
LCDBios�ver. 1.31

LCD glasses driver package using Real-Time Clock�with support for 3D-BIOS

by Donald Sawdai�dsawdai@engin.umich.edu��Documentation date: 10/13/96

(C) Copyright 1995, 1996 Donald Sawdai
This document may be copied or distributed as is freely.
All other rights reserved.
All products mentioned in this documentation are trademarks of their respective owners.
Table of Contents
� TOC \o "1-3" �Program description	� GOTOBUTTON _Toc369871445 � PAGEREF _Toc369871445 �3��
License	� GOTOBUTTON _Toc369871446 � PAGEREF _Toc369871446 �3��
Disclaimer	� GOTOBUTTON _Toc369871447 � PAGEREF _Toc369871447 �3��
Program features	� GOTOBUTTON _Toc369871448 � PAGEREF _Toc369871448 �4��
Version History	� GOTOBUTTON _Toc369871449 � PAGEREF _Toc369871449 �5��
User’s guide	� GOTOBUTTON _Toc369871450 � PAGEREF _Toc369871450 �7��
LCDBios syntax	� GOTOBUTTON _Toc369871451 � PAGEREF _Toc369871451 �7��
3D-BIOS Compatibility Mode	� GOTOBUTTON _Toc369871452 � PAGEREF _Toc369871452 �10��
Optimizing LCDBios	� GOTOBUTTON _Toc369871453 � PAGEREF _Toc369871453 �11��
Troubleshooting	� GOTOBUTTON _Toc369871454 � PAGEREF _Toc369871454 �13��
Programmer’s Overview: LCDBios mode	� GOTOBUTTON _Toc369871455 � PAGEREF _Toc369871455 �14��
Programmer’s Guide: LCDBios mode, high-level interface	� GOTOBUTTON _Toc369871456 � PAGEREF _Toc369871456 �16��
Example program outline	� GOTOBUTTON _Toc369871457 � PAGEREF _Toc369871457 �16��
Data Structures	� GOTOBUTTON _Toc369871458 � PAGEREF _Toc369871458 �17��
Variables	� GOTOBUTTON _Toc369871459 � PAGEREF _Toc369871459 �19��
Functions	� GOTOBUTTON _Toc369871460 � PAGEREF _Toc369871460 �19��
Programmer’s Guide: LCDBios mode, low-level interface	� GOTOBUTTON _Toc369871461 � PAGEREF _Toc369871461 �22��
Function calls	� GOTOBUTTON _Toc369871462 � PAGEREF _Toc369871462 �22��
Video BIOS calls intercepted by LCDBios	� GOTOBUTTON _Toc369871463 � PAGEREF _Toc369871463 �26��
Programmer’s Guide: 3D-BIOS compatibility mode	� GOTOBUTTON _Toc369871464 � PAGEREF _Toc369871464 �28��
Function calls	� GOTOBUTTON _Toc369871465 � PAGEREF _Toc369871465 �28��
Video BIOS calls intercepted by LCDBios	� GOTOBUTTON _Toc369871466 � PAGEREF _Toc369871466 �31��
Typical program outline	� GOTOBUTTON _Toc369871467 � PAGEREF _Toc369871467 �32��
�
Program description
This package is based around LCDBios, a driver for 3D (stereoscopic) shutter glasses. In general, shutter glasses form 3D stereoscopic images by allowing each of the user’s eyes to see a different image -- typically two views of the same 3D scene from slightly different viewpoints. However, since most computers only have one monitor, this monitor must share both the left- and right-eye images. One way for two images to share one monitor is by time-sequential multiplexing: alternately display left- and right-eye images every time the computer refreshes (draws) the screen. When the image intended for the left eye is being displayed on the screen, the shutter glasses block the right eye so that it can not see the left eye’s image. When the image intended for the right eye is being displayed on the screen, the shutter glasses block the left eye so that it can not see the right eye’s image. By rapidly switching between these images, the user’s eyes are fooled into seeing two steady but different images (stereoscopic 3D).
LCDBios allows any application program to implement 3D stereoscopic images without having to worry about timing issues. It automatically handles the flipping between left- and right-eye images for both the screen and the shutter glasses. Of course, the application program still must generate the images for both eyes.
LCDBios includes a partial emulation of Kasan’s 3D-BIOS. This allows it to run many of the applications written for 3D-BIOS. However, unlike 3D-BIOS, LCDBios does not require any special internal or video hardware; it only requires shutter glasses attached to either a serial port, a parallel port, or directly to the video card.
License
LCDBios is not free software. It is shareware software. Users are permitted to use it for evaluation purposes without charge for a trial period of up to, but not more than, 21 days. If you use LCDBios after the 21-day trial period, a registration fee is required. See LICENSE.TXT for more details, including distribution rights. See ORDER.TXT for registering LCDBios.
Some companies have licensed LCDBios to be distributed with their hardware. Such pre-licensed versions of LCDBios will be stated as such in the accompanying LICENSE.TXT. If you received a pre-licensed version of LCDBios with hardware that you purchased, then you do not need to pay the registration fee for that copy of LCDBios.
Disclaimer
This documentation describes the specifications for the LCDBios driver. All material presented is subject to change without notice. Donald Sawdai claims no responsibility for any errors that may be in this documentation or for anything resulting from using this documentation.
THIS SOFTWARE AND THE ACCOMPANYING FILES ARE SOLD "AS IS" AND WITHOUT WARRANTIES AS TO PERFORMANCE OR ANY OTHER WARRANTIES WHETHER EXPRESSED OR IMPLIED. No warranty of fitness for a particular purpose is offered. The user must assume the entire risk of using the program. Donald Sawdai will not be liable for any damage or loss resulting from any use of this software, including but not limited to information loss, virus infection, monitor damage, and eye strain.
Program features
3D stereoscopic features:
LCDBios alternates between left- and right-eye images in background of application program. This part of LCDBios is transparent to the application program, so no timer programming is required.
All glasses- and timing-related code is encapsulated in a TSR. For the end user, this allows for separate configuration of the glasses and timing options. Once the driver is configured on a user system, it will work with any program using LCDBios functions without passing different configuration switches to each program. The user controls LCDBios settings, such as speed versus visual quality.
All glasses- and timing-related code is encapsulated in a TSR. For the application developer, this allows for improvements/upgrades in the glasses/timing code without need for recompiling and distributing patches of the application itself. Also, newer versions of the glasses/timing code will be available from external sources rather than requiring in-house work.
LCDBios does not use the DOS timer. Most sound drivers, most joystick drivers, and many programs use the DOS timer. By avoiding the DOS timer, LCDBios will not interfere with them.
LCDBios can optionally attempt to increase the video refresh rate to reduce perceived image flicker.
Since LCDBios is loaded from DOS, it can not be swapped out by a virtual memory manager. Therefore, no problems can occur in protected mode applications from lack of page locking this hardware handler.
The application program may use double (or more) buffering. However, it must use LCDBios calls (a LCDBios function call, a VESA BIOS function call, or direct pointer references) to change the video buffer. While the function calls are real-mode interrupt routines, the pointer references may be used directly from either protected or real modes with no overhead. LCDBios also has an external flag available to indicate when the current buffer has been displayed.
LCDBios is partially backwards-compatible with Kasan’s 3D-BIOS, which is used to control the 3D-MAX glasses. This allows for applications to support both shutter glasses with the same code.
LCDBios supports line-alternate video buffers (left eye = even scan lines, right eye = odd scan lines). Many head-mounted displays (HMDs) require this display format. Hence, the same 3D rendering engine can be used to support both HMDs and LCDBios.
LCDBios can be extended in the future to include many additional features, including double (or more) buffer timing in mono mode, a protected mode interface, bimodal interrupt code, and support for more 3D devices.

Supported devices:
Any shutter glasses directly controlled by parallel port (LPTx) data lines, serial port (COMx) control lines, or any other single I/O port.
Any shutter glasses automatically controlled by the video card.

