

Computer Animation

Other McGraw-Hill Titles of Interest

MCGOLDRICHK Video Technology for Personal Computers 0-07-045018-8

RIMMER Windows and OS/2 Bitmapped Graphics 0-07-911902-6

KAY,LEVINE Graphics File Formats, Second Edition 0-07-034025-0

RIMMER Advanced Multimedia Programming 0-07-911898-4

TELLO Multimedia Animation 0-07-063502-1

SZUPROWICZ Multimedia Networking 0-07-063108-5

SANCHEZ,CANTON Numerical Programming the 387, 486, and Pentium 0-07-911832-1
SANCHEZ,CANTON Graphics Programming Solutions 0-07-911464-4

SANCHEZ,CANTON High Resolution Video Graphics 0-07-911645-0

SANCHEZ,CANTON PC Programmer’s Handbook, Second Edition 0-07-054948-6

To order or to receive additional information on these or any other
McGraw-Hill titles, in the United States, please call 1-800-822-8158.
In other countries, please contact your local McGraw-Hill representative. BC15XXA

Computer Animation

Programming Methods and Techniques

Julio Sanchez

Montana State University, Northern

Maria P. Canton
Skipanon Software Co.

McGraw-Hill, Inc.

New York San Francisco Washington, D.C. Auckland Bogota
Caracas Lisbon London Madrid Mexico City Milan
Montreal New Delhi San Juan Singapore

Sydney Tokyo Toronto

Library of Congress Cataloging-in-Publication Data

Sanchez, Julio, date.
Computer Animation : Programming Methods and Techniques / Julio
Sanchez and Maria P. Canton.
Includes index.
ISBN 0-07-054964-8
1. Computer animation. 2. MS-DOS (Computer file) 3. Windows
(Computer programs) I. Canton, Maria P. II. Title.
TR897.7.536 1995
006.6--dc20 94-47025
CIp

Copyright © 1995 by McGraw-Hill, Inc. All rights reserved. Printed in
the United States of America. Except as permitted under the United
States Copyright Act of 1976, no part of this publication may be repro-
duced or distributed in any form or by any means, or stored in a data
base or retrieval system, without the prior written permission of the
publisher.

1234567890 AGM/AGM 90098765
ISBN 0-07-054964-8

The sponsoring editor for this book was Jerry Papke, the editing
supervisor was David E. Fogarty, and the production supervisor
was Suzanne W. B. Rapcavage.

Composition and line art by Skipanon Software Co.
Printed and bound by Quebecor/Martinsburg.

McGraw-Hill books are available at special quantity discounts to use as
premiums and sales promotions, or for use in corporate training pro-
grams. For more information, please write to the Director of Special
Sales, McGraw-Hill, Inc., 11 West 19th Street, New York, NY 10011.
Or contact your local bookstore.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The author and publisher have exercised care in preparing this
book and the programs contained in it. They make no repre-
sentation, however, that the programs are error-free or suitable
for every application to which the reader may attempt to apply
them. The author and publisher make no warranty of any kind,
expressed or implied, including the warranties of merchantabil-
ity or fitness for a particular purpose, with regards to these
programs or the documentation or theory contained in this book,
all of which is provided “as is.” The author and publisher shall
not be liable for damages in connection with, or arising out of the
furnishing, performance, or use of these programs or the associ-
ated descriptions or discussions.

Readers should test any program on their own systems and
compare results with those presented in this book. They should
then construct their own test programs to verify that they fully
understand the requisite calling conventions and data formats
for each of the programs. Then they should test the specific
application thoroughly.

Preface xi

Part1 Animation Fundamentals

Chapter 1.

1.0
1.1

1.2

13

14

15

The Dynamics of Computer Graphics

Digital Simulation of Movement
Conventional Animation

1141
1.1.2

1.1.3 Photographic Manipulations in Cartoon Animation

Historical Background
Cartoon Animation Techniques

Computer Animation

1.21
1.2.2
1.23

1.2.4 Random or Unpredictable Elements in Animation

Animating in Real Time
Frame-by-Frame Animation
Interactive Animation

Motion Control Techniques

131
13.2
133
1.34

Tweening and Morphing
Path-of-Motion Calculations
Color-Shift Animation
Object Rendering

Applications of Computer Animation

1.4.1
14.2
143
144
145
146

Simulators and Trainers

Electronic Games

Business Presentations and Marketing
Artificial Life

Virtual Reality

Fractal Graphics

The Animator’s Predicament

Chapter 2. Graphical Image Structures

2.0
2.1

2.2

Image Storage for Animation

2.0.1

Pixel Maps versus Vector Commands

Device-Independent Graphics

211

Software Environment for PC Animation

A Virtual Graphics Machine

2.2.1
222
223
224
225
226

The Virtual Graphics Device
The Graphics Primitives
Input Functions

Display File Structure

Image Data in the Display File
Display File Commands

Contents

vi

23

24

25

26

Graphics Software Standards

2.3.1 Graphics Support from System Software
Storage of the Graphical Image

2.4.1 Geometrical Image Elements
2.4.2 Nongeometrical Image Elements
Image Mapping

2.5.1 Video Buffer

2.5.2 Image Buffer

2.5.3 Viewport

2.5.4 Window

2.5.5 Graphics Modeling

The Display File

2.6.1 Image File

2.6.2 Image Segments

2.6.3 Image Descriptors

Chapter 3. Operations on Geometrical Images

3.0

3.1

3.2

33

34

3.5

3.6

Chapter 4. Bitmap Image Acquisition and Encoding

4.0

4.1

4.2

Operations on Segments

3.0.1 Creating the Segment

3.0.2 Opening and Closing the Segment
3.0.3 Renaming and Deleting the Segment
Segment Attributes

3.1.1 Visibility Attribute

3.1.2 Line Color, Fill Color, and Line Style
3.1.3 Foreground Priority

Graphical Data Structures

3.2.1 Display File Elements

Image Transformations

3.3.1 The Coordinates Matrix

Matrix Arithmetic

3.4.1 Scalar-by-Matrix Operations

3.4.2 Matrix Addition and Subtraction
3.4.3 Matrix Multiplication

Geometrical Transformations

3.5.1 Translation

3.5.2 Scaling

3.5.3 Rotation

3.5.4 Homogeneous Coordinates

3.5.5 Concatenation

Image Transformations in Animation

3.6.1 Translation, Rotation, and Scaling Animation
3.6.2 Complex Animation

Pixel-Coded Image Data

4.0.1 Raw Image Data

4.0.2 Monochrome and Color Bitmaps
4.0.3 Image Data Compression

4.0.4 Encoders and Decoders

The GIF Format

4.1.1 GIF File Structure

The TIFF Format

4.2.1 TIFF File Structure

4.2.2 TIFF Tags for Bilevel Images

Contents

Contents

43

4.2.3 Locating TIFF Image Data
4.2.4 Processing TIFF Image Data
4.2,5 TIFF Software

Bitmap Image Acquisition

4.3.1 Legal Considerations

Part2 Animation Programming

Chapter 5. Animation in VGA Graphics

5.0

5.1

5.2

53

The VGA Standard

5.0.1 VGA Characteristics
5.0.2 VGA Standard Modes
5.0.3 VGA Nonstandard Modes
VGA Architecture

5.1.1 Video Memory

The VGA Registers

5.2.1 VGA General Registers
5.2.2 VGA CRT Controller

5.2.3 VGA Sequencer

5.2.4 VGA Graphics Controller
5.2.5 VGA Attribute Controller
VGA Digital-to-Analog Converter (DAC)

Chapter 6. VGA Drivers for Standard Modes

6.0

6.1
6.2

6.3

6.4

Chapter 7. VGA Mode X Drivers and Primitives

70

71

7.2
73

74

VGA Device Drivers

6.0.1 Standard Mode VGA Device Drivers
VGA Programming Levels

Device Drivers and Primitives

6.2.1 VGA Device Drivers

6.2.2 VGA Mode 18 Pixel Write Routines
6.2.3 VGA Mode 18 Pixel Read Routine
6.2.4 VGA Mode 19 Pixel Write Routines
6.2.5 VGA Mode 19 Pixel Read Routine
Color Operations

6.3.1 256-Color Modes

6.3.2 16-Color Modes

Color Animation

A Nonstandard VGA Mode

7.0.1 Mode X Characteristics

7.0.2 Mode X in Animation Programming
VGA Mode X Architecture

7.1.1 Pixel-Level Address Calculations
7.1.2 Tile-Level Address Calculations
7.1.3 The Video Buffer in Mode X
Setting Mode X

Pixel-Level Device Drivers

7.3.1 VGA Mode X Write Pixel Procedure
7.3.2 VGA Mode X Read Pixel Procedure
Tile-Level Device Drivers

7.4.1 VGA Mode X Write Tile Procedure

vii

115

115
116
116
117
118
119
122
123
125
127
129
137
142

145

145
145
146
146
147
149
159
161
163
163
164
178
179

viii

75

7.6

7.7

7.4.2 Setting Multiple Tiles

VGA Mode X Bitmap Primitives

7.5.1 Pixel Transparency

7.5.2 VGA Mode X Bitmap Display
7.5.3 VGA Mode X Bitmap Acquisition
VGA Mode X BitBIt Primitives

7.6.1 Page-Level BitBit

7.6.2 Tile-Level BitBIt

Mode X Animation

7.7.1 Intercepting the Vertical Retrace
7.7.2 Interval Timing

7.7.3 Video Paging in VGA Mode X
7.7.4 VGA Mode X Panning Animation

Chapter 8. XGA Architecture and Initialization

8.0

8.1

8.2

8.3

84

85

The IBM Extended Graphics Array Video System (XGA)
8.0.1 Technical Description

8.0.2 XGA in VGA Modes

8.0.3 Multiple XGA Systems

8.0.4 XGA Extended Graphics Modes

8.0.5 Alphanumeric Support

8.0.6 The Adapter Interface

8.0.7 Multidisplay Graphics Systems

XGA Architecture

8.1.1 XGA CRT Controller

8.1.2 XGA Video Buffer

8.1.3 The Serializer/Palette/Digital-Analog Converter
8.1.4 The XGA Sprite/Attribute Controller
Access and Control of the XGA System

8.2.1 Access to the XGA Graphics Coprocessor
XGA Video Memory

8.3.1 Video Memory Apertures

8.3.2 Data Ordering

XGA Detection and Initialization

8.4.1 Programming the XGA Display Controller
8.4.2 XGA Hardware Initialization

8.4.3 XGA Mode Selection and Setting

8.4.4 The XGA Palette

8.4.5 Switching from XGA to VGA Modes

Other Methods of XGA Initialization

Chapter 9. XGA Drivers and Primitives

9.0
9.1

9.2

9.3
9.4

XGA Hardware Programming

Accessing XGA Video Memory

9.1.1 XGA Memory Banks

9.1.2 Setting a Pixel

9.1.3 Clearing the XGA Screen

9.1.4 Reading a Pixel

Programming the XGA Direct Color Mode
9.2.1 The Direct Color Palette

9.2.2 Pixel Setting in Direct Color Mode
9.2.3 16-Bit Color Adjustments

XGA Graphics Coprocessor Architecture
Initializing the Coprocessor

9.4.1 Obtaining the Coprocessor Base Address
9.4.2 Obtaining the Video Memory Address

Contents

200
201
202
203
207
210
210
213
216
216
217
219
220

223

223
225
225

226
227
227
227
228
228
229
229
230
231
232
233
233
234
234
235

253
260
272
276

279

279
280
280
281
282
284
285
286
288

202
293
203
205

Contents

9.5

9.6

9.7

9.4.3 Selecting the Access Mode

9.4.4 Initializing Coprocessor Registers
Programming Coprocessor Operations
9.5.1 Synchronizing Coprocessor Access
9.5.2 General Purpose Maps A, B, and C
9.5.3 The Mask Map

9.5.4 Pixel Attributes

9.5.5 Pixel Masking and Color Compare Operations
9.5.6 Mixes

9.5.7 Pixel Operations

XGA PixBIt Operations

9.6.1 Rectangular Fill PixBIt

9.6.2 System Memory to Video Memory PixBlts
9.6.3 Pattern Map BitBIt

Line Drawing Operations

9.7.1 Reduction to the First Octant

9.7.2 Calculating the Bresenham Terms
Programming The XGA Sprite

9.8.1 The Sprite Image

9.8.2 Sprite Colors and Attributes

9.8.3 Loading the Sprite

9.8.4 Sprite Manipulations

Chapter 10. SuperVGA Graphics and Animation

10.0

10.1

10.2

103

10.4

10.5

Part

SuperVGA

10.0.1 SuperVGA in Animation Programming
SuperVGA Memory Architecture

10.1.1 SuperVGA Memory Banking

10.1.2 SuperVGA 256-Color Extensions

10.1.3 SuperVGA Pixel Addressing

SuperVGA Architecture

10.2.1 The VESA SuperVGA Standard

10.2.2 VESA SuperVGA Modes

10.2.3 Memory Windows

The VESA BIOS

10.3.1 Subservice 0 — System Information
10.3.2 Subservice 1 — Mode Information

10.3.3 Subservice 2 — Set Video Mode

10.3.4 Subservice 3 — Get Video Mode

10.3.5 Subservice 4 — Save/Restore Video State
10.3.6 Subservice 5 — Switch Bank

10.3.7 Subservice 6 — Set/Get Logical Scan Line
10.3.8 Subservice 7 — Set/Get Display Start
10.3.9 Subservice 8 — Set/Get DAC Palette Control
SuperVGA Device Drivers

10.4.1 Address Calculations

10.4.2 Bank Switching Operations

SuperVGA Pixel Level Operations

10.5.1 SuperVGA Pixel Write

10.5.2 SuperVGA Pixel Read

10.5.3 Clearing the SuperVGA Screen

3 Animation Techniques

Chapter 11. Background, Objects, and Text

361

13

Chapter 12. Time-Pulse and Color-Shift Techniques

12.0

121

12.2

123

Background Techniques

Bitmap Backgrounds

11.1.1 Hand Bit-coding a Bitmap Background
11.1.2 Electronic Drawing Methods
11.1.3 Ray-tracing a Bitmap Background
11.1.4 Scanning a Bitmap Background
11.1.5 Multiple Image Manipulations
Vectorized Background

11.2.1 Vector/Bitmap Background
Operations on Text

11.3.1 Text Display Operations in BIOS
11.3.2 Developing a Character Generator
11.3.3 Text Animation

The Animated Image Set

12.0.1 Visual Retention

12.0.2 Avoiding Interference

XOR Animation

12.1.1 Programming the Function Select Bits
Generating the Time Pulse

12.2.1 Looping Techniques

12.2.2 Reprogramming the System Timer
12.2.3 Turning the Video Function On and Off
12.2.4 Retrace Cycle Timing

12.2.5 VGA Vertical Retrace Interrupt

12.2.6 XGA Screen Blanking Interrupt
Color-Shift Animation

12.3.1 VGA DAC Primitives

12.3.2 Transformations by Color Shift

12.3.3 Color-Shift Fade-Out

12.3.4 Color-Shift Fade-In

Chapter 13. Interactive Animation

13.0
13.1

13.2

133

134

User-Animated Objects

PC Keyboard Hardware

13.1.1 Keyboard Controller

13.1.2 The Keyboard Scan Codes

Keyboard Programming

13.2.1 Classification of Keys and Keystrokes
13.2.2 Keyboard Data in BIOS

13.2.3 Keyboard Status Bytes

13.24 Keyboard Buffers

Programming the Mouse

13.3.1 The Microsoft Mouse Interface

13.3.2 Checking Mouse Installation

13.3.3 Subservices of interrupt 33H

Cursor in VGA Graphics Mode

13.4.1 Intercepting the System Timer Interrupt
13.4.2 The Timer Interrupt Handler

13.4.3 Keyboard Input Routine

Bibliography 459
Index 463

Contents

361
361
361
362
362
364
364
364
366
386
387
390
397

399

399
399
400
401
403
404
404
405
409
410
411
417
422
423
427
429
431

Preface

This book is a presentation of practical methods and techniques for animation
programming on the personal computer. It includes code samples of the funda-
mental device drivers and primitives for VGA, SuperVGA, and XGA video
systems. It is also a tutorial on low-level animation programming which can be
used both as a self-teaching tool and as a general technical reference in the
field.

The book presents a low-level approach. The authors believe that in the field
of PC animation the low-level approach is more a necessity than an option. This
statement seems to contradict the implications of many animation titles cur-
rently on the shelves; however, it is our experience that the immense majority
of animation programmers in the PC environment are forced, sooner or later,
into low-level programming by considerations of performance and control.
Every experienced programmer knows that a statement such as “high-perfor-
mance animation in Basic” or “lighting-fast animation routines in Pascal” is an
oxXymoron.

Unfortunately the same can be said about animation programming using
operating system services. The typical animator is usually engaged in squeez-
ing the last performance drop out of the hardware. There is nothing to waste
in the complications, inefficiency, and control limitations of the interface calls
of operating system services. It is under DOS, where the code has unrestricted
and direct access to the CPU, the video hardware, and the other programmable
components, that the best animation results are obtained. Since OS/2 and
Windows NT can multitask DOS programs, it is possible to develop DOS
applications that execute in these environments with few penalties. In the near
future there will be few reasons for animation programming at the operating
system level.

This does not mean that animated programs must be coded entirely in
assembly language, although this is the case regarding many of the best
present-day examples. Once the fundamental primitives and device drivers are
available to the code, it is possible to compose the program in a high-level
language, achieving acceptable performance by referencing core processing
routines coded in assembler. Since this book includes a listing of these core
device drivers and primitives, it can be of assistance to the animation program-
mer working in a high-level environment.

Before attempting to move objects on the video screen, the animation pro-
grammer must gain elementary skills in the field of computer graphics. In fact,
animation is a specialty field of graphics programming, which implies that
many animation techniques require knowledge of computer graphics. For this
reason this book includes enough about PC graphics programming to hopefully
make the described animation techniques more understandable and useful. On
the other hand, this book is not a tutorial in computer graphics and often
assumes elementary knowledge in graphics programming. The reader in need
of graphics programming information can consult one of our titles on this

xi

xii Preface

subject: Graphics Programming Solutions and High Resolution Video Graphics,
both published by McGraw-Hill.

Organization

The book is divided into three parts: Part One (Animation Fundamentals)
includes Chapters 1 through 4. This first part serves as a general introduction
to computer animation and to the supporting elements in computer graphics.
Part Two (Animation Programming) includes Chapters 5 through 10. This part
is a tutorial on VGA, SuperVGA, and XGA graphics. It includes a detailed
analysis of the architecture of these systems as it relates to graphics and
animation programming. In Part II we also develop the fundamental device
drivers and primitives that are necessary to the animation code. Part III
(Animation Techniques) describes the methods and techniques most often
required by the PC animator. It also contains programming examples.

Conflict of Interest

The authors believe that it is unethical for a writer to hold back information or
to condition the use of the software furnished in a text to copyrights or to the
payment of additional fees. Software developers have legal rights to secrecy, to
copyright privileges, and to sell their products on the marketplace. However,
in our opinion, a writer’s loyalty is to the reader and it would be a conflict of
interest to write a text while influenced by commercial considerations regarding
the material discussed. Therefore, the software developed by the authors and
listed in this book can be copied freely, used as furnished, or modified by the
reader, without crediting the authors or paying any additional charges. This
statement does not include the copyrights on the book itself, nor does it refer
to Shareware software, both of which are subject to other rules.

Acknowledgments

In our years of teaching at Montana State University, Northern, we have been
fortunate to interest some students in the fields of graphics and animation
programming. In preparing this book we have had access to code and commer-
cial programs developed by students Dale Niemeyer and David Oard. We thank
them for this kindness and wish them luck in their professional endeavors.

The authors would also like to thank the friends and associates who provided
advice, support, and assistance in this project. At McGraw-Hill, Jerry Papke,
David Fogarty, and Gemma Velten have been involved in the production of this
book.

At Montana State University, Northern, we owe thanks to Dr. Karen LaRoe,
Vice Chancellor for Academic Affairs, Dr. Richard Fisher, Director of the Great
Falls campus, and Virgil Hawkinson, Division Chair, for their continued
support of our writing projects. Our colleagues Kevin Carlson, Wes Tucker,
Roger Stone, and Jay Howland have also made us feel their enthusiasm. Our
thanks also go to Sharon Lowman.

Great Falls, Montana Julio Sanchez
Maria P. Canton

SOFTWARE ONLINE

The source code listed in the text can be
downloaded from the Montana State Uni-
versity, Northern BBS, in Havre, MT.

The BBS phone number is (406) 265-4184

The file is a self-extracting archive named
COM_ANIL.EXE.

Computer Animation

Part

Animation Fundamentals

Chapter

The Dynamics of Computer Graphics

1.0 Digital Simulation of Movement

Computer animation can be defined as the simulation of movement or of lifelike
actions by the manipulation of digital objects. The notion of digital simulation
of movement is the core of this definition; however, as Magnenat-Thalmann and
Thalmann have pointed out, computer animation can exist without the simu-
lation of movement (see Bibliography), for example, in morphing (change of one
object into another one) and in transformations produced by changes in color
or lighting. In any case, this simulation of life has added an exciting dimension
to computer graphics and to graphics programming, so that today, computer
animated imagery is frequently found in applications related to art, science,
and technology.

