer to the computer interface bus. The clock/Calendar option board uses interrupt request IRQ3 to inform the 1000 when it is ready to transfer data.

DIGI-Mouse Buffers and Filters
A 9-Pin DB jack at J2 connects the DIGI-Mouse to the clock/ calendar board. RC filtering is used to reduce noise in the inputs. U4 (a CMOS hex schmitt trigger) provides further buffering and waveshaping of the DIGI-Mouse inputs, which are interfaced to the processor chip through its peripheral port bits Plo to Pl6.

Clock Chip
The Phillips-Signetics Clock/Calendar Chip (U8) interfaces directly to U3 at its peripheral port bits P17, P20-P23, and P27. The time base for the clock chip is a 32.768 KHz crystal, which is similar to that found in watches. The battery MUST be installed for the clock function to work. When a power failure occurs, the chip indicates this by sending a low-battery signal (POWF) to the 8042 processor.

## 4/ Theory of Operation (Software)

## User specifications:

- The motion sensor is oriented with the connecting cable and buttons pointing away from the user, the positive $x$ axis extends to the right and the positive $y$ axis extends toward the user.
- Minimum motion allowed before it is detected is $1 / 79$ of an inch along either axis. This distance is called a tick.
- The minimum unit of time for the Clock/Calendar chip is 1 minute. Maximum accuracy is $\pm 1 / 2$ minute. The units of time accepted by the chip are minutes, (24) hours, day of month, and month.

There are 3 modes for the mouse's motion data and button data that can be transfered to the host: the full interrupt mode, the initial interrupt and poll mode, and the poll only mode.

- To communicate with the clock/calendar chip, the user employs the set time command and a read time command.

I/O Ports used by the Clock/Calendar Board:

```
8 0 4 2 ~ D a t a ~ P o r t ~ 2 F C
8042 Command/Status Port 2FE
8042 Set RESET 8042 Port 2FF
8042 Clear RESET 8042 Port 2FD
```

Layout of the 8042's status port (2FE):
Read by the 8088:

| Bit \#0 $=$ Output register full flag (OBF) | $l=f u l l$ |
| :--- | :--- | :--- |
| Bit \#l $=$ Input register full flag (IBF) | l=full |
| Bit \#2 $=$ F0 flag - not used |  |
| Bit \#3 $=$ Fl flag comand flag |  |
| Bit \#4 $=$ Primary button status | l=input to port 2FE |
| Bit \#5 $=$ Secondary button status | l=button up |
| Bit \#6 $=$ Tertiary button status | l=button up |
| Bit \#7 $=$ Calendar power status | l=button up |
|  | l=power has failed |

Written to by the 8088:
This is the same as for the data written to Data Port 2FC, except the Fl (command) flag in 8042's status port is set.

Output:
When sending data or commands from the 8088 to the 8042 , the following procedure must be used:

1. Check the status port (2FE) of the 8042 to see if the input port full flag is set (Bit l).
2. If the flag is set, wait until the 8042 clears it. If it is not cleared within 1 millisecond, reset the 8042 chip because it is locked up.
3. If the flag is clear, proceed.
4. Check the length of the command. If it is equal to 1 , then send the data to 2 FE , and stop here.
5. If the length equals 2 or more, then send the data to 2 FC , and proceed.
6. Wait until the input port full flag is cleared by the 8042 before sending the next byte of data to 2 FC .
7. When the length equals 1 , send it to 2 FE , and stop here.

Formats of Commands to the 8042:

| Command | Header | Data |
| :---: | :---: | :---: |
| Set Time | 01h | All data must be in BCD format. |
|  |  | lst byte = minutes. |
|  |  | 2nd byte $=$ hours ( 24 hour clock). |
|  |  | 3 rd byte $=$ day of the month. |
|  |  | 4 th byte $=$ month. |
| Read Time | 02h | None |
|  |  | Returns data packet "R". |
| Set Mouse | 08h | Output is 2 bytes. |
| Motion Interrupt |  | $0=$ disable function. |
|  |  | 1-255 $=$ net number of "ticks" |
| and |  | to be moved before interrupt is |
|  |  | triggered. |
|  |  | Returns data packet "M". |

Button Interrupt<br>Set Timer 20h Interrupt

(Timer is set to interrupt approximately 40 times per second if the data is available to send.)

What is happening:
The 8042 is interrupted every time data is written to the input port 2 FC (or 2 FE , which set the command flag). The 8042 moves the data from the input register into the input buffer and increments a counter. It then returns to the point in the mouse data sampling and processing cycle at the point of interruption.

During each cycle, the 8042 checks the command flag to see if a command has been received. If the command flag is set, the 8042 checks the header byte to determine which command is in its input buffer. It then compares the counter to the number of bytes in that command. If any of these tests fails, the 8042 resets the pointer to the input buffer, clears the counter and the command flag, and continues with its normal cycle. If all the tests succeed, the 8042 jumps to the routine that handles that command. Each command has the requirement to reset the buffer pointer, the counter, and the command flag, and then return control to the normal process.

Input:
Data transfer between the 8042 and the main processor (8088) uses the interrupt mode, the poll mode, or both. The 8042 interrupts the 8088 by toggling port 21 h, Bit 3 , which is connected through a buffer to the 8259 A interrupt controller chip. The clock/ calendar board uses IRQ3 as an interrupt. Internally, the 8042 knows if the 8088 has read/written a byte from/to it by checking the status of the OBF/IBF flags. Three procedures are available to transfer the data from the 8042 to the 8088. They are discussed below.

Mode 1: Full interrupt mode
This mode uses the interrupt line to signal each byte to be transmitted. As each byte is transmitted, the common procedure below is executed except Mode 3 must have the latched interrupt cleared after each byte is processed. This mode may be the fastest mode when only the clock interrupt is actively being triggered.

Mode 2: Initial interrupt and poll mode
This mode uses the interrupt line to signal the start of a data packet, and polls the rest of the packet. It clears the latched interrupt only after all the data packet is transmitted. It uses the common procedure outlined below.

Mode 3: Poll only mode
This mode does not use the interrupt signal at all. It uses only the output register full flag in the $8042^{\prime}$ s status register (Port 2FE) 。

Common procedure:
The 8088 must have the following initialized before any interrupt mode is used:

- A hardware interrupt vector at 002C.
- An interrupt controller at port 21 (ANDed with a F7).

The 8042 has a data packet set up in its output buffer and begins transmitting by placing the "header" into the output register (Port 2FC). Placing the header byte into the ouput register sets the output register full flag in the status register (Port 2 FE , Bit 0 ) and sends a signal on the interrupt line to the 8088 (via the 8259 A$)$. The 8042 begins its normal processing cycle, testing the output register full flag on each cycle.

If the flag is set, the 8042 sends another signal on the interrupt line. If the flag is cleared and the packet still contains data to send, the 8042 places the next data byte into the output register and sends a signal on the interrupt line to the 8088. If the flag is cleared and the data packet is empty, the 8042 does NOT send an interrupt signal, but continues with its normal processing.

On the 8088 side, the "mouse" interrupt has a priority behind the 8253 timer, keyboard, and hard disk. This means that when the interrupt enters its routine, the higher-level interrupts can be enabled. The interrupt handler routine should do all the following:
. Ensure that the 8042 generated the interrupt by checking the status of its output register full flag.

- Identify the type of data packet by its "header" byte and switch to the appropriate routine when the entire data packet is received.
- After the data packet has been processed, clear or reset the buffer pointers, counters, and the latched interrupt.

Format of Data Packets from the 8042:

| Data Packet | Header | Data |
| :---: | :---: | :---: |
| Mouse data |  | 4 bytes of data |
| All data | "A" | lst byte $=$ MSB of Delta x |
| Motion data only | "M" | 2nd byte $=$ LSB of Delta $x$ |
|  |  | 3rd byte $=$ MSB of Delta y |
|  |  | 4 th byte $=$ LSB of Delta $y$ |
| (The button data is found in the status register (Port 2FE.) |  |  |
| Mouse data |  | none |
| Button data only | "B" | data found in status register (Port 2FE bits \# 4, 5, 6) |
| Read time data | "R" | 4 bytes of data in BCD format |
|  |  | lst byte $=$ minutes |
|  |  | 2nd byte $=$ hours (24-hour clock) |
|  |  | 3rd byte $=$ day of month |
|  |  | 4 th byte $=$ month |

Initialization Procedures of 8088:
The following hardware and software interrupts should be initialized:

Description
Hardware interrupt vector (INT OB)
Application interrupt vector (INT 33)
Hardware interrupt controller (IRQ3)
Video display interrupt (INT l0)

Address Type
002C Doubleword Pointer
00CC Doubleword Pointer
Port 21 (reset Bit 3)
0040 Doubleword Pointer

Operation of the Clock/Calendar:
When the 8042 receives either the Set Time or Read Time command, it shuts off all other operations until it is finished with the command. All the resources of the 8042 are required to communicate with the clock/calendar chip.

In the Set Time command, the 8042 breaks up the 4 bytes of time data into 4 packets and sends them serially a bit at a time. Upon completion, the 8042 resumes normal operation.

In the Read Time command, the 8042 sets up bit serial communications with the clock/calendar chip and builds 4 time data packets. The 4 packets are converted to bytes and placed in the output buffer behind the "R" header byte. The 8042 sets up a Read Time data packet to be sent to the 8088 and returns to normal operation.

If the power fails, the calendar power status bit in the status register (Port 2 FE Bit 7) is set. First, check to see if the power failure is temporary. (Perhaps the battery lost contact with the clock circuit because of a bump or jarring of the equipment.) To check for temporary failure, issue a Set Time command. If the power failure bit goes to zero everything is normal. If the power failure bit is not reset, then the battery either is dead or is dislodged from its holder clip. After replacing or resetting the battery, issue the Set Time command to ensure proper operation.

Operation of the 8042:
Upon power up/RESET, the 8042 initializes the system by zeroing all RAM and clearing all flags, ports, and registers. It then sets up the default conditions and enters the normal mouse data processing cycle, which follows:

1. The 8042 takes a copy of the Mouse/Clock/Calendar data port (Pl) and saves a copy.
2. It then checks to see if there is any change in the status of the buttons. If there is, the 8042 sends a copy to the status register.
3. Next, the 8042 determines the Delta $x$ changes or Delta $y$ changes. Both Deltas use the same process.
4. The 8042 retrieves the copy of Port Pl and compares the bit pattern of $x A$ and $x B$ to the old copy to see if any changes have occured. If a change has occured, then the 8042 determines whether the change is $+1,-1$, or null. (Null occurs when the 8042 misses 2 state changes of $x A$ and $x B$. )
5. The Delta x (or y ) working accumulator (+-32735 units) is then either incremented or decremented respectively. A null result does not affect the accumulators.
6. At this point, the 8042 checks the event-triggered data polls for motion and button data. If either occurred, then the 8042 transfers the values in the working accumulators to the output buffer behind the appropriate header byte and clears the working accumulators to zero. If not, then the 8042 checks to see if any input from the 8088 has been received by checking the Fl command flag. If there is input in the input buffer, the 8042 tests the header to see which bit is "on" and jumps to the routine that handles that command.
7. After checking for input, the 8042 then checks the internal timer to see if anything has timed out. Two items are connected to the timer flag, the 8042 and the timed data transfer interrupt. All outputs to the 8088 are tied to the timer. Each time the timer times out, the 8042 checks the output register full flag to see if it is set. If the flag is set, the 8042 sends off a signal on the interrupt line to the 8088, resets the timer, and returns to normal operation. The 8042 checks to see if it needs to send any more data. If it does, it moves the next data byte to the output register, sends a signal on the interrupt line, and returns to normal operations. If the output buffer is empty, the 8042 simply returns to normal operation. Connected to the timer is the timed data transfer interrupt. When the timer interrupt is enabled, the 8042 also checks to see if the timer has timed out. If it has, then the 8042 transfers the mouse data from the working accumulators to the output buffer behind the header byte and ships it to the 8088. It then clears the working accumulators and returns to the start of the cycle.


Figure 1

DIGI-Mouse/Clock Controller Board Block Dlagram I/F

## 5/ Alignments

A Frequency Counter with a timer function is necessary for a correct alignment. To ensure an accurate time base, the trim capacitor (Cl9) is set at the factory. If you need to replace Yl, U8, or Cl9, adjust C19 for an average waveform period of 7.8125 milliseconds at Pin 11 of U8.

The oscillator will not be loaded by the test instrument because the Signetics SAB3019 Clock/Calendar chip provides a buffered oscillator output at pin 11 that is divided by 256. The frequency at Pin ll should be 128 Hz . Since this is a low frequency, most frequency counters are more accurate if their timer fuction is used.

No other alignments need be made. When installing the board, however, take normal precautions against static electricity discharge.

## 6/ Troubleshooting

If the board is malfunctioning, check to see that the clocks are present at both the 7.16 MHz signal at $\operatorname{Pin} 3$ of $U 3$ and the 128 Hz at Pin 11 of U8. Note: For correct operation of the clock function, the battery must have a minimum charge of 2.75 volts and make complete contact with the battery socket clip. The chip select signal at Pin 6 of $U 2$ can be tested by using a short Basic program to access Ports 2 FCh or 2 FEh . Access to Ports 2 FF or 2FD should generate a pulse at pin ll of Ul. Although the inputs to CMOS (U4) are well protected, a large discharge could damage the CMOS. Swapping the processor or clock chip with known good devices can help you isolate the problem.


Figure 2


Figure 3

Clock/Calendar Silkscreen


Figure 4

Clock/Calendar Schematic


## 8/ Parts List <br> Tandy 1000 Mouse/Clock/Calendar Catalog Number 25-1015

SYMBOL QTY DESCRIPTION PART NO.


DIGI MOUSE CONT./COMBO BD. REV. A SCREW \#4-40 X 1/4" ZINC

AHD-2991
2 SCREWS (PANEL) \#4-40 X 3/8
2 NUTS, 4-40
3 STANDOFF, NYLON PCB STANDOFF, \#4-40 HEX

AHD-2222
AHD-7166
AHC-24 29
AHC-2259

| BTl | 1 | BATTERY 3.0V \#23-16 | ACS-0103 |
| :---: | :---: | :---: | :---: |
| BTI | 1 | SOCKET, PCB MOUNT | AJ-7056 |
| $\begin{aligned} & \mathrm{C} 1-3,8,9 \\ & 11,15,17 \\ & 18 \end{aligned}$ | 9 | CAPACITOR 0.1 MFD 50V MONO AXIAL | CC-104JJLA |
| C4-7 | 4 | CAPACITOR 680 PFD 50V 20\% | CC-681MJCP |
| $\begin{gathered} \mathrm{C} 10,16, \\ 20,21 \end{gathered}$ | 4 | CAPACITOR 33 MFD 6.3 V TANTALUM RAD. | CC-336KBTP |
| Cl2-14 | 3 | CAPACITOR 100 PFD 5\% 50V | CC-101JJCP |
| C19 | 1 | CAPACITOR 5-40 PFD TRIM | ACF-7370 |
| CR1-2 | 2 | DIODE 1N4148 | DX-0022 |
| J1 | 1 | RECEPTACLE | AJ-4052 |
| J2 | 1 | CONNECTOR DB9 MALE RT. ANGLE (9-PIN) METAL SHELL, GROUNDING DETENTS AND STRAP, 4-40 THREADED INSERTS | AJ-5062 |
| ${ }_{20}^{\mathrm{Rl}, 14-16,}$ | 5 | RESISTOR 4.7K OHM 1/4 WATT 58 | N-0247EEC |
| R2-5 | 4 | RESISTOR 10K OHM 1/4 WATT 58 | N-0281EEC |
| R6-13 | 8 | RESISTOR 100K OHM 1/4 WATT 5\% | N-0371EEC |
| R17-19 | 3 | RESISTOR 100 OHM 1/4 WATT 5\% | N-0132EEC |
| R21-22 | 2 | RESISTOR 470 OHM 1/4 WATT 5\% | $\mathrm{N}-0169 \mathrm{EEC}$ |
| R23 | 1 | RESISTOR 1 K OHM 1/4 WATT $5 \%$ | N-0196EEC |


| SYMBOL | QTY | DESCRIPTION | PART NO. |
| :---: | :---: | :---: | :---: |
| Ul | 1 | IC 74 LS 74 FLIP FLOP | MX-3808 |
| U2 | 1 | IC 74 LS 32 QUAD 2-IN OR | MX-6183 |
| U3 | 1 | IC 8042 PROCESSOR | MX-6884 |
| U3 | 1 | SOCKET 40-PIN DIP | AJ-6580 |
| U4 | 1 | IC MCl4584 CMOS HEX INVERTER | MX-6207 |
| U5,10 | 1 | IC M74LS04P HEX INVERTER | AMX-3552 |
| U6 | 1 | IC 74 LS 308 -IN NAND | AMX-3556 |
| U7 | 1 | IC 74 LS 244 OCTAL BUS TRANSCEIVER | AMX-3864 |
| U8 | 1 | IC SAB3019 CAL/CLK | MX-6178 |
| U8 | 1 | SOCKET 16-PIN DIP | AJ-6581 |
| U9 | 1 | IC 74 LS 245 OCTAL BUFFER | AMX-4470 |
| Yl | 1 | CRYSTAL 32.768 KHz | MX-1113 |
| Y1 | 1 | STAKING PIN (GROUND FOR CRYSTAL) | AHB-9682 |

PLUS Network 4 Interface

## CONTENTS

Introduction ..... 1
Theory of Operation ..... 2
Installation Instructions ..... 5
Parts List ..... 11
P.C. Board ..... 13
Schematic ..... 17

## INTRODUCTION

PLUS Network 4 is Local Area Network (LAN) system for communication between as many as 64 units, all operating asynchronously at a clock rate of 1 MHz . The 64 units are tied together by twisted pairs of wires. This network is interconnected through the Tandy l000's 62-pin option slot. This interconnection is hardwired at the $I / 0$ addresses 0248-024F, and ties the Tandy 1000 to the CORVUS chip set which does most of the data formatting and recognizes the network protocol.

Insert block diagram.


## THEORY OF OPERATION

## Address Decode

Address decoding uses ICs U15, Ul6, and Ul7 to decode I/O port addresses. The outputs are then gated with *IOW and *IOR signals. Read and write operations are as follows:

I/O Port Read \& Write Operation
248 Read Transporter Status Byte
249
Read RAM
24A Read the Counter Saver Byte
24B Read RAM, Increment the Counter by l.
248 Write the Counter High Byte
249 Write to the CAR
24A Write the Counter Low Byte 24B Write to RAM, Increment the Counter by 1.

## Interrupt Operation

The PLUS Network 4 Interface board supports the following interrupts.

| I/O Port | Interrupt Operation |
| :---: | :--- |
| 24 C | Disable interrupts |
| 24 D | Clear current interrupt request |
| 24 E | Enable interrupts |
|  | (All three operations can be done by |
|  | reading or writing with meaningless |
|  | data.) |
|  | Interrupt status |
|  | Bit 4 set $\Rightarrow$ interrupt pending |
|  | Bit 5 set $\Rightarrow$ interrupts disabled |

Boot ROM /Buffer RAM
The PLUS Network 4 Interface board has a 2 K -byte boot ROM (Ull) and 4 K -bytes of buffer RAM (Ul, U2). ROM extends from host CPU address DFOOO to address DFFFF and uses the first 1024 bytes of the 4 K buffer RAM.

