
147

9 IDs and LCDs
Some years ago, the PC press pushed hardware serial numbers that could key
software to a single, unique PC. The predicted benefits included killing software
piracy, increasing profits, reducing prices, and making things right with the world.

Another prediction gone awry.

I suppose I’ve been a software pirate, at least by some definition. A while back, I
had two PCs: a dying Model 80 from which I transferred programs to a new box. If
these PCs had software that expected unique hardware serial numbers, I’d be out of
luck, even though I had only one set of hands on one keyboard at any one time…
and the Model 80 was in such bad shape it could no longer run the programs.

It got worse. The first new system didn’t quite work, so I made two attempts at
transferring the files and programs (well, two sets of attempts, to be precise). It’s
never been clear what the software transfer fee might be for that situation, but I’m
sure paying it twice wouldn’t have improved my disposition at all.

Nevertheless, in this chapter I’ll describe how to give your Firmware Development
Board a unique ID based on the Dallas DS2400 Silicon Serial Number chip. If you
combine the (trivial) hardware with the BIOS extensions from Chapter 8, you can
produce a system that won’t even boot with a missing or incorrect serial number, let
alone load and run a program from disk.

Just don’t try to charge me for your code, OK?

We’ll also add a small character LCD panel that displays status messages, without
requiring a terminal or video monitor on your PC. If naught else, it can point out a
wrong serial number or show everyone the unchanging value of your embedded
PC’s clock frequency. That last idea makes as least as much sense as the hardware
behind your desktop PC’s numeric display.

The two devices require completely different interfaces: the DS2400 uses precisely
timed bit-serial communications and the LCD runs with a byte-wide parallel port.
The Firmware Development Board’s 82C54 timer provides timings independent of
the CPU speed for the DS2400, while a dollop of firmware timing fixes the LCD.

Simple Circuitry
The DS2400 and character LCD interfaces require a few additional gates and
buffers, as you can see in Schematic 1. Once again, I’ve omitted the ISA bus

Embedded PCs ISA Bus.book : Chapter 9.fm Page 147 Tuesday, July 1, 1997 7:32 AM

T
he E

m
bedded P

C
’s IS

A
 B

us

148 Schematic 1
The DS2400 uses a single open collector output bit and one input bit, while the LCD panel requires a full byte of I/O data
and several control lines. Firmware produces all of the required pulse timings through the ports, as these devices do not
connect directly to the PC’s ISA. The support circuitry for the buffer and driver ICs appeared in earlier chapters.

Embedded PCs ISA Bus.book : Chapter 9.fm Page 148 Tuesday, July 1, 1997 7:32 AM

Chapter 9: IDs and LCDs

149

connections and support chips described in previous chapters. Check the
Schematics appendix for the complete diagrams.

Photo 1 shows the Firmware Development Board after it gained this chapter’s
hardware. The DS2400 resembles a plastic transistor in a TO-92 case just below
the 82C54. The character LCD panel, connected to the ribbon cable snaking from
the top, hangs behind the board in this photo. Chapter 7 presented the circuitry for
the lithium cell, MAX691, and the clump of discrete parts providing backup power
for the static RAM chip.

The DS2400 claims to use a one wire interface. The chip must have a ground
connection, of course, but a single signal wire provides bidirectional data and
timing. Both the 7407 open-collector driver and the DS2400 can pull the signal
wire to the logic low state, while the 4.7 kΩ pullup resistor supplies the logic high
state when the driver transistors switch off.

As you might expect from a CMOS part, the DS2400 does not use TTL voltage
levels. Its minimum VIH rating of 3.0 V lies well above TTL’s minimum 2.4 V

Photo 1
The DS2400 resembles a plastic transistor just below the 82C54. The LCD panel
connects to the ribbon cable going off the top of the board. The coin-shaped lithium
battery provides backup power for the static RAM chip in the upper-right corner.

Embedded PCs ISA Bus.book : Chapter 9.fm Page 149 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

150

VOH. Keep that in mind if you’re trying something truly bizarre… something that
doesn’t involve an open collector or open drain driver with a pullup resistor.

