
257

16 All Text Is Graphics
Have you noticed how much the few remaining DOS text-mode programs
resemble Windows apps? Otherwise sensible companies spend precious
programmer hours cross-dressing their programs… as though 2000 characters
allowed enough screen real estate for fancy borders and pushbuttons.

Ah, well, such is progress.

This chapter marks, perhaps, a step in the same backwards direction. We’re now
going to turn a perfectly serviceable, bitmapped, graphics LCD panel into a
moderately intelligent Glass Teletype with ANSI cursor positioning and attribute
controls. We can then display status information without using a serial port or the
video screen. If your project requires status output that can’t appear on a standard
VGA-compatible screen (perhaps because your embedded project puts the user
interface on the VGA), this may be just what you need.

First, we’ll see where the character bitmaps come from, then cover the assembler
code that shuffles them into the LCD Refresh RAM. Next come the TTY
routines that decode standard ASCII control characters and ANSI commands to
provide full screen positioning.

I’ll wrap up with a chilling murder mystery, The Case of the Capital T, that shows
why you can’t take anything for granted. Hint: you already know both the problem
and the solution…

Filching Fossil Fonts
The Original IBM PC had two display options: the text-only Monochrome
Display Adapter and the bitmapped Color Graphics Adapter. You could install
both boards in the same system: the MDA presented high quality text on one
screen and the CGA displayed moderately good graphics on another.

The catch was that, in graphics mode, the CGA hardware didn’t support text
output. The CPU painstakingly drew every character, dot by dot, whenever a
program wrote text on the screen. Even though those functions really belonged
with the CGA hardware, the PC’s designers included them in the BIOS ROMs on
the system board. The architecture for installable BIOS extensions came somewhat
later, after the IBM PC/XT hit the scene.

Now, nearly two decades later, the PC Compatibility Barnacles dictate that every
PC BIOS must include those ancient CGA functions, even though the standard

Embedded PCs ISA Bus.book : Chapter 16.fm Page 257 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

258

video board has become a Super VGA accelerator with its own BIOS extension.
You may have the latest SuperTurbo 100 MegaWinMark video accelerator, but
your PC’s system board BIOS stands ready for the day when you reinstall that good
old CGA. It could happen...

The CGA presented 640×200 dots in one color on a background of another color,
which means anything it could do maps directly to our 640×200 LCD panels, at
least if we’re willing to give up those colors. In particular, the BIOS includes an 8×8
dot character font that, while it may not have the nicest looking characters in the
world, lies waiting for our firmware to put it to good use.

We cannot, unfortunately, use the BIOS character drawing routines. The CGA
used a simple, linear memory map quite different from our LCD panels, which, as
you’ve seen, distribute dots from a single byte into widely separated locations on the
panel. Worse, each panel has a different memory map that precludes one-size-fits-
all firmware.

The Original IBM PC put those font bitmaps at address F000:FA6E. The PC
Compatibility Barnacles guarantee that address remains valid in every PC clone
ever built. The bitmap for a particular character starts at:

������������	×
�������������

and occupies eight bytes. You can see how the process works in Listing 1, which
copies a single character from the bitmap into the LCD Refresh RAM.

Listing 1
This C function writes a character bitmap, a.k.a. the character’s glyph, into the LCD
Refresh RAM. Because the assembly language routines hide all the panel-specific bit
twiddling, this routine remains the same for all the LCD panels. The font width in our code
is always eight bits, the same as the BIOS bitmaps, just to keep things simple.

������������������
����������� �������!�" ������������#
����$������%

�&�

��������'����((�
��������)*�+�,�������-���#
��������*�./.% 01����2����-�&��������� 10

3

��������1*�����4��5��% 01����������-�����&���� 10

&���
$������*�%�$�������'�����4��5��%���$��������#
��������6���
1
��������������$�������

����!�"�$������ ������ 6���78����%
3

3

Embedded PCs ISA Bus.book : Chapter 16.fm Page 258 Tuesday, July 1, 1997 7:32 AM

Chapter 16: All Text Is Graphics

259

The BIOS bitmaps include only the first 128 characters (0x00 through 0x7F), so
������������� substitutes a question mark if the character value exceeds 127. It
then iterates through the eight bitmap rows, copying one byte at a time. In this
case, ����4��5�� and ��������� must both equal eight dots, as the BIOS table
knows no other character size.

If you want different, smaller, or very detailed characters, you can modify this
routine to copy the appropriate bits from your own custom bitmap table to the LCD
Refresh RAM. This also requires changes in the ��������6��� routine that
handle partial bytes, should your glyphs not be a multiple of eight bits wide.

On the other hand, double size characters, at least ugly double size characters, are
comparatively easy. Just modify the code to duplicate each dot from the font table
into two adjacent bits and duplicate that byte in the next LCD row, wherever that
row may fall in the buffer.

The BIOS ROMs may not be the only source of bitmap characters in a stock ISA
bus PC: any graphics board compatible with the VGA includes a BIOS extension
with the fonts appropriate for it, ready for use. IBM’s EGA and VGA adapters
standardized a method for locating these bitmaps, giving you a wider choice of
characters if your embedded PC has such a board in it. Because our LCD code
operates entirely independently of the built-in BIOS, you can use any of the
bitmaps without regard to the current BIOS video mode or display resolution.

