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15 Bringing the Graphic LCD Panel 
to Life

Have you ever repaired something by taking it apart, contemplating the pieces, then 
putting them back together again? It’s hard to believe a simple laying-on of hands 
can fix an inanimate object, but quite often that’s exactly what happens.

Textbooks ascribe such problems to contact corrosion, random glitches, 
metastability, software errors, and similar maladies. Experienced engineers and 
technicians know differently. “That widget just wanted some attention,” they’ll say 
with a smile and go on to the next problem. To hear them talk, you might almost 
think the hardware was alive.

So far, we’ve covered the Graphic LCD Interface’s design, hardware, and the test 
firmware that exercised the circuitry. It’s now time for the code that manipulates 
individual dots on the panel and, as an added bonus, puts your x86 target system’s 
extended memory to good use. You’ll see several chunks of assembly language here, 
as we begin writing code where performance matters a bit more.

While the gadgetry isn’t quite alive yet, we’re getting there…

Putting Life to Work
Graphic LCD panels have a voracious appetite for data: testing the drawing 
routines means exercising a quarter-million dots in a 640×400 array. Just writing a 
byte into the RAM and reading it back correctly doesn’t mean that the dots appear 
at the right place on the panel. You must actually look at the results to verify that the 
hardware is working correctly.

But… who wants to watch a test pattern?

Conway’s venerable Game of Life is the great-to-the-nth grandfather of today’s 
Artificial Life creations. It produces an easily recognizable set of patterns, exercises 
the whole LCD panel, is fun to watch, and can be falling-off-a-log easy to code… 
if performance isn’t much of an issue, anyway.

The playing field consists of a rectangular grid of cells, each of which may be either 
alive or dead. Ideally, the field should be infinite, but typical implementations 
surround the visible part of the field with permanently dead cells or join the four 
edges to simulate a torus. The contents of the initial field uniquely determine the 
course of the game, making Life a spectator sport rather than an interactive game.
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Play proceeds by generation. In principle, all cells change state in one instant at the 
end of each generation. The state of each cell in the next generation depends on its 
current state and the state of its eight immediate neighbors, nine cells in all.

A dead cell remains dead unless it has exactly three living neighbors in the current 
generation, in which case it springs to life in the next generation. A live cell remains 
alive when exactly two or three of its neighbors are also alive, otherwise it dies of 
either loneliness or overcrowding. Variations on those simple rules are possible, but 
tend to produce less interesting patterns.

Listing 1 shows the few lines of code required for this algorithm in its most basic 
form. A little arithmetic reveals the prodigious computation required for a single 
generation on 640×400 LCD panel: 9×640×400 = 2.3×106 ��������� calls! 
Because relatively few cells change state after the first few generations, the 
��������� calls that update the playing field don’t influence the overall time.

My oscilloscope reports that the calculations take about 100 µs per cell on a 
33 MHz ’386SX CPU. Therefore, computing just one generation requires 

Listing 1
One of the attractions of Conway’s Game of Life is the simplicity of the algorithm: these 
few lines determine the changed cells in the next generation. Because our graphic LCD 
panels have a quarter million dots, however, the complete computation can take tens of 
seconds even on a fast processor. This is fast enough to test our hardware, but you can 
have fun optimizing the code beyond recognition.
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640×400×100 µs = 26 seconds. Watching this process demands nearly the same 
patience as studying the life cycle of glaciers in real time. Smaller panels run faster, 
of course, while remaining in the icicle growth competition. Obviously, we have 
here a program where optimization pays off handsomely.

Michael Abrash presented a Game of Life Optimization Challenge in the June ’92 
PC Techniques magazine, with results appearing in the Dec ’93 issue. The two 
winning entries run at 125 ns/cell (yes, nanoseconds per cell) on a 33 MHz ’486 (yes, 
a doorstop system by contemporary desktop PC standards) and their source code is 
a wonder to behold. Before you start tweaking my simple code, please read those 
articles… and weep. The contest and results also appear in his Zen of Code 
Optimization book, the contents of which you should commit to memory.

Because I was more interested in LCD panels than the Game of Life, I decided to 
finesse the problem. I added a few routines that store each successive generation in 
the target system’s extended memory, then play them back as a slide show. You’ll get 
the details after we cover the LCD firmware.

