
163

10 Booting C from ROM
A foolish consistency is the hobgoblin of little minds…

Ralph Waldo Emerson

That may be an aphorism suitable for any occasion. In this case, back in Chapter 6,
I opined that writing BIOS extensions in C probably wasn’t practical, citing the
Firmware Development Board’s limited memory address space. Emerson would
smile, as I’ll now show you how to do just that.

In point of fact, if you need just a smidge of code you may as well use C and be
done with it. After all, it doesn’t matter if you have 31 KB of C or 3 KB of tightly
written, carefully tuned assembler… that chip has 32 KB of space available. Now
that you know how to build battery backed RAM, write code that can send
diagnostics through serial ports, and understand the general mechanics of BIOS
extensions written in assembly language, we can pull it all together.

In this chapter, we’ll explore the gory details of turning a Micro-C program into a
BIOS extension. The complexities along the way may seem daunting, but the end
result will help you get your own firmware working.

At least, for small values of firmware…

Basic BIOS Booting
As we’ve seen, every PC goes through much the same ritual immediately after a
hardware reset. It first checks the hardware, finds and initializes any BIOS
extensions, and finally boots a program from disk or diskette. Each BIOS extension
must hook an interrupt vector if it wants to be part of the action after the BIOS
regains control and continues booting.

The exact system state isn’t predictable when your extension gets control, because
any previous extension can add features or change the BIOS setup in nearly any
way. In a given system, of course, the same thing happens (or should happen) during
each boot, but you cannot assume that all systems respond the same way. For
example, you’d think that the BIOS would set up the serial ports before invoking
the extensions, but, at least on one of my systems, that’s not the case.

After calling all the extensions, the BIOS finishes its own initialization and issues
an ��� ���. Under normal circumstances, that interrupt vector points back into
the BIOS code to a bootstrap loader routine responsible for booting from either

Embedded PCs ISA Bus.book : Chapter 10.fm Page 163 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

164

diskette or a hard disk. Any BIOS extension, however, can hook ��� ��� and
regain control just before BIOS accesses the disk. That extension may check a serial
number, verify a password, or skip the disk boot entirely by booting from ROM.

If the original ��� ��� BIOS routine eventually gets control in a system with no
bootable disks, it will issue ��� ��� after failing to read the disks. In the Original
IBM PC, that interrupt fired up the built-in Cassette BASIC interpreter
(remember Cassette BASIC?), but other manufacturers don’t have rights to that
IBM proprietary code. Most of them simply display a message and await a three
finger salute on the Ctrl-Alt-Del keys. Your BIOS extension can hook ��� ��� to
regain control after the disk boot fails, allowing you to start one routine from disk
or run another from the extension ROM without booting from disk.

According to the references, the system will be completely ready for action when
the BIOS invokes the ��� ��� and, if needed, ��� ��� interrupts. Your
extension can, therefore, take control of a perfectly functional PC without handling
any of the grubby setup work. The sample code for this chapter has a “your code
goes here” note at the appropriate spot so you can complexicate it as required.

For what it’s worth, Cassette BASIC lives on. My ancient Model 80 (nigh on to a
decade old now) proudly displayed its Cassette BASIC screen when I disconnected
its disk drive controller to track down the problem I mentioned in Chapter 9. The
IBM Tech Reference manual admits that Cassette BASIC might not be too useful,
perhaps because Model 80 systems lack a cassette port…

But, well, BASIC is still there!

Modeling Memory
Thus far, we have used Micro-C’s ��	
 memory model for our embedded
programs. Unfortunately, ��	
 model won’t suffice for BIOS extension code. The
reason, as with most things PC-ish, involves the segmented memory inherent in
x86 real mode programming.

��	
 memory model puts all of the C program’s code and data into a single 64 KB
segment, as shown in Figure 1. When the program begins, all of the CPU’s
segment registers contain the paragraph address of that segment. An assembly
language function or inline code within a C function can refer to memory outside
that segment by reloading the segment registers, but it must restore them before
returning control to the C code.