The corresponding Bad News is that there’s no tidy way to decide if the target
system contains an MDA, a CGA, a VGA, an SVGA, or no video board at all. The
code shown in Listing 2 checks the�9+: ;�� vector, which should point to the
bitmap for character 0x80 if the font can support more than 128 characters, which
is the case for all video adapters other than the CGA.

The vector should not point to an actual interrupt handler, although some BIOSes
seem to aim it at an unexpected-interrupt handler during their power-on self tests
and leave it set if they don’t find a video board. As a result, your code cannot assume
that a nonzero value indicates a valid pointer to a font table. I know which board I
have installed here and I’ll leave you to experiment on your own target system.

The algorithms I’ve seen in other books assume that the system will have at least
one video adapter, so they don’t test for the possibility of no adapter at all. If you
adapt a standard algorithm, make sure it doesn’t fall into the same trap.

If the code finds a nonzero 9+: ;�� vector, it issues 9+: ;�� ��<*;;=�� to find
the address of one of the board’s font bitmaps. VGA boards include both 8×8 and
8×16 fonts, the latter of which works eminently well with 400-line LCD panels.

Embedded PCs ISA Bus.book : Chapter 16.fm Page 259 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

260

Listing 2
This routine sets up the font bitmap for the rest of the code. If the system has no video
board, the INT 1Fh vector should be 0000:0000 to indicate that the default 128 character
CGA font is in effect. That vector will be nonzero if an EGA or VGA board is installed, in
which case Int 10h, AX=1130h returns a pointer to the desired font table. I used the 8x8
font for 200 line panels and the 8x16 font for larger panels to show that more dots can
produce a slightly less ugly font. If you prefer more information over prettier characters,
use the 8x8 font regardless of the panel size.

��������9�������
������#
-������!��>��?���%
�����&��19��;�@�����%
����@��8���%

01AAA�&�5��������"������������2����-����2�� 10

���-
B9������C��5���������5�������DDDB�%

9��;�@������*�
�����&��1�1
���5�&��1�8?E�>
�F���� G1�F;��%
�����&
B��9���;����������-�H��I�B 9��;�@������%
�&�

�����&��1�+J���**�9��;�@�������# 01��������-�	�DD��/ 10

���-
B��J-��5�!K8�69K$�����&���B�%
������*�
6L:��&��1�8?E�>
�F���� �F�����% 01������ ��-��69K$�!K8 10
����4��5���*�	% 01��"������-�	F	����� 10
����������*�	%
+�,�������-�*�;M	% 01��2-����$�99�����N 10

3
��-��#

���-
B��J-��5�����������&���B�%
@��8����*�1
6L:��&��1�8?E�>
�F��G� �F��GO�%
�����&
B��DDD���-�����5�������,�����H�I�B @��8����%

��D�EF�*�
�F���''�	��(�@��8���% 01�!�-���������,���� 10
����
�F;� P���%

��D�EF�*��F;;=�% 01����������>���������&� 10
�&�
+�,���!�"-�)�M����#

��D�E2F�*��F����% 01��64�*����&���	F;��&���10
����4��5���*�;�%

3
��-��#

��D�E2F�*��F�=��% 01��64�*��=�&���	F	�&��� 10
����4��5���*�	%

3
�����&
B��DDD�&������5�H�������&�����������I�B ����4��5���%
����
�F;� P���%

Q�&��
�����&
BF�H�G<�2F�H�G<��F�H�G<��F�H�G<��-�H�G<��-�H�G<�2��H�G<I�B

��D�EF ��D�E2F ��D�E�F ��D�E�F ��D�E�- ��D�E�- ��D�E2��%
Q����&

������*�
6L:��&��1�8?E�>
��D�E�- ��D�E2��%
����������*�	%
+�,�������-�*�MR�%

3

�����&
B�������*H�� �����4��5��*H� �+�,�������-*H�I�B
������ ����4��5�� +�,�������-�%

Listing continues on next page

Embedded PCs ISA Bus.book : Chapter 16.fm Page 260 Tuesday, July 1, 1997 7:32 AM

Chapter 16: All Text Is Graphics

261

You’ll quickly see that with more dots available the characters don’t look quite so
ugly. The code then sets several variables detailing the font’s height, width (always
eight bits for now), and the number of characters in the bitmap.

This should work with VGA video boards, but I won’t be surprised to find that it
fails in systems with other display boards. In particular, EGA boards don’t include
the 8×16 font table. I much misdoubt any of you still have an EGA; if you do, you
must tweak the code to support 400-line panels. In any event, should strange things
happen, enable the Q�&�� code stub in Listing 2 to dump the registers returned by
9+: ;�� and see what went wrong.

Incidentally, I used the ����
� function from the Borland C library, rather than
the more familiar ���	�F
�, because the BIOS function returns the font pointer
in �$�6>. Check your compiler doc, but as near as I can tell, ����
� provides the
only way to examine 6> without resorting to inline assembler.

You can short circuit the entire font search routine with your own code to install a
completely custom font. Keep in mind that the rest of the code assumes that the
bitmaps are eight bits wide, with the sky the limit in the other direction.