Doing Dots
As you saw in Chapter 13, the Graphic LCD Interface maps the LCD’s dots into 
the LCD Refresh RAM, a 32 KB chunk of the PC’s address space. From the 
CPU’s viewpoint, the LCD panel operates as a typical, albeit relatively slow, RAM 
on the ISA bus, with the exceedingly useful side effect that its bits are visible to the 
naked eye. Unfortunately, as we discovered in Chapter 14, each panel has its own 
dot layout and requires unique code to locate each bit in the RAM.

Finding a particular dot requires two steps: selecting the RAM byte holding the bit, 
then isolating the bit within that byte. Obviously, both steps depend on the dot’s 
row and column address. To simplify the high level code, rows and columns both 
start with number 0 in the upper left corner of the panel, even though many LCD 
panel documents number them differently. Other mappings work equally well: if an 
upside down, backwards, or rotated mapping suits your application, go for it!

Because of the hardware we’re using, the top row of dots on the LCD panel does 
not come from the first group of bytes in RAM. Although the Graphic LCD 
Interface produces a Frame Sync pulse when it resets the LCD Address 
Counter to zero, the panel expects Frame Sync to follow the first row. As a 
result, the dots starting at address 0000 appear on the second panel row, not the first.

This was not a problem in Chapter 14, as we were interested in verifying the 
hardware and showing which RAM addresses appeared on which rows. Now that 
we must work with specific dot positions, it’s time to get precise.
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The quick and easy firmware solution for this appears in Listing 2, where I stored 
the starting address of each row in the ����5
�� table. That table has one entry 
for each visible row in the LCD panel: the LG64AA44D table has 400 entries. The 
first entry points to the bytes at address 199×160 = 31840 decimal = 7c60 hex, 
while the second entry holds address 0000. The dot drawing routines consult the 
table to find out where each row starts: the scrambled addresses unscramble the 
panel layout and put Row 0 at the top of the panel where it belongs.

I create and fill the table as part of an LCD initialization routine which is specific 
to each panel. Entries 0 and 200 are special-cased at the top of the loop, while the 
remaining 2×199 entries form a simple ascending sequence. I suspect you could 
define and fill the table using some assembler macro magic, but this way is easy 
enough and relatively straightforward to modify.

The ���657�%88
 function in Listing 3 converts a dot’s row and column address 
into a byte address and a bit shift amount. The byte address depends on both the 
row, which specifies the lookup table entry, and the column, which specifies an 
additional number of bytes relative to the start of the row.

Listing 2
A lookup table simplifies finding the RAM address of a particular dot by holding the 
starting address of its row. This code fragment defines and loads the 400 table entries for 
a Matsushita LG64AA44D 640x400 dot panel. The data for the lower half of the panel is 
located in the high-order nybble of the same bytes displayed on the upper half, so the 
second half of the table (Rows 200-399) contains the same addresses as the first half 
(Rows 0-199).

����%6� �9: ;65���� *�5���6���<=%%==�;
�:6>?� � =��
�:6�>�� � <=�
�>���>�@� � /<�
�>�6>�:�:� � =
�>�%���>�@� � 30���
>?6>�:�:� � �:6>?��0
AB��C%�:� � ��� 

����5
�� �? �:6>?���:D��E� ��
�����5
�*+"�588
�����

6>C F����5
��G&�>?6>�:�:�./���>���>�@�
6>C F����5
���0�>?6>�:�:�G&�>?6>�:�:�./���>���>�@�

6>C �B&�>AA��������5
������0
6>C �H&>?6>�:�:�./
6>C %H&� ��
���������)�+8��+�
�
D:�I �� �������!���>�?���"��+�
D>D ��

JJ/K 6>C F�B�0�>?6>�:�:�G&%H ����)�+8� 5,	��	��5-,�
��>�? ��	*
��� 5,	
%�� %H&�>���>�@� ���		�����	�+�'��
��
�>>D JJ/
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The bit shift value in �� moves the selected bit to the low-order bit or vice versa. 
Depending on which panel we’re using, the shift amount may also depend on the 
row, the column, or both, because these LCD panels pack several widely separated 
dots together in each LCD Refresh RAM byte.

