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8 Ticks, Pops, and Restarts
Traditional embedded systems start up at the flip of a switch. Even the PC’s built-
in ROM BIOS lights up immediately. However, as we saw in the previous chapter, 
loading code from diskette can take quite a while and may conflict with your 
watchdog timer. There’s no quick-and-dirty cure for that, but converting your code 
into a BIOS extension can help.

In this chapter, I’ll explore BIOS extensions in more detail with a set of routines 
that capture interrupts, support the Firmware Development Board’s power failure 
detection hardware, and record information in nonvolatile storage. You can use 
either the EEPROM or the battery backed RAM circuitry, as long as the firmware 
can enable and disable the memory chip’s -WE line.

The Key to the Code
Schematic 1 shows the new hardware you’ll need: a pushbutton switch with a 
pullup resistor driving bit 9 of the input port at 031C. This may be barely worth 
warming your soldering iron, but, every now and then, we need an easy one.

Holding that button can become awkward at times, particularly when you’re also 
maneuvering a scope probe or two, so I rewired the front panel keyboard lock 
switch in parallel with the button. Because we have yet to use the keyboard, I 
figured the keyboard lock might be superfluous.

Incidentally, should you ever come up against a “locked” PC clone, just whip out 
your Swiss Army knife’s Phillips blade, unscrew the clone’s case, yank (or slice) the 
lock switch wires, and fire that sucker up. I trust I’m not compromising the security 
of what was once the Free World by letting that trick out of the bag. The Original 
IBM PC AT had a lock that disabled the keyboard and secured the metal cover to 
prevent just such an assault.

So much for the hardware. Now, on to the code!

Extension Essentials
The Original PC BIOS didn’t permit any extensions, which led to some truly 
remarkable kludges as each vendor devised different and mutually incompatible 
ways to glue new functions into old PCs. The method we’ll use dates back to a PC 
BIOS revision slightly before the XT. That means, for all intents and purposes, 
every IBM PC now handles BIOS extensions the same way.
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The part of FDBExt.ASM shown in Listing 1 sets up the 55 AA signature, length, 
and checksum bytes required by the BIOS extension scan. Recall that the checksum 
byte in the source code must be zero, because our diskette boot loader computes the 
actual checksum as it copies the extension into the Firmware Development Board.

The code at ��������� forms an escape hatch I suggest you build into all your 
extensions, at least while debugging them. With the external button pressed (or the 
key lock switch ON) while booting, �	��
� simply updates the LEDs and returns 
to the BIOS. This can save your bacon when your new extension crashes the BIOS 
boot sequence. Trust me. It can happen to you, too.

With the switch released or the lock switch OFF, the code shown in Listing 2 
makes the whole software development process I’m using in this chapter work 
correctly. As Steve Ciarcia often puts it, “Let me explain…”

The Case of the Missing PSP
�	��
�, written in Borland’s Turbo Assembler ��� memory model, produces an 
ordinary COM file. As far as TASM and TLINK can tell, the program will run under 
DOS with all the usual DOS assumptions and restrictions. Of course, if we actually 
do run it under DOS, it won’t work very well at all.

Schematic 1
This simple hardware, a button and a resistor, allows you to skip over a malfunctioning 
BIOS extension during a boot and prevent a system crash. The supporting circuitry 
appeared in Chapter 7 as part of the battery backed RAM and watchdog controls.
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As you know by now, COM files contain an exact binary image of the program’s code 
and data. They date back to the days of CP/M and 8080 CPUs, when 64 KB of 
RAM was all even a big spender could have. The CP/M operating system reserved 
the first 256 bytes of RAM to control the 8080’s reset and interrupt vectors and 
provide some entry points. Therefore, it loaded your COM programs at absolute 
RAM address 0100.

