
113

7 Absolute Power Corrupts
Power tends to corrupt and absolute power corrupts absolutely.

While Lord Acton surely didn’t consider firmware back in 1887, his epigram
certainly applies to our current task. Putting vital data in RAM requires absolute
control of both the power supply and the code… because preventing data
corruption is what it’s all about.

Replacing the EPROM chip we added to the Firmware Development Board with a
RAM chip may look easy, but protecting its data turns out to be considerably more
difficult. You’ll find the power monitoring and watchdog functions helpful, even if
your project doesn’t require a nonvolatile RAM with battery backup power.

Prepare to RAM
The new hardware we’ll build for this chapter has three main sections: a static
RAM chip with its support circuitry, a Maxim MAX691 Microprocessor
Supervisory Circuit, and a 16-bit I/O port. Refer to the schematics in Chapter 6
and the Schematics appendix for the complete wiring diagrams, because the
circuitry we will add here depends on the chips we’ve already debugged.

Schematic 1 shows the RAM and its support logic, in a layout quite similar to the
(E)EPROM hardware we built in Chapter 6. As promised, we now have firmware
controlled write protection with an LED indicator.

The Firmware Development Board’s memory socket can hold RAM, EPROM, or
EEPROM memory in either 8 KB or 32 KB sizes. Although the memory chip
pinouts were designed with compatibility in mind, Figure 1 shows the connections
that adapt a single socket to the various chips. My board sprouted five jumper
blocks that you may not need if you pick just one chip and stick with it.

As you saw in Chapter 6, 8-bit ISA bus accesses allow more than 500 ns from the
start of the -SMemR or -SMemW pulse. I used a Hitachi HM62256LP-150 RAM,
which, with its 150 ns access time, beats that spec by a wide margin. The LP suffix
indicates a Low Power, standby mode that preserves data, while drawing a very
small current from an external backup battery.

Unlike EPROMs and EEPROMs, CMOS static RAM chips require continuous
power to maintain their data. Normal operation requires +5 volts, but the RAM
cells can retain their contents down to about 2 V. Disabling the chip by raising -CE
activates the low power mode and reduces the total current drain. For example, a

Embedded PCs ISA Bus.book : Chapter 7.fm Page 113 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

114

chip that draws more than 50 mA during a normal access may pull only 10 nA in
low power mode.

However, simply disabling the chip may not be enough. The data sheets specify the
minimum -CE voltage to guarantee a maximum supply current. Because the supply
voltage will vary with the battery’s condition and temperature, the -CE pin voltage
spec actually defines the maximum difference between the voltages on pin 28 (VCC,
the power supply) and pin 20 (-CE). A 200 mV maximum differential means that
pin 20 must be no more than 0.200 volts below the supply voltage: >4.8 V for
normal power and >2.8 V while running from a (nominally) 3 V lithium cell.

Schematic 1
Adding a RAM chip to the Firmware Development Board requires circuitry similar to that
presented in Chapter 6. The two CMOS HCT32 gates control the Chip Enable and Write
Enable pins to prevent data loss during power failures. A lithium backup battery powers
those gates to ensure that the RAM properly enters power down mode.

Embedded PCs ISA Bus.book : Chapter 7.fm Page 114 Tuesday, July 1, 1997 7:32 AM

Chapter 7: Absolute Power Corrupts

115

Figure 2 shows the result of a simple experiment measuring supply current as a
function of -CE voltage. The vertical axis uses a logarithmic scale to compress the
current range, making it easy to see when standby mode kicks in at about 4.5 V. I
ran the RAM at +5 V, but the curve has a similar shape at 3 V.

Note that the spike near 1.3 V exceeds 54 mA! It occurs when the -CE input teases
the chip’s internal CMOS logic into the range where both p- and n-channel FETs
conduct current. That spike shows why you put lots of bypass capacitors on logic
supply lines and where much of the digital noise on your circuit board comes from.

You must drive -CE with a CMOS gate to ensure that it reaches the right level.
Ordinary TTL gates cannot pull the input high enough, draw too much current for
battery operation, and don’t run from a 3 volt supply, anyway. The output from a
CMOS gate swings nearly to the power supply voltage and tracks that supply as it
switches to battery backup.

As with all semiconductors, the RAM’s current draw shows an exponential relation
with chip temperature and may vary by nearly three orders of magnitude over the
full operating temperature range. My graph represents room temperature, of course,
and I could double the supply current by parking a desk lamp over the RAM chip.
Pay close attention to the spec sheets when sizing the battery for extended
temperature operation… those extreme values can be all too real.