In the simulation of movement the computer can play two different roles: it
can serve as an assistant in the creation of imagery destined for display in other
media, or it can itself be the destination of the animated action. In the first case
we speak of computer-assisted animation. An example of computer-assisted
animation is a transformation called morphing. In this case the animator inputs
two images: one of the face of a man and another one of a wolf face. The machine
is programmed to generate a set of intermediate drawings that gradually
change the first image into the second one. All the consecutive images generated
by the computer, as well as the original ones, can be stored in video tape or film.
When the stored images are played back in sequence, the man’s face appears
to gradually change into a wolf. This interpolation technique is now a common
special effect in television and motion pictures.

But perhaps a more familiar notion of computer animation is that in which
the computer is both the generator and the display instrument. This is particu-
larly true in microcomputers, which have been used seldom commercially in
animation-assistant roles due to their limitations in storage and processing
power. We speak of real-time animation when the computer is the tool, as well

3

4 Chapter One

as the media. In this sense the imagery is generated and displayed in the user’s
own time frame; there is no image storage for later playback. The animation is
shown “live” as it happens. Often the user interacts with the system to
determine or modify the result. For example, a flight simulator program
consists of animated imagery of the aircraft’s cockpit and of the pilot’s view
thorough the windshield. The actions performed by the user in the simulated
flying of the digital aircraft determine changes in the cockpit instruments and
in the landscape seen through the windshield. In this case all the changes
required for the animation take place in the user’s (pilot) time frame.

In this chapter we describe the general principles, theory, and applications of
computer animation. The material serves both as an introduction and as
general background for the rest of the book. In preparing it we have relied
heavily on the books Computer Animation: Theory and Practice and New Trends
in Animation and Visualization. Nadia Magnenat-Thalmann and Daniel Thal-
mann are the authors of the first title and the editors of the second one. (See
Bibliography.)

1.1 Conventional Animation

Conventional animation refers mostly to the techniques used in two-dimen-
sional cartoons often associated with Walt Disney, Hannah-Barbera, and
others. The method consists of photographing a series of progressive drawings.
The photographs are typically developed as color transparencies and animation
achieved by successively projecting the transparencies on the screen. Although
microcomputers are not used often in the production of cartoons, the technique
is interesting to the graphics programmer since similar methods can be applied
to real-life animation problems.

1.1.1 Historical background

In 1831 a Frenchman named Joseph Antoine Plateau was able to create the
illusion of movement by means of a machine which he called a phenakistoscope.
The device consisted of a disk with a series of progressive drawings and
windows. When the disk was rotated the viewer would see the drawings in rapid
sequence, which created an illusion of movement. Three years later an English-
man named Horner modified the phenakistoscope into a device which he called
the zoetrope. The zoetrope consisted of drum with drawings on its inner walls.
A series of slits allowed the viewer to see the different drawings as the drum
rotated. Emile Reynaud, another Frenchman, further refined the zoetrope by
replacing the viewing slits with mirrors. This device was named the praxis-
noscope.

Emile Reynaud founded the first movie theater in 1892. It was located in Paris
and called the Theater Optique, although the first animated film was not
produced until 1906. By 1913 several American companies were regularly
producing cartoons for the thriving motion picture theaters. Felix the Cat, by

The Dynamics of Computer Graphics 5

Pat Sullivan, is possibly the best known cartoon character of this era. Walt
Disney, who is usually considered the father of animated cartoons, produced a
Mickey Mouse film in 1928. This film was the first one to incorporate sound.
Donald Duck and other characters followed shortly thereafter. Snow White and
the Seven Dwarfs was the first feature film-length cartoon.

1.1.2 Cartoon Animation Techniques

Computers are playing an expanding role in the commercial production of
cartoons. Their use includes the coloring of drawings as well as the generation
of intermediate images, an operation called in-betweening or tweening. Drawing
and coloring and in-betweens are tedious and time-consuming operations when
performed by hand. The organizational elements in the production of an
animated cartoon can be seen in Figure 1.1.

The story told in the animated cartoon is developed in three progressively
refined steps, shown in Figure 1.1. The synopsis is a short summary of the story,
usually in less than one page. The scenario describes the story more completely
and details the characters and the scenery. The storyboard consists of a series
of drawings and captions that capture the most important moments depicted
in the film.

SYNOPSIS
SCENARIO
STORYBOARD
SEQUENCES SEQUENCES
SCENES SCENES
SHOTS SHOTS SHOTS

Figure 1.1 Production Steps for an Animated Cartoon

6 Chapter One

From the storyboard it is possible to derive the film sequences. Each sequence
refers to a film action and consists of one or more scenes, typically associated
with a particular location and one or more characters. The units of cartoon
execution are the individual shots that compose each scene. The production of
each animated scene is performed by artists called animators who lay out,
design, and draw the key images in each scene. At this time the sound track
for the cartoon must have already been defined, since the motion of the
animated figures takes place in relation to dialog and music.

In the production of the actual drawings the artists use as reference two key
positions, called frames. For example, Figure 1.2 represents the drawings used
in a scene for an animated cartoon in which a dagger appears to travel from the
hand of an imaginary thrower to an imaginary target. The key frames are the
start frame and the end frame shown in Figure 1.2. The drawings that are
necessary to animate the movement between both key frames are the in-be-
tween frames. In conventional animation in-betweening is a routine task
usually performed by assistants to the animators.

In Figure 1.2 we have drawn three in-between frames. In reality the number
of progressions between the start frame and the end frame of a sequence
depends on the time assigned to the frame and the display rate. For example,
if the animation of the clock sphere in Figure 1.2 is to take 1.5 seconds and the
display rate is of 24 frames per second, then 36 frames are required for the
animation, of which 34 are in-between frames.

start frame end frame

e f—

in-between frames

N}~

Figure 1.2 Progressive Drawings in Cartoon Animation

The Dynamics of Computer Graphics 7

() () camena
=

P —
TRANSPARENT
LAYERS
= 7
BACKGROUND

Figure 1.3 Diagram of a Multiplane Camera

1.1.3 Photographic Manipulations in Cartoon Animation

In addition to the progressive drawings that simulate movement, cartoonists
can enhance the animation by means of photographic manipulations. The
drawings for cartoon animation are made on a transparent plastic film. There-
fore the clear portions of the drawing are invisible to the camera. The equipment
used in the production of cartoons is a specialized motion picture camera called
a multiplane. The animation surface consists of several glass layers at varying
distances from the camera lens. Figure 1.3 is a schematic diagram of a
multiplane camera.

The multiplane camera is used in creating various special effects. For exam-
ple, the camera can be moved horizontally to par an image or moved along the
optic axis to enlarge or reduce the apparent size of an object (zooming). An effect
called spin is created by rotating the camera. Several fade and dissolve effects
are used in providing a soft transition between scenes. The fade-in is a
progressive transition of the image from black and the fade-out a transition to
black. The fade-in is typically used at the start of a scene and the fade-out at
the conclusion.

In multiplane animation the image is separated into several elements accord-
ing to their distance from the viewer. For example, in animating the scenery
visible from a moving train it is possible to divide the image into several strips,
as shown in Figure 1.4.

The Dynamics of Computer Graphics 9

time-consuming and tedious task of cartoon animation is the generation of the
many intermediate images required by the process (tweening). The computer
plays the following assistant roles:

1. During the drawing stage the computer is used to scan and digitize image
elements and to create drawings or parts of drawings by means of draw or
paint software.

2. In the animation process the computer is used to generate in-betweens and
to color drawings.

3. During the photography stage the computer controls the multiplane camera
and assists in the creation of special effects.

4. In the production stage the computer is used in editing and in adding sound
to the animated film.

This list is by no means final. Every day animators find new uses for
computers, new technologies are developed which create novel possibilities and
applications in animated graphics. Computer technology is being used in the
creation of spectacular special effects based on the digitization of screen objects,
which are later manipulated by the software. Original efforts in this type of
computer-assisted animation are found in the film TRON, produced by Walt
Disney Studios, as well as in Return of the Jedi, by Lucasfilm. In recent years
animation by image digitization has become the rule, rather than the exception.
It can be found often in science fiction, action, and even conventional films.

1.2.1 Animating in Real Time

Real-time animation is found in arcade machines, simulators and trainers,
electronic game machines such as those manufactured by Nintendo and Sega,
and in interactive programs mainly intended for microcomputers. In real-time
animation the computing machine serves both as image generator and as
display media.

Animation is based on the physiological fact that the image of an object
perceived by the human eye persists in the brain for a brief period of time after
the object no longer exists in the real world. This phenomena, called visual
retention, is related to the chemistry of the retina and to the structure of cells
and neurons in the eye. Smooth animation is achieved in cinematography and
television by consecutively displaying images at a faster rate than the period
of visual retention. This operation, by which a new image replaces the old one
before the period of retention has expired, creates in our minds the illusion of
a smoothly moving object.

The period of visual retention is a few hundreds of a second. The critical image
update rate for smooth animation has been determined to be between 22 and
30 images per second. Modern day moving picture films are recorded and
displayed at a rate of 24 images per second. Commercial television takes place
at a slightly faster rate. In general, the threshold rate, subject to individual
variations, is estimated at 18 images per second. This means that if the
consecutive images are projected at a rate slower than this threshold, the

10 Chapter One

average individual perceives a certain jerkiness in the animation. On the other
hand, when the image rate equals or exceeds the threshold, our brains merge
the images together and we perceive a smoothly animated action.

If we assume that computer animation must take place at an image rate of
approximately 20 images per second, then each image must be updated and
displayed in a maximum period of one-twentieth of a second. Furthermore,
many forms of animation require that the old image be erased from the display
before a new one is drawn; otherwise the animation would leave a visible track
of objects on the video display. For this reason the image update sequence is a
series of redraw, erase, redraw operations, which means that the critical display
rate must be calculated from one redraw cycle to the next one. Consequently,
the allotted time for the redraw or the erase operation is one-half the display
rate, in this case one-fortieth of a second.

These constraints determine that computer animation is often a battle against
time: the program is allowed a limited interval in which to update and redraw
the image. The animation programmer resorts to every known trick and
stratagem in order to squeeze the maximum performance while executing the
image update and the display operations. However, quite frequently, even the
most imaginative programming cannot overcome the system’s limitations. In
this case the result is a bumpy and coarse real-time animation that is but a
remote likeness of cinematography and television.

As microcomputer systems and video display hardware become more efficient
and powerful, the possibilities of real-time animation expand. In our tests we
have found that in a 486-based microcomputer with XGA display hardware it
is possible to smoothly animate an image that is 40 times larger than the one
that could be handled in a 286-based VGA system. On the other hand, commer-
cial software products must aim at the largest possible group of potential
customers. This means that the designers of animated programs often aim at
ensuring satisfactory execution even in the more primitive systems. For this
practical reason, animated programs that squeeze the maximum performance
out of state-of-the-art systems are not readily available, since their customer
base would be considerably restricted.

1.2.2 Frame-by-Frame Animation

Many of the techniques used in computer-assisted animation can be described
as frame-by-frame operations. In frame-by-frame animation the computer
generates the required images, which are recorded or stored for playback at a
later time. This playback can take place in the same machine that generated
the image set or in another media. For example, a computer can be used to
manipulate the image strips in Figure 1.4 so as to generate a set of 100
progressive pictures. As the images are generated, they are recorded in video
tape. When the image set is complete, the animation can be viewed by playing
back the video tape. Alternatively the images can be stored in computer memory
or disk and played back in the same machine that generated them. In either
case the animation is less demanding of machine processing power since the

The Dynamics of Computer Graphics 1

image creation step need not take place in real time. However, if the computer
is used to play back the image set, then this operation is subject to the real-time
constraints mentioned in the preceding section.

1.2.3 Interactive Animation

Interactive animation refers to computer objects that are moved at the user’s
desire. At present, the most common interactive devices in microcomputers are
the keyboard and the mouse, although joysticks and other devices are often
used with the more sophisticated games and simulations. In general, the notion
of interactive animation includes any technology in which the user exercises
some level of control over computer-animated action. By today’s standards the
ultimate level of interactive animation is called virtual reality, a topic discussed
in Section 1.4.5.

1.2.4 Random or Unpredictable Elements in Animation

Conventionally, the computer simulation of movement is based on programma-
ble or predictable stages. In this manner, the cartoon animator knows before-
hand (from the storyboard) all the actions and interactions that will be
portrayed in the final rendition. Even in most implementations of virtual
reality, every result can be predicted from the user’s interaction with the device.
Therefore we can say that the system is, by nature, deterministic.

However, many natural systems are of a different nature. Biology students
often observe that colonies of bacteria developing in identical media show
different patterns of growth. This is due to the fact that in a complex biological
system many development factors cannot be determined a priori. In other
words, random or unpredictable elements often influence the development of a
biosystem. Some modern geologists claim that the disappearance of the dino-
saurs was caused by the collision of an asteroid with the earth. If this hypothesis
is true, then a small change in the trajectory of the asteroid would have made
it miss our planet. Consequently, the evolution of life on earth would have
followed an entirely different path.

We have used the terms random or unpredictable regarding biosystems due
to the fact that the preference of one or another term would imply a philosophi-
cal judgment. For example, during reproduction, the genes in the male and
female chromosomes combine to form the genetic structure of the offspring. If
these genes combined according to fixed rules, all siblings would be identical.
This is certainly not the case; furthermore, we have no way of knowing
beforehand the offspring’s exact genetic makeup. Therefore, the mechanics of
gene exchange during reproduction can be considered as a random action.

Statistics often serve to describe the unpredictable behavior of a biosystem.
For example, in the above-mentioned gene exchange it is often possible to
determine, according to their location in the chromosome, that certain genes
are more or less likely to be transmitted. However, anything less than absolute
certainty implies randomness or unpredictability. If a computer were to simu-

12 Chapter One

late the reproduction of a biosystem, it would have to take into consideration
these random or unpredictable factors.

1.3 Motion Control Techniques

If computer animation is roughly equated with the screen simulation of move-
ment, the methodology for producing the animated effect can be described as a
set of motion control techniques. In this respect Allan and Mark Watt, in their
book Advanced Animation and Rendering Techniques (see Bibliography), refer
to procedural, representational, stochastic, and behavioral as the main catego-
ries of the animation hierarchy.

From a programmer’s viewpoint, animation is implemented by applying one
of many low-level methods of motion simulation and control. Some of these
methods have been passed on by cartoon animators, while others are digital in
nature and, therefore, unique products of the computer environment.

The computer animator is confronted by many limitations and constraints.
The most common approach is based on the axiom “whatever works, works.”
Very often the animation is produced by means of mathematical transforma-
tions on the parameters that define one or more screen images. Since movement
is a function of time, the laws of physics are often taken into account. For
example, in representing a falling object the animator may use the formula that
expresses acceleration in a gravitational field to determine the rate of in-bet-
weening that most naturally represents the action. On the other hand, artistic
considerations could determine an intentional variation from the physical laws
of motion. J. E. Gomez mentions in an article titled “Comments on Event Driven
Animation” that the animator is not constrained to obey physical laws; Wily
Coyote walks on air for a few seconds before beginning to fall.

1.3.1 Tweening and Morphing

The cartoon animator proceeds from two key positions, known as frames, and
creates a set of in-between drawings (see Figure 1.2). The entire sequence is
photographed and projected to create an illusion of movement. The depiction
of animated action by creating and projecting a set of in-between drawings is
often called tweening; in this sense the intermediate drawings are the tweens.
Computer animators have successfully borrowed the tweening technique from
cartoon animators. Furthermore, in a computer environment the machine can
often aid in the creation of the in-between frames by performing geometrical
transformations on the key frames.

The tweening required for representing the flight of the dagger shown in
Figure 1.2 can be obtained by rotating and translating the start frame. If the
image of the dagger is stored in a specific manner, then the animation is
produced by mathematical manipulations of a single image file. In Chapter 2
we begin discussing the storage of graphics images in data structures that

The Dynamics of Computer Graphics 13

permit their mathematical manipulations at display time. This subject is
revisited on many occasions throughout the book.

Another technique that originated in cartoon animation is called morphing.
The term relates to the notion of metamorphosis: a transformation in shape,
form, or substance that takes place by biological change or by magic and sorcery.
Morphing techniques are being extensively used in motion pictures. We are all
familiar with the image of an actor or actress transforming into a wolf or a cat.
Figure 1.5 shows the morphing of a circle into a square.

start frame end frame

morphing frames

)
—

Figure 1.5 Morphing Animation

1.3.2 Path-of-Motion Calculations

The rules for path-of-motion calculations in animation depend on the image file
encoding and on the transformation to be performed. If the coordinate points
that define the image are stored in matrix form, then it is possible to perform
certain transformations by means of matrix arithmetic. For example, a trans-
lation transformation consists of adding a constant value to each coordinate
point that defined the object, while a rotation transformation consists of moving
all of the object’s coordinate points along circular arcs with a common center.
Figure 1.6 shows the rotation transformation of the dagger depicted earlier in
this chapter.

Figure 1.6 A Rotation Transformation

14 Chapter One

S

vi v2 v3

N\ 7

Figure 1.7 Path of Motion in a Morphing Transformation

As in tweening, some morphing transformations can be assisted by manipu-
lations of the image file. On the other hand, in morphing, the intermediate
frames are determined according to different rules than in tweening. For
example, the morphing transformation of a circle into a square shown in Figure
1.5 cannot be made by simple rotation and translation, as is the case in the
tweening shown in Figure 1.2. Figure 1.7 shows the path, along a 45-degree
vector, that a point on the circle would follow in the process of morphing into a
square.

In Figure 1.7, points along different vectors follow different paths. For this
reason, morphing usually requires more complicated processing than simple
geometrical transformations. Notice that the path of motion along vector v1 in
Figure 1.7 requires three intermediate steps in the transformation of a circle
into a square. Along vector v2 only one intermediate step is necessary, while
there is no motion along vector v3.

Path-of-motion calculations in tweening and morphing can be rationalized
and simplified by using straight lines to approximate geometrical curves. A
polygon can be used instead of the circles and curves in the morphing transfor-
mation of a circle into a square. This approximation is shown in Figure 1.8.

Figure 1.8 Polygon Approximations in Morphing

The Dynamics of Computer Graphics 15

Figure 1.9 Simultaneous Fade-in and Fade-out

1.3.3 Color-Shift Animation

Objects on the computer screen are furnished with display attributes. In color
video systems one category of attributes is the object’s color. The animator can
manipulate the color attributes of screen objects to create the illusion of
movement or change. One common application of this technique is in fading.
An object or scene is faded-in when its color is progressively changed so as to
make it slowly appear on the screen. A fade-out takes place when the object or
scene is made to slowly disappear from the screen. Fade-in operations are
typically used in cinematography at the beginning of a scene and fade-out at
the end of a scene. A cross-dissolve operation takes place when one scene or
object is faded-out while another one is faded-in. Figure 1.9 shows the simul-
taneous fade-in of a rectangle and fade-out of a circle.

In some computer system fade operations can be implemented by progres-
sively changing the hue or saturation of one or more objects or of the entire
scene. A screen fade-out can be accomplished by progressively increasing the
white saturation of all the objects until the entire screen is white. In some
systems (including IBM video systems) the fades can be performed by modifying
the color palette itself, instead of the color attributes of individual objects.
Palette animation, as these methods are sometimes called, is relatively easy to
implement and often generates satisfactory results at a low processing cost.

Color animation is also used in many other creative manipulations. For
example, a sunset scene can be created by increasing the black, red, and orange
color saturation of selected screen objects. Or the illusion of movement can be
enhanced by having the moving object leave tracks of its image with a decreas-
ing color saturation. This effect, sometimes called a motion blur, is depicted by
the bouncing ball shown in Figure 1.10.

1.3.4 Object Rendering

In the creation of the image set the animator is often confronted with a modeling
problem. As the number of dimensions of the representation and the complexity
of the objects increase, so do the difficulties in obtaining the in-between images
or the mathematical transformations required for the animation. As a general
rule it can be stated that two-dimensional objects are easier to model than
three-dimensional ones, symmetrical objects are easier than asymmetrical
ones, and geometrical entities are easier than living organisms. However,
notice that there are exceptions to these rules.

18 Chapter One

@, @ @,

i
L1

Figure 1.14 Stick Figure Animation

The image set required for the animation of a human or animal form cannot
usually be obtained by pure mathematical transformations, as is the case with
geometrical objects such as the flying dagger in Figure 1.2. Even in the most
schematic representations (such as the one in Figure 1.13) the image set
involves the interaction of several limbs and joints, as shown in Figure 1.14.

Several techniques have been developed for the computer modeling of human
motion. In one methodology (Labanotation) the body is described as sets of limbs
and joints. Each joint is specified in terms of axes that can be oriented in various
ways. Joint movements are described by operations that fall into several
categories. A special symbol represents each class of operation. This approach
makes possible the study and representation of human motion in an abstract
way.

1.4 Applications of Computer Animation

Computer animation is an attribute of the computer graphics environment; to
very few fields of this environment can the animation attribute not be applied.
Therefore, the applications of computer animation practically coincide with the
applications of computer graphics. For instance, computer graphics are often
used in business to draw charts of economic and financial functions. The usual
purpose of these charts and graphs is to facilitate the understanding of complex
phenomena and to aid in decision making. These purposes are enhanced when
the graphs and charts are animated so as to represent historical changes or
future trends of the depicted data.

In the following sections we describe some fields of computer graphics in which
animation plays a central role or in which animation techniques greatly
enhance the graphics environment. The discussed applications should be taken
as a sampling and not as a restrictive listing.