MS-DOS adopted much the same memory layout, except that 64 KB of RAM 
suddenly seemed not quite so much after all. A COM file fit neatly into one 64 KB 
segment atop the reserved 256 bytes, which, still filled with operating system stuff, 
became known as the Program Segment Prefix. DOS handles EXE files somewhat 
differently, their PSPs live in a different segment, and we’ll get to them later, but, 

Listing 1
This code fragment resides in the battery backed RAM at C800:0000 on the Firmware 
Development Board. The BIOS passes control to the instruction at offset 0003 (just after 
the length byte) during the power-on sequence. This code first checks the pushbutton 
switch input bit; if the button is pressed, the code immediately returns to the BIOS.
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for now, the key point remains that COM files start at 0100 for simple, historical, 
largely arbitrary reasons.

Although all of the code and data addresses within a COM file assume that it’s 
loaded at offset 0100, the actual disk file does not include those first 256 bytes. The 
instruction at offset 0100 within the program’s code segment resides at offset 0000 
relative to the start of the file. DOS must set up the segment registers so that the 
offsets become correct within the segment where the program will be loaded.

The diskette boot loader in Chapter 1 simulates this process. It loads your program 
from diskette into RAM at address 1000:0100 and places nothing at all in the first 

Listing 2
With the switch open, the next step adjusts the segment registers. The RETF instruction 
loads the new values into CS and IP from the stack. Note that this code uses the FS and 
GS segment registers found in ’386 and higher CPUs and will not run on earlier CPUs.
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256 bytes of the segment at 1000:0000. Although there’s no PSP, that trick let us 
use standard COM files without invoking a specialized linker. As long as our 
program doesn’t expect anything in the PSP, having a blank (or random) one is OK.

The PC’s BIOS, on the other hand, knows nothing of this. When it finds our 
Firmware Development Board extension, it passes control to the branch instruction 
with !'#�+ set to C800:0003. Because our extension will set interrupt vectors as 
well as change data, it must somehow adjust the segment registers on the fly.

The solution involves simple subtraction, because a given physical address can be 
represented by many different segment and offset values. The CPU hardware shifts 
the segment register left by four bits, adds the offset, and takes the result as the 
physical address. At least that’s the case in real mode, which is all we require now; 
protected mode programming is entirely different.

In our situation, the branch instruction at C800:0003 resides at physical address 
C8003. We can also call that address C7F0:0103, because C7F00 + 00103 = 
C8003. Thus, if we reload the segment registers with C7F0, rather than C800, and 
change �+ from 0003 to 0103, all our offsets become correct and we can use COM 
files for BIOS extensions.

The easiest way to reload both !' and �+ is by yank them from the stack with a 
)��� (����)�����) instruction. Listing 2 shows the trick in all its glory… not 
particularly impressive, hmmm? Just try to figure out what it does without some 
commentary, though. Notice that the +*'1 instruction operates on the value of 
&��'�� ����'���� as defined in the COM file, not ����'����’s absolute offset 
within segment C800.

COM programs generally assume that all four of the !', 	', �', and '' registers 
have the same value, but !' and '' hold the essential values for our code. I load 	' 
and �' from the adjusted !' value. '' cannot point into the nonvolatile memory, 
because that RAM has hardware write protection.

Fortunately, as long as we only +*'1, +&+, ! ??, and )�� from the stack, whatever 
values the BIOS put in '' and '+ will work fine. I have not investigated how deep 
the default BIOS stack may be. Should your program need lots of stack space for 
some peculiar reason, you should certainly create a stack somewhere else.

Although I didn’t find this written down anywhere, the BIOS in my system 
requires that you restore at least 	' and �' before the extension returns. As usual, 
the final )��� restores !' from the stack. I save and restore all the segment 
registers, even though the requirements surely depend on which BIOS you’re using.
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FDBExt also marks a departure from the code you’ve seen so far: notice that I’m now 
using the �' and (' segment registers that appear only in ’386 and higher CPUs. 
As a result, this code will not run on 8088 or 80286 systems. I don’t include any 
tests for the CPU type, as I assume we’re all responsible folks around here. Don’t try 
this on your old clunker PC just to see what happens… it won’t work!

Yes, we could rewrite FDBExt to work on any 80x86 CPU, but it’s long past time to 
start using hardware that’s been around since 1985. OK?

