
9

1 Blindsided by Technology
Suppose your project needs a high-performance CPU, lots of DRAM,
comprehensive interrupt support, a real-time clock, nonvolatile configuration
RAM, serial and parallel ports, and a megabyte-per-second I/O bus.

Quickly: how long will the hardware design take and what does the first unit cost?

Give up? How about five minutes and a few hundred bucks?

Once again, the rules are changing...

Commodity Computers
Now that a fully loaded, high-performance PC system board retails for under $200,
it’s easier than ever to justify devoting adequate computing power to tasks once
squeezed into microcontrollers. With reasonably standardized PC hardware
available from many vendors, you can devote your attention to the proprietary part
of your project, the knowledge that makes your product unique.

Your product may, of course, require specialized hardware that nobody else knows
how to build. By constructing that hardware on a board that plugs into a standard
PC, you need not build an entire computer before your project gets off the ground.

Current PCs include both PCI and ISA standard peripheral buses. The Peripheral
Component Interconnect bus is optimized for very high speed data transfers
between the CPU and several intelligent peripherals. Unfortunately, its high data
rate precludes “simple” hardware design and PCI device engineering is not for the
faint of heart.

The Industry Standard Architecture bus, in contrast, is essentially the same bus as
IBM designed into the PC AT back in the mid 1980s. At the time, it was entirely
fast enough for the job. By contemporary standards, it is both slow and limited.

The ISA bus has two compelling advantages: a comparatively simple hardware
interface and across-the-board availability. Every desktop PC in the world has a
few ISA bus connectors on its backplane. If your gadget can operate within the
limits of the ISA bus architecture, it’s the only way to go.

The Bibliography appendix includes several books that define how the ISA bus
operates and what your device must do in order to work correctly. What’s missing

Embedded PCs ISA Bus.book : Chapter 1.fm Page 9 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

10

from those books is how to write the firmware that makes the hardware jump
through hoops. We’ll do that here, after we get the PC hardware nailed down.

Essential Hardware
The code in this book will run on any ’386SX or better CPU, but it is an
Exceedingly Bad Idea to use your real PC as a guinea pig. A single slip of the scope
probe or a minor programming error can literally put you out of business by wiping
out either your hardware or your on-disk data. The cost of a minimal ISA bus PC
system is tiny, compared to the aggravation of recovering your data. Trust me.

Besides, we will monitor the target system’s operation through its standard PC
serial port. You already have a comm program set up on your existing PC, so why
make things harder than necessary? If you plan to build embedded systems, start
working with separate hardware right away and debug the interconnections first.

You’ll find that a mini tower case works better for these projects than a standard
desktop case, because a tower extends the ISA bus boards horizontally over your
desk. Photo 1 shows the target system arrangement I used, with a 16-bit ISA bus
extender connecting the lowest bus slot to an ISA bus prototype board resting on a

Photo 1
A commodity PC provides a firm foundation for experimentation with the ISA bus. We will
monitor our firmware through this target system’s parallel and serial ports; note that it
lacks a keyboard and monitor! Make sure your ISA bus prototype board has good
mechanical supports, lest flaky connections drive you mad.

Embedded PCs ISA Bus.book : Chapter 1.fm Page 10 Tuesday, July 1, 1997 7:32 AM

Chapter 1: Blindsided by Technology

11

homebrew support. Although it’s not shown in the picture, I machined a slot in the
PC case around the bus extender, making a neat package that maintains normal
airflow over the system board with the cover in place.

Throughout the book, you’ll see photos and diagrams of ISA bus signals. After you
work with the bus for a while, you won’t need labels to find the signals, but, until
then, some help is in order. See Chapter 3 for a label that identifies each signal:
with each ISA bus pin name in plain sight, bus-level probing becomes a snap.

Because all PC system boards are set up for DOS or Windows, you must change a
few BIOS CMOS configuration parameters in your target system. Attach the
display and keyboard from your main PC, run the BIOS setup routine, tell it to run
without a display or keyboard, enable booting from the diskette, nudge the Real-
Time Clock into your time zone, and disable any virus checking. All this may be a
nuisance, but it’s much faster and far easier than having to write the whole BIOS
yourself. Honest!

Booting Firmware
When you think of firmware, you probably also think of code stored in EPROMs
or flash ROMs, developed with CPU emulators and other complex (and expensive)
hardware. We can take an easier path: write the code on your host PC, inject it into
the target PC through a floppy drive, then monitor and debug the results through a
serial port. Think of it as squishy firmware.

