
193

12 Lots’a Dots
You probably have a tempting embedded PC application for those big LCD panels
you see in the ads, but the phrase “external controller required” translated into
“Well, maybe, one of these days…” Figuring out how to use a bitmapped graphic
LCD made the project hard enough that you never got around to it, right?

I’d been thinking about them for a while, too, for a series of firmware projects that
can take advantage of a big display that isn’t a CRT, doesn’t require a serial port, and
must function with a VGA board also in the PC. As you’ll see in the next few
chapters, a handful of logic gates, plus a dollop of firmware, can convert an LCD
panel into a bitmapped graphic and alphanumeric display. Best of all, you won’t
need a specialized LSI widget between you and the dots.

Overall, the Graphic LCD Interface is about as complex as the rest of the
Firmware Development Board taken together. It summarizes most of the
techniques we’ve used so far and illustrates how you can combine firmware and
hardware to implement a complete design.

I’ll start by describing how graphic LCD panels work, present some condensed
specs for several typical panels, and go over the interface’s hardware block diagram.
You’ll be in a better position to understand why the Graphic LCD Interface works
the way it does when you see what all the signals do after they get to the panel. If
only our real-world projects had such bounded properties, we’d have fewer failures!

In the next two chapters, you’ll see the interface hardware schematics and the test
code that checks it out on your system. Because of the variety of panels floating
around out there, the circuitry sports an unusually large number of options and
jumpers. I’ll also describe some embellishments you may want for a few oddball
panels that lie just outside the standard hardware’s capabilities.

With the hardware up and running, we will explore some bitmapped graphics,
using Conway’s Game of Life to generate the dots. Each type of panel has a
different memory layout, making the task more complex than it seems and giving
us a good reason to use modular firmware. Fortunately, graphic output devices are
easy to debug when your errors appear right in front of your eyes.

Finally, I’ll show how to generate text characters on a bitmapped panel, a trick that
should come in handy for status displays on your embedded projects. The LCD
firmware uses standard ANSI cursor control codes, allowing the same output data
stream that reports status through the serial port to a PC comm program on your

Embedded PCs ISA Bus.book : Chapter 12.fm Page 193 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

194

host system to drive the LCD panel. If your target system has a 640×400 panel,
you’ll see 50 lines with 80 characters each. That should be enough, right?

Dots in Ranks and Rows
Graphic LCD panels are fairly easy to understand, but the nomenclature certainly
doesn’t provide any assistance. Each manufacturer uses different names for the
control signals and I’ve even seen one signal with two names in a single data sheet.
I’ll use signal names that I find descriptive, but you should plan on a little data sheet
spelunking to match them up with your panel.

A graphic LCD panel consists of a rectangular array of dots similar to Figure 1.
Generally, the grid has its larger number of dots running horizontally, so we’ll call
an array with 640 dots along each of 200 rows a “640×200” panel. It’s reasonably
easy to produce a 200×640 portrait display, should you need one for your next
project, using firmware to rotate the character bitmaps a quarter-turn. As the saying
used to go, “We control the vertical”.

Figure 1
A graphic LCD panel is essentially a thin double-pane window: you actually see the
reflector or backlight atop the circuit board underneath the panel. Transparent electrodes
laid out in horizontal rows on one pane and vertical columns on the other delineate the
dots at their intersections. The liquid crystal syrup between the panes reacts to the
applied electrical field at each dot by rotating the transmitted light’s polarization; fixed
polarizers outside the panes cause the dots to appear dark or light as the dots change
their polarization. The metal frame clamps the whole affair to the underlying circuit board
and ensures good connections to the hundreds or thousands of column and row drivers.

Embedded PCs ISA Bus.book : Chapter 12.fm Page 194 Tuesday, July 1, 1997 7:32 AM

Chapter 12: Lots’a Dots

195

Although older panels had rectangular dots, most recent panels present square dots
in equally spaced rows and columns. The small gap between each pair of dots is
inactive, so, unlike pixels on a CRT, each dot has crisp, distinct edges. Figure 2
shows the dot dimensions for Optrex DMF651 640×200 and Matsushita EDM
LG64AA44D 640×400 panels.

