About MS-DOS Version 02.11.03

This new version of the Tandy 2000 MS-DOS Operating System contains new versions
of some programs for enhancements and to correct some previous problems. In addi-

tion, some programs have been replaced with programs that are more compatible with
other Tandy MS-DOS computers.

Documentation on the changes and new features is provided in a file, README.DOC,
on the MS-DOS disk. To view the contents of the file on the screen, type at the system
prompt;

TYPE README.DOC | MORE < ENTER >

However, because this file contains a lot of useful information, you’ll probably want to
printitout. If you have a printer attached to your computer, type at the system prompt:

PRINT README.DOC < ENTER >

Thank you
Tandy Corporation
10/86

875-9953

)
. .
-1

o

Addendumto the
Tandy 2000
BASIC Reference Manual

Cat. No.26-5103

The Tandy 2000 BASIC interpreter software provided in this package includes many
enhancements to the previous version. This addendum documents BASIC’s new state-
ments and functions. Please add this new information to your current reference manu-
al.

AN Lo

Wl

[

F RS

ENVIRON Advanced Statement

ENVIRON "parameter id=text" [;"parameter id=text" ,...

Lets you modify BASIC's Environment String Table, such as
changing the PATH parameter for a child process or passing
parameters to a child process. BASIC's Environment String Table
is initially empty.

Parameter id is the name of the parameter.

Text is the new parameter text. It must be separated from
Earameter id by an equal 31gn (=) or a space. BASIC reads the
first nonblank, nonequal sign character after the parameter id as
the text. If you omit text, or specify a null string or a
semicolon (;), BASIC removes the parameter from the Environment
String Table and compresses the table.

Parameter id = text must be enclosed in quotation marks and be
typed in all uppercase characters.

When you change a parameter in the Environment String Table,
BASIC deletes the old parameter and adds the new one to the end
of the table.

If the parameter does not exist in the Environment String Table,
BASIC adds it to the end of the table.

For more information on Environment String Tables, see the
Programmer's Reference manual for your computer (Cat. No.
26-5403). It is available at your Radio Shack Computer Center.

Examples
ENVIRON "PATH=A:\"

sets the default path to the root directory on Drive A.
ENVIRON "SALES=MYSALES"

sets the name SALES equal to MYSALES. The Environment String
Table now looks like this:

PATH=A:\ ; SALES=MYSALES

ENVIRONS ADVANCED FUNCTION

ENVIRONS [("parameter id")] [(number)]

Returns the specified environment string from BASIC's Environment
String Table.

Parameter id specifies the parameter for which to search.
ENVIRONS returns the text string for parameter id. If the
parameter does not exist or does not contain a text string,
ENVIRON$ returns an empty string. Parameter id must be enclosed
in quotation marks. If you omit parameter 1d you must specify
number.

Number specifies which parameter to return by its position within
the table. ENVIRONS returns the text string for the number
parameter. If there is not a parameter in that position,
ENVIRONS returns an empty string. If you omit number, you must

specify parameter id.

Parameter id and number are mutually exclusive, only one may be
specified on the command line.

For more information on Environment String Tables, see the
Programmer's Reference manual for your computer (Cat. No.
26-5403). It is available at your Radio Shack Computer Center.

Example
If you execute the following ENVIRON statements:

ENVIRON "PATH=A:\"
ENVIRON "SALES=MYSALES"

the Environment String Table looks like this:
PATH=A:\ ; SALES=MYSALES
The command PRINT ENVIRONS$("PATH") prints A:\.

The command PRINT ENVIRONS$(2) prints SALES=MYSALES.

ERDEV Advanced Function

ERDEV

Returns the value of a device error within MS-DOS as set by the
Interrupt 24 handler. The lower 8 bits of ERDEV contain the
Interrupt 24 error code.

For more information on device drivers and errors, see the
Programmer's Reference manual for your computer (Cat. No.
26-5403). It is available at your Radio Shack Computer Center.

See also ERDEVS.

ERDEVS Advanced Function

ERDEVS

Returns the name of the device (as set by the Interrupt 24
handler) when a device error occurs.

