

-
Tandy® 1000 -

_ 1
BASIC
A Reference - Guide

-
t -
-

}I<;

-
1 • I .

- -, : l ..
-

- TABLE OF CONTENTS

Notations. 1

Loading BASIC . 2

Filenames . 3

Loading and Running BASIC Programs 4

Saving BASIC Programs to Disk. 4

Typing and Editing BASIC Programs 5
Typing a Program . 5
Editing the Program 6
Special Function Keys . 6
Special Keys During Program Execution 8
Function Key Settings . 8
Typing Keywords Using the (ALT l Key 8

Data 9
String Data . 9
Numeric Data . 9
Numbering Systems 10
Numeric Constants 10
Numeric Variables 11

Operators .. 11
Arithmetic Operators 11
String Operator 12
Relational Operators 12
Logical Operators 14
Hierarchy of Operators 15

Color and Graphics 15
Resolution ... 15
Colors 16
Video Pages 17
Screen Modes 17

Keywords 19

BASIC Error Codes and Messages 74

Keyboard ASCII and Scan Codes 76

ASCII Character Codes 80

Tandy 1000

II Tandy 1000

I"""'

r

r

r

r

r
i

~
I

I""""
'

r
I

r

BASIC

This guide outlines BASIC for MSTM_DOS. It assumes that you are
familiar with the BASIC language. For a full explanation of the con
cepts and commands referred to here, see your Radio Shack dealer
for the BASIC Reference Manual, (Cat. No. 25-1502). For a tutorial
on how to use BASIC, Radio Shack carries the following book:

Learning BASIC for the Tandy 1000/2000
by David Lien, Cat. No. 25-1500

Also see your local bookstore for tutorial books on BASIC.

Notations

The following notations are used throughout this guide:

CAPITALS

italics

. . . (ellipsis)

[]

&Hnnnn

&Onnnnn

(KEYNAME)

Tandy 1000

Material you enter exactly as it appears.

Words, letters, characters, or values you put in
command lines from a set of acceptable entries.
Elsewhere, italics are used for emphasis.

Items preceding the ellipsis may be repeated .

Items enclosed in brackets are optional.

nnnn is a hexadecimal number.

nnnnn is an octal number.

A key on your keyboard.

Is used to indicate a space (ASCII Code 32) in text
when spaces are an important part of a command
or statement.

BASIC

Loading BASIC
BASIC is supplied with your computer. To use BASIC, first load
MS-DOS. To do so, turn on your computer and insert the MS-DOS/
BASIC diskette into Drive A; then press the reset button.

Enter the date and time as prompted. You can bypass these prompts
by pressing (ENTER l; however, some BASIC statements make use
of the system date and time . When the display shows the prompt:

A>

you can load BASIC, using this format :

BASIC [pathname][<input-file][>[>]output-file][/F: # of files]
[IM :highest memory location, maximum block size][IC:buffer
size][/S:record length][/D][/I]

For compatibility with other BASICs, you can type BASICA, instead
of BASIC. Doing this causes the computer to load BASICA.COM,
which in turn loads BASIC.

The only limitations imposed by BASICA are:

• /I is always on.

• The communications buffer size is limited to 40K bytes if
the system has 1 RS-232 card or to 20K if it has 2 cards.

Examples:

BASIC
BASIC is loaded and 3 data fi les are reserved for your use.

BASIC MYFILE
BASIC is loaded. The program specified by MYFILE is loaded and
executed.

BASIC MY FILE >DATA. IN
BASIC is loaded. The program specified by MYFILE is loaded and
receives input from the file specified by DATA.IN rather than from
the keyboard.

2 Tandy 1000

BASIC

BASIC MY FILE <DATA. IN >DATA.OUT
BASIC and the program specified by MYFILE are loaded. BASIC
now receives input from the file specified by DATA.IN. Output is
directed to the file DATA.OUT, instead of the video display. Because
1 greater-than sign is used before the output-file, the output-file is
overwritten. If 2 greater-than signs are used, the output is appended
to the output-file.

BASIC /F:10 /I
BASIC is loaded. A maximum of 10 data files can be open at one
time. II, which tells BASIC not to dynamically allocate space during
file operations, is required when using the IF option. BASIC reserves
6 files for your use and 4 for internal use. If the number of data files
is not set, BASIC reserves 3 for your use.

BASIC /S:256 /I
BASIC is loaded. The maximum direct access record size is set at
256 bytes. If not defined, IS defaults to 128 bytes. II, which tells
BASIC not to dynamically allocate space during file operations, is
required with the IS option.

BASIC /C:128
BASIC is loaded. The size of the receive buffer for RS232 is set to
128 bytes. If you omit IC, the buffer is set to 256 bytes. The transmit
buffer is always 128 bytes.

- BASIC /M:32000,2048

1""""11

BASIC is loaded with a reserved memory of 32768 bytes (2048 x
16). The lower 32000 bytes are used for BASIC with the 768 bytes
above memory location 32000 reserved for assembly-language
routines. If the IM is omitted, the system reserves 64K bytes for
BASIC. The maximum block size parameter must be set if you plan
to use the SHELL statement.

BASIC /D
BASIC, including the Double Precision Transcendental math
package, is loaded.

Filenames

Filenames (including program names) consist of 1-8 characters,
beginning with an alpha character. Legal characters are the letters
A-Z, the symbols () {} @# $ % & 1 - • • " - and the numbers 0-9.
Examples of filenames are: DATAFILE, Programl, Accnt-1 ,
r I MAIL, A$b#C!.

Tandy 1000 3

BASIC

Filenames can also contain an extension. Extensions consist of a
period(.), followed by 1-3 characters. Legal extension characters are
the same as for filenames. Examples of filenames with extensions
are: DATAFILE.dat, Programl.BAS, MAIL.J27, A$b#C!.SSS.

To save or load files using other than the current directory or
drive, you must use pathnames. Pathnames can include the drive,
directory, filename, and filename extension. They can contain a
maximum of 63 characters. An example of a pathname is
a:\ GAME SD IR\ whizgame.bas.

Some BASIC commands, such as RMDIR (remove directory), require
a directory path, instead of a pathname. A dirpath is the same as
a pathname except that it excludes the filename .

Other commands let you specify a physical device for communica
tion. The device names are: KYBD: (keyboard), SCRN: (screen),
LPTI: (printer), and COMn: (Communications Channel 1 or 2).

Whenever you use a filename (with or without an extension), a
complete pathname, a directory path, or a device name, you must
enclose the entire name in quotation marks.

Loading and Running BASIC Programs
To load a BASIC program for execution or examination, type:

LOAD "MY FI LE" (ENTER)

where MYFILE is the program to be loaded into memory. Because
a path is not given, BASIC looks for MYFILE in the current
directory.

Add ,R after the filename or pathname to cause the file to execute
automatically after loading. Using RUN instead of LOAD also causes
a file to execute automatically after loading.

Saving BASIC Programs to Disk
The syntax for saving a BASIC program is:

s AVE II My F I LE II (ENTER)

saves the program in memory as MYFILE. Because a path is not
specified, BASIC saves MYFILE in the current directory.

4 Tandy 1000

BASIC

You can specify the drive and directory in which to save a file . For
example, to name a file memos.bas and save it in the WORK direc
tory on Drive B, type:

SAVE " B:\ WORK\memos.bas " (ENT ER)

Typing and Editing BASIC Programs
When BASIC displays the OK prompt, you can type in program lines
or commands. When you press the (ENTER l key, BASIC looks at the
first character of a line. If it is a digit, BASIC stores it in memory
as a program line.

If the first character is not a digit, BASIC tries to execute the line
as a command. For instance, type the following:

MI LES=390 (ENTER)
GALLON=15 (ENTER)
PRINT MI LES/GALLON (ENTER)

BASIC executes each command as it is entered.

Typing a Program

Each line must be preceded by a line number. At the OK prompt,
type:

10 CL S

When the first line is completed, press (ENTER l.

Type the second line with its line number :

20 PRINT "COMPUTERS STORE CHARACTERS
IN STRINGS" (ENTER)

Type the rest of the program in the same manner. It should look
like this:

1 0 CL S
20 PRINT "COMPUTERS STORE CHARACTERS

IN STRINGS"
30 INPUT "TYPE YOUR FIRST NAME -

PRESS <ENTER>"; FIRSTNAME$
40 INPUT "TYPE YOUR SECOND NAME -

PRESS <ENTER>"; LASTNAME$
50 PRINT "STRINGS CAN BE JOINED

TOGETHER LIKE THIS," FIRSTNAME$" "
LASTNAME$

Tandy 1000 5

BASIC

To execute this or any other BASIC program, at the OK prompt,
type RUN and press (ENTER l.

Editing the Program

There are 2 methods to edit BASIC program lines:

Method 1

You can retype the entire line. For example, to add the word CAN
to the line, type:

20 PRINT "COMPUTERS CAN STORE
CH AR ACT ER S I N ST R ING S" (ENTER l

Method 2

Use BASIC's special function keys for editing lines. A description
of these keys and their functions follows.

If the line to edit is on the screen, you can use the arrow keys to
move the cursor to the position at which you are going to make the
changes. If the line is not displayed, you can edit it by typing:

ED IT line (ENTER)

where line is the number of the line to edit. After you make the
changes, press I ENTER l to store them.

Special Function Keys

(SPACEBAR)

(BACKSPACE)
or (CTRL) CED

switches to uppercase or uppercase/lowercase
mode.

changes the current character to a blank and ad
vances the cursor 1 position to the right.

backspaces the cursor, erasing the first
character to the left. All characters to the right
move left 1 position.

(CTRL l(BREAK l or interrupts line entry and starts over with a new
(CTRL l © line. Any changes previously made to the line

(ENTER) or
(CTRL) CM)

6

are not saved.

ends current line. BASIC reads the line.

Tandy 1000

-

-
-

-
-

(ESC) or
(CTRL l OD

(CTRL) (]Jor
(CTRL) (HOME)

(CTRL) W

(DELETE)

(INSERT) or
(CTRL l (ID

(HOME) or
(CTRL l CK)

(END) or
I CTRL I @

(CTRL) (END)

or l CTRL) (B

(TAB) or
(CTRL I CD

G or
(CTRL ICD

G or
(CTRL)CZJ

CD or
(CTRL I @

CD or
(CTRL) G

(CTRL l G
or (CTRL) (ID

(CTRL l G
or (CTRL) CD

(CTRL I (ID

(CTRL) Q)

Tandy 1000

BASIC

erases the entire line from the screen, but not
from memory.

clears the screen and positions the cursor at the
first position in Row 1.

clears the screen from the current cursor posi
tion to the end of the screen.

deletes the character at the cursor position and
moves all remaining characters 1 position to the
left.

turns on the insert mode if it is off; or off if it
is on. The insert mode lets you add characters
to the line at the cursor position.

moves the cursor to the first position in Row 1.

moves the cursor to the line end.

deletes all characters from the current cursor
position to the end of the line.

advances the cursor to the next tab position. Tab
positions are set at every 8 characters.

moves the cursor 1 position to the left.

moves the cursor 1 position to the right.

moves the cursor up 1 row to the character
above the current cursor position.

moves the cursor down 1 row to the character
below the current cursor position.

moves the cursor left to the first character in
the preceding word .

moves the cursor right to the first character in
the next word.

rings the bell at the terminal.

issues a linefeed. This moves the cursor to the
next line of the display without executing or
storing the line.

7

BASIC

Special Keys During Program Execution
pauses execution. Press (HOLD l again to
continue.

(CTRL l (BREAK l terminates execution and returns you to
BASIC's prompt.

(ENTER l or signifies the end of data entry. When a program
(CTRL l CM) or command prompts for data entry, press

(ENTER l to end your response.

Function Key Settings
Your computer's function keys (Fl-Fl2) are used to enter some
keywords or commands. This chart shows the key assignments. See
the KEY statement to display or reassign these keys.

Fl LIST
F2 RUN (=E=N=T=ER=)

F3 LOAD"
F4 SAVE"
F5 CONT (=E=N=T=ER=)
F6 , "LPTl:" (ENTER l
F7 TRON (ENTER l
F8 TROFF (ENTER l
F9 KEY
FlO SCREEN 0,0,0 (ENTER l
Fll (none)
F12 (none)

Typing Keywords Using The (ALT l Key
The (ALT l key provides a quick way to type BASIC keywords. To
use (ALT l with the above keywords, press and hold down the (ALT l
key while pressing the associated letter.

A AUTO J (none)
B BSAVE K KEY
C COLOR L LOCATE
D DELETE M MOTOR*
E ELSE N NEXT
F FOR O OPEN
G GOTO P PRINT
H HEX$ Q (none)
I INPUT R RUN

S SCREEN
T THEN
U USING
V VAL
W WIDTH
X XOR
Y (none)
Z (none)

* MOTOR is a reserved word, but not recognized in this implementation of BASIC.

