
93

6 Memories Are Made of This
Although the PC BIOS has all the code required to boot a program from disk or
diskette, some applications cry out for just a smidge of nonrotating, nonvolatile
storage. Small embedded programs can run entirely without moving parts
(assuming you have a power supply without a fan!) and larger programs can store
configuration, identification, or logging data without disk I/O.

Compared to the confines of an 8031 microcontroller, the nearly 1 MB of address
space available in a PC (ignoring protected mode for now) seems almost limitless.
As you’ll discover in this chapter, though, there isn’t that much space left for our
embedded applications: a contiguous 64 KB block may be hard to come by.

I’ll start by reviewing the PC’s memory layout, explore ISA bus memory timing,
then describe the circuitry that adds an EPROM or EEPROM to the Firmware
Development Board. With the hardware in place, a little firmware can load a
program and make it a part of the BIOS that runs whenever the PC starts up.

Where Does Memory Come From?
Every PC’s memory organization pays homage to The Original IBM PC and its
8088 CPU. At this late date, we can only quibble about the details, because a thick
crust of PC Compatibility Barnacles renders the Big Picture impervious to change.
Figure 1 shows the major divisions in the first megabyte of storage.

The (in)famous 640 KB block devoted to user programs and data forms the first
and largest chunk. If your real-mode application requires contiguous RAM, this is
as good as it gets. While there are ways to extend this block, none are particularly
attractive or generally reliable in all systems.

The video RAM buffers occupy the next 128 KB, starting at A0000. The old CGA
board freed the space below B8000 and allowed a glorious 736 KB of contiguous
user RAM, but the VGA’s 128 KB buffer renders that trick essentially useless.
Although a VGA in CGA mode can release the space below B8000, simply
changing back to VGA mode will lock up the system as the hardware buffer
collides with the system RAM.

Of course, if your application doesn’t use video at all, you can yank the board and
devote its entire address space to whatever you’d like. The Bad News: you can then
never, ever, install a video board along with your hardware. That seems a shame,
given the utility of built-in, standard video with BIOS support, but it’s your call…

Embedded PCs ISA Bus.book : Chapter 6.fm Page 93 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

94

The system board BIOS may occupy either 64 KB starting at F0000 or 128 KB
starting at E0000. Early PCs sported an empty EPROM socket or two on the
system board, unused hardware that relentless cost reduction eliminated in short
order. If your PC doesn’t have BIOS code at E0000, which is quite unlikely in this
day and age, you can use that address space for your own purposes.

Some I/O boards, notably video adapters, SCSI hard disk controllers, and network
adapters, include EPROMs that modify, extend, or completely replace some system
board BIOS functions. For example, plugging in any display adapter more complex
than a CGA or MDA (aren’t they all?) also installs a BIOS extension that replaces
the BIOS video routines.

To accommodate those new functions, the BIOS scans the 128 KB of address space
between C0000 and DFFFF to find those EPROMs and execute their startup code
during power-on initialization. Fortunately for us, this entire process follows well
defined steps, without much magic at all, allowing us to add our own BIOS
extensions for our custom hardware.

I/O boards may include ordinary RAM in addition to the EPROM, but the
cramped address space restricts that RAM to small buffers and scratchpads. The
history of Lotus-Intel-Microsoft Expanded Memory Specification boards

Figure 1
The first megabyte of PC memory serves many different functions, defined both by the
BIOS and by convention. You should think long and hard about compatibility problems
before you devote a chunk of address space to a nonstandard use! In this chapter, we’ll
build the hardware that puts an EPROM or EEPROM at C8000, then write the code that
turns it into a BIOS extension.

Address Range Size Type Function

00000 - 9FFFF 640 K RAM Programs & data

A0000 - BFFFF 128 K Video RAM Buffer Video buffers

C0000 - C7FFF 32 K Video ROM BIOS Extension

C8000 - CFFFF 32 K ROM or RAM BIOS Extension

D0000 - DFFFF 64 K ROM or RAM BIOS Extension

E0000 - EFFFF 64 K ROM BIOS or BIOS Extension

F0000 - FFFFF 64 K ROM System Board BIOS

Embedded PCs ISA Bus.book : Chapter 6.fm Page 94 Tuesday, July 1, 1997 7:32 AM

Chapter 6: Memories Are Made of This

95

(remember LIM EMS?) shows what can be done when you’re desperate for more
RAM. Bank-switching 32 MB of storage through a 64 KB peephole wasn’t pretty,
but LIM provided the only standard mechanism to do it when it needed doing.