Although the LCD interface uses more wires and even sports an analog contrast
control trimpot, it remains fairly simple. In fact, you can probably connect the
panel’s VEE terminal to ground to get acceptable contrast without the trimpot. If
your LCD panel requires a negative bias voltage, connect the pot between the +5 V
and -5 V (or -12 V, in extreme cases) supplies. You should increase the pot to about
10 kΩ to reduce its power dissipation. Better yet, always follow your LCD’s data
sheet recommendations.

A perennial issue surrounds interfacing these little LCD panels directly to a
microcontroller bus. The Hitachi HD44780 LCD controller bus interface matches
the Motorola 6800 microprocessor and, thus, requires a bit of hocus pocus for an
Intel-style ISA bus with entirely different control signals and timings. Rather than
confront that problem, I elected to use simple port I/O and be done with it. If you
want just an LCD panel on the ISA bus without the rest of the Firmware
Development Board, the references in the Bibliography appendix should give you a
good head start on your interface design. Pay attention to the timings!

Be careful while you wire up the LCD’s LS245 and LS374 data lines. It’s quite easy
to solder one group “backwards” and create some truly baffling bugs. The LCD test
firmware includes a counting sequence that should help pin down that problem, but
exercising slightly more care than I did while soldering my board should avoid it
entirely. Note that the LS374 driving the LCD’s data lines must have its Output
Enable line controlled by the high-order bit from the other LS374, as we must
shut it off while our code reads data from the LCD.

With the hardware out of the way, on to the code…

Bidirectional Bit Banging
A laser trimmer personalizes each Dallas Semiconductor DS2400 Silicon Serial
Number chip during production so that, unlike ordinary ICs, every one is unique.
The data includes an 8-bit type number, a 48-bit serial number, and an 8-bit cyclic
redundancy check (CRC) value to verify the data.

Most ICs transmit and receive synchronous data using at least two wires, one of
which supplies a clock signal defining when the other has valid data. The DS2400
takes a minimalist approach to its interface by transmitting all information in pulse
width modulated blips on a single wire. Using PWM reduces the hardware, while
also requiring moderately complex firmware. Fortunately, firmware becomes

Embedded PCs ISA Bus.book : Chapter 9.fm Page 150 Tuesday, July 1, 1997 7:32 AM

Chapter 9: IDs and LCDs

151

PC Sends
Reset Pulse

PC Sends
Command Byte

DS2400 Sends
Type ID byte

DS2400 Sends 6 byte Serial Number DS2400 Sends
CRC byte

DS2400 Sends 6 Byte Serial Number

cheaper than hardware, after you’ve figured out how to make it work, and it costs
nothing to reproduce. Sounds like a fair tradeoff.

Incidentally, the DS2400 mates nicely with one of the bidirectional I/O pins on an
8051 microcontroller. I used a 7407 open collector driver on the Firmware
Development Board, but an 8051 system can get along with just a wire to the pin.
You can’t get much cheaper than that! (Well, you can, if you embed the serial
number in the CPU die itself… but that’s another topic entirely.)

Notice that the DS2400 has no power connection. A minuscule internal capacitor
charges up while the signal pin is high and powers the CMOS circuitry while the
pin is low. The timing specs ensure that the capacitor does not discharge during a
transmission, which means you must carefully observe the minimum and maximum
pulse width limits. Even if the CRC tells you when you get bad data, you should
design the interface correctly, rather than depend on happenstance.

Figure 1 outlines a complete transaction: the PC resets the DS2400, sends a
command word, and then clocks the type identifier, serial number, and CRC bits
from the chip. The initial reset pulse discharges the internal capacitor and clears the
DS2400’s circuitry to start each transaction from the same, well-defined state.

I’ve found that the DS2400 sometimes requires two reset pulses the first time you
access it after the power goes on. From what I can determine, the DS2400 circuitry
jams into an invalid state when the power supply voltage rises slowly and requires a
complete reset before it will respond properly to a normal reset pulse. In effect, you
must completely discharge the internal capacitor and give the chip a solid reset.
After that, it works just as the data sheet says it does.