The Dynamics of Computer Graphics 19

1.4.1 Simulators and Trainers

Many natural or man-made objects and environments can be artificially represented
in a satisfactory manner. For many years we have used optical planetariums to
illustrate and teach astronomy in an environment that does not require more costly
optical instruments and that is independent of the weather and other meteorological
conditions. In the planetarium the viewer sits in a comfortable chair, located in an
air-conditioned enclosure, and watches the procession of constellations and deep-sky
objects, as well as the trajectory of the moon and the planets over a realistic sky. The
operator of the planetarium controls the rate of movement so that the celestial
transformations that take place over years or centuries can appear to occur in a few
minutes. Or the operator can enlarge the magnification of a particular object so that
the viewer can appreciate in details the rings of Saturn or the satellites of Jupiter.
Furthermore, it is possible in an artificial environment to reproduce the stellar objects
and viewing conditions of any particular date in history. In this manner a viewer is
able to relive the astronomical observations and experiences of Galileo or Newton.

On the other hand, some natural phenomena cannot be conveniently reproduced
in a physical or optical laboratory. For example, the transformation of mass according
to the theory of relativity would be practically impossible to reproduce physically. We
can use animated graphics to simulate physical entities or to represent complex
scientific phenomena such as nuclear and chemical reactions, hydraulic flow, physi-
ological systems and organs, or structures under load; in reproducing physical
simulators, such as the planetarium; in depicting systems that cannot be conven-
iently imitated in other ways; or in creating a more feasible or economical emulation
of physical phenomena.

One such type of computer-assisted devices, sometimes called simulators, find
practical and economical use in experimentation and instruction. Astronauts train-
ing for a lunar landing practiced in simulators of the landing module and the mother
ship. Airplane pilots often train in computer-assisted simulators that can safely
reproduce unusual or dangerous flying conditions.

1.4.2 Electronic Games

Since the introduction of Pac Man and similar programs in the mid-1980s computer
animation has played an increasingly important role in the personal entertainment
field. More recently we have seen the geometrical increase in popularity of dedicated
computer-controlled systems and user-interaction devices, such as those developed
by Nintendo and Sega. During this time the arcade-type electronic game has
continued to prosper.

In the microcomputer world, CD-ROM, digital audio, software, and specialized
user-interaction devices have been combined in an environment sometimes called
multimedia. The quality of the animated imagery and sound effects that can be
obtained in multimedia computer systems often competes with those in dedicated
systems. Some applications for personal computers have achieved such a degree of
realism that moral and ethical issues are being raised regarding the use of
sexually explicit or violent applications.

20 Chapter One

1.4.3 Business Presentations and Marketing

In the business environment computer animation often serves to enhance the
presentation of graphic and statistical data. In this context the animation can
serve to make the presentation more interesting to the spectator by showing
transformations that take place over a time period. For example, the evolution
of a product from raw materials to its finished form, the growth of a real estate
development from a few houses to a small city, or simply the evolution of a
statistical trend.

Animated imagery can thus serve to make a more convincing presentation of
products or services offered to a client, as a training tool for company personnel,
or as a replacement media for presentations of statistical data. As a selling tool
computer animation techniques can make a product or service more interesting
and also add action and movement to an otherwise dull and boring description
of properties and features.

1.4.4 Artificial Life

In recent years a new discipline of computer science, named artificial life, or
ALife, has evolved around the computer modeling of biosystems. The new field
is said to be based on biology, robotics, and artificial intelligence. The results
are digital entities that resemble self-reproducing and self-organizing biological
life forms. Computer viruses of the harmful and benign forms are often cited
as examples of artificial life.

The cellular automaton is at the core of the notion of artificial life. This idea,
first described by John von Neumann, is a theoretical model of a parallel
computing device which is subject to various restrictions in order to make
possible the formal investigation of its various computing powers. The model
is reminiscent of a living organism since it is based on an interconnection of
identical cells, each being a finite-state machine. Each unit computes an output
based on input received from a finite set of cells, which are said to form its
neighborhood. It is also possible for a cell to receive input from an external
source. A clock tick determines that all cells produce a simultaneous output.
The output is directed to all cells in the neighborhood, and possibly, to an
external destination or receiver.

The first formal discussion of cellular automata was by E. F. Codd in 1968
(see Bibliography). A. W. Burks is the editor of the book Essays on Cellular
Automata (1970). A more recent title by Edward Rietman, Creating Artificial
Life: Self Organization, provides a rigorous, and at the same time, entertaining
presentation of this subject.

The implementation of cellular automata is often represented as a sequence
ofimages. Each clock cycle is an iteration update of the automata system, which
can be viewed graphically on the computer screen. The resulting changes in the
system give rise to an image set that simulates an animated entity. In general,
the notion of artificial life is naturally associated with biological forms capable
of self-reproduction and self-organization. These actions imply changes that

The Dynamics of Computer Graphics 21

can be represented graphically. In the same way that we associate natural life
with movement and action, it often requires the depiction of transformations
and movements by means of computer animation.

1.4.5 Virtual Reality

Recent breakthroughs in input and output technology have made possible a
new level of user interaction with a computing machine, called virtual reality.
Virtual reality technology consists of a computer system, a viewing device
(typically in the form of virtual reality goggles or head-mounted display), and
one or more input devices which allow the user to interact with the animation
system.

The result of virtual reality is a digital universe created by the computer
system in which the user is more or less immersed, according to its level of
isolation from the surrounding environment. This digital universe has been
named cyberspace, using a term coined by science fiction writer William Gibson
in his 1984 book Neuromancer. The possible applications of VR technology
range from pure entertainment to practical industrial controls. For example,
we can put on VR goggles to travel to the planet Mars and walk on its surface
or to control a complex robot used in industry or manufacturing. Other possible
applications include scientific and medical research, art, music, CAD, electronic
games, information management, engineering, education, surgery, and many
others.

Animation techniques are usually required in virtual reality as part of the
computer feedback mechanism. In a typical VR system the goggles take the
place of the video display. The animator uses its art to present to the user a
convincing image of the virtual environment created by the system. For exam-
ple, when the system detects a left-hand movement of the user’s head, the video
image displayed on the VR goggles is smoothly panned to the left in order to
make visible objects that were previously outside of the user’s field of view. If
the virtual universe includes entities that move, the system must use animation
to reflect this action on the virtual environment. For example, a virtual reality
representation of the Jurassic period requires that images of dinosaurs move
in predetermined or random fashion, perhaps interacting with the user.

Notice that we have not yet achieved the level of technical refinement and the
image processing power necessary for creating a realistic virtual environment
in which many virtual entities are simultaneously animated according to the
user’s interaction with the system, or to predefined or random factors. In the
years to come we are likely to create virtual realities in which a user is able to
experience being a brain surgeon, a time traveler, or a rather skimpy meal for
a large, flesh-eating animal of the Jurassic period.

1.4.6 Fractal Graphics

When examined closely, natural surfaces are highly irregular and do not follow
predictable geometrical patterns. Such is the case with coastlines, islands,

22 Chapter One

rivers, snowflakes, and galaxies. Therefore, most natural objects cannot be
satisfactorily represented using polygons or smooth curves, since the resulting
image would appear too regular and contrived. However, it is possible to
realistically represent some types of natural objects by means of a mathemati-
cal entity called a fractal.

The term fractal is derived from the words fractional dimensions. It is best
visualized by means of a structure called a ¢riadic Koch curve. The evolution of
the Koch curve starts with a straight line of length one. The middle third of this
line (one-third fraction) is replaced by two lines of the same length that form a
60-degree angle. The result is a curve that is more rugged than the original one.
This second-order curve can be transformed into a curve of the third order by
repeating the same process with each of its four segments. The evolution of a
Koch curve to the third order is shown in Figure 1.15.

In regards to the Koch curve in Figure 1.15 we observe that its length
increases in relation to the number of straight line segments that it contains.
This means that the second-order Koch curve in Figure 1.15 has a greater
length than the first-order curve. By the same token, the third-order curve has
a greater length than the second-order one. Therefore, by continuing the process
to infinity, the length of the curve also increases to infinity. In other words, the
curve cannot be measured in one dimension. On the other hand, the Koch curve
cannot be measured in two dimensions, since, by definition, its area is always
zero. This leads to the conclusion that the curve must have a dimension that is
greater than one and less than two, that is, a fractional dimension, or fractal.
In fact, the dimension of the Koch curve has been determined to be approxi-
mately 1.2857 following the Hausdorff-Besicovich method.

The term “fractal” was coined by Benoit Mandelbrot in his book The Fractal
Geometry of Nature (see Bibliography). One interesting feature of fractals is
that they can be generated by computers following what is called a production
rule. Figure 1.15 shows graphically the production rule for a triadic Koch curve.
Other fractals such as the popular Mandelbrot set and the Julia set have their
own unique production rules.

The Koch curve exhibits a feature known as self-similarity. This means that
parts of the curves are similar to the whole curve. Natural objects, on the other
hand, rarely exhibit self-similarity, although they do show what is termed
statistical self-similarity. In using fractal curves to simulate natural objects it
is necessary to introduce a random factor that eliminates the curve’s self-simi-
larity property. The result is comparable to the image formed in a kaleidoscope,
in which the random placement of the colored glass fragments ensures a unique

image with every change.

first order second order third order

Figure 1.15 Triadic Koch Curve

The Dynamics of Computer Graphics 23

Computer animation can be used to show the progression in the approxima-
tion of random fractals in a computer system. Notice that a truly random fractal
has an infinitely complex shape; therefore it cannot actually exist as a visible
object. The introduction of a random element in the creation of the fractal curve
ensures that the result will be unpredictably different every time that the
fractal is approximated. The animated imagery that results from the generation
of a random fractal graphic approximation is quite interesting from both an
artistic and a mathematical viewpoint.

1.5 The Animator’s Predicament

The PC computer animator working with present day technology will rarely -
have sufficient resources for the purpose at hand. A typical scenario consists of
a short supply of one or more of the necessary elements required for image
processing or rendition. For example: the CPU or the coprocessor do not have
the processing power to perform the necessary image transformations, and the
video image definition and color range do not allow the satisfactory repre-
sentation of real world objects or beings.

For these reasons, the result of an animation effort in a small computer
environment can very easily result in a bumpy, coarse, and unrealistic imagery
that is aesthetically unpleasant and even physiologically disturbing. The ani-
mator’s art consists of making the best possible use of limited resources in
processing and image representation in order to produce a result that is as
smooth and pleasant as the media allow. This often requires stretching the
system’s capabilities to its extremes as well as resorting to every scheme and
stratagem in a programmer’s bag of tricks.

Most of the programmer-animator’s work consists of making compromises
and in finding acceptable levels of undesirable effects. In this sense the
animator often has to decide how small an image satisfactorily depicts the
object, how much bumpiness is acceptable in representing a movement, how
little definition is sufficient for a certain scenery, or with how few colors can an
object be realistically depicted. In the hands of the expert, these compromises
and concessions result in the best possible representation in a particular
system.

The expert viewer, who is familiar with the hardware limitations of the media,
often appreciates and even marvels at the animator’s achievements. The
nontechnically oriented user, on the other hand, usually compares the result
with those possible with other animation vehicles, and points out that the
computer images are not as good as television or as cinematography. This
means that a computer-animated program for the PC environment, so well
designed and executed that it manages to escape these harsh comparisons and
judgments of the typical user, is indeed a technological and artistic accomplish-
ment.

L : B Lo :
. o : . A s

Chapter

Graphical Image Structures

2.0 Image Storage for Animation

The typical scenario is that animated action takes place within the structure
of a graphics program. The animated sequence is usually a set of graphics
images displayed on the computer’s video system. Certain image structures and
encodings are more animation-friendly than others. Therefore, before we tackle
the problems of the animated image set, we must first consider how the image
is encoded and stored. For these reason, the selection and layout of the data
structures that contain the image data are one of the most important consid-
erations in the design of an animated application.

2.0.1 Pixel Maps versus Vector Commands

In general terms, computer images can be classified into two categories: pixel
maps and vector commands. A pixel map, or bitmap, is a memory structure that
encodes the relative location and the attribute of each light dot (pixel) that forms
the image. Alternatively, the graphics image can be defined by means of vector
or display file commands for each of the image’s geometrical elements. Figure
2.1 shows the image of a cross defined as a bitmap and as a set of vector
commands.

25

26 Chapter Two

y
0 7
1 6
2 5
3 4
4 3
5 2
6 1
7 0 x
01234567
IMAGE IN BITMAP: IMAGE IN VECTOR COMMANDS:
08H, 08H, 08H, OFFH line from x0, y4 to x7, y4
08H, 08H, 08H, 08H line from x4, yO to x4, y7

Figure 2.1 Image Encoded in Bitmap and Vector Commands

In Figure 2.1 the bitmap represents the attribute of each individual pixel in
the image. In the simplest encoding a 0-bit in the bitmap usually represents a
white or uncolored pixel and a 1-bit a black or colored pixel. Vector commands
refer to the geometrical elements in the image. For example, the vector
commands in Figure 2.1 define the image in terms of two intersecting straight
lines. The commands contain the start and end points of each line in a cartesian
coordinate plane that corresponds with the system’s video display.

The question of which of these two methods of image encoding is preferable
has no unequivocal answer. The most suitable approach for many applications
is to adopt both methods of image encoding. Which is preferred depends on
occasional image characteristics and processing requirements. A video image
composed exclusively of geometrical elements, such as a line drawing of a
building or a machine part, can usually be defined flexibly and compactly by
means of vector commands. On the other hand, a naturalistic representation
of a human face usually requires a bitmap.

Each method of image encoding, bitmap and vector commands, has its own
features and advantages. One consideration is that vector commands some-
times save considerable storage space over bitmaps. For example, in a video
surface of 600-by-400 screen dots, the bitmap for representing two intersecting
straight lines would have to encode the individual states of 240,000 pixels. If
the encoding is in a two-attribute form, as in Figure 2.1, then one memory byte
is required for each 8 screen pixels. The result is that a 30,000-byte memory
area is devoted to storing the bit-mapped image. On the other hand, the same
image could be encoded in two vector commands that define the start and end
points of each line, with a considerable saving in storage. By the same token,
to describe in vector commands a screen image of Leonardo’s painting of the
Mona Lisa would certainly be more complicated and memory consuming than
the corresponding bitmap.

Graphical Image Structures 27

Figure 2.2 Translation by Coordinate Arithmetic

A second consideration regarding bitmaps versus vector commands is that
vector commands locate geometrical image elements by means of coordinate
points. Graphics software can operate mathematically on these points to
transform the encoded images. For example, a geometrically defined object can
be moved to another screen location by adding a constant to each of its
coordinate points. In Figure 2.2 the rectangle with its lower left-most vertex at
coordinates x = 1, y = 2, is translated to the position x = 12, y = 8, by adding 11
units to its x coordinate and 6 units to its y coordinate.

2.1 Device-Independent Graphics

Graphics software systems and applications can often be envisioned and de-
signed independently of any particular graphic device. Nevertheless, the ulti-
mate purpose of a graphic system is to create a picture on a physical instrument.
Therefore, computer graphics cannot exist separately from a computer graphics
device. This means that the notion of device-independent graphics makes more
sense as a design goal that as a programming reality.

Graphics software services are typically furnished in the form of a graphics
library, a graphics standard, or a graphics programming language. Several
graphics standards and languages have been developed, mainly for the purpose
of providing some degree of device independence to the software medium.
Additionally, some operating systems, such as Windows and OS/2, have taken
on the task of providing device independence to applications.

In the MS-DOS environment device independence is the objective of the
program designer aiming at a software product capable of executing in more
than one graphical input or output device. Suppose a graphics library that
contains two services, one for drawing straight lines and one for drawing circles.
Assume that this hypothetical library is furnished with two drivers, one for
VGA and another one for the XGA video system. Also assume that the parame-
ters for the line-drawing service are the cartesian coordinates of the line’s end

28 Chapter Two

points and that the parameters for the circle-drawing service are the coordi-
nates of the center of the circle and its radius.

The problems of device independence become immediately evident, even in
the simplest conceivable application. In the first place we must take into
account the hardware differences between the VGA and the XGA systems. For
example, the maximum vertical definition of the VGA is 480 pixel rows, while
the XGA is capable of displaying 768 rows. Therefore, if 500 is entered as a pixel
row value, it would be valid if the system were XGA, but not so if it were VGA.
The possible conflict must be addressed by the device-independence engine.

There are several possible approaches to the problem of executing in dissimi-
lar devices. The easiest to implement, but perhaps the least satisfactory
solution, is to limit the resolution to that of the least powerful device. In this
example, device independence could be ensured by limiting the resolution to
that of the VGA system, sacrificing the XGA modes that exceed the VGA
definition. The approach ensures uniformity by reducing the system’s graphic
potential to that of its lowest component.

Another option is to provide compensations in the core computational routines
in order to accommodate the characteristics of different hardware. One disad-
vantage of this approach is that the software package must take into account
the operational characteristics of all supported devices. Therefore, the entire
system would have to be modified in order to extend support to a new device
with different hardware characteristics and display parameters.

A third approach to device independence is to perform the necessary compen-
sations and adjustments, not in the core computational routines, but in sepa-
rate software units configured according to the characteristics of each
supported device. These hardware-specific units are usually called device
drivers. The central software package can be based on an imaginary model of
a virtual graphics system, for example, on a screen structure of 1600-by-1000
pixels. The line-drawing and circle-drawing routines compute pixel position for
this virtual video display. The chore of adjusting the imaginary pattern of
screen dots to the parameters of the physical device is left to each device driver.

There is no ideal solution to the problems created by the use of dissimilar, and
sometimes incompatible, hardware devices. In alphanumeric modes, or in the
case of undemanding graphics applications, some degree of device inde-
pendence can be achieved, as is evidenced by the Windows and OS/2 operating
systems. As code attempts to make optimum use of the hardware features,
device independence becomes, progressively, a goal more difficult to achieve,
as is seen in the following sections.

2.1.1 Software Environment for PC Animation

In the PC environment, animated programs that achieve satisfactory results
often do so by pushing the graphics hardware to its processing limits. To the
animation programmer every processing operation is critical and every system
capability is in short supply, because each microsecond of execution time is
crucial to producing a satisfactory result. Performance concessions and proc-

Graphical Image Structures 29

essing complications which are required to ensure device independence detract
from the hardware efficiency and therefore diminish the quality of the anima-
tion.

For these reasons, to the present day, the most satisfactory animated appli-
cations for the PC take control of the graphics hardware in order to exploit the
capabilities of a particular device to its maximum potential. This means that
animated programs typically execute under MS DOS, as a DOS application in
Windows or OS/2, or as a Windows or OS/2 application with I/O privileges. Most
of the animation programming techniques presented assume that the software
has total hardware control, as is the case in the above environments. At the
time of this writing, a satisfactory quality in computer animation cannot yet be
achieved by means of operating system or other high-level services.

2.2 A Virtual Graphics Machine

The high degree of hardware control required in animation does not mean that
the program designer must completely renounce the notion of device inde-
pendence. The fact that an animated application makes optimum use of the
hardware facilities implies that the program must be equipped with device-spe-
cific routines. But there is no limit to how many different devices are supported
by a particular program. Here again, the program designer determines the
hardware systems supported as well as the support approach. The designer’s
strategy can go from developing a separate program for each supported device
(which would ensure the best possible execution) to implementing a single
program version that executes, more or less acceptably, in all the supported
systems. In any case, by following specific methodologies the program designer
can simplify the conversion problems and increase the portability of the code
so that support of multiple systems is made as uncomplicated as possible.

One approach is to adopt an imaginary model of a graphics device. This model
is called a virtual graphics machine. The characteristics of the virtual machine
occasionally coincide with those of a physical device. More frequently, the
virtual machine has characteristics that exceed those of the most powerful
physical device available. In this manner the program designers attempt to
leave room for future improvements in the graphics hardware.

Conceptually, the notion of a virtual graphics machine includes that of a
graphics engine. If the physical graphics device is the hardware counterpart of
the graphics machine, the graphics engine is the functions which the virtual
device is capable of executing. Therefore, the specifications of the graphics
machine include the following elements:

1. The hardware characteristics of the adopted model, called the virtual
graphics device or VGD

2. The graphics functions that can be directly performed by the device, called
the output functions or graphics primitives

3. The user interaction with the device, called the input functions

30 Chapter Two

4. A structured filing system adopted for storing, restoring, and manipulating
the graphic image, called the display file

2.2.1 The Virtual Graphics Device

The VGD is an abstract model, although, for practical reasons, some designers
make it coincide with one of the hardware devices supported by the system. In
this case, the virtual graphics device matches a physical device.

The VGD is usually defined during the program design stage. At this time it
is important to make reasonable assumptions regarding the characteristics and
capabilities of the devices that are supported by the software. If the model
adopted substantially exceeds the capabilities of the best physical devices
available, the system is unnecessarily elaborate and complex. In this case it can
be described as being overdesigned or overspecified. By the same token, if the
adopted model has fewer capabilities than the physical devices available, some
of the graphics power of the hardware is lost to the software and the system.
In this case the system can be said to be underdesigned or underspecified.

In conventional computer graphics the VGD is usually an imaginary display
system. The surface of this display is viewed as a two-dimensional cartesian
coordinate system. In graphics programming it is convenient to place the origin
of the coordinate system in the top left-hand corner, because the rows and
columns of pixel-based displays are usually referenced from this position. Since
in conventional cartesian notation this quadrant contains negative values for
y coordinates and positive values for x coordinates, an adjustment is made in
the convention so that x and y are both positive.

The maximum x coordinate is the horizontal definition and the maximum y-
coordinate is the vertical definition. Figure 2.3 shows a virtual graphics device
in the form of a video display with a definition of 900-by-1600 pixels.