The panels we’ll use for this project have a binary interface: each dot must be either
completely ON or OFF. The newer VGA and SVGA panels can present
continuous grayscale or color images, but driving those displays is a whole ’nother
subject. For now, each dot on our panels represents a single bit: a DMF651 displays
128,000 bits. Yes, that’s a nice round decimal number with lots of zeros, neither the
binary 128 kilobits nor its decimal equivalent of 131,072 bits.

Figure 2
The width of the transparent row and column electrodes determines the shape of the dots
at their intersections. Because the electrodes must be isolated from each other, every
pixel has an inactive border surrounding it. Recent panels, typically those with 400 or
more rows, have square dots. This simplifies life for graphic programmers: displaying
round circles and square squares take no special effort.

Embedded PCs ISA Bus.book : Chapter 12.fm Page 195 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

196

A binary 1 bit may make its corresponding dot either transparent or opaque,
depending on the liquid crystal chemistry, the driving electronics, and the
arrangement of the external polarizers and reflectors. Because we have complete
control over the data, dark dots on a light background or vice versa require no
circuit changes. However, applying a ��� operation to every bit cannot change the
inactive border around each dot. In general, you should set up the data so that a
0 bit produces a dot that matches its border and a 1 bit is distinctly different.

Contrary to popular opinion and despite what your eyes tell you, those bits are not
all active at the same time. You cannot just write 128,000 bits into the panel and go
about your business: the panel itself does not have a frame memory. You must send
the same bits to the panel at least 60 times per second to produce a stable, flicker-
free image. Surprised?

I recall a discussion with someone who tried driving a big, graphic LCD directly
from an 8031 microcontroller’s output bits. Once we went over the code’s timing,
he realized what was wrong: his hardware refreshed the display at about 3 Hz! An
8031 just can’t supply four bits every 500 ns, making some additional support
hardware a distinct necessity. Whether a big, bitmapped panel made sense in an
8031 application was another question that we didn’t explore at the time.

Anyhow, an “external controller” is just that “additional support hardware”
squashed on a single chip. It manages all the control signals, refreshes the panel
data, and provides a convenient CPU interface. You’ll find two catches: any given
controller can handle only a subset of the panels out there and they all come in
those minuscule, awkward, surface-mount packages. What fun is that?

After you decide on the refresh rate, simple arithmetic provides the panel data rate:

(128,000 dots/frame) × (60 frames/second) = 7.6×106 dots/sec = 1 dot per 130 ns

Unlike a CRT that lights up only one pixel at a time, an LCD panel accepts several
bits in parallel. For example, the DMF651 clocks in four bits (that’s one nybble,
pronounced with the y from nymph, not the y from nylon) every 520 ns or so.
Transferring the 640 bits appearing in each row requires only 160 clock cycles and
displaying the entire 200 line frame takes exactly 32,000 Dot Clocks.

Rather than presenting each nybble as it arrives, the DMF651 accumulates them in
a 4-bit-wide, 160-element-long shift register. When that register contains all the
bits for the next row, a single Line Sync pulse transfers them to a 640-bit
Column Data Latch leading to the panel’s column drivers. Figure 3 shows the
connections for the beginning and end of this circuit.

Embedded PCs ISA Bus.book : Chapter 12.fm Page 196 Tuesday, July 1, 1997 7:32 AM

Chapter 12: Lots’a Dots

197

Yes, I know it’s sadly inconsistent to talk about LCD rows and Line Sync
signals. Unfortunately, my notes, sketches, and code started out that way and,
despite my best efforts, it’s much too late to change now. Take this as an object
lesson about both the importance and difficulty of planning ahead. Check those
LCD panel specs for more of the same, too.

Because the panel displays the dots in each row until all of the bits for the next row
arrive, each row (and, thus, each dot) has a duty cycle of 1/200 rather than 1/32000.
As you might expect, making a dot appear ON when it’s active only 0.5% of the
time presents a considerable challenge; don’t even think about a 0.003% duty cycle.
Hats off to the engineers who make LCD panels work at all, let alone as well as
we’ve come to expect.