## PLUS Network 4 Interface

The PLUS Network 4 Interface uses two components, (Ul0) which is a differential driver and receiver, and a transformer (Tl), which acts as a filter. Note that since the input is a differential (as is the output) and the data is NRZI, which depends solely on transmission, the connector pins may be reversed on a unit without any effect to data transmission. The network interface is the lowest level of the network architecture.

## Communications

The Comm. Chip, a CORVUS 68A54 Advanced Data Link Controller Chip, (U5) mainly encodes and decodes network data and monitors the network status for CRC errors, etc. This device constitutes the second level of the network architecture.

## Network Control

The Network Control Chip, a CORVUS 6801 Chip, (U4) forms the network interface intelligence by monitoring the output of the Comm. chip (U5) and handling the header information. It handles the header information by communicating with the host side by a "command vector" in the buffered RAM and a message as to where to find the vector (sent via the C.A.R.). This device constitutes the third level of the network architecture.

## Buffer Interface

The Buffer Interface Chip, a CORVUS 3131 Gate Array Chip, (U3) controls the timing and bus control for interfacing the users of the buffer RAM. It may be thought of as a two port memory controller, interfacing the host and the CORVUS 6801 chip with memory. In addition, the buffer interface chip also gates, times, and controls signals to each to facilitate their part of the interface.

## Installation Instructions

## Introduction

Adding the pLUS Network 4 Interface to your computer allows you to communicate with up to 64 units, all operating asynchronously at l MHz., via the Network 4 LAN (local area network).

The PLUS Network 4 Interface is readily installable by you. However, you can have the kit installed by the service technicians at your Radio Shack Service Center. Having service technicians install the kit not only ensures expert installation, but also enables them to quickly check that all the equipment is functioning properly.

## Installation

Caution should be exercised in low humidity environments to prevent damage to electronic parts by static electricity being discharged through them. Discharge any built-up static electricity by touching a grounded metal object before proceeding further.

Warning: Turn off all equipment. Turn the power off and disconnect the power cord from the wall socket. If the computer is on, you could damage the central processing unit, as well as your PLUS Network 4 Interface board.

Before proceeding with the installation of the PLUS Network 4 Interface, be sure the kit contains the PLUS Network 4 Interface board, a terminal block and 2 star washers, 2 wing nuts, an alternate mounting bracket and 2 mounting screws, and 3 plastic standoffs (for the Tandy 1000 SX).

On the PLUS Network 4 Interface board locate the jumper at Jl which selects the interrupt that is to be used. Be sure the jumper is set to interrupt 3 (IR3) as this interrupt is recognized by the software.

Also on the PLUS Network 4 Interface board, find DIP Switch SWl (in the mounting bracket) which selects the station number. The settings on the DIP switches are a binary encoding of the numbers 0 to 63 (decimal). Each dip switch represents a digit in the 6 bit binary number. A switch set to down or "OFF" equals bit on or binary "l". Switch SWl-1 is the least significant bit. See the switch setting examples in Figure 1.


Station 0


Station 1


Station 42

Figure 1.

Note: On each PLUS Network 4 Interface board set these SWl switches to a unique number of $0-63$. Be sure to record the switch settings for each computer. The software currently selects station 63 as the disk server, therefore, we recommend that the stations be set at 0-62.

When installing the PLUS Network 4 Interface board in the Tandy 1000 SX:

1. Remove the 2 screws on the front of the computer. Then remove the computer's cover by tilting it away from you and lifting it clear of the slot. See Figure 2.


Figure 2.
2. If you are going to use an installed Memory pLUS Expansion board (Cat. No. 25-1011) as the carrier board for the PLUS Network 4 Interface board remove the Memory PLUS Expansion board from its slot.
3. Remove the mounting bracket from this Memory PLUS Expansion board.
4. Disconnect the small harness assembly from the pins of J2 on the PLUS Network 4 Interface board.
5. Remove the mounting bracket from the PLUS Network 4 Interface board.
6. Remove the nuts, plastic washers (plain and shouldered), small harness assembly and screws from the mounting bracket.
7. Install these screws, plastic washers, nuts and the small harness assembly on the supplied alternate mounting bracket as shown in Figure 3. The polarity on the wire harness does not matter, therefore, either ring terminal on the wire harness can be used with either screw. Be sure the shouldered plastic washers are seated in the bracket holes so that the screws are insulated from (that is, do not touch) the mounting bracket. Also be sure that the harness wires do not show through the switch setting opening in the mounting bracket.


Figure 3.
8. Install the alternate mounting bracket on the carrier board, either the:

PLUS Upgrade Adapter board, Cat. No. 25-1016, or
the Memory PLUS Expansion board, Cat. No. 25-1011, (if you have one)
using the 2 screws that mounted the old bracket.
9. Plug the small harness into the PLUS Network 4 Interface board.
10. Install the 3 standoffs in the PLUS Network 4 Board. Then carefully install the PLUS Network 4 Interface board on the carrier board by aligning the pins and the connector and pressing the pLuS Network 4 Interface board down firmly but gently to seat it.
11. If necessary remove the option slot cover of an unused expansion slot. Carefully insert the carrier board in the empty slot. Secure the mounting bracket of the carrier board to the chassis with the screw that held the slot cover on. See Figure 4.


Figure 4.
12. Slide the terminal block over the 2 screws that protrude from the back of the computer, with the flat side of the block with 2 round indentations facing to the outside. See Figure 5 .
13. Slip the 2 star washers over the protruding screws, with the teeth facing toward the terminal block. Also install the 2 wing nuts on the ends of the screws.
14. Install a strand of the network cable between the terminal block and the star washer on one of the protruding screws and tighten the wing nut. Do likewise for the other cable strand, protruding screw and wing nut.


Figure 5.
15. Reinstall the computer's cover, securing it with the screws previously removed.

The PLUS Network 4 board is now ready for use. See the PLUS Network 4 Interface Owner's Manual.

TANDY 1000 Network SMT Parts List

Symbol
Description
Part No.


TANDY 1000 Network SMT Parts List
 Symbol Description Part No.

Bracket, 8729601
Bracket, 8729572
Standoff, Pastic 8590164


| TTMNDY SYSTEHS DESIGN FICHITORK | FAB. SPEC. 1 TSD-CRE天-2 |
| :---: | :---: |
| PROJECT NO:' 804 DATE O6/I7/86 |  |
| ITLET NETMORK | C/S SILKSCREEN |
| DUGG. ${ }^{\text {NO. }} 17700340$ REV. 1 |  |
| PART NO. 1 X70100001 |  |
| DESIGN GRID: $\mathrm{x}=0.025$ |  |
| INSP |  |

PLUS Network 4 Interface Board - Silkscreen


| TANDY SYSTEMS DESIGN FILMHORK | FAB. SPEC. 1 TSD-C262-2 |
| :---: | :---: |
| PROJECT NO. 1804 DATE:06/17/86 |  |
| TITLE I NE THORK |  |
| DWG. NO. 11700340 REV.A |  |
| PART NO. $\times 70100001$ | LAYER 1 COMPONENT SIDE |
| DESIGN GRIDI $x=.025 \quad y=.025$ |  |
|  |  |
| IMSP |  |

PLUS Network 4 Interface Board - Component Side


| TTANDY SYSTEMS DESIGN FILMLORK | FAB. SPEC. 1 TSD-C262-2 |
| :---: | :---: |
| PROJECT NO. 8804 DATE, 06/17/86 |  |
| TITLE NETWORK |  |
| DYGG. NO. 17700340 REV.A |  |
|  |  |
| DESIGN GRIDI $x=.025 \quad=.0$ <br> DESIGNER: GMIDD | LAYER 2 SOLDER Side |

PLUS Network 4 Interface Board - Solder Side

Schematic
NOTE: THE FOLLOWING
PAGE 2 \& 3 .
DO-D7, AO-A19, HD1-HDB,
IOR/. IOW/. IR2-IRS.
this is a cad generated
dRawing - do not revise manually
148




DEVICES

## DEVICES

CONTENTS

VIDEO CONTROLLER CHIP SPECIFICATION DMA CHIP SPECIFICATION
PRINTER INTERFACE
KEYBOARD INTERFACE SPECIFICATION
TIMING CONTROL GENERATOR
8087 NUMERIC DATA COPROCESSOR

VIDEO CONTROLLER CHIP SPECIFICATION

## VIDEO CONTROLLER CHIP SPECIFICATION CONTENTS

GENERAL DESCRIPTION ..... 1
BLOCK DIAGRAM. ..... 2
OPERATING MODES .....  3
PIN LIST ..... 24
LOGIC BLOCK DIAGRAM ..... 27
ELECTRICAL SPECIFICATIONS ..... 29
TIMING ..... 30

## VIDEO CONTROLLER CHIP SPECIFICATION

## GENERAL DESCRIPTION

The Tandy 1000 video controller chip is designed to operate with three types of display devices: A standard TV using an RF modulator, a composite monitor, and an RGBI 200 line Color monitor. This custom controller chip implements all of the video logic for the Tandy 1000 plus most of the system decode logic. Figure l shows a block diagram of the controller chip.

The video display system is very flexible and can be programmed for a number of video modes. These modes use varying numbers of colors (2,4 or 16 ). These 16 colors are defined by combinations of the RGBI as shown in the color chart below and can be used for the foreground color or background color. If you are using a black and white monitor, these colors will appear as shades of gray. In addition, any $l$ of the 16 colors or shades of gray can be used for the screen border.

| I | R | G | B | Color |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | Black |
| 0 | 0 | 0 | 1 | Blue |
| 0 | 0 | 1 | 0 | Green |
| 0 | 0 | 1 | 1 | Cyan |
| 0 | 1 | 0 | 0 | Red |
| 0 | 1 | 0 | 1 | Magenta |
| 0 | 1 | 1 | 0 | Brown |
| 0 | 1 | 1 | 1 | Light Gray |
| 1 | 0 | 0 | 0 | Dark Gray |
| 1 | 0 | 0 | 1 | Light Blue |
| 1 | 0 | 1 | 0 | Light Green |
| 1 | 0 | 1 | 1 | Light Cyan |
| 1 | 1 | 0 | 0 | Pink |
| 1 | 1 | 0 | 1 | Light Magenta |
| 1 | 1 | 1 | 0 | Yellow |
| 1 | 1 | 1 | 1 | White |

## TABLE 1 AVAILABLE COLORS TABLE



Figure 1. VIDEO CONTROLLER CHIP BLOCK DIAGRAM

## OPERATING MODES

The operating modes supported by the Tandy 1000 video controller may be grouped in two categories: Alphanumeric and Graphic.

## ALPHANUMERIC MODE

The Alphanumeric mode has two basic types of operation: 80 character by 25 rows, and 40 character by 25 rows. In both modes the characters are generated by a 256 character ROM. The character ROM is divided into the following groups:

* 96 Standard ASCII characters
* 48 Block Graphics characters
* 64 Foreign Language/Greek characters
* 16 Special Graphics characters.
* 32 Word Processing/Scientific Notation characters

In both modes all characters are 7 dots wide by 7 dots high and are placed in an 8 dot wide by 8 or 9 dot high matrix. In both the $40 \times 25$ and the $80 \times 25$ modes, two bytes of data are used to define each character on the screen. The even address ( $0,2,4$ etc.) is the character code and is used in addressing the character generating ROM. The odd address (1,3,5 etc.) is the attribute byte, that defines the foreground and the background color of the character. The following chart shows how the attribute byte controls colors.


Table 2 ALPHANUMERIC MODE ATTRIBUTE BYTE DEFINITION

[^1]
## GRAPHICS MODE

The Tandy 1000 video Controller chip can be programmed for a variety of modes.
The Tandy 1000 Computer family supports the following Graphics Modes:

MODE
4 Color Medium Resolution 320 x 200
16 Color Medium Resolution
16 Color Low Resolution
2 color High Resolution
4 Color High Resolution 640 x 200

IBM PCJR IBM PC

| $X$ | $X$ |
| :--- | :--- |
| $X$ |  |
| $X$ |  |
| $X$ |  |
| $X$ |  |

## GRAPHICS MEMORY USAGE

* 200 line Graphics Memory uses either 2 or 4 banks of 8000 bytes. In either case, pixel information for the display's upper left corner is found at address 0000 .

| \#\#\#\# | The 4 Color High Resolution 640 X 200 and |
| :--- | :--- |
| \#\#\#\# | The 16 Color Medium Resolution 640 X 200 |
| $\# \# \# \#$ | use 4 banks of 8000 bytes as follows |

(Hex) | <------160 Bytes------>

| 0000 |
| :--- |
| 1 F 3 F |
| 2000 |
| 3 F 3 F |
| 4000 |
| 5 F 3 F |
| 6000 |
| 7 F 3 F |$\square=$| 00 Scans |
| :--- |
| $(0,4,8, \ldots, 196)$ |
| 01 Scans |
| $(1,5,9, \ldots, 197)$ |
| 10 Scans |
| $(2,6,10, \ldots, 198)$ |
| 11 Scans |
| $(3,7,11, \ldots, 199)$ |



## 2 COLOR HIGH RESOLUTION $640 \times 200$ GRAPHICS MODE

The 2 Color High Resolution 640 X 200 Graphics mode may require a high resolution monitor for proper operation. Available in the IBMPC and IBM PCjr, this mode has the following characteristics:

Contains a maximum of 200 rows of 640 PELs Can display 2 of 16 possible colors Requires 16 K bytes of read/write memory Formats 8 PELs per byte for each byte in the following manner:

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PA3 | PA2 | PA1 | PA 0 | PA3 | PA2 | PA1 | PA0 |


| First |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Display |
| PEL |

## 4 COLOR HIGH RESOLUTION $640 \times 200$ GRAPHICS MODE

The 4 Color High Resolution 640 X 200 Graphics mode may require a high resolution monitor for proper operation. Only supported on the IBM PCjr, this mode has the following characteristics:

Contains a maximum of 200 rows of 640 PELs Can display 4 of 16 possible colors Each pixel selects 1 of 4 colors Requires 32 K bytes of read/write memory Formats 8 PELs per two bytes (l even byte and 1 odd byte) in the following manner:

## EVEN BYTES

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PAO |


| First Display PEL | Second Display PEL | $\begin{gathered} \text { Third } \\ \text { Display } \end{gathered}$ PEL | Fourth Display PEL | Fifth Display PEL | $\begin{gathered} \text { Sixth } \\ \text { Display } \\ \text { PEL } \end{gathered}$ | Seventh Display PEL | $\begin{gathered} \text { Eighth } \\ \text { Display } \\ \text { PEL } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PAl |
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

## 16 COLOR MEDIUM RESOLUTION 320 X 200 GRAPHICS MODE

The 16 Color Medium Resolution 320 X 200 Graphics mode works with all types of display devices. This mode is available in the IBM PCjr only and has the following characteristics:

Contains a maximum of 200 rows of 320 PELs
Can display 16 of 16 possible colors
Each pixel selects 1 of 16 colors
Requires 32 K bytes of read/write memory
Formats 2 PELs per byte in the following manner:

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PA3 | PA2 | PA1 | PA0 | PA3 | PA2 | PA1 | PA0 |


| First <br> Display <br> PEL | Second <br> Display <br> PEL |
| :--- | :--- |

## 16 COLOR LOW RESOLUTION $160 \times 200$ GRAPHICS MODE

The 16 Color Low Resolution $160 \times 200$ Graphics mode works with all types of display devices. This mode is available in the IBM PCjr only, with the following characteristics:

Contains a maximum of 200 rows of 160 PELS
Can display 16 of 16 possible colors
Each pixel selects 1 of 16 colors
Requires 16 K bytes of read/write memory
Formats 2 PELs per byte in the following manner:

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PA3 | PA2 | PA1 | PA0 | PA3 | PA2 | PA1 | PA0 |


| First <br> Display <br> PEL | Second <br> Display <br> PEL |
| :--- | :--- |

## 4 COLOR MEDIUM RESOLUTION 320 X 200 GRAPHICS MODE

The 4 Color Medium Resolution 320 X 200 Graphics mode works with all types of display devices. It is available in the IBM PC and PCjr. This mode has the following characteristics:

Contains a maximum of 200 rows of 320 PELs
Can display 4 of 16 possible colors
Each pixel selects 1 of 4 colors
Requires 16 K bytes of read/write memory
Formats 4 PELs per byte in the following manner:

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PAl | PA0 | PA1 | PA0 | PA1 | PA0 | PA1 | PA0 |


| First <br> Display <br> PEL | Second <br> Display <br> PEL | Third <br> Display <br> PEL | Fourth <br> Display <br> PEL |
| :--- | :--- | :--- | :--- |

VIDEO MEMORY MAP AND GRAPHICS USAGE

| Hex Address | Register |
| :---: | :---: |
| 3D0 | Not Used |
| 3D1 | Not Used |
| 3D2 | Not Used |
| 3D3 | Not Used |
| 3D4 | G845 Address Register |
| 3D5 | G845 Data Register |
| 3D6 | Not Used |
| 3D7 | Not Used |
| 3D8 | Mode Select Register |
| 3D9 | Color Select Register |
| 3DA | Video Array Address \& Status |
| 3 DB | Clear Light Pen Latch |
| 3DC | Set Light Pen Latch |
| 3 DD | Extended RAM Page Register |
| 3 DE | Video Array Data |
| 3DF | CRT Processor Page Register |

## VIDEO ARRAY REGISTERS

The following registers can be accessed by writing their Hex Address to 3DA and their Data to 3DE

| Hex Address | Video Array Register |
| :---: | :---: |
| 01 | Palette Mask |
| 02 | Border Color |
| 03 | Mode Control |
| $10-1 \mathrm{~F}$ | Palette Registers |

## ARRAY PALETTE MASK REGISTER

Bit Programming



## ARRAY BORDER COLOR



## ARRAY MODE CONTROL REGISTER

Bit Programming


## ARRAY PALETTE REGISTERS

There are sixteen 4 bit wide palette registers implemented by a $16 x 4$ bit RAM. These registers are 'write' only; they cannot be 'read'. Their address in the Video Array are from hex 10 to lF. They can be used to redefine any color.

To load the palette, write the hex address to the video Array register at 3DA. Then, the new palette color is written to 3DE.
palette address hex 10 is accessed whenever the color code from memory is a hex 0 , address hex 11 is accessed whenever the color code from memory is a hex 1 , and so forth. A description of the color codes is in Table l "Available Colors Table" at the beginning of this section.

Note: The palette address can be 'masked' by using the palette mask register.

The following is a description of the register's bit functions:

Bit Number Function

| 0 | Blue |
| :--- | :--- |
| 1 | Green |
| 2 | Red |
| 3 | Intensity |

When loading the palette, the video is 'disabled' and the color viewed on the screen is the data contained in the register being addressed by the processor.

When the program has completed loading the palette, it must change the hex address to some address less than hex 10 for video to be 'enabled' again.

If a programmer does not wish a user to see the adverse effects of loading the palette, the palette should be loaded during the vertical retrace time. The program must modify the palette and change the address to less than hex 10 within the vertical retrace time. A vertical retrace interrupt and a status bit are provided to facilitate this procedure.

