
1

0 Getting Started
This book is a guide for people who want to apply the IBM PC’s Industry Standard
Architecture (ISA) bus to their projects. Quite simply, that includes anyone
interested in building PC hardware, writing PC firmware, or interfacing a PC with
the real world. If you’ve gotten this far, that means you!

• Engineers designing embedded PC hardware
• Programmers writing firmware to drive that hardware
• Technicians debugging recalcitrant ISA bus gadgets
• Students relating abstract coursework to practical applications
• Enthusiasts controlling projects with computers

Regardless of whether you consider yourself a hardware or software person, you’ll
benefit by learning some tricks and techniques from the other side:

• Recognize fundamental ISA bus speed limits
• Follow hardware interrupt signals through the PC to your software routine
• Understand how and why watchdog timers protect your code
• Fix hardware problems with firmware (yes, indeed)
• Discover how to boot programs directly from disk or EPROM
• Write code that runs automatically before the PC boots
• Debug and solve truly perplexing problems!

I emphasize the value of hands-on experience gained by building a hardware gadget,
writing some code to control it, measuring the system’s performance, and
understanding how the hardware and firmware work together. Although you can
certainly enjoy this book in armchair-traveller mode, you’ll derive far more benefit
by rolling up your sleeves and working through the pages.

You can also use this book as an introduction to hardcore embedded PC
development using off-the-shelf PC/104 hardware. Essentially everything you
learn about the ISA bus in this book applies directly to the PC/104 bus. In fact, you
can run many of your own programs directly on a standard PC while debugging
them, then transfer them directly to a PC/104 system without any changes.

What’s Firmware?
Firmware is software that controls the bare silicon, down below the operating
system, down on the bit-twiddling level, where microseconds matter and high level
languages dare not tread. It implements the most fundamental software functions
of all, the strange routines that make the hardware work. You must leave behind

Embedded PCs ISA Bus.book : Chapter 0.fm Page 1 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

2

those familiar interfaces and programming habits that depend on operating system
support and human reaction time. Firmware, at least the firmware you’ll meet here,
operates under entirely different constraints than normal PC application software.

For example, you’ll write programs that run directly from a diskette without DOS
or generate characters on an LCD panel without calling the BIOS. You’ll learn how
to boot a program, without a disk, from nonvolatile memory out on the ISA bus.
And you’ll do this on a PC that lacks a keyboard and video monitor, no less.

Once you understand how firmware works on this level, you can apply the same
techniques to the device drivers and kernel code found in operating systems, as well
as your own embedded programs. Conversely, if you don’t understand how this
firmware works, you’ll spend a lot of time and effort figuring out why your code
fails in real life.

The sample code and debugging programs throughout the book use reasonably
straightforward C and assembly language constructs. I deliberately avoided esoteric
programming techniques in order to concentrate on the interface between the
hardware and software. You, too, should pay attention to the small details, before
slathering on a high level language topping.

Hosts and Targets
Your existing desktop PC, which I’ll call the host system, holds all your development
tools: editors, compilers, assemblers, and so forth. You will edit and compile the
firmware on the host system, then transfer binary or HEX files to the target system.
Chapter 1 covers the details of sending a program to the target system using a
floppy disk, so you can get started with no specialized hardware at all.

In order to modify the sample code in this book, your host system must have a C
compiler, an assembler, and a way to build firmware for a target PC that doesn’t
have DOS installed. I’ll use Micro-C from Dunfield Development Systems, as well
as Borland C plus Paradigm Locate, to convert the EXE files into binary. Take your
pick: Micro-C is inexpensive, while Borland and Paradigm have more features.

The compilers and assemblers run quite happily on nearly any current PC. I used
OS/2 to develop the programs and Windows 95 to check them out for this book, as
both of those operating systems support ordinary DOS sessions. A multitasking
OS simplifies running DOS programs, comm programs, and editors at the same
time, but you can accomplish all these tasks with whatever PC you have at hand.