The program’s startup code begins at offset 0100, followed by the compiled C code
and library functions. All of the initialized data, including strings and “constant”

Embedded PCs ISA Bus.book : Chapter 10.fm Page 164 Tuesday, July 1, 1997 7:32 AM

Chapter 10: Booting C from ROM

165

64K bytes
Maximum

Variables

Initialized
Variables

Program
Code

Startup Code

Stack Grows
Down

Heap Grows
Up

Non-volatile
Storage

0100 Unused bytes

CS=DS=SS=ES

variables, come next. Uninitialized variables follow, with the heap beginning just
after the last variable. The stack grows downward from the end of the segment,
allowing the heap and stack together to use whatever space remains beyond the
program and data.

Recall that the first 256 bytes of the segment remain as a legacy of the DOS COM
program structure. While this format does let us produce and manipulate the
programs with ordinary DOS utilities and compilers, it wastes those 256 bytes. If
you have written the program loader to set up the registers properly, as we have,
then you can tweak Micro-C’s startup code to begin at any offset you’d like, because
it need not produce DOS compatible files.

A BIOS extension with a combined code and data segment runs into trouble,
because the FDB’s battery backed RAM circuitry includes write protection. Storing
variables in write protected RAM would be bad enough, but running a CPU with a

Figure 1
Micro-C’s Tiny memory model puts all of the program’s addressable storage in a single
segment that may be up to 64 KB long. The program code and initialized variables must
either reside in nonvolatile storage or be copied from diskette by a loader program. The
variables, heap, and stack must be in RAM, for obvious reasons. All of the CPU’s
segment registers point to the start of the segment.

Embedded PCs ISA Bus.book : Chapter 10.fm Page 165 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

166

Non-volatile
Storage

64K bytes
Maximum

Initialized
Variables

Program
Code

Startup Code 0100 Unused bytes

CS

RAM

64K bytes
Maximum

Variables

Initialized
Variables

Stack Grows
Down

Heap Grows
Up

DS=SS=ES

Copy

write protected stack simply won’t work. The assembler code in Chapter 8
controlled the RAM -WE circuitry around each data access, a completely
impractical process for a C program. And, of course, the C code must have enough
stack space in ordinary RAM for each function’s automatically allocated variables.

The most straightforward solution uses Micro-C’s ���� memory model, which
puts up to 64 KB of program code and the starting values of any initialized variables
in one segment. A separate data segment, also up to 64 KB, holds the actual
initialized variables, uninitialized variables, the heap, and the stack. The code
segment can be write protected, while the variables reside in ordinary read-write
RAM. Figure 2 shows the ���� model segment layout.

How this works in our situation should be evident. The code segment can live in
the FDB’s battery backed RAM, while the data segment resides in system RAM
below the 640 KB line. The C startup code, in addition to its other duties, must
reserve the program’s data segment, copy the initialized variables into it, and load
the segment registers before calling the ��	�� C routine.

It’s a simple matter of firmware…

Figure 2
Micro-C’s Small memory model allows up to 64 KB of program code and initialized
variables, which, as with Tiny model, must be in nonvolatile storage addressed by the CS
register. The startup code or loader copies the initialized variables into a separate RAM
segment addressed by the DS, SS, and ES registers. After that, the main() program may
use them during execution without any special attention.

Embedded PCs ISA Bus.book : Chapter 10.fm Page 166 Tuesday, July 1, 1997 7:32 AM

Chapter 10: Booting C from ROM

167

Incidentally, because the startup code copies the initialized variables from
nonvolatile storage into RAM, the C program can treat them as ordinary variables
with nonzero starting values. Micro-C’s ��	
 model locks the variables into read-
only, nonvolatile storage unless you boot from diskette into RAM, as we have been
doing all along. In case you hadn’t guessed, variables placed in read-only,
nonvolatile storage behave a whole lot like constants!

Micro-C includes a ��� memory model that directly supports this type of ����
model programming by copying the initialized variables from ROM into RAM. All
we must do is tweak that code into acting like a BIOS extension.

There are other ways to solve the problem, of course. I picked ���� model
because it worked out quite neatly and exploited an interesting Micro-C feature,
but another approach may be more suited for your projects. As always, take what
you read here and make your own improvements.

For example, you could duplicate the diskette boot loader’s function in the BIOS
extension. On each reset, your extension would copy the entire C program,
initialized variables and all, from the FDB’s battery backed RAM into system
RAM, then execute it using ��	
 memory model just as before. The RAM can
(and should) remain write protected during the whole operation. If your code fits
into 32 KB or you build a paged RAM interface (ugh), this can be a perfectly viable
way to make it work.

