
•
ro ramm1n

e o s
•

ec 01 ues
~Julio Sanchez

Maria P. Canton

Computer Animation

Other McGraw-Hill Titles of Interest

MCGOLDRICHK Video Technology for Personal Computers 0-07-045018-8

RIMMER Windows and 0S/2 Bitmapped Graphics 0-07-911902-6

KAY.LEVINE Graphics File Formats, Second Edition 0-07-034025-0

RIMMER Advanced Multimedia Programming 0-07-911898-4

TELLO Multimedia Animation 0-07-063502-1

SZUPROWICZ Multimedia Networking 0-07-063108-5

SANCHEZ,CANTON Numerical Programming the 387,486, and Pentium 0-07-911832-1

SANCHEZ,CANTON Graphics Programming Solutions 0-07-911464-4

SANCHEZ,CANTON High Resolution Video Graphics 0-07-911645-0

SANCHEZ,CANTON PC Programmer's Handbook, Second Edition 0-07-054948-6

To order or to receive additional information on these or any other

McGraw-Hill titles, in the United States, please call 1-800-822-8158.

In other countries, please contact your local McGraw-Hill representative. BC15XXA

Computer Animation
Programming Methods and Techniques

Julio Sanchez
Montana State University, Northern

Maria P. Canton
Skipanon Software Co.

McGraw-Hill, Inc.

New York San Francisco Washington, D.C. Auckland Bogota
Caracas Lisbon London Madrid Mexico City Milan

Montreal New Delhi San Juan Singapore
Sydney Tokyo Toronto

Library of Congress Cataloging-in-Publication Data

Sanchez, Julio, date.
Computer Animation : Programming Methods and Techniques/ Julio

Sanchez and Maria P. Canton.
Includes index.
ISBN 0-07-054964-8
1. Computer animation. 2. MS-DOS (Computer file) 3. Windows

(Computer programs) I. Canton, Maria P. II. Title.
TR897.7.S36 1995
006.6--dc20 94-47025

Copyright© 1995 by McGraw-Hill, Inc. All rights reserved. Printed in
the United States of America. Except as permitted under the United
States Copyright Act of 1976, no part of this publication may be repro­
duced or distributed in any form or by any means, or stored in a data
base or retrieval system, without the prior written permission of the
publisher.

1 2 3 4 5 6 7 8 9 0 AGM/AGM 9 0 0 9 8 7 6 5

ISBN 0-07-054964-8

The sponsoring editor for this book was Jerry Papke, the editing
supervisor was David E. Fogarty, and the production supervisor
was Suzanne W. B. Rapcavage.

Composition and line art by Skipanon Software Co.
Printed and bound by Quebecor I Martinsburg.

McGraw-Hill books are available at special quantity discounts to use as
premiums and sales promotions, or for use in corporate training pro­
grams. For more information, please write to the Director of Special
Sales, McGraw-Hill, Inc., 11 West 19th Street, New York, NY 10011.
Or contact your local bookstore.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The author and publisher have exercised care in preparing this
book and the programs contained in it. They make no repre­
sentation, however, that the programs are error-free or suitable
for every application to which the reader may attempt to apply
them. The author and publisher make no warranty of any kind,
expressed or implied, including the warranties of merchantabil­
ity or fitness for a particular purpose, with regards to these
programs or the documentation or theory contained in this book,
all of which is provided "as is." The author and publisher shall
not be liable for damages in connection with, or arising out of the
furnishing, performance, or use of these programs or the associ­
ated descriptions or discussions.

Readers should test any program on their own systems and
compare results with those presented in this book. They should
then construct their own test programs to verify that they fully
understand the requisite calling conventions and data formats
for each of the programs. Then they should test the specific
application thoroughly.

CIP

Preface xi

Part 1 Animation Fundamentals

Chapter 1. The Dynamics of Computer Graphics
1.0 Dlgltal Simulation of Movement
1.1 Conventional Animation

1.1.1 Hlstorlcal Background
1.1.2 Cartoon Animation Techniques
1.1.3 Photographic Manlpulatlons In Cartoon Animation

1.2 Computer Animation
1.2.1 Animating In Real Time
1.2.2 Frame-by-Frame Animation
1.2.3 Interactive Animation
1.2.4 Random or Unpredictable Elements In Animation

1.3 Motion Control Techniques
1.3.1 Tweening and Morphing
1.3.2 Path-of-Motion Calculations
1.3.3 Color-Shift Animation
1.3.4 Object Rendering

1.4 Applications of Computer Animation
1.4.1 Simulators and Trainers
1.4.2 Electronic Games
1.4.3 Business Presentations and Marketing
1.4.4 Artificial Life
1.4.5 Virtual Reality
1.4.6 Fractal Graphics

1.5 The Animator's Predicament

Chapter 2. Graphical Image Structures
2.0 Image Storage for Animation

2.0.1 Pixel Maps versus Vector Commands
2.1 Device-Independent Graphics

2.1.1 Software Environment for PC Animation
2.2 A Virtual Graphics Machine

2.2.1 The Virtual Graphics Device
2.2.2 The Graphics Primitives
2.2.3 Input Functions
2.2.4 Display File Structure
2.2.5 Image Data In the Display FIie
2.2.6 Display FIie Commands

Contents

3
3
4
4
5
7
8
9

10
11
11
12
12
13
15
15
18
19
19
20
20
21
21
23

25
25
25
27
28
29
30
31
32
32
33
34

V

vi Contents

2.3 Graphics Software Standards 35
2.3.1 Graphics Support from System Software 35

2.4 Storage of the Graphical Image 36
2.4.1 Geometrical Image Elements 36
2.4.2 Nongeometrlcal Image Elements 40

2.5 Image Mapping 40
2.5.1 Video Buffer 40
2.5.2 Image Buffer 41
2.5.3 Vlewport 42
2.5.4 Window 42
2.5.5 Graphics Modeling 42

2.6 The Display FIie 44
2.6.1 Image FIie 45
2.6.2 Image Segments 46
2.6.3 Image Descriptors 46

Chapter 3. Operations on Geometrical Images 49
3.0 Operations on Segments 49

3.0.1 Creating the Segment 49
3.0.2 Opening and Closing the Segment 50
3.0.3 Renaming and Deleting the Segment 50

3.1 Segment Attributes 50
3.1.1 Vlslblllty Attribute 51
3.1.2 Line Color, FIii Color, and Line Style 51
3.1.3 Foreground Priority 52

3.2 Graphical Data Structures 52
3.2.1 Display FIie Elements 53

3.3 Image Transformations 58
3.3.1 The Coordinates Matrix 59

3.4 Matrix Arithmetic 60
3.4.1 Scalar-by-Matrix Operations 61
3.4.2 Matrix Addition and Subtraction 61
3.4.3 Matrix Multiplication 61

3.5 Geometrical Transformations 63
3.5.1 Translation 63
3.5.2 Scaling 64
3.5.3 Rotation 66
3.5.4 Homogeneous Coordinates 68
3.5.5 Concatenation 70

3.6 Image Transformations In Animation 72
3.6.1 Translation, Rotation, and Scaling Animation 72
3.6.2 Complex Animation 73

Chapter 4. Bitmap Image Acquisition and Encoding 75
4.0 Pixel-Coded Image Data 75

4.0.1 Raw Image Data 76
4.0.2 Monochrome and Color Bitmaps 77
4.0.3 Image Data Compression 78
4.0.4 Encoders and Decoders 81

4.1 The GIF Format 81
4.1.1 GIF File Structure 82

4.2 The TIFF Format 88
4.2.1 TIFF FIie Structure 89
4.2.2 TIFF Tags for Bllevel Images 93

Contents vii

4.2.3 Locating TIFF Image Data 96
4.2.4 Processing TIFF Image Data 96
4.2.5 TIFF Software 98

4.3 Bitmap Image Acquisition 109
4.3.1 Legal Considerations 110

Part2 Animation Programming

Chapter 5. Animation in VGA Graphics 115
5.0 The VGA Standard 115

5.0.1 VGA Characteristics 116
5.0.2 VGA Standard Modes 116
5.0.3 VGA Nonstandard Modes 117

5.1 VGA Architecture 118
5.1.1 Video Memory 119

5.2 The VGA Registers 122
5.2.1 VGA General Registers 123
5.2.2 VGA CRT Controller 125
5.2.3 VGA Sequencer 127
5.2.4 VGA Graphics Controller 129
5.2.5 VGA Attribute Controller 137

5.3 VGA Dlgltal-to-Analog Converter (DAC) 142

Chapter 6. VGA Drivers for Standard Modes 145
6.0 VGA Device Drivers 145

6.0.1 Standard Mode VGA Device Drivers 145
6.1 VGA Programming Levels 146
6.2 Device Drivers and Primitives 146

6.2.1 VGA Device Drivers 147
6.2.2 VGA Mode 18 Plxel Write Routines 149
6.2.3 VGA Mode 18 Plxel Read Routine 159
6.2.4 VGA Mode 19 Plxel Write Routines 161
6.2.5 VGA Mode 19 Plxel Read Routine 163

6.3 Color Operations 163
6.3.1 256-Color Modes 164
6.3.2 16-Color Modes 178

6.4 Color Animation 179

Chapter 7. VGA Mode X Drivers and Primitives 181
7.0 A Nonstandard VGA Mode 181

7.0.1 Mode X Characteristics 182
7.0.2 Mode X In Animation Programming 182

7.1 VGA Mode X Architecture 184
7.1.1 Plxel-Level Address Calculatlons 187
7.1.2 TIie-Levei Address Calculatlons 189
7.1.3 The Video Buffer In Mode X 191

7.2 Setting Mode X 192
7.3 Plxel-Level Device Drivers 195

7.3.1 VGA Mode X Write Plxel Procedure 195
7.3.2 VGA Mode X Read Plxel Procedure 197

7.4 TIie-Levei Device Drivers 198
7.4.1 VGA Mode X Write TIie Procedure 198

viii Contents

7.4.2 Setting Multiple Tiles 200
7.5 VGA Mode X Bitmap Primitives 201

7.5.1 Plxel Transparency 202
7.5.2 VGA Mode X Bitmap Display 203
7.5.3 VGA Mode X Bitmap Acquisition 207

7.6 VGA Mode X BltBlt Primitives 210
7.6.1 Page-Level BltBlt 210
7.6.2 Tile-Level BltBlt 213

7.7 Mode X Animation 216
7.7.1 Intercepting the Vertical Retrace 216
7.7.2 Interval Timing 217
7.7.3 Video Paging In VGA Mode X 219
7.7.4 VGA Mode X Panning Animation 220

Chapters. XGA Architecture and Initialization 223
8.0 The IBM Extended Graphics Array Video System (XGA) 223

8.0.1 Technical Description 225
8.0.2 XGA In VGA Modes 225
8.0.3 Multiple XGA Systems 225
8.0.4 XGA Extended Graphics Modes 226
8.0.5 Alphanumeric Support 227
8.0.6 The Adapter Interface 227
8.0.7 Multldlsplay Graphics Systems 227

8.1 XGA Architecture 228
8.1.1 XGA CRT Controller 228
8.1.2 XGA Video Buffer 229
8.1.3 The Serlallzer/PaletteJDlgltal-Analog Converter 229
8.1.4 The XGA Sprite/Attribute Controller 230

8.2 Access and Control of the XGA System 231
8.2.1 Access to the XGA Graphics Coprocessor 232

8.3 XGA Video Memory 233
8.3.1 Video Memory Apertures 233
8.3.2 Data Ordering 234

8.4 XGA Detection and Initialization 234
8.4.1 Programming the XGA Display Controller 235
8.4.2 XGA Hardware lnltlallzatlon 236
8.4.3 XGA Mode Selection and Setting 253
8.4.4 The XGA Palette 260
8.4.5 Switching from XGA to VGA Modes 272

8.5 Other Methods of XGA Initialization 276

Chapter 9. XGA Drivers and Primitives 279
9.0 XGA Hardware Programming 279
9.1 Accessing XGA Video Memory 280

9.1.1 XGA Memory Banks 280
9.1.2 Setting a Pixel 281
9.1.3 Clearing the XGA Screen 282
9.1.4 Reading a Pixel 284

9.2 Programming the XGA Direct Color Mode 285
9.2.1 The Direct Color Palette 286
9.2.2 Pixel Setting In Direct Color Mode 288
9.2.3 16-Bit Color Adjustments 290

9.3 XGA Graphics Coprocessor Architecture 292
9.4 lnltlallzlng the Coprocessor 293

9.4.1 Obtaining the Coprocessor Base Address 293
9.4.2 Obtaining the Video Memory Address 295

Contents

9.4.3 Selecting the Access Mode
9.4.4 lnltlallzlng Coprocessor Registers

9.5 Programming Coprocessor Operations
9.5.1 Synchronizing Coprocessor Access
9.5.2 General Purpose Maps A, B, and C
9.5.3 The Mask Map
9.5.4 Pixel Attributes
9.5.5 Pixel Masking and Color Compare Operations
9.5.6 Mixes
9.5.7 Pixel Operations

9.6 XGA PlxBlt Operations
9.6.1 Rectangular Fill PlxBlt
9.6.2 System Memory to Video Memory PlxBlts
9.6.3 Pattern Map BltBlt

9.7 Line Drawing Operations
9.7.1 Reduction to the First Octant
9.7.2 Calculating the Bresenham Terms

9.8 Programming The XGA Sprite
9.8.1 The Sprite Image
9.8.2 Sprite Colors and Attributes
9.8.3 Loading the Sprite
9.8.4 Sprite Manlpulatlons

Chapter 10. SuperVGA Graphics and Animation
10.0 SuperVGA

10.0.1 SuperVGA in Animation Programming
10.1 SuperVGA Memory Architecture

10.1.1 SuperVGA Memory Banking
10.1.2 SuperVGA 256-Color Extensions
10.1.3 SuperVGA Pixel Addressing

10.2 SuperVGA Architecture
10.2.1 The VESA SuperVGA Standard
10.2.2 VESA SuperVGA Modes
10.2.3 Memory Windows

10.3 The VESA BIOS
10.3.1 Subservlce O - System Information
10.3.2 Subservlce 1 - Mode Information
10.3.3 Subservlce 2 - Set Video Mode
10.3.4 Subservlce 3 - Get Video Mode
10.3.5 Subservice 4 - Save/Restore Video State
10.3.6 Subservlce 5 - Switch Bank
10.3.7 Subservlce 6-Set/Get Logical Scan Line
10.3.8 Subservlce 7 - Set/Get Display Start
10.3.9 Subservlce 8 - Set/Get DAC Palette Control

10.4 SuperVGA Device Drivers
10.4.1 Address Calculations
10.4.2 Bank Switching Operations

10.5 SuperVGA Pixel Level Operations
10.5.1 SuperVGA Pixel Write
10.5.2 SuperVGA Pixel Read
10.5.3 Clearing the SuperVGA Screen

Part 3 Animation Techniques

Chapter 11. Background, Objects, and Text

ix

296
297
298
298
299
301
303
304
304
304
306
306
309
313
317
317
318
321
323
324
324
328

331
331
332
332
333
334
335
335
335
335
336
338
339
343
345
346
347
348
349
349
349
349
350
351
352
353
354
356

361

X

11.0 Background Techniques
11.1 Bitmap Backgrounds

11.1.1 Hand Bit-coding a Bitmap Background
11.1.2 Electronic Drawing Methods
11.1.3 Ray-tracing a Bitmap Background
11.1.4 Scanning a Bitmap Background
11.1.5 Multiple Image Manipulations

11.2 Vectorized Background
11.2.1 Vector/Bitmap Background

11.3 Operations on Text
11.3.1 Text Display Operations In BIOS
11.3.2 Developing a Character Generator
11.3.3 Text Animation

Chapter 12. Time-Pulse and Color-Shift Techniques
12.0 The Animated Image Set

12.0.1 Visual Retention
12.0.2 Avoiding Interference

12.1 XOR Animation
12.1.1 Programming the Function Select Bits

12.2 Generating the Time Pulse
12.2.1 Lo9plng Techniques
12.2.2 Reprogramming the System Timer
12.2.3 Turning the Video Function On and Off
12.2.4 Retrace Cycle Timing
12.2.5 VGA Vertical Retrace Interrupt
12.2.6 XGA Screen Blanking Interrupt

12.3 Color-Shift Animation
12.3.1 VGA DAC Primitives
12.3.2 Transformations by Color Shift
12.3.3 Color-Shift Fade-Out
12.3.4 Color-Shift Fade-In

Chapter 13. Interactive Animation
13.0 User-Animated Objects
13.1 PC Keyboard Hardware

13.1.1 Keyboard Controller
13.1.2 The Keyboard Scan Codes

13.2 Keyboard Programming
13.2.1 Classlflcatlon of Keys and Keystrokes
13.2.2 Keyboard Data In BIOS
13.2.3 Keyboard Status Bytes
13.2.4 Keyboard Buffers

13.3 Programming the Mouse
13.3.1 The Microsoft Mouse Interface
13.3.2 Checking Mouse Installation
13.3.3 Subservlces of Interrupt 33H

13.4 Cursor In VGA Graphics Mode
13.4.1 Intercepting the System Timer Interrupt
13.4.2 The Timer Interrupt Handler
13.4.3 Keyboard Input Routine

Bibliography 459
Index 463

Contents

361
361
361
362
362
364
364
364
366
386
387
390
397

399
399
399
400
401
403
404
404
405
409
410
411
417
422
423
427
429
431

435

435
435
436
436
436
437
440
441
441
442
442
443
443
450
450
451
453

Preface

This book is a presentation of practical methods and techniques for animation
programming on the personal computer. It includes code samples of the funda­
mental device drivers and primitives for VGA, SuperVGA, and XGA video
systems. It is also a tutorial on low-level animation programming which can be
used both as a self-teaching tool and as a general technical reference in the
field.

The book presents a low-level approach. The authors believe that in the field
of PC animation the low-level approach is more a necessity than an option. This
statement seems to contradict the implications of many animation titles cur­
rently on the shelves; however, it is our experience that the immense majority
of animation programmers in the PC environment are forced, sooner or later,
into low-level programming by considerations of performance and control.
Every experienced programmer knows that a statement such as ''high-perfor­
mance animation in Basic" or "lighting-fast animation routine•s in Pascal" is an
oxymoron.

Unfortunately the same can be said about animation programming using
operating system services. The typical animator is usually engaged in squeez­
ing the last performance drop out of the hardware. There is nothing to waste
in the complications, inefficiency, and control limitations of the interface calls
of operating system services. It is under DOS, where the code has unrestricted
and direct access to the CPU, the video hardware, and the other programmable
components, that the best animation results are obtained. Since OS/2 and
Windows NT can multitask DOS programs, it is possible to develop DOS
applications that execute in these environments with few penalties. In the near
future there will be few reasons for animation programming at the operating
system level.

This does not mean that animated programs must be coded entirely in
assembly language, although this is the case regarding many of the best
present-day examples. Once the fundamental primitives and device drivers are
available to the code, it is possible to compose the program in a high-level
language, achieving acceptable performance by referencing core processing
routines coded in assembler. Since this book includes a listing of these core
device drivers and primitives, it can be of assistance to the animation program­
mer working in a high-level environment.

Before attempting to move objects on the video screen, the animation pro­
grammer must gain elementary skills in the field of computer graphics. In fact,
animation is a specialty field of graphics programming, which implies that
many animation techniques require knowledge of computer graphics. For this
reason this book includes enough about PC graphics programming to hopefully
make the described animation techniques more understandable and useful. On
the other hand, this book is not a tutorial in computer graphics and often
assumes elementary knowledge in graphics programming. The reader in need
of graphics programming information can consult one of our titles on this

xi

xii Preface

subject: Graphics Programming Solutions and High Resolution Video Graphics,
both published by McGraw-Hill.

Organization

The book is divided into three parts: Part One (Animation Fundamentals)
includes Chapters 1 through 4. This first part serves as a general introduction
to computer animation and to the supporting elements in computer graphics.
Part Two (Animation Programming) includes Chapters 5 through 10. This part
is a tutorial on VGA, SuperVGA, and XGA graphics. It includes a detailed
analysis of the architecture of these systems as it relates to graphics and
animation programming. In Part II we also develop the fundamental device
drivers and primitives that are necessary to the animation code. Part III
(Animation Techniques) describes the methods and techniques most often
required by the PC animator. It also contains programming examples.

Conflict of Interest

The authors believe that it is unethical for a writer to hold back information or
to condition the use of the software furnished in a text to copyrights or to the
payment of additional fees. Software developers have legal rights to secrecy, to
copyright privileges, and to sell their products on the marketplace. However,
in our opinion, a writer's loyalty is to the reader and it would be a conflict of
interest to write a text while influenced by commercial considerations regarding
the material discussed. Therefore, the software developed by the authors and
listed in this book can be copied freely, used as furnished, or modified by the
reader, without crediting the authors or paying any additional charges. This
statement does not include the copyrights on the book itself, nor does it refer
to Shareware software, both of which are subject to other rules.

Acknowledgments

In our years of teaching at Montana State University, Northern, we have been
fortunate to interest some students in the fields of graphics and animation
programming. In preparing this book we have had access to code and commer­
cial programs developed by students Dale Niemeyer and David Oard. We thank
them for this kindness and wish them luck in their professional endeavors.

The authors would also like to thank the friends and associates who provided
advice, support, and assistance in this project. At McGraw-Hill, Jerry Papke,
David Fogarty, and Gemma Velten have been involved in the production of this
book.

At Montana State University, Northern, we owe thanks to Dr. Karen LaRoe,
Vice Chancellor for Academic Affairs, Dr. Richard Fisher, Director of the Great
Falls campus, and Virgil Hawkinson, Division Chair, for their continued
support of our writing projects. Our colleagues Kevin Carlson, Wes Tucker,
Roger Stone, and Jay Howland have also made us feel their enthusiasm. Our
thanks also go to Sharon Lowman.

Great Falls, Montana Julio Sanchez
Maria P. Canton

SOFTWARE ONLINE

The source code listed in the text can be
downloaded from the Montana State Uni­
versity, Northern BBS, in Havre, MT.

The BBS phone number is (406) 265-4184

The file is a self-extracting archive named
COM_ANI.EXE.

Computer Animation

Part

1
Animation Fundamentals

Chapter

1
The Dynamics of Computer Graphics

1.0 Digital Simulation of Movement

Computer animation can be defined as the simulation of movement or of lifelike
actions by the manipulation of digital objects. The notion of digital simulation
of movement is the core of this definition; however, as Magnenat-Thalmann and
Thalmann have pointed out, computer animation can exist without the simu­
lation of movement (see Bibliography), for example, in morphing (change of one
object into another one) and in transformations produced by changes in color
or lighting. In any case, this simulation of life has added an exciting dimension
to computer graphics and to graphics programming, so that today, computer
animated imagery is frequently found in applications related to art, science,
and technology.

In the simulation of movement the computer can play two different roles: it
can serve as an assistant in the creation ofimagery destined for display in other
media, or it can itself be the destination of the animated action. In the first case
we speak of computer-assisted animation. An example of computer-assisted
animation is a transformation called morphing. In this case the animator inputs
two images: one of the face of a man and another one of a wolfface. The machine
is programmed to generate a set of intermediate drawings that gradually
change the first image into the second one. All the consecutive images generated
by the computer, as well as the original ones, can be stored in video tape or film.
When the stored images are played back in sequence, the man's face appears
to gradually change into a wolf. This interpolation technique is now a common
special effect in television and motion pictures.

But perhaps a more familiar notion of computer animation is that in which
the computer is both the generator and the display instrument. This is particu­
larly true in microcomputers, which have been used seldom commercially in
animation-assistant roles due to their limitations in storage and processing
power. We speak ofreal-time animation when the computer is the tool, as well

3

4 Chapter One

as the media. In this sense the imagery is generated and displayed in the user's
own time frame; there is no image storage for later playback. The animation is
shown "live" as it happens. Often the user interacts with the system to
determine or modify the result. For example, a flight simulator program
consists of animated imagery of the aircraft's cockpit and of the pilot's view
thorough the windshield. The actions performed by the user in the simulated
flying of the digital aircraft determine changes in the cockpit instruments and
in the landscape seen through the windshield. In this case all the changes
required for the animation take place in the user's (pilot) time frame.

In this chapter we describe the general principles, theory, and applications of
computer animation. The material serves both as an introduction and as
general background for the rest of the book. In preparing it we have relied
heavily on the books Computer Animation: Theory and Practice and New Trends
in Animation and Visualization. Nadia Magnenat-Thalmann and Daniel Thal­
mann are the authors of the first title and the editors of the second one. (See
Bibliography.)

1. 1 Conventional Animation

Conventional animation refers mostly to the techniques used in two-dimen­
sional cartoons often associated with Walt Disney, Hannah-Barbera, and
others. The method consists of photographing a series of progressive drawings.
The photographs are typically developed as color transparencies and animation
achieved by successively projecting the transparencies on the screen. Although
microcomputers are not used often in the production of cartoons, the technique
is interesting to the graphics programmer since similar methods can be applied
to real-life animation problems.

1. 1.1 Historical background

In 1831 a Frenchman named Joseph Antoine Plateau was able to create the
illusion of movement by means of a machine which he called a phenakistoscope.
The device consisted of a disk with a series of progressive drawings and
windows. When the disk was rotated the viewer would see the drawings in rapid
sequence, which created an illusion of movement. Three years later an English­
man named Homer modified the phenakistoscope into a device which he called
the zoetrope. The zoetrope consisted of drum with drawings on its inner walls.
A series of slits allowed the viewer to see the different drawings as the drum
rotated. Emile Reynaud, another Frenchman, further refined the zoetrope by
replacing the viewing slits with mirrors. This device was named the praxis­
noscope.

Emile Reynaud founded the first movie theater in 1892. It was located in Paris
and called the Theater Optique, although the first animated film was not
produced until 1906. By 1913 several American companies were regularly
producing cartoons for the thriving motion picture theaters. Felix the Cat, by

The Dynamics of Computer Graphics 5

Pat Sullivan, is possibly the best known cartoon character of this era. Walt
Disney, who is usually considered the father of animated cartoons, produced a
Mickey Mouse film in 1928. This film was the first one to incorporate sound.
Donald Duck and other characters followed shortly thereafter. Snow White and
the Seven Dwarfs was the first feature film-length cartoon.

1.1.2 Cartoon Animation Techniques

Computers are playing an expanding role in the commercial production of
cartoons. Their use includes the coloring of drawings as well as the generation
ofintermediate images, an operation called in-betweening or tweening. Drawing
and coloring and in-betweens are tedious and time-consuming operations when
performed by hand. The organizational elements in the production of an
animated cartoon can be seen in Figure 1. 1.

The story told in the animated cartoon is developed in three progressively
refined steps, shown in Figure 1. 1. The synopsis is a short summary of the story,
usually in less than one page. The scenario describes the story more completely
and details the characters and the scenery. The storyboard consists of a series
of drawings and captions that capture the most important moments depicted
in the film.

SYNOPSIS

SCENARIO

STORYBOARD

SEQUENCES SEQUENCES

SCENES

Figure 1.1 Production Steps for an Animated Cartoon

6 Chapter One

From the storyboard it is possible to derive the film sequences. Each sequence
refers to a film action and consists of one or more scenes, typically associated
with a particular location and one or more characters. The units of cartoon
execution are the individual shots that compose each scene. The production of
each animated scene is performed by artists called animators who lay out,
design, and draw the key images in each scene. At this time the sound track
for the cartoon must have already been defmed, since the motion of the
animated figures takes place in relation to dialog and music.

In the production of the actual drawings the artists use as reference two key
positions, called frames. For example, Figure 1.2 represents the drawings used
in a scene for an animated cartoon in which a dagger appears to travel from the
hand of an imaginary thrower to an imaginary target. The key frames are the
start frame and the end frame shown in Figure 1.2. The drawings that are
necessary to animate the movement between both key frames are the in-be­
tween frames. In conventional animation in-betweening is a routine task
usually performed by assistants to the animators.

In Figure 1.2 we have drawn three in-between frames. In reality the number
of progressions between the start frame and the end frame of a sequence
depends on the time assigned to the frame and the display rate. For example,
if the animation of the clock sphere in Figure 1.2 is to take 1.5 seconds and the
display rate is of 24 frames per second, then 36 frames are required for the
animation, of which 34 are in-between frames.

start frame end frame

E 1-o o- J

----------------------------,

I -----------------------------

Figure 1.2 Progressive Drawings in Cartoon Animation

The Dynamics of Computer Graphics

~ CAMERA

L----~-~L----=--7___,/

Figure 1.3 Diagram of a Multiplane Camera

1.1.3 Photographic Manipulations in Cartoon Animation

TRANSPARENT
LAYERS

7

In addition to the progressive drawings that simulate movement, cartoonists
can enhance the animation by means of photographic manipulations. The
drawings for cartoon animation are made on a transparent plastic film. There­
fore the clear portions of the drawing are invisible to the camera. The equipment
used in the production of cartoons is a specialized motion picture camera called
a multiplane. The animation surface consists of several glass layers at varying
distances from the camera lens. Figure 1.3 is a schematic diagram of a
multiplane camera.

The multiplane camera is used in creating various special effects. For exam­
ple, the camera can be moved horizontally to pan an image or moved along the
optic axis to enlarge or reduce the apparent size of an object (zooming). An effect
called spin is created by rotating the camera. Several fade and dissolve effects
are used in providing a soft transition between scenes. The fade-in is a
progressive transition of the image from black and the fade-out a transition to
black. The fade-in is typically used at the start of a scene and the fade-out at
the conclusion.

In multiplane animation the image is separated into several elements accord­
ing to their distance from the viewer. For example, in animating the scenery
visible from a moving train it is possible to divide the image into several strips,
as shown in Figure 1.4.

8 Chapter One

Figure 1.4 Assembly of a Multiple-Plane Image

The landscape in Figure 1.4 is animated by moving the three image strips at
different rates under the multiplane camera. In this case the image strip that
depicts the rising sun remains stationary. The strip depicting the mountain
range is moved slowly under the lens while the strip with the telephone poles
is moved at a faster rate. The resulting animation would simulate the apparent
movement of these objects as viewed by an observer on a train or automobile.
Notice that the length of the images is proportional to their rate of movement
during animation. Also that more image planes could be used to enhance the
realism. The multiple-plane animation technique is quite suited to computer
animation, as will be shown later in the book.

1.2 Computer Animation

Regarding animation the computer can assume one of two roles: it can assist
in the creation of animated imagery (computer-assisted animation) or it can
both generate and portray the animated action (real-time animation). The most

The Dynamics of Computer Graphics 9

time-consuming and tedious task of cartoon animation is the generation of the
many intermediate images required by the process (tweening). The computer
plays the following assistant roles:
1. During the drawing stage the computer is used to scan and digitize image

elements and to create drawings or parts of drawings by means of draw or
paint software.

2. In the animation process the computer is used to generate in-betweens and
to color drawings.

3. During the photography stage the computer controls the multiplane camera
and assists in the creation of special effects.

4. In the production stage the computer is used in editing and in adding sound
to the animated film.

This list is by no means final. Every day animators find new uses for
computers, new technologies are developed which create novel possibilities and
applications in animated graphics. Computer technology is being used in the
creation of spectacular special effects based on the digitization of screen objects,
which are later manipulated by the software. Original efforts in this type of
computer-assisted animation are found in the film TRON, produced by Walt
Disney Studios, as well as in Return of the Jedi, by Lucasfilm. In recent years
animation by image digitization has become the rule, rather than the exception.
It can be found often in science fiction, action, and even conventional films.

1.2.1 Animating In Real Time

Real-time animation is found in arcade machines, simulators and trainers,
electronic game machines such as those manufactured by Nintendo and Sega,
and in interactive programs mainly intended for microcomputers. In real-time
animation the computing machine serves both as image generator and as
display media.

Animation is based on the physiological fact that the image of an object
perceived by the human eye persists in the brain for a brief period of time after
the object no longer exists in the real world. This phenomena, called visual
retention, is related to the chemistry of the retina and to the structure of cells
and neurons in the eye. Smooth animation is achieved in cinematography and
television by consecutively displaying images at a faster rate than the period
of visual retention. This operation, by which a new image replaces the old one
before the period of retention has expired, creates in our minds the illusion of
a smoothly moving object.

The period of visual retention is a few hundreds of a second. The critical image
update rate for smooth animation has been determined to be between 22 and
30 images per second. Modem day moving picture films are recorded and
displayed at a rate of 24 images per second. Commercial television takes place
at a slightly faster rate. In general, the threshold rate, subject to individual
variations, is estimated at 18 images per second. This means that if the
consecutive images are projected at a rate slower than this threshold, the

10 Chapter One

average individual perceives a certain jerkiness in the animation. On the other
hand, when the image rate equals or exceeds the threshold, our brains merge
the images together and we perceive a smoothly animated action.

If we assume that computer animation must take place at an image rate of
approximately 20 images per second, then each image must be updated and
displayed in a maximum period of one-twentieth of a second. Furthermore,
many forms of animation require that the old image be erased from the display
before a new one is drawn; otherwise the animation would leave a visible track
of objects on the video display. For this reason the image update sequence is a
series ofredraw, erase, redraw operations, which means that the critical display
rate must be calculated from one redraw cycle to the next one. Consequently,
the allotted time for the redraw or the erase operation is one-half the display
rate, in this case one-fortieth of a second.

These constraints determine that computer animation is often a battle against
time: the program is allowed a limited interval in which to update and redraw
the image. The animation programmer resorts to every known trick and
stratagem in order to squeeze the maximum performance while executing the
image update and the display operations. However, quite frequently, even the
most imaginative programming cannot overcome the system's limitations. In
this case the result is a bumpy and coarse real-time animation that is but a
remote likeness of cinematography and television.

As microcomputer systems and video display hardware become more efficient
and powerful, the possibilities of real-time animation expand. In our tests we
have found that in a 486-based microcomputer with XGA display hardware it
is possible to smoothly animate an image that is 40 times larger than the one
that could be handled in a 286-based VGA system. On the other hand, commer­
cial software products must aim at the largest possible group of potential
customers. This means that the designers of animated programs often aim at
ensuring satisfactory execution even in the more primitive systems. For this
practical reason, animated programs that squeeze the maximum performance
out of state-of-the-art systems are not readily available, since their customer
base would be considerably restricted.

1.2.2 Frame-by-Frame Animation

Many of the techniques used in computer-assisted animation can be described
as frame-by-frame operations. In frame-by-frame animation the computer
generates the required images, which are recorded or stored for playback at a
later time. This playback can take place in the same machine that generated
the image set or in another media. For example, a computer can be used to
manipulate the image strips in Figure 1.4 so as to generate a set of 100
progressive pictures. As the images are generated, they are recorded in video
tape. When the image set is complete, the animation can be viewed by playing
back the video tape. Alternatively the images can be stored in computer memory
or disk and played back in the same machine that generated them. In either
case the animation is less demanding of machine processing power since the

The Dynamics of Computer Graphics 11

image creation step need not take place in real time. However, if the computer
is used to play back the image set, then this operation is subject to the real-time
constraints mentioned in the preceding section.

1.2.3 Interactive Animation

Interactive animation refers to computer objects that are moved at the user's
desire. At present, the most common interactive devices in microcomputers are
the keyboard and the mouse, although joysticks and other devices are often
used with the more sophisticated games and simulations. In general, the notion
of interactive animation includes any technology in which the user exercises
some level of control over computer-animated action. By today's standards the
ultimate level of interactive animation is called virtual reality, a topic discussed
in Section 1.4.5.

1.2.4 Random or Unpredictable Elements in Animation

Conventionally, the computer simulation of movement is based on programma­
ble or predictable stages. In this manner, the cartoon animator knows before­
hand (from the storyboard) all the actions and interactions that will be
portrayed in the final rendition. Even in most implementations of virtual
reality, every result can be predicted from the user's interaction with the device.
Therefore we can say that the system is, by nature, deterministic.

However, many natural systems are of a different nature. Biology students
often observe that colonies of bacteria developing in identical media show
different patterns of growth. This is due to the fact that in a complex biological
system many development factors cannot be determined a priori. In other
words, random or unpredictable elements often influence the development of a
biosystem. Some modem geologists claim that the disappearance of the dino­
saurs was caused by the collision of an asteroid with the earth. If this hypothesis
is true, then a small change in the trajectory of the asteroid would have made
it miss our planet. Consequently, the evolution of life on earth would have
followed an entirely different path.

We have used the terms random or unpredictable regarding biosystems due
to the fact that the preference of one or another term would imply a philosophi­
cal judgment. For example, during reproduction, the genes in the male and
female chromosomes combine to form the genetic structure of the offspring. If
these genes combined according to fixed rules, all siblings would be identical.
This is certainly not the case; furthermore, we have no way of knowing
beforehand the offspring's exact genetic makeup. Therefore, the mechanics of
gene exchange during reproduction can be considered as a random action.

Statistics often serve to describe the unpredictable behavior of a biosystem.
For example, in the above-mentioned gene exchange it is often possible to
determine, according to their location in the chromosome, that certain genes
are more or less likely to be transmitted. However, anything less than absolute
certainty implies randomness or unpredictability. If a computer were to simu-

12 Chapter One

late the reproduction of a biosystem, it would have to take into consideration
these random or unpredictable factors.

1.3 Motion Control Techniques

If computer animation is roughly equated with the screen simulation of move­
ment, the methodology for producing the animated effect can be described as a
set of motion control techniques. In this respect Allan and Mark Watt, in their
book Advanced Animation and Rendering Techniques (see Bibliography), refer
to procedural, representational, stochastic, and behavioral as the main catego­
ries of the animation hierarchy.

From a programmer's viewpoint, animation is implemented by applying one
of many low-level methods of motion simulation and control. Some of these
methods have been passed on by cartoon animators, while others are digital in
nature and, therefore, unique products of the computer environment.

The computer animator is confronted by many limitations and constraints.
The most common approach is based on the axiom "whatever works, works."
Very often the animation is produced by means of mathematical transforma­
tions on the parameters that define one or more screen images. Since movement
is a function of time, the laws of physics are often taken into account. For
example, in representing a falling object the animator may use the formula that
expresses acceleration in a gravitational field to determine the rate of in-bet­
weening that most naturally represents the action. On the other hand, artistic
considerations could determine an intentional variation from the physical laws
of motion. J.E. Gomez mentions in an article titled "Comments on Event Driven
Animation" that the animator is not constrained to obey physical laws; Wily
Coyote walks on air for a few seconds before beginning to fall.

1.3.1 Tweening and Morphing

The cartoon animator proceeds from two key positions, known as frames, and
creates a set of in-between drawings (see Figure 1.2). The entire sequence is
photographed and projected to create an illusion of movement. The depiction
of animated action by creating and projecting a set of in-between drawings is
often called tweening; in this sense the intermediate drawings are the tweens.
Computer animators have successfully borrowed the tweening technique from
cartoon animators. Furthermore, in a computer environment the machine can
often aid in the creation of the in-between frames by performing geometrical
transformations on the key frames.

The tweening required for representing the flight of the dagger shown in
Figure 1.2 can be obtained by rotating and translating the start frame. If the
image of the dagger is stored in a specific manner, then the animation is
produced by mathematical manipulations of a single image file. In Chapter 2
we begin discussing the storage of graphics images in data structures that

The Dynamics of Computer Graphics 13

permit their mathematical manipulations at display time. This subject is
revisited on many occasions throughout the book.

Another technique that originated in cartoon animation is called morphing.
The term relates to the notion of metamorphosis: a transformation in shape,
form, or substance that takes place by biological change or by magic and sorcery.
Morphing techniques are being extensively used in motion pictures. We are all
familiar with the image of an actor or actress transforming into a wolf or a cat.
Figure 1.5 shows the morphing of a circle into a square.

start frame end frame

0 □
-------------------------------,
morphing frames :

0000·0
Figure 1.5 Morphing Animation

1.3.2 Path-of-Motion Calculations

The rules for path-of-motion calculations in animation depend on the image file
encoding and on the transformation to be performed. If the coordinate points
that define the image are stored in matrix form, then it is possible to perform
certain transformations by means of matrix arithmetic. For example, a trans­
lation transformation consists of adding a constant value to each coordinate
point that defined the object, while a rotation transformation consists of moving
all of the object's coordinate points along circular arcs with a common center.
Figure 1.6 shows the rotation transformation of the dagger depicted earlier in
this chapter.

Figure 1.6 A Rotation Transformation

14 Chapter One

v1 v3

Figure 1. 7 Path of Motion in a Morphing Transformation

As in tweening, some morphing transformations can be assisted by manipu­
lations of the image file. On the other hand, in morphing, the intermediate
frames are determined according to different rules than in tweening. For
example, the morphing transformation of a circle into a square shown in Figure
1.5 cannot be made by simple rotation and translation, as is the case in the
tweening shown in Figure 1.2. Figure 1.7 shows the path, along a 45-degree
vector, that a point on the circle would follow in the process of morphing into a
square.

In Figure 1.7, points along different vectors follow different paths. For this
reason, morphing usually requires more complicated processing than simple
geometrical transformations. Notice that the path of motion along vector vl in
Figure 1. 7 requires three intermediate steps in the transformation of a circle
into a square. Along vector v2 only one intermediate step is necessary, while
there is no motion along vector v3.

Path-of-motion calculations in tweening and morphing can be rationalized
and simplified by using straight lines to approximate geometrical curves. A
polygon can be used instead of the circles and curves in the morphing transfor­
mation of a circle into a square. This approximation is shown in Figure 1.8.

Figure 1.8 Polygon Approximations in Morphing

The Dynamics of Computer Graphics

• • •
■
•
■

Figure 1.9 Simultaneous Fade-in and Fade-out

1.3.3 Color-Shift Animation

15

■

Objects on the computer screen are furnished with display attributes. In color
video systems one category of attributes is the object's color. The animator can
manipulate the color attributes of screen objects to create the illusion of
movement or change. One common application of this technique is in fading.
An object or scene is faded-in when its color is progressively changed so as to
make it slowly appear on the screen. A fade-out takes place when the object or
scene is made to slowly disappear from the screen. Fade-in operations are
typically used in cinematography at the beginning of a scene and fade-out at
the end of a scene. A cross-dissolve operation takes place when one scene or
object is faded-out while another one is faded-in. Figure 1.9 shows the simul­
taneous fade-in of a rectangle and fade-out of a circle.

In some computer system fade operations can be implemented by progres­
sively changing the hue or saturation of one or more objects or of the entire
scene. A screen fade-out can be accomplished by progressively increasing the
white saturation of all the objects until the entire screen is white. In some
systems (including IBM video systems) the fades can be performed by modifying
the color palette itself, instead of the color attributes of individual objects.
Palette animation, as these methods are sometimes called, is relatively easy to
implement and often generates satisfactory results at a low processing cost.

Color animation is also used in many other creative manipulations. For
example, a sunset scene can be created by increasing the black, red, and orange
color saturation of selected screen objects. Or the illusion of movement can be
enhanced by having the moving object leave tracks of its image with a decreas­
ing color saturation. This effect, sometimes called a motion blur, is depicted by
the bouncing ball shown in Figure 1.10.

1.3.4 Object Rendering

In the creation of the image set the animator is often confronted with a modeling
problem. As the number of dimensions of the representation and the complexity
of the objects increase, so do the difficulties in obtaining the in-between images
or the mathematical transformations required for the animation. As a general
rule it can be stated that two-dimensional objects are easier to model than
three-dimensional ones, symmetrical objects are easier than asymmetrical
ones, and geometrical entities are easier than living organisms. However,
notice that there are exceptions to these rules.

16 Chapter One

• ' \
• .

Figure 1.1 O Motion Blur Effect

Object rendering is closely related to computer animation; as computer
rendering methodologies have improved and gained in realism, so has anima­
tion. The image set for animating a two-dimensional object can sometimes be
obtained by performing geometrical transformations on the object's image (see
Figure 1.2). In three-dimensional representations the transformations take on
an additional level of complexity. Computer graphics has traditionally resorted
to geometrical simplifications that aid in the representation and transforma­
tion of three-dimensional objects. One such scheme is based on using polygons
to represent objects. For example, a cylinder can be represented as shown in
Figure 1.11.

Figure 1.11 Polygonal Representation of a Cylinder

The Dynamics of Computer Graphics 17

n . .

. n n .

Figure 1.12 Transformations of a Polygon-Rendered Object

Although the conventional approach in polygonal representation is to treat
each polygon as an independent entity, alternative approaches have been
recently developed which offer certain advantages. One such approach is based
on representing the polygon edges, rather than the vertices, in the data
structures that encode the object's image. This is a simplification over the
conventional approach, which requires that the shared edges of adjacent
polygons be processed twice.

In either case, the transformation of a polygon-based rendering is a geomet­
rical manipulation of the vertices or edges that define the object. In Figure 1.12
the polygonal representation of the cylinder is easily scaled by proportionally
reducing the size of each of the polygons that define it.

The modeling ofrealistic living organisms introduces difficulties beyond those
of geometrical forms. Higher animals and human forms, in particular, present
difficult and challenging problems since the conventional mathematical models
are not very suitable and muscle action is difficult to predict and imitate.
Several techniques have been used to model the human body in three dimen­
sions. Stick figures and surface and volume models have all been used with
moderate success. Figure 1.13 is a stick figure of a walking man.

0

Figure 1.13 Stick Figure of a Walking Man

18 Chapter One

0 0

Figure 1.14 Stick Figure Animation

The image set required for the animation of a human or animal form cannot
usually be obtained by pure mathematical transformations, as is the case with
geometrical objects such as the flying dagger in Figure 1.2. Even in the most
schematic representations (such as the one in Figure 1.13) the image set
involves the interaction of several limbs and joints, as shown in Figure 1.14.

Several techniques have been developed for the computer modeling of human
motion. In one methodology (Labanotation) the body is described as sets oflimbs
and joints. Each joint is specified in terms of axes that can be oriented in various
ways. Joint movements are described by operations that fall into several
categories. A special symbol represents each class of operation. This approach
makes possible the study and representation of human motion in an abstract
way.

1.4 Applications of Computer Animation

Computer animation is an attribute of the computer graphics environment; to
very few fields of this environment can the animation attribute not be applied.
Therefore, the applications of computer animation practically coincide with the
applications of computer graphics. For instance, computer graphics are often
used in business to draw charts of economic and financial functions. The usual
purpose of these charts and graphs is to facilitate the understanding of complex
phenomena and to aid in decision making. These purposes are enhanced when
the graphs and charts are animated so as to represent historical changes or
future trends of the depicted data.

In the following sections we describe some fields of computer graphics in which
animation plays a central role or in which animation techniques greatly
enhance the graphics environment. The discussed applications should be taken
as a sampling and not as a restrictive listing.

The Dynamics of Computer Graphics 19

1 A.1 Simulators and Trainers

Many natural or man-made objects and environments can be artificially represented
in a satisfactory manner. For many years we have used optical planetariums t.o
illustrate and teach astronomy in an environment that does not require more costly
optical instruments and that is independent of the weather and other meteorological
conditions. In the planetarium the viewer sits in a comfortable chair, located in an
air-conditioned enclosure, and watches the procession of constellations and deep-sky
objects, as well as the trajectory of the moon and the planets over a realistic sky. The
operat.or of the planetarium controls the rate of movement so that the celestial
transformations that take place over years or centuries can appear t.o occur in a few
minutes. Or the operat.or can enlarge the magnification of a particular object so that
the viewer can appreciate in details the rings of Saturn or the satellites of Jupiter.
Furthermore, itis possible in an artificial environmentt.o reproduce the stellar objects
and viewing conditions of any particular date in hist.ory. In this manner a viewer is
able t.o relive the astronomical observations and experiences of Galileo or Newton.

On the other hand, some natural phenomena cannot be conveniently reproduced
in a physical or opticallaborat.ory. For example, the transformation of mass according
t.o the theory of relativity would be practically impossible t.o reproduce physically. We
can use animated graphics t.o simulate physical entities or t.o represent complex
scientific phenomena such as nuclear and chemical reactions, hydraulic flow, physi­
ological systems and organs, or structures under load; in reproducing physical
simulat.ors, such as the planetarium; in depicting systems that cannot be conven­
iently imitated in other ways; or in creating a more feasible or economical emulation
of physical phenomena.

One such type of computer-assisted devices, sometimes called simulat;ors, find
practical and economical use in experimentation and instruction. Astronauts train­
ing for a lunar landing practiced in simulat.ors of the landing module and the mother
ship. Airplane pilots often train in computer-assisted simulat.ors that can safely
reproduce unusual or dangerous flying conditions.

1 A.2 Electronic Games

Since the introduction of Pac Man and similar programs in the mid-1980s computer
animation has played an increasingly important role in the personal entertainment
field. More recently we have seen the geometrical increase in popularity of dedicated
computer-controlled systems and user-interaction devices, such as those developed
by Nintendo and Sega. During this time the arcade-type electronic game has
continued t.o prosper.

In the microcomputer world, CD-ROM, digital audio, software, and specialized
user-interaction devices have been combined in an environment sometimes called
multimedia. The quality of the animated imagery and sound effects that can be
obtained in multimedia computer systems often competes with those in dedicated
systems. Some applications for personal computers have achieved such a degree of
realism th.at moral and ethical issues are being raised regarding the use of
sexually explicit or violent applications.

20 Chapter One

1.4.3 Business Presentations and Marketing

In the business environment computer animation often serves to enhance the
presentation of graphic and statistical data. In this context the animation can
serve to make the presentation more interesting to the spectator by showing
transformations that take place over a time period. For example, the evolution
of a product from raw materials to its finished form, the growth of a real estate
development from a few houses to a small city, or simply the evolution of a
statistical trend.

Animated imagery can thus serve to make a more convincing presentation of
products or services offered to a client, as a training tool for company personnel,
or as a replacement media for presentations of statistical data. AB a selling tool
computer animation techniques can make a product or service more interesting
and also add action and movement to an otherwise dull and boring description
of properties and features.

1.4.4 Artificial Life

In recent years a new discipline of computer science, named artificial life, or
ALife, has evolved around the computer modeling ofbiosystems. The new field
is said to be based on biology, robotics, and artificial intelligence. The results
are digital entities that resemble self-reproducing and self-organizing biological
life forms. Computer viruses of the harmful and benign forms are often cited
as examples of artificial life.

The cellular automaton is at the core of the notion of artificial life. This idea,
first described by John von Neumann, is a theoretical model of a parallel
computing device which is subject to various restrictions in order to make
possible the formal investigation of its various computing powers. The model
is reminiscent of a living organism since it is based on an interconnection of
identical cells, each being a finite-state machine. Each unit computes an output
based on input received from a finite set of cells, which are said to form its
neighborhood. It is also possible for a cell to receive input from an external
source. A clock tick determines that all cells produce a simultaneous output.
The output is directed to all cells in the neighborhood, and possibly, to an
external destination or receiver.

The first formal discussion of cellular automata was by E. F. Codd in 1968
(see Bibliography). A. W. Burks is the editor of the book Essays on Cellular
Automata (1970). A more recent title by Edward Rietman, Creating Artificial
Life: Self Organization, provides a rigorous, and at the same time, entertaining
presentation of this subject.

The implementation of cellular automata is often represented as a sequence
ofimages. Each clock cycle is an iteration update of the automata system, which
can be viewed graphically on the computer screen. The resulting changes in the
system give rise to an image set that simulates an animated entity. In general,
the notion of artificial life is naturally associated with biological forms capable
of self-reproduction and self-organization. These actions imply changes that

The Dynamics of Computer Graphics 21

can be represented graphically. In the same way that we associate natural life
with movement and action, it often requires the depiction of transformations
and movements by means of computer animation.

1.4.5 Virtual Reality

Recent breakthroughs in input and output technology have made possible a
new level of user interaction with a computing machine, called virtual reality.
Virtual reality technology consists of a computer system, a viewing device
(typically in the form of virtual reality goggles or head-mounted display), and
one or more input devices which allow the user to interact with the animation
system.

The result of virtual reality is a digital universe created by the computer
system in which the user is more or less immersed, according to its level of
isolation from the surrounding environment. This digital universe has been
named cyberspace, using a term coined by science fiction writer William Gibson
in his 1984 book Neuromancer. The possible applications of VR technology
range from pure entertainment to practical industrial controls. For example,
we can put on VR goggles to travel to the planet Mars and walk on its surface
or to control a complex robot used in industry or manufacturing. Other possible
applications include scientific and medical research, art, music, CAD, electronic
games, information management, engineering, education, surgery, and many
others.

Animation techniques are usually required in virtual reality as part of the
computer feedback mechanism. In a typical VR system the goggles take the
place of the video display. The animator uses its art to present to the user a
convincing image of the virtual environment created by the system. For exam­
ple, when the system detects a left-hand movement of the user's head, the video
image displayed on the VR goggles is smoothly panned to the left in order to
make visible objects that were previously outside of the user's field of view. If
the virtual universe includes entities that move, the system must use animation
to reflect this action on the virtual environment. For example, a virtual reality
representation of the Jurassic period requires that images of dinosaurs move
in predetermined or random fashion, perhaps interacting with the user.

Notice that we have not yet achieved the level of technical refinement and the
image processing power necessary for creating a realistic virtual environment
in which many virtual entities are simultaneously animated according to the
user's interaction with the system, or to predefined or random factors. In the
years to come we are likely to create virtual realities in which a user is able to
experience being a brain surgeon, a time traveler, or a rather skimpy meal for
a large, flesh-eating animal of the Jurassic period.

1.4.6 Fractal Graphics

When examined closely, natural surfaces are highly irregular and do not follow
predictable geometrical patterns. Such is the case with coastlines, islands,

22 Chapter One

rivers, snowflakes, and galaxies. Therefore, most natural objects cannot be
satisfactorily represented using polygons or smooth curves, since the resulting
image would appear too regular and contrived. However, it is possible to
realistically represent some types of natural objects by means of a mathemati­
cal entity called a fractal.

The term fractal is derived from the words fractional dimensions. It is best
visualized by means of a structure called a triadic Koch curve. The evolution of
the Koch curve starts with a straight line oflength one. The middle third of this
line (one-third fraction) is replaced by two lines of the same length that form a
60-degree angle. The result is a curve that is more rugged than the original one.
This second-order curve can be transformed into a curve of the third order by
repeating the same process with each of its four segments. The evolution of a
Koch curve to the third order is shown in Figure 1.15.

In regards to the Koch curve in Figure 1.15 we observe that its length
increases in relation to the number of straight line segments that it contains.
This means that the second-order Koch curve in Figure 1.15 has a greater
length than the first-order curve. By the same token, the third-order curve has
a greater length than the second-order one. Therefore, by continuing the process
to infinity, the length of the curve also increases to infinity. In other words, the
curve cannot be measured in one dimension. On the other hand, the Koch curve
cannot be measured in two dimensions, since, by definition, its area is always
zero. This leads to the conclusion that the curve must have a dimension that is
greater than one and less than two, that is, a fractional dimension, or fractal.
In fact, the dimension of the Koch curve has been determined to be approxi­
mately 1.2857 following the Hausdorff-Besicovich method.

The term "fractal" was coined by Benoit Mandelbrot in his book The Fractal
Geometry of Nature (see Bibliography). One interesting feature of fractals is
that they can be generated by computers following what is called a production
rule. Figure 1.15 shows graphically the production rule for a triadic Koch curve.
Other fractals such as the popular Mandelbrot set and the Julia set have their
own unique production rules.

The Koch curve exhibits a feature known as self-similarity. This means that
parts of the curves are similar to the whole curve. Natural objects, on the other
hand, rarely exhibit self-similarity, although they do show what is termed
statistical self-similarity. In using fractal curves to simulate natural objects it
is necessary to introduce a random factor that eliminates the curve's self-simi­
larity property. The result is comparable to the image formed in a kaleidoscope,
in which the random placement of the colored glass fragments ensures a unique
image with every change.

/ ~
first order second order third order

Figure 1.15 Triadic Koch CuNe

The Dynamics of Computer Graphics 23

Computer animation can be used to show the progression in the approxima­
tion of random fractals in a computer system. Notice that a truly random fractal
has an infinitely complex shape; therefore it cannot actually exist as a visible
object. The introduction of a random element in the creation of the fractal curve
ensures that the result will be unpredictably different every time that the
fractal is approximated. The animated imagery that results from the generation
of a random fractal graphic approximation is quite interesting from both an
artistic and a mathematical viewpoint.

1.5 The Animator's Predicament

The PC computer animator working with present day technology will rarely
have sufficient resources for the purpose at hand. A typical scenario consists of
a short supply of one or more of the necessary elements required for image
processing or rendition. For example: the CPU or the coprocessor do not have
the processing power to perform the necessary image transformations, and the
video image definition and color range do not allow the satisfactory repre­
sentation ofreal world objects or beings.

For these reasons, the result of an animation effort in a small computer
environment can very easily result in a bumpy, coarse, and unrealistic imagery
that is aesthetically unpleasant and even physiologically disturbing. The ani­
mator's art consists of making the best possible use of limited resources in
processing and image representation in order to produce a result that is as
smooth and pleasant as the media allow. This often requires stretching the
system's capabilities to its extremes as well as resorting to every scheme and
stratagem in a programmer's bag of tricks.

Most of the programmer-animator's work consists of making compromises
and in finding acceptable levels of undesirable effects. In this sense the
animator often has to decide how small an image satisfactorily depicts the
object, how much bumpiness is acceptable in representing a movement, how
little definition is sufficient for a certain scenery, or with how few colors can an
object be realistically depicted. In the hands of the expert, these compromises
and concessions result in the best possible representation in a particular
system.

The expert viewer, who is familiar with the hardware limitations of the media,
often appreciates and even marvels at the animator's achievements. The
nontechnically oriented user, on the other hand, usually compares the result
with those possible with other animation vehicles, and points out that the
computer images are not as good as television or as cinematography. This
means that a computer-animated program for the PC environment, so well
designed and executed that it manages to escape these harsh comparisons and
judgments of the typical user, is indeed a technological and artistic accomplish­
ment.

Chapter

2

Graphical Image Structures

2.0 Image Storage for Animation

The typical scenario is that animated action takes place within the structure
of a graphics program. The animated sequence is usually a set of graphics
images displayed on the computer's video system. Certain image structures and
encodings are more animation-friendly than others. Therefore, before we tackle
the problems of the animated image set, we must first consider how the image
is encoded and stored. For these reason, the selection and layout of the data
structures that contain the image data are one of the most important consid­
erations in the design of an animated application.

2.0.1 Pixel Maps versus Vector Commands

In general terms, computer images can be classified into two categories: pixel
maps and vector commands. A pixel map, or bitmap, is a memory structure that
encodes the relative location and the attribute of each light dot (pixel) that forms
the image. Alternatively, the graphics image can be defined by means of vector
or display file commands for each of the image's geometrical elements. Figure
2.1 shows the image of a cross defined as a bitmap and as a set of vector
commands.

25

26

7 6 5 4 3 2 1 0
0 ~K&-~~~K&---EI

l~~<EIH
2
3
4~K&-~~~H-ti>--EI

5 ~~~~~~-4
6 K',~~~~~..q
7o......<.;>...L.O,....L..>,...L...

IMAGE IN BITMAP:
08H, 08H, 08H, OFFH
08H, 08H, 08H, 08H

Chapter Two

y

7
6
5
4
3
2
1
0 -+------------X

0 1 2 3 4 5 6 7
IMAGE IN VECTOR COMMANDS:
line from XO, y4 to x7, y4
line from x4, yO to x4, y7

Figure 2.1 Image Encoded in Bitmap and Vector Commands

In Figure 2.1 the bitmap represents the attribute of each individual pixel in
the image. In the simplest encoding a 0-bit in the bitmap usually represents a
white or uncolored pixel and a 1-bit a black or colored pixel. Vector commands
refer to the geometrical elements in the image. For example, the vector
commands in Figure 2.1 define the image in terms of two intersecting straight
lines. The commands contain the start and end points of each line in a cartesian
coordinate plane that corresponds with the system's video display.

The question of which of these two methods of image encoding is preferable
has no unequivocal answer. The most suitable approach for many applications
is to adopt both methods of image encoding. Which is preferred depends on
occasional image characteristics and processing requirements. A video image
composed exclusively of geometrical elements, such as a line drawing of a
building or a machine part, can usually be defined flexibly and compactly by
means of vector commands. On the other hand, a naturalistic representation
of a human face usually requires a bitmap.

Each method of image encoding, bitmap and vector commands, has its own
features and advantages. One consideration is that vector commands some­
times save considerable storage space over bitmaps. For example, in a video
surface of600-by-400 screen dots, the bitmap for representing two intersecting
straight lines would have to encode the individual states of 240,000 pixels. If
the encoding is in a two-attribute form, as in Figure 2.1, then one memory byte
is required for each 8 screen pixels. The result is that a 30,000-byte memory
area is devoted to storing the bit-mapped image. On the other hand, the same
image could be encoded in two vector commands that define the start and end
points of each line, with a considerable saving in storage. By the same token,
to describe in vector commands a screen image of Leonardo's painting of the
Mona Lisa would certainly be more complicated and memory consuming than
the corresponding bitmap.

Graphical Image Structures 27

y

8 □
--+-+------~12 _____ X

Figure 2.2 Translation by Coordinate Arithmetic

A second consideration regarding bitmaps versus vector commands is that
vector commands locate geometrical image elements by means of coordinate
points. Graphics software can operate mathematically on these points to
transform the encoded images. For example, a geometrically defined object can
be moved to another screen location by adding a constant to each of its
coordinate points. In Figure 2.2 the rectangle with its lower left-most vertex at
coordinates x = 1, y = 2, is translated to the position x = 12, y = 8, by adding 11
units to its x coordinate and 6 units to its y coordinate.

2.1 Device-Independent Graphics

Graphics software systems and applications can often be envisioned and de­
signed independently of any particular graphic device. Nevertheless, the ulti­
mate purpose of a graphic system is to create a picture on a physical instrument.
Therefore, computer graphics cannot exist separately from a computer graphics
device. This means that the notion of device-independent graphics makes more
sense as a design goal that as a programming reality.

Graphics software services are typically furnished in the form of a graphics
library, a graphics standard, or a graphics programming language. Several
graphics standards and languages have been developed, mainly for the purpose
of providing some degree of device independence to the software medium.
Additionally, some operating systems, such as Windows and OS/2, have taken
on the task of providing device independence to applications.

In the MS-DOS environment device independence is the objective of the
program designer aiming at a software product capable of executing in more
than one graphical input or output device. Suppose a graphics library that
contains two services, one for drawing straight lines and one for drawing circles.
Assume that this hypothetical library is furnished with two drivers, one for
VGA and another one for the XGA video system. Also assume that the parame­
ters for the line-drawing service are the cartesian coordinates of the line's end

28 Chapter Two

points and that the parameters for the circle-drawing service are the coordi­
nates of the center of the circle and its radius.

The problems of device independence become immediately evident, even in
the simplest conceivable application. In the first place we must take into
account the hardware differences between the VGA and the XGA systems. For
example, the maximum vertical definition of the VGA is 480 pixel rows, while
the XGA is capable of displaying 768 rows. Therefore, if 500 is entered as a pixel
row value, it would be valid if the system were XGA, but not so if it were VGA.
The possible conflict must be addressed by the device-independence engine.

There are several possible approaches to the problem of executing in dissimi­
lar devices. The easiest to implement, but perhaps the least satisfactory
solution, is to limit the resolution to that of the least powerful device. In this
example, device independence could be ensured by limiting the resolution to
that of the VGA system, sacrificing the XGA modes that exceed the VGA
definition. The approach ensures uniformity by reducing the system's graphic
potential to that of its lowest component.

Another option is to provide compensations in the core computational routines
in order to accommodate the characteristics of different hardware. One disad­
vantage of this approach is that the software package must take into account
the operational characteristics of all supported devices. Therefore, the entire
system would have to be modified in order to extend support to a new device
with different hardware characteristics and display parameters.

A third approach to device independence is to perform the necessary compen­
sations and adjustments, not in the core computational routines, but in sepa­
rate software units configured according to the characteristics of each
supported device. These hardware-specific units are usually called device
drivers. The central software package can be based on an imaginary model of
a virtual graphics system, for example, on a screen structure of 1600-by-1000
pixels. The line-drawing and circle-drawing routines compute pixel position for
this virtual video display. The chore of adjusting the imaginary pattern of
screen dots to the parameters of the physical device is left to each device driver.

There is no ideal solution to the problems created by the use of dissimilar, and
sometimes incompatible, hardware devices. In alphanumeric modes, or in the
case of undemanding graphics applications, some degree of device inde­
pendence can be achieved, as is evidenced by the Windows and OS/2 operating
systems. As code attempts to make optimum use of the hardware features,
device independence becomes, progressively, a goal more difficult to achieve,
as is seen in the following sections.

2.1.1 Software Environment for PC Animation

In the PC environment, animated programs that achieve satisfactory results
often do so by pushing the graphics hardware to its processing limits. To the
animation programmer every processing operation is critical and every system
capability is in short supply, because each microsecond of execution time is
crucial to producing a satisfactory result. Performance concessions and proc-

Graphical Image Structures 29

essing complications which are required to ensure device independence detract
from the hardware efficiency and therefore diminish the quality of the anima­
tion.

For these reasons, to the present day, the most satisfactory animated appli­
cations for the PC take control of the graphics hardware in order to exploit the
capabilities of a particular device to its maximum potential. This means that
animated programs typically execute under MS DOS, as a DOS application in
Windows or OS/2, or as a Windows or OS/2 application with 1/0 privileges. Most
of the animation programming techniques presented assume that the software
has total hardware control, as is the case in the above environments. At the
time of this writing, a satisfactory quality in computer animation cannot yet be
achieved by means of operating system or other high-level services.

2.2 A Virtual Graphics Machine

The high degree of hardware control required in animation does not mean that
the program designer must completely renounce the notion of device inde­
pendence. The fact that an animated application makes optimum use of the
hardware facilities implies that the program must be equipped with device-spe­
cific routines. But there is no limit to how many different devices are supported
by a particular program. Here again, the program designer determines the
hardware systems supported as well as the support approach. The designer's
strategy can go from developing a separate program for each supported device
(which would ensure the best possible execution) to implementing a single
program version that executes, more or less acceptably, in all the supported
systems. In any case, by following specific methodologies the program designer
can simplify the conversion problems and increase the portability of the code
so that support of multiple systems is made as uncomplicated as possible.

One approach is to adopt an imaginary model of a graphics device. This model
is called a virtual graphics machine. The characteristics of the virtual machine
occasionally coincide with those of a physical device. More frequently, the
virtual machine has characteristics that exceed those of the most powerful
physical device available. In this manner the program designers attempt to
leave room for future improvements in the graphics hardware.

Conceptually, the notion of a virtual graphics machine includes that of a
graphics engine. If the physical graphics device is the hardware counterpart of
the graphics machine, the graphics engine is the functions which the virtual
device is capable of executing. Therefore, the specifications of the graphics
machine include the following elements:

1. The hardware characteristics of the adopted model, called the virtual
graphics device or VGD

2. The graphics functions that can be directly performed by the device, called
the output functions or graphics primitives

3. The user interaction with the device, called the input functions

30 Chapter Two

4. A structured filing system adopted for storing, restoring, and manipulating
the graphic image, called the display file

2.2.1 The Virtual Graphics Device

The VGD is an abstract model, although, for practical reasons, some designers
make it coincide with one of the hardware devices supported by the system. In
this case, the virtual graphics device matches a physical device.

The VGD is usually defined during the program design stage. At this time it
is important to make reasonable assumptions regarding the characteristics and
capabilities of the devices that are supported by the software. If the model
adopted substantially exceeds the capabilities of the best physical devices
available, the system is unnecessarily elaborate and complex. In this case it can
be described as being overdesigned or overspecified. By the same token, if the
adopted model has fewer capabilities than the physical devices available, some
of the graphics power of the hardware is lost to the software and the system.
In this case the system can be said to be underdesigned or underspecified.

In conventional computer graphics the VGD is usually an imaginary display
system. The surface of this display is viewed as a two-dimensional cartesian
coordinate system. In graphics programming it is convenient to place the origin
of the coordinate system in the top left-hand comer, because the rows and
columns of pixel-based displays are usually referenced from this position. Since
in conventional cartesian notation this quadrant contains negative values for
y coordinates and positive values for x coordinates, an adjustment is made in
the convention so that x and y are both positive.

The maximum x coordinate is the horizontal definition and the maximum y ,
coordinate is the vertical definition. Figure 2.3 shows a virtual graphics device
in the form of a video display with a definition of900-by-1600 pixels.

r

900
y

1600 ,.._

X

Figure 2.3 Cartesian Representation of the Video System

Graphical Image Structures 31

In addition to the coordinate range and definition, the program designer must
also determine other capabilities of the virtual graphics device, such as the
number of colors supported by the system. It is important to differentiate
between the colors that can be selected and those that can be displayed. For
instance, a graphics system may be capable of displaying 16 colors simultane­
ously that can be selected from a total of 128 available hues and shades. The
available colors are sometimes called the palette. The number of simultaneous
colors is the system's color range.

The horizontal and vertical definition, the color range, and the color palette
are sufficient to describe the functional characteristics of the virtual graphics
device adopted as a model for a given project. For example, the design specifi­
cations document could state that the display device has a definition of640-by-
480 pixels in 16 colors that can be selected from a palette of64 colors.

2.2.2 The Graphics Primitives

A graphics system is an imaging tool; therefore it must be capable of performing
elementary graphics functions, such as drawing lines and geometric figures,
displaying text characters, and shading or coloring screen areas. The available
image-creating operations are called the output functions or graphics primi­
tives of the system.

A general purpose graphics library generally includes a more or less extensive
collection of graphics primitives. An application, on the other hand, includes
only those functions required for its specific purpose. A minimal, general
purpose graphics library contains the following primitives:
1. Full screen primitives: clear the screen, set the entire screen to a color or

attribute, save the screen image in memory, and restore a saved screen
image.

2. Screen tile (window) primitives: set a rectangular screen area to a given color
or attribute, save a rectangular screen area in memory, and restore a saved
rectangular screen area.

3. Attribute selection primitives: set the current drawing color, set the current
fill color, set the current shading attribute, set the current text color, set the
current text font, set the current line type (continuous, dotted, dashed, etc.),
and set the current drawing thickness.

4. Geometrical primitives: draw a straight line, draw a circular arc, draw an
elliptical arc, draw a parabolic arc, draw a hyperbolic arc, and draw Bezier
curves.

5. Image transformation primitives: scale, rotate, translate, and clip image.
6. Painting primitives: fill a closed figure with current fill color or shading

attribute.
7. Bit block primitives: XOR text or bit block, AND text or bit block, and OR

text or bit block.

32 Chapter Two

2.2.3 Input Functions

The computer graphics system must usually be capable of interacting with a
human element. This takes place through an input device such as a keyboard,
a mouse, or a graphical input tablet. This input can be roughly classified into
two types: valuator and locator.

Valuator input takes place when the data entered is an alphanumerical
value. For example, the coordinates of the end points of a line constitute
valuator input. Locator input takes place when the user interaction serves to
establish the position of a graphic object called the locator. A mouse-controlled
icon is a common locator.

Valuator and locator input normally follow this sequence of input phases:
1. Input request phase: The graphics system goes into the input mode and

prompts the user that it awaits further action.
2. Echo phase: As the user interacts with the input device, its actions are

echoed by the graphics system. For instance, the characters are displayed
as they are typed, or the icon moves on the screen as the mouse is dragged
on its surface. Phases 1 and 2 are sometimes called the prompt-and-echo
phase.

3. Trigger phase: The user signals the completion of input by pressing a
specially designated key or a button on the input device. One way to
conclude the input phase is to abort the operation, usually by pressing the
escape or break key.

4. Acknowledge phase: The graphics system acknowledges that the interac­
tion has concluded by disabling the input prompt and by notifying the user
of the result of the input. In the case oflocator input the acknowledge phase
often consists of displaying a specific symbol that fixes the locator position.
In the case of valuator input the acknowledge phase can make the cursor
disappear. Another action of the acknowledge phase can be that the char­
acters entered are reformatted and redisplayed, or they are stored inter­
nally and erased from the CRT.

A general-purpose graphics library includes the following interaction primi­
tives:
1. Valuator input primitives: input coordinates, input integer, input string,

and input real number.
2. Locator selection primitives: select cursor type (crosshair, flashing rectan­

gle, rubber band, or others).
3. Locator input primitives: enable and disable screen icon, move screen icon,

and select graphics item on screen and menu item.

2.2.4 Display File Structure

A graphics application must be capable of storing and transforming graphics
data. The logical structure that contains this data is called the display file.
One of the advantages of a display file is that it allows the compact storage of

Graphical Image Structures 33

graphics data and its transformation through logical and mathematical opera­
tions. For example, an image may be enlarged by means of a mathematical
transformation of its coordinate points, called a scaling transformation. Or the
graphics object can be viewed from a different angle by means of a rotation
transformation. Another transformation, called translation, allows changing
the position of a specific object.

Before these manipulations can take place, the program designers must
devise the logical structure that encodes image data in a form that is convenient
for the mathematical operations to be performed. High-level graphics environ­
ments, graphical languages, and operating systems with graphics functions
provide precanned display file structures that are available to applications. The
programmer working in a customized environment, on the other hand, usually
designs the display file to best accommodate and manipulate the data at hand.
The first step in defining this structure usually consists of standardizing the
screen coordinates. Figure 2.3 shows the normalized screen coordinates of a
virtual video display system.

A screen normalization scheme usually aims at maximum simplification. One
possible scheme is to select the top-left comer of the screen as the origin of the
coordinate system and make all locations positive (see Figure 2.3). The range
of values that can be represented in either axis determines the system's
definition. If an application is to support a single display definition, it is
convenient to normalize the screen coordinates to this range. However, this
decision should be taken cautiously, since equating the virtual to the physical
device means that any future support for a system with a different definition
probably implies modifying the entire software package.

Notice that screen normalization is necessary so that image data in the
display file can be shown on a physical device, but the stored image data does
not have to conform with the adopted screen normalization. At display time the
processing routines (usually in the device driver) perform the image-to-pixel
conversions. In Chapter 3 we describe the operations necessary for converting
data in the image file into displayed pixels on the video screen.

2.2.5 Image Data in the Display File

How the image is stored in the display file depends on the image itself and on
the operations to be performed on its elements. Graphical images are classified
into geometrical and bit-mapped; therefore, with every image to be stored, a
decision must be made whether to represent it as a set of vector commands, as
a bitmap, or as a combination of both. In many cases the image itself determines
this decision. For example, there is little doubt that a circle is best encoded in
vector form. On the other hand, images such as alphanumeric characters can
be represented either as vector commands or as bitmaps. Postscript and other
conventions have used vector representation of text characters in order to
facilitate scaling.

Even after deciding if a graphics object is to be represented as a bitmap, as a
set of vector commands, or as both, there can be considerable variation in the

34 Chapter Two

encoding. A straight line can be defined by its two end-point coordinates, or by
its start point, angle, and length. A rectangle can be defined by the coordinates
of its four vertices, or by the coordinates of two diagonally opposite vertices.
The first option allows the representation of parallelograms, while the second
one is more compact. There are also variations in the encoding of bit-mapped
objects. If the object is unique, its bitmap can be included in the display file.
However, if the application is to manipulate several objects with the same
bitmap, then it is better to represent the bitmap with a special type code in the
display file and store a single, generic bitmap in a separate location. The
design of the image data formats for a customized display file requires careful
consideration and planning. Even then, it can usually be anticipated that as
the program is developed, changes in the image data encoding become neces­
sary to accommodate or facilitate operations, or to compress the information.
The safest approach in the development stage is to test all processing operations
with minimal image data, instead of proceeding to encode elaborate images into
data formats that may later require modifications.

2.2.6 Display File Commands

It is not sufficient for the graphics system to store image data. It must also be
capable of manipulating this data in order to generate and transform images.
The orders that operate on image data are the display file commands. The image
itself is defined in terms of both data and commands. For example, a screen
triangle could be represented by three straight lines. The display file contains
the coordinate points of the three lines as well as the commands to draw these
lines, as shown in Figure 2.4.

500

y

DISPLAY FILE

commands: image data:
X y x' y'

line 100 50 500 50
line 500 50 500 400
line 500 400 100 50

Figure 2.4 Display File for a Triangle

Graphical Image Structures 35

Notice that in Figure 2.4 the screen coordinates coincide with the display file
coordinates. This simplification, although convenient, is not always the pre­
ferred approach.

2.3 Graphics Software Standards

Since the late 1970s several organizations have labored towards an interna­
tional standard for computer graphics. In the United States the Graphics
Standard Planning Committee of the American National Standards Institute
(ANSI) has developed the Core Graphics System. The German standards group
created a computer graphics standard known as the Graphical Kernel System,
or GKS. In October 1981, GKS was submitted and approved by the Interna­
tional Standards Organization (ISO) as a proposed standard for computer
graphics. Since then, GKS has gone through several testing and modification
stages. In 1985 it reached its present status of an international standard.

In addition to GKS, other computer graphics standards are under develop­
ment by the American National Standards Institute. Among them are the
Virtual Device Interface standard (VDI) and the Virtual Device Metafile stand­
ard (VDM).

For reasons of performance animation programming must often be done
outside of standards and other formal conventions. For this reason, graphics
standards such as GKS, although a core topic of general graphics programming,
are not discussed in this book.

2.3.1 Graphics Support from System Software

In an effort to expedite and standardize graphic programming from high-level
languages, IBM and other companies have developed several system-level
graphics software products. One of these packages, named the IBM Profes­
sional Graphics Series, was intended for the original video systems of the PC
line, namely, the Color Graphics Adapter, the Enhanced Graphics Adapter, and
the PCjr. This package included an implementation of the Graphical Kernel
System, a Virtual Device Interface, a file system manager, and a terminal
emulation program. IBM also made available a Graphics Development Toolkit
version 1.2 for DOS systems. This package included eight Virtual Device
Interface device drivers, five of which are for PS/2 displays, as well as a printer,
plotter, and mouse drivers. The IBM Operating System/2 Graphics Develop­
ment Toolkit is a similar package intended for OS/2 multitasking applications.

In addition, operating system programs provide graphics services that can be
employed by high-level and low-level languages alike. Windows and OS/2
programmers have available these graphics functions, which include some
limited animation commands. MS DOS, on the other hand, does not contain
graphics services, although several versions of IBM Basic Input/Output System
(BIOS) provide graphics services which can be accessed by DOS programs.

36 Chapter Two

The BIOS graphics services are included as part of the video functions of
interrupt lOH. They afford a software mechanism for reading and writing
individual pixels and for setting the graphics mode, for displaying text on a
graphics screen, and for manipulating the palette registers. Although the BIOS
graphics services are insufficient for completely implementing a graphics
application, they do assist the programmer in performing noncritical functions.
The use of the BIOS services in graphics programming is discussed later.

2.4 Storage of the Graphical Image

The raster-scan video display technology used in the PC interprets a graphical
image as a two-dimensional arrangement of light cells, called pixels. In some
systems, these light cells are illuminated in monochrome light, while other
systems use light of various colors or intensities. The literal storage of a
graphical image (bitmaps) requires one discrete storage unit for representing
the attribute of each screen pixel.

Graphics images can be represented and stored as a set of vector commands.
This geometrical encoding has several advantages, such as a more compact
representation, as well as certain possibilities of transforming the stored image
by manipulating its coordinate data.

2.4.1 Geometrical Image Elements

An elaborate graphics image can often be geometrically encoded by subdividing
it into component elements. Not all graphics systems, languages, or applica­
tions use the same number or category of image elements, nor are these
elements identically defined or named. Nevertheless, there are some funda­
mental concepts of image encoding that transcend specific implementations.

The Point

The primary geometrical image element is a point. In raster-scan technology,
such as the PC video systems, it is tempting to equate a geometrical point with
an individual screen pixel. But it is more consistent with the principles of device
independence to use the concept of a screen point in reference to the virtual
display surface, and to reserve the word pixel for the screen element. Figure
2.5 shows the cartesian representation of a point in the first quadrant.

y

• 12,8

--ff'I------------X

Figure 2.5 Cartesian Representation of a Point

Graphical Image Structures 37

y

X

Figure 2.6 A Screen Point Used to Locate a Bitmap

Geometrically, we can define a screen point by its x and y cartesian coordi­
nates. By convention, the first variable in the pair is the horizontal coordinate
x, and the second one is the vertical coordinate y.

In graphics programming the concept of a screen point can be extended to
locate a more complex image. In this manner a screen point can reference the
placement of a bitmap or other screen object. In Figure 2.6 the coordinates x =
10, y = 8 refer to the center point of the bitmap image.

The Line

A line segment can be intuitively defined as those points along a straight line
that lie between two end points. This concept is valid geometrically as well as
graphically because a straight line in the cartesian plane can always be
specified by the coordinates of its two end points. Figure 2.7 shows such a line.

y

10, 14

X

Figure 2. 7 Cartesian Representation of a Line

38

y

14,6

4,4

-+H---------------X

Figure 2.8 Cartesian Representation of a Circular Arc

Curves and Arcs

Chapter Two

A curve can be defined as a set of points forming a continuous line and an arc
as a part of a curve. This definition does not exclude the possibility of an arc
consisting of the entire curve. In this sense a circle is considered an arc. Nor is
the concept of curve limited to any type or group of curves, except that for
practical plotting purposes the curve must be expressible in a mathematical
formula. Figure 2.8 shows a circular arc on the cartesian plane.

In generalizing the representation of curve we see that its encoding requires
the following elements:
1. The coordinates of the start point and end point of the arc.
2. A mathematical or literal description of the curve of which the arc is part.

This description can be in the form of a verbal expression, a code, or a
mathematical formula.

3. The drawing direction if more than one arc can be generated between the
end points of the curve described. For example, in Figure 2.9 we see that
from given start and end points two arcs can be generated, one in the
clockwise direction and another one in the counterclockwise direction.

y

end point

/,--------~ ,-...
I f~ ~
I
I
I

' ' '
-ffi-------,~--- X

' ' ____ .,,

Figure 2.9 Ambiguity in Encoding a Circular Arc

Graphical Image Structures 39

4. The necessary data to define the particular curve in the cartesian plane. For
example, in the case of a circle, the specification includes the radius; in the
case of an ellipse it includes the major and minor semi-axes.

Polygons

A polygon is defined as a surface bounded by line segments. There is no limit
to the number ofline segments contained; since the polygon is a closed figure,
the start point and the end point in a polygon must coincide. In a polygon, the
line segments are also called edges, and the coordinates of the start and end
points of these segments are the vertices.

The outline of the polygon can be specified by a series of line segments. Since,
by definition, the polygon is a surface, the figure is usually defined in terms of
number of sides and the coordinates of each of the vertices.

To simplify the identification of special types of polygons, other data may be
optionally included in the specification. For example, in a regular polygon all
the line segments are of equal length and support equal angles. Some polygons,
such as the triangle, rectangle, square, and pentagon, are so frequently used
that they are usually defined independently.

Polygons can also be classified as convex and concave. In a convex polygon, a
line segment connecting any two points inside the polygon lies entirely inside
the polygon. Figure 2.10 shows convex and concave polygons. The dashed line
is used to show the convexity rule.

Often a graphics application must fill the surface of a polygon with a given
pattern or color. The concavity or convexity condition must be taken into
account during the polygon fill operation.

Figure 2.10 Convex and Concave Polygons

40 Chapter Two

Figure 2.11 Bitmap of the Letter "a"

2.4.2 Nongeometrical Image Elements

A bitmap (sometimes called a cell) is a nongeometrical image element usually
defined as a stored array of points. All elements in a bitmap can share a common
attribute, or each element can have its individual attribute. Bitmaps are used
to represent an object that cannot be conveniently defined geometrically. Figure
2.11 is a bitmap of the lowercase letter "a."

A bitmap is usually defined by its horizontal and vertical dimensions and by
the memory address of the first item in the array.

2.5 Image Mapping

The graphical image exists in the physical universe. The typical medium is
either a binary storage device or a pixel-mapped display surface. In both cases
there are certain concepts, terminology, and logical structures that find fre­
quent use in image mapping, storage, and retrieval.

2.5.1 Video Buffer

The video buffer is the portion of physical memory reserved by the system for
storing the video image. It is a system-specific concept: the location and
structure of the video buffer depends on the architecture of the specific graphics
hardware and software. In MS-DOS video systems the video buffer architecture
changes in the different display modes. For example, in VGA mode 18 the video
buffer consists of four color planes, each plane storing a 640-by-480 pixel image,
while in mode 19 the video buffer consists of 320-by-200 pixels, each of which
is mapped to a memory byte that encodes the pixel's attribute. The video buffer
is also called the display buffer, the regen buffer, the video memory, and the

Graphical Image Structures 41

video display buffer. The term frame buffer is also used occasionally and
somewhat imprecisely.

Most display systems used in the PC allow access to the video buffer by the
CPU (programmer's port) and by the display hardware (video controller's port).
For this reason it is often described as a dual-ported system.

2.5.2 Image Buffer

While the video buffer is a physical entity, the notion of an image buffer is a
logical one. In Section 2.2 we referred to a virtual graphics machine or device
consisting of an imaginary display with fictitious characteristics. The concept
of the image buffer is usually associated with the virtual graphics device. Since
the attributes of the virtual machine can exceed those of the physical one, the
dimensions and attribute range of the image buffer can exceed those of the video
buffer.

Imagine a PC video graphics system equipped with a video buffer suitable for
holding an image of 640-by-480 pixels. In such a system it is feasible to envision
a graphics application that supports an image buffer capable of storing 1280-
by-960 pixels. In this case, the image buffer quadruples the storage capacity of
the video system. Figure 2.12 depicts the case of an image buffer that is larger
that the video buffer. In this example the image information stored in the image
buffer contains several times the amount of data that can be displayed as a
single screen image.

IMAGE BUFFER

VIDEO BUFFER

Figure 2.12 Image and Video Buffers

42

The Planet Saturn

Window

Figure 2.13 Viewport and Window

2.5.3 Vlewport

Saturn's Rings
The rings were first seen
by Galileo in 1610. At the
time he wrote "Saturn has
ears.• It was the Dutch
astronomer Huygens who
first identified the rings.
At first it seemed that
Saturn had a single ring.
It was in 1675 that the
Italian astronomer
Cassini spotted a gap
between the A and B
rings

Chapter Two

Viewport

The viewport is the area of the display used for graphic operations. Because the
PC graphics modes always use the entire display surface, the graphic viewport
always coincides with the physical display.

2.5.4 Window

A window is an area of the display surface, usually rectangular in shape, which
is defined in any convenient way. For example, a window can be defined by the
coordinates of its start and end points. In this manner, a window filling the
upper-left quarter of a 640-by-480 pixel display would have start coordinates
(0,0) and end coordinates (320,240). Windows can also be defined descriptively;
for example, we speak of the graphic window, the text window, and the menu
window of a certain viewport. Figure 2.13 graphically illustrates the notions of
viewport and window.

2.5.5 Graphics Modeling

Graphics modeling is based on the assumption that any picture, no matter how
elaborate or ornate, can be constructed out of a relatively few, simple compo­
nents. In a drawing, the term descriptor is often used to represent an element
that cannot be subdivided into simpler parts. The descriptor concept is an
abstraction adopted by the graphics system. Theoretically, any geometrical
figure except a point can be simplified.

The second element of graphics modeling is named a description. A description
is defined as a sequence of at least one descriptor. A graphics model is the

Graphical Image Structures 43

representation of objects using literal or mathematical descriptions. In func­
tional and object-oriented programming languages, the model is a repre­
sentation of the object, but not an instruction to display it. The format and
syntax of the model and the available descriptors vary with each language and
implementation.

For example, a logical structure for a simple graphics modeling system could
be based on the following descriptors:

move (x,y) is a command to set the current location at coordinates (x,y)

line (x,y) is a command to draw a line from the current location to a location
with coordinates (x,y)

circle (r) is a command to draw a circle of radius r with its center located at
the current location

A description can include as many descriptors as necessary in order to
represent the figure. In some languages, descriptions can be assigned a variable
name. The following description encodes the operations necessary to draw a
circle enclosed by a square:

Dname (A)

move (0,0)

line (8,0) > line (8,8) > line (0,8) > line (0,0)

move (4,4)

circle (3)

A ends

Notice that the operator Dname is used in this example to mark the start of
a description and the operator ends is used to signal its end. Also note that the
greater-than symbol (>) is used to separate descriptors in the same line, as well
as to indicate program flow. The above symbols and structures have been
invented by the authors for the purpose of the current illustration, and they do
not correspond with the actual operators of any known graphics language or
system.

The model of a graphic object may also specify transformations to be per­
formed on its description. These transformations are the usual operations of
translation, rotation, scaling, and others previously mentioned. In some lan­
guages, the transformed description is called a graphical object. A possible
scheme for representing transformations in a graphical language can use
parenthesis, brackets, and capital letters, as in the following example of a
translation of the graphical description A:

SHIFT (14,2) [A)

44

4 8 14

2-----------------------r---
/'::>

~~

4

a-----------'

y Dnarne(A)
move(0,0)
llne (8,0) > line (8,8) > line (0,8) > line (0,0)
move(4,4)
circle (3)

A ends
SHIFT (14,2) [A]

Figure 2.14 Example of Descriptors and Description

Chapter Two

X

Figure 2.14 is a graphical representation of the description for the object (A)
and the translation that results from the SHIFT (x,y) [Z] operator.

2.6 The Display File

We have mentioned methods for representing different geometrical image
elements so that they can be reproduced and how these techniques can bring
substantial savings in the image storage space. We have also shown how stored
image data can be manipulated logically and mathematically to generate
graphics effects, as well as the use of descriptors and descriptions. The structure
that serves to encode graphical images is called the display file.

Since the concepts of descriptors and descriptions are the rational foundation
for any modeling scheme, display file design is based on the principles of
graphics modeling, mentioned in Section 2.5.5. The first step in display file
design is usually determining the general structure of the filing system. The
level of complexity of the display file structure should be consistent with the
requirements of the system or application. The implementation of a full-fea­
tured graphical language requires several logical levels and sublevels of image
encoding. A specific application, on the other hand, can do without some of these
complications.

The most common elements of the display file are the image file, the image
segment, and the descriptors.

Graphical Image Structures

IMAGE ELEMENT TEXT ELEMENT

The Planet Saturn
Saturn's Rings
~~•:Mt.=
tirre he wrote "Salum has
oaro." tt WU 1he Dutch

~~-AtfllllM-lhat

:=1~fs~ .:,nu-
llallan utronomar =.,::r:.n
rings

Figure 2.15 Image and Text Elements of an Image File

2.6.1 Image File

45

The image files are subdivisions of a display file. Each image file encodes a
single screen image. For example, the viewport of Figure 2.13 consists of a
window that shows the planet Saturn, embedded in another window that
contains explanatory text. In this case the image file would contain the instruc­
tions and references required for reproducing the entire viewport.

Notice that the image file consists of a set of references and instructions for
reproducing a screen image, but that the graphic image data is often stored
separately. In the preceding example, the image file references two elements:
an image element, which holds the bitmap of a portion of the planet Saturn,
and a text element, which holds the alphanumeric strings of data to be
displayed. These elements are shown in Figure 2.15.

Storing image and text data separately simplifies making the data available
to other images. In Figure 2.13 the partial view of the planet Saturn is a portion
of a much larger image stored in the image buffer. In this case the display file
need contain only a reference that allows identifying the rectangular tile of the
image buffer that is to be used in this particular screen. In addition, the image
file contains information describing the transformations, if any, to be performed
on the data.

Text elements can be stored in the image file or elsewhere, according to their
purpose, complexity, and extension. For example, if the use of text is limited to
short messages that are part of the graphic images, the most reasonable
approach is to store the text strings in the image file. On the other hand, if the
program uses and reuses extensive text areas, it is more efficient to create a
central text buffer that can be accessed by any image file.

46

t:::J

Figure 2.16 Image Segments

2.6.2 Image Segments

Chapter Two

The concept of an image segment is derived from the graphics modeling
elements mentioned in Section 2.5.5. An intuitive definition is based on the
notion that the segment is a portion of the image that can be considered as a
graphic unit. Therefore, the image file can contain more than one image
segment. The portion of the image contained in each segment is displayed as a
single element.

The image file of Figure 2.16 is composed of two segments: the mailbox and
the flag. The mailbox segment is shown in both displays. The flag segment is
rotated in the second display.

Most graphic manipulations take place at the level of the image segment.

2.6.3 Image Descriptors

The image descriptors are the basic elements of the encoding. In the literature
they are also called display file commands, and less appropriately, graphics
primitives. The terms descriptors, commands, and primitives all express fun­
damental properties of this concept. We prefer the term descriptor because the
file commands and graphics primitives are used in other contexts in this book.

A descriptor contains all the instructions and data references for displaying
a graphical element. The descriptors in Figure 2.14 (move, line, and circle) are
used to form the segment (or description) labeled (A). A segment can contain
one or more descriptors. For example, the segment for the mailbox in Figure
2.16 requires descriptors for the straight line segments that form the top and
bottom of the box and for the arcs that form its ends. The segment for the
mailbox flag can contain a single descriptor for a polygon. In designing a graphic
system it is generally convenient to first define the image elements and
subelements and then provide a descriptor encoding for each element.

Graphical Image Structures 47

The components of a descriptor are the operation code and the operands. The
operation code, sometimes called opcode, is a mnemonic description of the
operations to be performed. The terms move, line, and circle in Figure 2.14 are
opcodes. The operands are the data items required by the opcode. In Figure
2.14 the operands follow the opcodes and are enclosed in parentheses or
brackets.

Chapter

3

Operations on Geometrical Images

3.0 Operations on Segments

Segments serve to group image elements so that they can be treated as a single
graphic entity. For this reason, the segment is often considered the fundamen­
tal unit of graphic operations. In Figure 2.14 we saw how one display is
transformed into a second one by changing several image segments. However,
these are not the only possible operations that can be performed on segments.

Segment operations are specific to the graphic system and even to the
individual implementation. For example, the GKS and the PHIGS standards
adopt different views of segments and their structure and implement different
segment operations. The segment operations described in the following sections
have been chosen because they are the most common ones. The following
examples do not conform with any specific graphic standard or language.

3.0.1 Creating the Segment

Each segment must be identifiable by the software. This is achieved by assign­
ing a name or identifier to each segment. In the example of Figure 2.14 the
operator Dname serves to assign the name A to the segment that depicts a circle
enclosed in a square. The translation operation recalls the segment by its name.
A graphics system can name segments using any type of symbol or combination
of symbols. For instance, in referring to Figure 2.16 we used literal designations
for segments, specifically: the mailbox segment and the flag segment. Which
method is used to name segments is inconsequential as long as each segment
is uniquely identified.

49

50 Chapter Three

A graphics system must often provide ways for creating new segments. This
operation typically assigns a name to the newly created segment. In addition,
at creation time the software performs several required checks, specifically:
1. Verify that the segment name is a valid designation according to the

system's conventions.
2. Verify that there is sufficient memory space available to create the new

segment.
3. Verify that the new segment does not exceed the total number allowed by

the system.
The answers to these and possibly other questions determine if the CREATE

SEGMENT operation executes successfully or fails. A return code is used to
inform the caller of the results. In addition to performing validity checks and
to assigning the segment a name, the segment creation operation builds the
segment's data structures and initializes the segment variables. Finally, the
name of the new segment is added to a list that contains the names (and perhaps
some control data) of all the valid segments in the system.

3.0.2 Opening and Closing the Segment

A graphical system may be designed so that the CREATE SEGMENT operation
automatically opens a segment for input and output. Alternatively, a separate
operation may be required for opening the segment. If it must be independently
enabled for input and output, the system usually contains OPEN SEGMENT
and CLOSE SEGMENT functions. One of the control fields frequently found in
the segment's data structure reflects whether the segment is in open or closed
status.

Many graphical drawing routines store the input data on the segment cur­
rently open. This mode of operation requires that the graphics system imple­
ment a mechanism to ensure that only one segment be open at a time.

3.0.3 Renaming and Deleting the Segment

The RENAME SEGMENT operation is frequently provided for assigning the
segment a new name without altering its contents or status. The DELETE
SEGMENT operation erases the segment name from the segment list and frees
the memory space occupied by the segment. Both of these operations usually
perform a series of consistency checks analogous to those previously listed for
the CREATE SEGMENT operation.

3.1 Segment Attributes

The segment's characteristics are called attributes. The segment's attribute
affect the entire segment. Many graphics manipulations performed on seg­
ments consist of changing the segment's attributes.

Operations on Geometrical Images 51

Segment attributes are different in various graphics systems and so are the
graphic functions associated with them. The attributes listed in the following
sections are those most frequently used. Nevertheless, some graphics systems
and applications do not require all of these attributes, while others implement
attributes not present in this list.

3.1.1 Visibility Attribute

The most elementary segment attribute is its visibility. Visibility allows for the
modification of an image by controlling whether one or more elements are
displayed or not. In Figure 3.1 the segment containing the message PICKUP
REQUEST is not visible in image number 1, while the segment containing the
message EMPTY is visible. These visibility attributes are inverted in display
number 2.

3.1.2 Line Color, Fill Color, and Line Style

Color graphics systems implement line color and fill color attributes. The fill
color is valid only in reference to closed areas. For instance, a polygon, or even
the entire screen background, can be assigned a specific fill color.

The line style attribute can be implemented in color or in monochrome
systems. Computer-assisted design (CAD) systems, used in engineering and
architecture, and drawing programs usually furnish an extensive selection of
line style attributes. Some common line styles are solid, dashed, dotted, and
dot-dashed.

Line thickness can also be implemented as a line style attribute. Since the
thinnest line possible consists of a sequence of adjacent pixels, a thicker line
can be specified in terms of its pixel thickness or of any other convenient scale.

G) ®

EMPTY PICKUP REQUEST

EMPTY

PICKUP REQUEST

Figure 3.1 Segment Visibility Attribute

52 Chapter Three

3.1.3 Foreground Priority

Interference conflicts must be resolved when two or more segments are super­
imposed on the same area of the viewport. These conflicts take place in regard
to the predominance of a pattern or color, in the case of superimposed surfaces,
or the predominance of an outline, in the case of superimposed wireframe
figures. Assigning foreground priorities to each of the segments solves the
conflict. Segments with a higher foreground priority than the current segment
opaque it, while those with a lower foreground priority are opaqued. Figure 3.2
shows the creation of different images by changing the foreground priorities of
its various segments.

The segment foreground priority attribute is usually a numerical value that
designates the spatial precedence of each segment. One possible scheme is to
assign a priority value of zero to the foreground segment and successive integer
priorities to the segments in posterior planes. By examining this value the
program can determine the noninterference privilege of each segment, as in
Figure 3.2.

3.2 Graphical Data Structures

The layout of a storage format for memory-resident graphical data is one of the
most laborious phases of the design of a graphic system or application. The
following details require careful consideration at design time:
1. The storage formats must be compatible with the programming language or

languages used to manipulate the data.

PRIORITIES:
TRIANGLE=0
CIRCLE= 1
SQUARE=2

Figure 3.2 Manipulation of Foreground Priorities

PRIORITIES:
CIRCLE=0
SQUARE= 1
TRIANGLE=2

Operations on Geometrical Images 53

2. Each data item should be encoded in the most compact format that allows
representing the range of values of the variable.

3. Data structures should not be of a predetermined size. The size of the
structure should be dynamically determined according to the number of
parameters to be stored, giving greater flexibility to the storage system.

4. If feasible, graphics transformations should be performed by means of
matrix operations. Such transformations are easier if the data is stored in a
matrixlike structure.

5. The designer should consider implementing independent procedures to
interface with the data structures. This approach ensures that the process­
ing routines are isolated from the complexities of the storage system. An
additional advantage is that only the access routines have to be changed if
the data structures are modified during program development, as is so often
the case.

3.2.1 Display File Elements

The display file consists of one or more images files, the image files contain one
or more image segments, and the image segments are formed by descriptors.
The structure is shown in Figure 3.3.

DISPLAY FILE

IMAGE FILE IMAGE FILE IMAGE FILE

IMAGE SEGMENT IMAGE SEGMENT

DESCRIPTOR DESCRIPTOR DESCRIPTOR

Figure 3.3 Elements of the Display File

54 Chapter Three

Considering the hierarchy in Figure 3.3 we can state that the display file is a
collection of image files, one for each image element. In this sense the display
file is nothing more than a reference table to these image elements. The
graphical images are made up of segments. Each image segment is assigned an
area of the image file. This segment area, in turn, contains the descriptors of
the primitive operations that must be executed in displaying the segment. In
the following sections we discuss these individual elements.

Descriptors

The graphical data is actually stored at the lowest levels of the display file
structure, which is that of the descriptors. The descriptors of a particular
system correspond to the graphics operations actually implemented. Each
descriptor contains an operation identification code (opcode) as well as the
necessary numerical operands.

Since the descriptors correspond to graphics primitives of various types, the
number of operands varies for different descriptors. For example, the descriptor
for a point requires only one set of coordinates (two operands), while the
descriptor for a circle requires the coordinates of the origin and the length of
the radius (three operands).

In order to display the image segment, the software must be able to find the
beginning of each descriptor. Since the operand field may vary in length, the
encoding scheme should provide a way to identify the first item of each
descriptor. One method is to have a reserved data item for storing the operand
count. This data item typically follows the descriptor opcode. Figure 3.4 shows
one possible scheme for descriptor encoding.

-
OPCODE

OPERAND COUNT

OPERAND 1

OPERAND2

DESCRIPTOR OPERAND3

OPERANDZ

OPCODE

OPERAND COUNT

Figure 3.4 Encoding Scheme for Descriptor

Operations on Geometrical Images 55

In the encoding method of Figure 3.4, once the position of the first descriptor
is determined, the program can index to the next descriptor using this operand
count and the previous descriptor's start address. Notice that the scheme in
Figure 3.4 assumes that all entries are of the same length. Another variation
that allows for entries of different lengths can be based on storing not the
operand count, but its byte length.