Also remember that the LCD Refresh RAM contains bitmap patterns, not the
ASCII character values. Although the CGA included a screen readback function
that searched the font bitmap table to find the pattern matching the one at the
cursor location, I didn’t attempt to duplicate that stunt. If you must read characters
back from the LCD Refresh RAM, I suggest allocating a 2000 (or 4000, or
whatever) byte buffer and storing the ASCII characters in parallel with the
bitmaps. Trust me, it’s a whole lot easier and faster than pattern recognition.

Now that we have a source of character bitmaps, the next step drops them into the
LCD Refresh RAM. As you will recall from Chapter 15, most LCD panels are
not nearly so accommodating as the good old CGA.

Listing continues from previous page

01AAA�-������-�����������������2��- �10

+�,���!�"-�*�+�,���!�"-�0�����4��5��%
+�,������-�*�+�,������-�0����������%
@$���������"���*�;%

�����&
B��>�����-�H������������"-����H�������������-I�B
�+�,���!�"- +�,������-�%

������%
3

Embedded PCs ISA Bus.book : Chapter 16.fm Page 261 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

262

Divvying up the Dots
Listing 3 shows ��������6���, a function that writes a single byte into the
DMF651 LCD Refresh RAM. The character coordinates use dot increments, but
the column must be a multiple of eight to position the characters correctly.
Similarly, positioning the character rows on multiples of the font height produces a
regular vertical spacing.

Listing 3
The fundamental character operation involves writing a single byte into the LCD Refresh
RAM at a specific row and column. This DMF651 routine computes the buffer address,
splits the byte into two nybbles, and sets the blinking bits for each. Aligning characters on
8-dot column boundaries considerably simplified the code!

>J6�9� ����������6���
>!K� ��������6���
�!� ���������K!� ���!�"��K!� ��������K!� 6���7��5��K!�
J$�$ �$ �9

8K@ �< S������T %�-����������,����,2��
�+� �< +K:����U� %��DDD�&�����2������5�,���
8K@ 6< S���!�"T %�-��������"���,2��
���� ���87��������

��$ �< S����6�&&T %�5���2�&&���2-���������
��� �9 �< %��DDD�������2�����������

%AAA���-����������&����22������2���7��5�������

8K@ �< S�������T %�&�������"�2��������
8K@ �� �� %�-�����5��2��-�&�������
$4! �� G %���5����22�� ������2���7�2��-

�8> S6���7��5T ;
V� $4K!:�WW;
8K@ �4 �� %����2���7��5 ���������2��-
�+� �4 ����
K! �� �4

WW;�
8K@ S�$��9T �� %�"��2���7��5���������2�&&��

%AAA���-����������5�����22������2���7��5�������

9+� �9 %�-���������F��2�&&���2���
�+� �� ���� %�5�����22�� ������2���7�2��-

�8> S6���7��5T ;
V� $4K!:�WWM
8K@ 64 �� %����2���7��5 ���������2��-
$4� 64 G
K! �� 64

WWM�
8K@ S�$��9T �� %�"�����2���7��5���������2�&&��

!�:

�+�> ��������6���

Embedded PCs ISA Bus.book : Chapter 16.fm Page 262 Tuesday, July 1, 1997 7:32 AM

Chapter 16: All Text Is Graphics

263

The Graphic LCD Interface supports blinking characters on the DMF651 panel.
The code splits each byte from the BIOS bitmap in half and stores the fragments in
the low nybbles of two successive buffer bytes. Because the hardware accepts four
bits at a time, we can update the bytes without using the direct dot plotting code
from Chapter 15.

The LCD Data Multiplexer displays bits 4:7 alternately with bits 0:3 from
each byte, switching between them at the selected blink rate. To suppress visible
blinking, the high and low nybbles in each byte must be identical. If one nybble
holds zero, the dots in the other nybble appear to blink on and off against a blank
background. You can implement other blinking schemes if you like, as well as
inverse characters and so forth.

If you want unaligned or proportionally spaced characters on your LCD panel, your
code must handle bit patterns that don’t fit neatly into each byte. In fact, a single
bitmap byte may affect three successive LCD Refresh RAM bytes. The code gets
particularly tricky near the right edge of the panel, where a character may run off
the end of the panel. Should you wrap, clip, or ignore that character?

Aligned characters also simplify the buffer address calculation routine. Listing 4
shows the few lines of ���87�������� for a DMF651 panel. Recall that the
dot-drawing ���87����� routine in Chapter 15 set �� to the value that shifted a
dot to or from the low-order bit. Now, because we always fill the entire nybble with
data, we need no further shifting.

Adapting this code to other panels should be reasonably straightforward. For
example, the 640×400 LG64AA44D panel accepts eight bits on each Dot Clock

Listing 4
This routine for a DMF651 panel computes the LCD Refresh RAM address
corresponding to a character’s location given as a dot column in AX and a dot row in BX.
The characters always align on an 8x8 dot grid, eliminating the shift amount computation.

>!K� ���87��������

��� 6< 6< %��,7��"�����2�������F
8K@ �9 S!�"$���-�6<T

�9@ S6L:�����8�����-T %�����0�,�����-
8K@ �� � %�&�����-��&��,��������C���
8K@ �4 �
��� �9 �< %��9������-��������2���

!�:

�+�> ���87��������

Embedded PCs ISA Bus.book : Chapter 16.fm Page 263 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

264

and, thus, doesn’t support blinking. Bits 0:3 of each byte appear on rows 0 through
199, while bits 4:7 fill rows 200 through 399. You must insert the new data into
each nybble without disturbing the existing bits in the other nybble of the byte.