8 Tandy 1000

-
-

-
-
-

-
-

BASIC

Data
Data, in the form of numbers, characters, or symbols, is informa
tion on which BASIC performs its operations. Data can be of 2 forms,
string and numeric. As well , both string and numeric data can be
of 2 types, variable and constant.

String Data

String data is a sequence of ASCII characters, graphics or non-ASCII
symbols. The maximum length for a string is 255 characters.

Strings can contain either alpha or numeric characters. For exam
ple: "DOCUMENT 23", "LEVEL 13".

The dollar sign ($) is used to indicate a variable string name. For
example:

NAME$="JOE"

When used in a program, strings are enclosed in quotation marks.
When used in response to a prompt, strings do not require quota
tion marks.

Numeric Data

Numeric data consists of positive and negative numbers, which
BASIC divides into 5 groups:

• Integers are whole numbers (without decimal points) in the
range -32768 to +32767.

• Single precision numbers can be a maximum of 7 digits in the
range 10-38 to 10•38 • For example 10001, -200034, 123.456. If
single precision numbers are more than 7 digits, they are
displayed in the exponential form using the E form. For exam
ple: 1.756E5, .98E8, 104E-7.

• Double precision numbers can be a maximum of 16 digits and
have a decimal point. They have the same range as single preci
sion numbers. If they are more than 16 digits they are displayed
in exponential format, using the D form. For example:
8.00100708D12, -6.7765499824Dl6.

• Hexadecimal numbers represent a numeric system to the base
of 16 instead of 10. They can be 1 to 4 digits and are preceded
by &H. The hexadecimal numbers are 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E, F. For example: &H04, &HEE, &H4F, &H22.

Tandy 1000 9

BASIC

• Octal numbers represent a numeric system to the base of 8. They
can be 1 to 6 digits and are preceded by &0 or &. The octal
numbers are: 0, 1, 2, 3, 4, 5, 6, 7. For example: &07, &0123,
&00055, &66.

Numbering Systems

This chart shows the relationship of decimal, hexadecimal and octal
numbers. The relationship of binary (base 2) numbers is also shown.
This information is useful in graphic modes.

Decimal Hexadecimal Octal Binary

0 0 0 0000
1 1 1 0001
2 2 2 0010
3 3 3 0011
4 4 4 0100
5 5 5 0101
6 6 6 0110
7 7 7 0111
8 8 10 1000
9 9 11 1001

10 A 1 2 1010
11 B 13 1 011
12 C 14 1100
13 D 1 5 1101
14 E 16 111 0
1 5 F 17 1111

Numeric Constants

Numeric constants are values input to a program that are not subject
to change. They can be in any of the 5 forms previously described.
Notice that numeric constants:

• cannot contain punctuation. For example 100,000 is not
acceptable but 100000 is acceptable.

• are evaluated when entered. If they are out of range for their
type, an error message is immediately returned.

• are of several types. Type can be indicated by the use of sym
bols following the number. The symbols are:

10

declares a single precision number. For example,
12.345678901234! is stored by BASIC as 12.34568.

Tandy 1000

-

-
-
-
~

i-,,,

-
-
-
-

-
-

BASIC

E declares a single precision exponential number. For exam
ple, the number l.2E5 is stored as 120000.

declares a double precision number. However, single preci
sion constants are not expanded by BASIC. For example,
the number 1.5# is stored as 1.5 even though it is treated
as a double precision number.

D declares the number a double precision exponential number.
For example, the number l.2D2 is stored as 120.

Numeric Variables

BASIC classifies all numeric variables as single precision. You can
change this classification by appending one of the following symbols
to the variable name:

% declares an integer variable. Examples are 1%, FT%,
COUNTER%.

declares a single precision variable. Examples are F!, NM!,
BALANCE!.

declares a double precision variable. Examples are S#, AD#,
TOTAL#.

The inclusion of one of these symbols creates a new and distinct
variable name. For example, A%, A!, and A# can each represent a
separate value.

Operators

An operator is a symbol or word that signifies an action to be per
formed on the associated data. Data items are called operands. The
4 types of operators are: arithmetic, string, relational, and logical.

Arithmetic Operators

Exponentiation. Calculates the power of a number. For ex
ample, 2" 3 is 8 (2 to the power of 3 is the same as 2 * 2 * 2).

Negation or Unary Minus. Makes a number negative. For
example, -10 is "negative ten."

* I Multiplication, Division. For example, 3*3 is 9, and 10/5 is 2.

Tandy 1000 11

BASIC

\ Integer Division. BASIC rounds both operands to integers
and truncates the result to an integer. Integer division is
faster than standard division. For example, 10\4 is 2.

MOD Modulus Arithmetic. BASIC performs integer division as
described above and returns the remainder as an integer
value. For example, 10 MOD 3 results in 1.

+ , - Addition, Subtraction. For example, 2 + 9 is 11, and 15-8 is 7.

When BASIC evaluates an arithmetic expression, all operands and
the result are converted to the same degree of precision as the most

-

-
-

precise operand. The arithmetic operators are listed in order of -
precedence, that is, the order in which BASIC executes them if 1
or more operators are in the same statement.

String Operator

The only string operator is the plus sign (+). It appends 1 string
to another. For example:

PRINT "JOSEPH II+ "P. II+ "RAWLINGS"

prints J O S E P H P • R AW LI N G S .

Relational Operators

The relational operators and their meanings are, m order of
precedence:

=

<

Equal. Both operands are equal.

Less Than. The first operand is less than or precedes
the second operand.

> Greater Than. The first operand is greater than or
follows the second operand.

> < or < > Inequality. The operands are not equal.

< = or = < Less Than or Equal To. The first operand is less than
(precedes) or is equal to the second operand.

> = or = > Greater Than or Equal To. The first operand is greater
than (follows) or is equal to the second operand.

12 Tandy 1000

-
-
-
-

-

-

BASIC

With numeric data, relational operators compare 2 pieces of data
and the result is either true or false. If the relationship is true, BASIC
returns -1. If the relationship is false, BASIC returns 0 (zero).

Relational operators are usually used within an IF/THEN statement.
For example, the command:

IF A= 1 THEN PRINT "CORRECT"

displays the word C OR R E CT if the variable A is equal to 1.

With string data, relational operators compare character by
character. When 2 characters do not match, BASIC checks to see
which character has the lower ASCII value. The character with the
lower value comes before the word with the higher value. Leading
blanks are significant in string comparisons. The ASCII code for
blank is 32.

PRINT II A II < II B II

compares the ASCII value of the 2 strings. The ASCII value for A
is 65 , and the ASCII value for B is 66. Because 65 is less than 66,
BASIC returns -1.

Tandy 1000 13

BASIC

Logical Operators

Logical operators, also known as Boolean operators, make com-
parisons of a set of true/false values and return a true or false result.
This table shows the result for each logical operator given the
described true/false values. True is 1 and false is 0.

Meaning of First Second
Operator Operation Operand Operand Result

NOT When the result is 1 0
the opposite of 0 1
the operand.

AND When both values 1 1 1
are true, the result 1 0 0
is true. Otherwise, 0 1 0
the result is false. 0 0 0

OR When both values 1 1 1
are false, the 1 0 1
result is false 0 1 1
Otherwise, the 0 0 0
result is true.

XOR When one of the 1 1 0
values is true, the 1 0 1
result is true. 0 1 1
Otherwise, the 0 0 0
result is false.

EQV When both values 1 1 1
are true or both 1 0 0
values are false, 0 1 0
the result is true. 0 0 1

IMP The result is true 1 1 1
unless the first 1 0 0
value is true and 0 1 1
the second is 0 0 1
false.

14 Tandy 1000

-

BASIC

Hierarchy of Operators

This list shows the operators in the order that BASIC performs the
operations in a statement. Remember, BASIC evaluates statements
from left to right. Operators with the same level of hierarchy are
shown on the same line.
I\

unary -
* I
\
MOD
+ -
< > = <= > = <>
NOT
AND
OR XOR
EQV
IMP

Color and Graphics

Your computer has a wide range of color and graphics options. Color,
as used in these references, indicates a color in the current screen
mode.

Resolution

You have the option of 3 resolution screens, low, medium and high,
as noted below. The horizontal length or points (x axis) is given first
followed by the vertical length (y axis).

Low resolution
Medium resolution
High resolution

160 x 200 points
320 x 200 points
640 x 200 points

The aspect ratio is a comparison of the number of points per inch
vertically to the number of points per inch horizontally. This ratio
is calculated by the formula:

aspect ratio = vertical points
area height

Tandy 1000

horizontal points
area width

15

BASIC

Colors

BASIC has three color sets: a 2-color set, a 4-color set and a 16-color
set. They function as follows:

Color Set Attributes

2 colors

4 colors

16 colors

16

Black and white . The background is black and the
foreground is white. These colors cannot be changed.

One set or palette of 4 colors. Each color is assigned
a number. The numbers and their corresponding colors
are:

No. Color

(jJ C.B.C.
1 cyan
2 magenta
3 white

Screen Mode 1, however, has 2 palettes. The two sets
and their corresponding numbers are:

No. Palette 0 Palette 1

(jJ C.B.C. C.B.C.
1 green cyan
2 red magenta
3 brown white

C.B.C. is the current background color and is initially
set to black. You may change the background color to
any of the colors in the 16-color set.

One palette with 16 colors. Each color is numbered as
shown below:

No. Color No. Color

(jJ black 8 dark gray
1 blue 9 light blue
2 green 10 light green
3 cyan 11 light cyan
4 red 12 light red
5 magenta 13 light magenta
6 brown 14 yellow
7 gray 15 white

T andy 1000

- BASIC

Video Pages

BASIC sets aside memory for the video display. The amount of
memory necessary depends on the screen mode you choose. BASIC
initially sets 16K aside for video memory. You can change this with
the CLEAR statement.

Video memory is divided into pages. You can store information to
one page while displaying another. The amount of memory required
for each SCREEN mode is detailed in the following section.

Screen Modes

The color set and screen resolution are set using the SCREEN
command.

There are 6 SCREEN modes as follows:

Screen Mode (J (Text Mode)

Color Set:
Graphics Resolution:
Text Width:
Video Page Size:

Screen Mode 1

Color Set:
Graphics Resolution:

Aspect Ratio:
Text Width:
Video Page Size:
Max. No. of Pages:

Screen Mode 2

Color Set:
Graphics Resolution:

Aspect Ratio:
Text Width:
Video Page Size:
Max. No. of Pages:

Tandy 1000

16
not available
4@ or 8@
If WIDTH= 4@, 2@48 bytes, 8 pages max.
If WIDTH= 8@, 4@96 bytes, 4 pages max.

4 (2 palettes)
medium resolution
32@ X 2@@
5/6
4@
16384 bytes
8

2
high resolution
64@ X 2@@
5/12
8@
16384 bytes
8

17

BASIC

Screen Mode 3

Color Set: 16
Graphics Resolution: low resolution

160 X 200
Aspect Ratio: 5/3
Text Width: 20
Video Page Size: 16384 bytes
Max. No. of Pages: 8

Screen Mode 4

Color Set: 4
Graphics Resolution: medium resolution

320 X 200
Aspect Ratio: 5/6
Text Width: 40
Video Page Size: 16384 bytes
Max. No. of Pages: 8

Screen Mode 5

Color Set: 16
Graphics Resolution: medium resolution

320 X 200
Aspect Ratio: 5/6
Text Width: 40
Video Page Size: 32768 bytes
Max. No. of Pages: 4

Screen Mode 6

Color Set: 4
Graphics Resolution: high resolution

640 X 200
Aspect Ratio: 5/12
Text Width: 80
Video Page Size: 32768 bytes
Max. No. of Pages: 4

18 Tandy 1000

Keywords

ABS(number)

Returns the absolute value of number.

PRINT ABS(-44) X=ABS(Y)

ASC(string)

BASIC

Returns the ASCII code (a decimal number) for the first character
of string.

PRINT ASC("A") N=ASC(B$)

ATN(number)

Returns the arctangent of number in radians.

PRINT ATN(7) X = ATN (Y /3) * 57. 29578

AUTO [line][, increment]

Automatically generates a line number when you press (ENTER I. If
line already exists in memory, BASIC displays an asterisk after the
number. To turn off AUTO, press (BREAK I.

Line is the starting line number. Default = Line 10.

Increment is the increment to use when generating line numbers.
Default = 10.

AUTO AUTO 100,50

Tandy 1000 19

BASIC

BEEP [switch]

Sounds the speaker at 800 Hz for ¼ second.