LCD panels don’t implement row selection with a binary counter and decoder the
way you might expect, either. The panels include another shift register, illustrated
in Figure 4, behind the row drivers. Successive Line Sync pulses clock this
register and pass the Frame Sync pulse through each flipflop in the chain. Unlike
the 640-bit Column Data Latch shift register, the Row Select register has no
output latch, because the Frame Sync pulse activates only one row driver at a
time. We will meet some exceptions to that rule later in this chapter.

1 2 3 4 5 6 7 8 9 10 11 12 13 632 633 634 635 636 637 638 639 640

D3
D2
D1
D0

Column
Data
Shift

Registers

Column
Data
Latch

Column
Drivers

to Liquid Crystal
Display Panel Columns

Dot Clock

Data
Input

Line Sync

Figure 3
A shift register accumulates 160 groups of four bits to drive all 640 dots in a single row
simultaneously. The Dot Clock sets the basic timing for the entire panel, because all the
other signals are defined in terms of its period and transitions. The Line Sync pulse
transfers data from the shift register to a 640-bit parallel latch that holds the output stable
while the next 640 bits arrive.

Embedded PCs ISA Bus.book : Chapter 12.fm Page 197 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

198

A Frame Sync pulse accompanying a Line Sync pulse marks the first display
line. Because Line Sync pulses occur at the end of each line, the Frame Sync
pulse occurs after the first row of data arrives. Figure 5 shows the relationship
between the various pulses. It should go without saying that not all panels operate
quite the same way, but you can see the general ideas.

1

2

3

4

5

6

7

196

197

198

199

200

to Liquid Crystal
Display Panel rows

Line
Sync
Clock

Frame
Sync In

Figure 4
The outputs of a 200-bit shift register drive the
LCD panel rows. The Frame Sync pulse passes
from one latch to the next on each Line Sync
pulse, activating only one row at a time. To
achieve a steady display, you must refresh each
row often enough to prevent visible flicker, which
implies a rate that typically exceeds 60 Hz. Each
row occupies 1/200 of the total frame time, or
about 80 µs in each 16 ms. The jolt applied to the
liquid crystal material turns the dot ON within that
80 µs and it gradually fades OFF during the
15,920 µs until the next pulse.

Bottom row Top row Second row Third row

Dot Clock

Data D0:3

Line Sync

Frame sync

Alternate frame

158 159 160 1 2 3 158 159 160 1 2 3 158 159 160 1 2 3

Figure 5
Each falling edge of the Dot Clock signal transfers data into the column data shift
registers. If the Line Sync signal is high when Dot Clock goes low, the shift register
contents transfer to the column driver latches. The Line Sync signal also clocks the
Frame Sync pulse through the row driver shift register shown in Figure 4. Note that Frame
Sync is active at the end of the top row, not between the top and bottom rows as you
might expect from your experience with CRTs.

Embedded PCs ISA Bus.book : Chapter 12.fm Page 198 Tuesday, July 1, 1997 7:32 AM

Chapter 12: Lots’a Dots

199

The DMF651 requires an additional signal that alternates from frame to frame. To
produce this signal, which I call Alternate Frame, you just toggle a flipflop on
each Frame Sync pulse. More recent panels generate the signal internally and I
suspect this has more to do with the size of the driver IC packages than anything
else. After all, it’s easy to add an LSI flipflop when you have a spare output pin, but
impossible to justify adding another whole chip for just one bit.

Using shift registers for both the row and column logic circuits allowed the LCD
engineers to split the circuitry into identical units, precisely the right tactic for good
LSI chip design. For example, the DMF651 shown in Photo 1 has eight Hitachi
H61104 column driver chips and three H61105 row drivers. Each H61104
contains 20 elements of the four-bit column shift register and drives 80 columns.
Each H61105 has 80 row selection bits, leaving half of the last chip unused.

The actual process of converting row and column selection bits into visible dots lies,
mercifully, hidden in those LSI driver chips. Several different schemes, each
applying to a different panel configuration, all boil down to applying a high voltage
to the dots at the intersection of each active column with the currently selected row,
while not applying quite so much oomph to all the other dots. Under the influence
of that jolt, the liquid crystal compound twists the transmitted light’s polarization
and the dot becomes either opaque or transparent, depending on the panel’s
external polarizer and reflector arrangement.