The encoding must also provide a means for determining the last descriptor
in a segment. One way to do this is by reserving a specific code to signal the
end of the segment. For example, opcode FFH could be used for this purpose.
Figure 3.5 is a flowchart of the logic required in a routine for executing each
descriptor in a segment file.

set descriptor pointer
to first descriptor

execute descriptor

set descriptor pointer
to next descriptor

YES

Figure 3.5 Partial Flowchart for Descriptor Processing

56 Chapter Three

Image Segments

The image segments contain or reference the segment attributes. Segment
attributes affect some or all of the descriptors in a segment; for instance, if the
visibility attribute is zero (segment invisible), the descriptors in the segment
file are not executed. The processing checks the segment attribute fields before
executing the descriptors.

The attributes can be encoded in the same data area as the descriptors or in
a separate area that holds the attributes of each segment in the display file. In
the first option, the encoding scheme for the segment attributes follows a
pattern similar to that of the descriptors. Each attribute field contains an
attribute code, followed by an operand count field, and the attribute operands.
It is usually preferable to reserve a certain numerical range for the descriptor
opcodes and another one for the attribute codes. For example, values between
1 and 99 can be used for the descriptors and values between 99 and 199 for the
attributes. Thus, the output routine can easily identify either encoding, even if
descriptors and attributes are mixed in the segment file.

Table 3.1 is a possible descriptor encoding scheme.

Table 3.1 Sample Descriptor Encoding

Data items Displacement
DESCRIPTOR----------->-----------------

opcode = 0

operand count

operand 1

operand 2

operand 3

last operand
DESCRIPTOR -----------> =================

opcode

operand count

= operand count

= 0

= 1

When the attributes are held in a separate data area, it is usually called a
segment table. The segment table contains the segment identification code as
well as the values for the different attributes. In some encoding schemes the
segment table can also hold certain segment parameters. One advantage of this
method is that keeping the attributes separate from the segment data makes
it possible to reuse the same segment file in several images, and at the same
time, preserve the encoding for each image.

Figure 3.6 shows the geometrical elements that form the mailbox image
segment. The illustration assumes that descriptor opcode 2 represents a
straight line and opcode 7 an elliptical arc.

Operations on Geometrical Images 57

7

2

2

Figure 3.6 Straight Lines (2) and Ellipses (7) in the Mailbox Segment

Notice that there are a total of six straight lines and two ellipses in the mailbox
segment in Figure 3.6. The image file in Table 3.2 shows the segment attributes
associated with Figure 3.6.

Table 3.2 Schematic Segment Encoding for Mailbox in Figure 3.6

Descriptors -----

Legend:
o = operands

SEGMENT A mail box]
2 4 o o o o
2 4 o o o o
2 4 o O o o
2 4 o O O O
2 4 o O O O
2 4 o o O O
7 6 0 0 0 0 0101
7 6 0 0 0 0 o 0
0 0

I 1----i-----1 Operands

Operand count

_______ Opcodes
2 = straight line
?=ellipse
0 = end of segment

In Table 3.2 the operands are represented by the letter "o." In a real applica­
tion these operands are the coordinates and other parameters necessary for
describing the individual geometrical elements.

Notice in Figure 3.1 that the same segment file can be used for both versions
of the mailbox flag. In this case, the segment table entry for image number 1
does not specify a rotation transformation, while the segment table entry for
the mailbox flag in image number 2 specifies a 90-degree counterclockwise
rotation using the lower-left vertex of the polygon as a center of rotation, or
pivot point. The visibility attribute for the text segments in these images is
handled in a similar manner.

58 Chapter Three

Image Flies

An image can be described graphically by the segments that form it. Therefore,
the image file is a list of segment files. The linking of these segments can be
accomplished in several ways. One possible encoding scheme is to consider the
image file as a supersegment, with an identifying name and all the component
segments placed consecutively within the image data area. A data position in
the image file is reserved for the segment count. This allows the processing
routine to form the image by executing the individual segment operations until
the count is exhausted. The segment count data item also allows the software
to index from image file to image file. Table 3.3 shows a possible implementation
of the encoding for an image file corresponding with image number 1 of Figure
3.1. Notice that the scheme adopted in this sample uses a segment table as part
of the image file.

Table 3.3 Sample of Image File Encoding

Segment count ____ _

IMAGE FILE 1 [Image No. 1 in Figure 3.1)111
SEGMENT A [mail box]
SEGMENT B [mail box flag]
SEGMENT C [message "PICKUP REQUEST")
SEGMENT D [message "EMPTY")

1:::::::~~~~~~i:~ii~i~~i~~:i~~~~:::::::::1
SEGMENT A --- 111061101
SEGMENT B --- 111661!!1 I

l!§o!llglololol
SEGMENT C --- I 001 1b1
SEGMENT D --- t~~ttbl

3.3 Image Transformations

l-----1
1 ___ Operands

____ Operand count

_ Attribute code
110 = line style
150 = foreground priority
120 = rotation
100 = visibility
256 = end of table

Certain image changes can be made by performing mathematical operations
on its coordinate points. Figure 3. 7 shows the translation of a line from
coordinates (2,2) and (10,14) to coordinates (10,2) and (18,14).

Notice that in Figure 3. 7 the translation is performed by adding 8 to the start
and end x coordinates of the original line. This operation on the x axis performs
a horizontal translation. A vertical translation is performed by operating on the
y coordinate. By the same token, to translate the line both horizontally and
vertically, the program operates arithmetically on both coordinate axes.

Operations on Geometrical Images 59

y

18, 14

-----------------X

Figure 3. 7 Translation of a Straight Line

In practice, the mathematical manipulations are performed on the data
structures contained in the image file. Therefore, the design of these data
structures determines the degree of ease or difficulty with which these opera­
tions are performed by the software.

In addition to organizing image data in structures that facilitate the mathe­
matical transformations, graphics software must also provide the processing
logic to perform the necessary operations. Both elements, image data structures
and computational logic, determine the image transformation facilities of a
graphics system or application.

3.3.1 The Coordinates Matrix

A matrix is a set of values arranged in a rectangular array. Each value in the
array is called an element of the matrix. In the context of graphical program­
ming, matrices are often used to hold coordinate points. This form of storing
graphical data allows using linear algebra to perform transformations. Figure
3.8 shows the approximate location of seven stars of the constellation Ursa
Minor, also known as the Little Dipper. The individual stars are labeled with
the letters a through g. The star labeled "a" corresponds to Polaris (the North
Star).

.c •f

.e

.g

Figure 3.8 Stars of the Constellation Ursa Minor (Little Dipper)

60 Chapter Three

The following matrix holds the coordinates of the stars in Figure 3.8.

Coordinates
X y

Star a 0 0
b -1 11
C 1 8
d 0 12
e 2 5
f 3 9
g 1 2

In two-dimensional systems, the coordinates matrix is formed by sets of x and
y coordinates, as in the above case. In three-dimensional systems, the coordi­
nate matrix holds the x, y, and z coordinates. The following matrix represents
the coordinate points for a line in three-dimensional space.

X

start point--> 2
end point--> 4

Coordinates
y
7

10

z
12
24

The following sections explain the fundamental matrix operations that are
most useful in graphics and animation programming. The reader familiar with
matrices and elementary matrix arithmetic can skip to Section 3.5.

3.4 Matrix Arithmetic

Matrices are used in many fields of mathematics. In linear algebra they are
used to hold the coefficients of linear equations. The equations can be manipu­
lated (and often solved) by performing operations on the rows and columns of
the matrix. One approach to solving a system of linear equations, known as
Gauss-Jordan elimination, consists of several processing steps that convert the
matrix to a special configuration called the reduced row-echelon form. Once in
this form, the system can be solved by inspection.

Matrix operations are convenient in performing the primitive transforma­
tions of translation, rotation, and scaling that are common in graphics and
animation programming. In order to derive the rules of matrix arithmetic, we
must first define the matrix and its component elements. We have already seen
that a matrix is a rectangular array of numbers. As is customary, in the
following sections we use capital letters to represent matrices. For example, the
following matrix, designated by the letter A, has three rows and two columns.

(1)

10 22
A= 3 4

7 1

Operations on Geometrical Images 61

The size of a matrix is the number of rows and columns that it contains. The
usual practice is to state matrix size as a product of rows by columns. For
example, matrix A, in Example (1), is a 3-by-2 matrix.

3.4.1 Scalar-by-Matrix Operations

An individual numerical quantity is called a scalar. Scalar-by-matrix opera­
tions are the simplest procedures of matrix arithmetic. Example (2) shows the
multiplication of matrix A by the scalar 3.

3A =
30 66

9
21

12
3

(2)

If a scalar is represented by the variables, the product matrix sA is the result
of multiplying each element in the matrix A by the scalars. By the same token,
scalar addition and subtraction are obtained by adding or subtracting the scalar
quantity to or from each matrix element.

3.4.2 Matrix Addition and Subtraction

Matrix addition and subtraction are performed by adding or subtracting each
element in a matrix to or from the corresponding element of another matrix of
equal size. Example (3) shows matrix addition. Matrix C is the algebraic sum
of each element in matrices A and B.

(3)

2 4 1 2 3 6
A 3 11 + B 2 2 C 5 13

1 5 -1 -3 0 2
1 -1 0 0 1 -1

The fundamental restriction of matrix addition and subtraction is that both
matrices must be of equal size; that is, they must have the same number ofrows
and of columns. Matrices of different sizes cannot be added.

3.4.3 Matrix Multiplication

The operation of matrix addition intuitively corresponds to conventional addi­
tion; that is, the elements of two matrices are added to obtain the sum. Matrix
multiplication, on the other hand, is not the multiplication of the corresponding
elements of two matrices, but a unique sum-of-products operation.

In matrix multiplication the elements of a row in the multiplicand matrix are
multiplied by the elements in a column of the multiplier matrix. These products
are then added to form the products matrix. The process is easily understood
through an illustration of the steps involved. Consider the matrices in Example
(4).

62 Chapter Three

From the definition of matrix multiplication it can be deduced that if the rows
of the first matrix are multiplied by the columns of the second matrix each row
of the multiplier must have the same number of elements as each column of
the multiplicand. Notice that in Example (4) the product Ax B meets this
requirement. Also note that the product B x A is not possible, since matrix B
has three elements per row and matrix A has only two elements in each column.
Therefore, in Example (4), the matrix operation A x B is possible but B x A is
undefined. The row by column operation in Ax B is performed as follows:

A= 3
1

B
5
1
11

10
2
5

2
3
4

(4)

The products matrix has the same number ofrows as the multiplicand matrix
and the same number of columns as the multiplier matrix. In example (4) the
products matrix C has the same number of rows as A and the same number of
columns as B. In other words, C is a 2 x 3 matrix. The elements obtained by the
above operations appear in matrix C in the following manner:

First
Row of A Columns of B Products Sum
1 3 5 * 5 1 11 5 + 3 + 55 63
1 3 5 * 10 2 5 10 + 6 + 25 41
1 3 5 * 2 3 4 2 + 9 + 20 31

Second
Row of A Columns of B Products Sum
2 1 0 * 5 1 11 10 + 1 + 0 11
2 1 0 * 10 2 5 20 + 2 + 0 22
2 1 0 * 2 3 4 4 + 3 + 0 7

In the course of developing Example (4) we commented that the operation A
x B is possible but that B x A is undefined since matrix multiplication is not
commutative. Therefore, the product of two matrices could be different if the
matrices were taken in different order. In fact, regarding nonsquare matrices,
it can be stated that if A x B is defined, B x A is undefined.

C =
1

63
11

41
22

Matrix multiplication is associative. Therefore, the product of three or more
matrices is equal no matter the order in which they are multiplied. For example,
(A x B) x C equals Ax (B x C). In performing graphics transformations we
find use for the associative and the noncommutative properties of matrix
multiplication.

Operations on Geometrical Images 63

3.5 Geometrical Transformations

A geometrical transformation is the conversion of one image into another one
by performing a mathematical operation on its coordinate points. Geometrical
transformations are simplified if the image's coordinates are stored in a
rectangular array called a matrix. In the following sections, we describe the
most common transformations: translation, scaling, and rotation. The transfor­
mations are first described in terms of matrix addition and multiplication, and
later standardized so that they can all be expressed in terms of matrix multi­
plications.

3.5.1 Translation

Translation is the movement of a graphical object to a new location by adding
a constant value to each coordinate point that defines the object. The operation
requires that a constant be added to all the coordinates in each plane, but the
constants can be different for each plane. For example, a translation takes place
if the constant 5 is added to all x coordinates and the constant 2 to all y
coordinates of an object represented in a two-dimensional plane.

In the top part of Figure 3.9 we see the graph and matrix of seven stars in the
constellation Ursa Minor. A translation transformation is performed by adding
5 to the x coordinate of each star and 2 to they coordinate. The bottom part of
Figure 3.9 shows the translated image and the new coordinates.

original
b' coordinates:

•I star X y
.c a 0 0

b -1 11
,e C 1 8

d 0 12
.g e 2 5

f 3 9
a g 1 2

,d translated
coordinates

b' (x+S. y+2):
• I "star X y

• C a 5 2
,e b 4 13

C 6 10
d 5 14

.g e 7 7
f 8 11

'a g 6 4

Figure 3.9 Translation Transformation

64 Chapter Three

In terms of matrix operations, the translation can be viewed as follows:

Original Transformed
coordinates Transformation coordinates

matrix matrix matrix
A B C

X y X y X y
0 0 5 2 5 2

-1 11 5 2 4 13
1 8 5 2 6 10
0 12 5 2 5 14
2 5 5 2 7 7
3 9 5 2 8 11
1 2 5 2 6 4

This can also be expressed as

A + B C

where A represents the original coordinates matrix, B the transformation
matrix, and C the matrix holding the transformed coordinates.

Notice that the transformation matrix holds the constants to be added to the
x and y coordinates. Since, by definition of the translation transformation, the
same value must be added to all the elements of a coordinate plane, it is evident
that the columns of the transformation matrix always hold the same numerical
value.

3.5.2 Scaling

To scale is to apply a multiplying factor to the linear dimension of an object. A
scaling transformation is the conversion of a graphical object into another one
by multiplying each coordinate point that defines the object. The operation
requires that all the coordinates in each plane be multiplied by the scaling
factor, although the scaling factors can be different for each plane. For example,
a scaling transformation takes place when all the x coordinates of an object
represented in a two-dimensional plane are multiplied by 2 and all the y
coordinates of this same object are multiplied by 3. In this case the scaling
operation is said to be asymmetrical.

By comparing the definition of the scaling transformation to that of the
translation transformation we notice that translation is performed by adding
a constant value to the coordinates in each plane, while scaling requires
multiplying these coordinates by a factor. In fact, the scaling transformation
can be represented in matrix form by taking advantage of the properties of
matrix multiplication.

Figure 3.10 shows a scaling operation of a square into a rectangle.

Operations on Geometrical Images 65

y

6

2 ---

X
2 4

Figure 3.10 Scaling Transformation

The coordinates of the square in Figure 3.10 can be stored in a 4-by-2 matrix,
as follows:

Coordinates
X y

start point 0 0
2 0
2 2

end point 0 2

The transformation matrix holds the factors that must be multiplied by the
x and y coordinates in order to perform the transformation. Using the letters
Sx to represent the scaling factor for the x coordinates, and the letters Sy to
represent the scaling factor for the y coordinates, the scaling transformation
matrix can be expressed as follows:

I ~x s~ I

The transformation of Figure 3.10, which converts the square into a rectangle,
can be represented in matrix form as follows:

Original Transformed
coordinates Scaling coordinates

matrix matrix matrix
X y Sx Sy X y
0 0 0 0
2 0 * ,~ ~ I 4 0
2 2 4 6
0 2 0 6

66 Chapter Three

Figure 3.11 Symmetrical Scaling (Zooming)

The intermediate steps in the matrix multiplication operation can be obtained
following the rules of matrix multiplication described in Section 3.4.3.

Figure 3.11 shows the scaling transformation of the graph of the constellation
Ursa Minor. In this case, in order to produce a symmetrical scaling, the
multiplying factor is the same for both axes. A symmetrical scaling operation
is sometimes referred to as a zoom.

3.5.3 Rotation

A rotation is the conversion of a graphical object into another one by moving all
coordinate points that define the original object, by the same angular value,
along circular arcs with a common center. The angular value is called the angle
of rotation, and the fixed point that is common to all the arcs is called the center
of rotation. Observe that some geometrical figures are unchanged by specific
rotations. For example, a circle is unchanged by a rotation about its center, and
a square is unchanged if it is rotated by an angle that is a multiple of90 degrees.
In the case of a square the intersection point of both diagonals is the center of
rotation.

The mathematical interpretation of the rotation is obtained by applying
elementary trigonometry. Figure 3.12 shows the counterclockwise rotation of
points located on the coordinate axes at unit distances from the center of
rotation.

y y

p

X
0

Figure 3.12 Rotation of a Point

Operations on Geometrical Images 67

On the left side of Figure 3.12, point pl, with coordinates (1,0), is rotated
counterclockwise through an angler. The coordinates of the rotated point (prl)
can be determined by solving the triangle with vertices at 0, pl, andprl, as
follows:

cos r = x/1, therefore x = cos r
sin r = y/1, therefore y = sin r

The coordinates of the rotated point pr2, on the right side of Figure 3 .12, can
be determined by solving the triangle with vertices at O,p2, andpr2.

sin r = -x/1, therefore x = - sin r
cos r = y/1, therefore y = cos r

The coordinates of the rotated points can now be expressed as follows:

coordinates of prl
coordinates of pr2

(cos r, sin r)
(-sin r, cos r)

From these equations we can derive a transformation matrix, which, through
matrix multiplication, yields the new coordinates for the counterclockwise
rotation through an angle A:

I cos r
-sin r

sin r I
cos r

We are now ready to perform a rotation transformation through matrix
multiplication. Figure 3.13 shows a clockwise rotation, through an angle of 60
degrees, with the center of rotation at the origin of the coordinate axes .

•

•
•

• •
•

•
• •

• •

Figure 3.13 Rotation Transformation

68 Chapter Three

The coordinates of the original polygon lines can be stored in a 4-by-2 matrix
as follows:

Coordinates
X y

pl --> 10 2
p2 --> 12 0
p3 --> 14 2
p4 --> 12 4

We have seen that the transformation matrix for clockwise rotation through
an angler is

cos r sin r
-sin r cos r

Evaluating this matrix for a 60-degree rotation results in the following
trigonometric functions:

0.5
-0.867

0. 8671
0.5

The rotation can now be expressed as a product of two matrices.

Original Rotation matrix Rotated
polygon 60 degrees polygon

coordinates clockwise coordinates
X y X y

pl --> 10 2 3.87 9.87
p2 --> 12 0 * I 0.5 0.867 6 10.4
p3 --> 14 2 -0.867 0.5 5.27 13.4
p4 --> 12 4 2.53 12.4

<-- prl
<-- pr2
<-- pr3
<-- pr4

The intermediate steps in the matrix multiplication operation are obtained
following the rules of matrix multiplication described in Section 3.4.3.

3.5.4 Homogeneous Coordinates

Translation, scaling, and rotation can be expressed mathematically in terms of
matrix operations; this method allows a more efficient approach to graphical
transformations. The one inconsistency in the method described is that rotation
and scaling are expressed in terms of matrix multiplication while translation
is expressed as matrix addition.

By means of a simple artifice it is possible to represent the translation
transformation as matrix multiplication. This scheme requires adding a
dummy parameter to the coordinates matrices and expanding the transforma-

Operations on Geometrical Images 69

tion matrices to 3-by-3 elements. However, it simplifies processing by allowing
all three transformations to be performed by means of a single matrix operation.

The following example shows the necessary manipulations.The coordinates
of a point can be expressed in the following matrix.

Coordinates
X y

point--> I 5 2 I

This matrix can be expanded to three rows by using a dummy matrix
parameter, labeled w. Notice that if w is not to affect coordinates x and yin
two-dimensional transformations, it must meet the following requirement.

X = X * W 1 y = y * w

Therefore, the only value that can be assigned to w that meets the above
condition is 1, which gives us the following matrix:

X

point--> I 5

Coordinates
y
2

w
1

We can use the terms Tx and Ty to represent the horizontal and vertical units
of a translation. Using homogeneous coordinates, a transformation matrix for
the translation operation can be expressed as follows:

Translation
transformation

matrix
1 0 0
0 1 0
Tx Ty 1

We test these results by performing a translation by eight units in the
horizontal direction (Tx = 8) and zero units in the vertical direction (Ty = 0) of
the point located at coordinates (5,2). The matrix multiplication is as follows:

[5 2 1 J *
1 0 0
0 1 0
8 0 1

5 + 0 + 8
0 + 2 + 0
0 + 0 + 1

13
2
1

[13 2 1 J

This operation shows the point at x = 5, y = 2 translated eight units to the right,
with destination coordinates of x = 13, y = 2. The reader should note that the w
parameter, set to 1 in the original matrix, remains the same in the final matrix.
In practical processing the parameter can be ignored.

70 Chapter Three

3.5.5 Concatenation

In order to take full advantage of the system of homogeneous coordinates we
must express all the transformation matrices in terms of 3-by-3 matrices. Using
homogeneous coordinates, the translation transformation can be expressed in
the following matrix:

Translation
transformation

matrix
1 0 0
0 1 0
Tx Ty 1

The scaling transformation matrix can also be expanded to a 3-by-3 matrix
as follows:

Scaling
transformation

matrix
Sx
0
0

0
Sy
0

0
0
1

At the same time, the translation transformation matrix for a counterclock­
wise rotation through an angle r can be converted to homogeneous coordinates
as follows:

Rotation
transformation

matrix
cos r sin r 0

-sin r cos r 0
0 0 1

Notice that this rotation transformation assumes that the center of rotation
is at the origin of the coordinate system.

Matrix multiplication is associative. This means that the product of three or
more matrices is equal, no matter which two matrices are multiplied first. By
virtue of this property, we are now able to express a complex transformation
by combining several basic transformations. This process is generally known
as matrix concatenation.

A rotation transformation can use any arbitrary point in the coordinate
system as a pivot point. For example, in Figure 3.14 polygon number 1 is rotated
counterclockwise 90 degrees using point pa as a pivot point. Furthermore, to
rotate the polygon about any arbitrary point pa, the following sequence of
transformations can be executed:

Operations on Geometrical Images 71

1. Translate the polygon so that point pa is at the coordinate origin.

2. Rotate the polygon.

3. Translate the polygon so that point pa returns to its original position.

In matrix form the sequence of transformations can be expressed as the
following product:

1. 2. 3.
1 0 0 cos r sin r 1 0
0 1 0 * -sin r cos r 0 1

-Tx -Ty 1 0 0 Tx Ty

Performing the indicated multiplication yields the matrix for a counterclock­
wise rotation, through angler, about point pa, with coordinates (Tx,Ty).

cos r
-sin r

-Tx cos r + Ty sin r

sin r
cos r

-Tx sin r - Ty cos r + Ty

0
0
1

While matrix multiplication is associative, it is not commutative. The order
in which the operations are performed can affect the results. A fact that
confirms the validity of the matrix representation of graphic transformations
is that, graphically, the results of performing transformations in different
sequences can also yield different results. For example, the image resulting
from a certain rotation, followed by a translation transformation, may not be
identical to the one resulting from performing the translation first and then the
rotation.

Figure 3.14 shows a case in which the order of the transformations determines
a difference in the final object.

◊

Figure 3.14 Order of Transformations

72 Chapter Three

3.6 Image Transformations in Animation

Graphic transformations provide a convenient technique for creating consecu­
tive images of a geometrical object. If the consecutive images obey certain
physical laws, and if they are projected and erased at sufficient speed, they can
be used to create an illusion of movement or change.

Due to image retention the animated images must be flashed at a minimum
rate of 24 per second to produce a realistic effect. We have also seen that even
with images of moderate complexity, the task of creating and displaying them
at this rate can impose an extremely large processing load on the graphics
system. Therefore, in animation programming every device or stratagem that
improves graphics performance is critically important to the final effect. Per­
forming the image transformation by mathematically operating on matrices of
coordinate points saves considerable processing time and effort.

3.6.1 Translation, Rotation, and Scaling Animation

The simplest and probably the most used transformation in computer anima­
tion is translation. For example, if the pixels along a consecutive path are
rapidly illuminated and turned off, the viewer perceives the effect of a dot
moving across the screen. By the same token, if all the dots that form a graphical
object are consecutively illuminated and turned off along a certain path, the
object appears to move across the screen. Figure 3.15 represents a few transla­
tions of the image of a spaceship moving across a bit-mapped background.

Figure 3.15 Animation by Foreground Image Translation

Operations on Geometrical Images 73

Figure 3.16 Animation by Background Translation

In Figure 3.15 the image of the space shuttle, which is a geometrical segment,
is translated over the bitmap that represents a spiral nebula. The foreground
priority of the space shuttle is higher than that of the background. An alterna­
tive manipulation consists of translating the background image while letting
the foreground image occupy a fixed position in the viewport. This case is shown
in Figure 3.16.

3.6.2 Complex Animation

It is also possible to combine more than one transformation in the creation of
more refined animation effects. For example, by combining translation and
rotation transformations, a wheel appears to roll on the screen. Or, by combin­
ing translation and scaling transformations, an object dis~ppears into the
background. Figure 3.17 shows the application of translation, scaling, and
rotation transformations on the image of the space shuttle to simulate its being
drawn into the background nebula. The effect could be enhanced by applying
additional transformations to the background image.

Figure 3.17 Animation by Translation, Scaling, and Rotation

Chapter

4

Bitmap Image Acquisition and Encoding

4.0 Pixel-Coded Image Data

Chapters 2 and 3 were mainly devoted to the encoding, storage, and manipu­
lation of geometrical images, although bitmaps were mentioned incidentally.
However, bit-mapped images are as important to the animation programmer
as are vector-based ones. This chapter describes the various techniques and
standards used in encoding computer graphics images into units of memory
storage. It includes a discussion of two popular image data storage formats:
Compuserve's GIF and Aldus Corporation's TIFF format.

Bit-mapping is the graphics technique by which one or more memory bits
represent the attribute of a screen pixel. The simplest bitmap scheme is to make
a memory bit represent a single screen pixel: if the memory bit is set, so is the
pixel. However, a graphics image can be encoded in a more complete and
efficient structure than is offered by a pixel-by-pixel attribute list.

The movement toward the standardization of image file encodings originated
with commercial software developers in need of methods for storing and
displaying graphics images. Currently there are over 20 different image file
encodings in frequent use. Graphics applications often import or export images
encoded in over a dozen file formats. Although some of these commercial
encodings have gained more popularity than others, very little has been
achieved in standardizing image file encodings. In this chapter we have selected
the two image file formats that we believe are more useful and that have gained
more widespread acceptance in the field. This selection does not imply that we
endorse these particular encodings or approve of their design or operation.

75

76

1-bit codes:

0= □

1 =•

Figure 4.1 One-Bit-per-Pixel Raw Image Bitmap

4.0.1 Raw Image Data

Chapter Four

The simplest possible image data encoding is a bare list of pixel attributes. This
encoding, called the raw image data, is often all that is required by a graphics
application. For example, the two-color bitmap in Figure 4.1 is encoded as raw
image data.

The image in Figure 4.1 consists entirely of pixels set to a single color or
attribute, represented by black dots in the illustration. Therefore each screen
pixel can be encoded in a single memory bit. If the bit is 0, then the screen pixel
is left in the background state. If the memory bit is 1, then the pixel is set to
the single supported attribute. The resulting bitmap is encoded as a bit-per­
pixel format.

Often a graphics application must encode more than one attribute per screen
pixel. For example, Figure 4.2 is a representation that uses 3 attributes of the
image in Figure 4.1, in addition to the background.

In Figure 4.2 each screen pixel can be in one of four attributes: background,
light gray, dark gray, or black. In order to represent these four states it is
necessary to assign a 2-bit field for each screen pixel. The four bit combinations
that correspond to the attribute options are shown on the left side of Figure 4.2.
At the bottom of Figure 4.2 is a map of one of the pixel rows, with the
corresponding binary codes for each pixel, as well as the hexadecimal digits of
the bitmap.

Comparing Figures 4.1 and 4.2 we see that as the number of attributes per
pixel increases, the memory storage devoted to each pixel also grows. In Figure
4.1 a single bit encodes the two possible attributes that can be assigned to each
pixel, while in Figure 4.2 a 2-bit field is necessary to represent the four possible
pixel attributes. By the same token, if each pixel can be represented in one of
256 attributes (or colors), the encoding requires an 8-bit field to represent each
pixel.

Bitmap Image Acquisition and Encoding

2-bit codes:

00= □

01 =•
10= •

11 =.

Figure 4.2 Two-Bit-per Pixel Raw Image Bitmap

bitmap:
0001 0000H
0001 0000H
0001 0000H
0001 0000H
00AA A800H
0083 0800H
0083 0800H
55BF F054H
0083 0800H
0083 0800H
00AA A800H
0001 0000H
0001 0000H
0001 0000
0001 0000H

77

The designer of a graphics application must often decide whether to use a
customized format, including only the data strictly necessary for the display
routine, or to represent the image in one of the more or less standard formats
recognized by other graphics applications. The basis for this decision is usually
one of image portability. A stand-alone program, which has no need to commu­
nicate graphics data to other applications, can often profit from a raw data
format whenever it is convenient. On the other hand, an application that must
exchange image data with other graphics programs benefits from adopting one
of the existing image data formats described later in this chapter.

4.0.2 Monochrome and Color Bitmaps

The term monochrome means "of one color," although in computer jargon it is
often interpreted as black-and-white. This assumption is not always true in
bit-mapped graphics, since a monochrome bitmap can be displayed in any
available color or attribute. Furthermore, it is possible to combine several
monochrome bitmaps to form a multicolor image on the screen. In Figure 4.3
the image of Figure 4.2 has been separated into three monochrome bitmaps. If
the software interprets bitmap 1 to be displayed in light gray pixels, bitmap 2
to be displayed in dark gray pixels, and bitmap 3 to be displayed in black pixels,
the resulting overlayed image would be identical to the one in Figure 4.2.

78 Chapter Four

bitmap 1 bltmap2 bltmap3

...... == --

Figure 4.3 Monochrome Overlayed Bitmaps

The decision whether to encode a multiattribute image in a bit field-per-pixel
bitmap (such as the one in Figure 4.2) or in several monochrome bitmaps (such
as the ones in Figure 4.3) is usually a matter of convenience, portability, and
availability of resources. When a multiattribute image is stored in a single
bitmap, the result is a more compact image file and a faster display operation.
On the other hand, several monochrome bitmaps can be easier to generate by
means of a drawing program. For example, Figure 4.4 shows the three bitmaps
used to display a color image of a target rifle. One bitmap encodes the pixels to
be displayed with a black attribute, and the second bitmap encodes the dis­
played pixels in a brown attribute, representing the rifle's wood stock. The third
bitmap encodes the highlights, that is, the pixels to be displayed with a bright
white attribute.

The result of overlaying the three bitmaps in Figure 4.4 is a colored image.
The advantages are compactness of encoding and ease of image manipulation.
In animated programs these considerations are often very important.

4.0.3 Image Data Compression

Bit-mapped image data takes up considerable memory space. For example, the
raw image data for a full screen, in an XGA or SuperVGA mode of 1024-by-768
pixels resolution in 256 colors, requires approximately 768K. This exceeds the
user memory space available in an MS-DOS machine. Several data compression
schemes have been devised to reduce the memory space required for storing
pixel-coded images. However, image data compression is achieved at a price:
the additional processing time required for packing and unpacking the image
data. In animated applications performance is often such a critical factor that
this overhead is an important consideration in adopting a compressed data
format.

Bitmap Image Acquisition and Encoding 79

bitmap for black attribute

bitmap for brown attribute

bitmap for bright white attribute

Figure 4.4 Overlayed Bitmaps for a Color Image

Many of the compression methods used for alphanumeric data are not adapt­
able for image data. In the first place, all of the irreversible techniques used in
character data compaction cannot be used for graphics images, since image data
must be restored integrally. The same applies to the semantic-dependent
methods developed for text compression. On the other hand, some general
principles of data compression are applicable to graphics encoding schemes and
can be used to compress pixel data. The following compression methods are
applicable to graphics image data.

Run-Length Encoding

The run-length encoding method is based on the suppression of repeated
character codes. It is based on the principle that if a character is repeated three
or more times, then the data string can be more compactly represented in coded
form. Run-length encoding is a simple and efficient graphics data compression
scheme based on the assumption that image data often contains entire areas
of repeated pixel values. Notice that approximately two-thirds of the bitmaps
shown in Figures 4.2 and 4.3 consist of NULL pixels (white background color).
Even the nonbackground areas of the image contain strings with the same
attribute. In this case a simple compression scheme could be used to pack the
data in the white, black, dark gray, and light gray areas so as to save consid­
erable image storage space.

80 Chapter Four

The Kermit protocol, well known in computer data transmission, uses a
run-length encoding based on three data elements. The first code element
indicates that a compression follows, the second character is the repetition code,
and the third one represents the repetition count. The PackBits compression
algorithm, which originated in the Macintosh computers, is an even more
efficient run-length encoding scheme for graphics image data. The TIFF image
file format discussed later in this chapter uses PackBits compression encoding.

Facsimile Compression Methods

Facsimile (FAX) machines and methods are often used in transmitting graphics
image data over telephone lines. Several compression protocols have been
devised for facsimile transmission. The International Telegraph and Telephone
Consultative Committee (CCITT), based in Geneva, Switzerland, has stand­
ardized data compression protocols for use in facsimile equipment. The TIFF
convention has adapted the CCITT standards to the storage of image data in
computer systems. The actual compression algorithm used in CCITT is a
variation of a method developed by David A. Huffman, sometimes called
Huffman compression. However, the CCITT method, which is quite efficient for
monochrome scanned and dithered images, is elaborate and difficult to imple­
ment.

LZW Compression

LZW is a compression technique suited to color image data. The method is
named after Abraham Lempe!, J abob Ziv, and Terry Welch. The algorithm, also
known as Ziv-Lempe! compression, was first published in 1977 in an article by
Ziv and Lempel in the IEEE Transactions on Information Theory. The compres­
sion technique was refined by Welch in an article titled "A Technique for
High-Performance Data Compression" that appeared in Computer, in 1984.
LZW compression is based on converting raw data into a reversible encoding
in which the data repetitions are tokenized and stored in compressed form. LZW
compression is used in many popular data and image compression programs,
including the Compuserve GIF image data encoding format and in some
versions of the TIFF standard. LZW compression has been patented by Unisys
Corporation. Therefore, its commercial use requires a license from the patent
holders. The following statement is inserted at the request of Unisys Corpora­
tion:

"The LZW data compression algorithm is said to be covered by U.S. Patent
4,558,302 (the "Welch Patent"). The Welch Patent is owned by Unisys
Corporation. Unisys has a significant number of licensees of the patent and
is committed to licensing the Welch Patent on reasonable non-discrimina­
tory terms and conditions. For further information, contact Unisys Welch
Licensing Department, P.O. Box 500, Blue Bell, PA 19424, MIS C1SW19."

The LZW algorithm is explained in detail in our book Graphics Programming
Solutions (McGraw-Hill, 1993).

Bibnap Image Acquisition and Encoding 81

4.0.4 Encoders and Decoders

An encoder is a program or routine used to convert raw image data into a
standard format. We speak of a GIF encoder as a program or routine used to
store a graphics image in a file structured in the GIF format. A decoder program
or routine performs the reverse operation; that is, it reproduces the graphics
image or the raw data from the information stored in an encoded image file. In
the more conventional sense, a GIF decoder displays on the screen an image
file stored in the Compuserve GIF format. Therefore the fundamental tool kit
for operating with a given image data format consists of encoder and decoder
code. With some compressed image formats the processing required in encoders
and decoders can be quite elaborate.

4.1 The GIF Format

The Graphics Interchange Format (GIF) originated in the Compuserve com­
puter information service. The first description of the GIF protocol, which
appeared on the Compuserve Picture Support Forum on May 28, 1987, was
identified with the code letters GIF87a, while the current version is labeled
GIF89a. GIF is the only graphics image storage format in use today that is not
associated with any software company. Although the GIF standard is copy­
righted, Compuserve grants royalty-free adoption rights to anyone wishing to
use it. According to Compuserve, software developers are free to use the GIF
encodings by accepting the terms of the Compuserve licensing agreement,
which basically states that all changes to the standard must be made by the
copyright holders and that the software utilizing GIF must acknowledge
Compuserve's ownership. The agreement can be obtained from the Compuserve
Graphics Technology Department or in the graphics forums.

GIF was conceived as a compact and efficient storage and transmission format
for computer imagery. The GIF87a specification supports multiple images with
a maximum of 16,000-by-16,000 pixels resolution in 256 colors. This format is
suited to the maximum resolution available today in SuperVGA and XGA
systems.

The advantages of the GIF standard are related to its being compact, power­
ful, portable, and, presumably, public. There is an extensive collection of public
domain images in GIF format which can be found in the Compuserve graphics
forums and in many bulletin board services. The major disadvantage of the GIF
standard is that many commercial programs do not support it. Users of popular
graphics programs soon discover that GIF is not included in the relatively
extensive catalog of file formats which the application imports and exports. This
limitation can often be solved by means of a conversion utility that translates
a format recognized by the particular application into a GIF encoding. Several
of these format conversion utilities are available on the Compuserve graphics
forums.

82 Chapter Four

The main sources of information about the GIF standard are the graphics
forums on the Compuserve Information Service. The specifications of GIF89a
are available in the file GIF89A.DOC found in library number 14 of the
Compuserve Graphics Support forum. Image files in the GIF format are
plentiful on the Compuserve Graphics Support libraries as well as in many
bulletin board services.

4.1.1 GIF FIie Structure

The two versions of the GIF standard at the time of this writing are labeled
GIF87a and GIF89a. Version 89a, an extension of version 87a, adds several
features to the original GIF protocol, such as the display of text messages,
comments, and application and graphics control data. The detailed description
of the GIF protocol is found in the file GIF89A.DOC mentioned in the previous
section. The following description is limited to the features common to both the
GIF87a and GIF89a specifications.

The GIF87a format is defined as a series of blocks and sub blocks containing
the data necessary for the storage and reproduction of a computer graphics
image. A GIF data stream contains the data stored in these blocks and sub
blocks in the order defined by the GIF protocol. The first block in the data
stream is the header and the last one is the trailer. Image data and other
information are encoded between the header and trailer blocks. These can
include a logical screen descriptor block and a global color table, as well as one
or more local image descriptors, local color tables, and compressed image data.
The GIF89a protocol allows graphics control and rendering blocks, plain text
blocks, and an application data block. Figure 4.5 shows the elements of the
GIF87a data stream.

header

logical screen descriptor

[global color table]

local Image descriptor

[local color table]

Image data

trailer

Note: Items in braces are optional

Figure 4.5 The GIF Data Stream

Bitmap Image Acquisition and Encoding

Figure 4.6 The GIF Header

GIF Header

signature field
(GIF)

version field
(87a or 89a)

83

The first item in the GIF data stream is the header. It consists of six ASCII
characters. The first three characters, called the signature, are the letters
"GIF." The following three characters encode the GIF version number. The
value "87a" in this field refers to the version of the GIF protocol approved in
May 1987, while the value "89a" refers to the GIF version dated July 1989.
Figure 4.6 shows the elements of the GIF header.

One header must be present in each GIF data stream. A GIF encoder must
initialize all six characters in the GIF header. The version number field should
correspond to the earliest GIF version that defines all the blocks in the actual
data stream. In other words, a GIF file that uses only the elements of the
GIF87a protocol should contain the characters 87a in the version field of the
GIF header, even if the file was created after the implementation of the GIF89a
protocol. The GIF decoder uses the information in the header block to certify
that the file is encoded in the GIF format and to determine version compatibil­
ity.

GIF Logical Screen Descriptor

The block immediately following the header is called the logical screen descrip­
tor. This block contains the information about the display device or mode
compatible with the image. One logical screen descriptor block must be present
in each GIF data stream. Figure 4. 7 shows the elements of the logical screen
descriptor block.

1116 s 41312 1 ol ~ ~
bit fields:
7 = global color table flea

present) (set If global color table
6-5-4 = color resolution

original palette Is fief d+1
3 = eort flag

(set If most Important
2-1-0 = size of global color

number of entries la

color first)
table
2-"(fleld+ 1)

0 -
2 -
4

5

6

Figure 4. 7 GIF Logical Screen Descriptor

word

word

byte

byte

byte

-

-

._ logical screen width

._ logical screen height

._ background color

._ plxel aspect ratio

84 Chapter Four

The fields of the GIF logical screen descriptor are formatted as follows:

1. The words at offset 0 and 2, labeled l,ogical screen w;,dth and logical screen height,
encode the pixel dimensions of the logical screen to be used by the display device.
In IBM microcomputers this value usually ooincides with the selected display
mode.

2. The byte at offset 4 is divined into four bit fields. Bit 7, labeled the global color
table flag, serves to indicate if a global color table is present in the data stream
that follows. The global color table is discussed later in this section. Bits 6, 5, and
4 are the color resolutwn field. This value represents the number of palette bits
for the selected mode, plus one. For example, a 16-color VGA palette (4 bits
encoding) is represented by the bit value 011 (decimal 3). Bit 3, labeled the sort
flag, is used to signal that the global color table (if present) is sorted st.art:ing with
the most important colors. This information can be used by the software if the
display device has fewer colors available than those used in the image. Finally,
the field formed by bits 2, 1, and 0 determines the size of the global color table (if
one is present). The value is encoded as a power of 2, diminished by 1. Therefore,
to restore the original exponent it is necessary to add 1 to the value encoded in
the bit field. For example, a bit value of 011 (3 decimal) corresponds to a global
color table representing 24, or 16 colors. Notice that this value corresponds to the
number of colors in the global color table, not to its byte length (discussed later in
this section). The maximum representable value in a 3-bit field is 7, which limits
the number of colors in the global color table to 28, or 256 colors.

3. The field at offset 5, labeled background color in Figure 4.7, is used to represent
the color of those pixels located outside of the defined image or images. The value
is an offset into the global color table.

4. The field at offset 6, labeled the pb:.el aspect ratio in Figure 4.7, is used to
compensate for nonproportional x and y dimensions of the display device. This
field is set to zero for systems with a symmetrical pixel density, such as the most
widely used modes in VGA and XGA systems.

GIF Global Color Table

The global color table is an optional GIF block used to encode a general color palette
for displaying images in data streams without a local color table. The global color
table serves as a default palette for the entire stream. Recall that the GIF data stream
can contain multiple images. The presence of a global color table and its size is
determined from the data furnished in the logical screen descriptor block (see Figure
4.5). Only one global color table is present in the data stream. Figure 4.8 shows the
structure of a global color table.

The entries in the global color table consist of values for the red, green, and blue
palette registers. Each component color takes up one byte in the table; therefore each
palette color consists of three bytes in the global color table. The number of entries
in the global color table is determined by reading bits 0, 1, and 2 of the global color
size field in the logical screen descriptor block (see Figure 4.5). The byte length of the
table is three times the number of entries. The maximum number of palette colors
is 256. In this case the global color table takes up 768 bytes (see Figure 4.8).

Bitmap Image Acquisition and Encoding

coff•
0

1

2

3

4

RED
GREEN
BLUE
RED

GREEN

GREEN
BLUE

Figure 4.8 GIF Global Color Table

GIF Image Descriptor

85

color number 1

color number 2

color number 256

Each image in the GIF data stream is defined by an image descriptor, an
optional local color table, and one or more blocks of compressed image data. The
image descriptor block contains the information for decoding and displaying the
image. Figure 4.9 shows the elements of the image descriptor block.

coffset
0 byla

word

3
word

5
word

7
word

8 byla

7 6 5 4 3 2 1 0

._ Image separator {code 2CH)

._ Image left poaHlon

._ Image right poaHlon

._ Image pixel width

._ Image plxel height

bit fields:
7 = local color table flag

(set If local color table present)
6 = Interlace flag

(set If Image Is Interlaced)
5 = sort flag

(set If moat Important color first)
4-3 = RESERVED (bits = 0)
2-1-0 = size of local color table

number of entries la r+11

Figure 4.9 GIF Image Descriptor

86 Chapter Four

The fields of the GIF image descriptor are formatted as follows:

1. The byte at offset 0, labeled image separator in Figure 4.9, must be the code
2CH.

2. The words at offset 1 and 3, labeled image left position and image right position,
respectively (see Figure 4.9), encode the screen column and row coordinates of
the image's top-left comer. This location is an offset within the logical screen
defined in the logical screen descriptor block (see Figure 4.5).

3. The words at offset 5 and 7, labeled image pixel width and image pixel height,
respectively (see Figure 4.9), encode the size of the image, measured in screen
pixels.

4. The byte at offset 8 in Figure 4.9 is divided into five bit fields. Bit 7, labeled the
local color table flag, serves to indicate if a local color table follows the image
descriptor block. If a local color table is present in the data stream, it is used for.
displaying the image represented in the corresponding descriptor block. Bit 6,
labeled the interlace flag, encodes if the image is interlaced, that is, if its rows
are not arranged in consecutive order. In the PC interlaced images are used in
some CGA and EGA display modes, but not in the proprietary VGA and XGA
modes. Bit 5, labeled the sort flag, is used to signal that the local color table (if
present) is sorted starting with the most important colors. This information is
used by the software if the display device has fewer available colors than those
in the table. The field formed by bits 2, 1, and O determines the size of the local
color table (if one is present). The value is encoded as a power of 2, diminished
by 1. Therefore, to restore the original exponent, it is necessary to add 1 to the
value encoded in the bit field. For example, a bit value of 011 (3 decimal)
corresponds to a global color table representing 24, or 16 colors. Notice that this
value corresponds to the number of colors in the local color table, not to its byte
length (refer to the previous discussion about the global color table).

GIF Local Color Table

The local color table is an optional GIF block that encodes the color palette used
in displaying the image corresponding to the preceding image descriptor block. If
no local color table is furnished, the image is displayed using the values in the
global color table. If neither table is present, it is displayed using the current setting
of the DAC registers. The GIF data stream can contain multiple images, with each
one having its own local color table. The structure of the local color table is identical
to the one described for the global color table (see Figure 4.8).

GIF Compressed Image Data

The image itself follows the local color table, if one is furnished, or the image
descriptor block if the data stream does not include a local color table. The GIF
standard sets no limit to the number of images contained in the data stream. Image
data is divided into sub blocks, with each sub block having at the most 255 bytes.
The data values in the image are offsets into the current color palette. For
example, if the palette is set to standard IRGB code, a pixel value of llOOB

Bitmap Image Acquisition and Encoding 87

(decimal 12) corresponds to the twelfth palette entry, which, in this case,
encodes the LUT register settings for bright red. Preceding the image data
blocks is a byte value that holds the code size used for the LZW compression of
the image data in the stream. This data item normally matches the number of
bits used to encode the pixel color. For example, an image intended for VGA
mode 18, in 16 colors, has an LZW code size of four, while an image for VGA
mode 19, in 256 colors, has an LZW code size of eight. Figure 4.10 shows the
format of the GIF data blocks.

r. offset

o l.._ __ byt_e __ __.l ◄

1 byte I ..._J
byte I 7

--.--byt--.....-e ~ I

byte 7
~--byt_e __ ~I ◄

Figure 4.1 O GIF Image Data Blocks

L.:ZW code size

first image data sub block:
offset O = block size byte
offset 1 = start of L.:ZW data

last image data sub-block:
offset O = block size byte
offset 1 = start of L.:ZW data

terminator sub-block (OOH)

The image data sub blocks contain the image data in compressed form. The
LZW compression algorithm used in the GIF protocol is explained in our book
Graphics Programming Solutions (McGraw-Hill, 1993). Each data sub block
starts with a block-size byte, which encodes the byte length of the data stored
in the rest of the sub block. The count, which does not include the count byte
itself, can be in the range O to 255. The compressed data stream ends with a
sub block with a zero byte count (see Figure 4.10).

GIF Trailer

The simplest GIF block is named the trailer. This block consists of a single byte
containing the GIF special code 3BH. Every GIF data stream must end with
the trailer block. The GIF trailer is shown in Figure 4.11.

,_ ___ b_yt_e __ _____.l -◄----- special code 3BH

Figure 4.11 GIF Trailer

88 Chapter Four

GIF89a Extensions

GIF version 89a contains several features that are not present in version 87a.
These include the following new blocks:

1. A graphics control extension refers to a graphics rendering block, also a new
feature introduced in version 89a. The graphics control extension contains
information on displaying the rendering block. This information includes
instructions about disposing of the currently displayed image, handling the
background color, action on user input, time delay during the display
operation, and image transparency.

2. The graphics rendering blocks can be an image descriptor block, as described
for GIF version 87a, or a new plain text extension. The plain text extension
contains ASCII data to be displayed in a coarse grid of character cells
determined in the block. Also in the plain text block are the foreground and
background colors, the coordinates of the start position, and the text message
itself.

3. The applications extension is an extension block in GIF version 89a that
contains application-specific information. The block includes an 8-byte ap­
plication identifier field intended for an ASCII string that identifies the
particular piece of software. A 3-byte authentication code follows the iden­
tifier. Application data follows the authentication code field.

4.2 The TIFF Format

The Tag Image File Format (TIFF) was developed by Aldus Corporation with
the support of several other companies, including Hewlett-Packard and Mi­
crosoft. The standard intends to provide a flexible file storage format for raster
images. Its origin is related to scanner hardware and software for microcom­
puters. The first version of TIFF was published in the fall of 1986. The present
update, designated as TIFF Revision 6.0, was released in June 1992. TIFF is a
nonproprietary standard which can be used without license or previous royalty
agreement. Technical information about TIFF can be obtained from the Aldus
Developer's Desk at Aldus Corporation, Seattle, Washington, or from the Aldus
forum on Compuserve (GO ALDSVC).

The purpose of the TIFF standard is to provide an image storage convention
with maximum flexibility and portability. TIFF is not intended for any particu­
lar computer, operating system, or application program. Consistent with this
idea, the files in TIFF format have no version number or other update identi­
fication code. A typical TIFF reader searches for the necessary data and ignores
all other information contained in the file. The format supports both the Intel
and the Motorola data ordering schemes, but hardware-specific features are
not documented in the TIFF file. The mode, resolution, or color range used in
displaying a TIFF file is left entirely to the software.

The TIFF standard supports monochrome, grayscale, and color images of
various specifications. The original TIFF documents classified the various

Bitmap Image Acquisition and Encoding 89

image types into four classes. Class B was used for binary (black-and-white)
images, class G for grayscale images, class P for palette color images (8-
bits-per-pixel color), and class R for full-color images (24-bits-per-pixel color).
A TIFF application need not provide support for all TIFF image types. For
example, a VGA TIFF reader could exclude class R images since the system's
maximum color range is 8 bits-per-pixel (256 colors). By the same token, a
routine or application that reads monochrome scanned images could limit its
support to the class B category. The image class designation by letter codes was
dropped in TIFF revision 6.0; however, the image classification into bilevel,
grayscale, RGB, and palette types was preserved.

TIFF originally supported uncompressed images as well as compressed data
according to several compression schemes, namely, PackBits, CCITT, and LZW.
LZW compression support was dropped in TIFF version 6.0, because the
compression algorithm is patented by Unysis Corporation. Notice that in the
TIFF standard, compression methods are usually associated with the particular
file classes mentioned in the preceding paragraph.

4.2.1 TIFF File Structure

The TIFF standard is an image file protocol. A file in the TIFF format is divided
into three areas: the header, the image file directory, and the image data.

The notion of tags is the feature that identifies files in the TIFF format. A
TIFF tag is a word integer that serves to identify the file structure that follows.
For example, the tag value 103H indicates that the structure that follows
contains data compression information. TIFF file processing software can
search for this tag in order to determine which, if any, compression scheme was
used in encoding the image data. TIFF tags are discussed in greater detail later
in this section.

TIFF Header

An image file in TIFF format must start with an 8-byte block called the header.
Figure 4.12 shows the structure of the TIFF image file header. r offset

0
word

2
word

4

doubleword

Figure 4.12 TIFF File Header

byte ordering ('II' or 'MM')
._ 'II' = Intel byte ordering

'MM' = Motorola byte ordering

._'42'

+- offset of first IFD

90 Chapter Four

The word at offset 0 of the TIFF file header consists of the ASCII characters
'II' or 'MM'. The 'II' code identifies a file in the Intel byte ordering scheme; that
is, word and doubleword entries appear with the least significant byte in the
lowest numbered memory address. This data ordering format is sometimes
known as the "little-endian" scheme. The 'MM' code identifies a file in the
Motorola byte ordering order, that is, with the least significant byte of word
and doubleword entries in the highest numbered memory address. This format
is known as the "big-endian" scheme. The ASCII number '42' found at the word
at offset 2 of the header serves to further identify a file in TIFF format. The
numbers themselves have no documented significance. The ASCII code '42' has
sometimes been called the TIFF version number, although it is not described
as such in the standard. The doubleword at offset 4 of the header block contains
the offset, in the TIFF file, of the first image file directory (IFD).

The file header block is the only TIFF file structure that must be located at a
predetermined offset from the start of the file. The remaining structures can
be located anywhere in the TIFF file. TIFF file processing code reads the data
in the header block to certify that the file is in TIFF format and to make
decisions regarding the data ordering scheme. A sophisticated application could
be capable of making adjustments in order to read data both in Intel and in
Motorola orders, while another one could require data in a specific format.

TIFF Image File Directory (IFD)

Once the code determines that the file is in TIFF format and that it is encoded
in a valid ordering scheme, it uses the doubleword at offset 4 of the header (see
Figure 4.12) to determine the location of the first image file directory (IFD).
Notice that a TIFF file can contain more than one image. If so, each image in
the file is associated with its own IFD. However, by far the more common
situation is that a TIFF file contains a single image. This assumption is made
in the code and examples for manipulating TIFF files. The structure of the IFD
is shown in Figure 4.13.

Observe that the offset values in the left-most column of Figure 4.13 (labeled
"local offset") refer to offsets within the IFD block because the IFD itself can be
located anywhere within the TIFF file. The word at local offset 0 of the IFD is
a count of the number of directory entries. Recall that the number of directory
entries is unlimited in the TIFF standard. The last directory entry is followed
by a doubleword field which contains the offset of the next IFD, if one exists. If
not, this doubleword contains the value 0000H. Each entry in the IFD takes up
12 bytes. The structure of each IFD entry is shown in Figure 4.14.

The tag code is located at local offset 0 in the directory entry field. TIFF
requires that the entry fields be sorted by increasing order of the tag codes;
therefore, a lower numbered tag code always precedes a higher numbered one.
This simplifies searching for a particular tag code since the search terminates
when one with a higher numbered tag is encountered. The type code is located
at local offset 2 within the directory entry field.

Bitmap Image Acquisition and Encoding

local r offset

0

2

14

word

12-byte directory
entry

12-byte directory
entry

12-byte directory
entry

doubleword

.__ number of IFD entries

+- directory entry No. 0

+- directory entry No. 1

+- last directory entry

offset of next IFD or
+- 0000H if last IFD

Figure 4.13 TIFF Image File Directory

local r offset

0

2

4

word

word

doubleword

8

doubleword

Figure 4.14 TIFF Directory Entry

._ tag code

._type code

._ number of values (count)

._ value / offset

91

92 Chapter Four

Table 4.1 shows the type code values according to TIFF version 6.0. Code
numbers six and higher were introduced in Version 6.0 and are not documented
in previous versions of the standard.

TYPE
CODE

1
2

3
4
5

6
7

8

9

10

11

12

Table 4.1 TIFF Version 6.0 Field Type Codes

STORAGE
UNIT

byte
ASCII character

word
doubleword
quadword

byte
byte

word

doubleword

quadword

doubleword

quadword

FIELD CONTENTS

8-bit unsigned integer
offset of ASCII string terminated

in NULL byte
16-bit unsigned integer
32-bit unsigned integer
Rational number. The first

doubleword is the numerator of a
fraction and the last doubleword is
the denominator

8-bit signed integer
Undefined. Can be used at will by

the software
16-bit signed integer in 2's

complement form
32-bit signed integer in 2's

complement form
Rational number. The first

doubleword is the signed numerator
of a fraction and the last
doubleword is the signed denominator

Single precision floating-point
number in IEEE format

Double precision floating-point
number in IEEE format

The count field is a doubleword at offset 4 of the directory entry. This field,
which was named the length field in previous versions of TIFF, encodes the
number of data repetitions in the current directory entry. Notice that this value
does not encode the number of bytes, but the number of data units. For example,
if the field type code is 3 (word unit) then the count field represents the number
of data words of information that are associated with the entry.

The value I offset field is designated in this manner because it contains either
a direct value or an offset into the TIFF file. The general rule is that if the
encoded data fits into a doubleword storage (4 bytes), then the data is entered
directly in the doubleword at local offset eight of the directory entry (see Figure
4.14). This design saves coding space and simplifies processing. However, some
TIFF tags, such as the StripOffset tag mentioned later in this section, always
contain offset data in this field. The software determines if the data in the
value/offset field is either a value or an offset by means of the tag, the field type
code, and the data item count.

If the tag contains either a value or an offset, the program must first examine
the field type codes (see Table 4.1). In this case data corresponding to field type
codes 1, 3, 4, 5, 6, 7, 8, 9, and 11, is contained in a doubleword storage unit and
is therefore entered as values. By the same token, field types 2, 5, 10, and 12
encode an offset in the value/offset field of the directory entry. Once it is
determined that an individual data item fits in the 4 bytes allocated to the
value/offset field, then the software must examine the number of values

Bitmap Image Acquisition and Encoding 93

associated with the directory entry. If the total number of values exceeds the
allocated space (4 bytes), then the value/offset field contains an offset. In this
case the type code and the count fields are multiplied in order to determine the
number of items supplied. ·

4.2.2 TIFF Tags for Bilevel Images

Over 50 tags have been defined in the TIFF standard; however, only a handful
are used in most TIFF images. A complete description of all the TIFF tags is
found in TIFF Revision 6.0 specification available, at no charge, from Aldus
Corporation. The TIFF tags mentioned in the following discussion are those
that would be commonly found in monochrome (bilevel in TIFF terminology)
scanned images.

OldSubFileType (tag code 00FFH)

This tag, originally called the SubFileType, has been replaced by the NewSub­
FileType tag; however, many older TIFF programs still use this tag. The tag
provides information about the bitmap associated with the IFD. The tag can
take the following values:

Value= 1 indicates that the image is in full-resolution format.
Value= 2 indicates the image data is in reduced-resolution format.
Value= 3 indicates that the image data is a single page of a multipage
image.

NewSubFileType (tag code 00FEH)

This tag, which replaces OldSubFileType, describes the kind of data in the IFD.
The tag is made up of a doubleword integer with the following significant bits:

Bit O is set if the image is a reduced-resolution version of another image.
Bit 1 is set if the image is a single page of a multipage image.
Bit 2 is set if the image is a transparency mask (see the Photometricinterpre­
tation tag later in this section.)

Image Width (tag code 01 OOH)

This tag encodes the number of pixel columns in the image.

lmagelength (tag code 0101 H)

This tag encodes the number of pixel rows in the image.

BitsPerSample (tag code 0102H)

This tag encodes the number of bits required to represent each pixel sample.
The value of this tag is one for bilevel images, four for 16-color palette images,
and eight for 256-color palette images. In IBM video graphics systems the
number of bits per sample is usually the same as the number of bits per pixel

94 Chapter Four

color. Regarding images encoded in RGB format (as used in some Macintosh
systems and in the XGA Direct Color mode), the number of bits per sample
refers to each individual color. In this case the SamplesPerPixel tag encodes
the number of pixel colors (three colors in RGB encoding), and the BitsPerSam­
ple tag the number of bits assigned to each color. For example, if six bits are
assigned to the red sample, eight bits to the green, and six bits to the blue, the
total number of bits per pixel would be 20.

Compression (tag code 0103H)

This tag encodes the compression scheme used in the image data. The tag can
take the following values:

Value = 1 indicates that the image data is not compressed. Pixel information
is packed at the byte level, as tightly as possible. Uncompressed data has a
disadvantage over compressed data in that it takes up more memory space.
On the other hand, it has an advantage in that it can be manipulated faster
by the display routines.
Value = 2 indicates that image data is compressed according to CCITT Group
3 (Modified Huffman) run-length encoding.
Value = 32,773 (8005H) indicates the data is compressed according to the
PackBits scheme described in detail later in this section.

Photometriclnterpretation (tag code 0106H)

This tag describes how to interpret the color encoding in the bitmap. The tag
can take the following values:

Value = 0 is used in bilevel and grayscale images to indicate that a bit value
of O represents the white color.
Value = 1 is used in bilevel and grayscale images to indicate that a bit value
of O represents the black color.
Value = 2 is used to indicate an encoding in RGB format.
Value= 3 is used to indicate palette color format. In this case a ColorMap
tag must be included to hold the LUT values.
Value= 4 indicates that the image is a transparency mask used to define an
irregularly shaped region of another image.

Thresh holding (tag code 0107H)

This tag describes the technique used for representing the gray scale in a
black-and-white image. The tag can have the following values:

Value= 1 indicates that the image contains no dithering or halftoning. Bilevel
images use this value.

Value = 2 indicates that the image has been dithered or halftoned.
Value = 3 indicates that a randomized process, such as the error diffusion
algorithm, has been applied to the image data.

Bibnap Image Acquisition and Encoding 95

StripsOffset (tag code 0111 H)

This tag provides the information necessary for the software to locate the image
deta within the TIFF file. By definition, the value in this tag is always an offset
from the beginning of the TIFF file. The structure of the TIFF image data, as
well as the use of this tag, is discussed in Section 4.2.3.

SamplesPerPixel (tag code 0115H)

This tag encodes the number of color components for each screen pixel. The
value of this tag is one for bilevel, grayscale, and palette color images, and three
for images in RGB format.

RowsPerStrip (tag code 0116H)

This tag determines the number of rows in each strip. Image encoding in the
TIFF standard is discussed in Section 4.2.3.

StripByteCounts (tag code 0117H)

This tag determines the number of bytes in each strip, after compression. Image
encoding in the TIFF standard is discussed in Section 4.2.3.

XResolution (tag code 011AH)

This tag provides information about the x-axis resolution at which the original
image was created or scanned. The data is important to software that must
reproduce the image exactly as it was originally produced. This is a critical
factor in the reproduction of dithered images, which do not allow scaling.

YResolution (tag code 011 BH)

This tag provides information about the y-axis resolution at which the original
image was created or scanned. See the text in the XResolution tab.

PlanarConfiguration (tag code 011 CH)

This tag provides information regarding the organization of color pixel data. It
is relevant only for color images in RGB format (more than one sample per
pixel). The tag can have the following values:

Value = 1 indicates that RGB data is stored in the order of the color
components, that is, in a repeating sequence of red, green, and blue values.
This organization is called the chunky format in TIFF documentation.

Value= 2 indicates that RGB data is stored by bit planes. That is, the red
color components are stored first, followed by the green, and then by the blue.
This organization is called the planar format in TIFF documentation.

96 Chapter Four

ResolutionUnit (tag code 128H)

This tag determines the unit of measurement used in the parameters contained
in XResolution and YResolution tags. Many TIFF programs do not use this tag,
but it is recommended by the standard. The tag can have the following values:

Value = 1 indicates no unit of resolution.
Value= 2 indicates inches.
Value= 3 indicates centimeters.

4.2.3 Locating TIFF Image Data

Although TIFF file processing software often ignores many tags and makes
assumptions regarding others, one necessary manipulation in an image display
operation is the locating and decoding of the image bitmap.

TIFF Image data can be located almost anywhere in the file. This is true of
both uncompressed and compressed data. Furthermore, the TIFF standard
allows dividing an image into several areas, called strips. The idea is to
facilitate data input and output in machines limited to a 64K segment size. This
is the case oflntel processors operating in MS-DOS or Windows systems. The
data for each individual strip is represented by a separate tag.

When the image is divided into strips, three tags participate in locating the
image data: RowsPerStrip, StripOffsets, and StripByteCounts. The first opera­
tion is for the software to calculate the number of strips into which the image
data is divided. This value, which is not encoded in any particular tag, can be
obtained from the number of values field of the StripOffsets tag (see Figure
4.14).

Locating the image data in a single strip image consists of adding the value
in the StripOffsets tag to the start of the TIFF file. In this case the image size
(in bytes) is obtained by reading the value in the Image Width tag (which is the
number of pixels per row), dividing it by eight to determine the number of data
bytes per pixel row, and multiplying this value by the number of pixel rows
stored in the ImageLength tag.

If the image data consists of multiple strips, then each strip is handled
separately by the software. In this case the number of bytes in each strip, after
compression, is obtained from the corresponding entry in the StripByteCounts
tag. The display routine obtains the number of pixel rows encoded in each strip
from the value stored in the RowsPerStrip tag. However, if the total number of
rows, as stored in the ImageLength tag, is not an exact multiple of the
RowsPerStrip value, then the last strip could contain less rows than the value
in the RowsPerStrip tag. TIFF software is expected to detect and handle this
special case.

4.2.4 Processing TIFF Image Data

Once the start of the TIFF image data is located within the TIFF file, the code
must determine if the data is stored in compressed or uncompressed format and

Bitmap Image Acquisition and Encoding 97

proceed accordingly. This information is found in the Compression tag pre­
viously mentioned. In TIFF Version 5.0 the Compression tag could hold one of
six values. Value number 1 corresponds to no compression, values 2, 3, and 4
correspond to three modes of CCITT compression, and value 5 corresponds to
LZW compression; finally value 32,773 in the Compression tag indicates
PackBits compression.

We mentioned that several of these compression schemes were dropped in
Version 6.0 of the TIFF standard (see Section 4.2). In the present TIFF
implementation, values 3, 4, and 5 for the Compression tag are no longer
supported. Since there are substantial reasons to favor the LZW algorithm for
the compression of color images (which was dropped in TIFF Version 6.0
because of patent rights considerations), we have limited the discussion on
TIFF image decoding to the case of PackBits compression.

TIFF PackBits Compression

The PackBits compression algorithm was originally developed on the Macin­
tosh computer. The MacPaint program uses a version of PackBits compression
for its image files. Macintosh users have available compression and decompres­
sion utilities for files in this format. The compression scheme is simple to
implement and often offers satisfactory results with monochrome and scanned
images.

PackBits, as implemented in TIFF, is a byte-level, simplified run-length
compression scheme. The encoding is based on the value of the first byte of each
compressed data unit, often designated as the n byte. The decompression logic
can be described in the following steps:

STEP 1: If end-of-information code, then end decompression.
STEP 2: Read next source byte. Designate as n (n is an unsigned integer).

STEP 3: If n is in the range 0 to 127 (inclusive), perform the following
operations:

a. Read the next n+l bytes literally from the source file
into the output stream.

b. Go to STEP 1.

STEP 4: If n is in the range 129 to 255 (inclusive), perform the following
operations:

a. Negate n (n = -n).

b. Copy the next byte n+l times to the output stream.

c. Go to STEP 1.

STEP 5: Goto STEP 1.

Notice that in the above description we assume that n is an unsigned integer.
This convention, which facilitates coding in 80x86 assembly language, differs
from other descriptions of the algorithm in which n is a signed value. Figure
4.15 is a flowchart of this decompression logic.

98

NO

n = next source byte

YES

YES

end-of-information
?

copy n+l bytes literally
from source to output

n = -n
copy next byte n+l times

to output stream

Figure 4.15 TIFF PackBits Decompression

Chapter Four

Observe that in the TIFF implementation of PackBits no action is taken if n
= 128. If n = 0, then one byte is copied literally from source to output. The
maximum number of bytes in a compression run is 128. In addition, the TIFF
implementation of PackBits compression adopted the following special rules:
1. Each pixel row is compressed separately. Compressed data cannot cross pixel

row boundaries.
2. The number of uncompressed bytes per row is defined as the value in the

Image Width tag, plus 7, divided by 8. If the resulting image map has an even
number of bytes per row, the decompression buffer should be word-aligned.

4.2.5 TIFF Software

In this section we present two procedures for manipulating TIFF images. The
procedure named SHOW _TIFF can be used to display a bitmap encoded in TIFF
bilevel format. This procedure requires that the user pass a formatted data
block, as shown in the header. This procedure calls the procedure named
LOAD_TIFF, also listed in this section, which decompresses and loads the
encoded image. The procedures are designed so as to place the TIFF file and
the image bitmap in a separate data segment, therefore freeing the caller's code
from having to devote storage space to TIFF data.

Bitmap Image Acquisition and Encoding 99

·** ,
·** ,

TIFF File Access Procedures
·** ,
·** ,

·** ,
segment for TIFF data

·** ,
TIFF DATA SEGMENT
;**********************I
; storage for TIFF filel
;**********************I
; Maximum size of TIFF file is 20K
TIFF FILE DB 20480 DUP (OOH)
;**********************I

disk file buffer
;**********************I
DATA BUF DB

DW
;**********************I

copy of caller's
display block

;**********************I
USER BLOCK DW

DW
DW

DW
DB
DB
DB
DW

;**********************I
bit image

;**********************I
BIT IMAGE DB

TIFF DATA ENDS

128 DUP (OOH)
0

Disk data storage area

0
0
0

x coordinate
y coordinate
Offset of bitmap from start
of file

0 Number of pixel rows
0 Number of bytes per row
0 IR GB color code
15 DUP (OOH)
0

38400 DUP (OOH)

·** ,
code segment

·** ,

CODE SEGMENT PUBLIC
ASSUME CS:CODE

·** ,
·** ,

code segment data
·** ,
·** ,

100 Chapter Four

; Code segment variables used by procedures
X COORD DW OOOOH Storage for x coordinate
BYTES DB OH Number of bytes per block row
COUNT 8 DB 8 Bit counter for the

VARI_PATTERN procedure
PIX ROWS DW O Number of pixel rows in map

Data variables used by the SHOW_TIFF procedure
STRIP OFFSET DW O Offset of bitmap from start of

TIFF file
TIFF HANDLE
IMAGE SIZE
EXP COUNT
USERS DS

DW
OW
DW
DW

0
0
0
0

File handle for TIFF disk file
Image dimension
Byte counter for expansion
Caller's DS segment

;***
procedure to display raster image

in TIFF format
;***

SHOW TIFF PROC NEAR
Procedure to display a bit-mapped graphics file in TIFF format
in VGA mode number 18

On entry:
SI=> caller's display block formatted as follows:

OFFSET
0

STORAGE
WORD
WORD
WORD

CONTENTS
x screen coordinate for image

2
4

y screen coordinate for image
Offset of bitmap from start of file
(from the StripOffset tag)

6 WORD number of vertical rows in bitmap
(from the ImageLength tag)

8 BYTE number of horizontal bytes in bitmap
9 BYTE IR GB color code for bit display
10 STRING ASCIIZ string containing the filename

for the TIFF file

CALL LOAD TIFF Local procedure to load
TIFF file into RAM and
decompress

LEA SI,USER_BLOCK
Initialize registers

MOV CX,WORD PTR [SI]
MOV
ADD
MOV
ADD

CS:X_COORD,CX
SI,2
DX, WORD PTR [SI]
SI,2

image
Reset entry pointer

x coordinate
Store in variable
Bump pointer
y coordinate
Bump pointer

Bitmap Image Acquisition and Encoding

MOV BP, WORD PTR [SI] Bitmap offset
ADD SI,2
MOV
MOV
ADD
MOV
MOV
INC
MOV
MOV
LEA

AX, WORD PTR [SI]
CS:PIX_ROWS,AX
SI,2
BH, BYTE PTR [SI]
CS:BYTES,BH
SI
AL, [SI]

Number of pix rows
Store in variable
Bump pointer
Bytes per block
Store in variable
Bump pointer

Color code to AL
CS:COUNT_8,8 Prime bit counter
DI,BIT_IMAGE Pointer to unpacked bitmap

Register and variables after routine initialization:
CX x coordinate of block start
DX y coordinate of block start
BP offset from start of TIFF file to bitmap
BH number of bytes per block row
AL color code
DI=> image bitmap
CS:X COORD = current x coordinate
CS:BYTES = number of bytes per block row
CS:PIX ROWS= number of pixel rows in block
CS:COUNT 8 = 8

;**********************I
reset ES segment

;**********************I
PUSH
MOV
MOV
POP

AX
AX,0A000H
ES,AX
AX

;**********************I
display image block I

;**********************I
DISPLAY BYTE T:

MOV AH, [DI]
; Test for all zero display

CMP AH,0
JNE TEST BIT T
ADD CX,8
JMP NEXT BYTE T

TEST BIT T:
TEST AH,l0000000B
JZ NEXT BIT T

Set the pixel
PUSH AX
PUSH BX
CALL PIXEL ADD 18

CALL WRITE PIX 18
POP BX
POP AX

NEXT BIT T:

Save accumulator
Video buffer segment base
To extra segment
Restore AX

; High nibble to AH
pattern

Nothing to display?
Continue if not zero
Skip this byte
Skip byte

Is high bit set?
Bit not set

Save entry registers

Calculate pixel address
mode 18
Display pixel
Restore registers

in

101

VGA

102 Chapter Four

SAL
INC
DEC
JZ
JMP

AH,1
ex
CS:COUNT 8
NEXT BYTE T - -
TEST BIT T

Shift AH to test next bit
Bump x coordinate counter
Bit counter
Exit if counter rewound
Continue

; Index to next byte in row, if not at end of row
NEXT BYTE T:

DEC
JZ

BH
NEXT ROW T

Bytes per row counter
End of graphic row

BYTE ENTRY T:
INC
MOV
JMP

DI
CS:COUNT_8,8
DISPLAY BYTE T

Bump graphic code pointer
Reset bits counter

; Index to next row
NEXT ROW T:
; Test for last graphic row

DEC CS:PIX ROWS Row counter
JZ GRAPH END T Done, exit
MOV BH,CS:BYTES Reset bytes counter
INC DX Bumpy coordinate control
MOV CX,CS:X_COORD Reset x coordinate control
JMP BYTE ENTRY T

GRAPH END T:
MOV AX,CS:USERS_DS Restore caller's OS
MOV DS,AX
CLC No error reported
RET

SHOW TIFF ENDP
·*** ,

LOAD TIFF PROC NEAR

;

procedure for loading a bilevel TIFF file
On entry:

SI== caller's display block formatted as follows:

OFFSET STORAGE CONTENTS
0 WORD x screen coordinate for image
2 WORD y screen coordinate for image
4 WORD Offset of bitmap from start of file

(from the StripOffset tag)
6 WORD number of vertical rows in bitmap
8 BYTE number of horizontal bytes in bitmap
9 BYTE IR GB color code for bit display
10 STRING ASCIIZ string containing the filename

for the TIFF file

Assumptions and limitations:
1. Bitmap uncompressed or in PackBits compression mode
2. Unpacked bitmap not to exceed 255 pixel rows
3. TIFF bilevel image
4. Target display system resolution not to exceed 64K

Bitmap Image Acquisition and Encoding

;**********************!
ES to local data I

;**********************I

PUSH
MOV
MOV

ES
AX,TIFF_DATA
ES,AX

Save video buffer base

Move user's display block to
CX,25

TIFF_DATA segment
MOV
LEA

MOVE TO USER:
MOV
MOV
INC
INC
LOOP

DI,ES:USER_BLOCK

AL, [SI)
ES: [DI] ,AL
SI
DI
MOVE TO USER

;**********************I

OS to local data
;**********************I

MOV
MOV

AX,DS
CS:USERS_DS,AX

local segment
AX,TIFF_DATA
DS,AX

25 bytes in block

Get caller's byte
Move to local segment
Bump pointers

Caller's OS to AX
Store in variable

Local segment

New ASSUME statement

103

Change DS to
MOV
MOV
ASSUME
POP
LEA

DS:TIFF DATA
ES
SI,USER_BLOCK

Restore video buffer base to ES
Reset entry pointer

;**********************I

; store strip offset
;**********************I

MOV
MOV

AX,WORD PTR [SI+4]
CS:STRIP_OFFSET,AX

;**********************I
; calculate image size I
;**********************I

From display block
Store in CS variable

Image dimensions are stored in the display block
; The image size is required during bitmap decompression

MOV AX,WORD PTR [SI+6] ; Number of pixel rows
MOV BL,BYTE PTR [SI+B) ; Number of bytes
MOV BH,O Clear high of multiplier
MUL BX ; AX: DX = AX * BX
MOV CS:IMAGE_SIZE,AX ; Store in CS variable

Note that the high-order byte of the product can be discarded
since code assumes that the display resolution is less than
64K

;*********************I

open TIFF file
;*********************I

ADD
MOV
CALL
JNC

SI,10
DX,SI
OPEN FILE
OK TIFF OPEN

Index to ASCIIZ string area
For OPEN_FILE procedure
Procedure in SOLUTION.LIB
Continue if no carry

104

;**********************I
open operation fail I

;**********************I
POP
MOV
MOV
STC
RET

SI
AX,CS:USERS_DS
DS,AX

;**********************I

set ES segment
to local data

;**********************I

Restore context
Restore caller's DS

Code for error return

Chapter Four

Note: The SHOW_TIFF procedure uses the segment TIFF_DATA for
storing TIFF image data
MOV AX,TIFF_DATA ; Set to local segment
MOV ES,AX

OK TIFF OPEN:
;**********************I

read TIFF file
into RAM

;**********************I
LEA
MOV

NEW 128:

DI,TIFF_FILE Storage buffer for file
CS:TIFF_HANDLE,AX Store file handle

MOV BX,CS:TIFF_HANDLE
LEA
PUSH
CALL
POP
CMP
JNE

DX,DATA_BUF
DI
READ 128
DI
AX,0
MOVE 128

;**********************I

end of file
;**********************I

Buffer for data storage
Save buffer pointer
Read sector into buffer
Restore buffer pointer
Test for end of file
Go if not at end of file

MOV
CALL
JMP

BX,CS:TIFF_HANDLE File handle
CLOSE FILE Library routine
END OF READ

;**********************I
move sector to

TIFF buffer
;**********************I

; At this point DATA_BUF holds 128 bytes from disk file
; DI - storage position in the TIFF file RAM buffer
MOVE 128:

MOV
LEA

PLACE 128:
MOV
MOV
INC

CX,128
SI,DATA_BUF

AL, [SI]
[DI] ,AL
SI

INC DI

Byte counter
Pointer to data just read

Byte from DATA BUF
Into font's buffer
Bump pointers

Bitmap Image Acquisition and Encoding 105

LOOP PLACE 128 ; Continue until all sector read
At this point the 128 bytes newly read from the disk file are
stored in the font's buffer

JMP NEW 128
;*****************************I

unpack bitmap
;*****************************I

Unpacking logic for TIFF PackBits scheme
PackBits packages consist of 2 bytes. The first byte (n)
encodes the following options:

1. if n is in the range Oto 127, then next n+l bytes are
to be interpreted as literal values

2. if n is in the range -127 to -1, then the following
byte is to be repeated -n+l times

3. if n = 128, then no operation is executed
END OF READ:

MOV CS:EXP_COUNT,0 Clear counter
LEA DI,BIT IMAGE Destination in display block
LEA SI,TIFF_FILE Pointer to start of file
ADD SI,CS:STRIP_OFFSET Add offset to bitmap

; SI== start of image if there is a single strip
TEST N BYTE:

MOV AL, [SI]
CMP AL,128
JB LITERAL CODE
JA REPEAT CODE

Code is 128 (NOP)
INC SI
JMP NEXT PACK CODE

;**********************I

literal expansion
;**********************I

LITERAL CODE:
MOV CL,AL
MOV CH, 0
INC ex
INC SI
ADD CS:EXP COUNT,CX -

LIT MOVE:
MOV AL, [SI]
NOT AL
MOV [DI] ,AL
INC DI
INC SI
LOOP LIT MOVE
JMP NEXT PACK

;**********************I
repeated expansion

;**********************I

REPEAT CODE:
NEG AL

CODE

Get n byte
Code for NOP
Go if in the literal range
Go if in repeat range

Skip NOP code
Continue

Counter to CL
Clear high byte
Add 1
Skip n byte

of counter

Add bytes to counter

Get literal byte
Invert white and black bits
Place in bitmap
Bump pointers

Negate to convert 2's

106

MOV CL,AL
MOV CH,0
INC ex
INC SI
ADD CS:EXP_COUNT,CX
MOV AL, [SI]
NOT AL
INC SI

EXP MOVE:
MOV [DI] ,AL
INC DI
LOOP EXP MOVE

;**********************I
get next pack code

;**********************I

Chapter Four

complement representation
Counter to CL
Clear high byte of counter
Add l
Skip n byte
Add bytes to counter
Get byte to repeat
Invert black and white bits
Skip to next n byte

Place byte in buffer
Bump bitmap pointer

; CS:EXP COUNT holds the total bytes in bitmap at this point
; CS:IMAGE SIZE holds the total bytes in the expanded bitmap
NEXT PACK CODE:

MOV
CMP
JAE

AX,CS:EXP_COUNT
AX,CS:IMAGE_SIZE
DISPLAY IMAGE

JMP TEST N BYTE
DISPLAY IMAGE:

RET
LOAD TIFF ENDP

Bytes now in bitmap
Compare with map size
Go if at end of image

·** ,
auxiliary procedures

;**

CLOSE FILE PROC NEAR
Close file using file handle
On entry:

BX= file handle
On exit:

carry clear if operation successful - file closed
carry set if operation failed - invalid handle or file
not open

MOV
INT
RET

CLOSE FILE

AH,62
21H

ENDP

DOS service request

;**

READ 128 PROC NEAR
Read 128 bytes from an open file into buffer using the file
handle. This procedure assumes that the file has been
previously opened or created using the procedure OPEN CREATE

On entry:

Bitmap Image Acquisition and Encoding

BX file handle
DX 128 bytes user buffer

On exit:

READ 128

carry clear if operation successful
AX= number of bytes read into buffer
AX= 0 if end of file

carry set if operation failed
AX= error code

5 access denied
6 = invalid handle or file not open

PUSH ex Save entry ex
MOV AH, 63 DOS service request
MOV eX,128 No. of bytes to read
INT 21H
POP ex Restore
RET

ENDP

107

·** I

OPEN FILE PROe NEAR
Open file using an ASeIIZ string for the filename
On entry:

DX - buffer containing ASeIIZ string for filename
On exit:

if carry clear file was opened successfully
AX= file handle
if carry set open operation failed
AX error code

1 invalid function
2 file not found
3 path not found
4 no available handle
5 access denied

12 invalid access code

MOV AH,61 DOS service request number
to open file (handle mode)

MOV AL,2 Read/write access
INT 21H
RET

OPEN FILE ENDP

·** I

VGA device drivers for mode number 18
;**

PIXEL ADD 18 PROe NEAR
Address computation from x and y pixel coordinates
On entry:

ex= x coordinate of pixel (range Oto 639)

108 Chapter Four

DX y coordinate of pixel (range Oto 479)
On exit:

BX byte offset into video buffer
AH bit mask for the write operation using

VGA write modes 0 or 2
AL is preserved

Save all entry registers
PUSH ex
PUSH DX

Compute address
PUSH AX
PUSH ex
MOV AX,DX
MOV CX,80
MUL ex
MOV BX,AX
POP AX

Save accumulator
Save x coordinate
y coordinate to AX
Multiplier (80 bytes per row)
AX= y times 80
Free AX and hold in BX
x coordinate from stack

Prepare for division
MOV CL,8
DIV CL

Add in quotient
MOV CL,AH
MOV AH,0
ADD BX,AX
POP AX

Divisor
AX/ CL quotient in AL and
remainder in AH

Save remainder in CL
Clear high byte
Offset into buffer to BX
Restore AX

Compute bit
MOV
SHR

mask from remainder
AH,l0000000B; Unit mask for 0 remainder
AH,CL Shift right CL times

Restore all entry registers
POP DX
POP ex
RET

PIXEL ADD 18 ENDP
·** I

WRITE PIX 18 PROC NEAR
VGA mode number 18 device driver for writing an individual
pixel or a pixel pattern to the graphics screen

On entry:
ES:BX

AL
AH

byte offset into the video buffer
pixel color in IRGB format
bit pattern to set

This routine assumes that write mode 2 has been set

Note: programs using this procedure usually precede their call
by one to ES_TO_APA (to set the video segment base) and
another one to PIXEL_ADD 18 (to obtain the byte offset
and pixel mask) .

Bitmap Image Acquisition and Encoding 109

This procedure does not reset the default write mode nor
the contents of the Bit Mask register

PUSH
PUSH
PUSH

DX
AX
AX

Save outer loop counter
Color byte
Twice

Set Bit Mask Register according to mask in AH
MOV DX,3CEH Graphic controller latch
MOV AL,8
OUT DX,AL
JMP SHORT $+2
INC DX
POP AX

MOV AL,AH
OUT DX,AL
JMP SHORT $+2

Write color code
MOV AL, ES: [BX]

POP
MOV

POP
RET

WRITE PIX 18

CODE ENDS
END

AX
ES: [BX] ,AL

DX

ENDP

Select data register 8

To 3CFH
AX once from stack
Bit pattern
Load bit mask

Dummy read to load latch
registers
Restore color code
Write the pixel with the
color code in AL
Restore outer loop counter

4.3 Bitmap Image Acquisition

Many applications require bit-mapped images to serve as graphics objects or
as background. The program designer can generate or acquire these images
through the following means:
1. By creating an image bitmap in the application's memory space. For exam­

ple, the bitmap in Figure 4.2 can be defined as an array of 60 bytes, 30 words,
or 15 doublewords in RAM.

2. By using a paint or draw program to create a graphics image and then saving
this image in a standard image file format that can be manipulated by the
application's code.

3. By scanning an existing image and saving the resulting scan in a standard
image file format.

4. By using an existing image file. If the image file is proprietary, its use may
require the purchase of reproduction or other rights from the copyright
holder. However, if the image is in the public domain, no reproduction right,
are necessary for its use. Shareware images are in a special category which
is subject to special rules.

110 Chapter Four

5. By digitally and mathematically operating on an existing image or image
description. For example, a ray-tracing program can create or enhance an
existing image by applying principles of optics.

6. By a combination of two or more of the above methods, for example, scanning
an image and then modifying the scanned bitmap by means of a bitmap
editing or ray-tracing program.

Figure 4.16 shows the evolution of a digitized image from the original scanned
bitmap, which is retouched to eliminate the space shuttle's external tank and
rocket boosters, and then vectorized into a geometrical image which can be
scaled and rotated without distortion.

original scanned bitmap edited bitmap

Figure 4.16 Image Acquisition Process

4.3.1 Legal Considerations

vectorized image

The use of existing images can give rise to legal questions. In principle, the
creator of the image has the right to reproduce it and to prevent others from
doing so. The right to reproduce or make copies (copyright) falls in the category
of intellectual property rights. The law requires that for these rights to be
effective the creator must post a copyright notice. This notice must meet certain
legal requirements; namely, it must contain the word "copyright," the copyright
symbol, the year of creation, and the word "by" followed by the author's name.
For example:

Copyright© 1994 by J. Smith.

The details of copyright protection are contained in the Copyright Act of 1976.
In many cases regarding conventional works of literature or graphics arts the
provisions of the copyright law are relatively certain and well defined. Not so
in the digital environment, which has originated many new problems of
interpretation and extension of copyright, not all of which are definitively
solved. One field in which there is still considerable doubt is that of derivative
works. A derivative work occurs when a creation is based or inspired by another

Bitmap Image Acquisition and Encoding 111

one. Since the copyright law requires, but does not define, "originality," the
question is when and if a derivative work becomes another original. For
example, if a photograph is scanned and modified by software, is the derived
result an original work? If so, how much editing is necessary to make the
derivative work a new original?

Another field in which many legal questions still remain is in the compilation
of data. Since copyright requires that the work be an original creation, it is valid
to question if raw data meets the originality requirement. For example, is the
data contained in a telephone directory protected by copyright? Until 1991 the
courts had held a sweat-of-the-brow theory of originality that included works
of compilation, such as a telephone directory. However, in the case Feist
Publications vs. Rural Tekphone Service the United States Supreme Court
rejected this theory and required that some degree of "originality in selection
and arrangement" be present in the work in order to make a work eligible for
copyright protection.

In the field of computer graphics imagery the problems of copyright protection
still pose many unresolved questions. To the developer the only available
guidelines are the elements of originality, creativity, and authorship required
by the Copyright Act of 1976, and also the fact that in copyright infringement
lawsuits the plaintiff is required to prove that the defendant copied expressive
elements in the original work. The element of "substantial similarity" is also
often considered in this context. Therefore, we can conclude that if expressive
elements of the original image are copied to a degree that makes the derived
image substantially similar to the original one, then the derived image is not
an original work and cannot claim copyright.

Part

2
Animation Programming

Chapter

5
Animation in VGA Graphics

5.0 The VGA Standard

Video Graphics Array (VGA) was introduced in 1987 with the IBM PS/2 line.
Multi-Color Graphics Array (MCGA), an under-featured version of VGA, was
furnished with the lower-end PS/2 machines Models 25 and 30. Since then VGA
has been the standard PC video system.

The main technological innovation introduced by VGA was a change from
digital to analog video display driver technology. The reason is that analog
monitors can produce a much larger color selection than digital ones. VGA
graphics hardware includes a digital-to-analog converter, usually called the
DAC, and 256K of video memory. The DAC outputs the red, green, and blue
signals to the analog display. Video memory is divided into four 64K video maps,
called the bit planes. VGA supports all the display modes available in its
predecessors, MDA, CGA, and EGA. In addition, it creates several new alpha­
numeric and graphics modes. The most interesting of the new standard graph­
ics modes are mode 18, with 640-by-480 pixel resolution in 16 colors, and mode
19, with 320-by-200 pixel resolution in 256 colors. The effective resolution of
the VGA text modes is 720-by-400 pixels. These text modes can execute in 16
colors or in monochrome. Three different fonts can be selected in the alphanu­
meric modes.

In the VGA access to the video system registers and to video memory is
through the system microprocessor. The microprocessor read and write opera­
tions to the video buffer are automatically synchronized by the VGA hardware
with the CRT controller so as to eliminate interference. For this reason VGA
programs, unlike those for the CGA, can access video memory at any time
without fear of introducing screen snow or other unsightly effects.

115

116 Chapter Five

5.0.1 VGA Characteristics

The resolution of a video graphics system is measured in the total number of
separately addressable elements per unit area, called screen pixels. Resolution is
measured in pixels per inch. The maximum resolution of a VGA system is approxi­
mately 80 pixels per inch, both vertically and horizontally. In VGA this density is
determined by a screen structure of 640 pixels per each 8-inch screen row and 480
vertical pixels per each 6-inch screen column. But not all video systems output a
symmetrical pixel density. For example, the maximum resolution of the EGA
standard is the same as that of the VGA on the horizontal axis (80 pixels per inch)
but only 58 pixels per inch on the vertical axis.

The asymmetrical pixel grid of the EGA and of other less refined video standards
introduced programming complications. For example, in a symmetrical VGA screen
a square figure can be drawn using lines of the same pixel length, but these lines
would produce a rectangle in an asymmetrical system. By the same token, the pixel
pattern of a circle in a symmetrical system appears as an ellipse in an asymmetrical
one.

The major limitations of the VGA system are resolution, color range, and perform­
ance. VGA density of 80 pixels per inch is a substantial improvement in relation to
its predecessors, the CGA and the EGA, but still not very high when compared to
the 600 dots per inch of a state-of-the-art laser printer or the 1200 and 2400 dots per
inch of a quality color plate. The low resolution is one reason why VGA screen images
are often not lifelike; bitmaps appear grainy and we can often detect that geometrical
figures consist of straight line segments. VGA can display up to 256 simultaneous
colors. However, the 256 colors are not available in the modes with the best resolution.
Therefore, the VGA programmer must chose between 80 pixels per inch resolution
in 16 colors (mode 18) or 40 pixels per inch resolution in 256 colors (mode 19).

But, to the animation programmer, perhaps the greatest limitation of the VGA
standard is its performance. The video display update operations in VGA detract
from general system efficiency, since it is the microprocessor that must execute all
video read and write operations. In the second place, the video functions execute
slowly when compared to dedicated graphics work stations. This is particularly
noticeable in the graphics modes, in which a full screen redraw can take several
seconds. For this reason, animated programs that are not carefully designed execute
in VGA system with a jolting effect that is unnatural and visually disturbing.

5.0.2 VGA Standard Modes

The original video systems used in the PC, such as CGA, MDA, and EGA, had
monitor-specific modes. For example, the CGA turns the color burst off in modes 0,
2, and 4 and on in modes 1, 3, and 5. Mode number 7 is available in the MDA and in
the EGA equipped with a monochrome display, but not in the CGA or EGA systems
equipped with color monitors. In the VGA standard, on the other hand, the video
modes are not dependent on the monitor. For example, a VGA equipped with a direct
drive color monitor can execute in monochrome mode 7. Table 5.1 lists the properties
of the VGA video modes.

Animation in VGA Graphics 117

Table 5.1 VGA Video Modes

MODE TYPE COLORS PALETTE BUFFER CHAR. MAX. VERT. RESOLUTION
SIZE ADDRESS BOX PAGES FREQ. IN PIXELS

0,1 text 16 256K 40 X 25 B8000H 9 x 16 8 70 Hz 360 X 400
2,3 text 16 256K 80 X 25 B8000H 9 x 16 8 70 Hz 720 X 400
4,5 graphics 4 256K 40 X 25 B8000H 8 x 8 1 70 Hz 320 X 200
6 graphics 2 256K 80 X 25 B8000H 8 x 8 1 70 Hz 640 X 200
7 text 80 x 25 BOOOOH 9 x 16 8 70 Hz 720 X 400
13 graphics 16 256K 40 x 25 AOOOOH 8 x 8 8 70 Hz 320 X 200
14 graphics 16 256K 80 x 25 AOOOOH 8 x 8 4 70 Hz 640 X 200
15 graphics 80 x 25 AOOOOH 8 x 14 2 70 Hz 640 X 350
16 graphics 16 256K 80 x 25 AOOOOH 8 x 14 2 70 Hz 640 X 350
17 graphics 2 256K 80 x 30 AOOOOH 8 x 16 1 60 Hz 640 X 480
18 graphics 16 256K 80 x 30 AOOOOH 8 x 16 1 60 Hz 640 X 480
19 graphics 256 256K 40 x 25 AOOOOH 8 x 8 1 70 Hz 320 X 200

The VGA buffer can start in any one of three possible addresses: B00O0H,
B8000H, and A0000H (see Table 5.1). Address B000H is used only when mode
7 is enabled; in this case VGA is emulating the Monochrome Display Adapter.
In enhanced mode 7 the VGA displays its highest horizontal resolution (720
pixels) and uses a 9-by-16 dots text font. However, in this mode the VGA has
no graphics capabilities. Buffer address A000H is active while VGA is in a
graphics mode. Also note that video modes 17 and 18, with 480 pixel rows, were
introduced with the VGA and MCGA standards. Therefore they are not avail­
able in CGA and EGA systems. These modes produce a symmetrical pixel
density of 640-by-480 screen dots. Mode 19 has 256 simultaneous colors, the
most extensive one in the VGA standard, however, its horizontal resolution is
half of the one in mode number 18. In addition, VGA mode 19 has a resolution
of 320-by-200 pixels. This creates a nonsymmetrical pixel grid; in other words,
the screen aspect ratio is not 1: 1, as it is in mode number 18. In this environment
the program code must generate a rectangle in order to display a square and
an ellipse in order to display a circle.

5.0.3 VGA Nonstandard Modes

Graphics and animation programmers have tinkered with the VGA in an effort
to create display modes that better suit their own purposes and requirements.
The best known nonstandard VGA mode is the one called Mode X. Although
this mode has been in use by graphics and animations programmers for some
time, it was fist documented in an article by Michael Abrash published in Dr.
Dobb's Journal in July 1991 (see Bibliography). This mode is not documented
or supported in IBM's technical documents for VGA or by other major VGA
manufacturers.

VGA mode X has a resolution of 320-by-240 pixels in 256 colors. It displays
40 more pixel rows than VGA standard mode 19 (see Table 5.1). But these
additional 40 pixel rows are not achieved easily. In the first place the screen
space in mode number 19 consists of 64,000 pixels (320 x 200). This number of

118 Chapter Five

pixels can be contained in a single segment or video map. Expanding the display
to 240 rows raises the total number of screen pixels to 76,800 (320 x 240), which
exceeds the capacity of a processor segment register and, therefore, of a single
video map. On the other hand, the 320-by-240 resolution provides a symmetri­
cal drawing grid, with the advantages mentioned in Section 5.0.2.

Several features of VGA mode X make it attractive to the animations pro­
grammer. In the first place it offers a better resolution than the only other mode
in 256 colors (mode 19). Mode X operates on a symmetrical pixel grid, which
simplifies programming. Also, mode X allows page flipping, which is not the
case with modes 18 and 19. Finally, the performance of mode X considerably
exceeds that of VGA mode 19. For these reasons VGA mode Xis considered in
detail in this and other chapters.

5.1 VGA Architecture

The VGA system is divided into three separate components: the VGA chip, video
memory, and a digital-to-analog converter (DAC). Figure 5.1 shows the inter­
connections between the elements of the VGA system.

VGA CHIP

-
CRT general ... controller registers

. .i~
-
~

graphics ~

~ ... controller
~

.i~a

,r1,
....
::::::

1• ~ attribute
controller

~

sequencer ~

~

t

Figure 5.1 VGA Component Diagram

VIDEO MEMORY

... Intensity
::::::
::: Red

,->
Green I

---- Blue

-
-

___.
.... DAC ___.
~

r
___.

Red
Green
Blue

Animation in VGA Graphics 119

5.1.1 Video Memory

All VGA systems contain the 256K of video memory that is part of the hardware.
This memory is logically arranged in four 64K blocks. In some modes these
blocks form the video maps (labeled blue, green, red, and intensity in Figure
5.1). The four maps are sometimes referred to as bit planes Oto 3.

Alphanumeric Modes

In the alphanumeric modes 0, 1, 2, 3, and 7 (see Table 5.1) the VGA video buffer
is structured to hold character codes and attribute bytes. The VGA standard
allows redefining two of the attribute bits in the color alphanumeric modes: bit
7 can be redefined to control the background intensity, and bit 3 can be
redefined to perform a character-set select operation. Figure 5.2 shows the VGA
attribute byte in the monochrome and color alphanumeric modes.

Attribute byte map in monochrome
alphanumeric modes

1 = bright
0 = not bright

1 = blinking
0 = not blinking

Attribute byte map in color
alphanumeric modes

r g b I R G B

DISPLAY OPTIONS:
000 000 = no display
000 001 = underline (mode 7 only)
000 111 = normal
111 000 = reverse video

'---'----'-___,__ ___ FOREGROUND:
0000 = black 0001 = blue
0010 = green 0011 = cyan
0100 = red 0101 = magenta
011 O = brown 0111 = light gray
1000 = dark gray 1001 = light blue
1010=1!ghtgreen 1011 =light cyan
1100 = light red 1101 = light magenta
111 O = yellow 1111 = white

'-------- BACKGROUND:
000 = black 001 = blue

1 = blinking
0 = not blinking

010 = green 011 = cyan
100 = red 101 = magenta
110 = brown 111 = light gray

Figure 5.2 VGA Attribute Byte Maps

120 Chapter Five

Bit 3 of the attribute byte controls the foreground intensity in both mono­
chrome and color systems. Alternatively this bit can be used to select one of the
character sets provided in the BIOS. The default function of bit 7 is the blink
function. However, bit 3 can be reprogrammed to control the foreground
intensity. The programmer can toggle the functions assigned to bits 3 and 7 of
the attribute byte by means of BIOS service calls or by programming the VGA
registers directly.

Graphics Modes

One of the problems confronted by the designers of the VGA system was the
limited memory space of IBM microcomputers under MS-DOS. Recall that in
VGA mode number 18 the video screen is composed of 480 rows of 640 pixels
per row, for a total of 307,200 screen pixels. If eight pixels are encoded per
memory byte, each color map would take up approximately 38K. This means
that the four maps required to encode 16 colors would need approximately
154K. The VGA designers were able to reduce this memory space by using a
latching mechanism that maps all four color maps to the same memory area.
Figure 5.3 shows the latching mechanism in VGA mode 18.

In Figure 5.3 we can see how the color of a single screen pixel is stored in four
memory maps. Logically, the four maps are located at the same address. In
mode 18 the base address for the video maps is A0000H. Which map is active
depends on which of the four latches is open. Notice that the color codes for the
first eight screen pixels are stored in the four maps labeled Intensity, Red,
Green, and Blue. The first screen pixel has the intensity bit and the green bit
set; therefore it appears light green.

B
L
u ------------------············· G E

R
E

LATCHES
R

E

E N

I D
N
T
E
N
s
I
T
y

....... 0

Figure 5.3 Memory Structure in VGA Mode 18

Animation in VGA Graphics

-- 0

0 0 0 0 1 0 0 1

Video Memory
(64,000 bytes)

Figure 5.4 Memory Structure in VGA Mode 19

121

VGA memory mapping is different in the various alphanumeric and graphics
modes. In Figure 5.3 we see that in mode number 18 the color of each screen
pixel is determined by the bit settings in four memory maps. However, in mode
number 19, in which VGA can display 256 colors, each screen pixel is deter­
mined by one video buffer byte. Figure 5.4 shows the memory mapping in VGA
mode 19.

Although, to the programmer, the buffer appears as a linear space starting at
address A000H, in reality VGA uses all four bit planes to store video data in
mode 19. The color value assigned to each pixel in the 256-color modes depends
on the DAC register setting, which is explained later in this chapter.

VGA mode X shares some of the characteristics of modes 18 and 19. Figure
5.5 shows the memory mapping in VGA mode X.

111

.i...

