
Dan Bricklin'MS

Demo 11
Program
User Manual
By
Dan Bricklin

A Software Gardenr" Product

Dan Bricklin's
Demo II
Program

User Manual

© Copyright 1987 Software Garden, Inc .
All Rights Reserved .

User Manual © Copyright 1987 Software Garden, Inc .
All Rights Reserved .

Programs and files © Copyright 1985, 1986, 1987 Software Garden, Inc .
All Rights Reserved .

Portions of the programs (libraries) © Copyright 1982-1986 Microsoft Corporation .
All Rights Reserved .

The use and copying of this product is subject to a license agreement . Any other use is prohibited . No part
of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system or translated
into any language in any form by any means without the prior written consent of Software Garden, Inc .

Software Garden is a trademark of Software Garden, Inc .
Dan Bricklin is a trademark of Daniel Bricklin .
Demo II is a trademark of Software Garden, Inc .
The vegetable illustrations are trademarks of Software Garden, Inc .

Other marks in this manual are the trademarks or registered trademarks of their respective companies .

Software Garden, Inc ., P0 Box 373, Newton Highlands, Massachusetts 02161

Table of Contents

Introduction	 1
What EVERYBODY Should Do First!	 1
Overview of the Documentation	 2

Overview: Tying It All Together

	

3
Introduction	 3
What Is DEMO II All About?	 3
Slides and Editing	 4
The Command System	 6
Variables	 9
Overlays	 11
Switching From One Slide To Another	 16
Running	 17
Save, Load, Print, and Other Input/Output	 21
Tying It All Together	 22

How DoYou. ..?	 25
Screen Mock Up	 25
Simple Demo of an Existing Product	 27
Automatic Running Demo	 28
Repeatedly Show a Series of Slides Until a Key is Pressed	 29
Start/Stop/Backup While Viewing an Automatic Running Demo	 29
Have Menu Selections in a Demo	 30
Echo Viewer Typing	 33
Test Viewer Typing	 33

How Running Works	 35
Executing Actions	 36
Conditionals, Loops, and Tags	 38
Interactions With The Viewers : Viewed, Keypress, and More	 41
Run Types, Run Wait, and "WaitDone"	 45

Types of Overlays	 49
Slide Overlays	 49
String Value Overlays	 50
Numeric Value Overlays	 51
String and Numeric Value Overlays with H/W Cursor	 51
Absolute Slide Reference Value Overlays (ABSREF)	 52

Relative Slide Reference Value Overlays (RELREF)	 53
Attribute Value Overlay	 54
H/W Cursor Overlay	 55
Other Information About Overlays	 56

The DEMO2 and RDEMO2 Programs	 57
Invoking DEMO2 .EXE	 57
Files And Directories Used By DEMO II	 59

Backup and Copying	 61

The CAPTURE Program	 63
The CAPTURE Program	 64
The CAPTCMD Program	 65

Bitmapped Graphics Images	 71
How To Create A Bitmapped Slide	 71
Captured Bitmapped Images	 72
PCX Bitmapped Images	 72
Removing Bitmapped Information	 73
Display Adapters, -BITM Options, and Switch Speeds for Different Resolutions	73

Keys	 75
Edit Mode Keys	 75
Command Mode Keys	 82
Prompt/Menu/Message Mode Keys	 83
Run Mode Keys	 84

The Main Menu

	

85

The Block Commands

	

87
Command Descriptions	 87

The Typing Commands

	

95

The Slides Commands

	

99
Slide Options	 101

The Copy Commands

	

103
Commands	 103

The Overlays Commands

	

105

ii

	

Dan Bricklin's Demo II Program User Manual

Table of Contents

Appendix A: Tone Chart

	

203

Types of Variables	
The "Passed On" Setting	
Miscellaneous	
The Variables Commands	

Run Actions

129
129
130
130

133
Which Run Actions Do I Use?	 133
Run Actions Listed in Menu Order	 133
Run Actions Listed in Alphabetic Order	 136
First Level Run Actions	 137
Tone Run Actions	 140
Other-Slide Run Actions	 141
Key/Event Run Actions	 144
Programming Run Actions	 146
String Run Actions	 162
Miscellaneous Run Actions	 167
File Run Actions	 179

Command List 183

Differences From the Older Dan Bricklin's Demo Program lA 195
Upgrading	 195
Changes	 196
Additions	 197
Deletions	 201

The Run Commands 109
How Run Actions Are Entered, Edited, and Displayed	 109
Copy/Paste and Other Commands	 113
The Run and *Debug Commands	 113
Command Descriptions	 114

The Macro Commands 117

The Global Commands 119

The I/O Commands 123

The Variables Menu 129

Appendix B: Attribute Chart	 205
Blink vs . Bright	 206

Appendix C : Miscellaneous

	

207
About the Program and Documentation	 207
Acknowledgements	 207

Index

	

209

License Agreement and Warranty	 217

iv

	

Dan Bricklin's Demo II Program User Manual

Introduction

The Software GardenTM Dan Bricklin'sTM Demo IITM Program, called DEMO II, is a professional tool for
producing program prototypes, demonstrations, and tutorials . You can use DEMO II to help you con-
ceptualize programs, describe them to others, refine their functionality and human interface, and teach
users how to use the final product. It is designed to be used by programmers, documentation writers,
graphic designers, product managers, marketing people, and others .

DEMO II is an enhanced version of the award-winning Dan Bricklin's TM DemoTM Program (without the
"II") . It has all of the features of the older program plus over 75 new features and changes .

DEMO II can be used for a wide variety of applications by an even wider variety of people . In order to
appeal to such a wide audience, it is a program rich in many features and capabilities . This richness
may be intimidating at first, but the program is designed so that you can use just the features
needed for your application and ignore the others until your needs expand, if ever . The "How Do
You . . .T' section of this manual is a good place to see how quickly you can create the results you might
need .

What EVERYBODY Should Do First!

The first thing you should do to learn about DEMO II, even if you know you can
learn it on your own or are familiar with older versions of the product, is to read
the on-line information .

To see the on-line information, insert the diskette labeled "Second Diskette" in the A :
drive, then get to the "A>" prompt . If you do not know how to do that or what it
means, you may not know enough about DOS to learn DEMO II on your own from
the documentation . In that case, please check your DOS manual or find someone
familiar with DOS for assistance .

Execute the command:
RUNME

This information replaces all of the little printed notices, "Read Me Firsts," and "Last
Minute Addenda" that you usually find in a software package . It also is a way of
showing off the capabilities of the product . After you see the information shown
there, you can go about things the way you normally would (reading the manual cover
to cover, ignoring the manual, skimming the manual, or whatever) .

Do not forget to backup the diskettes. You will note in the License Agreement and
Warranty, whose terms you must have read and accepted before opening the diskette
package, that you can make backup copies to protect yourself from equipment and
other such failures . We recommend that you do keep backups . Most people just
create a "\DEMO2" directory on their hard disk and put copies of all of the files on
both of the diskettes there, saving the originals as the backups. That should work fine .

Finally, remember to send in the registration card . This is the way Software Gar-
den, Inc ., knows who has DEMO II . You should send it in even if you have registered
a previous product, such as the older Dan Bricklin's Demo Program .

What EVERYBODY Should Do First!

	

1

Overview of the Documentation

2

To help you learn about the program and to quickly make effective use of it, the
DEMO II documentation includes a variety of learning aids . Your learning style
should determine which of the aids you use .

Included in the package are this manual (with both overview and reference sections),
keyboard templates, an on-line tutorial, and sample files .

The "Overview" section of the manual, which should be at least skimmed by
everybody, is a must for those who like the "big picture ." DEMO II has several novel
concepts, like "overlays", that may not be obvious without some explanation . This
section has several illustrations that help explain those important concepts .

For those who like to try something step by step first, there is a simple tutorial on the
Second Diskette. See the on-line information to find out how to start the tutorial .

In this manual, there is a rather complete set of reference descriptions of DEMO II's
use of the keyboard, the commands, and the menus . For people who like all of the
details, this is where to look . There are also a few sections that cover features, such as
running and overlays, in greater depth .

There is also a wide variety of miscellaneous information . In addition to the short ex-
amples scattered throughout the reference material, there is the "How Do You . . .?" sec-
tion, which lists modes of operation and how to go about getting them . You will find
some of the tabular information and other material you may need, also . There are ex-
ample files on the Second Diskette, described by the on-line information, which show
at least one way of implementing a variety of functions and which demonstrate the
capabilities of the program .

Function Key templates for the two most common IBM® PC keyboards are provided
in the DEMO II package to help you learn DEMO II's use of the function keys .

Finally, there is an index and table of contents .

Dan Bricklin's Demo II Program User Manual

Overview : Tying It All Together

Introduction

What Is DEMO II All About?

What Is DEMO II All About?

This section of the manual gives an overview of DEMO II . The general concepts
needed to understand its operation are presented . In addition, some of the more dif-
ficult parts are described in greater detail so that you can find which commands and
features are appropriate for your needs .

This overview should be at least skimmed by all users, including those who have used
the older Dan Bricklin's Demo Program .

This overview section is divided into several subsections . They are : What is DEMO II
All About?, Slides and Editing, The Command System, Variables, Overlays, Switching
From One Slide To Another, Running, and Save, Load, Print and Other Input/Output .
Finally, there is diagram tying it all together .

DEMO II allows you to create slide shows . A slide show is a series of one or more
images on the computer's screen that can mimic the appearance of a running program
convey information, entertain, attract the viewer, etc . See Figure l . Almost anything
a normal program can display on the screen can be mimicked by DEMO II, as well as
the appearance of many of the actions of a running program . This is useful for
prototyping software before it is written, demonstrating existing software, and doing
computer based training (CBT) .

Figure A slide show

DEMO of OUR

NEW

Product!

Slide 1

Status lnlormatko :

Efficiency Quo2ent ; 98%

Operating Levet :102.8

Slide 2

Current Slide on Screen

Note high
Infatuation :

Ett~iency Quotient 98%

Operating level : 102 8

Order Your Copy

Today from Our

Salesperson

Slide 3

	

Slide 4

DEMO II provides facilities to create the screen images (called slides) from scratch, to
"capture" images from existing programs while they are running, and combinations of
the two .

A powerful "overlay" facility allows you to construct screen images out of other slides
and variable information . This lets you reuse the contents of one slide in constructing
another, which saves memory and simplifies global changes . It also lets you display

3

Slides and Editing

25

Rows

1

Text

	-80 Cols-'

i

Bitmapped

4

variable information, such as that "typed in" by the user, to simulate "fill-in-the-

forms" and other systems .

The ability to create slides and show them on the screen is often sufficient for produc-

ing screen prototypes . For demonstrations and tutorials that are to be shown to other

people or that must simulate a running program more accurately, DEMO II has the

ability to automatically switch from slide to slide. This is called running the slide

show. You can control the sequence of slides, as well as the responses to keys pressed

by the user, modify and test variables, and perform a wide variety of other operations .

You can run a series of slides within DEMO II, then immediately return to editing to

make changes. There is also a "runtime only" version of the program (called

RDEMO2) that only runs slide shows and cannot be used for editing .

There are two types of slide images : text and bitmapped. See Figure 2 . Text slides

consist of 25 rows of 80 character positions . Each character position has two parts :

the character and the attribute. The character is one of the 256 text characters that

the IBM PC can display (letters, numbers, box lines, smiling faces, etc .) . The at-

tribute is one of the 256 ways in which the IBM PC can display those characters (nor-

mal, inverse, blinking, blue on red, green on cyan, etc .) . Your computer's display (the

CRT or monitor) and display adapter (the part of the electronics in the machine that

controls the display, with names such as CGA, EGA, HerculesTM Graphics Card, etc .),

determine which attributes actually show . A monochrome system cannot display blue

on red, for example. DEMO II is especially tuned to make working with text screens

easy and powerful .

Figure 2 . Types of slides

A bitmapped image consists of the specification of all of the dots (or pixels) on the

screen. Depending upon your display and display adapter, this can be 64,000

(320x200), 128,000 (640x200), or even 224,000 (640x350) positions, rather than just

the 2000 character positions of a text image . DEMO II can display a variety of bit-

mapped images, but cannot edit them . Bitmapped slide images are produced by

another program (such as ZSoft Corporation's PC Paintbrush®) and stored in " .PCX"

files. They can also be captured from the screen while another program, which

produces bitmapped images, is running . The CAPTURE program (used to capture

both text and bitmappped screen images) is included in this package. Captured im-

Dan Bricklin's Demo II User Manual

C A N
vu/
AEA~r
T H I

Overview : Tying It All Together

ages are stored in memory along with text slides . You set a slide to have a bitmapped
image by retrieving a captured bitmapped image with the I/O Retrieve command . See
the section on "Bitmapped Graphics Images" for more information .

You can have many slides in the computer's memory at one time and you can
switch between them very quickly and smoothly . They are all automatically stored in
a compact manner by replacing repeated characters, attributes, or groups of pixels
with a repetition count and one byte . Since most slides have large blocks of the same
attribute and often the same character or pixel repeated, the memory saved by com-
pacting can be great. An all-blank slide takes up about 96 bytes, including some status
information .

The rest of this subsection is a discussion about editing text slides .

When you type a normal, text-character key (such as X or $), the character is placed at
the character position marked by the cursor . The cursor is a highlighted character
position used to indicate where many operations are to occur. Normally the program
is editing in Overwrite mode, and the cursor just moves forward . In Insert mode, the
characters to the right of the cursor are pushed over to make room for the new charac-
ter. You toggle between Overwrite and Insert mode by pressing the Ins key .

There are a variety of editing commands in DEMO II that simplify the creation and
modification of slides . Some of the commands are executed by pressing editing and
function keys on the keyboard . Others are selected from menus .

The editing keys include the arrow and other cursor motion keys . The cursor motion
keys move the cursor from character position to character position . There are keys to
delete characters and/or attributes from the screen (Del and Backspace), and for copy-
ing or moving text . Other keys aid you in drawing lines or boxes, or give you a list of
special characters to insert (such as the arrow characters and the smiling faces) . A few
of the keys and menu commands are for setting and changing the attributes .

There is a setting, accessed from the Block menu, called CAB that affects many of the
operations, including typing . CAB stands for "Character, Attribute, or Both ." The
CAB setting specifies whether they operate upon just the characters, just the attributes,
or both characters and attributes . For example, if the CAB setting was Character and
you moved a block of characters, only the characters themselves would move ; the at-
tributes at the source and destination would remain unchanged . If the CAB setting
was Both, moving would move both characters and attributes, overwriting the at-
tributes that were at the source and destination before . There is a command on the
Block menu, as well as a function key, to change the CAB setting .

Many operations work on a marked block . There may be only one marked block ac-
tive at any given time . The block is a rectangular set of character positions . You
mark a block by a variety of methods . The most common one is to position the cursor
at one corner of the block and press F9 (or use the Block Begin command) . You then
move the cursor to the opposite corner . Throughout the operation, the block will be
defined as being from that first corner to the cursor, and will be indicated on the
screen by an outline around the outside of the block . When a block is marked, the
characters immediately outside of the marked block are temporarily obscured by this
outline. You do operations on the contents of the marked block by invoking one of

Slides and Editing

	

5

The Command System

6

the Block commands while a block is marked . The operations usually unmark the
block when completed . Block operations include deleting the block, copying,
moving, changing the attributes of all the characters in the block, word-wrapping the
text in the block, and drawing a box around the block .

To aid you in typing, there are commands on the Typing menu . Most are also avail-
able on single function keys . They let you draw lines and boxes (Typing Lines or F3),
insert a special character (Typing Chars or F5), type up or down (Typing Direction),
and set horizontal and vertical tabs . You can also set the left margin, provide extra
status information on the screen, such as cursor position or slide name/number, and
move the cursor to specified characters on this or a following slide (Typing Find or
Grey *) .

The Command System is the main method for communicating with the program . The
command system is composed of several parts : command windows, prompts,
menus/messages, and function keys. Many users will find the operations of the com-
mand system very natural and can skim this subsection.