(& o0,)
900
"’ Y,

Figure 2.3 Cartesian Representation of the Video System

Graphical Image Structures 31

In addition to the coordinate range and definition, the program designer must
also determine other capabilities of the virtual graphics device, such as the
number of colors supported by the system. It is important to differentiate
between the colors that can be selected and those that can be displayed. For
instance, a graphics system may be capable of displaying 16 colors simultane-
ously that can be selected from a total of 128 available hues and shades. The
available colors are sometimes called the palette. The number of simultaneous
colors is the system’s color range.

The horizontal and vertical definition, the color range, and the color palette
are sufficient to describe the functional characteristics of the virtual graphics
device adopted as a model for a given project. For example, the design specifi-
cations document could state that the display device has a definition of 640-by-
480 pixels in 16 colors that can be selected from a palette of 64 colors.

2.2.2 The Graphics Primitives

A graphics system is an imaging tool; therefore it must be capable of performing
elementary graphics functions, such as drawing lines and geometric figures,
displaying text characters, and shading or coloring screen areas. The available
image-creating operations are called the output functions or graphics primi-
tives of the system.

A general purpose graphics library generally includes a more or less extensive
collection of graphics primitives. An application, on the other hand, includes
only those functions required for its specific purpose. A minimal, general
purpose graphics library contains the following primitives:

1. Full screen primitives: clear the screen, set the entire screen to a color or
attribute, save the screen image in memory, and restore a saved screen
image.

2. Screen tile (window) primitives: set a rectangular screen area to a given color
or attribute, save a rectangular screen area in memory, and restore a saved
rectangular screen area.

3. Attribute selection primitives: set the current drawing color, set the current
fill color, set the current shading attribute, set the current text color, set the
current text font, set the current line type (continuous, dotted, dashed, etc.),
and set the current drawing thickness.

4. Geometrical primitives: draw a straight line, draw a circular arc, draw an
elliptical arc, draw a parabolic arc, draw a hyperbolic arc, and draw Bezier
curves.

5. Image transformation primitives: scale, rotate, translate, and clip image.

6. Painting primitives: fill a closed figure with current fill color or shading
attribute.

7. Bit block primitives: XOR text or bit block, AND text or bit block, and OR
text or bit block.

32 Chapter Two

2.2.3 Input Functions

The computer graphics system must usually be capable of interacting with a
human element. This takes place through an input device such as a keyboard,
a mouse, or a graphical input tablet. This input can be roughly classified into
two types: valuator and locator.

Valuator input takes place when the data entered is an alphanumerical
value. For example, the coordinates of the end points of a line constitute
valuator input. Locator input takes place when the user interaction serves to
establish the position of a graphic object called the locator. A mouse-controlled
icon is a common locator.

Valuator and locator input normally follow this sequence of input phases:

1. Input request phase: The graphics system goes into the input mode and
prompts the user that it awaits further action.

2. Echo phase: As the user interacts with the input device, its actions are
echoed by the graphics system. For instance, the characters are displayed
as they are typed, or the icon moves on the screen as the mouse is dragged
on its surface. Phases 1 and 2 are sometimes called the prompt-and-echo
phase.

3. Trigger phase: The user signals the completion of input by pressing a
specially designated key or a button on the input device. One way to
conclude the input phase is to abort the operation, usually by pressing the
escape or break key.

4. Acknowledge phase: The graphics system acknowledges that the interac-
tion has concluded by disabling the input prompt and by notifying the user
of the result of the input. In the case of locator input the acknowledge phase
often consists of displaying a specific symbol that fixes the locator position.
In the case of valuator input the acknowledge phase can make the cursor
disappear. Another action of the acknowledge phase can be that the char-
acters entered are reformatted and redisplayed, or they are stored inter-
nally and erased from the CRT.

A general-purpose graphics library includes the following interaction primi-

tives:

1. Valuator input primitives: input coordinates, input integer, input string,
and input real number.

2. Locator selection primitives: select cursor type (crosshair, flashing rectan-
gle, rubber band, or others).

3. Locator input primitives: enable and disable screen icon, move screen icon,
and select graphics item on screen and menu item.

2.2.4 Display File Structure

A graphics application must be capable of storing and transforming graphics
data. The logical structure that contains this data is called the display file.
One of the advantages of a display file is that it allows the compact storage of

Graphical Image Structures 33

graphics data and its transformation through logical and mathematical opera-
tions. For example, an image may be enlarged by means of a mathematical
transformation of its coordinate points, called a scaling transformation. Or the
graphics object can be viewed from a different angle by means of a rotation
transformation. Another transformation, called translation, allows changing
the position of a specific object.

Before these manipulations can take place, the program designers must
devise the logical structure that encodes image data in a form that is convenient
for the mathematical operations to be performed. High-level graphics environ-
ments, graphical languages, and operating systems with graphics functions
provide precanned display file structures that are available to applications. The
programmer working in a customized environment, on the other hand, usually
designs the display file to best accommodate and manipulate the data at hand.
The first step in defining this structure usually consists of standardizing the
screen coordinates. Figure 2.3 shows the normalized screen coordinates of a
virtual video display system.

A screen normalization scheme usually aims at maximum simplification. One
possible scheme is to select the top-left corner of the screen as the origin of the
coordinate system and make all locations positive (see Figure 2.3). The range
of values that can be represented in either axis determines the system’s
definition. If an application is to support a single display definition, it is
convenient to normalize the screen coordinates to this range. However, this
decision should be taken cautiously, since equating the virtual to the physical
device means that any future support for a system with a different definition
probably implies modifying the entire software package.

Notice that screen normalization is necessary so that image data in the
display file can be shown on a physical device, but the stored image data does
not have to conform with the adopted screen normalization. At display time the
processing routines (usually in the device driver) perform the image-to-pixel
conversions. In Chapter 3 we describe the operations necessary for converting
data in the image file into displayed pixels on the video screen.

2.2.5 Image Data in the Display File

How the image is stored in the display file depends on the image itself and on
the operations to be performed on its elements. Graphical images are classified
into geometrical and bit-mapped; therefore, with every image to be stored, a
decision must be made whether to represent it as a set of vector commands, as
a bitmap, or as a combination of both. In many cases the image itself determines
this decision. For example, there is little doubt that a circle is best encoded in
vector form. On the other hand, images such as alphanumeric characters can
be represented either as vector commands or as bitmaps. Postscript and other
conventions have used vector representation of text characters in order to
facilitate scaling.

Even after deciding if a graphics object is to be represented as a bitmap, as a
set of vector commands, or as both, there can be considerable variation in the

34 Chapter Two

encoding. A straight line can be defined by its two end-point coordinates, or by
its start point, angle, and length. A rectangle can be defined by the coordinates
of its four vertices, or by the coordinates of two diagonally opposite vertices.
The first option allows the representation of parallelograms, while the second
one is more compact. There are also variations in the encoding of bit-mapped
objects. If the object is unique, its bitmap can be included in the display file.
However, if the application is to manipulate several objects with the same
bitmap, then it is better to represent the bitmap with a special type code in the
display file and store a single, generic bitmap in a separate location. The
design of the image data formats for a customized display file requires careful
consideration and planning. Even then, it can usually be anticipated that as
the program is developed, changes in the image data encoding become neces-
sary to accommodate or facilitate operations, or to compress the information.
The safest approach in the development stage is to test all processing operations
with minimal image data, instead of proceeding to encode elaborate images into
data formats that may later require modifications.

2.2.6 Display File Commands

It is not sufficient for the graphics system to store image data. It must also be
capable of manipulating this data in order to generate and transform images.
The orders that operate on image data are the display file commands. The image
itself is defined in terms of both data and commands. For example, a screen
triangle could be represented by three straight lines. The display file contains
the coordinate points of the three lines as well as the commands to draw these
lines, as shown in Figure 2.4.

(| 100 500 N\
© ¢ i X
50 |
400
y
\ J
DISPLAY FILE
commands : image data: ,
X y X y
line 100 50 500 50
line 500 50 500 400
line 500 400 100 50

Figure 2.4 Display File for a Triangle

Graphical Image Structures 35

Notice that in Figure 2.4 the screen coordinates coincide with the display file
coordinates. This simplification, although convenient, is not always the pre-
ferred approach.

2.3 Graphics Software Standards

Since the late 1970s several organizations have labored towards an interna-
tional standard for computer graphics. In the United States the Graphics
Standard Planning Committee of the American National Standards Institute
(ANSI) has developed the Core Graphics System. The German standards group
created a computer graphics standard known as the Graphical Kernel System,
or GKS. In October 1981, GKS was submitted and approved by the Interna-
tional Standards Organization (ISO) as a proposed standard for computer
graphics. Since then, GKS has gone through several testing and modification
stages. In 1985 it reached its present status of an international standard.

In addition to GKS, other computer graphics standards are under develop-
ment by the American National Standards Institute. Among them are the
Virtual Device Interface standard (VDI) and the Virtual Device Metafile stand-
ard (VDM).

For reasons of performance animation programming must often be done
outside of standards and other formal conventions. For this reason, graphics
standards such as GKS, although a core topic of general graphics programming,
are not discussed in this book.

2.3.1 Graphics Support from System Software

In an effort to expedite and standardize graphic programming from high-level
languages, IBM and other companies have developed several system-level
graphics software products. One of these packages, named the IBM Profes-
sional Graphics Series, was intended for the original video systems of the PC
line, namely, the Color Graphics Adapter, the Enhanced Graphics Adapter, and
the PCjr. This package included an implementation of the Graphical Kernel
System, a Virtual Device Interface, a file system manager, and a terminal
emulation program. IBM also made available a Graphics Development Toolkit
version 1.2 for DOS systems. This package included eight Virtual Device
Interface device drivers, five of which are for PS/2 displays, as well as a printer,
plotter, and mouse drivers. The IBM Operating System/2 Graphics Develop-
ment Toolkit is a similar package intended for OS/2 multitasking applications.
In addition, operating system programs provide graphics services that can be
employed by high-level and low-level languages alike. Windows and OS/2
programmers have available these graphics functions, which include some
limited animation commands. MS DOS, on the other hand, does not contain
graphics services, although several versions of IBM Basic Input/Output System
(BIOS) provide graphics services which can be accessed by DOS programs.

36 Chapter Two

The BIOS graphics services are included as part of the video functions of
interrupt 10H. They afford a software mechanism for reading and writing
individual pixels and for setting the graphics mode, for displaying text on a
graphics screen, and for manipulating the palette registers. Although the BIOS
graphics services are insufficient for completely implementing a graphics
application, they do assist the programmer in performing noncritical functions.
The use of the BIOS services in graphics programming is discussed later.

2.4 Storage of the Graphical Image

The raster-scan video display technology used in the PC interprets a graphical
image as a two-dimensional arrangement of light cells, called pixels. In some
systems, these light cells are illuminated in monochrome light, while other
systems use light of various colors or intensities. The literal storage of a
graphical image (bitmaps) requires one discrete storage unit for representing
the attribute of each screen pixel.

Graphics images can be represented and stored as a set of vector commands.
This geometrical encoding has several advantages, such as a more compact
representation, as well as certain possibilities of transforming the stored image
by manipulating its coordinate data.

2.4.1 Geometrical Image Elements

An elaborate graphics image can often be geometrically encoded by subdividing
it into component elements. Not all graphics systems, languages, or applica-
tions use the same number or category of image elements, nor are these
elements identically defined or named. Nevertheless, there are some funda-
mental concepts of image encoding that transcend specific implementations.

The Point

The primary geometrical image element is a point. In raster-scan technology,
such as the PC video systems, it is tempting to equate a geometrical point with
an individual screen pixel. But it is more consistent with the principles of device
independence to use the concept of a screen point in reference to the virtual
display surface, and to reserve the word pixel for the screen element. Figure
2.5 shows the cartesian representation of a point in the first quadrant.

y

o 12,8

\.1.1

Figure 2.5 Cartesian Representation of a Point

Graphical Image Structures 37

10,8

D
AYZ
»

Figure 2.6 A Screen Point Used to Locate a Bitmap

Geometrically, we can define a screen point by its x and y cartesian coordi-
nates. By convention, the first variable in the pair is the horizontal coordinate
x, and the second one is the vertical coordinate y.

In graphics programming the concept of a screen point can be extended to
locate a more complex image. In this manner a screen point can reference the
placement of a bitmap or other screen object. In Figure 2.6 the coordinates x =
10, y = 8 refer to the center point of the bitmap image.

The Line

A line segment can be intuitively defined as those points along a straight line
that lie between two end points. This concept is valid geometrically as well as
graphically because a straight line in the cartesian plane can always be
specified by the coordinates of its two end points. Figure 2.7 shows such a line.

y

10, 14

2,2

Fan
V
x

Figure 2.7 Cartesian Representation of a Line

38 Chapter Two

14,6

4,4

D
A\v%4

Figure 2.8 Cartesian Representation of a Circular Arc

Curves and Arcs

A curve can be defined as a set of points forming a continuous line and an arc
as a part of a curve. This definition does not exclude the possibility of an arc
consisting of the entire curve. In this sense a circle is considered an arc. Nor is
the concept of curve limited to any type or group of curves, except that for
practical plotting purposes the curve must be expressible in a mathematical
formula. Figure 2.8 shows a circular arc on the cartesian plane.

In generalizing the representation of curve we see that its encoding requires
the following elements:

1. The coordinates of the start point and end point of the arc.

2. A mathematical or literal description of the curve of which the arc is part.
This description can be in the form of a verbal expression, a code, or a
mathematical formula.

3. The drawing direction if more than one arc can be generated between the
end points of the curve described. For example, in Figure 2.9 we see that
from given start and end points two arcs can be generated, one in the
clockwise direction and another one in the counterclockwise direction.

/ radius

g
D
N

~
Sea_ ="

Figure 2.9 Ambiguity in Encoding a Circular Arc

Graphical Image Structures 39

4. The necessary data to define the particular curve in the cartesian plane. For
example, in the case of a circle, the specification includes the radius; in the
case of an ellipse it includes the major and minor semi-axes.

Polygons

A polygon is defined as a surface bounded by line segments. There is no limit
to the number of line segments contained; since the polygon is a closed figure,
the start point and the end point in a polygon must coincide. In a polygon, the
line segments are also called edges, and the coordinates of the start and end
points of these segments are the vertices.

The outline of the polygon can be specified by a series of line segments. Since,
by definition, the polygon is a surface, the figure is usually defined in terms of
number of sides and the coordinates of each of the vertices.

To simplify the identification of special types of polygons, other data may be
optionally included in the specification. For example, in a regular polygon all
the line segments are of equal length and support equal angles. Some polygons,
such as the triangle, rectangle, square, and pentagon, are so frequently used
that they are usually defined independently.

Polygons can also be classified as convex and concave. In a convex polygon, a
line segment connecting any two points inside the polygon lies entirely inside
the polygon. Figure 2.10 shows convex and concave polygons. The dashed line
is used to show the convexity rule.

Often a graphics application must fill the surface of a polygon with a given
pattern or color. The concavity or convexity condition must be taken into
account during the polygon fill operation.

Figure 2.10 Convex and Concave Polygons

40 Chapter Two

11

I

1
I

Figure 2.11 Bitmap of the Letter “a”

2.4.2 Nongeometrical Image Elements

A bitmap (sometimes called a cell) is a nongeometrical image element usually
defined as a stored array of points. All elements in a bitmap can share a common
attribute, or each element can have its individual attribute. Bitmaps are used
to represent an object that cannot be conveniently defined geometrically. Figure
2.11 is a bitmap of the lowercase letter “a.”

A bitmap is usually defined by its horizontal and vertical dimensions and by
the memory address of the first item in the array.

2.5 Image Mapping

The graphical image exists in the physical universe. The typical medium is
either a binary storage device or a pixel-mapped display surface. In both cases
there are certain concepts, terminology, and logical structures that find fre-
quent use in image mapping, storage, and retrieval.

2.5.1 Video Buffer

The video buffer is the portion of physical memory reserved by the system for
storing the video image. It is a system-specific concept: the location and
structure of the video buffer depends on the architecture of the specific graphics
hardware and software. In MS-DOS video systems the video buffer architecture
changes in the different display modes. For example, in VGA mode 18 the video
buffer consists of four color planes, each plane storing a 640-by-480 pixel image,
while in mode 19 the video buffer consists of 320-by-200 pixels, each of which
is mapped to a memory byte that encodes the pixel’s attribute. The video buffer
is also called the display buffer, the regen buffer, the video memory, and the

Graphical Image Structures 43

representation of objects using literal or mathematical descriptions. In func-
tional and object-oriented programming languages, the model is a repre-
sentation of the object, but not an instruction to display it. The format and
syntax of the model and the available descriptors vary with each language and
implementation.

For example, a logical structure for a simple graphics modeling system could
be based on the following descriptors:

move (x,y) is a command to set the current location at coordinates (x,y)

line (x,y) is a command to draw a line from the current location to a location
with coordinates (x,y)

circle (r) is a command to draw a circle of radius r with its center located at
the current location

A description can include as many descriptors as necessary in order to
represent the figure. In some languages, descriptions can be assigned a variable
name. The following description encodes the operations necessary to draw a
circle enclosed by a square:

Dname (A)
move (0,0)
line (8,0) > line (8,8) > line (0,8) > line (0,0)
move (4,4)
circle (3)

A ends

Notice that the operator Dname is used in this example to mark the start of
a description and the operator ends is used to signal its end. Also note that the
greater-than symbol (>) is used to separate descriptors in the same line, as well
as to indicate program flow. The above symbols and structures have been
invented by the authors for the purpose of the current illustration, and they do
not correspond with the actual operators of any known graphics language or
system.

The model of a graphic object may also specify transformations to be per-
formed on its description. These transformations are the usual operations of
translation, rotation, scaling, and others previously mentioned. In some lan-
guages, the transformed description is called a graphical object. A possible
scheme for representing transformations in a graphical language can use
parenthesis, brackets, and capital letters, as in the following example of a
translation of the graphical description A:

SHIFT (14,2) [A]

44 Chapter Two

J

Dname (A)

y move (0,0)
line (8,0) > line (8,8) > line (0,8) > line (0,0)
move (4,4)
circle (3)

A ends

SHIFT (14,2) [A]

Figure 2.14 Example of Descriptors and Description

Figure 2.14 is a graphical representation of the description for the object (A)
and the translation that results from the SHIFT (x,y) [Z] operator.

2.6 The Display File

We have mentioned methods for representing different geometrical image
elements so that they can be reproduced and how these techniques can bring
substantial savings in the image storage space. We have also shown how stored
image data can be manipulated logically and mathematically to generate
graphics effects, as well as the use of descriptors and descriptions. The structure
that serves to encode graphical images is called the display file.

Since the concepts of descriptors and descriptions are the rational foundation
for any modeling scheme, display file design is based on the principles of
graphics modeling, mentioned in Section 2.5.5. The first step in display file
design is usually determining the general structure of the filing system. The
level of complexity of the display file structure should be consistent with the
requirements of the system or application. The implementation of a full-fea-
tured graphical language requires several logical levels and sublevels of image
encoding. A specific application, on the other hand, can do without some of these
complications.

The most common elements of the display file are the image file, the image
segment, and the descriptors.

46 Chapter Two

Figure 2.16 Image Segments

2.6.2 Image Segments

The concept of an image segment is derived from the graphics modeling
elements mentioned in Section 2.5.5. An intuitive definition is based on the
notion that the segment is a portion of the image that can be considered as a
graphic unit. Therefore, the image file can contain more than one image
segment. The portion of the image contained in each segment is displayed as a
single element.

The image file of Figure 2.16 is composed of two segments: the mailbox and
the flag. The mailbox segment is shown in both displays. The flag segment is
rotated in the second display.

Most graphic manipulations take place at the level of the image segment.

2.6.3 Image Descriptors

The image descriptors are the basic elements of the encoding. In the literature
they are also called display file commands, and less appropriately, graphics
primitives. The terms descriptors, commands, and primitives all express fun-
damental properties of this concept. We prefer the term descriptor because the
file commands and graphics primitives are used in other contexts in this book.
A descriptor contains all the instructions and data references for displaying
a graphical element. The descriptors in Figure 2.14 (move, line, and circle) are
used to form the segment (or description) labeled (A). A segment can contain
one or more descriptors. For example, the segment for the mailbox in Figure
2.16 requires descriptors for the straight line segments that form the top and
bottom of the box and for the arcs that form its ends. The segment for the
mailbox flag can contain a single descriptor for a polygon. In designing a graphic
system it is generally convenient to first define the image elements and
subelements and then provide a descriptor encoding for each element.

Graphical Image Structures 47

The components of a descriptor are the operation code and the operands. The
operation code, sometimes called opcode, is a mnemonic description of the
operations to be performed. The terms move, line, and circle in Figure 2.14 are
opcodes. The operands are the data items required by the opcode. In Figure
2.14 the operands follow the opcodes and are enclosed in parentheses or
brackets.

Chapter

Operations on Geometrical Images

3.0 Operations on Segments

Segments serve to group image elements so that they can be treated as a single
graphic entity. For this reason, the segment is often considered the fundamen-
tal unit of graphic operations. In Figure 2.14 we saw how one display is
transformed into a second one by changing several image segments. However,
these are not the only possible operations that can be performed on segments.
Segment operations are specific to the graphic system and even to the
individual implementation. For example, the GKS and the PHIGS standards
adopt different views of segments and their structure and implement different
segment operations. The segment operations described in the following sections
have been chosen because they are the most common ones. The following
examples do not conform with any specific graphic standard or language.