Of course, emulators and simulators have their place. Some bugs simply can’t be
exterminated without the level of detail provided by in-circuit tools. However, we
can cover quite a lot of territory without too much exotic equipment or esoteric
software. To a large extent, you already have the tools on your desktop PC.

This may seem like cheating, but an all-in-one I/O board from nearly any PC
supplier costs $20 (less, in some cases) and a 3.5" floppy drive gives you 1.44 MB of
storage for perhaps $30. Price out the equivalent space on an EPROM or flash
ROM board and report back; perhaps your project can use a floppy after all?

Remember, the rules are changing…

No, a floppy drive isn’t appropriate for rugged, all weather, no-moving-parts
applications. But many (most?) embedded systems run in shirtsleeve environments
where a floppy that spins only during system resets makes a lot of sense. Even
better, data collection applications can have PC-compatible data storage with
essentially no overhead.

Embedded PCs ISA Bus.book : Chapter 1.fm Page 11 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

12

And, contrary to what you might think, loading a program doesn’t require DOS,
either. Loading a COM file involves nothing more than copying bytes from disk into
memory, setting up a few registers, and jumping to the first instruction. EXE files
are a tad more complex, but we’ll tackle that problem in Chapter 11.

The BIOS on our ISA bus system board gets control after a hardware reset, tests
and initializes the hardware, reads 512 bytes from Drive A, Track 0, Head 0,
Sector 1 into RAM starting at address 0000:7C00, then jumps to the first byte at
that address. If that sounds a lot like loading and starting a program, you’re right:
it’s the standard bootstrap loader that starts your favorite operating system every
time you turn on your PC, applied to a diskette rather than a hard disk.

The BIOS neither knows nor cares what the program in that first sector does. In
our case, we’d like to load an embedded program rather than an operating system
like DOS, Windows, or OS/2. Rather than the standard loaders that come with
those operating systems, we need a custom bootstrap loader that can find our
program on the diskette and read it into RAM.

Here’s the trick that makes this all work out. If our bootstrap loader knows how to
interpret the DOS FAT file system, we can produce the embedded PC program on
a desktop PC, use the DOS COPY command to put it on the floppy, stick the floppy
in the target system, and hit the Reset button. After our program starts running, it
can do whatever we choose.

What could be easier?

The Boot’s Strap
The first sector on each floppy disk contains both the bootstrap loader program and
a table called the Diskette Boot Record. Each type of diskette has a unique DBR
and thus requires a custom bootstrap program to read its data. Fortunately, a little
assembler magic can paper over the differences.

Listing 1 shows the code that sets up a DBR. The �������� assembler macro
selects one set of constants that are then plugged into the DBR variables. The
values shown specify a standard, 720 KB, 3.5" diskette. Although you could create a
bizarre diskette format by twiddling the constants, I recommend exercising some
caution. My experience shows that choosing anything other than the standard
diskette formats will get you in big trouble with at least one version of DOS,
Windows, or the PC BIOS.

Listing 2 shows how the bootstrap loader calculates the directory’s location from
the DBR values and reads the first sector into RAM. Each directory entry holds

Embedded PCs ISA Bus.book : Chapter 1.fm Page 12 Tuesday, July 1, 1997 7:32 AM

Chapter 1: Blindsided by Technology

13

one file’s starting cluster and size, so the loader uses the first entry to find the first
file, reads it into RAM at address 1000:0100, and passes control to it.

There are, of course, a few restrictions: the program file must be the first one in the
diskette root directory (although the loader will ignore a volume label and
Windows 95 Long File Name entries), it must be contiguous (because the loader
completely ignores the File Allocation Table), and it must be less than 64 KB long
(as all COM files must be). In exchange, the loader sets up the registers so any COM
program that doesn’t use DOS will work just fine. Fair enough?

Oddly enough, the standard DOS bootstrap loader has similar restrictions. The
two DOS startup files (IO.SYS and MSDOS.SYS) must be the first two files in the

Listing 1
The Diskette Boot Record holds the information required to read the rest of the diskette.
Assembler macros define the constants starting with “N_” to create a boot record for each
type of diskette. The bootstrap loader uses these values to read the DOS file directory
and load the embedded system program.