However, an embedded PC isn’t an ordinary desktop system. You should have a
separate PC, which I’ll call the target system, devoted exclusively to the hardware

Embedded PCs ISA Bus.book : Chapter 0.fm Page 2 Tuesday, July 1, 1997 7:32 AM

Chapter 0: Getting Started

3

and firmware for these projects. Regardless of how careful you are, you run the risk
of damaging your target system with a wiring error or a slipped scope probe.

Some of the firmware in this book requires at least a ’386-class CPU on the target
system. You’ll also need a power supply, a diskette drive, an I/O controller board
with serial and parallel ports, and a case that holds everything together. Because
’386 desktop PCs are now giveaway items, converting one into a dedicated target
system isn’t expensive at all. Remember, you won’t need a hard disk, monitor, or
even a keyboard to get started. Just ask around and see what’s available!

(Hardware) Construction Ahead
During the course of this book, we investigate how firmware interacts with ISA bus
hardware on the target system. However, that process requires some specialized
hardware that simply doesn’t exist in a standard PC: 16-bit I/O ports, an adjustable
wait-state generator, precision timers, text and graphic LCD panels, ID numbers,
and so forth. You will see how to build a Firmware Development Board holding
that hardware, debug it with firmware test routines, and measure the results.

The hardware projects in each chapter are largely independent of each other,
although all of them depend on the ISA bus data buffers and address decoding
logic shown in Chapter 3. The simple, two-digit LED display and DIP switches in
that chapter provide a convenient way to verify that your bus interface hardware is
working correctly. Subsequent chapters introduce various I/O and memory circuits,
along with firmware that tests your wiring and exercises the hardware. You can, for
example, build just the timers in Chapter 4 and the EEPROM in Chapter 6, if your
project demands precision pulses from a PC that boots without a diskette drive.

For those of you in armchair-traveller mode, you can skip most of the hardware
construction by building the simple LED-and-switch gadget shown in Chapter 1.
It attaches to the parallel port of nearly any IBM PC and gives you practical
experience with hardware I/O. You can go a long way with a handful of bits that

A certain CAUTION applies to the firmware:
Run the firmware only on your dedicated target system!

The firmware assumes that it controls the target system hardware
described in this book. It may produce unpredictable and possibly

harmful results on a desktop PC.
Do not run the firmware programs in this book on your host system!

Embedded PCs ISA Bus.book : Chapter 0.fm Page 3 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

4

reveal your code’s realtime behavior, as I’ll show throughout this book. Consult Jan
Axelson’s Parallel Port Complete for much more information about parallel ports.

The hardware designs use readily available logic gates and parts, rather than
specialized programmable logic and LSI controllers. Because signals on the ISA
bus run at relatively low speeds, at least by contemporary standards, you won’t need
exotic construction techniques or tools: Wire Wrap or solder will work fine.

However, these designs, particularly the Graphic LCD Interface starting in
Chapter 12, are not particularly good hardware projects for beginners. Circuit
construction depends on your experience, your techniques, and the materials at
hand, so I did not include step-by-step instructions. You must be familiar with
digital logic, have reasonably good soldering skills, and understand the handling
and assembly precautions required to keep integrated circuits working properly.

If you already have a few projects under your belt, though, the circuitry shown here
will present both a challenge and an opportunity to learn new skills. Take it slowly
and carefully… you’ll do all right.

The Schematics appendix has the complete set of schematic diagrams and a Bill of
Material. You’ll also find tables summarizing the I/O and memory addresses, bit
definitions, and so forth that appear throughout the source code. Although I don’t
currently have a printed circuit board or parts kit available, check the Web page
mentioned at the end of this chapter for further developments.

Logic Levels and Pin Names
There are, perhaps, as many ways to represent the logic sense of hardware signals as
there are schematic capture programs. I follow the hyphen convention, where an
active-low or falling-edge clock signal has a leading hyphen: -SMemW indicates
that the SMemW becomes active when it falls near zero volts and is inactive when

A further CAUTION is in order here:
Regardless of your hardware construction experience or techniques,

you could injure yourself or damage your target system
if you’re not careful while building the projects in this book.