Command Windows

You can invoke many commands from edit mode by pressing the Esc key . A com-
mand window pops up on the screen in a location away from the cursor. A command
window can have one or more of the following parts : Title, List, one item of which is
highlighted, Menu, and Description .

Highlighted
List Item

Menu

- List

Description

Figure 3 . Sample command window

The title identifies the command window, e.g ., MAIN MENU, VARIABLES MENU,
or SET BLOCK TO ATTRIBUTE.

Dan Bricklin's Demo II User Manual

1 strlen
3 n

4 u er

15 ('

	

)
8

(18)
"John Q, Public, III" (19)

08
"REIOVaeiou"

[0081]
(82]
[0803]
[0804]

M' Insert Delete Moue Group # Locate
aMe Value Passed-On

e urn

	

revious Menu

Overview : Tying It All Together

The list is a set of items . For example, the list of attributes would have one item for
each defined attribute, and each item would be composed of the name of the item and
its hexadecimal value . Frequently, the items in a list are prefixed by an identifier (a
number or letter) to allow you to select them by typing just one character. You can
use the up arrow, down arrow, PgUp, PgDn, Home, and End keys to move a highlight
through the list to peruse it, and to find an item to select . These keys are called the
List Perusal Keys .

Lists frequently have the six commands, Select, Insert, Delete, Move, Group and #, in
the menu . The Select command is frequently first, so that pressing Enter selects the
highlighted item and applies the highlighted menu item . The meaning of that selec-
tion is dependent upon the particular command window. Insert creates a new item
under the highlight, while Delete erases the highlighted one . Move lets you reposition
the highlighted item in the list. The order of items has different meanings for different
lists. The Group command toggles the start of a group of items. The group extends
from the Group Start to the currently highlighted item. The Delete and Move com-
mands (and sometimes some others) operate on all of the items in the group . The #
command lets you move to a specific item, for example the 121 st item in a list .

A menu is a list of commands, one after another in a row, taking up one or more lines
of the window. One of the commands will be highlighted. You choose a command by
moving the highlight with the left and right arrow keys to rest upon the command you
want, and then pressing Enter . You can also just type the initial character of the com-
mand. The Ctrl-Home and Ctrl-End keys can be used to move to the first and last
commands, respectively .

Finally, there is often a description area at the bottom of the window . This will either
give you instructions for operating on the contents of the window (e .g ., a prompt
during a list-item move operation), or be a description of the highlighted command .
This means that you can see what each of the commands is used for just by moving
the highlight from command to command with the arrow keys .

Pressing Esc cancels the window . Pressing Ctrl-Break cancels the window and gets
you all the way back to edit mode .

The Main menu is the first command window that pops up when you press Esc while
editing. When we make reference to a menu, such as the "Slides Options menu," we
mean "press Esc, then select the Slides command to get the Slides menu, then select
the Options command there to get the Slides Options menu ."

Note that, in terms of commands, the operation is similar to that popularized by Lotus
Development Corporation's 1-2-3 ® program .

Prompts	

There are instances when DEMO II displays a message that requires your immediate
attention, e .g ., when you ask to quit and return to DOS, and DEMO II wants to know
if you really want to do it despite unsaved changes ; or when you make an erroneous
request such as deleting an item in an empty list . To communicate with the user,
DEMO II makes use of prompts.

The Command System

	

7

8

A prompt is displayed in a rectangle in the middle of the screen . There are five types
of prompts : away next key, space to continue, fatal, single character, and type-in
string .

The simplest prompt is the "away next key" type . An example of this is the message
that appears when you create a new slide with Shift-F3 or Shift-F5 . These prompts
are meant to give you some message, but not to interfere with your work . They are
removed from the screen when you press the next key . The key that removes them is
treated normally - it is executed . You may want to use the left arrow key to make
the prompt go away .

Most error conditions are reported in a "space to continue" prompt . These prompts
remain on the screen, and all keystrokes are ignored until you press the space bar .

Some errors, such as disk errors that occur while loading data, leave the program in a
state such that it would be imprudent to continue . These errors result in a prompt with
a highlighted line saying that there was a fatal error. Pressing Enter exits DEMO II .

There are times when DEMO II needs your decision about what to do next, such as
whether to truncate an existing file . In those cases a "single character" prompt is used .
You need only type in one of the characters listed (whether it is uppercase or lower-
case is usually ignored) . Either Esc or Ctrl-Break is also acceptable, and they are
usually treated as a cancel or a "No ."

Finally, when a multiple-character response is needed, such as the new name for a file,
a "type-in string" prompt is used. A proposed response may or may not be presented .
If you just start typing, the proposed response will be erased . You will be in an insert
mode, and you may correct mistakes with Backspace and Del . The left arrow, right
arrow, Home, and End keys may also be used. If you start by moving the cursor, or
using Backspace or Del, the proposed response will not be erased . When you have
finished entering your response, or wish to accept the proposed response shown, press
Enter . If you want to cancel the operation, press Esc or Ctrl-Break . You may not type
in more characters than the space shown on the screen . If you fill the space, you may
have to use the Del key to erase the last character . There is a special version of the
"type-in string" prompt for setting some numeric values and variables . This multiple-
line prompt is described in greater detail in the subsection on Variables, below .

Menus/Messages	

There is one other method that DEMO II uses to present information to help you con-
trol its operation . It is a cross between command windows and prompts . These
menus/messages tell you that you are in a special mode, such as line drawing, and they
tell you which keys are active . Like command windows, menus/messages are dis-
played in the screen corner opposite the cursor . Like single character prompts, only
the listed keys may be used .

Function Keys	

Some common commands not provided by the normal, labeled keys on the IBM PC
(Home, End, Del, etc .) can be executed by pressing function keys . These are the keys
labeled Fl through F10. There are 20 such commands defined

	

10 for the keys

Dan Bricklin's Demo II User Manual

Variables

Overview: Tying It All Together

themselves, and 10 for when the keys are pressed in conjunction with Shift . Most of
the function key commands are identical to operations accessible through the com-
mand windows . They are provided to make use of the program more quickly and
easier. Most function keys are only active when you are in edit mode (see the com-
mand descriptions) and not when a command window or prompt is displayed, unless
indicated . The Shift-F6 key is the only general exception . See the Macro Learn com-
mand description for more information about Shift-F6 .

A complete description of the function keys is in the "Keys" section of this manual .
While editing, you can get a list of the function key definitions by issuing the Help
command in the Main menu. A keyboard template is also provided in this package . It
is worthwhile to learn to use the function keys, since DEMO II was designed with
them in mind for speeding common operations during development of a slide show .

The presence of variables is one of the features that gives DEMO lithe power to be
very flexible while running a slide show . Like most programming languages, vari-
ables are named locations in the computer's memory that can store values . A value is
either a number (an integer from -32768 to 32767) or a group of characters called a
"string" (0 to 80 characters) . A variable has only one value at a time - the value last
assigned to it by some operation .

Most values that can be specified with the name of a variable can also be specified
with a constant value, so you do not need to understand variables to start using DEMO
II

Variables are optionally used to control a large number of things in DEMO II . They
can be used to control the presence and position of text shown on the screen (over-
lays) ; they can hold user input (to let the user of a slide show enter field information or
answer questions) ; they can be set and tested to control the display order of the slides
in a slide show, and you will find them helpful in many other applications . If you are
not going to automatically run your slides, you may be able to skip most of the discus-
sion about variables .

A list of all variables defined in a slide show is displayed in the Variables menu .
Whenever you specify a variable, this list is searched . If the name you specify already
exists, the variable with that name is used . If not, you are given the option of defining
the variable. You must specify whether the variable is to refer to numeric values (N),
or string values (S) . Once a variable is defined, it stays the same type, unless you
change it with the Variables menu Value command . Variables are given an initial
value when defined (0 for numbers, no characters for strings) . You can change the
value with the Variables Value command or by executing actions while running .

Associated with each variable is its name, its value, and its "Passed On" setting . The
name may be from 1 to 8 characters, and should be unique . If you change the name,
all references to that variable will also have the name changed . The value can be
either a number (stored as a 16-bit signed value ; that is, a number from -32768
through 32767) or a string (a length value from 0 to 80, and up to 80 bytes of data) .
The Passed On setting is used when you switch from one slide show saved in a file to

Variables

	

9

10

NUMERIC VARIABLE

8 Chars

Variable Name

Passed-On

another while running, and it determines which variables have their value passed from
the first file to the one being loaded .

Value

Yes/No

-32768, . . ., -1, 0, 1, 2, 3, . . ., 32767

Figure 4 . Variables

STRING VARIABLE

8 Chars

Variable Name

0,1, . . ., 80
Length

Passed-On :

80 Bytes

Characters

Yes/No

There are many settings that you can make (such as the name of a bitmapped " .PCX"
file or a slide's Run Type) that accept a constant value or a reference to a variable .
When you try to set or edit these settings, a special, multiple line "type-in string"
prompt will popup in the middle of the screen . There will be a descriptive title at the
top, an "allowed-input" line, and then the current value at the bottom . The "allowed-
input" line will list the types of responses that are allowed .

The response types are :

Yes/No Type Y for a 1 or non-zero value, N for 0 .
Variable Type V and then the name of a variable . Used when also

Yes/No .
A-Z

	

Just type the name of a variable .
?List

	

Type ? to choose from the Variables menu .
0-9

	

Type a numeric value . If the value starts with the characters
x or Ox, the value is in hexadecimal .

'Char

	

Type' and then press a key to get its value .
"String Type" and then up to 80 character string .

End your entry with Enter to accept, Esc to cancel . If you use an editing key first
(such as the arrows, Home, End, Backspace, etc .), you can edit the current value .

When a string value is used and a numeric value is needed, the first character of the
string is treated as a number . That is, the letter "A" would be 65, which is its ASCII

Dan Bricklin's Demo II User Manual

Overlays

OVERLA YS :

Press F O for Next

Message text and attributes
from the slide with the name

" Fl o Msg"

Overlays

John J . Smythe

IACME Controls Corp .

14321 Blast Road

Value of variable "Addrl"

Overview : Tying It All Together

value. If the string has a length of 0, it is treated as if no value were set (often default-
ing to zero) .

When a numeric value is used when a string value is needed, the number is converted
to a single-character string. If the value is between 0 and 255, it is used directly (e.g .,
65 becomes "A") ; otherwise, a zero byte is used (not the character "0", but the value
0). If no value was set, it is treated as a zero-length string .

The bytes (character positions) in string values are numbered from I to 80 . A number
of different operations can be performed on string values while running the slide
show . They are listed primarily in the Run Action String menu .

DEMO II's overlay feature allows you to have additional items displayed along with a
given slide . Associated with every slide is an overlay list, which can be viewed with
the Overlays menu. When a slide is displayed on the screen, its overlay list is ex-
amined by DEMO II to find other items to add to the screen. The other items may be

Value of variable "Name"

Value of variable "Company"

OVERLAY LIST

Name

	

String
Company

	

String
Addrl

	

String
F10 Msg

	

Slide
Input Form Tmplt Slide

What you see on the screen :

Text from the slide with the
name "Input Form Tmplt"

ALHPA BETA SOFTWARE ORDER FORM
Name :
Company :
Address :
City : State : Zip : Country :

A1phaWord
BetaCalc
absBaso

Figure 5 . A screen image created using overlays

These are the characters
and attributes you typed

on the current slide . These
25 rows of 80 character
positions are also known
as the ">THIS SLIDE<°
part of the slide, and are
the items modified when
you edit the current slide .

The overlays are
displayed along with this

part .

11

ILMI BRI SOfb1MBS BBBe POMI

Na : J~0, Snytlw,J~.M
C

Stute,

I
I

	

Zip :

it

	

i

rlw~prul l :j

h +ur ,I, is nl
-"i r?-r~

11112

	

Gwtry

j
IJ

	

1311 Hlut
Suite 37
Wneille

holuct kantity Mce boil

II thellod
kaGlc
a sBese

1
1
2

S1 f
iff,M
571,11

fIf M
f1f 11

S11I 11

leewt lue' S31f N

12

other slides, values of string and numeric constants or variables, attributes, and the
IBM PC's blinking hardware cursor. See Figure 5 . Note that the overlay list is only
used for text slides ; it is ignored on bitmapped slides .

Why would you use overlays? Sometimes you want to reuse the contents of one slide
in creating another slide . For example, let's say that the contents of slide 1 is a back-
ground and menu template . Once placed on slide 2, it would represent only part of
what you would see when you viewed slide 2 . You could use the DEMO II editor's
copy/paste commands to copy slide 1 onto slide 2, but that would double the amount
of computer memory required . Also, if you made a change to slide l, you would have
to make the same change to slide 2 to keep the menus consistent . Another way to do
all this is to use overlays . By only making a reference to the slide 1, rather than
having two copies of the characters, you can save a lot of memory. And, whenever
you change slide l, the image of slide 1 shown with slide 2 will always reflect the
changes .

Another, very important use of overlays is to specify which string variables are to be
shown along with a slide, and to specify their positions in order to simulate the editing
of forms or full-word responses to questions .

If none of these uses for overlays seems that important to your application, you may
want to ignore them for now . It is often worthwhile to use DEMO II without them,
and become comfortable with the rest of the program first .

What Gets Covered By What?

In order to understand overlays, you must first understand how the screen image that
you see is created from the current slide, its overlays, and other items .

There are two types of characters and attributes: transparent and nontransparent .
All characters and attributes are nontransparent, except for the character with value 0
and the attribute with value 0. These are the numeric value 0 (from the range 0 to
255), not the character "0" . By default, the slide starts out with all transparent charac-
ters and attributes at each character position . All characters that you normally type are
nontransparent.

There is a background character and attribute (specified on the Global menu, and
defaulting to a space character and a white-on-black attribute) . When you view a text
slide with no overlays, you are really viewing the slide in front of the background .
Any transparent characters on the slide let the background character show through,
possibly being "colored" by the attribute in that character position on the screen . Any
transparent attributes on the slide let the background attribute show through, possibly
"coloring" the character in that position . If both character and attribute are
transparent, then the background character is displayed with the background attribute .

This operation is analogous to the background being a blackboard, and the slide being
an acetate sheet being held in front of it . The parts of the acetate that are written on
would be the nontransparent characters, and the color of any given part of the acetate
would be the nontransparent attributes . The lack of writing would be a transparent
character, and a clear part of the acetate would be transparent attributes . (This anal-

Dan Bricklin's Demo II User Manual

Overlays

Figure 6 . How transparent character positions work

Overview: Tying It All Together

ogy is not perfect, since acetate colors are not opaque and can be mixed when one is in
front of another. DEMO II attributes do not mix, but hopefully you get the idea .)

When you are editing a slide, you actually see more than the part you are editing .
There is ">THIS SLIDE<", which is the 25 rows of 80 columns that you edit. In addi-
tion, there are the characters and attributes that show through from the background, as
well as any overlays . All together, you are looking at the "Current Slide", as the slide
being edited and displayed is called . Editing the current slide edits just the ">THIS
SLIDE<" part . Note that when we refer to the "Current Slide", we sometimes mean
just the ">THIS SLIDE<" part you edit when you view the current slide .

For example, in Figure 6 we have a simplified picture which assumes that the screen
has only four character positions arranged vertically - position-l, position-2, posi-
tion-3, and position-4. The background character has been set to "X", and the back-
ground attribute is medium (out of a possible light, medium, and dark) . The ">THIS
SLIDE<" part of the current slide has a transparent character and attribute in position-
l, the character "A" with a light attribute in position-2, a dark "B" in position-3, and
the character "C" in position-4 with a transparent attribute .

The viewer sees the following :

Position-1 A medium X from the background, since both character and attribute on
>THIS SLIDE< are transparent .

Position-2 A light A from >THIS SLIDE, since both the character and the at-
tribute on the slide are nontransparent .

Position-3 A dark B from >THIS SLIDE<, since both the character and the attribute
on the slide are nontransparent .

13

14

Position-4 A medium C, with the character from >THIS SLIDE< and the attribute
from the background, since only the character on the slide is non-
transparent .