Use BEEP with SOUND to direct sound to the computer's speaker
or an external speaker (or both).

BEEP ON: SOUND ON
directs sound to both speakers

BEEP OFF: SOUND OFF
turns off sound to both speakers

BEEP ON: SOUND OFF
directs sound to the internal speaker only

BEEP OFF: SOUND ON
directs sound to external speaker only

IF X > 20 THEN BEEP

BLOAD pathname[,offset]

Loads a memory image file into memory.

Offset is the number of bytes into the current segment where BASIC
loads the image. It must be in the range 0 to 65535. Default = value
set by BSA VE.

BLOAD "prog1 .sav" BLOAD "prog2.sav",0

BSAVE pathname,offset,length

Saves the contents of an area of memory as a disk file (memory image
file) .

Offset is the number of bytes into the current segment where BASIC
starts saving. It must be in the range 0 to 65535.

Length is the length in bytes of the memory image file to be saved.
It must be in the range 1 to 65535.

BS AVE "prog2. sav", 50, 1000

20 Tandy 1000

-
-
-
-
-
-
-
-
-
-

BASIC

CALL variable [(parameter list)]

Transfers program control to an assembly-language subroutine
stored at variable.

Variable contains the offset into the current segment where the
subroutine starts in memory. The offset must be on a 16-byte
boundary.

Parameter list is the variables that are passed to the external
subroutine.

CA LL C CALL C {A$,Z,X)

CALLS variable [(parameter list)]

Transfers program control to an MS™-FORTRAN routine.

Arguments are described in the CALL statement.

CALLS X CALLS X CS$)

CDBL(number)

Converts number to double precision.

PRINT CDBLC465.342) Z=CDBLCA)

- CHAIN [MERGE] pathname [,[,line] [,ALL] [,DELETE line-line]]

Lets the current program load and execute another program.

-
-
-
-
-

Pathname is the program you want to chain. It must be saved in
ASCII format. See SA VE.

Line is the line number where execution begins in the chained pro
gram. It must be preceded by a comma (,). If you use the ALL or
DELETE option and do not specify a line number, you must specify
a comma for line. Default= first program line of the chained program.

ALL tells BASIC to pass every variable in the current program to
the chained program. If you omit ALL, the current program must
contain a COMMON statement to pass variables to the chained
program.

Tandy 1000 21

BASIC

MERGE overlays the lines of the chained program with the current
program.

DELETE deletes lines in the overlay so that you can merge in a
new overlay.

CHAIN 11 prog2 11

CHAIN 11 subprog.bas 11 ,, ALL

CHOIR dirpath

Changes the current directory to dirpath.

CHOIR 11 8: \ACCTS\RECVBLE" C H D I R II II

CHR$(code)

Returns the character corresponding to an ASCII or control code.

PRINT CHR$(35) C$=CHR$(32)

CINT(number)

Converts number to an integer by rounding the fraction portion of

-

l"""'I

-

-
-

number. Number must be in the range -32768 to 32767. -

PRINT CINT(1.6) Z=CINT(-1.67)

CIRCLE [STEP] (x,y),radius [,color [,start,end [,aspect]]]

Graphics. Draws an ellipse, the center of which is (x,y), on the screen.

STEP designates (x,y) as relative coordinates.

Radius is the major axis of the ellipse.

Start,end are the beginning and ending angles in radians. They must
be in the range -6.283186 to 6.283186, or -2 * PI to 2 * PI.

Aspect is the ratio of the x-radius to the y-radius in terms of coor
dinates. If aspect is less than 1, radius is the x-radius and is measured
in points in the horizontal direction. If aspect is greater than 1, radius
is the y-radius and is measured in points in the vertical direction.

CIRCLE (150,100),50

22 Tandy 1000

-
,..,..,

-
-
-
-
-
-
-
-
-
-

BASIC

CLEAR [,memory location] [,stack space] [,video memory]

Frees memory for data without erasing the program currently in
memory. CLEAR erases all arrays, sets numeric variables to zero
and string variables to null, and erases any information set using
a DEF statement, such as DEF SEG and DEF FN. CLEAR also
turns off the SOUND, PEN, and STRIG functions and resets the
music background.

Memory location specifies the highest memory location available for
BASIC.

Stack space specifies the amount of memory to set aside for tem
porarily storing internal data and addresses during subroutine calls
and during FOR/NEXT loops. Default= 768 bytes or one-eighth of
the memory available, whichever is smaller.

Video memory specifies the amount of memory to be set aside as
video memory. If the amount is not a multiple of 16K, BASIC rounds
it down to the nearest multiple of 16K. Default= 16K (16384).

CLEAR CLEAR, 45000 CLEAR,, ,32768

CLOSE [buffer, ...]

Closes access to a disk file or communications channel. If you omit
buffer, BASIC closes all open files.

CLOSE CLOSE1,2,8

CLS

- Clears the screen (or active viewport) and returns the cursor to the
home position. Home is Row 0, Column 0 (the upper left corner of
the screen).

- CLS

-
-
-

Tandy 1000 23

BASIC

COLOR [background] [,[palette]]
(Screen Mode 1)

COLOR [foreground][,[background]]
(Screen Modes 3-6)

Graphics. Selects the background color and either. the palette or
foreground colors, depending on the current screen mode.

Palette specifies which palette to use in Screen Mode 1 and may be
0 or 1.

COLOR9,0 COLOR,3

COLOR [foreground][,[background][,border]]

Text Mode Only. Selects the display colors for the foreground,
background, and border for Screen Mode 0. COLOR can use any of
the colors in the 16-color set as foreground and border. Specify
color+ 16 as foreground to get a blinking foreground. Background
can be Colors 0 to 7.

COLOR0,7 COLOR1,0

COM(channel) action

Turns on, turns off, or temporarily halts the trapping of activity on
the communications channel. Channel specifies communications chan
nel 1 or 2.

enables communications trapping.
disables communications trapping.

COM() ON
COM() OFF
COM() STOP temporarily suspends communications trapping.

COMMON variable[,variable, ...]

Passes variables to a chained program. Both programs in the chain
should contain a COMMON statement.

COMMON A, B$, C, DO ,G$0

24 Tandy 1000

I'"""'

-

,,....

-
-

-

-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

BASIC

CONT

Resumes execution of a program stopped by either (CTRL l(BREAK l
or the execution of a STOP or an END statement.

CONT

COS(number)

Returns the cosine of number, in radians.

PRINT COS(5.8) Y = COS(X * .0174533)

CSNG(number)

Converts number to single precision. BASIC rounds the number when
converting it to single precision.

PR I NT CSNG (.1453885509) Z=CSNG(A#)

CSRLIN

Returns the current row position of the cursor.

PRINT CSRLIN A=CSRLIN

CVD(B-byte string)

Converts an 8-byte string to a double precision number. Use to
restore data to numeric form after it is read from the disk.

A#= CVD(GROSSPAY$) O=CVO(TOTAL$)

CVl(2-byte string)

Converts a 2-byte string to an integer. Use to restore data to numeric
form after it is read from the disk.

A%=CVI(INVTRY$) I=CVI(QTY$)

Tandy 1000 25

BASIC

CVS(4-byte string)

Converts a 4-byte string to a single precision number. Use to restore
data to numeric form after it is read from the disk.

A!=CVS(TOTAL$) S=CVS(DOLLR$)

DATA constant [,constant, ...]

Stores numeric and string constants to be accessed by a READ state
ment. String constants containing delimiters, such as leading or trail
ing blanks, colons, or commas, must be enclosed in double quotation
marks when used in DATA statements.

DATA NEW YORK, CHICAGO, LOS ANGELES

DATE$[=string]

Sets the date or retrieves the current date.

String is a literal, enclosed in quotation marks, that sets the date
by assigning its value to DATE$. Month may be any number 01-12,
day may be 01-31, and year may be 01-99 or 1980-2099. If you omit
string, BASIC retrieves the current date.

DATE$="04/17/85" TODAY$= DATE$

DEFDBL letter [,letter, ...]

Defines any variables beginning with letter(s) as double precision
variables.

DEFDBL A DEFDBL J-0

DEF FNname [(argument list)]=expression

Defines name as a function according to expression.

Name is a valid variable name.

Argument list is a list of dummy variables used in expression. They
are replaced on a one-to-one basis with the variables or values given
when the function is called.

26 Tandy 1000

-

-

-

-

-
-

- BASIC

-
Expression defines the operation to be performed.

- DEFFNR=RND(1)*69+10

-

-
-
-
-

DEF FNW# (A#,B#)=(A#-8#)"2

DEFINT letter [,letter, ...]

Defines any variables beginning with letter(s) as integer variables.

DEFINT L DEF INT A-G

DEF SEG[=address]

Assigns the current segment address. The segment address is used
by BLOAD, BSAVE, CALL, PEEK, POKE, and USR.

Address can be expressed as an integer or a hexadecimal value.
Address must be on a 16-byte boundary. Default=BASIC's data
segment (DS).

DEF SEG DEF SEG=&HB800

DEFSNG letter [,letter, ...]

- Defines any variables beginning with letter(s) as single precision
variables.

DEFSNG T DEFSNG Q-Z -
DEFSTR letter [,letter, ..] - Defines any variables beginning with letter(s) as string variables.

DEFSTR A DEFSTR G-M -

-
-

Tandy 1000 27

BASIC

DEF USR[number] = offset

Defines the user number and segment offset of a subroutine to be
called by the USR function.

Number may be an integer in the range 0 to 9. Default= USR0.

Offset is the number of bytes from the current segment address
where the subroutine begins. Must be an integer in the range 0 to
65535.

DEFUSR = 0 DEF USR3 = &H0020

DELETE line1-line2

Deletes linel through line2 of the program in memory. If you omit
linel, BASIC deletes from the beginning of the program. If you omit
line2, BASIC deletes to the end of the program. Use a period(.) to
indicate the current line.

DELETE 70 DELETE .-110

DIM array(dimension)[,array(dimension), ...]

Sets aside storage for arrays with the dimensions you specify.

-

-

-
Array is the variable name of a string, integer, single precision, or -
double precision variable name.

Dimension is 1 or more integer numbers separated by commas that
define the dimensions of the array.

DIM AR(100) DIM L1%(8,25)

DRAW string

Graphics. Draws an image on the screen.

String specifies 1 or more of the movement commands listed below.

Movement Commands

Movement commands begin movement from the current graphics
position, which is the coordinate of the last graphics point plotted
with another graphics command. Current position defaults to the
center of the screen if no previous graphics command has been
executed.

28 Tandy 1000

-

-

-

-
-
-
-

-
-
-
-
-
-
-
-

U[n]
D [n]
L [n]
R [n]
E [n]
F [n]
G [n]
H[n]
Mx,y

Moves up n points.
Moves down n points.
Moves left n points.
Moves right n points.

BASIC

Moves diagonally up and right n points.
Moves diagonally down and right n points.
Moves diagonally down and left n points.
Moves diagonally up and left n points.
Moves to point x,y. If you precede x with a plus (+)
or minus (-) sign, DRAW assumes it is a relative
position. Otherwise, it is an absolute position.

Prefix Commands

Prefix commands can precede the movement commands. They must
be enclosed in quotation marks.

B

N

Aangle

Ccolor

Pcolor,border

Sfactor

TAangle

Xvariable;

plots no points after move.

returns to original position when move is complete.

sets angle of move. Angle may be 0 to 3 (0 = 0
degrees, 1 = 90 degrees, 2 = 180 degrees, and 3
= 270 degrees).

sets color.

paints using color and border.

sets scale factor. Factor is an integer in the range
1 to 255. The scale factor is factor divided by 4.
Default= 4 (scale of 1).

moves at the specified angle. Angle is in the range
-360 to +360. If angle is positive, movement is
counterclockwise. If angle is negative, movement is
clockwise.

executes a substring. The X command lets you
execute a second substring from the first string,
much like the GOSUB statement. Variable is a
string variable in your program that contains the
substring you want to execute. The semicolon after
variable is required.

DRAW "U30; "+"D30; "+" L40; "+"R40; 11

Tandy 1000 29

BASIC

EDIT line

Enters the Edit mode. BASIC displays line for editing. Use a period
(.) to indicate the current line.

EDIT 100 ED IT .

END

Ends program execution and closes all files.

END

ENVIRON "parameter id= text" [;"parameter id= text", ...]

Advanced Statement. Lets you modify BASIC's Environment String
Table, such as to change the PATH parameter for a child process
or to pass parameters to a child process. BASIC's Environment
String Table is initially empty.

Parameter id is the name of the parameter.

Text is the new parameter text. It must be separated from parameter
id by an equal sign (=) or a space. If you omit text, or specify a null
string or a semicolon (;), BASIC removes the parameter from the
Environment String Table and compresses the table.