Supported video modes:
Any register-compatible VGA graphics mode. This includes any mode that the VGA can be “tweaked” into by register calls, including Mode X. These modes will work on any card which is register-compatible with the VGA standard. Almost all modern SVGA cards fall into this category.
Super VGA graphics modes supported by VESA BIOS 1.2 or higher. For full resolution per eye (such as 800x600), the video card must have enough memory to hold separate buffers for each eye at the SVGA resolution. Optionally, LCDBios supports a single, line-alternate buffer (at half the SVGA resolution per eye, such as 800x300), but this mode is only supported on some video chipsets and some VESA BIOSs.

Limitations:
The application may not directly alter the following VGA CRTC registers while LCDBios is running in 3D mode: the Start Address registers, the Vertical Retrace End register, the Offset register, and the Maximum Scan Line register. LCDBios supplies functionality equivalent to the Start Address registers so that hardware page-flipping can be used.
The application may not use the AT real-time clock interrupt (IRQ 8) or any DOS functions based upon it.
Version History
Version 1.11 — changes
On loading, LCDBios prints out if VESA BIOS is loaded and the VESA BIOS version.
LCDBios high-level interface added the function “LCDBiosPageWait()”.
LCDBios pageAdvanced pointer was changed to the a pointer to the LCDFlags structure. The sense (0 vs. 1) of pageAdvanced flag was fixed. A new flag, interruptCount, was added.
LCDBios function calls (high and low level) only require left-eye buffer addresses for Alternate... 3D modes. Right-eye buffer addresses are calculated automatically.
LCDBios function Enter 3D Mode (BL = 01h) returns a pointer to the LCDBuffer in DX:DI instead of DS:DI.
3D-BIOS function Get Version (AX = 4ed0h) returns AX = 004eh on success.
Version 1.20 — changes
Re-arranged LCDFlags and LCDBuffer structures. Added new flag: delayCount.
Version 1.21 — changes
Memory requirements for LCDBios were reduced from ~80k to ~25k.
Version 1.30 — changes
Support was added for 3D-BIOS function 31h. This function initiates a linear-buffer packed-pixel multiple-page 320x200 256-color graphics mode in stereo. However, this mode is supported only if the VESA BIOS supports such a 320x200 256-color mode.
LCDBios now prints out VESA BIOS version correctly.
If no LCDPort is given, LCDBios now loads without any errors. It will page-flip the screen without sending signals specifically to any LCD glasses. This option is useful for glasses which are attached directly to the video card.
Parameters may also be passed to the LCDRun program by enclosing the LCDRun command-line option plus all passed parameters in quotes�(e.g. “LCDRun:prog pass me”)
Version 1.31 — changes
Bug fixed so that LCDBios page-flips correctly for VESA BIOS versions 1.x. This bug caused LCDBios to not page-flip (“flicker”) for VESA screen modes (640x480x256 and higher) on any version of VESA BIOS earlier than VBE 2.0.
A new command-line toggle was added: /VBE2. When /VBE2 is used, LCDBios uses new features specific to VESA BIOS 2.0 or higher. These features may provide better synchronization between the glasses and the screen refresh. These features may be disabled with /VBE2-. The default is /VBE2 for VESA BIOS 2.0 or higher and /VBE2- for VESA BIOS 1.x.
User’s guide
LCDBios is a DOS device driver used to control LCD shutter glasses. Its behavior is similar to mouse and CD-ROM drivers; none of these drivers seem to directly affect the computer when it is loaded. However, these drivers enable other programs to use the respective hardware. In this case, LCDBios enables application programs (such as games and graphics applications) to control a pair of LCD shutter glasses to display 3D stereoscopic images on the screen. Therefore, LCDBios must be loaded before any application program which uses its features.
When LCDBios is installed, it will run a subshell (the “DOS C:\ prompt”). LCDBios features may be used by any program run in this subshell. LCDBios is terminated by exiting the subshell (type “exit” at the DOS prompt). Optionally, LCDBios can be told to directly run another program and then terminate itself when the other program finishes running. In either case, programs that alter either the video BIOS (such as video drivers) or the AT Real-Time Clock should not be run from within LCDBios or its subshell. Future versions of LCDBios may be implemented as a true DOS terminate-and-stay-resident (TSR) program.
LCDBios can be used by programs in both VGA and VESA SuperVGA graphics modes. It supports all VGA graphics modes (up to 640x480 in 16 colors and up to 360x400 in 256 colors) and all VGA cards without any additional drivers. It supports VESA SuperVGA modes (from 640x400 in 256 colors up through 1024x768 in 16+ million colors and beyond) through the VESA SuperVGA BIOS 1.2 or higher extensions. If your graphics card supports the VESA BIOS 1.2 or higher standards in its hardware, no additional drivers are required. Almost all other SuperVGA graphics cards supply a VESA BIOS TSR to support the VESA BIOS standard. Third-party VESA TSRs are also available. A VESA TSR must be loaded before LCDBios if VESA graphics modes are to be used. Note that the VESA TSR should never be loaded while LCDBios is in memory. Doing so may conflict with LCDBios and may cause the computer to become unstable.
If VESA support is currently available (either in hardware or in a TSR), LCDBios will print upon loading, “VESA SuperVGA BIOS version x.x found. SuperVGA graphics modes enabled.” If VESA support is not currently available, LCDBios will print upon loading, “VESA SuperVGA BIOS not found. SuperVGA graphics modes disabled.”
LCDBios syntax
LCDBios	[/COM# | /LPT# | /LCDPort:xxxx	 /LCDCtl:aallrroo]�	[/LCDRun:program | “/LCDRun:program parameters ...”]�	[/HRefresh | /Hrefresh-]�	[/FastInt:yy] [/DelayFlip:zz]�	[/LockFlip | /LockFlip-] [/VBE2 | /VBE2-]
where:
COM# or LPT#�Serial or parallel port interface for glasses. Serial port uses the Modem Control Register (typically DTR/RTS). Parallel port uses the printer data port (D7-D0).�# = port number (1-4)��LCDPort:xxxx�Generic port used to interface to glasses, specified as a hexadecimal address (xxxx). Any valid I/O port may be specified.��LCDCtl:aallrroo�Data to write to glasses port (COM#, LPT#, or xxxx) to control the glasses, specified as 8 hexadecimal digits. In general, first the port is read and ANDed with aa. Then the appropriate byte (ll, rr, or oo) is ORed in. The result is written back to the port.� aa = AND mask. 0 bits are cleared to 0. 1 bits are preserved.
 ll = data to show the left eye of the glasses
 rr = data to show the right eye of the glasses
 oo = data to turn off the glasses��LCDRun:program�Runs program in the subshell. When program exits, LCDBios will unload itself from memory and terminate. Any item on the LCDBios command line that is not listed in this table will be passed on to program. Alternatively, the LCDRun: switch and all parameters for program can be listed together as long as they are all enclosed in double-quotes.
If the LCDRun: switch is not given, a DOS shell is opened instead of a program being run; type “exit” from the DOS shell to terminate LCDBios.��HRefresh�Attempts to use a higher VGA refresh rate. This will reduce the amount of flicker in the image.��Hrefresh-�(default)�Does not attempt to use a higher VGA refresh rate. This may be more compatible with various hardware than the HRefresh option.��FastInt:yy�(default = 0)�Increases the timing interrupt rate by yy factors of 2. Decreases the timing interrupt rate by |yy| factors of 2 if yy is negative. Faster interrupts gives more accuracy at the expense of speed.��DelayFlip:zz�(default = 0)�Delays the flipping of the visible eyes in the glasses by zz timer ticks (one tick ~ 1 ms if FastInt is not used). This can be used to move the black band caused by eye flipping on the glasses. Positive values move it down, and negative values move it up. The band can be wrapped off the bottom of the screen to the top by moving it down.��LockFlip�Locks the flipping of the visible eyes in the glasses to the bottom of the screen. This removes the black band due to eye flipping at the expense of decreased program speed.��LockFlip-�(default)�Disables the LockFlip option. This may increase the program speed at the expense of creating a flickering black band on the screen where the visible eye flips.��VBE2�(default: VESA 2.0 and higher)�Uses new features specific to VESA BIOS 2.0 or higher. These features may provide better synchronization between the glasses and the screen refresh.��VBE2-�(default: VESA 1.x)�Disables the VBE2 option. LCDBios always disables the VBE2 option if VESA BIOS 2.0 or higher is not available.��
If more than one mutually-exclusive argument is given with the command (for instance, “LCDBios /HRefresh /HRefresh-”), the latter argument takes precedent. For example, �“LCDBios /COM3 /LCDCtl:fc020100 /HRefresh /HRefresh- /LPT2 /FastInt:1 /LCDCtl:fa050100” is equivalent to “LCDBios /LPT2 /LCDCtl:fa050100 /FastInt:1 /Hrefresh-”.
If a LPT: port is specified, LCDBios will use the Data Register for that port (output lines D7-D0). The Data Register is the same as the base register for the LPT: port. For example, for LPT1: the Data Register is typically at port 03bc hex. If a COM: port is specified, LCDBios will use the Modem Control Register for that port (auxiliary outputs, RTS, and DTR). The Modem Control Register is at the COM: port base register plus 4. For example, for COM1: the Modem Control Register is at port 03fc hex (for a standard COM1: at 03f8 hex). Other registers in the LPT: or COM: ports to control the glasses by specifying /LCDPort:xxxx instead of /LPT# or /COM#. If no port is specified, then no data is sent directly to the glasses. However, stereo page flipping is still performed. This option is useful if the glasses are directly connected to the VGA card.