�� ����������	�
��
������ ����������
�������������������������

 !"#���� �	$ %�
 !"#������� �	$ &
 !'���� �	$ �
 !��$�"�#���� �	$ �
 !#(("����� �	$))�
 !*������ �	$ ��&+
 !��"���� �	$,

������
---���+��������������.�������������/������+���000������+����1����2�3���444

� ���

 !���"(#� 5 !"#����6 !'����6 !"#�������

�7 8���/9���8 :��,�(�*���/������;���<%��+���=
��������.� �> ?)� :�����@����A���������
�31������.� �7 !��$�"�#���� :������������A����31����
 1/#����;�� �>) :���������;����������
 1/��"� �7 � :�)���1/�����2���"���A���
*�B#�����3�� �> !#(("����� :�))�/�B�/1/�����������������
 1/������� �> !���"(#� :�),�����3��������������������
������ �7 !������ :�)?�1��3����/�����������A���
��"��.� �> !��"���� :�)C���������������+���"
"������.� �> !"#������� :�)%���������A���������<A���+���=
 1/'���� �> !'���� :�)���1/�����2�+����
'������������ �� � :�)���1/�����2�+�������������

�� � :�����1/�����2����������2�4,��*7
�7 � :��D��������3��(�����;����
�7 � :��?������;��
�7 �&+ :��C�7����������1��
�� ���������+ :��
�;�31/������1/���
�7 8���/9���,%C8 :����;�31/��3���3�<))��+���=
�7 8��")����8 :�,,�2�3�E�@���/��@A��<%��+���=

Embedded PCs ISA Bus.book : Chapter 1.fm Page 13 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

14

Listing 2
This excerpt from our custom diskette boot loader reads the DOS directory, skips over
directory entries that don’t correspond to files, locates the first file, and reads it into RAM.
That file may be any *.COM program written with the constraints of our embedded target
system in mind. Loading the program at 1000:0100 avoids problems with diskette DMA
across 64 KB physical memory boundaries.

:EEE�3����������2���+�2�������������@�������
:�����+���������������F
���

G(# �GH�G :�������9��+�.����
*(I ��HJ 1/����K :�����1���2�����������������+
*$� J��"��.�K :��000���A�����2��+����"�
��� �GHJ>(#���(>�'������������K :��+���������1��3@
��� �GHJ>(#��'�L'�'������������K :��000�1�1���
��� �GHJ 1/#����;��K :�������������������+��
��� �GH� :��000�+�������������
*(I J���������KH�G :���;���������2����

���� �;�������� :�����1A�A���/�����
*(I 7GH
���+ :�����1A�������
���� #��������� :�������������������

:EEE����A�;�31/��3���3��������+���������
:�����+����3���A��3���22�>���&?�3������/��000

���A ����3��F
"��" J��F7GM�������@0��3������KH<*������!����3=�(#�N

��<*������!�@���/=�(#�<*������!'�����=
O� '�;���3�
��� 7GH������������@
O* ���A ����3��

'�;���3�F

:EEE�2��������������������2�����������P1����2������������@
:����9��1�����������@���.������@������1����������B��9+�3��������

*(I �GH������������@ :�����@���.������@���
$� J�B#�����3��K :���/����������
*(I �GHJ��������.�K :���1���1A9���
��� �GH�G :��@����������.��E��)
��� �G
��I �G :������������
��� J���������KH�G :�����������������

:EEE�2����2�3�Q������������������2��/��31������1/���

*(I �GHJ��F7GM�������@0��3������K:�2������31����
�$7 �GH� :��000������������
*(I ��HJ�31������.�K
G(# �'H�'
*$� �G :��G�5��������
��� J���������KH�G :���;��2���3����

Listing continues on next page

Embedded PCs ISA Bus.book : Chapter 1.fm Page 14 Tuesday, July 1, 1997 7:32 AM

Chapter 1: Blindsided by Technology

15

directory and they must be contiguous. You can only jam so much intelligence into
512 bytes of loader firmware, making some restrictions perfectly understandable.

Just to keep you on your toes, MSDOS.SYS has changed rather dramatically under
Windows 95: it’s now a text file rather than an executable program. Take a look and
see… it’s a hidden file in the root directory of your Windows 95 boot disk.

The files in this chapter’s subdirectory include four bootstrap loaders: Boot720.SEC
and Boot1440.SEC handle the 3.5" formats, while Boot360.SEC and Boot1200.SEC
cover the 5.25" field. You can use these directly or modify BootSect.ASM to produce
a customized version for your own system.

