
71

5 After This Brief Interruption
Stop me if this hasn’t happened to you.

When the clothes dryer buzzed, I decided to take a break. The laundry room light
went nova, so I detoured to the garage for a new bulb. On my way through the
machine shop, I perched the laundry basket on the workbench while pocketing
some outdoor pole lamp parts I’d fixed the previous evening.

I punched the garage door opener, dug a new bulb out of the lamp stash, walked
down the driveway to reassemble the widget, then retrieved the day’s mailbox
treasures. Mary leaned out of the kitchen door to say the call was for me. I passed
the mail to her and snagged the phone on the way by.

Several hours later Mary stuck her head in the office and asked, “Why is the garage
door open and what have you done with the laundry?”

We pros call this a blown stack, although, to be fair, there are other interpretations…

The Firmware Development Board now has enough hardware that we can
investigate something that often goes unmentioned: what really happens when a
hardware interrupt occurs? I’ll concentrate on real mode and leave protected mode
for a different book.

Our first task must be nailing down the nomenclature. You have probably read
about interrupt handlers, exceptions, traps, faults, IRQs, ���s, and vectors, but the
definitions are often either vague or just plain wrong. After settling those issues, we
can examine the code that responds to interrupts. Finally, I’ll tell a war story about
PC interrupts that should curl your keyboard.

Let’s start this discussion at the beginning, all the way down at the bare silicon.

The Inside Story
Intel 80x86 CPUs handle interrupts from several sources: external events,
instructions, and internal problems such as the dreaded divide-by-zero error.
Fortunately, the CPU uses the same basic mechanism in all situations.

External interrupts occur when hardware outside the CPU raises its INTR
(Interrupt Request) pin, which may happen at any time. The CPU hardware
activates its INTA (Interrupt Acknowledge) pin and reads a single byte from the
data bus. That byte identifies the interrupt source and can, in principle, funnel up

Embedded PCs ISA Bus.book : Chapter 5.fm Page 71 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

72

to 256 different external interrupts through the single INTR pin. In the PC, as we
will see later, only 15 external interrupts contend for the CPU’s attention. The
CPU ignores INTR when the Interrupt Enable bit (a.k.a. the Interrupt Flag or ��)
in the ����� register is zero.

Unlike external interrupts on the INTR pin, Non-Maskable Interrupts arriving at
the NMI pin cannot be ignored. There is only one Non-Maskable Interrupt,
because the CPU does not read an ID byte from the data bus. Hardwired circuitry
(or, more precisely, microcode) inside the CPU causes NMI to produce ��� 	
�.
Although the CPU cannot disable NMI inside the chip (hence the name), the PC
system board includes circuitry external to the CPU for that purpose.

Software interrupts occur when the CPU executes one of a class of instructions
devoted specifically to causing them. The instructions have mnemonics like
��� �	�, ���
, �
���, and so forth. Like interrupts on the NMI pin, software
interrupts cannot be ignored. Unlike external interrupts on the INTR pin, they are
entirely predictable: whenever the CPU executes the instruction, the corresponding
software interrupt ensues.

Finally, errors or similar conditions within the CPU trigger exception interrupts.
These interrupts are generally data dependent, so a given instruction may not cause
an exception every time. However, they can be reproduced if you set all the
hardware to precisely the same state. Exceptions cannot be ignored or suppressed.

Each interrupt, regardless of cause, corresponds to a number from 00h through
0FFh (in C, that’s 0x00 through 0xFF) called, oddly enough, its Interrupt ID,
interrupt type, or just plain interrupt number. By convention, Interrupt IDs use hex
notation, although some sources prefer the decimal equivalent.

However, I’ve seen one reference that managed to convert a hex Interrupt ID into
decimal, then listed the decimal value as hex. Moral of the story: you must have more
than one book on your shelf to crosscheck things that seem out of whack. To help
prevent a similar misinterpretation in this book, I’ll always indicate that the
interrupt ID is in hex: ����	
� or ��� �	
, as appropriate.

An interrupt’s raison d’être (you should pardon my French) is diverting the CPU’s
attention from its current task and setting it to work on something else, something
that is, presumably, more important. That something, the code associated with each
interrupt, bears the name interrupt handler or interrupt service routine (a.k.a. ISR).
As a general rule, interrupt handlers should be short routines that cope with
whatever triggered the interrupt, then return to the interrupted, lower-priority task
as rapidly as possible.

Embedded PCs ISA Bus.book : Chapter 5.fm Page 72 Tuesday, July 1, 1997 7:32 AM

Chapter 5: After This Brief Interruption

73

An interrupt vector holding the handler’s address provides the link between an
interrupt source and its handler. In Intel 80x86 systems, the interrupt vector’s
address is simply the Interrupt ID multiplied by four: ��� 	�� uses the vector at
address 0020 (hex, naturally). The collection of all 256 (decimal) vectors occupies
1024 bytes of storage and is referred to as the Interrupt Vector Table or, on ’286 and
higher CPUs, the Interrupt Descriptor Table.

Although everyone knows that the IVT starts with the ��� 		� vector at address
0000:0000, it turns out that the ���� instruction (Load Interrupt Descriptor
Table) can set the table’s starting address and maximum length, even in real mode.
The power-on default, of course, matches the 0000:0000 and 1024 bytes found in
the earliest 8086 CPU. While operating systems may find reason to relocate or
resize the IVT, ordinary programs have little need of such shenanigans.