In two color modes, the palette is defined by using one bit (PAO), with the following.logic:

PALETTE ADDRESS BIT

| PA0 | Function |
| :---: | :---: |
| 0 | Palette Register 0 |
| 1 | Palette Register 1 |

In four color modes, the palette is defined by using two bits (PAl and PAO), with the following logic:

## PALETTE ADDRESS BITS

| PAI | PAO | Function |
| :---: | :---: | :---: |
| 0 | 0 | Palette Register 0 |
| 0 | 1 | Palette Register 1 |
| 1 | 0 | Palette Register 2 |
| 1 | 1 | Palette Register 3 |

In sixteen color modes, the palette is defined by using four bits (PA3,PA2,PAl and PAO), with the following logic:

## PALETTE ADDRESS BITS

| PA3 | $\begin{aligned} & \text { PA2 } \\ & \text { (R) } \end{aligned}$ | $\begin{aligned} & \text { PAl } \\ & \text { (G) } \end{aligned}$ | $\begin{aligned} & \text { PAO } \\ & \text { (B) } \end{aligned}$ | Function |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | Palette Register 0 |
| 0 | 0 | 0 | 1 | Palette Register 1 |
| 0 | 0 | 1 | 0 | Palette Register 2 |
| 0 | 0 | 1 | 1 | Palette Register 3 |
| 0 | 1 | 0 | 0 | Palette Register 4 |
| 0 | 1 | 0 | 1 | Palette Register 5 |
| 0 | 1 | 1 | 0 | Palette Register 6 |
| 0 | 1 | 1 | 1 | Palette Register 7 |
| 1 | 0 | 0 | 0 | Palette Register 8 |
| 1 | 0 | 0 | 1 | Palette Register 9 |
| 1 | 0 | 1 | 0 | Palette Register 10 |
| 1 | 0 | 1 | 1 | Palette Register 11 |
| 1 | 1 | 0 | 0 | Palette Register 12 |
| 1 | 1 | 0 | 1 | Palette Register 13 |
| 1 | 1 | 1 | 0 | Palette Register 14 |
| 1 | 1 | 1 | 1 | Palette Register 15 |

## DETAILED I/O REGISTER INFORMATION

## Bit Programming



Bit Programming


Bit Programming


Bit Programming


Bit Programming


## Bit Programming



Bit Programming


## Bit Programming

| Hex Addre |  | Notes |
| :---: | :---: | :---: |
| 00A0-00A7 |  | $\begin{gathered} \text { Write } \\ C_{O n l y}^{n} \end{gathered}$ |
| NMIEN | Enable Non $\qquad$ Maskable Interrupt |  |
| PORTMD | Enable 256K Video RAM _____ | All bits |
| MC3 | Memory Configuration 3 _______ | cleared |
| MC2 | Memory Configuration 2 | by a |
| MC1 | Memory Configuration 1 | System |
| XTERNVID | Disables all video Accesses to Video Memory $\qquad$ at B8000-BFFFF and video I/O locations 3D0-3D7 | Reset |

6845 PROGRAMMING TABLE FOR ALL MODES

| * | REGISTER | $\begin{aligned} & 40 \times 25 \\ & \text { ALPHANUM } \end{aligned}$ | $\begin{gathered} 80 \times 25 \\ \text { ALPHANUM } \end{gathered}$ | $\left\lvert\, \begin{array}{rrr} 160 \times 200 & 16 & \text { Col } \\ 320 \times 200 & 4 & \text { Col } \\ 640 \times 200 & 2 & \text { Col } \end{array}\right.$ | $\left\lvert\, \begin{array}{lll} 640 \times 200 & 4 \mathrm{Col} \\ 320 \times 200 & 16 \mathrm{Col} \end{array}\right.$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $===$ 0 |  | $=\begin{aligned}== & == \\ 38 & (56)\end{aligned}$ | $\begin{aligned}== & =\times=\times= \\ 71 & (113)\end{aligned}$ | 38 (56) | 71 (113) |
| 1 | Horiz. Displayed | 28 (40) | 50 (80) | 28 (40) | 50 (80) |
| 2 | Horiz. Sync. Pos | 2D (45) | 5A (90) | 2D (45) | 5A (90) |
| 3 | Horiz. Sync. Width | 08 (8) | UE (14) | 08 (8) | OE (14) |
| 4 | Vertical Total-1 | LC (28) | 1 C (28) | 7 F (127) | 3F (63) |
| 5 | Vert. Total Adjust | 01 (1) | 01 (1) | 06 (6) | 06 (6) |
| 6 | Vertic. Displayed | 19 (25) | 19 (25) | 64 (100) | 32 (50) |
| 7 | Vert. Sync Pos. | 1 A ( 26 ) | 1 A ( 26 ) | 70 (112) | 38 (56) |
| 8 | Interlace Mode | 02 (2) | 02 (2) | 02 (2) | 02 (2) |
| 9 | MaxScanLineAdd -1 | 08 (8) | 08 (8) | 01 (1) | 03 (3) |
| 10 | Cursor Start | 06 (6) | 06 (6) | 06 (6) | 06 (6) |
| 11 | Cursor End | 07 (7) | 07 (7) | 07 (7) | 07 (7) |
| 12 | StartAddresss High | 00 (0) | 00 (0) | 00 (0) | 00 (0) |
| 13 | StartAddress Low | 00 (0) | 00 (0) | 00 (0) | 00 (0) |

## MODE SELECTION SUMMARY

| MODE | $\left[\begin{array}{l}\text { 'H3D8 } \\ \text { BIT } \\ \text { HRESCK } \\ ======\end{array}\right.$ |  | $\left\|\begin{array}{c} \text { H3DE REG3 } \\ \text { BIT } 3 \\ \text { C4COLHR } \\ ========== \end{array}\right\|$ | $\left\lvert\, \begin{gathered} \text { H3DE REG3 } \\ \text { BIT } 4 \\ \text { Cl6COL } \\ ======== \pm=m \end{gathered}\right.$ | $\begin{gathered} \text { H3DE REG3 } \\ \text { BIT } 5 \\ \text { NVDM } \\ =========== \end{gathered}$ | H3D8 BIT 1 G GRPH | TH3DD BIT 0 EXTADR $=====$ | $\left\lvert\, \begin{aligned} & \left.\begin{array}{l} \mathrm{H} 3 \\ \text { BIT } \\ \text { BI } \\ \text { ADRM1 } \\ ===== \end{array} \right\rvert\, \end{aligned}\right.$ | 'H3DF BI'r 6 ADRMO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $40 \times 25$ ALPHA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 80X25 ALPHA | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $160 \times 20016 \mathrm{COL}$ | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
| $320 \times 2004 \mathrm{COL}$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| $320 \times 20016$ COL | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
| $640 \times 2002 \mathrm{COL}$ | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| $640 \times 200 \quad 4 \mathrm{COL}$ | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |

VIDEO/SYSTEM MEMORY ADDRESS MAP

| $\begin{gathered} \mathrm{H} \mathrm{HAO} \text { BITS } \\ 4321 \end{gathered}$ | VIDEO/SYSTEM MEMORY START ADDRESS | VIDEO/SYSTEM MEMORY LENGTH | VIDEO/SYSTEM MEMORY ADDRESS RANGE |
| :---: | :---: | :---: | :---: |
| 00000 | 000000 | 128K | 00000-1 F F F F |
| 0001 | 200000 | 128K | $20000-3 \mathrm{FFFF}$ |
| 0010 | 400000 | 128 K | $40000-5 \mathrm{~F}$ F F F |
| 0011 | 600000 | 128K | $60000-7 \mathrm{FFFF}$ |
| 0100 | $8 \quad 0 \quad 000$ | 128K | $80000-9 \mathrm{FFFF}$ |
| 1001 | $0 \quad 0 \quad 000$ | 256 K | O $00000-3 \mathrm{~F}$ F F F |
| 1010 | 200000 | 256K | $20000-5 \mathrm{FFFF}$ |
| $1 \begin{array}{llll}1 & 1 & 1\end{array}$ | 40000 | 256K | $40000-7 \mathrm{FFFF}$ |
| 1100 | $6 \begin{array}{lllll}6 & 0 & 0 & 0 & 0\end{array}$ | 256 K | $60000-9 \mathrm{FFFF}$ |

VIDEO MEMORY ADDRESSING MODES


## OTHER CHIP FUNCTIONS

In addition to the video controller functions, the Tandy 1000 video controller chip also provides most of the system address decode functions. These decode and chip select functions are described as follows:
A, B, C outputs are encoded device select lines and are connected to an external LSl38.

| C B A | IOMB | BA0-15 (HEX) |  | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: |
| 111 |  |  | NE OF BELOW |  |
| 110 |  | 1 | 0020-0027 | INTCSB |
| 101 |  | 1 | 0040-0047 | TMRCSB |
| 100 |  | 1 | 0060-0067 | PIOCSB |
| 011 |  | 1 | 0200-0207 | JOYSTKCSB |
| 010 |  | 1 | 00c0-00c7 | SNDCSB |
| 001 |  | I | 03F0-03F7 | FDCCSB |
| 000 |  | 1 | 0378-037F | PRINTCSB |

The output signal ROMIOSELB is the enable signal for an LS 245 that controls all of the data flow to devices on the main logic board. This signal is active low and will be activated for any of the following conditions:

1. Video/System Memory Read or Write
2. Video Access at B8000-BFFFF
3. Rom Access at F0000-FFFFF
4. video I/O access at 03D0-03DF
5. I/O access to any of the following addresses:

0040-0047
0060-0067
00A0-00A7
$00 \mathrm{C0} 00 \mathrm{C7}$
0200-0207
0378-037F
03F0-03F7

## PIN LIST



DESCRIPTION OF EACH PIN FUNCTION

| PIN\# | pin name | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| 1 | vss | Ground | Ground |
| 2 | XMD [ 2] | Input/Output | External Memory Data I/O Bank 0 |
| 3 | XMD [ 3] | Input/Output | External Memory Data I/O Bank 0 |
| 4 | XMD [ 4 ] | Input/Output | External Memory Data I/O Bank 0 |
| 5 | XMD [5] | Input/Output | External Memory Data I/O Bank 0 |
| 6 | XMD [6] | Input/Output | External Memory Data I/O Bank 0 |
| 7 | XMD [ 7 ] | Input/Output | External Memory Data I/O Bank 0 |
| 8 | YMD [ 0 ] | Input/Output | External Memory Data I/O Bank l |
| 9 | YmD [1] | Input/Output | External Memory Data I/O Bank 1 |
| 10 | YMD [ 2] | Input/Output | External Memory Data I/O Bank 1 |
| 11 | YMD [ 3] | Input/Output | External Memory Data I/O Bank l |
| 12 | YMD [ 4] | Input/Output | External Memory Data I/O Bank l |
| 13 | YMD [5] | Input/Output | External Memory Data I/O Bank l |
| 14 | YMD [6] | Input/Output | External Memory Data I/O Bank 1 |
| 15 | YMD [ 7 ] | Input/Output | External Memory Data I/O Bank l |
| 16 | RFSHB | Input | Memory Refresh Strobe Input |
| 17 | MWE 1 B | Output | Ram Bank l Write Enable Signal |
| 18 | MWE 0B | Output | Ram Bank 0 Write Enable Signal |
| 19 | RASB | Output | Ram Row Address Strobe |
| 20 | CASB | Output | Ram Column Address Strobe |
| 21 | BMEMRB | Input | CPU Memory Read Strobe |
| 22 | VDD | Power | 5 Volts Supply |
| 23 | BMEMWB | Input | CPU Memory Write Strobe |
| 24 | CK28M | Clock | 28.63636 Mhz Clock Input |
| 25 | VIDEOWAIT | Output (OpenDrain | ) Video Wait Signal |
| 26 | SYSRSTB | Input | System Reset |
| 27 | IOMB | Input | ```CPU I/O-Memory Signal (Memory ->1, I/O -> 0)``` |
| 28 | A | Output | Encoded Peripheral Select Line |
| 29 | B | Output | Encoded Peripheral Select Line |
| 30 | C | Output | Encoded Peripheral Select Line |
| 31 | IOMEMSELB | Output | External Buffer Enable |
| 32 | NMIEN | Output | Nonmaskable Interrupt Enable |
| 33 | BIORB | Input | CPU I/O Read Strobe |
| 34 | BIOWB | Input | CPU I/O Write Strobe |
| 35 | LPIN | Input | Light Pen Signal Input |
| 36 | LPSWB | Input | Light Pen Switch Input |
| 37 | OUTVSYNC | Output | Vertical Sync output |
| 38 | OUTHSYNC | Output | Horizontal Sync output |
| 39 | COMPCOLOR | Output | Composite Color Signal |
| 40 | COMPSYNC | Output | composite Sync signal |
| 41 | OUTI | Output | Intensity Out |
| 42 | OUTR | Output | Red Video Out |
| 43 | vSsl | Ground | Ground |
| 44 | OUTB | Output | Blue Video Out/Monochrome Dotclock |


| 45 | OUTG | Output | Green Video Out/Monochrome Video |
| :--- | :--- | :--- | :--- |
| 46 | BA[19] | Input | CPU Address Line |
| 47 | BA[18] | Input | CPU Address Line |
| 48 | BA[17] | Input | CPU Address Line |
| 49 | BA[16] | Input | CPU Address Line |
| 50 | BA[157 | Input | CPU Address Line |
| 51 | BA[14] | Input | CPU Address Line |
| 52 | BA[13] | Input | CPU Address Line |
| 53 | BA[12] | Input | CPU Address Line |
| 54 | BA[11] | Input | CPU Address Line |
| 55 | BA[10] | Input | CPU Address Line |
| 56 | BA[9] | Input | CPU Address Line |
| 57 | BA[8] | Input | CPU Address Line |
| 58 | BA[7] | Input | CPU Address Line |
| 59 | BA[6] | Input | CPU Address Line |
| 60 | BA[5] | Input | CPU Address Line |
| 61 | BA[4] | Input | CPU Address Line |
| 62 | BA[3] | Input | CPU Address Line |
| 63 | BA[2] | Input | CPU Address Line |
| 64 | BA[1] | Input | CPU Address Line |
| 65 | BA[0] | Input | CPU Address Line |
| 66 | DB[7] | Input/Output | CPU Data I/O |
| 67 | DB[6] | Input/Output | CPU Data I/O |
| 68 | DB[5] | Input/Output | CPU Data I/O |
| 69 | DB[4] | Input/Output | CPU Data I/o |
| 70 | DB[3] | Input/Output | CPU Data I/O |
| 71 | DB[2] | Input/Output | CPU Data I/O |
| 72 | DB[1] | Input/Output | CPU Data I/O |
| 73 | DB[0] | Input/Output | CPU Data I/O |
| 74 | MA[0] | Output | Memory Address Line |
| 75 | MA[1] | Output | Memory Address Line |
| 76 | MA[2] | Output | Memory Address Line |
| 77 | MA[3] | Output | Memory Address Line |
| 78 | MA[4] | Output | Memory Address Line |
| 79 | MA[5] | Output | Memory Address Line |
| 80 | MA[6] | Output | Memory Address Line |
| 81 | MA[7] | Output | Memory Address Line |
| 82 | BANKSL | Output | Memory Address Line |
| 83 | XMD[0] | Input/Output | External Memory Data I/O Bank |

## LOGIC BLOCK DIAGRAM

## TEST MODES AND THEIR OPERATIONS

There are four Test Modes that the chip can be placed into to make the part easily and efficiently testable. All these Test Modes use conditions that can never occur in a system environment, therefore avoiding accidental entry in rest Mode. All the test modes are entered when both MEMRB and MEMWB are active. The selection of the different tests is done by an additional decode on some bits of the BA lines according to the following chart:

|  | ENABLED WHEN |  |  |  |  |  | OPERATION PERFORMED |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MODE | BMEMRB | BMEMWB | BA15 | BAl4 | BAl3 | BAl2 |  |
| 1 | 0 | 0 | 1 | X | X | X | Pinout the 6845 Megacell on external pins and/or Start Self Test Rom. While the testing of the Megacell is in progress, the Rom is performing a signature analysis. At the end of 4500 clocks, a PASS/FAIL bit is set, if the Self Test was successful. |
| 2 | 0 | 0 | 0 | 1 | X | X | Enable a Software Reset on the 6845. |
| 3 | 0 | 0 | 0 | X | 1 | X | Clear the clock generators \& blink counter to start from a known condition. |
| 4 | 0 | 0 | 0 | X | x | 0/1 | A 1 writes a bit that forces Display Enable constantly. A 0 removes forced Display Enable. Cleared by SYSRSTB. |

TEST MODE 1 PINOUT THAT EMULATES THE 6845 STANDARD PRODUCT
The following signals of the Megacell are available on the following pins in Test Mode l:

6845 SIGNAL VIDEO CONTROLLER SIGNAL


Also the Pass/Fail bit for the Self Test Rom can be tested on the OUTG output pin during TEST MODE l. Note that at least 4,500 clocks must be given in Test Mode 1 before checking the Pass/Fail bit. These clock times could be used to exercise the 6845 as a standard part according to the previous pinout.

Note***: IOMB is in fact CLK Bar so in order to test it using the standard part's test program, there is a need to invert the clock coming in the Test program.

