
; INCLUDED HYPERTEXT DATABASE AND UTIUTIES E»SKS INCLUDED

IINDOOMENTEDl

AMXaiAMMER'SGUIDE
[D RESERVED MS-DOS* FUNCTIONS

AND DATA STRUCTURES

UNDREW SCHULMAN, RAYMOND IMICHELS, JIM KYLE,
TIM PATERSON, DAVID MAXEY, AND RALE BROWN

WILL/Z^H] W0^J6f

g'2?'7sir
CoiJCeKiifir UUiV^

UNDOCUMENTED DOS

UNDOCUMENTED DOS

A PROGRAMMER'S GUIDE

TO RESERVED MS-DOS® FUNCTIONS

AND DATA STRUCTURES

ANDREW SCHULMAN, RAYMOND J. MICHELS,
JIM KYLE, TIM PATERSON, DAVID MAXEY, RALE BROWN

▲

TT

Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book and Addison-Wesley was aware of a trademark claim, the designations
have been printed in initial capital letters.

Library of Congress Cataloging-in-Publication Data

Undocumented DOS: a programmer's guide to reserved MS-DOS
functions and data structures / by Andrew Schulman (general
editor)... [etal.].

p. cm.

Indudes bibliographical references (p. 679) and index.
ISBN 0-201-57064-5

1. MS-DOS (Computer operating system) I. Schulman, Andrew.
QA76.76.063U53 1990

005.4'46—dc20 90-46992

Copyright © 1990 by Andrew Schulman, Raymond J. Michels, Jim Kyle, Tim
Paterson, David Maxey, and Ralf Brown

All rights reserved. No part of this publication may be reproduced, stored in a re
trieval system, or transmitted, in any form or by any means, electronic, mechani
cal, photocopying, recording, or otherwise, without the prior written permission
of the publisher. Printed in the United States of America. Published simulta
neously in Canada.

Managing Editor: Amorette Pedersen
Copy Editor: Barbara Tilly
Set in 10.5-point Palatino by Benchmark Productions

23456789 10 - MW - 9594939291
Second Printing, February 1991

Table of Contents

Introduction fx

Chapter 1
Regarding the Use of Undocumented DOS l

Why Leave Functionality Undociunented?... Why Is Undocumented
DOS hnportant?... Permission, But Not Support... Fear of the
Undocumented... Reserved and Undocumented 80x86 Features...

Where Angels Fear to Tread: Programs That Use Undocumented DOS...
Ain't Misbehavin'... Simulated DOS... Categories of Undocumented
DOS... The Case of the Missing One-Quarter...

Chapter 2

Programming for Documented and Undocumented DOS: A Comparison 29

Using Documented DOS Fimctions... Using Undociunented DOS ...
When Not to Use Undocumented Features... Verifying Undocumented
DOS... An Important Special Case: Novell NetWare...
Undocumented DOS Calls from Protected Mode...

vi UNDOCUMENTED DOS

Chapter 3

MS-DOS Resource Management: Memory, Processes, Devices 81

Memory Management... Process Management... DOS Termination
Address... Device Management... Loading Device Drivers from the
DOS Command Line...

Chapter 4

The DOS File System and Network Redirector 153

The Physical Disk; How DOS Sees It... The List of Lists... Current
Directory Structure (CDS)... System FCBs... System File Tables (SFTs)
and Job File Table (JFT)... Making Alterations... Indirect Server Call...
The MS-DOS Network Redirector... Conclusion...

Chapter 5
Memory Resident Software: Pop-ups and Multitasking 261

TSR: It Soxmds Like a Bug, But It's a Feature... Where Does
Undocumented DOS Come In?... MS-DOS TSRs... The Generic TSR...

TSR Programming in Microsoft C... Jiggling the Stack... Undocu
mented DOS Functions for TSRs... Inside the Generic TSR... Writing
TSRs with the DOS Swappable Data Area (SDA)... Removing a TSR...
Sample TSR Programs... Multitasking TSR...

Chapter 6

Command Interpreters 553

Requirements of a Command Interpreter... How COMMAND.COM
Works... Alternatives to COMMAND.COM... Sample Program:
Master Environment Editor... Conclusion...

Chapter 7

The MS-DOS Debugger Interface 427

Loading Without Executing... Debuggers and Windows Memory
Movement... Conclusion...

Table of Contents vii

Chapter 8

INTRSPY: A Program for Exploring DOS 451

Why a Script-Driven, Event-Driven Debugger?... A Guided Tour...
INTRSPY User's Guide... Using INTRSPY... Writing a Generic
Interrupt Handler... The Problem with Intel's INT...
Implementation...

Appendix A

Undocumented DOS Functions 495

Appendix B

Annotated Bibliography 679

Index 685

Introduction

There is a story behind this book:
For months, a coworker of mine, having been misinformed that I was some

sort of "DOS hotshot," had been pestering me to write a program to convince MS-
DOS that it no longer had an L: drive. I never quite figured out what the program
was for, but apparently customers were clamoring for a way to remove the
Microsoft CD-ROM Extensions (MSCDEX) from memory, and this program had
something to do with it. Anyway, I had tried several different approaches, includ
ing using MS-DOS's Cancel Device Redirection frmction (INT 21h Exmction 5Eh

Subfunction 04h), all without success.

I then came across Ralf Brown's "Interrupt List," part of which now forms the
appendix to this book. One of the DOS functions listed by Ralf, Get List Of Lists
(INT 21h Function 52h), was marked "DOS32.-b.internal." It was not listed in the

official EXDS documentation: IBM's UQgE'^.3t: Tec}i.nical Refereijce jiunps straight
from Find Next (INT 21h Fxmction 4Fh) to Get Verify Setting (Fimction 54h), with
no mention of any functions between 4Fh and 54h. Even Ray..D,pnca.n's.A<i7;/j.Mflg(j
MStDOS Frosmmmins simvlv lists Function 52h as "Reserved." Anyway, the im-
documented DOS function described in Ralf's list turned out to be exactly what
was needed to write a program toj'cancel" the L: driye. Once I knew about INT
21h Function 52h, writing DRVOFF (as the utility was called) was trivial. Without
this information, it was impossible.

tx

x UNDOCUMENTED DOS

This introduction is not the place to go into the details of DRVOFF. The
source code for a similar program, and a full explanation, appear in chapter 4 of
this book. For now, the point is simply that here was a very real need that could be
met only using a DOS function that doesn't appear in Microsoft's or IBM's documentation.

Of course, 1 was already aware, like most DOS programmers, that there are
undocumented DOS functions. In fact, I had accumulated a folder marked

"Undocumented DOS" that contained various clippings from P&'Msgcmine, Qfe*
Ds^'s-fmimal, andi£xe^mmme,r^4^urwl, printouts of source files downloaded
from bulletin bpajjls, and printouts of discussions held in on-line conferences
such as ibm.dos/secrets on^BI^. I also found a number of books that contained

discussions of undocumented DOS. But its randomness bothered me, and led to

this book. The snippets I had collected were not only random, they were also^
sometimes contradictory, and they never seemed to take sufficient account of dif-}
ferences between DOS versions. It was clear that something more comprehensive
was needed: a book that attempted to list all undocumented DOS functions and
data structures in one place, detailing the DOS version differences (even for such
odd versions of DOS as the compatibility box in OS/2), that frankly acknowl
edged the quirks ̂af working with undocumented DOS, and that showed how to
use undocumertted DOS safely when writing programs.

Who better to write such a book than the software engineers who had al
ready written elsewhere on the subject? Jim Kyjf was an obvious choice, because
he had prepared the material on undocumented DOS in the second edition of
Que Corporation's popular DO-S-Erogrammer's Reference. Ray Michfils was too, be
cause he had written the chapter on "Undocumented DOS" in the V^^e.Grpy^s
MS-DOS Ralf &oivn maintained the one truly definitive, absolutely
reliable list of DOS calls, and it was clear that this "Interrupt y§t" had to be trans
formed into the book's appendix. Tim Patersqn had not so much written about
MS-DOS; he in fact wrote MS-DOS itself (Version 1.0) and was the perfect person

not only to describe one important facet of undocumented DOS, but also to act as
technical advisor for the entire book. It was also clear that the book needed to

give readers a utility that would allow them to explore DOS without disassembhng,
and David lyj^y^yj^tnoLsmitfi exijaordinairef was the obvious choice to write
INTRSPY#

Introduction xi

What You Will Find in This Book

Most programmers who have worked with a DOS technical reference have prob
ably wondered at some time or other about its curious "holes": function numbers

that are marked "Reserved" or even entirely missing. This book contains a de
tailed version-by-version explanation of these "missing" DOS functions.

In addition, the book emphasizes the crucial undocumented DQl^ate sfriic-
^res, such as Memory, ControLBlocks - (MCgs), the Curr:entJQffgctpry=,Structure
(OQS), Sw^appable Data Ar^ and the Lisk-ef--feigte. It also details the un

documented fields in structures that are otherwise documented, including the
Program Segment Prefix (PSB), File ControLBlodc (FOB), Drive Parari3.gtgj^

(£®B), bios Parameter Block (BP®, and so on. For any of this to be usable in real
programs, you should pay careful attention to our descriptions of how the layout
of these structures differs from one DOS version to the next.

But more than simply listing the undocumented functions and data struc

tures, this book provides teqh^ncs. Some of these already belong to the "faiit-
tef?" 01 "O^ijjigfe'y" of DOS programming. Others appear here for the first time.
Here are a few of the techniques you will find in this book:

■ Accessing the master environment
■ Walking the DOS memory chain
■ Loading device drivers from the DOS command line

■ Creating logical drives with the network redirector
■ Adding new internal commands with INT 2Fh Function AEh
■ Writing TSRs with the DOS swappable data area

We have also tried, where appropriate (for example, accessing the master en
vironment), to discuss several different techniques for performing the same task.
This serves two purposes: first, to show the advantages and disadvantages of
each technique, and second, to suggest that safe use of undocumented DOS might
include performing the same operation in two different ways and then compar
ing the results to make sure they match.

The programs for this book were tested extensively in MS-DOS ant;| PC-DOS
versions 2,3, 4, as. well as a version that we can't talk about yet, but which may
be available by the time you read this. The programs were also tested in such sim
ulated DOS environments as the "compatibility bjQxlffl'QS/21,1 «ad2.0 and Qigir
tal Research's DR-D06. Surprisingly, we found that our programs, which rely
heavily on undocumented DOS, tended to work across a wider range of DOS and

xii UNDOCUMENTED DOS

pseudo-DOS versions than many programs that use only the dociunented DOS
interface. Relying on undocumented DOS did not mean throwing caution to the
winds. In fact, it meant we had to do a better job of DOS version checking than
many programs that simply assume they are rurming under DOS 3.x or greater.

Undocumented DOS: The Disks

What will you find on the disks that accompany Undocumented DOS?
For one thing, it's not just the electronic form of the source files printed in the

book (don't you just hate when publishers do that?). Certainly, the disks do con
tain all the code printed in the book. However, there's a lot of added value as
well. For example:

■ INIRLISff—Ralf Brown's famous "Interrupt List" in hypertext form, pre
pared by WindowBook, Inc. of Cambridge, MA. In addition to all the un
documented DOS functions and data structures that appear in print in

Appendix A of this book, INTRLIST also includes all the documented
calls in convenient on-line form, plus hard-to-find information on key
DOS extensions, including NetBipS, DEML DRSQView API, hlovell Net
Ware API, and^,on.

■ INTRSIW—David Maxey's script-driven debugger for monitoring PC
software interrupts, described in chapter 8 of this book, plus many sam
ple INTRSPY scripts.

■ DE¥LOD—^Jim Kyle's program for loading device drivers from the DOS
command line. Very handy, imless you actually like editing CONFIG.SYS
and rebooting.

■ ENVEDfT—^Jim Kyle's program for editing the master environment.
■ MONFTSR and —Complete assembly language source code

for DOS and Windows debuggers, written by Tim Patterson.

Isn't This Material Secret?

"I believe 1 undertook amongst other things not to disclose any
trade secrets. Well, 1 am not going to."

—Joseph Conrad, Heart of Darkness (1899)

None of the material in this book is particularly secret. Some of it has been avail
able in one form or another in computer magazines or on electronic bulletin
boards. What makes this book different is that we have brought all this scattered

Introduction xiii

material together in one place and have supplied tons of code examples showing
how to actually use the material.

Probably all of the authors have at one time or another had a nondisclosure
agreement with Microsoft, but none of the material in this book is based on any
thing Microsoft told us under nondisclosure. We did indeed undertake not to dis

close any trade secrets, and we haven't.
Some aspects of imdocumented DOS in fact constitute an open secret, well-

known by anyone who cares to know, but still "reserved" by Microsoft and IBM.
Sometimes this reaches heights of absurdity, such as when Miinmsoffc'je.jawp "Dj
B^eb" kxJ^msoft-SmtemsJmxml (September, 1987) discussed the well-known un
documented "InDOS" function (INT 21h Function 34h), yet still stated that the
fxmction is "undocumented, and unsupported by Microsoft." When Microsoft's
own pubhcations discuss undocumented DOS, there's certainly no reason for us
not to discuss it, too.

On the other hand, this book includes much material unavailable elsewhere.

The network redirector interface (INT 2Fh Frmction llh) is apparently not even
documented within Microsoft itself. Undocumented DOS also contains the first

discussion we've seen of the important DOS swappable data area (SDA), of the
installable command interface (INT 2Fh Functijgflg,^ygy„.pjr of using the normal
DOS termination functi6»!4®ff^2ttfc.Fiiig^j:i 4Ch) to (aifeffli^La.BJem@ry-resident
program.

What Do We Mean By Undocumented DOS?

By undocumented DOS, we mean the body of functions and data structures that
can reasonably be considered part of MS-DOS or PC-DOS but that are either not
mentioned in the Microsoft or IBM documentation or that are marked "Re

served."

Deciding what is part of DOS, though, isn't always easy. Obviously, INT 21h
Functions 50h through 53h are part of DOS, but what about the DOS network
redirector? MS-Windows? PC LAN? Should we include undocumented inter

rupts used by the Microsoft C run-time hbrary? Undocumented OS/2 calls like
DosQProcStatusO? Undocumented Intel instructions like LOADALL? In short,

where do you draw the hue?
We decided to take a fairly narrow definition of imdocumented DOS. We also

decided to try to include only genuinely undocumented material, and not just
information that is hard to come by. In any event, the INTRLIST database on the

xiv UNDOCUMENTED DOS

accompanying disk has all sorts of material that the reader might otherwise wish
we had included. For example, you might wish we had included a chapter on
INX 34h through .MT ̂Eh^ used iuMicrosofhfand Borland) language products
foiE Hoating point emulation, or INHBEh, used by the Microsoft ovgrlay luauager.
We decided these didn't belong in this book, but they're on the^isk.

On the other hand, this book does cover some documented DOS functions, be

cause they have undocumented subfunctions (for example, INT 21h Function
4Bh Subfunction 01 h), a corresponding data structure that contains undocu
mented fields (for example, FCBs), undocumented side effects under certain cir
cumstances (for example, INT 21h Function 13h), and outright bugs (for example,
INT 21 h Function 4Ah).

Pandora's Box and Information Hiding

This is a good place to express some reservations about Undocumented DOS. All
of the authors have used undocumented DOS in real-world programs, but we've
done so only when the documented DOS interface didn't supply what we
needed. We would like to caution the reader not to use imdocumented DOS sim

ply because it is there. Sure, go ahead and try out all the functions to see if they
work. Write tons of sample programs, or modify ours. But before using these in a
program on which others rely, please think twice: are you sure there isn't a way to
do it using documented DOS function calls?

Our goal in writing Undocumented DOS was actually to introduce some order
into the world of DOS programming. We hope that, rather than rely on a random
collection of clippings, you will now be able to turn to a single, reliable source of
information on undocumented DOS. But we're also a httle worried about open

ing Pandora's box. Is our little book going to spawn a generation of programs
that make massive use of undocumented DOS? Will Microsoft suddenly be un

able to make improvements to DOS, because too many programs will rely on
sUly undocumented features that therefore have to be preserved?

But that's already a problem. Too many important programs already use un
documented DOS. Microsoft is even forced to recreate undocumented DOS so

that key programs will run in the "compatibility box" of OS/2. Our book can
hardly make this situation any worse.

Still, this points to a problem. Programmers should not have to use undoc
umented functions to do their job. InX972, David PatHaas put forward his now-
famous design principle of "informatiou-hidine." In a way, "information hiding"

Introduction xv

dictates that software systems must have undocumented, hidden features, and
that such undocumented features are a good thing, not a bad thing. When an in
terface isJsgiaiSdLproperly, programmers should havfejjg^^
know about these, hidden featus^ everything they need to do their job is sup
plied by the interface itself.

Thus, "information hiding" relies on a contract of sorts: the system promises
to supply everything you need to w.ritej'Qbu^XQgf^^^, and you in turn prom
ise not to look below the surface. The internals of the system can then be im
proved or otherwise changed without affecting your program. Microsoft can
come out with DOS 5, in other words, and your program written for DOS 2.x will
still run. That's how "information hiding" is supposed to work. The problem is that
MS-DOS doesn't give softwarejievglopers everything they need, forcing them
then to rely on machine-dependent or undocumented features.

Maybe it's okay that DOS doesn't supply everything developers need,
though. In fact, I'm convinced this is one source of its success. Operating systems
that attempt to provide all possible functionahty have been far less successful
than MS-DOS which, after all, barely merits the label "operating system."

No one can doubt MS-DOS's success. A People magazine profile of Bill Gates
asserts that MS-DOS runs on 50 milhon machines worldwide. Although this fig
ure sounds a little inflated (by comparison, there are probably only about ten
times that many motor vehicles worldwide), the fact remains that the sheer size

of the DOS marketplace is in itself a key aspect of MS-DOS. The size of this mar
ket means that software developers can afford to force DOS to do their bidding,
and if this means using undocumented DOS, ignoring the principles of informa
tion hiding, and opening Pandora's box, then so be it.

Who Are You?

Readers will get the most mileage from this book if they are already familiar with
DOS programming—that is, with how to make INT 21h calls. However, it is pos
sible that many readers will be curious about undocumented DOS even when
they are not completely comfortable with the documented DOS programmer's in
terface. Therefore, chapter 2 includes a brief review of the basics of calling DOS.

Readers will also get more out of this book if they know C or assembly lan
guage. Again, however, chapter 2 does include code samples in both Turbo Pas
cal and BASIC as weU, so this can serve as a Rosetta Stone, allowing the reader to
translate discussions that use C and assembly language into more familiar terms.

xvi UNDOCUMENTED DOS

The bottom line is that readers have to be programmers familiar with the
IBM PC and compatibles. The only chapters that could conceivably interest a
nonprogrammer are chapter 1 (which discusses general issues regarding undocu
mented DOS, such as which commercial software uses it) and chapter 6 (which
discusses the DOS command interpreter, COMMAND.COM).

Who Are We?

Having discussed who you are, and what background knowledge you need to
benefit from this book, it's now time for that most enjoyable task, talking about
ourselves:

Ralf Brown has delved into the innards of MS-DOS and IBM PC compatibles
since early 1984 and is well-known in the on-line community for maintaining the
"Interrupt List" and writing a number of programs, including a communications
program called RBcomm and a DESQview API hbrary called DV-GLUE. He is a
Ph.D. candidate in the School of Computer Science at Carnegie Mellon Univer
sity, specializing in natural language understanding. Ralf may be contacted at
ralf@cs.cmu.edu (Internet), ucbvax!cs.cmu.edu!ralf or harvard!cs.cmu.edu!ralf
(UUCP), or >INTERNET:ralf@cs.cmu.edu (CompuServe).

Jim Kyle has been a professional writer since 1948 and has published more
than a dozen books and hxmdreds of magazine articles. His most recent books in
clude Que's DOS Programmer's Reference and Using Assembly Language (both orig
inally written by others; Kyle revised them for their second editions) and
coauthorship of four sections in the authoritative MS-DOS Encyclopedia
(Microsoft Press). His recent articles have appeared in Computer Language maga
zine. Kyle has been studjdng operating systems since 1970 or so, on mainframes
and minicomputers as well as microcomputers, including GCOS (mainframe),
TRAC and RSTS (mini), and CP/M and MS-DOS (micro). Kyle has been Primary
Forum Administrator of Computer Language's forum on CompuServe since 1985
and has been piefessionally involved in software and systems design since 1967.
He is currently one-quarter of the Graphics Development staff at Norick Soft
ware, Inc. Jim may be contacted on CompuServe at 76703,762.

David Mlaxey, author of INTRSPY, manages a network software development
team in Cambridge, MA. He has more than 12 years' experience in consultancy
and systems development, ranging from small business applications to main-

Introduction xvii

frame text database projects for the European Commission. Maxey studied Elec
trical Engineering at Imperial College in London.

Raymond J. Michels has been working with the MS-DOS operating system
since its introduction. He wrote the chapter on "Undocumented MS-DOS Func
tions" for The Waite Group's MS-DOS Papers (Howard W. Sams) and an article
on "Undocumented DOS Internals" for Programmer's Journal (1989). Ray is an
independent consultant specializing in MS-DOS application and system pro
grams. He can be contacted on BIX as rmichels.

Tim Paterson is the original author of MS-DOS, versions 1.x, which he wrote
in 1980-1982 while employed at Seattle Computer Products and Microsoft. In
1983, he founded his own company. Falcon Technology, which manufactured and
sold hard disk products. Falcon was eventually sold, becoming part of Phoenix
Technologies, the ROM BIOS maker. In 1988, Paterson left Microsoft (again),
where he had been on the QuickBASIC 4.0/4.5 development team. He is now an
independent consultant and has written several articles for Dr. Dobb's Journal,
including the two-part series "Managing Multiple Data Segments Under
Microsoft Windows" (with Steve Flenniken) and "Assembly Language Tricks of
the Trade." He has a B.S. in computer science, magna cum laude, from the Uni
versity of Washington.

Andrew Schulman is a software engineer and writer at Phar Lap Software
(Cambridge, MA), makers of 3861 DOS-Extender. He is a contributing editor to
Dr. Dobb's Journal, where he has written extensively about protected-mode DOS
extenders and about OS/2. He is a coauthor of the book Extending DOS (Addi-
son-Wesley, 1990) and has also written for Byte and Microsoft Systems Journal. He
may be contacted at andrew@pharlap.com (Internet), uimet!pharlap!andrew
(UUCP), or on CompuServe at 76320,302.

Acknowledgments

We would like to take a moment to do something more enjoyable even than talk
ing about ourselves; to thank those who, knowingly or unknowingly, helped us
put together Undocumented DOS.

First, a big roimd of applause for the on-line community, including partici
pants in the ibm.dos/secrets (and secrets.2 and secrets.3) conference on BIX, and
to the many contributors to the "Interrupt List" maintained by Ralf Brown. The
names of the contributors to this list can be foimd in the INTRLIST database on

disk, but we would like to single out Richard Marks (rmarks@ICSP.Unisys.COM),
Duncan Murdoch (dmiu-doch@watdcsu.waterloo.edu), Robin Walker (rdhw@uk.
ac.cam.phx), and Wes Cowley (wes@cup.portal.com), all of whom contributed
major pieces of information on undocvunented DOS.

xvtti UNDOCUMENTED DOS

Now, onto our technical reviewers. As editor of Undocumented DOS, I would
like to thank Tim Paterson, who not only wrote a great chapter on the DOS
debug interface, but who acted as technical advisor for the entire book. He pro
vided key elaboration to several chapters in this book and cleaned up our assem
bly listings.

Dan Spear of Quarterdeck convinced us that the undocumented approach to
LASTDRIVE in chapter 2 was actually better than the documented approach, and
he told me all about a Novell NetWare quirk. Rob Adams of Phar Lap Software
bugged me about MCB chains. Bob Moote (author of 3861 DOS-Extender and a
member of the DPMI Committee) helped debug the DPMI sample code at the
end of chapter 2, and Richard Smith (president of Phar Lap) suggested some of
the techniques for safe use of undocumented DOS. Ben Williams of Rational Sys
tems (makers of Instant-C and EKZ)S/16M) also read parts of the book, as did Drew
Grislagon of Datalight (makers of ROM-DOS, a DOS-equivalent operating sys
tem for embedded systems).

This book would not have happened without Claudette Moore. Open almost
any good Microsoft Press book (including the MS-DOS Encyclopedia and Ad
vanced MS-DOS Programming), and you will see Claudette's name. Now she is in
charge of the Moore Literary Agency. Claudette rounded up authors, worked on
the book's outline, sent out contracts, secured a publisher, sent out contract
amendments, helped meet the deadline, sent out more contract amendments, and
called in every other day "just to see how things are going." Thank you, Clau
dette, and congratulations on your wedding!

Thanks to all the folks at Addison-Wesley and Benchmark Productions. Chris
Williams and Amy Pedersen in particular claim to know almost nothing about
computer science, yet they are experts in the fields of pipelining and parallel pro
cessing. Pieces of this book were already emerging, typeset in attractive Palatino
and OCRB, even before some chapters had entered the pipeline. It is not at all
clear to me how they managed to turn this book aroimd so quickly, even while
producing several other books at the same time: apparently the Addison-Wesley
algorithm for parallel processing is imdocumented.

Finally, as editor of Undocumented DOS, I would like to thank my wife, the
writer Amanda Claiborne, and my son, three-year-old Matthew Jacob Schulman,
for providing me with the extra time needed to finish this book.

Andrew Schulman

Cambridge, MA
August, 1990

Chapter 1

Regarding the Use of Undocumented DOS

Andrew Schulman

The MS-DOS operating system for IBM PC and PS/2 computers and compatibles
is the most widely used operating system in the world. One estimate puts the
number of commercial and internally developed corporate applications for MS-
DOS at more than 20,000. Estimates of the installed base of DOS systems range
from 30 million to 50 million. This is a very wide range, and some of these esti
mates appear in marketing literature, so let's be conservative and call it 30 mil
lion. That's far more users than any other operating system.

On each of these 30 million machines, MS-DOS (or PC-DOS, as it is also

called) provides not only its familiar user interface of the A> or C> prompt, but
also a programmer's interface. Just as users make DOS requests by typing com
mands such as "DIR *.EXE" or "SUBST F: C:\SWAP," so programs make DOS re
quests—to open a disk file, to allocate memory, or even to terminate—^by moving
a function number into the Intel processor's AH register and issmng the assem
bly language instruction INT 21h. The MS-DOS programmer's interface consists
of several software interrupts, most importantly INT 21h.

Just as MS-DOS itself is ever5where, technical documentation on how to pro
gram this ubiquitous piece of code turns up everywhere, too. Starting wdth the
bible of DOS programming, Ray Duncan's superb Advanced MS-DOS Program-

2 UNDOCUMENTED DOS

ming (Redmond, WA: Microsoft Press, 1988), information about EXDS program
ming is readily available. In fact, it is almost too available: a medium-sized book
store might carry half a dozen different books on how to make INT 21h calls. Can
there really be that many DOS programmers out there?

Most DOS programming books, after a few chapters on input/output, disks
and files, memory allocation, and perhaps error handling or compatibility/per
formance tradeoffs, contain a lengthy appendix listing the INT 21h calls. These
books start with INT 21h Function 0 (Terminate Process), proceed to Function 1
(Character Input With Echo), then to Fvmction 2 (Character Output), and then,
not surprisingly, to functions 3,4,5, and so on.

Clearly, MS-DOS is a well-ordered world, where all available functionality is
carefully spelled out in niimerous books that are readily available. MS-DOS is
very small compared to many other computer operating systems, so it is possible
to grasp DOS programming in its entirety. In contrast to the unfathomed depths
of larger operating systems such as UNIX, MS-DOS is apparently a small, static
world, in which everything there is to know already is known.

Well, not quite.
Open an official reference to the MS-EKDS programmer's interface, for exam

ple the IBM DOS 3.30 Technical Reference, and you wiU find that the INT 21h fimc-
tion numbers jump straight from 4Fh (Find Next) to 54h (Get Verify Setting), with
nothing at all said about the numbers in between. Even Duncan's Advanced MS-
DOS Programming simply lists Functions 50h through 53h as "Reserved."

If you now turn to Appendix A of this book, you will find entries for the fol
lowing fimctions:

INT 21h Fvmction 50h—^DOS 2+ —Set PSP Segment
INT 21h Function 51h—^DOS 2+ —Get PSP Segment
INT 21h Function 52h—DOS 2+ —Get List Of Lists

lOT 21h Function 53h—DOS 2+ —^Translate BIOS Parameter Block

This is just one of many crucial "holes" in the programmer's interface to MS-
DOS. Another hidden area of DOS is Function 5Dh, which consists of 12 sub-

fvmctions that handle an assortment of tasks, including DOS calls over a network
(Server Function Call) and support for DOS reentrancy (Get Address of DOS
Swappable Data Area). Although MS-DOS really is a small piece of code, it is
nonetheless far from being a self-enclosed, static world. This small piece of code
contains many vmcharted areas.

Chapter 1: Regarding the Use of Undocumented DOS 3

Even some of the INT 21h fimctions that are documented have undocu

mented subfunctions (for example. Function 4Bh Subfunction Olh loads a pro
gram without executing it, and is crucial for writing a DOS debugger). Other
functions have imdocumented behavior or side effects (for example, documented
Fimction 56h exhibits interesting behavior when invoked indirectly via undocu
mented Fimction 5Dh). Some fimctions have—dare we say it?—outright bugs
(for example, look at the entry for INT 21h Function 4Ah in Appendix A).

Besides INT 21h, there are other DOS software interrupts, such as INT 2Fh,
which contains entire undocumented subsystems such as the Network Redirector
(INT 2Fh Function llh) and the programmer's interface to APPEND.EXE (INT
2Fh Function B7h).

Actually, these "missing" functions are merely the most apparent portion of
undocumented DOS. The real core of undocumented DOS is its data structures:

undocumented fields in the Program Segment Prefix (PSP), the Drive Parameter
Block (DPB), the DOS internal variable table (List of Lists), the Memory Control
Block (MCB), the System File Table (SFT), and numerous other structures that are

described in detail in this book.

Why Leave Functionality Undocumented?

"Secrecy for plans is needed, not only to protect their
formulation but also to develop them, perhaps to change
them, at times to execute them, even to give them up."
—^Sisela Bok, Secrets: On the Ethics

of Concealment and Revelation (1983)

At first glance, it seems absurd for Microsoft Corporation, the developer of MS-
DOS, not to document aU areas of the operating system. After all, what is the
point of having functionality, if you don't tell people about it?

However, all software of any complexity must contain features that its devel
opers choose not to bring out into the open. Once a software developer docu
ments some feature of a product, it is almost obligated to support that feature in
future releases. Microsoft has enough problems being required to maintain fea
tures of MS-DOS that are documented—the persistence of such CP/M-compati-
ble anachronisms as File Control Blocks (FCBs) and the structure of the DOS

Program Segment Prefix (PSP) are good examples—without also having to make
sure that the internal structure of DOS is preserved, too.

4 UNDOCUMENTED DOS

Sometimes Microsoft's documenting a feature has downright imfortunate re
sults. For example, in DOS 1.0 Microsoft documented the fact that, in addition to
using INT 21h, applications could call operating system functions with a CALL 5
instruction. This DOS holdover from CP/M was used by several then important
programs, including WordStar. MS-DOS supported CALL 5 by placing a far
JUMP instruction at offset 5 in the PSP. Because this and other silly fields in the
PSP were documented, every DOS program, even when nmning on the hottest
new 80486 machine, gets loaded with a PSP that seems to harken back to the days
of CP/M and 64KB memory. By making change more difficult, documenting fea
tures creates anachronisms.

From Microsoft's perspective, then, it makes perfect sense to reserve entire
areas of DOS, and to tell developers that if they somehow find out about these
areas and use them, their programs might or might not work in future releases.
Microsoft has a standard policy statement about programs that use undocu
mented DOS functions and data structures:

Title: Regarding the Use of Undocumented MS-DOS Features
Document Niunber: Q34761 Publ Date: 5-SEP-1988

Product Name: Microsoft Disk Operating System
Product Version: 1.x 2.x 3.x 4.00

Operating System: MS-DOS
Summary:

Microsoft does not give out any information about undocumented system fea
tures. If calls, flags, or interrupts are xmdocumented, it is because they are not
supported; we can give NO guarantee that they will exist in future releases of
DOS. If you find out about these features (through articles or by chance) and
begin using them in your programs, there is a real potential that your application
will not work in future DOS versions. We strongly advise against using undocu
mented featiues for these reasons and will give out no information about their
use.

Copyright Microsoft Corporation, 1989.

This is a reasonable statement, but there are other possible views on this sub
ject. This chapter argues that PC programmers should know about undocu
mented DOS functions and data structures. The chapter explains why such
undocumented features are necessary to fulfill MS-DOS's potential as an extensi
ble operating system, tries to dispel some of the mystique surrounding undocu-

Chapter 1: Regarding the Use of Undocumented DOS 5

merited DOS, desaibes some of the important commercial software that uses im-
documented DOS, and discusses some of the pros and cons of using undocu
mented features in application programs.

Why Is Undocumented DOS Important?

Why do we even care about undocumented DOS? What difference does it make
whether the INT 21h fimction numbers are consecutive?

One reason, of course, is pure curiosity. Any time a table or a function is
marked "Reserved," it raises questions: Why? Reserved for whom?

By itself, curiosity is not a good reason for exploring undocumented DOS.
Most processors, for example, have "reserved" bits whose value you really
shouldn't depend on or even care about. Later, this chapter explains why using
undocumented DOS is completely different from relying on undocumented
hardware features. For now, though, let's only consider why you should even
care about imdocumented DOS.

The real reason for discussing undocumented DOS is the importance of MS-
DOS itself—remember those 30 million machines across the globe that nm MS-
DOS. At one point, Microsoft attempted to supplant MS-DOS with OS/2, an
operating system with many wonderful features, but with a nearly insatiable ap
petite for memory and hardware. Since then, Microsoft has had to acknowledge
that, warts and all, DOS is here to stay, probably to be supplemented, not replaced,
by OS/2. MS-DOS continues to grow in importance. Therefore, even the tiniest
piece of new information about DOS programming is potentially important to
many programmers and, ultimately, to many users. This book presents many
large chucks of new information about programming the world's most widely
available operating system.

It still seems unlikely that there could be an5^hing genuinely new to say
about MS-DOS. After all, it is a piece of code that is in actuality quite small. The
two components of the DOS kernel (IO.SYS and MSDOS.SYS), together with the
replaceable COMMAND.COM shell, total at most 110KB of code. How can it re
quire an entire industry—^books, magazine articles, electronic bulletin boards,
and user's groups—^to explain less than 110KB of code? The electronic manu
scripts for some of the chapters in this book were larger than that!

The key is DOS's extensibility. In fact, the small size of DOS seems to enhance
its reach, not diminish it. MS-DOS provides few services. Some have even de
clined to refer to it as an operating system at all, referring to DOS instead as a

6 UNDOCUMENTED DOS

mere "program loader." But DOS's small size leaves room for extensions, and the
services it does provide allow it to be extended in numerous directions, few of
them anticipated by the system's original designer. That is a sure indication of a
successful design, or at least an indication that such a large market exists for MS-
DOS software that it is economically feasible for companies to invest the blood,
sweat, and tears necessary to make this glorified program loader do their bid
ding. Either way, MS-DOS has been not only enormously successful but also
enormously extensible.

What sort of extensions are we talking about? The best-known examples are
memory-resident or terminate-and-stay-resident (TSR) programs, but other DOS
extensions include:

■ Windowing systems
■ Multitaskers

■ Networks

■ Installable file systems (for example, CD-ROM)
■ Debuggers
■ Protected-mode DOS extenders

So we have a wildly successful operating system that can be extended in
more or less any direction the marketplace seems to want. What more could we
ask for? Why look for more, previously undocumented, functionality? Don't we
have everything we need?

Permission, But Not Support

The problem is that many of the DOS functions and data structures that
Microsoft has not documented are crucial to fulfill MS-DOS's potential as an ex
tensible operating system. Notice that we have been saying that DOS allows or
permits almost infinite extensibility: we never said that DOS actually supports
such extensions. That is because support, as opposed to mere permission, tends
to reside in the imdocumented areas of the DOS programmer's interface.

No TSR Support

The field of memory-resident software is a good example of an area that permits
extensions but that does not support them. MS-DOS allows programs to install
interrupt handlers and to stay resident. The three documented INT 21h functions
25h (Set Interrupt Vector), 31 h (Terminate and Stay Resident), and 35h (Get Inter-

Chapter 1: Regarding the Use of Undocumented DOS 7

rupt Vector) are siifficient to hook into, modify, or replace even 21h itself.
This is an extremely powerful capability: nothing in DOS prevents you from tak
ing over INT 21h.

But nothing particularly supports you in that endeavor, either, and that's the
problem. There are documented functions that let a DOS program install itself as
part of the operating system, but the functions that actually help the application
behave properly once it is resident are vmdocumented. These mclude INT 21h
Function 34h, 50h, and 51h, plus INT 28h.

That TSR support is confined to undocumented areas of MS-DOS is by now
notorious. As far back as 1986, representatives from Microsoft sat down with rep
resentatives from other companies to work out an industry standard for TSRs,
and one of the topics discussed was imdocumented DOS. According to the
Microsoft Systems Journal:

"Currently TSRs depend on several undocumented MS-DOS features such as the
IN_DOS flag..., the critical error flag, and some undocxunented system calls.
Microsoft's Adrian King has agreed to provide this mformation. Both Borland
and Lotus say that this information is critical for TSRs to work consistently"
(Nancy Andrews, "Moving Toward an Industry Standard for Developing TSRs,"
Microsoft Systems Journal, December 1986, pp. 10-11).

As Ray Michels explains in more detail in chapter 5 which covers TSRs and
DOS multitasking, the DOS functions most critical to consistent TSR operation
are as follows:

■ INT 21h Fimction 34h (Return InDOS Pointer)

■ INT 21h Function 50h (Set PSP Segment)
■ INT 21h Ftmction 51h (Get PSP Segment)
■ INT 21h Ftmctions 5D06h, SDOBh (Get DOS Swappable Data Area)
■ INT 21h Function SDOAh (Set Extended Error Information)

■ INT 28h (Keyboard Busy Loop)

To this day, Microsoft has still not added these to the official MS-DOS
programmer's interface. In DOS 3.0 and higher. Function 51h is no longer strictly
necessary, because an equivalent Function 62h (Get PSP Address) was added, but
the other functions remain unsupported.

Microsoft has occasionally discussed undocumented DOS support for TSRs.
In addition to the Microsoft Systems Journal article just quoted, the 1,500-page MS-
DOS Encyclopedia (Redmond, WA: Microsoft Press, 1988) includes a fine chapter

8 UNDOCUMENTED DOS

on TSRs by Richard Wilton that describes most of the functions just mentioned.
However, all but one of the functions were still omitted from the book's reference

section, and the one function that was included (INT 21h Ftmction 34h) bore the
note "Microsoft cannot guarantee that the information in this entry will be valid
for future versions of MS-DOS."

By now, information on vmdocumented DOS TSR support is fairly widely
available, and it is well known that, to write correct and stable TSRs, you must use
undocumented functions. Far from producing unreliable software, in the some
what twisted land of DOS, undocumented fimctions are sometimes necessary to

produce reliable software!

Network Redirector

Another area that permits extensions but that does not support them is the DOS
file system. Anyone who has used a PC on a network knows how disk drives on
another machine, perhaps not even a PC running DOS, can be made to appear
like a local disk drive. You might type "DIR E:," for instance, to see the names of
files on a Macintosh (truncated to fit DOS's pathetic 8.3 filename space). How
does that work? How are all the INT 21h calls necessary to produce a directory
listing sent over the network to another machine, and how can you write such
software yourself?

That this is not necessarily just a network issue is shown by the Microsoft
CD-ROM Extensions (MSCDEX), a fascinating piece of software that uses undoc
umented DOS file system features to make a CD-ROM appear like a normal DOS
device. Obviously, there must be some features in DOS that allow you to write
fiction, as it were: taking a CD-ROM with the High Sierra or ISO-9660 file system
and making it look as though it were a standard DOS device with a File Alloca
tion Table (FAT) file system.

Again, Microsoft has issued snippets of information. An article by then
Microsoft spokesman Tony Rizzo ("MS-DOS CD ROM Extensions: A Standard
PC Access Method," Microsoft Systems Journal, September 1987, pp. 54-62) reveals
that MSCDEX designates the drive letters it assigns to CD-ROM device drivers,
not as local drives, but as remote, network drives, even though the CD-ROM
player is probably sitting on the disk next to the computer, not connected to it via
a network (though the second scenario is also possible, as in the case of Lotus
CD/Networker). According to Rizzo, MSCDEX uses a component of MS-DOS
called the "network redirector." Microsoft has never documented the network

Chapter 1: Regarding the Use of Undocumented DOS 9

redirector, but chapter 4 of this book explains it in detail, showing that networks
and installable file systems (IFSs) use the network redirector in part by writing an
interrupt handler for INT 2Fh Function llh.

In this case, it is at first less clear that undocumented DOS is absolutely nec
essary. After all, Novell has been producing reliable, high-performance networks
for MS-DOS since long before Microsoft added the network redirector. Rather
than hook INT 2Fh Function llh, Novell hooks INT 21h itself. Although this
avoids use of the undocumented network redirector, however, NetWare simply
uses other undocumented features of DOS.

Support for Debugging

One last example: one thing you need in order to write a DOS debugger like
DEBUG, Symdeb, CodeView, or Turbo Debugger is a function that loads a pro
gram without executing it. DOS provides this as Subfunction 01 to INT 21h Fimc-
tion 4Bh (EXEC), and it is used in aU three generations of the Microsoft debugger.
Unfortxmately, the official MS-DOS technical references simply list Function 4Bh
Subfunctions 00 and 03; Subfunction 01 is undocumented.

Fear of the Undocumented

We can see that DOS includes a lot of undocumented functionality. Microsoft
doesn't document these features, because it wants the freedom to change or dis
card them in future versions of DOS. Armed with Undocumented DOS, you now
know all about these functions and data structures. It's interesting to know that
MS-DOS will return the address of its internal variable table if you invoke INT
21h Function 52h, or that EXEC Subfunction 1 loads a program without execut
ing it. But can you really use this stuff in real programs?

Of course, Microsoft says no. So do other programmers as well. After all, in
many areas of computing, the use of reserved, imdocumented, or unspecified
features is a one-way ticket to imstable, nonportable software. Use of undocu
mented features is not generally part of any approved software engineering cur
riculum. It is hard to beheve that using undocumented features is often the only
way to write stable and correct MS-DOS TSRs, network drivers, and debuggers.

There is a certain mystique surrovmding undocumented DOS, and some pro
grammers have found it easiest to take the dogmatic view that programmers
should never, never use imdocumented DOS functions in programs they plan to
distribute to others.

10 UNDOCUMENTED DOS

For example, the author of a well-written, well-organized, and enjoyable in
troduction to TSR programming, writes;

"None of the programs in this book use the INDOS call, and for good reason.
INDOS is 'undocumented,' a term that has two meanings. The first is, of course,
that you cannot look it up in the DOS manual. The second is that Microsoft, the
vendors of DOS, reserve the right to change or delete this function from subse
quent versions of DOS. In fact, the INDOS call as shown here is useful only
under DOS version 2.x (where x is any of the minor version numbers). In DOS
version 3.x the call still exists, but has changed quite a bit from the older ver
sions. In DOS 4.0, this function does something quite different; thus, calls to the
INDOS function will fail miserably.
"For that reason, use of the INDOS function call or any tmdocumented DOS
function is not recommended" (Thomas A. Wadlow, Memory Resident Program
ming on the IBM PC, Reading, MA: Addison-Wesley, 1987, p. 239).

In fact, the appendix to Wadlow's book contains entire pages with only a note
at the top such as:

AH = 03AH (52) Unsupported
INT 021H (33) Universal function

with the rest of the page left blank!
A lot more can be said about INT 21h Fimction 34h than that. If you have aU

the information about changes made from one DOS version to the next, then calls
to the INDOS function will not "fail miserably." Ray Michels' TSRs from Chapter
5 of this book use Function 34h and other vmdocumented DOS functions and

data structures, but these programs work correctly in DOS 2.x, 3.x, 4.x and
higher, in the DOS box of OS/2, and in Digital Research's DR DOS.

Thus, use of imdocumented DOS does not necessarily prevent a program
from rurming in the widest possible range of the DOS family. By following some
of the techniques speUed out in this book, you can safely use INDOS and other
undocumented DC)S features in real programs. Such programs wiU have almost
as good a chance of rurming properly in future versions of DOS than programs
that restrict themselves to only documented DOS functions.

But you don't have to take our word for it. Many of the most successful com
mercial programs on the PC use undocumented DOS. We saw earlier that Lotus
and Borland claimed that undocumented DOS was "critical for TSRs to work con

sistently." Of course they, like we, would prefer this fimctionality to be docu-

Chapter 1: Regarding the Use of Undocumented DOS 11

merited and supported by Microsoft. But in the meantime, far from adopting a
hands-off policy regarding undocumented DOS, these companies make careful
use of it.

An informal poll seems to indicate that developers of commercial PC soft
ware—software that must maintain a minimum of reliability and compatibility,
sometimes on millions of different machines—are in general less fearful of undoc
umented EKDS than programmers whose work needs to nm only on one or two
machines. A curious paradox.

One possible explanation is that programmers who work for large commer
cial software houses can better afford the possible higher cost of working with
undocumented DOS. Perhaps software that uses these functions requires more
testing and more maintenance than "normal" above-board DOS code. Another
possibility is that it is mostly "system software" that requires undocumented
DOS, and that most programs really don't require this stuff.

In any event, attitudes toward undocumented DOS resemble current opin
ions about the "goto" construct in programming languages. Many professional
programmers recognize that goto, possibly disguised as "longjmp," is sometimes
necessary. Undocumented DOS, like goto, should be avoided as long as possible,
but not when its use becomes unavoidable. Software construction involves

tradeoffs and compromises, not fixed dogmas. Software construction aspires to
be engineering, not religion.

Reserved and Undocumented 80x86 Features

The fact remains, however, that in many other areas of computing, "reserved" fea
tures really shouldn't be tampered with. The fear of using reserved MS-DOS
functions stems in part from a confusion with these other areas. Let's look more
closely at one example: the practice of relying on reserved processor bits. We will
see that there is a large difference between using undocumented DOS and using
reserved or undocumented aspects of the Intel microprocessors.

At first, it certainly sounds as if undocumented DOS and what we might call
"undocumented assembly language" could be considered the same thing. Intel's
standard statement regarding undocumented assembly language sounds similar
to Microsoff s statement, quoted earlier in this chapter, on imdocumented DOS:

"Depending upon values of reserved or undefined bits risks making software in
compatible with future processors that define usages for those bits. Avoid any
software dependence upon the state of reserved or undefined bits" (Intel, 386 DX
Microprocessor Programmer's Reference Manual, 1990, pp. 1-7).

12 UNDOCUMENTED DOS

Likewise, the following statement, from a brilliant survey of high-end micro
processors, sounds like it could just as well be talking about the use of undocu
mented operating system features: "When you see 'reserved' in a reference
manual it really means that you should pay attention to it—it's very wrong to
stomp on it." (Robert Dewar and Matthew Smosna, Microprocessors: A
Programmer's View, New York: McGraw-HiU, 1990, p. 129). The example the au
thors give is quite instructive: In aU the literature on the Intel 8088, INT 05 was
marked as "reserved." When putting together the PC, however, IBM decided to
use INT 05 as the ROM BIOS Print Screen fxmction. Along came the 80286, and
Intel (which had, after all, long before marked INT 05 as "reserved for use by
Intel") picked INT 05 for the bounds exception interrupt.

The PC software industry is still cleaning up the resulting mess. INT 05 is ac
tually just one of several cases where Intel says INT XX means one thing and IBM
says it means something completely different. IBM's use of reserved Intel inter
rupt numbers was a hideous mistake.

If nothing else, this should caution us against thinking that simply because a
major company does something seemingly "down and dirty," the practice in fact
is necessarily safe. IBM totally blew it with INT 05. Are we about to do the same
when we incorporate calls to INT 21h Function 52h in our programs?

No. IBM took a number that Intel reserved for future expansion and used it
for its own purposes. But we're not proposing, as Microsoft has marked Function
52h as "reserved," that you go ahead and use it for your nifty new Dial Modem or
Clear Screen function. Instead, we are saying that Function 52h already has a pm-
pose, that what it does is in fact an "open secret," and that—assuming you exer
cise some precautions, as detailed in chapter 2 of this book—^INT 21h Fimction
52h can be used in commercial software. That it has been used in commercial soft

ware does provide some added reassurance.

Undocumented assembly Language

Now, there is an aspect of "undocumented assembly language" that seems closer
in spirit to imdocinnented DOS, and that is the use of undocumented Intel in
structions, or the use of imdocumented side effects of instructions. For example,
the AAD and AAM instructions have "undocumented extensions," which can be

used to multiply or divide by something other than ten.
Tim Paterson, author of this book's chapter on debugging (but perhaps better

known as the author of MS-DOS 1.x itself), has written that relying on undocu-

Chapter 1: Regarding the Use of Undocumented DOS 13

merited features of the Intel 80x86 family "is a very dangerous practice.... There
are too many different processors in the family—and too many different manu
facturers—to consider using undocumented features. Lef s all play by the rules."
(Dr. Dobb's Journal, May 1990, p. 8).

So whaf s the difference between using undocumented aspects of the AAD
instruction, on the one hand, which Tim deplores as a "very dangerous practice,"
and using undocumented DOS Function 4Bh Subfunction Olh, on the other hand,
which he regards as essential for any DOS debugging, and to which he has de
voted a chapter of this book?

Several key differences exist. First, there are several different manufacturers
of 80x86 compatible processors, and there is no guarantee that all chips from
NEC, AMD, and Harris will contain the same undocumented features as the Intel

chips. In contrast, Microsoft is the only manufacturer of DOS that truly matters.
(In any case, as we wiU see later, the manufacturers of DOS emulators have taken
great pains to preserve its undocumented features.) And although Microsoft does
make MS-DOS available to so-called original equipment manufacturers (OEMs),
it is worth noting that the standard OEM license was apparently revised for MS-
DOS 3.0 to require that OEM versions of MS-DOS not alter its internal data struc
tures, which are required by SHARE and the network redirector.

Second, the range of the 80x86 family is far wider than that of DOS versions.
This is perhaps unfortunate: it would be nice if somehow there were several vari
eties of DOS from which one could pick and choose ("okay, I'll use this one for
my 8086 portable, and this one for the 80386"), but the fact is that there aren't.
There are fewer differences between DOS 3.x and DOS 4.x than between, say, the
80286 and the 80386.

Third, Intel is quite simply less committed to preserving imdocumented fea
tures in the 80x86 family than Microsoft is to preserving them in DOS. It's true
that Microsoft won't openly support these functions, but Microsoft is committed
to keeping DOS compatible with all the important PC applications. Furthermore,
as you will see shortly, too many important programs rely on undocumented
DOS for someone to seriously consider coming out with a version of DOS that
doesn't provide at least the core undocumented DOS functions. In contrast, far
fewer programs rely on undocumented assembly language.

Which brings us to the fourth point: fewer programs use undocumented as
sembly language than use imdocumented DOS because it is not necessary to use
undocumented assembly language tricks. The only possible use for using the

14 UNDOCUMENTED DOS

undocumented extension to AAD and AAM, for example, is not to perform an
otherwise impossible operation, but to boost performance. In contrast, in Undocu
mented DOS we don't advocate the use of xmdocumented DOS for anything other
than performing operations that would otherwise be impossible. Chapter 2 ex
plains in detail that, given a combination of documented DOS functions that can
do the same thing as an imdocumented DOS function, you should use the docu
mented interface. This is quite different from the motivation for using undocu
mented assembly tricks.

Finally, with the exception of multitaskers that use the Get PSP and Set PSP
functions as part of context switching or debuggers that use the same two func
tions for switching between the debugger and the debuggee, most programs
should not make many imdocvunented DOS calls. In particular, many undocu
mented DOS calls will be made once, at initialization time, when a program can
afford to do rigorous checking of the DOS version number and perhaps a nvun-
ber of "sanity checks," such as those suggested in chapter 2 of this book. In as
sembly language, however, when imdocumented CPU features are used to gain a
few clock cycles, the undocumented feature is presumably being used in a block
of code that is frequently called. Otherwise, why use it? If speed is the goal, how
ever, branching to different blocks of code depending on the CPU (8088 versus
80286, etc.) is out of the question.

LOADALL

There is one imdocumented Intel instruction that closely resembles our use of un
documented EXDS and that is widely used in commercial software:

Go into a debugger, enter the bytes OF 05 at CS:IP, and then unassemble
CS:IP. In newer debuggers such as Microsoft CodeView 3.0 or Borland Turbo De
bugger 2.0, you wiU see the name "LOADALL." Now, open one of the Intel
programmer's reference manuals for the 80286 and higher. Find LOADALL?
Didn't think you would. Even the "Opcode Map" just shows a blank for OF 05,
much like the holes in the DOS interface.

LOADALL is available only on the 80286 and can be used to access extended
memory. A discussion of LOADALL itself is outside the scope of this book. What
is relevant here is a discussion (from a book that is in many ways similar to this
one) of whether or not to use LOADALL. This is analogous to discussions of
whether or not to use undocumented DOS:

Chapter 1: Regarding the Use of Undocumented DOS 15

"Assuming LOADALL is used cautiously, can it be used safely? That is, can we
expect a program containing the LOADALL instruction to run correctly and reli
ably on a range of DOS versions, PC clone brands, and hardware configuration?
The answer, at least on 80286-based PCs, seems to be a qualified yes. Microsoft
uses LOADALL in the RAMDRIVE.SYS virtual disk driver supplied with Win
dows and the OEM versions of MS-DOS, and also uses it in the DOS compatibil
ity environment of OS/2, so we can predict (given Microsoft's close relationship
with Intel) that LOADALL isn't likely to vanish from future steppings of Intel's
80286 chips. For the same reason, the 80286 CPLFs from second sources such as
AMD and Harris will be obligated to support LOADALL indefiiutely" (Ray Dun
can, ed.. Extending DOS, Reading, MA: Addison-Wesley, 1990, pp. 100-103).

This undocumented 80286 instruction is so important that all decent 80386
BlOSes contain emulation for LOADALL, which is missing from the 80386 chip
itself. In fact, emulation of the LOADALL instruction is one way of judging
whether an 80386 BIOS is truly "compatible." In the somewhat twisted PC world,
an undocumented feature, far fi-om being an obstacle to compatibihty, can be es
sential to compatibility!

So once again we see how our industry's heavy-hitters make almost flagrant
use of undocumented features. The next section takes a closer look.

Where Angels Fear to Tread: Programs That Use Undocumented DOS

What commercial software for the PC, including software written by Microsoft,
uses undocumented DOS functions? We've already mentioned MSCDEX,
DEBUG, Symdeb, and CodeView, but let's approach this in a more systematic way.

How do we find out what DOS fimctions, documented or undocumented, a
program relies on? If we have access to the source code, we can just look at it. But
disassembling programs like CodeView or MSCDEX violates your license agree
ment, and, furthermore, sounds as though it would be a pain.

Disassembling is also overkill, if you're just interested in what DOS calls a
program makes. We said earlier that the architecture of MS-DOS lets you hook
into system interrupts, including INT 21h itself. Why not write a utiUty that
hooks INT 21h and other DOS interrupts and that tells you whenever a program
makes a imdocumented DOS call?

David Maxe/s program INTRSPY was designed for this very purpose. It is
an event-driven, script-driven DOS debugger that can also be used for many
tasks having nothing to do with undocumented DOS. It is described in detail in
chapter 8 of this book. You can write an INTRSPY script that logs information to

16 UNDOCUMENTED DOS

a file every time a program makes an undocumented DOS call. A very simple
INTRSPY script that monitors undocumented DOS calls, but that doesn't use
many INTRSPY features, looks like this:

; UNDOC-SCR (abridged version)
intercept 21h

function 1fh on_exit output "211F: Get Default DPB: " DS BX
function 32h on^entry output "2132: Get DPB: " DL
function 34h on_exit output "2134: InDOS flag: " ES : BX
function 50h on_entry output "2150: Set PSP: " BX
function 51h on__exit output "2151: Get PSP: " BX
function 52h on^exit output "2152: Get List of Lists: ES . BX
function 53h on.exit output "2153: Translate BPB"
function 55h on_entry output "2155: Create PSP: " DX
function 5dh subfunction 06h

on.exit output "215D06: Get DOSSWAP: " DS ":" SI
function 60h on_entry

output "2160: Canon File: " (DS:SI->byte,asciiz,64)
function 4bh

; use this just to show which program made undoc DOS call
subfunction OOh

on_entry

output (DS:DX->byte,asci iz,64)
subfunction Olh

on_entry

output "214B01: EXEC debug: " (DS:DX->byte,asciiz,64)
function 4ch on_entry output " "
function 31h on_entry output " TSR *
function 25h

on_entry
if (al == 28h) output "SetVect INT 28h: KBD busy loop"
; not complete, because many programs unfortunately hook
; interrupts by poking the low-memory interrupt vector table

intercept 2eh
on_entry output "2E: Execute command"

By loading INTRSPY into memory, feeding it UNDOC.SCR, nmning some
programs, and then examining the report, you can see which programs use
undocumented DOS. Let's try out the simple DOS utilities SUBST, JOIN, PRINT,
CHKDSK, and APPEND:

intrspyI I I U I op/

cmdspy compile undoc-scr
subst d: c:\swap

Chapter 1: Regarding the Use of Undocumented DOS 17

\dos33\join a: c:\fLoppy
print
chkdsk

append \undoc\intrspy
cmdspy report undoc.Log

After you issue this series of DOS commands, the file UNDOC.LOG holds
your report on undocumented DOS usage by some of the key utilities shipped
with MS-DOS itself:

C:\D0S33\SUBST.EXE

2152: Get List of Lists: 028E:0026

C:\dos33\J0IN.EXE
2152: Get List of Lists: 028E:0026

2152: Get List of Lists: 028E:0026
2152: Get List of Lists: 028E:0026

C:\D0S33\PRINT.C0M
2151: Get PSP: 1376

2150: Set PSP: 1376

2152: Get List of Lists: Q28E:0026

SetVect INT 28h: KBD busy Loop
213A: InDOS flag: 028E:02CF
2150: Set PSP: 1376

2151: Get PSP: 1376

2150: Set PSP: 1376

2150: Set PSP: 1376

C:\D0S33\CHKDSK.C0M
2160: Canon File: C:\

2132: Get DPB: 03

2160: Canon File: C:\FLOPPY

C:\D0S33\APPEND.EXE

\undoc\maxey\CMDSPY.EXE

What this report shows you is that SUBST and JOIN both use INT 21h Fimc-
tion 52h. (For some reason, JOIN calls the function three times, which is probably
urmecessary.) PRINT also uses Fimction 52h, but, more important, calls INT 21h
Functions 50h, 51h, and 34h and hooks INT 28h—all necessary for PRINT'S abil
ity to miiltitask in the background. In addition to using Function 60h as a some-

18 UNDOCUMENTED DOS

what roundabout way of determining whether a DOS drive letter or directory
corresponds to a physical device, CHKDSK also calls Function 32h to get the
Drive Parameter Block (DPB). Finally, APPEND doesn't call any of the undocu
mented functions the program was monitoring (though it does use other tmdoc-
umented frmctions, including the Installable Command facility provided by INT
2Fh Fimction AEh).

This script watches only some undocumented DOS functions because COM-
MAND.COM and DOS itself use so many that, if you watched them all, you
could never tell which ones were being used by a program you were interested in
and which ones were just part of the normal 3-degree backgroxmd radiation of
undocumented DOS caUs.

Other Microsoft Software

Let's branch out now and look at some other Microsoft software: Windows 3.0,
CodeView, and the Programmer's Workbench from Microsoft C 6.0 (which,
because of the performance of its real-mode DOS version, is also known as
"Programmer's WasteBasket"). With INTRSPY still loaded in memory, and still
processing the script UNDC)C.SCR, run the following programs:

\win30\systeni\win /e
\c600\bin\cv \undoc\mem

\c600\bin\pwb \undoc\mem.c
cmdspy report undoc.Log

C:\WIN30\WIN.COM

C:\WIN30\system\wi n386.exe
2152: Get List of Lists: 028E:0026
2151: Get PSP: 40A3

2150: Set PSP: 40A3

2150: Set PSP: 40A3

2134: InDOS flag: 028E:02CF
2152: Get List of Lists: 028E:0026
2151: Get PSP: 40A3

215D06: Get DOSSWAP: 028E:02CE

C: \wi n30\system\KRNL386,EXE
2134: InDOS flag: 028E:02CF
2151: Get PSP: 4215

2150: Set PSP: 40A3

2150: Set PSP: 4215

Chapter 1: Regarding the Use of Undocumented DOS 19

c:\c600\bin\CV.EXE

2152: Get List of Lists: 028E:0026

2151: Get PSP: 40A3

2150: Set PSP: 0000

2150: Set PSP: FFFF

2150: Set PSP: A0A3

2150: Set PSP: 0E7B

2151: Get PSP: 0E7B

214B01: EXEC debug: C:\UNDOC\mem.EXE
2151: Get PSP: 441D

2150: Set PSP: 0E7B

c:\c600\bin\PWB.C0M
c: \c600\bin\pwbed.EXE

2152: Get List of Lists: 028E:0026

2151: Get PSP: 41D3

2151: Get PSP: 41D3

2151: Get PSP: 41D3

2150: Set PSP: 0000

2151: Get PSP: 0000

2150: Set PSP: FFFF

2151: Get PSP: FFFF

2150: Set PSP: 41D3

Examining the new entries in UNDOC.LOG, you see first of all that Windows
3.0 makes extensive use of tmdocumented DOS. In addition to retrieving the
INDOS flag and the address of the List Of Lists, Windows 3.0 continuously calls
the Get PSP and Set PSP functions in order to multitask between appHcations.
Windows also uses INT 21h Fimction 5Dh Subfunction 06h to get the address of
the "DOS swappable data area," whose structure is detailed in the appendix to
this book and which is used in chapter 4 on the DOS file system, and in chapter 5
on TSRs. Microsoft CodeView also uses the Get PSP and Set PSP functions to

switch between the debugger and the debugee, and it uses the undocumented
EXEC Debug subfimction in order to load the debugee without immediately exe
cuting it. Finally, PWB also uses Fimctions 50,51, and 52.

20 UNDOCUMENTED DOS

Other Software That Uses Undocumented DOS

By monitoring a series of popular PC commercial software from companies other
than Microsoft, you can see how frequently imdocumented DOS is used. With
INTRSPY still processing UNDOC.SCR, nm the following programs:

■ SideKick (Borland)

■ DESQView (Quarterdeck)

■ Manifest (Quarterdeck)

■ Norton Utilities

■ DOS/16M (Rational Systems)
■ 3861 DOS-Extender (Phar Lap)

C:\SK.COM

2134: InDOS flag: 028E:02CF

C:\DV\DV.EXE

2134: InDOS flag: 028E:02CF
2152: Get List of Lists: 028E:0026
2151: Get PSP: 168A

2150: Set PSP: 168A

2134: InDOS flag: 028E:02CF
2134: InDOS flag: 028E:02CF
2150: Set PSP: 168A

2150: Set PSP: 168A

2150: Set PSP: 168A

2155: Create PSP: 425E

2150: Set PSP: 425E

C:\QEMM\MFT.EXE

2152: Get List of Lists: 028E:0026
2134: InDOS flag: 028E:02CF
SetVect INT 28h: KBD busy Loop
2134: InDOS flag: 028E:02CF
SetVect INT 28h: KBD busy loop

C:\BIN\NU.EXE

2132: Get DPB: 03

2132: Get DPB: 03

C:\BIN\NDD.EXE

2160: Canon File: A:CON

Chapter 1: Regarding the Use of Undocumented DOS 21

2160: Canon File: C:CON

2132: Get DPB: 03

2132: Get DPB: 03

C:\BIN\SD.EXE

2160: Canon File: A:CON

2160: Canon File: C:CON

2132: Get DPB: 03

2132: Get DPB: 03

C:\16M\L0ADER.EXE

2152: Get List of Lists: 028E:0026

2152: Get List of Lists: 028E:0026

C:\PHARLAP\RUN386.EXE

2155: Create PSP: 8C40

2150: Set PSP: 1D7F

2150: Set PSP: 8C40

SideKick gets the address of the INDOS flag because the INDOS flag will tell
it if it's safe to "pop up" (if the user activates SK's hot key and SK can't pop up,
SK makes an odd chirping sound). The only surprise here is that there's no men
tion of the fact that SK hooks INT 28h: presumably it does so by poking the low-
memory interrupt vector table instead of by calling documented INT 21h
Fimction 25h. Sure, INT 28h is an undocumented interrupt, but that by itself is
not a good reason to hook it in an underhanded, imdocumented fashion as SK

seems to do here.

DESQView, Quarterdeck's superb DOS multitasker, makes all the undocu
mented DOS calls that you by now expect of any DOS multitasking program.
Quarterdeck's lovely diagnostic program. Manifest, explores many areas of
undocumented EXDS, so naturally it gets the List of Lists. If the user chooses to
make Manifest memory resident, it gets the address of the INDOS flag and
installs an INT 28h handler before going TSR.

Several key components of the Norton Utilities (NU), including the Norton
Disk Doctor (NDD) and Speed Disk (SD) make the same undocumented DOS
calls as CHKDSK.

Lotus 1-2-3 Release 3 incorporates a 16-bit protected-mode DOS extender,
DOS/16M, from Rational Systems. In the absence of a VCPI control program
such as Quarterdeck QEMM or Qualitas 386-to-the-Max, DOS/16M figures out
whether VDISK or some other user of extended memory is loaded. The most reli-

22 UNDOCUMENTED DOS

able method of looking for VDISK is to use INT 21h Fimction 52h to find the
head of the DOS device chain, and then to walk the device chain looking for
VDISK.

Products such as IBM Interleaf Publisher, AutoCAD/386, Mathematica, and

Paradox /386 all incorporate Phar Lap Software's 32-bit protected-mode DOS ex
tender, 3861 DOS-Extender. The DOS extender makes two different undocu
mented DOS calls: a PSP is created for the protected-mode program, and then the
Set PSP call is used to switch back and forth between the DOS extender and the

protected-mode program itself. This is part of the mechanism that allows 32-bit
protected-mode programs to call 16-bit real-mode MS-DOS.

So, there is a large collection of popular PC applications that use undocu
mented DOS. Are the vendors of all these programs going to get burned with the
next version of DOS? It's instructive to read what Microsoff s Chief Architect for

System Software says about this issue:

"It may seem that if a popular application 'pokes' the operating system and oth
erwise engages in unsavory practices that the authors or users of the application
will suffer because a future release, such as OS/2, may not run the appUcation
correctly. To the contrary, the market dynamics state that the application has now
set a standard, and it's the operating system developers who suffer because they
must support that standard. Usually, that 'standard' operating system interface is
not even known; a great deal of experimentation is necessary to discover exactly
which imdocumented side effects, system internals, and timing relationships the
application is dependent on" (Gordon Letwin, Inside OSjl, Redmond, WA:
Microsoft Press, 1988, pp. 20-21).

In other words, when popular applications use imdocumented DOS, if s ulti
mately Microsoft that is inconvenienced, not the application's developer. Smaller
developers, meanwhile, can "ride the coattails" of the larger developer's use of
undocumented DOS. If enough important applications use it, yesterda/s imdoc
umented hack becomes tomorrow's de facto "standard." The market has spoken.
Amen.

Ain't MIsbehavIn'

As the previous section showed, many popular PC programs, mostly falling into
the category of system software, use undocumented DOS. With the important ex
ception of the multitasking programs PRINT, Windows, and DESQView, all of

Chapter 1: Regarding the Use of Undocumented DOS 23

which make very frequent use of the Get PSP and Set PSP functions as part of
their context-swapping, these programs make very few undocumented EXDS calls.
This is somewhat like losing one's virginity, however: it takes only one undocu
mented DOS call to change the nature of a program.

Let's say that you start using one or two undocumented DOS calls in your
program. What type of program do you now have? The chapter on "Compatibil
ity and Portability" in Duncan's Advanced MS-DOS Programming categorizes MS-
DOS applications by degrees of compatibility, and programs that use
undocumented DOS are imequivocally exiled to the innermost circle of this DOS
inferno:

"'Ill-behaved' applications are those that rely on undocumented MS-DOS func
tion calls or data structures, interception of MS-DOS or ROM BIOS interrupts, or
direct access to mass storage devices (bypassing the MS-DOS file system). These
programs tend to be extremely sensitive to their environment and tjrpically must
be 'adjusted' in order to work with each new MS-DOS version or PC model. Vir
tually all popular terminate-and-stay-resident (TSR) utilities, network programs,
and disk repair/optimization packages are in this category" (second edition,
1988, p. 315).

The most important sentence here is the last one: if you write "ill-behaved"
DOS applications, you will be in good company. Indeed, the purpose of Undocu
mented DOS is to show how you too can write such "ill-behaved" programs: pro
grams like SideKick, the Norton Utilities, Windows, DESQView, and PRINT! All

these programs do tend to be "extremely sensitive to their environment." Some of
them do have to be "'adjusted' in order to work with each new MS-DOS version."
Start using imdocumented DOS, and that will be true of your software as well.

But that already is a fact of life in the MS-DOS world. In fact, using undocu
mented DOS has many of the same benefits and liabilities as the standard prac
tice of b5q)assing DOS and writing directly to the hardware.

The need to use imdocumented functions and data structiures for many im
portant tasks tells you much more about MS-DOS than it does about any sort of
standard recommended engineering practice. Before we start knocking MS-DOS,
though, let's not forget that, if for no other reason than that it has ridden on the
coattails of the PC's wild success, DOS has succeeded in a way that no other, sup
posedly better, operating system can match. DOS, with all its warts, is an ines
capable reality. Using undocumented DOS may not find a place in any software

24 UNDOCUMENTED DOS

engineering curriculum, but it is a good exercise in accommodating your princi
ples to the real world.

Having said all this, let's see what we can salvage of good engineering prac
tice as we make our descent into undocumented DOS. This book presents many
techniques for using undocumented DOS in a relatively safe and reliable manner.
Some of the techniques recommended in this book are:

■ Rigorous checking of the MS-DOS version number
■ Verifying the basic integrity of imdocumented DOS internals by perform

ing an undocumented DOS call and comparing its output with a known
value

■ Computing structure sizes dynamically as a double check for sizes com
puted from the IX)S version number

Programs that use imdocumented DOS are obligated to do a better job of DOS
version checking, error checking and basic "sanity" checking than many other
programs that otherwise play by the book. In fact, most of the programs in
Undocumented DOS and its accompanying disk have been tested, and work prop
erly, in MS-DOS versions 2.x, 3.x, 4.x and higher. Some of the programs have
been ported to protected mode using DOS extenders. Many have been tested
under different configurations, including Windows, DESQview, and QEMM and
386MAX with various DOS components loaded into high memory.

Simulated DOS

Many of the programs in this book have also been tested under environments
such as the DOS compatibility boxes found in OS/2 1.x and 2.0, and Digital
Research's DR DOS. These environments may or may not be important to you,
but it is important to gauge the quality of their support for undocumented DOS,
because any support they do provide is completely intentional. Unlike versions of
MS-DOS itself, which may support one or another undocumented DOS feature
simply out of inertia, these simulated DOS environments can only support an im
documented DOS function call or data structure if someone consciously put it there.

Let's look first at Digital Research's DR DOS 3.40, which provides an
extremely close emulation of DOS 3.31 with SHARE.EXE loaded. So close, in fact,
that many programs from this book run under DR DOS. We have already men
tioned that Ray Michels' TSR from chapter 5 runs in this environment—that
means DR DOS properly supports INT 21h Functions 34h, 50h, 51h, 5D06h, and

Chapter 1: Regarding the Use of Undocumented DOS 25

5D0Ah, and INT 28h. INT 21h Function 52h is of course supported, as is most of
the DOS List of Lists, so MCB walkers and programs that walk the DOS device
chain work just fine. Unfortunately, the DOS Current Directory Structure (CDS)
is not supported, so many of the file system programs from chapter 4 of this book
won't work in DR DOS 3.40. On the other hand, the oddball "installable com

mand" functions discussed in Jim Kyle's chapter 6 on command interpreters are
supported. Finally, INT 21h Function 60h is supported, but, in the version we ex
amined, it had a bug (it always returned the name of the root directory, e.g.,
"C:\"). AU in all, though, this product does an excellent job of emulation. Some
one went to a lot of trouble to support the undocumented DOS interface, because
that interface is essential to DOS compatibihty.

The DOS compatibihty boxes of OS/2 also provide an interesting perspective
on imdocumented DOS. The DOS box in the first release of OS/2 (so-called DOS

10.00) provided very httle support for imdocumented DOS. The Microsoft Systems
Journal (May 1987) said that "since OS/2 does not recognize most of the undocu
mented MS-DOS services, programs that use them won't run in the compatibihty
mode." Lotus 1-2-3, Release 2.01 and dBase III Plus don't seem to make any un
documented DOS caUs, so there probably didn't seem to be any good reason to
support undocumented DOS. On the other hand, most popular TSRs do depend
on undocumented DOS, so enough of undocumented DOS was supported so
that SideKick would run m compatibihty mode.

By the time of OS/2 1.1 and 1.2 (DOS 10.10 and 10.20), it was becoming clear
that OS/2 was not going to replace DOS any time soon (and, in fact, might never
replace DOS). Support for imdocumented DOS was considerably beefed up. INT
21h Function 52h was supported and, for example, although most of the fields
were set to FFFFh and you can't walk the DOS device chain (there is none!), you
can walk the MCB chain. Most of Quarterdeck's Manifest can run properly in the
OS/21.1 DOS box.

The forthcoming 32-bit OS/2 2.0 has greatly enhanced MS-DOS compatibil
ity. In fact, it wih aUow you to run multiple DOS boxes, much as you can do today
under DESQview or Windows 3.0. The support for undocumented DOS wih be
improved again. There seems to be a DOS device chain, and the LASTDRTVE

field in the DOS List of Lists is supported, for example.
Again, the key point here is that this support for undocumented DOS isn't an

accident. The market d5mamics state that it has to be there: A DOS environment
that can't support SideKick?! You must be kidding!

26 UNDOCUMENTED DOS

Categories of Undocumented DOS

It is helpful to try to take the large mass of xmdocumented DOS and break it into
categories according to how reHable we think the different components are. A
few vmdocumented DOS fimctions (in particular, INT 2Fh Fimction 12h) are unre
liable in the sense that they were never meant to be called from outside the DOS
kernel, so calling these functions from an application program is too tricky to be
worthwhile. However, for all the features we've discussed in this chapter, reli
ability simply means how likely it is that the function or data structure will
remain imchanged in future releases of MS-DOS.

In some cases, there appears to have been no good reason for the function to
be undocumented in the first place, and the function has remained tmchanged
throughout its lifetime. Fvmctions 50h (Set PSP) and 51h (Get PSP) are good
examples of this category.

Function 52h (Get List of Lists) is an interesting case. The function itself has
been remarkably stable and is relied upon by so many important applications
that Microsoft would be foolish indeed to get rid of it. However, the List of Lists
data structure itself has changed significantly from one DOS version to the next.

Get List Of Lists is probably the most important of all undocumented DOS
fimctions, because with this single call you can access almost all of MS-EXDS's
internals. However, it is also easy to understand why this call is undocumented:
the data structures it points to (either directly or indirectly) are the key data
structures of MS-DOS itself. These must change when significant improvements
are made to DOS. In some cases, new fields can be added to the end of a struc

ture, so that none of its existing clients "break," and so that, over time, the data
structure starts to resemble a "grab bag" (which is probably another reason it's
undocumented; the interface is so messy it's embarrassing!) But in other cases,
fields must be expanded or moved, and then any application that relies on a par
ticular order or size of the undocumented data structures will break, and will

need to be upgraded.
Therefore, it would be next to impossible for Microsoft to support use of this

function in third-party software. It is probably difficult enough for Microsoft to
keep all its own software that uses Function 52h happy from one DOS version
change to the next. For example, h5rpothetically speaking, if the DOS 5 team
needs to change a data structure pointed to by the List of Lists, and if Windows 3
relies on that undocumented data structure, what happens? If Windows 3 devel
opers win the argument, this may prevent the DOS 5 developers from making an

Chapter 1: Regarding the Use of Undocumented DOS Tl

important improvement. On the other hand, if the DOS 5 developers win the ar
gument, a lot of Windows 3 update disks go out in the mail.

In any case, Fimctions 51h and 52h seem to belong to different categories of
undocumented DOS. Is there some, more systematic, way to categorize imdocu-
mented DOS? One useful set of categories was drawn up by Ken W. Christopher,
Jr., Barry A. Feigenbaum, and Shon O. Saliga, all IBM employees who were lead
engineers for IBM's part in DOS 4. Their book. Developing Applications Using DOS
(New York: John Wiley & Sons, 1990), is one source of information on undocu
mented DOS. Unfortunately, the book restricts its focus to PC-DOS 4.0. However,
the author's DOS categorization (pp. 384-388) not only appears to be sensible,
but, given that the authors work at IBM, may also reflect an insider's point of
view:

"P Published interface. WiU be supported in future DOS versions.
"Q Obsolete function. Use the more modern function instead.

"X Excluded function. Do not use.

"U Unpublished function. Although not guaranteed by IBM or Microsoft to remain

imchanged in the future, this function has been unchanged in DOS for several
versions and is unlikely to change in future DOS versions.

"R Restricted unpublished function. This function should only be used when abso
lutely necessary to accomplish yoiur program's function. This function is highly
subject to change with each DOS version so your program should be both major
and minor DOS version specific.

"D Implemented on Asian (DBCS) versions of DOS only."

Table 1-1 shows how the three IBMers apply these categories to undocu
mented INT 21h functions. The list uses their names for these fimctions, rather
than the names used elsewhere in this book:

Table 1-1: Undocumented INT 21h functions from Christopher, Feigenbaum, and Saliga

Function Description Use
IFh Get Default DPB UR

32h Get DPB UR

34h GET INDOS Flag Address U
37h Get/Set Switch Character U

4B01h Load Program U
50h Set Active Process Data Block U

51h Get Active Process Data Block U

28 UNDOCUMENTED DOS

Function Description Use

52h Get DOS Internal Values R

53h SetDPB UR

55h Duplicate Process Data Block UO

58h Get/Set Allocation Method U

SDOOh Server DOS Call U

SDOlh Commit All Files U

5D02h Close File by Name u

5D03h Close All Files for a Particular Computer u

5D04h Close All Files for a Particular Process u

5D05h Get Open File List Entry u

5D06h Get DOS Data Area Address RO

5D07/08h Get/Set Print Stream State U

5D09h Truncate Print Stream u

5D0Ah Set DOS Extended Error Information u

5D0Bh Get DOS Data Areas R

5E01h Set Machine Name U

5E04/05h Set/Get Printer Mode u

5F00/01h Get/Set Redirection Mode u

5F05h Get Redirection list Entry Extended u

60h Translate Filespec u

6520h Capitalize Character u

6521h Capitalize String u

6522h Capitalize ASCnZ String u

6523h Capitalize Yes/No Check u

69h Get/Set Media ID R

The Case of the Missing One-Quarter

Here, we have only listed the functions in category U and R. What percentage of
all INT 21h functions do these comprise? The three IBM authors list a total of 170
functions. Of these, 38 carry a U and/or an R. We might therefore conclude, only
half jokingly, that MS-DOS is 22 percent imdocumented. Oddly enough, this cor
responds closely with our own findings: at one point, the complete "Interrupt
List" found on the disk that accompanies this book was 747KB, and at the same
time the electronic manuscript for Appendix A, which lists only undocumented
DOS, was 180KB.

This means that we decided that about 1/4 of the material in the "Interrupt
List" constitutes undocumented DOS. It's now time to take a closer look at this

missing one-quarter of the PC programer's interface.

Chapter 2

Programming for Documented and
Undocumented DOS: A Comparison

Andrew Schulman

This chapter looks at how to incorporate the information in the rest of the book
into working code in C, 80x86 assembly language. Turbo Pascal, and BASIC. It
also discusses the important issue of when not to use imdocumented features,
while showing that certain PC programming tasks absolutely require them.

We wiU also illustrate that exploiting undocumented features of MS-DOS
usually requires only a few lines of code. On the other hand, programs that use
undocumented DOS features must be more aware of the MS-DOS version nxim-

ber than code that uses only documented DOS. In particular, whereas undocu
mented MS-DOS/wncfion calls have remained remarkably stable from one version
of DOS to another, the equally important DOS data structures vary significantly
with each new release of the operating system, and programs that use undocu
mented DOS must take strict account of this.

At the end of the chapter, we will examine the issue of using undocumented
DOS from protected-mode DOS extenders and from the DOS Protected-Mode In
terface (DPMI), as found in Windows 3.0 386 enhanced mode.

29

30 UNDOCUMENTED DOS

Using Documented DOS Functions

Before examining how to use undocumented DOS in programs, let's review how
to use documented DOS function calls. This detour into documented DOS (we
might even say over-documented DOS, because so much has been written about
it!) will pay off when we write progranas using undocumented DOS.

If you know all about calling DOS from your chosen programming language,
skip to the section on "Using Undocumented DOS."

If you're still here, lef s pretend we work in the installation software group of
a commercial software company. For some reason, we have been asked to pro
duce a small utility that, when run from a DOS batch file, wUl return the number
of "logical drives" on the system, corresponding to the LASTDRTVE statement in
a user's CONFIG.SYS. Perhaps the company is installing software in a Novell
NetWare environment, where LASTDRTVE determines the starting letter for net
work drives.

The utility is to be called LASTDRV.EXE, and the idea is that when it exits
back to DOS, it should return a number corresponding to LASTDRTVE. For ex
ample, if LASTDRIVE=C, then LASTDRV.EXE should return the number 3. This
is different from other DOS utilities that retmrn 0 to indicate success and 1 (or

more) to indicate an error. This ntunber can be interrogated using the IF
ERRORLEVEL facihty in MS-DOS's somewhat demented batch language.

The LASTDRV utility should also display a string such as "LASTDRrVE=E,"
but in such a way that the output can be discarded by redirecting the program's
output to the NUL "bit bucket" device.

For example, to make sure that there are at least six logical drives (LAST-
DiyVE is F: or higher), someone in the batch files team of the installation soft
ware group (large software companies really are organized that way!) would
take our wonderful utility and incorporate it into the following batch file:

echo off

rem need6.bat

Lastdrv > nuL

if errorLeveL 6 goto end
echo Requires at least six drives
: end

How do we write LASTDRV.EXE? Trjdng to find the user's CONFIG.SYS file
and then locate the LASTDIilVE statement is a very bad idea. Aside from the fact

Chapter 2: Programming for Documented and Undocumented DOS: A Comparison 31

that LASTDRIVE didn't make its appearance vmtQ DOS 3.0 and that its use is op
tional (E: is the default LASTDRIVE), we would have no guarantee that, once we
locate a CONFIG.SYS, it's actually the one with which the system was booted. It
also appears to be impossible to locate the boot drive reliably in MS-DOS prior to
version 4.0 (DOS 4 and higher do provide such a fimction, however: INT 21h
Function 3305h).

If we are writing in a high-level programming language like C or Pascal, it's
unlikely that the compiler's subroutine library comes with a function that returns
the number of drives. True, Microsoft C has the function _bios_equiplist(), for ex
ample, and Borland Turbo C and Turbo C++ have the fimction biosequipO,
which can be used to find the number of floppy drives. But what about fixed
disks?

More important, we were asked to retrieve the number of DOS logical drives,
so interrogating the PC's BOM BIOS does not meet the functional specification
for this utility. "Logical" drives also include RAM disks, network drives, CD-
ROM drives, tape back-up units, and the like. "Logical," in other words, means
both physical drives and fictional drives. As shown in this book's chapter on the
DOS file system, much of DOS's extensibility comes from the ability to have
drive letters assigned to things that reaUy aren't drives at all!

Thus, "logical drive" is an MS-DOS construct, having nothing to do with PC
hardware or the ROM BIOS. To leam how a program finds out the value of
LASTDRIVE, then, the first thing to do is browse through a reference book on the
DOS programmer's interface, looking for an INT 21h function that returns the
number of logical drives.

Flipping through any DOS programmer's reference, we find that BSTT 21h
Function OEh, which is used to select the current disk drive in the system, some
what illogically (the two have little to do with each other) also returns the total
number of drives:

Int 21H Function OEH

Select Disk

Selects the drive specified in DL (if valid)
as the default drive.

Call with:

AH = OEH

DL = drive code (0=A, 1=B, etc.)
Returns:

AL = number of logical drives in system

32 UNDOCUMENTED DOS

In single-drive IBM PCs in DOS 1.x and 2.x (the latter will be present at more
customer sites than you would think), the value 2 is returned in AL, because DOS
supports two logical drives (A: and B:) hanging off the same single physical
floppy drive. Further, in DOS 3.x and higher, the value returned in AL is either 5
or the drive code corresponding to the LASTDRIVE entry (if any) in CON
FIG.SYS, whichever is greater.

This return value is what we want. Actually, if s almost what we want. In one
important special case—DOS machines using Novell NetWare—^the value re
turned in AL by Fimction OEh is not equal to LASTDRIVE. Given the nvunber of
PC machines nmning Novell NetWare, this is indeed an important exception,
and we wiU return to it later in this chapter.

How do we get back the return value without also selecting a new current
drive? The answer is obviously to specify the drive that is already current as the
"new" one. Where do we find the current drive? Once again we flip through our
DOS programmer's reference (DOS programming has a lot in common with
using a mail-order or gardening catalog!) until we stvunble upon Fimction 19h
(Get Current Disk);

Int 21H Function 19H

Get Current Disk

Returns the drive code of the current, or

default, disk drive.
Call with:

AH = 19H

Returns:

AL = drive code (0=A, 1=B, etc.)

It's really quite simple to take all this information and turn it into a program.
In the remainder of this section, we will produce versions of LASTDRV.EXE in
assembly language, C, Turbo Pascal, and QuickBASIC. Throughout, we wiU be
using only thoroughly documented portions of the DOS programmer's interface,
in preparation for our descent into the world of undocumented DOS.

DOS Calls From assembly Language

The following small assembly language program shows how the reference mate
rial on DOS Functions OEh and 19h translates into a working version of
LASTDRV.EXE. This code also uses DOS Fimction 09h to display output on the
screen; the output can also be redirected to a file or to the NUL "bit bucket."

Chapter 2: Programming for Documented and Undocumented DOS: A Comparison 33

Finally, DOS Function 4Ch is called to exit to DOS, passing the numeric value of
LASTDRIVE as a return code:

; LASTDRV-ASM — uses only documented DOS

__STACK segment para stack 'STACK'
_STACK ends

_DATA segment word public 'DATA'
msg db 'LASTDRIVE='
dletter db (?)

db Odh, Oah, '$'
DATA ends

TEXT

mam

mam

TEXT

segment word public 'CODE'

assume cs:_TEXT, ds:_DATA, ss:_STACK

proc near

mov ax. _DATA

mov ds. ax r set DS to data segment
mov ah. 19h } Get Current Disk function

int 21h } call MS-DOS

mov dl. al
f

AL now holds current drive

mov ah. OEh w Select Disk function

int 21h
r call MS-DOS

mov bl. a I } LASTDRIVE in AL; save in BL
add al. CA' - 1) } convert to drive letter

mov dletter, al w insert into string

mov dx. offset msg A string in DS:DX
mov ah. 9 A Display String function
int 21h

A call MS-DOS

mov ah. 4Ch A Return to DOS

mov al. bl A LASTDRIVE is exit code

int 21h
A call MS-DOS

endp

ends

end main

LASTDRV can be assembled with any number of assemblers and then linked
with any MS-DOS compatible linker:

34 UNDOCUMENTED DOS

Microsoft Macro Assembler (MASM):

masm Lastdrv.asm;
link lastdrv.obj;

Borland Turbo Assembler (TASM):

tasm Lastdrv

tLink Lastdrv

Phar Lap 3861 ASM/LinkLoc:

386asin -8086 lastdrv

linkloc -8086 Lastdrv

DOS Calls From C

There is a problem making DOS calls using the C programming language. It's not
that it is difficult to access MS-DOS services from C: the problem is there are too
many different ways to do so. Never satisfied with one technique where a dozen
techniques will do, C compiler manufacturers for the PC, such as Microsoft, Bor
land, JPI, Watcom, and MetaWare (it is amazing that the PC marketplace appar
ently can support so many good C compilers), offer a wide variety of techniques
for calling MS-DOS and ROM BIOS services. Having many different ways to per
form the same operation is never a good idea.

The problem isn't really with the compilers, however. Ultimately, we have to
ask why MS-DOS itself doesn't come with a set of standard include files, the way
OS/2 does. On the other hand, this lack of standard programming facilities in
MS-DOS has done nothing to stop MS-DOS's spectacular success, and may even
have aided it slightly, because it gives programmers one more thing to manipu
late. In any case, we need to discuss a few of the techniques that can be used to
make MS-DOS calls from C, including the int86() and intdosO functions, in-line
assembly language, and register pseudo-variables.

int86() Until recently, the most popular way of calling system services from C on
the PC was to use the int86() family of functions, which invoke Intel 80x86 soft
ware interrupts:

/* LASTDRV.C — uses only documented DOS */

#1ncLude <stdio.h>

^Include <dos.h>

Chapter 2: Programming for Documented and Undocumented DOS: A Comparison 35

main(vold)

i

union REGS r;
unsigned Lastdrv;

r.h.ah = 0x19; /* Get Current Disk */
int86(0x21, &r, 8r); /* caLL MS-DOS */
r.h.dL = r.h.aL; /* r.h.aL now holds current drive */
r.h.ah = OxOE; /* Select Disk */
int86(0x21, &r, &r); /* call MS-DOS */
lastdrv = r.h.al; /* r.h.al now holds number of drives */
fputs("LASTDRIVE=", stdout); /* output string */
putcharCA' - 1 + lastdrv); /* output drive letter */
putcharC'\n'); /* output newline */
return lastdrv; /* return drive number to MS-DOS */

This can be compiled with any Microsoft-compatible C compiler for the IBM
PC, using either the full-screen or the command-line version of the compiler. For
example:

Microsoft C 6.0:

cl -qc lastdrv.c

Borland Turbo C++:

tcc lastdrv

The C source code is almost half the length of the corresponding assembly
language code we examined earlier. On the other hand, the size of the executable
file has grown from less than 600 bytes in assembly language to almost 5,000
bytes in C.

In-line Assembler A better way to write PC system-level software in C is to use an
in-line assembler: that is, put Intel assembly-language code directly in your C
code. True, an in-line assembler is inherently nonportable, but so are calls to
int86(). You can't expect MS-DOS or ROM BIOS calls to work on non-Intel archi
tectures anyway, so this is in fact a perfect place to use in-line assembly language.

Microsoft C 6.0, Microsoft Quick C 2.5, Borland Turbo C, and Borland Turbo

C++ all include an in-line assembler. There is a slight difference between the
Microsoft and Borland dialects. Microsoft offers an _asm block, whereas Borland

requires that the asm ke)rword precede each line. Microsoft put a scaled-down
assembler right into its C compiler, whereas Borland passes the in-line assembler

36 UNDOCUMENTED DOS

through to a separate assembler such as TASM or MASM, allowing you to in
clude assembly-language directives (such as DB), assembly-language macros, or
386 instructions directly in your C code. Either way, the essentials are the same.
Note how the preprocessor directives ensure the compiler can support an in-line
assembler:

/* LASTDRV2-C -- uses only documented DOS */

#i ncLude

^include

<stdLib.h>

<stdio-h>

mainO

unsigned Lastdrv;

#ifdef

asm

asm

asm

asm

asm

asm

asm

_TURBOC

mov ah,
int

mov

mov

int

xor

mov

#eLif (definedC

_asm {
mov

int

mov

mov

int

xor

mov

>

ah,
21h

dl,
ah,
21h

ah,

19h

21h

dl, at
ah, OxOe
21h

ah, ah
Lastdrv, ax

MSG VER)

19h

ah
Lastdrv,

aL

OxOE

ax

/* C-styLe comments only */

/* C-styLe hex */
/* assembly-style hex */

/* refer to C variables */

&& (_MSC_VER >= 600)) I I defined(_QC)

; can include assembly-style comments
/* and C-style as well */
// and this style as well
; can include C-style hex numbers
; or assembly-style hex numbers

; can refer to C variables in _asm

#e Ise

#error

#endi f

Requires inline assembler

fputs("LASTDRIVE=", stdout);
putcharC'A' - 1 + lastdrv);
putcharC'\n');
return lastdrv;

Chapter 2: Programming for Documented and Undocumented DOS: A Comparison 37

The comments inside the _asm block show the odd mixtures of C and assem

bly language that can be produced.
You do have to be careful when using in-Hne assembly language. In particu

lar, you must know your compiler's rules about preserving registers. For
Microsoft C and Turbo C, the rules are simple: you are free to change AX, BX, CX,
DX, and ES. Inside a function, you can change BP. You can change any flag except
the direction flag. You must always preserve the DI, SI, DS, SS, and SP registers,
however.

Register Pseudo-Variab|es Borland and JPI both provide yet another way of writ
ing low-level code: register pseudo-variables. Not to be confused with C register
variables, register pseudo-variables map onto the CPU registers but look Uke C
variables:

/* LASTDRV3.C — uses only documented DOS */

#1ncLude <stdlib.h>

^include <stdio.h>

#1ncLude <dos.h>

mai n()

unsigned Lastdrv;
_AH = 0x19;
geninterrupt(0x21);
_DL = _AL;
_AH = OxOE;
geni nterrupt(0x21);
Lastdrv = _AL;
fputs("LASTDRIVE=", stdout);
putchar("A' - 1 + Lastdrv);
putchar('\n');
return Lastdrv;

Note that geninterrupt(0x21) is not a function call but a compiler directive to
emit an INT 21h directly into the compiled code. Also, although the register
pseudo-variables such as _AL are extremely handy, the code generated by the
compiler uses the same CPU registers, so you can't rely on values staying in the
registers for very long.

38 UNDOCUMENTED DOS

DOS Library Functions Actually, this exact same operation could have been per
formed without int86() or _asm blocks. Most C compilers for the PC provide a set
of functions that map directly onto the most popular DOS functions. Microsoft C
provides functions with names such as _dos_getdrive() and _dos_setdrive(), for
instance, and Turbo C provides getdiskO and setdiskO. In Turbo C, the DOS
lastdriveO function is thus equivalent to setdisk(getdisk()). (Again with the im
portant exception of Novell NetWare, which we will be discussing later.)

DOS Calls From Turbo Pascal

What about other calling MS-DOS functions from other high-level languages? In
some ways, it is much simpler to make these calls from other languages, such as
Turbo Pascal, because you don't have to worry about which method to use. As
noted earlier, having the wide variety of techniques available in C ultimately isn't
so terrific, because programmers (and writers) end up spending too much time
deciding which technique to use.

Calling DOS fimctions from Turbo Pascal requires the Dos unit, which in
cludes the Registers variant record (similar to union REGS in C) and the MsDosO
fimction:

•C LASTDRV.PAS — uses only documented DOS >

program LastDrv;

uses dos;
var

r : Registers;
Lastdrive : Word;

begin

with r do begin
ah := $19; i Get Current Disk >
MsDosC r);
dL := at;
ah := SOE; -C Select Disk >
MsDosC r);
Lastdrive := at;

end;
WritelnC'LASTDRIVE=', ChrCOrdCA') - 1 + lastdrive));
Ha It(lastdrive);

end-

Chapter 2: Programming for Documented and Undocumented DOS: A Comparison 39

Note that Pascal's with construct allows us to refer to fields of the Registers
record as, for example, ah rather than r.ah.

Using the command-line version of Turbo Pascal, LASTDRV.PAS can be
turned into LASTDRV.EXE by typing:

tpc lastdrv.pas

True to Turbo Pascal's reputation for producing extremely tight code, the re
sulting Turbo Pascal executable file is only 2KB. The smallest C version was
about 4KB.

DOS Calls from BASIC

Finally, what about BASIC? The following version of LASTDRV displays the
LASTDRTVE letter and returns the numeric value of LASTDRIVE to the DOS

ERRORLEVEL:

REH LASTDRVIVE — uses only documented DOS
REM SINCLUDE: 'QB.BI'

SUB DOSEXIT(errorLeveL)

CLOSE

DIM Regs AS RegType

Regs.ax = SH4C00 + errorlevel ' Terminate Process
CALL INTERRUPT(&H21, Regs, Regs)
PRINT "this is never executed"

END SUB

DIM Regs AS RegType
Regs.ax = &H1900 • Get Current Disk
CALL INTERRUPT(&H21, Regs, Regs)
Regs.dx = Regs.ax
Regs.ax = SHOEOO ' Select Disk
CALL INTERRUPT(&H21, Regs, Regs)
Lastdrv = Regs.ax AND &HFF
PRINT "LASTDRIVE="; CHR$(ASC("A") - 1 + lastdrv)
CALL DOSEXITClastdrv)

END

To turn this source code into an executable file, you can use either Microsoft
Quick BASIC or the Microsoft BASIC 6.0 compiler:

40 UNDOCUMENTED DOS

BASIC 6.0 compiler:

be /o lastdrv.bas;
link lastdrv,,,qb.lib;

Quick BASIC (must produce a stand-alone executable file!):

qb lastdrv.bas /L qb.qlb

Using the BC /O switch or producing a stand-alone executable file from
within QuickBASIC is mandatory. Surprising as it seems, Microsoft BASIC has
no provision for returning exit codes to DOS. In order to return the value of
lastdrv as the DOS ERRORLEVEL, LASTDRV.BAS uses the subroutine

DOSEXrrO, which directly calls MS-DOS Fxmction 4Ch (Terminate Process with
Return Code) and never returns, thereby bypassing BASIC'S normal exit routine.
This will not work from an executable file that uses the BASIC run-time module

(for example, BRUN60EP). In fact, directly calling INT 21h Function 4Ch from an
executable that uses the BASIC nm-time module can easily hang the machine.

There's another problem. Because we never return after calling INT 21h
Fimction 4Ch, we do an end-rim around BASIC'S exit routine, and BASIC never
gets to clean up after itself. The result is that the cursor is lost when we return to
the DOS prompt. Thus, although this code shows how to make low-level system
calls from Microsoft BASIC, it really isn't a useful piece of software. BASIC has
many features going for it as a programming language, but returning exit levels
to the operating system apparently is not one of them. (Microsoft's latest incarna
tion of BASIC, though—the Professional Development System (PDS) 7.0—finally
does allow BASIC programs to set the DOS exit code.)

Using Undocumented DOS

Quarterdeck's expanded memory manager, QEMM, comes with a program
called LASTDR1V.COM, one of whose uses is to report the value of LASTDRIVE.
Interestingly enough, this program does not use documented Function GEh. In
stead, it uses undocumented Function 52h. We won't see why imtil later. For
now, though, the point is that if Quarterdeck can do it, so can you. Just as you
eventually have to leam about direct screen writes or programming the 8259 in
terrupt controller to be a successful PC programmer, so you need to leam about
the proper use of undocumented DOS.

What better place to start than with a program whose operation is well
known to us: LASTDRV. In the next section, we wiU again show how to write the

Chapter 2: Programming for Documented and Undocumented DOS: A Comparison 41

LASTDRV utility in assembly language, C, Turbo Pascal, and QuickBASIC, this
time using undocumented DOS. In particular, we will highlight the larger role
that the DOS version number plays when using vmdocumented DOS.

We just went through the process of using a standard DOS programmer's ref
erence like an office-supply catalog or a handbook of mathematical functions,
trying to find a tool that would help us write the LASTDRV utility. We never
found a single function called Last Drive, but we did find two fimctions (Get
Current Disk and Select Disk) that could be used together to achieve the same effect.

In other words, we saw lastdriveO is similar to setdisk(getdisk()). But there's
something illogical in this: why should DOS return the total number of drives
when you set the current drive? MS-DOS presumably keeps the value of
LASTDRIVE somewhere internally. Is there some way to find it?

If you leaf through Ralf Brown's appendix to this book you wiU find DOS's
internal location for LASTDRIVE in the middle of a DOS data structure railed the

List of Lists. The following shows the format of the List of Lists:

Offset Size Description

DOS 2.x

lOh BYTE number of logical drives in system

DOS 3.0

IBh BYTE value of LASTDRIVE command in CONFIG.SYS (default 5)

DOS 3.1-3.3

21h BYTE value of LASTDRIVE command m CONFIG.SYS (default 5)

DOS 4.x

21h BYTE value of LASTDRIVE command in CONFIG.SYS (default 5)

The List of Lists, or DOS internal variable table, is probably the most impor
tant undocumented DOS data structure, and INT 21 h Function 52h, which re
turns in the ES:BX register pair a pointer to the List of Lists, is probably the most
important imdocumented DOS fimction.

42 UNDOCUMENTED DOS

Note how the offset of the LASTDRIVE field within the DOS internal variable

table changed from DOS 2.0 to DOS 3.0 to DOS 3.1. This is the sort of undocu
mented DOS behavior our programs wiU have to deal with. What the offset will
be in future versions is anyone's guess, and that, of course, is the whole problem
with using imdocvunented DOS features.

In future versions of DOS, the LASTDRIVE field might even disappear,
breaking whatever programs depend upon its presence. The only comfort is that,
should the DOS List of Lists be changed radically, not only wiU our own pro
grams start to fail but practically all important Microsoft software will break, too!
In fact, the reliance of key pieces of Microsoft software such as Windows 3.0 on
the internal structure of DOS might make this internal structure less likely to
change. However, that perhaps is too much to hope for in a large company,
where the Windows 3.0 group might not even talk with the DOS 5 group.

In the midst of the changes to the position of LASTDRIVE within the List of
Lists—and, if you look at the appendix entry for INT 21h Fvmction 52h, massive
changes throughout the List of Lists as a whole—one thing has remained con
stant: INT 21h Function 52h itself, which from DOS 2.0 onward has been as stable
as any documented DOS function and which is supported even in simulated
DOS jenvironments such as the compatibility box of OS/21.10:

INT 21 - DOS 2+ internal - GET LIST OF LISTS

AH = 52h

Return: ESiBX -> DOS list of lists

No Magic Numbers

Because the List of Lists is so central to DOS programming, many books on the
subject end up using INT 21h Function 52h somewhere in their sample source
code. However, because of their authors' possibly guilty feelings about using im-
documented DOS in the first place, these books simply leave the code tmex-
plained. For example, from the Turbo Pascal source code in a useful book on
LAN programming, the following appears without any explanation:

regs.ah := $52;
intr($21, regs);
ofs := regs.bx + $22;
seg := regs.es;

while memwCseg:ofsi <> $ffff do

Chapter 2: Programming for Documented and Undocumented DOS: A Comparison 43

The author needed to use INT 21h Function 52h because it is the only way to
accomplish certain key tasks in DOS programming. To use this function and then
not explain what it does, though, seems far worse than any explicit use of imdoc-
umented DOS. To use imdocumented DOS and not explain it gives your code a
mysterious quality. As used above, 52h and 22h are certainly "magic numbers."
Let's see if we can't completely demystify INT 21h Function 52h.

You can try out this function, without even writing a program, by using the
DOS DEBUG utility. First assemble the DOS caU and execute it:

C:\UND0C2>debug
-a

775A:0100 mov ah, 52
775A:0102 int 21

775A:0104 nop
775A:0105

-g 104

AX=5200 BX=0026 CX=OOQO DX=OOOQ SP=FFEE BP=0000 SI=0000 DI=0000
DS=775A ES=028E SS=775A CS=775A IP=0104 NV UP El PL NZ NA PO NC
775A:0104 90 NOP

The register dump shows that in this sample DEBUG session, ES:BX points to
028E:0026. As we will see later, from DOS 3.1 on, the DOS internal variable table

actually starts at offset -12 (decimal) from the address returned in ES:BX. In this
case, therefore, the table starts at o^et 0026h - OCh (12 decimal), or OOlAh:

-d es:001a

028E:0G10 03 GO 01 00 GO 00
028E:0020 FF OA 00 00 F3 09 FO 75-8E 02 98 00 8E 02 A4 01 u
028E:0030 70 00 6E 01 70 00 00 02-00 00 49 OC 00 00 EE OC p.n.p I
028E:0040 00 00 6D OA 00 00 03 05-12 00 F4 09 04 80 99 15 ..m
028E:0050 9F 15 4E 55 4C 20 20 20-20 20 00 90 43 17 8E 02 ..NUL ..C...
028E:0060 47 17 8E 02 47 17 8E 02-43 17 8E 02 43 17 8E 02 G...G...C...C...
028E:0070 43 17 8E 02 43 17 8E 02-43 17 8E 02 47 17 8E 02 C...C...C...G...
028E:0080 43 17 8E 02 43 17 8E 02-43 17 8E 02 47 17 8E 02 C...C... C.. .G...
028E:0090 43 17 8E 02 43 17 8E 02-00 00 C...C

Aside from the header for the NUL device driver, it is difficult to find our

way aroimd here. If we compare the DEBUG dump with the format of the List of
Lists as shown in the appendix entry for INT 21h Function 52h, however, it aU
makes sense. We can even see that the Turbo Pascal code quoted earlier was add
ing 22h to the value returned from Function 52h so that it could get a pointer to

44 UNDOCUMENTED DOS

the NUL device, which is at the head of DOS's device chain. This is one of the
most poptilar uses of INT 21h Fimction 52h, but clearly the DOS List of Lists
holds many other goodies as well:

Offset Size Description

-12 WORD sharing retry count 0003

-10 WORD sharing retry delay 0001

-8 DWORD pointer to current disk buffer OAFFrOOOO

-4 WORD unread CON input 0000

-2 WORD first Memory Control Block 09F3

OOh DWORD first Disk Parameter Block 028E:75F0

04h DWORD Ust of DOS file tables 028E:0098

OSh DWORD pointer to CLOCK$ device driver 0070:01A4

OCh DWORD pointer to CON device driver 0070:016E

—DOS3.1-3.3-~

lOh WORD max bytes/block 0200

12h DWORD first disk buffer 0C49:0000

16h DWORD Current Directory Structures 0CEE:0000

lAh DWORD pointer to FCB table 0A6D:0000

lEh WORD number of protected FCBs 0000

20h BYTE number of block devices 03

21h BYTE LASTDRIVE 05

22h 18 BYTEs actual NUL device driver header [... NUL...]

34h BYTE number of JOlN'ed drives 00

Because the value of the LASTDRIVE field in the List of Lists is 5, LAST-

DR1VE=E, which is the default value when CONF1G.SYS does not include a
LASTDRIVE statement.

Having seen a little bit of what the DOS List of Lists looks like, we can now
retrace our steps in building the LASTDRV utility, this time using INT 21 h Func
tion 52h and the LASTDRIVE field within the DOS internal variable table.

You may be thinking that this is a futile exercise, because we already know
how to get the value of LASTDRIVE using a completely safe and documented
function that doesn't change with each new version of DOS. However, we will
see later on that using the undocumented internal value of LASTDRIVE can actu
ally be more reliable than using the documented Function OE return value (after

Chapter 2: Programming for Documented and Undocumented DOS: A Comparison 45

all. Quarterdeck must have some reason for using Function 52h instead of Fvmc-
tion OE!).

Undocumented DOS Calls From assembly Language

The following small assembly language program shows how the reference mate
rial on DOS Fimction 52h and the DOS List of Lists translates into a working ver
sion of LASTDRV.EXE. AU use of undocumented DOS is confined within the

subroutine _lstdrv;

; LASTDRV2.ASM — uses undocumented DOS

assume cs:_TEXT, ds:_DATA, ss:_STACK

_STACK segment para stack 'STACK'
_STACK ends

_DATA segment word public ■DATA'
msg db ■LASTDRIVE='
dletter db (?)

db Odh, Oah, '$ 1

_DATA ends

_TEXT segment word public 'CODE'

pubH c _lstdrv

_Lstdrv proc far
push si
push bx
push cx

mov si, 1Bh ; assume DOS 3.0

mov ax, 3000h ; Get MS-DOS version number
int 21h ; major=AL, minor=AH
cmp al, 2
jL fai I ; Requires DOS 2+

jne of s21 ; DOS 3+
mov si, 10h ; DOS 2-x
jmp short get
cmp al, 3
jne ofs21
and ah, ah ; DOS 3.0

46 UNDOCUMENTED DOS

jz get

ofs21: mov si, 21h /■ DOS 3.1+, DOS 4.x

get: mov ah, 52h r Get List of Lists
xor bx, bx r Zero out ES:BX so we can check
mov es, bx } for NULL after INT 21h
int 21h f List=ES:BX

mov cx, es

or cx, bx w Is ES:BX NULL?

jz fail } Function 52h not supported

mov al, byte ptr es : Cbx+si1
xor ah, ah } return LASTDRIVE in AX
jmp short Leave

fail: xor ax, ax return 0 in AX
Leave: pop cx

pop bx

pop si
ret

_Lstdrv endp

mai n proc near

mov ax, _,DATA
mov ds, ax

ca IL _Lstdrv
and ax, ax f test for fai Lure

jz done

mov bL, aL r save LASTDRIVE in BL
add aL, ("A" - 1) r convert LASTDRIVE to drive Letter
mov dLetter, aL r insert into string

mov ah, 9 r DispLay String
mov dx, offset msg
int 21h

done: mov ah, 4Ch } Return to DOS

mov aL, bL r exit code
int 21h

mai n endp

_TEXT ends

END main

Chapter 2: Programming for Documented and Undocumented DOS: A Comparison 47

The main subroutine contains boring documented DOS code for displa5dng
output and exiting to DOS. All the really interesting code is in the slightly convo
luted _lstdrv subroutine, paraphrased in the following pseudocode:

offset := IBh;
ver := DosVersionO;
if (ver.major < 2)

return failure;
else if (ver.major == 2)

offset := lOh;
else if (ver.major != 3 and ver.minor != 0)

offset := 21h;
ListOfLists := GetListOfLists();
if (ListOfLists == NULL)

return failure;
else

return ListOfListsCoffset];

The goal of the various DOS version number tests is to put the correct loca
tion of LASTDRTVE into the SI register, so that it can be added to the base address
of the List of Lists that we get back from DOS undocumented Function 52h. The
SI register is preloaded with the offset of LASTDRIVE for DOS 3.0, in an attempt
to somewhat reduce the large number of JMPs.

Note how, in all DOS versions greater than 3.0, we will store 21h into the
offset. When testing the DOS version number, it is generally useful to test for
nmnbers greater than or equal to the highest known version (for example, version
>= 4). Testing simply for equality (for example, version == 4) means that your
application won't work in a future version such as DOS 5. It is amazing how
many programs do DOS version checking incorrectly, thereby unknowingly cutt
ing themselves off from future DOS versions.

By treating all DOS versions higher than 3.0 as one unit, obviously we are
assuming that, for example, DOS 5 will store LASTDRIVE in the same place as
DOS 3.3. When dealing with undocumented DOS, you can either make this as
sumption or you can take the more conservative approach of halting the program
under unknown versions of MS-DOS. This "versionitis" is really the only problem
with using imdocumented DOS. If your application uses some of the less stable
undocumented functions or data structures, perhaps you should use == rather
than >= to test DOS version numbers. On the other hand, there are several dou
ble-checks your program could perform so that it is not simply left floundering

48 UNDOCUMENTED DOS

in the shifting sands of DOS internals; you will see several such double checks
later in this chapter and in the next chapter.

When testing the DOS version numbers returned from DOS documented
Function 30h, note that the major version number is counterintuitively returned
in AL (the law portion of AX), and the minor version number is returned in AH
(the high portion of AX). When testing DOS version munbers, it is also important
to remember that a version number such as 3.1 is actually 3.10. In the case of DOS
3.10, the minor version number in AH is not Olh, nor lOh, but 10 decimal (OAh).

In any case, once SI holds an offset appropriate to the version of DOS the pro
gram is running imder, the rest is easy:

mov ah, 52h
int 21h

mov at, byte ptr es:Cbx+si]
xor ah, ah

Actually, in LASTDRV2.ASM the code is slightly more complicated than this
because we have taken the precaution of ensuring that imdociunented INT 21h
Function 52h is really supporting by checking that the pointer in ES:BX is not
NULL. The ES:BX register pair is loaded with NULL prior to invoking INT 21h so
that, in a really screwy simulated DOS environment that doesn't support this
fimction, ES:BX will at least hold a reasonable value we can test for.

Note that we don't check whether the carry flag (CF) is set, however. Unless
the documentation specifically says that a function sets or clears CF, the state of
CF is undefined. The entry for INT 21h Fimction 52h in the appendix to this book
says nothing about CF. Thus, far from being an extra-careful precaution, checking
CF in fact would be a perfect example of rel5dng on undefined behavior. As noted
in chapter 1, using undocumented DOS is completely different from relying on
undefined behavior.

Although this version of LASTDRV looks completely different from the ver
sion that used only documented DOS calls, the result is similar: the value of
LASTDRIVE is both displayed and returned. The difference is that now we're
getting our information straight from the horse's mouth, by examining the DOS
internal variable table.

Chapter 2: Programming for Documented and Undocumented DOS: A Comparison 49

Undocumented DOS Calls From 0

This book has spent so much time on the LASTDRV utility, and on various ways
of performing DOS calls from C, that you would think there would be nothing
new to say about making undocumented DOS calls from C. In fact, the following
version (LASTDRV4.C) introduces a number of important topics, including the
use of far pointers in C, the MK_FP() macro, testing the DOS version number in
C, and the use of int86x() rather than int86():

/* LASTDRV4-C — uses undocumented DOS */

^include <stdLib-h>

^include <stdio-h>

^include <dos-h>

#ifndef MK_FP
^define MK_FP(seg,ofs) \

((void far *)(((unsigned LongXseg) « 16) i (ofs)))
#endif

ma i n()

i

union REGS r;
struct SREGS s;
char far *dosList;
unsigned Lastdrv_ofs;
unsigned Lastdrv;

/* get offset for LASTDRIVE within DOS List of Lists */
if (_osmajor < 2)

return 0;
else if (_osmajor == 2)

lastdrv_ofs = 0x10;
else if (_osmajor == 3 && _osminor == 0)

Lastdrv_ofs = Oxib;
else

Lastdrv_ofs = 0x21;

/* Get DOS Lists of Lists */

r-h-ah = 0x52;
segread(&s);
s-es = r-x-bx = 0;
int86x(0x21, &r, &r, &s);
/* make sure Function 52h is supported */
if (! s.es && ! r.x-bx)

50 UNDOCUMENTED DOS

return 0;
dosUst = MK_FP(s.es, r.x.bx);

/* Get LASTDRIVE number */
lastdrv = doslistCLastdrv_ofs];

/* OS/2 DOS compatibility box sets LASTDRIVE to FFh */
if (Lastdrv == OxFF)

return 0;

/* Print LASTDRIVE Letter */
fputs("LASTDRIVE=", stdout);
putcharCA' - 1 + Lastdrv);
putchar('Xn');

/* return LASTDRIVE number to DOS */
return Lastdrv;

>

If you contrast LASTDRV4.C with the earlier versions that used only docu
mented D(3S calls, you will notice a number of significant differences:

Rather than call INT 21h Function 30h to get the DOS version munber, as we
did from assembly langauge, we now use the global variables _osmajor and _os-
minor, provided by most C compilers for the PC. In Microsoft C, Watcom C 386,
and MetaWare High C 386, these variables are declared in STDLIB.H; in Turbo C
and JPl TopSpeed C, they are declared in DOS.H. It is important to remember
that in DOS 3.3, for example, _osminor is 30 (decimal), not 3, and not 0x30, either.

Because DOS Function 52h returns the address of the List of lists in ES:BX,
and because int86() doesn't handle segment registers such as ES, we need to use
int86x() and struct SREGS. We don't need to pass any segment registers into
Fimction 52h, so it seems as though it doesn't much matter what values struct
SREGS holds before calling int86x(). Nonetheless, it is a good habit to call the
segreadO fimction to load the struct SREGS, as we do here, because if you ever
try to move your code to a protected-mode DOS extender, it will be crucial that
the segment registers are never loaded with garbage values, even if these regis
ters are seemingly not used.

Because the List of Lists is part of DOS, not located inside our program, it
must be addressed with a four-byte (far) pointer. The C variable dosUst is in
tended to hold this address, and is declared as a char far *, rather than as a char *.

Chapter 2: Programming for Documented and Undocumented DOS: A Comparison 51

This allows us to peek and poke DOS's internal variable table even from a C pro
gram that otherwise uses only two-byte (near) pointers.

After DOS Fxmction 52h has returned the address of the List of Lists in ES:BX,
int86x() returns it to us in s.es and r.x.bx. How do we move these into char far

*doslist? LASTDRV4.C uses the macro MK_FP(), which (as its name implies)
makes a far pointer from a segment and an offset. This handy macro is provided
in the DOS.H include file with Turbo C and TopSpeed C but, imfortunately, not
with Microsoft C. In LASTDRV4.C, we use the C preprocessor to define a
MK_FP() macro if one is not already present. While the definition of MK_FP()
makes it appear as if a shift left (SHL) is being performed, but in fact any good C
compiler for the PC will turn this code:

void far *fp = ((void far *)(((unsigned LongXseg) « 16) | (ofs)))

into this:

mov ax, _seg

mov dx, _ofs
mov word ptr _fp, dx
mov word ptr _fp+2, ax

(You can examine your C compiler's output by compiling, for example, with
the -Fa or -Fc switch in Microsoft C, or the -S switch in Turbo C.)

Rather than use the MK_FP() macro, in Microsoft C we could also use the fol

lowing construct:

FP_SEG(dosList) = s.es;
FP_OFF(doslist) = r.x.bx;

FP_SEG() and FP_OFF() are two other important macros for PC systems pro
gramming in C. Whereas MK_FP() constructs a far pointer fi-om a segment and
an offset, FP_SEG() and FP_OFF() perform the opposite operation: FP_SEG() ex
tracts the segment of a far pointer, and FP_OFF() extracts the offset. Microsoft's
versions of FP_SEG() and FP_OFF() are a little strange in that they are C lvalues
and can therefore be assigned to.

This C version of LASTDRV also does a bit more work than the assembly lan
guage version. Before printing out the LASTDRTVE letter, LASTDRV4.C checks
to see if lastdrv is OFFh. This is the value that the OS/2 1.10 DOS compatibility

52 UNDOCUMENTED DOS

box (also known as the "penalty box") uses for the LASTDRIVE field in the DOS
List of Lists. A program running in this compatibility box thinks it is running
under DOS 10.10, so you might think we should simply fail if (_osmajor >= 10).
However, the support for vmdocumented DOS has improved in each version of
the DOS box, so there is no reason to cut ourselves off unnecessarily from this
simulated DOS environment. For instance, the DOS boxes in OS/2 2.0 (which

masquerade as DOS version 20.0!) do provide proper support for LASTDRIVE,
and for most other fields in the List of Lists as well. It is worth noting that, al
though the DOS version number is in the double digits, in fact the OS/2 compati-
bihty box closely resembles DOS 3.10 with SHARE.EXE loaded.

What, No Structures? To most C programmers, the big question in LASTDRV4.C
is "Where are the structures?!" You need only look at the entry for DOS Function
52h and the List of Lists in the appendix to see that all these offsets seem to cry
out to be represented with a C structure. In fact, you might ask why this book
doesn't present an UNDOC.H include file!

The reason we do not have an UNDOC.H include file for you is that pro

grams that use vmdocumented DOS functions should use only a few of them. An
UNDOC.H file could be an invitation to overuse vmdocumented DOS calls. We

don't want to promote vmdocumented DOS as yet another "application
programmer's interface" (API) consisting of several hvmdred "new" functions and
data structures!

There is in fact an additional, more serious, problem with using data struc
tures in vmdocumented DOS programming. This will become clear as we discuss
the next program, LASTDRV5.C, which uses a C structure to represent much of
the DOS List of Lists:

/* LASTDRV5.C */

^include <stdLib.h>

^include <dos.h>

^pragma packd)

#define LISTOFLISTS_DECR 12

typedef struct i
unsigned shareretrycount;
unsigned shareretrydelay;
void far *currdiskbuff;

Chapter 2: Programming for Documented and Undocumented DOS: A Comparison 53

void near *unreadcon;
unsigned mcb;
void far *dpb;
void far *fiLetabLe;
void far *cLock;
void far *con;
union -C

struct -C

unsigned
unsigned
void far

unsigned
> dos2;

struct -C

unsigned
unsigned
void far

void far

unsigned
void far

unsigned
void far

unsigned
unsigned
> dos30;

struct -C

unsigned
void far

void far

void far

unsigned
unsigned
unsi gned
unsigned
unsigned
> dos31;

> vers;
> ListOfLists;

char

char

maxb

numdrive;
maxbytes;
*f i rst__di skbuf f ;
char nuLCISD;

numblkdev;
maxbytes;
*fi rst_di skbuff;
*currdi r;
char Lastdrive;
*stri ngarea;
size_stri ngarea;
*fcbtab;
f cb_y;
char nuLC18II;

ytes;
*diskbuff;
*currdi r;
*f cb;
numprotfcb;
char numblkdev;
char Lastdrive;
char nuLCISl;
numjoin;

/* and higher */

ma i n()

i

union REGS r;
struct SREGS s;

ListOfLists far *doslist;
unsigned Lastdrive;

/* No List Of Lists in DOS 1.x */

54 UNDOCUMENTED DOS

if (_osmajor < 2)
return 0;

/* Get DOS List of Lists */

r.h.ah = 0x52;
segread(Ss);
s.es = r.x.bx = 0;
intdosx(&r, &r, &s);
if (! s.es && ! r.x.bx)

return 0;
dosList = MK_FP(s.es, r.x.bx - LISTOFLI$TS_DECR);

/* Get LASTDRIVE value, depending on DOS version */
if (_osmajor == 3 && _osininor == 0)

lastdrive = dosList->vers.dos30.lastdrive;

else if (_osmajor == 2)
lastdrive = doslist->vers.dos2.numdrive;

else

lastdrive = doslist->vers.dos31.lastdrive;

/* print LASTDRIVE letter, return LASTDRIVE number */
printf("LASTDRIVE=%c\n", 'A' - 1 + lastdrive);
return lastdrive;

From looking over struct ListOfLists, you shotild imderstand why the DOS
internal variable table is called the list of lists: most of the fields are just pointers
to other data structures, including the list of DOS Memory Control Blocks
(MCBs), the list of Drive Parameter Blocks (DPBs), the DOS device chain, and the
File Control Block (FCB) table. In fact, in a complete struct ListOfLists, these
other fields, rather than using void far *, woxild each use, for example, FCB far *
or DPB far *.

Within struct ListOfLists, a C union is used to manage the differences be
tween DOS versions. Unions help represent the changes that each version of DOS
brought to the list of Lists. Each component of a C union is allocated storage
starting at the beginning of the union, and the size of a union is the amount of
storage necessary to represent its largest component. In other words, as in a vari
ant record in Pascal, the components are overlaid. In the union vers within struct
ListOfLists, the same block of memory can be viewed as a struct dos2, a struct
dos30, or a struct dos31.

The line that reads #pragma pack(l) is essential. By default, C compilers for
the PC align structures on word (two-byte) boimdaries. For our C structure to

Chapter 2: Programming for Documented and Undocumented DOS: A Comparison 55

correspond exactly with the layout of the DOS internal variable table, we need to
pack the structure on b5i:e boundaries. Otherwise, an unsigned char followed by
an unsigned short would occupy four b5d:es, not three, and our structure would
not reflect DOS's internal variable table.

Note that we create a far pointer to a struct listOfLists, not a struct ListOf-
Lists. The memory for the structure already exists inside DOS.

As noted earlier, rather than using ES:BX as a pointer to the List of lists, we
use ES:BX-12. The appendix entry on DSTT 21h Fimction 52h shows that the List of
Lists actually begins at offset -12 (decimal) from the address returned in ES:BX.
This wasn't important when we were using nxrmeric offsets from the value Func
tion 52h returns in ES:BX, but now that we're using a structure, we have to make
sure we're really pointing at the beginning of the List of Lists.

This example demonstrates a fundamental problem with using data struc
tures when working with undocumented DOS: structures are inflexible. The C
compiler, seeing a reference such as doslist->vers.dos31.1astdrive, simply turns this
into an offset into doslist. But these offsets are computed at compile time, not
when the program is running, so they can't respond to run-time conditions such
as different versions of an operating system.

Some of the simpler information-hiding features of C++ could be used to cre
ate a ListOfLists structure that responded to the DOS version number. When
working with undocumented DOS data structures, programmers often wish they
weren't so unruly, and one benefit of C++ is its ability to implement such "wish
ful thinking" by creating classes that manage and hide the complexity of underly
ing structures.

Most of us are working in C, however, not C++. Therefore, when using only
one or two fields from an undocumented DOS data structure, and when place
ment of the fields within the structure differs from one DOS version to the next, it

is best not to use data structures, but to compute offsets instead. Structures may
be self-documenting, but they are also static. Remember the convoluted expres
sion used earlier to extract the lastdrive field from the appropriate component of
the union vers in struct listOfLists? Note how much simpler it is when you use
offsets:

if (_osmajor == 3 && _osminor == 0)
Lastdrv_ofs = Ox1B;

else if (_osmajor == 2)
lastdrv_ofs = 0x10;

56 UNDOCUMENTED DOS

else

Lastdrv_ofs = 0x21;
Lastdrv = doslistCLastclrv_ofs];

or:

Lastdrv_ofs = (_osmajor == 3 && _osminor == 0) ? Ox1B :
(_osmajor == 2) ? 0x10 :
/* otherwise */ 0x21 ;

Lastdrv = dosListIILastdrv_of sD;

or the even more compact C expression, which also uses the C ?: ternary condi
tional operator in the next version of this utility:

/* LASTDRV6.C */

^include <stdLib-h>

^include <stdio-h>

#include <dos.h>

#ifdef TURBOC
^define ASM asm

#elif defined(_MSC_VER) && (_MSC_VER >= 600)
^define ASM _asm

#eLse

#error Requires inline assembler
#endif

unsigned _dos_lastdrive(void)
i

char far *doslist;

if (_osmajor < 2)
return 0;

ASM mov ah^ 52h
ASM int 21h

ASM mov doslist+2, es
ASM mov doslist, bx

return doslistC(_osmajor == 3 && _osminor == 0) ? OxIB :
(_osmajor == 2) ? 0x10 :
/* otherwise */ 0x213;

>

mainO

Chapter 2: Programming for Documented and Undocumented DOS: A Comparison 57

unsigned Lastdn've = _dos_Lastdrive();
if (lastdrive == OxFF)

return 0;
fputs("LASTDRIVE=", stdout);
putcharCA' - 1 + lastdrive);
putcha r('\n');
return lastdrive;

The other item of interest in LASTDRV6.C is the use of in-line assembly
within the function _dos_lastdrive(). In-line assembly language often seems like
an invitation to produce extremely in-line code: C programmers encoimtering in
line assembly language for the first time seem to forget all about subroutines. Es
pecially when working with the combination of imdocumented DOS and in-line
assembler, you should remember to use subroutines. But also remember our ear
lier warning to preserve the DI, SI, DS, SS, SP registers! The in-lme assembler in
_dos_lastdrive() only changes AX, BX, and ES, so we're okay here. The name was
chosen to conform to the Microsoft C naming convention (_dos_getdrive(),
_dos_setdrive(), etc.).

Undocumented DOS Calls From Turbo Pascal

Turbo Pascal programs that make undocumented DOS calls are similar to those
that make documented calls, except that, as we saw with assembly language and
C, such programs need to be especially aware of the version of MS-DOS under
which they are running. The following program, LASTDRV2.PAS, uses the func
tion DosVersionO, added in Turbo Pascal 5.0:

{ LASTDRV2.PAS >

program LastDrv;

uses dos;

var

r : registers;
lastdrv_ofs : Word;
lastdrive : Word;
vers : Word;

begin
{ determine offset of LASTDRIVE within DOS List of Lists >

58 UNDOCUMENTED DOS

Lastdrv_ofs := $21;
vers := DosVersion;
case Lo(vers) of

0 : HaLt(O); £ DOS 1 >
2 : Lastdrv_ofs := $10;
3 : if Hi(vers) = 0 then Lastdrv_ofs := $1B;

end;

i Get pointer to DOS List of Lists >
with r do begin

ah := $52;
es := 0; bx := 0;
MsDosC r);
if (es = 0) and (bx = 0) then

Ha Lt(0);
Lastdrive := MemCes:bx+Lastdrv_ofsi;

end;
if Lastdrive = $FF then

Ha Lt(0);

{ Print LASTDRIVE letter; return LASTDRIVE value >
Writeln('LASTDRIVE=', Chr(Ord('A') - 1 + lastdrive));
Ha It(lastdrive);

end.

If you are working with a version of Turbo Pascal earlier than 5.0 and don't
have the DosVersionO function, it is easy to write your own:

function DosVersion : Word;
var

r : registers;
begin

with r do begin
ax := $3000;
MsDos(r);
DosVersion := ax;

end;
end;

Note that LASTDRV2.PAS uses the predefined Turbo Pascal array Mem[] in
order to peek at the DOS List of Lists. Mem[], MemW[], and MemL[] map onto
the first megabyte of physical memory in the machine and are addressed with a
segmentioffset index, such as Mem[seg:ofs].

Chapter 2: Programming for Documented and Undocumented DOS: A Comparison 59

Rather than peek at a raw physical memory address with Mem[], we could
use a data structure. Just as structures and imions can be used when making im-
documented DOS calls from C, so variant records can be used from Turbo Pascal,
as shown in LASTDRV3.PAS:

i LASTDRV3.PAS >

program LastDrv;

uses dos;

type

Dos20 = record

numdrives : Byte;
maxbytes : Word;
first_diskbuff : Longint;
nuL : array II1--18!] of Byte;

end;

Dos30 = record

numblkdev : Byte;
maxbytes : Word;
first_diskbuff : Longint;
currdir : Longint;
Lastdrive : Byte;
stringarea : Longint;
size_stringarea : Word;
fcbtab : Longint;
fcb_y : Word;
nuL : array C1--18!] of Byte;

end;

Dos31 = record -C DOS 3-1 and higher >
maxbytes : Word;
diskbuff : Longint;
currdir : Longint;
fcb : Longint;
numprotfcb : Word;
numblkdev : Byte;
Lastdrive : Byte;
nuL : array C1--18I1 of Byte;
numjoin : Word;

end;

ListOfLists = record

shareretrycount : Word;
shareretrydelay : Word;

60 UNDOCUMENTED DOS

currdiskbuf : Longint;
unreadcon : Word;
mcb : Word;
dpb : Longint;
fiLetabLe : Longint;
cLock : Longint;
con : Longint;
case Word of

20 : (dos20 : Dos20);
30 : (dos30 : Dos30);
31 : (dos31 : Dos31);

end;

var

Lastdrive : Word;

function GetLastDrive : Word;
var

dosList : ̂ ListOfLists;
r : registers;
vers : Word;

begin
•C Get pointer to DOS List of Lists >
with r do begin

ah := $52;

es := 0; bx := 0;
MsDosC r);
if (es = 0) and (bx = 0) then begin

GetLastDrive := 0;
Exit;

end;
dosList := Ptr(es, bx - 12);

end;
•C LASTDRIVE offset depends on DOS version >
GetLastDrive := doslist^-dos31.Lastdrive;
vers := DosVersion;
case Lo(vers) of

0 : GetLastDrive := 0; -C DOS 1 >
2 : GetLastDrive := dosList'^-dos20-numdrives;
3 : if Hi(vers) = 0 then

GetLastDrive := dosList^-dos30-Lastdrive;
end;

end;

begin
Lastdrive := GetLastDrive;
if Lastdrive = 0 then

Chapter 2: Programming for Documented and Undocumented DOS: A Comparison 61

Ha Lt(0);
Writeln('LASTDRIVE=', Chr(Ord('A') - 1 + Lastdrive));
Halt(lastdrive);

end.

LASTDRV3.PAS has nice self-documenting structures but doesn't adjust itself
to the DOS version number as well as LASTDRV2.PAS, which simply used nu
meric offsets. This is the same tradeoff we saw when using the C programming
language.

Undocumented DOS Calls From BASIC

The first BASIC version of the LASTDRV utility, which used only documented
DOS calls, required a DOSEXITO subroutine in order to return an exit code to
MS-DOS. The second BASIC version of LASTDRV, which uses the undocu

mented DOS List of Lists, also needs a DOSVERSIONO fvmction so that it can de

termine the offset of LASTDRIVE within the DOS List of Lists:

REM LASTDRV2.BAS

REM SINCLUDE: 'QB.6I'

DEF FNHI (x) = X \ &H100

DEF FNLO (x) = x AND 8HFF

FUNCTION DOSVERSION

DIM Regs AS Reglype
Regs.ax = SH3000
CALL INTERRUPT(&H21, Regs, Regs)
DOSVERSION = Regs.ax

END FUNCTION

SUB DOSEXIT(errorLevel)

CLOSE

DIM Regs AS RegType

Regs.ax = &H4C00 + errorLeveL
CALL INTERRUPT(&H21, Regs, Regs)

END SUB

REM based on DOS version number, find offset of LASTDRIVE
lastdrvofs = &H21

vers = DOSVERSION

IF FNLOCvers) < 3 THEN DOSEXIT(O)

IF (FNLO(vers) = 3) AND (FNHKvers) = 0) THEN Lastdrvofs = &H1B

62 UNDOCUMENTED DOS

REM get address of DOS List of Lists
DIM Regs AS RegTypeX
Regs.ax = &H5200
Regs.es = 0
Regs.bx = 0
REM to use current value of DS, set to -1
Regs.ds = -1
CALL INTERRUPTX(&H21, Regs, Regs)
IF (Regs.es = 0) AND (Regs.bx = 0) THEN DOSEXIT(O)

REM peek at LASTDRIVE field within DOS List Of Lists
DEF SEG = Regs.es
lastdrv = PEEK(Regs.bx + lastdrvofs)
IF lastdrv = &HFF THEN DOSEXIT(O)

REM print LASTDRIVE letter, return LASTDRIVE number
PRINT "LASTDRIVE="; CHR$(ASC("A") - 1 + lastdrv)
CALL DOSEXIT(lastdrv)

END

Once BSTT 21h Function 52h returns the address of the List of Lists in the

ES:BX register pair, DEF SEG and PEEKO are used to read the LASTDRIVE field.
Instructions for compiling this code into a stand-alone executable can be found in
the earlier section on "DOS caUs from BASIC."

When Not to Use Undocumented Features

You might think that the last few sections descended into the very depths of DOS
simply to bring back a piece of information that was readily available all the
while using DOS's weU-documented function interface. This could be compared
to an American who learns Japanese and then uses his newly acquired skill only
to watch American movies dubbed into Japanese.

This provides us with a fine example of when not to use imdocumented DOS.
If there is a way to perform an operation using the docvunented DOS
programmer's interface, use it. In fact, go out of your way to use the documented
interfaces. If there is a seemingly convenient way to accomplish some task using
the undocumented calls described in this book, and a less convenient way in

volving only documented calls, use the documented calls. (You'll see a good ex
ample of this in chapter 3 where we discuss the temptation to use INT 29h.)

The "Mount Everest" approach to programming—the desire to use a fxmction,
simply because it is there—^is wonderful when you are experimenting with a new

Chapter 2: Programming for Documented and Undocumented DOS: A Comparison 63

operating system, but it has no place in commercial software. One of our worries
in producing this book was that it might encourage the over-use of undocu
mented DOS. Please don't use undocumented DOS when documented DOS wiU do.

Having said all this, though, let's remember that lots of successful commer
cial software on the PC uses imdocumented DOS features. Certain things can't be
done using only the documented interfaces. This is somewhat analogous to the
situation with CKDS calls, BIOS calls, and direct hardware access; clearly direct
hardware access should be used only as a last resort, but almost all successful PC
software does some direct hardware access!

Verifying Undocumented DOS

Actually, there is one good reason for using imdocumented DOS when there is
equivalent documented functionality. It would be nice to have a way to perform
a baseline validation of the usability of undocumented DOS in any given envi
ronment. Obviously, the best way to validate a value computed using undocu
mented DOS is to compare it to a known value with which it should be
equivalent.

It seems we can't double check the results of undocumented DOS against
documented DOS because, if we could, we would be using documented DOS in
the first place! To check that doslist->lastdrive really is equal to setdisk(getdisk()),
for example, seems pointless. But what if you were interested in some value
other than LASTDRIVE from the DOS List of Lists? Then, successfully comparing
doslist->lastdrive against a known value might give your program enough confi
dence to proceed using undocumented DOS, whereas a mismatch might indicate
that something is very wrong.