Your interrupt handler code must obey several rules, which we’ll explore
throughout this chapter, as it executes. The basic rule is simple: the interrupted
program should resume execution as though the handler never got control, apart
from the time required to complete the handler. Any changes the handler makes
must occur to hardware or variables it controls, without affecting the bystanders.

Assuming you’ve written a good handler, the final piece of the puzzle involves
returning from the interrupt handler. Exactly how you do that depends on which
type of interrupt your code handles.

For all external and software interrupts, the CPU pushes the ����� register, the ��
register, and the �� register onto the stack, with the stacked CS:IP indicating the
address of the instruction that would have been executed had the interrupt not
occurred. If an external interrupt arrived through the INTR pin, the CPU then
clears the Interrupt Flag to suppress all further external interrupts. Although NMI
interrupts do not actually clear ��, the CPU ignores the INTR pin until the NMI
handler ends with an ���� instruction.

Exception interrupts, triggered by the CPU’s internal hardware, come in three
flavors: faults, aborts, and traps. You must spend some time with the references to
understand the differences; you’ll see only the first two in real mode, unless you’re
exceedingly unlucky. For our purposes, faults and aborts push the address of the
current instruction, the one that failed. Conversely, traps push the address of the
next instruction, just like external and software interrupts.

Although you can, in principle, fix up the condition that caused a fault and
successfully re-execute the failed instruction, this can be difficult in actual practice.
A trap, on the other hand, is over and done with by the time your handler gets
control, meaning that you must continue with the next instruction, if possible.

Embedded PCs ISA Bus.book : Chapter 5.fm Page 73 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

74

With that in mind, the ���� instruction at the end of each handler restores the
CPU’s �����, ��, and �� registers from the stack, precisely what we want
regardless of the interrupt’s cause. Restoring the ����� register from the stack
restores the �� bit, which, if this was an external interrupt, re-enables further
external interrupts.

To summarize: when the CPU detects an interrupt, it pushes the �����, ��, and
(usually incremented) �� registers on the stack, computes the interrupt vector
address from the Interrupt ID (which may be supplied by external hardware,
internal hardwiring, or the instruction), fetches the starting address of the interrupt
handler from the IVT, and transfers control to it.

When the handler finishes its work, it executes an ���� instruction that restores
the registers from the stack. The CPU picks up where it left off.

Piece of cake, yes?

The Rest of the Story
The Intel 8259 Programmable Interrupt Controller holds the key to understanding
PC interrupts. As with any Intel peripheral bearing the term “Programmable” in its
name, the 8259 is a maze of modes, options, control bits, and gotchas. I’ll
concentrate on how it behaves in a PC and leave the rest for an evening of data
book spelunking. Note that, despite the obvious acronym, an Intel 8259 PIC has no
relation to a PIC microcontroller made by Microchip Technology, Inc.

As shown in Schematic 1, the PC system board uses a pair of 8259s in tandem to
provide 15 external interrupts. Of course, progress has long since subsumed the
8259 chips into an LSI package (along with all the other CPU support circuitry),
but the PC Compatibility Barnacles dictate how that hardware must behave.

Word of warning: if you’re contemplating doing anything at all out of the ordinary,
remember that the 8259 data sheet does not necessarily apply to the LSI chips
inside your PC. You should have the real specs on the actual LSI marvel you’re
using, as modes or functions not used in “normal” PC applications may not work
quite correctly. Give them a go, but don’t be surprised at unexpected results.

Indeed, even if you have the appropriate specs, don’t be surprised if the hardware
doesn’t quite match the documentation. Often, the folks who design the hardware
don’t talk to the documentation writers and neither discuss matters with the testers
who verify everything.

Embedded PCs ISA Bus.book : Chapter 5.fm Page 74 Tuesday, July 1, 1997 7:32 AM

C
hapter 5:

A
fter T

his B
rief Interruption75

Schematic 1
The system board circuitry devoted to interrupts boils down to a pair of 8259 Programmable Interrupt Controller chips
or their LSI equivalents. This diagram summarizes the 8259 Interrupt Request (IRQ) numbers, the CPU Interrupt (INT)
numbers, and the vector addresses for each external interrupt. Because the slave 8259 cascades through the master
8259’s IRQ 2 pin, IRQ 8 through IRQ 15 have higher priorities than IRQ 3 through IRQ 7. The BIOS redirects IRQ 9 to
the IRQ 2 vector maintain compatibility with older PCs; the pin that was IRQ 2 on PCs is labelled IRQ 9 on ATs.

Embedded PCs ISA Bus.book : Chapter 5.fm Page 75 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

76

Each 8259 is an I/O device with two internal addresses selected by the A0 address
line. Unlike the 82C54 circuitry in the previous chapter, you cannot use 16-bit I/O
cycles with the 8259, because it expects separate I/O operations at each port. The
master 8259 resides at addresses 0020 and 0021, with the slave at 00A0 and 00A1.

For what it’s worth, the terms master and slave seem to have fallen out of favor
lately. I must continue to use them here, because that’s how Intel worded the 8259
data sheet. Primary and secondary may be more, ah, PC compatible, but you won’t
find them in the data books and references.

The BIOS initializes the 8259s for normal PC interrupt operation, which should
suffice for most embedded PC code. Figure 1 shows an approximate diagram of an
8259 after the BIOS finishes its setup, minus all the control logic and special cases.

Each 8259 has eight Interrupt Request inputs called IRQ 0 through IRQ 7, with
the slave’s IRQ inputs called IRQ 8 through IRQ 15 on the PC. By convention,
the 8259’s IRQ inputs bear decimal numbers. These IRQ numbers are simply labels
with no mystical significance. As you’ll see later, though, the slave’s IRQ numbers
are particularly inauspicious.