Figure 1
Although 8 KB and 32 KB RAMs, EPROMs, and EEPROMs all come in a 28-pin DIP
package, they have some crucial differences. This table gives the connections for the
oddball pins. My Firmware Development Board sprouted a cluster of jumpers around the
memory socket to cope with all the choices.

Note: External circuitry must not drive the 8 KB EEPROM’s -Busy output on pin 1.

Chip Type Pin 1 Pin 20 Pin 26 Pin 27 Pin 28

8 KB RAM n/c Gated -CE +CE Gated -WR Backup Vcc

32 KB RAM A14 Gated -CE A13 Gated -WR Backup Vcc

8 KB EPROM Vpp -CE n/c -Pgm Vcc

32 KB EPROM Vpp -CE A13 A14 Vcc

8 KB EEPROM -Busy -CE n/c Gated -WR Vcc

32 KB EEPROM A14 -CE A13 Gated -WR Vcc

Embedded PCs ISA Bus.book : Chapter 7.fm Page 115 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

116

���

�

��

���

����

�����

������

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

�	
����	��������������

�
	
�
�
��
�
�
�
�

�
��
�
��
�
�
��
��
�

Figure 2
This graph shows how the -CE input voltage affects the current drawn by a static RAM
at VCC = 5 volts, but a similar curve applies for 3 V battery backup operation. The -CE
input must be within a few hundred millivolts of VCC to put the RAM into standby mode.
The 54 mA spike near 1.3 volts occurs when the chip’s internal logic passes through the
range where both its p- and n-channel FETs conduct current.

Embedded PCs ISA Bus.book : Chapter 7.fm Page 116 Tuesday, July 1, 1997 7:32 AM

Chapter 7: Absolute Power Corrupts

117

Backup Warning
Although we’ve all seen and used the canonical diode-and-battery backup power
circuit, there are good reasons for more complexity. I picked the venerable
MAX691, because it packs power monitoring, battery control, RAM protection,
and a watchdog timer in a single IC. Other parts may be better for your particular
application, but the MAX691 remains a general purpose workhorse.

Schematic 2 shows the minimal external circuitry we need. Most of the gates drive
indicator LEDs that you might not use in a production system. I favor lots of LEDs
that indicate firmware and hardware status for what is, after all, a demo system.

Battery backup for the RAM becomes straightforward, as the MAX691 switches
the voltage on pin 2 to the higher of the power supply at pin 3 or the battery at
pin 1. Although I used a 3 V lithium coin cell rated at 250 mAh, any power source
that provides enough voltage for the RAM will work.

A NEC Static RAM Application Note I reviewed for this project mentioned
several UL requirements for lithium cell backup circuits. Even if your product specs
don’t require UL approval, the guidelines make sense. Bear in mind that I have not
read the UL regulations themselves, so don’t depend on my suggestions to get your
design approved!

Standard, nonrechargeable lithium cells react explosively to recharging, so you must
prevent current from flowing into the cell. Typically you would use a Schottky
barrier diode in series with the battery, because the forward drop of an ordinary
silicon junction diode can be far too high. The UL requirement limits the charging
current to 1% of the cell’s capacity, prorated by the possible charging time over the
battery’s service life. This can be a surprisingly small number that requires careful
diode spec checks.

For example, if the PC’s power supply will be active 8 hours per day with a cell
capacity of 250 mAh, the reverse charging current may not exceed

(0.01 × 250 mAh) ÷ (8 hours/day × 365 days/year × 10 years)

which works out to about 85 nA. The worst case occurs in continuously powered
systems that always force charging current into the cell. In fact, those calculations
may demand a much bigger battery than the RAM’s standby current would lead
you to expect, just to increase the allowable reverse charging current to a reasonable
value. Refer to the actual UL specs for the details.

Embedded PCs ISA Bus.book : Chapter 7.fm Page 117 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

118

Embedded PCs ISA Bus.book : Chapter 7.fm Page 118 Tuesday, July 1, 1997 7:32 AM

Chapter 7: Absolute Power Corrupts

119

Schematic 2
The MAX691 monitors the power supply, warns of impending power failure, controls the
backup battery and -CE switching, and includes a variable speed watchdog timer. The
LS74 flipflop ensures that the watchdog times out after about 30 seconds following a
hardware reset; any access to port 031C reduces the timeout to 1.6 seconds. Much of
the remaining circuitry drives indicator LEDs that reveal what’s going on. As with any high
speed, mixed analog and digital circuit, applying proper bypassing to the MAX691 will
prevent many headaches.

