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10 Booting C from ROM
A foolish consistency is the hobgoblin of little minds…

Ralph Waldo Emerson

That may be an aphorism suitable for any occasion. In this case, back in Chapter 6, 
I opined that writing BIOS extensions in C probably wasn’t practical, citing the 
Firmware Development Board’s limited memory address space. Emerson would 
smile, as I’ll now show you how to do just that.

In point of fact, if you need just a smidge of code you may as well use C and be 
done with it. After all, it doesn’t matter if you have 31 KB of C or 3 KB of tightly 
written, carefully tuned assembler… that chip has 32 KB of space available. Now 
that you know how to build battery backed RAM, write code that can send 
diagnostics through serial ports, and understand the general mechanics of BIOS 
extensions written in assembly language, we can pull it all together.

In this chapter, we’ll explore the gory details of turning a Micro-C program into a 
BIOS extension. The complexities along the way may seem daunting, but the end 
result will help you get your own firmware working. 

At least, for small values of firmware…

Basic BIOS Booting
As we’ve seen, every PC goes through much the same ritual immediately after a 
hardware reset. It first checks the hardware, finds and initializes any BIOS 
extensions, and finally boots a program from disk or diskette. Each BIOS extension 
must hook an interrupt vector if it wants to be part of the action after the BIOS 
regains control and continues booting.

The exact system state isn’t predictable when your extension gets control, because 
any previous extension can add features or change the BIOS setup in nearly any 
way. In a given system, of course, the same thing happens (or should happen) during 
each boot, but you cannot assume that all systems respond the same way. For 
example, you’d think that the BIOS would set up the serial ports before invoking 
the extensions, but, at least on one of my systems, that’s not the case.

After calling all the extensions, the BIOS finishes its own initialization and issues 
an ��� ���. Under normal circumstances, that interrupt vector points back into 
the BIOS code to a bootstrap loader routine responsible for booting from either 
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diskette or a hard disk. Any BIOS extension, however, can hook ��� ��� and 
regain control just before BIOS accesses the disk. That extension may check a serial 
number, verify a password, or skip the disk boot entirely by booting from ROM.

If the original ��� ��� BIOS routine eventually gets control in a system with no 
bootable disks, it will issue ��� ��� after failing to read the disks. In the Original 
IBM PC, that interrupt fired up the built-in Cassette BASIC interpreter 
(remember Cassette BASIC?), but other manufacturers don’t have rights to that 
IBM proprietary code. Most of them simply display a message and await a three 
finger salute on the Ctrl-Alt-Del keys. Your BIOS extension can hook ��� ��� to 
regain control after the disk boot fails, allowing you to start one routine from disk 
or run another from the extension ROM without booting from disk.

According to the references, the system will be completely ready for action when 
the BIOS invokes the ��� ��� and, if needed, ��� ��� interrupts. Your 
extension can, therefore, take control of a perfectly functional PC without handling 
any of the grubby setup work. The sample code for this chapter has a “your code 
goes here” note at the appropriate spot so you can complexicate it as required.

For what it’s worth, Cassette BASIC lives on. My ancient Model 80 (nigh on to a 
decade old now) proudly displayed its Cassette BASIC screen when I disconnected 
its disk drive controller to track down the problem I mentioned in Chapter 9. The 
IBM Tech Reference manual admits that Cassette BASIC might not be too useful, 
perhaps because Model 80 systems lack a cassette port…

But, well, BASIC is still there!

Modeling Memory
Thus far, we have used Micro-C’s ��	
 memory model for our embedded 
programs. Unfortunately, ��	
 model won’t suffice for BIOS extension code. The 
reason, as with most things PC-ish, involves the segmented memory inherent in 
x86 real mode programming.

��	
 memory model puts all of the C program’s code and data into a single 64 KB 
segment, as shown in Figure 1. When the program begins, all of the CPU’s 
segment registers contain the paragraph address of that segment. An assembly 
language function or inline code within a C function can refer to memory outside 
that segment by reloading the segment registers, but it must restore them before 
returning control to the C code.