Listing 3 shows how to create a boot diskette for your target system using plain old
DOS Debug on your host PC. The only tricky part arises because Debug’s L and W
commands have changed slightly over the years; some DOS versions use a sector
range, while others use a sector start and count. Check your documentation to see
which one you’ve got. You can even run Debug in a DOS box under Windows 95,
with no trouble at all.

Listing continued from previous page

:EEE����;����2�3��3����+�2��/��@��������������
:����9�����9��+��3����+�/1������-�CD���@���H�����������+��+�9���

*(I �GHJ>(#���(>���F7GM�������@0��3������+K
G(# �GH�G :��+�������39�@���
��I J��������.�K
�* �GH� :���@���/������R
O� '�;����
� � �G

'�;����F
*(I J��������1��KH�G :�����1A�2����������

:EEE���9�A133�����+��2�3�����)���F�)��
:����)���F�)���5�A+@����3���������)�)��H����P1����;���CD�
:����"+����33�9��1A����������@�����2��������2�������*����1����@���������

*(I 7GH)���+ :�����1A���������������
*(I ��H7G
*(I 7GH�)��+

 �B�������F
*(I �GHJ���������K :�����1A����������������
���� �;��������

���� #��������� :�������������������

� � J���������K :����A������B�������
��� 7GHJ��������.�K :��000�������B��������

*(I �GHJ��������1��K :�������1��1���3�����
��� J��������1��K
�((�B�������

Embedded PCs ISA Bus.book : Chapter 1.fm Page 15 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

16

The First Program
The canonical First Program on any system displays a trivial message like C’s
“Hello, world” routine, but our target PC doesn’t have a display yet. Think small:
how about changing a single I/O bit? An LED connected to that pin will make the
result visible. Unfortunately, our target system lacks even an LED…

Schematic 1 shows how to get started: attach eight LEDs and eight switches to the
target system’s printer port. A PC rates at about one megaton of overkill for an
LED blinker, but at least we can see if the program runs. Later on, we’ll use those
LEDs as trace outputs from more complex code; this is an easy way to get started.

Listing 4 shows how CountSlo.ASM displays a counting sequence on LPT1 slowly
enough to be visible to a naked eye watching the LEDs. The key line, of course, is
the ($"��GH�� instruction that writes to the output port. The � ���� creates the
counting sequence and the O* at the bottom runs the loop forever.

Although just those instructions would suffice, you wouldn’t see more than a blur
on the LEDs. I used the BIOS function � ")?+H �'5%C+ to generate a delay
between counts. We’ll find and use several handy routines in the BIOS throughout
this book; it’s a shame to let them go to waste!

Listing 3
DOS DEBUG, running on the host PC, provides the easiest way to create a bootable
diskette for our embedded programming projects. Then, the bootstrap loader on the
target system simply reads the first valid file from the diskette, pops it into RAM, and runs
it. Note that DEBUG’s L and W commands work differently on some system: the last digit
may be either the final sector number or the number of sectors to transfer.

�(�S'FN���71�N����N�+�A!�)�42��/����F�T2F
�� ����������(���������������
---����/�3�2��/���������122�+�AA����+����444

�(�S'FN���71�N����N�+�A!�)�4���1� 2����1A���7$L
E3�)�������) �����2�������������9����������2��/����;����<�=
E�����
��0��� �A���2@��1�������������
E3 3���������
E9�)�������) 9�������������9����������������;����<�=
EU ���������(�

You can use this shortcut with the version of DEBUG found on Windows 95 and recent
MS-DOS systems:

�(�S'FN���71�N����N�+�A!�)�42��/����F�T2F
�� ����������(���������������
---����/�3�2��/���������122�+�AA����+����444

�(�S'FN���71�N����N�+�A!�)�4���1������
��0��� ����3�������������7$L
E9�)�������) 9����������������������;����<�=
EU ���������(�

Embedded PCs ISA Bus.book : Chapter 1.fm Page 16 Tuesday, July 1, 1997 7:32 AM

Chapter 1: Blindsided by Technology

17

I used Borland’s TASM and TLINK to assemble CountSlo.ASM into CountSlo.COM,
using the MakeFile you’ll find on the source code diskette. Because I don’t want to
run the program, even by accident, even once, on my host PC, the MakeFile
renames it to CountSlo.BIN. The bootstrap loader neither knows nor cares about the
file’s name or extension, so you may call it anything you like.