Examples:
LCDBios /LPT1 /LCDCtl:eb141000
installs LCDBios for glasses on LPT1:. On LPT1:, bit D4 turns on the glasses, and bit D2 controls left/right eye. LCDBios then invokes a DOS subshell. Type “exit” to remove LCDBios from memory.
LCDBios /LCDPort:02e2 /LCDCtl:ee111000 /HRefresh /FastInt:1� /LockFlip /LCDRun:me parm
installs LCDBios for glasses attached to some special hardware controlled by I/O port 02e2 hex. LCDBios uses a higher VGA refresh rate, a faster timing interrupt, and no visible black band. It then runs “me parm”. When the program “me” ends, LCDBios removes itself from memory.
LCDBios /COM3 /LCDCtl:fc020100 /HRefresh parm2 parm1 /LCDRun:me
installs LCDBios for glasses on COM3:, where RTS controls the left eye and DTR controls the right eye separately (the glasses are always on). LCDBios uses a higher VGA refresh rate and maximal speed. It then runs “me parm2 parm1”. When the program “me” ends, LCDBios removes itself from memory.
LCDBios “/LCDRun:me /LPT1 /LCDBios /go” /HRefresh
installs LCDBios for glasses hooked directly to the VGA card. LCDBios uses a higher VGA refresh rate. It then runs “me /LPT1 /LCDBios /go”. When the program “me” ends, LCDBios removes itself from memory.
LCDBios /COM2 /LCDCtl:fc030100 /HRefresh /LCDRun:me
installs LCDBios for glasses on COM2:, where RTS controls the left/right eye and DTR turns on (powers) the glasses. LCDBios uses a higher VGA refresh rate and maximal speed. It then runs “me”. When the program “me” ends, LCDBios removes itself from memory. To explain the /LCDCtl: switch for this device in more detail,
				 v------------ unused bits (preserved)�			 |�		 [------v-----]� aa = fc = 1 1 1 1 1 1 0 0 = AND mask� ll = 03 = 0 0 0 0 0 0 1 1 = left eye on� rr = 01 = 0 0 0 0 0 0 0 1 = right eye on� oo = 00 = 0 0 0 0 0 0 0 0 = glasses off� 					 ^--- powers glasses (DTR)� 					 ^----- controls left/right eye (RTS)
3D-BIOS Compatibility Mode
In order to support older applications, LCDBios is partially backwards-compatible with the 3D-BIOS interface for the 3D-Max glasses. This means that many programs that work with the 3D-Max glasses will also work with LCDBios. More specifically, any program that uses 3D�BIOS in a register-compatible VGA mode will work with LCDBios on any video card. However, there are some limitations to the rest of the 3D-BIOS compatibility.
3D-BIOS itself was programmed to work on specific graphics chips. That means that 3D�BIOS will only work on certain popular video cards. Since LCDBios does not use any card-dependent features, any 3D-BIOS feature that is card-dependent may not be properly emulated by LCDBios. This includes any VESA SuperVGA mode (640x480 and higher in 256 colors) and the custom 3D-BIOS proprietary modes. For this reason, you should always tell a program to use LCDBios rather than 3D-Max glasses if such an option exists. If a program does not support LCDBios directly, then you can try your luck in the program’s 3D-Max mode.
LCDBios has some code that emulates 3D-BIOS for these VESA SuperVGA modes and for one proprietary 3D-BIOS mode (mode 31h — 320x200 per eye in 256 colors). LCDBios’ emulation of these modes will work on some video cards with some VESA SuperVGA drivers. So, if you are running LCDBios with a program in 3D-Max mode and the stereo images are being displayed incorrectly, you should try another VESA SuperVGA BIOS driver. The manufacturer of your video card may have updated drivers. Another good source of VESA SuperVGA BIOS drivers is UniVBE by SciTech Software (http://www.scitechsoft.com).
Note that several non-LCDBios games work with LCDBios through its emulation of 3D�BIOS’ mode 31h. Such games include Magic Carpet and Hi-Octane (note: to use these games in the 3D-BIOS mode 31h, you must download the 3D-Max patches for these games). One simple way of finding out if your video card and VESA SuperVGA driver support LCDBios’ emulation of 3D-BIOS mode 31h is by using the 3DVBE program included in the LCDBios package. First, load LCDBios. Then, run “3DVBE”. This will print out the available VESA SuperVGA 256-color modes. If 320x200 is listed here, then try running “3DVBE 320 200”. This will display a sample image in stereo (after several key presses). If 320x200 was not listed or if you do not see a stereo image, then try using another VESA SuperVGA BIOS driver.
Optimizing LCDBios
To successfully optimize LCDBios for a given computer, LCD glasses, and application, it is helpful to understand a little about computer monitors and how LCDBios creates the illusion of 3D. Computer monitors draw video images line-by-line, from the top of the screen to the bottom on the screen. After the electron gun, which draws the image, reaches the bottom of the screen, it is sent back to the upper left-corner of the screen (“vertical retrace”). After being drawn, each line stays lit for a short period of time, called the persistence of the phosphor (a phosphor is one physical dot on the screen). Since the persistence is typically several milliseconds, the monitor must repeatedly draw the video images on screen. Since the monitor has no memory, the computer must repeatedly send the video images to the monitor. The time it takes for the monitor to draw one complete image and retrace the gun back to the upper-left corner of the screen is called the refresh rate. Typical refresh rates are 60 to 72 Hz for non-interlaced video modes.
LCDBios forces the computer to alternately send the left-eye screen image followed by the right-eye screen image. When the left-eye image is finished being displayed on the monitor, LCDBios tells the LCD glasses to block the left eye and let the right eye see the screen. Then the right-eye image is sent to the monitor. When the right-eye image is finished being displayed, LCDBios tells the LCD glasses to block the right eye and let the left eye see the screen. Then the left-eye images is displayed again. And so on. Note that the left-eye image (or the right-eye image) is displayed on every other screen refresh, so the perceived refresh rate is half of the actual refresh rate. This makes the 3D image appear to flicker somewhat.
When the LCD glasses flip eyes, both eyes appear dark momentarily. This time period causes a horizontal black band to appear on the screen. However, if the LCD glasses flip eyes as close as possible to when the electron gun enters vertical retrace, the black band will appear to be below the bottom of the screen (and hence not be visible). If the eyes flip too early, then the black band appears at the bottom to the screen. If the eyes flip too late, then the black band appears at the top of the “next” screen. Therefore, LCDBios must discover when the monitor just reaches the bottom of the screen and flip the eyes of the glasses at that point.
LCDBios handles timing by using the Real-Time Clock chip to periodically interrupt the computer and check the current timing. By default, the interrupt rate is 1024 times per second, so each of these interrupts occur almost exactly 1 millisecond apart. LCDBios is only active at these times. Because of this, LCDBios may not be active at the precise instant that the electron bean reaches the bottom of the screen. So LCDBios tells the LCD glasses to flip eyes on the last interrupt before the bottom of the screen is reached. This may cause a black band to appear at the bottom of the screen. LCDBios offers several options to reduce or fix this “black band” problem at the expense of taking up more computer time, which makes the application program appear to run slower.
Note that some LCD glasses are connected directly to the video card and determine for themselves when to flip between visible eyes. For these glasses, LCDBios only switches between left- and right-eye images. Typically no black band is visible on these glasses. Optimizing performance for these glasses are much easier.
To reduce 3D-image perceived flicker:
Increase the refresh rate of the monitor. Most video cards allow you to choose the refresh rate. Set your video card to the highest refresh rate supported for your monitor at each resolution. 120 Hz refresh looks great.
Increase the refresh rate of the monitor even more by specifying /HRefresh on the LCDBios command line.
Decrease the contrast of the monitor.
Increase the ambient light around the computer.
To reduce image ghosts from the opposite eye:
Do not use bright colors on dark backgrounds.
Decrease the contrast of the monitor.
To reduce the size of the black band (parallel- or serial-port glasses only):
Specify /FastInt:1 or /FastInt:2 on the LCDBios command line. This tells LCDBios to increase the RTC interrupt rate to 2048 or 4096 times per second, respectively. By sampling more often, LCDBios can flip the eyes of the LCD glasses closer to the bottom edge of the screen, causing the black band to become smaller. However, higher interrupt rates slow down the computer.
To move the black band up or down (parallel- or serial-port glasses only):
Specify /DelayFlip:x on the command line, where x is a whole number. Positive values of x cause LCDBios to flip the eyes of the LCD glasses later; this effectively moves the black band down. It is possible to move the black band down off of the bottom of the screen and even on to the top of the next screen. Negative values of x move the black band up. Note that this option does not affect computer speed.