Homework assignment: step through the code samples with a pencil and paper to 
see how the algorithm works. Draw a picture of the LCD panel’s bit layout, 
indicate the bit addresses at the start of each row, then verify that the code really 
does produce the right answers. You won’t believe it until you do…

Listing 4 pulls all of this together to write a single dot. As you saw in Listing 1, the 
�5*+�� C routine calls ��������� directly, which means that routine’s register 
and stack usage must match C’s expectations. Interfacing assembler with C used to 
be fiendishly tricky, but current PC assemblers include several high level directives 
to ease the task. I won’t go into the details here, other than to say it’s much easier 
than counting bytes and tweaking registers on your own.

Recall that ���657�%88
 returns a byte offset in �B rather than a complete 
��"K�		 address. ��������� adds the far pointer in !�����		 to �B to create 
the final address in ��K�B. You can aim ��������� at the actual LCD 

Listing 3
This LG64AA44D panel routine converts a dot’s row (in BX) and column (in AX) into the 
offset of a byte from the start of the buffer (in DI) and the shift amount (in CL) that moves 
that bit into Bit 0. The high nybble of each byte stores the dots for rows 200 through 399, 
the low nybble contains dots for rows 0 through 199, and, thus, the shift amount depends 
on which half of the panel holds the dot.

D>� ���657�%88


%�� �H&�H ����57����
8��5-,��*+8�'
6>C �B&F����5
����HG

�BC F�#�����,6�8�,��G
H> %I&�3 ��	,*!�� *	��8*
�)�*�+
6>C ��&%I ���5L��
��5*+8�
�	�
�� *	�*+"
6>C %I&�
%�� �B&%H ���B�!�*+������� ��-���

�6D �H&0�>?6>�:�:� ��
����2�0������� *" �+�--,�
M� JJ/
%�� ��&= ��NNN����� *	��*+���*�

JJ/K
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Refresh RAM addresses or, for more speed, at a separate working buffer in 
system RAM, just by changing !�����		.

Normally, you would include the buffer base address in ���������’s arguments. I 
used a global variable to reduce the amount of stack shuffling, but I agree that 
global variables can cause problems in a real application. As always, use this code as 
the basis for your own efforts, rather than The Final Word on Programming Style.

The �H register holds the bit masks that set or clear the selected bit. Although only 
one instruction references the target byte in each pass through Listing 4, the CPU 
actually makes two memory accesses: one to read the current contents and another 
to write the updated dots back into the same byte. This instruction runs as fast as 

Listing 4
This routine sets or clears a dot on the LG64AA44D LCD panel. The global variable 
pNewBuff contains a far pointer to the target buffer, which may be the LCD panel or a 
chunk of system RAM. Depending on your application, you may want to include the target 
buffer address as one of the function parameters. This code can be called directly from 
the main C program, because the first four lines handle the inter-language register and 
stack conversions.

D:��B� �����������
D>� ���������
%� ��K?>�&��,K?>�&C5,��K?>�
:��� ��&�B

6>C %H&F��,G
6>C �H&F��G
�%�� ���657�%88


��� %H&F!�����		G ��"���-�		�
�-5���!�*+��

%�� �B&%H ���NNN��!85���-����!�*+��


6>C �H&�/�/ �������!�-*���5�7
�I� �H&��
�>� �� ��������%����5�7&��I���>��5�7

���� FC5,��G&���/ ��� 5��8������5+�E
M�O JJ0 ��+�+P�
����5+������� ��-*�
%�� F��K�BG&�� ���NNN�),�5
�*�
M6D �I>��JJ3

JJ0K
> F��K�BG&�I ���NNN�����*�

JJ3K
��

���D ���������
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the hardware can do it, but the PC Compatibility Barnacles make the LCD 
Refresh RAM on the ISA bus achingly slow compared to system board DRAM.

Listing 5 shows how ��������� tests an LCD bit. In this routine, the global far 
pointer !>,8��		 contains the buffer’s RAM address. The shift amount in �� now 
moves the selected bit into the LSB of %H, where we mask it to produce a Boolean 
return value for the calling routine.