--

MAP
SELECT
LATCH ---

0

I
I pixel DI plxal 41 plxal 81 •••

I MAPO

pixel 11 pbail 51 pbllll 91 •••

MAP1

I pi,111121 pixel 81 pbllll 1" ••• I

I MAP2

pixel 31 pbllll 71 pbllll 111 ••• I

MAP3 -

Figure 5.5 Memory Structure in VGA Mode X

122 Chapter Five

Like mode 18, mode X is a planar mode; that is, video data is stored in several
planes or maps. In mode X the four planes, which are located at the same physical
address, are mapped to a different range of screen pixels. In Figure 5.5 we can see
that the video data in map 0 (plane 0) is mapped to pixel number 0, and all
successive pixels in an arithmetic sequence with a common difference of 4. Map 1
contains video data for pixel number 1, and all successive pixels in a sequence with
a common difference of 4. The same applies to maps 2 and 3. Which pixel map is
active depends on the latching mechanism, controlled by the VGA Map Mask
register described later in this chapter. Mode X resembles mode 19 in that the color
of a screen pixel is determined by a memory byte. This simplifies and speeds up
processing since the time-consuming bit-masking operations necessary in mode 19
are not required in mode X.

Other VGA graphics modes in Table 5.1 were created merely to ensure compati­
bility with previous video systems. Specifically, VGA graphics modes 4, 5, and 6
are compatible with modes in the CGA, EGA, and PCjr; modes 13, 14, 15, and 16
are compatible with EGA; and graphics mode 17 (a two-color version of mode 18)
was created for compatibility with the MCGA standard. The two proprietary VGA
modes are mode 18 (640-by-480 pixels in 16 colors) and mode 19 (320-by-200 pixels
in 256 colors). Mode X, as already mentioned is not a standard VGA mode. VGA
graphics and animation deal mostly in these three modes. Therefore it is these
modes that are described in detail.

5.2 The VGA Registers

In Figure 5.1 we see that the VGA system includes a chip containing several
registers, a memory space dedicated to video functions, and a digital-to-analog
converter, or DAC. The VGA registers are mapped to the system's address space
and accessed by means of the central processor. The VGA programmable registers
(excluding the DAC) belong to five groups shown in Table 5.2, namely:

1. The General registers. This group is sometimes called the external registers due
to the fact that, on the EGA, they were located outside the VLSI chip. The
General registers provide miscellaneous and control functions.

2. The CRT Controller registers. This group of registers controls the timing and
synchronization of the video signal and also the cursor size and position.

3. The Sequencer registers. This group of registers controls data flow into the
Attribute Controller, generates the timing pulses for the dynamic RAMs, and
arbitrates memory accesses between the CPU and the video system. The Map
Mask registers in the Sequencer allow the protection of entire memory maps.

4. The Graphics Controller registers. This group of registers provides an interface
between the system microprocessor, the Attribute Controller, and video mem­
ory, while VGA is in a graphics mode.

5. The Attribute Controller registers. This group of registers determines the
characteristics of the character display in the alphanumeric modes and the
pixel color in the graphics modes.

Animation in VGA Graphics 123

Table 5.2 VGA Register Groups

EMULATING

REGISTER READ/ MDA CGA EITHER
WRITE

GENERAL REGISTERS

1. Miscellaneous output Write 03C2H
Read 03CCH

2. Input status 0 Read 03C2H

3. Input status 1 Read 03BAH 03DAH

4. Feature control Write 03BAH 03DAH
Read 03CAH

5. Video subsystem enable R/W 03C3H

6. DAC state Read 03C7H

ATTRIBUTE CONTROLLER REGISTERS

1. Address R/W 03C0H

2. Other Write 03C0H
Read 03C1H

CRT CONTROLLER REGISTERS

1. Index R/W 03B4H 03D4H

2. Other CRT controller R/W 03B5H 03D5H

SEQUENCER REGISTERS

1. Address R/W 03C4H

2. Other R/W 03C5H

GRAPHICS CONTROLLER REGISTERS

1. Address R/W 03CEH

2.0ther R/W 03CFH

5.2.1 VGA General Registers

The General registers are used primarily in initialization of the video system
and in mode setting. Most applications let the system software handle the
initialization of the video functions controlled by the General registers. For
example, the easiest and most reliable way for setting a video mode is BIOS
service number 0, of interrupt lOH. On the other hand, the code has to access
the General registers when setting a nonstandard VGA mode, such as mode X
previously mentioned. Figure 5.6 shows some programmable elements in the
VGA General register group.

124

MISCELLANEOUS OUTPUT REGISTER
read port 3CCH, write port 3C2H

Chapter Five

1/0 address select bit
0 = 3BxH (MDA emulation mode)
1 = 3DxH (CGA emulation mode)
RAM enable/disable
0 = video RAM disabled
1 = video RAM enabled

~------ clock select bits
00 = 25.175 MHz clock on VGA

14 MHz clock on EGA
01 = 28.322 MHz clock on VGA

16 MHz clock on EGA
10 = external clock selected
11 = RESERVED

c__ _______ 0 (RESERVED)
c__ _________ page bit for odd/even mode

0 = low 1 = high (diagnostic use)
horizontal sync polarity

c__ ___________ vertical sync polarity

0 0 0 0
INPUT STATUS REGISTER 0
read port 3C2H

c__ __________ SWITCH SENSE
1 = switch sense line open
0 = swtich sense line closed
EGA ONLY

c__ ____________ feature code bit O
c__ _____________ feature code bit 1

L_ ________ CRT INTERRUPT

0 0

1 = vertical retrace interrupt pending
O = no vertical retrace interrupt

INPUT STATUS REGISTER 1
read port 3BAH In MDA mode
read port 3DAH in CGA modes

DISPLAY ACCESS
1 = CPU is accessing display
0 = no display access in progress

EGA ONLY
L-----light pen strobe

c__ _____ light pen switch

~------VERTICAL RETRACE
1 = vertical retrace in progress
0 = no vertical retrace

system diagnostics

Figure 5.6 VGA General Registers

Animation In VGA Graphics 125

Note that bit number 7 oflnput Status Register 0, at port 3C2H, (see Figure
5.6) is used in determining the start of the vertical retrace cycle of the CRT
controller. This operation is sometimes necessary to avoid interference when
updating the video buffer. Animation routines also use the vertical retrace cycle
to intercept a pulse that can serve to produce time-lapsed screen updates. The
procedure named TIME_VR, listed in Chapter 7, performs this timing opera­
tion.

The Feature Control Register and the Video Subsystem Enable Register in
the General Register group are reserved. IBM recommends that applications
use subservice 12H of BIOS interrupt lOH to disable address decoding by the
video subsystem. The DAC State Registers are discussed in Section 5.3.

5.2.2 VGA CRT Controller

The VGA CRT Controller register group is the equivalent of the Motorola 6845
CRT Controller chip of the PC line. When VGA is emulating the MDA, the port
address of the CRT Controller is 3B4H; when it is emulating the CGA, then the
port address is 3D4H. These ports are the same as those used by the MDA and
the CGA cards. Table 5.3 lists the registers in the CRT Controller group.

Table 5.3 VGA CRT Controller Registers

PORT OFFSET DESCRIPTION

03x4H Address register

03x5H 0 Total horizontal characters minus 2 (EGA)
Total horizontal characters minus 5 (VGA)

1 Horizontal display end characters minus 1
2 Start horizontal blanking
3 End horizontal blanking
4 Start horizontal retrace pulse
5 End horizontal retrace pulse
6 Total vertical scan lines
7 CRTC overflow
8 Preset row scan
9 Maximum scan line

10 Scan line for cursor start
11 Scan line for cursor end
12 Video buffer start address, high byte
13 Video buffer start address, low byte
14 Cursor location, high byte
15 Cursor location, low byte
16 Vertical retrace start
17 Vertical retrace end
18 Last scan line of vertical display
19 Additional word offset to next logical line
20 Scan line for underline character
21 Scan line to start vertical blanking
22 Scan line to end vertical blanking
23 CRTC mode control
24 Line compare register

Notes: 3x4H/3x5H = 3B4H/3B5H when emulating the MDA
3x4H/3x5H = 3D4H/3D5H when emulating the CGA

126 Chapter Five

Most registers in the CRT Controller are modified only during mode changes.
Since this operation is frequently performed by means of a BIOS service, most
programs do not access the CRT Controller registers directly. One exception is
in the code required to set VGA mode X. Since mode X is not standard, it must
be set by programming the VGA registers directly. In this case the code has to
access registers in the CRT Controller group in order to expand the vertical
scanning range. These operations are shown in the SET_MODEX procedure
listed in Chapter 6.

The CRT Controller registers related to cursor size and position are also
occasionally programmed directly. Since programs that execute in a VGA
graphics mode have no access to the hardware cursor, these registers are not
considered in this book.

Another group of registers within the CRT Controller that are occasionally
programmed directly are those that determine the start address of the screen
window in the video buffer. This manipulation is sometimes used in scrolling
and panning text and in graphics mode manipulations. In VGA systems the
CRT Controller Start Address High and Start Address Low registers (offset
OCH and 0DH) locate the screen window within a byte offset, while the Preset
Row Scan register (offset 08H) locates the window at the closest pixel row.
Therefore the Preset Row Scan register is used to determine the vertical pixel
offset of the screen window. The horizontal pixel offset of the screen window is
programmed by changing the value stored in the Horizontal Pixel Pan register
of the Attribute Controller, described later in this chapter. Figure 5.7 shows
the Start Address registers of the CRT Controller as well as the Preset Row
Scan register.

START ADDRESS REGISTER, HIGH BYTE
offset 12

high-order byte of start address

START ADDRESS REGISTER, LOW BYTE
offset 13

low-order byte of start address

PRESET ROW SCAN REGISTER
offset 08

start number for first
~--------- scanned pixel row

(range O to 31)
~--- byte panning control (not used in VGA modes)

~----- RESERVED

Figure 5. 7 Start Address and Preset Row Scan Registers

Animation in VGA Graphics 127

5.2.3 VGA Sequencer

The VGA Sequencer register group controls memory fetch operations and
provides timing signals for the dynamic RAMs. This allows the microprocessor
to access video memory in cycles inserted between the display memory cycles.
Table 5.4 shows the registers in the VGA Sequencer.

Table 5.4 The VGA Sequencer Registers

PORT

03C4H

03C5H

OFFSET

0
1
2
3
4

DESCRIPTION

Address register

Synchronous or Asynchronous Reset
Clocking Mode
Map Mask
Character Map Select
Memory Mode

The Address register of the Sequencer group is used to select which one of the
Data registers is currently accessed. Only the 3 low-order bits of the Address
register are used. The Data register at offset O (see Table 5.4) is used during
system reset. The Clocking Mode register is also used mostly during mode
setting, except for bit 5, which can be used to turn off the display. Turning off
the display assigns all memory access time to the CPU, which can be used to
perform a rapid full screen update. The most used registers of the Sequencer
group are the Map Mask, Character Map Select, and Memory Mode. Figure 5.8
is a bitmap of these registers.

The Map Mask register in the Sequencer group allows the protection of any
specific memory map by masking it from the microprocessor and from the
Character Map Select register. If VGA is in a color graphics mode, the Map
Mask can be used to select the color at which one or more pixels are displayed.
The color is encoded in the IRGB format, as shown in Figure 5.8. To access the
Map Mask register, first load the value 2 into the address register of the
Sequencer, at port 3C4H, which is the offset of the Map Mask register. The
following code fragment shows the usual program operations regarding the
Map Mask register:

Setting 8 bright-red pixels in VGA mode number 18
The code assumes that video mode number 18 is selected,
that ES is set to the video segment base, and that BX points
to the offset of the first pixel to be set

;***********************!
select register

;***********************I
MOV
MOV
OUT
MOV

DX, 3C4H
AL,2
DX,AL
DX,3CSH

Address register of Sequencer
Offset of Map Mask
Map Mask selected
Data to Map Mask

128 Chapter Five

0 0 0 0 I R G B

0 0

MAP MASK REGISTER
port 3C5H, offset 2

~--- 1 = map O enabled (blue plane)
'------- 1 = map 1 enabled (green plane)

'-------- 1 = map 2 enabled (red plane)
'--------- 1 = map 3 enabled (intensity plane)

CHARACTER MAP SELECT REGISTER
port 3C5H, offset 3

~--MAPA SELECT
(attribute bit 3 = 1)
000 = map 0
001 = map 1

MAP B SELECT
(attribute bit 3 = 0)
000 = map 0
001 = map 1

111 = map 7

111 = map 7

LOCATION OF MAP TABLES
map No. location

0 1st SK of map 2
1 3rd SK of map 2
2 5th SK of map 2
3 7th SK of map 2

0 0 0 0 0

map No.
4
5
6
7

I I I I I
171615141312 I 1 IO I :~~~~: ~EGISTER

location
2nd SK of map 2
4th SK of map 2
6th SK of map 2
8th SK of map 2

I L_ ____ extended memory status L_ (always 1 in VGA systems)

MEMORY ADDRESSING MODE SELECT
1 = sequential addressing mode
0 = even addresses to maps O and 2

odd addresses to maps 1 and 3
~-ACCESS MODE SELECT

1 = enable bits O and 1 of the Character Map
Select register

0 = enable sequential access of all maps
(256-color modes only)

Figure 5.8 Registers in the Sequencer Group

Animation In VGA Graphics

MOV

OUT

AL,0000ll00B

DX,AL
;***********************I

set pixels
;***********************I

Intensity and red bits set
in IRGB encoding
Map Mask= 0000 IR00

Setting the pixels consists of writing a 1 bit in the
corresponding buffer address.

MOV AL,ES: [BX]
MOV AL,llllllllB
MOV ES: [BX] ,AL

;***********************I
restore Map Mask

;***********************I

Dummy read operation
Set all bits
Write to video buffer

Restore the Map Mask to the default state
MOV DX,3C4H Address register of Sequencer
MOV AL,02H Offset of Map Mask
OUT DX,AL Map Mask selected
MOV DX,3CSH Data to Map Mask

129

MOV AL,00001111B Default IRGB code for Map Mask
OUT DX,AL Map Mask= 0000 IRGB

The Character Map Select register of the Sequencer is used in selecting one
of the BIOS character maps. This operation is related to reprogramming bit 3
of the attribute byte, as mentioned in Section 5.1.1. In this case bit 3 serves to
select one of two character sets. Normally the character maps, named A and B,
have the same value and bit 3 of the attribute byte is used to control the bright
or normal display of the character foreground. When the Character Map Select
register is programmed so that character maps A and B have different values,
then bit 3 of the attribute byte is used to toggle between two sets of 256
characters each. Since the use of multiple VGA character sets is used mostly
when programming in VGA alphanumeric modes, this matter is not discussed
further.

The Memory Mode register of the Sequencer is related to the display modes.
Most programs leave the setting of this register to the BIOS mode select
services.

5.2.4 VGA Graphics Controller

The registers in the Graphics Controller group serve to interface video memory
with the Attribute Controller and with the system microprocessor. The Graphic
Controller is bypassed in the alphanumeric modes. Table 5.5 lists the registers
in the VGA Graphics Controller group. All the registers in the Graphics
Controller are of interest to the graphics and animation programmer.

130

PORT

03CEH

03CFH

Chapter Five

Table 5.5 The VGA Graphics Controller Registers

OFFSET

0
1
2
3
4
5
6
7
8

DESCRIPTION

Address register

Set/Reset
Enable Set/Reset
Color Compare for read mode 1 operation
Logical Operation Select and Data Rotate
Read Operation Map Select
Select Graphics Mode
Miscellaneous Operations
Read Mode 1 Color Don't Care
Bit Mask

Figure 5.9 shows the bitmaps for six registers in the Graphics Controller
group.

The Set/Reset register is used to permanently set or clear a specific bit plane.
This operation can be useful in writing a specific color to the entire screen or
in disabling a color map. The Set/Reset register affects only write mode 0
operations. The use of the Set/Reset register requires the use of the Enable
Set/Reset register. Enable Set/Reset determines which of the maps is accessed
by the Set/Reset register. This mechanism provides a double-level control over
the four maps.

The Color Compare register is used during read mode 1 operations of some
VGA modes to test for the presence of memory bits that match one or more color
maps. For example, if a program sets bit 0 (blue) and bit 3 (intensity) of the
Color Compare register, a subsequent memory read operation shows a 1 value
for those pixels whose intensity and blue maps are set, while all other combi­
nations are reported with a zero value. One or more bit planes can be excluded
from the compare by clearing the corresponding bit in the Color Don't Care
register. If the intensity bit is zero in the Color Don't Care register, a color
compare operation for the blue bit map is positive for all pixels in blue or bright
blue color.

The Data Rotate register determines how data is combined with data latched
in the system microprocessor registers. The possible logical operations are
AND, OR, and XOR. If bits 3 and 4 are reset, data is unmodified. A second
function of this register is to right-rotate data from Oto 7 places. This function
is controlled by bits 0 to 2.

VGA video memory in the graphics modes is based on encoding the color of a
single pixel into several memory maps. The Read Map Select register is used
to determine which map is read by the system microprocessor. The following
code fragment shows the use of the Read Operation Map Select register:

Code to read the contents of the 4 color maps in VGA mode 18
Code assumes that read mode 0 has been previously set
On entry:

ES= A000H
BX= byte offset into video map

Animation in VGA Graphics

0 0 0 0 I R G B

WRITE MODE O SET/RESET REGISTER
port 3CFH, offset o

'----1 = reset map O (blue plane)
'-----1 = reset map 1 (green plane)

.__ ____ 1 reset map 2 (red plane)
.__ _____ 1 = reset map 3 (intensity plane)

0 0 0 0 I R G B

0 0 0 0 I R G B

0 0 0 0 I R G B

ENABLE SET/RESET REGISTER
port 3CFH, offset 1

1 = enable map O (blue plane)
1 = enable map 1 (green plane)
1 = enable map 2 (red plane)
1 = enable map 3 (intensity plane)

COLOR COMPARE REGISTER
port 3CFH, offset 2

1 = enable map O (blue plane)
1 = enable map 1 (green plane)
1 = enable map 2 (red plane)
1 = enable map 3 (intensity plane)

COLOR DON'T CARE REGISTER
port 3CFH, offset 7

1 = do not compare map
1 = do not compare map
1 = do not compare map
1 = do not compare map

DATA ROTATE REGISTER
port 3CFH, offset 3

0
1
2
3

(blue plane)
(green plane)
(red plane)
(intensity plan

ROTATE COUNT .__ _ _,__ ____ counter (range Oto 7) of the
CPU data
operations LOGICAL OPERATION SELECT

00 = data unmodified
positions to rotate
during memory write

01 = data ANDed
10 = data ORed
11 = data XORed

0 0 0 0 0 0
I I I I I I

1116 Is 141312 l1J;Q ~~~er••=• ..
SELECT MAP OPERATION
00 = select map O 01 = select map 1
10 = select map 2 11 = select map 3

Figure 5.9 Registers in the Graphics Controller Group

131

132 Chapter Five

On exit:
CL byte stored in intensity map
CH byte stored in red map
DL byte stored in green map
DH byte stored in blue map

Set counter and map selector
MOV CX,4 Counter for 4 maps to read
MOV DI,0 ; Map selector code

READ IRGB:
Select map from which to read

MOV DX,3CEH Graphic Controller Address
register

MOV AL,4 Read Operation Map Select
OUT DX,AL register

INC
MOV
OUT

DX
AX,DI
DX,AL

Graphic controller at 3CFH
AL= map selector code (in DI)
IRGB color map selected

Read 8 bits
MOV
PUSH
INC
LOOP

4 maps are

from selected map
AL,ES: [BX] Get byte from bit plane
AX Store it in the stack
DI
READ IRGB

stored in stack

Bump selector to next map
Execute loop 4 times

Retrieve maps into exit registers
POP AX B map byte in AL
MOV DH,AL Move B map byte to DH
POP AX G map byte in AL
MOV DL,AL Move G map byte to DL
POP AX R map byte in AL
MOV CH,AL Move R map byte to CH
POP AX I map byte in AL
MOV CL,AL Move I map byte to CL

The Select Graphics Mode register, the Miscellaneous register, and the Bit
Mask register of the Graphics Controller group are shown in Figure 5.10.

VGA Read and Write Modes

VGA systems allow several ways for performing memory read and write
operations, usually known as the read and write modes. The Select Graphics
Mode register of the Graphics Controller group allows the programmer to select
which of two read and four write modes is active. The four VGA write modes
can be described as follows:

Animation in VGA Graphics

0 0

SELECT GRAPHICS MODE REGISTER
port 3CFH, offset 5

~------WRITE MODE SELECT
00 = select write mode O
01 = select write mode 1
10 - select write mode 2

...._ __ READ MODE SELECT 11 = select write mode 3
0 = read data from Read Map Select register
1 = compare results with maps in the Color

Compare register
~--- SELECT ODD/EVEN MODE

1 = odd/even mode (CGA)
0 = normal mode

~--SHIFT MODE SELECT
1 = shift mode for CGA modes 4 and 5
0 = normal shift mode

L-----VGA 256-COLOR MODE SELECT
1 = enable 256-color mode
0 = bit 5 controls loading of Shift register

0 0 0 0

MISCELLANEOUS REGISTER
port 3CFH, offset 6

...._ ___ GRAPHICS MODE SELECT
1 = graphics mode
0 = alphanumeric mode

L----- ODD/EVEN CHAINING MODE SELECT
1 = chain odd maps after even maps
O = normal map chaining

L----- MEMORY MAP SELECT
00 = 128K bytes at AOOOOH
01 = 64K bytes at AOOOOH
10 = 32K bytes at BOOOOH
11 = 32K bytes at B8000H

BIT MASK REGISTER
port 3CFH, offset 8

MASK ACTION
1 = bit protected from change
0 = bit can be changed during

write mode O and 2 operations

Figure 5.1 O Other Registers in the Graphics Controller Group

133

134 Chapter Five

Write mode O is the default write mode. In this write mode, the Map Mask
register of the Sequencer group, the Bit Mask register of the Graphics
Controller group, and the CPU are used to set the screen pixel to a desired
color.
In write mode 1 the contents of the latch registers are first loaded by
performing a read operation and then copied directly onto the color maps by
performing a write operation. This mode is often used in moving areas of
memory.
Write mode 2, a simplified version of write mode 0, also allows setting an
individual pixel to any desired color. However, in write mode 2 the color code
is contained in the CPU byte.
In write mode 3 the byte in the CPU is ANDed with the contents of the Bit
Mask register of the Graphic Controller.

The write mode is selected by setting bits O and 1 of the Graphic Controller's
Graphic Mode register. It is a good programming practice to preserve the
remaining bits in this register when modifying bits O and 1. This is performed
by reading the Graphic Mode register, altering the write mode bits, and then
resetting the register without changing the remaining bits. The following code
fragment sets a write mode in a VGA system. The remaining bits in the Select
Graphics Mode register are preserved.

Set the Graphics Controller's Select Graphic Mode register
to the write mode in the AH register

MOV DX,3CEH Graphic Controller Address
register

MOV AL,5 Offset of Mode register
OUT DX,AL Select this register
INC DX Point to Data register
IN AL,DX Read register contents
AND AL,11111100B Clear bits 0 and 1
OR AL,AH Set mode in AL low bits
MOV DX,3CEH Address register
MOV AL,5 Offset of Mode Register
OUT DX,AL Select again
INC DX Point to Data register
OUT DX,AL Output to Mode Register

Note: the Select Mode register is read-only in EGA systems
and therefore this code will not work correctly

Note that bit 6 of the Graphics Mode register must be set for 256-color modes
and cleared for the remaining ones. The SET_ WRITE_256 procedure listed in
Chapter 6 sets write mode O and the 256-color bit so that VGA mode 19, in 256
colors, operates correctly.

Once a write mode is selected, the program can access video memory to set
the desired screen pixels, as in the following code fragment:

; Write mode 2 pixel setting routine

Animation In VGA Graphics

On entry:
ES AOOOH
BX byte offset into the video buffer
AL pixel color in IRGB format
AH bit pattern to set (mask)

Note: this procedure does not reset the default read or write
modes or the contents of the Bit Mask register.
The code assumes that write mode 2 has been set previously

PUSH AX Color byte
PUSH AX Twice

;**********************I
set bit mask

;**********************I
; Set Bit Mask register according to value in AH

MOV DX,3CEH Graphic controller address
MOV AL,8 Offset= 8
OUT
INC
POP
MOV
OUT

DX,AL
DX
AX
AL,AH
DX,AL

;**********************I
write color

;**********************I
MOV

POP
MOV

AL,ES: [BX]

AX
ES: [BX] ,AL

Select Bit Mask register
To 3CFH
Color code once from stack
Bit pattern
Load bit mask

Dummy read to load latch
registers
Restore color code
Write the pixel with the
color code in AL

135

The VGA also provides two read modes. In read mode 0, the default read mode,
the CPU is loaded with the contents of one of the color maps. In read mode 1,
the contents of the maps are compared with a predetermined value before being
loaded into the CPU. The active read mode depends on the setting of bit 3 of
the Graphic Mode Select register, in the Graphics Controller. The
SET_READ_MODE procedure listed in Chapter 6 performs this operation.

The Miscellaneous register is used in conjunction with the Select Graphics
Modes register to enable specific graphics function. Bits 2 and 3 of the Miscel­
laneous register control the mapping of the video buffer in the system's memory
space. The normal mapping of each mode can be seen in the buffer address
column of Table 5.1. The manipulation of the Miscellaneous register is usually
left to the BIOS mode change service.

All read and write operations performed by the VGA take place at a byte level.
However, in certain graphics modes, such as mode 18, video data is stored at a
bit level in four color maps. In this case, the code must mask out the undesired

136 Chapter Five

color maps in order to determine the state of an individual screen pixel or to
set a pixel to a certain color. The TEST instruction provides a convenient way
for determining an individual screen pixel following a read operation. The Bit
Mask register permits setting individual pixels while in write modes O and 2.

In the execution of write operations while in VGA mode 18, the bit mask for
setting an individual screen pixel can be found from a look-up table or by
right-shifting a unitary bit pattern (10000000B). The following code fragment
calculates the offset into the video buffer and the bit mask required for writing
an individual pixel using VGA write modes O or 2.

Mask and offset computation from x and y pixel coordinates
Code is for VGA mode number 18 (640 by 480 pixels)

On entry:
CX = x coordinate of pixel (range Oto 639)
DX y coordinate of pixel (range Oto 479)

On exit:
BX byte offset into video buffer
AH bit mask for the write operation using

write modes 0 or 2

;**********************I

calculate address
;**********************I

PUSH AX
PUSH ex
MOV AX,DX
MOV CX,80
MUL ex
MOV BX,AX
POP AX

Prepare for division
MOV CL, 8
DIV CL

Add in quotient
MOV CL,AH
MOV AH,0
ADD BX,AX
POP AX

Save accumulator
Save x coordinate
y coordinate to AX
Multiplier (80 bytes per row)
AX= y times 80
Free AX and hold in BX
x coordinate from stack

Load divisor
AX/ CL= quotient in AL and
remainder in AH

Save remainder in CL
Clear high byte
Offset into buffer to BX
Restore AX

Compute bit mask from remainder
MOV AH,l0000000B Unitary mask for 0 remainder
SHR AH,CL Shift right CL times

The byte offset (in BX) and the pixel mask (in AH) can now
be used to set the individual screen pixel

Animation in VGA Graphics 137

5.2.5 VGA Attribute Controller

The Attribute Controller receives color data from the Graphics Controller and
formats it for the video display hardware. Input to the Attribute Controller is
in the form of attribute data in the alphanumeric modes and in the form of
serialized bit plane data in the graphics modes. The data is converted into 8-bit
digital color output to the DAC. Blinking, underlining, and cursor display logic
are also controlled by this register. In VGA systems the output of the Attribute
Controller goes directly to the video DAC and the CRT. Table 5.6 shows the
registers in the Attribute Controller group.

Table 5.6 The VGA Attribute Controller Registers

PORT

3C0H

3C1H

3C0H

OFFSET

0-15
16
17
18
19
20

DESCRIPTION

Attribute Address and Palette Address register

Read operations

Palette registers
Attribute Mode Control
Screen Border Color Control (overscan color)
Color Plane Enable
Horizontal Pixel Panning
Color Select

Register addressing in the Attribute Controller group is performed differently
than with the other VGA registers. This is due to the fact that the Attribute
Controller does not have a dedicated bit to control the selection of its internal
address and data registers. Instead, the Attribute Controller uses an internal
flip-flop to toggle the address and data functions. This explains why the Index
and the Data registers of the Attribute Controller are both mapped to port 3C0H
(see Table 5.6). Figure 5.11 shows the Attribute and Palette Address registers,
the Palette Address register, and the Attribute Mode Control register in the
Attribute Controller group.

Programming the Attribute Controller requires accessing Input Status regis­
ter 1 of the General register (see Figure 5.6) in order to clear the flip-flop. The
address of the Status register 1 is 3BAH in monochrome modes and 3DAH in
color modes. The complete sequence of operations for writing data to the
Attribute Controller is as follows:

1. Issue an IN instruction to address 3BAH (in color modes) or to address 3DAH
(in monochrome modes) to clear the flip-flop and select the address function
of the Attribute Controller.

2. Disable interrupts.

3. Issue an OUT instruction to the address register, at port 3C0H, with the
number of the desired data register.

4. Issue another OUT instruction to this same port to load a value into the Data
register.

5. Enable interrupts.

138

0 0
ATTRIBUTE ADDRESS AND
PALETTE ADDRESS REGISTER
port3C0H

'------ATTRIBUTE ADDRESS

Chapter Five

0 to 15 = Palette register offset
16 to 20 = Attribute register offset

PALETTE ADDRESS SOURCE
1 = enable display (normal setting)
0 = load Palette registers

0 0 r g b R G B

7 6

PALETTE REGISTER
port 3COH for read operations
port 3C1 H for write operations, offset 0 to 15

COLOR ATTRIBUTES
primary blue

'------primary green
'------primary red

'--------secondary blue
'----------secondary green

'----------secondary red
0

ATTRIBUTE MODE CONTROL REGISTER
port 3C0H for read operations
port 3C1 H for write operations, offset 16

~--ALPHANUMERIC/GRAPHICS SELECT
1 = graphics modes
0 = alphanumeric modes
MONOCHROME/COLOR EMULATION SELECT
1 = monochrome modes emulation
0 = color modes emulation

.__ ____ 9TH. DOT HANDLING ENABLE FOR
ALPHANUMERIC/GRAPHICS CHARACTERS
1 = 9th dot is same a 8th dot
0 = 9th dot is same as background

.__ ___ BLINK/BACKGROUND INTENSITY SELECT
1 = blink function
0 = background intensity function

'-----PIXEL PANNING
1 = pixel panning register= 0 after line compare
0 = pixel panning ignores line compare

'------PIXEL WIDTH (256-COLOR MODE)
1 = 256-color mode (number 19)
0 = all other modes

.__ __ PALETTE SELECT
1 bits 4 and 5 of Palette register replaced with bits

bits O and 1 of Color Select register
0 = Palette register unmodified

Figure 5.11 Registers in the Attribute Controller Group

Animation In VGA Graphics 139

In 16-color modes, the 16 Palette registers of the Attribute Controller
determine how the 16 color values in the IRGB bit planes are displayed.
The default values for the Palette registers are shown in Table 5. 7.

Table 5.7 Default Setting of VGA/EGA Palette Registers

REGISTER HEX BITS 0-5 COLOR
OFFSET rgbRGB

OOH OOH 000000 Black

01H 01H 000001 Blue

02H 02H 000010 Green

03H 03H 000011 Cyan

04H 04H 000100 Red

05H 05H 000101 Magenta

06H 14H 010100 Brown

07H 07H 000111 White

08H 38H 111000 Dark grey

09H 39H 111001 Light blue

0AH 3AH 1 1 1 0 1 0 Light green

0BH 3BH 111011 Light cyan

OCH 3CH 111100 Light red

OOH 3OH 111101 Light magenta

0EH 3EH 111110 Yellow

0FH 3FH 111111 Intensified white

Each VGA Palette register consists of six bits, allowing 64 color combi­
nations in each register. The bits labeled "RGB" in Table 5. 7 correspond
to the primary values for red, green and blue colors, and the bits labeled
"rgb" correspond to the secondary values. Since each color is represented
by two bits, each one can have four possible levels of saturation; for
example, the levels of saturation for red are:

Saturation rgbRGB Interpretation
0 000000 no red
1 100000 low red
2 000100 red
3 100100 high red

The Palette registers can be changed by means of BIOS service number
16, interrupt lOH, or by programming the Attribute Controller registers
directly. Note that the setting of the Palette registers does not affect the
color output in the 256-color modes since, in this case, the 8-bit color
values in video memory are transmitted directly to the DAC.

140 Chapter Five

The Attribute Mode Control register serves to select the characteristics
associated with the video mode. Bit 0 selects whether the display is in an
alphanumeric or in a graphics mode. Bit 1 determines if VGA operates in a
monochrome or color emulation. Bit 2 is related to the handling of the ninth
screen dot while displaying the graphics characters in the range C0H to DFH.
If this bit is set, the graphics characters in this range generate unbroken
horizontal lines. This feature refers to the MDA emulation mode only, since
other character fonts do not have the ninth dot. BIOS sets this bit automatically
in the modes that require it.

Bit 5 of the Attribute Mode Control register in the Attribute Controller group
relates to independently panning the screen sections during split-screen opera­
tion. Bit 6 of the Attribute Mode Control register is set to 1 during operation in
mode number 19 (256 colors) and cleared for all other modes. Finally, bit 7 of
the Attribute Mode Control register determines the source for the bits labeled
rand g (numbers 4 and 5) in the Palette register. If bit 7 is set, the rand g bits
in the Palette register are replaced by bits 0 and 1 of the Color Select register.
If bit 7 is reset, then all Palette register bits are sent to the DAC.

Figure 5.12 shows the bitmaps of the Overscan Color register, the Color Plane
Enable register, the Horizontal Pixel Panning register, and the Color Select
register of the Attribute Controller group.

In some alphanumeric and graphics modes the VGA display area is sur­
rounded by a colored band. The width of this band is the same as the width of
a single character (8 pixels) in the SO-column modes. The color of this border
area is determined by the Overscan Color register of the Attribute Controller.
Normally the screen border is not noticeable, since the default border color is
black. The border color is not available in the 40-column alphanumeric modes
or in the graphics modes with 320 pixel rows, except for VGA graphics mode
number 19.

The Color Plane Enable register allows excluding one or more bit planes from
the color generation process. The main purpose of this function is to provide
compatibility with EGA systems equipped with less than 256K of memory. Bits
4 and 5 of this register are used in system diagnostics.

The Horizontal Pixel Panning register of the Attribute Controller is used to
shift video data horizontally to the left, pixel by pixel. This feature is available
in the alphanumeric and graphics modes. The number of pixels that can be
shifted is determined by the display mode. In the VGA 256-color graphics mode
the maximum number of allowed pixels is three. In alphanumeric modes 0, 1,
2, 3, and 7, the maximum is eight pixels. In all other modes the maximum is
seven pixels. The Horizontal Pixel Panning register can be programmed in
conjunction with the Video Buffer Start Address registers of the CRT Controller
to implement smooth horizontal screen scrolling in alphanumeric and in
graphics modes. These manipulations are described in Chapter 6.

The Color Select register of the Attribute Controller provides additional color
selection flexibility to the VGA system, as well as a way for rapidly switching
between sets of displayed colors. When bit 7 of the Attribute Mode Control
register is clear, the 8-bit color value sent to the DAC is formed by the six bits

Animation in VGA Graphics

0 0 0 0 I R G B
OVERSCAN COLOR REGISTER
port 3C0H for read operations
port 3C1 H for write operations, offset 17

blue element
green element
red element
intensity element

0 0 I R G B
COLOR PLANE ENABLE REGISTER
port 3COH for read operations
port 3C1 H for write operations, offset 18

----blue plane
-----green plane

-------red plane
-------- intensity plane

~----- VIDEO STATUS MUX

0 0 0 0

0 0 0 0

(used for diagnostics)

HORIZONTAL PIXEL PANNING REGISTER
port 3C0H for read operations
port 3C1 H for write operations, offset 19

number of pixels to left-shift
video data

COLOR SELECT REGISTER
port 3C0H for read operations
port 3C1 H for write operations, offset 20

~--- replacement bits for Palette bits
4 and 5 if Attribute Mode Control
register bit 7 is set

---- bits 6 and 7 of 8-bit color value sent
to DAC (except in 256-color mode)

Figure 5.12 Other Registers in the Attribute Controller Group

141

142 Chapter Five

from the Palette registers and bits 2 and 3 of the Color Select register. If bit 7
of the Attribute Mode Control register is set, then the 8-bit color value is formed
with the lower four bits of the Palette register and the four bits of the Color
Select register. Since these bits affect all Palette registers simultaneously, the
program can rapidly change all displayed colors by changing the value in the
Color Select register. The Color Select register is not used in the 256-color
graphics mode 19.

5.3 VGA Digital-to-Analog Converter (DAC)

The Digital-to-Analog Converter, or DAC, provides a set of 256 color registers,
sometimes called the color look-up table, as well as three color drivers for an
analog display. The DAC register set permits displaying 256 color combinations
from a total of 262,144 possible colors. Table 5.8 shows the DAC registers.

Table 5.8 VGA Video Digital-to-Analog Converter Addresses

REGISTER OPERATIONS ADDRESS

Pixel Address (write operations) Read-Write 3CBH

Pixel Address (read operations) Write only 3C7H

DAC State register Read only 3C7H

Pixel Data register Read-Write 3C9H

Pixel Mask register Read-Write 3C6H

Note: Applications must not write to the Pixel Mask register or the color look-up
table could be destroyed.

Each of the DAC's 256 registers uses six data bits to encode the value of the
primary colors red, green, and blue. This design determines that each DAC
register is 18 bits wide. It is the possible combinations of 18 bits that allow
262,144 DAC colors. Note that the VGA color registers in the DAC duplicate
the color control offered by the Palette registers of the Attribute Controller. In
fact, the VGA Palette registers are provided for compatibility with the EGA
card, which does not contain DAC registers. When compatibility with the EGA
is not an issue, VGA programming can be simplified by ignoring the Palette
registers and making all color manipulations in the DAC. Furthermore, the
Palette registers are disabled when VGA is in the 256-color mode 19, since mode
19 has no EGA equivalent.

Figure 5.13 shows the bitmaps of the Pixel Address and DAC State registers.
The DAC Pixel Address register holds the number (also called the address) of
one of the 256 DAC registers. Read operations to the Pixel Address register are
performed to port 3C7H and write operations to port 3C8H (see Table 5.8). A
write operation changes the 18-bit color stored in the register (in red/green/blue
format). A read operation is used to obtain the RGB value currently stored in
the DAC register.

Animation in VGA Graphics

PIXEL ADDRESS REGISTER
port 3C7H for rmd operations
port 3C8H for write operations

DAC register number

17161514131211Jc~Q-'-~-c:c1:mr::!~~R
~ 00 = DAC is in read mode

11 = DAC is in write mode

Figure 5.13 Registers in the VGA DAC

143

The DAC State register encodes whether the DAC is in read or write mode.
A mode change takes place when the Pixel Address register is accessed: if the
Pixel Address register is set at port 3C7H, then the DAC goes into a read mode,
if it is set at port 3C8H, then the DAC goes into a write mode. Notice that
although the Pixel Address register for read operations and the DAC State
register are both mapped to port 3C7H there is no occasion for conflict, since
the DAC State register is read only and the Pixel Address register for read
operations is write only.

The Pixel Data register in the DAC is used to hold three six-bit data items
representing a color value in RGB format. The Pixel Data register can be read
after the program has selected the corresponding DAC register at the Pixel
Address read operation port 3C7H. The Pixel Data register can be written after
the program has selected the corresponding DAC register at the Pixel Address
write operation port 3C8H. The current read or write state of the DAC can be
determined by examining the DAC State register.

Once the DAC is in a specific mode (read or write), an application can continue
accessing the color registers by performing a sequence of three operations, one
for each RGB value. The read sequence consists of selecting the desired DAC
register in the Pixel Address register at the read operations port (3C7H) and
then performing three consecutive IN instructions. The first one loads the 6-bit
value stored in the DAC register for the color red, the second one loads the green
value, and the third one load the blue value. The write sequence takes place in
a similar fashion. This mode of operation allows rapid access to the three data
items stored in each DAC register as well as to consecutive DAC registers.
Because each entry in the DAC registers is six bits wide, the write operation is
performed using the least significant six bits of each byte. The order of
operations for the WRITE function is as follows:

1. Select the starting DAC color register number by means of a write operation
to the Pixel Address write mode register at port 3C8H.

2. Disable interrupts.

144 Chapter Five

3. Write the 18-bit color code in RGB encoding. The write sequence consists of
three bytes consecutively output to the Pixel Data register. Only the six
low-order bits in each byte are meaningful.

4. The DAC transfers the contents of the Pixel Data register to the DAC register
number stored at the Pixel Address register.

5. The Pixel Address register increments automatically to point to the sub­
sequent DAC register. Therefore, if more than one color is to be changed, the
sequence of operations can be repeated from step 3.

6. Re-enable interrupts.
Read or write operations to the video DAC must be spaced 240 nanoseconds

apart. Assembly language code can meet this timing requirement by inserting
a short JMP instruction between successive IN or OUT opcodes. The instruction
can be conveniently coded in this manner:

JMP SHORT$+ 2; I/0 delay

Chapter 6 lists examples of programming the DAC color registers.

Chapter

6
VGA Drivers for Standard Modes

6.0 VGA Device Drivers

The animation programmer has a primary concern in the performance of the
device driver routines. We have repeatedly mentioned that speed of execution

, is the factor that most often makes or breaks an animated application. For this
reason, in animation the programmer must often squeeze the last microsecond
of execution time from the CPU and the video hardware. In a VGA system this
-means selecting the most favorable display mode, designing and developing the
most efficient device drivers, and resorting to every programming trick and
stratagem that increases performance or improves the appearance of the
animated display.

6.0.1 Standard Mode VGA Device Drivers

The VGA system can be considered as a different device in each operational mode.
, In fact, many VGA modes exist for no other reason than to provide compatibility

with other devices. For this reason, the device drivers for VGA mode 18, with
640-by-480 pixels in 16 colors; are unrelated and incompatible with those for VGA
mode 19, with 320-by-200 pixels in 256 colors, and both are different than the ones
required for VGA nonstandard mode X. Since it is these three modes (modes 18,
19, and X) that_provide the most powerful graphics functions in the VGA standard,
and considering that compatibility with previous adapters is no longer a major
consideration, the VGA drivers developed for this book are exclusively for the
above-mentioned VGA modes 18, 19, and X.

In this chapter we develop the device drivers for VGA standard modes 18 and 19.
Because graphics and animation programming in VGA mode X follow a slightly

145

146 Chapter Six

different methodology than in the standard modes, we have devot.ed Chapt.er 7
to mode X device drivers and fundamental routines.

6.1 VGA Programming Levels

Any display programming operations on a PC equipped with a VGA video syst.em
must inevitably access the VGA hardware or its memory space. Nevertheless, at the
higher programming levels many of the details are hidden by the int.erface software.
For example, a PC programmer working in Microsoft QuickBASIC has available a
collection of program functions that allow drawing lines, boxes, circles, and ellipses,
changing palett.e colors, performing fill operations, and even executing some primi­
tive animation functions. The QuickBASIC programmer can perform all of the above
mentioned graphics functions while ignoring the complications of VGA regist.ers,
video memory mapping, and DAC output. However, this transparency of hardware
functions is achieved at a considerable cost in performance and control, a price that
the animation programmer is not always willing or able to pay.

The programming levels in a PC equipped with VGA video are as follows:

1. VGA services provided by the operating syst.em. This includes the video services
in BIOS, MS-DOS, OS/2, WINDOWS, or other operating syst.em programs or
graphical environments.

2. VGA services provided by high-level languages and by programming libraries that
ext.end the functions of high-level languages.

3. General-purpose VGA libraries that can be used directly or int.erfaced with one or
more high-level languages.

4. Low-level routines, usually coded in assembly language, that access the VGA or
DAC registers or the memory space reserved for video functions.

Observe that this list refers exclusively to the VGA syst.em. Other graphics
standards, such as 8514A, XGA, and SuperVGA, include high-level functions that
are furnished as a programming int.erface with the hardware. The VGA standard
does not furnish higher level programming facilities. In this chapt.er we discuss the
lowest level ofVGA programming, principally at the adapter hardware level. These
lowestlevel services are often called device driver routines. VGA services in the BIOS
are also used whenever these services do not compromise performance or control.

6.2 Device Drivers and Primitives

The t.erm device driver is often used to denot.e the most elementary software elements
that serve to isolat.e the operating system, or the high- and low-level programs, from
the peculiarities of hardware devices and peripherals. It was the UNIX operating
syst.em that introduced the concept of an installable device driver. In UNIX a device
driver is described as a software element that can be attached to the UNIX kernel
at any time. The concept of a device driver was perpetuated by MS-DOS
(starting with version 2.0) and by OS/2.

VGA Drivers for Standard Modes 147

A second level of graphics routines, usually more elaborate than the device
drivers, are called the graphics primitives. For example, to draw a circular arc
on the graphics screen of a VGA system, we need to perform programming
operations at two different levels. The higher level operation consists of calcu­
lating the x and y coordinates of the points that lay along the arc to be drawn.
The second, and more elementary operation is to set to a desired color the screen
pixels that lay along this arc. In this case we can say that the coordinate
calculations for the arc are performed in a routine called a graphics primitive,
while the setting of the individual screen pixels is left to a VGA device driver.
In theory it is possible to reduce the device driver for a VGA graphic system to
two routines: one to set to a predetermined color the screen pixel located at
certain coordinates, and another one to read the color of a screen pixel. With
the support of this simple, two-function driver, it is possible to develop VGA
primitives to perform all the graphic functions of which the device is capable.
Nevertheless, a system based on minimal drivers performs very poorly. For
instance, a routine to fill a screen area with a certain color would have to make
as many calls to the driver as there are pixels in the area to be filled. In practice,
it is better to develop device drivers that perform more than minimum func­
tions. Therefore, in addition to the pixel read and write services, it is convenient
to include in the device driver category other elementary routines such as those
that initialize the device and the video and operational modes, perform address
calculations, read and write data in multipixel units, and manipulate the color
settings at the system level.

6.2.1 VGA Device Drivers

In the PC under MS-DOS, the VGA graphics hardware is accessed by device
drivers that are not installed as part of the operating system. Several interface
mechanisms are possible for these drivers. One option is to link the graphics
device driver to a software interrupt. Once this driver is loaded and its vector
initialized, applications can access its services by means of the INT instruction.
But this type of operation, while very convenient and efficient, requires that
the driver be installed as a terminate-and-stay-resident (TSR) program, there­
fore reducing the memory available to applications. An alternative way of
making the services of graphics device drivers accessible to applications is to
include the drivers in graphics libraries. The library routines requested in the
code, which are accessed by high- and low-level programs at link time, are
incorporated into the program's run file. The procedures listed in this book can
be incorporated into a library of this type.

Preparatory Operations

The code must perform certain preliminary operations before accessing the
VGA graphics functions. Since graphics routines read and write the video buffer
directly, it is usually convenient to set a segment register to the base address
of video memory. In 8086 and 80286 systems the segment register most often

148 Chapter Six

available for this purpose is ES; in 80386, 486, and Pentium it is also possible
to use FS or GS. The following procedure sets the ES register to the base address
of the video buffer in a VGA graphics mode:

ES TO VIDEO PROC FAR
Set the ES register to the base address of the video buffer
in VGA graphics mode (A000H)

PUSH AX
MOV

MOV
POP
RET

AX,0A000H

ES,AX
AX

ES TO VIDEO ENDP

Save accumulator
Video segment base
graphics modes
To ES
Restore accumulator

for

Another preparatory operation consists of setting the VGA video mode. If the
selected video mode is a standard one, the easiest and most convenient way of
setting it is by calling the corresponding BIOS service. Since this operation is
usually not in a critical path of program performance, there is no substantial
processing penalty from using the BIOS service. Nonstandard modes, on the
other hand, usually require some customized code not provided in the BIOS. In
Chapter 7 we list a routine to set VGA mode X using both BIOS and customized
code. The following procedure can be used to set a VGA standard mode:

SET MODE PROC FAR
Set video display mode using BIOS service number 0 of INT l0H
On entry:

AL= number of vide mode to set
On exit:

carry clear
Note: code assumes that the input is a valid mode number

PUSH AX Save AX
MOV AH,0 BIOS service request number
INT l0H
POP AX Restore caller's register
RET

SET MODE ENDP

Processing software often needs to know the current display mode so that it
can be reset at the conclusion of program execution. The following procedure
obtains the current VGA standard video mode:

GET MODE PROC FAR
Obtain current video mode using BIOS service number 15, INT l0H
On entry:

nothing
On exit:

AH= character columns on screen (40 or 80)

VGA Drivers for Standard Modes

AL= active video mode
BH = active video page
carry clear

MOV AH,15
INT 10H
RET

GET MODE ENDP

BIOS service request number

6.2.2 VGA Mode 18 Pixel Write Routines

149

In VGA mode 18 each screen pixel is mapped to four memory maps, each map
encoding the colors red, green, and blue, as well as the intensity component (see
Figure 5.3). To set a screen pixel in this mode, the code must access individual
bits located in four color maps. In Figure 5.3 the displayed screen pixel
corresponds to the first bit in each of the four maps. But, due to the fact that
the 80x86 instruction set does not contain operations for accessing individual
bits, read and write operations in 80x86 assembly language must take place at
the byte level. Consequently, the VGA program has to resort to bit masking.
Figure 6.1 shows bit-to-pixel mapping in VGA mode 18.

0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0
byte boundary byte boundary_.

VIDEO MEMORY (bits)

VIDEO DISPLAY (plxels)

Figure 6. 1 Bit-to-Pixel Mapping in VGA Mode 18

Notice in Figure 6.1 that the eleventh screen pixel (pointed at by the arrow)
corresponds to the eleventh bit in the memory map. This eleventh bit is located
in the second byte. We saw in Chapter 5 that VGA write operations can take
place in four different write modes, labeled Oto 3. Read operations can take
place in either one of two modes, labeled O and 1. Code must determine and
enable the desired read or write mode before accessing the VGA display
functions. Therefore, it is necessary to develop a routine to set the desired read
or write mode before pixel access can take place.

Setting the Write Mode

To make the VGA more useful and flexible, its designers implemented several
ways in which to write data to the video display. These are known as the write

150 Chapter Six

modes. VGA allows four different write modes, selected by means of bits O and
1 of the Graphics Mode register of the Graphics Controller (see Figure 5.10).
The fundamental functions of the various write modes are as follows:

Write mode O is the default mode. In write mode O the CPU, the Map Mask
register of the Sequencer, and the Bit Mask register of the Graphics Controller
are used to set a screen pixel to any desired color. Other VGA registers are also
used for specific effects. For example, the Data Rotate register of the Graphics
Controller has two fields which are significant during write mode O operations.
The data rotate field (bits O to 3) determines how many positions to rotate the
CPU data to the right before performing the write operation. The logical
operation select field (bits 3 and 4) determines how the data stored in video
memory is logically combined with the CPU data. The options are to write the
CPU data unmodified or to AND, OR, or XOR it with the latched data. The VGA
logical operations are discussed later in this section.

In write mode 1 the contents of the latch registers, previously loaded by a read
operation, are copied directly onto the color maps. Write mode 1, which is
perhaps the simplest one, is often used in moving one area of video memory
into another one. This write mode is particularly useful when the software takes
advantage of the unused portions of video RAM. The location and amount of
this unused memory varies in the different video modes. For example, in VGA
graphics mode 18 the total pixel count is 38,400 pixels (640 pixels per row times
480 rows). Since the video buffer maps are 64K bytes, in each map there are
27,135 unused buffer bytes available to the programmer. This space can be used
for storing images or data. On the other hand, video mode 19 consists of one
byte per pixel and there are 320-by-200 screen pixels, totaling 64,000 bytes.
Since the readily addressable area of the video buffer is limited to 65,536 bytes,
the programmer has available only 1536 bytes for image manipulations.

Write mode 2 is a simplified version of write mode 0. Like mode 0, it allows
setting an individual pixel to any desired color. However, in write mode 2 the
data rotate function (Data Rotate register) and the set-reset function (Set/Reset
register) are not available. One advantage of write mode 2 over write mode 0
is its higher execution speed. Another difference between these write modes is
that in write mode 2 the pixel color is determined by the contents of the CPU,
and not by the setting of the Map Mask register or the Enable Set/Reset and
Set/Reset registers. This characteristic simplifies coding and is one of the
factors that determines the better performance of write mode 2.

In write mode 3 the Data Rotate register of the Graphics Controller operates
in the same manner as in write mode 0. The CPU data is ANDed with the Bit
Mask register. The resulting bit pattern performs the same function as the Bit
Mask register in write modes O and 2. The Set/Reset register also performs the
same function as in write mode 0. However, the Enable Set/Reset register is
not used. Therefore, the pixel color can be determined by programming either
the Set/Reset register or the Map Mask register. The Map Mask register can
also be programmed to selectively enable or disable the individual maps.

An application can use several read and write modes without fear of interfer­
ence or conflict, since a change in the read or write mode does not affect the

VGA Drivers for Standard Modes 151

displayed image. On the other hand, a change in the video mode normally clears
the screen and resets all VGA registers.

The write mode is selected by means of bits 0 and 1 of the Select Graphics
Mode register of the Graphics Controller group (see Figure 5.10). Considering
that the VGA behaves as a different device in each write mode, the device driver
for a pixel write operation in mode 18 is write-mode specific. In other words, a
different device driver is required for each write mode.

Each VGA write mode has its strong points, but it is generally accepted that
write mode 2 is the most direct and generally useful one. In this write mode the
individual pixel within a video buffer byte is selected by entering an appropriate
mask in the Bit Mask register of the Graphics Controller. This bit mask
contains a 1-bit for the pixel or pixels to be accessed and a Obit for those to be
ignored. For example, the bit mask 00100000B can be used to select the pixel
shown in Figure 6.1. The following procedure can be used to set a write mode
while in display mode 18:

WRITE MODE 18 PROC FAR
Set the Graphics Controller's Graphic Mode register to the
desired write mode while in VGA mode 18
On entry:

AL= write mode requested
Note: Write mode bits are 0 and 1, all others are preserved

Also set default bit

MOV AH,AL
MOV DX,3CEH

MOV AL,5
OUT DX,AL
INC DX

mask

Mode to AH
Graphic Controller Address
register
Offset of the Mode Register
Select this register·
Point to data register

Read contents of Mode register
Write modes bits are 000000xxB

IN AL,DX AL has current bitmap
AND AL,11111100B Clear write mode bits
OR AL,AH OR with write mode bits

passed by caller
AL now holds bit pattern for Mode register

OUT DX,AL Set register
Set Bit Mask register to default setting

MOV DX, 3CEH Graphic Controller latch
MOV AL,8
OUT DX,AL Select data register 8
INC DX To 3CFH
MOV AL,0FFH Default mask
OUT DX,AL Load bit mask
RET

WRITE MODE 18 ENDP

152 Chapter Six

The processing for setting a write mode while in VGA mode 19 is slightly
different, since the code must also set bit 6 of the Select Graphics Mode register
of the Graphics Controller group (see Figure 5.10). The following procedure sets
the write mode in VGA mode 19:

WRITE MODE 19 PROC FAR
Set the Graphics Controller's Graphic Mode register to the
desired write mode in 256 colors
On entry:

AL= write mode requested
Also set default bit mask

PUSH AX Save mode
MOV DX,3CEH Graphic Controller Address

register
MOV AL,5 Offset of the Mode register
OUT DX,AL Select this register
INC DX Point to Data register (3CFH)
POP AX Recover mode in AL

Set bit 6 to enable 256 colors
OR AL,0l000000B; Mask for bit 6
OUT DX,AL ; Selected

Set Bit Mask Register to default setting
MOV DX,3CEH Graphic Controller latch
MOV
OUT
INC
MOV
OUT
RET

AL,8
DX,AL
DX
AL,0FFH
DX,AL

WRITE MODE 19 ENDP

Setting the Read Mode

Select Data register 8
To 3CFH
Default mask
Load bit mask

The VGA standard provides two different read modes. Read mode 0, which is
the default, loads the CPU with the contents of one of the bit maps. In mode 18
we conventionally designate the color maps with the letters I, R, G, and B to
represent the intensity, red, green, and blue elements. Which of the four maps
is read into the CPU depends on the current setting of bits O and 1 of the Read
Map Select register of the Graphics Controller (see Figure 5.9). In this context
we sometimes say that the selected read map is latched onto the CPU. To read
the contents of all four maps the program must execute four read operations to
the same video buffer address; this is usually preceded by code to set the Read
Map Select register.

Read mode O is useful in obtaining the contents of one or more video maps,
while read mode 1 is more convenient when the programmer wishes to test for
the presence of pixels that are set to a specific color or color pattern. In read
mode 1 the contents of all four maps are compared with a predetermined mask.

VGA Drivers for Standard Modes 153

This mask must have been stored beforehand in the Color Compare register
of the Graphics Controller (see Figure 5.9). For example, to test for the presence
of bright blue pixels, the IRGB bit pattern 1001B is stored in the Color Compare
register. Thereafter, a single read operation appears to execute four successive
logical ANDs with this mask. If a bit in any of the four maps matches the bit
mask in the Color Compare register, it is set in the CPU; otherwise it is cleared.

The VGA read mode setting routine can be used with any standard video
mode. The following procedure sets the desired read mode:

SET READ MODE PROC FAR
Set the Graphics Controller Graphic Mode Select register to
read mode O or 1. All other bits are preserved
On entry:

AL= read mode requested

Set bit 3 according to mode
Read mode O - bit 3
Read mode 1 - bit 3

;**********************I
test entry value

;**********************I
CMP
JNE
MOV

AL,l
OK BIT3
AL,08H

;**********************I
set GC register

;**********************I
OK BIT3:

MOV
MOV

MOV
OUT
INC

AH,AL
DX,3CEH

AL,5
DX,AL
DX

Read contents of mode register
IN AL, DX
AND AL,11110111B

0 (AL
1 (AL

OOH)
08H)

If entry value is not 1
read mode O is forced
00001000B to set bit 3

Bit mask to AH
Graphic Controller address
register
Offset of the Mode register
Select this register
Point to Data register

AL has current bitmap
Clear bit 3

OR AL,AH OR setting with mask
AL now holds bit pattern for Mode register

OUT DX,AL ; Set register
RET

SET READ MODE ENDP

VGA Logical Operations

In Chapter 5 we saw that the Data Rotate register of the Graphics Controller
determines how data is combined with data latched in the system micropro­
cessor registers. The programmer can select the UNMODIFIED, AND, OR, and
XOR logical operations by changing the value of bits 3 and 4 (see Figure 5.9).

154 Chapter Six

Although all four logical operation modes find occasional use in VGA graphics
programming, the XOR mode is particularly interesting. In animation routines
the XOR mode provides a convenient way of drawing and erasing a screen
object. The advantages of the XOR method are simpler and faster execution,
and an easier way for restoring the original screen image. This is a convenient
programming technique when more than one moving object can coincide on the
same screen position.

One disadvantage of the XOR method is that the object's color depends on the
color of the background over which it is displayed. If a graphics object is moved
over different backgrounds, its color changes. Notice that some BIOS services
set the Data Rotate register of the Graphics Controller to the normal mode. For
example, if BIOS service number 9 of interrupt lOH is used to display text
messages in a graphics application, the logical mode is automatically set to
normal operation. Therefore, a program that uses the XOR, AND, or OR logical
modes must reset the Data Rotate register after using this BIOS service. The
subject of XOR animation is discussed at length in later chapters. The following
procedures allow setting the VGA logical operations mode:

LOGICAL OP PROC FAR
Set the Graphics Controller Data Rotate register to the
desired logical operation
On entry:

AL Oto set data to UNMODIFIED operation
AL l
AL 2
AL 3

PUSH
MOV
SHL

PUSH
MOV
MOV
OUT
INC
POP
OUT
POP
RET

LOGICAL OP

to AND with latched data
to OR with latched data
to XOR with latched data

ex
CL,3
AL,CL

AX
DX,03CEH
AL,3
DX,AL
DX
AX
DX,AL
ex

ENDP

Save caller's context
Number of bits to shift left
Shift input 3 bit positions
to reach bits 3 and 4
Save AL in stack
Graphic Controller port address
Select Data Rotate register

To data register
Restore AL

Restore caller's context

Pixel Address Calculations

In Figure 6.1 the code must consider that the eleventh pixel is located in the
second buffer byte. In VGA mode 18 this is usually accomplished by using either
a word-size variable or an 80x86 machine register as an offset pointer. Since
the VGA video buffer in a graphics mode starts at physical address A000OH,

VGA Drivers for Standard Modes 155

the ES register can be set to the corresponding segment base. The code to set
the ES:BX register pair as a pointer to the second screen byte is as follows:

Code fragment to set the 11th screen pixel while in VGA mode
18, write mode 2

MOV
MOV

AX,0A000H
ES,AX

Segment base for video buffer
To ES register

ES base of VGA video buffer
MOV BX,1 Offset of byte 2 to BX

At this point ES:BX can be used to access the second byte in
the video buffer

A VGA mode 18 device driver should include a routine to calculate, from the
pixel's screen coordinates, its offset and bit mask. The processing is based on
the geometry of the video buffer in this mode, which is 80 bytes per screen row
(640 pixels) and a total of 480 rows. The following procedure performs the
necessary calculations:

PIXEL ADD 18 PROC FAR
Address computation from x and y pixel coordinates
On entry:

CX = x coordinate of pixel (range Oto 639)
DX y coordinate of pixel (range Oto 479)

On exit:
BX byte offset into video buffer
AH bit mask for the write operation using

VGA write modes 0 or 2
AL is preserved

Save all entry registers
PUSH ex
PUSH DX

;***********************I
calculate address

;***********************I
PUSH AX
PUSH ex
MOV AX,DX
MOV CX,80
MUL ex
MOV BX,AX
POP AX

Prepare for division
MOV CL,8
DIV CL

Add in quotient
MOV CL,AH

Save accumulator
Save x coordinate
y coordinate to AX
Multiplier (80 bytes per row)
AX= y times 80
Free AX and hold in BX
x coordinate from stack

Divisor
AX/ CL quotient in AL and
remainder in AH

Save remainder in CL

156

MOV
ADD
POP

AH,0
BX,AX
AX

;***********************I
calculate bit mask

;***********************I

Clear high byte
Offset into buffer to BX
Restore AX

Chapter Six

MOV
SHR

AH,l0000000B
AH,CL

Unit mask for 0 remainder
Shift right CL times

Restore all entry registers
POP DX
POP ex
RET

PIXEL ADD 18 ENDP

Setting the Plxel

Once the bit mask and byte offset into the buffer have been determined, the
code can then proceed to set an individual screen pixel. In VGA mode 18, write
mode 2, this is accomplished in two steps: first the program sets the mask in
the Bit Mask register of the Graphics Controller group, and then it performs a
memory write operation to the address in ES:BX. The following procedure
performs this function:

WRITE PIX 18 PROC FAR
VGA mode 18 device driver for writing an individual
pixel or a pixel pattern to the graphics screen

On entry:
ES:BX

AH

AL

byte offset into the video buffer
bit pattern to set
(see PIXEL_ADD_18 procedure)
pixel color in IRGB format

This procedure assumes that write mode 2 is set

Note: programs using this procedure usually precede its
call by one to ES_TO_VIDEO (to set the segment base)
and another one to PIXEL_ADD_18 (to obtain the byte
offset and pixel mask).
This procedure does not reset the default write mode nor
the contents of the Bit Mask register

PUSH
PUSH
PUSH

DX
AX
AX

;***********************I

first step:
set bit mask

;***********************I

Save outer loop counter
Color byte
Twice

VGA Drivers for Standard Modes

MOV DX,3CEH
MOV AL,8
OUT DX,AL
INC DX
POP AX
MOV AL,AH
OUT DX,AL

;***********************I
second step:

write IRGB color
;***********************I

MOV AL,ES: [BX)

POP AX
MOV ES: [BX) ,AL

POP DX
RET

WRITE PIX 18 ENDP

Screen Tile Address Calculations

Graphic controller latch

Select data register 8
To 3CFH
AX once from stack
Bit pattern
Load bit mask

Dummy read to load
registers
Restore color code

latch

Write the pixel with the
color code in AL
Restore outer loop counter

157

The fmest possible degree of control over the VGA video display system is at
the screen pixel level. However, it is often convenient to access the video display
in units of several pixels, called pixel tiles or blocks. For example, when VGA
mode 18 text display operations are performed by means of the BIOS character
display services, these take place on a screen divided into 80 character columns
and 30 character rows. This means that each character column is 8 pixels wide
(640/80 = 8) and each row is 16 pixels high (480/30 = 16). In addition, graphics
software can often benefit from operations that take place at coarser-than-pixel
levels. For instance, in VGA mode 18, to draw a horizontal line from screen
border to screen border requires 640 bit-level operations, but only 80 byte-level
operations. Consequently, routines that read or write pixels in groups achieve
substantially better performance than those that read or write the pixels
individually. Animation programming can often take advantage of this in­
creased performance.

In this book, for lack of a better word, we refer to 8-by-8 pixel units as VGA
screen tiles, or simply tiles. Coarse-grain operations, in mode 18, see the video
display as 80 columns and 60 rows of screen tiles. In this manner the program­
mer can envision the VGA screen in mode 18 either as consisting of640-by-480
pixels (fine-grain visualization) or as consisting of80-by-60 screen tiles of8-by-8
pixels (coarse-grain visualization). Furthermore, the coarse grain visualization
can easily be adapted to text display operations on an 80-by-30 screen by
grouping the 60 tile rows into pairs. The following procedure calculates the
coarse-grain offset into the video buffer from the vertical and horizontal tile
count:

158 Chapter Six

TILE ADD 18 PROC FAR
Procedure to calculate the coarse-grain address at an 8-by-8
pixel level in VGA mode 18

On entry:
CH
CL

horizontal tile number (range Oto 79) x coordinate
vertical tile number (range Oto 59) = y coordinate

Compute coarse-grain address (in BX) as follows:
BX (CL* 640) + CH

On exit:

AL

The

BX tile offset into video buffer
ex is destroyed

PUSH AX
PUSH DX
PUSH ex
MOV AX,CX

CL
MOV AH, 0
MOV CX,640
MUL ex

multiplier (640) is

Save accumulator
For word multiply
To save CH for addition
Copy ex in AX

Clear high byte
ex is multiplier
AX* ex results in AX

times 8 vertical pixels
the product of 80 tiles columns
in each tile row

POP
POP
MOV
MOV
ADD
MOV
POP
RET

TILE ADD 18

Setting the Tile

ex
DX
CL,CH
CH,0
AX,CX
BX,AX
AX

ENDP

Restore CH
and DX
Prepare to add in CH

Add
Move sum to BX
Restore accumulator

Once the tile address has been determined, the individual tile (8-by-8 pixel
group) can be set by placing an all-ones mask in the Bit Mask register of the
Graphics Controller group, and then performing write operations to eight
successive pixel rows. The following procedure sets the screen tile:

WRITE TILE 18 PROC FAR
Write an 8-by-8 pixel block addressed at a coarse-grain level
On entry:

ES:BX

AL

byte offset into the video buffer
(see TILE_ADD_lB procedure)
pixel color in IRGB format

This routine assumes that write mode 2 has been set

VGA Drivers for Standard Modes

Note: programs using this procedure usually precede its
call by one to ES_TO_VIDEO (to set the segment base)
and another one to TILE_ADD_18 (to obtain the
coarse-grain offset into the video buffer)

159

This procedure does not reset the default write mode nor
the contents of the Bit Mask register

PUSH DX
PUSH ex
PUSH BX
PUSH AX

Set Bit Mask register to
MOV DX,3CEH
MOV AL,8
OUT DX,AL
INC DX
MOV AL,0FFH
OUT DX,AL

Set counter for 8 pixel
MOV CX,8
POP AX

;**********************I
set 8 pixels

;**********************I
SET EIGHT:

MOV AH,ES: [BX]

MOV ES: [BX] ,AL

ADD BX,80
LOOP SET EIGHT

Tile is set
POP BX
POP ex
POP DX
RET

WRITE TILE 18 ENDP

; Save caller's context

; Color code byte
all one bits

Graphic Controller latch

Select data register 8
To 3CFH
Bit pattern of all ones
Load bit mask

rows
Counter initialized

; Restore color code

Dummy read to load latch
registers
Write the pixel with the
color code in AL
Index to next row

Restore caller's context

6.2.3 VGA Mode 18 Pixel Read Routine

A program attempting to determine the state of the eleventh pixel in Figure
6.1 would read the second memory byte and mask out all other bits. The mask,
in this case, would have the value 00100000B. We have seen that video memory
in VGA mode 18 is divided into four memory maps, labeled I, R, G, and B for
the intensity, red, green, and blue components,respectively, also that all four
maps are located at the same address. For this reason, in order to read the color
code for an individual pixel, the program must successively select each of the
four memory maps. This is done through the Read Operation Map Select

160 Chapter Six

register of the Graphics Controller, mentioned in Chapter 5. In other words, to
determine the color of a single pixel in VGA mode 18, it is necessary to perform
four separate read operations, one for each of the IRGB maps.

As in the write operation, the code to read a screen pixel must calculate the
address of the video buffer byte in which the bit is located and the bit mask for
isolating it. This can be done by means of the PIXEL_ADD_l8 device driver
previously listed. The following procedure reads a screen pixel in VGA mode
18 and returns the IRGB color value in the CL register:

READ PIX 18 PROC FAR
Procedure to read a pixel color value in VGA mode 18
On entry:

ES:BX byte offset into the video buffer
AH bit pattern for mask

On exit:
CL 4 low bits hold pixel color in IRGB format
CH 0

Code assumes that read mode 0 has been set

Move bit mask to CH
MOV CH,AH

;**********************I
set up Sequencer

;**********************I

CH bit mask for pixel

Bit 3 of the Sequencer Memory Mode register must be clear for
; read mode 0 operations

MOV DX,3C4H Sequencer Address register
MOV AL, 4
OUT DX,AL
INC DX
IN AL,DX
AND AL, 11110111B
OUT DX,AL

;***********************I
set up read loop

;***********************I
MOV AH, 4
MOV CL, 0

;***********************I
; execute 4 read cycles I
;***********************I

Select Memory Mode register
Activate
To Sequencer Data register base
Read present value

; Clear bit 3, preserve others
Write to Memory Mode register

Reset Map Counter register
Clear pixel color return register

; AH has number for current IRGB map (range Oto 3)
READ MAPS:

Select map from which to read
MOV DX,3CEH Graphics Controller address

register
MOV AL,4 Read Map Select register
OUT
INC
MOV

DX,AL
DX
AL,AH

Activate
Graphics controller= 3CFH
AH= counter for 4 maps

VGA Drivers for Standard Modes

DEC
OUT

AL
DX,AL

;***********************I
read one byte

;***********************I

Adjust to range Oto 3
IRGB color map selected

; Read 8 bits from selected map
MOV AL,ES: [BX] ; Get byte from bit plane

;***********************I
; shift return register I
;***********************I

Previous color code is in bit 0. The shift operation frees
the low-order bit and moves previous bit codes to higher
positions

SHL CL,l

;**********************I
mask out pixels

;**********************!
AL,CH AND

JZ NO PIX SET
Pixel was set in bitmap

OR CL,0000000lB

NO PIX SET:
DEC AH
JNZ READ MAPS

4 low bits in CL hold pixel
MOV CH,0
RET

READ PIX 18 ENDP

Pixel mask in CH
Jump if no pixel in map

Set bit 0 in Pixel Color
Return register

Bump counter to next map
Continue if not last map
color in IRGB format
Clear CH

6.2.4 VGA Mode 19 Plxel Write Routines

161

VGA programmers use mode 19 when screen color range is more important
than definition. In this mode the VGA video display consists of 200 pixel rows
of 320 pixels each. Each pixel, which can be in one of 256 colors, is determined
by one byte in the video buffer. This scheme can be seen in Figure 5.4.

The fact that each screen pixel in mode 19 is mapped to a video buffer byte
simplifies programming by eliminating the need for a bit mask. The VGA video
buffer in mode 19 consists of 64,000 bytes. This number is the total pixel count
obtained by multiplying the number of pixels per row by the number of screen
rows (320 x 200 = 64,000). Although the 64,000 buffer bytes are distributed in
the four bit planes, the VGA hardware makes it appear to the programmer as
if they resided in a continuous memory area. Thus, the top-left screen pixel is
mapped to the byte at physical address A0000H, the next pixel on the top screen
row is mapped to buffer address A000lH, and so forth. This byte-to-pixel
mapping scheme can be seen in Figure 6.2.

162 Chapter Six

byte boundary byte boundary+

VIDEO MEMORY (bytes)

VIDEO DISPLAY (pixels)

Figure 6.2 Bit-to-Pixel Mapping in VGA Mode 19

Address Calculations

Address calculations in mode 19 are simpler than those in mode 18. All that is
necessary to obtain the offset of a pixel into the video buffer is to multiply its
row address by the number of buffer bytes per pixel row (320) and then add the
pixel column. The processing is shown in the following procedure:

PIXEL ADD 19 PROe FAR
Address computation for VGA mode 19
On entry:

ex x coordinate of pixel (range 0 to 319)
DX y coordinate of pixel (range 0 to 199)

On exit:
BX offset into video buffer

PUSH AX ; Save caller's context
PUSH ex
PUSH DX
PUSH ex Save x coordinate
MOV AX,DX y coordinate to AX
MOV eX,320 Multiplier is 320 bytes per row)
MOL ex AX= y times 320
MOV BX,AX Free AX and hold in BX
POP AX x coordinate from stack
ADD BX,AX Add in column value
POP DX Restore caller's context
POP ex
POP AX
RET

PIXEL ADD 19 ENDP

VGA Drivers for Standard Modes 163

Setting the Pixel

Once the segment and the offset registers are loaded, the program can set an
individual screen pixel by means of a simple MOV instruction. This means that
the overhead of a pixel setting procedure is not necessary while programming
in mode 19, since the code can set the desired pixel with a simple MOV
instruction. The following code fragment shows the setting of a screen pixel:

Write one pixel in VGA mode 19 (256 colors)
Code assumes that write mode 0 for 256 colors is selected

Register setup:
ES= A000H (video buffer segment base)
BX offset into the video buffer (range Oto 64000)
AL 8-bit color code

MOV ES: [BX)AL ; Write pixel

6.2.5 VGA Mode 19 Pixel Read Routine

In VGA mode 19 each screen pixel is mapped to a single video buffer byte. There
are 64,000 bytes in the video buffer, which is the same as the total number of
screen pixels obtained by multiplying the number of pixels per row by the
number of screen rows (320 x 200 = 64,000). The mapping scheme in VGA mode
19 can be seen in Figure 6.2. The address calculations for mode 19 were shown
in Section 6.2.3. The actual read operation is performed by means of a MOV
instruction, as in the following code fragment:

Read one pixel in VGA mode 19 (256 colors)
Code assumes that read mode 0 is selected

Register setup:
ES A000H (video buffer segment base)
BX= offset into the video buffer (range Oto 64000)

MOV AL,BYTE PTR ES: [BX] ; Read pixel
AL now holds the 8-bit color code

6.3 Color Operations

The theory of additive color reproduction is based on the fact that light in the
primary colors (red, green, and blue) can be used to generate all the colors of
the spectrum. Red, green, and blue are called the primary colors. Also notice
that, technically, it is possible to create white light by blending just two colors.
The color that must be blended with a primary color to form white is called the
complement of the primary color, or the complementary color. Figure 6.3 is a
diagram of the additive primary and complementary colors.

164

magenta
(not-green)

yellow
(not-blue)

Figure 6.3 Additive Primary and Complementary Colors

cyan
(not-red)

Chapter Six

The complementary colors can also be described as white light minus a
primary color. For example, white light without red, not-red, gives a shade of
blue-green known as cyan; not-green gives a mixture of red and blue called
magenta; and not-blue gives yellow, which is a mixture of red and green light
(see Figure 6.3). Video display technology is usually designed on additive color
blending. Subtractive methods are based on dyes that absorb the undesirable,
complementary colors. A cyan-colored filter, for example, absorbs the green and
blue components of white light. Subtractive mixing is used in color photography
and color printing.

In describing a color we use three characteristics that can be precisely
determined: its hue, its intensity, and its saturation. A method of color mea­
surement based on hue, intensity, and saturation (sometimes called the HIS)
was developed for color television. The hue can be defined as the color of a color.
Physically the hue can be measured by the color's dominant wavelength. The
intensity of a color is its brightness. This brightness is measured in units of
luminance or nits. The saturation of a color is its purity. If the color contains
no white diluent, it is said to be fully saturated.

6.3.1 256-Color Modes

While address calculations in VGA mode 19 are simpler than in mode 18, the
pixel color encoding is considerably more complicated. This is so not only
because there is a more extensive color range in mode 19 than in mode 18 (256
versus 16 colors) but also because the default encoding scheme is not very
straightforward. This default scheme is determined by the setting of the 256

VGA Drivers for Standard Modes 165

OOH
16 colors in IRGB values

OFH
10H

16 shades of gray
1FH

20H
HIGH-INTENSITY GROUP

72 colors in 3 saturation groups
20H-37H = high saturation

38H-4FH = moderate saturation
S0H-67H = low saturation

67H
68H

MEDIUM-INTBHSITY GROUP
72 colors in 3 saturation groups

68H-7FH = high saturation
80H-97H = moderate saturation

98H-AFH = low saturation
AFH

BOH
LOW-INTENSITY GROUP

72 colors in 3 saturation groups
B0H-C7H = high saturation

CSH-DFH = moderate saturation
E0H-F7H = low saturation

F7H
F8H

BLACK
FFH

Figure 6.4 Default Color Register Setting in VGA Mode 19

Color registers in the DAC (see Section 5.3). The start-up value stored in these
registers by the BIOS initialization code is designed to provide compatibility with
the CGA and EGA systems. Figure 6.4 shows the default setting of the DAC Color
registers in VGA mode 19.

In Figure 6.4 the first group of default colors (range OOH to OFH) corresponds to
those in the 16-color VGA modes. This design ensures that if only the four low-order
bits of the 8-bit color code are programmed, the resulting colors in the 256-color mode
are the same as those in the 16-colormodes. The second group of default colors (range
lOH to lFH) corresponds to 16 shades of gray. The next group of colors (range 20H
to 67H) consists of 72 colors divided into three subgroups, each one representing a
different level of color saturation. Each of the saturation subgroups consists of 24
colors in a circular pattern ofblue-red-green hues. Another 72-color group is used
for medium-intensity colors and a third one for low-intensity colors.

166 Chapter Six

The VGA programmer is by no means restricted t.o the default values installed
by the BIOS in the DAC Color registers. This default setting is not convenient for
many applications. The main objection t.o the default 256-color map is that red,
green, and blue are not mapped t.o adjacent bits or located in manageable fields.
For example, using the default setting of the DAC Color registers, the various
shades of the color green are obtained with the values shown in Table 6.1.

Table 6.1 Default Shades of Green in VGA 256-Color Mode

VALUE/RANGE INTENSITY SATURATION

02H 000000108 medium high
OAH 000010108 high high
2EH to 001011108 to high high
34H 001101008
46H to 010001108 to high moderate
4CH 010011008
SEH to 010111108 to high low
64H 01100100B
76H to 011101108 to medium high
7CH 011111008
BEH to 100011108 to medium moderate
94H 10010100B
A6H to 10100110B to medium low
ACH 101011008
8EH to 10111110B to low high
C4H 11000100B
06H to 110101108 to low moderate
OCH 110111008
EEH to 11101110B to low low
F4H ll 110100B

If compatibility with previous video standards is not at issue, a more rational
256-color scheme can be based on assigning 2 bits t.o each of the components of
the familiar IRGB encoding. Figure 6.5 shows the bit-mapping for this IRGB
double-bit encoding.

Figure 6.5 Double-Bit Mapping for 256-Color Modes

BLUE
GREEN
RED
INTENSITY

To enable the double-bit encoding in Figure 6.5, it is necessary to change the
default values in the DAC registers. In Chapter 5 we saw that the DAC Color
registers consist of 18 bits, 6 bits for each color (red, green, and blue). The
bitmap of the DAC Color registers is shown in Figure 6.6.

RED GREEN BLUE

Figure 6.6 DAG Color Register Bitmap

VGA Drivers for Standard Modes 167

To design an 8-bit encoding in a four-element (IRGB) format we have assigned
2 bits to each color and to the intensity component (see Figure 6.5). In this
manner, the 2-bit values for red, green, and blue allow four tones. Since each
tone can be in four brightness levels, one for each intensity bit setting, each
pure hue would have 16 saturations. In order to achieve a double-bit IRGB
encoding by reprogramming the DAC Color registers (see Figure 6.6), we assign
eight values to each DAC Color register, as shown in Table 6.2.

Table 6.2 DAG Register Setting for Double-Bit IRGB Encoding

NUMBER 6-BITVALUE INTENSITY COLOR

0 9 OFF dark
1 18 OFF
2 27 OFF
3 36 OFF
4 45 ON
5 54 ON

br1ght 6 63 ON

The first four bit settings in Table 6.2 correspond to the color tones controlled
by the red, green, and blue bits when the intensity bits have a value of 00B.
The last three 6-bit values correspond to the three additional levels of intensity.
Excluding the intensity bit, the three DAC Color registers have 64 possible
combinations. Table 6.3 shows the pattern ofregister settings for the double-bit
IRGB format.

Table 6.3 Pattern for DAG Register Settings in Double-Bit IRGB Encoding

I =00 I= 01 1=10 I= 11

No. R G B No. R G B No. R G B No. R G B
0 9 9 9 64 9 9 18 128 9 9 27 192 9 9 36
1 9 9 18 65 9 9 27 129 9 9 36 193 9 9 45
2 9 9 27 66 9 9 36 130 9 9 45 194 9 9 54
3 9 9 36 67 9 9 45 131 9 9 54 195 9 9 63
4 9 9 9 68 9 18 18 132 9 27 18 196 9 36 18
5 9 18 9 69 9 27 18 133 9 36 27 197 9 45 36

63 36 36 36 127 45 45 45 191 54 54 54 255 63 63 63

In Table 6.3 a value of 9 in the red, green, and blue color registers corresponds
to the color black. It has been found that the colors generated by the low range
of the DAC scale are less noticeable than those on the high range. By equating
the value 9 to the color black we enhance the visible color range on a standard
VGA. The following procedure changes the default setting of the DAC Color
registers to the values in Table 6.3:

TWO BIT IRGB PROC FAR
; Initialize DAC registers for 256-color mode in the following

168 Chapter Six

format:
7 6 5 4 3 2 1 0 <= bits
I I I I I I I I
I R G B

Note: data for this procedure follows the code listing

;**********************I

save caller's
context

;**********************I
PUSH ES
PUSH AX
PUSH BX
PUSH ex
PUSH DX
PUSH SI
PUSH DI
PUSH BP

;**********************I
set ES to CS

;**********************I
MOV
MOV
ASSUME

AX,P_DATA
ES,AX
ES:P DATA

;**********************I
expand color table

;**********************I

Registers used by routine

Local data segment
To DS
Assume this DS

The code segment table named INTENSITY_□ contains the register
values for 00 intensity bits. The values-for 01, 10, and 11
intensity bits are calculated by adding 9, 18, and 27 to the
values in the INTENSITY 0 table

DO

LEA SI,ES:INTENSITY_0
LEA
LEA
LEA
MOV
MOV

TABLES:
MOV
ADD
MOV
ADD
MOV
ADD
MOV
INC
INC
INC
INC

DI,ES:INTENSITY_l
BX,ES:INTENSITY_2
BP,ES:INTENSITY_3
CX,192
AH, 9

AL,ES: [SI]
AL,AH
ES: [DI) ,AL
AL,AH
ES: [BX) ,AL
AL,AH
ES: [BP] ,AL
SI
DI
BX
BP

Set pointer to source table
Pointer to intensity 01 table
Pointer to intensity 10 table
Pointer to intensity 11 table

Number of values to move
Constant value to add

Value from intensity 00 table
Add 9, once
Place in intensity 01 table
Add 18
Place in intensity 10 table
Add 27
Place in intensity 11 table
Bump all pointers

VGA Drivers for Standard Modes

LOOP DO TABLES
;**********************I

set DAC registers
;**********************I

Change first
; of interrupt

MOV
MOV

64 DAC registers using BIOS service number 16
lOH

AH,16
AL,18

Service number
Subservice to set group of
DAC color registers

169

LEA DX,ES:INTENSITY_ 0 ; Pointer to table of 256 DAC
colors

MOV BX,0 Start with register
MOV CX,256 Set all 256 DAC registers
INT l0H

;**********************I
restore caller's

context
;**********************I

POP BP Registers in stack
POP DI
POP SI
POP DX
POP ex
POP BX
POP AX
POP ES
RET

TWO BIT IRGB ENDP
;**

data for TWO_BIT_IRGB procedure
;**
P DATA SEGMENT

INTENSITY 0 DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

I R G B I R G B I R G B I
009,009,009,009,009,018,009,009,027
009,009,036,009,018,009,009,0l8,0l8
009,018,027,009,018,036,009,027,009
009,027,018,009,027,027,009,027,036
009,036,009,009,036,018,009,036,027
009,036,036,018,009,009,0l8,009,0l8
018,009,027,018,009,036,0l8,0l8,009
018,018,018,018,018,027,018,018,036
018,027,009,018,027,018,0l8,027,027
018,027,036,018,036,009,0l8,036,0l8
018,036,027,018,036,036,027,009,009
027,009,018,027,009,027,027,009,036
027,018,009,027,018,018,027,0l8,027
027,018,036,027,027,009,027,027,0l8
027,027,027,027,027,036,009,036,009
027,036,018,027,036,027,027,036,036
036,009,009,036,009,018,036,009,027
036,009,036,036,018,009,036,0l8,0l8

2
5
8
11
14
17
20
23
26
29
32
35
38
41
44
47
50
53

170

INTENSITY 1
INTENSITY 2
INTENSITY 3

P DATA ENDS

DB
DB
DB
DB

DB
DB
DB

Chapter Six

036,018,027,036,018,036,036,027,009 56
036,027,018,036,027,027,036,027,036 59
036,036,009,036,036,018,036,036,027 62
036,036,036; 63

192 DUP (00)
192 DUP (00)
192 DUP (00)

A double-bit IRGB setting for the DAC registers simplifies programming in
the VGA 256-color mode when compared to the default setting. Once the DAC
registers are set for the double-bit IRGB encoding the programmer can choose
any one color by setting the corresponding bits in the video buffer byte mapped
to the pixel. For example, the bit combinations in Table 6.4 can be used to
display 16 pure tones of magenta. Notice that the purity of the hue is ensured
by the zero value in the green DAC register.

Table 6.4 16 Shades of Magenta Using Double-bit IRGB Code

NUMBER R G B TONE

0 00 01 00 01 darkest magenta
1 00 10 00 10
2 00 01 00 01
3 00 11 00 11
4 01 01 00 01

15 11 11 00 11 brightest magenta

No single color encoding is ideal for all purposes. Often the programmer
prefers to enhance certain portions of the color range at the expense of other
portions. For example, in displaying a mountain landscape it might be prefer­
able to extend shades of blue and green at the expense of red. On the other
hand, a volcanic explosion may require more shades of red than of green and
blue. The programmer can manipulate the displayed range by choosing which
set of256 colors, from a possible total of262,143, is installed in the DAC Color
registers.

Shades of Gray

Gray is defined as equal intensities of the primary colors, red, green, and blue.
In the DAC Color registers any setting in which the three values are equal
generates a shade of gray. For example, the value 20-20-20, for red-green-blue,
respectively, produces a 31 percent gray shade, while a value of 32-32-32
produces a 50 percent gray shade. Recall that each register can hold 64 values.
Since the gray shades require that all three colors have the same value, there
are 64 possible shades of gray in the VGA 256-color modes. The actual settings
of the VGA registers go from 0-0-0 to 63-63-63.

VGA Drivers for Standard Modes 171

A graphics program operating in VGA 256-color mode can simultaneously use
the full range of 64 gray shades, as well as 192 additional colors. This requires
reprogramming the DAC Color registers. If a program were to execute in shades
of gray only, then the low-order 6 bits of the color encoding can be used to select
the gray shades. The range would extend from O (black) to a value of 63
(brightest white). The setting of the DAC Color registers for a 64-step grayscale
is shown in Table 6.5.

Table 6.5 Pattern for DAG Register Setting for 64 Shades of Gray

No. RGB No. RGB No. R G 8 No. RGB

0 0 0 0 64 0 0 0 128 0 0 0 192 0 0 0
1 1 1 1 65 1 1 1 129 1 1 1 193 1 1 1
2 2 2 2 66 2 2 2 130 2 2 2 194 2 2 2
3 3 3 3 67 3 3 3 131 3 3 3 195 3 3 3

63 63 63 63 127 63 63 63 191 54 54 54 255 63 63 63

Notice in Table 6.5 that the gray settings are repeated four times. The effect
of this repeated pattern is that the high-order bits of the color code are ignored.
In other words, all possible color values generate a gray shade, and the excess
of 63 (00111111B) has no visible effect. The following procedure changes the
default setting of the DAC Color registers to the values in Table 6.5:

GRAY 256 PROC FAR
Initialize DAC registers for 64 shades of gray, as follows:

7 6 5 4 3 2 1 0 <= bits
I I 1_1_1_1_1_1 __ Grayscale in the range 0-63
I I
I I _______ Not significant

Notes: This procedure sets four blocks
the same gray scale so that bits
data are ignored
Data for this procedure follows

;**********************I
save caller's

context
;**********************I

of 64 DAC
6 and 7

the code

registers to
of video color

listing

PUSH ES Registers used by routine
PUSH AX
PUSH BX
PUSH ex
PUSH DX

;**********************I
set ES to CS

;**********************I

172 Chapter Six

MOV
MOV
ASSUME

AX,P_DATA
ES,AX
ES: P DATA

;**********************I
set DAC registers

;**********************I

Local data segment
To OS
Assume this ES

Change first 256 DAC registers using BIOS service number 16
of interrupt lOH. DAC registers are set to a 64-step
grayscale, repeated four times

MOV AH, 16
MOV AL, 18 of

LEA DX,ES:GRAY_MAP

Service number
Subservice to set group
DAC color registers
Pointer to table of 256
colors, in groups of 64
of gray

DAC
shades

MOV
MOV
INT

BX,O
CX,256
lOH

;**********************I
restore caller's

context
;**********************I

GRAY 256

POP
POP
POP
POP
POP
RET

DX
ex
BX
AX
ES

ENDP

Start with register
Set 256 DAC registers

Registers in stack

·** ,
data for the procedure GRAY_256

;**
P DATA SEGMENT

GRAY MAP DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

I R G B I R G B I R G B I
ooo,ooo,ooo,001,001,001,002,002,002
003,003,003,004,004,004,005,005,005
006,006,006,007,007,007,008,008,008
009,009,009,010,010,010,0ll,Oll,Oll
012,012,012,013,013,013,0l4,0l4,0l4
015,015,015,016,016,016,0l7,0l7,017
018,018,018,019,019,019,020,020,020
021,021,021,022,022,022,023,023,023
024,024,024,025,025,025,026,026,026
027,027,027,028,028,028,029,029,029
030,030,030,031,031,031,032,032,032
033,033,033,034,034,034,035,035,035
036,036,036,037,037,037,038,038,038
039,039,039,040,040,040,041,041,041
042,042,042,043,043,043,044,044,044
045,045,045,046,046,046,047,047,047

2
5
8
11
14
17
20
23
26
29
32
35
38
41
44
47

VGA Drivers for Standard Modes 173

DB 048,048,048,049,049,049,050,050,050 50
DB 051,051,051,052,052,052,053,053,053 53
DB 054,054,054,055,055,055,056,056,056 56
DB 057,057,057,058,058,058,059,059,059 59
DB 060,060,060,061,061,061,062,062,062 62
DB 063,063,063 63
DB ooo,ooo,ooo,001,001,001,002,002,002 2
DB 003,003,003,004,004,004,005,005,005 5
DB 006,006,006,007,007,007,008,008,008 8
DB 009,009,009,010,010,010,0ll,0ll,0ll 11
DB 012,012,012,013,013,013,014,014,014 14
DB 015,015,015,016,016,016,017,017,017 17
DB 018,018,018,019,019,019,020,020,020 20
DB 021,021,021,022,022,022,023,023,023 23
DB 024,024,024,025,025,025,026,026,026 26
DB 027,027,027,028,028,028,029,029,029 29
DB 030,030,030,031,031,031,032,032,032 32
DB 033,033,033,034,034,034,035,035,035 35
DB 036,036,036,037,037,037,038,038,038 38
DB 039,039,039,040,040,040,041,041,041 41
DB 042,042,042,043,043,043,044,044,044 44
DB 045,045,045,046,046,046,047,047,047 47
DB 048,048,048,049,049,049,050,050,050 50
DB 051,051,051,052,052,052,053,053,053 53
DB 054,054,054,055,055,055,056,056,056 56
DB 057,057,057,058,058,058,059,059,059 59
DB 060,060,060,061,061,061,062,062,062 62
DB 063,063,063 63
DB ooo,ooo,ooo,001,001,001,002,002,002 2
DB 003,003,003,004,004,004,005,005,005 5
DB 006,006,006,007,007,007,008,008,008 8
DB 009,009,009,010,010,010,0ll,0ll,0ll 11
DB 012,012,012,013,013,013,014,014,014 14
DB 015,015,015,016,016,016,017,017,017 17
DB 018,018,018,019,019,019,020,020,020 20
DB 021,021,021,022,022,022,023,023,023 23
DB 024,024,024,025,025,025,026,026,026 26
DB 027,027,027,028,028,028,029,029,029 29
DB 030,030,030,031,031,031,032,032,032 32
DB 033,033,033,034,034,034,035,035,035 35
DB 036,036,036,037,037,037,038,038,038 38
DB 039,039,039,040,040,040,041,041,041 41
DB 042,042,042,043,043,043,044,044,044 44
DB 045,045,045,046,046,046,047,047,047 47
DB 048,048,048,049,049,049,050,050,050 50
DB 051,051,051,052,052,052,053,053,053 53
DB 054,054,054,055,055,055,056,056,056 56
DB 057,057,057,058,058,058,059,059,059 59
DB 060,060,060,061,061,061,062,062,062 62
DB 063,063,063 63
DB ooo,ooo,ooo,001,001,001,002,002,002 2

174 Chapter Six

DB 003,003,003,004,004,004,005,005,005 5
DB 006,006,006,007,007,007,008,008,008 8
DB 009,009,009,010,010,010,0ll,0ll,0ll 11
DB 012,012,012,013,013,013,0l4,0l4,014 14
DB 015,015,015,016,016,016,0l7,017,017 17
DB 018,018,018,019,019,019,020,020,020 20
DB 021,021,021,022,022,022,023,023,023 23
DB 024,024,024,025,025,025,026,026,026 26
DB 027,027,027,028,028,028,029,029,029 29
DB 030,030,030,031,031,031,032,032,032 32
DB 033,033,033,034,034,034,035,035,035 35
DB 036,036,036,037,037,037,038,038,038 38
DB 039,039,039,040,040,040,041,041,041 41
DB 042,042,042,043,043,043,044,044,044 44
DB 045,045,045,046,046,046,047,047,047 47
DB 048,048,048,049,049,049,050,050,050 50
DB 051,051,051,052,052,052,053,053,053 53
DB 054,054,054,055,055,055,056,056,056 56
DB 057,057,057,058,058,058,059,059,059 59
DB 060,060,060,061,061,061,062,062,062 62
DB 063,063,063 63

P DATA ENDS

Summing to Gray Shades

A program can read the red, green, and blue values installed in a DAC Color
register and find an equivalent gray shade with which to replace it. If this action
is performed simultaneously on all 256 DAC Color registers, the result converts
a displayed color image to black-and-white. Considering that the human eye is
more sensitive to certain regions of the spectrum, this conversion is usually
based on assigning different weights to the red, green, and blue components.
This relative color weight is used to determine the gray shade, on a scale of 0
to 63. As mentioned in the previous paragraph, the resulting grayscale setting
must have equal proportions of the red, green, and blue elements.

BIOS service number 16, of interrupt lOH, contains subservice number 27,
which sums all color values in the DAC registers to gray shades. The BIOS code
uses a weighted sum based on the following values:

red 30%
green 59%
blue 11%

total 100%

One disadvantage in using the BIOS service is that it does not preserve the
original values found in the DAC registers. The following procedure performs
a gray scale sum based on the action of the above-mentioned BIOS service:

VGA Drivers for Standard Modes

SUM TO GRAY PROC FAR
Uses BIOS service number 16, subservice number 27, to perform
a sum-to-gray-shades operation on all 256 DAC Color registers
The entry values in the DAC registers are not preserved

;**********************I

save caller's
context

;**********************I

175

PUSH AX Save registers used by routine
PUSH BX
PUSH ex

Initialize registers for BIOS
MOV AH,16
MOV AL,27
MOV BX,0
MOV CX,256
INT lOH

;**********************I

restore caller's
context

;**********************I

POP ex
POP BX
POP AX
RET

SUM TO GRAY ENDP

service
Service request number
Subservice is sum-to-gray
Start with first register
All 256 DAC Color registers

Caller's registers in stack

Preserving the DAC registers is a simple manipulation performed by
BIOS service number 16, subservice 23, of INT l0H. The following
procedures perform the DAC save operation:
SAVE DAC PROC FAR

Save current values in DAC Color registers
; Data is saved in the local segment named P_DATA, under the
; variable name DAC_REGS {see data area following code listing)
;**********************I

save caller's
context

;**********************I

PUSH ES
PUSH AX
PUSH BX
PUSH ex
PUSH DX

;**********************I

set ES to CS
;**********************I

MOV AX,P_DATA
MOV ES,AX
ASSUME ES:P DATA

Registers used by routine

Local data segment
To DS
Assume this DS

Initialize registers for BIOS service
MOV AH,16 ; Service request number

176

MOV
MOV
MOV
LEA
INT

AL,23
BX,0
CX,256
DX,ES:DAC_REGS
l0H

;**********************I

restore caller's
context

;**********************I

POP DX
POP ex
POP BX
POP AX
POP ES
RET

SAVE DAC ENDP

Chapter Six

Subservice is read DAC group
Start with first register
All 256 DAC Color registers
Pointer to storage area

Registers in stack

Restoring the DAC registers is performed by BIOS service number 16,
subservice 18, of INT lOH. The following procedures perform the DAC restore
operation:

RESTORE DAC PROC FAR
; Restore DAC Color registers to values stored by the SAVE DAC
; procedure
;**********************I

save caller's
context

;**********************I
PUSH ES
PUSH AX
PUSH BX
PUSH ex
PUSH DX

;**********************I

set ES to CS
;**********************I

MOV AX,P_DATA
MOV ES,AX
ASSUME ES:P DATA

Initialize registers for
MOV AH,16
MOV AL,18
MOV BX,0
MOV CX,256
LEA DX,ES:DAC

BIOS

REGS -
INT l0H

;**********************I

restore caller's
context

;**********************I

Registers used by routine

Local data segment
To DS
Assume this DS

service
Service request number
Subservice is write DAC group
Start with first register
All 256 DAC Color registers
Pointer to storage area

VGA Drivers for Standard Modes 177

POP DX Registers in stack
POP ex
POP BX
POP AX
POP ES
RET

RESTORE DAC ENDP

·** ,
data for the procedures SAVE_DAC and RESTORE_DAC

·** ,
P DATA SEGMENT

DAC REGS

P DATA ENDS

DB

ow

768 DUP (OOH) ; Storage for 256
registers in 3 color bytes per
register

0 Padding

The IBM BIOS performs several automatic operations on the VGA DAC Color
registers. For example, during a mode change call (BIOS service number 0,
interrupt lOH) the BIOS loads all 256 DAC Color registers with the default
values. If the mode change is to a monochrome mode, then a sum-to-gray
operation is performed. The programmer can prevent this automatic loading of
the DAC registers. BIOS service number 18, subservice number 49, of interrupt
lOH, enables and disables the default pallete loading during mode changes.
Subservice number 51 enables and disables the sum-to-gray function. The
following procedures can be used:

FREEZE DAC PROC FAR
Disable changes to Palette and DAC registers during BIOS mode

; set operations
MOV AH,18 Alternate select BIOS service
MOV
MOV
INT
RET

FREEZE DAC

THAW DAC

BL,49
AL,l
lOH

ENDP

PROC FAR

Subservice to enable or disable
Code to disable changes

Enable changes to Palette and DAC registers during BIOS mode
; set operations

MOV AH,18
MOV BL,49
MOV AL,0
INT lOH
RET

THAW DAC ENDP

Alternate select BIOS service
Subservice to enable or disable
Code to enable

178 Chapter Six

6.3.2 16-Color Modes

In Table 5.1 we can see that VGA color modes can be in 2, 4, 16, and 256 colors.
The two- and four-color modes are provided for compatibility with standards
that are now obsolete; therefore they are of little interest to the present day
VGA programmer. The same can be said of the lower-resolution graphics
modes. This leaves us with 256-color modes, previously discussed, and with the
16-color graphics mode 18.

