
179

11 Beyond Small
Does your application suffer from Creeping Featuritis? The symptoms include a
ReadMe file bigger than the program, multiple layers of nested functions, and a
tendency to display odd behavior should you dare use any new features. You’ll know
it when you see it…

One of the (few) nice things about 8031 microcontroller projects is how the CPU’s
limited address space puts an upper limit on complexity. Apart from obvious
perversions, like paging 2 MB of code into an 8031 (yes, it’s been done), you can
only do so much with a single-chip microcontroller. This chapter may herald the
end of such innocence, as embedded PCs, those computers in controllers’ clothing,
have no such limitations.

Thus far, we’ve used Dunfield Development Systems’ Micro-C, a compiler
admirably suited to embedded projects. The startup code occupies only a few lines,
it has simple and well controlled memory requirements, and, best of all, it works!
You also get a diskette of video, serial, joystick, and other PC-flavored functions
that help jumpstart your embedded PC projects.

But a recurring question runs, “So, what about our Borland and Microsoft C
compilers?” Suddenly, life becomes more complicated.

Unlike Micro-C, which was designed for small controller projects, the Borland and
Microsoft C compilers grew up with the PC. By necessity, they include the
assortment of memory models required for the 80x86’s segmented, real-mode
architecture. Whether those complex convolutions are a Good Thing or not
remains open to debate, but, if you must crawl into the PC’s hidden spaces, these
compilers help you get there.

Those compilers have a catch: perforce, mainline C/C++ compilers for the PC
produce code that must run under DOS, Windows, or worse. Loading their EXE
output files isn’t easy, their C startup code goes on for pages, and operating system
functions litter their startup and runtime library files. All that makes producing a
standalone program for a DOS-less PC a task for the stoutest of heart.

Although several authors have tackled the subject of directly embedding DOS
programs, I believe that remains an unrewarding and endless task. Each new
version of the compiler ripples changes through your existing applications, making
you spend time and effort keeping up with the Borlands and Microsofts of the
world. Basically, all you really want is to sprinkle magic dust on your EXE file and
turn it into an embedded PC file.

Embedded PCs ISA Bus.book : Chapter 11.fm Page 179 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

180

In this chapter, we’ll cover some of the issues involved in producing DOS-less
projects using a DOS compiler, just so you know what you’re missing with
Micro-C. I’ll also introduce Locate, a commercial product from Paradigm Systems,
that helps solves this problem. There are similar products available from other
companies, so check the Sources appendix, peruse the ads in your favorite
magazines, and troll the Web for the current state of the art.

Paradigm allowed me to include a customized version of their TDREM program on
the diskette accompanying this book. If you’ve built a Firmware Development
Board with battery backed RAM or (E)EPROM, you can debug your Borland C
code using Turbo Debugger. The ReadMe.txt file for this chapter includes the ugly
details and relevant versions.

Along the Mainline
After years of working on large-system software, a friend recently began writing PC
code. As he put it, “C is C, but what the heck is all this about ���� and ���
pointers? When do I need ����� memory model? What’s going on here anyway?
Who’s responsible for this outrage?”

As long as you don’t need more than 64 KB of memory, PC programming can be
easy, because the familiar COM file format with its single segment does nearly
everything you need. As you’ve seen, a COM file holds a binary image of the
program’s code and initialized data. Running the program requires nothing more
than copying the disk file into RAM, setting the segment registers, and passing
control to the first instruction at offset 0100 in the code segment.

But, when you must create complex programs or manipulate megabytes of data in
real mode, the Intel x86 Segmented Memory Monster rears its ugly head. Because
the simple COM file, left over from days when 64 KB was a lot of RAM, has no way
to specify multiple program or data segments, Microsoft’s DOS designers came up
with the EXE file. It’s not just a different file format, but a completely different way
to treat executable program files.

Here’s the gotcha: programs with multiple code or data segments must come in
���-format files. Even something as simple as a 	
��� model program with code
in one segment and data in another requires the full EXE file structure. Worse yet,
because of the additional segment information, EXE files for anything other than
���
 model programs cannot be converted directly into COM files.