��������� and ��������� use two different global pointers, because the Game 
of Life’s playing field must remain unchanged until after the current generation 
tests all the old cells. I aimed !�����		 at the LCD Refresh RAM buffer to 
allow us to see the dots appear, but you could put them in system RAM. In that 
case, just copy all of them to the LCD Refresh RAM at the end of each 
generation to reveal the new field in one blink.

Listing 5
This routine tests a dot on the LG64AA44D LCD panel and returns its state as a C 
Boolean value. If the row or column lies outside the LCD’s boundaries, the return value 
is always zero. While this simplifies the higher level code for the Game of Life, it may not 
be the right action for all programs!

D:��B� �����������
D>� ���������
%� ��K?>�&��,K?>�
:��� ��&�B

H> %H&%H �������!�P�
��
���
+�L5,��

6>C �H&F��,G ��L�
*	��)�,��+
���� �I&(� ��+�"5�*L�E
M�O JJ��+� ���NNN����
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M%� JJ��+� ���NNN����

6>C �H&F��G ��L�
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The main loop calls ��������� only when a cell changes, which means the new 
field must contain all the unchanged cells at the start of each generation. The C 
���)!��� library function copies the entire 32 KB buffer from the LCD 
Refresh RAM into system RAM at the end of each generation. Compared to the 
time required to compute a generation, ���)!��� runs in essentially zero time.

Variations on a Theme
Even through the LG64AA44D panel has a moderately complex dot layout, the 
code remains fairly simple. Rather than list the routines for the 640×200 DMF651 
and the TLY-365-121 panels here, check the source code files for the full details. I 
decided not to do the Sharp LM64015T 640×400 panel, because I still don’t have a 
reliable source for its backlight inverters. If you can get one, have at it!

The 480×128 LM215 merits some discussion, if only because it has such a peculiar 
layout. Each of the four bits in the low nybble drives a separate quadrant: in effect, 
the panel has four 240×64 subpanels. It uses a 960 ns Dot Clock, so the firmware 

Listing 6
The LM215 panel has more complex addressing, because it is actually four 240x64 
panels butted together on one piece of glass. Both the bit shift amount and the byte offset 
depend on the dot’s quadrant. The SETAE instructions, peculiar to the ’386 and higher 
CPUs, set CL to 1 if the preceding CMP was “above or equal” and to 0 otherwise.

����%6� �9: ;I*�5) *��60/Q��R<��+�&�����S��!�
�T�;
�:6>?� � /0(
�:6�>�� � =(�
�>�%���>�@� � 3�U0�
>?��>�@� � =(� ���L�
���� �
�-����*+�-�		�
T
�>�6>�:�:� � �:6�>���0
>?6>�:�:� � �:6>?��0
AB��C%�:� � ��� 
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*" �� 5,	
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���%� �I ���I���/�*	�*+�,���
� 5,	
%�� ��&�I ��"������5,�� *	��5���+�

%�� �H&�H ���57����
8��5-,��*+8�'
6>C �B&F����5
����HG ���NNN����"���
�����5
�

�BC F�#�����,6�8�,��G ��"���)�,��+��		���
6>C %�&%I ��
��5*+8�
���)�,��		���
H> %I&%I ��5,�5���,����� 5+�0Q<NNN
%�� %H&%H ���*����0�	�
�588
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must also duplicate the dots in successive even- and odd-addressed LCD Refresh 
RAM bytes to present stable data to the panel.

The LM215’s row address table has 128 entries, corresponding to the 128 visible 
rows. The code I used to fill it resembles that shown in Listing 2. I put only the 
even addresses in the table and modified the ��������� and ��������� 
functions to generate the corresponding odd addresses.

Listing 6 shows the LM215 ���657�%88
 function. The bit shift amount depends 
on the dot’s quadrant, a perfect application for the ’386 ���%� instruction that 
generates a Boolean value from the flags set by �6D. The byte offset added to the 
table entry is the same for the first and last 240 columns in each row. Because 
���%� doesn’t exist on CPUs prior to the ’386, you must tweak the code if you have 
an 8088 or 80286 target system.

Listing 7
The LM215 requires a 960 ns Dot Clock, so identical data must appear in successive 
even- and odd-addressed bytes to provide stable signals to the panel. The remainder of 
this code resembles that used for other, more normal, LCD panels, because 
LCDMakeAddr hides the addressing differences.