Video memory mapping in mode 18 can be seen in Figure 6.1, however, this
illustration does not show how the color is obtained. Refer to Figure 5.3 to
visualize how the pixel color in mode 18 is determined by the values stored in
four maps, usually named intensity, red, green, and blue. This four-bit IRGB
code is the number of one of 16 palette registers located in the Attribute
Controller group. Furthermore, the value stored in the Palette register is also
an address into the corresponding DAC Color register. This dual-level, indirect
addressing scheme was developed to provide VGA compatibility with the CGA
and the EGA standards. The matter is further complicated by the fact that the
number of the DAC Color register (an 8-bit value in the range Oto 255) can be
stored differently. If the Palette Select bit of the Attribute Mode Control register
is clear, then the number of the DAC Color register is stored in the six bits of
the Palette register and in bits 2 and 3 of the Color Select register. If the Palette
Select bit is set, then the number of the DAC Color register is stored in the four
low-order bits of the Palette register and in the four low-order bits of the Color
Select register. The two addressing modes are shown in Figure 6. 7.

Palette
registers

5 4 3 2 1 0
1?

I
I

0
1
2 1>

i
3 256 DAC

·------------------- 4 registers
r

·----------------------------------- 5 --------- ---- -------------------------- 6

r----
---- -------------------------

7
r

RED

GREEN

BLUE

!
7 6 5 4 3 2 1 0

Color Select
DAC ::,:er addressing when
Palette lect bit = 1

register ---------------· DAC later addressing when
= 0 Palette "1:1ect bit

Figure 6_7 Selection Modes for Active DAC Registers

VGA Drivers for Standard Modes 179

Notice in Figure 6.7 that when the Palette Select bit is set, bits 4 and 5 of the
DAC register address are determined by bits 0 and 1 of the Color Select register,
and not by bits 4 and 5 of the Palette register. A program operating in this
addressing mode has to manipulate bits 4 and 5 of the desired DAC register
number so that they are determined by bits 0 and 1 of the Color Select register,
while bits 6 and 7 of the address are determined by bits 3 and 2 of the Color
Select register.

The simplest and most straightforward color option for VGA mode 18 is to set
the Palette Select bit and to clear bits Oto 3 of the Color Select register. This
mode of operation makes the Palette and Color Select registers transparent to
the software. The DAC register number is now determined by the four low bits
of the Palette register, which, in turn, match the IRGB value in the bit planes.
The only disadvantage in this setup is that it is incompatible with the one in
the CGA and EGA standards, which are based on the value stored in the 16
Palette registers. The method followed by the BIOS, designed to achieve
compatibility with the Palette registers of the CGA and EGA cards, is based on
a customized set of values for the DAC Color registers which are loaded during
mode 18 initialization. This set, which includes values for the first 64 DAC Color
registers only, can be seen in Table 6.6.

Table 6.6 BIOS Settings for DAG Registers in Mode 18

No. R G B No. R G B No. R G B No. R G B

0 0 0 0 16 0 21 0 32 21 0 0 48 21 21 0
1 0 0 42 17 0 21 42 33 21 0 42 49 21 21 42
2 0 42 0 18 0 63 0 34 21 42 0 50 21 63 0
3 0 42 42 19 0 63 42 35 21 42 42 51 21 63 42
4 42 0 0 20 42 21 0 36 63 0 0 52 63 21 0
5 42 0 42 21 42 21 42 37 63 0 42 53 63 21 42
6 42 42 0 22 42 63 0 38 63 42 0 54 63 63 0
7 42 42 42 23 42 63 42 39 63 42 42 55 63 63 42
8 0 0 21 24 0 21 21 40 21 0 21 56 21 21 21
9 0 0 63 25 0 21 63 41 21 0 63 57 21 21 63

10 0 42 21 26 0 63 21 42 21 42 21 58 21 63 21
11 0 42 63 27 0 63 63 43 21 42 63 59 21 63 63
12 42 0 21 28 42 21 21 44 63 0 21 60 63 21 21
13 42 0 63 29 42 21 63 45 63 0 63 61 63 21 63
14 42 42 21 30 42 63 21 46 63 42 21 62 63 63 21
15 42 42 63 31 42 63 63 47 63 42 63 63 63 63 63

6.4 Color Animation

An interesting programming technique for VGA systems is to use the bits in
the Color Select register to change some or all of the displayed colors. For
example, if the Palette Select bit of the Attribute Mode Control register is clear,
then bits 2 and 3 of the Color Select register provide two high-order bits of the
DAC register number. Since two bits can encode four combinations (00, 01, 10,
and 11), a program can change the value of bits 2 and 3 of the Color Select
register to index into four separate areas of the DAC, each one containing 64
different color registers. By the same token, if the Palette Select bit is set, then
the four low-order bits in the Color Select register can be used to choose one of

180 Chapter Six

16 DAC areas, each one containing 16 color registers. The areas of the DAC
determined through the Color Select register are sometimes referred to as color
pages. Some interesting animation effects can be achieved by rapidly shifting
these color pages. For example, a program can simulate an explosion by shifting
the pixel colors to tints of red, orange, and yellow.

BIOS service number 16, subservice 19, provides a means for setting the
paging mode to four color pages of 64 registers or to 16 color pages of 16 registers
each and also for selecting an individual color page within the DAC. In this kind
of programming it is important to remember that the BIOS initialization
routines for mode 18 set color values for the first 64 DAC registers only. It is
up to the software to initialize the color values in the other DAC registers.

Chapter

7
VGA Mode X Drivers and Primitives

7.0 A Nonstandard VGA Mode

In Chapter 5 we mentioned that VGA graphics programmers have found ways
of initializing the VGA hardware in order to create video modes different than
those officially sponsored by IBM or other manufacturers. These are the
so-called nonstandard modes. The best known of the VGA nonstandard modes
is mode X. It appears that the mode X designation was first used by Michael
Abrash in his column "Graphics Programming" that appeared in the July 1991
edition of Dr. Dobb's Journal (see Bibliography). The original article, titled
"Mode X: 256-Color VGA Magic," continued in the August and September 1991
editions of the magazine. In his article Abrash mentions that the new mode is
based on public domain code by John Bridges.

VGA mode X has a resolution of 320-by-240 pixels in 256 colors. In Table 5.1
we see that this resolution exceeds that of VGA mode 19 by 40 horizontal pixel
rows. Notice that VGA mode 19 consists of64,000 pixels (320 times 200), which
is close to the maximum of 65,535 pixels that can be stored in a single segment
or video map. In order to expand the number of pixels to 76,800 (320 times 240),
the resolution ofVGA mode X, it was necessary to adopt a planar scheme similar
to the one in VGA mode 18.

For this reason the programmer finds that mode X is reminiscent of VGA
mode 19 regarding the number of colors and screen dimensions and of mode 18
regarding the planar mapping of the video data. However, mode X is unique
and differs in many ways from any of the standard modes. The programming
methods and techniques for use in mode X are also quite different from those
used in VGA standard modes. In fact, the VGA system operating in any
particular graphics mode, standard or nonstandard, should be considered as a
unique device. To the programmer there is often as much difference between
VGA modes as between the VGA and other video systems.

181

182 Chapter Seven

7.0.1 Mode X Characteristics

Although VGA mode X falls considerably short of being the PC animator's
panacea, it does offer some useful and interesting characteristics. Comparing
VGA mode X to the standard VGA modes requires considering three separate
factors: resolution, color range, and graphics performance.

Regarding resolution, mode X falls considerably short of VGA mode 18 and
exceeds VGA mode 19. Mode 18 is capable of 640-by-480 pixels, making a total
of 307,200 screen pixels, while mode 19 is capable of 320-by-200, for a total of
64,000 pixels. Mode X's resolution is 320-by-240, which makes a total of 76,800
pixels. VGA applications developers concerned with obtaining the highest
possible level of screen detail usually prefer VGA mode 18 over mode X
although, by skillfully applying dithering and antialiasing techniques it is
possible to compensate for the lower resolution of mode X. In this manner a
program designer can manipulate the greater color range of mode X to increase
the apparent degree of object detail.

Mode X matches the best available color range in the VGA standard modes,
which is 256 colors. As in mode 19, the color is encoded in one memory byte per
pixel. Color mapping is by means of the DAC registers as described in Section
6.3.1. The same processing used for manipulating the DAC registers in mode
19 applies to mode X. This means a program designer interested in obtaining
the highest possible color range in the VGA standard would probably select
either mode 19 or mode X.

The element of graphics performance in the various VGA modes is difficult to
evaluate exactly since many undeterminable elements enter into the equation.
For example, a certain VGA mode has better performance than another one
regarding operations on geometrical graphics objects and worse performance
in the manipulation of objects defined in bitmaps. At the same time, a VGA
planar mode (such as mode X) has much better performance when dealing with
objects that are defined in a way that allows manipulating all or several video
maps in parallel. Furthermore, at the system level, performance of a video mode
is related to the absolute speed of the central processor, as well as its speed
when accessing system memory and when accessing video memory space.

In spite of these complications it can be stated that, under typical processing
conditions, the pixel-by-pixel performance of mode X code is considerably better
than that of VGA mode 18 and somewhat better than that of VGA mode 19.
The reasons for the exceptional performance of mode X are related to its
peculiar architecture, as is shown in the following sections. In recent years
animated programs that take advantage of mode X have thrived commercially,
as well as in the Shareware and public domain fields.

7.0.2 Mode X in Animation Programming

Graphics programmers in general, and animators in particular, have found
several attractive features in mode X. The following are the most important:

VGA Mode X Drivers and Primitives 183

_,.,,,,- "'111,,.

r "II
,..,,- "'""-, "

I~

• I
I I

lj

I \.. ~

I,,.,,,,

\. J VGAmode19
"""-. ~"'

VGAmodeX

Figure 7.1 Symmetrical and Asymmetrical Pixel Grids

1. Mode X resolution is better than mode 19, the only other VGA mode in 256
colors.

2. Mode X operates on a symmetrical pixel grid. In other words, the VGA screen
in mode X has a 1:1 aspect ratio. A rectangle of 20-by-20 pixels appears on
the mode X screen as a square. In VGA mode 19, which has a nonsymmetrical
grid, this rectangle does not appear square. The effect is shown in Figure
7.1. The VGA programmer working in a nonsymmetrical mode has to make
compensations accordingly. In order to display a circle the application has
to plot an ellipse, and a rectangle in order to display a square. The program­
mer working in a symmetrical mode (such as mode 18 or mode X) need not
be concerned with these complications.

3. Mode X architecture is planar. Code can take advantage of the planar
property of mode X by simultaneously reading and writing up to four pixels.
Although this type of parallel processing is not applicable in all cases,
programs can profitably use it in speeding up the performance of many
graphics functions.

4. Because of its planar architecture, mode X operates on a folded memory
space that totals 262,144 bytes. On the other hand, the linear memory space
in mode 19 is 65,536 bytes, which is one-fourth of that in mode X. In practice,
the memory space in mode X allows storing data for approximately 3.4
screens. This allows the use of off-screen video memory for storing images
that can be rapidly moved to the displayed area and for a page flipping
technique much used in animation. In this chapter we develop several
processing routines that take advantage of mode X's off-screen video memory
space.

184 Chapter Seven

5. Color mapping in mode X is on a byte-per-pixel basis. This method makes
unnecessary the complicated bit masking operations required in VGA mode
18, in which each screen pixel is mapped to a video memory bit.

On the other hand, mode X also has disadvantages. One of them is that the
planar architecture complicates programming since each screen pixel is stored
in one of four maps. The code must perform several operations in order to
determine and access the corresponding map. This additional processing load
affects the performance of some graphics functions when compared to the direct
memory-to-video mapping of mode 19.

The program designer must carefully analyze the possibilities and limitations
of each VGA mode in order to determine the one that is most convenient for a
particular application. Mode 18 shows the best resolution but not the most
extensive color range. Mode 19 has the maximum color range and is easy to
program, but it has very little off-screen video memory, a nonsymmetrical pixel
grid, and low resolution. Mode X has the same color range as mode 19, a
symmetrical pixel grid and plenty of off-screen memory, but its planar archi­
tecture makes some graphics operations slower than in mode 19, programming
is considerably more difficult, and resolution is much lower than in mode 18.

7.1 VGA Mode X Architecture

The principal characteristic of VGA mode X architecture is its unique planar
configuration, whereby consecutive screen pixels are stored in different mem­
ory maps. Figure 7.2 shows four adjacent screen pixels, each one stored in a
different memory map.

I 111

.w pixel OI plxel 41 plxel 81 ...

MAPO

pixel 1 I pixel 5 I pixel 91 ...

MAP1

I DIIII IIDIIIIIII lol plxel 21 pixel 61 pixel 101 ... I
MAP2

pixel 31 pixel 7 pixel 11 I ... I
MAP3

Figure 7.2 Video Memory Mapping in VGA Mode X

VGA Mode X Drivers and Primitives 185

12 CPU

Read Map Select register
~-"I---"--_.. (Graphics Controller group)

BH Mask register
....,_.....,._.....,.......,._, (Graphics Controller group)

latches

Figure 7.3 Mode X Video Map Access During Read

What makes this feature of VGA mode X unique, and somewhat confusing, is
that all four screen pixels are mapped to the same physical address. Therefore,
the first four screen pixels, located at the top-left screen comer, are accessed at
memory byte A0000H. Which of the four pixels at this location is accessed by
the CPU depends on the setting of the corresponding VGA hardware registers.
During read operations the Read Map Select register of the Graphics Controller
group determines which of the four maps is accessed by the processor. Figure
7 .3 shows the contents of map 1 being accessed by the CPU.

Since the screen in VGA mode X contains 320 pixel columns by 240 pixel rows,
the total number of screen pixels is of 76,800. However, since four pixels are
stored per physical address in video memory, the video screen is mapped to
19,200 addresses in the buffer. In other words, the planar mapping mechanism
of mode X allows storing 76,800 pixels in 19,200 addresses, each of which is
associated with one of four maps or planes.

According to Figure 7.3, in order to read the contents of four adjacent screen
pixels, the code must successively enable each of the four maps by means of the
Read Map Select register. Consequently, to read and store the contents of the
entire screen in VGA mode X, the code performs four read operations for each
four adjacent pixels.

186 Chapter Seven

1F CPU

Map Mask register
---........ ---- (Sequencer group)

Bit Mask register
......,.........,..,.... (Graphics Controller group)

latches

MAP1

MAP2

MAP3

Figure 7.4 Mode X Video Map Access During Write

Mode X operations are best visualized by introducing the concept of latches.
A latch is a temporary storage space that is loaded with the contents of a
memory map during a read operation. Which map is "latched" onto the CPU is
determined by the setting of the Read Map Select register, as shown in Figure
7 .3. The Bit Mask register of the Graphics Controller determines the map to
which the CPU has access. In order to provide access to all four maps the Bit
Mask register should be loaded with all I bits.

Write operations require setting the Map Mask register of the Sequencer to
determine which memory map is accessed with the CPU data. In this case the
Bit Mask register of the Graphics Controller also determines which maps are
visible to.the CPU. AO bit in the Bit Mask register makes the corresponding
latch inoperative. Figure 7 .4 shows a write operation in which the CPU contents
are stored in video map 2.

At this point it could seem that the setting of the Bit Mask register is trivial
during mode X read and write operations, since in Figures 7.3 and 7.4 the Bit
Mask is loaded with 1 bits and CPU access is controlled by means of either the
Map Mask or the Read Map Select registers. This is not entirely the case, since
the Bit Mask register can be used to provide parallel access to several planes
during data transfers within video memory. Code can set all Obits in the Bit
Mask register, perform a read operation to load the four latches, and then store

VGA Mode X Drivers and Primitives 187

MAPO

MAP1

MAP2

Bit Mask register
............... ..._........,_ (Graphics Controller group)

latches

Figure 7.5 Mode X Parallel Map Access

the contents of the latches with a single write operation. In this case four bytes
of data are transferred with a single access, thus increasing performance
considerably. Figure 7.5 is a representation of a 4-byte transfer of video data
using the setting of the Bit Mask register.

7.1.1 Pixel-Level Address Calculations

Address calculations in mode X consist in determining the pixel's offset from
the start of the video buffer, as well as the pixel's position within the 4-pixel
group located at the same physical location. Figure 7 .6 shows a pixel located in
column 70, row 82, of the VGA mode X video screen.

188

0

y:82

X:70

Pixel address calculation:
offset= y* 80 + INT(x/4)
map= REM(x/4)

Figure 7.6 Example of Mode X Pixel Address Calculation

Chapter Seven

319 ,
0

239

Pixel address calculation in VGA mode X requires multiplying the pixel row
by 80, which is the number of video buffer bytes in each row, and then dividing
the pixel column by 4, which is the number of pixels mapped to each buffer
storage location. The pixel's location within the 4-pixel group is the remainder
from this division. In reference to Figure 7.6, we perform the following opera­
tions:

82 * 80 = 6560 (row offset)
+ INT(70 / 4) 17 (column offset)

6577 (pixel offset)
REM(70/4) = 2 (pixel position in 4-pixel group)

In Figure 7 .2 we see that in VGA mode X the video map O corresponds to the
left-most pixel in the group and video map 3 to the right-most pixel. Therefore,
the remainder that results from dividing the pixel column by 4 is equal to the
number of the video map in which the pixel is located. In the example of Figure
7 .6 the pixel's offset from the start of the video buffer is 6577 and the pixel is
located in map number 2. The following code fragment performs the pixel
address calculations in VGA mode X:

Code to calculate pixel address and map number in VGA mode X
CX = x coordinate of pixel (range Oto 319)
DX= y coordinate of pixel (range Oto 239)

;***************************I
; calculate buffer address
;***************************I

PUSH ex Save x coordinate

VGA Mode X Drivers and Primitives

Formula: offset= (y * 80) + (x/4)
MOV AX,DX y coordinate to AX
MOV CL,80 Multiplier to CL
MUL CL AX= y * 80
MOV BX,AX Free AX and hold in BX
POP AX x coordinate from stack

Prepare for division
MOV CL,4
DIV CL

MOV CL,AH
MOV AH,0
ADD BX,AX

Divisor to CL
AX/ 4 = quotient in AL and
remainder in AH
Store remainder in CL (map nwnber)
Clear remainder for addition
Add into buffer offset

189

At this point BX holds to video buffer offset and CL holds the
nwnber of the video map

7 .1.2 Tile-Level Address Calculations

In Chapter 6 we mentioned that graphics software can often profit from the
convenience and greater performance of routines that access the video display
at a larger-than-pixel level. The architecture of VGA mode X allows simultane­
ously setting four screen pixels to the same color by manipulating the Map Mask
register of the Sequencer and the Bit Mask register of the Graphics Controller.
Figure 7. 7 shows how the value stored in the CPU is simultaneously copied to
the four video maps.

Map Mask register
.....,.......,........,.......,...... (Sequencer group)

Bit Mask register
.....,........,...... (Graphics Controller group)

latches

Figure 7. 7 Simultaneous Map Write Operation in VGA Mode X

190 Chapter Seven

We can visualize the video display surface in VGA mode X as formed by 4-by-4
pixel tiles, both on the horizontal and in the vertical planes. A routine can then
be devised that accesses the display surface in groups of four pixels (as shown
in Figure 7.7). This routine would set a screen tile (a 16-pixel area) with four
write operations, one for each group of four horizontal pixels. The improved
performance of this approach could be convenient in those graphics functions
in which this lower resolution is acceptable, for example, in clearing the screen
or in displaying rectangles delimited at the screen tile level.

Tile address calculations in mode X consist in determining the tile's offset
from the start of the video buffer. Notice that each tile row consists of four pixel
rows, each one represented in 80 buffer addresses. Therefore, there are a total
of 320 pixels in each tile row. Figure 7 .8 shows a tile located in column 20, row
39, of the VGA mode X video screen.

Tile address calculation in VGA mode X requires multiplying the tile row by
320, which is the number of video buffer bytes in each tile row, and then adding
the tile column. In reference to Figure 7 .8, we perform the following operations:

20 * 320 = 6400 {row offset)
+ 39 {column offset)

6439 {tile offset)

In the example of Figure 7.8 the tile's offset from the start of the video buffer
is 6439. The following code fragment performs the tile address calculations in
VGAmodeX:

Code to calculate tile address in VGA mode X
CL horizontal tile number {range Oto

0

x=39

79) {x

79 ,
y=20

Tile address calculation:
offset = (Y* 320) + X

Figure 7.8 Example of Mode X Tile Address Calculation

coordinate)

0

59

VGA Mode X Drivers and Primitives

;

CH= vertical tile number (range Oto 59) (y coordinate)
Compute coarse-grain address (in BX) as follows:

BX (CH* 320) + CL

PUSH ex Save x and y tile coordinates
Calculate tile address

MOV BX,CX Copy ex in BX
MOV BH,0 Clear x and leave y coordinate

Add in y coordinate times 320

At

POP AX Restore entry tile number (AL)
MOV AL,AH
MOV AH,0
MOV CX,320
MUL ex
ADD BX,AX

this point BX holds

Transfer column to AL
Clear high byte
Multiplier
AX = AX * 320
Add in tile offset

the tile offset

7.1.3 The Video Buffer in Mode X

191

In Section 7 .1 we saw how the planar architecture of mode X makes possible
compressing 4 pixels into a single storage address. Since the VGA system
assigns 64K (65,536 bytes) to the physical mapping of the video space, a 4:1
compression allows storing the state of 262,143 pixels in the assigned space.
Considering that the resolution of mode X is of 320-by-240 pixels, each full
screen contains 76,800 pixels and takes up 19,200 physical address locations.
Figure 7 .9 shows the distribution of the physical video buffer space into video
pages.

0

videopageO
(19,200 bytes)

19,199
19,200

video page 1
(19,200 bytes)

38,399
38,400

video page2
(19,200 bytes)

57,599

57,600 vldeopage3
(7,936 bytes) 65,535

Figure 7.9 Video Buffer Space in VGA Mode X

192 Chapter Seven

Notice in Figure 7 .9 that video page 3 is not a full page. The programmer must
manage video buffer space carefully, since overflowing the available area
usually produces a system crash.

The availability of off-screen buffer storage is one of the most useful features
of VGA mode X; therefore, it is usually a good idea to include video paging into
the address calculation routines for this mode. Since each video page contains
19,200 locations in the video buffer, the address calculation routine can multi­
ply this constant by the page number, which must be in the range O to 3, and
add the product to the offset as calculated in the code samples of Sections 7.1.1
and 7 .1.2. The VGA mode X procedures listed in this chapter take into account
the video page when calculating video buffer addresses.

7 .2 Setting Mode X

Because mode X is not a standard VGA mode, it cannot be set using a BIOS
service. However, since mode X resembles VGA standard mode 19, it is possible
to save considerable programming effort by letting the BIOS set mode 19 and
then making the adjustments in the VGA hardware that are necessary to mode
X. The following procedure uses this method to set mode X. The code is based
on the one listed by Michael Abrash in the reference previously noted. We have
streamlined the processing to make it more suited to assembly language,
hard-coded some of the equates to improve readability, and added code to turn
off the VGA display function while resetting the hardware in order to avoid
screen garbage.

·*** I

set VGA mode X
;***

Code segment data for mode X setting
Each entry in the following table contains the offset of the
corresponding data register of the CRT Controller and the
data byte to be installed. The low-order byte is the register
offset and the high-order byte the data
The values are those required to change mode 19 to mode X

CRT DATA OW 00006H Vertical Total register (8 low-order
bits of 10-bit value

Length is

OW 03E07H Overflow register (bit 5 is VT 9 bit
and bit O is VT 8 bit)

ow 04109H Maximum Scan Line register
ow OEAlOH Vertical Retrace Start register
ow OACllH Vertical Retrace End
ow ODF12H Vertical Display-Enable End
ow 00014H Underline Location and Doubleword
ow OE715H Start Vertical Blanking
ow 00616H End Vertical Blanking
ow OE317H CRT Mode Control
10 doubleword items

VGA Mode X Drivers and Primitives

SET MODE X PROC FAR
Procedure to set VGA nonstandard mode X
Code uses BIOS service to set mode 19 (320-by-200 pixels in
256 colors) and then makes the necessary adjustments

Use BIOS subservice to set mode 19
MOV AL,19 Mode number
MOV
INT

AH,O
lOH

; BIOS subservice number

;***************************I
turn off video

;***************************I

193

To avoid screen garbage the VGA functions are turned off while
setting the mode X registers

MOV AX,1201H Service number and OFF code
MOV
INT

BL,36H
l0H

subservice request

;***************************I
modify the VGA hardware I

;***************************I
; Make changes in Sequencer registers

MOV DX,3C4H ; Sequencer base address
MOV AX,0604H; Memory Mode register as follows:

0 0 0 0 0 1 1 0
I I I
11 __
I ____ _

OUT DX,AX
Access Sequencer Reset register

Extended memory ON
Odd/even maps to ODD
Chain maps disabled

MOV AX,0l00H; Reset register as follows:
0 0 0 0 0 0 0 1

I I ASR bit ON
I ___ SR bit OFF

OUT DX,AX
Access Miscellaneous Output of the General register

MOV DX,3C2H ; Miscellaneous Output register
MOV AL,0E3H ; Reset register as follows:

1 1 1 0 0 0 1 1
I I I I I I I I/O select to 3DxH
I I I I I I __ _ Enable RAM decoding
I I I I I ___ _ Clock select to 25.175 MHz
I I I _____ _ Page select to EVEN
I I _______ _ 480 lines vertical size

OUT DX,AL
Access Reset register to restart Sequencer

MOV DX,3C4H Sequencer base address
MOV AX,0300H; Reset register as follows:

0 0 0 0 0 0 1 1
I I ASR bit ON
I ___ SR bit ON

OUT DX,AX

194 Chapter Seven

Access Vertical Retrace End register of the CRT Controller
(CRT Controller is at port 3D4H)

MOV DX,3D4H CRT Controller base address
MOV AL,llH Address of Vertical Retrace End
OUT DX,AL Select this Data register
INC DX Point to Data registers
IN AL,DX Read Vertical Retrace End
AND AL, 7FH Clear bit 7 (Protect registers 0-7)
OUT DX,AL

0 0 0 0 0 0 0 1
I I
I __

ASR bit ON
SR bit OFF

Prepare to output data block to CRT Controller registers
DEC DX ; CRT Controller base address
LEA SI,CS:CRT_DATA ; Set pointer to data table
MOV CX,10 ; Number of entries in table

Output data block
SET CRTC:

MOV
OUT
INC
INC
LOOP

AX,CS: [SI]
DX,AX
SI

; Load data pair into AX
Select register and write data
Bump pointer

SI twice
SET CRTC

;***************************I
clear display

;***************************I
Access Map Mask register of the Sequencer

MOV DX,3C4H ; Sequencer base address
MOV AX,OF02H; Reset register as follows:

; 0 0 0 0 1 1 1 1
I I I I Enable all 4 maps

OUT DX,AX
Set ES to video segment base

MOV AX,OAOOOH ; Video memory segment base
MOV ES,AX ; To ES

Set pointers, counter, and data bytes
XOR DI,DI ES:DI - start of video buffer
XOR
MOV

Clear memory
CLO
REP

; On exit ES

AX,AX Pixel data to write is
CX,BOOOH Counter for total video

Direction is forward
STOSW Store to clear memory

base address of video buffer
;***************************I

turn on video
;***************************I

00 00
memory words

MOV AX,1200H Service number and ON code
MOV BL,36H Subservice request
INT lOH
RET

SET MODE X ENDP

VGA Mode X Drivers and Primitives 195

7 .3 Pixel-Level Device Drivers

Although pixel-by-pixel operations in VGA mode X have a low performance
level, most graphics applications require this degree of control. The fundamen­
tal pixel-level device drivers consist of a routine to set an individual screen pixel
and another one to read a screen pixel.

7.3.1 VGA Mode X Write Pixel Procedure

The following procedure performs the necessary operations for setting a single
screen pixel. It uses code segment constants and variables, listed in a header
area. These parameters are also used by the procedure to read a screen pixel
listed in Section 7.3.2.

;**
code segment variables and constants for pixel-level

mode X device drivers
;**
VIDEO PAGE OW O ; Word storage for video page
; Code segment variables for mode X address calculations
EIGHTY OW 80 Pixels per row
FOUR DB 4 ; Number of planes

WRITE PIX X PROC FAR
Set screen pixel while in VGA mode X
On entry:

ex x coordinate
DX y coordinate
AL pixel color
AH display page

;***************************I
save caller's context

;***************************I
PUSH DX
PUSH ex
PUSH AX
PUSH ex

Store page number
MOV AL,AH
MOV AH, 0

of pixel (range 0 to 319)
of pixel (range 0 to 239)

(range 0 to 3)

Save y coordinate
Save x coordinate
Save pixel color
Save x coordinate

Page number to AL
Clear high byte

MOV CS:VIDEO PAGE,AX ; Store it -

;***************************I
; calculate buffer address
;***************************I

Formula: offset= (y * 80) + (x/4)
MOV AX,DX y coordinate to AX
MUL CS:EIGHTY ; AX= y * 80

196

MOV
POP

BX,AX
AX

Prepare for division

Free AX and hold in BX
x coordinate from stack

Chapter Seven

DIV CS:FOUR AX/ 4 = quotient in AL and
remainder in AH

MOV AH,0 Clear remainder for addition
ADD BX,AX Add into buffer offset

Calculate and add video page offset
MOV AX,19200 Length of each page in mode X
MUL CS:VIDEO_PAGE; Multiply by page number
ADD BX,AX ; Add into offset

Determine pixel plane of address by masking off bits 2-7
At this point CX = x coordinate of pixel address

AND CL,000000llB ; Mask off bits

;***************************I
select active map

;***************************I
Select active map by setting the Sequencer's Map Mask
register

MOV
MOV

DX,3C4H
AX,0102H

Sequencer base address
AL Map Mask register offset
AH= 0000 0001

Shift enable bit to left by plane
I __ map 0 enabled

number (in CL)
SHL AH,CL If CL

If CL
0 then map 0 enabled

= x then map x enabled
OUT DX,AX

;***************************I
; allow CPU access to maps
;***************************I

All bits in
; must be set

MOV
MOV

the Bit Mask register of the Graphics Controller
to 1 to allow CPU access

DX,3CEH Graphics Controller base address
AX,0FF0BH AL= Bit Mask register

AH= 11111111B to load maps from
CPU

OUT DX,AX

;***************************I
set the pixel

;***************************I
POP

; Code assumes
MOV
POP
POP
RET

WRITE PIX X

AX Restore pixel color from stack
that ES - video buffer segment base (A000H)

ES: [BX),AL Set pixel
CX ; Restore pixel address registers
DX

ENDP

VGA Mode X Drivers and Primitives 197

7.3.2 VGA Mode X Read Pixel Procedure

The following procedure reads the color attribute of a single screen pixel while
in VGA mode X. The procedure uses code segment constants listed in the header
of the WRITE_PIX_X procedure in Section 7.3.1.

READ PIX X PROC FAR
Read pixel while in VGA mode X
On entry:

ex= x coordinate of pixel (range Oto 319)
DX y coordinate of pixel (range Oto 239)

On exit:
AL 8-bit color of selected pixel
AH page number (range is Oto 3)

;***************************I

save caller's context
;***************************I

PUSH DX
PUSH ex
PUSH ex

Store page number
MOV AL,AH
MOV AH,0

Save y coordinate
Save x coordinate
Save x coordinate

MOV CS:VIDEO PAGE,AX;

Page number to AL
Clear high byte
Store it -

;***************************I

calculate pixel address
;***************************I

MOV
MUL
MOV
POP
DIV

AX,DX
CS:EIGHTY
BX,AX
AX
CS:FOUR

y coordinate to AX
AX= y times 80
Free AX and hold in BX
x coordinate from stack
AX/ 4 = quotient in AL and
remainder in AH

MOV AH,0 Clear remainder for addition
ADD BX,AX Add into buffer offset

Calculate and add video page offset
MOV AX,19200 ; Length of each page in mode X
MUL CS:VIDEO_PAGE; Multiply by page number
ADD BX,AX ; Add into offset

Determine pixel plane of address by masking off bits 2-7
At this point CX = x coordinate of pixel address

AND CL,000000llB Mask off bits
MOV AH,CL Pixel plane to AH

;***************************I

select video map
;***************************I

Select active map by setting
; Read Map Select register

MOV DX,3CEH
MOV AL,04H

the Graphics Controller

Graphics Controller base address
AL= Read Map Select register

198

; AH
OUT DX,AX

;***************************I
read the pixel

;***************************I

pixel plane to enable

; Code assumes that ES - video buffer segment base
MOV AL,ES: [BX] Read selected map into AL

Chapter Seven

POP CX ; Restore pixel address registers
POP DX
RET

READ PIX X ENDP

7.4 Tile-Level Device Drivers

It is possible to take advantage of the greater performance of parallel write
operations in VGA mode X by accessing the display at a tile level. A tile-level
device driver receives the tile coordinates, pixel color, and video display page
from the caller and sets the corresponding group of 4-by-4 pixels. The perform­
ance gain results from setting four pixels at a time by manipulating the Map
Mask register of the Sequencer and the Bit Mask register of the Graphics
Controller (see Figure 7.7).

7.4.1 VGA Mode X Write Tile Procedure

The following procedure performs the necessary operations for setting a single
screen tile. It uses code segment constants listed in a header area.

;**
code segment variables and constants for tile-level

mode X device drivers
;**
VIDEO PAGE DW O ; Word storage for video page
; Code segment variables for mode X address calculations
THREE 20 OW 320 ; Factor for tile address
;**

write tile procedure
;**
WRITE TILE X PROC FAR

Procedure to calculate the coarse-grain address at a 4-by-4
pixel grain and set tile, while in VGA mode X

On entry:
CL
CH
AL
AH

horizontal tile number (range O to 79) (x coordinate)
vertical tile number (range O to 59) (y coordinate)
pixel color
video page (range is Oto 3)

VGA Mode X Drivers and Primitives

Compute coarse-grain address (in BX) as follows:
BX= (CH* 320) + CL

;***************************I
save caller's context

;***************************I
PUSH ex
PUSH DX
PUSH AX

Save caller's ex
Save caller's DX
Save accumulator

PUSH ex Save x and y tile coordinates
Store page number

MOV AL,AH ; Page number to AL
MOV AH, 0 ; Clear high byte
MOV CS:VIDEO PAGE,AX ; Store it -

;***************************I
calculate tile address

;***************************I
MOV BX,CX Copy ex in BX
MOV BH,0 Clear x and leave y coordinate

Add in y coordinate times 320
POP AX
MOV AL,AH

Restore entry tile number (AL)
Transfer column to AL

MOV AH,0 Clear high byte
MUL CS:THREE 20 AX = AX * 320
ADD BX,AX Add in tile offset

add video page offset Calculate and
MOV AX,19200 Length of each page in mode X
MUL CS:VIDEO PAGE; Multiply by page number
ADD BX,AX Add into offset

;***************************I
select all video maps

;***************************I
Select all maps by setting all bits in the Sequencer's Map

; Mask register
MOV DX,3C4H Sequencer base address
MOV AX,0F02H AL Map Mask register offset

AH= 0FH (all maps enabled)
OUT DX,AX

All bits in the Bit Mask register of the Graphics Controller
must be set to 1 to allow CPU access

MOV DX,3CEH Graphics Controller base address
MOV AX,0FF0BH; AL= Bit Mask register

AH= 11111111B to load maps from
CPU

OUT DX,AX
;***************************I

set tile
;***************************I

POP
Prepare to

MOV

AX Restore pixel color from stack
repeat 4 horizontal segments of 4 pixels each

CX,4 ; Counter

199

200 Chapter Seven

; Code assumes that ES - video buffer segment base (A000H)
SET TILE:

MOV
ADD
LOOP
POP
POP
RET

WRITE TILE X

ES: [BX) ,AL
BX,80
SET TILE
DX
ex

ENDP

7 .4.2 Setting Multiple Tiles

Set pixel
Index to next pixel row

Restore caller's DX
and ex

Code often requires to set a rectangle of adjacent screen tiles. The entire video
screen can be described as one such rectangle. The super procedure for setting
a tile group is based on the device driver listed in the previous section.

;**
write multiple tiles

;**
; Code segment data for MULTI_TILE_X procedure
REPEAT X DB 0 ; Horizontal tile counter
MULTI TILE X PROC FAR

Procedure to set multiple 4-by-4 pixel tiles in VGA mode X

On entry:
CL
CH
DL

horizontal tile number (range 0 to 79) (x coordinate)
vertical tile number (range 0 to 59) (y coordinate)
horizontal tile count (minimum is 1)

DH vertical tile count (minimum is 1)
AL pixel color
AH video page (range is Oto 3)

;***************************]
; store rectangle dimensions!
;***************************I

MOV CS:REPEAT_X,DL
;***************************I

set tile rectangle
;***************************I

NEXT TILE ROW:
PUSH ex

NEXT TILE:
CALL FAR PTR WRITE
INC CL
DEC DL
JNZ NEXT TILE

At this point one horizontal
MOV DL,CS:REPEAT_X
POP ex
INC CH

x repetitions

; Save start address

TILE X ; Set tile
Index to next tile

; Horizontal counter
; Continue

tile line has been laid
Reload variable
Restore row address
Next tile row

VGA Mode X Drivers and Primitives

DEC
JNZ

RET

DH
NEXT TILE ROW

MULTI TILE X ENDP

Vertical counter
Continue

7.5 VGA Mode X Bitmap Primitives

201

Although vector images offer many advantages, it is a rare PC graphics
application that does not use bit-mapped images. The most unrefined and
ineffective way of displaying or acquiring a bit-mapped image is by means of
the procedures to set and read an individual screen pixel developed in Sections
7.3.1 and 7.3.2. The program designer can often take advantage of mode X
architecture in creating bitmaps that can be manipulated much more effectively
by the code.

The output routine to display a bit-mapped image in VGA mode X has a
performance bottleneck in the hardware access instructions (OUT) that are
necessary to select each one of the four video maps. If the code were to output
the bitmap on a pixel-by-pixel basis, then the Map Mask register of the
Sequencer would have to be accessed once for every pixel in the bitmap. Figure
7.10 shows an image and bitmap encoded in 4 colors. Since the image consists
of 12 horizontal pixels and 12 pixel rows, in this case the code would have to
access the Map Mask register 144 times, once for each pixel, if it were to be
displayed pixel by pixel. Later in this chapter we develop VGA mode X
procedures to display and acquire bitmaps in a much more effective manner.

e OAH (green)

• OCH (red)

0 09H (blue)
D OOH (background)

MAPO

row:
0 -> OAH OAH, OAH, OAH OAH OCH, OCH, OAH OAH OAH, OAH, OAH
1 => OAH OOH,OOH,OOH OOH OCH,OCH,OOH OOH OOH,OOH,OAH
2 -> OAH OOH,09H,09H 09H OCH,OCH,09H 09H 09H,OOH,OAH
3 -> OAH OOH,09H,OOH OOH OCH,OCH,OOH OOH 09H,OOH,OAH
4 -> OAH OOH,09H,OOH OOH OCH,OCH,OOH OOH 09H,OOH,OAH
5 => OCH OCH,OCH,OCH OCH OCH.OCH.OCH OCH OCH,OCH,OCH
6 -> OCH OCH,OCH,OCH OCH OCH ,OCH,OCH OCH OCH,OCH,OCH
7 -> OAH OOH,09H,OOH OOH OCH,OCH,OOH OOH 09H,OOH,OAH
8 -> OAH OOH,09H,OOH OOH OCH,OCH,OOH OOH 09H,OOH,OAH
9 -> OAH OOH,09H,09H 09H OCH,OCH,09H 09H 09H,OOH,OAH
10 ·> OAH OOH,OOH,OOH OOH OCH,OCH,OOH OOH OOH,OOH,OAH
11 ·> OAH OAH,OAH,OAH OAH OCH,OCH,OAH OAH OAH,OAH,OAH

MAPO

Figure 7.10 Sample Image and Bitmap in VGA Mode X

202 Chapter Seven

7 .5.1 Pixel Transparency

Notice in Figure 7.10 that the image and bitmap pixels with the value OOH are
described as having the same attribute as the back.ground. In bitmap terminology
these pixels are said to be transparent. Code can ignore pixel transparency or can
handle it in one of several ways. When transparency is ignored, all image pixels
are displayed according to the encoded attribute. In the case of the image in Figure
7 .10 this would mean that the pixels with the value OOH would be displayed with
the color code OOH, which is black in the default VGA DAC register setting for
256-color modes. Therefore if the image in Figure 7.10 were to be overlaid over a
nonblack background, the pixels with code OOH would be displayed as black dots
and the background would be completely obscured.

For many applications the nontransparent handling of bitmap attributes is not
satisfactory. For example, if the image in Figure 7 .10 were to be used as a graphics
cursor to mark a certain position on the video display, then it would be preferable
if the pixels that are not part of the cursor image remain with the background
attributes. There are several ways of handling pixel transparency. The simplest
one is to ignore one or more attribute codes at display time. For example, the
display routine can assume that the attribute OOH indicates a transparent pixel
in the object and skip these pixels at display time.

A more elaborate and sophisticated method of handling transparency is to create
a second bitmap that serves as a transparency mask for the original image. Figure
7 .11 shows how a transparency mask can be used to determine which pixels in the
original bitmap are preserved in the result, and which remain in the background
attribute.

The use of a transparency mask can be further refined by specifying different
logical operations. For example, a bit field in the mask could determine if the
original image is to be logically combined by performing an AND, OR, or XOR
operation with mask data contained in another field.

In the bitmap handling procedures listed later in this chapter we have adopted
a simple method of transparency handling that is suitable for many applications.
It consists of an entry code which sets a transparency switch. If the switch is on,
then all OOH pixel codes in the image bitmap are ignored and the background pixel
remains unchanged. In this case OOH bitmap codes indicate a transparent attri­
bute. Alternatively, if the transparency switch is off, then pixel codes OOH are
displayed according to the current DAC setting for this value.

original
image

transparency
mask

Figure 7.11 Image Processing by a Transparency Mask

resulting
Image

VGA Mode X Drivers and Primitives 203

7.5.2 VGA Mode X Bitmap Display

If the 144 pixels in the image of Figure 7.10 are located in four planes, it should
be possible to design the output routine so that all pixels located in the same
plane are accessed with a single setting of the Map Mask register of the
Sequencer. Notice in Figure 7.10 that the pixels in map Oare located in three
columns of the bitmap. If a pointer is set to the start of the bitmap, code can
index this pointer to each value that corresponds to a pixel in map 0. At the
same time, this routine would have to maintain a destination pointer that keeps
track of the video buffer address, as well as several operational counters. The
data variables and processing are shown in the following procedure:

·** ,
code segment variables and constants for bitmap procedures

in VGA mode X
·** ,
H REPEAT
V REPEAT
PLANE NUM
PLANE CNT
SCREEN ADD
TR SWITCH

VIDEO PAGE

DB 0
DB 0
DB 0
DB 0
DW 0
DB 0

OW 0

Horizontal counter
Vertical counter
Storage for bitplane
Bit plane counter
Storage for initial screen
0-pixel handling
0 = display pixel
1 = pixel is transparent
Word storage for video page

; Code segment variables for mode X address calculations
EIGHTY DW 80 Pixels per row
FOUR DB 4 ; Number of planes
THREE 20 DW 320 ; Factor for tile address

address

·** ,
display bitmap at a pixel level

;**
BMAP OUT X PROC FAR

Display a bitmap at a pixel-level address while in VGA mode X
On entry:

DS:SI - bitmap
BL number of 4-pixel columns in bitmap
BH number of rows in bitmap
CX = x coordinate of pixel address (range Oto 319)
DX y coordinate of pixel address (range Oto 239)
AL O for 0-pixels displayed (transparency off)
AL 1 for 0-pixels transparent (transparency on)
AH video page number (range Oto 3)

Note: page 3 is a partial page
Routine logic:

Memory bitmap:
R O O 0
0 G O 0
0 0 B 0

R
G

B

red
green
blue

204 Chapter Seven

0 0 0 W w white

Screen:
4 5 6 7 8 <==== tile number

0 1 2 310 1 2 310 1 2 310 1 2 310 1 2 3 <== bit planes
R 0 0 01 R 0 010 R 010 0 RIO 0 0
0 G 0 01 0 G 010 0 GI0 0 0IG 0 0
0 0 B 01 0 0 BIO 0 0IB 0 010 B 0
0 0 0 WI 0 0 0IW 0 010 w 010 0 w

======= ========
case A case B case D 3-pixel overlap

2-pixel overlap
1-pixel overlap

__________________ no overlap

case C

Processing logic:
1. Tile counter (CS:PLANE_NUM variable) is initialized to

the initial bit plane that results from the display address
as follows:

bit plane REM (y/4)
For example: in case C the initial bit plane is:

REM (6/4) 2

2. The bitmap is displayed by planes. If the bitmap is over
one tile wide (4 bytes), the routine indexes to successive
tiles by adding 4 to the bitmap pointer and incrementing
the tile number in the display address (BX)

3. The bit plane number (CS:PLANE_NUM) is incremented at the er.
of each iteration. If incrementing the bit plane number
causes crossing a tile boundary (PLANE_NUM 3) then:

CS:PLANE NUM = CS:PLANE NUM - 4
In this case the tile number in the display address
(BX) is incremented

4. Processing ends when 4 bit planes have been displayed
;***************************I

save caller's context
;***************************I

PUSH AX
PUSH BX
PUSH ex
PUSH DX
PUSH SI

Store x and y dimensions of bit
MOV CS:H_REPEAT,BL
MOV CS:V_REPEAT,BH
MOV CS:PLANE_CNT,0

Store transparency code
PUSH AX
MOV
CMP

CS:TR_SWITCH,0
AL, 1

Save caller's context

plane
Horizontal byte count
Vertical byte count
Initialize plane counter

Save page number for later
Assume no transparency
Test transparency entry code

VGA Mode X Drivers and Primitives

Continue if not JNE
MOV

STORE VPAGE
CS:TR_SWITCH,1 Set transparency ON

; Store page number
STORE VPAGE:

POP AX Restore from stack
MOV AL,AH Page number to AL
MOV AH,O Clear high byte
MOV CS:VIDEO_PAGE,AX; Store it

;***************************I
; calculate buffer address
;***************************I

Formula: offset= (y * 80)
MOV AX,DX
MUL CS:EIGHTY
MOV BX,AX
MOV AX,CX

Prepare for division

+ (x/4)
y coordinate to AX
AX = y * 80
Free AX and hold in
X to AX

BX

DIV CS:FOUR AX/ 4 = quotient in
remainder in AH

number since plane number= REM (x/4)
plane number in variable

CS:PLANE_NUM,AH

AH= plane
Store bit

MOV

AL and

MOV AH,0 ; Clear remainder for addition
ADD BX,AX ; Add into buffer offset

Calculate and add video page offset
MOV AX,19200 Length of each page in mode X
MUL CS:VIDEO_PAGE; Multiply by page number
ADD BX,AX ; Add into offset

At this point BX - video buffer
Store offset in memory variable

MOV CS:SCREEN_ADD,BX
All bits in
must be set

MOV
MOV

the Bit Mask register of the Graphics Controller
to 1 to allow CPU access

DX,3CEH Graphics Controller base address
AX,OFF08H; AL= Bit Mask register

AH= 111111118 to load maps from
CPU

OUT DX,AX
;***************************I

display by bit plane
;***************************I

Display routine indexes to each of the four bit planes in
; mode X by indexing into vertical columns four bytes apart
; Notice that columns 4 bytes apart are in the same bit plane
NEXT BITPLANE:

PUSH SI ; Save bitmap pointer
CS:PLANE NUM holds number of desired bit plane

MOV CL,CS:PLANE_NUM; Plane to CL

205

Select active plane by
MOV DX,3C4H

setting the Sequencer's Map Mask register
Sequencer base address

MOV AX,0102H ; AL= Map Mask register offset

206 Chapter Seven

AH= 0000 0001
I map 0 enabled

Shift enable
SHL

OUT
; Reset pixel

MOV

bit to left by
AH,CL If

If
DX,AX

row counter
DH,CS:V_REPEAT

plane number (in CL)
CL 0 then map 0 enabled
CL= x then map x enabled

Vertical repetitions
;****************************I

display bitmap
;****************************I
; Bitmap contains entire image
NEXT PIX COL:
; BX - offset in video buffer

MOV DL,CS:H_REPEAT Reset horizontal counter
PUSH BX ; Save address register

Display bitmap row
NEXT PIX ROW:

MOV AL, [SI] ; Get color code to AL
; Test for 0-value pixel

CMP AL,0 ; Is this a 0 pixel code?
JNE NOTO PIX ; Go if not

At this point pixel value= 0
Check for transparent mode (CS:TR_SWITCH = 1)

CMP CS:TR_SWITCH,1 ; Transparent code
JE TRANSPARENT PIX ; Go if transparency ON

; Code assumes that ES - video buffer segment base (A000H)
NOTO PIX:

MOV
TRANSPARENT PIX:

ADD
INC
DEC
JNZ

ES: [BX] ,AL

SI,4
BX
DL
NEXT PIX ROW

Set pixel

Bump bitmap pointer
Bump video pointer
Decrement counter

At this point one row of bitmap is displayed
POP BX Address of row start
ADD
DEC

BX,80
DH

JNZ NEXT PIX COL
;***************************I
; index to next bit plane
;***************************I

Restore display parameters

Index to next row
Decrement vertical counter

MOV BX,CS:SCREEN_ADD Video buffer address
POP SI Bitmap pointer
INC SI Bump to next pixel
INC CS:PLANE NUM Next plane

If plane number is 3 then plane number= plane number - 4
In this case the display tile must be incremented

MOV AL,CS:PLANE_NUM Plane number to AL
CMP AL, 4 Test for limit

VGA Mode X Drivers and Primitives 207

JB PLANE IN RANGE
At this point a plane adjustment

SUB AL,4
MOV CS:PLANE_NUM,AL
INC BX
MOV CS:SCREEN_ADD,BX

PLANE IN RANGE:
INC CS:PLANE CNT
CMP CS:PLANE_CNT,4
JE EXIT PLANES
JMP NEXT BITPLANE

EXIT PLANES:
POP SI
POP DX
POP ex
POP BX
POP AX

RET
BMAP OUT X ENDP

7.5.3 VGA Mode X Bitmap Acquisition

; OK if 4
is required

Subtract to wrap-around
and store in variable
Bump column
Update screen address

Plane counter
Test for last plane
Go if last plane

Restore caller's context

Graphics applications often need to read and store the contents of a screen area.
This area can be as small as a few pixels or as large as the entire video display
surface. Animation code often needs to acquire a screen area in order to be able
to restore the background image once it is overlaid by the animated object. The
sequence of operations usually consists of the following actions:

1. Acquire background.
2. Display animated object.
3. Restore background erasing animated object.

During translation transformations the coordinates of the object position are
changed at the conclusion of each cycle of operations.

One alternative is to store the background image in the user's memory space.
Later in this chapter we see that sometimes it is convenient to store the
background image in video memory in order to further enhance program
performance. The acquisition and storage of a screen image in bitmap form can
also be done following the plane-by-plane method described in Section 7 .5.2. In
this case the code must also keep track of two pointers: one to the screen object
and another one to the storage area for the acquired image. The indexing of
these pointers is based on the architecture of VGA mode X. The following
procedure allows acquiring a rectangular screen bitmap and storing it in a
buffer designated by the caller.

;**
read and store bitmap

;**
BMAP IN X PROC FAR

208 Chapter Seven

Read and store a screen image in bitmap form while in VGA
mode X
On entry:

DS:DI - storage area for image
BL number of 4-pixel columns in bitmap
BH number of rows in bitmap
CX x coordinate of pixel address (range Oto 319)
DX y coordinate of pixel address (range Oto 239)
AH video page number (range Oto 3)

Note: page 3 is a partial page

;***************************I
save caller's context

;***************************I
PUSH
PUSH
PUSH
PUSH

Store x and
MOV
MOV
MOV

Store page
MOV
MOV
MOV

BX
ex
DX
DI

y dimensions of bit
CS:H_REPEAT,BL
CS:V_REPEAT,BH
CS:PLANE_CNT,0

number
AL,AH
AH, 0
CS:VIDEO PAGE,AX -

Caller's registers

plane
Horizontal byte count
Vertical byte count
Initialize plane counter

Page number to AL
Clear high byte

; Store it

;***************************I
; calculate buffer address
;***************************I
; Formula: offset= (y * 80) + (x/4)
GET BUF:

MOV
MUL
MOV
MOV

AX,DX
CS:EIGHTY
BX,AX
AX,CX

Prepare for division

y coordinate to AX
AX= y * 80
Free AX and hold in BX
x to AX

DIV CS:FOUR AX/ 4 = quotient in AL and
remainder in AH

AH= plane number since plane number= REM (x/4)
Store bit plane number in variable

MOV CS:PLANE_NUM,AH
MOV AH,0 ; Clear remainder for addition
ADD BX,AX ; Add into buffer offset

Calculate and add video page offset
MOV AX,19200 Length of each page in mode X
MUL CS:VIDEO_PAGE; Multiply by page number
ADD BX,AX ; Add into offset

At this point BX-> video buffer
Store offset in memory variable

MOV CS:SCREEN_ADD,BX

VGA Mode X Drivers and Primitives

;***************************I
read pixel planes

;***************************!
Read routine indexes to each of the 4 bit planes in mode X

; by indexing into vertical columns 4 bytes apart
; Notice that columns 4 bytes apart are in the same bit plane
NEXT PLANE:

PUSH DI ; and storage pointer
CS:PLANE NUM holds number of desired bit plane

MOV AH,CS:PLANE_NUM; Plane to CL
Select active plane by setting the Graphics Controller Read
Map Select register

MOV DX, 3CEH
MOV
OUT

AL,04H
DX,AX

Graphics Controller base address
AL= Read Map Select register offset

; Reset pixel row counter
MOV DH,CS:V_REPEAT

;****************************!
read and store data

;****************************I
NEXT COL:

in video buffer

Vertical repetitions

; BX - offset
MOV
PUSH

DL,CS:H_REPEAT Reset horizontal counter
BX ; Save address register

Display bitmap row
NEXT ROW:

MOV AL, ES: [BX]
MOV
ADD
INC
DEC

[DI] ,AL
DI,4
BX
DL

JNZ NEXT ROW

Get screen color
Store it in memory
and storage pointer
Bump video pointer
Decrement counter

At this point one row of bitmap is displayed
POP BX Address of row start
ADD
DEC
JNZ

BX,80
DH
NEXT COL

;***************************I
; index to next bit plane
;***************************!

Restore display parameters

Index to next row
Decrement vertical counter

MOV BX,CS:SCREEN_ADD Video buffer address
POP DI Storage pointer
INC DI Bump to next location
INC CS:PLANE NUM Next plane

If plane number is 3 then plane number= plane number - 4
In this case display tile is also must be incremented

MOV AL,CS:PLANE_NUM Plane number to AL
CMP
JB

AL,4
PLANE OK

; Test for limit
; OK if 4

At this point a plane adjustment is required

209

210

SUB
MOV
INC
MOV

PLANE OK:
INC
CMP
JE
JMP

EXIT READ:
POP
POP
POP
POP
RET

BMAP IN X

AL,4
CS:PLANE_NUM,AL
BX
CS:SCREEN_ADD,BX

CS:PLANE CNT
CS:PLANE_CNT,4
EXIT READ
NEXT PLANE

DI
DX
ex
BX

ENDP

Chapter Seven

Subtract to wrap-around
and store in variable
Bump column
Update screen address

Plane counter
Test for last plane
Go if last plane

Restore caller's context

7.6 VGA Mode X bitBlt Primitives

In the language of computer graphics a bitBlt (pronounced "bit blit") is an
operation whereby an entire bitmap is rapidly transferred to another location.
In this sense, the procedures to display and to read a bitmap listed in Sections
7.5.2 and 7.5.3 are bitBlts. However, it is more common to designate an
operation as a bitBlt when the source and the destination memory are of the
same type, for instance, when an image is copied from one area of display
memory to another one.

In VGA mode X bitBlt operations can be rapidly executed by means of the
parallel pixel manipulation techniques described in Section 7 .1 and shown in
Figure 7 .5. One limitation of the parallel processing of pixel data is that both
the source and the destination images must be located at a 4-pixel boundary.
However, when this restriction is tolerable, parallel processing of pixel data
permits a very fast transfer of the image data from one area of video memory
to another one.

7 .6.1 Page-Level bitBlt

Programs that use multiple screen pages often need to copy an image rectangle
from one video page to another one. For example, an animation routine can use
this type ofbitBlt to save the background context to be overlaid by the animated
object. The following procedure allows a video page-to-page bitBlt:

;**
code segment variables and constants for bitBlt procedures

in VGA mode X
;**
H REPEAT
V REPEAT

DB
DB

0
0

Horizontal counter
; Vertical counter

VGA Mode X Drivers and Primitives 211

; Code segment variables for mode X address calculations
EIGHTY ow 80 ; Pixels per row
; Code segment data for Bitblt procedures
SOURCE PG ow 0 Source video page
DEST PG ow 0 ; Destination video page

;**
page bitBlt

;**
PAGE BITB X PROC FAR

Perform a video-to-video memory page Bitblt operation while in
VGA mode X
On entry:

ex start x coordinate of source (range
DX start y coordinate of source (range
BL x dimension of source (1 to 80)
BH y dimension of source (1 to 240)
AL source video page (range 0 to 2)
AH destination video page

;***************************I
save caller's context

;***************************I

(range 0 to

PUSH AX
BX

Caller's context
PUSH
PUSH ex
PUSH DX
PUSH SI
PUSH DI

Store x and y dimensions of bit plane

0 to
0 to

2)

MOV CS:H_REPEAT,BL Horizontal byte count
MOV CS:V_REPEAT,BH Vertical byte count
PUSH AX Save pages

Store page numbers (in word variables)

79)
239)

MOV AH,0 Clear high byte of word
MOV CS:SOURCE PG,AX Store video page of source
POP AX Restore pages
MOV AL,AH Destination to AL
MOV AH,0 Clear high byte of word
MOV CS:DEST_PG,AX Store video page of destination

;***************************I
; calculate buffer address
; of source and destination I
;***************************I

Formula: offset= (y * 80) +
MOV AX,DX
MUL CS:EIGHTY
MOV
ADD

SI,AX
SI,CX

X

y coordinate to AX
AX= y * 80
Free AX and hold in SI
Add X

MOV DI,SI Copy offset in destination
Add in video page offset (19200 bytes per page)

212 Chapter Seven

for source page
MOV AX,19200 Length of video page in mode X
MUL CS:SOURCE PG; Multiply by source page number
ADD SI,AX Add page offset to pointer

At this point SI - source's tile level offset into buffer
MOV AX,19200 Length of video page in mode X
MUL CS:DEST PG Multiply by destination page number
ADD DI,AX Add page offset to pointer

; At this point DI - destination's tile level offset into
; buffer
;***************************[

set to read all planes
;***************************1

Select active planes by setting the Graphics Controller Read
; Map Select register

MOV DX, 3CEH
MOV AX,0F04H

Graphics Controller base address
AL Read Map Select
AH 00001111B to read 4 maps

OUT DX,AX
;***************************I

set to write all planes
;***************************I

Select active plane by setting the Sequencer's Map Mask
register

MOV
MOV

DX,3C4H
AX,0F02H

OUT DX,AX

Sequencer base address
AL Map Mask register offset
AH = 0000 1111

I I I I all maps enabled

All bits in the Bit Mask register of the Graphics Controller
must be set to Oto set the destination planes from the latches
instead of the CPU

MOV DX, 3CEH
MOV AX,000BH

Graphics Controller base address
AL= Bit Mask register
AH= 00000000B to load maps from
latches

OUT DX,AX
;****************************I

read and write data
;****************************I
RW ROW:

PUSH
PUSH
MOV

SI
DI
DL,CS:H_REPEAT

Display bitmap row
RW COL:

MOV AL, ES: [SI)
MOV ES: [DI) ,AL
INC SI
INC DI
DEC DL

Save address pointer of source
and destination
Reset horizontal counter

Read all latched planes
Write all latched planes
Bump source pointer
And destination
Decrement counter

VGA Mode X Drivers and Primitives

JNZ RW COL
At this point a row of data has been transferred from the
source to the destination video page

POP DI Restore pointers
POP SI
ADD
ADD
DEC
JNZ

SI,80
DI,80
CS:V REPEAT
RW ROW

Index to next row

Decrement vertical counter

All rows have been read and stored
POP DI ; Restore caller's context
POP SI
POP DX
POP ex
POP BX
POP AX
RET

PAGE BITB X ENDP

7.6.2 Tile-Level BitBlt

213

In addition to transferring image data from one video page to another one, a
graphics application executing in VGA mode X often needs to transfer image
data at a smaller-than-page level. In this case, the purpose of the bitBlt routines
is to transfer image data in parallel in order to achieve the highest possible
performance. However, image data cannot be transferred at the pixel level in
VGA mode X without accessing all four bit planes, as is the case in the
BMAP _OUT_X and BMAP _IN_X procedures listed in Section 7.5.2 and 7.5.3,
respectively. Therefore, there would be no gain in developing a separate bitBlt
pixel-level procedure. On the other hand, it is possible to rapidly transfer areas
of video memory located at the screen tile level by latching all four maps in a
single operation. The following procedure performs the necessary processing:

;**
tile bitBlt

;**
TILE BITB X PROC FAR

Perform a video-to-video memory tile bitBlt operation while in
VGA mode X

On entry:
CL start X coordinate of source (range 0 to 79)
CH start y coordinate of source (range 0 to 239)
DL start X coordinate of destination
DH start y coordinate of destination
BL x dimension of bitmap (1 to 80)
BH y dimension of bitmap (1 to 240)
AL source video page (range 0 to 2)
AH destination video page (range 0 to 2)

214

;***************************I
save caller's context

;***************************I
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH

Store x and
MOV
MOV
PUSH

Store page

AX
BX
ex
DX
SI
DI

Caller's context

y dimensions of bit plane
CS:H_REPEAT,BL Horizontal byte count
CS:V_REPEAT,BH Vertical byte count
AX Save pages

numbers (in word variables)

Chapter Seven

MOV AH,0 Clear high byte of word
MOV CS:SOURCE_PG,AX Store video page of source
POP AX Restore pages
MOV AL,AH Destination to AL
MOV AH,0 Clear high byte of word
MOV CS:DEST_PG,AX Store video page of destination

;***************************I
; calculate buffer address

of source
;***************************I

CL= start x coordinate
CH= start y coordinate
Formula: offset= (y * 80)

PUSH DX
MOV AL,CH
MOV AH,0
MUL CS:EIGHTY
MOV SI,AX
MOV CH,0
ADD SI,CX

+ X

Save destination
y coordinate to AX
Clear high byte
AX= y * 80

registers

Free AX and hold in SI
Cleary coordinate
Add x

Add in video page offset
for source page

(19200 bytes per page)

MOV AX,19200
MUL CS:SOURCE_PG;
ADD SI,AX

; At this point SI - source's
;***************************I
; calculate buffer address

of destination
;***************************I

DL = start x coordinate
DH= start y coordinate
Formula: offset= (y * 80)

POP DX
PUSH DX
MOV AL,DH
MOV AH,0

Length of video page in mode X
Multiply by source page number
Add page offset to pointer
tile level offset into buffer

+ X

Restore destination registers
Save from word multiply
y coordinate to AX
Clear high byte

VGA Mode X Drivers and Primitives

MUL
MOV
POP
MOV
ADD

CS:EIGHTY
DI,AX
DX
DH,0
DI,DX

AX= y * 80
Free AX and hold in DI
Restore destination registers
Cleary coordinate
Add x

Add in video page offset (19200 bytes per page)
for destination page

MOV AX,19200 Length of video page in mode X

215

MUL CS:DEST PG Multiply by destination page number
ADD DI,AX Add page offset to pointer

; At this point DI - destination's tile level offset into buffer
;***************************I

set to read all planes
;***************************I

Select active planes by setting the Graphics Controller Read
; Map Select register

MOV DX, 3CEH
MOV AX,0F04H

Graphics Controller base address
AL Read Map Select
AH= 00001111B to read 4 maps

OUT DX,AX
;***************************]

set to write all planes
;***************************!

Select active plane by
MOV DX, 3C4H

setting the Sequencer's Map Mask register
Sequencer base address

MOV AX,0F02H

OUT DX,AX

AL Map Mask register offset
AH = 0000 1111

I I I I all maps enabled

All bits in the Bit Mask register of the Graphics Controller
must be set to Oto set the destination planes from the latches
instead of the CPU

MOV DX, 3CEH
MOV AX,0008H

Graphics Controller base address
AL= Bit Mask register
AH= 00000000B to load maps from
latches

OUT DX,AX
;****************************]

read and write data
;****************************I

RWT ROW:
PUSH
PUSH
MOV

SI
DI
DL,CS:H_REPEAT

Display bitmap row
RWT COL:

MOV
MOV
INC
INC
DEC

AL,ES: [SI]
ES: [DI] ,AL
SI
DI
DL

Save address pointer of source
and destination
Reset horizontal counter

Read all latched planes
Write all latched planes
Bump source pointer
And destination
Decrement counter

216 Chapter Seven

JNZ RWT COL
At this point a row of data has been transferred from the
source to the destination video page

POP DI Restore pointers
POP SI
ADD
ADD
DEC

SI,80
DI,80
CS:V REPEAT

JNZ RWT ROW

Index to next row

Decrement vertical counter

All rows have been read and stored
POP DI ; Restore caller's context
POP SI
POP DX
POP ex
POP BX
POP AX
RET

TILE BITB X ENDP

7.7 Mode X Animation

Animation programming in VGA mode X is subject to the same limitations as
in the standard VGA modes. The techniques and manipulations are the same,
and the programmer is confronted with similar challenges and difficulties.

One technique, already described, consists of translating a screen object by
successively performing a save-display-erase sequence. During the save cycle
the screen area to be occupied by the animated object is saved, either in the
user's memory space or in an off-screen area of video memory. During the
second cycle the animated object is displayed by overlaying it on the back­
ground. Finally, the animated object is erased by redisplaying the saved image.
In order to smoothly perform this cycle, code must provide some form of timing
mechanism. General timing routines are discussed in depth in Part 3 of the
book. In this context we casually present several timing methods that can be
used in VGA mode X animation programming.

7.7.1 Intercepting the Vertical Retrace

A raster-scan display operates by projecting an electron beam on each horizon­
tal row of screen pixels. Pixel scanning proceeds, row by row, from the top left
screen comer to the bottom-right. To avoid visible interference, the electron
beam is turned off during the period in which the gun is re-aimed back to the
start of the next pixel row (horizontal retrace). The beam is also turned off while
it is re-aimed from the last pixel on the bottom-right comer of the screen to the
first pixel at the top-left comer (vertical retrace). Because of the distance and
directions involved, the vertical retrace takes much longer than the horizontal
retrace. The screen refresh periods in VGA graphics modes take place at an
approximate rate of 70 times per second.

VGA Mode X Drivers and Primitives 217

The start of the vertical retrace cycle can be determined by two general
methods: method number 1 is reading bit 7 of the VGA Input Status register 0
in the General register group. This bit is set if a vertical retrace is in progress.
A second, and more reliable method, is to determine the start of the vertical
retrace by reading bit 3 of the Input Status Register 1. In either method, in
order to maximize the interference-free time available during a vertical retrace
the code must wait for the start of a vertical retrace cycle. This requires first
waiting for a vertical retrace cycle to end, if one is in progress, and then
detecting the start of a new cycle. The following procedure allows determining
the start of the vertical retrace cycle:

TIME VR PROC FAR
Test for start of the vertical retrace cycle of the CRT
Controller
Bit 3 of the input status register O is set if a vertical cycle
is in progress

Save caller's context
PUSH AX
PUSH DX
MOV DX,3DAH Input status register 1

address in VGA mode X
VRC CLEAR:

IN AL,DX Read byte at port
TEST AL,000010008 Is bit 3 set?
JNZ VRC CLEAR Wait until bit clear

Vertical retrace ended
VRC START:

IN AL,DX Read byte at port
TEST AL,00001000B Is bit 3 set?
JZ VRC START Wait until bit set

Vertical retrace has started
POP DX Restore caller's context
POP AX
RET

TIME VR ENDP

The use of the vertical retrace cycle offers the advantage that the screen
update takes place while the video function is off. This reduces interference
during animation routines, but only if the screen update takes place before the
video function is restored by the VGA. Timing requirements in animation
routines are discussed more extensively in Chapter 11.

. 7.7.2 Interval Timing

Animation code often has to provide a wait period in order to ensure that the
animated image is retained on the screen or remains erased for a minimum
time lapse. This software mechanism is often called an interval timer. The

218 Chapter Seven

simplest and least satisfactory form of an interval timer is a wait loop. For
example, code can produce a delay by means of the following instruction
sequence:

MOV
DELAY 2000:

CX,2000 Load counter

AAM Dummy instruction to delay
17 clock cycles in a 80386

LOOP DELAY 2000

The main objection to the loop delay method is that the actual time varies
according to the system in which the code is executing. For example, the AAM
(ASCII Adjust After Multiplication) instruction produces a delay of 17 clock
cycles in a 80386 CPU and 83 clock cycles in an 8086 CPU. In addition, the clock
speed of the CPU also affects the delay period.

In spite of these hardware differences it is possible to develop routines that
dynamically adjust the delay period to the characteristics of the host machine.
One approach is to include a delay loop in the initialization code and to time
the execution of this loop by the host system. The code can then adjust an
internal variable in order make the necessary compensations for a system that
is so much slower or faster than a predetermined norm. Perhaps a simpler
approach is to use timer channel Oto provide a system-independent interval
timing routine. The following procedure shows the required processing:

MILLI TIME PROC FAR
Timer in 1/1000 second intervals
On entry:

BX time delay in milliseconds

PUSH ex ; Save context
PUSH DX

READ COUNTER:
; Read timer channel Oat port 40H

MOV AL,00000ll0B 0 0 0 0 0 1 1 0

binary mode
mode 3
read latch
channel 0

OUT 43H,AL To counter command port
Read LSB then MSB

IN AL,40H
MOV DL,AL
IN AL,40H
MOV DH,AL

; DX holds timer counter value
;*******************I

count 1 ms
;*******************I

VGA Mode X Drivers and Primitives

SUB DX, 1190
ONE MS:

MOV AL,06H
OUT 43H,AL

Read LSB then MSB
IN AL,40H
MOV CL,AL
IN AL,40H
MOV CH,AL

CX holds timer counter value

1 millisecond delay

Latch for read code
To counter command port

Port for channel 0
LOB to DL
Read HOB
HOB to DH

DX holds terminal count for 1 millisecond delay
CMP CX,DX Compare counts
JA ONE MS ; Wait until DX ex

;*******************I
repeat BX ms

;*******************I
BX Milliseconds counter

219

DEC
JNZ READ COUNTER Continue if count not finished
POP DX
POP ex
RET

MILLI TIME ENDP

7.7.3 Video Paging in VGA Mode X

The availability of several screen pages in VGA mode X (see Figure 7 .9) provides
a method that allows translation animation by storing different images in the
various screen pages. In this case code can follow the save-display-erase cycle
by manipulating screen pages simultaneously. One possible method consists of
devoting a screen page to storing the image background, excluding the ani­
mated object. The code manipulates the background and the object image in a
second screen page. The display cycle consists of alternating the background
page (object erased) and the image and background page (object displayed). The
object updates are performed while the object and image page are off screen,
thus increasing code performance and eliminating interference.

In order to produce paging animation in VGA mode X a routine that allows
selecting the active video page is required. The following procedure performs
this function:

PAGE ON X PROC FAR
Select display page while in VGA mode X
On entry:

AL video page to display (range 0 to 2)

MOV CL,AL Page number to CL
MOV CH,0 Clear high byte
MOV AX, 19200 Select start of buffer
MUL ex AX* page number
MOV BX,AX Buffer offset to BX

220 Chapter Seven

MOV DX,03D4H CRT Controller base address
in VGA mode X

CALL FAR PTR TIME VR Wait for vertical retrace cycle
MOV AL,0CH Offset of Start Address High

register
MOV AH,BH High byte of video buffer address
OUT DX,AX To Start Address High register
INC AL Offset of Start Address Low register
MOV AH,BL Low byte of video buffer address
OUT DX,AX To Start Address Low register
RET

PAGE ON X ENDP

7.7.4 VGA Mode X Panning Animation

Panning animation in some VGA modes, including mode X, can be performed
by changing the address of the video buffer that is mapped to the display
function. The start address is stored in the Start Address High and Start
Address Low registers of the CRT Controller group. On VGA initialization these
registers are set so that the video function is mapped to offset 0 in the buffer;
that is, the object displayed at the top-left screen position is stored as the start
of the video segment located at physical address A0000H.

Code can scroll up the screen by increasing the start address by one pixel row,
which corresponds to an increment of 80 bytes in VGA mode X. A faster
horizontal panning can be produced by incrementing the start address in
multiples of 80 bytes. Slow panning on the vertical plane is produced by
incrementing the buffer start address by one. The following procedures provide
means for panning horizontally and vertically in VGA mode X:

PAN RIGHT X PROC NEAR
Pan screen horizontally, left-to-right, in VGA mode X
On entry:

ex
BX

number of screen columns to pan (1 to 79)
start address in video buffer

Prepare to pan screen
BX holds the start address of the video buffer. BH holds
the high byte and BL the low byte

MOV DX,03D4H CRT Controller base address
in VGA mode X

PAN RIGHT ONE:
CALL FAR PTR TIME VR Wait for vertical retrace cycle
MOV AL,0CH Offset of Start Address High

MOV
OUT
INC
MOV
OUT

AH,BH
DX,AX
AL
AH,BL
DX,AX

register
High byte of video buffer address
To Start Address High register
Offset of Start Address Low register
Low byte of video buffer address
To Start Address Low register

VGA Mode X Drivers and Primitives

SUB
LOOP
RET

PAN RIGHT X

BX,l ; Index to next column
PAN RIGHT ONE

ENDP

221

;***

PAN LEFT X PROC FAR
Pan screen horizontally, right-to-left, in VGA mode X
On entry:

ex
BX

number of screen columns to pan (1 to 79)
start address in video buffer

Prepare to pan screen
BX will hold the start address of the video buffer. BH holds
the high byte and BL the low byte

MOV DX,03D4H CRT Controller base address
in VGA mode X

PAN LEFT ONE:
CALL
MOV

MOV
OUT
INC
MOV
OUT
ADD
LOOP
RET

PAN LEFT X

FAR PTR TIME VR Wait for vertical retrace cycle
AL,0CH Offset of Start Address High

AH,BH
DX,AX
AL
AH,BL
DX,AX
BX,l
PAN LEFT ONE

ENDP

register
High byte of video buffer address
To Start Address High register
Offset of Start Address Low register
Low byte of video buffer address
To Start Address Low register
Index to next column

;***

PAN UP X PROC FAR
Pan up 2 screen rows in VGA mode X
On entry:

ex
BX

number of screen columns to pan (1 to 239)
start address in video buffer

Prepare to pan screen
BX holds the start address of the video buffer. BH holds
the high byte and BL the low byte

MOV DX,03D4H CRT Controller base address
in VGA mode X

PAN UP ONE:
CALL
MOV

MOV
OUT
INC
MOV

FAR PTR TIME VR Wait for vertical retrace cycle
AL,0CH Offset of Start Address High

AH,BH
DX,AX
AL
AH,BL

register
High byte of video buffer address
To Start Address High register
Offset of Start Address Low register
Low byte of video buffer address

222

PAN UP X

OUT
ADD
LOOP
RET

DX,AX
BX,160
PAN UP ONE

ENDP

Chapter Seven

To Start Address Low register
Index to next column

;***

PAN DOWN X PROC FAR
Pan down 2 screen rows in VGA mode X
On entry:

ex
BX

number of screen columns to pan (1 to 239)
start address in video buffer

Prepare to pan screen
BX holds the start address of the video buffer. BH holds
the high byte and BL the low byte

MOV DX,03D4H CRT Controller base address
in VGA mode X

PAN OW ONE:

PAN

CALL
MOV

MOV
OUT
INC
MOV
OUT
SUB
LOOP
RET

DOWN X

FAR PTR TIME VR Wait for vertical retrace cycle
AL,OCH Offset of Start Address High

AH,BH
DX,AX
AL
AH,BL
DX,AX
BX,160
PAN OW ONE

ENDP

register
High byte of video buffer address
To Start Address High register
Offset of Start Address Low register
Low byte of video buffer address
To Start Address Low register
Index to next column

Chapter

8
XGA Architecture and Initialization

8.0 The IBM Extended Graphics Array Video System {XGA)

In September 1990 IBM disclosed preliminary information on a new graphics
standard designated as the Extended Graphics Array, or XGA. Soon thereafter
two configurations of the XGA were made available: as an adapter card and as
part of the motherboard. The XGA adapter is compatible with PS/2 Micro
Channel machines equipped with the 80386, 80386SX, and 486 CPU. Therefore
it cannot be used in the Model 50, 60, and other machines equipped with the
80286 CPU. The XGA system is integrated in the motherboard of IBM Model
95 XP 486. XGA was also developed at the IBM UK Labs Ltd.

IBM has furnished XGA hardware information and entered into agreements
with Intel and other companies for the development of XGA-based products.
Several XGA cards are available for non-IBM compatible PCs.
The following are the most notable features of the XGA video system:
1. The maximum resolution is 1024-by-768 pixels in 256 colors.
2. The XGA system is compatible with the 8514/AAdapter Interface software.
3. The display driver for the original version ofXGA is interlaced at 1024-by-

768 pixel resolution. In 1992 IBM introduced a noninterlaced version ofXGA,
designated as XGA-2 or XGA-NI.

4. The adapter version ofXGA is furnished with either 512K or 1Mb ofon-board
video RAM. However, the XGA-2 upgrade is always equipped with 1Mb of
VRAM.

5. The XGA is compatible with the VGA standard at the register level. This
makes possible the use of XGA in the motherboard while still maintaining
VGA functionality, as in IBM Model 95 XP 486 microcomputer.

6. XGA includes two original display modes that are not available in its
predecessor system 8514/A: a 132-column text mode and a direct color
graphics mode with 640-by-480 pixel resolution in 64K colors. This graphics
mode is available only in cards with 1Mb video RAM installed.

7. XGA requires a machine equipped with a 80386, 486, or Pentium CPU.

223

224 Chapter Eight

8. XGA implements a three-dimension, user-definable drawing space, called a
bitmap. XGA bitmaps can reside anywhere in the system's memory space.
The application can define a bitmap in the program's data space and the
XGA uses this area directly for drawing, reading, and writing operations.

9. XGA is equipped with a hardware-controlled graphics cursor, called the
sprite. It maximum size is 64-by-64 pixels and it can be positioned anywhere
on the screen without affecting the image stored in video memory.

10.The XGA Adapter Interface is implemented as a .SYS device driver. The
module name for the XGA driver is XGAAIDOS.SYS.

11.The XGA was designed taking into consideration the problems associated
with managing a video image in a multitasking environment. Therefore it
contains facilities for saving and restoring the state of the video hardware.

12.The XGA hardware can act as a bus master and access system memory
directly. This bus-mastering capability frees the CPU for other tasks while
the XGA graphics coprocessor is accessing memory.

13.IBM has provided register-level documentation for the XGA system. This
information allows hardware programming of the XGA. In fact, IBM seems
to favor register programming over the AI interface. The hardware data has
also facilitated cloning of the XGA system.

Some criticism has been raised regarding XGA, for example, the micro
channel requirement in the IBM version of XGA and the limitations of the AI
services. The objection to interlaced display technology applies only to the
original version ofXGA, since the XGA-2 version is noninterlaced. Figure 8.1
is a diagram of the XGA system.

XGA chip set video memory

u,
::::,
m
a:

~ a.
:I!!
0 u

memory
and CRT

controller coproceaaor

host
Interface

adapter
ROM

drawing
engine

aprlte and
attribute

controller

Figure 8.1 XGA Video System Diagram

aerlallzer

palette

XGA Architecture and Initialization 225

8.0.1 Technical Description

The IBM XGA Display Adapter/A is designed for micro channel computers
equipped with the 80386, 30386SX, 486, or Pentium CPU. The exception is the
IBM Model 70 Portable, which does not accept the XGA adapter. Non-IBM
versions ofXGA can be used in machines based on the ISA and EISA standards.
The IBM XGA Display Adapter can be installed in any 16-bit or 32-bit slot,
except the Auxiliary Video Extension slot. XGA is furnished on the motherboard
of some high-end models of the PS/2 line. XGA includes all VGA modes and is
hardware compatible with the VGA standard. XGA is supplied with device
drivers for Windows, OS/2, and some high-end graphics applications.

A maximum of eight XGA Display Adapters can coexist in one system unit.
In systems in which XGA is furnished on the motherboard the maximum is five.
In IBM documentation each occurrence of an XGA Display Adapter/A is called
an "instance." Various instances of XGA are located at different memory
addresses. This allows the control of each instance independently. Since VGA
has no support for multiple instances, only one video subsystem can be active
in a VGA mode. The XGA Display Adapter/A is equipped with software in ROM
to perform a system self-test and to initialize the host interface.

8.0.2 XGA in VGA Modes

In systems in which XGA is furnished in the motherboard, it is the default VGA
(assuming that a display is attached to the connector). If no display is attached,
the XGA Adapter with a display connected, installed in the first slot, is the
default VGA. In this case all other XGA Display Adapters in the system are
configured into Extended Graphics mode.

In systems in which XGA is furnished as a display adapter, the one in the
Base Video extension slot is the default VGA, if a display is attached. If no
display is attached, or an XGA Display Adapter/ A is not installed in the Base
Video extension, then the first XGA Display Adapter in the system with a
display attached is the default VGA. In this case all other XGA Display
Adapters in the system unit are configured in Extended Graphics mode.

8.0.3 Multiple XGA Systems

The VGA system, or the VGA function in an XGA system, uses fixed addresses
and port designations. For this reason a single VGA or VGA-capable system is
active at one time. However, an application running in a machine with more
than one VGA or VGA-capable system can select which one is currently enabled.
Since a disabled VGA continues to display screen data, the programming can
be designed so that the user perceives the system as a multiple-screen setup.
A program can enable or disable a particular VGA system by accessing the XGA
Operating Mode register of the Display Controller.

A machine with sufficient expansion slots can accommodate up to eight XGA
subsystems. Since each instance of the XGA uses different port and address

226 Chapter Eight

designations, all of them can operate simultaneously in non-VGA modes. In this
case the application can access each XGA instance without concern for the
others being enabled or disabled.

8.0.4 XGA Extended Graphics Modes

As in some VGA modes, XGA video memory is organized in bit planes. Each bit
plane encodes the color for a rectangular array of 1024-by-1024 pixels. In
practice, since the highest available resolution is 1024-by-768 pixels, there are
256 unused bits in each plane. This unassigned area is used by AI software as
a scratchpad during area fills and in marker manipulations, as well as for
storing bitmaps for the character sets.

XGA operates in one of two modes: low-resolution and high-resolution. The
characteristics of these modes are shown in Table 8.1.

Table 8.1 XGA Advanced Function Modes

LOW-RESOLUTION MODE HIGH-RESOLUTION MODE

RAM installed
Interlaced
Pixel columns
Pixel rows
Number of colors
Palette

512K
NO
640
480

16
256K

1024K
YES
1024
768
256
256K

When the graphics system is in the low-resolution mode, video memory
consists of eight 1024-by-512 bit planes. However, the eight bit planes are
divided into two separate groups of four bit planes each. These two bit plane
groups can be simultaneously addressed. In low-resolution mode the color range
is limited to 16 simultaneous colors. In the high-resolution mode (see Table 8.1)
video memory consists of eight bit planes of 1024-by-1024 pixels and the
number of simultaneous colors is 256. Figure 8.2 shows the bit-plane mapping
in XGA high-resolution modes.

color look-up
table (LUT)

........ 0

VIDEO
MEMORY

(8 bit planes
of 1024 bits)

Figure 8.2 Architecture of the XGA High-Resolution Modes

XGA Architecture and Initialization 227

Color selection is perlormed by means of a color look-up table (LUT) associated with
the DAC. The selection mechanism is similar to the one used in VGA mode number
19; in other words, the 8-bit color code stored in XGA video memory serves as an index
into the color look-up table.

8.0.5 Alphanumeric Support

The XGA Adapter Interlace provides services for the display of text strings and of
individual characters. The string-oriented services are designated as text functions in
the AI documentation, while the character-oriented services are called alphanumeric
functions. The AI text and character display services are necessary since BIOS and
DOS functions for displaying text do not operate on the XGA

Both text and alphanumeric functions in the AI require the use of character fonts,
furnished in the XGA software package. These character fonts are stored in disk files
located in the adapter's support diskette. During installation the font files are moved
to a specially designated directory in the user's hard disk drive. There are four standard
fonts in the XGA diskette. In addition, the XGA diskette contains four supplementary
fonts that have been optimized for the XGA hardware. The diskette furnished with
IBM Personal System/2 Display Adapter 8514/A Adapter Interlace Programmer's
Guide contains 22 additional fonts, which are also compatible with the XGA system.

8.0.6 The Adapter Interface

The Adapter Interlace (AI) is a software package furnished with 8514/A and XGA
systems that provides a series oflow-level services to the graphics programmer. In
the 8514/A the AI software is in the form of a terminate and stay resident program,
while in the XGA it is supplied as a SYS-type driver. Since the functions provided by
the AI are limited and execution using the interlace is slower than directly program­
ming the XGA hardware, the AI is not discussed further in this book.

8.0.7 Multidisplay Graphics Systems

The possibility of multidisplay XGA systems creates a new potential for PC graphics
applications and system programs. For example, by manipulating the XGA address
decoding mechanism an application can display different data on multiple XGA
screens. In this manner it is possible to conceive an XGA multitasking environment
that manipulates several displays. One feasible setup for a multidisplay system would
be an airline scheduling software package that shows and updates arrivals on one
screen and departures on another one, while a third monitor is actively attached to
the reservations desk. In a graphics applications environment we can envision a
desktop publishing system in which the central monitor displays the typesetting
software, the monitor on one side is attached to a graphics illustration program, and
the one on the other side to a text editor. The user can shift between programs while
the inactive software continues processing as a background task. In conclusion,
multidisplay, multitasking graphics software could considerably expand the
horizons of microcomputing.

228 Chapter Eight

8.1 XGA Architecture

The XGA system, whether it be furnished on the motherboard or as a plug-in
adapter, has the following components:
1 A CRT Controller
2. A video buffer
3. A Serializer/Palette/Digital-Analog Converter (SPD)
4. A Sprite/Attribute Controller

8.1.1 XGA CRT Controller

The XGA CRT Controller, also called the Display Controller, includes a host
interface, a CRT Controller, and a graphics coprocessor. The host interface
consists of a group of registers, a pixel interface mechanism, a Bus Master
Controller, and a module for saving and restoring the XGA state. The CPU
accesses the XGA functions by means of the host interface registers. Access to
video and to system memory is by the Bus Master and the Video RAM
Controller. The save-restore module provides task switching support in a
multitasking environment, such as in the Windows and OS/2 operating sys­
tems.

The host interface determines if the XGA adapter is in a 16- or 32-bit slot and
sets up for data transfer operations accordingly. The interface also handles
address and 1/0 register decoding and access to the coprocessor's memory­
mapped registers and to the video buffer. When the video subsystem is in its
bus master mode, the host interface generates the necessary signals for trans­
ferring data between the video buffer and system memory. Note that, once
initialized, this data transfer is performed without intervention of the CPU.

The CRT Controller provides the VGA functions. It also generates the timing
and control signals necessary to drive the serializer and the DAC. Figure 8.3 is
a graphics representation of the functions of the CRT Controller registers.

horizontal mic HSPS ------. L ~~':, _ ---- ------,
HDE HBB HBE HT

BORDER YT.., _______ _

Figure 8.3 XGA CRT Controller Registers

CRT Controller reglalanl:

HT = Horizontal Total
HOE = Horizontal Display End
HBS = Horizontal Blanking Start
HBE = Horizontal Blanking End
HSPS = Horizontal Sync P-ulae Start
HSPE = Horizontal Sync Pulae End

VT= Vertical Total
VOE = Vertlcal Dlaplay End
VBS = Vertical Blanking Start
VBE = Vertlcal Blanking End
VSPS = Vertlcal Sync lfulae Start
VSPE = Vertlcal Sync Pulae End

XGA Architecture and Initialization 229

The XGA system can be programmed so that an interrupt takes place at the
start of the refresh cycle of the CRT Controller. This is accomplished by setting
a bit in the Interrupt Enable register. A matching bit in the Interrupt Status
register reflects the state of the refresh interrupt. This manipulation is useful
in providing a pulse for animation routines with automatic assurance that the
screen update functions are performed during the Controller's refresh cycle.

The coprocessor enhances system performance by means of the following
functions:
1. Provides drawing functions in hardware. In performing these operations the

XGA coprocessor can access both video and system memory.
2. Updates video and system memory independently of the CPU. This allows

the main processor and the XGA graphics coprocessor to execute in parallel.
3. Serves as a bus master by directly accessing system memory. In this function

the coprocessor follows the general bus-mastering rules regarding arbitra­
tion and fairness levels. The coprocessor can act as a bus master for other
devices and performs burst mode data transfers at a rate of up to 16Mb per
second.

4. Supports virtual memory addressing and provides the rapid suspension and
resumption of tasks in a multitasking environment.

8.1.2 XGA Video Buffer

The video buffer is the XGA memory area devoted to storing video data. The
video buffer is also called video memory, video RAM, and VRAM. The XGA
video buffer is dual-ported; that is, it can be accessed by the XGA hardware and
by the CPU. The original version of the XGA adapter was furnished with either
512K or 1Mb ofVRAM. Table 8.2 shows the relationship between resolution
and color range in XGA systems equipped with 512K or 1Mb ofVRAM.

Table 8.2 XGA Resolution and Color

VRAM

512Kb

1Mb

RESOLUTION

640-by-480
1024-by-768
640-by-480

1024-by-768

COLORS
DISPLAYED

256
16

65,536
256

RANGE

256K
256K

256K

XGA systems equipped with 1Mb of VRAM perform faster than those
equipped with 512Kb due to the fact that the data path is 32 bits wide in 1Mb
systems, while it is only 16 bits wide in 512K systems. Note that the XGA-2
version of the adapter is always furnished with 1Mb ofVRAM.

8.1.3 The Serializer/Palette/Digital-Analog Converter

The Serializer I Palette I Digital-Analog converter chip is referred to as the SPD
in IBM documentation.

230 Chapter Eight

In the original XGA adapters the digital-to-analog converter (DAC) receives
a color value encoded into three 6-bit fields and converts it into analog output
to the monitor. This operation is consistent with the one performed by the VGA
DAC. In the XGA-2 version of the adapter the DAC has been redesigned to
support 8 bits per color. Therefore the range was expanded from 262,144 to
16,777,216 possible colors.

The serializer converts the picture data stored in the video buffer into a serial
bit stream. The width of the bit stream matches the number of bits per pixel in
the current display mode. The valid range is 1, 2, 4, 8, or 16 bits per pixel. The
16-bit-per-pixel mode is also called the direct color mode. In this case the palette
registers are bypassed and the 16-bit code is treated by the DAC as red-green­
blue encoding in the format shown in Figure 8.4.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I RED I GREEN I BLUE

Figure 8.4 XGA Color Maps in Direct Color Modes

The palette is a set ofregisters that controls the actual colors displayed in the
1-, 2-, 4-, and 8-bits-per-pixel modes. The action performed by the palette
registers has been compared to that of an artist selecting and mixing the colors
to be used in a particular painting. For example, to paint a sunset scene an
artist may select shades of red, orange, and yellow, while not using green and
blue. By the same token, to represent this scene in a 256-color mode, the
programmer would load the palette registers so as to enhance the red, orange,
and yellow range, while omitting those colors not used in the scene to be
displayed. The limitation of palette manipulation methods is that only one
palette can be active for the entire screen. Therefore images that require
different palette settings cannot be displayed simultaneously.

8.1.4 The XGA Sprite/Attribute Controller

One of the features introduced by the XGA standard, which has no precedence
in VGA, is a small screen image, called the sprite, controlled separately by the
hardware. The sprite is a rectangular screen area of a maximum size of64-by-64
pixels, which is visible in the XGA graphics modes. On a standard monitor, at
a resolution of 1024-by-768, the largest possible sprite image occupies slightly
less than one square inch of screen space.

Often a graphics program, at either the system or the application level, must
manipulate some sort of animated screen marker object. A typical example of
screen marker is a mouse-controlled icon often used to select from option boxes
or menus. In PC video systems preceding the XGA the software had to find ways
for saving and restoring the screen contents as the maker was moved over the
pixel grid. This matter was discussed in Chapter 7 regarding animation in VGA

XGA Architecture and Initialization 231

0 1 2 3 4

1

2 -+--+-t-+-+-t-t-t---,i1--+-++--t-11--+-+-+-+-t-+--t-11--+-+-+-+-+-+-+-H

3 -+--+-t-+-+-t-t-1--+-+-+-+-++--t-11--+-+-+-+-t-+--t-11--+-+-+--!-+-+-~H

Figure 8.5 Image Stored in the XGA Sprite Buffer

mode X. In XGA, the operation of a screen icon is considerably simplified due
to the fact that the sprite overlays other screen data without changing it.

The sprite image is stored in a 32K static RAM chip, not part of video memory,
usually called the alpha/sprite buffer. This buffer is used for storing alphanu­
meric characters when XGA is in a VGA mode or in its proprietary 132-column
text mode. In these modes the sprite is not visible. Figure 8.5 shows a marker
image in the form of a cross-hair symbol located in the sprite buffer.

Note that the marker image in Figure 8.5 is smaller than the 64-by-64 pixels
of the sprite buffer. If this is the case, the software can control which part of
the sprite image is displayed by manipulating the sprite registers located in the
Indexed Access registers of the Display Controller group. In VGA modes the
Sprite/Attribute Controller handles color selection and character generation.

8.2 Access and Control of the XGA System

The XGA graphics system can be accessed at four different levels. The first and
highest level accesses are the graphics functions offered by operating systems
and graphics environments . Such is the case in applications that execute under
the Windows and OS/2 operating systems and use the graphics services pro­
vided by the system software. The second level of XGA programming is by
means of a software package furnished with the system, called the Adapter

232 Chapter Eight

Interface, or Al. The third level is by accessing XGA registers and the graphics
coprocessor. The fourth and lowest level ofXGA graphics programming is by
accessing video memory directly.

8.2.1 Access to the XGA Graphics Coprocessor

One characteristic of XGA that differentiates it from VGA and SuperVGA
systems is the presence of a graphics coprocessor chip. Much of its enhanced
performance is due to this device. The following are the most important features
of the XGA graphics coprocessor:
1. The coprocessor can obtain control of the system bus to access video and

system memory independently of the central processor. This bus-mastering
feature allows the coprocessor to perform graphics operations while the main
processor is executing other functions.

2. The graphics coprocessor can directly perform drawing operations. These
include straight lines, filled rectangles, and bit block transfers.

3. The coprocessor provides support for saving its own register contents. This
feature is useful in a multitasking environment.

4. The coprocessor supports several logical and arithmetic mixes including OR,
AND, XOR, NOT, source, destination, add, subtract, average, maximum,
and minimum operands.

5. The coprocessor can manipulate images encoded in 1-, 2-, 4-, or 8-bits per
pixel formats. Pixel maps can be defined in either Intel or Motorola data
storage formats.

6. The coprocessor can be programmed to generate system interrupts. These
interrupts can occur when the coprocessor operation has finished, an access
to the coprocessor was rejected, a sprite operation was completed, or at the
end or start of the screen blanking cycle.

' The coprocessor registers are memory-mapped. To an application, program­
ming the coprocessor consists of reading and storing data into these reserved
memory addresses. In contrast, the XGA main registers are port-mapped and
programming consists of reading and writing to these dedicated ports.

The execution of a coprocessor operation consists of the following steps:
1. The system microprocessor reads and writes data to the coprocessor registers

that must be initialized for the particular operation.
2. The coprocessor operation starts when a command is written to its Pixel

Operations register.
3. The coprocessor executes the programmed operation. During this time the

system microprocessor can be performing other tasks. The only possible
interference between processor and coprocessor is when both are accessing
the bus simultaneously. In this case the access takes place according to
established priorities.

4. At the conclusion of the programmed operation the graphics coprocessor
informs the system and becomes idle.

XGA Architecture and Initialization 233

8.3 XGA Video Memory

Like all PC video systems, XGA is memory-mapped. Therefore the color code
for each screen pixel is encoded and stored in video RAM. The number of
memory units used to encode the pixel's color depends on the adopted format.
Possible values are of 1, 2, 4, 8, and 16 bits per pixel. The number of colors are
the respective powers of 2, as shown in Table 8.3.

Table 8.3 XGA Pixel-to-Memory Mapping

BITS PER PIXEL

1
2
4
8

16

POWEROF2 NUMBER OF COLORS

2
4

16
256

65536

The 256- and 65536-color modes are available only in XGA systems with
maximum on-board RAM (1Mb). The total amount ofVRAM used in storing the
image data depends on the resolution and the number of encoded colors. For
example, to store the contents of the entire XGA screen at 1024-by-768 pixels
resolution in 256 colors requires a total of 786,432 bytes. However, this same
screen can.be stored in 98,304 bytes if each screen pixel is represented in only
two colors and encoded in a single memory bit.

8.3.1 Video Memory Apertures

An XGA system can access video memory by means of three different apertures:
1. The first and largest memory aperture is represented in a 22-bit field, which

can address 4,194,303 bytes. This 4Mb range allows access to four times the
maximum VRAM that can be present in an XGA system, indicating the
possibility of a future expansion of the XGA standard. The 4Mb address
space requires the use of a 80386 or 486 extended register. This is the
aperture used by the XGA graphics coprocessor. The 4Mb aperture is not
available in systems in which the XGA is installed in a 16-bit slot or which
use the 80386SX CPU.

2. The second possible aperture into video memory is 1Mb, which is also the
maximum VRAM that can be present in an XGA system. The 1Mb aperture
allows addressing all video memory consecutively by means of an 80386 or
486 extended register.

3. The third possible aperture is also 1Mb, but the total memory space is divided
into 16 banks of 64K each. This aperture requires bank switching to access
the maximum VRAM. Note that in a particular display mode not all 16 banks
could be required to access the mapped video memory space.

By reading the contents of the PS/2 Programmable Option Select registers
(POS), an application determines which aperture is available in a particular

234 Chapter Eight

system. The programming operations for detecting and initializing the XGA are
described in Chapter 6.

8.3.2 Data Ordering

XGA memory mapping can be according to the Intel or the Motorola storage
conventions. The XGA hardware allows selecting the Intel or Motorola formats
for every operation that accesses a pixel map or image stored in system or video
memory. In the Intel convention, also known as the little-endian addressing
scheme, the smallest element (little end) of a number is stored at the lowest
numbered memory location. In the Motorola convention, known as big-endian
addressing, the largest element (big end) is stored at the lowest numbered
memory location. In both the Intel and Motorola storage schemes, the value of
individual bits within the stored byte is the same; that is, the low-order bit (bit
number 0) is always located at the right-most position.

8.4 XGA Detection and Initialization

XGA system detection or initialization functions can be performed by the
following methods:

1. By accessing and programming the XGA hardware directly.

2. By means of the Display Mode Query and Set function (DMQS) introduced
in the XGA-2 standard.

3. By means of VESA XGA services.

4. By the initialization command in the AI software.

Notice that not all methods ofXGA detection and initialization offer the same
information or produce the same results, also that the various methods are not
exclusive. For example, software may use the DMQS function to obtain data
about the available options and then proceed to set the XGA graphics mode by
accessing the hardware directly. By the same token, a program can use a VESA
XGA BIOS service to detect the installed hardware and then use an AI
command to initialize the XGA system and set the desired mode.

Software must also take into consideration that not all detection and initiali­
zation resources are available in all XGA systems. For example, the XGA AI is
a programming convenience which may not be available in a particular imple­
mentation. The same applies to the VESA XGA BIOS services. Furthermore,
the DMQS function does not exist in XGA systems manufactured before the
XGA-2 standard. In fact, the only initialization methods that work in any XGA,
regardless of version and options, are those that access the hardware directly.
Because of this general usefulness and portability, in the following sections we
concentrate our attention on the low-level methods of XGA detection and
initialization.

XGA Architecture and Initialization 235

8.4.1 Programming the XGA Display Controller

The main programmable device of the XGA system is the Display Controller
chip. This IC contains the color look-up table, the CRT Controller, and the
hardware registers for the operation of a special cursor, called the sprite. The
XGA Display Controller registers are a superset of the VGA registers. As in the
VGA, these registers are mapped into the system's 1/0 space. Therefore they
are accessed by the software through input and output ports.

The base address of the XGA Display Controller is usually expressed in the
form:

21x0H

where the variable x depends on the instance of the XGA adapter. Recalling
that more than one XGA system can coexist in a microcomputer, the instance
can be defined as the number that corresponds to a particular XGA adapter or
motherboard implementation. In micro channel systems the user can change
the instance of an installed XGA adapter by means of the setup procedures
provided by the reference diskette. The default instance for a single XGA
adapter card is 6, which determines a base address for the Display Controller
of 2160H. Note that the instance number replaces the variable x in the general
formula.

The XGA standard establishes video modes that are reminiscent of the ones
in the VGA system. Table 8.4 lists the characteristics of the various XGA video
modes.