Listing 5 shows the LG64AA44D ��������6��� function. For this panel,
���87�������� sets �� to align the new nybble in either the low or high half
of the LCD Refresh RAM byte, depending on which row it occupies. The code
reads the existing byte from the buffer, strips out the old bits, inserts the new ones,

Listing 5
The LG64AA44D LCD Refresh RAM layout is more complex than the DMF651. Because
the 400-row panel accepts and displays eight bits on each Dot Clock, the hardware
cannot support blinking. This routine splits a byte into two nybbles and inserts them into
the appropriate parts of the two target bytes. As with the DMF651, the character’s column
address must be a multiple of 8.

��������������>J6�9���������������6���
��������������>!K���������������6���
���������������!�����������������K!� ���!�"��K!� ��������K!� 6���7��5��K!�
��������������J$�$�������$ �9

��������������8K@��������< S������T���������%�-����������,����,2��
���������������+���������< +K:����U���������%��DDD�&�����2������5�,���
��������������8K@�������6< S���!�"T���������%�-��������"���,2��
���������������������������87��������

����������������$��������< S����6�&&T�������%�5���2�&&���2-���������
�������������������������9 �<���������������%��DDD�������2�����������

%AAA���-����������&����22��

��������������8K@��������< S�������T�������%�&�������"�2��������
��������������8K@��������� �����������������%�-�����5��2��-�&�������
��������������$4!��������� G����������������%�-������&�����5�,���
��������������$4���������� �����������������%���5�������5�����22��
��������������8K@�������64 �����������������%�-������2���,-7
��������������!K��������64 �����������������%��DDD���5�����-���������2��-

��������������8K@��������4 S�$��9T����������%�&�������5���2��-
���������������+���������4 64���������������%�-���������2��-
��������������K!���������� �4���������������%����7������"�2��-
��������������8K@�������S�$��9T ������������%�����.�,�2�7��������2�&&��

%AAA���-����������5�����22��
%�������-��-�-�����-,����22���,-7�2���-����.-��������-,��-��������&

��������������9+���������9������������������%�-���������F��2�&&���2���
���������������+���������� �����������������%��F�������"���22��
��������������$4���������� �����������������%���5�������5�����22��

���������������+��������64 S�$��9T����������%�&�������5���2��- �-��������
��������������K!���������� 64���������������%����7������"�2��-
��������������8K@�������S�$��9T ������������%�����.�,�2�7��������2�&&��

��������������!�:
���������������+�>��������������6���

Embedded PCs ISA Bus.book : Chapter 16.fm Page 264 Tuesday, July 1, 1997 7:32 AM

Chapter 16: All Text Is Graphics

265

and writes the modified byte back into the same buffer address. Although it’s
slightly slower than the DMF651 code, you won’t notice the difference in real life.

So much for a single character. Now, to put them where we want…

Gazing in the Glass
First of all, a confession. I have not implemented a real blinking character cursor for
the LCD panel, because I use it as an output-only status device. Nevertheless, we
must have a name for the spot where the next character will appear and current
cursor location seems as good as any. If you want a visible cursor at the current cursor
location, well, it’s a simple matter of firmware: load a blinking block and be done
with it! Of course, if your hardware doesn’t support blinking, you may have a bit
more difficulty.

Extra credit project: implement blinking on an 8-bit panel without using the dot
multiplexer. Hint 1: you can hitch an interrupt routine to the Frame Sync pulse,
count off refresh intervals, and rewrite the character at the cursor position on the
fly. Reread the discussion of output-only ports in Chapter 9 before you proceed, to
avoid winding up with two routines clobbering each other’s output bit patterns.
Hint 2: consider the dots on the top row before you write the interrupt handler.

The ASCII character set includes about 32 control characters that are not
ordinarily displayed. Instead, they affect how the remaining 96 characters appear on
paper, the current rage when that character set coalesced into a standard. The
control characters include such old friends as Carriage Return and Line Feed, as well
as obscure relatives like End of Medium.

Because the font tables in the BIOS and VGA ROMs include visible bit patterns
for all those characters, your code may ignore their control functions and simply
display them as ordinary, albeit funny looking, text.

Which control character functions you implement and exactly what they do
depends on how thorough you are. Nobody (well, hardly anybody) uses paper
output any more, making the mappings into video functions somewhat arbitrary.
The term Glass Teletype pretty well describes the level of control you can achieve: no
matter how hard you try, the results still look a lot like a really short roll of paper.

Listing 6 shows the bare bones implementation I chose for the LCD panel code.
Line Feed and Carriage Return do pretty much what you’d expect, Form Feed clears the
panel, Back Space moves the cursor one space to the left, Tab moves it rightward to
the next multiple of four columns, and Delete erases the character at the cursor

Embedded PCs ISA Bus.book : Chapter 16.fm Page 265 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

266

Listing 6
Emulating a Glass Teletype requires picking control characters out of the incoming data
that can affect either the current cursor location or the LCD Refresh RAM contents. This
code handles a basic set of controls that suffice for simple text output applications. The
VScrollAllowed variable defaults to TRUE, so that a Linefeed on the bottom row of the
panel scrolls the entire panel contents up by one character row.