D:��B� �����������
D>� ���������
%� ��K?>�&��,K?>�&C5,��K?>�
:��� ��&�B

6>C %H&F��,G
6>C �H&F��G
�%�� ���657�%88


��� %H&F!�����		G ��"���-�		�
�-5���!�*+��

%�� �B&%H ���NNN��!85���-����!�*+��


6>C �H&�/�/ �������!�-*���5�7
�I� �H&��
�>� �� ��������%����5�7&��I���>��5�7

���� FC5,��G&���/ ��� 5��8������5+�E
M�O JJ0 ��+�+P�
����5+������� ��-*�
%�� F��K�BG&�� ���NNN�),�5
�*�
%�� F��K�B�/G&�� ���NNN�8��� ���88�-���&����
M6D �I>��JJ3

JJ0K
> F��K�BG&�I ���NNN�����*�
> F��K�B�/G&�I ���NNN�8��� ���88�-���&����

JJ3K
��

���D ���������
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The LM215 ��������� function in Listing 7 updates both bytes with the new dot 
value. Apart from that, it resembles the code for the other panels because 
���657�%88
 handles the panel’s peculiar bit and byte addressing.

The LCD initialization routines for all these panels disable blinking by gating a 
constant zero to the LCD Data Multiplexer. While you may have good 
reasons for showing blinking dots, the Game of Life doesn’t need any. I leave that 
as an exercise for the interested reader (yes, you).

Stashing Slides
I used the Game of Life because its outputs make a far more interesting test pattern 
than a bland bit-by-bit diagnostic program. Unfortunately, waiting half a minute 
for each update puts a strain on even the most placid attention span. Rather than 
get involved with code optimization, I decided to store successive generations in 
RAM and play them back quickly. While the slide show repeats after a while, that 
allows you to study problems as they crop up over and over again… it’s a perfect 
test-pattern application.

So far in this book, our x86 target CPUs have been running in real mode, which 
allows only 20 address bits and limits RAM addresses to 1 MB. The PC’s memory 
addressing restrictions, which we discussed in Chapters 6 and 7, limit contiguous 
RAM to the 640 KB starting at physical address 00000. After loading a program, 
allocating a few work buffers, and leaving room for a decent A% heap area, the 
system may have only a few hundred KB available below the video buffers.

In contrast, when a ’386 or higher CPU runs in protected mode, it can use all 32 
address bits to reach 4 GB of memory. Even the lowly ’386SX chip has 24 address 
pins and can access 16 MB, still significantly more than a paltry 640 KB. In most 
PC systems, the first megabyte of the protected mode address space remains 
devoted to the familiar real mode RAM and I/O devices, with the remaining 
storage appearing as a contiguous expanse starting at the 1 MB line.

This RAM area, generally called extended memory, differs from expanded memory 
that can be page mapped into some part of the lower 1 MB. The (now largely 
irrelevant) LIM 4.0 spec defined the operation of a standard DOS Expanded 
Memory Manager that controlled actual memory mapping hardware. The EMM386 
DOS device driver controls extended memory and can simulate expanded memory 
with no additional hardware. Refer back to Chapter 6 for a discussion of how that 
affected our ability to locate memory on the ISA bus.

Although the CPU must run in protected mode to access extended memory, we 
don’t need a complete protected mode program to use that RAM. The system 
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BIOS includes functions that copy blocks of data in extended memory to and from 
the 1 MB available to real-mode programs, allowing us to create the data as usual 
and store it through a BIOS call.

The process begins by finding out how much extended memory resides on the 
target system. Listing 8 shows the code to access BIOS function B�� /Q &�

%I�(( , which returns the extended memory size in kilobytes in register %H. 
Because %H holds only 16 bits, this function can handle a mere 64 MB of RAM… 
enough for an old ’386SX, but painfully cramped in the days of Pentium Pro CPUs 
with nearly 1 GB of RAM on their system boards.

The various references disagree as to whether the B�� /Q &�%I�((  function 
clears the �5

� flag to indicate success. In my test systems, �5

� remains set 
even though %H contains the correct value, so I added a test to weed out some 
obviously bogus return values. If it misbehaves on your system, write a few testcases 
and see how your BIOS behaves.