Embedded PCs ISA Bus.book : Chapter 7.fm Page 119 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

120

The MAX691 limits charging current to 10 nA typical, 100 nA maximum, and
1 µA over the full temperature range. I decided to skip the series diode, as the
Firmware Development Board will never sport a UL rating…

The UL requirements also specify a current limiting resistor in case the diode
becomes damaged or shorted. The fault current in that situation must not exceed
5 mA regardless of battery capacity. The resistor value equals the maximum
possible supply voltage minus the cell voltage divided by 5 mA:

(5.5 V - 3 V) ÷ 5 mA = 500 Ω

or the next higher standard value of 560 Ω. I included this resistor to prevent
problems, should the MAX691 succumb to a static zap. Obviously, that line of
thinking lacks consistency. The MAX691A, a ’691 successor, includes a current
limiting resistor on the chip to simplify your life a bit.

The MAX691 data sheet specifies a bypass capacitor on pin 2 to stabilize the
internal voltage comparator and supply switch. The MAX691’s internal transistor
switch can source only 50 mA, requiring the cap to supply transient currents
beyond that limit. If your circuitry requires more average current, the data sheet
shows a current-boost circuit that doesn’t affect the backup battery life when the
power goes off.

The bypass cap must store enough energy to stabilize the voltage during the huge
current spike shown in Figure 2. You should also bypass the static RAM and any
other digital circuits at their sockets, as usual.

With clean power assured, the next step becomes controlling the CPU during the
switchover. After all, it does no good to preserve data scrambled by a power-starved
processor, does it?

Data Defense
Because the Original IBM PC power supply included a Power Good output
signal, they’re pretty much a standard feature on all supplies intended for use with
current PCs. When Power Good was low, the CPU remained reset. After all the
power supply voltages stabilized within their specified limits, Power Good went
high and the CPU started up. When you flipped the Big Red Switch OFF,
Power Good dropped before the supply voltages fell out of spec. In effect, the
system always saw clean power while it was running normally and the power supply
made sure it wasn’t running at all when the power wasn’t clean.

Embedded PCs ISA Bus.book : Chapter 7.fm Page 120 Tuesday, July 1, 1997 7:32 AM

Chapter 7: Absolute Power Corrupts

121

The system board activates the ISA bus ResDrv (RESet DRiVers) signal when it
sees a hardware reset. In principle, Power Good going low should activate
ResDrv and ensure all of the PC’s circuitry stays reset.

However, to quote Solari, “[T]he above information … is a combination of … the
IEEE P996 specification and various IBM technical reference manuals. It is
sometimes unclear which platforms adhere to these specifications.”

I’ve seen some PC power supplies, particularly for homebrew embedded systems,
without a Power Good signal. Evidently, the designers depend on the system
board’s (possibly nonexistent) reset timing circuitry. In fact, one group I worked
with simply tied the target system’s Power Good input to a capacitor, ignoring
the fact that the resulting, faked Power Good signal remained active long after the
power went bad. I argued in vain for a power monitor chip, but, with the board
already laid out, they preferred to kludge the cap instead of fixing the problem. Ugh.

The MAX691 monitors its supply voltage on pin 3 and triggers several actions
when that input falls below specific levels. While these may not be strictly necessary
in a PC with a solid supply, as long as we have the chip, we may as well put it to
good use. If, for whatever reason, you are not using a standard PC supply, this
circuit can help ensure that the RAM’s contents remain valid, regardless of what
happens to the rest of the system.

Recall that we must put the RAM chip into standby mode when the power fails.
The MAX691’s -CE Out signal tracks -CE In until the supply voltage falls
below 4.65 V, whereupon the MAX691 unilaterally forces -CE Out high. This
both disables the RAM and puts it into standby mode.

Unfortunately, while the MAX691 has a 50 ns nominal delay from -CE In to
-CE Out, the maximum spec hits 200 ns. That may be OK for this relatively slow
ISA bus application, but I felt I should show how to adapt it to faster systems. The
MAX691A has a far more useful 10 ns nominal delay. All current versions of
Maxim’s other power monitors run at useful speeds, too, as you might expect.