Photo 1
This Optrex DMF651 640x200 LCD panel uses eight Hitachi H61104 column driver chips
and three H61105 row drivers.

Embedded PCs ISA Bus.book : Chapter 12.fm Page 199 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

200

Because of the high voltage required to drive the chemistry, graphic LCD panels
are not friendly 5 V devices. In addition to the usual +5 V logic supply and ground,
they require an LCD drive voltage between about -9 and -30 V at perhaps 25 mA.
Some displays use both a fixed, relatively high current, LCD bias voltage and a
separate contrast adjustment voltage that draws much less current.

You must adjust the negative voltage to compensate for the inevitable temperature
changes that affect the liquid crystal material’s optical response. A trimpot works
well, if your application can stand a manual adjustment, or you can use a DC to DC
converter to produce an adjustable negative voltage directly from the +5 V logic
supply. In any event, recheck the negative bias voltage when you can’t see any dots.
Trust me, you’ll wonder why the panel is completely blank, too.

Most of the LCD panels you see here originally appeared in laptop computers or
similar low power widgets. Their CMOS logic reduces power consumption, but
CMOS logic levels make no concession to TTL drivers. For example, the VIH for
most panels is typically 0.8 VCC (where VCC is the panel’s supply voltage), which
translates into 4.0 V. One panel expects VIH levels exceeding 0.9 VCC! You should
drive the interface signals with HCT or HCTLS gates, because ordinary LSTTL
has a minimum VOH spec of 2.4 V, well below the CMOS threshold.

BEWARE! The panel’s logic-level inputs and outputs have no protection against
those negative LCD bias voltages. Despite the fact that the negative supply lines
may be sandwiched between logic signals on the LCD connector, you must never
short those adjacent pins, not even once, not even when your scope probe slips.
Word of advice: buy two LCD panels and save on shipping…

By the way, the Firmware Development Board drivers have no protection, either.
One slipped probe can blow away both the panel and your own logic. That’s true of
nearly all panels and their control logic, as this hardware is really meant for OEM
production, not the sort of tinkering and experimentation we do here.

Panels specs also present different sequences in which you must apply and remove
their supply voltages and logic signals during startup and shutdown. The penalty
for disobedience can be your panel’s death due to SCR latchup as its CMOS logic
incinerates itself. If you’re designing a specific panel into your project, you can meet
its peculiar demands, but I don’t know of a good general solution that can handle a
wide variety of panels. The FDB circuit includes a DPDT relay that disconnects
the LCD drive voltages when the ISA bus ResDrv signal goes active, but that
surely doesn’t meet all the specs. So far, though, so good.

Finally, not only do the manufacturers use different signal names, bias voltages, and
power sequencing, but each LCD panel also sports a unique connector. Sometimes,

Embedded PCs ISA Bus.book : Chapter 12.fm Page 200 Tuesday, July 1, 1997 7:32 AM

Chapter 12: Lots’a Dots

201

Figure 6
Each of these graphic LCD panels sports unique electrical and connector specs. This
table summarizes the important characteristics and pin functions for some of the panels
in my stash. An “n/c” entry means a pin is not used, while a blank entry means the
connector doesn’t have that pin. A separate cable carries power for the backlight.