Use /FastInt with /DelayFlip to get finer control over the black band. Note that /DelayFlip:1 moves the black band down by one interrupt (clock tick). If /FastInt:1 is also used, one clock tick is 0.5 milliseconds rather that 1.0 milliseconds, so the black band is smaller and it moves down the screen less.
To remove the black band completely (parallel- or serial-port glasses only):
Specify /LockFlip on the LCDBios command line. When this switch is specified, LCDBios takes control of the computer at the last interrupt (clock tick) before the vertical retrace. It then waits until vertical retrace begins. At this time it flips the eyes of the LCD glasses and returns control to the application program. Hence the black band is always off of the bottom of the screen. However, this waiting for retrace may significantly slow down the computer.
For faster performance, use /LockFlip with /FastInt:1 or /FastInt:2. By using /FastInt, LCDBios starts waiting closer to the vertical retrace period. The decreased waiting time typically yields a net speed increase even though /FastInt adds a speed penalty.
If there still is a black band at the top of the screen when using /LockFlip, try moving the black band above the top of the screen by using /LockFlip /DelayFlip:-2.
To make the program run faster:
Remove /LockFlip from the command line.
Reduce x in /FastInt:x. Negative values of x may be used and yield the fastest results. For LCD glasses on the parallel or serial ports, negative x values will make the black band very large. However, for LCD glasses directly attached to the video card, negative x values cause little change in image quality but a noticeable speed increase.
Troubleshooting
If the glasses are not active (flickering):
Check that the correct port is specified to LCDBios (for example, LPT2: for the second parallel port).
Check that the application program is set to use LCDBios.
If the screen jumps around a lot while in 3D mode:
Remove /LockFlip, /FastInt, /DelayFlip, and /HRefresh from the command line (be careful: these options may be buried in a batch file).
If the VESA SuperVGA graphics modes (640x400 in 256 colors or higher) do not work in 3D:
If LCDBios says “VESA SuperVGA BIOS not found”, you need to load a VESA SuperVGA BIOS before running LCDBios.
Try using a different VESA SuperVGA BIOS, such as SciTech’s UniVBE driver. Some video cards may or may not work with LCDBios in SuperVGA modes, depending on the VESA SuperVGA BIOS used.
Try using LCDBios with the “/lockflip /delayflip:-2” toggles. Some implementations of SuperVGA BIOS cause timing delays. If you see a black band at the top of the screen, these toggles will move it up off of the top of the screen.
If your are using VESA SuperVGA BIOS 2.0 or later, try using LCDBios with the “/VBE2-” option. LCDBios will then use the standard VESA 1.x functions rather than the new VESA 2.0 functions.
If you have problems using 3D modes in 3D-Max-compatible programs:
See if the program has a LCDBios mode rather than a 3D-Max mode. If so, try the LCDBios mode.
Try using a different VESA SuperVGA BIOS, such as SciTech’s UniVBE driver. Some video cards may or may not work with 3D-Max emulation, depending on the VESA SuperVGA BIOS used.
Try using LCDBios with the “/lockflip /delayflip:-2” toggles. Some implementations of SuperVGA BIOS cause timing delays. If you see a black band at the top of the screen, these toggles will move it up off of the top of the screen.
Programmer’s Overview:�LCDBios mode
LCDBios works with any register-compatible VGA graphics mode (BIOS or tweaked). It will also work with all VESA BIOS 1.2 or higher graphics modes, except as noted below. The application program must set the video to the desired graphics mode before entering 3D mode. Since the application program sets the graphics mode, LCDBios does not care about the structure of video memory (i.e. chain, unchained, packed, planar, etc.). LCDBios should be transparent to all graphics libraries except for flipping between multiple pages. Writing data to the various pages is transparent; however, LCDBios functions must be used to actually switch the currently displayed page.
LCDBios requires at least one stereoscopic page in video memory to operate. For this document, one page will be considered to be the all video buffers required for one stereoscopic image. This may be one buffer containing both left- and right-eye data, or it may be two separate buffers (one per eye). LCDBios has full support for multiple pages (such as for double or triple buffering). It allows as many pages as will fit in video memory. A function call to LCDBios (or a pointer to the LCDBios variable) is provided to change the currently displayed page.
LCDBios provides notification of vertical retrace. A LCDBios variable, pageAdvanced, is set to 1 (true) at the beginning of each vertical retrace while 3D mode is on. This variable can be monitored to determine when the new page becomes active after a new page is passed to LCDBios. It can also be used for synchronization purposes.
LCDBios also provides a fairly regular timer. A LCDBios variable, interruptCount, is incremented every time the AT Real-Time Clock causes an interrupt. This rate is typically 1024 times per second, although it may be increased or decreased by the user through the FastInt command-line option in LCDBios. Also, while this interrupt is quite regular, it will occasionally miss a clock tick due to disk activity or some other overhead. Using the LockFlip command-line option tends to increase the number of missed clock ticks.
LCDBios can be initialized in 3 stereoscopic 3D modes. These modes determine how the left- and right-eye video buffers are laid out in video memory relative to one another. To facilitate discussion of the 3D modes, consider the example that the screen mode prior to entering 3D mode is an unchained 320x200 256-color VGA graphics mode (the legendary mode X), and suppose that we wish to use double buffering (i.e. 2 pages). Of course, we could use any VGA or VESA 1.2 or higher graphics mode.
The first 3D mode, TwoBuffer, requires two separate buffers in video memory per page — one for the left eye and one for the right eye. The buffer for each eye should have the same resolution as the current video mode. Each buffer should be able to be displayed by pointing the video start address to the beginning of the buffer. The buffers are alternated on the screen during each vertical retrace.
For our example in TwoBuffer mode, we need 4 total buffers (left page 0, right page 0, left page 1, right page 1), each at 320x200x256 resolution. We will pass the addresses (in VGA memory) of these 4 buffers to LCDBiosInit3DMode. When on page 0, LCDBios will alternate between the left page 0 and right page 0 buffers. After calling LCDBiosAdvancePage, LCDBios will be on page 1. When on page 1, LCDBios will alternate between the left page 1 and right page 1 buffers. After calling LCDBiosAdvancePage again, LCDBios will return to 0.
The other two 3D modes support row-alternate video data. In these modes, the video data alternates left/right image data with every row, e.g.�	Row 0 = row 0 of left-eye image�	Row 1 = row 0 of right-eye image�	Row 2 = row 1 of left-eye image�	Row 3 = row 1 of right-eye image,	etc.�If there are twice as many rows as the vertical resolution of the screen (i.e. screen resolution = XRESxYRES, buffer contains 2*YRES rows such that there are YRES rows for each eye), then LCDBios will correctly handle the image by using the 3D mode AlternateFull. In this case, LCDBios can be used at all VGA and VESA resolutions and on all VGA and VESA hardware/software. If there are the same number of rows as the vertical resolution (i.e. screen resolution = XRESxYRES, buffer contains YRES rows such that there are YRES/2 rows for each eye), the 3D mode AlternateHalf must be used. In this mode, LCDBios effectively cuts in half the vertical resolution of the current video mode so that each image (left/right) is displayed on the full screen. In this case, LCDBios will function in all VGA resolutions on all cards and in most VESA resolutions on some cards with some VESA BIOS drivers.
For our example, the second 3D mode, AlternateFull, requires one 320x400x256 buffer in video memory per page. We need 2 total buffers (line-alternate page 0, line-alternate page 1). We will pass the addresses (in VGA memory) of these 2 buffers to LCDBiosInit3DMode in the left page fields. During initialization of 3D mode, LCDBios will “unravel” the line-alternate format to display the left- and right-eye images sequentially in the 320x200x256 physical screen mode.
The third 3D mode, AlternateHalf, requires one 320x200x256 buffer in video memory per page. We need 2 total buffers (line-alternate page 0, line-alternate page 1). We will pass the addresses (in VGA memory) of these 2 buffers to LCDBiosInit3DMode in the left page fields. During initialization of 3D mode, LCDBios will switch the physical screen mode to 320x100x256 and will “unravel” the line-alternate format to display the left- and right-eye images sequentially in the 320x100x256 screen mode. When 3D mode is exited, LCDBios will switch back to the 320x200x256 screen mode.