Embedded applications enjoy far more freedom to chop up the lower 640 KB than
standard PC apps running under DOS, so when we need big buffers, they need not
be crammed between the video buffers and the system BIOS. Some applications
can also make use of the vast extent of RAM beyond the lower megabyte, even
when running in real mode, and we’ll consider that in due time.

The Firmware Development Board can accommodate either 8 KB or 32 KB of
solid state storage, mapped into the PC’s address space between C8000 and
CFFFF. While the decoding circuitry allows you to plunk it at any other address in
the first megabyte, you can now see just how constricted your choices are.

Before we link up with the BIOS, though, we must get that memory running…

Confronting the ISA Slows
Not only do the PC Compatibility Barnacles determine the memory layout, they
also set the minimum memory access time. You’ve probably noticed that current
PC boards favor memory and I/O on the CPU’s local bus and PCI boards rather
than the ISA bus. After reading this chapter, you’ll know why.

Schematic 1 shows the falling-off-a-log simple circuitry that puts an 27C256-style
EPROM on the Firmware Development Board. The LS245 buffers isolate the ISA
bus data and control lines, the F521 activates the EPROM’s -CE input when the
CPU reads or writes a byte in the desired address range, and the EPROM, of
course, holds the data.

The tradeoff for this simplicity comes, as usual, at the expense of performance.
Because I used a byte-wide EPROM, the CPU can fetch only one byte at a time.
The ISA bus defaults to the same achingly slow, six-cycle, 720 ns access for
memory as it does for I/O, with the results shown in Photo 1.

Figure 2A shows ISA bus timings for an 8-bit memory access and Figure 2B shows
typical access times for a 200 ns EPROM or EEPROM. It’s easy to see that the
EPROM has its data ready long before the end of the bus cycle. With that in mind,
I won’t go through the same analysis as with I/O ports in Chapter 4.

It may appear obvious that the best way to improve performance is by reducing the
ISA bus memory access cycle time, but sometimes appearances can be deceiving.

Embedded PCs ISA Bus.book : Chapter 6.fm Page 95 Tuesday, July 1, 1997 7:32 AM

T
he E

m
bedded P

C
’s IS

A
 B

us

96

Schematic 1
Adding an EPROM to the Firmware Development Board requires only a few additional bus buffers and an address
decoder. A 744LS688 may be easier to find than a 74F521, but be careful of its longer signal delay.

Embedded PCs ISA Bus.book : Chapter 6.fm Page 96 Tuesday, July 1, 1997 7:32 AM

Chapter 6: Memories Are Made of This

97

We have two ways to speed up ISA bus memory accesses. A pair of byte-wide
EPROMs (or a 16-bit part) that provide 16-bit accesses, plus circuitry to activate
-MEMCS16, yields three-cycle memory accesses. If that isn’t good enough,
additional circuitry can activate -SRDY to cut one cycle out of the access, although
Solari’s books are replete with cautions and compatibility hazards about doing that.

It turns out, though, that the PC provides an even better way that makes the bus
access time irrelevant without any extra hardware. The ROM shadowing feature
available on nearly all current system boards copies the EPROM contents into
RAM, disables the EPROM, maps the RAM to the EPROM’s address range, and
write-protects it. Poof: fast EPROM made possible by cheap RAM!

Contrary to popular opinion, this has nothing whatsoever to do with the x86
CPU’s protected mode memory management hardware. It’s entirely a function of
the system board LSI hardware, meaning that your programs continue to run in

Photo 1
This logic analyzer trace shows what happens when the CPU reads a single EPROM
byte. The access begins with the rising edge of BALE and ends six BCLK cycles later
when -SMemR (mislabelled -MEMR here) goes high.

Embedded PCs ISA Bus.book : Chapter 6.fm Page 97 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

98

Address

-SMemR

Data

89 ns

min

509 ns min

Valid Data to CPU

30 ns max

0

min

436 ns

max

Address

Data

200 ns max

Valid Data

55 ns

max

0 ns

min

80 ns max

200 ns max

-CE

-OE

Figure 2a
This diagram shows the signals and timing involved in an 8-bit ISA bus memory read
access. The timings remain compatible with boards designed for the Original IBM PC and
seem painfully slow by contemporary standards.