You might also modify the Firmware Development Board’s address decoding
circuitry to protect the lower 16 KB of battery backed RAM and allow writes into
the upper 16 KB, but it certainly seems a shame to leave the entire 640 KB of
system RAM unused, doesn’t it? Micro-C’s startup code includes support for such
split memory segments, which are much more common in minimal 8088 systems
than full-fledged embedded PCs. However, if you replace the FDB’s discrete-logic
address decoding with a PAL, you can take advantage of a small, self contained
block of RAM that’s not directly available to other PC programs.

Sequenced Startup
The C startup code must accept control from the BIOS, adapt Micro-C’s runtime
conventions to the BIOS extension entry requirements, run the C program, and
then return control to the BIOS after the extension finishes its setup. Coupled with
the segment shuffling required by ��� model code, the C startup code holds some
interesting tricks.

The extension must, of course, begin with the signature required by the BIOS scan,
so Listing 1a resembles the code presented in Chapter 8. The diskette boot loader

Embedded PCs ISA Bus.book : Chapter 10.fm Page 167 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

168

computes the checksum on the contents of the disk file and the values in the battery
backed RAM beyond the end of the program. As before, the checksum byte in the
extension header must be zero in both the source code and disk file. After the
loader returns, the extension is ready to run on the next boot.

The extension bails out without further action if it finds the FDB’s pushbutton
switch closed, thus allowing a normal boot without loading the extension. Recall

Listing 1a
The ordinary Micro-C startup routine for the ROM memory model assumes it has
complete control of the system, so you must make several changes to adapt it to use as
a BIOS extension. Pressing the pushbutton on the Firmware Development Board
disables this extension and allows a normal boot sequence.

��������������
�����������	���	������
�

�� !"�"" ��	����#����$$���
�

%� !&& """"���'	�(��
%� !)) """��***���+�	��,
��
%� - """.�+����/��	��������0�
1�2 3�����	��
 """4�5(�6���(��+��+7�(�
%� !"" """&�***�8��+��'��������

�
��������������
����8�6��+����8����,����+���
�
������$�6(��,(���	������8	9������8����(�����	'��(+�
�
�����	��
 �:; �

��< %=9>��)�?)%%�
��)=9%=
����)=9>2;�@�;����
1�A 3#�	��	(� 	�	0������	��	���6(����

�
��<)=9>B!"�"� ���8���������+7��(��6��
��< %=9>C�%?)%%�
�;� %=9)=

�
���D E����(�	����	����������,���

�
�����6(��,(���	����(69�����������F����+�	��	(�
������5(���#������(���$$��������+����+�
�
#�	��	(� �:; �

��<)=9>B!"�"" ���8���	'���������
��< %=9>C�%?)%%�
�;� %=9)=

�
��<)=9#�
�;�)=9>!""�" ���"�""�����$$����G
2;�@)= ���(�����D)��#)CC
��<)=9>C���'�
2;�@)=
���D E��***��� ��������	�8�H�(��

C���'� �:; �

Embedded PCs ISA Bus.book : Chapter 10.fm Page 168 Tuesday, July 1, 1997 7:32 AM

Chapter 10: Booting C from ROM

169

Listing 1b
Because the Micro-C extension code resides in write protected, battery backed RAM, the
data segment must use system RAM to let the program’s variables work normally. This
section of the startup routine reserves 32 KB just below the infamous 640 KB barrier by
adjusting the BIOS Ram Size word at 0040:0013. It stores a pointer to that segment in
the battery backed RAM to allow the INT 19h handler to find its data.

�������+������������'��	����������6�4.F��$�+�	��'(�(���)�
���������������)����0��H�(����I"J�4����(�����$��F�,
���
�

��<)=9>!"&K� ���8��"��	�C�%�������7��	��

#)CC ���8����

�
2;�@ %� �H������ ��'���'�
2;�@ �� �***��	������������+7

�
��<)=9>!""I" $��+�������
���0�
��< ��9)=
��< �=9>!""�4
�;� ��JL�=M9>N!""." �����H��4.F���F�,
���(����
��<)=9��JL�=M +�	H�����)����0�������'���'
��< #C9>- ����"�,������$�9�I�,������'���
�@C)=9#C
��< ��9)= ��'�����'�$�����<���	�������

�
�����+�6
���� �	�����0������������������'��	�
�

��<)=9>!"&4" E���
#)CC ���8����

�
��<)=9#� ������������'��	�
��< %�9)=
��< #=9>O���0� 6�+7�(6���	'��
��< ��9>O�H�� ������$��	�������	�+������'
��< %�9>" +�6������ ������$������'
1#=A O	�+�6
 �7�6��$�0��������-I�F��,
������	'

��2
��<�� $����%�J��������J%�

O	�+�6
 �:; �
�
�����+��������(�	�����0������8�����8���H������6��	��������	�
�������	'������������$$���	+��,��8��	�O��6�	��O���6
�

��<)=9>!"&-% �.
#)CC ���8����

�
��< #=9>O��6/��O���6 ��	'����$�(�	������/���6���6
��<)C9>" '����0��������������H�(�G�

��2
�����

�
��������%��������	�8������'��	�
�

��<)=9��
��< %�9)=

�

Listing continues on next page

Embedded PCs ISA Bus.book : Chapter 10.fm Page 169 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

170

that we rewired the keyboard lock switch in parallel with that pushbutton to
provide the bypass function without opening the case (assuming, of course, that
your PC both has a case and that it remains closed). If you omit the button test, you
have no way to disable a malfunctioning BIOS extension other than popping the
RAM chip out of the board. Trust me, it won’t look professional.

The next step adjusts the #� and �2 registers to match the C compiler’s ���-model
assumptions. The FDB’s RAM begins at C800:0000, so the BIOS sets the initial
#�J�2 to C800:0003. The simulated D)��#)CC reloads #� with C7F0, then adds
0100 to �2, making the startup code’s offsets correct. Refer back to Chapter 8 for
more details on this trickery.

The code also must reserve some RAM for the data segment. During power-on,
the BIOS self test routine records the system RAM size in kilobytes in the word at
0040:0013. Because this value excludes memory above the 640 KB line, even a
128 MB target system reports a RAM size of 0280 hex or 640 decimal. If your
system sports an old CGA board and some specialized hardware, its system RAM
can extend up to address B800:0000 for 736 KB of contiguous memory. As I
mentioned in Chapter 6, that trick won’t work with monochrome or VGA/SVGA
boards, or in embedded systems that run without the DOS support required for
memory manager programs found in desktop PCs.

Listing continued from previous page

������H�������������J�2���'������
������***�,�'�	�(��	'��(����+7��	�����	�8������'��	�
�

��< O����?�29�2
��< O����?��9��

�
��< ��9)= ������+7�6��	���
��< �29>��F?��2

�
�����	�8��H��6��	��������(������	�����,����
�,+7����)�
�

��<)=9>�<?P��)�C� ���8�8����	'��	����)�
��< %=9>#�C�?)%%�
�;� %=9)=

�
��<)=9>�<?�� ���� ������)����'��	�
��< ��9)=
��< �=9>��)#F��2�DD �***���+7��$$���
��< ��JL�=M9�2 �***�8������$$���
��< ��J.L�=M9%� �***�	�������'��	�

�
��<)=9>" 6����,���8����	'��	����)�
��< %=9>#�C�?)%%�
�;� %=9)=

�
��<)=9%�
��< ��9)= ����������

Embedded PCs ISA Bus.book : Chapter 10.fm Page 170 Tuesday, July 1, 1997 7:32 AM

Chapter 10: Booting C from ROM

171

The most convenient data segment location, at least for our purposes, lies at the top
of system memory. The code in Listing 1b subtracts 32 KB from the nominal
RAM size. That means any subsequent BIOS extensions or the embedded program
booted from diskette will find only 608 KB of RAM. Admittedly, 32 KB far
exceeds what we need for this chapter, but you can see the general principle at work.

The next chunk of code copies the initialized variables from their write protected
location in the FDB RAM to system RAM. The Micro-C compiler defines a work
variable, O���6, as the first uninitialized variable. Because the initialized variables
begin at offset 0000 in the data segment, the length of the block of initialized
variables is equal to the address of O���6. This length will be zero when there are
no initialized variables, so we must check the #= register before starting the ��2�
��<�� operation to avoid copying 64 KB of variables that don’t exist.