Parameter id= text must be enclosed in double quotation marks and
be entered in uppercase characters.

30

ENVIRON "PATH=A:\"
ENVIRON "SALES=MYSALES"

Tandy 1000

-
-

-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

BASIC

ENVIRON$ [("parameter id")] [(number)]

Advanced Function. Returns the specified environment string from
BASIC's Environment String Table.

Parameter id is the parameter for which to search and must be
enclosed in quotation marks.

Number specifies which parameter to return by its position within
the table.

Number and parameter id are mutually exclusive; only one may be
specified on the command line.

PRINT ENVIRONSC"PATH")

EOF(buffer)

Function. Detects the end of a file. Buffer is the number assigned
to the file when you opened it.

Sequential files: EOF returns 0 (false), when the end-of-file record
has not been read yet, and -1 (true), when it has been read.

Direct access files: EOF returns -1 (true) if the last executed GET
statement was unable to read an entire record because of an attempt
to read beyond the physical end of the file.

IF EOF (1) THEN GOTO 1540

EOF(buffer)

Communications. Detects an empty input queue for communications
files. Buffer is the number assigned to the file when you opened it.

ASCII mode: EOF returns -1 (true) if a CONTROL-Z is received.
EOF remains true until the device is closed.

Binary mode: EOF returns -1 (true) when the input queue is empty.
EOF becomes false when the input queue is not empty.

IF EOF (3) THEN RETURN

Tandy 1000 31

BASIC

ERASE array[,array, ...]

Erases 1 or more arrays from memory. Lets you either redimension
arrays or use their previously allocated space in memory for other
purposes.

ERASE C ERASE G, H, I, Z$

ERDEV

Advanced Function. Returns the value of a device error within
MS-DOS as set by the Interrupt 24 handler.

The lower 8 bits of ERDEV contain the Interrupt 24 error code.

ERDEV

ERDEV$

Advanced Function. Returns the name of the device (as set by the
Interrupt 24 handler) when a device error occurs. If the error
occurred on a character device, ERDEV$ returns the 8-byte
character device name. If the error does not occur on a character
device, ERDEV$ returns the 2-character block device name.

ERDEV$

ERL

Returns the number of the line in which an error has occurred. If
no error has occurred, ERL returns 0. If the error occurs while you
are entering something at the prompt, ERL returns 65535 (the
largest number that can be represented in 2 bytes).

PRINT ERL E = ERL

ERR

Returns the error code if an error has occurred.

IF ERR= 7 THEN 1000 ELSE 2000

32 Tandy 1000

-

-

~

-

-

-

-
-
-
-
-
-
-
-
-
-
-
-

BASIC

ERROR code

Simulates a specified error during program execution.

Code is an integer expression in the range 0 to 255 specifying one
of BASIC's error codes.

ERROR 1

EXP(number)

Returns the natural exponent of number, that is, e (base of natural
logarithms) to the power of number. Number must be less than or
equal to 88.02968.

PRINT EXP(-2) A=EXP(-6)

FIELD buffer, length AS variable [,length AS variable, ...]

Divides a direct access buffer into fields so that you can send data
from memory to disk and from disk to memory. Each field is
identified by a string variable and is the length you specify. Length
must be an integer in the range 1 to 255.

FIELD 3,128 AS A$, 128 AS B$

FILES [pathname]

Displays the names of the files and directories on a disk.

If you specify pathname, BASIC lists all files that match that
pathname. If you omit the filename when specifying pathname,
BASIC lists all files and directories in the specified directory. Default
= all files and directories in the current directory on the current
drive.

FILES FILES "\BOOKS\"

FIX(number)

Returns the truncated integer of number.

PRINT FIX(2.6) Z=FIX(B)

Tandy 1000 33

BASIC

FOR variable = initial value TO final value [STEP increment]
NEXT [variable]

Establishes a program loop that allows a series of program
statements to be executed a specified number of times.

Variable must be either integer or single precision.

Increment is the number BASIC adds to initial value each time the
loop is executed. Default= 1.

FOR I= 1 TO 5:PRINT I:NEXT

FRE(dummy argument)

Returns the number of bytes in memory not being used by BASIC.
If you specify a numeric argument, BASIC returns the amount of
memory available. If you specify a string argument, BASIC com
presses the data before returning the amount of memory available.
BASIC automatically compresses data if it runs out of workspace.

PRINT FRE("44") PRINT FRE(44)

GET [#]buffer[,record]

Reads a record from a direct access disk file and places it in the
specified buffer. The number sign (#) is not required.

Record is an integer in the range 0 to 16,777,215. Default= the next
sequential record (after the last GET).

GET 1 GET1,25

GET [#]buffer,number

-
-
-

-
-

-
-

Communications. Transfers data from the communications line to -
the communications buffer. The number sign(#) is not required.

Number is the number of bytes to transfer.

GET1,8

-
34 Tandy 1000

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

BASIC

GET (xl,yl)-(x2,y2),array

Graphics. Transfers points from an area on the display to an array.

(xl ,yl) are the coordinates at which the image begins.

(x2,y2) are the coordinates at which the image ends.

Array is a numeric array to hold the image.

GET <0,0)- (100,100), Z

GOSUB line

Branches to the subroutine, beginning at line. Every subroutine must
end with a RETURN statement.

GOSUB 1000

GOTO line

Branches to the specified line.

GOTO 100 IF R = 13 THEN GOTO 80

HEX$(number)

Returns a string that represents the hexadecimal value of number.

PRINT HEX$(30) Y$ = HEX$(X/16)

IF expression THEN statement(s)[ELSE statement(s)]

Tests a conditional expression and makes a decision regarding pro
gram flow.

If expression is true, BASIC executes the THEN statement. If
expression is false, BASIC executes the matching ELSE statement
or the next program line.

IF A< B THEN PRINT "A< B"
ELSE PRINT "B <= A"

Ta.ndy 1000 35

BASIC

INKEY$

Reads a character in the keyboard buffer, and returns a string.

0-byte string = no key is pressed.
1-byte string = the ASCII value of the key.
2-byte string = the key has an extended code. Byte 1 = 00.

Byte 2 = the ASCII value.

INKEY$ does not echo the character to the display.

10 A$= IN KEY$: IF A$= 1111 THEN 10

INP(port)

Returns the byte read from port. Port may be any integer from 0
to 65535.

PRINT INP(255) A=INP(255)

INPUT[;] ["prompt ";]variable~ variable, ...]

Accepts data from the keyboard and stores it in 1 or more variables.
BASIC stops execution and displays prompt followed by a question
mark to indicate that the program is waiting for input. If you do
not want BASIC to display the question mark, type a comma, in
stead of a semicolon, after prompt.

If INPUT is immediately followed by a semicolon (;), BASIC does
not echo the (ENTER l key when you press it as part of a response.

INPUT# lruffer, variable[,variable ...]

Accepts data from a sequential device or file and stores it in a pro
gram variable. Buffer is the number assigned to the file when you
opened it.

INPUT#1, A,B INPUT#4, A$, B$, C$

36 Tandy 1000

,....

I""""

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

BASIC

INPUT$(number [,[#]buffer])

Inputs a string of characters from either the keyboard or a sequential
access file. Number specifies the number of characters to be input
and may be in the range 1 to 255.

If you include buffer, BASIC inputs the string from a sequential
access file. If you omit buffer, BASIC inputs the string from the
keyboard. The number sign (#) is not required.

A$= INPUT$(5) A$= INPUT$(11,3)

INSTR([number,]stringl ,string2)

Searches for the first occurrence of string2 in stringl and returns
the position at which the match is found.

Number specifies the position in stringl to begin searching for
string2 and must be an integer in the range 1 to 255. Default= first
character in stringl.

INSTR (3, 11 1232123 11 , 11 12 11)

A$= "LINCOLN":PRINT INSTR(A$,"INC")

INT(number)

Converts number to the largest integer that is less than or equal
to number. Number is not limited to the integer range.

PRINT INT(79.89) PRINT INT(-12.11>

IOCTL [#]buffer,string

Advanced Statement. Sends a control data string to a device driver.
Buffer is the number assigned to the driver when you opened it. The
number sign (#) is not required.

String is a string expression containing a series of commands called
"control data." The commands are generally 2 to 3 characters long
and may be followed by an alphanumeric argument. The commands
are separated by semicolons (;). String may be a maximum of 255
bytes.

IOCTL #1,"PL56"

Tandy 1000 37

BASIC

IOCTL$([#]buffer)

Advanced Function. Returns the control data string from a device
driver that you have opened previously. Buffer is the number
assigned to the driver when you opened it. The number sign (#) is
not required. ~

IF IOCTL$(1) = "NR" THEN PRINT
"PRINTER NOT READY"

KEY number,string
KEY action

Assigns or displays function key values. Number indicates the
function key (1-12) or the user key (15-20) being defined. See KEY
(number) action.

String is the string expression assigned to the key and may contain
a maximum of 15 characters.

Action can be ON, OFF, or LIST.

KEYON

Displays the function key assignment values on Line 25 of the screen.
BASIC shows only the first 5 characters of the string. (CTRL l CD
is the same as KEY ON.

KEY OFF

KEY OFF erases the soft key assignments from Line 25. The
assignments are still active, but the screen does not display them.

KEY LIST

KEY LIST displays all 15 characters of all 12 soft key assignments
on the screen.

38 Tandy 1000

-

-

-

-
-
-
-
-
-
-
-
-
-
-
-
-
-

BASIC

KEY(number) action

Turns on, turns off, or temporarily halts key trapping for a specified
key.

KEY() ON
KEY() OFF
KEY() STOP

enables key trapping
disables key trapping
temporarily suspends key trapping

Number may be a number in the range 1 to 20, indicating the number
of the key to trap. Function keys use their corresponding function
key number (1-10). The cursor direction keys are:

CD 11
B 12
G 13
CD 14

User-defined keys are 15-20. Use the following syntax to define your
own user keys:

KEY number, CHR$(key)+CHR$(scan)

Key is one or a combination of the following:

&H40
&H20
&H08
&H04
&H02
&H01

~lock key
I NUM LOCK l key
(ALTlkey
(CTRL l key
Left (SHIFT) key
Right (SHI FT l key

Scan is the scan code for a physical key on the keyboard.

KILL pathname

Kills (deletes) pathname from disk.

KILL "file.bas"
KILL "A:\REPORT\data"

LCOPY

- Copies all text data on the screen to the printer.

LCOPY

-
Tandy 1000 39

BASIC

LEFT$(string,number)

Returns the specified number of characters from the left portion of
string. Number must be in the range 1 to 255.

PRINT LEFT$("BATTLESHIPS", 6)

LEN(string)

Returns the number of characters in string. Blanks are counted.

PRINT LEN("DOG") + LEN("TERRIER")
X = LEN(SENTENCE$)

[LET] variable = expression

Assigns the value of expression to variable. BASIC does not require
assignment statements to begin with LET.

LET A$= "A ROSE IS A ROSE"
LETB1=1.23

LINE [[STEP](x1 ,y1)]-[STEP](x2,y2),[color][,B[F]] [,style]

Graphics. Draws a line or a box on the video display.

STEP designates (x,y) as relative coordinates.

(x1 ,y1) are the coordinates at which the line begins. Default = last
point referenced on the screen.

(x2,y2) are the coordinates at which the line ends.

With the B option, BASIC draws a box. The points that you specify
are opposite corners.

If you specify both the B and F options, BASIC draws a box and
fills the box in with color.

Style is a 16-bit integer that lets you select the line-style used when
drawing normal lines and unfilled boxes. Each bit represents a point
in the line. If the bit equals 1, then the point is drawn. If the bit equals
zero, then the point is not drawn.

40

LINE (Ql,Ql)-(319,199)
LINE-(319, 199),BF

Tandy 1000

-
-
-
-

-
I"'-'

-
-
-

-
-
-
-
-
-
-
-
-

-
-
-
-
-

BASIC

LINE INPUT[;]["prompt";] string variable

Accepts an entire line (a maximum of 255 characters) from the
keyboard, including delimiters (commas, quotation marks, etc.).
BASIC stops execution and displays prompt to indicate that the pro
gram is waiting for input.

The only way to terminate the string input is to press (ENTER l.
However, if LINE INPUT is immediately followed by a semicolon,
pressing I ENTER l does not echo a carriage return to the display.

LINE INPUT A$
LINE INPUT "LAST, FIRST NAME?"; N$

LINE INPUT#buffer, variable

Accepts an entire line of data from a sequential access file, including
delimiters (commas, quotation marks, etc). Buffer is the number
assigned to the file when you opened it.