## ELECTRICAL SPECIFICATIONS

ABSOLUTE MAX RATINGS (NON-OPERATING, VSS=0v)

|  | MIN | MAX | UNITS |
| :--- | :--- | :--- | :--- |
| STORAGE TEMPERATURE | -65 | 150 | DEGREES C. |
| VOLTAGE ON ANY PIN |  |  |  |
| W.R.T.GROUND | -0.5 | 7.0 | VOLTS |

OPERATING ELECTRICAL SPECIFICATIONS

| OPERATING AMBIENT | MIN | TYP | MAX | UNITS |
| :--- | :--- | :--- | :--- | :--- |
| AIR TEMP. RANGE | 0 | 25 | 70 | DEGREES C. |
|  |  |  |  |  |
| POWER SUPPLIES |  |  |  |  |
| VCC SUPPLY VOLTAGE | 4.5 | 5.0 | 5.5 | VOLTS |
| VSS SUPPLY VOLTAGE | 0 | 0 | 0 | VOLTS |
| ICC SUPPLY CURRENT |  | 20 | 35 | MILLIAMPS |
| TOTAL POWER DISSIPATION |  | 100 | 175 | MILLIWATTS |
| (INCLUDE LOADING ON |  |  |  |  |
| OUTPUTS ) |  |  |  |  |
| LEAKAGE CURRENT | MIN | TYP | MAX |  |
| ALL INPUTS AND | -10 |  | 10 | MICROAMPS |

INPUT VOLTAGES
LOGIC "0" (Vil)
ALL INPUTS 0.8 VOLTS

| $\begin{aligned} & \text { LOGIC "l" (Vih) } \\ & \text { ALL INPUTS } \end{aligned}$ | 2.0 |  | VOLTS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OUTPUT VOLTAGES | CURRENT | LOADING | MIN | TYP | MAX | UNITS |
| LOGIC"0" (Vol) |  |  |  |  |  |  |
| ALL OUTPUTS |  | MA |  |  | 0.4 | VOLTS |
| LOGIC"I" (Voh) |  |  |  |  |  |  |
| ALL OUTPUTS | 0.4 | MA | 2.4 |  |  | VOLTS |

INPUT CAPACITANCE
MIN TYP MAX
ALL INPUTS
10 PICOFARADS

TIMING SPECIFICATION

MAXIMUM LOADING FOR EACH OUTPUT

| MA[ 8]-MA[0] | 100 pF |
| :--- | ---: |
| ALL OTHER OUTPUTS | 20 pF |

CHARACTERISTICS

READ Operation


I/O TIMING


READ OPERATION

WRITE OPERATION AND I/O OUTPUT TIMING


| T\# | DESCRIPTION | MIN ${ }^{\text {MAX }}$ | ITS | OTET | | |
|---|---|---|---|---|---|---|
| \| 61 | ADDRESS VALID TO BIOWB ACTIVE SETUP | 501 | NS |  |
|  | \| ADDRESS VALID HOLD AFTER BIOWB INACTIVE | 50\| | NS |  |
| - 8 | BIOWB PULSE WIDTH LOW | \| 250 | | NS |  |
| 9 | $\mid$ data in valid to biowb inactive setup | \| 200| | NS |  |
| \|10| | BIOWB INACTIVE TO DATA IN VALID HOLD | 50\| | NS |  |
| \|l1 | \| ADDRESS VALID TO C,B,A,ROMIOSELB OUTPUT DELAY | $80 \mid$ | NS |  |
| \|12| | ADDRESS NOT VALID TO ROMIOSELB INACTIVE OUT DE | lay \| 80| | NS |  |
| \|131 | \| BIOWB INACTIVE TO NMIEN LATCHED OUTPUT DELAY | \|100| | NS 1 |  |

MEMORY DECODE TIMING

## MEMORY READ OR WRITE OPERATION



| * | DESCRIPTION | \|MIN ${ }^{\text {MAX }}$ \| | UNITS | NOTE | | |
|---|---|---|---|---|---|---|
| \|15| | ADDRESS VALID TO BMEMRB ACTIVE SETUP | 501 | NS |  |
| \|16| | ADDRESS VALID HOLD AFTER BMEMRB INACTIVE | 50\| | NS |  |
| \|17| | BMEMRB PULSE WIDTH LOW | \| 250 | | NS |  |
| \|18| | ADDRESS VALID TO ROMIOSELB OUTPUT DELAY | 801 | NS 1 |  |
| \|19| | ADDRESS NOT VALID TO ROMIOSELB INACTIVE OUT | LAY \| 80| | NS |  |
| \| 20 | | VIDWAIT DELAY FROM BMEMRB READ LOW | 501 | NS 1 |  |
| \|21| | VIDWAIT PULSE WIDTH | $35\|600\|$ | NS 1 |  |
| \|22| | XMD, YMD SETUP TO CASB LOW (MEM READ) | 901 | NS 1 |  |
| \| 23 | | XMD, YMD HOLD TO CASB LOW (MEM READ) | 01 | NS |  |
| \| 24 | | VIDWAIT LOW DELAY TO RASB LOW | 701 | NS 1 |  |
| \| 25 | | VIDWAIT LOW DELAY TO CASB LOW | 0\|140| | NS \| |  |
| \| 26 | | I/O DATA BUS OUT SETUP TO BMEMRB HIGH | 60\| | NS $\mid$ |  |
| \| 27 | | I/O DATA BUS OUT HOLD TO BMEMRB HIGH | 0\| 30| | NS 1 |  |

CRTC TIMING


CRTC TIMING

|  | Characteristics | Symbol | Min | Nom | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 28 | CCLK frequency | Fcyc |  |  | 2 | MHz |
| 29 | CCLK width | PWCl | 100 |  |  | nS |
| 30 | CCLK rise and fall time | Tcr, Tcf |  |  | 5 | nS |
| 31 | CLK fall to <br> MA[7:0]RA0-4 delay time | Tmad, Trad |  |  | 50 | nS |
| 32 | CLK fall to HS, VS, DE, CURSOR delay time | Thsd,Tvsd Tdtd,Tcdd |  |  | 50 | nS |
| 33 | MA[7:0],BANKSL setup to RASB low |  | 40 |  |  | nS |
| 34 | MA[7:0],BANKSL setup to CASB low |  | 10 |  |  | ns |
| 35 | MA[7:0],BANKSL hold from RASB low |  | 30 |  |  | nS |
| 36 | MA[7:0],BANKSL hold from CASB low |  | 40 |  |  | ns |
| 37 | RASB, CASB fall |  |  |  | 20 | ns |
| 38 | RASB, CASB rise |  |  |  | 5 | nS |

OTHER TIMING SPECS


## MEGACELL 6845R1 SPECIFICATION DATASHEET FOR 6845 MEGACELL

## VE 68C45 MEGACELL DESIGN KIT CRT CONTROLLER MEGACELL

## FEATURES

- Completely integrated with VTI's extensive IC design tools and libraries
- CMOS (2-micron) M68C45 Megacell configurable as:
-- 68C45R - CMOS equivalent of Motorola 6845R CRTC
-- 68C45Rl - CMOS equivalent of Motorola 6845R1 Enhanced
CRTC
-- 68C45S - CMOS equivalent of Hitachi 6845 S CRTC
-- 68C45SY - CMOS CRTC similar to Synertek 6545 CRTC
o 4.5 MHz video memory interface
- 3 MHz system processor interface
- Compatible with the VII bus architecture
- Programmable Display Enable and Cursor delays
(standard for $S$ and SY versions -- optional for $R$ and Rl versions)
- Programmable Vertical Sync pulse width (standard for $S$ version -- optional for $R, R 1$ and $S Y$ versions)
- Row/Column display memory addressing (SY version)
- Double Wiath character control

OPTIONAL FEATURES

- $16 \mathrm{~K}, 32 \mathrm{~K}$, or 64 K display Memory Address range (14, 15 , or 16 bits)
o 7, 8, or 9-bit Vertical Row counter


## VTI MEGACELLS

Megacells are building block equivalents of standard LSI functions that can be combined with other megacells, standard cells or compiled cells to create custom User-Specific ICs (USICs). Megacells are fully compatible with VTI's other cell technologies and design tools.

The VTI bus (TM) architecture allows multiple megacells to be combined on a single IC, along with additional cells from VTI's extensive libraries -- decreasing the design time, design cost, and size of complex systems. A detailed Functional Model provided with each megacell further reduces design verification time.

SIGNAL DESCRIPTIONS
The following signals function the same on the M68C45 Megacells and on the standard VL6845 family of CRT Controller ICs.

| Signal | 1/0 | Description |
| :---: | :---: | :---: |
| RS | IP | Register Select |
| E | IP | Enable |
| RNW | IP | Specify READ (high) or WRITE (low) operation |
| CSB | IP | Chip (6845 megacell) select, low true |
| CCLK | IP | Character Clock |
| LPSTB | IP | Light Pen Strobe |
| D0-D7 | I/O | Data Bus |
| RA0-RA4 | OP | Raster Address |
| HS | OP | Horizontal Sync |
| RESETB | IP | Reset, low true |

The following signals are unique to the VE68C45 Megacells, or are functionally different on the VE68C45 Megacells and the VL6845 ICs.

| Signal | 1/0 | Description |
| :---: | :---: | :---: |
| DE | OP | Display Enable output - active (DE = "l") when the VE68C45 is generating active display information. The $S$ version can be programmed with a 0 , 1 , or 2 character delay. The SY version can be programmed for a or 1 character delay. |
| CURSOR | OP | Cursor output - this signal is high when the raster scan coincides with the programmed cursor position. The $S$ version can be programmed with a 0 , 1 , or 2 character delay. The SY version can be programmed for a or 1 character delay. |
| vs | OP | Vertical Sync output - active high pulse which determines the vertical placement of the video data. An optional feature permits programming the Vertical Sync pulse width. |


| $\begin{aligned} & \text { MAO-MA13, } \\ & 14,15 \end{aligned}$ | OP | 14, 15, or 16- bit Video Memory Address bus. These tri-state outputs provide the binary address to the external video RAM. If row/column addressing is selected (SY version only) this bus will provide row/column addressing to the external RAM instead of binary addressing. The AENB input signal can be used to place the MA bus in the high impedance state. |
| :---: | :---: | :---: |
| AENB | IP | Address Enable input - when asserted low (AENB $=$ " 0 ") the MA outputs are enabled. AENB = "l" forces the MA outputs into a high impedance state. |
| $\begin{aligned} & \text { LD0-LD13, } \\ & 14,15 \end{aligned}$ | I/O | 14, 15, or 16-bit Advanced Memory Address bus - separate video memory address information on this bus precedes the information on the MA bus by one character clock. This bus is provided to interface with a separate strip of logic for split display capability. |
| LOAD | IP | When asserted (high) a new value is loaded into the RA counter. Tie to VSS when not used. |
| BREAK | IP | To be used for splitted screen format. Tie to VSS when not used. |
| READB | OP | This signal goes LOW during a legitimate read operation. |
| VDRA <br> (reserved) | $n / \mathrm{c}$ | Reserved for future expansion. To be left unconnected. |
| DW | IP | Double Width input - this input puts the VE68C45 in a double-width display mode. Tie to VSS when not used. |


| 6845 R, | IP |
| :--- | :--- |
| 6845 S, | One of these three inputs is tied <br> 6545 SY |
|  | high to select the version of the |
|  | VE68C45 used in your application. |
|  | The remaining two inputs must be |
|  | grounded. NOTE: the vE68C45SY does |
|  | not provide 6545 transparent |
|  |  |
|  | addressing or the 6545 status |

## ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings
$\begin{array}{lc}\text { Ambient temperature under bias } & 0 \mathrm{C} \text { to } 70 \mathrm{C} \\ \text { Storage temperature } \\ \text { Voltage on any signal with respect to } & -65 \mathrm{C} \text { to }+150 \mathrm{C} \\ \text { Power dissipation }\end{array}$
DC characteristics ( $\mathrm{Ta}=0-70$ degree $\mathrm{C}, \mathrm{Vss}=0 \mathrm{v}$, Vcc=+5 +/- 10\%)

Characteristics | Symbol| Min | Typ| Max | Units
Input High Voltage
Inputs, I/O
Input Low Voltage Inputs, I/O
Output High Voltage

| Outputs,I/O Voh |
| :--- | :--- |

Output Low Voltage Outputs,I/O

| Vih | 3.0 | Vcc | Volts |
| :---: | :---: | :---: | :---: |
| Vil | Vss | $\quad 0.8$ | Volts |
| Voh | 3.0 |  | Vcc |
| Vol |  | Volts |  |

Capacitance


AC CHARACTERISTICS (VCC $=+5 \mathrm{v}+/-10 \%$, $\mathrm{Vss}=0 \mathrm{v}, \mathrm{Ta}=0 \mathrm{C}$ to 70 C )
VTI BUS TIMING


## WRITE





CRTC TIMING

|  | Characteristics | Symbol | Min | Nom | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | CLK frequency | Fcyc | 100 |  | 4.5 | MHz |
| 21 | CLK width | PWcl |  |  | 5 | ns |
| 22 | CLK rise and fall time | Tcr, Tcf |  |  |  | nS |
| 23 | CLK fall to |  |  |  |  |  |
|  | MA0-15,RA0-4 delay time | Tmad, Trad |  |  | 50 | nS |
| 24 | CLK fall to HS, VS, |  |  |  |  |  |
|  | DE,CURSOR delay time | Thsd,Tvsd Tdtd,Tcdd |  |  | 50 | nS |

DMA CHIP SPECIFICATION

## DMA CHIP SPECIFICATION CONTENTS

GENERAL DESCRIPTION .....  1
ADDRESS DECODE .....
PIN LIST ..... 5
PIN FUNCTIONS ..... 6
LOGIC BLOCK DIAGRAM ..... 10
ELECTRICAL SPECIFICATIONS ..... 11
TIMING ..... 18

## DMA CHIP SPECIFICATION

## GENERAL DESCRIPTION

The DMA Chip is an Intel 8237A-5 (AMD 9517) DMA Controller plus associated support circuity to integrate the TANDY 1000 External Memory function into a single ASIC part. The support circuity is divided into the five functional sections. The ADDRESS DECODE-MEMORY and ADDRESS DECODE-IO are independent of the DMA function and interface directly into the bus. The TIMING and DMA RDY sections are DMA support functions. The BUFFERS support the in/out pins.

The functional configuration of the 8237 for the DMA Chip is a fixed subset of its total capability. It is configured via the BIOS ROM for: normal timing, fixed priority, late write, high DREQ sense, low DACK sense.

## ADDRESS DECODE - MEMORY

Provides RAM Memory access decode and address generation. Bus addresses Al9-Al5 determine which segment(bank) of memory is being accessed based on one of four possible memory configurations. (see memory map Figure 1). This is combined with Bus strobes MEMWB or MEMRB and CLK to create one of the three RAS strobes (RASOB, RAS1B or RAS2B), MUX, CAS, data directional controls DBDIR, DBENB and the multiplexed RAM addresses MAO-MA8. The signals CAS and MUX will occur for all access's except REFRESH. The address lines MA0-MA8 are Bus addresses A0-A8 and A9-Al7 multiplexed together by the signal MUX. These will occur for all access's including REFRESH (since MUX does not occur during REFRESH, MA0-MA8 will be only A0-A8). The selection of MA8 will be made externally since Bank 0 and Bank 1 can be either 64 K or 265 K DRAM IC's.



Figure 2 I/O CONFIGURATION MAP

## DMA READY

A system requirement is to have one WAIT cycle automatically inserted into each I/O transfer. When an IORB occurs, WAIT cycles will continually be inserted until IORB returns inactive or until a MEMWB or MEMRB occurs.

This one WAIT cycle is inserted automatically when the CPU is Bus Master. Therefore when the DMA is a Bus Master, it is necessary to insert one WAIT cycle into each DMA I/O transfer (that is every transfer) and honor any additional WAIT requests from the system.

## TIMING GENERATOR

```
The input clock is OSC (= 14.31818 MHZ).
 1.) It is divided by three to recreate the 4.77 MHz
 system processor clock which is used as the clock for
 the 8237.
 2.) It is used to delay the memory access strobe MEM-B
 twice to create the timing for RAS-, MUX, and CAS.
```


## BUFFERS

Provide isolation and drive capability since this circuit will interface directly onto the system bus. These buffers include the bi-directional buffers for address and control strobes (CPU Bus Master - Receive control,address, DMA Bus Master - transmit control,address) but excludes the bi-directional data buffer. Since it must be shared by the memory, this part will be provided externally. Decoding from the ADDRESS DECODE I/O and MEMORY circuitry are combined to provide directional control signals DBDIR, DBENB for this data bus buffer.

## FUNCTION SIGNAL EQUATION



DATA BUS DBENB = DMACSB + WPRCSB
BUFFER ENABLE
$+/$ MCF1./MCF0./19./18./17. /REFRESH. MEM-B
$+/$ MCF1. MCF0./19./18. /REFRESH. MEM-B

+ MCFI. /MCFO./19. /REFRESH. MEM-B
+ MCF1. MCF0./19.(/18 + 18./17)./REFRESH. MEM-B

ADDRESS BUS,
CONTROL BUS
DIRECTIONAL DMAAENB $=8257$ Signal AEN inverted CONTROL

Figure 3 BUFFER CONTROL SIGNALS

## PIN LIST



## DESCRIPTION OF EACH PIN FUNCTION

| FUNCTION | PIN NUMBER | FUNCTION | PIN NUMBER |
| :---: | :---: | :---: | :---: |
| vSs | 1 | VDD | 35 |
| RFSHB | 2 | CASB | 36 |
| REFRESHB | 3 | RAS 0B | 37 |
| MCFl | 4 | RASlB | 38 |
| MCF 0 | 5 | RAS 2 B | 39 |
| WRB | 6 | MA0 | 40 |
| FDCDMACKB | 7 | MA1 | 41 |
| DACKIB | 8 | MA2 | 42 |
| DACK 3B | 9 | MA3 | 43 |
| DMATC | 10 | MA4 | 44 |
| FDCDMARQB | 11 | MA5 | 45 |
| DRQ1B | 12 | MA6 | 46 |
| DRQ3B | 13 | MA7 | 47 |
| DBDIR | 14 | MA8 | 48 |
| DBEN | 15 | Al9 | 49 |
| MEGAPIN | 16 | Al8 | 50 |
| OSC | 17 | Al7 | 51 |
| VSS 2 | 18 | Al6 | 52 |
| BREQB | 19 | Al5 | 53 |
| RESET | 20 | Al4 | 54 |
| AENA | 21 | Al3 | 55 |
| BRDY | 22 | Al2 | 56 |
| MEMWB | 23 | All | 57 |
| MEMRB | 24 | Al0 | 58 |
| IOWB | 25 | A9 | 59 |
| IORB | 26 | A8 | 60 |
| D7 | 27 | A7 | 61 |
| D6 | 28 | A6 | 62 |
| D5 | 29 | A5 | 63 |
| D4 | 30 | A4 | 64 |
| D3 | 31 | A3 | 65 |
| D2 | 32 | A2 | 66 |
| D1 | 33 | Al | 67 |
| D0 | 34 | A0 | 68 |

## PIN DEFINITIONS

NOTE: All negative true signals use the suffix "B".
INPUTS: (ll pins)
MCF $0 \quad$ Memory configuration OPTION Select.
MCF1 (See Figure l for details.)
RFSH 8237 CHANNEL 0 REQUEST (DREQ2)
Input from timer. Set up as 16 microsec interval timer for REFRESH.
DRQ1 8237 CHANNEL 1 REQUEST (DREQl)
FDCDMARQ 8237 CHANNEL 2 REQUEST (DREQ2) dedicated to FDC.
DRQ3 8237 CHANNEL 3 REQUEST (DREQ3)
READY System READY signal for DMA.
RESET System hardware master RESET.
OSC Memory timing clock. Currently CLKl4M.
AEN CPU Bus Grant ( 8237 HLDA)
TEST Input for TEST mode used by IC mfg.
BI-DIRECTIONAL: (32 pins)
BUSA19-BUSAl6 System Segment Address (CPU BUS MASTERINPUT, DMA BUS MASTER- OUTPUT)
BUSAl5-BUSA0 System Address (CPU BUS MASTERINPUT, DMA BUS MASTER- OUTPUT)
D00-D07 System Data Bus (WRITE-OUTPUT, READ- INPUT)
MRB System Memory Read strobe (CPU BUS MASTER- INPUT, DMA BUS MASTER- OUTPUT)
MWB System Memory Write strobe (CPU BUS MASTER- INPUT, DMA BUS MASTER- OUTPUT)
IRB
IWB System Memory Read strobe (CPU BUS MASTER- INPUT, DMA BUS MASTER- OUTPUT) System Memory write strobe (CPU BUS MASTER- INPUT, DMA BUS MASTER- OUTPUT)

OUTPUTS: (20 pins)

| MA00-MA08 | External Memory multilplexed address |
| :--- | :--- |
| RAS0B-RAS2B | External Memory ROW strobes. |
| CASB | External Memory COLUMN strobe. |
| WRB | External Memory WRITE strobe. |
| DBDIR | Data Buffer directional control (Read=l). |
| DBENB | Data Buffer enable. |
| REFRESHB | 8237 CHANNEL 0 ACKNOWLEDGE (DREQ0) |
|  | Acknowledge from DMA channel 0 setup for |
|  | refresh. |
| DACKIB | 8237 CHANNEL I ACKNOWLEDGE (DREQ1) |
| FDCDMACKB | 8237 CHANNEL 2 ACKNOWLEDGE (DREQ2) |
| DACK3B | 8237 CHANNEL 3 ACKNOWLEDGE (DREQ3) |
| DMATC | 8237 EOP (Output only) |
| BREQB | CPU Bus Request (8237 HRQ) |