The solution simply controls a faster logic gate with the -CE Out signal from the
MAX691. As shown in Schematic 2, grounding the -CE In pin forces -CE Out
low in normal operation. When the power fails, the MAX691 raises -CE Out.
Although it’s not exactly a DC signal, a few dozen nanoseconds one way or the
other simply don’t matter for a power failure warning. I called the signal
-Power OK to indicate its new function.

With -Power OK low, the HCT32 gate in Schematic 1 delays the RAM chip
select by only about 20 ns. When -Power OK goes high, it forces -CE high and

Embedded PCs ISA Bus.book : Chapter 7.fm Page 121 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

122

the RAM enters its low power standby mode. The CMOS gate drives the chip’s
-CE pin nearly to the supply voltage, ensuring that it meets the spec.

Obviously, you must power the external gate with the backup battery through the
MAX691 VOUT pin! You should use an HCT gate, rather than C or HC, to ensure
that its inputs respond to TTL switching levels. Pure CMOS gates, with VIH specs
well above the normal TTL VOH level, won’t work correctly when driven by TTL
output voltages.

Processor Protection
With the data in RAM now safe from forgetfulness, Wouldn’t It Be Nice If (a
phrase, often found in design proposals, abbreviated as WIBNI) the CPU knew
what was going on, too. After all, simply disabling the RAM may cause invalid data
if the CPU halts in the midst of a multibyte update. Although the power may be
failing, a millisecond or two can give you just enough time to put things in order.

The MAX691 provides an early warning of impending doom by monitoring the
voltage on its Power Fail Input pin: when the voltage at PFI drops below
1.3 V, the -Power Fail Output pin goes low. The resistive divider and
trimpot R50 shown in Schematic 2 set the trip point so that -PFO goes active well
before the MAX691 disables RAM access. You can set the voltage without using a
trimpot, but the pot lets you activate -PFO without actually blipping the supply.

Although you could wire -PFO through an inverting driver to one of the system’s
interrupt lines, all will be lost should interrupts be masked off when the power fails.
The solution lies in the -IOCHCK (IO CHannel ChecK) ISA bus line, which
activates the CPU’s NMI (Non-Maskable Interrupt) pin. That interrupt cannot be
ignored in normal operation, ensuring that the situation gets the CPU’s attention.

Once the NMI handler gains control, it can take whatever steps you decide will
ensure a safe and orderly system shutdown. With only a few milliseconds of power
left, however, saving data to disk, sending a message out the serial port, or doing
anything on a human time scale simply won’t work. Think fast and think final!

The MAX691 activates its -Reset output when the supply voltage drops below
4.65 V. In a good PC with a standard supply, the spec for the +5 V power at the
board connectors is 4.875 V minimum, which means that Power Good should
fall long before the MAX691 triggers a reset.

The MAX691 also has a +Reset output for 8031-style microcontrollers with a
high active +Reset input. Two additional power monitor outputs, Battery On

Embedded PCs ISA Bus.book : Chapter 7.fm Page 122 Tuesday, July 1, 1997 7:32 AM

Chapter 7: Absolute Power Corrupts

123

and -Low Line, may come in handy for some systems. Check the data sheet for
further hints and tips.

To recap, the sequence of events during a power failure starts with -PFO activating
the CPU’s NMI input. Your NMI handler prepares for the coming shutdown, then
enters a loop until either the MAX691 or the PC’s Power Good circuitry detects
an invalid voltage and activates the system Reset line. The MAX691 disables the
RAM at the same time it activates -Reset.

When power comes back on, Power Good and the MAX691 together decide
when the voltages fall within tolerance, then release the system Reset line. The
CPU starts up, the BIOS takes control, and the system boots normally. When the
MAX691 releases -Reset, it also enables the RAM and makes it ready for the
first firmware access, with the write enable bit cleared to prevent changes.

Schematic 2 shows connections to both ResDrv and the system board Reset
connector. The two are not identical: ResDrv is an ISA bus signal and Reset
normally connects to the Reset switch on the front panel. You must not drive
ResDrv and you do not have direct access to the signal that resets the CPU.

I kludged a small adapter for the Reset connection: the switch on the front panel
plugs into the adapter, which then plugs into the system board. A pair of wires joins
the adapter to a header on the Firmware Development Board. If you connect the
fool thing backwards, the FDB’s ground holds Reset low, making that an easy
goof to find… your target system won’t start up!

Firmware Supervision
The MAX691 has one additional feature that I believe should be in every
embedded system: a watchdog timer. As you surely know already, a watchdog timer
resets the system CPU after a predetermined interval following a transition on its
input pin. The firmware (or hardware, in some systems) must wiggle that bit often
enough to prevent the timer from timing out.