Therefore, you might want to incorporate something similar to the following
function in your programs:

typedef enum {FALSE, TRUE > BOOL;

/* one possible way of veryifying undocumented DOS */
BOOL undoc_dos_okay(void)
{

char far *dosList;

/* get offset for LASTDRIVE within DOS List of Lists */
unsigned Lastdrv_ofs = 0x21;
if (_osmajor==2) Lastdrv_ofs = 0x10;

64 UNDOCUMENTED DOS

else if ((_osmajor==3) && (_osmajor==0)) lastdrv_ofs = Ox1b;

/* Get DOS Lists of Lists */

ASM mov ahy. 52h
ASM xor bx, bx
ASM mov es, bx
ASM int 21h

ASM mov dosList, bx
ASM mov dosList+2, es

if (! dosList)

return FALSE;

/* use documented DOS to verify results */
#ifdef TURBOC

return (setdiskCgetdisk()) == dosListClastdrv_ofs]);
Uelse

i

unsigned drive;
unsigned Lastdrive;
_dos_getdrive(&dri ve);
_dos_setdrive(drive, klastdrive);
return (Lastdrive == doslistClastdrv^ofs]);

>

#endi f

>

If undoc_dos_okay() returns TRUE in, say, DOS 7.8, it is no guarantee that all
code that employs undocumented DOS will work. However, if imdoc_dos_
okayO returns FALSE, there's a good chance that your code will need to be fixed
before it will run properly. For example, undoc_dos_okay() fails in the OS/2 1.10
DOS box, but it succeeds in the vastly improved multiple DOS boxes of OS/2 2.0.

An Important Special Case: Novell NetWare

We noted earlier that Quarterdeck's LASTDRTV.COM utility uses the undocu
mented rather than the documented technique for retrieving the value of
LASTDRIVE. One reason for this seemingly outrageous flouting of the normal
rules of good behavior is that LASTDRIV.COM can also be used to change the
value of LASTDRIVE, dynamically adding or subtracting drives from DOS's in
ternal table. That is precisely the kind of operation which requires undocu
mented DOS.

Chapter 2: Programming for Documented and Undocumented DOS: A Comparison 65

But there's an additional reason why Quarterdeck's LASTDRIV.COM uses
undocumented DOS for getting LASTDRTVE: the documented method is actually
less rehable than the vmdocumented method! On any of the many PCs that are
Novell NetWare workstations, INT 21h Fimction OEh doesn't return the value of

LASTDRIVE; it returns the number 32, corresponding to the number of possible
workstation drive mappings (drive letters A through Z, plus temporary drives
with the silly names [, \,], and '). Thus, tmder NetWare, the versions of
LASTDRV which use undocumented DOS display correct values for LAST-
DRIVE, whereas the supposedly "well-behaved" version of LASTDRV that uses
only documented DOS always prints out the following display:

OLastdrv

LASTDRIVE='

Likewise, vmder NetWare our carefully written undoc_dos_okay() function
returns FALSE! This happens not because imdocumented DOS is "broken" but
because documented Fimction OEh is returning a strange value.

It is important to look into this. Novell is by far the largest suppher of PC
local area network (LAN) software; its share of the PC LAN software market is

twice that of even IBM. Therefore, if the version of LASTDRV that uses docu

mented DOS doesn't work under Novell, it essentially doesn't work!
In any case, this gives us an excuse to look into what it means for a program

to "hook DOS." How does the NetWare shell running on a workstation change
DOS so that Function OE returns 32 instead of the value of LASTDRIVE? Easy: it
"hooks DOS." That is, the NetWare shell inspects every DSTT 21h function request
before DOS itself sees it, and the shell decides whether to pass that function
request along to DOS or to pass the request over the network to another machine,
the server (which is not even a DOS machine!). Finally, even if the shell does
decide to pass the INT 21h function request along to DOS, it gets to modify any
registers before returning control to the application (such as LASTDRV) that
called INT 21h in the first place.

In order to hook DOS, all a program has to do is get the address of the cur
rent interrupt handler for INT 21h and then install its own handler for INT 21h.
There's nothing difficult or undocumented about this capabiHty: it's built right
into DOS itself and is one of the key facilities that makes DOS so extensible.

In fact, it's so simple that we can simulate NetWare's handUng of Function
OEh, and provide a realistic example of hooking DOS, with just a few lines of

66 UNDOCUMENTED DOS

code. Generally programs that hook DOS (like Novell's ANET3) are memory-res
ident. However, building a TSR would complicate this discussion unnecessarily,
so the following program, FUNC0E32, instead acts as a "shell" around another
program. For example:

C: \UNDOOf unc0e32 lastdrv- exe

LASTDRIVE='

10 DOS calls

1 changed

Note, however, that although the documented version of LASTDRV is fooled
by FUNC0E32, the version that uses imdocumented DOS isn't:

C: \UNDOOf unc0e32 lastdrv.exe

LASTDRIVE=E

10 DOS calls

1 changed

FUNC0E32 consists of two functions: The fimction dos() is our INT 21h han

dler. Each time INT 21h is invoked, we want dos() to get control. The function
changes the value Fimction GEh returns in AL to 32, and also keeps count of how
many INT 21h calls it has seen and how many it has changed. The function
mainO installs dos() as the INT 21h handler, spawns the program named on the
command line, and then restores the original INT 21h handler (which may be
DOS itself, but which, on most PCs, will be some other program that had earlier
hooked DOS, such as NetWare, CED, the Epsilon text editor, etc.):

/*

FUNC0E32-C — take over INT 21h Function OEh; return 32 in AL
*/

^include <stdlib-h>

^include <stdio-h>

^include <process.h>
^include <dos-h>

#pragma pack(l)

typedef struct i

Chapter 2: Programming for Documented and Undocumented DOS: A Comparison 67

#ifdef ^TURBOC
unsigned bp,di,si,ds,es,dx,cx,bx,ax;

#eLse

unsigned es,ds,di,si,bp,sp,bx,dx,cx,ax; /* same as PUSHA */
#endif

unsigned ip^cs^flags;
> REG_PARAMS;

void interrupt far dos(REG_PARAMS r);

void (interrupt far *oLd)();
unsigned long calls = 0;
unsigned long changed = 0;

void failCchar *s) -C puts(s); exitd); >

mainCint argc, char *argvC])
i

if (argc <
failCusage: func0e32 [program namel <args-

/* hook INT 21 */

old = _dos_getvect(0x21);
_dos_setvect(0x21, dos);

/* run command */

spawnvp(P_WAIT, argvCIT, &argvC1Il);

/* unhook INT 21h */

_dos_setvect(0x21, old);
printf("\n%lu DOS callsXn", calls);
printf("%lu changedXn", changed);

void interrupt far dos(REG_PARAMS r)
i

caIls++;
if ((r-ax » 8) == OxOE)

i

(*old)();
r.ax = OxOEOO + 32;
changed++;

>

else

_chain_intr(old);

68 UNDOCUMENTED DOS

This code is important, not only to illustrate how it is perfectly legal (and
completely documented!) for a company like Novell to change the return value
from a DOS function but also as an example of how to hook a DOS interrupt like
INT 21h. Some undocumented DOS fimctions are not for you to call, but for you
to implement so that DOS can call them ("don't call us, we'll call you"). Such fimc
tions are indicated in Appendix A with the phrase "Called with" rather than "Call
with." For example, the DOS network redirector (which, incidentally, Novell does
not use), is one such set of "call back" functions (actually, subfunctions to INT 21h
Function llh).

Novell's altering of Function OEh was probably a mistake: in fact, Novell pro
vides an alternate function, INT 21 h Function DBh, which does return the correct

value of LASTDRIVE. This is not part of undocumented DOS, so it does not ap
pear in Appendix A; however, it is documented in the "Interrupt List" on the ac
companying disk.

To be compatible with NetWare, we need to change all of our validity check
ing. Instead of asserting that imdocumented DOS is unusable simply because
doslist->lastdrive != setdisk(getdisk()), we now perform a slightly more compli
cated test, as shown in the following improved version of imdoc_dos_okay():

BOOL netware(void);
unsigned Lastdrv_netware(void);

BOOL undoc_dos_okay(void)

char far *dosList;

unsi gned Lastdrv_doc;
unsigned drive;

/* get offset for LASTDRIVE within DOS List of Lists */
unsigned Lastdrv^ofs = 0x21;
if (_osmajor==2) Lastdrv__ofs = 0x10;
else if ((_osmajor==3) && (_osmajor==0)) Lastdrv_ofs = Oxib;

/* Get DOS Lists of Lists */

ASM mov ah, 52h
ASM xor bx, bx
ASM mov es, bx
ASM int 21h

ASM mov dosList, bx
ASM mov dosList+2, es

Chapter 2: Programming for Documented and Undocumented DOS: A Comparison 69

if (! doslist)

return FALSE;

/* use documented DOS to verify results */
#ifdef TURBOC

Lastdrv_doc = setdiskCgetdisk());
#eLse

_dos_getdrive(&drive);
_dos_setdrive(drive, &Lastdrv_doc);

#endi f

if (dosListCLastdrv_ofs3 == Lastdrv_doc)
return TRUE;

else if (netwareO)

i

if (Lastdrv_doc != 32)
putsC'NetWare Function OEh Looks strange");

return (dosListCLastdrv_ofsD == Lastdrv_netware());

return FALSE;

/*

Novell Return Shell Version function (INT 21h AH=EAh AL=01h)
see "Interrupt List" on accompanying disk; also see Barry
Nance, Networking Programming in C, pp. 117, 341-2. Could also
test for presence of Novell IPX with INT 2Fh AX=7A00h.

*/

BOOL netware(void)

char bufC403;
char far *fp = buf;
ASM push di
ASM mov ax, OEAOIh
ASM mov bx, 0
ASM les di, fp
ASM int 21h

ASM xor al, al
ASM mov ax, bx
/* if BX still 0, then NetWare not present; return in AX */
ASM pop di

>

/*

Novell Get Number of Local Drives function (INT 21h AH=DBh)

see "Interrupt List" on accompanying disk
*/

unsigned lastdrv_netware(void)

70 UNDOCUMENTED DOS

ASM mov ah^ ODBh
ASM int 21h

/* AL now holds number of "Local drives" (i.e., LASTDRIVE) */
ASM xor ah, ah
/* unsigned returned in AX */

Undocumented DOS Calls from Protected Mode

It is testimony to the great diversity of MS-DOS that we are still not finished with
our catalog of the basic ways to make undocumented DOS calls.

We have often referred to changes in the internal structure of EKDS from one
version to the next. These versions of DOS must be taken to include, not only

DOS 3.1,4.0, and so on, but also the most important extensions of DOS: Microsoft
Windows 3.0, the OS/2 compatibihty box, the DOS Protected-Mode Interface
(DPMI), and protected-mode DOS extenders such as Phar Lap's 3861 DOS-
Extender (incorporated in such products as AutoCAD/386, IBM Interleaf Pub
lisher, and Mathematical and Rational Systems's DOS/16M (incorporated in

Lotus 1-2-3 Release 3, for example).

A thorough discussion of the world of protected-mode DOS may be found in
the book Extending DOS, edited by Ray Dimcan (Reading, MA: Addison-Wesley,
1990). Here, we need to look quickly at how running in protected mode alters the
way imdocumented DOS calls are made.

DOS extenders break the DOS 640KB barrier by running your application in

the protected mode of the 80286, 80386, and 80486 processors. Your application
continues to use the services of MS-DOS, which is running in real mode in the
lower 640KB. DOS extenders make access to DOS as transparent as possible. For
example, a protected-mode application allocates memory using INT 21h Fimc-
tion 48h, just as do real-mode DOS applications. The difference is that, imder a
DOS extender, ESJT 21h Function 48h can allocate multiple megabytes of
extended memory.

Chapter 2: Programming for Documented and Undocumented DOS: A Comparison 71

Because it is not limited to one megabyte of immediately addressable mem
ory, protected mode uses a fundamentally different addressing scheme than real
mode. DOS extenders transparently handle almost all of these differences for
you: your application makes normal DOS calls, and the DOS extender takes care
of the rest.

Notice that we just said "normal DOS calls." What happens when you take an
application that makes imdocumented DOS calls and port it to a protected-mode
DOS extender? According to the Phar Lap manual, "3861 DOS-Extender extends
all of the documented MS-DOS system calls, and most of the BIOS system calls,
so that they can be made directly from protected mode. However, some pro
grams also need access to undocumented MS-DOS functions... If the system call
uses segment registers, then additional processing is required by the protected
mode program." What does this additional processing look like?

All DOS extenders provide a small set of services for making real-mode soft
ware interrupts from protected mode. Usually you don't need to use this service,
because the DOS extender already provides the software interrupt in protected
mode. Undocumented DOS, however, is a perfect example of a case in which you
need to use these special services.

In the remainder of this section, we wiU look at two final examples of the
LASTDRV utility. Naturally, tiny programs like this are not likely ever to use a
DOS extender. But large programs that are likely candidates for using protected
mode may well contain imdocmnented DOS calls, so it is important to know how
to get these working in this new and important environment.

386IDOS-Extender

Our first example uses Phar Lap 3861 DOS-Extender, which nms 32-bit applica
tions under MS-DOS on 80386 and 80486 processors. Watcom C/386, one of sev
eral 32-bit C compilers now available for MS-E>OS, is used as well. Note that
3861 DOS-Extender requires DOS 3.0 or greater, which simplifies our DOS ver
sion checking:

/* LD386.C — undocumented DOS call from 386|DOS-Extender */

^include <stdlib.h>

#1nclude <stdio.h>

^include <dos.h>

#ifndef WATCOHC
#error This program requires Watcom C/386

72 UNDOCUMENTED DOS

#endi f

typedef struct <.
unsigned short intno, ds, es, fs, gs;
unsigned eax, edx;
> RMODE_PARAM_BLOCK;

ma1n()

C

RMODE_PARAM_BLOCK rpb;
union REGS r;

struct SREGS s;

char far *dosList;

unsigned Lastdrv;

/* load real-mode param block for INT 21h AH=52h */
memset(&rpb, 0, sizeof(RMODE_PARAM_BLOCK)); /* zero it out */
rpb.intno = 0x21;
rpb.eax = 0x5200;

/* call 3861 DOS-Extender service to "Issue Real Mode Interrupt,
Registers Specified" (INT 21h AX=2511h). */

r.x.eax = 0x2511;

r.x.edx = &rpb;
segread(&s);
int386x(0x21, &r, &r, &s);

/* use 3861 DOS-Extender selector 34h (writeable data segment that
maps the entire first megabyte of memory used by MS-DOS) */

doslist = MK_FP(0x34, (rpb.es « 4) + r.x.ebx);

/* we now have protected-mode ptr to DOS List Of Lists
use normally */

lastdrv = doslistC_osmajor==3 && _osminor==0 ? OxIB : Ox21D;
fputs("LASTDRIVE=", stdout);
putcharCA' - 1 + lastdrv);
putchar(*\n');
return lastdrv;

This example can be compiled, linked, and run with the following DOS com
mand lines (WCL386 is the Watcom C driver program, and RUN386 is the Phar
Lap DOS extender):

wcl386 lastdrv

run386 lastdrv

Chapter!: Programming for Documented and Undocumented DOS: A Comparison 73

In this example, we call the service to issue a real-mode interrupt, specifying
our nSTT 21h Fimction 52h call inside the "real-mode parameter block." Thus, we
invoke Phar Lap Function 2511h, and ask it to invoke DOS Function 52h in real
mode. This sort of indirect call is only necessary for those weird calls (like imdoc-
umented DOS) not transparently supported in protected mode. This indirect
method of making the undociunented DOS call is typical of all DOS extenders.
When we return from the real-mode interrupt, the ES:EBX register pair contains
an address such as 028E:00000026 (offsets are fom bytes wide in true 80386 code).
This is a real-mode address, and has no real meaning in protected mode. In order
to use this address, we need to turn it into a protected-mode pointer. In
3861 DOS-Extender selector 34h is a writeable data segment which maps the en
tire first megabyte of memory (the entire DOS machine fits in one small portion
of one 32-bit protected-mode selector!). We form a six-byte protected-mode far
pointer using the Watcom C MK_FP() macro, and then use it as we would nor
mally.

DPMI

Our second example doesn't actually use a DOS extender per se, but the DOS
Protected-Mode Interface (DPMI), a specification drawn up by a committee com
prised of Microsoft, Intel, IBM, Lotus, Phar Lap, Rational Systems, Borland,
Quarterdeck, and other companies. DPMI describes a set of services which can be
called from protected mode using INT 31h. Providers of these services, such as
Microsoft Windows 3.0, are known as DPMI servers, whereas users of these ser
vices, such as protected-mode DOS extenders, are DPMI clients. A DPMI server
can be built in many different environments, including OS/2 2.0 or even UNIX,
offering the possibility (when all this is actually implemented) of running DOS
extended applications in many different (even non-DOS) environments. Maybe
one day INT 21h and ROM BIOS calls will be available on non-Intel architectures!

Unlike the expanded memory (EMS) or extended memory (XMS) specifica
tions, DPMI is not intended to be used in application programs. DPMI is really
meant for use by a DOS extender which, in turn, provides services to application
programs. It is nonetheless instructive to examine a DPMI version of LASTDRV.
Many Windows 3.0 programmers, who need to access real-mode drivers and
TSRs from Windows enhanced mode, have had no choice but to leam about

DPMI.

74 UNDOCUMENTED DOS

The following sample program uses Microsoft C 6.0. The program starts up
in real mode, and makes an INT 2Fh AX=1687h call to check for the presence of
DPMI (note that INT 2Fh AH=16h and AH=17h generally is used as a Microsoft
Windows interface for non-Windows applications; for more information, see the
on-disk "Interrupt List"). If DPMI is present (for example, if running in a DOS
box in Windows 3.0 enhanced mode), the address of the DPMI "protected-mode
switch entry point" is returned in ES:DI. This is a function which switches the
program into protected mode. Because this program starts off in real mode and
then switches into protected mode, all the segment registers change in mid
stream! If we want to use the C standard library, then, the program must be com
piled with small model:

/*

LDDPMI.C — undocumented DOS call from DPMI

sample output:
in protected mode
Real mode DOS List Of Lists = 028E:0026
Protected DOS List Of Lists = 00AD:0026
LASTDRIVE=E

cl -AS Iddpmi.c
*/

#ifndef M_I86SM
#error Requires Microsoft C small model
#endi f

^include <stdlib.h>

^include <stdarg.h>
^include <stdio.h>

^include <dos.h>

^define ABSADDRCseg, ofs) \
((((unsigned long) seg) « 4) + ((ofs) S OxFFFF))

^pragma packd)

typedef struct f
unsigned long edi, esi, ebp, reserved, ebx, edx, ecx, eax;
unsigned flags, es, ds, fs, gs, ip, cs, sp, ss;
> RMODE_CALL;

Chapter 2: Programming for Documented and Undocumented DOS: A Comparison 75

typedef struct -C
unsigned accessed
unsigned read_write
unsigned conf_exp
unsigned code
unsigned xsystem
unsigned dpi
unsigned present
> ACCESS;

typedef struct -C
unsigned
unsigned
unsigned char
ACCESS

unsigned
> DESCRIPTOR;

Limit;
addr_Lo;
addr_hi;
access;

reserved;

typedef enum i FALSE, TRUE > BOOL;

BOOL dpmi_rmode_intr(unsigned intno, unsigned flags,
unsigned copywords, RMODE_CALL far *rmode_caLL);

void dos_exit(unsigned err)

_asm mov aL, err
_asm mov ah, 04ch
_asm int 21h

>

void pmode_putchar(int c) //call real-mode INT21 AH=2 from pmode
i

static RMODE_CALL r;
static RMODE_CALL *pr = (void *) 0;
if (! pr)
•C //just do one time

pr = &r;
memsetCpr, 0, sizeof(RMODE_CALL));
r.eax = 0x0200;

>

r.edx = c;
dpmi_rmode_intr(0x21, 0, 0, pr);

void pmode_puts(char *s)
i

while (*s)

76 UNDOCUMENTED DOS

<.

pmode_putchar(*s);
S++;

>

pmode_putchar(OxOd);
pmode_putchar(OxOa);

>

void cdecl pmode_printf(const char *fmt,

char bufC1283, *s=buf;
va_list marker; //use ANSI C stdarg facility
va_start(marker, fmt);
vsprintf(buf, fmt, marker);
va_end(marker);
while (*s)

pmode_putchar(*s++);
>

void faiKchar *s) i puts(s); exitd); >
void pmode_fai Kchar *s) -C pmode_puts(s); dos_exit(1); >

/* Determines if DPMI is present and, if so, switches into
protected mode */

BOOL dpmi_init(void)

void (far *dpmi)();
unsigned hostdata_seg, hostdata_para, dpmi_flags;
_asm -C

mov ax, 1687h ; test for DPMI presence
int 2Fh

and ax, ax
jnz nodpmi ; if (AX == 0) DPMI is present
mov dpmi_flags, bx
mov hostdata_para, si ; paras for DPMI host private data
mov dpmi, di
mov dpmi+2, es ; DPMI protected-mode switch entry point
jmp short gotdpmi
>

nodpmi:
return FALSE;

gotdpmi:
if (_dos_aIlocmem(hostdata_para, &hostdata_seg) != 0)

pmode_faiIC'can't allocate memory");

/* enter protected mode */
_asm "C

mov ax, hostdata_seg

Chapter 2: Programming for Documented and Undocumented DOS: A Comparison 77

mov es, ax

mov ax, dpmi^fLags
>

(*dpmi)();

return TRUE;

/* Performs a real-mode interrupt from protected mode */
BOOL dpmi_rmode_intr(unsigned intno, unsigned flags,

unsigned copywords, RMODE_CALL far *rmode_call)
i

if (flags) intno |= 0x100;
_asm -C

push di
push bx
push cx

error:

done:

mov ax, 0300h
mov bx, intno
mov cx, copywords;
les di, rmode_call
int 31h

jc error
mov ax, 1
jmp short done
mov ax, 0
pop cx

pop bx
pop di
>

simulate real-mode interrupt
interrupt number, flags
words to copy from pmode to rmode stack
ES:D1 = address of rmode call struct

call DPMI

return TRUE

return FALSE

/* Allocates a single protected-mode LDT selector */
unsigned dpmi_sel(void)

err:

done:

>

asm "C

mov ax, 0
mov cx, 1
int 31h

jc err
jmp short done
mov ax, 0
y

; Allocate LDT Descriptors
; allocate just one
; call DPMI

; AX holds new LDT selector
; failed

BOOL dpmi_set_descriptor(unsigned pmodesel, DESCRIPTOR far *d)

78 UNDOCUMENTED DOS

__asm -C
push di
push bx
mov ax^ OOOch
mov bx, pmodesel
Les di, d
int 31h

jc error
mov ax, 1
jmp short done

error: mov ax, 0
done: pop di

pop bx

; Set Descriptor
; protected mode selector
; descriptor
; call DPMI

; return TRUE

; return FALSE

BOOL dpmi_seL_freeCunsigned pmodesel)

_asm -C
mov ax, 0001h
mov bx, pmodesel
int 31h

Free LD

error:

done:

>

JC error

mov ax, 1
jmp short
mov ax, 0
>

done

T Descriptor
selector to free

call DPMI

return TRUE

return FALSE

mainCint argc, char *argvllll)

DESCRIPTOR d;
RMODE_CALL r;

void far *fp;
char far *doslist = (char far *) 0;
unsigned long addr;
unsigned pmodesel;
unsigned offset, lastdrv_ofs, lastdrv;

/*

*/

Determine if DPMI present and, if so, switch
to protected mode

if (dpmi_init())
pmode_puts("now in protected mode");

else

Chapter 2: Programming for Documented and Undocumented DOS: A Comparison 79

faiLC'DPMI not present");

/*

Call INT 21h AH=52h (Get DOS List Of Lists)

*/

memsetCSr, 0, sizeof(RMODE_CALL));
r.eax = 0x5200;
if (! dpmi_rmode_intr(0x21, 0, 0, &r))

pmode_faiIC'DPHI rmode intr failed");
FP_SEG(doslist) = r.es;
FP_OFF(doslist) = r.ebx;
pmode_printf("Real mode DOS List Of Lists = %Fp\r\n", doslist);

/* doslist now holds a real-mode address: in order to address it
in protected mode,, allocate an LDT descriptor and set its
contents; when done, deallocate the LDT descriptor

*/

if (! (pmodesel = dpmi_sel()))
pmode_faiIC'DPMI can't alloc pmode selector");

d.limi t = OxFFFF;
addr = ABSADDR(r.es, 0);
d.addr_lo = addr S OxFFFF;
d.addr_hi = addr » 16;
d.access.accessed = 0; /* never been used */
d.access.read_write = 1; /* read-write */
d.access.conf_exp = 0; /* not a stack */
d.access.code = 0; /* data */
d.access.xsystem = 1; /* not system descriptor */
fp = (void far *) main;
d.access.dpi = FP_SEG(fp) & 3; /* protection level */
d.access.present = 1; /* it's present in memory */
d.reserved = 0;
if (! dpmi_set_descriptor(pmodesel, &d))

pmode_faiI("DPMI can't set descriptor");

FP_SEG(doslist) = pmodesel; /* convert to protected-mode address */
FP_OFF(doslist) = r.ebx;
pmode_printf("Protected mode DOS List Of Lists = %Fp\r\n", doslist);

/* now have protected-mode selector to DOS List of Lists */
/* Get LASTDRIVE number, print LASTDRIVE letter */
lastdrv = doslistC_osmajor==3 SS _osminor==0 ? Oxib : 0x213;
pmode_printf("LASTDRIVE=%c\r\n", 'A' - 1 + lastdrv);

if (! dpmi_sel_free(pmodesel))
pmode_faiI("DPMI can't free selector");

/* in protected mode, flush output and quit */
dos_exit(0);

80 UNDOCUMENTED DOS

dpm1fai L:
pmode_faiL("DPMI failure");

>

There is a lot of code here, but the workings of LDDPMI are actually fairly
simple: in order to call INT 21h Ftmction 52h from protected mode, we must do
so indirectly via INT 31h Function 0300h (see the function dpmi_rmode_intr).
What we get back, of course, is the real-mode address is the DOS List of Lists,
which we must convert into a protected-mode address. We therefore allocate a
descriptor from the Local Descriptor Table (LDT; see the function dpmi_sel), and
set its base address. An image of the descriptor is created in main; it is placed in
the LDT using INT 31h Fimction OOOCh (see dpmi_set_descriptor). We now have
a protected-mode pointer to the DOS List of Lists, which we can use in the usual
way. Before exiting, we free up the descriptor (see dpmi_sel_free).

Sheesh! All this mixing of real and protected modes in the same program is
pretty hair-raising, but the next few years of MS-DOS will probably see more and
more of this sort of code.

In addition to the restriction to small-model, another restriction is that, once

you enter protected mode, you can't debug this thing using a real-mode debug
ger like CodeView: stepping over the (*dpmi)() call in dpmit_init() hangs the ma
chine. These restrictions illustrate why, even with the availability of DPMI, you
probably want to use a commercial DOS extender rather than "roll your own."

Because this program switches in midstream from real to protected mode,
pointers that are going to be used in real mode can't be mitialized on the real-
mode side of the fence. Instead, the program must not assign the value to fpr
imtU after it has switched into protected mode.

Note that, after switching into protected mode, LDDPMI uses functions such
as pmode_printf() rather than plain old printfO. The reason is that, somewhere in
the depths of the C run-time hbrary, functions such as printfO eventually make
INT 21h calls. But recall that we are now running in protected mode. Most DPMI
servers will in fact provide protected-mode INT 21 h services (the Windows 3.x
DOS extender does, for example), but that is a facility provided by the DPMI
server, not by DPMI itself. Therefore, a few routines have been cobbled together
in LDDPMI so we can do output.

With the comparative intricacies of this program, it is a reUef that at least the
DOS version checking is greatly simplified: we don't ever have to worry about a
DPMI server running imder DOS 2.x!

Chapter 3

MS-DOS Resource Management:
Memory, Processes, Devices

Jim Kyle

Resource management is the primary task of any operating system, and MS-DOS
is no exception. This chapter concentrates on such facets of resource management
as device drivers, DOS memory allocation, and process management.

Throughout the discussion, sample code fragments and programs are used;
the conclusion brings everything together in a utiUty that lets you install a device
driver from the DOS command line, without requiring that you edit your CON
FIG.SYS file or reboot the system.

The earliest operating systems, in the dim prehistory of mainframe days,
managed resources by default: only one process could be loaded into the ma
chine at a time, and that process had full access to all resources.

Operating systems evolved, though, and it became possible to load several
processes at the same time. Any true operating system must, in fact, contain at
least two processes: the supervisor or system program (often called the kernel), and
the real user program. As soon as there is more than one process it becomes nec
essary to manage memory and devices so that no process intrudes on another.

82 UNDOCUMENTED DOS

Memory Management

MS-DOS allows programs to allocate, free, and resize memory through three doc
umented functions (DSfT 21h, Functions 48h, 49h, and 4Ah), but the actions of the
DOS memory manager itself are not officially documented. This section describes
how memory is organized to make these functions possible.

The memory management scheme used by MS-DOS divides the first mega
byte of the system's memory into contiguous blocks, each of which has a Mem
ory Control Block (MCB) as its first paragraph. Each MCB provides enough
information to get to the next MCB. It is important to note that this chain is not a
linked list but a contiguous block of memory: the size of one block is added onto
its starting address to get to the next block. This structure is referred to in official
doaunentation (and in Ray Dimcan's better-than-official Advanced MS-DOS Pro
gramming) as the memory arena, and the MCB that begins each block is referred to
as an arena header.

The initial memory arena structure is built at system boot time, just after the
parsing of CONFIG.SYS directives. This structure omits memory below the DOS
data segment, because all RAM in that area was assigned earlier in the boot-up
procedure and is not subject to reallocation.

Memory Control Blocks

Each block of memory begins with an MCB, which is a single paragraph. That is,
the MCB is 16 bytes long and begins at an address that is an exact multiple of 16.
The memory block itself ako is always an exact number of paragraphs in length.
This paragraph alignment makes it possible to refer to a memory block using a
16-bit segment address rather than a full 20-bit address.

When a program requests a block of memory with INT 21h Fimction 48h,
DOS must find the number of requested paragraphs, plus one more for the MCB.
Assuming that a block of memory is available, DOS sets up its first paragraph as
an MCB and hands the segment address of the second paragraph back to the pro
gram. Lef s say you've made this call:

mov ah, 48h ; ALLocate Memory Block
mov bx, 1 ; one paragraph
int 21h

jc faiI
; AX now holds initial segment of allocated block

Chapter 3: MS-DOS Resource Management 83

Lef s say AX now holds the value 1234h. This means that an MCB is located
at 1233h. What does this MCB look like?

The first byte of every MCB except the last one in the chain is 4Ch (the ASCII
code for 'M'); the last MCB's first byte is instead 5Ah ('Z'). It may be only coinci
dental that these two letters are the initials of the principal architect of the DOS
memory manager, Mark Zbikowski. In our example, this field could either be
or 'Z', though 'M' is far more likely.

Following this tag byte is a 16-bit value (in Intel low-high format) that identi
fies the "owner" of the MCB. These 16 bits will be 0000 if the memory block is
available for use. Otherwise, they will contain the ID number of the process to
which the block has been allocated (the "owner" process). This information is
used to locate free blocks (owner is zero) and to release allocated blocks when a

process terminates. This ID number is the Program Segment Prefix (PSP; see
below) of the owner. In our example, this field would hold the PSP of whatever
program called INT 21h Function 48h.

Following the "owner" word is another word giving the size in paragraphs of
the memory block controlled by this MCB. In our example, this field will be set to
1, indicating that the MCB at 1233h controls only the next paragraph at 1234h. In
other words, this size value does not include the paragraph taken by the MCB it
self; consequently, it's possible to have a valid MCB that shows a free block with
size equal to zero. This happens when all but one paragraph of a previously free
block is allocated, and it is, in fact, not unusual.

The three bj^es following the "size" word are unused in aU versions of MS-
DOS to date. In versions 2 and 3, all remaining b5^es of the MCB were xmused,
but in DOS 4.x the final 8 bytes of the MCB may contain the filename of the own
ing program. The name is included only in the MCB that controls the memory
used by the program's PSP; otherwise, the final 8 bytes are ignored.

To find the next MCB in memory (remember, it's not really a linked Ust), you
start with the MCB's own segment address, add 1 to it to get the segment address
of the RAM it controls, then add to that the size from the word at b5^e 3 of the
MCB. The result is the segment address of the next MCB. In our example, the
next MCB is at 1235h. If the byte at 1235:0000 is anything other than 'M' or 'Z',
the MCB chain has been corrupted and continued operation is not possible.

The first MCB is always the one that controls DOS's own data segment. Its
"owner" word is usually 0008h, for reasons that are not fuUy understood. It corre
sponds to the memory allocated based on commands given in CONFIG.SYS.

84 UNDOCUMENTED DOS

The final MCB, identified by 'Z' as its first byte, will in a normal 640KB sys
tem generate a "next-MCB" address of GAGOOh, although that address should not
be used, because the 'Z' code indicates no "next MCB" exists.

In DOS 4.x and higher, the DOS data segment memory block is subdivided
into "subsegments"; each subsegment has its own variant of the standard MCB.
However, the 'M'-coded MCB for the data segment includes the entire area, so
you don't need to trace the subsegments when going through the MCB chain.

The DOS 4.x subsegments follow a format similar to, but not identical with,
the MCB layout: the first byte is a letter indicating usage, but the word at byte 1
is not the "owner." Instead, it is the actual segment address of the item controlled
by the block. The word at byte 3 is the size in paragraphs of the controlled item.
Bytes 8 through 15 contain the filename, padded with blanks, of the file from
which a driver was loaded.

Possible codes used in these subsegment control blocks are as follows:

Table 3-1: Codes used in subsegment control blocks.

Code Directive Meaning

D DEVICE= device driver

E device driver appendage

I IFS (Installable File System) driver

F nLES= control block storage area (for F1LES>5)

X FCBS= control block storage area, if present

C BUFFERS EMS workspace area (if BUFFERS /X option used)
B BUFFERS= storage area

L LASTDRIVE= drive info table storage area

S STACKS= code and data area

Because these subsegment control blocks appear only in the DOS data seg
ment and are meaningless elsewhere, they appear to be of limited use. Their pur
pose appears to be simplification of the MEM command introduced in DOS 4.G,
although most of the information contained in them is duplicated elsewhere in
each of the applicable DOS structures.

Actually, similar abbreviations are found in the buffer used internally by
DOS for parsing CONFIG.SYS: 'X' represents FCBS=, for example, and Tf repre
sents DEVICE=. The abbreviations are not identical, however. For example, the
CONFIG.SYS buffer uses 'K' to represent STACKS=, since 'S' apparently is
needed for the SHELL= statement. (For more information on the CONFIG.SYS

Chapter 3: MS-DOS Resource Management 85

buffer, see Michael J. Mefford, "Choose CONFIG.SYS Options at Boot," PC Maga
zine, 29 November, 1988, pp. 323-344: a fascinating article explaining a brilliant
DOS utility.)

How to Find the Start of the MCB Chain

The key to locating any MCB is in the undocumented DOS List of Lists, whose
address is retrieved with INT 21h Ftmction 52h. Although the List of Lists re
turned by this function differs significantly from one version of DOS to the next,
the MCB pointer's location is one of the very few items that is the same in all
DOS versions to date. It's always located two bytes in front of the pointer re
turned in ES:BX, that is, at ES:[BX-2].

The value located there, however, is actually not a pointer to the first MCB,
but its segment number. To use it as a pointer, you must provide an offset of 0000.

The following assembly language code fragment shows how to force the
MCB pointer into ES:SI so that it may be used to retrieve the key byte, the owner
word, and the size word:

mov ah, 52h ; Get List of Lists
int 21h

mov ax, es:Cbx-2] ; First MCB Segment Address
mov es, ax

xor si, si ; force offset to be zero

or, to be safe:

xor bx. bx

mov es. bx ; set ES:BX to 0:0
mov ah. 52h

int 21h

mov cx. es

or cx. bx ; is ES:BX stiLL 0:0?

jz fail ; then Function 52h not supported
mov ax. es: Cbx-211 ; First MCB Segment Address
mov es. ax

xor si. si ; force offset to be zero
fai L:

The next code sequence retrieves the key byte, the owner word, and the size
word, respectively; it assumes that ES:SI is vmchanged from the preceding example:

86 UNDOCUMENTED DOS

mov aly. eszCsin
mov bx, esiCsi+l!]
mov cx, es:Csi+3!l

; gets key byte, 'M' or 'Z'
; gets owner word or 0000
; gets size in paragraphs

For most applications, the following code fragment may be more useful; it
can be used in Microsoft C 5.0 and higher, QuickC 2.0 and higher, and Borland
Turbo C 2.0 and higher:

typedef struct -C
unsigned char type;
unsigned owner;
unsigned size;
unsigned char unusedC3II;
unsigned char dos4C8];
> MCB;

#ifndef MK_FP
^define MK_FP(seg, ofs) \

((void far *) (((unsigned Long)(seg)«16)
#endi f

/* 'M'=in chain; 'Z'=at end */
/* PSP of owner */

/* in 16-byte paragraphs */

I (ofs)))

MCB far *Get_First.
•C union REGS reg;

struct SREGS seg

unsigned *tmpp;

MCB(void) /* Locates first MCB */

/* set up seg regs */
/* get List of Lists */

segread(Sseg);
reg.h.ah = 0x52;
intdosx(®, ®, &seg);
tmpp = (unsigned far *) MK_FP(seg.es, reg.x.bx - 2);
return (MCB far *) MK_FP(*tmpp, 0);

Get_First_MCB() is fxmctionally identical to the first assembly-language frag
ment. It uses the segreadO library function to avoid modifying the values of DS
and SS while getting the List of Lists pointer in ES, and uses the MK_FP() macro
to create the returned pointer value, rather than stuffing the appropriate quanti
ties into ES and SI. As explained in chapter 2, you can also use in-line assembler
or register pseudo-variables, if your compiler supports these options.

Chapter 3: MS-DOS Resource Management 87

How to Trace the MCB Chain

Lef s look at how to btiild a program, MEM, which you may already have on
your machine: versions of this popular utility include PMAP (Chris Dunford),
MAPMEM (TurboPower Software), TDMEM (Borland Turbo Debugger 2.0), and
the commands MEM /PROGRAM and MEM /DEBUG in DOS 4.0 and higher. A
program of this type walks through the MS-DOS MCBs. Because some MCBs
control PSPs, the program can be used to trace through all PSPs, showing which
programs are resident in memory. For example, here is sample output from
MAPMEM on a Compaq 386 running Quarterdeck QEMM, making extensive use
of LOADHI (CHKDSK t5q)ically reports 704,880 bytes free on this system!):

Allocated Memory Map - by TurboPower Software - Version 2.9

PSP blks bytes owner command line hooked vectors

0008 1 3904 confi g
0AE9 2 3776 command 22 2E

OBEA 2 18432 TSREXAMP 09 28 2F F1 FA

106B 2 686416 free

When we refer to MCBs controlling PSPs, we merely mean that the block of
memory controlled by an MCB happens to be a program. (To be precise, it is not
a program, but a process: a program that has been loaded into memory.) All DOS
processes begin with a 256-byte (16-paragraph) PSP. The MCB controls the PSP
only in the sense that the MCB is the arena header for the memory used by the
PSP and by the process itself. For example, in the display above, the PSP at 0AE9
is "controlled" by an MCB at 0AE8. In turn, the "owner" field of the MCB at 0AE8
would be 0AE9.

Our MEM program will display the segment number of each MCB, the Pro
gram Segment Prefix (PSP) of its owner, and the size of the MCB (in hex para
graphs and decimal bytes). For MCBs that hold actual PSPs, MEM also displays
the segment for the corresponding environment, the ASCII filename of the owner
(which in DOS 3.0 and higher is kept in a program's environment), and any inter
rupt vectors that point into the block of memory. Here is what MEM's output
looks Uke:

C:\UNDOC\KYLE>mem

Seg Owner Size Env
09F3 0008 00F4 (3904) config CIS 4B 67 D

88 UNDOCUMENTED DOS

0AE8 0AE9 00D3(3376) 0BC1 c:\dos33\coinniand.coin C22 23 24 2E]

OBBC 0000 0003(48) free

OBCO 0AE9 0019(400)

OBDA OBEA OOOE(224)

0BE9 OBEA 0472(18208) OBDB C:\UNDOC\KYLE\..\rmi che LsXTSREXAMP.EXE

:09 28 2F F1 FA :

105C 106B OOOD(208)

106A 106B 1218(74112) 105D C:\UNDOC\KYLE\MEM.EXE COO 1

2283 0000 957C (612288) free C30 F4 F5 F8]

INTs 15h, 4Bh, and 67h point into the "config" block because QEMM is loaded
with a DEVICE=QEMM.SYS statement in CONFIG.SYS. INT 67h is used for the

Expanded Memory Specification (EMS), INT 4Bh is used for "DMA Services" im
plemented by QEMM and other 386 memory managers (it is also present in
newer PS/2 BlOSes), and INT 15h is taken over to control access to extended

memory.

Before running MEM, we also ran the program TSREXAMP from Ray
Michels's chapter. We can see that Ra/s program takes about 18,000 bytes of
memory, and that it hooks INTs 09h, 28h, and 2Fh. (But why are Flh and FAh
pointing in there?!) In this example, we ran an early version of Ray's TSR that
didn't free its environment: that's why the program name is still accessible. We
also see that the filename stored in a program's environment is not reduced to its
canonical form. The filename could be reduced to its canonical form,

(C:\UNDOC\RMICHELS\TSREXAMP.EXE), using undocumented INT 21h
Function 60h, which is discussed in chapter 4.

One limitation of many MCB walkers is that they assume the presence of
only one MCB chain. In fact, programs such as 386MAX and QEMM allow mem
ory resident programs to be loaded "high" by creating secondary MCB chains in
high DOS memory. You can view these secondary MCB chains only by running
PMAP or MAPMEM inside the LOADHI utility (for example, C:\QEMM>LOADHl
PMAP). In the version of MEM developed here, we will allow the user to specify
a segment on the DOS command line that can be used as the address of a possi
ble secondary MCB chain. For example:

C:\UNDOOmem BCOO

Seg Owner Size Env
BCOO BE80 0004 (64)

BC05 BC06 0279 (10128)

BE7F BE80 0237 (9072) BC01 C:\DOS\MOUSE.COM COB 10 33 D

Chapter 3: MS-DOS Resource Management 89

C0B7 COBD 0004 (64)

COBC COBD 055E (21984) COBS C:\CED\CED.COM CIB 21 61 1

C61B 0000 21E4 (138816) free

This shows there is a secondary MCB chain at BCOO, both MOUSE.COM and
CED.COM have been loaded "high," and there is still 138,000 bytes free of high
DOS memory.

It is useful to write MEM in two stages: first, just print out raw information
about DOS memory control blocks. Then, after that simple program is working,
write an improved version that displays the ASCII filenames of the owners of the
MCBs (which gives us a display of all programs resident in memory including, of
course, the MEM program itself). Here is our first version of the MEM utility:

/*

MEM-C — walks DOS MCB chain(s): simple version
Andrew Schulman and Jim Kyle, July 1990
*/

^include <stdlib.h>

^include <stdio-h>

^include <dos-h>

typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef unsigned long ULONG;
typedef void far *FP;

#ifndef MK_FP
^define MK_FP(seg,ofs) ((FP)(((ULONG)(seg) « 16) | (ofs)))
#endi f

#ifdef TURBOC
^define ASM asm

#else

^define ASM _asm
#endif

^pragma pack(l)

typedef struct -C
BYTE type; /* 'M'=in chain; 'Z'=at end */
WORD owner; /* PSP of the owner */

WORD size; /* in 16-byte paragraphs */

90 UNDOCUMENTED DOS

BYTE unusedC33;
BYTE dos4C8T;
> MCB;

void faiLCchar *s) -C puts(s); exitd); >

MCB far *get_mcb(void)

ASM mov ah, 52h
ASM int 21h

ASM mov dx, es:Cbx-2II
ASM xor ax, ax

/* in both Microsoft C and Turbo C, far* returned in DX:AX */
>

void dispLayCMCB far *mcb)
i

char bufC803;
sprintfCbuf, "%04X %04X %04X (%6Lu)",

FP_SEG(mcb), mcb->owner, mcb->size, (Long) mcb->size « 4);
if (! mcb->owner)

strcatCbuf, " free");
putsCbuf);

void waLkCMCB far *mcb)

printfC'Seg Owner Size\n");
for (;;)

swi tch (mcb->type)
i

case "M' : /* Mark : belongs to MCB chain */
di spLay(mcb);
mcb = MK_FP(FP_SEG(mcb) + mcb->size + 1, 0);
break;

case 'Z' : /* Zbikowski : end of MCB chain */

di splay(mcb);
return;

default :

failC'error in MCB chain");

mainCint argc, char *argvCT)
i

if (argc < 2)
walk(get_mcb()); /* walk "normal" MCB chain */

Chapter 3: MS-DOS Resource Management 91

else

i

unsigned seg;
sscanf(argvCI "%04X", &seg);
waLk(MK_FP(seg, 0)); /* walk arbitrary MCB chain */

>

return 0;

This code simply displays the raw MCB chain. The function get_mcb(), writ
ten with in-line assembler, retmns a far pointer to the first MCB. Even though
we're calling undocumented DOS Function 52h here, we don't bother to check
DOS version numbers because the segment of the first MCB is always located at
offset -2 in the List of Lists. It's even supported in the DOS compatibility box of
OS/2 1.1 (DOS version 10.10). The start of the MCB chain is passed to the func
tion walkO, which goes into an infinite loop, displaying an MCB and moving to
the next MCB, imtil the end of the chain (or an error) is found. The MCB is dis

played using the function displayO. The output of this program looks like this:

free

Seg Owner Si ze

09F3 0008 03E1 (15888)

ODDS 0DD6 00D3(3376)

0EA9 0000 0003(48)

OEAD 0DD6 0040(1024)

DEEE C0D6 0004(64)

0EF3 0F02 OOOD(208)

GF01 0F02 1204(73792)

2106 0000 7EF9 (520080)

MCB Consistency Checks

Actually, this code is useful by itself. It can be linked into other programs (with
the exception of mainO) and used to track their DOS memory allocation. This is
particularly useful when you are trying to debug a program that trashes the MCB
chain. By modif5fing the waIkO function, you can check the MCB chain for consis
tency before DOS does. The chain is inconsistent if mcb->t5^e is equal to any
thing other than 'M' or '71:

nicb_chk(MCB far *mcb)
i

for <;;)
if (mcb->type == 'M')

92 UNDOCUMENTED DOS

mcb = MK_FP(FP_SEG(incb) + mcb->size + 1, 0);
else

return (incb->type == 'Z');
>

With mcb_chk(), a program can periodically check the MCB chain with a call
such as the following:

if (! mcb_chk(get_mcb()))
i

/* maybe do stack backtrace here, or dump registers */
putsC'Error in MCB chain - prepare for halt...");
getcharO;

Of course, if mcb_chk() does return false, then the next time any memory allo
cation is performed, the system will halt with a message such as:

Memory allocation error
Cannot load COMMAND, system halted

DOS merely performs the same consistency check as mcb_chk(), except that,
if it does find anything other than 'M' or 'Z,' it has no choice but to halt the sys
tem. There seems to be no way that the MCB chain could be reliably repaired. In
multitasking 80386 control programs such as DESQview or Windows 3.0, though,
trashing the MCB chain in a "DOS box" (virtual machine) is far less catastrophic:
you just throw the virtual machine away and get a new one.

Our minimal MCB walker has one other use. We can use it to reveal a bug in

DOS itself. In the entry for INT 21h Fxmction 4Ah (Resize Memory Block), Ap
pendix A notes that "if there is insufficient memory to expand the block as much
as requested, the block will be made as large as possible." Don't believe it? Just
substitute the following mainO for the one provided earlier:

ma1n(vo1d)

C

unsigned segm;
ASM mov ah, A8h /* Allocate Memory Block */
ASM mov bx, 64h /* get 100 paragraphs */
ASM int 21h

ASM jc done
/* ax now holds initial segment of allocated block */

Chapter 3: MS-DOS Resource Management 93

ASM mov segm, ax

printf("before: "); display(MK_FP<segm - 1, 0));

ASM mov ax, segm

ASM mov es, ax /* now resize the block */
ASM mov ah, 4Ah /* Resize Memory Block */
ASM mov bx, OFFFFh /* impossible (at least in real mode!) */
ASM int 21h

ASM jnc done /* something seriously wrong if _didn't_ fail!
*/

printf("after: "); display(MK_FP(segm - 1, 0));
done:

return 0;
>

The resulting display shows that all remaining memory has in fact been
given to the block, even though the call failed:

before: 1D4C OBEA 0064 (1600)

after: 1D4C OBEA 9AB3 (633648)

The enormous number of bytes allocated to MCB 1D4C in the second line
shows that, even though Fimction 4Ah returned with the carry flag set, indicat
ing an error, the block was stiU made as large as possible. (It's particularly large
here because this test was run on a system with (Quarterdeck QEMM.) This is def
initely a bug in DOS, not an tmdocumented feature on which you should depend!
As it stands, reallocations that fail but that nonetheless snarf memory can cause
mysterious program behavior.

This example also shows that the displayO function can be useful all by itself:
just pass it an MCB and it displays some useful information. Given the segment
address of a block of memory, though, remember that the MCB is located at the
preceding paragraph. If a PSP, for instance, is 1234h, its MCB is 1233h. This is why
segm -1, rather than segm, is used above in the call to displayO.

A More Detailed MEM Program

To produce a more complete display, we need only change the displayO fimction,
and add supporting functions and macros:

void display(MCB far *mcb)
{

static void far *vect_2e = (void far *) 0;

94 UNDOCUMENTED DOS

unsigned env_seg;

printf("%04X %04X %04X (%6Lu)
FP_SEG(mcb), mcb->owner, mcb->size, (Long) incb->size « 4);

if (IS_PSP(incb))
i

void far *e = env(incb); /* MSG wants Lvalue */
if (env_seg = FP_SEG(e)) printf("%04X env_seg);
else printfC ");

di spLay_progname(mcb);

if (! vect_2e)
vect_2e = GETVECTC0x2e); /* do just once */

if (! mcb->owner)

printfC'free ");
/* 0008 is not really a PSP; belongs to CONFIG.SYS */
else if (mcb->owner == 8)

printf("config ");
/* INT 2Eh belongs to master COMMAND.COM (or other shell) */
else if (belongs(vect_2e, FP_SEG(mcb), mcb->size))

printf("%s getenvC'COMSPEC"));

/* presence of command line is independent of program name */
if (IS_PSP(mcb))

di splay_cmdline(mcb);
di splay_vectors(mcb);
printf("\n");

The new displayO calls env() to find out if the MCB contains the PSP of its
owner and therefore has an associated environment block. Some of the relation

ships between MCB, PSP, and environment can get a little confusing, so we also
use a few simple macros:

#define MCB_FM_SEG(seg) ((seg) - 1)
^define IS_PSP(mcb) (FP_SEG(mcb) + 1 == (mcb)->owner)
#define ENV_FM_PSP(psp_seg) (*((WORD far *) MK_FP(psp_seg, 0x2c)))

char far *env(MCB far *mcb)

C

char far *e;
unsigned env_mcb;

Chapter 3: MS-DOS Resource Management 95

unsigned env_owner;

/*

if the MCB owner is one more than the MCB segment then
psp := MCB owner

env_seg := make_far_pointer(psp, 2Ch)
e := make_far_pointer(env_seg, 0)

else

return NULL

*/

if (IS_PSP(mcb))
e = MK_FP(ENV_FM_PSP(mcb->owner), 0);

else

return (char far *) 0;

/*

Does this environment reaLLy belong to this PSP? An
environment is just another memory block^. so its MCB is
located in the preceding paragraph. Make sure the env
MCB's owner is equal to the PSP whose environment this
supposedly is! Thanks to Rob Adams of Phar Lap Software
for pointing out the need for this check; this is a
good example of the sort of consistency check one must
do when working with undocumented DOS.

*/

env.mcb = MCB_FM_SEG(FP_SEG(e));
env__owner = (CMCB far *) MK_FP(env_mcb, 0))->owner;
return (env_owner == mcb->owner) ? e : (char far *) 0;

The env() function uses the IS_PSP() macro, which tells whether an MCB cor

responds to a PSP by vehiymg that the next paragraph in memory is the MCB's
owner. env() further makes sure we don't pick up a stray environment for a pro
gram that has freed its environment: usually such programs don't bother to zero
out the environment segment number located at offset 2Ch in the PSP.

Next, displayO calls display_progname(), which in turn calls prog-
name_fm_psp(), a useful utility function that, given a PSP, tries to return a far
pointer to the name of the corresponding program:

char far *progname_fm_psp(unsigned psp)
i

char far *e;
unsigned len;
/* is there an environment? */

96 UNDOCUMENTED DOS

if (! (e = env(MK_FP(MCB_FM_SEG(psp), 0))))
return (char far *) 0;

/* program name onLy available in DOS 3+ */
if (_osmajor >= 3)
C

/* skip past environment variables */
do e += (len = fstrlen(e)) + 1;
while (len);

/*

e now points to WORD containing number of strings following
environment; check for reasonable value: signed because
could be FFFFh; will normally be 1

*/

if ((*((signed far *) e) >= 1) && (*((signed far *) e) < 10))

e += sizeof(signed);
if (isalpha(*e))

return e; /* could make canonical with INT 21h AH=60h */
>

>

return (char far *) 0;

void display_progname(MCB far *mcb)

char far *s;
if (IS_PSP(mcb))

if (s = progname__fm_psp((FP_SEG(mcb) + 1)))
printf("%Fs s);

>

If an MCB corresponds to a PSP [IS_PSP() is TRUE], display_progname() caUs
progname_fm_psp(), which first verifies if there is an environment. There is pos
sibly a little too much verification and double-checking in this program, but any
program that traffics in undocumented DOS should definitely be more paranoid
than programs that rely only on documented interfaces. In DOS 3+, prog
name_fm_psp() walks past aU variables in the environment to find the ASCllZ
pathname of the program owning the environment (see the description of the
DOS environment block in the appendix entry for INT 21h Fimction 26h).

The new version of displayO next performs a number of tests to see if the
block is free, if it is the very first block allocated by DOS (at CONFIG.SYS time).

Chapter 3: MS-DOS Resource Management 97

or if it belongs to the master copy of COMMAND.COM. As explained in the
chapter on command interpreters, imdocumented INT 2Eh points into the master
copy of COMMAND.COM. The simple function belongsO is used to find if an in
terrupt vector points into the block controlled by a given MCB:

typedef enum -C FALSE, TRUE > BOOL;

BOOL belongstvoid far *vec, unsigned start, unsigned size)

unsigned seg = FP_SEG(vec) + (FP_OFF(vec) » 4); /* normalize */
return (seg >= start) && (seg <= (start + size));

>

Next, display!) calls display_cmdline():

void dispLay_cmdLine(MCB far *mcb)
(

/*

psp := MCB owner

cmdLine_len := pspCSOhD
cmdline := pspC81h]
print cmdline (display width := cmdline_len)

*/

int len = *((BYTE far *) MK_FP(mcb->owner, 0x80));
char far *cmdline = MK_FP(mcb->owner, 0x81);
printf("%.*Fs ", len, cmdline);

Note that display_cmdline() uses the C printfO mask "%.*Fs" to display a far
string, using the maximum length given by the variable len (whose value may be
zero). Sometimes garbage is printed by MEM, or by any similar program, be
cause the disk transfer area (DTA) located inside the PSP overlays the beginning
of the command Hne.

Finally, display!) calls display_vectors!) to show any interrupts hooked by
the program whose PSP is contained in this MCB. The function finds these
hooked interrupt simply by seeing if CS:IP for the interrupt handler falls within
this MCB:

#ifdef TURBOC
#define GETVECT(x) getvect(x)
#e Ise

98 UNDOCUMENTED DOS

#define GETVECT(x) _dos_getvect(x)
#end1f

void display_vectors(MCB far *mcb)
i

static void far **vec = (void far **) 0;
WORD vec_seg;

i n t i;
int did_one=0;

if <! vec)

C

if (! (vec = calloc(256, sizeof(void far *))))
fai(("insufficient memory");

for (i=0; i<256; i++)
vecCi: = GETVECT(i);

>

for (i=0; i<256; i++)
if (vecCiD && beLongs(vecCi FP_SEG(mcb), mcb->size))
(

if (! did_one) (did_one++; printfC'C"); >
printf("%02X i);
vecCi] = 0;

>

if (did_one) printfC'D");

In DOS 4.0 and higher, some memory-resident software can be loaded using
the INSTALL= statement in CONFIG.SYS. Such programs can show up in the
MEM display as MCBs that aren't associated with any program but that may
have hooked interrupt vectors. Note that MEM calls display_vectors() for all
MCBs, even when there seems to be no associated program. For example, in DOS
4.0 and higher, if CONFIG.SYS contains the statement 1NSTALL=
C:\CED\CED.COM to load Chris Dunford's CED command-line editor, then

MEM will display something like the following:

0E81 0E82 065F (26096) C1B 21 61]

Another benefit of calling display_vectors() for all MCBs is that occasionally
we find "orphaned" interrupt vectors that point into free memory:

2A2A 0000 75D5 (482640) free CSO F4 F5 F8]

Chapter 3: MS-DOS Resource Management 99

INT 30h is a far jump instruction, not an interrupt vector, but INTs F4h, F5h,
and F8h are real interrupt vectors; let's hope no program invokes them while
the5^re pointing into free memory!

Finally, the foHowmg boring little function is used so that we can easily get
the length of far strings, even from a small-model program:

unsigned fstrLenCchar far *s)
<

#if defined (_MSC_VER) && (_MSC_VER >= 600)
return _fstrLen(s);

#eLse

unsigned len=0;
white (*s++)

len++;
return ten;
#endi f

>

We now have a fairly complete implementation of the MEM program.

Allocation Precautions

Each time DOS INT 21h Fimction 4Bh loads a program for execution, it allocates
memory for it as well. For a COM-format file, the loader requests all available
RAM. For an EXE-format file, the amount of RAM is specified in the file's reloca
tion header. If this amount is not exphcitly defined at link time, however, the EXE
takes all available space.

Because most programs therefore hog all RAM each time they are loaded,
whether they need it or not, it's up to you as a programmer to be sure that your
programs trim themselves back to no more than they need, if they are going to be
spawning other processes. Failure to do so wiU result in "out of memory" errors
no matter how much RAM your system contains.

Each time a program terminates normally and returns control to its parent
process, all RAM allocated to that program is once again made available for allo
cation. If the program terminates via one of the TSR functions, only part (or pos
sibly none) of its memory is released to be used again.

The upshot is that programs get all available space while they are executing,
and can turn it back when they finish. Memory allocation for your programs can
thus be handled automatically (and invisibly) by DOS itself. Unfortunately, get
ting one large block of memory at start-up, and having it deallocated for you at

100 UNDOCUMENTED DOS

termination, is often inconvenient because it means your program can't spawn
other processes. Modem C compilers usually include, in their start-up code, the
necessary calls to cut their RAM usage back to just what they require, or 64K,
whichever is larger, but at least one popular high-level language (Turbo Pascal)
does not do this automatically. Instead, TP gives you a compiler option ("$M")
that lets you specify how much memory to use.

Unfortimately, this option (like the DOS loader) defaults to "all available
space," so an error condition will result from attempts to EXEC or SPAWN a child
process from TP without using the $M option to make RAM available for the
child process. Because of this, the Turbo Pascal ExecO procedure gained a reputa
tion for being broken; actually, it just was not adequately documented.

If you happen to be writing in assembly language, it's entirely your responsi-
bihty to manage your memory allocations properly.

In most high-level language programming, you won't use the three DOS
RAM allocation fimctions directly, but if you use the C library functions mallocO
and freeO, or the Turbo Pascal functions new() and disposeO, you'll be using
them indirectly.

The strategy behind mallocO and freeO is to obtain large blocks of RAM
using the DOS functions and then dole it out to the program in much smaller
portions, as requested. This is a heritage from UNIX, where the allocation of sys
tem RAM was a time-consuming process. Under MS-DOS, the reverse is true,
and a number of "improved performance" packages that replace the standard li
brary versions of maUocO and freeO with more-direct calls to the DOS functions
have appeared recently.

On the other hand, each block of memory allocated from DOS requires the
additional 16-byte MCB (arena), and all DOS allocations are consequently para-
graph-based, so if you want to allocate 4 bytes from DOS, for instance, you have
to ask INT 21h Function 48h for one paragraph (16 bytes). In order to satisfy this
request, DOS then actually needs two paragraphs: the one you asked for, plus one
for the MCB to "control" the paragraph. The point is that the smallest possible di
rect DOS memory allocation actually uses 32 bytes.

The Turbo Pascal new() and disposeO functions are more direct than the C
mallocO and freeO functions: they depend on your program having already taken
all available RAM from DOS, and then simply maintain a pointer to the lowest
unused byte in the "heap" (the imused data area above your program's minimum
requirement). A call to new(), with the number of bytes needed supplied as its

Chapter 3: MS-DOS Resource Management 101

argument, returns the current value of that pointer, and increments the pointer
past the number requested so that the next call to new() will get still-available
space. A call to disposeO, which takes a pointer as its argument, simply sets that
pointer into the FreeHeap variable that new() uses, thus making all RAM above
that address available for reallocation.

RAM Allocation Strategies

When a program requests x paragraphs of memory and the memory manager
has more than one block free, it's possible to satisfy that request in several differ
ent ways. These different ways of allocating memory are known as "allocation
strategies," and DOS provides a function (INT 21h Function 58h) to select from
three different strategies.

This function isn't always documented, however. For example, it is described
in Microsoft's MS-DOS Encyclopedia, but not in IBM's Technical Reference for DOS
3.3. Thus, like several other functions, it's neither officially documented across
the board nor truly undocumented. We'll refer to it as "semi-documented." At
any rate, the function permits you to select a "first fit," "best fit," or "last fit" strat
egy for the memory manager to follow.

First-fit Strategy The first-fit strategy is optimized for speed, with the possible re
sult of excessively fragmenting memory. In a predominantly single-process sys
tem (which is the normal condition of DOS), such fragmentation is unlikely,
though, so this is the default action unless you explicitly change things.

Even if you do change strategies, DOS will change back to first-fit whenever
it loads a program, although it follows your selected strategy for all other loading
actions.

When using the first-fit strategy, the memory manager begins looking for free
RAM at the start of the MCB chain and makes the allocation from the first block

it finds that is large enough to satisfy the request. If the block is larger than re
quested, only enough is taken off the front to fill the request, and a new, still free,
block is created for the remainder.

In normal everyday DOS operation, there's usually only one such block in
the system when a program is loaded. Because the loader often asks for "all avail
able" RAM, no new block is created. Under these conditions, there's no difference

between first-fit and best-fit strategies.

102 UNDOCUMENTED DOS

If, however, the avaUable RAM has become highly fragmented, and at the
same time the block being allocated is small enough to fit in the first fi'ee block
encovmtered, the first-fit strategy will use that first block and will stop searching.

Best-fit Strategy The best-fit strategy must continue aU the way to the end of the
MCB chain. This strategy is optimized for tightest use of RAM space, without re
gard to operating speed; such an approach is sometimes essential. Unlike the
first-fit strategy, which accepts the first usable space, the best-fit strategy requires
that all available RAM be examined and then allocates the request from the small
est block that will do the job, regardless of whether it is the first one encountered.
As with the first-fit strategy, the block is allocated fi-om the front, and any left
over space is put into a new, stiQ free, block.

This approach guarantees that multiple allocations of small blocks will not
fragment RAM unnecessarily. So long as blocks are released at approximately the
same rate as they are allocated, the best-fit strategy will continue using the same
small blocks over and over, leaving the larger blocks free to accommodate re
quests that require them.

As pointed out in the previous section, in normal operation with only one or
two blocks of RAM free, there's little difference in action between first-fit and
best-fit. If, however, you are programming an application that does its own RAM
management and that makes short-term use of large numbers of small blocks of
RAM, you'll want to keep this strategy in mind. It could keep you from running
out of RAM unexpectedly just because none of the remaining free blocks is large
enough to fill your latest request!

Having said this, it is important not to oversell best-fit. In fact, as any text
book on operating systems will tell you, first-fit is almost always the correct strat
egy to use.

Last-fit Strategy Unlike either of the other strategies, the last-fit technique is de
signed specifically for allocations that you expect to hang around for a long time,
such as TSRs or device drivers. Unfortunately, DOS doesn't let you use the last-fit
technique to load programs.

When a block of RAM is allocated using the last-fit strategy, the highest pos
sible block of memory that can satisfy the request is assigned. Normally this will
be the highest part of the final block of free RAM. The idea is that memory allo
cated at the end of the MCB chain won't ever need to be searched, if you switch
back to the default first-fit strategy for subsequent normal allocations.

Chapter 3; MS-DOS Resource Management 103

Because the DOS loader won't honor this strategy for loading program mate
rial, the last-fit strategy is of limited usefulness. You can use it to force things to
the top of the normal 640KB conventional-RAM area, though.

Selecting The Strategy

The following C language sample program (STRATST.C) illustrates the use of the
semi-documented strategy function and verifies its operation. T.ilcp the previous
sample programs in this chapter, it compiles with either Microsoft or Turbo C.

Note that in STRATST.C each different DOS action has been encapsulated
into a unique function. This not only makes it easier for you to extract them into
your own programs but also simplifies the logical flow of the illustration itself.

I*

STRATST.C - Jim Kyle - June 5, 1990
demonstrates RAM-management strategy function
*/

#incLude <dos.h>
^include <stdio.h>

union REGS reg;
struct SREGS seg;

unsigned bigblok, tinyblok;
char *codesC3 = { "First-fit", " Best-fit", " Last-fit" >;

unsigned int GetRam (unsigned para) /* paragraphs! */
<. reg.x.bx = para;

reg.X.ax = 0x4800; /* get RAM from DOS */
intdosC Sreg, ®);
printfC'Got blk at %04X, size=%u\n", reg.x.ax, reg.x.bx);
return reg.x.ax;

>

void RetRam (unsigned segmt) /* release RAM to DOS */
{ segread(&seg);

seg.es = segmt;

reg.X.ax = 0x4900;
printf("NnReleased block at %04X", seg.es);
intdosxl ®, ®, 8seg);

>

void SetStrat (char strat)

■C reg.X.ax = 0x5801; /* set strategy code */

104 UNDOCUMENTED DOS

reg-h-bL = strat;
intdosC ®, ®);

void GetStrat (void)

•C reg-x-ax = 0x5800;
intdosC ®, ®);
printf("\nStrategy code: %u (%s)

reg-x-ax, codesCreg-x.axH
>

void main (void)

/* read strategy code */

);

bigbLok =: GetRam (0x100); /* allocate big block */

GetRam (0x080); /* allocate a fence */

tinyblok = GetRam(0x080); /* allocate tiny block */

GetRam (0x080); /* allocate a fence */

RelRam (bigblok)r
/* now free two blocks */

ReLRam (ti nyblok); /* but leave fences */

SetStrat(0); /* set first-fit */

GetStrat C);
RelRam (GetRam (0x80)); /* get, then release */

SetStrat(1); /* set best-fit */

GetStrat ();
RelRam (GetRam (0x80)); /* get, then release */

SetStrat(2); /* set last-fit */

GetStrat ();
/RelRam (GetRam (0x80)); / get, then release

SetStrat(0); /* set first-fit at end */

The program assigns four consecutive blocks of RAM, with the first of the
four twice as large as each of the other three. The first and third blocks are then
released to create artificial fragmentation so that you can see the effects of the dif
ferent strategy selections. Aside from any small blocks of free space that might
exist as leftovers from TSR installation, your system should at this point have
three blocks of free RAM available for allocation: the 4,096-byte (0x100 para
graphs) block allocated as "bigblok," the 2,048-byte block allocated as "tinyblok,"
and "all the rest" between the second "fence" block and the top of memory.

Chapter 3: MS-DOS Resource Management 105

With this preparation, STRATST.C sets the first-fit strategy via SetStratO, ver
ifies it by means of GetStratO, and then allocates and immediately frees a block of
2,048 bytes (0x80 paragraphs). GetRam reports the address of the block obtained;
releasing it restores the status quo for the next test.

Similarly, the best-fit and the last-fit strategies are tested. Before returning to
DOS, the program restores first-fit as the strategy to be used (failure to do so in
early test versions led to startling reports from other demonstrations—such as
environments appearing in memory after their respective programs—although
everything continued to work properly).

Here is the report generated by STRATST; the exact addresses will differ for
your system, but the results should be similar:

Got blk at 89E9, size=256
Got blk at 8AEA^ s1ze=128
Got blk at 8B6B, size=128
Got blk at 8BEC, size=128
Released block at 89E9

Released block at 8B6B

Strategy code: 0 (First-fit): Got blk at 89E9, size=128
Released block at 89E9

Strategy code: 1 (Best-fit): Got blk at 8B6B, size=128
Released block at 8B6B

Strategy code: 2 (Last-fit): Got blk at 9F80, size=128
Released block at 9F80

In addition to printff) statements embedded directly in the program, we
could also have viewed this program's memory allocation using the INTRSPY
program, presented in chapter 8. That chapter includes an INTRSPY script for
tracking calls to INT 21h Fimctions 48h, 49h, and 4Ah.

Process Management

The concept of a "process" as a separate executable program that has been loaded
into memory but that may or may not be executing currently is central to the op
eration of MS-DOS. The whole basis of TSR programming is that a process may
be retained "in residence" after once terminating, but TSRs are not the only pro
cesses that DOS manages. Every program loaded for execution, including the
command interpreter itself, is a process.

106 UNDOCUMENTED DOS

The PSP: How It Identifies a Process

Even when we are discussing DOS memory management, there was no way to
avoid mentioning the Program Segment Prefix (PSP). Now we can examine this
crucial DOS data structure in more detail. The PSP, a 256-byte block located im
mediately preceding the actual process memory, is the key to process manage
ment in MS-DOS. The PSP contains the DOS state (file handles, etc.) for its

process; the segment address of the PSP itself provides a unique identifier by
which the process can be located and managed.

History, Purpose, and Use The Program Segment Prefix came to MS-DOS by way
of Seattle Computer Products's 86-DOS, which, for compatibility, took the con
cept from the Digital Research's 8080 CP/M operating system.

As MS-DOS developed through the years, however, the PSP has evolved into
far more than its CP/M equivalent. It now embodies many of the concepts pro
vided in other operating systems (such as UNIX and Multics) by the "stack
frame" or the "process directory." By proper use of information kept in the PSP, a
process can pass data to other processes that it spawns, or it can return informa
tion back to its parent process. At the same time, many fields of the PSP are ves
tigial, holdovers firom the days of CP/M.

The primary purpose of the PSP is to contain the system mformation neces
sary to start, run, and finish a specific process. This includes, but is not limited to,
the address of the routine to which control should transfer when the process ter
minates, the list of "handles" by which the process identifies its files and devices,
the address of the enviromnent space belonging to the process, the identity of the
process' parent process, and last but far from least, any arguments passed di
rectly to the process when it was invoked.

A secondary purpose is to provide methods of accessing DOS functions with
out INT 21h; this was much more important in earlier times than it is today. Mth
CP/M, the interface to BDOS (Basic Disk Operating System, the ancestor of the
INT 21h functions) was by way of a subroutine call to location OOOSh. Conse
quently, to provide the same functionality, offset OOOSh in the PSP of every pro
cess contains a rather cryptically coded far jump to the dispatcher area of
MS-DOS itself.

Similarly, many UNIX systems provided similar capabilities through a far call
in the user's stack frame area, so with the introduction of UNIX-like capabilities
in MS-DOS 2.0, a special far call to INT 21h was added to the PSP at offset OOSOh.

Chapter 3: MS-DOS Resource Management 107

Neither of these capabilities is widely used; most programs today simply use
INT 21h or, if the program is coded in a high-level language, its equivalent.

Unique Process Identifier MS-DOS can have only one "current process," because it
uses the associated PSP as a scratch-pad area for much of its file management ac
tivity. Yet MS-DOS can be used for multitasking between multiple processes. A
key to multitasking in an operating system with only one "current process" is
simply to change this current process.

Throughout much of the MS-DOS documentation, you'll find references to an
entity called the "process identifier," often abbreviated to "process ID" or even
"PID." This is a 16-bit value that uniquely identifies each process currently resi
dent in the system, regardless of whether it is active. However the documenta
tion never explains precisely what the PID is.

This mysterious "process identifier" is nothing more than the segment ad
dress of the PSP associated with that process. DOS provides two imdocumented
fimctions, and one documented one, to store or retrieve the PID of the "current

process," thus activating one or another set of data stored in different PSPs. The
current process is set using imdocumented INT 21h Function 50h, and the cur
rent process can be queried either with undocumented INT 21h Function 51h or,
in DOS 3.x and higher, with the equivalent documented Function 62h.

It is important to understand that the two Get PSP functions do not necessar
ily retrieve the PSP of the program that calls them. There appears to be a great
deal of confusion on this point. For example, even Duncan's Advanced MS-DOS
Programming states that Function 62h "allows a program to conveniently recover
the PSP address at any point during its execution, without having to save it at
program entry."

In fact, the two Get PSP functions always return the value that was last estab
lished with Set PSP. This corresponds to the "current process" in DOS, not neces
sarily to the PSP of the calling program. If Get PSP is called from a TSR that has
been activated by an interrupt. Get PSP returns the PSP of the foreground pro
cess, not the TSR's PSP. That is what makes the Get/Set PSP functions important:
they are the basis for the ability to switch between multiple tasks in MS-DOS. It is
often said that DOS is single-tasking, but this merely means that only one process
"owns" DOS at any given time.

Whenever the current process is switched, whether by your own multitask
ing code or by a TSR popping up for action, if s essential that the current PID also
be switched if any I/O activity is to occur. Otherwise, the files or devices

108 UNDOCUMENTED DOS

"owned" by the old foreground process will be affected, rather than your own
files.

The three get/set PSP functions are described in further detail in Ray
Michels's chapter on TSRs and DOS multitasking.

Undocumented Areas of the PSP Less than 1 /3 of the 256-byte area in the PSP has
been documented officially; this section supplies information about the remain
ing parts. Not all of them, however, have ever been put to use.

This description is organized in the form of an assembly-language data seg
ment, though without the SEGMENT directives:

FINI: INT 20H ;GGGG CP/M-Like exit point

NXTGRAF DW OAOOOh ;GGG2 first unused segment

DB 0 ;GGG4 fi LLer to align next

CPMCAL: CALLF INT21DSP ;GGG5 CP/M-like service call

ISV22 DD 0 ;GGGA documented ISR vectors

ISV23 DD 0 ;GGGE " (saved at start)

ISV24 DD 0 ;GG12 II

PARENT DW PARENT ID ;GG16 PSP of parent

HANDLES DB 1,1,1,0,2 ;GG18 indices into SFT

DB 15 DUP(255) ,
maintained by DOS

ENVPTR DW ENVIRON ;002C envi ronment segment

SAVSTK DD 0 ;002E saved SS:SP at INT21

NHDLS DW 20 ;0032 nbr of handles avail

HTBLPTR DD HANDLES ;0034 ptr to handle table

DD -1 ;0038 SHARE'S previous PSP

RSVD1 DB 14 DUP(G) ;003C never used

DISP: INT 21H ;0050 Unix-like dispatcher

RETF

RSVD2 DB 9 DUP(G) ,
never used

FCB1 DB 0," " ;GG5C documented FCB areas

DB G,G,G,G
FCB2 DB 0,' • ;GG6C If

DB G,G,G,G

TAILC DB 5 ;GG8G "command tail" count

TAIL DB ' args' ;GG81 start actual data here

DB GDH

DOS Termination Address

Although the three interrupt service vectors saved in the PSP are documented,
their usage is not, and one of them provides a way to hook into a process at ter
mination time no matter what causes the process to terminate, thus providing

Chapter 3: MS-DOS Resource Management 109

DOS "Exit List" capability. The magic vector is ISV22, the INT 22h vector, docu
mented as the "termination address." What is not documented is the fact that the

address in the PSP, rather than the one in the interrupt service region, is the one
used when the process terminates!

To hook this vector and cause your own code to be executed when the pro
cess terminates, before control returns to the calling program, just use the follow
ing routines, with your own code inserted as noted. Execute "SetHook" dming
your program's initialization, while ES still points to the PSP (as it will upon
entry to the program for an EXE file, or at any time before you change it for a
COM file); "DoHook" will be called automatically at termination time:

SetHook PROC

MOV AX,CES;OOOAh: ; save old offset
MOV word ptr CS:OLdVec,AX
MOV AX,CES:OOOChD ; save old segment
MOV word ptr CS:0ldVec+2,AX
MOV AX,offset DoHook
MOV EES:OOOAhI],AX ; set in new vector
MOV AX,C$
MOV :ES:OOOCh:,AX

SetHook ENDP

OLdVec DD 0 ; place for old vector

DoHook PROC FAR

; whatever you need to do is coded here
JMP [CS:OldVecD ; then chain to original

DoHook ENDP

The "termination address" stored at ISV22 in the PSP is just the return ad
dress to the Exec function call (INT 21h Function 4B00h) that the parent used to
invoke this process. Obviously, then, when DOS transfers control to this address,
it is ready to return to the parent. DoHook is grabbing control instead, so when
DoHook is executed, all memory allocated to the terminating process has already
been released—including the memory containing the DoHook code. All files
have been closed and the current PSP has been set to that of the parent. In DOS 3
and later, the registers have been restored to the values they had when the parent
performed the Exec. Basically, all that DoHook should do is de-install any special
handlers that the program had installed, so that they wiU not be left pointing to
no-longer-valid addresses. No other actions should be attempted and by all means no

110 UNDOCUMENTED DOS

file access or other I/O should be tried since the context could easily vary de
pending on the parent programs. For more complex on-exit processing, you are
better off using routines such as atexitO in C.

Other PSP Fields

The first fuUy tmdocumented area of the PSP is the word at offset 0016h, which
contains the PID of this process' parent process. If this process is the current com
mand interpreter, its own PID will appear here, even if it is really a spawned
shell that can be terminated by the EXIT command. Were it not for this, you
could trace back through these pointers from one PSP to the parent PSP and thus
locate the master command interpreter. However, all you can do by tracing this is
to locate the current shell, which may not be the master. (As noted earlier, DMT
2Eh can be used to find the master copy of COMMAND.COM; more details are
given in the chapter on Command Interpreters.)

Immediately following the PARENT pointer, at offset 0018h, is the 20-b5^e
handle table. Each byte in this list represents an index into the System File Tables
maintained by DOS. As shown in the example code, the first five of these are au
tomatically set up by the loader routines to predefine handles for stdin, stdout,
stderr, stdaux, and stdpm; note that the first three handles all reference the same
System File Table (SFT; see the chapter on the DOS file system) entry for device
CON. All imused handles have the value OxFF.

The next undocumented area is the doubleword at offset 002Eh, which the

DOS dispatch code uses to save SS and SP each time this process enters INT 21h.
Sa\'ing the stack location in the PSP, rather than in DOS' own data area, makes
multitasking possible by permitting DOS to switch current processes, resuming
each process where it was last halted (that is, treating the processes as
coroutines). However, MS-DOS itself has not yet taken advantage of this capability.

Right behind ENVPTR comes a 6-byte group added at version 3.1, which per
mits you to relocate the handle table and thus make more than 20 file handles
available to your process. A documented DOS function (INT 21h Fimction 67h)
exists to manipulate this area. An alternative to Fxmction 67h appears in FHAN-
DLE.C, in chapter 4.

The first two bytes of this region are the word NHDLS at offset 0032h, which
defines the number of handles available to this process; attempting to open
another file or device when this many handles are already in use will trigger a
DOS error.

Chapter 3: MS-DOS Resource Management 111

The following four bytes, HTBLPTR at offset 0034h, are a far pointer to the
first byte of the handle table.

By default, NHDLS is set to 20, and HTBLPTR to PSP:0018h, thus describing
the handle table in the PSP.

The doubleword at offset 0038h is always set to OFFFF:FFFFh in DOS ver
sions prior to 3.3. Later DOS versions set this to point to the parent PSP when
SHARE is in use.

Spawning Child Processes

As is discussed further in chapter 6, every program run under MS-DOS can be
thought of as a child process. Even the very first one loaded as part of the boot
process (that is, the loader that is read in from the boot sector of the disk) is a
"child" of the ROM Bootstrap routine! This section describes in detail the differ
ences between a child process and the generic "process" concept.

A "child process" is simply a process spawned by some other process, which
is called the "parent." Again, except for the bootstrap loader code that initially
brings your system into action, every process in the system is a child of some
other process.

The bootstrap loader spawns only one child: the command interpreter speci
fied by the SHELL= line in CONFIG.SYS, or COMMAND.COM by default if no
SHELL is specified. This process is what most users perceive to be DOS itself.
Each time a program's name is typed on the command line, that program is
spawned as a child of the command interpreter, for execution.

If the spawned program is, itself, a menu or other t5^e of shell routine, it may
in turn spawn children of its own, which execute and return control to their par
ent. Should control ever return to the bootstrap loader, the result is the error mes
sage "Bad or missing command interpreter" and a locked system requiring
rebooting.

Locating Parent Processes

From time to time, a process needs to be able to trace its ancestry. This isn't al
ways possible, because MS-DOS has a few quirks in some areas (for example, a
shell program such as COMMAND.COM is always its own parent, and so the
chain stops right there—see chapter 6 for more details). However, if the process is
running as the child of anything other than a command interpreter such as COM-

112 UNDOCUMENTED DOS

MAND.COM, the job of locating its ancestors is straightforward though undocu
mented.

Locating Ancestors One undocumented field in the PSP, the PARENT word de
scribed previously, makes it possible for a program to trace its ancestry to the
point of the closest command interpreter shell (any shell program modifies this
field to show that it is its own parent).

Thus, a program that needs to trace its ancestry need only locate its own PSP,
extract the PARENT process ID, then use that to access the parenP s PSP. The pro
cess continues until the point at which PARENT points to the PSP that contains it;
this will be the first coimnand interpreter program encoimtered in the trace.

Use of this Capability A sample program in C that uses this capability to trace its
ancestry follows:

/*

ROOTS.C (with apologies to Alex Haley)
Trace Your Ancestry!
Jim Kyle, 1990
*/

/^include <stdio.h>

/* grr! different locations for _psp global variable! */
#ifdef TURBOC
#include <dos.h>

Ue Ise

#include <stdlib.h>

#endi f

unsigned parent, self;

Sdefine WORD(seg, ofs) \
(*((unsigned far *) (((unsigned long)(seg)«16) | (ofs))))

main (void)

{ self = _psp; /* start with own PSP value */
parent = WORD(self, 0x16);
do

{ printfC'PID = %04X, PARENT = %04X\n", self, parent);
self = parent;

>

while ((parent = WORD(self, 0x16)) != self);
return 0;

>

Chapter 3: MS-DOS Resource Management 113

The program simply copies its own PID into the variable "self" and then uses
it and the defined offset of PARENT in the PSP to retrieve the parent's PID in
"parent."

From there, the program loops reporting the values of "self and "parent" at
each level and then redefining them both, imtil it reaches the level at which the
two values match. This wlU be the command interpreter. At this point, the pro
gram returns. It's most instructive, by the way, to run this program from some
environment, rather than from the command line, because that wiU guarantee at
least one level of ancestry before the command interpreter is reached. For exam
ple, we can nm ROOTS inside of DEBUG, inside another copy of DEBUG:

C:\UNDOC\KYLE>debug \b1n\debug.exe roots.exe
-g

-9

PID = 932A, PARENT = 8F20
PID = 8F20, PARENT = 8B16
PID = 8B16, PARENT = 8A27

Here, 932A is ROOTS, and 8F20 and 8B16 are DEBUG. Naturally, we could
use the code developed earlier in MEM, especially the function prog-
name_fm_psp(), to find the ASCnZ names of these ancestors.

Device Management

In addition to memory, the operating system must manage all devices connected
to the CPU, such as the disk drives, the keyboard, and any displays. Although
much of the detailed interface between any device and DOS is handled by the
BIOS (Basic Input Output System) code (for example, BIOS INT 13h handles the
disk), the actual management of devices remains the responsibility of DOS itself.

Why Device Drivers Exist

Older operating systems, and even MS-DOS 1.x, included all hardware-depen
dent code necessary to deal with input and output as an integral part of the
system itself. This made it necessary to bring out version 1.1 of MS-DOS when
IBM made available the 360KB double-sided floppy disk drive, and made it im
possible to use any kind of hard disk conveniently on a DOS 1.x system. Im
provements were obviously in order.

114 UNDOCUMENTED DOS

A major part of the upgrade provided by MS-DOS 2.0 was the "installable de
vice driver" capability. This concept, borrowed from Bell Labs's UNIX, concen
trates all hardware dependencies into small modules that can be installed and
removed separately from the main operating system code itself.

An installable device driver is a code package that forms a self-contained umt
capable of initializing itself, and through which all communication to and from a
specific hardware device can be channeled. The format of the driver, and of its
command interface, is rigidly specified by the MS-DOS documentation.

By separating hardware dependencies into such a module, only new drivers,
rather than a complete operating-system upgrade, need be developed when a
new hardware device becomes available; the new device is then immediately us
able with any older system that can accept the driver.

Hardware Dependent Details

In general, three types of action tend to be highly device-specific and vary from
one device to the next. These are the actions required to initialize the device and
prepare it for use, those required to send data to it, and those required to receive
data from it.

You might think that some devices need only two of these groups, because
you don't usually send data to a keyboard or receive data from a printer. How
ever, the keyboard does have to receive certain commands from the operating
system to acknowledge that its output has been accepted, and similarly the sys
tem needs to read status conditions from the printer. These peripherals really are
I/O devices, not just I or O devices.

Other details that are associated with specific hardware items rather than
with generic logical functions include port addresses through which communica
tion is achieved, the "handshake" protocol used to transfer data to and from the
device, and the actual bit patterns transferred as commands and status.

All of these hardware-dependent details are concentrated within the single
driver that serves each device. In order for DOS to use them, they are grouped
into a small collection of logical functions as specified in the DOS documentation.

Logically Required Functions The DOS documentation specifies 17 logical func
tions, all of which must be recognized and responded to by every device driver,
regardless of whether that function makes sense for the driver (as in the amusing
case of "media check" for a CRT). These functions provide adequate flexibility to
deal with virtually any I/O requirement you can imagine.

Chapter 3: MS-DOS Resource Management 115

Normally ftmction dispatching is implemented with a jump table. The
function's code is used as the index into a table of offset addresses, and control
transfers to the indexed address. If the specific function does not apply to this
driver, the code reached normally returns an appropriate status code with no
other action performed.

Congruence Of Files and Devices One of the most useful results of the device
driver concept is that MS-DOS can treat files and devices in exactly the same way.
This means that you can write programs which deal simply with "streams" of
data and not be at all concerned whether the streams come from (or go to) a de
vice or a file. This is a major advantage when compared to older techniques that,
to retrieve data from, for example, the keyboard, required totally different pro
gramming than that used to retrieve data from a file.

Unfortxmately, not all the capability of the keyboard as an input device can be
used through the drivers, nor can maximum display speed be obtained from the
CRT. If you are programming a real-time video image display system, with
hotkey control, you'll be forced to go direct to the video display controller with
your output, and to use BIOS routines to read the keyboard without waiting until
the operator presses ENTER.

Thus, not all programs which run under MS-DOS are able to take full advan
tage of the power offered by the driver concept. This is not a limitation inherent
in the concept itself, but rather an artificial one imposed by the design of MS-
DOS and failure to anticipate all future needs. Or maybe if s an inherent limita
tion in the concept of "device independence."

One interesting by-product of the files-devices congruence is that all your
named devices can be accessed as files in any disk directory! This comes about
because the DOS routines that open both devices and files always search for de
vices first, and if a device name is the same as the name of the file you are trying
to open, the device will be opened instead. Because most of the procedures used
to determine whether a given file exists depend on trying to open the file and
then detecting the error if it cannot be opened, these routines will show that any
device exists as a file in any directory you happen to test. Nevertheless, it wfil not
show in the directory listing.

This can be used to test for the existence of a directory itself, because if you
try to open a device by referring to it as a file in a nonexistent directory, the direc
tory error will occur before the device access attempt. That error, in turn, indicates
that the directory itself cannot be accessed, for if the directory can be accessed.

116 UNDOCUMENTED DOS

the device can also always be accessed. The following batch file uses this aspect
of DOS devices:

aecho off

rem isdir-bat

if exist %1\nuL goto exists
echo No such directory

goto done
:exi sts

echo Directory exists
:done

C:\UNDOC\KYLE>isdir \foobar

No such directory
C:\UNDOC\KYLE>isdir \undoc\kyLe

Directory exists

Tracing the Driver Chain

In order to operate at aU, MS-DOS must provide at least a minimal set of built-in
device drivers. Yet to achieve the full advantages of expansion, it's necessary to
be able to insert new drivers at will and to have the power of replacing an exist
ing driver with a new version.

In order to make these things possible, DOS organizes the drivers as a singly
linked chain, with a defined starting point that is always at the same place within
any specific DOS version (the location differs from one version to the next, how
ever). Each driver in the chain includes as part of its structure a pointer to the
next one, and the end of the chain is signified by the value FFFFh in the offset po
sition of the final driver's link. Unlike the MCB chain, this is a true linked list.

The original device chain is prebuilt in the hidden system file 10.SYS (in PC-
DOS, 1BMB10.COM). If you add drivers to your system via the DEV1CE= com
mand in the CONFIG.SYS file, they are patched into the chain by the
initialization portion of lO.SYS each time you boot your system.

Subsequent sections of this chapter describe the detailed organization of the
device driver chain, tell how drivers are initialized during system boot-up, and
then show you how to locate the start of the chain for any version of DOS and
how to trace the driver chain and find out what is in your system.

Organization of the Device Driver Chain The device driver chain is a singly linked
list structure with a defined starting point. The link itself is a far pointer (32-bit

Chapter 3: MS-DOS Resource Management 117

segmentroffset format) that forms the first four bytes of each device driver, and
the starting point is the driver for the NUL device.

The NUL device is the "bit bucket" for both input and output; any output sent
to NUL simply vanishes without trace, and any attempt to read input from this
device encounters a permanent EOF condition. In itself, a device with these char
acteristics is handy. NUL also serves as the "anchor" location for the driver chain.

As delivered, NUL's link pointer holds the address of the supplied CON
driver (the default console or keyboard/CRT routines), which is located near the
front of the IO.SYS data area (which normally is at absolute address 0700h). The
NUL driver however, is located near the front of the DOS data area itself, which
is at a much higher address.

Because the DOS handle-processing routines know where the NUL driver is
located, they can trace through the chain to locate any required driver.

As already mentioned, the DOS routines always go through the device chain,
looking for a match between the name of each character device and the requested
filename, when any attempt is made to open a handle for input or output. Only
when no match is found in the driver chain will DOS go search the directory for a
named file. This makes it impossible to either create or access a file that has the
same name as any device. It might be possible to develop a form of security sys
tem based on this fact, by first creating a file and then installing a device with the
same name and providing a secure method for changing the device's name dvu-
ing operation.

Note that only character devices have names that are used in the search;
block devices are referred to by "drive letter" instead of by name. During the
search, these drivers are simply skipped. Because the first match to a name ends
the search, an existing driver is replaced simply by inserting the replacement into
the chain where it will be encountered first and being sure that it has the same
name.

How Drivers Are Initialized When you add new drivers via CONFIG.SYS, each
driver is added to the front of the chain as it is encovmtered. This is done by copy
ing the link values from NUL into the new driver's link and then putting the new
driver's address into the NUL link instead.

Both block and character device drivers are added into the chain in the same

way. Because the search always begins at the NUL driver, this guarantees that
any new drivers added will be foimd before the built-in ones.

118 UNDOCUMENTED DOS

The pointer-patching that inserts each driver into the chain is not actually
done, though, until the last step of driver installation. First, the driver's own in
ternal initialization code is called. If an error occurs, the installation is skipped
with an advisory message. If the initialization completes without error, DOS
checks the driver's attribute word to determine whether the driver is for a char

acter device or for a block device. If it's for a character device, it is added to the

chain immediately.
However, if it's a block device, DOS checks the number of units installed by

the initialization code; if this is zero, that signals DOS not to install the driver
even though no errors were detected. Otherwise, the unit count is used to assign
the next drive letter in sequence, a Disk Parameter Block (DPB; see appendix) for
the device is created and filled in from information returned by the initialization
process, and a Current Directory Structure (CDS; see appendbc) entry for that
drive letter is built, which relates the letter back to the device driver. Only after
all these actions are successfully completed does the driver get patched into the
chain.

The device driver specifications let you put several device drivers into a sin
gle file and specify them all by means of the single filename in the DEVICE= line.
However, when you do this, you must be aware of several "gotchas" that exist.
The most serious of these applies only to block devices; the code that processes
CONFIG.SYS assigns memory for the Disk DPB for each such device inunedi-
ately following the driver's break address. Thus, if you have more than one block
device driver in the same file, all of them should return different break addresses,
and these addresses should not be followed by any code that will be needed after
DOS calls the driver's initialization function.

If you mix character and block device drivers in the same file (which is not
prohibited by the specs but which is definitely a risky thing to do), you must be
sure that all the character drivers appear in the file before any of the block driv
ers, for the same reason.

The best practice, of course, is to follow a rule of "one driver, one file" and
thus avoid these possible problems. Sometimes, however, it may be necessary to
do otherwise. When that's the case, be very careful, and if you run into strange
system crashes, look closely to be sure that an errant break address pointer is not
wiping out driver code.

Locating the Start of the Chain The start of the device driver chain, like that of the
MCB chain discussed earlier in this chapter, can be determined using the imdoc-

Chapter 3: MS-DOS Resource Management 119

timented INT 21h Function 52h (Get List of Lists), described in chapter 4. The
"NLTL" device driver that forms the anchor point for the chain is always located
in the List of Lists.

For DOS 2.x, the driver begins 17h bytes past the address returned in ES:BX
by INT 21h Function 52h. With DOS 3.0, the offset is 28h, but with 3.1 that came

down to 22h, and there it has remained.

The following code fragment shows how to load ES:BX with the address of
the NUL driver for DOS 3.1 and up; for earlier versions, change the constant 22h
to the appropriate value:

raov ah, 52h ; get List of Lists
int 21h

add bx, 22h ; NUL driver offset, DOS 3.1+

Tracing it Through Once you have located the start of the device driver chain, ac
tual tracing through all devices (to duplicate the action of DOS during an OPEN
function) is simple. The only complicating factor is the need to distinguish be
tween character and block devices and to report block devices differently because
they have no names.

The following sample program, written for MASM version 5.1 but usable
with other assemblers that support the simplified segmenation directives, shows
how simple it is:

; DEV.ASM

.model small

.stack

.data

blkdev db 'Block: ' ; block driver message
blkcnt db '0 unit(s)$'

. code

dev proc

mov ah,52h ; get List of Lists
int 21h

mov ax,es ; segment to AX

add bx,22h ; driver offset, 3.1 and up
mov di,seg blkdev
mov dx,offset blkdev

devi: mov ds,ax

120 UNDOCUMENTED DOS

Lea si, Ebx+IOH r Step to name/units fieLd

test byte ptr Cbx+53, 80h ; check driver type

jz dev3 / is BLOCK driver

mov cx,8 r is CHAR driver

dev2: lodsb r so output its name

IFDEF INT29

i nt 29h A gratuitous use of undoc DOS

ELSE

push dx

mov dL, aL
mov ah, 2 A Character Output
int 21h

pop dx

ENDIF

Loop dev2

jmp short dev4 A then go Look for next one

dev3: Lodsb A get number of units

add aL,'0'
push ds

mov ds,di
mov bLkcnt,aL A set into message

mov ah,9
int 21h

pop ds

IFDEF INT29

dev4: mov aL,13 A send CR and LF to CRT

int 29h A gratuitous use of undoc DOS

mov aL,10
int 29h

ELSE

dev4: push dx

mov ah,2 A Character Output
mov dL,13 A send CR and LF to CRT

int 21h

mov dL,10
i nt 21h

pop dx

ENDIF

mov si ,bx A back up to front of driver
Lodsw A get offset of next one

xchg ax,bx
Lodsw A and then its segment

cmp bx,OFFFFh A was this end of chain?

jne dev1 A no. Loop back

Chapter 3: MS-DOS Resource Management 121

mov aX/^4C00H ; yes, return to DOS
int 21h

dev endp

end dev

When DEV.EXE is run on a MS-DOS 3.3 system, it produces the following list
of drivers. The bottom 12 are those contained in hidden file lO.SYS, the 3-unit
block driver controls drives A:, B:, and C:, and the other 11 are the standard DOS

devices:

NUL

4D0$STAK

BRNDEV

CON

MSSMOUSE

Block: 1 unitts)

XMSXXXXO

Block: 2 unit(s)

CON

AUX

PRN

CLOCKS

Block: 3 unit(s)

C0H1

LPT1

LPT2

LPT3

COM2

COM3

COM4

The 2-unit block driver is the OnTrack disk manager required to partition an
80MB unit into three 26MB logical drives, and the single-unit block driver is
Intel's QUIKMEM2.SYS RAMdisk. The duplicate name of CON is UV-ANSI.SYS;
because it appears in the chain ahead of the "standard" CON driver, it is always
used.

It is worth noting that, if assembled with a /DINT29 flag, DEV.ASM will
make gratuitous use of xmdocumented DOS. INT 29h is the "fast putchar" inter
rupt called from DOS when sending characters to a device whose attribute word
has bit 4 set. It is tempting to use INT 29h here, because it does simplify the code
just below label dev2. However, chapter 1 notes that there reaUy are places you

122 UNDOCUMENTED DOS

should use documented DOS instead of undocumented DOS, even when it seems

like more trouble. Performing output in this program is one of those places. Al
though this program absolutely demands use of imdocumented INT 21h Fimc-
tion 52h, there are several reasons for it not to use xmdocvunented INT 29h;

■ The same functionality is available with INT 21h Function 2
■ Not all CON drivers support the "fast putchar" bit
■ INT 29h output is not redirectable; because this program displays block

devices using INT 21h Fimction 9, which is redirectable, using INT 29h
elsewhere means that running DEV > TMP.TMP ends up displaying char
acter devices on the screen, and block devices in the file: pretty silly!

Thus, DEV provides a nice demonstration of when imdocumented EKDS is
needed and when it definitely isn't needed. Exercise some discretion here. Don't
use undocumented DOS if you don't need to. End of lecture.

Always Double-check Your Work In chapters 1 and 2, much emphasis was laid on
trying to double-check any values returned fi"om undocumented DOS. Verifica
tion depends on redundancy, though, and we noted that it is somewhat difficult
to verify undocumented DOS, because if you already had one copy of some piece
of information, you probably didn't need to go to undocumented DOS to get it in
the first place!

The device driver chain, however, does provide ample opportunity for dou
ble checking. Because device driver headers contain the 8-byte name of the
driver, when we think we have a pointer to a device driver header, we can (and
should!) check that we really do! This idea is developed in the following short
sample C program, which uses in-line assembler and the _fmemcmp() function
from Microsoft C 6.0:

/* DEVCON.C */

^Include <stdlib.h>

^include <stdio.h>

^include <string.h>
//include <dos.h>

/* some device attribute bits */

//define CHAR_DEV (1 « 15)
//define INT29 (1 « 4)

//define IS_CLOCK (1 « 3)
//define IS NUL (1 « 2)

Chapter 3: MS-DOS Resource Management 123

^pragma packd)

typedef unsigned char BYTE;

typedef struct DeviceDriver {
struct DeviceDriver far *next;
unsigned attr;
unsigned strategy;
unsigned intr;
union -C

BYTE nameCS:;
BYTE bLk_cnt;

> u;
> DeviceDriver;

typedef struct -C
void far *dpb;
void far *sft;
DeviceDriver far *cLock;
DeviceDriver far *con;
unsigned max_bytes;
void far *disk_buff;
void far *cds;
void far *fcb;
unsigned prot_fcb;
unsigned char bLk_dev;
unsigned char Lastdrv;
DeviceDriver nuL; /* not a pointer */
unsigned char join;
// ---

> ListOfLists; // DOS 3.1+

void faiLCchar *s) -C puts(s); exit(l); >

mainCint argc, char *argvCD)
i

ListOfLists far *dosList;
DeviceDriver far *dd;

_asm {
xor bx, bx
mov esy> bx
mov ah/ 52h
int 21h

mov dosList, bx
mov dosList+2, es
>

124 UNDOCUMENTED DOS

if (! dosList)

failC'INT 21h Function 52h not supported");
if (_fmemcmpCdosList->nul.u-name, "NUL 8) != 0)

failC'NUL name wrong");
if (! (dosList->nuL-attr & IS_NUL))

failCNUL attr wrong");
if (_fmemcmp(dosList->con->u-name, "CON ", 8) != 0)

faiLC'CON name wrong");
if (! (doslist->con->attr & CHAR_DEV))

failC'CON attr wrong");
if (_fmemcmp(dosList->cLock->u-name, "CLOCKS ", 8) != 0)

failCCLOCKS name wrong");
if (! (doslist->cLock->attr & IS_CLOCK))

failCCLOCKS attr wrong");

if (argvCmCOD == '-')

/* print out device chain */
dd = &dosList->nuL;
do {

if (dd->attr 8 CHAR_DEV)
printf("%-8Fs\n", dd->u.name);

else

printf ("Block dev: %u unit(s)\n", dd->u.blk__cnt);
dd = dd->next;

> while (FP_OFF(dd->next) != -1);

/* go back to first CON driver */
dd = &doslist->nul;
while (_fmemcmp(dd->u-name, "CON ", 8) != 0)

dd = dd->next;

/* DOS List Of Lists holds separate ptr to latest CON driver */
putsCdd == doslist->con ? "no new CON" : "new CON");

return 0;

This program relies heavily on the redundancy built into the DOS device
chain. We can check that doslist->clock, for example, really does point to a
CLOCKS device, using both the name "CLOCKS " and the CLOCK bit in the de
vice attribute word. This is particularly important because the program provides
structures for DOS 3.1 and higher only. If the program is run imder a version of
DOS where these structures are not accurate, such as DOS 2.0, 3.0, or perhaps

Chapter 3: MS-DOS Resource Management 125

7.18 (though we have every expectation that these structures will be the same in
that anxiously awaited version!), the program will print out an error message
and then quit, rather than blindly following bogus pointers and spewing out gar
bage on the screen.

Because a more limited range of DOS versions is handled, the C structures
really do make this program more readable than if you were using numeric off
sets. If s nice to be able to say doslist.nul->next.name, for instance, and see at a
glance that you're talking about the name of the device pointed to by the next
field of the NUL device. The -> and . notation also makes clear that the DOS List

of Lists contains the actual NUL header (doslist.nul), whereas it contains pointers
to CLOCIC$ (doslist->clock) and CON (doslist->con).

If you nm DEVCON a dash on the command line it prints out the same list as
the earlier DEV assembly-language program. Otherwise, it simply determines
whether the system's current CON driver is the default CON driver located in
lO.SYS (IBMBIO.COM), or whether a new one is located in front of it in the DOS

device chain. This capability will be used to test out the next program.

Loading Device Drivers from the DOS Command Line

To complete what you've learned about DOS resource management, let's create a
program you can use to load device drivers from the DOS command line, with
out having to edit CONFIG.SYS and reboot.

Ever have an MS-DOS program that required the presence of a device driver,
and wish you had a way to install the driver from the command line prompt
rather than having to edit your CONFIG.SYS file and then reboot the system?

Of course you can be thankful that if s so much easier to reboot MS-DOS
than it is to rebuild the kernel, which is what must be done to add a device driver

to UNIX. While DOS 2.x borrowed the idea of installable device drivers from

UNIX, if s often forgotten that DOS in fact improved on the installation of device
drivers by replacing the building of a new kernel with the simple editing of
CONFIG.SYS.

Still, most of us occasionally wish we could just t5q>e a command line to load
a device driver and be done with it, for truly installable device drivers.

Also, developers of device drivers often wish they had a way to debug the
initialization phase of a device driver. This t57pe of debugging usually requires a
debug device driver that loads before your device driver, or it requires hard-

126 UNDOCUMENTED DOS

ware in-circuit emulation. But if you could only load device drivers after the nor
mal CONFIG.SYS stage...

Well, wish no more. Command-hne loading of MS-DOS device drivers is not
only possible, it's relatively simple to accomplish once you know a little about
undocumented DOS. We will now present such a program, DEVLOD, written in
a combination of C and assembly language. All you have to do is type DEVLOD
followed by the name of the driver to be loaded, and any parameters needed, just
as you would supply them in CONFIG.SYS. For example, instead of placing the
following in CONFIG.SYS:

device=c:\dos\ansi.sys

you would simply t)^e the following on the DOS command line:

C:\>devLod c:\dos\ans1.sys

There are several ways to verify that this worked. First, you can write ANSI
strings to CON and see if they are properly interpreted as ANSI commands. For
example, after a DEVLOD ANSI.SYS, the following DOS command should pro
duce a DOS prompt in reverse video:

C:\>proinpt $eC7m$pgeC0ni

On systems that don't already have a CON replacement driver, you can also
use the DEVCON program just developed to verify that DEVLOD ANSLSYS
really did something:

C:\UNDOC\KYLE>devcon

no new CON

C:\UNDOC\KYLE>devlod \dos\ansi.sys

C:\UNDOC\KYLE>devcon

new CON

Finally, you can tell the new driver has been installed by running DEV and
inspecting its display of the device chain: you can see your new driver at the top
of the list, right after NUL, and ahead of any identically-named drivers loaded
earlier:

Chapter 3: MS-DOS Resource Management 127

C:\UNDOC\KYLE>dev

NUL

aEMM386$

C:\UNDOC\KYLE>devLod \dos\cLock.sys

C:\UNDOC\KYLE>dev

NUL

CLOCKS

aEMM386$

DEVLOD loads both character device drivers (such as ANSLSYS) and block

device drivers (drivers that support one or more drive units, such as VDISK.SYS),
whether located in .SYS or .EXE files.

How DEVLOD Works

Here is the basic structure of the DEVLOD program:

startup code (CO.ASM)
main (DEVLOD.C)

Move_Loader
movup (MOVUP.ASM)

Load_Drvr
INT 21h Function 4B03h (Load Overlay)

Get_,Li St
INT 21h Function 52h (Get List of Lists)

based on DOS version number:

get number of block devices
get value of LASTDRIVE
get Current Directory Structure (CDS) base
get pointer to NUL device

Ini t_Drvr
call DD init routine

build command packet
call Strategy
call Interrupt

Get_Out
if block device:

Put_Blk_Dev
for each unit:

Next_Drive
get next available drive letter

128 UNDOCUMENTED DOS

INT 21h Function 32h (Get DPB)

INT 21h Function 53h (Translate BPB -> DPB)

poke CDS

link into DPB chain

Fix_DOS_Chain
link into dev chain

release environment space
INT 21h Function 31h (TSR)

DEVLOD's first job is to move itself out of the way to the top of memory.
This lets it load the device driver as low as possible, reducing memory fragmen
tation. DEVLOD loads device drivers into memory using the documented DC)S
fimction for loading overlays, INT 21h Function 4B03h. An earlier version of
DEVLOD read the driver into memory using DOS file calls to open, read, and
close the driver, but this made it difficult to handle .EXE driver types. By using
the EXEC function instead, DOS handes both .SYS and .EXE files properly.

DEVLOD then calls our good friend, undocumented INT 21 h Function 52h,
to retrieve the number of block devices currently present in the system, the value
of LASTDRIVE, a pointer to the DOS Current Directory Structure (CDS) array,
and a pointer to the NUL device. The location of these variables within the List of
Lists varies with the DOS version number.

DEVLOD requires a pointer to the NUL device because (as we saw earlier in
this chapter when discussing the DEV and DEVCON programs) NUL acts as the
"anchor" to the DOS device chain. Since DEVLOD's whole purpose is to add new
devices into this chain, it must update this linked list.

If the DOS version indicates operation under MS-DOS 1.x, or in the OS/2
compatibility box, DEVLOD quits with an appropriate message. Otherwise, a
pointer to the name field of the NUL driver is created, and the eight bytes at that
location are compared to the constant "NUL " to verify that the driver is pres
ent and that the pointer is correct.

In glancing over the appendix to this book, the astute reader may have
noticed an undocumented DOS function, INT 2Fh Function 122Ch, which returns

in BX:AX a pointer to the header of the second device driver (NUL is first). Since
DOS links together all device-driver headers, this effectively gets a pointer to the
DOS driver chain. So why call INT 21h Fxmction 52h instead?

The reason is that, Uke all the internal INT 2Fh AH=12h fimctions, INT 21h

Fxmction 122Ch was meant to be called only from DOS itself (with all segment
registers set to DOS's kernel segment). In any case, you still need those other

Chapter 3: MS-DOS Resource Management 129

variables from the list of Lists, in case you are loading a block device (which you
won't know until later, after you've called the driver's INIT routine).

Once DEVLOD has retrieved this information, it sends the device driver an

initialization packet. This is straightforward; the function Init_Drvr() forms a
packet with the ESFIT command, calls the driver's Strategy routine, and then calls
the driver's Interrupt routine. As elsewhere, DEVLOD merely mtmicks what
DOS does when it loads a device driver.

If the device driver DSJIT fails, there is naturally nothing you can do but bail
out. It is important to note that you have not yet linked the driver into the DOS
driver chain, so it is easy to exit if the driver INIT fails. If the driver INIT suc
ceeds, DEVLOD can then proceed with its true mission, which takes place (oddly
enough) in the fimction Get_Out().

It is only at this point that DEVLOD knows whether it has a block or charac
ter device driver, so it is here that DEVLOD takes special measures for block
device drivers, by calling Put_BIk_Dev(). For each unit provided by the driver,
that function calls undocumented DOS INT 21h Function 32h (Get DPB) and INT

21h Function 53h (Translate BPB to DPB), alters the CDS entry for the new drive,
and links the new DPB into the DPB chain. These new DPBs are added after the

device driver's "break address." (The BPB, DPB, and CDS are explained in detail
in chapter 4 on the DOS file system.) The key point is that in Put_Blk_Dev(),
DEVLOD takes information returned by a block driver's INIT routine, and pro
duces a new DOS drive.

When loading a block device driver, DEVLOD needs a drive letter to assign
to the new driver. As will be explained in great detail in chapter 4, the CDS is an
undocumented array of structures, sometimes also called the Drive Info Table,
which maintains the current state of each drive in the system. The array is n ele
ments long, where n equals LASTDRIVE. DEVLOD pokes the CDS in order to
install a block device driver.

The function Next_Drive() is where DEVLOD determines the drive letter to

assign to a block device (if there is an available drive letter). One technique for
determining the next letter, #ifdefed out within DEVLOD.C, is simply to read the
"Number of Block Devices" field (nblkdrs) out of the List of Lists. However, this

fails to take account of SUBSTed or network-redirected drives. Therefore, we

instead walk the CDS, looking for the first free drive. In any case, DEVLOD will
update the nblkdrs field, if it successfully loads a block device.

130 UNDOCUMENTED DOS

Whether loading a block or character driver, DEVLOD also uses the "break
address" (the first byte of the driver's address space which can safely be turned
back to IXDS for reuse) returned by the driver. For block devices, the break
address has been increased to include the newly-created DPBs. Get_C>ut() con
verts the break address into a count of paragraphs to be retained.

The function cop5rptr() is called three times in succession to first save the con
tent of the NUL driver's link field, then copy it into the link field of the new
driver, and finally store the far address of the new driver in the NUL driver's hnk
field. The copyptrO function is provided in MOVUP.ASM, shown later in this
chapter. Note again that the DOS linked list is not altered until after you know
that the driver's INIT succeeded.

DEVLOD then links the device header into DOS's linked list of driver head

ers, and saves some memory by releasing its environment. (The resulting "hole in
RAM" will cause no harm, contrary to popular beUef. It wUl, in fact, be used as
the environment space for any program subsequently loaded, if the size of the
environment is not increased.) Finally, DEVLOD calls the documented DOS TSR
function INT 21h Function 31h to exit without releasing the memory now occu
pied by the driver.

DEVLOD.C

Before you look at how this dynamic loader accomplishes all this in less than
2,(X)0 bytes of executable code, some constraints should be mentioned:

Many confusing details were eliminated by implementing DEVLOD as a
.COM program, using the tiny memory model of Turbo C. The way the program
moves itself up in memory became much clearer when the .COM format
removed the need to individually manage each segment register.

In order to move the program while it is executing, if s necessary to know
every address that the program can reach during its execution. This precludes
using any part of the libraries supplied with the compiler. Fortimately, in this case
that's not a serious restriction; nearly ever5^hing can be handled without them.
Two assembly-language listings take care of the few things that cannot easily be
done in C itself.

Only one readily available implementation of C makes it easy to completely
sever the link to the runtime libraries. That is Borland's Turbo C, which provides
sample code showing how. (Microsoft also provides such a capability, but its doc
umentation is quite ayptic.)

Chapter 3: MS-DOS Resource Management 131

Thus the program, as presented, requires Turbo C with its register pseudo-
variables, geninterruptO, and __emit__() features. As explained in chapter 2,
register pseudo-variables such as _AX provide a way to directly read or load the
CPU registers from C. Both geninterruptO and _ _emit_ _() simply emit bytes into
the code stream; neither are actually functions.

Here is the main program, DEVLOD.C:

/**

* DEVLOD.C - Jim KyLe - 08/20/90 *
* Copyright 1990 by Jim KyLe - ALL Rights Reserved *
* (minor revisions by Andrew SchuLman - 9/12/90) *
* Dynamic Loader for device drivers *
* Requires Turbo C; see DEVLOD.MAK aLso for ASM heLpers-*
•kicic'kicie'kicicic'kicicieic*icicicieicie**icicicic'kic'kic*icic'kieic'k'kieic**icicicicicicic'kic-kieicic*ic*ieicieic-kicicic /

#incLude <stdio.h>

#incLude <stdLib.h>

#incLude <dos.h>

typedef unsigned char BYTE;

#define GETFLAGS emit (0x9F)
#define FIXDS emit (0x16,0x1F)/* PUSH SS, POP DS */
#define PUSHJP emit (0x55)
#define POP_BP emit (Ox5D)

unsigned _stkLen = 0x200;
unsigned _heap^en = 0;

char Fi LeNameE65!]; /* fiLename gLobaL buffer */
char * dvrarg; /* points to char after name in cmdLine buffer */
unsigned movsize; /* number of bytes to be moved up for driver */
void (far * driver)(); /* used as pointer to caLL driver code */
void far * drvptr; /* hoLds pointer to device driver */
void far * nuLdrvr; /* additionaL driver pointers */
void far * nxtdrvr;
BYTE far * nbLkdrs; /* points to bLock device count in List of Lists*/
unsigned Lastdrive; /* vaLue of LASTDRIVE in List of Lists */
BYTE far * CDSbase; /* base of Current Dir Structure */
int CDSsize; /* size of CDS eLement */
unsigned nuLseg; /* hoLd parts of ListOfLists pointer */
unsigned nuLofs;
unsigned LoLofs;
#pragma pack(l)

132 UNDOCUMENTED DOS

struct packet-C
BYTE hdrLen;
BYTE unit;
BYTE command;
unsigned status;
BYTE reservC83;
BYTE nunits;

unsigned brkofs;
unsigned brkseg;
unsigned inpofs;
unsigned inpseg;
BYTE NextDrv;

} CmdPkt;

/* device driver's command packet */

/* 0 to initialize */

/* 0x8000 is error */

/* break adr on return */

/* break seg on return */
/* SI on input */
/* _psp on input */
/* next available drive */

/* offset of '\' in current path field */

typedef struct -C /* Current Directory Structure (CDS)
BYTE pathC0x433;
unsigned flags;
void far *dpb;
unsigned start_cluster;
unsigned long ffff;
unsigned slash_offset;
// next for D0S4+ only
BYTE unknown;
void far *ifs;
unsigned unknown2;
> CDS;

extern unsigned _psp;
extern unsigned _heaptop;
extern BYTE _osmajor;
extern BYTE _osminor;

/* established by startup cod

*/

e in cO
/* established by startup code in cO
/* established by startup code */
/* established by startup code */

*/

*/

void _exit(int);
void abortC void);

/* established by startup code in cO */
/* established by startup code in cO */

void movupC char far char far *, int); /* in MOVUP.ASM file */
void copyptrC void far *src, void far *dst); /* in MOVUP.ASM file */

void exitCint c)

■C _exi t (c);}
/* called by startup code's sequence */

int Get_Driver_Name (void)
■C char *nameptr;

int i, j, cmdlinesz;
nameptr = (char *)0x80; /* check command line for driver name */

Chapter 3; MS-DOS Resource Management 133

cmdLinesz = (unsigned)*nameptr++;
if (cmdLinesz < 1) /* if nothing there, return FALSE */

return 0;
for (i=0; i<cmdLinesz && nameptrCiIl<'! '; i++) /* skip blanks */

dvrarg = (char *)&nameptrCi]; /* save to put in SI */
for (j=0; i<cmdlinesz && nameptrCi !!>' i++) /* copy name */

Pi LeNameCj++II = nameptrCiU;
FileNameCj] = 'XO';

return 1; /* and return TRUE to keep going */
>

void Put__Msg (char *msg)

#ifdef INT29

/* gratuitous use of undocumented DOS */
while (*msg)
•C _AL = *msg++; /* MOV AL,*msg */
geninterrupt(0x29); /* INT 29h */

>

Uelse

_AH = 2; /* doesn't need to be inside loop */
while (*msg)
i _dl = *msg++;

geni nterrupt(0x21);
>

#endif

>

void Err_Halt (char *msg) /* print message and abort */
■C Put_Msg (msg);

Put_Msg ("\r\n"); /* send CR,LF */
abortO;

>

void Move_Loader (void) /* vacate lower part of RAM */

unsigned movsize, destseg;
movsize = _heaptop - _psp; /* size of loader in paragraphs */
destseg = *(unsigned far *)MK_FP(_psp, 2); /* end of memory */
movup (MK_FP(_psp, 0), MK_FP(destseg - movsize, 0),

movsize « 4); /* move and fix segregs */
>

void Load_Drvr (void) /* load driver file into RAM */

134 UNDOCUMENTED DOS

-C unsigned handle;
struct -C

unsigned LoadSeg;
unsigned RelocSeg;

> ExecBLock;

ExecBLock-LoadSeg = _psp + 0x10;
ExecBLock.RelocSeg = _psp + 0x10;
_DX = (unsigned)&FileNameEO];
_BX = (unsigned)8iExecBlock;
_ES = _SS; /* es:bx point to ExecBLock */
_AX = 0x4B03; /* load overlay */
geninterrupt (0x21); /* DS is okay on this call */
GETFLAGS;

if (_AH & 1)
Errjalt ("Unable to load driver file.");

>

void Get_List (void) /* set up pointers via List */
■C _AH = 0x52; /* find DOS List of Lists */

geninterrupt (0x21);
nulseg = _ES; /* DOS data segment */
LoLofs = _BX; /* current drive table offset */

switchC _osmajor) /* NUL adr varies with version */
i
case 0:

Err_Halt ("Drivers not used in DOS VI-");
case 2:

nblkdrs = NULL;
nulofs = LoLofs + 0x17;
break;

case 3:
if (_osminor == 0)

nblkdrs = (BYTE far *) MK_FP(nulseg, LoLofs + 0x10);
lastdrive = *((BYTE far *) MK_FP(nulseg, LoLofs + Oxib));
nulofs = LoLofs + 0x28;

y
else

nblkdrs = (BYTE far *) MK_FP(nulseg, LoLofs + 0x20);
lastdrive = *((BYTE far *) MK_FP(nulseg, LoLofs + 0x21));
nulofs = LoLofs + 0x22;

>
CDSbase = *(BYTE far * far *)MK_FP(nulseg, LoLofs + 0x16);

Chapter 3: MS-DOS Resource Management 135

CDSs1ze = 81;
break;

case 4:

case 5:

nbLkdrs = (BYTE far *) MK_FP(nuLseg, LoLofs + 0x20);
Lastdrive = *((BYTE far *) MK_FP(nuLseg, LoLofs + 0x21));
nuLofs = LoLofs + 0x22;
CDSbase = *(BYTE far * far *) MK_FP(nulseg, LoLofs + 0x16);
CDSsize = 88;
break;

case 10:

case 20:

Errjalt ("0S2 DOS Box not supported.");
default:

Err_HaLt ("Unknown version of DOS!");

void Fix_DOS_Chain (void) /* patches driver into DOS chn */
•C unsigned i;

nuLdrvr = MK_FP(nuLseg, nuLofs+OxOA); /* verify the drvr */
drvptr = "NUL
for (i=0; i<8; ++i)

if (*((BYTE far *)nuldrvr+i) != *((BYTE far *)drvptr+i))
Err_HaLt ("Failed to find NUL driver.");

nuldrvr = MK_FP< nuLseg^. nuLofs); /* point to NUL driver */
drvptr

=

MK_FP< _psp+0x10, 0); /* new driver's address */

copyptr(nuldrvr, Snxtdrvr); /* hold old head now */
copyptr(Sdrvptr, nuLdrvr); /* put new after NUL */
copyptr(Snxtdrvr, drvptr); /* and old after new */

// returns number of next free drive, -1 if none available
int Next_Drive (void)
i

#ifdef USEJLKDEV
return (nblkdrs 88 (*nblkdrs < lastdrive)) ? *nblkdrs : -1;

#else

/* The following approach takes account of SUBSTed and
network-redirector drives */

CDS far *cds;
int i;
/* find first unused entry in CDS structure */

136 UNDOCUMENTED DOS

for (i=0, cds=CDSbase; i<Lastdrive; i++, ((BYTE far *)cds)+=CDSsize)
if (! cds->fLags) /* found a free drive */

break;
return (i == Lastdrive) ? -1 : i;

#endi f

>

int Init_Drvr (void)
■C unsigned tmp;
#define INIT 0

CmdPkt-command = INIT; /* build command packet */
CmdPkt-hdrlen = sizeof (struct packet);
CmdPkt-unit = 0;
CmdPkt.inpofs = (unsigned)dvrarg; /* points into cmd Line */
CmdPkt.inpseg = _psp;
/* can't really check for next drive here, because don't yet know

if this is a block driver or not */
CmdPkt-NextDrv = Next_Drive();
drvptr = MK_FP(_psp+0x10, 0); /* new driver's address */

tmp = *((unsigned far *)drvptr+3); /* STRATEGY pointer */
driver = MK_FP(FP_SEG(drvptr), tmp);
_ES = FP_SEG((void far *)&CmdPkt);
_BX = FP_OFF((void far *)&CmdPkt);
(*driver)(); /* set up the packet address */
tmp = *((unsigned far *)drvptr+4); /* COMMAND pointer */
driver = MK_FP(FP_SEG(drvptr), tmp);
(*driver)(); /* do the initialization */

/* check status code in command packet */
return (! (CmdPkt.status & 0x8000));

>

int Put_Blk_Dev (void) /* TRUE if Block Device failed */
■C int newdrv;

int retval = 1; /* pre-set for failure */
int unit = 0;
BYTE far *DPBlink;
CDS far *cds;
i nt i;

if ((Next_Dri veO == -1) | | CmdPkt-nuni ts == 0)
return retval; /* cannot install block driver */

if (CmdPkt-brkofs != 0) /* align to next paragraph */
C

CmdPkt-brkseg += (CmdPkt-brkofs » 4) + 1;

Chapter 3: MS-DOS Resource Management 137

CmdPkt-brkofs = 0;
>

whileC CmdPkt-nunits—)

if ((newdrv = Next_Drive()) == -1)
return 1;

(*nbLkdrs)++;
_AH = 0x32; /* get Last DPB and set poiner */
_DL = newdrv;
geninterrupt (0x21);
_AX = _DS; /* save segment to make the pointer */
FIXDS;

DPBLink = MK_FP(_AX, _BX);
(unsigned) DPBLink += (__osmajor < 4 ? 24 : 25);
_SI = *(unsigned far *)MK_FP(CmdPkt.inpseg, CmdPkt-inpofs);
_ES = CmdPkt-brkseg;
_DS = CmdPkt-inpseg;
_AH = 0x53;
PUSHJP;

_BP = 0;
geninterrupt (0x21); /* buiLd the DPB for this unit */
POP_BP;

FIXDS;

*(void far * far *)DPBLink = MK_FP(CmdPkt.brkseg, 0);

/* set up the Current Directory Structure for this drive */
cds = (CDS far *) (CDSbase + (newdrv * CDSsize));
cds->fLags = 1 « 14; /* PHYSICAL DRIVE */
cds->dpb = MK_FP(CmdPkt-brkseg, 0);
cds->start_cLuster = OxFFFF;
cds->ffff = -1L;
cds->sLash_offset = 2;
if (_osmajor > 3)

■C cds->unknown = 0;
cds->ifs = (void far *) 0;
cds->unknown2 = 0;

>

/* set up pointers for DPB, driver */
DPBLink = MK_FP(CmdPkt-brkseg, 0);
*DPBLink = newdrv;
*(DPBLink+1) = unit++;
if (_osmajor > 3)

DPBLink++; /* add one if DOS 4 */
*(Long far *)(DPBLink+0x12) = (Long)MK_FP(_psp+0x10, 0);
*(Long far *)(DPBLink+0x18) = OxFFFFFFFF;
CmdPkt-brkseg += 2; /* Leave two paragraphs for DPB */

138 UNDOCUMENTED DOS

CmdPkt.inpofs += 2; /* Point to next BPB pointer */
> /* end of nunits loop */
return 0; /* all went okay */

>

void Get_Out (void)
{ unsigned temp;

temp = *((unsigned far *)drvptr+2); /* attribute word */
if ((temp & 0x8000) == 0) /* if block device, set up tbls */

if (Put_Blk_Dev())
Err_Halt("Could not install block device");

Fix_DOS_Chain (); /* else patch it into DOS */

_ES = *((unsigned *)MI(_FP(_psp, 0x0020));
_AH = 0x49; /* release environment space */
geninterrupt (0x21);

/* then set up regs for KEEP function, and go resident */
temp = (CmdPkt.brkofs + 15); /* normalize the offset */
temp »= 4;
temp += CmdPkt.brkseg; /* add the segment address */
temp -= _psp; /* convert to paragraph count */
_AX = 0x3100; /* KEEP function of DOS */
_DX = (unsigned)temp; /* paragraphs to retain */
geninterrupt (0x21); /* won't come back from here! */

>

void main (void)

(if (!Get_Driver_Name())
Err_Halt ("Device driver name required.");

Move_Loader (); /* move code high and jump */
Load_Drvr (); /* bring driver into freed RAM */
Get_List(); /* get DOS internal variables */
if (Init_Drvr ()) /* let driver do its thing */

Get_Out(); /* check init status, go TSR */
else

Err_Halt ("Driver initialization failed.");
>

MOVUP.ASM

The small assembly-language module MOVUP contains two fxmctions used in
DEVLOD: movupO and copyptr(). Recall that, in order not to fragment memory.

Chapter 3: MS-DOS Resource Management 139

DEVLOD moves itself up above area into which the driver will be loaded. It
accomplishes this feat with movupO.

The function copyptrO is located here merely because if s written in assembly
language. It could have been written in C, but doing so would have required the
kind of contorted expressions that have given C the reputation of being a "write-
only" language. Using assembly language to transfer four bytes from source to
destination makes the function much easier to understand.

NAME movup

LI

;| MOVUP.ASM — helper code for DEVLOD.C |
;| Copyright 1990 by Jim Kyle - All Rights Reserved |
;[;] 1-]

_TEXT

TEXT

SEGMENT BYTE PUBLIC 'CODE'

ENDS

_DATA SEGMENT WORD PUBLIC 'DATA'

_DATA ENDS

_BSS SEGMENT WORD PUBLIC 'BSS'

_BSS ENDS
DGROUP GROUP _TEXT, _DATA, _BSS

ASSUME CS:_TEXT, DS:DGROUP

TEXT SEGMENT BYTE PUBLIC 'CODE'

movupC src, dst, nbytes)
src and dst are far pointers, area overlap is NOT okay

PUBLIC _movup

PROG NEAR

push bp
mov bp, sp
push si

push di

Ids si,Cbp+43 } source

Les di ,Cbp+8Il r destination

mov bx^es save dest segment
mov cx,[!bp+12!] r byte count

140 UNDOCUMENTED DOS

eld

rep movsb / move everything to high i
mov ss^bx } fix stack segment ASAP

mov ds,bx f adjust DS too

pop di

pop si

mov sp, bp
pop bp
pop dx } Get return address

push bx r Put segment up first
push dx r Now a far address on sta

retf

_movup ENDP

copyptrC src, dst)
src and dst are far pointers-
moves exactly 4 bytes from src to dst.

_copyptr

_copyptr

TEXT

PUBLIC _copyptr

PROG

push bp
mov bp, sp
push si

push di

push ds

Ids si,Cbp+43
Les di ,Cbp+8II
eld

movsw

movsw

pop ds

pop di

pop si

mov sp, bp
pop bp
ret

ENDP

ENDS

end

NEAR

; source

; destination

COASM

Finally, startup code appears in CO.ASM, which has been extensively modified
from startup code provided by Borland with Turbo C. This, or similar, code forms

Chapters: MS-DOS Resource Management 141

part of every C program, and provides the linkage between the DOS command
line and the C program itself. Normal start-up code, however, does much more
than this stripped-down version: it parses the argument list, sets up pointers to
the environment, and arranges things so that the signalO library functions can
operate.

Since our program has no need for any of these actions, our CO.ASM module
omits them. Whaf s left just determines the DOS version in use, saving it in a pair
of global variables, and trims the RAM used by the program down to the mini
mum. Then the module calls mainO, PUSHes the returned value onto the stack,
and calls exitO. Actually, if the program succeeds in loading a device driver, it
wiU never return from main().

NAME cO

I
I

_TEXT SEGMENT BYTE PUBLIC 'CODE'

TEXT ENDS

1-]

CO.ASM — Start Up Code |
based on Turbo-C startup code, extensively modified j

[-]

_DATA SEGMENT WORD PUBLIC 'DATA'
_DATA ENDS

_BSS SEGMENT WORD PUBLIC 'BSS'
_BSS ENDS

DGROUP GROUP _TEXT, _DATA, _BSS

; External References

EXTRN _main : NEAR
EXTRN .exit : NEAR

EXTRN stklen : WORD
EXTRN heaplen : WORD

PSPHigh equ 00002h

PSPEnv equ OOOZch

MINSTACK equ 128 ; minimal stack size In words

142 UNDOCUMENTED DOS

At the starts DS^ ES^ and SS are all equal to CS

Start Up Code
;/*-
;/*
;/*-

*/

*/

*/

_TEXT SEGMENT BYTE PUBLIC 'CODE'

ASSUME CS:_TEXT, DS:DGROUP

ORG 100h

STARTX PROC

mov

mov

mov

int

mov

mov

mov

mov

mov

px = GROUP Segment address

get DOS version

NEAR

dXy. CS
DGROUPa^ dx
ah^ 30h
21h

bp, ds:CPSPHighT; BP = Highest Memory Segment Addr
word ptr heaptop, bp
bx, dsrCPSPEnvT ; BX = Environment Segment address

version, ax ; Keep major and minor version number
psp, es ; Keep Program Segment Prefix address

Determine the amount of memory that we need to keep

mov dx, ds
sub bp, dx
mov di, stklen

; DX = GROUP Segment address
; BP = remaining size in paragraphs
; DI = Requested stack size

; Make sure that the requested stack size is at Least MINSTACK words.

cmp

jae
mov

mov

AskedStackOK:

add

jb
add

jb
mov

shr

inc

di, 2*MINSTACK
AskedStackOK

di, 2*MINSTACK
stklen, di

; requested stack big enough ?
; yes, use it
; no, use minimal value
; override requested stack size

di, offset DGROUP: edata
InitFailed

di, heaplen
InitFailed

cl, 4
di, cl
di

DATA s

; $$$ Do

egment can NOT be > 64 Kbytes

DATA segment can NOT be > 64 Kbytes

not destroy CL $$$
; DI = DS size in paragraphs

Chapter 3: MS-DOS Resource Management 143

cmp bp, di
jnb TooMuchRAM Enough to run the program

ALL initialization errors arrive here

Led:

imp near ptr _abort

Set heap base and pointer

RAM:

mov bx, di
r BX = total paragraphs in DGROUP

shL di, cl / $$$ CX is still equal to 4 $$$
add bx, dx

r BX = seg adr past DGROUP
mov heapbase, bx
mov brklvl, bx

Set the program stack down into RAM that will be kept-

cLi

mov ss, dx } DGROUP

mov sp, di } top of (reduced) program area
sti

mov bx, heaplen
r set up heap top pointer

add bx,15
shr bx,cl length in paragraphs
add bx, heapbase
mov heaptop, bx

Clear uninitialized data area to zeroes

xor ax, ax

mov es, cs:DGROUPa)

mov di, offset DGROUP: bdata

mov cx, offset DGROUP: edata

sub cx, di
rep stosb

exi t(mainC));

ca 11 _main the real C program
push ax

ca 11 _exi t part of the C program too

144 UNDOCUMENTED DOS

_exit()
Restore interrupt vector taken during startup.
Exit to DOS-

exi t

PUBLIC

PROG

push

pop

.exi t
"near

ss

ds

Exit to DOS

ExitToDOS:

mov

mov

mov

int

bp,sp
ah^4Ch
aL,[:bp+2:
21h Exit to DOS

exit ENDP
STARTX ENDP

/H"

;l
;i:>

•L1

Mi seellaneous functions
-LI

ErrorDispLay

ErrorDi splay

PROG

mov

mov

int

ret

ENDP

NEAR

ah, 040h
bx, 2
021h

; stderr device

PUBLIC _abort
abort PROG

MsgExi t3

GallExit3

NEAR

mov

mov

label

push

pop

call

label

mov

push
ca 11

cx, lgth_abortMSG
dx, offset DGROUP: abortMSG
near

ss

ds

ErrorDi splay
near

ax, 3
ax

exit ; _exit(3);

Chapter 3: MS-DOS Resource Management 145

_abort ENDP

; The DGROUPa variable is used to reload DS with DGROUP

PUBLIC DGROUPa

DGROUPa dw ?

_TEXT ENDS

n

;| Start Up Data Area |
„

_DATA SEGMENT WORD PUBLIC 'DATA'

abortMSG db 'Quitting program ', 13, 10
lgth_abortMSG equ $ - abortMSG

; Miscellaneous variables

PUBLIC _psp
PUBLIC version
PUBLIC osmajor
PUBLIC osminor

psp dw 0

version label word
osmajor db 0
osminor db 0

; Memory management variables

PUBLIC heapbase
PUBLIC brklvl
PUBLIC heaptop
PUBLIC heapbase
PUBLIC brklvl
PUBLIC heaptop

heapbase dw DGROUPredata
brklvl dw DGROUP:edata
heaptop dw DGROUPiedata

heapbase dw 0

146 UNDOCUMENTED DOS

brkLvL dw 0
heaptop dw 0

_DATA ENDS

_BSS SEGMENT WORD PUBLIC 'BSS'

bdata

edata

label

label

byte
byte

_BSS ENDS

END STARTX

; mark top of used area

Make File, Plus a Brief Digression on Not Patching EXE2BIN

Since this sample program includes two assembly language modules in addition
to the C source, a MAKEFILE greatly simplifies its creation. Here's one for use
with Borland's MAKE utility:

makefile for DEVLOD.COM - Last revised 05/23/90 - jk
U can substitute other assemblers for TASM

cO.obj : cO.asm
tasm cO /t/mx/la;

movup.obj: movup.asm
tasm movup /t/mx/la;

devlod.obj: devlod.c
tec -c -ms devlod

devlod.com: devlod.obj cO.obj movup.obj
tlink cO movup devlod /c/m,devlod
if exist devlod.com del devlod.com

exeZbin devlod.exe devlod.com

del devlod.exe

Ah, EXE2BIN: You may have some trouble here. Because Microsoft has for
some time been trying to move developers away from the binary image .COM
file format, and towards the more hierarchical .EXE file format, it has been diffi
cult to find copies of the EXE2BIN utility, which attempts to convert an .EXE into

Chapter 3; MS-DOS Resource Management 147

a flat binary image. Once distributed with DOS itself, EXE2BIN now comes oidy
with the DOS Technical Reference.