Connector Pinout

Panel Spec
Optrex
DMF651

Matsushita
LG64AA44D

Sharp
LM64015T

Toshiba
TLY-365-121

Hitachi
LM215XB

Epson
EG7004

Dots 640 x 200 640 x 400 640 x 400 640 x 200 480 x 128 640 x 400

Bits 4 8 4 4 4 4

Col Drivers 640 640 640 x 2 640 x 2 240 x 2 640 x 2

Row Drivers 200 200 x 2 200 100 x 2 64 x 2 100 x 2

Clocks/Row 160 160 320 320 240 160

Dot Clock Pd 480 ns 480 ns 240 ns 480 ns 960 ns 240 ns

Pin
Optrex
DMF651

Matsushita
LG64AA44D

Sharp
LM64015T

Toshiba
TLY-365-121

Hitachi
LM215XB

Epson
EG7004

1 Bezel Gnd +5 V Frame Sync Bezel Gnd D1 UL +5 V

2 Line Sync Bezel Ground Line Sync n/c D2 LL Ground

3 Dot Clock Dot Clock Dot Clock Frame Sync Frame Sync -Contrast

4 Alt Frame Enable n/c Line Sync Alt Frame Line Sync

5 -Contrast Frame Sync n/c Dot Clock Line Sync Alt Frame

6 +5 V Line Sync +5 V Ground Dot Clock Enable

7 Ground Ground Ground D0 D3 UR Row Shift

8 -23 V n/c Adj -21 V D1 D4 LR Frame Sync

9 D0 D0 upper D0 D2 +5 V Dot Clock

10 D1 D1 D1 D3 Ground Col Enable

11 D2 D2 D2 Ground -10 V D0

12 D3 D3 D3 +5 V -Contrast D1

13 -22 V -Contrast (?) D2

14 -Contrast Adj -22.5 (?) D3

15 Ground Ground

16 D0 lower

17 D1

18 D2

19 D3

20 Ground

Embedded PCs ISA Bus.book : Chapter 12.fm Page 201 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

202

different panels from the same manufacturer have different connectors. Figure 6
summarizes what I know about the panels I’ve tested, along with my pin name
translations. The Graphic LCD Interface uses a 2×13 ribbon cable header that
doesn’t match any of the panels, but I got pretty good at soldering wires directly to
panel connectors. Hint: don’t waste your time trying to find the mating connector
for your panel, unless, of course, you’re going into production.

Seeing the Big Picture
The circuitry we’ll explore in the next chapter serves as, perhaps, an example of
retro design: the right way to do it requires the exact LSI controller for the
particular panel you’re using. But, because this book shows you how things work, I
don’t feel too badly about illustrating key points with a handful of TTL chips and a
lot of firmware.

As with the ISA bus interface logic we built in Chapter 3, you can certainly reduce
the number of discrete chips using programmable logic: an FPGA seems like a nice
fit for the logic in Figure 7. Once again, I used TTL gates to keep things simple for
folks who don’t have access to that kind of hardware. If you’ve got the capability, see
just how small you can make all this logic.

With that in mind, Figure 7 shows the overall Graphic LCD Interface block
diagram. The PC sees the interface as a 32 KB block of RAM, called the
LCD Refresh RAM, and a write-only output port. The LCD panel sees the
interface as data bits and control signals. I’ll start on the LCD side, because those
functions determine how the PC side must operate.

Displaying one 640×200 frame requires 32,000 clock cycles. Even though each
cycle transfers only four bits, a byte-wide, 32 KB (32,768 decimal) static RAM chip
is an obvious choice. If we store the dots in the low-order four bits of each byte, a
simple 15-bit address counter will extract them in the right order.

The LCD Dot Clock period must be about 520 ns to refresh the entire display at
a 60 Hz rate. A key part of this design fell into place when I realized a 480 ns
Dot Clock would provide 65 Hz refresh. You should notice that 480 ns comes
from an ISA Bus magic number: divide the 120 ns SysClk signal by four, thus
increasing the period by a factor of four, and there you have it.

Most LCD panels specify a refresh rate between 60 Hz and 80 Hz. For a 200-line
panel at 65 Hz, each line would take

(200 lines/frame) × (65 frames/sec) = 1 line every 77 µs

Embedded PCs ISA Bus.book : Chapter 12.fm Page 202 Tuesday, July 1, 1997 7:32 AM

Chapter 12: Lots’a Dots

203

Figure 7
The Firmware Development Board’s Graphic LCD Interface forms a dual-ported RAM.
The PC can read and write data while the LCD panel displays dots fetched from the same
location. The two sides of the interface access the RAM on alternate Dot Clock phases,
so the operations aren’t really simultaneous. The output multiplexer and blink logic
include additional circuitry (and jumpers!) to support a variety of LCD panels.

Embedded PCs ISA Bus.book : Chapter 12.fm Page 203 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

204

and, with 160 Dot Clocks per line, the clock period works out to about 480 ns.
See how to apply that to your panel?

The panel specs also list a minimum Dot Clock period, typically in the 160 ns to
330 ns range, or the corresponding maximum clock frequency. Running the clock
at 480 ns stays comfortably above the minimum period, but there’s another factor
we must consider.

