
229

14 Testing the Graphic LCD Panel
Although Steve Ciarcia still names “Solder” as his favorite programming language,
even he admits most projects nowadays are useless without some programming.
Now, with the molten metal part of the Graphic LCD Interface finished, it’s time
for the bit twiddling!

I’ll describe the test code that exercises my panels and explain some tricks and
techniques. Although Micro-C predominates in this chapter, you’ll surely want
assembler code once you understand how your panel works. If pushing dots around
doesn’t make a good case for hand tweaked optimization, well, what does?

But first, let’s check out your wiring. Because this project has lots of fairly tricky
hardware, I’m going to spend more time than usual on bringup testing. With any
luck at all, your circuitry and LCD panel will work perfectly the first time. If they
don’t, these hints may come in handy.

Testing...
The GraphLCD files include all the Graphic LCD Interface test code. You can use
the BIN file directly or, if you must make changes for your panel, recompile the
Micro-C source into an Intel HEX file and convert it into binary. Copy the result to
a diskette with the appropriate boot sector loader from Chapter 1, connect a serial
cable, pop the floppy into your target system, hit the Reset button, and select the
appropriate option when GraphLCD squirts its menu through the serial port to the
comm program running on your host PC.

If you prefer Borland or Microsoft C and have Paradigm’s Locate (or a similar
utility) available, you can translate the Micro-C code into their dialects fairly easily,
using the hints in Chapter 11. In any event, don’t despair: the hardware neither
knows nor cares which C you use.

You’ll recall that the CPU’s view of the Graphic LCD Interface includes one write-
only output port, two 82C54 timer channels, and a 32 KB block of RAM.
GraphLCD’s first four tests wiggle the control port bits, give you manual control over
the 82C54, and read and write the LCD Refresh RAM in loops.

These tests work correctly even without an LCD panel, allowing you to start wiring
and testing while waiting for your new panel to arrive. If you do connect a panel,
remember that it won’t display anything without the correct sync signals and
jumper settings. I strongly recommend delayed gratification: keep that panel in the
box, safely wrapped in its antistatic bag, until your hardware passes its tests!

Embedded PCs ISA Bus.book : Chapter 14.fm Page 229 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

230

First, verify that all eight bits in U51, the LCD Control Latch, go ON and
OFF in the proper order. As it turns out, I managed to wire the port backwards and
this simple test prevented some serious headscratching.

Next, set the 82C54 row and frame counters. With no LCD panel attached
(right?), you can specify three clocks per row and nine clocks per frame to simplify
your scope display. Each row must have at least two clocks and, of course, the
number of clocks in each frame must be a multiple of the row clock count.

Scope the LCD Address Counter, U43 and U44, to verify its inputs and
outputs. The LS590 latch outputs go active (well, they should go active) only during
the low half of the +Dot Clock cycle. The Frame Sync pulse resets the
counters with a signal from U56B, so check that the count begins with zero at the
right time. Refer back to Figure 1 in Chapter 13 for guidance.

The RAM read and write tests toggle printer port bits at key points in the loop to
provide oscilloscope triggering. The read test uses a single ��� ����� to touch
every LCD Refresh RAM byte and produces one sync pulse at the start of that
lengthy instruction. The write test touches each RAM byte in a C loop and, as this
requires much more time, issues a sync pulse before every RAM access. In either
case, U56A should stall +Dot Clock in the high half of its cycle at the end of
each -SMemR or -SMemW pulse.

The fifth test generates and writes a 32 KB pseudorandom pattern into the
LCD Refresh RAM, reads the pattern back, and verifies that the bytes return
from their journey unchanged. While this isn’t an exhaustive RAM test, it will
reveal obvious wiring errors, short circuits, and dead chips. If you don’t have the
equipment required for the other tests, just run this one and hope it works. Should
it fail, you now have a problem that merits investigation and, perhaps, some
motivation to acquire that collection of test equipment you’ve always wanted.

The RAM test may reveal intermittent data errors if your LCD Refresh RAM or
buffers run too slowly for the ISA bus accesses. Remember that the RAM access
must occur in slightly less than half of a Dot Clock cycle, about 240 ns. My
numbers indicate that a 120 ns RAM works OK with my hardware, but your
mileage may differ. In any event, don’t install your LCD panel until the RAM
works perfectly: it’s hard to find other bugs when you can’t trust your test data.