Figure 1 shows the fields in a DOS EXE file header. The Code and Data Segments
field near the bottom contains the actual instructions and variables created from
your source code, similar to the stuff that’s normally in the COM file. The remaining

Embedded PCs ISA Bus.book : Chapter 11.fm Page 180 Tuesday, July 1, 1997 7:32 AM

Chapter 11: Beyond Small

181

fields define the overhead information required to load those segments into RAM,
adjust them for the actual memory addresses, set up the CPU registers, and start
executing the program.

The compiler and linker produce the EXE file, but they cannot assign the final
segment addresses. That step occurs when DOS allocates memory and sets the load
address just before reading the file from disk. The Relocation Table entries point to

Figure 1
Programs stored as EXE files have a header with additional information used to load and
run the program. The exact format depends on the DOS version, but older files will
generally work unchanged on newer systems. In this context, a paragraph is 16 bytes of
storage that starts on a 16-byte boundary.

Offset Description

0000 Signature: MZ

0002 File length modulo 512 (remainder)

0004 File size in 512-byte units (rounded up)

0006 Number of relocation table entries

0008 Header size in paragraphs

000A Minimum RAM needed in paragraphs

000C Maximum RAM needed in paragraphs

000E Location of stack segment in paragraph

0010 Initial SP value

0012 Checksum (not used!)

0014 Initial IP value

0016 Location of code in paragraphs

0018 Offset of relocation table in bytes

001A Overlay number

001C Optional reserved space

... Relocation table

... Optional reserved space

... Code and data segments

... Stack segment

Embedded PCs ISA Bus.book : Chapter 11.fm Page 181 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

182

the values within the code and data that require some adjustment before execution.
In effect, the DOS EXE file loader performs the final link step that puts a
relocatable program at an absolute address.

For example, the C statement

�����������

might compile into the assembly language instruction:

������������

The �	 register, implicit in that ��� instruction’s operation, must hold ��������’s
segment address. But the �	 value depends on precisely where �������� wound
up when DOS loaded the file. If your program accesses more than 64 KB of data,
each variable has a corresponding �	 and the compiler must insert code that loads
the proper value into �	 before accessing each one. All that fussing with segment
registers helps make ����� model programs run slower than you might expect.

Unlike DOS programs, many of our embedded programs are definitely not
relocatable. For example, if our BIOS extensions in Chapter 10 didn’t reside at
precisely C800:0000, they simply wouldn’t work. The EXE file format’s flexibility
becomes a liability in our situation.

Therefore, we must find a way to assign absolute segment addresses and convert the
EXE file into an EPROM image or a binary disk file. That’s part of what Locate
does for a living, but there’s more to the story.

It’s worth noting that some protected mode operating systems can load and run
code without making any relocation changes. The trick lies in their use of what’s
called ���� memory model, which takes advantage of the memory management
hardware in ’386 and higher CPUs. In effect, a ���� model program uses 32-bit
addresses in a single segment that can span up to 4 GB. We can’t use this in real
mode, but imagine what a COM program would look like without its 64 KB
addressing limitation.

Jumping the Mainline Track
By now, you should be familiar with the C startup code that gets control before the
first line of your ������ function. Micro-C’s startup code requires only a few lines
of assembler and we have modified it to do some interesting things. With a little
tweaking, we even turned a more-or-less ordinary Micro-C program into a
workable BIOS extension.

Embedded PCs ISA Bus.book : Chapter 11.fm Page 182 Tuesday, July 1, 1997 7:32 AM

Chapter 11: Beyond Small

183

The Borland or Microsoft C startup code is considerably more elaborate than
anything we’ve seen so far. In fact, the Borland C++ 3.1 startup file spans 746 lines
and handles everything from clearing variables and initializing the file system to
parsing the DOS environment strings. Quite a bit of that effort does us no good at
all (no DOS means no DOS environment strings) and some of it can be actively
harmful in an embedded environment.

And then there’s Borland C++ 5.0, even bigger and more complex… which is
probably obsolete by the time you read this. Get the point?

The startup code need do nothing more than the program requires. Because we
won’t use the DOS file system, all that code can simply Go Away. Similarly, with
no DOS environment or command line information, eliminating that part of the
startup routine makes perfect sense.

You cannot discard other sections quite so blithely. The startup code calls many
DOS functions to adjust the program’s stack and heap, return excess storage to the
operating system, save and install interrupt vectors, and even display error
messages. You must replace each of these functions with code that performs the
same operations without invoking DOS: running a C program without a heap, for
example, just isn’t possible. Even if you don’t call DOS services to allocate a heap,
someone must do the job before your program reaches its first ��������.