If each LCD Refresh RAM access requires the entire 480 ns available in each
Dot Clock cycle, the PC has no time to write or read data. We must somehow
implement the LCD Refresh RAM as a dual-ported memory, because forcing the
firmware to check status flags simply won’t provide the bandwidth required for a
bitmapped display. You may recall the gyrations required to prevent visible snow on
the old CGA graphics adapter… we don’t want to repeat that mistake.

The Graphic LCD Interface simulates simultaneous PC and LCD access by using
alternate 240 ns phases of each 480 ns clock cycle. While Dot Clock is high, the
PC can access the RAM through the ISA bus address and data buffers as usual.
When it’s low, the LCD has full access for its address counters and data latch.

The LCD panel must receive stable data throughout the entire 480 ns cycle,
however, so Dot Clock captures the RAM output data in a latch. Most panels
accept data on the falling edge of Dot Clock, giving the bits nearly 240 ns of both
setup and hold time. The latch holds the data stable while the LCD Refresh
RAM processes PC accesses from the ISA bus during the next 240 ns phase, when
Dot Clock is high.

Although the DMF651 uses only four data bits, it seemed a shame to waste half the
RAM. A multiplexer after the latch selects either the high or low nybble under
control of a signal from the Blinking and MUX Control logic. That signal, picked
from one of the outputs of an 8-bit counter driven by Frame Sync, switches the
multiplexer between its two 4-bit inputs every 1/16 to four seconds.

A little firmware can easily implement nearly any blinking scheme you’d like,
because the two RAM nybbles can hold entirely independent data. If you fill the
high nybble with zeros, the ON dots in the low nybble blink. Fill it with ones to get
a blinking background while the data dots remain ON. Duplicate the low nybble in
the high nybble, complement the bits, and you get a blinking reverse image.
Versatile enough?

The overall blink rate must be under firmware control, because different panels
have different response times. The 1/16 s blink runs faster than any panel I have
available, while a 4 s blink should be glacial enough for a nearly frozen panel. You

Embedded PCs ISA Bus.book : Chapter 12.fm Page 204 Tuesday, July 1, 1997 7:32 AM

Chapter 12: Lots’a Dots

205

can also vary the blink rate to attract attention. Because the blink signal changes
only after an entire frame, all the dots will blink at the same rate… unless you get
tricky and rewrite the RAM on the fly, a trick I’ll mention again in Chapter 16.

All of this hocus pocus depends on dots on the LCD panel being just bits in PC
memory. The LCD Refresh RAM appears in the PC’s address space at
D000:0000, just after the FDB’s battery backed RAM at C800:0000 through
C800:7FFF (a.k.a. C000:8000 through C000:FFFF). That circuit appeared in
Chapter 7 and I discussed some of the issues involved in ISA bus memory accesses
in Chapter 6.

The RAM Access Control Circuitry synchronizes Dot Clock with the ISA bus
signals during each memory access, leaving the RAM in the proper state by the
time each bus cycle finishes. Basically, the ISA bus runs slowly enough that we can
pull a fast one on it! A 120 ns RAM cycles quickly enough for this application, so
we don’t need any particularly exotic hardware, either.

In desktop PCs, however, the 64 KB between D000:0000 and D000:FFFF may
form an Expanded Memory page frame. Address space being the most precious
commodity below the 1 MB line, EMS boards or EMM386 programs may use that
64 KB block as a window into megabytes of expanded RAM. You can move the
LCD Refresh RAM to A000:0000 or B000:0000 if your system doesn’t have a
video card at one of those locations… not likely in a desktop system, I dare say.

Variations on a Theme
If a 640×200 panel doesn’t have enough dots for you, the next step up is 640×400.
With VGA resolution at 640×480, SVGA at 800×600, and current laptops hitting
the 8514/A level of 1024×768, everyone simply must maintain the pace. As a result,
you can find older, smaller panels at reasonable prices. In fact, you could probably
go into OEM production with surplus panels from previous-generation laptops.

Doubling the number of lines obviously doubles the number of dots visible on the
panel. Because the overall refresh rate must remain about the same to avoid flicker,
the panel must receive twice as many bits in about the same time. Panel designers
have only two choices: transfer twice the number of bits per Dot Clock cycle, or
send the same bits twice as fast by doubling the Dot Clock frequency. I have
panels using each method and designed the Graphic LCD Interface for both.