The program’s startup code begins at offset 0100, followed by the compiled C code 
and library functions. All of the initialized data, including strings and “constant” 
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variables, come next. Uninitialized variables follow, with the heap beginning just 
after the last variable. The stack grows downward from the end of the segment, 
allowing the heap and stack together to use whatever space remains beyond the 
program and data.

Recall that the first 256 bytes of the segment remain as a legacy of the DOS COM 
program structure. While this format does let us produce and manipulate the 
programs with ordinary DOS utilities and compilers, it wastes those 256 bytes. If 
you have written the program loader to set up the registers properly, as we have, 
then you can tweak Micro-C’s startup code to begin at any offset you’d like, because 
it need not produce DOS compatible files.

A BIOS extension with a combined code and data segment runs into trouble, 
because the FDB’s battery backed RAM circuitry includes write protection. Storing 
variables in write protected RAM would be bad enough, but running a CPU with a 

Figure 1
Micro-C’s Tiny memory model puts all of the program’s addressable storage in a single 
segment that may be up to 64 KB long. The program code and initialized variables must 
either reside in nonvolatile storage or be copied from diskette by a loader program. The 
variables, heap, and stack must be in RAM, for obvious reasons. All of the CPU’s 
segment registers point to the start of the segment.
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write protected stack simply won’t work. The assembler code in Chapter 8 
controlled the RAM -WE circuitry around each data access, a completely 
impractical process for a C program. And, of course, the C code must have enough 
stack space in ordinary RAM for each function’s automatically allocated variables.

The most straightforward solution uses Micro-C’s ���� memory model, which 
puts up to 64 KB of program code and the starting values of any initialized variables 
in one segment. A separate data segment, also up to 64 KB, holds the actual 
initialized variables, uninitialized variables, the heap, and the stack. The code 
segment can be write protected, while the variables reside in ordinary read-write 
RAM. Figure 2 shows the ���� model segment layout.

How this works in our situation should be evident. The code segment can live in 
the FDB’s battery backed RAM, while the data segment resides in system RAM 
below the 640 KB line. The C startup code, in addition to its other duties, must 
reserve the program’s data segment, copy the initialized variables into it, and load 
the segment registers before calling the ��	�� C routine.

It’s a simple matter of firmware…

Figure 2
Micro-C’s Small memory model allows up to 64 KB of program code and initialized 
variables, which, as with Tiny model, must be in nonvolatile storage addressed by the CS 
register. The startup code or loader copies the initialized variables into a separate RAM 
segment addressed by the DS, SS, and ES registers. After that, the main() program may 
use them during execution without any special attention.
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Incidentally, because the startup code copies the initialized variables from 
nonvolatile storage into RAM, the C program can treat them as ordinary variables 
with nonzero starting values. Micro-C’s ��	
 model locks the variables into read-
only, nonvolatile storage unless you boot from diskette into RAM, as we have been 
doing all along. In case you hadn’t guessed, variables placed in read-only, 
nonvolatile storage behave a whole lot like constants!

Micro-C includes a ��� memory model that directly supports this type of ���� 
model programming by copying the initialized variables from ROM into RAM. All 
we must do is tweak that code into acting like a BIOS extension.

There are other ways to solve the problem, of course. I picked ���� model 
because it worked out quite neatly and exploited an interesting Micro-C feature, 
but another approach may be more suited for your projects. As always, take what 
you read here and make your own improvements.

For example, you could duplicate the diskette boot loader’s function in the BIOS 
extension. On each reset, your extension would copy the entire C program, 
initialized variables and all, from the FDB’s battery backed RAM into system 
RAM, then execute it using ��	
 memory model just as before. The RAM can 
(and should) remain write protected during the whole operation. If your code fits 
into 32 KB or you build a paged RAM interface (ugh), this can be a perfectly viable 
way to make it work.