Capturing Interrupts
The remainder of FDBExt’s initialization code captures the BIOS timer and Non-
Maskable Interrupt vectors. You’ve seen similar routines in Chapters 5 and 7, so 
refer back to those source files if you need a refresher.

Listing 3 shows the timer interrupt handler. The Firmware Development Board’s 
RAM has its write protection hardware active, forcing each handler to enable 
writes before updating its variables. The !' segment stored in the interrupt vector 
equals the 	' value set up in Listing 2, allowing the �! instruction to reach 
���8!�� using !' without saving, loading, using, and restoring 	'.

Because the RAM write enable bit shares the same port as the watchdog timer bit, 
I made the &6��) 0 and !����) 0 routines toggle the watchdog on each BIOS 

Listing 3
The BIOS extension captures the BIOS timer interrupt to count the ticks since the most 
recent reset. The value of CS stored in the interrupt vector allows access to the 
extension’s variables in nonvolatile memory. Because this code fragment was assembled 
in ’386 mode, the INC instruction increments a 32-bit counter in one shot and the final 
JMP uses the SMALL keyword to specify that OldTimer holds a seg:off address.

+)&! ���81������

+*'1  ;
+*'1 	;

! ?? &6��) 0 ���������2�����

�! B!'#���8!��C �����8!������$.������2����
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timer tick. Measuring the bit’s active time shows that the interrupt handler requires 
about 30 µs on a 33 MHz ’386.

As I mentioned in Chapter 7, it’s generally a Bad Idea to toggle a watchdog from a 
timer interrupt, because the main routine can crash while the timer tick continues 
running. However, this trick can keep the watchdog at bay while loading a big 
program from diskette. The mainline code can always capture the timer tick and 
implement my favored method after it starts running.

Assuming it gets that far, of course! If something goes wrong during the disk boot 
or program setup process, we’ve just defeated the entire purpose of the watchdog 
timer. Think about it, then decide just how paranoid you should be. Which is 
worse: a failure that you don’t detect or a system that doesn’t start up correctly?

Enabling ’386 assembly mode has some interesting side effects. Even though the 
���8!�� variable occupies four bytes, the assembler updates it with one 32-bit �! 
instruction. The /0+ at the end of the routine chains to the previous interrupt 
handler as usual, but you must specify '0 ?? to indicate a 16-bit ��-#��� value, 
rather than a 32-bit ? )(� offset in the current segment.

I like that sound… even in real mode!

Failing Power
Our BIOS extension responds to power failures by write protecting the RAM and 
spinning in a safe shutdown loop. While writing this code, though, I uncovered a 
nasty bug: NMI glitches. While they shouldn’t pose a problem in most systems, it’s 
worth thinking about them if you’re using a power monitor.

The Firmware Development Board includes a trimpot that adjusts the voltage on 
the MAX691’s PFI pin. The correct setting activates -PFO when the supply 
voltage falls near the system’s lower tolerance limit; say -5% on a ±10% system. The 
remaining 5% gives you enough time to shut the system down before the voltage 
goes completely out of tolerance.

In small microcontroller systems, the MAX691 may be the only source of Non-
Maskable Interrupts. In our situation, though, many parts of a PC can contribute 
to the NMI signal. Our handler must examine the board’s power failure status and 
either chain to the previous NMI handler if it finds -PFO high (inactive) or shut 
down the system when it sees a low -PFO input.

Here’s the problem: if the supply voltage falls slowly enough, a small supply glitch 
that would normally be well within tolerance can trigger the power failure 
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comparator and generate a Non-Maskable Interrupt. By the time the CPU 
responds to the NMI and checks the -PFO status bit, however, the glitch has long 
since Gone Away, even though the voltage continues to fall.

You can simulate this by very slowly adjusting the PFI trimpot. Tease it until the 
system shuts down, then leave the trimpot unchanged. The system will probably 
shut down sporadically every time you reboot it.