Make sure that you understand this example before proceeding . This is one of the
most difficult concepts in DEMO II, and it is important to many applications .

Overlays are displayed in front of the background, just like >THIS SLIDE . The first
overlay in the list is displayed immediately in front of the background . The second
overlay in the list is displayed in front of that, and so on . The current slide (the
">THIS SLIDE<" part) is always displayed last, by default . If you want another slide
last, you can insert the special slide overlay ">THIS SLIDE<" at the point where you
want the current slide displayed .

In many cases, "Underlays" may be a better term than "Overlays" . Understanding this
order is important .

For example, if the overlay list for the current slide was :
1 FIRST-ITEM
2 SECOND
3 LAST-ONE

they could be represented as in Figure 7 .

Figure 7 . The order of overlays

Nontransparent characters and attributes in the overlays (as well as in >THIS
SLIDE) block characters and attributes in the items before them . Therefore, a non-
transparent character in the item "SECOND" blocks the background character and the
character in the same position in "FIRST-ITEM ." That character, in turn, can be
obscured by any nontransparent characters in the same position in "LAST-ONE" or
the current slide's >THIS SLIDE .

If you are using overlays and things are not showing through as you expected, you
should check the order of the overlays and see what is transparent and what is not .
Blanks (the space character produced when you press the space bar) are not

Dan Bricklin's Demo II User Manual

Overlays

Overview: Tying It All Together

transparent. When you capture images of other programs, all of the screen is usually
nontransparent. You may have to insert ">THIS SLIDE" as the first overlay in the
list or you may need to "cut holes" in the slide to let overlays behind it show through
(using the Block Delete command or F7) in order to get the effect that you want . You
can also change the background character or attribute to help you see where the
"holes" are . (Use the Global menu, but remember to set them back as they were - the
background character is usually a space, not 0!)

Note that only the >THIS SLIDE< part of the current slide is affected by editing . The
contents of the overlays are ignored by block deletes, overwriting, etc . To edit the text
of a slide displaying as a slide overlay, you must make it the current slide first (by
using F1/F2 or the Slides menu - see Switching From One Slide To Another) .

Global Overlay List	

In addition to the overlay list associated with each slide, there is a Global Overlay list
that is shown on the Global Overlays menu . This list is effectively added onto the end
of each slide's overlay list . You can use the Global Overlay list to put an overlay on
all slides . This feature is most useful when you use a variable to control when an
overlay is visible, and turn the overlay on and off to "pop it up" when needed in front
of (or behind) other slides . If the current slide is not listed in either of the lists (as
>THIS SLIDE<), it is displayed after all of the overlays. Only the first >THIS
SLIDE< takes effect . Any others after the first are ignored .

Types of Overlays	

There are several types of overlay items : Slides, Numbers, Strings, Values with the
H/W Cursor, Absolute Slide References, Relative Slide References, Attributes, and
the H/W Cursor . These are described in detail in the "Types of Overlays" section .

The reason there are so many types of overlays is because there are several types of
items that you would want to show along with a slide : images of other slides,
referenced in a variety of ways ; string values to display viewer typing, computed in-
formation, etc . ; numeric values to display counts, computed or debugging information,
etc . ; attributes to simulate cursors and highlighting ; and the PC's hardware cursor (the
H/W Cursor) to prompt for input or to simulate other program operations . For each of
these uses there is an appropriate overlay .

The example files that come in this package, and any others produced by your as-
sociates or other DEMO II users, should help to show you how overlays are applied .

Each overlay item in an overlay list takes up 16 bytes of memory . If a slide takes up
1600 bytes, and if you refer to it in the overlay list of 20 other slides, each of those 20
references only takes up 16 bytes . The total of 320 bytes is significantly less than the
32,000 bytes it would take if you copy/pasted the slide onto all the others . Saving
memory is reason alone for learning how to use overlays .

15

Switching From One Slide To Another

16

Slides are stored in memory in a particular order . Each slide has a Next slide and a
Previous slide (other than the first and last) . When you create new slides, you usually
insert them in the list after the current slide . You can give each slide a name of up to
16 characters . You can see a list of all slides, along with their names and numbers, on
the Slides menu . The Slides menu has commands for inserting new blank slides into
the list, for deleting slides, and for changing the order of the slides . Function key
Shift-F3 inserts a new blank slide after the current slide ; function key Shift-F5 inserts
a new slide after the current slide that is a copy of the current slide . The number of a
slide always reflects its position in the slide list, and that number is automatically up-
dated whenever the slide list is changed.

When you are editing and you want to make another slide the current slide (the one on
the screen and being edited), you can use the commands on the Slides menu . As a
shortcut, the F2 key switches the current slide to the next slide in the order of the list,
and the F1 key switches to the previous slide in the list . The Shift-Fl key makes the
first slide in the slides list the current slide, and Shift-F2 gets you . to the last slide .
When you switch from slide to slide, the cursor is hidden until you press the next key .
In this way you can see how the slide will look without the cursor . (It is also hidden
when running) .

DEMO II switches from slide to slide quickly and smoothly, so you can use the Fl/F2
keys to switch from slide to slide much as you would flip from page to page in an
animated "flip book ." If each slide were another step in the progression of screens in a
simulated program, you could get an idea of how the progression would look . Since
you are still editing, you can make changes and get immediate feedback . For
prototyping, this is one of the most important features of DEMO II . For simple
prototyping, this is all of the switching that you need . For other applications, though,
the more sophisticated automatic running facility is required .

When a slide is displayed, it appears on the screen as soon as possible, overwriting
what was there before . This switch occurs so quickly and smoothly that only the
changes are noticeable from slide to slide . For example, if the only difference from
slide A to slide B is the position of a highlight, the highlight will appear to move when
you switch from slide A to slide B .

At times you may want some sort of special effect when changing slides . DEMO II
provides a feature called Switch Types, that gives you different ways to switch from
slide to slide . There are switch types for text slides, and switch types for some forms
of bitmapped slides. You can set the switch type for a slide by using the Slides Op-
tions menu . There is also a Switch Speed . The meaning of the speed value depends
upon the slide type and the switch type .

The special effects are only shown when you change slides while running the slide
show, not while editing .

The switch types are :

Type 0 Normal . Switch as quickly as possible .

Dan Bricklin's Demo II User Manual

Running

Overview: Tying It All Together

Type 1 Replace the slide already on the screen with the new slide
from top to bottom at the speed set .

Type 2 Replace the slide already on the screen with the new slide
from bottom to top at the speed set .

Type 3 Replace all characters and attributes that are different be-
tween the slide already on the screen and the new slide from
top to bottom at the speed set. This lets you simulate typing
or the appearance of a communications line .

Type 4 The same as Type 3, but make a "click" sound as each
changed character is displayed .

See the Slides Options menu description for more information about switch types and
switch speeds. The speed is interpreted quite differently for different slide types, so
you should check the information in that description before you use this feature .

One of the most powerful features in DEMO II is the ability to run the slides automati-
cally. This means that slides appear on the screen in an order that you determine .
They switch at appropriate times, optionally as a response to the viewer pressing keys .
(The person watching a slide show is called a "viewer" ; the person editing a slide
show is a "user" .) There is a full programming language that you can use to test and
modify variables, make sounds, and control this execution . The language is cus-
tomized for running slide shows, so processing key presses and changing the screen
are very simple to set up . The most common modes of switching from slide to slide
were designed so that there is a minimal need to use the programming features .

A knowledge of another programming language such as BASIC, Pascal, or C would
be helpful to those who want to take full advantage of all features ; however, many ap-
plications can be done by using a few simple commands and by following the ex-
amples in this manual and on the diskette . If you find that you need the programming
features and are not familiar with the general concepts of programming (such as vari-
ables, looping, branching, and calling subprograms), you may want to get assistance
from someone who does, or study one of the many language systems designed for
easy learning (such as Borland's TurboPascal or Microsoft's QuickBasic) .

You switch from editing to running by executing the Run command on the Run menu .
Running will start with the current slide . When you press Ctrl-Break, execute a Quit
action, or an error occurs (such as attempting to switch to the next slide from the last
slide), running is stopped and you can resume editing .

By default, running will display a slide, wait for a key to be pressed, display the next
slide, wait for another key to be pressed, display the next slide, etc ., until there are no
more slides to display .

Actually, you can test the key that was pressed, and do different things (such as dis-
playing a slide other than the next slide, or sounding a tone to indicate an error)
depending upon which key was pressed, instead of automatically going to the next
slide . This testing and execution is called "processing the key ." Unless you specify

Running

	

17

18

otherwise, though, the default when processing a key is to move to the next slide .
When you move to another slide, we say that you have "viewed" that slide .

This sequence of viewing slides and processing keys is called Run Type L Associated
with each slide is its Run Type . The Run Type tells DEMO II what to do when view-
ing the slide . You can change the Run Type of a slide with the Run Type command .
The value is usually a number from 0 to 4 .

Also associated with each slide is a Wait Time . The Wait Time is 0 by default, and
specifies the amount of time to wait after the slide is displayed before doing anything
else . The time is in "clock ticks", which are approximately 1 /18 of a second . (One
clock tick is the same amount of time no matter how fast the PC's CPU runs .) You set
the Wait Time with the Run Wait command . In Run Type l, DEMO II waits the
specified amount of time after the slide is displayed before processing any keys .

In Run Type 0, first the slide is viewed . Next the program waits the amount of time
specified by the Wait Time for that slide. The next slide is then viewed and the
process repeats until there are no more slides, or a slide with a Run Type other than 0
is encountered. On slides with Run Type 0, no keys are read and no keys are
processed. This lets you run through a sequence of slides automatically, perhaps
simulating a program in operation or moving through descriptive text in a "self-run-
ning" demo .

Run Types 2, 3, and 4 are variations upon Run Type l . In Run Type 2, any keys
pressed before the wait time is over are ignored (called "flushing type-ahead" by

Wait Time
Key Pressed Read Key Process Key

Figure 8 . Run Types

Dan Bricklin's Demo II User Manual

RUN TYPE 0 : Viewed I

	

~ View Next
LWait Time

RUN TYPE 1 : Viewed

	

...~ Read Key Process Key
Wait Time

RUN TYPE 2 : Viewed Flush Type-Ahead Read Key Process Key
Wait Time

RUN TYPE 3 : Viewed Read Key Process Key
Wait Time
Key Pressed

RUNTYPE 4 : Viewed View Next

Overview : Tying It All Together

programmers) . This lets you say "Press Space to Continue" and avoid having a key
pressed prematurely by an impatient viewer affect the slide .

In Run Type 3, the wait is terminated as soon as any key is pressed, rather than wait-
ing the full extent of the time period . This lets you process the viewer's keys im-
mediately .

Run Type 4 goes to the next slide after the wait, if no keys have been pressed . If a key
is pressed before the wait finishes, the wait is terminated and the key is processed .
You can use this to go through a sequence of slides automatically and at a predeter-
mined pace until the viewer presses a key to stop the sequence or to view a different
sequence .

A more detailed description of the operation of the Run Types appears in the "How
Running Works" section of this manual .

Now that you know how to achieve some control over the automatic displaying of
slides, you may be wondering what it means to process a key . One of the most basic
concepts that you must understand in order to get control of running is testing and dis-
patching based upon which key is pressed .

Associated with each slide is a list, called the Run Action list . The Run Action list
can be viewed on the Run menu . Each line in the list is called an action line . Each ac-
tion line can have two parts : the Key/Event label, and the Action (see Figure 9,
below) .

Action Line

Key/Event
SLIDE

	

Label

Action

RUN ACTION LIST

A

Bb

Any Key

View Slide X

one Beep
error =1

errtype 4
Call Slide Y

Running

Figure 9. A slide and its Run Action list

The Key/Event label specifies the times when you execute the actions that it labels .
When DEMO II processes a key, it starts at the top of the slide's Run Action list and
looks for the first Key/Event label that "matches" the key pressed . As you can see
from the illustration, in addition to Key/Event labels for each key that you can press,
there are labels that can match any one of a group of keys . For example, the
Key/Event label "Bb" matches the letter B whether it is uppercase or lowercase ("B"
or "b") . The Key/Event label "Any Key" matches any key that is pressed . Since the
list is searched from top to bottom, the letter B would match the second Key/Event
label, while the letters "C", "c", "D", or even "a", would match the third Key/Event
label .

19

20

After a match is found, the action on the line with the Key/Event label is executed,
along with actions on any succeeding lines up to, but not including, the next line with
a Key/Event label . Then DEMO II reads another key and processes it . If an action
causes a new slide to be viewed, execution of actions on this slide stops, and whatever
is appropriate to the Run Type on the new slide is done .

For example, pressing A in Figure 9 would cause just one action to be executed : the
one that viewed slide X . Pressing B or b would sound a tone, set a variable to the
value 1 to remember that a viewer error was encountered, and then wait for the user to
press another key . (The user wanted the variable "error" set in order test it in a later
slide to see if any errors were encountered.) Pressing any other key would set the
variable "errtype" to 4, and then view the slide Y, which could return to and re-view
this slide at a later point . (Slide Y would probably act differently depending upon the
value of the variable "errtype" .)

The order of Key/Event labels is important . If you put the set of actions with the
Key/Event label "Any Key" first, the other Key/Event labels would never be matched
and their actions never executed .

They are called Key/Event labels, and not Key labels, because there are a variety of
events that are not triggered by the user pressing keys that you can still match . One of
these is called "WaitDone" . The Key/Event WaitDone is processed as if it were a key
that was pressed immediately after a wait was finished . You can test for this occur-
rence with a Key/Event label "WaitDone" and take special action (such as sounding a
tone to tell the user that it is time to press a key) .

Key/Events that do not match any Key/Event label in the Run Action list are
processed in a special way . First, a Global Run Action list is searched to find a
match. If there is a match on the Global Run Action list, those actions are executed .
If there is no match on the Global Run Action list as well, there is a Default Action for
all Key/Events. The Default Action for keys that are pressed causes the next slide to
be viewed. The WaitDone Key/Event reads the next key press by default . The section
on "How Running Works" describes these defaults in greater detail .

The Global Run Action list is useful for providing your own defaults . A common
Global Run Action list would have the action lines :

Esc

	

Quit
Fl

	

Call Slide Help Slide [0007]
Any Key Tone Beep

This would stop running if you pressed the Esc key ; view the seventh slide (which has
the name "Help Slide") if you pressed Fl, and return to and re-view the current slide at
a later point ; and just beep at any other keys that do not match Key/Event labels on the
slide or in the Global Action list .

In order to create a Run Action list, you use the Run command . To modify the Global
Run Action list, you use the Global Run command . In both cases, you insert a new
action line with a Key/Event label by using the Run Insert command . By using the
Run Line command you insert a new action line with only an action . You can modify
the Key/Event label by using the Run Key/Event command, and you can change the

Dan Bricklin's Demo II User Manual

Save, Load, Print, and Other
Input/Output

Overview: Tying It All Together

action by using the Run Action command . A more complete description of the Run
command is in the "Run Commands" section of this manual .

There are over a hundred different actions to choose from . They include the ones in
the examples above, as well as programming-type actions such as If, For, While, and
Select/Case. There are actions to manipulate strings, read and write files, make a
variety of sounds, and control DEMO II internal features . These actions are described
in the "Run Actions" section of this manual .

You will find that you rarely use most of the run actions . Which run actions are not
used, though, varies from application to application . The most commonly used run
actions are: View Slide, Quit, Tone Beep, Call Slide, Slide Return, File, Continue with
Default Action, and "_" .

Save, Load, Print, and Other
Input/output

Figure 10. Some of the contents of a saved file

You save all of this with the I/O Save command . When you reload with the I/O Load
command, everything comes back as it was when you saved it - the same slide will
be on the screen, all the variables will have the same values, and all of the slides will
be there as they were .

There is an I/O Add command that adds some of the slides from another save file to
the slides currently in memory . As much information as possible about those slides is
also loaded, including Run Actions and overlay definitions (if they refer to slides also
being added) .