Table 8.4 XGA Video Modes

HORIZONTAL VERTICAL
MODE NUMBER TYPE PIXELS PIXELS COLORS

1
2
3
4
5

132-column text
graphics
graphics
graphics

direct color

1024
1024

640
640

768
768
480
480

256
16

256
65536

The Display Controller registers are divided into two groups: direct access
and Indexed Access registers. The Direct Access registers are 10 registers in
the range 21x0H to 21x9H. The Indexed Access registers are associated with
the Index register (port 21xAH) and the Data registers (ports 21xBH to 21:xFH).
The Index register values are in the range 04H to 70H but not all values in this
range are actually used in XGA. The Direct Access registers in the Display
Controller are programmed by means of IN or OUT instructions to the corre­
sponding port; for example, the Memory Access Mode register, at 21x9H can be
programmed for eight bits per pixel and Intel data format as follows:

MOV DX,XGA_REG_BASE Register base
ADD DX,9 Add offset of Memory Access

Mode register

236

MOV AL,00000011B

OUT DX,AL

Chapter Eight

Bitmap for Intel format
and 8 bits per pixel

This code fragment assumes that the base address of the Display Controller
register groups has been previously determined and is stored in the variable
XGA_REG_BASE. The operations necessary for obtaining the base address are
discussed later in the chapter. Programming the indexed-access registers takes
place in two steps: first, the desired register is selected by writing a value to
the Index register at port 21xAH; and second, data is read or written to the
register by means of the Data registers in the range 21xBH to 21xFH. The
following fragment shows writing all 1 bits (FFH) to the Palette Mask register
at offset 64H of the Index register.

Programming an Indexed Access register of the XGA Display
Controller group

MOV DX,XGA_REG_BASE
ADD
MOV

MOV
OUT

DX, OAH
AL,64H

AH,OFFH
DX,AX

Register base
Add offset of Index
Select Palette Mask
at offset 64H

register
register

Data byte to write
Select and write data

Notice that the 80x86 instruction OUT DX,AX writes the value in AL to the
port number in DX and the value in AH to the port number in DX+ 1. Therefore,
by using this form of the OUT instruction we can select and access the Index
register with a single operation.

8.4.2 XGA Hardware Initialization

The first programming operation usually consists of initializing and enabling
the XGA video system hardware and software. The simplest initialization
method is by means of the AI services previously mentioned. However, device
drivers and applications that access the XGA hardware usually initialize the
system directly.

For each XGA system the following initialization and diagnostic operations
are performed:
1. Locate. the XGA hardware and determine if implementation is an adapter or

or is the motherboard.
2. Determine the instance and use this value to calculate the XGA register base

address.
3. Determine the number of monitors in use. One possibility is that a single

monitor provides XGA and VGA functions. Another possibility is a dual­
monitor setup, one for XGA modes and another one for the VGA modes.
Determine the display characteristics of the XGA monitor for each instance.

XGA Architecture and Initialization 237

4. Select one of the three possible memory apertures.
5. Determine memory size and availability of high-resolution modes. Select the

bits-per-pixel resolution and the little-endian or big-endian data formats.
6. Select and enable an XGA mode.
7. Initialize the XGA coprocessor and determine and store its base address.
8. Determine and store the base address of the XGA video system.

Locating the XGA Hardware

The first initialization task consists of locating the XGA components in the
system's space. The necessary information is found in the PS/2 Programmable
Option Select (POS) registers. Figure 8.6 shows important POS data related to
the XGA hardware.

The first step in reading the POS registers is determining where these
registers are located. In a micro channel IBM microcomputer BIOS service
number 196, subservice number 0, ofINT 15H returns the POS registers' base
address in the DX register. The following code fragment shows the required
processing for an XGA micro channel machine:

;**
data variables for XGA initialization information

;**
XGA DIRECT SEGMENT PUBLIC

XGA POS DW 0 Base address of POS registers
; Contents of POS registers

POS register 2

1 = XGA enabled

Instance field (0 to 7)

ROM address field
from 0000 = C0000H to 1111 = DEOO0H
(increments of 2000H)

POS register 4

Figure 8.6 Data in XGA POS Registers

1 = 4Mb aperture enabled

Video memory base address

238 Chapter Eight

POS 2 DB 0 POS register at offset 2
POS 4 DB 0 POS register at offset 4
; Other data
XGA REG BASE ow 0 Register base for XGA system
MON ID ow 0 Four-digit monitor ID code

obtained by new method
EQUIPMENT DB 0 XGA equipment in system

bitmap as follows:
7 6 5 4 3 2 1 0

I I I I I I I I 1 XGA in system

I I I I I I I 0 no XGA found

I I I I I I I 1 XGA color monitor

I I I I I I 0 XGA monochrome monitor

I I I I I I 1 high-resolution (1024 X 768)

I I I I I 0 no high-resolution

I I I I I 1 RAM= 1Mb

I I I I 0 RAM= 512Kb

I I I I 1 dual monitor system

I I I 0 single monitor system

I I I UNUSED
MODE ow 0 ; Mode number during init

; Storage for 4 data bytes read from the Display ID register
VAR A DB 0 ; First byte read
VAR B DB 0
VAR C DB 0
VAR D DB 0 ; Last byte read
; Storage for 4 monitor ID nibbles
NIB 3 DB 0 ; First nibble to merge
NIB 2 DB 0
NIB 1 DB 0
NIB 0 DB 0

XGA DIRECT ENDS
;**

processing operations for XGA initialization
;**
CODE

.386

SEGMENT PUBLIC
ASSUME CS:CODE

INIT XGA PROC FAR
The .386 directive for Microsoft MASM allows coding using the
80386/486 instruction set. Since present implementations of XGA
require the 30386 or higher processor, the use of these
.386 instruction is valid

;**********************!
; set OS to XGA_DIRECT I
;**********************I

MOV AX,XGA_DIRECT Local data segment

XGA Architecture and Initialization

MOV DS,AX ; to DS
ASSUME DS:XGA DIRECT

; At this point the DS segment register can address data in the
; segment named XGA DIRECT

239

;**********************I
get POS address

;**********************I
Use service number 196,
address of Programmable

INT 15H, with AL= 0 to determine base
Option Select (POS) registers

MOV AX,0C400H

INT 15H

JNC
JMP

VALID POS:
MOV

VALID POS
NO XGA

XGA_POS,DX

AH= C4H (service request)
AL= 0 (subservice)
BIOS interrupt
for micro channel machines only
Go if POS address returned
Error - not micro channel

Save base address of POS
An XGA system can be located on the motherboard or in one
of 9 possible slots. Initialize ex= 0 for motherboard XGA
CX 1 to 9 for XGA in adapter card

XOR CX,CX ; Start with motherboard
CLI ; Interrupts off

continues in the following code listing

Notice that not all POS values encode XGA data. The valid range for XGA
systems is 8FD8H to SFDBH. Service number 196, subservice number 1, ofINT
15H can be used to enable each one of eight possible slots for setup. Then the
value stored at the POS register base is read and compared to the valid range.
If the value is within the range, an XGA adapter or motherboard implementa­
tion has been detected. In this case the POS registers contain data required for
the initialization of the XGA system. The following code fragment illustrates
the required processing:

; Use BIOS service 196, subservice number 1, to enable slot
; for setup
GET POS 0:

MOV
MOV
MOV
INT

Slot enabled
MOV
IN

Valid range
CMP

AH,0C4H
AL,0lH
BX,CX
15H

for setup
DX,XGA_POS
AX,DX

for XGA systems
AX,08FD8H

BIOS service
Subservice number
Slot number to BX

; POS register 0 and 1
; Read ID low and high bytes

is 8FD8H to BFDBH
; Test low limit

JAE TEST HIGH LIM ; Go if equal or greater
; At this point the POS reports that system is not an XGA
; adapter
NOT XGA POS:

INC ex CX is options counter

240

CMP CX,9
JB GET POS 0 -
JMP NO XGA

TEST HIGH LIM:
CMP AX,08FDBH
JA NOT XGA POS

;**********************I
XGA found

;**********************I
CLI

Done all slots?
Go if not at last slot
No XGA exit

Chapter Eight

Test high limit of range
Go if out of range

Disable interrupts
; Test if XGA is in motherboard

CMP CX,0
JNE XGA CARD

;**********************I
motherboard XGA

;**********************I
; Port 94H is

MOV
MOV
OUT
JMP

used to enable
AL, 0DFH
DX,94H
DX,AL
SHORT GET POS

;**********************I
XGA card

;**********************I
XGA CARD:

MOV
MOV
INT

AX,0C401H
BX,CX
15H

;**********************I
save POS registers

;**********************I
GET POS:

MOV DX,XGA_POS
ADD DX,2
IN AL,DX
MOV POS_2,AL
INC DX
INC DX
IN AL,DX
MOV POS_4,AL

; At this point POS registers
; variables
;**********************I

re-enable video
;**********************I
; Test for XGA in motherboard

CMP CX,0

JNE XGA ADAPTER

0 is motherboard value
Go if not on the motherboard

and disable motherboard video
Bit 5 = 0 for video setup
94H is system board enable

Skip slot setup

Place adapter in setup mode
Slot number to BL

Get POS record for the slot id
POS register at offset 2
Read data byte
and store it
Next POS register
is number 4
Get contents
Store it

2 and 4 have been saved in

Treat the motherboard
differently
Go if not in motherboard

XGA in motherboard. Set bit 5 in port 94H to reenable video
; All bits set MOV AL,0FFH

XGA Architecture and Initialization

OUT 094H,AL
JMP SHORT REG

XGA ADAPTER:
MOV AX,0C402H
MOV BX,CX
INT 15H

BASE

Enable the slot for normal
operation

continues in the following code listing

Instance and Register Base Address

241

The next step in the XGA initialization is calculating the XGA Display Control­
ler register base by adding the instance value to the address template 21xOH
previously mentioned. The following code shows the necessary manipulation of
the instance bits:

; ... continues from the previous code listing
;**********************I
; calculate and store
; XGA register base
;**********************I
REG BASE:

STI
MOV AL,POS_2
AND AX,0EH

SHL AX, 1
SHL AX, 1
SHL AX, 1

Interrupts on again
Get value at POS register 2
Mask out all bits except
instance
Move instance value to second
digit position

ADD AX,2100H
MOV XGA_REG_BASE,AX

Add instance to base address
Store result in variable

continues in the following code listing

Obtaining Monitor ID Code

The IBM documentation describes two ways for determining the monitor
hardware installed in an XGA system. The first and older method is by reading
the display identification field (bits O to 3) in the Display ID and Comparator
register. A new method for reading the display ID is described in the Personal
System I 2 Hardware Interface Technical Reference - Video Susbsystems, pub­
lished by IBM in September 1992. (See Bibliography.) The data obtained by
means of the new method is in the form of four hexadecimal digits. This last
format coincides with the monitor ID reported by the DMQS function, discussed
later in this chapter.

In the initialization code that follows we used both methods of monitor
identification. The older method is used to determine if the system is equipped
with a color or monochrome monitor and if high-resolution hardware (1024-by-
768 pixels) is available. Since this information may not be valid for new IBM
monitors, the code also reports the monitor ID bits in the format recommended
by IBM. Software should base its mode setting decisions on the new 4-digit

242 Chapter Eight

monitor ID codes, rather than on the older 4-bit values. Table 8.5 shows the bit
codes and characteristics of several popular monitors in both formats. Note that
for some monitors listed in Table 8.5 no 4-bit code is listed since this information
has not been documented.

Table 8.5 XGA Display ID Codes

MONITOR ID DISPLAY MAXIMUM DIMENSIONS/COLORS OR GRAY
4-bit 4-digit MODEL (IN.) TYPE 512K 1MB

1111 FFFF none - - - - --- -
1101 FF0F 8503 12 monochrome 640-by-480/64 640-by-480/64
1110 FFF0 8513 12 color 640-by-480/256 640-by-480/256

8512 14 640-by-480/65536
8518

1011 F0FF 8515 14 color 640-by-480/256 640-by-480/65536
8516 1024-by-768/16 1024-by-768/256

1001 F00F 8604 15 monochrome 640-by-480/64 1024-by-768/64
8507 19 monochrome 1024-by-768/16 1024-by-768/64

1010 F0F0 8514 16 color 640-by-480/256 640-by-480/65536
1024-by-768/256

0010 FOF0 8514 16 color 640-by-480/256 640-bb-480/65536

color
1024- y-768/256

90F0 8517 17 1024-by-768/256 1024-by-768/256

Obtaining the 4-bit original monitor identification code is straightforward and
uncomplicated. Software simply selects the Display ID and Comparator regis­
ter, which is the indexed-access register at offset 52H, then reads its contents
by means of an IN instruction. The monitor ID field is the low-order nibble thus
obtained. The following code fragment shows the processing operations:

; ... continues from the previous code listing
;**********************I

get monitor code
in 4-bit format

;**********************I
Bits Oto 3 of Display ID and Comparator register (offset 52H)
encode the display type attached to the system

MOV DX,XGA_REG_BASE Base address
ADD DX,0AH To Index register
MOV AL,052H Select Display ID and

Comparator register
OUT DX,AL

Read byte at selected register
MOV DX,XGA_REG_BASE
ADD DX,0BH
IN AL,DX
AND AL,0FH
CMP AL,00H
JNE ID OK

Illegal ID code
JMP NO XGA

;**********************I
monitor ID bits

;**********************I

To data port
Read register data
Mask off high nibble
Test for illegal value

; Go if valid display ID

XGA Architecture and Initialization

ID OK:
Monitor ID is reported as follows:
bit code color/BW max. address Model
xxxx 1111 no display installed
xxxx 1101 color 640-by-480 8503
xxxx 1110 color 640-by-480 8512/8513
xxxx 1011 color 1024-by-768 8515
xxxx 1001 BW 1024-by-768 8504/8507
xxxx 1010 color 1024-by-768 8514
xxxx 0010 color 1024 by 768 8514

11
I 1------- Bit 1 1 for color displays

I
1-------- Bit 2 0 in displays that

support high-resolution modes

;**********************I
set monitor bit

;**********************I
AND AL,00000110B Preserve bits 1 and 2

and clear bit 0
XOR AL,00000101B Reverse bits O and 2
MOV EQUIPMENT,AL Save the result flag

Read bit 0 of the Operating Mode register (offset 0) to
determine if VGA mode address decoding is enabled

MOV DX,XGA_REG_BASE Operating Mode register
IN AL,DX Read data byte
TEST AL,1 Test low bit
JNZ INT CONTROL Go single monitor in system
OR EQUIPMENT,00010000B ; Set bit 5 to indicate

; 2 monitors
continues in the following code listing

243

Obtaining the 4-digit monitor ID code that is consistent with the value
reported by the DMQS service is a considerably more complicated task. For this
reason, if the software determines that the system supports DMQS, this is the
preferred way for reading the monitor ID and other system data. However, since
the XGA adapters built before the XGA-2 upgrade do not support DMQS, it is
convenient to have available a method for reading the 4-digit monitor ID codes.

The information necessary for the 4-digit monitor ID code is stored in the
Display ID and Comparator register, at offset 52H of the XGA indexed-access
register group. In this case the data necessary for determining the four hexa­
decimal monitor ID digits is obtained by performing four successive read
operations to this register. The process requires the following manipulations:
1. The XGA CRT Controller is prepared for reset by writing 01 binary to the

Display Blanking field (bits O and 1) of the Display Controller 1 register at
offset 50H of the indexed-access register group.

2. The CRTC Controller is reset by writing 00 binary to the same Display
Blanking field of the Display Controller 1 register.

244 Chapter Eight

3. The Sync Polarity field (bits 6 and 7) of the Display Controller 1 register is
set to 01 binary. After a 15-microsecond delay, data nibble A is read from
the 4 low-order bits of the Display Comparator register at offset 52H of the
indexed-access register group.

4. The Sync Polarity field of the Display Controller 1 register is set to 10 binary.
After a 15-microsecond delay, data nibble Bis read from the 4 low-order bits
of the Display Comparator register.

5. The Sync Polarity field of the Display Controller 1 register is set to 00 binary.
After a 15-microsecond delay, data nibble C is read from the 4 low-order bits
of the Display Comparator register.

6. The Sync Polarity field of the Display Controller 1 register is set to 11 binary.
After a 15-microsecond delay, data nibble Dis read from the 4 low-order bits
of the Display Comparator register.

The four data nibbles read contain the 4-digit monitor ID code, as shown in
Figure 8. 7. Notice in Figure 8. 7 that the four monitor ID digits are derived from
the corresponding bits in the four data nibbles. In other words, all bits number
3 are collected to form the third digit, all bits number 2 are collected to form
the second digit, and so forth. The assembled monitor ID code is a word-size
unit containing 4 nibbles, each nibble encoding one ID digit. The processing for
obtaining the four data nibbles and for assembling the monitor ID digits is
shown in the following code fragment:

; ... continues from the previous code listing
;**********************I

obtain monitor ID
digits

;**********************I
Prepare CRTC for reset by writing binary 01 to the XGA Display

IA31A2I AllAo data nibble A IA31s3lc3lo3 monitor nibble 3

is31821811 BO data nibble B IA2is2i c2i 02 monitor nibble 2

ic3ic2i c1ico data nibble C IA1is1i c1io1 monitor nibble 1

io3io2i 011 oo data nibble D IAoisoi col oo monitor nibble 0

assembled 4-digit monitor ID code
.--1 A3...,...I B--.31-c3...,...I o__,311 A2I s2i c2i 0211 Al I sil c1I0111....-Ao 1 s__,.oi-co 1 o......,o I

digit 3 digit 2 digit 1 digit 0

Figure 8. 7 XGA Monitor ID Code

330

POP
RET

SPRITE AT
P CODE

OS

ENDP
ENDS

Turning Off the Sprite

Chapter Nine

Restore caller's DS

At times the software needs to erase the sprite image from the video display.
This is achieved by clearing bit O of the Sprite Control register at offset 36H.
The following procedure turns off the sprite:

·** ,
processing operations for erasing the sprite

·** ,
P CODE SEGMENT PUBLIC

ASSUME CS:P CODE
.386
SPRITE OFF PROC FAR
; Sprite is turned off by clearing bit O of the Sprite Control
; register at offset 36H
;**********************I

save caller's OS
; set OS to XGA_DIRECT I
;**********************I

PUSH DS
MOV
MOV
ASSUME

AX,XGA_DIRECT
DS,AX
DS:XGA DIRECT

Local data segment
to DS

MOV DX,XGA_REG_BASE Register base
ADD DX,OAH To Index register

Sprite Control register offset is 36H
MOV AH,O Value to start re~ister
MOV AL,36H Address of Start register
OUT DX,AX Write data
POP DS Restore caller's OS
RET

SPRITE OFF
P CODE

ENDP
ENDS

XGA Drivers and Primitives

ADD DX,OAH ; To Index register
Index register 30H is Sprite x Start LOW register

MOV AH,BL Value to start register
MOV AL,30H Address of Start x Low
OUT DX,AX

MOV DX,XGA_REG BASE
ADD DX,OAH

Index register 31H is Sprite
MOV AH,BH
MOV AL, 31H

Write data

Register base
To Index register

x Start HIGH register
Value to start register
Address of Start register

OUT DX,AX Write data
Set Sprite x Preset register to 0

MOV DX,XGA_REG_BASE; Register base
ADD DX,OAH To Index register

Index register 32H is Sprite x Preset register
MOV AH,00 Value to preset register
MOV AL,32H Address of Start register
OUT DX,AX

Select y coordinate registers
MOV DX,XGA_REG_BASE
ADD DX,OAH

Index register 33H is Sprite
MOV AH,CL
MOV AL,33H
OUT DX,AX

MOV DX,XGA_REG BASE
ADD DX,OAH

Index register 34H is Sprite
MOV AH,CH
MOV AL,34H

Write data

Register base
To index register

y Start LOW register
Value to start register
Address of Start x Low
Write data

Register base
To Index register

y Start HIGH register
Value to start register
Address of Start register

OUT DX,AX Write data
Set Sprite y Preset register to 0

MOV DX,XGA_REG_BASE; Register base
ADD DX,OAH To Index register

Index register 35H is Sprite x Preset register
MOV AH,00 Value to preset register
MOV AL,35H Address of Start register
OUT DX,AX Write data

;**********************I
display sprite

;**********************I
Sprite is displayed by setting bit O of the Sprite Control
register at offset 36H

MOV DX,XGA_REG_BASE; Register base
ADD DX,OAH ; To Index register

Sprite control register offset is 36H
MOV AH,01 Value to start register
MOV AL,36H Address of Start register
OUT DX,AX Write data

329

328

OUT DX,AX
INC SI
INC SI
LOOP SPRITE DATA
POP BP
RET

SPRITE IMAGE ENDP
P CODE ENDS

9.8.4 Sprite Manipulations

Send to data port
Bump data pointer
to next word
Repeat 512 times
Restore caller's BP

Chapter Nine

Sprite display operations consist of turning on the sprite image at a predeter­
mined screen address and of erasing the sprite. Note that when the sprite is
turned on at a new position, the old sprite image is automatically erased by the
hardware without disturbing the underlying screen pixels. Therefore moving
the sprite on the XGA screen does not require erasing the existing sprite image
or saving the underlying pixels.

Turning On the Sprite

As previously mentioned, if the low-order bit of the Sprite Control register is
set, the sprite image is displayed on the video screen. The position at which it
is displayed is determined by the setting of the Sprite Horizontal Start and
Vertical Start registers. The following procedure can be used to display a
previously loaded sprite image at a screen location supplied by the caller:

·** ,
processing operations for displaying the sprite

·** ,
P CODE SEGMENT PUBLIC

ASSUME CS:P CODE
.386

SPRITE AT PROC FAR
Display a previously loaded sprite image at coordinates
furnished by the caller
On entry:

BX= x coordinate of sprite location
CX = y coordinate of sprite location

Screen range is according to active mode
Sprite preset values are 0

;**********************!
save caller's DS

; set DS to XGA_DIRECT I
;**********************I

PUSH DS
MOV
MOV
ASSUME
MOV

AX,XGA_DIRECT
DS,AX
DS:XGA DIRECT
DX,XGA_REG_BASE

Local data segment
to DS

Register base

XGA Drivers and Primitives

OUT DX,AX

MOV DX,BP
ADD DX,0AH

Index register 3CH is
MOV A:r.,,3CH
MOV AH, [SI]
INC SI
OUT DX,AX

MOV DX,BP
ADD DX,0AH

Index register 3DH is
MOV AL,3DH
MOV AH, [SI]
INC SI
OUT DX,AX

Write data

Register base
To Index register

Sprite Color 1, green value
Sprite register
Data from caller's buffer
Bump pointer to next byte
Write data

Register base
To Index register

Sprite Color 1, blue value
Sprite register
Data from caller's buffer
Bump pointer to next byte
Write data

;**********************I
load sprite image

;**********************I
; First set the Sprite Index registers to 0

MOV DX,BP ; Register base
ADD DX,0AH ; To index register

Index register 60H is Sprite/Palette index Low
MOV AX,0060H 00 to register at offset 60H
OUT DX,AX Write data

Reset to base
MOV DX,BP Register base
ADD DX,0AH To Index register

Index register 61H is Sprite/Palette index High
MOV AX,0061H 00 to register at offset 60H
OUT DX,AX Write data

Select the Sprite Data register at offset 6AH
MOV DX,BP Register base
ADD DX,0AH To Index register
MOV AL,06AH Offset of data register

327

OUT DX,AL Select the Sprite Data register
;**********************I

load sprite image
;**********************I

DS:SI => buffer area containing the sprite bit-mapped image in
2-bits-per-pixel format, as follows:
00 sprite color 0
01 sprite color 1
10 transparent pixel
11 complement pixel

MOV CX,512 Word item counter
SPRITE DATA:

MOV
ADD
MOV

DX,BP
DX,0CH
AX, [SI]

Register base
To second data register
Get data from buffer

326

;**********************I
save caller's OS

; set OS to XGA_DIRECT I
;**********************I

PUSH BP
PUSH OS

Chapter Nine

Save caller's base pointer

MOV AX,XGA_ DIRECT Local data segment
to OS MOV DS,AX

ASSUME DS:XGA DIRECT
MOV DX,XGA_REG_BASE XGA register base address

Store in BP MOV BP,DX
POP OS

;**********************I
; set sprite color 0
;**********************!

Restore caller's OS

Load Sprite Color O registers using values in parameter block
supplied by caller (DS:SI}

MOV DX,BP
ADD DX, OAH

Index register 38H is
MOV AL,38H
MOV AH, [SI)
INC SI
OUT DX,AX

MOV DX,BP
ADD DX,OAH

Index register 39H is
MOV AL,39H
MOV AH, [SI)
INC SI
OUT DX,AX

MOV DX,BP
ADD DX,OAH

Index register 3AH is
MOV AL, 3AH
MOV AH, [SI)
INC SI
OUT DX,AX

;**********************I
; set sprite color 1
;**********************I

Sprite

; Register base
; To Index register

Color 0, red value
Sprite register
Data from caller's buffer
Bump pointer to next byte
Write data

Register base
To Index register

Sprite Color O, green value
Sprite register
Data from caller's buffer
Bump pointer to next byte
Write data

Register base
To Index register

Sprite Color 0, blue value
Sprite register
Data from caller's buffer
Bump pointer to next byte
Write data

; Load Sprite Color 1 registers to GREEN
MOV DX,BP
ADD DX,OAH

Index register 3BH is
MOV AL,3BH
MOV AH, [SI)
INC SI

; Register base
; To Index register

Sprite Color 1, red value
Sprite register
Data from caller's buffer
Bump pointer to next byte

XGA Drivers and Primitives

DATA SEGMENT
;**********************I

sprite data
;**********************I

The 64-by-64 pixel sprite is defined at 64 lines of 4
doublewords per line

First 6 bits of the sprite color are significant

325

In this example color number 0 is bright red and color number 1
is bright white

SPRITE MAP 0 DB 11111100B
0

Red for color 0
DB
DB
DB

0
11111100B

Green for color 0
Blue for color 0
Red for color 1

DB 11111100B Green for color 1
DB 11111100B Blue for color 1

The 64-by-64 pixel sprite is defined as 64 lines of 4
doublewords per line, encoded as follows:
OOH 00 00 00 00 B 4 pixels in sprite color 0
SSH 01 01 01 01 B 4 pixels in sprite color 1
AAH 10 10 10 10 B 4 transparent pixels
FFH 11 11 11 11 B 4 pixels in one's complement of image

DD 256 DUP (00SSAAFFH)
DATA ENDS

The following procedure can be called by an application to load a
sprite image formatted as shown in the previous code fragment.

;**
processing operations for loading a sprite image

;**
P CODE SEGMENT PUBLIC

ASSUME CS:P CODE
.386

SPRITE IMAGE PROC FAR
Load sprite image and select color registers
On entry:

DS:SI => caller's sprite image buffer and color buffer

OFFSET
0
1
2
3
4
5
6

1030

formatted as follows:
UNIT CONTENTS
byte 6 low bits are RED for sprite color 0
byte 6 low bits are GREEN for sprite color 0
byte 6 low bits are BLUE for sprite color 0
byte 6 low bits are RED for sprite color 1
byte 6 low bits are GREEN for sprite color 1
byte 6 low bits are BLUE for sprite color 1
16 bytes per 64 rows (1024 bytes) encoding the
sprite image at 2 bits per pixel
end of sprite image

324

10100000-00000101 (A0H-05H) CODES:
00 = sprite color 0
01 = sprite color 1
1 O = transparent

Chapter Nine

11 = complement (not used in example)

• sprite pixel color O
• sprite pixel color 1
□ transparent sprite pixel

Figure 9.13 Sample of Sprite Image Bitmap

9.8.2 Sprite Colors and Attributes

The sprite's attributes are encoded into a 2-bit field. The first two codes refer
to sprite color attributes, the third code defines a transparent attribute, and
the last one defines a one's complement operation. (See Table 9.7.) The sprite
colors O and 1 are determined by the settings in two sets of registers in the
Display Controller group: registers 38H to 3AH select the red, green, and blue
values of sprite color 0, while registers 3BH to 3DH select the same values in
sprite color 1. In this manner, if the first byte in the sprite buffer is encoded
with the value 01010101B, then the first four bits in the sprite are displayed
using the color value for sprite color 1. Figure 9.13 shows how the sprite pixels
are mapped to the binary values stored in the sprite buffer.

In summary, the attribute of each sprite pixel corresponds to the two-bit code
stored in the sprite buffer. Therefore, designing a sprite image is a matter of
installing the red, green, and blue values for each sprite color and then
composing a pixel map using the two-bit values in Table 9.7. The Sprite
Horizontal and Vertical Preset registers can be used to adjust a sprite image
that does not coincide with the top-left comer of the map stored in the sprite
buffer.

9.8.3 Loading the Sprite

Once the sprite map has been composed and stored in an application's memory
variable, the software can proceed to set the Sprite Color registers and load the
image into the sprite buffer. The following code fragment assumes that the
sprite colors and bitmap have been placed in a formatted parameter block. From
this data the sprite color values and image are loaded into the corresponding
Display Controller registers.

For example, the following code fragment shows a sprite image defined in the
application's data area. The sprite data includes the values for both sprite
colors.

XGA Drivers and Primitives 323

9.8.1 The Sprite Image

The sprite image consists of a 64-by-64 pixel bitmap. Each sprite image pixel
can have one of four attributes. The storage structure is in Intel data format
and encoded in 2 bits per pixel. The bit codes for the sprite image are shown in
Table 9.7.

BIT CODE

00
01
10
11

Table 9.7 Sprite Image Bit Codes

ACTION

Pixel displayed i n sprite color 0
Pixel displayed in sprite color 1
Transparent (image pixel is vi sible)
Complement (one ' s complement of i mage pixel
is visible)

The displayed sprite can be smaller than 64-by-64 pixels. In this case the
software controls, by means of the Sprite Horizontal Preset (offset 32H) and
Sprite Vertical Preset registers (offset 35H) in the Display Controller, which
part of the sprite image is displayed. However, the sprite image always extends­
to the full 64-bit length and width of the sprite buffer. Transparent sprite codes
can be used to locate the sprite image within the pixel rectangle defined by the
64-byte sprite buffer. The elements used in controlling the size of the sprite
image are shown in Figure 9.12.

The location of the sprite image within the viewport is determined by the
Sprite Horizontal Start and Sprite Vertical Start registers. Both of these
registers are word-size; however, the valid range of values is limited to O to
2047. The low-order bit in the Sprite Control register (offset 36H) determines
the sprite's visibility. The sprite is displayed when this bit is set and is invisible
if this bit is cleared.

SPRITE BUFFER (64-by-64 pixels)

horizontal
preset

Figure 9.12 Sprite Image Controls

vertical
preset

TRANSPARENT
SPRITE CODES

322 Chapter Nine

0 2 3

2

3

Figure 9.11 XGA Sprite Buffer

The XGA sprite mechanism consists of hardware elements designed to store
and display a small graphics object. The sprite operation is independent of the
video display function. The maximum size of the sprite image is 64-by-64 pixels.
This image is stored in a 32K static RAM chip (which is not part of video
memory) called the sprite buffer. This buffer is used for storing alphanumeric
characters when XGA is in a VGA mode or in its proprietary 132-column text
mode. The main advantage of the XGA sprite is that it does not affect the image
currently displayed; therefore, the XGA programmer need not worry about
preserving the video image as the sprite is moved on the screen. This action can
be best visualized as a transparent overlay that is moved over the picture
without changing it. Figure 9.11 shows the XGA sprite buffer.

The XGA registers related to sprite image display and control are located in
the Indexed Access register group of the Display Controller. Table 9.6 lists the
location and purpose of the sprite-related registers.

Table 9.6 Sprite Registers in the Display Controller

INDEX REGISTER
OFFSET

30H
31H
32H
33H
34H
35H
36H
38H
39H
3AH
3BH
3CH
30H
60H
61H
62H
63H
6AH
6BH

REGISTER NAME

Spr te horizontal start, low part
Spr te horizontal start, high part
Spr te horizontal preset
Spr te vertical start, low part
Spr te vertical start, high part
Spr te vertical preset
Spr te control register
Spr te color 0, red component
Spr te color 0, green component
Spr te color 0, blue component
Spr te color 1, red component
Spr te color 1, green component
Spr te color 1, blue component
Spr te/palette index, low part
Spr te/palette index, high part
Spr te/palette prefetch, low part
Spr te/palette prefetch, high part
Spr te data
Spr te prefetch save (RESERVED)

XGA Drivers and Primitives 321

MOV GS: [+60H] ,ex Write to Operation Dimension 1
register

Then calculate Term E
PUSH DX
ADD DX,DX
SUB DX,CX
MOV SI,DX
POP DX
PUSH ex
MOV CX,DX
ADD cx,cx
MOV DI,CX
POP ex
SUB DX,CX
ADD DX,DX

Save lyl
2 * lyl
- lxl
Store Term E in SI
Restore lyl
and save lxl
IYI to ex
Calculate 2 * IYI
Store Term Kl in DI
Restore lxl from stack
lyl - lxl
times 2

DX Term K2
MOV GS: [+20H],SI
MOV GS: [+24H] ,DI
MOV GS:[+28H],DX

Write to Error Term register
Write to Kl register
Write to K2 register

Bitmap of Pixel Operations register:
byte 3 000010101 line draw write operation
byte 2 0001 source pixel map is map A

byte 1
byte 0

MOV

0001 destination pixel map is map A
l000lrrrr special code for foreground and all l's
00 0 Map mask disabled

00 Drawing mode for all pixels drawn
OCTANT DATA:

0 DX 0 for x in positive direction
o =DY= 0 for yin positive direction

o DZ= 0 for lxl > IYI
EAX,05118000H All bits except octant

BL holds octant bits
OR AL,BL
MOV GS: [+7CH],EAX

RET
COP LINE 2 ENDP
P CODE ENDS

OR-in octant bits
Write to Pixel Operations
register

9.8 Programming The XGA Sprite

Many graphics programs, at both the system and the application levels, must
manipulate some sort of animated screen marker image. A typical example of
a screen marker is a mouse-controlled pointer or icon often used to select from
option boxes or menus. Since the marker image overlays the screen, in previous
graphics systems software had to find ways for saving and restoring the screen
contents as this image was translated over the pixel grid. However, in XGA the
operation of a small screen pointer icon is considerably simplified thanks to a
hardware-supported device called the sprite.

320

;**********************I
calculate octant 0

;**********************I
ex x pixel coordinate
DX y pixel coordinate
SI x pixel coordinate
DI y pixel coordinate

Chapter Nine

of line start
of line start
of line end
of line end

Octant bits in Pixel Operations register as follows:
xxxx x210

111 DZ bit 0 if lxl > lyl
I I DY bit 0 if y is positive (DI DX)

I DX bit 0 if X is positive (SI ex)

BL will hold octant bits
MOV BL,0 Clear octant register
CMP SI,CX Test for DX bit
JGE DX ISOK Go if horizontal line

At this point SI CX, therefore DX bit must be set
OR BL,00000l00B DX bit is now set in BL
XeHG SI,CX Exchange so that CX SI

DX ISOK:
; Now test DX bit condition

eMP DI,DX Test for DY bit
JGE DY ISOK Go if horizontal line

At this point DI DX, therefore DY bit must be set
OR BL,000000l0B DY bit is now set in BL
XCHG DI,DX Exchange so that DX DI

; Now test DX bit condition
DY ISOK:

SUB DI, DX Find I y I
XeHG DX, DI I y I to DX
SUB SI,eX and lxl
XCHG ex, SI Ix I to ex
eMP CX,DX Is lxl > lyl
JG BRZ TERMS Go to leave DZ= 0

At this point lxl > IYI, therefore DZ bit must be set
and lyl must be exchanged with lxl

OR BL,0000000lB Set DZ bit
XeHG CX,DX

;**********************I
Bresenham terms

calculations
;**********************I
BRZ TERMS:

Bresenham terms:

; Exchange

Term E (error) (2 * lyl) - lxl
Term Kl 2 * lyl
Term K2 2 * (I y I - Ix I)

AT this point ex= lxl and DX= lyl
First store lxl in Operations Dimensions register

XGA Drivers and Primitives

Draw line using XGA graphics coprocessor
Code assumes:

1. 1024-by-768 mode in 256 colors
2. The !NIT COP routine has been previously called to

initialize the GS and FS segment registers
On entry:

ex
DX
SI
DI
BL

x pixel coordinate of line start
y pixel coordinate of line start
x pixel coordinate of line end
y pixel coordinate of line end
8-bit color code

;**********************I
test for not busy

;**********************I
CALL COP ROY ; Local routine

; At this point the coprocessor is not busy

;**********************I
prepare to draw

;**********************I
; Draw line accessing coprocessor registers directly

MOV AL,OlH Data value for Map A
MOV GS: [+12H],AL Write to pixel map index
MOV AX,OH Data value for VRAM low
MOV GS: [+14H],AX Write to pix map base address

FS register holds the high-order word of VRAM address. This
value is calculated by the INIT COP routine in this module

MOV AX,FS Data for VRAM high
MOV GS: [+16H],AX ; Write to pix map segment

; address
Code assumes

MOV
MOV
MOV
MOV
MOV

MOV

1024-by-768 pixel mode and Intel format
AX,1023 Value for pix map width
GS: [+lBH],AX Write to width register
AX,767 Value for pix map height
GS: [+lAH],AX Write to height register
AL,3 Select Intel order and

8 bits per pixel
GS: [+lCH] ,AL Write to format register

;**********************!
draw the line

;**********************I
MOV AL,03H ; Select source mix mode
MOV GS: [+48H],AL ; Write to Mix register

Write color (in BL) to Foreground register
MOV GS: [+58H],BL Write to Foreground Color

register

319

Write coordinates of line start point to coprocessor registers
MOV GS: [+78H],CX Write to Destination x Address

register
MOV GS: [+ 7 AH] , DX Write to Destination y Address

register

318 Chapter Nine

The following rules allow normalizing to the first octant any line defined by
its start and end points:
1. If the end x coordinate is smaller than the start x coordinate, set the DX bit

in the Pixel Operations register.
2. If the end y coordinate is smaller than the start y coordinate, set the DY bit

in the Pixel Operations register.
3. If the difference between the y coordinates is greater than or equal to the

difference between the x coordinates, set the DZ bit in the Pixel Operations
register.

4. After the octant bits DX, DY, and DZ are set according to the above rules,
the code can use the unsigned difference between y coordinates (delta y or
Dy) and the unsigned difference betweenx coordinates (deltax or Dx) in the
remaining calculations.

9.7.2 Calculating the Bresenham Terms

Three coprocessor registers are used to encode values that result from applying
Bresenham's algorithm; these are the Bresenham Error Term register (offset
20H), the Bresenham Kl Term register (offset 24H), and the Bresenham K2
Term register (offset 28H).

The Bresenham Kl constant is calculated by the formula:

Term K1 = 2 * Dy

Recall that Dy is the absolute difference between y coordinates, and Dx the
absolute difference between x coordinates. The Bresenham K2 constant is
calculated by the formula:

Term K2 = 2 * (Dy-Ox)

The Bresenham error term is calculated by the formula:

Term E = (2 * Dy) - Dx

The Bresenham terms are entered into the corresponding coprocessor regis­
ters. (See Table 9.2.) The Operation Dimension 1 register (at offset 60H) is
loaded with the value of Dx. The following code procedure shows the necessary
processing for drawing a straight line using the XGA coprocessor:

·** ,
processing operations for a Bresenham line draw

;**
P CODE SEGMENT PUBLIC

ASSUME CS:P CODE
.386
COP LINE 2 PROC FAR

XGA Drivers and Primitives 317

9. 7 Line Drawing Operations

The XGA draws a straight line following a method originally described by J.E.
Bresenham (IBM Systems Journal, 1965) and since known as Bresenham's
algorithm. Bresenham's method is based on the differential equation for the
slope of a straight line, which states that the difference between the y coordi­
nates divided by the difference between the x coordinates is a constant. This
constant, usually called the slope, is conventionally designated by the letter m,
as in the formula:

Dy
m=-­

Dx

where Dy is the difference between they values and Dx the difference between
the x values. Therefore, y can be expressed as a function of x, as follows:

y=mx

Bresenham's algorithm, as implemented on XGA, requires that all parame­
ters be normalized to the first octant (octant number 0). Figure 9.10 shows the
octant numbering in the cartesian plane.

First
octant

Figure 9.1 O XGA Numbering of Cartesian Octants

9. 7.1 Reduction to the First Octant

The octant is selected by the octant field bits in the Pixel Operations register.
The 1-bit values designated DX, DY, and DZ have the following meaning:
1. DX encodes the direction of the x values in reference to the line's start point.

DX = 0 if x is in the positive direction, and DX = 1 if it is in the negative
direction.

2. DY encodes the direction of they values in reference to the line's start point.
DY = 0 if y is in the positive direction and DY = 1 if it is in the negative
direction.

3. DZ encodes the relation between the absolute value of the x and y coordi­
nates. DZ= 0 if Ix I > IY I, and DZ= 1 otherwise.

316

byte 2

byte 1

byte 0

ss = foreground source
*00 = foreground color

10 = source pixel map
pppp = function

0010 draw and step read
0011 line draw read
0100 draw and step write
0101 line draw write

*1000 pixBlt
1001 inverting pixBlt
1010 area fill pixBlt

BYTE 3 = 00001000B 08H
SSSSIDDDD (*=values for this operation}

SSSS = source pixel map
0001 pixel map A

*0010 = pixel map B
0011 = pixel map C

DODD= destination pixel map
*0001 pixel map A

0010 = pixel map B
0011 = pixel map C

BYTE 2 = 00100001B = 21H
PPPPIOOOO (*=values for this operation}

PPPP = pattern pixel map
0001 pixel map A

*0010 pixel map B
0011 pixel map C
1000 foreground (fixed}
1001 generated from source

BYTE 1 = 00100000B = 20H
mmOOIOoox (*=values for this operation}

mm= mask pixel map
*00 mask map disabled

01 = boundary enabled
10 = mask map enabled

Chapter Nine

oox = octant bits (x = don't care}
*00 start at top left and move

right and down
10 start at top right and move

left and down
01

11

start at bottom left and move
right and up
start at bottom right and move
left and up
00000000B = OOH

MOV
MOV

BYTE 0
EAX,008212000H
GS: [+7CH], EAX

Value from bitmap
Write to Pixel Operations
register

RET
COP PATBLT
P CODE

ENDP
ENDS

XGA Drivers and Primitives

Dimensions of source map are in CX and DX registers
DEC ex
DEC DX
MOV GS: [+18H),CX ; Write to width register
MOV GS: [+lAH),DX ; Write to height register

Bitmap of pixel format register:
7 6 5 4 3 2 1 0 <= bits
I I I I I I I I ___ pixel image size (*=selected value)
I I I I I *000 1 bit per pixel
I I I I I 001 2 bits per pixel
I I I I I 010 4 bits per pixel
I I I I I 011 8 bits per pixel
I I I I I ____ format control
I I I I *l Motorola order
I I I I 0 = Intel order
I I I ! _______________ RESERVED

MOV AL,08H Select Motorola order and
1 bit per pixel

MOV GS: [+lCH) ,AL
;**********************I

select mix mode
;**********************I

MOV
MOV

AL,03H
GS: [+48H) ,AL

;**********************I
store color

;**********************I

Write to format register

Select source mix mode
Write to Mix register

; Write color (in BL) to Foreground register
MOV GS: [+58HJ,BL Write to Foreground Color

; register
Write coordinates of source and destination
Source coordinate are 0,0, destination coordinates are in SI
and DI

MOV AX,0 Source coordinates
MOV GS: [+74H) ,AX Write to Source x Address
MOV GS : [+ 7 6H J , AX Write to Source y Address

315

MOV GS: [+78H) ,SI Write to Destination X Address
MOV GS:[+7AH],DI Write to Destination y Address

Store width in Operations Dimension 1 register
MOV GS: [+60Hl,CX ; Write to Operation Dimension 1

Store height in Operations Dimension 2 register
MOV GS: [+62H),DX ; Write to Operation Dimension 2

;**********************I
setup pix operation I

registers I
;**********************I

Bitmap of Pixel Operations register for pixBlt operation:
byte 3 = bbsslpppp (*=values for this operation)

bb = background source
*00 background color

10 = source pixel map

314 Chapter Nine

CALL COP ROY ; Local routine
; At this point the coprocessor is not busy
;**********************I
; map A is destination I

(video memory) I
;**********************I

PUSH AX Bitmap offset to stack
MOV AL,OlH Data value for Map A
MOV GS: [+12H),AL Write to pixel map index
MOV AX,OH Data value for VRAM low
MOV GS: [+14HJ,AX Write to pix map base address

FS register holds the high-order word of VRAM address. This
value is calculated by the INIT COP routine in this module

MOV AX,FS Data for VRAM high
MOV GS: [+16H),AX ; Write to pix map segment

; address
Destination map is 1024-by-768 pixel mode and Intel format

MOV AX,1023 Value for pix map width
MOV GS: [+18H),AX Write to width register
MOV AX,767 Value for pix map height
MOV GS: [+lAH),AX Write to height register

Bitmap of pixel format register:
7 6 5

I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I

4 3 2 1 0 <= bits

I I I I I
I I
I I
I I
I I
I I
I
I
I

pixel image size (* = selected
000 1 bit per pixel
001 2 bits per
010 4 bits per

*011 8 bits per
format control

1 Motorola order
*O = Intel order

pixel
pixel
pixel

RESERVED

value)

MOV AL,3 Select Intel order and 3bbp

per pixel
MOV GS: [+lCH) ,AL Write to format register

;**********************I
map Bis source
(system memory)

;**********************!
MOV
MOV

AL,02
GS: [+12H) ,AL

AX offset of source bitmap
OS segment of source bitmap

; Data value for Map B
; Write to pixel map index

(in stack)

To convert logical address to physical address, the segment
value is shifted left 4 bits and the offset added

MOV EAX,O Clear 32 bits
MOV AX,DS Segment to AX
SHL EAX,4 Shift segment 4 bits
POP BP Offset to BP
ADD
MOV

AX,BP
GS: [+14H) ,EAX

Add offset to segment
Write to pix map base address

XGA Drivers and Primitives 313

9.6.3 Pattern Map bitBlt

Bitmaps encoded in color depths of 8 bits per pixel or higher take up consider­
able memory. For example, a 600-by-600 pixel image would require 360,000
bytes of system memory storage. This is more than half of the transient memory
space available for MS-DOS applications. Furthermore, any data structure
larger than 64K exceeds the capacity of a single segment register and, therefore,
creates storage complications for some software. Regarding full-color images
there is little that can be done to reduce the storage requirements at execution
time. However, it would be a considerable waste to encode in full-color depth
the bitmap of an image to be displayed in a single color.

The XGA coprocessor supports the display of monochrome images encoded in
a one bit-per-pixel format on a destination of greater color depth. This opera­
tion, called a pattern map bitBlt, is based on displaying the source bitmap using
the current foreground color, as stored in the coprocessors's Foreground Color
register at offset 58H.

In this pixBlt mode the foreground source and the background source colors
are both selected (code 00) in byte 3 of the Pixel Operations register at offset
7CH. Also the Pattern x Address and Pattern y Address registers at offset 7 4H
and 76H are used instead of the Source x Address and Source y Address
registers, as is the case in the full color depth pixBlt procedure listed earlier in
this section. The following procedure shows the required processing:

·** ,
processing operations for a pattern map bitBlt

·** ,
P CODE SEGMENT PUBLIC

ASSUME CS:P CODE
.386

COP PATBLT PROC FAR
Use graphics coprocessor to perform a pixBlt from a source in
system memory to a destination in video memory
Image map is encoded in 1 bit per pixel (pattern map)
Code assumes:

1. 1024-by-768 mode in 256 colors
2. The INIT_COP routine has been previously called to

initialize the GS and FS segment registers
3. Image bitmap is 1 bit per pixel

On entry:
DS:SI = offset of source bitmap in RAM
CX source map pixel width
DX source map pixel height
SI x coordinate of video image
DI y coordinate of video image
BL 8-bit color code to use in displaying image

;**********************!
test for not busy

;**********************I

312

byte 2

byte 1

byte 0

pppp

00 = foreground color
*10 = source pixel map

= function
0010 draw and step read
0011 line draw read
0100 draw and step write
0101 line draw write

*1000 pixBlt
1001 inverting pixBlt
1010 area fill pixBlt

BYTE 3 = 00001000B 28H
SSSSIDDDD (*=values for this operation)

SSSS = source pixel map
0001 pixel map A

*0010 = pixel map B
0011 = pixel map C

DODD= destination pixel map
*0001 pixel map A

0010 = pixel map B
0011 = pixel map C

BYTE 2 = 00100001B = 21H
PPPPIOOOO (*=values for this operation)

PPPP = pattern pixel map
0001 pixel map A

0010 pixel map B
0011 pixel map C

*1000 foreground (fixed)
1001 generated from source

BYTE 1 = 00100000B = 80H
mmOOIOoox (*=values for this operation)

mm= mask pixel map
*00 mask map disabled

01 = boundary enabled
10 = mask map enabled

Chapter Nine

oox = octant bits (x = don't care)
*00 start at top left and move

right and down
10 start at top right and move

left and down
start at bottom left and move
right and up
start at bottom right and move
left and up
00000000B = OOH

MOV
MOV

01

11

BYTE 0
EAX,028218000H
GS: [+7CH], EAX

Value from bitmap
Write to Pixel Operations
register

RET
COP SYSVID
P CODE

ENDP
ENDS

XGA Drivers and Primitives 311

AX= offset of source bitmap (in stack}
ES= segment of source bitmap
To convert logical address to physical address the segment
value is shifted left 4 bits and the offset added

MOV EAX,0 Clear 32 bits
MOV AX,ES
SHL EAX, 4
POP BP
ADD AX,BP
MOV GS: [+14H), EAX

Dimensions of source map are
DEC ex
DEC DX
MOV GS: [+18HJ ,ex
MOV GS: [+lAH) ,DX
MOV AL,0BH

MOV GS: [+lCHJ ,AL

;**********************I

select mix mode
;**********************I

MOV
MOV

AL,03H
GS: [+48HJ ,AL

;**********************I

; coordinates of sourcel
and destination I

;**********************I

Segment to AX
Shift segment 4 bits
Offset to BP
Add offset to segment
Write to pix map base address

in ex and DX registers

Write to width register
Write to height register
Select Motorola order and
8 bits per pixel
Write to format register

Select source mix mode
Write to Mix register

Source coordinate are 0,0, destination coordinates are in SI
; and DI

MOV AX, 0 Source coordinates
MOV GS: [+70HJ ,AX Write to Source x Address
MOV GS: [+72H) ,AX Write to Source y Address
MOV GS:[+78H),SI Write to Destination X Address
MOV GS: [+7AH) ,DI Write to Destination y Address

Store width in Operations
MOV GS: [+60HJ ,ex

Store height in Operations
MOV GS: [+62H) ,DX

;**********************I
setup pix operation I

registers I
;**********************I

Dimension 1 register
; Write to Operation Dimension

Dimension 2 register
i Write to Operation Dimension

Bitmap of Pixel Operations register for pixBlt operation:
byte 3 = bbsslpppp (*=values for this operation}

bb = background source
*00 = background color

10 = source pixel map
ss = foreground source

1

2

310 Chapter Nine

COP SYSVID PROC FAR
Use graphics coprocessor to perform a pixBlt from a source in
system memory to a destination in video memory
Image map is encoded in 8 bits-per-pixel format
XGA mode is number 2, also in 8-bits-per-pixel
Code assumes:

1. XGA mode 2, 1024-by-768 mode in 256 colors
2. The INIT_COP routine has been previously called to

initialize the GS and FS segment registers
3. Image bitmap is 8 bits per pixel

On entry:
DS:SI = offset of source bitmap in RAM
CX source map pixel width
DX source map pixel height
SI x coordinate of video image
DI y coordinate of video image

;**********************I
test for not busy

;**********************I
CALL COP ROY ; Local routine

; At this point the coprocessor is not busy
;**********************I
; map A is destination I

(video memory} I
;**********************I

PUSH AX Bitmap offset to stack
MOV AL,0lH Data value for Map A
MOV GS: [+12H),AL Write to pixel map index
MOV AX,0H Data value for VRAM low
MOV GS: [+14HJ,AX Write to pix map base address

FS register holds the high-order word of VRAM address. This
value is calculated by the INIT COP routine in this module

MOV AX,FS Data for VRAM high
MOV GS: [+16HJ,AX ; Write to pix map segment

; address
Destination

MOV
MOV
MOV
MOV
MOV

MOV

map is 1024-by-768 pixel mode and Intel format
AX,1023 Value for pix map width
GS: [+18H),AX Write to width register
AX,767 Value for pix map height
GS: [+lAHJ,AX Write to height register
AL,3 Select Intel order and

8 bits per pixel
GS: [+lCH) ,AL Write to format register

;**********************I
map Bis source
(system memory}

;**********************I
; Note that entry location of map is by the ES segment register

MOV AL,02 Data value for Map B
MOV GS: [+12H),AL Write to pixel map index

XGA Drivers and Primitives

ex
DX
SI
DI
BL

512
384
100

80
00001100B

309

then an 100-by-80 pixel rectangle is drawn with its left-top comer at the center
of the screen. If the default palette is active, the color of the rectangle is bright
red.

Notice, in the previous example, that the direction octant bits in byte O of the
Pixel Operations register determine the direction in which the pixBlt takes
place. For performing a nonoverlapping pixBlt the direction octant bits are
normally set to 0. However, if the source and destination rectangles overlap,
the direction octant bits must be used in order to avoid pixel corruption. Table
9.5 shows the action of the direction octant bits in pixBlt operations. These bits
are interpreted differently during the coprocessor line draw functions.

Table 9.5 Direction Octant Bits During PixB/t

VALUE
oox
lOx
Olx
llx

x - dont't care

ACTION

From top left to bottom right
From top right to bottom left
From bottom left to top right
From bottom right to top left

The procedure named COP _RECT_2 can be used to perform a rectangular fill
pixBlt operation.

9.6.2 System Memory to Video Memory PlxBlts

Another frequent use of the pixBlt operation is to display an image stored in
the application's memory space. In this operation the color depth of the source
and the destination map usually match; that is, if the video mode is 8 bits-per­
pixel, then the image's color depth should also be 8 bits-per-pixel. A mismatch
between the color depth of source and destination can give rise to unpredictable
errors in execution of the pixBlt, or later in the code. The one exception to the
pixel depth match requirement is the use of a 1-bit-per-pixel image, usually
called a pattern map, which is described later in this section. In the following
procedure a bit-mapped image, encoded in 8-bits-per-pixel format, is displayed
while in XGA mode 2:

;**
processing operations for system-to-video bitBlt

;**
P CODE SEGMENT PUBLIC

ASSUME CS:P CODE
.386

308

byte 2

byte 1

byte 0

0010 draw and step read
0011 line draw read
0100 draw and step write
0101 line draw write

*1000 pixBlt
1001 inverting pixBlt
1010 area fill pixBlt

BYTE 3 = 00001000B 08H
SSSSIDDDD (*=values for this operation)

SSSS = source pixel map
*0001 pixel map A

0010 = pixel map B
0011 = pixel map C

DODD= destination pixel map
*0001 pixel map A

0010 = pixel map B
0011 = pixel map C

BYTE 2 = 00010001B = llH
PPPPIOOOO (*=values for this operation)

PPPP = pattern pixel map
0001 pixel map A

0010 pixel map B
0011 pixel map C

*1000 foreground (fixed)
1001 generated from source

BYTE 1 = 10000000B = BOH
mmOOIOoox (*=values for this operation)

mm= mask pixel map
*00 = mask map disabled

01 = boundary enabled
10 = mask map enabled

Chapter Nine

oox = octant bits (x = don't care)
*00 start at top left and move

right and down
10 start at top right and move

left and down
01 start at bottom left and move

11

BYTE 0

right and up
start at bottom right and move
left and up
00000000B = OOH

MOV
MOV

EAX,08118000H
GS: [+7CH], EAX

Value from bitmap
Write to Pixel Operations
register

RET
COP RECT 2
P CODE

ENDP
ENDS

IfXGA is initialized to 1024-by-768 pixels in 256 colors, and if on entry to the
procedure COP _RECT_2 (listed above) the CPU is initialized as follows:

XGA Drivers and Primitives

;**********************I
prepare to pixBlt

;**********************!
MOV AL,0lH Data value for Map A
MOV GS: [+12H),AL Write to pixel map index
MOV AX,0H Data value for VRAM low
MOV GS: [+14H),AX Write to pix map base address

FS register holds the high-order word of VRAM address. This
value is calculated by the INIT COP routine in this module

MOV AX,FS Data for VRAM high
MOV GS: [+16H),AX ; Write to pix map segment

; address
Code assumes 1024-by-768 pixel mode and Intel format

MOV AX,1023 Value for pix map width
MOV GS: [+18H),AX Write to width register
MOV AX,767 Value for pix map height
MOV GS: [+lAH],AX Write to height register
MOV AL,3 Select Intel order and 8 bits

per pixel
MOV GS: [+lCH] ,AL Write to format register

;**********************!
perform pixBlt

;**********************/
MOV
MOV

Write color
MOV

AL,03H ; Select source mix mode
GS: [+48H),AL ; Write to Mix register

(in BL) to Foreground color register
GS: [+58H),BL ; Write to Foreground color

; register
Write coordinates of rectangle's start point to coprocessor
registers

307

MOV GS: [+78H),CX Write to Destination x Address
register

MOV GS: [+ 7 AH J , DX Write to Destination y Address
register

Store width in Operations Dimension 1 register
MOV GS: [+60H],SI ; Write to Operation Dimension 1

Store height in Operations Dimension 2 register
MOV GS: [+62H),DI ; Write to Operation Dimension 2

;**********************!
setup pix operation I

registers I
;**********************!

Bitmap of Pixel Operations register for pixBlt operation:
byte 3 = bbsslpppp (*=values for this operation)

bb = background source
*00 = fixed register pixBlt

10 = VRAM to VRAM pixBlt
ss = foreground source

*00 = fixed register pixBlt
10 = VRAM to VRAM pixBlt

pppp = function

306 Chapter Nine

The action performed by each field of the Pixel Operations register is ex­
plained in the discussion of the various coprocessor commands contained in the
sections that follow.

9.6 XGA PixBlt Operations

A pixel block transfer operation (called a pixBlt in XGA documentation) consists
of moving rectangular memory blocks from a source area to a destination area.
Both the source and the destination can be system or video memory. The
dimensions of the pixel rectangles are entered into the Operations Dimension
registers: the width into Operations Dimension 1 and the height into Opera­
tions Dimension 2. The pixBlt can be programmed to start at any one of the
four corners of the rectangle. The operation always proceeds in the direction of
the diagonally opposite corner. The direction is entered into the Pixel Opera­
tions register at offset 7CH.

9.6.1 Rectangular Fill pixBlt

Perhaps the simplest pixBlt operation is filling a rectangular screen area using
the Foreground Color register as source data. The following procedure shows
the coprocessor commands necessary to perform this form of pixBlt:

·** ,
processing operations for rectangular pixBlt

·** ,
P CODE SEGMENT PUBLIC

ASSUME CS:P CODE
.386

COP RECT 2 PROC FAR
Use graphics coprocessor to perform a pixBlt operation
on a rectangular screen area
Code assumes:

1. 1024-by-768 mode in 256 colors (mode number 2)
2. The !NIT COP routine has been previously called to

initialize the GS and FS segment registers
On entry:

ex
DX
SI
DI
BL

x coordinate of top-left corner
y coordinate of top-left corner
width of rectangle, in pixels
height of rectangle, in pixels
8-bit color value according to

;**********************!
test for not busy

;**********************!

current palette

CALL COP ROY ; Local routine
; At this point the coprocessor is not busy

XGA Drivers and Primitives 305

Table 9.4 Coprocessor Logical and Arithmetic Mixes

CODE HEX ACTION

0 OOH Zeros
1 OlH Source AND destination
2 02H Source AND NOT destination
3 03H Source
4 04H NOT source AND destination
5 05H Destination
6 06H Source XOR destination
7 07H Source OR destination
8 08H NOT source AND NOT destination
9 09H Source XOR NOT destination

10 OAH NOT destination
11 OBH Source OR NOT destination
12 OCH Source NOT destination
13 OOH NOT source OR destination
14 OEH NOT source OR NOT destination
15 OFH Ones
16 lOH Maximum
17 llH Minimum
18 12H Add with saturate
19 13H Destination minus source (with saturate)
20 14H Source minus destination (with saturate)
21 15H Average
22 16H

1 Reserved

255 FFH I

Direction Steps register (at offset 2CH). The Pixel Operations register also
defines the flow of data during coprocessor operations. Figure 9.9 is a bitmap
of the Pixel Operations register.

DIRECTION OCTANT
OOX = DZ
OxO = DY
XOO = DX

DRAWING MODE
00 = draw all plxala
01 = draw first pixel NULL
10 = draw last plxal NULL
11 = draw area boundary

MASK MAP CONTROL
00 = mask map dlaablad
01 = mask map boundary enabled
10 = mask map enabled

PATTERN MAP CONTROL .____ __ 0000 = reserved

DESTINATION
0001 = plxal map A
0010 = pixel map B
0011 = plxal map C

SOURCE
0001 = plxal map A
0010 = plxal map B
0011 = plxal map C

0001 = plxal map A
0010 = pixel map B
0011 = pixel map C
1000 = loraground fixed
1001 = gm,aratad from source

STEP/OPERATION CONTROL
001 0 = draw and slap read

'----------- 0011 = Una draw raad
FOREGROUND SOURCE

'-------00 = foraground colar
1 o = aoun:a pixel map

BACKGROUND SOURCE
00 = background color
10 = source plxal map

0100 = draw and slap write
0101 = line draw write
1000 = r,:n
:~i : ::::'t\lf plxBtt

Figure 9.9 Pixel Operations Register Bitmap

304 Chapter Nine

9.5.5 Pixel Masking and Color Compare Operations

In addition, it is possible to protect individual pixels by masking. The Pixel Bit
Mask register (offset 50H) is used for this purpose. A value of 1 in the Pixel Bit
Mask register enables the corresponding pixel for update, while a value of 0
determines that the pixel is excluded from the update operation. Note that the
Pixel Bit Mask is related to the adopted format. In 8-bits-per-pixel mode, the
Pixel Bit Mask has active the eight low-order bits of the register, while in a 2
bit-per-pixel mode only the lowest two bits are used.

The coprocessor also allows a color compare operation that further inhibits
certain pixel patterns from upgrade. The Destination Color Compare Value
register (offset 4CH) is used for storing the bitmap to be used in the comparison.
As with the Pixel Bit Map register, the number of bits effectively used in the
color compare operation depends on the number of bits per pixel in the adopted
format. Several color compare conditions are allowed. The code for the selected
condition is stored in the Destination Color Compare Condition register (offset
4AH). Table 9.3 lists the condition codes.

Table 9.3 Destination Color Compare Conditions

9.5.6 Mixes

CODE

0
1
2
3
4
5
6
7

BINARY

000
001
010
011
100
101
110
111

CONDITION

Always true (disable update)
Destination= color compare value
Destination= color compare value
Destination= color compare value
Always false (enable update)
Destination= color compare value
Destination= color compare value
Destination= color compare value

In Figure 9.8 we see that the attribute of the destination pixels depends upon
a mix. The mix is a logical or arithmetic operation used in combining the source
and the destination bitmaps. The mix is selected independently for the fore­
ground and the background pixels. (See Figure 9.8.) The foreground mix is
entered into the Foreground Mix register (offset 48H) and the background mix
into the Background Mix register (offset 49H). The actual mix operation is
determined by a mix code. The mix codes and actions are shown in Table 9.4.

The word saturate in Table 9.4 means that if the result of an addition or
subtraction operation is greater than 1, the final result is left at 1, while ifit is
smaller than 0, it is left at 0.

9.5.7 Pixel Operations

The coprocessor starts executing the programmed operation when data is
written to the Pixel Operations register (offset 7CH). The one exception to this
statement is the draw-and-step command which is initiated by writing to the

XGA Drivers and Primitives 303

DESTINATION MAP
y offset

x offset

Figure 9. 7 Mask Map x and y Offset

9.5.4 Pixel Attributes

The coprocessor generates a pixel with specific attributes by combining the
source, pattern, and destination according to a certain mix mode. The pattern
pixel map, if used, serves as a filter to determine if a bit corresponds to a
foreground or a background pixel. A value of 1 in the pattern pixel map
determines that the bit is mapped to a foreground pixel; a value of O determines
that the bit is mapped to a background pixel. If no pattern map is used, then
the foreground and background sources can be a specific color or determined
by the color encoding stored in a source map. If the foreground source is a
specific color, it is stored at the Foreground Color register at offset 58H. The
background color is stored at the register at offset 5CH. The elements that take
part in determining a pixel's attributes are shown in Figure 9.8.

SOURCE MIX FOREGROUND
PIXELS

. .

BACKGROUND
PIXELS
~

•◄

: T

Figure 9.8 Determining the Pixel Attribute

302 Chapter Nine

of video memory is entered in the Pixel Map n Base Pointer register and the
actual position within the video display is determined by the x andy coordinates
entered in the Destination Map x Coordinate and Destination Map y Coordinate
registers . On the other hand, if the pixel map is within the application's address
space, the offset is usually 0. This value signals the start of the pixel map as
the reference position; however, the coordinates can be changed to indicate
another position within the defined rectangle.

The masking mode is selected by a two-bit field in the Pixel Operations
register. The difference between the Mask Map Enabled and the Boundary
Enabled modes can be seen in Figure 9.6.

Coordinate registers for source and pattern pixel maps are located at offset
70H and 7 4H. (See Table 9.2.) However, there are nox andy coordinate registers
for the mask map, because its origin is assumed to coincide with that of the
destination map. Nevertheless, if the mask map is smaller than the destination
map, it becomes necessary to locate the mask map within the destination map.
This is done by means of the Mask Map Origin x Offset and the Mask Map
Originy Offset registers at offset 6CH and 6EH, respectively. The use of these
mask map offset values is shown in Figure 9.7.

DESTINATION MAP

MASK MAP

MASK MAP BOUNDARY ENABLED

DESTINATION MAP

MAP MASK ENABLED

Figure 9.6 XGA Mask Map Operations

Mask
boundary

Mask bit= 1

Mask bit= 0

XGA Drivers and Primitives 301

2. In an operation that consists of reading video data into system memory the
source is a video memory map and the destination a location in the applica­
tion's memory space.

3. An operation that copies a video image into another screen area has both
source and destination in video memory.

4. The coprocessor can also copy an area of user memory into another one. In
this case both source and destination maps are located in the application's
memory space.

5. A pattern map is used to encode a 1-bit-per-pixel image. In this case a value
of 1 indicates a foreground pixel and a value of O a background pixel. In this
type of pixBlt the pattern map is the source map and the destination map is
in video memory.

Several forms of pixBlt operations using the general-purpose maps A, B, and
C are illustrated in the code samples listed later in this section.

9.5.3 The Mask Map

The mask map is an additional type of pixel map closely related to the
destination map. The notion of masked bitBlt operations was also mentioned
in Chapter 7 regarding VGA mode X programming.

The mask map, also called Map M, is used to protect the destination map on
a pixel-by-pixel basis. In contrast with the some of the other general-purpose
maps, the mask map is always fixed to a 1 bit-per-pixel ratio. A O bit in the
mask map (inactive mask) protects the corresponding destination pixel from
update, while a 1 bit allows the pixel's normal update. The x andy dimensions
of the mask map can be equal to or less than the corresponding coordinates in
the destination map. If the mask map and destination map have the same
dimensions, then masking is a simple bit-to-pixel relation. If the mask map is
smaller than the destination map, then a scissoring operation is performed. In
this respect the mask map action can be in one of three modes, as follows:
1. Mask Map Disabled. In this mode the mask map is ignored.
2. Mask Map Boundary Enabled. In this mode the mask map performs an

outline scissoring action similar to a rectangular window. The actual con­
tents of the mask map are ignored in this mode.

3. Mask Map Enabled. In this mode the mask map's border acts as a scissoring
rectangle, and at the same time its contents provide a pixel by pixel masking
operation.

Notice that the action of a mask map in the Boundary Enabled mode is
identical to that of a mask map of all 1 bits. The difference is that the Boundary
Enabled mask map consumes no memory, while a normal mask map can take
up as much as 94K in 1024-by-768 pixels resolution.

In addition to the map address, the program can define the pixel map's x and
y coordinates. These value can be interpreted as offsets within the map. For
example, if the destination pixel map is the video screen, the physical address

300 Chapter Nine

1. The Pixel Map n Base Pointer register (at offset 14H) contains the map's
start address.

2. The Pixel Map n Width register (at offset 18H) determines the horizontal
dimension of the pixel map and the Pixel Map n Height register (at offset
lAH) determines its vertical dimension. The values loaded into these regis­
ters must be one less than the required size.

3. The Pixel Map Format register (at offset lCH) determines if the map is in
1, 2, 4, or 8 bits per pixel in the original XGA and up to 16 bits per pixel in
XGA-2, and also whether it is encoded in Intel or Motorola data format.

4. The Pixel Map Index register (at offset 12H) is used to determine if the mask
map is of type A, B, C, or M. The different mask map types are explained
later in this section.

The x andy coordinates of a pixel map are based on the same convention used
for the video display; that is, the top-left comer of the pixel map has coordinates
x = 0, y = 0. The value of x increases to the right and the value of y increases
downward. The pixel map coordinate system conventions and dimensions are
shown in Figure 9.5.

origin
x=O
y=O

Increasing x

PIXEL MAP

Figure 9.5 XGA Pixel Map Coordinates

x::4096
y:4096

In relation to the coprocessor operation a pixel map can represent a source, a
destination, or a pattern. The following cases illustrate common bitBlt opera­
tions:
1. In displaying a bitmap stored in the applications address space the source

map is the application's data, and the destination map is a location in video
memory.

XGA Drivers and Primitives 299

bit is set, then the code can proceed with the next coprocessor operation. At this
time the code must write a one to bit number 7 in order to clear the interrupt
condition so that the next interrupt can take place.

Since polling the busy bit is easier to implement in software, this is the method
illustrated in this section. The main objection to polling for hardware not busy
is that it slows down operations since the coprocessor must delay execution to
read its own Control register. This can be partially overcome by designing
routines that include a delay loop so that the coprocessor is not polled con­
stantly. The following procedure polls bit 7 of the coprocessor Control register
to test for a not-busy condition. The COP _RDY procedure is usually called by
other graphics primitives before emitting a new coprocessor command. The
delay period in the wait loop is an arbitrary value.

COP RDY PROC NEAR
Poll bit 7 of coprocessor Control register (offset llH) to
determine if coprocessor is busy, if so, wait until ready
Code assumes that GS segment holds coprocessor base address

PUSH AX
PUSH ex

TEST COP:
MOV AL,GS: [+llH]
TEST AL,l0000000B
JZ COP READY
MOV CX,100

; A 100-iteration wait loop
; is not polled constantly,
WAIT 100:

NOP
NOP
LOOP
JMP

COP READY:
POP

WAIT 100
TEST COP

ex
POP AX
RET

COP RDY ENDP

; Save context

Read Control register
Test bit 7
Go if bit is clear
Counter for wait loop

is introduced so that the coprocessor
thus slowing down execution

Delay

Wait
Test again after wait

Restore context

9.5.2 General-Purpose Maps A, B, and C

The XGA graphics coprocessor can operate on three general-purpose pixel
maps, designated as Map A, Map B, and Map C in the IBM literature. The
identification letters A, B, and C are sometimes generically represented by the
variable n, as is the case in the Pixel Map n Base Pointer designation used in
Table 9.2. Note that, in actual coding, Map n is either Map A, Map B, or Map
C. Pixel maps can be located in system or in video memory. The maximum size
of a map is 4096-by-4096 pixels.

The following coprocessor registers are related to pixel maps:

298 Chapter Nine

At this point the coprocessor is ready for use. The procedure INIT_COP in the
XGA4 module of the VIDEO.LIB uses similar processing to initialize the
coprocessor. The programmer must consider that, if this initialization method
is used, the software must make sure that the 80386 segment registers FS and
GS are preserved, since their contents are repeatedly required in setting up and
performing coprocessor operations.

9.5 Programming Coprocessor Operations

The XGA graphics coprocessor can execute drawing operations in parallel with
the CPU. The original XGA coprocessor can execute in 1-, 2-, 4-, and 8-
bits-per-pixel formats, but not in the direct color mode. However, in XGA-2 the
coprocessor is also available in the direct color mode. The execution of a
coprocessor operation requires the following steps:
1. The CPU initializes the coprocessor registers to be used in the operation.
2. Coprocessor operation starts when the CPU writes a command to the Pixel

Operations register.
3. The coprocessor executes the programmed operation. During this time the

system microprocessor can be performing other tasks.
The graphics functions that can be performed by the coprocessor are pixel

block transfer (abbreviated pixBlt), line draw, and draw-and-step.
The programmer can set up the coprocessor so that it generates an interrupt

at the conclusion of its operations. This mechanism can be used in optimizing
parallel processing, in task switching in a multitasking environment, in error
recovery, in figure animation, and in synchronizing coprocessor access. The
coprocessor Operation Complete interrupt is enabled by setting bit 7 of the
Interrupt Enable register of the Display Controller group. The interrupt source
is identified by testing the corresponding bit in the Interrupt Status register of
the Display Controller group. Note that this bit is set if an interrupt occurred,
regardless of the setting of the Interrupt Enable register.

9.5.1 Synchronizing Coprocessor Access

Since the coprocessor operates asynchronously regarding the CPU, the central
processor must wait until the coprocessor has concluded its previous operation
before issuing a new command. This can be performed in two ways: by enabling
the Coprocessor Operation Complete interrupt described in the previous para­
graph or by polling the busy bit in the coprocessor Control register. Both
methods are quite feasible, each having its advantages and disadvantages.

An XGA interrupt handler for testing the conclusion of coprocessor operation
(or any other XGA interrupt for that matter) is designed to intercept vector
OAH, which corresponds to the IRQ2 line of the system's Interrupt Controller.
Since this interrupt can be shared, the handler must first make sure that the
interrupt was caused by the coprocessor. This requires testing bit 7 of the
Interrupt Status register (at offset 05H). If the Coprocessor Operation Complete

XGA Drivers and Primitives 297

Mode register of the XGA Display Controller (offset+ 9)
MOV DX,XGA_REG_BASE Register base
ADD DX,9 To Mode register
MOV AL,03H 7 6 5 4 3 2 1 0 <= bitmap

I I I I I I I I Bits/pixel
I I I I I 1_1_1_ 000 1 bit
I I I I I 001 2 bits
I I I I I 010 4 bits
I I I I I *011 8 bits
I I I I I 100 16 bits
I I I I I *0 = Intel
I I I I 1 = Motorola
1_1_1_1 __ RESERVED
03H = 00000011B

OUT DX,AL
continues in the following code listing

9.4.4 Initializing Coprocessor Registers

Some coprocessor registers should be initialized for normal operation. This
includes the Coprocessor Control register at offset UH, as well as the Destina­
tion Color Compare, the Plane Mask, and the Carry Chain Mask registers.

; ... continues from the previous code listing
;**********************I

init cop. registers I
;**********************/

Some coprocessor registers must be initialized for normal
operation
1. Reset coprocessor control register

MOV AL,0H Data value for Coprocessor
; Control

MOV GS: [+llH],AL ; Write to register
2. Set Destination Color Compare register to always false to
enable updates

MOV AL,4H ; Data value for Color Compare
MOV GS: [+4AH],AL ; Write to register

3. Set Plane Mask register for updating all planes
MOV AL,0FFH ; Data value for Plane Mask
MOV GS: [+S0H],AL ; Write to register

4. Set the Carry Chain Mask register for 8 bpp propagation
MOV AL,0FFH Data value for Carry Chain Mask
MOV GS: [+54H],AL ; Write to register

;**********************I

restore and exit
;**********************I

POP
RET

INIT COP
P CODE

DS

ENDP
ENDS

Restore caller's DS

296 Chapter Nine

The required processing for calculating the VRAM physical address is shown
in the following code fragment:

; ... continues from the previous code listing
;**********************I

get VRAM base
;**********************I

Start of video memory is a 32-bit physical address determined
as follows:

high-order word low-order word

BBBB BBBi ii00 0000 0000 0000 0000 0000

B (base) = are 7 high bits in POS register 4
i (instance) = bits 1 to 3 in POS register 2
The high-order word of the video memory address must be stored
at the coprocessor register at offset 16H during operations

MOV AL,POS_4 Get B bits in above map
AND AL,11111110B Clear low bit
SHL AX,8 Shift to high position

Get instance bits
MOV BL,POS_2
AND BL,00001110B
MOV
SHL
OR

BH,0
BX,5
AX,BX

Get POS register 2
Mask out other bits
Clear high part of BX
Move instance bits to position
OR them with B bits (in AX)

MOV FS,AX Store in FS segment
continues in the following code listing

Notice that the high-order part (16 bits) of the VRAM physical address is now
stored in the FS segment register. The 80386 FS segment is a convenient
storage for this value, which later is used in coprocessor programming.

9.4.3 Selecting the Access Mode

Coprocessor operation requires that the Memory Access Mode register of the
Display Controller be set to 1, 2, 4, or 8 bits per pixel in original XGA and up
to 16 bits per pixel in XGA-2. The data storage format also must be selected.
The options are the Intel (little-endian) or Motorola (big-endian) formats. In
the PC environment with a fully equipped XGA (1Mb ofVRAM) the coprocessor
is typically set to 8 bits per pixel to match the Intel format of the CPU. The
following code fragment shows selecting the access mode for coprocessor opera­
tion:

continues from the previous code listing
;**********************I

select access mode
;**********************I
; Select Intel order and 8 bits per pixel in the Memory Access

XGA Drivers and Primitives

MOV AL,POS_2
AND EAX,0F0H
SHR EAX, 4
MOV ECX,2000H
MUL ECX
ADD EAX,0C0000H
MOV EBX,EAX

EBX now holds ROM address
Instance is stored in bits

MOV EAX,0
MOV AL,POS_2
AND EAX,0EH
SHR EAX, 1
MOV ECX,128
MUL ECX
ADD EAX,lC00H

Add ROM address
ADD EAX,EBX
SHR EAX, 4

Store segment value in GS

Get POS register 2
Preserve ROM bits
Shift ROM to low nibble
Multiplier
EAX * ECX in EAX
Add constant
Store ROM address in EBX

1 to 3 of POS register 2
Clear EAX
Get POS register 2
Preserve instance bits
Shift right instance bits
Multiplier to ECX

Add constant from formula

Shift right one nibble to
to obtain segment value

MOV GS,AX Move segment into GS
... continues in the following code listing

295

Note that the segment value of the coprocessor base address has been stored
in segment register GS. This is consistent with the notion of making full use
of the 80386 architecture and instruction set.

9.4.2 Obtaining the Video Memory Address

The physical address of video memory is a 32-bit value determined from the
video memory base address field in POS register 4 and from the instance field
in POS register 2. (See Figure 8.6.) The address is formed by relocating the POS
data items as shown in Figure 9.4.

4 Mb of Addressable VRAM
21------------

31
1111 I 111 I 111 I 111 I 111 I 111 I 111 I 111 1

0 bits

'--------- Instance field
(from POS register 2)

'----- Video memory base field
(from POS register 4)

Figure 9.4 Video Memory Address Bitmap

294 Chapter Nine

coprocessor address {{{i * 128) +lC00H) + {R + 2000H) + C000H)

where i is the instance and R is the value in the ROM field of POS register 2.
The following procedure assumes that POS registers 2 and 4 have been read
and stored in variables during XGA initialization:

;**
data variables for coprocessor initialization

;**
XGA DIRECT SEGMENT PUBLIC

XGA REG BASE DW 0
; The following variables are
POS 2 DW 0
POS 4 DW 0

XGA DIRECT ENDS

; Register base for XGA system
loaded from the XGA POS registers

POS register 2
; POS register 4

;**
processing operations for coprocessor initialization

·** ,
P CODE SEGMENT PUBLIC

ASSUME CS:P CODE
.386

INIT COP PROC FAR
Initialize XGA coprocessor
Code assumes that the procedure INIT XGA has been called and
that the POS x variables have been loaded

Coprocessor base address is calculated as follows:
ROM address {ROM field+ 2000H) + C0000H

·COP address= {{{Instance* 128) + lC00H) + ROM address)

On exit:
GS= coprocessor base address
FS = base address of video memory
Display controller set for 8 bits-per-pixel in Intel
data format. Coprocessor registers initialized for
normal operation

;**********************I

save caller's DS
; set DS to XGA_DIRECT I
;**********************I

PUSH DS
MOV
MOV
ASSUME

AX,XGA_DIRECT
DS,AX
DS:XGA DIRECT

Local data segment
to DS

First calculate ROM address from data in POS register 2
MOV EAX,0 ; Clear EAX

XGA Drivers and Primitives 293

The coprocessor registers can be accessed using either the Intel or the
Motorola data formats. Table 9.2 represents the register structure in the Intel
format, which is the one most likely to be used in the PC environment. Most
coprocessor registers are write-only. The second column in Table 9.2 shows
which registers can be read by the CPU. Note that the Current Virtual Address,
State A Length, and State B Length registers are read-only. Software should
not write to these registers. The Page Directory Base Address and the Current
Virtual Address registers (offset plus O and plus 4, respectively) are used only
in a virtual memory environment. Real mode programs, such as those executing
in MS-DOS, need not access these registers.

The XGA coprocessor can access all memory in the system and treats video
memory and system memory in the same fashion. Once the coprocessor is
informed of the VRAM address, it is used to determine if the memory access is
local or remote. In remote accesses the coprocessor obtains direct control of the
bus. This capability of the coprocessor improves XGA performance by allowing
the CPU to continue executing code while the coprocessor manipulates memory
data.

The XGA graphics coprocessor is designed to take advantage of the 80386
instruction set. Since all present implementations of XGA require an 80386
CPU, XGA programs can safely use 80386 instructions without fear of hard­
ware incompatibility. Therefore, in the code samples that follow we have used
the 80386 instruction set when programming coprocessor operations.

9.4 Initializing the Coprocessor

The first action to be taken by a program that intends to access the XGA
coprocessor is its initialization. The fundamental steps of this initialization
consist of calculating and storing two data items required in programming this
device: the base address of the coprocessor register space and the physical
address of the start of video memory. Note that the video memory address used
by the coprocessor corresponds to the 4Mb aperture previously mentioned. The
data for calculating these addresses is found in the XGA POS registers (see
Figure 8.6). The coprocessor initialization routine performs the following op­
erations:
1. Obtains and stores the address of the coprocessor register base.
2. Obtains and stores the address of physical video memory.
3. Selects and initializes the color depth and access mode.
4. Initializes coprocessor registers for normal operation.

9.4.1 Obtaining the Coprocessor Base Address

The coprocessor base address is calculated from the ROM address field in POS
register 2 and from the instance field in this same POS register. (See Figure
8.6.) The coprocessor address formula is

292 Chapter Nine

9.3 XGA Graphics Coprocessor Architecture

The present discussion relates to fundamental programming operations on the
XGA coprocessor. To the programmer, this chip appears as a set of memory­
mapped registers. The area of memory devoted to these registers is called the
coprocessor's address space. Table 9.2 is a map of the coprocessor registers.

Table 9.2 XGA Graphic Coprocessor Register Map

OFFSET

I----READ/
+0 +1 +2 +3 WRITE

0 w Page Directory Base Address

4 R Current Virtual Address

8

C R State A Length State B Length

10 R/W Coprocessor Pixel Map
w Control Index

14 w Pixel Map n Base Pointer

18 W Pixel Map n Width Pixel Map n Height

1C W Pixel Map format

20 R/W Bresenham Error Term

24 W Bresenham K1 Term

28 W Bresenham K2 Term

2C W Direction Steps

44

48 w Foreground Mix Background Mix Destination Color
Compare Condition

4C W Destination Color Compare Value

50 w Pixel Bit Mask

54 W Carry Chain Mask

58 W Foreground Color

5C W Background Color

60 w Operations Dimension 1 Operations Dimension 2

64

68

6C W map mask Origin x Offset map mask Origin y Offset

70 R/W Source Map x Coordinate Source Map y Coordinate

74 R/W Pattern Map x Coordinate Pattern Map y Coordinate

78 R/W Destination Map x Coordinate Destination Map y Coordinate

7C w Pixel Operations

XGA Drivers and Primitives 291

The actual conversion consists of shifting the 8-bit color fields to the corre­
sponding position of the 16-bit color fields. For example, the most significant
red bit in the 8-bit format (bit number 7) is shifted to the most significant red
bit position in the 16-bit format (bit number 15). This operation requires an
8-bit left shift. By the same token, the green bits must be shifted by five bit
positions and the blue bits by three bit positions. In addition, it is convenient
to perform an additional adjustment so that the color values are located at the
high end of the allotted range. In this manner, the highest red value in the 8-bit
format (11 binary) is converted to the highest color value in the 16-bit format
(11111 binary) by ORing with the binary mask 00111. The following code
fragment shows the conversion of a color value from an 8-bit to 16-bit format:

Expand a color in RR GGGG BB format to RRRRR GGGGGG BBBBB
AL holds 8-bit color
Push registers required for expansion

PUSH BX
PUSH ex
PUSH
MOV
MOV

DX
AH,0
DX,AX

;***********************I
expand color fields

;***********************I
; Mask off entry color fields

AND AL,00000OllB
SHL AL,3
OR
MOV

AX, 7H
CX,AX

Now expand green field
MOV AX,DX
AND AL,00111100B
SHL AX,5
OR AX,00E0H
MOV BX,AX

Expand red field
MOV AX,DX
AND AX,ll000000B
SHL AX,8
OR AX,3800H

OR all color values
OR AX,CX

Clear high nibble
Copy color in DX

Leave blue bits
Multiply by 8
Add minimum range
Store blue in ex

Reload original color code
Leave green bits
Shift to green field
Add minimum range
Store in BX

Reload original color code
Leave red bits
Shift to red field
Add minimum range

OR in blue
OR AX,BX and green

AX now has expanded color in 16-bit RRRRR GGGGGG BBBBB format
POP DX ; Restore registers
POP ex
POP BX

Notice that the conversion always is an approximate value since there can be
no exact equivalent between the 8-bit and the 16-bit color values.

290

MOV ES,AX
Get address in XGA system

CLC
MOV AX,1280
MUL DX
ADD cx,cx
ADD AX,CX
ADC DX,0

MOV BX,AX
MOV AX,DX

;**********************I
change banks

;**********************I
MOV
ADD
OUT
POP

DX,XGA_REG_BASE
DX,0BH
DX,AL

AX
;**********************I

set the pixel
;**********************!

MOV
POP
RET

XGA PIXEL 5
P CODE

ES:[BX],AX
OS

ENDP
ENDS

9.2.3 16-Bit Color Adjustments

To ES segment

Clear carry flag

Chapter Nine

This many bytes per line
DX holds line count of address
Double the x length
and add in
Answer in DX:AX
DL = bank, AX= offset
Save offset in BX
Move bank number to AL

XGA Base register address
Aperture Index register
Bank number is in AL
Restore color value

Write the dot
Restore caller's DS

Graphics software often needs to convert a color value from one format to
another. For example, a routine or program designed for a 256-color mode (8
bits per pixel) has to be ported to a VGA or XGA direct color mode (16 bits per
pixel.) In the simplest variation of this conversion each color value coded in
RR-GGGG-BB format needs to be transformed to a color in RRRRR-GGGGGG­
BBBBB format. Figure 9.3 shows the color field mapping in both formats.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R R R R R G G G G G G B B B B B

red green blue

16 bits (65,536 colors)

R R G G G G B B 8 bits (256 colors)
7 6 5 4 3 2 1 0

Figure 9.3 Conversion Map for 8- to 16-Bit Color Modes

XGA Drivers and Primitives 289

In the XGA direct color mode the actual setting of a screen pixel is performed
with a word-write operation, as shown in the following code fragment:

Word write operation for 16 bit-per-pixel mode
AX 16-bit color code in 5-6-5 format
BX offset into video buffer
ES video memory segment (A000H or B000H}

MOV ES: [BX] ,AX ; Writes the pixel

In this mode the programmer must take into account that each screen pixel
is mapped to two video buffer bytes. For example, the tenth pixel from the start
of the first screen row is located 20 bytes from the start of the buffer. By the
same token, each pixel is at a word boundary in the video buffer. The display
routine must make the necessary adjustment, as in the following procedure:

;**
data variables for XGA direct color pixel set

·** ,
XGA DIRECT SEGMENT PUBLIC

XGA REG BASE DW 0 Register base for XGA system

XGA DIRECT ENDS
;**

processing operations for XGA direct color pixel set
·** ,
P CODE SEGMENT PUBLIC

ASSUME CS:P CODE
.386
XGA PIXEL 5 PROC FAR

Write a screen pixel accessing XGA memory directly in direct
color mode (mode number 5)
On entry:

CX x coordinate of pixel
DX= y coordinate of pixel
AX= pixel color in 16-bit RRRRRGGGGGGBBBBB format

Note: code assumes that XGA is in a 640-by-480 pixel mode
in 65,536 colors (mode number 5)

;**********************I

save caller's DS
; set DS to XGA_DIRECT I
;**********************!

PUSH DS
PUSH AX
MOV AX,XGA_ DIRECT
MOV DS,AX
ASSUME DS:XGA DIRECT

Save color code
Local data segment
to DS

Set ES to video buffer base address
MOV AX,0A000H ; Base for all graphics modes

288 Chapter Nine

This value is ANDed with display memory. Setting all bits
makes the palette visible again

MOV AX,OFF64H All bits set
OUT
POP
RET

DX,AX
OS

DC PALETTE ENDP

To make visible
Return caller's OS

·** ,
LOAD 128 PROC NEAR

Auxiliary procedure for DC_PALETTE to load a group of 128
DAC registers with the recommended values

MOV
ADD
MOV
OUT
INC
MOV
MOV

DX,XGA_REG_BASE
DX, OAH
AX,0065H
DX,AL
DX
BX,O
CX,128

Base address
Index register
Select Data register

To Data register
BX is value for blue register
Counter for 128 registers

; Loop to send 3 bytes to 128 registers
DC 128:

MOV
OUT
JMP
OUT
MOV
OUT
ADD

AL,O
DX,AL
SHORT$+ 2
DX,AL
AL,BL
DX,AL
BL,8

LOOP DC 128
DEC
RET

LOAD 128
P CODE

DX

ENDP
ENDS

Send red
Send to port
I/0 delay
Send green
Load blue value
Send blue
Bump blue value in BL
Wraps around automatically

Back to Index register

9.2.2 Pixel Setting in Direct Color Mode

The programmer working in the direct color mode has fewer options than in
other XGA modes. In the first place there is no AI support for direct color mode
operations. Another limitation is that in the original XGA, the graphics copro­
cessor is not operational in the direct color mode. Note that this restriction does
not apply to the XGA-2 systems in which coprocessor support was extended to
the direct color modes. The direct color mode has a resolution of 640-by-480
pixels. Each screen pixel can be in any one of 65,536 colors. The pixel's color
code in stored in 16 bits; therefore each pixel is mapped to one word in the video
buffer. Each screen row requires 1280 buffer bytes and the total storage is
614,400 bytes. Since a memory bank consists of 64K, 9.375 banks are used in
this mode.

XGA Drivers and Primitives

ASSUME CS:P CODE
.386
DC PALETTE PROC FAR

Set 256 XGA Palette registers for the 65535-color mode
; Note: the values are those recommended by IBM
; Code assumes that XGA system is set in a graphics mode
;**********************I

save caller's OS
; set OS to XGA_DIRECT I
;**********************!

PUSH OS
MOV AX,XGA_DIRECT
MOV DS,AX
ASSUME DS:XGA DIRECT

Local data segment
to OS

Select Index register at offset OAH
MOV DX,XGA_REG_BASE ; Base address of controller
ADD DX,OAH ; To Index register

Write OOH (in AH) to Palette Mask register (64H)
This value is ANDed with display memory. Clearing all bits
makes the palette invisible during setup

MOV AX,0064H ; Make invisible
OUT DX,AX

287

Write OOH (in AH) to Palette Sequence register (66H) to enable
three-color write mode (RGB) and to start with the
R color code

MOV AX,0066H ; Palette Sequence register
OUT DX,AX

Write OOH (in AH) to palette Index register low (60H)
and high (61H) to select first DAC register

MOV AX,0060H Start at palette 0
OUT
MOV

DX,AX
AX,0061H

OUT DX,AX
;**********************I
; first 128 registers
;**********************I

Sprite index high

Write 80H (in AH) to Border Color register (SSH) to select
; first group of 128 registers

MOV AX,8055H
OUT
CALL

DX,AX
LOAD 128

;**********************I
; second 128 registers I
;**********************I

Border Color bit 7 set

Local procedure

Write OOH (in AH) to Border Color register (SSH) to select the
second group of 128 registers

MOV AX,0055H Border Color bit 7 clear
OUT DX,AX
CALL LOAD 128 Local procedure

Write FFH (in AH) to Palette Mask register (64H)

286 Chapter Nine

9.2.1 The Direct Color Palette

Although the DAC registers are bypassed during direct color mode operation,
the IBM documentation states that the DAC registers must be loaded with
specific data for operating in the direct color mode. Table 9.1 shows the values
recommended by IBM.

Table 9.1 XGA Direct Color Mode Palette Values

BORDER
LOCATION COLOR RED BLUE GREEN

BIT7

0 1 0 0 0
1 1 0 0 8
2 1 0 0 16
3 1 0 0 24

31 i 0 0 256
32 1 0 0 0
33 1 0 0 8

126 i 0 0 240
127 1 0 0 248

128 0 0 0 0
129 0 0 0 8
130 0 0 0 16
131 0 0 0 24

159 0 0 () 256
160 0 0 0 0
161 0 0 0 8

254 0 0 0 240
255 0 0 0 248

Bit 7 of the Border Color register (at offset 55H) is used to select between the
first and second group of values to be entered in the direct color palette. Notice
also that the red and blue components are always zero, while the green
component is incremented by eight for each successive register. The following
procedure allows setting the Palette registers for the direct color mode:

·** ,
data variables for XGA direct color palette

;**
XGA DIRECT

XGA REG BASE

SEGMENT PUBLIC

ow 0

XGA DIRECT ENDS

Register base for XGA system

;**
processing operations for XGA direct color palette

·** ,
P CODE SEGMENT PUBLIC

XGA Drivers and Primitives 285

MOV AX,1024 1024 dots per line
MUL
ADD
ADC

DX
AX,CX
DX, 0

DX holds line count of address
Plus this many dots on the line
Answer in DX:AX

MOV BX,AX
MOV AX,DX

;**********************I
change banks

;**********************I
MOV
ADD
OUT

DX,XGA_REG_BASE
DX,0BH
DX,AL

;**********************I
read the pixel

;**********************I
MOV
POP
RET

AL,ES: [BX]
DS

XGA READ 2 ENDP
P CODE ENDS

DL = bank, AX= offset
Save offset in BX
Move bank number to AL

XGA Base register address
Aperture Index register
Bank number is in AL

Read pixel into AL
Restore caller's DS

9.2 Programming the XGA Direct Color Mode

XGA video mode 5 is called the direct color mode. It consists of 640-by-480 pixels
in 65,536 colors. Note that this mode is available only in XGA systems equipped
with the maximum VRAM of 1Mb. The XGA direct color mode is the one with
the most extensive color range. The pixel color is determined by a 16-bit value,
which encodes the 65,536 colors that can be represented. The actual pixel color
is generated independently of the setting of the DAC registers. For this reason
the direct color mode has also been referred to as the palette bypass mode. The
color encoding of the 16-bit value for the direct color mode is shown in Figure
9.2.

11sl14l1311211111ol 91 al 11 61 sl 41 31 21 11 o
I RED (5 bits) I GREEN (6 bits) I BLUE (5 bits)

Figure 9.2 XGA Direct Color Mode Palette

Note that the color bitmap in Figure 9.2 contains five bits for the blue and red
elements and six bits for the green element. This 5-6-5 configuration allows 64
shades of green and 32 shades each of blue and red colors. The argument in
favor of having more shades of green than of red and blue is that the human
eye is more sensitive to the green portion of the spectrum.

284 Chapter Nine

9.1.4 Reading a Pixel

A write routine that accesses the video memory space through the CPU can be
easily converted to read the value of screen pixels. The conversion consists
mainly of changing the write instruction for a read instruction and in making
other minor register adjustments. The following procedure can be used to read
the value of a screen pixel into a CPU register:

·** ,
data variables for XGA read pixel

·** ,
XGA DIRECT SEGMENT PUBLIC

XGA REG BASE ow 0 Register base for XGA system

XGA DIRECT ENDS

·** ,
processing operations for XGA read pixel

·** ,
P CODE SEGMENT PUBLIC

ASSUME CS:P CODE

.386

XGA READ 2 PROC FAR
Read a screen pixel accessing XGA memory directly

On entry:
CX = x coordinate of pixel
DX y coordinate of pixel

On exit:
AL pixel color

Note: code assumes that XGA is in a 1024-by-768 pixel mode
in 256 colors and that AOOOOH is the start address for
the video buffer using the 64K aperture

;**********************I
save caller's OS

; set OS to XGA_DIRECT I
;**********************I

PUSH OS
MOV AX,XGA_DIRECT
MOV DS,AX
ASSUME DS:XGA DIRECT

Local data segment
to OS

Set ES to video buffer base address
MOV AX,OAOOOH Base for all graphics modes
MOV ES,AX To ES segment

Get address in XGA system
CLC Clear carry flag

XGA Drivers and Primitives 283

·** ,
data variables for XGA clear screen

·** ,
XGA DIRECT SEGMENT PUBLIC

XGA REG BASE ow 0 Register base for XGA system

XGA DIRECT ENDS
·** ,

processing operations for XGA clear screen
·** ,
P CODE SEGMENT PUBLIC

ASSUME CS:P CODE

.386

XGA CLS 2 PROC FAR
; Clear video memory while in mode number 2 using block move
;**********************I

save caller's OS
; set OS to XGA_DIRECT I
;**********************I

PUSH OS
MOV AX,XGA_DIRECT
MOV DS,AX
ASSUME DS:XGA DIRECT

MOV AX,OAOOOH
MOV ES,AX
MOV BL,0

Select bank
NEXT BANK:

MOV
ADD
MOV
OUT

DX,XGA_REG_BASE
DX,OBH
AL,BL
DX,AL

Local data segment
to OS

Video memory base address
To the ES register
.BL is bank counter

Select Page
To Aperture Index register
Bank number
Select bank in AL

Write 65536 bytes of OOH in current bank
MOV
MOV
CLO
MOV
REP

Bump bank
INC
CMP
JNE
POP
RET

XGA CLS 2
P CODE

CX,OFFFFH
AX, 0

DI,O
STOSB

BL
BL,12
NEXT BANK
OS

ENDP
ENDS

ex is byte counter
Attribute to place in VRAM
Forward direction
Start of block
Store 65536 bytes

12 is last bank

Restore caller's OS

282 Chapter Nine

Write a screen pixel accessing XGA memory directly
On entry:

ex x coordinate of pixel
DX= y coordinate of pixel
BL= pixel color in 8-bit format

Note: code assumes that XGA is in a 1024-by-768 pixel mode
in 256 colors (mode number 2)

;**********************I

save caller's DS
; set DS to XGA_DIRECT I
;**********************I

PUSH DS
MOV
MOV
ASSUME

AX,XGA_DIRECT
DS,AX
DS:XGA DIRECT

Local data segment
to DS

Set ES to video buffer base address
MOV AX,0A000H Base for all graphics modes
MOV ES,AX To ES segment

Get
MOV

address
CLC
PUSH
MOV
MUL
ADD
ADC

MOV
MOV

AL,BL
in XGA system

AX
AX,1024
DX
AX,CX
DX,0

BX,AX
AX,DX

;**********************I

change banks
;**********************I

MOV
ADD
OUT
POP

DX,XGA_REG_BASE
DX,0SH
DX,AL

AX
;**********************I

set the pixel
;**********************I

MOV
POP
RET

XGA PIXEL 2
P CODE

ES: [BX] ,AL
DS

ENDP
ENDS

9.1.3 Clearing the XGA Screen

Color to AL

Clear carry flag
Save color value
This many dots/ line
DX holds line count of address
Plus this many x dots
Answer in DX:AX
DL = bank, AX= offset
Save this in BX
Move bank number to AL

XGA Base register address
Aperture Index register
Bank number is in AL
Restore color value

Write the dot
Restore caller's DS

The following procedure uses the pixel setting routine described in Section 9 .1.2
to clear the entire XGA video screen while in mode 2:

XGA Drivers and Primitives 281

In the 64K aperture the start address for the video memory in each bank is
selected by means of the Aperture Control register. The valid values are
AOOOOH and BOOOOH. The first one coincides with the base address used in
VGA graphics modes. If the start address of AOOOOH is selected, then each bank
extends from AOOOOH to AFFFFH. Which bank is currently selected depends
on the setting of the Aperture Index register, located at base address plus 8 of
the XGA Display Controller group. If the base address of the Display Controller
group is stored in the variable XGA_REG_BASE and the bank number is stored
in the AL register, then enabling a specific bank can be coded as follows:

; AL holds desired memory bank
MOV DX,XGA_REG_BASE
ADD DX,0BH
OUT DX,AL

XGA Base register address
Aperture Index register
Bank number is in AL

The total number of banks available depends on the display mode selected.
We saw that 12 banks of 64K each are needed to encode all the pixels in the
1024-by-768 modes. However, in the 640-by-480 pixel mode each full screen
consists of 307,200 pixels, which require only five memory banks of 64K.

9.1.2 Setting a Pixel

In order to set a screen pixel, the display logic must take into account whether
the base address of the video buffer for the 64K aperture is located at AOOOH
or at BOOOH. In addition, the code must perform the necessary bank selection
operation. Processing performance in this case can be improved by storing the
value of the currently selected bank in a memory variable so that bank
switching can be bypassed if the pixel is located in the currently selected bank.
The following code writes a data byte to a video memory address. This procedure
does not take into account the currently selected bank. The code assumes XGA
mode 2 in 1024-by-768 pixels in 256 colors.