Even if you do have a copy of EXE2BIN, you may run into the problem that it
is needlessly very strict about the DOS version number. If you have EXE2BIN for
DOS 3.0 and are nmning under DOS 3.3, for example, EXE2BIN wiU quit with an
"Incorrect DOS Version" error message.

What to do? Several PC- and DOS-oriented magazines have published
patches for EXE2B1N, showing how you can alter your personal copy so that it
tests for a more conveninent DOS version number. This practice is extremely
popular with sophisticated end-users (for example, the mammoth book PC Maga
zine DOS Power Tools contains patches for EXE2BIN and other EXDS utilities).

However, the reader may have noticed that we have said next to nothing
about patching DOS in this book. It is almost never necessary to patch DOS or
the DOS utilities. If you have a copy of EXE2BIN.EXE that thinks it needs to run
xmder DOS 3.0, you really don't need to smack the executable so that it will run
under DOS 3.3. Instead, all you need is a tiny shell that briefly takes over the
DOS Get Version Number function (INT 21h Fimction 30h) so that it temporarily
returns a more convenient version number. Such a program uses only supported,
documented DOS interfaces (particularly the supported ability to hook INT 21h
itself). This is one area where you definitely don't need underhanded tricks.

The following short program, DOSVER.C, takes over INT 21h, altering the re
turn value from Fimction 30h according to what you specify on the command
line. It then spawns a single program. When that program calls INT 21h Fimction
30h, it will actually be calling the INT 21h handler in EKDSVER. When the
spawned program exits, DOSVER sets back the INT 21h interrupt vector, and re
turns to DOS:

/*

DOSVER.C — set different DOS version numbers

an alternate to patching programs such as EXE2BIN
*/

^include <stdLib.h>

^include <stdio.h>

^include <process.h>
^include <dos.h>

^pragma packd)

void (interrupt far *oLd)();

148 UNDOCUMENTED DOS

unsigned dosver, oLd_bx, oLd_cx;

typedef struct -C
unsi gned es,ds,di,si,bp,sp,bx,dx,cx,ax,ip,cs,f Lags;
> REG_PARAMS;

void interrupt far dos(REG_PARAMS r)

if ((r-ax » 8) == 0x30)

r-ax = dosver;
r.bx = old_bx;
r-cx = oLd_cx;

>

else

_chai n_i ntr(oLd);

void faiKchar *s) -C puts(s); exitd); >
mainCint argc, char *argvC])
i

int major, minor;

if (argc < 4)
failC'usage: dosver <major> <minor> <command-- ->\n\

example: dosver 3 31 exe2bin devLod-exe devLod-com");

if (! (major = atoi(argvCIH)))
faiLC'bad version number");

if ((minor = atoi(argvCZl)) < 10)
minor *= 10;

dosver = (minor « 8) + major;

/* e.g. 3.1 to 3-10 */

_asm mov ax, 3000h
_asm int 21h
_asm mov oLd_cx, cx
_asm mov oLd_bx, bx

old = _dos_getvect(0x21);
_dos_setvect(0x21, dos);
spawnvp(P_WAIT, argvII33, &argvC3!]);
_dos_setvect(0x21, old);
return 0;

/* OEM, serial# */

/* save INT 21h */

/* hook INT 21h */

/* run command */

/* unhook INT 21h */

If you fail to produce DEVLOD.COM with the MAKE file shown earlier, and
EXE2B1N version checking is the culprit, you can substitute something like the

Chapter 3: MS-DOS Resource Management 149

following line (for "3 0," substitute the DOS version that your copy of EXE2BIN
thinks it needs):

dosver 3 0 exe2bin devLod.exe devLod.com

Of course, you can use DOSVER with programs other than EXE2B1N. Appar
ently so many programs get their DOS version number checking wrong that the
next version of DOS wiU come with a utility, similar to DOSVER, that wiU let
users set the DOS version number on an application-by-appUcation basis: 5aik!

How Well Does DEVLOD Work?

A fitting conclusion to this chapter is to use some of the utilities developed ear
lier, MEM and DEV, to see what your system looks like after you've loaded up a
large number of device drivers with DEVLOD:

C:\UNDOC\KYLE>devLod \dos\smartdrv.sys 256 /a
Microsoft SMARTDrive Disk Cache version 3.03

Cache size: 256K in Expanded Memory
Room for 30 tracks of 17 sectors each

Minimum cache size will be OK

C:\UNDOC\KYLE>devLod \dos\ramdrive.sys
Microsoft RAMDrive version 3-04 virtual disk D:

Disk size: 64k

Sector size: 512 bytes
Allocation unit: 1 sectors

Directory entries: 64

C:\UNDOC\KYLE>devlod \dos\vdisk.sys
VDISK Version 3-2 virtual disk E:

Buffer size adjusted
Sector size adjusted
Directory entries adjusted
Buffer size: 64 KB

Sector size: 128

Directory entries: 64

C:\UNDOC\KYLE>devlod \dos\ansi-sys

C:\UNDOC\KYLE>mem

Seg Owner Size Env

09F3 0008 00F4(3904) config CIS 2F 4B 67 1
0AE8 0AE9 00D3(3376) 0BC1 c:\dos33\command- com
OBBC 0000 0003(48) free

OBCO 0AE9 0019(400)

OBDA 0AE9 0004(64)

L22 23 24 2E 1

150 UNDOCUMENTED DOS

OBDF 3074 OOOD(208)

OBED 0000 0000(0) free

OBEE OBEF 0367(13936) OBEO \msc\bi nXsmartdrv.sys 256 /a C13 19 :

0F56 0F57 1059(66960) OBEO \msc\bin\ramdrive-sys CFI FA :

1FB0 1FB1 104C(66752) OBEO \dos33\vdisk.sys
2FFD 2FFE 0075(1872) OBEO \dos33\ansi-sys C1B 29 :

3073 3074 1218(74112) OBEO C:\UNDOC\KYLE\MEM.EXE COO

428C 0000 7573 (481072) free C30 F8]

C:\UNDOC\KYLE>dev

NUL

CON

Block: 1 un1t(s)

Block: 1 unit(s)

SNARTAAR

QEMM386$

EMMXXXXO

CON

AUX

PRN

CLOCKS

Block:

C0M1

LPT1

LPT2

LPT3

COM2

COM3

COM4

3 unit(s)

The output from MEM shows quite clearly that your device drivers really are
resident in memory. Meanwhile, the output from DEV shows that they really are
hnked into the DOS device chain (for example, "SMARTAAR" is
SMARTDRV.SYS). Of course, the real test is that, after loading SMARTDRV,
RAMDRIVE, VDISK, and ANSLSYS, my disk accesses went a bit faster (because
of the new 256KB SMARTDRV disk cache in expanded memory), I had some ad-
ditonal drives (created by RAMDRTVE and VDISK), and programs that assume
the presence of ANSLSYS (for shame!) suddenly started producing reasonable
output. And, of course, I had a lot less memory.

One other interesting item in the MEM output is the environment segment
number displayed for the four drivers. Recall that, in order to save some mem
ory, DEVLOD releases its environment. The MEM program correctly detects that
the OBEOh environment segment still shown in the PSP for each resident instance
of DEVLOD, does not in fact belong to them. The name "DEVLOD" does not pre
cede the names of the drivers, because, as noted earlier in the discussion of MEM,

Chapter 3: MS-DOS Resource Management 151

program names (which only became available in DOS 3+) are located in the envi
ronment segment, not in the PSP. Each instance of DEVLOD has jettisoned its en
vironment, so its program name is gone too.

Who then does it belong to? Actually, it belongs to MEM.EXE itself. Since
each instance of DEVLOD has released its environment, when MEM comes along
there is a nice environment-sized block of free memory just waiting to be used,
and MEM uses this block of memory for its environment. The reason OBEO shows
up as an environment, not only for MEM.EXE, but for each instance of DEVLOD
as well, is that when DEVLOD releases the environment, it doesn't do anything
to the environment segment address at offset 2Ch in its PSP. Probably DEVLOD
(and any other program that frees its environment) ought to zero out this address.

It should be noted that some device drivers appear not to be properly loaded
by DEVLOD. These include some memory managers and drivers that use ex
tended memory. For example, Microsoft's XMS driver HIMEM.SYS often crashes
the system if you attempt to load it with DEVLOD. Furthermore, while DEVLOD
VDISK.SYS definitely works in that a valid RAM disk is created, other programs
that check for the presence of VDISK (such as protected-mode DOS extenders)
often fail mysteriously when VDISK has been loaded in this unusual fashion. In
the MEM display, note that the INT 19h vector is not pointing at VD1SK.SYS as it
should.

For another perspective on loading drivers, see the article by Giles Todd, "In
stalling MS-DOS Device Drivers from the Command Line," published in the Brit
ish magazine .EXE (August, 1989). For background on DOS device drivers in
general, two excellent books are the classic Writing MS-DOS Device Drivers by
Robert S. Lai (Reading, MA: Addison-Wesley, 1987), and the recent Writing DOS
Device Drivers in C by Phillip M. Adams and Clovis L. Tondo (Englewood Cliffs,
NJ: Prentice Hall, 1990).

Many of the complexities of loading block devices—in particular, the impor
tance of updating the CDS—will become clear in the next chapter, where we dis
cuss the DOS file system.

Chapter 4

The DOS File System and Network Redirector

Jim Kyle, David Maxey, and Andrew Schulman

The file system is a truly irreplaceable part of MS-DOS. While most successful PC
software b5rpasses many of DOS's services, and goes directly to the hardware to
produce screen output or to read the keyboard, when it comes to reading and
writing files, few programs spurn the DOS file system.

Actually, there are two DOS file systems. One, known as the FAT file system
from the name of its key data structure (the File Allocation Table), is the logical
structure that DOS uses for physical media such as floppy disks and hard drives.
The FAT is probably the world's best-known DOS internal data structure, having
entered popular culture via Peter Norton's book Inside the IBM PC. Along with
the FAT, the other key tmderpinning of this file system is a structxire called the
Drive Parameter Block (DPB), which we will be discussing in detail later in this
chapter.

The other file system, introduced in DOS 3.1, is known as the MS-DOS net
work redirector. It is used for mapping a DOS directory hierarchy onto "alien"
(non-FAT) systems such as network file servers and CD-ROM devices, and is
known as the MS-DOS network redirector. Drives created with the network

redirector do not have FATs or DPBs. While networks are a tremendously impor
tant part of the DOS file system (and one that is frequently ignored in discussions

153

154 UNDOCUMENTED DOS

of DOS internals), the network redirector is somewhat misnamed: it isn't just for
networks an5rmore.

All drives, whether FAT-based or non-FAT, have entries in another key DOS
data structure called the Current Directory Structure (CDS) table. (The only im
portant exceptions to this statement are drives created imder Novell NetWare,
which bypasses the CDS.) Many programs in this chapter manipulate the CDS in
some way.

In this chapter, you will read about DOS drives, directories, and files and, Uke
most such discussions, we will begin with physical magnetic media and work
our way to the directory structure seen by a typical DOS user. However, this
chapter takes a somewhat different slant, because having shown how DOS ap
plies a logical ordering to physical media, it then proceeds to show how this
same logical ordering can be applied to things other than hard drives and floppy
disks. In other words, any file system is a fiction, and this chapter emphasizes
how generic the DOS notion of a drive is: it isn't just for physical media (or even
RAM disks) anymore.

This chapter contains an enormous number of sample programs, giving it
more of a "cookbook" approach than other parts of the book. The chapter's piece
de resistance is PHANTOM.PAS, a complete example of using the DOS network
redirector interface to create a new drive. Other code in this chapter includes rou
tines to:

Free orphaned file handles
Derive a filename or attribute from a file handle

Use wildcards in the DOS handle-based Rename File ftmction

Increase the number of program file handles before DOS 3.3
Determine the FILES= and BUFFERS= values

Set or turn off drive letters

Walk the Current Directory Structure (CDS)
Walk the System File Table (SFT)
Get the "true" (canonical) name of a file

What ties all this together is an emphasis on the logical rather than the physical
aspects of the DOS file system. But first, take a quick look at the physical aspects.

Chapter 4: The DOS File System and Network Redirector 155

The Physical Disk: How DOS Sees It

The starting point for the FAT file system is the physical disk and the drive mech
anism itself. These marvels of mechanical precision convert a stream of informa
tion represented as a sequence of bits into a corresponding sequence of magnetic
flux reversals that are placed at a known location on the surface of the disk.

Entire volumes could be written on the methods by which this is done, but
they would be of interest primarily to disk drive designers. As programmers, we
are more interested in what has to be done to translate program-oriented descrip
tions of data into the form required by the actual disk hardware.

These translations occur in several layers. Our programs organize data into a
stream of bytes, and store these streams into files which are later read back as
streams. DOS translates our references to files into references to physical drive lo
cations such as "drive" and "cluster," and then at a lower level converts the "clus

ter" reference into the more hardware-oriented values of "track," "head," and

"sector" for transmission to the specified drive. The BIOS and the drive controller
then translate those values into sequences of pulses that select the addressed
drive, position the actuator to the desired cylinder of tracks, select the specified
head, and begin reading from it when the correct sector is identified.

A concrete look at these multiple layers is provided in chapter 8 of this book,
where the INTRSPY utility is used to examine in detail the process of formatting
a floppy disk.

Surfaces, Tracks, and Sectors

One starting point for gaining an xmderstanding of the DOS file system is the
surface of the magnetic medium itself, as exemplified by the familiar floppy disk
ette (the hard disk operates in much the same way, but with much greater preci
sion).

In the earliest days of MS-DOS, the original IBM PC came equipped with a
single-head, single-sided disk drive that had a storage capacity of 160KB per
disk. The head made contact with the tmderside of the diskette, which was

placed into the drive in normal operating position, that is, on the side opposite to
that on which the manufacturer's label was affixed. Balancing the pressure of the
head against the lower side of the diskette was a felt pressure pad that rubbed
against the upper surface.

On the single active surface, the head wrote and later read back information
in one of 40 concentric tracks. The head actuator mechanism was moved in or out

156 UNDOCUMENTED DOS

to position the head accurately over the desired track. The track nearest the outer
edge of the disk was designated as Track 00, and that nearest the hub hole as
Track 39.

A small "index" hole near the large hub hole served as a reference point to de
termine disk rotation. A sensor generated an index pulse each time this hole
passed over it, and since the disk rotated at a constant speed of 300 RPM (200
milliseconds per revolution), the associated controller card could measure off
"sectors" around the track in which to store data. These first drives contained

eight sectors per track, each sector with room for 512 bytes storage. Between sec
tors, an "address mark" and some special identification codes helped the control
ler verify that all was well with the drive.

Thus, each track contained 8*512 bytes of data, or 4,096 bytes, and the 40
tracks held a total of 163,840 bytes (which was roimded down in speech and writ
ings to "160KB" since 1KB=1,024 bytes).

Before long, the single-sided drive was supplanted by a two-headed model
that could read and write on both svufaces, immediately doubling the storage ca
pacity to 320KB per disk. Not long after that (but before the introduction of DOS
2.0), an extra sector was added to the format, bringing the storage capacity up to
the 360KB we know today.

Later, high-density 1.2MB drives, rotating at 360 RPM and holding 80 rather
than 40 tracks, came along, but the basic principles hold true for them too, as for
the 3.5-inch units and toda5^s huge hard drives.

In all cases, the drive itself can only identify storage locations in terms of
which head is to be used, which track (or cylinder, an alternative term) the head
is to be positioned over, and which sector of that track is to be dealt with
(whether reading from or writing to it).

Humans, however, have difficulty remembering a large collection of numeric
values. Instead, we like to name things. It seems much simpler to remember that
this text is stored in a file named "CHAP4.DOC" than that it is located at sector

14, cyUnder 93, head 5, of drive 3.
That's part of what the DOS file system is all about: it permits us to deal with

our programs and data as named files, and turns over to the computer the job of
translating these names into the sequence of numeric data that the hardware re
quires. Since computers excel at dealing with numeric information, it is just an
other example of letting the computer do what it does best, so that the human
can do likewise.

Chapter 4: The DOS File System and Network Redirector 157

Another aspect of the DOS file system permits this t57pe of mapping to be ex
tended to non-storage devices. RAM disks, for example, map a directory/file
structure onto fast, volatile memory. The simple 1/O redirection facility provided
by DOS allows you to treat the screen and keyboard (CON), serial ports (COMx)
and parallel ports (LPTx) as files. "Drives" created with the DOS network redirec
tor allow a file-system structure to be mapped onto packets that are sent over the
network to another machine, possibly running a completely different file system.
The file system, in other words, not only simplifies access to hardware, but also
provides a unified form of access to otherwise disparate devices.

Logical Sector Numbers and The Cluster Concept

The first step toward simplifying the head/track/sector number sequence was to
recognize that there is an alternate way of uniquely specifying every sector on a
disk unit, with a single number rather than with three. The way it's done is to as
sign the sectors unique numbers in logical sequence. That is, the first sector of the
first track under the first head (which in the fully hardware-oriented scheme
would be H=0 T=00 S=0), becomes Logical Sector Number (LSN) 000. The rest of
the way aroimd that first track, on the same svuface, follows in sequence, so there
the LSN and the plain sector ntunber are the same. Then, however, the LSN
jumps to the other surface of the disk. For a 360KB diskette, with nine sectors per
track on both sides, LSN 10 would be H=1 T=00 S=0. After all sectors on this sec

ond side are accounted for, the numbering returns H=0 T=01 S=0, which becomes
LSN 19.

For other disk capacities, the exact transition points differ, but the essential
point is that you can always translate a head/track/sector reference into a
unique LSN—^if you know how many sectors are in each track, and how many
heads the disk includes. The reverse translation can be readily performed as well.

For high capacity storage units (which may contain hundreds of thousands of
512-byte sectors), the LSN is a more accurate address than DOS reaUy needs in
order to allocate disk space, and to access files. Thus, the "dxister" concept came
into being.

This was actually inherited from the older CP/M operating system, though a
different word ("extent") was used to describe it there. A cluster is simply a group
of adjacent sectors that are always assigned as a unit. If a file needs only one byte,
it gets a whole cluster an5way. This serves a number of purposes.

158 UNDOCUMENTED DOS

One is that it greatly reduces DOS overhead in allocating and freeing disk
space, since these actions are done only a fraction as frequently as they would be
if space were allocated directly in sectors. It also serves to speed up disk access
by assuring that a file does not become scattered all over the drive. Even if no
two clusters in the file are adjacent to each other, at least within each cluster all
the sectors are together. And since "seek time" is a major part of disk I/O delay,
this improves overall system performance.

One obvious disadvantage of clusters is that (when there is more than one
sector per cluster) they increase the amount of disk space occupied by tiny files.
For example, if there are 512 bytes/sector, and eight sectors/cluster, then the
minimum space allocated to a file is 4KB, even for a file whose size in a directory
listing is one byte. Not exactly a peanut cluster!

So how big is a cluster? The answer is, "it depends." Some RAMdisk pro
grams (such as Microsoft's RAMDRIVE.SYS) actually use 1-sector clusters for
space economy. Most diskette formats use a cluster of only two sectors. Hard
disks for the most part use either 4-sector or 8-sector clusters. Prior to DOS 3.0,
only the 8-sector cluster was used; one of the major reasons many users to up
grade was the opportunity to reduce waste space on their disks by changing to
the newer 4-sector arrangement.

To tell which clusters are used by files and which are available for assign
ment, DOS uses a File Allocation Table or FAT. Naturally, this structure is the
backbone of the FAT file system, and if it is damaged, all data on the affected disk
imit may be lost.

The FAT Structure

The FAT is always located near the front of each disk volume, immediately after
the Boot Record. It may begin at what would normally be a cluster boxmdary, or
at the first sector boundary after the Boot Record (which is always at LSN 000).
Two copies of the FAT are normally maintained by DOS, but no real reason for
doing so has been determined; when disaster strikes one copy, the other usually
dies also!

The FAT is arranged as an array of numeric values, but unlike most other
nximeric arrays in the MS-DOS world, each element in this array may be 12 bits
long rather than 8 or 16.

Prior to DOS 3.0, all FAT entries were 12 bits in size; then an optional 16-bit
size was introduced, together with a flag bit in the format records (BIOS Parame-

Chapter 4: The DOS File System and Network Redirector 159

ter Block [BPB] and Drive Parameter Block [DPB], both of which are described in

more detail in the appendix, and later in this chapter) to tell which size is in use
for any specific volume.

Note that, even with the huge volume sizes permitted by DOS 4.x and up, the
FAT element size never exceeds 16 bits (despite occasional claims to the con
trary). What does increase as the volume size grows is the cluster size, and the LSN.

Each element in the FAT, whether 12 or 16 bits long, corresponds to a single
cluster of the drive's storage space. The first two elements, which would refer to
cluster 0 and cluster 1, instead indicate the drive's type. The first cluster number
actually used is always 2.

Cluster 2 is the first one available for data; since both copies of the FAT and
the volume's root directory area precede this space, the LSN for Cluster 2 must
be calculated by DOS from the values provided in the DPB. From that point on,
the LSN at which any cluster starts can be determined by multiplying the cluster
number (minus 2) times the number of sectors per cluster, and adding the known
LSN for Cluster 2. That's how DOS translates cluster numbers taken from direc

tory entries into LSN's required by the BIOS routines that actually deal with the
disk. But we're getting ahead of ourselves: DPBs are explained shortly.

The value contained in each FAT element tells whether the corresponding
cluster is in use or not, and if it is, gives essential information about the file that is
using it. A zero indicates that the cluster is free and can be allocated. A value of 1
or 2 never occurs. The last eight possible values (FF8h-FFFh for 12-bit FATs, or
FITSh-FFFFh for 16-bit FATs) indicate that this cluster is the last one being used
by its file. Any other value indicates that the file using this cluster is continued in
the cluster having that value.

Thus, the FAT forms a linked list of clusters that threads the pieces of each
file together, in addition to indicating where space is available. All you have to do
is determine where the very first cluster for any specified file is located, and you
will be able to access everything in it. That's done by the directory structure, to
which we now turn.

Directory Structure

Every disk volume (that is, each diskette in the case of drives with removeable
media, or each partition in the case of those in which the media cannot be re
moved) has a root directory which is the starting point for translating human-ori
ented file names into system-oriented cluster numbers.

160 UNDOCUMENTED DOS

The root directory immediately follows the FAT and precedes the data stor
age area. Its size is established when the disk is formatted and, unlike non-root

directories (which are implemented as fUes), can never change. A t5:pical size for
a 360KB floppy is 112 entries; for a hard disk, it's usually larger: 512 entries is
typical.

Each entry in a directory, whether in the root or in a subdirectory that is
reached by going through the root, consists of a 32-byte structure that contains
the following information:

^pragma packd)

struct diritem {

char fi LenameCSD; /* uppercase^ blank padded */

char extCS:; /* uppercase^ blank padded */

unsigned char attr; /* see text for details */

char unusedEIOH;
unsigned ftime;
unsigned fdate;
unsigned cLstr;
unsigned Long fsi ze;

>;

In this structure, the first byte of the filename field has special significance, as
does the attr byte. If the first byte of the filename is E5h, that indicates the entry
refers to a file which has been ERASEd from the volume, and is free to be reused

for a new file or directory entry (or possibly UNerased if you get to it in time!). If
the first bjd:e is 05h, that indicates the actual first byte value should be E5h, which
is a valid character for use in a filename. Finally, if the first byte is 00, that indi
cates that neither this entry, nor arty subsequent one in the directory, has ever
been used. This permits searches to stop as soon as a 00 byte is foimd. (It also
means that a stray 00 byte can make it appear as if not just one bad entry, but also
all the entries following it, have disappeared from your disk.)

The attr byte indicates whether the entry refers to a file, to a subdirectory
(lOh), or is a volume label (08h), and, if it's a file, provides other information as
well. The ftime and fdate words encode the time and date at which the file was

last modified, and the fsize field indicates effective file size. Use of all these items

is documented; DOS functions exist to give you their values once you access the
file.

Chapter 4: The DOS File System and Network Redirector 161

The undocumented item here, and the one we're most interested in at the

moment, is the word identified as clstr; this is the cluster number for the first

cluster used by the file. Thaf s what DOS uses to translate the name to a physical
address. Later in this chapter, when we trace through the process that DOS goes
through in opening a file, we'll deal with clstr again.

FAKEFRMT: Initializing the FAT and Root Directory

Before going any deeper into the DOS file system's secrets, we can use what we
already know to create a simple utility that wiU quickly erase floppy disks. It
overwrites the FAT with all zeroes starting at the entry for Cluster 2 (Byte 2 of the
sector for a 12-bit FAT, or byte 4 for the 16-bit version), and then writes 00 bytes
over the entire root directory. Also, it rewrites the boot sector, just in case the
diskette had been "bootable" before, to indicate that it is not now a system disk
ette.

The program, FAKEFRMT.ASM, gives the same end result you would obtain
by completely reformatting the diskette, but does the job much more rapidly. It
can be assembled using either MASM or TASM, then LINKed and converted to a
COM file.

The program is written to deal with only a single diskette size (5.25-mch
360KB), and only one drive (A:), to keep it as simple as possible. The comments
give alternate figures for using other diskette sizes or the B: drive.

While the source code is extremely simple, the final program's executable
size (6KB) may shock you; thaf s because it includes the zeroes for all the sectors
it writes. By letting the assembler calculate how many bytes are needed, we fi"ee
ourselves from the chance of small t3q)ing errors;

CODE

start:

title FAKEFRMT - fake format program

segment

assume cs:CODE^ ds:CODE

org 100h

mov dx,offset AnyKey
mov ah,9
int 21h

mov ax,0C08h ; wait for user keystroke
int 21h

xor aL,3 ; test for CTRL-C (quit)

162 UNDOCUMENTED DOS

Fi ni:

jz

mov

xor

mov

mov

int

pop

jnc
mov

mov

int

mov

int

Fi ni

bx,offset
dx^dx
cx,12

aL,0
26h

bx

start

dx,offset
ah,9
21h

ah,4Ch
21h

bootsec

ErrMsg

Logical sector number
number of full sectors, 360K
change to 14 for 3-5-in 720K,
29 for 1.2Meg, or 33 for 1.44M
drive code, 1 for B:
absolute sector write

flush leftover flags word
loop unless error

; terminate program

AnyKey db 'Press any key (^C to stop)', ODh, OAh,
ErrMsg db 'Error on Drive A', ODh, OAh, '$'

bootsec:

jmp

nop

this will be the Boot Sector

short bootsnd

BIOS Parameter Block (BPB)

Di skName db 'FAKEFRMT' must be exactly 8 chars
BytesPerSect dw 0200h } same for all diskettes

ClusterSize db 2 w same for all diskettes

RsrvdSect dw 1 boot sec, same for all
NbrFATs db 2 } same for all

RootDi rSi ze dw 112 /■ same for 720K, 224 for 1-2/1.44
TotalSectors dw 720 r 720K=1440, 1.2M=2400, 1.44=2880
MediaCode db OFDh r 720K=F9, 1.2M=F9, 1.44M=F0
SecPerFAT dw 2 r 720K=3, 1.2M=7, 1.44M=9
SecPerTrack dw 9 7 same for 720K, 1.2=15, 1.44=18
NbrOfHeads dw 2 r same for all
HiddenSects dd 0 7 same for all
NotUsed db 11 dup (0) 7 large sectors, etc.

bootsnd:
mov ax,cs set up segment regs
cli Disable interrupts
mov ss,ax
mov sp,7C00h where boot sec loads
sti Enable interrupts
mov ds,ax
mov si,7C00h

O)
(/>

E

+

r start of message
boot loop:

Chapter 4: The DOS File System and Network Redirector 163

msg

Lodsb

cmp aL,0 / at end yet?

je bootha Lt / yes. Lock things up
mov ah^OEh / no, send via BIOS code
mov bx,7
int 10h

jmp short boot Loop / and go back for next char

jmp short boothalt / dynamic haLt

equ $ - bootsec + 0 / caLc message start

fati

fat2

db

db

db

org

db

db

db

db

db

db

db

db

db

rootdir db

CODE ends

end

'This is a DATA disk only;', ODh, OAh
'Insert system disk, press any key when
'ready', ODh, OAh, 0

bootsec + 510

55h, OAAh

OFDh

OFFh, OFFh
509 dup(O)
1*512 dup (0)

OFDh

OFFh, OFFh
509 dup(O)
1*512 dup (0)

; skip to end of sector
; boot sector signature

; make this match MediaCode

; let assembler do the calc!
; 2*512for 720K, 6*512 for 1.2M,
; or 8*512 for 1.44 meg

; make this match MediaCode

; 2*512for 720K, 6*512 for 1.2M,
; or 8*512 for 1.44 meg

7*512 dup (0) ; 720K same, 14*512 for others

start

The program can be assembled, linked, and turned into a .COM file using the
following conunands:

masm fakefrmt;
link fakefrmt;
exe2bin fakefrmt.exe fakefrmt.com

del fakefrmt.exe

164 UNDOCUMENTED DOS

As mentioned earlier, the program only formats 360KB floppies in drive A:.
Each time it displays the "Press any key" message, it's ready to accept another
diskette for total erasure. Hit to stop.

FAKEFRMT creates an image of the first 12 sectors of a freshly-formatted
diskette in memory, and then uses the documented DOS Absolute Sector Write
interrupt (INT 26h) to overwrite the first 12 sectors of any diskette in Drive A
with that image. To change it for use with 1.2MB 5.25-mch diskettes, or with
720KB or 1.44MB 3.5-inch units, change the numbers as indicated by the com
ment lines, then reassemble and reUnk.

Notice how, wherever possible, calculation is left to the assembler. This tech
nique permits easy changing of such things as FAT size or the length of the root
directory, and of the message written into each boot sector. (Note that
FAKEFRMT's message is friendlier than the default one on PC disks.)

The 40 bytes in the program starting at DiskName are the BIOS Parameter
Block (BPB); the values used are for the standard 360KB diskette, while the

names indicate the meanings for each item in the block, and comments indicate
the appropriate values for alternate disk sizes.

The List of Lists

Since the introduction of CONFIG.SYS with DOS version 2.0, a collection of

pointers has been maintained near the start of the DOS kernel's data segment.
Since the existence of this collection of pointers has never been officially docu
mented, it's known by several names. Sometimes (for example, in Terry
Dettmann and Jim Kyle's popular DOS Programmer's Reference, 2nd edition) it is
called a "Configuration Variable Table" by analogy to minicomputer conventions,
but here it is called the List of Lists since that's quite descriptive of what it actu
ally is, and has a nice biblical ring to it as well. "List of Lists" is the name used
throughout this book.

The List of Lists is a central clearinghouse for virtually aU of the undocu
mented data concerning the DOS file system. In addition, it provides the start of
the Memory Control Block chain and the device driver chain, as already dis
cussed in chapter 3. More than any other single structure, the List of Lists is the
key to reaching the undocumented areas of DOS. The following is a schematic
listing of just some of the structures that can be accessed via the List of Lists:

Chapter 4: The DOS File System and Network Redirector 165

DOS List of Lists

Utility functions
Memory Control Block (MCB)

Program Segment Prefix (PSP)
Environment segment
File handle table

DOS 4.x data segment subsegment control blocks
STACKS segments

Drive Parameter Block (DPB)

File Allocation Table (FAT)

System File Table (SFT)
Device driver chain

Disk buffers

Current Directory Structure (CDS)
Installable File System (IFS) record

FCB table

SHARE.EXE hooks

sharing record
lock record

There is a great deal of interconnection between these structiures. For exam
ple, SFT entries for block devices contain a pointer to the corresponding DPB—so
do disk buffers. One of the items contained in the DPB is a pointer to its corre
sponding device driver. Meanwhile, the heads of both the DPB and device chains
are found directly in the List of Lists. Since the various undocumented structures
inside DOS are interwoven with each other so tightly, you'll have to take parts of
the process "in good faith" right now, without detailed explanation. That would
be true no matter which of the structures we looked at first.

How the List of Lists is Arranged

The layout of the List of Lists has changed, sometimes significantly, from one ver
sion of DOS to another. Refer to the Appendix for full details. Here we emphasize
only those items in the list that deal either directly or indirectly with the File Sj^stem.

Prior to the introduction of network support in DOS 3.1, this area of undocu
mented DOS was notoriously unstable. However, once network support became
available, stability was forced onto these structures, since without it, network
software would not operate. Now variations between versions are (for the most

166 UNDOCUMENTED DOS

part) minor, and variations from one OEM to another in the same version are
practically nonexistent. The structures reached via the List of Lists are possibly
the most reliable parts of all those in tmdocumented DOS.

As said coxmtless times already in this book, a far pointer to the List of Lists
is returned by undocumented INT 21h Fimction 52h in ES:BX. In all versions to
date, the actual item addressed by ES:BX is a far pointer to the first Drive Param
eter Block. We identify this location as LoL+0 in the foUowing descriptions (with
LoL an unsigned char pointer, so that the offsets applied to it are always in
bjti:es).

While DOS 4 is not as important as DOS 3, it is more convenient to discuss
the DOS 4 List of Lists first, and then highlight the differences found in EXDS 3. In
any case, DOS 5 internals should strongly resemble those in 4, and hopefully it
will be more successful than DOS 4 was, so knowledge of DOS 4 internals will
have lasting benefit.

Current (DOS 4+) List Layout In DOS 4.0 and above, the important file system in
formation kept in the List of Lists is arranged as follows:

■ At LoL-8 is a far (4-byte) pointer to the currently active disk buffer.
■ At LoL+0 is a far pointer to the first Drive Parameter Block. Each DPB

links to the next one, forming a chain that can be used to access the DPB
for any drive actually present in the system. The DPBs can also be ac
cessed via a far pointer located in the Current Directory Structme (CDS)
for the drive. Undocumented DOS function INT 21h Ftmction 32h returns

a pointer to the DPB in DS:BX; if DL contains 0 when this function is
called, the DPB for the current drive will be found. If DL=1, that for Drive

A is located, and so forth. In addition, undocumented INT 21h Function

IFh does the same thing but always returns the pointer for the default
drive (it sets DL to 0, then falls into the code for the more generic fvmc-
tion). INT 21h Functions 32h and the DPB are quite important, and will
be discussed in more detail below.

■ At LoL+4 is a far pointer to the list of System File Tables (SFTs). These
hold access information for files or devices that are accessed via handles.

■ At LoL+lOh is a word that contains the maximum bytes/sector of any
block device in the system. Each time a block device is irtstalled, its sector
size is compared to this value, and, if larger, this value is replaced by the
new maximum value.

Chapter 4: The DOS File System and Network Redirector 167

At LoL+12h is a far pointer to disk buffer information. The nature of this
information varies depending on whether buffers are located in conven
tional memory or in EMS (the "/X" option to the BUFFERS= command in
CONFIG.SYS).

At LoL+16h is a far pointer to the array of Current Directory Structures
(CDSs). Each drive in the system has its own CDS, which contains the
path and points to the DPB for that drive. This structure also contains at
tribute bits that specify whether the drive exists or not, is modified by the
JOIN, ASSIGN, and SUBST commands, and if it's a network drive. The

CDS wiU be discussed in great detail later in this chapter.
At LoL+lAh is a far pointer to the system File Control Block (FCB) table.
Remember FCBs? This table exists to permit older programs that still use
FCBs instead of file handles to be used in a network situation; the FCBs in

this table have a structure identical to that of the SET entries used with

handles. When a program uses FCBs, the necessary information is copied
from its internal FCB to any available system FCB in this table, and the
system FCB is actually used for all access. The notion of a "system FCB" is
something of an ox5unoron.
At LoL+lEh is a word that contains the nvunber of protected FCBs (the y
in the FCBS=x,y statement in CONFIG.SYS). Since the nmnber of system
FCBs is limited, while the number that may be required in a multitasking
environment is not, this parameter lets you specify how many of the sys
tem FCBs must be protected against swapping when more system FCBs
are requested than are actually available.
At LoL+20h is a byte indicating the total number of block devices actu
ally installed in the system.
At LoL+21h is a byte that contains the value set by the LASTDRTVE com
mand in CONFIG.SYS (the default value is 5); this value may be larger
than the riumber of block devices actually installed, up to a maximum of
26 (LASTDRIVE=Z). Chapter 2 looked at this single byte in agonizing de
tail.

At LoL+34h is a byte that shows the number of JOlN'ed drives.
At LoL+3Bh is a far pointer to the chain of DPS (installable file system)
drivers, if any are present. If the Microsoft CD-ROM Extensions
(MSCDEX) are loaded under DOS 4, for instance, this field wiU contain a

pointer to an MSCDEX device driver header such as HITACHI.SYS.

168 UNDOCUMENTED DOS

■ At LoL+3Fh is a word that contains the total number of buffers (the x in

the CONFIG.SYS BUFFERS x,y statement), rounded up to a multiple of
30 if the buffers are located in EMS. Following this at LoL+41h is a word
that contains the number of lookahead buffers (the y in BUFFERS x,y).

■ Finally, at LoL+43h is a byte that identifies the boot drive (1=A:). DOS 4
was the first version of DOS that made available the drive letter from

which the system was booted. The boot drive is important knowledge for
install programs, or for any program that needs to find a user's CON
FIG.SYS or AUTOEXEC.BAT fUes.

Differences at DOS 3 With DOS 3.x, two sets of List of Lists layouts were used.
The first existed only under the short-lived version 3.0; at version 3.1, when full
network support was made available, this was modified significantly. We discuss
the later version first (versions 3.1 through 3.3).

Sharing retry information was provided at LoL-OCh and LoL-OAh; the word
at LoL-OCh indicates how many times to retry an operation in case of conflict,
and the word at LoL-OAh indicates how long (in machine-dependent loops) to
wait between tries.

The far pointer at LoL+12h, which points only to buffer information in DOS
4+, points to the actual buffer chain in versions 3.1 through 3.3. As shown later in
this chapter, the value of BUFFERS= (available directory in 4+ but not in DOS 3)
can be computed by walking the buffer chain.

The only other significant change from the layout used in version 4 and
above is that none of the information at offsets above LoL+34h (the number of

JOIN'd drives) exists in version 3.

The differences at version 3.0 were more major. In fact, the similarity between
3.0 and later versions stops at LoL+lOh. In DOS 3.0, that location contains a sin
gle byte that indicated the number of block devices installed in the system (like
the byte at LoL+20h in later versions).

At LoL+llh in DOS 3.0 is the word indicating maximum sector size in bytes,
at LoL+13h the far pointer to the first disk buffer, and at LoL+17h the pointer to
the CDS array. The far pointer to the "system FCB" table is at LoL+22h, and the
number of protected FCBs is in the word at LoL+26h. No higher addresses are
used. Neither were any offsets lower than LoL-8 used.

Chapter 4: The DOS File System and Network Redirector 169

The Blind Alley: DOS 2 In version 2.x, DOS didn't do as much with the List of

Lists. The List began at LoL-2 with the pointer to the MCB chain; none of the
lower addresses found in later versions was used.

While the byte at LoL+lOh, the word at LoL+llh, and the far pointer at
LoL+13h all had the same meaning as they did with DOS 3.0, no CDS existed in
DOS 2. Instead, the information contained in later versions in this structure (in

cluding the current directory path string) was stored in the DPB for each drive.
In addition, it's possible that any specific version of DOS in the 2.x range may

vary significantly from the layout described here; when these versions were re
leased, they were distributed only through OEM channels, and each OEM was
free to modify these data structures in any way. Since none of the structures were
officially documented, several OEMs did modify them. For that reason, many of
our file system utilities described in this chapter are not designed to work at all
with versions earlier than 3.0. Thaf s one more reason to upgrade.

When the List Is Built

As you can tell from the descriptions of the information it contains, the List of
Lists is a d5mamic structrire that reflects any changes made to CONF1G.SYS, and
even by using DOS commands that change the identity of various drives or di
rectories while the system is running. For that reason, it is built "on the fly" each
time you boot your system.

IO.SYS Initialization Code The first thing that happens when you boot your system
is that the computer's 'TDOotstrap ROM" reads the "boot sector" from the floppy
disk in Drive A, if one is present. If not, it reads the boot sector from the hard
drive if possible. If neither of these can be done, the system proclaims that no
boot device is available and waits for you to provide one.

When the boot sector is read into RAM, at absolute address 07C00h, the code

it contains then locates the first DOS hidden file (either 10.SYS or 1BMB10.COM)

which always starts at Cluster 2 of the boot disk, loads it into RAM, and then

transfers control to that file's initialization code.

This initialization code does many things: moves itself to the top of available
memory, loads and initializes the other DOS hidden file (which sets up the DOS
kernel for operation), processes the CONF1G.SYS file if one is present, uses the
information contained there to buUd the List of Lists, and finally dispatches the
primary shell, which displays the familiar "DOS prompt."

170 UNDOCUMENTED DOS

While all of these actions are undocumented, and most of them are interest

ing, here we should concentrate on those things that set up the List of Lists, and
particularly the File System, for operation. The starting point is the processing of
CONFIG.SYS, which makes any installable device drivers part of the DOS kernel,
and possibly modifies certain values (for example, LASTDRTVE) that control how
the List of Lists is built.

But what happens if no CONFIG.SYS file exists? Obviously no drivers will be
installed, but the values that control the building of the list of Lists are assembled
into lO.SYS with default values that will take effect anyway. Thus the FILES=
value will be set to 8, LASTDRIVE= wiU be set to 5, an appropriate BUFFERS=
value will be calculated from memory size and drive data, a system FCBS= value
of 4,0 will take effect, and the primary shell will default to C:\COMMAND.COM
/P (if C: is the boot drive).

As CONFIG.SYS is processed, any of these commands encoimtered will over
write the default values. When the entire file has been parsed, with all commands
executed or passed over with error messages, the List of lists is then built from
the values which then exist in DOS's CONFIG control variables. Once the list has

been built, the control variables (along with the rest of the now-surplus initializa
tion code) are discarded.

Drive Parameter Blocks For every block device (disk drive) in the system, there is
a Drive Parameter Block (DPB). These 32-bjd:e blocks contain the information that
DOS uses to convert cluster numbers into Logical Sector Numbers for passing to
the BIOS, and also associate the device driver for that device with its assigned
drive letter. The DPBs are described in detail in the Appendix, in connection with
INT 21h Fimction 32h.

The DPB for each drive is created immediately after DOS calls the driver's
Initialize routines, during the boot process (recall in chapter 3 how the DEVLOD
program loaded block device drivers: it was just mimicking DOS's operation).
Those for the drivers built into IO.SYS or IBMBIO.COM (normally floppies A:
and B: together with hard disk C:) are created when IO.SYS initializes itself be
fore processing CONFIG.SYS; those for all other block devices are created as one
of the final steps of installing the device's driver, while CONFIG.SYS is being
processed.

To create the DPB, the code that installs drivers uses undocumented DOS

function INT 21h Fxmction 53h, passing it a far pointer to the drive's BIOS Pa
rameter Block (BPB). A copy of that block normally is buBt into the device driver

Chapter 4: The DOS File System and Network Redirector 171

itself, and the pointer is part of the information returned by the driver's Initialize
routine. For the built-in disk drives, the BPBs are contained in the boot sector of

each volume, and each time a volume is changed, DOS uses this BFB to rebuild
the DPB in case the new volume's characteristics differ from the original values.

No DPB exists for drive letters which have no drive associated with them; the

exception to this is "Drive B;" in a single-floppy system; it's always assumed to
exist, even when it doesn't. Also, note that non-physical devices masquerading as
drives (such as RAM disks) generally do have DPBs.

Each DPB is linked to the next one by a far pointer in the DPB structure (at
offset 18h from the start of the block before DOS 4.0, and at offset 19h from DOS

4.0 on); the end of this linked list is indicated by FFFFh in the pointer's "offset"
position.

While DPBs are chained together in a linked list whose root is available from
the List of Lists, a better way to get the DPB for a given drive is to use the rmdoc-
mnented DOS Get DPB function (INT 21h Fxmction 32h), which we saw in chap
ter 3 as part of DEVLOD's facility for loading block device drivers, and which is
often used in disk programs such as Norton Utilities or PC Tools.

The following sample program uses INT 21h Fxmction 32h to display capac
ity information for each drive on the system with a DPB. For example, on a sys
tem with a 1.2 megabyte floppy drive that had a 360KB floppy in it at the time, a
70 megabyte hard disk, and a 64KB RAMdrive (installed with DEVLOD, of
course!), here is the output from the program:

Drive A: 512 bytes/sector * 2 sectors/cluster =
1024 bytes/cluster * 354 clusters = 362496 bytes

Drive C: 512 bytes/sector * 8 sectors/cluster =
4096 bytes/cluster * 17648 clusters = 72286208 bytes

Drive E: 512 bytes/sector * 1 sectors/cluster =
512 bytes/cluster * 122 clusters = 62464 bytes

Actually, the program displays this information twice: once by walking the
DPB linked list (whose head is at offset 0 in the List of Lists), and once by calling
INT 21h Function 32h for each drive < lastdrive:

/*

DPBTEST.C — uses undocumented INT 21h Function 32h (Get DPB)

to display bytes per drive; but first walks the DPB chain.

172 UNDOCUMENTED DOS

showing the difference between the two access methods
*/

#incLude <stdLib-h>

#incLude <stdio-h>

#incLude <dos-h>

^pragma packd)

typedef unsigned char BYTE;

typedef struct dpb i
BYTE driver-
BYTE unit;
unsigned bytes_per_sect;
BYTE sectors_per_cLuster; // plus 1
BYTE shift; // for sectors per cluster
unsigned boot_sectors;
BYTE copies_fat;

unsigned max_root_dir;
unsigned first_data_sector;
unsigned highest_cLuster;
union -C

struct {

unsigned char sectors_per_fat;
unsigned first_dir_sector;
void far *device_driver;
BYTE media_descriptor;
BYTE access_fLag;
struct dpb far *next;

unsigned Long reserved;
> dos3;

struct -C

unsigned sectors_per_fat; // WORD, not BYTE!
unsigned first_dir_sector;
void far *device_driver;
BYTE media_descriptor;
BYTE access_fLag;
struct dpb far *next;
unsigned Long reserved;
> dos4;

> vers;
> DPB;

#ifndef MK_FP
^define MK_FP(seg,ofs) \

((void far *)(((unsigned LongXseg) « 16) | (ofs)))

Chapter 4: The DOS File System and Network Redirector 173

#endif

void faiKchar *s) -C puts(s); exitd); >

void dispLayCDPB far *dpb)

unsigned Long bytes_per_cLust =
dpb->bytes_per_sect * (dpb->sectors_per_cLuster + 1);

printf("Drive %c: 'A' + dpb->drive);
printf("%u bytes/sector * dpb->bytes_per_sect);
printf("%u sectors/cluster = \n",

dpb->sectors_per_cLuster +1);
printfC" %Lu bytes/cLuster * bytes_per_cLust);
printf("%u cLusters = dpb->highest_cLuster - 1);
printf("%Lu bytes\n\n",

bytes_per_cLust * (dpb->highest_cLuster - 1));

mainO

i

DPB far *dpb;
union REGS r;
struct SREGS s;

/* fLoppy = singLe disk drive LogicaL drive indicator 0=a 1=b */
unsigned char far *pfLoppy = (BYTE far *) 0x504L;

int i;

#ifdef TURBOC
unsigned Lastdrive = setdisk(getdisk());

#eLse

unsigned Lastdrive;
unsigned curdrv;
_dos_getdrive(&curdrv);
_dos_setdrive(curdrv, SLastdrive);

#endi f

putsCUsing DPB Linked List");

s.es = r-x-bx = 0;
r-h-ah = 0x52;
intdosx(&r, &r, &s);
/* pointer to first DPB at offset Oh in List of Lists */
if (! (dpb = *((void far * far *) MK_FP(s.es, r.x.bx))))

return 1;

174 UNDOCUMENTED DOS

do "C

/* skip either drive A: or drive B: */
if (((*pfLoppy == 1) && (dpb->drive != 0)) ||

((*pfLoppy == 0) && (dpb->drive != 1)))
di spLay(dpb);

if (_osmajor < 4)
dpb = dpb->vers-dos3-next;

else

dpb = dpb->vers-dos4-next;
while (FP_OFF(dpb) != -1);

putsC'Using INT 21h Function 32h");

segread(&s);
for (i=1; i<=Lastdrive; i++)

/* skip either drive A: or drive B: */
if ((*pfLoppy == 1) && (i == 1)) continue;
else if ((*pfloppy == 0) && (i == 2)) continue;

r-h.ah = 0x32;
r■h-dl = i;
intdosx(&r, &r, &s);
if (r.h.al != OxFF)

display((DPB far *) MK_FP(s-ds, r-x-bx));
>

return 0;

This program brings up an important reason to use INT 21h Function 32h in
stead of walking the DPB linked list: for removable media, INT 21h Function 32h
goes to the disk, and therefore picks up the most current information. Walking
the linked list, merely gets whatever DPB happens to be in memory. If you access
a 360KB floppy in drive A:, put in a 1.2 megabyte floppy without accessing it,
and then walk the DPB linked list, you will get the DPB for the 360KB floppy.
INT 21h Function 32h would not make this mistake.

Because the DOS Get DPB function hits the disk, it is worth avoiding a read
for both drives A: and B: in a system where these logical drives are mapped to
the same physical floppy drive. Therefore, DPBTEST decides whether to read the
DPB off of drive A: or drive B: by peeking at the logical drive indicator in the
DOS low-memory data area (absolute address 0000:0504).

Chapter 4: The DOS File System and Network Redirector 175

One last note about DPBs: many crucial DOS disk utilities were thrown into
temporary confusion by the introduction of DOS 4.0, because of one byte that
was changed in the DPB structure. The sectors-per-FAT field at offset OFh (see
Appendix A) grew from a byte to a word, so all subsequent fields (including the
dpb->next field) were bumped one b5^e as well. As noted in an extremely useful
article on DPBs published at the time (Ted Mirecki, "Fimction 32h in DOS," PC
Tech Journal, February 1989), this one-byte modification produced a major ripple
effect in all disk utilities that relied on this undocumented DOS data structure.

System File Tables While the DPBs relate actual physical devices to the drive let
ters DOS uses to refer to those devices, the System File Tables (SFTs) form the
backbone of the DOS file system, and have been present in DOS since version 2.0.

An SFT maintains the state of an open file. This includes associating a
filename with a directory entry and with a physical data address, keeping track
of the current position of activity within the file (the file pointer), determining file
size, and maintaining the time and date stamps when a file is modified. All infor
mation contained in the directory entry for a file gets there from the SFT, and is
brought back into the SFT when the file is opened.

All DOS systems have at least five SFT entries; many have 20 or more. The
number of SFT entries is established by the FILES= value set in CONFIG.SYS,
and defaults to eight if no such command is present. Every file handle that a pro
gram obtains from DOS by opening either a file or a device eventually leads to
one of the SFTs. Later on, when we see how to develop sample programs to ex
tract various bits of information from the SFTs, we'll see exactly how the tables
are organized. Here, we take a look at how DOS uses them, first when trjdng to
open an existing file, and then when creating a new file.

When you ask DOS to open a file, by calling the documented Open File func
tion (INT 21h Function 3Dh), or by calling a higher-level function like fopenO
which in turn calls DMT 21h Function 3Dh for you, the following take place:

First, DOS searches through the handle table (also called the Job File Table, or
JFT) normally located in your program's PSP to find a slot that is not currently in
use, and remembers the index into the table for the first such slot that it finds.

This index eventually will become the "handle" associated with the open fDe if all
goes well; the search for a slot happens first because if no such slot is available,
the file cannot be opened and there's no need to do anything more.

The chain of SFTs is now searched, looking for the first SFT entry that shows
a "handle count" of zero. That indicates that the entry is available for use. If no

176 UNDOCUMENTED DOS

such entry is found, an "Out of handles" error is returned, and again the open
fails.

If a free handle exists and an available SFT entry is foiind, DOS then accesses
the root directory of the drive specified in the pathspec you passed in, by using
the Current Directory Structure (CDS) for that drive. We haven't yet examined
this structure in detail, but—if you're dealing with a real physical drive—^DOS
next extracts from the CDS a pointer to the DPB, to get the details about the drive
whose root directory it will need to locate, and to perform the necessary calcula
tions to convert cluster references into Logical Sector Numbers.

Armed with this information, the DOS routines then read the root directory
into one of the DOS buffers (unless it's already there). If the supplied path con
tained any subdirectories, the root directory of the drive is searched, trying to
match the first one specified in the supplied path. If it isn't foimd, the function
fails with a "Path not foxmd" error.

If this top-level directory is found, however, then the "starting cluster" value
in its directory entry is converted to an LSN which is used to read that subdirec
tory into another buffer, or to locate the subdirectory if if s already in the buffers.
This process continues until all directories in the supplied path string have been
traversed, and only the filename remains to be located.

At this point, and no earher, DOS determines whether you are dealing with a
real file, or with a named (character) device such as CON or LPTl. It does so by
searching the list of installed device drivers; if it finds an exact match for the
filename portion of the pathspec you gave it (any extension is ignored in this
test), it opens the device rather than the file. This means that all the named de
vices seem to exist in aU directories of the file system; it also means that you can
not open any file that has the same name as one of the devices, regardless of its
extension. If no matching device name is foimd, then the last directory is
searched for the filename and the extension. If neither a device nor a file is found,

the function fails and returns a "Path not found" error code.

If a file or device is found, the handle count in that first free SFT located ear

lier is set to 1, and the index of this entry in the SFT list is stored in the program's
JFT. What happens after that depends on wheiher you're opening a file or a device.

For a file, all pertinent information from the file's directory entry is copied
into the corresponding fields of the SFT entry, and the file pointer (one field of
the SFT) is set to zero to indicate that nothing has yet been read from the file. For
a device, certain flag bits in the SFT attribute word are set to control the input

Chapter 4: The DOS File System and Network Redirector 177

and output functions, and a pointer to the device driver is stored in the SFT. In
both situations, DOS then returns to you the handle value that it reserved at the
start of the process; that value (the "magic cookie") now must be used for aU ref
erences to the file. You can see this file handle is merely an index into your
program's JFT, and that the byte at that index (JFT[handle]) is itself an index into
the SFT.

If you're creating a new file, rather than opening an existing one, this same
sequence of events occurs, with one exception—the "Path not found" error code
is generated only if some directory in the path caimot be located. One significant
difference occurs when the SFT entry has been filled out (before the DOS fimc-
tion comes back to you with a handle): the new directory entry for the just-cre
ated file is put back into the DOS buffer for that LSN, and the dirty bit for that
buffer is set. This tells DOS that the buffer should be written out to disk as soon

as possible and in any event before being reassigned. A directory entry is created
for your new file immediately, though with a length of zero.

Each time you read from or write to the file, referencing it by means of the
handle, DOS uses the supplied handle to index into your own handle table in the
PS? (the JFT), and again uses the value it finds there to index into the SFTs. The
handle is then used to perform the requested operation on the file or device refer
enced by its corresponding SFT entry, and the file pointer and date-time stamps
in the SFT is updated accordingly. Data transfers also normally involve the DOS
buffer chain, which lets DOS buffer a full sector at a time no matter how you
refer to the file within your program.

When you close a file, its SFT is accessed just as for reading or writing. If the
file has been written to, as indicated by a status bit in the SFT attribute word,
then its directory entry is updated with information from the SFT which reflects
the latest size, time, and date data. Also, any partial buffer that may not yet be
written is also flushed to disk. If it hasn't been written to, these steps are skipped.

The "handle coimt" field of the SFT entry (the first field of each SFT, for
quickest access) is decremented to reflect the fact that this handle is being discon
nected from the SFT, and the SFT index in the handle table is replaced by the
value FFh, which indicates an imused (and therefore available) slot.

If this was the only handle using this SFT entry, the decrement brings the
handle count back to 0 and makes the entry available for reuse the next time any
DOS file access is needed. DOS itself uses the SFTs when loading new processes,
which means any program that accesses only one file at a time, closing it before

178 UNDOCUMENTED DOS

accessing another, thereby using only one SFT entry and leaving that entry avail
able upon return to DOS, will leave no traces of its existence to be found later.

Some programs are not so well behaved, and keep multiple files open simul
taneously. But despite many programs' insistence on having 30 to 50 files avail
able, it's rare for the number of SFTs actually used to grow much larger than 15 to
20. Later in this chapter there is a utility that shows just what's in the SFT: usually
there isn't much to see.

So far we have seen how handle-based DOS file operations manipulate SFTs.
But what about FCB-based file operations? To make programs that stUl use the
archaic FCB interface network-compatible, DOS provides "system FCBs," which
were touched on briefly earlier in this chapter, and which will soon be discussed
in more detail. These system FCBs are, in effect, SFT entries in disguise. The lay
out for both structures is the same, but a system FCB must be kept synchronized
with the internal FCB that its using program believes is controlling file I/O, in
addition to its normal DOS duties!

Actually, there is a close relation between SFTs and FCBs. Just as an SFT is
used to maintain the state of an open file for the DOS 2+ handle functions, FCBs
maintained the same state for DOS 1.x. In fact, the SFT structure is largely a
superset of the old FCB structure. However, there is also an important difference:
SFTs operate at the DOS level, whereas FCBs operate at the application level. Re
call that FCBs reside in the application's address space, not in DOS's. The SFT in
contrast allows DOS to keep tighter control over the file system. For example,
whereas DOS in the days of FCBs couldn't do anything about programs that left
behind open files when exiting, today's DOS uses the SFT as part of its mecha
nism for closing any open files when an application exits.

Of coxirse, if s not quite correct to speak about FCBs is the past tense, as much
as we would like to. The handle/SFT scheme did not replace FCBs, but sits along
side it. Furthermore, as we've seen, FCBs for network drives (or, in fact, for any
drive created with the DOS network redirector, including the PHANTOM drive
later in this chapter) have corresponding SFT entries. The interrelation between
FCBs and SFTs is a good example of how the new never truly replaces the old.

Buffer Chain One of the undocumented areas of the DOS File System in which it
is quite easy to "meet yourself coming back" is the buffer chain, which made its
debut along with subdirectories and installable drivers in version 2.0.

Chapter 4: The DOS File System and Network Redirector 179

The idea is simple enough: to provide a centralized buffer pool that DOS
manages, thus freeing application programs from having to allocate huge buffer
areas in order to get good performance.

The implementations, however, have been confused. The first time out of the
gate, DOS designers chose to set up the buffer chain as a linked list of sector-
sized areas, each preceded by a smaU header block which identified the drive
currently using that buffer, the LSN of the data it contained, a status byte that in
dicated both what kind of data was present and whether it differed the data
thatwas on the disk, and a pointer to the next buffer in the chain.

The intent was apparently to use the buffers in sequence, changing the link
ages as necessary to maintain the most recently used buffers near the front of the
chain. Any disk access could first scan through the chain of headers, and if it
foimd the LSN and drive, just use the buffer content without having to read the
disk again. Moving each used buffer up to the front of the chain would guarantee
that any time a search reached the end of the chain without finding its sector, the
buffer at the end would be the one least recently used, and thus the proper one to
replace with the new data.

Unfortunately, this simple approach did not take into account the pattern by
which DOS actually performs disk reads. In practice, the buffer chain filled rap
idly with FAT and directory data, leaving only one or two buffers at the end to be
used for all file data transfers.

The system was modified several times during DOS versions 2 and 3, but
performance problems remained significant. When the buffer areas were rede
signed again for version 4, to permit the use of expanded memory for buffers, the
changes were major. The list structure went from single linkage to double linkage
(forward and reverse), and hashtable lookup techniques were added. While the
high-memory feature was initially flaky, the performance problems were cured.
Midway through the life of version 4, the high-memory problems were also taken
care of, providing both space economy and rapid retrieval.

The multiple approaches used to cure these problems preclude going into
more detail about the way the buffers work. Besides, there's not much practical
use for any direct dealings with them, anyhow. The most important things to
know about this area are not the details of how a buffer works or how to get data
from it, but to be aware of the potential pitfaUs the buffering system introduces.

For instance, if s quite possible to follow all the documented rules for dealing
with DOS, and still get into trouble, this can be traced directly back to the way

180 UNDOCUMENTED DOS

the biiffer chain works. Here's an example: assume you have a diskette in place,
which has a write protect tab on it, and you attempt to erase a file from it. The at
tempt will fail because of the write protect tab, but if you remove the disk, take
off the tab, put it back in the drive, and reply to the "Abort/Retry/Fail?" message
with "Retry," some primary shells will do only a partial delete: the FAT will re
flect the deletion, but the directory entry for the file wiU not. This wiU later be re
ported by CHKDSK as a cross-linked file.

The apparent reason is that the buffer entry for the directory entry is dis
carded when you open the door to remove the write protect tab, while that for
the FAT is not; to make matters worse, it is flagged to be updated as soon as pos
sible (which means as soon as you close the door).

The cure is simple: never "Retry" any operation on a diskette when you have
opened the drive door. Always force the operation to Fail or Abort, then start
over when you have corrected the problem.

One possible use for examining the DOS buffers is merely to determine the
value of BUFFERS= in a running system. In DOS 4+, this niunber is kept directly
at LoL+3Fh, but in earlier versions there's no direct access to this value. Since it is

so difficult for a running program to determine which CONF1G.SYS file was
used to boot the system (prior to the availabihty in DOS 4 of INT 21 h Function
3305h, one couldn't even teU what drive the system was booted from!), it might
be useful for install, setup, and configuration prograrrrs to determine the value of
BUFFERS= (and FILES=, which we'll look at later).

The following program, BUFFERS.C, merely walks the buffer chain, by
coimting how many buffers it finds. In DOS 4+, it directly uses the value at
LoL+3Fh:

/* BUFFERS.C — value of BUFFERS= */

/* also see COUNTF.C to determine value of FILES= */

#include <stdlib.h>

#include <stdio.h>

#include <dos.h>

^pragma packd)

fifdef TURBOC
^define ASM asm

Uelse

^define ASM asm

Chapter 4: The DOS File System and Network Redirector 181

#end1f

typedef unsigned char BYTE;

typedef struct dskbuf -C
struct dskbuf far *next;
BYTE driver-
BYTE flags;
> DSKBUF;

unsigned buffers(void)
i

BYTE far *dosList;

ASM mov ahr 52h
ASM int 21h

ASM mov dosList+2r es
ASM mov dosList, bx

if (_osmajor < 4)

DSKBUF far *diskbuff;
unsigned buffers;

/* pointer to first disk buffer in List of Lists */
if ((_osmajor==2) || ((_osmajor==3) && (_osminor==0)))

diskbuff = *((void far * far *) (dosList + 0x13));
else

diskbuff = *((void far * far *) (dosList + 0x12));

for (buffers=1; ; buffers++)
if ((diskbuff = diskbuff->next) == -ID

break;
return buffers;

>

else

/* BUFFERS= value kept directly in List of Lists */
return *(doslist+0x3F);

mainO

printf("BUFFERS=%d\n", buffers());
>

182 UNDOCUMENTED DOS

It is worth noting that the Quarterdeck Expanded Memory Manager
(QEMM) comes with a program, BUFFERS.COM, which not only reports the
value of BUFFERS=, but which can be used to change it on the fly. By setting a
small value for BUFFERS= in CONFIG.SYS, then running LOADHl BUFFERS=xx
in AUTOEXEC.BAT, your buffers can be loaded into high DOS memory, saving a
little more of the precious lower 640KB for other things.

Current Directory Structure (CDS)

Another crucial imdociunented DOS data structure that is reached from the List

of Lists is the array of Current Directory Structures (CDS array) introduced in
version 3. In DOS 2, some of the information contained in this table was kept in
the DPB for each drive, but in a very different layout. The DOS Programmer's Ref
erence by Terry Dettmann and Jim Kyle refers to the CDS as the "Logical Drive
Table" (LDT), which is an unfortimate term since LDT already stands for Local
Description Table, the name of a key data structure in protected mode on Intel
80286 and higher processors.

The CDS was adopted as part of the networking additions made to DOS, and
plays a central role in manipulating foreign (not just network) file systems. Many
programs later in this chapter read or manipulate the CDS.

The CDS array contains one CDS for each possible block device or drive let
ter on the system; that is, if you specify LASTDR1VE=Z, yoiir system will have a
26-element CDS array, whereas if use the default value for LASTDRIVE, your
CDS array will contain only five elements. Each element is 81 b5^es long imder
DOS version 3, or 88 bytes for version 4 and up.

Turning to Appendix A, where the CDS structure is depicted in the lengthy
entry for INT 21h Function 52h, we see that the CDS for each drive starts off with
a 67-byte ASCllZ string for the current path on the drive; it is from this that the
CDS take its name. The following C header file presents a CDS structure; note
that the term NETWORK is used to refer generically to any drive created with
the MS-DOS redirector:

/* CURRDIR.H */

#define NETWORK (1 « 15)

#define PHYSICAL (1 « 14)

#define JOIN (1 « 13)

#define SUBST (1 « 12)

Chapter 4: The DOS File System and Network Redirector 183

typedef unsigned char BYTE;
typedef unsigned WORD;
typedef unsigned Long DWORD;
typedef BYTE far *DPB; // provide actual DPB struct if needed

#pragma packd)

typedef struct -C
BYTE current_pathC67!]; // current path
WORD flags; // NETWORK, PHYSICAL, JOIN, SUBST
DPB far *clpb; // pointer to Drive Parameter Block
union -C

struct i

WORD start_cluster; // root: GOOD; never accessed: FFFFh
DWORD unknown;
> LOCAL; // if (! (cdsCdriveD.flags & NETWORK))

struct -C

DWORD redi ri f s_record__ptr;
WORD parameter;

> NET; // if (cdsCdrive].flags & NETWORK)

> u;
WORD backslash_offset; // offset in current_path of '\'
// D0S4 fields for IFS
// 7 extra bytes...
> CDS;

CDS far *currdir(unsigned drive);

After reading through CONFIG.SYS and determining the value of LAST-
DRrVE=, EKDS creates an array like the following (though note that in DOS 4 and
higher, each CDS element is 7 bytes larger):

CDS cdsCLASTDRlVED;

In a program of your own, of course, you would not create a CDS array like
this. Instead, you would create a far pointer to a CDS, and assign to the pointer
the value foimd at the appropriate offset in the List of Lists:

ListOfLists far *List;
CDS far *cds;
// ...

if (DOS 2.0)

failC'no CDS");
if (DOS 3.0)

184 UNDOCUMENTED DOS

cds = List->dos30.cds;
else

cds = List->dos31.cds; // DOS 3.1 and higher

To access the CDS for a given drive, you index into the array:

unsigned drive;
// ...

if (drive > LastdriveO) // see chapter 2 for lastdriveO
failC'no such drive"); // but watch out for Novell NetWare

else

printf("%Fs\n", cdsCdrive].current_path); // print far string

Because the size of this array is fixed by LASTDRTVE, it normally cannot be
expanded without changing CONFIG.SYS and rebooting. The space immediately
above the array is occupied by the DOS kernel, and contains areas referenced by
absolute pointers from many areas of DOS. However, the program
LASTDRIV.COM shipped with QEMM can increase LASTDRTVE on the fly, and
in order for this to mean anj^hing, the CDS array must be expanded as well:
memory is allocated for a larger CDS array, the old CDS array is copied into it,
the new fields are initialized, and the CDS pointer in the List of Lists (LoL+16h,
except LoL+17h in 1X)S 3.0) is updated to point to the new CDS array.

The first element in each drive's CDS, the current path, is not always what
you might expect. The current path in the CDS tells where the data really is,
rather than where you address it. We can see this in the output from a utility
named ENUMDRV, the source code for which we will see shortly:

C:\UNDOO\dos\join a: c:\floppy
C:\UNDOOsubst g: c:\udos
C:\UNDOOrem e: and f: are PC/TCP (FTP Software)

C: \UNDOOenumdrv

A C:\FLOPPY JOIN

B B:\

C C:\UNDOC

E \\BIN\EXPORT\DO$ NETWORK

F \\HOME\U\ANDREW NETWORK

G C:\UDOS SUBST

Note that the COMMAND.COM prompt shows we were logged into drive C:
at the \UNDOC subdirectory, and that this shows up clearly in the CDS for drive
C:. The SUBST command causes data on one drive to be addressed as if it were

Chapter 4: The DOS File System and Network Redirector 185

on another—we can see this from the CDS for drive G:. The situation is reversed

when you use JOIN to refer to an entire drive as though it were a subdirectory on
another drive: see the CDS for drive A: above.

In both these cases, the first byte in the current path string contains the drive
letter of the SUBST or JOIN "target." But as shown in drive E: and F: in the EN-
UMDRV map above, this is not always the case. Attaching a drive to a network
file server means that all references to the drive actually refer to the server, which
is generally addressed with an opening "\\" string (that's "\\\\" from a C pro
gram). Here, using PC/TCP from FTP Software, drives E: and F: were mapped to
different directories on a SUN SPARCstation running SimOS. This is a good illus
tration of how the DOS file system allows installable file systems (IFSs): we can
use the disk of a UNIX RISC machine as though it were DOS.

As you navigate the directory tree, the path string stored here tracks your po
sition, so that DOS can always convert your relative path references (those which
do not begin with a backslash) into fully qualified path specs in order to know
the search path for opening a fUe. In fact, the only thing that happens when you
change directories (by calling INT 21 h Function 3Bh, or its user-level equivalent,
the CD conunand), is that this field gets updated.

Conversely, updating this field changes the current directory. Going into your
favorite debugger, locating the CDS for the current drive, and manually editing
the path string in the CDS, is sufficient to actually change directories: the change
is immediately reflected in the PROMPT pg display, for example. IPs now
quite clear why this is called with the Current Directory Structure.

At offset 45h from the start of the CDS entry is a far pointer to the DPB; this
pointer controls physical access to the drive. (This is cds[drive].dpb in the struc
ture presented earlier.) Since the DPB in turn contains a far pointer to the actual
device driver, this situation provides the hnkage between the logical name of the
unit, and physical access to it.

The word at offset 4Fh (the final field in the DOS 3.x CDS) contains the num

ber of characters in the pathspec area that precede the root directory indicator.
This is often initially set to a value of 2, to skip the drive letter and colon; when a
SUBST command is processed, the value changes to skip not only the drive letter,
but all directory names concealed by the action of SUBST. That is, SUBST G:
C:\UDOS copies the string "C:\UDOS\" into the CDS entry for drive G:, copies
the status word and pointers from drive C:, sets the SUBST bit in the drive G: sta
tus word, sets the directory cluster number to that for the first sector of the

186 UNDOCUMENTED DOS

UDOS directory on drive C:, and sets the word at 4Fh to a value of 7, the number
of characters preceding the final "\" of the pathspec string. But since the CDS
may have to store the non-DOS name of an alien file stem (such as "\\BIN\EX-
PORTXDOS" and "\\HOME\U\ANDREW" in the example above), the word at
offset 4Fh is also used to "block off' such names.

As we proceed through this chapter, we'll see how to make use of the infor
mation contained in the CDS.

Accessing the CDS

At offset 17h in DOS 3.0 and at offset 16h in DOS 3.1 and higher, the List of Lists
contains a far pointer to the CDS array. Each element in the array is 51h bytes
wide in DOS 3.x and 58h bjffes wide in DOS 4.x and higher, and the array con
tains one structure for each possible drive up to LASTDRTVE. We can package all
this knowledge into a currdirO function that will be used in several programs
later in this chapter. The function is called with a drive number (where drive A: is
0), and returns a far pointer to the CDS for that drive:

/* CURRDIR.C — uses undocumented DOS to return pointer to
current directory structure for a given drive */

^include <stdLib.h>

^include <dos.h>

#incLude "currdir.h"

typedef enum i UNKN0WN=-1, FALSE=0, TRUE=1 > OK;

CDS far *currdir(unsigned drive)
i

/* statics to preserve state: only do init once */
static BYTE far *dir = (BYTE far *) 0;
static OK ok = UNKNOUN;
static unsigned currdir_size;
static BYTE Lastdrv;

if (ok == UNKNOWN) /* only do init once */
(

unsigned drv_ofs, lastdrv_ofs;

/* curr dir struct not available in DOS 1.x or 2.x */

if ((ok = (_osmajor < 3) ? FALSE : TRUE) == FALSE)
return (CDS far *) 0;

Chapter 4: The DOS File System and Network Redirector 187

/* compute offset of curr dir struct and LASTDRIVE in DOS
List of Lists, depending on DOS version */

drv_ofs = (_osmajor == 3 && _osminor == 0) ? 0x17 : 0x16;
Lastdrv_ofs = (_osmajor == 3 && _osminor == 0)

? 0x1 b

: 0x21;

#if definedC TURBOC) |1 (defined(_MSC_VER) && (_MSC_VER >= 600))
#ifdef TURBOC
^define _asm asm
#endi f

_asm push si /* needs to be preserved */

/* get DOS List of Lists into ES:BX */
_asm mov ah, 52h
_asm int 21h

/* get LASTDRIVE byte */
_asm mov si, Lastdrv_ofs
_asm mov ah, byte ptr es:Cbx+siD
_asm mov Lastdrv, ah

/* get current directory structure */
_asm mov si, drv_ofs
_asm Les bx, es:Cbx+sil
_asm mov word ptr dir+2, es
_asm mov word ptr dir, bx

asm pop SI

#eLse

// Microsoft C 5.1 — no inLine assembLer avaiLabLe

union REGS r;
struct SREGS s;
BYTE far *dosList;
segreadCSs);
r.h.ah = 0x52;
intdosx(&r, &r, &s);
FP_SEG(dosList) = s.es;
FP_OFF(dosList) = r.x.bx;
Lastdrv = dosListCLastdrv_ofsD;
dir = *((BYTE far * far *) (&dosListCdrv_ofs3));

>

#endi f

/* OS/2 DOS box sets dir to FFFF:FFFF */
if (dir == (BYTE far *) -ID ok = FALSE;

188 UNDOCUMENTED DOS

/* compute curr directory structure size */
currdir_size = (_osmajor >= 4) ? 0x58 : 0x51;

> /* end of static initializations */

if (ok == FALSE)

return (CDS far *) 0;

if (drive >= Lastdrv) /* is their drive < LASTDRIVE? */

return (CDS far *) 0;

/* return array entry corresponding to drive */
return dir + (drive * currdir_size);

Like most of the LASTDRV programs in chapter 2, currdirO uses offsets com
puted at run time, rather than C data structures set at compile time, because this
seems better suited to the voIatiHty of tmdocumented DOS. The assumption is
that DOS 5.0 and higher wiU be fairly compatible with DOS 4.0. There are prob
lems with this assumption, though, since while the DOS box in OS/2 1.10 pre
sents itself to a program as DOS 10.10, in fact it more closely resembles DOS 3.x
than DOS 4.x. The test for (_osmajor >= 4) incorrectly groups the OS/2 DOS box
together with DOS 4.x instead of DOS 3.x. However, the DOS boxes in OS/2 1.x
and 2.x don't provide a CDS anyway, and the currdirO is prepared for this possi-
biUty by checking for the invahd -1 pointer (FFFF:FFFF).

Walking the CDS

The currdirO function goes to some trouble to ensure that it can be called fre
quently without a lot of duphcated effort. This way, cmrdirO can be called in a
loop for each drive in the system, producing the ENUMDRV output shown ear
lier. Here is ENUMDRV.C, which contains the currdirO loop:

/*

ENUMDRV.C — uses currdirO in CURRDIR.C

*/

^include <stdLib.h>

#incLude <stdio.h>

#incLude "currdir.h"

void faiKchar *s) •(puts(s); exitd); }

Chapter 4: The DOS File System and Network Redirector 189

ma 1n()

CDS far *dir;
int i;

#ifdef TURBOC
int lastdrv = setdiskCgetdisk());

#eLse

int currdrv, Lastdrv;
_dos_getdrive(&currdrv);
_dos_setdrive(currdrv, &Lastdrv);

#endif

for (i=0; i<Lastdrv; i++)
if (! (dir = currdir(i)))

faiLCcan't get current directory structure");
eLse if (dir->fLags) /* is this a vaLid drive? */
i

printf("%c\t%-50Fs", 'A' + i, dir->current_path);
if (dir->fLags S NETWORK) printf("NETWORK ");
if (dir->fLags & JOIN) printfC'JOIN ");
if (dir->fLags S SUBST) printf("SUBST");
putcharC'\n');

>

return 0;
>

This program will not show Novell network drives that are mapped to drive
numbers greater than that specified by LASTDRIVE. As noted in chapter 2,
Novell NetWare drives by default start at the value after LASTDRIVE. These
drives are not foimd in the CDS, and are the one important exception to our
statement that the CDS ties together all DOS drives. Novell doesn't use the CDS
because it provides network services by hooking INT 21h, rather than by using
the redirector. The reason for this is Novell has been providing DOS networking
since 2.x, before there was a redirector or a CDS.

Finding the True Name of a Fiie

In the MS-DOS file system, things may not be what they seem: a file called
D:\FOO.BAR may actually be located on the floppy disk in drive A:, and a sub
directory called F:\SOlJRCES may actually be located on a network file server
(probably not even ninning MS-DOS), in a directory called \\BIN\EX-
PORTXDOS. A "canonical" (true) path string resolves all these "logical" (that is,
non-physical) drive and path references to an absolute pathname, taking account
of any renaming due to JOIN, SUBST, ASSIGN, or network redirections.

190 UNDOCUMENTED DOS

Clearly, the CDS could be used to determine the canonical name of a file. One
would replace the root of the filename with root of the CDS pathname string. In
the SUBST example used earlier, the "true" name of G:\FOO.BAR would be
C:\UDOS\FOO.BAR. But sometimes these manipulations are more complicated,
as in the case of JOINed drives or filenames with complex paths.

Fortunately, there is a DOS fimction that will provide the true canonical form
of a filename: undocumented INT 21h Function 60h (Resolve Path String to Ca
nonical Path String). This corresponds to the undocumented TRUENAME com
mand in COMMAND.COM in DOS 4.01, mentioned in chapter 6. Fimction 60h
and the TRUENAME command relate to the CDS in that, for any drive n:, the
output of Function 60h with the string "n:." (that is, with the . subdirectory) is
identical to cds[drive n:]->current_path. Actually, there is one difference between
using Function 60h and using the CDS: Function 60h hits the disk.

We can wrap INT 21h Function 60h into a TRUENAME utility. Sometimes it
is useful to know the absolute pathname of a file, or to have some assistance from
the operating system in interpreting complex pathnames with many .. and . sub
directories:

C:\UNDOC> truename foo\bar\..\ \.

C:\UNDOC

C:\UNDOC> subst d: c:\undoc

C:\UNDOC> truename d:\truename.exe

C:\UNDOC\TRUENAME.EXE

C:\UNDOC> truename f:\

\\HOME\U\ANDREU

C:\UNDOC> truename e:*.exe

\\BIN\EXPORT\DOS\????????.EXE

TRUENAME.C consists of only a few lines of code. Note, however, that Func
tion 60h only became available in DOS 3.0, which was the version that added the
CDS to DOS. The function is also supported in the OS/2 DOS box, so
TRUENAME operates correctly in that environment as well, even though there's
no CDS.

/* TRUENAME.C */

#1nclude <stdL1b.h>

#1ncLude <stdio.h>

^include <ctype.h>
^include <dos.h>

Chapter 4: The DOS File System and Network Redirector 191

#ifdef TURBOC
^define _asm asm
#endi f

void retCchar *s, int retval) -C puts(s); exit(retvaL); >

char far *truename(char far *s, char far *d)

char far *s2;

/* INT 21h AH=60h doesn't Like Leading or traiLing bLanks */
whi Le (isspace(*s))

S++;

s2 = s;
whiLe (*s2) s2++;
s2—;
whi Le (isspace(*s2))

*s2— = 0;

_asm push di
_asm push si
_asm Les di, d
_asm Lds si, s
_asm mov ah, 60h
_asm int 21h
_asm pop si
_asm pop di
_asm jc error
return d;

error:

return (char far *) 0;
>

mainCint argc, char *argvC3)
i

char bufC128II;
char far *s;
if (argc < 2)

retC'usage: dospath <fiLename>", 1);
if (_osmajor < 3)

retC'requires DOS 3-0 or greater", 1);

if (s = truename(argvC1Il, buf))
ret(s, 0);

eLse

retCinvaLid fiLename", 1);

192 UNDOCUMENTED DOS

This program can be compiled with either Microsoft C 6.0 or Turbo C, and
uses a preprocessor definition to work with the two compilers' slightly different
varieties of in-line assembler.

The truenameO function can also be used as a way of double-checking our
access to the CDS. For example, in ENUMDRV.C we could add the following test
(which uses the _fstrcmp() function from Microsoft C 6.0) just before printing out
dir->current_path:

if (i > 1) /* don't hit drive A: or B: */

<

char s:4D, bufCIZSD;
sCO: = 'A' + i; sCi: = sC2: = sZZl = 'VC;
if (_fstrcmp(dir->current_path, truenamets,. buf)) != 0)

faiLC'something wrong");
>

System FCBs

We've already examined the SFTs used for control of both files and devices
opened with the newer handle-oriented functions that were introduced into DOS
2.0. But before DOS 2.0, there were File Control Blocks (FCBs), inherited from the

CP/M operating system that had been the standard of the 8-bit microcomputer
world. As noted earlier, FCBs reside in an application's address space.

When the SFTs were introduced, it was necessary to retain the ability to use
FCBs, for compatibility with aU existing MS-DOS programs at the time. Even
today, some DOS functionality still uses FCBs: COMMAND.COM uses them for
the DEL and REN commands, and extended FCBs are necessary to change vol
ume labels. New technology rarely replaces old techniques, so the persistence of
FCBs is not surprising. At the same time, it didn't make a lot of sense to keep two
totally different systems for dealing with files. The solution to this quandary was
to introduce "system" FCBs, maintained by DOS itself—^just as the SFTs are.

A system FCB looks exactly like an SFT entry; the layout of the structure is
identical. Thus, all the internal DOS routines that get information from, or write
data into, an SFT entry will work exactly the same way on a system FCB. The
only difference is that the system FCBs form a separate list from the SFTs.

For xmknown reasons, DOS fills the system FCBs with the character 'A' when
they are built, except for those few bytes that contain validity-check flags.

Chapter 4: The DOS File System and Network Redirector 193

Programs using the FCB approach have no knowledge of system FCBs. Since
the programs cannot deal directly with the system FCBs, a group of procedures
inside DOS copy data from the user's own FCB into a system FCB, and back
again. When a program uses one of the older FCB DOS functions, and passes the
address of the FCB to DOS as a part of the required arguments to that fimction,
DOS then copies all pertinent information from the program's own FCB into a
system FCB, does the actual work using the system FCB, and finally copies the
information back into the user's original FCB before returning control to the user
program.

While this may sound like unnecessary added work, it does permit programs
that use the older calls to coexist with the newer techniques. The SFT/system-
FCB approach is needed to provide the degree of control necessary to deal with
file sharing, networking and multiple users, while still allowing ancient pro
grams to run without change.

System File Tables (SFTs) and Job File Table (JFT)

We earlier looked at the file tables maintained in DOS, but it is now time to build

some useful programs with these tables. As mentioned, the SFTs are a linked list
of system-wide tables that maintain state for all open files in aU processes, and
the JFT is the Job File Table, found inside a PSP, that contains that process' open
file handles. In the following section, we'U see three small programs that examine
these tables. Two programs walk through the SFTs, and one relates a program's
file handles to the information kept in the SFTs.

How Many FILES?

Earlier, we walked through the DOS disk buffers to determine the value of BUFF-
ERS=; we can likewise walk through the SFTs to determine the value of FILES=.
Just as with BUFFERS=, this value is normally set in CONFIG.SYS, though it can
be altered on the fly with a utihty like Quarterdeck's FILES.COM.

Our program, COUNTF, doesn't change FILES=, but merely determines its
current value by threading through the SET headers and keeping count of the
number of entries in each table. The first SFT appears to always hold five possi
ble open-file entries. If FILES=40 appears in CONFIG.SYS, for example, then
DOS allocates a second SFT, large enough for 35 more files, and chains it to the
first SFT. Since each header consists of a count of the number in its associated

194 UNDOCUMENTED DOS

table, together with a pointer to the next header, it's easy to count the number of
possible files:

/***

* COUNTF.C - Jim Kyle
* Last change : 13 August 1990
** /

^include <stdio-h>

^include <dos.h>

^include <stdLib-h>

#ifndef MK_FP
^define MK_FP(s, o) (void far *)(((Long)(s) « 16) | \
(unsignedXo))

#endif

unsigned fiLes(void)
•C union REGS regs;

struct SREGS sregs;

unsigned int far *ptr;
int n = 0;

if (_osmajor < 2)
•C putsC "FILES not supported in this DOS version.");

exitCO);
>

regs-h-ah = 0x52;
intdosxC ®s, ®s, Sisregs);
ptr = (unsigned int far *) MK_FP(sregs.es, regs.x.bx + 4);
ptr = (unsigned int far *) MK_FP(ptrCIl, ptrHOIl);
while (FP_OFF(ptr) != OxFFFF)
{ n += ptrC2D;

ptr = (unsigned int far *) MK_FP(ptrC13, ptrCQ]);
>

return n;

>

#ifdef TESTING

void main(void)

•C printf("FILES=%d\n", filesO);
>

#endif

If s just a matter of chaining through the blocks, accumulating the number of
entries in each, until reaching the end of the chain. Even if some SFTs have been

Chapter 4: The DOS File System and Network Redirector 195

loaded into high memory by one of the newest memory manager programs such
as 386MAX or QEMM, COUNTRC will find them.

What Files Are Now Open?

Having FILES=25 does not, of course, mean you necessarily have 25 files open at
the same time on your system. On the other hand, even if each process you
laimch retains the DOS default maximiun-handles value of 20 (a value we will

see altered later in this chapter), if s possible with enough SFTs available to have
40 or even 60 files open at the same time.

Our next utility displays information about all open files and devices on your
system. For instance, here is the output from FILES when running in a DOS box
in Windows 3.0;

C:\WIN30>fi Les > files.Log
C:\WIN30>type f 1 Les.Log
F1lename Size Attr Handles Owner

AUX 0 0000 14 9DA8

CON 0 0000 44 9DA8

PRN 0 0000 14 9DA8

WIN386 .SWP 999424 0020 1 4138

USER .EXE 231680 0020 1 421A

COURE .FON 21360 0020 1 421A

HELVE .RON 59696 0020 1 421A

FROGMAN .EXE 55200 0020 1 421A

FROGMAN .EXE 55200 0020 1 421A

VGAOEM .RON 5584 0020 1 421A

EGA80W0A.RON 5680 0020 1 421A

EGA40W0A.RON 8736 0020 1 421A

CGA80W0A.RON 4672 0020 1 421A

CGA40W0A.RON 6704 0020 1 421A

FIFEDIT .EXE 40124 0020 1 421A

VGAFIX .RON 5776 0020 1 421A

W1N0A386.MOD 29520 0020 1 421A

COMM .DRV 7088 0020 1 421A

GDI .EXE 129691 0020 1 421A

FILES .LOG 524 0020 2 421A

CNOT PSP]

CNOT PSP]

CNOT psp:

Normally there aren't nearly this many open files. Often you must redirect
FILES's output to a file (for example, files > files.log) to see anything other than
AUX, CON, and PRN. When its output is redirected, FILES inherits an open file

196 UNDOCUMENTED DOS

from COMMAND.COM: this shows up in the last hne in the listing above as
F1LES.LOG, with two owners.

Just as COUNTF did, FILES walks the SFTs. However, FILES descends into

each SET to get its information. The FILES program starts with the first SET,
pointed to by the DOS List of Lists, displays any files in that table, and then goes
into a loop following the sft->next field, until it finds a next field whose segment
is zero or whose offset is -1 (FFFFh).

Under DOS 3.0 and higher, the FILES program puts a lot of effort into finding
file oddities, such as files whose owner is not a legitimate PSP, and file handles
which have been "orphaned." For example:

C:\UNDOC> \undoc\rmicheLs\tsrfiLe > nuL

C:\UNDOC> files > tmp.tmp
C:\UNDOC> type tmp.tmp
F1 lename Size Attr Handles Owner

AUX 0 0000 8 9DED CNOT PSP]

CON 0 0000 22 9DED [NOT psp:

PRN 0 0000 8 9DED CNOT PSP3

NUL 0 0000 1 0AE9 CORPHAND

TMP .TMP 0 0020 2 0AE9

The first three entries—^AUX, CON, and PRN—are always present in the first
SET. FILES prints out [NOT PSP] after the owner ID 9DEDh because it deter
mined that this was not a legitimate PSP. Instead, the value is apparently the ef
fective PSP at the time that the SYSINIT initialization code in IBMBIO.COM or

lO.SYS opens them (SYSINIT relocates itself to the top of memory, accoimting for
the high address).

The next entry displayed above, NUL, is marked as an [ORPHAN]. An "or
phaned" file handle is generally the result of redirecting the output from a mem
ory-resident utility to a file, as done here with one of the TSRs from chapter 5 of
this book. TSR>NUL leaves behind an open SET entry for NUL because DOS
can't close a process' files when it terminates via the TSR call (INT 21h Function
31h). Such orphaned file handles can cause mysterious system crashes because,
with enough orphans clogging up the SFTs, there would be no free entries left to
open files, and many programs unfortimately blithely assume that all their file
opens are successful.

Chapter 4: The DOS File System and Network Redirector 197

In the example above, FILES determined that NUL was an orphan because its
owner was COMMAND.COM, yet it had only one owner. The program gets the
PSP for COMMAND.COM (using an almost 100% reliable technique from chap
ter 6 of this book) and compares this with the owner PSP. If a file's owner is
COMMAND.COM, it might be an orphan. In this example, TMP.TMP (to which
the output of FILES was redirected) was not an orphan. But NUL has only one
owner, and that owner is COMMAND.COM. This is a sure tip-off that the other
party in the redirection hasn't exited. Since the TSR has no possible use for this
NUL handle (which it doesn't even know about), it is safe to close this handle:

this will be done later in this chapter, in the FREEUP program.

/* FILES.C — List all files in system file table */

^include <stdlib.h>

^include <stdio-h>

^include <dos-h>

#ifdef TURBOC
#define ASM asm

#else

#define ASM _asm
#endi f

typedef unsigned char BYTE;
typedef unsigned USHORT;
typedef unsigned long ULONG;
typedef BYTE far *FP;

^pragma packd)

typedef struct file -C
USHORT num_hand*-es, open_mode;
BYTE fattr;
USHORT dev_info; // includes drive number
FP ptr;

USHORT start__cluster, time, date;
ULONG fsize, offset;
USHORT rel_cluster, abs_cluster, dir_sector;
BYTE dir_entry;
BYTE f i lenameCUl;
ULONG share_prev_sft;
USHORT share_net_machine;
USHORT owner_psp;

// ...

198 UNDOCUMENTED DOS

> file; // for DOS 3-x, 4-x

typedef struct sysftab -C
struct sysftab far *next;
USHORT num_fiLes;
file fCI];
> SYS_FTAB;

typedef struct -C
BYTE type;

USHORT owner; /* PSP of the owner */
USHORT size;
BYTE unusedC3];
BYTE dos4C8];
> MCB;

void faiKchar *s) -C puts(s); exitd); >

#ifdef TURBOC
#define GETVECT(intno) getvectCintno)
#define ASM asm

#eLse

#define GETVECTCintno) _dos_getvect(intno)
#define ASM _asm
#endif

#ifndef MK_FP
#define MK_FP(seg,ofs) ((FP)(((ULONG)(seg) « 16) | (ofs)))
#endif

#define NEXT(mcb) (MK_FP(FP_SEG(mcb) + (mcb)->size + 1, 0))

int belongsCFP vec, USHORT start, USHORT size)
i

USHORT seg = FP_SEG(vec);
return (seg >= start) && (seg <= (start + size));

>

int is_psp(USHORT seg)
i

return ((((MCB far *) MK_FP(seg-1,0))->owner == seg) &&
(*((USHORT far *) MK_FP(seg,0)) == 0x20CD));

>

/*

Look for "orphaned" file handles: e.g., TSR>FOO-BAR or TSR>NUL
will Leave FOO.BAR or NUL entry in SFT, consuming file handle- If

Chapter 4: The DOS File System and Network Redirector 199

the PSP of the file's owner is COMMAND.COM, and if there's only
one owner, then we decide it's an orphaned handle.

*/

int orphanCfile far *ff)

static command_com_psp = 0;
if (! ff->num_handles)

return 0;
if (! commancl_com_psp) /* do just one time */

FP int2e = (FP) GETVECT(0x2E);
MCB far *mcb;
ASM mov ah, 52h
ASM int 21h

ASM mov ax, es:Cbx-2D
ASM mov word ptr mcb+2, ax
ASM mov word ptr mcb, 0
while (mcb->type != 'Z')

if (belongs(int2e, FP_SEG(mcb), mcb->size))
i

command_com_psp = mcb->owner;
break;

>

else

mcb = (MCB far *) NEXT(mcb);
>

return ((ff->owner_psp == command_com_psp) &&
(f f->num_handles == D);

>

^define IS_AUX(s) ((si:03=='A') && (sC1]=='U') && (si:2:=='X'))
#define IS_CON(s) ((si:0]=='C') && (sCi:=='0') && (sC2]=='N'))
#define IS_PRN(s) ((sCO:=='P') && (s[:i3=='R') gg (s[23=='N'))

main(void)

C

SYS_FTAB far *sys_filetab;
file far *ff;
int size;
int i;

ASM mov ah, 52h
ASM int 21h

ASM les bx, dword ptr es:Cbx+43 /* ptr to list of DOS file tables */
ASM mov word ptr sys_filetab, bx
ASM mov word ptr sys_filetab+2, es

200 UNDOCUMENTED DOS

/* DOS box of OS/2 1-x doesn't provide system file tbL */
if (sys_fiLetab == (SYS_FTAB far *) -1L)

faiLC'system file table not supported");

switch (_osmajor)
i

case 2: size = 0x28; break;
case 3: size = 0x35; break;
default: size = 0x3b; break;

>

/* Perform sanity check: determine size of file structure
empirically from difference between strings "CON" and
"AUX." If this equals size computed via _osmajor, everything
is fine. Otherwise, we reset size. */

FP P, q;
int i;
/* i=1000: set upper limit on string search in memory */
for (p=(FP)sys_filetab->f, i=1000; i—, p++;)

if (IS_AUX(p))
break;

if (! i) return 1;
for (q=p, i=1000; i—, q++;)

if (IS_CON(q))
break;

if (! i) return 1;
/* size of file structure must equal span from AUX to CON */
if (size != (q - p))

putsC'size based on _osmajor looks wrong");
size = q - p;

printf("Filename Size Attr Handles OwnerXn");
printfC" \n");

do i /* FOR EACH SFT */

/* FOR EACH ENTRY IN THIS SFT */

for (i=sys_filetab->num_files, ff=sys_filetab->f;
i—;
((FP) ff) += size)

if (ff->num_handles)
C

if (_osmajor == 2)

Chapter 4: The DOS File System and Network Redirector 201

II didn't bother with struct for D0S2

FP ff2 = (FP) ff;
printf("%.8Fs.", ff2 + 0x04);
printf<"%.3Fs\t", ff2 + OxOc);
printf<"%10lu\t", *((ULONG far *) (ff2 + 0x13)));
printf("%04X\t", ff2:0x02:);

>

else

printf("%.8Fs.", ff->fi Lename);
printf("%.3Fs\t", ff->filename + 8);
printf("%10lu\t", ff->fsize);
printf("%04X\t", ff->fattr);
printf("%d\t", ff->num_handles);
printf("%04X\t", ff->owner_psp);
if (! is_psp(ff->owner_psp))

printfC'CNOT PSP]");
if (orphanlff))

printf("CORPHAND");
>

// FREEUP code can go here
printf("\n");

>

sys_filetab = sys_filetab->next; /* FOLLOWED LINKED LIST... */
> while (FP_SEG(sys_filetab) &S

FP_OFF(sys_filetab) != (unsigned) -1); /* UNTIL END */
return 0;

A fair amount of the source code in FILES.C is devoted to issues surroimding
the DOS version number. In addition to checking for an SFT pointer of
FFFF:FFFF, probably returned from the DOS box in OS/2, the program also per
forms a sanity check to see if the size of the DOS file structure really matches the
size we've determined from the DOS version munber.

The size of the DOS file structure is determined empirically by locating the
strings "AUX" and "CON"—the first two files in the SFT—and subtracting their
pointers. If the difference is not equal to the size as determined using the DOS
version number, the program complains and resets the variable size. It's a good
sign we've never seen the program actually display the warning string "size
based on _osmajor looks wrong," even though FILES has been tested in DOS 2.x,
3.x, 4.x, and higher.

202 UNDOCUMENTED DOS

Filename From Handle Sometimes you need to know the name of a file, and have
only its handle available. One important example of this is when you use the
DOS redirection facility to redirect stdout to a file rather than to CON, its normal
destination. While the stdout handle is always 1, there is no documented way of
telling from inside a running program the name of the file to which that (or any
other) handle corresponds.

This next program, H2NAME.C, gets that information by combining several
undocumented DOS features. It consists primarily of the function h2name(),
which, when passed a PSP and a handle, returns a copy of the filename to which
that PSP/handle combination corresponds. Note that only the name and exten
sion are reported: getting a complete pathname with subdirectories is left as an
exercise for the reader. (Hint: each SFT entry contains a device info word with a
possible drive letter; it also contains sector information for the directory.)

While the fxmction h2name() can be clipped out and used in other programs,
H2NAME.C also includes a test driver. If H2NAME.EXE is invoked with a PSP

nmnber on the command Une (you can get the PSP numbers of different pro
cesses by running the MEM program from chapter 3), H2NAME enumerates all
open files belonging to that process; otherwise, it enumerates all open files be
longing to H2NAME itself (using the _psp global found in most C compilers for
the PC). To see anything interesting, you often must redirect H2NAME's output
to a file, so that this redirected-output file shows up in the enumeration.
H2NAME sends its output to stderr, so the output is still visible:

C: \UND0C2>h2name > foo.bar < h2nanie.c

Files for 726E
0 ==> H2NAME C

1 ==> FOO BAR

2 ==> CON

3 ==> AUX

4 ==> PRN

H2NAME.C must be compiled with a large memory model so that the
memcpyO library routine is capable of dealing with far pointers (alternatively,
you could use Microsoft C 6.0 functions such as _fmemcmp(), or loop over the
couple of characters yourself):

Chapter 4: The DOS File System and Network Redirector 203

He

* H2NAME.C - Jim KyLe
*

* Compile only with large memory model:
* tcc -ml hZname

* cl -AL hZname.c
*

***/

^include <stdlib.h>

^include <stdio-h>

^include <dos-h>

#ifdef TURBOC
^include <mem.h>

#else

^include <memory.h>
#endif

#ifndef MK_FP
^define MK_FP(s,o) ((void far *)\

(((unsigned long)(s) « 16) | (unsigned)(o)))
#endif

char * h2name(unsigned psp^ int h)
■C static char nameCISD; /* will hold file's name */

char far * htbl;
unsigned far *ptr, nmofs;
char far *sptr;
int sftn, sftsize;
union REGS regs;
struct SREGS sregs;

memset(name, 0, 15); /* blank out the static name */

/* create pointer to handle table (JFT) */
htbl = *((char far * far *) MK_FP(psp, 0x34));

regs.h.ah = 0x52; /* set up initial SFT pointer */
segread(Ssregs);
intdosx(Sregs, Sregs, Ssregs);
ptr = *((unsigned far * far *) MK_FP(sregs.es, regs.x.bx + 4));

switch(_osmajor) /* switch sizes, offsets for ver */
■C case 2: sftsize = 0x28;

nmofs = 4; /* offset of 11-byte name area */
break;

204 UNDOCUMENTED DOS

case 3: sftsize = 0x35;
nmofs = 0x20; /* offset of name area */
break;

case 4:

case 5: sftsize = 0x3B;
nmofs = 0x20; /* offset of name area */
break;

default: return name; /* returns null string */
>

if (htblChD >= 0) /* now if handle is valid */

•C sftn = htblChD; /* get index into SFT list */
while (FP_OFF(ptr) != OxFFFF)

<! if (ptrC2D > sftn) /* then target is here */
•C sptr = (unsigned char far *)&ptrn33;

while (sftn—) /* so skip down to it */
sptr += sftsize;

memcpy(name, &sptrIInmofs3, 11);
return name; /* found and copied, done */

>

sftn -= ptrC2II; /* not here, reduce index */
ptr = (unsigned int far *) MK_FP(ptrC13, ptrCOl);

>

>

strcpy(name, "UNKNOWN");
return name; /* reached only by error */

>

void main(int argc, char *argvC3)

unsigned psp;
int max_files;
int i;

if (argc < 2)
psp = _psp; /* display files for this program */

else

sscanf(argvCm, "%X", &psp); /* take PSP from command line */

if (_osmajor >= 3)
max_files = *((unsigned far *) MK_FP(psp, 0x32));

else

max_files =20;

Chapter 4: The DOS File System and Network Redirector 205

fprintf(stderr, "Files for %04X\n", psp);

for (i=0; i<max_files; i++)
fprintf(stderr, "%2d ==> %s\n", i, h2name(psp^ i));

>

Here's how h2name() works: ajfter blanking out the static buffer, in order to
guarantee a null-string response in case of errors, the function creates a far
pointer to the handle table (JFT) for the given process. A pointer to the JFT (and
usually the JFT itself) is contained in the PSP. h2name() then sets up the SFT
pointer, and the two variables establish SFT size and the position within the SFT
of the file or device name, based on the DOS version in use.

With all these preliminaries out of the way, h2name() uses the supplied
handle value to index into the handle table, and if the value found there is non-

negative (indicating a valid handle), it is used as the SFT index.
The program then walks through the linked list of SFTs until it finds the SFT

containing the desired index. Each time it skips over an SFT, the number of en
tries in the skipped block is subtracted from the desired index, so that the index
is always relative to the current block rather than to the absolute begiiming of the
SFT linked list.

When the correct block is found, a pointer is set to the first byte of its first
SFT entry, and then SFT entries are skipped, decrementing the index each time,
until the index reaches zero. When this happens the SFT entry under the pointer
is the one we're looking for. The name-field offset value is then added to sptr, the
11 bytes at the resulting location are copied into the static buflfer "name," and the
program returns a pointer to the first byte of the buffer.

Clearly, this same technique could be appUed to other information fotmd in
the SFT: h2attr(), for example, would return the file attributes rather than the
filename.

Making Alterations

All the utilities and functions presented so far in this chapter report back on the
state of the DOS file system: we've enumerated aU drive letters, determined the
values of FILES= and BUFFERS=, enumerated all open files, and turned ordinary
file handles into filenames.

Now if s time to do something. In this section, another set of utilities is pre
sented, that actually change the file system. One utility bangs on the CDS, one on

206 UNDOCUMENTED DOS

the SFT, and one on a JFT. But if s perverse to classify utilities by the data struc
tures they alter: in fact, one utihty alters or removes drive mappings, one frees up
orphaned file handles, and other can be used to increase a process' handle count.

So, get yourself another cup of coffee and another slice of pizza, and proceed
to the next installment in our saga of the DOS file system.

Manufacturing and Removing Drive Letters

Sometimes it is useful to convince MS-DOS that a logical drive is no longer pres
ent. If you have ever worked with the Microsoft CD-ROM Extensions
(MSCDEX), for example, you might have noted that the only way to deinstall this
utility is by rebooting the machine: even TSR management programs like the su
perb MARK/RELEASE from TurboPower Software are insufficient to remove
MSCDEX because, in addition to grabbing memory, MSCDEX also creates a logi
cal drive and that, too, must be imdone. Here is an example of DRVOFF in action:

C:\UND0C2>dir d:\

Volume in drive D is RAMANUJAN

Directory of D:\

CHAP1 DOC 4439 6-12-90 9:05a
1 FileCs) 1261568 bytes free

C:\UND0C2>drvoff d:

C:\UND0C2>dir d:\

Invalid drive specification

All DRVOFF does is call the currdirO function from earlier in this chapter and
set the flags word to zero, instantly making the drive invalid. This is the utility
that interested one of the authors enough in undocumented DOS to start work on
this book (see the Introduction).

At the same time, access to the CDS can be used for more than just invalidat
ing drive letters. With a utility called DRVSET, invalid drives can be activated in
an odd way, simply by turning on some bits in the flags word. DOS immediately
recognizes the resulting "air drive" as valid, in that you can change to it and send
it requests (all of which fad, of course):

Chapter 4: The DOS File System and Network Redirector 207

C:\UNDOOdir e:

Invalid drive specification

C:\UNDOOdrvset e: netphys
NET PHYSICAL

C:\UNDOOdir e:

Volume in drive E has no label

Directory of E:\

File not found

C:\UNDOOe:

E:\>chkdsk

Cannot CHKDSK a Network drive

Simply by twiddling bits in the CDS, we convince DOS that E: is in some way
now a valid drive. But since DIR doesn't show any files up there, if s not rlpar
what value the drive has. In fact, this is the foimdation for creating drives with
the network redirector. Simply by setting drive E: to be a "network" drive (again,
the term "network" really just means a non-FAT file system), we can route all
DOS file requests for the drive to an INT 2Fh Function llh handler. Later on in
this chapter, we will write such a handler. In the meantime, DRVSET is crucial for
experimenting with air drives. Such "air drives" are the foundation for installable
file systems.

Since DRVOFF and DRVSET are so similar, it makes sense to package them in
the same source module. Compile DRVSET.C below with Turbo C or Microsoft C,
link with CURRDIR.OBJ from earlier in the chapter, and copy the resulting
DRVSET.EXE to DRVOFF.EXE. The resulting program responds differently de
pending on whether its name (argv[0] in C) is DRVSET or DRVOFF:

/* DRVSET.C — set attrib of drive given on command line */

^include <stdlib.h>

^include <stdio.h>

^include <string.h>

^include "currdir.h"

void faiKchar *s) { puts(s); exitd); >

208 UNDOCUMENTED DOS

mainCint argc, char *argvC!])

CDS far *drv;
unsigned drive;
int drvoff;

/* to just turn off drives, program can be renamed DRVOFF */
drvoff = strstrCstrupr(argvCOH), "DRVOFF");

/* what drive do they want? (accepts Letters and numbers) */
if (argc < 2)

if (drvoff)

failC'usage: drvoff [drive]");
else

failC'usage: drvset [drive] <NET|PHYS|SUBST|JOIN|OFF>");
>

else if (argv[1][0] >= 'A')
drive = toupper(argv[1][0]) - 'A';

else

drive = atoi(argv[1]);

if (! (drv = currdir(drive)))

faiLCcan't get current directory structure");

/* just turn drive off */
if (drvoff)

drv->fLags = 0;
return 0;

>

/* change drive state */
if (argc > 2)

strupr(argv[2]);
if (strstr(argv[2], "OFF")) drv->fLags = 0;
if (strstr(argv[2], "NET")) drv->fLags |= NETWORK;
if (strstr(argv[2], "SUBST")) drv->fLags |= SUBST;
if (strstr(argv[2], "JOIN")) drv->flags |= JOIN;
if (strstr(argv[2], "RHYS")) drv->fLags |= PHYSICAL;

>

/* print current drive state */
if (! drv->fLags) fputsC'INVALID ", stdout);
if (drv->fLags & NETWORK) fputsC'NET ", stdout);
if (drv->flags & SUBST) fputsC'SUBST ", stdout);

Chapter 4: The DOS File System and Network Redirector 209

if (drv->flags & JOIN) fputsC'JOIN stdout);
if (drv->flags & PHYSICAL) fputs("PHYSICAL stdout);
putcharC'\n');

return 0;
>

Releasing Orphaned File Handles

Because DOS does not automatically close all files that belong to a process when
that process terminates and stays resident, the common practice of redirecting
output from a TSR's installation code to the NUL device normally "loses" one
handle in the SFT. Those handles, known as orphans, can be made available once
again using a modified version of the FILES program presented earlier in this
chapter. The modification is quite smaU, and goes just before the line that reads
printf("\n"):

#ifdef FREEUP

// only DOS 3+
if (! IS_AUX(ff->filename))
if (! IS_CON(ff->fiLename))
if <! IS_PRN(ff->filename))
if (orphan(ff) || (! is_psp(ff->owner_psp)))
i

>

#endi f

if (! (— f f->nuin_handles)) // decrement owners
printfC [FREED]");

else

printfC [NOW Xdl", ff->num_handLes);

To produce FREEUP.EXE, add the above code to FILES.C and compile with
the following command lines:

Microsoft C:

cL -DFREEUP -Fefreeup.exe files.c

Turbo C:

tee -DFREEUP -efreeup.exe files.c

Assuming that an orphaned NUL handle is still lurking about the SFT, run
ning FREEUP produces the following results. Notice that FREEUP doesn't do
anything stupid like free up the file for its redirected output, and that AUX,

210 UNDOCUMENTED DOS

CON, and PRN don't get changed, even though they have invalid owner PSPs
and are therefore otherwise perfect candidates for being freed:

C:\UNDOC>freeup > freeup.log
C:\UNDOOtype freeup.log
Fi Lename Si ze Attr Handles Owner

AUX 0 0000 6 9DED CNOT psp:

CON 0 0000 16 9DED [NOT PSP]

PRN 0 0000 6 9DED [NOT PSPD

NUL 0 0000 1 0AE9 [ORPHAND [freed:

FREEUP -LOG 0 0020 2 0AE9

C:\UNDOOfi Les

Filename Size Attr Handles Owner

AUX 0 0000 6 9DED [NOT PSPD

CON

PRN

0

0

0000

0000

16

6

9DED

9DED

[NOT psp:

CNOT PSPD

FREEUP can be quite useful in AUTOEXEC.BAT files where you want to dis
card the TSR's initialization output without losing file handles:

tsr > nul

freeup > nul

However, note that FREEUP is not necessary with the TSRs produced using
the TSR skeleton in chapter 5. As noted in that chapter, the add test for correct
TSR deinstallation is the freeing up of any otherwise orphaned file handles. The
generic TSR in chapter 5 deinstalls using a normal DOS terminate (INT 21h Func
tion 4Ch), thereby dosing and freeing any open file handles.

More File Handles

We've seen that the handle-based file I/O routines introduced in DOS 2.0 rely on
the existence of two data structures: the system-wide linked list of System File
Tables (SFTs) and the table of file handles (Job File Table, JFT) owned by each pro
cess (PSP). In contrast to the older File Control Blocks (FCBs), which allocated on
an as-need basis by applications, the SFTs and each JFT are normally allocated by
DOS itself, and therefore are limited in size. We've seen that the number of files
held in the SFTs is controlled by the FILES= statement in CONFIG.SYS. The num-

Chapter 4: The DOS File System and Network Redirector 211

ber of possible open file handles in a process' JFT is normally 20. This number is
dictated by the fact that the array resides directly in the process' PSP—^this is the
downside to the switch from FCBs to handles/SFTs.

DOS 3.3 introduced a function. Set Handle Count (INT 21h Function 67h),
which can increase the size of the calling process' JFT, thereby increasing the
number of files and devices that may by open simultaneously using handle-
based file 1/O. Sometimes, programmers think the function doesn't work merely
because they forgot to increase the FILES= setting before attempting to keep 50
files open at once. However, as indicated in Appendix A, there really are bugs in
this function that often preclude its use. A PC Tech Journal article from the time
(April 1988) noted that the function can incorrectly allocate 64KB too much mem
ory because its code uses an ROR instruction instead of the correct RCR.

Fortxmately, it is easy to perform the same function yourself. True, the open
file table is embedded directly in the PSP, so it seems it would be difficult to in
crease its size. However, since DOS 3.0, the PSP has also contained a far pointer to
the open Jfile table, and a word holding its size. The relevant fields in the PSP are:

18h 20 BYTEs DOS 2+ open file table (JFT), FFh = unused
32h WORD DOS 3+ max open f1Les
34h DWORD DOS 3+ open file table (JFT) address

You can't do anything to increase the size of the array at offset 18h in the PSP,
but you can allocate a new, larger block of memory for the JFT, bump up the
coimt at offset 32h in PSP, copy the old table into the new one, and then set the
pointer at offset 34h to the new table. (The same type of manipulation is possible
with other seemingly static DOS arrays, such as the SFTs and CDS, whose far
pointers are located in the List of Lists.) This series of operations is carried out by
the following program, FHANDLE.C:

/*

FHANDLE.C

Alternative to using INT 21h Function 67h (added in DOS 3.3)
*/

#include <stdlib.h>

^include <stdio.h>

^include <dos.h>

typedef unsigned char BYTE;

212 UNDOCUMENTED DOS

typedef unsigned WORD;
typedef unsigned Long DWORD;
typedef BYTE far *FP;

#ifndef MK_FP
^define MK_FP(seg,ofs) ((FP)(((DWORD)(seg) « 16) | (ofs)))
#endi f

extern unsigned fiLes(void); // in COUNTF-C

void faiKchar *s) -C puts(s); exitd); >

mainCint argc, char *argvCD)

int f;
int i;

BYTE far *tbL = MK_FP(_psp, 0x18);
WORD far *pmax = MK__FP(_psp, 0x32);
BYTE far * far *ptbL = MK_FP(_psp, 0x34);
BYTE far *fp, far *p;
WORD max = *pmax;
WORD new_max = atoi(argvCID);

printf("CurrentLy %u max file handlesXn", max);

if (new_max <= max)
failC'nothing to do");

// make sure proposed JFT size is <= SFT size
if (new_max > fiLesO)

faiL("FILES= too Low: edit CONFIG.SYS and reboot");

if (! (fp = (BYTE far *) maLLoc(new_max)))
fai L("insufficient memory");

if (tbL 1= *ptbL)
tbL = *ptbL;

for (i=0, p=fp; i<max; i++, p++)
*p = tbLEill;

for (; i < new_max; i++, p++)
*p = OxFF;

*pmax = new_max;
*ptbL = fp;

printf("Max fiLe handLes increased to %u\n", new_max);

// now test how many fiLes we can open

Chapter 4: The DOS File System and Network Redirector 213

for (i=0; ; i++)
if (_dos_open(argvCOD, 0, &f) != 0)

break;
printf("Opened %d fiLesXn", —i);

#ifdef TESTING

_dos_close(f); // close Last one so ue can spawn shell!
system(getenv("COMSPEC"));

#end1f

return 0;

To test that more files can actually be opened, FHANDLE continually opens
its own executable file (argv[0]) in a loop vmtil the Microsoft C _dos_open() fimc-
tion fails. This is how FHANDLE behaves on a system with FILES=40 in CON
FIG.SYS:

C:\UNDOOfhandle 40

Currently 20 max file handles
Max file handles increased to 40

Opened 34 files

FHANDLE also uses the filesO function from COUNTF (found earUer in this

chapter) to make sure that it makes sense to increase the size of the JET. It is im
portant to note that an enlarged JFT is not inheritable, so FHANDLE can't pass
its increased wealth along to any children it might have.

Indirect Server Call

The next program, written by Ralf Brown, shows how two imdocumented rails
can be put together to fill a gap in the DOS programmer's interface: renaming or
moving groups of files. DOS has two different functions for renaming files, but
they have complementary limitations: on the one hand, the earlier Rename File
function (INT 21h Fimction 17h) accepts file wildcards, and thus can rename en
tire groups of files with a single call, but it is based on FCBs and therefore can't
access a directory structure. On the other hand, the later Rename File fimction
(INT 21h Function 56h) knows all about directory structures, but can only handle
one file at a time. Isn't there a simple way to rename (move) an entire group of
files across subdirectories without looping over each file?

214 UNDOCUMENTEDDOS

Curiously, there is. As described in the appendix, the later Rename File func
tion, when invoked via INT 21h Function 5Dh Subfunction OOh (Server Fimction

Call), has the undocumented behavior of aUowrng wildcards in both the source
and destination file specifications. INT 21h Function 41h (Delete File) has the
same undocumented behavior as well.

INT 21h Fimction 5Dh Subfunction OOh (Server Function Call) executes a

specified INT 21h call for a specified network machine number and process ID,
so at first it sounds as if this fimction is useful only in networked DOS environ
ments. However, machine number 0 specifies the current machine, so this func
tion can be used locally as well, or even in a stand-alone DOS environment
without a network (are there really any non-networked machines left?):

/*

MOV.C

demonstrate wildcard pathed renames via DOS indirect
function call

by Ralf Brown, with thanks to Dan Lanciani for pointing out that
indirect function call enables wildcards on rename and delete

Usage: MOV old-filespec new-filespec
*/

^include <stdio.h>

^include <dos.h>

typedef struct
i

unsigned ax,bx,cx,dx,si,di,ds,es,reserved,computerID,processID ;
> DPL ; /* DOS parameter list */

union REGS regs ;
struct SREGS segregs ;

void canoni cali ze(filespec,canoni caI,error level)
char *filespec, *canonical ;
int errorlevel ;
i

regs.h.ah = 0x60 ;
regs.X.si = FP_OFF((void far *)filespec) ;
segregs.ds = FP_SEG((void far *)filespec) ;
regs.x.di = FP_OFF((void far *)canonical) ;
segregs.es = FP_SEG((void far *)canonical) ;
intdosx(®s,®s,&segregs) ;

Chapter 4: The DOS File System and Network Redirector 215

if (regs-x-cfLag)

putsC'invalid fiLespec") ;
exit(errorLevel) ;

>

>

#define ERRORCs, x) -C puts(s); errorLeveL = (x); >

int main(argc,argv)
int argc ;
char **argv ;

DPL dpi ;
void far *ptr ;
int errorLeveL = 0 ;
char sourceni28I]^ targetC!1283 ;

if (argc != 3)
i

putsC'usage; MOV oLd-fiLespec new-fiLespec") ;
putsCwhere oLd-fi Lespec and new-f i Lespec may contain") ;
putsC'wiLdcards. Wildcards in the new-fiLespec indicate") ;
puts("that new name should contain same characters as") ;
putsCoLd name in those positions.") ;
errorLeveL = 1 ;

>

else if (_osmajor < 3 || (_osmajor == 3 && _osminor < 10))
ERRORCMOV requires DOS 3-10 or higher", 5) ;

else

i

canonicaLize(argvlI13,source,3) ;
canonicaLize(argvC23,target,4) ;
if (sourceCOH != targetCOH) /* are they on the same drive? */

ERRORC'Source and target must be on the same drive", 6) ;
else /* do the move/rename */

£

dpi.ax = 0x5600 ; /* indirect function is rename */
dpL.dx = FP__OFF((void far *)&source) ;
dpL.ds = FP_SEG((void far *)&source) ; /* DS:DX old fiLespec */
dpL.di = FP_OFF((void far *)&target) ;
dpL.es = FP_SEG((void far *)&target) ; /* ES:DI new fiLespec */
dpL.bx = dpL.cx = dpi.si = 0 ;
dpi.computerlD = 0 ; /* Local machine */
dpi.processlD = 0 ; /* current process */

regs.x.ax = Ox5DOO ; /* invoke server function call */

216 UNDOCUMENTED DOS

ptr = (void far *)&dpL ;
regs.x.dx = FP_OFF(ptr) ;
segregs.ds = FP_SEG(ptr) ;
1ntdosx(Sregs,®s,Ssegregs) ;
/* rename returns error 12h (no more files) on success */

if (regs.x.cfLag S& regs.x.ax != 0x12)
ERROR("rename failed", 2) ;

/* NOTE: fails in OS/2 DOS box */

}

return errorlevel

This example shows that whereas a direct DOS caU is performed by moving
values into the CPU registers, an mdirect DOS call is performed by filling in the
contents of the DOS parameter list (DPL) with the values that you would other
wise move into the CPU registers. To indirectly invoke INT 21h Function 56h, in
stead of setting AX to 5600h, we set dpLax to 5600h. DS:DX is then set to the
address of the DPL and we invoke INT 21h with AX=5D00h. Note the similarity
between this extra level of indirection and the indirect call blocks used in chapter
2 in the section on "Undocumented DOS calls from Protected Mode." Of course,

the C union REGS structure itself is just another example of an indirect DOS call
block, in which one changes an image of the CPU registers rather than the regis
ters themselves.

The MS-DOS Network Redirector

Finally, we turn to the MS-DOS network redirector. Not to be confused with "re
direction," a redirector is a mechanism for inserting a monitor into the stream of
file system requests, so that some requests can be pulled out and serviced in a
special way. Generally, such requests are serviced by being transformed into net
work packets and sent to a file server, but there is really nothing in the process of
redirection which restricts it to networking.

The redirector interface has been used by Microsoft since DOS 3.1 to allow
alien file systems to be transparently accessible by DCDS programs. The fact that
this is concurrent with the version of DOS that first supported networking is no
coincidence, since the redirector interface is the vehicle DOS provides for the im
plementation of network services such as IBM PC LAN.

Since that time, the High Sierra and ISO 9660 CD-ROM directory and file for
mats, which support >600MB files and volumes, have been implemented using

Chapter 4: The DOS File System and Network Redirector 217

the redirector interface, in the Microsoft CD-ROM Extensions program
(MSCDEX.EXE). Other non-Microsoft users of the interface include Banyan and
3Com in their respective network operating systems.

It is worth stressing at this juncture the usefulness and power of the redirec
tor interface. Although arcane, inconsistent, and just plain awkward in places as
we will see, the possibilities for its application are enormous. So why is it not
widely used? The answer is that Microsoft has not documented it, and will not
support it. It is even claimed by Microsoft insiders that it is not documented in
ternally, except through hearsay and "oral history." Evidently, then, the informa
tion and techniques presented in this chapter are empirically derived, incomplete
in places, and will no doubt have to be updated as additions and revisions to our
knowledge about the interface become known. The primary tools used were Ralf
Brown's listings for Appendix A of this book, and the DSfTRSPY program in
chapter 8.

Because of the possibilities for confusion in terminology, let us define some
terms from the outset. From here on in, the term "redirector interface" means the

ftmctionality and hooks provided by DOS, and "a redirector" or "the redirector"
means any given program that uses the interface. Concretely, DOS will at certain
times call INT 2Fh Fimction llh: this is called the redirector interface. Programs
can receive these calls from DOS by taking over INT 2Fh Function llh; these are
called redirectors.

After the following brief word on the subject, the term Installable File System
(IFS) will not be used again, in order to keep the terminology to manageable lev
els. IFS is a term that was introduced with OS/2 1.2, and allows specialized file
systems to be developed and to link in seamlessly. The first file system to use
OS/2 IFS is the High Performance File System (HPFS), designed as a replacement
for the old FAT file system. In essence, IFS was to be a legitimized version under
OS/2 of the hidden, undocumented redirector interface under DOS. The fact that

the initials IFS appear frequently in DOS 4.0 documentation indicates that the in
tention was there to provide some form of stepping stone to help developers mi
grate towards OS/2 (particularly LAN Manager).

The IFS interface appears to be implemented under DOS 4 via the IFSFUNC
program, which loads itself as a redirector. Some additional subfunctions have
appeared under the redirector interface to support what may be enhanced
functionality over and above the existing redirector interface. However, IFS in the
DOS world is receiving no publicity at all, and it is probably fair to say that DOS

218 UNDOCUMENTED DOS

4.0 is being retired early due to lack of enthusiasm. There is not much benefit to a
discussion of IFSFUNC, REDIRIFS, or any other DOS 4.x-specific spin put on the
network redirector. It is sensible to consider the IPS interface only in so far as it is
visible, and in that it overlaps the redirector interface. In other words, sub-
fimctions of Int 2Fh function llh will be referred to as redirector interface sub-

functions, even if they were first introduced in DOS 4.0 as IPS subfunctions.

What is the Redirector Interface, and How Do We Use It?

Basically, we want to use the redirector interface to manufacture DOS drives. A
DOS drive is any entity that has a drive letter, a CDS entry, and which behaves
like hard drives or floppies, in that we can perform normal DOS disk, directory,
and file operations. Whether there is actually magnetic media at the other end is
irrelevant.

Almost any area in computing can be considered as a set of file operations. To
take one example, let's say that every evening you log onto an information ser
vice such as CompuServe or BDC. These services have a hierarchical structure of
forums, message and library areas within forums, topics within message areas,
and so on. Normally to access such services, you dial up via modem and send the
service various command strings or menu selections. However, it might be more
convenient to pretend that the information service is just another drive on your
machine. When you t5^ed CD \IBM.DOS\SECRETS, for example, it might be
equivalent to joining the ibm.dos/secrets conference on BIX.

Conceptually, this is quite simple: all we need is to designate a drive letter for
the information service (I:, for instance) and install a piece of software that will
catch all disk, directory, and file requests sent to that drive. Remember that DOS
merely defines this specification; any given redirector must supply the actual
functions that meet this specification.

Some redirectors are implemented in precisely this way: by hooking INT 21h
and watching every function call that comes in. Novell NetWare works this way.
However, there are problems with simply hooking INT 21h and looking for all
file-related calls for your special drive. Por instance, you must separately deal
with PCB- and handle-based calls. You also must maintain a fairly large amount
of state, just for correctly handling complex path names.

Another way to attach foreign file systems to DOS is of course to use an in
stallable block device driver. But this imposes nrunerous restrictions on the file
system: it has to have a BPB, DPB, PAT, all sorts of other pieces that are simply

Chapter 4: The DOS File System and Network Redirector 219

not appropriate to all file systems. There is the added fact that device drivers are
just plain inconvenient (though DEVLOD helps a lot!).

The alternative to hooking INT 21h or writing a device driver is to use the
redirector interface. Providing fictional drive mappings is what the redirector in
terface is all about.

On one side of the redirector interface are the redirector services. These con

sist of DOS data structures and a set of function calls. The usual model of an op
erating system is that of a lower-level program that responds to requests for
services (function calls in DOS parlance) initiated by an apphcation. The redirec
tor interface, however, specifies function calls that are generated by the operating
system—calls that a redirector may intercept and service. These calls are imple
mented under the multiplex interrupt, INT 2Fh, and not, as commonly supposed,
under INT 21h. Function llh of the multiplex interrupt is set aside for redirector
services, and each redirector function call is a subfunction of Fxmction llh.

The data structures include the List of Lists (LoL), Current Directory Struc
ture (CDS), the System File Table (SFT), and the Swappable Data Area (SDA).

As we know, the DOS List of Lists structure, obtained through imdocu-
mented INT 21h Function 52h, provides the address of the CDS table and the
LASTDRIVE value. A redirector is responsible for mitiaUzing, maintaining, and,
if it is de-instaUable, restoring the CDS for its chosen drive letter(s). You can only
redirect a drive that has an entry in the CDS table. DOS is primarily interested in
three fields in the CDS: the current directory string, the offset of the root direc
tory in that string, and the flags word.

An SFT entry holds the state that DOS maintains for each open file in the sys
tem. DOS again appears to only be interested in a subset of fields in the structure,
in particular the open-mode flags (which describe the access level to, and share-
ability of, the file), the device information flags word (which indicates whether
the device is a block or character level device, whether it has been written to,

etc.), and the date, time, and file size fields.

Note that there are fields in the above structures that appear to be wholly for
the use by the drive's owner. Specifically, they appear to be designed for use by
DOS in managing DOS file format drives, and deal with units of sector and clus
ter. If the redirector device is not formatted or structured in that way, those areas
of the structures can apparently be used in whatever way the redirector chooses.

The final, most important structure in the interface is the SDA. DOS is usu
ally non-reentrant, but it can be re-entered using the SDA (this is explained in

220 UNDOCUMENTED DOS

more detail in chapter 5, which includes a section on using the SDA to build
TSRs). The SDA is that area of the DOS data segment which must be saved and
restored to provide for DOS reentrancy. More than that, however, it is also the
part of the DOS data segment which contains all the global data required for im
plementation of a redirector. That part amounts to only some 10 to 15 fields in the
structure.

Here is an INTRSPY script file that describes the structures that are involved,
and that will be included in other script files used to investigate the interface:

;; Current Directory Structure entry - All DOS versions
;; also see Appendix A entry for INT 21h Function 5D06h, SDOBh
structure CDS fields

CURR_PATH (byte,asciiz,67)
FLAGS (word,.bin)
DISK_BLK (dword)
INFO_PTR (dword,ptr)
f1 (word)

ROOT_OFS (word,dec)
; In DOS 4.0 and above there are a further 7 bytes of
; IFS/SHARE fields

;; System File Table entry - All DOS versions
structure SFT fields

C_HANDLES (word,dec)
OPEN_MODE (word)
ATTR_BYTE (byte)
DEV_INFO (word)
DPB_PTR (dword,ptr)
ST_CLSTR (word,dec)
F_TIME (word)
F_DATE (word)
F_SIZE (dword,dec)
F_POS (dword,dec)
LAST_RELCLSTR (word,dec)
LAST_ABSCLSTR (word,dec)
DIR_SCTR_NO (word,dec)
DIR_ENTRY_NO (byte,dec)
FCB_FNAME (byte,ascii,11)

;; Swappable DOS Area - DOS versions 3.1 to 3.3 - Used
;; in the form SDA_SEG:SDA_0FS->SDA3
structure SDA3 fields

CRITERR_FLAG (byte,dec)
INDOS_FLAG (byte,dec)
DRIVE_NO (byte,dec)
LASTERR_DUM (byte,,9)
CURR_DTA (dword,ptr)
CURR_PSP (word)
SP X INT23 (word)

Chapter 4: The DOS File System and Network Redirector 221

LAST_RC (word)
CURR_DRIVE (byte)
EXTBRK (byte)
INT21_AX (word)
SHRNET_PSP (word)
NET_MC_NO (word)
MEM_BLI(_DATA (word,,3)
D0NTKN0W1 (byte,,10)
DD (byte,dec)
MM (byte,dec)
YY_198G (word,dec)
D_1_1_1980 (word,dec)
D_0_W (byte,dec)
D0NTKN0W2 (byte,,3)
DEV_RECl_H1 (byte,dump,26)
DEV_DRVPTR (dword,ptr)
DEV_REa_H2 (byte,dump,22)
DEV_REQ_H3 (byte,dump,22)
D0NTKN0W3 (byte,,8)
CLOCK_TXREC (byte,,6)
D0NTKN0W3A (byte,,2)
FN1 (byte,asciiz,128)
FN2 (byte,asciiz,128)
SDB (byte,dump,21)
F0UND_F1LE (byte,dump,32)
DRIVE_CDSCOPY (byte,dump,81)
FCB_FN1 (byte,ascii,11)
D0NTKN0VI4 (byte)
FCB_FN2 (byte,ascii,11)
D0NTKN0W5 (byte,,11)
SRCH_ATTR (byte)
OPEN_MODE (byte)
D0NTKN0W6 (byte,,3)
CALL_TYPE (byte)
D0NTKN0W7 (byte,,9)
TERM_PROCTYP (byte)
D0NTKN0W8 (byte,,2)
CRITERR_DPBPTR (dword,ptr)
1NT21_SS_SP (dword,ptr)
D0NTKN0W9 (byte,,14)
MEDIA_ID (byte)
D0NTKN0W10 (byte)
CURR_SFTPTR (dword,ptr)
DRIVE_CDSPTR (dword,ptr)
D0NTKN0W11 (byte,,8)
JFT_PTR (dword,ptr)
FN1_CS0FS (word,hex)
FN2_CS0FS (word,hex)
D0NTKN0W12 (byte,,46)
BX_DS_THP (word,,3)
PREV_STACK (dword,ptr)
REN_SRCFILE (byte,,21)
REN_FILE (byte,,32)

222 UNDOCUMENTED DOS

;; Suappable DOS Area - DOS versions 4.0 onwards - Used
;; in the form SDA_SEG:SDA_0FS->SDA4
structure SDA4 fields

CRITERR_FLAG (byte,dec)
INDOS_FLAG (byte,dec)
DRIVE_NO (byte,dec)
LASTERR_DUM (byte,,9)
CURR_DTA (dword,ptr)
CURR_PSP (word)
SP_X_INT23 (word)
LAST_RC (word)
CURR_DRIVE (byte)
EXTBRK (byte)
DONTKNOWO (word)

INT21_AX (word)
SHRNET_PSP (word)
NET_MC_NO (word)
MEM_BLK_DATA (word,,3)
D0NTKN0W1 (byte,,10)
DD (byte,dec) .
MM (byte,dec)
YY_1980 (word,dec)
D_1_1_1980 (word,dec)
D_0_W (byte,dec)
D0NTKN0W2 (byte,,3)
DEV_REa_H1 (byte,dump,30)
DEV_DRVPTR (dword,ptr)
DEV_REa_H2 (byte,dump,22)
DEV_REQ_H3 (byte,dump,30)
D0NTKN0W3 (byte,,6)
CLOCI^TXREC (byte,,6)
D0NTKN0W3A (byte,,2)
FN1 (byte,asciiz,128)
FN2 (byte,asciiz,128)
SDB (byte,dump,21)
FOUND_FILE (byte,dump,32)
DRIVE_CDSCOPY (byte,dump,88)
FCB_FN1 (byte,ascii,11)
D0NTKN0W4 (byte)
FCB_FN2 (byte,ascii,11)
D0NTKN0W5 (byte,,11)
SRCH_ATTR (byte)
OPEN_ATTR (byte)
D0NTKN0W6 (byte,,3)
CALL_TYPE (byte)
D0NTKN0W7 (byte,,9)
TERM_PROCTYP (byte)
D0NTKN0W8 (byte,,3)
CRITERR_DPBPTR (dword,ptr)
:nt21_SS_SP (dword,ptr)
D0NTKN0W9 (byte,,16)
MEDIA_ID (byte)
DONTKNOW10 (byte,,5)

Chapter 4: The DOS File System and Network Redirector 223

CURR_SFTPTR (dword,ptr)
DRIVE_CDSPTR (dword,ptr)
D0NTKN0W11 (byte,,8)
JFT_PTR (dword,ptr)
FN1_CS0FS (word,hex)
FN2_CS0FS (word,hex)
D0NTKN0W12 (byte,,52)
BX_DS_TMP (word,,3)
PREV_STACK (dword,ptr)
D0NTKN0W13 (byte,,9)
SPOP_ACT (word)
SPOP_ATTR (word)
SPOP_MODE (word)
DONTKNOWU (byte,,29)
REN_SRCFILE (byte,,21)
REN_FILE (byte,,32)

On the other side of the interface is the redirector itself, be it MSCDEX, the

PC LAN program, the h5rpothetical CompuServe file system, or this chapter's
demonstration redirector, the Phantom. A redirector will normally load itself as a
TSR program, and install itself in the chain of INT 2Fh handlers. It wiU, in other
words, get the vector to the current INT 2Fh handler, store it as the next handler
in the chain, and then set the INT 2Fh vector to point to itself. When INT 2Fh is
invoked, it wiU receive control. If the call is not for Fxmction llh (AH=llh), con

trol will be passed to the next handler in the chain. In this way, the redirector will
monitor all INT 2Fh calls, and will filter out aU but redirector interface function

calls.

The redirector interface subfunctions are dealt with individually a little later
in the chapter, but an initial discussion of their characteristics is appropriate at
this point. DOS file functions available to applications provide two very different
interfaces. Use of the older more traditional FCB style call has the following im
plications:

■ (practically) limitless concurrent open files because the state for the open
file is kept in a user suppUed structure

■ wildcard filename specification in the Delete and Rename FCB functions
■ filenames cannot contain pathnames

Use of file handle calls implies:

■ concurrent open file coxmt is limited to the FILES= line in CONFIG.SYS
(that is, to the size of the SET), and, for any given applications, to the size
of its JFT

224 UNDOCUMENTED DOS

■ filenames can contain pathnames
■ simplicity of use ("magic cookie")
■ DOS 1/O redirection and piping

The redirector interface unifies the two access methods so that a redirector

need not know by what method a file is being accessed. This information helps
us to visualize at what level the interface is functioning, that is, below the user in
terface, at the file access method level, and above the physical device layer. This
access method independence is a great labor saver, and confirms the desirability
of the redirector interface over INT 21h replacement as the means of implement
ing alternative file systems. Rather than having to duplicate the entire range of
function calls in the DOS programmer's interface, which includes FCB- and han
dle-based file access methods, a redirector plugs in at a level where much of the
higher level administrative functionality has been stripped away, and only a
stream level interface need be dealt with. This means that all filename strings
used to open and otherwise manipulate files contain fully qualified paths at the
redirector interface; the work of resolving drive and directory has already been
done by the DOS kernel.

It is often stated that the network redirector "grabs file system calls for the re
mote drive before INT 21h sees them," or words to that effect. Actually, the
redirector operates at a level below INT 21h. The code for INT 21h takes care of
calling INT 2Fh Function llh when appropriate.