LINE INPUT#1, A$

LIST startline-endline [,device]

Lists a program in memory to the display.

Startline specifies the first line to be listed. Default = first line in
the program.

Endline specifies the last line to be listed. Default = last line in the
program.

Device may be either SCRN: (screen) or LPTI: (printer). Default =
screen (SCRN:).

LI ST LI ST 50-100, LPT1:

LLIST startline-endline

Lists program lines in memory to the printer. LLIST assumes an
80-character-wide printer. You may change this by using the WIDTH
statement with the LPRINT option. Startline and endline are
described in LIST.

LLIST LLI ST 68-90

Tandy 1000 41

BASIC

LOAD pathname [,R]

Loads a BASIC program from disk into memory. The R option tells
BASIC to run the program.

LOAD "A:prog1 .bas".
LOAD "prog1. bas", R

LOC(buffer)

Returns the current record position within a file. Buffer is the number
assigned to the file when you opened it.

Direct access files: LOC returns the record number accessed by the
last GET or PUT statement.

Sequential access files: LOC returns the number of 128-byte records
that have been read or written.

A=LOC(2) IF LOC(1)>55 THEN END

LOC(buffer)

Communications. Returns the number of characters in the input
queue. Buffer is the number assigned to the file when you opened it.

If more than 255 characters are in the input queue, LOC always
returns 255. If fewer are there, LOC returns the actual number of
characters waiting to be read.

IF LOC(X)>0 THEN 1000

LOCATE [row][,[column][,[cursor][,[start][,stop]]]]

Positions the cursor on the screen at the position indicated by row
and column. Row is in the range 1 to 25. Column is in the range 1
to 40 or 1 to 80, depending on the current screen width.

Cursor indicates whether the cursor is visible or invisible. 1 = visible
and 0 = invisible.

Start is the first scan line of the cursor.

Stop is the last scan line of the cursor.

Start and stop can be in the range 0 to 7.

LOCATE 10,20,1,4 LOCATE 24,1,1,3

42 Tandy 1000

""""'

-
-

-
-

-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-

BASIC

LOF(buffer)

Returns the length of the file in bytes. Buffer is the number assigned
to the file when you opened it.

Y = LOFCS)

LOF(buffer)

Communications. Returns the amount of free space in the input
queue. Buffer is the number assigned to the file when you opened it.

You can use LOF to determine when an input queue is getting full
so that transmission is stopped.

IF LOF CX) < 20 GOTO 1000

LOG(number)

Returns the natural logarithm of number. Number must be greater
than zero.

PRINT LOGC3.14159)
Z = 10 * LOGCP5/P1)

LPOS(number)

Returns the logical position of the print head within the printer's
buffer. Number can be 0 or 1 to indicate LPTl:.

IF LPOSCX)>60 THEN LPRINT

LPRINT [USING format;] dataGdata, ...]

Prints data on the printer. LPRINT and LPRINT USING assume
a print width of 80 characters. You may change the width by using
the WIDTH statement with the LPRINT option.

See PRINT and PRINT USING for more information on formatting
the output.

- LPRINT CA* 2)/3
LPRINT USING 11 #####.# 11 ; 2.17

-
Tandy 1000 43

BASIC

LSET field name = data

Moves data to the direct access buffer and places it in field name,
in preparation for a PUT statement. Field name is a string variable
defined in a FIELD statement. You must have used FIELD to set
up buffer fields before using LSET.

Any numeric value that is placed in a direct access file buff er with
an LSET statement must be converted to a string. See MKS$,
MKD$, and MK!$.

LSET AD$= 11 2000 EAST PECAN ST."
LSET TD$=D$

MERGE pathname

Loads a BASIC program and merges it with the program currently
in memory. Program lines in pathname are inserted into the resident
program in sequential order. The file must be in ASCII format; that
is, it must have been saved with the A option.

If line numbers in pathname coincide with line numbers in the
resident program, pathname's program lines replace the resident
program's lines.

MERGE "prog2.txt"

MID$(oldstring ,start[,length]) = newstring

Replaces a portion of oldstring with newstring.

Start specifies the position of the first character you want to change.

Length is the number of characters you want to replace.

44

A$= 11 ABCDEFGH 11

MID$=(A$,3,4)="WXYZ"

Tandy 1000

-
-
,.....

-

-
-

-

-
-

-
-
-
-
-
-
-

-
-

MID$(string, start [,length])

Returns a substring of string.

BASIC

Length is the number of characters in the substring. It must be in
the range 1 to 255.

Start specifies the position in the string from which to get the
substring.

PRINT MID$("WEATHERFORD", 3, 2)
A$=MID$(T$,4,5)

MKDIR dirpath

Creates the directory specified by dirpath.

MKDIR "A: \ACCTS\PAYABLE"
MKDIR "\ADDRESS"

MKD$(double-precision expression)

Converts a numeric value to an 8-byte string value. This is the inverse
function of CVD.

Any numeric value that is placed in a direct access file buffer by an
LSET or RSET statement must be converted to a string.

LSET YTD$ = MKD$(564.33)
RSET DAY$=MKD$(DAY)

MKI$(integer expression)

Converts a numeric value to a 2-byte string value. This is the inverse
function of CVI.

Any numeric value that is placed in a direct access file buffer by an
LSET or RSET statement must be converted to a string.

- LSET TOT$= MKI$(TOT)
RSET QTY$=MKI$(NUM)

-
-

Tandy 1000 45

-BASIC

MKS$(single-precision expression)

Converts a numeric value to an 4-byte string value. This is the inverse ~
function of CVS.

Any numeric value that is placed in a direct access file buffer by an
LSET or RSET statement must be converted to a string.

LSET AVG$= MKS$ (0 .123)
RSET MIX$=MKS$(A)

NAME old filename AS new filename

Renames old filename as new filename. You cannot change directory
names.

NAME "file.bas" AS "file.old"

NEW

Deletes the program currently in memory and clears all variables.

NEW

NOISE source, volume,duration

Generates noise through a TV monitor's speaker (external speaker).
You must execute a SOUND ON statement before using NOISE.

Source selects the type of noise and may be an integer in the range
0 to 7. 0-3 selects periodic noise and 4-7 selects white noise.

Volume is an integer in the range 0 to 15 where 0 is the quietest
and 15 is the loudest. Default = 8.

Duration may be in the range 0 to 65536. A duration of 18.2 equals
1 second.

NOISE 0,15,20

OCT$(number)

Returns a string that represents the octal value of a decimal number.

PRINT OCT$(30) S$=0CT$(90)

46 Tandy 1000

-

-

-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

BASIC

ON COM(channel) GOSUB line

Transfers program control to a subroutine beginning at line when
activity occurs on the specified communications channel.

Channel specifies communications channel 1 or 2.

Line is the subroutine line at which execution begins when activity
occurs on the communications channel. Specifying Line 0 turns off
communications trapping.

ON COM(1) GOSUB 1000

ON ERROR GOTO line

Transfers control to line if an error occurs. You must execute an
ON ERROR GOTO before the error occurs. Specifying Line 0 turns
off error trapping.

ON ERROR GOTO 1500

ON n GOSUB line[,line, ...]

Looks at n and transfers program control to the subroutine indicated
by the nth line listed.

If n equals 1, BASIC branches to the first line listed in the state
ment. If n equals 2, BASIC branches to the second line listed, and
so on. N must in the range 0 to 255. If n is 0 or greater than the
number of line numbers listed, BASIC continues with the next
statement.

ON Y GOSUB 1000, 2000, 3000

ON n GOTO line[,line, ...]

Looks at n and transfers program control to the nth line listed.

If n equals 1, BASIC branches to the first line listed. If n equals
2, BASIC branches to the second line listed, and so on. N must be
in the range 0 to 255. If n is 0 or greater than the number of line
numbers listed, BASIC continues with the next statement.

ON MI GOTO 150,160,170,150,180

Tandy 1000 47

BASIC

ON KEY(number) GOSUB line

Transfers program control to a subroutine, beginning at line when
you press the specified key.

Number indicates the number of the key to trap. Function keys are
1 to 10. The cursor direction keys are numbered:

CD 11
G 12
G 13
CD 14

User keys are numbered 15 through 20. User keys are defined with
the KEY statement.

Specifying Line 0 turns off key trapping for the specified key.

ON KEY(13) GOSUB 500

ON PEN GOSUB line

Transfers program control to the subroutine at line when you
activate the light pen. Specifying Line 0 turns off pen trapping.

ON PEN GOSUB 1000

ON PLAY(number) GOSUB line

Transfers program control to the subroutine, beginning at line, when
the number of notes in the background music buffer goes from
number to number minus 1.

Number must be in the range 1 to 32.

Specifying Line 0 turns off play trapping.

ON PLAY(30) GOSUB 200

48 Tandy 1000

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

BASIC

ON STRIG(number) GOSUB line

Transfers program control to the subroutine at line when you press
one of the joystick's buttons.

Number specifies the button pressed and is one of the following:

0 left joystick, button 1
2 right joystick, button 1
4 left joystick, button 2
6 right joystick, button 2

Specifying Line 0 turns off joystick trapping.

10 ON STRIG(0) GOSUB 1000

ON TIMER(number) GOSUB line

Transfers program control to the subroutine, beginning at line, when
the specified time has elapsed.

Number indicates the number of seconds. It may be a value in the
range 1 to 86400 (86400 seconds = 24 hours).

ONT !MER (3600) GO SUB 500

OPEN mode,[#]buffer,[pathname][dev:][,record length]
OPEN [pathname][dev:] [FOR mode] AS [#]buffer
[LEN =record length]

Establishes an input/output path for a file or device.

Buffer specifies the I/0 buffer in memory to use when accessing the
file and may be in the range 1 to 15. The number sign (#) is not
required.

If you do not specify pathname, you must specify dev:.

Record length sets the record length for direct access files and may
be in the range 1 to 32768. Default = 128 bytes.

Mode specifies any of the following:

0 or OUTPUT
I or INPUT
A or APPEND
R or RANDOM

Tandy 1000

sequential output mode
sequential input mode
sequential output and extend mode
direct input/output mode

49

BASIC

In the first form of the syntax, you must use the abbreviated form
of mode and enclose it in quotation marks.

In the second form of the syntax, you must specify the complete word
for mode. You may not specify RANDOM. If you want to use direct
access in the second form of the syntax, omit mode.

OPEN "R", 2, "TEST. DAT"
OPEN "LPT1:" FOR OUTPUT AS #2

OPEN "COMchannel: [speed] [,parity] [,data][,stop][,RS]
[,CS[seconds]][,DS[seconds]] [,CD[seconds]][,mode][,PE][,LF]" AS -
[#]buffer [LEN = number]

Opens a file and allocates a buffer for RS-232C (Asynchronous Com
munications Adapter) communication.

Channel specifies communications channel 1 or 2.

Speed specifies the baud rate and may be 75, 110, 150, 300, 600, 1200,
2400, 4800, or 9600. Default = 300.

Parity may be E for EVEN, 0 for ODD, M for MARK, S for SPACE,
or N for NO. Default = E (EVEN).

Data specifies the number of bits and may be 5, 6, 7, or 8. Default
= 7.

Stop may be either 1 or 2 to indicate the number of stop bits. Default
= 2 for baud rates of 75 and 110 and 1 for all other baud rates.

Buffer indicates the buff er that accesses the file and may be in the
range 1 to 15. The number sign (#) is not required.

Number specifies the maximum number of bytes that can be accessed
in the communications buffer by GET and PUT statements. Default
= 128 bytes.

RS suppresses the Request to Send signal. CS, DS, and CD control
the following signals (in order): Clear to Send, Data Set Ready, Car
rier Detect. Seconds specifies the number of milliseconds to wait
before returning a Device Timeout error.

Mode can be BIN (for binary) or ASC (for ASCII). Default=BIN.

PE enables parity checking.

50 Tandy 1000

- BASIC

-
LF sends a line feed after every carriage return.

- OPEN "COM1: 11 AS 1

-
-
-
-
-
-
-
-
-
-
-

OPEN "COM2:9600,N,8,1,BIN" AS 2

OPTION BASE value

Sets value as the minimum value for an array subscript. This state
ment must precede the DIM statement.

Value may be 1 or 0. Default = 0.

OPTION BASE 1

OUT port, data byte

Sends a data byte to a machine output port. A port is an input/output
location in memory.

Port is an integer in the range 0 to 65535 and data byte is an integer
in the range 0 to 255.

OUT 32,100

PAINT (x,y) [color[,border][,background]]

Graphics. Fills in an area on the display with a selected color or
pattern.

(x,y) are the coordinates at which painting begins.

Color can be either a number or a string expression. If color is a
number it specifies a color number available in the current screen
mode. (See "Color and Graphics.")