If the error occurred on a character device, ERDEVS returns the
8-byte character device name.

If the error does not occur on a character device, ERDEVS returns
the 2-character block device name.

For more information on device drivers and errors, see the
Programmer's Reference manual for your computer (Cat. No.
26-5403). It is available at your Radio Shack Computer Center.

See also ERDEV.

IOCTL ADVANCED STATEMENT

IOCTL [#)lbuffer,string

Sends a control data string to a device driver. Control data can
be sent to a drive only after it has been opened.

Buffer is the number assigned to the driver when you opened it.
The number sign (#) is optional. It is provided for
compatibility with other BASICs.

String is a string expression containing a series of commands

called "control data." The commands are generally 2 to 3
characters long and may be followed by an alphanumeric argument.
The commands are separated by semicolons (;). String may be a

maximum of 255 bytes.

For more information on device drivers, see the Programmer's
Reference manual for your computer (Cat. No. 26-5403). It is
available at your Radio Shack Computer Center.

Example

If you write your own driver to replace PRN to set the page
length, the IOCTL command may be:

PLn where n is the new page length.

To open the new PRN driver and set the page length at 56 lines
per page, use the following statements:

10 OPEN "PRN"™ FOR OUTPUT as 1
20 IOCTL 1,"PL56"

IOCTLS$ ADVANCED FUNCTION

IOCTLS ([#1buffer)

Returns the control data string from a device that you have
opened previously.

Buffer is the number assigned to the driver when you opened it.
The number sign (#) is optional. It is provided for
compatibility with other BASICs.

You can use the IOCTLS function to confirm that a IOCTL statement
succeeded (or failed). You can also use IOCTL$ to get
information from the device.

For more information on device drivers, see the Programmer's
Reference manual for your computer (Cat. No. 26-5403). It is
available at your Radio Shack Computer Center.

Example

10 OPEN "\DEV\PRN" AS 1 \
20 IF IOCTL$(1l) = "NR" THEN PRINT "PRINTER NOT READY"

LCOPY Statement

LCOPY

Copy all text data on the screen to the printer.
Sample Program

550 FOR I=1 TO 24

560 PRINT STRINGS$(79,33)
570 NEXT I

580 LCOPY

This program segment prints exclamation points on the screen, and
dumps them to the printer.

MKDIR STATEMENT

MKDIR dirpath

Creates the directory specified by dirpath.
Dirpath is a standard directory specification as described in
Chapter 1. If you omit the drive indentifier, the directory is
created on the current drive. If you omit the root directory
symbol (\), the directory is created in the current directory.
Examples
MKDIR "A:\ACCTS\PAYABLE"
creates the directory PAYABLE in the ACCTS directory on Drive A.
MKDIR "\ADDRESS"

creates the directory ADDRESS in the root directory on the
current drive.

MKDIR "NAMES"

creates the directory NAMES in the current directory on the
current drive.

ON PLAY() GOSUB Statement

ON PLAY (number) GOSUB line

Transfers program control to a subroutine when the number of
notes in the background music buffer goes from number to number
minus 1. This event trapping allows continuous music by letting
you maintain a full music buffer.

Number is an integer in the range 1 to 32, indicating that
control should transfer to line when the number of notes left in
the music buffer is less than number.

Line is the first line of the subroutine to execute when the
number of notes in the music buffer is less than number. If you
specify Line 0, you turn off play event trapping. Use the RETURN
statement to exit the subroutine.

BASIC executes the ON PLAY () GOSUB statement only when playing
background music (PLAY "MB") and if the PLAY ON statement has
been executed to enable event trapping.

If a PLAY STOP statement has been issued to halt event trapping
temporarily, BASIC executes the subroutine immediately after the
next PLAY ON statement,

When you execute the ON PLAY() GOSUB statement, BASIC immediately
issues a PLAY() STOP to prevent recursive traps. When BASIC
executes the RETURN from the subroutine, it automatically
executes another PLAY() ON statement to enable trapping again,
unless the subroutine executes a PLAY() OFF statement.