Pay attention to what you’re doing, be careful with hot soldering irons,
and seek advice from folks with more knowledge, before attempting a

project beyond your experience!

Embedded PCs ISA Bus.book : Chapter 0.fm Page 4 Tuesday, July 1, 1997 7:32 AM

Chapter 0: Getting Started

5

near VCC. Most TTL control signals, with the notable exception of the ISA bus
interrupt lines that we’ll meet in Chapter 5, are active-low.

You’ll find that the same signal appears quite differently in other references:

/SMemW SMemW/ *SMemW SMemW* SMemW

and other variations too numerous to mention. Pay attention to the meaning of the
signal and its logic polarity should follow along easily.

Worse than that, some ISA bus pins bear completely different names in different
references. For example, pin B08 can be called -EndXfr, -SRdy, or -NoWS. The
hardware doesn’t care what name you use: the pin does the same thing in every
system. See the ISA bus pin diagram in Chapter 3 for the names I used here.

Some Assembly (Language) Required
Because this firmware operates at the point where software meets hardware, you’ll
find plenty of assembly language routines. The precise control afforded by
assembler code enables you to perform tasks beyond the capacity of higher-level
languages, both in speed and simplicity. In many cases, a few assembler instructions
can illustrate a key point by showing precisely how the CPU and ISA bus operate.

I won’t dwell on the intricacies of splicing assembly language routines into C
programs. The sample code on the diskette accompanying this book shows how I
accomplished the task, but you may find that your compiler and assembler use an
entirely different technique. I trust that, once you see what must be done, you can
figure out a way to accomplish it with the tools you have available.

If you’ve never used assembly language before, you’re in for a treat. It’s a vital skill
for folks who must wring the last bit of performance from a system… after you’ve
done everything else, assembler turns on the afterburner.

What Else Do You Need?
Yes, hardware and firmware debugging can be difficult without the right tools.

Many of the programs send debugging information from the target system’s serial
port to a comm program running on your host system. Some embedded programs
and routines, however, must run at times and in places where the serial ports aren’t
available. In those cases, you’ll see how to blink LEDs, send trace information to
the parallel port, and use other debugging techniques that don’t depend on exotic
and expensive test equipment.

Embedded PCs ISA Bus.book : Chapter 0.fm Page 5 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

6

Sometimes, however, you simply must have the right hammer for the job.

While you won’t absolutely need an oscilloscope for the projects in this book, a
good ’scope certainly helps show what’s going on as you tweak the firmware. You
may have seen “high resolution” software timers described in books and magazine
articles, but the events we’re dealing with happen far faster than a CPU can
measure with software. I’ll show you how a scope can benefit your firmware
development efforts by measuring realtime performance.

Similarly, a logic analyzer presents timing information for many digital channels at
once and can reveal behavior that’s otherwise invisible. You’ll see some logic-
analyzer screen photos that show timing information gathered from the target
system’s ISA bus signals and firmware trace outputs on the parallel port. When you
build similar trace and triggering outputs into your code, you can make a logic
analyzer even more valuable by capturing precisely the information you need.

Given a choice between a scope and a logic analyzer, I’d pick a scope every time.
Current digital scopes make that decision less painful than it used to be, by
incorporating many features from logic analyzer. If you plan on doing low-level
firmware, you can greatly simplify your life with good test equipment.

Even a simple logic probe can provide evidence that your firmware reached (or
didn’t reach) a particular instruction. Just add a few lines of code that pulse a parallel
port pin, hitch your probe to the pin, and see what happens. That may be all you
need to trace down a gnarly problem that resists conventional debugging.

Beyond the hardware and firmware lie the most important debugging tools you can
have: your active curiosity and desire to figure out how things work. I’ll describe
what you should look for and suggest how best to see it, which will improve your
ability to uncover out-of-the-ordinary problems. If you’ve got the time and
inclination, investigating how this firmware works by building your own target
hardware will improve your understanding, give you considerable practical
experience, and help you avoid designing problems into your systems.

Remember… the best debugging is no debugging at all!