An I/O Print command outputs the slides' text and optionally outputs other informa-
tion (such as Run Actions, Overlay Lists, etc .) to the printer or a file . Any number of

21

DEMO II keeps a lot of information
this can be saved into a single
shown in Figure 10 .

about the slides in memory at one time . All of
file for later reloading . Some of this information is

Slide A F~f. 1/F2 . Slide B Slide C

	

Slide D Global
Run

1 Actions

Run Run Run Type Run Type
Actions Actions 'VariablesWait Time Wait Time

Insert/OverwriteOverlayRun Type Run Type
List

Wait Time Wait Time Background Char Global
Overlays(Background Attrib

Attribute List
Paste Buffers Block Names Macros 0-9

Tying It All Together

22

slides can be printed, or just the ones that have the Print Flag set (set/cleared with the
Slides Print command) .

The I/O Retrieve command lets you insert new slides into the current slide show with
images that were captured while another program was running (using the "CAP-
TURE" program) . You can also insert new slides with images that are created by
reading a normal text file and breaking it into 25 line slides, or you can insert a slide
that references a " .PCX" file (the type produced by ZSoft's PC Paintbrush) .

The last I/O commands are Code-Read and Write-Code . These commands let you
save and load a series of Run action lines . The actions are saved and loaded from the
Run Action Paste buffer . You use the Run Delete, Run Copy, or I/O Code-Read com-
mands to put action lines into the buffer. You use the Run Paste command to insert
those action lines into a Run Action list . You could save frequently-used program
segments with the I/O Write-Code command, and add them to new slide shows with
the I/O Code-Read command followed by a Run Paste command .

Figure 11 is one of the ways of tying together all of the elements of DEMO II . Your
slide shows may not be this complex to start, but hopefully you can see how the run
actions are controlled by the keyboard and the passage of time, and in turn how the
run actions affect the variables which can change the overlays which can change the
screen .

If you don't understand Figure 11, you can ignore it . If it were easy enough to present
in one diagram, there would be only one picture in this manual! Some of the early
readers of this manual found this diagram helpful, while others did not . It was left in
the manual for those of you who do find it helpful .

Dan Bricklin's Demo II User Manual

Slide A

Run
Actions

Run Type
Wait Time

F1/F2 Slide B	 Slide C

r
Run

Actions

Run Type
Wait Time

THE SCREEN

Wait Time

Run
Actions

Overlay
List

Run Type

KEYBOARD

4Clock

	

Current Slide
J

Slide D

Run Type
Wait Time

Global
Run

Actions

Variables

Global
Overlays

Background Char

Background Attrib)

Tying It All Together

Figure 11 . How everything relates (a complex diagram)

Overview: Tying It All Together

23

24

	

Dan Bricklin's Demo II User Manual

The purpose of this section is to point you to the DEMO II features necessary to achieve a variety of
commonly desired results . You should be able to get a general idea of the steps you must go through to
get to the outcome . You can find further information about the commands and features by looking them
up in the Table of Contents and Index .

Some of these techniques are used in the sample riles on the Second Diskette . Execute the RUNME
command on the Second Diskette for more information .

Screen Mock Up

Screen Mock Up

How Do You . . .?

You can create a mock up of a screen with DEMO II's editing features . Figure 1 is a
sample screen with call-outs showing the commands that could have been used to
create some of the parts . Detailed descriptions follow .

Block
2=Box

	

F5

Shift-F4

Block
>Cntr

Block
1-Box

F3

F10, Grey +,
Block Attrib, or
Block Xlate

Block Wrap

F10, Grey +,

	

Block

	

Typing
Block Attrib, or >Cntr

	

Direction

	

F3
Block Xlate

	

Left

Figure l . A sample screen and how to create it

25

ALPHA BETA SOFT RE ORDER FORM

MaMe ;
CoMpany,
Address ;

John
ACME
4321
Suite

J, Sgt
Controls Co p .
Blast Ro
27

This data is optional, 'If
it is absent, the blank,
line will be suppressed
when printed .

City ;

	

Danuille

	

State ; ME

	

Z p; 81612

	

Country ;

Product Quantity Price Total

A1 haWord
BelaCalc
absBase

1
1
2

$49,86
$99 .88
$79 .86

S49,66
$99,88
$158,60

Mount Du ;

	

530680

ress

	

or ext

Block 2=Box You can create a box by marking a block, and then executing a Block 1-Box, Block
Block 1-Box 2=Box or Block 3 _Box command . You start marking a block by pressing F9 . You

extend the block by using the cursor motion keys . You call up the Block menu, while
the block is marked, by pressing either Enter or Esc B . Selecting 2=Box will turn the
outline around the block into a double-lined box . Selecting 1-Box will set a single-
lined box. Selecting 3_Box will set a heavy-lined box .

Note that a quick way to get to the upper-left corner of the screen is to press Ctrl-
Home; a quick way to get to the bottom right is to press Ctrl-End .

Shift-F4

	

If you are typing a list of items one below the other, you may want to set the left mar-
gin. Move the cursor to the column where you want the left margin, and press Shift-
F4 or execute the Typing Margin command . From then on, whenever you press Enter
while editing, the cursor will move to the left margin on the next row (unless a block
is marked, in which case the Block menu will appear) .

F5

	

To type one of the special characters in the PC's character set, such as the arrow heads
and international characters, you use the Typing Chars command . Pressing F5 also in-
vokes this command .

Block >Cntr You can center text between two points by marking a block that contains the entire
area and then executing the Block >Cntr command .

F3 You can draw single and double lines with the Typing Lines command . Pressing F3
also invokes this command . You can switch between single and double lines by press-
ing 1 or 2 while in this command. You "draw" by using the arrow keys, etc . This
command knows about line crossings, and it tries to use the appropriate character .

FIO, Grey +,

	

To have character positions display with inverse and other attributes, you can use any
Block Attrib, one of several commands . The most common ones are these four. Pressing the F10

or Block Xlate

	

key sets all of the character positions within the block (or the cursor position, if there
is no block marked) to the first attribute in the Attribute list. By default, this sets the
block to inverse video .

The Grey + and Grey - keys cycle the contents of the marked block through the at-
tributes in the Attribute list . See their detailed descriptions in the "Keys" section of
this manual .

The Block Attrib command lets you set a block or single character to a specific at-
tribute .

The Block Xlate command lets you change all occurrences of one attribute into
another.

Block Wrap You can word-wrap text within a block with the Block Wrap command .

Typing

	

The right-aligned figures were typed in by setting the typing direction to "left" and
Direction Left typing the values in backwards, starting at the right-most column . The Typing Direc-

tion Down command is useful if you are typing row numbers . You could also right-
align text by typing it and then moving it into place . You do this by enclosing it in a
marked block and then moving it with the F6 (Block Move) command .

26

	

Dan Bricklin's Demo II Program User Manual

Simple Demo of an Existing Product

How Do You . . .?

A simple demonstration of an existing product would consist of screen images cap-
tured while running the existing program, plus additional slides and text created within
DEMO II. The slide show would show these images one after another, switching
whenever the viewer pressed a key .

CAPTURE You get the screen images by first running the CAPTURE program, then running the
program whose screens you want to capture . Whenever you have a screen image that
you want to import to DEMO II, trigger CAPTURE by pressing both shift keys at
once. See the "Capture Program" section for more information .

DEM02 Exit the program being captured and run the DEMO2 program . Execute the I/O
1/0 Retrieve Retrieve command, and respond "C" at the "Capture/Text/PCX" prompt . New slides

with the images you captured will be inserted after the slide on the screen .

If you need to capture more screens than CAPTURE can handle at once, you can save
the slide show (I/O Save), exit DEMO II (Quit), run your program, capture more
screens, get back into DEMO II, load the saved, first set of slides, go to the last slide
previously retrieved, and execute I/O Retrieve again to get the next group .

Edit Use DEMO II's editing commands to annotate the captured images and create descrip-
FI/F2

	

tive text, lines, and boxes . See the "Screen Mock Up" subsection . Use Fl/F2 to
switch from slide to slide . Note that the retrieved slides will be inserted after the first
slide, which starts out blank, so you can put a title on that first slide .

Shift-F3 You can add new blank slides after any slide by pressing Shift-F3 . You can add a new
Shift-F5

	

slide that is a copy of a slide by pressing Shift-F5 . You can rearrange the order of the
Slides Move slides with the Slides Move command . You may first want to give the slides names

Group with the Slides Name command to make rearranging less confusing . You move a
group of slides by moving the highlight in the Slides list to the first slide to be moved,
executing the Slides Group command, moving the highlight to the listing for the last
slide to be moved, and then executing the Slides Move command .

1/0 Save

	

To run the slide show, start by putting the first slide on the screen (Shift-F1) and then
RDEM02 saving the file (I/O Save). Exit the DEMO2 program and then execute the RDEMO2

program with the saved file's name as an argument (without the " .DBD" extension) .
After the start-up message, press the Space key . Your first slide should appear on the
screen. From then on, to move to the next slide, press any key such as Space or Enter .
After the last slide, RDEMO2 will return to DOS .

Copies To give copies of your slide show to others to run, put a copy of the saved file on a
diskette (it has a " .DBD" extension) along with a copy of RDEMO2 .EXE. To see the
slide show, the viewers must execute RDEMO2 with the appropriate file name argu-
ment. You may want to simplify things by creating a batch file to run RDEMO2, or
by naming your file "_FILE_O .DBD", which is loaded by RDEMO2 automatically if
no file name is given . See the License Agreement at the end of this manual for details
about distributing copies of RDEMO2.EXE .

Simple Demo of an Existing Product

	

27

Automatic Running Demo

An automatic running demo shows one slide after another, pausing a predetermined
period of time between each slide . Many demonstrations and prototypes have at least
some portion set to run automatically .

Create the To create an automatic running demo, you start by creating the slides from scratch or
slides capturing them as you would for the simple demo, described in the subsection above .

The next thing you have to do is set each slide's Run Type and Run Wait . You want
Run Type 0 which instructs DEMO II to pause the Run Wait amount of time after the
slide is displayed, and then automatically to switch to the next slide in sequence .

Run, To set a slide's Run Type, call up the Run menu and then execute the Type command .
Type 0 Type the value 0, and then press Enter .

Wait?? To set the slide's Run Wait value, execute the Wait command on the Run menu . Type
the value and then press Enter. The wait is measured in 1/l8ths of a second, so a wait
of 9 is one half second, 18 is one second, and 36 is two seconds .

If you are not sure which time value you want, you can use the name of a variable in-
stead of the number for the Wait setting . Just type a name with eight or fewer charac-
ters when prompted for a Wait value . If the variable has not been previously defined,
you will have to indicate its type, which is numeric, by pressing "N" . Variables start
with a value of zero . You can change the value of a variable by executing the Run
Vats command to get the Variables menu, and setting the appropriate value with the
Value command on that menu .

FI /F2 To switch to another slide in order to change its Run Type and Run Wait settings, use
OK Fl/F2 without exiting the Run menu . When you are all done, you can exit the Run

menu by pressing Esc or choosing the OK command .

RDEMO2

	

Put the first slide on the screen (Shift-F1), save the slide show (I/O Save), Quit, and
then run RDEMO2, just as you would for a simple demo.

Restarting You often want an automatic demo to restart after the last slide . You can do this by
leaving the last slide's Run Type l, setting the Wait value, and setting a run action to
be executed when the wait is done .

You set the run action on the last slide's Run menu by executing the following com-
mands: Insert, press the End key, select "WaitDone", View, move to the first slide
(Shift-Fl), and then press Enter.

To test the slide show, you can execute the Run command on the Run menu . You can
stop the running at any point by pressing Ctrl-Break .

Mixing With If you follow an automatic segment in a slide show with one that you advance by
Step-By-Step, pressing a key, you may want to "flush" any keystrokes the viewer inadvertantly made

"Flushing" while the automatic part was running . You can do this by setting the Run Type for the
first slide in the step-by-step part to 2, instead of the normal 1 . Run Type 2 is just like
Run Type 1, except that it flushes type-ahead before waiting for input .

Default Run

	

If you are about to create a series of slides and you know that they all are going to
Type have the same Run Type, you can use the Global Default Run Type setting . A new

28

	

Dan Bricklin's Demo II Program User Manual

Repeatedly Show a Series of Slides Until
a Key is Pressed

How Do You . . .?

slide's Run Type is set to the Default Run Type when it is created . Note that this only
affects the Run Type setting when the slides are created - changing the Default Run
Type does not change slides already created .

Demos that run at trade shows and in stores often need an "attract" mode, where the
same series of slides are shown over and over until a viewer comes along and presses
a key. At that point more of the demo is shown . The series of slides may be an entire
demonstration or just a short eye-catching display .

Run Type 4

	

To do this, you should set all but the last in the repeating series of slides to have Run
Type 4. This will cause DEMO II to switch to the next slide when the wait is done,
unless a key is pressed .

Each of those slides should also have a run action of the form :
Any Key

	

View Slide first non-repeating slide
Run Type 3

	

The last slide in the repeating series should have Run Type 3 and the following run ac-
tions :

WaitDone View Slide first repeating slide
Any Key

	

View Slide first non-repeating slide

Start/Stop/Backup While Viewing an
Automatic Running Demo

While an automatic running demo is useful, you often want to give the viewer the op-
portunity to stop the demo, back it up, or move ahead quickly .

One specification would be to have PgDn immediately move you ahead to the next
slide, PgUp move you to the previous slide, and any other key stop the slide show on
the current slide . Whenever the slide show is stopped, a message will pop up telling
the viewer how to continue .

Run Type 3, Each slide that has this effect should have a Run Type of 3, an appropriate Run Wait
Wait,

	

value, and the following run actions :
run actions

PgDn

	

. . .

	

Do what WaitDone does
WaitDone stopped = 0

	

Make sure overlay is off
View Slide >NEXT<

PgUp

	

stopped = 0

	

Make sure overlay is off
View Slide >PREVIOUS<

Any Key

	

stopped = 1

	

Turn overlay on
After the AnyKey run action line is executed, DEMO II will wait for another key to be
pressed - it does not re-execute the timed wait. See the "How Running Works" sec-
tion .

Start/Stop/Backup While Viewing an Automatic Running Demo

	

29

Overlays

	

The Global Overlays list should have the following items :
>THIS SLIDE<
Stopped Msg

	

[????] SLIDE
Variable The Overlays Nums Visible setting for the Stopped Msg slide overlay should be the
controls

	

numeric variable "stopped" . You can create the list by issuing the following corn-
overlay

	

mands :
Esc G . Call up the Global Overlays list

• T Insert a >THIS SLIDE< overlay

•

	

Insert a Slide overlay

F 1/F 2, e t c .

	

Find the slide with the message to pop up .

The message should be something like :

"STOPPED - PgUp Previous, PgDn Next"

Enter

	

Select the slide

N

	

Get the Overlay Nums menu

End

	

Move to the Visible setting

Enter

	

Change the value

•

	

Set the Visible setting to a variable

stopped
Enter

	

If "stopped" wasn't defined, answer "N"

Esc Esc

	

Done

The first and last slides in a sequence will need different run actions so that you do not
PgUpfPgDn to a slide that does not exist . You may want to set them to Tone Thud, in-
stead of View Slide >NEXT< or View Slide >PREVIOUS< .

Set the variable "stopped" to 0, before running, by using the Global Variables or Run
Vars command to get the Variables menu, and then issuing a Value command .

Have Menu Selections in a Demo

There are a variety of ways to implement menus in a slide show . Three ways will be
presented here .

Single Slide Menu	

The simplest type of menu has a list of choices, each with a letter . When the viewer
presses a key, DEMO II switches to the appropriate slide .

One Slide, To implement this type of menu, you have one slide showing all of the choices . The
Run actions

	

run action list for the slide would have one run action line for each choice, specifying
what to do. For example, if the choices were A, B, C, and D, the run actions could be :

30

	

Dan Bricklin's Demo II Program User Manual

Aa

	

View Slide choice A
Bb

	

View Slide choice B
Cc

	

View Slide choice C
Dd

	

View Slide choice D
Any Key

	

Tone Beep

Moving Cursor Menu	

A more advanced menu would have one of the choices highlighted . The arrow keys
would move the highlight. The viewers indicate their choice by highlighting the ap-
propriate item and pressing Enter, or by pressing a key associated with the choice, as
you would for the simple menu previously described .