Up to this point, the startup code used whatever stack the BIOS passed to it in
��J�2. The C program must run with its own stack to guarantee enough space for
nested function calls and interrupts, and that stack should be in a known location.
The code stores the BIOS’s ��J�2 in the O����?�� and O����?�2 variables, then
reloads ��J�2 with a pointer to the end of the reserved RAM segment. Before
returning, the code restores ��J�2 to keep the BIOS happy.

Figure 2 shows that the stack grows downward in the data segment, so the initial
stack pointer aims at the top of the segment. Because this extension uses a 32 KB
chunk of RAM, its initial SP should be 7FFE to allow an unused word at the end
of the stack. If your code requires a 64 KB data segment, you must use FFFE,
because the initial �2 must be at least two bytes below the end of the segment (four
bytes, in 32-bit protected mode) to avoid the dreaded Stack Fault error trap when
the CPU pops the final value from the stack.

The next step may seem peculiar, but, because our BIOS extension might not be
either the first or last extension, we cannot hardcode our data segment’s location
into the startup code. For example, if an earlier extension claimed 10 KB, our
32 KB segment would begin at 9580:0000 rather than 9800:0000 (work it out!).
But, obviously, we can’t store a pointer to the data segment in the data segment, as
subsequent code wouldn’t know where to look for it.

IBM’s BIOS architects reserved the interrupt vectors between ��� -"� and
��� -K� for user functions. In principle, our startup code could store the pointer
to our segment in the ��� -"� vector. When the extension begins execution, it
could fetch the ��� -"� vector to find its data. In fact, I used this technique in an
earlier version of this code.

Embedded PCs ISA Bus.book : Chapter 10.fm Page 171 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

172

Unfortunately, while the books say those interrupts are reserved for user functions,
the BIOS in some systems clears their contents after initializing the BIOS
extensions and before invoking ��� ���. That means any data our BIOS
extension stores in that spot simply vanishes. Perhaps those BIOS designers felt
that no user code could possibly begin running before that point… they certainly
never had us in mind, did they?

The only other spot where we can reliably store information is in the battery backed
RAM holding our code on the Firmware Development Board. The last few lines in
Listing 1b disable the RAM write protection, store the initial ��J�2, and enable
the write protection. Because the data segment holds both the variables and the
stack, that single pointer provides the initial values for both %� and ��.

The downside of this technique is that something may clobber the RAM during
the few instructions that must execute with writing enabled. Also, you must use
RAM, rather than ROM or EPROM, to allow on-the-fly updates as the extension
executes. Weigh the risk of overwriting the RAM against the benefits of flexible
data allocation to see if this technique makes sense in your application.

The remainder of the startup routine is almost anticlimactic, as you can see from
Listing 1c. It initializes the heap by writing a zero at O��6, then calls ��	��.

Listing 1c
After preparing the variables and segment registers, the startup code initializes the
Micro-C heap and calls the main() function. Unlike most embedded C programs, main()
must return to allow the BIOS to continue its boot sequence. This listing shows how the
code restores the segment registers and returns to the BIOS.

�����	�89�$���������	��H�	�***
�

��<)=9>!"&K� �4
#)CC ���8����

�
��< 3O��69>" ����(6���6�
���6
#)CC ��	 ���+(�����	�6��'��

�
���������������'��	�����(�	
�

��< ��9O����?�� ���,+7����������+7
��< �29O����?�2

�
2�2 �� $�����������+7
2�2 %�

�
��<)=9>!"&"& ���8��������	��+��������	�
#)CC ���8����

�
���D E�	��+�	��	(��8����,���

����
��������	�����$���+���#�����(6�+�������(+�	'��

Embedded PCs ISA Bus.book : Chapter 10.fm Page 172 Tuesday, July 1, 1997 7:32 AM

Chapter 10: Booting C from ROM

173

When ��	�� returns, the startup code restores the BIOS ��J�2 values, pops the
saved registers from the BIOS stack, and returns to the BIOS through the
obligatory D)�����.

If your system has a video board, monitor, and keyboard, the BIOS will make them
ready before it invokes your BIOS extension. However, it may or may not prepare
optional equipment such as the serial and parallel printer ports. On a stock PC,
your BIOS extension can display its status on the screen and read ordinary
keyboard input. I’m taking a minimalist approach in the sample code, but don’t let
that discourage you too much.