Numeric Representation
Because this book deals with firmware written in both assembly language and C,
you’ll find numeric constants using hexadecimal (radix 16) and decimal (radix 10).
The same numeric value will look different, depending on where and how it’s used.
I’ve attempted to write the numbers in the firmware’s source-code format, rather
than force-fit them into typographic consistency.

Embedded PCs ISA Bus.book : Chapter 0.fm Page 6 Tuesday, July 1, 1997 7:32 AM

Chapter 0: Getting Started

7

The Micro-C assembler represents hexadecimal numbers with a leading dollar sign:
��� ��� and ��	
���

. The Borland assembler uses a trailing � and insists
that the first digit be numeric: ��� ��� and ��	
���

�. Firmware written in
C, regardless of the dialect, uses a leading �� for hex numbers: ����������.

Because memory addresses always use hex notation, I generally won’t bother with a
radix identifier unless decimal numbers lurk nearby. Although those of you with
experience in C on non-PC platforms may be familiar with C’s leading-zero octal
notation, it doesn’t appear anywhere in the book or firmware listings. For example,
the value 0123 represents 0123 hex, not 123 octal, or, for that matter, 123 decimal.

Reference Material
The Bibliography appendix contains pointers to all the reference material
mentioned in the text. Because a book’s ISBN changes with each edition, you must
use the title or author information to locate the most recent version. Any good
bookstore should be able to track down and order a particular book for you,
although you may find that they have trouble with smaller publishers and works
that are out of print.

In the last few years, the World Wide Web has become an invaluable source of
technical information. The Sources appendix lists URLs and addresses for some of
the companies I’ve dealt with through the years, but a few minutes with any of the
Web search engines will turn up even more companies. Unless you live in or near a
hotbed of technical activity, you’ll find that most of your crucial parts and supplies
will arrive in boxes from distant companies that you never see face-to-face.

Remember the source code on the diskette tucked into this book! The listings
throughout the book present what I consider the key sections of the programs, but
the files hold many other tricks and techniques that I haven’t mentioned.

Much of the text in this book came from a series of Firmware Furnace columns I
wrote in Circuit Cellar INK magazine. Thanks go to INK’s staff and readers, who
gave me plenty of feedback and suggestions that I’ve included in this book. The
remaining errors are, of course, entirely of my own invention.

Errata and Updates
Despite my best efforts, I’m certain some of this book’s code and hardware won’t
work on your target system. Newer and faster target CPUs, different system
chipsets, and your hardware construction techniques all affect firmware that runs
down at the bare silicon level. Who knows? You may even find a bug or two in the
listings or schematics…

Embedded PCs ISA Bus.book : Chapter 0.fm Page 7 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

8

Your first line of defense lies in the debugging techniques you’ll learn here. Try
using the debuggers, inserting trace statements into the code, lighting LEDs, or
triggering your oscilloscope or logic probe. You can tweak the code to dump
registers, pinpoint problems, and work around peculiarities. You’ll run into those
problems in your own projects, so consider the hardware and firmware you find
here as valuable warmup exercises for the real world.

When all else fails, check this book’s FAQ on the publisher’s Web site at
��������������������. I’ll add any corrections, clarifications, and tips that
arrive after the book went to press.

You can also email me at �� !"��!��#$��!������. If you’re stuck, I may be able
get you around a problem. Your comments and suggestions will certainly make the
next edition even better.

Typography
Plain, flat ASCII text simply can’t cope with the requirements of firmware and
hardware documentation. In this book, different typefaces distinguish different
types of words. You will see, at a glance, whether a word represents a file name, a
%���� ��&' �� !(�, or a logic signal:

Enjoy!

Ed Nisley KE4ZNU

Function Face

Body text: italic and bold for emphasis Adobe Caslon

Captions Helvetica

)�"���&��*�&(�����+� �"��* &,����(�

Hardware logic signals Courier Bold

Disk file names American Typewriter Condensed

DOS and system commands Trade Gothic Condensed Bold

Special symbols: × µ Ω  ↑ Symbol Set

Embedded PCs ISA Bus.book : Chapter 0.fm Page 8 Tuesday, July 1, 1997 7:32 AM