Photo 2 shows the back of a Matsushita EDM LG64AA44D 640×400 panel,
which, compared with Photo 1, has eight additional column driver chips. Each
group of eight drivers handles four bits, so this panel receives eight bits in each
Dot Clock cycle.

Embedded PCs ISA Bus.book : Chapter 12.fm Page 205 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

206

It has only three row driver chips, with each of the 200 outputs connected to two
rows instead of one. Figure 8 sketches the layout: the display surface is split in two
sections, each with separate column drivers. Thus, two separate rows are active
simultaneously, with the two column driver sets presenting different data to the
active row. You can think of the LG64AA44D as two 640×200 panels, butted
together top-to-bottom on the same piece of glass.

Because the LG64AA44D requires eight bits on each cycle, the Graphic LCD
Interface’s data multiplexer serves no function. The Blinking and MUX Control
logic emits a constant zero that routes the low-order nybble from the data latch
through the MUX to the LCD connector. The high-order nybble goes directly
from the latch to the connector and the panel latches all eight bits simultaneously
on each Dot Clock cycle.

Bits 0:3 of each RAM byte appear on the upper half of the panel, while bits 4:7
appear on the lower half. The firmware must account for the fact that the bits in
each byte show up at two widely separated locations. This is not the worst
arrangement you’ll meet on an LCD panel, as you’ll see in a few pages.

Photo 2
Compared to the 640x200 LCD in Photo 1, Matsushita’s EDM LG64AA44D 640x400 LCD
panel has eight additional column driver chips that accept four more bits per Dot Clock
cycle. The white wires on the right carry AC power to the electroluminescent backlight.

Embedded PCs ISA Bus.book : Chapter 12.fm Page 206 Tuesday, July 1, 1997 7:32 AM

Chapter 12: Lots’a Dots

207

D3 D2 D1 D0

640 Column drivers Bits 0:3 = upper data

Col
 1

Col
640

Row 1

Row 200

Row 201

Row 400

Bits 4:7 = lower data640 Column drivers

D3 D2 D1 D0

UPPER DATA

LOWER DATA

20
0

ro
w

 d
riv

er
s

The additional dots in this display are basically free, because the Graphic LCD
Interface already includes a byte-wide RAM. All it takes is a little firmware to
plunk the dots in the right spots. In fact, the same code can handle either 200- or
400-line panels. Just don’t blink that big display! (Go ahead, try it…)

Conversely, the Sharp LM64015T 640×400 panel diagrammed in Figure 9 uses the
other technique: it accepts four bits on each double-speed 240 ns Dot Clock
cycle. The two sets of column drivers run in series rather than parallel. In essence,
we have the same chips as the LG64AA44D, but they run faster to keep up with
the data. You’ll recall that CMOS circuitry dissipates more power when it runs
faster, which may affect the type of panel you select for a battery powered system.

Figure 8
Although the Matsushita LG64AA44D display has 400 rows of 640 dots, it uses only 200
row drivers. Each row driver activates two rows, one in each half of the display. One set
of column drivers displays dots in the upper half, while an additional set drives the lower
half. Because each set of column drivers handles four bits, the panel accepts eight bits
on each 480 ns Dot Clock cycle.

Embedded PCs ISA Bus.book : Chapter 12.fm Page 207 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

208

Figure 9
The Sharp LM64015T has 400 rows of 640 dots, with two sets of column shift registers
chained together to hold 1280 bits. Each of the 200 row drivers activates two physical dot
rows, but, unlike the Matsushita panel shown in Figure 8, they show two halves of a single
logical row. Each double row requires 320 cycles of a 240 ns Dot Clock, transferring 1280
bits in 320 groups of four.The Toshiba TLY-365-121 mentioned in the text has a similar
layout with 100 row drivers, 200 rows, and a 480 ns Dot Clock.