On top of this, the startup code handles such minutiae as defining the proper
segment order for the linker, calling C/C++ entry and exit functions, and so forth.
Some of these routines tie tightly into the way the compiler generates code,
allowing well intentioned (but misinformed) changes to wreak subtle havoc on your
program. The requirements of C++, which I won’t attempt to cover, add yet another
layer of complexity beyond what you expect for a C program.

The good news: Locate includes a sample C/C++ startup code file that you can use
unchanged. Comparing the startup files from Borland and Paradigm tells me I’m
glad I didn’t have to figure out those changes on my own. Try it yourself and see.

The last vestige of DOS dependence lurks in the runtime library. Many C library
functions use DOS calls, but, unless you have the library source code and plenty of
time, you cannot tell which routines pose a problem. Because the library invokes
DOS functions through software interrupts, the linker cannot identify nonexistent
functions. Your code simply crashes when an ��� !" branches into the weeds.

The Locate package includes a program that creates a new set of libraries by
deleting all the DOS-dependent routines from the standard Borland C runtime
library files. If the linker complains about “missing functions” and “unresolved

Embedded PCs ISA Bus.book : Chapter 11.fm Page 183 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

184

externals” in your program when you use those libraries, well, even if you must
write some additional code, that should be considerably better than debugging a
mysterious failure and then writing the missing code.

Now we have all the pieces in place: absolute address assignment, a tailored startup
file, and a purified runtime library. The rest of the task should be a matter of
turning the crank…

Embedding a Sieve
Listing 1 shows Paradigm’s version of the venerable Sieve benchmark program. I’ve
added a line that displays the loop counter on the Firmware Development Board’s
LEDs and increased the test limit to 30,000 integers. I did not actually verify that
the program produces the right answers… in this situation, it really doesn’t matter.

Listing 1
The Paradigm Locate disk includes the good old Sieve benchmark program. I’ve modified
it to display the iteration number in raw binary on the Firmware Development Board’s LED
display so you can watch it run. The key point: this code doesn’t look any different than
any other C program, because the startup code and Locate handle all the hocus pocus
under the covers.

#$�%������&��!
#$�%�������	��'
#$�%����	�(��)''''

#����*$��+$�,-".
�"���%��/,0�	�(����!�1�

2��$������2��$�
3

�,�/��$���4��5�65����45����7,�
���7,�8�'�

9:��*��4"��	��2��%���2���:9
%�����������3

9:�;��%����4"�����4����<�4����:9
��*�4�8�'��
%������8�'����+8�	�(�������

%��/,0�1�8���&���

9:��*��4"��	��2��:9
%������8� ����+8�	�(��������3

�%��%��/,0����3
9:���������*4������*�4�7��,��%�4"�,�7�����:9

%����6�8��������6�+8�	�(���6��8���
�%��/,061�8����	���
��*�4����

=
=

�*47��4�'>')!�5?���7,���� 99�$�,7��@���*�4������A�����,�/���4,
=

=

Embedded PCs ISA Bus.book : Chapter 11.fm Page 184 Tuesday, July 1, 1997 7:32 AM

Chapter 11: Beyond Small

185

The code looks just like any other C program you’ve ever seen, because all the
magic that embeds it into a DOS-less PC occurs elsewhere. The #����*$��
+$�,-". line might seem worrisome, but that file simply defines the �*47��4
macro. Fear not, your program won’t invoke DOS just for that.

Compiling and linking the file proceeds normally, with one exception: you must
link the object file with Paradigm’s special startup code and runtime libraries. The
linker produces, as usual, an ordinary Sieve.EXE file, which the MakeFile renames to
Sieve.ROM. That step prevents you from accidentally running the program, should
you type Sieve at the DOS command prompt.

In our case, the �*47��4 macro becomes an inline routine and Sieve doesn’t use
any library functions at all. Incidentally, because the Locate installation program
creates the DOS-less libraries without changing the original Borland libraries, you
can continue to build ordinary DOS and Windows programs as usual.