Presumably, correctly functioning firmware will periodically wiggle the watchdog
timer’s input, but locked-up or stalled code probably won’t. When the watchdog
times out, the ensuing system reset clears the slate and starts the firmware over
again. Whatever the CPU is controlling must withstand a brief glitch while the
system recovers its wits. If your system can’t stand such an interruption, a watchdog
won’t work for you. However, you must provide some other way to detect lockups,
because they will occur.

Trust me on this one.

Embedded PCs ISA Bus.book : Chapter 7.fm Page 123 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

124

The BIOS in a stock PC gets control when the CPU Reset signal goes inactive
and remains in control until the disk boot starts your program. A typical system
may require 20 seconds for this process and, should it use SCSI disk drives, can take
far longer. Even a 20 s seizure probably lasts far longer than you’re willing to wait
during normal operation, when your firmware should be busy controlling whatever
you have hitched up to the system. Obviously, we need a variable rate watchdog.

Some systems start up without a watchdog active or permit disabling the watchdog
under firmware control, but I don’t like those choices. A firmware fault or hardware
glitch can (nay, will) disable the watchdog just before the CPU takes a permanent
walk in the woods. A variable rate watchdog ensures that the reset must occur
eventually, even if it may take a little more or less time than you’d like.

Schematic 2 shows how I adapted the MAX691’s watchdog. The ISA bus ResDrv
signal clears U18B, a LS74 flipflop. That bit holds the MAX691’s Osc Sel input
low, forcing the watchdog to run at a frequency set by capacitor C2. The 1 nF cap I
used produces a watchdog timeout of about 30 seconds, long enough to load and
start a (short) program from diskette before the first timeout.

The first time a program writes to port 031C on the Firmware Development
Board, the hardware sets U18B, which raises the MAX691’s Osc Sel and
Osc In pins. With those inputs high, the watchdog uses its internal oscillator and
times out after 1.6 seconds. That’s fast enough for normal operation when your
code should have control of the system.

Although the MAX691 data sheet has equations giving the external capacitor value
for a given timeout, I’ve found that they provide only rough starting points. You
should probably perform some experimentation to find the right value for your
application and verify the results. Remember that a slow watchdog beats a fast one
in most situations, as you’ll rarely find your code speeding up as you add more
functions. A system that resets itself once in a while can be rather disconcerting.

Incidentally, you might want to store a record of how and why you got reset for later
analysis. Perhaps you could trigger an interrupt handler just slightly before the
watchdog clobbers your system, save the current state, then wait for the end?

Schematic 3 shows the new I/O bits on port 031C, which uses hardware essentially
identical to the LED digits and DIP switches on port 031E that we built in
Chapter 3. Although only three of the new bits see action here, I’ve got plans for
the remainder, never fear.

The Firmware Development Board now sports several more indicator LEDs. You
can tell at a glance when RAM writes are enabled, Reset goes active, the

Embedded PCs ISA Bus.book : Chapter 7.fm Page 124 Tuesday, July 1, 1997 7:32 AM

Chapter 7: Absolute Power Corrupts

125

watchdog toggles, and how long a watchdog timeout will take. The LED drivers
reside in U19, the same LS245 DIP that sends 82C54 timer interrupts to the ISA
bus. Recall that we tied its output enable pin low when we set up those interrupts.

Getting Down to Code
The RAM circuitry bears enough resemblance to the (E)EPROM we covered in
Chapter 6 that I could convert the MemTest program into RAMTest by just ripping
out the EEPROM timing code and expanding the memory tests to include all

Schematic 3
These gates provide the input and output bits used by this chapter’s circuitry. The unused
bits will come in handy later on.

Embedded PCs ISA Bus.book : Chapter 7.fm Page 125 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

126

32 KB. With nothing much new here, I won’t show the listings. Do, however,
examine the complete source code and use it to check out your wiring.

Although a watchdog timer may be vital in a production system, it becomes a
serious nuisance while you’re developing and testing code like RAMTest. I disabled
my board’s watchdog by simply yanking the system board Reset connection. The
red LED then indicates when the MAX691’s Reset output goes active. If that
LED ever goes on, you’ve goofed!

To verify the watchdog and power monitor code, run the companion program
called DogTest. Connect the MAX691’s �Reset output to the system’s Reset
connector and boot DogTest from diskette. If it gets control before the initial 30 s
timeout expires, as it should, it will set up the interrupt vectors and begin toggling
the watchdog output.