With none of the NMI sources active, the interrupt handler chain eventually passes 
control to the default BIOS handler. Guess what? On my system, the default 
handler disables further NMIs caused by the ISA -IOCHCK signal. Thus, when the 
power really does fail after the glitch, the NMI handler never gets control.

If the MAX691 presents the only -IOCHCK interrupts in your system, your 
interrupt handler can check the status bit in I/O port 61h to verify that the NMI 
actually came from the bus. Because the system board latches that status bit when 
-IOCHCK goes active, the status will not go away even when the glitch vanishes.

However, if you have several I/O boards that can produce -IOCHCK interrupts, the 
situation becomes somewhat messier. Your handler must test the board’s status and 
chain to other handlers if it finds no problem. An NMI glitch from your hardware 
will set the -IOCHCK latch before vanishing. Your handler will find nothing wrong 
with the PC’s power, then incorrectly pass control to other handlers that will also 
find nothing wrong on their boards.

It should be obvious that this a situation that’s best avoided.

In Schematic 2 in the previous chapter, C4, a 1 nF capacitor on the PFI trimpot’s 
wiper, filters the glitches with a 10 µs time constant that made the trimpot 
teaseproof. You should, of course, evaluate this trick in your system to verify that it 
does not delay the interrupt too much during a real power failure.

An alternative approach, described in the MAX691A data sheet, applies hysteresis 
around the power failure comparator. Because -PFO switches low as PFI drops, a 
high value resistor between those two pins will yank PFI down and prevent the end 
of the glitch from restoring -PFO. Assuming, of course, that the comparator’s 
propagation time doesn’t glitch it the other way!

You can also add a digital latch that preserves the -PFO glitch, much as the system 
board latches -IOCHCK. Remember to include hardware that clears the latch on 
each hardware reset to prevent a hot NMI.
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In any event, one of the conditional assembly options shown in Listing 4 inserts a 
timing loop that starts on the first NMI. It displays the loop count on the LEDs 
until the next NMI, at which time it locks up the system. You can use ExtTest.BIN to 
see how this problem looks on your system.

The CPU automatically disables all interrupts within the NMI handler, preventing 
watchdog timer updates during the final lockup loop. The MAX691 times out and 
resets the system shortly after the second NMI occurs.

Listing 4
This NMI handler normally shuts down the system in response to a power failure. If the 
supply voltage falls very slowly or if you tease the trimpot controlling PFI, you can get a 
glitch on NMI that vanishes by the time this routine gets control. The code shown here 
includes an optional section that displays the elapsed time from the first NMI to the next, 
then locks up the system. If these glitches pose a problem in your system, the code can 
also lock up in response to any NMI caused by the ISA -IOCHCK input.
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Listing continues on next page
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Resets and the Worst Hack
The Original IBM PC AT’s design engineers faced a serious problem. They needed 
a way to get their shiny new 80286 CPU back into real mode, even though the chip 
had no way to shut off its Protected Mode Enable bit. The 80826 emerged from 
hardware reset in real mode, but once the program entered protected mode, the 
80286 architecture provided no way back. Their solution stands as a monument to 
engineering ingenuity.

The AT included an 8042 microcontroller managing a variety of tasks implemented 
with discrete logic in the Original PC. The designers simply added a command to 
the 8042’s repertoire that toggled the 80286 CPU’s Reset line.

Listing continued from previous page
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Blam… back to real mode!

However, the BIOS normally clears the system RAM and runs power-on 
diagnostics immediately after a hardware reset, which was not quite what they 
wanted. The engineers reserved a byte at address 0F in the Real-Time Clock’s 
battery backed CMOS RAM to indicate the reason for the shutdown.

Before the BIOS gets too far along in its reset sequence, it asks the keyboard 
controller what caused the reset to occur. If the controller reports that it executed a 
)���� command, as opposed to participating in a power-on or manual reset, the 
BIOS reads the shutdown reason code from the clock’s RAM. If that byte indicates 
a transition from protected to real mode, the BIOS branches directly back to the 
mode switch routine.