Figure 2b
These timings show the read cycle for a 200 ns 28C64A EEPROM and are typical of
EPROMs as well. The bus buffers shown in the schematic truncate the rather long
maximum data hold time.

Embedded PCs ISA Bus.book : Chapter 6.fm Page 98 Tuesday, July 1, 1997 7:32 AM

Chapter 6: Memories Are Made of This

99

real mode. The relocation hardware may chop up the memory above the first (or
16th or 64th) megabyte enough that protected mode operating systems have trouble
using it, but that’s a separate design issue.

The BIOS performs all the copying and remapping during the power-on reset
sequence, so by the time your code gets control, the EPROM has fallen out of the
picture. The system board circuitry runs much faster than the ISA bus, giving every
operation that depends on EPROM code or data a significant boost.

How significant?

Listing 1 shows a section of MemTest.C that reads the 32 KB block of storage with a
single ��� ����� instruction. This takes 33 ms per loop with shadowing disabled,
about 960 ns per ����� step. Enabling ROM shadowing cuts the loop to 7.3 ms,
or only 210 ns per step. Simple division shows that ROM shadowing reduces the
elapsed loop time by about 80%.

Even if you could somehow get a “no wait state” ISA bus interface running, each
bus access would still take 240 ns. To judge from my logic analyzer traces, the CPU
adds two data-access bus cycles to the minimum required for each ���	�����
instruction, so even an optimized interface would take 480 ns per byte.

There you have it: a four chip, warp speed, no hassle EPROM storage system for
your embedded system. Ain’t science grand?

Listing 1
This test loop uses a single REP LODSB instruction to read the entire 32 KB EPROM
address space. The elapsed loop time, measured either by stopwatch or oscilloscope,
gives a good indication of how fast the ISA bus can handle memory accesses.

�
���
�	�	������� ��	������	���	���	� �!"	 ��
�
���#	�	$%&��'��$(�
)�*+���	�	��
,-� �	./!-"!-.00	1

�*��.�2$)&
���3���40� ��	5!���	56+! ��
�57	1

��%)83�
���
� 5��	*�	!�*+�
�9�: ��
��%
83�
���# 5��	*�	�;;��55
��% ��3
8
8�� �<3�<
���
�����
��� ��

=
�*��.�2$)&
���3����0�
�*��,.���&
���3>�6��(���#5.)�*+���00� ��	5-�,	!�*+�	�+	?��	���5��
@@)�*+����

=

Embedded PCs ISA Bus.book : Chapter 6.fm Page 99 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

100

The MemTest.C program has the test routines I used to get the memory circuitry
working, including a HEX file with 32 KB of pseudorandom numbers from
Micro-C’s ��+;.0 function. Burn PSR32K.HEX into a 27C256 EPROM, plug it
in, then run MemTest to read and verify it… that should give you confidence in your
wiring. It’s not an absolute test, but I doubt you’ll find a bug that can hide from it.

Writing to EEPROM
There are times, however, when an EPROM just isn’t the right hammer for the job.
Whether you have frequent code changes, use nonvolatile storage for data logging,
or just don’t want to hassle with an EPROM programmer, an EEPROM may solve
your storage problem.

EEPROMs come in several different flavors, but for our purposes they’re all pretty
much alike. I’ll use the Microchip 28C64A 8 KB EEPROM as an example because
it’s readily available from the usual mail order sources. Feel free to use something
else, but remember the address space limits before you spring for a megabyte part.

Schematic 2 shows the changes that put a 28C64A in place of the 27C256
EPROM. Because the EEPROM has only 8 KB, the CPU will see four identical
copies in the 32 KB address range decoded by the F521 comparator. You can either
add SA14 and SA13 to the comparator for full decoding or just ignore the ghosts,
as I did in the code for this chapter.

As shown in Figure 2b, reading an EEPROM goes just like reading an EPROM:
the data appears at the CPU in plenty of time. Once again, we need no special
tricks to extract data from the part.