Once your bits fly in formation, check and recheck the LCD power supply voltages.
If you’re using the LM337 circuit shown in Chapter 13, remember that you can
destroy your panel with one twist of R65. Set the LCD bias supply voltage to
match the value in your panel’s data sheet. If your panel requires a contrast voltage,
also adjust R66 to midrange.

Embedded PCs ISA Bus.book : Chapter 14.fm Page 230 Tuesday, July 1, 1997 7:32 AM

Chapter 14: Testing the Graphic LCD Panel

231

Next, build a cable that mates the Graphic LCD Interface’s 2×13 header to your
panel. If you can find a connector for your panel, great. Otherwise, just solder the
appropriate ribbon cable wires directly to the panel’s header, as you saw in Photos 1
and 2 in Chapter 12, and be done with it. I generally tape the cable to the back of
the panel while testing the hardware. You can surely come up with a better, more
permanent arrangement for your final installation.

If you do find an LCD backlight inverter, wire it to the panel through a separate
cable. Don’t succumb to the temptation of running that 1 kV, high frequency, AC
power through the same cable as your precious sync and data signals. Just say “No!”

The final step requires nothing more than a simple ohmmeter continuity check:
verify the connections from the Graphic LCD Interface circuitry to the LCD
panel. You have only one last chance to get the power supply voltages on the right
pins: don’t blow it now.

Refer back to Photo 1 in Chapter 12, where you’ll see that the Optrex DMF651
640×200 panel sports a helpful, silk screened legend on the upper left corner of the
circuit board:

	� ↑

All of the other panels in my collection assume you can derive this key datum from
their documentation. Alas, the doc you get with the panel sometimes won’t give
even the barest hint as to which end is up. In that case, the remaining tests will not
only help you debug the hardware, but get the panel bolted down properly.

OK, plug it in and let’s do some dots…

...Testing! One...
Perhaps the first thing you asked about a new graphic LCD panel was “How big is
it?” From the number of dot rows and columns, you can calculate the required size
of the LCD Refresh RAM in bytes. The DMF651 is a 640×200 panel that
displays 128,000 bits from 16,000 bytes (not quite 16 KB) of data.

The Graphic LCD Interface measures LCD panels somewhat differently. Rather
than rows and columns, both you and the hardware must know the number of
Dot Clocks in each row, the total number of Dot Clocks in a complete frame,
and the number of data bits transferred on each Dot Clock. As you saw in
Chapter 13, though, there may be only the slightest relation between a panel’s
number of dots and the signals that control it.

Embedded PCs ISA Bus.book : Chapter 14.fm Page 231 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

232

For example, the DMF651 accepts four bits on each Dot Clock and, thus,
transfers each 640-dot row in 160 clocks. The panel has 200 row drivers, one for
each physical row, and a frame requires 32,000 Dot Clock cycles. The dots
occupy one nybble in each of the first 32,000 LCD Refresh RAM bytes.

The test code in Listing 1 initializes the Graphic LCD Interface hardware for a
DMF651 panel, then writes the test pattern into the LCD Refresh RAM. Listing
2 defines the LCD Control Port bit patterns used in the code. The code for

Listing 1
The Optrex DMF651 640x200 LCD panel has a comparatively simple layout: a single
frame requires 200 sets of 160 Dot Clocks, each transferring four bits. This code
fragment shows how to load the 82C54 timers and set the LCD Control Port. The
SetData routine puts four data bits in the low nybble and creates the right bits for the
high nybble to produce the desired blinking effect.