If color is a string expression, it specifies the mask to be used for
tiling in the form:

CHR$(&Hnn)+CHR$(&Hnn)+CHR$(&Hnn) ...

Border is the color at which to stop painting.

Background is the color to skip when checking for borders while paint
- tiling. It is a I-byte string expression.

-
Tandy 1000 51

BASIC

PALETTE [color,display color]

Graphics. Changes the color associated with a particular color
number in the current palette.

Color specifies the color in the current palette you want to change.

Display color specifies the new color you want BASIC to display
when color is specified.

See "Color and Graphics."

PALETTE3,7

PALETTE USING array(subscript)

Graphics. Changes the colors associated with more than 1 of the color
numbers in the current palette.

Array is the name of an integer array in which you define the order
in which colors are to be put in the current palette.

Subscript is the array position that contains the value of the color
that you want put in the first palette position.

PALETTE USING A(0) PALETTE USING A (2)

PCOPY source page,destination page

Copies the source video page to the destination video page.

PCOPY3,5 PCOPY 6,4

PEEK(memory location)

Returns a byte from memory location. Memory location must be in
the range -32768 to 65535. The value returned is an integer in the
range 0 to 255.

A= PEEK (&H5A00)

52 Tandy 1000

~

""""

-
-

-
-
-
-
-
-
-
-
-
-
-
-

BASIC

PEN(number)

Returns the light pen's coordinates.

Number is a number in the range 0 to 9 that tells BASIC what to
return.
0 Returns a -1 if pen button has been pressed since last poll.

Returns a 0 if not.
1 Returns the x coordinate (horizontal) where the pen was last

activated.
2 Returns the y coordinate (vertical) where the pen was last

activated.
3 Returns a -1 if the pen button is pressed. Returns a 0 if it not.
4 Returns the last known valid x coordinate (horizontal).
5 Returns the last known valid y coordinate (vertical).
6 Returns the character row position where the pen was last

activated.
7 Returns the character column position where the pen was last

activated.
8 Returns the last known character row position.
9 Returns the last known character column position.

A= PEN(1)

PEN action

Turns on, turns off, or temporarily halts light pen event trapping.

PEN ON
PEN OFF
PEN STOP

enables event trapping.
disables event trapping.
temporarily suspends event trapping.

PLAY string [,[string][,string]]

- Plays the musical notes specified by string.

-
-
-

PLAY supports 3 separate strings to allow independent control of
each of 3 voices.

String is a string expression consisting of 1 or more single-character
music commands.

Tandy 1000 53

BASIC

Single character music commands:

A - G plays notes A through G of 1 musical scale. You may include
an optional number sign (#) or plus sign (+) to indicate a
sharp note or a minus sign (-) to indicate a flat note.

Ln sets the duration of the notes that follow. N may be a value

On

>

<

Nn

Pn

Tn

•

MF

MB

MN

ML

MS

54

in the range 1 to 64 where:

1 indicates a whole note.
2 indicates a half note.
4 indicates a quarter note.
8 indicates an eighth note.

16 indicates a sixteenth note.

sets the current octave. There are 7 octaves, 0 through 6.
Octave 3 starts with middle C. Default = Octave 4.

changes the current octave to the next higher octave.

changes the current octave to the next lower octave.

plays a note. N may be in the range 0 to 84.

rests. N may be in the range 1 to 64.

sets the number of quarter notes in 1 minute. N may be in
the range of 32 to 255. Default = 120 quarter notes in 1
minute.

plays as a dotted note. BASIC plays the note one-half its
length longer.

plays the music in the foreground. Default = MF.

plays the music in the background. A maximum of 32 notes
and/or rests can play in background at a time. Default = MF.

sets "music normal"; each note plays 7/8 of the duration as
set by the L option. Default = MN.

sets "music legato"; each note plays the full duration as set
by the L option. Default = MN.

sets "music staccato"; each note plays 3/4 of the duration
as set by the L option. Default = MN.

Tandy 1000

-
-
-

-
-
-
-
-
-
-

-
-
-
-

BASIC

X variable; executes a substring. You can have 1 string execute
another, which executes a third, and so on.

Vn sets the volume. n must be in the range 0 to 15. You
must execute a SOUND ON statement to use this
option. Default = 8.

The lowest note the multi-voice sound chip can produce is Note
A of Octave 0, which is 110 Hz. If you try to play a lower note,
BASIC plays Note A of Octave 0.

PLAY "C4F.C8F8.C16F8.G16A2F2"

PLAY(number)

Returns the number of notes currently in the background music
queue.

Number is a dummy argument when SOUND is OFF. If you execute
a SOUND ON, then number may be one of the following
(Default = 0):

0 returns the number of notes left to play on Voice Channel 0.
1 returns the number of notes left to play on Voice Channel 1.
2 returns the number of notes left to play on Voice Channel 2.

X=PLAY<0) X=PLAY(2)

PLAY action

Turns on, turns off, or temporarily halts background music event
trapping.

PLAY ON
PLAY OFF
PLAY STOP

enables play event trapping.
disables play event trapping.
temporarily suspends play event trapping.

PMAP(coordinate,action)

Returns the physical or world coordinate for the specified coordinate.

Coordinate is any x or y coordinate.

Tandy 1000 55

BASIC

Action is one of the following:

0 returns the physical x-coordinate for the specified world
coordinate.

1 returns the physical y-coordinate for the specified world
coordinate.

2 returns the world x-coordinate for the specified physical
coordinate.

3 returns the world y-coordinate for the specified physical
coordinate.

X=PMAP(200,0) Z=PMAP(50,0)

POINT (x,y)
POINT (action)

Graphics. Returns the color number of a point on the screen or
returns the current physical or world coordinates.

(x,y) are the coordinates of the point.

Action is one of the following:

0 returns the current physical x-coordinate (horizontal).
1 returns the current physical y-coordinate (vertical).
2 returns the world x-coordinate if WINDOW is active. Otherwise,

returns the physical x-coordinate.
3 returns the world y-coordinate if WINDOW is active. Otherwise,

returns the physical y-coordinate.

IF POINT(1 ,1) <>0 THEN PRESET (1,1)
ELSE PSET (1,1) X=POINT(1)

POKE memory location, data byte

Writes data byte into memory location.

Both memory location and data byte must be integers . Memory
location must be in the range -32768 to 65535.

POKE &H5A00, &HFF

56 Tandy 1000

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

BASIC

POS(number)

Returns the current column position of the cursor.

Number is a dummy argument.

IF POS(X) > 70 THEN IF A$= CHR$(32)
THEN A$= CHR$(13)

PRINT data[, data ...]

Prints numeric or string data on the display. You can substitute a
question mark (?) in place of the word PRINT.

If you use commas, the cursor automatically advances to the next
tab position before printing the next item.

If you use semicolons or spaces to separate the data items, PRINT
prints the items without any spaces between them.

PRINT "DO"; "NOT"; "LEAVE"; "SPACES"
PRINT "THE TOTAL IS",TTL

PRINT USING format; data[,data ...]

Prints data using a format you specified. This statement is especially
useful for printing report headings, accounting reports, checks, or
any other documents that require a specific format.

Format consists of 1 or more field specifier(s), or any alphanumeric
character. Format must be enclosed in quotation marks.

Data may be a string and/or numeric value(s).

Specifiers for String Fields:

\spaces\

&

Tandy 1000

prints only the first character in the string.

prints 2 + n characters from the string. (N is the number
of spaces between the slashes.)

prints the string without modifications.

57

BASIC

Specifiers for Numeric Fields:

prints the same number of digit positions as number signs
(#). You may insert a decimal point at any position.

+ prints the sign of the number. The plus sign may be typed
at the beginning or at the end of the format string.

prints a negative sign after negative numbers and a space
after positive numbers.

* * fills leading spaces with asterisks.

$ $ prints a dollar sign immediately before the number. You may
not use exponential format with $$.

* * $ fills leading spaces with asterisks and prints a dollar sign
immediately before the number.

prints a comma before every third digit to the left of the

~

decimal point. -
1\1\I\I\ prints in exponential format. The 4 exponent signs are placed

after the digit position characters. You may specify any
decimal point position.

prints the next character as a literal character.

PRINT USING".####"""""; 888888
PRINT USING"**$###,.##"; 1234.5
PRINT USING "###2.#-"; -768.660
PRINT USING"###.##"; 876.567

PRINT# buffer,[USING format] data[,data, ...]

Writes data items to a sequential access file. PRINT# does not com
press the data before writing it to disk. It writes an ASCII-coded
image of the data. -

See PRINT USING for information about the format parameter.

PRINT# 1,A PRINT# 1, 8$, T$ -

-
58 Tandy 1000

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

PSET [STEP] (x,y)[,color]
PRESET [STEP] (x,y)[,color]

BASIC

Graphics. Draws a point on the display. If you use PSET, color
defaults to the foreground color. If you use PRESET, color defaults
to the background color.

(x,y) are the coordinates of the point. STEP designates (x,y) as
relative coordinates.

PSET(1,1) PRESET (1,1),(2)

PUT [#]buffer[, record]

Puts a record in a direct access file. The number sign (#) is not
required.

Record is the number of the record to be written to the file and may
be in the range 1 to 16,777,215. Default = current record number.

PUT 1 PUT1,25

PUT [#]buffer,number

Communications. Transfers data from the communications buff er
to the communications line. The number sign (#) is not required.

Number is the number of bytes to transfer.

PUT 2, 8(2)

PUT (x,y),array[,action]

Graphics. Transfers an image stored in an array to the screen.

(x,y) are the coordinates at which the image begins (the upper left
corner of the image). Default = last point referenced.

Array is the array variable name that holds the image.

Action sets the type of interaction between the transferred image
and the image already on the screen. Action may be PSET,
PRESET, AND, OR, or XOR. Default = XOR.

Tandy 1000 59

BASIC

RANDOMIZE [number]

Reseeds the random number generator.

Number may be an integer, or single- or double-precision number.
If you omit number, BASIC suspends program execution and
prompts you for a number before executing RANDOMIZE.

RANDOMIZE
RANDOMIZE TIMER

RANDOMIZE 300

READ variable[, variable, ...]

Reads values from a DATA statement and assigns them to variables.

READ T READ N$, D$

REM

Inserts a remark line in a program. You may use an apostrophe (')
as an abbreviation for REM.

REM AVERAGE VELOCITY 'TOTALS

RENUM [new line][,[line][,increment]]

Renumbers the program currently in memory. RENUM also changes
all line number references appearing after GOTO, GOSUB, THEN,
ON/GOTO, ON/GOSUB, ON ERROR GOTO, RESUME, and ERL.

Line is the line in the program at which BASIC starts renumber-

~

,....,

-

ing. Default = first line. -

New line is the new line number assigned to line. Default = Line 10.

Increment tells BASIC how to number the successive lines. Default -
10.

RENUM REN UM 600, 5000, 100 -
RESET

Closes all open files on all drives.

RESET

60 Tandy 1000

BASIC

RESTORE [line]

Restores a program's access to previously read DATA statements .

Line specifies the DATA statement to be accessed at the next READ
statement. Default = first DATA statement.

RE STO RE

RESUME [line]
RESUME NEXT

Resumes program execution after an error-handling routine.

RESUME line branches to the specified line number. Default= line
in which the error occurred. RESUME NEXT branches to the state
ment following the point at which the error occurred.

RESUME RESUME 10 RES UME NEXT

RETURN [line]

Returns control from a subroutine executed by a GOSUB to the
specified line. Default = line immediately following the GOSUB.

RETURN RETURN 40

RIGHT$(string, number)

Returns the specifed number of characters from the far right por
tion of string. Number must be an integer in the range 1 to 255 .

PRINT RIGHT$("WATERMELON",5)
PRINT RIGHT$("PUPPY",25)

RMDIR dirpath

Removes (deletes) the directory specified by dirpath. The directory
being deleted must be empty except for the "." and " .. " symbols.
Use the MS-DOS COPY command and/or the ERASE command to
remove files from the directory.

RMDIR "NAMES"
RMDIR "A: \ACCTS\PAYABLE"

Tandy 1000 61

BASIC

RND [(number)]

Returns a random number between 0 and 1.

If number is negative, RND starts the sequence of random numbers
at the beginning. If number is 0, RND repeats the last number
generated.

PRINT RNO(1) A=RND(0)

RSET field name = data

Sets data in a direct access buff er field name in preparation for a
PUT statement.

RSET A$= CVI (Z)

RUN [line]
RUN pathname[,R]

Executes a program. Line is the program line at which BASIC begins
execution. Default = first line.

If you specify the R option, BASIC does not close the open files
before loading the new program into memory. If you omit the R op
tion, BASIC closes all open files before loading the program.