In general, the PC will read the serial number only once during its power-on reset
sequence. Leaving the signal line high at the end of the transaction eliminates the

Figure 1
Reading a DS2400 requires a reset pulse followed by 72 time slots for the bidirectional
data flow. Each half of the reset pulse must be at least 480 µs long and the data time slots
are between 60 and 120 µs each with a mandatory 1 µs delay after each bit. A complete
transaction thus occupies less than 10 ms.

Embedded PCs ISA Bus.book : Chapter 9.fm Page 151 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

152

Figure 2
The DS2400 communications protocol requires close cooperation between the PC and
the DS2400. The PC determines when each time slot begins and controls the duration of
transmitted data, while the DS2400 sets the duration of the pulses it sends in response
to the PC’s prompting. All times shown in this figure are in microseconds.

Figure 2a
The second half of the reset pulse allows the
DS2400 to respond with a “presence detect”
pulse: the DS2400 pulls the data line low short-
ly after the PC raises it. Although it’s not com-
pletely unambiguous, this behavior indicates
that something is on the wire.

Figure 2b and 2c
The PC pulls the data line low at the start of each transmit time slot. If it is transmitting a
1 bit, it must release the line within 15 µs. The line must remain low for the entire duration
of the 60-120 µs time slot to transmit a 0 bit.

Figure 2d and 2e
The PC also pulls the data line low at the start of each receive time slot, but must release
it within a few microseconds to allow the DS2400 to control the pulse width. The DS2400
will release the line immediately to transmit a 1 bit or hold it down for at least 15 µs to
transmit a 0 bit. In either case, the PC must sample the DS2400 within 15 µs after the
start of the time slot.

Embedded PCs ISA Bus.book : Chapter 9.fm Page 152 Tuesday, July 1, 1997 7:32 AM

Chapter 9: IDs and LCDs

153

few milliwatts dissipated in the pullup resistor, which is surely orders of magnitude
more than the DS2400 idle power that’s left unspecified in its data sheet.

Figure 2 details the five waveforms used by the DS2400 interface. The reset pulse
sports the easiest requirement with only two minimum times: no less than 480 µs
for both the high and low parts. The transmit and receive pulses, however, last only
a few microseconds and the PC must accurately measure the received pulses to
decide what data it’s getting.

When a project’s timing specs are denominated in microseconds and you’re charged
with writing the pulse measurement firmware, get ready for some serious thinking.
The first issue must be whether the task is feasible at all. After settling that issue,
you can decide the best way to implement it.

Sometimes you really will be asked to do the impossible. I recall discussing a project
proposal with an engineer who’d been charged with sampling an analog voltage at
something like 20 megasamples/sec, then storing 16-bit samples direct to disk
through a custom ISA bus board. If you’ve been paying attention so far, you know
that can’t possibly work (why?). My advice to him: present the ISA bus limits to his
managers, then hide behind a bush if the project continued in defiance of reality.

Fortunately, the specs changed when he explained how the ISA bus worked and
what those limitations meant to the project. Sometimes you don’t get off that
lightly, but it’s certainly worth the effort.

Hardware Timing
When you use the DS2400 in an 8051 microcontroller system, you can determine
pulse widths by simply counting instruction cycles in a timing loop. Not so with
embedded PCs! In fact, x86 CPUs encourage programming as an experimental
science: figure out how long a loop should last, write it, measure the results, then
tweak the loop count to make the answer come out right. With any luck, a few
iterations will converge on the desired value.

Your luck will go the other way, though, when you change PC board vendors, move
the program from RAM to EPROM, or just twiddle a few BIOS setup values, as
the different timings can clobber your precisely tuned loop. Most of the routine
tricks in 8051 code just don’t apply here. In fact, delay loops fall in the “better to
avoid if at all possible” category, although I’ll show you a reasonable use for one in
the LCD interface code.

I included an 82C54 timer chip on the Firmware Development Board for just such
applications: it can measure time intervals with 139 ns resolution, up to a total

Embedded PCs ISA Bus.book : Chapter 9.fm Page 153 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

154

Listing 1
The PC and DS2400 communicate by means of pulse width modulated signals. This
routine produces low and high pulses without depending on the CPU clock or timing
loops. It also enforces a minimum 1 µs idle time between each pair of pulses. Because
read and write signals are identical, this code samples the data line shortly after the rising
edge; the caller decides whether the bit is useful or not.