Writing, on the other hand, becomes considerably more complex. The 28C64A
EEPROM requires up to 1 ms (that’s 1000 microseconds, one million
nanoseconds, about 63 miles on Admiral Hopper’s scale) to erase and reprogram
each byte. The 28C64A, as with all useful EEPROMs, has internal latch and
timing circuitry to relieve the CPU of the details, but it cannot accept a new byte
until the previous write cycle is completed.

Figure 3a shows the ISA bus write timings and Figure 3b shows the 28C64A’s
requirements. Obviously, we cannot jam the ISA bus for an entire millisecond,
because (among other things) that would disable RAM refreshing and lose some
data somewhere. Remember that normal RAM refresh cycles occur every 15.6 µs
and the maximum wait-state delay shouldn’t exceed 1 µs.

If your code has other things to do, simply ignore the EEPROM for at least a
millisecond after each write. The timers on the Firmware Development Board can

Embedded PCs ISA Bus.book : Chapter 6.fm Page 100 Tuesday, July 1, 1997 7:32 AM

C
hapter 6:

M
em

ories A
re M

ade of T
his

101

Schematic 2
Installing a 28C64A EEPROM requires a few more parts in addition to those shown for the 27C256 EPROM in
Schematic 1. That same 74F521 comparator produces -Mem Addr Match and these Bus Data lines use those buffers.
We will replace the jumper on the LS00 gate with a firmware controlled write enable signal in Chapter 7.

Embedded PCs ISA Bus.book : Chapter 6.fm Page 101 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

102

Address

Data

200 ns max

Valid Data

55 ns

max

0 ns

min

80 ns max

200 ns max

-CE

-OE

Address

-SMemR

Data

89 ns

min

509 ns min

Valid Data to CPU

30 ns max

0

min

436 ns

max

Figure 3a
ISA bus memory write accesses are similar to reads. Note that the data may not be valid
for quite a while after the leading edge of -SMemW, so the destination must rely on the
trailing edge for precise timing.

Figure 3b
The write cycle for a 28C64A EEPROM seems essentially identical to a standard RAM,
but the EEPROM cannot accept more data for about a millisecond after beginning a write.
This timing diagram shows the signals for the first part of the process; the text in this
chapter describes how the firmware detects the end of the cycle.

Embedded PCs ISA Bus.book : Chapter 6.fm Page 102 Tuesday, July 1, 1997 7:32 AM

Chapter 6: Memories Are Made of This

103

easily meter out this kind of delay with a little additional code. The disadvantages
should be obvious: more hardware and a write cycle running as slowly as the slowest
possible chip. Fortunately, we need not go to such great lengths.

The 28C64A includes a polling mode that signals when the write cycle finishes.
Without any additional hardware, you can write to the chip as fast as it can process

Listing 2
Writing a byte into the 28C64A is easy, but you must then poll the chip until the write cycle
completes, which can take up to one millisecond. The code must also include error
handling for timeouts and defective parts. Note that this will work perfectly with a standard
static RAM in place of the 28C64A, which is a good way to debug the code without using
up the EEPROM’s maximum number of write cycles… a million writes at full throttle don’t
take very long at all, even on the ISA bus!

���������		��
�������
�����		���
�������
�������		����
��������
���������������������		��

������ !"#��������$�
 %&�������'��(�)�� &%

�����!*#�+,�+!-�����		����������
 %&�.�����)� &%
)�������/��������������0$��1�/������� %&�������������$���. &%

���.���2"������.���345���)������6�2�

7����

8

	���
-�.������
������!*#�+,�+!-�����		��

8�(')/��������9��1����������:�-�.��������11���/����

)����/������
��)����2-)�������������)���;�<�����;�����).�;���6�2�
������		����������-�.������

)�����=#+��5���>���+����"���������
�����.���2-������?������.���)@)�����6�2�

��7����

8

8

-�.������
������!*#�+,�+!-�����		��

)���-�.�������
�����������

��)����2"��������������;�<�����;�����).�;���6�2�
������		����������-�.������

)�����=#+��5���>���+����"���������
�����.���2-������?������.���)@)�����6�2�

��7����

8

8

)���"��A�/�/��������������0$��1�/�������
���.���2"������A��A�/�345���)������6�2�

7����

8

������ !"#����������

����(�B+�#�����C3?��-����.�D4�����		����

8

Embedded PCs ISA Bus.book : Chapter 6.fm Page 103 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

104

the new data. After each write, just read the data back from the same address and
compare bit 7 with the original data. The chip inverts bit 7 while it’s busy writing
and returns valid data when it’s done. Bits 0-6 are undefined, so you should mask
them off before comparing the bytes.