Tracing an Open

In order to see the interface in action, you can use an DSTTRSFY script to follow a
File Open call. Ensure that a redirector program such as MSCDEX or PC LAN is
loaded and that you can list files on the redirected device, that is, the CDROM
drive or the remote server. Then, using as a parameter the name of a file that ex
ists on the redirected drive, run the following INTRSPY script (see chapter 8 for
detailed instructions on using INTRSPY):

;; Intended for use with versions of DOS >=3.1 and <4.00

include "dosstruc"

intercept 21h
function 3dh

on_entry

Chapter 4: The DOS File System and Network Redirector 225

output

output

output

on_exi t
output

output

if

if

"== DOS OPEN

"Fi Le name:

"Open mode:

(3Dh) ====================="

' (ds:dx->byte,asci iz,40)
' aL

== 3D OPEN

(cfLag == 1)
(cfLag == 0)

Completed "
sameline "(FAILED " ax

sameline "(Handle " ax

")

")

intercept 2fh
function 11h

subfunction 16h

on_entry

output ""

output "— 2F Open
output "File name:
output Open mode:
output "Uninitialized SFT:"
output (es:di->SFT)

on_exi t
output ""

output "— 2F Open completed "
if (cflag == 0)

sameline " "

output "Completed SFT:"
output (es:di->SFT)

if (cflag == 1) sameline "(FAILED

(16h) "

" (sda_seg:sda_ofs->SDA3.FN1)
" (sda_seg:sda_ofs->SDA3.0PEN_M0DE)

ax ")

run "command /c type %1"

report "2fopen-out"

This will type out the file entered as the parameter. If the file is on a redi
rected drive, as in the MSCDEX-based example L:\READ.ME, the file
2FOPEN.OUT will contain something like:

== DOS OPEN (3Dh) ===============

File name: d:read.me

Open mode: GO

— 2F Open (16h)
File name: \\D-A-\READ-ME

Open mode: OOh
Unini tiali zed SFT:

SFT.C_HANDLES : 65535
SFT.OPEN MODE : OOOOh

226 UNDOCUMENTED DOS

SFT-ATTR_BYTE

SFT-DEV_INFO
SFT.DPB_PTR
SFT.ST_CLSTR
SFT-F_TIME

SFT.F_DATE

SFT-F_SIZE
SFT.F^POS
SFT.LAST_RELCLST

SFT-LAST_ABSCLST

SFT.DIR_SCTR_NO
SFT.DIR_ENTRY_NO
SFT.FCB FNAME

20h

0042h

028E:7620

9933

6000h

0F30h

25332

25332

12

9945

165

2

COMMAND COM

— 2F Open compLeted
Completed SFT:
SFT.CJANDLES 65535

SFT.OPEN_MODE 0002h

SFT-ATTRJYTE Olh

SFT.DEV_INFO 8043h

SFT.DPB_PTR 0D57:00F3

SFT-ST_CLSTR 9933

SFT-F_TIME 8A53h

SFT.F_DATE 1292h

SFT.F_SIZE 21900

SFT.F_POS 0

SFT.LAST_RELCLST 21560

SFT.LAST_ABSCLST 0

SFT.DIR_SCTR_NO 56026

SFT.DIR_ENTRY_NO 2

SFT.FCB FNAME READ ME

== 3D OPEN CompLeted (Handle 0005)

This shows the DOS Open function being called with the raw filename string
as specified, and the resultant redirector Open call Subfunction 16h being called
with the SDA.FNl field now reflecting a fully qualified filename
(\\D.A\READ.ME above). It also shows an uninitialized SFT being passed to the
redirector Open function, with data left over from previous use (COM-
MAND.COM in this case), and being completed by MSCDEX. Thus, you see
what details DOS takes care of before calling a redirector, and what tasks the
redirector is responsible for.

Chapter 4: The DOS File System and Network Redirector 227

Differences Between DOS Versions

The next example works with DOS versions from 3.10, when the redirector inter
face was introduced, through to DOS 4.0 and higher. The interface has not
changed much in that time, except in one or two important areas. Perhaps the
most predictable change is that some subfunctions have been added to cater to
new functions added into the DOS function interface. In DOS 4.0, the Extended

Open (6Ch) function was introduced to allow all t5^es of file open to be available
through one call. At that time, a corresponding new redirector interface Subfimc-
tion number (2Eh) was added to handle the extended open. The SDA also
changed with the introduction of DOS 4.0. While we only know the purpose of
some of the fields in the SDA, we can see, following the same example, that the
SPECOPEN_ACTION, SPECOPEN_MODE, and SPECOPEN_ATTR fields have

been added to support the special open functionality.
Another Subfunction number introduced with DOS 4.0 is 2Dh. It is not at all

clear what this function is for, but some of the DOS internal commands use the

(also vmdocumented) DOS Function 57h which appears to trigger 2Dh at the
redirector interface. However, both DOS Fxmction 57h and the redirector inter

face Subfunction 2Dh are amongst those DOS 4.0 calls that disappear in later
DOS versions.

Redirector Subfunctions

The following table presents the redirector subfunctions we know about, with
usage, parameters, and notes. Remember that DOS merely defines this specifica
tion; any given redirector must supply the actual functions that meet this specifi
cation:

Subfunction Olh

Remove Directory

Inputs: SDA.FN1 = fully qualified directory name
Outputs: Carry set + error code in AX if error encountered

Subftmction 03h

Make Directory

Inputs: SDA.FN1 = fully qualified directory name
Outputs: Carry set + error code in AX if error encoimtered

228 UNDOCUMENTED DOS

Subfunction 05h

Change Current Directory
Inputs: SDA.RMl = fully qualified directory name
Outputs: Carry set + error code in AX if error encoxmtered
Note: This fimction is expected to update the CURR_PATH field of

the CDS for the drive. It is advisable to maintain the DOS

norm of not terminating the directory string with a '\' except
when the current directory is root.

Subfunction 06h

Close File

Inputs: ES:D1 -> SFT for file to close
Outputs: Carry set + error code in AX if error encoimtered

SFT completed if no error
Note: Do not update the C_HANDLES field in the SFT. DOS

maintains this field itself.

Subfimction 07h

Commit File

Inputs: ES:D1 -> SFT for file to commit (flush buffers)
Outputs: Carry set + error code in AX if error encountered

Subfunction 08h

Read from File

Inputs: ES:D1 -> SFT for file to read from
CX = count of bytes to read
SDA.CURR_DTA -> user buffer to read data into

Outputs: Carry set + error code in AX if error encoxmtered
if no error, CX = bytes actually read
SFT updated

Subfxmction 09h

Write to File

Inputs: ES:D1 -> SFT for file to XAnite to
CX = count of bytes to write

SDA.CURR DTA -> user buffer to write data from

Chapter 4: The DOS File System and Network Redirector 229

Outputs: Carry set + error code in AX if error encountered
if no error, CX = b5des actually written
SFT updated

Subfunction OAh

Lock Region of File
Inputs: ES:DI -> SFT for file

CX:DX = Starting offset of region
SI = High word of size of region
Word at top of stack = Low word of size of region
BX = file handle

Outputs: Carry set + error code in AX if error encountered
Note: The redirector is expected to perform the task of resolving

lock conflicts.

Subfxmction OBh

Unlock Region of File
Inputs: ES:DI -> SFT for file

CX:DX = Starting offset of region
SI = High word of size of region
Word at top of stack = Low word of size of region
BX = file handle

Outputs: Carry set + error code in AX if error encoimtered

Subfunction OCh

Get Disk Space
Inputs: ES:DI -> CDS for drive
Outputs: AL = Sectors per cluster

BX = Total clusters

CX = Bytes per sector
DX = Number of available clusters

Note: These are DOS preferred units. It is sufficient to return
numbers such that (AL*BX*CX) accurately reflects the
space available.

Subfimction OEh

Set File Attributes

Inputs: SDA.FN1 = Fully qualified filename

230 UNDOCUMENTED DOS

Word at top of stack = New file attributes
Outputs: Carry set + error code in AX if error encountered

Subfunction OFh

Get File Attributes

Inputs: SDA.FN1 = Fully qualified filename
Outputs: Carry set + error code in AX if error encotmtered

If no error, AX = file attributes

Subfunction llh

Rename File

Inputs: SDA.FN1 = Current fully qualified filename
SDA.FN2 = New fuUy qualified filename

Outputs: Carry set + error code in AX if error encoimtered

Subfimction 13h

Delete File

Inputs: SDA.FN1 = Fully qualified filespec (may contain wildcards)
Outputs: Carry set + error code in AX if error ettcoimtered

Subfunction 16h

Open Existing File
Inputs: SDA.FNl = Fully qualified filename

SDA.OPEN_MODE = Open mode for file
ES:D1 -> Uninitialized SET for the file

Outputs: Carry set + error code in AX if error encoimtered
SFT completed if no error

Note: Do not set the C_HANDLES field in the SFT. DOS maintains

this field itself.

Subfunction 17h

Create/Tnmcate File

Inputs: SDA.FNl = Fully quahfied filename
ES:D1 -> Uninitialized SFT for the file

Word at top of stack = File attribute for file
Outputs: Carry set + error code in AX if error encountered

SFT completed if no error
Notes: It is known that this function is called by DOS function 5Bh.

In order for 5Bh to fail if the file already exists, this function

Chapter 4: The DOS File System and Netioork Redirector 231

must be able to coimnunicate the pre-existence of a file via a
register or SDA field. It is not known how this is done. Do not
set the C_HANDLES field in the SFT. DOS maintains this field

itself.

Subfunction IBh

Find First Matching File
Inputs: SDA.FN1 = Fully qualified filespec for search

SDA.SDB = Unitialized Search Data Block

SDA.CURR_DTA -> Directory info buffer for found file
SDA.SRCH_ATTR = Search attribute mask for file

Outputs: Carry set + error code in AX if error encoimtered
If no error, SDB initialized

Subfunction ICh

Find Next Matching File
Inputs: SDA.SDB = Search Data Block from last Find operation

SDA.CURR_DTA -> Directory info buffer for foxmd file
Outputs: Carry set + AX = 12h if no more files

Subfunction IDh

Close all files for process
Inputs & Outputs: Mostly xmknown. What is clear is that in order to

implement this function, a record of all files opened
by which processes on which machines is required
to be maintained by the redirector.

Subfimction lEh

Do Redirection

Inputs: Word at top of stack = Command to execute
Other inputs depend on command to execute

Outputs: Carry set + error code in AX if error encountered
Other outputs depend on command to execute

Subfunction IFh

Printer Setup
Inputs: Word at top of stack = Command to execute

Other inputs depend on command to.execute
Outputs: Carry set + error code in AX if error encoimtered

Other outputs depend on command to execute

232 UNDOCUMENTED DOS

Subfunction 20h

Fliish All Disk BiijEfers

Inputs & Outputs: Mostly unknown

SubJhinction 21h

Seek From End of File

Inputs: ES:DI -> SET for file
CX:DX = Offset from end of file to position to

Outputs: Carry set + error code in AX if error encountered

Subfxmction 22h

Process Termination Hook

Inputs & Outputs: Mostly unknown

Subfunction 23h

Qualify Path and Filename
Inputs: DS:S1 -> Unqualified filename

ES:DI -> Buffer for fuUy qualified filename
Outputs: Carry set + error code in AX if error encoimtered
Note: DOS appears to supply a default name qualification function

that does a very adequate job of this without a redirector
needing to support it. The presence of a redirector appears
only to be necessary should there be some form of directory
or filename translation required. The output of this function,
or the DOS default routine, is used directly to supply the
input for the directory manipulation and file open/rename/
delete etc. subfunctions.

Subfunction 25h

Redirected Printer Mode

Inputs: Word at top of stack = Command to execute
Other inputs depend on command to execute

Outputs: Carry set + error code in AX if error encountered
Other outputs depend on command to execute

Subftmction 2Eh

Extended Open File
Inputs: SDA.FNl = Fully qualified filename

ES:DI -> Uninitialized SFT for the file

Chapter 4: The DOS File System and Network Redirector 233

Word at top of stack = File attribute for
created/truncated file

SDA.SPECOPEN_ACT = Action codes

SDA.SPECOPEN_MODE = Open mode for file
Outputs: Carry set + error code in AX if error encotmtered

SFT completed if no error
Notes: This was introduced with DOS 4.0 to provide a unified

interface to the functionality supplied by Subfunction 16h 17h,
and to support DOS Function 6Ch. That function returns to
the caller a result field in CX indicating whether the file
existed or not, and whether it has been truncated. In order

for 6Ch to be able to return the appropriate result code,
this function must be able to communicate the result via a

register or SDA field. Currently, It is not known how this
is done. Do not set the C_HANDLES field in the SFT. DOS

maintains this field itself.

How Do We Know The Call's For Us?

Since there may be a chain of redirectors, each wanting to service only those calls
that relate to the drive that it is redirecting, there must be a way of determining
that a particular redirector call making the rounds is for you. There are two ways
of doing this, depending on the type of operation to be performed. If the opera
tion is one that deals with an open file, such as Read, Write, Commit, or Close,
then ES:D1 on entry points at the SFT entry for the file. The device information
word in the SFT entry contains the drive number of the file device in the bottom
six bits, so it is a simple masking and comparison operation to ascertain that the
caU is for you. If the operation does not deal with an open file, the
SDA.DRrVE_CDSPTR field points at the CDS entry for whatever drive is being
accessed during the redirector caU. The most reliable way to compare the CDS
entries is to match the characters in their CIJRR_PATH fields up to the root offset.
Since this involves only a very few characters, it is also fairly efficient as well.

Example Program: The Phantom

In order to study the interface in detail, it is best to use a real example, albeit an
example with limited usefulness. So here is the Phantom, the world's least effec-

234 UNDOCUMENTED DOS

tive storage device! The Phantom implements a phantom drive that supports
DOS file system commands. Let us briefly set out its specification;

■ It supports all the major DOS commands, in some capacity, including:
DIR, MD, CD, RD, COPY, DEL, RENAME, ATTRIB, and VOL. In addi

tion, it is possible to run a program from the phantom drive, if you can
find one thaPs small enough (we used DEVLOD from chapter 3).

■ It works imder DOS versions in the range 3.10 to 5.00 inclusive (although
in practice with some exceptions xmder DOS 4.0).

■ In the interests of sunpUdty of implementation, Hmitations include: a sin
gle file can exist on the drive, although it can exist in any directory; the
file can be a maximum of 2,048 bytes in size; each directory, including the
root, can only have a single subdirectory.

■ It is unloadable.

The Phantom is written in Turbo Pascal, but while a knowledge of the lan
guage will help understand the particular implementation techniques used, the
source is heavily commented, and the principles are easily portable to C or as
sembly language.

How is this specification implemented against the redirector interface as you
currently understand it? A small machine code interrupt handler stub intercepts
all INT 2Fh calls. If not a redirector function call, the stub passes control on to the
next handler in the INT 2Fh chain. If it is a redirector call, it passes control to the
main redirector procedure that establishes, on the basis of the criteria outlined
below, if the call refers to the drive that you are redirecting. If it does not, control
is returned to the stub, which passes control on to the next handler in the chain. If
the call is for "your" drive, the main redirector procediure calls the appropriate
procedure to carry out the requested subfimction. When control finally returns to
the stub, it retmns back to DOS.

The main routine establishes whether the call is one you support, and
whether it is for your drive. If it is, it prepares a register set and calls the appro
priate routine to perform the requested subfunction. When the subfunction re
turns, having updated any register contents, the main routine reinstates the
registers and returns. The code for the Phantom follows (PHANTOM.PAS):

{$A-,B-,D+,L+,E-,F-,I-,N-,0-,R-,S-,V->
{$M 2048,128,1000}
program phantora_drive;
uses

Chapter 4: The DOS File System and Network Redirector 235

dos, crt;

type

sig_rec = record
signature : stringC7!l;
psp : word;
drive_no : byte;

end;

const

cds_id_size =10;
cds_id = 'Phantom- :\';
our : sig_rec =
(signature : 'PHANTOM'

voLLab : stringCIS] = 'AN ILLUS.ION'#0;
maxfilesize = 2047;

isr_CODE_max = 102;

psp : 0; drive_no : 0);
-C Our Volume Label >

i for our 1 file >

{ offset of last byte >
{ in our ISR macine code >

type

strptr = '^string;
cdsidarr = arrayCI..cds_id_sizeU of char;
cdsidptr = '^cdsidarr;

FindFirst/Next data block

sdb_ptr = ̂ sdb_rec;
sdb_rec = record

drv_lett : byte;
srch_tmpl :
srch_attr :
direentry :
par_clstr :
f1 : arrayCI

end;

arrayCO

ALL DOS VERSIONS >

..lOD of char;
byte;
word;
word;
..4] of byte;

{ DOS System File Table entry - ALL DOS VERSIONS >
sft_ptr = -^sft^rec;
sft_rec = record

handle_cnt,
open__mode : word;
attr_byte : byte;
dev_info : word;
devdrv_ptr : pointer;
start_c Istr,
f_time,
f_date : word;
f_size,
f_j>os : longint;
rel_lastclstr,
abs_lastclstr,
dir_sector : word;
dir_entryno : byte;

{ we don't need to touch this >

i we don't need to touch this >

i we don't need to touch this >

i we don't need to touch this >

i we don't need to touch this >

236 UNDOCUMENTED DOS

fcb_fn : arrayC0,-10] of char;
end;

■C DOS Current directory structure - DOS VERSION 3-xx >
cds3_rec = record

curr_path : arrayC0--663 of char;
flags : word;
f1 : arrayC1..10II of byte; -C we don't need to touch this >
root_ofs : word;

end;

•C DOS Current directory structure - DOS VERSION 4-xx >
cds4_rec = record

curr_path : arrayC0-.663 of char;
flags : word;
f1 : arrayCI-.IOII of byte; { we don't need to touch this >
root_ofs : word;
f2 : arrayC1-.7!l of byte; -C we don't need to touch this >

end;

■C DOS Directory entry for 'found' file - ALL DOS VERSIONS >
dir_ptr = -^dir^rec;
dir^rec = record

fname : arrayC0.-103 of char;
fattr : byte;
f1 : arrayII1..10II of byte;
time_lstupd,
date_lstupd,
start_clstr : word; -C we don't need to touch this >
fsiz : longint;

end;

i Swappable DOS Area - DOS VERSION 3.xx >
sda3_rec = record

fO : arrayC1..12] of byte;
curr_,dta : pointer;
f1 : arrayC1..30] of byte;
dd,
mm : byte;
yy_1980 : word;
f2 : arrayC1..96D of byte;
fnl,
fn2 : arrayCO-.1273 of char;
sdb : sdb_rec;
found_file : dir_rec;
drive_cdscopy : cds3_rec;
fcb_fn1 : arrayC0--103 of char;
f3 : byte;
fcb_fn2 : arrayC0..10D of char;
f4 : arrayC1..113 of byte;
srch_attr : byte;
open_mode : byte;
f5 : arrayC1..483 of byte;

Chapter 4: The DOS File System and Network Redirector 237

dn*ve_cdsptr : pointer;
f6 : arrayC1--12!l of byte;
fn1_csofs,
fn2_csofs : word;
f7 : arrayCI-.56] of byte;
ren_srcfiLe : sdb_rec;
ren_fiLe : dir_rec;

end;

{ SwappabLe DOS Area - DOS VERSION 4.xx >
sda4_ptr = ̂ sda4_rec;
sda4_rec = record

fO : arrayC1..12] of byte;
curr_dta : pointer;
f1 : arrayC1..32] of byte;
dd,
mm : byte;
yy_1980 : word;
f2 : arrayd .. 106] of byte;
fn1,
fn2 : arrayCO..127] of char;
sdb : sdb_rec;
found_fiLe : dir_rec;
drive_cdscopy : cds4_rec;
fcb_fn1 : arrayC0..1Q] of char;
f3 : byte;
fcb_fn2 : arrayC0--1G] of char;
f4 : arrayC1..11] of byte;
srch_attr : byte;
open_mode : byte;
f5 : arrayC1..51] of byte;
drive_cdsptr : pointer;
f6 : arrayC1..12] of byte;
fn1_csofs,
fn2_csofs : word;
f7 : arrayC1..71] of byte;
spop_act,

spop_attr,

spop_mode : word;
f8 : arrayC1..29] of byte;
ren_srcfiLe : sdb_rec;
ren_fiLe : dir_rec;

end;

•C DOS List of Lists structure - DOS VERSIONS 3.1 thru 4 >

Lol_rec = record
f1 : arrayC1..22] of byte;
cds : pointer;
f2 : arrayC1..7] of byte;
Last_drive : byte;

end;

■C This serves as a list of the function types that we support >

238 UNDOCUMENTED DOS

fxn_type = (_inquiry, _rd, _md, _cd, _cLose, ̂ commit, _read,
_write, _Lock, ..unlock, _space, _setattr, _getattr,
^rename, _delete, _open, _create, first, _fnext,
_seek, _specopen, ̂ unsupported);

•C A de rigeur structure for manipulators of pointers >
OS = record o,s:word; end;

fcbfnbuf = arrayCO..12] of char;
fcbfnptr = ̂ fcbfnbuf;

ascbuf = arrayCO..127] of char;
ascptr = ̂ ascbuf;

•C This defines a pointer to our primary Int 2Fh ISR structure >
isrptr = '^isr^rec;

■C A structure to contain all register values. The TP DOS registers
type is insufficient >
regset = record

bp,es,ds,di,si,dx,cx,bx,ax,ss,sp,cs,ip,flags:word; end;

■G Our Int 2F ISR structure >
isr_CODE_buffer = arrayCO
isr_rec = record

i c: isr_CODE_buf fer;
save_ss,

save_sp,
real_fI,
save_f I,
save_cs,
save_ip : word;
our_drive : boolean;

end;

strfn = stringC12];

. isr_CODE_max] of byte;

-C Contains our machine code ISR stub code >
-C Stores SS on entry before stack switch >
•C Stores SP on entry before stack switch >
•C Stores flags as they were on entry >
{ Stores flags from the stack >
■C Stores return OS from the stack >
i Stores return IP from the stack >
■C For ISR to either chain on or return >

const

i all the calls we need to support are in the range 0..33 >
fxn_map_max = $2e;
fxn_map : arrayCO..fxn_map_max] of fxn_type =

(_inquiry, _rd, ^unsupported, _md, ..unsupported,
_cd, _close, _commit, _read, _write,
_lock, _unlock, _space, ^unsupported, _setattr,
_getattr, ^unsupported, _rename, ^unsupported,
^delete, ^unsupported, ^unsupported, _open, ^create,
_unsupported, _unsupported, ^unsupported, _ffirst, _fnext,
^unsupported, ^unsupported, _unsupported, ^unsupported,
_seek, _unsupported, ^unsupported, ^unsupported,
^unsupported, ^unsupported, ^unsupported, _unsupported,
^unsupported, ^unsupported, ^unsupported, ^unsupported,
^unsupported, _specopen
);

Chapter 4: The DOS File System and Network Redirector 239

i The following are offsets into the ISR stub code where run time
values must be fixed in >

prev_hndlr =99;
redireentry = 49;
our_sp_ofs = 45;
our_ss_ofs =40;

{ The following offsets are known at compile time and are directly
referenced in the ISR stub code >

save_ss_ofs = isr_C0DE_max+1;
save_sp_ofs = isr_C0DE_max+3;
save_rf_ofs = isr_C0DE_max+5;
save_fl_ofs = isr_C0DE_max+7;
save_cs_ofs = isr_C0DE_max+9;
save_ip_ofs = isr_C0DE_max+11;
our_drv_ofs = isr_C0DE_max+13;

•C Our ISR stub code is defined as a constant array of bytes which
actually contains machine code as commented on the right >

isr_CODE : isr_CODE_buffer = { entry: >
($90,

$9c.
■C nop OR int 3
•C pushf

for debugging

$80,$fc. $11, cmp ah,11h / our fxn?
$75,$5a. jne not_ours I bypass

$2e,$8f,$06. save_rf_of s. 0,-c pop cs:real_f I
/ store act figs

$2e,$8f,$06. save_ip_of s. o,{ pop cs:save_i p
/ store cs:ip

$2e,$8f,$06. save_cs_of s. OA pop cs:save_cs r and flags
$2e,$8f,$06. save_f l_of s. OA pop cs:save_f I r from stack

$2e,$89,$26. save_sp_of s. OA mov cs:save_sp,sp /■ save stack
$8c,$d4. i mov sp,ss

$2e,$89,$26. save_ss_of s. OA mov cs:save_ss,sp

Sbc,

o
V

O

i mov sp,SSEG r set our stack
$8e,$d4. i mov ss,sp
Sbc,

s

O
s

o

i mov sp,SPTR

$9c. i pushf } call our
$9a. 0,0,0,0, i cal I redi r } intr proc.

$2e,$8b,$26. save_ss_of s. OA mov sp,cs:save_ss
r put back

$8e,$d4. i mov ss,sp
r caller's stack

$2e,$8b,$26. save_sp_of s. OA mov sp,cs:save_sp

$2e,$ff,$36. save_f l_of s. OA push cs:save_f I r restore
$2e,$ff,$36. save_cs_of s. OA push cs:save_cs

r restore
$2e,$ff,$36. save_i p_of s. OA push cs:save_i p ? return addr.
$2e,$ff,$36. save_r f_of s. OA push cs:real_f I } save act figs

$2e,$80,$3e. our_drv_ofs,0,0,{ cmp cs:our_drive,0; not: our drive?>
$74,$04, je not_ours no, jump
$9d. i popf yes, restore
$ca,$02,$00, i retf 2

r 8 return flags

240 UNDOCUMENTED DOS

$9d,
$ea^

);

0,0,0,0

not_ours:

•C popf
i jmp far prev_hndLr

restore flags >
pass the buck >

var

•C The instance of our Int 2F ISR >
isr : isrptr;

•C variables relating to the one allowable file..
file_name : fcbfnbuf;
file_buffer : arrayCO..maxfilesizeU of byte;
file_opens,
file_date,
file_time : word;
file_attr : byte;
file^size : longint;

■C Our full directory structure >
max_path : ascbuf;

Global stuff >
our_sp : word;
dos_major,
dos_minor,
drive_no : byte;
strbuf : string;
a1,
a2 : ascptr;
drive : stringC3II;
fxn : fxn_type;
r : regset;
temp_name : fcbfnbuf;
i root,
i cur.
Imax,
i f i le
ver :

sda :
lol :

: byte;
word;
pointer;
poi nter;

■C SP to switch to on entry }
{ Major DOS vers >
i Minor DOS vers >
■C A: is 1, B: is 2, etc. >
■C General purpose pascal string buffer >
•C Pointer to an ASCIIZ string >
■C Pointer to an ASCllZ string >
■C Command line parameter area >
{ Record of function in progress >
•C Global save area for all caller's regs >
{ General purpose ASCIIZ filename buffer >
•C Index to root directory in max_path >
■C Index to current directory in max_path >
•C Length of max_path >
■C Index to directory in max_path with file 3
{ full DOS version >
{ pointer to the Swappable Dos Area >
{ pointer to the DOS list of lists struct }

const h:arrayC0..153 of char = •0123456789abcdef';
type str4 = stringE4D;
function hexCinp:word):str4;
begin

hexC0::=#4;
hexlI1D:=hCinp shr 123;
hexC2::=hC(inp shr 8) and $il;
hexC33:=hC(inp shr 4) and $f3;
hexlI43:=hCinp and $f3;

end;

{ Fail PHANTOM, print message, exit to DOS >

Chapter 4: The DOS File System and Network Redirector 241

procedure fai LprogCmsg:string);
begin

writeLn(msg);
HaLtd);

end;

{ Get DOS version, address of Swappable DOS Area, and address of
DOS List of Lists. We only run on versions of DOS >= 3.10, so
fai L otherwise >

procedure get_dos_vars;
var r : registers;
begin

ver:=dosversion;
dos_major:=Lo(ver);
dos_minor:=hi(ver);
if Cdos_major<3) or ((dos_major=3) and (dos_minor<10)) then

failprogC'DOS Version must be 3.10 or greater');
with r do

begin

ax:=$5d06; msdos(r); sda:=ptr(ds,si); { Get SDA pointer >
ax:=$5200; msdos(r); LoL:=ptr(es,bx); i Get LoL pointer >

end;
end;

■C Fail the current redirector call with the supplied error number, i.e.,
set the carry flag in the returned flags, and set ax=error code >

procedure fai Kerr:word);
begin

r.flags: = r.flags or fcarry;
r.ax:=err;

end;

{ Convert an 11 byte fcb style filename to ASCIIZ name.ext format >
procedure fnfmfcbnmCvar ss; var p:ascptr);
var i,j:byte; s:ascbuf absolute ss;

dot : boolean;
begin

p:=atemp_name;
i :=0;
while (i<8) and (sCi3<>' ') do inc(i);
move(s,p^,i);
j :=8;
while (j<11) and (sCjllo' ') do inc(j);
move(s,p'^Csucc(i) 3, j-8);
if j<>8 then begin p^Ci]:='.'; p^Cj3:=#0; end
else p'^Ci3:=#0;

end;

{ The opposite of the above, convert an ASCIIZ name.ext filename
into an 11 byte fcb style filename >

procedure cnvt2fcb(var ss; var pp);
var i,j:byte;

s:ascbuf absolute ss;

242 UNDOCUMENTED DOS

p:ascbuf absolute pp;
begin

i:=0; j:=0;
f1LLchar(p,11,' ');
while sCi]<>#0 do

begin
if sCiD='-' then j:=7 else pCjII;=sCiD;
inc(i);
inc(j);

end;
end;

i Get the Length of an ASCIIZ string >
function asclenCvar a:ascbuf):word;
van i:word;
begin i:=0; while (i<65535) and (aCiDo^O) do inc(i); asclen:=i; end;

{ Translate a maximum of strlim bytes of an ASCIIZ string to a Pascal string >
procedure ascii2string(src, dst : pointer; strlim : byte);
var i:integer;
begin

byteCdsf^) :=str lim;
move(src^,pointer(suec(longint(dst)))^,strlim);
i:=pos(#0,string(dst^));
if ioO then byte(dst^) :=pred(i);

end;

{ Set up global a1 to point to the appropriate source for the file
or directory name parameter for this call >

procedure set_fn1;
begin

case fxn of

{ For these calls, a fully qualified file/directory name is given in the
SDA first filename field- This field, incidentally, can also be referenced
indirectly through the SDA first filename offset field into DOS's OS- >

_rd -- _cd, _setattr .. ̂ create, _ffirst, _specopen :
if dos_major=3 then

a1:=asda3_rec(sda^)-fnl
else

a1:=asda4_rec(sda^)-fn1;

•C These do not need a filename--- >
_close -- _write, _seek : ;

•C For findnext, an fcb style filename template is available within the
SDA search data block field >

_fnext :
if dos_major=3 then

a1:=asda3_rec(sda^)-sdb-srch_tmpl
else

a1 :=asda4_rec(sda'^) -sdb-srch_tmpl;
end;

end;

Chapter 4: The DOS File System and Network Redirector 243

i Back up a directory Level, i.e., go back to the previous \ in a path string >
function back_1(var path:ascbuf; var i:byte):booLean;
begin

if i = iroot then begin back_1 :=false; exit; end;
repeat dec(i) until (i=iroot) or (pathCiD='\■);
back_1 :=true;

end;

{ Check that the qualified pathname that is in a1 matches our full
directory structure to length Isrc. If not, fail with 'Path not found' >

function process_path(a1 : ascptr; Isrc : byte)zboolean;
var isrc : byte;
begin

process_path:=false;
i src:=0;
for isrc:=0 to pred(lsrc) do

if (isrolmax) or
(a1^Cisrc]<>max_pathCisrc3) then

begin fail(3); exit; end;
i nc(i src);
if maxjathCisrcDo'\ ' then fail(3)
else process_path:=true;

end;

function the_time:word;
function ticks:longint;

■C mov ah,0 int 1ah mov ax,dx mov dx,cx >
inline($b4/$00/$cd/$1a/$8b/$c2/$8b/$d1);

var t:longint;
hh, mm, s2 : word;

begin
t:=ti cks;
hh:=t div (182*6*60);
dec(t,hh*(182*6*60));
mm:=t div (182*6);
dec(t,mm*(182*6));
s2:=(t*10) div 364;
the_time:=(hh shl 11) or (mm shl 5) or s2;

end;

function the_date:word;
begin

if dos_major=3 then
with sda3_rec(sda^) do

the_date:=(yy_1980 shl 9) or (mm shl 5) or dd
else

with sda4_rec(sda'^) do
the_date:=(yy_198G shl 9) or (mm shl 5) or dd;

end;

•C Change Directory - subfunction 05h >
procedure cd;
var Isrc : byte;

244 UNDOCUMENTED DOS

begin
Lsrc:=ascLen(a1^);
if lsrc=succ(iroot) then dec(Lsrc); i Special case for root >
if not process_path(a1,Lsrc) then exit;
if dos_major=3 then -C Copy in the new path into the CDS >

move(max_path,cds3_rec(sda3_rec(sda^).drive_cdsptr^).curr_path,Lsrc)
else

move(max_path,cds4_rec(sda4_rec(sda^).drive_cdsptr^).curr_path,Lsrc);
i cur: = Lsrc;

end;

{ Remove Directory - subfunction 01h >
procedure rd;
var Lsrc : byte;
begin

lsrc:=asclen(a1^);
if not process_path(a1,Lsrc) then exit;
if Lsrc=icur then begin faiL(5); exit; end;
if Lsrc=ifiLe then begin faiL(5); exit; end;
if LsrcoLmax then begin faiL(5); exit; end;
if not back_1 (max_path,Lmax) then begin faiL(3); exit; end;
max_pathCsucc(Lmax)D:=#0;

end;

{ Make Directory - subfunction 03h >
procedure md;
var Lsrc, isrc : byte;
begin

Lsrc:=ascLen(a1^);
i src: = Lsrc;
if not back_1 (a1^,isrc) then begin faiL(5); exit; end;
if not process_path(a1,isrc) then exit;
if isrcoLmax then begin faiL(5); exit; end;
move(a1^,max_path,Lsrc);
max_pathC LsrcD: = '\';
max__pathCsucc(Lsrc)3 :=#0;
Lmax:=Lsrc;

end;

■C Close File - subfunction 06h >
procedure cLsfiL;
begin
•C Clear down supplied SFT entry for file >

with sft_rec(ptr(r.es,r-di)^) do
begin

if fiLe_opens=0 then begin faiL(5); exit; end;
dec(fi Le_opens);
if booLean(open_mode and 3) and

not booLean(dev_info and $40) then
begin C if new or updated file... >

if f_date=0 then fiLe_date:=the_date
else fiLe_date:=f_date;
if f__time=0 then fi Le_time:=the_time

Chapter 4: The DOS File System and Network Redirector 245

else fiLe_time:=f_time;
end;

end;
end ;

■C Commit File - subfunction 07h }
procedure cmmtfiL;
begin
■C We support this but don't do anything >

if fiLe_opens=0 then faiL(5);
end;

•C Read from File - subfunction 08h >
procedure readfiL;
begin

if fiLe_opens=0 then begin faiL(5); exit; end;

•C FiLL the user's buffer (the DTA) from our internal; file buffer,
and update the suplied SFT for the file >

with sf t_rec(ptr(r.es,r-di do
begi n

if (f_pos+r,cx)>f_size then r.cx:=f_size-f_pos;
if dos_major=3 then

moveCf i le_buf f erCf_pos3,sda3_rec(sda^), curr_dta'^, r. cx)
else

moveCf i le_buf ferCf_pos!],sda4_rec(sda^), curr_dta^,r. cx);
i nc(f_pos,r.cx);

end;
end;

•C Write to File - subfunction 09h >
procedure writfil;
begin

if file_opens=0 then begin fail(5); exit; end;

■C Update our internal file buffer from the user buffer (the DTA) and
update the supplied SFT entry for the file >

with sf t_rec(ptr(r.es,r .di)'^) do
begin

if boolean(file_attr and readonly) then
begin fail(5); exit; end;

if (f_pos+r.cx)>maxfilesize then r.cx:=maxfilesize-f_pos;
if dos_major=3 then

move(sda3_rec(sda^). cur r_dta'^,f i le_buf f erCf_posD,r. cx)
else

move(sda4__rec(sda'^). cur r_dta^,f i le_buf f erCf_j)osIl,r. cx);
inc(f_pos,r.cx);
if f_pos>file_size then file_size:=f_pos;
f_size:=file_si ze;
dev_info:=dev_info and (not $40);

end;
end;

246 UNDOCUMENTED DOS

i Get Disk Space - subfunction OCh >
procedure dskspc;
begin
{ Our 'disk' has 1 cluster containing 1 sector of 2048 bytes, and

r.ax:=1;
r-bx:=1;
r-cx:=succ(maxfiLesize);

{ ... its either all available or none! >
r.dx:=ord(i file=Q);

end;

■C Set File Attributes - subfunction GEh >
procedure setfatt;
var Isrc, isrc : byte;
begin

lsrc:=asclen(a1^);
i src: = lsrc;
if not back_1 (a1^,isrc) then begin fail(2); exit; end;
if not process_path(a1,isrc) then exit;
if isrcoifile then begin fail(2); exit; end;
incCi src);
fiIIcharCtemp_name,13,#0);
move(a1^Cisrc!],temp_name, Isrc-i src);
if temp_name<>file_name then begin fail(2); exit; end;
if file_opens>0 then fail(5)
else f i le_attr:=byte(ptr(r .ss,r. sp)'^);

end;

■C Get File Attributes - subfunction OFh >
procedure getfatt;
var Isrc, isrc : byte;
begin

lsrc:=asclen(a1^);
i src: = lsrc;
if not back_1 (a1'^,isrc) then begin fail(2); exit; end;
if not process_path(a1,isrc) then exit;
if isrcoifile then begin fail(2); exit; end;
i nc(i src);
fiIlchar(temp_name,13,#0);
move(a1'^CisrcD,temp_name, Isrc-i src);
if temp_name<>file_name then begin fail(2); exit; end;
if file_opens>0 then begin fail(5); exit; end;
r.ax:=file_attr;

end;

■C Rename File - subfunction 11h >
procedure renfil;
var Isrc, isrc, isav, i : byte;

dot:boolean;
begin

if dos_major=3 then
a2:=ptr(r.ss,sda3_rec(sda^).fn2_csofs)

else

Chapter 4: The DOS File System and Network Redirector 247

a2:=ptr(r-ss,sda4_rec(sda^),fn2_csofs);
Lsrc:=ascLen(a1'^);
i src: = Lsrc;
if not back_1 (a1^,isrc) then begin fail(3); exit; end;
if not process_path(a1,isrc) then exit;
if isrcoifile then begin faiL(2); exit; end;
inc(isrc);
fi L Lchar(temp_name,13,#0);
moveCal '^Ci srcD, temp_name, Lsrc-i src);

{ Check that the current filename matches ours >

if temp_name<>fiLe_name then begin faiL(2); exit; end;
if booLeanCfiLe_attr and $7) then begin faiL(5); exit; end;
if fiLe_opens>0 then begin faiKS); exit; end;
Lsrc:=ascLen(a2^);
i src: = Lsrc;
if not back_1 (a2^,isrc) then begin faiL(3); exit; end;
if not process_path(a2,isrc) then exit;
ifi Le: = isrc;
inc(i src);

{ Put in the new file name >

filLcharCfi Le_name,13,#0);
move(a2^Cisrc!],f i Le_name, lsrc-i src);

end;

-C This procedure does a wildcard match from the mask onto the target and^
if a hit, updates the search data block and found file areas supplied >

function matchCvar m, t; var s : sdb_rec; var d : dir_rec;
d_e, p_c : word; s_a : byte) : boolean;

var i, j : byte;
mask : ascbuf absolute m;
tgt : ascbuf absolute t;

begin
i:=0; j:=0;
if tgtEOD in then begin match:=false; exit; end;
while i<11 do

case maskCin of

'?■ : if tgtCjD in then
if (i=8) and (tgtCjD='. ') then inc(j) else inc(i)

else
begin inc(i); inc(j); end;

' ■ : if tgtCjD in C' .' , ' \ ' ,/^OT then inc(i)
else begin match:=false; exit; end;

else if (i=8) and (tgtCj3='-') then inc(j)
else
if tgtCj]=mask[i] then begin inc(i); inc(j); end
else begin match:=false; exit; end;

end;
if not (tgtCjn in C'\',#0I1) then begin match: =faIse; exit; end;
with s do

begin
move(mask,srch_tmpl,11);
di r_entry:=d_e;
srch_attr:=s_a;

248 UNDOCUMENTED DOS

par_cLstr:=p_c;
drv_Lett:=drive_no or $80;

end ;
with d do

begi n
i:=0; j:=0;
fiLLcharCfname,11,' ');
while not (tgtCill in C#0,'\'II) do

if tgtCi] = then begin j:=8; inc(i); end
else begin fnameCj]:=tgtCi3; inc(i); inc(j); end;

case d_e of
0 : fattr:=$08;
1 : fattr:=$10;
2 : fattr:=file_attr;

end ;
time_lstupd:=file_time;
date_lstupd:=file_date;
case d__e of

0, 1 : fsiz:=0;
2 : fsiz:=file_size;

end;
end;

match:=true;
end;

{ Delete File - subfunction 13h >

procedure delfiI;
var isrc, Isrc : byte;

sdb:sdb_rec; -C These are dummies for the match procedure to hit >
der:di r_rec;

begin
lsrc:=asclen(a1'^);
i src: = lsrc;
if not back_1 (a1^,isrc) then begin fail(3); exit; end;
if not process_path(a1,isrc) then exit;
if isrcoifile then begin fail(2); exit; end;

inc(os(a1).o,succ(isrc));
cnvt2fcb(a1 temp_name) ;
if ((file_attr and $1f)>0) then begin fail(5); exit; end;
if not match(temp_name,file_name,sdb,der,0,0,0) then

begin fail(2); exit; end;
if file_opens=0 then ifile:=0 else fail(5);

end;

■C Open Existing File - subfunction 16h >
procedure opnfil;
var isrc, Isrc : byte;
begin

lsrc:=asclen(a1'^);
i src: = lsrc;
if not back_1 (a1^,isrc) then begin fail(3); exit; end;
if not process_path(a1,isrc) then exit;

Chapter 4: The DOS File System and Network Redirector 249

if isrcoifile then begin fail(2); exit; end;
i nc(i src);
fit LcharCtemp_name,13,#0);
move(a1^CisrcII,temp_name, Lsrc-i src);

{ Check file names match >

if temp_name<>fiLe_name then begin faiL(2); exit; end;

{ Initialize supplied SFT entry >
with sft_rec(ptr(r.es,r-di)^) do

begin
file_attr:=byte(ptr(r-ss,r.sp)^);
if dos_major=3 then

open_mode:=sda3_rec(sda'^) .open_mode and $7f
else

open_mode:=sda4_rec(sda^).open_mode and $7f;
cnvt2fcb(temp_name,fcb_f n);
incCfile_opens);
f_s i z e:=f iIe_s i ze;
f_date:=file_date;
f_time:=file_time;
dev_info:=$8040 or drive_no; -C Network drive, unwritten to >
di r_sector:=0;
di r_entryno:=0;
attr_byte:=file_attr;
f_pos:=0;
devdrv_ptr:=niI;

end;
end;

■C Truncate/Create File - subfunction 17h >
procedure creatfil;
var isrc, Isrc : byte;
begin

lsrc:=asclen(a1^);
i src: = lsrc;
if not back_1 (a1'^,isrc) then begin fail(3); exit; end;
if not process_path(a1,isrc) then exit;

if ifile=0 then
begin

•C Creating new file >
i fi le: = isrc;
i nc(i src);
if isrc=lsrc then begin fail(13); ifile:=0; exit; end;
fillcharCfile_name,13,#0);
moveCal^CisrcD,file_name,Isrc-i src);

end
else

if ifile=isrc then
begin

■C Truncate existing file >
i ncCi src);

250 UNDOCUMENTED DOS

f1L Lchar(temp_name,13,#0);
move(a1^CisrcIl,temp_name, Lsrc-i src);
if temp_name<>fiLe_name then begin faiL(2); exit; end;
if booLeanCfi Le_attr and $7) then begin faiUS); exit; end;
if fiLe_opens>0 then begin faiL(5); exit; end;

end

else fail(82); -C This provokes a 'ran out of dir entries' error >

■C Initialize supplied SFT entry >
with sft_rec(ptr(r.es,r-di)^) do

begin
file_attr:=byte(ptr(r.ss,r.sp)^); -C File attr is top of stack >
open_mode;=$01; { assume an open mode^ none is supplied.. }
cnvt2fcb(file_name,fcb_fn);
inc(file_opens);
f_si ze:=0;
f_pos:=0;
file_si ze:=0;
dev_info:=$8040 or drive_no; { Network drive, unwritten to >
di r_sector:=0;
di r_entryno:=0;
f_date:=0;
f_time:=0;
devdrvjtr:=ni I;
attr_byte:=file„attr;

end;
end;

•C Special Multi-Purpose Open File - subfunction 2Eh >
procedure spopnfil;
var isrc, Isrc : byte;

action, mode, result : word;
begin

lsrc:=asclen(a1^);
i src: = lsrc;
if not back_1 (a1'^,isrc) then begin fail(3); exit; end;
if not process_path(a1,isrc) then exit;
mode:=sda4_rec(sda^).spop_mode and $7f;
action:=sda4_rec(sda^).spop_act;

■C First, check if file must or must not exist >
if ((((action and $f)=0) and (isrcoQ)) or

(((action and $f0)=0) and (isrc=0))) then begin fail(5); exit; end;

if ifile=0 then
begin

•C Creating new file >
result:=2;
ifile:=isrc;
inc(i src);
if isrc=lsrc then begin fail(13); ifile:=0; exit; end;
fillchar(file_name,13,#0);
move(a1^CisrcII,f i le_name, Isrc-i src) ;

end

Chapter 4: The DOS File System and Network Redirector 251

else

if ifiLe=isrc then

begin
■C Open/Truncate existing file >

i nc(i src);
fi I IcharCtemp_name,13,#0);
move(a1^CisrcD,temp_name,Isrc-i src);
if temp_name<>file_name then begin fail(82); exit; end;
if booleanCaction and 2) then

result:=3 { File existed^ was replaced >
else

result:=1; { File existed^ was opened >
if booleanCfile_attr and $1) and

((result=3) or ((mode and 3)>0)) then
begin fail(5); exit; end; -C It's a read only file >

if (result=3) and (file_opens>0) then
begin fail(5); exit; end; -C Truncating an open file >

end
else fail(5);

■C Initialize the supplied SFT entry >
with sft_rec(ptr(r-es,r-di)^) do

begin
if result>1 then

begin
file_attr:=byte(ptr(r.ss,r.sp)^); { Attr is top of stack >
f_size:=0;
file_si ze:=0;

end;
open__mode:=mode;
cnvt2fcb(file_name,fcb_fn);
inc(file^opens);
f_pos:=0;
f_date:=0;
f_time:=0;
dev_info:=$8040 or drive_no; i Network drive, unwritten to >
dir_sector:=0;
di r_entryno:=0;
devdrv_ptr:=niI;
attr_byte:=file_attr;

end;
end;

i FindFirst - subfunction 1Bh >
procedure ffirst;
var isrc, Isrc : byte;

sdb : sdb_ptr;
der : dir_ptr;
sa, fa : byte;

begin
lsrc:=asclen(a1'^);
i src: = lsrc;

252 UNDOCUMENTED DOS

if not back_1 src) then begin faiL(3); exit; end;
if not process_path(a1,isrc) then exit;
a2:=amax_path;
if dos_major=3 then

begin
a1: =asda3_rec(sda'^). f cb_f n1;
sdb:=asda3_rec(sda^).sdb;
der:=asda3_rec(sda^).found_f i Le;
sa:=sda3_rec(sda^)-srch_attr;

end

else

begin
a1:=asda4_rec(sda^)-fcb_f n1;
sdb:=asda4_rec(sda^)-sdb;
der:=asda4_rec(sda^).found_f ile;
sa:=sda4_rec(sda^)-srch_attr;

end;
fa:=file_attr and $1e;
inc(os(a2).o,succ(isrc));

{ First try and match volume label, if asked for >
if ((sa=$08) or (booleanCsa and $08) and (isrc=iroot))) and

match(a1 ̂,vollabC1 3,sdb^,der'^,0,isrc,sa) then exit;

{ Then try the one possible subdirectory, if asked for and if it exists >
if booleanCsa and $10) and

matchCal^,a2^,sdb^,der'^,1,isrc,sa) then exit;

i Finally try the one possible file, if asked for, if it exists, and if
in this subdirectory >

if (ifile=isrc) and

((fa=0) or booleanCsa and fa)) and

matchCal'^,fi le_name,sdb^,der'^,2,isrc,sa) then exit;

■C Otherwise report no more files }
fail(18);

end;

■C FindFirst - subfunction IBh >
procedure fnext;
var fa : byte;

sdb : sdb_ptr; der : dir_ptr;
begin

if dos_major=3 then
begi n

sdb:=asda3_rec(sda'^). sdb;
der :=asda3_rec(sda'^) . found_f i le;

end
else

begin
sdb:=asda4_rec(sda^)-sdb;
der:=asda4_rec(sda^)-found_file;

end;

Chapter 4: The DOS File System and Network Redirector 253

fa:=fiLe_attr and $1e;
incCsdb^.di reentry);
case sdb'^.dir_entry of

1 : a2:=amax_pathCsucc(sdb^.par_cLstr)];
2 : a2:=afiLe_name;
else begin faiL(18); exit; end;

end;

■C First try the one possible subdirectory, if it exists. FNext can never
match a volume label >

if (sdb^.di r_entry=1) and booleanCsdb^.srch_attr and $10) and
match(a1'^,a2^,sdb'^,der^,

sdb^.direentry,sdb^.par_clstr,sdb'^.srch_attr) then exit;

{ Then try the one possible file, if exists, and if in this subdirectory >
if sdb^-dir_entry=1 then

begin a2: =afi le_name; sdb'^-di reentry: =2; end;
if (sdb^.dir_entry=2) and (ifile=sdb^-par_cIstr) and

((fa=0) or boolean(sdb^.srch_attr and fa)) and
match(a1^,a2^,sdb^,der^,

sdb'^.di reentry,sdb^.par_clstr,sdb^.srch_attr) then exit;

•C Otherwise return no more files >
faildS);

end;

■C Seek From End Of File - subfunction 21h >
procedure skfmend;
var skamnt : longint;
begi n

skamnt:=(longint(r.cx)*65536)+r.dx;
if file_opens=0 then begin fail(5); exit; end;

■C Update supplied SFT entry for file >
with sf t_rec(ptr(r. es,r .di)'^) do

begin
f_pos:=f_si ze-skamnt;
r.dx:=f_pos shr 16;
r.ax:=f_pos and Sffff;

end;
end;

function ca Il_for__us(es,di:word):boolean;
var prpointer;
begin

if (fxn in enclose.-_unlock,_seek!]) then
call_for_us:=(sft_rec(ptr(es,di)'^).dev_info and $1f)=drive_no

else
if fxn=_inquiry then caIl_for_us:=true
else

begin
if dos_major=3 then p:=sda3_rec(sda-^) .dri ve_cdsptr
else p:=sda4_rec(sda^)-drive_cdsptr;

254 UNDOCUMENTED DOS

end;
end;

caLL_for_us:=cdsidptr(p)^=cdsidptr(amax_path)^;

•C This is the main entry point for the redirector. The procedure is actuaLLy
invoked from the Int 2F ISR stub via a PUSHF and a CALL FAR IMMEDIATE

instruction to simulate an interrupt- That way we have many of the
registers on the stack and DS set up for us by the TP interrupt keyword.
This procedure saves the registers into the regset variable, assesses if
the call is for our drive, and if so, calls the appropriate routine- On
exit, it restores the (possibly modified) register values- >

procedure redirector(__flags,_cs,_ip,_ax,_bx,_cx,_dx,_si,_di,_ds,_es,_bp:word);
i nterrupt;

begin
with r do

begin
i sr^-our_drive:=false;

{ If we don't support the call, pretend we didn't see it---! >
if lo(_ax)>fxn_map_max then exit
else fxn:=fxn_mapClo(_ax)!l;
if fxn=_unsupported then exit;

■C If the call isn't for our drive, jump out here--- >
if not caIl_for_us(_es,_di) then exit;

■C Set up our full copy of the registers >
i sr^-our_drive:=true;
move(_bp,bp,18); ss: = isr^-save_ss; sp: = isr'^-save_sp;
cs:=isr^-save_cs; ip:=isr^-save_ip; flags: = isr^-real_fI;
ax:=0; flags:=flags and not fcarry;
set_f n1;
case fxn of

_inqui ry r-ax:=$00ff;
_rd rd;
_md md;
_cd cd;
_close clsfi I;
_commi t cmmtfiI;
_read readfiI;
_wri te wri tfiI;
_space dskspc;
_setattr setfatt;
_lock, _unlock : ;
_getattr : getfatt;
_rename : renfil;
_delete : delfil;
_open : opnfil;
_create : creatfil;
_specopen : spopnfil;
__ffirst : ffirst;
_fnext : fnext;
_seek : skfmend;

end;
"C Restore the registers, including any that we have modified-- >

move(bp,_bp,18); isr'^-save_ss:=ss; isr^-save_sp:=sp;

Chapter 4: The DOS File System and Network Redirector 255

isr^.save_cs:=cs; isr^.save_ip:=ip; isr'^-real_fL:=fLags;
end;

end;

{ This procedure sets up our ISR stub as a structure on the heap. It
also ensures that the structure is addressed from an offset of 0 so

that the CS overridden offsets in the ISR code Line up. FinaLLy, it
fixes in some vaLues which are onLy avaiLabLe to us at run time,
either because they are variabLe, or because of Limitations of the
Language. >

procedure init_isr_CODE;
var p:pointer;

i:pointer absoLute isr;
begin

getmemC isr,si zeof (i sr_rec)+15);
incCosCisr).s,(os(isr).0+15) shr 4);
i sr^.i c: = i sr_CODE;
getintvec($2f,p);
os(isr) .o:=redi reentry; pointer(i^):=aredirector;
os(isr).o:=our_ss_ofs; word(i^):=sseg;
os(isr).o:=our_sp_ofs; wordCi :=our_sp;
os(isr).o:=prev_hndLr; pointer(i^):=p;
os(isr).o:=0;

end;

■C Do our initiaLizations >
procedure init_vars;

function instaLLed_2f:byte;
•C mov ax,1100h int 2fh >
inLine($b8/$00/$11/$cd/$2f);

begin
if instaLLed_2f=1 then

faiLprogC'Not OK to instaLL a redirector...');
drive_no:=byte(driveCI])-byte('a');
our_sp:=spt r+$100;
fi Le_opens:=G;

{ Note that the assumption is that we Lost 100h bytes of stack
on entry to main >

•C InitiaLize and fix-up the master copy of the ISR code >
ini t_isr_CODE;
i fi Le:=0;

end;

{. This is where we do the initiaLizations of the DOS structures
that we need in order to fit the mouLd >

procedure set_path_entry;
var our_cds:pointer;
begin

our_cds:=LoL_rec(LoL^).cds;
if dos_major=3 then

i nc(os(our__cds).o,si zeof(cds3_rec)*pred(dri ve_no))
eLse

i nc(os(our_cds).o,si zeof(cds4_rec)*pred(drive_no));

256 UNDOCUMENTED DOS

if drive_no>LoL_rec(LoL^).Last_drive then
faiLprogC'Drive Letter higher than last drive...');

{ Edit the Current Directory Structure for our drive >
with cds3_rec(our_cds^) do

begin
asci i2string(acurr_path,astrbuf,255);
writeLn('Curr path is ',strbuf);
if (flags and $c000)<>0 then

faiIprogC'Drive already assigned.');
flags:=flags or $cOOO; -C Network+Physi ca I bits on ... >
strbuf:=cds_id;
strbuf Clength(strbuf)-2!]:=char(byte('a')+drive_no);
moveCstrbuf C1 Il,curr_path,byte(strbuf CO])) ;
moveCcurr_path,max_path,byte(st rbuf CO]).);
cur r_pathCbyte(strbufCO])]:=#0;
max_pathCbyte(strbufCO])]:=#0;
root_ofs:=pred(length(strbuf));
i root: = root_ofs;
Imax:=i root;

end;
end;

■C Use in place of Turbo's 'keep' procedure. It frees the environment
and keeps the size of the TSR in memory smaller than 'keep' does >

procedure tsr;
var riregisters;
begin

swapvectors;
r .ax:=$4900;
r.es:=memwCprefixseg:$2c];
msdos(r);
r.ax:=$3100;
r.dx:=os(heapptr).s-prefi xseg+1;
msdos(r);

end;

procedure settle_down;
var pipointer;

i:i nteger;
w:word;

begin
■C Plug ourselves into Int 2F >

setintvec($2f,i sr);
writeln('Phantom drive installed as ',driveC1],':');

"C Find ourselves a free interrupt to call our own. Without it, future
invocations of Phantom will not be able to unload us. >

i:=$60;
while (i<=$67) and (pointer(ptr(0,i shl 2)^)<>nil) do inc(i);
if i=$68 then

begin
writelnCNo user intrs available. PHANTOM not unloadable. .');
tsr;

Chapter 4: The DOS File System and Network Redirector 257

end;
•C Have our new found interrupt point at the command Line area of

our PSP. Complete our signature record, put it into the command Line,
and go to sleep. >

w:=$80;
setintvecCi,ptr(prefixseg,w));
our.psp:=prefixseg;
our.drive_no:=drive_no;
sig_rec(ptr(prefi xseg,w)^):=our;
tsr;

end;

•C Find the Latest Phantom installed, unplug it from the Int 2F chain if
possible, undo the dpb chain, make the CDS reflect an invalid drive,
and free its memory.. >

procedure do_unload;
var irinteger; p, cds:pointer; w:word; riregisters;
begin

i:=$67;
while (i>=$60) and

(sig_rec(pointer(ptr(0,i shl 2)^)^) .signatureoour.signature) do
decCi);

if i=$5f then

begin writelnCour.signature,' not found...'); halt; end;
getintvec($2f,p);
if os(p).o<>0 then

failprog('2F superceded...');
os(p).o:=prev_hndlr;
setintvec($2f ,poi nterCp'^));
getintvecCi,p);
dri ve_no:=sig__rec(p^) .dri ve_no;
with r do

begin
ax:=$4900; es:=sig_rec(p^).psp;
msdosCr);
if booleanCflags and fcarry) then

writeln('Could not free main memory...');
end;

setintvecCi,niI);
cds:=lol_rec(lol^).cds;
if dos_major=3 then

incCosCcds).o,sizeof(cds3_rec)*pred(drive_no))
else

inc(os(cds).o,sizeof(cds4_rec)*pred(drive_no));
with cds3_rec(cds^) do flags:=flags and $3fff;
writelnC'Drive ',char(byte('a')+drive_no),': is now invalid.');

end;

begin C MAIN >
{ Check parameter count >

if (paramcountol) then
faiIprogC'Usage is: PHANTOM drive-letter:');

drive:=paramstr(1);

258 UNDOCUMENTED DOS

dri veCI !]:=upcase(driveC1II);
•C If this is an unload request^ go to it >

if (drive='-u') or (drive='-U') then

begin
get_dos_vars;
do_unload;
halt;

end;
{ Otherwise, check that it's a valid drive letter >

if (length(drive)>2) or
not (driveCI] in C'A'.-'Z'H) or

((lengthCdrive)=2) and (driveC2D<>':'))
then faiIprogC'Usage is: PHANTOM drive-letter:');

■C ... and set up shop >
i ni t_vars ;
get_dos_vars;
set_path_entry;
settle_down;

end.

Here is a brief sample session with the Phantom drive:

C:\UNDOC> phantom d:
Curr path is D:\
Phantom installed as D:
C:\UNDOC> d:
D:\> md test
D:\> cd test
D:\TEST> c:truename . > tmp-tmp
D:\TEST> type tmp-tmp
Phantom.D:\TEST
D:\TEST> dir

Volume in drive D is AN ILLUSION
Directory of D:\TEST

IMP IMP 17 9-15-90 19:52p
1 File(s) 0 bytes free

Not very impressive looking at first glance, but all the elements of a full
blown file system are here. We have created an entity which looks like a drive,
behaves like a drive, and yet which has no reality outside our INT 2Fh Fimction
llh handler. By the way, even undocumented DOS calls work properly on the re
directed drive. This is another real advantage of using the redirector instead of
hooking INT 21h. If you hook INT 21h, the only way that undocumented calls
like Function 60h will work properly with your drive is if you write handlers for

Chapter 4: The DOS File System and Network Redirector 259

these undocumented calls. But with the redirector interface, DOS takes care of

cooking all file-system requests down for us.

Conclusion

In addition to talking a lot about the CDS, SFT, JFT, DPB, system FCBs, and so on,
there seems to be one central point that emerges from this rather lengthy chapter:
the DOS file system isn't just for plain old disks anymore. Any file system is
primarily a logical rather than a physical construct, and DOS is no exception. In
particular, commands Uke JOIN and SUBST, and the introduction of networking,
have steadily moved the DOS file system away from the mundane world of
cylinders/tracks/sectors, toward a more abstract notion of file store. A disk, di
rectory, or file is simply anything that acts like one. The PC programmer who
grasps DOS's support for non-FAT file systems can create many otherwise uni
maginable programs.

Chapter 5

Memory Resident Software:
Pop-ups and Multitasking

Raymond J. Michels, Tim Paterson, and Andrew Schulman

If there is any area of undocumented DOS with which PC programmers are gen
erally famihar, it is writing memory-resident programs. Because such programs
call the DOS Terminate and Stay Resident (TSR) function (INT 21h Function 31h)
or the older TSR interrupt (INT 27h), they are often called TSRs. However, these
documented facilities are insufficient for writing TSRs that, once resident, make
INT 21h DOS calls. As noted in chapter 1, it is well known within the PC pro
gramming community that one must use undocumented DOS in order to prop
erly write the vast majority of TSRs.

Given the continuing importance of memory-resident software in the PC
marketplace, it is not surprising that much has been written about using undocu
mented DOS to write TSRs. Microsoft itself pubHshed a definitive piece on the
subject, Richard Wilton's "Terminate-and-Stay-Resident Utilities," in the massive
MS-DOS Encyclopedia. Wilton's article discusses the following imdocumented
DOS functions and interrupts:

■ INT 21 h Fimction 34h (Return InDOS Pointer)

■ INT 21h Fvmction 50h (Set PSP Segment)

261

262 UNDOCUMENTED DOS

■ INT 21h Function 51h (Get PSP Segment)
■ INT 21h Fimction SDOAh (Set Extended Error Information)

■ INT 28h (Keyboard Busy Loop)

In addition, several books on C programming for the PC (see the bibliogra
phy in Appendix B of this book) include generic TSRs that use this same core set
of undocumented DOS fxmctions. The popular utilities published in each issue of
PC Magazine are often TSRs whose assembly listings and prose descriptions show
the intricacies of using these undocumented DOS functions.

Numerous commercial packages that provide generic TSR libraries are also
available. These libraries use imdocumented DOS, and so, by extension, do any
applications built using them. Some of the commercial TSR libraries available are:

■ CodeRunneR (for C or assembler; Microsystems Software, Framingham,
MA)

■ /*resident_C*/ (South Mountain Software, South Orange, NJ)
■ C Tools Plus 6.0 (Blaise Computing, Berkeley, CA)
■ Zortech C++ (includes TSR library; Zortech, Wobum, MA)
■ Object Professional 1.0 (for Turbo Pascal 5.5; Turbo Power Software,

Scotts Valley, CA)
■ Magic TSR Toolkit (for ASM; Quantasm Corporation, Cupertino, CA)
■ Dr. Switch-ASE ("Application Swapping Extensions" for dBase, FoxBase,

Clipper; Black & White International, New York, NY)
■ Stay-Res Plus (for BASIC; Micro Help)
■ BATCOM (batch file compiler with TSR option; Wenham Software,

Wenham, MA)

Is there anything new to say on this subject? Surprisingly, yes. Several areas
of TSR programming with tmdocumented DOS have not been adequately cov
ered elsewhere. These include:

■ INT 21h Fimctions 5D06h, 5D0Bh (Get DOS Swappable Data Area)
■ TSR termination

■ Using Microsoft C (rather than Turbo C) interrupt functions
■ Writing non-pop-up TSRs

This chapter presents a generic TSR skeleton for Microsoft C (versions 5.1
and 6.0), which you can use to "TSRify" your own programs. This generic TSR
will be used to turn utilities from other parts of this book into "pop-ups" that are

Chapter 5: Memory Resident Software 263

activated by the press of a user-defined "hotkey" (we will discuss these terms in
more detail in a moment).

The last section of this chapter presents a memory-resident program which is
not activated by a hotkey; instead, it is periodically activated by the PC's timer
tick, thereby multitasking in the backgroimd with whatever programs you run
from the DOS command line in the foregroimd. The program is particularly inter
esting because it is an add-on to the PRINT multitasking TSR that comes with EXDS.

TSR: It Sounds Like a Bug, But It's a Feature

Only three functions are absolutely necessary to write memory-resident software
for MS-EKDS; these three functions are fully documented:

■ Terminate and Stay Resident (INT 21h Function 31h)
■ Set Interrupt Vector (INT 21h Function 25h)
■ Get Interrupt Vector (INT 21h Frmction 35h)

A TSR is any DOS program that calls INT 21h Fimction 31h (or its equivalent
interrupt, INT 27h). The description of this function's purpose in the IBM DOS
3.3 Technical Reference is: "Terminates the current process and attempts to set the
initial allocation block to the memory size in paragraphs." Doesn't soxmd too ex
citing. The TSR function is very much like the "normal" DOS termination func
tion (INT 21h Fimction 4Ch), which kills off whatever program calls it, except that
all memory belonging to the program is not released. Instead, part or aU of the
program's initial allocation block is reserved so that it will not be overlaid by the
next program to be loaded.

Thus, a TSR is any DOS program that leaves bits of itself behind after termi
nating. This sounds like a classic bug (sometimes referred to as the "leaky
bucket"), wherein memory is allocated but never gets deallocated. It doesn't
sound Uke a feature around which an entire software industry could be built.

What is the advantage to terminating without freeing all your memory? If
you've terminated, and some other program is now running, there's not much
your memory is gomg to do other than take up space, right? True, chewing up
memory can occasionally serve a purpose. In fact, TSRs have been written with
names Uke MEMHOG and EATMEM to allow a developer with, say, a 640KB ma
chine to test software imder conditions similar to those on, say, a 512KB machine.
But aside from this limited use, what good is it to hog memory after you're gone?
You can't take it with you!

264 UNDOCUMENTED DOS

This is where the second necessary function. Set Interrupt Vector, comes in.
All machines based on the Intel 80x86 architecture allow any program to install
code that wiU get invoked whenever a hardware or software interrupt is gener
ated. For example, the only reason INT 21h is a gateway to MS-DOS services is
that interrupt vector 21h points to code inside DOS that provides these services.
The ability to hang a piece of code off of an interrupt vector is what makes the
TSR fimction something other than an elaborate way to consume memory. We
can use the Set Interrupt Vector function to point interrupt vectors at our code,
and then call the TSR function to keep this code (and associated data and stack
space) resident in memory after we've terminated. Whenever one of our inter
rupts is generated, the code we've left behind will be activated. Thus, there really
is life after termination; you can take it with you.

What sort of interrupts would a TSR be interested in trapping? The most ob
vious one is the hardware interrupt, INT 9, generated every time a user presses a
key. By trapping INT 9, a TSR can watch every key that a user types. Let's say
our TSR is a memory-resident Gilbert and Sullivan sampler that plays a selection
from The Mikado whenever the user presses Alt-M, or The Pirates of Penzance
whenever the user presses Alt-R These are the only two keys we are interested in,
and they are referred to as the program's hotkeys. Each time the user hits a key,
the INT 9 handler wakes up, looks at the key, and, if it is not one of our hotkeys,
goes back to sleep. But if it is one of our hotkeys, then our application should do
its thing. In this example, this means pla)dng light opera (Tarantara!), but in TSRs
in general this sudden seeming springing to life is called the pop-up.

Now, one item has been glossed over: when the user types a key that is not
one of our TSR's hotkeys, how does the key go to its true destination? Our TSR
can't just discard it, but must somehow let other programs get a crack at it. It
does this by calling whichever function previously owned the ESIT 9 vector, before
our TSR installed its INT 9 handler. That means, before setting an interrupt vector,
almost all TSRs will have to get its previous value, by calling the DOS Get Inter
rupt Vector function. Thus, our TSR looks something like this:

INTERRUPT PTR oLd_int9_handLer;

INTERRUPT my_int9_handler()
IF (key == aLt_m)

m1kadoC);
ELSE IF (key == alt_p)

penzance();

Chapter 5: Memory Resident Software 265

ELSE

CALL PTR oLd_int9_handLer();

BEGIN

oLd_int9_handLer = __dos_getvect(9); // INT 21h Function 35h
__dos_setvect(9, my__int9_handLer); // INT 21h Function 25h
go_tsr(); // INT 21h Function 31h

If every program that has hooked INT 9 takes care to caU the interrupts pre
vious owner, then every program that needs to will get a peek at the stream of
user keystrokes. Calling the previous owner is known as chaining the interrupt
and the end result is an interrupt chain: every time you press a key, a whole host

of programs might see it. This mechanism for multiple-program access to the
keyboard input stream was formalized in the OS/2 concept of the "monitor."

While the best-known TSRs (such as Borland's SideKick) are pop-ups that are
activated by hotkeys, pressing a hotkey is just one way of generating an inter
rupt. Anything that generates an interrupt can be used to reactivate a TSR. For
example, when our own program calls INT 21h, it's generating a software inter
rupt, so a TSR could easily attach itself to INT 21h, providing a mechanism for
extending the operating system (or for debugging, as in the INTRSPY TSR in
chapter 8). For example:

INTERRUPT PTR oLd_int21_handLer;

INTERRUPT my_int21_handLer()
IF (ah == some function we're interested in)

// do pre-processing
// maybe CALL PTR oLd_int21_handLer()
// do post-processing

ELSE

CALL PTR oLd_i nt_21_handLer();

BEGIN

oLd_int21_handLer = _dos_getvect(0x21);
_dos_setvect(0x21, my_int21_handLer);
go_tsr();

In this example, as soon as we've attached my_handler to INT 21h by calling
_dos_setvect, all INT 21h calls pass through the code in my_handler. This means
that our own call to INT 21h Fimction 31h in go_tsr is actually first processed in
my_handler. It is entirely up to the code in my_handler to determine what hap-

266 UNDOCUMENTED DOS

pens with each INT 21h request. Presumably the call to Fimction 31h would pass
through unchanged to old_int21_handler, which might be MS-DOS or might be
some other TSR that has hooked INT 21h, such as a command-line editor or net

work shell.

With all this power, it is essential that programs reserve the TSR facility for
genuinely useful code that is worth having resident in memory. Software that
helps the user prepare his last will and testament, for example, is not a good can
didate for memory residency. Neither, for that matter, is our Gilbert and Sullivan
sampler, since readily-available dedicated hardware already exists for this purpose.

Where Does Undocumented DOS Come In?

Since the three functions we need to produce the TSR are aU fuUy documented,
where does imdocumented DOS come in? Do we really need imdocumented
DOS in order to write a program that plays "1 Am the Very Model of a Modem
Major General" whenever the user presses the Alt-P hotkey?

Unfortrmately, we almost definitely do. Unless if we have achieved remark
able data compression, we will not want the notes for our music occupying mem
ory. Instead, when the user presses Alt-P, we will want to allocate some memory,
read the music in from a file, close the file, play the notes, free the memory, then
go back to sleep.

It would be so nice if things worked this way, but they don't. The problem is
that in this example we have no control over when my_int9_handler() wiU be in
voked. Recall that my_int9_handler() is not called from within the program, the
way fimctions like _dos_setvect() or go_tsr() are. Instead, my_int9_handler() is
called whenever the user pounds on the keyboard: it is an as5mchronous event
that bears no relation to the internal state of whatever program happens to be
nmnmg, or the internal state of DOS.

For instance, the foregroimd program might be copying a large file to the
printer when the user decides that it's time for a musical interlude. While the
foreground program is currently executing an INT 21h function such as Read File
or Write File, the penzanceO fimction suddenly takes over and starts issuing its
own INT 21h requests. Will this work?

Not without a lot of help from us, it won't. The problem with this scenario is
that MS-DOS is (quite rightly) designed as a single-task operating system, and
that the code for INT 21h is not set up so it can be interrupted in the middle of

Chapter 5: Memory Resident Software 267

one DOS request, made to carry out some other DOS request, and allowed to re
sume where it was interrupted.

This property of MS-DOS is often referred to as nonreentrancy, meaning that,
if INT 21h is already executing, another INT 21h request can't be issued. Reen
trant code can be called by multiple processes simultaneously. It is designed so
that one process in the function can be interrupted at any time, allowing another
process to enter the function (hence the term reentrant). All variables are stored
on the caller's stack, which is a unique aspect of the caller.

Nonreentrancy, it should be noted, is by no means a purely DOS issue. Any
textbook on operating systems or on concurrent programming probably contains
a discussion of the difference between reentrant code, which may be shared by
several processes simultaneously, and what by contrast is called serially reusable
code, which may be used by only one process at a time. MS-1X)S contains serially
reusable code.

When MS-DOS is called via INT 21h, it switches to one of three internal

stacks: the I/O stack, the Disk stack, or the Auxiliary stack. Fxmctions 00 through
OCh use the I/O stack. The remainder of the fimctions use the Disk stack. If MS-

DOS is called during a critical error (such as DIR A: when the drive door is open),
the Auxiliary stack is used. Because of this stack-switching, if a TSR calls MS-
DOS when the foregroxmd is already executing inside INT 21h, MS-DOS will
load the TSR's data onto its stack, overwriting the foreground process' data.

If DOS happens to be servicing a Function OCh request or lower, and our TSR
issues a Function ODh request or higher, then there won't be a problem, because
two different stacks are involved. Furthermore, a few INT 21h fxmctions (33h,

50h, 51h, 62h, and 64h) are so simple that they use the caller's stack and are there
fore fully reentrant. But for the most part, DOS is non-reentrant.

On the other hand, if s not just DOS we have to worry about. What if the
heads on the hard disk are in the middle of xvriting data as part of the response to
an application's INT 13h call? If our TSR starts issxiing INT 13h requests that
move the head somewhere else, then we're going to have a big reentrancy prob
lem that has nothing to do with stacks or reusable code, but that coxild well result
in a scrambled hard disk.

Does this mean our TSR can't perform DOS memory and file operations
whenever the user presses the hotkey? Does all this have to be done once during
initialization, before hooking any interrupt vectors, so that the memory-resident
portion of our TSR avoids all use of DOS calls? For example, one book on C pro-

268 UNDOCUMENTED DOS

gramming for the PC makes the blanket statement that a TSR interrupt service
routine (ISR) "cannot use any DOS functions." If this were true, it would certainly
restrict what we could do with TSRs.

Actually, this isn't quite as terrible a restriction as it soimds. Many commer
cial programs for the PC that aren't even TSRs bypass DOS for many operations
such as screen display and keyboard input. Avoiding DOS is not only possible,
but, for certain key operations on the PC, it is practically a necessity. It is easy to
write screen display functions, for example, that not only bypass DOS, but which
are many times faster than DOS output routines, and which provide far greater
control over the screen.

However, as we noted in chapter 4, one area of DOS functionality really is ir
replaceable: file I/O. In addition, while programs can allocate expanded or ex
tended memory rather than use the DOS memory allocation routines, expanded
or extended memory is not always available, so many TSRs need to allocate
memory via DOS. Basically, most TSRs need to make some INT 21h calls while
popped up.

Fortunately, it is simply not true that TSR interrupt service routines can't
make INT 21h calls. But it is true that TSRs must do something special in order to
make such calls. There are two options:

■ Defer issuing INT 21h calls while INT 21h is already m the middle of pro
cessing a request, or

■ Somehow save and restore all of DOS's context (including the three DOS
stacks) so that we can freely interrupt it.

The second option will be discussed later in this chapter, in the section on the
"DOS Swappable Data Area" (SDA). Until then, the topic will be ways of not en
tering DOS in the middle of some other program's INT 21h call, but instead wait
ing xmtil that call has completed: using DOS as a serially-reusable resource. Until
then, you wiU be reading about the state that a TSR must save and restore as part
of its popup regime.

The key requirement here is to have some way of determining when INT 21h
is busy or, more accurately, of determining when one of its three stacks is in use.
A short while ago, we saw a small block of pseudocode for trapping INT 21h
calls, and it may have occurred to the reader that this might be used to determine
whether DOS is being used. For example, we might put both our INT 21h han-

Chapter 5: Memory Resident Software 269

dler and INT 9 handler into the same program, and use the former to tell the lat
ter whether if s safe to pop up:

INTERRUPT PTR old_int9_handLer; // keyboard
INTERRUPT PTR oLd_int21_handLer; // DOS
WORD using_io_stack = 0;
WORD using_disk_stack = 0;

INTERRUPT my_int21_handLer()
IF (ah <= OxOc)

INCR using_io_stack;
CALL PTR old_int_21_handler;
DECR using_io_stack;

ELSE

INCR using_disk_stack;
CALL PTR oLd_int21_handLer;
DECR using_disk_stack;

INTERRUPT my_int9_handLer()
IF key == aLt__m AND NOT using_disk_stack

mi kadoO;
ELSE IF key == aLt_p AND NOT using_disk_stack

penzanceO ;
ELSE

CALL PTR oLd_int9_handler();

BEGIN

oLd_int9_handLer = _dos_getvect(9);
oLd_int21_handLer = _dos_getvect(0x21);
_dos_setvect(Gx21, my_int21_handLer);
_dos_setvect(9, my_int9_handLer);
go_tsr();

We have hooked INT 21h so we can find out whether someone is "in DOS."

The INT 21h handler increments a flag on entry to an INT 21h call, and decre
ments it on the way back out. The INT 9 handler checks the using_disk_stack
flag, and won't pop up if it is non-zero. The flag therefore acts as a semaphore, se
rializing access to DOS.

This gives the basic idea behind making DOS calls from a TSR, but there are
many problems with the preceding pseudocode. For example, DOS termination
functions (Functions OOh, 31h, and 4Ch) do not return, and therefore would need

to get special treatment. Likewise, this code does not take account of DOS critical
errors. Nor does it account for the fact that a PC sitting at the COMMAND.COM

270 UNDOCUMENTED DOS

prompt is actually parked inside INT 21h Function OAh (Buffered Keyboard
Input), making it seem as if one can't pop up while at the DOS prompt, which we
know not to be the case.

Fortunately, we don't need to get this code to work properly, because MS-
DOS already provides an INDOS semaphore and a "critical error" semaphore that
our TSR can check. Instead of hooking INT 21h in an attempt to maintain our
own INDOS flag, we can use the one that DOS already provides. (On the other
hand, this technique of hooking an interrupt in order to maintain an in-use flag
will be essential later on, when we need to serialize access to INT 13h, the ROM

BIOS disk interrupt.)
This is where undocumented DOS enters the picture, because the DOS fimc-

tions that return the addresses of the INDOS and critical-error semaphores are
undocumented. Furthermore, DOS generates "idle" interrupts (INT 28h) while in
side INT 21 h Function OAh. As will be discussed later, these undocumented

workarounds were originally created for use in Microsoft's TSRs such as
PR1NT.COM.

The fact that Microsoft's own TSRs use these functions should tell you that
developers who want to create robust TSRs probably need to use them as well. It
goes against common sense to assert that using imdocumented features will
make a program more rather than less stable, but who said that TSR program
ming was supposed to make sense? The techniques for writing correct TSRs may
not be a model of software engineering at its finest, and some of the undocu
mented functions for TSR support have the feel of glorified afterthoughts rather
than parts of a well thought-out interface, but you'll need them if you want your
program to survive in the PC marketplace.

If you're writing a TSR, you have probably already bought into a host of
compatibility problems, and frankly, using vmdocumented DOS is the least of
them. The reason industry pundits have spoken of a "TSR crisis" is not because of
undocumented DOS, but because of keyboard conflicts, problems associated
with popping up over screens in graphics mode, memory usage conflicts, and the
like. Undocumented DOS is actually one of the saner areas in TSR programming.

MS-DOS TSRs

How did PC programmers find out about the undocumented TSR functions?
From examining Microsoft's own TSRs, of course.

Chapter 5: Memory Resident Software 271

TSRs have been a part of MS-DOS since its initial release in 1981. M. Steven
Baker notes in his fine article on "Safe Memory-Resident Programming" (The
Waite Group's MS-DOS Papers, 1988) that TSRs were even available within the
64KB confines of the earUer CP/M operating system, in programs like Smartkey,
Uniform, and Unspol. The only TSR program to ship with DOS 1.x was MODE.
PRINT, GRAPHICS, and ASSIGN were added in DOS 2.x.

PRINT is the only DOS utility program that multitasks. You can be running
an application at the same time that PRINT is printing a file. Only one of the two
programs is actually rxmning at any given instant, but the illusion of simulta
neous operation is maintained by switching between them on each timer tick.

When the PRINT program is installed, it chains into the BIOS timer-tick inter
rupt (INT ICh), the DOS Keyboard Busy Loop interrupt (INT 28h), and numer
ous other interrupts. Hooking a large number of interrupts is fairly normal for
TSR operation. INT ICh and INT 28h allow the PRINT program to gain control at
regular intervals, independent of the user, to perform its processing (open file,
read, print and close). These intervals are sufficiently close together that your
foreground program appears to be operating at the same time as the PRINT pro
gram.

When PRINT performs its processing, it saves the current DTA, PSP, and the
vectors for INT IBh (Ctrl-Break), 23h (Ctrl-C), and 24h (Critical Error), and sets
up its own values for these items. Upon exit from its current processing, it re
stores these values to their original state. The TSRs presented in this chapter fol
low a similar structure. The multitasking TSR at the end of this chapter is actually
an enhancement to the PRINT utility: it will periodically look for files that appear
in a certain subdirectory and automatically submit them to PRINT.

GRAPHICS allows graphics screens to be printed with the Shift-PrtSc key
combination. It replaces the current INT 5 vector with a pointer to its own code.
This code translates the data in the display adapter's memory into data recog
nized by the printer.

One of the significant improvements in MS-DOS 2.0 was the availability of a
hard disk. However, this new disk (usually drive C:) did cause some problems
with software that was hard-coded to use drive A: or B:. The ASSIGN utility al
lows drive letters to be mapped to other drive letters. When programs reference
drive A:, they can be transparently made to instead access drive C:. ASSIGN sits
on three MS-DOS interrupts: INT 21h (DOS Fvmction Call), INT 25h (Absolute
Sector Read), and INT 26h (Absolute Sector Write). When INT 25h or 26h is

272 UNDOCUMENTED DOS

called, and the AL register references the ASSIGNed drive, the value in AL is re
placed by the new drive number. Simple, huh? MS-DOS does not translate calls
to INT 13 (BIOS Disk Services), but it would be easy to write a utility for such a
purpose.

MODE is a good example of a TSR that modifies output to a device. Many
programs do not support a serial printer (COMl); they just reference LPTl.
MODE grabs data sent via INT 17h (BIOS Parallel Printer Service), and sends the
data to the serial port. The same principle can be used to Avrite translation pro
grams for various output devices. A TSR one of the authors wrote was for a
printer that did not support the form feed command. The TSR sat on the parallel
printer output interrupt and checked for a form-feed character. When one came
by, the TSR would output the appropriate number of line feeds to get to the next
page. It was a simple program, but it saved someone from having to buy a new
printer.

The Generic TSR

Now it's time for some code! Our goal is to build a generic TSR with Microsoft C:
this chapter provides everything so that, when a user-defined hotkey is pressed,
a function named applicationO is called. You simply provide applicationO, link
with the generic-TSR object modules, and you've got a TSR. We have deliberately
stayed away from issues involving screen modes or even screen saves and re
stores, though, since these have nothing to do with undocumented DOS. The ge
neric TSR code deals with all the issues cormected with undocumented DOS. The

resulting TSRs have been tested extensively, and seem quite robust (there are no
100% guarantees in the world of TSRs, however).

We will use our generic TSR to build three sample pop-ups: a simple file
browser (TSRFILE), a memory-resident version of the MCB walker from chapter
3 (TSRMEM), and a memory-resident version of the INT 2Eh command inter
preter from chapter 6 (TSR2E). We will also build MULTI, the non-pop-up multi
tasking program mentioned earlier. The TSRs can be buUt either using the
"traditional" undocumented DOS functions for TSRs, or using the DOSSWAP
technique described later on. Finally, you can indicate whether a given TSR uses
the disk or not. In order to show how all these pieces fit together, we take the
somewhat imusual approach of first showing the MAKEFILE for this project. The
following file works with NMAKE from Microsoft C 6.0:

Chapter 5: Memory Resident Software 273

U NMAKE makefile for generic TSR
U example: C:\UNDOOnmake tsrfile.exe

U can be overridden from environment with NMAKE /E

U example:
C:\UNDOOset swap=1
C:\UNDOOnmake /e tsrfile.exe

n

n C:\UNDOOset no_disk=1
U C:\UNDOOnmake /e tsrmem.exe

SWAP = 0

NO_DISK = 0

!IF $(SWAP)

DOSSWAP = -DDOS_SWAP
D0SSWAP_0 = dosswap.obj
lENDIF

!IF $(NO_DISK)
USES_DISK =

!ELSE

USES_DISK = -DUSES_DISK

lENDIF

U defines the key components of the generic TSR:
n TSREXAMP.C - main

U INDOS-C - InDOS^ critical error flag
PSP.C - Set PSP, Get PSP
U EXTERR.C - Extended error save and restore

TSRUTIL.ASM - Miscellaneous routines

U STACK.ASM - Stack save and restore

tf DOSSWAP.C - Optional use of DOS Swappable Data Area (SDA)
UNDOC_OBJS = indos.obj psp.obj exterr.obj

TSR_OBJS = tsrexamp.obj $(UNDOC_OBJS) $(D0SSWAP_0) \
tsrutil.obj stack.obj

U command to turn a .C file into an .OBJ file

.c.obj:
cl -AS -Ox -Zp -c -W3 -DTSR $(USES_DISK) $(DOSSWAP) $*.c

command to turn an .ASM file into an .OBJ file

.asm.obj:
masm -ml $*.asm;

special handling for MULTUTIL.ASM
multutiI.obj: tsrutiI.asm

274 UNDOCUMENTED DOS

masm -ml -DMULTI tsrutil,muLtutiL;

multstk.obj: stack.asm
masm -ml -DMULTI stack,multstk;

make the file-browser sample TSR
tsrfile.exe: $(TSR_OBJS) file.obj

link /map/far/noi $(TSR_OBJS) file,tsrfile.exe,tsrfile.map;

U make the MCB-walker sample TSR
tsrmem.exe: $(TSR_OBJS) mem2.obj put.obj

link /far/noi $(T$R_OBJS) mem2 put,tsrmem.exe;

if make the INT 2Eh command-interpreter sample TSR
INT2E_0BJS = test2e.obj send2e.obj have2e.obj do2e.obj
INT2E = test2e send2e have2e do2e

tsr2e.exe: $(TSR_OBJS) $(INT2E_0BJS) put.obj
link /far/noi $(TSR_OBJS) $(INT2E) put,tsr2e;

make the non-pop-up PRINT add-on
multi.exe: multi.obj $(UNDOC_OBJS) multutil.obj multstk.obj

link /far/noi multi $(UNDOC_OBJS) multutil multstk,multi;

TSR Programming in Microsoft C

Before actually begiiming our examination of the various components of the ge
neric TSR, there needs to be a discussion about writing TSRs in Microsoft C,
rather than in assembly language. This discussion strays fairly far afield from the
topic of undocumented DOS, imfortunately, but that's imavoidable; there are a
lot of prelinunaries to get out of the way before the discussion of TSR program
ming with undocumented DOS will make any sense. In any case, we will be
reading about all sorts of interesting aspects of low-level PC programming in
Microsoft C.

Managing TSRs in assembly language seems relatively easy at first because
you have total control of the CPU. It becomes a bit more difficidt when the actual
TSR application goes beyond the scope of simple assembly-language code. C is
generally easier to code than assembly language, and a wealth of libraries is
available. By using C to write a TSR, you give up a little efficiency but gain ease
of use and manageability.

Chapter 5: Memory Resident Software 275

In order for a TSR to do anything, it must be accessed via some type of inter
rupt. Therefore, anyone interested in TSR programming in a high level language
like C must become familiar with the facilities for interrupt manipulation.

Most C compilers for the PC offer an interrupt or _interrupt ke5rword that
can be used to create interrupt handlers (and thus, TSRs). The interrupt keyword
causes the compiler to create special entry and exit code for any procedure whose
definition has the interrupt modifier. On entry the function will save all of the
registers and set DS to that of the C program. Because these registers are defined
as parameters and are pushed on the stack, you can get and set them just like any
other variable. When the procedure exits, it pops the registers values from the
stack. An interrupt handler can be created like this:

typedef struct i
Hiidei TURBOC

unsigned bp, di, si, ds, es, dx, ex, bx, ax;
#eLse

unsigned es, ds;
unsigned di, si, bp, sp, bx, dx, ox, ax; /* PUSHA */

#endi f

unsigned ip, cs, flags;
> INTERRUPT_REGS;

void interrupt far my_handLer(INTERRUPT_REGS r)

unsigned i = r.ax;
r.bx = i » 8;

>

Sample code for the interrupt ke5rword often shows an enormous parameter
list for each interrupt handler, with each register named separately. Using the IN-
TERRUPT_REGS structure (not a pointer to one!) makes the parameter list more
manageable.

What sort of code does this really produce? By compiling with the Microsoft
C -Fa or -Fc command-line switches, we can examine the resulting assembly-lan
guage code. The following is the code generated by the compilation of this inter
rupt procedure in Microsoft C. The order in which registers are pushed is
dictated in part by the Intel PUSHA and POPA instructions. Note that Borland
Turbo C also offers an interrupt keyword, but that the order in which registers
are pxxshed and popped is different (and incompatible with the PUSHA/POPA
instructions):

276 UNDOCUMENTED DOS

_my_handLer PROC FAR
push ax ; bp+18
push cx ; bp+16
push dx ; bp+14
push bx ; bp+12
push sp ; bp+10
push bp ; bp+8
push si ; bp+6
push di ; bp+4
push ds ; bp+2
push es ; bp+0
mov bp,sp
sub sp,2
mov ax,DGROUP

mov ds,ax
ASSUME DSzDGROUP

eld

mov ax,WORD PTR Cbp+ISl ; i = r
mov aL,ah

sub ah,ah
mov WORD PTR :bp+12:,ax ; r. bx

mov sp,bp ; Micro

pop es

pop ds

pop di

pop si

pop bp

pop bx

pop bx

pop dx

pop cx

pop ax

i ret

.ax

» 8

t C 6.0 only

_my_handler PROC FAR

Pushing the registers on the stack allows the C function to access the register
values through variables. Because these values are popped from the stack on exit,
the C function can actually change the return values of registers on interrupt exit.
Notice that on exit BX is popped twice. On entry, SP was pushed at this point. If
the C function was allowed to change SP, the IRET instruction would put us in
some unknown spot (recall that IRET uses the stack to return to the caller).

For Microsoft C 6.0, an additional instruction is added that moves the BP reg

ister into SP. This assures that SP will be restored to its original value due to the
MOV BP,SP executed during function entry.

Chapter 5: Memory Resident Software 111

Note that CS:IP and the flags are pushed on the stack by the processor itself.
If we compile for 80286 and higher machines with -G2 switch, the resulting

code now looks like this:

.286

_my_handLer PROG FAR
pusha ; push ax,cx,dx,bx,oLd_sp,bp,si,di
push ds
push es
mov bp,sp
sub spy.2
mov ax,DGROUP

mov ds^ax
ASSUME DS:DGROUP

eld

mov ax,WORD PTR Ebp+IB]
mov at,ah
sub ah,ah
mov WORD PTR [:bp+12:,ax
mov sp,bp ; Microsoft C 6.0 only
pop es

pop ds
popa ; pop di,si,bp; skip sp; pop bx,dx,cx,ax
i ret

_my_handLer ENDP

The enormous amount of code generated (even for the best case, with
PUSHA/POPA) and the large amoimt of stack space used for our three-line
interrupt handler should not go unnoticed. If you were writing my_handler in
assembly language to begin with, it might look like this:

_my_handLer PROG FAR
mov bx, ax
shr bx, 8
i ret

_my_handLer ENDP

Every feature has a price, and here too we pay for the convenience of writing
our application in C rather than in assembly language.

In addition to the interrupt or _interrupt keyword, C compilers for the PC
generally offer a set of functions for manipulating interrupts. In Microsoft C, the
DOS.H header file provides a large set of DOS-specific fimctions, including the
following:

278 UNDOCUMENTED DOS

void (_cdecL _interrupt _far * _cdecL _dos_getvect(unsigned intno))();

void _cdecl _dos_setvect(unsigned intno,
void (_cdecL ..interrupt _far *new_handLer) ());

void _cdecL _chain_intr(void (_cdecL ^interrupt _far *target)());

The functions _dos_getvect() and _dos_setvect() directly translate into calls to
INT 21h Functions 25h and 35h, and are vastly preferable to using the more gen
eral intdosxO or int86x() functions. For example:

^include <dos-h>

// ...

extern void interrupt far my_int21_handLer(); // declare new function
void (^.interrupt _far *oLd_int21)(); // old function pointer

mainO

f

oLd_int21 = _dos_getvect(0x21); // save old
_dos_setvect(0x21, my_int21_handLer); // install new
// ...

_dos_setvect(0x21, old_int21); // restore old
>

We can do other things with the old_int21 function pointer than restore it
when we're finished, though. In fact, almost all interrupt handlers (and TSRs) will
need to do something else with the pointer to the previous handler: chain to it!
Microsoft C provides the extremely useful _chain_intr() function (unfortunately.
Turbo C does not), which is necessary when your new interrupt handler needs to
do preprocessing before chaining to the old handler. For instance:

void (_interrupt _far *old_int21)();

void interrupt far my_int21_handler(INTERRUPT_REGS r)
i

II do some work

_chain_intr(old_int21);
// never reached!

>

ma i n()

old_int21 = _dos_getvect(0x21); // save old

Chapter 5: Memory Resident Software 279

_dos_setvect(0x21, my_int21_handLer); // install new
// ...

If you need to do more work after chaining to the old handler, then you can't
use _chain_intr(). Instead, you must directly call through the saved function
pointer:

// maybe do some preprocessing
(*old_int21)();
// we're back: do postprocessing

The C compiler turns the call through the interrupt function pointer into the
following:

pushf
call dword ptr old_int21

The problem with this, however, is that the compiler uses the CPU registers
in ways that may not be obvious from an examination of your C code. The regis
ters on entry to the old interrupt handler may therefore not be correct. This is not
a problem with _cham_intr() because that function (which can only be correctly
called from within a interrupt function) loads up the CPU registers with the
"image" of the registers that was stored on the stack. Wherever possible, use
_chain_mtr(old) rather than (*old)().

There are various tradeoffs involved in writing interrupt handlers in C rather
than in assembly language. All in all, it seems like a "win," but the overhead of
pushing all registers on the stack on entry to an interrupt handler, and the incon
venience of not knowing the exact state of the registers before chaining to the
previous handler, are sometimes too much. Fortunately, any time C is less conve
nient, we can always switch into assembly language: the generic TSR uses two
assembly language modules, TSRUT1L.ASM and STACK.ASM, because that
made more sense than any religious principles about only using C.

Keeping a Microsoft C Program Resident

The hardest thing to do from a TSR in C is estimate the amoimt of memory you
actually want to keep resident. Microsoft C provides a handy _dos_keep() func
tion (declared in DC)S.H), which calls the DOS TSR function:

280 UNDOCUMENTED DOS

void _cdecL _dos_keep(unsigned retcode, unsigned memsize);
// retcode — exit status code

// memsize — allocated resident memory in 16-byte paragraphs

But this leaves unanswered the question of what number to pass in as mem
size. When coding in assembly language, you can easily come up with this mun-
ber, because you usually know the size of your code (and furthermore, have total
control over its arrangement so you can jettison the startup code). In C, however,
you do not control the memory structure of the program beyond your source
code. The memory map for a small-model Microsoft C program, with hypotheti
cal segment addresses, looks like this:

1E20h FAR HEAP

STACK

NEAR HEAP

0E19h DS

OBFAh CODE

OBEAh PSP

Of course, you could just pass a very high number to _dos_keep(), but with
TSRs one of the primary goals is to keep memory consmnption to the absolute
minimum. The following code fragment details one way to keep a memory seg
ment resident in C for small memory models:

#define PSP_ENV_ADDR Ox2c /* environment address from PSP */
#define STACK_SIZE 8192 /* must be 16 byte boundary */

#define PARAGRAPHS(x) ((FP_OFF<x) + 15) » A)

char far *stack_ptr; /* pointer to TSR stack */
unsigned memtop; /* number of paragraphs to keep */

// ...

/* MALLOC a stack for our TSR section */

stack_ptr = malloc(STACK_SIZE);
stack_ptr += STACK_SIZE;

// ...

Chapter 5: Memory Resident Software 281

I* release environment back to MS-DOS */

FP_SEG(fp) = _psp;
FP_OFF(fp) = PSP_ENV_ADDR;
_dos_freemem(*fp);

/* release unused heap to MS-DOS */
/* All mallocs for TSR section must be done in TSR init */

segread(&sregs>;
memtop = sregs.ds + PARAGRAPHS(stack_ptr) - _psp;
_dos_setblock(memtop, _psp, Sdummy);
_dos_keep(0, memtop);

First, create a block of memory in the near heap using mallocO. This will be
come the TSR's stack during activation. Instead of using this local stack, you can
use whatever stack happens to be in effect during TSR activation. This is fine for
small programs, but if you are doing wild and wonderful things with your code,
it is best to create your own stack to avoid overflowing the foregrotmd's stack.
The stack size is added to the stack pointer variable to get it to the bottom of the
stack. This stack bottom will become the top TSR in memory.

Using the value of the new stack pointer, the number of 16-byte paragraphs
that must be kept resident (memtop) is calculated. The expression PARA-
GRAPHS(stack_ptr) gives us the number of paragraphs in our local heap. This
number must be retained because it includes the mallocs we've already done.
This is added to DS to establish the top of the memory we will need, and our PSP
is subtracted to find the actual number of paragraphs needed by the entire pro
gram. A call is then issued to MS-DOS to shrink the current block down to the
size specified. In simple programs created with the generic TSR, memtop was
generally less than 600h paragraphs, giving the resulting TSR an in-memory foot
print of about 24KB. This eliminates anyifar heap, the original C stack, and the
xmused near heap.

Using this method, you must perform any near mallocs before the creation of
the stack. Once the TSR is resident, it cannot make any calls to the malloc family
or use library routines that use maUoc functions, because the near heap is gone.
Use of malloc calls wiU vary with compiler implementation, so be sure to select
your functions carefully. (The Run-Time Library Reference for Microsoft C 6.0 in
cludes, in the entry for malloc, a list of aU functions that call malloc: it's rather
large.)

The final step is to call _dos_keep, which does an INT 21h Function 31h to
terminate and stay resident, retaining in memory the number of paragraphs

282 UNDOCUMENTED DOS

C:\UNDOOnieni

Seg Owner Si ze

OBDA 1E76 OOOD < 208)

0BE8 0000 0000(0)

0BE9 OBEA 0597(22896)

specified. If aU goes well, you should be able to find your TSR in the display from
chapter 3's MEM program. For example:

C:\UNDOOtsrfi Le -k 59 4

Activation: CTRL SCAN=59

free

-k 59 4 COS 09 13 28 2F 1

The MEM display shows that the TSR begins at OBEAh (its MCB, of course, is
at 0BE9h), and that it retains 0597h paragraphs, or 22KB. The fact that we freed
the environment is also reflected: we can stiU get the command line (which, by
the way, designates a hotkey of Ctrl-Fl), but the program name is no longer
available. As for the various interrupts MEM says we've hooked, these will be
discussed in a short while.

One final note about staying resident in C: in order to reduce their memory
footprint even further, many TSRs jettison their startup code. For example, we
don't need mainO once we've gone resident: any subsequent calls to TSRFILE (to
deinstall, for instance) are going to go to the mainO of a completely different in
stance of the program, not to the mainO of our resident copy. (We have one pro
gram, but possibly more than one process.) Anyhow, it would be nice to throw
away the code for main(). Figuring out how to do this, given the memory map
shown earlier, is left as an exercise for the reader. Don't stay up too late!

Not Going Resident

If you are writing your own TSR from scratch (rather than using a generic TSR
such as the one we present here), it is a good idea to put off going resident for as
long as possible. Don't try debugging your application as a TSR. Instead, have it
spawn a command shell from which you can exit, or have it run a single program
whose name and arguments appear on the DOS command line:

mainCint argc, char *argvC!I)

// TSR init goes here
oLd_int09 = _dos_getvect(0x09);

Chapter 5: Memory Resident Software 283

_dos_setvect(0x09, my_int09_handLer);

#ifdef TESTING

// to Launch a command shell:

systemCgetenvC'COMSPEC"));

// or, to run just one program:
// spawnvp(P__WAIT, argvC13, &argvC1]);

// we're back: do TSR deinstall

_dos_setvect(0x09, old_int09);
#e Ise

// ...

_dos_keep(0, memtop);
#endi f

>

In fact, this is so handy you might consider making some of your applica
tions into shells rather than TSRs. A program that needs to set up a "context" of
some sort for another program is often best treated as a shell, not a TSR.

Jiggling the Stack

Remember the stack we created with malloc just before remairung resident? In
order for that stack to be used, the TSR interrupt routine that performs activation
must call two routines: one to set up the local stack on entry and one to restore
the original stack on exit. The actual code to do the stack switch must be pro
grammed in assembly language, because we don't have fuU access to the regis
ters in C (though we could use in-line assembler in Microsoft C 6.0).

The following is a short assembly language module that manages the stack
context switch. The _set_stack procedure saves the current foreground stack in
our data area and sets the stack pointer to the stack created with malloc
(stack_ptr). Notice the stack manipulation at entry and exit of this procedure. A
return address was placed on the stack when set_stack was called. Because we
are switching stacks, this address is popped from the stack on entry and pushed
on the stack before exit. The _restore_stack procedure restores the stack segment
and pointer to what was saved in _set_stack:

;STACK.ASM

/Define segment names used by C

284 UNDOCUMENTED DOS

_TEXT segment

_TEXT ends

CONST segment

CONST ends

_BSS segment

_BSS ends

_DATA segment

_DATA ends

DGROUP GROUP CONST, _BSS, _DATA

assume CS:_TEXT, DSzDGROUP

public _set_stack, _restore_stack
extrn _stack_ptr:near ;our TSR stack
extrn _ss_save:near ;save foreground SS
extrn _sp_save:near ;save foreground SP

_TEXT segment
-*****
r

;void far set_stack(void) -
; save current stack and setup our Local stack

r

_set_stack proc far

;save foreground stack

;we need to get the return values from the stack
;since the current stack will change

pop ax ;get return offset
pop bx ;get return segment

;save away foreground process' stack
mov word ptr _ss_save,ss
mov word ptr _sp_save,sp

;setup our local stack
mov ss,word ptr _stack_ptr+2
mov sp,word ptr _stack_ptr

IFDEF MULTI

mov bp,sp ;make bp relative to our stack frame
ENDIF

Chapter 5: Memory Resident Software 285

;setup for ret
push bx
push ax

ret

_set_stack endp

r

;void far restore_stack(void) -
; restore foreground stack, throw ours away

F

_restore_stack proc far

;we need to get the return values from the stack
;since the current stack will change

pop cx ;get return offset
pop bx ;get return segment

;save background stack
mov word ptr _stack_ptr+2,ss
mov word ptr _stack_ptr,sp

/restore foreground stack here
mov ss,word ptr _ss_save
mov sp,word ptr _sp_save

IFDEF MULTI

mov bp,sp /make bp relative to our stack frame
ENDIF

/setup for ret
push bx
push cx

ret

_restore_stack endp
_TEXT ends

_DATA segment

_DATA ends

end

One final note on the stack: it's crucial that we compile with -Gs (or with a
switch like -Ox that includes -Gs), to turn off stack checking. The C compiler's
_chkstk routine would get hopelessly confused by the new stack we've created.

286 UNDOCUMENTED DOS

Undocumented DOS Functions for TSRs

Finally, we are ready to discuss TSR programming with imdocumented DOS. Re
call that the whole issue is how one makes EXDS INT 21h calls from the resident

portion of a TSR. First the traditional use of imdocumented DOS will be pre
sented, and afterward the new DOSSWAP technique will be shown.

MS-DOS Flags

DOS keeps a byte in memory called the INDOS flag, also known as the DOS safe
flag. This flag indicates when it is safe to access MS-DOS functions, and is a
semaphore that turns DOS into a serially reusable resource. The idea is that no
one can enter DOS (make INT 21h calls) if the semaphore indicates that DOS is
busy. Actually, as we'll see, there are numerous exceptions to this rule, but the
basic idea is sound.

Generally, the activation section of a TSR that uses MS-DOS will check this
flag. If it indicates that MS-DOS is busy, the TSR program must defer the activa
tion, or at least that portion of the activation which actually makes INT 21h calls.
Using imdocumented INT 21h Function 34h, you can get the address of the
INDOS flag. Because this address (returned in ES:BX) is constant for a particular
operating environment, the initialization section of a TSR will call this function
once. We can then store the address in a local variable for later access during the
pop-up phase.

The following C module contains a function, DosBusy, that will return a zero
if it is safe to make INT 21h calls. If DOS carmot be interrupted, it will return non
zero. Your application must call InitlnDos (to set the addresses of the InDos flags)
during initialization. If you neglect to do so, DosBusy wiU always return non
zero. (In a programming language like C++, you can make such initializations
occur automatically.)

/* INDOS.C - Functions to manage DOS flags */

^include <stdlib.h>

^include <dos.h>

#define GET_INDOS 0x34
#define GET_CRIT_ERR 0x5D06

char far *indos_ptr=0;
char far *crit_err_ptr=0;

Chapter 5: Memory Resident Software 287

i nt DosBusyCvoid);
void Ini tInDos(voicl);

/*****

Function: Init InDos Pointers

Initialize pointers to InDos Flags
*****/

void InitlnDos(void)

i

union REGS regs;
struct SREGS segregs;

regs.h.ah = GET_INDOS;
intdosx(®s,®s,&segregs);
/* pointer to flag is returned in ES:BX */
FP_SEG(indos_ptr) = segregs.es;
FP_OFF(indos_ptr) = regs-x-bx;

if (_osmajor < 3) /* flag is one byte after InDos */
crit_err_ptr = indos_ptr +1;

else if (_osmajor==3 && _osminor == 0) /* flag is 1 byte before*/
crit_err_ptr = indos_ptr - 1;

else

i

regs.X.ax = GET_CRIT_ERR;
intdosxCSregs^®s^&segregs);
/* pointer to flag is returned in DSiSI */
FP_SEG(crit_err_ptr) = segregs.ds;
FP_OFF(crit_err_ptr) = regs.x.si;

/*****

Function: DosBusy
This function will non-zero if DOS is busy
*****/

int DosBusy(void)
T

if (indos_ptr && crit_err_ptr)
return (*crit_err_ptr || *indos_ptr);

else

return OxFFFF; /* return dos busy if flags are not set */
>

/*****

Function: Int28DosBusy
This function will return non-zero if the InDos flag is > 1 or

288 UNDOCUMENTED DOS

the critical error flag is non zero- To be used inside of an
INT 28 loop- Note that inside INT 28, InDOS == 1 is normal, and
indicates DOS is *not* busy; InDOS > 1 inside INT 28 means it is-
***** j

int lnt28DosBusy(vo1d}
K.

if (indos_ptr S& crit_err_ptr)
return (*crit_err_ptr || (*indos_ptr > 1));

else

return OxFFFF; /* return dos busy if flags are not set */
>

The preceding example puts the cart before the horse by referencing a byte in
addition to the INDOS flag. This is the Critical Error flag. The Dos Critical Error
flag is set when DOS is processing a critical error (of course!). It is yet another
flag that must be checked before deciding if it is safe to access MS-DOS. In MS-
DOS version 2.x, this flag is one byte after the INDOS flag. In MS-DOS version
3.x, this flag is one byte before the INDOS flag. In MS-DOS versions 3.10 and
above, the address of the Critical Error flag can be retrieved by calling INT 21 h
Fvmction 5D06h. It is a good idea to use this function, becatise the location of this
flag may or may not always be dependent on the INDOS flag in future DOS re
leases. This function requires DOS version-checking. Be careful when you are
writing your own functions that perform DOS version checks. Because of the ex
tensive number of DOS levels, the procedure can be confusing.

Note that aU the DOS versionitis problems are taken care of during initialization,
in InitlNDOS, so that DosBusy, which is called quite frequently, has an easy job.

In addition to checking if we are in the middle of a critical error, another use
for the critical-error flag is to force MS-DOS to use its critical-error stack. A bug in
MS-DOS 2.x requires that the critical-error flag be set (and therefore DOS's criti
cal-error stack be used) so that the Get PSP and Set PSP functions (discussed mo

mentarily) work properly. Crazy, huh? Being a PC programmer means taking a
perverse pleasure in knowing odd facts like this.

As yet another forward reference, note that INDOS.C also provides a func
tion called Int28DosBusy(), to be used in an INT 28h handler. Inside INT 28h, the
INDOS flag will always be at least 1: in this context, (INDOS == 1) means DOS
isn't busy (this is one of the many INDOS exceptions we were talking about), but
if (INDOS >1), then DOS is really busy: come back some other time!

Chapter 5: Memory Resident Software 289

Get/Set PSP

As discussed in chapter 3 (particularly the section "Unique Process Identifier"),
each process in MS-DOS has a Program Segment Prefix (PSP). We saw that Mem
ory Control Blocks (MCBs) are stamped with the PSP of their owner. In chapter 4,
we saw that this 256-b)d:e area contains, among other things, the default file han
dle table (Job File Table, JFT) for the process. Because it is a unique value (though
this can get complicated in 80386 multitasking environments), the segment ad
dress of the PSP can also be used as a unique process identifier.

At any given moment in an MS-DOS system, there is a "current PSP." In the
Appendix A entry for INT 21h Fimction 5DG6, you can see that the current PSP is
kept at offset 1 Oh in the EKDS Swappable Data Area (SDA), along with similar val
ues such as the current Disk Transfer Area (DTA) and the current drive. When

DOS received an INT 21h Function 3Dh request to open a file, for example, the
handle returned in AX will be in a index into the JFT of the "current PSP."

Well, that's obviously the PSP that belongs to whatever process called INT
21h Function 3Dh, right?

No! Remember that we are writing TSRs here. The "ctirrent PSP," unless we
somehow change it, belongs to whatever process happened to be rvmning when
we popped up. Thus, if our TSR decides to start opening files, it would be using
the foregroimd process' PSP. This could be totally benign or totally disastrous.

Consider the following example of a TSR that leaves the "current PSP" alone
when it pops up. If the TSR opens a file handle or allocates memory via MS-DOS,
these items become associated with the foregrovmd process. The foregrovmd pro
cess is not aware of these items, but entries in its JFT will be used up. When the
foregroimd terminates, all open files are closed and allocated memory segments
are freed. This includes those which the TSR thought of as its own, yet allowed to
be associated with the foreground process.

Really what our TSR should do when it pops up is somehow change DOS's
current PSP so that it corresponds to the TSR, carry out whatever task our TSR is
supposed to perform when it pops up, and then, before lapsing back into its dor
mant state, restore the ciurent PSP to whatever value it had when we popped up.

Fortimately, DOS provides just the functions we need. Undocumented INT
21h Functions 50h and 51h are the Get PSP and Set PSP functions m MS-DOS 2.x

and above. In DOS 3.x and above, documented Function 62h is also available to

Get PSP. As noted in chapter 3, it is often thought that Get PSP rettims the PSP of

290 UNDOCUMENTED DOS

whatever program called it. We now know that it gets DOS's "current PSP" out of
the SDA. Likewise, Set PSP sets this value in the SDA.

In DOS 3.0 and higher, Fimctions 50h, 51h, and 62h do not use any of the
DOS stacks and are fully reentrant: they are among the few INT 21h functions
you can call without paying attention to the INDOS flag (and thereby, they con
stitute another exception to the "INDOS" rule). But, as noted earlier, to call Func
tions 50h or 51h in DOS 2.x, you must first force use of the critical-error stack.

The following pseudocode describes the steps to use Get/Set PSP from a TSR:

TSR INITIALIZATION:

psp_addr :=
Get current PSP with Function 51h or 62h

(this PSP wiLL be that of the TSR)

Terminate and stay resident

TSR_ACTIVATION:

fgrnd_psp_addr :=
Get current PSP with Function 51h or 62h

(since the TSR interrupted the foreground, this address
wiLL be that of the foreground process)

Set current PSP with Function 50h, using psp_addr
Do TSR work

Set current PSP with Function 50h, using fgrnd_psp_addr
Go back to sleep

The following C module, PSP.C, contains fimctions that Get and Set the cur
rent PSP, taking into accoimt the various oddities which we have discussed: these
are not just simple-minded sugar coating for the equivalent DOS functions. We
test for the DOS version and set the critical-error flag accordingly. Again, you
must call InitlnDos before using the following functions:

/* PSP.C */

^include <stdLib-h>

^include <dos-h>

^include "tsr.h"

#define GET PSP D0S2 0x51

Chapter 5: Memory Resident Software 291

^define GET_PSP_l>0S3 0x62
^define SET_PSP 0x50

static union REGS regs;

/*★***

Function: GetPSP - returns current PSP
*****/

unsigned GetPSP(void)
i

if (_osmajor == 2)

if (! crit_err_ptr) /* must not have caLLed InitlnDos */
return 0;

crit_err_ptr = OxFF; / force use of proper stack */
regs.h.ah = GET_PSP_D0S2;
intdos(8iregs,®s);
*crit_err_ptr = 0;

>

else

regs-h.ah = GET_PSP_D0S3;
intdos(®s,®s);

>

return regs.x.bx;

/*****

Function: SetPSP - sets current PSP
*****/

void SetPSPCunsigned segPSP)
i

if (!crit_err_ptr) /* must not have caLLed InitlnDos */
return;

crit__err_ptr = OxFF; / force use of correct stack */
regs-h.ah = SET_PSP;
regs.x.bx = segPSP; /* pass segment vaLue to set */

i ntdos(®s,®s);
*crit_err_ptr = 0;

292 UNDOCUMENTED DOS

Extended Error Information

Consider the following scenario:
The foreground program has performed a DOS function that detected an

error condition. Because of this, DOS has stored extended error information. Nor

mally the foregroimd program can access the extended information at this point.
If the TSR becomes active, however, the access of the extended error information

will be delayed. Now the TSR has control and could possibly perform DOS func
tions that detect errors. This error detection will overwrite the existing extended
error information, making it invaUd for the interrupted (foregroimd) program.

Don't despair, though: DOS has this problem well in hand. In DOS 3.0 and
higher, documented Function 59h is available to query the extended error infor
mation. A TSR must save this information prior to activation, and reset it at exit.

Undocumented DOS Fimction SDOAh allows the extended error information to

be set. On entry to 215D0A, DS:DX points to a table containing three words that
represent the AX, BX, and CX registers returned by the call to 2159.

The following C functions can be used to get the extended error information
on TSR activation and then to reset the extended error information on exit:

/* EXTERR.C - extended error saving and restoring */

^include <stdLib.h>

^include <dos.h>

#define GET_EXTERR 0x59
#define SET_EXTERR OxSdOa

^pragma packd)

struct ExtErr

<

unsigned int errax;
unsigned int errbx;
unsigned int errcx;

>;

void GetExtErr(struct ExtErr * Errlnfo);
void SetExtErr(struct ExtErr * Errlnfo);

/*****

Function: GetExtErr

get extended error information

Chapter 5: Memory Resident Software 293

*****/

void GetExtErrCstruct ExtErr * Errlnfo)

i

union REGS regs;

if (_osmajor >= 3) /* onLy for DOS 3 and above */

regs.h.ah = GET_EXTERR;
regs-x.bx = 0; /* must be zero */
i ntdos(®s,®s);
Errinfo->errax = regs-x.ax;
Errinfo->errbx = regs-x-bx;
Errinfo->errcx = regs-x.cx;

y*****

Function: SetExtErr

set extended error information
*****/

void SetExtErr(struct ExtErr near * Errlnfo)

union REGS regs;

struct SREGS segregs;

if (_osmajor >= 3) /* only for DOS 3 and above */
i

regs.X.ax = SET_EXTERR;
regs.x.bx = 0; /* must be zero */
segreadC&segregs); /* put address of err info in DS:DX */
regs.x.dx = (int) Errlnfo;
intdosxC®Sy^®s^&segregs);

Interrupt 28h

Our TSR can now pop up whenever DOS is not in use. We're sitting at the COM-
MAND.COM prompt, not doing anything, we hit the TSR's hotkey, and the
TSR...Doesn't pop up!

This wasn't the answer you expected, was it? If we're not doing anything, the
TSR should pop up as soon as we press its hotkey. Sitting at the COM-
MAND.COM seems like the epitome of idleness: why doesn't the TSR pop up?

The answer is quite simple: COMMAND is waiting for input in DOS, As ex
plained in chapter 6, whenever COMMAND has finished carrying out some task

294 UNDOCUMENTED DOS

and awaits your next instruction, it calls the documented DOS Buffered Key
board Input function (INT 21h Function OAh). This ftmction provides the stan
dard DOS editing keys such as F3. While idHng at the prompt waiting for you to
type something, COMMAND is parked inside INT 2lh Fimction OAh. In other
words, the INDOS flag is set.

Now what do we do? One alternative, naturally, is to throw in the towel and
declare that our TSR won't pop up at the COMMAND prompt. We're probably
not going to sell a lot of copies of the program that way, though.

This curious paradox—the INDOS flag is set and yet we know that DOS is re
ally idle—must have confronted Microsoft when it was putting together the
PRINT program. True, PRINT is not a pop-up, but the same principles apply:
when COMMAND is "doing nothing" would seem to be a good time for the TSR
to print some files. And, if you've ever used PRINT, you know that in fact it does
print in the background while COMMAND is idling. So how did Microsoft re
solve this dilemma?

They put in a hack so that, whenever DOS is waiting for a user ke5rpress in
places like Fimction OAh, it periodically generates an interrupt, INT 28h. PRINT
hooks this interrupt, thereby receiving wakeup calls while the state of the INDOS
flag otherwise indicates that it shouldn't. INT 28h is referred to as the MS-DOS
Idle interrupt or Keyboard Busy Loop interrupt. Whenever this Idle interrupt is
generated, it is safe to use INT 21h Functions ODh and above, as long as the
INDOS flag is not greater than one. INT 28h is undocumented, but it is such a
foundation of TSR programming that it is supported even in the DOS compatibil
ity box of OS/2.

Thus, our TSR has acquired another wrinkle: in addition to checking the
INDOS and critical-error flags, saving and restoring DOS's current PSP, and sav
ing and restoring the extended error information, we now must hook INT 28h
too. Well, no one ever said the DOS TSR interface was a model of clarity. The fact
that the interface is entirely undocumented teUs us that no one at Microsoft sat
down and tried to design a nice interface for TSR programming. Instead, they
put in what they needed to write their own TSRs. The end result is an interface
that looks like something someone would design only for their own use. On the
other hand, the DOS TSR interface (if we can call it that) benefits from the fact

that its designers actually used it themselves. They ran into the same problems
you run into with your TSRs, so they put in solutions.

Chapter 5: Memory Resident Software 295

Interrupt handlers for INT 28h should pass control to the previous INT 28h
owner when complete. Generally they should not "hog" the INT 28h interrupt by
executing large amounts of code. TSRs that solicit user input should not only
hook INT 28h, but also periodically invoke INT 28h in their input loop. This gives
other TSRs a chance to use the idle time. In our generic TSR, we use INT 28h to
detect if the user had earlier pressed the hotkey at a time when we couldn't pop
up. In the MULTI TSR program at the end of this chapter, INT 28h is hooked so
that we can use the timeslices we get while the system is sitting at the COM
MAND prompt.

The INDOS.C module shown earlier contains the function called Int28Dos-

BusyO, which returns zero if it is safe to access DOS during an INT 28h. The
INDOS flag wiU never be zero during an INT 28h, so you might think that we
don't need to even check INDOS during an DSJT 28h. However, INDOS could be
greater than one, in which case we still can't pop up.

The INT 28h handler appears in the main TSR module, TSREXAMRC, to
which we now turn.

Inside the Generic TSR

The main module for our generic TSR, TSREXAMRC, includes initialization, the
pop-up routine caUs your application, and several interrupt handlers. The re
mainder of the interrupt handlers are written in assembly language (for reasons
noted earlier) and are foxmd in TSRUTIL.ASM. Naturally, TSREXAMRC relies
heavily on the modules we have already examined: INDOS.C, PSRC, EXTERR.C,
and STACK.ASM.

Rather than plimge directly into the 550 lines of code belonging to
TSREXAMRC, or the 250 lines that comprise TSRUTIL.ASM, it makes more sense
to start off with a pseudocode explanation.

The following pseudocode makes heavy use of the keyword ON (borrowed
from BASIC, which in turn borrowed it from RL/I). A phrase such as ON TIMER
indicates code that is called, not from within the program itself, but from outside
the program: it is merely an interrupt handler, written in C using the interrupt
keyword discussed earlier, and installed using (in this example) _dos_setvect(8,
new_int8), but as we wiU see the ON kejword as used in the following
psuedocode is particularly expressive of what happens in our TSR.

296 UNDOCUMENTED DOS

Note that the following discussion assumes that the TSR is going to access
the disk during its pop-up phase, and also that the TSR does mt use the
DOSSWAP interface (which was mentioned but not really discussed in detail).

The initialization of our generic TSR looks something like this:

INIT ; mainO in TSREXAMP.C
IF they want to deinstall

CALL deinstallO

ELSE IF TSR not already installed
MALLOC stack

GETVECT TIMER(8), KEY(9), DISK(13h), IDLE(28h), MULTIPLEX(2Fh)
; MULTIPLEX (2Fh) for communication with already-resident
; (install check, deinstall)
SETVECT TIMER, KEY, DISK, IDLE, MULTIPLEX
RELEASE environment

RELEASE unused heap
TSR

There are no surprises here, except perhaps the fact that we are somehow
using INT 2Fh to communicate between an already-resident copy of the TSR pro
gram and a second copy that, rather than go TSR, is used simply to deinstall the
resident copy. If TSRFILE has already been made resident, it can be deinstalled
by typing TSRFILE -d at the COMMAND prompt. If we are not deinstalling, then
the TSR first checks to see if the TSR is already installed (also using INT 2Fh, inci
dentally). If it isn't, when the INIT routine completes, our program has become
memory resident, and five interrupt handlers have been installed.

Before examining the interrupt handlers, let us create a few semaphores that
the interrupt handlers will use to communicate among themselves:

FLAG wanted_pop up ; wanted to pop up earlier, but DOS was busy
FLAG disk_unsafe ; INT 13h in use?
FLAG idle_int ; is INT 28h in progress?

Note that the INDOS flag is not included here, because this flag is maintained
by DOS itself, and is not located inside our program; we use our DosBusyO rou
tine to check the INDOS flag.

The first interrupt handler we need to examine is that one that handles key
board events. Because we installed an INT 9 handler, each time the user presses a
key, any key, a piece of code something like the following will get executed:

Chapter 5: Memory Resident Software 297

ON KEY ; new_int9() in TSREXAMP.C
IF we are not already running AND

IF it's our hotkey AND
IF NOT disk_unsafe THEN

CALL POP UP

ELSE

; we can't pop up now, so just set flag indicating
; that we WANT to pop up at next available moment
wanted_pop up = TRUE
CALL previous KEY handler

ELSE

; not our hotkey - chain to next handler
CALL previous KEY handler

ELSE

; we're already running - let key be processed normally
CALL previous KEY handler

In the simplest scenario, the user presses the hotkey at a time when INT 13h
isn't in use. Our keyboard handler then calls the POP UP routine:

POP UP ; tsr_functionC) in TSREXAMP.C
CALL set_stack() ; switch to our own stack
IF DosBusyO AND NOT idle_int

wanted_pop up = TRUE
ELSE

; we really can POP UP now!
GETVECT CTRL-BREAKdBh), CTRL-CdCh), CRITERR(24h)
SETVECT CTRL-BREAK, CTRL-C, CRITERR

current_PSP = GetPSPO
CALL SetPSP(TSR_PSP)
current_DTA = GetDTAO
CALL SetDTA(TSR_DTA)
save_err = GetExtErrO
eat keys
CALL application()
CALL SetExtErr(save_err)
CALL SetDTA(current_DTA)
CALL SetPSP(current_PSP)
SETVECT CTRL-BREAK, CTRL-C, CRITERR ; REVERT

ON CTRL-BREAK DO NOTHING

ON CTRL-C DO NOTHING

ON CRITERR ; new_int24() in TSREXAMP.C
RETURN FAILURE

298 UNDOCUMENTED DOS

Continuing with the simplest scenario, lefs say that DosBusyO returns
FALSE. We then proceed to install three short-term interrupt handlers. The Ctrl-
Break and Ctrl-C handlers merely discard these events: a more sophisticated TSR
might do something fancy with them. The Critical Error handler merely returns
failure. The key point is that the pop-up portion of our TSR must nm its own
handlers for these events, not whatever handler the foreground process happens
to have installed at the time. Next, we swap our own Disk Transfer Area (DTA)
and PSP with that of the foregroimd process, and save the extended error infor
mation discussed earlier. We eat whatever keys are lurking in the keyboard
buffer and—finally!—call the application (which, as we know, actually does
something useful like providing a notepad, dialing a modem, or plajdng a time
from Pinafore). When the application is finished, we put everything back the way
we found it.

That was the simplest scenario. Say the user has pressed the hotkey, but we
can't pop up: either INT 13h is in use, or DOS is "really busy" (that is, the INDOS
flag is set and we're not inside an INT 28h idle interrupt). In this case, either the
keyboard handler or the pop up routine sets the wanted_popup flag, and more
or less immediately returns (in the case of the keyboard handler, with an IRET).

So all we've done is set the wanted_popup flag: how is this going to actually
help us pop up?

Remember the INT 8 timer tick handler we installed? At each timer tick

(about 18.2 times a second, unless someone has reprogrammed the chip that gen
erates these interrupts), our TIMER routine gets woken up. Its job is to check the
wanted_popup flag:

ON TIMER ; new_int8() in TSREXAMP.C
CALL previous TIMER handler
IF NOT tsr_active

IF wanted_popup
IF NOT DosBusyO

IF NOT disk_unsafe
wanted_popup = FALSE
CALL POP UP

Once the wanted_popup flag has been set, the TIMER routine will, 18.2 times
a second, see if it's now safe to pop up. It will do this imtil it actually is safe to
pop up, at which time the flag is turned off.

Chapter 5: Memory Resident Software 299

One thing not shown in pseudocode, but appearing in the genuine code in
TSREXAMP.C and TSRUTIL.ASM, is that, for all hardware interrupts like INT 8
or INT 9, we chain to the previous handler. In addition to giving the previous in
terrupt handler an opportimity to do its thing, we also rely on the previous han
dler to send the end-of-interrupt (EOI) command to the Intel 8259A interrupt
controller. This is why you won't find the otherwise-obligatory out(0x20,0x20)
sprinkled throughout the code.

In addition to timer ticks, we can also use the Idle interrupt as a trigger for
servicing a wanted_popup request. Note also that the IDLE handler increments
and decrements the idle_int flag which is checked on entry to the POP UP rou
tine:

ON IDLE ; new_int28() in TSREXAMP.C
INCR idLe_int
IF wanted_popup

IF NOT Int28DosBusy<)
IF NOT tsr_active

IF NOT disk_unsafe
POP UP!

DECR idLe_int
CALL previous IDLE handler

Finally, how does the important disk_unsafe flag stay updated? There is tm-
fortimately not a flag in the BIOS that we can get a far pointer to as we did with
INDOS, so we hook INT 13h in order to create our own disk_unsafe semaphore:

ON DISK ; new_int13() in TSRUTIL.ASM
INCR disk_unsafe
CALL previous DISK handler
DECR disk_unsafe

ThaP s about all there is to our generic TSR. Note how decentralized the code
for a TSR is: rather than have one top-level routine that calls various subroutines,
we instead have a collection of independent handlers that will get called due to
some event taking place outside the program. The system has no top, and instead
consists of these asynchronously-invoked agents. Much is made of event-driven
programming in environments like Windows, the Macintosh, or OS/2 Presenta
tion Manager, but in reality it's not much different from what we're doing here.