3.0.1 Creating the Segment

Each segment must be identifiable by the software. This is achieved by assign-
ing a name or identifier to each segment. In the example of Figure 2.14 the
operator Dname serves to assign the name A to the segment that depicts a circle
enclosed in a square. The translation operation recalls the segment by its name.
A graphics system can name segments using any type of symbol or combination
of symbols. For instance, in referring to Figure 2.16 we used literal designations
for segments, specifically: the mailbox segment and the flag segment. Which
method is used to name segments is inconsequential as long as each segment
is uniquely identified.

49

50 Chapter Three

A graphics system must often provide ways for creating new segments. This
operation typically assigns a name to the newly created segment. In addition,
at creation time the software performs several required checks, specifically:

1. Verify that the segment name is a valid designation according to the
system’s conventions.

2. Verify that there is sufficient memory space available to create the new
segment.

3. Verify that the new segment does not exceed the total number allowed by
the system.

The answers to these and possibly other questions determine if the CREATE
SEGMENT operation executes successfully or fails. A return code is used to
inform the caller of the results. In addition to performing validity checks and
to assigning the segment a name, the segment creation operation builds the
segment’s data structures and initializes the segment variables. Finally, the
name of the new segment is added to a list that contains the names (and perhaps
some control data) of all the valid segments in the system.

3.0.2 Opening and Closing the Segment

A graphical system may be designed so that the CREATE SEGMENT operation
automatically opens a segment for input and output. Alternatively, a separate
operation may be required for opening the segment. If it must be independently
enabled for input and output, the system usually contains OPEN SEGMENT
and CLOSE SEGMENT functions. One of the control fields frequently found in
the segment’s data structure reflects whether the segment is in open or closed
status.

Many graphical drawing routines store the input data on the segment cur-
rently open. This mode of operation requires that the graphics system imple-
ment a mechanism to ensure that only one segment be open at a time.

3.0.3 Renaming and Deleting the Segment

The RENAME SEGMENT operation is frequently provided for assigning the
segment a new name without altering its contents or status. The DELETE
SEGMENT operation erases the segment name from the segment list and frees
the memory space occupied by the segment. Both of these operations usually
perform a series of consistency checks analogous to those previously listed for
the CREATE SEGMENT operation.

3.1 Segment Attributes

The segment’s characteristics are called attributes. The segment’s attribute
affect the entire segment. Many graphics manipulations performed on seg-
ments consist of changing the segment’s attributes.

Operations on Geometrical Images 51

Segment attributes are different in various graphics systems and so are the
graphic functions associated with them. The attributes listed in the following
sections are those most frequently used. Nevertheless, some graphics systems
and applications do not require all of these attributes, while others implement
attributes not present in this list.

3.1.1 Visibility Attribute

The most elementary segment attribute is its visibility. Visibility allows for the
modification of an image by controlling whether one or more elements are
displayed or not. In Figure 3.1 the segment containing the message PICKUP
REQUEST is not visible in image number 1, while the segment containing the
message EMPTY is visible. These visibility attributes are inverted in display
number 2.

3.1.2 Line Color, Fill Color, and Line Style

Color graphics systems implement line color and fill color attributes. The fill
color is valid only in reference to closed areas. For instance, a polygon, or even
the entire screen background, can be assigned a specific fill color.

The line style attribute can be implemented in color or in monochrome
systems. Computer-assisted design (CAD) systems, used in engineering and
architecture, and drawing programs usually furnish an extensive selection of
line style attributes. Some common line styles are solid, dashed, dotted, and
dot-dashed.

Line thickness can also be implemented as a line style attribute. Since the
thinnest line possible consists of a sequence of adjacent pixels, a thicker line
can be specified in terms of its pixel thickness or of any other convenient scale.

® ®

=

EMPTY PICKUP REQUEST

EMPTY

PICKUP REQUEST

Figure 3.1 Segment Visibility Attribute

Operations on Geometrical Images 53

2. Each data item should be encoded in the most compact format that allows
representing the range of values of the variable.

3. Data structures should not be of a predetermined size. The size of the
structure should be dynamically determined according to the number of
parameters to be stored, giving greater flexibility to the storage system.

4. If feasible, graphics transformations should be performed by means of
matrix operations. Such transformations are easier if the data is stored in a
matrixlike structure.

5. The designer should consider implementing independent procedures to
interface with the data structures. This approach ensures that the process-
ing routines are isolated from the complexities of the storage system. An
additional advantage is that only the access routines have to be changed if
the data structures are modified during program development, as is so often
the case.

3.2.1 Display File Elements

The display file consists of one or more images files, the image files contain one
or more image segments, and the image segments are formed by descriptors.
The structure is shown in Figure 3.3.

DISPLAY FILE

|

IMAGE FILE IMAGE FILE IMAGE FILE
|
IMAGE SEGMENT IMAGE SEGMENT
|

l | |

DESCRIPTOR DESCRIPTOR DESCRIPTOR

Figure 3.3 Elements of the Display File

54 Chapter Three

Considering the hierarchy in Figure 3.3 we can state that the display file is a
collection of image files, one for each image element. In this sense the display
file is nothing more than a reference table to these image elements. The
graphical images are made up of segments. Each image segment is assigned an
area of the image file. This segment area, in turn, contains the descriptors of
the primitive operations that must be executed in displaying the segment. In
the following sections we discuss these individual elements.

Descriptors

The graphical data is actually stored at the lowest levels of the display file
structure, which is that of the descriptors. The descriptors of a particular
system correspond to the graphics operations actually implemented. Each
descriptor contains an operation identification code (opcode) as well as the
necessary numerical operands.

Since the descriptors correspond to graphics primitives of various types, the
number of operands varies for different descriptors. For example, the descriptor
for a point requires only one set of coordinates (two operands), while the
descriptor for a circle requires the coordinates of the origin and the length of
the radius (three operands).

In order to display the image segment, the software must be able to find the
beginning of each descriptor. Since the operand field may vary in length, the
encoding scheme should provide a way to identify the first item of each
descriptor. One method is to have a reserved data item for storing the operand
count. This data item typically follows the descriptor opcode. Figure 3.4 shows
one possible scheme for descriptor encoding.

OPCODE
OPERAND COUNT
OPERAND 1
OPERAND 2

DESCRIPTOR OPERAND 3

OPERAND Z
OPCODE
OPERAND COUNT

Figure 3.4 Encoding Scheme for Descriptor

Operations on Geometrical Images 55

In the encoding method of Figure 3.4, once the position of the first descriptor
is determined, the program can index to the next descriptor using this operand
count and the previous descriptor’s start address. Notice that the scheme in
Figure 3.4 assumes that all entries are of the same length. Another variation
that allows for entries of different lengths can be based on storing not the
operand count, but its byte length.

The encoding must also provide a means for determining the last descriptor
in a segment. One way to do this is by reserving a specific code to signal the
end of the segment. For example, opcode FFH could be used for this purpose.
Figure 3.5 is a flowchart of the logic required in a routine for executing each
descriptor in a segment file.

set descriptor pointer
to first descriptor

end of YES
segr;Ient

NO
execute descriptor

set descriptor pointer
to next descriptor

Figure 3.5 Partial Flowchart for Descriptor Processing

56 Chapter Three

Image Segments

The image segments contain or reference the segment attributes. Segment
attributes affect some or all of the descriptors in a segment; for instance, if the
visibility attribute is zero (segment invisible), the descriptors in the segment
file are not executed. The processing checks the segment attribute fields before
executing the descriptors.

The attributes can be encoded in the same data area as the descriptors or in
a separate area that holds the attributes of each segment in the display file. In
the first option, the encoding scheme for the segment attributes follows a
pattern similar to that of the descriptors. Each attribute field contains an
attribute code, followed by an operand count field, and the attribute operands.
It is usually preferable to reserve a certain numerical range for the descriptor
opcodes and another one for the attribute codes. For example, values between
1 and 99 can be used for the descriptors and values between 99 and 199 for the
attributes. Thus, the output routine can easily identify either encoding, even if
descriptors and attributes are mixed in the segment file.

Table 3.1 is a possible descriptor encoding scheme.

Table 3.1 Sample Descriptor Encoding

Data items Displacement
DESCRIPTOR -----------) |=================
opcode =0
operand count =1
operand 1 =2
operand 2 =3
operand 3 =4
last operand = operand count
DESCRIPTOR ----------- DY [S R
opcode =0
operand count =1

When the attributes are held in a separate data area, it is usually called a
segment table. The segment table contains the segment identification code as
well as the values for the different attributes. In some encoding schemes the
segment table can also hold certain segment parameters. One advantage of this
method is that keeping the attributes separate from the segment data makes
it possible to reuse the same segment file in several images, and at the same
time, preserve the encoding for each image.

Figure 3.6 shows the geometrical elements that form the mailbox image
segment. The illustration assumes that descriptor opcode 2 represents a
straight line and opcode 7 an elliptical arc.

Operations on Geometrical Images 57

Figure 3.6 Straight Lines (2) and Ellipses (7) in the Mailbox Segment

Notice that there are a total of six straight lines and two ellipses in the mailbox
segment in Figure 3.6. The image file in Table 3.2 shows the segment attributes
associated with Figure 3.6.

Table 3.2 Schematic Segment Encoding for Mailbox in Figure 3.6

SEGMENT A [mail box]

N
0
0
0
0
Descriptors ----- o
0
0
0

OO0OO0OO0O0OO0OO0O0
OO0O0OO0OO0OO0OO0O0
O0O0OO0OO0OO0OO0OO0

EGM
2|4
214
214
214
214
214
716
716
0]0

| Operands

Operand count

Opcodes
2 = straight line
7 ellipse

0 = end of segment

Legend:
o = operands

In Table 3.2 the operands are represented by the letter “o0.” In a real applica-
tion these operands are the coordinates and other parameters necessary for
describing the individual geometrical elements.

Notice in Figure 3.1 that the same segment file can be used for both versions
of the mailbox flag. In this case, the segment table entry for image number 1
does not specify a rotation transformation, while the segment table entry for
the mailbox flag in image number 2 specifies a 90-degree counterclockwise
rotation using the lower-left vertex of the polygon as a center of rotation, or
pivot point. The visibility attribute for the text segments in these images is
handled in a similar manner.

58 Chapter Three

Image Files

An image can be described graphically by the segments that form it. Therefore,
the image file is a list of segment files. The linking of these segments can be
accomplished in several ways. One possible encoding scheme is to consider the
image file as a supersegment, with an identifying name and all the component
segments placed consecutively within the image data area. A data position in
the image file is reserved for the segment count. This allows the processing
routine to form the image by executing the individual segment operations until
the count is exhausted. The segment count data item also allows the software
toindex from image file to image file. Table 3.3 shows a possible implementation
of the encoding for an image file corresponding with image number 1 of Figure
3.1. Notice that the scheme adopted in this sample uses a segment table as part
of the image file.

Table 3.3 Sample of Image File Encoding

Segment count

IMAGE FILE 1 [Image No. 1 in Figure 3.1]|l|
SEGMENT A [mail box]
SEGMENT B [mail box flag]
SEGMENT C [message “PICKUP REQUEST”]
SEGMENT D [message “EMPTY"]

SEGMENT A --- |110$1101
115 1 |1]
SEGMENT B | 10& 0|
12 olo|o]o]
150]1/0
SEGMENT C --- |100
SEGMENT D --- [1001]1
|256]

| Operands
Operand count

____ Attribute code

110 = line style

150 = foreground priority
120 = rotation

100 = visibility

256 = end of table

3.3 Image Transformations

Certain image changes can be made by performing mathematical operations
on its coordinate points. Figure 3.7 shows the translation of a line from
coordinates (2,2) and (10,14) to coordinates (10,2) and (18,14).

Notice that in Figure 3.7 the translation is performed by adding 8 to the start
and end x coordinates of the original line. This operation on the x axis performs
a horizontal translation. A vertical translation is performed by operating on the
y coordinate. By the same token, to translate the line both horizontally and
vertically, the program operates arithmetically on both coordinate axes.

Operations on Geometrical Images 59

10, 14 18,14

2,2 10,2

Figure 3.7 Translation of a Straight Line

In practice, the mathematical manipulations are performed on the data
structures contained in the image file. Therefore, the design of these data
structures determines the degree of ease or difficulty with which these opera-
tions are performed by the software.

In addition to organizing image data in structures that facilitate the mathe-
matical transformations, graphics software must also provide the processing
logic to perform the necessary operations. Both elements, image data structures
and computational logic, determine the image transformation facilities of a
graphics system or application.

3.3.1 The Coordinates Matrix

A matrix is a set of values arranged in a rectangular array. Each value in the
array is called an element of the matrix. In the context of graphical program-
ming, matrices are often used to hold coordinate points. This form of storing
graphical data allows using linear algebra to perform transformations. Figure
3.8 shows the approximate location of seven stars of the constellation Ursa
Minor, also known as the Little Dipper. The individual stars are labeled with
the letters a through g. The star labeled “a” corresponds to Polaris (the North
Star).

«d

b.

Figure 3.8 Stars of the Constellation Ursa Minor (Little Dipper)

60 Chapter Three

The following matrix holds the coordinates of the stars in Figure 3.8.

Coordinates
X y
Star a 0 0
b -1 11
[1 8
d 0 12
€ i 2 5
) S 3 9
fo S 1 2

In two-dimensional systems, the coordinates matrix is formed by sets of x and
y coordinates, as in the above case. In three-dimensional systems, the coordi-
nate matrix holds the x, y, and z coordinates. The following matrix represents
the coordinate points for a line in three-dimensional space.

Coordinates
X y z
start point --> 2 7 12
end point --> 4 10 24

The following sections explain the fundamental matrix operations that are
most useful in graphics and animation programming. The reader familiar with
matrices and elementary matrix arithmetic can skip to Section 3.5.

3.4 Matrix Arithmetic

Matrices are used in many fields of mathematics. In linear algebra they are
used to hold the coefficients of linear equations. The equations can be manipu-
lated (and often solved) by performing operations on the rows and columns of
the matrix. One approach to solving a system of linear equations, known as
Gauss-Jordan elimination, consists of several processing steps that convert the
matrix to a special configuration called the reduced row-echelon form. Once in
this form, the system can be solved by inspection.

Matrix operations are convenient in performing the primitive transforma-
tions of translation, rotation, and scaling that are common in graphics and
animation programming. In order to derive the rules of matrix arithmetic, we
must first define the matrix and its component elements. We have already seen
that a matrix is a rectangular array of numbers. As is customary, in the
following sections we use capital letters to represent matrices. For example, the
following matrix, designated by the letter A, has three rows and two columns.

(1)

Operations on Geometrical Images 61

The size of a matrix is the number of rows and columns that it contains. The
usual practice is to state matrix size as a product of rows by columns. For
example, matrix A, in Example (1), is a 3-by-2 matrix.

3.4.1 Scalar-by-Matrix Operations

An individual numerical quantity is called a scalar. Scalar-by-matrix opera-
tions are the simplest procedures of matrix arithmetic. Example (2) shows the
multiplication of matrix A by the scalar 3.

(2)
30 66
3A = 9 12
21 3

If a scalar is represented by the variable s, the product matrix sA is the result
of multiplying each element in the matrix A by the scalar s. By the same token,
scalar addition and subtraction are obtained by adding or subtracting the scalar
quantity to or from each matrix element.

3.4.2 Matrix Addition and Subtraction

Matrix addition and subtraction are performed by adding or subtracting each
element in a matrix to or from the corresponding element of another matrix of
equal size. Example (3) shows matrix addition. Matrix C is the algebraic sum
of each element in matrices A and B.

(3)

2 4 1 2 3 6
A 3 11 + B 2 2 = C 5 13
1 5 -1 -3 0 2
1 -1 0 0 1 -1

The fundamental restriction of matrix addition and subtraction is that both
matrices must be of equal size; that is, they must have the same number of rows
and of columns. Matrices of different sizes cannot be added.

3.4.3 Matrix Multiplication

The operation of matrix addition intuitively corresponds to conventional addi-
tion; that is, the elements of two matrices are added to obtain the sum. Matrix
multiplication, on the other hand, is not the multiplication of the corresponding
elements of two matrices, but a unique sum-of-products operation.

In matrix multiplication the elements of a row in the multiplicand matrix are
multiplied by the elements in a column of the multiplier matrix. These products
are then added to form the products matrix. The process is easily understood
through an illustration of the steps involved. Consider the matrices in Example

(4).

62 Chapter Three

From the definition of matrix multiplication it can be deduced that if the rows
of the first matrix are multiplied by the columns of the second matrix each row
of the multiplier must have the same number of elements as each column of
the multiplicand. Notice that in Example (4) the product A x B meets this
requirement. Also note that the product B x A is not possible, since matrix B
has three elements per row and matrix A has only two elements in each column.
Therefore, in Example (4), the matrix operation A x B is possible but B x A is

undefined. The row by column operation in A X B is performed as follows:
(4)

5 10 2
A= 1 3 5 B = 1 2 3
2 1 0 11 5 4

The products matrix has the same number of rows as the multiplicand matrix
and the same number of columns as the multiplier matrix. In example (4) the
products matrix C has the same number of rows as A and the same number of
columns as B. In other words, C is a 2 x 3 matrix. The elements obtained by the
above operations appear in matrix C in the following manner:

First
Row of A Columns of B Products Sum
1 3 5 * 5 1 11 = 5 + 3 + 55 = 63
1 3 5 * 10 2 5 = 10 + 6 + 25 = 41
1 3 5 * 2 3 4 = 2 + 9 + 20 = 31
Second
Row of A Columns of B Products Sum
2 1 0 * 5 1 11 = 10 + 1 + 0 = 11
2 1 0 * 10 2 5 = 20 + 2 + 0 = 22
2 1 0 * 2 3 4 = 4 + 3 + 0 = 7

In the course of developing Example (4) we commented that the operation A
x B is possible but that B x A is undefined since matrix multiplication is not
commutative. Therefore, the product of two matrices could be different if the
matrices were taken in different order. In fact, regarding nonsquare matrices,
it can be stated that if A x B is defined, B x A is undefined.

C = 63 41 31
11 22 7

Matrix multiplication is associative. Therefore, the product of three or more
matrices is equal no matter the order in which they are multiplied. For example,
(A x B) x C equals Ax (B x C). In performing graphics transformations we
find use for the associative and the noncommutative properties of matrix
multiplication.

Operations on Geometrical Images 63

3.5 Geometrical Transformations

A geometrical transformation is the conversion of one image into another one
by performing a mathematical operation on its coordinate points. Geometrical
transformations are simplified if the image’s coordinates are stored in a
rectangular array called a matrix. In the following sections, we describe the
most common transformations: translation, scaling, and rotation. The transfor-
mations are first described in terms of matrix addition and multiplication, and
later standardized so that they can all be expressed in terms of matrix multi-
plications.

3.5.1 Translation

Translation is the movement of a graphical object to a new location by adding
a constant value to each coordinate point that defines the object. The operation
requires that a constant be added to all the coordinates in each plane, but the
constants can be different for each plane. For example, a translation takes place
if the constant 5 is added to all x coordinates and the constant 2 to all y
coordinates of an object represented in a two-dimensional plane.

In the top part of Figure 3.9 we see the graph and matrix of seven stars in the
constellation Ursa Minor. A translation transformation is performed by adding
5 to the x coordinate of each star and 2 to the y coordinate. The bottom part of
Figure 3.9 shows the translated image and the new coordinates.

dd original

b* coordinates:
T o star x y
l.c a 0
-1 11
T .e c 1 8
+ d 0 12
1. e 2 5
f 3 9
I d 1 2

d translated

T b coordinates

+ (x+5, y+2):
c °f ‘star x y
T ° a 5 2
—+ o b 4 13
1 y c 6 10
d 5 14
T -0 e 7 7
1 . f 8 11
a g 6 4

—1 —t—+——+

Figure 3.9 Translation Transformation

64 Chapter Three

In terms of matrix operations, the translation can be viewed as follows:

Original Transformed

coordinates Transformation coordinates
matrix matrix matrix

A B C

X y X y X y
0 0 5 2 5 2
-1 11 5 2 4 13
1 8 5 2 6 10
0 12 5 2 5 14
2 5 5 2 7 7
3 9 5 2 8 11
1 2 5 2 6 4

This can also be expressed as

A + B = C

where A represents the original coordinates matrix, B the transformation
matrix, and C the matrix holding the transformed coordinates.

Notice that the transformation matrix holds the constants to be added to the
x and y coordinates. Since, by definition of the translation transformation, the
same value must be added to all the elements of a coordinate plane, it is evident
that the columns of the transformation matrix always hold the same numerical
value.

3.5.2 Scaling

To scale is to apply a multiplying factor to the linear dimension of an object. A
scaling transformation is the conversion of a graphical object into another one
by multiplying each coordinate point that defines the object. The operation
requires that all the coordinates in each plane be multiplied by the scaling
factor, although the scaling factors can be different for each plane. For example,
a scaling transformation takes place when all the x coordinates of an object
represented in a two-dimensional plane are multiplied by 2 and all the y
coordinates of this same object are multiplied by 3. In this case the scaling
operation is said to be asymmetrical.

By comparing the definition of the scaling transformation to that of the
translation transformation we notice that translation is performed by adding
a constant value to the coordinates in each plane, while scaling requires
multiplying these coordinates by a factor. In fact, the scaling transformation
can be represented in matrix form by taking advantage of the properties of
matrix multiplication.

Figure 3.10 shows a scaling operation of a square into a rectangle.