Typical writes can run much faster than the 1 ms maximum spec, meaning that you
can save a significant amount of EEPROM programming time by monitoring the
chip’s status. MemTest’s programming loop writes all 8 KB in about four seconds for
my EEPROMs, making the average write cycle well under 500 µs. That includes
the overhead around each write: the chip itself runs even faster.

Listing 2 shows how this works. After writing the byte using Micro-C’s ������
function, the code sets up a 10 ms time-out and enters a loop waiting for bit 7 to
match the ������ed bit. After the XOR returns zero (or after the time-out), the
code checks for errors before continuing with the next byte.

Note that you must perform one additional read after the 28C64A reports that it’s
done, because the data may not be valid on the same read that shows bit 7
changing. You can get around this by comparing the entire byte each time, without
masking the high bit, during the polling loop. Just keep trying until your code
makes a final comparison that verifies everything worked correctly.

The 28C64A EEPROM uses much the same pinout as an 8 KB static RAM. I
strongly recommend that you work with a RAM instead of an EEPROM until you
are entirely sure your hardware and code come up to par. The 28C64A specs say it
will endure 104 write cycles, which works out to perhaps ten seconds at full throttle.

For example, one of MemTest’s routines runs in a tight write loop that displays the
control signals on a scope. This will slaughter an innocent 28C64A in short order.
Be careful what’s in the socket before you boot that code!

Pin 26 provides a second chip enable line (+CE2) on 8 KB RAMs. On 28C64A
EEPROMs, that pin has no connection and you can simply wire it high.
Conversely, pin 1 reports the 28C64A’s -Busy status and has no connection on
8 KB RAMs. Similar reasoning applies to EEPROMs larger than the 28C256, but
please match up the data sheets before trying anything silly.

Being able to program an EEPROM in the system can be an advantage, but that
convenience makes it distressingly easy to clobber your precious code or data with
an errant write. If you plan to use an in-circuit-programmable EEPROM, the
jumper and gates shown in Schematic 2 provide simple, manual write protection.

Embedded PCs ISA Bus.book : Chapter 6.fm Page 104 Tuesday, July 1, 1997 7:32 AM

Chapter 6: Memories Are Made of This

105

Even if (you think) your code can’t possibly make a mistake, other routines may
scribble all over your address space. For example, the BIOS power-on code in one of
my systems writes AA every 2 KB or so throughout the entire address range: an
unprotected EEPROM in that box won’t survive a single boot.

Incidentally, the same advice holds true for the system BIOS. My Pentium Pro
system stores its BIOS in flash ROM and allows updates from diskette without
opening the box. While setting up Windows 95 (why not NT? It’s a long story,
trust me), the initial scan for I/O devices wiped out the flash ROM.

After that happened several times under different conditions, I built a small
interposer socket that holds the VPP programming supply pin firmly low. No more
problems, although I must now open the box and remove the chip to update the
BIOS. A fair tradeoff, I’d say… but I already own a device programmer.

Installing the write protect jumper forces the EEPROM’s -WE line high and
prevents any attempted writes. MemTest’s loop will report a timeout error after
10 ms and any other code will simply conclude that the address holds an
unchanging EPROM, which is precisely what we want.

In the next chapter, we’ll add a software controlled write protect bit for the battery
backed RAM, but a manual jumper suffices for now. That circuitry requires an
HCT32 gate instead of an LS32, for reasons I’ll go into when we get there.

Figure 4
The BIOS examines the start of each 2 KB block between C0000 and E0000 for BIOS
extension code. If the first two bytes contain a valid signature and the block checksum
equals zero, the BIOS executes a FAR CALL to offset 0003 to execute the extension’s
initialization code. The BIOS requires only the signature, length byte, and an instruction
at offset 0003; the structure of the code block itself is not specified. The diskette
EEPROM loader described in this chapter puts the checksum at offset 0005.