Many embedded BIOS extensions will control hardware similar to the Firmware
Development Board’s LCD panel, watchdog, or serial number. When your
extension gains control, you can set your hardware up. Don’t go overboard; do just
the bare minimum and be done with it. You can report error messages on the
standard PC screen, or, preferably, on some LED digits, a heartbeat LED, an LCD
panel, or any other hardware that you control.

Listing 2 shows a rudimentary ��	�� function that saves the ��� ��� Bootstrap
Loader vector and installs a pointer to a customized ��� ��� handler. Rather than
create a separate storage location for the old vector, the code simply tucks it into the
��� -�� vector. This is a time-honored PC technique that allows you to invoke
the old handler through a simple ��� -��, rather than a convoluted indirect D)��
#)CC through a pointer in the data segment. If you must restore the registers before
calling the old handler, you’ll appreciate why this is a Good Thing.

Listing 2
The main() function shown here moves the INT 19h vector to INT 61h so we can use it
later, then aims INT 19h at our own interrupt handler. It sends a tracking output to the
parallel port, but cannot send a serial message because the BIOS has yet to identify the
hardware ports. Because this function is called during the BIOS extension scan, it must
exit to allow the PC to continue booting.

��	���Q

 ��<�+����"���9R�	�����'9R�	����$$�E S����H�������	���� �S
���<�+����"�-�9�	�����'9�	����$$�E S���***����	�8��	����(6� �S
�(�68�#�C�?)%%�9�<?P��)�C��E S���H���	��<��)�9���� �S
6�7�8��<?�� ����9�C%������DD9�	����$$�E
6�7�8��<?�� ����9�C%������� 9�	�����'�E
�(�68�#�C�?)%%�9"�E

���<�+����"���9 ��#�����'��9���?�?����T��	���@	������E

�(�6��T�#?)%%�9"�"��E

���(�	E
U

Embedded PCs ISA Bus.book : Chapter 10.fm Page 173 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

174

It also stores the ��� ��� vector in the Firmware Development Board’s battery
backed RAM to protect it from BIOSes that clear the user interrupts. If you know
your target system’s BIOS clears those vectors or your expect your code to run on
many different machines, simply don’t store your vectors in system RAM. The code
we’ll see later checks the ���?-�� vector against the value in the RAM, re-installs
it if the BIOS changed it, and tells you what your BIOS did.

Note that, unlike all the other Micro-C programs we’ve used so far, this ��	��
function must exit to allow the remaining BIOS initialization to continue. Because
system setup will not be complete while your code executes, the C program should
do no more than absolutely necessary. In particular, the BIOS probably hasn’t
loaded the serial port addresses at 0040:0000, which means ��	�� can’t send a
cheerful “Hello, world!” message through the BIOS serial functions.

Getting the Boot
By intercepting ��� ���, the C code regains control just before the BIOS tries to
boot from the disk or diskette. I covered such interrupt handlers in Chapter 7, but
there are enough differences in the ���� and ��� models to warrant another look.

Listing 3
This macro wrapper uses the Firmware Development Board’s battery-backed RAM to
locate the handler’s data segment and stack. The stk argument determines where the
handler’s stack begins within the stack segment, thus allowing several simultaneously
active handlers to use the same macro. The data locations in RAM must match those
used by the program’s startup code!

>��$�	����)#F��2�DD����4.&�./"�
>��$�	��%)�)�� ��������4.&�./.�
>��$�	���C%������DD����4.&�./I�
>��$�	���C%������� ����4.&�./-�
>��$�	���C%������DD����4.&�./��
>��$�	���C%������� ����4.&�./�"�

>��$�	�����?�?2��C� �-I� S����0���$�6����'(��+��� �S

>��$�	�����?�?����T�$	����R$	����?�?2��C� ��������S��������$�6����'(� �S

>��$�	��?�2)#�?
>��$�	�����?��)CC�$	9��7�����Q� V
������H��,
��	������	��	+���	'���+7 V
$	�2;�@�����)= V
���2;�@������= V
���2;�@�����#= V
���2;�@�����%= V
���2;�@������� V
���2;�@�����%� V
���2;�@������� V
���2;�@�����%� V

Listing continues on next page

Embedded PCs ISA Bus.book : Chapter 10.fm Page 174 Tuesday, July 1, 1997 7:32 AM

Chapter 10: Booting C from ROM

175

Listing 3 shows the macro wrapper for a ���-model Micro-C interrupt handler
that knows about our battery backed RAM. It saves a few of the caller’s registers on
the interrupted routine’s stack, recovers the handler’s ��J�2 from the RAM and
sets up that stack, saves the rest of the incoming registers on the new stack, then
invokes the interrupt handler. When the handler returns, the wrapper undoes all
that before finishing the process with an ����.