Should DogTest not get control, it’ll be pretty obvious. Your PC will boot, begin
loading DogTest from diskette, reset, and start all over again.

A watchdog timer doesn’t care how often you toggle its input bit, as long as you do
it often enough. If, however, there’s an LED on that bit, it is a Very Good Idea to
produce a regular heartbeat. An irregular heartbeat LED can be quite unsettling,
even when it indicates perfectly good code in normal operation.

I use heartbeat LEDs as output devices: a regular blink signifies normal operation,
while long and short blinks report errors. The firmware can be pretty
straightforward: a timer interrupt handler takes care of timing, while the mainline
code sets up the bit patterns. I’ve used this trick on many systems and you can
probably adapt it to yours.

Listing 1 shows DogTest’s timer interrupt handler. The mainline code attaches this
function to ��� ���, which the BIOS invokes after processing each 54.9 ms timer
tick. I divided that rate down by three to shift out about 6 bits per second. The
interrupt handler thus runs through all sixteen bits in the �	
���
� variable in
about 2.6 s.

The interrupt handler sets �	
�������� when it finishes sending all 16 bits. If
�	
�������� remains set after 16 more bits, the interrupt handler enters the
tight loop at �������. Because the watchdog output bit no longer toggles, the
MAX691 will eventually reset the system.

The mainline code thus has two responsibilities: it must load a bit pattern into
�	
���
� at least once and it must clear �	
�������� at least every 32 bit
times (ideally, every 16 bit times) to prevent a timeout. The maximum delay until a

Embedded PCs ISA Bus.book : Chapter 7.fm Page 126 Tuesday, July 1, 1997 7:32 AM

Chapter 7: Absolute Power Corrupts

127

Listing 1
Producing a regular heartbeat on the watchdog pin requires an interrupt handler attached
to a timer tick. This code rotates a 16-bit variable and sends the high-order bit to the
watchdog pin and LED. To avoid sending the bits faster than the eye can follow, it counts
BIOS timer interrupts and sends out one bit when the count reaches WATCH_RATE. The
mainline code must reset the WatchPending flag at least once every 32 bit periods to
prevent this handler from forcing a watchdog reset.

�	�����������
	� ��

�!"� #$ �	%��&'�
	�����
�!"� �$
�!"� �"
()* #$+�" 	 �	
��,����� ��
�	�	�
()* �"+#$

-
-���,�
���.��
����
���,/
��,�
��.�������	�.	
������,/�	
�

�0� 1�	
���%��
2�3 ���4�

()* 1�	
���%��+5�#����4#�0

-
-�������6�	���.�.	
������.������������
-��6�
��+�	���
��� 	������������7	 ��+�.�������,/�	�����
������ �0� 8�	
����,�
��

2�3 ���9� ���:�����	'��,�������&
�
�(� 8�	
��������+5; �	�� 	��������������	����
���&
�<
20 �����	� :�����	'��'��+����.��	���������
()* �$+5�0��#��4�# ���:�����	'��.���	%��
��,&��
()* #$+5=>?;;; ��6
���� 	��/��
�6�	���
���/��&��
)!� �$+#$

������� 2(� 1������� �
	'������,�
��.	
������
 ��,

-
�����	� ()* #$+�	
���
� 6�
�����.�&
�

()* �	
��"�6
+#$ �@@@�6���
�����6
����
()* 8�	
����,�
��+5�A ����	��
�����,�
��
��� 8�	
�������� ��
�6�	��6��� 	���������

-
-���/�
���.	
�������,
/,
�
�����,���	�
�	��
����%��'�
 �
���9� ()* �$+5���"�#��4�# ��
�,/�6���.	
�������,
/,

()* #$+�
����/' ��
��B�
���&
�
#�� #$+5=�#����)9�# �����	���.���0��)��
)!� �$+#$
�,�

)4 #$+5�#����)9�# �����	�������0��)CC�
)!� �$+#$

-
-�4�
	
��
���.	
������&
��	��������
����������
-����6�/�
���&
������
,����
����0��)������
����,��

4)� 8�	
��"�6
+� ��
�����������&
����
2�� ���3 ���	���	'����	%��
����,
/,
����
#�� #$+5=�#����)9�# ��
��	'�� 	����,
/,
���.