������������������������ �������� !�"
"#�$% ��
�
����&!'�(�)*)+�(,)�-./0+��1���� ���"
"#��!'�'
� ��
�
����&!'�/�)*)+�2/)))�-./0+��1���� ����
�� �"
"#��3'�&! ��

��������������������4�5��������6���� ������'���$���!��� �$# ��
3
'���
��7�)���
��8�/))���
�55��9

�161��'�7��
����(,)�
3
'���
 �7�)���
 �8�(,)���
 55��9

#!���������6�4���161��'5�
 �)*))�� ���" !�'�'
�� ��
:
�!�������161��'5)���-4;������
��<<�+�� ����=
��'
��$�&�!' ��
�!�������161��'5(���-4;������
���
�!�������161��'5/���-4;����)*)>�� �����?���$%� �$! ��
�!�������161��'52���-4;������161��'�<<�(/�� ����=
���16����'!�� ��
�!�������161��'5+���-4;������161��'�<<�.��
�!�������161��'50���-4;������161��'�<<�+��
�!�������161��'5,���-4;������161��'��
�!�������161��'5@���-4;����)*)>�� �����?���$%� �$! ��
�!�������161��'5.5��
��<<�/����-4;����)*).�<<���
��A�)*)2���������%
$� ��

:

Listing 2
These definitions combine useful LCD Control Port bit patterns into easily remembered
groups. You should change the GLCD_OFF and GLCD_ON values to match your panel.

B�!3�$!�������4���)*)))(���!$�� !����'�"
�$�!'� ��
B�!3�$!�������-�6	C)*)))/ ���(������ !��
�����&�* ��
B�!3�$!�������4�-��)*)))+ ���!$�� !�������3���!�� ��

B�!3�$!�����������D)*))0) ����
�!���� �$#�$% ��
B�!3�$!��������6��)*))+) ���&
�!'��!�� �$#�$% ��
B�!3�$!���������1��)*))2) ���3���!���� �$#�$% ��
B�!3�$!��������E���)*)))) ���
�����
%�"�F!'
 ��
B�!3�$!������������;)*)),) ���
���������"
"# ��
B�!3�$!���������4�)*))@) ���
�����
%�"�
$! ��

B�!3�$!��������� �������-�6	C�G��������E����
B�!3�$!�������4 �������4����G�������4�-���

Embedded PCs ISA Bus.book : Chapter 14.fm Page 232 Tuesday, July 1, 1997 7:32 AM

Chapter 14: Testing the Graphic LCD Panel

233

this chapter also produces several trace outputs which I’ve removed from these
listings to save space; refer to the complete source files for all the details.

Recall that both 82C54 timer channels must begin counting on the same
Dot Clock cycle. The first line disables the counters by lowering their Gate
inputs. After loading the row and frame lengths, the code enables the 82C54 and
sets the blink rate. The Graphic LCD Interface immediately begins sending data,
Dot Clocks, and sync pulses to the panel, even though the LCD Refresh RAM
contains no useful data.

Although it may seem strange to start the sync signals before clearing the RAM,
that ensures you’ll see something on the panel, even if the memory interface isn’t
working quite right. Should your panel display random bits instead of the test
pattern, you know where to start looking for the problem. If the pattern changes,
then you can assume the program tried and failed to write the test pattern.

The test loop then iterates 200 times, once for each row on the LCD panel. The
rows occupy contiguous regions in RAM and, because each row uses 160 bytes of
RAM, their starting addresses are 160 (decimal) times the row number: 0000,

Listing 3
Panels such as the Optrex DMF651 accept four bits per Dot Clock cycle, so the Graphic
LCD Interface can produce blinking by switching between the two nybbles in each byte
several times per second. This routine puts the data bits in the low nybble, then sets the
high nybble to produce the desired blink pattern.

�!������1��'�� �$#������
D����1��'�
�$���� �$#�
D���������
9

�����A7�)*)))�� ���3
'"!�=�%=�$H�� !�
33 ��
����"=��� �$#��9
�!3�� ��I

'�$�3�J-$?� ���� �$#�&
�!�7�K�L$J�� �$#��
"��!���-4;�����I

�����G7������88�+�
�'!�#�

"��!���-4;����I
�'!�#�

"��!���-4;����I
�����G7�)*))�)�
�'!�#�

"��!���-4;�-4M�I
�����G7��N������88�+�
�'!�#�

:

#!���������6�4��1��'�������

:

Embedded PCs ISA Bus.book : Chapter 14.fm Page 233 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

234

00A0, 0140, and so on. I set �161��' to the beginning of the current row at the
start of each iteration to simplify the rest of the code in the loop.

The test routines take advantage of the LCD’s high dot density to display the row
number and RAM address in binary format in the first few dozen dots of each row.
If your eyes work like mine, expect to whip out a magnifying glass to read the dot
patterns that give each line an unambiguous identifier. A diagonal line provides an
easy visual check that all the rows appear in the right order.

Remember the sound of one hand clapping in Chapter 13?

Figure 1 sketches the row numbers, LCD Refresh RAM addresses, and the
diagonal line for a DMF651. The test code numbers the top row 199 because it’s
the last one in the buffer… but the panel displays those dots on the first row
because they precede the Frame Sync pulse. That puts one lonely dot off on the
right of the top row, aligned above the end of the diagonal line.

Figure 1
The Optrex DMF651 has a fairly simple layout. The top row of dots appears to be out of
sequence, because the test code numbers the visible rows starting with Row 0 at address
0000. The Graphic LCD Interface hardware produces a Frame Sync pulse when it resets
the LCD Address Counters to 0000 and the data immediately before the pulse comes
from the highest RAM addresses. The LCD panel displays the bits arriving before the
Frame Sync pulse on the top row, which puts the test code’s Row 199 on top.

Embedded PCs ISA Bus.book : Chapter 14.fm Page 234 Tuesday, July 1, 1997 7:32 AM

Chapter 14: Testing the Graphic LCD Panel

235

Listing 3 shows the �!����� routine that writes bit patterns into RAM. Although
I defined only four blinking patterns, you can certainly come up with some truly
bizarre effects. The initial LCD Control Port setup determines the blinking
rate, as shown in Listings 1 and 2.

I started with the DMF651, because it’s about as simple a panel as you’re likely to
encounter: the physical dot layout even matches the electrical sync signal pattern!
Sad to say, such simplicity forms the exception rather than the rule. Many other
panels can give you a nasty case of brain burn…

The Toshiba TLY-365-121, also a 640×200 panel, uses 320 Dot Clocks that
transfer 1280 bits on each of 100 rows. The firmware sees it as a 1280×100 array
and maps the dots accordingly. Listing 4 shows the test pattern code, with a few key
differences in the 82C54 setup and �161��' calculation.

The loop still iterates 200 times, once for each visible dot row, but finding the row
starting address becomes somewhat more complex. The first 160 bytes appear on
one row, with the remaining 160 bytes starting 100 rows further down the panel.
Row 99 is on top, with Row 199 in the middle of the panel. Ah, yes, do you
remember row counts use decimal notation?

To prove I’m not making this up, Photo 1 shows the actual test pattern on the
panel. If you can’t see the dots clearly, Figure 2 sketches the layout.

Listing 4
The Toshiba TLY-365-121 has 1280 dots in each of 100 logical rows, with 320 Dot Clocks
on each row. Compare the LoadTimer() parameters and SetData patterns with Listing 1
to see the effect of the double-length lines.

������������������������ �������� !�"
"#�$% ��
�
����&!'�(�)*)+�2/)�-./0+��1���� ���"
"#��!'�'
� ��
�
����&!'�/�)*)+�2/)))�-./0+��1���� ����
�� �"
"#��3'�&! ��

��������������������4�5��������6���� ������'���$���!��� �$#�$%��
3
'���
��7�)���
��8�/))���
�55��9

�161��'�7�2/)�����
��K�())��5����
��<�>>��O�(,)�I�)��
3
'���
 �7�)���
 �8�(,)���
 55��9

#!���������6�4���161��'5�
 �)*))�� ���" !�'�'
� ��
:
�!�������161��'5)���-4;������
��<<�+�� ����=
��'
��$�&�!' ��
�!�������161��'5(���-4;������
���
�!�������161��'5/���-4;����)*)>�� �����?��!' ��
�!�������161��'52���-4;������161��'�<<�(/�� ����=
���16����'!�� ��
�!�������161��'5+���-4;������161��'�<<�.��
�!�������161��'50���-4;������161��'�<<�+��
�!�������161��'5,���-4;������161��'��
�!�������161��'5@���-4;�-4M�)*)>��� �����?��!' ��
�!�������161��'5.5��
��<<�/����-4;����)*).�<<���
��A�)*)2���������%
$� ��

:

Embedded PCs ISA Bus.book : Chapter 14.fm Page 235 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

236

Figure 2
The Toshiba TLY-365-121 splits each logical row of 320 Dot Clocks in two: the first 160
clocks transfer 640 dots to the upper half of the panel, while the second 640 dots appear
in the lower half. Therefore, the 320 Dot Clocks before the Frame Sync pulse appear on
physical rows 1 and 101. Photo 1 shows this test pattern in real life.

Photo 1
The test pattern on this Toshiba
TLY-365-121 640x200 LCD panel is
based on Figure 2. The first several
dozen dots in each row display the test
code’s row number (0 through 199) in
binary, the row’s RAM address, and a
diagonal line. The code also inserts
blinking separator patterns between
the data values (which, of course,
appear solid in this photograph).

You may not be able to see the two
“stray” dots on the top and middle rows
of the panel. Trust me: they’re visible
on the original slide and you’ll see
them on your own panel!

Embedded PCs ISA Bus.book : Chapter 14.fm Page 236 Tuesday, July 1, 1997 7:32 AM

Chapter 14: Testing the Graphic LCD Panel

237

Listing 5
The Matsushita EDM LG64AA44D panel has 640x400 physical dots, but the firmware
sees it as two 640x200 panels. The test code loops through all 400 rows and sets
RAMAddr to the start of each one. The value of Align selects the appropriate nybble and
the StoreNybble function inserts the data bits. Because the row number exceeds 255 for
this panel, the firmware displays it with 16 dots.

������������������������ �������� !�"
"#�$% ��
�
����&!'�(�)*)+�(,)�-./0+��1���� ���"
"#��!'�'
� ��
�
����&!'�/�)*)+�2/)))�-./0+��1���� ����
�� �"
"#��3'�&! ��

��������������������4�G��������E����� ���%!�������)P2�3'
&�&�* ��

3
'���
��7�)���
��8�+))���
�55��9
�161��'�7�(,)�����
��K�/))�� �����33!'����'!�� ��
1 �%$�7���
��<7�/))��O�+�I�)� ���=�%=�
������� �%$ ��

3
'���
 �7�)���
 �8�(,)���
 55��9
��
'!4H�� !��161��'5�
 �1 �%$�)�� ���" !�'�
�'�$H�� ! ��

:
:
3
'���
��7�)���
��8�+))���
�55��9

�161��'�7�(,)�����
��K�/))�� �����33!'����'!�� ��
1 �%$7���
��<7�/))��O�+�I�)� ���=�%=�
������� �%$ ��

��
'!4H�� !��161��'5)�1 �%$��
��<<�(/��
��
'!4H�� !��161��'5(�1 �%$��
��<<�.��
��
'!4H�� !��161��'5/�1 �%$��
��<<�+��
��
'!4H�� !��161��'52�1 �%$��
���
��
'!4H�� !��161��'5+�1 �%$�)*).�� �����?��!'� �$!� ��
��
'!4H�� !��161��'50�1 �%$��161��'�<<�(/��
��
'!4H�� !��161��'5,�1 �%$��161��'�<<�.��
��
'!4H�� !��161��'5@�1 �%$��161��'�<<�+��
��
'!4H�� !��161��'5.�1 �%$��161��'��
��
'!4H�� !��161��'5>�1 �%$�)*),�� �����?��!'� �$!� ��
��
'!4H�� !��161��'5()5��
��<<�/��1 �%$�)*).�<<���
��A�)*)2���

:

... Two...
As I mentioned in the previous chapter, LCD designers have recourse to only two
methods that provide the increased bandwidth required by 400-line panels: send
more dots per clock or stuff more clocks into each frame. The Graphic LCD
Interface can handle either method, provided that you set up the right bits and
jumpers before turning the power on.

The Matsushita EDM LG64AA44D accepts eight data bits on each Dot Clock
cycle. The LCD Control Port value sends a constant zero to the LCD Data
Multiplexer, forcing it to gate only the low nybble to the panel. The high
nybble connects directly to the panel, presenting the entire LCD Data Latch on
each Dot Clock cycle. Listing 5 shows the test code.

As the loop iterates through all 400 visible lines, �161��' goes through the same
set of 200 addresses twice. With no spare bits for blinking, the ��
'!4H�� !

Embedded PCs ISA Bus.book : Chapter 14.fm Page 237 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

238

function shown in Listing 6 inserts four data bits in the proper half of the byte, as
dictated by the 1 �%$ variable.

The Sharp LM64015T panel uses a double-speed 240 ns Dot Clock, selected by
jumper JP12. The LCD Refresh RAM runs at the same 480 ns rate as the other
panels, so the code in Listing 7 routes Dot Clock to the LCD Data
Multiplexer, switching it between the two LCD Data Latch nybbles every
240 ns. The high nybble goes out in the first half cycle, which, conveniently
enough, lays the dots out left to right on the panel.

Because only the LM64015T sees the 240 ns 2x Dot Clock, the rest of the
Graphic LCD Interface thinks the panel has just 160 ordinary rows with 480 ns
Dot Clock pulses apiece and 32000 clocks per frame. The timing remains the
same as the DMF651, but you must disable blinking because all the bits in each
byte contribute to the normal display. JP10 and JP11 select the double-speed sync
signals that stay active for only half of the normal Dot Clock cycle.

Unlike the other panels, the LM64015T turns a 1 bit into a transparent dot, as the
panel starts off opaque and the backlight shines through the ON bits. I find this
disconcerting, but you can easily display dots either way. The test pattern uses dark
data dots to show the technique: note that the lighted dots each have a dark border.

The LM641481 640×480 panel resembles its 400-line ancestor, although, as you
saw in Chapter 13, you must enlarge the LCD Refresh RAM to hold all the new
dots. GraphLCD includes a test pattern for this panel and others like it, assuming
that you build the hardware for it. Running with a 32 KB RAM will duplicate some
of the dots, because a 15-bit address repeats the RAM contents on the higher rows.
Refer back to Chapter 13 for the hardware solution.

Listing 6
The LG64AA44D accepts twice as much data per frame through its 8-bit interface as 200-
line panels. This code fetches a byte from the buffer, clears the selected nybble, inserts
the new bits, and then stores the result back. Because ISA memory runs quite slowly, you
should use a duplicate buffer in system RAM to eliminate the extra read.

��
'!4H�� !�1��'�1 �%$������
D����1��'�
�$���1 �%$�
D���������
9
D����� ������

� ������7�!!#���������6�4��1��'��A��)*3)�<<�1 �%$��
�����7��������A�)*)3��88�1 �%$��G�� ������

#!���������6�4��1��'�������

:

Embedded PCs ISA Bus.book : Chapter 14.fm Page 238 Tuesday, July 1, 1997 7:32 AM

Chapter 14: Testing the Graphic LCD Panel

239

... Four...
The Hitachi LM215XB 480×128 panel is a leopard of a different spot: it uses half
the data, runs at half the speed, and sprinkles dots all over RAM in four quadrants.
Listing 8 shows the rather complex test pattern code. Remember to select the half-
speed Dot Clock/2 in JP12 for this panel.

Each of its 64 logical rows requires 240 half-speed Dot Clock/2 pulses, so the
82C54 behaves as though this panel has 480 Dot Clock cycles per row. The
panel uses the data from odd-numbered RAM addresses, putting 2×240×64 =
30720 pulses of the regular 480 ns Dot Clock in each frame, but we must
duplicate the data in successive even- and odd-numbered bytes to keep the output
of the LCD Data Latch stable during both regular Dot Clock cycles.

The test code iterates through all 128 visible rows. Displaying the row number
requires the routines shown in Listing 9, because the layout separates the RAM
data. The complexity involved in addressing the individual dots makes this code
considerably harder to follow.

The D'��!��� function computes �161��' based on the dot’s row and column
location. The 1 �%$ variable then specifies the bit location within that byte, which

Listing 7
The Sharp LM64015T runs at twice the speed of the other panels, accepting a nybble on
each half cycle of the 480 ns Dot Clock. The LCD Data Multiplexer switches between the
two nybbles of each Refresh RAM byte. A jumper on the Graphic LCD Interface routes
the double-speed 2x Dot Clock to the panel. Note the inverted data: a 1 bit sent to the
panel appears transparent rather than opaque.

������������������������ �������� !�"
"#�$% ��
�
����&!'�(�)*)+�(,)�-./0+��1���� ����
���
"#��'
� ��
�
����&!'�/�)*)+�2/)))�-./0+��1���� ����
�� �"
"#��3'�&! ��

��������������������4�G������������;�� ���� �!'$��!����" #�'��! ��
3
'���
��7�)���
��8�+))���
�55��9

�161��'�7�(,)�����
��K�/))��5����
��<�(>>��O�.)�I�)��
3
'���
 �7�)���
 �8�.)���
 55��9

#!���������6�4���161��'5�
 �)*33�� ���(�7�" !�' ��
:

:
3
'���
��7�)���
��8�+))���
�55��9

�161��'�7�(,)�����
��K�/))��5����
��<�(>>��O�.)�I�)��

#!���������6�4���161��'5)�N��
��<<�.���

#!���������6�4���161��'5(�N��
��A�)*))�����

#!���������6�4���161��'5/�N)*>>�� �����?��!'� �$!� ��

#!���������6�4���161��'52�N��161��'�<<�.���

#!���������6�4���161��'5+�N��161��'�A�)*))�����

#!���������6�4���161��'50�N)*>>�� �����?��!'� �$!� ��

#!���������6�4���161��'5,5��
��<<�2��N�)*.)�<<���
��A�)*)))@����

:

Embedded PCs ISA Bus.book : Chapter 14.fm Page 239 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

240

obviously depends on how you wire the Graphic LCD Interface’s data bits to the
LM215 connector. The � �$# parameter controls the corresponding bit in the
high nybble.

D'��!�H�! simply calls D'��!��� for each bit in a byte-sized value. This process
entails considerable overhead, but remains reasonably perky because the panel has
so few dots… and things will certainly go better with assembler!

The LM215 test pattern displays the row and �161��' values in all four panel
quadrants to verify all the data bits. If you have one of these panels, examine the
dots (with a magnifying glass?) to see that the same RAM address appears four
times, once in each quadrant, on the proper lines.

... and More!
That covers the interesting LCD panels in my stash, without coming close to
exhausting the possibilities. You can probably adapt the Graphic LCD Interface to
drive whatever panel you’ve got, although some are sufficiently bizarre that they just
won’t work. As a rule of thumb, the more complex the panel, the older it’s likely to

Listing 8
The Hitachi LM215XB uses a half-speed 960 ns Dot Clock and directs the four data bits
to separate quadrants. This code duplicates the dots in successive even and odd RAM
addresses to keep the data stable during the extended clock cycle.

������������������������ �������� !�"
"#�$% ��
�
����&!'�(�)*)+�+.)�-./0+��1���� ����
���
"#��'
� ��
�
����&!'�/�)*)+�2)@/)�-./0+��1���� ����
�� �"
"#��3'�&! ��

��������������������4�G���������1���� ���!$�� !�A��!��� �$#�$% ��
3
'���
��7�)���
��8�,+���
�55��9

3
'���
 �7�)���
 �8�/+)���
 55��9
�161��'�7�/����/+)����
���5��
 �

#!���������6�4���161��'5�
 �)*))�� ���!?!$����'!�� ��

#!���������6�4���161��'5�
 5(�)*))�� ���
������'!�� ��

:
:
3
'���
��7�)���
��8�(/.���
�55��9

�161��'�7�/����/+)����
���5�(�
��
'!�H�!��
��)���-4;������
���
��
'!�H�!��
��.���-4;����)*.(��
��
'!�H�!��
��(,���-4;������161��'�<<�.��
��
'!�H�!��
��/+���-4;������161��'��
��
'!�����
��2/5�
����-4;����(��

��
'!�H�!��
��/+)5)���-4;������
���
��
'!�H�!��
��/+)5.���-4;����)*@���
��
'!�H�!��
��/+)5(,���-4;������161��'�<<�.��
��
'!�H�!��
��/+)5/+���-4;������161��'��
��
'!�����
��/+)52/5�
����-4;����(��

:

Embedded PCs ISA Bus.book : Chapter 14.fm Page 240 Tuesday, July 1, 1997 7:32 AM

Chapter 14: Testing the Graphic LCD Panel

241

Listing 9
The Hitachi LM215XB panel has a peculiar bit arrangement that makes these two
routines far more complex than you’d expect for such a small panel. The low nybble of
each odd-numbered RAM address holds the normal dots, the high nybble holds the
blinking dots, and each bit drives a separate quadrant. The StoreByte function distributes
each bit to the proper location, making each incoming byte seem contiguous in storage.

��
'!�����
���
 �� �$#������
D�����
��
D�����
 �
D����� �$#�
D���������
9
D�����!&�
D����6��#�
D�����161��'�
D����1 �%$�

�161��'�7�/����/+)�����
��K�,+��5���
 �K�/+)������!?!$����'!�� ��
1 �%$�7����
 �<�/2>��O�/�I�)��5����
��<�,2��O�(�I�)��
6��#�7�)*)))(�88�1 �%$�
�����A7�)*)))(�

�!&�7�!!#���������6�4���161��'�5�(�� ���3!�"=��=!�
 ������ ��
�!&�A7�N�6��#�G��6��#�88�+��� �����'����'%!��A�� �$# ��
�!&�G7������88�1 �%$� ����$�!'��$!���������� ��

����"=��� �$#��9
�!3�� ��I

����'�J-$?� ���� �$#�&
�!��$���
'!���I�K�L$J�� �$#��
"��!���-4;����I

�!&�G7������88��1 �%$�5�+�� ���$
�� �$#���!�����������
�'!�#�

"��!���-4;����I ���F!'
�� �$#�������
$! ��
�'!�#�

"��!���-4;����I
�!&�G7�6��#�88�+� ����!���=!�� �$#���� ��
�'!�#�

"��!���-4;�-4M�I
�!&�G7���N������A�6��#��88�+� ����$?!'�!�
3��������� ��
�'!�#�

:

#!���������6�4���161��'����!&��

#!���������6�4���161��'5(��!&��

:

��
'!�H�!��
���
 �� �$#������
D�����
��
D�����
 �
D����� �$#�
D���������
9

��
'!�����
���
 ���� �$#������<<�@��
��
'!�����
���
 5(�� �$#������<<�,��
��
'!�����
���
 5/�� �$#������<<�0��
��
'!�����
���
 52�� �$#������<<�+��
��
'!�����
���
 5+�� �$#������<<�2��
��
'!�����
���
 50�� �$#������<<�/��
��
'!�����
���
 5,�� �$#������<<�(��
��
'!�����
���
 5@�� �$#������������

:

Embedded PCs ISA Bus.book : Chapter 14.fm Page 241 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

242

be: more recent panels have better LSI chips and simpler interfaces. Things just
keep getting better and better!

Remember that you’re limited to 32 KB of RAM, unless you piggyback another
chip atop the LCD Refresh RAM or modify the circuit to use a 62512-type static
RAM. If you find a panel requiring more memory than that, you’ll probably wind
up with a paged refresh buffer that fits within a single 64 KB memory segment.
Writing the code for that should be quite a challenge…

Release Notes
The test code for this chapter, �'�=���, exercises the Graphic LCD Interface
hardware and generates test patterns for several common panels. You can use my
code as a template to check out other panels with different specs.

Assuming that you can get the power supply and signal wires connected properly,
GraphLCD can help you figure out the panel’s sync requirements. The panels can
tolerate incorrect signals (at least for a while), if you don’t exceed their voltage specs,
so try a few experiments. In fact, once you get a panel working, lie to GraphLCD just
to see what the results look like.

CAUTION: even though the panels won’t detonate if you apply the wrong sync
signals, a DC bias will gradually degrade both the liquid crystal material and the
panel’s transparent electrodes. Turn the power off while you dope out the jumpers
and analyze the clocking. Don’t use incorrect signals longer than it takes you to
realize that things just aren’t working right.

So… if that doesn’t get your juices flowing, you really are reading the wrong book.
Heat up those soldering irons, get those compilers whirring, and let’s see some dots!

Embedded PCs ISA Bus.book : Chapter 14.fm Page 242 Tuesday, July 1, 1997 7:32 AM