RUN RUN 100 RUN "program.a"

SAVE pathname [,A]
SA VE pathname [,P]

Saves a program on disk with the specified name.

The A option saves the program in ASCII format. Default = com
pressed format.

The P option saves the file in an encoded binary format. The only
operations that can be performed on the file are RUN, LOAD, and
CHAIN.

SAVE "A:fi le1 .bas"
SAVE "\EDUC\mathpak.txt", A

62 Tandy 1000

-

-

-
-
-

-

-
-
-
-
-
-
-

-

-
-
-
-

BASIC

SCREEN (row, column,[number])

Returns the ASCII code for the character at the specified row and
column. Row is an integer in the range 1 to 25. Column is an integer
in the range 1 to 40 or 1 to 80, depending on the screen width.

Number is applicable only for text mode. If number is specified and
is non-zero, BASIC returns the color number in the range 1 to 16
instead of the ASCII code of the character.

In the graphics modes, if the location does not contain a standard
ASCII character, BASIC returns a value of zero.

A= SCREEN(20,20)
PRINT SCREEN(10,10,1)

SCREEN [mode][,[burst][,[active page]
[,display page]] ~erase]]

Sets the screen attributes to be used by all other graphics statements.

Mode is an integer in the range 0 to 6 that sets the valid coordinates
and the number of colors you can use.

Burst enables or disables color. In Screen Mode 0 (text mode), set
burst to 0 to disable color or 1 to enable color. In Screen Modes 1
and 4, set burst to 0 to enable color or 1 to disable color. Burst has
no effect in Screen Modes 3, 5, and 6 where color is always enabled
or in Screen Mode 2, which is black and white.

Active page selects the video page to which BASIC will write. All
output statements to the screen go to the selected active page.
Default = Page 0 or the current active page, which is initially Page 0.

Display page selects the video page for BASIC to display. Default
= active page.

Erase tells BASIC how much video memory to erase. Erase can be
one of the following. Default = 1.

0 Do not erase video memory, even if the screen mode
changes.

1 Erase the union of the new page and old page if mode or
burst changes.

2 Erase all video memory if mode or burst changes.

SCREEN 0,0 SCREEN 2

Tandy 1000 63

BASIC

SGN(number)

Determines number's sign. If number is a negative number, SGN
returns -1. If number is a positive number, SGN returns 1. If number
is zero, SGN returns 0.

PRINT SGN(-55) Y=SGN(A*B)

SHELL [command]

Advanced Statement. Loads and executes another program (.EXE
or .COM) as a child process to the original program. After the child
process ends, control returns to the BASIC program at the statement
following the SHELL statement.

Command is a string expression containing the name of the program
you want to run.

SHELL (ENTER l

SIN(number)

Returns the sine of number. Number must be in radians.

PRINT SIN(?.96) S=SIN(T)

SOUND frequency,duration[,[volume][,[voice]]]
SOUND ON
SOUND OFF

Generates a sound with the frequency and duration specified. While
a SOUND statement is producing sound, the program continues to
execute.

Frequency specifies the desired tone in Hertz. The lowest frequency
that can be produced is 110 Hz. The frequency 32767 is treated as
the silence frequency.

Note Frequency Note Frequency

Middle C 523.25 G 783.99
D 587.33 A 880.00
E 659.26 B 987.77
F 698.46 C 1046.50

64 Tandy 1000

-

-

-

-

BASIC

-
Duration is an integer in the range 1 to 65535, specifying the dura-

- tion in clock ticks. Clock ticks occur 18.2 times per second.

-

-
-
-
-
-
-
-
-
-
-
-

Volume is an integer in the range 0 to 15, where 0 is the lowest
volume and 15 is the highest volume. Default = 8.

Voice is an integer in the range 0 to 2. Default = 0.

SOUND ON enables the external speaker that supports multivoice
sounds using the PLAY or SOUND statements.

SOUND OFF disables the external speaker.

See also BEEP.

SOUND 20,500, 6

SPACE$(number)

Returns a string of number spaces. Number must be in the range
0 to 255.

PRINT "COST" SPACE$(4) "QUANTITY"
SPACE$(9) "TOTAL"

SPC(number)

Prints number blanks. Number is in the range 0 to 255.

PRINT "HELLO" SPC(15) "THERE"

SQR(number)

Returns the square root of number. Number must be greater than
zero.

PRINT SQR(155.7>

Tandy 1000 65

BASIC

STICK(action)

Returns the coordinates of the joysticks.

Action may be one of the following:

0 reads all 4 coordinates, and returns the horizontal (x) coor-
dinate for left joystick.

1 returns the vertical (y) coordinate for left joystick.

2 returns the horizontal (x) coordinate for right joystick.

3 returns the vertical (y) coordinate for right joystick.

You must read 0 before reading 1, 2, and 3.

STICK (2)

STOP

Stops program execution.

STOP

STR$(number)

Converts number to a string.

S$ = STRSCX)

STRIG ON
STRIG OFF

Enables the STRIG function.

STICK (QI)

PRINT STRSC-234)

STRIG ON lets you execute STRIG function statements to return
the status of the joystick buttons.

If you execute a STRIG OFF statement, you cannot execute the
STRIG function.

66 Tandy 1000

~

-

,-.

-
-
-
-
-
-
-
-
-
-
-
-

-

BASIC

STRIG(number)

Returns the status of joystick buttons. (L refers to the left joystick
and R to the right joystick.)

Number is a number in the range 0 to 7 to test the status of the
joystick buttons.

0

1

2

3

4

5

6

7

Tests to see if Trigger Ll has been pressed and released since
the last STRIG(0) function was executed. BASIC returns a -1
if it has been pressed and a 0 if not.

Tests to see if you are currently pressing Trigger Ll. BASIC
returns a -1 if you are pressing it and a 0 if not.

Tests to see if Trigger Rl has been pressed and released since
the last STRIG(2) function was executed. BASIC returns a -1
if it has been pressed and a 0 if not.

Tests to see if you are currently pressing Trigger Rl. BASIC
returns a -1 if you are pressing it and a 0 if not.

Tests to see if Trigger L2 has been pressed and released since
the last STRIG(4) function was executed. BASIC returns a -1
if it has been pressed and a 0 if not.

Tests to see if you are currently pressing Trigger L2. BASIC
returns a -1 if you are pressing it and a 0 if not.

Tests to see if Trigger R2 has been pressed and released since
the last STRIG(6) function was executed. BASIC returns a -1
if it has been pressed and a 0 if not.

Tests to see if you are currently pressing Trigger R2. BASIC
returns a -1 if you are pressing it and a 0 if not.

A= STRIG(0) Z=STRIG(4)

STRIG(number) action

Turns on, turns off, or temporarily halts joystick trapping.

STRIG ON enables joystick trapping.
STRIG OFF disables joystick trapping.
STRIG STOP temporarily halts joystick trapping.

Tandy 1000 67

BASIC

Number is a value of 0, 2, 4, or 6 to indicate the joystick button you
are trapping (L = Left, R = Right):

0 indicates Trigger Ll.
2 indicates Trigger Rl.
4 indicates Trigger L2. -
6 indicates Trigger R2.

STRIG(0) ON STRIG(6) OFF

STRING$(number,character)

Returns a string containing the specified number of character.
Number must be in the range 0 to 255.

Character is a string or an ASCII code.

8$ = STRING$(25, "X")
PRINT STRING$(50, 10)

SW AP variablel ,variable2

Exchanges the values of 2 variables of the same type.

SWAP F1#, F2#

SYSTEM

Returns you to the MS-DOS command level.

SYSTEM

TAB(number)

Spaces to position number on the display.

Number must be in the range 1 to 255.

PRINT "NAME" TAB(25) "AMOUNT":PRINT

68 Tandy 1000

-
-
-

-

-
-

-
-
-
-
-
-
-

BASIC

TAN(number)

Returns the tangent of number. Number must be in radians.

PRINT TAN(7.96) S=TANCX)

TIME$[= string]

Sets or retrieves the current time. BASIC uses a 24-hour clock.

String is a literal, enclosed in quotation marks, that sets the time
by assigning its value to TIME$. If you omit string, BASIC retrieves
the current time.

TIME$ = 11 14:15 11 A$=TIME$

TIMER

- Returns the number of seconds since midnight or since the last
system reset. You can use TIMER as the argument for the RAN
DOMIZE statement to reseed the random number generator. -

-
-

-
-

PRINT TIMER A= TIMER

TIMER action

Turns on, turns off, or temporarily halts timer event trapping.

TIMER ON
TIMER OFF
TIMER STOP

TROFF
TRON

enables timer event trapping.
disables timer event trapping.
temporarily suspends timer event trapping.

Turns the trace function on/off. The tracer lets you follow program
flow. TRON turns on the tracer and TROFF turns it off.

TRON TROFF

Tandy 1000 69

BASIC

USR[number](argument)

Calls a user's assembly-language subroutine identified by number
and passes argument to that subroutine.

The number you specify must be the same as the corresponding DEF
USR statement for that routine. Default = 0.

V AL(string)

Calculates the numerical value of string.

PRINT VAL("100") PRINT VAL<"1234E5")

VARPTR (variable)
VARPTR ([#]buffer)

Returns the offset into BASIC's data segment of a variable or a disk
buffer.

When used with variable, V ARPTR returns the address of the first
byte of data identified with variable.

When used with buffer, VARPTR returns the address of the file's
control block. The number sign (#) is not required.

PRINT VARPTR(3) A= VARPTR (A$)

V ARPTR$(variable)

Returns a 3-byte string representing a memory address of a variable:

Byte 0 type
Byte 1 = low byte of address
Byte 2 = high byte of address

Type is 2 for integer variables, 3 for string variables, 4 for single
precision variables, and 8 for double precision variables.

A$= VARPTR$ (A!)

70 Tandy 1000

r-

-

-

-

-
-
-

-
-
-
-
-
-
-

-

-
-

BASIC

VIEW [SCREEN] [(xl ,y1)-(x2,y2)[,[color][,[border]]]]

Graphics. Creates a rectangular viewport that redefines the screen
parameters. This defined area, a window, becomes the only place
in which you can draw graphics displays.

(xl,yl) specifies the upper-left corner of the viewport.

(x2,y2) specifies the lower-right corner of the viewport.

SCREEN specifies that all coordinates used in drawing are absolute
to point 0,0 on the screen. If you omit SCREEN, all coordinates
specified are relative to the viewport coordinates.

VIEW (10,10)-(100,100)
VIEW SCREEN (20,25)-(100,150)

VIEW PRINT top line TO bottom line

Creates a text viewport that redefines the text screen parameters.

Top line specifies the first line of the text viewport. It may be in
in the range 1 to 24, but must be less than bottom line. Default =
Line 1.

Bottom line specifies the last line of the text viewport. It may be
in the range 1 to 24, but must be greater than top line. Default =
Line 24.

VIEW PRINT 1 TO 15

WAIT port, numberl [,number2]

Suspends program execution until a machine input port develops a
specified bit pattern. Numberl and number2 are integers in the range
0 to 255.

WAIT32,2

Tandy 1000 71

BASIC

WHILE expression
WEND

Executes a series of statements in a loop as long as a given condi
tion is true.

If expression is true, BASIC executes the statements after the
WHILE statement until it encounters a WEND statement. Then
BASIC returns to the WHILE statement and checks expression. If
it is still true, BASIC repeats the process. If it is not true, execution
resumes with the statement following the WEND statement.

WHILENUM

WIDTH [LPRINT] size
WIDTH buffer, size
WIDTH device, size

WEND

Sets the line width in number of characters for the display, printer,
or communications channel.

Buffer is the number assigned to the file in the OPEN statement.

Device is a valid device, enclosed in quotation marks, that specifies
the device for which you are setting the width. It may be SCRN:,
LPTl:, COMl:, or COM2:.

Size may be an integer in the range 0 to 255 that specifies the number
of characters in a line. For the screen, size may be 20, 40, or 80.

WIDTH 4121 WIDTH LPRINT 1121121
WIDTH "SCRN:", 4121

WINDOW [SCREEN] [(x1 ,y1)-(x2,y2)]

Lets you change the physical coordinates of the screen (or current
viewport) by defining "world coordinates."

(x1,y1) are the world coordinates for the upper-left corner of the
screen.

(x2,y2) are the world coordinates for the lower-left corner of the
screen.

72 Tandy 1000

I""""

-
-

-

-
-
-

-

-
-
-
-
-
-
-
-
-

BASIC

The SCREEN option tells BASIC to set the coordinates similar to
the screen display in that the lesser y-coordinate is in the upper-left
corner of the screen. If you omit SCREEN, BASIC inverts the
y-coordinates to show a true Cartesian coordinate system. That is,
the lesser y-coordinate is in the lower-left corner of the screen.