Operations on Geometrical Images 65

2 4

Figure 3.10 Scaling Transformation

The coordinates of the square in Figure 3.10 can be stored in a 4-by-2 matrix,
as follows:

Coordinates
X y
start point 0 0
2 0
2 2
end point 0 2

- The transformation matrix holds the factors that must be multiplied by the

x and y coordinates in order to perform the transformation. Using the letters
Sx to represent the scaling factor for the x coordinates, and the letters Sy to
represent the scaling factor for the y coordinates, the scaling transformation
matrix can be expressed as follows:

Sx 0
0 Sy

The transformation of Figure 3.10, which converts the square into a rectangle,
can be represented in matrix form as follows:

Original Transformed
coordinates Scaling coordinates
matrix matrix matrix
X y Sx Sy X y
0 0 0 0
2 0 * 2 0 = 4 0
2 2 0 3 4 6
0 2 0 6

66 Chapter Three

Figure 3.11 Symmetrical Scaling (Zooming)

The intermediate steps in the matrix multiplication operation can be obtained
following the rules of matrix multiplication described in Section 3.4.3.

Figure 3.11 shows the scaling transformation of the graph of the constellation
Ursa Minor. In this case, in order to produce a symmetrical scaling, the
multiplying factor is the same for both axes. A symmetrical scaling operation
is sometimes referred to as a zoom.

3.5.3 Rotation

A rotation is the conversion of a graphical object into another one by moving all
coordinate points that define the original object, by the same angular value,
along circular arcs with a common center. The angular value is called the angle
of rotation, and the fixed point that is common to all the arcs is called the center
of rotation. Observe that some geometrical figures are unchanged by specific
rotations. For example, a circle is unchanged by a rotation about its center, and
a square is unchanged if it is rotated by an angle that is a multiple of 90 degrees.
In the case of a square the intersection point of both diagonals is the center of
rotation.

The mathematical interpretation of the rotation is obtained by applying
elementary trigonometry. Figure 3.12 shows the counterclockwise rotation of
points located on the coordinate axes at unit distances from the center of
rotation.

y y
1 pA
r »
1) 1
r
N4 r p1 X b X
o 1 ol

Figure 3.12 Rotation of a Point

Operations on Geometrical Images 67

On the left side of Figure 3.12, point p1, with coordinates (1,0), is rotated
counterclockwise through an angle r. The coordinates of the rotated point (pr1)
can be determined by solving the triangle with vertices at O, p1, and prl, as
follows:

cos r
sin r

x/1, therefore x = cos r
y/1l, therefore y = sin r

The coordinates of the rotated point pr2, on the right side of Figure 3.12, can
be determined by solving the triangle with vertices at O, p2, and pr2.

sin r = -x/1, therefore x = - sin r
cos r = y/1, therefore y = cos r

The coordinates of the rotated points can now be expressed as follows:

(cos r, sin r)
(-sin r, cos r)

coordinates of prl
coordinates of pr2

From these equations we can derive a transformation matrix, which, through
matrix multiplication, yields the new coordinates for the counterclockwise
rotation through an angle A:

cos r sin r
-sin r cos r

We are now ready to perform a rotation transformation through matrix
multiplication. Figure 3.13 shows a clockwise rotation, through an angle of 60
degrees, with the center of rotation at the origin of the coordinate axes.

Figure 3.13 Rotation Transformation

68 Chapter Three

The coordinates of the original polygon lines can be stored in a 4-by-2 matrix
as follows:

Coordinates
x y
pl --> 10 2
p2 --> 12 0
p3 --> 14 2
pd --> 12 4

We have seen that the transformation matrix for clockwise rotation through
an angle r is

cos r sin r
-sin r cos r

Evaluating this matrix for a 60-degree rotation results in the following
trigonometric functions:

0.5 0.867
-0.867 0.5

The rotation can now be expressed as a product of two matrices.

Original Rotation matrix Rotated
polygon 60 degrees polygon
coordinates clockwise coordinates
X y X y
pl -->| 10 2 3.87 9.87| <-- prl
p2 -->| 12 0 * 0.5 0.867 = 6 10.4 <-- pr2
p3 -->| 14 2 -0.867 0.5 5.27 13.4 <-- pr3
p4 -->| 12 4 2.53 12.4 <-- pr4

The intermediate steps in the matrix multiplication operation are obtained
following the rules of matrix multiplication described in Section 3.4.3.

3.5.4 Homogeneous Coordinates

Translation, scaling, and rotation can be expressed mathematically in terms of
matrix operations; this method allows a more efficient approach to graphical
transformations. The one inconsistency in the method described is that rotation
and scaling are expressed in terms of matrix multiplication while translation
is expressed as matrix addition.

By means of a simple artifice it is possible to represent the translation
transformation as matrix multiplication. This scheme requires adding a
dummy parameter to the coordinates matrices and expanding the transforma-

Operations on Geometrical Images 69

tion matrices to 3-by-3 elements. However, it simplifies processing by allowing
all three transformations to be performed by means of a single matrix operation.

The following example shows the necessary manipulations.The coordinates
of a point can be expressed in the following matrix.

Coordinates
X y
point --> | 5 2 |

This matrix can be expanded to three rows by using a dummy matrix
parameter, labeled w. Notice that if w is not to affect coordinates x and y in
two-dimensional transformations, it must meet the following requirement.

X =X *w, y=y *w

Therefore, the only value that can be assigned to w that meets the above
condition is 1, which gives us the following matrix:

Coordinates
X y w
point --> | 5 2 1|

We can use the terms Tx and Ty to represent the horizontal and vertical units
of a translation. Using homogeneous coordinates, a transformation matrix for
the translation operation can be expressed as follows:

Translation
transformation
matrix
1 0 0
0 1 0
Tx Ty 1

We test these results by performing a translation by eight units in the
horizontal direction (Tx = 8) and zero units in the vertical direction (Ty = 0) of
the point located at coordinates (5,2). The matrix multiplication is as follows:

1 0 O [5+ 0+ 8] =13
[5 2 11 ~* 0 1 O = [0+2+0]1= 2=1[13 2 1]
8 0 1 [0O+0+1] =1

This operation shows the point at x = 5, y = 2 translated eight units to the right,
with destination coordinates of x = 13, y = 2. The reader should note that the w
parameter, set to 1 in the original matrix, remains the same in the final matrix.
In practical processing the parameter can be ignored.

70 Chapter Three

3.5.5 Concatenation

In order to take full advantage of the system of homogeneous coordinates we
must express all the transformation matrices in terms of 3-by-3 matrices. Using
homogeneous coordinates, the translation transformation can be expressed in
the following matrix:

Translation
transformation
matrix
1 0 0
0 1 0
Tx Ty 1

The scaling transformation matrix can also be expanded to a 3-by-3 matrix
as follows:

Scaling
transformation
matrix
Sx 0 0
0 Sy 0
0 0 1

At the same time, the translation transformation matrix for a counterclock-
wise rotation through an angle r can be converted to homogeneous coordinates
as follows:

Rotation
transformation
matrix
cos r sin r 0
-sin r cos r 0
0 0 1

Notice that this rotation transformation assumes that the center of rotation
is at the origin of the coordinate system.

Matrix multiplication is associative. This means that the product of three or
more matrices is equal, no matter which two matrices are multiplied first. By
virtue of this property, we are now able to express a complex transformation
by combining several basic transformations. This process is generally known
as matrix concatenation.

A rotation transformation can use any arbitrary point in the coordinate
system as a pivot point. For example, in Figure 3.14 polygon number 1 is rotated
counterclockwise 90 degrees using point pa as a pivot point. Furthermore, to
rotate the polygon about any arbitrary point pa, the following sequence of
transformations can be executed:

Operations on Geometrical Images 71

1. Translate the polygon so that point pa is at the coordinate origin.
2. Rotate the polygon.
3. Translate the polygon so that point pa returns to its original position.

In matrix form the sequence of transformations can be expressed as the
following product:

1. 2. 3.
1 0 0 cos r sin r 0 1 0 0
0 1 0 * |-sin r cos r 0 * 0 1 0
-Tx -Ty 1 0 0 1 Tx Ty 1

Performing the indicated multiplication yields the matrix for a counterclock-
wise rotation, through angle r, about point pa, with coordinates (Tx,Ty).

cos r sin r 0
-sin r cos r 0
-Tx cos r + Ty sin r -Tx sin r -= Ty cos r + Ty 1

While matrix multiplication is associative, it is not commutative. The order
in which the operations are performed can affect the results. A fact that
confirms the validity of the matrix representation of graphic transformations
is that, graphically, the results of performing transformations in different
sequences can also yield different results. For example, the image resulting
from a certain rotation, followed by a translation transformation, may not be
identical to the one resulting from performing the translation first and then the
rotation.

Figure 3.14 shows a case in which the order of the transformations determines
a difference in the final object.

S
O

Figure 3.14 Order of Transformations

Chapter

Bitmap Image Acquisition and Encoding

4.0 Pixel-Coded Image Data

Chapters 2 and 3 were mainly devoted to the encoding, storage, and manipu-
lation of geometrical images, although bitmaps were mentioned incidentally.
However, bit-mapped images are as important to the animation programmer
as are vector-based ones. This chapter describes the various techniques and
standards used in encoding computer graphics images into units of memory
storage. It includes a discussion of two popular image data storage formats:
Compuserve’s GIF and Aldus Corporation’s TIFF format.

Bit-mapping is the graphics technique by which one or more memory bits
represent the attribute of a screen pixel. The simplest bitmap scheme is to make
a memory bit represent a single screen pixel: if the memory bit is set, so is the
pixel. However, a graphics image can be encoded in a more complete and
efficient structure than is offered by a pixel-by-pixel attribute list.

The movement toward the standardization of image file encodings originated
with commercial software developers in need of methods for storing and
displaying graphics images. Currently there are over 20 different image file
encodings in frequent use. Graphics applications often import or export images
encoded in over a dozen file formats. Although some of these commercial
encodings have gained more popularity than others, very little has been
achieved in standardizing image file encodings. In this chapter we have selected
the two image file formats that we believe are more useful and that have gained
more widespread acceptance in the field. This selection does not imply that we
endorse these particular encodings or approve of their design or operation.

75

76 Chapter Four

bitmap:
0100H
0100H
1-bit codes: 8%88&
_ OFEOH
03201
=@ FFFEH
0920H
0920H
OFEOH
0100H
0100H
0100H
0100H

Figure 4.1 One-Bit-per-Pixel Raw Image Bitmap

4.0.1 Raw Image Data

The simplest possible image data encoding is a bare list of pixel attributes. This
encoding, called the raw image data, is often all that is required by a graphics
application. For example, the two-color bitmap in Figure 4.1 is encoded as raw
image data.

The image in Figure 4.1 consists entirely of pixels set to a single color or
attribute, represented by black dots in the illustration. Therefore each screen
pixel can be encoded in a single memory bit. If the bit is 0, then the screen pixel
is left in the background state. If the memory bit is 1, then the pixel is set to
the single supported attribute. The resulting bitmap is encoded as a bit-per-
pixel format.

Often a graphics application must encode more than one attribute per screen
pixel. For example, Figure 4.2 is a representation that uses 3 attributes of the
image in Figure 4.1, in addition to the background.

In Figure 4.2 each screen pixel can be in one of four attributes: background,
light gray, dark gray, or black. In order to represent these four states it is
necessary to assign a 2-bit field for each screen pixel. The four bit combinations
that correspond to the attribute options are shown on the left side of Figure 4.2.
At the bottom of Figure 4.2 is a map of one of the pixel rows, with the
corresponding binary codes for each pixel, as well as the hexadecimal digits of
the bitmap.

Comparing Figures 4.1 and 4.2 we see that as the number of attributes per
pixel increases, the memory storage devoted to each pixel also grows. In Figure
4.1 a single bit encodes the two possible attributes that can be assigned to each
pixel, while in Figure 4.2 a 2-bit field is necessary to represent the four possible
pixel attributes. By the same token, if each pixel can be represented in one of
256 attributes (or colors), the encoding requires an 8-bit field to represent each
pixel.

78 Chapter Four

bitmap 1 bitmap 2 bitmap 3

-+

Figure 4.3 Monochrome Overlayed Bitmaps

The decision whether to encode a multiattribute image in a bit field-per-pixel
bitmap (such as the one in Figure 4.2) or in several monochrome bitmaps (such
as the ones in Figure 4.3) is usually a matter of convenience, portability, and
availability of resources. When a multiattribute image is stored in a single
bitmap, the result is a more compact image file and a faster display operation.
On the other hand, several monochrome bitmaps can be easier to generate by
means of a drawing program. For example, Figure 4.4 shows the three bitmaps
used to display a color image of a target rifle. One bitmap encodes the pixels to
be displayed with a black attribute, and the second bitmap encodes the dis-
played pixels in a brown attribute, representing the rifle’s wood stock. The third
bitmap encodes the highlights, that is, the pixels to be displayed with a bright
white attribute.

The result of overlaying the three bitmaps in Figure 4.4 is a colored image.
The advantages are compactness of encoding and ease of image manipulation.
In animated programs these considerations are often very important.

4.0.3 Image Data Compression

Bit-mapped image data takes up considerable memory space. For example, the
raw image data for a full screen, in an XGA or SuperVGA mode of 1024-by-768
pixels resolution in 256 colors, requires approximately 768K. This exceeds the
user memory space available in an MS-DOS machine. Several data compression
schemes have been devised to reduce the memory space required for storing
pixel-coded images. However, image data compression is achieved at a price:
the additional processing time required for packing and unpacking the image
data. In animated applications performance is often such a critical factor that
this overhead is an important consideration in adopting a compressed data
format.

80 Chapter Four

The Kermit protocol, well known in computer data transmission, uses a
run-length encoding based on three data elements. The first code element
indicates that a compression follows, the second character is the repetition code,
and the third one represents the repetition count. The PackBits compression
algorithm, which originated in the Macintosh computers, is an even more
efficient run-length encoding scheme for graphics image data. The TIFF image
file format discussed later in this chapter uses PackBits compression encoding.

Facsimile Compression Methods

Facsimile (FAX) machines and methods are often used in transmitting graphics
image data over telephone lines. Several compression protocols have been
devised for facsimile transmission. The International Telegraph and Telephone
Consultative Committee (CCITT), based in Geneva, Switzerland, has stand-
ardized data compression protocols for use in facsimile equipment. The TIFF
convention has adapted the CCITT standards to the storage of image data in
computer systems. The actual compression algorithm used in CCITT is a
variation of a method developed by David A. Huffman, sometimes called
Huffman compression. However, the CCITT method, which is quite efficient for
monochrome scanned and dithered images, is elaborate and difficult to imple-
ment.

LZW Compression

LZW is a compression technique suited to color image data. The method is
named after Abraham Lempel, Jabob Ziv, and Terry Welch. The algorithm, also
known as Ziv-Lempel compression, was first published in 1977 in an article by
Ziv and Lempel in the IEEE Transactions on Information Theory. The compres-
sion technique was refined by Welch in an article titled “A Technique for
High-Performance Data Compression” that appeared in Computer, in 1984.
LZW compression is based on converting raw data into a reversible encoding
in which the data repetitions are tokenized and stored in compressed form. LZW
compression is used in many popular data and image compression programs,
including the Compuserve GIF image data encoding format and in some
versions of the TIFF standard. LZW compression has been patented by Unisys
Corporation. Therefore, its commercial use requires a license from the patent
holders. The following statement is inserted at the request of Unisys Corpora-
tion:
“The LZW data compression algorithm is said to be covered by U.S. Patent
4,558,302 (the “Welch Patent”). The Welch Patent is owned by Unisys
Corporation. Unisys has a significant number of licensees of the patent and
is committed to licensing the Welch Patent on reasonable non-discrimina-
tory terms and conditions. For further information, contact Unisys Welch
Licensing Department, P.O. Box 500, Blue Bell, PA 19424, M/S C1SW19.”

The LZW algorithm is explained in detail in our book Graphics Programming
Solutions (McGraw-Hill, 1993).

Bitmap Image Acquisition and Encoding 81

4.0.4 Encoders and Decoders

An encoder is a program or routine used to convert raw image data into a
standard format. We speak of a GIF encoder as a program or routine used to
store a graphics image in a file structured in the GIF format. A decoder program
or routine performs the reverse operation; that is, it reproduces the graphics
image or the raw data from the information stored in an encoded image file. In
the more conventional sense, a GIF decoder displays on the screen an image
file stored in the Compuserve GIF format. Therefore the fundamental tool kit
for operating with a given image data format consists of encoder and decoder
code. With some compressed image formats the processing required in encoders
and decoders can be quite elaborate.

4.1 The GIF Format

The Graphics Interchange Format (GIF) originated in the Compuserve com-
puter information service. The first description of the GIF protocol, which
appeared on the Compuserve Picture Support Forum on May 28, 1987, was
identified with the code letters GIF87a, while the current version is labeled
GIF89a. GIF is the only graphics image storage format in use today that is not
associated with any software company. Although the GIF standard is copy-
righted, Compuserve grants royalty-free adoption rights to anyone wishing to
use it. According to Compuserve, software developers are free to use the GIF
encodings by accepting the terms of the Compuserve licensing agreement,
which basically states that all changes to the standard must be made by the
copyright holders and that the software utilizing GIF must acknowledge
Compuserve’s ownership. The agreement can be obtained from the Compuserve
Graphics Technology Department or in the graphics forums.

GIF was conceived as a compact and efficient storage and transmission format
for computer imagery. The GIF87a specification supports multiple images with
a maximum of 16,000-by-16,000 pixels resolution in 256 colors. This format is
suited to the maximum resolution available today in SuperVGA and XGA
systems.

The advantages of the GIF standard are related to its being compact, power-
ful, portable, and, presumably, public. There is an extensive collection of public
domain images in GIF format which can be found in the Compuserve graphics
forums and in many bulletin board services. The major disadvantage of the GIF
standard is that many commercial programs do not support it. Users of popular
graphics programs soon discover that GIF is not included in the relatively
extensive catalog of file formats which the application imports and exports. This
limitation can often be solved by means of a conversion utility that translates
a format recognized by the particular application into a GIF encoding. Several
of these format conversion utilities are available on the Compuserve graphics
forums.

82 Chapter Four

The main sources of information about the GIF standard are the graphics
forums on the Compuserve Information Service. The specifications of GIF89a
are available in the file GIF89A.DOC found in library number 14 of the
Compuserve Graphics Support forum. Image files in the GIF format are
plentiful on the Compuserve Graphics Support libraries as well as in many
bulletin board services.

4.1.1 GIF File Structure

The two versions of the GIF standard at the time of this writing are labeled
GIF87a and GIF89a. Version 89a, an extension of version 87a, adds several
features to the original GIF protocol, such as the display of text messages,
comments, and application and graphics control data. The detailed description
of the GIF protocol is found in the file GIF89A.DOC mentioned in the previous
section. The following description is limited to the features common to both the
GIF87a and GIF89a specifications.

The GIF87a format is defined as a series of blocks and sub blocks containing
the data necessary for the storage and reproduction of a computer graphics
image. A GIF data stream contains the data stored in these blocks and sub
blocks in the order defined by the GIF protocol. The first block in the data
stream is the header and the last one is the trailer. Image data and other
information are encoded between the header and trailer blocks. These can
include a logical screen descriptor block and a global color table, as well as one
or more local image descriptors, local color tables, and compressed image data.
The GIF89a protocol allows graphics control and rendering blocks, plain text
blocks, and an application data block. Figure 4.5 shows the elements of the
GIF87a data stream.

header

logical screen descriptor

[global color table]

local image descriptor
[local color table]

image data

trailer

Note: items in braces are optional

Figure 4.5 The GIF Data Stream

Bitmap Image Acquisition and Encoding 83

| signature field
..... (GIF)

| version field
----- (87a or 89a)

Figure 4.6 The GIF Header

GIF Header

The first item in the GIF data stream is the header. It consists of six ASCII
characters. The first three characters, called the signature, are the letters
“GIF.” The following three characters encode the GIF version number. The
value “87a” in this field refers to the version of the GIF protocol approved in
May 1987, while the value “89a” refers to the GIF version dated July 1989.
Figure 4.6 shows the elements of the GIF header.

One header must be present in each GIF data stream. A GIF encoder must
initialize all six characters in the GIF header. The version number field should
correspond to the earliest GIF version that defines all the blocks in the actual
data stream. In other words, a GIF file that uses only the elements of the
GIF87a protocol should contain the characters 87a in the version field of the
GIF header, even if the file was created after the implementation of the GIF89a
protocol. The GIF decoder uses the information in the header block to certify
that the file is encoded in the GIF format and to determine version compatibil-
ity.

GIF Logical Screen Descriptor

The block immediately following the header is called the logical screen descrip-
tor. This block contains the information about the display device or mode
compatible with the image. One logical screen descriptor block must be present
in each GIF data stream. Figure 4.7 shows the elements of the logical screen
descriptor block.

roﬂ‘set
[7]6 5 4[3]2 1 o]e—

0
bit fields: I —
7 = alobal color table ﬂﬂ word < logical screen width
set if global color table present)
4= ortl’kl” liesollutlonl field+1 2
original palette is field+
3 = sort flgg — —] < logical screen height
(set if most important color first)
2-1-0 = size of global color table 4

number of entries is 2A(field+1)

word
byte
byte <— background color
byte < pixel aspect ratio

Figure 4.7 GIF Logical Screen Descriptor

84 Chapter Four

The fields of the GIF logical screen descriptor are formatted as follows:

1. The words at offset 0 and 2, labeled logical screen width and logical screen height,
encode the pixel dimensions of the logical screen to be used by the display device.
In IBM microcomputers this value usually coincides with the selected display
mode.