Locate translates Sieve.ROM into Sieve.BIN by assigning absolute memory addresses
to all the segments. Locate can produce several different output formats, each with
an array of suboptions. Among the choices: Intel HEX, extended HEX, Tektronix
HEX, a special Absolute EXE, Intel’s OMF86 files, and raw binary.

For some embedded systems projects, you may burn a HEX file into an EPROM or
load a binary file into an emulator. For our work, we can use a slightly modified
version of the diskette boot loader for the new files. The only change involves
setting the program’s initial �	B�; value so that our loader properly passes control
to the program.

The loader we’ve been using so far follows the DOS COM file convention by passing
control to the program at offset 0100 in the segment indicated by �	. All COM files
expect that starting value, because they have no way to specify any other register
contents. Although EXE file headers include the program’s initial �; value (see
Figure 1), the pure binary file produced by Locate no longer has that header
information and, thus, gives us no clue as to where to start it up.

The C startup code expects to receive control at label C,4��4*7, which could be
anywhere in the code segment. Paradigm’s startup code positions that label and its
corresponding instruction as the first byte of the file. By linking that file first, it
appears at the beginning of the code segment. Then, we just tell Locate to put the
code segment at the start of the output file. Because C,4��4*7 marks the first
instruction in the startup code, it becomes the first byte in the final binary image.

However, with C,4��4*7 at that position, �; must be 0000 rather than 0100. Our
familiar COM file loader from Chapter 1 can’t handle Locate’s converted EXE files!

Embedded PCs ISA Bus.book : Chapter 11.fm Page 185 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

186

Fortunately, we control the disk boot code. The files for this chapter include a
slightly modified BootSect program that loads the file at address 10000, rather than
11000, then jumps to the first byte with �	B�; set to 1000:0000. Even though the
Paradigm startup code handles all the other segment register initializations, I left
the COM-style setup in place to give the registers a known value on entry to the
startup code.

You might think twiddling the startup code to make the offset of the first
instruction equal 0100, perhaps by moving other instructions ahead of it, would let
you use the old loader. Remember that the COM loader preset �	B�; to address the
first byte of the file at �	B'!'', not �	B''''. The loader will transfer control to
the first byte, even if it’s not the program’s entry point. Both the startup code and
its loader must agree on where the first instruction resides.

You could, I suppose, add a few lines to the startup routine that catches the boot
loader entry at the first byte, then reloads �	 and �;. Rather than do that, I figure

Listing 2
The information in this configuration file tells Locate how to convert Sieve.ROM from EXE
to binary. The MAP statements define the system address space, while the CLASS
statements set the segment starting addresses. The DUP statement creates a copy of
the initialized variables in the code segment, so the startup routine can copy them to the
actual data segment in RAM.

"�>%���������@��%%,�48!''''"�,�<�8D 99����4����$������E%���

��,4%����,�/���4, 99��*47*4���,4��/�%���

��7�'>'''''�4��'>''F%%��,���,��2�$ 99���4�2��4��,�A�G	�$�4�
��7�'>'�H''�4��'>'%%%%��,���,��2�$ 99�&�*,�$
��7�'>!''''�4��'>!%%%%��,��$���@ 99�HI�J��77����4�������4����$�����
��7�'> ''''�4��'>K%%%%��,��$L� 99��2��������%����77
��7�'>�''''�4��'>%%%%%��,���,��2�$ 99���$��5�A�G	��G
	5��4�

$*7 ������G
���� 99���7@����4����<�$�$�4�

���,, �G���8�'>!''' 99�A��4����$�������
���,, �����8�'> ''' 99���4������

��$�� ���� M 99���
���/���<�4���
A		�A		��� M
	���J

��$�� �G�� M 99��G
���/���<�4���
���C�����������C���� M
����������������� M
�G
���������G
����

�*47*4 �G�� M 99�G*47*4����,,�,
���C�����������C���� M
����������������� M
�G
���������G
����

Embedded PCs ISA Bus.book : Chapter 11.fm Page 186 Tuesday, July 1, 1997 7:32 AM

Chapter 11: Beyond Small

187

you’ll use either Micro-C’s COM files or Paradigm’s converted EXE files, but not
both at once. Just use the loader that matches your situation and be done with it.
Make absolutely sure you mark the diskettes while you’re experimenting, though,
because half of the possible combinations simply won’t work.