The firmware turns bit 0 of the printer port at �#��$%�� (typically, LPT1) ON 
before invoking the software interrupt and OFF when it returns. If that bit stays 
ON, you know your system has problems. This will certainly happen on 8088 
systems and will probably happen on oddball ’286 systems, because the BIOS 
functions aren’t quite compatible.

Function B�� /Q &�%I�((  reads the extended memory size from the battery 
backed RAM in the CMOS Real-Time Clock chip, where, on some systems, the 

Listing 8
BIOS function Int 15h, AH=88h returns the extended memory size in KB. This memory 
starts just beyond the 1 MB of memory addressable in real mode. Because AX has only 
16 bits, the function can report only the first 64 MB of extended memory!


�"�N N5 ����'((�
���!��#��$%��&�'�/�� ����5
7�� ��V��
� ��
*+�(<��'/Q&W
�"�&W
�"���
���!��#��$%��&�'����

H6���*P����
�"�N'N5'�
!
*+�	�;��B>��
�!�
���X��@�Y+;&H6���*P���

*	���H6���*P��22�(��2���'��(����
!����;�NNN��+�5���5,,�D������)5+Z�� 5L��� 5����) &����*�Z��*"+�
�8;��
H6���*P������

4

H6���*�*�����,�+"��H6���*P����A%6��BO��� ����
�+)5���,*�*�����5 ��
H6���*�*������,�+"�A%6��BO����/�0=�� ������,�*!,���	�� ���,*8���
H6���*�*�����>��$6��� ���5-�L��� ��,*+� ��
!
*+�	�;�����	�
�X��	
5�����	�X��@���5) �-�����+�X�(,H�5+8�X�(,HY+;&

H6���*P��A%6��BO�&A%6��BO�&>��$6��&H6���*�*�./��

Embedded PCs ISA Bus.book : Chapter 15.fm  Page 253  Tuesday, July 1, 1997  7:32 AM



The Embedded PC’s ISA Bus

254

BIOS stored it during the power-on tests after each reset. Other BIOSes store this 
value as part of a manual setup and complain if it doesn’t match the actual amount 
of RAM found during POST. In any event, the return value should be exactly 
1 MB less than the total amount of RAM installed in your system.

BIOS function B�� /Q &�%I�(U  copies a block of data between any two 
locations in memory. The process looks straightforward: enter the source and 
destination addresses in a table in RAM, specify the number of 16-bit words to 
move in �H, aim ��K�B at the table, and issue the software interrupt. However, the 
references disagree on exactly what the table should contain in addition to the 
addresses, if anything.

It turns out the table actually forms the GDT (Global Descriptor Table) used when 
the CPU enters protected mode. Listing 9 shows the structure of the GDT entries: 
even when the code runs on a 32-bit ’386 or higher CPU, the BIOS expects a 
16-bit, 80286-style GDT for compatibility with the Original PC AT. The two 
addresses form part of a pair of segment descriptors that the CPU uses to access the 
data blocks in extended memory.

Listing 10 shows how I copied the Life fields into extended memory. The GDT 
requires memory addresses in 24-bit linear format, not the ��"K�		 pairs we all 
love to hate. I filled in the GDT entries holding the segment length and access flag 
bits, even though some of the references imply the BIOS will do this automatically.

The code copies the entire 32 KB block of storage in order to make the extended 
memory addresses easy to decode by eyeball inspection. If you apply data 

Listing 9
BIOS Int 15, AH=87h copies memory between any two addresses in RAM, specified as 
24-bit linear values in a Global Descriptor Table, rather than the familiar seg:off pairs 
used below 1 MB. The GDT, made up of an array of the structures shown here, defines 
the CPU’s access to memory in protected mode.