The MakeFile also copies the new file to the floppy in Drive A. Because the boot
loader picks the first file, my MakeFile executes DEL A:*.BIN to wipe out any other
embedded system programs, then copies the new BIN file to the floppy. While this
reduces the amount of typing required to rebuild a program, be sure you’ve got the
right floppy in the host system’s drive before you start.

Schematic 1
This circuitry converts the target system’s printer port into one input and one output byte.
The inputs are pulled up by resistors on the I/O board, while the outputs have (barely)
enough drive for the LEDs. Note that the LEDs are ON when the outputs are HIGH. The
header provides convenient access for scope probes, which will come in handy when we
tackle performance issues.

Embedded PCs ISA Bus.book : Chapter 1.fm Page 17 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

18

Here’s the process in a nutshell: set up your ISA bus target system and build the
little LED and switch board shown in Schematic 1. On your host system, install
the appropriate diskette boot loader using Debug as shown in Listing 3 and copy
CountSlo.BIN to the floppy using the DOS COPY command. Pop the floppy into the
target system’s diskette drive, hit the target’s Reset button, and watch the lights.

That’s all there is to it… welcome to the wonderful world of embedded PC
programming, without all the aggravation and hocus pocus you expected. Watch
that first step, because it’s all downhill from here!

Release Notes
If you haven’t already done so, get the source code diskette accompanying this book
out of its pocket, then check the ReadMe.txt file in the diskette’s root directory for
directions on how to install and decompress the source and binary files to your host
system’s hard disk. Separate subdirectories will hold the files for each chapter, along
with other information you need to rebuild the programs.

Listing 4
This excerpt from CountSlo, our first embedded program, displays a counting sequence
on the parallel port LEDs so you can see something happening. The BIOS identifies the
installed hardware during its power-on tests and puts the parallel port’s address in the
usual low-RAM location. This chunk of code recovers that address and blinks the LEDs.
Refer to the complete source file on the diskette for the rest of the program.

*(I �GH��D�+ :���/����7�(����������/���
*(I ��H�G

*(I 7GH�6<�"(#"E)=M���%+ :���/����A��������@
*(I �GHJ��F7GK :������"�A����������������

G(# ��H�� :�������2��/�.���V

��+�9F
� � �� :��������
($" �GH�� :����������1�

$�' �G :���;���������
$�' �G :�������1��

*(I �GH�($ "#�"� :���3�@�2�����9+�3�
*(I �GH�
*(I �'H%C+
� ")?+

(�G :�����;�����1��
(�G :������������

O* #��+�9 :�������1��2���;��

Embedded PCs ISA Bus.book : Chapter 1.fm Page 18 Tuesday, July 1, 1997 7:32 AM

Chapter 1: Blindsided by Technology

19

The code snippets you see in the listings throughout the book represent only the tip
of the firmware iceberg. You should refer to each chapter’s subdirectory for the
complete source code and executable files. Although the key points appear in the
listings, you’ll find many comments in the code that explain other topics and show
how to accomplish some useful tricks.

See the ReadMe.txt in this chapter’s subdirectory for more information on
reassembling the files, which include several other programs that check out the
switches and LEDs you just built. BlinkSer, CopyStat, CopyCntl, and CountPar are
each simple enough that they should work on any PC, but, not surprisingly, some
PC hardware isn’t entirely compatible with the IBM spec.

For example, my ancient ’386SX laptop PC lacks pullup resistors on the four
control output bits of its parallel port, which means those input bits simply float
low and the DIP switches have no effect. If the sample programs don’t seem to
work on your target system, do a little probing before you claim a software problem.
You’ll meet enough examples of real hardware problems later on in this book.

Identifying such problems is the hardest part of writing firmware, so starting with
known-good programs on your new target system makes lots of sense. After you get
some practice with embedded programming, you’ll be able to start from scratch on
your own… just keep reading and doing the projects and you’ll be well on your way.

Consult the Sources appendix for vendors who can provide the bits and pieces of
hardware and software that we’ll use throughout this book.

Once again… CAUTION!
Do not run these programs on your host PC!

Get a cheap ISA bus PC system, modify its case, and get some experience
building and debugging hardware gadgets on your new target system.

Embedded PCs ISA Bus.book : Chapter 1.fm Page 19 Tuesday, July 1, 1997 7:32 AM

Embedded PCs ISA Bus.book : Chapter 1.fm Page 20 Tuesday, July 1, 1997 7:32 AM