A rising edge on any IRQ input constitutes an interrupt request, so the 8259 turns
on the corresponding Interrupt Request Register bit. You can force the 8259 to
ignore specific combinations of IRQ inputs by turning on the appropriate Interrupt
Mask Register bits. A 1 bit in the IMR disables the corresponding IRQ.

Assuming IMR does not mask the IRQ, the 8259 then activates its INT output,
which raises the CPU’s INTR input. As described above, that triggers a hardware
interrupt if the CPU’s Interrupt Flag is set. A 1 bit in �� enables the interrupt. The
CPU blips the INTA once to tell the 8259 to resolve its highest priority interrupt.

If two or more IRR bits are 1 simultaneously, the 8259 figures out which has the
highest priority and saves the rest for later. The priority rules can be complex and
may change on the fly if you reprogram the 8259, but, in normal PC operation, the
rule reads lowest numbered IRQ wins.

A considerable amount of time may elapse between an IRR bit going active and the
CPU’s response. If additional IRR bits become active in the meantime, the 8259
will recognize the highest priority interrupt at the time of the first INTA pulse from
the CPU. The other IRR bits remain active and will cause additional interrupts as
they become the highest priority inputs in turn.

In any event, the winning IRR bit turns on the corresponding In-Service Register
(also an ISR, not to be confounded with the Interrupt Service Routine described

Embedded PCs ISA Bus.book : Chapter 5.fm Page 76 Tuesday, July 1, 1997 7:32 AM

Chapter 5: After This Brief Interruption

77

above) bit to indicate that the CPU has acknowledged the interrupt request. Several
ISR bits can be active at any one time, all but one indicating that its lower-priority
interrupt handler has been interrupted by a higher-priority interrupt.

So far, so good?

The CPU blips the INTA line once more to tell the 8259 to put the Interrupt ID
on the data bus. This bus activity is not a standard I/O operation, because the -IOR
and -IOW lines remain inactivate. The INTA and INTR control lines do not appear

Figure 1
Although the 8259 Programmable Interrupt Controller has a bewildering variety of modes
and settings, this diagram shows roughly how it works in normal PC operation. A rising
edge on an IRQ line sets an IRR bit. If the corresponding IMR bit doesn’t mask it, the
priority resolver decides if the new IRR has a higher priority than any of the bits currently
set in the ISR. If so, it activates the 8259’s INT output. When the CPU acknowledges the
interrupt, the 8259 combines the IVB with the IRQ number and sends an Interrupt ID to
the CPU, then turns on the appropriate ISR bit. At the end of the interrupt handler, an EOI
command from the CPU resets the ISR and IRR bits. If any other IRR bits remain active,
the entire process starts over again.

Embedded PCs ISA Bus.book : Chapter 5.fm Page 77 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

78

on the ISA bus, which means that you cannot put an 8259 on an I/O board and
produce more vectored interrupts for your own use, no matter how delightful that
prospect may seem or how much it would simplify your embedded life.

The one-byte Interrupt ID seen by the CPU has two fields: five high-order bits
from the 8259’s Interrupt Vector Byte register and three low-order bits identifying
the current ISR bit. The BIOS loads a different value into each 8259’s IVB register
during the power-up sequence: the master gets 0x08 and the slave gets 0x70.

Once the CPU reads the Interrupt ID, it proceeds as I described earlier: pushes
registers, turns off ��, converts the ID to a RAM address, fetches the
corresponding interrupt vector, and starts the interrupt handler. These operations
occur in lockstep sequence, without any further interruption.

Meanwhile, the 8259 can accept a new interrupt on any IRQ without an active IRR
bit. If an IRQ goes active, the 8259 compares its priority to the highest ISR bit and
recognizes only higher priority IRQs by turning on the INT output. As before, the
CPU responds to or ignores its INTR input depending on the Interrupt Flag’s state.

The interrupt handler routine must write an �
� (End Of Interrupt) command to
the 8259 to clear the ISR bit and re-enable any lower-priority interrupts. The
BIOS sets the 8259 up so that what’s called a ����������� �
� will reset the
highest-priority ISR bit. You can also issue a �������� �
� to reset a different bit,
but this isn’t usually desirable.

The ����������� �
� command is 0x20. Yes, folks, that’s identical to both the
master 8259’s base I/O address and the first address of its interrupt vectors in
RAM. You can see why named constants are such a good idea… you cannot tell
what the number 0x20 is, represents, or will do, just by staring at it.

Interrupts on the slave 8259 work slightly differently. As you can see from
Schematic 1, the slave’s INT output connects to the master’s IRQ 2 input and the
two chips have different SP/-EN input settings. The slave IRQ activates its INT
output after resolving its own IRQ priorities. That signal triggers the master’s
IRQ 2 and forces the usual priority resolution. When the CPU responds to the
master’s INT, however, the slave provides the Interrupt ID.

In this case, two ISR bits become active: one in the slave 8259’s ISR that identifies
the actual interrupt and ISR bit 2 in the master 8259 that indicates an active slave
8259. The interrupt handler (forgive me for not calling it an ISR) for each slave
IRQ must send an �
� to each 8259 to clear both ISR bits.

Embedded PCs ISA Bus.book : Chapter 5.fm Page 78 Tuesday, July 1, 1997 7:32 AM

Chapter 5: After This Brief Interruption

79

Collision Alarm!
The default setting for the master 8259’s Interrupt Vector Byte register may be the
second-worst idea in the whole PC kingdom. I had long believed it represented a
classic case of what happens when you ignore what’s printed in the data books, but
the actual story has a surprising twist.