Slide per For example, to add the moving highlight to the previous simple menu, you would
choice,

	

have three more copies of the slide showing the choices (Shift-F5) . On the first slide
Shift-F5, FIO you would highlight the A choice (F 10), on the second you would highlight the B

choice, etc. You would then add the following run actions above the Any Key run ac-
tion :

Up

	

View Slide >PREVIOUS<

	

Use Tone Thud on first slide
Down

	

View Slide >NEXT<

	

Use Tone Thud on last slide

Single Slide With Overlays	

Another way of implementing the same type of menu is to have a single slide with all
of the text common to the choices . Following this menu slide are choice slides con-
taining the parts that are different for each choice, such as a highlight in the correct
place, possibly with a description .

This method uses overlays and makes use of more DEMO II features. Make sure that
you understand overlays before trying this method . The advantage of this method is
that you only need one slide with run actions no matter how many choices there are .
If you understand how this method works, you have probably mastered most of the
more difficult features in DEMO II. If you find this method too difficult, you can get
the same effect with the previous method, so do not worry .

RELREF The appropriate choice slide is shown as an overlay along with the menu slide . Which
Overlay slide is shown is controlled by the variable "cmdnum" . You do that by using a REL-

REF overlay . The arrow keys are set to modify the value of "cmdnum" .

To create the overlay, put the menu slide on the screen and type the following :

Have Menu Selections in a Demo

	

31

How Do You . . .?

32

E s c 0 V

	

Create a Value overlay
c m d n u m

	

The value is variable "cmdnum"
Enter

	

Press "N" at the prompt if undefined
Enter

	

Leave it where it is
Enter

	

Set the numbers for the overlay
End

	

Change its type
Enter Enter Enter Switch it to a RELREF-type value overlay

Esc Esc

	

Done
The menu slide should have run actions similar to the following :

Viewed

	

cmdnum = 1

	

Initialize cmdnum
cmdstr = "ABCD"

	

Get a list of the choices
cmdmax = Length (cmdst r) Get maximum number of choices

Continue With Default Action
Up

	

I f (cmdnum >= 2)

	

Backup if not on first item
Decrement cmdnum by 1

-Else
Tone Thud

End-If
Down

	

I f (cmdnum < cmdmax)

	

Move ahead if not last item
Increment cmdnum by 1

-Else
Tone Thud

End-If
Enter

	

key = cmdstr [cmdnum]

	

Get appropriate choice letter

Transfer to Key/Event key Pretend it was typed
Aa

	

View Slide choice A
Bb

	

View Slide choice B
Cc

	

View Slide choice C
Dd

	

View Slide choice D
Any Key Tone Beep

The variables "cmdnum", "cmdmax", and "key
able .

are numeric ; "cmdstr" is a string van-

You can use DEMO II's Run Copy and I/O Write-Code commands to save a copy of
this code after you have entered it once . To use it in another slide show, do an I/O
Code-Read and then use the Run Paste command. You will only need to customize
the string assigned to cmdstr, the Key/Event labels on the View actions (Aa, Bb, etc .),
and the slides referenced by those View actions .

Dan Bricklin's Demo II Program User Manual

Echo Viewer Typing

Test Viewer Typing

How Do You . . .?

Normally DEMO II reacts to one keystroke at a time when running a slide show .
Also, the text on the screen is usually all prepared in advance by the slide show
creator. There are times when you want to allow the viewer to type in text and have
that text displayed . An example would be when you are simulating data entry into a
form

To echo viewer typing you use DEMO II's variable and overlay features . You have
the characters pressed by the user accumulate in a string variable and have that string
value display with the slide .

String Value To have a string variable's value display with the current slide, do the following :
Overlay

Esc 0 V

	

Create a Value overlay
i n p u t

	

Give the variable's name
Enter

	

Press "5" at the prompt if undefined
arrow keys

	

Position the sample where you want
the text to appear. 1f you do not see
the " I . . .VAL . ." line, you may need to
cut transparent holes-see the "Overlays"
subsection in the "Overview" section .

Enter

	

Confirm position
Enter End Enter Set the type to "wl H/W Cursor"
Esc Esc

	

Done
Process-Char To process the keys pressed by the viewer, use run actions of the form :

Run Action

Enter

	

View Slide >NEXT< What to do when done
Any Key

	

Process-Char input Otherwise use this action
The Process-Char run action adds the character that was typed to the string variable's
value. If the key pressed was a backspace, the last character in the string is removed .
All keys, other than characters and backspace, are ignored .

You can have more than one variable's value displayed this way on a slide, and you
can have the same value displayed on more than one slide . In most cases you will
want the variable whose value you are typing into to have a "w/ H/W Cursor" overlay,
and the others to have just a plain String Overlay .

You can branch to different slides depending upon what the viewer entered into a
string variable by using either the If or the Select actions . The If action can do both
uppercase- and lowercase- sensitive or insensitive comparisons . The Select action is
uppercase- and lowercase- insensitive .

Test Viewer Typing

	

33

34

If you set up a slide as specified in the "Echo Viewer Typing" subsection, you could
test for "First", "Second" and "Third" by using the following run actions :

Viewed

	

Erase input

	

Clear the string before displaying
Continue with Default Action

Enter

	

Select (input)
Case "first" :

View Slide choice A
Case "second" :

View Slide choice B
Case "third" :

View Slide choice C
Otherwise :

Tone Beep
End-Select

Any Key

	

Process-Char input

Dan Bricklin's Demo II Program User Manual

How Running Works

In order to produce a realistic simulation, a powerful demonstration, or to have the viewer "learn by
doing" with computer based training (CBT), there are several things that must be tied together . You
want to control which slides are displayed, change the values of variables to reflect data entered, etc .
This should be in response to the keyboard and perhaps also to timing . You want the slide show "run" in
a manner that produces the effect you desire . This automatic control of the system is called "running the
slide show" . Figure 1 gives you some idea of the items that are controlled and what controls them .

Data On
Disk

Which Slide
Is On The
Screen

Keyboard

Variables'
Values

Sound

Passage Of
Time

Name

Variables'
Values

Name

Value

Value

Figure l . Overview of running a slide show

35

DEMO II has a method of controlling running that simplifies many of the normal operations needed to
produce a slide show . It also has added power, with the help of its built-in programming language, to let
you customize the operation to a very fine degree . This section describes running in detail .

Executing Actions

36

You control running through the use of actions. Actions are commands to DEMO II
such as "make a beep sound" or "switch to the startup slide ." Actions are stored in ac-
tion lists that contain one action per line .

When you are running a slide show, DEMO II executes actions . There is usually a set
of actions from a run action list (comprising one or more items in the list, all one after
another), and those actions are executed sequentially, as in Figure 2 . Certain actions
cause the program to stop executing this set and to find another set of actions . When
the end of the set is encountered, DEMO II also looks for another set to execute .

ACTIONS

Do Action

Figure 2 . Execute a set of actions

Execute one action after
another until there are no
more actions in the set .

The sets of actions in run action lists are labeled with a Key/Event Label . The label is
shown on the left side of the first action line in the set . The set extends until the start
of the next set (an action line with a Key/Event label) or the end of the list, whichever
comes first. Key/Events correspond to occurrences that happen while running, such as
the pressing of a particular key on the keyboard .

An action list might look like Figure 3 .

DEMO II finds a set of actions to execute by signaling a Key/Event and then finding
a set of actions whose Key/Event label matches the Key/Event being signaled . A
Key/Event label matches the signaled Key/Event when it is the same as the signaled
Key/Event or when it is a superset of the signaled Key/Event .

For example, the Key/Event "A" matches the Key/Event label "A" . Both correspond
to pressing the uppercase letter "A" on the keyboard . The Key/Event "A" also
matches the Key/Event label "Aa" (meaning both uppercase and lowercase "A"), as

Dan Bricklin's Demo II Program User Manual

Flush Type-Ahead

Melody "602,622"

Pause 38 1/18-Secs

ncmds = 0

Print "Flushed"

How Running Works

A

	

View Slide X
Key/Event

	

Bb

	

Tone Beep
Labels

	

error = 1
Any Key errtype = 4

Call Slide Y

11

Sets of
actions

Figure 3 . Run Action List with Key/Event Labels

well as the Key/Event labels "Any UPPER", "Any Letter", "Any Ltr/Num", "Any
Printing", "Any Key", and "Anything!" .

The run action list is searched for a match from top to bottom . The first set of actions
whose Key/Event label matches the signaled Key/Event is chosen and executed . See
Figure 4. You must insure that the sets of actions are ordered correctly . Superset
Key/Event labels that occur above more specific labels will keep the more specific
labels from being matched . Be especially careful of Key/Event labels such as "Any
Key" and "Anything!" . (In general, never use "Anything!" - explanation later) .

Search
Key/Event
labels for
match

from top to
bottom

Run Action List

Ir

Executing Actions

Figure 4 . Find match to signaled Key/Event

Let's look at an example. Suppose you want to view the slide "Help" if the viewer
presses Fl, view the next slide if the viewer presses Enter, and make a "thud" sound if
the viewer presses the backspace key . Also, if any other key is pressed, you want to
make a "beep" sound, and then increment a count of the number of errors (a variable
called "errcount") . You could use the following run action list :

Fl

	

View Slide Help [0057]
Enter

	

View Slide >NEXT<
Bkspace

	

Tone Thud
Any Key Tone Beep

Increment errcount By 1
Pressing the Fl key would signal the "Fl" Key/Event . That would match the first ac-
tion in the list . Executing that action would terminate running on this slide and switch
to the Help slide . Pressing Enter would view the slide after the current slide by ex-
ecuting the "View >Next<" action . Pressing the backspace key would signal the

37

"Bkspace" Key/Event and would execute the third action line . Any other key would
sound a beep and increment the variable "errcount" . Finally, any other Key/Events
would not match any of the Key/Event labels .

How does DEMO II decide which run action list to search? It has a very specific
method, which is designed to give you the most flexibility .

Associated with each slide is a run action list . When a Key/Event is signaled, this list
is always searched first . If no match is found on the slide's run action list, then the
Global Run Action list is searched. If no match is found there, then a default opera-
tion is performed .

One of the actions that can be executed is "Use Actions On Slide" . This causes the
search for a match to continue with another slide's run action list . If no match is
found there, then the Global Run Action list is searched . There is also an action called
"Use Global Actions" that causes the search to continue with the Global Run List . See
Figure 5 .

Current Slide's

	

Run action list of slide

	

Global Run Action
run action list

	

being "Used"

	

List

Start]

"Use"

action
executed

	No match

lr

"Global"

action
executed

J

No Match

Default
operations

Conditionals, Loops, and Tags

Figure 5 . Run action lists searched to find match

Executing a set of actions is similar to executing statements in many programming
languages. A difference exists in how the set of actions is chosen (by matching the
Key/Event label) . We will discuss Key/Events in more detail in a later subsection, but
first we must look at the "programming" part of this language .

One of the features that gives programming languages their power is the ability to test
conditions and perform different actions, depending upon the results of the test . For
example, you might want to switch to a different slide when a key is pressed, depend-
ing upon whether the viewer had seen this section of a tutorial previously . Another
powerful feature is looping, in which a series of statements is executed repeatedly
until some condition is met. For example, you might want to sound a tone every
second until a key is pressed .

DEMO II has actions to both test conditions and implement several types of looping .
These behave in a manner that should be familiar to most people with a knowledge of
programming. There is also a simple "subroutine calling" or "GOSUB" feature called
tag-calling, which is described later .

38

	

Dan Bricklin's Demo II Program User Manual

A=0
If (A = 0)

	

Executing
Tone Beep
A=2

-Else
Tone Thud

End-If
View Slide >NEXT<

Skipping

Executing

Figure 6. Skipping actions in a conditional

The "IF" actions all test a condition, such as "is one value equal to another?", or "is the
Ctrl key pressed?" . If the condition is "true", then the next actions in sequence are ex-
ecuted. If the condition is not "true", then the actions that follow it are skipped until
an "End-If" or an "-Else" action is encountered . This is described in greater detail in
the "Run Actions" section of this manual . The important concept here is that you can
skip over actions depending upon the results of testing a condition . See Figure 6 .

While actions are being skipped or executed after an IF action, DEMO II remembers
that it is processing an IF action . IFs and other actions, such as the looping actions,
can be nested. This means that, within the actions being executed between an IF and
and End-If action, you can have other IF/End-If groups of actions . DEMO II remem-
bers when it has not yet encountered an appropriate End action by keeping track of
nested conditionals, loops, and Key/Event calls . It remembers this information by
using what is known as the Run Stack . All nesting information is kept in the one
stack. The Run Stack can have a maximum of 99 items at any given time, so you can
only nest to a depth of 99, adding all IFs, loops, and Key/Event calls active at once .
As soon as the matching End or Return is executed, it is removed from the Run Stack,
making room for more .

Nesting must be done carefully, in a manner similar to most programming languages,
such as "C" . This means that IFs must be entirely contained within the "true" or
"false" sections of other IFs. For example :

If (a = 0)
If (b = 0)

Tone Beep
End-If

-Else
Tone Thud

End-If
is allowed .

The following is not allowed :

Conditionals, Loops, and Tags

	

39

How Running Works

If (a = 0)
If (b = 0)

Tone Beep
-Else

End-If
Tone Thud

End-If
Note that the indenting shown above, which is usually provided automatically by
DEMO II, only exists to make the listing more understandable to people . The indent-
ing is ignored by DEMO II when determining nesting while running .

Transfering out of an IF or loop with a View action, or by signaling a Key/Event, or
by using the Goto Tag action, clears the Run Stack . After signaling a Key/Event or
using Goto Tag, you cannot return to where you were in the middle of the IF or loop .

See the Run Actions section for descriptions of the "For", "While", "Block" and
"Select" actions, in addition to the description of IF .

In addition to looping and conditionals, you can also explicitly transfer control to run-
ning another set of actions . This is similar to "GOTO" and "subroutines" in other
programming languages, but with a special DEMO II-flavored twist .

You can transfer to other sets of actions by signaling a Key/Event or using the "tag"
mechanism. Signaling a Key/Event causes DEMO II to search for a match to the
Key/Event specified. The search is done in the normal way described above . When a
match is found, processing continues with the set of actions found there . If no match
is found, the normal default is taken for that action .

The "tag" mechanism is similar to the normal Key/Event signaling and matching
mechanism. There is a special type of Key/Event called a "tag" . Associated with
each Tag Key/Event is a constant character string of one to eight characters. A
Key/Event label for the Tag Key/Event also has a one-to-eight character string, called
the "tag name". The label is used like a "statement label" in other programming lan-
guages, except that searching is done with the normal DEMO II Key/Event search
mechanism. The Key/Event label matches a Tag Key/Event if the character strings
are the same or if the label is for "Any Tag" or "Anything!" . Note that variable tag
names are not allowed - they must be constant strings to result in a match . Tag
Key/Event labels always appear alone on an action line ; there is a "nothing" action as-
sociated with them . When matched, execution continues with the actions following
them, as is normal .

There are three ways of transferring to a set of actions with a Tag Key/Event label .
You can use the "Goto Tag" action, the "Call Tag" action, and the "View Slide Then
Tag" action . The "Call Tag" action adds an item to the Run Stack, and you can return
to the action following the "Call Tag" action by issuing a "Return From Tag Call" ac-
tion at a later point .

Using tags has some advantages over the normal "statement labels" used in other
programming languages. DEMO II searches for the tag, not only on the current

40

	

Dan Bricklin's Demo II Program User Manual

slide's run action list, but also in the run action lists of any slides that are "Used" and
on the Global Run Action list . This lets you share sets of actions between many slides
by putting them on the Global Run Action list or Using them on a common slide . You
can also have global actions transfer to sets of actions that are different on each slide .
This is done by putting the actions on each slide's run action list, with the same tag
name on each slide . The searching mechanism will find the correct one for the current
slide . See Figure 7 .