Notes: BASIC does not issue a play event trap if the
background music gueue is already empty when you
execute a PLAY ON.

The PLAY statement is supported by a 32-element music
queue. Given that "normal" and "staccato" notes are
constructed from 2-note elements, the gqueue can contain
as few as 16 notes or as many as 32 notes.

Therefore, select conservative values for the trap number. For
example, if number is set at 32, event traps might happen so
often that there is little time to execute the rest of your

program. It is suggested that the trap number be less than 16 for
better performance.

Example

10 PLAY ON
20 ON PLAY(2) GOSUB 1000
30 REM

500 END
1000 REM PROCESSING ROUTINE

1100 RETURN 30

Line 10 turns on play trapping. After each program statement is
executed, BASIC checks to see if the number of notes in the music
buffer is less than 2 notes. If it is, BASIC immediately executes
the subroutine at Line 1000.

ON TIMER() GOSUB Statement
ON TIMER (number) GOSUB line

Transfers program control to a subroutine when the specified
period of time has elapsed.

Number indicates the number of seconds. Number may be a value in
the range 1 to 86400 (86400 seconds = 24 hours).

Line is the first line number in the subroutine to execute when
the specified time has passed. If you specify Line 0, you turn
off trapping for the timer. Use RETURN to exit the subroutine.

BASIC executes the ON TIMER() GOSUB statement only if a TIMER ON
statement has been executed previously to enable time event
trapping.

If a TIMER STOP statement has been issued to halt time event
trapping temporarily, BASIC executes the subroutine immediately
after the next TIMER ON statement.

When you execute the ON TIMER() GOSUB statement, BASIC
immediately issues a TIMER STOP to prevent recursive traps. When
BASIC executes the RETURN from the subroutine, it automatically
executes another TIMER ON statement to enable trapping again,
unless the subroutine executes a TIMER OFF statement.

Example

10 TIMER ON

20 ON TIMER (60) GOSUB 1000
30 REM

500 END

1000 REM PROCESSING ROUTINE

1100 RETURN 30

Line 10 turns on timer trapping. After each statement is
executed, BASIC checks to see if the specified time has elapsed.

If it has, BASIC immediately executes the subroutine at Line
1000.

PLAY/TRAP Statement
PLAY action
Turns on, turns off, or temporarily halts background music event

trapping.

Action may be any of the following:

ON enables play event trapping.
OFF disables play event trapping.
STOP temporarily suspends play event trapping.

Use the PLAY/Trap statement in a background music trap routine
with the ON PLAY GOSUB statement to detect when the number of
notes in the background music queue goes from number to number
minus 1.

The PLAY ON statement turns on the trap. BASIC checks the number
of notes in the background music queue after each program line.
If the number is equal to that in the ON PLAY() GOSUB statement,
BASIC transfers program control to the line number specified.

The PLAY STOP statement temporarily halts background music
trapping. If the number of notes equals the specified number,
BASIC does not transfer program control to the ON PLAY() GOSUB
statement until you turn on trapping again by executing a PLAY ON
statement. BASIC remembers that the number of notes was equal and
branches to the subroutine immediately after trapping is turned
on again

The PLAY OFF statement turns off background music trapping. BASIC
does not remember if the number of notes in the queue is equal to
the number specified when trapping is turned on again.

See ON PLAY() GOSUB for more information about background music
trapping.

PMAP Function

PMAP (coordinate,action)

Returns the physical or world coordinate for the specified
coordinate.

Coordinate is any x- or y-coordinate. If coordinate is a physical
coordinate, it must be within the limits of the screen, If
coordinate is a world coordinate, it may be any single precision
floating point number.

Action is one of the following:

0 returns the physical x-coordinate for the specified
world coordinate.

1 returns the physical y-coordinate for the specified
world coordinate.

2 returns the world x-coordinate for the specified
physical coordinate.

3 returns the world y-coordinate for the specified
physical coordinate.

Example
A = PMAP(200,0)

returns the physical x-coordinate of the world coordinate 200 and
places it in A.