If your code can generate nested interrupts, such as hardware interrupts during a
software interrupt, you must place each handler’s stack in a different part of the data
segment. The second macro argument simplifies this process: the wrapper code
subtracts ��7 from the stack pointer saved in RAM. You can easily allocate separate
chunks relative to the original stack top with this trick.

Listing continued from previous page

�����$��+��6���$����,����
�,+7����)�����$�	��%�S��S���	����+7����V
�����<�������=9>�<?�� ����?)� V
�����<��������9�= V
�����<�������=9>��)#F��2�DD V
�����<������#=9��JL�=M V
����;�������#=9>��7 V
�����<������)=9�� V
�����<�������=9��J.L�=M V
�����<��������9�= V
���=#@ ������29#= V
���2;�@�����#= V
���2;�@�����)= V
�����<������%�9�= V
�����<��������9�= V
������H���(� +��6��������6��	��(����+7 V
�����<������)=9O���6 V
���2;�@�����)= V
������	H�7��������+���#��	���� V
���#)CC��$	/���?�?2��C� � V
�������������+��6��������6�$�����(����+7 V
���2�2������)= V
�����<������?�2)#�?O���69)= V
�������������6��	��������	+���	'���+7 V
���2�2������)= V
���2�2������#= V
�����<��������9)= V
�����<�������29#= V
���2�2������%� V
���2�2�������� V
���2�2������%� V
���2�2�������� V
���2�2������%= V
���2�2������#= V
���2�2�������= V
���2�2������)= V
�����,
6�����+���#����(�	� V
������� V
U

>(��$�?�2)#�?

Embedded PCs ISA Bus.book : Chapter 10.fm Page 175 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

176

I could use the same stack for both ��� ��� and ��� ���, because my ��� ���
handler executes after the ��� ��� handler returns. In general, however, you must
be more cautious with your stacks. In particular, make sure you allocate a different
stack area for each hardware interrupt handler and reserve enough space for each
stack so that they cannot possibly overwrite each other.

Your ��� ��� handler can take over the PC or continue booting as you see fit. The
handler in Listing 4 hooks ��� ���, displays a message and waits for a serial
character from the host PC before continuing. Depending on what you type, it will
either invoke the original ��� ��� handler or issue an ��� ��� directly. If there
are no diskettes in the system, the BIOS ��� ��� routine passes control to a
customized ��� ��� handler.

That ��� ��� routine displays a message, then enters an endless loop updating a
counter on the FDB’s LED display. Obviously, you can be a lot more clever than

Listing 4
The BIOS INT 19h handler normally boots a program from disk, but this handler gives you
a choice. Depending on the serial input character it will either boot using the BIOS
handler (which the startup code moved to INT 61h) or pass control directly to the INT 18h
boot failure handler. You can insert an entire application program either here or in the
INT 18h handler, depending on how much hardware setup you expect the BIOS to do.

���?��)CC��	���9"���	���@	�������Q
�	���6���	E

����	����-""9��E
�	,����E S�����8���������+7� �S
6(�+��D���D��%�E
6(�����W��,������2#X����)��(��#�6�����"������������
V	W�E
6(�����W��+���#����������	���	�%���V	V	W�E
6(�����W�	����(6������6���,������	����V	W�E
�(�6��T�#?)%%�9"�".�E

S��������8�����8���H��'���6��6��������
��������	' �S
��7��'�Y�6��78��<?�� ����9%)�)�� �����E
��7�$$�Y�6��78��<?�� ����9��)#F��2�DD�E
6��	�$�W�2��	�����	��<��)�������6��$���+7����Z"I�JZ"I�V	W9

���7��'9��7�$$�E

S�����+6�(����	�����H�+���������(���+�	���������(���	���� �S
 ��<�+����"���9R�	�����'9R�	����$$�E
6��	�$�W�#6�(��	'��	�����H�+���9�8��Z"I�JZ"I�V	W9