As you saw earlier, events inside the CPU generate exception interrupts. Intel now
reserves Interrupt IDs 00h through 1Fh for those exceptions, but the 8086 and
8088 did not use all 32 IDs (nor do the 80486, the Pentium, and the Pentium Pro,
for that matter). The PC BIOS code used several of those reserved interrupts for its
own software functions and hardware interrupts. Inevitably, when subsequent Intel
CPUs triggered exceptions using interrupts already used by the BIOS, the two
functions collided with a loud crash.

In late 1996, Dave Bradley presented a history of the IBM PC at an IEEE session
in Research Triangle Park, NC. When he mentioned that he wrote the Original
PC BIOS, I asked him why he used those particular BIOS software interrupt
numbers. He just rolled his eyes. Obviously, he’d gone through this before.

He said it was a simple case of Hobson’s Choice. Microsoft had already laid claim
to all the interrupt vectors upward from 20h for their own software. In late 1980,
Intel had not yet reserved any of the unused interrupts below 20h; that came later,
when Intel codified their 80186/80188 designs. So, Dave simply put the BIOS
functions and hardware interrupts in the only vacant spots shown by his data books.

Then, in 1982, Intel published those 80186/80188 design manuals and laid claim
to those interrupts. Allowing for the usual publication leadtimes, they had no way
of knowing that the IBM PC was about to become the tail wagging their dog.

As usual, there’s enough blame to go around. However, the moral of this story
remains the same: don’t tread on reserved ground! If you know of a restriction, you
must assume somebody will eventually use it… even if your design lacks the staying
power of the IBM PC architecture.

In any event, Figure 2 summarizes the conflicts between the CPU, BIOS and
hardware interrupt IDs. Many of the CPU exceptions occur only in protected
mode, where the real-mode BIOS becomes irrelevant. BIOS and DOS hardcode
the remainder in a thick layer of PC Compatibility Barnacles.

You can avoid the conflicts at ��� 	�� through ��� 	�� by writing a different
Interrupt Vector Byte into the master 8259. Although only protected-mode
operating systems require this, we embedded systems types may find it a handy

Embedded PCs ISA Bus.book : Chapter 5.fm Page 79 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

80

Figure 2
Intel’s documentation now reserves Interrupt IDs between 00h and 1Fh for CPU
exceptions, but the IBM PC BIOS and interrupt hardware got there first. This table
summarizes the collisions. CPU exceptions marked with an asterisk occur only in
protected mode, making real-mode BIOS conflicts nearly irrelevant. You can change the
8259’s Interrupt IDs by writing a new value into the Interrupt Vector Byte register.

Int ID Intel CPU Exception BIOS Function PC Hardware IRQ

00 Divide-By-Zero Error

01 Step/Debug

02 NMI pin

03 Breakpoint

04 INTO (Overflow)

05 Bound Check Print Screen

06 Invalid Opcode

07 x87 Not Available

08 Double Exception IRQ 0 RTC

09 287 Segment Overrun IRQ 1 Keyboard

0A Invalid TSS * IRQ 2 / IRQ 9 Video

0B Segment not present * IRQ 3 COM2

0C Stack fault IRQ 4 COM1

0D General protection IRQ 5 LPT2

0E Page fault * IRQ 6 Diskette

0F Reserved IRQ 7 LPT1

10 x87 Error (-ERR pin) Video functions

11 Alignment Check (486+) * System info functions

12 Machine Check (Pentium+) Get memory size

13 Reserved Disk I/O functions

14 Reserved Serial I/O functions

15 Reserved System functions

16 Reserved Keyboard functions

17 Reserved Printer functions

18 Reserved Cassette BASIC (!)

19 Reserved Bootstrap loader

1A Reserved Time Functions

1B Reserved Ctrl-Break handler

1C Reserved System timer tick

1D Reserved Video parameter tables

1E Reserved Diskette param tables

1F Reserved Pointer to 8x8 graphic font

Embedded PCs ISA Bus.book : Chapter 5.fm Page 80 Tuesday, July 1, 1997 7:32 AM

Chapter 5: After This Brief Interruption

81

trick. The standard alternate seems to be ��� 	�; if you’re going to be
nonstandard, you may as well pick the standard method.

I’ll leave those machinations as exercises for you, as we already have entirely too
many details in this chapter. You should certainly peruse the data books before
trying anything fancy. But… you knew that already, didn’t you?

While you’re doing that, notice that the slave 8259 IRQ inputs, IRQ 8 through
IRQ_15, use the same digits as the master 8259’s Interrupt IDs. Many references
list them both in decimal, adding to the confusion: it sure looks like IRQ 15
(decimal) ought to match up with ��! � (decimal), doesn’t it? At least now you
have a fighting chance of seeing why IRQ 15 isn’t related to ��! 	��…

Three Timers Ticking
Having stunned the subject, let’s back up and run it over. The TimeTest.C demo
program produces three external interrupts at known rates using the Firmware
Development Board’s 82C54 timer, then reports on the handler response times. As
before, I wrote the code in Micro-C. You can load it on your target system using
either the diskette boot routine or MON86’s serial HEX transfer command.

The program puts all three 82C54 timers into Mode 2, which produces a short blip
when the counter reaches zero. I picked a 5 ms period for the timers to simplify
scope sync: 200 traces per second make it easy on the eyes and allow plenty of time
for the handlers to finish up before the next interrupt.