RMDIR Statement
RMDIR dirEath

Removes (deletes) the directory specified by dirpath.

Dirpath is a standard directory specification as described in
Chapter 1. If you omit the drive identifier, the directory is
deleted from the current drive. If you omit the root directory
symbol (\), the directory is deleted from the current directory.

The directory being deleted must be empty except for the "." and
".." symbols. Use the MS-DOS COPY command to move those flles you
want to save; then use KILL to remove all files from the
directory.
Examples

RMDIR "A:\ACCTS\PAYABLE"

removes the directory PAYABLE from the ACCTS directory on Drive
A.
RMDIR ®“\ADDRESS"

removes the directory ADDRESS from the root directory on the
current drive.

RMDIR "NAMES"®

removes the directory NAMES from the current directory on the
current drive.

SHELL Advanced Statement

SHELL [command]

Loads and executes another program (.EXE or .COM) or an internal
command as a child process to the original program. After the
child process ends, control returns to the BASIC program at the
statement following the SHELL statement.

Command is a string expression containing the name of the program
you want to run. You may also specify command arguments on the
command line. Use a space to separate arguments from the program
name. If you omit command, SHELL transfers control to COMMAND.
You can now execute MS-DOS commands as allowed by COMMAND. To
return to BASIC, use the MS-DOS EXIT command.

SHELL sends the command information to COMMAND.COM the MS-DOS
command processor. IF you omit the extension in the program name,
COMMAND looks for the program with a .COM extension, then with an
-EXE extension and finally with a .BAT extension. If COMMAND
still cannot find the program, it issues a "File not found" error
to SHELL.

Note: Do not specify BASIC as the command string of
SHELL. If you do, BASIC might not function properly.

For more information on child processes and COMMAND.COM, see the
MS-DOS Reference and the Programmers's Reference manuals for
computer (Cat. No. 26-5403). They are available through your
Radio Shack Computer Center.

Examples
SHELL

transfers control to COMMAND.COM You can execute MS-DOS commands
such as:

DIR
TIME

and then type EXIT to return to BASIC.

The following command uses redirection of input and output and
the MS-DOS SORT command.

SHELL"SORT <data.in>data.out"

sorts the text from data.in and writes it to data.out.

TIMER Function

TIMER

Returns the number of seconds since midnight or since the last
system reset.

BASIC always returns a single precision number.

you can use TIMER as the argument for the RANDOMIZE statement to
reseed the random number generator. See RANDOMIZE for more
information.
Example

A = TIMER

stores the number returned by TIMER into variable A.

TIMER/Trap Statement
TIMER action

Turns on, turns off, or temporarily halts timer event trapping.

Action may be any of the following:

ON enables timer event trapping.
OFF disables timer event trapping.
STOP temporarily suspends timer event trapping.

The TIMER ON statement turns on the trap. BASIC checks the value
of timer after each program line. If the number is equal to that
in the ON TIMER() GOSUB statement, BASIC transfers program
control to the line number specified.

The TIMER STOP statement temporarily halts timer trapping. If the
timer equals the specified number, BASIC does not transfer
program control to the ON TIMER() GOSUB statement until you turn
on trapping again by executing a TIMER ON statement. BASIC
remembers that the timer value was equal and branches to the
subroutine immediately after trapping is turned on again.

The TIMER OFF statement turns off timer trapping. BASIC does not
remember if the value of timer equals the number specified when
trapping is turned on again.

Sample Program

See ON TIMER() GOSUB for an example.

VIEW/Graphics Statement

VIEW [SCREEN] (x1,vyl)-(x2,y2)[,[color]ll,[border]]l]]

Creates a viewport that redefines the screen parameters. This
defined area, a window, becomes the only place you can draw
graphic displays.

(x1,yl) specifies the upper-left coordinates for the rectangular
viewport.

(x2,y2) specifies the lower-right coordinates for the rectangular
viewport.

All coordinates must be within the limitations of the screen.

Color lets you fill in the specified viewport with specified
color.

Border is an integer in the range 0 to 15.