300 UNDOCUMENTED DOS

Having taken this walk through the psuedocode, you should now be able to
fully understand the actual live C source code in TSREXAMRC. Many of the
variable and function names are different from our psuedocode, though. Also,
the sections which are conditionally compiled with #ifdef DOSSWAP haven't
been explained yet:

/*

TSREXAMP.C

by Raymond J- MicheLs
with revisions by Tim Peterson
and Andrew Schulman

*/

#i ncLude

#i nclude

#i ncLude

#i ncLude

#i ncLude

^i ncLude

UincLude

<stddef-h>

<stdLib.h>

<stdi o-h>

<conio-h>

<dos-h>

<bios-h>

"tsr-h"

#define STACK_SIZE 8192 /* must be 16 byte boundary */
#define SET_DTA Ox1a /* SET Disk Transfer Address */

#define GET_DTA 0x2f /* GET Disk Transfer Address */

#defi ne DOS_EXIT 0x4C /* DOS terminate (exit) */

#defi ne KEYBOARD_PORT 0x60 /* KEYBOARD Data Port */

#define PSP_TERMINATE OxOA /* Termination addr. in our PSP

#define PSP_PARENT_PSP 0x16 /* Parent's PSP from our PSP */

#define PSP_ENV_ADDR 0x2c /* environment address from PSP

#define HOT_KEY 32 /* Hot key aLong with ALT (D)*/

#defi ne RIGHT_SHIFT 1

#defi ne LEFT_SHIFT 2

#defi ne CTRL_KEY 4

#define ALT_KEY 8

#define MULTIPLEX_ID OxCO

#define INSTALL_CHECK 0x00

#define INSTALLED OxFF

#define DEINSTALL 0x01

Chapter 5: Memory Resident Software 301

/^define PARAGRAPHS(x) ((FP_OFF(x) + 15) » 4)

unsigned char muLtipLex_id = MULTIPLEXED;
char far *stack_ptr; /* pointer to TSR stack */
unsigned ss_save; /* slot for stack segment register */
unsigned sp_save; /* sLot for stack pointer register */
int tsr_aLready_active = 0; /* true if TSR active */
int pop up_whiLe_dos_busy = 0; /* true if hotkey hit while dos busy */
int int_28_in_progress = 0; /* true if INT 28 in progress */
int unsafe_f^ag = 0; /* true if INT 13 in progress */
unsigned keycode;
unsigned foreground_psp; /* PSP of process we've interrupted */
unsigned foreground_dta_seg; /* DTA of process we've interrupted */
unsigned foreground_dta_off;
char bufC203; /* work buffer */
unsigned long TerminateAddr; /* used during de-install */
union REGS regs; /* register work structures */
struct SREGS sregs;

struct ExtErr Errlnfo; /* save area for extended error info */
int hot_key; keycode for activation */
int shift_key; /* shift status bits (alt, Ctrl--) */
int user_key_set = 0;

/* Save areas for old interrupt pointers */
INTVECT old_int8, old_int9, old_int10, old_int13, old_int1b, old_int23;
INTVECT oldEnt24, old_int28, old_int2f;

#ifdef DOS_SWAP
extern int dos_critica I; /* used by DOSSWAP-C */
INTVECT oldEnt2a;
void interrupt far new_int2a(INTERRUPT_REGS);
#endi f

/* PROTOTYPES FOR THIS MODULE */

void interrupt far new_int8(INTERRUPT_REGS);
void interrupt far new_int9(INTERRUPT_REGS);
extern void interrupt far new_intl3(void); /* in TSRUTIL-ASM */
void interrupt far new_int1b(INTERRUPT_REGS);
void interrupt far newEnt23(INTERRUPT__REGS);
void interrupt far newEnt24(INTERRUPT_REGS);
void interrupt far newEnt28(INTERRUPT_REGS);
void interrupt far newEnt2f(INTERRUPT_REGS);
void tsrEunction(void);
void tsr_exit(void);
void usageCchar *);
int UnlinkVectCint Vect, INTVECT Newint, INTVECT Oldint);
void parse_cmd_line(int argc, char *argvC3);

302 UNDOCUMENTED DOS

void mainCint argc,char *argvC3);

/*********

* TIMER INTERRUPT HANDLER
*********/ ^

void interrupt far new_int8(INTERRUPT_REGS r)
i

(*oLd_int8)(); /* process timer tic */

#ifdef DOS_SWAP
if (!tsr_aLready_active 88 pop up_whiLe_dos_busy 88

!dos_criticat 88 !unsafe_fLag)
#eLse

if (!tsr_aLready_active 88 pop up_while_dos_busy 88
IDosBusyO 88 !unsafe_flag)

#endif

pop up_whiLe_dos_busy = 0;
tsr_aLready_active = 1;
_enabLe(); /* turn interrupts back on */
tsr_f unctionC);
tsr_a Lready_active = 0;

/**********

* KEYBOARD INTERRUPT HANDLER
**********/

void interrupt far new_int9(INTERRUPT_REGS r)
i

if (! tsr_aLready_active)

if ((keycode = inp(KEYBOARD_PORT)) != hot_key)
_chain_intr(oLd_int9);

if ((_bios_keybrd(_KEYBRD_SHIFTSTATUS) 8
shift_key) == shift_key)

#ifdef USES_DISK
if (!unsafe_fLag)

#endi f

popup_whiLe_dos_busy = 0;
tsr_aLready_active = 1;
(*oLd_int9)(); /* send key to old int routine */
tsr_f uncti on();
tsr_aLready_active = 0;

Chapter 5: Memory Resident Software 303

#ifdef USES_DISK
>

#endif

else

i

popup^while_dos_busy = 1;
_chain_intr (oLd_int 9);

>

else

__chain_intr(oLd_int9);
}

else

_chai n_i ntr (oLd_i nt9) ;
>

* CTRL-BREAK INTERRUPT HANDLER
•k-kit *-/(**** /

void interrupt far new_int1b(INTERRUPT_REGS r)

/* do nothing */
>

/**********

* CTRL-C INTERRUPT HANDLER
**********/

void interrupt far new__int23(INTERRUPT_REGS r)

/* do nothing */
>

/**********

* CRTITICAL ERROR INTERRUPT HANDLER
**********/

void interrupt far new_int24(INTERRUPT_REGS r)
C

if (_osmajor >= 3)
r-ax = 3; /* fail dos function */

else

r.ax = 0;
>

/**********

* DOS IDLE INTERRUPT HANDLER
**********/

void interrupt far new_int28(INTERRUPT_REGS r)
i

i nt_28_i n_progress++;

304 UNDOCUMENTED DOS

ffiidef DOS_SWAP
if (pop up_whiLe_dos_busy && !dos_criticaL

SS !tsr_aLready_active && !unsafe_fLag)
#eLse

if (pop up_whiLe_dos_busy && (!Int28DosBusy())
&& !tsr_aLready_active && !unsafe_fLag)

#endif

tsr_aLready_active = 1;
tsr_function();
tsr_a Lready_active = 0;

int_28_in_progress—;
__chain_int r(oLd_int28);

#ifdef DOS^SWAP
/*********

* DOS INTERNAL INTERRUPT HANDLER
*********/

void interrupt far new_int2a(INTERRUPT_REGS r)

switch (r-ax & OxffOO)

i

case 0x8000: /* start criticaL section */
dos_criti caL++;
break;

case 0x8100: /* end criticaL section */

case 0x8200: /* end criticaL section */
if (dos_criticaL) /* don't go negative */

dos_criticaL—;
break;

defauLt:

break;
>

_chai n_i ntr(oLd_i nt2a);
>

#endi f

/*********

* DOS MULTIPLEX INTERRUPT HANDLER
*********/

void interrupt far new_int2f(INTERRUPT_REGS r)
i

unsigned ah = r-ax » 8;
unsigned aL = r.ax & OxFF;

Chapter 5: Memory Resident Software 305

if (ah == inuLtipLex_id)
i

if (aL == INSTALL_CHECK)
r.ax 1= INSTALLED;

else if (al == DEINSTALL)

T

// because of stack swap, pass arg in static variabLe.
TerminateAddr = ((Long)r-bx « 16) + r.dx;
if (! tsr_aLready_active) /* don't exit if we're active */
i

_enabLe(); /* STI */
tsr_exit();
// If we got here, we weren't able to unLink
r.ax = OxFFFF; //let caller know we're still there
// MSC 6.0 /Ox optimizes the above instruction away
// get it back by using the value in ax
tsr_a lready_active = -r.ax;
// set to 1 to prevent any more action

>

else

_chai n_intr(old_i nt2f);

/**********

* TSR ACTIVE SECTION
**********/

void tsr_functionC)
C

set_stack();

#ifdef DOS_SWAP
if (SaveDosSwapC) && !int_28_i n_progress)

ffelse

if (DosBusyO && !int_28_in_progress)
#endif

pop up^whi le_dos_busy = 1; /* set flag: next INT 8,28 activates
us */

else

i

pop up_while_dos_busy = 0;

/* save old interrupt-CTRL-BREAK, CTRL-C and CRIT ERROR */
old_int1b = _dos_getvect(Oxib);
old_int23 = _dos_getvect(0x23);
old_int24 = _dos_getvect(0x24);

306 UNDOCUMENTED DOS

/* set our interrupts functions */
_dos_setvect(0x1 b, new_,intlb);
_dos_setvect(0x23, new_int23);
_dos_setvect(0x24, new_int24);

/* save current PSP and set to ours */

/* not needed for DOSSWAP, but can be used by application */
f oreground_psp = GetPSPO;

SetPSP(_psp); // _psp in STDLIB-H

#ifndef DOS_SWAP
/* get foreground DTA */
regs-h-ah = GET_DTA;
intdosx(®s, ®s, &sregs);
foreground_dta_seg = sregs-es;
foreground_dta_off = regs-x-bx;

#endi f

/* set up our DTA */
regs-h-ah = SET_DTA;
regs-x-dx = 0x80; /* use default in PSP area */
sregs-ds = _psp;
intdosx(®s, ®s, &sregs);

#ifndef DOS_SWAP
/* Get Extended Error Information */

GetExtErr(&ErrInfo);

#endi f

/* suck up key(s) in buffer */
while (_bios_keybrd(_KEYBRD_READY))

_bios_keybrd(_KEYBRD_READ);

/* your code goes here */
applicationO;

#ifdef DOS_SWAP
RestoreDosSwap();

#else

/* put back extended error information */
SetExtErr(&ErrInfo);

/* put back original DTA */
regs-h-ah = SET_DTA;
regs.x.dx = foreground_dta_off;
sregs-ds = foreground_dta_seg;

Chapter 5: Memory Resident Software 307

intdosx(®s, ®s, &sregs);

/* put back original PSP */
SetPSPCforeground_psp);

#endi f

/* put back original INTS */
_dos_setvect(0x1b, old_intlb);
_dos_setvect(0x23, old_int23);
_dos_setvect(0x24, old_i nt24);

>

restore_stack();

// only restores Oldint if someone hasn't grabbed away Vect
int UnlinkVect(int Vect, INTVECT Newint, INTVECT Oldint)

if (Newint == _dos_getvect(Vect))

_dos_setvect(Vect, Oldint);
return 0;

>

return 1;

void tsr_exit(void)

set_stack();
/* put interrupts back the way they were, if possible */

if (!(UnlinkVect(8, new_int8, old_int8) |
UnlinkVect(9, new_int9, old_int9) | // Do not use ||, we
UnlinkVect(0x28, new_int28, old_int28) | // don't want early out
UnlinkVect(0x13, new_int13, old_int13) |

#ifdef DOS_SWAP
Unli nkVect (Ox2a, new_int2a, old__int2a) |

#endi f

UnlinkVect(0x2f, new_int2f, old_int2f)))

// Set parent PSP, stored in our own PSP, to the current PSP
*(int far *)(((long)_psp « 16) + PSP_PARENT_PSP) = GetPSPO;

I

// Set terminate address in our PSP

*(long far *)(((long)_psp « 16) + PSP_TERMINATE) =
Termi nateAddr;

308 UNDOCUMENTED DOS

/* set psp to be ours */
SetPSP(_psp);

/* exit program */
bdos(DOS_EXIT, 0, 0);

>

restore_stack();

void usageCchar *progname)

fputsC'Usage: stdout);
puts(progname);
putsC C-d to deinstaLLH C-k keycode shift-status] C-f multiplex id!");
putsC
putsC
putsC
putsC
putsC
putsC
putsC

Valid multiplex id");
00 through 15 specifies a unique INT 2F ID");

Valid shift-status is any combination of:");
1 = Right Shift");
2 = Left Shift");
4 = CTRL");
8 = ALT");

exit(l);

void do_deinstall(char *progname)
i

fputsCprogname, stdout);
switch (deinsta11()y

case 1:

putsC" was not installed");
break;

case 2:

putsC" deinstaIled");
break;

default:

putsC" deactivated but not removed");
break;

>

exit(O);

int set_shift_key(unsigned sh)
i

/* figure out, report on shift statuses */
/* make sure shift key < 0x10 and non-zero */

Chapter 5: Memory Resident Software 309

if (((shift_key = sh) < 0x10) && shift_key)

printf("Activation: %s%s%s%sSCAN=%d\n",
shift_key & RIGHT_SHIFT ? "RIGHT " : "",
shift_key & LEFT_SHIFT ? "LEFT " : "",
shift_key & CTRL_KEY ? "CTRL " : "",
shift_key & ALT_KEY ? "ALT " : "",

hot_key);
return 1;

>

else /* error, bad param */

putsC'InvaLid Shift-Status");
return 0;

>

void parse_cmd_Line(int argc, char *argvCII)
i

int i;
int tmp;

for (i = 1; i < argc; i++) /* for each cmdline arg */
if ((argvCiUCOD == '-') || (argvEiDCOD == '/'))

swi tchCtoupper(argvUi icIU))
i

case 'D':

do_dei nsta L LCargvCOD);
break;

case 'K': /* set pop up key sequence */
user_key_set =1;
i++; /* bump to next argument */
if ((hot_key = atoi (argvCi II)) != 0)

i++; /* bump to next argument */
if (! set_shift_key(atoi(argvCi])))

usage(argvCOIl);
>

else

usageCargvUOD);
break;

case 'F': /* set multiplex ID */
i++; /* bump to next argument */
if ((tmp = atoi(argvCi3)) < 0x10)

multiplex_id += tmp; /* range of CO-CF */
else

310 UNDOCUMENTED DOS

usageCargvCOD);
break;

default: /* invalid argument */
usageCargvEOH);

> /* end switch */

else

usageCargvCOH);

void mainCint argc,char *argvIIII)
i

union REGS regs;
struct SREGS sregs;

unsigned far *fp;
unsigned memtop;
unsigned dummy;

Ini tInDosC);

parse_cmd_line(argc,argv);

/* check if TSR already installed! */
regs-h-ah = multiplex_id;
regs.h.al = INSTALL_CHECK;
int86(0x2f, ®s, ®s);
if (regs.h.al == INSTALLED)

putsC'TSR already installed");
fputsCargvCOn, stdout); putsC -D de-installs");
exi t(1) ;

if (I user_,key_set)
i

putsC'Press ALT-D to activate TSR ");
printf("Multiplex ID = %0x \n",multiplex_id);
hot_key = HOT_KEY;
shift_key = ALT_KEY;

#ifdef DOS_SWAP
if (InitDosSwapC) 1= 0)
i

putsC'Error initializing DOS Swappable Data Area");
exit(1);

>

#endi f

Chapter 5: Memory Resident Software 311

/* MALLOC a stack for our TSR section */

stack_ptr = maLloc(STACK_SIZE);
stack_ptr += STACK_SIZE;

/* get interrupt vector */
oLd_int8 =
oLd_int9 =
oLd_int13 =
oLd_int28 =
oLd int2f =

_dos_getvect(8);
_dos_getvect(9);
_dos_getvect(0x13);
_dos_getvect(0x28);
_dos_getvect(0x2f);

/* timer interrupt */
/* keyboard interrupt */
/* disk intr, in TSRUTIL-ASM */
/* dos idle */

/* multiplex int */

/* in TSRUTIL.ASM */

#ifdef DOS_SWAP
old_int2a = __dos_getvect(0x2a); /* dos internal int */

#endi f

init_intr(); /* initialize int routines in TSRUTIL.ASM */

/* set interrupts to our routines */
_dos_setvect(8, new_int8);
_dos_setvect(9, new_int9);
_dos_setvect(0x13, new_int13);
__dos_setvect(0x28, new_int28);
_dos_setvect(0x2f, new__int2f);

#ifdef DOS_SWAP
_dos_setvect(0x2a, new_i nt2a);

Uendif

/* release environment back to MS-DOS */

FP_SEG(fp) = _psp;
FP_OFF(fp) = PSP_ENV_ADDR;
_dos_freemem(*fp);

/* release unused heap to MS-DOS */
/* All MALLOCS for TSR section must be done in TSR_INIT() */
/* calculate top of memory, shrink block, and go TSR */
segread(8sregs);
memtop = sregs-ds + PARAGRAPHS(stack__ptr) - _psp;

_dos_setblock(memtop, _psp, &dummy);
_dos_keep(0, memtop);

TSREXAMP.C #includes the rather uninteresting, but necessary, TSR.H,
which contains typedefs and function prototypes for all the modules that make
up the generic TSR:

312 UNDOCUMENTED DOS

/* TSR Prototype file and common variables */

^define INTERRUPT void interrupt far

typedef struct {
unsigned es, ds, di, si, bp, sp;
unsigned bx, dx, cx, ax, ip, cs, flags;
> INTERRUPT_REGS;

typedef void (interrupt far *INTVECT)();

/* Prototypes for functions in INDOS-C */
int DosBusy(void);
int Int28DosBusy(voi d);
void Ini tlnDos(void);

/* Prototypes for functions in PSP.C */
unsigned GetPSP(void);
void SetPSPCunsigned segPSP);

/* Prototypes for functions in TSRUTIL.ASM */
int far deinstalKvoid);
void far init_intr(void);
void far idle_i nt_chain(void);
void far init_intr(void);

void interrupt far
void interrupt far
void interrupt far
void interrupt far

new_int10(void);
new__int13(void);
new_int25(void);
new_int26(void);

void far timer_int_chain(void);

/* Prototypes for functions in STACK-ASM */
void far set_stack(void);
void far restore__stack(void);

/* Prototypes for functions in EXTERR.C */
void GetExtErrCstruct ExtErr * Errlnfo);
void SetExtErr(struct ExtErr * Errlnfo);

struct ExtErr

<.

unsigned int errax;
unsigned int errbx;
unsigned int errcx;

>;

Chapter 5: Memory Resident Software 313

/* Prototypes for functions in DOSSWAP.C */
i nt Ini tDosSwapCvoid);
i nt SaveDosSwapCvoid);
void RestoreDosSwap(void);

/* Pointer defined in INDOS-C */

extern char far * indos_ptr;

extern char far * crit_err_ptr;

Finally, there's TSRUTIL.ASM, which contains miscellaneous routines which
we either didn't want to write in C, or couldn't:

;TSRUTIL.ASM

;Defi ne segment names used by C

Itext
_TEXT

segment

ends

byte public 'CODE'

CONST

CONST

segment

ends

word public ■ CONST'

_BSS

_BSS

segment

ends

word public ■ BSS'

 11
>> H■1- >>

segment
ends

word public ' DATA'

DGROUP GROUP CONST , _BSS, _DATA

assume CS:_TEXT, DS:DGROUP

public _new_int13, _init_intr
IFDEF MULTI

publi c _t imer_i nt_chai n
public _new_int10, _new_int25, _new_int26

ELSE
public ^.deinstall

ENDIF

extrn _ss_save:near ;save foreground SS
extrn _sp_save:near ;save foreground SP
extrn _unsafe_flag:near ;if true, don't interrupt
extrn _old_i nt13:near

IFDEF MULTI
extrn old int8:near

314 UNDOCUMENTED DOS

extrn _oLd_i nt10:near
extrn _oLd_i nt25:near ; note difference between
extrn _oLd_int26:near ; oLd_int25 and _old_int25!

ELSE

extrn _muLtipLex_id:near ;our int 2f id byte
ENDIF

_TEXT segment

IFNDEF MULTI

f

/void far deinstalL(void)
/function to use int 2f to ask TSR to deinstall itself
/the registers are probably all changed when our tsr exits
/so we save then and perform the INT 2f, The TSR exit will
/eventually bring us back here. Then the registers are restored
/This function is called from the foreground, not the TSR

DEINSTALL equ 1

^.deinstall proc far
push si
push di
push bp
mov word ptr _ss_save,ss /save our stack frame
mov word ptr _sp_save,sp

mov cs:_ds_save,ds / save DS for later restore

mov bx,cs
mov dx,offset TerminateAddr /bx:dx points to terminate address
mov ah, byte ptr _multiplex__id
mov al, DEINSTALL
int 2fh /call our TSR

r

/if TSR terminates ok, we'll skip this code and return to Terminate Addr

r

jmp short NoTerminate

TerminateAddr:

/Restore DS and stack

mov ax,cs:_ds_save /bring back our data segment
mov ds,ax /destroyed by int 2f

mov al,2 /Set value for success

mov ss, word ptr _ss_save /restore our stack

Chapter 5: Memory Resident Software 315

mov sp, word ptr _sp_save /destroyed by int 2f

NoTerminate:

cbw /Extend return value to word
pop bp
pop di
pop si
ret

^.deinstall endp
ENDIF

-*****
r

/void inc__unsaf e_f Lag(void) - increment unsafe flag
-*****
f

inc_unsafe_flag proc far
push ax
push ds
mov ax,DGROUP /make DS = to our TSR C data segment
mov ds^ax

inc word ptr _unsafe_flag

pop ds ;put DS back to whatever it was
pop ax

ret

inc_unsafe_f lag endp

-*****
r

/void dec_unsafe_flag(void) - decrement unsafe flag
-*****
r

dec_unsafe_flag proc far
push ax
push ds
mov ax,DGROUP /make DS = to our TSR 'C data segment
mov dSy^ax

dec word ptr __unsafe_f lag

pop ds ;put DS back to whatever it was
pop ax

ret

dec_unsafe_f lag endp

/we can't trap the following interrupts in C for a number of
/reasons

/ INT 13 returns info in the FLAGS, but a normal IRET
/ restores the flags

316 UNDOCUMENTED DOS

INT 25 & 26 Leave the flags on the stack- The user
must pop the off after performing an INT 25 or 26

These interrupts pass information via registers such
as DS. We don't want to change DS-

Since DS is unknown, we must call the old interrupts
via variables in the code segment. The _init_intr routine
sets up these CS variables from ones with nearly-identical
names in the C data segment in TSREXAMP.C.

void far init_intr(void)
move interrupt pointer saved in the C program to our CS data area

/■

i ni t.intr proc far
push es

push bx

IFDEF MULTI
les bx,dword ptr _old_int10
mov word ptr cs:old_int10,bx
mov word ptr cs:old_int10+2,es

les bx,dword ptr _old_int25
mov word ptr cs:old_int25,bx
mov word ptr CS:old_i nt25+2,es

les bx,dword ptr _old_int26
mov word ptr cs:old_int26,bx
mov word ptr cs:old_int26+2,es

ENDIF
; note incredibly confusing distinction
; between e.g. _old_int13 and old__int13
les bx,dword ptr _old_int13
mov word ptr cs:old_int13,bx
mov word ptr cs:old_int13+2,es

pop

pop

ret

_init_intr endp

bx
es

;void far new__int13(void)
■ *****

- disk interrupt

Chapter 5: Memory Resident Software 317

_new_int13 proc far
ca L L inc_unsafe_f Lag
pushf /simulate interrupt calL
call cs:old_int13
ca LL dec_unsafe_f lag
ret 2 ; leave flags intact

_new_int13 endp

IFDEF MULTI

/void far new_int10(void) - video interrupt

r

_new_int10 proc far
ca11 i nc_unsafe_f lag
pushf /simulate interrupt call
call cs:old_int10
ca11 dec_unsafe_f lag
i ret

_new_int10 endp

/void far new_int25(void) - MS-DOS absolute sector read

f

_new_int25 proc far
ca11 i nc_unsafe_f lag
call cs:old_int25
call dec_unsafe_f lag
ret / user must pop flags - MS-DOS convention

/ so leave them on the stack
_new_int25 endp

r

/void far new_int26(void) - MS-DOS absolute sector write

_new_int26 proc far
ca 11 i nc_unsafe_f lag
call cs:old_int26
ca 11 dec_unsafe_f lag
ret / user must pop flags - MS-DOS convention

/ so leave them on the stack
_new_int26 endp

r

/void far timer_int_chain(void) - jump to next timer ISR
/we need to clean up the stack because of this call

_timer_int_chain proc far

318 UNDOCUMENTED DOS

mov _ax_save,ax

pop ax

pop ax

mov ax,_,ax_save

jmp dword ptr _oLd_int8
_timer_i nt_chain endp
ENDIF

;save areas for original interrupt vectors

IFDEF MULTI

oLd_int10 dd 0 ;video
oLd_int25 dd 0 /sector read
oLd_int26 dd 0 /sector write
ENDIF

oLd_iht13 dd 0 /disk

_ds_save dw 0
_TEXT ends

_DATA segment

IFDEF MULTI

_ax_save dw 0
ENDIF

_DATA ends

end

TSR Command-Line Arguments

Any program built with the generic TSR can take optional command-line argu
ments that set its hotkey and its Multiplex Interrupt ID number. A command-line
option is also available to deinstall the TSR, the implementation of which will be
discussed in detail later on.

The command-line syntax is;

CtsrnameD C-k scan shiftD C-f muLtipLex_idD C-d deinstaLls]

Valid shift-status is any combination of:

1 = Right Shift
2 = Left Shift

4 = CTRL

8 = ALT

Chapter 5: Memory Resident Software 319

Valid multiplex id

00 through 15 specifies a unique INT 2F ID starting at AH=COh

The default hotkey is Alt-D, and the default Multiplex ID is 0 (which turns
into INT 2Fh Function COh). Specifying alternate hotkeys and Multiplex IDs
makes it possible to simultaneously run multiple programs built with the generic
TSR. Finally, to deinstall a TSR whose Multiplex ID is not the default, you must
specify use both the -F and -D switches. For example:

C:\UNDOOtsrfile -k 59 8

TSRFILE hotkey is Alt-F1 (F1 decimal scancode is 59)
TSRFILE multiplex ID is default COh

C:\UNDOOtsrmem -k 60 4 -f 1

TSRMEM hotkey is Ctrl-F2 (F2 decimal scancode is 60)
TSRMEM multiplex ID is C1h

C:\UNDOOtsrmem -f 1 -d

TSRMEM deinstalled

Writing TSRs with the DOS Swappabie Data Area (SDA)

Undocumented INT 21h Function 5D06h for DOS 3.1 through 3.3, and Function
SDOBh for DOS 4.x, gives us access to the DOS SDA. This is a block of data that
contains the current context of MS-DOS. The context of MS-DOS includes the

current PSP segment, and the three MS-DOS stacks, as discussed earlier, and as
shown in gory detail in Appendix A. If the List of Lists (LoL) is the key to DOS's
data, then the SDA is DOS's data. For example, when INT 21h Fimction 51h or
62h return the current PSP, where do you think they get it from? From the SDA.
Ever wonder exactly how large each of DOS's three stacks is? Just look at SDA:
they're in there! In the previous chapter, we made extensive use of the SDA in
order to implement our network redirector. The SDA is essentially the DOS data
segment. In DOS 4 and higher, there can be multiple SDAs.

What does this have to do with TSRs? Rather than wait for some time when

there's no danger of reentering DOS as we've been doing up to now, a TSR can
actually use Functions 5D06h and SDOBh to safely reenter MS-DOS by saving and
restoring the SDA. This allows us to call MS-DOS at almost any time without
having to wait imtil the DOS flags indicate it is safe.

320 UNDOCUMENTED DOS

These functions are used in conjunction with INT 2Ah. When undocumented
INT 2Ah is invoked, it indicates that DOS is in a "critical section." When DOS is

in a critical section, you cannot change the SDA. The end of a critical section is in
dicated by a caU to imdocumented INT 2Ah Functions 81h or 82h. Note that INT
2Ah is invoked by MS-DOS and not by your application: you need to write an in
terrupt handler for INT 2Ah.

INT 21h Fimction 5D06h returns the following information:

DS:SI - points to DOS swappable data area
DX - size of area to swap when InDOS > 0
CX - size of area to always swap

INT 21h Function SDOBh (for DOS 4 and higher) returns in DS:SI a pointer to
an SDA list, which contains:

Offset Size Description

OOh WORD Count of SDAs

SDA_ENTRY:
02h DWORD Address of this SDA

06h WORD Data area length and type:
bit 15 - set if swap always

clear if swap while InDOS > 0
bits 14-0 - length in bytes

08h next SDA_ENTRY

To reiterate, these functions give us pointers to the data area(s) that contains
all of the information related to the current process and information specific to a
DOS call that may be in progress. Smce MS-DOS switches stacks when invoked
via INT 21h, it is seemingly not reentrant. But since the stacks are part of this
data area, we can save their current information (by moving the entire swappable
data area) and immediately call DOS without fear of trashing DOS's internal
stacks and variables!

In previous sections, we checked the DOS flags to determine if it was safe to
activate and, once activated, we saved the current PSP, DTA and extended error

information. Using the DOSSWAP method you eliminate these steps. We can de
termine if it is safe to pop up by tracking the INT 2Ah critical-section calls. If we

Chapter 5: Memory Resident Software 321

are not in critical section, we can call DOS. If INDOS is zero, we just need to save
the data area that is always swapped (iypically 18h bytes). If INDOS is non-zero,
then all swappable data areas must be saved (typically 73Ch bytes, less than
2KB).

We save the data to a memory block that was allocated during TSR initializa
tion (see the InitDosSwap function in DOSSWAP.C below). In our C TSR, this
malloc must be performed before the TSR stack is allocated. Once the data area
has been saved, we set the current PSP and DTA values to those for our TSR.

When it is time for the TSR to exit, we just move back the SDAs that we've saved.
Since this data block contains the current PSP, DTA and extended error informa

tion, we don't need to deal directly with these values.
Note: At the time of this writing, is it not clear if the DOS SDA list returned

by 215D0B is static when MS-DOS is booted, or if it is changed dynamically dur
ing the course of MS-DOS execution. It appears that 215D06 and 215D0B return
identical information for MS-DOS 4.1. To keep room for future DOS changes, you
may want to malloc a large block during TSR initiahzation to hold potentially
many DOS data blocks.

The following C module contains functions for saving and restoring the DOS
SDA:

/* DOSSWAP.C - Functions to manage DOS swap areas */

#1ncLude <stdLib.h>

^include <dos.h>

^include <memory.h>
^include "tsr.h"

Sdefine GET_D0SSWAP3 0x5d06
^define GET_D0SSWAP4 OxSdOb

#define SWAP_LIST_LIMIT 20

struct swap_list /* format of DOS 4+ SDA List */
C

void far* swap_ptr;
int swap_si2e;

>;

/* variables for 3.x swap work */
static char far * swap_ptr; /* pointer to dos swap area */
static char far * swap_save; /* pointer to our local save area */

322 UNDOCUMENTED DOS

static int swap_size_i ndos;
static int swap_size_a Lways;
static int size;

/* variables for 4-x swap work */
static int swap_count; /* count of swappable areas */
static struct swap_list swp_ListCSWAP_LIST_LIMIT]; /*List of swap
areas*/

static char far *swp_saveCSWAP_LIST_LIMIT3; /* out save area */
static int swp_fLagCSWAP_LIST__LIMIT!]; /* flags if has been swapped */

static int dos_level; /* for level dependent code */
int dos_critical; /* in critical section, can't swap */

/*****

Functi on: Ini tDosSwap
Initialize pointers and sizes of DOS swap area- Return zero if success
***** j

int InitDosSwapCvoid)

union REGS regs;
struct SREGS segregs;

if ((_osmajor == 3) && (_osminor >= 10))
dos_level = 3;

else if (_osmajor >= 4)
dos_level = 4;

else

dos_level = 0;

if (dos_level == 3) /* use 215D06 */

regs.X.ax = GET_D0SSWAP3;
intdosx(®s,®s,&segregs);
/* pointer to swap area is returned in DS:SI */
FP_SEG(swap__pt r) = segregs-ds;
FP_OFF(swap_ptr) = regs-x-si;

swap_size_indos = regs-x-cx;
swap__si ze_a lways= regs -x.dx;

size = 0; /* initialize for later */
return ((swap_save = ma Iloc(swap_size_i ndos)) == 0);

>

else if (dos_level >= 4) /* use 5dGb */

struct swap_list far *ptr;

Chapter 5: Memory Resident Software 323

int far *iptr;
i nt i;
regs-x.ax = GET_D0SSWAP4;
i ntdosx(®s,®s,&segregs);
/* pointer to swap List is returned in DS:SI */
FP_SEG(iptr) = segregs-ds;
FP_OFF(iptr) = regs-x.si;
swap_count = *iptr; /* get size of List */
iptr++;
ptr = (struct swap_List far *) iptr; /* create point to List */

if (swap_count > SWAP_LIST_LIMIT) /* too many data areas */
return 2;

/* get pointers and sizes of data areas */
for (i = 0; i < swap_count; i++)

swp_ListCiH-swap_ptr = ptr->swap_ptr;
swp_Li stEi I] - swap_si ze= pti—>swap_si ze;
if (!(swp_saveCi3 = maLLoc(swp_ListCi3-swap_size & 0x7fff)))

return 3; /* out of memory */
swp_fLagCi3 = 0;
ptr++; /* point to next entry in the List */

>

return 0;

>

eLse

return 1; /* unsupported DOS */

/*****

Functi on: SaveDosSwap

This function wiLL save the dos swap area to a LocaL buffer
It returns zero on success, non-zero meaning can't swap
*****/

int SaveDosSwap(void)

if (dos_LeveL == 3)
T

if (swap_ptr && !dos_criticaL)
T

/* if INDOS fLag is zero, use smaLLer swap size */
size = (*indos_ptr) ? swap_size_indos : swap_size_aLways;

movedataC FP_SEG(swap_ptr), FP_OFF(swap_ptr),
FP_SEG(swap_save), FP_OFF(swap_save),
si ze);

324 UNDOCUMENTED DOS

y

else /* can't swap it */
return 1;

>

else if (dos_LeveL == 4)

/* Loop through pointer List and swap appropriate items */
int i;
for (i = 0; i < swap^count; i++)
i

if (swp_Li stCi II -swap_si ze & 0x8000) /* swap aLways */
i

movedataC FP_SEG(swp_Li stCi]-swap_ptr),
FP_OFF(swp_Li stCi II .swap_ptr),
FP_SEG(swp_saveCi II),
FP_OFF(swp_saveEi 3),
swp_Li stCi II. swap_si ze & 0x7fff);

>

eLse if (*indos_ptr) /* swap onLy if dos busy */
il

movedataC FP_SEG(swp_Li stCi I] - swap^ptr),
FP_OFF(swp_Li stEi II ■ swap_ptr),
FP_SEG(swp_,saveEi U),
FP_OFF(swp_saveEi H),
swp_Li StCi II - swap_si ze);

>

eLse

return 1;

return 0;

/*****

Function: RestoreDosSwap
This function wiLL restore a previousLy swapped dos data area
***** j

void RestoreDosSwap(void)
T

if (dos_LeveL == 3)
T

/* make sure its aLready saved and we have a good ptr */
if (size 88 swap_ptr)
T

movedataCFP_SEG(swap_save), FP_OFF(swap_save),
FP_SEG(swap_ptr), FP_0FF(swap_ptr), size);

Chapter 5: Memory Resident Software 325

size = 0;
>

>

else if (dos_level == 4)

int i;
for (i = 0; i < swap_count; i++)

movedataC FP_SEG(swp_saveCi]),
FP_OFF(swp_saveCi]),
FP_SEG<swp_li stCi 3.swap_ptr),
FP_OFF(swp_Li stCi D.swap_ptr),
swp_ListCiIl.swap_size);

swp_flagCi] = 0; /* clear flag */

To try out the new DOSSWAP method for building TSRs, recompile
TSREXAMP.C with -DDOSSWAP, and link with the DOSSWAP module: see the

makefile shown earlier in this chapter.
To use the DOSSWAP method in the multitasking non-pop-up example pre

sented later, we would need to save not only the foreground data area (data
belonging to the process we are interrupting), but the background data area (our
TSR's data) as well. The SDA for the TSR could be saved during TSR initializa
tion. Using this method, we would not need to deal with PSP, DTA, and
Extended Error values at all since they would already exist in the SDA! By
always saving and restoring the data area, it may make it easier to design some
sort of round-robin task switcher. A hotkey could step through a number of inde
pendent applications. Interestingly, the Microsoft Windows 3.0 multitasker uses
the imdocumented SDA functions.

If you have examined the actual contents of the DOS SDA in ovur appendix,
you can see that this area is quite large. Because of this you may need to weigh
the advantages and disadvantages of using the SDA. The primary advantage of
using the SDA in TSRs is that you can activate almost anytime while DOS is busy
(unless, of course, a critical section has been flagged via INT 2Ah). This would be
most beneficial for multitasking or roimd-robin task switching, since the
response to a task switch would be almost instantaneous. In our generic pop-up
TSR, for example, using DOSSWAP allows us to pop up instantly in the middle
of a TYPE command.

326 UNDOCUMENTED DOS

There are two disadvantages. One is that this function requires memory to
save the data area(s). This problem could be lessened by swapping the data to ex
tended or expanded memory. Second, this technique is new and its effectiveness
has yet to be determined. It's something that you must play with, and prove to
yourself that it really works.

Removing a TSR

A TSR can often, but not always, be safely and completely removed from mem
ory. When a TSR is removed correctly, there will be no evidence that it was ever
installed. Recall our discussion in chapter 4 of orphaned file handles in the Sys
tem File Table (SFT). The final proof of total removal is demonstrated if the TSR is
initially loaded with output redirection; for example, TSRFILE >TSROUT. The re
directed output file is closed and the handle released only if the TSR is fully re
moved in the proper way. Otherwise, you may release memory and put back
interrupt vectors, but there's still that orphan languishing in the SFT. The
FREEUP utility presented in chapter 4 was just a work aroimd. Here, you will see
how to remove a TSR so you don't leave behind orphans in the first place.

There is one condition that will always prevent the full removal of a TSR. If,
at the time TSR removal is attempted, a subsequent program has chained into
any of the same interrupt vectors as our TSR, then our TSR must not be removed.
The problem is that there is no way to imlink our TSR from the middle of the in
terrupt chain.

Consider the case of TSRFILE, when some other TSR has loaded afterward

and chained into INT 9, the keyboard interrupt. When a key is typed, this other
TSR will be called first, since its address is now the one stored in the interrupt
vector table. It may or may not process the keystroke, but in any case it will call
the routine whose address was in the interrupt table before it took over—that
will be TSRFILE. If TSRFILE is no longer in memory, the system will crash.

We would probably like to be able to stop the new TSR from calling TSRFILE,
and instead have it call the address that was there before TSRFILE loaded—the

one stored in old_int9. But there's no way to teU the new TSR to do that, or to
find the place where it stores the chaining address so we can change it. And we
can't just set the interrupt table back to the vectors we originally foimd there, be
cause then the new TSR won't be chained in anjnnore. Not only will this keep the
new TSR from working correctly, but it might crash the system if the new TSR is
chained into some vectors (ones TSRFILE didn't use) but not others.

Chapter 5: Memory Resident Software 327

Another obstacle to fully removing a TSR is that the TSR and the current pro
cess must cooperate to make it work. This means that the TSR can be removed by
t5rping a command, but it can't completely remove itself on its own. For example,
a print spooler TSR cannot completely remove itself when the last job is done
printing; nor can a pop-up TSR fully remove itself when an appropriate hot key
is typed. In these cases it is possible to shrink memory usage to practically noth
ing, but the add test (closing the redirected output file) will fail, leaving a file
handle that is either permanently lost or that needs the FREEUP treatment.

Our generic TSR is removed from the command line. For example, TSRFILE
-D. In other words, after one copy of TSRFILE has been installed as a TSR, a sec
ond copy can be loaded with the -D argument to remove the first.

The generic TSR uses ESJT 2Fh, the Multiplex Interrupt, for communication
between these two copies of the program. The INT 2Fh function nrunber (AH
value) can be set by the user from the command line, but the subfunctions (AL
value) are 0 (install check) and 1 (deinstall check). Note that the use of subfimc-

tion 0 for the install check is dictated by the standard Multiplex Interrupt interface.
Here are the required steps for deinstalling:

1. See if the interrupt vectors we chained into have been changed. Restore aU
that haven't. If any have, disable TSR operation but skip the remaining steps,
leaving the TSR in memory.

2. The PS? of the TSR holds the value of its parent's PSP at offset 16h. Set this
field to the PSP of the current process (i.e., the second non-resident copy of
the TSR program).

3. The PSP of the TSR also holds the far address to retxirn to when termination is

complete, at offset OAh. Set this field to an appropriate address within the
current process.

4. Set the current PSP to the PSP of the TSR.

5. Execute the normal DOS Terminate fimction (INT 21h Function 4Ch). This

will free aU memory allocated to the TSR, close all files, and use the parent-
PSP and termination-address information placed in the PSP.

6. Execution resumes back in the originating process at the address set into the
TSR's PSP. The PSP is set to the current process (because we put it in the
TSR's PSP). All registers have unknown values, including the stack. SS and
SP are set to the values they had when the TSR was invoked, which is a valid

328 UNDOCUMENTED DOS

stack but not within the current process's memory space. (Normally it is
COMMAND.COM's stack.)

The assembly-language helper used to call the TSR with INT 2Fh restores the
necessary registers (see _deinstall in TSRUTIL.ASM, shown earlier).

The first step, restoring the interrupt vectors, is always done by the TSR. The
remaining steps can be done by the current process, if the TSR returns the value
of its PSP via a prearranged interface (most Ukely, INT 2Fh).

However, the deinstall code in TSRlJnL.ASM and TSREXAMRC works dif

ferently: it has the TSR do all the steps up to and including step 5, performing the
DOS Terminate function. It starts when the second copy of the TSR, invoked with
the -D option, performs an INT 2Fh with AX=C001h. This interrupt is intercepted
by the TSR copy of TSRFILE, which assumes the terminate address is BX:DX. If
any of the interrupt vectors used by the TSR have been chained by someone else,
then the TSR returns from the INT 2Fh with AL=OFFh. Otherwise, the vectors are

restored, and the terminate address kept in the PSP are set to the values passed
in. The parent's PSP value, also kept in the PSP, is set by calling GetPSP (INT 21H
Function 51 h or 62h) to get the PSP of the current process.

It's possible that the INT 2Fh will instead return, indicating that one or more
of the interrupt vectors have been changed and the TSR is xmable to unlink, or
that the TSR was not installed in the first place. In the first case, the TSR will have
set AL=OFFh to let the caller know it tried to unlink but failed. In the second case,

AL will be vmchanged at 0. The generic TSR reports both of these conditions.

Sample TSR Programs

To exercise our generic TSR, we built three different simple TSRs, two of which
are pop-up versions of programs from other parts of this book.

TSRFILE

The first sample program, TSRFILE, demonstrates that we really can make DOS
file I/O and memory allocation calls while we're popped up in the middle of
some other program. When TSRFILE pops up, it prompts the user for a filename
and then displays the file on the screen. No screen saving/restoring amenities are
provided.

FILE.C uses the Microsoft C _dos functions to do file I/O and memory alloca
tion. These fimctions translate directly into the appropriate INT 21h calls, and are

Chapter 5: Memory Resident Software 329

thus preferable to using the intdos or int86 functions. Instructions for turning
FILE.C into TSRFILE.EXE are found in the makefile shown earlier in this chapter;
it can also be compiled as a stand-alone FILE.EXE:

#incLude <dos.h>

^include <conio-h>

^include <fcntL-h>

^include <share-h>

char f i Le_prompt[!] = "File?
char cant_openniI = "Can't open fiLe\r\n";
char error_readingCII = "Error reading fiLe\r\n";
char i nsuf f_memll] = "Insufficient memory; Press any key \r\n";
char crLfC!] = "\r\n";

#define PUTSTR(s) \

_dos_write(STDERR, (char far *) s, sizeof(s)-1, &wcount)

^define MIN_PARAS 4
^define WANT_PARAS 64
^define BYTES (paras « 4)

^define STDERR 2

#ifdef TSR

appLi cation(void)
#e Lse

main(void)

#endif

C

char bufCSID;
char far *s;
unsigned rcount, wcount, ret, paras, seg;
int f;

/* prompt for filename */
if (PUTSTR(fiLe_prompt) != 0)

return;

/* get fi Lename */
if ((_dos_read(STDERR, buf, 80, &rcount) != 0) || (rcount < 3))

return;

/* replace CRLF with NULL */
buf Crcount-211 = 'XG';

/* try to allocate: first try a lot, then a little */

330 UNDOCUMENTED DOS

if (_dos_aLLocmemCWANT_PARAS, &seg) == 0)
paras = WANT_PARAS;

else if (_dos_aLLocmem(MIN_PARAS, &seg) == 0)
paras = MIN_PARAS;

else

PUTSTRC i nsuf f_mem);
return;

>

FP_SEG(s) = seg;
FP_OFF(s) = 0;

/* open file */
if (_dos_open(buf, 0_RDWR | SH_DENYNO, &f) != 0)

return PUTSTRC cant_open);

/* display file */
while (((ret = _dos_read(f, s, BYTES, &rcount)) == 0) && rcount)

if (_dos_writeCSTDERR, s, rcount, &wcount) != 0)
break;

/* write one more CRLF */

PUTSTRCcrlf);
if (ret)

PUTSTRC err or__readi ng);

/* free memory */
_dos_f reemem(seg);

/* close file */

_dos_close(f);

PUTSTRC'Press any key-.-");
>

Note that FE^E.G makes two stabs at allocating memory, because if we pop
up over COMMAND.COM, there is almost no free memory available: the largest
block in memory is used by COMMAJSID, and all that's left are little dribs and
drabs (like the environment we freed during TSR initialization). We'll can see this
situation when we run the MEM program as a TSR:

TSRMEM

One problem with the MEM program presented in chapter 3 was that, since it
was a stand-alone program, we could only examine the memory map from
within MEM itself. By putting the generic TSR and MEM together to form

Chapter 5: Memory Resident Software 331

TSRMEM.EXE, we can examine the memory map within other programs. For ex
ample, we can clearly see how COMMAND grabs the largest chunk of memory,
leaving almost nothing free:

C:\UNDOOtsrfi Le

C:\UNDOOtsrinem -k 59 8 -f 1

C: \UNDOO\sideki ck\sk

CHit TSRHEM hotkey, Alt-Fi:
Seg Owner Si ze

09F3 0008 00F4(3904) config C15 4B 67 :

0AE8 0AE9 00D3(3376) 0BC1 c:\dos33\command.coRi C22 2E 1

OBBC 0000 0003(48) free

OBCO 0AE9 0019(400)

OBDA 171A OOOD(208)

0BE8 0000 0000(0) free

0BE9 OBEA 0575(22352) CF1 FA]

115F 1160 05B9(23440) -k 59 8 -f 1 CIB 23 24 2F F4

F5 :

1719 171A 19B5 (105296) OBDB C:\SIDEKICK\SK.COM 1108 09 10 13

16 1C 21 25 26 28 1

30CF 0AE9 8730 (553728) C30 F8 D

B800

Note that the largest block in the MCB chain, totalling 8730h paragraphs, is
not marked "free." Instead, if s owned by PSP 0AE9. Looking back along the MCB
chain (which also functions as a PSP chain), we see that 0AE9 is COM-

MAND.COM. In fact, there are only three paragraphs of free memory, located di
rectly after COMMAND. Even the environment we freed in TSRMEM was
picked up by SideKick for use as its environment. If we hit TSRFILE's hotkey
(Alt-D) at this point, it will ask us for the filename and then report "Insufficient
memory."

However, if we leave COMMAND by running an appUcation, and hit Alt-D,
there will generally be plenty of memory, because the largest block is no longer
being hogged by COMMAND. Again, this shows up clearly if we hit TSRMEM's
hotkey within some other application (like Lugaru's EpsBon, used to edit this
file). The MCB belonging to COMMAND.COM has now been replaced by the
following:

30CF 30DE OOOD (208)

30DD 30DE 292D (168656) 30D0

5A0B 0000 5DF4 (384832) free

c:\eps\EPSILON.EXE
:30 F8 :

EOO 05 16 1

332 UNDOCUMENTED DOS

Since there are 5DF4h paragraphs of free memory, we now have no trouble
allocating memory in TSRFILE.

"Porting" MEM.C to use the generic TSR was straightforward. We had to get
rid of a call to callocO, replace any calls to exitO with simple returns, replace any
"\n" with "\r\n," and make a few other minor adjustments. The key change,
however, was that we had to link with a version of printfO that doesn't call
mallocO, because we blew away our near heap during TSR initialization.

This non-malloc version of printfO is provided in the module PUT.C, which
we can be used with any program that uses the generic TSR. The non-malloc ver
sion of printfO uses the stdarg facilities of ANSI C, in particular the function
vsprintfO, which can be used to easily create functions that take variable-argu
ment lists. PUT.C also contains a number of other helpful functions. Prototypes
for the fimctions appear (naturally) in PUT.H:

/* PUT.H — STDERR output routines, no maLLoc */

// caLLs _dos_write, returns number of bytes actually writen
unsigned doswriteCint handle, char far *s, unsigned len);

// displays ASCIIZ string on STDERR
unsigned put_str(char far *s);

// displays character on STDERR
unsigned put_chr(int c);

// displays number (width, radix) on STDERR
unsigned put_num(unsigned long u, unsigned wid, unsigned radix);

// PUT includes alternate version of printf: goes to STDERR,
// doesn't use malloc- Same prototype as <stdio.h>

// get string from STDERR, returns actual length
unsigned get_str(char far *s, unsigned len);

^define putstr(s) -C put_str(s); put_str("\r\n"); >
#define put_hex(u) put_num(u, 4, 16)
^/define put_long(ul) put_num(ul, 9, 10)

/* PUT.C — STDERR output routines, no malloc */

^include <stdlib.h>

^include <stdio.h>

Chapter 5: Memory Resident Software 333

^include <string.h>
^include <stdarg-h>
#incLude <dos-h>

^include <bios-h>

#define STDERR 2

#incLude "put-h"

// returns Length of far string
#ifdef _MSC_VER
^define fstrLen(s) _fstrLen(s) // MSC 6.0
#eLse

size_t fStrLenCconst char far *s) // MSC 5.1

size_t Len = 0;
while (*s++) Len++;
return Len;

>

#endi f

unsigned doswriteCint handle, char far *s, unsigned Len)
i

unsigned bytes;
_dos_writeChandle, s, Len, &bytes);
return bytes;

>

unsigned put_str(char far *s)

return doswriteCSTDERR, s, fstrLen(s));
>

unsigned put_chr(int c)
i

return doswriteCSTDERR, (void far *) &c, 1);
>

^define putstr(s) -C put_str(s); put_str("\r\n"); >

#define MAX_WID 12

unsigned put_num(unsigned Long u, unsigned wid, unsigned radix)
i

char bufCMAX_WID+i:, *p;
int i, digit;
if (wid > MAX WID)

334 UNDOCUMENTED DOS

return;

for (i=wid-1, p=&bufCwid-1II; i >= 0; i—, p—, u /= radix)
i

digit = u % radix;
*p = digit + ((digit < 10) ? '0' : 'A' - 10);

>

bufCwidn = 0;
return doswrite(STDERR, (void far *) buf, wid);

#define put_hex(u) put_num(u, 4, 16)
#define put_Long(uL) put_num(uL, 9, 10)

int _FAR cdecL printf(const char _FAR_ *fmt, ---)

static char bufC128Il;
int Len;
va_List marker;
va_start(marker, fmt);
Len = vsprintf(buf, fmt, marker);
va_end(marker);

return doswrite(STDERR, (void far *) buf, Len);

unsigned get_str(char far *s, unsigned Len)

extern void (interrupt far *oLd_int28)(void);
unsigned rcount;

/* give TSRs a chance by caLLing INT 28h */
whiLe (! _bios_keybrd(_KEYBRD_READY))

(*oLd_int28)();

if ((_dos_read(STDERR, s, Len, Srcount) != 0) || (rcount < 3))
return 0;

sCrcount-211 = '\0';
return rcount-2;

In MEM.C, the C preprocessor #ifdef statement was used to conditionally
compile either a stand-alone or a TSR version. For example:

#ifdef TSR

void faiKchar *s) -C printf("%s\r\n", s); return; >
#e Lse

void faiL(char *s) -C puts(s); exit(l); >
Uendif

Chapter 5: Memory Resident Software 335

The changes needed to make MEM a pop up were all of a similar nature, and
are so straightforward and uninteresting that we leave them as an exercise for the
reader. In any case, the resulting TSRMEM.EXE can be found on the disk that
accompanies this book.

TSR2E

Finally, we jiunp the gim a little bit by porting a program from the next chapter
in this book. As Jim Kyle explains there, INT 2Eh is the "backdoor" to the DOS
conunand interpreter. The TEST2E command interpreter from chapter 6 can be
easily turned into a TSR: an instant pop-up copy of COMMAND.COM!

This really does work. The only pecuharity is that on occasion when we pop
up TSR2E and type in a command, we get the following message from the resi
dent portion of COMMAND.COM:

Memory allocation error
Cannot start COMMAND, exiting

Note, however, that this is different from the horrifying message one sees
when the MCB chain has been trashed:

Memory allocation error
Cannot load COMMAND, system halted

The message "exiting" rather than "system halted" is for real. If we just try to
execute the command again, it works. In any case, this should probably join the
list of other LSJT 2Eh caveats foimd in the next chapter.

We can use TSR2E, not only to issue internal commands (such as DIR or
COPY), but also to issue external commands that launch other programs or even
batch files.

As shown in the makefile presented earher in the chapter, we build TSR2E by
combining the generic TSR components with Jim Kyle's three files, SEND2E.C,
HAVE2.ASM, and D02E.ASM. These files are xmchanged. AH changes for going
TSR are confined to the module TEST2E.C, where we change the name of the
module entry point from mainO to applicationO, add a test that lets TSR2E avoid
popping up when COMMAND.COM is already running, and use the facilities in
the PUT module rather than the C standard library's mallocy stdio facilities. Here
is the altered version of TEST2E.C:

336 UNDOCUMENTED DOS

/* TEST2E.C -- version to build TSR2E */

^include <stdLib-h>

#incLude <string-h>
^include <dos-h>

#include "put-h"

/^define MK_FP(seg,ofs) \
((void far *) (((unsi gned LongXseg) « 16) | (ofs)))

extern unsigned foreground_psp; // in TSREXAMP-C
extern int Send2E(char ^command); // in SEND2E.C

static char bufC803;
static int running = 0;

typedef enum C SAVE=0, RESTORE > SAVEREST;
typedef void (interrupt far *INTVECT)();

void interrupts(int restore)

static INTVECT int_1b, int_23, int_24;
if (restore)

_dos_setvect(0x1b, int_1 b),
_dos_setvect(0x23, int_23)
_dos_setvect(0x24, int_24)^

>

else

i

int_1b = _dos_getvect(0x1b);
int_23 = _dos_getvect(0x23);
int_24 = _dos_getvect(0x24);

void application(void)

// don't run if we are already running
if (running)

return;

runni ng++;

// don't execute INT 2Eh if COMMAND-COM already running
// see if COMMAND-COM running by checking if current PSP is the
// same as its own parent

Chapter 5: Memory Resident Software 337

if (foreground_psp ==
*((unsigned far *) MK_FP(foreground_psp, 0x16)))

put_str("COMMAND-COM already running");
running—;
return;

>

put_str("TSR COMMAND SHELL: type DOS commands, or BYE to quit\r\n");
for (;;)
i

put_str("$ ");
if (! get_str(buf, 80))

break;
if (strcmpCbuf, "bye") == 0 || strcmpCbuf, "BYE") == 0)

break;
i nterrupts(SAVE);
Send2E(buf);
interrupts(RESTORE);

>

putstrC'Bye");
running—;

Note that we save and restore the Ctrl-C, Ctrl-Break, and Critical Error inter

rupts around the call to Send2E(). With this precaution, even Ctrl-C, Ctrl-Break,
and Critical Errors are handled properly within the INT 2Eh pop-up:

TSR COMMAND SHELL: type DOS commands, or BYE to quit
$ di r a:

Not ready error reading drive A
Abort, Retry, Fail? a

$ dir *.c /w

Volume in drive C is RAMANUJAN

Directory of C:\UNDOC\RMICHELS

DOSSWAP C EXTERR C ^C

$ bye
Bye

338 UNDOCUMENTED DOS

One note of caution, however: don't try to install a TSR from within the pop
up command interpreter: it will hang your system sometime after you exit the
pop-up.

Multitasking TSR

Finally, let us discuss TSRs that don't pop up at a user hotkey, but which do their
work in the backgrotmd. We call such programs multitasking TSRs to distinguish
them from pop-ups. MULTI.C is a multitasking TSR shell that can be modified to
perform a multiple of backgroimd tasks, from disk file copying to background
communications.

The example presented here is an enhancement to the DOS PRINT utility. It
periodically (activated by INT 8 and INT 28h) searches a \SPOOL directory for
files having the extension .SPL. When a match is found, the TSR uses PRINT'S
INT 2Fh Function Olh interface, to ask PRINT to print the file. Once the file has
been submitted for printing, the TSR periodically obtains a status report from
PRINT. If the file is no longer in the print queue (its printing is complete), the file
is deleted:

C:\UNDOC> print
C:\UNDOC> multi

C:\UNDOC> copy \undoc\rinichels*.asin \spool*.spl
C:\UNDOC> dip \spooL

Volume in drive C is RAMANUJAN

Directory of C:\SPOOL

<DIR> 3-23-89 9:54p
<DIR> 3-23-89 9:54p

TSRUTIL SPL 5852 9-17-90 11:40p
STACK SPL 1758 9-17-90 11:36p

4 FiLe(s) 94208 bytes free

C:\UNDOC> print

C:\SPOOL\TSRUTIL.SPL is currently being printed

C:\UNDOC> dir \spool

Volume in drive C is RAMANUJAN

Directory of C:\SPOOL

Chapter 5: Memory Resident Software 339

<DIR> 3-23-89 9:54p
<DIR> 3-23-89 9:54p

STACK SPL 1758 9-17-90 11:36p
3 FiLe(s) 102400 bytes free

Basically, the program manages two independent processes, the foregroimd
process and the background process. When it is time for one process to start, the
current process is suspended, its registers saved on the stack for later restart.
Once the TSR has been loaded for later restart, the environment of the suspended
process' environment is restored, and it continues where it left off.

This multitasking is achieved by maintaining a count based on the timer in
terrupt. Each process get a specific amount of time; in the example above, the
foregroimd process gets the most time so as not to degrade performance. It is
possible to add more tasks, but you would need to maintain a list of SS:SP sets in
order to service all running processes.

Most of the code is similar to TSREXAMP. The two main differences are that

activation is via the timer interrupt, not a hot key, and that instead of completing
its work during activation, the TSR is suspended for later restart. Because DOS is
not reentrant, the TSR still must follow the rule of not interrupting DOS when it
is active.

In most computer systems, multitasking is a method of quickly switching
from one task to another, such that the computer appears to be rurming multiple
tasks at the same time. Of course, it's not as simple as that. Multitasking systems
are designed so that resources (such as disks, screens, and keyboards) can be
shared by multiple applications. True multitasking systems such as OS/2 supply
interface routines that are reentrant. The code segment of each routine has only
one instance, and this code segment can be shared by multiple processes at the
same time. Each user (each routine) will have its own instance of data. But, as we

know, the DSJT 21h API is not like this, so our multitasking example is controlled
to some extent by the DOS flags.

Task Switching

Every process has what can be called its context or frame. This consists of the fol
lowing items:

■ Register values (including code, data, and stack segment values)
■ Program Segment Prefix (PSP), or process ID
■ Disk Transfer Address

■ Extended Error Information

340 UNDOCUMENTED DOS

During a task or context switch, these items must be saved and replaced by
ones that pertain to the new task. In our example, we are simply flip-flopping be
tween two tasks. If more independent tasks were required, we would need to
keep a list of information for each task. Each item in the list might contain the rel
evant DOS information (PSP, DTA, etc.) and a pointer to the process stack seg
ment and offset. The code to perform the list management is more complex and
is not presented here. Also recall that we could use the DOS SDA.

The t5qje of multitasking presented here is called time-slicing, because each
task gets a predetermined slice of time in which to run. If needed, more intelli
gence could be added that would control the percentage of time each process
gets. This could be based on usage of the operating system (INT 21h) or disk
(INT 13h). We could chain these interrupts, and if a process is making extensive
use of these resources, we could lower its time slice to give other processes more
time.

This method is used during our background process. If the file being printed
is still in the print queue, a timer limit variable is set so that background process
ing will terminate immediately. There is no point in running in the backgrotmd if
the program is simply waiting for the print spooler to complete its job.

MULTI Installation

MULTI installs using the techniques already described. Some interrupt-handling
routines must be in assembly language, because they augment the normal inter
rupt process. Upon return from most interrupts, the flags are restored to their
condition just before the interrupt was invoked. But three of the interrupts we are
interested in handling—INT 13h, 25h, and 26h—do not following this conven
tion. INT 13h (like INT 21h) returns error conditions via flags, so an INT 13h han
dler must end with a RET 2 rather than an IRET. Meanwhile, the DOS absolute

disk routines, INT 25h and 26h, leave the flags on the stack, and so exit with a
RET rather than an IRET. This code is marked as IFDEF MULTI in

TSRUTIL.ASM, shown earlier in the chapter.
Another difference between TSREXAMP and MULTI is that, in MULTI, the

address of our main_Ioop function is placed on the stack that is created in the
mainO procedure. This is typical of multitasking code, and causes execution to
begin at this address when the background process is first activated.

Chapter 5: Memory Resident Software 341

Timer Interrupt

MULTI is activated, not by a user keypress of course, but by the INT 8 timer tick
interrupt. MULTI's INT 8 handler increments a variable called tic_cotmt, which
keeps track of how many timer ticks have occurred. Each process that we man
age is allowed a given number of ticks. Once the current tick count exceeds the
process limit, and if the INDOS flag is zero (except within INT 28h, in which it
will be one, but must not be more than one) and the unsafe_flag explained below
is FALSE, we suspend that process and activate the other process.

At this point, we can suspend the process. Depending upon what process we
are currently executing, we call either suspend_backgroxmd or suspend_fore-
ground. If we are suspending the foregrovmd, we set the stack to be our local TSR
stack. In either case, we also carry out the save/restore regime used earlier in
tsr_fimction in TSREXAMP: setting INT IBh, 23h, and 24h, and swapping PSP,
DTA, and extended error information.

Upon return to the new_int8 function, it restores the stack, if we have just
activated the foreground process. It continues along the INT 8 interrupt chain.

One special condition applies the first time we activate our background
process. We have never interrupted this process, so its registers are not on the
stack. Because of this, an assembly-language fimction, timer_int_chain(), is called
to jump to the next timer interrupt handler.

We earlier referred to a flag variable called unsafe_flag. Since there is no
INBIOS flag we can use, we have to create our own, and unsafe_flag is set TRUE
when critical BIOS services (INT lOh video and INT 13h disk), or the DOS abso

lute disk services (INT 25h and 26h) are in progress.

Idle Interrupt

The timer interrupt is not the only way we can nm in the background. We also
use the DOS idle interrupt (INT 28h), discussed earlier. This will allow us to con
tinue processing while the system is sitting at the COMMAND prompt. Other
wise, we would never run in the background while COMMAND was awaiting
orders.

During an INT 28h, if the lnt28DosBusy function returns FALSE and the
backgroxmd is not already active, we set the foregroxmd limit to zero and the
int_28_active variable to TRUE. We then wait for the int_28_active variable to go
false before continuing. This allows a nearly immediate task switch to the back
ground process.

342 UNDOCUMENTED DOS

Keyboard Interrupt

Notice that we have installed a service routine for INT 9, the keyboard hardware
interrupt. Whenever the user presses a key, the background task time limit is set
to 0 (causing the task to go into a suspended state more quickly). This gives the
user better response time.

Printing

The main_loop() fimction in our example is the backgrotmd process. This fimc-
tion performs the work of searching for files and submitting them to the spooler
via INT 2Fh Fimction Olh.

Notice that the example includes numerous loops that do nothing during the
main_loop() function. This is to avoid constant disk access by the background
task. The background time limit is also set to zero in a number of places, to en
sure that the background becomes suspended at that time.

MULTi.C

The following is MULTI.C, source code for the multitasking TSR. To build
MULTI.EXE, use the instructions found in the makefile shown earlier in this

chapter.

/* MULTI.C */

^include <stddef.h>

^include <stdlib.h>

#1nclude <stdio.h>

//include <string.h>
//include <dos.h>

//include <io.h>

//include "tsr.h"

//define SEARCH_DIR "C:WSPOOLW"
//define STACK_SIZE 4096 /* must be 16 byte boundary */
//define SET_DTA Oxia /* SET Disk Transfer Address */
//define GET_DTA 0x2f /* GET Disk Transfer Address */

//define BACKGROUND_TICS 2
//define FOREGROUND_TICS 16
//define BACKGROUND_YIELD 0
//define FOREGROUND YIELD 0

Chapter 5: Memory Resident Software 343

struct prReq

char Level;
char far *fname;

>;

char far *stack_ptr; /* stack for our background TSR */
char far *ptr;
unsigned ss_save;
unsigned sp_save;
unsigned unsafe_fLag
int first_time = 1;
*1

= 0;

int my_psp;
int foreground_psp;
int foreground_dta_seg;
int foreground_dta_off;
int ctr=0;
int tic_count = 0;
int in_progress = 0;

/* slot for stack segment register */
/* slot for stack pointer register */
/* set true by various interrupts */
/* flag for first time in running background

/* our TSR's psp */
/* PSP of interrupted foreground process */
/* DTA of interrupted foreground process */

/* counts timer tices */

/* true if we're in background process */

char search_workC65Il;
struct ExtErr my_ErrInfo;
struct ExtErr foregroundjrrinfo;

int foreground_limit = FOREGROUND_TICS; /* foreground cycle limit */
int background_limit = BACKGROUND_TICS; /* background cycle limit */

char search_di rC65II = 'CSEARCH_DIR>; /* dir to search for spool files */
volatile int int_28_active = 0; /* true if activated by INT 28 */
volatile int interval_timer; /* for sleeping a number of tics */

/* old interrupt pointers are stored here */
INTVECT old_int8, old_int9, old_int10, old_int13;
INTVECT old_int1B, old_int23, old_int24, old_int25;
INTVECT old_int26, old_int28;

/* prototypes for this
void main_loop();
void interrupt far new.
void interrupt far new.
void interrupt far new.
void interrupt far new.
void interrupt far new.
void interrupt far new.
void interrupt far new.

module */

.int8(INTERRUPT_REGS);

.int9(INTERRUPT_REGS);

.intlO(void);

.int13(void) ;
"int1B(INTERRUPT_REGS);
.int23(INTERRUPT_REGS);
.int24(INTERRUPT_REGS);

344 UNDOCUMENTED DOS

void interrupt far new__int25(void);
void interrupt far new_int26(void);
void interrupt far new_int28(INTERRUPT_REGS);
int spooLer_active(void);
int search_spL_que(char * fname);
void suspend_foreground(void);
void suspend_background(void);

/* returns nonzero if PRINT installed */

int spooler_active()

union REGS regs;

regs-x.ax = 0x0100; /* PRINT install check */
int86(0x2f,®s,®s); /* call multiplex interrupt */
return(regs-h-al == Oxff); /* FF if installed */

>

/* returns nonzero if file is in the spooler queue */
int search_spl_que(char * fname)
T

union REGS regs;
struct SREGS sregs;

char far * que_ptr;
char que_nameC65D;
int i;
int found = 0;

if (spooler_active())

regs-x-ax = 0x0104; /* get spooler status */
i nt86x(0x2f,®s,®s,&sregs);
/* on return from call DS:SI points to print queue */
FP_SEG(que_ptr) = sregs-ds;
FP_OFF(que_ptr) = regs-x-si;
/* release hold on spooler, side effect of status*/
regs-x-ax = 0x0105;
i nt86x(0x2f,®s,®s,&sregs);
while (*que_ptr && Ifound) /* while items in queue */

for (i = 0; i < 65; i++)
que_nameCiII = *(que_ptr + i);

if (found = !strcmpi(que_name,fname))
break;

que_ptr += 65;

Chapter 5: Memory Resident Software 345

return(found);
>

void main_Loop()

struct find_t c_file;
union REGS regs;
struct SREGS sregs;

struct prReq prRequest;

struct prReq far * ptr;
int sLeep_cntr;

white (1)

{:

strcpy(search_work,search_di r);
strcat(search_work,"*-SPL"); /* create dir search string */

intervaL_timer = 18 * 30; /* search every 30 seconds */
while (intervaL_tiiner) /* wait between each dir search */

background__Limit = BACKGROUND^YIELD; /* yield for fgrnd */

if (!_dos_f indf i rst(search_work,_A_NORMAL,&c_f i le))

/* if spooler installed, dos 3-xx+ and file size > 0 */
if (spooler_acti ve() && _osinajor >= 3 88 c_file.size)

strcpyCsearch_work,searchedi r);
strcat(search_work,c_file.name); /* full pathname */
prRequest.level = 0;
prRequest. f name = search__work;
regs-x-ax = 0x0101;
ptr = &prRequest;
sregs.ds = FP_SEG(ptr);
regs-X-dx= FP_OFF(ptr);
i nt86x(0x2f,®s,®s,&sregs);

while (search_spl_que(search_work)) /* wait till done */
£

interval_timer = 18 * 30; /* sleep for 30 seconds */
while (interval_timer)

background_limit = BACKGROUND_YIELD;
>

unlink(search_work); /* delete file */
background_limit = BACKGROUND_YIELD;

>

>

346 UNDOCUMENTED DOS

union REGS regs;
struct SREGS sregs;

void suspend_foregroundC)

/* SWAP TO BACKGROUND */

tic_count =0;
/* save oLd handlers */

oLd_int1B= __dos__getvect (0x1 B) ;
oLd_int23= _dos_getvect(0x23);
oLd_int24= _dos_getvect(0x24);

/* set our interrupt handlers */
__dos_setvect (0x1 b,new_i ntIB);
_dos_setvect(0x23,new_i nt23);
_dos_setvect(0x24,new_i nt24);

/* save current PSP and set to ours */

f oreground__psp = GetPSPO;
SetPSP(my_psp);

/* get foreground DTA */
regs-h-ah = GET_DTA;
intdosx(®s, ®s, &sregs);
foreground_dta_seg = sregs-es;
foreground_dta_off = regs-x.bx;

/* set up our DTA */
regs-h.ah = SET_DTA;
regs-x-dx = 0x80; /* use default in PSP area */
sregs-ds = my_psp;
intdosx(®s, ®s, Ssregs);

/* save error info */

GetExtErr(&foreground_ErrInfo);

if (! first_time)
SetExt Err (&my__Err Info);

in_progress = 1;
background_limit = BACKGROUND_TICS; /* set default limit */

void suspend_backg round()

Chapter 5: Memory Resident Software 347

/* SWAP TO FOREGROUND */

/* put back original DTA */
regs-h.ah = SET_DTA;
regs-x-dx = foreground_dta_off;
sregs-ds = foreground_dta_seg;
intdosx(®s, ®s, &sregs);

/* put back original PSP */
SetPSPCforeground_psp);

/* put back original INTS */
_dos_setvect(0x1b,old_i nt1B);
_dos_setvect(0x23,old_i nt23);
_dos_setvect(0x24,old_i nt24);

/* get error info */
GetExtErr(&my_ErrInfo);
SetExtErr(&foreground_ErrInfo);

tic__count = 0;
in_progress = 0;
int_28_active = 0;
foreground_limit = FOREGROUND_TICS; /* set default limit */

/**********

* TIMER TICK INTERRUPT HANDLER
**********/

void interrupt far new_int8(INTERRUPT_REGS r)
C

ti c_count++;

if (interval_timer)
i nterva l_t imei ;

if ((in_progress 88 (tic_count >= background_limit) 88
IDosBusyO 88 ! unsaf e_f lag) ||
(in_progress 88 int_28_active 88 !Int28DosBusy() 88

(ti c_count >=background_limi t)))

suspend_background();
restore_stack();

>

else if ((!in_progress 88 (tic_count >= foreground_limit) 88
IDosBusyO 88 I unsaf e__f lag) ||

348 UNDOCUMENTED DOS

(!in_progress && int_28__acti ve ! Int28DosBusy ()
(ti c_count >=f oreground__Limi t)))

i

set_stack();
suspend_foreground();
if (first_time)

first_time =0;
timer_int_chain();

>

>

oLd_int8(); /* caLL oLd handler */

/**********

* KEYBOARD INTERRUPT HANDLER
**********/

void interrupt far new_int9(INTERRUPT_REGS r)

unsafe_f Lag++;
oLd_i nt9();
if (in_progress)

background_limit = BACKGROUND_YIELD; /* set to swap to fgrnd */
foreground_Limit = 18; /* since user hit keyboard */
unsaf e_f Lag—;

/*********

* CTRL-BREAK INTERRUPT HANDLER
*********/

void interrupt far new_int1B(INTERRUPT_REGS r)
i

/* do nothing */
>

/**********

* CTRL-C INTERRUPT HANDLER
**********/

void interrupt far new_int23(INTERRUPT_REGS r)
i

/* do nothing */
>

/**********

* CRTITICAL ERROR INTERRUPT HANDLER
**********/

void interrupt far new_int24(INTERRUPT_REGS r)

Chapter 5: Memory Resident Software 349

i

if (__osmajor >=3)
r-ax = 3; /* fail dos function */

else

r.ax = 0;
>

/**********

* DOS IDLE INTERRUPT HANDLER
**********/

void interrupt far new_int28(INTERRUPT_REGS r)

if (!in_progress && !Int28DosBusy() 88 !unsafe_fLag 88
tic_count > foreground_Limit)

i

foreground_Limit = FOREGROUND_YIELD; /* stop foreground */
int_28_active =1;
_enabLe(); /* STI */
whi Le (int_28_active)
; /*spin waiting for task swap to bckgrnd*/

>

(*oLd_int28)(); /* caLL oLd handler */

mainO

unsigned memtop;
unsigned dummy;
void far* far* tmpptr;

putsC'Multi-Tasking PRINT spooler installing");

if (_osmajor < 3)
T

putsC'Error: MS-DOS version 3-00 or greater required");
exitd);

>

if (! spooler_active())
putsCWarning: Print Spooler not active");

Ini tInDosC);

ni>^_psp = GetPSPO;

/* MALLOC a stack for our TSR section */

stack_ptr = malloc(STACK_SIZE);
stack_ptr += STACK_SIZE;

350 UNDOCUMENTED DOS

ptr = stack_ptr;
(—stack_ptr) = 0xF2; / set up stack as if an an IRET was done*/
*(—stack_ptr) = 0x02;
stack_ptr -= 4;
tmpptr = stack_ptr;
*(tmpptr) = main_loop;

/* get interrupt vectors */
oLd_int8 = _dos_getvect(0x08); /* timer int */
old_int9 = _dos_getvect(0x09); /* keyboard int */
oLd_int10 = _dos_getvect(0x10); /* video int */
oLd_int13 = _dos_getvect(0x13); /* disk int */
oLd_int25 = _dos_getvect(0x25); /* sector read int */
oLd_int26 = _dos_getvect(0x26); /* sector write int */
oLd_int28 = __dos_getvect(0x28); /* dos idle int */

init_intr(); /* init asm variables */

_dos_setvect(0x08,new_
_dos_setvect(0x09,new_
_dos_setvect(0x10,new_
_dos_setvect(0x13,new_
_dos_setvect(0x25,new_
_dos_setvect(0x26,new_

nt8);
nt9);
nt10);
nt13);
nt25);
nt26);

_dos_setvect(0x28,new_i nt28);

^define PARAGRAPHS(x) ((FP_0FF(x) + 15) » 4)

/* release unused heap to MS-DOS */
/* All MALLOCS for TSR section must be done in TSR_INIT() */
/* calculate top of memory, shrink block, and go TSR */
segread(&sregs);
memtop = sregs-ds + PARAGRAPHS(ptr) - _psp;

>

_dos_setblock(memtop, _psp, &dummy);
_dos_keep(0, memtop);

When compiling the MULTI TSR example imder Microsoft C 6.0 we ran
across a code-optimization "gotcha." Notice that the new_int28() fimction simply
sets up the tic counting variables so that the backgroimd will become active. The
code then sets the int_28_active semaphore and waits for it to be cleared:

int_28_active =1;
while (int 28 active)

Chapter 5: Memory Resident Software 351

The idea behind this code was to wait until a task swap occurred. During the
task swap, int_28_active is set to zero.

But when compiling with full optimization, the compiler sees that that vari
able is 1, and is not altered in the while loop. Therefore it figures this is an infinite
loop, and generates a JMP $. What it does not know is that the timer interrupt
routine will clear this flag.

To avoid this problem, but still allow optimization, we declare the int_28_ac-
tive variable with a "volatile" attribute:

volatile int int_28_active;

This ANSI C keyword tells the compiler that the variable may change from
an external source.

This multitasking TSR is a simple example to which a few enhancements
could be added. Memory could be swapped to disk or EMS as needed. If key
board and CRT I/O is required by the background task, you must be careful to
save and restore the appropriate settings. You also must not switch tasks while in
the middle of a BIOS Video service. For a true multitasking system, MS-DOS
alone is probably not the way to go. Commercial products (windowing systems
such as Windows or DesqView, MS-DOS replacements such as PC-MOS or
VM/386, or OS/2) will give you much more functionality. But such systems use
many of the same principles outlined here.

Chapter 6

Command Interpreters

Jim Kyle

Every operating system that permits more than a single program to run requires
some sort of command interpreter. In the earliest days, commands were interpre
ted by the human operator, who picked out the correct plugboard or card deck
and set the system into action. Now, the job is done by a program (often called
the shell because it surrounds the system kernel, but more formally termed the
command interpreter) that prompts the user for input and then reacts to that input.

For most users, a command interpreter is the closest contact they ever have
with an actual operating system. The familiar "C>" prompt from COMMAND.
COM, the character-based, command-line shell that comes with MS-DOS, is al

most universally called "the DOS prompt" although the interpreter is not in fact
an integral part of MS-DOS itself. Alternate interpreters are available.

This chapter examines first the functional requirements that must be met by
any command interpreter. While examining these requirements, the chapter ex
plores several vmdocumented services that DOS provides to simplify the task of
interfacing with the command interpreter. The first section concludes with a tiny
shell program you can use to replace COMMAND.COM; this program illustrates
exactly what the requirements are for creating a command interpreter.

353

354 UNDOCUMENTED DOS

With the functional requirements established, the chapter continues by
dissecting COMMAND.COM to see how it meets those requirements. In this sec
tion, you'll leam about the environment, how it works, and how to locate COM-
MAND.COM once it is loaded into memory. This section includes a number of
utility routines for locating and dealing with environment blocks.

Next, we examine some alternative command interpreters that are now avail
able, together with some "shells" that are actually only extensions to COM-
MAND.COM.

The chapter concludes with a sample program that combines the use of docu
mented and xmdocumented features to permit editing of the master environ
ment. This program, ENVEDT, works with any command interpreter that
supports the undocumented DOS hook INT 2Eh; actually, the command inter
preter need not provide full support, so long as it includes a minimal interrupt
handler for the service.

Several notorious undocumented aspects of the DOS programmer's interface
are covered in this chapter, including the "backdoor" to the command interpreter
(INT 2Eh) and the DOS master enviroiunent block. The less well-known but quite
important installable-command interface (INT 2Fh Function AEh) is also dis
cussed in detail. The chapter contains large amounts of sample code to illustrate
aU these topics.

Experienced DOS "power users" who are not programmers, and who might
have been bewildered by other parts of this book, might find several areas of
interest in the first part of this chapter. On the other hand, experienced DOS pro
grammers might want to skip ahead to the section called "The Hooks MS-DOS
Provides."

Requirements of a Command Interpreter

The major requirements for any command interpreter are as foUows:

■ To provide a means of obtaining commands from the human operator
■ To interpret those commands
■ To act upon them by dispatching appropriate processes

A fourth, implicit, requirement is that these actions be enclosed in a loop, so that
more commands may be issued after all current commands have been processed.

Chapter 6: Command Interpreters 355

Obtaining Operator input

The most essential requirement for any command interpreter is that it have a
means of obtaining commands to be interpreted, for without that nothing else
has any meaning.

Operator input can be obtained from keystrokes entered directly by the user
in response to a prompt from the command interpreter. There are, however, sev
eral alternate methods, all of them frequently used.

The DOS Prompt The command interpreter usually signals the operator that it's
waiting for input by issuing a prompt message, usually known simply as "the
prompt." Some menu-style shell programs turn the cursor or the mouse pointer
on to indicate that input is needed, but more often these programs display their
menus only when seeking input, so that the mere presence of the menu on the
screen serves as the prompt.

In the more conventional command-line operation, though, the prompt con
sists of a relatively short sequence of characters. The default prompt message of
COMMAND.COM is simply "C>", where "C" indicates the drive letter of the cur
rent drive and ">" is simply a visual delimiter.

Virtually all command interpreters, though, give the user a means to modify
the prompt into whatever might be desired. Although a dedicated PROMPT
command is used to define custom prompt messages, the actual message is
stored as a string in the environment space and can be changed in the same man
ner as any other environment string. Many hard disk users use PROMPT pg
rather than the default C> prompt (equivalent to PROMPT ng). In addition,
ANSI.SYS can be used to put the current drive and directory at the top left comer
of the screen, for example, while the "usual" prompt appears in its normal place.

Keystrokes The "normal" source of input to the command interpreter is the sys
tem keyboard, but it's examined only as a last resort, if the interpreter is imable
to get input from any of the alternates!

This apparently backward approach actually has a most logical basis; it lets
you start a job using the alternate methods and then switch to the keyboard to
finish the job. This method can, however, be highly confusing to the neophyte
user. Let's defer examination of the possible confusion until we've seen what al
ternates to the keyboard exist.

When the keyboard furnishes input, most command interpreters use the
standard DOS Read String function (Int 21h, Function OAh) to obtain that input.

356 UNDOCUMENTED DOS

This function provides a rudimentary string-edit capability, and COM-
MAND.COM furnishes additional editing via several of the fimction keys. Unlike
older operating systems, keyboard input to the command interpreter in DOS is
not forced to uppercase but is passed to the interpreter exactly as you typed it,
except for characters erased via the backspace keys. Command-line editors, such
as Chris Dunford's CED, hook INT 21h and supply their own Read String Func
tion, thereby enhancing the editing of any program that calls Function OAh, not
just COMMAND.COM.

All command interpreters used with MS-DOS have a size Umit of 126 charac
ters for their keyboard input. This limit is imposed by the layout of the PSP (refer
to chapter 3), which allows only 128 bytes for the command tail. Of these 128
bytes, one is taken by the character coimt and one by the CR character that termi
nates the input string.

Although it would be possible to extend this Umit by a few bytes, because the
command itself is never copied into the PSP, no actual interpreter does so. For
simplicity, they all provide a maximum 128-byte input buffer.

Batch Files In many applications, a relatively complex series of commands must
be entered to get the desired action started. Batch files provide the most generally
used method for supplpng those commands. You type the commands into the
batch file once, and then the entire sequence is pumped into the command inter
preter when you invoke the batch file.

Command interpreters treat a batch file as a special t3q5e of external com
mand. Although different interpreters process these files in different ways, the
general idea is that the interpreter reads the file one line at a time, then executes
the command contained on that line before coming back to read the next.

For safety, COMMAND.COM closes the batch file each time a line is read,
and reopens it to read the next Hne. This makes it possible to use batch files with
a single-drive system, by having a copy of the file on each diskette; so long as all
copies are named the same and have the same content, the command interpreter
will never be aware that the disks were swapped between lines.

A special batch file is executed by COMMAND.COM (and by all compatible
command interpreters) at system start-up; this file, always named AUTOEXEC.
BAT, normally contains the commands necessary to customize your system and
install any TSRs you use. It is invoked any time that COMMAND.COM is exe
cuted with its "/P" (permanent) option switch; normally this happens only as
part of the system boot-up sequence.

Chapter 6: Command Interpreters 357

In addition to AUTOEXEC.BAT, another frequent use for batch files is to cre
ate menuing systems. The simplest form of such systems ECHOes the menu
choices to the screen and requests input of the corresponding number. For each
number, a batch file such as "l.BAT" is created to carry out the necessary com
mand sequence.

From that basic starting point, you can go as far as you hke. One of the main
features of MS-DOS 4.x, the DOSSHELL capabiUty, is essentially a batch-file-
based menu system, though it uses special vmdocumented hooks in DOS itself to
simphfy its actions. We'll look at it in more detail later in this chapter.

Still another variant of the menuing system is the dispatching program,
which operates much like a menuing system, except that, rather than using a
multiplicity of batch files, it stores the necessary data in a special data file and
then dispatches the chosen process by means of the DOS EXEC function.

Batch Enhancers and Compilers Batch files have become so popular that several
firms offer "batch language enhancement" programs, such as BE (Batch En
hancer) in the Norton Utilities, EBL (Extended Batch Language), and several PC
Magazine utilities such as Michael Mefford's BATCHMAN. These programs are
widely used, and many users find them extremely valuable.

Recently, batch file compilers have become popular as well. In addition to
Wenham Software's BATCOM and Hyperkinetix's The Builder, PC Magazine (Au
gust 1990) has published a batch file compiler, Doug BoHng's BAT2EXEC. These
compilers turn .BAT files into true .COM files.

This raises an interesting issue: as is well known, the SET statement in a .BAT
file will alter the "master environment" (explained later in the section "How
COMMAND.COM Uses the Environment"), but a seemingly equivalent attempt

to change the environment from a .COM or .EXE program results only in an al
teration to the program's local copy of the environment, which gets thrown away
when the program exits.

How then can the proper semantics of the SET statement be preserved when
a .BAT file is compiled into a .COM file? Simple: the compiled SET statement
uses undocmnented DOS to alter the master environment. For example, any time
a .BAT file with a SET statement is compiled with BAT2EXEC, the resulting
.COM file calls imdocumented INT 21h Function 52h. Why Function 52h? To get
a pointer to the DOS List Of Lists which contains (at offset -2) the segment of the
first MCB (see Chapter 3). By walking the MCB chain, the program can find the
master environment. This is explained in much greater detail (including a prob-

358 UNDOCUMENTED DOS

lem with BAT2EXEC) later on, in the section "Other Ways of Locating the Envi
ronment." In any case, the growing popularity of batch file compilers will, for
better or worse, probably produce a proliferation of programs that rely on imdoc-
umented DOS functions and data structures.

"Losing" Stuffed Commands AU batch file processing is performed by the com
mand interpreter, not by DOS itself. This means that only the command inter
preter can obtain input directly from the batch file; it's not possible to provide
input directly to your programs by lines tj^ed into any batch file. Although a
batch file is meaningful only to the command interpreter, however, the keyboard
buffer applies to both the command interpreter and to any commands (whether
internal like COPY, or external like 123) that may be invoked by the interpreter's
action. This means that programs can "stuff" your desired input into the key
board buffer, from which other programs can retrieve it. This is useful with pro
grams such as 1-2-3 that (still!) do not take command-line arguments.

One such keyboard stuffer is Charles Petzold's KEY-FAKE.COM, available in
the book PC Magazine DOS Power Tools. KEY-FAKE is used here to illustrate a fea
ture of batch files that, although seemingly obvious, appears to cause a lot of con
fusion. Any other keyboard stuffer will serve equally well.

The following batch file creates a file called FOO.BAR, containing the single
line "hello" (13 26 13 emits a newline, ̂Z, newline sequence):

echo off

key-fake "heLLo" 13 26 13
copy con foo.bar

Note that input is stuffed into the keyboard buffer before the COPY CON
command is invoked. If you want to stuff both the input and the command into
the keyboard, however, the command must go first:

echo off

key-fake "copy con foo.bar" 13 "hello" 13 26 13

So far so good. Now lePs add a line to the end of the batch file:

echo off

key-fake "copy con foo.bar" 13 "hello" 13 26 13
echo Done creating FOO.BAR

Chapter 6: Command Interpreters 359

What happens when we ran this? The second command is issued before the
first command:

C:\UNDOC\KYLE>tmp
Done creating FOO.BAR
C:\UNDOC\KYLE>copy con foo.bar
hello

1 File(s) copied

The message that signals that the operation is complete is displayed before
the operation begins! Just by adding a line to the end of the batch file, we some
how caused the COPY CON command to be deferred.

It gets worse. Do the keyboard stuffing inside a loop, and the COPY CON
command never gets executed, resulting in an infinite loop:

echo off

del foo.bar

: loop
key-fake "copy con foo.bar" 13 "hello" 13 26 13
if not exist foo.bar goto loop

Simply putting a command inside a loop causes the batch file to stop work
ing! What is going on around here?

If, as a final experiment, we return to our original idea of putting the COPY
CON command itself in the batch file, and stuffing only its input into the key
board buffer, everything starts working properly again:

echo off

del foo.bar

: loop
key-fake "hello" 13 26 13
copy con foo.bar
echo Done creating FOO.BAR
if not exist foo.bar goto loop

What we have just seen merely illustrates that the command interpreter ex
hausts aU batch file lines before looking in the buffer for keyboard input. There
fore, unless the keyboard stuffer happens to execute as the last command in the
batch file, the stuffed command isn't executed at the correct time.

360 UNDOCUMENTED DOS

This detail of command interpreter operation seems rather obvious, yet it
spawns at least one question per week on the major information network forums
that deal with hardware and software problems. The rule to follow in order to
avoid the problem is simple: invoke commands directly from the batch file, not
by stuffing the keyboard buffer; provide only program input via the buffer.

Interpreting Operator Requests

Once the operator's input has been obtained, it must be put into a form accept
able to MS-DOS (that is, it must be parsed for file names, etc.), interpreted, and
acted upon. This section first describes the factors involved in parsing the input,
then discusses how it is interpreted, and finally deals with the execution of inter
nal commands. Any input not recognized as an internal command is passed to
the dispatching procedure as a possible "external" command that must be loaded
from a file to be executed.

Parsing for Inclusion In the PSP The "standardized" parsing done by DOS com
mand interpreters traces directly back to CP/M; the major difference is MS-DOS
includes INT 21h Function 29h, fully documented, to perform the parse for you.

In this standardized parse, certain characters are treated as "white space" sep
arators. These include the blank space itself, the tab character, the "switch charac
ter" (normally a forward slash, but in some versions of DOS this can be changed
to a h5q)hen: see below), the comma, the colon, the semicolon, and the equal sign.
Several of these have additional syntactic significance, but all are recogruzed as
marking the end of the possible command name.

The parse begins by skipping over all blank or tab characters at the front of
the input line. When a nonblank character is found, it is converted to uppercase if
if s alphabetic and moved to an internal parse buffer. From that point imtil one of
the white space characters is encountered, all characters are moved to the parse
buffer and case-converted if necessary. When the terminating white space charac
ter is found, the parse pointer is left pointing to it.

All remaining characters from the input buffer will be moved to the "com
mand tail" area of the new process' PSP, starting at offset 81 h and the count of
those characters (omitting the terminating CR) is stored at offset BOh. None of
these characters is case-converted during the move.

Next, the first complete word (if any) in the command tail is examined to de
termine if it can be a filename. That is, it must contain no characters that would

not be vahd in a filename; its second character can be a colon and any subse-

Chapter 6: Command Interpreters 361

quent character up to the 9th can be a period. This permits the CP/M and DOS
VI (nondirectory) file specification, such as "A:FILENAME.EXT", to be accepted.
If the word passes all these tests, it is converted to FCB format (which includes
case conversion) and is then filled into the FCBl region of the PSP, at offset 5Ch.
The drive code corresponding to the drive letter, if any, goes into the first byte,
followed by the filename portion (padded to 8 bytes with spaces if necessary).
The period, Hke the colon, is omitted, and the extension goes into the next 3
bytes, again padded with spaces.

When this is complete, the process is repeated for the second complete word
of the command tail, to fill in the FCB2 area of the PSP at offset 6Dh.

This is a direct copy of the steps performed by CP/M programs, and the sjm-
tax of many of the older internal commands is based on these parsing rules. For
instance, RENAME originally accepted only filenames, and the PSP layout of
FCBl and FCB2 required only that one pointer be set up in the CPU registers be
fore the command passed control to DOS to do the renaming.

In DOS 1.x, many programs took advantage of these parsing rules to extract
their first two command-line arguments from the filename fields of FCBl and
FCB2. By doing so, they could avoid the need to furnish their own parsing rou
tines; the command interpreter had already done the work for them.

However, these routines are not capable of handling subdirectory references
and full path names, so with DOS 2.x their usefulness began to fade, and today
they are primarily a footnote to history. Unfortxmately, some programs still de
pend on them, showing the persistence to this day of CP/M vestiges.

Upon completion of this standard parse, then, the command interpreter will
have in an internal parsing buffer the first word of input converted to uppercase,
and it will have in the new current PSP the two FCB areas and the command tail

data. The next step is to determine whether the input was actually a valid command.

SWITCHAR If you've ever needed to switch between DOS and Unix machines,
you may have been annoyed that whereas UNIX uses the forward slash (/) for
paths and hyphens (-) for command-Une options, MS-DOS uses the backslash (\)
for paths and the forward slash (/) for command-line options.

What a mess! An undocumented DOS function, INT 21h Fimction 3701h, can

help clean up this situation. This function changes the switch character; it is de
scribed in the appendix. This facility was documented for a brief time in the DOS
user interface (the SWITCHAR^ option in the DOS 2.0 CONFIG.SYS), but then it
was literally undocumented.

362 UNDOCUMENTED DOS

This function can be incorporated in a tiny utility that sets the DOS
SWITCHAR. Packages of UNIX utilities for DOS, such as the wonderful MKS
Toolkit, include a similar utility:

/*

SWITCHAR-C — uses undocumented DOS Function 3701h

switchar changes DOS switch char to - and path char to /
switchar \ restores DOS switch char to / and path char to \
*/

^include <stdLib.h>

^include <stdio.h>

^include <dos-h>

mainCint argc, char *argvC3)
i

int c = (argc > 1) ? argvCIDCOl :
#ifdef TURBOC

_DL = c;

_AX = 0x3701;
geninterrupt(0x21);
_AH = 0; /* value returned in AX */

#else

_asm -C
mov dl, c
mov ax, 3701h
int 21h

xor ah, ah ; value returned in AX
>

#endif

>

After it is compiled with either Microsoft C 6.0 or Turbo C, SWrrCHAR.EXE
can be used (in DOS 2.x and 3.x) to make COMMAND.COM input a little more
reasonable:

C:\UNDOOdir -w /pharlap/*-exe
Invalid parameter

C:\UNDOOswitchar -

C:\UNDOC>dir -w /pharlap/*.exe

Volume in drive C is RAMANUJAN

Directory of C:\PHARLAP

Chapter 6: Command Interpreters 363

386LINK EXE CFIG386 EXE 386LIB EXE 386DEBUG EXE 386ASN EXE

RUN386 EXE

6 FileCs) 1261568 bytes free

Although DOS input is changed, notice that output isn't: the directory listing
still uses the backslash. Also, note that some applications ignore SWITCHAR, in
sisting that you use backslashes for subdirectories.

Finally, note that most of COMMAND.COM in DOS 4.0 (including the DIR
command) completely ignores the SWITCHAR. Setting SWITCHAR with Fimc-
tion 3701 is useful only when other programs, in particular COMMAND.COM,
bother to call Fimction 3700 (Get SWITCHAR).

Distinguishing internal and External Commands Every command interpreter imple
mented for any microcomputer has included at least some "internal" commands;
most have also provided a means of executing "external" commands.

What distinguishes an "internal" from an "external" command is the location
of the code that executes it. All internal commands are built into the command

interpreter itself; external commands reside elsewhere. In some systems, includ
ing Tandy's TRSDOS among microprocessors and Honeywell's GCOS in the
mainframe world, external commands have been stored in special library files. In
MS-DOS, however, they are stored as individual program files.

CP/M contained only five internal commands. They were DIR, REN, TYPE,
ERA, and SAVE. All other commands were external, stored as "COM" (for COM-

mand) files in a memory-image format. The first four of these were ftmctionaUy
the same as their MS-DOS descendants DIR, RENAME (REN), TYPE, and ERASE

(also known as DEL). The other one provided the means for creating the neces
sary COM files: it would SAVE the specified number of 256-byte "pages" to a
named file. To load a newly created program into RAM so that SAVE could do its
thing, you had to use DDT.COM (certainly the best-named debugger ever).

The earliest versions of MS-DOS had only a bit more in the way of internal
commands. The name ERA changed to ERASE, and DEL was added as a sjm-
on5nn. Similarly, REN was expanded to RENAME, with the older short form re
tained also. COPY, which xmder CP/M had been a function of the external utility
called PIP (Peripheral Interchange Program, a concept inherited from DEC sys
tems), moved into the command interpreter as an internal, and DATE, TIME,
VER, and CLS were added. With each new version, as features were added to the

system, additional internal commands came with them. The use of batch files
alone gave birth to several intemal commands to help make such files more useful.

364 UNDOCUMENTED DOS

By the time MS-DOS made it up to version 3.3, the list of internal commands
had grown to 37. One undocumented command was added with version 4.0. The

current list of commands (extracted directly from the internal table in the 4.01
version of COMMAND.COM) is as foUows;

ERRORLEVEL EXIST DIR

CALL CHCP RENAME

REN ERASE DEL

TYPE REM COPY

PAUSE DATE TIME

VER VOL CD

CHDIR MD MKDIR

RD RMDIR BREAK

VERIFY SET PROMPT

PATH EXIT CTTY

ECHO GOTO SHIFT

IF FOR CLS

TRUENAME (undocumented)

The tmdocumented TRUENAME command displays the full physical path
name of a file, given the file's name as its argument. Any SUBST replacement is
translated from logical back to physical form, and any implicit path is made ex
plicit. This command corresponds exactly to the INT 21h Fimction 60h, which is
explained in greater detail in chapter 4 on the DOS file system.

For instance, if you issue the command "SUBST F: C:\ZAP\Z1P" and make F
your current drive, the command "TRUENAME LZSS.C" displays the string
"C:\ZAP\ZIP\LZSS.C".

Let's get back to the way the command interpreter determines whether it's
dealing with an internal command or an external one: It performs a simple search
of its internal command list. If the input command exactly matches any item in
this list, it's internal and the corresponding internal command routine is exe
cuted. If it's not fotmd, the interpreter treats it as a possible external command.

DOS 3.3 introduced a capability for extending the internal command list by
way of TSRs that commrmicate with COMMAND.COM via a set of undocu
mented hooks. However, because this feature was not publicized, so far as I
know virtually no such extensions have yet been produced with the exception of
the DOSSHELL capability that appeared first in DOS 4.0. We'U provide source
code for an installable command later in this chapter when we examine the hooks
that MS-DOS provides for command interpreters.

Chapter 6: Command Interpreters 365

Note that the entire command line that was input to the interpreter is parsed
before any attempt is made to locate the command. During parsing the command
interpreter treats the "%" character as having special meaning, because it identi
fies references to command-line arguments when it is found in a batch file and it
identifies environment variables. If followed by a character that is neither an ar
gument identifier nor an environment variable's name, the "%" character nor
mally is thrown away rather than being passed on to the command as part of the
command line. This is true only when input is taken from a batch file (the "%"
character is never thrown away if the input came through the keyboard buffer).

Sometimes the "%" character needs to be kept rather than thrown away. The
classic case is the FOR command, with its "internal variable" reference, as in "FOR

%f IN (*.c) DO type %f". That line will work perfectly from keyboard input, but if
it is included in a batch file, both "%" characters will be dropped, and the com
mand then generates a S5mtax error. To solve this problem, whenever COM-
MAND.COM (and its fimctional equivalent alternates) see a "%" character
followed immediately by another identical character, it replaces them with a sin
gle "%", which passes on to the program. This action is equivalent to the C-lan-
guage conventions regarding "\", which require that you use "\\" in any string
where you want a single "\" to appear.

Finding and Executing Internal Commands Because the internal command list is

searched first, if s a tricky matter to coax COMMAND.COM to nm a program
that has the same name as one of the internal commands. That is, if you name a
program file "TYPE.COM", you'll find that the internal command "TYPE" takes
its place when you try to execute the program via the command interpreter, al
though it runs your own program perfectly when invoked through the DOS
EXEC function or via DEBUG.

When COMMAND.COM searches its command list for a possible internal
command, it breeiks off the command word at the first imbedded period after the
command. Thus, to continue the example, if you entered "TYPE.COM" at the
prompt, the ".COM" would be ignored, and the internal search would find a
match to "TYPE," which would then be executed.

With more recent versions of DOS that permit you to specify a full path name
for a command, you can solve this problem by specifying the full path to
TYPE.COM, such as ".\TYPE" if the file is in the current directory. This does not,
however, work with DOS 2.x, which is still used by many people.

366 UNDOCUMENTED DOS

With COMMAND.COM, the only general solution to this problem is to patch
your copy of COMMAND.COM itself to change the name of the conflicting inter
nal command. (The most recent versions provide another solution, however,
which is explored later in this chapter.) At least some of the alternative command
replacements attack the problem in two ways: by letting you selectively disable
any internal command via a configuration option, and by a variation in the way
the search is performed. The variation is simply that the input is not truncated at
a period. If you enter "TYPE.COM", that is what will be searched for, and of
course it will not be foimd because none of the internal commands have embed

ded periods.
Under any command interpreter, once an internal command is detected, it's

normally executed immediately. The usual method of executing the command is
by a call to the appropriate internal routine, followed by a loop back to the
toplevel prompt code. Because all of this code is contained within the interpreter
itself, no program swapping occurs, nor is any child process spawned for the ma
jority of internal commands.

A few internal commands (notably the CALL batch file ability added to
COMMAND.COM in DOS 3.3 and the HELP feature built into the alternate inter

preter 4DC)S.COM) do require that additional files be accessed. Such internal
commands may fail if their additional files cannot be found. Except for such
cases, however, internal commands run entirely within the currently loaded copy
of the command interpreter and are not influenced by external events.

Before the internal command CALL was introduced, the external command

COMMAND with the "/C" option switch was used to nm one batch file from in
side another, then return to the original file. This technique stiU works, but re
quires about 4KB additional RAM for the child copy of COMMAND.COM that is
loaded, and may be significantly slower due to the additional disk accesses re
quired.

Dispatching Appropriate Processes

Any name that is not matched in the internal command list is presumed to be an
external command. The command interpreter searches for a file of that name,
using the PATH to determine where to search. If such a file is located, it is loaded
and run. If not, the error message "Bad command or file name" tells the operator
that the input was faulty, and the command interpreter then returns to its
toplevel "get input" procedures for a fresh command to interpret.

Chapter 6: Command Interpreters 367

Locating and Loading Externai Commands To locate and execute an external com

mand, the command interpreter first searches the current working directory for a
file having a name identical to the command word and the extension ".COM". If
this fails, the search is repeated using the extension ".EXE", and if this also fails, a
third search is made with the extension ".BAT". Thus if three files named DO-

ME.COM, DO-ME.EXE, and DO-ME.BAT all exist in the current directory, only
the .COM file wiU be executed as an external command.

This "COM, EXE, BAT" sequence is established by code in the command in
terpreter, not by MS-DOS itself. It can be exploited in several ways that we'll ex
amine a little later, but if you want to change it for any reason, you can do so by
locating in your command interpreter the nine bytes that contain the characters
"COMEXEBAT" and changing them as you desire. This can be done on the disk
copy of the interpreter or in memory using DEBUG.

If all three searches fail, in the current working directory, the command inter
preter looks for an environment variable named "PATH" and, if one exists, it
takes the first path listed in that string (that is, all characters up to but not includ
ing the leftmost semicolon) and repeats the triple search in the directory specified
by that path.

If unsuccessful, the interpreter moves on to the next pathspec in the PATH
variable and repeats its actions. This continues tmtil one of two things happens: a
file is found that satisfies the search, or the PATH variable is exhausted without

finding such a file.
If no file is found, the command interpreter issues a "Bad filename or com

mand" error message and returns to the prompt. Note that this happerrs only
after three searches have been made in each directory specified by PATH. If you
have a large number of directories in your PATH, and each has a large number of
files, the command interpreter may take a significant amoimt of time to conduct
such a search.

Dealing with BAT Flies When a file is found that satisfies the search criteria, the

command interpreter's next action depends on whether the file found was a
batch file (".BAT" extension). If so, the command interpreter sets appropriate
flags to indicate to itself that it is processing a batch file rather than keyboard
input, and stores enough data about the file to be able to find it again. The flag lo
cations, and the amoimt of data saved, vary significantly from one version of
DOS to the next.

368 UNDOCUMENTED DOS

The interpreter opens the batch file, reads its first line into the command
input buffer, and replaces any indicated arguments with corresponding words
from the original input line (which is retained in a separate buffer). It then closes
the batch file and interprets and executes the modified batch-file line just as if it
had been typed from the keyboard.

When that line is fully executed and control returns to the command inter
preter, the flags tell the command interpreter to reopen the batch file, read the
next line (actually, reads a minimvun of 32 bytes) and execute it. This process con
tinues until all lines of the batch file have been executed.

Note that the commands contained in the batch file can be either internal or

external and that, since DOS 3.3, these commands can invoke additional subsid
iary batch files in subroutine fashion via the CALL internal command. For these
reasons, it's quite possible to invoke a batch file that never finishes executing,
with the result that control never gets back to the original command interpreter's
keyboard-input level. This is, in fact, the normal situation when you install a
menu program or, in DOS 4.x, when you use the DOSSHELL facility.

Dealing with COM and EXE Files If the file found was not a batch file, the command
interpreter uses the DOS EXEC function (INT 21h, Fxmction 4B00h) to spawn the
file's execution as a child process of the command interpreter, and nothing more
happens in the interpreter until the child process terminates.

Notice that, with COMMAND.COM, it makes no difference whether a COM
or EXE file was found; the distinction between the two types of executable files is
made by the EXEC function based only on the first two bjdes of the file (which in
.EXE files have the "MZ" signature), and the actual file extension is ignored ex
cept to locate the file. This means that you could force a file that is really an EXE
type to be foimd dming the first search by changing its extension to COM.

An alternative to changing the file's extension is to create a "stub loader,"
which is a small file of the same name except for the extension COM. The stub
loader then uses the EXEC fxmction to spawn the original EXE file as a child of its
own. This approach makes it possible to set up all sorts of special conditions be
fore the program file is executed, then subsequently xmdo them, with minimal
overhead.

One widespread use of this technique is in support of the third-party replace
ment video BIOS package UltraVision, from Personics. UltraVision permits its
users to set up a wide variety of screen options, ranging up to 134x60. These for
mats are compatible with any other program that is "well behaved" in the sense

Chapter 6: Command Interpreters 369

that it looks in the BIOS work area to determine what number of columns and

rows are currently set. Unfortunately many popular programs don't bother to do
so, because the ability to set "non-standard" formats is relatively recent. Among
such "non-well-behaved" programs are both QuickC and Turbo C, together with
many word processors.

To run programs that do not check the current nvunber of columns and rows,
ifs necessary to set the screen format to the standard 80x25 dimensions.
Personics' UltraVision generates a stub loader for any desired EXE-format pro
gram file. The loader first notes all pertinent information from the BIOS area and
then resets to the 80x25 format. Next, it EXECs the specified program file, using
its full name, including the EXE extension, and passing to it all the command-line
arguments that the loader itself received. Upon return, the loader temporarily
saves the exit code from the real program, restores the video set-up to the condi
tions it found at entry, and returns its child's exit code to DOS as though it were
its own. The command interpreter always finds the COM-named loader first, so
as a user you do nothing different.

As a result, by using the utility supplied with UltraVision to create a loader,
you can make any program well-behaved in the video area, at the cost of less
than a thousand bytes of overhead code.

Another use of the stub loader concept is built into Microsoft's new seg-
mented-executable files, which are used in Windows, OS/2, and the European
OEM multitasking DOS4. These new .EXE files have an "normal" old-style .EXE
file at their head, followed by a new .EXE header with the "NE" signature. The
old-style .EXE can be used to print a message such as "This program requires
Microsoft Windows," or it can be used as a loader that, for example, goes ahead
and runs Windows.

The Exitcode Concept At this point you may be wondering why a loader should
preserve the exit code of a spawned process, or possibly even what an exit code is
all about. Although if s documented (at least with regard to the method by which
a program can supply one to its parent), the details are so spread out that some
explanation is in order.

The idea that a process should return a result code to its parent followed di
rectly from the concept that every process in a system is equivalent to a subrou
tine that is called by some higher-level process, all the way back to the primary
bootstrap loader. This concept apparently originated at about the same time as

370 UNDOCUMENTED DOS

the idea of the operating system itself, long before microcomputing came upon
the scene.

The term exit code became associated with this process result code during the
development of the Multics multiprocessor system in the mid-1960s. It came to
MS-DOS from Multics' descendant UNIX along with subdirectories and other
Multics concepts that were grafted into MS-DOS at version 2.0.

Any process returns an exit code to its parent; the code can be controlled by
the program if the process terminates via INT 21h functions 4Ch (Terminate with
Exit Code) or 31h (Terminate But Stay Resident). If any other termination method
is used (such as INT 21h Fimction 0), a default exit code value is generated by
DOS itself.

The code can be retrieved, once and only once, at any time after the spawned
process returns to the parent and before any subsequent process is spawned. The
reason for this restriction is that DOS itself provides only one 16-bit word to hold
the exit code, so that every process overwrites the code left there by its predeces
sor (or child), and the DOS function that retrieves the code (INT 21h Fimction

4Dh, Get Exit Code of Subprogram) zeroes out that storage location in the pro
cess of retrieving the code.

COMMAND.COM provides the internal "command" ERRORLEVEL, which
is actually a function that can be evaluated by the internal IF command.
ERRORLEVEL will retrieve the exit code of the most recent command and com

pare it to a specified value. AH compatible command interpreters provide this
command implemented in a functionally identical manner. When ERRORLEVEL
is first called, it retrieves the exit code from DOS and stores it in another location
inside the command interpreter. Then it sets a flag so that any subsequent call of
ERRORLEVEL before an external command is executed will use that same value

rather than attempting to retrieve it from EXDS again.
The concept of exit code and ERRORLEVEL applies only to external com

mands; most internal commands have no effect at aU on the ERRORLEVEL value,

and because they do not spawn child processes, most commands do not affect
the DOS exit code value. It's possible that some third-party command interpret
ers may, in future versions, extend the ERRORLEVEL idea to at least some inter
nal commands; extending it to all commands (including those that test it) would
negate the whole idea because it would make multiple-way decisions impossible.

Chapter 6: Command Interpreters 371

The Hooks MS-DOS Provides

To facilitate the tasks that are common to all command interpreters, the designers
of MS-DOS incorporated a number of "hooks" into the system. These include spe
cific fimction calls that provide access to undocumented features, special dedi
cated interrupt vectors, and the entire Multiplex Interrupt concept. However,
because these hooks were never officially documented, most of them are used
less widely than they could be.

Dedicated Interrupt Vectors Two interrupt vectors (INT 2Eh and DSTT 2Fh) are re
served by MS-DOS for support of the command interpreter. Because it is imple
mented within the command interpreter itself, details of INT 2Eh are deferred
imtil the following section.

The Multiplex Interrupt concept evolved rather slowly as DOS advanced,
and it may have changed again by the time this description sees print. Originally,
DSTT 2Fh was only a method by which PRINT.COM (the first official TSR pro
gram) could communicate with DOS while it was not the cvurent process. In DOS
2.x, the only built-in support for INT 2Fh was that in PRINT.COM. However, the
third-party developers of TSRs rapidly discovered its existence and began using
it for their own needs.

By the time DOS had advanced to version 3.0, the idea of the Multiplex Inter
rupt had become well established and a number of other functions had been as
signed function codes. More importantly, a set of ground rules for use of this
interrupt had been established and publicized. As a result, it became possible for
users to hook into this vector even though the details of much of its action re
mained tmdocumented.

The major groimd rule was that every function supported by INT 2Fh should
be assigned a function number, which is passed to the interrupt service routine in
the AH register.

Any interrupt service routine (ISR) that hooks the INT 2Fh vector is expected
to preserve a chain to the previous routine, and when invoked, it should look for
its own function number in AH and pass the request on if no match exists (that
is, INT 2FH service routines form a chain, each routine looking only for requests
addressed to it).

The AL register was similarly reserved for subfunctions, and these codes
were allowed to vary from one routine to another, except that subfunction 00 was
globally defined to be "Are you there?" (install check). Any ISR, upon receiving a

372 UNDOCUMENTED DOS

subfunction 00 message for its fimction number (AH value), is expected to set AL
to OFFh and return. Because the default service for this interrupt is the single op
code IRET, any request that fails to find a match will return with AL stiU all ze
roes; this indicates that the requested service is not installed.

The major violators of these ground rules were, not surprisingly, some of the
programs supplied along with DOS! The most dangerous of these violations is
the use of Function 13h, in DOS 3.3 and up, to modify the address of the disk in
terrupt handler for DRrVER.SYS and the Installable File System. This routine
does not obey the "Are you there" rules, but rather changes the address to what
ever is contained in the registers. This, of course, can be disastrous to all disk 1/O
from that point on. Even worse, it returns the previous address in the registers,
and has been used by at least two virus programs to obtain imdetected access to
the disk services.

Less serious problems have been caused by changes in the assigned function
codes between versions. For example, Fimction 15h is documented as being the
CD-ROM extension service code (MSCDEX), but it is also used in DOS 4.0 and

up to verify that GRAPHICS.COM has been installed.

Tabulation of Multiplex Interrupts Functions Only a few of the current crop of Multi
plex Interrupts are directly involved with command interpreter support. For a
more complete list of these fimctions, refer to the Appendix.

The services in the following list are those called by the COMMAND.COM
supplied with MS-DOS 4.01; earlier versions and other command interpreters
may not use them:

Fimction 05h, CRITICAL ERROR HANDLER, available since DOS 3. This

function, called after INT 21h Function 59h has expanded an error code into its
locus and recommended action, converts those codes into readable text, in the

language determined by the system configuration when DOS was installed. This
is the method by which the cryptic error messages given by older DOS versions
were expanded into more informative ones at the introduction of version 4.0.

Function 12h, DOS INTERNAL SERVICES, available since DOS 3. This func

tion provides access to a wide variety of DOS internal functions. Many of them
are useless from outside the DOS kernel itself, because they depend on both DS
and SS being set to the DOS kernel segment, but some of them are of general use
even though they duplicate other DOS functions. COMMAND.COM uses several
of these. One of the functions used most frequently by COMMAND.COM, Func-

Chapter 6: Command Interpreters 373

tion 122Eh, establishes the pointers used by the critical error handler translation
function described in the previous paragraph.

Although one of the Function 12h subfunctions will give you the segment ad
dress of the DOS kernel, thaf s not really adequate for making use of this group
of routines. Many of them temporarily change the value in DS, and rather than
PUSHing the original value and POPping it back, they "restore" it when required
by using a "PUSH SS" followed by "POP DS". This requires that not only DS, but
also SS, be set to the DOS segment, and if that is done, then SP must be set to one
of the (several) stacks used by DOS. Unfortunately, even if you could locate the
right stack easily, using it would then prevent you from making any use of DOS
itself! That's why so many functions in the INT 2Fh Function 12h group are
tagged as being callable only "from within a DOS function call" in the appendix.

Fimction 19h, SHELLB.COM, available since DOS 4. This function is defined

only in DOS 4 and up; it provides nm-time interfacing between the DOSSHELL
batch file and the two executable programs, SHELLB.COM and SHELLC.EXE,
that implement the full-screen interface. These do not replace COMMAND.COM,
but rather rim as a pair of TSRs as child processes. SHELLB installs the INT 2Fh
handler for this function, and SHELLC takes care of such mundane details as the

CRT display, dispatching necessary child processes, and so on. This function, to
gether with the following one, become one of the alternate input sources avail
able to COMMAND.COM when the DOSSHELL facility is in use.

Installable Commands Function AEh, INSTALLABLE COMMAND, available

since DOS 3.3. This function connects what would otherwise be an external com

mand into the internal command list of COMMAND.COM. Both the command

code itself and the handler for this function must be installed as a single, non-
pop-up TSR. This capability was introduced with DOS 3.3, but the only weU-
known example of its use is the DOS 4 DOSSHELL facility. In DOSSHELL, the
SHELLC.EXE file contains several installable internal commands and the

SHELLB.COM file provides the INT 2Fh handler.
You can use this undocumented interrupt to install your own commands, but

they will work only with DOS 3.3 and above.
The basic principle on which this function operates is "Don't call us, we'll call

you." COMMAND.COM issues calls to this function at four places while parsing
the input line. Two of these calls are to subfunction Function AEOOh, to determine
if the command on the input line is a valid installed command; the other two are
called only if the first calls return FFh in the AL register, indicating that the com-

374 UNDOCUMENTED DOS

mand is indeed valid. The second calls are both to subfunction Function AEOlh,

which executes the command.

When Subfunction AEOOh is called, both the DS and ES registers point to
COMMAND.COM's transient area. The DX register is set to OFFFFh for un
known reasons, the BX register points to a buffer that contains two coxmt bytes
followed by an exact copy of the input line, and the 81 register points to a differ
ent buffer that contains only the command word from the line, converted to up
percase and preceded by its character cotmt. Your code must verify the content of
this second buffer is an exact match for the name of your installed command; if
not, it should chain the interrupt on up the line in case some other installed com
mand is being called. If the second buffer does match your installed routine, your
routine should change the AL register to FFh and return to the caUer.

When Subfunction AEOlh is called to execute the command, the K, DS, BX,

DX, and SI registers contain exactly the same data as for the previous subfunc
tion, although only DX and SI are again explicitly loaded with the values prior to
the call. The BX register has been preserved through a couple of subroutine calls,
but it may not always retain the pointer to the full input line buffer.

Therefore, if your command accepts arguments on the input line, if s recom
mended that those argiiments be copied into a local buffer before the routine re
turns from the AEOOh caU. After executing the actual command within the AEOlh
call, your code should zero out the coxmt byte in the command buffer at DS:SI.
This signals COMMAND.COM not to attempt to execute the command itself.

These calls are made before the internal command list is checked, which

means that you can install a command that has the same name as one of the in
ternal commands, and your command will replace the original one. Because your
own command can be a do-nothing thing, this offers an elegant way to disable
the DEL and ERASE commands on a system that must be accessible to the gen
eral public.

The following C program, INSTCMD.C, illustrates all the points of dealing
with the installable command interrupt service. Note that this program does not
install as a TSR, but instead shells to a child copy of COMMAND.COM to avoid
problems in deinstalling the added command.

/*
INSTCMD.C

The "InstallabLe Command" function is not called by a program that

Chapter 6: Command Interpreters 375

wants to extend COMMAND.COM's repertoire. Instead, you hook the
function and wait for COMMAND.COM to call you ("don't caLL us, we'll
call you"). Function AEOOh lets you tell COMMAND.COM whether you
want to handle the command, and function AE01h is where you actually
handle it (similar to device driver division of labor between

Strategy and Interrupt).

Note that AE01h is called with only the name of the command: not with
any arguments. Therefore, arguments must be saved away in AEOOh. Yuk!

Furthermore, while redirection is handled in the normal way in
AE01, in AEOO we get the entire command string, including any
redirection or piping. Therefore, these must be stripped off before
saving away the args during AEOO processing-

Problem with following AEOO and AE01 handlers: they should
chain to previous handler. For example, INTRSPY program won't see
AEOO and AE01 once INSTCMD is installed.

The sample COMMAND.COM extension used here is FULLNAME, based on the
undocumented TRUENAME command in DOS 4.x. We simply run undocumented
Function 60h in order to provide FULLNAME. Actually, not quite so
simple, since Function 60h doesn't like leading or trailing spaces.
These are handled inside function fullnameO.

The following INTRSPY script was helpful in debugging 2FAE:

; INSTCMD.SCR
structure cmdline fields

max (byte)
text (byte,string,64)

intercept 2fh
function Oaeh

subfunction OOh

on_entry

if (dx == OFFFFh)

output "AEOO"
output (DS:BX->cmdline)

subfunction Olh

on_entry

if (dx == OFFFFh)

output "AE01"
output (DS:SI->byte,string,64)

requires Microsoft C 6.0+, or Quick C 2.0+
cl -qc instcmd.c

376 UNDOCUMENTED DOS

*/

^include <stdlib-h>

#incLude <stdio-h>

^include <string-h>
^include <ctype-h>
^include <conio.h>

^include <dos.h>

^pragma packd)

typedef struct -C
unsigned es,ds,di,si,bp,sp,bx,dx,cx,ax;
unsigned ip,cs,fLags;
> REG_PARAMS;

typedef unsigned char BYTE;

typedef struct -C
BYTE Len;
BYTE txtEi:;
> STRING;

typedef struct -C
BYTE max;

STRING s;
> CMDLINE;

void interrupt far handLer_2f(REG_PARAMS r);

void (interrupt far *oLd)();

void failCchar *s) -C puts(s); exitd); >

main(void)

C

/* hook INT 2F */

old = _dos_getvect(Ox2f);
_dos_setvect(0x2f, handLer_2f);

putsC'This demo of installable commands isn't a TSR,");
putsClnstead, it just creates a subshell from which you can EXIT");
putsC'when done- In the subshell, one new command has been added:");
puts("FULLNAME CfilenameD.");

system (getenvC'COMSPEC"));

Chapter 6: Command Interpreters 377

/* unhook INT 2F */

_dos_setvect(0x2f, oLd);
>

char far *fuLLnameCchar far *s, char far *d)

char far *s2;

/* INT 21h AH=60h doesn't Like Leading or traiLing bLanks */
whi Le (i sspace(*s))

S++;

s2 = s;
whiLe (*s2) s2++;
s2—;
whi Le (isspace(*s2))

*s2-- = 0;

_asm -C
push di
push si
Les di, d
Lds si, s
mov ah, 60h
int 21h

pop si
pop di
jc error
>

return d;
error:

return (char far *) 0;
>

void fcputsCchar far *s)

/* can't use stdio (e.g., putchar) inside 2FAE01 handLer? */
whiLe (*s)

putch(*s++);
putch(OxOd); putch(OxOa);

>

char bufC128!]; /* not reentrant */
char argsC128Il;

#define CMD LEN 8

378 UNDOCUMENTED DOS

void interrupt far handLer__2f(REG_PARAMS r)

if ((r.ax == OxAEOO) && (r.dx == OxFFFF))

CMDLINE far *cmdLine;
int Len;
FP_SE6(cnidLine) = r-ds;
FP_OFF(cmdLine) = r-bx;
Len = min(CMD_LEN, cnidLine->s. Len);
if ((_fmemicmp(cmdLine->s.txt, "fuLLname", Len) ==0) ||

(__fmemicmpCcmdLine->s-txt, "FULLNAME", Len) == 0))

char far *redi r;
int argsLen = cmdLine->s-Len - CMD_LEN;
_fmemcpyCargs, cmdLine->s-txt + CMD_LEN, argsLen);
argsCargsLen] = 0;
/* yuk! we have to get rid of redirection ourseLves! */
/* it wiLL stiLL take effect in AE01 */

/* the foLLowing is not reaLLy correct, but okay for now */
if (redir = _fstrrchr(args, '>'))

*redir = 0;
if (redir = __fstrrchr(args, '<"))

*redir = 0;
if (redir = _fstrrchr(args, "|'))

*redir = 0;
r.ax = OxAEFF; /* we wiLL handLe this one */

>

>

eLse if ((r.ax == OxAEOI) && (r.dx == OxFFFF))

i

STRING far *s;
int Len;
FP_SEG(s) = r.ds;
FP_OFF(s) = r.si;
Len = min(CMD_LEN, s->Len);
if ((_fmemicmp(s->txt, "fuLLname", Len) ==0) ||

(_fmemicmp(s->txt, "FULLNAME", Len) == 0))
i

char far *d;
if (! *args)

d = "syntax: fuLLname CfiLenamel";
eLse if ((d = fuLLname(args, buf)) == 0)

d = "invaLid fiLename";
fcputs(d);
s->Len = 0; /* we handLed it; COMMAND.COM shouLdn't */

Chapter 6: Command Interpreters 379

>

else

_chain_intr<old);

Only the Microsoft compilers are capable of dealing with INSTCMD.C, be
cause Turbo C's hbraries do not provide an equivalent to the _chain_intr() func
tion that is used to pass the request up the Multiplex Interrupt handler chain.

If you run INSTCMD.C, you will first see the four-line explanation of what
the program does, followed by the banner line as the child copy of COM-
MAND.COM mitializes itself. From that point xmtil you type EXIT to return to
your parent process, you will have available the added command "FULLNAME."
This coiiunand is functionally identical to the imdocumented "TRUENAME"
command introduced with DOS 4.0 and described elsewhere in this chapter.

Notice that in INSTCMD.C, we copy the arguments supplied on the input
line into a buffer when servicing subfunction AEOO and then use them when exe
cuting the command subsequently. Both arguments are in the function han-
dler_2f().

Finally, notice how we have the opportunity to display a help message—
something which COMMAND.COM itself could do for internal commands, but
doesn't. This, combined with the fact that we can install front-ends, in addition to

replacements, for existing internal commands (simply by returning AL=0 after
handling the command), means that the installable-command facility can also be
used to create DOS help systems.

TSHELL, a Simple Command Interpreter

The basic ideas behind a command interpreter are extremely simple. What makes
them seem complicated in practice is the need to handle all possible circum
stances, with minimvun disruption of system operation. To show just how simple
a command interpreter can be and still function, here's TSHELL.C, a very tiny
shell that you can actually install as the primary shell of your system:

/**

* TSHELL-C - Demonstration tiny command interpreter *
* Jim Kyle, JuLy 10, 1990 *
* *

* Intended only to show basic principles; not for use *
* with DOS versions prior to 3-1 (EXEC function of such *
* versions does not preserve stack registers)- *

380 UNDOCUMENTED DOS

* *

* For Turbo C onLy due to pseudovariable usage- *
* *

* tcc -mt -c tsheLL *

* tLink /t /c cOt+tsheLL,tsheLL,,cs.Lib *
* *

**/

#incLude <stdio-h>

#incLude <string-h>
#incLude <dos-h>

#incLude' <dir-h>

char cmdbufC128];
char *cmdLst:: = {:"DIR","RUN">;
int i;

void do_dir(void) /* reports fiLes in cur dir */
■C struct ffbLk wkarea;

int endir;

if (strLenCcmdbuf) < 5) /* defauLt to aLL fiLes */
strcpyC cmdbuf+4,);

puts("\n FiLes and sizesXn");
endir = findfirstC cmdbuf+4, &wkarea, 0);
whiLe (!endir)

•C printf("%-13s %8Ld\n",
wkarea-ff_name, wkarea-ff_fsize);

endir = findnextC &wkarea);
>

putcharC 'Xn');
>

void do_run(void) /* caution, safe onLy for D0S3+ */
•C struct -C

/ unsigned eseg, cLo, cLs;
Long fcb1, fcb2;

> parms;

cmdbufCIl = '/•;
cmdbufC2Il = 'C;
cmdbufn3: = ' ';
parms.eseg = 0;
parms-cLo = (unsigned) cmdbuf+1;
parms-cLs = _DS;
parms-fcb1 = parms-fcb2 = OL;
_ES = _SS;
__BX = (unsigned) &parms;

Chapter 6: Command Interpreters 381

_DX = (unsigned) "C:WCOMMAND.COM";
_AX = 0x4B00;
geninterrupt(0x21);

}

void ma1n(void)

{ puts< " TINY SHELL DEHONSTRATOR\n");
puts< "Copyright 1990 by Jim Kyle\n");
puts(" Commands: DIR, RUN onlyXn");
for(; ;)
{ printf("tinyshelL> ");

gets(cmdbuf);
for<i=0; i<2; i++)

i f(strni cmpCcmdlstCi D^cmdbuf,strLen(cmdLstCi 3))==0)
break;

SMitch(i)

{ case 0: do_dir();
break;

case 1: do_run();
break;

default: putsCUnknown command!!!\n");
}

Of course, this just shows the bare rudiments of a DOS command interpreter.
A real one would have to handle INT 23h (Ctrl-C) and INT 24h (Critical Error) at

the very minimum. It also would be important to take over imdocumented INT
2Eh, discussed later in this chapter, even if only to point it at an IRET instruction.

Unlike the other programs in this chapter, TSHELL.C is written to be com
piled only with Turbo C (or JPI TopSpeed C, which also supports geninterruptO
and register pseudovariables). The interface to the DOS EXEC function in this
program cannot rely on any environment being established (remember, COM-
MAND.COM isn't rimning!), and the library fimctions of both Microsoft's and
Borland's products do use the environment. Thus, it was necessary to drop to as
sembly language for the interface, and the Turbo C pseudovariables were used
for the same reasons that DEVLOD.C in chapter 3 also used the Borland product.

Note that TSHELL is not intended to be useful; its sole purpose is to present
the skeleton of a command interpreter. It recognizes only two commands, DIR
and RUN, and the RUN command actually launches COMMAND.COM as a
child process in order to make the conventional DOS command set available.

382 UNDOCUMENTED DOS

Without this capabiHty, if s much more difficult to get TSHELL out of your sys
tem once you've tried it out!

Once you have TSHELL.COM, add a line such the following to your CON-
F1G.SYS file (temporarily REM out any existing SHELL= statement):

SHELL=C:\TSHELL.COM

Note that you must use the SHELL= command in CONFIG.SYS to install a
different command interpreter. Many people are under the impression that it can
also be installed by changing the COMSPEC= variable in the environment, but
the environment variable is used only by the existing command interpreter to re
load itself when necessary. Until a command interpreter is loaded and initialized,
neither the COMSPEC variable nor the master environment block itself exists!

Now reboot the system. You'll see that the prompt is now "tshell>" rather
than anything you may be used to seeing. You'll note, also, that AUTOEXEC.BAT
did not run, and none of your TSR programs have been installed.

If you t5^e DIR, you'U get a list of programs in the current directory, but no
subdirectories will be shown, nor will the amount of available space. Any other
conventional conunand will produce only an error message, because TSHELL
does not recognize it.

When you t5^e RUN, either with or without any arguments, you can expect
to see two error messages complaining about a bad search directory, followed by
the conventional COMMAND.COM banner as a child copy of COMMAND.
COM goes into action. From this point, you have all normal commands available
to you, which lets you change CONFIG.SYS back to get rid of the TSHELL line.

The reasons for the two error messages are not fully known; our best guess is
that they result from TSHELL's attempt to spawn a child copy of COM-
MAND.COM when no primary copy was loaded, but they could also result from
the fact that no master environment is created by TSHELL. You can verify the ab
sence of a master environment by executing the EPTST.EXE program presented
later in this chapter from the child COMMAND.COM spawned by TSHELL's
RUN; it wiU show no master environment, and SET will show that "PATH=" is

blank in the current copy.
The key point about TSHELL, though, is the skeletal structure of a command

interpreter provided in main(): an endless for (;;) loop which prints a prompt (a

Chapter 6: Command Interpreters 383

more complete implementation would interpret and print getenvC'PROMPT")),
gets commands, interprets them, and executes them.

How COMMAND.COM Works

This section is based on disassembly of several versions of COMMAND.COM; its
major emphasis is on those points not already adequately covered in official sys
tem documentation. This section also defines such terms as master environment

and primary shell.
Although COMMAND.COM is not the only possible command interpreter

(and later in this chapter we look briefly at some alternatives), it is the one most
used with MS-DOS, because it comes as part of the system package. To many
users, it is the operating system, because the real system files are hidden from
view. (Actually, in DOS 2, COMMAND.COM was an essential part of the operat
ing system, because the DOS EXEC Function 4Bh was actually contained in the
resident portion of COMMAND.COM rather than in the EKDS kernel. By the time
DOS 3.0 was released, however, EXEC had been moved to its proper location,
and the operating system itself became independent of COMMAND.COM.)

The process of creating the primary shell actually begins when hidden file
lO.SYS in MS-DOS (or IBMB10.COM in PC-DOS) is loaded and its initialization

code takes over. After a bit of preliminary calculation, this code moves the part of
itself that has not yet been executed up to the topmost memory area physically
present in the 640KB "DOS memory," much as the DEVLOD program in chapter 3
moved itself during execution.

From that vantage point, out of harm's way, the lO.SYS code then installs the
rest of the DOS kernel, making it possible for the primary shell to use all the DOS
services when it loads for the first time.

The "primary shell" defined in the CONFIG.SYS file (which defaults to COM-
MAND.COM if no SHELL= line occurs in CONF1G.SYS) is loaded as essentially

the final step of initialization by 10.SYS. After building all required data struc
tures for use by DOS, the IO.SYS initialization procedures use INT 21h Fimction
4B00h, to load and execute the primary shell program.

One of the parameters passed to DOS with this request is the address of the
associated environment block. For the primary shell, a "master environment
block" is assigned just above the DOS kernel area, by code m the COMMAND.
COM initialization routines. The size of this block defaults to 160 bytes, but it can

384 UNDOCUMENTED DOS

be expanded by means of the "/E:" option switch added to a "SHELL=COM-
MAND.COM /P" line in CONFIG.SYS.

For primary shells other than COMMAND.COM, the exact method may dif
fer, but all provide methods for tailoring the size of the master environment to
whatever you need.

If control ever returns to the IO.SYS initialization code from that primary
shell, a fatal error has occurred (such as the stack becoming corrupted or critical
system code being modified by accident) and continued operation is impossible.
Therefore the call to INT 21h EXEC is followed by a "d)mamic halt" (JMP $),
which locks the system solid. Only pressing the reset button (if present) or pow
ering down and then back up can return the system to operation.

The only time that control can return to this d)mamic halt code is while the
primary shell is loaded. The most likely reasons for such immediate return
would be failure to locate the shell or inadequate memory to load it.

Failure to find the program is usually the result of a spelling error in the
CONFIG.SYS file or a move of the program to some directory other than that
specified in CONFIG.SYS. If this happens, you'll need to have a bootable floppy
handy to bring the system back up so that you can correct the errors in CON
FIG.SYS.

As soon as the primary shell begins execution, the area at the top of EXDS
RAM from which IO.SYS called the shell becomes available for reuse. Subsequent
operations while initializing the primary shell normally overwrite the EXEC call
and the JMP $ which follows it.

The Division Points

When it is first loaded by the initialization code in IO.SYS, COMMAND.COM di
vides itself into three parts. One part stays where it was initially loaded, in low
memory, just below the area where most user programs run. Another part moves
to the highest available area within the 640KB DOS RAM limit. The middle por
tion is discarded after it finishes setting things up. Official DOS manuals teU us
that much, but very little else; here's more of the story.

Resident,Initial,andlransientPortions The three parts into which COMMAND.
COM divides itself are known as the resident, transient, and initialization portions.

The resident portion contains the ISR for INT 2Eh, and in some older ver
sions of DOS it also contains some of the INT 21h service routines (including, as
mentioned earlier, the EXEC function). In addition to these interrupt handlers.

Chapter 6: Command Interpreters 385

the resident portion performs necessary clean-up when a terminated process re
turns control to the resident portion. This portion also contains the permanent
data storage associated with the command interpreter (such as the pointers to the
transient portion).

The transient portion is needed only for internal commands and is made
available for use by any external command that needs the space. This area con
tains the actual input buffer, the code that interprets commands, the internal
command Ust, and all of the code for executing internal commands. It does not
contain code for dispatching external commands, however; if a command is
deemed external, control transfers back to the resident portion. This assures that
when the external command terminates, its return address (stored by DOS in
processing the EXEC fimction) will still be vaHd.

Next is the initiaUzation portion. Each time COMMAND.COM is loaded, at
least some of this code is executed to verify that the version levels of COM-
MAND.COM and the resident DOS kernel match exactly, and to parse any argu

ments passed to the program. Other actions depend on whether the "/P" option
switch was one of the arguments passed. If this switch is absent, initialization
merely shrinks the RAM allocation and then goes directly to the input prompting
routines to accept input.

If, however, the switch is present (as it is when the primary shell is being in
stalled by lO.SYS), initialization calculates and stores the starting address for the
transient portion, moves the transient portion into place at the top of RAM, cal
culates and stores its checksum for future use in reloading, and installs the inter
rupt handler for INT 2Eh. It then checks for the existence of a file named
"AUTOEXEC.BAT" in the current working directory. If one exists, the initializa
tion portion sets flags that direct the input routines to process it before looking
for keyboard input.

In either case, this portion of COMMAND.COM next shrinks the RAM allo
cation to be just adequate to cover the resident portion (if this is not the primary
shell, "resident portion" refers to this copy and not to the primary copy itself) and
transfers control to the command input prompting routine. This routine issues
the prompt, waits for input, and dispatches it. But the initialization portion, as
such, ceased to exist when the RAM allocation was reduced.

Where These Portions Are Loaded The preceding descriptions show you how
COMMAND.COM splits itself up for action, but for a full appreciation of what
goes on you need to spend a few minutes at the keyboard examining exactly how

386 UNDOCUMENTED DOS

the various parts wind up in yoxir own system. The major tool for doing this will
be the standard DOS debugging tool, DEBUG.

To locate the resident portion of COMMAND.COM in RAM, use the INT 2Eh
vector to find the segment address for the primary shell, as follows:

mov ax,^352Eh ; get vector for INT 2Eh
int 21h ; into ES:BX

A little later in this chapter, this technique is discussed in more detail, includ
ing why it works, when it doesn't work, and how it compares to other methods.

Once you have pinned down the resident portion, all sorts of possibilities
beckon. Later in this chapter, this portion is used to buUd an editor for the master
enviroiunent. And we'll use the resident portion's own data, right now, to find
the transient portion tucked away in the upper reaches of DOS memory.

To locate the transient portion, use DEBUG, find the resident part and then
use the command "S ES:0 LfifO 59 4E" to search for the string "YN". This string
should be foimd twice, but the second copy is just the one that DEBUG uses to
compare against in the input buffer.

Display the first area found. The string should also contain the letters "ARIF,"
but not necessarily in that sequence; these are the acceptable responses to the
"Abort, Retry, Ignore, Fail" error message from INT 24h, though "F' wiU be miss
ing for DOS versions prior to 3.3. Look some 80-90 bytes past the string for a
four-byte far pointer in which the first two bytes are "2C 01"; the next two bytes
will be the segment address of the transient portion.

These four bytes are the far pointer that COMMAND.COM xises to transfer
control to the transient portion upon return from a process. In IBM's DOS 4.01
with a fuU 640KB system, the pointer value is 9929:012C, but the segment will
vary from version to version, as will the pointer's location. The offset has been
the same in all versions since 3.1.

Ifs a lost cause to try to view the initialization code of COMMAND.COM in
RAM, because it is overwritten immediately by the first process spawned. To
view this code, you have to use DEBUG (or a more powerful disassembly tool)
and look at the file itself.

Using DEBUG, the way to do it is with the command "DEBUG COMMAND.
COM", which will get you the usual prompt from DEBUG. Because it's a nor
mal COM file, you can use either the P or the T command to jump to the first

Chapter 6: Command Interpreters 387

byte of the initialization code; you can then use the U command (for unassemble)
to view the code itself.

For serious study, you need to take notes of the addresses, paying special at
tention to the start and stop addresses. You can then use Q to quit DEBUG and
create a script file consisting of the P, followed by the sequence of U <from> <to>
commands, and terminated by a Q. This script file can then be fed to DEBUG in
another session by using the command "DEBUG COMMAND.COM <INP.SCR
>OUT.DAT". This assumes that you have named the script file INP.SCR; the com
mand uses COMMAND.COM's redirection feattires to supply DEBUG the inputs
from the script and to save all output in the newly created file OUT.DAT. You can
then study OUT.DAT at leisure to leam more about how COMMAND.COM in
stalls itself.

Using the Environment

This section discusses the Environment as implemented by MS-DOS and used by
COMMAND.COM. Although the concept itself is firmly based at the operating-
system level, the details of its usage are left to the command interpreter, with the
result that this discussion may not apply fully if an alternate interpreter is in use.

How COMMAND.COM Uses the Environment The concept of an "environment" for
each process came to MS-DOS from UNIX but was greatly simplified m the
transfer. As currently implemented in MS-DOS, the environment consists of a
paragraph-aligned block of space that may be up to 32,767 bytes in length (al
though in practice it is always much smaller). This block contains a collection of
"enviroiunent variables," each of which consists of a variable name followed by
the variable's data. Both the name and the data are stored as an ASCUZ text

string, with an equal sign ("=") separating the name from the data.
The link between the process and its environment is provided by DOS, which

plugs the segment address of the environment into the word at offset 2Ch of the
PSP when dispatching the process.

The program that does the dispatching is responsible for allocating the envi
ronment space and defining all the variables contained in it, with one exception.
If the segment address passed to the DOS EXEC function is Oh, then DOS itself
will allocate just enough space to contain a copy of each variable in the parent's
environment and will do the coping automatically. The sole (and undocu
mented) exception to this rule is that the environment space used initially by the

388 UNDOCUMENTED DOS

primary shell must be set up explicitly by the primary shell itself when it initial
izes. Otherwise, no master copy of the environment will exist.

COMMAND.COM uses several predefined environment variables to control
its actions. One, named COMSPEC, provides the drive, path, and file specifica
tion that is used each time COMMAND.COM must reload its transient portion.
Another, PATH, lists the drives and paths to be searched for possible external
command filenames. Still a third, PROMPT, stores the string of characters that
COMMAND.COM uses to prompt for user input.

Both PATH and PROMPT have separate internal commands that can be used
to modify their content. However, any environment variable can be modified by
the internal command SET; if the variable does not exist, it is created in the envi

ronment, provided that enough space exists for it. From the primary command
shell, the SET command operates on the master environment.

The predefined environment variables (PATH and COMSPEC only) are cre
ated in the master environment (that for the primary shell) by the primary shell's
own initialization code. The size of the master environment is also determined at

this time: it is 160 bytes by default, but can be altered by the "/e:nrm" option in
the SHELL=COMMAND.COM line in CONFIG.SYS (alternate shells use differ

ent syntax but have the same capability). Once the primary shell has been loaded,
its environment space allocation cannot be increased.

When COMMAND.COM dispatches an external command, it simply passes
the Oh code to DOS, thus generating an exact copy of the master environment for
use by the spawned process. Because it is a copy and not the original, any changes
made to it by the process will not be reflected in the master environment itself.

Although this protects the master environment from being altered acciden
tally, it makes it difficult to alter it intentionally except by using the SET com
mand from the primary shell command line prompt, which is not always
convenient.

Locating the Environment Before you can make any use of the information stored
in the environment area, you must first find it. DOS stores the segment address
of the environment area for each process in the word at offset 2Ch in the PSP, but
if you need access to the master environment, you must locate the PSP for the
primary shell.

The following assembly language package (ENVPKG.ASM) contains three
routines designed to support small-model C programs. The first two, curenvpO
and mstenvpO, locate the current and the master environment areas, respectively.

Chapter 6: Command Interpreters 389

and return far pointers to the first byte. The third, envsizO, requires as input a
pointer such as the one returned by the first two, and returns the size of the area
in paragraphs.

;ENVPKG.ASM - Jim KyLe - July 1990

.model small^c

.data

; assumes being used from C with _psp global variable
extrn _psp:word

. code

curenvp proc

public curenvp
; char far * curenvpC void);

mov

mov

mov

xor

ret

ax,_psp

es,ax

dXy.es: EOOZChll
axy.ax

; get PSP seg

; get env address
; offset is zero

curenvp endp

mstenvp proc

public mstenvp
; char far * mstenvpC void);

mov

int

mov

xor

ret

mstenvp endp

envsiz proc

ax,352Eh
21h

dx,es: II002Ch3
axy.ax

; get INT2E vector
; (master segment)
; get env address
; offset is zero

oenv:word, senv:word

public envsiz
; short envsizC char far * vptr);

mov ax,senv ; get segment of env

390 UNDOCUMENTED DOS

dec ax ; back up to MCB
mov es,ax

mov ax^es:E0003h3 ; get size in grafs
ret

envslz endp

end

The lines following each of the "public" directives are sample prototype dec
larations to be copied into any C program that uses ENVPKG. To use these rou
tines, first assemble the program into an OBJ file as follows:

MASM /mx ENVPKG;
TASM /mx /jMASM51 ENVPKG;

The "/mx" option switch, for both assemblers, forces procedure names to re
main in lower-case so that the OBJ file can be linked with your C programs. The
operation of curenvpO and mstenvpO also relies on the fact that C compilers for
the PC retvun four-byte far pointers in the DX:AX register pair.

The curenvpO routine assumes an external global variable called _psp: this is
provided in all C compilers for the PC, though some compilers declare _psp in
DOS.H and others in STDLIB.H.

The envsizO routine is based on the fact that every environment block starts
at an offset of zero and is preceded by a Memory Control Block that contains the
size of the block in paragraphs (see chapter 3).

Thus, when you pass a far pointer to the environment block to envsizO, it
decrements the segment by 1 to address its associated MCB and then retrieves
the size from offset 3 in that segment.