## POWER: (4 pins)

| VDD | +5 VDC |
| :--- | :--- |
| VSS | GND |

TOTAL PIN COUNT $=68$

PIN SENSE DMA PINOUT 8237 PINOUT

| BIDIR | A0 | - |  | A0 | - |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIDIR | AI |  | (BIDIR ENA | Al |  | (BIDIR ENA |
| BIDIR | A2 |  | = DMAAEN) | A2 | - | =8237 CNTL) |
| BIDIR | A3 | - |  | A3 | - |  |
| TSFBAK | A4 | - |  | A4 | - |  |
| TSFBAK | A5 |  | (TS ENA | A5 |  | (TS ENA |
| TSFBAK | A6 |  | $=$ DMAAEN ${ }^{\text {( }}$ | A6 |  | $=$ LOGIC 1) |
| TSFBAK | A7 | - |  | A7 | - |  |
| TSFBAK | A8 |  |  |  |  |  |
| TSFBAK | A9 |  |  |  |  |  |
| TSFBAK | Al0 |  |  |  |  |  |
| TSFBAK | All |  |  |  |  |  |
| TSFBAK | Al2 |  |  |  |  |  |
| TSFBAK | Al3 |  |  |  |  |  |
| TSFBAK | Al4 |  |  |  |  |  |
| TSFBAK | Al5 |  |  |  |  |  |
| TSFBAK | Al6 |  |  |  |  |  |
| TSFBAK | Al7 |  |  |  |  |  |
| TSFBAK | Al8 |  |  |  |  |  |
| TSFBAK | Al9 |  |  |  |  |  |

PIN SENSE DMA PINOUT 8237 PINOU

| BIDIR | D0 | D0 |  |
| :---: | :---: | :---: | :---: |
| BIDIR | D1 | D1 |  |
| BIDIR | D2 | D2 |  |
| BIDIR | D3 | D3 |  |
| BIDIR | D4 | D4 |  |
| BIDIR | D5 | D5 |  |
| BIDIR | D6 | D6 |  |
| BIDIR | D7 | D7 |  |
| OUTPUT | MAD 0 |  |  |
| OUTPUT | MAD 1 |  |  |
| OUTPUT | MAD 2 |  |  |
| OUTPUT | MAD 3 |  |  |
| OUTPUT | MAD 4 |  |  |
| OUTPUT | MAD 5 |  |  |
| OUTPUT | MAD 6 |  |  |
| OUTPUT | MAD 7 |  |  |
| TRISTATE | MAD 8 |  |  |
| INPUT | RESET | RESET |  |
| InPUT | READY | RDY | (MUXED) |
| OUTPUT | DMATC | EOP* | ( INVERTED) |
| OUTPUT | BREQ* | HRQ | ( INVERTED) |
| INPUT | OSC | CLK | ( MUXED) |
| INPUT | DRQ 3 | DREQ 3 |  |
| INPUT | FDCDMARQ* | DREQ 2 |  |
| INPUT | DRQ ${ }^{*}$ | DREQ 1 |  |
| INPUT | RFSH* | DREQ0 | ( MUXED) |
| OUTPUT | REFRESH* | DACK 0 |  |
| OUTPUT | DACKl* | DACK1 |  |
| output | FDCDMACK* | DACK 2 |  |
| output | DACK3* | DACK 3 |  |
| output | RAS 0 |  |  |
| OUTPUT | RAS 1 |  |  |
| OUTPUT | RAS 2 |  |  |
| OUTPUT | CAS | AS | ( MUXED) |
| OUTPUT | WR* | AEN | (MUXED) |
| INPUT | MCF 1 | CS | (MUXED) |
| INPUT | MCF 0 |  |  |
| output | DBDIR |  |  |
| OUTPUT | DBEN |  |  |
| INPUT | AEN (SYSTEM) | HLDA |  |
| BIDIR | MEMW* | MW* | - |
| BIDIR | MEMR* ${ }^{\text {* }}$ (BIDIR ENA | MR* | (BIDIR ENA |
| BIDIR | IOW* ( ${ }^{\text {( }}$ ( DMAAEN) | IOW* | - =8237 CNTL) |
| BIDIR | IOR* | IOR* | - |
| POWER | VDD | VDD |  |
| POWER | VDD | VDD |  |
| GROUND | VSS | VSS |  |
| GROUND | VSS |  |  |
| 68 PINS |  | 40 PI |  |



LOGIC BLOCK DIAGRAM

| ELECTRICAL SPECIFICATIONS - DMA |  |  |  |
| :---: | :---: | :---: | :---: |
| ELECTRICAL PARAMETERS |  |  |  |
| ABSOLUTE MAX RATINGS | (NON-OPERATING, VSS $=0.0 \mathrm{~V}$ ) |  |  |
|  | MIN | MAX | UNITS |
| STORAGE TEMPERATURE | -65 | $+150$ | DEGREES |
| VOLTAGE ON ANY PIN | -0.5 | 7.0 | VOLTS |
| W.R.T.GROUND |  |  |  |

OPERATING ELECTRICAL SPECIFICATIONS:

| OPERATING AMBIENT | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: |
| AIR TEMP. RANGE | 0 | 25 | 70 | DEGREES C |
| POWER SUPPLIES |  |  |  |  |
| VDD | 4.5 | 5.0 | 5.5 | VOLTS |
| VSS | 0 | 0 | 0 | VOLTS |
| ICC |  |  | 100 | MILLIAMPS |

NOTE: INCLUDE ALL RELEVENT CONDITIONS UNDER WHICH ICC IS TO BE MEASURED; IE, ALL INPUTS AT VSS OR VCC, CLOCK FREQUENCY, ETC.

TOTAL POWER DISSIPATION (Include output loading)

LEAKAGE CURRENT
Vin $=0.0 \mathrm{~V}$ Vin $=5.0 \mathrm{v}$

MIN

> TYP

20 microamps
-20 microamps

INPUT VOLTAGES

| LOGIC "0" (Vil) | 0.8 | volts |
| :--- | :--- | :--- | :--- |
| LOGIC "1" (Vih) | 2.0 | volts |

OUTPUT VOLTAGES CURRENT LOADING|MIN TYP MAX UNITS

| LOGIC "0" (Vol) |  | 0.4 | volts |
| :--- | :--- | :--- | :--- |
| @ 4.0 MA LOAD |  |  |  |
| LOGIC "1" (Voh) | 2.4 |  | volts |
| @ 0.4 MA LOAD |  |  |  |

INPUT CAPACITANCE
All inputs $0.0<\operatorname{Vin}<5.0 \quad 10$ picofarads
OUTPUT CAPACITANCE
All outputs
50 picofarads Except Data (bi-directional)

BI-DIRECTIONAL CAPACITANCE
SEE NOTES 3-6 IN THE FOLLOWING SECTION.

TIMING SPECIFICATION
MAXIMUM LOADING FOR EACH OUTPUT
Capacitive Load:50pf
Current Load: Ioh $=4.0 \mathrm{MA}$
Iol $=0.4 \mathrm{MA}$

## INPUT/OUTPUT TIMING

(NOTE: ALL AC TESTING AND TIMING MEASUREMENTS WILL BE AT THE FOLLOWING CONDITIONS: VOH (OUTPUT 1 LEVEL) $=2.0 \mathrm{~V}$, AND VOL (OUTPUT 0 LEVEL) $=.8 \mathrm{~V}$ )


Figure 1. MEMORY TIMING PARAMETERS, READ

MEMORY TIMING PARAMETERS , READ

|  | min typ max |  |
| :---: | :---: | :---: |
| to Reference time zero, STROBE lo |  |  |
| tosc period of 14.31818 MHz | 69.8 |  |
| tl ADDRESS setup to STROBE lo | 50 |  |
| t2 STROBE lo Setup to OSC hi | 15 |  |
| t2A STROBE lo Length | 250 |  |
| t2b STROBE hi Length | 250 |  |
| t3 STROBE hi Setup to OSC hi | don't care |  |
| $t 4$ RAS*B lo Delay from OSC hi | $0 \quad 40$ |  |
| t5 RAS*B hi Delay from STROBE hi | $0 \quad 40$ |  |
| t5A RAS*B hi Length | 100 |  |
| t6 CAS*B lo Delay from OSC hi | 40 |  |
| t6A CAS*B lo Length | 75 |  |
| t6B CAS*B lo Delay from RAS*B lo | 69.870 |  |
| t7 CAS*B hi Delay from STROBE hi | 69.870 |  |
| t8 MA*-Row Address <br> Valid Setup to RAS*B lo | 20 | NOTE 2 |
| t9 MA*-Column Address <br> Valid Setup to CAS*B lo | 20 | NOTE 2 |
| t 10 MA*-Column Address Hold | 35 |  |
| tll DATA Valid Delay from RAS*B True (reference) | 150 | NOTE 6 |
| tl2 DATA Valid Setup to STROBE hi | 70 | NOTE 3 |
| $t 13$ DATA Hold from STROBE False hi | 0 |  |
| tl4 DBDIR lo Delay from STROBE 10 | 40 |  |
| tl5 DBENB lo Delay after DBDIR hi | 70 | NOTE 4 |
| tl6 DBENB Hold from STROBE hi | 0 |  |
| t17 DBDIR Hold from DBENB hi | 0 | NOTE 5 |

NOTE 1 Setup time t2 will be defined by the ASIC design. It should be of sufficient length to allow Clear on RAS flip-flop to go false and still meet setup time before next clock rising edge.
NOTE 2 Address outputs are loaded with 3 row $x 8$ DRAMS $=24$ x 8 pf $=192$ pf. each.
NOTE 3 Additional delay through LS 245 needs to be added to match Bus Specs. Bus requires +75 ns setup. LS 245 into 45 pf requires 20 ns . Therefore $75+20=95 \mathrm{~ns}$.
NOTE 4 Applying the DIRection signal to the LS 245 and allowing the part to settle before applying ouTput ENable reduces Bus and power noise. Also OUTput ENable should be removed first.
NOTE 5 OUTput ENable should be removed first before changing DIRection.
NOTE 6 Depends upon DRAM used.


Figure 2. MEMORY TIMING PARAMETERS, WRITE

## MEMORY TIMING PARAMETERS, WRITE



NOTE 1 For CPU generated MEMWB, data will appear about the same time as the STROBE, but for DMA generated MEMWB, data will appear before MEMWB.


Figure 3. I/O CHIP SELECT PARAMETERS, READ

I/O CHIP SELECT PARAMETERS, READ

|  |  | min typ max |  |
| :---: | :---: | :---: | :---: |
| tl | ADDRESS Valid Setup to STROBE 10 | 50 |  |
| t2 | STROBE lo Setup to OSC hi | 15 |  |
| t2A | STROBE 10 Length | 420 |  |
| t3 | STROBE hi Setup to OSC hi | 20 |  |
| t12 | DATA Valid Setup to STROBE hi | 90 |  |
| t13 | DATA Hold from STROBE hi | 0 |  |
| t14 | DBDIR hi Delay from STROBE lo | 70 |  |
| t15 | DBENB lo Delay after DBDIR hi | 70 | NOTE I |
| tl6 | DBENB Hold from STROBE hi | 0 |  |
| t17 | DBDIR Hold after DBENB hi | 0 | NOTE 1 |

NOTE 1 ENable should be removed first before changing DIRection.


Figure 4. I/O CHIP SELECT PARAMETERS, WRITE

## I/O CHIP SELECT PARAMETERS, WRITE




DMA BUS MASTER TIMING, READ / WRITE

|  | min typ max |  |
| :---: | :---: | :---: |
| tl DRQ* True Setup to CLK lo | 30 |  |
| t2 DRQ* False Setup to CLK lo | 30 |  |
| t3 BREQB True Delay from CLK hi | 120 | 8237A-5 tDQ1 |
| t4 BREQB False Delay from CLK hi | 120 | 8237A-5 tDQ1 |
| t5 AEN True Delay after BREQB True | N x tCYC +30 | $\mathrm{N}=$ |
| t6 AEN True Setup to CLK Hi | 40 |  |
| t7 AEN False delay from CLK hi | 40 |  |
| t8 DACK*B True Delay from CLK lo | 170 | 8237A-5 tak |
| t9 DACK*B True Hold from AEN True | 0 - | 8237A-5 NOTE. 6 |
| tl0 DACK*B False delay from CLK lo | 170 | 8237A-5 tak |
| tll ADDRESS Valid Setup to CLK Hi | 50 | System Spec |
| tl2 ADDRESS False delay from CLK hi | 0 |  |
| t12 MEMRB or IORB True Delay from CLK hi | 40 |  |
| t13 MEMRB or IORB False Delay after CLK hi | 40 |  |
| tl4 MEMWB or IOWB True Delay from CLK hi | 40 |  |
| tl5 MEMWB or IOWB False Delay after CLK hi | 40 |  |
| tl6 EOP True Delay after CLK hi | 40 |  |
| tl7 EOP False Delay after CLK hi | 40 |  |
| tl8 BRDY False Setup to CLK hi | 30 |  |
| t19 BRDY False Hold after CLK hi | 30 |  |

## PRINTER INTERFACE SPECIFICATION

## PRINTER INTERFACE SPECIFICATION CONTENTS

GENERAL DESCRIPTION

## PRINTER INTERFACE SPECIFICATION <br> TANDY PART \# 8075068 <br> APRIL 3D, 1986

## 1. GENERAL DESCRIPTION

1.1 The Tandy part\# 8075068 - Printer Intertace I.C provides the interface between the system $1 / 0$ bus and the printer Figure 1 shows Block diagram of Printer Interface chip. Figure 2 shows pin configurations of Printer Interface


Figure 1.


Figure 2.
1 OF 5

### 1.2 DESCRIPTION OF EACH PINS:

| Pin\# | Pin Name | Type | Description |
| :---: | :---: | :---: | :---: |
| 1 | INT | output | Interrupt signal |
| 2 | SWITCH | input | Switch for tatem pale autput or open callectar output on INITB, AF, STROBEB. |
| 3 | A01 | input | CPU address line |
| 4 | ADD | input | CPU address line |
| 5 | OUTO | input/autput | Data 1/0 line |
| 6 | OUT1 | input/autput | Data 1/0 line |
| 7 | OUT2 | input/autput | Data 1/0 line |
| 8 | OUT3 | input/output | Data l/o line |
| 9 | OUT ${ }^{\text {O }}$ | input/autput | Data 1/0 line |
| 10 | OUT6 | input/output | Data I/O line |
| 11 | OUTS | input/autput | Data 1/0 line |
| 12 | OUT4 | input/output | Data $1 / 0$ line |
| 13 | StROBEB | output | Printer Strobe signal |
| 14 | AFB | -utput | Printer Autoteed signal |
| 15 | INITB | qutput | Printer Initialize signal |
| 16 | SEL | qutput | Printer Select signal |
| 17 | FAULTB | ingut | Printer Fault signal |
| 18 | PE | input | Printer Paper empty signal |
| 19 | BUSY | input | Printer Busy signal |
| 20 | VSS | ground | Ground |
| 21 | ACKB | input | Printer Acknowledge signal |
| 22 | FDCTC | input | FDC Terminal Count |
| 23 | FDCDACKB | input | FDC-DMA Acknowledge signal |
| 24 | DMATC | input | DMA Terminal Count |
| 25 | TC | qutput | FDC Terminal Count signal |
| 26 | SLCTINB | input | Printer Select input |
| 27 | NC | - | Nat used |
| 28 | RSTB | input | System Reset |
| 29 | I ORB | input | CPU I/O Read strobe |
| 30 | I OWB | input | CPU I/O Write strobe |
| 31 | CSB | input | Chip select signal |
| 32 | D6 | Input/output | CPU Data $1 / 0$ |
| 33 | D4 | Input/autput | CPU Data $1 / 0$ |
| 34 | D2 | Input/output | CPU Data 1/0 |
| 35 | D0 | Input/autput | CPU Data 1/0 |
| 36 | D1 | Input/output | CPU Data 1/0 |
| 37 | 03 | Input/output | CPU Data 1/0 |
| 38 | D5 | Input/output | CPU Data 1/0 |
| 39 | 07 | Input/output | CPU Data 1/0 |
| 40 | VDD | power | t5 Valt Power Supply |

2. ENVIRONMENTAL SPECIFICATIONS
2.1 Storage Temperature -65 C ta 150 C
2.2 Operating Temperature O to 70 C
3. ELECTRICAL SPECIFICATIONS
3.1 Absalute Maximum Rating

| Parameter | Min. | TyP. | Max. | Units | Cand. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Voltage, any pin | $-1.0$ |  | 7.0 | Volts | W.R.T ground |
| Power Dissipation |  |  | 0.5 | Watts |  |

3.2 D.C. Electrical Characteristies

| Symb. | Parameter | Min. | Typ. | Max. | Units Cond. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VDD | Supply Valtage | 4.5 | 5.0 | 5.5 | Valts |
| lec (a) | Quiescent current |  |  | 50 | uA |
| Iec(a) | Operating Current |  |  | 40 | mA |
| vil | Input Law Voltage |  |  | ロ. 8 | Volts TTL inputs |
| vih | Input High Voltage | 2.0 |  |  | Volts TTL inputs |
| Iin | Input Leakage | -10 |  | 10 | UA |
| Cin | Input Capacitance |  |  | 7 | pF |
| Vol | Output Low Voltage |  |  | 0.4 | Valts 24 mA |
| Voh | Output High Voltage | 2.4 |  |  | Volts $\quad$ - 2 mA |
| Iaz | High Impedance Leak | -10 |  | 10 | $u A$ |

### 3.3 A.C Electrical Characteristics

3.3.1 Write Cycle


I OWB


3．3．2 Read Cycle


Symb．Parameter
－－－ー－－－ー－ーー－

Thspw Chip Select Width
Trpw Read Pulse Width
Tda Data Access
Tdz Bus Hold／release

Min．Typ．Max．Units Cond．

| 69 |  | $n S$ |
| :--- | :--- | :--- |
| 69 |  | $n 5$ |
|  | 69 | $n 5$ |
| 6 | 25 | $n$ |

KEYBOARD INTERFACE SPECIPICATION

## KEYBOARD INTERFACE SPECIFICATION CONTENTS

GENERAL DESCRIPTION ..... 1
SPECIFICATIONS ..... 3

## KEYBOARD INTERFACE SPECIFICATION TANDY PART \# 8075069 <br> MAY 05, 1986

## 1. GENERAL DESCRIPTION

1.1 The Tandy part\# B075069 - Keyboard Intertace I.C provides twa functions:
a. Interface between the system I/O bus and keyboard. b. FDC support logic that generates DRIVE SELECT SIGNAL, MOTOR ON SIGNAL, FDC TERMINAL COUNT, FDC RESET and DMA/I.
Figure 1. shows block diagram of Keyboard Interface chip Figure 2. shows pin configuration of Keybaard Interface chip.