With that as background, Listing 2 shows the segment address assignments
defined in the Sieve.CFG file. Locate has far more options than I have room to
describe here, but you should get a feel for the program’s flexibility.

The N������ statement specifies an 8 KB binary output file containing the
instructions and data starting at absolute address 10000, the load point set by our
diskette boot loader. You may use additional N������ statements to create multiple
output files during the same pass. Locate will warn you if the file includes no
information at all, which can catch stupid addressing mistakes.

The
�; statements define how the program will use the CPU’s address space.
Locate verifies that all of the segments seem appropriate for their addresses. For
example, you should not put a code segment into a read/write area that allows code
overwrites. Remember that Locate and
�; cannot actually write protect your
system’s RAM. They simply document your intentions and verify that no other
segments encroach on the code during the file conversion process.

The
�; statement provides more benefit with the TDREM debugger I’ll discuss
shortly. Because we load our code from disk into RAM, the �$���@ (read-only)
sections will be just as volatile as any other RAM. However, the debugger can
detect changes within those areas and report problems.

The �&; statement creates a copy of the data segment in the �G
���� part of the
code segment. Paradigm’s C startup code automatically copies �G
���� from the
code segment, where the loader put it from diskette, into the data segment. That’s
all it takes to get initialized variables working.

The two ���		 statements specify the starting addresses for code and data
segments. The name ���		 comes about because the compiler and linker can
combine several different program segments into a single physical memory
segment, thus treating the original segments as a class. This statement sets the
address of the first segment in the resulting class. If your application has multiple
classes, you must include a ���		 statement for each one.

The G���� statements specify how to combine individual segments into an overall
class that a ���		 statement will nail at a specific address. This corresponds
(roughly) with the way the linker handles groups of segments, but requires manual
intervention to get it right. The Locate documentation goes into more detail on this

Embedded PCs ISA Bus.book : Chapter 11.fm Page 187 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

188

issue. Suffice it to say that Paradigm’s sample files give you a good idea of what to
do in several different situations.

Despite the seeming complexity, once you get a configuration file set up, you
probably won’t tweak it again until you change your program’s segment structure or
the target system’s memory map. In fact, you can probably use the same CFG file for
most of your embedded PC projects with little change.

Actually running Locate requires nothing more than another MakeFile line, which
should take even less thought than figuring out your compiler or linker switches.
While I was inside the MakeFile, I added a few commands that copy the resulting
BIN file to the boot diskette. Two keystrokes in my host’s DOS window now
rebuild the whole application and set up the diskette for the target machine.

Although I compiled Sieve.c with the 	���� memory model, Locate and the
modified runtime libraries support all models except ���@. Because our custom
diskette boot loader can only handle binary files up to 64 KB, you must modify the
loader for truly large programs. You can certainly use my source code to get started.

Borland’s ���@ memory model can generate COM files without running Locate, just
as we did with Micro-C. Remember to eliminate all DOS functions from the
startup code, link your files with a DOS-less library, and boot the result with our
original (�; = 0100) COM file diskette loader.

Locate supports Microsoft C++ as well as the Borland compilers. I don’t have any
examples because, back when I developed these programs, their C compiler didn’t
run under OS/2 without lots of twiddling that I wasn’t interested in doing. Now
that I’m using Windows 95, I suppose I could switch, but it does seem like a lot of
effort to get essentially the same result.

That leaves us with one question: “What if the program doesn’t work?” Finding
program errors is always the most difficult part of development, particularly with
burn-and-crash debugging, but we now have a full-featured debugger at our
disposal.

Debugging by Wire
Creeping Featuritis afflicts all PC programs. Simple command-line compilers
accrete features, sprout program development utilities, and gather debuggers on
their disks. More recently, these conglomerations gelled into Integrated
Development Environments delivered on a CD-ROM or two. If you look hard,
you can actually find the command-line compiler hidden in a subdirectory and,
perhaps, described in a footnote.

Embedded PCs ISA Bus.book : Chapter 11.fm Page 188 Tuesday, July 1, 1997 7:32 AM

Chapter 11: Beyond Small

189

Creeping Featuritis means more than never buying another diskette or figuring out
what to do with a stack of obsolete CD-ROMs. Somewhere along the way, we lost
sight of the fact that an IDE spawning a debugger to load a nontrivial program
compiled with every debugging option turned ON can soak up all the RAM in a
system. In some cases, the debugging infrastructure doesn’t leave enough room for
the program we intended to debug in the first place. Thus began the arms race to
exploit expanded memory, extended memory, any memory except the precious
640 KB down there in DOS territory.