NOTE: I must re-emphasize one point. The AlternateHalf 3D mode WILL NOT WORK ON ALL GRAPHICS CARDS in SuperVGA screen modes! Both TwoBuffer and AlternateFull are reliable options for stereo support of SuperVGA screen modes.
Programmer’s Guide:�LCDBios mode, high-level interface
The high-level interface is a C library used to simplify calling the low-level interface. It supports the full functionality of the low-level interface through C functions and variables. This interface is currently callable from both protected mode (Watcom C/C++ using DOS/4GW) and real mode.
The high-level interface is fairly intuitive and is demonstrated in the example below. A reference section on the function calls is provided after the example.
Example program outline
(1) Find out if LCDBios is loaded.
	if (!isLCDBiosInstalled(&majorV, &minorV)) {�	 printf("Error! Run LCDBios first!\n");�	 exit(1);�	}
(2) Enter desired graphics mode (VGA or VESA). This example assumes that we are in a tweaked VGA mode with 2 separate buffers for each eye. The left-eye page-0 buffer is at 0x0000 in video memory. The right-eye page-0 buffer is at 0x4000. The left-eye page-1 buffer is at 0x8000. The right-eye page-1 buffer is at 0xC000.

(3) Declare and fill out a page address structure with all pages.
	PageAddresses page[2];
	page[0].VGA.left = 0x0000;�	page[0].VGA.right = 0x4000;�	page[1].VGA.left = 0x8000;�	page[1].VGA.right = 0xC000;
(4) Initialize 3D mode.
	LCDBiosInit3DMode(TwoBuffer, 2, page);
(5) Operate in 3D. The main program loop occurs here. To advance pages, call
	LCDBiosAdvancePage();
	This routine will reset pageAdvanced to 0. When the pages physically advance, LCDBios sets pageAdvanced to 1. To wait for the pages to physically advance (which happens at vertical retrace), watch the pageAdvanced flag or call
	LCDBiosPageWait();
	To access the pageAdvanced flag from a real-mode program, use�LCDFlagsR->pageAdvanced. To access the pageAdvanced flag from a protected-mode program, use LCDFlagsP->pageAdvanced.

(6) Terminate 3D mode.
	LCDBiosDeinit3DMode();
(7) Enter text mode.