You might also modify the Firmware Development Board’s address decoding 
circuitry to protect the lower 16 KB of battery backed RAM and allow writes into 
the upper 16 KB, but it certainly seems a shame to leave the entire 640 KB of 
system RAM unused, doesn’t it? Micro-C’s startup code includes support for such 
split memory segments, which are much more common in minimal 8088 systems 
than full-fledged embedded PCs. However, if you replace the FDB’s discrete-logic 
address decoding with a PAL, you can take advantage of a small, self contained 
block of RAM that’s not directly available to other PC programs.

Sequenced Startup
The C startup code must accept control from the BIOS, adapt Micro-C’s runtime 
conventions to the BIOS extension entry requirements, run the C program, and 
then return control to the BIOS after the extension finishes its setup. Coupled with 
the segment shuffling required by ��� model code, the C startup code holds some 
interesting tricks.

The extension must, of course, begin with the signature required by the BIOS scan, 
so Listing 1a resembles the code presented in Chapter 8. The diskette boot loader 
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computes the checksum on the contents of the disk file and the values in the battery 
backed RAM beyond the end of the program. As before, the checksum byte in the 
extension header must be zero in both the source code and disk file. After the 
loader returns, the extension is ready to run on the next boot.

The extension bails out without further action if it finds the FDB’s pushbutton 
switch closed, thus allowing a normal boot without loading the extension. Recall 

Listing 1a
The ordinary Micro-C startup routine for the ROM memory model assumes it has 
complete control of the system, so you must make several changes to adapt it to use as 
a BIOS extension. Pressing the pushbutton on the Firmware Development Board 
disables this extension and allows a normal boot sequence.
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Listing 1b
Because the Micro-C extension code resides in write protected, battery backed RAM, the 
data segment must use system RAM to let the program’s variables work normally. This 
section of the startup routine reserves 32 KB just below the infamous 640 KB barrier by 
adjusting the BIOS Ram Size word at 0040:0013. It stores a pointer to that segment in 
the battery backed RAM to allow the INT 19h handler to find its data.
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Listing continues on next page
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that we rewired the keyboard lock switch in parallel with that pushbutton to 
provide the bypass function without opening the case (assuming, of course, that 
your PC both has a case and that it remains closed). If you omit the button test, you 
have no way to disable a malfunctioning BIOS extension other than popping the 
RAM chip out of the board. Trust me, it won’t look professional.

The next step adjusts the #� and �2 registers to match the C compiler’s ���-model 
assumptions. The FDB’s RAM begins at C800:0000, so the BIOS sets the initial 
#�J�2 to C800:0003. The simulated D)��#)CC reloads #� with C7F0, then adds 
0100 to �2, making the startup code’s offsets correct. Refer back to Chapter 8 for 
more details on this trickery.

The code also must reserve some RAM for the data segment. During power-on, 
the BIOS self test routine records the system RAM size in kilobytes in the word at 
0040:0013. Because this value excludes memory above the 640 KB line, even a 
128 MB target system reports a RAM size of 0280 hex or 640 decimal. If your 
system sports an old CGA board and some specialized hardware, its system RAM 
can extend up to address B800:0000 for 736 KB of contiguous memory. As I 
mentioned in Chapter 6, that trick won’t work with monochrome or VGA/SVGA 
boards, or in embedded systems that run without the DOS support required for 
memory manager programs found in desktop PCs.

Listing continued from previous page
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The most convenient data segment location, at least for our purposes, lies at the top 
of system memory. The code in Listing 1b subtracts 32 KB from the nominal 
RAM size. That means any subsequent BIOS extensions or the embedded program 
booted from diskette will find only 608 KB of RAM. Admittedly, 32 KB far 
exceeds what we need for this chapter, but you can see the general principle at work.

The next chunk of code copies the initialized variables from their write protected 
location in the FDB RAM to system RAM. The Micro-C compiler defines a work 
variable, O���6, as the first uninitialized variable. Because the initialized variables 
begin at offset 0000 in the data segment, the length of the block of initialized 
variables is equal to the address of O���6. This length will be zero when there are 
no initialized variables, so we must check the #= register before starting the ��2�
��<�� operation to avoid copying 64 KB of variables that don’t exist.