Borland’s Turbo Debugger designers, in either a stroke of genius or an admission of
defeat, included a remote debugging mode that runs the debugger’s user interface on
an entirely separate machine from the target program. A serial cable or network
connection eliminates the requirement for exotic RAM mapping, video display
sharing, and mouse handoffs.

Whenever Turbo Debugger refers to a memory location, an I/O port, or a CPU
register, it sends a message from the host system across the cable to the target
system. A debugging kernel in the target handles the request and returns the results
over the same cable to the host. Because the kernel doesn’t interact with the target’s
keyboard, video display, or mouse, it can be both small and simple. Most of the
conflicts between the target program and the debugger simply Go Away when the
two programs run on different systems.

Windows has, to some extent, relieved the DOS memory shortage on ’386 and
higher CPUs by putting the PC’s entire multimegabyte RAM address space to
good use. Unfortunately, because high capacity debuggers exact a significant toll in
system overhead and, of course, our target program don’t run under Windows, you
will still find a remote debugger your best choice.

The folks at Paradigm (and others, as well) figured out that remote debugging
could be the solution for debugging embedded x86 systems. With a bit of
programming magic, they can fool Turbo Debugger into thinking it has an entire
PC on the other end of the wire, even if the target system lacks disks, DOS, or even
a BIOS to support the embedded program.

Adapting TDREM to the Firmware Development Board was straightforward, as the
Paradigm code can handle most hardware configurations with just a few �O& or
#$�%��� twiddles. I picked the simplest target interface: polled communication
through the COM1 serial port.

Because TDREM should get control before booting the target program from disk, I
turned it into a BIOS extension using code similar to that shown in Chapters 8 and
10. The extension code hooks ��� !K" and returns to the BIOS. When the BIOS

Embedded PCs ISA Bus.book : Chapter 11.fm Page 189 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

190

finishes initializing everything, it invokes ��� !D", which starts the TDREM
remote interface. My code shows its progress on the Firmware Development Board
LEDs, concluding with a cheery td immediately before diving into Paradigm’s
Turbo Debugger support routines.

Installing the extension uses the same BIOS extension loader program we used
earlier. It copies TDREM from diskette into the FDB’s battery backed RAM and
computes the checksum required for a valid BIOS extension. Remember to hold
down the FDB’s pushbutton while booting the loader to install the extension.

After that, running the debugger requires just booting the target system. My
prologue code checks the FDB’s pushbutton before starting the extension. With
the button pressed, control returns to the BIOS without capturing ��� !K" and
the standard diskette boot sequence occurs. The LEDs show a pair of dashes to
indicate that the extension did not install itself.

With the pushbutton up, the extension installs itself, the FDB LEDs show td, and
you can start Turbo Debugger on your host system. For the DOS version of TD,
use the command line:

���E�)

on the host to specify a 38.4 kb/s data rate. I found that TDREM’s default 115 kb/s
rate doesn’t work on my target system, probably because the serial bytes arrive too
fast for the software polling loop. Obviously, an interrupt-driven interface would
solve that problem, but fitting it into the target system involved more complexity
than I thought justified for this part of the project.

The TDREM kernel always tells the debugger that it has an outdated copy of the
program because, in fact, it doesn’t have a copy. Turbo Debugger then asks whether
you want to send the “newer” version… you should always answer Yes.

Now you can choose either Micro-C or a mainline C compiler, depending on your
project’s goals and finances. Either compiler will work for a broad range of projects,
so there shouldn’t be much holding you back. Go for it!

The Second-Worst Hack
While we’re on the topic of debuggers, here’s an interesting application of a
deliberate error. Back in Chapter 8, I described the Worst Hack in PC-dom: using
the keyboard controller to reset an 80286 CPU and bail out of protected mode.
While doing some research for another project, I came across a tidbit that probably
qualifies as the Second-Worst Hack in PC-dom.

Embedded PCs ISA Bus.book : Chapter 11.fm Page 190 Tuesday, July 1, 1997 7:32 AM

Chapter 11: Beyond Small

191

Suppose you’re writing a protected-mode operating system (can you spell OS/2?)
for ’286 systems and realize that the Worst Hack’s speed (or lack thereof) will
definitely clobber overall system performance. What to do?