(8) End program
Data Structures
typedef enum {�/* These are the different modes that LCDBios can operate in. */�Off,			/* 3D mode off */�TwoBuffer,	/* 2 full separate buffers: one for each eye,�			each at the same resolution as the	screen. */�AlternateFull,	/* 1 line-alternate buffer, twice as high as the�			screen resolution. The image for each eye is at�			the same resolution as the screen. */�AlternateHalf,	/* 1 line-alternate buffer, same resolution as the�			screen. The image for each eye is half the height�			of the screen. */�} LCD3DMode;
typedef struct {�/* These are the VESA Start Addresses (location of the upper left-hand corner of the left- and right-eye buffers, in X-Y pixel coordinates) that would normally be sent to the VESA function call to set Start Addresses. For the AlternateFull and AlternateHalf 3D modes, only the leftX and leftY fields are used.�*/�	unsigned short int leftX;�	unsigned short int leftY;�	unsigned short int rightX;�	unsigned short int rightY;�} VESAPageAddresses;
typedef struct {�/* These are the VGA Start Addresses (VGA memory addresses of the beginning of the left- and right-eye buffers) that would normally be sent to the VGA CRTC registers. The high byte of each word is analogous to the Start Address High register. The low byte of each word is analogous to the Start Address Low register. The actual VGA Start Address registers should not be altered by the application program. Note that the “pad” variables are reserved for future use. For the AlternateFull and AlternateHalf 3D modes, only the left field is used.�*/�	unsigned short int left;�	unsigned short int pad1;�	unsigned short int right;�	unsigned short int pad2;�} VGAPageAddresses;
typedef union {�/* This union contains the page addresses for one pair of buffers (left- and right-eye). The description may be in either VGA or in VESA format, as defined above.�*/�	struct VESAPageAddresses		VESA;�	struct VGAPageAddresses		VGA;�} PageAddresses;
typedef struct {�/* These are the data flags that can be read by the calling program to determine when LCDBios events occur.� pageAdvanced is a LCDBios flag that indicates when vertical retrace has occurred. The flag is set to 1 when every vertical retrace begins when 3D mode is on and calibration has finished. When LCDBiosAdvancePage is called, this value is reset to 0. When the page is actually advanced (at vertical retrace), it is set to 1. The application program may also set the flag to 0 (or any other value). It will still be set to 1 when the next vertical retrace begins (if 3D mode is on). Note that when 3D mode is entered, pageAdvanced is set to 2. After the first retrace after the calibration period (about 0.8 seconds later), pageAdvanced is set to 1.� interruptCount is a LCDBios flag the is incremented every time that the real-time clock (RTC) interrupt goes off. This is the interrupt that LCDBios monitors. It normally goes off 1024 times/second. However, the user can increase or decrease the interrupt rate by 2, 4, or 8 times using the /FastInt:x switch when running LCDBios. Also note that LCDBios occasionally misses a RTC tick, so that this value may not be very accurate. The application program may reset this value to 0. Then interruptCount will contain the number of RTC interrupts since it was reset.� delayCount is incremented every time that LCDBios incurs a significant delay in the program execution. Since LCDBios interrupts the main program and waits for vertical retrace when /LockFlip is specified, this may affect the timing of the application. So this field is incremented to let the application know that a delay occurred. This is very useful in joystick timing loops.�*/� short int pageAdvanced;� long int interruptCount;� long int delayCount;�} LCDFlags;
Variables
/* These are the *pointers* to the actual flags structure, which is in LCDBios program memory (in DOS 1MB memory). They are only a valid pointer when 3D mode is active (LCDBiosInit3DMode). At all other times, they point to NULL. */
extern volatile LCDFlags far *LCDFlagsR;�/* LCDFlagsR is a real-mode far pointer */
extern volatile LCDFlags *LCDFlagsP;�/* LCDFlagsP is a protected-mode flat pointer. It is the absolute address of the structure in the DOS 1MB memory. */
Functions
int isLCDBiosInstalled(int *majorVersion, int *minorVersion);�/* Return:	1 if LCDBios is installed.�			0 if it is not.� Output:	majorVersion = major version number�			minorVersion = minor version number(0-99)�� Example:	Version 1.05 returns a majorVersion=1, minorVersion=5.�*/
int LCDBiosInit3DMode(LCD3DMode mode, int numberOfPages, PageAddresses *pages);�/* Return:	1 on success. 0 on failure.� Input:		mode = [TwoBuffer, AlternateFull, AlternateHalf]�			numberOfPages = number of stereo pages to use.�				Each page consists of a left buffer and a �				right buffer. For example, in TwoBuffer�				mode, if there are 2 left buffers and 2 right�				buffers, it is still considered to be 2�				pages.�			pages = pointer to array of PageAddresses (one�				per page, as specified by numberOfPages).�				For TwoBuffer mode, both left- and right-�				buffer addresses must be specified for each�				page. For Alternate... modes, only the left-�				buffer addresses should be used. The pages 					are numbered sequentially starting at 0.�Description:�LCDBios puts the screen in 3D mode (as specified by “mode”) and activates the shutter glasses. The current page is page 0. LCDFlags... pointers are set to point to the LCDFlags structure in LCDBios. pageAdvanced is set to 2 until the calibration period is completed. Then, after the first 3D vertical retrace, pageAdvanced is set to 1. The video card must be in a VGA or VESA graphics mode prior to calling this function.�*/
int LCDBiosDeinit3DMode(void);�/* Return:	1 on success. 0 on failure.�Description:�LCDBios removes the screen from 3D mode. LCDFlags... pointers are set to NULL.�*/
int LCDBiosAdvancePage(void);�/* Return: 1 on success. 0 on failure.�Description:�Advances to next page in "pages" array specified by LCDBiosInit3DMode. If the current page is the last page in the array, it is advanced circularly to page 0. This function also resets the pageAdvanced flag to 0. When the page is actually advanced, the pageAdvanced flag is set to 1 by the timer interrupt.�*/
int LCDBiosSetPage(int page);�/* Return: 1 on success. 0 on failure.�Description:�Sets the current page to "page" in pages array specified by LCDBiosInit3DMode. Resets pageAdvanced flag to 0. When the page is actually advanced, pageAdvanced flag is set to 1 by the timer interrupt.�*/
void LCDBiosPageWait(void);�/*�Description:�Waits until the current page is actually advanced (vertical retrace). If 3D mode is not on, or if 3D mode is in its calibration period (pageAdvanced = 2), then this function returns immediately.�*/
Programmer’s Guide:�LCDBios mode, low-level interface
The low-level interface consists of a series of function-call extensions to the VESA BIOS. They are all accessed by executing a real-mode INT 10h. There is no protected-mode low-level interface other than thunking down to the real-mode interrupt. All pointers used and returned are real-mode far (segment:offset) pointers in the lowest 1MB of memory (“DOS memory”). However, they can easily be converted to a protected-mode pointer by the application program. For further discussion of the interface, refer to the section on the overview and the high-level interface.
Function calls
The function calls are all extensions of VESA BIOS (INT 10h, AH = 4fh). They are all called by INT 10h with AX = 4fd3h and BH = 3dh. The specific function is specified in BL. They return the same result status in AX that VESA BIOS returns:
ax = 004fh�success��ax = 014fh�failure��
Get LCDBios Version:
INT 10h, AX = 4fd3h, BX = 3d00h	
Input:���ax �4fd3h��bx �3d00h�����Output:�(only if LCDBios is loaded)��ax�status��dx �3344h (“3D”) = LCDBios support present��cx �4C42h (“LB”) = implementation code (LCDBios)��bx �version�� bh �major version in BCD (ex. 01h for v. 1.05)�� bl �minor version in BCD (ex. 05h for v. 1.05)��This function can be used to determine whether LCDBios is loaded or not. For LCDBios compatibility, it returns “3D” in DX. To distinguish it from any other driver supporting the LCDBios interface, it returns “LB” in CX. It also returns the version number in BX.

Enter 3D Mode:
INT 10h, AX = 4fd3h, BX = 3d01h
Input:���ax �4fd3h��bx �3d01h���for VGA graphics modes�� cx�right-eye buffer VGA Start Address�� dx�00�� si�left-eye buffer VGA Start Address�� di�00���for VESA graphics modes�� cx�right-eye buffer X start address, 1st pixel�� dx�right-eye buffer Y start address, 1st pixel�� si�left-eye buffer X start address, 1st pixel�� di�left-eye buffer Y start address, 1st pixel�����Output:���ax�status��dx:di �real-mode far pointer to LCDBuffer structure in LCDBios�(or 0000:0000 if buffer is not supported)���pageAdvanced flag is set to 2��
LCDBuffer structure:
byte count:�for VGA graphics modes��00 (word)�left-eye buffer VGA Start Address��02 (word)�00��04 (word)�right-eye buffer VGA Start Address��06 (word)�00��08 (word)�pageAdvanced = set to 1 at each vertical retrace when 3D is on��0a (dword)�interruptCount = incremented each time RTC interrupt fires��0e (dword)�delayCount = incremented each long delay in an interrupt��12 - ff�reserved��byte count:�for VESA graphics modes��00 (word)�right-eye buffer X start address, 1st pixel��02 (word)�right-eye buffer Y start address, 1st pixel��04 (word)�left-eye buffer X start address, 1st pixel��06 (word)�left-eye buffer Y start address, 1st pixel��08 (word)�pageAdvanced = set to 1 at each vertical retrace when 3D is on��0a (dword)�interruptCount = incremented each time RTC interrupt fires��0e (dword)�delayCount = incremented each long delay in an interrupt��12 - ff�reserved��This function turns on 3D mode (flipping between left- and right-eye images) in TwoBuffer mode. It also turns on the shutter glasses. The video must be in a graphics mode before calling this function. If an Alternate... mode has already been activated with function BL = 04h, this function (Enter 3D mode) will turn on 3D mode. In this case, only the left-eye buffer data needs to be passed to this function; LCDBios will automatically compute the right-eye buffer data from the data provided by function BL = 04h.
The returned value in DX:DI is a pointer to 256 bytes memory which contain several LCDBios operating variables. The first 8 bytes determine the start addresses LCDBios uses for the stereoscopic images. To change the current page that LCDBios displays (as for double buffering), the application may either directly change the values in this table, or it may call the function Set 3D Start Addresses (BL = 03h). The next word is the pageAdvanced flag (see the high-level C interface for more details). It is initially set to 2 during LCDBios’ calibration period (about 0.8 seconds). It is then set to 1 at the beginning of each vertical retrace period when 3D mode is on. The next dword (long int) is the interruptCount (see the high-level C interface for more details). It is a timer that increments each time the RTC interrupt occurs. The next dword (long int) is the delayCount. It is incremented every time that LCDBios interrupts the application program and then incurs a large delay before returning to the application. This typically occurs when the /LockFlip option is enabled and LCDBios is waiting to precisely synchronize to the vertical retrace. Such an long interrupt period can affect critical timing routines, such as reading the joystick value.
Note: The pointer DX:DI is always valid until End 3D Mode is called, but the data it points to is volatile. They may change or be changed by interrupts or by the application program at any time.
Note: For Alternate... modes, both left-eye and right-eye start addresses must be loaded into the LCDBuffer if it is to be used to change the start address. Typically, the Y start addresses will be the same for both eyes. The right-eye X start address will be the left-eye X start address plus the address offset returned in BX from function BL = 04h.
Note: Before changing any value in this table, the application program must first disable interrupts (CLI). It must also reenable interrupts (STI) when it is finished altering the table. If interrupts are not disabled, the left-right images may be flipped in the middle of updating the table. For example, if this occurs while the X start address has been updated but the Y start address had not, then the screen may be set to an invalid buffer.