���3)!� �$+#$ �����
��,

$)4 #$+5�#����)9�# 6�/�
���&
�&	���	�	�
()* �
����/'+#$ �	%��6�����B
�
 �

-
���4�
 �)� �" ���
����&'�
	�����

�)� �$
�)� #$
�)� ��
�40� ���
�����
	�����6�	��

D
D

Embedded PCs ISA Bus.book : Chapter 7.fm Page 127 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

128

watchdog reset occurs will be the 5.2 s required to shift all 16 bits out (twice) plus
1.6 s after the last bit, or about 6.8 s overall.

You can clear �	
�������� in your main loop, as long as no code takes more
than a few seconds. Watch out for things like user input prompts… resetting the
system shortly after presenting a prompt on an LCD panel won’t endear you to your
users. Especially if it occurs just about when they noticed that prompt.

The most soothing bit pattern seems to be FF00, a reassuring pulse with 1.3 s ON
and 1.3 s OFF. AAAA produces an exciting 3 Hz blink, while F140 send a “one
long, two shorts” blink code that might indicate a particular failure or error
condition. You can do a surprising amount with 16 bits if you think about it for a
while. You can always go to 32 or more bits if you prefer: it’s just a variable.

Note that setting �	
���
� to 0000 produces a perfectly valid, albeit dull, pattern
that does not cause a watchdog timeout. The interrupt handler forces a transition
between each pair of bits, pulsing the watchdog every 165 ms regardless of the
heartbeat bit values. If you look closely at the LED in a dark room, you can actually
see those 1.3 µs pulses running at a 0.001% duty cycle. Try it!

DogTest’s main loop is quite simple: it checks and resets �	
�������� to keep
the interrupt handler happy, copies the DIP switches into �	
���
� so you can

Figure 3
A system board memory parity check or the ISA bus -IOCHCK signal can trigger a Non-
Maskable Interrupt. Your firmware can determine which input is active and mask it off by
using these bits in I/O port 0x61. Some systems have additional NMI sources with
different controls. Bit 7 in port 0x70 must also be zero to enable the CPU’s NMI input.

Bit Read Status Write Function

7 1 = System board parity check n/a

6 1 = IO channel check n/a

5 1 = Timer 2 output bit n/a

4 Toggles with each RAM refresh n/a

3 0 = IO channel check enabled 0 = Enable IO parity check

2 0 = System board parity check enabled 0 = Enable parity check

1 1 = Speaker data enabled 1 = Enable speaker

0 1 = Gate Timer 2 output to speaker 1 = Gate Timer 2 to speaker

Embedded PCs ISA Bus.book : Chapter 7.fm Page 128 Tuesday, July 1, 1997 7:32 AM

Chapter 7: Absolute Power Corrupts

129

experiment with different bit patterns, and writes a counter value into the FDB’s
LED display so you can see something happening.

DogTest also accepts a command from the serial port connected to your host system:
if you type 1 on the host’s comm program, DogTest will stop clearing
�	
�������� and force a watchdog reset. The interrupt handler turns on the
decimal point of the LED’s left digit just before it enters the final loop. Watch
carefully to see the MAX691 activate the Reset LED (and reset the system)
roughly 1.6 seconds later. It should reboot and start DogTest as it did before.

Unmasking the NMI
By definition, the CPU cannot ignore a Non-Maskable Interrupt. However, the
IBM PC and its descendants include circuitry to prevent a signal from reaching the
CPU’s NMI pin. While this may seem contradictory, the system cannot start, let
alone run correctly, with what’s called a hot NMI.

For example, if an NMI occurs before the firmware validates RAM and loads the
stack pointer, the system will certainly crash when the handler tries to return. The
CPU will accept an NMI immediately after its Reset input goes inactive so, with
NMI stuck active, the CPU cannot even run diagnostics to pinpoint the problem.

However, leaving NMI disabled all the time is an Exceedingly Bad Idea. IBM’s PC
AT designers picked a distressingly clever way to enable NMI without special
programming. The MC146818A Real-Time Clock has 64 bytes of battery backed
RAM addressed by the byte written to I/O port 0x70. The address circuitry inside
the clock chip uses only six bits and ignores the high-order ones. The designers
added an external latch that catches data bit 7 and drives a gate controlling NMI.
Simply write address 0x80 instead of 0x00 to port 0x70 and mask the unmaskable.

Wish you’d thought of something like that for your last project?