D7 D6 D5 D4

640 Column drivers

Bits 0:3

Col
 1

Col
640

Row 1

Row 200

Row 201

Row 400

640 Column drivers

D3 D2 D1 D0

20
0

ro
w

 d
riv

er
s

first clock second clock

First half of row

Second half of row

4

4

In effect, you have a 1280×200 panel whacked in half, with the two 640×200 pieces
stacked atop each other. Each logical row, twice the length of a visible row, requires
320 double-speed Dot Clocks. The second half of each row appears on the
bottom of the panel.

The Blinking and MUX Control logic switches the multiplexer between the two
nybbles on each half of the Dot Clock cycle. Because the panel accepts one
nybble on each half cycle, the data bits show up together on the screen. It’s easy to
write graphic routines for a panel where bits 4:7 adjoin bits 0:3 in their natural
order, even if the rows seem to be twice as long as they really are.

Embedded PCs ISA Bus.book : Chapter 12.fm Page 208 Tuesday, July 1, 1997 7:32 AM

Chapter 12: Lots’a Dots

209

The Graphic LCD Interface RAM circuitry runs at the same speed as before,
fetching and latching a new byte every 480 ns. The trick lies in the multiplexer,
which must now present each nybble for 240 ns. The panel runs from a double-
speed Dot Clock, but that doesn’t affect the rest of the interface.

The LM64015T uses a blindingly bright, cold cathode, fluorescent tube backlight
that requires about 1 kV to fire up. Although you can read some lower-performance
electroluminescent panels when they’re unlit, this one is completely useless without
its backlight. I don’t know of a consistent surplus source for the special CCFT
inverters and a new inverter costs nearly as much as a surplus panel. But, it’s a nice
panel if you can get it working…

Along the same lines, the Toshiba TLY-365-121 640×200 panel has two sets of
column driver chips and a pair of row driver chips chained in series. It clocks four
bits every 480 ns, with each line using 320 Dot Clocks. This is also a 1280×100
panel in disguise, with the two halves of each row stacked atop each other.

The panel connections resemble Figure 9, with 100 row drivers simultaneously
activating pairs of the 200 display rows. Although you can think of this as a double-
speed version of a 960 ns 640×100 panel, I doubt one of those ever appeared, if only
because the aspect ratio seems so weird. In any event, the Graphic LCD Interface
handles this panel with ease.

My TLY-365-121 can serve as an example of what happens when you buy surplus
stuff: it arrived with the wrong documentation. Mercifully, the connector pinout
was nearly correct and I didn’t fry the electronics while discovering the confusion. It
seems the panel expects one variable negative supply on pin 14 rather than a fixed
-22.5 V supply with a separate contrast control on pin 13. At least, that’s the way it
worked for me.

I’ve also looked at the Hitachi LM215, a 480×128 display sporting four sets of
column drivers clocked at 960 ns. Each of the four data bits paints one quadrant
and, as you can imagine, drawing anything becomes an intricate bit twiddling
exercise. The Graphic LCD Interface can handle this one with an additional
flipflop that doubles the 480 ns Dot Clock period. As you’ll see, we must also
store duplicate data in successive even/odd bytes to keep the output latch stable
throughout the entire 960 ns cycle.

The Epson EG7004 640×200 panel requires an extra set of clock signals that route
sync pulses through the shift registers. Think of that one as a challenge… you can
find much easier panels to use, even as surplus items. Given the number of other
panels in my collection, I gave up.

Embedded PCs ISA Bus.book : Chapter 12.fm Page 209 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

210

Release Notes
One thing is absolutely certain: bigger, better, and faster graphic LCD panels will
appear for your use as the laptop computer market churns along. Somewhat to my
surprise, I recently found a 640×480 panel for $9.95, including that usually
impossible-to-find CCFT inverter.

After you acquire a few LCD panels, spend some time reading the documentation
and thinking about how they work, before firing up your soldering iron and
keyboard. Although the Graphic LCD hardware cannot handle every panel you’ll
find, you can probably adapt the basic design to cope with nearly anything. The
main limitations will be the cramped address space available for the LCD
Refresh RAM on the ISA bus and the higher refresh rates used by newer panels.

I’ll discuss some modifications to the basic design in the next few chapters, as we
explore the circuitry and firmware.

Embedded PCs ISA Bus.book : Chapter 12.fm Page 210 Tuesday, July 1, 1997 7:32 AM