��������	
�����������	��������	�
���
�������	�
���
��������	�
�

���
��	��� ��	�
�����	�� ��	�

����	��� ��	���������������������������!"�#		$���	�%��$��	&�� $$'(((���������"!
����������	�
���������	�

 ����
���)�*������������������������������������		+�$&	%��	��������,�&�,�&���$���	

���-�����
.�/�01)23

�23�����������������������'�%����$&���	&�$�&�
���*1����3��
.
���������3��/4��
����5����
.�3�

���-�����
.�/*6�7283�923:;���������������	����+	
���-�����3��/
�2-�
9
����5����
.�3�

���-�����
.�/*6�7283�923:�
�2)��"��������	���������	
���-�����3.�;<8�=
����5����
.�3�
���.)�>��3��3�
����5����
.�3�

���-�����
.�/)���23

�23������������������	��
�����+ � �?������
���-�����3.�/�
����5����
.�3.

���)3����� �����	&

���-�����
.�/*6�7283�923:�
�2)��"��������	��&	 +�+	� '����	&@ �
���-�����3.�/�*-92�

����5����
.�3�
���.)�>��3��3�
����5����
.�3�

���-�����
.�/)���23

�23������������������	��
�����+ � �?��������A�,�� ����
���-�����3.�/
�����5�23
����5����
.�3.

���)3����� �����	&

���-�����
.�/��3�23

�23�����������������&	 +����$���,&���
����
���*1����3.�
.
���31
���3.�/
����*123���������������������� �	���	�+ � �?��
���-�����B�<8�=�3.

Listing continues on next page

Embedded PCs ISA Bus.book : Chapter 9.fm Page 154 Tuesday, July 1, 1997 7:32 AM

Chapter 9: IDs and LCDs

155

duration of 9.1 ms (64 K counts × 139 ns). Because it uses the 14.3 MHz ISA bus
oscillator signal, its time intervals do not depend on the CPU clock frequency or
system board hardware and you’ll get the same results every time.

Because the read and write pulses resemble each other so closely, I combined their
code into the routine shown in Listing 1. ����	
������, written using 8086
assembler within a Micro-C wrapper, accesses its input arguments and local
variables on the stack.

Although the 82C54 timers can produce hardware interrupts, I use simple software
polling to detect the end of each pulse. Remember that hardware interrupt handlers
must start by saving the CPU registers and setting up the segment registers. When
you are dealing with microsecond pulses, that can take far too long. In fact, you
must disable external interrupts before starting the precision timing code.

Listing continued from previous page

-�����
.�/*6�7283�923:�
�2)��"�����������	��&	����,���������	
���-�����3.�<8�=
����58���3.�/�*-92�

���3

���3.�/C����������������������������(((�$����� �+ ��&'�&	%�@	&'����	
����5����
.�3�
���.)�>��3��3�
����5����
.�3�

�����*�����������������������������������&	B	� ?�	����	&&�$��

���)3����� �����	&

���D-��������	
��	

�BBB�� ���,�&����	&����	&@ �����	E$�&	

� �����	&�9F5�"
���-�����
.�/*6�7283�923:;��������������� �%��G�&	 +�? %#�%����	&����� ���
���-�����3��/
�2�3�)�
����5����
.�3�

���-�����
.�/*6�7283�923:�
�2)��"�������&	 +�%����	&��� ���
���*1����3��
.

����9����3��/
�2�*1����������������������� ���,�&�$�������������� � ��
���DH����� �����	&
����9�

����	
��	�9F5�"

���-�����
.�/�01)23

�23�����������������%�	 &��'�%�$���	
���*1����3��
.
���.�����3��/4��
����5����
.�3�
I

���&	��&��JJ�	�� ��	�������������������������������!"�&	��&��8���	 ��@ ��	���"!
I

Embedded PCs ISA Bus.book : Chapter 9.fm Page 155 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

156

(Yes, there are sneaky ways to streamline hardware interrupt handlers under very
special, carefully controlled, exotic conditions. The key is knowing exactly when the
handler will be active, then preloading the registers for it. For an example of this,
check my Firmware Furnace column in Circuit Cellar INK Issue 3. The DS2400
didn’t call for such gymnastics, so I could get away with polling. Whew!)