Up to this point, the startup code used whatever stack the BIOS passed to it in 
��J�2. The C program must run with its own stack to guarantee enough space for 
nested function calls and interrupts, and that stack should be in a known location. 
The code stores the BIOS’s ��J�2 in the O����?�� and O����?�2 variables, then 
reloads ��J�2 with a pointer to the end of the reserved RAM segment. Before 
returning, the code restores ��J�2 to keep the BIOS happy.

Figure 2 shows that the stack grows downward in the data segment, so the initial 
stack pointer aims at the top of the segment. Because this extension uses a 32 KB 
chunk of RAM, its initial SP should be 7FFE to allow an unused word at the end 
of the stack. If your code requires a 64 KB data segment, you must use FFFE, 
because the initial �2 must be at least two bytes below the end of the segment (four 
bytes, in 32-bit protected mode) to avoid the dreaded Stack Fault error trap when 
the CPU pops the final value from the stack.

The next step may seem peculiar, but, because our BIOS extension might not be 
either the first or last extension, we cannot hardcode our data segment’s location 
into the startup code. For example, if an earlier extension claimed 10 KB, our 
32 KB segment would begin at 9580:0000 rather than 9800:0000 (work it out!). 
But, obviously, we can’t store a pointer to the data segment in the data segment, as 
subsequent code wouldn’t know where to look for it.

IBM’s BIOS architects reserved the interrupt vectors between ��� -"� and 
��� -K� for user functions. In principle, our startup code could store the pointer 
to our segment in the ��� -"� vector. When the extension begins execution, it 
could fetch the ��� -"� vector to find its data. In fact, I used this technique in an 
earlier version of this code.

Embedded PCs ISA Bus.book : Chapter 10.fm  Page 171  Tuesday, July 1, 1997  7:32 AM



The Embedded PC’s ISA Bus

172

Unfortunately, while the books say those interrupts are reserved for user functions, 
the BIOS in some systems clears their contents after initializing the BIOS 
extensions and before invoking ��� ���. That means any data our BIOS 
extension stores in that spot simply vanishes. Perhaps those BIOS designers felt 
that no user code could possibly begin running before that point… they certainly 
never had us in mind, did they?

The only other spot where we can reliably store information is in the battery backed 
RAM holding our code on the Firmware Development Board. The last few lines in 
Listing 1b disable the RAM write protection, store the initial ��J�2, and enable 
the write protection. Because the data segment holds both the variables and the 
stack, that single pointer provides the initial values for both %� and ��.

The downside of this technique is that something may clobber the RAM during 
the few instructions that must execute with writing enabled. Also, you must use 
RAM, rather than ROM or EPROM, to allow on-the-fly updates as the extension 
executes. Weigh the risk of overwriting the RAM against the benefits of flexible 
data allocation to see if this technique makes sense in your application.

The remainder of the startup routine is almost anticlimactic, as you can see from 
Listing 1c. It initializes the heap by writing a zero at O��6, then calls ��	��. 

Listing 1c
After preparing the variables and segment registers, the startup code initializes the 
Micro-C heap and calls the main() function. Unlike most embedded C programs, main() 
must return to allow the BIOS to continue its boot sequence. This listing shows how the 
code restores the segment registers and returns to the BIOS.
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When ��	�� returns, the startup code restores the BIOS ��J�2 values, pops the 
saved registers from the BIOS stack, and returns to the BIOS through the 
obligatory D)�����.

If your system has a video board, monitor, and keyboard, the BIOS will make them 
ready before it invokes your BIOS extension. However, it may or may not prepare 
optional equipment such as the serial and parallel printer ports. On a stock PC, 
your BIOS extension can display its status on the screen and read ordinary 
keyboard input. I’m taking a minimalist approach in the sample code, but don’t let 
that discourage you too much.