2. The byte at offset 4 is divided into four bit fields. Bit 7, labeled the global color
table flag, serves to indicate if a global color table is present in the data stream
that follows. The global color table is discussed later in this section. Bits 6, 5, and
4 are the color resolution field. This value represents the number of palette bits
for the selected mode, plus one. For example, a 16-color VGA palette (4 bits
encoding) is represented by the bit value 011 (decimal 3). Bit 3, labeled the sort
flag, is used to signal that the global color table (if present) is sorted starting with
the most important colors. This information can be used by the software if the
display device has fewer colors available than those used in the image. Finally,
the field formed by bits 2, 1, and 0 determines the size of the global color table (if
one is present). The value is encoded as a power of 2, diminished by 1. Therefore,
to restore the original exponent it is necessary to add 1 to the value encoded in
the bit field. For example, a bit value of 011 (3 decimal) corresponds to a global
color table representing 2¢, or 16 colors. Notice that this value corresponds to the
number of colors in the global color table, not to its byte length (discussed later in
this section). The maximum representable value in a 3-bit field is 7, which limits
the number of colors in the global color table to 28, or 256 colors.

3. The field at offset 5, labeled background color in Figure 4.7, is used to represent
the color of those pixels located outside of the defined image or images. The value
is an offset into the global color table.

4. The field at offset 6, labeled the pixel aspect ratio in Figure 4.7, is used to
compensate for nonproportional x and y dimensions of the display device. This
field is set to zero for systems with a symmetrical pixel density, such as the most
widely used modes in VGA and XGA systems.

GIF Global Color Table

The global color table is an optional GIF block used to encode a general color palette
for displaying images in data streams without a local color table. The global color
table serves as a default palette for the entire stream. Recall that the GIF data stream
can contain multiple images. The presence of a global color table and its size is
determined from the data furnished in the logical screen descriptor block (see Figure
4.5). Only one global color table is present in the data stream. Figure 4.8 shows the
structure of a global color table.

The entries in the global color table consist of values for the red, green, and blue
palette registers. Each component color takes up one byte in the table; therefore each
palette color consists of three bytes in the global color table. The number of entries
in the global color table is determined by reading bits 0, 1, and 2 of the global color
size field in the logical screen descriptor block (see Figure 4.5). The byte length of the
table is three times the number of entries. The maximum number of palette colors
is 256. In this case the global color table takes up 768 bytes (see Figure 4.8).

Bitmap Image Acquisition and Encoding 85

-

of RED _ |
1 GREEN color number 1
2[BLUE |
3| RED]
4 GREEN color number 2
——]
e pra—
766) GREEN | color number 256
767 BLUE

Figure 4.8 GIF Global Color Table

GIF Image Descriptor

Each image in the GIF data stream is defined by an image descriptor, an
optional local color table, and one or more blocks of compressed image data. The
image descriptor block contains the information for decoding and displaying the
image. Figure 4.9 shows the elements of the image descriptor block.

0 byte <«— image separator (code 2CH)
! — word — «— image left position
3
— word — «— image right position
5 L word —| «— image pixel width
! L word —| «— Image pixel height
8 byte]
bit fields:
7 = local color table ﬂa%l
set if local color table present)
[7]6'514 3[2 1 OI 6 = Interlace flag
(set If image is interlaced)

5 = sort flag
(set If most important color first)
4-3 = RESERVED (bits = 0)
2-1-0 = size of local color table
number of entrles Is 2™

Figure 4.9 GIF Image Descriptor

86 Chapter Four

The fields of the GIF image descriptor are formatted as follows:

1. The byte at offset 0, labeled image separator in Figure 4.9, must be the code
2CH.

2. The words at offset 1 and 3, labeled image left position and image right position,
respectively (see Figure 4.9), encode the screen column and row coordinates of
the image’s top-left corner. This location is an offset within the logical screen
defined in the logical screen descriptor block (see Figure 4.5).

3. The words at offset 5 and 7, labeled image pixel width and image pixel height,
respectively (see Figure 4.9), encode the size of the image, measured in screen
pixels.

4. The byte at offset 8 in Figure 4.9 is divided into five bit fields. Bit 7, labeled the
local color table flag, serves to indicate if a local color table follows the image
descriptor block. If a local color table is present in the data stream, it is used for;
displaying the image represented in the corresponding descriptor block. Bit 6,
labeled the interlace flag, encodes if the image is interlaced, that is, if its rows
are not arranged in consecutive order. In the PC interlaced images are used in
some CGA and EGA display modes, but not in the proprietary VGA and XGA
modes. Bit 5, labeled the sort flag, is used to signal that the local color table (if
present) is sorted starting with the most important colors. This information is
used by the software if the display device has fewer available colors than those
in the table. The field formed by bits 2, 1, and 0 determines the size of the local
color table (if one is present). The value is encoded as a power of 2, diminished
by 1. Therefore, to restore the original exponent, it is necessary to add 1 to the
value encoded in the bit field. For example, a bit value of 011 (3 decimal)
corresponds to a global color table representing 24, or 16 colors. Notice that this
value corresponds to the number of colors in the local color table, not to its byte
length (refer to the previous discussion about the global color table).

GIF Local Color Table

The local color table is an optional GIF block that encodes the color palette used
in displaying the image corresponding to the preceding image descriptor block. If
no local color table is furnished, the image is displayed using the values in the
global color table. Ifneither table is present, it is displayed using the current setting
of the DAC registers. The GIF data stream can contain multiple images, with each
one having its own local color table. The structure of the local color table is identical
to the one described for the global color table (see Figure 4.8).

GIF Compressed Image Data

The image itself follows the local color table, if one is furnished, or the image
descriptor block if the data stream does not include a local color table. The GIF
standard sets no limit to the number of images contained in the data stream. Image
data is divided into sub blocks, with each sub block having at the most 255 bytes.
The data values in the image are offsets into the current color palette. For
example, if the palette is set to standard IRGB code, a pixel value of 1100B

Bitmap Image Acquisition and Encoding 87

(decimal 12) corresponds to the twelfth palette entry, which, in this case,
encodes the LUT register settings for bright red. Preceding the image data
blocks is a byte value that holds the code size used for the LZW compression of
the image data in the stream. This data item normally matches the number of
bits used to encode the pixel color. For example, an image intended for VGA
mode 18, in 16 colors, has an LZW code size of four, while an image for VGA
mode 19, in 256 colors, has an LZW code size of eight. Figure 4.10 shows the
format of the GIF data blocks.

r offset

0 byte <— LZW code size
1
byte first image data sub block:
<«— offset 0 = block size byte
offset 1 = start of LZW data
byte
byte last image data sub-block:
«—| offset 0 = block size byte
offset 1 = start of LZW data
byte
byte <«—— terminator sub-block (0OH)

Figure 4.10 GIF Image Data Blocks

The image data sub blocks contain the image data in compressed form. The
LZW compression algorithm used in the GIF protocol is explained in our book
Graphics Programming Solutions (McGraw-Hill, 1993). Each data sub block
starts with a block-size byte, which encodes the byte length of the data stored
in the rest of the sub block. The count, which does not include the count byte
itself, can be in the range 0 to 255. The compressed data stream ends with a
sub block with a zero byte count (see Figure 4.10).

GIF Trailer

The simplest GIF block is named the trailer. This block consists of a single byte
containing the GIF special code 3BH. Every GIF data stream must end with
the trailer block. The GIF trailer is shown in Figure 4.11.

byte | «—— special code 3BH

Figure 4.11 GIF Trailer

88 Chapter Four

GIF89a Extensions

GIF version 89a contains several features that are not present in version 87a.
These include the following new blocks:

1. Agraphics control extension refers to a graphics rendering block, also a new
feature introduced in version 89a. The graphics control extension contains
information on displaying the rendering block. This information includes
instructions about disposing of the currently displayed image, handling the
background color, action on user input, time delay during the display
operation, and image transparency.

2. The graphics rendering blocks can be an image descriptor block, as described
for GIF version 87a, or a new plain text extension. The plain text extension
contains ASCII data to be displayed in a coarse grid of character cells
determined in the block. Also in the plain text block are the foreground and
background colors, the coordinates of the start position, and the text message
itself.

3. The applications extension is an extension block in GIF version 89a that
contains application-specific information. The block includes an 8-byte ap-
plication identifier field intended for an ASCII string that identifies the
particular piece of software. A 3-byte authentication code follows the iden-
tifier. Application data follows the authentication code field.

4.2 The TIFF Format

The Tag Image File Format (TIFF) was developed by Aldus Corporation with
the support of several other companies, including Hewlett-Packard and Mi-
crosoft. The standard intends to provide a flexible file storage format for raster
images. Its origin is related to scanner hardware and software for microcom-
puters. The first version of TIFF was published in the fall of 1986. The present
update, designated as TIFF Revision 6.0, was released in June 1992. TIFF is a
nonproprietary standard which can be used without license or previous royalty
agreement. Technical information about TIFF can be obtained from the Aldus
Developer’s Desk at Aldus Corporation, Seattle, Washington, or from the Aldus
forum on Compuserve (GO ALDSVC).

The purpose of the TIFF standard is to provide an image storage convention
with maximum flexibility and portability. TIFF is not intended for any particu-
lar computer, operating system, or application program. Consistent with this
idea, the files in TIFF format have no version number or other update identi-
fication code. A typical TIFF reader searches for the necessary data and ignores
all other information contained in the file. The format supports both the Intel
and the Motorola data ordering schemes, but hardware-specific features are
not documented in the TIFF file. The mode, resolution, or color range used in
displaying a TIFF file is left entirely to the software.

The TIFF standard supports monochrome, grayscale, and color images of
various specifications. The original TIFF documents classified the various

Bitmap Image Acquisition and Encoding 89

image types into four classes. Class B was used for binary (black-and-white)
images, class G for grayscale images, class P for palette color images (8-
bits-per-pixel color), and class R for full-color images (24-bits-per-pixel color).
A TIFF application need not provide support for all TIFF image types. For
example, a VGA TIFF reader could exclude class R images since the system’s
maximum color range is 8 bits-per-pixel (256 colors). By the same token, a
routine or application that reads monochrome scanned images could limit its
support to the class B category. The image class designation by letter codes was
dropped in TIFF revision 6.0; however, the image classification into bilevel,
grayscale, RGB, and palette types was preserved.

TIFF originally supported uncompressed images as well as compressed data
according to several compression schemes, namely, PackBits, CCITT, and LZW.
LZW compression support was dropped in TIFF version 6.0, because the
compression algorithm is patented by Unysis Corporation. Notice that in the
TIFF standard, compression methods are usually associated with the particular
file classes mentioned in the preceding paragraph.

4.2.1 TIFF File Structure

The TIFF standard is an image file protocol. A file in the TIFF format is divided
into three areas: the header, the image file directory, and the image data.

The notion of tags is the feature that identifies files in the TIFF format. A
TIFF tag is a word integer that serves to identify the file structure that follows.
For example, the tag value 103H indicates that the structure that follows
contains data compression information. TIFF file processing software can
search for this tag in order to determine which, if any, compression scheme was
used in encoding the image data. TIFF tags are discussed in greater detail later
in this section.

TIFF Header

An image file in TIFF format must start with an 8-byte block called the header.
Figure 4.12 shows the structure of the TIFF image file header.

I— offset

0 byte ordering (II' or 'MM’)
— word —<"II' = Intel byte ordering
'MM' = Motorola byte ordering
2
— word — €42’

— doubleword | ¢ (ftset of first IFD

Figure 4.12 TIFF File Header

90 Chapter Four

The word at offset 0 of the TIFF file header consists of the ASCII characters
I’ or 'MM’. The ’IT’ code identifies a file in the Intel byte ordering scheme; that
is, word and doubleword entries appear with the least significant byte in the
lowest numbered memory address. This data ordering format is sometimes
known as the “little-endian” scheme. The 'MM’ code identifies a file in the
Motorola byte ordering order, that is, with the least significant byte of word
and doubleword entries in the highest numbered memory address. This format
is known as the “big-endian” scheme. The ASCII number ’42’ found at the word
at offset 2 of the header serves to further identify a file in TIFF format. The
numbers themselves have no documented significance. The ASCII code 42’ has
sometimes been called the TIFF version number, although it is not described
as such in the standard. The doubleword at offset 4 of the header block contains
the offset, in the TIFF file, of the first image file directory (IFD).

The file header block is the only TIFF file structure that must be located at a
predetermined offset from the start of the file. The remaining structures can
be located anywhere in the TIFF file. TIFF file processing code reads the data
in the header block to certify that the file is in TIFF format and to make
decisions regarding the data ordering scheme. A sophisticated application could
be capable of making adjustments in order to read data both in Intel and in
Motorola orders, while another one could require data in a specific format.

TIFF Image File Directory (IFD)

Once the code determines that the file is in TIFF format and that it is encoded
in a valid ordering scheme, it uses the doubleword at offset 4 of the header (see
Figure 4.12) to determine the location of the first image file directory (IFD).
Notice that a TIFF file can contain more than one image. If so, each image in
the file is associated with its own IFD. However, by far the more common
situation is that a TIFF file contains a single image. This assumption is made
in the code and examples for manipulating TIFF files. The structure of the IFD
is shown in Figure 4.13.

Observe that the offset values in the left-most column of Figure 4.13 (labeled
“local offset”) refer to offsets within the IFD block because the IFD itself can be
located anywhere within the TIFF file. The word at local offset 0 of the IFD is
a count of the number of directory entries. Recall that the number of directory
entries is unlimited in the TIFF standard. The last directory entry is followed
by a doubleword field which contains the offset of the next IFD, if one exists. If
not, this doubleword contains the value 0000H. Each entry in the IFD takes up
12 bytes. The structure of each IFD entry is shown in Figure 4.14.

The tag code is located at local offset 0 in the directory entry field. TIFF
requires that the entry fields be sorted by increasing order of the tag codes;
therefore, a lower numbered tag code always precedes a higher numbered one.
This simplifies searching for a particular tag code since the search terminates
when one with a higher numbered tag is encountered. The type code is located
at local offset 2 within the directory entry field.

Bitmap Image Acquisition and Encoding 91

word <« number of IFD entries

12""":“{’,';“‘"" < directory entry No. 0

14

12-byte direct i
vt:nwre ory |« directory entry No. 1

12'bw:n?|!ym°w <— last directory entry

offset of next IFD or
doubleword | <— 00Q0H if last IFD

Figure 4.13 TIFF Image File Directory

local
offset

— word —| <« tag code

— word — «—type code

—— doubleword —{ ¢— number of values (count)

— doubleword — ¢— Vvalue / offset

Figure 4.14 TIFF Directory Entry

92 Chapter Four

Table 4.1 shows the type code values according to TIFF version 6.0. Code
numbers six and higher were introduced in Version 6.0 and are not documented
in previous versions of the standard.

Table 4.1 TIFF Version 6.0 Field Type Codes

TYPE STORAGE

CODE UNIT FIELD CONTENTS
1 byte 8-bit unsigned integer
2 ASCII character offset of ASCII string terminated
in NULL byte
3 word 16-bit unsigned integer
4 doubleword 32-bit unsigned integer
5 quadword Rational number. The first

doubleword is the numerator of a
fraction and the last doubleword is
the denominator

6 byte 8-bit signed integer

7 byte Undefined. Can be used at will by
the software

8 word 16-bit signed integer in 2’'s
complement form

9 doubleword 32-bit signed integer in 2's
complement form

10 quadword Rational number. The first
doubleword is the signed numerator
of a fraction and the last
doubleword is the signed denominator

11 doubleword Single precision floating-point
number in IEEE format

12 quadword Double precision floating-point

number in IEEE format

The count field is a doubleword at offset 4 of the directory entry. This field,
which was named the length field in previous versions of TIFF, encodes the
number of data repetitions in the current directory entry. Notice that this value
does not encode the number of bytes, but the number of data units. For example,
if the field type code is 3 (word unit) then the count field represents the number
of data words of information that are associated with the entry.

The value/ offset field is designated in this manner because it contains either
a direct value or an offset into the TIFF file. The general rule is that if the
encoded data fits into a doubleword storage (4 bytes), then the data is entered
directly in the doubleword at local offset eight of the directory entry (see Figure
4.14). This design saves coding space and simplifies processing. However, some
TIFF tags, such as the StripOffset tag mentioned later in this section, always
contain offset data in this field. The software determines if the data in the
value/offset field is either a value or an offset by means of the tag, the field type
code, and the data item count.

If the tag contains either a value or an offset, the program must first examine
the field type codes (see Table 4.1). In this case data corresponding to field type
codes 1, 3,4,5,6,7,8,9, and 11, is contained in a doubleword storage unit and
is therefore entered as values. By the same token, field types 2, 5, 10, and 12
encode an offset in the value/offset field of the directory entry. Once it is
determined that an individual data item fits in the 4 bytes allocated to the
value/offset field, then the software must examine the number of values

Bitmap Image Acquisition and Encoding 93

associated with the directory entry. If the total number of values exceeds the
allocated space (4 bytes), then the value/offset field contains an offset. In this
case the type code and the count fields are multiplied in order to determine the
number of items supplied. '

4.2.2 TIFF Tags for Bilevel Images

Over 50 tags have been defined in the TIFF standard; however, only a handful
are used in most TIFF images. A complete description of all the TIFF tags is
found in TIFF Revision 6.0 specification available, at no charge, from Aldus
Corporation. The TIFF tags mentioned in the following discussion are those
that would be commonly found in monochrome (bilevel in TIFF terminology)
scanned images.

OldSubFileType (tag code 00FFH)

This tag, originally called the SubFileType, has been replaced by the NewSub-
FileType tag; however, many older TIFF programs still use this tag. The tag
provides information about the bitmap associated with the IFD. The tag can
take the following values:

Value = 1 indicates that the image is in full-resolution format.
Value = 2 indicates the image data is in reduced-resolution format.

Value = 3 indicates that the image data is a single page of a multipage
image.

NewSubFileType (tag code 00FEH)

This tag, which replaces OldSubF'ileType, describes the kind of data in the IFD.
The tag is made up of a doubleword integer with the following significant bits:
Bit 0 is set if the image is a reduced-resolution version of another image.

Bit 1 is set if the image is a single page of a multipage image.

Bit 2 is set if the image is a transparency mask (see the PhotometricInterpre-
tation tag later in this section.)

ImageWidth (tag code 0100H)

This tag encodes the number of pixel columns in the image.

ImageLength (tag code 0101H)

This tag encodes the number of pixel rows in the image.

BitsPerSample (tag code 0102H)

This tag encodes the number of bits required to represent each pixel sample.
The value of this tag is one for bilevel images, four for 16-color palette images,
and eight for 256-color palette images. In IBM video graphics systems the
number of bits per sample is usually the same as the number of bits per pixel

94 Chapter Four

color. Regarding images encoded in RGB format (as used in some Macintosh
systems and in the XGA Direct Color mode), the number of bits per sample
refers to each individual color. In this case the SamplesPerPixel tag encodes
the number of pixel colors (three colors in RGB encoding), and the BitsPerSam-
ple tag the number of bits assigned to each color. For example, if six bits are
assigned to the red sample, eight bits to the green, and six bits to the blue, the
total number of bits per pixel would be 20.

Compression (tag code 0103H)
This tag encodes the compression scheme used in the image data. The tag can
take the following values:

Value = 1 indicates that the image data is not compressed. Pixel information
is packed at the byte level, as tightly as possible. Uncompressed data has a
disadvantage over compressed data in that it takes up more memory space.
On the other hand, it has an advantage in that it can be manipulated faster
by the display routines.

Value = 2 indicates that image data is compressed according to CCITT Group
3 (Modified Huffman) run-length encoding.

Value = 32,773 (8005H) indicates the data is compressed according to the
PackBits scheme described in detail later in this section.

Photometricinterpretation (tag code 0106H)
This tag describes how to interpret the color encoding in the bitmap. The tag
can take the following values:

Value = 0 is used in bilevel and grayscale i 1mages to indicate that a bit value
of 0 represents the white color.

Value = 1 is used in bilevel and grayscale images to indicate that a bit value
of 0 represents the black color.

Value = 2 is used to indicate an encoding in RGB format.

Value = 3 is used to indicate palette color format. In this case a ColorMap
tag must be included to hold the LUT values.

Value = 4 indicates that the image is a transparency mask used to define an
irregularly shaped region of another image.

Threshholding (tag code 0107H)
This tag describes the technique used for representing the gray scale in a
black-and-white image. The tag can have the following values:
Value = 1 indicates that the image contains no dithering or halftoning. Bilevel
images use this value.
Value = 2 indicates that the image has been dithered or halftoned.

Value = 3 indicates that a randomized process, such as the error diffusion
algorithm, has been applied to the image data.

Bitmap Image Acquisition and Encoding 95

StripsOffset (tag code 0111H)

This tag provides the information necessary for the software to locate the image
data within the TIFF file. By definition, the value in this tag is always an offset
from the beginning of the TIFF file. The structure of the TIFF image data, as
well as the use of this tag, is discussed in Section 4.2.3.

SamplesPerPixel (tag code 0115H)

This tag encodes the number of color components for each screen pixel. The
value of this tag is one for bilevel, grayscale, and palette color images, and three
for images in RGB format.

RowsPerStrip (tag code 0116H)

This tag determines the number of rows in each strip. Image encoding in the
TIFF standard is discussed in Section 4.2.3.