��������$������
�������������#

-"�����
���������#
�-������

�&�
������!�"�)*�
+�,���!�"-�A�����4��5�����#01��-������/ 10
�&�
@$���������"����#
����$�����J�
����4��5���% 01���- �-�������������� 10
�������!�"�*�+�,���!�"-�A�����4��5��% 01�&���������-������ 10
3
��-��#
�������!�"�*��% 01����-����� �"���������10
3

3
��-��#

������!�"��*�����4��5��% 01��� �-��-������"� 10
3
2��7%

�-���!��
����������*��% 01������&�,�-����� 10
2��7%

�-���K!8������
�������
�%
2��7%

�-��6$��
�&�
����������)*������������# 01��&���������5� 10

����������A*����������% 01��2�7������������,� 10
3
2��7%

�-��:�6�� 01��2������F��-��� 10
���#

���$������
.�.�%
3�"�����

���������0�����������;��H�:�69+:�!@���%
2��7%

�-�������
���$�������&�
������!�" ��������� ����4��5�� ����������%
2��7%

��&�����
�������������
������� ������!�" ����������% 01���-������ 10
�����������*����������% 01����7�����,��������� 10
�&�
����������)�
+�,������-�A�������������# 01��-�������&�����/10

����������*��% 01���-��������&����5� 10
�&�
N4�������"����#
����$������
���% 01����-���������F������ 10
3

3
3

3

Embedded PCs ISA Bus.book : Chapter 16.fm Page 266 Tuesday, July 1, 1997 7:32 AM

Chapter 16: All Text Is Graphics

267

position. The code treats everything else as a displayable character and passes it to
the LCD panel character routine.

The ������!�" and ��������� variables hold the current cursor location in
terms of the dot coordinate of the character’s upper left corner. Although I force the
characters to lie in a grid the size of the font bitmap, you can tweak the code to
handle multiple character sizes and other effects.

The code supports vertical scrolling, displaying the last 25 (or 50, or whatever) lines
sent to the panel. I won’t show the code here, but, contrary to what you might
think, you can’t just schlep the bits around with a single !�> 8K@$6 instruction. As
an example, consider moving characters on an LG64AA44D panel, where the same
byte can hold both source and target dots. Not a pretty sight, I assure you.

The Delete character requires a routine that removes a rectangular block of dots by
shifting the remaining characters in the line leftward by one position. In that case,
you must copy a group of dots to a single position, then repeat that for each row in
the character while filling the right end of the line with blanks. I did not include a
corresponding Insert function, but you can add it fairly readily should your
application require it.

In today’s embedded systems, most of the output characters will come from C
strings, so I included an ���$���$����5 function that handles the familiar zero-
terminated strings. You can embed control characters in the strings or send them
directly to ���$������ as needed. Perforce, ASCII character 0 (that’s a binary
zero, not 0x30) becomes a nondisplayable control character.

The code also includes several utility functions that enable and disable vertical
scrolling, end-of-line wrapping, and so forth. Examine the source code on the
diskette, if you’re interested in this sort of thing (as you should be, having gotten this
far in the book!)

One thing you can’t do with ASCII control codes, though, is change the position of
the next output character without affecting the existing text. For example, once you
reach the last row of the screen, you can’t get back to the top without sending a Form

Feed character that clears everything. Seems a bit extreme, doesn’t it?

Presenting a nicely formatted status display using only ASCII control codes is
nearly impossible, although you’ve surely seen some noteworth attempts at pulling
it off. Fortunately, the ANSI standards committee set down some rules for cursor
control on serial display terminals that we can adapt to our graphics LCD panels.
The end result is well worth the programming effort.

Embedded PCs ISA Bus.book : Chapter 16.fm Page 267 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

268

Assume the Position...
You’re probably familiar with ANSI control sequences, if only from their use in
PC-DOS PROMPT strings. For our present purposes, I’ll simply say that they allow
the same output string to produce similar results on anything that can interpret the
sequences. Because they’re a genuine standard (pretty much), you’ll find lots of
anythings that can interpret them.

Figure 1 summarizes the control sequences used in the Graphic LCD character
interface. Each sequence starts with the same two characters: 0x1B (Escape) and
0x5B (the left square bracket: [). Next come any numeric parameters, represented
with ASCII digits, and the terminating letter that identifies the command. The
case of that final letter is significant: ESC[2j puts the cursor at row 2, column 1 while
ESC[2J clears the panel and homes the cursor. Pay attention to your typing, OK?

Figure 1
All ANSI Cursor Control Sequences begin with two common characters:

ESC ASCII 27, the Escape character
[ASCII 91, the left square bracket

There are no blank characters within these command strings. Numeric parameters,
represented by an octothorpe (#), use ASCII decimal notation (characters 0x30 through
0x39) and default to 1 if omitted. Row and column numbers start with 1 at the upper left.
The upper/lower case of the trailing letter is significant!

