P

ol

Embedded PCs ISA Bus.book : Chapter 17.fm Page 277 Tuesday, July 1, 1997 7:32 AM

17 For Further Study

If you've worked your way through the book to this point, you will have a good
understanding of how the Industry Standard Architecture bus operates, how to
build useful ISA bus hardware, and write functional low-level firmware.

In this chapter, I'll discuss some aspects of the ISA bus that I either glossed over or
simply omitted from the Firmware Development Board’s hardware and firmware.
These are relatively complex topics that don’t have much relevance to current ISA
bus designs, primarily because contemporary PC systems provide better ways to
achieve the goals.

Crossing the 1 MB Line

Each ISA bus board can access 16 MB of memory using the 24 memory address
bits that appear on each ISA connector. However, both the battery backed RAM
and the Graphic LCD Refresh RAMon the Firmware Development Board
decode only 20 bits and reside entirely below the 1 MB line. Why is that?

In short, back when the ISA bus was new and 80286 CPUs were state-of-the-art,
the ISA bus matched the CPU’s performance rather well and 16 MB of RAM was
a lot. Neither condition holds true today.

Today, typical system boards accommodate 128 MB or more of RAM and even
desktop operating systems require 32 MB for normal operation. Given the 24-bit
address space available to an ISA bus board, its RAM must reside well below the
middle of the system board RAM. But very few operating systems allow a block of
special purpose RAM within the memory space above 1 MB. If you expect to use
your ISA bus memory for, say, a big LCD bufter, you'll watch your operating
system’s data in action, not your own bits!

Even if you put general purpose RAM on that board, it will run at ISA bus speeds
instead of the 60 ns access time found in system board RAM. Compare 60 ns with
the times shown in Photo 1 of Chapter 13 and you’ll see why using ISA bus RAM
in a contemporary system is an Exceedingly Bad Idea.

You can assign and use system memory as you wish in an embedded system project,
because you're writing the code yourself. Some BIOS setup routines can carve a
hole in the system board RAM for an ISA bus board’s memory, either by disabling
the system’s RAM at those addresses or remapping it to a different address. Just
don't expect much help if youre trying to run a standard operating system as part of
your embedded project. They simply don’t do the things we need.

277



o

Embedded PCs ISA Bus.book : Chapter 17.fm Page 278 Tuesday, July 1, 1997 7:32 AM

The Embedded PC's ISA Bus

To gain access to any memory above 1 MB, your program must either run in
protected mode or call routines that do. Nowadays, toolkits from Phar Lap
Software and others make writing protected mode embedded programs relatively
straightforward, but there’s a whole lot of unexplored territory between the down-
to-the-metal firmware we've been using and the code you write with a protected
mode toolkit. If you go that route, spend some time making the detailed
measurements you've seen in this book &efore assuming that protected mode
operation provides the performance you need.

Of course, you could use the BIOS extended memory copying routines shown in
Chapter 15, provided you work around their limitations. Most embedded programs
cannot stand long periods without interruptions, so make sure you understand how
your application will cope as the BIOS switches into and out of protected mode.

Check the references for information on the - MenmR and - MemWbus signals that
control access above 1 MB. The LA17 through LA23 address bits also have slightly
different timing requirements that will affect your logic design.

Direct Memory Access

Everything we’ve done with the ISA bus requires direct supervision from the CPU,
whether to read an I/O port, write data into memory, or respond to an interrupt. In
effect, the CPU must execute at least one instruction per ISA bus operation. As it
turns out, the system board and ISA bus include hardware that can transfer data
between 1/0 ports and memory without involving the CPU, a process called
DMA: Direct Memory Access.

The diskette controller uses DMA to transfer data between the diskette drive and
memory, but, because the BIOS can handle only one task at a time, it puts the CPU

into a tight loop until the DMA transfer finishes. That’s not a particularly good use
of the DMA hardware, but that’s how the real mode BIOS works.

Many sound boards transfer digital audio data using the DMA hardware, leaving

the CPU free to render game graphics (for example) at the same time. This works
reasonably well, although the overhead involved at the beginning and end of each

DMA transfer requires either two separate channels, an on-board FIFO buffer, or
brief silent periods while the CPU sets up the next chunk of the sound file.

Regardless of the CPU speed, the ISA bus DMA hardware executes roughly one
transfer per microsecond. Because the ISA bus can handle at most two bytes of data
on each bus cycle, DMA transfers run at 1 or 2 MB/s. That’s slightly less than the
rates we've measured throughout the book, so, contrary to popular belief, using
DMA does not move data at a particularly high speed!

278

@

&



P

ol

Embedded PCs ISA Bus.book : Chapter 17.fm Page 279 Tuesday, July 1, 1997 7:32 AM

Chapter 17: For Further Study

If you're familiar with microcontrollers that include DMA support, you know that
you can generally gain a significant speed advantage by block-moving memory with
DMA hardware. On any PC faster than a 386, however, the x86 REP MOVS
instruction outruns the system board’s DMA hardware by a considerable margin,
with considerably less overhead.

Surprise!

So... unless you have a compelling reason to use DMA, don't bother. If you
absolutely must use DMA, consult Solari’s book for the myriad details required to
get it working on all possible systems. There are significant differences in the
system board hardware available that will affect how you design your board.

The PCI bus is a better choice for systems with exceedingly stiff response time
specs and high data transfer rates, despite the additional complexity of designs
using that bus. If you find your project becoming encrusted by the PC
Compatibility Barnacles on the ISA bus, the PCI bus may provide a clear path.

My back of the envelope estimate says that you can do about as well as ISA bus
DMA with a moderately large FIFO buffer and a well written interrupt handler
transferring data across the bus using REP OUTS and REP INS instructions. You'll
avoid all the hassles of finding and using a DMA channel, too.

Busmastering Boards

Pin D17 on the ISA bus sports the label - Mast er . In principle, when an ISA bus
board asserts that signal the system board relinquishes the bus and allows the board
to drive the bus control lines. In practice, this doesn’t work nearly as well as youd
expect, because the ISA bus was designed to support a single CPU on the system
board that controlled a bunch of relatively dumb peripheral boards.

An ISA bus board that would become the master must first set up a DMA transfer
using a DMA channel. When the DMA controller asserts that channel’s DRQline,
the board responds by asserting the corresponding - DACK signal and then asserting
- Mast er. At that point, the DMA controller has released the bus and will not
proceed with the next DMA cycle.

A busmaster board must allow normal DRAM refresh cycles by either asserting

- Ref r esh every 15.6 ps or releasing control of the bus. This can pose a problem if
you expect to process large blocks of data at high speeds with a CPU on an ISA bus
board. In any event, you certainly won’t get the bus throughput you might expect.

279



P

ol

Embedded PCs ISA Bus.book : Chapter 17.fm Page 280 Tuesday, July 1, 1997 7:32 AM

The Embedded PC's ISA Bus

I've worked with intelligent ISA bus boards on several projects and can say that the
best bus interface is the simplest. If you can possibly get along with a small block of
shared memory, similar to the Graphic LCD Refresh RAM don’t bother with a
busmastering board. Even better, if you can pass data through a few 1/O ports,
you've reduced your board’s footprint to the point where it’s certain to work.

Unfortunately, that simplicity may not be feasible if your board must share and
process huge blocks of data. In that case, rather than force-fit the project into the
ISA bus, it’s time to break out those PCI design tools and do the job right.

Release Notes

Gather your tools, collect some parts, and settle down for some construction!

Remember to check the Web page for more information and send me a note when
pag
you come up with a neat trick.

Now it’s your turn...

280