·** ,
data variables for XGA pixel setting

·** ,
XGA DIRECT

XGA REG BASE

SEGMENT PUBLIC

DW 0

XGA DIRECT ENDS

Register base for XGA system

·** ,
processing operations for XGA pixel setting

;**
P CODE

.386

SEGMENT PUBLIC
ASSUME CS:P CODE

XGA PIXEL 2 PROC FAR

280 Chapter Nine

9.1 Accessing XGA Video Memory

The CPU can access XGA memory to perform write and read operations almost
in the same manner as in VGA systems. The write operation sets one or more
screen pixels to the value stored in a processor register. The read operation
transfers a pixel's value into a processor register. We saw in Chapter 8 that the
XGA system can configure video memory by means of three possible apertures.
The 4Mb aperture is the one used by the graphics coprocessor, which is
discussed later in this chapter. The 1Mb memory aperture is typically used in
multitasking systems. The 64K aperture is the one typically used by drivers
and applications executing in the MS-DOS environment.

9.1.1 XGA Memory Banks

DOS applications usually access XGA video memory by means of multiple
memory banks of 64K each. But before the 64K aperture is available, the code
must make sure that the Aperture Control register (at base address plus 1) has
been initialized to the value OlH. The banks' structure at this aperture depends
on the display mode. At the 1024-by-768 modes the 64K aperture can be
visualized as 12 memory blocks of 64K each. This visualization is shown in
Figure 9.1.

Bank O

Bank 1

Bank 10

Bank 11

Figure 9.1 Visualization of XGA Memory Banks

Chapter

9

XGA Drivers and Primitives

9.0 XGA Hardware Programming

XGA systems can be programmed at the hardware and software levels. Because
of its limitations and performance penalties XGA software programming by
means of the Adapter Interface, by the VESA XGA BIOS, and by the XGA-2
DMQS services is not discussed in the book. This chapter is devoted to program­
ming XGA graphics by accessing the video memory space and the coprocessor
hardware.

An application can access XGA video memory through the CPU or by means
of the XGA graphics coprocessor. The initial discussion relates to accessing the
XGA video memory space by means of the 80386, 486, or Pentium Central
Processing Unit. The animation programmer should be cautious about using
CPU access methods in the XGA since, in this case, the XGA coprocessor is
bypassed, resulting in a substantial performance penalty. However, there are
practical circumstances that can make direct access to XGA video memory an
attractive alternative; for example:
1. Direct access programming is often easier to code than XGA graphics

coprocessor operations.
2. Direct access methods are usually available to the code before the coproces­

sor is initialized.
3. Some VGA software is easier to port to XGA system programs by means of

direct access techniques than by coprocessor or AI programming.

279

XGA Architecture and Initialization 277

VESA XGA functions are currently limited to providing information about the
capabilities of an XGA system as well as the location of the XGA hardware and
to allow setting an XGA extended graphics mode. The functions are imple­
mented as subservice 4EH of interrupt lOH. The VESA XGA BIOS extension
provides the following subservices:
1. Subservice number O is used to determine if the VESA XGA BIOS is present.

In addition, this service provides information about the XGA environment,
including the number of XGA systems detected, the version of the VESA
BIOS, if bus mastering is available, and if the bus architecture is ISA, EISA,
or micro channel.

2. Subservice number 1 returns XGA system information, including the ad­
dress of the available apertures, the base address of the XGA CRT Controller
registers, the base address of video memory, the amount of video memory
installed, and the physical address of the XGA coprocessor.

3. Subservice number 2 returns XGA mode information, including the bytes
per scan line, the horizontal and vertical resolution, the bits-per-pixel depth,
and the number of red, green, and blue palette bits and their position in the
data field.

4. Subservice number 3 is used to initialize the XGA and to set a VGA or
advanced graphics mode.

5. Subservice number 4 returns the current video mode.
6. Subservice number 5 is used to enable or disable the transmission of data

through the XGA feature connector and sets the direction for data transmis­
sion.

7. Subservice number 6 is used to obtain the current state of the XGA feature
connector.

The VESA BIOS service can be used to detect XGA system configuration and
initialize the device in a device-independent form; however, it does not provide
graphics services to the caller nor does its use guarantee that the XGA hardware
is compatible with IBM XGA or with any other system.

Within the limits previously mentioned, the programmer can use the DMQS
or VESA BIOS services to simplify XGA initialization operations. The use of
these services is described in detail in our bookHighResolution Video Graphics,
also published by McGraw-Hill (see Bibliography).

276 Chapter Eight

In two-monitor systems the XGA image is not erased when
switching to a VGA mode. It is left to the application to
erase the XGA screen, if desired

TWO MON SYS:
LEA

VGA2 DATA:
SI,VGA_Ll Point to start of values table

MOV DX,XGA_REG_BASE XGA register base
MOV AH,0 High byte of offset is 0
MOV AL, [SI) Low byte of offset

Register value 0FFH marks the end of the table
CMP AL,0FFH End of the table?
JE VGA2 DONE End of register setup
ADD DX,AX Add register offset to base
CMP AL,0AH Test for an Index register
JE INDEXED 2 Go if Index register

At this point register is not at offset 0AH, and therefore data
is output directly

MOV AL, [SI+2] Get data value from table
OUT
JMP

INDEXED 2:
MOV
MOV
OUT

NEXT REG2:
ADD
JMP

VGA2 DONE:
POP
RET

XGA OFF
CODE

DX,AL
SHORT NEXT

AL, [SI+l)
AH, [SI+2)
DX,AX

SI,3
VGA2 DATA

DS

ENDP
ENDS

REG2
and send to port
Continue

Get Index register number
Get data byte from table
Output data to Index register

Index to next register in table

8.5 Other Methods of XGA Initialization

In this chapter we have developed a procedure (named INIT_XGA) for XGA
initialization. Processing is based on locating and identifying the XGA hard­
ware by accessing the device at the register level. Later we developed another
procedure (named XGA_MODE) to set the XGA graphics mode also by accessing
the hardware at the register level. The program developer working on XGA-2
systems can perform these initialization and mode setting operations by using
the Display Mode Query and Set (DMQS) function. This function is available
as service number 31 (lFH) of BIOS interrupt lOH.
In addition, the Video Electronics Standards Association approved in 1992 an
XGA extension to the VESA standard designated as VXE 1.0. The purpose of
the VESA XGA extension is to define XGA registers, bits, and BIOS services in
a manner that allows the coding of drivers and applications so that they are
compatible with XGA systems in ISA, EISA, and micro channel machines. The

XGA Architecture and Initialization 275

Point to start of values table
The value at offset O of VGA L2 is the register number
The value at offset 1 is the Index register number if the
register is OAH. The value at offset 2 is the data byte to be
sent to the register

VGA DATA:
MOV DX,XGA_REG BASE XGA register base
MOV AH,0 High byte of offset is 0
MOV AL, [SI] Low byte of offset

Register value OFFH marks the end of the table
CMP AL,OFFH End of the table?
JE VGAl DONE End of register setup
ADD DX,AX Add register offset to base
CMP AL,OAH Test for an Index register
JE INDEXED 1 Go if Index register

At this point register is not at offset OAH, and therefore data
is output directly

MOV AL, [SI+2] Get data value from table
OUT DX,AL
JMP SHORT NEXT

INDEXED 1:
MOV AL, [SI+l]
MOV AH, [SI+2)
OUT DX,AX

NEXT REGl:
ADD SI,3
JMP VGA DATA

;**********************I
enable VGA mode
(single monitor)

;**********************I
VGAl DONE:

Enable VGA graphics
MOV DX,03C3H
MOV AL,l
OUT DX,AL

REGl
and send to port
Continue

Get Index register number
Get data byte from table
Output data to index register

Index to next register in table

VGA Video Enable register
Value to enable video
Output to port

Select 400 scan lines using BIOS service
MOV
MOV
MOV
INT

AH, 18
AL,2
BL,48
lOH

Service request number
Code for 400 lines
Function code

Set VGA mode
MOV
MOV
INT
POP
RET

currently enabled when XGA was switched on
AH,0
AL,VGA_MODE
lOH
OS

;**********************I
init registers

(double-monitor)
;**********************I

BIOS service request
VGA mode from variable

Restore caller's OS

274 Chapter Eight

; if the system contains two monitors. The table VGA L2 is
; also output if the system contains a single monitor
;**********************I

save caller's DS
; set DS to XGA_DIRECT I
;**********************I

PUSH DS
MOV AX,XGA_DIRECT
MOV DS,AX
ASSUME DS:XGA DIRECT

;**********************I
test for second

monitor
;**********************I

MOV
TEST
JZ
JMP

AL,EQUIPMENT
AL,OOOlOOOOB
ONE MON SYS
TWO MON SYS

;**********************I
single monitor

system
;**********************I
ONE MON SYS:

Local data segment
to DS

Load equipment byte
Bit 4 is second monitor
Go if bit set
Exit if one monitor system

Clear 256K of XGA video memory to avoid screen flash during
; mode set

PUSH
MOV
MOV
MOV

Select bank
NEXT BANKl:

MOV
ADD
MOV
OUT

Write 65536
MOV
MOV
CLO
MOV
REP

Bump bank
INC
CMP
JNE
POP

ES
AX,OAOOOH
ES,AX
BL,O

DX,XGA_REG_BASE
DX,OBH
AL,BL

Save caller's ES
Video memory base address
To the ES register
BL is bank counter

Select Page
To Aperture Index register
Bank number

DX,AL Select bank in AL
bytes of OOH in current bank

CX,OFFFFH CX is byte counter
AX,O Attribute to place in VRAM

Forward direction
DI,0
STOSB

BL
BL, 4
NEXT BANKl
ES

Start of block
Store 65536 bytes

Four banks of 64K each

Restore caller's ES
;**********************I

init registers
(single monitor)

;**********************I
LEA SI,VGA_L2

XGA Architecture and Initialization 273

The actual mode switching operation is different for a two-monitor system, in
which one monitor provides the XGA graphics output and the other one the
VGA signal, or for a single-monitor system, in which one monitor provides both
XGA and VGA output. In the case of a two-monitor system there is also the
option of clearing the XGA screen when switching to a VGA mode or leaving
the XGA image on its dedicated monitor. The following code sample shows the
data structures and processing required for switching from XGA to VGA modes.
The code determines if it is executing in a one-monitor or a two-monitor system.
Notice that the interrupt intercept and chaining operations described earlier
in this section are not implemented in the code.

·** ,
data variables for XGA to VGA switching

;**
XGA DIRECT SEGMENT PUBLIC

Register and data for XGA to
; Register in VGA_Ll is always
; XGA monitor is providing the
VGA 11 DB 00lH,000H,000H

DB 004H,000H,000H
DB 00SH,000H,0FFH
DB 0FFH,0FFH,0FFH

VGA 12 DB 00lH,000H,000H
DB 004H,000H,000H
DB 00SH,000H,0FFH
DB 00AH,064H,0FFH
DB 00AH,0S0H,0lSH
DB 00AH,050H,014H
DB 00AH,051H,000H
DB 00AH,054H,004H
DB 00AH,070H,000H
DB 00AH,02AH,020H
DB 000H,000H,00lH
DB 0FFH,0FFH,0FFH

VGA switching
output. VGA_L2 is output if the
VGA function

Aperture Control register
Interrupt disable
Clear interrupts
END OF LIST

Aperture Control register
Interrupt disable
Clear interrupts
Palette Mask register
Enable VFB
Enable VFB, reset
Normal scale factors
Select VGA occilator
External VGA clock
No Vert Sync interrupts
Switch to VGA mode
END OF LIST

Variables for operational data
VGA MODE DB 0 Storage for VGA mode

XGA DIRECT ENDS
;**

processing operations for XGA to VGA switching
·** ,
CODE SEGMENT PUBLIC

ASSUME CS:CODE
.386
XGA OFF PROC FAR

Turn off XGA and enable VGA decoding
The table at VGA 11 contains the values to be sent to the
XGA registers in order to reset operation in a VGA mode,

272 Chapter Eight

MOV AX,065H Select Data register
OUT DX,AL
INC DX Point to first register

DS:SI - table
POP

Loop to send
NEW PALETTE:

MOV
OUT
INC
LOOP

of palette
DS

4 blocks of

AL, [SI]
DX,AL
SI
NEW PALETTE

colors
Restore caller's DS

256 byte each to port 065H

Get byte from table
Send to port
Bump table pointer

DEC DX ; Back to Select register
Write FFH (in AH) to Palette Mask register (64H)
This value is ANDed with display memory. Setting all bits
makes the palette visible again

MOV AX,0FF64H All bits set
OUT
RET

XGA PALETTE
CODE

DX,AX

ENDP
ENDS

To make visible

8.4.5 Switching from XGA to VGA Modes

XGA software often needs to switch back to a VGA display mode. In a two-moni­
tor system the XGA image need not be erased from the corresponding monitor.
If the XGA hardware is also providing the VGA function then software running
in the MS-DOS environment must execute the following special provisions:

1. Intercept all calls to the BIOS video services at interrupt lOH. The intercept
routine must filter those calls that can be ignored from those that must be
honored. Service number O (set mode) must always be honored. Service
number 15 (return video state) must return the current mode as 7FH.

2. Intercept all calls to the MS-DOS Critical Error Handler at interrupt 24H.
In this case the application can take one of two action: first, the intercept
routine can restore the VGA signal and chain to the original error handler;
and second, the application can take over the error handler function entirely
and display the message.

3. Intercept calls to MS-DOS Ctrl+Break hot key. Options in this case are the
same as for the critical error handler.

4. Intercept all calls to the MS-DOS Program Terminate functions at interrupt
21H (service number 76), at interrupt 20H, and at interrupt 21H (service
numbers O and 49). In these cases the application must set the XGA in a
VGA text mode and chain to the original interrupt handler.

Note that some interceptions are necessary because BIOS and MS-DOS use
VGA to output the error messages. Since no VGA display is active when XGA
is in a proprietary mode, the error handler message would be lost if no
interception were implemented.

XGA Architecture and Initialization 271

To avoid screen garbage, it is convenient to turn off the display function while
loading a new palette. The following procedure assumes that the caller has
available a set of 256 palette entries in 4-byte format, such as the ones listed.

·** ,
XGA palette loading

·** ,
CODE

.386

SEGMENT PUBLIC
ASSUME CS:CODE

XGA PALETTE PROC FAR
Set 256 XGA Pallete registers
On entry:

DS:SI -> 1024-byte color table in RGBx format

Code assumes that XGA system is in a graphics mode

;**********************I

save caller's DS
; set DS to XGA_DIRECT I
;**********************!

PUSH DS
MOV AX,XGA_DIRECT
MOV DS,AX
ASSUME DS:XGA DIRECT

Local data segment
to DS

Select Index register at offset 0AH
MOV DX,XGA_REG_BASE; Base address of Controller
ADD DX,0AH

Write OOH (in AH) to Palette Mask register (64H)
This value is ANDed with display memory. Clearing all bits
makes the palette invisible d4ring setup

MOV AX,0064H ; make invisible
OUT DX,AX

Write OOH (in AH) to Border Color register (SSH)
MOV AX,00SSH ; Border Color register
OUT DX,AX

Write 000001008 (in AH) to Palette Sequence register (66H) to
select four-color write mode (RGBx) and to start with the
R color code

MOV AX,0466H ; Palette Sequence register
OUT DX,AX

Write OOH (in AH) to Palette Index Register low (60H)
and high (61H) to select first DAC register

MOV AX,0060H start at palette 0
OUT
MOV
OUT
MOV

DX,AX
AX,0061H
DX,AX
CX,1024

Sprite index high

Counter for 256 * 4

270 Chapter Eight

DB 168,000,128,000,168,084,l28,000 32-33
DB 168,168,128,000,168,252,128,000
DB 168,000,144,000,168,084,144,000
DB 168,168,144,000,168,252,144,000
DB 168,000,160,000,168,084,160,000
DB 168,168,160,000,168,252,160,000
DB 168,000,176,000,168,084,176,000
DB 168,168,176,000,168,252,176,000
DB 168,000,192,000,168,084,192,000 47-48
DB 168,168,192,000,168,252,192,000
DB 168,000,208,000,168,084,208,000
DB 168,168,208,000,168,252,208,000
DB 168,000,224,000,168,084,224,000
DB 168,168,224,000,168,252,224,000
DB 168,000,240,000,168,084,240,000
DB 168,168,240,000,168,252,240,000 62-63

DB 252,000,000,000,252,084,000,000 0-1
DB 252,168,000,000,252,252,000,000
DB 252,000,015,000,252,084,015,000
DB 252,168,015,000,252,252,015,000
DB 252,000,030,000,252,084,030,000
DB 252,168,030,000,252,252,030,000
DB 252,000,048,000,252,084,048,000
DB 252,168,048,000,252,252,048,000
DB 252,000,064,000,252,084,064,000 16-17
DB 252,168,064,000,252,252,064,000
DB 252,000,080,000,252,084,080,000
DB 252,168,080,000,252,252,080,000
DB 252,000,096,000,252,084,096,000
DB 252,168,096,000,252,252,096,000
DB 252,000,112,000,252,084,112,000
DB 252,168,112,000,252,252,112,000
DB 252,000,128,000,252,084,128,000 32-33
DB 252,168,128,000,252,252,128,000
DB 252,000,144,000,252,084,144,000
DB 252,168,144,000,252,252,144,000
DB 252,000,160,000,252,084,160,000
DB 252,168,160,000,252,252,160,000
DB 252,000,176,000,252,084,176,000
DB 252,168,176,000,252,252,176,000
DB 252,000,192,000,252,084,192,000 47-48
DB 252,168,192,000,252,252,192,000
DB 252,000,208,000,252,084,208,000
DB 252,168,208,000,252,252,208,000
DB 252,000,224,000,252,084,224,000
DB 252,168,224,000,252,252,224,000
DB 252,000,240,000,252,084,240,000
DB 252,168,240,000,252,252,240,000 62-63

DATA ENDS

XGA Architecture and Initialization 269

DB 000,168,240,000,000,252,240,000 62-63

DB 084,000,000,000,084,084,000,000 0-1
DB 084,168,000,000,084,252,000,000
DB 084,000,015,000,084,084,015,000
DB 084,168,015,000,084,252,015,000
DB 084,000,030,000,084,084,030,000
DB 084,168,030,000,084,252,030,000
DB 084,000,048,000,084,084,048,000
DB 084,168,048,000,084,252,048,000
DB 084,000,064,000,084,084,064,000 16-17
DB 084,168,064,000,084,252,064,000
DB 084,000,080,000,084,084,080,000
DB 084,168,080,000,084,252,080,000
DB 084,000,096,000,084,084,096,000
DB 084,168,096,000,084,252,096,000
DB 084,000,112,000,084,084,112,000
DB 084,168,112,000,084,252,112,000
DB 084,000,128,000,084,084,128,000 32-33
DB 084,168,128,000,084,252,128,000
DB 084,000,144,000,084,084,144,000
DB 084,168,144,000,084,252,144,000
DB 084,000,160,000,084,084,160,000
DB 084,168,160,000,084,252,160,000
DB 084,000,176,000,084,084,176,000
DB 084,168,176,000,084,252,176,000
DB 084,000,192,000,084,084,192,000 47-48
DB 084,168,192,000,084,252,192,000
DB 084,000,208,000,084,084,208,000
DB 084,168,208,000,084,252,208,000
DB 084,000,224,000,084,084,224,000
DB 084,168,224,000,084,252,224,000
DB 084,000,240,000,084,084,240,000
DB 084,168,240,000,084,252,240,000 62-63

DB 168,000,000,000,168,084,000,000 0-1
DB 168,168,000,000,168,252,000,000
DB 168,000,015,000,168,084,015,000
DB 168,168,015,000,168,252,015,000
DB 168,000,030,000,168,084,030,000
DB 168,168,030,000,168,252,030,000
DB 168,000,048,000,168,084,048,000
DB 168,168,048,000,168,252,048,000
DB 168,000,064,000,168,084,064,000 16-17
DB 168,168,064,000,168,252,064,000
DB 168,000,080,000,168,084,080,000
DB 168,168,080,000,168,252,080,000
DB 168,000,096,000,168,084,096,000
DB 168,168,096,000,168,252,096,000
DB 168,000,112,000,168,084,112,000
DB 168,168,112,000,168,252,112,000

268 Chapter Eight

DB 176,176,176,000,180,180,180,000 45
DB 184,184,184,000,188,188,188,000 47
DB 192,192,192,000,196,196,196,000 49
DB 200,200,200,000,204,204,204,000 51
DB 208,208,208,000,212,212,212,000 53
DB 216,216,216,000,220,220,220,000 55
DB 224,224,224,000,228,228,228,000 57
DB 232,232,232,000,236,236,236,000 59
DB 240,240,240,000,244,244,244,000 61
DB 248,248,248,000,252,252,252,000 63

;**
IBM-recommended palette

;**
IBM-recommended palette in RR GGGG BB format

to 00 0000
IBMl PAL

7 6 5 4 3 2 1 0 <== Bits
RR G G G GB B <== Color codes

11
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

R B G R B G

000,000,000,000,000,084,000,000 0-1
000,168,000,000,000,252,000,000
000,000,015,000,000,084,015,000
000,168,015,000,000,252,0l5,000
000,000,030,000,000,084,030,000
000,168,030,000,000,252,030,000
000,000,048,000,000,084,048,000
000,168,048,000,000,252,048,000
000,000,064,000,000,0B4,064,000
000,168,064,000,000,252,064,000
000,000,080,000,000,084,080,000
000,168,080,000,000,252,0B0,000
000,000,096,000,000,084,096,000
000,168,096,000,000,252,096,000
ooo,ooo,112,ooo,ooo,oa4,112,ooo
000,168,112,000,000,252,112,000
000,000,128,000,000,084,128,000
000,168,128,000,000,252,128,000
000,000,144,000,000,084,144,000
000,168,144,000,000,252,144,000
000,000,160,000,000,084,160,000
000,168,160,000,000,252,160,000
000,000,176,000,000,084,l76,000
000,168,176,000,000,252,176,000
000,000,192,000,000,084,192,000
000,168,192,000,000,252,192,000
000,000,208,000,000,084,208,000
000,168,208,000,000,252,208,000
000,000,224,000,000,084,224,000
000,168,224,000,000,252,224,000
000,000,240,000,000,084,240,000

16-17

32-33

47-48

XGA Architecture and Initialization 267

DB 032,032,032,000,036,036,036,000 9
DB 040,040,040,000,044,044,044,000 11
DB 048,048,048,000,052,052,052,000 13
DB 056,056,056,000,060,060,060,000 15
DB 064,064,064,000,068,068,068,000 17
DB 072,072,072,000,076,076,076,000 19
DB 080,080,080,000,084,084,084,000 21
DB 088,088,088,000,092,092,092,000 23
DB 096,096,096,000,100,100,100,000 25
DB 104,104,104,000,108,108,108,000 27
DB 112,112,112,000,116,116,116,000 29
DB 120,120,120,000,124,124,124,000 31
DB 128,128,128,000,132,132,132,000 33
DB 136,136,136,000,140,140,140,000 35
DB 144,144,144,000,148,148,148,000 37
DB 152,152,152,000,156,156,156,000 39
DB 160,160,160,000,164,164,164,000 41
DB 168,168,168,000,172,172,172,000 43
DB 176,176,176,000,180,180,180,000 45
DB 184,184,184,000,188,188,188,000 47
DB 192,192,192,000,196,196,196,000 49
DB 200,200,200,000,204,204,204,000 51
DB 208,208,208,000,212,212,212,000 53
DB 216,216,216,000,220,220,220,000 55
DB 224,224,224,000,228,228,228,000 57
DB 232,232,232,000,236,236,236,000 59
DB 240,240,240,000,244,244,244,000 61
DB 248,248,248,000,252,252,252,000 63

DB ooo,ooo,ooo,ooo,004,004,oo4,ooo 1
DB 008,008,008,000,012,012,0l2,000 3
DB 016,016,016,000,020,020,020,000 5
DB 024,024,024,000,028,028,028,000 7
DB 032,032,032,000,036,036,036,000 9
DB 040,040,040,000,044,044,044,000 11
DB 048,048,048,000,052,052,052,000 13
DB 056,056,056,000,060,060,060,000 15
DB 064,064,064,000,068,068,068,000 17
DB 072,072,072,000,076,076,076,000 19
DB 080,080,080,000,084,084,0B4,000 21
DB 088,088,088,000,092,092,092,000 23
DB 096,096,096,000,100,100,100,000 25
DB 104,104,104,000,108,108,108,000 27
DB 112,112,112,000,116,116,116,000 29
DB 120,120,120,000,124,124,124,000 31
DB 128,128,128,000,132,132,132,000 33
DB 136,136,136,000,140,140,140,000 35
DB 144,144,144,000,148,148,148,000 37
DB 152,152,152,000,156,156,156,000 39
DB 160,160,160,000,164,164,164,000 41
DB 168,168,168,000,172,172,172,000 43

266 Chapter Eight

DB 152,152,152,000,156,156,156,000 39
DB 160,160,160,000,164,164,164,000 41
DB 168,168,168,000,172,172,172,000 43
DB 176,176,176,000,180,180,180,000 45
DB 184,184,184,000,188,188,188,000 47
DB 192,192,192,000,196,196,196,000 49
DB 200,200,200,000,204,204,204,000 51
DB 208,208,208,000,212,212,212,000 53
DB 216,216,216,000,220,220,220,000 55
DB 224,224,224,000,228,228,228,000 57
DB 232,232,232,000,236,236,236,000 59
DB 240,240,240,000,244,244,244,000 61
DB 248,248,248,000,252,252,252,000 63

DB 000,000,000,000,004,004,004,000 1
DB 008,008,008,000,012,012,0l2,000 3
DB 016,016,016,000,020,020,020,000 5
DB 024,024,024,000,028,028,028,000 7
DB 032,032,032,000,036,036,036,000 9
DB 040,040,040,000,044,044,044,000 11
DB 048,048,048,000,052,052,052,000 13
DB 056,056,056,000,060,060,060,000 15
DB 064,064,064,000,068,068,068,000 17
DB 072,072,072,000,076,076,076,000 19
DB 080,080,080,000,084,084,0B4,000 21
DB 088,088,088,000,092,092,092,000 23
DB 096,096,096,000,100,100,100,000 25
DB 104,104,104,000,108,108,108,000 27
DB 112,112,112,000,116,116,116,000 29
DB 120,120,120,000,124,124,124,000 31
DB 128,128,128,000,132,132,132,000 33
DB 136,136,136,000,140,140,l40,000 35
DB 144,144,144,000,148,148,148,000 37
DB 152,152,152,000,156,156,156,000 39
DB 160,160,160,000,164,164,l64,000 41
DB 168,168,168,000,172,172,172,000 43
DB 176,176,176,000,180,180,180,000 45
DB 184,184,184,000,188,188,188,000 47
DB 192,192,192,000,196,196,196,000 49
DB 200,200,200,000,204,204,204,000 51
DB 208,208,208,000,212,212,212,000 53
DB 216,216,216,000,220,220,220,000 55
DB 224,224,224,000,228,228,228,000 57
DB 232,232,232,000,236,236,236,000 59
DB 240,240,240,000,244,244,244,000 61
DB 248,248,248,000,252,252,252,000 63

DB ooo,ooo,ooo,ooo,004,004,004,000 1
DB 008,008,008,000,012,012,0l2,000 3
DB 016,016,016,000,020,020,020,000 5
DB 024,024,024,000,028,028,028,000 7

XGA Architecture and Initialization 265

DB 144,144,216,000,144,180,216,000 9
DB 144,216,216,000,144,252,216,000 11
DB 144,144,252,000,144,180,252,000 13
DB 144,216,252,000,144,252,252,000 15
DB 180,144,144,000,180,180,144,000 17
DB 180,216,144,000,180,252,144,000 19
DB 180,144,180,000,180,180,180,000 21
DB 180,216,180,000,180,252,180,000 23
DB 180,144,216,000,180,180,216,000 25
DB 180,216,216,000,180,252,216,000 27
DB 180,144,252,000,180,180,252,000 29
DB 180,216,252,000,180,252,252,000 31
DB 216,144,144,000,216,180,144,000 33
DB 216,215,144,000,216,252,144,000 35
DB 216,144,180,000,216,180,l80,000 37
DB 216,216,180,000,216,252,180,000 39
DB 216,144,216,000,216,180,216,000 41
DB 216,216,216,000,216,252,216,000 43
DB 216,144,252,000,216,180,252,000 45
DB 216,216,252,000,216,252,252,000 47
DB 252,144,144,000,252,180,144,000 49
DB 252,216,144,000,252,252,l44,000 51
DB 252,144,180,000,252,180,l80,000 53
DB 252,216,180,000,252,252,l80,000 55
DB 252,144,216,000,252,180,216,000 57
DB 252,216,216,000,252,252,216,000 59
DB 252,144,252,000,252,180,252,000 61
DB 252,216,252,000,252,252,252,000 63

·** I

Grayscale palette
·** I

GRAY PAL DB ooo,ooo,ooo,ooo,004,004,004,000 1
DB 008,008,008,000,012,012,0l2,000 3
DB 016,016,016,000,020,020,020,000 5
DB 024,024,024,000,028,028,028,000 7
DB 032,032,032,000,036,036,036,000 9
DB 040,040,040,000,044,044,044,000 11
DB 048,048,048,000,052,052,052,000 13
DB 056,056,056,000,060,060,060,000 15
DB 064,064,064,000,068,068,068,000 17
DB 072,072,072,000,076,076,076,000 19
DB 080,080,080,000,084,084,084,000 21
DB 088,088,088,000,092,092,092,000 23
DB 096,096,096,000,100,100,100,000 25
DB 104,104,104,000,108,108,108,000 27
DB 112,112,112,000,116,116,116,000 29
DB 120,120,120,000,124,124,124,000 31
DB 128,128,128,000,132,132,132,000 33
DB 136,136,136,000,140,140,140,000 35
DB 144,144,144,000,148,148,148,000 37

264 Chapter Eight

DB 144,144,108,000,144,180,108,000 39
DB 144,072,144,000,144,108,144,000 41
DB 144,144,144,000,144,180,144,000 43
DB 144,072,180,000,144,108,180,000 45
DB 144,144,180,000,144,180,180,000 47
DB 180,072,072,000,180,108,072,000 49
DB 180,144,072,000,180,180,072,000 51
DB 180,072,108,000,180,108,108,000 53
DB 180,144,108,000,180,180,108,000 55
DB 180,072,144,000,180,108,144,000 57
DB 180,144,144,000,180,180,144,000 59
DB 180,072,180,000,180,108,180,000 61
DB 180,144,180,000,180,180,180,000 63

DB 108,108,108,000,108,144,108,000 1
DB 108,180,108,000,108,216,108,000 3
DB 108,108,144,000,108,144,144,000 5
DB 108,180,144,000,108,216,144,000 7
DB 108,108,180,000,108,144,180,000 9
DB 108,180,180,000,108,216,180,000 11
DB 108,108,216,000,108,144,216,000 13
DB 108,180,216,000,iOB,216,216,000 15
DB 144,108,108,000,144,144,108,000 17
DB 144,180,108,000,144,216,108,000 19
DB 144,108,144,000,144,144,144,000 21
DB 144,180,144,000,144,216,144,000 23
DB 144,108,180,000,144,144,180,000 25
DB 144,180,180,000,144,216,180,000 27
DB 144,108,216,000,144,144,216,000 29
DB 144,180,216,000,144,216,216,000 31
DB 180,108,108,000,180,144,108,000 33
DB 180,180,108,000,180,216,108,000 35
DB 180,108,144,000,180,144,144,000 37
DB 180,180,144,000,180,216,144,000 39
DB 180,108,180,000,180,144,180,000 41
DB 180,180,180,000,180,216,180,000 43
DB 180,108,216,000,180,144,216,000 45
DB 180,180,216,000,180,216,216,000 47
DB 216,108,108,000,216,144,108,000 49
DB 216,180,108,000,216,216,108,000 51
DB 216,108,144,000,216,144,144,000 53
DB 216,180,144,000,216,216,144,000 55
DB 216,108,180,000,216,144,180,000 57
DB 216,180,180,000,216,216,180,000 59
DB 216,108,216,000,216,144,216,000 61
DB 216,180,216,000,216,216,216,000 63

DB 144,144,144,000,144,180,144,000 1
DB 144,216,144,000,144,252,144,000 3
DB 144,144,180,000,144,180,180,000 5
DB 144,216,180,000,144,252,180,000 7

XGA Architecture and Initialization 263

DB 036,108,036,000,036,144,036,000 3
DB 036,036,072,000,036,072,072,000 5
DB 036,108,072,000,036,144,072,000 7
DB 036,036,108,000,036,072,108,000 9
DB 036,108,108,000,036,144,l08,000 11
DB 036,036,144,000,036,072,144,000 13
DB 036,108,144,000,036,144,144,000 15
DB 072,036,036,000,072,072,036,000 17
DB 072,108,036,000,072,144,036,000 19
DB 072,036,072,000,072,072,072,000 21
DB 072,108,072,000,072,144,072,000 23
DB 072,036,108,000,072,072,108,000 25
DB 072,108,108,000,072,144,108,000 27
DB 072,036,144,000,072,072,144,000 29
DB 072,108,144,000,072,144,144,000 31
DB 108,036,036,000,108,071,036,000 33
DB 108,108,036,000,108,144,036,000 35
DB 108,036,072,000,108,072,072,000 37
DB 108,108,072,000,108,144,072,000 39
DB 108,036,108,000,108,072,108,000 41
DB 108,108,108,000,108,144,108,000 43
DB 108,036,144,000,108,072,144,000 45
DB 108,108,144,000,108,144,144,000 47
DB 144,036,036,000,144,072,036,000 49
DB 144,108,036,000,144,144,036,000 51
DB 144,036,072,000,144,072,072,000 53
DB 144,108,072,000,144,144,072,000 55
DB 144,036,108,000,144,072,108,000 57
DB 144,108,108,000,144,144,108,000 59
DB 144,036,144,000,144,072,144,000 61
DB 144,108,144,000,144,144,144,000 63

DB 072,072,072,000,072,108,072,000 1
DB 072,144,072,000,072,180,072,000 3
DB 072,072,108,000,072,108,108,000 5
DB 072,144,108,000,072,180,108,000 7
DB 072,072,144,000,072,108,144,000 9
DB 072,144,144,000,072,180,144,000 11
DB 072,072,180,000,072,108,180,000 13
DB 072,144,180,000,072,180,180,000 15
DB 108,072,072,000,108,108,072,000 17
DB 108,144,072,000,108,180,072,000 19
DB 108,072,108,000,108,108,108,000 21
DB 108,144,108,000,108,180,108,000 23
DB 108,072,144,000,108,108,144,000 25
DB 108,144,144,000,108,180,144,000 27
DB 108,072,180,000,108,108,180,000 29
DB 108,144,180,000,108,180,180,000 31
DB 144,072,072,000,144,108,072,000 33
DB 144,144,072,000,144,180,072,000 35
DB 144,072,108,000,144,108,108,000 37

262 Chapter Eight

in groups of three items representing the red, blue, and green colors. In the
4-value update mode data is written in groups of four items; the first three
represent the red, blue, and green values, and the fourth item is a padding byte
which is ignored by the hardware. The 3-value sequence is similar to the one
used in VGA systems. The 4-value sequence is the one used by the AI. The
update mode is selected by means of bit 2 of the Palette Sequence register.

Notice that in the XGA palette the six high-order bits are significant while in
VGA the significant bits are the 6 low ones. Also notice that in the XGA-2
upgrade the Pallete registers have been expanded to 8 bits. Figure 8.9 shows
the Pallete registers in VGA, XGA, and XGA-2 systems.

RED GREEN BLUE

~ ~ - VGA

~ ~ ~ XGA

17 I 6 I 5 l 4 I 3 l 2 I 1 IO I I 7 I 6 I 5 I 4 I 312 I 1 I O I I 7 I 6 I 5 I 4 I 312 I 1 I O I XGA-2

Figure 8.9 DAG Register Bitmaps for VGA, XGA, and XGA-2

Loading the XGA Palette

Palette data for a full XGA palette consists of 256 red, green, and blue values
(color triplets), one for each Pallete register. We have mentioned that the color
values can be encoded in sets of three or four. The four-entry format is
compatible with the one used in the AI.

The following code fragment shows three listings for XGA palettes. The first
one, named IRGB_PAL, is a palette in double-bit IRGB format. The second
palette, named GRAY_PAL, is a grayscale palette that provides monochrome
settings for all DAC registers. The third palette, named IBMl_P AL, uses the
DAC register settings recommended in IBM documentation.

DATA SEGMENT

·** I

IRGB palette
~** I

Double-bit IRGB palette in the following format
7 6 5 4 3 2 1 0 <== Bits
I IRR G GB B <== Color codes

I R B G R B G
IRGB PAL DB ooo,ooo,ooo,ooo,036,072,036,ooo ; 1

XGA Architecture and Initialization 261

Table 8.6 Default Setting of XGA LUT Registers

REGISTER 6-BIT COLOR (HEX VALUE)
NUMBER R G B COLOR

0 0 0 0 Black
1 0 0 168 Dark blue
2 0 168 0 Dark green
3 0 168 168 Dark cyan
4 168 0 0 Dark red
5 168 0 168 Dark magenta
6 168 84 00 Brown
7 168 168 168 Gray
8 84 84 84 Dark gray
9 84 84 252 Light blue

10 84 252 84 Light green
11 84 252 252 Light cyan
12 252 84 84 Light red
13 252 84 252 Light magenta
14 252 252 84 Yellow
15 252 252 252 Bright white

16 to 31 0 0 168 Dark blue
32 to 47 0 168 0 Dark green
48 to 63 0 168 168 Dark cyan
64 to 79 168 0 0 Dark red
80 to 95 168 0 168 Dark magenta
96 to 111 168 84 0 Brown
112 to 127 168 168 168 Gray
128 to 143 84 84 84 Dark gray
144 to 849 84 84 252 Light blue
160 to 175 84 252 84 Light green
176 to 191 84 252 252 Light cyan
192 to 207 252 84 84 Light red
208 to 223 252 84 252 Light magenta
224 to 239 252 252 84 Yell ow
240 to 255 252 252 252 Bright white

Notice that the default settings for the XGA registers represent only 16 color
values, which correspond to registers O to 15 in Table 8.6. The default colors
encoded in LUT registers 16 to 255 are but a repetition, in groups of16 registers,
of the encodings in the first 16 LUT registers. Consequently, software products
that intend to use the full color range of the XGA must reset the Palette
registers.

Palette Structure

The XGA palette data consists ofred, blue, and green values, sometimes called
color triplets, that are stored in corresponding registers. The mechanism
resembles the one used by the VGA palette in the 256-color modes. However,
the XGA palette is a simpler device than the one in VGA since no Palette or
Color Select registers are involved. The XGA palette consists of three sets of
256 registers in which the red, blue, and green DAC values are stored. In this
manner a pixel color can be interpreted as a Palette register number; the actual
color in which the pixel is displayed depends on the value stored in the
corresponding Palette register.

The XGA Palette register hardware consists of 256 locations; each location is
divided into three fields. The first field corresponds to the red DAC value, the
second one to the blue, and the third field to the green. The XGA allows two
update mode: in the 3-value update mode data is written to the Pallete registers

260

clear screen and
restore video signal

;**********************I
SETUP END:

At this point the screen should be cleared to avoid
a disturbing screen flash when the VGA video signal is
restored. Since the video buffer in VGA modes is 256K,

Chapter Eight

this is the memory area that must be cleared. The operation is
preformed by the X_CLEAR_256 procedure in the XGA3 module

CALL X CLEAR 256 Library procedure in XGA3
Make palette visible to restore video

Exit

MOV DX,XGA_REG_BASE
ADD DX, OAH
MOV AX,OFF64H
OUT

CLC
POP
RET

DX,AX

OS

BAD MODE:
STC
POP
RET

OS

XGA MODE ENDP
CODE ENDS

8.4.4 The XGA Palette

Index register
Value is all ones for ON
Write data

No error
Restore caller;'s OS

Carry is error flag
Restore caller;'s OS

We have seen that XGA video memory is organized in bit planes. Each bit plane
encodes the color for a rectangular array of 1024-by-1024 pixels. Since the
highest available resolution is 1024-by-768 pixels, there are 256 unused bits in
each plane. When the graphics system is in a low-resolution mode, video
memory consist of eight 1024-by-512 bit planes, which are divided into two
separate groups of four bit planes each. These two bit-plane groups can be
simultaneously addressed. In the low-resolution mode the color range is limited
to 16 simultaneous colors. In the high-resolution mode video memory consists
of eight bit planes of 1024-by-1024 pixels. In this mode the number of simulta­
neous colors is 256. Figure 8.2 shows the bit-plane mapping in XGA high-reso­
lution modes.

Color Look-up Table

Color selection is performed by means of a color look-up table (LUT) associated
with the XGA DAC. The selection mechanism is similar to the one used in VGA
mode number 19; that is, the 8-bit color code stored in XGA video memory serves
as an index into the color look-up table. For example, the color value 12 in video
memory selects LUT register number 12, which in the default setting stores
the encoding for light red. The default settings of the LUT registers can be seen
in Table 8.6.

XGA Architecture and Initialization

;**********************I
graphics mode setup I

;**********************I
VALID MODE:

Enable VGA graphics
Note: IBM documentation recommends using BIOS service 12H

Store

(BL=32H) to enable and disable VGA video
MOV DX,03C3H VGA Video Enable register
MOV
OUT
current
MOV
INT
MOV

AL,l
DX,AL
VGA video mode
AH,15
l0H
VGA_MODE,AL

Value to enable video
Output to port

BIOS service request number

Store it for VGA reset

The table at XGA VAL contains the values to be sent to the
XGA register in order to initialize the corresponding mode

259

LEA SI,XGA_VAL Point to start of values table
MOV BX,MODE

;**********************I
initialize XGA

registers
;**********************!

; Use mode as an offset

The value at offset 0 of XGA_VAL is the register number
The value at offset 1 is the index register number if the
register is 0AH. The remaining entries are register data for
each mode

REG DATA:
MOV
MOV
MOV

DX,XGA_REG_BASE
AH, 0
AL, [SI]

Register value 0FFH marks the
CMP AL,0FFH
JE SETUP END
ADD
CMP
JE

DX,AX
AL,0AH
INDEXED

At this point register is not
is output directly

XGA register base
High byte of offset is 0
Low byte of offset

end of the table
End of the table?
End of register setup
Add register offset to base
Test for an Index register
Go if Index register

at offset 0AH, therefore data

BX holds mode number, which
MOV AL, [SI+BX]
OUT DX,AL

is offset into table
Get data value from
and send to port

table

JMP SHORT NEXT REG
INDEXED:

MOV
MOV
OUT

NEXT REG:
ADD
JMP

AL, [SI+l]
AH, [SI+BX]
DX,AX

SI,6
REG DATA

;**********************!

Continue

Get Index register number
Get data byte from table
Output data to Index register

; Index to next register

258 Chapter Eight

DB OOAH,050H,OOFH,OOFH,OC7H,OC7H Display mode 1
Border color
Sprite pal lo
Sprite pal hi
Sprite pre lo
Sprite pre hi
End of the list

DB OOAH,OSSH,OOOH,OOOH,OOOH,OOOH
DB OOAH,060H,OOOH,OOOH,OOOH,OOOH
DB OOAH,061H,OOOH,OOOH,OOOH,OOOH
DB OOAH,062H,OOOH,OOOH,OOOH,OOOH
DB OOAH,063H,OOOH,OOOH,OOOH,OOOH
DB OFFH,OFFH,OFFH,OFFH,OFFH,OFFH

Note: the Palette Mask register at offset
FFH to reenable the XGA signal

64H must be set to

XGA DIRECT ENDS

·** I

processing operations for XGA mode setting
;**
CODE SEGMENT PUBLIC

ASSUME CS:CODE
.386

XGA MODE PROC FAR
Procedure to initialize an XGA graphics mode by setting the
video system registers directly

On entry:
AL mode number (valid range is 2 to 5)

On exit:
carry clear if no error

;**********************I
save caller's OS

; set OS to XGA_DIRECT I
;**********************I

PUSH OS
PUSH AX
MOV AX,XGA_ DIRECT
MOV DS,AX
ASSUME DS:XGA DIRECT
POP AX
MOV AH,0
MOV MODE,AX
CMP MODE,6
JB TEST MODEl
JMP BAD MODE

Mode 0 = VGA BIOS mode number
Mode 1 = 132 column text mode
These modes are not valid

TEST MODEl:
CMP MODE,l
JA VALID MODE
JMP BAD MODE

3

Save caller's mode
Local data segment
to OS

Restore caller's mode
Clear high mode byte
Mode to variable
Mode number out of range?
Go if less than 6
illegal entry value for mode

80-col VGA text mode?
Go if range is 1
Error exit for invalid mode

XGA Architecture and Initialization

1024x768x256 ----------1

Index ------------1
Register-----1 I

I I

I
I
I
I

XGA VAL DB 004H,00OH,000H,000H,00OH,000H
DB 00SH,000H,0FFH,0FFH,0FFH,OFFH
DB 000H,0O0H,004H,004H,004H,004H
DB 00AH,064H,000H,000H,00OH,000H
DB 001H,000H,001H,001H,001H,001H
DB 00BH,000H,000H,000H,000H,000H
DB > 006H,000H,000H,000H,000H,000H
DB 009H,000H,003H,002H,003H,004H
DB 00AH,050H,001H,001H,001H,001H
DB 0OAH,0S0H,000H,000H,000H,000H
DB 00AH,010H,09DH,09DH,063H,063H
DB 00AH,0llH,000H,000H,000H,000H
DB 00AH,012H,07FH,07FH,04FH,04FH
DB 00AH,013H,000H,000H,000H,000H
DB 00AH,014H,07FH,07FH,04FH,04FH
DB 00AH,015H,000H,000H,000H,000H
DB 00AH,016H,09DH,09DH,063H,063H
DB 00AH,017H,000H,000H,000H,000H
DB 00AH,018H,087H,087H,055H,055H
DB 00AH,019H,000H,000H,000H,000H
DB 00AH,01AH,09CH,09CH,061H,061H
DB 00AH,0lBH,000H,000H,000H,000H
DB 00AH,01CH,040H,040H,000H,000H
DB 00AH,01EH,004H,004H,000H,000H
DB 00AH,020H,030H,030H,00CH,00CH
DB 00AH,021H,003H,003H,002H,002H
DB 00AH,022H,0FFH,0FFH,0DFH,0DFH
DB 00AH,023H,002H,002H,001H,001H
DB 00AH,024H,0FFH,0FFH,0DFH,0DFH
DB 00AH,025H,002H,002H,001H,001H
DB 00AH,026H,030H,030H,00CH,00CH
DB 00AH,027H,003H,003H,002H,002H
DB 00AH,028H,000H,000H,0EAH,0EAH
DB 00AH,029H,003H,003H,001H,001H
DB 00AH,02AH,008H,008H,0ECH,0ECH
DB 00AH,02CH,0FFH,0FFH,0FFH,0FFH
DB 00AH,02DH,0FFH,0FFH,0FFH,0FFH
DB 00AH,036H,000H,000H,000H,000H
DB 00AH,040H,000H,000H,000H,000H
DB 00AH,041H,000H,000H,000H,000H
DB 00AH,042H,000H,000H,000H,000H
DB 00AH,043H,080H,040H,050H,0A0H
DB 00AH,044H,000H,000H,000H,000H
DB 00AH,054H,00DH,00DH,000H,000H
DB 00AH,051H,003H,002H,003H,004H
DB 00AH,070H,0O0H,000H,000H,000H

Interrupt enable
Interrupt status
Operating mode
Palette mask
Vid mem aper cntl
Vid mem aper indx
Virt mem ctl
Mem access mode
Disp mode 1
Disp mode 1
Horiz tot lo.
Horiz tot hi.

257

Hor disp end lo
Hor disp end hi
Hor blank start lo
Hor blank start hi
Hor blank end lo
Hor blank end hi
Hor sync start lo
Hor sync start hi
Hor sync end lo
Hor sync end hi
Hor sync pos
Hor sync pos
Vert tot lo
Vert tot hi
Vert disp end lo
Vert disp end hi
Vert blank start lo
Vert blank start hi
Vert blank end lo
Vert blank end hi
Vert sync start lo
Vert sync start hi
Vert sync end
Vert line comp lo
Vert line comp hi
Sprite cntl
Start addr lo
Start addr me
Start addr hi
Pixel map width lo
Pixel map width hi
Clock sel
Display mode 2
Ext clock sel

256

HIGH RES TESTS:
TEST
JNZ

There is 512K
MOV
JMP

DC OR 256:
CMP
JNE
MOV

BEST MODE EXIT:
MOV
POP
RET

XGA BEST MODE
CODE

BL,00001000B
DC OR 256
RAM. Best mode
DX,3
BEST MODE EXIT

AL,1
BEST MODE EXIT
DX,5

AX,DX
DS

ENDP
ENDS

Setting the XGA Mode

is

Chapter Eight

Bit 3 set if 1Mb RAM
Go to DC or 256-color options
mode number 3
Force mode 3

Test caller's preference
Go if not preferred
Set mode 5 (direct color)

Result to AX
Restore caller's DS

Once the software has determined the available XGA modes and selected the
desired one, the mode setting operation takes place. The fundamental mode
setting action consists ofloading most of the Display Controller registers with
preestablished values. These mode-specific values are listed in the XGA Video
Subsystem section of the IBM Personal System 12 Hardware Interface Technical
Reference Manual, document number 42G2-2193-00.

The processing operations during mode set are as follows:
1. Disable the video signal to avoid screen garbage during mode setting.
2. Initialize the XGA registers.
3. Clear screen and reenable video.

The following procedure contains the necessary manipulations for setting an
XGAmode:

·** ,
data variables for XGA mode setting operation

·** ,

XGA DIRECT SEGMENT PUBLIC

; Contents of POS registers
XGA REG BASE DW 0FFFFH
MODE DW 0

;**********************I
mode setting da~a

;**********************I
NUMBER:

Register base for XGA system
Mode number during init

M O D E :
640x480x65536
640x480x256
1024x768x16

5 ----------------1
4 -----------1 I
3---1 I I

XGA Architecture and Initialization

Code assumes that INIT XGA has been previously called
and that an XGA system was found
On entry:

AL= 1 if a direct-color mode is preferred
On exit:

AX holds best available XGA mode

;**********************I

save caller's DS
; set DS to XGA DIRECT I
;**********************I

PUSH DS
PUSH AX
MOV AX,XGA_ DIRECT
MOV DS,AX
ASSUME DS:XGA DIRECT
POP AX

Save entry code
Local data segment
to DS

Restore entry code
MOV BL,EQUIPMENT Load initialization results

At this point
BL bits 7 6 5 4 3 2 1 0

I I I I I I I I 1 XGA in system

I I I I I I I 0 no XGA found

I I I I I I I 1 XGA color monitor

I I I I I I 0 XGA monochrome monitor
I I I I I I 1 high-resolution (1024 X 768)

I I I I I 0 no high-resolution
I I I I I 1 RAM= 1Mb

I I I I 0 RAM= 512Kb

I I I I 1 dual monitor system
I I
I I

I
I

0 single monitor system
UNUSED

;***************************I

test for high res
monitor

;***************************!

No

MOV

TEST
JNZ

DX,2

BL,00000l00B
HIGH RES TESTS

high-resolution monitor,
MOV DX, 5
TEST BL,0000l000B
JNZ
MOV
JMP

BEST MODE EXIT
DX,4
BEST MODE EXIT

;***************************I

select high res mode
;***************************I

Assume mode number 2
1024-by-768 pixels in 256
colors
High res bit is set?
Go if high res available

test for 1Mb RAM
Force mode 5 selection
Bit 3 set if 1Mb
Direct color available
Mode number 4 is best

; At this point mode number 2 is preselected

255

254 Chapter Eight

YES

Figure 8.8 Selection Flowchart for Best XGA Video Mode

Selecting the XGA Mode

Since modes number 2 and 5 offer different features, the selection of the best
possible XGA mode is a matter of preference and circumstances. For example,
mode number 2 (1024-by-768 pixels in 256 colors) is the preferred option when
the best resolution is the determining factor, while mode number 5 (640-by-480
pixels in 65,536 colors) is the preferred one when the widest color range is
desired. The logic shown in the flowchart of Figure 8.8 attempts to select the
best XGA mode, while allowing the user to force direct color output (mode
number 5) if modes number 2 and 5 are both available.

The following procedure implements the logic of the flowchart in Figure 8.8
in XGA mode selection:

·** ,
processing operations for XGA mode selection

·** ,
CODE SEGMENT PUBLIC

ASSUME CS:CODE
.386

XGA BEST MODE PROC FAR
; Select best available XGA mode

XGA Architecture and Initialization

TEST EQUIPMENT,lOH Test monitor bit for
dual-monitor system

JNZ
VGA signal is
Mode register
register

XGA EXIT Go if a dual-monitor system
restored by writing 001B to the XGA Operating
and a value of 1 to the VGA Video System Enable

MOV
MOV
OUT

MOV

MOV
OUT
JMP

DX,XGA_REG_BASE
AL,1
DX,AL

DX,03C3H

AL,1
DX,AL
SHORT XGA EXIT

;**********************I
ERROR exit

;**********************I
NO XGA:

MOV
STC
POP
RET

XGA_REG_BASE,O

OS

;**********************!
NO ERROR exit

;**********************I
XGA EXIT:

MOV AL,EQUIPMENT
MOV BX,XGA_REG_BASE
MOV CX,MON_ID
CLC
POP OS
RET

INIT XGA ENDP
CODE ENDS

8.4.3 XGA Mode Selection and Setting

Register base
Bitmap is 001B
Write to Operating Mode
register
VGA Video System Enable
register
Value is 00000001B
Write to register

Set invalid value in variable
Error flag
Restore caller's OS

Return the result
Return register base address
Monitor ID
No error
Restore caller's OS

253

Once the XGA preliminary initialization has been performed, the software has
available the necessary information to select a particular display mode. The
decision is often a simple one since the range of mode options in the XGA is not
very extensive at this time. (See Table 8.4.) The graphics mode with the best
resolution (mode number 2 in Table 8.4) requires a system with 1Mb of video
memory and a monitor capable of supporting 1024-by-768 pixels. The mode
with the best color range (mode number 5 in Table 8.4) also requires 1Mb of
video RAM and one of the compatible monitors.

252 Chapter Eight

MOV AL,03H 7 6 5 4 3 2 1 0 <== bitmap
I I I I I I I I Bits/pixel
I I I I I 1_1_1_ ooo 1 bit
I I I I I 001 2 bits
I I I I I 010 4 bits
I I I I I *011 8 bits
I I I I I 100 16 bits
I I I I I *O = Intel
I I I I 1 = Motorola
1_1_1_1 __ RESERVED
03H = 00000011B

OUT DX,AL
continues in the following code listing

Restore VGA Signal and Exit

At this point the XGA preliminary initialization is complete. All that remains
is to reenable video output, to restore the VGA signal if the system is equipped
with a single monitor, and to load data into the registers that are passed back
to the caller. Recall that the video signal was previously disabled in order to
prevent screen garbage during the initialization operations. To disable video,
we wrote zeros to the Palette Mask registers; to enable it, we write ones. In a
single-monitor system the VGA signal is restored by writing 001B to the XGA
Operating Mode register and a value of one to the VGA Video System Enable
register.

There are two exit labels: one if no XGA hardware was detected and the other
one if an XGA system was found. The code uses the carry flag to report errors
(no XGA found if carry set). The information returned to the caller is in the form
of a bit-coded equipment byte (shown in the procedure's header), the address
of the XGA subsystem (returned in the BX register), and the 4-digit monitor ID
code (returned in the CX register). The following fragment shows the process­
ing:

continues from the previous code listing
;**********************I

enable palette mask I
;**********************I

Reenable video by setting all bits in the Palette Mask
register

MOV
ADD
MOV
OUT

DX,XGA_REG_BASE
DX,0AH
AX,0FF64H
DX,AX

;**********************!
; restore VGA signal
;**********************I

Register base
To Index register
FFH to Palette Mask register

In single-monitor systems the VGA signal must be restored
; on exit

XGA Architecture and Initialization

system
MOV
CALL

AL,12
XGA NEWBANK

;**********************I
test bank 12

;**********************I

251

Select bank 12
Local select bank procedure

Memory size is determined by writing and then reading data at
bank 12 address. If the data stored is recovered, then the
XGA system contains lKb of VRAM. Otherwise the system contains
512K

PUSH
MOV
MOV
MOV
MOV
JMP
MOV
CMP
JNE

ES
AX,0A000H
ES,AX
AL, 0A5H
ES: [0000H) ,AL
SHORT$+ 2
AH, ES: [0000HJ
AH,AL
XGA 512

; 1Mb VRAM in system

Save ES segment
AX= base address of video RAM
VRAM base to ES
Any value to AL
Store AL in VRAM
Delay
Read VRAM byte
Compare values
Go if value not recovered

OR EQUIPMENT,00001000B Set bit 3
XGA 512:

POP ES
;**********************I
; select video page 0
;**********************I

MOV AL,0
CALL XGA NEWBANK

; Restore ES segment

; Select bank 0
; Restore bank Oas active

continues in the following code listing

Select Color Depth and Data Format

Before the system microprocessor is able to access video memory, the XGA
hardware requires that a specific pixel color depth and data format be selected.
This data is entered into the Memory Access Mode register at address 2lx9H.
The pixel color depth options available are successive powers of 2, that is, 1, 2,
4, 8, and 16 bits per pixel. The data format can be in little endian (Intel
convention) or big endian (Motorola convention). PC systems normally use the
Intel convention. Although the color depth is mode-specific and could be
changed during mode setting, this initialization sets 8 bits-per-pixel and Intel
data format in order to leave the XGA in a known state.

; ... continues from the previous code listing
;**********************I

select access mode
;**********************I

Select Intel order and 8 bits per pixel in the Memory Access
; Mode register (offset+ 9)

MOV DX,XGA_REG_BASE Register base
ADD DX,9 To Mode register

250 Chapter Eight

; set extended graphics!
mode I

;**********************I
A value of 100B in bit Oto 2 of the Operating Mode register
selects the extended graphics mode

MOV DX,XGA_REG_BASE; Register base
Switch to extended mode

MOV AL,00000100B
OUT DX,AL

;**********************I
select 64K aperture I

at A0000H I
;**********************I

; Bitmap is 100B

Operating systems and real mode applications access XGA video
memory by means of a 64K aperture. Since in 1024-by-764 mode
there are 786,432 pixels, 12 banks of 64K are required. The
active bank is selected by means of the Aperture Index register
at address 21x8H

MOV DX,XGA_REG_BASE
ADD DX,0lH

MOV AL,1

Register base
Select Aperture Control
register
Value 01B selects 64K at

OUT DX,AL Write data to register
continues in the following code listing

XGA Memory size

A0000H

The recommended way to determine the memory size of an XGA system is by
attempting to access memory addresses in the range to be tested. For example,
software can determine if the XGA is equipped with 1Mb of video memory by
attempting to read and write data to a memory cell located within the last 512K
of this range. The code assumes that the 64K aperture is selected.

; ... continues from the previous code listing
;**********************I

determine XGA
memory size

;**********************I
Clear palette mask to avoid screen garbage while testing memory
The contents of the Palette Mask register (offset 64H) are ANDed
with the screen pixels at display time. Clearing all bits
disables the display

MOV DX,XGA_REG_BASE Register base
ADD DX,0AH To Index register
MOV AX,0064H 00 to register at offset 64H
OUT DX,AX Write data

Display is now disabled by means of the Palette Mask
;**********************I

; select video page 12 I
;**********************I
; All addresses in the page are in the second 512K of a 1Mb

XGA Architecture and Initialization

OR 'AX,BX
;***************************I

store monitor ID
;***************************I

Store in 'AX

MOV MON_ID,'AX ; Variable
; ... continues in the following code listing

Testing for Two-monitor Systems

249

It is important for software to know if the XGA system is providing the VGA
functions or if there is a separately attached VGA monitor. This information
can be obtained by testing the low-order bit in the XGA Operating Mode
register. If this bit is set, then the XGA is providing the VGA function (single
monitor system.) The following code fragment shows the required processing:

; ... continues from the previous code listing
;*****************************I
; test for two-monitor system I
;*****************************I

Read bit O of the Operating Mode register (offset 0) to
determine if VGA mode address decoding is enabled

MOV DX,XGA_REG_BASE Operating Mode register
IN AL,DX Read data byte
TEST AL,l Test low bit
JNZ INT CONTROL Go single monitor in system
OR EQUIPMENT,000l0000B ; Set bit 5 to indicate

; two monitors
continues in the following code listing

Selecting the XGA Aperture

The initialization code must also enable the XGA extended graphics mode and
select one of the three possible memory apertures. Notice that software that
uses the XGA coprocessor for performing graphics display operations is not
linked to any particular aperture. Therefore the aperture is significant only to
software that accesses the video memory space directly. The following initiali­
zation code fragment selects the XGA 64K aperture:

; ... continues from the previous code listing
;**********************I

disable XGA system
interrupts

;**********************I
INT CONTROL:

MOV
ADD

XOR

DX,XGA_REG_BASE
DX,4

AL,AL
OUT DX,AL

;**********************I

Register base
Select Interrupt Enable
register
All interrupts OFF

248

;***************************I
merge bits number 0

;***************************I

Chapter Eight

; Now merge all four bits number 0 into monitor nibble 0
MOV AL,VAR_A Load 4 byte-registers with bit
MOV BL,VAR_B ; data to be merged
MOV
MOV

Mask out all
AND
AND
AND
AND

CL,VAR_C
DL,VAR_D

bits except 0
AL,00000001B
BL,000000018
CL,000000018
DL,000000018

Shift registers, except DL
SHL AL,l
SHL AL,1
SHL AL,1
SHL BL,1
SHL BL,1
SHL CL,1

Combine bits in AL and store
OR AL,BL
OR AL,CL
OR AL,DL
MOV NIB_0,AL

;***************************I
combine four ID nibbles

into doubleword
;***************************I

Shift left AL, three times

And BL twice
And BL twice
And CL once

results
; Merge in AL

Store nibble

; All four nibbles are now combined in the AX register
MOV AX,0 Clear destination for ORing
MOV BX,0 And source register
MOV BL,NIB 3 Load nibble 3 -
MOV CL,12 Number of bits to shift
SHL BX,CL Shift operand
OR AX,BX Store in AX

Next nibble
MOV BX,0 And source register
MOV BL,NIB_ 2 Load nibble 2
MOV CL,8 Number of bits to shift
SHL BX,CL Shift operand
OR AX,BX Store in AX

Next nibble
MOV BX,0 And source register
MOV BL,NIB 1 Load nibble 1 -
MOV CL, 4 Number of bits to shift
SHL BX,CL Shift operand
OR AX,BX Store in AX

last nibble
MOV BX,0 And source register
MOV BL,NIB 0 Load nibble 1 -

XGA Architecture and Initialization

OR AL,BL
OR AL,CL
OR
MOV

AL,DL
NIB_3,AL

;***************************I

merge bits number 2
;***************************I

Merge in AL

Store nibble

; Now merge all four bits number 2 into monitor nibble 2
Load four byte registers

; bit data to be merged
MOV AL,VAR_A
MOV BL,VAR_B
MOV CL,VAR_C
MOV DL,VAR_D

Mask out all bits except 2
AND AL,00000l00B
AND BL,00000l00B
AND CL,00000l00B
AND DL,00000l00B

Shift registers, except BL
SHL AL,1
SHR CL,1
SHR DL,1
SHR DL,1

Combine bits in AL and store
OR AL,BL
OR AL,CL
OR AL,DL
MOV NIB_2,AL

;***************************I

merge bits number 1
;***************************I

Shift left AL
Shift right CL bits
Shift right DL bits twice

results
; Merge in AL

Store nibble

; Now merge all four bits number 1 into monitor nibble 1
Load four byte registers

; bit data to be merged
MOV AL,VAR_A
MOV BL,VAR_B
MOV CL,VAR_C
MOV DL,VAR_D

Mask out all bits except 1
AND AL,000000l0B
AND BL,00000010B
AND CL,00000010B
AND DL,00000010B

Shift registers, except CL
SHL AL, 1
SHL AL,1
SHL BL,1
SHR DL,1

Combine bits in AL and store
OR AL,BL
OR AL,CL
OR AL,DL
MOV NIB_l,AL

Shift left AL, twice

And BL once
Shift DL bits once

results
; Merge in AL

Store nibble

247

with

with

246 Chapter Eight

MOV VAR_B,AL Store in variable
;***************************I

read data nibble C
;***************************I

; SP field= 00 for this read cycle
CALL
AND
MOV
OUT

Read Display
using local

CALL

READ DCl
AH, 00111111B Clear bits 6 and 7
AL,S0H Register number in AL
DX,AX Write to port in DX

ID and comparator register at offset 52H
procedure

READ DID Local procedure
AL has bits read

AND AL,0000llllB
MOV VAR_C,AL

Clear high nibble
Store in variable

;***************************I

read data nibble D
;***************************I

; SP field= 11 for this read cycle
CALL READ DCl
AND AH,00llllllB Clear bits 6 and 7
OR AH,ll000000B
MOV AL,S0H Register number in AL
OUT DX,AX Write to port in DX

Read Display ID and comparator register at offset 52H
using local procedure

CALL READ DID Local procedure
AL has bits read

AND AL,0000llllB
MOV VAR_D,AL

Clear high nibble
Store in variable

;***************************I

merge ID data
;***************************I

; First merge all four bits
MOV AL,VAR_A
MOV BL,VAR_B
MOV CL,VAR_C
MOV DL,VAR_D

Mask out all bits except 3
AND AL,0000l000B
AND BL,0000l000B
AND CL,0000l000B
AND DL,0000l000B

Shift registers, except AL
SHR BL,l
SHR CL,l
SHR CL,l
SHR DL,l
SHR DL,l
SHR DL,l

number 3 into monitor nibble 3

;
Load four byte registers
bit data to be merged

Shift right and merge
Shift CL bits twice

Shift DL bits three times

Combine bits in AL and store results

with

XGA Architecture and Initialization

Controller 1 register (offset 50H)
CALL READ DCl ; Get byte in Display Cont. 1

; using local procedure
Al now holds contents of Display Control 1 register
Display Blanking bit field (bits 0-1) must be set to 01
to prepare for reset. Bit 2 must also be set

OR AL,00000101B Set bits 0 and 2
AND AL,11111101B Clear bit 1
MOV
ADD
MOV
MOV

DX,XGA_REG_BASE
DX, 0AH
AH,AL
AL,S0H

OUT DX,AX

Base to DX
To Index register
Data byte to AH
Port number to AL

Display Blanking bit field (bits 0-1) must be set to 00
to reset. Bit 2 must also be set

CALL READ DCl
OR
AND
MOV

AH,00000l00B
AH, 11111100B
AL,S0H

Set bit 2
Clear bits 0 and 1
Port number to AL

OUT DX,AX
Set Sync Polarity field
VSYNC to 0 and HSYNC to

Write to port in DX
(bits 6 -7) to 01. This sets the
1

CALL READ DCl
AND
OR
MOV
OUT

AH, 00111111B
AH,0l000000B
AL,S0H
DX,AX

;***************************I
read data nibble A

;***************************I
SP field= 01 for first read

Clear bits 6 and 7
Set bit 6
Register number in AL
Write to port in DX

Read Display ID and Comparator register at offset 52H
using local procedure

CALL READ DID Local procedure
AL has bits read

AND AL,0000llllB
MOV VAR_A,AL

;***************************I
read data nibble B

;***************************I

Clear high nibble
Store in variable

; SP field= 10 for this read cycle
CALL READ DCl Local procedure
AND AH,00llllllB Clear bits 6 and 7
OR AH,l0000000B
MOV AL,S0H Register number in AL
OUT DX,AX Write to port in DX

Read Display ID and Comparator register at offset 52H
using local procedure

CALL READ DID Local procedure
AL has bits read

AND AL,0000llllB Clear high nibble

245

Chapter

10

SuperVGA Graphics and Animation

10.0 SuperVGA

The name SuperVGA refers to enhancements to the VGA standard usually in
the form of video adapters designed for computers based on the ISA or EISA
bus architectures. One common characteristic of all SuperVGA boards is the
presence of graphics features that exceed the VGA standard in definition or
color range. In other words, a typical SuperVGA board is capable of executing
not only the standard VGA modes, but also other modes that provide higher
definition or more colors than VGA. The proprietary SuperVGA modes are
usually called the enhanced modes.

The proliferation of Super VGA hardware during the late eighties gave rise to
many compatibility problems. This was due to the fact that the enhanced
features of the SuperVGA cards were not standardized; therefore the Su­
perVGA enhancements in the card produced by one manufacturer were often
incompatible with the enhancements in a card made by another company. To
the graphics programmer this situation often presented insurmountable prob­
lems, because a program designed to take advantage of the enhancements in
one SuperVGA card would usually not execute correctly in another one.

These incompatibility problems are easier to correct at the operating system
level than at the application level, particularly regarding operating systems
that offer graphics services to application software. For example, the manufac­
turer ofSuperVGA boards can furnish software drivers for Windows and OS/2.
Once the driver is installed, the graphics environment in the operating system
is able to use the enhancements provided by a particular SuperVGA board and
provide these services to applications that request them.

In addition, the MS-DOS version of some high-end graphics programs have
been designed with a flexible video interface to make them more easily adapt

331

332 Chapter Ten

to the features of a particular SuperVGA. Some versions of AutoCad, Ventura
Publisher, Wordperfect, Lotus 1-2-3, and others have video hooks to which a
SuperVGA card can attach its low-level driver. Therefore a SuperVGA manu­
facturer can make available a driver program to make its hardware compatible
with a particular application.

However, in many high-performance graphics applications the video func­
tions are embedded in the code. In this case the adaptation to a nonstandard
video mode or hardware usually implies a major program redesign. In 1989
several manufacturers of SuperVGA boards formed the Video Electronics
Standards Association (VESA) in an attempt to solve this lack of stand­
ardization. In October 1989 VESA released its first Super VGA standard, which
defined several enhanced video modes and implemented a BIOS extension
designed to provide a few fundamental video services in a compatible fashion.

10.0.1 SuperVGA in Animation Programming

The problem of SuperVGA programming boils down to two options: the Su­
perVGA system can be accessed at the hardware level, with maximum perform­
ance but minimum portability to other SuperVGAs, or the system can be
accessed by means of a software interface, such as that provided by the VESA
standard, which assures portability at the expenses of performance. To the
animation programmer these options offer no easy choice. Developing software
that runs only in one particular hardware configuration is usually not a
commercially viable alternative. On the other hand, the performance sacrifice
that is required to achieve program portability is not always technically
possible.

10.1 SuperVGA Memory Architecture

All IBM microcomputer video systems are memory-mapped. VGA video mem­
ory extends from A0000H to BFFFFH. The 64K block from A0000H to AFFFFH
is usually devoted to graphics while the 64K block from B0000H to BFFFFH is
for alphanumeric modes. The total space reserved for video operations is 128K.
However, since some systems are set up with two monitors, one of them
operating in alphanumeric modes (base address B000H), the actual video space
for graphics operations is practically limited to 64K.

The video data that can be stored in a 64K memory space is limited. In VGA
mode number 19, in order to achieve 256 colors the screen definition must be
reduced to 320-by-200 pixels. VGA mode X designers were able to increase this
definition to 320-by-240 by introducing a planar mechanism that stores data
in a similar structure as VGA mode 18. But in spite of the short supply of video
memory space, simple arithmetic shows a memory surplus in many VGA
modes. For example, if the resolution is of640-by-480 pixels (mode 18), the video
data stored in each map takes up 38,400 bytes of the available 65,536. There-

SuperVGA Graphics and Animation 333

fore, there are 27,136 unused bytes in each map. The idea of enhancing the
VGA system was based on using this surplus memory to store video data.

The original SuperVGA designers realized that it was possible to have an
800-by-600 pixel display, divided into four maps of60,000 bytes each, and yet
not exceed the 64K space allowed for each color map nor the total 265K
furnished with the VGA system. Enhancing the 16-color VGA modes to a
resolution of 800-by-600 pixels was one of the first extensions to the VGA
standard. This mode, which was later designated as mode 6AH by the VESA
standard, could be programmed in a similar manner as VGA mode 18. The VGA
extension, which could be achieved with minor changes in the hardware,
provided a 36 percent increase in the display area.

Another apparently expedient extension to the VGA standard can be achieved
by means of a wider pixel mask register. This change in the hardware would
make possible the use of more than 16 colors in the corresponding VGA modes.
Every bit added to the pixel mask would double the color range. However, this
has never been implemented in a Super VGA system due to performance factors
and other hardware considerations.

10.1.1 SuperVGA Memory Banking

The memory structure for VGA mode number 19, in 256 colors, is based, not on
a multiplane layout, but on a much simpler scheme that maps a memory byte
to each screen pixel. (See Figure 2.12.) In this manner, 256 color combinations
can be directly encoded into a data byte, which conveniently corresponds to the
256 DAC color registers of the VGA hardware. The method appears straight­
forward and uncomplicated; however, if the entire video space is to be contained
in 64K of memory, the maximum resolution would be limited to 65,535 pixels.
In other words, a rectangular screen of 320-by-200 pixels, such as the one used
in VGA mode number 19, nearly fills the allotted 64K. Figure 10.1 shows
mapping of several memory banks to the video display.

VIDEO AREA MAPPED
TO BANK 4

IIDDIDIIIIIIIIIIlllll□ o

Bank
selecting

mechanism

Figure 10.1 SuperVGA Memory Banking

MEMORY BANKS

AOOOOH

AOOOOH

AOOOOH

BANK 2
AFFFFH

BANK 3
AFFFFH

BANK 4
AFFFFH

334 Chapter Ten

Therefore, if the resolution for a 256-color mode were to exceed 64K pixels, it
would be necessary to find other ways of mapping video memory into 64K of
system RAM. One such alternative is the VGA mode X described in Chapter 7.
The mechanism adopted by the SuperVGA designers was based on the well­
known technique known as bank switching. In bank switching the video display
hardware maps several 64K blocks of RAM to the same video memory area.
Addressing of the multisegment RAM space is by means of a hardware mecha­
nism that selects which video memory area is currently located at the system's
addressable space. In the SuperVGA implementation the system addressable
space is usually at A0000H. The entire process is reminiscent of memory page
switching in the Lotus I Intel I Microsoft (LIM) Extended Memory environment.

The term aperture is often used in video graphics terminology to denote the
processor's window into the video memory space. For example, if the address­
able area of video memory starts at physical address A0000H and extends to
AFFFFH, we say that the CPU has a 64K aperture into video memory (l0000H
= 64K). In SuperVGA documentation the word "granularity" is often used in
this context. In Figure 10.1 we can see that the bank selector determines which
area of video memory is mapped to the processor's aperture, the same video
display area that can be updated by the processor. In other words, in a memory
banking scheme the processor cannot access the entire video memory at once.
Therefore, in the case shown in Figure 10.1 we would have to perform five bank
switches in order to update the entire screen. By the same token, if the code
intends to update a pixel located in bank number 0, it must first activate the
bank selection mechanism so that bank number 0 is active.

10.1.2 SuperVGA 256-Color Extensions

The 256-color SuperVGA alternative is often based on a banking mechanism
similar to the one shown in Figure 10.1. The usual scheme is to use a memory
byte to encode the 256 color combinations for each screen pixel, and to do away
with the pixel masking complications of VGA mode number 18. This method is
characteristic of the SuperVGA extensions and has no precedent in CGA, EGA,
or VGA systems. Although it is similar to VGA mode number 19 regarding color
encoding, mode number 19 does not require bank switching. Note that the neat,
rectangular window design shown in Figure 10.1 does not always conform with
reality. Several implementations of SuperVGA multicolor modes use nonrec­
tangular windows that start and end inside a screen scan line.

The total memory installed in a SuperVGA system determines the available
resolution and color range. For example, we have seen that a 800-by-600 pixel
mode can be implemented in 16 colors in a system with no more than 256K.
However, if the color range were to be 256 colors, requiring one memory byte
per screen pixel, the SuperVGA system would need 480,000 bytes. By the same
token, a resolution of 1024-by-768 pixels in 256 colors requires 786,432
bytes.

SuperVGA Graphics and Animation 335

10.1.3 SuperVGA Pixel Addressing

The calculations for setting an individual pixel in the 256-color SuperVGA
modes depend upon the size of the memory banks, the number of pixels per row,
the number of screen rows, and the start address of video memory. Although it
is quite feasible to design a routine that performs in different SuperVGA
chipsets, the efficiency of such code would be necessarily low. The VESA
standardization offers a solution to the programming complications brought on
by different architectures of the various SuperVGA chipsets. In reality, since
most SuperVGA systems use a 64K bank size and a processor's window into
video memory located at address A0000H, the variations are reduced to the
bank switching operations.

10.2 SuperVGA Architecture

In 1989, in an attempt to solve the portability problems created by the prolif­
eration of nonstandard VGA hardware, several manufacturers of so-called
Super VGA boards formed the Video Electronics Standards Association (VESA).
At present over 150 companies are members of this organization. In October of
1989 VESA released its first SuperVGA standard. The VESA standard defined
several enhanced video modes and implemented a BIOS extension designed to
provide a few fundamental video services in compatible fashion. Because of this
advantage in compatibility and portability, our treatment of SuperVGA pro­
gramming focuses on the use of the VESA BIOS functions. As previously
mentioned, this convenience comes at a performance price.

10.2.1 The VESA SuperVGA Standard

The Video Electronics Standards Association was created for the purpose of
providing a common programming interface for Super VGA extended modes. In
order to achieve this, each manufacturer furnishes a VESA SuperVGA BIOS
extension. The BIOS can be in the adapter ROM or in a TSR routine.

The first release of the VESA SuperVGA standard was published October 1,
1989 (version 1.0). A second release was published in June 2, 1990 (version 1.1).
The present release is dated October 22, 1991 (version 1.2).

10.2.2 VESA SuperVGA Modes

The first element of VESA standardization is the definition of standard modes
for the SuperVGA extensions. The VESA mode numbering scheme takes into
account that encoding for the VGA modes extends to the value FFH due to the
fact that the VGA BIOS mode setting function (service number 0) uses the
high-order bit to determine if video memory is to be cleared. To get around this
restriction, the VESA mode number is a word-size value passed to the VESA
BIOS in the BX register. Figure 10.2 shows the bitmap of the VESA MODE
numbers.

336

15 8 0

VESA mode identification
bit (100H)

'--------- Video memory control
1 = clear video
O = don't clear video
(active during mode set)

Chapter Ten

Figure 10.2 VESA Mode Numbering Bitmap

Notice in Figure 10.2 that bit number 8 identifies a VESA mode. Therefore,
all VESA modes start at number 100H. Also notice that bit number 15 is used
during mode set operations to indicate if video memory is to be cleared. Table
10.1 lists the VESA extended modes.

Table 10.1 VESA BIOS Modes

MODE NUMBER TEXT/ RESOLUTION
15 BITS 7BITS GRAPHICS PIXELS COLUMNS/ROWS COLORS

100H GRAPHICS 640-by-400 256
101H GRAPHICS 640-by-480 256
102H 6AH GRAPHICS 800-by-600 16
103H GRAPHICS 800-by-600 256
104H GRAPHICS 1024-by-768 16
105H GRAPHICS 1024-by-768 256
106H GRAPHICS 1280-by-1024 16
107H GRAPHICS 1280-by-1024 256
108H TEXT 80-by-60
109H TEXT 132-by-25
lOAH TEXT 132-by-43
lOBH TEXT 132-by-50
lOCH TEXT 132-by-60

* lODH GRAPHICS 300-by-200 32K
lOEH GRAPHICS 320-by-200 64K
lOFH GRAPHICS 320-by-200 16.8Mb
110H GRAPHICS 640-by-480 32K
111H GRAPHICS 640-by-480 64K
112H GRAPHICS 640-by-480 16.8Mb
113H GRAPHICS 800-by-600 32K
114H GRAPHICS 800-by-600 64K
115H GRAPHICS 800-by-600 16.8Mb
116H GRAPHICS 1024-by-768 32K
117H GRAPHICS 1024-by-768 64K
118H GRAPHICS 1024-by-768 16.8Mb
119H GRAPHICS 1280-by-1024 32K
llAH GRAPHICS 1280-by-1024 64K
llBH GRAPHICS 1280-by-1024 16.8Mb

* modes after lODH were introduced in VESA BIOS version 1. 2

10.2.3 Memory Windows

The VESA standard accommodates variations in the SuperVGA implementa­
tions by recognizing two different types of hardware windows into video
memory. The first and simpler type consists of a single window which can be

SuperVGA Graphics and Animation 337

read and written by the CPU. The disadvantage of a read-write window
becomes evident when a pixBlt operation crosses the limit of the window. In
this case, the software is forced to switch banks and the CPU is forced to reset
the segment register base during the transfer. This double burden can consid­
erably degrade performance.

A partial solution is to provide separate windows for read and write opera­
tions. One possible option is to have two windows located at the same address:
one for read and the other one for write operations. This scheme, sometimes
called dual overlapping windows, allows selecting both windows simultane­
ously. Once the source and destination windows are selected, the data block can
be rapidly moved by means of a REP MOVSB instruction.

A second alternative to the two windows option is to locate the read and write
windows at separate addresses. For example, the write window can be located
at base address A000H and the read window at B000H. This would extend
addressable memory to 128K and considerably simplify pixBlt operations. The
objection to this approach is that a two-monitor system requires the B000H
window for text operations; therefore this configuration would not be possible.

A third solution is to cut the 64K window in half and provide two separate
32K windows, one for read and the other one for write operations. The objection
in this case is that normal display operations would require twice as many bank
switches. Figure 10.3 is a schematic representation of the three possible
windowing options.

SINGLE
READ/WRITE

WINDOW

READ/WRITE
WINDOW

DUAL
OVERLAPPING

WINDOWS

I READ WINDOW

WRITE WINDOW

-

Figure 10.3 Windowing Options in the VESA Standard

DUAL
NONOVERLAPPING

WINDOWS

WRITE WINDOW

READ WINDOW

338 Chapter Ten

10.3 The VESA BIOS

The VESA BIOS has been designed to perform only those operations that are
strictly necessary to achieve portability and hardware transparency of the
SuperVGA system. The fundamental functions of the VESA BIOS, as used in
SuperVGA programming, are the following:
1. Obtaining SuperVGA and mode information
2. Setting a standard VESA extended mode
3. Performing bank switching operations

The VESA BIOS does not provide graphics primitives. Furthermore, not even
pixel setting and reading operations are included in the standard. Due to this
design the software overhead is kept at a minimum. The actual implementa­
tions of the functions are left to the chipset manufacturer.

Of the functions provided by the VESA BIOS, the bank switching operation
is the most crucial regarding display system performance, because bank switch­
ing is usually included in read and write loops and, therefore, is in the program's
critical path of execution. To provide the best possible performance, the VESA
BIOS allows access to the bank switching function directly, by means of a far
call to the chipset manufacturer's own entry point to the service routine. This
approach simplifies and accelerates access to the actual bank switching code.
The result is that display routines that use VESA BIOS functions can perform
bank switching operations almost as efficiently as routines that access the
SuperVGA hardware directly.

The VESA BIOS is an extension of VGA BIOS video services located at
interrupt lOH. Access to the VESA BIOS is by means of service number 79
(4FH). The subfunction refers to the specific VESA BIOS service. Eight VESA
BIOS services have been implemented to date. These are shown in Table 10.2.

Table 10.2 SuperVGA BIOS Extension BIOS INT 10H

SUBSERVICE

OOH
OlH
02H
03H
04H
OSH
06H
07H

DESCRIPTION

Return SuperVGA information
Return SuperVGA mode information
Set SuperVGA mode
Return current video mode
Save/restore SuperVGA video state
Switch ban ks
Set/get logical scan line length
Set/get display start

The following code fragment is a general template for accessing the VESA BIOS
subservices:

MOV
MOV

AH,79
AL,??

INT lOH

VESA BIOS service number
AL holds subservice number
Other registers are loaded with
the values required by the
subservice

SuperVGA Graphics and Animation 339

All VESA BIOS functions return the same error codes: AL= 79 (4FH) if the
function is supported, and AH = 0 if the call was successful.

10.3.1 Subservice O - System Information

VESA BIOS subservice number O provides general VESA information. The
caller furnishes a pointer to a 256-byte data buffer which is filled by the VESA
service. The following procedure shows the processing required for calling this
VESA BIOS service:

·** ,
data structure for VESA information

·** ,

SVGA DATA SEGMENT

;**********************I
VESA information

;**********************I
VESA BUFFER DB
VESA VERSION DW
OEM PTR OFF DW
OEM PTR SEG DW
CAPABILITIES DB
MODES PTR OFF DW
MODES PTR SEG DW
MEM BLOCKS DW

?
?
?
4 DUP
?
?
?

; VESA signature
Version number
OEM string offset pointer
OEM string segment pointer

(OOH) ; Reserved field
Pointer to modes list, offset
Segment for idem
Count of 64K memory blocks
(Only in June 2, 1990 revision)

DB 242 DUP (OH)

;**********************!
first field group

;**********************I
VESA DATA DW

WIN A ATTS DB
WIN BATTS DB
WIN GRAIN DW

?

?
?
?

;

follows:
.• 4 3 2

I I I
I I I
I I I
I I I
I I I
I I
I I
I
I

15 .. 5

Mode attributes, mapped as

1 0 <= bits
I I 0 mode not supported

I 1 mode supported

I 0 no extended mode info
1 extended mode info
0 no output functions
1 output functions
0 monochrome mode
1 color mode
0 text mode
1 graphics mode

RESERVED
Window A attributes
Window B attributes
Window granularity

340

WIN SIZE DW
WIN A SEG DW
WIN B SEG DW
SWITCH BANK DD

BYTES PER ROW DW

;**********************I
second field group

;**********************I

?
?
?
?

?

; Extended mode data. Optional
X RES
Y RES
X CHAR SIZE
Y CHAR SIZE

- -
BIT PLANES
BITS PER PIX
NUM OF BANKS
MEM MODEL

BANK SIZE
PLANES

DW
DW
DB
DB
DB
DB
DB
DB

DB
DB

DB

;**********************I
third field group

;**********************I

?
?
?
?
?
?
?
?

?
?

1

Chapter Ten

Window size
Segment dddress for window A
Segment address for window B
Far pointer to bank switch
function
Bytes per screen row

until VESA BIOS version 1.2
Horizontal resolution
Vertical resolution
Pixel width of character cell
Pixel height of character cell
Number of bit planes
Bits per pixel in this mode
Number of video memory banks
Memory model, as follows:
OOH text mode
OlH CGA graphics
02H Hercules graphics
03H 4-plane architecture
04H Packed pixel architecture
05H 256 color (unchained)
The following were defined
in VESA BIOS version 1.2:
06H Direct color
07H = YUV color
OBH - OFF= not yet defined
Kilobytes per bank
Number of planes:
4 in 16 color modes
1 in 256 color modes
Reserved for BIOS

; Direct color fields. Defined in VESA BIOS version 1.2
RED MASK DB ? Bit size of red mask
RED POSITION DB ? Red mask LSB position
GREEN MASK DB ? Bit size of green mask
GREEN POSITION DB ? Green mask LSB position
BLUE MASK DB ? Bit size of blue mask
BLUE POSITION DB ? Blue mask LSB position
RSVD MASK DB ? Bit size of reserved mask
RSVD POSITION
DC INFO

DB
DB

?

?
Reserved mask LSB position
Attributes of direct color
modes, as follows:
bit O = color ramp

SuperVGA Graphics and Animation

SVGA DATA
DB

ENDS

bit

216 DUP (?)

341

0 = fixed
1 = programmable

1 Reserved field bits
0 = not usable
1 = usable

Remainder of block

·** I

procedures
;**
P CODE SEGMENT PUBLIC

ASSUME CS:P CODE

VESA INFO PROC FAR
Call VESA BIOS subservice number Oto obtain SuperVGA
information and subservice number 1 to obtain mode information
On entry:

ex mode number, as follows:
number resolution colors

100H 640-by-400 256
101H 640-by-480 256
102H 800-by-600 16
103H 800-by-600 256
104H 1024-by-768 16
105H 1024-by-768 256
106H 1280-by-1224 16
107H 1280-by-1224 256

On exit:
Carry clear if no error
Data stored in the buffers VESA BUFFER and VESA DATA
ES:SI -> VESA BUFFER
ES:DI -> VESA DATA

;**********************I

save caller's DS
; set DS to SVGA_DATA
;**********************I

PUSH DS
MOV AX,SVGA_DATA
MOV DS,AX
ASSUME DS:SVGA DATA

;**********************I

setup registers
;**********************I

; Set pointers to data storage buffers

Local data segment
to DS

LEA DI,VESA_BUFFER ; Pointer to data buffer
LEA SI,VESA_DATA

VESA BIOS subservice number O uses ES as a segment base
PUSH DS ; Local data segment

342

POP ES

;**********************I

; get VESA information I
;**********************I

Chapter Ten

To ES

MOV AH,79 VESA BIOS service number
MOV AL,0 This subservice
INT lOH BIOS video service

At this point AX must hold 004FH if the call executed
CMP AX,004FH ; Returned code
JNE

Test buffer
CMP
JE
JMP

OK VE:
CMP
JE
JMP

BAD VESA ; Go if invalid value
for a valid 'VESA' signature

WORD PTR [DI),'EV' ; First two letters
OK VE Go if matched
BAD VESA ; Exit if not matched

WORD PTR [DI+2),'AS' Last two letters
OK VESA
BAD VESA

Go if signature matched
; Go if not matched

;**********************I
get VESA mode info

;**********************I

OK VESA:
At this point there is a valid call and signature
ex holds requested mode number
VESA BIOS subservice number 1 is used to obtain mode
information

XCHG
MOV
MOV
INT

POP
XCHG
CLC
RET

BAD VESA:
; Error exit

POP
STC
RET

VESA INFO
P CODE

SI,DI
AH,79
AL,1
lOH

OS
SI,DI

OS

ENDP
ENDS

Set DI as pointer
VESA BIOS service number
This subservice
BIOS video service

Restore caller's DS
Pointers to original registers

Restore caller's DS
Error flag

The call to subservice number O is usually made to determine if there is a
VESA BIOS available, although the subservice provides other information that
could also be useful. Testing for a valid VESA BIOS is a two-step process: first
the code tests for the value 004FH in the AX register. This value corresponds
to the standard VESA error codes mentioned at the beginning of this section.
Once this first test is passed, the code makes certain that the 4-character 'VESA'

SuperVGA Graphics and Animation 343

signature is stored at the start of the buffer. If these tests are satisfactory,
execution can continue on the assumption that a valid VESA BIOS is present
and that its functions are available to the software.

The data segment of the VESA_INFO procedure shows the most important
items returned by subservice number 0. The field contents are as follows:

VESA_BUFFER is the label that marks the start of the buffer. At this label
the BIOS stores the word 'VESA' which serves as a string signature that
identifies the BIOS.

VESA_ VERSION is a two-byte field that encodes the current version of the
VESA BIOS. The encoding is in fractional form; for example, the value 3131H
corresponds to the ASCII digits 1,1 and represents version 1.1 of the VESA
BIOS. An application can assume upward compatibility in the VESA BIOS.

OEM_PTR_OFF and OEM_PTR_SEG are two word variables that encode the
offset and segment values of a far pointer to an identification string supplied
by the board manufacturer. Board-specific routines would use this string to
check for compatible hardware.

The CAP ABILITIES label is a 4-byte field designed to hold a code that
represents the general features of the SuperVGA environment. This field was
not used until VESA BIOS version 1.2, released on October 22, 1991. At this
time bit number 0 of this field was enabled to encode adapters with the
possibility of storing extended primary color codes. In VESA BIOS version 1.2,
and later, a value of 1 in bit 0 of the CAPABILITIES field indicates that the
DAC registers can be programmed to hold more than 6-bit color codes. A value
of 0 indicates that the DAC register is standard VGA, with 6-bits per primary
color. Changing the bit width of the DAC registers is performed by calling
subservice number 8, discussed later in this section.

MODES_PTR_OFF and MODES_PTR_SEG are two word variables that hold
the offset and segment values of a far pointer to a list ofimplemented Super VGA
modes. Each mode occupies one word in the list. The code 0FFFFH serves as a
list terminator. An application can examine the list of modes to make certain
that a specific one is available or to select the best one among possible
candidates.

The MEM_BLOCKS field encodes, in a word variable, the number of 64K
blocks of memory installed in the adapter. Note that this field was first
implemented in VESA BIOS version 1.1.

10.3.2 Subservice 1 - Mode Information

VESA BIOS subservice number 1 provides information about a specific Su­
perVGA VESA mode. The caller furnishes a pointer to a 256-byte data buffer,
which is filled by the VESA service, as well as the number of the desired mode.

The call to subservice number 1 is usually made to determine if the desired
mode is available in the hardware and, if so, to obtain fundamental parameters
required by the program. If the call is successful, the code can examine the data
at offset 0 in the data buffer in order to determine the mode's fundamental
attributes. These mode attributes are shown in Figure 10.4.

344

15

bits 5 to 15
RESERVED

0

bit 1

bit 2

bit 3

bit 4

Chapter Ten

bit 0 O = mode not supported
1 = mode supported

O = no extended mode information
1 = extended mode information

O = no output functions
1 = output functions

0 = monochrome mode
1 = color mode

o = text mode
1 = graphics mode

Figure 10.4 VESA Mode Attributes Bitmap

The data segment of the procedure named VESA_INFO shows the items
returned by subservice number 1. The data items are divided into three field
groups. The contents of the variables in the first field group are as follows:

WIN_A_ATTS and WIN_B_ATTS are two bytes that encode the attributes of
the two possible memory banks, or windows. Figure 10.5 is a bitmap of the
window attribute bytes. The code can inspect the window attribute bits to
determine the window types used in the system (see Figure 10.3).

The WIN_GRAIN word specifies the granularity of each window. The granu­
larity unit is one kilobyte. The value can be used to determine the minimum
video memory boundary for the window.

The WIN_SIZE word specifies the size of the windows in kilobytes. This value
can be used in tailoring bank switching operations to specific hardware configu­
rations.

The word labeled WIN_A_SEG holds the segment base address for window A
and the word labeled WIN_B_SEG holds the base address for window B. The
base address in graphics modes is usually A000H; however, the code should not
take this for granted.

0 = window not supported
1 = window supported

L------- O = window not readable
1 = window is readable

L------ 0 = window Is not writeable
1 = window Is writeable

Figure 10.5 VESA Windows Attributes Bitmap

SuperVGA Graphics and Animation 345

The doubleword labeled BANK_FUN holds a far pointer to the bank shifting
function in the BIOS. An application can shift memory banks using VESA BIOS
subservice number 5, described later in this section, or by means of a direct call
to the service routine located at the address stored in this variable. The call can
be coded with the instruction:

CALL DWORD PTR BANK FUN

BYTES_PER_ROW is a word variable that encodes the number of bytes in
each screen logical pixel row. Note that this value can be larger than the number
of pixels in a physical scan line.

The variables in the second field group are of an optional nature. Bit number
1 of the mode attribute bitmap (see Figure 8.4) can be read to determine if this
part of the data block is available. The contents of the various fields in the
second group are described in the data segment of the preceding code fragment.

The direct color fields form the third field group. These fields were first
implemented in VESA BIOS version 1.2 to support SuperVGA systems with
color capabilities that extend beyond the 256 color modes. The contents of the
various fields in the third group are described in the data segment of the
preceding code fragment.

10.3.3 Subservice 2 - Set Video Mode

VESA BIOS subservice number 2 is used to initialize a video mode supported
by the adapter. The VESA mode number is passed to the subservice in the BX
register. The high-order bit, sometimes called the clear memory fiag, is set to
request that video memory not be cleared. The following procedure shows the
processing operations for setting VESA BIOS mode number 105H:

;**
processing operations for setting VESA BIOS mode 105H

;**
P CODE SEGMENT PUBLIC

ASSUME CS:P CODE
VESA MODE 105 PROC FAR

Procedure to set SuperVGA mode number 105H with a resolution
of 1024-by-768 pixels in 256 colors
This procedure assumes that the data variables in the buffers
VESA BUFFER and VESA DATA have been filled by a previous call
to the VESA_INFO procedure with CX = 105H

;**********************I
save caller's DS

; set DS to SVGA_DATA
;**********************\

PUSH DS
MOV AX,SVGA_DATA
MOV DS,AX
ASSUME DS:SVGA DATA

Local data segment
to DS

346 Chapter Ten

;**********************I

; test standard values I
;**********************I

MOV
CMP
JE

AX,WIN_SIZE
AX,040H
OK WIN SIZE

Standard size is 64K (40H)
Is it 64K
Go if standard size

; Error exit. Nonstandard parameters
;**********************I

ERROR exit
;**********************I

NON STANDARD:
POP
STC
RET

OS Restore caller's OS
Carry is error flag

; Now test for a start address of video buffer at AOOOH
OK WIN SIZE:

MOV
CMP
JE

AX,WIN_A_SEG
AX,OAOOOH
SET MODE 105

JMP NON STANDARD
;**********************I

select video mode
;**********************I

Segment for window A
Test for standard address
Go if standard

; Mode variables are standard. Select mode 105H using VESA BIOS
; subservice number 2
SET MODE 105:

MOV BX,0105H

MOV AH,79
MOV AL,2
INT lOH

Test for valid returned value
CMP AX,004FH
JE OK MODE 105
STC
POP OS
RET

OK MODE 105:
POP DS
CLC
RET

VESA MODE 105 ENDP
P CODE ENDS

10.3.4 Subservice 3 - Get Video Mode

Mode number and high bit
to request clear video
VESA BIOS service number
This subservice
BIOS video service

Status for no error
No error during mode set
Error flag. Mode not set
Restore caller's OS

Restore caller's OS
No error flag

0

VESA BIOS subservice number 3 is used to obtain the current video mode. The
VESA mode number is returned by the subservice in the BX register. The
following code fragment shows a call to this VESA BIOS service:

SuperVGA Graphics and Animation 347

;**
; processing operations for obtaining the current VESA BIOS mode
;**
P CODE SEGMENT PUBLIC

ASSUME CS:P CODE
VESA GET MODE PROC FAR

Procedure to obtain current VESA BIOS mode using subservice
number 3
VESA BIOS subservice number 3 to obtain current video mode

MOV AH,79 VESA BIOS service number
MOV
INT

AL,3
l0H

This subservice
BIOS video service

Test for valid returned value
CMP AX,004FH
JE MODE OK

;**********************I
ERROR exit

;**********************\
STC
RET

MODE OK:
CLC
RET

VESA GET MODE
P CODE

ENDP
ENDS

Status for no error
No error during mode set

Carry flag is set for error

No error

10.3.5 Subservice 4 - Save/Restore Video State

VESA BIOS subservice number 4 is used to save and restore the state of the
video system. This service, which is an extension of BIOS service number 28,
is often used in a multitasking operating system to preserve the task states and
by applications that manage two or more video environments. The subservice
can be requested in three different modes, passed to the VESA BIOS routine
in the DL register.

Mode number O (DL = 0) of subservice number 4 returns the size of the
save/restore buffer. The four low bits of the CX register encode the machine
state buffer to be reported. The bitmap for the various machine states is shown
in Figure 10.6.

15 0

'-----~b~it~0 ___ video hardware state

bits 4 to 15
RESERVED

bit 1

bit 2

bit 3

Figure 10.6 VESA Machine State Bitmap

video BIOS data state
video DAC state

SuperVGA state

348 Chapter Ten

The units of buffer size returned by mode number 0, ofsubservice number 4,
are 64-byte blocks. The block count is found in the BX register.

Mode number 1 (DL = 1), of subservice number 4, saves the machine video
state requested in the CX register (see Figure 8.6). The caller should provide a
pointer to a buffer sufficiently large to hold the requested state data. The size
of the buffer can be dynamically determined by means of a call using mode
number 0, described above. The pointer to the buffer is passed in ES:BX.

Mode number 2 (DL = 2), of subservice number 4, restores the machine video
state requested in the CX register (see Figure 8.6). The caller should provide a
pointer to the buffer that holds data obtained by means of a call using mode
number 1.

10.3.6 Subservice 5 - Switch Bank

VESA BIOS subservice number 5 is used to switch memory banks in those
modes that require it. Software should call subservice number 1 to determine
the size and address of the banks before calling this function. Two modes of this
subservice are implemented: one to switch to a desired bank and another one
to request the number of the currently selected bank.

Mode number O (BH = 0) is the switch bank command. The BL register is used
by the caller to encode window A (value = 0) or window B (value = 1). The bank
number is passed in the DX register. The following code fragment shows the
necessary processing:

; VESA BIOS subservice number 5 register setup
MOV BX,0 Select bank in window A

; and bank switch function
BH 0 to select bank
BL Oto select window A
DX bank number

MOV AX,4F05H Service and subservice
INT l0H

Mode number 1 of subservice 5 (BH = 0) is used to obtain the number of the
memory bank currently selected. The BL register is used by the caller to encode
window A (value = 0) or window B (value = 1). The bank number is reported in
the DX register.

Earlier in this section we mentioned that an application can also access the
bank switching function in the BIOS by means of a far call to the service routine.
The address of the service routine is placed in a far pointer variable by the
successful execution of subservice number 1. For the far call operation the
register setup for BH, BL, and DX is the same as for using subservice 5.
However, in the far call version AH and AL need not be loaded, no meaningful
information is returned, and AX and DX are destroyed.

SuperVGA Graphics and Animation 349

10.3.7 Subservice 6-Set/Get Logical Scan Line

VESA BIOS subservice number 6 is used to set or read the length of the logical
scan line. Observe that the logical scan line can be wider than the physical scan
line supported by the video hardware. This subservice was first implemented
in VESA BIOS version 1.1. For this reason it is not available in the BIOS
functions of earlier adapters.