Note that the returned value is always in paragraphs. If a byte size is needed,
the returned value must be multiplied by 16 (or shifted left 4 places, which is
faster).

This short C program, EPTST.C, illustrates use of the ENVPKC routines:

/**

* EPTST.C - Tests environment-access object modules *
* Jim Kyle, July 1, 1990 *
**/

^include <stdio-h>

Chapter 6: Command Interpreters 391

char far * curenvpC void); /* prototype declarations */
char far * mstenvpC void);
short envsizC char far * vptr);

void main (void)

■C char far *mine;
char far *master;

puts("\nEnvi ronment Locations are:");
mine = curenvpO;
master = mstenvpO;
printf("Current environment is at %Fp, size: %i bytesXn",

mine, envsiz(mine)«4);
printf(" Master environment is at %Fp, size: %i bytesXn",

master, envsiz(master)«4);

You can compile this program with either QuickC or Turbo C. In either case,
be sure to compile using the small memory model, or alter your ASM file's
".model" statement to reflect the memory model that you will use.

From the conunand line prompt, you can compile with either of these com
mands:

tcc -ms eptst-c envpkg.obj
qcl /AS eptst-c envpkg.obj

Typical output from EPTST, when rim at the primary shell's command
prompt, follows:

Environment Locations are:
Current environment is at 1868:0000, size: 256 bytes
Master environment is at 11D7:0000, size: 512 bytes

This shows how the current working copy of the environment has been
trimmed to a size just adequate to hold the defined variable strings and the
program's pathspec. Don't expect your own results to be identical to this exam
ple; the size of both the master and the current environments depends on what
information you have stored in each.

Other Ways of Locating the Environment The preceding discussion has a problem:
the interrupt vector for INT 2Eh doesn't always point to the primary copy of the
command interpreter! For example, using David Maxey's INTRSPY program

392 UNDOCUMENTED DOS

from chapter 8, it is trivial to take over INT 2Eh for the purpose of seeing who
calls it. If mstenvpO comes along while INTRSPY is in control of INT 2Eh, it will
think that INTRSPY is the primary command interpreter, even though INTRSPY
has simply hooked INT 2Eh for diagnostic purposes and is just chaining the in
terrupt to the previous owner which, presumably, is the primary command inter
preter.

Of course, this is xmlikely to happen out in the field: after all, nothing but a
command interpreter really takes over INT 2Eh, right? Still, it's too easy to fool
mstenvpO m its current form.

What other ways are there of locating the master enviroiunent?
There are plenty of other techniques, all of which require imdocumented

DOS:

One technique avoids the issue of locating the master environment entirely: it
issues SET commands using INT 2Eh. The ability to call COMMAND.COM via
INT 2Eh is discussed later in this chapter. Note that mstenvpO does not call INT
2Eh: it merely uses its interrupt vector in hopes of finding the primary command
interpreter. This technique is repeated in mstenvplO, in MSTENVP.C below.

An entirely different technique, used by the .BAT compilers discussed earUer
in this chapter, walks the MCB chain looking for the environment segment be
longing to the primary command interpreter. Chapter 3 documented how to
walk the MCB chain. The key here is to take the first environment you find in the
chain. How do you find the first environment? Don't look for certain ASCII char
acters to see if an MCB corresponds to an environment; instead, look for PSPs
(walk the PSP chain, as it were), and look at offset 2Ch. Take the first environ

ment you find. How do you know you have a PSP? Don't look for the opcode
bytes for INT 20h (CDh 20h) like some programs do: instead, look for MCBs
whose owner is one greater than the MCB itself. See the routine mstenvp2() in
MSTENVP.C below.

Another technique, designed especially to accommodate command interpret
ers loaded with the / p option, also walks the MCB chain. This time you look for
the last environment that is at a higher address than its corresponding PSP. (That's
a mouthful.) Why? You look for the last environment because of the /p option,
and you look for an environment higher than its PSP because the command inter
preter builds an environment for itself: therefore the environment is at a higher
address than the program. See mstenvpSO in MSTENVP.C below.

Chapter 6: Command Interpreters 393

Finally, another technique involves walking back along the PSP chain until
one finds a PSP which is its own parent. However, this technique (which first ap
peared in Barry Simon, "Providing Program Access to the Real DOS Environ
ment," PC Magazine, 28 November 1989, pp. 309-314) is designed to find what is
called the "active" environment, not the master environment. This method finds

only the currently active shell: if you are within a program spawned from the !
statement in a dBASE or FoxPro program, for example, you won't find the mas
ter environment using this technique.

Three techniques for finding the master environment appear in the routine
below. The function walk() in MSTENVP.C is a variation on the MEM.C program
from chapter 3. Here, though, walk() expects a pointer to a function. For each
MCB it finds, walk() will call this fimction, passing it an MCB pointer. The fimc-
tion should return TRUE, to indicate that walkO should keep going, or FALSE, to
indicate that walkO should stop.

Thus, we can plug different fimctions into walk(), making MSTENVP.C a test
bed for trying out different methods of finding the master environment via the
MCB chain:

/*

MSTENVP.C

test bed for different methods of finding the master environment
*/

#incLude <stdlib-h>

#incLude <dos.h>

typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef unsigned long ULONG;
typedef void far *FP;

#ifndef MK_FP
#define MK_FP(seg,ofs) ((FP)(((ULONG)(seg) « 16) | (ofs)))
#endi f

#ifdef TURBOC
^define ASM asm

#e Lse

#define ASM _asm
#endi f

/**/

394 UNDOCUMENTED DOS

^pragma pack(l)

typedef struct -C
BYTE type; /* 'M'=in chain; 'Z'=at end
WORD owner; /* PSP of the owner */

WORD size; /* in 16-byte paragraphs */
BYTE unusedCSU;
BYTE dos4:8];
> MCB;

MCB far *get_mcb(void)
i

ASM mov ah/ 52h
ASM int 21h

ASM mov dx, es:Cbx-23
ASM xor ax, ax

/* in both Microsoft C and Turbo C, far* returned in DX:AX */

#define MCB_FM_SEG(seg) ((seg) - 1)
^define IS_PSP(mcb) (FP_SEG(mcb) + 1 == (mcb)->owner)
^define ENV_FM_PSP(psp_seg) (*((WORD far *) MK_FP(psp_seg, 0x2c)))
#define PARENT(psp_seg) (*((WORD far *) MK_FP(psp_seg, 0x16)))

char far *env(MCB far *mcb)

{.

char far *e;
unsigned env_mcb;
unsigned env_owner;

if (! IS_PSP(mcb))
return (char far *) 0;

e = MK_FP(ENV_FM_PSP(mcb->owner), 0);
env_mcb = MCB_FM_SEG(FP_SEG(e));
env_owner = ((MCB far *) MK_FP(env__mcb, G))->owner;
return (env_owner == mcb->owner) ? e : (char far *) 0;

typedef enum { FALSE, TRUE > BOOL;
typedef BOOL (*WALKFUNC)(MCB far *mcb);

General-purpose MCB walker.
The second parameter to walkO is a function that expects an
MCB pointer, and that returns TRUE to indicate that walkO
should keep going, and FALSE to indicate that walkO should

Chapter 6: Command Interpreters 395

stop.

*/

BOOL waLkCMCB far *mcb, WALKFUNC walker)
i

for (;;)
switch (mcb->type)
i

case 'M':

if (! waLker(mcb))

return FALSE;

mob = MK_FP(FP_SEG(mcb) + mcb->size + 1, 0);
break;

case 'Z':

return walker(mcb);
break;

default:

return FALSE; /* error in MCB chain! */
>

>

/**/

/* using the GETVECT 2Eh technique (ENVPKG.ASM) */
void far *mstenvp1(void)

ASM mov ax, 352eh /* get INT 2Eh vector */
ASM int 21h

ASM mov dx, es:C002ChD /* environment segment */
ASM xor ax, ax /* return far ptr in DX:AX */

>

/**/

/* walk MCB chain, looking for very first environment */
void far *env2 = (void far *) 0;

BOOL walk2(MCB far *mcb)

i

if (env2 = env(mcb))

i

unsigned psp = FP_SEG(mcb)+1;
return (PARENT(psp) == psp) ? FALSE /*found it!*/ : TRUE;

>

else

return TRUE; /* keep going */

396 UNDOCUMENTED DOS

void far *mstenvp2(void)

wa Lk(get_mcb(), wa Lk2);
return env2;

>

/**/

/* walk MCB chain, looking for very LAST env addr > PSP addr */
void far *env3 = (void far *) 0;

^define NORMALIZECfp) (FP_SEG(fp) + (FP_OFF(fp) » 4))

BOOL waLk3(MCB far *mcb)

void far *fp;
/* if env seg at greater address than PSP, then

candidate for master env — we'll take last */

if (fp = env(mcb))
if (NORMALIZE(fp) > (FP_SEG(mcb)+1))

env3 = fp;
return TRUE;

void far *mstenvp3(void)

walk(get_mcb(), walk3);
return env3;

**/

mainO

printf("GETVECT 2Eh method; mstenvpl = %Fp\n", mstenvpK));
printfC'WALK MCB method; mstenvp2 = %Fp\n", mstenvp2());
printfC'WALK MCB/LAST method; mstenvp3 = %Fp\n", mstenvp3());

How does this program behave under various conditions?:

C:\UNDOC\KYLE>mstenvp
GETVECT 2Eh method; mstenvpl = 0BC1:0000
WALK MCB method; mstenvp2 = 0BC1:0000
WALK MCB/LAST method; mstenvp3 = 0BC1:0000

Chapter 6: Command Interpreters 397

So far so good: all three methods agree on where the master environment is.
Now let's load a new permanent command interpreter with the poorly docu
mented / p flag and run MSTENVP again:

C:\UNDOC\KYLE>mstenvp

GETVECT 2Eh method; mstenvp! = 0CBD:0000
WALK MCB method; mstenvpZ = 0BC1:0000
WALK MCB/LAST method; mstenvp3 = 0CBD:0000

Here, mstenvp2() was in error: it stuck with the old abandoned environment
segment in 0BC1:0000, instead of upgrading as the other two subroutines did.
The /p flag creates a new primary command interpreter, not a secondary com
mand interpreter. Strike one for mstenvp2().

Now, after loading a debugger that hooks INT 2Eh:

C:\UNDOC\KYLE>mstenvp
GETVECT 2Eh method; mstenvpl = 7726:0000
WALK MCB method; mstenvp2 = 0BC1:0000
WALK MCB/LAST method; mstenvp3 = OCBDiOOOO

Now, mstenvplO is wrong, too: segment 7726 points into the debugger, not
the primary command interpreter! So far, mstenvp3() is looking pretty good.

Now lef s rim MSTENVP from within a secondary command interpreter. For
example:

C:\UNDOC\KYLE>command /c mstenvp
GETVECT 2Eh method; mstenvpl = 0F57:0000
WALK MCB method; mstenvp2 = 0F57:0000
WALK MCB/LAST method; mstenvp3 = 129C:0000

Here, mstenvp3(), which until now looked pretty robust, failed miserably: it
dutifully picked up the last MCB controlling an environment whose address was
higher than its corresponding PSP: not surprisingly, that MCB belonged to the
secondary command processor, not to the primary one. Oh well, the algorithm
sounded good.

Finally, let's reboot the machine with DOS 4.0 (we've been running DOS 3.3),
load a TSR in CONFIG.SYS with the INSTALL= command, and try MSTENVP
again:

398 UNDOCUMENTED DOS

C: \UNDOC\KYLE>mstenvp
GETVECT 2Eh method; mstenvpl = 13F9:0000
WALK nCB method; mstenvp2 = 0E4A:0000
WALK MCB/LAST method; mstenvp3 = 1349:0000

In this situation, mstenvp2() was wrong again: segment 0E4A points into the
environment of the TSR loaded with the INSTALL= command! Thus, any pro
gram that uses the "walk MCB" method of finding the master environment will
fail whenever a user of DOS 4 or higher uses the handy 1NSTALL= command.
For example, if a .BAT file containing a SET statement is compiled with
BAT2EXEC, it fails unexpectedly imder this situation producing an "Out of envi-
rorunent space" message.

Could some enhancement be made to mstenvp2() to detect this situation?
Yes: take, not the first environment you find, but the first environment belonging
to a PSP that is its own parent (another mouthful!):

/* walk MCB chain. Looking for very first environment belonging
to PSP which is its own parent */

void far *env4 = (void far *) 0;

#define PARENT(psp_seg) (*((WORD far *) MK_FP(psp_seg, 0x16)))

BOOL waLk4(MCB far *mcb)

if (env4 = env(mcb))

i

unsigned psp = FP_SEG(mcb) +1;
return (PARENT(psp) == psp) ? FALSE /*found it!*/ : TRUE;

>

else

return TRUE; /* keep going */

void far *mstenvp4(void)
C

walk(get_mcb<), walk4);
return env4;

>

This works beautifully in the DOS 4.x and higher 1NSTALL= situation, but it
still leaves the problem with the /p option that caused mstenvp2() to fail.

Chapter 6: Command Interpreters 399

Thus, although all these techniques work pretty well, none presents a 100-
percent fool-proof method for finding the master environment. Of course, the
problems discussed here are the result of some admittedly offbeat special cases,
but anticipating such cases is what distinguishes the professional programmer
from the amateur. So, whaf s a programmer to do? One technique, of course, is to
perform the mstenvpO fimction in two different ways, compare the results, and
bail out if they don't match.

Ifs some small comfort that Microsoft itself messed up the finding of the
master environment in its own APPEND utility: the APPEND /E switch, when
executed from a secondary command interpreter, does not affect the master envi
ronment and, in fact, can cause mysterious crashes.

Searching the Environment Just locating the environment block, of course, isn't
enough to let you recover data from it. The next step is to know the format in
which information is stored there, and to make use of that knowledge to find and
retrieve the item you want.

The internal storage format used is, essentially, pure ASCII text. Each variable
consists of a single ASCIIZ string. The first part of this string is the variable's
name, and the rest is its data. The name and data are separated by an equal sign.

Each variable immediately follows the previous one, and the end of the list of
variables is indicated by two consecutive all-zero bytes.

Since version 3.1, the EXEC function has added another item of information

to the environment: the full path specification for the process that owns this copy
of the environment. This information immediately follows the double-zero b5^e
pair and begins with a binary (not ASCII) Olh word that indicates the number of
items that follow. The drive letter, in ASCII, appears as the next byte, and the
pathspec in ASCII continues until an all-zero end-of-strmg byte is reached.

Once you have a far pointer to the first byte of the environment area and
know the internal storage format, it's simple to develop code to locate an envi
ronment variable by name.

In fact, current C compilers include library fvmctions getenvO and setenvO to
do just that, but they are limited to accessing only the current working copy of
the environment. For maximum flexibility, you need to be able to access any copy
you desire, because if you happen to be "shelled out" of a program, changes
made to the current copy will vanish without trace when you return to the parent
program. Changes made to the master copy will remain but will have no effect
until you return to the primary shell.

400 UNDOCUMENTED DOS

Several methods could be used to provide totally flexible access to the envi
ronment; the one we'll explore is designed for easy expansion to other needs. Its
foundation is the small assembly-language fimction shown in NXTEVAR.ASM,
which follows:

; NXTEVAR-ASM - Jim Kyle - July 1990

.model smalL/C

. code

nxtevar proc uses di. vptr:far ptr byte

publi c nxtevar

; char far * nxtevarC char far * vptr);
les di, vptr
mov cx, SOOOh
xor ax, ax ; search for 0 and...
mov dx, ax ; ..-initialize return DX:AX to 0:0

repne scasb ; search ES:DI for char 0 in AL
inc cx ; CX = SOOOh if only one 0 found
js nev

mov dx, es
mov ax, di

nev: ret

nxtevar endp
end

NXTEVAR.ASM can be assembled either with MASM 5.1 or with Turbo As

sembler in its MASM51 mode of operation. As presented, it's for use with small
memory model C programs only, but the language interface can be changed eas
ily by editing the ".model" line.

This function, when presented with a far pointer to any ASCnZ string (not
just one in the environment area), returns a far pointer to the bj^e that foUows
the end-of-string marker byte. In the environment's structtue, that pointer is ei
ther to the first bj^e of the next string or to a byte that is all zeroes. In the latter
event, the end of the environment's variable area has been reached, so nxtevarO

returns the NULL pointer.
Before that happens, the previous call to nxtevarO will have returned the far

pointer to the aU-zeroes byte itself. If each pointer is retained in an array, the final

Chapter 6: Command Interpreters 401

one can be used to recover the process' full path name by adding to its value, ver
ifying that the next two bytes are then Olh and OOh, and finally copying the path
information from the remaining bytes. Because the path data, hke each variable,
is an ASCIIZ string, the normal C string functions will deal with it properly.

This function is flexible because you can pass the function a pointer to any
environment, including the current environment (obtained via the curenvpO
function of ENVPKG) or the master environment (obtained by using mstenvpO
instead).

To use NXTEVAR.ASM, you must assemble it into an OBJ file following the
same procedures set forth earlier in this chapter for ENVPKG.ASM.

To illustrate how NXTEVAR.ASM is used, here's a little C program that re
ports the location and contents of each string in the current envirorunent:

/**

* NEV-C - Next Environment Variable *

* Jim Kyle, July 1, 1990 *
**/

#incLude <stdio.h>

^include <stdlib-h>

char far * nxtevarC char far * vptr);
char far * curenvpC void);

void main (void)

■C char far * myenv;

myenv = curenvpO;
while (myenv)

■C printfC'Env Var at %Fp: %Fs\n", myenv, myenv);
myenv = nxtevarC myenv);

>
exi t(0);

To create NEV.EXE from the C program, you can use either QuickC or Turbo
C; both the ENVPKG.OBJ and NXTEVAR.OBJ modules must be used this time,
because NEV.C calls curenvpO to locate the current environment. NEV.C tells you
the address and contents of each variable string in the current environment, in
the sequence in which they occur in the environment block. More often, youTl
want to locate a specific environment variable by name, and you may want to lo
cate it in the master environment rather than in the current copy. You could use

402 UNDOCUMENTED DOS

the library fmvction getenvO to return a pointer to the named variable in the cur
rent environment copy, but not to access the master.

To both search by name and use the master environment, you can modify
NEV.C into a far more useful program, FMEV.C, as follows:

/**

* FMEV.C - Find Master Environment Variable *

* Jim Kyle, July 7, 1990 *
**/

#incLude <stdio-h>

#incLude <stdLib-h>

#incLude <string-h>

char far * nxtevarC char far * vptr);
char far * mstenvpC void);

void main (int argc, char * argvC3)
■C char far * menv;

char vnameC128I]y. *vdata, tgtC64!l;
int tLen;

menv = mstenvpO;
if (argc < 2)

•C printfC'Var to find: ");
getsC tgt);

>
else

strcpyC tgt, argvUIH);
tLen = strlenC tgt);

while (menv)
■C sprintf(vname, "%Fs", menv);

if (vnameEtlenl == '=')
•C vdata = &vnameCtLen+1 D;

vnameCtlenll = '\0';
if (stricmpC tgt, vname) == 0)

break;
>

menv = nxtevarC menv);
>

if (menv)
■C printf("Found %s at %Fp:\n%s\n", vname, menv, vdata);

exit(0);
>

else

Chapter 6: Command Interpreters 403

i printf("%s not found.\n", tgt);
exit(l);

>

In FMEV, the declaration of mainO has been changed to permit the desired
variable's name to be entered as a command-line argument, and sprintfO side
steps the difficulties usually encountered when mixing far pointers and the small
memory model.

Using sprintfO with the "%Fs" format specifier forces the library routine to do
all necessary conversion to copy each string, in turn, from the enviroiunent to the
local work area vname. Although some compilers include special library func
tions to do such mixed-pointer copying tasks, the sprintfO solution seems much
simpler to comprehend.

The check for an '=' character in the position immediately following the last
byte of the target string speeds the search by eliminating byte-by-byte compari
sons unless the name and the target strings are the same length. In most environ
ment areas, the savings in time is not significant, but this illustrates a
programming technique that can speed up searches of larger areas, or for longer
target strings.

FMEV, like the other C sample programs in this chapter, has been tested with
both QuickC and Turbo C and requires either a PRJ file or a program list for use
in the integrated development environment. The required OBJ files are
NXTEVAR.OBJ and ENVPKG.OBJ.

How and Why COMMAND.COM Reloads Itself

One of the least understood parts of COMMAND.COM's internal operations is
the area that controls the reloading of the transient portion upon return from an
external command. If something goes wrong in this process, the error conditions
range from confusing to downright misleading. And a point that's usually un
clear is why the reloading happens sometimes, but not always.

Whenever an external command is loaded, the RAM occupied by the tran
sient portion of COMMAND.COM is made available to that external command
for use if needed, and upon return from an external command, the resident por
tion of COMMAND.COM does a checksum of the transient area to detect any
changes in it. Although undocumented DOS hmction INT 21h Fvmction 122Ch
performs checksums, COMMAND.COM does not use this function. Instead, a

404 UNDOCUMENTED DOS

routine in the resident area accumulates the 16-bit sum in DX of all bytes in the
transient area.

If any change has occurred, the entire transient area is reloaded from disk,
using the COMSPEC environment variable to locate COMMAND.COM. Only
the upper part of the file is loaded; the exact offset into the file at which the re
load is to begin is "hard-wired" into the code that performs the reloading, and
this offset varies from one DOS version to the next.

This checksum is first calculated for the transient portion immediately after
the move to high RAM, and that result is stored in the resident portion. Each time
the checksum is run after that, it is compared to the original value, and any mis
match causes the transient area to be reloaded. Thus, it's essential that the copy
of COMMAND.COM that is pointed to by the COMSPEC variable be identical,
byte for byte, to the copy that is used at boot time.

After the transient area is reloaded from disk, the checksum is run again to
verify that the reload was in fact successful. Any mismatch at this time triggers
an error message, "Unable to load COMMAND.COM, system halted," and the
computer goes into a d5mamic halt (JMP $) condition. This message usually indi
cates that the path set by COMSPEC is not valid, but the message can also be
triggered by differences between the copy of COMMAND.COM reached via
COMSPEC and the copy from which the checksum was calculated at boot time.

Such differences are most often caused by having mixed versions of COM-
MAND.COM on the system (that is, version 3.2 on the hard drive, but version 3.3
on the floppy from which the system was booted up). These problems may also
be caused by patches applied to the disk copy (if a patch causes this problem, the
reboot needed to use the system will clear things up, by causing a fresh copy of
the checksum, which does include the patch effects, to be calculated).

Another possible cause of the reload error, not even hinted at by the message
itself, occurs in network situations, when the network software redefines COM

SPEC to point to the file server copy of COMMAND.COM (which may differ
from the copy at any given workstation). The cure for errors resulting from this
cause is to remove the redefinition of COMSPEC from the network software, if

possible; if not, each workstation must run a batch file to perform the network
login, and that batch file must fix up COMSPEC to point back to the
workstation's own copy.

Chapter 6: Command Interpreters 405

INT 2Eh, the Back Door

Interrupt 2Eh provides a "back door" into COMMAND.COM, which is used in
the command interpreter itself for execution of batch files and which is used by
the FOR and CALL internal commands. If s important to note that this interrupt
is serviced by code in the resident portion of COMMAND.COM itself, rather
than by DOS. If an alternative command interpreter such as 4DOS is installed in
place of COMMAND.COM, the description provided in this section may be inap
plicable.

Although INT 2Eh can be dangerous if you use it without knowing its limita
tions, it does permit access to the primary copy of the command interpreter shell
(the one dispatched by CONFIG.SYS during system bootstrap).

The Function The purpose of INT 2Eh is to provide COMMAND.COM a method
for accessing its own command parsing and dispatching routines. Originally, this
facility supported only batch file processing and the FOR internal command.
When the CALL internal command was added at DOS version 3.3, the INT 2Eh

service routines were expanded to handle that also.
Because only COMMAND.COM supports this interrupt (although the author

of 4DOS has indicated he plans to provide fully documented support in a future
release, which may be available by the time this volume is published), ifs only
prudent to verify that the interrupt service routine exists before attempting to use it.

The following assembly language program, HAVE2E.ASM, provides a C-caU-
able routine that returns TRUE if the first byte of the service routine for INT 2Eh
is not the IRET that DOS points the vector to by default, and FALSE if it is equal
to the IRET opcode.

.model small,c

. code

have2e proc ; returns 1 if ISR exists, else 0
pubLic have2e

; int have2e(void); /* prototype */

mov ax,352Eh
int 21h

mov aL,es:Lbxl
xor aL,OCFh ; opcode for IRET

jz h1

mov ax,1
h1: cbw

406 UNDOCUMENTED DOS

ret

have2e endp
end

This function can be assembled using either MASM 5.1 or TASM; as pre
sented, it is for the small memory model only, but this can be changed by modify
ing the ".model" line.

After assembly, copy the prototype line into your C programs (removing the
semicolon that makes it a comment to the assembler) and include HAVE2E.OBJ

with your C programs when linking. This is the same procedure described earlier
in this chapter for use of the environment support modules.

Its Use To use INT 2Eh successfully, you must follow several rather strict guide
lines. Because this capability has never been officially sanctioned, it omits many
of the error-trapping abilities of more normal functions.

The most important restriction on use of this interrupt is that no registers, not
even the stack segment and stack pointer, are preserved. Immediately at entry to
the service routine, the return address offset and segment are popped into dedi
cated storage areas in COMMAND.COM's own data segment. Upon completion
of the task invoked by using INT 2Eh, control rettims to the caller by means of a
far jump via the saved segment and offset values.

This has two major impHcations. The most obvious is that when you call INT
2Eh, you must save all essential registers in locations that you will be able to ac
cess upon return (when only CS and IP will be valid). Not so obvious is the fact
that INT 2Eh, by its very nature, is not reentrant. That is, if it is called a second
time before return from a prior invocation, the second call wiU destroy the return
address for the first, leading to system lockup.

It is possible to overcome the lack of reentrancy. The trick is to copy all criti
cal data areas from the COMMAND.COM data segment to dedicated memory
space obtained specifically for the purpose, then invoke INT 2Eh, and upon re
turn restore the data areas from the saved copy. This is essentially how the inter
nal command CALL works, so that it can operate successfully from within a
batch file.

The following program, D02E.ASM, contains the function do2e(), which sets
everything up properly for invoking the interrupt and regaining control properly
upon return.

Chapter 6: Command Interpreters 407

.model small,c

.code

do2e proc uses ds si di. cmdstr:ptr byte

pubLi c do2e

; void do2e(char * cmdstr); /* prototype */

mov si,cmdstr ; small model

} Ids si,cmdstr ; large model
mov cs:svss,ss

mov cs:svsp^sp

eld

int 2Eh

cli

mov ss/cs:svss

mov spy.cs: svsp

sti

old

ret

even r for best 286+ usage

svss dw 0

svsp dw 0

do2e endp

end

This routine should not be used unless have2e() returns TRUE to indicate

that the interrupt is in fact present in your system. The command string passed to
the do2e() function must be in a special format (the same format m which COM-
MAND.COM's input buffer is left after keyboard input): the first byte of the
string must contain a binary coimt of the string's length (excluding the count
byte and the terminating cariiage-retvun character) and the string must be termi
nated by an ODh CR character.

Although you can build your own routines using only the do2e() function in
D02E.0BJ, it's easier if you work through an intermediate-level support module
such as the following C function:

/**

* SendZE.C - support for INT 2Eh *
* Jim Kyle, July 1990 *
**/

408 UNDOCUMENTED DOS

#1ncLude <stdio.h>

#1ncLude <string.h>

int have2e(void); /* prototype */
void do2e(char * cmdstr); /* prototype */

int Send2E(char * command)

<. char tempC130:];
int retval;

if(retval = have2e())

{ sprintf(temp, "%c%s\r", strLen< command), command);
do2e(temp);

>

return retval;
>

This snippet of code can be separately compiled, with the resulting OBJ file
linked in your actual program, or it can be included directly in any program that
uses it. Either way, it takes just the command line itself, as you would type it in at
the prompt, and adds the character count and terminating CR. It then passes the
edited string on to INT 2Eh using the assembly language module. These actions
happen only if the interrupt is present; if not, they are skipped. Finally, Send2E()
returns TRUE if the command was passed to INT2E and FALSE if it was not.

The following program runs Send2E() in a loop, making a little command in
terpreter:

/*

TEST2E.C

Turbo C++ 2.0:

tcc test2e.c send2e.c do2e.asm have2e.asm

Microsoft C 6.0:

cl -qc test2e.c -NAmx send2e.asm do2e.asm have2e.asm
*/

^include <stdlib.h>

^include <stdio.h>

^include <string.h>

mai n()

char bufCSOU;
for (;;)

Chapter 6: Command Interpreters 409

fputs("$ stdout);
gets(buf);
if (strcmp(buf, "bye") == 0 || strcmp(buf, "BYE") == 0)

break;
Send2E(buf);

>

putsC'Bye");
}

We already saw this program in chapter 5 on TSRs, where it was used with
Ray Michels' TSR skeleton to create a memory-resident command interpreter,
TSR2E.

It is worth noting that this program—and INT 2Eh in general—is fully com
patible with the installable-command interface discussed earlier in this chapter.
For example, if you run our INSTCMD program, you can issue its new internal
command FULLNAME via an INT 2Eh program such as TEST2E or TSR2E.

An interesting thing happens if a program uses Send2E() to issue a SET com
mand: the master environment is updated instead of the local copy of the envi
ronment belonging to the program. Using INT 2Eh is thus one technique that can
be used for updating the master environment; other, safer, techniques were de
tailed earUer in this chapter, in the section "Using the Environment."

Notice that the issue of reentrancy is not addressed in Send2E(). That's be
cause the issue is much more complex than just saving the data areas and restor
ing them. Although that's necessary, other considerations must also be addressed
to make INT 2Eh calls robust enough for dependable use.

The first question that arises is how much data to save from the DOS area. In
the only significant article published on this subject, Daniel E. Greenberg ("Reen-
tering the DOS Shell," Programmer's Journal, May/Jtme 1990) suggested that 120
bytes would include all necessary information for DOS versions 2 through 4.01.
However, not all of that 120 bytes needed to be restored, and the locations that re
quired restoration varied from one DOS version to the next.

Another question, equally important, concerns the methods required to han
dle CTRL-BREAK interruptions, or critical error conditions. In both cases, the
normal COMMAND.COM response is inadequate to provide full safety.

Greenberg presented a major program written in assembly language to ac
company his article, and a study of it is recommended if you want to use INT
2Eh as a tool for serious programming. However, because future revisions of
DOS will xmdoubtedly cause changes to this capability at least as significant as

410 UNDOCUMENTED DOS

those that have accompanied each revision in the past, your safest course is to
avoid the use of INT 2Eh entirely, aside from its fimction in guiding you through
some of the undocumented internal workings of COMMAND. COM.

Alternatives to COMMAND.COM

Several alternatives to COMMAND.COM now exist, and this section looks at a

sampling of them. Some provide complete replacement of the command inter
preter, while others retain the existing command interpreter but hide its com
mand-line interface from the user.

4DOS.COM

This command interpreter, from J. P. Software, totally replaces COMMAND.
COM. Originally distributed only as shareware, it is now also available through
some retailers. As this is written, it's at version 3.01; another major upgrade, is
expected to be released before this volume is published.

Other products that replace COMMAND.COM include Command-Plus,
PolyShell, and FlexShell. 1 chose to describe 4DOS because it typifies the group,
and also because 1 use it daily and am more familiar with it than with the others
(all of which, however, offer improved capabilities when compared to COM-
MAND.COM).

A Total Replacement, Plus More Like all its competitors, 4DOS provides near-total
compatibility with COMMAND.COM, even going so far as to duplicate strange
actions that most users consider to be "bugs" in order to maximize the number of
applications that can nm without change.

Where COMMAND.COM has only 37 internal commands at most, however,
4DOS provides more than twice that many, thereby making many utilities used
with COMMAND.COM obsolete.

For example, this command interpreter includes a built-in environment edi
tor. It also includes built-in ALIAS capabilities and automatic command-line HIS
TORY recall (to obtain these functions with COMMAND.COM, many power
users rim DOSEDIT or CED). For building batch-file menuing systems, internal
commands are able to draw boxes on the screen and obtain input from the key
board that then modifies batch-file execution decisions.

One of the most useful enhancements is the ability to do batch-file processing
entirely in RAM. COMMAND.COM must reload a batch file from disk for each

Chapter 6: Command Interpreters 411

line of input, making it necessary to keep the file available throughout its pro
cessing. Reading the file into RAM makes it possible to remove a floppy-disk-
based file from the system physically, yet continue its execution.

Unlike COMMAND.COM, 4DOS does not split itself apart during installa
tion. The system actually consists of two separate files, one of which forms the
resident portion (and holds the data) while the other serves as the transient por
tion and is swapped out of RAM, when any external command is dispatched.

The swapping techniques used are one area in which 4DOS has greatly im
proved on the "standard" command interpreter. Rather than reload from the
same copy that was used to load the program initially, 4DOS actually swaps out
the entire transient area of RAM including any data storage thaf s not necessary
for swapping it back in. This makes it possible for the program to shrink itself to
only 256 bytes in normal DOS RAM, when run on a 286 or higher system that has
the ability to load the resident portion in "high memory."

Command-line switches supplied on the SHELL= line in CONFIG.SYS con
trol just how 4IX)S does its swapping; you have the choice of swapping to the
High Memory Area, to Expanded Memory, to disk, or not swapping at all. You
can also specify the size of your environment area and of the buffer in which
command line history will be saved.

Not the least of the enhancements, incidentally, is a full-featured h5q>ertext-
like HELP system that gives you full details of how to use each of the internal
commands, from the command line. With all the added power, this feature is
needed often.

No Undocumented Features One of the most amazing things about 4DOS is that it
is implemented entirely with documented features of DOS and works across all
versions of DOS from 2.0 on. It makes no use of the undocximented features and

hooks on which COMMAND.COM depends for success.
Plarmed for inclusion soon, possibly by the time you read this, is full imple

mentation of INT 2Eh as a 'back door" into the command interpreter, together
with documentation of the capability. In version 3.01, however, INT 2Eh is vec
tored only to an IRET command. It is, however, part of the 4DOS code segment,
so that the interrupt vector can be used to locate the primary shell, just as with
the "standard" command interpreter.

412 UNDOCUMENTED DOS

Menuing Systems

Rather than totally replacing COMMAND.COM with some other command in
terpreter, many developers have created systems that allow end users to choose
what they want to do from one or more menus displayed on the screen. These
menu-based systems are often called shells, although that term, strictly speaking,
should be reserved for the entire command interpreter.

Menuing systems span a range from something based on just a few batch
files to a baroque and somewhat Rube-Goldberg-like arrangement involving a
batch file, a COM file, an EXE file, a number of MENU fiOies, and near-total lack of

documentation. In this section we briefly examine both extremes.

Batch-File Menu Systems The simplest method of insulating an unsophisticated
end user from the perils of the command-line prompt is to create a full-screen
menu that presents the user all the options needed and permits the choice of any
one of them. And the simplest way to put together such a menu is by means of a
set of batch files, working together.

Thousands of such simple menu shells are m use, and entire books have been
written about this single subject. Although it's possible to create menuing sys
tems that are much more complicated, there's really very little reason to do so.

That did not, however, keep exponents of the "bigger is better" school of pro
gram design from trying, as you shall see.

The DOSSHELL Approach As part of MS-DOS 4.0, a menuing environment built
around a command called DOSSHELL was introduced. This capability involved
a strange division of effort between COMMAND.COM, DOSSHELL.BAT,
SHELLB.COM, and SHELLC.EXE, to accomplish what many third-party pro
grams do, using only batch files.

In order to launch the DOSSHELL feature, the conunand "DOSSHELL" is

typed in either as the final command of the AUTOEXEC.BAT file or on the COM-

MAND.COM command prompt. Either way, COMMAND.COM gets the com
mand, and dispatches it as a possible external command.

That action finds the file DOSSHELL.BAT, which was created during the in
stallation process for DOS 4.0; you won't find such a file on your distribution
disks, and if you b3q>ass the official INSTALL process you will not be able to use
DOSSHELL. If DOSSHELL.BAT is found, it then begins execution by changing
your current working directory to the one in which INSTALL placed your DOS
utility files and then invoking SHELLB with the argument "DOSSHELL".

Chapter 6: Command Interpreters 413

This command is interpreted by COMMAND.COM; it also turns out to be an
external command that invokes the SHELLB.COM program and passes it the
name of the executing batch file. SHELLB then installs its own handler for Multi
plex Interrupt IFh, Fimctions 19h and AEh. The first of these functions provides
communication between COMMAND.COM, SHELLB's resident portion, and
SHELLC.EXE (which we have not yet met). Fimction AEh (Installable Com
mand), discussed earlier in this chapter, lets COMMAND.COM treat portions of
SHELLC.EXE's code as if they were internal commands within COM-
MAND.COM.

Once SHELLB has installed the interrupt handler and has gone resident, it re
turns control to DOSSHELL.BAT. If it did not return an error code of 255,

DOSSHELL.BAT then disables CTRL-BREAK checking by DOS and invokes
SHELLC with a long string of option switches that specify such things as the
video driver to use, the menu to display initially, and other details.

Four undocumented groups of options for use on this line have recently been
revealed. No more than one option from each group should be specified; use of
these options changes the default conditions for DOSSHELL actions:

/CONFIRMDELETEON

/CONFIRMDELETEOFF

/CONFIRMREPLACEON

/CONFIRHREPLACEOFF

/ALLOWSELECTON

/ALLOWSELECTOFF

/SORTBYNAME

/SORTBYEXT

/SORTBYSIZE

/SORTBYDATE

/SORTBYDISK

SHELLC.EXE is the actual menu display module, and it normally remains
resident so long as DOSSHELL is in use. It displays the menu and dispatches se
lected menu items back to COMMAND.COM as commands for execution, much

as a batch file would do. It is, however, much hungrier in its appetite for memory
space, and much more difficult to troubleshoot or to modify. Its only real advan-

414 UNDOCUMENTED DOS

tage is that it lets you add explanatory "help" paragraphs to each displayed menu
option that pop into view when that option is highlighted.

Small wonder, then, that this whole function is being totally revamped in the
next version of DOS. Because it apparently will be only a one-version aberration,
we won't go into additional detail about it.

Sample Program: Master Environment Editor

If s time to put everything together into a single sample program that illustrates
this chapter's topics and that is also potentially useful. The program, ENVEDT.C,
lets you edit the master environment no matter how many levels down you hap
pen to be shelled. ENVEDT can be used with any command interpreter that vec
tors INT 2Eh to its own code space and that follows COM-file conventions (that
is, CS and DS point to the same segment address).

ENVEDT first locates the master environment block and then locates the spe
cific variable to be edited. If you fail to give it a variable name, it displays a brief
summary of how it is to be used, followed by a list of all variable names currently
contained in the master environment.

Most of the specific techniques that ENVEDT uses have already been ex
plained earlier in this chapter; the value of this program is that it shows you how
to put the pieces together. In addition to ENVEDT.C itself, the program requires
the support routines in ENVPKG.ASM and NXTEVAR.ASM, plus a new module,
EEA.ASM (Environment Editor assembly code).

ENVEDT.C has been tested both with Turbo C and with Microsoft QuickC,

and EEA.ASM has been tested with Turbo Assembler and with MASM V5.1. The

finished program has been tested with both COMMAND.COM and 4DOS.COM
as the primary shells, and with DOS versions ranging from 3.2 to 4.01.

/ ic-kie-k ie icie *-k *-k-k ***************-krkicicic'k-kicicie'kicicic'k'k'kicieic'kieicic'k-k-k it icicic

* ENVEDT.C - Editor for Master Environment Variables *

* Jim Kyle, July 8, 1990 *
* *

* qcL envedt.c eea.obj envpkg.obj nxtevar.obj *
* or tcc envedt.c eea.asm envpkg.asm nxtevar.asm *
* *

** j

^include <stdio.h>

^include <stdLib.h>

^include <conio.h>

^include <string.h>

Chapter 6: Command Interpreters 415

#ifndef FP_SE6
^define FP_SEG(f) (*((unsigned *)&(f) + 1))
#endif

#ifndef FP_OFF
#define FP_OFF(f) (*((unsigned *)&(f)))
#endi f

#ifndef MK_FP
^define MK_FP(s,o) ((void far *)\

(((unsigned Long)(s) « 16) | (unsignedXo)))
#endi f

extern char far * nxtevar(char far * vptr);
extern char far * mstenvp(void);
extern void max_xy(int *x, int *y);
extern int coL(void);
extern int row(void);
extern void setrc(int r, int c);
extern int envsiz(char far * envptr);

char far * menv;
char far * rest;
char far * Istbyt;
char vnameII5123, *txtptr;
int nmlen, insmode = 0,

max_x, max_y,

i, c ,
begrow^ begcoL^.
currow, curcoL,
endrow,
editing,
i_cur, i_max,
free_env;

void findvar(char * varnam)

■C nmlen = strlen(varnam);
txtptr = NULL;
while (*menv)

•C rest = nxtevar(menv);

•C vnameCnmlen] = '\0';
if (stricmp(vname, varnam) == 0)

-C txtptr = &vnameCnmlen+11;
vnameCnmlen] = '=';
return; /* found it, get out now */

/* pointer to current var */
/* pointer to next var */
/* adr of last byte used */
/* working buffer and ptr */
/* name len, insert flag */
/* screen limits */
/* scratchpads */
/* cursor, start of text */
/* current loc */
/* end of text */
/* loop control flag */
/* cur, max i in txtptr */
/* bytes free in env */

/* find var, set txtptr */

/* present not-found flag */

/* "rest" always next one */
menv);
) /* possible match found */

416 UNDOCUMENTED DOS

>

menv = rest;

>
\

/* try again with next */

J

void caLccrsrC void) /* calc currow, curcoL */

•C begrow = endrow - (i_max / max_x);
if ((i_max % max_x) == 0) /* correct for Line wrap */

begrow++;
begcoL = 0;
currow = begrow + (i_cur / max_x);
curcoL = begcoL + (i cur %

>

max_x);

void show_var(void) /* display var content */

■C setrcC begrow, begcol); /* set to start */
printfC txtptr); /* show the string */
endrow = rowO; /* update end row if scrl */
if(! coLO) /* adjust for Line wrap */

endrow—; /* if now in col 0 */
caLccrsr();

>
/* establish cursor posn */

void do__deL(void)
for (i=i_cur; txtptrCiD; i++)/* slide over one to left */

txtptrCiD = txtptrCi+H;
if (i_max && i_cur >= —i_.max) /* deer length */

i_cur = (i_max - 1); /* and adjust if needed */
free_env++; /* account for freed byte */
setrcC begrow, begcol); /* re-display the string */
printfC txtptr);
endrow = rowO; /* hold ending point */
if(! coLO) /* adjust for line wrap */

endrow—; /* if now in col 0 */
putcharC ' •); /* erase garbage char */
caLccrsr();

>
/* establish cursor posn */

void docharC void)
•C if (free_env < 3) /* just beep if no space */

•C putcharC 7);
return;

if (insmode) /* open up a hoLe for new */
for (i = ++i_max; i > i__cur; i—)

txtptrCi!] = txtptrCi-1II;

Chapter 6: Command Interpreters 417

txtptrCi_cur++II = (char) c;
if (i_cur == i_max)

■C txtptrC ++i_max II = '\0'
f ree_env—;

>
show_var();

/* put char down */
/* check for extending it */
/* set new EOS */
/* then count down space */

/* re-dispLay the string */

int edtxtC void)
•C int retvaL;

begrow = rowO;
begcoL = 0;
i_max = strlenC txtptr);
i_cur = 0;
show_var();
for (editing=1; editing;)

■C setrcC 0, 70);

/* read kbd, do editing */

/* set buffer index Limit */
/* and current index val */
/* display the string */
/* main editing Loop here */
/* status message Loc */

/* keep cursor posn curr */

/* function key or keypad */

printfC'MODE: %s insmode ? "INS" : "REP");
setrcC currow, curcoL);
switchC c = getchO)

-C case 0;
switchC getchO)

■C case 30:
show_var();
break;

case 32:

/* ALt-A, re-dispLay
/* re-dispLay the st

/* ALt-D, delete var

ring
*/

*/

iable */
printf("\nDELETE this variable (Y/N)? ");
if((getchO & 89) == 89) /* 89 = 'Y' */

•C vnameCOD = '\0';
retval = 1;
editing = 0;

>
break;

case 71:
i_cur = 0;
calccrsrO;
break;

case 72:
if ((i_cur - max.

i_cur -= max_x;
calccrsrO; /* establish cursor posn

/* home, goto first char

/* establish cursor posn

/* up arrow
X) > 0)

*/

*/

*/

*/
break;

case 75:
if (i_cur ^

i_cui—;
calccrsrO ;
break;

/* left arrow
0)

*/

/* establish cursor posn */

418 UNDOCUMENTED DOS

case 77: /* right arrow */
if (i_cur < i_max)
i_cur++;

caLccrsrO; /* establish cursor posn */
break;

case 79: /* end, goto Last char */
i_cur = (i_max ? i_max - 1 : 0);
calccrsrO; /* establish cursor posn */
break;

case 80: /* down arrow */

if ((i_cur + max_x) < i_max)
i_cur += max_x;

calccrsrO; /* establish cursor posn */
break;

case 82: /* insert, toggle flag */
insmode = linsmode;
break;

case 83: /* delete, remove 1 char */
do_del();
break;

break;
case 8:

if (i_cur)
•C i_cur—;
do_del();

>

break;
case 13:

retval = 1;
editing = 0;
break;

case 27:

retval = 0;
editing = 0;
break;

default:

if (c >= • " && c < 127)

docharC);
else

putcharC 7);

/* b

/* E

/* B

/* h

/* end of special codes */

/* backspace del to left */

ack up one first */
/* then do the delete */

nter accepts changes */

SC quits without save */

andle INS or REP */

/* beep on any other char */

setrcC endrow, 0);
return (retval);

Chapter 6: Command Interpreters 419

void putenvbakC void)
■C char * Locptr;

int save_size;

/* copies back to env

save_size = FP_OFF(Lstbyt) - FP_OFF(rest) + 1;
Locptr = (char *)malLoc(save_size);

/* copy edited string

forC i=0; i<save_size; i++) /* save trailing data
LocptrCi] = restCiD;

for(i=0; vnameEiU; i++)
*nienv++ = vnameCiH;

if(vnameCOH)
*menv++ = '\0';

forC i=0; i<save_size; i++)
*menv++ = LocptrCiD;

freeC Locptr); /* release save area

/* if not deleting

p rintf("\nENVIRONMENT UPDATED.");

*/

*/

*/

*/
/* ...add EOS byte to var */
/* copy in trailing data */

*/

void doeditC char * varnam) /* find var, edit, save */
•C printf ("Editing '%s' :\n", varnam);

menv = mstenvpO; /* set starting point
free_env = envsiz(menv) « 4; /* get the size in bytes
findvar(varnam); /* look for the variable
for(lstbyt=menv; *lstbyt;) /* menv set by findvarO

lstbyt=nxtevar(lstbyt); /* locate end of var area */
if(lstbytC13 == 1 SS lstbytC23 == 0)

■C lstbyt += 3; /* skip loadfile name
while (*lstbyt)

lstbyt++;
>

lstbyt++;
free_env -= FP_OFF(lstbyt); /* what's left is free
if (txtptr == NULL) /* didn't find the name

■C free_env -= (nmlen+1); /* take out free space
if (free_env < 5)

■C putsC'Not found, no room to add.");
return;

>
printf("Not found; add it (Y/N)? ");
if((getchO & 89) != 89) /* 89 = 'Y'

return;
for (i=0; i<nmlen; i++) /* force to uppercase

vnameCill = (char) toupper(varnamCil);
vnameCnmlenl = '='; /* add the equals sign
vnameIInmlen+13 = '\0'; /* make content empty

*/
*/
*/
*/

*/

*/
*/
*/

*/

*/

*/
*/

420 UNDOCUMENTED DOS

txtptr = &vnameCnmLen+1II; /* set text pointer to it */
putcharC 'Xn'); /* start on fresh Line */
insmode = 1; /* and in INS mode */

>

printfC'Free environment space = %d bytes-\n", free__env);
if (edtxtO) /* do the editing now */
putenvbakO; /* copy to master env */

else

printf("XnENVIRONMENT NOT CHANGED.");
putcharC '\n');

void showvarsC void) /* prints usage message */
C

putsC" USAGE; ENVEDT varname CCnameZ] ... 3");
putsC'where varname is the name of an env variable");
putsC" and name2, etc., are optional added names.");
putsC'Current variable names are:");
menv = mstenvpO;
forC i=0; i<8; i++)
vnameCi] = ' ';

while (*menv) /* get and print names */
■C sprintf(vname+8, "%Fs", menv);

forC i=8; vnameCi] != '='; i++)
/* all done by forO */ ;

vnameCi3 = "\0';
putsC vname);
menv = nxtevarC menv);

>
puts("Re-run with name(s) of variable(s) to be edited.");

void main (int argc, char **argv)
■C int i;

if (argc < 2)
showvarsC); /* list all vars to CRT */

else
■C max_xyC &max_x, &max_y); /* set up screen limits */

while C —argc) /* process all vars named */
doeditC *++argv);

>
>

If the only thing on the command line is the program name itself (argc < 2),
the showvarsO procedure is called. If one or more additional arguments were

Chapter 6: Command Interpreters 421

present, the doeditO function is called for each of them in turn until all have been
processed.

The showvarsO procedure locates the master environment using mstenvpO,
and cycles through it via nxtevarO, displa5rLng the name of each variable. The
SET internal command does almost the same thing, but if you are not working in
the primary shell, SET deals with the local copy of the environment rather than
with the master. ENVEDT always works on the master copy.

The doeditO function searches the master environment for a variable, again
using mstenvpO to start each search at the front of the master environment area.
Before searching, it sets the variable free_env to the total size in bytes of the mas
ter environment block, using envsizO, so that the amoimt of free space can be cal
culated later. The function then calls findvarO to do the actual search.

The findvarO procedure sets a pointer, txtptr, either to the address of the
variable's contents in global work buffer vname (if it is found) or to NULL. This
tells doeditO whether the search was successful. Before checking the result, how
ever, doeditO moves another pointer, Istbyt, past any remaining variables and
past the primary shell's loadfile pathspec, if one is present (normally, none is).
When this is done, the offset portion of Istbyt is the count of the total number of
environment-block bytes in use; subtracting it from the total size of the block
leaves in free_env, as the remainder, the number of bytes still free for use.

With free_env properly calctilated, doeditO then checks the search result. If
the name was not found, the procedure asks if you want to add it as a new vari
able (first verifying that there's room to do so and correcting the free_env value
to account for the name itself). If you do, the name is copied into the global work
buffer vname, the '=' character and a terminating '\0' are added, txtptr is set to
the address of the '\0' character (the presently empty new contents), and the in-
smode flag is set to indicate INSERT mode operation. Otherwise, doeditO returns
to mainO to process the next variable in the input list.

If the variable was found, or if a new one is to be added, doeditO reports the
number of b5^es still free to use and calls edtxtO to do the actual editing. If edtxtO
returns a nonzero value (indicating normal completion of the editing operation),
putenvbakO is called to copy the work buffer vname back into the master envi
ronment block, sliding other data around as necessary to make things fit. If the
value returned by edtxtO is zero, indicating an ESC-key bailout, the message
"ENVIRONMENT NOT CHANGED" is displayed and doeditO returns.

422 UNDOCUMENTED DOS

Before we look at edtxtO, which contains the bulk of ENVEDT's complexity,
let's see how findvarO searches for the name in the master block. The three point
ers that address the master block (menv, rest, and Istb)^:) are all declared as far
pointers and are global in scope so that aU procedures in ENVEDT can use them.
The findvarO routine gets a near pointer (actually, one of those in the argv array)
as its argument, and the menv pointer is initialized to the first byte of the master
block before the first call to findvarO is made.

Each time that findvarO is entered, the pointer txtptr is set to NULL and the
global variable nmlen is set to the length of findvarO's argument. Then findvarO
goes into a loop that continues until either the end of the variable list is reached
(when the byte pointed to by menv will be zero) or the argument is fovmd as a
variable name.

Within this loop, pointer "rest" is first set to the address of the next variable,
using nxtevarO. The current variable is then copied from the master block to
global work buffer vname by means of the sprintfO library function and its "%Fs"
format modifier. Next, the character at position "nmlen" in the vname buffer is
checked; if it is '=', the variable's name is the right length to be a possible match;
if not, no match is possible so no time is wasted trying to compare the strings.

If the length is right, the '=' is temporarily replaced by '\0' and the library
fimction stricmpO is used to compare the name and the argument without regard
to case. If they match, the '=' is put back, txtptr is set to the first byte after it, and
findvarO returns successfully. If the lengths differ or the strings fail to match,
"rest" is copied to "menv" and the process repeats for the next variable in the mas
ter block.

Upon successful return from findvarO, menv still points to the first byte of
the variable being edited, the vname buffer contains an exact copy of the entire
variable, including its name and the trailing '=' separator, and txtptr points to the
first byte of its value, in vname. These facts are critical to the operation of edtxtO,
which does the actual editing.

On entry to edtxtO, variables are set up to save the cursor position and
show_var() is called to display the variable on the screen. The main loop is then
entered, and control remains within this loop until you press Alt-d, Enter, or Esc.
Any of these keys clears control variable editing; Enter and Alt-d set the return
value to 1, and Esc sets the return value to 0. The cursor is then positioned just
past the end of the variable on the screen, and control returns to doeditO.

Chapter 6: Command Interpreters 423

Each time that show_var() is called, it positions the cursor to the saved start
ing position, displays the entire contents of the variable (using txtptr), saves the
ending cursor position, and calls the ftmction calccrsrO to calculate any necessary
adjustments to the saved starting points and to establish the current cursor posi
tion within the variable.

The Alt-A keystroke simply refreshes the display should anything cause it to
become confused. The Alt-D entry tells ENVEDT that you want to delete the
variable entirely rather than just changing it. When you have verified that you re
ally mean it, the program zeroes the first byte in vname[], and forces the same ac
tions as those that occur when Enter is pressed, so that no bytes move back to the
master block but any variables following close up the gap.

The arrow keys move the cursor as would be expected, with the restriction
that it cannot be moved out of the variable. That is, up-arrow has no effect if the
cursor is on the top line of the variable, left-arrow does nothing if the cursor is on
the first character, and so forth. The Home and End keys move the cursor to the
first and last characters, respectively, of the variable. The code for all six of these
keystrokes simply changes the value of i_cur as appropriate, then calls calccrsrO
to do the heavy work.

Once edtxtO has completed and returns a nonzero value, putenvbakO han
dles the job of moving the edited variable back into the master block. It does this
by first calculating the number of bytes that must be saved, using the values of
"rest" and "Istbyt" that were set up earher, and copying that material from the
master block into a temporary block of memory obtained via mallocO.

The full content of vname is then copied back to the master block starting at
the address indicated by menv. Finally, the saved material is copied in following
the vname data and the temporary block released by free(). The final action of
putenvbakO is to display on screen the line "ENVIRONMENT UPDATED."

The module EEA contains functions that are used when you are interactively
editing the environment variables:

; EEA.ASM - support for EnvEdt.C

.model small,c

.code

max_xy proc x:word,y:word
public max_xy

424 UNDOCUMENTED DOS

; void max_xy(int *x, int *y);
mov ax,1130h try EGA/VGA routines
xor dx,dx
push bp f save BP around INT 10h

int 10h f
in case we're running on

pop bp an old BIOS that trashes

or dL,dL
jnz mxy2 nope, not EGA or VGA

mov dL,24 f so set for 25 Lines

mxy2: xor dh,dh
inc dx

mov bx,y
mov ds: CbxHy^dx r store maxy value
mov ah,Ofh } use bios mode call

push bp
int 10h

pop bp
xchg ahy.aL
cbw

mov bx,x
mov ds: Lbxl^ax f store maxx value

ret

max_xy endp

coL proc

pubLi c coL

; i nt coK void);
mov ah,3 } Get Cursor Position

xor bx,bx
push bp
int 10h

pop bp
mov aL,dL r return x coordinate

cbw

ret

coL endp
row proc

publi c row

; i nt row(void);
mov ah,3 r Get Cursor Position

xor bx,bx
push bp
int 10h

pop bp
mov aL,dh } return y coordinate

cbw

ret

Chapter 6: Command Interpreters 425

row endp

setrc proc r:byte.

pubLic setrc

; void setrc(int r, int
xor bx,bx
mov dL,c
mov dh,r
mov ah,2
push bp
int 10h

pop bp
ret

setrc endp

end

c);

Set Cursor Postion

To some degree, these functions duplicate others found in the Turbo C and
QuickC libraries, but the library fimctions differ greatly between the two compil
ers. The addition of these video routines simplified the rest of the program by
providing identical operation regardless of the compiler you choose.

Conclusion

In this chapter, we have looked at a wide variety of topics: the basic structure of
the input-evaluate-do loop found in any command interpreter; the DOS hooks
for installing new internal commands; the skeletal structure of a DOS command
interpreter (TSHELL); the division of COMMAND.COM into initialization, resi
dent and transient portions; the DOS environment; the command interpreter
backdoor (INT 2Eh); alternative interpreters like 4DOS; and editing the master
environment.

That we have covered so many topics reflects the nature of command inter
preters: they are, after aU, interpreters of htunan input and produce (hopefully)
human-readable output. While the basic operation is simply an input-evaluate-
do for (;;) loop, there are enough different forms that input can take (from the
keyboard, batch file, environment variable, or via the interpreter backdoor), and
enough different locations for command code (internal, external, and installable),
that we could have easily made this chapter even longer if we had wanted.

It is also important to remember that, in MS-DOS as in Unix, the command
interpreter or shell is not part of the operating system itself. This is one reason
why some of the techniques presented in this chapter will not work on every

426 UNDOCUMENTED DOS

DOS machine. You can take a good many of the programs in this book, walk up
to any of the 30 million DOS machines in existence, and the program will nm.
Not necessarily so with the programs in this chapter, though: if a machine is run
ning some interpreter other than COMMAND.COM (such as, heaven forbid, our
own little TSHELL.COM), then techniques such as installing new internal com
mands, finding the master environment, or invoking INT 2Eh may or may not
work.

This is because anyone is free to throw away COMMAND.COM and substi
tute something completely different. Now, ifs true that users are also free to
change parts of MS-DOS itself (by hooking DSJT 21h, for example), and if s also
true that such changes are more widespread than using alternate command inter
preters. But still, the corrunand interpreter is not part of the operating system,
and ifs important to remember this.

In other words, there are no 100% guarantees here. But then again there can
be none an)rwhere in an operating system as flexible as MS-DOS.

Chapter 7

The MS-DOS Debugger Interface

Tim Paterson

Some tools would be virtually impossible to write for the MS-DOS environment
using only the documented interface to DOS. A debugger, profiler, or perfor
mance analyzer must be able to execute another program imder its own con
trol—^but not by merely using the DOS EXEC function (INT 21h Fxmction 4B00h)
to fire up independent execution.

The most basic need is to load the "child" program, ready for execution, with
out actually executing it. This function, plus a few others described in earlier
chapters, is enough to make a basic DOS debugger. The first part of this chapter
will show you the details, using as an example a DOS debugger, similar to
DEBUG, called Monitor.

If we stopped there, a whole world of programs would stiU be out of reach of
our hj^othetical debugger. The Microsoft Windows environment adds a new
level of complexity to any tool that tries to observe the execution of a program.
To make optimum use of Umited memory, Windows is constantly loading, dis
carding, and moving code segments aroimd in memory. The second part of this
chapter wiU show you how we can give Monitor a direct link to Windows to
keep it informed of aU this activity.

427

428 UNDOCUMENTED DOS

Loading Without Executing

The ability to load a program for execution—without actually executing it—^is an
essential requirement for any debugger. A function to do this is present, although
not documented, in all versions of MS-DOS since 2.0. In fact, the software base

that uses this function is quite large, including Microsoff s DEBUG, SymDeb, and
CodeView debuggers. Note, however, that the description here applies only to
DOS versions 3.0 and later.

Revealing a Subfunction

The function for loading a program without executing it is actually just one of the
subfunctions of the standard DOS EXEC function (INT 21h Fimction 4Bh). Pub

lished documentation describes two subfimctions:

■ AL = 0 Load and execute program
■ AL = 3 Load overlay

To this list we now add:

■ AL = 1 Load program

For all EXEC subfunctions, additional arguments are passed in registers:

■ DS:DX Pointer to filename, zero terminated

■ ES:BX Pointer to parameter block

The parameter block pointed to by ES:BX is a little longer for the undocu
mented Load Program subfunction than it is for Load and Execute. Two addi
tional far pointers have been tacked on to the end. Unhke the rest of the
parameter block, which is used to pass values to DOS, these additional entries
are used for values returned from DOS. The first of these two far pointers is the
initial value of SS:SP; the second is the initial value for CS:IP:

ExecBlock struc

Environment dw ?

CommandTai L dd ?

FCB1 dd ?

FCB2 dd ?

InitStack dd ? ; SS:SP Filled in by DOS
Initip dd ? ; CS:IP Filled in by DOS

ExecBlock ends

Chapter 7: The MS-DOS Debugger Interface 429

The return conditions are exactly the same as for Subfimction 0 (Load and
Execute) and are shown in the appendix.

The documentation for Subfimction 0 (Load and Execute) claims that aU

other registers are preserved. However, this is not the case. Both Subfunctions 0
and 1 return with DX and BX registers destroyed. (In DOS 2.x, all registers, in
cluding SS:SP, were destroyed.)

Upon successful return from this function, the current Program Segment Pre
fix (PSP) will be set to the newly loaded program. You may need to switch back
and forth between the child's PSP and the parenPs PSP, as we'll discuss shortly.
In addition, the child's termination address is set to the same location in the

parent that DOS just returned to—that is, the first instruction after the INT 21h
used to invoke the Program Load function. We'll also see more about this impor
tant topic a little later.

Preparing the ExecBlock

Now it's time to jump in and take a closer look at what you need to really use
this function. Start by making sure you've set up the call to DOS correctly, pajdng
particular attention to the contents of the ExecBlock. This part, at least, is no dif
ferent than the normal (documented) Load and Execute subfimction.

The first entry in the ExecBlock is the segment of the environment. DOS uses
this to provide a copy of the environment to the child process. Normally, you will
just want to pass on the same environment as the parent. DOS makes this easy by
accepting the value of zero as a flag that indicates the parent's environment should
be used. No code is required since the ExecBlock is statically initialized to zero.

The command tail and FCB pointers in ExecBlock are used to pass arguments
to the child program. Generally, modern programs don't use parameters passed
in the FCBs. If you have an application in which you know something about the
child program (for example, that it will always be a C program), you may be able
to skip preparing FCBs. However, a general-purpose debugger such as Monitor
must emulate DOS start-up conditions quite exactly. Fortunately, documented
DOS Function 29h (Parse File Name) makes the job easy.

Assume that you have a line of input from the user, with the name of the pro
gram to execute and its arguments. In Monitor, this wiU come from the command
line. The function ParseFile, shown below, wiU find and prepare the filename, as
weU as set up any arguments.

430 UNDOCUMENTED DOS

ParseFi Le:

Find start and end of file name

Inputs:

ds:si = pointer to input string
cx = Length of string

Outputs:
ax = Starting value for ax (drive validity flags)
dx = File name to execute, zero-terminated

mov bx,si ;Save initial pointer
call ScanB

mov dx,si ;Save starting address
call FindNameEnd

sub bx,si
neg bx /Amount scanned so far
sub cx,bx /Amount remaining in string
mov bx,si /Save end of name—start of args
mov di,offset DGroup:LineBuf+1
mov Cdi-1II,cl /Put length in first byte
inc cx ;Copy terminating CR

rep movsb ;Copy to argument buffer
mov si,bx /Restore start of args
mov di,5CH /First FCB
DOS ParseName,1 /Parse file name, scan off blanks
cbw /OFFH if invalid drive
and al,ah /Make sure al is zero or one
xchg cx,ax /Save return value in cl
call FindNameEnd /Skip over any "\" chars
mov di,6CH /Second FCB
DOS ParseName,! /Parse file name, scan off blanks
cbw /OFFH if invalid drive
and ah,al /Make sure ah is zero or one
mov al,cl
mov byte ptr Ebxll,0 /Zero terminate file name
ret

Fi ndNameEnd:

lodsb

cmp al," " /Check for blank or control char
jbe NameEnd
cmp al,","
jz NameEnd
cmp al,"/"
jz NameEnd
cmp al,"/"
jnz FindNameEnd

NameEnd:

Chapter 7; The MS-DOS Debugger Interface 431

dec si ;Point back at terminator
ret

;Scan command line for next non-blank character
ScanB:

lodsb

cmp a I," "
jz ScanB ;Skip over blanks
cmp al,9
jz ScanB
dec si ;Back up to first non-blank

EolChk:

cmp al,13
ret

The steps are as follows:

1. Skip over leading "white space"—tabs and blanks. Monitor has the subroutine
ScanB for this ptirpose.

2. Scan ahead for the end of the filename. The subroutine FindNameEnd does it.

The end of a filename is defined as the first blank, control character, comma,

semicolon, or slash ("/"). DOS actually has several more characters in this
list, such as brackets, equal and plus signs, and the quote character.

3. Everything from the end of the filename to the end of the line is the argu
ment list. This is copied to a temporary buffer—^in this case. Monitor's com
mand input buffer.

Note that copying is needed only to zero-terminate the filename. Adding the
zero to the end of the filename will destroy the very first character of the argu
ment list.

4. Call the DOS Parse File Name fimction (INT 21h Fxmction 29h) on the argu
ment list. This will format the first FCB. It will also return a validity check on
the drive specification, if one was present. If the drive was invalid, OFFh will
be returned; otherwise, either 0 or 1 will be returned. ParseFile uses a macro

(located in DOS.INC on the accompanying disk) to make this and other DOS
calls:

DOS ParseName,^ 1

432 UNDOCUMENTED DOS

This expands into:

mov ax, 2901h
INT 21h

When a program is executed by DOS, AX is the only register (other than the
segment registers and stack) initialized to a known value. AL will contain 0 if the
drive specification in the first FCB is valid, and OFFh if it is not. likewise, AH in
dicates the validity of the drive specification in the second FCB. The DOS Parse
File Name function gives you almost just what you need. Adding two lines of
code converts the returned value of 1 to 0:

cbw

and al, ah

5. Scan for the end of the first argument. This is necessary only because the DOS
Parse File Name function does not imderstand full path names—^it wiU stop
on the first backslash.

6. Call DOS Parse File Name on the second argument, which will format the sec
ond FCB. Adjust the drive validity indicator as in step 4.

7. Zero-terminate the program name now that you're done processing the argu
ments.

The section of Monitor that handles the loading of the child program, includ
ing calling the ParseFile function, is shown below. Because this code fragment is
taken out of context, some of the details may not be very clear. However, it does
illustrate the general flow. The companion disks include the complete source
code for Monitor, which you can review to fill in any missing links.

TermAddr equ word ptr OAH

mov ax,cs

mov bx,CCsSave3 ;First segment to free
sub bx,ax /Compute paragraphs we're keeping
DOS ResizeMem

mov si,80H /Point to command line in PSP
Lodsb /Get Length byte
cbw

xchg cx,ax /Put Length in cx

Chapter 7: The MS-DOS Debugger Interface 433

caLL ParseFiLe

mov si,dx
cmp byte ptr CsiII,0 ;Was there a file name?
jz Command
mov HAxSaveHy^ax
mov CExecPi lei-CommandTai LSeg,ds
mov HExecFiLeD-FCB1Seg,ds
mov CExecFiLe]-FCB2Seg,ds
mov bx,offset DGroup:ExecFiLe
DOS Exec,1 ;Load, don't execute
jc NoFileLoad
mov ax,CExecFiLe3-Initip
mov CIpSaveI],ax
mov ax,CExecFi LeII. Ini tCs
mov CCsSaveII,ax
mov ax,CExecFi Le!]. Ini tSp
mov CSpSave],ax
mov ax,CExecFiLeH-InitSs
mov CSsSaveIl,ax
DOS GetPSP

mov CDsSave],bx ;DS = ES = PSP
mov CEsSaveIl,bx
mov es,bx
mov es : CTermAddr!l,of f set DGroup: ProgTerminate
mov es: CTermAddr+2!],cs /Terminate address now set
mov CTestPSP3,bx
mov bx,cs
DOS SetPSP

Command:

NoFi LeLoad:

mov si,offset DGroup:FiLeErrMsg
jmp PrintAbort

Note that if the input line is empty, or if it has only a filename with no argu
ments, the ParseFile function still goes through all of the above steps. However,
each step stalls on the terminating carriage return. If no program name is given,
the pointer to the ASCIIZ filename returned by ParseFile is a pointer to a null
string. Monitor checks for this and skips the whole program load effort xmder
these conditions.

The drive validity indicators need to be in AL and AH when the program
starts execution. This is done in Monitor by simply storing them in AxSave,
which will be put in AX when a GO or TRACE command is given.

434 UNDOCUMENTED DOS

With the ExecBlock set up with pointers to the parsed output of ParseFUe,
you're about ready to call DOS. One remaining step thaf s easy to forget, how
ever, is freeing the memory your program doesn't need. The inevitable result if
you don't is that DOS returns with the "insufficient memory" error (carry flag set,
AX = 8). You free imneeded memory using the DOS Resize Memory function
(INT 21h Fimction 4Ah), apphed to your current PSP. If you program in a high-
level language, the nm-time system will probably have already done this for you.

When DOS returns from the Load Program call, the initial stack and instruc
tion pointer fields of the ExecBlock will have been filled in. Monitor simply cop
ies these values to the saved images of the registers. In addition, the saved image
of DS and ES are set to the PSP of the child, fulfilling the final requirement for im
itating the initial conditions set by DOS.

Maintaining the Current PSP

After the DOS Load Program fimction has been performed, the current PSP is
that of the child. This is true even when using the Load But Don't Execute sub-
function, where control returns immediately to the parent. The primary signifi
cance of whose PSP is "current" relates to file I/O. (It is also significant for
program termination, which we'U get to in a moment.)

The term file I/O is used loosely here. It includes things like getting a charac
ter from the keyboard through DOS, which is really reading from standard input.
If you allow the parent to continue to run with the child's PSP, it will be using the
child's file handles. If the child decides to redirect its input from a file, the
parent's input will also come from the same file. If the parent opens a file, the
child will have access to it through the same handle. This is all simply because
you're not telling DOS that the parent is now running instead of the child.

Some applications may not need to do any kind of 1/O through DOS once the
child is loaded. In fact, the WINMON program presented later in this chapter

falls into this category, because it uses a second monochrome display for output.
Because they don't use DOS for 1/O, debuggers like WINMON can be used to
debug DOS itself, without incurring the wrath of DOS non-reentrancy. And be
cause no DOS I/O is being performed, there is no reason to switch PSPs.

However, Monitor does not fall into this category: like most DOS debuggers
(including DEBUG, S5undeb, and CodeView), it does use DOS 1/O. Therefore, the
undocumented DOS SetPSP function (INT 21h Function 50h) is used to change
the PSP back to the parent's. Then, whenever the child is executed with a GO or

Chapter 7: The MS-DOS Debugger Interface 435

TRACE command, the PSP is set back to the child. Upon reentry to Monitor
(upon hitting a breakpoint, for example), the PSP is again set to the parent. The
following code shows Monitor's child execution and reentry routines, including
the PSP swapping. Note how PUSH and POP instructions are used to save and
restore the execution register image.

dw 80H dup(?)
STACK label word

/Register isave area
AxSave dw 9

BxSave dw 9

CxSave dw 9

DxSave dw 9

SpSave dw 9

BpSave dw 9

Si Save dw 9

Di Save dw 9

DsSave dw 9

EsSave dw 9

SsSave dw 9

CsSave dw 9

IpSave dw 9

FlSave dw 9

EXIT:

/Working stack area

mov bx,CTestPSPll ;If no chi Ld, our own PSP
DOS SetPSP /Switch over to child PSP
xor ax^ax

mov ds^ax

assume ds:nothing,ss:nothi ng,es:nothi ng

mov BreakPtVect,offset DGroup:BREAKFIX /Breakpoint interrupt
mov BreakPtVect+2,CS
mov StepVect,offset DGroup:REENTER /Single step interrupt
mov StepVect+2,CS
cli

mov SP,offset DGroup:AxSave
pop ax

pop bx
pop cx

pop dx
pop bp
pop bp
pop si

436 UNDOCUMENTED DOS

pop di
pop ds
pop es

pop ss

mov sp,CSPSaveIl
push EFLSavel
push ECSSave!]
push CiPSave!]
IRET /Execute child

/Re-entry point from breakpoint- Need to decrement instruction
/pointer so it points to Location where breakpoint actually
/occured-

BREAKFIX:

push bp
mov bp,sp

dec word ptr Cbp+2]
pop bp

/Re-entry point from trace mode or interrupt during
/execution. All registers are saved so they can be
/displayed or modified-

REENTER:

push ax
push bx
mov ax^ss

mov bx,sp /Save stack pointer in AX,BX
push cs
pop ss

mov sp,offset DGroup:CsSave
push ax /Save SS
push es
push ds
push di
push si
push bp
push bx /Save SP
push dx
push cx
push ss
pop ds

assume ds:DGroup

mov ss,ax /restore user stack pointer

Chapter 7: The MS-DOS Debugger Interface 437

mov sp,bx

pop [BXSaveD
pop CAXSaveH
pop ClPSavel
pop ECSSaveD
pop ax

and ah,OFEH
mov EFLSave],ax
mov CSPSave],sp
push ds
pop es

push ds
pop ss

mov sp,offset DGroup:AxSave
sti

eld

mov bx,cs /Change back to our PSP
DOS SetPSP

Handling Child Termination

To see what happens when the child program terminates, let's first review what
goes on using the DOS EXEC function in the "normal" way. Using EXEC subfimc-
tion 0 to execute another program is much like making a subroutine call. First
you set up all the arguments, and then you perform the INT 21h to invoke the
DOS EXEC function. DOS fires up the program you've requested. That child pro
gram ends by performing one of the DOS termination functions, and DOS then
returns from the INT 21h that invoked EXEC. Now you're back in the parent pro
gram, with execution resuming at the instruction after the INT 21h, just as it does
for any other DOS call.

Let's take a closer look at how DOS returns to the right spot in the parent.
When the parent calls the DOS EXEC function with INT 21h, the interrupt in
struction puts the return address on the stack. DOS builds a new PSP for the
child, grabs that return address from the parent's stack, and stores it in the child's
PSP at offset OAh. When the child terminates, DOS frees up any memory and file
handles the child was using, and jumps to the far address stored in the child's
PSP at offset OAh.

Now let's look at this in the context of EXEC Subfimction 1 (Load But Don't

Execute). You can think of DOS as doing aU the same work as if you'd asked for
Subfimction 0 (Load and Execute), right up until ifs time to set the stack pointer
and jump to the child. At that point, DOS instead copies the initial stack and in-

438 UNDOCUMENTED DOS

struction pointers into the ExecBlock you passed it and returns from the BSiT 21 h
with which you called it. In particular, the child's PSP has been set up in the nor
mal way, including the terminate address at offset OAh. If you don't change
things, the child's termination address will be set to the instruction in the parent
after the INT 21h that was used to invoke the DOS EXEC function.

The resulting behavior would be quite bizarre. Imagine issuing the "GO"
command in Monitor to execute the child. Eventually the child terminates, and
execution returns to Monitor back in its initialization code where the EXEC fimc-

tion call is located!

Obviously, you need to change the termination address of the child. This is
just a matter of setting a new address at offset OAH in the child's PSP to a suitable
location in the parent. Assuming you'd like to start execution at CS:Prog-
Terminate when the child terminates, you could use code like this:

;The current PSP is the child's after EXEC
mov ah,62H ;6et current PSP
INT 21H ;CaLL DOS, bx = PSP
mov es,bx

;PSP segment in es
mov word ptr es:COAH!],offset Proglerminate
mov word ptr es:COCH],cs ;The parent's CS

Monitor sets the child's termination address to code that prints a "Program
terminated" message. It turns out, however, that there is an added complication
when Monitor itself wants to terminate. If a child has been loaded that has not

yet terminated (because it was not nm to completion within the debugger), it
must terminate before the parent does, so that its memory allocation and file han
dles can be freed. This is quite simple: just execute the DOS Terminate function
(INT 21h Function 4Ch) with the current PSP set to the child's. (Note the similar

ity to the TSR deinstall technique used in chapter 5.) The parent picks up execu
tion again at the termination address you set for the child, with the PSP
automatically reset to the parent. A special check in Monitor prevents the "Pro
gram terminated" message from being printed in this case. The parent can now
perform the DOS Terminate function for itself. This is shown in the code that fol
lows.

; "Q" - Quit command

ProgTermi nate:

Chapter 7: The MS-DOS Debugger Interface 439

;TestPSP = our own PSP if we are terminating the child in order to quit
/Monitor (suppress "program terminated" message),

push OS
pop ds
mov bx,cs
mov ax^bx
xchg bx,CTestPSP3 /Set to our own PSP to show no child
cmp aX/.bx /Do we have a child?
jz JustExit
mov si,offset DGroup:ProgEndMsg
jmp PrintAbort /Print message, get next command line

Gui t:

/We must end child first. If no child, TestPSP = our own PSP, so we'll
/just terminate directly. If there is a child, set TestPSP to our own PSP
/as a flag to ProgTerminate to suppress "program terminated" message,

mov bx,cs
xchg bx,CTestPSP]
DOS SetPSP

JustExi t:

Ids dx,CNextInt15D
DOS SetVect,15H
mov ax,4c00h /Terminate, no error
int 21H

When execution resumes in the parent upon termination of the child, a
strange thing happens to the state of the registers. They are "restored" to the val
ues they had when the DOS EXEC function returned—even SS and SP! (It is
probably this type of funky behavior that kept Microsoft from documenting this
subfunction.) It is safest to make no assumptions about register contents and to
reset the stack upon return from the child.

Sample Program: Monitor

Monitor itself actually represents a bit of DOS history. I originally wrote it in
early 1979 as a stand-alone debugger that fit into a 2KB ROM. In mid- and late-
1980, when I was writing DOS 1.0,1 modified Monitor to nm vmder DOS and
called it DEBUG. The only things added to it in the transition were the use of
DOS for character and file I/O, and disassembly with the "U" command. The
original Monitor was still important, however. Because it didn't use DOS for I/O,
it could be used to debug DOS itself, and in fact was the only way to debug
DOS—especially when I broke DOS badly enough so that it wouldn't boot any
more!

The sample program on the companion disk is based on the original Monitor
source code. I have broken it into modules to make things easier to find. The

440 UNDOCUMENTED DOS

main module is MON.ASM, and it indudes all code related to loading the child
program. TRACE.ASM includes the GO, TRACE, and REGISTER commands.

IJTIL.ASM has utilities such as command parsing and output formatting.
DOSIO.ASM has the character 1/O fimctions. The main body of commands of
Monitor, such as DUMP, ENTER, MOVE, etc., are in COMMANDS.ASM. Finally,
DIS.ASM has a newly written disassembler for the UNASSEMBLE command.

Debuggers and Windows Memory Movement

Microsoft Windows presents a new challenge to a debugger or any other tool that
attempts to observe program execution. In Windows versions 2.x and in the
"Real" mode of Windows 3.x, code segments are riot fixed in a specific location in
memory. Rather, they are loaded when needed ("on demand") and discarded
when they fall into disuse. After loading, Windows wiU freely move segments
aroimd in an effort to make best use of available memory. All of this memory
movement activity renders an ordinary debugger useless.

By the way, in Windows 3.x protected modes—^what Microsoft calls "Stan
dard" mode and "Enhanced 386" mode—^this memory movement still takes place,
but you don't see it. The values loaded into the segment registers are not para
graph addresses (which would change as memory moves), but protected-mode
selectors, which are constant. A selector is an index into a table where the actual

address of the memory block is stored. The table look-up is handled automati
cally by the 286/386/486 chip, so you never know it happens. It is a feature pro
vided by Intel, rather than by Microsoft or IBM. As a result, memory addresses
appear fixed, because the selector never changes. However, the mere fact that the
CPU is operating in protected mode is a whole new challenge for a debugger—
one that unfortunately cannot be tackled here. This discussion is limited to real-
mode operation.

Suppose you have a Windows application called HELLO through which
you'd like to single step to see how it works (or why it doesn't). Let's see what
happens if you try to do this with DOS DEBUG.

Because DEBUG itself is not a Windows application, don't try to run it imder
Windows. Instead of trying to execute "DEBUG HELLO.EXE" from the Windows
File Manager or MS-DOS Executive, you must run Wmdows under DEBUG,
starting with the command "DEBUG WIN.COM HELLO".

So now you're at the DEBUG prompt, with Windows loaded and ready to
run. When execution starts, Windows wiU see that you'd like to run HELLO.EXE.

Chapter 7: The MS-DOS Debugger Interface 441

Windows will find a chunk of memory somewhere and load the first code seg
ment of HELLO into it. Once HELLO has started, any additional code segments
it has will be loaded when they are called.

If HELLO or some other task nmning under Windows should need more
memory, Windows may want to reorganize memory space to provide it. The
code segments of HELLO might get moved arormd. If memory is tight, some of
hello's code segments might even be discarded, and the memory might be al
located to some other use. If HELLO calls back into a discarded code segment,
Windows wiU load the segment again—^possibly discarding some other code seg
ment to make room.

Staring back at the DEBUG prompt, it looks like you're stuck. The code for
HELLO hasn't even been loaded yet, so how do you set your first breakpoint?
Maybe there's a way—sometimes I change the PrintScreen interrupt vector (INT
5,0000:0014) so that it points to the same place as the Breakpoint interrupt vector
(INT 3,0000:0000. Then I can start execution and push the PrintScreen key when
I want to stop and get back to DEBUG. If this method works, maybe you can get
your first breakpoint set in HELLO.

Suppose you set a breakpoint and continue the execution of Windows and
HELLO. The code segment of HELLO in which you've set the breakpoint could
get moved aroimd. That might be all right, because the breakpoint instruction
will get moved along with it. But when the breakpoint is reached, DEBUG won't
be able to restore the original code, because the location doesn't correspond to a
place where a breakpoint was set (DEBUG doesn't find it in its breakpoint table,
in other words). Worse, if the segment is discarded, it will be reloaded from disk
without the breakpoint instruction. In effect, the discard/load sequence removes
your breakpoints! All in aU, DEBUG looks pretty tmusable in this environment.

DEBUG is not the only tool made useless by Windows' memory manage
ment. A more powerful, symbolic debugger such as SYMDEB is hit even harder,
because it has no way to relate s5rmbol names to physical addresses. Other classes
of tools are similarly affected. One example is a profiler, which uses breakpoints
and/or timer interrupts to determine where a program spends most of its time.
Armed with this information, you know exactly where to target your efforts to
optimize the program. Without a mapping from physical addresses to symbol
names (or line numbers), there is no way to interpret the profiler's results. An
other example tool—and one made equally useless by Windows real-mode mem
ory management—is a test coverage analyzer, which reports what lines of code

442 UNDOCUMENTED DOS

are not executed when you run a program through its test suite. This shows you
what areas need additional tests to cause all lines to be executed, a minimum

standard for thorough testing.

The Windows SEGDEBUG Interface

Fortimately, real-mode Windows provides a mechanism to inform a debugger,
profiler, or other tool about memory movement. The general scheme starts when
Windows recognizes a signature in the debugger. From there, Windows is able to
determine an entry point to call into the debugger to pass messages. These mes
sages include segment load, move, and discard information, which is sufficient to
allow the debugger to track any specific program location.

Windows looks for the signature as follows: The value stored at absolute ad
dress 0000:000E is fetched. This address is the high word (segment) of INT 3, the
breakpoint vector. Presumably the debugger has set this vector so that it can use
breakpoints; it is the segment of the debugger's breakpoint trap routine that Win
dows needs.

Windows looks at offset lOOH in that segment. At that location it must find
the ASCIIZ signature string "SEGDEBUG". If that string is present, the entry
point to the debugger for messages from Windows is five bytes in front of the
signature string, at offset OFBh. This five-byte gap is intended to contain a far
jump to the actual location in the debugger that wiU process Windows messages.
Here's an example:

0000:0000 xxxxryyyy ;Vector 0 (divide overflow)
0000:0004 xxxx:yyyy /Vector 1 (single step)
0000:0008 xxxx:yyyy /Vector 2 (non-maskable interrupt)
0000:000c 1234:5678 /Vector 3 (breakpoint)
0000:0010 xxxx:yyyy /Vector 4 (overflow CINTOD)

1234:00FB jmp far ptr WndMessage
1234:0100 db "SEGDEBUG",0

1234:5678 /Breakpoint trap code

Note that the debugger has already set interrupt vector 3 to point to its break
point trap handler at 1234:5678. Windows will fetch the segment of the handler
from the interrupt table (1234h). Then at 1234:0100, Windows finds the

Chapter 7: The MS-DOS Debugger Interface 443

SEGDEBUG signature, which has the entry point just in front of it. The code in
the debugger to set this up might look something like this:

;Debugger's initialization code
push cs

pop ds ;Make sure ds = cs
mov dx,offset Break ;Address of breakpoint trap
mov aL,3 ;Set interrupt vector 3
mov ah,25H ;DOS set interrupt vector fcn-
i nt 21H

org OFBH

jmp WndMessage ;HandLe messages from Windows

org 1GGH ;In case JMP didn't take 5 bytes
db "SEGDEBUG",G

If the debugger is a .COM file, location lOOh is special for a completely differ
ent reason: it is the first byte of the program file, and the entry point of the pro
gram. In this case, obviously, the signature will have to be moved into place. In
the case of an .EXE file, the signature can be located statically. However, it can be
a bit of a nuisance to find a small chunk of code with which to fill the first OFBh

bytes, rather than letting those bytes go to waste.

Messages from Windows

After the entry point is installed using the SEGDEBUG mechanism, V>findows
rails the entry point whenever a segment is loaded, moved, or discarded. The C
calling convention is used, with the first argument (a word) indicating the t3^e of
message. The number of additional arguments and their meaning are dependent
on the message type. The three messages needed for a debugger are:

■ 0 Loaded segment
far pointer to ASCIIZ segment name (dword)
segment ordinal (word)
segment value (word)
program instance (word)

■ 1 Moved segment
original segment value (word)
new segment value (word)

4U UNDOCUMENTED DOS

■ 2 Discarded segment
segment value (word)

Or, to put them in the format similar to a C ftmction declaration:

void LoadSegmentMsgCO, char far *ModuLeNaine/. short Ordinal,
short SegVal, short Instance, short SegType);

void MoveSegmentMsgd, short OLdSegVal, short NewSegVal);

void DiscardSegmentMsg(2, short SegVal);

An individual segment in Windows is identified by the name of the module
if s in, along with the segment ordinal. The segment ordinal is a sequential num
bering of the segments assigned by the linker. The numbering appears in the map
file, although the ordinals there are one larger than those used by Windows. Or
dinal zero is used in the map file to indicate "imported" functions—that is, calls
to Windows; the first ordinal in the program is listed as ordinal one. Windows
starts numbering the program's segments at zero, so the ordinal passed to Load-
SegmentMsg is one less than that shown in the map file.

Thus, the first two arguments to LoadSegmentMsg (after the message t5rpe),
ModuleName and Ordinal, identify which segment is being loaded. The next ar
gument, SegVal, is the segment address at which it is being loaded. If more than
one instance of the program is running, the Instance argument identifies the in
stance to which the segment belongs. (Note, however, that code is normally
shared by all instances.)

The two other messages from Windows, MoveSegmentMsg and Discard-
SegmentMsg, should be fairly self-explanatory. MoveSegmentMsg can be used to
update any of the debugger's tables (such as breakpoint tables) that have seg
ment values. Given OldSegVal to look for in the tables, all occurrences should be
changed to NewSegVal to reflect the relocation by Windows. Similarly, Discard-
SegmentMsg can be used to mark a table entry as "not present," the same state it
would have before receiving LoadSegmentMsg.

Let's consider a specific sequence of events for a Windows debugger. Sup
pose you've just started the debugger, and WIN.COM has been loaded but not
yet executed. The first thing you'll want to do is set a breakpoint in the program
you're trying to debug. Of course, no code for that program has been loaded yet.
The debugger must record your request for a breakpoint in terms of the segment

Chapter 7: The MS-DOS Debugger Interface 445

ordinal and offset, without actual placing the breakpoint opcode anywhere. Then
you start execution of Windows with the debugger's GO command.

Using Windows, execute the program you're debugging. The debugger will
be getting oodles of messages from Windows, most of which aren't relevant.
Whenever it sees a LoadSegmentMsg with the same module name as the pro
gram, however, it will sit up and take note. If the segment ordinal is the same as
the one for the breakpoint you wanted set, the debugger will finally have some
thing to do. The debugger must set the breakpoint in the usual way, swapping
the INT 3 breakpoint opcode with the code byte at the (now known) segment and
offset you specified. The breakpoint table must be updated to include the seg
ment value and the original code byte.

But let's assume that the breakpoint is not encountered right away, and your
program continues to run. As program execution demands memory for addi
tional code segments or other resources, the segment with your breakpoint may
get moved. The debugger will get a message if this happens, and it must update
the breakpoint table with the new segment value. If the program starts spending
its time in other code segments, the segment of your breakpoint could be dis
carded. Now you're back where you started. Note that the breakpoint table had
to keep the segment ordinal, even after the segment was loaded and the segment
value estabhshed, just in case the segment was discarded.

At some point the debugger will see the LoadSegmentMsg again and wiU re
peat the steps for setting the breakpoint. This time, suppose the breakpoint is
reached before the segment is discarded again. As usual, the debugger will use
the return address of the breakpoint opcode in searching the breakpoint table for
a match. Because the segments in the table were kept updated, the debugger will
find the breakpoint address in the table even if it has moved since it was set. The
debugger must remove the breakpoint opcode and restore the original code byte.

Now at the debugger's command prompt, you may wish to view code or
data in other segments of the program—if they're loaded. The only way for the
debugger to know about those other segments, however, is from LoadSegment
Msg. That means the debugger must watch aU messages for loading segments of
the program, recording what goes where. In other words, it must build a table re
lating all segment ordinals to their current segment value. This also means pay
ing attention to all MoveSegmentMsg and DiscardSegmentMsg to keep this table
updated. That way, you can ask for a memory dump or disassembly of any seg-

446 UNDOCUMENTED DOS

ment in the program and the debugger will know what segment value to use if
it's present.

Sample Program: Reporting Windows Messages

To demonstrate using the Windows SEGDEBUG interface. Monitor has been ex
panded to report Windows memory movement messages. Monitor doesn't use
the information to track breakpoints in shifting code segments though. Rather,
this sample determines which message Windows is sending and reports it along
with its arguments:

UinMsg 13 End focus DGroup 5667 Id 04
WinMsg 14 Start focus DGroup 5415 Id 05
WtnMsg 2 Discard segment 5415
WinMsg 2 Discard segment 5405
WinMsg 2 Discard segment 557B
WinMsg 2 Discard segment EC23
WinMsg 12 End program Id 05
WinMsg 14 Start focus DGroup 633FId 04
WinMsg 13 End focus DGroup 633FId 04
WinMsg 14 Start focus DGroup 5667 Id 04

The tasks required to put this information to use as outlined earlier would be
meaningful only in a symbolic debugger unlike Monitor.

The first change made to Monitor is to use different character I/O. Monitor
had been using DOS to receive characters from standard input and display char
acters to standard output. This method is not acceptable once Windows is run
ning. Instead, the source file DOSIO.ASM has been replaced with MONOIO.
ASM, which uses a monochrome display (MDA) for output. Using Monitor in
this way requires that two display cards be present in the computer, one for Win
dows and one for Monitor. This is a common debugging configmation for Win
dows, although serial I/O is also used sometimes for the debugger. The character
output code directly accesses the video display buffer, but it has been kept as
simple as possible.

The only other change is the addition of the source file WINDBG.ASM. Be
cause Monitor is a .COM file, the SEGDEBUG signature must be moved into ad
dress lOOH (the entry point for .COM files) during initialization, instead of being
statically allocated. Monitor uses a special segment for initialization code that al
lows each source file to have its own initialization code without requiring any

Chapter 7; The MS-DOS Debugger Interface 447

changes or switches in other modules. Both WINDBG.ASM and MONOIO.ASM
use this feature. Each puts their initiaUzation code in InitSeg, which is a byte-
aligned pubUc segment. At link time, aU the code from each module's InitSeg is
combined. Another segment called LastSeg immediately follows InitSeg; its sole
contents is a RET instruction. As it starts up. Monitor makes a subroutine call to
InitSeg. The initialization code from each module falls into the code for the next,
until the code from the last module falls into the RET instruction in LastSeg.
M0N010.ASM clears the monochrome display screen during its initialization.
WINDGB.ASM moves the SEGDEBUG signature into place.

The C calling convention used to send messages to the debugger passes the
arguments on the processor stack. Arguments are pushed in reverse order of
their appearance in the declaration as given above, which results in the first argu
ment, the message type, always being pushed last. This puts the message type
closest to the top of the stack, at a fixed offset where it can be found regardless of
the number of additional arguments.

The C railing convention also specifies that the arguments are to be left on
the stack when the procedure returns. This is very important, because it means
that the debugger doesn't have to know how many arguments each message has.
The debugger can be selective, processing only those messages it needs. At the
same time, later versions of Windows can add new messages—or even additional
arguments to existing messages—without fear of breaking existing code.

To simplify accessing the arguments in assembly language, WINMON uses
the macro file CMACROS.INC from the Windows Software Development Kit
(SDK). The macro for defining a word parameter, ParmW, is used to define pa
rameters for LoadSegmentMsg, which has more parameters than any other mes
sage. The first two parameters after the message type have generic names,
because they are used with different meanings by several of the messages.

The rest of WINDBG.ASM is very straightforward. The message type is used
to index into a table of addresses, dispatching to a handler for that specific mes
sage. Each of the handlers simply fetches the arguments and displays them on
the debugging screen. It is in these message handling routines that code must be
placed to maintain the debugger's internal ordinal-to-segment mapping table.

Additional Message Types

By looking at what Windows and SymDeb do with messages, I have gained a
sketchy idea of some of the other Windows messages:

U8 UNDOCUMENTED DOS

EchoMsg(4, char far * String);

SymDeb displays the string on the debugging screen. I have not seen this one
issued by Windows.

StartProgMsgdl, short ProgOrdinaL)

This is called whenever a program is started. ProgOrdinal is a number as
signed to the program, used again with EndProgMsg. When a second instance of
a program is started, ProgOrdinal will be the same as the first instance.

EndProgMsg(12, short ProgOrdinal)

This is called when a program has terminated. ProgOrdinal is the same as re
turned by StartProgMsg.

EndDgroupMsg(13, short SegVal, short ProgOrdinaL)

Always followed by StartDgroupMsg, the SegVal is the segment that has
been (but no longer will be) the default data segment. This is called very often—
every time the input focus changes.

StartDgroupMsg(14, short SegVal, short ProgOrdinal)

SegVal is the new default data segment; see EndDgroupMsg. EndDgroup
Msg is called whenever a program loses the input focus; StartDgroupMsg when
ever a program gains the input focus.

Conclusion

This chapter has discussed two different debugger interfaces available tmder MS-
DOS. Neither interface is documented or supported by Microsoft, but the first
interface (INT 21h Fimction 4B01h) is essential to any programmer developing a
"normal" DOS debugger, and the second interface (SEGDEBUG) is essential for
anyone writing a debugger for real-mode Windows. These interfaces can even be
important for a wider class of programs than just debuggers. For example, execu
tion profilers can also use INT 21h Function 4B01h. Perhaps a character-based

Chapter 7: The MS-DOS Debugger Interface 449

non-Windows application covild use SEGDEBUG as part of communication with
Windows applications.

On the other hand, this chapter did not explore the area of protected-mode
debugging, either for DOS or for Windows. In Windows 3.0 "Standard" and "En
hanced" modes, developers can use the protected-mode CVW debugger, whose
operation is completely different from SEGDEBUG. Even imder DOS or Win
dows, protected-mode debugging requires an interface more like that of OS/2's
DosPTraceO fimction. This function, interestingly enough, is largely undocu
mented: it seems that for those writing debuggers and other diagnostic tools, use
of imdocumented operating system features will have to carry over into the
world of protected mode as well.

Chapter 8

INTRSPY: A Program for Exploring DOS

David Maxey

Several times in this book we have referred to the program INTRSPY. In chapter
1, we used it to see which programs use undocumented DOS. In chapter 4, we
used it to explore the workings of the MS-DOS network redirector. In chapter 6,
we referred to an INTRSPY script that helped us figure out how the INT 2Fh
Function AEh (Installable Command) interface works.

It is now time to examine INTRSPY in detail. After explaining how INTRSPY
differs from other debuggers, this chapter presents a quick sample session with
the program. This should be sufficient to get you started using INTRSPY; the pro
gram itself is on the disks that accompany this book. After this "guided tour," a
more formal "user's guide" to the program is presented, followed by an examina
tion of several sample scripts.

The second half of this chapter discusses the specification for INTRSPY, key
design issues, and the program's implementation in Turbo Pascal.

Why a Script-Driven, Event-Driven Debugger?
INTRSPY is an event-driven debugger: it takes over one or more interrupt vec
tors and, when the interrupt is generated, performs some action. This sets it apart

451

452 UNDOCUMENTED DOS

from more conventional debuggers, such as DEBUG, CodeView, or Turbo Debug
ger, which are generally "driven" by a user's keystrokes.

There are already several other DOS debuggers that intercept interrupts, al
lowing you to look into the DOS and/or BIOS activity on your PC. JPI TopSpeed
C comes with an excellent program called WATCH, which monitors DOS (DMT
21h) calls. IBM used to market a program called PCWATCH in its now-defunct
"Personally Developed Software" series; this program allowed you to monitor
any software interrupt, not just INT 21h calls.

Such a program is essential, not only for exploring vmdocumented DOS, but
for many other debugging tasks on the PC as well. For example, what do you do
if a program exits unexpectedly because it can't find some configuration file, but
the program's error messages don't tell you which file it couldn't find? Just inter
cept INT 21 h and monitor the different functions involved with opening, creat
ing, or finding files.

However, INTRSPY is different from existing DOS monitoring programs like
JPI WATCH, because it provides a scripting language for intercepting interrupts:
it is event-driven and script-driven. The INTRSPY program knows very little
about any particular DOS or BIOS call. It doesn't know that INT 21h Function
3Dh is the Open File function; it doesn't know that this function takes the ASCIIZ
path name of a file to open to in the DS:DX register pair, or that, if successful, the
fimction retiurns a file handle in the AX register. Rather than hard-wire such "pro
tocol" knowledge into the program, INTRSPY's scripting language lets the user
provide such knowledge.

The benefit is that the program is open-ended. If you want to monitor some
undocumented region of DOS that this book doesn't mention, you can. If you
want to examine some Httle-known DOS subsystem, you just write a script. Fur
thermore, because the INTRSPY language includes support for strings and struc
ture, you can produce meaningful output rather than raw register dumps.

A Guided Tour

LeP s first run through a quick session with INTRSPY. It makes sense to start with
something that doesn't involve undocumented DOS, so pretend you are inter
ested in tracking down which files a program opens. You could, of course, disas
semble the program, or run it under a debugger, but it makes more sense to treat
the program as a "black box" and simply see what DOS file calls it makes. In

Chapter 8: INTRSPY: A Program for Exploring DOS 453

other words, you should study the program as if you were a behavioral, rather
than a Freudian, psychologist.

INTRSPY is perfect for this sort of exploration. You could, for example, moni
tor the file activity required to compile INTRSPY itself. However, INTRSPY (as
you wiU see shortly) is written in Turbo Pascal, and part of the reason for TP's
blazingly fast compilation is that it doesn't create temporary files or spawn sub-
processes. So, let's instead look at a compiler with a somewhat more baroque file
usage. The following commands could be used to find out what files Microsoft C
6.0 uses when compiling a tiny HELLO.C program:

intrspy -r10240
cmdspy compile fopen.scr
cl hello.c

cmdspy report

This code first loads INTRSPY, which is a memory-resident program. It then
uses CMDSPY to compile an INTRSPY script called FOPEN.SCR. As explained
below, CMDSPY communicates with the resident INTRSPY program. Then the
Microsoft CL program is nm. Finally, the code produces a report (which we also
could have sent directly to a file with a command such as CMDSPY REPORT
CL.LOG).

What does FOPEN.SCR look like? Here is a very simple version, which only
traps calls to INT 21h Fimction 3Dh (Open File):

; FOPEN.SCR (simple version)
intercept 21h

function 3dh ; Open File
on_entry

output "OPEN " (ds:dx->byte,asciiz,64)
on_exit if (cflag ==1)

sameline " CFAIL " ax "1"

This script instructs INTRSPY to intercept INT 21h and trap aU calls with
AH=3dh (Function 3Dh). On entry to the call, INTRSPY should output the string
"OPEN ", plus the ASCIIZ string pointed at by the DS:DX register pair; a maxi
mum of 64 bytes wiU be stored. (Here, the -> operator indicates how the memory
DS:DX points to should be formatted.) On exit, if the carry flag is set, the code
tells INTRSPY it should output (on the same line) the string "FAIL" and the value
of the AX register, enclosed in square brackets.

454 UNDOCUMENTED DOS

Note how the on_entry clause corresponds to the parameters expected by
INT 21h Fxmction 3Dh, and how the on_exit clause corresponds to its possible
return values:

INT 21h Function 3Dh

Open File
Call with:

AH = 3Dh

AL = access mode

DS:DX -> segmentroffset of ASCIIZ pathname
Returns:

CARRY = clear if function successful

AX = handle

CARRY = set if function unsuccessful

AX = error code

The output from INTRSPY goes, not directly to your screen, but into a results
buffer. The default buffer size is 2KB; we created a 10KB buffer here by specifying
INTRSPY-rl0240.

The command CMDSPY REPORT produced the following results after nm-
ningCLHELLO.C:

OPEN c1.exe CFAIL 00021

OPEN c:\tmp\004990sy CFAIL 00021
OPEN c:\tmp\004990sy
OPEN c:\tmp\004990ex CFAIL 00021
OPEN c:\tmp\004990ex
OPEN c:\tmp\004990in CFAIL 00021
OPEN c:\tmp\004990in
OPEN c:\tmp\004990st CFAIL 00021
OPEN c:\tmp\004990st
OPEN hello.c

OPEN c:/msc/includeXstdio.h
OPEN c2.exe CFAIL 00021

OPEN c:\tmp\004990ex
OPEN c:\tmp\004990sy
OPEN c:\tmp\004990in
OPEN c:\tmp\004990pr CFAIL 00021
OPEN c:\tmp\004990pr
OPEN c:\tmp\004990gs CFAIL 00021
OPEN c:\tmp\004990gs

Chapter 8: INTRSPY: A Program for Exploring DOS 455

OPEN c:\tmp\004990Ls CFAIL 0002]
OPEN c:\tmp\004990Ls
OPEN C:\MSC\BIN\c2.exe

OPEN c3.exe CFAIL 0002]

OPEN c:\tmp\004990pr
OPEN c:\tmp\004990gs
OPEN c:\tmp\004990Ls
OPEN c:\tmp\004990in
OPEN c:\tmp\004990st
OPEN heLLo.obj
OPEN c:\tmp\004990Lk CFAIL 00023
OPEN link.exe CFAIL 00023

OPEN C:\BIN\link.exe

OPEN c:\tmp\004990Lk
OPEN heLLo.obj
OPEN c:\msc\Lib\SLIBCE.Lib

OPEN C:heLLo.exe

OPEN C:heLLo.exe

OPEN F0PEN1.SCR

Whew: All that just to compile HELLO.C! The temporary files with sy, ex, gs,
Is, in, St, pr, and Ik suffixes presumably relate to different aspects of compiling:
sjnnbols, expressions, global optimization, local optimization, etc. If you have
Microsoft C 6.0, you might try the new -qc option to do a quick compile. Instead
of the barrage of file activity you get with a full optimizing compile, the INTRSPY
results then look like this:

OPEN qcc.exe CFAIL 00023
OPEN heLLo.obj
OPEN heLLo.c

OPEN c:/msc/incLude\stdio.h

OPEN c:\tinp\004990Lk CFAIL 00023
OPEN Link.exe CFAIL 00023

OPEN C:\BIN\Link.exe

OPEN c:\tmp\004990Lk
OPEN heLLo.obj
OPEN c:\msc\Lib\SLIBCE.Lib

OPEN C:heLLo.exe

OPEN C:heLLo.exe

OPEN F0PEN1.SCR

No wonder the -qc switch is faster.

456 UNDOCUMENTED DOS

What have you accomplished here? With a seven-line INTRSPY script, you
have created a file-open logging utility that would have taken many more lines of
code (and, more important, a good several hours of programmer's time) to write
(and debug!) in C, assembly, or Pascal language.

Still, the FOPEN.SCR file is only a minimal implementation of a file-logging
utility. For example, simply by typing CL, you must be generating lots of file sys
tem activity as DOS first tries to find, and then tries to execute, CL.EXE. Further
more, your log doesn't show any files being created.

All you need to do is trap some additional functions, as in this next beefed-
up version of FOPEN.SCR. If you want to see the DOS command-line with which
programs are EXECed, we also need to provide an INTRSPY STRUCTURE that
represents the parameter block used by the DOS EXEC function:

; FOPEN.SCR

structure param_bLk fields
env_seg (word,hex)
args (dword,ptr)

intercept 21h
function 3ch ; Create File

on_entry

output "CREAT " (ds:dx->byte,asciiz,64)
on_exit if (cflag ==1)

sameline " CFAIL " ax
m —

function 3dh ; Open File
on_entry

output "OPEN " (ds:dx->byte,asciiz,64)
on_exit if (cflag ==1)

sameline " CFAIL " ax
m _________ _______________

function 4bh ; Execute Program

subfunction OOh

on_entry

output "EXEC "

(ds:dx->byte,asciiz,64) ; program
(es:bx->param_blk-args->byte,string,64) ; cmdline

on_exit if (cflag ==1)
sameline " CFAIL " ax "D"

function 4eh ; Find First File
on__ent ry

output "FIND " (ds:dx->byte,asciiz,64)

Chapter 8: INTRSPY: A Program for Exploring DOS 457

on_exit if (cfLag ==1)
sameline " CFAIL " ax

The ESfTRSPY STRUCTURE statement corresponds to the first two fields (the

only ones you're interested in here) of the parameter block that INT 21h Fimction
4Bh Subfunction OOh expects from the ES:BX register pair. You output the DOS
command line (or the first 64 bytes of it) with this expression:

(es:bx->parain_bLk. args->byte,string,64)

This indicates that the ES:BX pair points to (->) a param_blk structure, and
that you are interested in the args field. We in turn use another -> to indicate that
args (dword,ptr) points to a string. A STRING designation is different from ASCIIZ,
in that its first byte is a length coimt. This corresponds exactly with the command
tail used by MS-DOS.

Now you get even more output describing the activity generated by the sim
ple command CL HELLO.C. There's too much to show it all, but here are the
highlights:

FIND cL.???

FIND C:\aEMM\cL.??? CFAIL 0012]

FIND C:\TURBO\cL.??? CFAIL 00123

FIND C:\MSC\BINB\cL.??? CFAIL 00123

FIND C:\BIN\cl.??? CFAIL 00123

FIND C:\EPS\cl.??? CFAIL 00123

FIND C:\MSC\BIN\cl.???

EXEC C:\MSC\BIN\CL.EXE hello.c

OPEN ci.exe CFAIL 00023

EXEC C:\MSC\BIN\c1.exe

OPEN c:\tmp\005116sy CFAIL 00023
CREAT c:\tmp\005116sy

OPEN hello.c

OPEN c:/msc/i ncludeXstdi o.h

OPEN c2.exe CFAIL 00023

EXEC C:\MSC\BIN\c2.exe

EXEC C:\MSC\BIN\c3.exe

458 UNDOCUMENTED DOS

OPEN c:\tmp\005116lk CFAIL 00023
GREAT c:\tmp\005116Lk
OPEN Link.exe CFAIL 00023

EXEC C:\BIN\link.exe a"\"c:\tmp\005116Lk\"
OPEN C:\BIN\link.exe

OPEN c:\tmp\005116Lk
FIND c:\tmp\005116Lk
OPEN heLLo.obj
FIND heLLo.obj
OPEN c:\msc\Lib\SLIBCE.Lib

FIND c:\msc\L1b\SLIBCE.L1b

OPEN C:heLLo.exe

GREAT G:heLLo.exe

The first thing you see here is that, before the actual execution of CL.EXE
itself, COMMAND.COM must first find it. The series of failed calls to the DOS
Find First function show COMMAND.COM looking along the PATH in many
subdirectories before it finally finds CL.EXE. If you were going to be using
Microsoft C a lot, it would probably be a good idea to optimize your PATH by
moving C:\MSC\BIN forward a little.

You can also see the invocation of the separate executables that comprise
Microsoft C: Cl.EXE, C2.EXE, and C3.EXE. There are no command-line argu
ments here because these programs communicate among themselves using the
MSC_CMD_FLAGS environment variable, plus aU those temporary files.

You have seen that INTRSPY can be likened to a "protocol analyzer" for PC
software interrupts, where INTRSPY itself only knows about raw interrupts, reg
isters, and interrupts, and where the user's scripts impose the necessary higher-
level interpretation to imderstand what is actually going on.

INTRSPY User's Guide

INTRSPY is actually two programs, INTRSPY.EXE and CMDSPY.EXE, whose
operating instructions follow.

Usage of INTRSPY.EXE The following conunand is used to run INTRSPY.EXE:

INTRSPY :-rnnnn3 :-innnn3

Chapter 8: INTRSPY: A Program for Exploring DOS 459

where:

■ -mnnn specifies the amount of memory INTRSPY is to allocate for result
storage (default is 2KB).

■ -innrm specifies the amount of memory INTRSPY is to allocate for inter
rupt handler code (default is 1KB).

For example, the following commands runs INTRSPY with an allocation of
24,000 bytes of results space and the default 1KB of interrupt handler code space:

C:\>INTRSPY -r24000

Usage of CMDSPY.EXE The following command is used to run CMDSPY.EXE:

CMDSPY CCOMPILE Cd:DCpathlinptfiLeC.extl Cparam-1 Cparam-2 .. DID
CREPORT CCd:DCpathDoutpfi Le.extDD
CRESTARTD

CFLUSHD

CSTOPD

CUNLOADD

where:

■ COMPILE compiles a script, and instructs INTRSPY to begin monitoring
interrupts and storing results specified in inptfile.ext, which contains
script source in the form defined below. Any currently active script is
stopped, and the results area is flushed. If the extension is omitted, .SCR
(script) is assumed. For example, the following DOS command line com
piles the script TEST.SCR:

C:\>CMDSPY COMPILE TEST

■ REPORT instructs INTRSPY to return the results accumulated so far. The

file outpfile.ext, if specified, wiU contain the formatted results of the cur
rent script since the last time it was processed, unless there has been an
intervening FLUSH.

■ STOP instructs INTRSPY to stop monitoring interrupts but to preserve

the results area.

■ RESTART instructs INTRSPY to restart monitoring interrupts (after a
STOP command) on the basis of the currently compiled script.

460 UNDOCUMENTED DOS

■ FLUSH instructs INTRSPY to clear the results area but to leave the cur

rently script active.
■ UNLOAD instructs the INTRSPY TSR to unload itself from memory. Any

active script is stopped.

Script Language

The script language allows eight main constructs. These are:

■ INCLUDE, which includes another input file.
■ STRUCTURE, which defines a data structure.

■ INTERCEPT, which specifies an interrupt, optional function, and op
tional subfvmctions, together with the entry and exit processing to be
done when that interrupt is triggered.

■ RUN, which allows a DOS program to be EXECed from within the script
■ REPORT, FLUSH, STOP, and RESTART, all of which work exactly like

their command-line counterparts described above.

Syntax

A script file is an ASCII file. All white space is ignored, except within literal
strings used for results output. Thus, indentation and multiple lines may be used
for readability. Line endings are only used to delimit comments, which begin
with a semicolon an5rwhere on a hne.

The placeholders %1 through %9 can appear anywhere in a script and are re
placeable from the DOS command line. The following is a valid INTRSPY script:

; INTERCEPT.SCR

intercept %1
function %2

%3 %4 %5 %6 %7 %8 %9

This script could be used for one-shot queries that didn't deserve their own
separate scripts. For example:

C:\>cmdspy compile intercept 21h 52h on_exit output es bx

The simplest possible (though degenerate) INTRSPY script is thus:

; SCRIPT.SCR
%1 %2 %3 %A %5 %6 %7 %8 %9

Chapter 8: INTRSPY: A Program for Exploring DOS 461

which then requires that the entire script be placed on the DOS command line:

C:\>cmdspy compile script intercept 21h function 52h on_exit output es bx

INCLUDE Syntax The following syntax is used for INCLUDE statements:

INCLUDE "Cd:]Cpath]inptfiLeC.extD Cparam-1 Cparam-2

This S5mtax includes the specified file and substitutes param-1, param-2, etc.,
in the source in place of the strings %1, %2, etc., respectively, where found. If the
extension is omitted, .SCR is assumed.

STRUCTURE Syntax Let us define a field definition as:

field-type C,field-disp-type C,field-dupDD

where:

field-type can be BYTE, WORD or DWORD.

■ field-disp-t5q)e can be HEX, BIN, DEC, PTR, STRING, ASCII, ASCnZ, or
DUMP (a combination of HEX and ASCII).

■ field-dup is the number of elements if the field is an array, or the length
of field in, for example, a string. In the case of a field being defined
within a structure definition, field-dup may be a numeric literal or one of
the predefined constants. In the case of a definition within an output-ele
ment (see INTERCEPT syntax below), field-dup may also refer to a regis
ter (regS, regl6, sreg).

Then, STRUCTURE syntax looks like this:

STRUCTURE struct-name FIELDS

field-namel (field-definition)

Cfield-name2 (field-definition)]

Cfield-nameN (field-definition)]

■ struct-name must be a unique structure identifier.
■ field-name must be unique within struct-name.

462 UNDOCUMENTED DOS

For example;

STRUCTURE param_bLk FIELDS
env_seg (WORD,HEX)
args (DWORD,PTR)

Note that there are only 12 significant characters for both struct-name and
field-name. Thus, LISTOFLISTS_30 and LlSTOFLISTS_31 would not be imique.

INTERCEPT Syntax Let us define an output-element as:

REGS or

sreg-name, reg16-name, regS-name, flag-name or
"string Literal" or
(segvaI:ofsvaICincr]->struct.field->struct.field->struct) or
(segvaI:ofsvaICincrD->struct.field->struct.field->struct.field) or
(segvaI:ofsvaICincr]->struct.field->struct.field->field-definition) or
predefined-constant

where:

sreg-name is the name of a segment register (that is, CS, DS, ES, or SS).
regl6-name is the name of a 16-bit register (that is, AX, BX, CX, DX, DI,
SI, BP, SP, IP, CS, DS, ES, or SS).

regS-name is the name of an 8-bit register (that is, AH, AL, BH, BL, CH,
CL,DH,orDL).

flag-name is the name of a flag: OFLAG (overflow), DFLAG (direction),
IFLAG (interrupt), TFLAG (trap), SFLAG (sign), ZFLAG (zero), AFLAG
(auxiliary), PFLAG (parity), or CFLAG (carry).
segval is an sreg-name, regl6-name, numeric literal, or predefined con
stant.

ofsval is an sreg-name, regl6-name, numeric literal, or predefined con
stant.

liner] is an optional numeric Uteral increment.
struct.field-> may appear up to four times, and struct and field must be
predefined.
predefined-constant is one of those defined in the section "Predefined
Constants" on page 467.

Chapter 8: INTRSPY: A Program for Exploring DOS 463

Let us then define an output-clause as one of the following:

■ OUTPUT output-element [output-element [output-element ...]]], which
starts on a new line

■ SAMELINE output-element [output-element [output-element...]]], which
attempts to append elements to an existing line

■ STREAM regS-name, which outputs raw ASCII characters from the 8-bit
register specified

■ DEBUG, which, if the intercept occurs during a RUN statement, enters a
pop-up debugger (see below)

Let us then define a test-clause as:

■ (something==something) or (something!=somethmg), where something
may be a sreg-name, regl6-name, regS-name, flag-name, or predefined
constant.

Let us next define an if-clause as follows:

IF test-clause CAND test-clause COR test-clause C ...]]]

Coutput-clausesD

Let us add the two keywords ON_ENTRY and ON_EXIT, to describe pre-
and post-processing of an interrupt.

Finally, as shorthand for the tests IF (ah == value) and IF (al == value), let's
define two additional keywords:

FUNCTION ah-value

SUBFUNCTION al-value

(Actually, these are not strictly equivalent to testing the value of the AH and
AL registers, because FUNCTION and SUBFUNCTION operate not only
ON_ENTRY, but also ON_EXlT, where the value in AH or AL might have been
changed.)

Then, INTERCEPT syntax looks like this:

INTERCEPT interrupt-number
Coutput-clausesH
Ctest-clauses]

CFUNCTION fnctn-number Cfnctn-number ...]

464 UNDOCUMENTED DOS

Coutput-cLauses]
Ctest-cLausesD

CSUBFUNCTION sfnctn-number Csfnctn-number — II
Coutput-clausesI!
Ctest-clauses]

:ON_ENTRY
Coutput-cLauses]
Ctest-c Lauses]]

:ON_EXIT
Coutput-cLauses]
Ctest-cLauses]]]

CSUBFUNCTION sfnctn-number Csfnctn-number —]

]

CFUNCTION fnctn-number Cfnctn-number —]

For example:

INTERCEPT 21h

FUNCTION 3Ch ; Create FiLe
ON_ENTRY

OUTPUT "CREAT " (DS:DX->BYTE,ASCIIZ,64)
ON_EXIT

IF (CFLAG == 1)

SAMELINE " CFAIL " AX "]"

RUN syntax RUN S5mtax looks like this:

RUN "Cd:]Cpath]programC.ext] Cparmi Cparm2 ...]]"

If the extension is omitted, first an.EXE and then a .COM file is searched for,

either in d:path if specified or on the DOS search PATH if both drive and path are
omitted. Substitute param-1, param-2, etc., in the source in place of the strings
%1, %2, etc., respectively, where found.

For example:

RUN "cL heLLo.c"

or:

RUN "%1 %2 %3 %4 %5 %6 %7 %8 %9"

Chapter 8: INTRSPY: A Program for Exploring DOS 465

If the second example were embedded in a script called TEST.SCR, the S5mtax
from the DOS command line might then look like this:

C:\>CMDSPY COMPILE TEST cl hello.c

Because DOS programs can be run normally from the DOS command line
while an INTRSPY script is active, the RUN statement is necessary only when (a)
you want to investigate a program without possible interference from COM-
MAND.COM; (b) where you want an entirely self-contained script; or (c) you
want to use the DEBUG statement (see below).

REPORT syntax REPORT syntax looks like this:

REPORT "CdinCpathDoutpfile.ext" or "" for STDOUT

STOP and RESTART syntax Neither STOP nor RESTART take any parameters.

DEBUG syntax DEBUG s}mtax looks like this:

DEBUG "message" or ""

If its associated intercept occurs during a RUN statement, the DEBUG state
ment invokes a simple interactive debugger that allows access to some of
CMDSPY's output capabilities from a command line. The DEBUG statement
takes one parameter: a string to display in the debugger.

Debugger commands are the following:

■ R

This displays the registers as they were when the caller generated the inter
rupt, but also reflecting any modifications made using the M (Modify) command
shown below. It replicates the REGS output statement.

■ D

segvaI:ofsvalCincr]->struct.fi eld->struct.fi eld->fi eld-defi ni tion

This displays an area of memory. The argument to the command is an out
put-element, but without the parentheses.

466 UNDOCUMENTED DOS

■ M register-name = new-value

This modifies the contents of a register (sreg, regl6, orregS) to be new-value,
new-value may be an sreg-name, regl6-name, regS-name, numeric literal, or pre
defined constant.

This cancels aU register modifications and returns all register contents to their
values at entry.

■ X

This exits the debugger. If modifications have been made, it allows the modi
fications to be canceled or allowed to remain in effect.

■ T,i

The Up and Down arrow keys recall previous commands for editing.
The command line is fuUy editable using the normal editing keys. <ESC>

clears the command line, which is permanently in Insert mode.
An INTRSPY script that invokes the debugger might look like this:

; OPEN.SCR

intercept 21h
function 3dh

on_entry

debug "INT 21h Function 3Dh - Open File"

run "%1 %2 %3 %4 %5 %6 %7 %8 %9"

Note that the debugger is available only within a script that uses a RUN
statement. As noted earlier, a RUN statement can contain either a string literal
(for example, RUN "CL HELLO.C") or parameters replaceable from the DOS
command hne. In this example, you might then type the following at the DOS
prompt:

C:\>cmdspy compile open cL hello.c

At the first call to INT 21h Function 3Dh, you would be in the debugger:

Reg AX BX CX DX SI DI DS ES BP SS SP CS IP FLAGS
Val 3D00 371E 0000 0437 33F0 OBEO 4173 4173 3094 4173 308E 3C34 3BD9 odItsZaPc

Chapter 8: INTRSPY: A Program for Exploring DOS 467

== ON ENTRY===

INT 21h Function 3Dh - Open File
Command »d ds:bx->byte,asciiz,64

Data:C:\MSC\BIN\c1-err

== ON ENTRY===

Command »x

Note that at the debugger » prompt you can type in expressions similar to
those enclosed in INTRSPY scripts.

As noted earlier, the DEBUG statement invokes only the debugger when lo
cated in a script with a RUN statement; without RUN, DEBUG is a NOP.

Predefined Constants The following constants are provided within the script lan
guage and the debugger:

■ OS_MAJOR and OS_MINOR

These constants contain the major and minor DOS version number, obtained
from INT 21h Function 30h (Get Version).

■ LOL_SEG and LOL_OFS

These constants contain the segment and offset portions of the address of the
DOS list of lists, obtained from INT 21h Function 52h (Get List of Lists).

■ SDA_SEG and SDA_OFS

These contents contain the segment and offset portions of the address of the
primary Swappable DOS Area, obtained from INT 21h Function 5IX)6h (Get
Swappable DOS Area). (This is useful in exploring the network redirector.)

Error Messages

The following list describes some possible error messages from INTRSPY and
CMDSPY, as weU as suggested corrective actions:

INTRSPY already loaded...
Meaning: You are loading INTRSPY while a previous invocation of it is resi
dent.

Action: If you need to change the current handler or result space allocations,
use CMDSPY UNLOAD to remove the currently loaded copy from memory.

468 UNDOCUMENTED DOS

INTRSPY vN.NN not loaded....

Meaning: You are running CMDSPY and it is unable to locate INTRSPY in
memory.

Action: Load INTRSPY and retry.

Insufficient memory...
Meaning: You are loading INTRSPY and there is not enough memory for it to
allocate any heap memory, or you are rimning CMDSPY and it is unable to
allocate enough memory for its needs.
Action: Ensure that you have at least 64KB DOS memory available.

Error opening file
Meaning: CMDSPY cannot locate the specified script file.
Action: Check that the file exists and that its name is correctly spelled.

Bad switch -> xxxxxxx

Meaning: You are loading INTRSPY with an unrecognized command-line
switch.

Action: Rerun INTRSPY with a corrected command line.

Bad result space switch -> xxxxx
Meaning: You are loading INTRSPY but have specified -rxxxxx where xxxxx
is non-numeric or not in the required range (1-65520).
Action: Rerun INTRSPY with a corrected command line.

Bad handler space switch -> xxxxx
Meaning: You are loading INTRSPY but have specified -ixxxxx where xxxxx
is non-numeric or not in range (1-65520).
Action: Rerun INTRSPY with a corrected command line.

INTRSPY returned: Out of handler space
Meaning: You are attempting to process the line CMDSPY COMPILE. IN
TRSPY has insufficient handler space left to accommodate code compiled for
the current intercept.
Action: Unload INTRSPY and reload with a higher -innnn amormt.

Chapter 8: INTRSPY: A Program for Exploring DOS 469

INTRSPY returned: Script active
Meaning: You are attempting to process the line CMDSPY COMPILE, STOP,
or UNLOAD. CMDSPY has requested INTRSPY to disable the current script
and reset intercepted interrupts to the original vectors, but INTRSPY is im-
able to do so because it is in the middle of interrupt processing. However, it
will attempt to complete the reset as soon as the function (usually INT 21h
Function 4bh EXEC) has finished.

Action: Retry the command. Reboot if unsuccessful.

INTRSPY returned: Vectors superseded
Meaning: You are attempting to process the line CMDSPY UNLOAD.
CMDSPY has requested INTRSPY to disable the current script, reset inter
cepted interrupts to the original vectors, and unload itself from memory. IN
TRSPY is xmable to do so because of a subsequently installed TSR.
Action: Unload any subsequently loaded TSRs and retry. Reboot if unsuccessful.

Download contains unrecognized structure.
Meaning: You are attempting to process the line to CMDSPY REPORT.
CMDSPY has encoimtered a reference to a structure in the results

downloaded from INTRSPY that is not present in the script that it has recom
piled. This indicates that the script file has been edited between CMDSPY
COMPILE and CMDSPY REPORT.

Action: Rerun the entire process from CMDSPY COMPILE to CMDSPY RE
PORT.

Download contains unrecognized string literal.
Meaning: You are attempting to process the line CMDSPY REPORT.
CMDSPY has encountered a reference to a string literal in the results
downloaded from INTRSPY that is not present in the script that it has recom
piled. This indicates that the script file has been edited between CMDSPY
COMPILE and CMDSPY REPORT.

Action: Rerun the entire process from CMDSPY COMPILE to CMDSPY RE
PORT.

470 UNDOCUMENTED DOS

Using INTRSPY

Lef s now take a look at some mini-applications built using the INTRSPY lan
guage.

UNDOC

First, let's focus on how INTRSPY can show quickly which undocumented DOS
calls a program makes. Some of this material was presented in chapter 1, but
then we were interested only in the final results, not in INTRSPY itself. Here,
we'll focus on just two pieces of system software—the Microsoft CD-ROM Exten
sions (MSCDEX) and the NetWare shell (NETS). Here is a step-by-step accoimt:

C:\>intrspy (1)
INTRSPY v1.00 is now resident.

C:\>cmdspy compile undoc (2)
Compiling UNDOC.SCR
UNDOC.SCR compiled OK.
Generated 404 bytes of code for interrupt 21h.
Generated 20 bytes of code for interrupt 2Eh.

C:\>mscdex /d:mscd0001 /I:I (3)

C:\>cmdspy report (4)
Compiling UNDOC.SCR
UNDOC.SCR compiled OK.
INTRSPY returned a total of 167 bytes of results.

(5)

C:\BIN\MSCDEX.EXE

2152: Get List of Lists: 028E:0026
TSR (6)

C:\INTRSPY\CMDSPY.EXE

C:\>CMDSPY flush (7)

C:\>net3 (8)

C:\>cmdspy report (9)
Compiling UNDOC.SCR
UNDOC.SCR compiled OK.
INTRSPY returned a total of 204 bytes of results.

C:\N0VELL\NET3.EXE

2134: InDOS flag: 029F:02CF

Chapter 8: INTRSPY: A Program for Exploring DOS 471

2134: InDOS flag: 029F:02CF
2152: Get List of Lists: 029F:0026

2150: Set PSP: 10E6

2150: Set PSP: 1DDD

C : \INTRSPY\CMDSPY.EXE

At (1), INTRSPY is loaded using the default allocations for interrupt-han-
dling code and results space. At (2), UNDOC.SCR is compiled. This script is re
produced here:

■ ■ ******
r F

;; UNDOC-SCR (abridged version)
;; This does not show undocumented redirector (Int 2Fh) caLLs
intercept 21h

function 1fh on_exit output "211F: Get Default DPB: " DS BX
function 32h on_entry output "2132: Get DPB: " DL
function 34h on_exit output "2134: InDOS flag: " ES ":" BX
function 50h on_entry output "2150: Set PSP: " BX
function 51h on_exit output "2151: Get PSP: " BX
function 52h on_exit output "2152: Get List of Lists: " ES ":" BX
function 53h on_exit output "2153: Translate BPB"
function 5dh subfunction 06h

on_exit output "215D06: Get DOSSWAP: " DS ":" SI
function 60h

on_entry output "2160: Canon File: " (DS:SI->byte,asciiz,64)
on_exit sameline " ==> " (ES:DI->byte,asciiz,64)

function 25h

on_entry
if (al == 28h) output "SetVect INT 28h: KBD busy loop"

- - ******
F F

;; Use the next functions and ints 20h and 27h to show which
;; program made the undoc DOS call, and to show termination

function 4bh

subfunction OOh

on_entry

output (DS:DX->byte,asci iz,64)
subfunction Olh

on_entry

output "214B01: EXEC debug: " (DS:DX->byte,asciiz,64)
function 4ch on_entry output " "
function 31h on_entry output " TSR "

intercept 20h on_entry output " "
intercept 27h on_entry output " TSR "

intercept 2eh on_entry output "2E: Execute command"

472 UNDOCUMENTED DOS

At (3), MSCDEX is run. At (4), a screen report of the results so far is gener
ated. So that it is possible to distinguish which calls were generated by which
program in the event that we want to accumulate results for a while, or in the

event that one program spawns others, the script monitors the DOS EXEC and
termination functions and interrupts. The line of hyphens at (5) is the end of the
run of CMDSPY from (2) that loaded the script. The line following it shows that
MSCDEX has started. At (6), it has terminated but stayed resident. In the next
line, we see the invocation of CMDSPY corresponding to (4).

At (7), the result space is cleared. This isn't really necessary, but it ensures
that the next report is limited to what happened in NETS, without reiterating the
MSCDEX results. At (8), NETS is nm, and at (9), the results of its loading are re
ported.

In this experiment, we see that MSCDEX calls INT 21h Function 52h at load
time, and that NETS, in addition to Fimction 52h, also calls Functions S4h and

50h. The reasons these programs make these particular tmdocumented DOS calls
should be clear to you from chapters 4 and 5; the DOS List of Lists retrieved with
Fxmction 52h contains a pointer to the DOS Current Directory Structure (CDS);
MSCDEX alters the CDS. Functions S4h and 50h are both important for TSRs like
NETS.

LSTOFLST

In chapter 2, we went through a fairly laborious process using C to display the
DOS List of Lists. It is simpler to do this with INTRSPY:

; LSTOFLST.SCR

; INTRSPY script to examine DOS List Of Lists (INT 21h Function 52h)

structure List_20 fields ; DOS 2.x
share_retry_count (word)
retry_deLay (word)
curr_disk_buff (dword, ptr)
unread_con (word)
mcb (word)

dpb (dword, ptr)
file_tbl (dword^ ptr)
clock (dword^ ptr)
con (dword,^ ptr)
num_drives (byte, hex)
max_bytes (word)
first_disk_buff (dword, ptr)

Chapter 8: INTRSPY: A Program for Exploring DOS 473

nul (byte,dump,18)

structure List_30 fields ; DOS 3-0
share_retry_count (word)
retry_deLay (word)
curr_disk_buff (dword, ptr)
unread_con (word)
mcb (word)

dpb (dword, ptr)
fiLe_tbl (dword, ptr)
clock (dword, ptr)
con (dword, ptr)
num_blk_dev (byte,hex)
max_bytes (word)
first_disk_buff (dword, ptr)
curr_dir (dword, ptr)
lastdrive (byte,hex)
string_area (dword, ptr)
si ze_string__area (word)
fcb_tbl (dword, ptr)
fcb_y (word)
nul (byte,dump,18)

structure list_31 fields ; DOS 3-1+
share_retry_count (word)
retry_delay (word)
curr_disk_buff (dword, ptr)
unread_con (word)
mcb (word)

dpb (dword, ptr)
file__tbl (dword, ptr)
clock (dword, ptr)
con (dword, ptr)
max_bytes (word)
disk__buff (dword, ptr)
curr_dir (dword, ptr)
fcb (dword, ptr)
num_prot_fcb (word)
num_blk_dev (byte,hex)
lastdrive (byte,hex)
nuI (byte,dump,18)
num_join (word)

intercept 21h
function 52h

on_exi t
if (OS MAJOR == 2)

474 UNDOCUMENTED DOS

output (es:bxC-12II->list_20)
if (OS_HAJOR == 3) and (OS_MINOR == 0)

output (es:bxC-12]->list_30)
if <OS_MAJOR == 3) and <OS_MINOR != 0)

output (es:bxC-12]->List_31)
output (es:bxC-12D->list_31.con->byte,dump,18)
output (es:bxC-12]->List_31.cLock->byte,dump,18)

; INTRSPY doesn't have >= tests yet
if (OS_MAJOR == 4) or (OS_MAJOR == 5)

output (es:bxi;-123->list_31)
on_exi t

output ""

Note that you can display an entire structure with one OUTPUT statement:
CMDSPY takes care of formatting output according to the format options speci
fied in the structure itself. When you are displaying an entire structure with a sin
gle OUTPUT statement, CMDSPY also takes care of displa5dng the field names.
For example, here is sample output from LSTOIT.ST.SCR:

LIST_31.SHARE_RETRY_
LIST_31.RETRY_DELAY
LIST_31 .CURR_DISK_BU
LIST_31.UNREAD_CON
LIST_31.MCB
LIST_31.DPB
LIST_31.FILE_TBL
LIST_31.CLOCK
LIST_31.CON
LIST_31.MAX_BYTES
LIST_31.DISK_BUFF
LIST_31.CURR_DIR
LIST_31.FCB
LIST_31 .NUM_PROT_FCB
LIST_31 .NUM_BLK_DEV
LIST_31.LASTDRIVE
LIST_31.NUL

I 3F 00 F4 09 04 80 99 15
I 20 20

LIST 31.NUM JOIN :

0003h

0001 h

09CC:0000

OOOOh

09F3h

028E:75F0

028E:0098

0070:01A4

0070:016E

0200h

BC90:0000

0ACE:0000

0AC0:0000

OOOOh

03h

05h

9F 15 4E 55 4C 20 20 20

9000h

I 80 01 70 00 13 80 OC 06 17 06 43 4F 4E 20 20 20
I 20 20

I B6 01 70 00 08 80 OC 06 60 06 43 4C 4F 43 4B 24
I 20 20

.NUL

■ CON

. P . < ' .CLOCKS

Chapter 8: INTRSPY: A Program for Exploring DOS 475

Of course, some other program that actually calls INT 21h Function 52h is
needed as a trigger for LSTOFLST.SCR.

Log Your Machine's Activity

Out of UNDOC.SCR comes a nearly ready made mini-appHcation for INTRSPY.
Using one section of UNDOC.SCR as a starting point, you can write a script
(EXEC.SCR) that will maintain a log of all the programs run on a computer, to
gether with their command-line arguments and their completion codes. This
script is shown below:

; EXEC.SCR
structure param_bLock fields

env_seg (word,hex)
args (dword,ptr)

intercept 21h
function Oah

on_exit output (ds:dxC13->byte,string,60)
function 4bh

on^entry

output
(0:046Ch->dword,dec) " " ; time
(ds:dx->byte,asci i z,64) ; executable
(es:bx->param_block-args->byte,string,32) ; cmdline args

on_exi t
if (cflag == 1) sameline " CFAIL " ax

function OOh 4ch

on_entry sameline " CRET " al "-I"
function 31h

on_entry sameline " CTSR " al "H"

intercept 20h
on__entry sameline " CRET20 " al "D"

intercept 27h
on_entry sameline " CTSR27 " al "3"

This script reports on all calls to the DOS EXEC function and on all calls to
the surprisingly large number of DOS functions and interrupts that handle pro
gram termination. INT 21h Function OAh (Buffered Keyboard Input) is inter
cepted so that you can grab the actual command line t3^ed by a user (though
note that Function OAh can certainly be used by programs other than COM-

476 UNDOCUMENTED DOS

MAND.COM). EXEC.SCR also displays the ROM BIOS timer tick, giving a crude
display of how much time was spent in each program. Here is sample output
from EXEC.SCR after compiling HELLO.C again:

cL hello.c

534139 C:\MSC\BIN\CL.EXE hello.c

534150 C:\MSC\BIN\c1.exe CRET 003

534194 C:\MSC\BIN\c2.exe CRET 003

534263 C:\MSC\BIN\c3.exe CRET 003

534312 C:\BIN\link.exe a"\"c:\tmp\004951 lk\" CRET 003 CRET 003
cmdspy report
536537 C:\UNDOC\MAXEY\CMDSPY.EXE report CRET 003

To find the number of seconds spent in a program, subtract its tick count (for
example, 534,263) from the tick count for the start of the next program; then di
vide the result by 18.2 (the number of timer ticks per second).