SCREEN specifies that all coordinates used in drawing are
absolute to Point 0,0 on the screen. If you omit SCREEN, all
coordinates specified are relative to the viewpoint coordinates.

If you omit all options, BASIC sets the viewport to define the
entire screen.

Examples
VIEW (10,10)-(100,100)

sets up a viewport with the upper-left corner at 10,10 and the
lower-right corner at 100,100. Since SCREEN is omitted, all
subsequent coordinates are relative to the viewport. For example,
PSET (5,5),3 actually sets point 15,15.

VIEW SCREEN (20,25)-(100,150)

sets up a viewport. Because SCREEN is specified, all subsequent
coordinates are absolute. For example, PSET (5,5),3 does not
appear because it is outside the viewport. PSET (30,30),3 is
within the viewport.

Notes:

. BASIC ignores any points that are outside the viewport's
limits.

- RUN, SCREEN, and WINDOW statements, without parameters,
define the entire screen as the viewport.

. CLS clears only the active viewport.
Sample Program

10 SCREEN 1

20 VIEW (10,10)-(200,100),2

30 PSET (1000,50)

40 DRAW "L40 E20 F20*"

Line 20 sets the viewport. Line 30 sets the starting point for
the DRAW statement in Line 40.

VIEW PRINT Statement

VIEW PRINT top line TO bottom line

Creates a text viewport that redefines the text screen
parameters. All statements and functions that normally function
within the text viewport now function in the new text screen
parameters. Cursor movement and scrolling are also limited to the
text viewport.

Top line specifies the first line of the text viewport. It may be
in the range 1 to 24, but must be less than bottom line. If you
omit top line, BASIC assumes Line 1 as the beginning of the text
viewport.

Bottom line specifies the last line of the text viewport. It may
be in the range 1 to 24, but must be greater than the top line.
If you omit bottom line, BASIC assumes Line 24 as the end of the
text viewport.

If you omit all parameters, VIEW PRINT defines the entire screen
as the text viewport.

Example
VIEW PRINT 1 TO 15
BASIC defines the first 15 lines of the video as the text

viewport. All cursor movements, scrolling, and text screen
functions and statements are limited to these boundaries.

WINDOW Statement

WINDOW [SCREEN] [(x1,y1l)-(x2,y2)]

Lets you change the physical coordinates of the screen (or
current viewport) by defining "world coordinates." World
coordinates can be any single-precision floating point numbers,
including numbers outside the physical range of the screen as
defined by the VIEW statement.

Note: The viewport is set to the entire screen by de-
fault. For more information on viewports, see the
VIEW command

(x1,yl) specifies the world coordinates for the upper-left corner
of the screen. X is the horizontal coordinate, and y is the
vertical coordinate.

(x2,y2) specifies the world coordinates for the lower-left corner
of the display. x is the horizontal coordinate, and y is the
vertical coordinate.

The SCREEN option tells BASIC to set the coordinates like the
screen display where the lesser y-coordiante is in the upper-left
corner of the screen. If you omit screen, BASIC inverts the
y-coordinates to show a true cartesian coordinate system. That
is, the lesser y-coordinate is in the lower-left corner of the
screen.

WINDOW lets you plot points outside the normal screen coordinate
limits by setting new world coordinates to the screen. WINDOW
transforms the new world coordinates onto the screen, usually
altering the aspect ratio.

Note: CIRCLE, GET, and PUT do not use world
coordinates.

You can easily plot graphs by specifying coordinates that are
directly proportional to the limits of the graph. For example, to
plot the increase of sales from 1984 to 1987 with sales averaging
100,000 to 300,000, you can use the following command:

WINDOW (1984,100000)-(1987,30000)

The coordinates can be pictured for commands that use world

coordinates:
1984,30000

1984,100000 1987,100000

If you give the command:
WINDOW SCREEN (1984,100000)-(1987,300000)
the coordinates can be pictured as follows for commands that use

world coordinates:
1984,100000

1984,300000 1987,300000

Note: RUN, SCREEN, and WINDOW statements,
without parameters, define the entire screen as the
window.

875-9997