Timers 0, 1, and 2 drive IRQ 5, IRQ 10, and IRQ 15, respectively. The master
8259 drives IRQ 5. Both IRQ 10 and IRQ 15 have higher priorities, because
they come through IRQ 2 by way of the slave 8259.

The first order of business is writing an interrupt handler. Although, for reasons
that will soon become evident, I favor assembly language over C for this task,
Listing 1 shows a perfectly serviceable Timer 0 handler written in Micro-C. It
resembles a standard C function, except for the ��������� macro appearing
before the function name.

You should remember that C functions and their inline assembly code may change
nearly anything, including the CPU registers, before returning to their caller. This
is obviously inappropriate behavior for an interrupt handler that must return
control to the interrupted program with all registers intact. Although the Micro-C
compiler saves and restores ��, we must handle the remaining registers by ourselves.

Embedded PCs ISA Bus.book : Chapter 5.fm Page 81 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

82

Dave Dunfield suggested the ��������� macro shown in Listing 2. It ���"es all
the CPU registers and the ?!�#� variable used by the Micro-C compiler and
runtime routines, then ����s the C function, which can be as rude as it chooses.
When the function returns, the ��������� macro �
�s the saved values off the
stack and performs the obligatory ���� instruction after restoring all the registers.

Different compilers turn standard C functions into interrupt handlers using
different methods, but they all boil down to essentially the same thing: save and
restore the CPU state around the C code. Check your compiler’s manual for the
details, then write a few testcases to verify that you understand what’s going on.

It should be obvious that hardware interrupt handlers cannot have any parameters,
nor may they return results in the CPU’s registers. By definition, all the CPU
registers and the stack will be in an unknown state (as far as the C code knows)
when the interrupt occurs, so the handler must restore them to the same condition
as it exits. Those restrictions leave no place for parameters nor return values!

With that in mind, "$�%&�'�	 in Listing 1 turns on bit 0 in the parallel printer
port, reads Timer 0 and records the value in a global array, sends the all-important
�
� to the 8259, and shuts the printer port bit off. Triggering your scope on

Listing 1
Interrupt handlers are generally written in assembly language, but you can get away with
C in some cases. This handler turns on a parallel printer port bit, records the current timer
value in an array, sends an EOI to the 8259, and turns off the parallel port bit. The
INTERRUPT macro on the first line is the key to using a standard Micro-C function as an
interrupt handler. See Listing 2 for the macro definition.

()**)(
()���#�'�	��$'%+$'����!�'',�!��$�%&�')(
()����,#�����!�'',�!����#$�!�'����!'�&&�')(

���������-��#�'	"$�%&�'.�"$�%&�'�	-.�/

����,!�-�0��1����2���-�0��1����.�3�	4	�.5

������-6-��������7	87����1���899..�/
��������������7	87����1�
:8�;���$%��#�'-	2��
 <1����.5()���!���!�#��)(
���=

����,!�-��
 >�2��1�
�.5

����,!�-�0��1����2���-�0��1����.�?�@	4	�.5

���'�!,'�5

=

Embedded PCs ISA Bus.book : Chapter 5.fm Page 82 Tuesday, July 1, 1997 7:32 AM

Chapter 5: After This Brief Interruption

83

IRQ 5 and observing bit 0 on the printer port should give you a good indication of
how much time your CPU takes to respond to an interrupt.

The IRQ 10 and IRQ 15 handlers are similar, with a few wrinkles I’ll discuss in a
moment. Photo 1 shows the three IRQ pulses triggering their interrupt handlers.
Notice that the IRQ 5 handler runs to completion, even though the other two
handlers have higher priorities (remember: IRQ 10 and IRQ 15 trigger IRQ 2
on the master 8259, which outranks the master’s IRQ 5). "$�%&�'�	 runs with
interrupts off, because the CPU disables other external interrupts when it accepts
the first one: those other handlers don’t stand a chance.

Listing 3 shows the IRQ 10 handler. Compiling with ����_1 defined causes the
code to send �
�s that enable interrupts immediately after setting the parallel port
bit. Photo 2 shows the result: "$�%&�'�
 now interrupts "$�%&�'��A Even

Listing 2
A C function invoked by a hardware interrupt must not change anything used by the main-
line C code. This Micro-C macro saves all the CPU registers and the compiler’s ?temp
scratch variable, calls the interrupt handler, then restores everything before returning.

B%���������1��
�
����C	 ()���D������'�&�E,����%�)(

B%���������1����0-��.�-?��*���1��
�
���. ()��!$'!�����'�&�E,�)(

B%������1�����1
B%���������������-��.�$�#�/�F
������"���G�F
������"���G�F
������"���G�F
������"���G�F
������"�����F
������"�����F
������"�����F
������"�����F
������"�����F
����
�������F
���H
I����G2J!�#��F
������"���G�F
�����������9���1��
�
����F
����
�����G�F
���H
I���1�����1J!�#�2�G�F
����
�������F
����
�������F
����
�������F
����
�������F
����
�����G�F
����
�����G�F
����
�����G�F
����
�����G�F
��������F
=

B,�%���1�����1

Embedded PCs ISA Bus.book : Chapter 5.fm Page 83 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

84

though IRQ 15 has a lower priority than IRQ 10, the 8259 thinks that the
��K �	 handler has finished when it receives the corresponding �
�.

One implication of this situation: a second IRQ 10 hardware interrupt would start
another copy of "$�%&�'��! As far as the 8259 is concerned, "$�%&�'�� is
history when it sent an �
� command to shut off its In-Service Register bit. In our
case, the handler has finished long before the next ��K �	 pulse, but it’s something
to bear in mind if you have fast interrupts and slow handlers.