��,,�� �F,��� ��������

�$�SQ� �$�SM� ���-������Q���"-�
���M�
�$�SQ6 �$�S6 ���-�����"��Q���"-�
��"��;�
�$�SQ� �$�S;�� ���-�����5���Q�����,�-�
��5���;��
�$�SQ� �$�SR� ���-�����&��Q�����,�-�
��&��R�

�$�SQ%Q4 �$�S4 $������-��������"%����,��
��&����; ;�
�$�SQ%Q& �$�S;%M& $������-��������"%����,��
; M�
�$�SQ%QX �$�S=X $������-��������"%����,��
= ;�

4 & ����X�������-�����,-�

�$�S- �$�S- $��������������-�����������
;�������
�$�S� �$�S� !�-�����-�������-����������

�$�SMV �$�SMV �������-���������,�����-��

�$�S? �$�S? �����&��,����-�����������&���"

�$�SQ� $�����-����,��� ��5�������F�����&���
�$�SU� �"����������&�������"

�$�SQ� !�-�����-����,��� ��5�������F�����&���
�$�SU� ����"����������&���"

�$�SQ, $�����-��������2���- ��5�������F�����&���
�$�S�, ���-2����������2���-
�$�SU, �-���2���7��5�����2���

Embedded PCs ISA Bus.book : Chapter 16.fm Page 268 Tuesday, July 1, 1997 7:32 AM

Chapter 16: All Text Is Graphics

269

Decoding these sequences can be somewhat difficult, because the numeric
parameters for some commands may be omitted or replicated. The state machine
shown in Listing 7 tracks the possible combinations and calls a decoder routine
when it encounters the final command character. Every character sent to the display
must pass through this routine, imposing a moderate performance penalty for the
privilege of standardized cursor control.

The actual ANSI function routines are nearly anticlimactic, as you can see in
Listing 8. Most require just a line or two of code that adjusts the cursor position or
sets a control variable to affects subsequent characters. Adding new commands is
also easy: just insert a new -"���� �-� clause and the requisite code.

One conflict between ANSI cursor controls and Glass Teletype mode occurs when
you write a character into the extreme lower right corner: row 25, column 80 on a
200-line display. In TTY mode, the panel scrolls upward by the font height to
make room for the next line of characters, discarding the top row of characters in
the process. Because ANSI controls generally create a static display image, perhaps

Listing 7
Decoding the ANSI control sequences depends on a state machine to track all the
allowable parameters and command terminators. Each new character sent to the LCD
panel invokes this function. It extracts the numeric parameters and passes control to the
function decoder when it encounters the terminating letter in the command.

����������-�������
����+�"�����#

�+$96�&&��S�+$9������T�*�+�"����P��FU�% 01�-�����P�-�� 10
���+$9������%
�+$9�������*�,��
�+$9������ �+$9E8�<��+A;�%

-"�����
�+9�����#
�-���+$9E��9:�� 01�"����5�&����$����� 10

�+$9�������*��+$9>�,����*��% 01�&�����2�&&�����-��� 10
�&�
�$��**�+�"�����#

,�,-��
�+$96�&&�� � -�C��&
�+$96�&&����%
�+9����*���+$9E8K��%

3
��-��#

���$������
+�"����% 01�X�-����,���� 10
3
2��7%

�-���+$9E8K����� 01��F�����S�-���F����� 10
�&�
.S.�**�+�"�����#

�+9����*���+$9E>�!�8%
3
��-��#

�����-�+���
+�"����% 01�������-�Y������ 10
3
2��7%

Listing continues on next page

Embedded PCs ISA Bus.book : Chapter 16.fm Page 269 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

270

Listing continued from previous page

�-���+$9E>�!�8��
�&�
.*.�**�+�"�����#

2��7% 01�5�22������-����DDD 10
3
��-��#

�&�
�-��5��
+�"������#
���+9����*���+$9E+J8% 01�-��������,2��� 10
3
��-��#
��&�
�-���
+�"������#
��������-����+�,2��
�% 01�5�����,2����&��� 10
��������-����,�
+�"����% 01������&�-�Y������ 10
�3
���-��#
��������-�+���
+�"����%
�3
3

3
2��7%

�-���+$9E+J8��
�&�
.%.�**�+�"�����# 01������&���,���5�� 10

�����-����+�,2��
�% 01�-����������,� 10
3
��-��#

�&�
�-��5��
+�"������#
���+9����*���+$9E+J8% 01�-��������,2��� 10
3
��-��#
���&�
�-���
+�"������#
����������-����+�,2��
�% 01�5�����,2����&��� 10
����������-����,�
+�"����% 01������&�-�Y����� 10
��3
����-��#
����������-�+���
+�"����%
��3
3

3
2��7%

��&�����
�����-�9���
�% 01������ ���-�����������10

3
3

with a tidy Windows-ish border around the whole screen, you definitely don’t want
vertical scrolling when you write a character in that position!

You can enable line wrapping by sending ESC[7h and disable it with ESC[7l around
the offending characters, but that’s a nuisance. Because I plan to use the panel as a
static display, I simply disable vertical scrolling in the ANSI initialization routine. I
can’t find an ANSI control sequence to handle this, but I won’t be surprised if one
of you folks comes up with the Official Doc defining that command.

So, there you have it: a reasonably fast, large, and cheap character output device
that leaves all the standard PC hardware untouched. Now you can run your

Embedded PCs ISA Bus.book : Chapter 16.fm Page 270 Tuesday, July 1, 1997 7:32 AM

Chapter 16: All Text Is Graphics

271

embedded PC program, use the target system’s serial port or video display as usual,
and still present rapid, intelligible diagnostic information for your own use without
affecting anything else.