The first timing loop meters out the low part of the pulse. If the mainline code calls
for a 0 bit, this loop will last for 90 µs. When the mainline code reads data from the
DS2400, the pulse ends after 5 µs. ����	
������ also sets a sync bit in the
parallel printer port to mark its entry into this code; if that bit never goes low again,
you know you have hardware problems on the Firmware Development Board. Plug
the LED-and-switch box (from Chapter 1) into your parallel port and watch the
firmware in action for some reassurance or diagnostic tracing.

The 82C54 Output pin goes low during the pulse and returns high at the end.
The delay loops load the timer count registers to start the interval, then detect the
ending by polling the output status bit. Polling involves writing a latch command to
the 82C54 and reading the status register, making it slightly slower than reading a
port input bit. Any current PC runs fast enough to adds only a few microseconds of
delay at the usual ISA bus speeds. If execution time became critical, you could route
the timer output bit back through an input port and poll it directly.

After the low pulse ends, the code writes a 1 to the DS2400 output bit, thus
allowing the signal line to float high, and sets a 2 µs delay. When that interval
expires, the code samples the DS2400 and records the input value. During a read
operation, the DS2400 controls the signal line and the sampled value represents the
incoming bit. For a bit written from the PC, the sampled value contains no
information and will be ignored by the caller.

Following the sample, the code loads the timer with the rest of the required high
time, plus the mandatory 1 µs idle time, and waits for it to expire. Because the
DS2400 output is high, any additional delays have no effect and the code can
enable interrupts. The DS2400 spec sets the minimum idle time, but does not
specify a maximum. Even a protracted delay at this point will not cause a data error,
because the capacitor inside the DS2400 remains charged from the input line.

The sample code includes routines that use ����	
������ to write the 8-bit
command word (always 0F for the DS2400) and read back all 64 bits. It’s quite
straightforward, except for one little, teeny, tiny, essential detail: you must transmit
and receive bytes starting with low-order bit. Believe it or not, that critical fact
appears nowhere in the DS2400 data sheets on my shelf!

Embedded PCs ISA Bus.book : Chapter 9.fm Page 156 Tuesday, July 1, 1997 7:32 AM

Chapter 9: IDs and LCDs

157

Checking Your ID
After you read the contents of a DS2400, you should verify the data by computing
the data’s CRC value. You may, if you like, assume that nothing can possibly go
wrnog (oops!) with such a simple interface, but I recommend checking the CRC
just to be sure. The CRC byte’s protection includes the Type ID byte, which is
always 01 for DS2400, and all six bytes of the serial number.

The DS2400 data sheet presents the CRC algorithm in 8051 assembly language.
While just transliterating the code into x86 assembler certainly looks tempting,
remember that the two CPUs set their ALU status flags differently for what seem
to be the same instructions. A simple line-for-line conversion will produce the
wrong answer. Listing 2 shows how the code I wrote for the CRC calculation takes
advantage of the x86 CPU’s 16-bit registers.

Listing 2
The DS2400 includes an 8-bit CRC computed over its Type ID and serial number data.
If the byte you compute using this algorithm matches the one read from the DS2400, the
odds are pretty good that no errors occurred during the transfer. This code is based on
the 8-bit algorithm shown in the DS2400 data sheet, while using 16-bit registers to shuffle
the bits. Remember that the 8051 and 80x86 CPUs set their ALU flags differently.

����)�)
�����$
 � �
80�9�"$
 � �
�
����)�)�

$
 � �A�$
 � � !"�#		$�%��$��	&�� $$'�"!
)�)�A��� !"�%�	 &�?����?'�	��"!