��	�����'9�	����$$�E
���<�+����"���9 ��#�����'��9���?�?����T��	���@	������E
�(�68�#�C�?)%%�9�<?P��)�C��E
6�7�8��<?�� ����9�C%������DD9�	����$$�E
6�7�8��<?�� ����9�C%������� 9�	�����'�E
�(�68�#�C�?)%%�9"�E

Listing continues on next page

Embedded PCs ISA Bus.book : Chapter 10.fm Page 176 Tuesday, July 1, 1997 7:32 AM

Chapter 10: Booting C from ROM

177

that. Remember, however, that this is the last chance you get to affect the system. I
don’t know what the BIOS will do if the ��� ��� handler returns, as Cassette
BASIC offered no way back to the BIOS boot code.

To summarize, the C startup code and ��	�� function cooperate to form a BIOS
extension that gets called during the boot sequence. The ��	�� code may hook
the ��� ��� and ��� ��� interrupts to regain control before and after the disk
boot. Those routines are software interrupt handlers, rather than BIOS extensions,
and should use the C interrupt macro wrapper to save and restore the registers.

Your code can hook other software or hardware interrupt vectors to replace, modify,
or extend standard BIOS services. For example, you could redirect calls to the
BIOS ��� �"� video routines to your character LCD panel routines… that panel
is a mite cramped, but your embedded applications could use the LCD or a normal
video display with no changes. Get the picture?

Listing continued from previous page

S����������$��	��-���(�H�H������������,����6��+��� �S
 ��<�+����"�-�9R�	�-���'9R�	�-��$$�E
�$���	�-���'�GY�6��78��<?�� ����9�C%������� ���Q

6(�����W����������H��8������(���	$���	������	��-��H�+���GV	W�E
6��	�$�W��8��8�����Z"I�JZ"I�V	W9

��6��78��<?�� ����9�C%������� �9
��6��78��<?�� ����9�C%������DD��E

6��	�$�W�����	�8�Z"I�JZ"I�V	W9�	�-���'9�	�-��$$�E
���<�+����"�-�96��78��<?�� ����9�C%������� �9

6��78��<?�� ����9�C%������DD��E
6(�����W��������������6��6���H�(�GV	W�E

U

S�����	�8��(�����+���	�����6 �S
8���������Q

6(�����W�2������	���������,���������+�����	H�7���	�����J�W�E
�6���	�Y�'��+���E
6(�+��XV	X�E
�8��+����6���	��Q
+���XV	X�J

6��	�$�W��	H�7�	'������	���������('���	��-���N�Z"I�JZ"I�***V	W9
��	�����'9�	����$$�E

���Q
����!-�

U
,��7E

+�����#J
6��	�$�W��	H�7�	'��(���	������	����***V	W�E

���Q
����!��

U
,��7E

U
U

U

Embedded PCs ISA Bus.book : Chapter 10.fm Page 177 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

178

Release Notes
Because BIOS extensions require a specialized C startup file that isn’t useful for
normal C code, I created a separate library file called BIOSExt.LIB that includes the
startup code module 8086RLXR.ASM. You can modify BIOSExt.LIB to include
specialized library files or exclude Micro-C library files as needed.

The macro wrapper shown in Listing 3 is in the firmdev.h file in this chapter’s
subdirectory. Unlike the ��	
 model wrapper, it requires enough setup and
specialized tweaks that I didn’t want to put it in the Micro-C subdirectory.

See the source code and ReadMe.txt files for more information.

The Micro-C CC86 Command Coordinator cannot specify a library other than the
standard ones, so I’ve been using my MCComp.BAT file to create BIOS extensions.
You can simply replace the 8086RLPR.ASM file with (renamed) 8086RLXR.ASM and
use ��� model if you find that more convenient.

You must have the FDB’s battery backed RAM and write protection circuitry
installed to use this code, because it updates the RAM contents during the BIOS
boot sequence.

I still think 32 KB doesn’t provide enough room for a complete PC program, but
now you have a framework for small, C language BIOS extensions and diskless
programs. Just don’t get carried away and smash into that 32 KB limit at, oh, say,
90% of the way through your next project.

Embedded PCs ISA Bus.book : Chapter 10.fm Page 178 Tuesday, July 1, 1997 7:32 AM