Photo 3 shows a somewhat more complex event: "$�%&�'�� can be interrupted by
more than one other interrupt handler. In this case, the BIOS timer tick on
��� L	� (IRQ 8) and "$�%&�'�
 get into the act. The timer tick has a higher
priority than IRQ 15, so even though IRQ 15 remains pending, the IRQ 8
handler runs first.

Photo 1
The IRQ signals shown in the top three traces trigger three interrupt handlers that report
their activity through the target system’s parallel printer port. This logic analyzer record
shows that HandlerT0 will run to completion, even with higher priority interrupts pending,
because the interrupt handler code does not set the CPU’s Interrupt Flag bit.

Embedded PCs ISA Bus.book : Chapter 5.fm Page 84 Tuesday, July 1, 1997 7:32 AM

Chapter 5: After This Brief Interruption

85

The source code includes the routines I wrapped around the BIOS interrupt
handlers to activate parallel port bits for those pictures. This trick comes in handy,
even for application programmers. Well, application programmers who care about
their code’s realtime performance… firmware folks, just like you and me.

Digital Readout
Even if you don’t have a scope or logic analyzer, you can still experiment with
interrupt handlers using the code from this chapter. Each handler reads back the
current value of its 82C54 timer channel and stores it in a global array. Once per
second, the mainline code calculates the minimum, running average, and maximum
values of those times for each channel, then sends the results to the host system
through the serial port, where it appears as shown in Figure 3.

Listing 3
If NEST_1 is defined, this interrupt handler will send an EOI command to the 8259
interrupt controllers and turn on the CPU’s Interrupt Flag bit. That allows other interrupt
handlers to gain control in the middle of this code. If the 82C54 timer were to produce
another IRQ before this code returns, the CPU would push its registers again and start
executing the handler from the top, which is generally not what you expect.

()***)(
()���#�'����$'%+$'����!�'',�!��$�%&�')(
()����,#�����!�'',�!���������%$'M����!'�&&�')(

���������-��#�'�"$�%&�'.�"$�%&�'��-.�/

�,!�-�0��1����2���-�0��1����.�3�	4	
.5

B��%�������1�

�,!�-��
 >�2��1�
�.5 ()�!�&&��&$N��+��$'��%���)(
�,!�-��
 >�2��1�
�.5 ()�!�&&�#$�!�'�+��$'��%���)(
��$O&�-.5 ()�$�%�$&&�+��!��'���!�'',�!�)(

B��%��

���-6-��������7�87����1���899..�/
�����������7�87����1�
:8�;���$%��#�'-�2��
 <1����.5()���!���!�#��)(
=

B���%�������1�

�,!�-��
 >�2��1�
�.5 ()�!�&&��&$N��+��$'��%���)(
�,!�-��
 >�2��1�
�.5 ()�!�&&�#$�!�'�+��$'��%���)(

B��%��

�,!�-�0��1����2���-�0��1����.�?�@	4	
.5

'�!,'�5
=

Embedded PCs ISA Bus.book : Chapter 5.fm Page 85 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

86

Photo 2
A different version of HandlerT1 sends EOIs to the 8259s and sets the CPU IF bit as soon
as it gains control. This record shows HandlerT2 running while HandlerT1 is suspended,
even though HandlerT2 has a lower priority. As soon as the 8259 receives an EOI, it
resets the highest priority ISR bit and generates a new INT output based on whatever IRR
bits remain active, which can result in precisely the situation shown here.

Figure 3
The interrupt handlers record the elapsed time between the IRQ signal and the 82C54
command required to latch the timer. The main program summarizes those values,
showing you how the different interrupt handlers respond. Displaying this response time
table on your host PC requires a terminal emulator capable of handling ANSI cursor
control strings, which is usually a matter of selecting the right option from a dialog box.

��!�'',�!�"$�%&�'���#��E��4�'����'
�#O�%%�%���P�������,����$�!�'� �**��%����&�M
��#�'��$'����!��M���'���D�%
QQQ���#��!�4!��#�!!�%����!����&��!��E�RRR
��!�'',�!�'��������!�#�������C>����!��S�T
��#�'��,''��!�H���#,#��N�'$E��H$4�#,#
��	��������	
������>U������>L����� <
������������<������	�������	������ >L
��
��������<	������C ������C �����
<
H$4��!$�S�,��%T�		��

Embedded PCs ISA Bus.book : Chapter 5.fm Page 86 Tuesday, July 1, 1997 7:32 AM

Chapter 5: After This Brief Interruption

87

Recall that 82C54 timers running in Mode 2 count down to zero, generate an
output blip (which we wired to an I/O bus IRQ line), then automatically reload
their maximum count value and continue to tick. The difference between the
maximum and current timer values equals the number of ticks since the reload,
precisely the elapsed time since the IRQ line went active.

Thus, the minimum and maximum values shown in Figure 3 give you an estimate
of how fast your handler can possibly respond to an interrupt and how long it may
take under less-than-ideal conditions. These figures change as the program
continues to run and the handlers interrupt each other in different patterns.

You can easily see that "$�%&�'�
, triggered by IRQ 15, runs considerably faster
than "$�%&�'�	 on IRQ 5. Listing 4 shows the reason: assembly language code
living inside a standard Micro-C function.