Slide Run Action List

Call Tag

"COMP"

Call Tag
"PRINT"

Global Run Action List

ga : "PRINT"

RETURN

Tag : "COMP

RETURN

Note that, unlike normal Key/Event labels, Tag Key/Event labels do not end execution
of a set of actions when those actions are encountered during execution . Execution
continues with the action following the Tag Key/Event label . This is similar to state-
ment labels in most languages and is the way you want the operation to occur in most
cases. If you want to end execution after a set of actions that is followed by a Tag
Key/Event label, use the "Next Key" action . If you do not want to have a normal
Key/Event label end execution of actions preceding it, have the action immediately
above the Key/Event label be the " . . ." action .

There are many examples of conditionals, loops, and tags in the sample files included
in the package with DEMO II . Also, some of the examples of actions throughout this
manual may aid you in understanding their use .

Interactions With The Viewers :
Viewed, Keypress, and More

Figure 7 . Using Tags to get around

How Running Works

DEMO MI's signaling mechanism is very well suited to the processing of key presses
by the viewer. All that you need to do is to have different Key/Event types associated
with each of the keys a viewer could press, and to search the run action lists to find out
what to do with each keystroke .

Unlike most programming systems, in which you have to write a program to read from
the keyboard, process the input, do output, etc ., DEMO II has the main "read, process"
loop built in. The "output" part is done by just switching the slide that is being shown .
This is all implemented using the Key/Event signaling and running mechanism .

A simplified view of running a slide show could be similar to the one in Figure 8,
shown below .

Interactions With The Viewers :
Viewed, Keypress, and More

	

41

1
"PRINT"Call Tag

Call Tag "CO1e"
View Slide >NEXT<

Tag: "COMP"

RETURN

42

Read key from
keyboard

View
Signal key as

	

No match

	

>NEXT<
Key/Event

	

slideDisplay
current

	

Found

slide

	

match
j		 "View"

Execute
actions

action

All actions executed,
no "View" actions

Figure 8 . Simplified description of running

Make "Viewed" slide
current slide

This simplified description of running is sufficient for many applications . You can ac-
tually use DEMO II assuming that this is how it works, and DEMO II will operate as
expected . The default settings will make this "obvious" way of running occur .

Things get a bit more complicated when you start thinking about what operations you
want to occur when a slide is viewed . Some operations could be very common, and
writing them out as a series of actions each time a slide is viewed could be very
tedious . Others involve changing the way the screen looks by modifying variables as-
sociated with overlays and then redisplaying the screen .

Think of viewing a slide as having the following standard progression (see Figure 9) :
When the view action is executed, the slide is made the "current slide" and displayed .
Then a key is read, and the key is processed using the Key/Event signaling and action
running mechanism. Displaying the slide is also called redisplaying the slide, because
its latest version with overlays and associated variables is shown .

"View Slide"~
action J

Put slide on screen
(Redisplay)

--} nput key Process
key

Figure 9 . Viewing a slide "standard" progression

Now let's look at what you might want to do at each of the points in this "standard"
progression .

Suppose you had a slide with a String Value overlay, and you wanted to give the user
up to five seconds to type something after it was displayed . If a key were pressed
before the five seconds were up, you would process the key. If not, you would view a
slide showing an error message . This could be represented by Figure 10 .

Dan Bricklin's Demo II Program User Manual

Important!

Interactions With The Viewers :
Viewed, Keypress, and More

Figure 10 . Typical requirement

Figure 11 . Atomic operations comprising "Viewing

How Running Works

"View Slide"
action J Initialize

variable
used as
overlay

Put slide on screen
(Redisplay)

No key
Wait five seconds I pressed

Key
pressed

before time
is up

Input key

View Error
Msg slide

Process
key

DEMO II has broken the viewing process down into six atomic operations . Each
operation has a standard default. Each operation can be redefined by you on a global
or slide-by-slide basis .

The operations are : Viewed, Displayed, WaitDone, Readkey, Keypress, and Process
Key. The Key/Event signaling mechanism is used to switch from one to another.
(Their Key/Event names are "Viewed", "Displayed", etc .) The operations and what
they do by default (if there is no match) are listed in Figure 11 .

There are benefits to having the viewing process work this way . Since the progression
from one operation to another is done by using the signaling mechanism, you can get
control at any point and insert additional actions or even do things differently .

Normally you do not provide action sets with Key/Event labels for "Viewed", "Dis-
played", "WaitDone", "Readkey", or "Keypress" . You usually let nothing match those
Key/Events so that the default actions will occur .

Note that the "Anything!" Key/Event label matches all Key/Events, including those
associated with running . If you use the "Anything!" Key/Event label, make sure that
you know what you are doing in order not to interfere with viewing. A common ac-
ceptable use of "Anything!" would be in a Use action . An action such as Tone Beep,

43

I"View
Slide"

Viewed Displayed WaitDone Readkey Keypress Processaction
key

New current Match with no View
Redisplay

slide, then

signal
View , or no match

	

If match, when

K"Viewed' done last action

Process Run Input key

	

Signal

	

do redisplay
Redisplay Type . For Run from

	

Key/Event

	

then signal
Standard

slide, Type 1, do Run keyboard,

	

corres-

	

"Readkey" . If
Default

signal Wait, signal Signal

	

signal

	

ponding to no match, view
Action :

"Displayed" "WaitDone" "Readkey"

	

"Keypress"

	

key read

	

next slide

44

not followed by a "Continue with Default Action" action, could cause the slide show
to display strangely . Often what you mean is "Any Key", not "Anything!" . For that
reason, "Any Key" is at the end of the Key/Event list, with "Anything!" placed where
you are unlikely to select it by mistake .

There are times when you do want to use the viewing Key/Event labels . Let's look at
a few .

As a very simple example, we will start with the following action line :
Melody "602,622"

This action plays two notes on the PC's speaker, and then continues with the next ac-
tion in sequence .

To play the notes every time a particular slide is viewed but before it is displayed, you
could put the following on the slide's run action list :

Viewed

	

Melody "602,622"
Continue with Default Action

When the slide is viewed, the "Viewed" Key/Event is signaled . The Key/Event would
match the "Viewed" Key/Event label, and the set of actions would be executed. The
two notes would sound, and then the second action would tell DEMO II to execute the
standard default action, which is to redisplay the slide and then signal "Displayed" . If
the second action were missing, DEMO II would act as it normally does when it
finishes executing a set of actions : do redisplay and signal "Readkey" .

You could get the same effect by using the actions :

Viewed

	

Melody "602,622"
Redisplay Screen
Transfer To Key/Event 434 (Displayed)

Here you have user-defined actions that do the same thing as the built-in, standard
default actions. You may want to check the definition of these actions in the "Run
Actions" section of this manual . The run actions are presented there in the same order
as on the menus. You can find them alphabetically in the Index .

If you want to play the notes after the slide is displayed, you could use :
Displayed Melody "602,622"

Continue with Default Action
To play the notes when DEMO II is just about to read from the keyboard, you could
use the actions :

Readkey

	

Melody "602,622"
Continue with Default Action

Note that this will make the sound each time a key is to be read . If the key does not
result in the viewing of another slide, the "Readkey" Key/Event will be signaled again
by the Process Key operation, thus executing these actions again .

Finally, to make the sound each time after a key is read, you could use :

Dan Bricklin's Demo II Program User Manual

How Running Works

Keypress Melody "602,622"
Continue with Default Action

If you do not have the second action, the key will not be processed . The "Continue
with Default Action" action tells DEMO II to do what a "no match" would have done .
In this case, not doing the default for "Keypress" would cause DEMO II to do what it
normally does when it finishes executing a set of actions : do a redisplay and then sig-
nal "Readkey" .

Run Types, Run Wait, and "WaitDone"

One part of running remains to be discussed : the "Run Type" setting associated with
each slide .

There are a variety of standard ways that you will want to have slides behave when
they are viewed . One way has already been described above as the "obvious" way of
reading keys, processing them, and viewing the next slide on a "no match" . Another
way is to display the slide, wait a specified amount of time, and then view the next
slide . Yet another would be to view a slide, and wait up to a specified amount of time .
If no key is pressed while waiting, you would view the next slide . If a key is pressed
before the time is up, then the key would be processed .

Since these are such commonly desired ways of running, it would be a poor design for
DEMO II to require you to explicitly put in the actions necessary to implement them
on every slide . Instead, DEMO II provides two values associated with each slide : the
slide's Run Type and the slide's Run Wait value . The Run Type can be tested to
determine how to treat each slide individually. Five different Run Type values have
been predefined and are implemented by the default viewing operations .

The different Run Types built into DEMO II are implemented in the default "Dis-
played" Key/Event. The default "Displayed" code gets the current slide's Run Type
value, which can be a numeric constant or variable . It then starts waiting the number
of "clock ticks" (1/18 seconds) specified by the Run Wait value and does one of the
following :

Type 0 After the wait time has elapsed, it views the next slide .
Type 1 After the wait time has elapsed, it signals "WaitDone" .
Type 2 After the wait time has elapsed, it flushes (discards) any

keys already typed ahead, and then signals "WaitDone" .
Type 3 If a key is pressed before the wait time has elapsed, it ter-

minates the wait and signals "Readkey" . (The key is not
read by "Displayed", just the fact that it was pressed is
sensed .) If no key is pressed before the wait time has
elapsed, then it signals "WaitDone" .

Type 4 If a key is pressed before the wait time has elapsed, it ter-
minates the wait, and "Readkey" is signaled. If no key is
pressed before the wait time has elapsed, then it views the
next slide .

Run Types, Run Wait, and "WaitDone"

	

45

Figure 12, below, shows a more explicit version of the illustration about Run Types
which appears in the "Overview" section .

Wait Time
Key Pressed Signal "Readkey"

Figure 12 . What the Run Types Do

Normally, Run Type 1 is the default . You can change the value that is automatically
given to a new slide by changing the "Default Run Type" value on the Global menu .

Run Type 0 is useful for automatically going through a series of slides, perhaps
simulating a program in operation or moving through descriptive text in a "self-run-
ning" demo .

Run Type 2 lets you say "Press Space to Continue" and not have a key pressed prema-
turely by an impatient viewer skip past a slide .

Run Type 3 lets you process a viewer's key immediately. You can also distinguish
between a time-out and when a user presses a key .

Run Type 4 can be used to go through a series of slides automatically and at a
predetermined pace . It also lets the user speed things up by pressing a key, since the
default for pressing a key is to view the next slide .

You can create your own Run Type definitions . The Get Builtin action can be used to
access various DEMO II values, including the Run Type and Run Wait values of the
current slide .

For example, suppose you wanted a Run Type 5 that would have the wait before the
slide was displayed, not after . This could be used to simulate slow response to the
keyboard, such as after the Enter key on an on-line system .

You could put the following actions on the Global Run List :

46

	

Dan Bricklin's Demo II Program User Manual

RUN TYPE 0 : Displayed View Next
Wait Time

RUN TYPE 1 : Displayed "WaitDone"~Signa
Wait Time

RUN TYPE 2 : Displayed Flush Type-Ahead Signal "WaitDone"
Wait Time

RUN TYPE 3 : Displayed Signal "WaitDone"
Wait Time
Key Pressed Signal "Readkey"

RUN TYPE 4 : Displayed View Next

Note

Note

How Running Works

Viewed

	

runtype = Builtin(-2)
If (runtype 1 = 5)

Continue with Default Action
End-If
runwait = Builtin(-1)
Pause runwait Even If Key Pressed
Redisplay Screen
Transfer To Key/Event 393 (WaitDone)

These actions get the Run Type value for the slide being displayed . If it is not 5, then
the normal, default View operations are done . If it is 5, the Run Wait value is
retrieved and the program pauses for that amount of time . After the wait is completed,
the slide is displayed . Finally, the "WaitDone" Key/Event is signaled to join the nor-
mal processing .

Note that to use the above set of actions, sets of actions on the slides for the "Viewed"
Key/Event should end with "Use Global Actions" instead of "Continue with Default
Action'" . This ensures that the new Run Type is implemented .

More commonly, the "Viewed" Key/Event is used to execute actions that initialize
values before a slide is displayed . You will frequently see that use in the example
files .

There is one last Key/Event that should be mentioned . A "Timeout" Key/Event is sig-
naled if running goes to read a key (during default "Readkey" or with the "Input A
Key" action) and the amount of time on the Global menu's "Timeout During Run"
item is exceeded . This is another way of doing what Run Type 4 does, but it uses a
global value, which can be changed with a Set Builtin action, and maintains com-
patibility with files from the original Dan Bricklin's Demo Program . A Timeout
value of 0 means do not check for timeouts . Timeout values are always in whole
seconds .

Remember that the screen is only updated whenever a redisplay is done . Any changes
to variables by run actions (along with sounds of any Tone Thud, Tone Beep and Tone
Note run actions) are not shown to the viewer until that time . Redisplaying occurs, by
default, when the "Viewed" Key/Event is signaled, after the last run action in an ac-
tion list if there are no run actions that view another slide, and when a Redisplay run
action is executed. If changes to variables are not showing up when running, but do
when running in Debug mode, you may be missing a Redisplay run action after a vari-
able is changed .

47

48

	

Dan Bricklin's Demo II Program User Manual

Types of Overlays

There are several types of overlay items, each with its own purpose . If you are not planning to use over-
lays yet, you may want to skim or even skip this section and return at a later time . It is assumed,
however, that you have read the subsection about overlays in the "Overview" section .

There are numeric settings associated with overlay items . The settings are on the Overlays Nums menu .
All of the settings may be constants or variables . By changing the value of a variable, you can change
the way the screen looks the next time it is displayed. This feature can be used to create special effects .

You can change the referenced slide or variable, and change its constant position offsets with the Over-
lays Adjust command .

Slide Overlays

Slide Overlays

Slide overlays are direct references to other slides . That is, they refer to the actual
slide, not its number . If the order of slides in the slide show is changed, the reference
will continue to refer to the same slide, even if its number changes .

The entire image of the other slide is used (the editable ">THIS SLIDE<" part), but
not its overlays . If you edit the referenced slide, its current updated image will always
be displayed as the overlay .

You add Slide Overlays to a slide's overlay list by using the Overlays Slide command .

There is a special type of Slide Overlay called >THIS SLIDE< which refers to the
editable part of the current slide . You add >THIS SLIDE< to the overlay list by
typing "T" when the Overlay Slide menu/message is shown. The Overlays Slide and
Overlays Adjust commands bring up the Overlays Slide menu/message .

Bitmapped images may not be used as overlays . Overlay references to slides with bit-
mapped images are ignored .

Figure l . Slide Overlay

49

String Value Overlays

50

There are three settings associated with Slide Overlays : the Row Offset, the Column
Offset, and the Visible setting . The Offsets control the positioning of the overlay's
image in relation to the screen . A zero value for both Row Offset and Column Offset
positions the referenced slide's image exactly over the screen . A Row Offset of 1
would display the top row of the referenced slide on the second line of the screen, and
the 25th row of the referenced slide would not be shown . Offsets are ignored for
>THIS SLIDE< overlays .

The Visible setting controls whether the referenced slide's image is displayed . If the
setting's value is zero, the overlay is ignored . If it is non-zero, the image is displayed .
You can use a variable for this setting to turn the overlay "on and off" under control of
run actions . By default, the Visible setting has a constant value of 1 (">YES<" dis-
played) .

String constants and the values of string variables can be displayed as overlays by
creating a String Value Overlay . You add String Value Overlays to a slide's overlay
list by using the Overlays Value command and specifying either a string constant
(starts with the " character) or a string variable name .

Strings are displayed as a row of characters . The number of characters to be displayed
is determined by the current length of the string and the Max Chars Shown setting .

The position of the first character of the string is determined by the Row Offset and
Column Offset settings . Offsets 0 and 0 position it in the upper-left corner of the
screen. Row Offset 1 would position it on the second row .

The Visible setting controls whether the string is displayed . If the setting's value is
zero, the overlay is ignored . If it is non-zero, the characters are displayed . You can
use a variable for this setting to turn the overlay "on and off" under control of run ac-
tions . By default, the Visible setting has a constant value of 1(">YES<" displayed) .