StripByteCounts (tag code 0117H)

This tag determines the number of bytes in each strip, after compression. Image
encoding in the TIFF standard is discussed in Section 4.2.3.

XResolution (tag code 011AH)

This tag provides information about the x-axis resolution at which the original
image was created or scanned. The data is important to software that must
reproduce the image exactly as it was originally produced. This is a critical
factor in the reproduction of dithered images, which do not allow scaling.

YResolution (tag code 011BH)

This tag provides information about the y-axis resolution at which the original
image was created or scanned. See the text in the XResolution tab.

PlanarConfiguration (tag code 011CH)

This tag provides information regarding the organization of color pixel data. It
is relevant only for color images in RGB format (more than one sample per
pixel). The tag can have the following values:

Value = 1 indicates that RGB data is stored in the order of the color
components, that is, in a repeating sequence of red, green, and blue values.
This organization is called the chunky format in TIFF documentation.

Value = 2 indicates that RGB data is stored by bit planes. That is, the red
color components are stored first, followed by the green, and then by the blue.
This organization is called the planar format in TIFF documentation.

96 Chapter Four

ResolutionUnit (tag code 128H)

This tag determines the unit of measurement used in the parameters contained
in XResolution and YResolution tags. Many TIFF programs do not use this tag,
but it is recommended by the standard. The tag can have the following values:

Value = 1 indicates no unit of resolution.
Value = 2 indicates inches.
Value = 3 indicates centimeters.

4.2.3 Locating TIFF Image Data

Although TIFF file processing software often ignores many tags and makes
assumptions regarding others, one necessary manipulation in an image display
operation is the locating and decoding of the image bitmap.

TIFF Image data can be located almost anywhere in the file. This is true of
both uncompressed and compressed data. Furthermore, the TIFF standard
allows dividing an image into several areas, called strips. The idea is to
facilitate data input and output in machines limited to a 64K segment size. This
is the case of Intel processors operating in MS-DOS or Windows systems. The
data for each individual strip is represented by a separate tag.

When the image is divided into strips, three tags participate in locating the
image data: RowsPerStrip, StripOffsets, and StripByteCounts. The first opera-
tion is for the software to calculate the number of strips into which the image
data is divided. This value, which is not encoded in any particular tag, can be
obtained from the number of values field of the StripOffsets tag (see Figure
4.14).

Locating the image data in a single strip image consists of adding the value
in the StripOffsets tag to the start of the TIFF file. In this case the image size
(in bytes) is obtained by reading the value in the ImageWidth tag (which is the
number of pixels per row), dividing it by eight to determine the number of data
bytes per pixel row, and multiplying this value by the number of pixel rows
stored in the ImageLength tag.

If the image data consists of multiple strips, then each strip is handled
separately by the software. In this case the number of bytes in each strip, after
compression, is obtained from the corresponding entry in the StripByteCounts
tag. The display routine obtains the number of pixel rows encoded in each strip
from the value stored in the RowsPerStrip tag. However, if the total number of
rows, as stored in the ImageLength tag, is not an exact multiple of the
RowsPerStrip value, then the last strip could contain less rows than the value
in the RowsPerStrip tag. TIFF software is expected to detect and handle this
special case.

4.2.4 Processing TIFF Image Data

Once the start of the TIFF image data is located within the TIFF file, the code
must determine if the data is stored in compressed or uncompressed format and

Bitmap Image Acquisition and Encoding 97

proceed accordingly. This information is found in the Compression tag pre-
viously mentioned. In TIFF Version 5.0 the Compression tag could hold one of
six values. Value number 1 corresponds to no compression, values 2, 3, and 4
correspond to three modes of CCITT compression, and value 5 corresponds to
LZW compression; finally value 32,773 in the Compression tag indicates
PackBits compression.

We mentioned that several of these compression schemes were dropped in
Version 6.0 of the TIFF standard (see Section 4.2). In the present TIFF
implementation, values 3, 4, and 5 for the Compression tag are no longer
supported. Since there are substantial reasons to favor the LZW algorithm for
the compression of color images (which was dropped in TIFF Version 6.0
because of patent rights considerations), we have limited the discussion on
TIFF image decoding to the case of PackBits compression.

TIFF PackBits Compression

The PackBits compression algorithm was originally developed on the Macin-
tosh computer. The MacPaint program uses a version of PackBits compression
for its image files. Macintosh users have available compression and decompres-
sion utilities for files in this format. The compression scheme is simple to
implement and often offers satisfactory results with monochrome and scanned
images.

PackBits, as implemented in TIFF, is a byte-level, simplified run-length
compression scheme. The encoding is based on the value of the first byte of each
compressed data unit, often designated as the n byte. The decompression logic
can be described in the following steps:

STEP 1: If end-of-information code, then end decompression.
STEP 2: Read next source byte. Designate as n (n is an unsigned integer).

STEP 3: If n is in the range 0 to 127 (inclusive), perform the following
operations:

a. Read the next n+1 bytes literally from the source file
into the output stream.
b. Go to STEP 1.

STEP 4: If n is in the range 129 to 255 (inclusive), perform the following
operations:

a. Negate n (n = -n).
b. Copy the next byte n+1 times to the output stream.
c. Go to STEP 1.

STEP 5: Goto STEP 1.

Notice that in the above description we assume that n is an unsigned integer.
This convention, which facilitates coding in 80x86 assembly language, differs
from other descriptions of the algorithm in which » is a signed value. Figure
4.15 is a flowchart of this decompression logic.

98 Chapter Four

n = next source byte

copy n+l bytes literally
rom source to output

n=-n
| copy next byte n+l times
to output stream

end-of-information
?

Figure 4.15 TIFF PackBits Decompression

Observe that in the TIFF implementation of PackBits no action is taken if n
= 128. If n = 0, then one byte is copied literally from source to output. The
maximum number of bytes in a compression run is 128. In addition, the TIFF
implementation of PackBits compression adopted the following special rules:

1. Each pixel row is compressed separately. Compressed data cannot cross pixel
row boundaries.

2. The number of uncompressed bytes per row is defined as the value in the
ImageWidth tag, plus 7, divided by 8. If the resulting image map has an even
number of bytes per row, the decompression buffer should be word-aligned.

4.2.5 TIFF Software

In this section we present two procedures for manipulating TIFF images. The
procedure named SHOW_TIFF can be used to display a bitmap encoded in TIFF
bilevel format. This procedure requires that the user pass a formatted data
block, as shown in the header. This procedure calls the procedure named
LOAD_TIFF, also listed in this section, which decompresses and loads the
encoded image. The procedures are designed so as to place the TIFF file and
the image bitmap in a separate data segment, therefore freeing the caller’s code
from having to devote storage space to TIFF data.

Bitmap Image Acquisition and Encoding 99

;**
;***********‘k*-k**
; TIFF File Access Procedures

’-*****-k**
;***************************'k************************************

’
'-**

; segment for TIFF data

’-**

TIFF_DATA SEGMENT

’-**********************l

; storage for TIFF file|
;**********************'

; Maximum size of TIFF file is 20K
TIFF_FILE DB 20480 DUP (OOH)

;**********************I

; disk file buffer |

;**********************l

DATA BUF DB 128 DUP (OOH) ; Disk data storage area
DW 0
;**********************'
; copy of caller’s |
; display block |
;**********************I
USER_BLOCK DW 0 ; X coordinate
DW 0 ; y coordinate
DW 0 ; Offset of bitmap from start
; of file
DW 0 ; Number of pixel rows
DB 0 ; Number of bytes per row
DB 0 ; I R G B color code
DB 15 DUP (OOH)
DW 0
;**********************l
; bit image |
;**********************l
BIT_IMAGE DB 38400 DUP (OOH)
TIFF_DATA ENDS

’
'-**

; code segment
'-**

’

CODE SEGMENT PUBLIC
ASSUME CS:CODE

;**
,-**
; code segment data

'-**

,-**

100 Chapter Four

; Code segment variables used by procedures

X_COORD DW 0000H ; Storage for x coordinate
BYTES DB OH ; Number of bytes per block row
COUNT_8 DB 8 ; Bit counter for the

; VARI_PATTERN procedure
PIX_ROWS DW 0 ; Number of pixel rows in map

; Data variables used by the SHOW_TIFF procedure
STRIP_OFFSET DwW 0 ; Offset of bitmap from start of
; TIFF file

TIFF_HANDLE DW 0 ; File handle for TIFF disk file
IMAGE_SIZE DW 0 ; Image dimension
EXP_COUNT DW 0 ; Byte counter for expansion

0 ; Caller’s DS segment

USERS_DS DW

’
;***

; procedure to display raster image

; in TIFF format
;***
SHOW_TIFF PROC NEAR

; Procedure to display a bit-mapped graphics file in TIFF format
; in VGA mode number 18

; On entry:
; SI => caller’s display block formatted as follows:

; OFFSET STORAGE CONTENTS

; 0 WORD X screen coordinate for image
; 2 WORD y screen coordinate for image
; 4 WORD Offset of bitmap from start of file
; (from the StripOffset tag)
; 6 WORD number of vertical rows in bitmap
; (from the Imagelength tag)
; 8 BYTE number of horizontal bytes in bitmap
; 9 BYTE I R G B color code for bit display
F 10 STRING ASCIIZ string containing the filename
; for the TIFF file
CALL LOAD_TIFF ; Local procedure to load
; TIFF file into RAM and
; decompress
; image
LEA SI,USER_BLOCK ; Reset entry pointer
; Initialize registers
MOV CX,WORD PTR [SI] ; X coordinate
MoV CS:X_COORD, CX ; Store in variable
ADD SI,2 ; Bump pointer
MOV DX,WORD PTR [SI] ; y coordinate

ADD SI,2 ; Bump pointer

Bitmap Image Acquisition and Encoding 101

MOV BP,WORD PTR [SI] ; Bitmap offset

ADD SI,2

MOV AX,WORD PTR [SI] ; Number of pix rows
MoV CS:PIX ROWS,AX ; Store in variable
ADD SI,2 ; Bump pointer

MOV BH,BYTE PTR [SI] ; Bytes per block
MOV CS:BYTES, BH ; Store in variable
INC SI ; Bump pointer

MOV AL, [SI] ; Color code to AL

MoV CS:COUNT_8, 8 ; Prime bit counter

LEA DI,BIT_IMAGE ; Pointer to unpacked bitmap

; Register and variables after routine initialization:
; CX = x coordinate of block start

; DX = y coordinate of block start

; BP = offset from start of TIFF file to bitmap
; BH = number of bytes per block row

; AL = color code

; DI => image bitmap

; CS:X COORD = current x coordinate

; CS:BYTES = number of bytes per block row

; CS:PIX ROWS = number of pixel rows in block

H CS:COUNT_8 = 8

;**********************l

; reset ES segment |

;**********************l

PUSH AX ; Save accumulator

MOV AX, OAOOOH ; Video buffer segment base
MOV ES,AX ; To extra segment

POP AX ; Restore AX

;**********************l
; display image block |
;**********************l
DISPLAY BYTE T:
MOV AH, [DI] ; High nibble to AH
; Test for all zero display pattern

CMP AH,O0 ; Nothing to display?
JNE TEST_BIT T ; Continue if not zero
ADD CX, 8 ; Skip this byte
JMP NEXT_BYTE_T ; Skip byte
TEST_BIT T:
TEST AH,10000000B ; Is high bit set?
JzZ NEXT BIT_T ; Bit not set
; Set the pixel
PUSH AX ; Save entry registers
PUSH BX
CALL PIXEL ADD_18 ; Calculate pixel address in VGA
; mode 18
CALL WRITE_PIX 18 ; Display pixel
POP BX ; Restore registers
POP AX

NEXT BIT T:

102

’

NEXT BYTE_T:

BYTE ENTRY T:

;

GRAPH_END T:

SAL
INC
DEC
Jz

JMP

Chapter Four
AH,1 ; Shift AH to test next bit
CX ; Bump x coordinate counter
CS:COUNT_8 ; Bit counter
NEXT_ BYTE_T ; Exit if counter rewound
TEST_BIT_T ; Continue

Index to next byte in row, if not at end of row

DEC
Jz

INC
MOV
JMP

BH ; Bytes per row counter
NEXT_ROW_T ; End of graphic row

DI ; Bump graphic code pointer
CS:COUNT_8, 8 ; Reset bits counter

DISPLAY BYTE T

Index to next row
NEXT_ROW_T:
; Test for last graphic row

DEC
Jz

MOV
INC
MOV
JMP

MOV
MOV
CLC
RET

SHOW _TIFF

;***

LOAD_TIFF
; procedure for loading a bilevel TIFF file

’
’
’

;

On ent

OFFS
0
2
4

P o 0o

0

ry:

CS:PIX_ROWS
GRAPH_END T
BH,CS:BYTES Reset bytes counter

DX Bump y coordinate control
CX,CS:X_COORD ; Reset x coordinate control
BYTE_ENTRY_T

Row counter
Done, exit

Ne Se Se N

AX,CS:USERS_DS Restore caller’s DS

DS, AX

~e

; No error reported

ENDP

PROC NEAR

SI == caller’s display block formatted as follows:

ET

STORAGE CONTENTS

WORD X screen coordinate for image

WORD y screen coordinate for image

WORD Offset of bitmap from start of file
(from the StripOffset tag)

WORD number of vertical rows in bitmap

BYTE number of horizontal bytes in bitmap

BYTE I R G B color code for bit display

STRING ASCIIZ string containing the filename

for the TIFF file

Assumptions and limitations:

Bitmap uncompressed or in PackBits compression mode
Unpacked bitmap not to exceed 255 pixel rows

TIFF bilevel image ’

Target display system resolution not to exceed 64K

1.

2.
3.
4.

Bitmap Image Acquisition and Encoding

;**********************l

’

7

e N N

Save video buffer base

25 bytes in block

Get caller’s byte
Move to local segment
Bump pointers

; ES to local data |
;**********************I
PUSH ES
MOV AX,TIFF DATA
MOV ES,AX
; Move user’s display block to TIFF_DATA segment
MOV CX, 25
LEA DI,ES:USER_BLOCK
MOVE_TO_USER:
MOV AL, [SI]
MOV ES: [DI],AL
INC SI
INC DI
LOOP MOVE_TO USER

;**********************l

; DS to local data |

;**********************]
MOV AX, DS
MOV

; Change DS to local segment

CS:USERS_DS,AX ;

MOV AX,TIFF_DATA

MOV DS, AX

ASSUME DS:TIFF_DATA

POP ES

LEA SI,USER_BLOCK ;

;**********************I

; store strip offset |

;**********************l
MOV AX,WORD PTR
MOV

;**********************‘

; calculate image size |
;**********************I

[SI+4]

CS:STRIP_OFFSET,AX ;

Caller’s DS to AX
Store in variable

Local segment

New ASSUME statement

103

Restore video buffer base to ES

Reset entry pointer

; From display block
Store in CS variable

; Image dimensions are stored in the display block
; The image size is required during bitmap decompression

MOV AX,WORD PTR [SI+6]
MOV BL,BYTE PTR [SI+8]
MOV BH, 0 ;
MUL BX ;
MOV CS:IMAGE_SIZE,AX

; Note that the high-order byte of the product can be discarded

; Number of pixel rows

; Number of bytes
Clear high of multiplier
AX:DX = AX * BX

; Store in CS variable

; since code assumes that the display resolution is less than

; 64K
;*********************I
; open TIFF file |
;*********************l
ADD SI,10
MOV DX, SI
CALL OPEN_FILE
JNC OK_TIFF_OPEN

’

Index to ASCIIZ string area
For OPEN_FILE procedure
Procedure in SOLUTION.LIB
Continue if no carry

104

;***************

; open operatio

*******l

n fail |

;**********************l
POP SI
MOV AX,CS:USERS_DS
MOV DS, AX
STC
RET
;**********************l
; set ES segment |
; to local data |

;***************

; Note: The SHOW TIFF procedure
; storing TIFF image data

MOV

MOV
OK_TIFF_OPEN:
;***************
; read TIFF fi
; into RAM
;***************

LEA

MOV
NEW_128:

MOV

LEA

PUSH

CALL

POP

CMP

JNE

;***************

; end of file
;***************

MOV

CALL

JMP
;***************
; move sector
; TIFF buffer

;***************

*******l

AX, TIFF_DATA
ES, AX

*******l

le |
|

*******l

DI,TIFF_FILE

’

’

’

Chapter Four

Restore context
Restore caller’s DS

Code for error return

uses the segment TIFF DATA for

’

’

CS:TIFF HANDLE, AX

BX,CS:TIFF_HANDLE

DX, DATA BUF
DI

READ_128

DI

AX,0
MOVE_128

*******l

|

*******l

’

Ne Ne Ne Ne N

BX,CS:TIFF_HANDLE

CLOSE_FILE
END_OF READ
*******l
to |

|

*******l

’

Set to local segment

Storage buffer for file
; Store file handle

Buffer for data storage
Save buffer pointer

Read sector into buffer
Restore buffer pointer
Test for end of file

Go if not at end of file

; File handle
Library routine

; At this point DATA BUF holds 128 bytes from disk file
; DI — storage position in the TIFF file RAM buffer

MOVE_128:
MOV
LEA

PLACE_128:
MoV
MOV
INC
INC

CX,128
SI,DATA_ BUF

AL, [SI]
[DI],AL
SI
DI

’

Byte counter
Pointer to data just read

Byte from DATA_ BUF
Into font’s buffer
Bump pointers

Bitmap Image Acquisition and Encoding 105

LOOP PLACE_128 ; Continue until all sector read
; At this point the 128 bytes newly read from the disk file are
; stored in the font’s buffer

JMP NEW 128

;*****************************|

; unpack bitmap |
;*****************************I

; Unpacking logic for TIFF PackBits scheme

; PackBits packages consist of 2 bytes. The first byte (n)

; encodes the following options:

; 1. if n is in the range 0 to 127, then next n+l bytes are
; to be interpreted as literal values

; 2. if n is in the range -127 to -1, then the following
; byte is to be repeated -n+l times

; 3. if n = 128, then no operation is executed

END_OF READ:

MOV CS:EXP_COUNT,0 ; Clear counter
LEA DI,BIT_IMAGE ; Destination in display block
LEA SI,TIFF_FILE ; Pointer to start of file
ADD SI,CS:STRIP_OFFSET ; Add offset to bitmap
; SI == start of image if there is a single strip
TEST_N_BYTE:
MOV AL, [SI] ; Get n byte
CMP AL, 128 ; Code for NOP
JB LITERAL_CODE ;7 Go if in the literal range
JA REPEAT CODE ; Go if in repeat range
; Code is 128 (NOP)
INC SI ; Skip NOP code
JMP NEXT_PACK_CODE ; Continue

;**********************I

; literal expansion |
;**********************l

LITERAL_CODE:

MOV CL,AL ; Counter to CL
MOV CH, 0 ; Clear high byte of counter
INC CX ; Add 1
INC SI ; Skip n byte
ADD CS:EXP_COUNT,CX ; Add bytes to counter
LIT MOVE:
MOV AL, [SI] ; Get literal byte
NOT AL ; Invert white and black bits
MOV [DI],AL ; Place in bitmap
INC DI ; Bump pointers
INC ST
LOOP LIT MOVE
JMP NEXT_PACK_CODE

;**********************I

; repeated expansion |
;**********************I
REPEAT CODE:

NEG AL Negate to convert 2's

~

106 Chapter Four

; complement representation

MOV CL,AL ; Counter to CL

MOV CH, 0 ; Clear high byte of counter

INC CX ; Add 1

INC SI ; Skip n byte

ADD CS:EXP_COUNT,CX ; Add bytes to counter

MOV AL, [SI] ; Get byte to repeat

NOT AL ; Invert black and white bits

INC SI ; Skip to next n byte
EXP_MOVE:

MOV [DI],AL ; Place byte in buffer

INC DI ; Bump bitmap pointer

LOOP EXP MOVE

;**********************l

; get next pack code |

;**********************I

; CS:EXP_COUNT holds the total bytes in bitmap at this point
; CS:IMAGE_SIZE holds the total bytes in the expanded bitmap
NEXT_ PACK_CODE:

Mov AX,CS:EXP_COUNT ; Bytes now in bitmap
CMP AX,CS:IMAGE_SIZE ; Compare with map size
JAE DISPLAY IMAGE ; Go if at end of image
JMP TEST N _BYTE

DISPLAY IMAGE:
RET

LOAD _TIFF ENDP

’-**

; auxiliary procedures
,-**

’

CLOSE_FILE PROC NEAR
; Close file using file handle
; On entry:
; BX = file handle
; On exit:
; carry clear if operation successful - file closed
; carry set if operation failed - invalid handle or file
; not open
MOV AH, 62 ; DOS service request
INT 21H
RET
CLOSE_FILE ENDP

;**
READ 128 PROC NEAR

; Read 128 bytes from an open file into buffer using the file

; handle. This procedure assumes that the file has been

; previously opened or created using the procedure OPEN_CREATE

;

; On entry:

Bitmap Image Acquisition and Encoding 107

; BX = file handle
DX — 128 bytes user buffer
On exit:
carry clear if operation successful
AX = number of bytes read into buffer
AX = 0 if end of file
carry set if operation failed
AX = error code
5 = access denied
; 6 = invalid handle or file not open

~

Ne Se Se Ne Ne Ne N

~

PUSH CX Save entry CX
MOV AH, 63 ; DOS service request

~

MOV CX,128 ; No. of bytes to read
INT 21H
POP CX ; Restore
RET
READ_128 ENDP

;*******************‘k**

.
’

OPEN_FILE PROC NEAR
; Open file using<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>