The only reason you think it’s a kludge is that you didn’t design it. It’s really a clean, 
general, and useful way around an otherwise insurmountable hardware limitation. 
Remember the Consulting Engineer’s First Principle: you don’t get paid if the 
system doesn’t work.

Intel got the message loud and clear. Starting with the 80386, all their CPUs enter 
and exit protected mode at the flip of a bit (well, all right, you need a little setup 
and takedown code on either side of the bit-flipping instruction, too). By that time, 
however, a considerable body of software used the Officially Approved ’286 
method. You can even buy hyperthyroid keyboard controllers with special fast-path 
hardware logic to recognize and speed up the )���� command. I kid you not.

The shutdown reason code in the clock’s RAM can select one of several different 
routines after a reset. Most are ill-suited for civilian use, but one may come in 
handy in certain desperate situations. I’ll show how to use it and you figure out 
when the trick might be appropriate. Fair enough?

If the shutdown reason code is 0A, the BIOS vectors through the pointer stored at 
address 0040:0067 to the restart code. That code is normally within the BIOS, but 
you can redirect the BIOS to your own routine. Because the DRAM refresh 
hardware continues to run during the shutdown, you regain control immediately 
after a hardware reset with nearly everything intact. Of course, all the CPU 
registers except !'#�+ lose their values, so you must consider a few, ah, minor 
details that I’ll leave as an exercise.

Listing 5a shows FDBExt’s rudimentary restart routine, which simply increments a 
counter and sends a second )���� command to the keyboard controller. The BIOS 
clears the shutdown reason code before branching to the routine and the hardware 
treats the second reset as a complete, normal, power-on reset.
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Although our restart handler lives in the Firmware Development Board’s 
nonvolatile RAM, because it must exist whenever the CPU uses it, FDBExt cannot 
write its address into the vector at 0040:0067. At least on my systems here, that 
restart vector changes after FDBExt exits, although the shutdown reason code does 
not. That means FDBExt must put the address in a spot that ExtTest knows about, 
but somewhere that the BIOS won’t wipe out during its startup processing.

Listing 5b shows the code from ExtTest that transfers the vector from our 
nonvolatile RAM to address 0040:0067 and sets the shutdown reason code in the 
clock’s RAM. Later, in response to a keyboard command, ExtTest executes this 
instruction to reset the system using the keyboard controller’s reset command:

���6G�
JA��
��H�

The BIOS then executes the code in Listing 5a, goes through a second reset with all 
the normal power-on tests, and reloads ExtTest from diskette. That’s all there is to 
it. Easy, once you know the secret, isn’t it?

Now, if anybody asks you about the Worst Hack in PC-dom, you can say you’ve 
been there and done that. Tell me if you put it to good use and what you did with 
the honorary T shirt.

Listing 5a
This code in FDBExt.ASM gains control after the keyboard controller blips the CPU’s 
Reset line. The BIOS checks the shutdown reason code at address 0F in the Real-Time 
Clock’s CMOS RAM; if that value is 0A it vectors through the address stored at 
0040:0067, which ExtTest aims at this routine.
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Release Notes
The files for this chapter include the modified LoadExt boot sector loader that 
stuffs a BIOS extension into the FDB’s nonvolatile storage. You also get FDBExt 
and ExtTest to show you how the whole process works. The ReadMe.txt file and 
comments in the source code explain how to load and run the code.

You may find that the interactions between the NMI hardware, the BIOS power-on 
resets, and the BIOS extensions on your target system don’t behave quite as I’ve 
described. If the sample programs deliver strange results, add some trace outputs 
and monitor the code’s progress through the various stages. A few LEDs that go 
ON in the right order (or don’t go ON at all!) can quickly reveal how your system 
works.

As always, patience and careful sleuthing will give you far more understanding than 
applying an In-Circuit Emulator…

Listing 5b
This code from ExtTest.C loads the vector and sets the shutdown reason code into the 
Real-Time Clock’s CMOS RAM. Note that the BIOS restart vector cannot be not in the 
interrupt table because neither a hardware nor software interrupt invokes it.
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