Listing 8
This excerpt from the ANSI function decoder shows that handling the commands is
mostly a matter of a few calls to routines in the LCDChars module that twiddle the cursor
location. We absorb the unused ANSI functions to prevent confusing the LCD panel’s
code with functions it cannot perform.

����������-����,�
����+�"�����#

6L:���������%

�+9����*��+$9E��9:% 01�2����&���DDD 10

-"�����
+�"�����#

�-��.�.�� 01����-����� 10
���$��������-��
���������!�"
�A�+$9>�,-S�T ������������
��%
2��7%

'''��-�-��,������)))
�-��.4.�� 01�-������-�����-�����10
�-��.&.�� 01���
-�����,� 10
�-��.�.�� 01���
-�����,� 10

&���
%�+$9>�,����'�M%����+$9>�,�����#
�+$9>�,-S�+$9>�,���T�*�;% 01�&�������&���-� 10

3
���$��������-��
�+$9>�,-S�TA; �+$9>�,-S;TA;�%01�&�F����5��N 10
2��7%

�-��.V.�� 01���-� ���,�����-�� 10
�&�
M�**��+$9>�,-S�T��#

�������
�%
3
2��7%

�-��.?.�� 01���-����������&����� 10
��������*�+�,������-�A�������������
�%
"�����
���������#

���$������
����%
AA�������%

3
2��7%

'''��-�-��,������)))
�-��.-.�� 01�-������-���������� 10

�+9���!�"�*����������!�"
��;%
�+9�������*�������������
��;%
2��7%

�-��.�.�� 01���-��������-���������� 10
���$��������-��
�+9���!�"A; �+9������A;�%
2��7%

��&�����
�����-�+���
+�"����% 01���,����������-DDD 10

3
3

Embedded PCs ISA Bus.book : Chapter 16.fm Page 271 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

272

The Rest of the Stories
The 640×200 TLY-365-121 panel resembles the DMF651, although you must
remember that each row contains 1280 dots. Tweak the DMF651 character address
code supplied on the diskette and it’ll work fine for you.

The 480×128 LM215, as always, presents a challenge. Because the four dots in
each byte appear in different quadrants you must set one bit at a time. Drawing the
dots for a single 8×8 character thus requires 64 calls to the ���$����� function we
used in Chapter 15. Modify that code to support blinking if you really must have it.
All this, just for a lousy 960 characters? I didn’t think so, either, which is why you
won’t find any code for it on the diskette.

The 640×400 LM64015T should be a piece of cake because each bitmap byte
appears in a single LCD Refresh RAM byte. I didn’t write code for it, because,
lacking both the backlight inverter and the desire to tinker with kilovolt power
supplies, I can’t see the results.

Now, to tie everything you’ve read in this book together, here’s a terrifying tale...

The Case of the Capital “T”
After I’d finished the Graphic LCD Interface hardware described in this book, I
used it to present debugging and tracing output from the x86 protected mode
kernel I described in my Firmware Furnace column in Circuit Cellar INK magazine
Issues 48 through 65. The LCD provided a convenient way to present rapidly
changing status information without using the PC’s video display.

However, when I wrote the protected-mode driver for the TLY365 panel and ran a
set of test patterns, my target system developed a curious problem. Although the
LCD panel worked fine, the system hung midway through the next BIOS boot
sequence after I pressed the Reset button. Cycling the PC’s power cured the
problem, but it still hung reliably after every manual reset.

Hmmm...

Some scope probing revealed that the CPU was running in a tight loop doing a
little I/O and a lot of memory writing. It surely wasn’t any of my code because I
didn’t have any BIOS extensions installed. Just to make sure, I pulled the battery
backed RAM out of the Firmware Development Board’s socket. The CPU still got
wedged after each reset.

Embedded PCs ISA Bus.book : Chapter 16.fm Page 272 Tuesday, July 1, 1997 7:32 AM

Chapter 16: All Text Is Graphics

273

For lack of a better idea, I pulled the Graphic LCD Interface’s refresh RAM. As
you might expect, the system worked perfectly. Swapping RAM chips didn’t solve
the problem, so it wasn’t a faulty chip.

The system worked correctly with the DMF651 and LG64AA44D panels and the
appropriate drivers drawing the same test pattern. The TLY365 worked OK with
the Game of Life and the ANSI test code presented in this book. It failed only on a
manual, pushbutton boot after displaying a text test pattern in protected mode.

I modified the test pattern and discovered that, with a completely blank LCD
panel, the system booted normally. A quick divide-and-conquer search showed that
the failure occurred when a capital T appeared in the first character position of line
12. No other characters on that line seemed to matter: the string Tab stops...
failed in the same way as single T followed by blank characters.

I whipped out my jeweler’s loupe and examined the panel, then drew up Figure 2
showing the bit patterns, dot row numbers, and RAM addresses for line 12. If
you’ve been paying attention throughout this book, you should be able to spot the
problem immediately.

This is a quiz!

Give up?

Twelve lines (0 through 11) of 8×8 BIOS character cells above line 12 means that
the top bar of the T character lies on dot row 96 (numbered from 0 through 96,
remember). Each dot row occupies 320 bytes of RAM, because the TLY365 has
1280 dots on each of 100 logical rows, arranged in a 640×200 physical array. Row 1
starts at address 0000, which puts dot row 96 at address (96-1) × 320 = 76C0.