 ����
-�� 3��/� ���	���$������ ��)�)
-�� �*�<8�= ���	���$�+ � �$����	&
-��).�/C ���	���$�?'�	�%����	&

���	&���$�9F5�"
�5��). ��� @	�?'�	�%����	&
-��).�/6 ���	���$�?���%����	&
-�� 8��<�*= ��,	�%��+ � �?'�	

)�)���$�9F5 "
-�� 3��8� ���	���$�+ � �?'�	
.�� 3��3� ��%��?��	�����?����������+�)�)
��� 3.�K ���(((�$���&	���������������?����,�)�)
D1) H	&� ���(((� �+������% &&'�,� ������
.�� 3��/4�) �����&����%���� ����$&	B���,�	+J�

H	&� 9F5 "
��� 8��K ���	���$��	E��+ � �?��
����)�)���$ ��&	$	 ��,�&� ���?���
1) � �� ��� ���	E��?'�	
���). ��,	�%��?'�	�%����	&
���� ���	&���$ �� �+�&	$	 ��,�&�	 %��?'�	
-�� B�<8�=�3� ���	���$�&	��&��@ ��	

I
&	��&��)�)�

I

Embedded PCs ISA Bus.book : Chapter 9.fm Page 157 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

158

Just when you think you’ve got everything right, though, there’s always one more
gotcha. I recall a discussion with a group who simply could not get the right CRC
value. They used the Official Dallas Algorithm on an 8051 CPU (by Dallas, no
less), eliminating any possible translation error. Nevertheless, the CRC bytes they
read from their DS2400 chips simply did not match their computed values, no
matter how often they checked their code and hardware.

After considerable headscratching and many calls to Dallas’ tech support, they
found the problem. It seems there was a little glitch in the manufacturing code
driving the laser trimmer on the DS2400 production line. It burned the unique
serial number into each chip, then computed and burned the wrong CRC value!

Talk about hard-to-find bugs!

Needless to say, that was fixed PDQ and all current DS2400 chips work fine.
However, should you have a stash of old DS2400s lying around, check them very
carefully just to be sure… they’ll make excellent Show and Tell items.

I’ve said it before and I’ll say it again: hell hath no fury like that of an unjustified
assumption.

The SerNum.C program reads back the DS2400 data, calculates the expected
checksum, and displays everything. To judge from the DS2400s I have on hand,
Dallas produced about 400,000 parts before I bought my stash, at least if they’re
assigning the serial numbers in roughly sequential order.

If your circuit doesn’t work the first time, SerNum can also write the command byte
in a tight loop and scoping the DS2400 data pin should quickly reveal the problem.
The interface circuit is simple enough that a solder splash ought to be the extent of
your troubles. But, you never can tell…

LCDs Redux
The Firmware Development Board sports a pair of seven-segment LED digits that
we’ve used to report error conditions and display status information. The messages
tend to be cryptic, but suffice for our simple purposes. If you must dress your
system up for company, though, you probably want a few lines of legible text
output. The small LCD panels you see on microcontroller projects can be equally
handy on embedded PCs. Making them work is a simple matter of firmware.

I reviewed the operating principles of small LCD character panels in Circuit Cellar
INK Issue 8. Refer back to that column for details of how they work and what all

Embedded PCs ISA Bus.book : Chapter 9.fm Page 158 Tuesday, July 1, 1997 7:32 AM

Chapter 9: IDs and LCDs

159

the interface lines mean. For now, I’ll concentrate on the specifics of the Firmware
Development Board’s hardware, rather than cover that ground once again.

The common denominator of all these LCD panels lies in the Hitachi HD44780
LCD controller that provides their (admittedly limited) intelligence. Most of the
small character LCD panels you’ll find use this controller or one similar to it, but
you should get the data sheets for your panel just in case you catch an oddball.

The LCDTest.C program can handle any display based on the HD44780 controller,
up to the chip’s 80-character maximum size. I preset the code for 4 rows of 20
characters, using a pair of constants that define the number of visible rows and
columns. You can tweak those two lines, recompile, and have your new display up
and running, pretty much regardless of its size or shape.

As shown in Schematic 1, the LCD panel interface uses port I/O, rather than a
direct PC ISA bus connection. Although a bit-banged port interface runs much
slower than a direct bus hookup, the firmware can still update the entire display
faster than those liquid crystals can respond. That’s fast enough.