Many embedded BIOS extensions will control hardware similar to the Firmware 
Development Board’s LCD panel, watchdog, or serial number. When your 
extension gains control, you can set your hardware up. Don’t go overboard; do just 
the bare minimum and be done with it. You can report error messages on the 
standard PC screen, or, preferably, on some LED digits, a heartbeat LED, an LCD 
panel, or any other hardware that you control.

Listing 2 shows a rudimentary ��	�� function that saves the ��� ��� Bootstrap 
Loader vector and installs a pointer to a customized ��� ��� handler. Rather than 
create a separate storage location for the old vector, the code simply tucks it into the 
��� -�� vector. This is a time-honored PC technique that allows you to invoke 
the old handler through a simple ��� -��, rather than a convoluted indirect D)��
#)CC through a pointer in the data segment. If you must restore the registers before 
calling the old handler, you’ll appreciate why this is a Good Thing.

Listing 2
The main() function shown here moves the INT 19h vector to INT 61h so we can use it 
later, then aims INT 19h at our own interrupt handler. It sends a tracking output to the 
parallel port, but cannot send a serial message because the BIOS has yet to identify the 
hardware ports. Because this function is called during the BIOS extension scan, it must 
exit to allow the PC to continue booting.
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It also stores the ��� ��� vector in the Firmware Development Board’s battery 
backed RAM to protect it from BIOSes that clear the user interrupts. If you know 
your target system’s BIOS clears those vectors or your expect your code to run on 
many different machines, simply don’t store your vectors in system RAM. The code 
we’ll see later checks the ���?-�� vector against the value in the RAM, re-installs 
it if the BIOS changed it, and tells you what your BIOS did.

Note that, unlike all the other Micro-C programs we’ve used so far, this ��	�� 
function must exit to allow the remaining BIOS initialization to continue. Because 
system setup will not be complete while your code executes, the C program should 
do no more than absolutely necessary. In particular, the BIOS probably hasn’t 
loaded the serial port addresses at 0040:0000, which means ��	�� can’t send a 
cheerful “Hello, world!” message through the BIOS serial functions.

Getting the Boot
By intercepting ��� ���, the C code regains control just before the BIOS tries to 
boot from the disk or diskette. I covered such interrupt handlers in Chapter 7, but 
there are enough differences in the ���� and ��� models to warrant another look.

Listing 3
This macro wrapper uses the Firmware Development Board’s battery-backed RAM to 
locate the handler’s data segment and stack. The stk argument determines where the 
handler’s stack begins within the stack segment, thus allowing several simultaneously 
active handlers to use the same macro. The data locations in RAM must match those 
used by the program’s startup code!

>��$�	����)#F��2�DD����4.&�./"�
>��$�	��%)�)�� ��������4.&�./.�
>��$�	���C%������DD����4.&�./I�
>��$�	���C%������� ����4.&�./-�
>��$�	���C%������DD����4.&�./��
>��$�	���C%������� ����4.&�./�"�

>��$�	�����?�?2��C� �-I� S����0���$�6����'(��+��� �S

>��$�	�����?�?����T�$	����R$	����?�?2��C� ��������S��������$�6����'(� �S

>��$�	��?�2)#�?
>��$�	�����?��)CC�$	9��7�����Q� V
������H��,
��	������	��	+���	'���+7 V
$	�2;�@�����)= V
���2;�@������= V
���2;�@�����#= V
���2;�@�����%= V
���2;�@������� V
���2;�@�����%� V
���2;�@������� V
���2;�@�����%� V

Listing continues on next page
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Listing 3 shows the macro wrapper for a ���-model Micro-C interrupt handler 
that knows about our battery backed RAM. It saves a few of the caller’s registers on 
the interrupted routine’s stack, recovers the handler’s ��J�2 from the RAM and 
sets up that stack, saves the rest of the incoming registers on the new stack, then 
invokes the interrupt handler. When the handler returns, the wrapper undoes all 
that before finishing the process with an ����.