Col -
Offset

Chars
Shown

1Row Offset

This is the text contained in the string
Max_ _

Screen

Visible :

String

YES/NO

Figure 2 . String Value Overlay

Dan Bricklin's Demo II Program User Manual

Numeric Value Overlays

String and Numeric Value
Overlays with H/W Cursor

String and Numeric Value
Overlays with H/W Cursor

Types of Overlays

The Max Chars Shown setting controls the maximum number of characters that will
be displayed from the string . If the setting is less than the current length of the string,
only those number of characters will be displayed . You can use a variable for this set-
ting to change what is displayed under control of run actions . By default, the Max
Chars Shown setting has a constant value of 80 (the maximum number of characters in
a string) .

Numbers (both constants and variables) can be used as an overlay . The value is dis-
played in the decimal representation . For example, a variable with a value of -4,321
would display as the five non-transparent characters "-4321" . You add Numeric
Value Overlays to a slide's overlay list by using the Overlays Value command and
then specifying either a numeric constant or a numeric variable name .

The Row Offset, Column Offset, Visible, and Max Chars Shown settings are just like
those for String Value Overlays .

Rowl Offset

1
Col

Offset
4

Chars
Shown

4321
Max	

Visible :

Numeric value

YES/NO J

Figure 3 . Numeric Value Overlay

Both numbers and strings may be displayed optionally with the blinking hardware
(H/W) cursor added after the last character displayed . You can use this feature when
you want to have a cursor showing while the user types into a field . This is called a
"w/ H/W Cursor" String or Numeric Value Overlay .

You change a String or Numeric Value Overlay into a "w/ H/W Cursor" Overlay by
calling up the Overlays Numbers menu associated with the overlay item (using the
Overlays Nums commmand) and changing the value of the Type item to "w/ H/W
Cursor" . See the description of the Overlays Nums Value command for more infor-
mation .

51

Displayed
value

Col
Offset

Absolute Slide Reference
Value Overlays (ABSREF)

Row Offset

TEXT SHOWN

Number
of chars
shown

Screen

H/W Cursor

Scan Lines Desc :

Visible :

Figure 4. String or Numeric Value Overlay w/ H/W Cursor

256*Start+End

YES/NO

Only one H/W cursor can be active at a time, since it is a hardware-implemented cur-
sor, and the hardware can only show one . The last visible one in all of the overlays,
including the Global Overlays list, is used . The others are ignored .

These types of overlays have an additional setting called the "Scan Lines Desc" set-
ting. This setting determines the appearance of the H/W cursor . If set to 0 (shown as
">DEFAULT<"), a default cursor is used, like that used by DOS . (It looks like a
blinking underline.) Any other value is interpreted as having two parts : the start scan
line and the ending scan line . The scan lines are numbered from 0, and the indicated
lines blink. The two parts are put into one value by multiplying the starting scan line
by 256 and adding the ending scan line . For example, starting at 4 and ending at 5
would be 4*256+5 =1029 .

The H/W cursor is placed immediately following the last displayed character in the
overlay. The last displayed character is the smaller of the number of characters to be
displayed and the Max Chars Shown setting .

The numeric value of a constant or variable may be used to refer to a slide to be
shown. This is similar to a Slide Overlay, except that the absolute position of the slide
in the Slides menu list is used instead of a reference to a particular slide. If a new
slide is inserted before the referenced slide, a Slide Overlay continues to refer to the
same slide with its new number . In the same case, an ABSREF Overlay will continue
to refer to the slide that moves into the position .

The value used to refer to a slide must be a number between one and the total number
of slides . A string value is converted into a numeric value by using the value of its
first character (0-255) . The number represents the position of the slide in the Slides
menu list. Each slide is automatically numbered in that list . By changing the value of

52

	

Dan Bricklin's Demo II Program User Manual

Screen

Area
off

screen
and not
shown

Image of
referenced

slide

Visible :

	

YES/NO

Slides
List

Numeric
value

Figure 5 . Absolute Slide Reference Value Overlay (ABSREF)

Relative Slide Reference
Value Overlays (RELREF)

Types of Overlays

a variable associated with an Absolute Slide Reference Value Overlay, it is possible to
change the slide shown the next time the screen is updated .

You can change a Numeric Value Overlay into an ABSREF Overlay by using the
Overlays Nums commmand to call up the Overlays Numbers menu associated with
the overlay item, and changing the value of the Type item to "Abs Slide Ref" . See the
description of the Overlays Nums Value command for more information .

ABSREF Overlays can be used to accomplish a variety of functions . For example,
you can refer to a slide by name by using the "Slide With Name" run action to get its
slide number, and then use a variable with that value in an ABSREF Overlay to dis-
play it .

The numeric value of a constant or variable may be used as the relative position of the
slide in the list of slides, as shown on the Slides menu . This may be a positive or
negative number . Zero refers to the current slide, 1 refers to the "next" slide, and -1
refers to the "previous" slide . By changing the value of the variable, it is possible to
change the slide shown the next time the screen is updated . This is similar to an
ABSREF Overlay, but this method uses relative positions in the list instead of ab-
solute positions .

RELREF Overlays are very useful for simulating menus and other applications . For
example, through the use of run actions, you could have the arrow keys increase and
decrease the value of a numeric variable associated with a RELREF Overlay on the
current slide. The menu images could be the slides immediately following the current
slide . The variable would start out at 1, showing the next slide, which would show the
first menu item selected . Pressing a forward arrow would increment the variable by
one, showing the second slide after the current slide as an overlay, and it would have
the second menu item selected, and so on .

Relative Slide Reference
Value Overlays (RELREF)

	

53

T

Row Offset

Col-
Offset

Screen

Area
off

screen Image of

Slides
List

Current Slide

and not
shown

referenced
slide

Visible :

Numeric
value

YES/NO

Attribute Value Overlay

54

Figure 6 . Relative Slide Reference Value Overlay (RELREF)

You can change a Numeric Value Overlay into a RELREF Overlay by using the Over-
lays Nums commmand to call up the Overlays Numbers menu associated with the
overlay item and changing the value of the Type item to "Rel Slide Ref' . See the
description of the Overlays Nums Value command for more information .

The numeric value of a constant or variable can be used to specify an attribute to con-
stitute the overlay . The number of positions covered can also be specified as the Max
Chars Shown . This is called an Attribute Value Overlay (ATTRIB) .

This type of value overlay displays only attributes . Normal String and Numeric Value
Overlays only display characters. One of the uses for Attribute Value Overlays is to
simulate cursors and highlights .

Col
Offset

Row Offset

4

Chars
Shown

Max	,

Screen

Numeric value
Specifies attribute only .

Character is transparent .

Visible : YES/NO

Figure 7 . Attribute Value Overlay

Dan Bricklin's Demo II Program User Manual

H/W Cursor Overlay

Types of Overlays

To create an Attribute Value Overlay, start with a Numeric Value Overlay and use the
Overlays Nums Values command to change the Type item to "Attribute" . The value
associated with the overlay represents a normal attribute number . For example, 7
would be white on black, 0x70 (hexadecimal 70 or decimal 112 - an "x" at the begin-
ning of a numeric constant signals a hexadecimal value) would be black on white, etc .
See the Attribute Chart Appendix for a list of attribute values, or use the Block At-
tribute or Block Xlate command to see a list on the screen .

You can have an overlay that just specifies the position and appearance of the H/W
cursor. This type of overlay is displayed as ">H/W-CURSOR<" in an overlay list .

You can add a H/W Cursor Overlay to a slide's overlay list by using the Overlays
Cursor command . You can also change its position with the arrow keys . You can
change the position at a later time with the Overlays Adjust command . You can
change its settings (Row Offset, Column Offset, Visible, and Scan Lines Desc) by
using the Overlays Nums command .

Only one H/W cursor can be active at a time, since it is a hardware-implemented cur-
sor, and the hardware can only show one . The last visible one in all of the overlays,
including the Global Overlays list, is used . The others are ignored.

This type of overlay has an additional setting called the "Scan Lines Desc" setting .
This setting determines the appearance of the H/W cursor . If set to 0 (shown as
">DEFAULT<"), a default cursor is used, like that used by DOS . It looks like a blink-
ing underline . Any other value is interpreted as having two parts : the start scan line
and the ending scan line . The scan lines are numbered from 0, and the indicated lines
blink. The two parts are put into one value by multiplying the starting scan line by
256 and adding the ending scan line . For example, starting at 4 and ending at 5 would
be 4*256+5 =1029 .

Col
Offset

Row Offset

1

Screen

Scan Lines Desc :

Visible :

H/W Cursor

256*Start+End

YES/NO

H/W Cursor Overlay

Figure 8 . H/W Cursor Overlay

55

Other Information About Overlays

CAPTURE Inserts a
H/W Cursor Overlay	

A H/W Cursor Overlay is automatically added to each captured text slide . The Offsets
and Scan Lines Desc will be of the cursor that was on the screen when the screen was
captured. The Offsets and Scan Lines Desc may define a cursor that was not visible at
that time. The Visible setting is always set to >NO< (zero) by default . H/W Cursor
Scan Lines Desc's are not the same for different displays . For example, the CGA has
eight scan lines, while the EGA uses more . Having the information there, but hidden,
allows you to use it (by setting Visible to >YES< or 1), or modify it (for example, by
setting Visible to >YES<, and Scan Lines Desc to 0 for >DEFAULT<) . If you are not
going to use the H/W Cursor on the retrieved slides, you may want to delete the H/W
Cursor Overlays after retrieving .

Redisplay to Show Variable
Changes	

When using variables for overlay settings, or in Value Overlays, you must remember
that the screen is not updated to show any changes until the next redisplay operation .
Redisplays occur when a slide is viewed, when new input is requested on a slide, and
when an explicit Redisplay run action is executed . Failure to do a redisplay is a com-
mon mistake when using overlays . If the effect that you are trying to produce occurs
only when running in Debug mode, you probably forgot a Redisplay somewhere in a
loop or after some operation . See the "How Running Works" section for more infor-
mation about redisplaying .

References to the Current Slide

References to the same slide as the one with the overlay list (not ">THIS SLIDE<"
references, just ones that treat it like other slides) can cause unexpected behavior .
You should rarely need to use such overlays, but they do come up when using global
overlays . The image used by overlay references to slides (other than ">THIS
SLIDE<") are from the compacted image of the ">THIS SLIDE" part of the slide .
During editing, the compacted image and the actual image will differ until the time
when you switch to another slide, start running, or execute a variety of other opera-
tions . Therefore, editing changes to the slide will not show up on the overlay referen-
ces immediately . They will, though, appear when the slide show is run or after F1/F2
is pressed .

56

	

Dan Bricklin's Demo II Program User Manual

Invoking DEM02 .EXE

DEM02

The DEMO2 and RDEMO2 Programs

The main DEMO II program is the DEMO2 .EXE file on the Program Diskette. This program is loaded
once into RAM when you invoke it from the DOS prompt . It then runs completely in memory ; there are
no program overlays or help files to be read . You do not have to keep a diskette with the program in the
drive . DEMO II is not a background, "terminate-and-stay-resident" program, like pop-up desktop acces-
sory managers or the CAPTURE program . It is more like most word processors .

The RDEM02 program (RDEMO2.EXE on the Second Diskette) is the "runtime only" version of
DEMO II. It runs completely in memory, just like DEM02 .

Within this manual, the term "DEMO II" is often used to refer to DEMO2 .EXE. Other times it will refer
to both DEMO2 .EXE and RDEMO2 .EXE. Which definition is being used should be obvious from the
context.

To run DEMO2.EXE you execute one of the following command forms from DOS
command level :

I
DEM02

D E M 02 filename

DEM02 options

DEM02 filename options

The DEMO2.EXE file is on the DEMO II Program Diskette . You should always
work from a copy of the original . If you have a hard disk, you should copy it to the
hard disk. (See the Backup subsection, below .) You do not need any other files in
order to run the program . You must be using DOS version 2 .0 or a more recent ver-
sion. DEM02 is not Microsoft Windows or IBM TopView "aware" .

"Filename" is the name of a DEM02 save file. Use only the name ; do not provide the
" .DBD" extension. Full pathnames may be used, although DEM02 restricts path
names to 52 characters - about 4 directory levels or so .

"Options" is one or more of the following, all of which are acceptable in uppercase or
lowercase :

-snow Use this option when you have a CGA-like display adapter
that does not need the program to synchronize its access to
the adapter's memory with the retrace signals. DEM02 may
appear to run somewhat faster when this option is used .
DEM02 automatically detects some common display adap-
ters that meet this requirement, such as those on most Com-
pags .

Invoking DEM02.EXE

	

57

58

-ega Use this option to indicate that you have an EGA or

equivalent display adapter. DEMO2 usually can automati-

cally detect an EGA. Check the Global menu to see what

display adapter it thinks you have .

-cga Use this option to indicate that you have a CGA or

equivalent display adapter that has CGA-type graphics and

that needs synchronization for text display .

-herc Use this option to indicate that you have a Hercules

Graphics Card or equivalent. DEMO2 usually can automati-

cally detect a Hercules card . Check the Global menu .

-slow There may be times with some display adapters when even

the -CGA option produces a small amount of "snow" . In

those cases, use this option. It also minimizes the amount of

time DEMO2 runs with interrupts inhibited . Normally, in -

CGA mode, interrupts are inhibited during vertical retrace

while the screen memory is updated (a millisecond or so) .

-mono Use this option to indicate that you have a Monochrome

Display Adapter or equivalent. DEMO2 usually can

automatically detect an MDA card . Check the Global menu .

-vga Use this option to indicate that you have a VGA or

equivalent display adapter. DEMO2 usually can automati-

cally detect a VGA. Check the Global menu to see what dis-

play adapter it thinks you have .

Only the EGA-type features of the VGA are used; e.g .,

VGA 640x480 graphic images are not supported .

Normally, if DEMO2 finds the video adapter in mode 7

(monochrome text), no bitmapped graphics images are al-

lowed. If a VGA is detected automatically, and it is in video

mode 7, it is switched into mode 3 (80 column color text),

and graphics are allowed. To disable this feature, use the -

MONO option .

-dir This option is followed by a space and then the pathname of

the directory you want to use as the DEMO II System Direc-

tory. If the -DIR option is not used, the DEMO II System

Directory will be set to the DOS Current Directory . The

DEMO II System Directory is described below .

-mem This option is followed by a space and then the number of

Kbytes to allocate for DEMO2's use for storing slide show

information. Normally DEMO2 allocates all the rest of

RAM. Extended and Enhanced memory are not used . This

means that COMMAND.COM

must be reloaded after

DEMO2 or RDEMO2 runs. You determine the number of

K needed by looking at the Global menu Memory display .

Dan Bricklin's Demo II Program User Manual

-bitml6
-bitm32 These options are used to reserve memory for bitmapped

graphics images . See the discussion in the section "Bit-
mapped Graphics Images" for more information about when
to use these options . If you do not provide these options, the
screen will display "Need -bitm 16" or "Need -bitm32" when
a slide that needs these options is displayed . -Bitm32 is a
superset of -bitm 16 . -Bitm 16 reserves 16000 bytes while -
bit32 reserves 38400 bytes .

-arg

	

Sets the value accessed by the Builtin(-12) run action . This
lets you pass arguments to a slide show .

Using In most cases you will not need to use the options, since DEMO2 can detect the
SET DEM02= presence of many display adapters . If you need to use options, you can use the DOS

Environment String "DEMO2" to pass values to the DEMO2 command . You can do
this by using the DOS SET command to give a value to the string "DEMO2". For ex-
ample,

Files And Directories Used By DEMO II

demo2 tests -mem 55

The DEMO2 and RDEM02 Programs

Use the largest value from all of the files that will be run . If
you allocate (or there is) too little memory, you will be un-
able to load the files you want or will be unable to edit . You
must use this option if you are using the EXEC action to ex-
ecute another program while running .
For example :

SET DEM02=-BITM32 -MEM 100
would pass the options "-bitm32" and "-mem 100" to DEMO2 before it checked any
options on the command line . See your DOS manual for information on the SET
command .