Offset Contents Definition

0000 55 First signature byte

0001 AA Second signature byte

0002 xx Overall length in 512 byte units

0003 - 0004 EB 01 JMP SHORT $+3 (to 0006)

0005 ss Checksum

0006… code BIOS extension code

Embedded PCs ISA Bus.book : Chapter 6.fm Page 105 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

106

The BIOS Connection
Now that the Firmware Development Board has that smidge of nonvolatile
memory, we can bolt code onto the target system’s BIOS to run after each hardware
reset. This opens the door to diskless systems that boot with no mechanical motion.

Actually, given the limited space available (what can you do in 32 KB these days?),
it’s more likely that the (E)EPROM will hold essential hardware interface routines
or configuration values, rather than a complete embedded application. The rest of
the code can reside on a diskette with the write protect tab missing.

In any event, we’ll start small: once again, the end result will be a few blinking
LEDs. The weight of knowledge behind them should make you feel good, though.

As I mentioned earlier, the BIOS scans through memory between C0000 and
DFFFF to find the distinctive BIOS extension signature shown in Figure 4. The
55 and AA bytes on a 2 KB boundary mark the start of an extension, which must
have a valid checksum over the block of storage specified by the length byte.

Listing 3 shows how the search works. I wrote ROMScan.C to examine my system’s
address space and tell me where to put the Firmware Development Board’s
nonvolatile memory. It turned out that the only BIOS extension was a 32 KB
EPROM on the VGA board at C000:0000, but your system may have other
ROMs on other boards.

ROMScan cannot identify anything that isn’t a ROM holding a BIOS extension. If
your system includes LIM EMS boards, network adapters, or other oddities (you
aren’t doing this on your host PC, are you?) it won’t show their RAM buffers or
other ROMs. On the other hand, neither can the BIOS, so we’re even.

When the BIOS finds a valid extension, it executes a E���"�BB to the instruction
at offset 0003. You must put the first byte of your routine at that address. When
your code finishes initializing itself, it should return control to the BIOS with a
�+-E (E����+-F�!) instruction. The BIOS then seeks out other extensions and,
after calling all of them, continues with the normal disk boot process.

The length byte counts in units of 512 bytes starting from offset 0000, so a length
of 0x02 indicates a 1024 byte block. If your routine occupies only 600 bytes, it must
still have a length code of 0x02 and the next extension must start at offset 0800. An
8 KB EEPROM filled with a single extension requires a length code of 0x10. A
zero length code, 0x00, should mean an extension that occupies 128 KB, but as we’ll
see in Chapter 16, at least one BIOS thinks a zero-length extension is perfectly
OK, regardless of its checksum value.

Embedded PCs ISA Bus.book : Chapter 6.fm Page 106 Tuesday, July 1, 1997 7:32 AM

Chapter 6: Memories Are Made of This

107

The checksum does not include the three signature header bytes and the BIOS
does not care where you put the checksum byte. As long as the (length×512) - 3
bytes starting at offset 0003 add up to zero, the BIOS concludes the block holds a
valid extension. The code for this chapter puts the checksum in offset 0005, just
after a G����D5�- to the rest of the code. You may use any other location,
assuming you modify the LoadExt diskette boot loader to suit.

Listing 4 shows a simple BIOS extension with two functions. If the low-order DIP
switch on the Firmware Development Board is ON, it blinks the LEDs forever to
indicate that it has seized control. If it finds that switch OFF, it turns both decimal
points on and returns to the BIOS, which continues its normal boot sequence.

Before loading this into the (E)EPROM, we must compute the checksum. I
modified the diskette boot loader from Chapter 1 to perform that function on a
system with the Firmware Development Board installed. After reading the file
from diskette as usual, LoadExt writes it into the EEPROM, computes the
checksum, and plunks it into offset 0005.

Listing 3
The ROMScan program mimics the BIOS signature search through the address space
between C0000 and E0000. It displays the header for valid extensions, which should help
you find a vacant spot for the Firmware Development Board’s nonvolatile memory.