Exit 3D Mode:
INT 10h, AX = 4fd3h, BX = 3d02h
Input:���ax �4fd3h��bx �3d02h�����Output:���ax�status��This function basically undoes function BL = 01h. It turns off 3D mode (flipping between left- and right-eye images) and displays the left-eye image. It also turns off the shutter glasses, if applicable. Note: if a “set video mode” for VGA (INT 10h, AH = 00h) or VESA (INT 10h, AX=4f02h) is called while 3D mode is on, this function is also called before the set-mode command is passed on to BIOS.

Set 3D Start Addresses:
INT 10h, AX = 4fd3h, BX = 3d03h
Input:���ax �4fd3h��bx �3d03h���for VGA graphics modes�� cx�right-eye buffer VGA Start Address�� dx�00�� si�left-eye buffer VGA Start Address�� di�00���for VESA graphics modes�� cx�right-eye buffer X start address, 1st pixel�� dx�right-eye buffer Y start address, 1st pixel�� si�left-eye buffer X start address, 1st pixel�� di�left-eye buffer Y start address, 1st pixel�����Output:���ax�status���pageAdvanced flag is reset to 0��This function allows the 3D Start Addresses to be changed. The VGA Start Address registers should never be altered while in 3D mode. LCDBios will change the Start Addresses. Instead of calling this function, these 4 (or 2) addresses may be directly written to the memory buffer returned by function BL = 01. This function also resets the pageAdvanced flag to 0. It will be set to 1 at the next vertical retrace. By monitoring this flag, the application program can determine when the previous buffer has become inactive.
If an Alternate... mode has already been activated with function BL = 04h, only the left-eye buffer data needs to be passed to this function; LCDBios will automatically compute the right-eye buffer data from the data provided by function BL = 04h.

Convert Alternate... Modes to TwoBuffer Modes
INT 10h, AX = 4fd3h, BX = 3d04h
Input:���ax �4fd3h��bx �3d04h��cx�0000h for AlternateFull mode��� (if the vertical resolution = # rows/eye)���0002h for AlternateHalf mode��� (if the vertical resolution = 2 * # rows/eye)�����Output:���ax�status��bx�X-address offset between left- and right-eye buffers���for VGA graphics modes�� cx�right-eye buffer VGA Start Address���for VESA graphics modes�� cx�right-eye buffer X start address, 1st pixel�� dx�right-eye buffer Y start address, 1st pixel��This function changes the screen from a line-alternate display (left eye = rows 0,2,4,6,...; right eye = rows 1,3,5,7,...) to a display with two full screens — one for each eye. Note that it does not change the way that the application accesses video memory; the video memory still looks like a line-alternate mode. Also note that it does not actually enter 3D mode. Entering 3D mode should be done with a call to that function. This function must be called while 3D mode is off. If 3D mode is already on, this function does nothing and returns an error.
When this function returns, the currently displayed buffer is the left-eye buffer. If CL=02h, it also cuts the vertical resolution in half so that each image fills up the whole screen. In this case, it assumes that line-alternate display is exactly the height of one screen.
For example, if the display is in 320x400 mode before calling this function, and there are 800 lines of alternating data, this function should be called with CL = 00h. This function will leave the video mode in 320x400 and display only left-eye or right-eye data at a time.
For example, if the display is in 320x400 mode before calling this function, and there are 400 lines of alternating data, this function should be called with CL = 02h. This function will change the video mode to 320x200 and display only left-eye or right-eye data at a time.
The behavior of this function adapts to the current video mode. It will work with all VGA graphics modes (and tweaks based on them) for any CL. It will work with all VESA modes for CL = 00h. It will work with VESA modes on some graphics adapters and VESA BIOSs for CL = 02h.

Convert TwoBuffer Modes back to Alternate... Modes
INT 10h, AX = 4fd3h, BX = 3d05h
Input:���ax �4fd3h��bx �3d05h�����Output:���ax�status��This function basically undoes function BL = 04h. It restores the video mode to the way it was prior to calling BL = 04h (line-alternate). This function must be called while 3D mode is off. If 3D mode is currently on, this function does nothing and returns an error. If function BL=04h was not called previously, it does nothing. Note: if a “set video mode” for VGA (INT 10h, AH = 00h) or VESA (INT 10h, AX = 4f02h) is called while 3D mode is on in an Alternate... mode, this function is also called before the set-mode command is passed on to BIOS.
Video BIOS calls intercepted by LCDBios
VGA set mode
INT 10h, AH = 00h
Input:���ah �00h��al�VGA mode number��Note: This function call is passed on to and handled by video BIOS.
LCDBios monitors VGA set mode for 2 purposes: (1) it keeps track of current mode (VGA/VESA) for functions BL = 00h-05h; and (2) it turns off 3D mode if the video mode is set while 3D mode is on. Note that 3D mode is turned off and the Alternate... 3D modes are exited before the call is passed on to the video BIOS.

VESA set mode
INT 10h, AX = 4f02h	
Input:���ax �4f02h��bx�VESA mode number��Note: This function call is passed on to and handled by video BIOS.
LCDBios monitors VESA set mode for 2 purposes: (1) it keeps track of current mode (VGA/VESA) for functions BL = 00h-05h; and (2) it turns off 3D mode if the mode is set while 3D mode is on. Note that 3D mode is turned off and the Alternate... 3D modes are exited before the call is passed on to the video BIOS.
Programmer’s Guide:�3D-BIOS compatibility mode
LCDBios provides a low-level interface that partially emulates 3D-BIOS. This interface can be used to support both LCDBios and 3D-BIOS shutter glasses with the same code. However, the same program should never mix 3D-BIOS and the native LCDBios function calls. When 3D mode is turned on by the 3D-BIOS interface, all LCDBios function calls are ignored until 3D mode has been turned off. Similarly, when 3D mode is turned on by the LCDBios interface, all 3D-BIOS function calls are ignored until 3D mode is turned off.
LCDBios should work in 3D-BIOS mode with any register-compatible VGA video mode (BIOS or tweaked). It will also work with VESA BIOS 1.2 and higher video modes on some SVGA cards and with some VESA BIOSs. The video memory must contain data which alternates left/right image data with every row, e.g.
Row 0 = row 0 of left-eye image
Row 1 = row 0 of right-eye image
Row 2 = row 1 of left-eye image
Row 3 = row 1 of right-eye image,	etc.�LCDBios effectively cuts in half the vertical resolution of the current video mode so that each image (left/right) is displayed on the full screen. The screens are alternated during each vertical retrace.
Starting with LCDBios version 1.30, LCDBios also supports the 3D-Max “set stereo mode 31h” command. LCDBios’ implementation of this function uses the VESA SuperVGA 320x200 256-color mode. Note that not many implementations of the VESA BIOS support 320x200x256, so use of this 3D�Max mode with LCDBios is not recommended. Function 31h sets the graphics card to a packed-pixel single-plane (i.e., a typical VESA SuperVGA mode) with a resolution of 320x200 per eye. The video data is line-alternate, as are all 3D-BIOS modes, so there are actually 400 rows of data (even rows are left-eye data, and odd rows are right-eye data). After setting the graphics mode, function 31h calls function 03h to turn on 3D mode.