Photo 3
This photo shows both the Real-Time Clock and HandlerT2 gaining control during
HandlerT1’s execution. The RTC interrupt on INT 70 runs first because it has a higher
priority than HandlerT2 and does not re-enable interrupts until it ends.

Embedded PCs ISA Bus.book : Chapter 5.fm Page 87 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

88

Listing 4
This interrupt handler uses assembly language to reduce the overhead caused by saving
and restoring the CPU state. The result is a much faster handler that is also much harder
to understand, a familiar tradeoff in embedded systems work.

()***)(
()���#�'�
��$'%+$'����!�'',�!��$�%&�'���)(
()����,#�����!�'',�!���������%$'M����!'�&&�'�)(
()������
��**�$&&�!�������!$�!��$'���$'%��%�%������'�AAA)(
()��AAA�$�%�!���'�E��!�'��$'���$N�%�#$�,$&&M)(
()�H��'�*������'!�����"����$�%�H
I���2���O���'��!�����'�!�&���������%�)(

"$�%&�'�
-.�/
$�#�/

���" �G �$N��OM�!$�%�'�
���" �G

)
H
I ��2B��	 &$!�����#�'�

H
I �G2B�	C	�

�� �G2��

)
H
I �G2B�	CL� �&$E��!$'!,�
�� ��2�G

� ��2B�	<

�� �G2��

)
H
I �G2�� ��!�,��%$!$���E#��!�$%%'�����E
H
I ��2�G

)
���" �� �$N��#�'��OM�!$�%�'�
���" ��

)
H
I �G2B�	C	 '�$%�!���&$!���%����
�� ��2�G
VH� Q�,�!<

�,�!< �
�
H
I �"2��
�� ��2�G �AAA�$�%�!���H��
G�"� �"2�� '�$''$�E��!��#
H
I �G2�G �$N����'�&$!�'

)
H
I ��2B��������9-
)L)
. $�#�$!��,'��&���������������

)
H
I �G2<7��8 ��!���1�����&�#��!
��� �G2�G �'�N��,����!'M��'������%J
V�W ���� ���D�'���$M���S���!�������

)
H
I
7��82�G �!$����!�$+$M
��� ��:
��-<7��8. $���,�!���'�!�����$#�&�

)
���� H
I ��2B�
	 ���%�!����
��

�� �
	2�� �AAA�!��#$�!�'

�� ��	2�� �AAA�$�%��&$N�

)
H
I �G2B�	CL� �&$E���,!%�+�
�� ��2�G
��� ��2B���

�� �G2��

)

Listing continued on next page

Embedded PCs ISA Bus.book : Chapter 5.fm Page 88 Tuesday, July 1, 1997 7:32 AM

Chapter 5: After This Brief Interruption

89

Unlike the other two handlers, this one need not save and restore all the CPU
registers, because it knows precisely which ones it will use. Therefore, it gets started
faster, runs faster, and exits faster. In round numbers, it runs in a third of the
competition’s time… while becoming at least three times harder to write and
understand. You may choose which end of that tradeoff you prefer.

The main line code monitors the total stack used by the routines, which changes
while the program runs. This will be particularly noticeable with nested interrupts,
as the varying combinations use an unpredictable amount of stack space.

Unlike my blown cerebral stack, it’s essentially impossible to blow the stack in this
program, because Micro-C’s setup code puts the stack at the far end of the 64 KB
code and data segment. It’s worthwhile to check the program’s stack requirements
occasionally, but 64 KB marks a big change (and welcome relief) from an 8031
microcontroller’s cramped quarters. For that matter, how much of a program could
you write with only 128 bytes of RAM?

Although I used a few other tricks in the source code, this overview should get you
started. I heartily recommend spending some time with interrupt handlers to
discover what your system can do… and what it can’t do, no matter how good your
firmware skills may be.

Speaking of skills, here’s a scary story for you...

A Cautionary Tale
Before you start writing firmware, you must read the hardware data sheets carefully.
Generally, I do a lot of reading before starting a project, but once in a while, well…
This tale shows that, verily, hell hath no fury like that of an unjustified assumption.

Once Upon A Time, back in 1988, I wrote MC-Net, a control program that
connected 8052-class microcontrollers and PCs into a networked system. You
could write data collection firmware on the microcontrollers, store the results on

Listing continued from previous page

�
� �� '��!�'��OM�!$�%�'�
�
� ��
�
� �G
�
� �G
�
� �� �$N�%�$!��,��!������!'M
���� �'��#�!���'#$&�'�!,'�

=
=

Embedded PCs ISA Bus.book : Chapter 5.fm Page 89 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

90

the PC’s disks, monitor and operate the microcontrollers from the PC, and so on
and so forth.

To summarize the details, MC-Net used an RS-485 serial link running at 19.2 kb/s
between (up to) 32 nodes. A Monitor program, running on a PC AT, served as a
remote console for all the 8052-BASIC nodes and provide an overall network
debugging display. I described the code in my Firmware Furnace column in Circuit
Cellar INK magazine Issues 10 through 12. All in all, a neat project.

Because the network’s design point specified an 8 MHz IBM AT with an 8250
UART, handling a 1920 bytes/second network posed some interesting challenges.
A stock AT runs at about 1 MIPS and can execute about 500 instructions between
each incoming byte. If you get distracted for a millisecond or so while doing
something else, you will certainly lose data, because the 8250 has no FIFO buffers.

Each transmitted byte generates two interrupts, because the RS-485 network
echoes outgoing data back to the receiver. The first interrupt occurs when the
transmitter buffer goes empty and the second, very shortly thereafter, blinks on
when the receiver buffer fills with same character. The elapsed time varies, but it
can be as little as one stop bit time, about 50 µs at 19.2 kb/s.