Figure 2
My protected-mode LCD test code
wrote “Tab stops...” on line 12. This
figure shows the LCD Refresh RAM
addresses and bit patterns
corresponding to the first two letters
on a TLY365 640x200 panel. The
Graphic LCD Interface hardware
blinks by alternating the upper and
lower nybbles of each byte, so every
four dots on the panel require an 8-bit
byte in the RAM.

Embedded PCs ISA Bus.book : Chapter 16.fm Page 273 Tuesday, July 1, 1997 7:32 AM

The Embedded PC’s ISA Bus

274

Row 97, the second row of the character cell, begins at address 7800. The dot
pattern for that row begins with the tips of the T’s serifs and its two-dot central
stroke. The hex value for that pattern is 5A, which should look suspicious already.
Now, recall that the TLY365 accepts four bits of data on each Dot Clock and the
Graphic LCD Interface implements blinking by alternating between the nybbles of
each LCD Refresh RAM byte.

Because the T isn’t a blinking character, the refresh buffer bytes at addresses 7800
and 7801 must have identical nybbles. Therefore, those two bytes are 55 AA.

Now, if that doesn’t raise your hackles, you flunk...

The BIOS boot routine scans memory between C0000 and EFFFF for BIOS
extensions after each reset. By definition, a BIOS extension starts on a 2 KB
memory boundary with two flag bytes. Do you remember, from Chapter 6, that the
BIOS extension flag bytes are 55 and AA?

The second character on line 12 was either a lowercase a or a blank, neither of
which has any dots on row 97. That means a pair of binary zero bytes following the
flag bytes. The third byte of a BIOS extension header gives the extension’s length in
multiples of 512 bytes.

So, the first three bytes of that line just happened to define a BIOS extension at
address 7800 with a length of either zero or 512×256 = 128 KB. The fact that I
didn’t deliberately write an extension doesn’t matter; the BIOS found those bytes
during its memory scan and didn’t inquire as to my intent.

Gotcha!

A valid BIOS extension includes a checksum byte that makes the sum of all the
bytes in the extension equal to zero. Evidently, the BIOS checksum routine in my
PC concluded that an extension of zero length, lacking any content, is always valid.
My guess is that the BIOS recognized the header, but the checksum routine simply
gave up when it saw a zero length byte.

So the situation goes a little something like this...

Immediately after turning the power on, the BIOS finds nothing particular in the
LCD Refresh RAM and boots normally. My protected-mode code wrote its test
pattern on the LCD and, quite inadvertently, plunked what looked like a BIOS
extension header precisely at a 2 KB boundary within the refresh buffer.

Embedded PCs ISA Bus.book : Chapter 16.fm Page 274 Tuesday, July 1, 1997 7:32 AM

Chapter 16: All Text Is Graphics

275

When I pressed the system’s Reset button, the BIOS ran through its extension scan
again, whereupon it found the bogus header at address D000:7800. It erroneously
concluded that the extension’s checksum was valid and branched to offset 7803 in
the LCD Refresh RAM. What happened after that was up for grabs, although we
know the first byte of the “program” was a binary zero.

The solution was easy enough: disable the LCD Refresh RAM when the ISA bus
ResDrv line goes active and keep it disabled until our firmware gains control.
With the RAM disabled, the BIOS scan cannot find an extension in the buffer.
Any program that uses the Firmware Development Board must enable the RAM
before writing to the LCD.

You’ll recall that we added a MAX691 watchdog timer with a latch to stretch its
timeout interval after a reset. That guardian hardware has a signal that will keep the
BIOS under control. Page back to Schematic 2 in Chapter 7 for the details.

The signal +No Access Yet from U18 goes high whenever ResDrv is active
and returns low when the firmware writes to port 031C. That port contains the
watchdog, character LCD, serial number, and other miscellaneous bits.

You might solve this another way, too. Because the BIOS scans in ascending
address order, you could install a deliberate BIOS extension in the battery backed
RAM. That extension, which would get control before the BIOS hits the
LCD Refresh RAM, could set up the Graphic LCD Interface for the particular
panel and clear the buffer to ensure that the BIOS doesn’t find anything disturbing
during the remainder of its scan.

This error was an oversight, pure and simple. I knew (and so did you) that the
LCD Refresh RAM contents survived a reset. It never occurred to me that the
BIOS might discover an extension in the bits left over from the last message!

If you build anything with dynamic bit patterns in the region where the BIOS
expects extensions, take heed. You, too, may spend hard time wondering why your
system doesn’t boot correctly once in a while.

Release Notes
The files for this chapter check out the Glass Teletype and ANSI code on both the
DMF651 and LG64AA44D panels, which are the “best of breed” LCDs in my
collection. I wrote the code in Borland C and processed it through Paradigm
Locate. Use the appropriate boot sector loader from Chapter 11 to start the files
from diskette.

Embedded PCs ISA Bus.book : Chapter 16.fm Page 275 Tuesday, July 1, 1997 7:32 AM

Embedded PCs ISA Bus.book : Chapter 16.fm Page 276 Tuesday, July 1, 1997 7:32 AM