Easy: crash the system!

Starting with the 80286, Intel CPUs detect severe errors and shut down, rather
than continuing with unpredictable results. For example, when 	; = 0001 a ;&	N
instruction shuts down the CPU, instead of wrapping 	; to FFFF and clobbering
RAM outside the stack area (as the 8086 and 8088 did). The CPU sends a specific
status signal that tells the rest of the system what happened, then waits for a
hardware reset or an NMI. It does not execute any further instructions, process
external interrupts, or do anything else besides wait quietly.

Rather than leave the system stalled forever, the Original IBM PC AT system
board (and, thus, all subsequent PCs) included a shutdown detection circuit that
causes a hardware reset. The CPU pops out of reset in real mode, the BIOS checks
the Real-Time Clock’s battery backed RAM for the shutdown reason code, and
vectors to the appropriate routine. Apart from the fact that the reset comes from a
different circuit, it works just as you saw in Chapter 8.

Because the reset happens at hardware rather than software (or even firmware)
speeds, the whole sequence takes a tiny fraction of a millisecond. That’s enough
faster than the Worst Hack to make it worthwhile. It’s even faster than those
hyperthyroid keyboard controllers with hardwired command bypasses, too.

How do you force a CPU shutdown? The CPU invokes a Double Fault interrupt
handler that gets control when two protection violations occur on a single
instruction. If the Double Fault handler also causes a violation, the CPU shuts
down. It seems the OS/2 designers set up a deliberate triple fault to bail out of ’286
protected mode faster than the standard keyboard controller command.

Although I don’t know the exact method they used, you could mark a segment as
Not Present, then invalidate both the Segment Not Present and Double Fault
interrupt gates. You disable external interrupts and the NMI input, aim a segment
register at the missing segment, and fetch a byte. The fetch triggers a Segment Not
Present interrupt through ��� 'A", where the invalid gate causes a Double Fault
interrupt (��� 'D"), and the invalid Double Fault gate slam dunks a triple fault.

Thud!

Embedded PCs ISA Bus.book : Chapter 11.fm Page 191 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

192

Release Notes
The Sieve binary files require the modified BootSect diskette loaders from this
chapter. You’ll find the source and binary files for all four diskette sizes in the
subdirectory: as always, make sure you pick the appropriate one for your system.

Because this chapter’s version of Paradigm’s TDREM remote driver for Turbo
Debugger runs as a BIOS extension, copy it to a diskette along with the appropriate
LoadExt extension loader from Chapter 8. Boot that diskette in your target system
while holding the pushbutton down to stuff TDREM into the Firmware
Development Board’s battery backed RAM. The next boot, with the button up,
will display td on the LEDs when the target is ready for Turbo Debugger.

TDREM will use polled operation through COM1 at 38.4 kb/s. Remember to start
Turbo Debugger on your host PC using the -�) switch to get the proper serial
data rate. All the usual features should be available, except breaking into a running
program. That requires a fully interrupt-driven configuration that I’ll leave as an
exercise for you. Don’t forget that watchdog timer…

I assume you already have the Borland or Microsoft compilers running on your
system. Follow the directions accompanying Pardigm’s programs to properly install
Locate and modify your runtime libraries. Remember that few, if any, embedded
PC programs are upwardly compatible with new compilers; consult the ReadMe.txt
file for the versions you’ll find on the diskette with this book.

Note that the software for this book does not include Paradigm’s Locate program or
their other utilities and libraries. You may use the executable programs found on the
diskette, but you must have the complete Paradigm Locate package to modify and
recompile them.

If your finances won’t stretch around a commercial Locate program, you should
spend some time searching the Internet for shareware equivalents. Several
magazine Web sites have large collections of links: Circuit Cellar INK at
www.circellar.com, C/C++ User’s Journal at www.cuj.com, and Embedded Systems
Programming at www.embedded.com. Dunfield Development Systems at
www.dunfield.com will conduct you to several useful programs for low-level
embedded work. You’ll find other pointers in the Sources appendix.

Embedded PCs ISA Bus.book : Chapter 11.fm Page 192 Tuesday, July 1, 1997 7:32 AM