Because the two interrupts occur so close together, I checked for pending interrupts
at the end of the handler to eliminate the lengthy interrupt exit and entry overhead
when a byte was ready. My scope showed that this worked quite well: most of the
time each character produced only a single interrupt as the handler absorbed the
second interrupt request.

About a year later, though, some customers reported sporadic problems with
network errors that we simply couldn’t duplicate. Some of the problems occurred
due to cabling errors, some to termination problems, others came from severe
noise… but there remained a very small minority of customers with everything set
up right and everything going wrong.

The problems seemed more severe on faster machines. Finally, one customer
installed MC-Net on his new 66 MHz 486DX2 and reported that it failed in a
matter of minutes. Ah-ha! The bug must be related to CPU speed, because, in this
case, we’d carefully eliminated everything else.

I set up a test network on my then-new 33 MHz ’386SX, activated the trace
outputs built into all my code, hitched up the logic analyzer, and waited to see what
happened. After a long wait, the outputs reported that the TSR had jammed in an
absolutely impossible state.

Embedded PCs ISA Bus.book : Chapter 5.fm Page 90 Tuesday, July 1, 1997 7:32 AM

Chapter 5: After This Brief Interruption

91

Although my system wasn’t as fast as the latest ’486 CPU, the logic analyzer
showed that each outbound character generally produced two interrupts. The CPU
now ran fast enough that the interrupt handler exited before the second interrupt
occurred. Progress had eliminated the need for my interrupt polling trick, although
the code was still in place for slower CPUs. However, very, very rarely, the second
interrupt, the one caused by the receiver buffer, produced a suspiciously long blip.

I modified the TSR code to produce unique trace outputs for each possible
interrupt source and discovered that the abnormally long interrupts were caused by
a change in the Modem Status Register (MSR). That was certainly peculiar, as the
TSR code never enabled MSR interrupts… and the Interrupt ID Register (IIR)
should never report a disabled interrupt.

Essentially all PCs use National 8250, 16450, or 16550 serial interface UARTs, or a
fragment of LSI that works just like them. I pored over the data sheets in search of
something I’d missed three years earlier. What could possibly cause an invalid IIR?
I assumed that my code was at fault, as genuine hardware problems remain very,
very few and very, very far between.

In the 8250 family, you clear the transmitter interrupt flag when you read the IIR or
write a new character, but the only way to clear the receiver interrupt is reading the
pending byte. You would expect, as I did, that the chip updates the Interrupt ID
Register almost immediately. You would be nearly right.

The IIR reports the highest-priority pending interrupt as a number in Bits 1 and 2.
Bit 0 presents a summary status bit that, when zero, means “there is at least one
interrupt active.” My code read the IIR and used it as an index into a decoding
table. Only two other interrupts can occur in the MC-Net TSR, but, being a belt-
and-suspenders type, my table had all possible entries. That saved my skin!

Upon closer scrutiny, the 16450 data sheet revealed two key timings. The hardware
updates the summary bit within 250 ns of reading the IIR for transmitter
interrupts. Should the receiver cause the interrupt, however, the hardware may take
up to 1 µs to reset the summary bit after you read the character. The interrupt
request output pin has the same timings, so the IIR bit must be wired to the output
driver rather than the actual logic gate on the chip.

As Sherlock puts it, “When you have eliminated the impossible, whatever remains,
however improbable, must be the truth.”

A sufficiently fast CPU can respond to the interrupt, read the IIR, branch to the
receiver handler, read and process the byte, and check the IIR again before the

Embedded PCs ISA Bus.book : Chapter 5.fm Page 91 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

92

interrupt summary bit changes. Because the receiver interrupt bit clears almost
immediately, the IIR contains invalid data.

As you might guess, an all-zero IIR indicates a modem status interrupt.

I checked my references again to see if anyone else knew about this. The only hint
appeared in Mark Nelson’s Serial Communications: A C++ Developer’s Guide,
published in 1992 (well after I needed it). In the 8250 Oddities section, he states:

One annoying bug found in both the original National Semiconductor
chips as well as some clone chips is the false modem status interrupt.
The IIR can report a modem status interrupt when none has occurred.
This could easily lead to trouble with the ISR code.

Indeed!

The serial port in your system may be just one corner of an LSI chip, but the PC
Compatibility Barnacles dictate exactly how it must work. In this case, the
Barnacles required my new silicon to precisely duplicate the same old bug.

There being no good fixes for this situation, I used a time-honored kludge: a delay
loop. The code measures the CPU speed when it installs the TSR and sets up a
delay loop that occupies at least a microsecond. After each receiver interrupt, the
code stalls for long enough to ensure that the IIR interrupt summary flag becomes
valid before testing it again. Not pretty, but it worked OK… and so did the TSR.

This story has a twofold moral: RTFM (Read The Fine Manual) first, then build
trace outputs into your code to show you what’s going on in actual real time.

But… you knew that already, didn’t you?

Right?

Release Notes
I’ve recoded several of the support routines in assembler and moved them into the
FirmDev.ASM library file. Use SLIB to update Tiny.LIB on your system.

The program files for this chapter include several batch files that create the
executable files. You’ll surely need to tweak them for your system, but that’s all part
of the learning experience. Check the ReadMe.txt file in this chapter’s subdirectory
for more details.

Embedded PCs ISA Bus.book : Chapter 5.fm Page 92 Tuesday, July 1, 1997 7:32 AM