EXEC.SCR points up an interesting "wish list" item for INTRSPY. Notice that
all the termination functions use SAMELINE so that the program termination
status will be printed on the same line as the invocation. If, however, you run a
program that spawns a subprogram, as CL.EXE does, the return code for the top
level program will not appear on the appropriate line. A future version of IN
TRSPY should auto-indent, in which case the EXEC.SCR code above would have

the SAMELINEs replaced by OUTPUTS. Even better, INTRSPY should allow an
output stack, so that results could be logically linked. But as it is, EXEC.SCR
accomplishes a useful fimction for which others have written complete utilities.
The above script took a few minutes to code, test, and refine.

Monitoring Disk i/0

The next application took longer to develop, but after you have read it, imagine
how long it would take to write from scratch.

The idea behind DISK.SCR is to log DOS file system calls made by specific
programs, as well as the related BIOS disk activity generated by such calls. Note
that this script uses the RUN command to nm a specific program that you want
to monitor. This helps you watch, as an example, FORMAT.COM, without inad
vertently also watching COMMAND.COM:

DISK.SCR

This script relates DOS disk calls to the hard disk
BIOS calls involved.

Chapter 8: INTRSPY: A Program for Exploring DOS 477

; DOS 4+/Compaq DOS 3-31+ >32M partition
structure big fields

sector (dword,hex)
num (word,hex)
addr (dword,ptr)

intercept 21h
function 32h

on_entry output "2132: Get DPB drive " dl
function 40h

; hook Write just to see messages (e.g., from FORMAT)
on_entry if (bx ==1) ; stdout

output (ds:dx->byte,asciiz,cx)
function 44h

subfunction 09h

on_entry output "214409: lOCTL drive " bl " Remote? "
subfunction Gdh

on_entry output "21440D: lOCTL drive " bl
if (cL == 40h) sameline " C4G: Set Device Parameters]"

if (cL == 42h) sameline " C42: Format and Verify Track]"
if (cl == 6Gh) sameline " C6G: Get Device Parameters]"

subfunction Gfh

on_entry output "2144GF: lOCTL Set Logical Drive " bl
on_exit if (cflag == G) sameline " ==> " al

function 6Gh

on_entry output "216G: Canon " (ds:si->byte,asciiz,32) " ==> "
on_exi t same Ii ne (es:di->byte,asci i z,32)

intercept 25h
on_entry

output "25: Abs Disk Read drv " al ", at sectr "
if (cx == GFFFFh)

sameline (ds:bx->big-sector) ", "
(ds:bx->big.num) " sctrs"

if (cx != GFFFFh)

sameline dx ", " cx " sctrs"

on_exit if (cflag==1) sameline " Cfail]"

intercept 26h
on_entry

output "26: Abs Disk Write drv " al ", at sectr "
if (cx == GFFFFh)

sameline (ds:bx->big-sector) ", "
(ds:bx->big-num) " sctrs"

if (cx != GFFFFh)

478 UNDOCUMENTED DOS

sameLine dx " cx " sctrs"

on_exit if (cfLag==1) sameLine " CfaiLII"

intercept 13h
function 0 on_entry output "1300: Recalibrate drive " dl
function 1 on__exit output "1301: Disk system status " al
function 2

on_entry

output "1302: Read " al " sctrs: drv " dl ", head " dh
", sctr " cl ", trk " ch

on_exit if (cflag==1)
sameline " - FAILED (" ah ")"

function 3

on_entry

output "1303: Write " al " sctrs: drv " dl ", head " dh
", sctr " cl ", trk " ch

on_exit if (cflag==1)
sameline " - FAILED (" ah ")"

function 4

on_entry

output "1304: Verify " al " sctrs: drv " dl ", head " dh
", sctr " cl ", trk " ch

on_exit if (cflag==1)
sameline " - FAILED (" ah ")"

function 5

on_entry

output "1305: Format " al " sctrs: drv " dl ", head " dh
", sctr " cl ", trk " ch

on_exit if (cflag==1)
sameline " - FAILED (" ah ")"

function 8

on_entry

output "1308: Get drive params for " dl
on_exi t

if (cflag==1) sameline " - FAILED (" ah ")"
if (cflag==0)

output "Type " bl ", " dl " drvs, max head " dh
", max sctr " cl ", max cyls " ch

function Och

on_entry output "130C: Seek to cyl " ch ", drv " dl ", head " dh
on__exit if (cflag==1) sameline " - FAILED (" ah ")"

function Odh

on_entry output "130D: Alternate reset drive " dl
on_exit if (cflag==1) sameline " - FAILED (" ah ")"

function lOh

on_entry output "1310: Test drive " dl
on exit sameline " - status " ah

Chapter 8: INTRSPY: A Program for Exploring DOS 479

Get type drv " dl

sameLi ne

sameline

sameLi ne

sameLi ne

sctrs " cx dx

'1316: Get media change drv " dL

function 15h

on__entry output "1315
on_exi t

sameLine "

if (ah==0)
if (ah==1)

if (ah==2)

if (ah==3)

on_exi t
sameLine "

function 16h

on_entry output

on__exi t
if (ah==0) sameLine "Unchanged"
if (ah==6) sameLine "Changed"

function 17h

on_entry

output "1317: Set type drv " dL
if (aL==0) sameLine "no disk

sameLine

sameLi ne

sameLine

sameLi ne

sameLi ne

sameLi ne

"No disk pr

f

f

f

f

f

if

"reg disk i(aL==1)

(aL==2)

(aL==3)

(aL==4)

(aL==5)

(aL==6)

esent"
"FLoppy - Not changed"
"FLoppy - changed"
"Fixed disk"

n reg drv"
"reg disk in high dens- drv"
"high dens- disk in high dens- drv"
"720k disk in 720k drv"

"720k disk in 1-44M drv"

"1-44M disk in 1-44M drv"

function 18h

on_entry

output "1318: Set media type drv
", trks " ch ": "

on_exit
if (ah==0) sameLine "OK"

if (ah==1) sameLine "Not avaiLabLe"
if (ah==Och) sameLine "Not supported"

if (ah==80h) sameLine "No disk in drive"

dL ": sctrs/trk " cL

run "%1 %2 %3 %4"

report "di sk-out"
report ""
stop

Note that the script reports once to a file and once to the screen. It is some
times useful to see the output immediately, and then to be able to review it in an
editor. Below is the invocation and the output it generated while formatting a
double-density 5.25" diskette on a Compaq 386 system. You can see that there is
also a small amoimt of output not generated by FORMAT itself: the first four

480 UNDOCUMENTED DOS

lines of the CMDSPY REPORT also show DOS loading FORMAT.COM from the
hard disk (drive 80h):

C:\>intrspy -r10480 -14096
INTRSPY v1-0G is now resident.

C:\>cmdspy compiLe disk format a: /4
Compiling DISK-SCR
Generated 231 bytes of code for interrupt 21h-
Generated 53 bytes of code for interrupt 25h.
Generated 53 bytes of code for interrupt 26h.
Generated 940 bytes of code for interrupt 13h.
Running C:\D0S33\F0RMAT.C0M

Insert new diskette for drive A:

and strike ENTER when ready

Format complete

362496 bytes total disk space
362496 bytes available on disk

C:\DOS\FORMAT-COM terminated (0)

INTRSPY returned a total of 10032 bytes of results.

1302: Read 01 sctrs: drv 80, head 01, sctr OA, trk 12
1302: Read 01 sctrs: drv 80, head 01, sctr 03, trk 00
1302: Read 1A sctrs: drv 80, head 01, sctr OA, trk 12
1302: Read 01 sctrs: drv 80, head 03, sctr 02, trk 12
214409: lOCTL drive 01 Remote?

2160: Canon A:CON ==> A:/CON

21440D: lOCTL drive 01 C60: Get Device Parameters]
21440D: lOCTL drive 01 C40: Set Device Parameters]

21440F: lOCTL Set Logical Drive 01 ==> 01
Insert new diskette

for drive A:

and strike ENTER when

ready
21440D: lOCTL drive 01 C42: Format and Verify Track]
1318: Set media type drv 00: sctrs/trk 09, trks 27: Not available
Head: 0 Cylinder:

0

21440D: lOCTL drive 01 E42: Format and Verify Track]
1318: Set media type drv 00: sctrs/trk 09, trks 27: Not available
1317: Set type drv 00: reg disk in high dens, drv
1305: Format 09 sctrs: drv 00, head 00, sctr 00, trk 00
1304: Verify 09 sctrs: drv 00, head 00, sctr 01, trk 00

Chapter 8: INTRSPY: A Program for Exploring DOS 481

Head: 1 Cylinder:
0

21440D: lOCTL drive 01 C42: Format and Verify Track]
1318: Set media type drv 00: sctrs/trk 09, trks 27: Not available
1305: Format 09 sctrs: drv 00, head 01, sctr 00, trk 00
1304: Verify 09 sctrs: drv 00, head 01, sctr 01, trk 00
Head: 0 Cylinder:

1

21440D: lOCTL drive 01 C42: Format and Verify Track]
1318: Set media type drv 00: sctrs/trk 09, trks 27: Not available
1305: Format 09 sctrs: drv 00, head 00, sctr 00, trk 01
1304: Verify 09 sctrs: drv 00, head 00, sctr 01, trk 01
Head: 1 Cylinder:

1

21440D: lOCTL drive 01 C42: Format and Verify Track]
1318: Set media type drv 00: sctrs/trk 09, trks 27: Not available
1305: Format 09 sctrs: drv 00, head 01, sctr 00, trk 01
1304: Verify 09 sctrs: drv 00, head 01, sctr 01, trk 01

C same sequence of 21440D/1318/1305/1304 calls for
trk 02/head 00 through trk 26/head 01]

Head: 1 Cylinder:
39

21440D: lOCTL drive 01 [42: Format and Verify Track]
1318: Set media type drv 00: sctrs/trk 09, trks 27: Not available
1305: Format 09 sctrs: drv 00, head 01, sctr 00, trk 27
1304: Verify 09 sctrs: drv 00, head 01, sctr 01, trk 27
Format complete

26: Abs Disk Write drv 00, at sectr OOOOOOOOh, OOOIh sctrs
1303: Write 01 sctrs: drv 00, head 00, sctr 01, trk 00
26: Abs Disk Write drv 00, at sectr OOOOOOOIh, 0002h sctrs
1303: Write 02 sctrs: drv 00, head 00, sctr 02, trk 00
26: Abs Disk Write drv 00, at sectr 00000003h, 0002h sctrs
1303: Write 02 sctrs: drv 00, head 00, sctr 04, trk 00
26: Abs Disk Write drv 00, at sectr 00000005h, OOOIh sctrs
1303: Write 01 sctrs: drv 00, head 00, sctr 06, trk 00
26: Abs Disk Write drv 00, at sectr 00000006h, OOOIh sctrs
1303: Write 01 sctrs: drv 00, head 00, sctr 07, trk 00
26: Abs Disk Write drv 00, at sectr 00000007h, OOOIh sctrs
1303: Write 01 sctrs: drv 00, head 00, sctr 08, trk 00
26: Abs Disk Write drv 00, at sectr 00000008h, OOOIh sctrs
1303: Write 01 sctrs: drv 00, head 00, sctr 09, trk 00
26: Abs Disk Write drv 00, at sectr 00000009h, OOOIh sctrs
1303: Write 01 sctrs: drv 00, head 01, sctr 01, trk 00

482 UNDOCUMENTED DOS

26: Abs Disk Write drv 00, at sectr OOOOOOOAh, OOOIh sctrs
1303: Write 01 sctrs: drv 00, head 01, sctr 02, trk 00
26: Abs Disk Write drv 00, at sectr OOOOOOOBh, OOOIh sctrs
1303: Write 01 sctrs: drv 00, head 01, sctr 03, trk 00
21440D: lOCTL drive 01 C40: Set Device Parameters]

2132: Get DPB drive 01

1302: Read 01 sctrs: drv 00, head 00, sctr 01, trk 00
1302: Read 01 sctrs: drv 00, head 00, sctr 06, trk 00
1302: Read 01 sctrs: drv 00, head 00, sctr 02, trk 00
1302: Read 01 sctrs: drv 00, head 00, sctr 01, trk 00
1302: Read 01 sctrs: drv 00, head 00, sctr 06, trk 00

362496 bytes total
disk space

362496 bytes available
on disk

Format another <Y/N)
9

21440D: lOCTL drive 01 C40: Set Device Parameters]

Whereas DISK.SCR groups functions together by interrupt and function
number, the output resulting from running the script together with the DOS
FORMAT command is quite different. Here you see the nesting of BIOS calls
from DOS calls. In the above display, you can clearly see how FORMAT displays
the "Head: XX Cylinder: XX" odometer (which we're able to show here by moni
toring INT 21h Fimction 40h). It then calls DOS INT 21h Function 44h Subfimc-
tion ODh to format and verify a track, which, in turn, calls BIOS INT 13h
Functions 18h, 05h, and 04h to format and verify the sectors that make up the
track. (INT 13h Fimction 18h returns "Not available" here because that function is

not provided by the Compaq ROM BIOS.)
After the format itself is complete, as the above INTRSPY output shows, to

create the FAT and root directory on the newly formatted disk, FORMAT calls the
DOS Absolute Disk Write interrupt (INT 26h). This interrupt, in turn, calls the
BIOS Write Sector Function (INT 13h Function 03h). Note also how DISK.SCR

handles INT 25h and INT 26h calls on systems with partitions larger than 32
megabytes. This is important even when you are formatting a floppy disk, be
cause even then FORMAT wiU use the alternate form of INT 26h, where CX holds

the value FFFFh and DS:BX points to a structure that in DISK.SCR is called BIG.
You can also see from this display that FORMAT uses two undocumented

DOS calls: Resolve Path String to Canonical Path String (INT 21h Function 60h)

Chapter 8: INTRSPY: A Program for Exploring DOS 483

and Get DPB (INT 21h Function 32h). Again, having INTRSPY means that you
can do this kind of exploring without disassembling.

MEM

One last INTRSPY script worth examining is MEM.SCR, which, in 24 lines of
INTRSPY code, can monitor all DOS memory allocation by intercepting INT 21h
Fimctions 48h (Allocate), 49h (Release), and 4Ah (Resize). Again, Fimction 4Bh
(EXEC) is monitored as well, so that you know which program performed the
memory operation;

; MEM.SCR
intercept 21h

function 48h

on_entry

output "ALLOC " bx "h paras"
on_exi t

if (cflag==1)
sameLine " FAIL (" ax "), only " bx "h available"

if (cflag==0)
sameline " - seg " ax "h"

function 49h

on_entry output "FREE seg " es "h"
on_exit if <cflag==1) sameline " denied (" ax "h)"

function 4ah

on_entry

output "REALLOC seg " es "h to " bx "h paras"
on_exi t

if (cflag==1)
sameline " FAIL (" ax "h), only " bx "h available'

function 4bh

on_entry output (ds:dx->byte,asciiz,64)

MEM is used in tracking down memory allocation bugs, but it is also useful
in a hands-on examination of the DOS memory allocation issues discussed by in
chapter 3 of this book. For example, you can see immediately that DOS programs
typically are allocated aU available memory:

C:\UNDOC\MAXEY\HELLO,EXE

ALLOC FFFFh paras FAIL (0008), only AlE5h available
ALLOC A1E5h paras - seg 161Bh
FREE seg 161Bh

m UNDOCUMENTED DOS

Space does not allow me to show all the uses that even my limited imagina
tion has found for INTRSPY. Apart from the mini-appHcations shown above,
there are many scripts included on the accompanying disk that you might find
instructive and that should in any case help you in the implementation of your
own ideas.

Writing a Generic interrupt Handier

Let's now step back and discuss some of the design issues behind INTRSPY.
Some of this sounds Hke a functional specification for INTRSPY, because, in fact,
it comes from the functional specification we drew up for INTRSPY.

Traditionally, DOS programmers would write a host of small, tailor-made
programs to perform the kind of exploration we have been doing. In the past, I
have written separate programs to monitor NetBIOS (INT 5Ch) caUs, DOS (INT
21 h) calls, and EMS (INT 67h) calls. The cycle is to write a simple TSR, debug it,
and eventually have something that could printf or writeln register values into or
out of intercepted functions. In principle, that initial version cost a few hours of
thought, programming, and debugging effort. Subsequent versions that refined
the list of functions being monitored or added a new or increased capability came
easier and more quickly, but they still required recompilation and debugging.

All monitoring programs are essentially the same, however, whether it is
DOS, NetBIOS, EMS, or anything else that is being monitored. This suggests that
it should be possible to write a generic monitoring program. By extension, this
means writing a generic interrupt handler. The actual interrupts, functions,
and/or subfunctions you wished to monitor would be parameters to the generic
interrupt handler.

Rapid modification of the parameters, without the necessity of debugging, is
a high priority to ensure that the building of the tools doesn't detract, or distract,
from your investigations. The sheer niunber of parameters that need to be within
reach, however, and the need for a broad range of capabilities, suggest that a
command-line switch based TSR is unhkely to be adequate. A script interpreting,
precompiled interrupt handHng tool would be better.

Because DOS uses a number of different interrupt numbers and provides its
services through functions and subfunctions within these interrupts (generally
specified via AH and AL), and because you would want to be able to monitor
these interrupts and their fimction calls selectively, your tool must be capable of
monitoring any subfunction of any function of any interrupt. It should, therefore.

Chapter 8: INTRSPY: A Program for Exploring DOS 485

allow you to build some useful logging and exploration applications, not just in
the field of undocumented DOS calls but in a whole range of DOS-related and
non-DOS-related interrupt-based services. Logging EXDS memory usage would
be a snap, for example. Relating DOS disk access to the imderlying BIOS inter
rupts, watching EMS calls, recording a NetBIOS session—all these should be
within reach simply by using different, easily modifiable parameters: snap-on
debug tools for PC software developers!

The preliminary specification is beginning to form:
The program should be script-driven. This allows for transportable, repeat-

able, and canned experiments and debugging tools.
The program should intrude as little as possible—^that is, it should make no

DOS calls, should hook few interrupts, and should consume little memory. Any
interrupts that are generated, any memory that is consumed, any interrupts that
are intercepted other those that are supposed to be intercepted—all these factors
constitute noise and can affect, potentially in many ways, the systems being stud
ied. If CMDSPY made undocumented DOS calls, for example, these would show
up in the report from lJNDOC.SCR! Thus, it is perhaps ironic that m a book de
voted to the advertisement of undocumented DOS calls as crucial tools in the de

velopment of TSRs and system level software, the source for CMDSPY contains
no imdocumented DOS calls (INTRSPY.EXE does, however). Once it is resident,

INTRSPY generates no interrupts and uses no DOS services whatsoever.
The program should provide dumps of register contents, flags, and DOS and

other structures in memory. The STRUCTURE capability was specified initially
because of the DOS List of Lists structure and the associated DOS Function 52h

(see LSTOFLST.SCR above). As was hinted at above, however, once an initial ca

pability of this type has been provided, building in a little flexibility can make it
useful in many originally unimagined ways.

As was already said, the central requirement is to be able to focus, from ses
sion to session, on different subfunctions of different fimctions of different inter

rupts, and reconfiguration should be easy and painless so that it does not impede
learning, experimentation, or the debugging progress.

Access should be available both before and after an interrupt is serviced. The
program needs to be able to see and act on the parameters that the caller sup
plies, and the structures, registers, and flags that the interrupt function returns.

A non-resident transient portion should compile the scripts, hand them off to
the resident portion, and decode the output. When we were first discussing the

486 UNDOCUMENTED DOS

specification for INTRSPY, we had been using some of the other available inter
rupt monitoring software packages, and it was not clear that any of them offered
the flexibility we needed. The options here were either a shell implementation or
a TSR/transient controller combination.

In a shell implementation, programs under scrutiny would be nm from
within the system. Much hke those of a debugger, a shell implementation's facili
ties would be available until the user quit the user interface. The problems with
this approach include potentially much reduced memory availability for the pro
gram being studied and less flexibility to nm commands and batch files as well
as programs. Benefits include control over the environment and the ability to
limit monitoring to a specific run of a particular program. Thus, INTRSPY in
cludes this as an option with the RUN statement.

We decided to go with the TSR/transient controller combination. A relatively
small TSR would perform the monitoring function, and a separate, less memory-
constrained program would perform script compilation, result formatting and
printing, and would handle all communications with the TSR. We saw this ap
proach as preferable, because the transient portion itself can be made to act as a
shell. This approach does have its disadvantages, however. Complexity is intro
duced through the decoupling of the compilation from the execution of the
script. This is awkward only because, unlike in normal compilation and execu
tion cycles, script source is needed to be able to decode the results of the execution.

Now, let us impose two constraints on the system:
The resident portion will store results, rather than write them to disk or pop

up screens. This wiU remove the need to plan for file I/O within the generic in
terrupt service routine (ISR) code. In addition, it keeps us closer to our second
specification objective. File I/O by necessity generates interrupts, changes the
state of the operating system by a little or a lot, and leads to coding complexity
when implemented properly in TSRs (as was shown in chapter 5).

The script language need not provide complex conditional test capabilities.
Equality/inequality is an adequate test, and left-to-right non-nested test and/or
sub-tests will also provide enough conditional power. Initially, registers and flags
are sufficient as targets. Adding other targets would require changes to the script
language compiler in CMDSPY, but would involve little or no change to the con
ditional test structures nor to the code in INTRSPY.

Chapter 8: INTRSPY: A Program for Exploring DOS 487

The Problem with Intel's INT

Now that we have explained how to use INTRSPY and discussed some of the
thinking behind it, we need to discuss briefly some problems with the Intel INT
instruction. These problems stand in the way of anyone seeking to write a ge
neric interrupt handler. The INT instruction is the source of a great deal of the
flexibility in the PC architecture, because the ability to get and set interrupt vec
tors means that system services (including DOS itself) are infinitely extensible, re
placeable, and monitorable. Yet, given its importance, the INT instruction is also
remarkably inflexible m two key ways:

■ An interrupt handler does not know which interrupt number invoked it.
■ The INT instruction itself expects an immediate operand: you caimot write

MOV AX, 21 h, and then INT AX; you must write INT 21h.

The first problem raises the question. How will the program trap a variable
number of user-specifiable interrupts? There are at least three possibilities here.

The first possibility is to use a generic interrupt service routine (ISR) for all
interrupts the user specifies. When invoked, the ISR can use the return address
on the stack to find out what INT instruction issued the interrupt. Here is an ex
ample of a Turbo Pascal interrupt procedure that would attempt to find out what
interrupt it was hanging off:

procedure Generi cISR(f Lags,ip,cs,ax,bx,cx,dx,si,di ̂ds,eSy.bp:Mord);
var

MylnterruptNum : byte;

begi n
Mylnter ruptNum :=byte(pt r (cs,pred(1 p))'^);

end;

Simple, isn't it? This would indeed be an elegant, economical solution. Unfor-
ttmately, it is an unreliable strategy because many high-level language compilers
compile interrupts into PUSHF and far CALL instruction sequences, rather than
do an actual INT. Other compilers push the address of the handler on the stack
and do RETF to it. In order to cover the different possibilities to simulate an INT
instruction, a generic ISR would need a small disassembler. The reason for all
these different ways of performing what should simply be an DSTT is in fact the

488 UNDOCUMENTED DOS

second problem noted above: that the DSfT instruction itself can't be parameter
ized. Thus, different compiler vendors implement functions such as int86x() dif
ferently.

The other crippling failure of the above code is that it relies on the caller's
stack being large enough for our interrupt processing. Bear in mind that the pro
gram is going to have to be able to handle DOS internal function calls, for which
DOS will have switched to its own small stack (less than 400 bytes; for exact
sizes, see the appendix entry for INT 21h Function 5D06h). In the above example,
19 bytes of stack have been used by the Turbo Pascal compiler to save registers
and for the local variable before we call our first procedure or use any more local
variables. That is xmacceptable.

Another possibility involves coding 256 small stubs. Only those interrupts
the user specifies would be redirected to the appropriate stubs. When invoked, a
stub would record its interrupt number, save away the caller's stack, switch to
the program's internal stack, then call the generic ISR. This is a better solution
but will waste some kilobytes of memory in implementation code.

There are variations on the above, but none were appealing, and I decided to
go with what I think is at least a more interesting solution—that is to allocate a
custom ISR "object" on the heap for each interrupt to be monitored. I call it an ob
ject because it is a structure containing machine code to perform stack switching,
registers for saving state, and the specific "compiled" code associated with the in
terrupt processing. INTRSPY contains a skeleton ISR that is copied onto the heap
and "fixed up" with some run-time dependent addresses. The interrupt process
ing is then actually performed by procedures called from the ISR machine code
on the heap.

Will the program have to fix up the relative data structure offsets at run time,
because it is allocating on the heap and therefore cannot expect every ISR struc
ture to be paragraph-aligned? No: each ISR starts on a paragraph boimdary,
wasting up to 15 bytes to ensure it. This is an insignificant amount and allows the
entrypoint, as well as all the data fields in the ISR structure, to be at a constant
offset. This is, after all, what DOS does. INTRSPY can thus be viewed as a pro

gram loader for which the programs are just small pieces of ISR code and the
handler space substitutes for DOS memory.

How should the interrupt processing instructions be stored? My first reaction
was to think in terms of compilation into machine language. Instead, I imple
mented a linked tree of small structures that describes the entities in the process-

Chapter 8: INTRSPY: A Program for Exploring DOS 489

ing. The resident ISR processor walks the hnked list of function records stored for
the interrupt that has been intercepted, processing the subfunction branches of
each. Each subfunction branch is a linked list of subfunction records, each of

which points to a "before" and "after" branch. These branches are, in turn, linked
lists of records that specify the conditionals and resulting data storage to be per
formed before and after the interrupt is serviced.

Implementation

Let us take a look at the structure of INTRSPY and its transient controller

CMDSPY. The system functions as follows:

■ INTRSPY is loaded and reserves some memory for holding interrupt pro
cessing instruction records and results data.

■ CMDSPY compiles the specified script file into a tree structure of records
on the basis of STRUCTURE and INTERCEPT constructs. The compiler is
a fairly rudimentary finite state machine that implements the language as
it is specified in the earlier section called "INTRSPY System User Guide."
CMDSPY passes the compiled INTERCEPT code interrupt number by in
terrupt number to INTRSPY, which generates a new ISR record on the
heap for it and copies in the instruction records.

When all the interrupts have had their instructions loaded, CMDSPY passes
the name of the input file that has just been processed, the drive and directory
that were current when it was processed, and any command-hne arguments that
were passed to the script to INTRSPY for later retrieval.

Next, CMDSPY tells INTRSPY to start watching the interrupts and perform
ing the instructions that it has just been passed. Up imtil this point, the ISR re
cords have been on the heap, but their addresses have not been set into the
interrupt vector table. The START command makes the vectors of all the inter
cepted interrupts point to the appropriate heap ISR stub entry point.

Programs are rim, commands are issued, and INTRSPY builds up the results
in memory. When results are to be output, CMDSPY sends a command to the IN
TRSPY to stop monitoring. INTRSPY restores the vectors of the intercepted inter
rupts to what they were before the above start command—that is, it switches
itself out of the interrupt chains (if it can).

CMDSPY allocates a buffer and requests INTRSPY to download the results,
which take the form of a linked Ust of variable length output records.

490 UNDOCUMENTED DOS

Although the script language supports structure definitions and literal
strings for output, these compile into offsets, lengths, and reference numbers. In
order to decode the results that are returned from INTIiSPY, CMDSPY must re

compile the script. In order to do that relatively safely, it must make current the
drive and directory that were current at the time the script was first compiled,
load the file as it was specified on the command line the first time, and pass to it
the same command-line arguments as it was passed the first time. This is why
CMDSPY had the INTRSPY store those pieces of information after loading the in
terrupt instructions.

Having reloaded the original script file, CMDSPY walks the output chain for
matting and printing the data in the record structures.

INTRSPY's Interrupt Processing

The machine language generic ISR stub that will be cloned for each interrupt is
stored as an array of bytes, not as a procedure. INTRSPY treats this code not as
code at all but as data to be copied, modified at run time, and referenced as an el
ement in a record structme. Only other programs treat this object as code: these
other programs will (unwittingly) invoke it by issuing INT instructions, but IN
TRSPY itself doesn't. So the ISR stub is implemented to support that usage:

const

isr_code_jnax = 115; i offset of Last byte of code in isr >

type

isr_code_buffer = arrayCO..isr_code_maxII of byte;
-C our heap based interrupt >
•C service routine is 116 >

{ bytes Long >

{ SkeLeton generic interrupt handLer code - needs "fixing up" before
< being cLoned onto on the heap.
interrupt_code : isr_code_buffer =
($90, { nop OR int 3 ; for debugging
$2e,$8f,$06, save_ip_ofs, Orf pop cs:save_ip ; store cs:ip
$2e,$8f,$06, save_cs_ofs, 0,<. pop cs:save_cs
$2e,$8f,$06, save_fL_ofs, 0,f pop cs:save_fL ; and fLags

$2e,$89,$26, save_sp_ofs, 0,f mov cs:save_sp,sp ; save stack
$8c,$d4, -C mov sp,ss

$2e,$89,$26, save_ss_ofs, 0,{ mov cs:save_ss,sp

Chapter 8: INTRSPY: A Program for Exploring DOS 491

$bc,

$8e,$d4,
$bc,

$9c,
$9a,

$2e,$8b,$26,
$8e,$d4,

$2e,$8b,$26,

$9c,
$9a,

$9c,
$2e,$8f,$06,

$2e,$89,$26,
$8c,$d4,

$2e,$89,$26,

$bc,
$8e,$d4,
$bc,

$9c,
$9a,

$2e,$8b,$26,
$8e,$d4,

$2e,$8b,$26,
$2e,$ff,$36,
$2e,$ff,$36,

$fb,

$cb

);

0,0,

0,0,

0,0,0,0,

save_ss_ofs,

save_sp_ofs,

0,0,0,0,

save__f L_ofs,

save_sp_ofs,

save_ss_ofs,

0,0,

0,0,

0,0,0,0,

save_ss_ofs,

save_sp_of s,
save_cs_ofs,
save_ip_of s.

■C mov sp,SSEG
■C mov ss,sp
■C mov sp,SPTR

■C pushf
•C caLL prepost

0,-C mov sp,cs:save_ss
•C mov ss,sp

0,"C mov sp,cs:save__sp

•C pushf
■C caLL oLd_int

■C pushf
0,-C pop cs:save_fL

0,-C mov cs:save_sp,sp
■C mov sp,ss

0,-C mov cs:save_ss,sp

■C mov sp,SSEG
-C mov ss,sp
■C mov sp,SPTR

i pushf
■C call prepost

0,-C mov sp,cs:save_ss
-C mov ss,sp

0,-C mov sp,cs:save_sp
0,-C push cs:save_cs
0,-C push cs:save__ip

-C sti
■C ret

; set our stack

; caLL our pre-
; intr proc-

; put back
; caLLer's stack

; caLLer's fLags
; gen interrupt

; save ret fLags

; save stack

; set our stack

; caLL our post
; intr proc.

; put back
; caLLer's stack

; restore
; return addr-
; enabLe intrs
; ret NOT iret

The interrupt processing instruction records take the form of a linked tree of
variable length records. These records are linked not through normal Pascal 4-
byte (far) pointers, but by 2-byte offset-to-next fields to save space. They are pro
cessed by pre_post, which is called directly from the ISR stub. The pre_post
procedure is implemented as a Turbo Pascal interrupt type procedure for two
reasons. First, the program needs access to all the registers on entry, and an inter-
rupt type procedure provides access to most of them; and second, the program

492 UNDOCUMENTED DOS

needs DS set up, and an interrupt procediure takes care of that as well. The regis
ters that are needed and that the Pascal interrupt procedure cannot make avail
able are the CS, IP, SS, SP, and FLAGS as they were on entry to the ISR. These are
saved by the ISR stub in the fields described above. The processing performed by
pre_post and its subordinate procedures is relatively simple, and a high-level
pseudocode description looks something like this:

If (this is pre-interrupt processing) then
if this is DOS Int 21h, grab the CtrL-C and CritErr vectors
if (this is a DOS EXEC i.e. Int 21h/AH=4Bh) and

(a CtrL-C or Critical Err has resulted in termination) then

clear down the function/subfunction (fxn/sfxn) stack

to the previous DOS EXEC or start-of-stack, whichever
comes first

push AX (function and subfunction) on the fxn/sfxn stack
otherwise, since it is post-interrupt processing,

set function and subfunction from AX popped off the fxn/sfxn stack

If (we want this function) or (we want all functions)

then

if (we want this subfunction) or (we want all subfunctions)

repeat

if we have a real (non-dummy) conditional to perform,
repeat

evaluate a test

go on to the next test
and apply the last 'AND' or 'OR'.--

until one fails, or all done, and success
if success, or we had a dummy conditional

then

repeat

process an output request

go onto the next output request
until all done

go on to the next conditional
until there are no more real or dummy conditionals

If (this is post-interrupt processing) or
(this is a DOS termination function i.e.

ints 20h, 27h; int 21h fxns 0, 31h 4ch) then
pop AX off the fxn/sfxn stack
if (we have been asked to 'switch off but were in mid-EXEC) then

attempt to switch off

Chapter 8: INTRSPY: A Program for Exploring DOS 493

Three related complications in the above logic must be explained. They are
there to cope with a special type of interrupt and function—^namely, the DOS ter
mination fvmctions. This is because these functions, when invoked, do not return.

I only realized this fairly obvious fact during a debugging session that had
dragged on into the night while INTRSPY was being developed. After some time
with a script running, INTRSPY would just lock up my machine. I traced the
problem fairly rapidly to a corrupted register save field in the ISR record in the
handler space. I had allowed a fimction/subfunction stack of 16 entries, and it
became clear that the stack was being overflowed and was spiUing out into the
rest of the record. As soon as any of the saved SP, SS, CS, or IP values were cor
rupted, INTRSPY returned to forever! I knew that DOS did not nest that deep,
and then it hit me...

Specifically, then, a DOS intercepter must tidy up the stack while still in pre
processing mode, because, unhke "normal" interception, the DOS intercepter will
not have an opportunity to do so during post-processing.

The situation is complicated still further by Ctrl-Break and Critical Errors.
When a DOS function that checks for these conditions gives control to the DOS
break processor, in all cases it aborts the currently executing function and backs
up its internal state to the way it was on entry to the DOS function dispatcher. It
then either restarts the original function or, in the case of an Abort, replaces the
original function request in AH with a termination request. In that case the IN
TRSPY intercepter does not receive control back from the function it is currently
intercepting, and the function stack is now misaligned. The solution is for IN
TRSPY to intercept INT 23h (Ctrl-C) and 24h (Critical Error) and "recalibrate" the
stack on entry to the next function intercepted if the application handler requests
termination. This involves decrementing the fxmction stack pointer until the pre
vious EXEC or start-of-stack, whichever comes first.

Another DOS-specific complication that had to be considered involves the
"switch INTRSPY off" request sent by CMDSPY, in response to which INTRSPY
attempts to restore the interrupt vectors for the interrupts that it is monitoring. If
one of those interrupts is 21h, CMDSPY itself is running as part of a DOS EXEC
(Function 4Bh), in which case the ISR handhng it is in mid-interrupt. Restoring
the vector and potentially replacing that ISR with another one would be disas
trous—the DOS EXEC ftmction would return to an address that had been super
seded. So the interrupt vector is not restored and the ISR is not marked
overwriteable unless the fxn/sfxn stack pointer in the ISR record is 0. Obviously,

494 UNDOCUMENTED DOS

in the case of an INT 21h ISR, the fxn/sfxn stack pointer can never be 0 when the
"stop monitoring" command is received. The answer is to set a flag in the ISR re
cord that says "when you have finished exit processing and the bcn/sfxn stack
pointer is 0, stop monitoring."

The key thing to remember here is that all this complication is encapsulated
within the generic interrupt handler in INTRSPY. You can write INTRSPY scripts
happily without agonizing over the usual complications of interrupt handling,
because INTRSPY's job is to handle these details. This is a key benefit to using
such an interrupt-handling language.

Appendix A

Undocumented DOS Functions

Acknowledgment

The material in this appendix has been excerpted from a comprehensive list of IBM PC
interrupt calls available for free (and updated several times per year) on bulletin board
systems world-wide as well as CompuServe. At the time of printing, the Interrupt List was
over 380 pages in length, and growing at a rate of about eight pages per month. Nearly one
hundred people have contributed to this massive listing maintained by Ralf Brown; major
contributors for the undocumented INT 21h calls include Robin Walker (DOS 3.0, 3.3, and

4.0), Duncan Murdoch (various undocumented fields and data structures), Wes Cowley
(many SHARE hooks), Richard Marks (undocumented FindFirst fields), and Ralf Brown
(DOS 2.x, 3.1, and some DOS 3.3 and 4.0). For the INT 2Fh calls, major contributors include
Robin Walker (much of the DOS 4.0 information) and Ralf Brown (much of the DOS 3.x

information).

!i^ ■ .r-t: • ■ V::

Sample Entry

The following sample entry illustrates the various conventions used in this appendix by
way of a mythical function call. A detailed explanation of various features follows the
sample entry.

495

496 UNDOCUMENTED DOS

INT 2Bh Function 01 h DOS 2,7x only

GET DWM INTERPRETER PARAMETERS

The DWIM (Do-What-I-Mean) interpreter is a loadable module called by COMMAND.COM
when it encounters an unknown command or syntax error. The DWIM interpreter attempts
to determine what the user meant, and returns that guess to COMMAND.COM for execu
tion.

Call with:

AH Olh

DS:S1 pointer to buffer for parameter table (see below)
CX size of buffer

Returns:

CP set on error

AX error code

Olh buffer too small (less than two bytes)
CP clear if successful

CX size of retiuned data

DX number of times DWIM interpreter invoked since parameters were last set

Notes:

■ The DWIM interpreter was apparently never released due to its large memory
requirements and slow operation.

■ If the given buffer size is at least two bytes but less than the size actually used by the
parameter table, the first CX bytes will be copied into the buffer but no error will be
returned.

Format of parameter table:
Offset Size Description

OOh WORD size in bytes of following data
02h WORD maximum number of error corrections per line to attempt
04h WORD order in which to correct errors

OOh left-to-right
Olh right-to-left
02h most serious first

Appendix A: Undocumented DOS Functions 497

DOS 2.70

06h BYTE unknown

07h DWORD pointer to DWIM statistics record (see INT 2B/AH=03h)

DOS 2.71

06h WORD unknown

08h DWORD pointer to DWIM statistics record (see INT 2B/AH=03h)

Note:

The statistics record may be placed in a user buffer by changing the pointer with INT
2B/AH=02h.

See Also: INT 21IAH=0Ah, INT 2Bh/AH=02h, INT 2Fh/AX=AE01h

The right-hand side of the header indicates the versions of DOS for which the function is
valid (in this case, versions 2.70 and 2.71 only). Two other variations are also used: DOS 2+
indicates that the entry is valid for all known versions of DOS from 2.00 to 4.0x inclusive,
and DOS 3.1-3.3 indicates that the entry is valid for DOS versions 3.1 through 3.3, inclusive.

Various interrupt functions are called internally by DOS, and should be implemented by a
user program rather than called. To further distinguish these functions, "Called with" is
used instead of "Call with." For example, INT 2F/AH=llh.

"Pointer to" means that the register or register pair contains the address of the indicated
item, rather than the item itself.

Register descriptions which are indented mean that the register only applies for the value
indicated by the preceding unindented register description. For this example, the value in
AX is meaningful only if the carry flag is set on return, while CX and DX are only
meaningful if the carry flag is clear.

Italicized text indicates that the information is not entirely certain, and that particular care
(even more than usual for undocumented information) should be exercised when

attempting to use it.

A Note: or Notes: section may apply either to the function in general or to the description of
a data structure. Notes which come immediately after a Return section apply to the function
in general, while those which follow a data structure description apply only to the data
structure they follow.

Many data structures change their layouts between versions of DOS. To save space, the
different versions are usually merged into a single description. The fields are assumed to be
common to aU versions unless a version indicator precedes them. In this example, the first

498 UNDOCUMENTED DOS

three fields are common to both 2.70 and 2.71. In DOS 2.70, the fourth field is a byte, while
in DOS 2.71 it is a word, shifting the remaining field.

One or more fields in a data structure may be pointers to additional data structures. Such
data structures are often described in other entries of the appendix; in this case, under
Interrupt 2Bh Function 03h.

The final section of an entry is a list of related functions. For this example, the reader may
wish to refer to Interrupt 2Bh Function 02h (which would be the "Set DWIM Interpreter
Parameters" call) and Interrupt 2Fh Function AEh subfunction Olh (the COMMAND.COM
installable command hook). In addition. Interrupt 21 h Function OAh is related, but not
included in this appendix because it is a documented call. All cross references to functions
not listed in this appendix are italicized.

This can not be repeated often enough: because these calls are not officially documented,
they may change from one version of DOS to the next, or quite simply be in error. Extra
caution and testing are a must when using calls and data structures described in this
appendix. Particular care is required where the information is known to be incomplete or
imcertain (as indicated by italics).

Glossary of Abbreviations

ASCIZ A zero-terminated ASCH string, such as 'A'/B'/C,00h.

BPB The BIOS Parameter Block stores the low-level layout of a drive. See also INT
21/AH=53h.

CDS The Current Directory Structure for a drive stores the current directory, type, and
other information about a logical drive. See aba INT 21/AH=52h.

DPB The DOS Drive Parameter Block stores the description of the media layout for a logi
cal drive, as well as some housekeeping information. See also INT 21 /AH=lFh and INT
21/AH=32h.

DPL The DOS Parameter List is used to pass arguments to SHARE and network func
tions. See also INT 21/AX=5D00h.

DTA The Disk Transfer Address indicates where functions which do not take an explicit
data address will read or store data. Although the name imphes that only disk accesses use
this address, other functions use it as well.

FAT The File Allocation Table of a disk, which records the clusters that are in use.

Appendix A: Undocumented DOS Functions 499

FCB A file control block, which is used by DOS 1 .x functions to record the state of an
open file. See also INT 21 /AH=13h.

IFS An Installable File System which allows non-DOS format media to be used by DOS.
In most ways, an IFS is very similar to a networked drive, although an IFS would typically
be local rather than remote.

JFT The Job File Table (also called Open File Table) stored in a program's PSP which trans
lates handles into SFT numbers. See also INT 21 /AH=26h.

NCB A Network Control Block used to pass requests to NETBIOS and receive status in
formation from the NETBIOS handler.

PSP The Program Segment Prefix is a 256-byte data area prepended to a program when it
is loaded. It contains the command line that the program was invoked with, and a variety
of housekeeping information for DOS. See also INT 21/AH=26h.

SDA The DOS Swappable Data Area, containing all of the variables used internally by
DOS to record the state of a function call in progress. See also INT 21 /AX=5D06h and INT
21/AX=5D0Bh.

SFT A System File Table is a DOS-internal data structure used to maintain the state of an
open file for the DOS 2+ handle functions, just as an FCB maintains the state for DOS 1.x
functions. See also INT 21 / AH=52h.

INT 15h Function 2000h DOS 3.x

PR1NT.COM - DISABLE CRITICAL REGION FLAG

Specify that PRINT should not set the user flag when it enters a DOS function call.

Call with:

AX 2000h

See Also: INT 15/AX=2001h

INT15h Function 2001 h JOS 3.x ^
PRINT.COM - SET CRITICAL REGION FLAG

Specify a location which PRINT should use as a flag to indicate when it enters a DOS func
tion caU.

500 UNDOCUMENTED DOS

Call with:

AX 2001h

ES:BX pointer to byte which is to be incremented while in a DOS call

See Also: INT 15/AX=2000h

INT 21 h Function 13h DOS 1 -i-

DELETE DISK FILE with FCB

Although documented, this function is included because the file control block contains un
documented fields, and because the function itself has an xmdocumented quirk.

Call with:

AH 13h

DS:DX pointer to a File Control Block (see below) with its filename field filled with a
template for the files to be deleted ('?' wildcards allowed).

Returns:

AL OOh file foimd

FFh file not found

Notes:

■ Under DOS 3+, the file is opened in compatibility mode for sharing purposes.
■ This function deletes everything in the current directory (including subdirectories) and

sets the first byte of each deleted file's name to OOh (entry never used) instead of E5h if
it is called on an extended FCB with the filename set to all question marks and bits 0-4

of the attribute set (bits 1 and 2 for DOS 1.x). This may have originally been an
optimization to minimize directory searching after a total deletion, but it can corrupt
the filesystem under DOS 2+ because subdirectories are removed without deleting the
files that they contain.

Format of File Control Block (FCB):
Offset Size Description

-7 BYTE extended FCB if FFh

-6 5 BYTEs reserved

-1 BYTE file attribute if extended FCB

OOh BYTE drive number (0=default, 1=A:, etc)

Appendix A: Undocumented DOS Functions 501

Olh 8 BYTEs blank-padded file name

09h 3 BYTEs blank-padded file extension
OCh WORD current block number

OEh WORD logical record size
lOh DWORD file size

14h WORD date of last write (see INT 21/AX=5700h)

16h WORD time of last write (see INT 21/AX=5700h)

18h 8 BYTEs reserved (see below)

20h BYTE record within current block

21h DWORD random access record number (if record size is 64 bytes, high bjrte
is omitted)

Format of reserved field for DOS 1 .x:

Offset

18h

19h

IBh

IDh

IFh

Size

BYTE

WORD

WORD

WORD

BYTE

Description

bit 7: set if logical device
bit 6: set if open
bits 5-0: disk number or logical device ID
absolute current cluster number

starting cluster number
relative current cluster number

apparently unused

Format of reserved field for DOS 2.x:

Offset

18h

19h

IBh

IDh

lEh

IFh

Size

BYTE

WORD

WORD

BYTE

BYTE

BYTE

Description

bit 7: set if logical device
bit 6: set if open
bits 5-0: unknown

starting cluster number
unknown

unknown

unknown

unknown

Format of reserved field for DOS 3.x:

Offset Size

18h BYTE

19h BYTE

Description

number of system file table entry for file
attributes

bits 7,6: GO = SHARE.EXE not loaded, disk file

01 = SHARE.EXE not loaded, character device

502 UNDOCUMENTED DOS

10 = SHARE.EXE loaded, remote file

11 = SHARE.EXE loaded, local file

bits 5-0: low six bits of device attribute word

SHARE.EXE loaded, local file

lAh WORD starting cluster of file
ICh WORD offset within SHARE of sharing record (see INT 21/AH=52fe)
lEh BYTE file attribute

IFh BYTE unknown

SHARE.EXE loaded, remote file

lAh WORD number of sector containing directory entry
ICh WORD relative cluster within file of last cluster accessed

lEh BYTE absolute cluster number of last cluster accessed

IFh BYTE unknown

SHARE.EXE not loaded

1 Ah BYTE (low bjde of device attribute word AND OCh) OR open mode
IBh WORD starting cluster of file
IDh WORD number of sector containing directory entry
IFh BYTE number of directory entry within sector

Note:

If the FOB is opened on a character device, the DWORD at lAh is set to the address of the
device driver header, and then the BYTE at lAh is overwritten.

See Also: INT 21/AH=:3Dh

INT21hFunction18h +

UNUSED

This function returns immediately, and appears to be for CP/M compatibility.

Call with:

AH 18h

Returns:

AL OOh

Appendix A: Undocumented DOS Functions 503

INT 21 h Function 1 Dh DOS 1 +

UNUSED

This function rettims immediately, and appears to be for CP/M compatibility.

Call with:

AH IDh

Returns:

AL OOh

INT 21h Function 1Eh DOS 1+

UNUSED

This function returns immediately, and appears to be for CP/M compatibility.

Call with:

AH lEh

Returns:

AL OOh

INT 2^^ IFtT ™ DOS1+
GET DEFAULT DRIVE PARAMETER BLOCK

Return the address of a disk description table for the ciurent drive.

Call with:

AH IFh

Returns:

AL OOh No Error

FFh Error

DS:BX pointer to drive parameter block (see below for DOS 1.x, INT 21/ AH=32h for
DOS 2+)

504 UNDOCUMENTED DOS

Note:

For DOS 2+, this function merely invokes function 32h with DL=00h.

Format of Eagle MSDOS 1.25 drive parameter block:
Offset Size Description

OOh BYTE entry number
01 h BYTE physical drive number
02h WORD bytes per sector
04h BYTE number of sectors per cluster -1
05h BYTE unknown

06h WORD starting sector number of first FAT
08h BYTE number of copies of FAT
09h WORD number of directory entries
OBh WORD number of first data sector

ODh WORD number of clusters on disk

OFh BYTE sectors per FAT
lOh WORD starting sector of directory
12h WORD address of allocation table

See Also: INT 21/AH=32h

INT 21 h Function 20h D0S1 +

UNUSED

This function returns immediately, and appears to be for CP/M compatibihty.

Call with:

AH 20h

Returns:

AL OOh

Appendix A: Undocumented DOS Functions 505

INT 21 h Function 26h D0S1 +

CREATE PROGRAM SEGMENT PREFIX

Although documented, this function is included because the PSP which is created contains
undocumented fields.

Call with:

AH 26h

DX segment niunber at which to set up PSP

Returns:

The current PSP is copied to the specified segment.

Notes:

■ The new PSP is updated with memory size information; DSTTs 22h, 23h, 24h are taken
from the interrupt vector table.

■ Under DOS 2+, DOS assumes that the caller's CS is the same as the segment of the PSP

to copy.

Format of PSP:

Offset Size

OOh

02h

04h

05h

06h

OAh

OEh

12h

16h

18h

2Ch

2Eh

32h

34h

38h

2 BYTEs

WORD

BYTE

5 BYTEs

WORD

DWORD

DWORD

DWORD

WORD

20 BYTEs

WORD

DWORD

WORD

DWORD

DWORD

Description

program exit point (INT 20h instruction)
memory size in paragraphs
imused

CP/M entry point (FAR jump to GOOCOh)
BUG: the jump address is 2 bytes too low for DOS 2+ on PSPs
created by the EXEC function
CP/M compatibihty—size of first segment for .COM files
terminate address (old INT 22h)

break address (old INT 23h)

critical error handler (old INT 24h)

parent PSP segment
DOS 2+ open file table, FFh=imused
DOS 2+ environment segment (see below)
DOS 2+ process's SS:SP on entry to last INT 21h call
DOS 3+ max open files
DOS 3+ open file table address
DOS 3+ pointer to previous PSP (default FFFFFFFFh in 3.x)

506 UNDOCUMENTED DOS

3Ch 20 BYTEs

50h 3 BYTEs

53h 9 BYTEs

5Ch 16 BYTEs

6Ch 20 BYTEs

80h 128 BYTEs

used by SHARE in DOS 3.3
unused by DOS versions <= 4.01
DOS function dispatcher (FAR routine)—CDh 21h CBh
unused

FOB #1 (see INT 21 / AH=13h), filled in from first commandline

argument (when opened, overwrites following FOB)
FOB #2 (see INT 21 / AH=13h), filled in from second commandline

argument (when opened, overwrites part of command tail)
command tail / default DTA buffer

the command tail consists of a BYTE for the length, N BYTEs for
the tail, followed by a BYTE containing ODh

Notes:

■ For DOS versions 3.0 and up, the limit on simultaneously open files may be increased
by allocating memory for a new open file table, filling it with FFh, cop5dng the first 20
bytes from the default table, and adjusting the pointer and coimt at 34h and 32h.
However, EXDS versions through at least 3.30 will only copy the first 20 file handles into
a child PSP (including the one created on EXEC).

■ Many network redirectors, including those based on the original MS-Net
implementation, use values of 80h-FEh in the open file table to indicate remote files.

Format of environment block:

Offset Size Description
OOh N BYTEs first environment variable, ASCIZ string of form "var=value"

N BYTEs second environment variable, ASCIZ string

N BYTEs last environment variable, ASCIZ string of form "var=value"
BYTE OOh

D0S3+

WORD munber of strings following environment (normally 1)
N BYTEs ASCIZ full pathname of program owning this environment

other strings may follow

See Also: INT 21/AH=50h, INT 21/AH=51h, INT 21/AH=55h, INT 21IAH=62h, INT
21/AH=67h

Appendix A: Undocumented DOS Functions 507

INT 21 h Function 32h DOS 2+

GET DRIVE PARAMETER BLOCK

Return the address of a disk description table for the specified drive.

Call with:

AH 32h

DL drive number

0=default, 1=A:, etc.

Returns:

AL FFh if invahd drive number

else

DS;BX pointer to drive parameter block (see below)

Note:

The OS/2 compatibility box supports the DOS 3.3 version of this call with the exception of
the DWORD at offset 12h.

Format of DOS Drive Parameter Block:

Offset Size Description

OOh BYTE drive number (0=A:, etc.)

Olh BYTE unit number within device driver

02h WORD number of bytes per sector
04h BYTE largest sector number in cluster (one less than sectors/cluster)
05h BYTE shift coimt (log base 2) of the cluster size
06h WORD nmnber of reserved (boot) sectors

08h BYTE number of copies of the FAT
09h WORD maximum number of root directory entries
OBh WORD first data sector on medium

ODh WORD largest possible cluster number (one more than the niunber of data
clusters)

DOS 2.x

OFh BYTE number of sectors in one FAT copy
lOh WORD first sector of root directory

12h DWORD address of device driver for this drive

16h BYTE media descriptor byte for medium
17h BYTE FFh indicates block must be rebuilt

508 UNDOCUMENTED DOS

18h DWORD address of next device block, offset=FFFFh indicates last

ICh WORD starting cluster of current directory (O=root directory)
lEh 64 BYTEs ASCIZ current directory path string

DOS 3.x

OFh BYTE number of sectors in one FAT copy
lOh WORD first sector of root directory
12h DWORD address of device driver for this drive

16h BYTE media descriptor byte for medium
17h BYTE FFh if block must be rebuilt, OOh if block accessed

18h DWORD address of next device block, offset=FFFFh indicates last

ICh WORD cluster at which to start search for free space when writing
lEh WORD number of free clusters on drive, FFFFh if not known

DOS 4.0

OFh WORD number of sectors in one FAT copy
llh WORD first sector of root directory
13h DWORD address of device driver for this drive

17h BYTE media descriptor byte for medium
18h BYTE FFh if block must be rebuilt, OOh if block accessed

19h DWORD address of next device block, offset=FFFFh indicates last

IDh WORD cluster at which to start search for free space when writing
IFh WORD number of free clusters on drive, FFFFh if not known

See Also: INT 2l/AH=lFh

j^T21h Function 3302h " — —
GET AND SET EXTENDED CONTROL-BREAK CHECKING STATE

Set a new state for the extended Control-Break checking flag and return its old value.

Call with:

AX 3302h

DL new state (OOh for OFF or Olh for ON)

Returns:

DL old state of extended BREAK checking

Note:
This function does not use any of the DOS-internal stacks and is thus fully reentrant.

Appendix A: Undocumented DOS Functions 509

INT 21 h Function 34h DOS 2+

RETURN Critical Section Flag (InDOS) POINTER

Get the address of a flag which indicates when code within DOS is being executed, and it is
thus unsafe to call DOS functions.

Call with:

AH 34h

Returns:

ES:BX pointer to 1-byte DOS "Critical Section Flag", also known as InDOSflag

Notes:

■ When the critical section flag is nonzero, code within DOS is being executed. It is safe
to enter DOS when both the critical section flag and the critical error flag are zero.

■ The critical error flag is the byte after the critical section flag in DOS 2.x, and the byte
BEFORE the critical section flag in DOS 3.x (except COMPAQ DOS 3.0, where the
critical error flag is located lAAh bjdes BEFORE the critical section flag).

■ For DOS 3+, an vmdocumented call exists to get the address of the critical error flag (see
INT21/AX=5D06h).

INT 21 h Function 3700h DOS 2*

GETSWrrCHAR

Return the character which is used to introduce command switches.

Call with:

AX 3700h

Returns:

AL FFh unsupported subfunction
else

DL ciurent switch character

Notes:

■ This call is documented in some OEM versions of some releases of DOS.

510 UNDOCUMENTED DOS

This function is supported by the OS/2 vl.l compatibility box.
Although supported by DOS 4, COMMAND.COM and the DOS external commands

ignore the value of the switch character.

See Also: INT 21/AX=3701h

INT 21 h Function 3701 h DOS 2+

SETSWrrCHAR

Set a new value for the character which is used to introduce command switches.

Call with:

AX 3701h

DL new switch character

Returns:

AL FFh if unsupported subfunction

Notes:

■ This call is documented in some OEM versions of some releases of DOS.

■ This function is supported by the OS/2 vl.l compatibility box.

See Also: INT 21/AX=3700h

INT 21 h Functions 3702h, DOS 2.x and 4.0 only
3703h

AVAILDEV

Get or set the state of the flag which makes a \DEV\ prefix to character device names man
datory.

Call with:

AH 37h

AL subfunction

02h read device availability (as set by AL=03h)
Returns:

Appendix A: Undocumented DOS Functions 511

DL device availability (always FFh under DOS 4.0)
03h set device availability
Call with:

DL GOh means \DEV\ must preceed device names
DL GOh means \DEV\ need not preceed device names

Returns:

AL FFh if invalid subfunction

Notes:

■ All versions of DOS from 2.GG allow \DEV\ to be prepended to device names without
generating an error even if the directory \DEV does not actually exist (other paths
generate an error if they do not exist).

■ Although DOS 4.G accepts these calls, they have no effect.

.-.a;-.'

INT 21 h Function 41 h DOS 3.1 +

DELETE ABLE (UNLINK)

When invoked via INT 21/AX=5DGGh, this function has the imdocumented behavior of al
lowing wildcards in the filename, deleting all matching files.

Call with:

AH 41h

DS:DX pointer to ASCIZ pathname of file to delete

Returns:

CF set on error

AX error code (G2h,G5h) (see INT 21/AH=59h)

Note:

When invoked via INT 21 / AX=5DGGh, the filespec must be canonical (as returned by INT
21/AH=6Gh).

See Also: INT 21/AH=13h, INT 21/AX=5DGGh, INT 21/AH=6Gh, INT 2F/AX=1113h

512 UNDOCUMENTED DOS

INT 21 h Function 4400h DOS 2+

GET DEVICE INFORMATION

Although documented, this function has a munber of undocumented attribute bits.

Call with:

AX 4400h

BX file or device handle

Returns:

CP set on error

AX error code (see INT 21/AH=59h)
CP clear if succesful

DX device info

character device if bit 7 set

bit 0: console input device (standard input)
bit 1: console output device (standard output)
bit 2: current NUL device

bit 3: CLOCKS device

bit 4: device uses INT 29h for single-char output
bit 5: binary (raw) mode
bit 6: not at EOF

bit 7: set

bit 11: media not removable

bit 12: network device (DOS 3+)

bit 14: can process lOCTL control strings (see INT21/AX=4402h)
file if bit 7 dear

bits 0-5: block device number

bit 6: file has not been written to

bit 7: dear

bit 11: media not removable

bit 12: network device (DOS 3+)

bit 14: don't set file date/time on dosing (DOS 4+)
bit 15: file is remote (DOS 3+)

See Also: INT 2P/AX=122Bh

Appendix A: Undocumented DOS Functions 513

INT 21 h Function 4Ah DOS 2+

ADJUST MEMORY BLOCK SIZE (SETBLOCK)

Although documented, this function is included because of its undocumented behavior
when there is not enough memory to satisfy the request.

Call with:

AH 4Ah

ES segment address of block to change
BX new size in paragraphs

Returns:

CF set on error

AX error code (07h,08h,09h) (see AH=59h)
BX maximum size possible for the block (if AX=08h)

Note:

Under PCDOS 2.1 and DOS 3.x, if there is insufficient memory to expand the
block as much as requested, the block will still be made as large as possible (value in BX).

See Also: INT 21/AH=48h, INT 21/49h

INT 21 h Functions 4B01 h, DOS 2+
4£04h
LOAD OR EXECUTE (EXEC)

In addition to the documented subfunctions to execute a child process and load an overlay,
the EXEC function also has an undocumented subfunction to load and relocate a program
without beginning execution. There are also reports that some versions of DOS may sup
port a second undocumented subfunction to run a child process in the background.

Call with:

AH 4Bh

AL subfunction

Olh load but do not execute

04h Reportedly called by MSC spawn(P_NOWAIT,...) when running under DOS 4.x.

514 UNDOCUMENTED DOS

Returns unsuccessfully under DOS 4.0, but may be successful in the original
European OEM MSDOS 4.0, which has limited multitasking built in.

DS;DX pointer to ASCIZ filename
ES:BX pointer to parameter block (see below)

Returns:

CP set on error

AX error code (01h,02h,05h,08h,0Ah,0Bh) (see INT 21 /AH=59h)
CP clear if successful

if subfunction Olh, process ID set to new program's PSP; get with INT 21/AH=51h or
INT21/AH=62h

Notes:

■ DOS 2.x destroys all registers, including SS:SP.
■ The calling process must ensure that there is enough imallocated memory available; if

necessary, by releasing memory with INT 21IAH=49h or INT 21/AH=4Ah.

Format of EXEC parameter block for AL=01 h:
Offset Size Description

OOh WORD segment of environment (0 to use current) (see INT 21/AH=26h)
02h DWORD pointer to command line
06h DWORD pointer to first PCB (see INT 21/AH=13h)
OAh DWORD pointer to second PCB (see INT 21/AH=13h)
OEh DWORD will hold subprogram's initial SS;SP on return
12h DWORD will hold entry point (CS:1P) on return

See Also: INT 21/AH=4Ch, MT 21/AH=4Dh, INT 2E

INT 21 h Function 4Eh DOS 2+

PIND HRST ASCIZ (PINDPIRST)

Although documented, this function is included because of the undocumented fields in its
data structure, which are used to record the progress of the directory search, and because of
an undocumented quirk, and a subtle bug.

Call with:

AH 4Eh

CX search attributes (see INT 21IAX=4301h)

Appendix A: Undocumented DOS Functions 515

bit 0 = read only
1 = hidden file

2 = system file
3 = volume label

4 = subdirectory
5 = written since backup ("archive" bit)
8 = shareable (Novell NetWare)

DS:DX pointer to ASCIZ filespec (drive, path, and wildcards allowed)

Returns:

CF set on error

AX error code (02h,12h) (see INT 21IAH=59h)

CF clear if successful

[DTA] data block (see below)

Notes:

■ For search attributes other than OSh, all files with at MOST the specified attribute bits,

the archive (20h) bit, and the read-only (Olh) bit set will be returned. Under DOS 2.x,
searching for attribute OSh (volume label) will also return normal files, while DOS 3+
retums only the volume label (if any).

■ If the given filespec is the name of a character device without wildcards, the call will
retium successfully. DOS 2.x returns attribute OOh, size 0, and the current date and time.
IDOS 3+ returns attribute 40h and the current date and time.

BUG:

Under DOS 3.x and 4.x, the second and subsequent calls to this function with a character de
vice name (no wildcards) and search attributes which include the volume-label bit (OSh)
will fail unless there is an intervening EXDS call which implicitly or explicitly performs a di
rectory search without the volume-label bit. Such implicit searches are performed by CRE
ATE (INT 21/AH=3Ch), OPEN (INT 21/AH=3Dh), UNLINK (INT 21/AH=41h), and
RENAME (INT 21/AH=56h).

Format of FindFirst data block:

Olffset Size Description

PCDOS 3.10/4.01, MSDOS 3.2/3.3

OOh BYTE drive letter

Olh 11 BYTEs search template
OCh BYTE search attributes

516 UNDOCUMENTED DOS

DOS 2.x and some DOS 3.x

OOh BYTE search attributes

Olh BYTE drive letter

02h 11 BYTEs search template

DOS 2.x and most 3.x

ODh WORD entry coxmt within directory
OFh DWORD pointer to DTA
13h WORD cluster number of start of parent directory

PODOS 4.01, MSDOS 3.2/3.3

ODh WORD entry count within directory
OFh WORD cluster number of start of parent directory
llh 4 BYTEs reserved

all versions, documented fields

15h BYTE attribute of file found

16h WORD file time

bits 11-15: hour

bits 5-10: minute

bits 0-4: seconds/2

18h WORD file date

bits 9-15: year-1980
bits 5-8: month

bits 0-4: day
lAh DWORD file size

lEh 13 BYTEs ASCIZ filename+extension

See Also: INT 21/AH=llh, INT 21IAH=4Fh, INT 2F/AX=lllBh

INT 21 h Function 50h DOS 2+

SET PSP SEGMENT

Force a new value for DOS's record of the current process's PSP segment, thus effectively
becoming another process.

Call with:

AH 50h

BX segment address of new PSP (see INT 21 / AH=26h for format)

Appendix A: Undocumented DOS Functions 517

Notes:

■ Under DOS 2.x, this function cannot be invoked inside an INT 28h handler without

setting the Critical Error flag, because it uses the same stack which DOS is using at the
time of the INT 28h.

■ Under DOS 3+, this function does not use any of the DOS-internal stacks and is thus
fully reentrant.

■ This function is supported by the OS/2 vl.l compatibility box.

See Also: INT 21/AH=26h, INT 21/AH=51h, TNT 21/AH=62h

INT 21 h Function 51 h DOS 2+

GET PSP SEGMENT

Return the segment address of the current process's PSP, which is used by DOS as a process
identifier.

Call with:

AH 51h

Returns:

BX ciurent PSP segment (see INT 21 / AH=26h for format)

Notes:

Under DOS 2.x, this function cannot be invoked inside an INT 28h handler without setting
the Critical Error flag, because it uses the same stack which DOS is using at the time of the
lNT28h.

Under DOS 3+, this function does not use any of the DOS-intemal stacks and is thus fully
reentrant.

The documented INT 21 /AH=62h is identical to this call, but only available with DOS 3+.
In DOS 3+, the two functions are identical, jumping to the same code (which simply loads
BX from the SDA current PSP field).

This function is supported by the OS/2 vl.l compatibility box.

See Also: INT 21/AH=26h, INT 21/AH=50h, INT 21IAH=62h

518 UNDOCUMENTED DOS

INT 21 h Function 52h DOS 2+

GET LIST OF LISTS

Return the address of DOS's internal list of tables and lists. Most internal data structures

are reachable through this list.

Call with:

AH 52h

Returns:

ES:BX pointer to DOS list of lists

Note:

This call is partially supported by the OS/2 vl.l compatibility box. Most pointers in the
returned list are FFFFh:FFFFh, however.

Format

Offset

-12

-10

-8

-4

-2

OOh

04h

OSh

OCh

DOS 2.x

lOh

llh

13h

17h

of List of

Size

WORD

WORD

DWORD

WORD

WORD

DWORD

DWORD

DWORD

DWORD

Lists:

Description

(DOS 3.1-3.3) sharing retry count (see INT 21/AX=440Bh)
(DOS 3.1-3.3) sharing retry delay (see INT 21/AX=440Bh)
(DOS 3.x) pointer to current disk buffer
(DOS 3.x) pointer in DOS code segment of unread CON input
When CON is read via a handle, DOS reads an entire line, and returns

the requested portion, buffering the rest for the next read. OOOOh
indicates no unread input
segment of first memory control block
pointer to first DOS Drive Parameter Block (see INT 21/AH=32h)
pointer to list of EXDS file tables (see below)
pointer to CLOCKS device driver, resident or installable
pointer to CON device driver, resident or installable

BYTE number of logical drives in system
WORD maximum bjdes/block of any block device
DWORD pointer to first disk buffer (see below)
18 BYTEs actual NUL device driver header (not a pointer!)

This is the first device on DOS's linked list of device drivers,

(see below for format)

Appendix A: Undocumented DOS Functions 519

DOS 3.0

lOh BYTE number of block devices

llh WORD maximum bytes/block of any block device
13h DWORD pointer to first disk buffer (see below)
17h DWORD pointer to array of current directory structures (see below)
IBh BYTE value of LASTDRIVE command in CONFIG.SYS (default 5)

ICh DWORD pointer to STRING= workspace area
20h WORD size of STRING area (the x in STRING=x from CONFIG.SYS)

22h DWORD pointer to FCB table
26h WORD the y in FCBS=x,y firom CONF1G.SYS
28h 18 BYTEs actual NUL device driver header (not a pointer!)

This is the first device oti EXlS's linked list of device drivers.

(see below for format)

DOS 3.1-3.3

lOh WORD maximum bytes/block of any block device
12h DWORD pointer to first disk buffer (see below)
16h DWORD pointer to array of current directory structures (see below)
lAh DWORD pointer to FCB table (if CONFIG.SYS contams FCBS=)
lEh WORD number of protected FCBs (the y in FCBS=x,y)
20h BYTE number of block devices

21h BYTE value of LASTDRIVE command in CONFIG.SYS (default 5)

22h 18 BYTEs actual NUL device driver header (not a pointer!)
This is the first device on DOS's linked list of device drivers, (see

below for format) (see also INT 2F/ AX=122Ch)

34h BYTE number of JOIN'ed drives

DOS 4.x

lOh WORD maximum bytes/block of any block device
12h DWORD pointer to disk buffer info (see below)
16h DWORD pointer tp array of current directory structures (see below)
lAh DWORD pointer to FCB table (if CONFIG.SYS contains FCBS=)
lEh WORD number of protected FCBs (the y in FCBS=x,y)
20h BYTE number of block devices

21h BYTE value of LASTDRIVE cormnand in CONFIG.SYS (default 5)

22h 18 BYTEs actual NUL device driver header (not a pointer!)
This is the first device on DOS's linked list of device drivers.

(see below for format) (see also INT IF/ AX=122Ch)

34h BYTE number of JOIN'ed drives

520 UNDOCUMENTED DOS

35h WORD pointer within IBMDOS code segnment to list of special program
names (see below)

37h DWORD pointer to FAR routine for resident IPS utility functions (see below)
This routine may be called by any IPS driver which does not wish
to service IPS functions 20h or 24h-28h itself.

3Bh DWORD pointer to chain of IPS (installable file system) drivers
3Fh WORD the X in BUFFERS x,y (rounded up to multiple of 30 if in EMS)
41h WORD the y in BUFFERS x,y
43h BYTE boot drive (1=A:)

44h BYTE unknown

45h WORD extended memory size in K

Format of memory control block:
Offset Size Description

OOh BYTE block type: 5Ah if last block in chain, otherwise 4Dh
Olh WORD PS? segment of owner, OOOOh if free, 0008h if belongs to DOS
03h WORD size of memory block in paragraphs
05h 3 BYTEs unused

DOS 2.x,3.x

08h 8 BYTEs unused

DOS 4.x

08h 8 BYTEs ASCII program name if PSP memory block, else garbage
null-terminated if less than 8 characters

Notes:

■ Under DOS 3.1+, the first memory block is the DOS data segment, containing
installable drivers, buffers, etc.

■ Under DOS 4.x, the first memory block is divided into subsegments, each with its own
memory control block (see below), the first of which is at offset OOOOh.

Format of DOS 4.x data segment subsegment control blocks:
Offset Size Description

OOh BYTE subsegment type (blocks typically appear in this order)
"D" device driver

"E" device driver appendage
"I" IPS (Installable File System) driver
"F" FILES= control block storage area (for FILES > 5)
"X" FCBS= control block storage area, if present
"C" BUFFERS EMS workspace area (if BUFFERS /X option used)

Appendix A: Undocumented DOS Functions 521

"B" BUFFERS= storage area
"L" LASTDRIVE= current directory structure array storage area
"S" STACKS= code and data area, if present (see below)

Olh WORD paragraph of subsegment start (usually the next paragraph)
03h WORD size of subsegment in paragraphs
05h 3 BYTEs unused

OSh 8 BYTEs for t5^es "D" and "1", base name of file from which the driver was
loaded (unused for other tj^es)

Format of data at Start of STACKS code segment (If present):
Offset Size Description

OOh WORD unknown

02h WORD number of stacks (the x in STACKS=x,y)
04h WORD size of stack control block array (should be 8*x)
06h WORD size of each stack (the y m STACKS=x,y)
OSh DWORD pointer to STACKS data segment
OCh WORD offset in STACKS data segment of stack control block array
OEh WORD offset in STACKS data segment of last element of that array
lOh WORD offset in STACKS data segment of the entry in that array for the next

stack to be allocated (initially same as value in OEh and works its way
down in steps of 8 to the value in OCh as hardware interrupts pre-empt
each other)

Note:

The STACKS code segment data may, if present, be located as follows:

■ DOS 3.2: The code segment data is at a paragraph boxmdary fairly early in the IBMBIO
segment (seen at 0070:0190h).

■ DOS 3.3: The code segment is at a paragraph boundary in the DOS data segment,
which may be determined by inspecting the segment pointers of the vectors for those
of interrupts 02h, OSh-OEh, 70h, 72-77h which have not been redirected by device
drivers or TSRs.

■ DOS 4.x: Identified by sub-segment control block type "S" within the DOS data segment.

Format of array elements In STACKS data segment:
Offset Size Description

OOh BYTE status: 00h=free, 01h=in use, 03h=corrupted by overflow of higher stack.
Olh BYTE not used

02h WORD previous SP
04h WORD previous SS

522 UNDOCUMENTED DOS

06h WORD pointer to word at top of stack (new value for SP).

Note:

The word at the top of the stack is preset to point back to this control block.

SHARE.EXE hooks (DOS 3.1-4.01):
(offeets from first system file table—pointed at by ListOfLists+04h)
Offset Size Description

-3Ch DWORD pointer to unknown FAR routine
Note: not called by MSDOS 3.3, set to 0000h:0000h by SHARE 3.3

-38h DWORD pointer to FAR routine called on opening file
Call with:

SS set to DOS CS

DS set to DOS CS

SDA first filename pointer points at filename (see
INT 21/AX=5D06h)

Returns:

CP clear if successful

CP set on error

AX DOS error code (24h) (see INT 22/AH=59W
-34h DWORD pointer to PAR routine called on closing file

Call with:

ES:DI pointer to system file table
SS set to DOS CS

additional arguments (if any) unknown
Note:

does something to every lock record for the file
-30h DWORD pointer to PAR routine to close aU files for given computer (called by

AX=5D03h)

Note:

SHARE assumes SS=DOS CS, directly accesses DOS internals
-2Ch DWORD pointer to PAR routine to close all files for given process (called by

AX=5D04h)

Note:

SHARE assumes SS=DOS CS, directly accesses DOS internals
-28h DWORD pointer to PAR routine to close file by name (called by AX=5D02h)

Call with:

DS:SI pointer to DOS parameter fist (see
INT 21/AX=5D00h)

DPL's DS:DX pointer to name of file to close

Appendix A: Undocumented DOS Functions 523

SS set to DOS CS

Returns:

CF clear if successful

CP set on error

AX DOS error code (03h) (see INT 21/AH=59h)

Note:

SHARE directly accesses DOS internals
-24h DWORD pointer to FAR routine to lock region of file

Call with:

BX file handle

CX:DX starting offset
SIrAX size

SS set to DOS CS

Returns:

CF set on error

AL DOS error code (21h) (see INT 21 /AH=59h)

Notes:

only called if file is marked as remote
SHARE directly accesses EXDS internals

-20h DWORD pointer to FAR routine to imlock region of file
Call with:

BX file handle

CX:DX starting offset
S1:AX size

SS set to DOS CS

Returns:

CF set on error

AL DOS error code (21h) (see INT 21/AH=59h)

Notes:

only called if file is marked as remote
SHARE directly accesses DOS internals

-1 Ch DWORD pointer to FAR routine to check if file region is locked
Call with:

ES:DI pointer to system file table entry for file
CX length of region from current position in file
SS set to DOS CS

Returns:

CF set if any portion of region locked
AX 0021h

524 UNDOCUMENTED DOS

-18h

-14h

-lOh

-OCh

Note:

SHARE directly accesses DOS internals
DWORD pointer to FAR routine to get open file list entry (called by AX=5D05h)

Call with:

DS:SI pointer to DOS parameter list (see INT 21 / AX=5D00h)
DPL's BX index of sharing record
DPL's CX index of SET in SFT chain of sharing rec

SS set to DOS CS

Returns:

CP set on error or not loaded

AX DOS error code (12h) (see INT 21/AH=59h)

CP clear if successful

ES:DI pointer to filename
CX number of locks owned by specified SFT
BX network machine number

DX destroyed
Note:

SHARE directly accesses DOS internals
D WORD pointer to FAR routine for updating FOB from SFT

Call with:

DS:SI pointer to unopened PCB
ES:DI pointer to system file table entry

Returns:

BE COh

Note:

copies the following fields from SFT to PCB: starting cluster
of file, sharing record offset, and file attribute

D WORD pointer to FAR routine to get first cluster of FOB file
Call with:

ES:DI pointer to system file table entry
DS:SI pointer to PCB

Returns:

CP set if SFT closed or sharing record offsets mismatched
CP clear if successful

BX starting cluster number from PCB
DWORD pointer to FAR routine to close file if duplicate for process

Call with:

DS:SI pointer to system file table
SS set to DOS CS

Appendix A: Undocumented DOS Functions 525

Returns:

AX number of handle in JFT which already uses SFT
Notes:

called during open/create of a file
SHARE directly accesses DOS internals
if the SFT was opened with inheritance enabled and sharing

mode 111, this call does something to all other SFTs owned by
the same process which have the same file open mode and
sharing record

-08h DWORD pointer to unknown FAR routine
Call with:

SS set to DOS CS

DS set to DOS CS

Notes:

SHARE directly accesses DOS internals
closes various handles referring to the file most-recently opened

-04h DWORD pointer to FAR routine to update directory info in related SFT entries
Call with:

ES:DI pointer to system file table entry for file (see below)
AX subfunction (apply to each related SFT)

OOh: update time stamp (offset ODh) and date stamp (offset OFh)
Olh: update file size (offeet llh) and starting cluster

(offset OBh). Sets last-accessed cluster fields to start of file

if file never accessed

02h: as function Olh, but last-accessed fields always changed
03h: do both functions OOh and 02h

Note:

follows ptr at offset 2Bh in system file table entries
NOP if opened with no-inherit or via FCB

Format of sharing record:
Offset Size Description

OOh BYTE flag
OOh free block

Olh allocated block

FFh end marker

Olh WORD size of block

03h BYTE checksum of pathname (including NUL)
if sum of ASCn values is N, checksum is (N/256 + N%256)

526 UNDOCUMENTED DOS

04h WORD offset in SHARE'S DS of lock record (see below)

06h DWORD pointer to start of system file table chain for file
OAh WORD unique sequence munber
OCh var ASCIZ full pathname

Format of SHARE.EXE lock record:
Offset Size Description

OOh WORD offset in SHARE'S DS of next lock table in list

02h DWORD offset in file of start of locked region
06h DWORD offset in file of end of locked region
OAh DWORD pointer to System File Table entry for this file
OEh WORD PSP segment of lock's owner

Format of DOS 2.x system file tables:
Offset Size Description
OOh DWORD pointer to next file table
04h WORD number of files in this table

06h 28h bytes per file
Offset Size Description

OOh BYTE number of file handles referring to this file
Olh BYTE file open mode (see INT 21/AH=3Dh)
02h BYTE file attribute

03h BYTE drive (0=character device, 1=A:, 2=B:, etc)
04h 11 BYTEs filename in FCB format (no path,no period,blank-padded)
OEh WORD unknown

Ilk WORD unknown

13h DWORD file size
17h WORD file date in packed format (see INT 21/AX=5700h)
19h WORD file time in packed format (see INT 21/AX=5700h)
IBh BYTE device attribute (see INT 21/AX=4400h)

character device

ICh DWORD pointer to device driver

block device

ICh WORD starting cluster of file
lEh WORD relative cluster in file of last cluster accessed

20h WORD absolute cluster nmnber of current cluster

22h WORD unknown

24h DWORD current file position

Appendix A: Undocumented DOS Functions 527

Format of DOS 3.x system file tables and FOB tables:
Offset Size Description

OOh DWORD pointer to next file table
04h WORD number of files in this table

06h 35h bytes per file
Offset Size Description

OOh WORD number of file handles referring to this file
02h WORD file open mode (see INT 21/AH=3Dh)

bit 15 set if this file opened via FCB
04h BYTE file attribute

05h WORD device info word (see INT 21 / AX=4400h)

07h DWORD pointer to device driver header if character device
else pointer to DOS Drive Parameter Block (see INT 21/AH=32h)

OBh WORD starting cluster of file
ODh WORD file time in packed format (see INT 21/AX=5700h)
OFh WORD file date in packed format (see INT 21/AX=5700h)
llh DWORD file size

15h DWORD current offset in file

19h WORD relative cluster within file of last cluster accessed

IBh WORD absolute cluster number of last cluster accessed

OOOOh if file never read or written
IDh WORD number of sector containing directory entry
IFh BYTE number of directory entry within sector (b)de offeet/32)
20h 11 BYTEs filename in FCB format (no path/period, blank-padded)
2Bh DWORD (SHARE.EXE) pointer to previous SFT sharing same file
2Fh WORD (SHARE.EXE) network machine number which opened file
31h WORD PSP segment of file's owner (see INT 21/AH=26h), except for

AUX, CON, and PRN, which hold effective PSP left over from INIT

33h WORD offset within SHARE.EXE code segment of sharing record
(see below) OOOOh if none

Format of DOS 4.x system file tables and FOB tables:
Offset Size Description
OOh DWORD pointer to next file table
04h WORD number of files in this table

06h 3Bh bjrtes per file
Offset Size Description
OOh WORD number of file handles referring to this file
02h WORD file open mode (see INT 21 /AH=3Dh)

528 UNDOCUMENTED DOS

bit 15 set if this file opened via FCB
04h BYTE file attribute

05h WORD device info word (see INT 21/AX=4400h)

bit 15 set if remote file

bit 14 set means do not set file date/time on closing
07h DWORD pointer to device driver header if character device

else pointer to DOS Drive Parameter Block (see INT 21/AH=32h)
or REDIR data

OBh WORD starting cluster of file
ODh WORD file time in packed format (see INT 21IAX=5700h)
OFh WORD file date in packed format (see INT 21/AX=5700h)
llh DWORD file size

15h DWORD current offset in file

local file

19h WORD relative cluster within file of last cluster accessed

IBh DWORD munber of sector containing directory entry

IFh BYTE number of directory entry within sector (byte offset/32)

network redlrector

19h DWORD pointer to REDIRIFS record
IDh 3 BYTEs unknown

20h 11 BYTEs filename in FCB format (no path/period, blank-padded)
2Bh DWORD (SHARE.EXE) pointer to previous SFT sharing same file
2Fh WORD (SFIARE.EXE) network machine number which opened file
31h WORD PSP segment of file's owner (see INT 21/AH=26h)
33h WORD offset within SHARE.EXE code segment of sharing record

(see below) OOOOh if none

35h WORD (local) absolute cluster number of last cluster accessed
(redirector) unknown

37h DWORD pointer to IPS driver for file, OOOOOOOh if native EXDS

Format of current directory structure (array, 51 h bytes [58h for DOS 4.x]
per drive):
Offset Size Description

OOh 67 BYTEs current path as ASCIZ, usually starting with 'x:\' or 'WmachineX'
43h WORD bit flags

bit 15: network drive \ installable file system if both set
bit 14: physical drive / invahd drive if neither bit set

Appendix A: Undocumented DOS Functions 529

45h DWORD

local drives

49h WORD

4Bh WORD

4Dh WORD

network drives

49h

4Dh

all

4Fh

DOS 4.x

51h

52h

56h

DWORD

WORD

WORD

BYTE

DWORD

WORD

bit 13: JOIN'ed, current path is actual path without JOIN
drive letter in path may differ from logical drive name

bit 12: SUBST'ed, current path is actual path without SUBST
drive letter in path may differ from logical drive name

pointer to Drive Parameter Block (DPB) for this drive

starting cluster of current directory
OOOOh for root directory, FFFFh if never accessed
unknown, seems always to be FFFFh
unknown, seems always to be FFFFh

pointer to a redirector/REDlRlFS record, else FFFFFFFFh
stored parameter from INT 21/AX=5F03h

Offset of '\' in current path field representing root directory of logical
drive (2 if not SUBST'ed or JOIN'ed, otherwise niunber of b)des in
SUBST/JOlNpath)

unknown, used by network
pointer to IPS driver for this drive, OOOOOOOOh if native DOS
unknown

Format of device driver header:

Offset Size Description

OOh DWORD pointer to next driver, offset=FFFFh if last driver
04h WORD device attributes

Character device:

bit 15 set

bit 14 lOCTL supported (see INT 21/AH=44h)
bit 13 (DOS 3+) output until busy supported
bit 12 reserved

bit 11 (DOS 3+) OPEN/CLOSE/RemMedia calls supported
bits 10-7 reserved

bit 6 (DOS 3.2+) Generic lOCTL call supported (command 13h)
(see INT 21IAX=440Ch, INT 21/AX=440Dh)

bits reserved

bit 4 device is special (use INT 29 "fast console output")
bit 3 device is CLOCKS (all reads/writes use transfer record described below)

530 UNDOCUMENTED DOS

bit 2 device is NUL

bit 1 device is standard output
bit 0 device is standard input

Block device:

bit 15 clear

bit 14 lOCTL supported
bit 13 non-IBM format

bit 12 reserved

bit 11 (DOS 3+) OPEN/CLOSE/RemMedia calls supported
bit 10 reserved

bit 9 unknown, set by DOS 3.3 DRIVER.SYS for "new" drives
bit 8 unknown, set by DOS 3.3 DRIVER.SYS for "new" drives
bit 7 reserved

bit 6 (DOS 3.2+) Generic lOCTL call supported (command 13h)
implies support for commands 17h and 18h (see
INT 21IAX=440Ch, INT 21 /AX=440Dh, INT 21IAX=mEh,
INT 21/AX=440Fh)

bits 5-2 reserved

bit 1 driver supports 32-bit sector addressing
bitO reserved

06h WORD device strategy entry point
call with ES:BX pointer to request header (see INT 2F/AX=0802h)

08h WORD device interrupt entry point
character device

OAh 8 BYTEs blank-padded character device name
block device

OAh BYTE number of subimits (drives) supported by this driver
OBh 7 BYTEs imused

12h WORD (CD-ROM driver) reserved, must be OOOOh

14h BYTE (CD-ROM driver) drive letter (must initially be OOh)
15h BYTE (CD-ROM driver) number of imits

16h 6 BYTEs (CD-ROM driver) signature'MSCDnn'where'nn'is version (currently'00')

Format of CLOCK$ transfer record:
Offset Size Description

OOh WORD number of days since l-Jan-1980
02h BYTE minutes

03h BYTE hours

Appendix A: Undocumented DOS Functions 531

04h BYTE himdredths of second

05h BYTE seconds

Formatof DOS 2.x disk buffer:

Offset Size Description

OOh DWORD pointer to next disk buffer, offset=FFFFti if last
least-recently used buffer is first in chain

04h BYTE drive (0=A:, 1=B:, etc), FFh if not in use

05h 3 BYTEs apparently unused (seems always to be OOh (X)h Olh)
08h WORD logical sector nmnber
OAh BYTE number of copies to write (1 for non-FAT sectors)
OBh BYTE sector offeet between copies if multiple copies to be written
OCh DWORD pointer to DOS Drive Parameter Block (see INT 21/AH=32h)
lOh buffered data

Formatof DOS 3.x disk buffer:

Offset Size Description

OOh DWORD pointer to next disk buffer, offset=FFFFh if last
least-recently used buffer is first in chain

04h BYTE drive (0=A:,1=B:, etc), FFh if not in use

05h BYTE flags

06h

08h

09h

OAh

OEh

lOh

WORD

BYTE

BYTE

DWORD

WORD

bit 7: unknown

bit 6: buffer dirty
bit 5: buffer has been referenced

bit 4: unknown

bit 3: sector in data area

bit 2: sector in a directory, either root or subdirectory
bit 1: sector in FAT

bit 0: boot sector

logical sector number
number of copies to write (1 for non-FAT sectors)
sector offset between copies if multiple copies to be written
pointer to DOS Drive Parameter Block (see INT 21 / AH=32h)
unused (almost always 0)
buffered data

532 UNDOCUMENTED DOS

Format of DOS 4.00 (before UR 25066 Corrective Services Disk) disk buffer

info:

Offset Size Description

OOh DWORD pointer to array of disk buffer hash chain heads (see below)
04h WORD munber of disk buffer hash chains (referred to as NDBCH below)

06h DWORD pointer to lookahead buffer, zero if not present
OAh WORD number of lookahead sectors, else zero (the y in BUFFERS=x,y)
OCh BYTE OOh if buffers in EMS (/x), FFh if not

ODh WORD EMS handle for buffers, zero if not in EMS

OFh WORD EMS physical page nvunber used for buffers (usually 255)
llh WORD apparently always OOOlh
13h WORD segment of EMS physical page frame
15h WORD seems always to be zero
17h 4 WORDS EMS partial page mapping information

Format of DOS 4.01 (from UR 25066 Corrective Services Disk on) disk
buffer info:

Offset Size Description

OOh

04h

06h

OAh

OCh

ODh-

OFh

llh

13h

15h

16h

18h

lAh

ICh

lEh

20h

22h

DWORD

WORD

DWORD

WORD

BYTE

WORD

WORD

WORD

WORD

BYTE

WORD

WORD

WORD

WORD

WORD

WORD

BYTE

pointer to array of disk buffer hash chain heads (see below)
number of disk buffer hash chains (referred to as NDBCH below)

pointer to lookahead buffer, zero if not present
number of lookahead sectors, else zero (the y in BUFFERS=x,y)
Olh, possibly to distinguish from pre-UR 25066 format (see above)
EMS segment for BUFFERS (only with jXD)
EMS physical page number of EMS segment above (only with /XD)
unknown EMS segment (only with /XD)
EMS physical page number of above (only with /XD)
number of EMS page frames present (only with /XD)
segment of one-sector workspace buffer allocated in main memory
if BUFFERS /XS or /XD options are in effect, possibly to avoid
DMA into EMS

EMS handle for buffers, zero if not in EMS

EMS physical page number used for buffers (usually 255)
apparently always zero
segment of EMS physical page frame
apparetnly always zero
OOh if /XS, Olh if /XD, FFh if BUFFERS not in EMS.

Appendix A: Undocumented DOS Functions 533

Format of DOS 4.x disk buffer hash chain head (array, one entry per chain):
Offset Size Description

OOh WORD EMS logical page number in which chain is resident, -1 if not in EMS
02h DWORD pointer to least recently used buffer header. All buffers on this chain

are in the same segment.
06h BYTE nmnber of dirty buffers on this chain
07h BYTE reserved (OOh)

Notes:

■ Buffered disk sectors are assigned to chain N where N is the sector's address modulo

NDBCH (munber disk buffer chain head), 0 <= N <= NDBCH-1.

■ Each chain resides completely within one EMS page.

■ This structure is in main memory even if the buffers are in EMS.

Format of DOS 4.x disk buffer:

Offset Size

OOh WORD

02h WORD

04h BYTE

05h BYTE

Description

forward ptr, ofe

06h

OAh

OBh

ODh

llh

13h

14h

DWORD

BYTE

WORD

DWORD

WORD

BYTE

et only, to next least recently used buffer
backward ptr, offset only
drive (0=A,1=B, etc), FEh if not in use

flags
bit 7: remote buffer

bit 6: buffer dirty
bit 5: buffer has been referenced

bit 4: search data buffer (only valid if remote buffer)
bit 3: sector in data area

bit 2: sector in a directory, either root or subdirectory
bit 1: sector in FAT

bit 0: reserved

logical sector munber
number of copies to write
for FAT sectors, same as number of FATs

for data and directory sectors, usually 1
offset in sectors between copies to write for FAT sectors
pointer to DOS Drive Parameter Block (see INT 21/AH=32h)
buffer use count if remote buffer (see flags above)
reserved

buffered data

534 UNDOCUMENTED DOS

Notes:

■ All buffered sectors which have the same hash value (computed as the sum of high and

low words of the logical sector number divided by NDBCH) are on the same
doubly-linked circular chain.

■ The links between buffers consist of offset addresses only, the segment being the same
for all buffers in the chain.

Format of IFS driver list:

Offset Size Description

OOh DWORD pointer to next driver header
04h 8 BYTEs IFS driver name (blank padded), as used by EILESYS command
OCh 4 Bytes unknown
lOh DWORD pointer to IPS utility function entry point (see below)

call with ES:BX pointing at IFS request (see below)
14h WORD offset in header's segment of driver entry point
additional fields (if any) unknown
Call IFS utility function entry point with:
AH 20h miscellaneous functions

AL OOh get date
Returns:

CX year
DH month

DL day
AL Olh get process ID and computer ID
Returns:

BX current PSP segment
DX active network machine number

AL 05h get file system info
Call with;

ES:DI pointer to Ib-bjde info buffer
Returns:

buffer filled

Offset Size Description

OOh 2 BYTEs unused

02h WORD number of SET entries (actually coimts only the first two
file table arrays)

04h WORD number of FCB table entries

06h WORD number of proctected FCBs
08h 6 BYTEs imused

Appendix A: Undocumented DOS Functions 535

OEh WORD largest sector size supported
AL 06h get machine name
Call with:

ES:DI pointer to 18-b)de buffer for name
Returns:

buffer filled with name starting at offset 02h
AL 08h get sharing retry count
Returns:

BX sharing retry count
AL other

Returns:

CP set

AH 21 h get redirection state
BH = tjrpe (03h disk, 04h printer)

Returns: BH = state (OOh off, Olh on)

AH 22h appears to be some sort of time calculation
AL = OOh unknown

nonzero unknown

AH 23h appears to be some sort of time calculation
AH 24h compare filenames

Call with:

DS:SI pointer to first ASCIZ filename
ES:DI pointer to second ASCIZ filename

Returns:

ZF set if files are same ignoring case and / vs \
AH 25h normalize filename

Call with:

DS:SI pointer to ASCIZ filename
ES:DI pointer to buffer for result

Returns:

filename uppercased, forward slashes changed to backslashes
AH 26h get DOS stack

Returns:

DS:SI pointer to top of character I/O function stack
CX size of stack in bytes

AH 27h increment InDOS flag
AH 28h decrement InDOS flag

536 UNDOCUMENTED DOS

Note:

IFS drivers which do not wish to implement functions 20h or 24h-28h may pass the call on
to the default handler pointed at by [List-of-Lists+37h].

Format of IFS request block
Offset

OOh

02h

03h

05h

06h

Size Description

WORD total size in bytes of request
BYTE class of request

02h unknown

03h redirection

04h unknown

05h file access

06h convert error code to string
07h unknown

WORD retumed DOS error code

BYTE IFS driver exit status

OOh success

Olh to 04h unknown

FFh internal failtue

16 BYTEs unknown

—request class 02h
16h BYTE function code

04h unknown

17h BYTE apparently unused-
18h DWORD unknown pointer
ICh DWORD unknown pointer
20h 2 BYTEs unknown

—request class 03h
16h BYTE function code

17h BYTE unknown

18h DWORD unknown pointer
ICh DWORD unknown pointer
22h WORD unknown retumed value

24h WORD unknown retumed value

26h WORD unknown retumed value

28h BYTE unknown retumed value

29h BYTE apparently unused
—request class 04h
16h DWORD unknown pointer

Appendix A: Undocumented DOS Functions 537

lAh DWORD unknown pointer
—^request class 05h
16h BYTE function code

Olh flush disk space
02h get disk space
OShMKDIR

04hRMDIR

OShCHDIR

06h delete file

07h rename file

08h search directory
09h file open/create
OAhLSEEK

OBh read from file

OCh write to file

ODh lock region of file
OEh commit/close file

OFh get/set file attributes
lOh printer control
llh unknown

12h process termmation
13h unknown

—class 05h function Olh

17h 7 BYTEs unknown

lEh DWORD unknown pointer
22h 4 BYTEs unknown

26h BYTE unknown

27h BYTE unknown

—class 05h function 02h

17h 7 BYTEs unknown

lEh DWORD unknown pointer
22h 4 BYTEs unknown

26h WORD returned total clusters

28h WORD returned sectors per cluster
2Ah WORD returned bytes per sector
2Ch WORD returned available clusters

2Eh BYTE unknown returned value

2Fh BYTE unknown

—class 05h functions

o

o
CJl

538 UNDOCUMENTED DOS

17h 7 BYTEs unknown

lEh DWORD unknown pointer
22h 4 BYTEs unknown

26h DWORD pointer to directory name
—class 05h function 06h

17h 7 BYTEs unknown

lEh DWORD unknown pointer
22h 4 BYTES unknown

26h WORD attribute mask

28h DWORD pointer to filename
—class 05h function 07h

17h 7 BYTEs unknown

lEh DWORD unknown pointer
22h 4 BYTES unknown

26h WORD attribute mask

28h DWORD pointer to source filespec
2Ch WORD pointer to destination filespec
—class 05h function 08h

17h 7 BYTEs unknown

lEh DWORD unknown pointer
22h 4 BYTEs unknown

26h BYTE OOhFINDFlRST

OlhFINDNEXT

28h DWORD pointer to FindFIrst search data + Olh if FINDNEXT
2Ch WORD search attribute if FINDFIRST

2Eh DWORD pointer to filespec if FINDFIRST
—class 05h function 09h

17h 7 BYTEs unknown

lEh DWORD unknown pointer
22h DWORD pointer to IFS open file structure (see below)
26h WORD unknown \ together, these specify open vs. create and whe
28h WORD unknown / not to truncate the file
2Ah 4 BYTEs unknown

2Eh DWORD pointer to filename
32h 4 BYTEs unknown

36h WORD file attributes on call

unknown returned value

38h WORD unknown returned value

Appendix A: Undocumented DOS Functions 539

—class 05h funciton OAh

17h 7 BYTEs unknown

lEh DWORD unknown pointer
22h DWORD pointer to IFS open file structure (see below)
26h BYTE seek t3^e (02h = from end)
28h DWORD offset on call

returned new absolute position
—class 05h functions OBh, OCh

17h 7 BYTEs unknown

lEh DWORD unknown pointer
22h DWORD pointer to DFS open file structure (see below)
28h WORD number of bytes to transfer

returned bytes actually transferred
2Ah DWORD transfer address

—class 05h function ODh

17h 7 BYTEs unknown

lEh DWORD unknown pointer
22h DWORD pointer to IFS open file structure (see below)
26h BYTE file handle
27h BYTE apparently unused
28h WORD unknown

2Ch WORD unknown

2Eh WORD unknown

—class 05h function OEh

17h 7 BYTEs unknown

lEh DWORD unknown pointer
22h DWORD pointer to IFS open file structure (see below)
26h BYTE OOh commit file

Olh close file

27h BYTE apparently unused
—class 05h function OFh

17h 7 BYTEs unknown

lEh DWORD unknown pointer
22h 4 BYTEs unknown

26h BYTE 02h GET attributes

03h PUT attributes

27h BYTE apparently unused
28h 12 BYTEs unknown

34h WORD search attributes

540 UNDOCUMENTED DOS

36h DWORD pointer to filename
3M WORD (GET) unknown returned value

3Ch WORD (GET) unknown returned value

3Eh WORD (GET) unknown returned value

40h WORD (GET) unknown returned value

42h WORD (PUT) new attributes

(GET) returned attributes

—class 05h function lOh

17h 7 BYTEs unknown

lEh DWORD unknown pointer
22h DWORD pointer to IFS open file structure (see below)
26h WORD unknown

28h DWORD unknown pointer
2Ch WORD unknown

2Eh BYTE unknown

2Fh BYTE subfunction

01 h get printer setup
03h to 07h unknown

21 h set printer setup
—class 05h function llh

17h 7 BYTEs unknown

lEh DWORD unknown pointer
llh DWORD pointer to IFS open file structure'
26h BYTE subfunction

27h BYTE apparently unused
28h WORD unknown

2Ah WORD unknown

ICh WORD unknown

lEh BYTE unknown

IFh BYTE unknown

—class 05h functionllh

17h 15 BYTEs apparently unused
26h WORD PSP segment
28h BYTE tjrpe of process termination
29h BYTE apparently unused
—class 05h function 13h

17h 15 BYTEs apparently unused
26h WORD PSP segment

Appendix A: Undocumented DOS Functions 541

—^request class 06h
16h WORD

lAh BYTE

IBh BYTE

—^request class 07h
16h DWORD

lAh BYTE

IBh BYTE

returned pointer to string corresponding to error code at 03h
unknown returned value

unused

pointer to IPS open file structure (see below)
unknown

apparently unused

Format of IPS open file structure:
Offset Size Description

OOh WORD unknown

02h WORD device info word

04h WORD file open mode
06h WORD unknown

08h WORD file attributes

OAh WORD owner's network machine number

OCh WORD owner's PSP segment
OEh DWORD file size

12h DWORD current offset in file

16h WORD file time

18h WORD file date

lAh 11 BYTEs filename in FOB format

25h WORD unknown

27h WORD hash value of SET address

(low word of linear address + segment & FOOOh)
29h 3 WORDS network info from SET

2Fh WORD unknown

Format of one item In DOS 4 list of special program names:
Offset Size Description

OOh BYTE length of name (00h=end of hst)
Olh NBYTEs name in format name.ext

N+1 3 BYTEs unknown

542 UNDOCUMENTED DOS

iNT 21 h Function 53h

TRANSLATE BIOS PARAMETER BLOCK

Compute the infonnation in a Drive Parameter Block from the information in the given
BIOS Parameter Block.

Call with:

AH 53h

DS:SI pointer to BIOS Parameter Block
ES:BP pointer to buffer for DOS Drive Parameter Block

Returns:

ES:BP buffer filled with a DPB

Format of BIOS Parameter Block:

Offset Size Description

OOh WORD Number of bytes/sector
02h BYTE Number of sectors/cluster. Corresponds to (DPB byte 04h) + 1.
03h WORD Number of reserved sectors

05h BYTE Number of FATs

06h WORD Number of root directory entries
08h WORD Total number of sectors. Corresponds to:

((DPB bjMies ODh-OEh) -1) * (sectors/cluster) + (DPB Bytes OBh-OCh)
For DOS 4.0, set to zero if partition >32M, then set DWORD at
15h to actual number of sectors

OAh BYTE Media descriptor byte
OBh WORD Niunber of sectors per FAT

DOS 3+

ODh WORD Number of sectors per track
OFh WORD Number of heads

llh DWORD Number of hidden sectors

15h 11 BYTEs Reserved

DOS 4.0

15h DWORD Total number of sectors if word at 08h contains zero.

19h 6 BYTEs reserved

IFh WORD Number of cylinders.

Appendix A: Undocumented DOS Functions 543

21h BYTE Device type.
22h WORD Device attributes (removable media, etc).

See Also: DiT 21/AH=32h

INT 21 h Function 55h DOS 2+

CREATE PROGRAM SEGMENT PREFIX

Create a child Program Segment Prefix with the specified amount of available memory, and
place it at a given location.

Call with:

AH 55h

DX segment number at which to set up PSP (see INT 21 / AH=26h)
SI (DOS 3+) value to place in memory size field at DX:[0002h]

Notes:

■ This function is like INT 21 / AH=26h, but it also sets the memory size to an explicit
value rather than copjdng it from the current PSP and increments the reference count
for all inherited files.

■ The current PSP segment is set to the segment of the new PSP under DOS 2+.
■ FUes opened with the "no inherit" flag set are marked as closed in the child PSP.

See Also: INT 21/AH=26h

INT 21 h Function 56h DOS 3.1+

RENAME AHLE

Although documented, this call has the imdocumented behavior of allowing wildcards in
both source and destination when invoked via INT 21 / AX=5D00h.

Call with:

AH 56h

DS:DX pointer to ASCIZ old filespec
ES:DI pointer to ASCIZ new filespec

544 UNDOCUMENTED DOS

Returns:

CF set on error

AX error code (02h,03h,05h,llh) (see INT 21/AH=59h)

Notes:

■ This function allows moves between directories on the same logical drive.
■ When invoked via INT 21 / AX=5D00h, error 12h (no more files) is returned on success,

and both source and destination specifications must be canonical (as returned by INT
21/AH=60h). Wildcards in the destination are replaced by the corresponding character
of each source file being renamed.

See Also: INT 21/AH=17h, INT 21/AX=5D00h, INT 21/AH=60h

INT 21 h Function 5702h DOS 4.0
. -■ j;: ■ ■ ir'^v?J T.-' ."?i :■:! • IvNi-;':;V 'A':'.-' i jt. rtf;-. TiI

GET UNKNOWN INFORMATION

The purpose of this function is not yet known.

Call with:
AX 5702h
BX unknown (OOOOh through 0004h)
DS:SI unknown pointer
ES:DI pointer to result buffer
CX size of result buffer

Returns:
CX size of returned data

INT 21 h Function 5703h DOS 4.0

GET UNKNOWN INFORMATION

The purpose of this function is not yet known.

Call with:
AX 5703h
BX unknown (OOOOh through 0004h)

Appendix A: Undocumented DOS Functions 545

DS:SI unknown pointer
ES:DI pointer to result buffer
CX size of result buffer

Returns:

CX size of returned data

INT 21 h Function 5704h DOS 4.0

UNKNOWN

The pxurpose of this function is not yet known.

Call With:

AX 57{)4h

BX file handle
DS:SI unknown pointer
ES:DI pointer to result buffer
CX size of result buffer

Returns:

apparently nothing

INT 21 h Function 58h DOS 3.0+

GET OR SET ALLOCATION STRATEGY

While sometimes documented (for example, in Microsoft's MS-DOS Encyclopedia), this func
tion is included here because some key references (such as IBM's Technical Reference for DOS
3.3) do not document it. This function gets or sets the ciurent MS-DOS strategy for allocat
ing memory blocks.

Call with:

AH 58h

AL function code

OOh get allocation strategy
Olh set allocation strategy

BL strategy code
OOh first fit (use first large-enough block)

546 UNDOCUMENTED DOS

Olh best fit (use smallest large-enough block)
02h last fit (use high part of last usable block)

Returns:

CF set on error

AX error code (Olh) (see INT 21h Fimction 59h)

CF clear if successful

AX strategy code

Note:

The Set subfunction accepts any value in BL; 2 or greater indicates last fit. The Get subfunc-
tion retiuns the last value set, so programs should check whether the value is greater than
or equal to 2, not just equal to 2.

INT 21 h Function SDOOh DOS 3.1+

SERVER FUNCTION CALL

Execute a specified INT 21 h call using the sharing rules for the specified network machine
number and process ID.

Call with:

AX SDOOh

DS:DX pointer to DOS parameter list (see below)
DPL contains all register values for a call to INT 21h

Returns:

as appropriate for function being called

Notes:

■ This call does not check the requested value in AH. Out of range values will crash the
system.

■ Sharing retry delay loops are skipped.
■ A special sharing mode is enabled.
■ Functions which take filenames require canonical names (as returned by INT

21/AH=60h); this is apparently to prevent multi-hop file forwarding.
■ Rename (INT 21 /AH=56h) and Delete (INT 21 / AH=41h) allow wildcards.

Appendix A: Undocumented DOS Functions 547

Format of DOS parameter list:
Offset Size Description

OOh WORD AX

02h WORD BX

04h WORD CX

06h WORD DX

08h WORD SI

OAh WORD DI

OCh WORD DS

OEh WORD ES

lOh WORD reserved (0)

12h WORD computer ID (OOOOh=cuiTent system)
14h WORD process ID (PSP segment on specified computer)

See Also: INT 2l/AH=60h

INT 21 h Function 5D01 h DOS 3.1 +

COMMIT ALL FILES

Hush all disk buffers and update the directory entry for each file which has been written to
since opening or the last commit.

Call with:

AX SDOlh

DS:DX pointer to DOS parameter list (see INT 21 / AX=5D00h), only computer ID and
process ID fields used

Returns:

CP set on error

AX error code (see INT 21/AH=S9h)

Note:

The computer and process IDs are stored but ignored vmder DOS 3.3

See Also: INT 21/AH=68h, INT 2F/AX=1107h

548 UNDOCUMENTED DOS

INT 21 h Function 5D02h DOS 3.1 +
■ ■■ ■ -.ir -V-- .-ILTyrt- -iV

SHARE.EXE - CLOSE FILE BY NAME

Close a file given its fully-qualified name.

Call with:

AX 5D02h

DS:DX pointer to DOS parameter list (see INT 21 /AX=5D00h), only fields DX, DS,
computer ID, and process ID used

DPL's DS:DX pointer to ASCIZ name of file to close

Returns:

CP set on error

AX error code (see INT 21IAH=59h)

CP clear if successful

Notes:
■ An error is returned unless SHARE is loaded.

■ The name must be a canonical fully-qualified name such as retxuned by INT
21/AH=60h

See Also: DSJT 21/AH=52h, INT 21/AX=5D03h, INT 21/AX=5D04h, INT 21IAH=3Eh,
lNT21/AH=60h

INT 21 h Function SDOSh DOS 3.1+

SHARE.EXE - CLOSE ALL HLES FOR OVEN COMPUTER

Close all files which were opened using a particular network machine number.

Call with:

AX 5D03h

DS:DX pointer to DOS parameter list (see INT 21 / AX=5D00h), only computer ID used

Returns:

CP set on error

AX error code (see INT 21/AH=59h)

CP clear if successful

Appendix A: Undocumented DOS Functions 549

Note:

An error is returned unless SHARE is loaded.

See Also: INT 21/AH=52h, INT 21/AX=5D02h, INT 21/AX=5D04h

INT 21 h Function 5D04h DOS 3.1+

SHARE.EXE - CLOSE ALL FILES FOR GIVEN PROCESS

Close all files which were opened by a particular process.

Call with:

AX 5D04h

DS:DX pointer to DOS parameter fist (see INT 21 / AX=5D00h), only computer ID and
process ID fields used

Returns:

CF set on error

AX error code (see INT 21/AH=59h)

CF dear if successful

Note:

An error is retumed unless SHARE is loaded.

See Also: INT 21/AH=52h, INT 21/AX=5D02h, INT 21/AX=5D03h

INT 21 h Function 5D04h DOS 3.1+

SHAIiE.EXE - GET OPEN FILE UST ENTRY

Return the filename and some additional information about a specified entry in SHARE'S
internal data structures.

Call with:

AX 5D05h

DS:DX pointer to DOS parameter list (see INT 21 / AX=5D00h)
DPL's BX index of sharing record
DPL's CX index of SET in sharing record's SET list

550 UNDOCUMENTED DOS

Returns:

CF clear if successful

ES:DI pointer to ASQZ filename
BX network machine nmnber of SFT's owner

CX nmnber of locks held by SFT's owner
CF set if either index out of range

AX 0012h (no more files)

Notes:

■ An error is returned unless SHARE is loaded.

■ The returned filenames are be canonical fully-qualified names such as returned by INT
21/AH=60h

See Also: INT 21/AH=52h, INT 21/AH=5Ch, INT 21/AH=60h

INT 21 h Function 5D06h DOS 3.0+

GET ADDRESS OF DOS SWAPPABLE DATA AREA

Return the address and size of the region which must be swapped out and restored to allow
DOS to be reentered.

Call with:

AX 5D06h

Returns:

CF set on error

AX error code (see DTT 21/AH=59h)
CF clear if successful

DS:SI pointer to nonreentrant data area (includes all three DOS stacks)
(critical error flag is first byte)

CX size in bytes of area which must be swapped while in DOS
DX size in bjdies of area which must always be swapped

Notes:

■ The Critical Error flag is used in conjunction with the InDOS flag (see INT 21 / AH=34h)
to determine when it is safe to enter DOS from a TSR.

Appendix A: Undocumented DOS Functions 551

Setting the CritErr flag allows use of functions 50h/51h from INT 28h imder DOS 2.x
by forcing use of the correct stack.
Swapping the data area allows DOS to be reentered unless EXDS is in a critical section
delimited by INT 2A/AH=80h and INT 2A/AH=81h,82h.
Under EXDS 4.0, INT 21 / AX=5D0Bh should be used instead of this function.

Format of DOS 3.10-3.30 Svvappable Data Area:
Offset Size Description

OOh BYTE critical error flag
Olh BYTE InDOS flag (coimt of active INT 21h calls)
02h BYTE drive on which current critical error occurred or FFh

03h BYTE locus of last error

04h WORD extended error code of last error

06h BYTE suggested action for last error
07h BYTE class of last error

08h DWORD ES:DI pointer for last error
OCh DWORD current DTA

lOh WORD current PSP

12h WORD stores SP across an LSTT 23

14h WORD return code from last process termination (cleared after reading with
AH=4Dh)

16h BYTE current drive

17h BYTE extended break flag

remainder need only be swapped if in DOS

18h WORD value of AX on call to INT 21

lAh WORD PSP segment for sharing/network
ICh WORD network machine number for sharing/network (OOOOh=current system)
lEh WORD first usable memory block foimd when allocating memory
20h WORD best usable memory block found when allocating memory
22h WORD last usable memory block found when allocating memory
24h 2 BYTEs apparently not referenced by kernel
26h WORD unknown

28h BYTE unknown

29h BYTE unknown

2Ah BYTE unknown

2Bh BYTE flag of some kind
2Ch BYTE flag of some kind
2Dh BYTE apparently not referenced by kernel

552 UNDOCUMENTED DOS

2Eh BYTE day of month
2Fh BYTE month

30h WORD year-1980
32h WORD number of days since 1-1-1980
32h BYTE day of week (0=Simday)
35h BYTE unknown

36h BYTE unknown flag
37h BYTE unknown flag
38h 26 BYTEs device driver request header
52h DWORD pointer to device driver entry point (used in calling driver)
56h 22 BYTEs device driver request header
6Ch 22 BYTEs device driver request header
82h BYTE type of PSP copy (00h=simple copy for INT 21 / AH=26h, FFh=make child)
83h BYTE apparently not referenced by kernel
84h WORD unknown

86h WORD unknown

88h 2 BYTEs unknown

8Ah 6 BYTEs CLOCKS transfer record (see INT 21 / AH=52h)
90h 2 BYTEs unknown

92h 128 BYTEs buffer for filename

112h 128 BYTEs buffer for filename

192h 21 BYTEs findfirst/findnext search data block (see INT 21 /AH=4Eh)
1 A7h 32 BYTEs directory entry for found file
ICTh 81 BYTEs copy of current directory structure for drive being accessed
218h 11 BYTEs FCB-format filename, use unknown
223h BYTE unknown

224h 11 BYTEs wildcard destination specification for rename (FCB format)
22Fh 2 BYTEs unknown

231h WORD unknown

233h 5 BYTEs unknown

238h BYTE directory search attributes
239h BYTE type of FCB (OOh regular, FFh extended)
23Ah BYTE extended FCB file attribute (find first search attr mask)
23Bh BYTE file open mode
23Ch BYTE unknown flag bits
23Dh BYTE unknown flag or counter
23Eh BYTE unknown flag
23Fh BYTE flag indicating how DOS function was invoked (OOh if direct

INT 20/INT 21, FFh if server call AX=5D00h)

Appendix A: Undocumented DOS Functions 553

im WORD unknown

242h BYTE unknown

243h BYTE unknown

244h BYTE unknown

245h BYTE unknown flag or counter
246h BYTE unknown flag
247h BYTE unknown flag
248h BYTE unknown flag
249h BYTE type of process termination (00h-03h)
24Ah BYTE unknown flag

24Bh BYTE value with which to replace the first byte of a deleted file's name
(normally E5h, but set to OOh as described under INT 21 / AH=13h)

24Ch DWORD pointer to Drive Parameter Block for critical error invocation
250h DWORD pointer to stack frame containing user registers on INT 21
254h WORD stores SP

256h DWORD pointer to DOS Drive Parameter Block for unknown use
25Ah WORD unknown

25Ch WORD unknown

25Eh WORD unknown flag
260h WORD unknown

262h BYTE Media ID byte returned by INT 21 /AH=lBh,lCh
263h BYTE appears not to be referenced by kernel
264h DWORD unknown pointer

268h DWORD pointer to current SET
26Ch DWORD pointer to current directory structure for drive being accessed
270h DWORD pointer to caller's FCB
274h WORD unknown

276h WORD temporary storage for file handle
278h DWORD pointer to a JET entry in process handle table (see INT 21/AH=26h)
27Ch WORD offset in DOS CS of first filename argiunent
27Eh WORD offset in DOS CS of second filename argument
280h WORD unknown

282h WORD unknown

284h WORD unknown

286h WORD unknown

288h WORD unknown

28Ah WORD unknown

28Ch WORD unknown

28Eh 2 BYTEs unknown

554 UNDOCUMENTED DOS

290h WORD unknown

292h DWORD current offset in file

296h WORD unknown

298h WORD unknown

29Ah WORD unknown

29Ch WORD unknown

29Eh WORD unknown

2A0h WORD unknown

2A2h DWORD number of bytes appended to file
2A6h DWORD pointer to disk buffer
2AAh DWORD pointer to a System File Table
2AEh WORD used by INT 21h dispatcher to store caller's BX
2B0h WORD used by INT 21h dispatcher to store caller's DS
2B2h WORD temporary storage while saving/restoring caller's registers
2B4h DWORD pointer to prev caU frame (offset 250h) if INT 21h reentered

also switched to for dtiration of INT 24h

2B8h 21 BYTEs FindPirst search data for source file(s) of a rename operation
(seeINT21/AH=4Eh)

2CDh 32 BYTEs directory entry for file being renamed
2EDh 331 BYTEs critical error stack

438h 384 BYTEs disk stack (functions greater than OCh, INT 25, INT 26)
5B8h 384 BYTEs character I/O stack (functions Olh through OCh)

DOS 3.3 only

738h BYTE flag affecting AH=08h (see INT 21/AH=64h)
739h BYTE unknown, appears to be a drive number
73Ah BYTE unknown flag
73Ah BYTE unknown

See Also: INT 21/AX=5D0Bh, INT 2A/AH=80h, INT 2A/AH=81h, INT 2A/AH=82h

INT 21 h Function 5D07h DOS 3.1 + network

GET REDIRECTED PRINTER MODE

Determine whether redirected printer output is treated as a single print job or as multiple
print jobs.

Call with:
AX 5D07h

Appendix A: Undocumented DOS Functions 555

Returns:

DL mode

OOh redirected output is combined
Olh redirected output in separate print jobs

See Also: INT 21/AX=5D08h, INT 21/AX=5D09h, INT 2F/AX=1125h

INT 21 h Function 5D08h DOS 3.1 + network

SET REDIRECTED PRINTER MODE

Specify whether redirected printer output should be treated as a single print job or as multi
ple print jobs.

Call with:

AX 5D08h

DL mode

OOh redirected output is combined
Olh redirected output placed in separate jobs, start new print job now

See Also: INT 21/AX=5D07h, INT 21/AX=5D09h, INT 2F/AX=1125h

INT 21 h Function 5D09h DOS 3.1 + network

FLUSH REDIRECTED PRINTER OUTPUT

Force all redirected printer output to be sent to the printer, and start a new print job.

Call with:

AH 5D09h

See Also: INT 21/AX=5D07h, INT 21/AX=5D08h, INT 2F/AX=1125h

556 UNDOCUMENTED DOS

INT 21 h Function SDOAh DOS 3.1 +

SET EXTENDED ERROR INFORMATION

Set the values to be returned by the next "Get Extended Error Code" call.

Call with:

AX SDOAh

DS:DX pointer to DOS Parameter List (see INT 21 / AX=5D00h)

Returns:

Nothing. The next call to AH=59h will return the values from fields AX, BX, CX, DX, DI,
and ES in the corresponding registers.

See Also: lNT2i/AH=59h

INT 21 h Function 5D0Bh DOS 4.x

GET DOS SWAPPABLE DATA AREAS

Return the address of a Mst of regions which must be swapped out and restored to allow
DOS to be reentered.

Call with:

AX 5D0Bh

Returns:

CP set on error

AX error code (see INT 21/AH=59h)
CP clear if successful

DS:SI pointer to swappable data area list (see below)

Note:

Copying and restoring the swappable data areas allows DOS to be reentered xmless it is in a
critical section delimited by calls to INT 2A/AH=80h and INT 2A/AH=81h or AH=82h.

Format of swappable data area list:
Offset Size Description
OOh WORD coxmt of data areas

Appendix A: Undocumented DOS Functions 557

02h NBYTEs "count" copies of data area record
Offset Size Description
OOh DWORD address

04h WORD length and type
bit 15 set if swap always, clear if swap in DOS
bits 14-0: length in bytes

Format of PCDOS4.01 swappable data area:
Offset Size Description

OOh BYTE critical error flag
Olh BYTE InDOS flag (count of active INT 21h calls)
02h BYTE drive on which current critical error occurred or FFh

03h BYTE locus of last error

04h WORD extended error code of last error

06h BYTE suggested action for last error
07h BYTE class of last error

08h DWORD ES:DI pointer for last error
OCh DWORD ciurent DTA

lOh WORD current PSP

12h WORD stores SP across an INT 23

14h WORD return code from last process termination (cleared after reading with
AH=4Dh)

16h BYTE current drive

17h BYTE extended break flag

18h 2 BYTEs unknown

remainder need only be swapped if in DOS

lAh WORD value of AX on call to INT 21

ICh WORD PSP segment for sharing/network
lEh WORD network machine number for sharing/network (OOOOh=current system)
20h WORD first usable memory block found when allocating memory
22h WORD best usable memory block found when allocating memory
24h WORD last usable memory block foxmd when allocating memory
26h 2 BYTEs apparently not referenced by kernel
28h WORD unknown

2Ah BYTE unknown

2Bh BYTE unknown

2Ch BYTE unknown

2Dh BYTE unknown

2Eh BYTE unknown

558 UNDOCUMENTED DOS

2Fh BYTE apparently not referenced by kernel
30h BYTE day of month
31h BYTE month

32h WORD year -1980
34h WORD number of days since 1-1-1980
36h BYTE day of week (0=Sunday)
37h BYTE unknown

38h BYTE unknown

39h BYTE unknown

38h 30 BYTEs device driver request header
58h DWORD pointer to device driver entry point (used in calling driver)
5Ch 22 BYTEs device driver request header
72h 30 BYTEs device driver request header
90h 6 BYTEs unknown

96h 6 BYTEs CLOCKS transfer record (see INT 21/AH=52h)

9Ch 2 BYTEs unknown

9Eh 128 BYTEs buffer for filename

llEh 128 BYTEs buffer for filename

19Eh 21 BYTEs findfirst/findnext search data block (see INT 21 /AH=4Eh)
lB3h 32 BYTEs directory entry for foimd file
lD3h 88 BYTEs copy of current directory structure for drive being accessed
22Bh 11 BYTEs FCB-format filename, use unknown

236h BYTE unknown

237h 11 BYTEs wildcard destination specification for rename (FCB format)
242h 2 BYTEs unknown

244h WORD unknown

2m 5 BYTEs unknown

24Bh BYTE unknown

24Ch BYTE unknown

24Dh BYTE attribute mask for directory search
24Eh BYTE unknown

24Fh BYTE unknown flag bits
250h BYTE unknown

251h BYTE unknown

252h BYTE flag indicating how DOS function was invoked
(OOh if direct INT 20/lNT 21, FFh if server call AX=5D00h)

253h BYTE unknown

254h BYTE unknown

255h BYTE unknown

Appendix A: Undocumented DOS Functions 559

256h BYTE unknown

257h BYTE unknown

258h BYTE unknown

259h BYTE unknown

25Ah BYTE unknown

25Bh BYTE unknown

25Ch BYTE type of process termination (00h-03h)
25Dh BYTE unknown

25Eh BYTE unknown

25Fh BYTE unknown

260h DWORD pointer to EWve Parameter Block for critical error invocation
264h DWORD pointer to stack frame containing user registers on INT 21
268h WORD stores SP

26Ah DWORD pointer to DOS Drive Parameter Block for unknown use
26Eh WORD segment of disk buffer
270h WORD unknown

272h WORD unknown

274h WORD unknown

276h WORD unknown

278h BYTE Media ID byte returned by DSIT 21/AH=lBh,lCh
279h BYTE apparently not referenced by kernel
27Ah DWORD unknown pointer
27Eh DWORD pointer to current SET
282h DWORD pointer to current directory structure for drive being accessed
286h DWORD pointer to caller's FCB
28Ah WORD unknown

28Ch WORD unknown

28Eh DWORD pointer to a JET entry in process handle table (see INT 21/AH;
292h WORD offset in DOS CS of first filename aigument
294h WORD offset in DOS CS of second filename aigument
296h WORD unknown

298h WORD unknown

29M WORD unknown

29Ch WORD unknown

29Eh WORD unknown

2A0h WORD unknown

2A2h WORD appears to be directory cluster number
2A4h DWORD unknown

2A8h DWORD unknown

560 UNDOCUMENTED DOS

2ACh WORD unknown

2AEh DWORD offset in file
2B2h WORD unknown

2B4h WORD bytes in partial sector
2B6h WORD number of sectors

2B8h WORD unknown

2BAh WORD unknown

2BCh WORD unknown

2BEh DWORD number of bytes appended to file
2C2h DWORD pointer to a disk buffer for unknown use
2C6h DWORD pointer to a System File Table for unknown use
2CAh WORD used by INT 21h dispatcher to store caller's BX
2CCh WORD used by INT 21h dispatcher to store caller's DS
2CEh WORD temporary storage while saving/restoring caller's registers
2D0h DWORD pointer to prev call frame (offset 264h) if INT 21h reentered

also switched to for duration of DMT 24

2D4h WORD unknown

2D6h BYTE unknown

2D7h WORD unknown

2D9h DWORD unknown pointer
2DDh WORD unknown

2DFh WORD unknown

2Elh WORD unknown

2E3h DWORD unknown

2E7h WORD unknown

2E9h WORD unknown

2EBh BYTE unknown

2ECh WORD stores DS during call to [List-of-Lists + 37h]
2EEh WORD unknown

2F0h BYTE unknown

2Flh WORD unknown bitflags
2F3h DWORD pointer to user-supplied filename
2F7h DWORD unknown pointer
2FBh WORD stores SS during call to [List-of-Lists + 37h]
2FDh WORD stores SP during call to [List-of-Lists + 37h]
2FFh BYTE flag, nonzero if stack switched in calling [List-of-Lists+37h]
300h 21 BYTEs FindPirst search data for source file(s) of a rename operation

(seelNT21/AH=4Eh)

315h 32 BYTEs directory entry for file being renamed

Appendix A: Undocumented DOS Functions 561

335h 331 BYTEs critical error stack

480h 384 BYTEs disk stack (functions greater than OCh, INT 25, INT 26)
600h 384 BYTEs character 1/O stack (functions Olh through OCh)
780h BYTE flag affecting AH=08h (see INT 21 / AH=64h)
781h BYTE appears to be a drive number
782h BYTE unknown flag
783h BYTE unknown

784h WORD unknown

786h WORD unknown

788h WORD unknown

78Ah WORD unknown

See Also: INT 21/AX=5D06h, INT 2A/AH=80h, INT 2A/AH=81h, INT 2A/AH=82h

INT 21 h Function 5E01 h DOS 3.1 + network

SET MACHINE NAME

Specify the system's network machine name and number.

Call with:

AX SEOlh

CH OOh xmdefine name

other define name

CL name number

DS:DX pointer to 15-character blank-padded ASCIZ name

See Also: INT 21/AX=5E00h

INT 21 h Function 5E04h DOS 3.1 + network

SET PRINTER MODE

Specify whether the printer should be operated in text or binary mode.

Call with:

AX 5E04h

BX redirection list index

562 UNDOCUMENTED DOS

DX mode

bit 0: set if binary, clear if text (tabs expanded to blanks)

Returns:

CF set on error

AX error code (see INT 21IAH=59h)

Note:

Calls INT 2F/AX=lllFh with 5E04h on stack.

See Also: INT 21/AX=5E05h, INT 2F/AX=lllFh

INT 21 h Function 5E05h DOS 3.1 + network

GET PRINTER MODE

Determine whether the printer is being operated in text or binary mode.

Call with:

AX 5E05h

BX redirection hst index

Returns:

CF set on error

AX error code (see INT 21/AH=59h)

CF clear if successful

DX printer mode (see INT 21/AX=5E04h)

Note:

Calls INT 2F/AX=lllFh with 5E05h on stack.

See Also: INT 21/AX=5E04h, INT 2F/AX=lllFh

Appendix A: Undocumented DOS Functions 563

INT 21 h Function 5F00h DOS 3.1 + network

GET REDIRECTION MODE

Determine whether disk or printer redirection is current enabled.

Call with:

AX 5F00h

BL redirection type
03h printer
04h disk drive

Returns:
CF set on error

AX error code (see INT 21/AH=59h)

CF clear if successful

BH redirection state

OOhoff

Olhon

See Also: INT 21/AX=5F01h

INT 21 h Function 5F01 h DOS 3.1 + network

SET REDIRECTION MODE

Specify whether disk or printer redirection is to be enabled or disabled.

Call with:
AX SFOlh

BL redirection type
03h printer
04h disk drive

BH redirection state

OOhoff

Olhon

Returns:
CF set on error

AX error code (see INT 21 /AH=59h)

564 UNDOCUMENTED DOS

Note:

When redirection is off, the local device (if any) rather than the remote device is used.

See Also: INT 21/AX=5F00h, INT 2F/AX=lllEh

INT 21 h Function 5F05h DOS 4+ network

GET REDIRECTION LIST EXTENDED ENTRY

Return the source and target of a given redirection, as well as its status and type.

Call with:

AX 5F05h

BX redirection list index

DS:SI pointer to buffer for ASCIZ source device name
ES:DI pointer to buffer for destination ASCIZ network path

Returns:

CF set on error

AX error code (see INT 21/AH=59h)

CF clear if successful

BH device status flag (bit 0 clear if valid)
BL device type (03h if printer, 04h if drive)
CX stored parameter value (user data)
BP NETBIOS local session number

DS:SI buffer fiUed

ES:DI buffer filled

Note:

The local session number allows sharing the redirector's session number. However, if an
error is caused on the NETBIOS LSN, the redirector may be unable to correctly recover
from subsequent errors.

See Also: INT 2F/AX=lliEh

Appendix A: Undocumented DOS Functions 565

INT 21 h Function 5F06h DOS 4+ network
; ■ /■ I..i^-. y f ' ■«- ;• •• *.U

GET REDIRECTION UST

This function appears to be similar to INT 21/AX=5F02h (get redirection list) and INT
21 / AX=5F05h (get redirection list extended entry).

Call with:
AX 5F06h

additional arguments (if any) unknown

Returns:
unknown

See Also: INT 21/AX=5F05h, INT 2F/AX=lllEh

INT 21 h Function 60h DOS 3+ internal

RESOLVE PATH STRING TO CANONICAL PATH STRING

Given a file specification, return an absolute pathname which takes into account any renam
ing due to JOIN, SUBST, ASSIGN, or network redirections.

Call with:
AH 60h

DS:SI pointer to ASCIZ relative path string or directory name
ES:DI pointer to 128-byte buffer for ASCIZ canonical fully qualified name

Returns:
CP set on error

AX error code
02h invahd source name

03h invahd drive or malformed path
CF clear if successful

AH OOh

AL destroyed (OOh or 5Ch or last character of current directory on drive)
buffer fiUed with qualified name of the form D:\PATH\FILE.EXT or

\ \MACHINE\PATH\FILE.EXT

566 UNDOCUMENTED DOS

Notes:

■ The input path need not actually exist.
■ Letters are converted to uppercase, forward slashes are converted to backslashes,

asterisks are converted to the appropriate number of question marks, and file and

directory names are truncated to 8.3 characters if necessary. Additionally, and

entries in the path are resolved.
■ Qualified jfilespecs on local drives always start with "d:", those on network drives

always start with "\\".
■ If the given path string is on a JOINed drive, the returned name is the one that would

be needed if the drive were not JOINed; similarly for a SUBSTed, ASSIGNed, or
network drive letter. Because of this, it is possible to get a qualified name that is not
legal under the current combination of SUBSTs, ASSIGNs, JOINs, and network

redirections.

■ Functions which take pathnames require canonical paths if invoked via the INT

21/AX=5D00h server call mechanism.

■ This function is supported by the OS/2 vl.l compatibility box.

See Also: INT 2F/AX=1123h, INT 2F/AX=1221h

INT 21 h Function 61 h DOS 3+

UNUSED

This function performs no action and returns immediately.

Call with:

AH 61h

Returns:

AL OOh

INT 21 h Function 63h DOS 2.25 only

GET LEAD BYTE TABLE (2-BYTE CHARACTER SUPPORT)

The subfunctions of this call provide additional foreign-language support.

Appendix A: Undocumented DOS Functions 567

Call with:

AH 63h

AL subfunction

OOh get system lead byte table
Returns:

DS:SI pointer to lead byte table
Olh set/clear interim console flag (determine whether interim bytes are returned on

some console jfunctions)

DL Olh/OOh to set/clear interim console flag
02h get interim console flag
Returns:

DL interim console flag

Returns:

CF set on error

AX error code (Olh) (see INT 21/AH=59/i)

CF clear if successful

DS:SI pointer to lead byte table (subfunction OOh only)
DL interim console flag (subfunction 02h only)

Note:

These calls do not preserve any registers other than CS:IP and SS:SP.

INT 21 h Function 6300h Asian DOS 3.2-I- only

GET DOUBLE BYTE CHARACTER SET LEAD TABLE

Return a list of the ranges of characters which are the first half of a two-byte character.

Call with:

AX 6300h

Returns:

AL error code

OOh successful

DS:SI pointer to DBCS table (see below)
BX, CX, DX, BP, Dl, and ES destroyed

FFh not supported

568 UNDOCUMENTED DOS

Notes:
■ This call is probably identical to INT 21 / AX=6300h for DOS 2.25.

■ The US version of DOS 4.0 accepts this function, but returns an empty list.

Format of DBCS table:
Offset Size Description
OOh 2 BYTEs low/high ends of a range of leading byte of double-byte chars
02h 2 BYTEs low/high ends of a range of leading byte of double-byte chars

N 2 BYTEs 00h,00h end flag

INT 21 h Function 6301 h Asian DOS 3.2+ only

SET KOREAN (HONGEUL) INPUT MODE

Specify whether console input functions are allowed to return partially-formed multi-key-
stroke characters.

Call with:
AX 6301h

DL new mode

OOh return only full characters on DOS keyboard input functions
Olh return partially-formed characters also

Returns:
AL status

OOh successful

FFh invalid mode

See Also: INT 21/AX=6302h

INT 21 h Function 6302h Asian DOS 3.2+ only

GET KOREAN (HONGEUL) INPUT MODE

Determine whether console input functions will return partially-formed multi-keystroke
characters.

Call with:
AX 6302h

Appendix A: Undocumented DOS Functions 569

Returns:

AL status

OOh successful

DL current input mode
OOh return only full characters
Olh return partial characters

FFh not supported

See Also: INT 21/AX=6301h

INT 21 h Function 64h DOS 3.2 only

GET/SET UNKNOWN FLAG

The purpose of this function is not known.

Call with:

AH 64h

AL subfunction

OOh get value
Returns:

DL unknown

Olh set value

DL unknown

02h get and set value
DL new value

Returns:

DL old value

INT 21 h Function 64h DOS 3.3+

SET UNKNOWN FLAG

The purpose of this function is not known, other than the fact that the flag is used only by
INT21/AH=08h.

Call with:

AH 64h

570 UNDOCUMENTED DOS

AL flag
OOh unknown

nonzero unknown

Returns:

nothing

Note:

■ This function is called by DOS 3.3+ PRINT.COM.
■ This function uses caller's stack, and is therefore reentrant.

INT 21 h Function 6505h DOS 3.3+

GET POINTER TO FILENAME TERMINATOR TABLE

Return information about the characters which terminate a filename.

Call with:

AX 6505h

BX code page (-l=gIobal code page)
DX coxmtry ID (-l=current cotmtry)
ES:DI pointer to country information buffer (see below)
CX size of buffer (>= 5)

Returns:

CP set on error

AX error code (see INT 21/AH=59h)
CP clear if succesful

CX size of cotmtry information returned
ES:DI pointer to cotmtry information

Notes:

■ This fimction appears to return the same information for all cotmtries and code pages.
■ NLSPUNC must be installed to get information for cotmtries other than the defatilt.

Format of country Information:
Offset Size Description
OOh BYTE info ID

Olh DWORD pointer to filename character table (see below)

Appendix A: Undocumented DOS Functions 571

Format of filename terminator table:

Offset Size Description

OOh WORD table size

02h 7 BYTEs unknown (OlhOOhFFhOOhOOhlOhOlhinMSDOS 3.30)

09h BYTE length of following data
OAh N BYTES characters which terminate a filename: <>."/\[]: I +=;,

See Also: INT 21/AH=38h, INT 2F/AX=1401h, INT 2F/AX=1402h

INT 21 h Function 65h DOS 4+

COUNTRY-DEPENDENT CHARACTER CAPITALIZATION

Capitalize a character or string using the capitalization rules for the current coimtry.