If your code can generate nested interrupts, such as hardware interrupts during a 
software interrupt, you must place each handler’s stack in a different part of the data 
segment. The second macro argument simplifies this process: the wrapper code 
subtracts ��7 from the stack pointer saved in RAM. You can easily allocate separate 
chunks relative to the original stack top with this trick.

Listing continued from previous page

�����$��+��6���$����,����
�,+7����)�����$�	��%�S��S���	����+7����V
�����<�������=9>�<?�� ����?)� V
�����<��������9�= V
�����<�������=9>��)#F��2�DD V
�����<������#=9��JL�=M V
����;�������#=9>��7 V
�����<������)=9�� V
�����<�������=9��J.L�=M V
�����<��������9�= V
���=#@ ������29#= V
���2;�@�����#= V
���2;�@�����)= V
�����<������%�9�= V
�����<��������9�= V
������H���(� +��6��������6��	��(����+7 V
�����<������)=9O���6 V
���2;�@�����)= V
������	H�7��������+���#��	���� V
���#)CC��$	/���?�?2��C� � V
�������������+��6��������6�$�����(����+7 V
���2�2������)= V
�����<������?�2)#�?O���69)= V
�������������6��	��������	+���	'���+7 V
���2�2������)= V
���2�2������#= V
�����<��������9)= V
�����<�������29#= V
���2�2������%� V
���2�2�������� V
���2�2������%� V
���2�2�������� V
���2�2������%= V
���2�2������#= V
���2�2�������= V
���2�2������)= V
�����,
6�����+���#����(�	� V
������� V
U

>(	��$�?�2)#�?

Embedded PCs ISA Bus.book : Chapter 10.fm  Page 175  Tuesday, July 1, 1997  7:32 AM



The Embedded PC’s ISA Bus

176

I could use the same stack for both ��� ��� and ��� ���, because my ��� ��� 
handler executes after the ��� ��� handler returns. In general, however, you must 
be more cautious with your stacks. In particular, make sure you allocate a different 
stack area for each hardware interrupt handler and reserve enough space for each 
stack so that they cannot possibly overwrite each other.

Your ��� ��� handler can take over the PC or continue booting as you see fit. The 
handler in Listing 4 hooks ��� ���, displays a message and waits for a serial 
character from the host PC before continuing. Depending on what you type, it will 
either invoke the original ��� ��� handler or issue an ��� ��� directly. If there 
are no diskettes in the system, the BIOS ��� ��� routine passes control to a 
customized ��� ��� handler.

That ��� ��� routine displays a message, then enters an endless loop updating a 
counter on the FDB’s LED display. Obviously, you can be a lot more clever than 

Listing 4
The BIOS INT 19h handler normally boots a program from disk, but this handler gives you 
a choice. Depending on the serial input character it will either boot using the BIOS 
handler (which the startup code moved to INT 61h) or pass control directly to the INT 18h 
boot failure handler. You can insert an entire application program either here or in the 
INT 18h handler, depending on how much hardware setup you expect the BIOS to do.

���?��)CC��	���9"���	���@	�������Q
�	���6���	E

����	����-""9��E
�	,����E S�����8���������+7� �S
6(�+��D���D��%�E
6(�����W��,������2#X����)��(��#�6�����"������������
V	W�E
6(�����W��+���#����������	���	�%���V	V	W�E
6(�����W�	����(6������6���,������	����V	W�E
�(�6��T�#?)%%�9"�".�E

S��������8�����8���H��'���6��6��������
��������	' �S
��7��'�Y�6��78��<?�� ����9%)�)�� �����E
��7�$$�Y�6��78��<?�� ����9��)#F��2�DD�E
6��	�$�W�2��	�����	��<��)�������6��$���+7����Z"I�JZ"I�V	W9

���7��'9��7�$$�E

S�����+6�(����	�����H�+���������(���+�	���������(���	���� �S
 ��<�+����"���9R�	�����'9R�	����$$�E
6��	�$�W�#6�(��	'��	�����H�+���9�8��Z"I�JZ"I�V	W9