Figure 1.

| 1- KBOCLK | vod--40 |
| :---: | :---: |
| 2--kbddata | MULTICLK-39 |
| 3--кbdelusya | MLLTIIOAT-38 |
| 4-KBDINT | FAST-37 |
| S-RSS120 | TCH2G-36 |
| 6-fRSI21 | PPITIM-35 |
| 7-100 | 050-34 |
| $8-701$ | DS1--33 |
| 9-D2 | FOCRST- 32 |
| 10--03 | DMA/ I- 31 |
| 11-04 | MTRON-30 |
| 12-D5 | FDCTC-29 |
| 13--06 | SNDCNTL2--78 |
| 14--07 | SNDCNTLD-27 |
| 15-P10CsB | SNOCNTL1--26 |
| 16-bado | TMROUT $2-25$ |
| 17- BAOI | PC4--24 |
| 18-- BIORS | SYSRSTB--23 |
| 19--101068 | K8DRSIB--22 |
| 20-Uss | DORCLK -21 |

Figure 2.
1 OF 5

### 1.2 DESCRIPTION OF EACH PIN:

| Pin\# | Pin Name | Type | Description |
| :---: | :---: | :---: | :---: |
| 1 | KBDCLK | input | Keybaard clack |
| 2 | Kbddata | input | Keyboard data |
| 3 | kbobusyb | qutput | Keyboard busy signal |
| 4 | KBDINT | qutput | Keyboard interrupt signal |
| 5 | RSIZ0 | input | Manachrame/calar manitar mode |
| 6 | RSIZ1 | input | Reserved |
| 7 | D | input/autput | Data 1/0 line |
| 8 | D1 | input/autput | Data 1/0 line |
| 9 | D2 | input/output | Data I/0 line |
| 10 | D3 | input/autput | Data I/O line |
| 11 | D4 | input/output | Data 1/0 line |
| 12 | D5 | input/autput | Data 1/0 line |
| 13 | D6 | input/autput | Data 1/0 line |
| 14 | D7 | input/autput | Data I/O line |
| 15 | PIOCSB | input | Chip select strabe |
| 16 | BADC | input | CPU address line |
| 17 | BAD1 | input | CPU eddress line |
| 18 | BIORB | input | CPU I/O read strabe |
| 19 | BIOWB | input | CPU 1/0 write strobe |
| 20 | USS | ground | Graund |
| 21 | DORCLK | input | Decode latch clock |
| 22 | KBORSTB | output | Keyboard reset signal |
| 23 | SYSRSTB | input | System reset signal |
| 24 | PC4 | input | $V i d e 0$ memary size mode |
| 25 | TMROUT2 | input | Timer caunter fram 8253 aut2 |
| 26 | 5NDCNTL1 | -utput | Sound contral 1 |
| 27 | SNDCNTLO | output | Sound cantral 0 |
| 28 | SNDCNTLZ | qutput | Sound contral 2 |
| 29 | FDCTC | qutput | FDC terminal count |
| 30 | MTRON | -utput | Motor ON sigmal to disk drive |
| 31 | DMA / I | qutput | DMA Request \& FDC Interrupt enable |
| 32 | FDCRSTB | qutput | FDC reset signal |
| 33 | DS1 | -utput | Drive select 1 signa! |
| 34 | DSO | -utput | Drive select 0 signa! |
| 35 | PPITIM | -utput | Timer Video signal |
| 36 | TCH2G | qutput | Timer channel 2 gate |
| 37 | FAST | input | 4.77Mhz or 7.16 Mhz made select |
| 38 | MULTIDAT | qutput | Multi-data |
| 39 | MULTICLK | gutput | Multi-clack |
| $4 \square$ | VDD | power | +5 Volt Power Supply |

## 2. ENUIRONMENTAL SPECIFICATIONS

2.1 Starage Temperature -65 C to 150 C
2.2 Operating Temperature 0 C to 70 C
3. ELECTRICAL SPECIFICATIONS
3.1 Absalute Maximum Rating

3.2 D.C. Electrical Characteristics

| Symb. | Parameter | Min. | Typ. | Max. | Units Cand. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VDD | Supply Voltage | 4.5 | 5.0 | 5.5 | Volts |
| Icc(q) | Quiescent current |  |  | 50 | $\checkmark$ A |
| Iec(a) | Operating Current |  |  | 40 | $m A$ |
| vil | Imput Low Voltage |  |  | 0.8 | Volts TTL inputs |
| Vih | Input High Voltage | 2.0 |  |  | Valts TTL inputs |
| I in | Input Leakage | -10 |  | 10 | $\sqcup \mathrm{A}$ |
| Cin | Input Capacitance |  |  | 7 | pF |
| vot | Output Low Valtage |  |  | 0.4 | Volts 24 mA |
| Voh | Output High Voltage | 2.4 |  |  | Volts a-2 mA |
| Ioz | High Impedance Leak | -10 |  | 10 | $u A$ |

$$
3 \text { OF } 5
$$

### 3.3 A.C Electrical Characteristics

3.3.1 Write Cycle


Symb. Parameter
Tasu Address Setup
Twpw Write Pulse Width
Tdsu Data Setup
Tdh Data Hald

Min. Typ. Max. Units Cand.
---- ---- ---- ----15 ns
69 n5
29 ns
6 nS

> 3.3.2 Read Cycle

BADX


| Symb. | Parameter | Min | $\times$ | Uni |
| :---: | :---: | :---: | :---: | :---: |
| Tespw | Chip Select Width | 69 |  | nS |
| Trow | Read Pulse Wldth | 69 |  | nS |
| Tda | Data Access |  | 69 | nS |
| Tdz | Bus Holdrelease | 6 | 25 | $n 5$ |

TIMING CONTROL GENERATOR

## TIMING CONTROL GENERATOR CONTENTS

GENERAL DESCRIPTION<br>BLOCK DIAGRAM<br>SPECIFICATIONS<br>TIMING DIAGRAMS

# TIMING CONTROL GENERATOR TANDY PART \# 8075306 <br> MAY 07, 1986 <br> REV 050086 

### 1.0 GENERAL DESCRIPTION

1.1 The Tandy part ${ }^{2}$ 8075306 - Timing Contral Generator:

- creates eight clack autputs from two independent oscillatar inputs.
- synchronizes the ready signals.
- synthesizes the system cantral strabes from the CPU status signals.
- interfaces the system signals (HOLD, HLDA) with the CPU signals (RQ/GT).
- creates two $F D C$ chip selects and the DMA request delay.

| 1--: VIDWAITB | HOLDB | --40 |
| :---: | :---: | :---: |
| 2-- FAST | CLK4M | --39 |
| 3--: D4CLK | FDCWCK | --38 |
| 4-- FDCDRQ | FDCCHPB | --37 |
| 5-- DFDCDRQ | DORCLK | --36 |
| 6-- ALZ | FDCCSB | --35 |
| 7--: ALE | RDYIN | --34 |
| B-- DENB | IOB/M | --33 |
| 9-- 10W3 | MEMRB | --32 |
| 10--: IORB | MEMWB | --31 |
| 11--: CLK8M | INTCSB | --30 |
| 12--: CLK14M | READY | --29 |
| 13--: CLK3580K | HLDA | --28 |
| 14--: OSC16M | O5C28M | --27 |
| 15--: VCC | GND | --26 |
| 16--: CPUCLK | RQ/GTB | --25 |
| 17--: CLK4770K | INTAB | --24 |
| 18--: S2B | READ | --23 |
| 19-- 51B | RESET | --22 |
| 20--: 50B | RSTINB | --21 |

Figure 1. Pin Assignment

| Pin\# | Pin Name | Type | Description |
| :---: | :---: | :---: | :---: |
| 1 | UIDWAITB | INPUT | Wait signal from video 5ystem ( $0=$ Wait) |
| 2 | FAST | INPUT | Clock speed select |
| 3 | D4CLK | OUTPUT | CLK477M/4, Squarewave |
| 4 | FDCDRQ | INPUT | FDC DMA Request |
| 5 | DFDCDRQ | OUTPUT | Beginning of FDCDRQ delayed 1.0 mírosec |
| 6 | A02 | INPUT | System Address |
| 7 | ALE | OUTPUT | Address Latch Enable |
| 8 | DENB | OUTPUT | Data Enable |
| 9 | IOWB | OUTPUT | 1/0 Write |
| 10 | IORB | OUTPUT | $1 / 0$ Read |
| 11 | CLKBM | OUTPUT | OSC16M/2, Squarewave |
| 12 | CLK 14M | QUTPUT | 0SC28M/2, Squarewave |
| 13 | CLK3580K | OUTPUT | 0SCz日M/8, Squarewave |
| 14 | OSC16M | INPUT | Input Frequency $=16.00000 \mathrm{MHz}$ |
| 15 | VCC | POWER |  |
| 16 | CPUCLK | OUTPUT | $\begin{aligned} & \text { FAST=1, CPUCLK=7.16MHz (OSC2BM/4, } 50-50 \text { cyele) } \\ & \text { FAST=0, CPUCLK=4.77MHz (OSC2BM/b, } 33-67 \text { cycle) } \end{aligned}$ |
| 17 | CLK4770k | OUTPUT | CLK14M/3, 33\% duty eycle |
| 18 | 52B | INPUT | 8088 Status Signal |
| 19 | 51 B | INPUT | 808日 Status Signal |
| 20 | SOB | INPUT | 8088 Status Signal |
| 21 | RSTINB | INPUT | Asymahronaus system input |
| 22 | RESET | OUTPUT | Q0B8 CPU Reset input |
| 23 | READ | OUTPUT | Directional Control for CPU Data buffer |
| 24 | INTAB | OUTPUT | Interrupt Acknowledge |
| 25 | RQ/GTB | INPUT/OUTPUT | Request/Acknowleder/Release |
| 26 | GND | GROUND |  |
| 27 | OSC2BM | INPUT | Input frequency $=28.63636 \mathrm{MHz}$ |
| 28 | HLDA | OUTPUT | Bus Acknowledge |
| 29 | READY | OUTPUT | B0BB CPU READY input |
| 30 | INTCSB | INPUT | 8257 Interrupt Contraller Chip Select |
| 31 | MEMWB | OUTPUT | Memary Write |
| 32 | MEMRB | OUTPUT | Memary Read |
| 33 | IOB/M | OUTPUT | 1 = Memory acress, $0=1 / 0$ acress |
| 34 | RDYIN | INPUT | Asynchranous system input ( $0=$ Wait condition) |
| 35 | FDCCSB | INPUT | Previausly decaded FDC Function I/O chip select |
| 36 | DORCLK | OUTPUT | Contiguration register Chip Select |
| 37 | FDCCHPB | OUTPUT | FDC Chip Select |
| 38 | FDCWCK | OUTPUT | Pulse, Periad $=2 \mathrm{micrasec}, 250(n \mathrm{~m}$ ) pulse |
| 37 | CLK4M | OUTPUT | OSC16M/4, Squarewave |
| 40 | HOLDB | INPUT | Bus Request |


2.1 Storage Temperature: $\quad-65 \mathrm{~min}, \quad+150$ max degrees $C$ 2.2 Operating temperature: 0 min, +25 typ, +70 max degrees $C$
3.0 ELECTRICAL SPECIFICATIONS


## TIMING dIAGRAMS



FIGURE 2. RESET

t1 RSTIN Setup to CPUCLK low I Asynchronous input
t2 RESET Delay from CPUCLK low I $4 \varnothing$ ns max

CPUCLK
(OUTPUT)
RDYIN, FALSE
(INPUT)
READY
(OUTPUT)

(OUTPUT)

READY PARAMETER


FIGURE 4. CONTROL GENERATOR

for timing infol

## CONTROL GENERATOR



| t1 STATUS Active Delay from CLK hi 1 | 10 | 60 | ns tCHSV 8888 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| t2 STATUS Inactive Delay from CLK lowl | 10 | 70 | ns | tCLSH 8088 |
| t3 ALE True Delay from Status Active l |  | 20 | ns tSVLH 8288 |  |






FIGURE 7. OSCILLATOR/CLOCK RELATIONSHIPS, 8MHZ



CLK4M

| CLOCK PARAMETER |  |  |  |  | 1 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 1 | min | typ |  | max |
| tl OSCIGM Period |  |  |  |  | $1 \quad 62.5$ |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| t2 | CLK8M | Perit |  |  | 1 | $-10 \%$ | t1 $\times 2$ |  | +10\% |
|  | CLK8M | High | l Includes | tRISE) |  |  | t2/2 |  |  |
| t 4 | CLKEM | Low | Sincludes | tFALL) | 1 |  | t2-t3 |  |  |
|  |  |  |  |  | 1 |  |  |  |  |
| t5 | CLK4M | Period |  |  | 1 |  | t1 $\times$ | 4 |  |
| ¢ 6 | CLK4M | High | (includes | tRISE) | I | $-10 \%$ | t5/2 |  | $+19 \%$ |
| t7 | CLK4M | Low | (includes | tFALL) | 1 |  | t5-t6 |  |  |



| CLOCK PARAMETER |  |  |  |  | I |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 1 | typ | max |
| t 1 | FDCWCK | High ( | tRISE) | I | 250 |  |
| t2 | FDCWCK | Period |  | 1 | 2.0 |  |

FIGURE 9. CLK4M/FDDMAREQ RELATIONSHIPS



# 8087 <br> NUMERIC DATA COPROCESSOR <br> 8087/8087-2/8087-1 

- High Performance Numeric Data Coprocessor
- Adds Arithmetic, Trigonometric, Exponential, and Logarithmic Instructions to the Standard iAPX 86 and iAPX 186 Instruction Set For All Data Types
- All 24 Addressing Modes Available with 8086, 8088, 80186, 80188 CPUs.


## - Compatible with Proposed IEEE Floating Point Standard

- CPU/8087 System Supports 8 Data Types: 16-, 32-, 64-Bit Integers, 32-, 64-, 80-Bit Floating Point, and 18-Digit BCD Operands
- Adds $8 \times 80$-Bit Individually Addressable
Register Stack
- 7 Built-in Exception Handling Functions
- MULTIBUS System Compatible Interface

The 8087 Numeric Data Coprocessor provides the instructions and data types needed for high performance numeric applications, providing up to 100 times the performance of a CPU alone. The 8087 is implemented in N -channel, depletion load, silicon gate technology (HMOS), housed in a 40-pin package. Sixty-eight numeric processing instructions are added to the iAPX 86, 186 instruction sets, and eight 80-bit registers are added to the register set. The 8087 is compatible with the proposed IEEE Floating Point Standard.

The two-chip numeric data processing systems are referred to as follows;
iAPX 86/20-16-bit 8086 CPU with 8087
iAPX 88/20-8-bit 8088 CPU with 8087
iAPX 186/20-16-bit 80186 CPU with 8087
iAPX 188/20-8-bit 80188 CPU with 8087


Figure 1. 8087 Block Diagram


Figure 2. 8087 Pin Configuration

Table 1. 8087 Pin Description

| Symbol | Type | Name and Function |
| :---: | :---: | :---: |
| AD15-AD0 | I/O | Address Data: These lines constitute the time multiplexed memory address $\left(T_{1}\right)$ and data $\left(T_{2}, T_{3}, T_{W}, T_{4}\right)$ bus. $A 0$ is analogous to BHE for the lower byte of the data bus, pins D7-D0. It is LOW during $T_{1}$ when a byte is to be transferred on the lower portion of the bus in memory operations. Eight-bit oriented devices tied to the lower half of the bus would normally use A0 to condition chip select functions. These lines are active HIGH. They are input/output lines for 8087-driven bus cycles and are inputs which the 8087 monitors when the CPU is in control of the bus. A15-A8 do not require an address latch in an iAPX 88/20 or iAPX 188/20. The 8087 will supply an address for the $T_{1}-T_{4}$ period. |
| A19/S6, A18/S5, A17/S4, A16/S3 | 1/0 | Address Memory: During $T_{1}$ these are the four most significant address lines for memory operations. During memory operations, status information is available on these lines during $T_{2}, T_{3}, T_{W}$, and $T_{4}$. For 8087 -controlled bus cycles, S6, S4, and S3 are reserved and currently one (HIGH), while S5 is always LOW. These lines are inputs which the 8087 monitors when the CPU is in control of the bus. |
| BHE/S7 | 1/0 | Bus High Enable: During $T_{1}$ the bus high enable signal ( $\overline{B H E}$ ) should be used to enable data onto the most significant half of the data bus, pins D15-D8. Eight-bit-oriented devices tied to the upper half of the bus would normally use $\overline{B H E}$ to condition chip select functions. $\overline{B H E}$ is LOW during $T_{1}$ for read and write cycles when a byte is to be transferred on the high portion of the bus. The $\mathbf{S 7}$ status information is available during $T_{2}, T_{3}, T_{W}$, and $T_{4}$. The signal is active LOW. $S 7$ is an input which the 8087 monitors during the CPU-controlled bus cycles. |
| $\overline{\mathrm{S} 2}, \overline{\mathrm{~S} 1}, \overline{\mathrm{~s} 0}$ | 1/O | Status: For 8087-driven bus cycles, these status lines are encoded as follows: <br> Status is driven active during $T_{4}$, remains valid during $T_{1}$ and $T_{2}$, and is returned to the passive state $(1,1,1)$ during $T_{3}$ or during $T_{w}$ when READY is HIGH. This status is used by the 8288 Bus Controller (or the 82188 Integrated Bus Controller with an $80186 / 80188 \mathrm{CPU}$ ) to generate all memory access control signals. Any change in $\mathrm{S} 2, \mathrm{~S} 1$, or $\mathrm{S}_{0}$ during $\mathrm{T}_{4}$ is used to indicate the beginning of a bus cycle, and the return to the passive state in $T_{3}$ or $T_{w}$ is used to indicate the end of a bus cycle. These signals are monitored by the 8087 when the CPU is in control of the bus. |
| $\overline{\mathrm{RQ}} / \overline{\mathrm{GTO}}$ | 1/0 | Request/Grant: This request/grant pin is used by the 8087 to gain control of the local bus from the CPU for operand transfers or on behalf of another bus master. It must be connected to one of the two processor request/ grant pins. The request grant sequence on this pin is as follows: <br> 1. A pulse one clock wide is passed to the CPU to indicate a local bus request by either the 8087 or the master connected to the $8087 \overline{\mathrm{RQ}} / \overline{\mathrm{GT}} 1 \mathrm{pin}$. <br> 2. The 8087 waits for the grant pulse and when it is received will either initiate bus transfer activity in the clock cycle following the grant or pass the grant out on the $\overline{\mathrm{RQ}} / \overline{\mathrm{GT}} 1$ pin in this clock if the initial request was for anather bus master. <br> 3. The 8087 will generate a release pulse to the CPU one clock cycle after the completion of the last 8087 bus cycle or on receipt of the release pulse from the bus master on $\overline{\mathrm{RQ}} / \overline{\mathrm{GT}} 1$. <br> For iAPX 186/188 systems, the same sequence applies except $\overline{\mathrm{RQ}} / \overline{\mathrm{GT}}$ signals are converted to appropriate HOLD, HLDA signals by the 82188 Integrated Bus Controller. This is to conform with iAPX 186/188's HOLD, HLDA bus exchange protocol. Refer to the 82188 data sheet for further information. |

Table 1. 8087 Pin Description (Continued)

| Symbol | Type | Name and Function |
| :---: | :---: | :---: |
| $\overline{\mathbf{R Q}} / \overline{\mathbf{G} T} 1$ | I/O | Request/Grant: This request/grant pin is used by another local bus master to force the 8087 to request the local bus. If the 8087 is not in control of the bus when the request is made the request/grant sequence is passed through the 8087 on the $\overline{\mathrm{RQ}} / \overline{\mathrm{GTO}}$ pin one cycle later. Subsequent grant and release pulses are also passed through the 8087 with a two and one clock delay, respectively, for resynchronization. $\overline{\mathrm{RQ}} / \mathrm{GT} 1$ has an internal pullup resistor, and so may be left unconnected. If the 8087 has control of the bus the request/ grant sequence is as follows: <br> 1. A puise 1 CLK wide from another local bus master indicates a local bus request to the 8087 (pulse 1). <br> 2. During the 8087's next $\mathrm{T}_{4}$ or $\mathrm{T}_{1}$ a pulse 1 CLK wide from the 8087 to the requesting master (pulse 2) indicates that the 8087 has allowed the local bus to float and that it will enter the "RQ/GT acknowledge" state at the next CLK. The 8087's control unit is disconnected logically from the local bus during "RQ/GT acknowledge." <br> 3. A pulse 1 CLK wide from the requesting master indicates to the 8087 (pulse 3) that the "RQ/GT" request is about to end and that the 8087 can reclaim the local bus at the next CLK. <br> Each master-master exchange of the local bus is a sequence of 3 pulses. There must be one dead CLK cycle after each bus exchange. Pulses are active LOW. <br> For iAPX 186/188 systems, the $\overline{\mathrm{RQ}} / \overline{\mathrm{GT}} 1$ line may be connected to the 82188 Integrated Bus Controller. In this case, a third processor with a HOLD, HLDA bus exchange system may acquire the bus from the 8087. For this configuration, $\overline{R Q} \overline{G T 1}$ will only be used if the 8087 is the bus master. Refer to 82188 data sheet for further information. |
| QS1, QS0 | 1 | QS1, QS0: QS1 and QS0 provide the 8087 with status to allow tracking of the CPU instruction queue. |
| INT | 0 | Interrupt: This line is used to indicate that an unmasked exception has occurred during numeric instruction execution when 8087 interrupts are enabled. This signal is typically routed to an 8259 A for 8086 systems and to INTO for iAPX 186/188 systems. INT is active HIGH. |
| BUSY | 0 | Busy: This signal indicates that the 8087 NEU is executing a numeric instruction. It is connected to the CPU's TEST pin to provide synchronization. In the case of an unmasked exception BUSY remains active until the exception is cleared. BUSY is active HIGH. |
| READY | I | Ready: READY is the acknowledgement from the addressed memory device that it will complete the data transfer. The RDY signal from memory is synchronized by the 8284A Clock Generator to form READY for 8086 systems. For iAPX 186/188 systems, RDY is synchronized by the 82188 Integrated Bus Controller to form READY. This signal is active HIGH. |
| RESET | 1 | Reset: RESET causes the processor to immediately terminate its present activity. The sighal must be active HIGH for at least four clock cycles. RESET is internally synchronized. |
| CLK | 1 | Clock: The clock provides the basic timing for the processor and bus controller. It is asymmetric with a 33\% duty cycle to provide optimized internal timing. |
| $V_{C C}$ |  | Power: $\mathrm{V}_{\text {CC }}$ is the +5 V power supply pin. |
| GND |  | Ground: GND are the ground pins. |

NOTE:
For the pin descriptions of the $8086,8088,80186$ and 80188 CPU's, reference the respective data sheets (iAPX 86/10, iAPX 88/10, (APX 186, iAPX 188).