WINDOW lets you plot points outside the normal screen coordinate
limits by setting new world coordinates to the screen.

WINDOW (1984,100000)-(1987,300000)

WRITE data[,data, ...]

Writes data to the screen.

WRITE D, B, V$

WRITE #buffer, data[, data, ...]

Writes data to a sequential-access disk file.

Buffer is the number assigned to the file when you opened it.

WRITE#1, A$,B$

Tandy 1000 73

BASIC

BASIC Error Codes and Messages

Error
Number Error Message

1 NEXT without FOR
2 Syntax error
3 Return without GOSUB
4 Out of DATA
5 Illegal function call
6 Overflow
7 Out of memory
8 Undefined line number
9 Subscript out of range

10 Redimensioned Array/Duplicate Definition
11 Division by zero
12 Illegal direct
13 Type mismatch
14 Out of string space
15 String too long
16 String formula too complex
17 Can't continue
18 Undefined user function
19 No RESUME
20 RESUME without error
21 Unprintable error
22 Missing operand
23 Line buffer overflow
24 Device Timeout
25 Device Fault
26 FOR without NEXT
27 Out of paper
29 WHILE without WEND
30 WEND without WHILE
50 FIELD overflow
51 Internal error

74 Tandy 1000

- BASIC

-
Error - Number Error Message

52 Bad file number
53 File not found
54 Bad file mode
55 File already open
57 Device 1/0 Error
58 File already exists
61 Disk full - 62 Input past end
63 Bad record number
64 Bad file name
66 Direct statement in file
67 Too many files
68 Device Unavailable
69 Communication buffer overflow
70 Disk write protected
71 Disk not Ready
72 Disk media error - 73 Advanced Feature
74 Rename across disks
75 Path/file Access Error
76 Path not found
77 Deadlock -

-
-
-
-

Tandy 1000 75

BASIC

Keyboard ASCII and Scan Codes

Scan Keyboard ASCII Codes
Code Legend Normal SHIFT CTRL ALT Remarks

01 ESC 1B lB lB x8B
02 1 31 21 xEl x78
03 @ 2 32 40 x03 x79
04 # 3 33 23 xE3 x7A
05 $ 4 34 24 xE4 x7B
06 % 5 35 25 xE5 x7C
07 /\ 6 36 5E lE x7D
08 & 7 37 26 xE7 x7E
09 * 8 38 2A xE8 x7F
0A (9 39 28 xE9 x80
0B) 0 30 29 xE0 x81
0C _ - 2D 5F lF x82
0D + = 3D 2B xF5 x83
0E BACKSPACE 08 08 7F x8C
0F TAB 09 x0F x8D x8E
10 Q 71 51 11 x10
11 w 77 57 17 xll
12 E 65 45 05 x12
13 R 72 52 12 x13
14 T 74 54 14 x14
15 y 79 59 19 x15
16 u 75 55 15 x16
17 I 69 49 09 x17
18 0 6F 4F 0F x18
19 P 70 50 10 x19
lA [{ 5B 7B lB xEB
1B] } 5D 7D lD xF0
lC ENTER 0D 0D 0A x8F MAIN KEYBOARD
lD CTRL * * * * CONTROL MODE
lE A 61 41 01 xlE
lF S 73 53 13 xlF

76 T andy 1000

- BASIC

-
Scan Keyboard ASCII Codes - Code Legend N orrnal SHIFT CTRL ALT Remarks

20 D 64 44 04 x20
~ 21 F 66 46 06 x21

22 G 67 47 07 x22
23 H 68 48 08 x23
24 J 6A 4A 0A x24
25 K 6B 4B 0B x25
26 L 6C 4C 0C x26 - 27 ' . 3B 3A xF6 xF8
28 ' " 27 22 xF7 xFl

- 29 t x48 x85 x90 x91
2A SHIFT * * * * LEFT SHIFT
2B +- x4B x87 x73 x92 - 2C z 7A 5A lA x2C
2D X 78 58 18 x2D

- 2E C 63 43 03 x2E
2F V 76 56 16 x2F
30 B 62 42 02 x30 - 31 N 6E 4E 0E x31
32 M 6D 4D 0D x32
33 ,< 2C 3C xF9 x89
34 .> 2E 3E xFA x8A
35 I ? 2F 3F xFB xF2
36 SHIFT * * * * RIGHT SHIFT - 37 PRINT 10 * x72 x46 SCREEN PRINT

TOGGLE - 38 ALT * * * * ALTERNATE
MODE

39 SPACEBAR 20 20 20 x20 - 3A CAPS * * * * CAPS LOCK
3B Fl x3B x54 x5E x68

- 3C F2 x3C x55 x5F x69
3D F3 x3D x56 x60 x6A
3E F4 x3E x57 x61 x6B - 3F F5 x3F x58 x62 x6C

Tandy 1000 77

,,...
BASIC

,,...

Scan Keyboard ASCII Codes
Code Legend Normal SHIFT CTRL ALT Remarks ,.....
40 F6 x40 x59 x63 x6D
41 F7 x41 x5A x64 x6E -42 F8 x42 x5B x65 x6F
43 F9 x43 x5C x66 x70
44 F10 x44 x5D x67 x71 ,.....
45 NUM LOCK * * * * NUMBER LOCK
46 HOLD * * * * FREEZE DISPLAY ,.....
47 7 \ 37 5C x93 *
48 8"' 38 7E x94 *
49 9PGUP 39 x49 x84 * ,.....
4A + x50 x86 x96 x97
4B 4 34 7C x95 *
4C 5 35 xF3 xFC *

,.....

4D 6 36 xF4 xFD *
4E -+ x4D x88 74 xEA
4F 1 END 31 x4F x75 *
50 2' 32 60 x9A *
51 3PGDN 33 x51 x76 *
52 0 30 x9B x9C *
53 ■ DELETE 2D x53 x9D x9E
54 BREAK x00 x00 * * SCROLL LOCK BIT

TOGGLE CONTROL
BRK ROUTINE
(INT lBH)

55 + INSERT 2B 52 x9F xA0
56 2E xAl xA4 xA5 NUMERIC KEYPAD

,,...
■

57 ENTER 0D 0D 0A x8F NUMERIC KEYPAD
58 HOME x47 x4A x77 xA6 ,....
59 Fll x98 xA2 xAC xB6
5A F12 x99 xA3 xAD xB7

78 Tandy 1000

-
-

-
.....

-

BASIC

* No ASCII code is generated, but the special function described
in the Remarks column is performed.

No ASCII code is generated.

x Values preceded by "x" are extended ASCII codes (codes pre-
ceded by an ASCII NUL)

The (ALT l key provides a way to generate the ASCII codes of
decimal numbers in the range 1 to 255. Hold down the (AL Tl
key while you type on the numeric keypad any decimal number
in the range 1 to 255. When you release ALT, the ASCII code
of the number typed is generated and displayed.

Note: When the NUM LOCK light is off, the Normal and SHIFT
columns for these keys should be reversed.

Tandy 1000 79

BASIC

ASCII Character Codes

ASCII Control
Code Character Character

000 (null) NUL
001 © SOH
002 • STX
003 • ETX
004 ♦ EOT
005 • ENQ
006 + ACK
007 (beep) BEL
008 C BS
009 (tab) HT
010 - (line feed) LF
011 (home) VT
012 (form feed) FF
013 , (carriage return) CR
014 n so
015 ◊ SI
016 ► DLE
017 ◄ DCl
018 DC2
019 II DC3
020 DC4
021 § NAK
022 SYN
023 ..1. ETB
024 t CAN
025 i EM
026 ---+ SUB
027 - ESC
028 (cursor right) FS
029 (cursor left) GS
030 (cursor up) RS
031 (cursor down) us

80 Tandy 1000

- BASIC

ASCII ASCII

"- Code Character Code Character

032 (space) 070 F - 033 ! 071 G
034 " 072 H
035 # 073 I
036 $ 074 J
037 % 075 K
038 & 076 L - 039 077 M
040 (078 N
041) 079 0
042 * 080 p - 043 + 081 Q
044 082 R
045 083 s
046 084 T
047 I 085 u

- 048 0 086 V
049 1 087 w
050 2 088 X
051 3 089 y
052 4 090 z
053 5 091 [
054 6 092 \
055 7 093]
056 8 094 A
057 9 095
058 096 '
059 097 a

- 060 < 098 b
061 = 099 C

062 > 100 d
063 ? 101 e
064 @ 102 f
065 A 103 g

- 066 B 104 h
067 C 105
068 D 106 j - 069 E 107 k

Tandy 1000 81

I'"""'

BASIC

~

ASCII ASCII
Code Character Code Character ,-

108 146 /(

109 m 147 0 -110 n 148 0
111 0 149 0

112 p 150 u
~

113 q 151 u
114 r 152 y
115 s 153 0

I"'"-
116 t 154 ti
117 u 155 ¢

118 V 156 [

119 w 157 f

120 X 158 Pt
121 y 159 r
122 z 160 a
123 { 161 i
124 I 162 0 I -125 } 163 u
126 164 n
127 C) 165 N
128 C 166 a
129 u 167 0

130 e 168 c:, -131 a 169 ,--

132 a 170 --,

133 a 171 ½
134 0 172 ¼ a
135 <; 173 i
136 ~ 174 ((e
137 e 175 })

138 e 176 ~
139 I 177 ~
140 i 178 I
141 179 I
142 "A 180 ---j

143 ~ 181 =i ,
144 E 182 --,I
145 a! 183 -,,

82 Tandy 1000

·- BASIC

~

ASCII ASCII

~ Code Character Code Character

184 =, 220 -
~ 185 ~I 221 I

186 222 I
187 ','I 223 -188 :!J 224 a - 189 _jJ 225 f3
190 ... 226 r
191 --, 227 TI - 192 L 228 I
193 ~ 229 a

194 ' 230 µ - 195 ~ 231 T

196 232 0
197 + 233 e - 198 ~ 234 n
199 I~ 235 d
200 lk 236 00 - 201 r,= 237 0
202 8 238 (

i--, 203 ,f 239 n
204 IF 240 -
205 - 241 ±
206 .JL 242 ~ ,aai .,r

207 243 ~

208 .JL 244 r
~

209 =;= 245 J
210 -,r 246
211 IL 247 :::::

212 b, 248 0

~

213 F 249 •
214 rr 250 •

l"""il 215 * 251 v
216 ~ 252 I')

217 _J 253 2

- 218 r 254 ■

219 ■ 255 (blank 'FF')

-
Tandy 1000 83

Notes

r
r
r
I

r
r
r

r

r
I

r
r
I

r
r---
1

r
r

UNIT SPECIFICATIONS

System Unit
Processor: 8088
Size:

Length:
Depth:
Height:

Weight:

354mm (13.9 in.)
290mm (11.4 in.)
97mm (3.8 in.)

3.71 Kg (81b 4 oz) With 1 Diskette Drive
Transformer:

Input
Output to system

Environment:
Air Temperature

110 Vac 60 Hz
Pin 1-17 Vac, Pin 2-GND, Pin 3-17 Vac

System ON-60 to 90 degreees F (15.6 to 32.3 degrees C)
System OFF-50 to 100 degrees F (10 to 43 degrees C)

Humidity
System ON-8% to 80%
System OFF-8% to 80%

Diskette Drive
Power:

Supply
Voltage
Nominal

Ripple

0 to 50 kHz
Tolerance

Including Ripple
Standby Current

Nominal
Worst Case

Operating Current

Nominal
Worst Case

Environment:
Temperature

Operating
Non-operating

Relative Humidity
Operating
Non-operating

+5Vdc Input + 12V de Input
+5Vdc + 12Vdc

+5Vdc Input + 12V de Input
l00mV l00mV

+5Vdc Input + 12V de Input
+/ -5% +/ -5%

+5Vdc Input + 12V de Input
600 mA 400 mA
700 mA 500 mA

+5Vdc Input + 12V de Input
600 mA 900 mA
700 mA 2400 mA

50 to 122 degrees F (10 to 44 degrees C)
- 40 to 140 degrees F (- 40 to 60 degrees C)

20% to 80% (noncondensing)
5% to 95% (noncondensing)

RADIO SHACK

A Division of Tandy Corporation
U.S.A.: Fort Worth, Texas 76102
CANADA: Barrie, Ontario L4M 4W5

TANDY CORPORATION
AUSTRALIA
91 Kurrajong Avenue
Mount Druitt, N.S.W. 2770

BELGIUM
Pare Industriel
5140 Naninne (Namur)

U.K.
Bilston Road Wednesbury
West Midlands WSlO 7JN

87 49579-11/85-BCo Printed in U.S.A .