Listing 3 shows the few lines of code that write a byte to the display. The LCD’s
Enable line latches data and commands into the controller, so the code must write

Listing 3
This routine writes a single byte to the character LCD panel. The Mode parameter
determines whether the byte is a character for the display buffer or a command to the
LCD controller. After writing data to the port, the code calls BlipEnable to pulse the LCD’s
Enable input high and low to strobe the byte into the LCD controller.

�)
�	�+8'�	�
 � �-�+	�
���
�
 � �
���
�-�+	�
�
���
���&�� ��	�

�,��J�-�+	�G��91
L��)9���� !"�� ������,�&%	���������� ��M "!
��)
� ��8��'���
I

��&�� ��	�A��-�+	�G��91

3�3��M��)
2���N��� !"�%�+!+ � ��B����	� ?�	+"!
��&�� ��	�OA�
 � � !"�%��?��	�+ � "!
���$��)���23

����&�� ��	��

8��$9� ?�	���&�� ��	��

��&�� ��	�OA��)
2��� !"�+�� ?�	�B�&����	 "!
���$��)���23

����&�� ��	��

I

Embedded PCs ISA Bus.book : Chapter 9.fm Page 159 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

160

the 16-bit port three times. First it sets up the data and control lines with Enable
low, then sets Enable high, and, finally, lowers Enable to finish the operation.

Because we cannot read the outgoing data back into the CPU, the code stores it in
the ��&�� ��	 variable between writes. This is a classic hardware vs. software
tradeoff: implementing the hardware with TTL gates means that additional
functions require more chips and occupy more board space. Had I built the
Firmware Development Board using PALs or gate arrays, the additional hardware
would be essentially free. Think of this as practice for real life.

Maintaining a copy of the most recent output data is a simple trick that suffices for
now. I’ll describe the real world problems that arise from this sort of situation later
on in this chapter.

Listing 4 presents �)
�	 +8'�	��, which reads status and data from the LCD
controller. Two other routines call this function to check the controller’s Busy
status flag and to read the display buffer during vertical scrolling. Although both
functions can be simulated, with some difficulty, in firmware, I used Steve Ciarcia’s
favorite programming language: Solder. Sometimes, if there’s just room for just one
more chip, you must choose which one provides the most benefit. Ah, tradeoffs.

Despite my tirade about software delay loops, you’ll find one buried in the heart of
�)
�	 +8'�	��� just after the code raises the Enable line. Some LCD panels
I’ve used require more time than expected to drive data back to the Firmware
Development Board. The value I settled on creates a 150 µs pause on an 80 MHz
’486DX2, about four times the delay my worst panel expects. If you get erratic
vertical scrolling on a faster CPU, you know what the problem is and how to fix it.

This may be related to the ribbon cable layout that comes naturally to these panels,
although the glitch doesn’t appear on my scope (not that glitches ever do, of
course). You might want to experiment with different cable layouts to see if
bracketing the Enable wire or the data lines with pairs of quiet ground lines helps.
Trust me on this: if you haven’t used firmware to fix hardware before, this is a good
time to get started…

Why not use one of the 82C54 timers on the Firmware Development Board? Well,
if we had the services of a realtime operating system at our disposal, I’d have no
qualms about invoking a programmed delay. Unfortunately, we don’t, and I have
plans for this timer later on that preclude dedicating it to a character LCD. In real
life, you might also find the overhead involved in setting up a 150 µs delay through
an operating system might take longer than the delay itself. Measure first, then
decide what to do.

Embedded PCs ISA Bus.book : Chapter 9.fm Page 160 Tuesday, July 1, 1997 7:32 AM

Chapter 9: IDs and LCDs

161

The remaining LCD code adds cursor positioning, string output, simple scrolling
and some control character processing. It’s straightforward code that you should
review to see how it’s done. The LCDTest.C program provides several test loops with
scope trigger outputs on the parallel port, as well as a routine that copies incoming
serial characters to the LCD, so you can check out new displays by hand.

Extra credit project: you can add ANSI cursor positioning support fairly easily.
Peek ahead to Chapter 16 for details and some sample code. You can then send the
same text to a small character LCD or a big bitmapped panel with similar results.