In addition to the latch holding the mask bit, the system board has additional
circuitry that sets the latch during each hardware reset. It remains set until the
BIOS writes an RTC address between 00 and 7F, an event that happens only after
the BIOS makes sure a hot NMI won’t cause any problems.

A variety of sources can activate NMI, depending on exactly which system you
have. The two standard sources, the system board memory parity check hardware
and the ISA bus -IOCHCK signal, should (but may not) exist on all systems.
Several bits in I/O port 0x61 control these signals, as shown in Figure 3.

Embedded PCs ISA Bus.book : Chapter 7.fm Page 129 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

130

DogTest’s NMI handler, shown in Listing 2, resembles the interrupt handlers you’ve
seen before, with one key exception. Because the NMI does not pass through the
external 8259 interrupt controller chips, the handler must not send an 0)� to either
8259 in response to the NMI.

The code examines the MAX691 -PFO bit through port 031C; a power failure is
impending if it finds a zero. Otherwise, the code simply invokes the previous
handler set up by the BIOS during the power-on sequence.

Listing 2
This routine decides if a Non-Maskable Interrupt was caused by the MAX691’s Power
Fail detector. If so, it write protects the RAM, lights a decimal point, and enters a spin loop
waiting for Reset. If not, it passes control to the NMI handler set up by the BIOS.

�	������(�����

	� ��
-

�!"� #$ �	%��&'�
	�����
�!"� �$
�!"� �"
()* #$+�" 	 �	
��,����� ��
�	�	�
()* �"+#$

-
-�������
������6�
���/�.���6	��&
���	�
%�
-

()* �$+5"�#��#��4�#
�� #$+�$
�,�

�0"� #$+5��4�9))��#
2�3 �(����	� ���:�����	'����
��,��/��&��

-
-�����	%��	�/�.���6	�,��+����.�
��/��
��
�
���4#(�	��������,/
-

()* �$+5���"�#��4�#
,����66�
���.�
����	&���&

()* #$+5=�*��0�#��0�#
)!� �$+#$
�,�

-
()* �$+5�0��#��4�# ���.�
�	
�.��	����������,/
()* #$+5=>;;?; �@@@�.
�����
���� 	��/��
�)�
)!� �$+#$
�,�

-
�(������ 2(� 1�(������ 7	 �,/������,�
����B
�����

-
-
-���	��
��/��%�,���(���	�����
-
�(����	� �)� �" ���
����&'�
	�����

�)� �$
�)� #$
�)� ��
2(� �"E;E8��
;F)66 �����
�
�������	�����

D

D

Embedded PCs ISA Bus.book : Chapter 7.fm Page 130 Tuesday, July 1, 1997 7:32 AM

Chapter 7: Absolute Power Corrupts

131

The Micro-C assembler requires the rather strange syntax in the last 2(�
instruction to emit an indirect 2(��C#4 with a �" segment override. Borland’s
TASM uses this somewhat less opaque notation:

2(��G��)4���"E��
;F)66H

Because the CPU blocks further Non-Maskable Interrupts until it executes an
�40� instruction, you could replace the tight loop at �(������ with a ���
instruction. I favor a loop over a ���, because, in a pinch, I can easily add a few
instructions that toggle an output bit and flag the spot on a scope. Take your pick.

Release Notes
The code for this chapter includes source and HEX files for RAMTest and DogTest.
Remember: boot DogTest directly from diskette and make sure it gets control before
the MAX691 resets the system! Otherwise, you’ll watch your system boot
continuously until you turn the power off.

I’ve also tweaked the LoadEXT.ASM routines you saw in Chapter 6. You can now lob
a BIOS extension from diskette into either EEPROM or battery backed RAM,
while setting the checksum on the fly.

Compare the specs on the MAX691 with the improved MAX691A. Obviously,
you’d use the A version for new projects. Maxim now provides all their datasheets
on a single CD-ROM, as well as their Web site, which makes it particularly easy to
find specific chips. See the Sources appendix for the Web pointer. Oh, yes, you can
order the CD-ROM online, too.

Chapter 8 explores more NMI code topics, including how to handle glitches on the
NMI input that may cause problems on some systems.

OK, that’s enough hardware for while! If you can’t start doing embedded PC work
with what we’ve got now, it’s time to dust off those COBOL manuals.

Embedded PCs ISA Bus.book : Chapter 7.fm Page 131 Tuesday, July 1, 1997 7:32 AM

Embedded PCs ISA Bus.book : Chapter 7.fm Page 132 Tuesday, July 1, 1997 7:32 AM