[!
5"�5��!�*�+�.5. �����
�)��
�������-��!5)7�8 ��
��!�8�	���
�)����

?>����"�*�*��� ����*P���	���"��+��*+�-���� ��
?>����"�5������ ���,���-������	�,*+�5
�588
��� ��
�#�����"�5��I*" � ��� *" �-�����	�,*+�5
�588
��� ��
�#�����"A,5"�� ���R��)�8�&�R3�85�5&�R/�> ��
?>�����
L�8� ���
���
L�8&������-��P�
� ��

4����$0(<�
[!
5"�5��!�*�+�.5N ���
����
��8�	5�,������*+" ��

[8�	*+��6@$�B��%�	!�����,�+"�AD$����	!�����=�����,�+"�AD$>AA�	!��

���$0(<�6�L����F<G� �������	�
��B>��6�L���,�)7�	+ ��

Embedded PCs ISA Bus.book : Chapter 15.fm  Page 254  Tuesday, July 1, 1997  7:32 AM



Chapter 15: Bringing the Graphic LCD Panel to Life

255

compression before storing the frames, remember to tweak �H and step the 
addresses by the appropriate amount.

The two ���!��� functions bracket the CPU’s journey through protected mode by 
blinking bit 1 on the printer port: if that bit stays ON, you know your system got 
lost in hyperspace. My 33 MHz ’386SX system takes about 32 ms to transfer a 
32 KB block, about 1 MB/s. Because the transfer stays entirely within the system 
board RAM, the usual ISA bus slowdown doesn’t come into play. You can easily see 
that switching to and from protected mode adds considerable overhead! A little 
experimentation with different buffer locations should reveal the size of the penalty. 
Hint: put both buffers in system memory and time it again.

Because the BIOS doesn’t have access to any interrupt handlers in protected mode, 
it must disable all hardware interrupts during the entire transfer. If your code must 
receive high speed serial data or process other closely spaced interrupts, this 
function simply will not work for you. Also, the references lists several possible 
error return codes that I simply ignore here. You must deal with all those issues in a 
real application, of course.

Listing 10
In addition to the (obviously) necessary source and destination addresses in the GDT, 
this code fills in the segment length and access flags even though they’re not required on 
my target systems. Bit 1 on the printer port marks the CPU’s journey through protected 
mode; if that LED remains lit, your CPU fell off the tracks. The code to copy data back 
from extended memory is similar: just interchange the addresses.
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After filling extended memory with Life generations, the code once again invokes 
B�� /Q &�%I�(U  to copy the patterns back into memory below 1 MB. One of 
the FDB’s DIP switches selects either ���)!��� or a nested pair of C loops for the 
subsequent copy into the LCD Refresh RAM, allowing you to see the effects. A 
hardcoded 500 ms delay between each slide also gives you time to think about 
what’s happening and recognize any problems.

One megabyte of extended memory holds 32 generations of 32 KB each, about 16 
seconds. An 8 MB system, with 7 MB above the 1 MB line, stores 224 generations 
and presents a two-minute slice of Life. The low-order byte of the DIP switches on 
the Firmware Development Board sets the initial random number seed and, thus, 
selects one of 255 different slide shows. You can modify the code to pick more bits 
from the DIP switches or use an entirely different random number generator.

Because 200-line panels use only the low-order nybble of each byte, you can 
obviously store twice as many generations with a no-brainer data compression 
scheme. The Life field has many dead cells after the first few generations and you 
can probably pick up another 50% by run length encoding what’s left… have fun!

Don’t be surprised to find yourself rooting for those clumps of dots as they expand, 
contract, and consume each other. Life is like that…

Release Notes
The sample program files include the source code and BIN files for the four panels I 
mentioned in the text, written in Borland C and processed through Paradigm’s 
Locate utility. Copy the BIN files to a diskette with the boot loader from Chapter 11 
and bring some life to the LCD panel on your target system.

The code unique to each panel resides in an assembler file bearing the panel’s name. 
The MakeFile produces a similarly named BIN file on drive A, so have a diskette 
with the boot loader ready when you recompile the code. If you add another type of 
panel, use an existing file as a template, update the MakeFile, and you’re all set.

You also get my version of Paradigm’s Console.C file. I replaced their demo code 
with BIOS serial functions to support simple, polled console I/O. If you’re using 
Locate, you must also set up the A%I�%D constant that allocates a decent sized area 
for the program’s work buffers. I used 0x8000, but you may find a smaller value 
works fine.

Homework: you can build some useful graphic code atop the dot drawing routines. 
For vector graphics, add line and arc drawing routines. For bitmaps, you’ll need 
block move and copy operations that properly handle the scattered bits.
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