## APPLICATION AREAS

The 8087 provides functions meant specifically for high performance numeric processing requirements. Trigonometric, logarithmic, and exponential functions are built into the coprocessor hardware. These functions are essential in scientific, engineering, navigational, or military applications.

The 8087 also has capabilities meant for business or commercial computing. An 8087 can process Binary Coded Decimal (BCD) numbers up to 18 digits without roundoff errors. It can also perform arithmetic on integers as large as 64 bits $\pm 10^{18}$ ).

## PROGRAMMING LANGUAGE SUPPORT

Programs for the 8087 can be written in Intel's high-level languages for iAPX 86/88 and IAPX 186/188 Systems; ASM-86 (the iAPX 86,88 assembly language), PL/M-86, FORTRAN-86, and PASCAL-86.

## RELATED INFORMATION

For iAPX 86/10, iAPX 88/10, iAPX 186 or iAPX 188 details, refer to the respective data sheets. For IAPX 186 or iAPX 188 systems, also refer to the 82188 Integrated Bus Controller data sheet.

## FUNCTIONAL DESCRIPTION

The 8087 Numeric Data Processor's architecture is designed for high performance numeric computing in conjunction with general purpose processing.

The 8087 is a numeric processor extension that provides arithmetic and logical instruction support for a variety of numeric data types. It also executes numerous built-in transcendental functions (e.g., tangent and log functions). The 8087 executes instructions as a coprocessor to a maximum mode CPU. It effectively extends the register and instruction set of the system and adds several new data types as well. Figure 3 presents the registers of the CPU+8087. Table 2 shows the range of data types supported by the 8087. The 8087 is treated as an extension to the CPU, providing register, data types, control, and instruction capabilities at the hardware level. At the programmers level the CPU and the 8087 are viewed as a single unified processor.

## System Configuration

As a coprocessor to an 8086 or 8088 , the 8087 is wired in parallel with the CPU as shown in Figure 4. Figure 5 shows the iAPX 186/188 system configuration. The CPU's status (S0-S2) and queue status lines (QS0-QS1) enable the 8087 to monitor and decode instructions in synchronization with the CPU and without any CPU overhead. For IAPX 186/188 systems, the queue status signals of the IAPX 186/188 are synchronized to 8087 requirements by the 82188 Integrated Bus Controller. Once started, the 8087 can process in parallel with, and independent of, the host CPU. For resynchronization, the 8087's BUSY signal informs the CPU that the 8087 is executing an instruction and the CPU WAIT instruction tests this signal to insure that the 8087 is ready to execute subsequent instructions. The 8087 can interrupt the CPU when it detects an error or exception. The


Figure 3. CPU+8087 Architecture

8087's interrupt request line is typically routed to the CPU through an 8259A Programmable Interrupt Controller for 8086, 8088 systems and INTO for iAPX 186/188.

The 8087 uses one of the request/grant lines of the iAPX 86/88 architecture (typically $\overline{\mathrm{RQ}} / \mathrm{GT}$ ) to obtain control of the local bus for data transfers. The other request/ grant line is available for general system use (for instance by an I/O processor in LOCAL mode). A bus master can also be connected to the 8087's RQ/GT1 line. In this configuration the 8087 will pass the request/ grant handshake signals between the CPU and the attached master when the 8087 is not in control of the bus and will relinquish the bus to the master directly when the 8087 is in control. In this way two additional masters can be configured in an iAPX 86/88 system; one will share the 8086 bus with the 8087 on a first come first served basis, and the second will be guaranteed to be higher in priority than the 8087.

For iAPX 186/188 systems, $\overline{\mathrm{RQ}} / \overline{\mathrm{GT}} 0$ and $\overline{\mathrm{RQ}} / \overline{\mathrm{GT}} 1$ are connected to the corresponding inputs of the 82188

Integrated Bus Controller. Because the iAPX 186/188 has a HOLD, HLDA bus exchange protocol, an interface is needed which will translate $\overline{\mathrm{RQ}} / \overline{\mathrm{GT}}$ signals to corresponding HOLD, HDLA signals and visa versa. One of the functions of the 82188 IBC is to provide this translation. $\overline{\mathrm{RQ}} / \overline{\mathrm{GTO}}$ is translated to HOLD, HLDA signals which are then directly connected to the IAPX 186/188. The $\overline{R Q} / \mathrm{GT} 1$ line is also translated into HOLD, HLDA signals (referred to as SYSHOLD, SYSHLDA signals) by the 82188 IBC. This allows a third processor (using a HOLD, HLDA bus exchange protocol) to gain control of the bus.

Unlike an iAPX 86/20 system, $\overline{R Q} / \overline{\mathrm{GT}} 1$ is only used when the 8087 has bus control. If the third processor requests the bus when the current bus master is the IAPX 186/188, the 82188 IBC will directly pass the request onto the iAPX 186/188 without going through the 8087. The third processor has the highest bus priority in the system. If the 8087 requests the bus while the third processor has bus control, the grant pulse will not be issued until the third processor releases the bus (using SYSHOLD). In this configuration, the third processor has the highest priority, the 8087 has the next highest, and the iAPX 186/188 has the lowest bus priority.

Table 2. 8087 Data Types


## Bus Operation

The 8087 bus structure, operation and timing are identical to all other processors in the iAPX 86/88 series (maximum mode configuration). The address is time multiplexed with the data on the first $16 / 8$ lines of the address/data bus. A16 through A19 are time multiplexed with four status lines S3-S6. S3, S4 and S6 are always one (HIGH) for 8087-driven bus cycles while S 5 is always zero (LOW). When the 8087 is monitoring CPU bus cycles (passive mode) S 6 is also monitored by the 8087 to differentiate 8086/8088 activity from that of a local I/O processor or àny other local bus master. (The 8086/8088 must be the only processor on the local bus to drive S6 LOW). S7 is multiplexed with and has the same value as $\overline{\mathrm{BHE}}$ for all 8087 bus cycles.

The first three status lines, $\overline{\mathrm{S0}}-\overline{\mathrm{S} 2}$, are used with an 8288 bus controller or 82188 Integrated Bus Controller to determine the type of bus cycle being run:

| S2 | S1 | S0 |  |
| :---: | :---: | :---: | :--- |
| 0 | X | X | Unused |
| 1 | 0 | 0 | Unused |
| 1 | 0 | 1 | Memory Data Read |
| 1 | 1 | 0 | Memory Data Write |
| 1 | 1 | 1 | Passive (no bus |
|  |  |  | cycle) |

## Programming Interface

The 8087 includes the standard IAPX 86/10, 88/10 instruction set for general data manipulation and program control. It also includes 68 numeric instructions for extended precision integer, floating point, trigonometric, logarithmic, and exponential functions. Sample execution times for several 8087 functions are shown in Table 3. Overall performance is up to 100 times that of an iAPX 86/10 processor for numeric instructions.

Any instruction executed by the 8087 is the combined result of the CPU and 8087 activity. The CPU and the 8087 have specialized functions and registers providing fast concurrent operation. The CPU controls overall program execution while the 8087 uses the coprocessor interface to recognize and perform numeric operations.

Table 2 lists the eight data types the 8087 supports and presents the format for each type. Internally, the 8087 holds all numbers in the temporary real format. Load and store instructions automatically convert operands represented in memory as 16-, 32-, or 64-bit integers, 32- or 64 -bit floating point numbers or 18digit packed BCD numbers into temporary real format and vice versa. The 8087 also provides the capability to control round off, underflow, and overflow errors in each calculation.

Computations in the 8087 use the processor's register stack. These eight 80 -bit registers provide the equivalent capacity of 20 32-bit registers. The 8087 register set can be accessed as a stack, with instructions operating on the top one or two stack elements, or as a fixed register set, with instructions operating on explicitly designated registers.

Table 5 lists the 8087's instructions by class. All appear as ESCAPE instructions to the host. Assembly language programs are written in ASM-86, the iAPX 86, 88 assembly language.

Table 3. Execution Times for Selected IAPX 86/20 Numeric Instructions and Corresponding iAPX 86/10 Emulation

| Floating Point Instruction | Approximate Execution Time ( $\mu \mathrm{s}$ ) |  |
| :---: | :---: | :---: |
|  | $\begin{aligned} & \text { IAPX 86/20 } \\ & \text { (5 MHz } \\ & \text { Clock) } \end{aligned}$ | IAPX 86/10 <br> Emulation |
| Add/Subtract | 17 | 1,600 |
| Multiply (single precision) | 19 | 1,600 |
| Multiply (extended precision) | 27 | 2,100 |
| Divide | 39 | 3,200 |
| Compare | 9 | 1,300 |
| Load (double precision) | 10 | 1,700 |
| Store (double precision) | 21 | 1,200 |
| Square Root | 36 | 19,600 |
| Tangent | 90 | 13,000 |
| Exponentiation | 100 | 17,100 |

## NUMERIC PROCESSOR EXTENSION ARCHITECTURE

As Shown in Figure 1, the 8087 is internally divided into two processing elements, the control unit (CU) and the numeric execution unit (NEU). The NEU executes all numeric instructions, while the CU receives and decodes instructions, reads and writes memory operands and executes 8087 control instructions. The two elements are able to operate independently of one another, allowing the CU to maintain synchronization
with the CPU while the NEU is busy processing a numeric instruction.

## Control Unit

The CU keeps the 8087 operating in synchronization with its host CPU. 8087 instructions are intermixed with CPU instructions in a single instruction stream. The CPU fetches all instructions from memory; by monitoring the status ( $\overline{\mathrm{SO}-\mathrm{S} 2}, \mathrm{~S} 6$ ) emitted by the CPU, the control unit determines when an instruction is being fetched. The

Figure 4. iAPX 86/20, 88/20 System Configuration


Figure 5. IAPX 186/20, 188/20 System Configuration


CU monitors the data bus in parallel with the CPU to obtain instructions that pertain to the 8087.

The CU maintains an instruction queue that is identical to the queue in the host CPU. The CU automatically determines if the CPU is an 8086/186 or an 8088/188 immediately after reset (by monitoring the BHE/S7 line) and matches its queue length accordingly. By monitoring the CPU's queue status lines (QSO, QS1), the CU obtains and decodes instructions from the queue in synchronization with the CPU.

A numeric instruction appears as an ESCAPE instruction to the CPU. Both the CPU and 8087 decode and execute the ESCAPE instruction together. The 8087 only recognizes the numeric instructions shown in Table 5. The start of a numeric operation is acomplished when the CPU executes the ESCAPE instruction. The instruction may or may not identify a memory operand.

The CPU does, however, distinguish between ESC instructions that reference memory and those that do not. If the instruction refers to a memory operand, the CPU calculates the operand's address using any one of its available addressing modes, and then performs a "dummy read" of the word at that location. (Any location within the 1 M byte address space is allowed.) This is a normal read cycle except that the CPU ignores the data it receives. If the ESC instruction does not contain a memory reference (e.g. an 8087 stack operation), the CPU simply proceeds to the next instruction.

An 8087 instruction can have one of three memory reference options; (1) not reference memory; (2) load an operand word from memory into the 8087; or (3) store an operand word from the 8087 into memory. If no memory reference is required, the 8087 simply executes its instruction. If a memory reference is required, the CU uses a "dummy read" cycle initiated by the CPU to capture and save the address that the CPU places on the bus. If the instruction is a load, the CU additionally captures the data word when it becomes available on the local data bus. If data required is longer than one word, the CU immediately obtains the bus from the CPU using the request/grant protocol and reads the rest of the information in consecutive bus cycles. In a store operation, the CU captures and saves the store address as in a load, and ignores the data word that follows in the "dummy read" cycle. When the 8087 is ready to perform the store, the CU obtains the bus from the CPU and writes the operand starting at the specified address.

## Numeric Execution Unit

The NEU executes all instructions that involve the register stack; these include arithmetic, logical, transcendental, constant and data transfer instructions. The data path in the NEU is 84 bits wide ( 68 fraction bits, 15 exponent bits and a sign bit) which allows internal operand transfers to be performed at very high speeds.

When the NEU begins executing an instruction, it activates the 8087 BUSY signal. This signal can be used in conjunction with the CPU WAIT instruction to resynchronize both processors when the NEU has completed its current instruction.

## Register Set

The CPU+8087 register set is shown in Figure 3. Each of the eight data registers in the 8087's register stack is 80 bits and is divided into "fields" corresponding to the 8087's temporary real data type.

At a given point in time the TOP field in the control word identifies the current top-of-stack register. A "push" operation decrements TOP by 1 and loads a value into the new top register. A "pop" operation stores the value from the current top register and then increments TOP by 1. Like CPU stacks in memory, the 8087 register stack grows "down" toward lower-addressed registers.

Instructions may address the data registers either implicitly or explicitly. Many instructions operate on the register at the top of the stack. These instructions implicitly address the register pointed to by the TOP. Other instructions allow the programmer to explicitly specify the register which is to be used. Explicit register addressing is "top-relative."

## Status Word

The status word shown in Figure 6 reflects the overall state of the 8087; it may be stored in memory and then inspected by CPU code. The status word is a 16-bit register divided into fields as shown in Figure 6. The busy bit (bit 15) indicates whether the NEU is either executing an instruction or has an interrupt request pending ( $B=1$ ), or is idle $(B=0)$. Several instructions which store and manipulate the status word are executed exclusively by the CU, and these do not set the busy bit themselves.

(1) IR is set if any unmasked exception bit is set, cleared otherwise.
${ }^{(2)}$ See Table 3 for condition code interpretation.
(3) Top Values:
$000=$ Register 0 is Top of Stack
$001=$ Register 1 is Top of Stack.
:
111 = Register 7 is Top of Stack

Figure 6. 8087 Status Word

The four numeric condition code bits $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ are similar to flags in a CPU: various instructions update these bits to reflect the outcome of 8087 operations. The effect of these instructions on the condition code bits is summarized in Table 4.

Bits 14-12 of the status word point to the 8087 register that is the current top-of-stack (TOP) as described above.

Bit 7 is the interrupt request bit. This bit is set if any unmasked exception bit is set and cleared otherwise.

Bits 5-0 are set to indicate that the NEU has detected an exception while executing an instruction.

## Tag Word

The tag word marks the content of each register as shown in Figure 7. The principal function of the tag word is to optimize the 8087's performance. The tag
word can be used, however, to interpret the contents of 8087 registers.

## Instruction and Data Pointers

The instruction and data pointers (see Figure 8) are provided for user-written error handlers. Whenever the 8087 executes an NEU instruction, the CU saves the instruction address, the operand address (if present) and the instruction opcode. 8087 instructions can store this data into memory.


Figure 7. 8087 Tag Word

Table 4a. Condition Code Interpretation

| Instruction Type | $\mathrm{C}_{3}$ | $\mathrm{C}_{2}$ | $\mathrm{C}_{1}$ | $\mathrm{C}_{0}$ | Interpretation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Compare, Test | 0 | 0 | X | 0 | ST > Source or 0 (FTST) |
|  | 0 | 0 | X | 1 | ST < Source or 0 (FTST) |
|  | 1 | 0 | X | 0 | ST = Source or 0 (FTST) |
|  | 1 | 1 | X | 1 | ST is not comparable |
| Remainder | $\mathrm{Q}_{1}$ | 0 | $\mathrm{Q}_{0}$ | $\mathrm{Q}_{2}$ | Complete reduction with three low bits of quotient (See Table 4b) |
|  | U | 1 | U | U | Incomplete Reduction |
| Examine | 0 | 0 | 0 | 0 | Valid, positive unnormalized |
|  | 0 | 0 | 0 | 1 | Invalid, positive, exponent $=0$ |
|  | 0 | 0 | 1 | 0 | Valid, negative, unnormalized |
|  | 0 | 0 | 1 | 1 | Invalid, negative, exponent $=0$ |
|  | 0 | 1 | 0 | 0 | Valid, positive, normalized |
|  | 0 | 1 | 0 | 1 | Infinity, positive |
|  | 0 | 1 | 1 | 0 | Valid, negative, normalized |
|  | 0 | 1 | 1 | 1 | Infinity, negative |
|  | 1 | 0 | 0 | 0 | Zero, positive |
|  | 1 | 0 | 0 | 1 | Empty |
|  | 1 | 0 | 1 | 0 | Zero, negative |
|  | 1 | 0 | 1 | 1 | Empty |
|  | 1 | 1 | 0 | 0 | Invalid, positive, exponent $=0$ |
|  | 1 | 1 | 0 | 1 | Empty |
|  | 1 | 1 | 1 | 0 | Invalid, negative, exponent $=0$ |
|  | 1 | 1 | 1 | 1 | Empty |

## NOTES:

1. $\mathrm{ST}=$ Top of stack
2. $X=$ value is not affected by instruction
3. $U=$ value is undefined following instruction
4. $Q_{n}=$ Quotient bit $n$

Table 4b. Condition Code Interpretation after
FPREM Instruction As a Function of Dividend Value

| Dividend Range | $\mathbf{Q}_{2}$ | $\mathbf{Q}_{1}$ | $\mathbf{Q}_{0}$ |
| :--- | :--- | :--- | :--- |
| Dividend $<2$ * Modulus | $\mathrm{C}_{3}{ }^{1}$ | $\mathrm{C}_{1}{ }^{1}$ | $\mathbf{Q}_{0}$ |
| Dividend $<4$ * Modulus | $\mathrm{C}_{3}{ }^{1}$ | $\mathbf{Q}_{1}$ | $\mathbf{Q}_{0}$ |
| Dividend $\geqslant 4$ * Modulus | $\mathbf{Q}_{2}$ | $\mathbf{Q}_{1}$ | $\mathbf{Q}_{0}$ |

## NOTE:

1. Previous value of indicated bit, not affected by FPREM instruction execution.

| 15 |  |  | MEMORY OFFSET |
| :---: | :---: | :---: | :---: |
| CONTROL WORD |  |  | +0 |
| STATUS WORD |  |  | +2 |
| TAG WORD |  |  | +4 |
| INSTRUCTION POINTER (15-0) |  |  | $+6$ |
| INSTRUCTION POINTER (19-16) | 0 | INSTRUCTION OPCODE (10-0) | +8 |
| DATA POINTER (15-0) |  |  | +10 |
| DATA POINTER (19-16) |  | 0 | +12 |
| 151211 |  |  |  |

Figure 8. 8087 Instruction and Data Pointer Image in Memory

## Control Word

The 8087 provides several processing options which are selected by loading a word from memory into the control word. Figure 9 shows the format and encoding of the fields in the control word.