10.3.8 Subservice 7 - Set/Get Display Start

VESA BIOS subservice number 7 is used to set or read from the logical page
data the pixel to be displayed in the top-left screen comer. This subservice is
useful to applications that use a logical screen that is larger than the physical
display in order to facilitate panning and screen scrolling effects. As is the case
with subservice number 6, this subservice was first implemented in VESA BIOS
version 1.1. For this reason it is not available in the BIOS functions of many
adapters.

10.3.9 Subservice 8 - Set/Get DAC Palette Control

VESA BIOS subservice number 8 was designed to facilitate programming of
SuperVGA systems with more than 6-bit fields in the primary color registers
of the DAC. The subservice contains two modes. Mode number O (BL = 0) is
used to set a DAC color register width. The desired width value, in bits, is passed
in the BH register by the caller. Mode number 1 (BL = 1) is used to obtain the
current bit width for each primary color. The bit width is returned in the BH
registers. The standard bit width for VGA systems is six.

This subservice was first implemented in version 1.2 of the VESA BIOS,
released in October 22, 1991. Therefore it is not available in adapters with
earlier versions of the VESA BIOS. Another feature introduced in VESA BIOS
version 1.2 is the use of bit O of the CAP ABILITIES field (see subservice O earlier
in this section) to encode the presence of DAC registers capable of storing color
encodings of more than six bits. Applications that propose to use subservice 8
should first test the low-order bit of the CAPABILITIES field to determine if
this feature is implemented in the hardware.

10.4 SuperVGA Device Drivers

Direct hardware programming a particular SuperVGA chipset requires specific
technical data from the manufacturer. The resulting code has limited portabil­
ity to other systems. This approach is used in coding hardware-specific drivers
that take full advantage of the capabilities of the system. An alternative method
that ensures greater portability of the code, at a price in performance, is the
use of the VESA BIOS services described starting at Section 10.3.

350 Chapter Ten

It is theoretically possible to design a general-purpose graphics routine that
operates in every SuperVGA chipset and display mode. Here again, this
universality can be achieved only at a substantial price in performance, an
element that is usually critical to the animation programmer. For this reason
the design and coding of mode-specific graphics routines is generally a more
efficient approach. By using VESA BIOS functions it is possible to design
mode-specific routines that are compatible with most SuperVGA systems that
support the particular mode.

The procedures that follow use VESA BIOS mode number 105H with a
resolution of 1024-by-768 pixels in 256 colors. We have selected this mode
because it is compatible with modes used in the XGA system, and also because
it is widely available in fully equipped SuperVGA adapters.

10.4.1 Address Calculations

Address calculations in a SuperVGA mode depend on the screen dimensions
and the location of the video buffer in the system's memory space. In a
mode-specific routine the number of pixels per row can be entered as a numeric
value. In modes that require more than one memory bank the bank size must
also enter into the address calculations. Most SuperVGA adapters use a bank
size of64K, which can be hard-coded in the address calculation routine. On the
other hand, it is possible to use a memory variable that stores the number of
pixels per row and the bank size parameters in order to design address
calculation routines that work in more than one mode. In the following code
fragment we have assumed that the SuperVGA is in VESA mode 105H, with
1024 pixels per scan line, and that the bank size is 64K. The display routines
assume that the base address of the video buffer is A000H.

Calculate pixel address from the following coordinates:
ex= x coordinate of pixel
DX= y coordinate of pixel

Code assumes:
1. SVGA is in a 1024-by-768 pixel mode in 256 colors

(mode number 105H)
2. Bank size is 64K

Get address in SVGA memory space
CLC Clear carry flag
PUSH AX Save color value
MOV AX,1024 Pixels per scan line
MUL DX DX holds line count of address
ADD AX,CX Add pixels in current line
ADC DX,0 Answer in DX:AX

DL = bank, AX= offset
MOV BX,AX Offset to BX

SuperVGA Graphics and Animation 351

At this point BX holds the pixel offset and DX the bank number. Note that
the pixel offset is the offset within the selected bank, and not the offset from
the start of the screen as is often the case in VGA routines.

10.4.2 Bank Switching Operations

In a SuperVGA adapter set to VESA mode number 105H (resolution of 1024-
by-768 pixels in 256 colors) the number of video memory banks depends on the
bank size. With a typical bank size of 64K the entire video memory space
requires 12 memory banks, since:

1024 * 768

65536
= 12

In order to update the entire video screen the software has to perform 12 bank
switches. This would be the case in performing a clear screen operation.
Furthermore, many relatively small screen objects cross one or more bank
boundaries. In fact, in VESA SuperVGA mode 105H any graphics object or
window that exceeds 64 pixels in height necessarily overflows one bank.

For these reasons bank switching operations should be optimized to perform
their function as quickly as possible. The ideal solution would be to embed the
hardware bank switching code within the address calculation routine. This
method is similar to the one described for the XGA (see Chapter 9). However,
XGA software does not have to contend with variations in hardware. We have
seen that in the SuperVGA environment to hard-code the bank switching
operation would almost certainly make the routine not portable to other
devices. An alternative solution is to perform bank switching by means of VESA
BIOS service number 5, described in Section 10.3.6. The following code frag­
ment shows the code for bank switching using the VESA BIOS service:

;**********************!
change banks

**********************I
Select video bank using VESA BIOS subservice number 5
VESA BIOS subservice number 5 register setup
BH Oto select bank
BL Oto select window A
DX bank number

MOV BX,0 Select bank in window A
MOV AX,4F05H Service and subservice
INT l0H

An alternative option that would improve performance of the bank switching
operation is by means of a far call to the service routine, as mentioned in Section
10.3.1. The following code fragment shows bank switching using the far call
method. The code assumes that the address of the service routine is stored in

352 Chapter Ten

a doubleword variable named BANK_FUN. This address can be obtained by
means of VESA BIOS subservice number 1 (get mode information) discussed
in Section 10 .3 .2

;**********************I
change banks

by far call method
;**********************I

Select video bank by means of a far call to the bank switching
routine provided by the chipset manufacturer
Code assumes that the far address of the service routine is
stored in a doubleword variable named BANK FUN
Register setup for far call method
BH Oto select bank
BL 0 to select window A
DX bank number

MOV BX,0 Select bank in window A
PUSH AX Preserve caller's context
PUSH DX
CALL DWORD PTR BANK FUN
POP DX ; Restore context
POP AX

Observe that to use the far call method the doubleword variable that holds
the address of the service routine must be reachable at the time of the call.
Therefore, if the variable is in another segment, a segment override byte is
required.

10.5 SuperVGA Pixel Level Operations

Once the pixel address has been determined and the hardware has been
switched to the corresponding video memory bank, setting the pixel is a simple
write operation. For example, in VESA mode number 105H, once the address
calculation and the bank switching routine listed in Section 10.4.2 have exe­
cuted, the pixel can be set by means of the instruction

MOV BYTE PTR ES: [BX],AL

The code assumes that ES holds the base address of the video buffer, BX the
offset within the bank, and AL the 8-bit color code. Note that since VESA mode
number 105H is not a planar mode, no previous read operation is necessary to
enable the latching mechanism.

Reading a pixel in a SuperVGA mode is usually based on the same address
and bank switching operations as those required for setting a pixel. The actual
read instruction is in the form

MOV AL,BYTE PTR ES: [BX]

SuperVGA Graphics and Animation 353

10.5.1 SuperVGA Pixel Write

The following procedure performs a pixel write operation while in SuperVGA
mode number 105H:

·** ,
processing operations for pixel setting using VESA BIOS

·** ,
P CODE SEGMENT PUBLIC

ASSUME CS:P CODE

SVGA PIX 105 PROC FAR
Write a screen pixel accessing SVGA memory directly and using
VESA BIOS service to select bank
On entry:

ex x coordinate of pixel
y coordinate of pixel DX=

BL= pixel color in 8-bit format
Code assumes:

1. SVGA is in a 1024-by-768 pixel mode in 256 colors
(mode number 105H)

2. video bank size is 64K
3. ES holds base address of video buffer (AOOOH)

;**********************!
save caller's OS

; set OS to SVGA_DATA
;**********************I

This manipulation is required in order access the address of
; the bank switching routine

PUSH DS
MOV AX,SVGA_DATA
MOV DS,AX
ASSUME DS:SVGA DATA

PUSH BX
PUSH ex
PUSH DX
MOV AL,BL

Get address in SVGA memory
CLC
PUSH AX
MOV AX,1024
MUL DX
ADD AX,CX
ADC DX,O

MOV BX,AX
;**********************I

change banks
;**********************I

Local data segment
to OS

Save entry registers

; Color to AL
space

Clear carry flag
Save color value
Pixels per scan line
DX holds line count of address
Add pixels in current line
Answer in DX:AX
DL = bank, AX= offset
Offset to BX

354 Chapter Ten

Bank switching is performed by means of a far call to the
service routine located at the label SWITCH BANK

PUSH BX ; Save entry registers
PUSH DX

VESA BIOS subservice number 5 register setup:
BH 0 to select bank
BL 0 to select window A
DX bank number

MOV BX,O ; Select bank in window A
CALL DWORD PTR SWITCH BANK
POP DX
POP BX
POP AX

;·**********************/
set the pixel

;**********************I
MOV ES: [BX] ,AL
POP DX
POP ex
POP BX
POP OS
RET

SVGA PIX 105 ENDP
P CODE ENDS

10.5.2 SuperVGA Pixel Read

Restore entry registers

Restore color

Write the dot
Restore entry values

Restore caller's OS

The following procedure can be used to read a screen pixel in this same mode:

;**
processing operations for reading a pixel using VESA BIOS

·** I

P CODE SEGMENT PUBLIC
ASSUME CS:P CODE

SVGA READ 105 PROC FAR
Read a screen pixel accessing SVGA memory directly and using
VESA BIOS service to select bank
On entry:

CX = x coordinate of pixel
DX= y coordinate of pixel

Code assumes:
1. SVGA is in a 1024-by-768 pixel mode in 256 colors

(mode number 105H)
2. video bank size is 64K
3. ES holds base address of video buffer (AOOOH)

On exit:
AL= 8-bit pixel color code

SuperVGA Graphics and Animation

;**********************I

save caller's DS
; set DS to SVGA DATA
;**********************I

This manipulation is required in order access the address of
; the bank switching routine

PUSH DS
MOV AX,SVGA_DATA
MOV DS,AX
ASSUME DS:SVGA DATA

PUSH BX
PUSH ex
PUSH DX

Get address in SVGA memory
CLC
MOV AX, 1024

space

Local data segment
to DS

Save entry registers

Clear carry flag
Pixels per scan line

355

MUL
ADD
ADC

DX
AX,CX
DX,0

DX holds line count of address
Add pixels in current line
Answer in DX:AX

MOV BX,AX

;**********************I

change banks
;**********************I

DL = bank, AX offset
Offset to BX

Bank switching is performed by means of a far call to the
service routine located at the label SWITCH BANK

VESA
BH
BL
DX

PUSH BX ; Save entry registers
PUSH

BIOS
0 to
0 to
bank

MOV
CALL
POP
POP

DX
subservice number 5 register setup:
select bank
select window A
number

BX,0 ; Select bank in window A
DWORD PTR SWITCH BANK
DX ; Restore entry registers
BX

;**********************I

read the pixel
;**********************I

MOV AL,BYTE
POP DX
POP ex
POP BX
POP DS
RET

SVGA READ 105 ENDP
P CODE ENDS

PTR ES: [BX] ; Read memory
; Restore entry values

Restore caller's DS

356 Chapter Ten

10.5.3 Clearing the SuperVGA Screen

Clearing the video display is another primitive function frequently useful to a
graphics application. The following procedure can be used to clear the screen
in SuperVGA mode 105H:

·** ,
; processing operations for clearing the screen using VESA BIOS
·** ,
P CODE SEGMENT PUBLIC

ASSUME CS:P CODE

SVGA CLS 105 PROC FAR
Clear video memory while in SVGA mode number 105H
On entry:

AL= 8-bit color code to use for initialization
Code assumes:

1. SVGA is in a 1024-by-768 pixel mode in 256 colors
(mode number 105H)

2. Video bank size is 64K
3. ES holds base address of video buffer (A000H)

;**********************I
save caller's DS

; set DS to SVGA_DATA
;**********************I

This manipulation is required in order to access the address of
; the bank switching routine

PUSH DS
MOV DX,SVGA_DATA
MOV DS,DX
ASSUME DS:SVGA DATA

; BL holds bank number
MOV DX, 0

;**********************I
change banks

;**********************I

Local data segment
to DS

Initialize to first bank

; Bank switching is performed by means of a far call to the
; service routine located at the label SWITCH BANK
NEXT BANK:

PUSH AX Save color code
PUSH BX Save entry registers
PUSH DX

VESA BIOS subservice number 5 register setup:
BH 0 to select bank
BL 0 to select window A
DX bank number

MOV BX,0 ; Select bank in window A
CALL DWORD PTR SWITCH BANK
POP DX ; Restore entry registers

SuperVGA Graphics and Animation 357

POP BX
POP AX ; Restore color code

Write 65536 bytes of OOH in current bank
MOV CX,0FFFFH ex is byte counter
CLD Forward direction
MOV DI,0 Start of block
REP STOSB Store 65536 bytes

Bump bank
INC DX Next bank
CMP DX,12 12 is last bank
JNE NEXT BANK
POP DS Restore caller's DS
RET

SVGA CLS 105 ENDP
P CODE ENDS

Part

3
Animation Techniques

Chapter

11
Background, Objects, and Text

11.0 Background Techniques

An animated application such as an electronic video game, a trip to a foreign
galaxy, or a cartoon-like short subject usually requires a background on which
the animation takes place. In addition, this background often also partakes in
the animated action. For example, in a simulated space trip, the celestial objects
that constitute the background can be animated by translation (panning and
zooming) as the spacecraft moves to its imaginary destination.

Regarding backgrounds the animation programmer has two main concerns:
acquiring the back.ground image or images, and manipulating these images.

11.1 Bitmap Backgrounds

Like all graphics images backgrounds can be in vector form or encoded as a
bitmap. In Section 4.3 we discussed the problems and methodology related to
the acquisition of bit-mapped images. It is safe to state that most backgrounds
for animated applications are in the form of bitmaps. Therefore the discussion
in Section 4.3 can be related to acquiring bitmaps to be used as background.
The most used methods of bitmap acquisition are described in the following
sections.

11.1.1 Hand Bit-Coding a Bitmap Background

One straightforward method of generating the background image is for the
programmer to directly create it in the application's memory space by defining
every pixel in the image. The process is similar to that of creating a memory
resident bitmap by bit coding. The process consists of drawing the image as
individual dots, and then calculating the attribute codes that represent each
dot. The method is shown in Figure 4.2.

361

362

Pixel attributes:
o = blue
• =green
• =red

Figure 11.1 Pixel Drawing for Bitmap Generation

Chapter Eleven

For large images, hand bit-coding can be a laborious and time-consuming
process. Therefore it is more often used for generating small objects and local
backgrounds than for extended screen areas. In any case, it offers the advantage
that the programmer directly controls the placement and attribute of each
screen pixel and can easily make modifications in the image.

In generating a hand-coded bitmap it is convenient to start with a color
drawing on quadrille paper. From this drawing, the programmer can hand-code
the corresponding bitmap. Figure 11.1 shows a color-coded drawing ofa running
boar target from which the memory-resident bitmap can be derived.

11.1.2 Electronic Drawing Methods

A more convenient alternative than hand bit-coding the background image is
using a draw or paint program to create the image and then storing it as a
bitmap in a standard format that can be read by the program. Many commercial
and shareware draw and paint applications are available on the market. The
one requirement is that the software be capable of storing the image in a bitmap
format compatible with the program. Electronic drawing is perhaps the most
used method of generating backgrounds.

11.1.3 Ray-Tracing a Bitmap Background

A mathematical rendering technique known as ray tracing makes possible the
generation ofrealistic background images in three dimensions. The images are
particularly suited for animated electronic games in which the player moves
through mazes, castles, or hallways, as in many popular commercial and
shareware programs. The image resulting from the ray-traced application is
also in the form of a bitmap encoded in a standard format (see Chapter 4).

One of the most popular ray-tracing applications is a program named POV­
Ray (Persistence of Vision Ray Tracer), of which a shareware version is
available. The POV-Ray program files are found on the Graphics Developer
Forum of Compuserve (GO GRAPHDEV), on the America On-Line service
(keyword PCGRAPHICS), and on many bulletin board systems (BBS). Figure

Background, Objects, and Text 363

Figure 11.2 Sample Texture File from the POV-Ray Program

11.2 is a print of one of the sample files furnished with the POV-Ray program.
Please notice that the original file is in color; therefore much of the original
detail is lost in the monochrome reproduction.

Learning the use of a ray-tracing application is much like learning a program­
ming language. The seed image is usually defined in parametric form. The user
also enters the operational mode which is applied during the ray-trace operation.
The ray-trace application then goes to work in creating a derivative image. Once
generated, the image can be stored in a standard bitmap format selected by the
user. Figure 11.3 is a ray-traced image used in a maze that is part of an electronic
game program. The program is being developed by two students at Montana State
University, Northern: Dale Niemeyer and David Oard.

Figure 11 .3 Ray-Traced Image for Electronic Game Program

364 Chapter Eleven

11.1.4 Scanning a Bibnap Background

Still another method for acquiring a bit-mapped background image is to scan it
from hard copy. The scanned print can be an original artwork created by the program
developers, a commercial print, or a public domain reproduction. If the image to be
scanned is subject to copyright, it would be a good idea to first check on the legality
of this operation. Some thoughts on this matter can be found in Section 4.3.1.

Many commercial and shareware programs are available for driving scanners and
for editing scanned images. Logit.echlnc. furnishes a programnamedFototouch Color
with their popular hand-held color scannernamedScanman Color. This application,
like several other ones in popular use, allows scanning a hard copy image, storing
the scanned image in one of several standard bitmap formats, editing the image
globally and in pixel groups. Editing operations can go to the level of a single image
pixel.

The use of a bitmap editing program allows manipulating the scanned image by
cropping and by alt.ering the acquired bitmap. These manipulations are often
necessary since rarely can a scanned image be used as originally acquired. Here
again, the reader should consider the pertinent legal issues before using proprietary
or copyrighted images.

11.1.5 Multiple Image Manipulations

Some of the image acquisition and editing methods described in Section 11.1.4 can
be consecutively applied in order to generat.e a specific effect. We have already
mentioned that scanned images are usually modified by means of bitmap editing
programs. Another type of application, sometimes called bitmap tracer orvectorizer,
creat.es a vector image from a bitmap. One advantage of the vector image is that it
can be rotated and scaled without distortion or loss of detail. A scaled bitmap, on the
other hand, is usually grainy and visually unpleasant. Figure 11.4 shows the original
scanned bitmap of a line drawing of the space shuttle, the results from enlarging the
bitmap, and from vectorizing it and then enlarging it.

Notice that in Figure 11.4 the vectorized and enlarged image is as it was obtained
from applying the vectorizer (in this case CorelTrace) to the original bitmap. This
image could have been further improved by using a draw program; the result could
have been export.ad into a bitmap format, or scanned and retouched a second time.

11.2 Vectorized Background

The subject of bitmap vectorization leads us into the possible use of vectorized images
in graphics applications. The main difficulty in this area is that th.ere are no generally
accept.ad standards and utilities for vector image operations as th.ere are for bitmaps,
notwithstanding that substantial work in graphics standardization has been done
in Europe and the United Stat.es. But protocols such as GKS are elaborat.e and their
use is more suitable at the system and language levels. The developer of an electronic
game would find it cumbersome and costly to implement the application following
the GKS protocol, particularly when consideringthatthe few graphics manipulations

Background, Objects, and Text 365

Enlarged bitmap

Vectorized and enlarged image

Figure 11.4 Multiple Manipulations

366 Chapter Eleven

necessary to an application of this type can usually be furnished more effi­
ciently, and with less programming effort, by customizing the code.

Therefore, in developing an animat.ed application that requires vector image
operations the program designer :first has to decide whether to adopt an existing
graphics standard or to use a customized approach. Here again, the factors of
performance, portability, and development cost usually det.ermine the final decision.

11.2.1 Vector/Bitmap Background

A vectorized representation of a background is often not possible. In most PC video
systems it is possible to store a bitmap image that exceeds the dimensions of the
viewport. This t.echnique allows the use of very satisfactory panning operations by
changing the address of the video buffer that is mapped to the screen. In Chapt.er 7
we present.ed vertical and horizontal panning operations for VGA mode X. These
routines can be readily adapt.ed to other VGA modes and to XGA systems.

Therefore, the PC animator often finds effective t.echniques for panning a bitmap
background. However, bitmaps cannot be scaled, rotat.ed, or mathematically trans­
formed with the same ease as a vector image. If the program can be designed to
avoid other background transformations, except panning, then the bitmap back­
ground works satisfactorily. On the other hand, if the application requires scaling
(zooming), rotation, or other geometrical transformations of the background image,
then a vector-based background is necessary. The reader can find vector-based
graphics primitives in our books Graphics Programming Solutions and H;,gh Reso­
lution Video Graphics list.ed in the Bibliography.

Sometimes an application is able to combine bitmap and vector t.echniques in a
single image. This situation often occurs in background images that contain several,
rather small, bitmaps. For example, a graphics application that displays stars on a
night sky can deal with a few dozen objects over a uniform and extended background.
In this case, the program designers can define several bitmaps to represent stars of
different magnitudes. Since the individual stars are positioned on the sky using a
coordinat.e syst.em, then each individual star can be described in the database in
t.erms of its coordinat.es and magnitude. The magnitude, in tum, det.ermines which
of the available bitmaps is selected at display time. The result is a vector/bitmap
approach in which the object's position is defined as a vector and it.s image is defined
as a bitmap.

MuHiple Bibnaps

In the case of the representation of the night sky, mentioned in the preceding
paragraph, the program designer can creat.e several star image bitmaps according
to the object's magnitude. For example, if the application is to handle stars of eight
different magnitudes (conventionally, magnitude O is the brightest), then the
bitmaps can be as shown in Figure 11.5.

Notice that all eight bitmaps in Figure 11.5 have a common center, located
five pixels to the right and four pixels down from the top-left comer. Giving all

Background, Objects, and Text 367

Magnitude O Magnitude 1 Magnitude 2 Magnitude 3

••••
■ ii ii iTTIITTI I

Figure 11.5 Bitmaps for Eight Star Magnitudes

images a common geometrical center simplifies the calculations at display time
since the same constant is subtracted from the pixel coordinates in every case.

Creating the Star Database

The data encoding a vector/bitmap object must express two parameters: the
object's vector address, and a means for locating the object's bitmap. In the case
of these star objects, the vector element is expressed in terms of the star's
declination and right ascension, which is the conventional coordinate system
used in astronomy (equatorial coordinates). We sometimes use the abbreviation
DEC to represent declination and RA to represent right ascension. Without
getting into astronomical details, we should mention that declination is the
object's north-south coordinate, often equated with the object's latitude. The
declination is usually expressed in degrees. The right ascension is the object's
position in relation to the vernal equinox (midnight, March 21). The right
ascension is usually expressed in hours and minutes.

The information regarding each object included in the database depends on
the purpose of the application. For example, an astronomy program may
require the object's name or identification, the name of the constellation to
which the object belongs, the object type (that is, if the object is a star, star
cluster, nebula, galaxy, or other), its visual color, and its distance from earth.
In this case one possible approach is to organize the objects by the constellations
to which they belong.

This scheme would make a constellation the unit of database storage. There­
fore the database must also encode information regarding the constellation,
such as the constellation name or number, the number of objects in it, and the
attribute or color with which it is displayed. The following code fragment shows
the memory storage of data representing seven stars in the constellation Ursa
Minor (Little Dipper):

368 Chapter Eleven

;**
constellation data

·** ,

Constellation
OFFSET

0
1
2
3

data format
UNIT
byte
byte
byte
byte

CONTENTS
Constellation number
Number of objects in Constellation
Default display color
RESERVED

;**
celestial objects in constellation

·** ,

Celestial object
OFFSET

data format:
UNIT CONTENTS

0

1

2-17
18
19
20
22
24
26

28-33
34
36

+38

URSA MINOR

byte

byte

string
byte
byte
word
word
word
word

string
word
word

DB
DB

1
7

Star number in constellation
(1-based)
Object type:

1 star
2 star cluster
3 nebula
4 galaxy

Star name (ASCII)
Integer of magnitude (binary)
Fraction of magnitude (binary)
RA hours (binary)
RA minutes (binary)
DEC degrees (binary)
DEC minutes (binary)
Star code (ASCII)
Storage for x screen coordinate
Storage for y screen coordinate

start of next object

Constellation number
Number of objects

DB 00001001B ; Constellation color
; is bright blue

DB O Reserved
Start of first star (in this case Polaris)

DB 1

DB 1

Star number in constellation
(1-based)
Object type code

DB 'Polaris ' ; 16-character name
plus/ terminator

DB 1 Magnitude
DB 9 Fraction of magnitude
OW 2 RA hours

Background, Objects, and Text 369

ow 31 RA minutes
ow 89 DEC degrees (signed)
ow 15 DEC minutes
DB 'Sl8 , . Star code (6 digits) ,
ow 0 Storage for x coordinate
ow 0 Storage for y coordinate

Next star
DB 2 Star number in constellation

(1-based)
DB 1 Object type code
DB 'Kochab , ; 16-character name

plus/ terminator
DB 2 Magnitude
DB 1
ow 14 RA hours
ow 50 RA minutes
ow 74 DEC degrees
ow 10 DEC minutes
DB 'Sl56 , . Star code (6 digits) ,
ow 0 Coordinates
ow 0

Next star
DB 3 Star number in constellation

(1-based)
DB 1 Object type code
DB 'Pherkad , ; 16-character name

plus/ terminator
DB 3 Magnitude
DB 1
ow 15 RA hours
ow 20 RA minutes
ow 71 DEC degrees
ow 50 DEC minutes
DB 'S163 , . Star code (6 digits) ,
ow 0
ow 0

Next star
DB 4 Star number in constellation

(1-based)
DB 1 Object type code
DB 'Yildun , ; 16-character name

plus/ terminator
DB 4 Magnitude
DB 0
OW 17 RA hours
ow 50 RA minutes
ow 86 DEC degrees
ow 0 DEC minutes

370

Next star

Next star

Next star

End of data

Chapter Eleven

DB 'None '; Star code (6 digits)
ow 0
ow 0

DB 5 Star number in constellation
(1-based)

DB 1 Object type code
DB 'Epsilon UMI ' ; 16-character name

plus/ terminator
DB 4 Magnitude
DB 0
DW 17 RA hours
DW 0 RA minutes
DW +82 DEC degrees
OW O DEC minutes
DB 'None '; Star code (6 digits)
ow 0
DW 0

DB 6 Star number in constellation
(1-based)

DB 1 Object type code
DB 'Zeta UMI ' ; 16-character name

plus/ terminator
DB 4 Magnitude
DB 0
OW 15 RA hours
ow 50 RA minutes
OW +78 DEC degrees
DW O DEC minutes
DB 'None '; Star code (6 digits)
ow 0
ow 0

DB 7 Star number in constellation
(1-based)

DB 1 Object type code
DB 'Eta UMI ' ; 16-character name

plus/ terminator
DB 4 Magnitude
DB 0
DW 16 RA hours
DW
DW
ow
DB

20
+76
0
'None

DW 0
ow 0

DB 00FEH

RA minutes
DEC degrees
DEC minutes

'; Star code (6 digits)

End of constellation mark

Background, Objects, and Text 371

Notice that the constellation name is not stored in the database. The code can obtain
the name by using the constellation number as an index into a list of constellation
names. The following list holds the names of eight constellations, starting with Ursa
Minor:

; List of Constellation names (20 characters per entry)
CONST NAMES DB 'URSA MINOR

DB 'URSA MAJOR

DB 'ORION

DB 'BOOTES

DB 'CASSIOPEIA

DB 'LYRE
DB 'GEMINI

DB 'HERCULES

Display of Vector/Bitmap Object

Code can display vector/bitmap objects by obtaining from the database the object's
parameter that is used in selecting the corresponding bitmap. In the case of the listed
star database, it is the object's magnitude that determines the bitmap to use. This
item is located at offset 3 in the object's data field. The display location is determined
by the object's vector data. In the case of the star database example this data would
be the object's declination and right ascension. These data items are located starting
at offset 5 of the object's data field.

Figure 11.6 is a screen dump of a demonstration program that displays the principal
objects in eight circumpolar constellations. The original program, namedAstrium, is
furnished with this book's diskette option. In the original, the constellations are
color-coded, but they are difficult to distinguish in the monochrome print. The data
displayed on the left-bottom part of the screen is the data and time information that
is necessary to locate the constellation on the celestial sphere. The data displayed at
the right-bottom part of the screen corresponds to the object that is closest to the
position of the cursor at the time that the left mouse button is pressed. In Figure 11.6
the cursor is closest to the star named Kochab in Ursa Minor. The constellation name,
magnitude, catalog number, right ascension (RA), and declination (DEC) are obtained
from the database.

Since the objects manipulated by the Astrium demonstration program are defined
in vector/bitmap form, it is possible to scale, rotate, and translate them. Therefore if
the user wishes to see the position of the stars at a different date and time, the software
can rotate the constellations accordingly by performing a mathematical operation on
the coordinate points. Notice that if the constellations had been defined as a single
bitmap, rotation, translation, and scaling would be much more complicated and
time-consuming operations.

The date and time data entered by the user into the Astrium program is in the form
of two ASCII strings. One holds the current date in mm/dd/yy format, and the second
one holds the hour in hh/mm/ss format. Before this data can be used to rotate the
coordinates of the constellations to be displayed, it must first be converted into

Figure 11.6 Initial Screen of the Astrium Program

w
--i
N

0
::r
Ill

j ..
m

f
::,

Background, Objects, and Text 373

fractional degrees and stored in the coprocessor's ST(O) register. The following
procedures perform the necessary operations:

;**
procedures to convert ASCII positional data into

decimal form in ST(O)
;**

DATA SEGMENT BYTE
ASCII BUF

; Binary data
BIN MONTH
BIN DAYS
THIRTY
BIN HOURS
BIN MINUTES
EQNX_DAYS
DEGS PER DAY
DEGS PER HOUR
DEGS PER MIN

DAYS TABLE

DATA ENDS

DB

ow
ow
DQ
ow
ow
OW
OT
DQ
DQ

ow
ow
ow
ow
ow
ow
ow
ow
ow
ow
ow
ow

PUBLIC
', OH Buffer for ASCII digits

0 Binary month number in date
0 Binary day number in date
30.0 Month to degree conversion
0 Hours in binary
0 Minutes in binary
0 Days from spring equinox
0.98630137 ; Degrees per solar day
15.0 Degrees in one hour
0.25 Degrees in one minute

0
31
59
90
120
151
181
212
243
273
304
334

January - 31
February - 28 (not leap year)
March - 31
April - 30
May - 31
June - 30
July - 31
August - 31
September - 30
October - 31
November - 30
December - 31

·** ,
code segment

·** ,

CODE SEGMENT BYTE PUBLIC
ASSUME CS:CODE, DS:DATA

·** ,
procedures

·** ,

TIME TO DEG PROC NEAR
Convert time in hh/mm/ss format to degrees from hour 0.0

On entry:

374 Chapter Eleven

DS:SI -- Buffer holding hh/rnm/ss
On exit:

ST(O) fractional degrees, counterclockwise from
O.Oh

At this point DS:SI -- buffer holding string
Get month digits into ASCII_BUF

LEA DI,ASCII_BUF Pointer to destination
MOVE HOURS:

MOV
CMP
JE
MOV
INC
INC
JMP

HOURS MOVED:

DX

MOV
LEA
CALL

has binary
MOV

Move minutes
INC
LEA

MOVE MINS:
MOV
CMP
JE
MOV
INC
INC
JMP

MINS MOVED:
MOV
LEA
CALL

AL, [SI]
AL,'/'
HOURS MOVED
[DI] ,AL
DI
SI
MOVE HOURS

BYTE PTR [DI],20H
BX,ASCII_BUF
ASC TO BIN

hours
BIN_HOURS,DX

field into buffer
SI
DI,ASCII_BUF

AL, [SI]
AL,'/'
MINS MOVED
[DI] ,AL
DI
SI
MOVE MINS

BYTE PTR [DI],20H
BX,ASCII_BUF
ASC TO BIN

DX has binary minutes
MOV BIN_MINUTES,DX

At this point:

Get digit
Test for end of field
Go if at end
Digit to buffer
Bump pointers

Continue

; Space at end of buffer
Setup pointer
Library routine to convert
ASCII to binary

Store month number

Bump pointer to days field
Pointer to destination

Get digit
Test for end of field
Go if at end
Digit to buffer
Bump pointers

Continue

; Space at end of buffer
Setup pointer
Library routine

Store minutes

BIN_HOURS = binary for hours number
BIN_MINUTES = binary for minutes number

1 hour = 15 degrees
1 minute = 0.25 degrees

ST(O) ST(l) ST(2)
FLO DEGS PER HOUR 15 -------
FILO BIN HOURS h 15 -------
FMULP ST(l),ST h * 15 -------
FLO DEGS PER MIN 0.25 h * 15 -------
FILO BIN MINUTES m 0.25 h * 15

Background, Objects, and Text

FMULP
FADD
RET

TIME TO DEG

DATE TO DEG

ST(l),ST

ENDP

PROC NEAR

m * 0.25
degs

375

h * 15 ------- I

Convert date in mm/dd format to days from spring equinox
and to fractional degrees
Spring equinox at 0.0h March 21

On entry:
DS:SI -- Buffer holding mm/dd/ value

On exit:
ST(0) fractional degrees, counterclockwise from

0.0h spring equinox

At this point DS:SI -- buffer holding string

Get month digits into ASCII_BUF
LEA DI,ASCII_BUF Pointer to destination

MOVE MONTH:
MOV
CMP
JE
MOV
INC
INC
JMP

MONTH MOVED:
MOV
LEA
CALL

AL, [SI]
AL,'/'
MONTH MOVED
[DI] ,AL
DI
SI
MOVE MONTH

BYTE PTR [DI],20H
BX,ASCII_BUF
ASC TO BIN

DX has binary month number
MOV BIN_MONTH,DX

Move days field into buffer
INC SI
LEA DI,ASCII_BUF

MOVE DAYS:
MOV
CMP
JE
MOV
INC
INC
JMP

DAYS MOVED:
MOV
LEA
CALL

AL, [SI]
AL,'/'
DAYS MOVED
[DI] ,AL
DI
SI
MOVE DAYS

BYTE PTR [DI],20H
BX,ASCII_BUF
ASC TO BIN

DX has binary day number
MOV BIN_DAYS,DX

Get digit
Test for end of field
Go if at end
Digit to buffer
Bump pointers

Continue

; Space at end of buffer
Setup pointer
Library routine

Store month number

Bump pointer to days field
Pointer to destination

Get digit
Test for end of field
Go if at end
Digit to buffer
Bump pointers

Continue

; Space at end of buffer
Setup pointer
Library routine

Store day number

376

At this point:
BIN MONTH= binary month number
BIN_DAYS = binary days number

Chapter Eleven

DAYS TABLE lists the number of days at the start of each month
MOV AX,BIN_MONTH Binary month to AX
LEA SI,DAYS_TABLE Listing of days
DEC AX Reduce to range
ADD AX,AX Double to get word offset
ADD SI,AX Add offset to pointer
MOV BX, [SI] BX holds number of days

until the present month
MOV AX,BIN_DAYS Day number to AX
ADD AX,BX Add days

AX holds days from January 1, 0.0 hours, to present day
Spring equinox is 80 days from this date

CMP AX,80 ; Test for equinox date
JAE PAST_EQUINOX ; Go if past equinox

At this point the current date precedes the equinox
There are 285 days from equinox to January 1
Therefore days past equinox are 285 + AX

MOV BX,285 Equinox to year end
ADD AX,BX AX has days from equinox
JMP DAYS DONE Go to exit routine

At this point the current date is between equinox and Jan 1
Days past equinox are AX - 80

PAST_EQUINOX:
MOV
SUB

DAYS DONE:

BX,80
AX,BX

AX holds number of days from
MOV EQNX_DAYS,AX

FLD
FILO
FMULP

DEGS PER DAY
EQNX_DAYS
ST(l),ST

Days from Jan 1 to equinox
Subtract from days count

spring equinox to present date
Store in variable

ST (0) I ST (1) I ST (2)
0. 9863.. 1---------1

d I 0. 9863 .. 1---------1
degs 1---------1

ST(O) now holds the number of degrees from spring equinox to
current date

RET

DATE TO DEG ENDP

Once the program has obtained the decimal data for the current date and
time, it can proceed to display each of the constellations in the database. Each
constellation contains a set of entries for the celestial objects that it encodes.
The constellation header contains the number of objects in the constellation,
the attribute to be used at display time, and the number of the constellation.
This last item can be used to index into a list of constellation names; as
previously described. The procedure named SHOW_CONST, following, dis­
plays all objects in a constellation file.

Background, Objects, and Text 377

;***
code segment data for local procedures

;***

OBJ MAG DB 0 Magnitude of current object
OBJECT CNT DB 0 Counter for number of objects

in constellation file

Numeric constants
SIXTY DQ 60.0 Divisor for minutes to decimal
FIFTEEN DQ 15.0 Multiplier for hours to degrees
NINETY DQ 90.0 DEC to pole distance
THREE SIXTY DQ 360.0 For complementing angles
TEN DQ 10.0 For adjusting zoom range

; Object coordinates and transformation factors
CART X DQ O x cartesian coordinate
CARTY DQ O y cartesian coordinate
ZOOM FACTOR DQ 3.0 Enlargement multiplier
ZOOM INTEGER ow O Integer of ZOOM_FACTOR
ROT ANGLE OW O Rotation angle
SIN@ DQ O Sine of rotation angle
COS@ DQ O Cosine of rotation angle
; Displacement defaults
X ORIGIN OW 320 X origin pixel displacement
Y ORIGIN ow 240 y origin pixel displacement

; Display coordinates
OBJECT X OW 0 X screen coordinate of object
OBJECT Y OW 0 y screen coordinate of object
; Approximation controls
BEST XY OW 0 Best x+y approximation

;***
procedure to display objects in a constellation file

;***
SHOW CONST PROC NEAR

Display all objects in a constellation file according to
magnitude
On entry:

SI -- constellation file

;***************************I
reset DS to local data I

;***************************I
MOV
MOV
ASSUME

CX,CO_DATA
DS,CX
DS:CO DATA

;****************************I
multiple entry point

;****************************!

Local segment
To OS
Assume this segment

378 Chapter Eleven

Obtain constellation data
MOV AL, [SI+l]
MOV CS:OBJECT_CNT,AL;
MOV AL, [SI+2]
MOV CONST_COLOR,AL
ADD SI,4

NEXT OBJECT:
CALL SHOW OBJECT

below)
DEC CS:OBJECT CNT
JZ END OF OBJECTS
ADD SI,38
JMP NEXT OBJECT

Get number of objects
Store in variable
Get constellation color
Store color in OS variable
Index to first star

Local procedure (listed

Decrement counter
Go if at end
Index to next object
Continue

END OF OBJECTS:
RET

SHOW CONST ENDP

The actual object display operations are performed by the procedure named
SHOW _OBJECT, in the following listing. Processing is elaborate since the
procedure first takes into account the current enlargement factor. This means
that if the display operation is larger than the default (zoomed in), then the
objects are displayed using a bitmap larger than would have normally been the
case. By the same token, if the display is zoomed out, then the stars are
displayed in a smaller magnitude. The object's coordinates are also adjusted to
the current zoom factor.

The scaling transformation is performed according to the principles discussed
in Chapter 3. The object is rotated and translated according to the stored
parameters for these transformations. Rotation of coordinates is also performed
by applying the standard formulas. This operation is executed by an auxiliary
procedure named ROTATE. Another auxiliary procedure, called VIDEO_LIM­
ITS, also listed below, checks that the final display coordinates are within the
accepted range. Figure 11.7 is a second screen dump of the Astrium program
in which the original display has been zoomed-in, rotated, and translated.

·*** ,
procedure to display celestial object

·*** ,

SHOW OBJECT PROC NEAR
Display celestial object according to object type and location
On entry:

SI -- Start of object data block, formatted as follows:
Celestial object data format:

OFFSET UNIT CONTENTS
0 byte Star number in constellation

(1-based)
1 byte Object type:

1 star
2 = star cluster

Figure 11.7 Zoom-in, Rotation, and Translation of the Screen Image in Figure 11.6

CD
Ill
0 .,,..

(C

0
I:
:::,
_0.

0
.sz:
(D

wa
Ill
:::,
Q.

a

w
--I
ID

380

2-17 string
18 byte
19 byte
20 word
22 word
24 word
26 word

28-33 string
34 word
36 word

+38 ---------------
;**************************I

get object type
;**************************!

MOV
CMP
JE

AL, [SI+l]
AL,l
STAR TYPE

;***************************I
illegal object type

;***************************I

3 = nebula
4 = galaxy

Star name (ASCII)
Integer of magnitude
Fraction of magnitude
RA hours (binary)
RA minutes (binary)
DEC degrees (binary)
DEC minutes (binary)
Star code (ASCII)
Storage for x screen
Storage for y screen
start of next object

Get object type
1 is star

; No other object type is presently implemented

Chapter Eleven

(binary)
(binary)

coordinate
coordinate

STC ; Carry is error flag
RET

;***************************I
star type object

;***************************I
STAR TYPE:

MOV AL, [SI+l8] ; Get object magnitude
Original magnitude is decreased or increased according to
current enlargement factor (ZOOM_FACTOR), as follows:
ZOOM FACTOR 2 to 4 then OBJ MAG unchanged

4 then OBJ MAG+ 1
6 then OBJ MAG+ 2
2 to 1 then OBJ MAG - 1
l the OBJ MAG - 2

First round ZOOM_FACTOR to integer and add 10 to avoid
negative zoom range

FLD CS:ZOOM FACTOR Factor ST(0)
FADD CS:TEN Add 10 to zoom factor
FRNDINT Round to integer
FISTP CS:ZOOM INTEGER Stored as integer
MOV BX,CS:ZOOM_INTEGER ; Zoom to BX

BX now holds integer of zoom factor+ 10
CMP BX,14 Test for upper limit
JAE BIGGER STAR Make image larger
CMP BX,12 Test lower limit
JBE SMALLER STAR Make image smaller

At this point magnitude is not changed

Background, Objects, and Text 381

JMP STORE MAG
Magnitude is decremented to make star image larger

BIGGER STAR:
CMP
JBE
DEC
JZ

MAG PLUS 1:
DEC

BIG LIMIT:
JMP

BX,16
MAG PLUS 1
AL
BIG LIMIT

AL

STORE MAG

Test for magnitude 6
Increment 1 magnitude
Increment once
Go if magnitude= 0

Increment magnitude

; Test for magnitude 1 for single reduction
SMALLER STAR:

CMP BX,10
JBE MIN MAG
CMP BX,11

JAE MAG MINUS 1
INC AL

MAG MINUS 1:
INC AL
JMP STORE MAG

MIN MAG:
MOV AL,6

;***************************I
store adjusted magnitude I

;***************************I
STORE MAG:

MOV CS:OBJ_MAG,AL
;***************************I

compute RA at equinox
;***************************I

FILO

FILO
FDIV
FADD
FMUL

FILO
FILO
FDIV
FADD
FLO
FXCH
FSUB
FXCH
CALL
FLO
CALL

WORD PTR[SI+20]

WORD PTR[SI+22]
CS:SIXTY

CS:FIFTEEN

WORD PTR [SI+24]
WORD PTR [SI+26]
CS:SIXTY

CS:NINETY

DEG TO RAD
ST{O)
SINE

Test for O or less zoom
Set minimum magnitude
Limit for double reduction
in magnitude
Go if 1 or less
Reduce image

Save it

Minimum magnitude

Store magnitude

Load RA hours
ST (0) ST (1) I ST (2)

RA hours ---------1
RA min RA deg 1---------1
RA min/60 RA hoursl---------1
RAh+RAm ---------1

* 15 ---------1
= RA deg
DEC deg
DEC min

;DEC min/60
DEC
90
DEC

90 - DEC
RA

RA rads
RA rads
sin RA

RA 1---------1
DEC deg I RA I
DEC deg I RA I

RA 1---------1
DEC I RA I
90 I RA I
RA 1---------1

DEC - 901---------1
DEC - 901---------1
RA rads I 90 - DECI
RA rads I 90 - DECI

382

FMUL
FCHS
FSTP
CALL
FMULP
FSTP

ST,ST(2)

CS:CART X

COSINE
ST(l),ST
CS:CART Y

X

X * -1
RA rads
cos RA

y

Chapter Eleven

RA rads I 90 - DECI
------- I
90 - DECI -------
90 - DECI ------­
------- I

; At this point the signed cartesian coordinates of the object
; are stored in CS:CART X and CS:CART Y
;****************************I

scale object
;****************************/

FLD CS:CART X

FLD CS: ZOOM FACTOR
FMULP ST(l),ST
FSTP CS:CART X

Process y
FLD CS:CART Y
FLD CS: ZOOM FACTOR
FMULP ST(l),ST
FSTP CS:CART Y

;****************************I
rotate object

;****************************I
CALL ROTATE

;****************************I
translate object
into video plane

;****************************I
; y coordinate

FLD CS:CART Y
FILD CS:Y ORIGIN
FADD
FISTP CS:OBJECT Y

x coordinate
FLD CS:CART X
FILD CS:X ORIGIN
FADD
FISTP CS:OBJECT X

Test for negative coordinates
MOV BX,CS:OBJECT_X
MOV CX,CS:OBJECT_Y
TEST BX,8000H
JNZ NEG COORD
TEST CX,8000H
JNZ NEG COORD

; At this point coordinates are
JMP POS COORDS

NEG COORD:

X

?

x * fac

y
?

y * fac

y
240

240 + y

X

320
320 + X

X

y

y * fac

x * fac

BX= x screen coordinate
CX = y screen coordinate
Is high bit set?
Go if set
Same for y coordinate
Go if negative

positive
; Go

; Reset variables if coordinates are negative
MOV CS:OBJECT_X,0FFFFH ; Indicates invalid
MOV CS:OBJECT_Y,0FFFFH

Background, Objects, and Text

JMP BAD OBJ COORDS
Object is ready to display

POS COORDS:
PUSH SI

;***************************I
select star bitmap

;***************************I
Object's integer magnitude is

MOV AL,CS:OBJ_MAG
CMP AL,0
JNE TEST MAGl

Display object of magnitude 0
MOV MAG0_X,BX
MOV MAG0_Y,CX

y axis displacement of object
MOV AX, 4
LEA SI,MAG0_X
JMP OBJECT DISPLAY

TEST MAGl:
CMP
JNE

AL, 1
TEST MAG2

Display object of magnitude 1
MOV MAGl_X,BX
MOV MAGl_Y,CX

y axis displacement of object
MOV AX, 3
LEA SI,MAGl_X
JMP OBJECT DISPLAY

TEST MAG2:
CMP
JNE

AL,2
TEST MAG3

Display object of magnitude 2
MOV MAG2_X,BX
MOV MAG2_Y,CX

y axis displacement of object
MOV AX,2
LEA SI,MAG2_X
JMP OBJECT DISPLAY

TEST MAG3:
CMP
JNE

AL,3
TEST MAG4

Display object of magnitude 3
MOV MAG3_X,BX
MOV MAG3_Y,CX

y axis displacement of object
MOV AX,l
LEA SI,MAG3_X
JMP OBJECT DISPLAY

TEST MAG4:
CMP
JNE

AL,4
TEST MAGS

Quick exit from routine

Save object pointer

used to select star bitmap
Magnitude to AL
Test magnitude
Go if not zero

Coordinates to display block

center according to magnitude
y displacement
Pointer to bitmap block
Go to display routine

Test magnitude
Go if not zero

Coordinates to display block

center according to magnitude
y displacement
Pointer to bitmap block
Go to display routine

Test magnitude
Go if not zero

Coordinates to display block

center according to magnitude
y displacement
Pointer to bitmap block
Go to display routine

Test magnitude
Go if not zero

Coordinates to display block

center according to magnitude
y displacement
Pointer to bitmap block
Go to display routine

Test magnitude
Go if not zero

383

384 Chapter Eleven

Display object of magnitude 4
MOV MAG4_X,BX ; Coordinates to display block
MOV MAG4_Y,CX

y axis displacement of object
MOV AX, 0
LEA SI,MAG4_X
JMP OBJECT DISPLAY

TEST MAGS:
Display object of magnitude 5

MOV MAGS_X,BX
MOV MAGS_Y,CX

y axis displacement of object
MOV AX,0
LEA SI,MAGS_X

;***************************I
display object

;***************************I
OBJECT DISPLAY:

center according to magnitude
y displacement
Pointer to bitmap block
Go to display routine

; Coordinates to display block

center according to magnitude
y displacement

; Pointer to bitmap block

Adjust and store object coordinates in memory
ADD BX,5 Add x displacement
ADD CX,AX and y displacement
CALL VIDEO LIMITS Local procedure to test valid

coordinate range
JNC DO VIDEO Go if carry clear

At this point the object has coordinates outside the legal range
Skip display function and enter invalid coordinates codes

POP SI ; Restore object pointer
MOV WORD PTR [SI+34],0FFFFH xis invalid
MOV WORD PTR [SI+36],0FFFFH; y is invalid

BAD OBJ COORDS:
RET

; Save object coordinates and display object
DO VIDEO:

PUSH BX Save x/y in stack
PUSH
LEA
CALL
POP
POP

Store object
POP
MOV
MOV
RET

SHOW OBJECT

ex
BX,CONST_COLOR Color of star
MONO MAP 18 Library procedure
CX Restore x and y coordinates
BX of object

coordinates in database
SI ; Restore object pointer
WORD PTR [SI+34],BX x coordinate
WORD PTR [SI+36],CX y coordinate

ENDP
;**

limits of the video display area
·** I

VIDEO X RT
VIDEO X LF
VIDEO Y DN

EQU
EQU
EQU

630
4

400

Right screen limit
Left screen limit
Lower screen limit

444 Chapter Thirteen

In the alpha modes the mouse driver manages the text cursor on a coarse grid
of screen columns and rows, according to the active display mode. VGA pro­
grams that execute in graphics modes must provide their own cursor bitmap,
which is installed by means of an interrupt 33H subservice. However, since the
graphics cursor operated by the driver is limited to a size of 16-by-16 pixels,
many graphics programs create and manage their own cursor. In this case the
driver services are used to detect mouse movements, but the actual cursor
operation and display are handled directly by the application. This is also the
case of XGA programs that use the sprite functions to manage a mouse cursor
image. The implementation of a cursor in a VGA graphics mode is discussed
later in this chapter.

In addition to mouse cursor management and display, the subservices of
interrupt 33H include functions to set the mouse sensitivity and rate, to read
button press information, to select video pages, and to initialize and install
interrupt handlers that take control when the mouse is moved or when the
mouse buttons are operated. However, some of the services in the interrupt 33H
drivers reprogram the video hardware in ways that can conflict with an
application. For this reason, we have limited our discussion to those mouse
services that are not directly related to the video environment. These services
can be used from any VGA, XGA, or SuperVGA graphics modes without
interference. However, in this case, it is the application's responsibility to
perform all video updates.

Subservlce O - Initialize Mouse

Subservice number O of interrupt 33H is used to reset the mouse device and to
obtain its status. An application usually calls this service to certify that the
mouse driver is resident and to initialize the device parameters. The following
fragment shows a call to this subservice:

Initialize mouse by calling subservice O of interrupt 33H
MOV AX,0 Reset mouse hardware and

software
INT 33H Mouse interrupt
CMP AX,0 Test for error during reset
JNZ OK RESET No problem

At this point the program should provide an error routine to
handle an invalid initialization call

Execution continues at this label if the mouse was initialized
OK RESET:

Interactive Animation 443

13.3.2 Checking Mouse Installation

Applications that use the mouse device must adopt one of three alternatives
regarding the support software: assume that the driver was installed by the
user, load a driver program, or provide the low-level services within its code.
By far, most applications adopt the first option, that is, assume that the user
has previously loaded the mouse driver software, although the more refined
programs that use a mouse device include an installation utility that selects
the appropriate driver and creates or modifies a batch file in order to ensure
that the mouse driver is resident at the time of program execution.

In any case, the first operation usually performed by an application that plans
to use the mouse control services in interrupt 33H is to test the successful
installation of the driver program. Since the driver is vectored to interrupt 33H,
this test consists simply of checking that the corresponding slot in the vector
table is not a null value (0000:0000H) or an IRET operation code. Either one of
these alternatives indicates that no mouse driver is available. The following
fragment shows the required processing:

Code to check if mouse driver software is installed in the
interrupt 33H vector. The check is performed by reading the
interrupt 33H vector using MS-DOS service number 53,
of INT 21H

MOV
MOV
INT

AH,53
AL,33H
21H

MS-DOS service request
Desired interrupt number
MS-DOS service

ES:BX holds address of interrupt handler, if installed
MOV AX,ES Segment to AX
OR AX,BX ; OR with offset
JNZ OK INT33 ; Go if not zero

Test for an IRET opcode in the vector
CMP BYTE PTR ES: [BX],0CFH CFH is IRET opcode
JNE OK INT33 ; Go if not IRET

At this point the program should provide an error handler
to exit execution or to load a mouse driver

Execution continues at this label if a valid address was found
in the interrupt 33H vector

OK INT33:

13.3.3 Subservices of Interrupt 33H

The Microsoft mouse interface was designed to provide control of the mouse
device from high- and low-level languages. VGA alphanumeric programs can
use the Microsoft mouse software by selecting one of two available text cursors.

442 Chapter Thirteen

One or more characters can be entered directly into the buffer so they appear to an
application as if they had been typed from the keyboard. In this case the buffer
pointers also require adjustment, since they must signal both ends of the new string.
One possible use of this technique is to force DOS to execute a program or
command on exit from another program.

13.3 Programming the Mouse

The IBM Personal System 12 and Personal Computer BIOS Interface Technical
Reference (see Bibliography) describes a pointing device interface associated
with service number 194 of INT 15H. However, there are several difficulties
associated with this service. In the first place, the IBM documentation dealing
with this mouse service is not sufficient for programming the device. Another
consideration is that the services are not compatible with different mouse
hardware. Then there is the problem that various non-IBM versions of the BIOS
do not include this service. Finally, the service is not recognized in the DOS
mode ofOS/2.

If the BIOS mouse services oflNT 15H were operational and compatible with
standard mouse hardware, a program could use these functions much the same
way as it uses the video, printer, or communications services in the BIOS. Due
to the difficulties mentioned in the preceding paragraph, most applications
must find alternative ways of controlling mouse operation. However, all alter­
native solutions have the disadvantage ofrequiring an installed mouse driver.
This leaves three alternatives: the software must assume that the user has
previously installed and loaded a compatible mouse driver, the software must
provide an installation routine that loads the driver, or the code must include
a low-level driver for the mouse device.

13.3.1 The Microsoft Mouse Interface

The mouse driver software that has achieved general acceptance is the one by
Microsoft Corporation. The Microsoft mouse control software is installed as a
system driver or as a TSR program. The system version is usually stored in a
disk file with the extension .SYS and the TSR version in a file with the extension
.COM. The Microsoft mouse interface services are documented in the book
Microsoft Mouse Programmer's Reference, published by Microsoft Press (see
Bibliography).

Most manufacturers of mouse devices provide drivers that are compatible
with the one by Microsoft. Therefore, the use of the Microsoft mouse interface
is not limited to mouse devices manufactured by this company, but extends to
all Microsoft-compatible hardware and software. The installation command for
the mouse driver is usually included in the CONFIG.SYS or AUTOEXEC.BAT
files. The Microsoft mouse interface attaches itself to software interrupt 33H
and provides a set of 36 subservices. These mouse subservices are accessible by
means of an INT 33H instruction.

Interactive Animation 441

13.2.3 Keyboard Status Bytes

Figure 13.1 lists the bit structure of the first keyboard status byte located at
address 0040:0017H. Figure 13.2 lists the bit structure of the second keyboard
status byte located at address 0040:00lSH.

Bits 4, 5, 6, and 7 on both status bytes refer to the Scroll Lock, Num Lock,
Caps Lock, and Ins keys. In the first status byte the bits indicate the active
state. In the second status byte they indicate if these keys were pressed
simultaneously with the last keystroke. Bits O and 1 of the second status byte
are meaningful for PS/2 systems only, since previous keyboards do not have
Left Alt and Left Ctrl keys. Bit 2 of this byte is also used, in the PCjr, to indicate
the state of the keyboard click function.

An application can change the alternate state of the toggle keys by modifying the
corresponding bit in the keyboard status bytes. This operation can be used for
presetting the lock key status. In the AT and PS/2 keyboards the state of the toggle
keys is represented by an illuminated indicator (LED). Changing the corresponding
bit to 1 or O turns the light on or off.

13.2.4 Keyboard Buffers

The keyboard buffer is used by the interrupt 09H handler to store the ASCII values
for keystrokes. Applications and system programs can retrieve these values using
the BIOS keyboard services of INT 16H or by reading the buffer directly. The handler
at INT 09H converts the original scan codes into the corresponding ASCII, extended
ASCII, and control codes of the IBM character set, prior to storing the keystrokes in
the buffer.

The keyboard buffer uses two buffer pointers. The output pointer, called BUFF­
ER_HEAD, is located at address 0040:00lAH. The input pointer, called BUFF­
ER_TAIL, is located at address 0040:00lCH. The storage area of the buffer starts at
address 0040:00lEH and extends for 16 words. Two storage bytes are used for each
keystroke, one for the ASCII value and another one for the scan code. Since the last
word in the buffer is not used for character storage, the total capacity is 15 characters.

If the keyboard buffer is empty, then the BUFFER_HEAD pointer and the
BUFFER_TAIL pointer are equal. This can be used to flush any old characters from
the buffer. The following code fragment shows a way offlushing the keyboard buffer:

CLI

MOV
MOV
MOV
MOV
STI

AA,0040H
ES,AA
AL, ES: [00lAH]
ES: [00lCH] ,AL

Interrupts OFF while changing
pointers
BIOS data area segment
indirectly to ES
Get BUFFER HEAD
Set BUFFER TAIL to this value
Interrupts back on

440 Chapter Thirteen

Function active when bit set:

~------ Right shift key pressed
~------- Left shift key pressed

~--------- Ctrl key pressed
~---------- Alt key pressed

~------- Scroll lock on (LED lit)
~-------- Num lock on (LED lit)

~---------- Caps lock on (LED lit)

~----------- Insert on

Figure 13.1 First Keyboard Status Byte (0040:0017H)

keyboard buffer for the special keystrokes, but the execution of an application
cannot be interrupted by pressing Ctrl-C.

13.2.2 Keyboard Data in BIOS

Keyboard data is stored in three BIOS areas:
1. The byte at absolute address 0040:0017H, known as the first keyboard status

byte
2. The byte at absolute address 0040:00lSH, known as the second keyboard

status byte
3. The buffer pointers and keyboard data buffer starting at absolute address

0040:00lAH

Function active when bit set:

~------- Left Ctrl key pressed
~-------- Left Alt key pressed

~--------- System Request key pressed

~----------- Pause on

~-------- Scroll lock ley pressed

~--------- Num lock key pressed

~---------- Caps lock key pressed

~----------- Insert key pressed

Figure 13.2 Second Keyboard Status Byte (0040:001 BHJ

Interactive Animation 439

in the original PC, the XT, or the PCjr, since the processor used in these
computers does not support multitasking.

The AT and the PS/2 systems, upon detecting the system request key or
keystroke combinations, loads the AH registers with the value 85H and exe­
cutes INT 15H. If the action was caused by a make code, the AL register holds
OOH. If the action was caused by a break code, AL holds OlH. Since BIOS does
not provide a function for service number 85H, of INT 15H, the keystroke
normally appears to have no action, but an application could take over this
service for its own purposes.

Pause Function

All IBM microcomputers go into a wait loop every time that the Pause key or
keystroke combination is detected by the interrupt 09H handler. This allows
the user to instantly detain an application or system function, such as a screen
listing or printer operation. The paused program resumes when an ASCII key
is pressed. In the PS/2 keyboards this is a dedicated key labeled Pause. In the
PC, XT, and AT keyboards the pause function activates with the Ctrl-Num Lock
sequence. In the PCjr the pause function requires the Fn-Q keystroke.

Break Function

The BIOS keyboard handler in all the IBM microcomputers recognizes certain
key combinations as a keyboard break. This function is provided so that a
system program or an application can regain control of run away code, interrupt
undesired execution, or exit an endless loop. This is possible because the
function is triggered by a hardware interrupt physically linked to the key or
keystroke combination designated as the keyboard break. If the keyboard
interrupt is enabled, this action always invokes interrupt lBH.

When the break handler concludes, it should proceed in the same manner as
any hardware interrupt routine. The code should send the End of Interrupt
command to the interrupt controller, reenable interrupts, and exit via the IRET
instruction, for example:

MOV

OUT
STI
IRET

Ctrl-C Handler

AL,20H
20H,AL

Issue EOI command
to interrupt controller
Interrupts ON
Return for interrupt

MS- DOS provides its own break handler which is activated with the keystrokes
Ctrl-C. The DOS routine terminates any currently active process and returns
control to the parent process. This constitutes an actual abort operation, but it
does not close any open files nor restore vectors or drivers. The most important
difference between the DOS Ctrl-C handler and the keyboard break is that the
DOS handler is not interrupt driven. When DOS is in control, it checks the

438 Chapter Thirteen

2. The software control keys are noncharacter keys used by system and appli­
cations programs for executing user controls and commands. This group
includes the function keys, labeled Fl to F12, the Ins, Insert, Del, Delete,
Home, End, Page-Up, Page-Dn, Page-Down, Tab, Backspace, Esc, and the
arrow keys.

3. The hot keys and keystroke combinations are those that generate an immediate
action at the system or application level. The Pause, Print Screen, Ctrl-.Alt-Del,
and SysRq actions correspond to system level functions. The Ctrl-Break se­
quence is available as a programmable hot keystroke combination.

4. The alternate state keys are those that temporarily activate an alternative
interpretation of another key. They are the Shift, the Ctrl, and the Alt keys.

5. The toggle keys are those that permanently activate one of two states, which
are recorded at the system level. Caps Lock, Num Lock, and Scroll Lock are
toggle keys.

When the keyboard handler detects a scan code corresponding to an ASCII or a
software control key (groups 1 and 2 above), it looks up the code corresponding to
the key and stores it in an area of RAM called the keyboard buffer.

The hot keys (group 3) determine an immediate action either in the form of a
routine internal to the keyboard handler or associated with a software interrupt.
Some hot keys consist of several keystrokes; for instance, the Ctrl-Alt-Del sequence
activates the warm boot action and the Ctrl-Break sequence transfers control to
interrupt lBH.

Some alternate state keys (group 4) determine a different interpretation of a
keystroke by the handler; for instance, if a character key is pressed while the Shift
key is held down, the keystroke is recorded in upper case. Other alternate state
keys are merely recorded by the handler and the interpretation is left to the
application.

This action applies also to the toggle keys (group 5). On the PC AT and the PS/2
keyboards each toggle key is furnished with an indicator light, sometimes called
a keyboard LED. In these keyboards, the indicator light is also controlled by the
handler at INT 09H.

Print Screen Function

All IBM microcomputers provide a hot key or keystroke combination that activates
a screen dump to the parallel printer port. The BIOS handler for this function is
located at the vector for INT 05H.

System Request Function

The system request key, labeled SysRq, is found at the top, right-hand comer of
the AT keyboard. This key was conceived for use in multitasking environments,
but the developers ofOS/'2 adopted the Ctrl-Esc and the Alt-Esc keystrokes instead.
In the PS/2 keyboards the system request function, labeled SysRq, requires the
Alt-Print Screen keystroke combination. No system request function is implemented

Interactive Animation 437

Table 13.1 Keyboard Make and Break Scan Codes

KEY PC&XT AT PCJR PS/2

<Esc> 01H-81H 01H-81H 01H-81H 01H-81H
<Fl> 3BH-BBH 3BH-BBH 3BH-BBH 3BH-BBH
<F2> 3CH-BCH 3CH-BCH 3CH-BCH 3CH-BCH
<F3> 3DH-BDH 3DH-BDH 3DH-BDH 3DH-BDH
<F4> 3EH-BEH 3EH-BEH 3EH-BEH 3EH-BEH
<FS> 3FH-BFH 3FH-BFH 3FH-BFH 3FH-BFH
<F6> 40H-COH 40H-COH 40H-COH 40H-COH
<F7> 41H-ClH 41H-C1H 41H-ClH 41H-ClH
<FB> 42H-C2H 42H-C2H 42H-C2H 42H-C2H
<F9> 43H-C3H 43H-C3H 43H-C3H 43H-C3H
<FlO> 44H-C4H 44H-C4H 44H-C4H 44H-C4H
<Scroll Lock> 46H-C6H 46H-C6H 46H-C6H 46H-C6H
<Backspace> OEH-8EH OEH-8EH OEH-8EH OEH-8EH
<Ins> 52H-D2H 52H-D2H 52H-D2H 52H-D2H
 53H-D3H 53H-D3H 53H-D3H 53H-D3H
<Num Lock> 45H-C5H 45H-C5H 45H-C5H 45H-C5H
<Tab> OFH-8FH OFH-8FH OFH-8FH OFH-8FH
<Enter> 1CH-9CH 1CH-9CH 1CH-9CH 1CH-9CH
<Caps Lock> 3AH-BAH 3AH-BAH 3AH-BAH 3AH-BAH
<Left Shift> 2AH-AAH 2AH-AAH 2AH-AAH 2AH-AAH
<Right Shift> 36H-B6H 36H-B6H 36H-B6H 36H-B6H
<Left Ctrl > 1DH-9DH 1DH-9DH 1DH-9DH 1DH-9DH
<Up Arrow> 48H-C8H 48H-C8H 48H-C8H 48H-C8H
<Left Arrow> 4BH-CBH 4BH-CBH 4BH-CBH 4BH-CBH
<Right Arrow> 4DH-CDH 4DH-CDH 4DH-CDH 4DH-CDH
<Down Arrow> 50H-DOH 50H-DOH 50H-DOH 50H-DOH

1. If the scan code in port 60H corresponds to a character key, the handler
places the corresponding ASCII code, together with the scan code, in the
keyboard buffer.

2. If the scan code corresponds to the make or break action of the Shift, Ctrl,
Alt, Ins, Num Lock, Cap Lock, Scroll Lock, or the SysRq key, the handler
updates the state of the corresponding bit or bits in a memory area known
as the keyboard status byte.

3. If the scan code corresponds to the Del key, and if the Ctrl-Alt keys are being
simultaneously held down, the handler transfers execution to the BIOS
warm boot routine.

4. If the scan code for the Pause key, or an equivalent sequence, is detected,
the handler enters a wait loop until the next valid keystroke is received.

5. If the scan code corresponds to the Print Screen key or key combination, the
handler executes interrupt 05H.

6. If the scan code corresponds to the Ctrl Break sequence, the handler executes
interrupt lBH.

13.2.1 Classification of Keys and Keystrokes

According to their function, the keys can be classified into the following groups:

1. The character keys are those that are commonly used in the creation of text,
namely, the letters of the alphabet, the keys for the Arabic numerals, and
the symbol keys. These keys are often called the ASCII set.

436 Chapter Thirteen

Although the two chips are different, the 8042 can be programmed to mimic
the 8048.

13.1.1 Keyboard Controller

The main function of the keyboard controller is to relieve the microprocessor from
monitoring the state of the key switches. In operation these chips perform as
follows:
1. Every time that a key is pressed or released, the 8048 or 8042 stores a code

(called a scan code) in one ofits internal registers. In all PC systems this register
can be read at port 60H. The scan codes are specific for each key but do not
correspond to the ASCII value of the key.

2. Once the scan code is stored, the keyboard controller generates an interrupt on
the 8259 line IRQl. If the keyboard interrupt is enabled, the microprocessor
transfers execution to the INT 09H handler.

3. The INT 09H handler, located in the system BIOS, reads the scan code at port
60H and converts it into the ASCII or extended ASCII characters. If the
keystroke corresponds to a key that requires immediate action, as is the case
with the LOCK keys, the Print Screen key, or any other hot key, the handler
proceeds accordingly. If not, the ASCII code and the original scan code are placed
in a BIOS area called the keyboard buffer.

13.1.2 The Keyboard Scan Codes

Some forms of keyboard programming require the identification of keys by their
scan codes. Every time a key is pressed or released, the keyboard microprocessor
places a code, particular to that key, in the register associated with port 60H. The
keyboard handler uses these scan codes to determine which key or key combination
has been pressed or released and to take action accordingly.

The programming operations necessary for obtaining and interpreting the
keyboard scan codes are simple and straightforward. In addition, IBM has main­
tained the same scan codes for the corresponding keys in the various keyboards.

The keyboards of the PS/2 line offer three sets of scan codes. Scan code set 1 is
compatible with the keyboards of the PC line. Table 13.1 shows the make and break
scan codes for some common control keys, which are identical in all PC keyboards.

13.2 Keyboard Programming

The IBM keyboard controllers are normally programmed to generate an interrupt
every time a make or break scan code is placed in port 60H. The BIOS keyboard
handler, located at the vector for INT 09H, gains control during this interrupt.
The action performed by the handler depends on the key or key combination
that originated the interrupt:

Chapter

13
Interactive Animation

13.0 User-Animated Objects

Interactive animation refers to screen objects that are moved at will by the user.
Typically, the animated screen object is controlled by means of an input device,
such as the keyboard, mouse, puck, or graphics tablet. Of all input devices two
have gained general acceptance, as well as a certain level of software stand­
ardization: the keyboard and the mouse. In this chapter we discuss program­
ming these devices as a means for animating interactive screen objects. Other
interactive input devices, although often sophisticated and effective, are spe­
cialty tools that lie outside the scope of a general-purpose book.

13.1 PC Keyboard Hardware

The keyboard is one ofIBM microcomputer components that has undergone the
most modifications and redesigns. Externally, the changes have consisted in
the addition of several new keys, repositioning of other keys, and the inclusion
oflight-emitting diodes to indicate the state of the toggle keys. Internally, the
keyboards of the PC and XT, the one on the PCjr, and the keyboards of the PC
AT and the PS/2 lines are completely different.

The keyboard furnished with the original IBM PC and PC XT has 83 keys.
The IBM PCjr was released with a 62-key keyboard, popularly dubbed the
"chiclet" keyboard due to the appearance and feel of the keys. It was soon
recalled by IBM and replaced with a better model. The IBM PC AT has an
84-key keyboard characterized by a relocated Esc (escape) key and a new system
request key, intended for use in multitasking environments. The PS/2 line
introduced yet another keyboard with 101 keys on the U.S. version and 102
keys for the models sold outside the United States. The PS/2 keyboards are
equipped with two additional function keys and with special keypads with
duplicate editing and cursor controls keys.

Regarding electronic hardware, the PC and XT keyboards use the Intel 8048
keyboard controller while the AT and PS/2 keyboards use the Intel 8042.

435

434

CMP AH,AL
JE NO BLU ACTION
INC AL
MOV CS: [SI] ,AL

NO BLU ACTION:
CALL TIME VR BO
OUT DX,AL
INC SI
INC DI
LOOP LIGHTEN DAC

;***************************I
insert delay period

;***************************I
PUSH
MOV
CMP
JE
CALL

NO IN DELAY:

BX
BX,CS:TIME_DELAY
BX,0
NO IN DELAY
MILLI TIME

Chapter Twelve

Compare current with final DAC
Go if equal
Lighten value by one unit
Store value

Write DAC blue
Bump pointers

Continue

Save iteration counter
; Stored parameter

Test for no delay
Go if no delay
Delay procedure

POP BX Restore counter
AT this point all DAC registers have been lightened by one color
unit

POP
POP
DEC
JNZ

DI
SI
BX
LIGHTEN 256

;**********************!
restore caller's

context
;**********************I

POP DI
POP SI
POP DX
POP ex
POP BX
POP AX

RET
FADE IN ENDP

Restore caller's DAC pointer
and work area pointer
BX is iteration counter

Time-Pulse and Color-Shift Techniques

LEA SI,CS:WORK_DAC
MOV AL,O
PUSH SI

CLEAR WORK DAC:
MOV CS: [SI] ,AL
INC SI
LOOP CLEAR WORK DAC
POP SI

;***************************I
read table and set DAC

;***************************I

Pointer to DAC storage area
DAC value for initialization
Save pointer

Store OH code
Bump pointer

Restore pointer

Code maintains the current setting of the DAC register in
a working storage table. This value is used to reset the DAC
register to a shade closer to the final DAC register value
First select DAC write operation

LIGHTEN 256:
CALL TIME VR B3
MOV CX,256 Counter for 256 DAC registers
MOV DX,03C8H Pallet Address (Write mode)
MOV AL,O Value to write

433

OUT DX,AL To DAC Palette Address register
INC DX 3C9H is DAC data register
PUSH SI Save working area pointer
PUSH DI and user DAC table pointer

LIGHTEN DAC:
MOV AL,CS: [SI] Load current DAC
MOV AH, [DI] Get final DAC value
CMP AH,AL Compare current with final DAC
JE NO RED ACTION Go if equal
INC AL Lighten value by one unit
MOV CS: [SI] ,AL Store value

NO RED ACTION:
CALL TIME VR BO
OUT DX,AL Write DAC red
INC SI Bump pointers
INC DI

MOV AL,CS: [SI] Load current DAC
MOV AH, [DI] Get final DAC value
CMP AH,AL Compare current with final DAC
JE NO GRN ACTION Go if equal
INC AL Lighten value by one unit
MOV CS: [SI] ,AL Store value

NO GRN ACTION:
CALL TIME VR BO
OUT DX,AL Write DAC green
INC SI Bump pointers
INC DI
MOV AL,CS: [SI] Load current DAC
MOV AH, [DI] Get final DAC value

432 Chapter Twelve

In the following procedure the fade-in can be slowed down by introducing a
delay between each of the 64 incremental steps. The timing routine (called
MILLI_TIME) was listed in Section 7.7.2.

·** ,
image fade-in procedure

·** ,

FADE IN PROC NEAR
Gradually change all DAC registers from black to values in table
furnished by caller
On entry:

DS:DI -> caller's DAC register table (256 entries)
AX= milliseconds of time delay between palette

register groups

Note: this procedure assumes that all DAC registers are black
(OOH) on entry

Logic:
The DAC registers are lightened from black to the caller's
desired values in 64 steps
In each iteration the code reads and stores the current
setting of the DAC registers
This setting is compared to the final DAC values passed
by the caller
If present DAC = caller's table then NO ACTION
If present DAC darker than caller's table then LIGHTEN DAC

;***************************I
store delay value

;***************************I
MOV CS:TIME_DELAY,AX

;**********************I
save caller's

context
;**********************I

PUSH AX
PUSH BX
PUSH ex
PUSH DX
PUSH SI
PUSH DI

; Set counter for 64 fade iterations
MOV BX,63

;***************************I
prepare work buffer

;***************************I

; BX

To CS variable

holds fade iterations

The work area for DAC values CS:WORK DAC is first initialized
; to all black values

MOV CX,768 ; Values to clear

Time-Pulse and Color-Shift Techniques

INC SI
MOV AL,CS: [SI]
CMP AL,0
JZ DARKEN BLUE
DEC AL
MOV CS: [SI] ,AL

DARKEN BLUE:
OUT DX,AL
INC SI
LOOP DARKEN DAC

;***************************I
insert delay period

;***************************I
PUSH
MOV
CMP
JE
CALL

NO CALLER DELAY:

BX
BX,CS:TIME_DELAY
BX,0
NO CALLER DELAY
MILLI TIME

POP BX

Bump pointer
Load table value
Is register already black?
Go if already black
Darken one unit if not black
Store value

Write DAC red
Bump pointer
Continue

Save iteration counter
; Stored parameter

Test for no delay
Go if no delay
Delay procedure

Restore counter

431

AT this point all DAC registers have been darkened by one color
unit

POP
DEC

SI
BX

JNZ DARKEN 256

;**********************I
restore caller's

context
;**********************I

POP DI
POP SI
POP DX
POP ex
POP BX
POP AX
RET

FADE OUT ENDP

12.3.4 Color-Shift Fade-In

Restore DAC table pointer
BX is iteration counter

A fade-in takes place when the graphics image is gradually displayed, usually
starting from a black or monochrome screen. In the VGA environment the
fade-in transformation requires a table of values, furnished by the caller, which
contains the final setting desired for the DAC registers. The fade-in consists of
incrementing the color attribute in each DAC register until the corresponding
table value is reached. Since each VGA DAC register has a value range from 0
to 63, the fade-in operation is performed in 64 steps. In XGA-2, with a color
range ofO to 255, the same fade can be done in 256 steps.

430

INC
INC
LEA

READ DAC:
IN
MOV
INC
IN
MOV
INC
IN
MOV

DX
DX
DI,CS:WORK_DAC

AL,DX
CS: [DI] ,AL
DI
AL,DX
CS: [DI) ,AL
DI
AL,DX
CS: [DI) ,AL

Chapter Twelve

3C9H is DAC data register
Pointer to storage area

Read DAC red
Store in RAM
Bump pointer
Read DAC green
Store in RAM
Bump pointer
Read DAC blue
Store in RAM

INC DI Bump pointer
LOOP READ DAC Continue

At this point the caller's DAC is stored in CS:WORK DAC
Set counter for 64 fade iterations

MOV BX,64 BX holds fade iterations
LEA SI,CS:WORK_DAC ; Pointer to DAC table

;***************************I
read table and set DAC

;***************************I
Code reads the current setting of the DAC register from the
working storage table. This value is used to reset the DAC
register to a darker shade
First select DAC write operation

DARKEN 256:
MOV
CALL
MOV
MOV
OUT
INC
PUSH

DARKEN DAC:
MOV
CMP
JZ
DEC
MOV

DARKEN RED:
OUT
INC

MOV
CMP
JZ
DEC
MOV

DARKEN GREEN:
OUT

CX,256
TIME VR B3
DX,03C8H
AL,0
DX,AL
DX
SI

AL,CS: [SI]
AL,0
DARKEN RED
AL
CS: [SI] ,AL

DX,AL
SI

AL,CS: [SI]
AL,0
DARKEN GREEN
AL
CS: [SI] ,AL

DX,AL

Counter for 256 DAC registers
Time with vertical retrace
Pallet Address (Write mode)
Value to write
To DAC Palette Address register
3C9H is DAC data register
Save table pointer

Load table value
Is register already black?
Go if already black
Darken one unit if not black
Store value

Write DAC red
Bump pointer

Load table value
Is register already black?
Go if already black
Darken one unit if not black
Store value

Write DAC red

Time-Pulse and Color-Shift Techniques 429

12.3.3 Color-Shift Fade-Out

One of the most common uses of color-shift animation is in producing fades.
The fade-out operation takes place when the screen image gradually disap­
pears. In the VGA system the fade-out usually consists of darkening each of the
DAC registers until the black attribute is reached. This operations is called
fade-to-black. Programs that use a fade-out may need to previously store the
current DAC register setting so that the palette can be restored.

In the following procedure the fade-out can be slowed down by introducing a
delay between each of the 64 incremental steps. The timing routine (called
MILLI_TIME) was listed in Section 7.7.2.

·** ,
image fade-out procedure

·** ,
; Code segment storage for control variables and for working
; values in DAC color table
TIME DELAY DW 0
WORK DAC DB 770 DUP (OH)

FADE OUT PROC NEAR
Gradually change all DAC registers from current setting to
black to produce a fading-out of the displayed image
On entry:

AX= milliseconds of time delay between palette
register groups

;***************************I
store delay value

;***************************I
MOV CS:TIME_DELAY,AX

;**********************I
save caller's

context
;**********************I

PUSH AX
PUSH BX
PUSH ex
PUSH DX
PUSH SI
PUSH DI

;***************************!
; read and store DAC values I
;***************************I

To CS variable

The procedure reads the current DAC and stores it in a working
buffer used in the fade-out operation

MOV CX,256 Counter for 256 DAC registers
CALL TIME VR 83 Time with vertical retrace
MOV DX,03C7H Pallet Address (Read mode)
MOV
OUT

AL,0
DX,AL

Value to write
To DAC Palette Address register

428 Chapter Twelve

registers to which several screen images are mapped. When the DAC registers
mapped to an image are set to the background attribute, then the object
becomes invisible. When the DAC registers are set to attributes different from
the background, then the image becomes visible. By manipulating the visibility
of several images the object can be transformed. Figure 12.5 shows a translation
transformation by color shift.

In Figure 12.5 the video buffer stores the images of eight balls, each one
mapped to a different DAC register. In the initial state all eight balls are given
the same attribute as the background; therefore they are all invisible. The
translation transformation is performed by changing the DAC register setting
for each of the ball images so that its attribute is different from that of the
background, therefore making the corresponding ball visible on the screen. For
example, to make ball image number 1 visible, the code changes the setting of
the DAC register 1, which is mapped to this ball image. This is shown in the
lower portion of Figure 12.5.

The example of color-shift animation in Figure 12.5 is the simplest one that
can be contrived. In real-world applications more than one DAC register are
usually mapped to each image group. In the VGA 256-color modes we could
devote 16 attributes to the background and still have 48 groups of five DAC
registers to map the screen objects to be animated. The possibilities of color­
shift animation would be even greater in systems with color ranges in the
thousands, or even the millions, as is the case in some high-resolution adapters
such as those based in the TMS 340 processor. These systems are described in
our book High Resolution Video Graphics (see Bibliography).

1
, .. -- ... background Oject mapped to DAC

ts: register
2 8 ball 1 1

3 7
ball 2 2

4 6
bail

5
8 8 . ,' background 9

• EJEJ[J□[J
Oject DAC register DAC register

number setting
ball 1 1 8OH
ball 2 2 OH

;.:

ball 8 8 OH
background 9 OH

Figure 12.5 Translation Transformation by Color Shift

Time-Pulse and Color-Shift Techniques

by the caller
On entry:

DS:DI -> 768-byte caller's buffer area
;**********************I

save caller's
context

;**********************I

PUSH AX
PUSH BX
PUSH ex
PUSH DX
PUSH SI

;***************************I

read DAC registers
;***************************!

MOV CX,256
CALL TIME VR B3
MOV DX,03C7H
MOV AL,0

Counter for 256 DAC registers
Time with vertical retrace
Pallet Address (Read mode}
Value to write

427

OUT DX,AL To DAC Palette Address register
INC DX
INC DX

READ TO RAM:
IN AL,DX
MOV [DI] ,AL
INC DI
IN AL,DX
MOV [DI] ,AL
INC DI
IN AL,DX
MOV [DI] ,AL
INC DI
LOOP READ TO RAM

;**********************I

restore caller's
context

;**********************I

POP SI
POP DX
POP ex
POP BX
POP AX
RET

DAC TO RAM ENDP

12.3.2 Transformations by Color Shift

3C9H is DAC data register

Read DAC red
Store in RAM
Bump pointer
Read DAC green
Store in RAM
Bump pointer
Read DAC blue
Store in RAM
Bump pointer
Continue

One of the most interesting applications of color-shift animation is in trans­
forming a screen object by manipulating the visibility of several screen images.
In the PC environment this effect is achieved by changing the DAC register or

426 Chapter Twelve

DAC TO TABLE PROC NEAR
Procedure to set the DAC registers to the values in a full
color table furnished by the caller
On entry:

DS:SI -> 256-entry color table, 3 colors per entry

PUSH AX

PUSH ex
PUSH DX
PUSH SI
CLI

;***************************I

set DAC registers
;***************************I

MOV CX,256
CALL TIME VR B3
MOV DX,03C8H
MOV AL,0
OUT DX,AL
INC DX

SET TO TABLE:
MOV AL, [SI]
OUT DX,AL
INC SI
MOV AL, [SI]
OUT DX,AL
INC SI
MOV AL, [SI]
OUT DX,AL
INC SI
LOOP SET TO TABLE

Restore caller's context
STI
POP SI
POP DX
POP ex
POP AX

RET
DAC TO TABLE ENDP

Storing the DAC Register Settings

; Save context

Interrupts off

Counter for 256 DAC registers
Time with vertical retrace
Pallet Address (Write mode)
Value to write
To DAC Palette Address register
3C9H is DAC data register

Load table value
Write DAC red
Bump pointer
Load table value
Write DAC green
Bump pointer
Load table value
Write DAC blue
Bump pointer
Continue

Interrupts ON

Another operation often required by graphics software is to read and store the
contents of the entire DAC register set. The following procedure performs this
function:

;**
store DAC registers in a caller's buffer

;**
DAC TO RAM PROC NEAR
; Store current values of 768 DAC registers in buffer designated

Tim•Pulse and Color-Shift Techniques 425

DAC table of all-black codes to the corresponding BIOS service. A more compact
and efficient method is the following procedure:

;**
all DAC registers to black

;**
DAC TO BLACK PROC NEAR

Procedure to write black attribute in all 768 DAC registers
of the VGA system

PUSH AX
PUSH BX
PUSH ex
PUSH DX
CLI

;***************************I
set DAC to black

;***************************I
MOV CX,256
CALL TIME VR B3
MOV DX,03C8H
MOV AL,0
OUT DX,AL
INC DX

SET DAC BLK:
OUT DX,AL
JMP SHORT $+2
OUT DX,AL
JMP SHORT $+2
OUT DX,AL
LOOP SET DAC BLK

Restore caller's context
STI
POP DX
POP ex
POP BX
POP AX
RET

DAC TO BLACK ENDP

Setting the DAC Registers

Save context

Interrupts off

Counter for 256 DAC registers
Time with vertical retrace
Pallet Address (Write mode)
Value to write
To DAC Palette Address register
3C9H is DAC data register

Write DAC red
I/O delay
Write DAC green
I/O delay
Write DAC blue
Continue

Interrupts ON

In Chapter 6 we listed several procedures to manipulate the DAC registers by
means of BIOS services. The following procedure sets the DAC registers to the
values in a table furnished by the caller. The procedure operates on all 256 DAC
triplets (768 registers), all of which must be coded in the table.

·** ,
set DAC to color table furnished by caller

·** ,

424 Chapter Twelve

controller by testing bit 3 of the Input Status register 1

Save caller's context
PUSH AX

PUSH DX
MOV DX,3DAH Input Status register 1

address in VGA mode X
VR3 CLEAR:

IN AL,DX Read byte at port
TEST AL,OOOOlOOOB Is bit 3 set?
JNZ VR3 CLEAR Wait until bit clear

Vertical retrace ended
VR3 START:

IN AL,DX Read byte at port
TEST AL,OOOOlOOOB Is bit 3 set?
JZ VR3 START Wait until bit set

Vertical retrace has started
POP DX Restore caller's context
POP AX
RET

TIME VR B3 ENDP
·** ,

TIME VR BO PROC NEAR
Test for start of the vertical retrace cycle of the CRT
controller by testing bit O of the Input Status register 1

Save caller's context
PUSH AX
PUSH DX
MOV DX,3DAH

VRl CLEAR:
IN AL,DX
TEST AL,00000001B
JNZ VRl CLEAR

VRl START:
IN AL,DX
TEST AL,00000001B
JZ VRl START

POP DX
POP AX
RET

TIME VR BO ENDP

Set All DAC Register to Black

Input Status register 1
address in VGA mode X

Read byte at port
Is bit O set?
Wait until bit clear
Vertical retrace ended

Read byte at port
Is bit O set?
Wait until bit clear
Vertical retrace ended
Restore caller's context

It is often necessary to set all DAC registers to black prior to a fade-in or other
color-shift animation operation. This operation can be performed by passing a

Time-Pulse and Color-Shift Techniques 423

become invisible. A program can use this feature to produce a gradual fade-in
of the video image by first setting all DAC registers to black, drawing the image
while all objects are invisible, then progressively lightening each of the DAC
registers until the desired final palette is obtained. The result is comparable to
the fade-in operation that is commonly used in cartoon and motion picture
technology. The fade-out operation follows the reverse process, that is, each of
the DAC registers is diminished in brightness until the displayed image
completely disappears from the screen.

12.3.1 VGA DAC Primitives

In order to perform color-shift animation it is convenient to have at hand a set
of high-performance primitives for manipulating the DAC registers. The BIOS
does contain services to set the DAC registers to the values in a table furnished
by the caller and to read the DAC register contents. Some of these services are
used in the routines developed in Chapter 6. Nevertheless, DAC programming
is simple and straightforward, and code that accesses the VGA hardware
directly has better performance and control.

Timing Considerations

The IBM documentation for VGA systems mentions that programming opera­
tions that modify the DAC registers should be synchronized with the vertical
retrace cycle of the CRT controller in order to avoid screen garbage. The VGA
hardware provides three different methods for determining if the vertical
retrace cycle is in progress. In Figure 5.6, we see that bit 7 of Input Status
register O can be used to determine if a vertical retrace interrupt is in progress.
However, this bit refers to the interrupt action, not the vertical retrace itself.
Therefore, if the vertical retrace interrupt is not available, as is the case in
many IBM and non-IBM VGA systems, or if it is not enabled, then this bit is
unreliable. This is probably the reason why IBM manuals recommend that
vertical retrace timing be based on either bit 3 or bit O of Input Status register
1, also shown in Figure 5.6.

Which of these two bits is used in vertical retrace timing depends on the type
of DAC operation. For example, if timing synchronization is necessary prior to
accessing the DAC data registers, then software must use bit O of Input Status
register 1. However, if timing synchronization is necessary before accessing the
DAC Read or Write Select registers, then software must use bit 3 of this register.
Consequently, the programmer must have available two timing routines: one
that uses the status of bit 3 and one that uses the status of bit O of the VGA
Input Status register 1. The procedures listing follows:

·** ,
vertical retrace timing procedures

·** ,
TIME VR B3 PROC NEAR
; Test for start of the vertical retrace cycle of the CRT

422

ADD
IN
OR
OUT

DX,05H
AL,DX
AL,0000000lB
DX,AL

;**********************I
restore context

;**********************I

Chapter Twelve

Interrupt Status register
Read status
Set bit 0, preserve others
Reset start of blanking

Registers used by the service routine are restored from the
; stack

POP ES
POP DX
POP ex
POP BX
POP AX

STI ; Reenable interrupts
IRET

;**
code segment data

;**
OLD VECTOR 0A DD

XGA BASE DW

0

0

Pointer to original INT 0AH
interrupt
Address of CRT controller

The comparatively high performance of the XGA system makes possible the
smooth animation of images much larger and elaborate than those that can be
animated in VGA. Whenever possible the animation routine should use direct
coprocessor programming (see Chapter 7) in order to minimize execution time.
The system memory to video RAM pixBlt operation discussed in Section 7.4.3
can often be used in XGA animation.

12.3 Color-Shift Animation

In Chapter 6 we discussed several manipulations of the VGA color hardware
that have possible applications to animation software. The use of the video
system's color output to produce animated effects is related to the color richness
of the device or mode. In this manner, in VGA mode 18, with 16 displayed colors,
the options are much more limited than in VGA mode 19, or mode X, with 256
displayed colors. For this reason the discussion that follows refers to the
256-color VGA palette in modes 19 and X.

A crafty programmer can use color hardware manipulations to produce
animated effects that are among the most pleasant that can be obtained in the
VGA and XGA. Color-shift animation is based on the fact that the color attribute
can be used to hide, display, darken, or brighten a screen object. For instance,
if all the DAC registers are programmed to the same color attribute, then the
entire screen appears in this color and all objects stored in the video buffer

Time-Pulse and Color-Shift Techniques 421

CLI Interrupts off
Save registers

PUSH AX Save context at interrupt time
PUSH BX
PUSH ex
PUSH DX
PUSH ES

;**********************I
test for screen

blanking interrupt
;**********************I

Since several hardware interrupts can be located at IRQ2 the
software must make sure that it was screen blanking that
originated this action. This can be done by testing bit 0 of
the XGA Interrupt Status register

MOV DX,CS:XGA_BASE XGA base address
ADD DX,0SH Interrupt Status register
IN AL,DX Read register contents
TEST AL,0000000lB Test start of blanking bit
JNZ BLK CAUSE Go if bit set

;**********************I
; chain to next handler!

if not blanking I
;**********************I

At this point the interrupt was not due to an XGA screen
blanking interrupt. Execution is returned to the IRQ2 handler

POP ES ; Restore context
POP DX
POP ex
POP BX
POP AX
STC
JMP DWORD PTR

;**********************I
; animation operations I
;**********************I
BLK CAUSE:

; Continue processing
CS:OLD VECTOR 0A

At this point the handler contains the graphics operations
necessary to perform the animation function

;**********************I
; service routine exit I
;**********************I

Enable 8259 interrupt controller to receive other interrupts
MOV AL,20H Port address
OUT 20H,AL Send EOI code

The handler
register to

MOV

must reset bit 0 of the XGA Interrupt Status
clear the interrupt condition

DX,CS:XGA_BASE Display controller base address

420 Chapter Twelve

At this point the XGA start of blanking interrupt is active
Program code to follow

;**
exit routine

;**
Before the program returns control to the operating system
it must restore the hardware to its original state. This
requires disabling the XGA screen blanking interrupt and
restoring the original INT OAH handler in the vector table

;**********************I
disable XGA screen
blanking interrupt

;**********************!
MOV BASE DX,CS:XGA_
ADD DX,04H
IN AL,DX
AND AL, 11111110B
OUT DX,AL

;**********************I
restore original
INT OAH handler

;**********************I

XGA base address
Interrupt Enable register
Read register contents
Make sure bit O is clear
Back to Interrupt Enable
register

MOV SI,OFFSET CS:OLD VECTOR OA
; Set DS:DX to

MOV
MOV
MOV
MOV
MOV
INT

original segment
DX,CS: [SI]
AX, CS: [SI+2]
DS,AX
AH,2SH
AL,OAH
21H

and offset of keyboard interrupt
DX-> offset
AX-> segment
segment to OS
DOS service request
IRQ2

At this point the exiting program usually resets the video
hardware to a text mode and returns control to the operating
system

·** ,
' XGA screen blanking interrupt handler

;**
The following routine gains control with every vertical retrace
interrupt (approximately 70 times per second}
The code can now perform limited video buffer update operations
without interference
In order to avoid interrupt reentrancy, the screen blanking
interrupt is not reenabled until the routine has concluded

;**
XGA OA INT:

Time-Pulse and Color-Shift Techniques

Uses DOS service 53 of INT 21H to store the address of the
original INT 0AH handler in a code segment variable

MOV AH,53 Service request number
MOV AL,0AH Code of vector desired
INT 21H

ES-> Segment address of installed interrupt handler
BX-> Offset address of installed interrupt handler

MOV SI,OFFSET CS:OLD_VECTOR_0A

419

MOV CS: [SI],BX Save offset of original handler
MOV CS: [SI+2],ES ; and segment

;**********************I
; install this INT 0AH I

handler I
;**********************I

Uses DOS service 37 of INT 21H to install the present handler
; in the vector table

MOV AH,37
MOV AL, 0AH
PUSH DS
PUSH CS

Service request number
Interrupt code
Save data segment

POP DS Set DS to CS for DOS service
MOV DX,OFFSET CS:XGA 0A INT
INT 21H
POP DS

;**********************I
enable IRQ2

;**********************I

; Restore local data

; Clear bit 2 of the 8259 Mask register to enable the IRQ2 line
CLI Make sure interrupts are off
MOV DX,21H Port address of 8259 Mask

IN AL,DX
AND AL, 11111011B
OUT DX,AL

;**********************I
activate XGA screen I
blanking interrupt I

;**********************I

register
Read byte at port
Mask for bit 2
Back to 8259 port

; Reset all interrupts in the Status register
MOV DX,CS:XGA_BASE Base address of XGA video
ADD DX,05H Interrupt Status register
MOV AL,0C7H All ones
OUT DX,AL Reset all bits

Enable the start of blanking cycle interrupt source (bit 0)
MOV DX,CS:XGA_BASE XGA base address
ADD
IN
OR
OUT

STI

DX,04H
AL,DX
AL,0000000lB
DX,AL

Interrupt Enable register
Read register contents
Make sure bit 0 is set
Back to Interrupt Enable
register
Interrupts ON

418 Chapter Twelve

The XGA Interrupt Status register is also used to clear an interrupt condition.
This operation is performed by the handler in order to reset the interrupt origin.
The following template contains the program elements necessary for the
installation and operation of a vertical retrace intercept in an XGA system:

;**
screen blanking interrupt pulse generator

for XGA systems
·** ,

Operations performed during installation:
1. The XGA port base address is stored in a code segment

variable named XGA BASE
2. The address of the interrupt 0AH handler is saved in a

far pointer variable named OLD_VECTOR_0A
3. A new handler for interrupt 0AH is installed at the label

XGA 0A INT.
4. The IRQ2 bit is enabled in the 8259 (or equivalent}

Interrupt Controller Mask register
5. The XGA screen blanking interrupt is enabled

Operation:
3. The new interrupt handler at INT 0AH gains control with

every vertical retrace cycle of the CRT controller.
The software can perform limited buffer update operations
at this time without causing video interference

·** ,
installation routine for

the XGA screen blanking interrupt
;**
; The following code enables the screen blanking interrupt on
; a XGA system and intercepts INT 0AH (IRQ2 vector}
;**********************I

init XGA
;**********************I

XGA initialization is performed by means of the procedures
listed in Chapter 9

CALL OPEN AI; Open Adapter Interface for use
CALL INIT XGA ; Initialize XGA hardware

The INIT XGA procedure returns the address of the XGA register
base in the BX register. The code stores this value in a code
segment variable named XGA_BASE

MOV CS:XGA_BASE,BX Store in code segment variable
MOV AL,2 Select mode XGA mode number 2

1024-by-768 pixels in 256 colors
CALL XGA MODE Mode setting procedure

;**********************I

save old INT 0AH
;**********************I

Time-Pulse and Color-Shift Techniques

BIT SEmNGS:
1 = Interrupt source enabled
0 = Interrupt source disabled

417

...__ ______ Start of blanklng (end of picture)

Start of picture {end of blanklng)

L----------- Sprite dlaplay complete

...__ ___________ UNDEFINED

Coprocessor access re)ected

Coprocessor operation complete

Figure 12.3 XGA Interrupt Enable Register

12.2.6 XGA Screen Blanking Interrupt

The XGA documentation refers to the vertical retrace cycle as the screen
blanking period. Two interrupts sources are related to the blanking period: the
start of picture interrupt and the start ofblanking interrupt. The start of picture
coincides with the end of the blanking period. Both interrupts are enabled in
the XGA Interrupt Enable register (offset 21x4H). Figure 12.3 shows a bitmap
of the XGA Interrupt Enable register.

Like the VGA interrupts, the XGA video interrupts are vectored to the IRQ2
line of the 8259/A (or compatible) interrupt controller chip, which is mapped to
the OAH vector. By testing the bits in the Interrupt Status register (at offset
21x5H) an XGA program can determine the cause of an interrupt on this line.
Figure 12.4 shows a bitmap of the XGA Interrupt Status register .

...__ _____ Start of blanklng (end of picture)

...__ ______ Start of picture (end of blanklng)

...__ _______ Sprite dlaplay complete

~----------UNDEANED

~-------- Coproc:euor acceaa rejected

~--------- Coproceaaor operation complete

BIT SETTING INTERPRETATION

ON READ:
1 = Interrupt occurred
0 = Interrupt did not occur

ON WRITE:
1 = clear Interrupt condition
O = no effect

Figure 12.4 XGA Interrupt Status Register

416

;**********************I

; service routine exit I
;**********************I

Chapter Twelve

Enable 8259 interrupt controller to receive other interrupts
MOV AL,20H ; Port address
OUT 20H,AL ; Send EOI code

Reenable vertical retrace interrupt by clearing bits 4 and 5
of the Vertical Retrace End register and then setting bit 5
so that the interrupt is not held active

MOV DX,CS:CRT_PORT Recover CRT base address
MOV AL,llH Offset of Vertical Retrace End

MOV AH,CS:OLD_VRE
AND AH, 11001111B

OUT DX,AX
OR AH,000l0000B
OUT DX,AX

;**********************I
restore context

;**********************I

register in the CRTC
Default value in VRE register
Clear bits 4 and 5
4 = clear vertical interrupt
5 = enable vertical retrace
To port
Set bit 4 to reset flip-flop
To port

Registers used by the service routine are restored from the
; stack

POP ES
POP DX
POP ex
POP BX
POP AX
STI Reenable interrupts
IRET

·** ,
code segment data

·** ,
OLD VECTOR 0A DD 0 Pointer to original INT 0AH

interrupt
CRT PORT ow 0 Address of CRT controller
OLD VRE DB 0 Original contents of VRE

register

Applications can extend the screen update time by locating the animated
image as close as possible to the bottom of the video screen. In this manner the
interference-free period includes not only the time lapse during which the beam
is being diagonally re-aimed, but also the period during which the screen lines
above the image are being scanned.