NOTE: I must re-emphasize one point. The 3D-BIOS compatibility WILL NOT WORK ON ALL GRAPHICS CARDS in SuperVGA screen modes or in the special 3D-Max modes! The native LCDBios interface is the reliable option for stereo support of SuperVGA screen modes.
Function calls
The function calls are divided into 2 categories: Get LCDBios version, and everything else. They all use extensions of video BIOS (INT 10h).

Get LCDBios version:
INT 10h, AX = 4ed0h
Input:���ax �4ed0h�����Output:�(only if LCDBios is loaded)��ax�004eh = success��dx �3344h (“3D”) = 3D-BIOS/LCDBios support present��cx �4C42h (“LB”) = implementation code (LCDBios)��bx �version�� bh �major version in BCD (ex. 01h for v. 1.05)�� bl �minor version in BCD (ex. 05h for v. 1.05)��This call can be used to determine whether LCDBios is loaded or not. For 3D-BIOS compatibility, it returns “3D” in DX. To distinguish it from 3D-BIOS, it returns “LB” in CX. It also returns the version number in BX.

Everything else: All other calls are extensions of VESA BIOS (INT 10h, AH = 4fh). They are all called by INT 10h with AX = 4fd0h and BH = 3dh. The specific function is specified in BL. They return the same result status in AX that VESA BIOS returns:
ax = 004fh�success��ax = 014fh�failure��

“Interlace off”:
INT 10h, AX = 4fd0h, BX = 3d00h
Input:���ax �4fd0h��bx �3d00h�����Output:���ax�status��This function is a dummy function that always returns AX = success. Since LCDBios does not use interlaced video modes, this function is unnecessary.

“Interlace on”:
INT 10h, AX = 4fd0h, BX = 3d01h
Input:���ax �4fd0h��bx �3d01h�����Output:���ax�status��This function is a dummy function that always returns AX = success. Since LCDBios does not use interlaced video modes, this function is unnecessary.

Exit 3D mode:
INT 10h, AX = 4fd0h, BX = 3d02h
Input:���ax �4fd0h��bx �3d02h�����Output:���ax�status��This function basically undoes function BL = 03h. It turns off 3D mode (flipping between left- and right-eye images synchronized with glasses) and displays the left-eye image. It also turns off the shutter glasses. Finally, it restores the video mode to the way it was prior to calling BL = 03h (line-alternate display). Note: if a “set video mode” for VGA (INT 10h, AH = 00h) or VESA (INT 10h, AX = 4f02h) is called while 3D mode is on, this function is also called to restore the screen before the set-mode command is passed on to BIOS.

Enter 3D mode:
INT 10h, AX = 4fd0h, BX = 3d03h
Input:���ax �4fd0h��bx �3d03h�����Output:���ax�status��This function changes the screen from a line-alternate display (left eye = rows 0,2,4,6,...; right eye = rows 1,3,5,7,...) to a display with two full screens-- one for each eye. It also cuts the vertical resolution in half so that each image fills up the whole screen. It is assumed that line-alternate display is exactly the height of one screen. Finally, this function turns on 3D mode (flipping between left- and right-eye images synchronized with glasses).
For example, if the display is in 320x400 mode before calling this function, there should be 400 lines of alternating data. This function will change the video mode to 320x200 and display alternately left-eye or right-eye data.
LCDBios normally keeps track of the current display mode (by the VGA and VESA “set video mode” functions). The behavior of this function adapts to the current video mode. It will work with all VGA graphics modes (and tweaks based on them). It will work with VESA graphics modes on some graphics adapters and VESA BIOSs.

Enter special 3D-BIOS-compatible 3D mode (320x200 per eye in 256 colors):
INT 10h, AX = 4fd0h, BX = 3d31h
Input:���ax �4fd0h��bx �3d31h�����Output:���ax�status��This function sets the graphics card to a packed-pixel single-plane (i.e., a typical VESA SuperVGA mode) with a resolution of 320x200 per eye. The video data is line-alternate, as are all 3D-BIOS modes, so there are actually 400 rows of data (even rows are left-eye data, and odd rows are right-eye data). After setting the graphics mode, function 31h calls function 03h to turn on 3D mode.
This function is only supported in LCDBios version 1.30 or higher. LCDBios’ implementation of this function uses the VESA SuperVGA 320x200 256-color mode. Note that not many implementations of the VESA BIOS support 320x200x256, so use of this 3D�Max mode with LCDBios is not recommended.
Video BIOS calls intercepted by LCDBios
VGA set mode:
INT 10h, AH = 00h
Input:���ah �00h��al�VGA mode number��Note: This function call is passed on to and handled by video BIOS.
LCDBios monitors VGA set mode for 2 purposes: (1) it keeps track of current mode (VGA/VESA) for functions BL = 02h-03h; and (2) it turns off 3D mode if the mode is set while 3D mode is on. Note that 3D mode is turned off before the call is passed on to the video BIOS.

VESA set mode:
INT 10h, AX = 4f02h	
Input:���ax �4f02h��bx�VESA mode number��Note: This function call is passed on to and handled by video BIOS.
LCDBios monitors VESA set mode for 2 purposes: (1) it keeps track of current mode (VGA/VESA) for functions BL = 02h-03h; and (2) it turns off 3D mode if the mode is set while 3D mode is on. Note that 3D mode is turned off before the call is passed on to the video BIOS.

VESA get/set display start address:
INT 10h, AX = 4f07h
Input:���ax �4f07h��bl �00h for set start address
01h for get start address���for VGA graphics modes�� cx�VGA start address (set only)�� ch� Start Address high byte�� cl� Start Address low byte���for VESA graphics modes�� cx�VESA X start address, 1st pixel�� dx�VESA Y start address, 1st pixel�����Output:���ax�status���pageAdvanced flag is reset to 0���for VGA graphics modes�� cx�VGA start address (set only)���for VESA graphics modes�� cx�VESA X start address, 1st pixel�� dx�VESA Y start address, 1st pixel��Note: Call is passed on to and handled by video BIOS if and only if 3D mode is off.
When 3D mode is off, this function is passed on to BIOS to be handled. When 3D mode is on, this function is intercepted. However, the action of LCDBios is transparent. It acts just like the VESA BIOS, with one difference: it also works in VGA screen modes. The VGA Start Address registers should never be altered while in 3D mode. The application program should place the value to write to the VGA Start Address registers in CX and then call this function instead. LCDBios will change the Start Address instead.
Typical program outline
Check to see if LCDBios is loaded (INT 10h, AX=4fe0h). If it does not return with DX = 3344h and CX = 4C42h, then exit with error and tell user that LCDBios is not loaded.
Enter desired video mode (resolution = XRESxYRES).
Draw first frame in line-alternate form (YRES rows total).
Change from line-alternate to full screen and start 3D mode (INT 10h, AX=4fd0h, BX=3d03h). This call changes the physical display to XRESxYRES/2 in order to display a single eye image on the entire screen.
Main program loop. Draw frames successively. If program uses multiple buffers, call Set Start Address (INT 10h, AX=4f07h, BX=0000h, CX= X start address(VESA) or VGA Start Address(VGA), DX= Y start address(VESA) or arbitrary(VGA)) to change buffers. DO NOT CHANGE THE VGA START ADDRESS REGISTERS DIRECTLY!!!
Stop 3D mode and restore original video mode (INT 10h, AX=4fd0h, BX=3d02h).
Change back to text mode with normal VGA call and exit program.

�PAGE �

�PAGE �2�

