
35

3 Barnacles on the ISA Bus
When I first planned these projects, ’386SX system boards ran at about 25 MHz.
One month later, the slowest boards you could buy started at 33 MHz. Now, a few
years later, 166 MHz Pentium boards are sliding toward obsolescence as the long
awaited MMX CPUs arrive.

Even the rate of change is increasing!

Curiously, though, higher CPU performance has little to do with your firmware’s
I/O bandwidth. Just like barnacles on a ship’s hull, a myriad of “PC-compatible”
boards hold down the maximum speed of the ISA I/O bus. Yes, you can design a
faster bus, but customers may not beat a path to your door.

The acronym ISA stands for “Industry Standard Architecture” which, in turn, is a
euphemism for “IBM PC/AT Clone”. Stripped of the hype, what you’re getting is
design dating from the late 1970’s, tweaked several times over the years, and
intended for a simple desktop microcomputer. If you demand blazing I/O
performance, these barnacles are not for you.

The PCI (Peripheral Components Interconnect) bus used on all Pentium and
Pentium Pro systems eliminates many of the restrictions found on the ISA bus.
Previous attempts at improving the ISA bus, such IBM’s own Microchannel and
the EISA (Enhanced ISA) bus, simply didn’t have the right combination of
timeliness, broad industry support, performance, and affordability. PCI, today’s bus
of choice for high-performance I/O, is certainly here to stay. Unfortunately,
designing and building PCI bus I/O device requires far more technology,
engineering knowledge, and test equipment than is reasonable for anyone other
than a full time hardware designer.

But, as we’ll see, the good old ISA bus runs entirely fast enough for many, if not
most, embedded controller applications. In this chapter, I’ll take a look at I/O
performance as we begin constructing the Firmware Development Board that
serves as the basis for the rest of the projects in this book. As with the firmware in
the previous two chapters, I regard covering the fundamentals as more important
than presenting a complete design in one shot.

The Intel and AMD CPU data books and Web sites mentioned in the Sources
appendix provide many of the grim details required to actually design a system
board, starting with a handful of chips. Fortunately for us, that level of detail is
irrelevant because the PC Compatibility Barnacles define precisely what the CPU
and its support chips must do to be PC Compatible. We can see the CPU only

Embedded PCs ISA Bus.book : Chapter 3.fm Page 35 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

36

through several layers of glue circuitry that must operate properly to keep all the
various boards and programs working.

For our purposes, the ISA bus cycle definitions in Solari’s AT Bus Design and ISA
and EISA Theory and Operations books provide enough information to construct a
useful ISA bus board. I used those books as the basis for much of the logic and
timing information in these projects, although you should refer to the Bibliography
appendix for more information on many other related books.

However, it behooves you to verify that these designs will actually work in your
system: even when you follow a recipe exactly, you must still taste the soup before
dishing it out. I can only hit the high spots here and trust that you will verify the
detailed numbers for your own circuits.

I still recall making Oriental Pepper Soup from a recipe that called for 3 T of black
pepper. All present agreed it was plenty hot enough, but perhaps three teaspoons
would have sufficed. Could a “t” have turned into a “T” by mistake?

One Byte at a Time
The simplest ISA bus I/O operation occurs while writing a single byte to an output
port. For simplicity, I’ll use the target system’s parallel printer port at address 0378
to illustrate the process, although it applies to any byte I/O operation. Connect the
LED circuit shown in Chapter 1 to watch the parallel port’s output in action.

Each iteration of the code snippet in Listing 1 produces two pulses on Bit 0 of the
parallel port. With a 33 MHz system clock and a ’386SX CPU, the first pulse lasts

Listing 1
This chunk of the porttime.c Micro-C program writes a pair of pulses to the parallel printer
port. The first pulse uses C-level functions, while the second pulse shows how to use
inline assembler to reduce execution time. You’ll find the program and source code in this
chapter’s subdirectory.

��������	�
	������
���������
������������������ �������� �� � ��
������������������ ���!����� �� � ��

��"��
#$% &'�������
#$% �(�)*��
$+, &'��(
#$% �(�)*��
$+, &'��(

-
���������

-

Embedded PCs ISA Bus.book : Chapter 3.fm Page 36 Tuesday, July 1, 1997 7:32 AM

Chapter 3: Barnacles on the ISA Bus

37

3 µs and the second is only 1 µs. You should see a dim glow from the LED as the
pulses repeat every 31.5 µs with a 13% duty cycle.

Although x86 CPU bus interfacing circuitry can be complex (just read the data
book, yikes), the ISA I/O bus operates in a fairly straightforward manner. I
connected a logic analyzer to the bus and took Photo 1 to illustrate this point.

The top trace is BCLK, the 8.33 MHz Bus CLocK. The output operation begins
with the rising edge of BCLK just before BALE (Bus Address Latch Enable), the
second trace, goes high. BALE falls when the I/O address lines have settled. The
third trace, the negative-active I/O Write signal, -IOW, clocks the data into the
parallel port’s output latch.

The port’s output data, shown on the bottom trace, actually appears at the pin one
BCLK cycle after -IOW ends. Evidently the integrated I/O chip uses BCLK to
update its internal latches. As we’ll see later, a latch built from discrete TTL chips
presents its results immediately after the rising edge of -IOW.

Photo 1
This is the logic analyzer record of a single 8-bit write to port 0378. The output operation
begins with the rising edge of BCLK just before BALE goes high and ends when -IOW
goes high to latch the output data into the port. The integrated I/O chip used in this ISA
bus system delays the actual output one additional BCLK cycle.

Embedded PCs ISA Bus.book : Chapter 3.fm Page 37 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

38

Not counting the internal latch delay, the whole output operation takes six 120 ns
bus clock cycles. The first two cycles set up the address and data, while the
remainder provide enough time for the I/O device to accept the data. Byte reads
require a similar amount of time, during which the device provides the data to the
CPU in response to the -IOR bus signal.

The rather leisurely pace of a single-byte write (or read) may come as a surprise, but
the nominal ISA bus cycle requires 720 ns. This ensures compatibility with older
ISA bus boards designed for the original 4.77 MHz 8088 PC, while forming a real
stick in the spokes for faster CPUs that can gnaw through dozens of instructions in
that time.

Unfortunately, we have no way to speed up single-byte I/O cycles. The ISA bus
includes a Synchronous Ready signal that can force no-wait memory accesses, but
the system board ignores -SRDY during I/O operations. You will find some

Photo 2
This photo records a single 16-bit write to the LED display on the Firmware Development
Board. The operation is complete in three BCLK cycles and the data appears at the latch
output immediately after -IOW rises.

Embedded PCs ISA Bus.book : Chapter 3.fm Page 38 Tuesday, July 1, 1997 7:32 AM

Chapter 3: Barnacles on the ISA Bus

39

Photo 3
I built the Firmware Development Board on a JDR Microdevices prototyping board, with
the bus buffers arranged parallel to the connectors in the etched-circuit area and the
address decoding and timing ICs near the top edge. The circuits you’ll see in the rest of
the book depend on the functions provided by these ICs, DIP switches, and LEDs.

references referring to -SRDY as -ENDXFR or -NOWS, but, whatever the name, pin
B08 simply doesn’t help.

IBM’s PC AT designers widened the PC’s I/O bus to 16 bits and, because none of
the older 8-bit PC boards could respond on the new lines, the new cycles could run
considerably faster. Photo 2 shows that writing a 16-bit value takes only three bus
cycles from the first rising BCLK edge until the data appears in LED bit 0.

That’s better, but we must first build some 16-bit hardware…

ISA Board Basics
Photo 3 shows the end result: a 16-bit PC/AT prototype board with a handful of
ICs, a pair of DIP switches for inputs, and a two-digit LED display for output.
Despite using discrete chips, well over half of the board remains empty. We will
have plenty of room for the rest of our circuitry, never fear.

Embedded PCs ISA Bus.book : Chapter 3.fm Page 39 Tuesday, July 1, 1997 7:32 AM

T
he E

m
bedded P

C
’s IS

A
 B

us

40 Schematic 1
The ISA bus signals can drive a maximum of two (or perhaps, four) LSTTL loads per slot. The LS245 transceivers on
the address and control lines are hard-wired to drive signals to the board, while the address decoding circuitry controls
the direction of the data line buffers. The system board provides pullup resistors for the IOCHRDY and -IOCS16 lines.

Embedded PCs ISA Bus.book : Chapter 3.fm Page 40 Tuesday, July 1, 1997 7:32 AM

Chapter 3: Barnacles on the ISA Bus

41

When you examine the Firmware Development Board’s schematics, you’ll be
struck by the absence of “high tech” circuitry. I’ve deliberately used standard SSI
gates and MSI decoders rather than PALs, GALs, PEELs, or other programmable
logic devices. While those devices offer significant reductions in board space and
wiring complexity, they tend to obscure the mechanics of what is really a fairly
simple process.

Regardless of which programmable device I might pick, the majority of you folks
won’t have access to the programmer required to produce it. But you can implement
these garden-variety circuits with whatever programmable logic devices you might
have available. There have been enough articles about programmable logic devices
in various sources that you should have no trouble getting from here to there.

The FDB (that’s “Firmware Development Board”) circuitry for this chapter divides
neatly into three parts: a set of buffers to isolate the board from the I/O bus, address
decoding and timing circuitry, and the LED and switch interfaces. The first two
account for most of the logic; the remaining four ICs handle the actual I/O bits.

Buffering the Bus
Schematic 1 shows the FDB’s ISA bus buffer circuits. The Original IBM PC AT
bus specifications allowed up to two low-power Schottky TTL loads on each board,
which the LS245 buffers handle quite nicely. The EISA bus spec allows up to twice
that load on each board, but, if you are mixing logic families, you must calculate the
actual currents for both high and low logic states. You should also consult the
PC/104 signal loading specs, should your embedded project take that bus. In any
event, keep your board’s bus loading to the absolute minimum.

For example, in your own ISA bus designs, you may want to omit the buffers on
some lines because you know the exact loading. In fact, you might think you can get
away with excessive loading on your custom board in a specialized target system
with, say, only two other ISA bus boards… that road is fraught with peril, as “just
one more board” may push the bus loading over the limit. Rule of thumb:
conservative design eliminates sleepless nights.

Notice that the three LS245 transceivers used for the address and control lines are
always enabled and wired to send signals in only one direction. You may use LS541
buffers instead, but I prefer one less part number, particularly when LS245s are
faster and less expensive. Check your suppliers for the latest prices and availability.

The signals on the inboard side of the LS245 drivers bear a B prefix to indicate that
they are buffered from the bus. I prefix low-active signals with a minus sign, but as

Embedded PCs ISA Bus.book : Chapter 3.fm Page 41 Tuesday, July 1, 1997 7:32 AM

T
he E

m
bedded P

C
’s IS

A
 B

us

42 Schematic 2
This I/O address decoder recognizes I/O port accesses to the FDB and activates the hardware corresponding to that
port. Because the FDB contains only 16-bit ports (by definition), the card-selected signal activates the -IOCS16 signal
shown in Schematic 1 for all addresses on the board. The firmware must avoid 16-bit accesses to odd addresses,
although 8-bit accesses will work under conditions we’ll explore in Chapter 4. You may replace the 74F521 with a
74LS688 if you note that the latter chip has a much longer propagation delay and will affect other circuits.

Embedded PCs ISA Bus.book : Chapter 3.fm Page 42 Tuesday, July 1, 1997 7:32 AM

Chapter 3: Barnacles on the ISA Bus

43

I mentioned in Chatper 0, you’ll find that other references use leading or trailing
asterisks, front or back slashes, overbars, and even more peculiar notations.

So much for standardization…

The two LS245 buffers on the data lines are enabled only when the address
decoding circuitry detects an I/O access to a port on the FDB. When that happens,
-BIOR determines the signal direction: the buffers drive data to the board, except,
of course, when the CPU reads data from the board.

There are only two other signals leaving the board: -IOCS16 tells the ISA bus
interface that this board can handle 16-bit I/O accesses and IOCHRDY can stretch
those cycles to accommodate slow devices. It may seem strange to talk about
slowing the cycles when we’re investigating faster I/O, but I’ll explain this in
Chapter 4.

Both of the control outputs use 7407 open collector drivers, because every ISA bus
board can drive those signals. The PC system board includes the rather low value
pullup resistors that each ISA I/O board must pull low to activate the signals.

Access Control
Schematic 2 should be more interesting, because the logic actually does something
useful. These few ICs determine the I/O addresses of the devices on the FDB and
control the bus access timing.

Although an x86 CPU can access 65536 (exactly 64×1024) I/O ports, ISA bus I/O
boards decode only address bits A0 through A9. As with the 8088’s 1 MB of RAM,
the 1024 ports defined by those ten bits seemed like a lot at the time.

Over the last decade, various manufacturers have assigned most of those 1024 I/O
addresses to one device or another. Before you hardwire your new logic, you should
check the references to see who else might be using your address. Often, you can
overlay a device you’re sure you (or your users) will never install. Be very careful
when you produce a commercial product, though: those old widgets out there lie in
wait for fatal assumptions like that!

The Firmware Development Board’s default address range is 0300 through 031F,
which corresponds to the ports on the original IBM prototype board. Just in case
your target system already has something at those addresses (you aren’t trying this
in your host PC, are you?), a set of jumpers defines the address range. If you change
the board’s I/O address, you must modify and recompile the sample code, as we
operate well below the level of Plug-and-Play hardware.

Embedded PCs ISA Bus.book : Chapter 3.fm Page 43 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

44

The CPU and the ISA bus can handle all combinations of 8-bit and 16-bit accesses
to even and odd addresses, but each ISA board must include some logic to help out.
Because we have complete control over the firmware, I decided to stay with 16-bit
accesses at even addresses. It certainly simplifies the logic and, as you’ll see in the
next few chapters, does not mean the board cannot handle 8-bit devices.

U14, a 74F521 comparator, XORs address bits BA5 through BA9 with five jumper
inputs and activates the -IO ADDRESS MATCH line when they coincide. That
signal drives -IOCS16 to enable the faster 16-bit accesses. That signal marks the
only difference between 8-bit and 16-bit bus cycles.

Notice that U14 also activates -IOCS16 during memory accesses when bits
BA5-BA9 match the jumper settings. That’s the way it’s supposed to work: the
CPU’s side of the ISA bus interface ignores spurious -IOCS16 signals during
memory accesses.

If you verify the circuit timings, you may be able to replace the 74F521 comparator
with a 74LS688 comparator. Because 74LS circuits have significantly more delay
than 74F, calculate and measure the changed timings carefully to ensure that the
circuits we’ll add in later chapters will work properly.

U12 and U13, the two LS138 decoders, combine U14’s output with four more
address bits to identify each of the sixteen 16-bit ports in the board’s address range.
The -BIOR and -BIOW signals enable the decoders, whose outputs indicate both
address selection and bus timing.

U11A, half of an LS139 decoder, combines the comparator’s output with two more
address bits, making each output active for four consecutive 16-bit ports. This chip
will come in handy later on when we add ICs with several internal addresses; the
chip select signals can come directly from this decoder.

In a real design, you would use a programmable logic device to replace all four of
these ICs. In effect, the PAL (or whatever) would implement a custom decoder
with only the outputs your circuitry uses. Should you have access to a PAL
programmer, feel free to adapt what you see here.

For boards that must handle both 8-bit and 16-bit accesses, consult the references
to make sure you cover all the possibilities. That type of logic is hard to do with
discrete gates and is tailor made for a PAL, just two of the reasons I avoided it. In
truth, though, the design you see here is just another example of a tradeoff between
hardware and firmware.

Embedded PCs ISA Bus.book : Chapter 3.fm Page 44 Tuesday, July 1, 1997 7:32 AM

Chapter 3: Barnacles on the ISA Bus

45

The remaining circuit, U15A, takes a step in the wrong direction. The LS221 one-
shot creates wait states to slow down the faster 16-bit I/O cycles. It’s not essential
for the circuits in this chapter, but I decided to include an analog wait state
generator. This way, you can vary the delay continuously and observe the resulting
wait states, rather than be stuck with fixed delays from a digital delay line.

Essential I/O
Schematic 3 shows two I/O devices which (just barely) demonstrate that the FDB
works. The LEDs provide visible indicators for sixteen output bits and the DIP
switches control sixteen input bits. Both ports live at address 031E, presenting the
firmware with write-only LEDs and read-only switches.

You may use sixteen discrete LEDs instead of the two-digit, seven-segment display
I picked. The firmware in upcoming chapters will display error codes and status
indications on these digits, but your application may be different.

Driving LEDs directly from an LS374 latch is, admittedly, unusual. Each latch
output bit can sink up to 24 mA at normal logic levels, making the 10 mA for each
segment entirely acceptable. The digits have separate common anode connections,
both tied to the +5 V supply and current limiting resistors in series with each LED.

Note that LS374 outputs cannot source more than a few milliamps each, so they
cannot drive common cathode LED digits.

Stepwise Construction
Reading about all this is one thing, but experience remains the best teacher. Fire up
those soldering irons!

I used a JDR Microdevices prototype board as the basis for the circuitry shown in
this chapter. Although the board etching includes a complete PAL-based bus
interface, I decided to present a slightly different and somewhat more general
design. As a result, my board has several cuts and adds that match it to the
schematics shown here and in the Schematics appendix.

You can also use a bare board, without etched circuitry, similar to those made by
Vector, but I strongly recommend ground and power planes covered by a good
solder mask. Boards with etched buffer circuits reduce the number of wires you
must cut, strip, and solder enough to make them worthwhile, even if you don’t use
their address decoding circuitry.

Embedded PCs ISA Bus.book : Chapter 3.fm Page 45 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

46

Schematic 3
The I/O circuitry shown here is the bare minimum required to verify that the FDB’s buffers
and address decoders are working correctly. The LEDs may be either common anode,
seven-segment digits as shown or discrete diodes. The tables show the digital output
values that produce some recognizable characters. You can use similar circuitry to build
digital inputs and outputs that interface with the real world.

Embedded PCs ISA Bus.book : Chapter 3.fm Page 46 Tuesday, July 1, 1997 7:32 AM

Chapter 3: Barnacles on the ISA Bus

47

One of the big advantages of designing a plug-in board for a PC is that you can use
the computer to debug the thing. I wrote PortTest.C to exercise each section of
hardware as I built it. Proceeding step-by-step may not be as challenging as
debugging the whole affair at once, but the job gets done faster with less hassle.

The code in Listing 2 should give you an idea of how to proceed. We start by
exercising the LED digits with a visible test pattern, so you can tell at a glance
whether the hardware works correctly. That’s a debugging technique you won’t find
in the manuals, by the way…

You will, however, need an oscilloscope or logic analyzer to verify some of the other
tests. For example, checking the F521 address comparator requires writing to
addresses for devices on the board as well as for ones elsewhere in the address space.
The only way to see those pulses (or the lack of them) is with an oscilloscope or
well-handled logic probe. Of course, if your wiring and chips work properly, then
you won’t need to debug anything.

In any event, check out the code in this chapter’s subdirectory before you begin
construction. If you build the hardware in the same order as the tests, you should
have no problems.

Listing 2
Writing firmware to exercise new hardware simplifies the debugging process. This
section of PortTest.C blinks the LED digits, then lights each segment in turn. Because the
firmware drives the LEDs directly from digital outputs, without intervening seven-segment
decoders, it can control each segment independently. Simply watching the digits can
reveal short-circuits or missing wires without any other test equipment.

����������
	
����������������������������
�����������
	
������������������������� ������!"#��$%�����
�� &

�
�	'"(!)�*"!��+���*($$��, -.$$$$�� /0���������������11 0/
2���,��3�4-��
�
�	'"(!)�*"!��+���*($$��, -.----�� /0���������������� 0/
2���,��3�4-��
�
�	'"(!)�*"!��+���*($$��, -.$$$$�� /0���������������11 0/
2���,��3�4-��
�
�	�56#*!��) -.-4�� /0��7��������,�	��� 0/
1���#�
�����8�-.9---��#�
������#�
�����::8�4��&

�
�	'"(!)�*"!��+���*($$��, ;#�
������ /0�������'�8��� 0/
2���,��3�<��
(�����8���3����
�1�(������&

����3�
=

=
�
�	�56#*!��) -.--��
2���,��3�4-��

=�'�����>(������
����3�

Embedded PCs ISA Bus.book : Chapter 3.fm Page 47 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

48

Delayed I/O
The final section of PortTest.C exercises the LS221 wait state generator I
mentioned earlier. Although the LS374 and LS245 ICs can keep up with normal
16-bit I/O rates, they also work with slower accesses. This makes them ideal
experimental subjects: nothing can go wrong!

Most of the time you want I/O to run as fast as possible, but, once in a while, you
must interface a device that cannot keep up with the normal bus rate. The
IOCHRDY bus signal holds the key to slowing things down.

If IOCHRDY remains high (I/O Channel Ready) during an access, the ISA bus
interface will complete the cycle normally. However, if it goes low (I/O Channel not
Ready) the interface provides additional time. A pull up resistor on the CPU board
holds the line active (Ready), allowing designers to entirely omit that circuitry from
I/O boards that don’t use the signal.

The board must pull IOCHRDY low within 76 ns after the leading edge of -IOW or
-IOR during 16-bit accesses. The bus interface samples IOCHRDY on each rising
BCLK edge and extends the -IOR/IOW signals by whole 120 ns, BCLK cycles.

The LS221 has a maximum trigger delay of about 80 ns, far too slow to fire it
directly from the -IOW/IOR signals. Instead, I opted for a genuine kludge: it’s
triggered from the falling edge of BALE, when the I/O address comparator signals a
match. Because the addresses don’t stabilize during the early part of the BALE
pulse, the LS221 may trigger on F521 comparator glitches that occur while the
address settles.

It turns out that this doesn’t matter for our present purpose, because the only effect
is to slow down a bus cycle that should run at full speed. Because there is no data
loss and we’re examining delays in detail, I decided to overlook the glitches in the
interest of producing an easily variable delay for this chapter.

Photo 4 shows a 16-bit write with one wait state. Compare that with Photo 2 to see
how IOCHRDY affects the results. Of course, you can’t see the slowdown by eye,
because the additional delay amounts to only 120 ns… those LEDs certainly won’t
look much different, even to a well-trained eye.

However, the wait state calibration routine in PortTest.C provides a way to adjust
the number of wait states without a scope or logic analyzer. The test loop shown in
Listing 3 counts the iterations completed in each 54.9 ms BIOS timer tick. As you
increase the number of wait states by adjusting R39, the trimpot controlling the
LS221 one-shot, the number of iterations decreases.

Embedded PCs ISA Bus.book : Chapter 3.fm Page 48 Tuesday, July 1, 1997 7:32 AM

Chapter 3: Barnacles on the ISA Bus

49

Photo 4
If the IOCHRDY line is low for at least 76 ns after the -IOW pulse starts, the ISA bus
circuitry adds wait states to the 16-bit access. This write cycle takes four complete BCLK
cycles due to the added wait state. Compare this cycle with the one in Photo 2.

Listing 3
Adding wait states to I/O accesses reduces the bus speed, allowing slower I/O devices
to work properly. This test loop from PortTest.C displays the number of iterations
completed in a single 54.9 ms BIOS timer tick. Increasing the number of ISA bus wait
states decreases the number of iterations.

'�����>��3�����&
�
�	�56#*!��) -.-4�� /0��7������	�������	��� 0/
6�.�,��3�8�2���,��3�4��+�4� /0����3������.������ 0/
#�
�����8�-�
���&

�
�	'"(!)�*"!�� #�
����++��
=�'�����	��3'-.--?- -.--@#��>8�6�.�,��3��
�
�	�56#*!��) -.--��
	����1�#�
���AB
��� #�
������

=

Embedded PCs ISA Bus.book : Chapter 3.fm Page 49 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

50

The components I chose for the LS221 limit the IOCHRDY pulse between 100 and
1000 ns, which should be enough for most devices. IOCHRDY must not be held low
more than 15.6 µs during any access to prevent interference with the system’s RAM
refresh signals. We’re safe from that problem.

The number of iterations obviously depends on the CPU speed. A 33 MHz ’386SX
completes 8080 (no, I’m not making that number up) iterations with no additional
wait states. Remember to install the jumper that disables the LS221 before making
this measurement, as component tolerances may produce a pulse long enough to
trigger a wait state, even with the trimpot fully counterclockwise.

Simple math: 54.9 ms divided by 8080 iterations tells you that each iteration takes
about 6.79 µs. I counted 28 instructions in the assembler listing, indicating that the
CPU trundles along at 4.1 million instructions per second or about 243 ns per
instruction. Each instruction lasts for some multiple of the 30 ns CPU clock,
implying about eight clock cycles per instruction.

Removing the jumper and adding one wait state drops the count to 7970 iterations
and 6.89 µs per loop. The difference, 100 ns, seems somewhat less than the 120 ns
you’d expect.

I think the precise difference works out to 90 ns, three CPU cycles, due to the
instruction prefetch queue being empty when the CPU encounters the (C,
instruction. Because the CPU flushes the queue when it #!��s the �
�	'�
routine and the instructions that get the address and data from the stack are fairly
fast, the CPU actually goes idle during part of the nominally no-wait-state (C,
instruction. The added wait state partially overlaps the prefetch delay for the next
instruction, resulting in less lost time than the book indicates.

Adding a second wait state produces 7830 iterations or 7.01 µs per loop. The
difference here, exactly 120 ns, suggests that the prefetcher got itself back on track
and had the next instruction ready on time.

I’ll leave it to you to continue adding wait states and calculating the results. The
bottom line, even in this contrived example, shows that each additional wait state
adds less than 2% to the overall loop time. The CPU spends so little time in I/O
operations compared to the other calculations in the loop that an additional 120 ns,
just four CPU cycles, is no big deal.

Performance measurement on the complex CPUs found in the x86 series is not at
all trivial, but this simple example shows that if you really care about the results, you
must make careful measurements. We’ll see further examples in upcoming chapters,
but for background reading you should get a copy of Abrash’s Zen of Assembly

Embedded PCs ISA Bus.book : Chapter 3.fm Page 50 Tuesday, July 1, 1997 7:32 AM

Chapter 3: Barnacles on the ISA Bus

51

Language or his more recent Zen of Code Optimization and commit the lessons
found therein to heart.

Of course, a digital delay line is the correct way to produce a short delay when you
know precisely how long it should be. Simply send -IOR/-IOW through the delay
line, XNOR the delayed output with the input, and drive IOCHRDY with the
result. The pulse goes low when -IOR/-IOW goes low and returns high when the
delayed signal arrives. You must include address decoding and so forth, but the
output becomes a fast, low-delay, well-controlled blip that lasts just long enough for
your I/O device.

The Digi-Key catalog includes a selection of digital delay lines that run $10-$20 in
onesie-twosie quantities, depending on the delay, number of taps, and precision.
You can see why I picked a one-shot for this adjustable delay, but I don’t want you
using an LS221 in your design just because you saw it here! Rummage through your
catalogs and see what’s available to produce the exact delays you need.

Release Notes
Refer to the code diskette for all the test programs. As before, I used Micro-C and
you can run the HEX files on your target system with the MON86 debugger or by
copying the BIN files on a diskette with the appropriate BootSect loader from
Chapter 1.

You can also copy the BusLabel file on the other side of this page and paste it on
your ISA bus extender to simplify your ISA bus signal probing. The raw ASCII
equivalent in BusLabel.asc will work with your favorite word processor, if you set
the printer’s line spacing at 0.1 inch to match the ISA bus connectors.

Embedded PCs ISA Bus.book : Chapter 3.fm Page 51 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

52

Bus Labels
This label for your bus extender identifies the ISA bus connector pins. The pins are
exactly 0.1 inches apart, with 0.4 inches between the two connectors. Beware of
copiers that slightly enlarge or reduce their images without warning.

B - Bottom A - Top
01 Ground -IOChCk
02 ResDrv SD 7
03 +5 V SD 6
04 IRQ 9 SD 5
05 -5 V SD 4
06 DRQ 2 SD 3
07 -12 V SD 2
08 -End Xfer SD 1
09 +12 V SD 0
10 Ground IOChRdy
11 -SMemW AEN
12 -SMemR SA 19
13 -IO W SA 18
14 -IO R SA 17
15 -D Ack 3 SA 16
16 DRQ 3 SA 15
17 -D Ack 1 SA 14
18 DRQ 1 SA 13
19 -Refresh SA 12
20 SysClock SA 11
21 IRQ 7 SA 10
22 IRQ 6 SA 9
23 IRQ 5 SA 8
24 IRQ 4 SA 7
25 IRQ 3 SA 6
26 -D Ack 2 SA 5
27 TC SA 4
28 BALE SA 3
29 +5 V SA 2
30 14.4 MHz SA 1
31 Ground SA 0

D - Bottom C - Top
01 -MemCS16 -SHBE
02 -IO CS 16 LA 23
03 IRQ 10 LA 22
04 IRQ 11 LA 21
05 IRQ 12 LA 20
06 IRQ 15 LA 19
07 IRQ 14 LA 18
08 -D Ack 0 LA 17
09 DRQ 0 -MemR
10 -D Ack 5 -MemW
11 DRQ 5 SD 8
12 -D Ack 6 SD 9
13 DRQ 6 SD 10
14 -D Ack 7 SD 11
15 DRQ 7 SD 12
16 +5 V SD 13
17 -Master SD 14
18 Ground SD 15

Embedded PCs ISA Bus.book : Chapter 3.fm Page 52 Tuesday, July 1, 1997 7:32 AM