3�.�����
���"���

3�.�5��.���
�������

	���
3/�A�E/���
�����(�3�.�����3�.�5��.���

3/�A��)H��
������3�.�����3�.�5��.�����

)��������II�

�3/�A�E/����JJ��D5K�BB���

��)����2;�<��;�<��;�<���;����2�
3�.�����3�.�5��.���3/�A�E/���3/�A��)H��

)�������II�

�3/�A�E/�����
-�.��		��
�3�.�5��.��

"'�A�����
��

�����3/�A��)H��&
�������
�3/�A��)H�
�LL3/�A��)H����
�"'�A������
������3�.�����-�.��		����

8
��)����2;����5M�6�2�"'�A�����

8
�/.���

���.���2LL6�2�

8

8
3�.�5��.����
�������

)����3�.�5��.�����

3�.������
���$���

8

8�(')/����3�.�����>���+�����JJ
��3�.�����

���+�����11��3�.�5��.����

Embedded PCs ISA Bus.book : Chapter 6.fm Page 107 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

108

After LoadExt finishes, install the EEPROM’s write protect jumper, pop the
diskette out, and hit the Reset button on the PC’s front panel to start your new
BIOS extension. It’s that easy!

One gotcha that became painfully obvious only in retrospect: if your code doesn’t
fill an exact multiple of 512 bytes, the checksum must include whatever junk lies
beyond your code in the last block. You cannot compute the sum on just your code,

Listing 4
BIOS extensions normally do something useful, but this is just a demonstration. If the low-
order DIP switch is ON, it blinks the LEDs forever. If the switch is OFF, it turns both LED
decimal points on and returns to the BIOS for normal booting.

"5�+�+,
�-��-F�"5�+

�3 �II'
�.)�������
�3 ���'

�3 $
�/����'�)����)�.����I$��7?��.

��)�+���?N
G�� �D5�-�3�����
����A���(�L7?���O���
�3 ���'
�H����A'�A�.������)/�/��	�	

3�����N
�5* �=��K#����
�.'��/	�(�����P
4! �=��=
�5* �=�B+�#����
�.����������).�/�?

-+�- �B��$'
�/�(�.()�A'�5!P
GQ 5�(��	
�H����.�?.�?�.��.��.��?�'���

�5* �=��9�9�'
�.'�(�(��(����'���
!5- �=
5F- �=��=
��RRR�O�.��	�A)��/���)��.�

�+-E
���	�����������345��
5�(��	N

���'�(N
�5* �=��EEEE'
��//�B+�.�������
5F- �=��=

�5* "=��
K�)�$N B55� K�)�$

�5* �=������'
��//�B+�.������
5F- �=��=

�5* "=��
K�)��N B55� K�)��

G�� ���'�(
�A���)��������@��

Embedded PCs ISA Bus.book : Chapter 6.fm Page 108 Tuesday, July 1, 1997 7:32 AM

Chapter 6: Memories Are Made of This

109

because the length byte includes more than that. Listing 5 shows the code that
figures the EEPROM checksum.

In a blank EPROM, of course, unprogrammed bytes hold 0xFF and you can
compute the checksum correctly without actually touching those bytes one by one.
Because the HEX file doesn’t include the unprogrammed bytes, you must use the
extension’s length to figure out how many bytes the BIOS will include in its
calculations. I suggest that you take the easy way out by padding your extension to a
multiple of 512 bytes.

The loader could, of course, automatically fill the rest of the last block with 0xFF
bytes before computing the checksum. Choices, choices…

 BIOS Extension Hints & Tips
Although I’ll cover BIOS extensions in Chapters 8 and 10, a few caveats are in
order here, if only to keep you from getting your hopes up.

First of all, I still think it’s impractical to write nontrivial BIOS extensions in C.
After all, fitting a big pile of stuff into a very small bag is a perfect job for assembler
code. In Chapter 10, we’ll modify the Micro-C startup code to run from the

Listing 5
The BIOS extension checksum excludes the three header bytes, but includes everything
else. This routine, taken from the LoadExt boot sector EEPROM loader, computes the
checksum based on the extension plus whatever is in the last 512-byte block beyond the
end of the code. It writes the result at offset 0005 in the EEPROM, which must be a zero
in the disk file.