Call with:

AH 65h

AL function

20h capitalize character
DL character to capitalize

21h capitalize string
DS:DX pointer to string to capitalize
CX length of string

22h capitalize ASCIZ string
DS:DX pointer to ASCIZ string to capitalize

Returns:

CP set on error

AX error code (see INT 21/AH=59h)

CP clear on success

DL = capitalized character (function OOh only)

572 UNDOCUMENTED DOS

INT 21 h Function 6523h DOS 4+

DETERMINE IF CHARACTER REPRESENTS YES/NO RESPONSE

Compare the specified character against the YES and NO responses for the current country.

Call with:

AX 6523h

DL character

DH second character of double-byte character (if applicable)

Returns:

CP set on error

CP clear if successful

AX tj^e
OOh no

Olh yes
02h neither yes nor no

INT 21 h Function 65h DOS 4+

COUNTRY-DEPENDENT FILENAME CAPITALIZATION

Capitalize a filename character or string using the filename capitalization rules for the cur
rent country.

Call with:

AH 65h

AL function

AOh capitalize filename character
DL character to capitalize

Returns:

DL capitalized character
Alh capitalize counted filename string

DSrDX pointer to filename string to capitalize
CX length of string

A2h capitalize ASCIZ filename
DSrDX pointer to ASCIZ filename to capitalize

Appendix A; Undocumented DOS Functions 573

Returns:

CF set on error

AX error code (see INT 21/AH=59h)

Note:

These calls are nonfunctional in DOS 4.00 and 4.01 due to a bug.

INT 21 Function 67h DOS 3.3+

SET HANDLE COUNT

Although documented, this function is included because of a bug in early releases. This
function is used to increase the per-process limit on open files beyond the default of 20 files.

Call with:

AH 67h

BX desired number of handles

Returns:

CF set on error

AX error code (see INT 21/AH=59h)

CF clear if successful

Notes:

■ No action is taken if BX is <= 20.

■ Only the first 20 handles are copied to child processes in DOS 3.3. Although it is
perfectly legal to specify more that 255 handles, it is not possible to use more than 255
unless some handles are duplicates created with INT 21 / AH=45h or INT 21 / AH=46h.

BUG:

The original release of EXDS 3.3 allocates a full 64K for the handle table on requests for an
even munber of handles.

See Also: INT 21/AH=26h

574 UNDOCUMENTED DOS

INT 21 h Function 69h

GET/SET DISK SERIAL NUMBER

Determine or specify a disk's serial number and volume label.

Call with:

AH 69h

AL subfunction

OOh get serial number
Olh set serial number

BL drive (0=default, 1=A, 2=B, etc)

DS:DX pointer to disk info (see below)

Returns:

CP set on error

AX error code (see INT 21/AH=59h)
CP clear if successful

AX destroyed
(AL=00h) buffer filled with appropriate values from extended BPB
(AL=01h) extended BPB on disk set to values from buffer

Notes:

■ This function will not generate a critical error; all errors are returned in AX.
■ Error OOOSh is returned if there is no extended BPB on the disk.

■ This function does not work on network drives, and returns error OOOlh if used on a

network drive.

■ The birffer after the first two b5^es is an exact copy of bytes 27h thru 3Dh of the
extended BPB on the disk.

Format of disk info:

Offset Size Description
OOh WORD info level (zero)

02h DWORD disk serial munber (binary)
06h 11 BYTEs volume label or "NO NAME " if none present
llh 8 BYTEs (AL=00h only) filesystem type—string "PAT12 "or"PAT16"

Appendix A: Undocumented DOS Functions 575

INT 21 h Function 6Ah DOS 4+

UNKNOWN

The purpose of this function is not known.

Call with:

AH 6Ah

additional arguments (if any) unknovm

Returns:

unknown

INT 21 h Function 6Bh DOS 4+

UNKNOWN

The purpose of this function is not known, but it appears to be related to installable file systems.

Call with:
AH 6Bh

AL subfunction

OOh unknown

DS:SI pointer to Current Directory Structure
CL drive (1=A:)

Olh unknown

DS:SI unknown pointer
CL file handle

Olh unknown

DS:S1 pointer to Current Directory Structure
DI unknown

CX drive (1=A:)

additional arguments (if any) unknown

Returns:

unknown

Note:
This call is passed directly through to INT 2F/ AX=112Fh, with the caller's AX on the top of
the stack.

576 UNDOCUMENTED DOS

INT 28h DOS 2+

KEYBOARD BUSY LOOP

This interrupt is called from inside the "get input from keyboard" routine in DOS, if and
only if it is safe to use INT 21h Functions OD and higher at that time even if the state of the
INDOS flag (see INT 21 / AH=34h) indicates otherwise. It is used primarily by the
PRINT.COM routines and TSR programs, but any number of other routines could be
chained to it by saving the original vector, and calling it (or just JMPing to it) at the end of
the new routine.

Notes:
■ This interrupt is supported by the OS/2 compatibihty box.
■ The INT 28h handler may invoke any INT 21h function except functions OOh through
OCh (and 50h/51h tmder DOS 2.xx unless the DOS Critical Error flag is set).

■ Calls to INT 21 / AH=3Fh and INT 21 / AH=40h made from inside the INT 28h handler

may not use a handle which refers to CON.

■ Until a program installs its own routine, this interrupt vector points to an IRET opcode.

See Also: INT 2A/AH=84h

INT 29h DOS 2+

FASTPUTCHAR

This interrupt is called from the DOS output routines when sending characters to a device
whose attribute word has bit 4 set.

Call with:
AL character to display

Returns:
nothing

Notes:
■ The default handler under DOS 2.x and 3.x simply calls INT 10/AH=0Eh.
m The default handler vmder DESQview 2.2 understands the <ESC>[2J screen-clearing

sequence, but calls INT 10/AH=0Eh otherwise.

■ COMMAND.COM v3.3 compares the vectors for INT 20h and INT 29h, and assumes that
ANSI.SYS is installed if the segment of INT 29h is greater than the segment of INT 20h.

Appendix A: Undocumented DOS Functions 577

INT 2Ah Function OOh network

INSTALLATION CHECK

Determine whether a Microsoft Networks-compatible network is installed.

Call with:

AH OOh

Returns:

AH nonzero if installed

INT 2Ah Function 01 h network

EXECUTE NETBIOS REQUEST, NO ERROR RETRY

This caU is equivalent to invoking INT 5C, the NETBIOS interrupt.

Call with:

AH Olh

ES:BX pointer to NCB (see INT 5C)

Returns:

AL NetBIOS error code

AH OOh if no error

Olh on error

See Also: INT 2A/AH=04h, INT 5C

INT 2Ah Function 02h network

SET NETWORK PRINTER MODE

Call with:

AH 02h

additional arguments (if any) unknown

Returns:

unknown

578 UNDOCUMENTED DOS

INT 2Ah Function 03h network

CHECK DIRECT I/O

This function determines whether direct transfers to a disk are allowed.

Call with:

AX 0300h

DS:SI pointer to ASCIZ disk device name (full path or only drive specifier—must include
the colon)

Returns:

CP clear if direct disk access allowed

set if disallowed

Notes:

■ Do not use direct disk accesses if this function returns CP set or the device is redirected

(INT21/AX=5P02h).

■ This function may take some time to execute.

See Also: INT 13, INT 25, INT 26, INT 21/AX=5P02h

INT 2Ah Function 04h network

EXECUTE NETBIOS REQUEST

Invoke the NETBIOS handler, optionally retrying the operation on certain errors.

Call with:

AH 04h

AL OOh for error retry, Olh for no retry
ES:BX pointer to NCB (see INT 5C)

Returns:

AX OOOOh for no error

AH Olh

AL error code

Appendix A: Undocumented DOS Functions 579

Note:

The request is automatically retried (if AL=00h) on errors 09h, 12h, and 21h.

See Also: INT 2A/AH=01h, INT 5C

i t-J-. .vj' ■■ ■; <■■■■■• ■■ h ■ • 'Ml ■■ .r <■ r-:' "li- ;i J- : ; V- - ■

INT 2Ah Function 05h network

GET NETWORK RESOURCE INFORMATION

Determine the available amoimts of several important network resources.

Call with:
AX OSOOh

Returns:
AX reserved
BX number of network names available
CX nmnber of commands (NCBs) available
DX number of sessions available

NETBIOS

NETWORK PRINT-STREAM CONTROL

Specify behavior of redirected network printer output.

Call with:
AH 06h
AL Olh set concatenation mode (all printer output put in one job)

02h set tnmcation mode (default)
printer open/close starts new print job
03h flush printer output and start new print job

Returns:
CP set on error

AX error code

580 UNDOCUMENTED DOS

Note:

Subfunction 03h is equivalent to pressing Ctrl/ Alt/keypad-*.

See Also: INT 21/AX=5D08h, INT 21/AX=5D09h, INT 2F/AX=1125h

INT 2Ah Function 2001 h network

UNKNOWN

The purpose of this function is not known.

Call with:

AX 2001h

additional arguments (if any) unknown

Returns:

unknown

Note:

This function is intercepted by DESQview 2.x.

INT 2Ah Function 2002h network

UNKNOWN

The purpose of this function is not known.

Call with:

AX 2002h

additional arguments (if any) unknown

Returns:

unknown

Note:

This function is caUed by MSDOS 3.30 APPEND.

Appendix A: Undocumented DOS Functions 581

INT 2Ah Function 2003h network

UNKNOWN

The purpose of this function is not known.

Call with:

AX 2003h

additional arguments (if any) unknown

Returns:

unknown

Note:

This function is called by MSDOS 3.30 APPEND.

INT 2Ah Function 80h network

BEGIN DOS CRITICAL SECTION

Indicate that an uninterruptible region of code is being entered.

Called with:

AH 80h

AL critical section number (OOh-OFh)

Olh DOS kernel, SHARE.EXE

02h DOS kernel

05h DOS4+IFSFUNC

06h DOS 4+ IFSFUNC

08h ASSICN.COM

Notes:

■ This function is normally hooked to keep track of which critical sections are in effect,
rather than being called by a user program. Knowledge of the critical regions in effect is
necessary to properly reenter DOS using the swappable data area returned by INT
21/AX=5D06h or INT 21/AX=5D0Bh.

582 UNDOCUMENTED DOS

See Also: INT 21/AX=5D06h, INT 21/AX=5D0Bh, INT 2A/AH=81h, INT 2A/AH=82h,

INT 2A/AH=87h

■ The handler should ensure that none of the critical sections are reentered, usually by
suspending a task which attempts to reenter an active critical section.

■ Critical section 01 h is apparently used to maintain the integrity of DOS, SHARE, and
netork data structures.

■ Critical section 02h ensures that no multitasking occurs while DOS is calling a device
driver.

INT 2Ah Function 81 h network

END DOS CRITICAL SECTION

Indicate that an uninterruptible region of code is being left.

Called with:

AH 81h

AL critical section number (OOh-OFh) (see INT 2A/AH=80h)

Note:
This function is normally hooked rather than called by a user program.

See Also: INT 2A/AH=80h, INT 2A/AH=82h, INT 2A/AH=87h

INT 2Ah Function 82h network

END CRITICAL SECTIONS 0 THROUGH 7

Clean up any DOS critical section flags which may have been left set by an aborted process
or DOS function call.

Called with:

AH 82h

Notes:
■ The INT 21h function dispatcher caUs this function for DOS function 0 and DOS

functions greater than OCh except 59h. DOS also caUs this function on process
termination.

Appendix A: Undocumented DOS Functions 583

m This function is normally hooked rather than caUed by a user program.

See Also: INT 2A/AH=81h

INT 2Ah Function 84h network

KEYBOARD BUSY LOOP

This is a hook to let other work proceed while waiting for keyboard input.

Called with:

AH 84h

Note:

similar to DOS's INT 28h

See Also: INT 28h

INT 2Ah Function 87h network

CRITICAL SECTION

Specify the start or end of a critical section of code.

Call with:

AH 87h

AL OOh start

Olh end

Note:

This function is called by PRINT.COM.

See Also: INT 2A/AH=80h, INT 2A/AH=81h

584 UNDOCUMENTED DOS

INT 2Ah Function 89h network

UNKNOWN

The purpose of this function is not known.

Call with:

AH 89h

AL unknown (ASSIGN uses OSh)

additional arguments (if any) unknown

Returns:

unknown

INT 2Ah Function C2h network

UNKNOWN

The purpose of this function is not known.

Call with:

AH

AL

C

BX

2h

subfunction

07h unknown

OSh unknown

OOOlh

additional arguments (if any) unknown

Returns:

unknown

Note:

This function is called by DOS 3.30 APPEND.

Appendix A: Undocumented DOS Functions 585

INT2Bh DOS 2+

UNUSED

This vector points at an IRET instruction under DOS 2.0 through 4.01.

INT 2Ch DOS 2+

UNUSED

This vector points at an IRET instruction under DOS 2.0 through 4.01.

INT 2Dh DOS 2+

UNUSED

This vector points at an IRET instruction under DOS 2.0 through 4.01.

INT 2Eh DOS 2+

EXECUTE COMMAND

Force COMMAND.COM to execute a command as if it were typed from the keyboard.

Call with:

DS:SI pointer to counted CR-terminated command string

Notes:

■ The top-level COMMAND.COM executes the conunand.
■ AH registers including SS and SP are destroyed as in INT 21/AH=4Bh.
■ Since COMMAND.COM processes the string as if typed from the keyboard, the

transient portion needs to be present, and the calling program must ensure that
sufficient memory to load the transient portion can be allocated by DOS if necessary.

586 UNDOCUMENTED DOS

DOS 2.x onlyINT 2Fh Function OOh

PRINT.COM - UNKNOWN

The purpose of this function is not known.

Call with:

AH OOh

additional arguments (if any) unknown

Returns:

unknown

Notes:

■ DOS 2.x PRINT.COM does not chain to the previous INT 2Fh handler.
■ Values of AH other than OOh or Olh cause PRINT to return in AH the number of files in

the queue.

See Also: INT 2F/AH=0ih

INT 2Fh Function 0080h

PRINT.COM - GIVE PRINT A TIME SLICE

Allow PRINT to execute for a while.

Call with:

AX OOSOh

Returns:

after PRINT executes

DOS 3.1 +

Appendix A: Undocumented DOS Functions 587

INT 2Fh Function 01 h DOS 2.x only

PRINT.COM - UNKNOWN

The purpose of this function is not known.

Call with:

AH Olh

additional arguments (if any) unknown

Returns:

unknown

Notes:

■ DOS 2.x PRINT.COM does not chain to the previous ESTT 2Hh. handler

■ Values of AH other than OOh or Olh cause PRINT to return in AH the number of files in

the queue.

See Also: INT 2F/AH=00h

INT 2Fh Function 0106h DOS 3.3+

PRINT.COM - CHECK IF ERROR ON OUTPUT DEVICE

Determine whether the PRINT output device is cxurently in an error state.

Call with:

AX 0106h

Returns:

CP set on error

AX error code

DS:SI pointer to device driver header
CF clear if successful

AX OOOOh

See Also: INT 2F/AX=0104h

588 UNDOCUMENTED DOS

INT 2Fh Function 0200h PC LAN PROGRAM

REDIR/REDIRIFS

INSTALLATION CHECK

Determine whether the PC LAN Program redirector is installed.

Call with:
AX 0200h

Returns:
AL FFh if installed

INT 2Fh Functions 0201 h- PC LAN PROGRAM

0204h REDIR/REDIRIFS

UNKNOWN

The purpose of these functions is not known.

Call with:
AH 02h

AL subfunction

Returns:
unknown, probably nothing

Notes:
■ These functions are called by DOS 3.3+ PRINT.COM.
■ AL=01h and 02h appear to be inverse functions, as well as 03h and 04h.

INT 2Fh Function 0500h DOS 3+

CRITICAL ERROR HANDLER - INSTALLATION CHECK

Determine whether code to expand an error number into the corresponding error message
has been loaded.

Called with:
AX OSOOh

Appendix A: Undocumented DOS Functions 589

Returns:

AL OOh not installed, OK to install

Olh not installed, can't install

HFh installed

Note:

This set of functions allows a user program to partially or completely override the default
critical error messages in COMMAND.COM.

See Also: nsn 24

INT 2Fh Function 05h DOS 3-I-

CHTTICAL ERKOR HANDLER - EXPAND ERROR INTO STRING

Convert an error number into the corresponding error message.

Called with:
AH 05h

DOS 3.x

AL extended error code (not zero)

DOS 4.x

AL error tj^e
Olh DOS extended error code

02h parameter error
BX error code

Returns:
CF clear if successful

ES:DI pointer to ASCIZ error message (read-only)
AL unknown

CF set if error code can't be converted to string

Notes:

■ This function is called at the start of COMMAND.COM's default critical error handler

if INT 2F/AX=G500h indicates that a handler is installed, allowing partial or complete
overriding of the default error messages.

■ Subfunction 02h is called by many of the DOS 4 external commands.

See Also: INT 2F/AX=122Eh, INT 24

590 UNDOCUMENTED DOS

INT 2Fh Function 0600h DOS 3+

ASSIGN - INSTALLATION CHECK

Determine whether ASSIGN has been loaded.

Call with:

AX 0600h

Returns:

AL nonzero if installed

INT 2Fh Function 0601 h DOS 3+

ASSIGN - GET MEMORY SEGMENT

Return a pointer to the drive translation table used by ASSIGN.

Call with:

AX 0601h

Returns:

ES segment of ASSIGN work area and assignment table

Note:

Under DOS 3.1+, the 26 bytes starting at ES:0103h specify which drive each of A: to Z: is
mapped to. Initially set to Olh 02h 03h....

INT 2Fh Function 0800h DOS 3.2+

DRIVER.SYS SUPPORT - INSTALLATION CHECK

Determine whether the DRrVER.SYS support is present.

Call with:

AX 0 800h

Appendix A: Undocumented DOS Functions 591

Returns:

AL OOh not installed, OK to install

Olh not installed, not OK to install

FFh installed

INT 2Fh Function 0801 h DOS 3.2+

DRIVER.SYS SUPPORT - ADD NEW BLOCK DEVICE

Add a new logical drive alias for an existing physical drive.

Call with:

AX OSOlh

DS:DI pointer to drive data table (see INT 2F/AX=0803h)

Notes:

■ Scans the internal list of drive data tables, copying and modifying the drive description
flags word for tables referencing same physical drive.

■ The new data table is appended to the chain of tables.

See Also: INT 2F/AX=0803h

il^2FhRjncticmi^^ ^
DRIVER.SYS SUPPORT - EXECUTE DEVICE DRIVER REQUEST

Execute the specified device driver request for a drive alias established by INT
2F/AX=0801h.

Call with:

AX 0802h

ES:BX pointer to device driver request header (see below)

Returns:

request header updated as per requested operation

592 UNDOCUMENTED DOS

Format of device driver request header:
Offset Size Description

OOh BYTE length of request header
01 h BYTE subunit within device driver

G2h BYTE command code (see below)

03h WORD status (filled in by device driver)
bit 15: error

bits 14-10: reserved

bit 9: busy
bit 8: done

bits 7-0: error code if bit 15 set (see below)

05h 8 BYTEs reserved (imused by DOS <= 3.3)

command code OOh

ODh BYTE

OEh DWORD

12h DWORD

16h BYTE

command code 01 h

ODh BYTE

OEh BYTE

number of units (set by driver)
address of first free byte following driver (s

media descriptor
returned status

et by driver)
pointer to BPB array (set by block drivers only)
(DOS 3+) drive number for first unit of block driver (0=A)

OFh

OOh don't know

Olh media has not changed
FFh media has been changed

DWORD (DOS 3+) pointer to previous volume ID if OPEN/CLOSE/RM bit in
device header set and disk changed (set by driver)

command code 02h

ODh BYTE

OEh DWORD

media descriptor
transfer address

pointer to scratch sector if NON-IBM FORMAT bit in device header set
pointer to first FAT sector otherwise

12h DWORD pointer to BPB (set by driver)

command codes 03h,0Ch

ODh BYTE media descriptor (block devices only)
OEh DWORD transfer address

12h WORD byte count (character devices) or sector count (block devices)
14h WORD starting sector munber (block devices only)

Appendix A: Undocumented DOS Functions 593

command codes 04h,08h,09h

ODh BYTE media descriptor (block devices only)
OEh DWORD transfer address

12h WORD byte count (character devices) or sector count (block devices)
14h WORD starting sector number (block devices only)
16h DWORD (DOS 3+) pointer to volume ID if error OFh returned

command code 05h

ODh BYTE bjde read from device if BUSY bit clear on return

command codes 06h,07h,0Ah,0Bh

no further fields

command code lOh

ODh BYTE unused

OEh DWORD transfer address

12h WORD byte coimt

command code 13h

ODh BYTE category code
OOh imknown

OlhCOMn:

OShCON

OShLPTn:

08h disk

OEh BYTE function code

OFh DWORD apparently unused in DOS 3.3
13h DWORD pointer to parameter block from INT 21 / AX=440Dh

Values for command code:

OOhlNIT

Olh MEDIA CHECK (block devices)

02h BUILD BPB (block devices)

03hlOCTL INPUT

04h INPUT

05h NONDESTRUCTIVE INPUT, NO WAIT (character devices)

06h INPUT STATUS (character devices)

07h INPUT FLUSH (character devices)

08h OUTPUT

09h OUTPUT WITH VERIFY

OAh OUTPUT STATUS (character devices)

OBh OUTPUT FLUSH (character devices)

OChlOCTL OUTPUT

594 UNDOCUMENTEDDOS

ODh (DOS 3+) DEVICE OPEN

OEh (DOS 3+) DEVICE CLOSE

OFh (DOS 3+) REMOVABLE MEDIA (block devices)

lOh (DOS 3+) OUTPUT UNTIL BUSY (character devices)

llh unused

12h unused

13h (DOS 3.2+) GENERIC lOCTL

14h unused

15h unused

16h unused

17h (DOS 3.2+) GET LOGICAL DEVICE

18h (DOS 3.2+) SET LOGICAL DEVICE

80h (CD-ROM) READ LONG

81h (CD-ROM) reserved

82h (CD-ROM) READ LONG PREFETCH

83h (CD-ROM) SEEK

84h (CD-ROM) PLAY AUDIO

85h (CD-ROM) STOP AUDIO

86h (CD-ROM) WRITE LONG

87h (CD-ROM) WRITE LONG VERIFY

88h (CD-ROM) RESUME AUDIO

Values for error code:

OOh write-protect violation
Olh unknown unit

02h drive not ready
03h unknown command

04h CRC error

05h bad drive request structure length
06h seek error

07h imknown media

08h sector not foimd

09h printer out of paper
0Ah write fault

OBh read fault

OCh general failure
ODh reserved

OEh reserved

OFh invalid disk change

Appendix A: Undocumented DOS Functions 595

INT 2Fh Function 0803h DOS 4+

DRIVER.SYS SUPPORT - GET DRIVE DATA TABLE LIST

Return a pointer to the first in a list of drive data tables describing the layout of the logical
drives supported by the combination of the default disk device driver and aliases estab
lished with DRIVER.SYS.

Call with:

AX 0803h

Returns:

DS:DI pointer to first drive data table in list

Format of DOS 3.3 drive data table:

Offset Size Description

OOh DWORD pointer to next table
04h BYTE physical unit number (for INT 13h)
05h BYTE logical drive number
06h 19 BYTEs BIOS Parameter Block (See also INT 21/AH=53h)

Offset Size Description

OOh WORD bytes per sector
02h BYTE sectors per cluster, FFh if unknown
03h WORD number of reserved sectors

05h BYTE nmnber of FATs

06h WORD number of root dir entries

08h WORD total sectors

OAh BYTE media descriptor, OOh if unknown
OBh WORD sectors per FAT
ODh WORD sectors per track
OFh WORD number of heads

llh WORD number of hidden sectors

19h BYTE unknown

lAh WORD number of DEVICE OPEN calls without corresponding DEVICE CLOSE
ICh 11 BYTEs volume label or "NO NAME" if none

27h BYTE terminating null for volume label
28h BYTE device t)7pe (see INT 21/AX=440Dh)
29h WORD bit flags describing drive

bit 0: fixed media

596 UNDOCUMENTED DOS

2Bh WORD

2Dh 19 BYTEs

40h 3 BYTEs

43h 9 BYTEs

4Ch BYTE

4Dh DWORD

bit 1: door lock supported
bit 2: used in determining BPB to set for INT 21/AX=440Dh
bit 3: all sectors in a track are the same size

bit 4: physical drive has multiple logical units
bit 5: current logical drive for physical drive
bit 6: unknown

bit 7: unknown

bit 8: related to disk change detection
number of cylinders
BIOS Parameter Block for highest capacity supported
unknown

file system type, default "NO NAME "
terminating null for filesystem type
time of last access in <

removable media only

Format of DOS 4.01 drive data table:

Offset Size Description

OOh DWORD pointer to next table
04h BYTE physical unit number (for INT 13h)
05h BYTE logical drive number
06h 19 BYTEs BIOS Parameter Block (see also INT 21/AH=53h)

Offset Size Description

OOh WORD bjdes per sector
02h BYTE sectors per cluster, FFh if unknown
03h WORD number of reserved sectors

05h BYTE number of FATs

06h WORD number of root dir entries

08h WORD total sectors

OAh BYTE media descriptor, OOh if unknown
OBh WORD sectors per FAT
ODh WORD sectors per track
OFh WORD number of heads

llh WORD number of hidden sectors

19h 9 BYTEs unknown

22h BYTE device tj^pe (see INT 21/AX=440Dh)
23h WORD bit flags describing drive

bit 0: fixed media

bit 1: door lock supported

Appendix A: Undocumented DOS Functions 597

bit 2: unknown

bit 3: all sectors in a track are the same size

bit 4: physical drive has multiple logical units
bit 5: current logical drive for physical drive
bits 6-15: unknown

25h WORD number of cylinders
27h 19 BYTEs BIOS Parameter Block for highest capacity supported
3Ah 13 BYTEs unknown

47h DWORD time of last access in clock ticks (FFFFFFFFh if never)

4Bh 11 BYTEs volxune label or "NO NAME" if none

56h BYTE terminating null for volume label
57h DWORD serial number

5Bh 8 BYTEs fUesystem type ("FAT12" or "FAT16")
63h BYTE terminating null for filesystem type

See Also: INT 2F/AX=0801h

INT2Fh FunctionlOOOh DOS3+

SHARE - INSTALLATION CHECK

Determine whether SHARE has been loaded.

Call with:

AX lOOOh

Returns:

AL OOh not installed, OK to install

Olh not installed, not OK to install

FFh installed

BUG:

Values of AL other than OOh put DOS 3.x SHARE into an infinite loop
(08E9:OR AL,AL

08EB: JNZ 08EB the buggy instruction for DOS 3.3)
Values of AL other than described here put PCEXDS 4.0x into the same loop (the buggy in
structions are the same).

See Also: nSJT 21/AH=52h

598 UNDOCUMENTED DOS

INT 2Fh Function 1040h DOS 4+

SHARE-UNKNOWN

The purpose of this function is not known.

Call with:

AX 1040h

additional arguments (if any) unknown

Returns:

unknown

INT 2Fh Function lOgOh DOS 4+
SHARE - CLEAR UNKNOWN FLAG

The purpose of the flag this function clears is not known.

Call with:

AX lOSOh

Returns:

AL FOh function supported

INT 2Fh FunctionJ 081 h DOS 4+

SHARE - SET UNKNOWN FLAG

The purpose of the flag this function sets is not known.

Call with:

AX lOSlh

Returns:

AL FOh function supported

Appendix A: Undocumented DOS Functions 599

li'J:. 1 -yjif-.IC.'.!■!» y-i•• I?;.*: l-i Rii-. i'. -g-I'. V—y-VTiWR. t .rcj j r 'X-.i

INT 2Fh Function 11 OOh DOS 3.1 +

NETWORK REDIRECTOR - INSTALLATION CHECK

Determine whether a network redirector using the DOS kernel network hooks is installed.

Called with:
AX llOOh

Returns:
AL OOh not installed, OK to install

Olh not installed, not OK to install
FFh installed

Notes:
■ This function is called by the DOS 3.1+ kernel.
■ In DOS 4+, the llxx calls are all in 1FSFUNC.EXE, not in the PC LAN Program

redirector.

INT 2Fh Function 1101h DOS 3.1+

NETWORK REDIRECTOR - REMOVE REMOTE DIRECrORY

Remove a directory on a network or installable file system drive.

Called with:
AX llOlh
SS set to DOS CS
SDA first filename pointer offset of SDA first filename buffer
SDA first fUename buffer fully qualified directory name
SDA CDS pointer pointer to CDS for drive with dir

Returns:
CP set on error

AX DOS error code (see INT 21/AH=59h)

Note:
This function is called by the DOS 3.1+ kernel.

See Also: INT 2F/AX=ll(Bh, INT 2F/AX=llp5h, INT 21/AH=3Ah, INT 21/AH=60h

600 UNDOCUMENTED DOS

INT 2Fh Function 1102h DOS 4+

IFSFUNC.EXE - REMOVE REMOTE DIRECTORY

Remove a directory on a network or installable file system drive.

Called with:

AX 1102h

SS set to DOS CS

SDA first filename pointer offset of SDA first filename buffer
SDA first filename buffer fully qualified directory name
SDA CDS pointer pointer to CDS for drive with directory

Returns:

CP set on error

AX DOS error code (see INT 21IAH=59h)

Note:

This function appears to be identical to INT 2F/AX=1101h.

See Also: INT 2F/AX=1101h, INT 21/AH=60h

INT 2Fh Function 1103h DOS 3.1 +

NETWORK REDIRECTOR - MAKE REMOTE DIRECTORY

Create a new directory on a network or installable file system drive.

Called with:

AX llOSh

SS set to DOS CS

SDA first filename pointer pointer to fully-qualified directory name
SDA CDS pointer pointer to CDS for drive with directory

Returns:

CP set on error

AX DOS error code (see INT 21 /AH=59h)

Appendix A: Undocumented DOS Functions 601

Note:

This function is called by the DOS 3.1+ kernel.

See Also: INT 2F/AX=1101h, INT 2F/AX=1105h, JNT21/AH=39;2 , iNT 21/AH=60h

INT 2Fh Function 1104h DOS 4+
'■ ■ :>i j- "■T'\ '* if t*r- =.\'T

IFSFUNC.EXE - MAKE REMOTE DIRECTORY

Create a new directory on a network or installable file system drive.

Called with:
AX 1104h
SS set to DOS CS
SDA first filename pointer pointer to fully-qualified directory name
SDA CDS pointer pointer to CDS for drive with dir

Returns:
CP set on error

AX DOS error code (see INT 21IAH=59h)

Note:
This function appears to be identical to INT 2F/ AX=1103h.

See Also: INT 2F/AX=1103h, INT 21/AH=60h

INT 2Fh Function 1105h DOS 3.1+

NETWORK REDIRECTOR - CHDIR

Change the current directory on a network or installable file system drive.

Called with:
AX llOSh
SS set to DOS CS
SDA first filename pointer offset of SDA first filename buffer
SDA first filename buffer fully qualified directory name
SDA CDS pointer pointer to CDS for drive with dir

602 UNDOCUMENTED DOS

Returns:

CF set on error

AX DOS error code (see INT 21/AH=59h)

Note:
This function is called by the DOS 3.1+ kernel.

See Also: INT 2F/AX=1101h, INT 2F/AX=1103h, INT 21/Aff=3Bli, INT 21/AH=60h

INT 2Fh Function 1106h DOS 3.1 +

NETWORK REDIRECTOR - CLOSE REMOTE FILE

Close a file which was opened on a network or installable file system drive.

Called with:
AX 1106h

ES:DI pointer to SET
SFT DPB field DPB of drive with file

additional arguments (if any) unknown

Returns:

CP set on error

AX DOS error code (see INT 21/AH=59h)
CF clear if successful

Note:
This function is called by the DOS 3.1+ kernel.

See Also: INT 21/AH=3Eh, INT 2F/AX=1201h, INT 2F/AX=1227h

r. -l;'ft. I.a;.:- ■ i;. is;-I. iji■./ t-,.J .I, ..-I t..,

INT 2Fh Function 1107h DOS 3.1 +

NETWORK REDIRECTOR - COMMIT REMOTE FILE

Update the directory entry and flush disk buffers for a file on a network or installable file
system drive.

Called with:
AX llOTh

Appendix A: Undocumented DOS Functions 603

ES:DI pointer to SFT
SFT DPB field DPB of drive with file

additional arguments (if any) unknown

Returns:

CP set on error

AX DOS error code

Note:

This function is called by the DOS 3.1+ kernel.

See Also: INT 21/AH=68h, INT 21/AX=5D01h

INT 2Fh Function 1108h DOS 3.1+

NETWORK REDIRECTOR - READ FROM REMOTE FILE

Read data from a file opened on a network or installable file system drive.

Called with:

AX 1108h

ES:DI pointer to SFT
SFT DPB field DPB of drive with file

CX number of bjries
SS set to DOS CS

SDA DTA field pointer to buffer containing data

Returns:

CF set on error

CF clear if successful

CX number of bytes read

Note:

This function is called by the DOS 3.1+ kernel.

See Also: INT 2F/AX=1109h, INT 2F/AX=1229h, INT 21/AH=3Fh, INT 21/AX=5D06h

604 UNDOCUMENTED DOS

INT 2Fh Function 1109h DOS 3.1 +

NETWORK REDIRECTOR - WRITE TO REMOTE FILE

Write data to a file opened on a network or installable file system drive.

Called with:

AX 1109h

ES:DI ' pointer to SET
SET DPB field DPB of drive with file

CX number of bytes
SS set to DOS CS

SDA DTA field pointer to buffer for data

Returns:

CE set on error

CE clear if successful

CX number of bytes written

Note:

This function is called by the DOS 3.1+ kernel.

See Also: INT 2E/AX=1107h, INT 2E/AX=1108h, INT 21/AH=40h, INT 21/AX=5D06h

INT 2Fh Function 110Ah DOS 3.1 +

NETWORK REDIRECTOR - LOCK REGION OE HLE

Request that no other processes be allowed access to a portion of the specified file.

Called with:

AX llOAh

BX file handle

CX;DX starting offset
SI high word of size
STACK WORD low word of size

ES:D1 pointer to SET
SET DPB field DPB of drive with file

SS set to DOS CS

Appendix A: Undocumented DOS Functions 605

Returns:

CF set on error

AL DOS error code (see INT 21/AH=59h)
STACK unchanged

Note:

This function is called by the DOS 3.1+ kernel.

See Also: INT 2F/AX=110Bh, INT 21/AH=5Ch

INT 2Fh Function 11 OBh DOS 3.1 +

NETWORK REDIRECTOR - UNLOCK REGION OF FILE

Allow other processes to access the specified portion of the file.

Called with:

AX llOBh

BX file handle

CX:DX starting offset
SI high word of size
STACK WORD low word of size

ES:DI pointer to SET for fUe
SFT DPB field DPB of drive with file

Returns:

CP set on error

AL DOS error code (see INT 211AH=59h)

STACK imchanged

Note:

This function is called by the DOS 3.1+ kernel.

See Also: INT 2F/AX=110Ah, INT 21/AH=5Ch

606 UNDOCUMENTED DOS

INT 2Fh Function 110Ch DOS 3.1 +

NETWORK REDIRECTOR - GET DISK SPACE

Get information on allocation size and disk space (free and total) for a network or install
able file system drive.

Called with:
AX llOCh

ES:D1 pointer to CDS for desired drive

Returns:
AL sectors per cluster
AH unknown

BX total clusters

CX bytes per sector
DX number of available clusters

Note:
This function is called by the DOS 3.1+ kernel.

See Also: INT 21/AH=36h

INT 2Fh Function 11 ODh DOS 4+

1FSFUNC.EXE - UNKNOWN

The purpose of this function is not known, but appears to be related to file attributes.

Called with:

AX llODh

SDA first filename pointer pointer to filename
additional arguments (if any) unknown

Returns:
unknown

Note:
This function appears to be similar to INT 2F/AX=110Fh (Get Attributes).

See Also: INT 2F/AX=110Fh

Appendix A: Undocumented DOS Functions 607

INT 2Fh Function 110Eh DOS 3.1 +

NETWORK REDIRECTOR - SET REMOTE FILE'S ATTRIBUTES

Change the attributes of a file on a network or installable file system drive.

Called with:

AX llOEh

SS set to DOS CS

SDA first filename pointer offset of SDA first filename buffer
SDA first filename buffer fully qualified file name
SDA CDS pointer CDS for drive with file
STACK WORD new file attributes

Returns:

CF set on error

AX DOS error code (see INT 21/AH=59h)

CF dear if successful

STACK unchanged

Note:

This function is called by the DOS 3.1+ kernel.

See Also: nsrr 2F/AX=110Fh, INT 21/AX=4301h, INT 21/AH=60h

INT 2Fh Function 110Fh DOS 3.1 +

NETWORK REDIRECTOR - GET REMOTE FILE'S ATTRIBUTES

Get the attributes of a file on a network or installable file system drive.

Called with:

AX llOFh

SS set to DOS CS
SDA first filename pointer offset of SDA first filename buffer
SDA first filename buffer fully qualified file name
SDA CDS pointer CDS for drive with file

608 UNDOCUMENTED DOS

Returns:

CF set on error

AX DOS error code (see INT 21/AH=59h)
CF clear if successful

AX file attributes

Note:

This function is called by the DOS 3.1+ kernel.

See Also: INT 2F/AX=110Eh, INT 21/AX=4300h, INT 21/AH=60h

INT 2Fh Function 1110h DOS 4+

IFSFUNC.EXE - UNKNOWN

The purpose of this function is not known, but appears to be related to file attributes.

Called with:

AX lllOh

SDA first filename pointer pointer to fully qualifiled filename
additional arguments (if any) unknown

Returns:

unknown

Note:

This function appears to be similar to INT 2F/AX=110Eh (Set Attributes).

See Also: INT 2F/AX=110Eh, INT 21/AH=60h

Ji.. jv ̂ A'? -i J"

INT 2Fh Function 1111 h DOS 3,1 +

NETWORK REDIRECTOR - RENAME REMOTE FILE

Change the name of a file on a network or installable file system drive.

Called with:

AX llllh

SS set to DOS CS

Appendix A: Undocumented DOS Functions 609

DS set to DOS CS

SDA first filename pointer offset of SDA first filename buffer
SDA first filename buffer fuUy qualified current file name
SDA second filename pointer offset of SDA new file name
SDA second filename buffer fully qualified new file name
SDA CDS pointer CE® for drive with file

Returns:

CP set on error

AX DOS error code (see INT 21/AH=59h)

CF clear if successful

Note:

This function is called by the DOS 3.1+ kernel.

See Also: INT 21/AH=56h, INT 21/AH=60h

INT 2Fh Function 1112h DOS 4+

IFSFUNCEXE - UNKNOWN

The piurpose of this function is not known.

Called with:

AX 1112h

SS set to DOS CS

DS set to DOS CS
SDA first filename pointer pointer to fully qualified filename
additional arguments (if any) unknown

Returns:

unknown

See Also: INT 2F/AX=llllh, INT 21/AH=60h

610 UNDOCUMENTED DOS

INT 2Fh Function 1113h DOS 3.1 +

NETWORK REDIRECTOR - DELETE REMOTE FILE

Remove a file from a network or installable file system drive.

Called with:

AX 1113h

SS set to DOS CS

DS set to DOS CS

SDA first filename pointer offset of SDA first filename buffer
SDA first filename buffer fully qualified file name
SDA CDS pointer CDS for drive with file

Returns:

CF set on error

AX DOS error code (see INT 21IAH=59h)
CF clear if successful

Note:

This function is called by the DOS 3.1+ kernel.

See Also: INT 21/AH=41h, INT 21/AH=60h

INT 2Fh Function 1114h

1FSFUNC.EXE - UNKNOWN

The purpose of this function is not known.

Called with:

AX 1114h

SDA first filename pointer pointer to fully-qualified filename
additional arguments (if any) unknown

Returns:

unknown

See Also: INT 2F/AX=1113h, INT 21/AH=60h

Appendix A: Undocumented DOS Functions 611

INT 2Fh Function 1115h DOS 4+

IFSFUNCEXE - UNKNOWN

The purpose of this function is not known.

Called with:

AX 1115h

SS set to E)OS CS

ES:DI pointer to SFT
additional arguments (if any) unknown

Returns:

unknown

See Also: INT 2F/AX=112Eh

INT 2Fh Function 1116h DOS 3.1+

NETWORK REDIRECTOR - OPEN EXISTING REMOTE FILE

Prepare for access to an existing file located on a network drive.

Called with:

AX 1116h

SDA first filename pointer offset of SDA first filename buffer
SDA first filename buffer fully qualified file name
SDA CDS pointer CDS for drive with file
ES:D1 pointer to uninitialized SFT
SS set to EKDS CS

STACK WORD file open mode
additional arguments (if any) unknown

Returns:

CF set on error

AX DOS error code (see INT 21/AH=59h)

CF clear if successful

SFT completed
STACK tmchanged

612 UNDOCUMENTED DOS

Note:

This function is called by the EXDS 3.1+ kernel.

See Also: INT 21/AH=3Dh, INT 21/AH=60h, INT 2F/AX=n06h, INT 2F/AX=1117h,

INT 2F/AX=1118h

INT 2Fh Function 1117h DOS 3.1 +

NETWORK REDIRECTOR - CREATE/TRUNCATE REMOTE FILE

Create a file on a network drive, or truncate an existing file to zero length.

Called with:

AX lllTh

ES:D1 pointer to uninitialized SET
SS set to DOS CS

SDA first filename pointer offset of SDA first filename buffer
SDA first filename buffer fully qualified file name
SDA CDS pointer CDS for drive with file
STACK WORD file creation mode

Returns:

CF set on error

AX DOS error code (see INT 21IAH=59h)
CF Clear if succesful

SFT completed
STACK unchanged

Notes:

■ This function is called by the DOS 3.1+ kernel.
■ INT 2F/ AX=1117h appears to be identical in operation, except that it is called for drives

which do not have a cxnrent directory structure (SDA CDS pointer has offeet FFFFh).

See Also: INT 21/AH=3Ch, INT 21/AH=60h, INT 2F/AX=1106h, INT 2F/AX=1116h,
INT 2F/AX=1118h

Appendix A: Undocumented DOS Functions 613

INT 2Fh Function 1118h DOS 3.1 +

NETWORK REDIRECTOR - CREATE/TRUNCATE FILE

Create a file on a drive which does not have a current directory sturcture.

Called with:

AX 1118h

ES:DI pointer to uninitialized SET
SS set to DOS CS

SDA first filename pointer pointer to fully-qualified filename
STACK WORD file creation mode

Returns:

unknown

STACK unchanged

Notes:

■ This function is called by the DOS 3.1+ kernel when creating a file on a drive whose
CDS pointer has offset FFFFh.

■ INT 2F/AX=1117h is apparently equivalent to this function for remote drives which
have a current directory structiure.

See Also: INT 21/AH=60h, INT 2F/AX=1116h, INT 2F/AX=1117h

INT 2Fh Function 1119h DOS 3.1 +

NETWORK REDIRECTOR - UNKNOWN

The piupose of this function is not known.

Called with:

AX 1119h

additional arguments (if any) unknown

Returns:

unknown

614 UNDOCUMENTED DOS

Notes:

■ This function is called by the DOS 3.1+ kernel.
■ DOS 4.0 IFSFUNC returns with CF set and AX=0003h.

INT 2Fh Function 111 Ah DOS 4+

IFSFUNC.EXE - UNKNOWN

The pxupose of this function is not known.

Called with:

AX lllAh

additional arguments (if any) unknown

Returns:

CP set

AX error code (03h for DOS 4.01 IFSFUNC)

INT 2Fh Function 111 Bh DOS 3.1 +

NETWORK REDIRECTOR - FINDFIRST

Begin a directory search on a network or installable file system drive.

Called with:

AX lllBh

SS set to DOS CS

DS set to DOS CS

SDA search data block tminitialized 21-byte findfirst search data (see INT 21 / AH=4Eh)
SDA first filename pointer offset of SDA first filename buflfer
SDA first filename buffer fully qualified file name
SDA CDS pointer CDS for drive with file

Returns:

CF set on error

AX DOS error code (see INT 21/AH=59h)
CF clear if successful

Appendix A: Undocumented DOS Functions 615

SDA search data block completed (bit 7 of first byte must be set)
SDA file foimd field: standard directory entry for file

Note:

This function is called by the EKDS 3.1+ kernel.

See Also: INT 21/AH=4Eh, INT 21/AH=60h,INT 2F/AX=lllCh

INT 2Fh Function 111Ch DOS 3.1 +

NETWORK REDIRECTDR - FINDNEXT

Continue a directory search on a network or installable file system drive.

Called with:
AX inch

SS set to DOS CS

OS set to DOS CS

SDA search data block findfirst search data from initial INT 2F/ AX=lllBh

Returns:

CF set on error

AX DOS error code (see INT 21/AH=59h)
CF clear if successful

SDA search data block completed (bit 7 of first byte must be set)
SDA foimd file field: standard directory entry for file

Note:
This function is called by the DOS 3.1+ kernel.

See Also: INT 21/AH=4Fh, INT 2F/AX=lllBh

INT 2Fh Function 111 Dh DOS 3.1 +

NETWORK REDIRECTOR - CLOSE ALL REMOTE FILES FOR PROCESS

Called with:
AX lllDh

SS set to DOS CS

additional arguments (if any) unknown

616 UNDOCUMENTED DOS

Returns:

unknown

Note:

This function is called by the DOS 3.1+ kernel, and closes all FCBs opened by the process
(among other actions).

INT 2?h Function 111 Eh DOS 3.1 +

NETWORK REDIRECTOR - DO REDIRECTION

Various subfunctions allow control of network redirection.

Called with:

AX lllEh

SS set to DOS CS

STACK WORD function to execute

SFOOh get redirection mode
BL type (03h printer, 04h disk)
Returns:

BH state (OOh off, Olh on)

SFOlh set redirection mode

BL tjrpe (03h printer, 04h disk)
BH state (OOh off, Olh on)

5F02h get redirection list entry
BX redirection list index

DS:SI pointer to 16-byte local device name buffer
ES:DI pointer to 128-byte network name buffer
5F03h redirect device

BL device type (see INT 21/AX=5F03h)
CX stored parameter value
DS:SI pointer to ASCIZ source device name
ESiDI pointer to destination ASCIZ network path + ASCIZ password
5F04h cancel redirection

DS:S1 pointer to ASCIZ device name or network path
5F05h get redirection list extended entry
BX redirection list index

DS:SI pointer to buffer for ASCIZ source device name
ES:DI pointer to buffer for destination ASCIZ network path

Appendix A: Undocumented DOS Functions 617

Returns:

BH status flag
BL type (03h printer, 04h disk)
CX stored parameter value
BP NETBIOS local session number

5F06h appears to be similar to 5F05h

Returns:
CF set on error

AX error code (see INT 21/AH=59h)

STACK unchanged

Note:
This function is called by the DOS 3.1+ kernel.

See Also: INT 21/AX=5F00h, INT 21/AX=5F01h, INT 21/AX=5F02h, INT

21/AX=5F03h, INT 21/AX=5F04h, INT 21/AX=5F05h, INT 21/AX=5F06h

INT 2Fh Function 111Fh DOS 3.1+

NETWORK REDIRECTOR - PRINTER SETUP

Subfunctions allow getting or setting the network printer setup string or mode.

Called with:
AX lllFh

STACK WORD function

5E02h set printer setup
5E03h get printer setup
5E04h set printer mode
5E05h get printer mode

Returns:

CF set on error

AX error code (see INT 21/AH=59h)
STACK unchanged

Note:

This function is called by the DOS 3.1+ kernel.

See Also: INT 21/AX=5E02h, INT 21IAX=5E03h, INT 21/AX=5E04h, INT 21/AX=5E05h

618 UNDOCUMENTED DOS

INT 2Fh Function 1120h DOS 3.1 +

NETWORK REDIRECTOR - FLUSH ALL DISK BUFFERS

Force an immediate update of the network or installable file system drives from disk buff
ers which have not yet been written out.

Called with:

AX 1120h

OS set to DOS CS

additional arguments (if any) unknown

Returns:

CF clear (successful)

Notes:

■ This function is called by the DOS 3.1+ kernel.
■ The current directory structure array pointer and LASTDRrVE= entries of the DOS list

of lists are used by the DOS 4IFSFUNC handler for this call.

See Also: INT 21/AH=0Dh, EsfT 21/AX=5D01h

INT 2Fh Function 1121 h DOS 3.1 +

NETWORK REDIRECTOR - SEEK FROM END OF REMOTE FILE

Called with:

AX 1121h

CX:DX offset (in bytes) from end
ES:DI pointer to SET
SFT DPB field pointer to DPB of drive containing file
SS set to DOS CS

Returns:

CF set on error

AL DOS error code (see INT 21/AH=59h)

CF clear if successful

DX:AX new file position

Appendix A: Undocumented DOS Functions 619

Note:

This function is called by the DOS 3.1+ kernel.

See Also: INT 21/AH=42h, INT 2F/AX=1228h

INT 2Fh Function 1122h DOS 3.1+

NETWORK REDIRECTOR - PROCESS TERMINATION HOOK

Inform the network that a process has terminated.

Called with:
AX 1122h

SS set to DOS CS

additional arguments (if any) unknown

Returns:
unknown

Note:

This function is called by the DOS 3.1+ kernel.

INT 2Fh Function 1123h DOS 3.1+

NETWORK REDIRECTOR - QUALIFY REMOTE FILENAME

Convert a name into a absolute pathname with any network redirections resolved.

Called with:
AX 1123h

DS:SI pointer to ASCIZ filename to canonicalize
ES:DI pointer to 128-byte buffer for qualified name

Returns:
CF set if not resolved

Note:

The DOS 3.1+ kernel calls this function first when it attempts to resolve a filename (unless
mside an INT 21/AX=5D00h server call); if this fails, DOS resolves the name locally.

See Also: INT 21/AH=60h, INT 2F/AX=1221h

620 UNDOCUMENTED DOS

INT 2Fh Function 1124h DOS 3.1 +

NETWORK REDIRECTOR - UNKNOWN

The purpose of this function is not known.

Called with:

AX 1124h

ES:DI pointer to SET
SS set to DOS CS

additional arguments (if any) unknown

Returns:

CX unknown

Note:

This function is called by the DOS 3.1+ kernel.

INT 2Fh Function 1125h DOS 3.1 +

NETWORK REDIRECTOR - REDIRECTED PRINTER MODE

Set or determine the state of print streams for the network printer.

Called with:

AX 1125h

STACK WORD subfunction

5D07h get print stream state
Returns:

DL current state

5D08h set print stream state
DL new state

5D09h finish print job

Returns:

CP set on error

AX error code (see INT 21/AH=59h)
STACK unchanged

Appendix A: Undocumented DOS Functions 621

Note:

This function is called by the DOS 3.1+ kernel.

See Also: INT 21/AX=5D07h, INT 21/AX=5D08h, INT 21/AX=5D09h

INT 2Fh Function 1126h DOS 3.1+

NETWORK REDIRECTOR - UNKNOWN

The purpose of this function is not known.

Called with:

AX 1126h

additional arguments (if any) unknown

Returns:

CF set on error

Note:

This function is called by the DOS 3.1+ kernel.

INT 2Fh Function 1127h DOS 4+

IFSFUNC.EXE - UNUSED

This function performs no actions and returns immediately.

Called with:

AX 1127h

Returns:

CF set

AX OOOlh (invalid function) (see INT 21/AH=59h)

622 UNDOCUMENTED DOS

INT 2Fh Function 1128h DOS 4+

IFSFUNC.EXE - UNUSED

This function performs no actions and returns immediately.

Called with:

AX 1128h

Returns:

CF set

AX OOOlh (invalid function) (see INT 21/AH=59h)

INT 2Fh Function 1129h DOS 4+

IFSFUNC.EXE - UNUSED

This function performs no actions and returns immediately.

Called with:

AX 1129h

Returns:

CF set

AX OOOlh (invalid function) (see INT 21/AH=59h)

INT 2Fh Function 112Ah DOS 4+

IFSFUNC.EXE - UNKNOWN

The purpose of this function is not known.

Called with:

AX 112Ah

DS set to DOS CS

SDA PSP field current process ID
additional arguments (if any) unknown

Appendix A: Undocumented DOS Functions 623

Returns:

unknown

Note:

This function performs an imknown action on each IPS driver which has been installed.

INT 2Fh Function 112Bh DOS 4+

IFSFUNC.EXE - UNKNOWN

The purpose of this function is not known.

Called with:

AX 112Bh

SS set to DOS CS

CX unknown

DX unknown

STACK WORD low byte contains function
ODh unknown

additional arguments (if any) unknown

Returns:

CF set on error

AX EKDS error code (see INT 21/AH=59h)

Note:

This function is called by the DOS 4.0 kernel.

INT 2Fh Function 112Ch DOS 4+

IFSFUNCEXE - UNKNOWN

The purpose of this function is not known.

Called with:
AX 112Ch

SS set to DOS CS

SDA ciurent SFT pointer pointer to SFT for file
additional arguments (if any) unknown

624 UNDOCUMENTED DOS

Returns:

CF set on error

AX DOS error code (see INT 21/AH=59h)

CF clear if successful

INT 2Fh Function 112Dh DOS 4+

1FSFUNC.EXE - UNKNOWN

The purpose of this function is not known.

Called with:

AX 112Dh

BL subfunction

04h unknown

Returns:

CF clear

else unknown

Returns:

CX unknown (OOh or 02h for DOS 4.01)
SS set to DOS CS

Returns:

DS set to DOS CS

Note:

This function is called by the DOS 4.0 kernel.

INT 2Fh Function 112Eh DOS 4+

1FSFUNC.EXE - UNKNOWN

The purpose of this function is not known.

Called with:

AX 112Eh

SS set to DOS CS

DS set to DOS CS

Appendix A: Undocumented DOS Functions 625

STACK WORD unknown low byte unknown
additional arguments (if any) unknown

Returns:

CF set on error

AX DOS error code (see INT 21/AH=59h)

CF dear if successful

CX unknown

Note:

This function is called by the DOS 4.0 kernel.

See Also: INT 2F/AX=1115h

INT 2Fh Function 112Fh DOS 4+

IFSFUNC.EXE - UNKNOWN

The purpose of this function is not known

Called with:

AX 112Fh

SS set to DOS CS

STACK WORD function in low byte
OOh unknown

DS:SI pointer to Current Directory Structure
CL drive (1=A:)

Olh unknown

DS:SI unknown pointer
CL file handle
Olh unknown

DS:SI pointer to Current Directory Structure
DI unknown

CX drive (1=A:)

additional arguments (if any) unknown

Returns:

CF set on error

AX DOS error code (see INT 21/AH=59h)

626 UNDOCUMENTED DOS

Note:

This function is called by the DOS 4.0 kernel.

See Also: INT 2i/AH=6Bh

INT 2Fh Function 1130h DOS 4+

IFSFLINC.EXE - GET IFSFUNC SEGMENT

Return the segment of the resident IFSFUNC code.

Called with:

AX 1130h

Returns:

ES CS of resident IFSFUNC

INT 2Fh Function 1200h DOS 3+

INSTALLATION CHECK

Determine whether the EXDS internal services are present.

Call with:
AX 1200h

Returns:

AL FFh (for compatibility with other INT 2Fh functions)

INT 2Fh Function 1201 h DOS 3+

CLOSE CURRENT HLE

Close the file currently being operated on.

Call with:
AX 1201h

SS set to DOS CS

SDA current SET pointer pointer to SFT for file to be closed

Appendix A: Undocumented DOS Functions 627

Returns:

BX unknown

CX unknown

ES:DI pointer to SFT for ffle

See Also: INT 21/AH=3Eh, INT 2F/AX=1227h

i.tT. V :<i

INT 2Fh Function 1202h DOS 3+

GET INTERRUPT ADDRESS

Return a pointer to the interrupt vector corresponding to the given interrupt number.

Call with:

AX 1202h

STACK WORD vector number

Returns:

ES:BX pointer to interrupt vector
STACK unchanged

INT 2Fh Function 1203h DOS 3+

GET DOS DATA SEGMENT

Return the segment of IBMDOS.

Call with:

AX 1203h

Returns:

OS segment of IBMDOS

628 UNDOCUMENTED DOS

INT 2Fh Function 1204h DOS 3+

NORMALIZE PATH SEPARATOR

Convert forward slashes into backslashes.

Call with:

AX 1204h

STACK WORD character to normalize

Returns:
AL normalized character (forward slash turned to backslash, all other characters

imchanged)
ZF set if path separator (forward or backslash)
STACK imchanged

INT 2Fh Function 1205h DOS 3+

OUTPUT CHARACTER

Send a single character to the standard output of the current process.

Call with:
AX 1205h

STACK WORD character to output

Returns:
STACK unchanged

Note:

This function can be called only from within a DOS function call.

INT 2Fh Function 1206h DOS 3+

INVOKE CRITICAL ERROR

Cause an INT 24h, performing all necessary housekeeping and return code translations.

Call with:

AX 1206h

Appendix A: Undocumented DOS Functions 629

DI error code

BP:SI pointer to device driver header
SS set to DOS CS

STACK WORD value to be passed to INT 24h in AX

Returns:

AL 0-3 for Abort, Retry, Ignore, Fail
STACK unchanged

See Also: INT24

INT 2Fh Function 1207h DOS Si-

make DISK BUFFER MOST-RECENtLV USED

Move specified disk buffer to the end of the disk buffer list (which is kept in reverse order
of recency of use).

Call with:
AX 1207h

DS:DI pointer to disk buffer

Returns:
buffer moved to end of buffer list

Note:

This function can only be called from within a DOS function call.

See Also: INT 2F/AX=120Fh

INT 2Fh Function 1208h DOS 3-f

DECREMENT SET REFERENCE COUNT

Reduce the ntimber of references to the given System File Table by one, setting the coxmt to
-1 if there are now no more references to the SFT.

Call with:
AX 1208h

ES:DI pointer to SFT

630 UNDOCUMENTED DOS

Returns:

AX new value of reference count

Note:

The reference count is set to FFFFh to indicate no references, since 0 indicates that the SFT is
not in use. In this case, the caller should set the count to zero after cleaning up.

INT 2Fh Function 1209h DOS 3+

FLUSH AND FREE DISK BUFFER

Force the given disk buffer's contents to disk if it is dirty, and then mark the buffer xmused.

Call with:

AX 1209h

DS:DI pointer to disk buffer

Note:

This function can only be called from within a DOS function call.

See Also: INT 2F/AX=120Eh, INT 2F/AX=1215h

INT 2Fh Function 120Ah DOS 3+

PERFORM CRITICAL ERROR INTERRUPT

Invoke an INT 24h, passing the appropriate values for the current drive and operation
(stored in the SDA).

Call with:

AX 120Ah

DS set to DOS CS

SS set to DOS CS

STACK WORD extended error code

Returns:
AL user response (OOh = ignore, Olh = retry, 02h = abort, 03h = fail)
CF clear if retry, set otherwise
STACK imchanged

Appendix A: Undocumented DOS Functions 631

Note:

This function can only be called from within a DOS function call, as it uses various fields in
the SDA.

INT 2Fh Function 120Bh DOS 3+

SIGNAL SHARING VIOLATION TO USER

Produce a critical error interrupt if an attempt was made to open file previously opened in
compatibility mode with inheritance allowed.

Call with:

AX 120Bh

ES:DI pointer to system file table entry
DS set to DOS CS

SS set to DOS CS

STACK WORD extended error code (should be 20h—sharing violation)

Returns:

STACK imchanged
CF set if no INT 24h generated or user did not say to retry operation

AX error code (20h) (see INT 21/AH=59h)

CF clear if user said to retry operation

Note:

This function can only be called from within a DOS function call.

INT 2Fh Function 120Ch DOS 3+

SET FCB FILE'S OWNER

Apparently sets the owner of the last-accessed FCB file to the calling process's ID.

Call with:

AX 120Ch

DS set to DOS CS

SDA current SFT pointer pointer to SFT for file
additional arguments (if any) unknown

632 UNDOCUMENTED DOS

Returns:

AX, DI, ES destroyed

INT 2Fh Function 120Dh DOS 3+

GET DATE AND TIME

Return the airrent date and time in directory format.

Call with:

AX 120Dh

SS set to DOS CS

Returns:

AX current date in packed format (see INT 21/AX=5700h)
DX current time in packed format (see INT 21/AX=57(X)h)

See Also: INT 21/AH=2Ah, INT 21/AH=2Ch

INT 2Fh Function 120Eh DOS 3+

MARK ALL DISK BUFFERS UNREFERENCED

Clear the "referenced" flag on all disk buffers. This flag is automatically set when a buffer is
read or written, and is used in the buffer replacement algorithm. Unreferenced buffers are
generally replaced before referenced buffers.

Call with:

AX 120Eh

SS set to DOS CS

Returns:

DS:DI pointer to first disk buffer

See Also: INT 2F/AX=1209h, INT 21/AH=0Dh

Appendix A: Undocumented DOS Functions 633

INT 2Fh Function 120Fh DOS 3+

MAKE BUFFER MOST RECENTLY USED

Move the specified disk buffer to the end of the buffer chain without flushing it to disk if it
is dirty.

Call with:

AX 120Fh

DS;DI pointer to disk buffer
SS set to DOS CS

Returns:

DS:DI pointer to next buffer in buffer fist

See Also: INT 2F/AX=1207h

DOS 3+

FIND UNREFERENCED DISK BUFFER

Return a pointer to the least-recently used disk buffer (if any) which has not been refer
enced since its first use or the last "Mark all Disk Buffers Unreferenced" call.

Call with:

AX 1210h

DS:DI pointer to first disk buffer to check

Returns:

ZF clear if found

DS:DI pointer to first tmreferenced disk buffer
ZF set if not found (all buffers have been referenced)

See Also: INT 2F/AX=120Eh

634 UNDOCUMENTED DOS

INT 2Fh Function 1211 h DOS 3+

NORMALIZE ASCIZ FILENAME

Copy the given filename, converting it to uppercase and changing forward slashes into
backslashes.

Call with:

AX 1211h

DS:SI pointer to ASCIZ filename to normalize
ES:DI pointer to buffer for normalized fiOlename

Returns:

ES:DI buffer filled

See Also: INT 2F/AX=121Eh, INT 2F/AX=1221h

:■ r::?;;;

INT2Fh Function1212h D0S3+

GET LENGTH OF ASCIZ STRING

Return the length of a nuU-terminated character string.

Call with:
AX 1212h
ES:DI pointer to ASCIZ string

Returns:
CX length of string

See Also: INT 2F/AX=1225h

Appendix A: Undocumented DOS Functions 635

INT 2Fh Function 1213h DOS 3+

UPPERCASE CHARACTER

Return the uppercase equivalent, using the current country's capitalization rules, of the
given character.

Call with:

AX 1213h

STACK WORD character to convert to uppercase

Returns:

AL uppercased character
STACK unchanged

INT 2Fh Function 1214h DOS 3+

COMPARE FAR POINTERS

Determine whether two FAR pointers are identical.

Call with:

AX 1214h

DS:SI first pointer
ES:D1 second pointer

Returns:

ZF set if pointers are equal, ZF clear if not equal

INT 2Fh Function 1215h DOS 3+

FLUSH BUFFER

Force the contents of the specified disk buffer to be written to disk if it is dirty.

Call with:

AX 1215h

DS:D1 pointer to disk buffer

636 UNDOCUMENTED DOS

SS set to DOS CS

STACK WORD drives for which to skip buffer
ignore buffer if drive same as high byte, or bytes differ and the buffer is for a
drive other than that given in low byte

Returns:

STACK tmchanged

See Also: INT 2F/AX=1209h

INT 2Fh Function 1216h DOS 3+

GET ADDRESS OF SYSTEM FILE TABLE

Return the address of a system file table entry given its mxmber.

Call with:

AX 1216h

BX system file table entry number

Returns:
CF clear if successful

ES:DI pointer to system file table entry
CF set if BX greater than F1LES=

See Also: INT 2F/AX=1220h

INT 2Fh Function 1217h DOS 3+

SET WORKING DRIVE

Call with:

AX 1217h

SS set to DOS CS

STACK WORD drive (0=A:, 1=B:, etc)

Returns:

CF set on error (drive > LASTDRTVE)

CF clear if successful

Appendix A: Undocumented DOS Functions 637

DS:SI pointer to current directory structure for specified drive
STACK unchanged

See Also: INT 2F/AX=1219h

INT 2Fh Function 1218h DOS 3+

GET CALLER'S REGISTERS

Return a pointer to the stack fi-ame containing the INT 21h caller's registers.

Call with:

AX 1218h

Returns:

DS:SI pointer to saved caller's AX,BX,CX,DX,SI,DI,BP,DS,ES (on stack)

Note:

The result of this function is only valid while within a DOS function call.

INT 2Fh Function 1219h DOS 3+

SET DRIVE

Call with:

AX 1219h

SS set to DOS CS

STACK WORD drive (0=default, 1=A:, etc)

Returns:

unknown

STACK vuichanged

Note:

This call eventually performs the equivalent of INT 2F/AX=1217h; in addition, it builds a
current directory structure if inside a server call (INT 21 /AX=5D00h).

See Also: INT 2F/AX=1217h, INT 2F/AX=121Fh

638 UNDOCUMENTED DOS

INT 2Fh Function 121 Ah DOS 3+

GET FILE'S DRIVE

Determine which drive a filename specifies.

Call with:
AX 121Ah

DS:SI pointer to filename

Returns:

AL drive (0=default, 1=A:, etc, FFh=invahd)

See Also: INT 21/AH=19h, INT 21/AH=60h

2Fh Function 121 Bh DOS 3+

SET YEAR/LENGTH OF FEBRUARY

Specify the current year, and return the length of February in days after storing that length
internally.

Call with:
AX 121Bh

CL year-1980
DS set to DOS CS

Returns:
AL number of days in February

See Also: INT 21/AH=2Bh

INT 2Fh Function 121 Ch DOS 3+

CHECKSUM MEMORY

Compute a checksum of the given range of memory.

Call with:

AX 121Ch

Appendix A: Undocumented DOS Functions 639

DS:SI pointer to start of memory to checksum
CX number of bytes
DX initial checksmn

Returns:
DX checksum

DS:SI points beyond checksummed range
AX, CX destroyed

See Also: INT 2F/AX=121Dh

INT 2Fh Function 121 Dh DOS 3+

SUM MEMORY

Add up the values of a range of bjdes imtil the specified limit is exceeded, and retvun the
value which caused the limit to be exceeded.

Call with:
AX 121Dh

DS:S1 pointer to memory to add up
CX OOOOh

DX limit

Returns:
AL byte which exceeded limit
CX number of bytes before limit exceeded
DX remainder after adding first CX bytes
DSiSl points at b5rte beyond the one which exceeded the limit

See Also: INT 2F/AX=121Ch

IWT 2Fh FWctlon 121 Eh DOS 3+

COMPARE FILENAMES

Determine whether two filenames are identical except for case and forward/backslash dif
ferences.

Call with:
AX 121Eh

640 UNDOCUMENTED DOS

DS:SI pointer to first ASCIZ filename
ES:DI pointer to second ASCIZ filename

Returns:
ZF set if filenames equivalent, ZF clear if not

See Also: INT 2F/AX=1211h, INT 2F/AX=1221h

i'ii .*11; I-A I

INT 2Fh Function 121 Fh DOS 3+

BUILD CURRENT DIRECTORY STRUCTURE

Create a new Current Directory Structure for the specified drive, and return the address of
the temporary storage in which it was built.

Call with:
AX 121Fh

SS set to DOS CS

STACK WORD drive letter

Returns:
ES:DI pointer to current directory structure (wHl be overwritten by next call)
STACK unchanged

INT 2Fh Function 1220h DOS 3+

GET JOB FILE TABLE ENTRY

Given a file handle, return the address of the entry in the Job File Table for that handle in
the current process.

Call with:
AX 1220h

BX file handle

Returns:

CF set on error

AL 6 (invalid file handle)

CF clear if successful

ES:DI pointer to JFT entry

Appendix A: Undocumented DOS Functions 641

Note:

The byte pointed at by ES:DI contains the number of the SFT entry for the file handle, or
FFh if the handle is not open.

See Also: INT 2F/AX=1216h, INT 2F/AX=1229h

INT 2Fh Function 1221 h DOS 3+

CANONICALIZE FILE NAME

Given a file specification, return an absolute pathname which takes into accoimt any renam
ing due to JOIN, SUBST, ASSIGN, or network redirections.

Call with:

AX 1221h

DS:SI pointer to file name to be fully qualified
ES:DI pointer to 128-byte buffer for resulting canonical file name
SS set to DOS CS

Returns:

seeINT21/AH=60h

Note:

This function can only be called from within a DOS function call, and is identical to INT
21/AH=60h.

See Also: INT 21/AH=60h, INT 2F/AX=1123h

INT 2Fh Function 1222h DOS 3+
t; - ■:.r- T -',. >

SET EXTENDED ERROR INFO

Given a set of translation records, set the error class, locus, and suggested action corre
sponding to the current extended error code.

Call with:
AX 1222h

SDA error code field set

642 UNDOCUMENTED DOS

SS set to DOS CS

SS:SI pointer to 4-byte records
BYTE error code, FFh if last record

BYTE error class, FFh means don't change
BYTE suggested action, FFh means don't change
BYTE error locus, FFh means don't change

Returns:

SI destroyed
SDA error class, error locus, and suggested action fields set

See Also: INT 2F/AX=122Dh, INT 21IAH=59h

INT 2Fh Function 1223h DOS 3+

CHECK IF CHARACTER DEVICE

Determine whether the given name is the name of a character device.

Call with:

AX 1223h

DS set to DOS CS

SS set to DOS CS

DOS 3.10-3.30

SDA+218h eight-character blank-padded name

DOS 4.0x

SDA+22Bh eight-character blank-padded name

Returns:

CF set if no character device by that name found
CF clear if found

BH low b)de of device attribute word

See Also: INT 21/AX=5D06h, DSTT 21/AX=5D0Bh

Appendix A: Undocumented DOS Functions 643

INT 2Fh Function 1224h DOS 3+

DELAY

Perform a sharing retry delay loop.

Call with:

AX 1224h

SS set to DOS CS

Returns:

after delay set by INT 21/AX=440Bh, unless in server call (BSIT 21 / AX=5D00h)

Note:

The delay is dependent on the processor speed, and is skipped entirely if inside a server call
(INT21/AX=5D00h).

See Also: INT 21IAX=440Bh, INT 21/AH=52h

INT 2Fh Function 1225h DOS 3+

GET LENGTH OF ASCIZ STKING

Return the length of a null-terminated character string.

Call with:

AX 1225h

DS:SI pointer to ASCIZ string

Returns:

CX length of string

See Also: INT 2F/AX=1212h

644 UNDOCUMENTED DOS

INT2Fh Function 1226h DOS 3.3+

OPEN FILE

Open an existing file with the specified access mode and return a file handle if successful.

Call with:

AX 1226h

CL access mode

E>S:DX pointer to ASCIZ filename
SS set to DOS CS

Returns:

CF set on error

AL error code (see INT 21/AH=59h)
CF clear if successful

AX file handle

Notes:

This function can only be called from within a DOS function call, and is equivalent to INT
21/AH=3Dh.

See Also: INT 2F/AX=1227h, INT 21IAH=3Dh

INT 2Fh Function 1227h DOS 3.3+

CLOSE FILE

Close a previously-opened file given its handle.

Call with:

AX 1227h

BX file handle

SS set to DOS CS

Returns:

CF set on error

AL 06h invalid file handle

Appendix A: Undocumented DOS Functions 645

Note:

This function is equivalent to INT 21/AH=3Eh, but may only be called when already inside
a DOS function call.

See Also: INT 2F/AX=1226h, im 21IAH=3Eh

INT 2Fh Function7228h DOS 3.3+
MOVE FILE POINTER

Set the current position in the given file.

Call with:
AX 1228h

BP 4200h,4201h,4202h(seel7Vr21/AH=42ft)
BX file handle

CX:DX offset in bytes
SS set to DOS CS

Returns:

CP set on error

AX error code (01h,06h) (see INT 21/AH=59h)
CF clear if successful

DX:AX new absolute offeet from beginning of file

Note:

This function is equivalent to INT 21/AH=42h, but may only be called when already inside
a DOS function caU.

See Also: INT 21/AH=42h

READ FROM HLE

Read data from a previously-opened file.

Call with:

AX 1229h

646 UNDOCUMENTED DOS

BX file handle

CX number of bytes to read
E>S:DX pointer to buffer
SS set to DOS CS

Returns:

asforINT21/AH=3Fh

Note:

This function is equivalent to INT 21 / AH=3Fh, but may only be called when already inside
a DOS function call.

See Also: INT 2F/AX=1226h, INT 21/AH=3Fh

INT 2Fh Function 122Ah DOS 3.3+

SET FASTOPEN ENTRY POINT

Specify the address(es) of the handlers for the FASTOPEN filename cache.

Call with:

AX 122Ah

BX entry point to set (OOOlh or 0002h)
DS:SI pointer to FASTOPEN entry point

(entry point not set if SI=FFFFh for DOS 4+)

Returns:

CF set if specified entry point already set

Notes:

■ The entry point in BX is ignored under DOS 3.30.
■ Both entry points are set to the same handler by DOS 4.01 FASTOPEN.

DOS 3.30 FASTOPEN Is called with:

AL Olh nknoum

CX seems to be an offset
DI seems to he an offset
SI offset in DOS CS of filename

AL Olh unknovm

AL 03h open file

Appendix A: Undocumented DOS Functions 647

SI offset in DOS CS of filename

AL 04h unknown

AH subfunction (00h,01h,02h)

ES:DI unknown pointer
CX unknown (subfunctions Olh and 02h only)

Returns:

CF set on error or not installed

Note:

function 03h calls fimction Olh first

PCDOS 4.01 FASTOPEN is additionally called with:
AL 04h

AH 03h unknown

AL 05h unknovm

AL OBh unknown

AL OCh unknown

AL ODh unknown

AL OEh unknown

AL OFh unknown

AL lOh unknown

INT 2Fh Function 122Bh DOS 3.3+

lOCTL

Execute an I/O Control function from within network redirector.

Call with:

AX 122Bh

BP 44xxh

SS set to DOS CS

additional registers as appropriate for INT 21IAX=44xxh

Returns:

asfoTlNT21/AH=Uh

648 UNDOCUMENTED DOS

Note:

This function is equivalent to INT 21 / AH=44h, but may only be called when already inside
a DOS function call.

See Also: iNT 2l/AH=Uh

INT 2Fh Function 122Ch DOS 3.3+

GET DEVICE CHAIN

Return a pointer to the device driver chain (omitting the NUL device).

Call with:

AX 122Ch

Returns:

BX:AX pointer to header of second device driver (NUL is first) in driver chain

See Also: INT 21/AH=52h

INT 2Fh Function 122Dh DOS 3.3+

GET EXTENDED ERROR CODE

Return the current extended error code.

Call with:

AX 122Dh

Returns:

AX current extended error code

See Also: INT 2F/AX=1222h, INT 21/AH=59h

Appendix A: Undocumented DOS Functions 649

INT 2Fh Function 122Eh DOS 4.0+

GET OR SET ERROR TABLE ADDRESSES

Specify or determine the locations of various tables used to convert error numbers into
error messages.

Call with:

AX 122Eh

DL subfunction

OOh get standard DOS error table (errors 00h-12h^0h-5Bh)
Returns: ES:D1 pointer to error table
Olh set standard DOS error table

ES:DI pointer to error table
02h get parameter error table (errors OOh-OAh)
Returns: ES:DI pointer to error table
03h set parameter error table
ES:DI pointer to error table
04h get critical/SHARE error table (errors 13h-2Bh)
Returns: ES:DI pointer to error table
05h set critical/SHARE error table

ES:DI pointer to error table
06h get unknown error table
Returns: ES:DI pointer to error table
07h set unknown error table

ES:DI pointer to error table
08h get unknown error table
Returns: ES:DI pointer to error table
09h set unknown error table

ES:D1 pointer to error table

Format of error table:

Offset Size Description

OOh BYTE EFh

Olh 2 BYTEs 04h,00h (may be DOS version)
03h BYTE number of error headers following
04h 2N WORDs table of all error headers for table

Offset Size Description

OOh WORD error message number

650 UNDOCUMENTED DOS

02h WORD offset of error message from start of header
error messages are count byte followed by msg

See Also: INT 21IAH=59h

INT 2Fh Function 122Fh DOS 4.0+

SET UNKNOWN

The purpose of this function is not known.

Call with:

AX 122Fh

DX unknown

INT 2Fh Function 13h DOS 3.3+

SET DISK INTERRUPT HANDLER

Specify the address of the handler for most DOS disk access, and return the old handler's
address.

Call with:

AH 13h

DS:DX pointer to interrupt handler disk driver calls on read/write
ES:BX address to restore INT 13 to on system halt (exit from root

shell)

Returns:

DS:DX from previous invocation of this function
ES:BX from previous invocation of this function

Notes:

■ Most DOS 3.3+ disk access is performed via the vector set in DS:DX, although a few
functions are still invoked via an INT 13 instruction.

■ This can a dangerous seairity loophole for any virus-monitoring software which does
not trap this call. At least two viruses are known to use it to get the original ROM entry
point.

Appendix A: Undocumented DOS Functions 651

INT 2Fh Function 1400h DOS 3.3+

NLSFUNC.COM - INSTALLATION CHECK

Determine whether NLSFUNC has been loaded.

Called with:

AX 1400h

Returns:

AL OOh not installed, OK to install
Olh not installed, not OK

FFh installed

Note:

This function is called by the DOS v3.3+ kernel.

D0S3!3+

NLSFUNC.COM - CHANGE CODE PAGE

Select a new code page as the default.

Called with:

AX 1401h

DS:SI pointer to internal code page structtire (see below)
BX new code page
DX country code

Returns:

AL status

OOh successful

else DOS error code

Note:

This function is called by the DOS v3.3+ kernel.

652 UNDOCUMENTED DOS

Format of DOS 3.30 internal code page structure:
Offset Size Description
OOh 8 BYTEs unknown

08h 64 BYTEs name of country information file
48h WORD system code page
4Ah WORD number of supported subfunctions
4Ch 5 BYTEs data to return for INT 21 /AX=6502h

51h 5 BYTEs data to return for INT 21 /AX=6504h

56h 5 BYTEs data to return for INT 21 /AX=6505h

5Bh 5 BYTEs data to return for INT 21 / AX=6506h

60h 41 BYTEs data to return for INT 21 / AX=6501h

See Also: INT21IAH=66h

INT 2Fh Function 1402h _DOS 3.3+

NLSFUNC.COM - GET COUNTRY INFO

Get country-specific information for a country or code page other than the default.

Called with:

AX 1402h

BP subfunction (same as AL for INT 21 / AH=65h)

BX code page
DX country code
DS:SI pointer to internal code page structure (see INT 2F/AX=1401h)
ES:DI pointer to user buffer
CX size of user buffer

Returns:

AL status

OOh successful

else DOS error code

Notes:

■ This function is called by the DOS v3.3+ kernel on INT 21 / AH=65h.
■ The code page structure is apparently only needed for the COUNTRY.SYS pathname.

See Also: INT 2F/AX=1403h,INT 2F/AX=1404h, INT 21/AH=65h

Appendix A: Undocumented DOS Functions 653

INT 2Fh Function 1403h DOS 3.3+
^ iStfii-i

NLSFUNC.COM - SET COUNTRY INFO

Select a new country code as the default.

Called with:
AX 1403h

DS:S1 pointer to internal code page structure (see INT 2F/ AX=1401h)
BX code page
DX country code

Returns:
AL status

Note:

This function is called by the DOS v3.3+ kernel on INT 21 /AH=38h.

See Also: INT 2F/AX=1402h, INT 2F/AX=1404h, INT 21IAH=38h

INT 2Fh Function 1404h DOS 3.3+

N1SFUNC.COM - GET COUNTRY INFO

Return coimtry-specific information for a cotmtry other than the current default.

Called with:

AX 1404h

BX code page
DX cotmtry code
DS:S1 pointer to internal code page structure (see INT 2F/ AX=1401h)
ES:D1 pointer to user buffer

Returns:
AL status

Not6SI
■ This function is called by the DOS v3.3+ kernel on INT 21 / AH=38h.
■ The code page structure is apparently only needed for the COUNTRY.SYS pathname.

See Also: INT 2F/AX=1402h, INT 2F/AX=1403h, INT 21IAH=38h

654 UNDOCUMENTED DOS

INT 2Fh Function 1500h CDROM extensions

MICROSOFT CD-ROM EXTENSIONS (MSCDEX) INSTALLATION CHECK

Although documented, this function is included because it conflicts with the
GRAPH1CS.COM installation check for DOS 4+.

Call with:
AX 1500h

BX OOOOh

Returns:

BX nvunber of CDROM drive letters used

CX starting drive letter (0=A:)

Note:
This installation check DOES NOT follow the format used by other software.

INT 2Fh Function 1500h DOS 4+

GRAPH1CS.COM - INSTALLATION CHECK

Determine whether GRAPHICS has been loaded.

Call with:

AX ISOOh

Returns:

AX FFFFh

ES:DI pointer to unknown information (perhaps graphics data)

INT 2Fh Function 1900h DOS 4.x only

SHELLB.COM - INSTALLATION CHECK

Determine whether SHELLB has been loaded.

Call with:

AX 1900h

Appendix A: Undocumented DOS Functions 655

Returns:

AL OOh not installed

FFh installed

INT 2Fh Function 1901 h DOS 4.x only

SHELLB.COM - SHELLC.EXE INTERFACE

Inform SHELLB of SHELLC's address, and return the location of a workspace for SHELLC.

Call with:

AX 1901h

BL OOh if SHELLC transient

Olh if SHELLC resident

DS:DX pointer to far call entry point for resident SHELLC.EXE

Returns:

ES:DI pointer to SHELLC.EXE workspace within SHELLB.COM

Note:

SHELLB.COM and SHELLC.EXE are parts of the DOS 4.x shell.

INT 2Fh Function 1902h DOS 4.x only

SHELLB.COM - COMMAND.COM INTERFACE

Get the next line which COMMAND.COM should execute in preference to reading a com
mand from the ciurrent batch file.

Call with:

AX 1902h

ES:DI pointer to ASCIZ full filename of current batch file, with at least the final
filename element uppercased

DS:DX pointer to buffer for results

Returns:
AL OOh failed, either

(a) the final filename element quoted at ES:DI does not match the identity of shell
batch fUe quoted as the parameter of the most recent call of the SHELLB command, or

656 UNDOCUMENTED DOS

(b) no more Program Start Commands are available.
AL= FFh success, then:

memory at DS:[DX+1] onwards filled as:
DX+1: BYTE count of bytes of PSC
DX+2: N BYTEs Program Start Corrunand text

BYTE ODh terminator

Notes:
■ As long as SHELLB provides Program Start Commands from its workspace, the current

batch file does not advance.

■ The final PSC of a sequence is finished with a GOTO COMMON, which causes a loop
back in the batch file which called SHELLC so as to execute SHELLC again.

■ The PSCs are planted in SHELLB workspace by SHELLC, the iiser menu interface.
■ The check on batch file name permits PSCs to CALL nested batch files while PSCs are

still stacked up for subsequent execution.

INT 2Fh Function 1903h DOS 4.x only

SHELLB.COM - COMMAND.COM interface

Determine whether Program Start Command is attempting to re-execute the current batch
file.

Call with:

AX 1903h

ES:DI pointer to ASCIZ batch file name as for AX=1902h

Returns:

AL FFh if quoted batch filename matches last SHELLB parameter
AL OOh if it does not

INT 2Fh Function 1904h DOS 4.x onlv
t r. ■!\ .V'j ■' t■ ■■■'tV.y-i'';r-V,'".*'.,.J.' '■'!^...1... J! .■ V ■■ .M1- '.I! .I -.r- -r X. . 1 I.tii.M....—I... - K

SHELLB.COM - SHELLB.COM transient to TSR interface

Determine the name of the batch file from which the DOS Shell is executing.

Call with:
AX 1904h

Appendix A: Undocumented DOS Functions 657

Returns:

ES:DI pointer to name of current shell batch file:
WORD number of bytes of name following
BYTEs (8 max) uppercase name of shell batch file

INT 2Fh Function 1 AOOh DOS 4+

ANSLSYS - INSTALLATION CHECK

Determine whether ANSLSYS is present.

Call with:

AX lAOOh

Returns:

AL FFh if installed

INT 2Fh Function 1A01 h DOS 4+

ANSLSYS - GET/SET DISPLAY INFORMATION

This is presumably the DOS lOCTL interface to ANSLSYS.

Call with:

AX lAOlh

CL TFh for GET

5Fh for SET

DS:DX pointer to parm block as for INT 21,AX=440Ch,CX=037Fh/035Fh respectively

Returns:

CP set on error

AX error code (many non-standard)
CP clear if successful

AX destroyed

See Also: INT 21IAX=440Ch, INT 2P/AX=lA02h

658 UNDOCUMENTED DOS

INT 2Fh Function 1 A02h DOS 4+

ANSLSYS - MISC REQUESTS

Get or set miscellaneous ANSLSYS flags.

Call with:

AX lA02h

DS:DX pointer to parameter block (see below)

Format of parameter block:
Offset Size Description
OOh BYTE subfunction

OOh set/reset interlock

Olhget /Lflag
Olh BYTE interlock state

00h=reset, 01h=set

This interlock prevents some of the ANSLSYS post-processing
in its hook onto INT 10, AH=00h mode set

02h BYTE (returned)

OOh if /L not in effect

Olh if /L in effect

See Also: INT 2F/AX=lA01h

INT 2Fh Function 1 BOOh DOS 4+

XMA2EMS.SYS - INSTALLATION CHECK

Determine whether XMA2EMS.SYS has been loaded.

Call with:

AX IBOOh

Returns:

AL FFh if installed

Notes:

■ The XMA2EMS.SYS extension is only installed if DOS has page frames to hide.

Appendix A: Undocumented DOS Functions 659

m This extension hooks onto INT 67/AH=58h and returns from that call data which

excludes the physical pages being used by DOS.

See Also: INT 2F/AX=lB01h

INT 2Fh Function 1B01 h DOS 4+

XMA2EMS.SYS - GET HIDDEN FRAME INFO

Determine information which XMA2EMS hides from regular EMS function calls.

Call with:

AX IBOlh

D1 hidden physical page nvunber

Returns:

AX FFFFh if failed (no such hidden page)
AX OOOOhifOK,then

ES segment of page frame
D1 physical page number

Note:

The returned data corresponds to the data edited out of the INT 67/ AH=58h call by
XMA2EMS.

See Also: mi 2F/AX=lBFFh

WT^Tunc^nBFm~™~~~^to^™
XMA2EMS.SYS - UNKNOWN

The purpose of this function is not known, but it appears likely to be the same as INT
2F/AX=lB01h.

Call with:

AX IBFFh

DI unknown

660 UNDOCUMENTED DOS

Returns:

AH unknown

ES:DI pointer to unknown

Note:
This function is called by FASTOPEN.

INT 2Fh Function 4001 h OS/2 compatibility
box

SWITCH DOS TO BACKGROUND

Place the OS/2 compatibLlity box in the background.

Call with:
AX 4001h

See Also: INT 2F/AX=4002h

INT 2Fh Function 4002h OS/2 compatibility
box

SWITCH DOS TO FOREGROUND

Place the OS/2 compatibility box in the foregrotind.

Call with:
AX 4002h

See Also: INT 2F/AX=4001h

INT 2Fh Function ADOOh DOS 3.3+

DISPLAY.SYS - INSTALLATION CHECK

Determine whether DISPLAY.SYS is present.

Call with:
AX ADOOh

Appendix A: Undocumented DOS Functions 661

Returns:

AL FFh if installed

BX unknown (OlOOh in MS-DOS 3.30, PCDOS 4.01)

INT 2Fh Function AD01 h DOS 3.3+

DISPLAY.SyS - SET UNKNOWN VALUE

The purpose of the value set by this call is not known.

Call with:

AX ADOlh

BX unknown

Returns:

CF set on error

additional return values (if any) unknown

INT 2Fh Function AD02h DOS 3.3+

DISPLAY.SYS - GET UNKNOWN VALUE

The piupose of the value retiuned by this call is not known.

Call with:

AX AD02h

Returns:

BX unknown (value set with. AX=AD01h)

;■■■ v.. i-

INT 2Fh Function AD03h DOS 3.3+

DISPLAY.SYS - GET UNKNOWN INFORMATION

The purpose and format of the data returned by this call are not known.

Call with:
AX AD03h

662 UNDOCUMENTED DOS

ES:DI pointer to user buffer
CX size of buffer

Returns:

CF set if buffer too small

CF clear on success

INT 2Fh Function AP04h

DISPLAY.SYS - UNKNOWN

The purpose of this function is not known.

Call with:

AX AD04h

additional arguments (if any) unknown

Returns:

unknown

INT 2Fh Function ADIOh DOS 4+

DISPLAYSYS internal - INSTALLATION CHECK

Determine whether DISPLAYSYS has been loaded.

Call with:

AX ADlOh

additional arguments (if any) unknown

Returns:

AX FFFFh

BX unknown (OlOOh in PCDOS 4.01)

Appendix A: Undocumented DOS Functions 663

INT 2Fh Function AD40h DOS 4+

UNKNOWN

The purpose of this function is not known.

Call with:

AX AD40h

DX unknown

additional arguments (if any) unknown

Returns:

unknown

Note:

This function is called by the DOS 4.01 PRINT.COM.

INT 2Fh Function ADSOh DOS 3.3+

KEYB.COM - INSTALLATION CHECK

Determine whether KEYB.COM has been loaded.

Call with:

AX ADSOh

Returns:

AL FFh if installed

BX unknown (OlOOh in MSDOS 3.30 and PCDOS 4.01)

ES:DI pointer to internal data (see below)

Format of KEYB Internal data:

Offset Size Description

OOh DWORD original INT 09
04h DWORD original INT 2F
08h 6 BYTEs unknown

OEh WORD flags
lOh BYTE unknown

llh BYTE unknown

664 UNDOCUMENTED DOS

12h 4 BYTEs unknown

16h 2 BYTEs country ID letters
18h WORD current code page

DOS 3.3

lAh WORD pointer to first item in list of code page tables
1 Ch WORD pointer to an item in list of code page tables
lEh 2 BYTEs unknown

20h WORD pointer to key translation data
22h WORD pointer to last item in code page table list (see below)
24h 9 BYTEs unknown

DOS 4.01

lAh 2 BYTEs unknown

1 Ch WORD pointer to first item in list of code page tables
1 Eh WORD pointer to an item in list of code page tables
20h 2 BYTEs unknown

22h WORD pointer to translation data
24h WORD pointer to last item in code page table list (see below)
26h 9 BYTEs unknown

Format of code page table list entries:
Offset Size Description
OOh WORD pointer to next item, FFFFh if last
02h WORD code page
04h 2 BYTEs unknown

Format of translation data:

Offset Size Description
OOh WORD size of data in bytes, including this word
02h N-2 BYTEs unknown

i ■ '' 11 ■ i V ji

INT 2Fh Function AD81 h DOS 3.3+

KEYB.COM - SET KEYBOARD CODE PAGE

Select a new code page for use by the keyboard driver.

Call with:
AX

BX

AD81h

code page

Appendix A: Undocumented DOS Functions 665

Returns:

CF set on error

AX OOOlh (code page not available)
CF dear if successful

Note:

This function is called by DISPLAY.SYS.

See Also: INT 2F/AX=AD82h

INT 2Fh Function AD82h DOS 3.3+

KEYB.COM - SET KEYBOARD MAPPING

Specify whether the keyboard driver should use the standard or the foreign key mappings.

Call with:

AX AD82h

BL OOh US keyboard (Control-Alt-Fl)
FFh foreign keyboard (Control-Alt-F2)

Returns:

CF set on error (BL not OOh or FFh)

CF dear if successful

See Also: INT 2F/AX=AD81h

■■ ■■■'■■-v. ... ■ !■

INT 2Fh Function AEOOh DOS 3.3+

INSTALLABLE COMMAND - INSTALLATION CHECK

Determine whether a command is a TSR extension to COMMAND.COM's internal com
mand set.

Called with:
AX AEOOh
DX FFFFh
DS:BX pointer to command line

666 UNDOCUMENTED DOS

Returns:

AL FFh if this command is a TSR extension to COMMAND.COM

OOh if the command should be executed as usual

Notes:

■ This call provides a mechanism for TSRs to install permanent extensions to the
conunand repertoire of COMMAND.COM. It appears that COMMAND.COM makes

this call before executing the current command line, and does not execute it itself if the

return is FFh.

■ APPEND hooks this call, to allow subsequent APPEND commands to execute without

reloading APPEND from disk.

Format of command line:

Offset Size Description
OOh BYTE max length of command line, as in INT 21/AH=0Ah
Olh BYTE coimt of bytes to follow

N BYTEs command line text, terminated by ODh

INT 2Fh Function AE01 h DOS 3.3+

INSTALLABLE COMMAND - EXECUTE

Execute a TSR extension to COMMAND.COM's set of internal commands. The extension

may resolve to an existing internal command.

Called with:

AX AEOlh

DX FFFFh

DS:SI pointer to buffer

Returns:

buffer at DS:SI filled with a length byte followed by the uppercase internal command to exe
cute (if length not 0)

Notes:

■ This call requests execution of the command which a previous call to AX=AE00h
indicated was resident.

■ APPEND hooks this call.

Appendix A: Undocumented DOS Functions 667

If the buffer is returned with a nonempty string, COMMAND.COM attempts to

execute it as an internal command.

INT 2Fh Function BOOOh DOS 3.3+

GRAFTABL.COM - INSTALLATION CHECK

Determine whether GRAFTABL has been loaded.

Call with:

AX BOOOh

Returns:

AL OOh not installed, OK to install

01 h not installed, not OK to install

FFh installed

Note:

This function is called by D1SPLAY.SYS.

INT 2Fh Function B001 h DOS 3.3+

GRAFrABL.COM - GET UNKNOWN INFORMATION

Return miscellaneous information about the resident GRAFTABL.

Call With:

AX BOOlh

DS:DX pointer to 4-byte buffer (see below)

Returns:

buffer filled

AL FFh

Format of buffer:

Offset Size Description

OOh WORD unkncmm (PCDOS 3.3014.01 fill in 0130h, MSDOS 3.30 fills in 0030h)
02h WORD CS of resident code

668 UNDOCUMENTED DOS

INT 2Fh Function B700h DOS 3.34-

APPEND - INSTALLATION CHECK

Determine whether APPEND has been loaded.

Call with:

AX B700h

Returns:

AL OOh not installed

FFh if installed

Note:

MSDOS 3.30 APPEND refuses to install itself when run inside TopView or a TopView-com-
patible environment

INT 2Fh Function B701 h DOS 3.3+

APPEND - UNKNOWN

The purpose of this function is not known.

Call with:

AX B701h

additional arguments (if any) unknown

Note:

MSDOS 3.30 APPEND displays "Incorrect APPEND Version" and aborts the caller.

INT 2Fh Function B702h DOS 3.3+

APPEND - VERSION CHECK

Determine which version of APPEND has been loaded.

Call with:

AX B702h

Appendix A: Undocumented DOS Functions 669

Returns:

AX FFFFh if not DOS 4.0 APPEND

AL major version number
AH minor version number, otherwise

See Also: INT 2F/AX=B710h

INT 2Fh Function B703h DOS 3.3

APPEND - HOOK INT 21

Place a handler on the INT 21h call chain after APPEND.

Call with:

AX B703h

ES:DI pointer to INT 21h handler APPEND should chain to

Returns:

ES:DI pointer to APPENIX s INT 21 h handler

Note:

Each invocation of this fimction toggles a flag which APPEND uses to determine whether
to chain to the user handler or the original INT 21.

APPEND - GET APPEND PATH

Return the cvurrent APPEND path.

Call with:

AX B704h

Returns:

ES:DI pointer to active APPEND path (128 bj^es max)

670 UNDOCUMENTED DOS

iNT 2Fh Function B710h DOS 3.3+

APPEND - GET VERSION INFO

Appears to return various information in addition to the version of APPEND which was
loaded.

Call with:

AX B710h

Returns:

AX unknown

BX unknown (OOOOh in MSDOS 3.30)

CX unknown (OOOOh in MSDOS 3.30)

DL major version
DH minor version

See Also: INT 2F/AX=B702h

INT 2Fh Function BSOOh network

INSTALLATION CHECK

Determine whether a network is installed.

Call wlth:

AX BSOOh

Returns:

AL OOh not installed

nonzero installed

BX installed component flags (test in this order!)
bit 6 server

bit 2 messenger
bit 7 receiver

bit 3 redirector

Appendix A: Undocumented DOS Functions 671

INT 2Fh Function B803h network

GET CURRENT POST HANDLER ADDRESS

This function is used in conjunction with INT 2F/ AX=B804h to hook into the network
event post routine.

Call with:

AX B803h

Returns:

ES:BX post address

See Also: INT 2F/AX=B804h, INT 2F/AX=B903h

INT 2Fh Function B804h _____ network

SET NEW POST HANDLER ADDRESS

This function is used in conjunction with INT 2F/AX=B803h to hook into the network
event post routine.

Call with:

AX B804h

ES:BX new FAR post handler address

Note:

The specified handler is called on any network event. Two events are defined: message re
ceived and critical network error.

Values post routine Is called with:
AX = OOOOh single block message

DSiSl - ASCIZ originator name
DS:D1 - ASCIZ destination name

ES:BX - text header (see below)

AX = OOOlh start multiple message block
CX = block group ID
DS:S1 - ASCIZ originator name
DS:D1 - ASCIZ destination name

672 UNDOCUMENTED DOS

AX = 0002h multiple block text
CX = block group ID
ES:BX - text header (see below)

AX = 0003h end multiple block message
CX = block group ID

AX = 0004h message aborted due to error
CX = block group ID

AX = OlOlh server received badly formatted network request
Returns: AX = FFFFh (PC LAN will process error)

AX = 0102h unexpected network error
ES:BX-NCB (see INT 5C)

AX = 0103h server received INT 24 error

other registers as for INT 24, except AH is in BH
Returns: as below, but only OOOOh and FFFFh allowed
Post routine returns:

AX=response code
OOOOh user post routine processed message
OOOlh PC LAN will process message, but message window not displayed
FFFFh PC LAN will process message

Format of text header:

Offset Size Description

OOh WORD length of text (maximum 512 bytes)
02h N BYTEs text of message

Note:

All CRLF sequences in the message text are replaced by ASCII 14h.

SeeAISO: INT 2F/AX=B803h, INT 2F/AX=B904h

INT 2Fh Function B807h network

GET NetBIOS NAME NUMBER OF MACHINE NAME

Return the network machine number.

Call with:

AX B807h

Appendix A: Undocumented DOS Functions 673

Returns:

CH NetBIOS name number of the machine name

See Also: INT 21/AX=5E00h

INT 2Fh Function B808h network

UNKNOWN

The purpose of this function is not known.

Call with:
AX B808h

additional arguments (if any) unknown

Returns:
unknown

INT 2Fh Function B809h network

VERSION CHECK

Determine which version of the network software has been installed.

Call with:
AX B809h

Returns:
AH major version
AL minor version

INT 2Fh Function B900h PC Network
RECEIVER.COM

INSTALLATION CHECK

Determine whether the PC Network receiver module has been loaded.

Call with:
AX B900h

674 UNDOCUMENTED DOS

Returns:

AL OOh if not installed

FEh if installed

INT 2Fh Function B901 h PC Network

RECEIVER.COM
■ ■ t:-.. ■ - - :

GET RECEIVER.COM INT 2Fh HANDLER ADDRESS

Return the entry point for the RECEIVER.COM INT 2Fh handler, allowing more efficient ex
ecution by bypassing any other handlers which have hooked INT 2Fh since RE-
CErVER.COM was installed.

Call with:

AX B901h

Returns:

AL unknown

ES:BX pointer to RECEIVER.COM INT 2Fh handler

INT 2Fh Function B903h PC Network

RECEIVER.COM

GET RECEIVER.COM POST ADDRESS

This function is used in conjunction with INT 2F/AX=B904h to hook into the network
event post routine.

Call with:

AX B903h

Returns:

ES:BX pointer to POST handler

See Also: INT 2F/AX=B803h, INT 2F/AX=B904h

Appendix A: Undocumented DOS Functions 675

INT 2Fh Function B904h PC Network

RECEIVER.COM

SET RECEIVER.COM POST ADDRESS

This function is used in conjunction with EsTT 2F/ AX=B903h to hook into the network
event post routine.

Call with:

AX B904h

ES:BX pointer to new POST handler

See Also: INT 2F/AX=B804h, INT 2F/AX=B903h

1 .ti j ' ■t i":.' • V* ••• -i o-'.:'..''iV" - 'i. - i-" .■> vy:/":: iir I" v ■ v- ~

INT 2Fh Function B905h PC Network
RECEIVER.COM

GET FILENAME

Return two filenames used internally by RECEIVER.COM.

Call with:
AX B905h
DS:BX pointer to 128-byte buffer for filenarne 1
DS:DX pointer to 128-b3de buffer for filename 2

Returns:
buffers filled from RECErVER.COM internal buffers

Note:
The use of the filenames is unknown, but one appears to be for storing messages.

See Also: INT 2F/AX=B906h

676 UNDOCUMENTED DOS

INT 2Fh Function B906h PC Network

RECEIVER.COM

SETHLENAME

Specify the filenames which RECEIVER.COM uses internally.

Call with:

AX B906h

DS;BX pointer to 128-byte buffer for filename 1
DS:DX pointer to 128-bjffe buffer for filename 2

Returns:

RECEIVER.COM internal buffers filled from user buffers

Note:

The use of the filenames is unknown, but one appears to be for storing messages.

See Also: INT 2F/AX=B905h

INT 2Fh Function B908h PC Network

RECEIVER.COM

UNLINK KEYBOARD HANDLER

Remove the INT 09h handler immediately following RECErVER.COM m the INT 09h chain.

Call with:

AX B908h

ES:BX pointer to INT 09 handler RECEIVER should call after it finishes INT 09

Note:

This call replaces the address to which RECErVER.COM chains on an INT 09 without pre
serving the original value. This allows a prior handler to imlink, but does not allow a new
handler to be added such that RECEIVER gets the INT 09 first.

Appendix A: Undocumented DOS Functions 677

INT 2Fh Function BFOOh PC LAN PROGRAM

REDIRIFS.EXE

INSTALLATION CHECK

Determine whether the PC LAN Program Installable File System module has been loaded.

Call with:
AX BFOOh

Returns:
AL FFh if installed

INT 2Fh Function BF01 h

UNKNOWN

The piupose of this function is not known.

Call with:
AX BFOlh

additional arguments (if any) unknown

Returns:
unknown

PC LAN PROGRAM

REDIRIFS.EXE

INT 2Fh Function BF80h PC LAN PROGRAM

REDIR.SYS

SET REDIRIFS ENTRY POINT

Specify the address of an Installable FUe System handler for the PC LAN Program redirec-
tor.

Call with:

AX BFSOh

ES:DI pointer to FAR entry point to IFS handler in REDIRIFS

678 UNDOCUMENTED DOS

Returns:

AL FFh if installed

ES:D1 pointer to internal workspace

Note:

After executing this function, all futiue DPS calls to RED1R.SYS are passed to the specified
entry point.

INT30h DOSU

(NOT A VECTOR!) FAR JMP INSTRUCTION FOR CP/M-STVLE CALLS

For CP/M compatibility, a program may invoke DOS fimction calls by loading CL with the
function number and performing a near call to offset 5 in the program's PSP. That location
contains a FAR jiunp instruction which points at the absolute address OOOCOh, which is this
vector. This vector contains a FAR jump instruction to the CP/M-compatible entry point for
the INT 21h handler.

Note:

The jump address in the PSP is two bytes too low (it points into the middle of INT 2Fh)
imder DOS 2 and up, if the PSP was created by EXEC (INT 21/AH=48h).

See Also: INT 21/AH=26h

INT31h DOSU

OVERWRITTEN BY CP/M JUMP INSTRUCTION IN INT 30h

The first bjde of this vector contains the end of the FAR JMP instruction stored in INT 30h.

Appendix B

Annotated Bibliography

Jon K. Adams, "Reading and Writing the DOS Environment," Computer Language,
AprU 1989, pp. 45-51.

Presents Turbo Pascal code which uses undocumented fields in the PSP to locate COM-
MAND.COM.

Phillip M. Adams and Clovis L. Tondo, Writing DOS Device Drivers in C, Engle-
wood Cliffs NJ: Prentice Hall, 1990,385 pp.

This book presents a fine explanation of writing device drivers in C rather than in assem
bly language.

Nancy Andrews, "Moving Toward an Industry Standard for Developing TSRs,"
Microsoft Systems Journal, December 1986, pp. 7-12.

This article from a Microsoft publication notes that undocumented DOS features such as
the InDOS flag are "critical for TSRs to work consistently."

Douglas Boling, "Background Copying Without OS/2," PC Magazine, 17 January
1989, pp. 289-315.

Presents a DOS multitasking TSR which copies files in the background; includes discus
sion of INT 28h and of GetISet PSP (including a fix for a DOS 2.x problem with the PSP
calls).

679

680 UNDOCUMENTED DOS

Douglas Boling and Jeff Prosise, "Give Yovirself a Smart DOS Command Line
with ALIAS," PC Magazine, 26 December 1989, pp. 253-268.

Discusses a variety of undocumented DOS topics, including INT 21h Function 51h (Get
PSP) in DOS 2.x, finding COMMAND.COM's PSP, and changes brought about by the
INSTALL= statement in DOS 4+.

"Dr. Bob," "Undocumented 34H Call," Microsoft Systems Journal, September 1987,
pp. 77-78.

Another rare Microsoft description of undocumented DOS.

Ken W. Christopher, Jr., Barry A. Feigenbaum, Shon O. Saliga, Developing Applica
tions Using DOS, New York NY: John Wiley & Sons, 1990,573 pp.

This book by three IBM employees who were "the lead engineers directing the entire de
velopment of the DOS 4.0 system " describes many undocumented DOS features, includ
ing for example INT 21h Function 5Dh.

Terry Dettmann and Jim Kyle, DOS Programmer's Reference, Second Edition, Car-
mel IN: Que Corporation, 1989,892 pp.

Contains extensive reference material on undocumented DOS, and a fifty-page appendix
by Jim Kyle.

Ray Duncan, Advanced MS-DOS Programming, Second Edition, Redmond WA:
Microsoft Press, 1988,669 pp.

This is the bible of DOS programming, with examples in assembler and C.

Ray Duncan (editor). The MS-DOS Encyclopedia, Redmond WA: Microsoft Press,
1988,1570 pp.

Part C of this mammoth book ("Customizing MS-DOS") is particularly good, contain
ing chapters on TSRs, exception handlers, hardware interrupt handlers, DOS filters, and
installable device drivers. Includes Richard Wilton's definitive piece on TSR program
ming.

Earl F. Glynn, "Getting a Good Look at How DOS Allocates Your Memory
Blocks," PC Magazine, 12 June 1990, pp. 329-344.

A detailed look at building a MCB walker with Turbo Pascal; also discusses the MCB
chain in the DOS compatibility box of OSI2, and presents an unsolved "memory
enigma."

Appendix B: Annotated Bibliography 681

Daniel E. Greenberg, "Reentering the DOS Shell," Programmer's Journal, May-June
1990, pp. 28-36.

The definitive examination of the COMMAND.COM backdoor, INT lEh.

Robert L. Hummel, "How the DOS CLS Command Handles Various Displays,"
PC Magazine, 11 October 1988, pp. 341-344.

"Every time you use the CLS command, DOS sifts through a bewildering array of infor
mation. Here's a peek behind the scenes of how COMMAND.COM clears the screen";
includes a discussion of INT 29h and the SPECL bit in the device driver header.

Intel Corporation, "Undocumented iAPX 286 Test Instruction," 1987.
Intel's 15-page document on the undocumented 80286 LOAD ALL instruction.

Rahner James, "Undocumented DOS," Dr. Dobb's Journal, Jtme 1989, pp. 26-34.
Discusses INT 21h Function 52h, the DPB, SFT (referred to as the "Open File Table"),
CDS (referred to as the "Drive Path Table"), and sector buffers. See also the letter by
Michael Cook, "Delving into Drive Paths," in Dr. Dobb's Journal, February 1990, pp.
12-14.

Jim Kyle, "The Reserved DOS Functions," in Dettmann and Kyle, DOS
Programmer's Reference, pp. 805-856.

Presents a program, with source code in Turbo Pascal, for examining the "Configuration
Variable Table" (CVT) in DOS 2.x, 3.x, and 4.x. The CVT is what in Undocumented
DOS we refer to as the List of Lists.

Robert S. Lai and The Waite Group, Writing MS-DOS Device Drivers, Reading
MA: Addison-Wesley, 1987,466 pp.

This is the standard work on DOS device drivers; all examples are in assembler.

Michael Mefford, "Choose CONFIG.SYS Options at Boot," PC Magazine, 29 No
vember 1988, pp. 323-34.

Contains a discussion of the undocumented DOS CONFIG.SYS buffer.

Michael Mefford, "Running Programs Painlessly," PC Magazine, 16 February 1988,
pp. 321-336.

Contains a discussion of the problems with using INT 2Eh (though the author's assertion
that INT 2Eh "will not execute batch files nor work from within a batch file " appears not
to be true in DOS 3.x).

682 UNDOCUMENTED DOS

Raymond J. Michels, "Undocumented DOS Internals," Programmer's Journal 7.2
(1989), pp. 32-37.

Briefly discusses the folloioing areas of undocumented DOS: PSP, environment, MCBs,
the SFT, DPBs, and the DOS variables table.

Ted Mirecki, "DOS Memory Control," PC Tech Journal, October 1987, p. 45.
A brief discussion of the layout of MCBs, from the popular "Tech Notebook" in a
now-defunct magazine.

Ted Mirecki, "Function 32H in DOS," PC Tech Journal, February 1989, pp. 129-133.
Describes the structure of the DPB.

Ted Mirecki, "More Handles for New Applications" and "More Handles for Old
Applications," PC Tech Journal, April 1988, pp. 161-165.

Describes the file handle table within a process's PSP.

Charles Petzold, "Widening the Path," PC Magazine, 28 April 1987, pp. 341-348.
Discusses "the undocumented (and strange)" INT 2Eh.

Jeff Prosise, "How Device Drivers Work," PC Magazine, 28 November 1989, pp.
379-380.

Discusses finding the device chain via INT 21h Function 52h.

Jeff Prosise, "The Inner Life of a TSR," PC Magazine, August 1990, pp. 467-472.
General discussion of TSRs, including the InDOS flag, INT 28h, critical error flag, and
Get/Set PSP.

Jeff Prosise, "Instant Access to Directories," PC Magazine, 14 April 1987, pp. 313-
334.

Excellent discussion of TSR programming; discusses the InDOS flag, INT 28h (includ
ing the need, not only to hook INT 28h, but also to periodically invoke INT 28h as well),
the DOS stacks, DTA, critical errors, and hooking the BIOS disk interrupt.

Jeff Prosise, "Teaching a TSR New Tricks," PC Magazine, 12 June 1990, p. 384.
A brief discussion of the active PSP.

Robin Raskin, Charles Petzold, and Stephen Randy Davis, "Taking Up Resi
dence," PC Magazine, 25 November 1986, pp. 163-193.

A detailed look at the "TSR blues."

Appendix B: Annotated Bibliography 683

Tony Rizzo, "MS-DOS CD-ROM Extensions: A Standard PC Access Method,"
Microsoft Systems Journal, September 1987, pp. 54-60.

Describes the Microsoft CD-ROM Extensions (MSCDEX), including its implementa
tion using the DOS network redirector.

Arthur Rothstein, "Walking the OS/2 Device Chain," Dr. Dobb's Journal, October
1990, p. 30.

An interesting contrast to walking the device chain under MS-DOS.

Herbert Schildt, "Supercharging TSR's," Born to Code in C, Berkeley CA: Osbome
McCraw-HiU, 1989, pp. 139-201.

Chapter 3 of this book presents a useful TSR skeleton in Turbo C, which uses the usual
assortment of undocumented DOS functions for building robust TSRs. This is an update
to the author's earlier discussion of TSRs in C: Power User's Guide (Berkeley CA:
Osbome McGraw-Hill, 1988, Chapter 3, pp. 91-128), which had asserted that the inter
rupt service routines in a TSR "cannot use any DOS functions." The later book's TSRs
are "supercharged" in the sense that they can make DOS calls, though only because they
employ undocumented DOS.

Barry Simon, "Providing Program Access to the Real DOS Environment," PC
Magazine, 28 November 1989, pp. 309-314.

Discusses the three (count 'em) DOS environments—the real or active environment, the

program environment, and the root environment—and shows how to access the first of
these. This provides a useful contrast to our own techniques in chapter 6, which empha
size accessing what this article calls the "root" environment.

A1 Stevens, Turbo C: Memory-Resident Utilities, Screen I/O and Programming Tech
niques, Portland OR: MIS Press, 1987,315 pp.

Chapter 11 ("Memory-Resident Programs") and Chapter 12 ("Building Turbo C Mem
ory-Resident Programs") present a TSR skeleton, using undocumented DOS. The
author's later Extending Turbo C Professional (Portland OR: MIS Press, 1989, 418
pp.) contains an improved TSR skeleton, plus a TSR overlay manager.

John Switzer, "Closing DOS's Backdoor," Dr. Dobb's Journal, October 1990, pp. 42-
48.

Explains a bizarre quirk of the DOS Delete FCB function (INT 21h Function 13h), with
details on the INT 30h and INT 31h alternate function dispatchers.

684 UNDOCUMENTED DOS

Giles Todd, "Installing MS-DOS Device Drivers from the Command Line," .EXE,
August 1989, pp. 16-20.

Presents assembly-language code for loading device drivers under DOS 3.30; includes
discussion of INT 21h Function 52h.

Thomas A. Wadlow, Memory Resident Programming on the IBM PC, Reading MA:
Addison-Wesley, 1987,413 pp.

This book is well written and well organized, but the author refrains from using undocu
mented DOS, and in fact argues against using undocumented DOS in TSRs.

The Waite Group's MS-DOS Developer's Guide, Second Edition, Indianapolis IN:
Howard W. Sams & Co., 1989,783 pp.

Chapter 3 ("Program and Memory Management"), chapter 4 ("Terminate and Stay Resi
dent Programming"), chapter 6 ("Installable Device Drivers"), and chapter 11 ("Disk
Layout and File Recovery") all contain discussions of undocumented DOS. There is also
a brief appendix on undocumented DOS interrupts and functions.

The Waite Group's MS-DOS Papers, Indianapolis IN: Howard W. Sams & Co.,
1988,578 pp.

This popular book is somewhat uneven, but several chapters contain excellent discussions
of undocumented DOS: chapter 6 (Raymond J. Michels, "Undocumented MS-DOS
Functions," pp. 147-183), chapter 7 (M. Steven Baker, "Safe Memory-Resident Pro
gramming (TSR)," pp. 185-215), and chapter 10 (Walter Dixon, "Developing MS-DOS
Device Drivers," pp. 303-344).

Richard Wilton, "Terminate-and-Stay-Resident Utilities," in Ray Duncan (ed.),
MS-DOS Encyclopedia, pp. 347-385.

This article carries the note that "Microsoft cannot guarantee that the information in this
article will be valid for future versions of MS-DOS." Nonetheless, it is probably the de
finitive article on TSR programming. This Microsoft-endorsed reference discusses the fol
lowing undocumented DOS functions: INT 21h Function 34h (Get InDOS Flag),
Function 50h (Set PSP), Function 51h (Get PSP), Function 5D0Ah (Set Extended Error

Information), and INT 28h (MS-DOS Idle Interrupt). Source code in assembler.

Michael J. Yotmg, MS-DOS Advanced Programming, San Francisco CA: Sybex,
1988,490 pp.

Chapter 11 ("Memory Residency," pp. 321-360) contains an assembler module that con
verts a C program to a TSR, using the usual undocumented DOS functions. Chapter 12
provides a useful overview of the DOS compatibility box in OS/2.

Index

ASCn text, 399

ASCnZ string, 399-401
assembly language

device loading, MOVUP.ASM, 138-140
DOS calls from, 32-34

undocumented, 11-12

imdocumented DOS calls, 45-49

ATTRbyte, 160
AutoCAD/386,22

AUTOEXEC.BAT, 356-357,385

B

BASIC

DOS calls from, 39-40

undocumented DOS calls, 61-62

Batch files

batch file compilers, 357
command interpreter and, 356-357,

367-368

menuing system, 412

Batch language enhancement programs, 357
BIOS Parameter Block, 158-159

Block device, 117,129-130

Boot sector, 169 40

Bootstrap loader. 111
Buffer chain, 178-182

approaches to, 179
BUFFERS, 180-181,182,193

List of Lists and, 178-182

Avorking of, 180
Bytes, of memory control blocks, 83-84

CALL, 4,5,366

CD-ROM Extensions (MSCDEX), 8

Checksum, 403-404

Child process. 111
Child program, termination of, 437-439
C language

CO.ASM, 140-146

device loading DEVLOD.C, 130-138

685

686 UNDOCUMENTED DOS

DOS calls from, 34-38

DOS library functions, 38
in-line assembly language, 35-37
register pseudo-variables, 37
TSR programming, 274-282

sta5dng resident in, C, 279-282
undocumented DOS calls, 49-57

Cluster concept, FAT file system, 157-158
CMDSPY.EXE, INTRSPY, 459-460,489-490,

493

CO.ASM, 140-146

CodeView, 18,19,80

COM files, command interpreter and, 368-
369

COMMAND, 293-294,330,331

COMMAND.COM, 18,335,383-414

alternatives to

4DOS.COM, 410-411

menuing systems, 412-414
back door into, INT 2Eh, 405-410

DEBUG and, 386-387

enviroiunent

location of environment, 388-399

master environment, 383

searching environment, 399-403
use of environment, 387-388

failure to find file, 384

initialization portion of, 385,386-387
locating portions of, 386-387
as parent process. 111

primary shell, 383-384
reload errors, 404

reloading of itself, 403-404
resident portion of, 384-385,386
transient portion of, 385,386

Command interpreters
COMMAND.COM, 383-414

dispatching processes
BAT files, 367-368

COM files, 368

EXE files, 368-369

exit code concept, 369-370
locating and loading external

commands, 367

hooks of MS-DOS

dedicated interrupt vectors, 371-
372

tabulation of multiplex interrupt
functions, 372-379

interpretation of operator requests
distingmshing intemal/extemal

commands, 363-365

finding and executing internal
commands, 365-366

parsing, 360-361

master environment editor, EN-

VEDT, 414-425

operator input

batch enhancers and compilers,
357-358

batch files, 356-357

DOS prompt, 355
keystrokes, 355-356
losing stuffed commands, 358-360

requirements of, 354
TSHELL, 379-383

Command-line arguments, TSR, 318-319
Command line loading of drivers, 125

CO.ASM, 140-146

DEVLOD, 127-138,149-151

Index 687

EXE2BIN, 146-149

MOVUP, 138-140

CON driver, 125,126

CONFIG.SYS

DEVICE =, 116

memory resident programs, IN
STALL = statement, 98

parsing, 84-85
processing of, 170
SHELL, 111, 382,383-384

Congruence of files and devices, 115-116
COPY CON, 359

Critical error flag, 288,294
CRITICALERRORHANDLER, 372

CTRL-BREAK, 409,413

Curr dir (), 186,188

Current Directory Structure, 154,182-192
accessing of, 186-188
finding true filename, 189-192
role of, 182

walking of, 188-189

DEBUG, 43

COMMAND.COM and, 386-387

Debugging
unsupported extensions of debugger, 9
Windows 3.x and

messages needed for debugger,
443-446,448

program to report windows mes
sages, 446-447

running debugger, 440-441
SEGDEBUG interface, 442-443,

446-447

Seefl/solNTRSPY.

DEBUG syntax, INTRSPY, 465-467
DESQView, 21,23

DEVCON, 125

DEV.EXE, 121

DEVICE =, 116

Device management
command line loading of drivers, 125

CO.ASM, 140-146 40

DEVLOD, 127-138,149-151

EXE2B1N, 146-149

MOVUP, 138-140

congruence of files and devices, 115-
116

device drivers, 113-114

installable, 114

devices resident in memory, 150-151

driver chain

double-checking, 122-125
locating start of chain, 118-119
organization of, 116-117
tracing chain, 119-122

hardware dependent aspects, 114
initialization of drivers, 117-118

logically required fimctions, 114-115
DEVLOD, 127-138,149-151

DEVLOD.C, 130-138

requirements of, 128-130
structure of, 127-128

use with multiple devices, 149-150
verification of, 126

Directory structure, 159-161
root directory, 159-160

subdirectories, 160

Dispose 0,100
DoHook, 109

DC)S/16M, 21-22

688 UNDOCUMENTED DOS

DOS

calls from assembly language, 32-34
calls from BASIC, 39-40

calls from, C, 34-38

calls from Turbo Pascal, 38-39

patching of, 147
See also MS-DOS; Undocumented

DOS.

DOS-Extender, 22

need for, 71

386/DOS-extender, 22,71-73

DOSINTERNALSERVICES, 372
DOS library functions, C language, 38
DOS parameter Ust, 216
DOS prompt, command interpreters and,

355

DOS Protected-Mode Interface (DPMI), 73-

79

DPMI clients, 73

DPMI servers, 73

and DOS extender, 73

switch entry point, 74
DOSSHELL, 357,364

menuing environment, 412
DOSSWAP, 325

DOSVER, 147-149

DPBTEST, 174

DR DOS, 24-25

Drive letters, manufacturing/removing
letters, 206-209

Drive Parameter Blocks, 3,18,54,159

creation of, 170-171

DOS 4.0 and, 175

List of Lists and, 170-175

ENVEDT.C, master environment editor,

414-425

Environment

COMMAND.COM

location of environment, 388-399

master environment, 383

searching environment, 399-403
use of environment, 387-388

environment variables, 387

master environment editor, sam

ple program, 414-425
ERRORLEVEL,370

EXE2B1N, 146-149

not patching of, 146-149
ExecBlock, 429-434

EXE files, command interpreter and, 368-
369

Exit code, 369-370

Extended error information, 292-293

Extensions lacking support, TSR support,
6-8

External commands

command interpreter and, 363-365
finding and executing, 365-366
loading and locating, 367

FAKEFRMT, initialization of EAT and root

directory, 161-164
FAT file system

cluster concept, 157-158
directory structure, 159-161

root directory, 159-160

Index 689

subdirectories, 160

FAKEFRMT, initialization, 161-164

logical sector numbers, 157
physical disk, 155
sectors, 156

structure of, 158-159

surfaces, 155-156

tracks, 156

File Control Blocks, 54,192-193

layout of, 192
system FCBs, 192-193

Filename

finding true name of file, 189-192
from handle, 202-205

File Open, interface tracing of, 224-226
nLES=, 193,195

File systems
alterations to, 205-213

file handle operations, 210-213
manufacturing/removing drive

letters, 206-209

Current Directory Structure, 154,182-
192

FAT file system, 153
handle, filename from, 202-205

network redirector, 153-154

number of files in, 193-194

open files, determining, 195-201
renaming/moving groups of files,

213-216

See also individual systems.
FMEV.C, 402-403

4DOS.COM, 410-411

compatibility with COMMAND.
COM, 410-411

documented features of DOS and, 411

Free (), 100

FUNCOE32,66

Function 4Bh, 428

Function 4Ch, 40

Function 5Dh, 2

Function 5DOBh, 320

Function 05h, 372

Function 09h, 32

Function 12h, 372

Function 13h, 372

Function 19h, 32

Function 21h, 3,6,7,9,47

Function 25h, 6,263

Function 28h, 7

Function 29h, 429

Function 30h, 48,50

Function 31h, 6,261,263

Function 34h, 7,10

Function 35h, 6-7,263

Function 48h, 70

Function 50h, 7

Function 51h, 7,27

Function 52h, 26-27,42-44,50,128

Function 56h, 3

Function 122Ch, 128,403-404

Function OEh, 32

Generic interrupt handler
INT instruction and, 487-489

writing of, 484-486
Generic TSR, sample pop-ups, 272-273
GRAPHICS, 271

H

Handles

690 UNDOCUMENTED DOS

examples of operations, 210-213
filename from, 202-205

releasing orphaned file handles, 209-
210

Handle table, 175,177

High Performance File System, 217
Hotkeys, 264,265

I

Idle interrupt, multitasking TSR, 341
INCLUDE syntax, INTRSPY, 461
Indirect server call, 213-216

INDOS flag, 286-288
Initialization code. List of Lists and, 169-

170

Initialization of drivers, 117-118

Initialization portion, of COMMAND.
COM, 385,386-387

In-line assembly language, C language, 35-
37

INSTALL, 398

memory resident programs and, 98
Installable block device driver, 218-219

Installable FUe System, 217
INSTCMD.C, 379

INT 2Eh, 391,397,406,408-409

COMMAND.COM, back door into,

405-410

Int 86() functions, 34,49

INTERCEPT syntax, INTRSPY, 462-464
Interleaf Publisher, 22

Internal commands

conunand interpreter and, 363-365
4DOS compared to COMMAND.

COM, 410

Internal storage, 399

Interrupt 28h, 293-295
Interrupt processing, INTRSPY, 490-494
Interrupt vectors, dedicated, 371-373
INT instruction, writing generic interrupt

handler and, 487-489

INTRSPY, 15-18,20,105,220,391-392

CMDSPY.EXE, 459-460,489-490,493

design issues, 484-486
error messages, 467-469

as event-driven debugger, 451-452
generic interrupt handler

INT instruction and, 487-489

writing of, 484-486
interrupt processing, 490-494
INTRSPY.EXE, 458-459

logging of machine activity and, 475-
476

MEM, 483-484

monitoring disk I/O, 476-483
overview of, 452-458

predefined constants, 467
script language, 460
S5mtax, 460-467

DEBUG S5mtax, 465-467
INCLUDE sjmtax, 461
INTERCEPT syntax, 462-464
RESTART syntax, 465
RUN syntax, 464-465
STOP syntax, 465
STRUCTURE sjmtax, 461

use of, 470-475

10.SYS, 116

creation of primary shell and, 383-384

Job File Table, 175,177

Index 691

K

Kernel, 81

Keyboard interrupt, multitasking TSR, 342
Keyboard stuffers, 358
KEY-FAKE, 358

Keystrokes, command interpreters and,
355-356

LASTDRIVE, 30-32,40-42,182-184

Library fimctions, C language and DOS, 38
List of Lists, 41,42,44,45,50

building of
buffer chain, 178-182

Drive Parameter Blocks, 170-175

IO.SYS initialization, 169-170

System File Tables, 175-178
DOS 4+, 166-168

DOS, 2,3,168,169

layout of, 165-169
locating memory control blocks, 85
purpose of, 164
schematic listing of, 165

LOADALL, 14-15

Loading program
maintaining current PSP and, 434-437
without execution, 428-434

Local area network, Novell NetWare, 67-70

Logical drives, LASTDRIVE, 30-32
Logically requited functions, devices, 114-115
Logical sector numbers, FAT file system, 157

M

Malloc (), 100

Manifest, 21

Master environment editor

ENVEDT, 414-425

sample program, 414-425
Mathematica, 22

MEM, INTRSPY, 483-484

Memory arena, 82
Memory Control Block, 3,54
Memory management

allocation precautions, 99-105
memory control blocks, 82-99

codes in subsegment control
blocks, 84

components of, 83-84
consistency checks, 91-93
detailed MEM Program, 93-99
locating beginning of chain, 85-86
owner of, 83

tracing chain, 87-91
MS-DOS scheme, 82

Memory resident programs
high loading of, 88-89
INSTALL = statement, 98

Memory resident software
conunercial TSR libraries, 262

DOS fimctions needed for, 263-266

generic TSR, 272-274,295-318
command-line arguments, 318-

319

sample pop-ups, 272-273
MS-DOS TSRs, 270-272

multitasking TSR
idle interrupt, 341
keyboard interrupt, 342
MULT1.C, 342-350

MULTI installation, 340

printing, 342
task switching, 339-340

692 UNDOCUMENTED DOS

timer interrupt, 341
programming in Microsoft, C, 274r282
program not going resident, 282-283
removing TSR, 326-328

sample programs
TSFILE, 328-330

TSRMEM, 330-338

source of information on, 261-262

stack context switch management,
283-285

with swappable data area, 319-326
undocumented DOS and, 266-270

extended error information, 292-

293

GET/SET PSP, 289-291

interrupt 28h, 293-295

MS-DOS flags, 286-288
unsupported extensions, 6-8

MEM program

building of, 87-91
detailed MEM program, 93-99

Menuing systems, 357,412-414
batch-file menu systems, 412
DOSSHELL approach, 412-414

Microsoft C, TSR programming, 274-282
MODE, 272

Monitor, sample program, 439-440
MOVUP, 138-140

MSCDEX, 8

MS-DOS

extensibility of, 5-6
extensions lacking support

debugger, 9
network redirector, 8-9

TSR support, 6-8
hidden areas of, 2-3

size and, 2,5-6

See also DOS; Undocumented DOS.

Multiplex ID, 319
Multiplex interrupt, 219,371

tabulation of fimctions, 372-379

Multitasking TSR
idle interrupt, 341
keyboard interrupt, 342
MULT1.C, 342-350

MULTl installation, 340

printing, 342
task switching, 339-340
timer interrupt, 341

N

NetWare, compatibility issue, 65-70
Network redirector, 216-259

implementation of, 218
unsupported extensions, 8-9
usefulness of, 217

use of interface, 216-217

See also Redirector interface.

New (), 100

Norton Utilities, 21,23

NUL device, 117,128

NXTEVAR.ASM, 400-401

Open files, determining, 195-201
Original equipment manufacturers

(OEMs), 13

OS/2,5,25

Paradox/386,22

Parent processes, locating, 111-113

Index 693

ParseFile function, 429-434

Parsing
CONFIG.SYS, 84-85

for inclusion in PSP, 360-361

percent % character and, 365
standardized t5^e, 360

PATH, 366,367,388

Phantom program, 233-258
Phar Lap Software, 22
Primary shell, COMMAND.COM and,

383-384

PRINT, 271,294

PRINT!, 23

Printing, multitasking TSR, 342
Process management

child process, spawning. 111
current process, 107
nature of, 105

parent processes, locating, 111-113
Program Segment Prefix (PSP)

development of, 106
process identifier, 107
purpose of, 106
imdocumented areas of, 108,110-111

termination address, 109-110

ProgOrdinal, 448
Programmers' WorkBench, 18
Program Segment Prefix, 3,87

development of, 106
newly loaded program and, 434-437
parsing and, 360-361
process identifier, 107
purpose of, 106
undocumented areas of, 108,110-111

writing TSR, Get/Set PSP, 289-291
Protected mode

undocumented DOS calls, 70-79

DOS extender, 70-73

DOS Protected-Mode Interface

(DPMI), 73-79

Quarterdeck Expanded Memory Manager
(QEMM),40,87,88,182

RAM, allocation precautions, 99-105
RAMdisk programs, 158
Redirector interface

comparing CDS entries, 233
data structures, 219

file access and, 224

phantom program to illustrate, 233-
258

subfunctions, 223,227-233

swappable data area, 219-220
tracing file open call, 224-226
use of term, 217

versions of DOS and, 227

Redirector services, 219

Register pseudo-variables, C language, 37
Resident portion, of COMMAND.COM,

384-385,386

RESTART syntax, INTRSPY, 465
Root directory, 159-160

FAKEFRMT, initialization, 161-164

RUN syntax, INTRSPY, 464-465

Script language, INTRSPY, 460
Sectors, FAT file system, 156
SEGDEBUG, Windows and debugger, 442-

443,446-447

SegVal,448
SET, 357,388

694 UNDOCUMENTED DOS

Set Interrupt Vector, 264
SHELL, 111, 382,383-384
SHELLB,413
SideKick, 21,23,265

STOP syntax, INTRSPY, 465
STRATST, 105
STRUCTURE syntax, INTRSPY, 461
Stub loader, 368-369

Stuffed commands, 358-359

Subdirectories, 160
Subfunctions, redirector interface, 223,227-

233

Subsegments, of memory control blocks, 84
Surfaces, FAT file system, 155-156
Swappable data area, 219-220

writing TSRs with, 319-326
SWrrCHAR, 361-363

S5nnDeb, 448
System File Tables, 3,326,175-178

closing file and, 177-178
creating file and, 177
and FCBs, 178

handle count and, 175-176
List of Lists and, 175-178

nrunber of, 193-194
open file state, 175

Termination address, 109-110
386/DC)S-Extender, 22,71-73
Timer interrupt, multitasking TSR, 341
Tracks, FAT file system, 156
Transient portion, of COMMAND.COM,

385,386

TRUENAME, 364,379
TSRs. See Memory resident software
Turbo Pascal

DOS calls from, 38-39

undocumented DOS calls, 57-61

u

Ultra Vision, 368-369

Undocumented DOS

80 X 86 features, 11-12

assembly language, 12-14
calls from assembly language, 45-49
calls from BASIC, 61-62

calls from C language, 49-57
calls from Turbo Pascal, 57-61
categories of, 26-28
data structures and, 3,52-54
importance of, 5-6
information source on, 27
LOADALL, 14-15

programs using, 15-24
reasons for, 3-5,9-10
reserved features, 11-12

verification of, 63-64
versions of DOS and, 47
when not in use, 62-63

UNIX, SWITCHAR, 361-363

Verification, vmdocumented DOS, 63-64
Volatile attribute, 351

W

Windows, 18,19,23,70,73
debugging

messages needed for debugger,
443-446,448

program to report Windows mes
sages, 446-447

running debugger, 440-441
SEGDEBUG interface, 442-443,

446-447

memory movement of, 440
tools affected by, 441

IBM Programming

A ► BENCHMARK BOOK

> $31.TS FPT USi
> $51.15 CANADA

Undocumented DOS
The powerful DOS programming functions undocumented by Microsoft —

finally revealed in Undocumented DOS! Includes DOS 5.0.
Plus an incredible software value: All DOS functions, reserved and unreserved,

in an electronic hypertext format; plus over a dozen powerful programming utilities.

Since MS-DOS was first released, over 100 function calls have been listed as "reserved" by Microsoft; leaving inquiring
programmers to prowl electronic bulletin boards and programming journals for information. Because such important
programs as TSRs, multitasking kernels, network software, installable fi le systems, debuggers. Protected Mode DOS
extenders, and even Windows 3.0, all make extensive use of undocumented functions, programmers must know how
to use them.

Undocumented DOS puts all the power of reserved functions and data structures at your disposal in this unique book/
software package. A team of expert authors provides an easy-to-follow tutorial on how to make use of undocumented
functions in your programs. The first section of the book gives a general description of how to use undocumented calls, as
well as warnings on when not to use them. Next are chapters on Resource Management, the DOS File System and Net
works, TSRs, Multitasking, Command Interpreter, DOS Shells, and Debuggers. Then, explore MS-DOS with a debugger
called INTRSPY. The authors also include a complete reference to all the undocumented functions.

• in a hypertext pop-up utility
Undocumented DOS contains two disks that include:

■ all DOS functions — reserved and unreserved -
■ the INTRSPY debugger
■ DEVLOD for loading device drivers from the command line
■ MEM for displaying the DOS memory chain
■ ENVEDT for editing the master environment
■ MONITOR and WINMON — complete assembly source code for DOS and Windows debuggers

Andrew Schuiman is a software engineer at Phar Lap Software in Cambridge, MA. He is a coauthor oi Extending DOS
and a contributing editot to Dr. Dobb's JoumaL

Raymond J. Michels is a contributor to Programmer's Journal coauthored The MS-DOS Papers.
Jim Kyle has written extensively on MS-DOS and contributed to the DOS Programmer's Reference and the MS-DOS
Encyclopedia.

Tim Paterson is the original author of MS-DOS version 1.x which he wrote from 1980 to 1982 while employed at Seattle
Computer Products and Microsoft. He helped develop QuickBASIC and is a regular contributor to Dr. Dobb's Journal
David Maxey manages a network software development team at a large software firm in Cambridge, MA.
Ralf Brown is a Ph.D. candidate at Carnegie Mellon University and is well-known in the on-line community for
maintaining the "Interrupt List."

System Requirements:
IBM or 100% compatible PC; DOS 2.0
or higher; 1.2 meg. disk drive

Cover design by Tom Tafiuri

Addison-Wesley Publishing Company, Inc.

5 399!

9 78020 i 570649'

ISBN D-^Dl-57Db^-5

57Db4