The low order byte of this control word configures 8087 interrupts and exception masking. Bits 5-0 of the control word contain individual masks for each of the six exceptions that the 8087 recognizes and bit 7 contains a general mask bit for all 8087 interrupts. The high order byte of the control word configures the 8087 operating mode including precision, rounding, and infinity controls. The precision control bits (bits 9-8) can be used to set the 8087 internal operating precision at less than the default of temporary real precision. This can be useful in providing compatibility with earlier generation arithmetic processors of smaller precision than the 8087. The rounding control bits (bits 11-10) provide for directed rounding and true chop as well as the unbiased round to nearest mode specified in the proposed IEEE standard. Control over closure of the number space at infinity is also provided (either affine closure, $\pm \infty$, or projective closure, $\infty$, is treated as unsigned, may be specified).

## Exception Handling

The 8087 detects six different exception conditions that can occur during instruction execution. Any or all exceptions will cause an interrupt if unmasked and interrupts are enabled.

If interrupts are disabled the 8087 will simply continue execution regardless of whether the host clears the exception. If a specific exception class is masked and that exception occurs, however, the 8087 will post the exception in the status register and perform an on-chip default exception handling procedure, thereby allowing processing to continue. The exceptions that the 8087 detects are the following:

1. INVALID OPERATION: Stack overflow, stack underflow, indeterminate form ( $0 / 0, \infty-\infty$, etc.) or the use of a Non-Number (NAN) as an operand. An exponent value is reserved and any bit pattern with this value in the exponent field is termed a Non-Number and causes this exception. If this exception is masked, the 8087's default response is to generate a specific NAN called INDEFINITE, or to propagate already existing NANs as the calculation result.


Figure 9. 8087 Control Word
2. OVERFLOW: The result is too large in magnitude to fit the specified format. The 8087 will generate an encoding for infinity if this exception is masked.
3. ZERO DIVISOR: The divisor is zero while the dividend is a non-infinite, non-zero number. Again, the 8087 will generate an encoding for infinity if this exception is masked.
4. UNDERFLOW: The result is non-zero but too small in magnitude to fit in the specified format. If this exception is masked the 8087 will denormalize (shift right) the fraction until the ex-
ponent is in range. This process is called gradual underflow.
5. DENORMALIZED OPERAND: At least one of the operands or the result is denormalized; it has the smallest exponent but a non-zero significand. Normal processing continues if this exception is masked off.
6. INEXACT RESULT: If the true result is not exactly representable in the specified format, the result is rounded according to the rounding mode, and this flag is set. If this exception is masked, processing will simply continue.

## ABSOLUTE MAXIMUM RATINGS*


*NOTICE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## D.C. CHARACTERISTICS $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ )

| Symbol | Parameter | Min. | Max. | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{\text {IL }}$ | Input Low Voltage | -0.5 | +0.8 | V |  |
| $V_{\text {IH }}$ | Input High Voltage | 2.0 | $\mathrm{v}_{\mathrm{cc}}+0.5$ | V |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Output Low Voltage |  | 0.45 | V | $\mathrm{lOL}=2.0 \mathrm{~mA}$ |
| $\mathrm{V}_{\mathrm{OH}}$ | Output High Voltage | 2.4 |  | V | ${ }^{1} \mathrm{OH}=-400 \mu \mathrm{~A}$ |
| I'C | Power Supply Current |  | 475 | mA | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |
| 1 l | Input Leakage Current |  | $\pm 10$ | $\mu \mathrm{A}$ | $0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$ |
| Lo | Output Leakage Current |  | $\pm 10$ | $\mu \mathrm{A}$ | $0.45 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \leqslant V_{\text {CC }}$ |
| $\mathrm{V}_{\mathrm{CL}}$ | Clock Input Low Voltage | -0.5 | +0.6 | V |  |
| $\mathrm{V}_{\mathrm{CH}}$ | Clock Input High Voltage | 3.9 | $\mathrm{V}_{\mathrm{Cc}}+1.0$ | V |  |
| $\mathrm{CIN}_{\text {IN }}$ | Capacitance of Inputs |  | 10 | pF | $\mathrm{fc}=1 \mathrm{MHz}$ |
| $\mathrm{ClO}_{10}$ | Capacitance of I/O Buffer (ADO-15, $\mathrm{A}_{16}-\mathrm{A}_{19}, \mathrm{BHE}, \mathrm{S} 2-\mathrm{SO}$, RQ/GT) and CLK |  | 15 | pF | $\mathrm{fc}=1 \mathrm{MHz}$ |
| Cout | Capacitance of Outputs BUSY, INT |  | 10 | pF | $\mathrm{fc}=1 \mathrm{MHz}$ |

A.C. CHARACTERISTICS ( $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ )

| TIMING | EQUIREMENTS | 8087 |  | 8087-2 |  | 8087-1(Preliminary: See Note 7) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | Min. | Max. | Min. | Max. | Min. | Max. | Units | Test Conditions |
| TCLCL | CLK Cycle Period | 200 | 500 | 125 | 500 | 100 | 500 | ns |  |
| TCLCH | CLK Low Time | 118 |  | 68 |  | 53 |  | ns |  |
| TCHCL | CLK High Time | 69 |  | 44 |  | 39 |  | ns |  |
| TCH1CH2 | CLK R ise Time |  | 10 |  | 10 |  | 15 | ns | From 1.0 V to 3.5 V |
| TCL2CL2 | CLK Fall Time |  | 10 |  | 10 |  | 15 | ns | From 3.5 V to 1.0 V |
| TDVCL | Data in Setup Time | 30 |  | 20 |  | 15 |  | ns |  |
| TCLDX | Data in Hold Time | 10 |  | 10 |  | 10 |  | ns |  |
| TRYHCH | READY Setup Time | 118 |  | 68 |  | 53 |  | ns |  |
| TCHRYX | READY Hold Time | 30 |  | 20 |  | 5 |  | ns |  |
| TRYLCL | READY Inactive to CLK** | - 8 |  | -8 |  | -10 |  | ns |  |
| TGVCH | RQ/GT Setup Time | 30 |  | 15 |  | 8 |  | ns |  |
| TCHGX | RQ/GT Hold Time | 40 |  | 30 |  | 20 |  | ns |  |
| TQVCL | QS0-1 Setup Time | 30 |  | 30 |  | 10 |  | ns |  |
| TCLQX | QSO-1 Hold Time | 10 |  | 10 |  | 5 |  | ns |  |
| TSACH | Status Active Setup Time | 30 |  | 30 |  | 30 |  | ns |  |
| TSNCL | Status Inactive Setup Time | 30 |  | 30 |  | 30 |  | ns |  |
| TILIH | Input Rise Time (Except CLK) |  | 20 |  | 20. |  | 20 | ns | From 0.8 V to 2.0 V |
| TIHIL | Input Fall Time (Except CLK) |  | 12 |  | 12 |  | 15 | ns | From 2.0 V to 0.8 V |

**See Note 6

## A.C. CHARACTERISTICS (Continued)

| TIMINC | SPONSES | 8087 |  | 8087-2 |  | 8087-1(Prellminary: See Note 7) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | Min. | Max. | Min. | Max. | Min. | Max. | Units | Test Conditions |
| TCLML | Command Active Delay (See Notes 1,2) | 10/0 | 35/70 | 10/0 | 35/70 | 10/0 | 35/70 | ns | $C_{L}=20-100 p F$ for all 8087 Outputs (in addition to 8087 self-load) |
| TCLMH | Command Inactive Delay (See Notes 1,2) | 10/0 | 35/55 | 10/0 | 35/55 | 10/0 | 35/70 | ns |  |
| TRYHSH | Ready Active to Status Passive (See Note 5) |  | 110 |  | 65 |  | 45 | ns |  |
| TCHSV | Status Active Delay | 10 | 110 | 10 | 60 | 10 | 45 | ns |  |
| TCLSH | Status Inactive Delay | 10 | 130 | 10 | 70 | 10 | 55 | ns |  |
| TCLAV | Address Valid Delay | 10 | 110 | 10 | 60 | 10 | 55 | ns |  |
| TCLAX | Address Hold Time | 10 |  | 10 |  | 10 |  | ns |  |
| TCLAZ | Address Float Delay | TCLAX | 80 | TCLAX | 50 | TCLAX | 45 | ns |  |
| TSVLH | Status Valid to ALE High (See Notes 1,2) |  | 15/30 |  | 15/30 |  | 15/30 | ns |  |
| TCLLH | CLK Low to ALE Valid (See Notes 1,2) |  | 15/30 |  | 15/30 |  | 15/30 | ns |  |
| TCHLL | ALE Inactive Delay (See Notes 1,2) |  | 15/30 |  | 15/30 |  | 15/30 | ns |  |
| TCLDV | Data Valid Delay | 10 | 110 | 10 | 60 | 10 | 50 | ns |  |
| TCHDX | Data Hold Time | 10 |  | 10 |  | 10 | 45 | ns |  |
| TCVNV | Control Active Delay (See Notes 1,3) | 5 | 45 | 5 | 45 | 5 | 45 | ns |  |
| TCVNX | Control Inactive Delay (See Notes 1,3) | 10 | 45 | 10 | 45 | 10 | 45 | ns |  |
| TCHBV | BUSY and INT Valid Delay | 10 | 150 | 10 | 85 | 10 | 65 | ns |  |
| TCHOTL | Direction Control Active Delay (See Notes 1,3) |  | 50 |  | 50 |  | 50 | ns |  |
| TCHDTH | Direction Control Inactive Delay (See Notes 1,3) |  | 30 |  | 30 |  | 30 | ns |  |
| TSVDTV | STATUS to DT/ $\overrightarrow{\mathrm{R}}$ Delay (See Notes 1.4) | 0 | 30 | 0 | 30 | 0 | 30 | ns |  |
| TCLDTV | DT/R Active Delay (See Notes 1,4) | 0 | 55 | 0 | 55 | 0 | 55 | ns |  |
| TCHDNV | DEN Active Delay (See Notes 1,4) | 0 | 55 | 0 | 55 | 0 | 55 | ns |  |
| TCHDNX | $\overline{\mathrm{DEN}}$ Inactive Delay <br> (See Notes 1,4) | 5 | 55 | 5 | 55 | 5 | 55 | ns |  |
| TCLGL | RQ/GT Active Delay | 0 | 85 | 0 | 50 | 0 | 41 | ns | $\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$ (in addition to 8087 self-load) |
| TCLGH | RQ/GT Inactive Delay | 0 | 85 | 0 | 50 | 0 | 45 | ns |  |
| TOLOH | Output Rise Time |  | 20 |  | 20 |  | 15 | ns | From 0.8 V to 2.0 V |
| TOHOL | Output Fall Time |  | 12 |  | 12 |  | 12 | ns | From 2.0 V to 0.8 V |

## NOTES:

1. Signal at $8284 \mathrm{~A}, 8288$, or 82188 shown for reference only.
2. 8288 timing/82188 timing
3. 8288 timing
4. 82188 timing
5. Applies only to $T_{3}$ and wait states
6. Applies only to $\mathrm{T}_{2}$ state (8ns into $\mathrm{T}_{3}$ )
7. IMPORTANT SYSTEM CONSIDERATION: Some 8087-1 timing parameters are constrained relative to the corresponding 8086-1 specifications. Therefore, 8086-1 systems incorporating the 8087-1 should be designed with the 8087-1 specifications.
A.C. TESTING INPUT, OUTPUT WAVEFORM
INPUT/OUTPUT
A.C. TESTING LOAD CIRCUIT


## WAVEFORMS

MASTER MODE (with 8288 references)


## NOTES:

1. ALL SIGNALS SWITCH BETWEEN $V_{O L}$ AND $V_{O H}$ UNLESS OTHERWISE SPECIFIED.
2. READY IS SAMPLED NEAR THE END OF $\mathrm{T}_{2}, \mathrm{~T}_{3}$ AND $\mathrm{T}_{W}$ TO DETERMINE IF $\mathrm{T}_{W}$ MACHINE STATES aRE TO BE inserted.
3. THE LOCAL BUS FLOATS ONLY IF THE 8087 IS RETURNING CONTROL TO THE 8086/8088.
4. ALE RISES AT LATER OF (TSVLH, TCLLH).
5. STATUS INACTIVE IN STATE JUST PRIOR TO T 4 .
6. SIGNALS AT 8284A OR 8288 ARE SHOWN FOR REFERENCE ONLY.

7. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE NOTED.

## WAVEFORMS (Continued)

## MASTER MODE (with 82188 references)



NOTES:

1. ALL SIGNALS SWITCH BETWEEN $V_{O L}$ AND $V_{O H}$ UNLESS OTHERWISE SPECIFIED.
2. READY IS SAMPLED NEAR THE END OF $T_{2}, T_{3}$ AND $T_{w}$ TO DETERMINE IF $T_{w}$ MACHINE STATES ARE TO BE INSERTED.
3. THE LOCAL BUS FLOATS ONLY IF THE 8087 IS RETURNING CONTROL TO THE 80186/80188
4. ALE RISES AT LATER OF (TSVLH, TCLLH).
5. STATUS INACTIVE IN STATE JUST PRIOR TO $T_{4}$.
6. SIGNALS AT 8284A OR 82188 ARE SHOWN FOR REFERENCE ONLY.
7. THE ISSUANCE OF 8288 COMMAND AND CONTROL SIGNALS ( $\overline{M R D C}, \overline{M W T C}, \overline{A M W C}$, AND DEN) LAGS THE ACTIVE HIGH 8288 CEN.
8. ALL TIMING MEASUREMENTS ARE MADE AT 1.5 V UNLESS OTHERWISE NOTED.
9. DT/ $\bar{R}$ BECOMES VALID AT THE LATER OF (TSVDTV, TCLDTV).

## WAVEFORMS (Continued)



## RESET TIMING



NOTE: THE CPU PROVIDES ACTIVE PULLUP OF $\overline{\operatorname{Ro}} / \overline{\mathrm{G} T O}$. SEE TCLGH SPEC.

## WAVEFORMS (Continued)

## REQUEST/GRANT ${ }_{1}$ TIMING



NOTE: ALTERNATE MASTER MAY NOT DAIVE THE BUSES OUTSIDE OF THE REGION SHOWN WITHOUT RISKING BUS CONTENTION

BUSY AND INTERRUPT TIMING
cık

BUSY, INT


Table 5. 8087 Extensions to the 86/186 Instructions Sets


Mnemonics © Intel 1982.

8087/8087-2/8087-1

Table 5. 8087 Extensions to the $\mathbf{8 6 / 1 8 6}$ instruction Sets (cont.)


NOTE:

1. If $\mathrm{P}=1$ then add 5 clocks.

Table 5. 8087 Extensions to the 86/186 Instructions Sets (cont.)


Table 5. 8087 Extensions to the $\mathbf{8 6 / 1 8 6}$ Instructions Sets (cont.)


* $n=$ number of times CPU examines TEST line before 8087 lowers BUSY.


## NOTES:

1. if $\bmod =00$ then DISP $=0$ *, disp-low and disp-high are absent
if $\bmod =01$ then DISP $=$ disp-low sign-extended to 16 -bits, disp-high is absent
if $\mathrm{mod}=10$ then DISP=disp-high; disp-low
if mod $=11$ then $\mathrm{r} / \mathrm{m}$ is treated as an ST(i) field
2. if $r / m=000$ then $E A=(B X)+(S I)+D I S P$
if $\mathrm{r} / \mathrm{m}=001$ then $E A=(B X)+(D I)+D I S P$
if $\mathrm{r} / \mathrm{m}=010$ then $E A=(B P)+(S I)+$ DISP
if $\mathrm{r} / \mathrm{m}=011$ then $E A=(B P)+(D I)+D I S P$
if $\mathrm{r} / \mathrm{m}=100$ then $E A=(\mathrm{SI})+$ DISP
if $\mathrm{r} / \mathrm{m}=101$ then $E A=(\mathrm{DI})+$ DISP
if $\mathrm{r} / \mathrm{m}=110$ then $E A=(B P)+$ DISP
if $\mathrm{r} / \mathrm{m}=111$ then $E A=(B X)+$ DISP
*except if mod $=000$ and $\mathrm{r} / \mathrm{m}=110$ then $E A=$ disp-high; disp-low
3. $\mathrm{MF}=$ Memory Format

00-32-bit Real
01-32-bit Integer
10-64-bit Real
11-16-bit Integer
4. $\operatorname{ST}(0)=$ Current stack top

ST(i) $i^{\text {th }}$ register below stack top
5. $d=$ Destination

0 -Destination is $\mathrm{ST}(0)$
1 -Destination is ST(i)
6. $P=P o p$

0-No pop
1-Pop ST(0)
7. $R=$ Reverse: When $d=1$ reverse the sense of $R$

0 -Destination (op) Source
1-Source (op) Destination
8. For FSQRT:
$-0 \leqslant \mathrm{ST}(0) \leqslant+\infty$

For F2XM1: $\quad 0 \leqslant S T(0) \leqslant 2^{-1}$
For FYL2X: $\quad 0<\mathrm{ST}(0)<x$
For FYL2XP1: $\quad 0 \leqslant|S T(0)|<(2-\sqrt{ } 2) / 2$
$-x<\mathrm{ST}(1)<x$
For FPTAN: $\quad 0 \leqslant \mathrm{ST}(0) \leqslant \pi / 4$
For FPATAN: $\quad 0 \leqslant \mathrm{ST}(0)<\mathrm{ST}(1)<+\infty$


[^0]:    NOTE 18432 MHz is the standard 8080 frequency divided by 10

[^1]:    * Writing a 1 in bit 5 of register 'H3D8 enables Blinking