�5* �=�++�#�+,
��)�����++��5�
�5* ����=
�5* �4������'
��RRR�/����'�7?��

B5��3
��)A�����/����'�A�	�
�5* 3=�I$�
�A��@�������7?��.
�FB 3=
��RRR�)���=
�F3 �=�S
��	O�.������'��	���/����'
�5* "=��=
�.����������/���

�5* �D��
�.������A'�A�.��

����"���N
B5��3
��)A�����	����7?��
�F3 �D��B
��)A��A'�A�.��
B55� ����"���
��@������)���7/�A�

�5* �B��D
�.������A'�A�.��
�5* �4�����I'
��RRR��		��..
"�BB K�)��++�
��RRR�	��)�

Embedded PCs ISA Bus.book : Chapter 6.fm Page 109 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

110

EEPROM, but that requires the ���///�5� memory model and some additional
code. Dave Dunfield’s comments in the Micro-C startup code files, along with
Micro-C’s support for ROM code, will prove quite helpful.

The code in COM files produced by PC linkers starts at offset 0100, but BIOS
extensions must begin at offset "�N���� with code starting at "�N���S. Probably
the easiest way to relocate the code on the fly is by subtracting 0010 from the "�
register, then using an indirect branch that increments 4� by 0100 immediately
after the BIOS calls the extension. For example, the byte at C800:0003 is also
located at C7F0:0103. That’s the same trick I used in the boot sector loaders, so
refer back to Chapter 1 to see how it works.

Any RAM used by the EEPROM code should be in the lower 640 KB, but you
must ensure that separate BIOS extensions, as well as your own routines, don’t step
on each other’s storage. Remember that the familiar DOS memory allocation
routines don’t exist during the BIOS boot sequence… and won’t exist at all for a
target system that doesn’t boot DOS.

The BIOS does, however, keep track of the RAM size and you can allocate space
by reducing that value. In effect, your data will lie beyond the end of memory
because you’ve moved the ���	�+�	 sign inward a few kilobytes. We’ll cover this
in Chapter 10, when we turn a C program into a BIOS extension.

The BIOS invokes all of the extensions after it has performed some, but not all of
its initialization and before it attempts to boot from diskette. Your initialization
code can hook any interrupts that it will use to regain control later on: timer ticks,
serial ports, whatever it takes. As we’ll see in Chapter 10, though, some
initializations occur after the BIOS calls the last extension and we must take some
drastic steps to preserve our data and interrupt vectors.

Want a diskless workstation? Here’s a start: the BIOS invokes 4!- $T' after
initializing all the extensions. 4!- $T', of course, handles the normal disk boot
load from either floppies or hard disks. If you capture 4!- $T', your code regains
control when the BIOS expects to boot from the disk. That means you can boot
from, say, code in the EPROM or a program loaded from the serial port. Now you
know one trick involved in making network PCs!

The BIOS will invoke 4!- $9' after 4!- $T' concludes that the system has no
bootable diskettes or hard disks. By capturing 4!- $9', you have the option of
booting from diskette to update the firmware (for example), while running without
a diskette in normal operation. Just check a pushbutton switch so you don’t get
stuck with a machine that can’t boot without loading your extension. Hint, hint.

Embedded PCs ISA Bus.book : Chapter 6.fm Page 110 Tuesday, July 1, 1997 7:32 AM

Chapter 6: Memories Are Made of This

111

According to my references, nearly all non-IBM, PC compatible systems do not
support 4!- $9', as that software interrupt originally fired up good old IBM
Cassette BASIC. This probably means that it does something specific on each
system, but not the same thing on every system. Take care, lest you depend on a
response that you get only on your development system.

 Release Notes
The code for this chapter includes the source and HEX files for everything you’ve
seen here, as well as slight modifications to the FirmDev.H and ASM files. The
EEPROM boot loader and ExtDemo BIOS extension require Borland’s TASM, with
everything else in Micro-C.

Be careful with diskettes containing the LoadExt boot loader and boot them only in
your dedicated target system. Unlike the BootSect diskettes we used in Chapter 1,
the new version uses the hardware found on the Firmware Development Board. If
you boot LoadExt in an ordinary system, it will hang without any error indication.
While this won’t damage the PC, it can be pretty scary.

Remember, set bit 0 of the FDB’s DIP switches ON to run ExtDemo and OFF for
a normal boot.

Embedded PCs ISA Bus.book : Chapter 6.fm Page 111 Tuesday, July 1, 1997 7:32 AM

Embedded PCs ISA Bus.book : Chapter 6.fm Page 112 Tuesday, July 1, 1997 7:32 AM