��	�����'9�	����$$�E
���<�+����"���9 ��#�����'��9���?�?����T��	���@	������E
�(�68�#�C�?)%%�9�<?P��)�C��E
6�7�8��<?�� ����9�C%������DD9�	����$$�E
6�7�8��<?�� ����9�C%������� 9�	�����'�E
�(�68�#�C�?)%%�9"�E

Listing continues on next page
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that. Remember, however, that this is the last chance you get to affect the system. I 
don’t know what the BIOS will do if the ��� ��� handler returns, as Cassette 
BASIC offered no way back to the BIOS boot code.

To summarize, the C startup code and ��	�� function cooperate to form a BIOS 
extension that gets called during the boot sequence. The ��	�� code may hook 
the ��� ��� and ��� ��� interrupts to regain control before and after the disk 
boot. Those routines are software interrupt handlers, rather than BIOS extensions, 
and should use the C interrupt macro wrapper to save and restore the registers.

Your code can hook other software or hardware interrupt vectors to replace, modify, 
or extend standard BIOS services. For example, you could redirect calls to the 
BIOS ��� �"� video routines to your character LCD panel routines… that panel 
is a mite cramped, but your embedded applications could use the LCD or a normal 
video display with no changes. Get the picture?

Listing continued from previous page

S����������$��	��-���(�H�H������������,����6��+��� �S
 ��<�+����"�-�9R�	�-���'9R�	�-��$$�E
�$���	�-���'�GY�6��78��<?�� ����9�C%������� ���Q

6(�����W����������H��8������(���	$���	������	��-��H�+���GV	W�E
6��	�$�W��8��8�����Z"I�JZ"I�V	W9

��6��78��<?�� ����9�C%������� �9
��6��78��<?�� ����9�C%������DD��E

6��	�$�W�����	�8�Z"I�JZ"I�V	W9�	�-���'9�	�-��$$�E
���<�+����"�-�96��78��<?�� ����9�C%������� �9

6��78��<?�� ����9�C%������DD��E
6(�����W��������������6��6���H�(�GV	W�E

U

S�����	�8��(	�����+���	�����6 �S
8���������Q

6(�����W�2������	���������,���������+�����	H�7���	�����J�W�E
�6���	�Y�'��+���E
6(�+��XV	X�E
�8��+����6���	��Q
+���XV	X�J

6��	�$�W��	H�7�	'������	���������('���	��-���N�Z"I�JZ"I�***V	W9
��	�����'9�	����$$�E

���Q
����!-�

U
,��7E

+�����#J
6��	�$�W��	H�7�	'��(���	������	����***V	W�E

���Q
����!��

U
,��7E

U
U

U
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Release Notes
Because BIOS extensions require a specialized C startup file that isn’t useful for 
normal C code, I created a separate library file called BIOSExt.LIB that includes the 
startup code module 8086RLXR.ASM. You can modify BIOSExt.LIB to include 
specialized library files or exclude Micro-C library files as needed.

The macro wrapper shown in Listing 3 is in the firmdev.h file in this chapter’s 
subdirectory. Unlike the ��	
 model wrapper, it requires enough setup and 
specialized tweaks that I didn’t want to put it in the Micro-C subdirectory.

See the source code and ReadMe.txt files for more information.

The Micro-C CC86 Command Coordinator cannot specify a library other than the 
standard ones, so I’ve been using my MCComp.BAT file to create BIOS extensions. 
You can simply replace the 8086RLPR.ASM file with (renamed) 8086RLXR.ASM and 
use ��� model if you find that more convenient.

You must have the FDB’s battery backed RAM and write protection circuitry 
installed to use this code, because it updates the RAM contents during the BIOS 
boot sequence.

I still think 32 KB doesn’t provide enough room for a complete PC program, but 
now you have a framework for small, C language BIOS extensions and diskless 
programs. Just don’t get carried away and smash into that 32 KB limit at, oh, say, 
90% of the way through your next project.
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