Time-Pulse and Color-Shift Techniques 415

interrupt (approximately 70 times per second)
The code can now perform limited video buffer update operations
without interference
The vertical retrace interrupt is not reenabled until the
routine has concluded to avoid reentrancy

·** ,

HEX0A INT:
CLI

; Save registers
PUSH AX
PUSH BX
PUSH ex
PUSH DX
PUSH ES

;**********************I
test for vertical
retrace interrupt

;**********************I

Interrupts off

Save context at interrupt time

Since several hardware interrupts can be located at IRQ2 the
software must make sure that it was the vertical retrace that
originated this action. This is done by testing bit 7 of the
Input Status register 0, which is set if a vertical retrace
interrupt has occurred

MOV DX, 3C2H
IN

TEST
JNE

AL,DX
AL,l0000000B
VRI CAUSE

;**********************\
; chain to next handler!
;**********************I

Input Status register 0
Read byte at port
Is bit 7 set?
Go if vertical retrace

At this point the interrupt was not due to a vertical retrace
Execution is returned to the IRQ2 handler

POP ES ; Restore context
POP DX
POP ex
POP BX
POP AX
STC
JMP DWORD PTR

;**********************I
; animation operations I
;**********************I
VRI CAUSE:

; Continue processing
CS:OLD VECTOR 0A

At this point the handler contains the graphics operations
necessary to perform the animation function

414 Chapter Twelve

STI ; Enable interrupts
At this point the vertical retrace interrupt is active
Program code to follow

·** ,
exit routine

;**
Before the program returns control to the operating system
it must restore the hardware to its original state. This
requires disabling the vertical retrace interrupt and restoring
the original INT 0AH handler in the vector table

;**********************I
disable vertical

interrupts
;**********************I

Code assumes
; was disabled

MOV
MOV

that on program entry the vertical retrace

MOV

OUT

DX,CS:CRT_PORT
AL, llH

AH,CS:OLD_VRE

DX,AX

;**********************I
restore original
INT 0AH handler

;**********************I

Recover CRT base address
Offset of Vertical Retrace End
register in the CRTC
Default value in Vertical
Retrace End register
To port

MOV SI,OFFSET CS:OLD VECTOR 0A
; Set DS:DX to original segment

MOV DX,CS: [SI]
MOV AX,CS: [SI+2]
MOV DS,AX
MOV AH,25H
MOV AL, 0AH
INT 21H

and offset of keyboard interrupt
DX-> offset
AX-> segment
segment to DS
DOS service request
IRQ2

At this point the exiting program usually resets the video
hardware to a text mode and returns control to the operating
system

·** ,
VGA vertical retrace interrupt handler

;**
; The following routine gains control with every vertical retrace

Time-Pulse and Color-Shift Techniques

ES ->
BX ->

MOV
MOV
INT

AH,53
AL, 0AH
21H

Service request number
Code of vector desired

Segment address of installed interrupt handler
Offset address of installed interrupt handler
MOV SI,OFFSET CS:OLD_VECTOR_0A

413

MOV CS: [SI) ,BX Save offset of original handler
MOV CS: [SI+2) ,ES ; and segment

;**********************I
; install this INT 0AH I

handler I
;**********************I

Uses DOS service 37 of INT 21H to install the present handler
; in the vector

MOV
MOV
PUSH
PUSH

table
AH,37
AL, 0AH
DS
cs

Service request number
Interrupt code
Save data segment

POP
MOV

DS
DX,OFFSET

Set DS to CS for DOS service
CS:HEX0A INT

INT 21H
POP DS

;**********************I
enable IRQ2

;**********************I

; Restore local data

; Clear bit 2 of the 8259 Mask register to enable the IRQ2 line
CLI Make sure interrupts are off
MOV DX,21H Port address of 8259 Mask

IN AL,DX
AND AL, 11111011B
OUT DX,AL

;**********************I
activate vertical
retrace interrupt

;**********************I
MOV
MOV

MOV

AND

OUT
OR

DX,CS:CRT_PORT
AL,llH

AH,CS:OLD_VRE

AH, 11001111B

DX,AX
AH,000l0000B

OUT DX,AX

register
Read byte at port
Mask for bit 2
Back to 8259 port

Recover CRT base address
Offset of Vertical Retrace End
register in the CRTC
Default value in Vertical
Retrace End register
Clear bits 4 and 5 in VRE
Bit 4 = clear vertical
interrupt
Bit 5 = enable vertical retrace
To port
Mask to set bit 4 to reenable

412 ChapterTwewe

1. The VGA port base address is stored in a code segment
variable named CRT PORT and the default contents of the
Vertical Retrace End register are stored in a variable
named OLD VRE

2. The address of the interrupt 0AH handler is saved in a
far pointer variable named OLD_VECTOR_0A

3. A new handler for interrupt 0AH is installed at the label
HEX0A INT.

4. The IRQ2 bit is enabled in the 8259 (or equivalent)
interrupt controller mask register

5. The vertical retrace interrupt is activated

Operation:
The new interrupt handler at INT 0AH gains control with
every vertical retrace cycle of the CRT controller.
The software can perform limited buffer update operations
at this time without causing video interference

·** ,
Installation routine for

the vertical retrace interrupt
·** ,

The following code enables the vertical retrace interrupt on
a VGA system and intercepts INT 0AH (IRQ2 vector)

;**********************I
save parameters

;**********************I
System port address is saved in CS variables

CLI Interrupts off
MOV AX,0H Clear AX
MOV ES,AX and ES
MOV DX,ES: [0463H] Get CRT controller base address

from BIOS data area
MOV
MOV

OUT

CS:CRT_PORT,DX
AL,llH

DX,AL

Save address in memory variable
Offset of Vertical Retrace End
register in the CRTC
Select this register

Value stored in port's
variable for later use

data register is saved in a code segment
by the software

INC DX
IN
JMP
MOV

AL,DX
SHORT $+2
CS:OLD_VRE,AL

;**********************I
save old INT 0AH

;**********************I

Point to Data register
Read default value in register
I/O delay
Save value in variable

Uses DOS service 53 of INT 21H to store the address of the
; original INT 0AH handler in a code segment variable

Time-Pulse and Color-Shift Techniques 411

12.2.5 VGA Vertical Retrace Interrupt

Some VGA systems support an interrupt that occurs on the vertical retrace
cycle while others do not. In systems that support the vertical retrace interrupt
this is the most satisfactory method for obtaining a timed pulse. Its use requires
programming the VGA CRT controller to generate an interrupt at the start of
the vertical retrace cycle. The screen refresh rate is approximately 70 cycles
per second, which is more than sufficient to achieve smooth transformations.
The most important objection to this method is that it leaves very little time in
which to perform image or data processing operations between timed pulses.

The programmer should keep in mind that not all PC video systems support
a vertical retrace interrupt. For example, the IBM VGA Adapter is not docu­
mented to support the vertical retrace interrupt. The same applies to many
VGA cards by third-party vendors. Therefore VGA programs that use the
vertical retrace interrupt may not be portable to these systems.

One advantage of using the vertical retrace interrupt as a time-pulse gener­
ator is that since screen updates take place while the video system is turned
off, interference is automatically avoided. The typical method of operation is to
synchronize the screen update with the beginning of the vertical retrace cycle
of the CRT controller. How much processing can be done while the CRT is off
depends on the system hardware. In VGA this depends mainly on the type and
speed of the CPU and the memory access facilities. XGA systems have their
own graphics coprocessor, and for this reason, can execute considerably more
processing during the vertical retrace cycle. In IBM XGA documentation the
vertical retrace cycle is called the screen blanking period.

In VGA systems the smooth animation of relatively small screen objects can
be executed satisfactorily by vertical retrace synchronization. As the screen
objects get larger it is more difficult to update the video buffer in the short time
lapse of the vertical retrace cycle. Since so many performance factors enter into
the equation, it is practically impossible to give exact limits or guidelines for
satisfactory animation.

It is often possible to program around the limitations of vertical retrace
timing. In the first place, the image update operation can be split into two or
more vertical retrace cycles. This is possible because the jerkiness frequency of
20 cycles per second is considerably less than the typical vertical retrace pulse
of 70 cycles per second. However, splitting the update operations introduces
programming complications, as well as an additional overhead in keeping track
of which portion of the image is to be updated in each cycle.

The following coding template contains the program elements necessary for
the installation and operation of a vertical retrace intercept in a VGA system:

·** ,
vertical retrace interrupt pulse generator

for VGA systems
·** ,

; Operations performed during installation:

410 Chapter Twelve

12.2.4 Retrace Cycle Timing

The second method for reducing interference is to synchronize the video buffer
update with the one of the retrace cycles of the CRT controller. In Section 12.0.2
we mentioned that the video function is inactive during the vertical and
horizontal retrace periods of the video scan (see Figure 12.1). Since the duration
of the vertical retrace period is longer than the horizontal retrace, it is usually
preferred in synchronization operations.

The VGA hardware provides three different methods for determining the start
of the vertical retrace cycle. Bit 7 of Input Status register O can be used to
determine if a vertical retrace interrupt is in progress. Notice that this bit refers
to the interrupt action, not the vertical retrace cycle itself. PC manuals
recommend that vertical retrace timing be based on either bit 3 or bit O oflnput
Status register 1, shown in Figure 5.6. Which of these two bits is used in vertical
retrace timing depends on the type of synchronization necessary. A general­
purpose synchronization procedure can be based on bit 3 of the Input Status
register 1.

·** ,
procedure to determine the start of the vertical retrace

;**

TIME VRC PROC NEAR
Test for start of the vertical retrace cycle of the CRT
controller by testing bit 3 of the Input Status register 1

Save caller's context
PUSH AX
PUSH DX
MOV DX, 3DAH

VR3 CLEAR:
IN
TEST
JNZ

VR3 START:
IN
TEST
JZ

POP

AL,DX
AL,0000l000B
VR3 CLEAR

AL,DX
AL,0000l000B
VR3 START

DX
POP AX
RET

TIME VRC ENDP

Input Status register 1
address in VGA mode X

Read byte at port
Is bit 3 set?
Wait until bit clear
Vertical retrace ended

Read byte at port
Is bit 3 set?
Wait until bit set
Vertical retrace has started
Restore caller's context

The problem of vertical retrace timing resurfaces in relation to DAC program­
ming later in this chapter.

Time-Pulse and Color-Shift Techniques 409

12.2.3 Turning the Video Function On and Off

PC software that uses the system timer to produce a pulse for animation
routines encounters interference problems. At least two methods are available
to avoid or minimize display interference: tum off the CRT while the buffer is
being changed, or time the buffer updates with one of the retrace cycles of the
CRT controller, usually the vertical retrace. Neither method is a panacea; it is
not always possible to produce smooth real time animation in the PC, particu­
larly in VGA video systems. Applications can try either or both methods and
select the better option. The following code fragment shows the processing
necessary to tum off the VGA video display system:

;***************************!
turn off video

;***************************I

Screen is turned off by setting the Clocking Mode register bit
number 5 of the VGA Sequencer group

MOV DX,03C4H Sequencer group
MOV
OUT
INC
IN
OR
OUT

At this point

AL,0lH
DX,AL
DX
AL,DX
AL,00100000B
DX,AL
the VGA video

Clocking Mode register
Select this register
To data port 3C5H
Read Clocking Mode register
Set bit 5, preserve others
Write back to port

display function is OFF

The reverse process is necessary to tum on the VGA video display system.

;***************************I
turn on video

;***************************I
Screen is turned on by clearing the Clocking Mode register bit
number 5 of the VGA Sequencer group

At

MOV DX,03C4H Sequencer group
MOV AL,0lH Clocking Mode register
OUT
JMP
INC
IN
AND
OUT

this point

DX,AL
SHORT $ + 2
DX
AL,DX
AL, 11011111B
DX,AL
the VGA video

Select this register
I/O delay
To data port 3C5H
Read Clocking Mode register
Clear bit 5, preserve others
Write back to port

display function is ON

408 Chapter Twelve

·** ,
HEX08 INT:

STI
PUSH
PUSH
PUSH
PUSH
PUSH

User video

AX
BX
ex
DX
OS

image update routine

Interrupts on
Save registers used by routine

Other registers can be pushed
if necessary

is coded at this point

The intercept routine maintains a code segment variable named
TIMER_COUNT which stores a system timer pulse count. This
variable is used to return control to the system timer
interrupt every third timer beat, thus maintaining the
original rate of 18.2 beats per second

DEC CS:TIMER COUNT
JZ TIME OF DAY

;**********************I
direct exit

;**********************I
MOV AL,20H
OUT 20H,AL
POP OS
POP DX
POP BX
POP AX
IRET

;**********************I
pass to original
INT 08H handler

;**********************I
TIME OF DAY:

MOV CS:TIMER_COUNT,2
POP OS
POP DX
POP BX
POP AX

Exit through time_of_day

Send end-of-interrupt code
to 8259 interrupt controller
Restore registers

Return from interrupt

Reset counter variable

STC ; Continue processing
JMP DWORD PTR CS:OLD VECTOR 08
IRET

;**********************I
code segment data

;**********************I
TIMER COUNT
OLD VECTOR 08

CODE ENDS

DB
DD

2
0

Timer counter
Far pointer to original INT 08H

Time-Pulse and Color-Shift Techniques

;*************************I
exit routine

;*************************I
Before the program returns control to the operating system
it must restore the hardware to its original state. This
requires resetting the time speed to 18.2 beats per second
and reinstalling the BIOS interrupt handler in the vector
table

;**********************I

reset system timer
;**********************I

Original divisor is 65536
CLI

OUT 43H,AL
MOV BX,65535
MOV AL,BL
OUT 40H,AL
MOV AL,BH
OUT 40H,AL

;**********************I

restore INT 0AH
;**********************I

Interrupts off while write
LSB then MSM
xxxx 0llx binary system

Default divisor

Send LSB

Send MSB

PUSH DS ; Save program's DS
MOV SI,OFFSET CS:OLD VECTOR 08

407

Set DS:DX to original segment and offset of keyboard interrupt
MOV
MOV
MOV
MOV
MOV
INT
POP
STI

DX,CS: [SI] DX-> offset
AX,CS: [SI+2]
DS,AX
AH,25H
AL,08H
21H
DS

AX-> segment
Segment to DS
DOS service request
Interrupt number

; Interrupts on again
At this point the exiting program usually resets the video
hardware to text mode and returns control to the operating
system

·** ,
new INT 08H handler

;**
The handler is designed so that a new timer tick cannot take
place during execution. This is ensured by not sending the 8259
end-of-interrupt code until the routine's processing is
complete

406 Chapter Twelve

2. Speed up system timer by a factor of 3
3. Set INT 08H vector to routine in this module

·** ,
;**********************I

save old INT 08H
;**********************I
; Uses DOS service 53 of INT 21H

MOV AH,53
MOV AL,08H
INT 21H

Service request number
Code of vector desired

ES-> Segment address of installed interrupt handler
BX-> Offset address of installed interrupt handler

MOV SI,OFFSET CS:OLD_VECTOR_08
MOV CS: [SI),BX Save offset of original handler
MOV CS: [SI+2],ES ; and segment

;**********************I
speed up system

timer by 3
;**********************I

Original divisor is 65536
New divisor (65536/3) = 21845

CLI

OUT 43H,AL
MOV BX,21845
MOV AL,BL
OUT 40H,AL
MOV AL,BH
OUT 40H,AL

;**********************I
; set new INT 08H in

vector table
;**********************I

Interrupts off while write
LSB then MSM
xxxx 0llx binary system

New divisor

Send LSB

Send MSB

Mask off all interrupts while changing INT 08H vector
CLI

Save mask in stack
IN AL, 21H
PUSH AX
MOV AL, 0FFH
OUT 21H,AL

interrupt vector
AH,25H

Read 8259 mask register
Save in stack
Mask off IRQ0 to IRQ7
Write to 8259 mask register

Install new
MOV
MOV
MOV
INT

AL,08H ; Interrupt code
DX,OFFSET HEX08 INT
21H

Restore original interrupt mask
POP AX
OUT 21H,AL
STI

Recover mask from stack
Write to 8259 mask register
Set 80x86 interrupt flag

At this point the graphics program continues execution

Time-Pulse and Color-Shift Techniques 405

result is that an animation pulse created by loop methods is difficult to estimate,
leading to nonuniform or unpredictable movement of the animated object.

12.2.2 Reprogramming the System Timer

A time-pulse source available in the PC is the system's timer pulse. This pulse,
which can be intercepted by an application, beats at the default rate of
approximately 18.2 times per second. However, an application can reprogram
the system timer to generate a faster rate. An interrupt intercept routine can
be linked to the system timer so that the program receives control at every timer
beat. If it were not for interference problems, the system timer intercept would
be an ideal beat generator for use in animation routines.

The following code fragment installs a system timer intercept routine. The
installation routine accelerates the system timer from 18.2 to 54.6 beats per
second, or three times the original rate.

;**
system timer-driven pulse generator

for animation programming
;**

Changes performed during installation:
1. The BIOS system timer vector is stored in a code segment

variable
2. The timer hardware is made to run three times faster to ensure

a beat that is close to the critical flicker frequency
3. A new service routine for INT 08H is installed in the

program's address space

Operation:
The new interrupt handler at INT 08H gains control with
every beat of the system timer. The program maintains a
beat counter in the range Oto 2. Every third beat
(counter= 2) execution is passed to the original INT 08H
handler in the BIOS in order to preserve the timer-dependent
services

CODE
START:

SEGMENT

;**
installation routine for INT 08H handler

;**
Operations:

1. Obtain vector for INT 08H and store in a CS variable
named OLD VECTOR 08

404 Chapter Twelve

Set the Graphics Controller function select field of the Data
Rotate register to the XOR mode

MOV DX,03CEH Graphic Controller port address
MOV AL,3 Select Data Rotate register
OUT DX,AL
INC DX 03CFH register
MOV AL,000ll000B ; Set bits 3 and 4 for XOR
OUT DX,AL

Many conventional graphics operations, such as pixBlt and text display
functions, require that the function select bits of the Data Rotate register be
set for normal operation. The following code fragment shows the necessary
processing:

Set the Graphics Controller function select field of the Data
Rotate register to the normal mode

MOV DX,03CEH Graphic Controller port address
MOV AL,3 Select Data Rotate register
OUT DX,AL
INC DX 03CFH register
MOV AL,00000000B ; Reset bits 3 and 4 for normal
OUT DX,AL

The procedure named LOGICAL_OP listed in Section 6.2.2 can be used to set
the function select field of the Graphics Controller Data Rotate register to any
one of four possible logical modes.

12.2 Generating the Time Pulse

Time-pulse animation is a real time technique by which a screen object is
successively displayed and erased at a certain rate. Ideally, the redraw rate in
time-pulse animation should be higher than the critical jerkiness frequency of
20 images per second, although, in practice, the time pulse is often determined
by the screen refresh rate.

12.2.1 Looping Techniques

The programmer has several methods of producing the timed pulse at which
the animated image is updated. Which method is selected depends on the
requirements of the application as well as on the characteristics of the video
display hardware. The simplest method for updating the screen image of an
animated object is by creating an execution loop to provide some form of timing
device. But the loop must include not only the processing operations for
updating the screen image but also one or more polling routines. In addition,
the loop's execution can be interrupted by hardware devices requiring processor
attention. Another factor that can affect the precision of the loop timing is the
processor speed and memory access facilities of the particular machine. The

Time-Pulse and Color-Shift Techniques 403

However, if the same XOR mask is used over a bright green background the
resulting pixel is blue, as in the following example:

background
XOR mask

image

I R G B
1 0 1 0 (bright green)
1 0 1 1

0 0 0 1 (blue)

This characteristic of XOR operations, whereby an object's color changes as
it moves over different backgrounds, can be an advantage or a disadvantage in
graphics applications. For example, a marker symbol conventionally displayed
disappears as it moves over a background of its same color, while a marker
displayed by means of a logical XOR can be designed to be visible over all
possible backgrounds. On the other hand, the color of a graphics object might
be such an important characteristic that any changes during display operations
would be objectionable. Figure 12.2 graphically shows how the XOR operation
changes the attributes of an object (circle) as it is displayed over different
backgrounds.

Figure 12.2 Effect of XOR Operation

This peculiar effect of XOR operations on the object's color may not be
objectionable, and even advantageous under some conditions, but in other
applications it could make this technique unsuitable. More advanced video
graphics systems include hardware support for animated imagery. In XGA, for
example, the sprite mechanism allows for the display and movement of marker
symbols or icons independently of the background. Therefore the XGA program­
mer can move the sprite symbol simply by defining its new coordinates. The
XGA hardware takes care of erasing the old marker and restoring the under­
lying image.

12.1.1 Programming the Function Select Bits

To make possible the XOR operation, the software must manipulate the
function select bits of the Graphics Controller Data Rotate register (see Figure
5.9). The following code fragment shows the required processing:

402 Chapter Twelve

Several techniques have been devised for performing the redraw-erase cycle
required in figure animation. The most direct method is to save that portion of
the screen image that is to be occupied by the object. The object can then be
erased by redisplaying the saved image. The problem with this double pixBlt
is that it requires a preliminary, and time-consuming, read operation to store
the screen area that is to be occupied by the animated object. Therefore the
redraw-erase cycle is performed by a video-to-RAM pixBlt (save screen), RAM­
to-video pixBlt (display object), and another RAM-to-video pixBlt (restore
screen).

A faster method of erasing and redrawing the screen is based on the properties
of the logical exclusive or (XOR) operation. The action of the logical XOR is that
a bit in the result is set if both operands contain opposite values. Consequently,
XORing the same value twice restores the original contents, as in the following
example:

10000001B
XOR mask 10110011B

00110010B
OR mask 10110011B

10000001B

Notice that the resulting bitmap (10000001B) is the same as the original one.
The XOR method can be used in EGA, VGA, and SuperVGA systems because
the Data Rotate register of the Graphics Controller can be programmed to write
data normally, or to AND, OR, or XOR the CPU data with the one in the latches.
In XGA systems, mix mode number 06H produces a logical XOR of source and
destination pixels.

The logical XOR operation provides a convenient and fast way for consecu­
tively drawing and erasing a screen object. Its main advantage is that it does
not require a previous read operation to store the original screen contents. This
results in a faster and simpler read-erase cycle. The XOR method is particularly
useful when more than one animated object can coincide on the same screen
position since it ensures that the original screen image is always restored.

The disadvantage of the XOR method is that the resulting image depends on
the background. In other words, each individual pixel in the object displayed
by means of a logical XOR operation is determined both by the XORed value
and by the present pixel contents. For example, the following XOR operation
produces a red object (in IRGB format) on a bright white screen background:

I R G B
background= 1 1 1 1 (bright white)
XOR mask 1 0 1 1

image O 1 0 0 (red)

Time-Pulse and Color-Shift Techniques 401

Some of the original graphics systems in IBM microcomputers were prone to
a form of display interference called snow. The interference occurs when a video
buffer update coincides with the screen refresh. CGA programmers soon dis­
covered the unsightly effect could be avoided, or considerably reduced, by
synchronizing the buffer updates with the period of time that the electron gun
was turned off during the horizontal or the vertical retrace. EGA and VGA
systems are designed to avoid this form of interference when conventional
methods of buffer update are used. However, the interference problem reap­
pears when an EGA, VGA, or XGA screen image has to be updated at short
time intervals, as is the case in animation.

The frequent screen updates required by most animation routines must be
timed with the period during which the electron gun is off in order to avoid
interference. Because vertical retrace takes longer than the horizontal it is
sometimes preferred for synchronization purposes. This requirement, which
applies to EGA, VGA, XGA, and SuperVGA systems, imposes a substantial
burden on programs that perform animated graphics. For example, the screen
refresh period in VGA graphics modes takes place at an approximate rate of70
times per second. Since the individual images must be updated in the buffer
while the electron gun is off, this gives the software one-seventieth of a second
to replace the old image with the new one. How much buffer update can be
performed in this time period is the most limiting factor in programming
smooth, real time animation on the PC.

Notice that a screen refresh rate of approximately one-seventieth of a second
considerably exceeds the critical jerkiness frequency of one-twenty-fourth of a
second used as the image refresh rate in motion picture technology (see Chapter
1). This difference is related to the time period required for the human eye to
adjust to a light intensity change and detect flicker. We speak of a critical fiicker
frequency, as different from the critical jerkiness frequency mentioned. The
motion picture projector contains a rotating diaphragm that blackens the
screen only during the very short interval required to move the film to the next
frame. This allows projection speeds to take place at the critical jerkiness rate
rather than at the flicker rate. By the same token, a computer monitor must
adjust the screen refresh cycle to this critical flicker frequency.

12.1 XOR Animation

In order to animate a screen object its image must be erased from the current
screen position before being redrawn at the new position. In this respect
animation programmers sometimes speak of a draw-erase-redraw cycle. If the
object is not erased from the video display, its movement would leave an image
track on the display surface. In lateral translation an object appears to move
across the screen, from left to right, by progressively redrawing and erasing its
screen image at consecutively larger x coordinates. Notice that erasing the
screen object is at least as time consuming as drawing it, since each pixel in the
object must be changed to its previous state.

400 Chapter Twelve

the frame-by-frame projection of a set of progressively changing images of an
object. It is this collection of smoothly changing images that we call the
animation image set. If the rate at which the individual images are shown on
the video display is close to the critical rate of 22 images per second, then the
animation appears smooth and pleasant. However, if the software cannot
approximate this critical rate, the user perceives a disturbing flicker and the
animation appears coarse and bumpy to various degrees.

The image retention phenomena imposes performance requirements on real
time animated systems. If a computer animation program is to create a smooth
and pleasant effect, all the manipulations and changes from image to image
must be performed in less than one-twentieth of a second. For this reason, raster
scan video systems with bit-mapped image buffers, such as those in IBM
microcomputers, are not well suited for computer animation.

12.0.2 Avoiding Interference

A raster scan display system is based on scanning each horizontal row of screen
pixels with an electron beam. The pixel rows are usually scanned starting at
the top-left screen corner and ending at the bottom-right corner. In this context
each pixel row is called a scan line. At the end of each scan line the electron
beam is turned off while the gun is re-aimed to the start of the next line. This
period is called the horizontal retrace. When this row-by-row process reaches
the bottom scan line, the beam is turned off again while the gun is re-aimed to
the top-left screen corner. The period of time required to re-aim the electron
gun from the bottom-right corner of the screen to the top-left corner is known
as the vertical retrace or screen blanking cycle. Figure 12.1 shows the scan and
retrace cycles.

scan cycle

horizontal retrace

·...,,,-------+--- vertical retrace .. -----------~~------------= ------- ' -------------=- < ------------- >
_____________ ..

Figure 12.1 CRT Scan and Retrace Cycles

Chapter

12
Time-Pulse and Color-Shift Techniques

12.0 The Animated Image Set

Video animation often depends on the display of a series of images, sometimes
called the image set. In some forms of animation the images themselves are
progressively changed to form the image set. For example, panning animation
is based on changing the portion of the image that is visible on the viewport.
Other geometrical transformations can be used to generate the image set. We
have seen how scaling and rotation transformations are applied to a graphical
object in order to simulate its approaching the viewer. In all cases, animation
in real time requires two separate programming steps: the creation of an image
set and the sequential display of these images.

Many graphics and nongraphics techniques are used in the creation of an
image set that follows a predefined pattern of change. The image set can be
generated by performing geometrical transformations on the display file. Hand­
drawn or optically scanned bitmaps are also used to create the image set. Notice
that the creation of the image set need not take place in real time; it is its display
that is time-critical. But whether the image set is encoded in vector commands
or in bitmaps, the actual animation requires displaying these images consecu­
tively, in real time, and ideally, at a rate that is not less than the critical flicker
frequency. In the following sections we discuss some programming methods
used for displaying the animation image set in real time.

12.0.1 Vlsual Retention

In Chapter 1 we mentioned that the human visual organs retain, for a short
time, the images of objects that no longer exist in the real world. This physi­
ological phenomenon makes possible the creation of an illusion of animation by

399

Background, Objects, and Text 397

In this case the software can access any character map by adding a multiple of
16 to the start address of the font table. In other words, the offset of any desired
character map is the product of its ASCII code and the number of bytes in the
character maps. However, in PLC printer fonts not all the character maps are
of identical size. Therefore, in a typical case the character map for the letter
"M" is larger than the character map for the letter "I." This complicates the
calculations necessary for finding the start of a desired character map in the
font table and in obtaining its specific horizontal and vertical dimensions.
Procedures for using PLC fonts for display type can be found in our book
Graphics Programming Solutions (see Bibliography).

11.3.3 Text Animation

We have seen that text characters are usually sets of individual bitmaps, one
for each letter or symbol. Less frequently, the animation programmer deals
with text characters defined in vector form, as is the case in the Postscript
language and in other scalable fonts. In either case, the text characters are
individual graphics entities that can be manipulated and animated as such,
following the methods and operations already described.

396

JMP DISPLAY BYTE
; Index to next row
NEXT ROWl:
; Test for last graphic row

DEC BL
JZ GRAPH END
MOV BH,CS:BYTES
INC DX
MOV CX,CS:X_COORD
JMP BYTE ENTRY

GRAPH END:
RET

FINE PATTERN ENDP

Display Type

Chapter Eleven

Row counter
Done, exit
Reset byte counter
Bumpy coordinate control
Reset x coordinate control

The use of character generator software and BIOS character tables, as de­
scribed in the previous paragraphs, considerably expands the programmer's
control over text display on the VGA graphics modes. However, the BIOS
character sets consist of relatively small symbols. Many graphics applications
require larger characters (sometimes called display type) for use in logos, titles,
headings, or other special effects. Since the largest character sets available in
BIOS are the 8-by-16 and 9-by-16 fonts, the programmer is left to his or her
own resources in this matter.

There are several ways of creating, or imitating, display type screen fonts.
These include the use of scalable character sets, the design of customized screen
font tables, the adaptation of printer fonts to screen display, the enlargement
of existing fonts, and even the artistic design of special letters and logos. Which
method is suitable depends on particular needs and the availability of re­
sources. Ideally, the display programmer would have at hand scalable text fonts
in many different typefaces and styles. In fact, some sophisticated graphics
programs and programming environments furnish screen versions of the Post­
script language, which comes close to achieving this almost-ideal level of text
display control.

PCL Fonts as Display Type

One source of display type often available to the program designer is in the form
of printer fonts in Printer Control Language (PCL) format. These fonts, origi­
nally developed by Hewlett-Packard for use in their LaserJet line of laser
printers, are a collection of high-quality bitmaps similar to the ones in the BIOS
character set previously described. The PCL font, usually stored in a disk file,
can be loaded into the applications memory space in a similar manner to the
BIOS character sets.

A major difference between the BIOS screen fonts and the printer fonts in
PCL format is that the former have an identical pattern for all the text
characters; that is, all character maps occupy the same memory space. For
example, in BIOS each 8-by-16 font character map takes up 16 bytes of storage.

Background, Objects, and Text

; FINE PATTERN PROCEDURE
; Scratchpad variables for FINE PATTERN
COUNT 8 DB 0 8-bit counter
BYTES DB 0 ; Block byte-width storage
X COORD ow 0

FINE PATTERN PROC FAR
Display a bitmap at a pixel boundary

On entry:
ex
DX

x coordinate to start display
y coordinate to start display

BH
BL

number of bytes per bitmap row (map's x dimension)
number of rows in bitmap (map's y dimension)

DI
AL

-- start of bitmap
IR GB color code

Note: this procedure calls a virtual, device-independent
routine named PIXEL_WRITE, which sets an individual
screen pixel in the host video system. The programmer
must code a real pixel-set procedure for the code to
execute.

Initialize registers
MOV CS:COUNT_B,8
MOV CS:BYTES,BH
MOV CS:X_COORD,CX

DISPLAY BYTE:
MOV

TEST BIT:
TEST
JZ

Set the pixel
PUSH
PUSH
CALL
POP
POP

NEXT BIT:
SAL
INC
DEC
JZ

AH, [DI]

AH,10000000B
NEXT BIT

AX
BX
PIXEL WRITE
BX
AX

AH,1
ex
CS:COUNT 8
NEXT BYTEl

Prime bit counter
Store byte count
and x coordinate of block

Byte to be displayed

Is high bit set?
Bit not set

Save entry registers

(see note in procedure header)
Restore registers

Shift AH to test next bit
Bump x coordinate counter
Bit counter
Exit if counter rewound

JMP TEST BIT Continue
; Index to next byte in row, if not at end of row
NEXT BYTEl:

DEC
JZ

BYTE ENTRY:
INC
MOV

BH
NEXT ROWl

DI
CS:COUNT_B,8

Bytes per row counter
End of graphic row

Bump graphic code pointer
Reset bit counter

395

394

MOV AX,WORD PTR [SI]
MOV CS:X_DISPL,AX
ADD SI,2
MOV AX,WORD PTR [SI]
MOV CS:Y_DISPL,AX
ADD SI,2
MOV AL,BYTE PTR [SI]
MOV CS:IRGB_CODE,AL
INC SI

;*************************I
display text line

;*************************!
At this point

Chapter Eleven

x axis character spacing
Store in variable

y axis character spacing

IRGB color code
Store color code
SI== to message text

CX = x coordinate pixel address to start display
DX= y coordinate pixel
SI first character in text message

NEXT FINE:
MOV
SUB
MOV

DI,CS:FINE_ADD
AX,AX
AL,BYTE PTR [SI]

Offset of RAM font table
Clear high byte

; ASCII symbol
Test for embedded control code

CMP AL,0 End of message
JNE NOT FINE END
RET

NOT FINE END:
At this point AL holds ASCII character code, which is the
character's offset in the font
Calculate character bitmap offset in font

MUL CS:MAP X Offset times number of columns
MUL CS:MAP Y and times number of rows

DI
ADD
bitmap
MOV
MOV
MOV
PUSH
PUSH
CALL
POP
POP

Index to next
ADD
ADD
INC
JMP

FINE TEXT

in bitmap
DI,AX DI=> font to be displayed

to be displayed
BL,CS:MAP_Y
BH,CS:MAP_X
AL,CS:IRGB_CODE
ex
DX

Map's
Map's
Color
Save

y dimension
x dimension
code for display

x and y coordinates

FAR PTR FINE PATTERN
DX ; Restore coordinates
ex
character
CX,CS:X_DISPL
DX,CS:Y_DISPL
SI
NEXT FINE

ENDP

Add x displacement
and y displacement
Bump message pointer

·** I

support procedure for FINE_TEXT
;**

Background, Objects, and Text

same dimensions. Display position is defined at a pixel
boundary. Code assumes an initialized VGA graphics system

Message format:
OFFSET STORAGE

0 word
2 word
4 word
6 word
8 byte
9

Font table format:

CONTENTS
x coordinate start address (pixel number)
y coordinate start address (pixel number)
x axis pixel spacing between characters
y axis pixel spacing between characters
IR GB color code
first character in text message

Each font table is preceded by two bytes that determine its
dimensions, as follows:

393

Byte at font table - 1
Byte at font table - 2

number of pixel rows in bitmap
number of horizontal bytes in bitmap

Embedded codes:
OOH= end of message

Note: since this is a single-line function no end of line code
is implemented

On entry:
DS:SI
DS:DI

message
RAM font table

Code segment data for scratchpad variables
FINE ADD DW 0 Offset of font table in RAM
MAP X
MAP Y
X DISPL
Y DISPL
IRGB CODE

FINE TEXT

DB
DB
ow
ow
DB

PROC

0
0
0
0
0

FAR
; Save start address of font table

MOV CS:FINE_ADD,DI
;**************************I

obtain font dimensions
;**************************!

Horizontal bytes in bitmap
Number of pixel rows in map
x character displacement
y character displacement

In memory variable

; Load font dimension into registers and store in variables
MOV BH, [DI-2] x dimension into BH (bytes)
MOV BL, [DI-1] y dimension into BL (bits)
MOV CS:MAP_X,BH ; Save map dimensions
MOV CS:MAP_Y,BL

Set up pointers
MOV CX,WORD PTR [SI] X axis pointer
ADD SI,2
MOV DX,WORD PTR [SI] y axis pointer
ADD SI,2

392 Chapter Eleven

LOOP MOVE FONT
At this point the designated character set is resident in the
caller's buffer

RET
FONT TO RAM ENDP

In loading a BIOS character font to the RAM memory, the caller can precede
the font storage area with two data bytes that encode the font's dimensions.
For example, the storage area for the BIOS 8-by-8 font can be formatted as
follows:

;**********************I

storage for BIOS
symmetrical font

;**********************I

RAM storage for symmetrical
Each font table is preceded
dimensions, as follows:

1

FONT

Byte at font table - 1
Byte at font table - 2

X 8 built in ROM font
DB 1
DB 8

1X8 DB 2048

font table from BIOS character maps
by two bytes that determine its

number of pixel rows
number of horizontal bytes

; Bitmap x dimension, in
; Bitmap y dimension, in

DUP (OOH)

bytes
bytes

Note that 2048 bytes are reserved for the 8-by-8 BIOS font, which contains
256 character maps of 8 bytes each (256 x 8 = 2048). By the same token, the
l-by-16 character font would require 4096 bytes of storage. Once the BIOS font
table is resident in the caller's memory space, it can be treated as a collection
of bitmaps, one for each character in the set. In this manner the programmer
is able to control the screen position of each character at the pixel level.
Consequently, the spacing between characters, which is necessary in line
justification, also comes under software control; as does the spacing between
text lines, and even the display of text messages at screen angles.

The procedure named FINE_TEXT (listing follows) allows the display of a
single text line starting at any desired pixel location and using any desired
spacing between characters on the horizontal and the vertical axes. This means
that if the vertical spacing byte is set to zero in the text header block, all the
characters are displayed on a straight line in the horizontal plane. However,
by assigning a positive or negative value to this parameter, the programmer
using this procedure can display a text message skewed at a screen angle.

;***
character generator procedure

;***
Character generator for displaying text messages using a font

; table located in RAM. All bitmaps in the font must have the

Background, Objects, and Text 391

·*** ,
procedure to move a VGA font table to the caller's memory

;***
FONT TO RAMPROeFAR

On entry:
AL= ROM character map desired

8 8-by-8 font
14 8-by-14 font
16 8-by-16 font

DS:DI caller's RAM buffer for font storage
requires 2K for 8-by-8 font and 4K for 8-by-14
and 8-by-16 font

;***********************I
select font

;***********************I

PUSH
eMP
JE
eMP
JE

Default is
MOV
MOV
JMP

LOAD 8X8:
MOV
MOV
JMP

LOAD 8Xl4:
MOV
MOV

DI
AL,8
LOAD 8X8
AL,14
LOAD 8X14

8-by-16 font
BH,6
eX,2048
FONT ADDR

BH,3
eX,1024
FONT ADDR

BH,2
eX,2048

;**********************I

get font address
;**********************I

FONT ADDR:
PUSH ex
MOV AH,17

MOV AL,48
INT l0H
POP ex
POP DI

; At this point ES:BP -- ROM
MOV SI,BP

MOVE FONT:
MOV AX,ES: [SI]
MOV [DI] ,AX
ADD SI,2
ADD DI,2

Save destination address
Test for 8-by-8 font
Go to 8-by-8 load
Test for 8-by-14 font
Go to 8-by-14 load

BIOS entry parameter
Word length of font table
Go to load routine

BIOS entry parameter
Word length of font table
Go to load routine

BIOS entry parameter
Word length of font table

Save word length counter
BIOS character generator
service
Subservice for font address

Restore counter
Restore address for font

address of character table
Sep up pointer

Get 2 bytes from ROM
Store them in RAM
Bump pointers

390 Chapter Eleven

VGA systems contain three complete character fonts and two supplemental
fonts. The characteristics of these fonts are shown in Table 11.1.

Table 11.1 BIOS Character Sets in VGA Systems

CHARACTER BOX SIZE

8-by-8
8-by-14
8-by-16

* 9-by-14
* 9-by-16

note: * - supplemental set

MODE

0, 1, 2, 3, 4, 5, 13, 14, and 19
0, 1, 2, 3, 15, and 16
17 and 18
7
0, 1. and 7

The supplemental character sets (Table 11.1) do not contain all of the 256
character maps of the full sets, but only those character maps that are different
in the 9-bit-wide fonts. In the process ofloading a 9-bit character set, the BIOS
first loads the corresponding 8-bit character maps and then overwrites the ones
that need correction and that appear in the supplemental set. This mechanism
is transparent to the programmer, who sees a full set of 9-by-14 or 9-by-16
characters.

11.3.2 Developing a Character Generator

PC graphics applications can perform simple character display operations by
means of the BIOS functions, but for many purposes these functions are too
limited. Perhaps the most obvious drawback of character display by means of
BIOS services is that the text characters must conform to a grid of columns and
rows determined by the selected character font and the active video mode. For
example, a graphics program executing in VGA mode 18 can use BIOS service
number 9, interrupt l0H, to display screen text using the 8-by-16 character
font. However, in this case, the program is constrained to a text screen composed
of 80 character columns by 30 rows and is not able to locate text outside this
grid.

Moving a BIOS Font to RAM

VGA graphics software can obtain considerable control in text display functions
by operating its own character generator, in other words, by manipulating the
text character maps as a regular bitmap. The process can often be simplified if
the existing character maps are suitable to the program's purpose. In VGA
systems the most easily available character maps are the BIOS character sets.
(See Table 11.1.) The software can gain the necessary information regarding
the location of any one of the BIOS character maps by means of service number
17, subservice number 48, of interrupt lOH. Once the address of the character
table is known, the code can move all or part of this table to its own address
space, where it becomes readily accessible. The following procedure shows the
processing necessary for loading one of three VGA character sets into the
caller's memory space:

Background, Objects, and Text 389

MOV DL,BYTE PTR OS: [BP] ; Restore start column to DL
INC

Set cursor
PUSH
PUSH
PUSH
MOV
MOV
INT
POP
POP
POP
JMP

END TEXT:
RET

TEXT BLOCK

DH ; Row control register

using BIOS service number 2 of interrupt lOH
AX ; Save entry registers
BX
DX
AH, 2
BH,0
lOH
DX
BX
AX
CHAR WRITE

ENDP

Service request number
Assume display page No. 0

Restore registers

Notice that in this code fragment, the first byte in the header encodes the
screen row at which the message is to be displayed, the second byte encodes the
screen column, and the third byte encodes the color code. Since the procedure
operates in any text or graphics mode, the range and encodings for these
parameters depend on the active mode.

BIOS Character Sets

The BIOS stores several sets of text characters encoded in bitmap form. Figure
11.8 shows the bitmap of the letter "A" as found in one of the BIOS fonts.

1 2 3 4 5 6 7 8 <= column

1 o-----+----+-+-+-+--+----+----11-00H
2 -OOH
3 -OOH
4 -38H
5 -6CH
6 -C6H
7 -- c 6 H hexadecimal
8 __ F EH bit-row code
9 -C6H

10 -C6H
11 -C6H
12 -OOH
13 -OOH
14 -OOH

Figure 11.8 Bitmap of BIOS Text Character

388

Set cursor using BIOS service
PUSH AX

PUSH BX
PUSH DX
MOV AH, 2
MOV BH,0
INT l0H
POP DX
POP BX
POP AX

INC DI
MOV BL, [DI]

CHAR WRITE:
INC DI
MOV AL, [DI]
CMP AL,0FFH
JE BUMP ROW
CMP AL,0
JZ END TEXT

;***********************I
display character

using BIOS service
;***********************I

Chapter Eleven

number 2 of INT l0H
; Save entry registers

Service request number
Assume display page No. 0

Restore registers

Bump pointer to attribute
Get color code into BL

Bump to message start
Get character
End of line ?
Next row
Test for terminator
Exit routine

Display character in AL and using the color code in BL
MOV AH,9 BIOS service request number
MOV BH,0 Page
MOV
INT

CX,l
l0H

;**********************I
bump cursor

to next character
;**********************I

INC DL
; Set cursor using BIOS service

PUSH AX

PUSH BX
PUSH DX
MOV AH,2
MOV BH,0
INT l0H
POP DX
POP BX
POP AX
JMP CHAR WRITE

;**********************I
next row

;**********************I
BUMP ROW:

No repeat

number 2 of interrupt l0H
; Save entry registers

Service request number
Assume display page No. 0

Restore registers

Background, Objects, and Text 387

11.3.1 Text Display Operations In BIOS

BIOS service number 9, interrupt lOH, can be used in standard alphanumeric
and graphics modes to display a character at the current cursor position. Notice
that this statement refers to the BIOS standard modes, and not to the non­
standard ones such as VGA mode X (see Chapter 7). Service number 9 is the
only BIOS character display service that can be used in a graphics mode, while
several other BIOS text services can be used in alphanumeric modes.

Service number 2, interrupt lOH (set cursor position), can also be used in
conjunction with service number 9 to place a text string at any desired screen
position, notwithstanding that there is no physical cursor in VGA graphics
modes, and that the action of service number 2 is limited to selecting a screen
location for the text display operation that follows. The invisible graphics mode
cursor is sometimes called a virtual cursor.

Text Block Display

Programs that have frequent need to display text while in a graphics mode often
need more display control than can be obtained by a virtual cursor and BIOS
service number 9. One option is to develop a routine capable of displaying any
number of text lines, starting at any screen position, and using any desired color
available. A convenient way of storing the display parameters for the text
message is in a header block preceding the message itself. The following
procedure can be used for displaying a formatted text block:

·** I

procedure to display a formatted text block
;**

TEXT BLOCK PROC FAR

Text message is format as follows:
OFFSET: CONTENTS:

0 Screen row
1 Screen column
2 Color code

DISPLAY CODES:
OOH End of message
FFH -- End of screen line

On entry:
DI -- Graphic display block

Note: code assumes that write mode O is active

MOV DH, [DI] Get screen row
INC DI Bump pointer
MOV DL, [DI] And column into
MOV BP,DI Save address of

variable in BP

into DH

DL
screen column

386

Calculate complement to reverse rotation
ST (0)

360

direction
ST (1)

FLO CS:THREE SIXTY
FILO CS:ROT ANGLE
FSUB

Calculate sine and cosine of

CALL DEG TO RAD
FLO ST (0)
CALL SINE
FSTP CS:SIN @ -
CALL COSINE
FSTP CS:COS @

Routine to compute x' and y'
x' = X cos @ - y sin @

FLO CS:SIN @ -
FLO CS:CART Y
FMULP ST(l),ST
FLO CS:COS @
FLO CS:CART X
FMULP ST(l),ST
FSUB ST,ST(l)
FSTP ST(l)

x' remains in the 8087 stack
y' y cos @ + X sin @

FLO CS:SIN @
FLO CS:CART X
FMULP ST(l) ,ST
FLO CS:COS @
FLO CS:CART Y
FMULP ST(l),ST
FADD

Store x' and y' in original
FSTP CS:CART Y
FSTP CS:CART X
RET

ROTATE ENDP

11.3 Operations on Text

I

@

360 - @
rotation angle

ST(O)
@ rads
@ rads
sin@
@ rads
cos @

ST (0)
sin @

y
y sin @
cos @

X

X cos @
x'
x'

360

and store
ST (1)

@ rads
@ rads

ST (1)

sin @

y sin @
cos @

y sin @
y sin @

during computation of y'

sin @ x'
X sin @

X sin @ x'
cos @ X sin @

y cos @
y cos @ X sin @

y' x'
variables

x' --------

Chapter Eleven

ST(2)

-------,

ST(2)

I ST(2)
I
I

I
I ------
I y sin @I
I ------ I
I
I

x'

x'
X sin @I

x' I
------ I

Animated graphics applications often require some form of text display. If the
text display functions in an application take place in separate screens from the
graphics operations, then the programmer has the option of selecting a text
mode and either using text output keywords in a high-level language or one of
the text display functions available in the BIOS. However, if a graphics program
must combine text and graphics on the same screen, the text display functions
available to the programmer are more limited.

Background, Objects, and Text

VIDEO YUP

VIDEO LIMITS

EQU

PROC

4 Upper screen limit

NEAR
Test current display coordinates against video display limits
defined in equates
On entry:

On exit:

BX
ex

x coordinate of object
y coordinate of object

carry set if object not displayable

First test for x coordinate limits
CMP BX,VIDEO_X_RT Test right limit
JA BAD VID RANGE Go if X greater than

limit
CMP Test left limit

right

385

JB
BX,VIDEO_X_LF
BAD VID RANGE Go if x smaller than left limit

Now test for y coordinate limits
CMP CX,VIDEO_Y_DN Test down limit
JA BAD VID RANGE Go if y greater than down limit
CMP CX,VIDEO_Y_UP Test up limit
JB BAD VID RANGE Go if x smaller than left limit

At this point object is within limits
CLC ; Carry clear indicates limit OK
RET

BAD VID RANGE:
STC
RET

VIDEO LIMITS ENDP

Carry set indicates limit error

·** ,

ROTATE PROC NEAR
Rotate x and y coordinates of the first quadrant of a curve

On entry:
CS:ROT_ANGLE = desired angle of rotation (in degrees)
CS:CART X x coordinate
CS:CART Y y coordinate

On exit:
CS:CART X
CS:CART Y

x' (rotated x coordinate)
y' (rotated y coordinate)

Formulas for obtaining rotated coordinates x' and y':
x' x cos@ - y sin@
y' y cos@+ x sin@

Test for no rotation angle
CMP CS:ROT_ANGLE,0
JNE OK ROTATE
RET

OK ROTATE:

Interactive Animation 445

Subservice 5 - Check Button Press Status

Programs that do not use interrupts can check mouse button press status by
calling subservice number 5 of the Microsoft mouse interface. The call is
typically located in a polling loop. The calling program passes the button code
in the BX register; the value of O corresponds to the left mouse button and the
value of 1 to the right button. The call returns the button status in the AX
register; bit O is mapped to the left mouse button and bit 1 to the right mouse
button. A value of 1 indicates that the corresponding button is down. The BX
register returns the number of button presses that have occurred since this call
was last made or since a driver software reset (see subservice O earlier in this
section). The CX and DX registers hold the x and y cursor coordinates of the
screen position where the last press occurred. The following fragment shows a
call to this subservice:

·** I

button action handler
;**

The following routine calls service 5 of interrupt 33H to
detect mouse press action on the mouse device
If the right button was pressed execution is directed to the
label RIGHT_BUT, if the left button was pressed execution is
directed to the label LEFT BUT

;**********************I
check left button

;**********************I
MOV AX,5 Service request to read

mouse button status
MOV BX,0 First test left button
INT 33H Mouse interrupt

Number of button presses is returned in the BX register
CMP BX,0 ; Test for no presses
JE TEST RIGHT BUT ; Not pressed. Test right button

Code at this point should take the program action corresponding
to one or more presses of the left mouse button

Execution should be allowed to fall through to the right button
test routine

;**********************I
check right button

;**********************I
TEST RIGHT BUT:

MOV

MOV
INT

AX,5

BX,1
33H

Number of button presses is
CMP BX,0

Service request to read
mouse button status
Test right button
Mouse interrupt

returned in the BX register
; Test for no presses

446 Chapter Thirteen

JE END BUTTON RTN ; Not pressed. End of routine
Code at this point should take the program action corresponding
to one or more presses of the right mouse button

Button press status processing ends at this label
END BUTTON RTN:

Subservice 11 - Read Motion Counters

The actual movement of the mouse-controlled icon is dependent on the state of
two counters maintained by the mouse interface software. The Microsoft mouse
interface at interrupt 33H stores the motion parameters in 1/200-in units called
mickeys. The changes in the motion counters represent values from the last
time the function was called. Subservice 11, of interrupt 33H, returns the values
stored in the horizontal and vertical motion counters. The horizontal motion
count is returned in the CX: register and the vertical count in the DX register.
The values are signed integers in 2's-complement form. A negative value in the
horizontal motion counter indicates mouse movement to the left, while a
negative value in the vertical motion counter indicates a movement in the
upward direction. Both the vertical and the horizontal counters are automat­
ically reset by the service routine.

The detection of mouse action can be by polling loops or by interrupts. Polling
loops are often used in reading the motion counters so as to keep interrupt
processing times to a minimum, specially considering that the Microsoft mouse
interface does not allow the installation of more than one service routine. The
processing inside a polling loop or a service routine takes place in similar
fashion. The following fragment shows the structure of a basic mouse movement
handler:

·** ,
mouse movement handler

;**
The following routine calls service 11 of interrupt 33H to
detect horizontal or vertical movement of the mouse device
If the movement is along the x axis (horizontal), execution is
directed to the label H_MOVE. If the movement is along they
axis, execution is directed to the label Y_MOVE. If no change
is detected in the motion counters, then execution is directed
to the label NO MOVE

;**********************I
service No. 11 of

INT 33H
;**********************I

Interactive Animation

MOV AX, 11 Service request to read
motion counters

INT 33H Mouse interrupt
CX Horizontal mouse movement from last call to this service
DX vertical mouse movement from last call

MOV AL,CL Horizontal counter to AL
MOV AH,DL Vertical counter to AH
CMP AX,0 If AX· is 0 then no mouse
JNE XORY MOVE Some movement detected
JMP NO MOVE Go if no movement

; At this point there is vertical or horizontal mouse movement
XORY MOVE:

CMP
JE

cx,o
Y MOVE

;**********************I

horizontal move
;**********************I

Test for no horizontal
Go to vertical movement test

Code at this point moves the mouse icon according to the
; direction and magnitude of the value in the CX register
X MOVE:

PUSH DX ; Save vertical move counter

POP DX ; Restore vertical counter
Once the horizontal movement is executed the code should fall
through to the vertical movement routine. This takes care of
the possibility of simultaneous movement along both axes

;**********************I

vertical move
;**********************I

Code at this point moves the mouse icon according to the
; direction and magnitude of the value in the DX register
Y MOVE:

;**********************I

no movement
;**********************I
; This label is the routine's exit point
NO MOVE:

Subservice 12 - Set Interrupt Routine

447

The user action on the mouse hardware can be monitored by polling or by
interrupt generation, as is the case with most other input devices. Polling

448 Chapter Thirteen

methods are based on querying the device status on a time-lapse basis; there­
fore polling routines as usually coded as part of execution loops. In the case of
the mouse hardware the polling routine can check the motion counter registers•,
and the button press and release status registers that are maintained by the
mouse interface software. The services to read these registers are described
later in this section.

The second and often preferred method of monitoring user interaction with
the mouse device, particularly mouse button action, is by means of hardware
interrupts. In this technique the program enables the mouse hardware actions
that generate interrupts and installs the corresponding interrupt handlers.
Thereafter, user action on the enabled hardware sources in the mouse automat­
ically transfers control to the handler code. This frees the software from polling
frequency constraints and simplifies program design and coding.

A typical application enables mouse interrupts for one or more sources of user
interaction. For example, a program that uses the mouse to perform menu
selection would enable an interrupt for movement of the trackball (or other
motion detection mechanism) and another interrupt for the action of pressing
the left mouse button. If the mouse is moved, the interrupt handler linked to
trackball movement changes the screen position of the marker or icon according
to the direction and magnitude of the movement. If the left mouse button is
pressed, the corresponding interrupt handler executes the selected menu
option.

Another frequently used programming method is to poll the mouse motion
counters that store trackball movement and to detect button action by means
of interrupts. This design reduces execution time inside the interrupt handler,
which can be an important consideration in time-critical applications.

In the mouse interface software, the hardware conditions that can be pro­
grammed to generate an interrupt are related to an integer value called the
call mask. Figure 13.3 shows the call mask bit map in the Microsoft mouse
interface software. To enable a mouse interrupt condition the software sets the
corresponding bit in the call mask. To disable a condition the call mask bit is
cleared.

15

bits 5 to 15
RESERVED

0

~---b_lt_O ___ tracking movement

bit 1

bit 2

bit 3

bit 4

left button pressed

left button released

right button pressed

right button released

Figure 13.3 Mouse lnte"upt Call Mask Bitmap.

Interactive Animation 449

Subservice number 12 of the mouse interface at interrupt 33H provides a
means for installing an interrupt handler and for selecting the action or actions
that generate the interrupt. The following fragment shows the necessary
processing for enabling mouse interrupts on right and left button pressed.

Select left mouse button pressed and right mouse button pressed
as interrupt conditions and set address of service routine
by means of mouse subservice number 12, interrupt 33H

The code assumes that the interrupt handler is located in the
program's code segment, at the offset of the label named
MOUSE ACTION

CLI
PUSH ES
PUSH cs
POP ES
MOV AX,12

Interrupt mask bit map:
15-------------------- 5 4
I- these bits unused --1 I

Interrupts off
Save video buffer segment
Program's segment
to ES
Mouse service number 12

3 2 1 0
I I I I Tracking movement
I I I I Left button pressed
I I I ____ Left button released
I I _____ Right button pressed
I ______ Right button released

Unused bits MOV
MOV

MOV

CH,0
CL,00001010B Interrupt on left button and

right button pressed
DX,OFFSET CS:MOUSE ACTION; Address of the

INT
POP
STI

33H
ES

service routine
Mouse interrupt
Restore segment
Interrupts on

When the user's interrupt service routine receives control, the mouse interface
software passes a condition code in the AL register that matches the call mask
bit map (see Figure 13.3). In this manner the user's handler can determine
which of the unmasked conditions actually generated the interrupt. An inter­
rupt condition bit is set when the corresponding condition originated the
interrupt. For example, if the conditions that originate the interrupt are the
left or right mouse buttons pressed, then the program can test the state of bit
number 1 (see Figure 13.3) to determine if the interrupt was caused by the left
mouse button. If not, the code can assume that it was caused by the user
pressing the right mouse button, since only these two conditions are active.

A characteristic of service number 12 or the Microsoft mouse interface is that
only one interrupt handler can be installed. If two consecutive calls are made

450 Chapter Thirteen

to this service, even if the call mask settings enable different bits, the address
in the latest call replaces the previous one. Therefore it is not possible to install
more than one service routine by means of this service. On the other hand,
service number 24 allows the installation of more than one service routine, each
one linked to a different interrupt cause. However, this service operates only
when the Shift, Ctrl, or Alt keys are held down while the mouse action is
performed. In addition, in several non-Microsoft versions of the mouse interface
software this service does not perform as documented. For these reasons it is
not considered in this book.

13.4 Cursor in VGA Graphics Mode

Not all data input into a graphics application can be entered by means of an
analog device such as a mouse, a joystick, or a puck. Very often a program
executing in a VGA graphics mode requires that the user enter digital data,
such as names, numbers, or codes. However, the cursor, which is the conven­
tional positioning mechanism for data input, is available only in the VGA text
modes. This is due to the fact that the VGA cursor hardware is inactive in the
standard or nonstandard All-Points Addressable (APA) modes.

Implementing a cursor that functions in VGA graphics mode is a matter of
contriving a way of displaying a flashing marker that signals the current input
point, of displaying the input character, and of updating the marker position
according to the user's interaction. The IBM extended character set includes
several graphics objects that can be used as a cursor character, but a simple
underscore symbol from the ASCII character set usually suffices for this
purpose.

The code must also find a way of making the cursor symbol flash on the screen.
This requires a timed beat for successively displaying and erasing the cursor.
The timer beat can be obtained by intercepting the system timer interrupt, as
discussed in Chapter 12. Finally, the code must keep track of the input position,
which implies recognizing some editing keys such as the backspace.

13.4.1 Intercepting the System Timer Interrupt

The system timer interrupt was discussed in Chapter 12. The following code
fragment shows a simple intercept of interrupt lCH in order to obtain a timed
beat at the rate of 18.2 times per second:

;**
install timer beat intercept for graphics cursor

;**
CLI

;**********************I
get address of old

handler
;**********************I

Interactive Animation 451

Uses MS-DOS
address for

PUSH

service
INT lCH

ES

53 of interrupt 21H to obtain the original

Save segment
MOV
MOV
INT

AH,53
AL,lCH
21H

Service request code
Code of vector desired

ES Segment address of installed interrupt handler
BX Offset address of installed interrupt handler

MOV CS:OLDlC_ADD,BX Store offset in variable
MOV CS:OLDlC_SEG,ES Store segment base
POP ES Restore segment

;**********************I
; install new handler
;**********************I

Take over timer tick at INT lCH Using DOS service 37 of
interrupt 21H

MOV
MOV
LEA
PUSH

AH,37
AL,lCH
DX,CS:HEXlC_
OS

PUSH CS
POP OS
INT
POP
STI

21H
OS

INT

Service request number
Interrupt to be intercepted
Pointer to handler
Save data segment

MS-DOS interrupt
Restore OS

·** ,
end of interrupt installation

·** ,

13.4.2 The Timer Interrupt Handler

Once the timer interrupt intercept is implemented (see Section 13.4.1) the
program receives control every 18.2 times per second at the corresponding label.
Therefore, the programmer must code a handler routine at the intercept label.
In implementing a graphics mode cursor the beat of 18.2 times per second
provides too fast a flashing rate for the cursor object. The handler can slow down
the pulse by skipping some of the intercepts. In the handler routine listed below
the code keeps track of intercepts in the variable named TOGGLE_CTRL. This
variable takes values from Oto 9. When the value 3 is reached, the cursor is
turned on. When the value 6 is reached, the cursor is turned off. The result is
a pleasant flashing rate of the cursor.

·** ,
interrupt lCH intercept routine

·** ,

452

; Code segment data
TOGGLE CTRL DB
CUR ONOFF DB

CUR ATTR DB
OLDlC ADD ow
OLDlC SEG ow

HEXlC INT PROC

0
0

0
0
0

FAR

Chapter Thirteen

Control for cursor ON/OFF
Cursor ON or OFF switch
1 = display cursor
0 = skip intercept
Current attribute
Storage for old interrupt lCH

; Interrupts on
STI ; Reenable interrupts

;**********************I
test ON/OFF switch

;**********************I
CMP
JE
IRET

CS:CUR_ONOFF,1
CURSOR ACTIVE

;**********************I
save context

;**********************I

Test for ON mode
Go if 1

; Save all registers used by the interrupt intercept routine
; including the ES segment register
CURSOR ACTIVE:

PUSH AX
PUSH BX
PUSH ex
PUSH DX
PUSH SI
PUSH DI

;**********************I
test toggle byte

;**********************I
The byte at

; to turn the
CMP
JE

TOGGLE CTRL serves
cursor ON and OFF

CS:TOGGLE_CTRL,3
DISPLAY CUR

CMP CS:TOGGLE_CTRL,6
JE ERASE CUR

Manage cursor control byte
INC CS:TOGGLE_CTRL;
CMP
JB

CS:TOGGLE_CTRL,9
CTRL IN RANGE

; Reset control byte
MOV CS:TOGGLE_CTRL,0

CTRL IN RANGE:
JMP CUR EXIT

DISPLAY CUR:
MOV

CURSOR RTN:
INC

AL,'_,

CS:TOGGLE CTRL

to determine the intercept used

Is value = 3?
Go if live iteration
Is value = 6?
Go if live iteration

Control is in range

Restart counter

Graphic cursor character

Bump control byte

Interactive Animation

MOV
MOV
MOV
MOV
INT
JMP

AH, 9
BL,CS:CUR_ATTR
BH,0
CX,1
l0H
CUR EXIT

;**********************I
erase cursor

;**********************I
ERASE CUR:

MOV
JMP

AL,20H
CURSOR RTN

;**********************!
exit routine

;**********************I
CUR EXIT:

POP DI
POP SI
POP DX
POP ex
POP BX
POP AX

Service request number
Cursor attribute
Display page zero
One character
BIOS service
Go

Space

and general registers

; Exit from new service routine to old service routine
IRET

HEXlC INT ENDP

453

Notice that the listed handler displays and erases the cursor character by
means of BIOS service number 9, ofINT lOH. The handler takes advantage of
the fact that service number 9 uses the current position of the system cursor to
display the character. This simplifies programming by allowing the use of the
BIOS cursor control services.

13.4.3 Keyboard Input Routine

In order to use the mechanism of a hardware cursor in a graphics mode it is
necessary to code a routine that turns on the cursor, obtains the user input
echoing the typed characters, performs the necessary input editing functions,
and turns off the cursor when input concludes. A simple set of input control
keys is based on using the <Enter> key to terminate the input phrase, <Esc>
to abort input, and <Backspace> to erase the preceding character and move
the cursor back one screen character.

Several auxiliary procedures facilitate the operation of the input routine. One
procedure sets the system cursor location, which is used by the intercept routine
listed in Section 13.4.2. Another procedure displays the user's input character,
and two other auxiliary procedures turn the graphics mode cursor on and off.

;**
graphics cursor input procedure

·** ,

454 Chapter Thirteen

APA INPUT PROC NEAR
General keyboard input routine for VGA graphics mode with
graphics cursor display

Control codes and exit codes:
ODH <Enter> Exit with carry clear
OllBH <Esc> Exit with carry set
08H <Backspace>. Erase character and backspace

cursor
On entry:

DI-> storage buffer
SI-> Input format area:

Offset O screen start row
Offset 1
Offset 2
Offset 3

screen start column
total characters allowed
display attribute

On exit:
Text is stored in buffer by DI

DI/SI-> start of character buffer
CX = total characters input

PUSH
MOV
INC
MOV
CALL
INC
MOV

carry clear

DX
DH, [SI]
SI
DL, [SI]
SET CUR
SI
CL, [SI]

MOV CH,CL
Get current display attribute

INC SI
MOV AL, [SI]

Save entry DX
Get display row
Bump to offset 2
Get display column
Local procedure
Bump to offset 3
Set up counter
Copy start value in CH

Pointer to attribute
Read attribute in block

MOV CS:CUR_ATTR,AL Store in CS variable
Save entry value of buffer pointer in SI

MOV SI, DI
Turn on graphics cursor

CALL APA CUR ON
GET KEY:

CALL KBR WAIT
;******************!
; input processing I
;******************!

CMP AL,ODH
JNE NOT OOH
JMP KBR EXIT

NOT ODH:
CMP AX, OllBH
JNE NOT ESC
JMP KBR EXIT -

NOT ESC:

0

1

Local procedure

Get character

<Enter> key

Take exit

<Esc> key

Take exit

Interactive Animation

CMP
JNE

AL,08H
NOT BAK

;*****************I
backspace

;*****************I
; Test for cursor at start

CMP CH,CL

JE GET KEY

Turn off and erase cursor
CALL APA CUR OFF

Execute backspace
DEC DI
DEC DL
CALL SET CUR
INC CL
MOV AL,' ,
CALL SHOW APA
MOV [DI) ,AL

Restore graphics cursor
CALL APA CUR ON
JMP GET KEY

;******************I
; test for errors
;******************I
NOT BAK:

<Backspace> key

of buffer
Test present count with start
value
Ignore backspace at start
position

Local procedure

Buffer pointer
Display column counter

455

Adjust maximum characters count
Blank space
Display a blank
and put blank in buffer

Local procedure
Continue

; Test for invalid input (less than 20H or more than 79H)
CMP AL,20H
JL GET KEY
CMP AL,79H
JG GET KEY

Test for buffer full
CMP CL,0
JNZ DISPLAY
JMP GET KEY

;******************I
display char.

;******************I
DISPLAY IT:

CALL SHOW APA
; Store it in buffer

MOV [DI) ,AL
;******************I
; bump pointers
;******************I

INC
INC
CALL
DEC
JMP

DI
DL
SET CUR
CL
GET KEY

IT

Illegal, too small

Illegal, too large

CL is counter

Buffer is full

Bump buffer pointer
Bump display column

Character counter
Continue

456 Chapter Thirteen

KBR EXIT 0:
PUSH SI Save start of buffer
SUB DI,SI Get total input
MOV CX,DI into counter
POP DI Restore buffer start pointer
CLC <Enter> key exit, no carry
POP DX Restore entry DX
CALL APA CUR OFF Turn off graphics cursor
RET

KBR EXIT 1:
PUSH SI Save start of buffer
SUB DI,SI Get total input
MOV CX,DI into counter
POP DI Restore buffer start pointer
STC <Esc> key exit, carry set
POP DX Restore entry DX
CLC No error detection
CALL APA CUR OFF Turn off graphics cursor
RET

APA INPUT ENDP

·** ,
support procedures for graphics cursor input

;**
SET CUR PROC NEAR

Set system cursor to a row and column coordinate
On entry:

DH
DL

On exit:

screen row (range Oto 24)
screen column (range Oto 79)

carry clear if no error

PUSH
PUSH
PUSH
PUSH
MOV
MOV
INT
POP
POP
POP
POP
RET

SET CUR ENDP

AX
BX
ex
DX
AH,2
BH,0
l0H
DX
ex
BX
AX

Save entry registers

Service request number
Assume display page No. 0

Restore registers

·** ,

SHOW APA PROC NEAR
Display the character in AL at the current cursor position

; On entry:

Interactive Animation

AL= character
On exit:

carry clear

PUSH
PUSH

AX
BX

PUSH ex
MOV
MOV
MOV
MOV
INT
POP
POP
POP
RET

SHOW APA

AH, 9
BL,CS:eUR_ATTR
BH,0
ex,l
l0H
ex
BX
AX

ENDP

Save caller's registers

Service request number
Current attribute
Display page zero
One character

Restore caller's registers

457

·** ,

APA CUR ON PROC NEAR
Procedure to activate the graphics cursor

MOV es:eUR_ONOFF,1 ; Switch ON
RET

APA CUR ON ENDP
·** ,

APA CUR OFF PROC NEAR
Procedure to deactivate the graphics cursor

PUSH AX ; Save context
PUSH BX
PUSH ex
MOV
MOV
MOV
MOV
MOV
MOV
INT
POP
POP
POP
RET

APA CUR OFF

es:CUR_ONOFF,0
AL,' '
AH, 9
BL,0000ll00B
BH,0
ex,1
l0H
ex
BX
AX

ENDP

; Switch ON
Erase cursor
Service request number
Red
Display page zero
One character
BIOS service
Restore context

Bibliography

Books and Technical Manuals

Adams, Lee. High-Speed Simulation and Animation for Microcomputers. Blue Ridge Summit,
PA: TAB Books, 1987.

Arnheim, Rudolf. Art and Visual Perception. Berkeley, CA: University of California Press, 1974.

Artwick, Bruce A. Applied Concepts in Microcomputer Graphics. Englewood Cliffs, NJ:
Prentice-Hall, 1984.

--Microcomputer Displays, Graphics, and Animation. Engelwood Cliffs, NJ: Prentice-Hall,
1985.

Burks, A. W. (Ed.). Essays on Cellular Automata. Urbana: University oflllinois Press, 1970.

Codd, E. F. Cellular Automata. ACM Monograph Series. New York: Academic Press, 1968.

Conrac Corporation. Raster Graphics Handbook. New York: Van Nostrand Reinhold, 1985.

Doty, David B. Programmer's Guide to the Hercules Graphics Cards. Reading, MA:
Addison-Wesley, 1988.

Enderle, G., K. Kansy, and G. Pfaff. Computer Graphics Programming. Berlin: Springer, 1984.

Ferraro, Richard F. Programmer's Guide to EGA and VGA Cards. Reading, MA:
Addison-Wesley, 1988.

Fox, David, and Michael Waite. Computer Animation Primer. New York: McGraw-Hill, 1984.

Harrington, Steven. Computer Graphics: A Programming Approach. New York: McGraw-Hill,
1983.

Harris, Dennis. Computer Graphics and Applications. London: Chapman and Hall Computing,
1984.

Hearn, Donald, and M. Pauline Baker. Computer Graphics. Englewood Cliffs, NJ: Prentice-Hall,
1986.

Hoggar, S. G. Mathematics for Computer Graphics. Cambridge, England: Cambridge University
Press, 1992.

IBM Corporation. Technical Reference, Personal Computer. Boca Rat.on, FL: IBM, 1984.

--Personal System/2 Hardware Interface Technical Reference - Video Subsystems. Boca
Rat.on, FL: IBM, 1992.

--Personal System I 2 and Personal Computer BIOS Interface Technical Reference. Boca
Rat.on, FL: IBM, 1987.

--Technical Reference, Options and Adapters. Boca Rat.on, FL: IBM, 1986.

459

460 Bibliography

-- Technical Reference, Personal System 12. Boca Raton, FL: IBM, 1987.

-- Technical Reference, Options and Adapters. XGA Video Subsystem. Boca Raton, FL: IBM,
1986.

--XGA Video Subsystem Hardware User's Guide. Boca Raton, FL: IBM, 1990.

Intel Corporation. 80286 and 80287 Programmer's Reference Manual. Santa Clara, CA: Intel,
1987.

-- 80386 Programmer's Reference Manual. Santa Clara, CA: Intel, 1986.

-- iAPX 86 I 88, 1861188 User's Manual (Programmer's Reference). Santa Clara, CA: Intel,
1987.

Kepes, Gyorgy, (Ed.). Sign, Image, Symbol. New York: George Braziller, 1966.

Kliewer, Bradley Dyck. EGA/VGA A Programmer's Reference Guide. New York: McGraw-Hill,
1988.

Magnenat-Thalmann, Nadia, and Daniel Thalmann. Computer Animation: Theory and Practice.
Tokyo: Springer-Verlag, 1985.

Mandelbrot, Benoit B. The Fractal Geometry of Nature. N.Y: W.T. Freeman and Co., 1982.

Mealing, Stuart. The Art and Science of Computer Animation. Oxford, England: Bath Press,
1992.

Microsoft. Microsoft Mouse Programmer's Reference. Redmond, WA: Microsoft Press, 1989.

Myers, Roy E. Microcomputer Graphics. Reading, MA: Addison-Wesley, 1982.

Pimentel, Ken, and Kevin Teixeira. Virtual Reality: Through the New Looking Glass. New York:
McGraw-Hill, 1993.

Pokorny, Corne] K, and Curtis F. Gerald. Computer Graphics: The Principles Behind the Art
and Science. Irvine, CA: Franklin, Beedle & Associates, 1989.

Ralston, Anthony, and Chester L. Meek. Encyclopedia of Computer Science. New York: Mason
and Charter, 1983.

Richter, Jake. Power Programming ... the IBM XGA New York: MIS Press, 1992

Richter, Jake, and Bud Smith. Graphics Programming for the 8514/A Redwood City, CA: M &
T Books, 1990.

Rietman, Edward. Creating Artificial Life: Self Organization. Blue Ridge Summit, PA: TAB
Books, 1993.

Rimmer, Steve. Bit-Mapped Graphics. New York: McGraw-Hill, 1990.

--The Graphics File Toolkit. Reading, MA: Addison-Wesley, 1992.

--Supercharged Bitmapped Graphics. New York: McGraw-Hill, 1992

--SuperVGA Graphics Programming Secrets. New York: McGraw-Hill, 1993

Rogers, David F. Procedural Elements for Computer Graphics. New York: McGraw-Hill, 1985.

Salmon, Rod, and Mel Slater. Computer Graphics, Systems & Concepts. London:
Addison-Wesley, 1987.

Sanchez, Julio. Graphics Design and Animation on the IBM Microcomputers. Engelwood Cliffs,
NJ: Prentice-Hall, 1990.

Sanchez, Julio, and Maria P. Canton. IBM Microcomputers: A Programmer's Handbook.
New York: McGraw-Hill, 1990.

--Graphics Programming Solutions. New York: McGraw-Hill, 1993

Bibliography 461

--High Resolution Video Graphics. New York: McGraw-Hill, 1994

--Programming Solutions Handbook for IBM Microcomputers. New York: McGraw-Hill,
1991.

Sproull, Robert F., W. R. Sutherland, and Michael K Ullner. Device Independent Graphics.
New York: McGraw-Hill, 1985.

Stevens, Roger T. Fractal Programming in C. Redwood City, CA: MT Books, 1989.

Sutty, George, and Steve Blair. Advanced Programmer's Guide to SuperVGAs. New York: Simon
& Schuster, 1990.

VESA. Super VGA BIOS Extension, June 2, 1990. San Jose, CA: VESA, 1990.

--Super VGA Standard, Version 1.2, October 22, 1991. San Jose, CA: VESA, 1991.

--XGA Extensions Standard, Version 1.0, May 8, 1992. San Jose, CA: VESA, 1992.

Video Seven. Video Seven VGA Programmer's Reference Manual. Fremont, CA: Headland
Technology Inc., 1991.

Watt, Allan, and Mark Watt. Advanced Animation and Rendering Techniques, Theory and
Practice. Wokingham, England: ACM Press, 1992.

Wilton, Richard. Programmer's Guide to PC & PS I 2 Video Systems. Redmond, WA: Microsoft
Press, 1987.

Periodicals and Other References

Abrash, Michael. "256-Color VGA Animation." Dr. Dobb's Journal. No. 180, August, 1991.

--"Mode X: 256-Color VGA Magic." Dr. Dobb's Journal. No. 178, July, 1991.

--"More Dirty (Dirtier?) Rectangles." Dr. Dobb's Journal. No. 197, February, 1993.

--"More Undocumented 256-Color VGA Magic." Dr. Dobb's Journal. No. 179, August, 1991.

--"Yet Another Animation Method .. " Dr. Dobb's Journal. No. 196, January, 1993.

Demetrescu, Stefan. "Moving Pictures." BYTE, vol. 10, No. 12, November, 1985.

Gomez, J.E. Comments on Event Driven Animation. SIGGRAPH Course Notes 10, 1987.

16-bit color adjustments 290
16-color modes 139, 165, 178
2-monitor systems 249
256-color mode 142, 165-167, 170, 171, 230,

290,334

Abrash, Michael 117, 181, 192
Additive primary and complementary colors

163,164
Address calculations 147, 154, 157, 162-164,

187-190, 195,198,203,211,350
Advanced animation and rendering tech­

niques 12
Aldus Corporation 75, 88, 93

Developer's desk 88
Alife 20

(see also Artificial life)
Alphanumeric functions 227
Ambiguity in encoding a circular arc 38
American National Standards Institute

(ANSI) 35
Angle of rotation 66, 385
Animated image set 25, 399
Animating in real-time 9
Animation by background translation 73

by foreground image translation 72
programming 29,35,60, 72,145,157,182,

216,332,405
pulse 405
in real-time 399
by translation, scaling, and rotation 73

Animators 6, 9, 12, 182
Aperture 233, 249, 250, 273, 274, 280-285,

290,293,334
Applications extension 88
Artificial life 20
ASCIIZ string 100, 102, 103, 107
Astrium program. 372
Attribute code 56

field 56
Avoiding interference 400

Background color 79, 84, 88,303,311,315
techniques 361

Bank switching 233, 281, 334, 335, 338, 344,
348, 351-356

Index

Bezier curves 31
Big-endian format 90, 234
BIOS:

bitmap of text character 389
character sets 389, 390, 396
interrupt lOH 125, 276
moving a font to RAM 390
text display operations 387

Bit block primitives 31
Bit planes 95, 115, 119, 121, 130, 139, 140,

161,179,204,205,209,213,226,260,340
Bitmap vector commands 26

background 361,362,364,366
generation 362
image acquisition 75, 109

Bit-mapped image 26, 78, 201, 309, 327, 400
Break function 439
Bresenham term calculations 318
Bresenham's algorithm 317,318
Burks, AW. 20
Business presentations 20
Button press status 444, 445

Call mask 448,449
Cartesian notation 30

representation of a circular arc 38
ofa line 37
of a point 36, 37

Cartoon animation 5-7, 9, 13
CCITT 80, 89, 94, 97
CD-ROM 19
Center of rotation 57, 66, 67, 70
Character generator 390-392, 396
Checking mouse installation 442
Chunky format 95
Classification of keys and keystrokes 437
Clocking mode register 127, 409
Coarse-grain address 158, 191, 198, 199
Codd, E.F. 20
Color animation 15, 179

operations 163
pages 180
resolution field 84
shift fade-out 429
triplets 261, 262
fade-in 431

Color-shift animation 15, 422-424, 427-429

463

464

Comments on event driven animation 12
Complementary color 163
Compuserve 75, 80-82, 88, 362

GIF format 81
Concatenation 70
Convex and concave polygons 39
Coordinate arithmetic 27
Coordinates matrix 59, 64
Copyright 81, 109-111, 364

Act of 1976 110, 111
Copyrighted images 364
Core graphics system 35
CorelTrace vectorizer program 364
Creating artificial life 20
Critical flicker frequency 399, 401, 405

jerkiness frequency 401, 404
jerkiness rate 401

CRT scan and retrace cycles 400
Ctrl-C handler 439
Cyberspace 21

DAC color register bitmap 166
Palette address register 425-427, 429,430,

433
Pixel address register 142
registers to black 423-425
to color table operation 425

Description 20, 38, 42-44, 46, 47, 81, 82, 93,
97,110,225

Descriptors 42, 43, 44, 46, 47, 53, 54-56, 82-
86, 88

Device driver 28, 33, 108, 145-147, 151, 155,
156,160,198,200,224

Device-independent graphics 27
Digital simulation of movement 3
Digital-to-Analog converter (dac) 118, 142,

230
Direct color mode 94, 230, 285, 286, 288-290,

298
Direct color palette 286
Display file 25, 30, 32-35, 44-46, 53, 54, 56,

399
commands 25,34,46
elements 53
raster image 100
structure 32, 44, 54
for a triangle 34
type 242,396,397
of vector/bitmap object 371

Dname 43, 49
Double bit mapping for 256-color modes 166
Double-bit IRGB 167, 170, 262
Dual overlapping windows 337

EGA asymmetrical pixel grid 116
Electronic drawing methods 362

game 9, 19,363,364
Encoding scheme for descriptor 54
External registers 122

Facsimile compression methods 80
machines 80

Fade-in 7, 15, 423, 424, 431, 432
Fade-out 7, 15,423,429
Fade-to-black 429
Fading 15, 429
Fill color 31, 51
First keyboard status byte 440
Foreground priorities 52
Fototouch color 364
Fractal 21-23

geometry of nature 22
graphics 21

Fractional dimensions 22
Frame-by-frame animation 10

Gauss-Jordan elimination 60

Index

General purpose maps 299, 301
Generating the time-pulse 404
Geometrical image elements 27, 36, 40, 44

transformations 12, 14, 16, 63, 366, 399
GIF compressed image data 86

data stream 82-87
encoders and decoders 81
file structure 82
format 81-83
global color table 84, 85
header 83
image data blocks 87
image descriptor 85, 86
local color table 86
logical screen descriptor 83, 84
trailer 87

GIF89a extensions 88
GKS 35, 49, 364

protocol 364
Global color table 82, 84-86

color table flag 84
Gomez, J.E. 12
Granularity 334, 339, 344
Graphical data structures 52
Graphical Kernel System (see GKS)
Graphics control extension 88

cursor 202,224,443,450,453-457
Developer Forum of Compuserve 362
Development Toolkit 35
modelling 42
primitives 29, 31, 46, 54, 147,299,338,366
rendering blocks 88
software standards 35
Standard Planning Committee 35
support from system software 35
transformations 53, 62

Hand bit-coding a bitmap background 361
Head-mounted display 21
Hewlett-Packard 88,396
HIS (hue, intensity, saturation) 21, 22, 164,

181,396

Index

Homogeneous coordinates 68-70
Horizontal retrace 216, 400, 410
Horner 4
Hue 15,164,167,170

IEEE Transactions on Information Theory 80
Image and text elements 45

and video buffers 41
, buffer 41, 45, 325

data compression 78
data in the display file 33
descriptor 85, 86, 88
file 12, 13, 33, 44-46, 54, 57-59, 75, 78, 80,

81, 88-91, 109
file encoding 13, 58
left position 86
mapping 40
pixel height 86
pixel width 86
retention phenomena 400
right position 86
segments 46,49,53,56
separator 86
set 10, 11, 15, 16, 18,20,25,399,400
storage 4,25,44, 79,81,88
transformation primitives 31
transformations 23, 58, 72

In-betweening 5, 6, 12
lnputfunctions 29,32
Installation routine 405, 412, 418, 442
INT 08H handler 405,407,408
Intel 8048 keyboard controller 435

order 88,251,296,307,310,314,315,319
Interactive animation 11, 435
Intercepting the system timer interrupt 450

vertical retrace 216
Interlace flag 86
International Standards Organization (ISO)

35
Interrupt intercept routine 405, 408, 452

reentrancy 420
Interval timing 217,218

Julia set 22

Kermit protocol 80
Keyboard buffers 441

controller 435, 436
data in BIOS 440
input routine 453
interrupt 407,414,420,436,439
programming 436
scan codes 436
status bytes 440,441

Koch curve 22

Labanotation 18

Lateral translation 401
Legal considerations 110
Lempe!, Abraham 80

465

LIM (Lotus/Intel/Microsoft) Extended Mem-
ory 334

Little-endian format 90, 234
Loading the sprite 324
Local color table 84-86
Locating TIFF image data 96
Locator input 32
Logical screen descriptor 82-84, 86

screen height 84
screen width 84

Looping techniques 404
Lucasfilm 9
I.:ZW compression 80, 87, 89, 97

Magnenat-Thalmann and Thalmann 3
Mandelbrot, Benoit 22

set 22
Mask map 300-303, 308, 312, 316
Mathematical transformations 12, 15, 18, 59
Matrix addition and subtraction 61

arithmetic 13, 60, 61
concatenation 70
multiplication 61, 62, 64, 66-71
operations 53, 60, 61, 64, 68

Memory windows 336
Mickeys 446
Microsoft 88, 146, 238, 334, 442-444, 446,

448-450
mouse interface 442-444, 446, 448, 449
Mouse Programmer's Reference 442

Microsoft Press 442
Mixes 232,304,305
Mode X animation 216

in animation programming 182
characteristics 182
parallel map access 187
pixel address calculation 188
tile address calculation 190
video map access during read 185
video map access during write 186

Monochrome and color bitmaps 77
Display Adapter 117
overlayed bitmaps 78

Morphing 3, 12-14
Motion blur 15, 16

control techniques 12
Motorola order 311, 314, 315
Mouse button action handler 445

interrupt call mask bitmap 448
movement handler 446

Mouse interrupt subservices:
0 - Initialize Mouse 444
11 - Read Motion Counters 446
12 - Set Interrupt Routine 447

Multimedia 19
Multiplane animation 7

camera 7-9

466

Multiplane (Cont.):
bitmaps 366
image manipulations 8, 364

Neighborhood 20
Neuromancer 21
Nintendo 9, 19
Nits 164
Nongeometrical image elements 40

Object rendering 15, 16
Obtaining monitor ID code 241

the video memory address 295
One-bit-per-pixel raw image bitmap 76
Opening and closing the segment 50
Operations on segments 49
Order of transformations 71
OS/2 27-29, 35,146,225,228,231,331,438,

442
Overlayed bitmaps for a color image 79

PackBits compression 80, 97, 98, 102
Page flipping 118, 183
Page-level bitBlt 210
Palette bypass mode 285

structure 261
Path-of-motion calculations 13, 14
Pattern map 301, 303, 309, 313

bitBlt 313
Pausefunction 439
PC keyboard hardware 435
PCLfont 396

format 396
Persistence of Vision Ray Tracer 362

(See also POV)
Phenakistoscope 4
PHIGS 49
Photographic manipulations in cartoon anima­

tion 7
Pixel address calculations 154, 188

Address register 142-144
aspect ratio 84
attributes 76, 303
drawing 362
maps versus vector commands 25
masking and color compare operations 304
setting in direct color mode 288
transparency 202

Pixel-coded image data 75
Pixel-level address calculations 187

device drivers 195
Plain text extension 88
Planar architecture 183, 184, 191

format 95
Planetarium 19
Plateau, Joseph Antoine 4
Polygon approximations 14
Postscript 33, 396, 397

POV program 362, 363
Praxisnoscope 4
Preparatory operations 147
Primary colors 142, 163, 170
Print screen function 438
Printer Control Language (PCL) 396
Procedures:

APA_ClJR_OFF 457
APA_CUR_ON 457
APA_INPUT 453
BMAP _IN_X 207
BMAP_OUT_X 203
CLOSE_FILE 106
COP _LINE_2 318
COP _PATBLT 313
COP_RDY 299
COP _RECT_2 306
COP _SYSVID 310
DAC_TO_BLACK 425
DAC_TO_RAM 426
DAC_TO_TABLE 426
DATE_TO_DEG 375
DC_PALETTE 287
ES_TO_VIDEO 148
FADE_IN 432
FADE_OUT 429
FINE_PATTERN 395
FINE_TEXT 393
FONT_TO_RAM 391
FREEZE_DAC 177
GET_MODE 148
GRAY_256 171
HEXlC_INT 452
INIT_COP 294
INIT_XGA 238
LOAD_l28 288
LOAD_TIFF 102
LOGICAL_OP 154
MILLI_TIME 218
MULTI_TILE_X 200
OPEN_FILE 107
PAGE_BITB_X 211
PAGE_ON_X 219
PAN_DOWN_X 222
PAN_LEFT_X 221
PAN_RIGHT_X 220
PAN_UP _X 221
PIXEL_ADD_l8 107, 155
PIXEL_ADD_l9 162
READ_l28 106
READ_PIX_l8 160
READ_PIX_X 197
RESTORE_DAC 176
ROTATE 385
SA VE_DAC 175
SET_CUR 456
SET_MODE 148
SET_MODE_X 193
SET_READ_MODE 153
SHOW_APA 456
SHOW _CONST 377

Index

Index

Procedures (Cont.):
SHOW_OBJECT 378
SHOW _TIFF 100
SPRITE_AT 328
SPRITE_IMAGE 325
SPRITE_OFF 330
SUM_TO_GRAY 175
SVGA_CLS_105 356
SVGA_PIX..105 353
SVGA,_READ_l05 354
TEXT_BLOCK 387
THAW_DAC 177
TILE_ADD_l8 158
TILE_BITB_X 213
TIME_TO_DEG 373
TIME_VR 217
TIME_ VR_B0 424
TIME_ VR_B3 423
TIME_VRC 410
TWO_BIT_IRGB 167
VESA,_GET_MODE 347
VESA,_INFO 341
VESA_MODE_l05 345
VIDEO_LIMITS 385
WRITE_MODE_18 151
WRITE_MODE_l9 152
WRITE_PIX..18 108, 156
WRITE_PIX...:X: 195
WRITE_TILE_l8 158
WRITE_TILE...:X: 198
XGA_BEST_MODE 254
XGA_CLS_2 283
XGA_MODE 258
XGA_OFF 273
XGA_PALETTE 271
XGA_PIXEL_2 281
XGA_PIXEL_5 289
XGA_READ_2 284

Production rule 22
steps for an animated cartoon 5

Programming the function select bits 403
the mouse 442

Progressive drawings 4, 6, 7
Public domain 81, 109, 181, 182, 364

QuickBASIC 146

RAM-to-video pixBlt 402
Random or unpredictable elements 11
Raster-scan video 36
Raw image data 76, 78, 81
Ray traced image 363
Ray-tracing a bitmap background 362
Read-erase cycle 402
Reading a pixel 284, 352, 354
Real-time constraints 11
Rectangular fill pixblt 306, 309
Reduced row-echelon form 60
Reduction to the first octant 317

Renaming and deleting the segment 50
Reprogramming the system timer 405
Retrace cycle timing 410
Return of the Jedi 9
Reynaud, Emile 4
RGB encoding 94, 144
Rietman, Edward 20
Rotation of a point 66

of a polygon 67
transformation 13, 33, 57, 67, 70

Run-length encoding 79, 80, 94

Saturate 304
Saturation 15,139,164,165
Scalar-by-matrix operations 61
Scaling animation 72

transformation 33, 64-66, 70, 378
Scan code 436-438, 441

467

Scanline 192,277,334,345,349,350,353,
355,400

Scanman color 364
Scenario 5,23,25
Schematic segment encoding 57
Screen blanking cycle 232, 400

fonts 396
normalization 33
tile address calculations 157

Second Keyboard Status Byte 440
Sega 9,19
Segment attributes 50, 51, 56, 57

table 56-58, 168
Selecting the access mode 296
Selection modes for active DAC registers 178
Self-organization 20
Self-similarity 22
Sequences 6, 71
Setting a pixel 281, 352

DAC registers 425
modeX 192
multiple tiles 200
pixel 156,163,352
read mode 152
tile 158

Shareware 109,182,362,364
Simulation oflife 3
Simulators 9, 19
Size of the global color table 84

of the local color table 86
Software environment 28
Sort flag 84, 86
Sprite buffer 231, 322-324

colors and attributes 324
horizontal preset register 323, 324
image 230,231,322-325,327,328,330
manipulations 328

Statistical self-similarity 22
Stick figure 17, 18

animation 18
Storage of the graphical image 36
Storing the DAC register settings 426

468

St.oryboard 5, 6, 11
Subservices of interrupt 33H 443,444
Summing t.o gray shades 174
SuperVGA:

256-Color Extensions 334
address calculations 350
in animation programming 332
architecture 335
clearing the screen 356
device drivers 349
enhanced modes 331
memory architecture 332
memory banking 333
modes 331, 335, 343
multicolor modes 334
pixel addressing 335
pixel level operations 352
pixel read 354
pixel write 353
VESA BIOS extension 335
VESA modes 335
VESA standard 335

Symmetrical and asymmetrical pixel grids
183

pixel grid 117, 118, 183, 184
scaling 66

Synopsis 5
System memory t.o video memory pixBlt 309

requestfunction 438
timer-driven pulse generat.or 405

Textanimation 397
block display 387
functions 227

Theater optique 4
Theory of self-reproducing aut.omata 20
TIFF direct.ory entry 91

file header 89, 90
file structure 89, 90
format 75, 88-90, 100
header 89
image file direct.ory 90, 91
packBits compression 97
packBits decompression 98
revision 6.0 88, 89, 93
software 96, 98
tags for bilevel images 93

TIFF tag codes:
BitsPerSample (tag code 0102h) 93
Compression (tag code 0103h) 94
lmageLength (tag code 0101H) 93
Image Width (tag code 0100H) 93
NewSubFileType (tag code 00FEH) 93
OldSubFileType (tag code 00FFH) 93
Phot.ometriclnterpretation (tag code 0106H)

94
PlanarConfiguration (tag code 0llCH) 95
Resolution Unit (tag code 128H) 96
RowsPerStrip (tag code 0116H) 95
SamplesPerPixel (tag code 0115H) 95

TIFF tag codes (Cont.):
StripByteCounts (tag code 0117H) 95
StripsOffset (tag code 0111H) 95
Threshholding (tag code 0107H) 94
XResolution (tag code 0llAH) 95
YResolution (tag code 0llBH) 95

Tile-level address calculations 189
bitBlt 213
device drivers 198

Timer interrupt handler 451
Timing considerations 423
Trailer 82, 87
Transformation matrix 64, 65, 67-70

by color-shift 427

Index

of a polygon-rendered object 17
Translation of a straight line 59

transformation 13,63,64,68,70,71,428
transformation by color-shift 428

Transparency mask 93, 94, 202
Triadic Koch curve 22
TRON 9
Turning off the sprite 330

the video function on and off 409
Tweening 5, 9, 12-14
Tweens 12
Two-bit-per pixel raw image bitmap 77

Unisys Corporation 80
UNIX 146
User-animated objects 435

Valuat.or input 32
Va,lue/offset 92, 93
Vect.or/bitmap background 366
Vect.orized background 364

image 364
VGA:

address computation for mode 19 162
alphanumeric modes 119, 129
architecture 118
attribute byte 119
attribute byte maps 119
bit-t.o-pixel mapping in mode 18 149
bit-to-pixel mapping in mode 19 162
characteristics 116
color look-up table 142
component diagram 118
cursor in graphics mode 450
DAC primitives 423
device drivers 107, 145-147
graphics modes 120, 122, 216, 281, 387, 396,

401
image and bitmap in mode X 201
interrupt pulse generat.or 411
logical operations 150, 153, 154
memory mapping 121
memory structure in mode 18 120
memory structure in mode 19 121
memory structure in mode X 121

Index

VGA (Cont.):
mode 18 pixel read routine 159
mode 18 pixel write routines 149
mode 19 pixel read routine 163
mode 19 pixel write routines 161
modeX 117,118,121,126,145,148,181,

182, 184, 185, 187,
mode X architecture 184
mode X bitBlt primitives 210
mode X bitmap acquisition 207
mode X bitmap display 203
mode X bitmap primitives 201
mode X disadvantages 184
mode X panning animation 220
nonstandard modes 117, 123, 181
paging animation in mode X 219
primitives 146, 147
programmable registers 122
programming levels 146
read and write modes 132
read mode O 135
screen tiles 157
standard mode device drivers 145
standard modes 116, 145, 181, 182
switching from XGA modes 272, 273
vertical retrace interrupt 411,414
vertical retrace interrupt handler 414
video buffer space in mode X 191
video memory mapping in mode X 184
video modes 116, 117
video paging in VGA mode X 219
write mode O 130, 134, 136, 150, 163
write mode 1 134, 150
write mode 2 134, 135, 150, 151, 155, 156, 158
write mode 3 134, 150

VGA registers:
Address 127
Attribute Controller 122, 126, 129, 137-142
Attribute Mode Control 137, 140, 142
Bit Mask 136
Character Map Select 127, 129
Color Compare 130
Color Don't Care 130
Color Plane Enable 140
Color Select 140, 142
CRT Controller 122, 125, 126, 411
CRT Controller Start Address High 126
DAC 143
DAC Pixel Address 142
DAC Pixel Data 143
DAC State 143
Data Rotate 130
Default Color 165
Enable Set/Reset 130
Feature Control 125
General 122-124
Graphics Controller 122, 129-135, 137
Horizontal Pixel Panning 140
Index and Data 137
Input Status O 125, 217, 410, 423
Input Status 1 137, 410, 423

VGA registers (Cont.):
Map Mask 122,127,150
Miscellaneous 135
Overscan Color 140
Palette Address 137
Preset Row Scan 126
Read Operation Map Select 130
Select Graphics Mode 132
Sequencer 122,127,409
Set/Reset 130

469

Vertical retrace 125,192, 194,216,217,220-
222,400,401,409

Video Subsystem Enable 125
VESA machine state bitmap 34 7

mode attributes bitmap 344
mode numbering bitmap 336
signature 339, 342

VESA BIOS 277,335,336, 338-343, 345-356
functions 335, 338, 339, 350
modes 336
services 277,338,350
subservice O - System Information 339
subservice 1 - Mode Information 343
subservice 2 - Set Video Mode 345
subservice 3 - Get Video Mode 346
subservice 4 - Save/Restore Video State 34 7
subservice 5 - Switch Bank 348
subservice 6 - Set/Get Logical Scan Line 349
subservice 7 - Set/Get Display Start 349
subservice 8 - Set/Get DAC Palette Control

349
windows attributes bitmap 344

Video Electronics Standards Association
(VESA) 276, 332, 335

Video memory address bitmap 295
Video-to-RAM pixBlt 402
Viewport 42, 45, 52, 73, 323, 366, 399
Virtual cursor 387

attribute 51, 56, 57
Device Interface (VDI) 35
Device Interface standard (VDI) 35
Device Metafile standard (VDM) 35
graphics device 29-31, 41
graphics machine 29, 41
reality 11, 21
reality goggles 21
Visibility 51, 56, 57,323,427,428
Visual retention 9, 399
VR goggles 21

Watt, Allan and Mark 12
Welch, Terry 80

patent 80
Windowing options in the VESA standard 337

XGA:
4-digit monitor ID codes 241
access and control 231
advanced function modes 226

470

XGA (Cont.):
alphanumericsupport 227
architecture 223,228
architecture of the high-resolution modes 226
best video mode 254
clearing the screen 273, 282
color look-up table 260
color maps in direct color modes 230
default settings ofLUT registers 261
destination color compare conditions 304
detection and initialization 234
direct color mode palette 285
display ID codes 242
extended graphics modes 226
gray-scale palette 265
hardware initialization 236
hardware programming 279
IBM-recommended palette 268
loading the palette 262
locating the hardware 237
Mask Map Operations 302
memory 229,234,250,280,282,284,289
memory banks 280
memory size 250
mixes 304
mode selection and setting 253
monitor ID code 244
Multidisplay Graphics Systems 227
multiple systems 225
numbering of cartesian octants 317
palette 260-262, 271, 287
pixBlt operations 306
pixel-to-memory mapping 233
programming the direct color mode 285
programming the display controller 235
programming the sprite 321
resolution and color 229
screen blanking interrupt 417, 418, 420
selecting the aperture 249
selecting the mode 254
serializer/palette/digital-analog converter 228

XGA(Cont.)
setting the mode 256
sprite buffer 231, 322
sprite image bitmap 324
sprite image controls 323

Index

Sprite register 224, 228, 230, 231, 321-324
technical description 225
VESA functions 277
video buffer 229
video memory 226,227,233,260,274,279,

280
video memory apertures 233
video modes 235
video system 27, 223, 224, 236, 237
video system diagram 224

XGA registers:
CRT controller 228, 243, 277
Direction Steps 305
Display Controller 235, 241, 281, 297, 323
Interrupt Enable 417
Interrupt Status 417,418,421
Pixel Operations Bitmap 305
Pixel Map Coordinates 300
Pixel Map n Base Pointer 302
POS 237,293,294
Sprite 322
Sprite/Attribute Controller 228, 230
Sprite Control 323
Sprite Horizontal Preset 324

XOR animation 154, 401
method in animation 402
operation 202,402,403

Ziv, Jabob 80
Ziv-Lempel compression 80
Zoetrope 4
Zoom 66,377,378,380-382
Zoom-in 378
Zooming 7,66,361,366

ABOUT THE AUTHORS

JULIO SANCHEZ is an associate professor of computer science at Montana
State University, Northern. ·

MARIA P. CANTON is the president ofSkipanon Software Company, a soft­
ware development and consulting firm in Great Falls, Montana. Together
they have authored several books on computer programming, mathematics,
and graphics for McGraw-Hill, including Graphics Programming Solutions,
High Resolution Video Graphics, Numerical Programming o,r. the 387, 486,
and Pentium; and PC Programmers Handbook, Second ~tion.

.....

Graphics

The definitive, practical reference
for PC animation programmers

Computer Animation
Programming Methods & Techniques
Written by programmers for programmers, Computer Animation
outlines the methods and problem-solving techniques you need to
produce state-of-the-art animation on the PC. Packed with code
samples for the fundamental device drivers and primitives of VGA,
SuperVGA, and XGA Video systems, this comprehensive, detailed
guide includes the very latest advances in video hardware
technology. Key topics include:

Graphical Image Structures • Bitmap Acquisition and Encoding •
Animation in VGA Graphics • Device Drivers for VGA Standard
Modes • Drivers and Primitives for VGA Mode X • XGA
Graphics and Animation • SuperVGA Graphics and Animation •
Time-Pulse Animation • User-Animated Objects • Multiple Page
Techniques • Microfeedback from Interactive Objects • and
Much More

Whether you're developing applications for computer games, high­
tech simulators, or event modeling in science and engineering, this
outstanding reference offers the hands-on programming guidance
needed to get the job done right.

ISBN 0-07-054964-8
90000

9 780070 549647

Cover Design: Trent Truman, Hagerstown, MD
Cover Background: lmtek lmagineering/Masterfile

Computing McGraw-Hill
1221 Avenue of the Americas

New York, NY 10020