Shared Bits
The ��&�� ��	 variable lets �)
�	�+8'�	�� toggle the LCD Enable line
while holding all the other bits steady. Unfortunately, �)
�	�+8'�	�� has no way
to preserve the other bits previously written to that port, because it can’t read back

Listing 4
This routine reads a byte from the LCD controller; the Mode parameter determines
whether it comes from the display buffer or the controller logic. The loop in the asm{}
section compensates for delays caused by cable capacitance and must be tuned for each
system… there is no need for a precise measurement, just a minimum delay.

�����)
�	 +8'�	�-�+	�
���
�-�+	�
�
���
�
 � �
���
���&�� ��	�

���$��01)23

����$��01)23

���O��E���� !"��%�$	��'�% "!

��&�� ��	�A���91

3�3�AA�-�+	��M��)
2���N��� !"�&	 +�+ � ��&� ++&M "!
��&�� ��	�OA��)
2���:��)
21�
��� !"��)
�&	 +� �+�+�� ?�	�+&�@	&� "!
���$��)���23

����&�� ��	��

��&�� ��	�OA��)
29� !"���&�?	�+ � �,&����)
 "!
���$��)���23

����&�� ��	��

 ����
-��).�/�
2
9�30 ��+	� '���� �����+ � ��	����������	

M�$K ���� M�$K
I

 � �A���$����3�23

���G��E��LL� !"�,	�%�� �+����� �	��)
�+ � "!

��&�� ��	�GA�P�)
29� !"�&	��@	��)
���&�?	� "!
���$��)���23

����&�� ��	��

���$��01)23

����$��01)23

���G�P�E���� !"��'�%��,, "!

&	��&��
 � �
I

Embedded PCs ISA Bus.book : Chapter 9.fm Page 161 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

162

the current port contents. That has no effect on the demonstration program, but in
real life you may have a killer problem.

For example, the watchdog timer routines I discussed in Chapter 7 send a new bit
to the watchdog about six times a second. That interrupt handler cannot read back
the existing bits, either, so if your code writes a byte to the LCD controller at the
same time as the watchdog interrupt routine, your bits get clobbered. When the
LCD write completes, it returns the favor by wiping the watchdog bit.

This problem can be easy to solve in a single program, at least after you recognize it.
Simply put, all your routines must refer to a single global ��&�� ��	 variable that
holds the current output port state at all times. If an interrupt handler can change
the port, as is usually the case, you must protect your mainline code by enabling and
disabling interrupts around the sections where you update ��&�� ��	.

Unless you disable interrupts, you can experience some devilishly subtle bugs. For
example, when your mainline code loads ��&�� ��	 into a register to change the
bits, as most C compilers will, your interrupt handler can fetch the old ��&�� ��	
from the variable, change a few bits, and write it back. The mainline code will then
destroy the handler’s bits when it writes its new version of ��&�� ��	 from the
register into the variable, atop whatever the handler just stored.

It’s worth working through a few examples on paper to convince yourself that you’re
in a lot of trouble. Look for those instants in time when ��&�� ��	 differs from
the actual port bits: that’s when the interrupt handler will strike. Make sure only
one routine can alter ��&�� ��	 at any time, always keep the variable in sync with
the hardware port, and disable interrupts around the critical regions.

You’ll see these problems again in subsequent chapters, but I should at least point
out the land mine right now. The solutions to this problem are both well known
and well documented in the multitasking literature. You’ve surely read about
semaphores, critical regions, and threads of execution by now. If not, well, those
same issues will crop up when you write multithreaded Windows programs.

Release Notes
The code includes two Micro-C programs: SerNum.C for the DS2400 circuits and
LCDTest.C for character LCD panels. You can combine the essential routines into a
single program, but pay attention to the shared bits problem. When you stir in the
watchdog code from Chapter 7, it gets still more complex.

In the next chapter, we’ll see how to put C code into a BIOS extension, so you can
write a program that can tell you you’re not authorized to use your own PC…

Embedded PCs ISA Bus.book : Chapter 9.fm Page 162 Tuesday, July 1, 1997 7:32 AM