The options are the same as are accepted by the RDEMO2 program .

DEMO II saves and loads information from files in a variety of special formats .

The normal DEMO II save file is identified by an extension of " .DBD" . DEMO II
(DEMO2 and RDEMO2) can read " .DBD" files produced by both the DEMO2
program and the older Dan Bricklin's Demo Program Version 1 A (releases D 1 A and
D 1 B) . DEMO II can only write the newer " .DBD" files that are not readable by the
older program .

" INIT.DBD" is a special name for a save file called the "Init File" . It is a normal
DEMO2 save file that is loaded automatically whenever DEMO2 is started and no file
name is given, or when a Global C1earAll command is executed . You can save to this
file by giving the file name "_INIT" in an I/O Save operation . You use this file to set
initial values when you want values other than those that DEMO II provides by

Files And Directories Used By DEMO 11

	

59

RDEM02

60

RDEM02

default . For example, you may want a different set of attributes for the attribute list,
as well as different Background and Menu attributes if you always run on a color
monitor. You may want to use a specific printer mapping by default, etc . Note that
modifying the Init File only affects future usage - it does not go back and change ex-
isting files .

Copies of run actions can be stored in " .DBC" files . These files are saved and loaded
by the I/O Write-Code and I/O Code-Read commands, respectively .

The definitions for macros A-Z are stored in a file named " ALT A Z.SGI". These
are not compatible with the older Version 1 A files . The macros 0-9 are stored with
the slides . The "_ALT A Z.SG 1" file is automatically loaded immediately after start
up and Global ClearAll, and after any other files (including the Init File) are loaded in
DEMO2 (not RDEMO2) . By using this feature, you can provide your own "com-
mands" that are common to all files, yet still be able to produce 10 macros specific to
each file . See the Macros command description for more information .

The printer mappings are stored in files of the form "_P?????? .SG2", where "??????"
is the name of the mapping, e.g ., " PASCII.SG2" for the mapping "ASCII" . See the
I/O Print Character Mapping setting on the I/O Print menu .

The I/O Print command can produce files instead of printing to the printer, and those
files are given the extension " .TXT" .

If no file name is provided to the RDEMO2 program, it tries to load the file
" FILE O.DBD" in the current directory .

The files "ALT A Z .SGI", "_INIT.DBD", and the printer mappings all are assumed
to reside in the DEMO II System Directory . The DEMO II System Directory is the
DOS Current Directory by default (the one listed when you type the DOS command

or "chdir") . You can set other directories by using the "-DIR" option to the
DEMO2 program. By varying the name of the DEMO II System Directory, you can
have custom environments for different projects .

Included in the DEMO II package is a copy of the RDEMO2 program . It is the
RDEMO2.EXE file on the Second Diskette . RDEMO2 is the "runtime only" version
of DEMO II . You would use this program when you want to give someone else a
copy of a slide show you have created . It takes the same command line options as
DEMO2.EXE :

RDEM02

RDEM02 filename

RDEM02 options

RDEM02 filename options

The "filename" and "options" are interpreted in a manner similar to the DEMO2
program .

Dan Bricklin's Demo II Program User Manual

Backup and Copying

The DEM02 and RDEM02 Programs

The RDEMO2 program loads the slide show named on the command line or
"_FILE o.DBD" if none is specified (that is a zero, not the letter 0) . It automatically
starts the slide show running, as if you had typed Esc Run Run . When the slide show
stops running for any reason (e .g ., a Quit run action, an error, pressing Ctrl-Break),
RDEMO2 returns to DOS . RDEMO2 can be used by people who will only run a slide
show without any modifications . It is also substantially smaller in size than the full
DEMO2 program, so you can fit more slides on a diskette or in memory .

This package comes with a special license for RDEMO2 .EXE to allow you to make
copies of it along with slide shows for use by others . Please check the License Agree-
ment and Warranty for more information .

Other, specialized "runtime only" versions of DEMO II become available from time to
time for an additional fee . Registered users will usually be notified of these versions
(if there is no information included in this package), or you can write to the address on
the License Agreement and Warranty for the latest information . These versions in-
clude one with no start-up message .

You should make backup copies of the files on the DEMO II diskettes. The License
Agreement that you accept by opening the DEMO II Diskette Package permits you to
make backup copies of the programs, but DEMO2 .EXE, CAPTURE.COM,
CAPTCMD.EXE and PCXDECOD .EXE may only be running on one PC at a given
time . For example, you may use a copy of it at home and another copy at work, but
not both copies at the same time on the two machines. This is sometimes called a
"like a book" limited license . The diskettes are not copy-protected, of course .

See the License Agreement and Warranty for information about RDEMO2 .EXE. The
Agreement lets you make an unlimited number of copies of diskettes containing
RDEMO2.EXE, subject to conditions and an indemnification listed there of claims
arising out of your use of RDEMO2 .EXE.

Backup and Copying

	

61

62

	

Dan Bricklin's Demo II Program User Manual

The CAPTURE Program

Included in the DEMO II package is a program called CAPTURE . It is in the file CAPTURE.COM on
the Program Diskette . CAPTURE is the screen capturing program for use with DEMO II. It is a back-
ground, "terminate-and-stay-resident" program .

When you execute CAPTURE, it installs itself in RAM memory as a background program . It watches
the keyboard and, when both shift keys are held down at the same time, it saves a copy of the screen in
RAM. More than one screen can be captured if desired . At a later point, you run DEMO2 and execute
the I/O Retrieve Capture command . The screens that were "captured" are then inserted into the current
slide show .

CAPTURE is a flexible program. It can capture both text and bitmapped screens . You can set a variety
of options, including the method by which it is triggered and the amount of memory that it uses . Some
options are set by using the CAPTCMD program (CAPTCMD .EXE on the Program Diskette) .

DEMO2 and CAPTCMD communicate with the background CAPTURE program by using information
stored by CAPTURE in a file . Each time you run CAPTURE, it stores information in a file called
"CAPTURE.RDV" in the current directory . The "RDV" is short for "Rendezvous", which is the term
for the operation performed with the information . Whenever DEMO2 or CAPTCMD wants to com-
municate with CAPTURE, it looks at the "CAPTURE .RDV" file in the current directory .

It is important to understand that you must run CAPTURE, DEMO2, and
CAPTCMD all with the SAME CURRENT DIRECTORY. If the current copy of
"CAPT URE.RDV" is not found in the current directory, DEMO2 and CAPTCMD
cannot communicate with CAPTURE .
The "current directory" is the one you set with the DOS "CHDIR" or "CD" command . The programs
themselves do not have to be in the current directory, just the "CAPTURE .RDV" file that is created by
CAPTURE. After you run CAPTURE, you can change the current directory while you capture the
screens. Then you can change back to do the retrieving or to set options with CAPTCMD .

When CAPTURE saves a screen image, it saves it in RAM . The screens are saved in a compacted form,
similar to the one DEMO II uses internally . You may save as many screen images as will fit in the
memory allocated to CAPTURE . Until the screen images are retrieved by DEMO2 and subsequently
saved on disk in a DEMO II save file, they reside in RAM and will be lost when you turn the PC off or
do a System Reset (Ctrl-Alt-Del) .

CAPTURE can save a variety of screen-image types . It can automatically capture monochrome, black
and white, and color text screens, as well as some of the bitmapped screens : 320x200 CGA 4 color
(BIOS screen modes 4 and 5), 640x200 CGA monochrome (mode 6), and 640x350 EGA 2 color (mode
lOh). It can be set using CAPTCMD to capture 640x350 EGA 16 color (mode l Oh, including palette in-
formation), and Hercules Graphics Card 720x348 monochrome (no standard mode, either page 0 or 1) .

In addition to the "both shift keys" method, you can trigger CAPTURE in other ways . You can change
the "hotkey", the key combination that triggers the screen capturing, to almost any other key combina-
tion in case the standard one conflicts with other programs . You don't have to use a "hotkey" to trigger
CAPTURE; you can have it wait a specified amount of time and then automatically capture the screen .
This is helpful when you are capturing from a program that takes control of the keyboard . Finally, you

63

can have CAPTURE watch the screen (in text mode) and trigger automatically whenever the screen
changes .

The CAPTURE program is designed for use only with DEMO II and CAPTCMD . It may conflict with
other background products . You may have to experiment with the order in which you install various
background programs in memory in order to get the operation you desire . CAPTURE does not have to
be loaded as the last program . If it is the last program loaded, CAPTCMD can be used with the "-OFF"
option to unload it from memory . You must not unload CAPTURE with any "TSR Unload"
programs, especially on systems with an EGA or VGA .

Getting a background program like CAPTURE to work in all circumstances with all programs is a very
difficult, if not impossible, task . If CAPTURE does not meet your needs after some experimentation, it
is probably not appropriate to your situation . It has, though, been used successfully by many people,
capturing screen images from spreadsheets, new products, and programs still in development . CAP-
TURE was used to produce parts of the tutorial on the diskette .

If you use overlays in conjunction with slides that were captured, you should check the note at the end of
this section about captured text images .

The CAPTURE Program

64

CAPTURE CAPTURE

CAPTURE nnn

You can invoke the CAPTURE command with either no options or a number between
16 and 127 . The number specifies how much memory to reserve for the captured im-
ages in KBytes. The default is 32K .

A text screen uses approximately 300 to 4000 bytes, depending upon how many dif-
ferent characters and attributes it has . Bitmapped screens take up from a few hundred
bytes to 16KBytes for low resolution, up to 32K for higher resolution, and up to 127K
for 16-color EGA high resolution . Since most screens have large areas with the same
color, character, or pattern, most screens take up less than the maximum . If CAP-
TURE makes a higher pitched sound than normal when triggered, it has run out of
memory or could not capture from that screen mode . To allocate more memory, turn
off CAPTURE with CAPTCMD -OFF, or re-boot the PC . Then run CAPTURE again
with a larger number .

For example, to capture many text screens, you may want to reserve 64K of memory .
You would use :

CAPTURE 64

Make sure that you do not capture more data than there is memory in DEMO II for
retrieving . For instance, do not capture 80K of screens when DEMO II has only 50K
free with CAPTURE in memory on a 512K PC .

When executed, CAPTURE writes out a file named "CAPTURE .RDV" in the current
directory . Refer to the previous discussion of that file .

To change the Hotkey, method of triggering, and other settings, run the CAPTCMD
program after CAPTURE is loaded .

Dan Bricklin's Demo II User Manual

The CAPTCMD Program

CAPTCMD

Trigger

CAPTCMD

CAPTCMD -OFF

CAPTCMD -FLUSH

The CAPTURE Program

This command is used to control the CAPTURE program. It must be run with the
same current directory as CAPTURE (see the previous discussion about "CAP-
TURE.RDV") .

The "-off" option turns off CAPTURE, unloading it from memory if possible .

The "-flush" option discards the captured images that have not yet been retrieved by
DEMO II. You can then continue capturing new images .

When you run this program, it displays something similar to the following informa-
tion :

3 screen images captured and waiting to be retrieved
5K out of 32K free space used

Hotkey triggering, currently Shift : 3, Key : 0
Using BIOS value for screen mode (normal)

This tells you the current status and settings . You are then given the opportunity to
change the triggering and screen mode settings :

Triggering Method : Hotkey, Timed, Watch Screen
(H/T/W)

The current method is the default if you just press Enter . Hotkey means that you trig-
ger capturing by pressing keys . Timed means that capturing is automatically triggered
after a specified amount of time repeatedly . Watch screen means that the text screen
is checked periodically and, if it has changed, capturing is triggered .

When CAPTURE is triggered, it copies the current screen image into the RAM you
reserved for CAPTURE . If successful, it makes a low pitched tone . If it is unable to
capture for some reason (not enough memory, unknown screen mode), it will make a
higher pitched sound . (For those readers technically minded who need to know, the
actual save is done at a 1/18th second timer-interrupt with interrupts not inhibited ;
saving does not occur during the keyboard interrupt .)

Hotkey Triggering

If you select Hotkey (H), you will be asked :

The CA PTCMD Program

	

65

Trigger
Hotkey

Shift

Trigger
Hotkey

Key

Trigger
Timed

First

Trigger
Timed

Between

New Hotkey Shift Value (add : LeftShift=1, Right=2,
Ctrl=4, Alt=B)

The value you type describes the shift state necessary for triggering . Pressing Enter
gets the default displayed . For example, 3 would mean both shift keys pressed (Left-
Shift plus Right = 1+2) ; just the Ctrl key pressed would be 4; Left Shift and Ctrl
pressed would be 5, and so on .

Then you are prompted for the key that must be pressed at the same time, if any :

New Hotkey Key Value (o=None, or key number)

You specify the number of the key that must be pressed at the same time as any
specified shift/ctrl/alt keys to trigger capturing . Pressing Enter gets the default dis-
played . For example, to make Ctrl-Esc the Hotkey, you would set the Shift Value to 4
and the Key Value to 1 . Zero means that no key is needed - just the shift/ctrl/alt .
The keys pressed are passed on to the program running, so it is often a good idea to
use Hotkey combinations that are ignored by your program (often shift/ctrl/alt com-
binations alone, or Ctrl-Esc, Ctrl-Pads, etc .) .

The key numbers are :

Common combinations are : Ctrl-Esc (Shift: 4, Key: 1), Ctrl-NumericPad5 (Shift : 4,
Key: 76), Ctrl-SpaceBar (Shift : 4, Key : 57), LeftShift-Ctrl (Shift : 5, Key : 0), Alt-Esc
(Shift : 8, Key : 1) . Use these examples to help you figure out any others that you
might need .

Timed Triggering	

If you specified Timed triggering, you would see the prompt :

Time to pause before first triggering (1-255 seconds)

The specified amount of time after you exit CAPTCMD, the first triggering will occur .
If you press Enter, the value shown will be used .

Time to pause thereafter between triggerings (1-255
seconds)

You can also set the amount of time between each subsequent triggering . Press Enter
to use the value shown .

66

	

Dan Bricklin's Demo II User Manual

1-Esc

	

2-1

	

3-2

	

4-3

	

5-4

	

6-5

	

7-6 8-7 9-8

	

10-9
11-0

	

12--

	

13-=

	

14-Bksp 15-Tab 16-Q

	

17-W 18-E 19-R

	

20-T
21-Y

	

22-U

	

23-I

	

24-0

	

25-P

	

26-[

	

27-] 28-Entr29-Ctrl 30-A
31-S

	

32-D

	

33-F

	

34-G

	

35-H

	

36-J

	

37-K 38-L 39- ;

	

40-'
41-`

	

42-

	

43-\

	

44-Z

	

45-X

	

46-C

	

47-V 48-B 49-N

	

50-M
51-,

	

52- .

	

53-/

	

54-

	

55-Gry* 56-

	

57-Spc 58- 59-F1

	

60-F2
61-F3

	

62-F4

	

63-F5

	

64-F6

	

65-F7

	

66-F8

	

67-F9 68-F10 69-

	

70-
71-Home 72-Up 73-PgUp 74-Gry-75-Left 76-Pad577-Rght
81-PgDn 82-Ins 83-Del

78-Gry+79-End 80-Dn

Trigger
Watch

First 1

Trigger
Watch

Between

The CAPTURE Program

If an error, such as out of memory, occurs during Timed triggering, triggering will
revert to Hotkey, thus stopping the auto-triggering . You can also stop Timed trigger-
ing by re-executing CAPTCMD .

Watch Triggering	

If you specified Watch triggering, you may see the following message . It only shows
the first time you set Watch mode in a given CAPTURE run .

Removing 4000 bytes from capture free space for doing
comparisons .

Flushing any captured screens .
Then the pause prompts are put up, similar to Timed triggering . You can stop Watch
triggering by re-executing CAPTCMD .

Time to pause before first triggering (1-255 seconds)

The specified amount of time after you exit CAPTCMD, the first triggering attempt
will be made . If you press Enter, the value shown will be used .

When a triggering is attempted in Watch triggering, the screen is compared to the
saved image of the last screen captured . This last screen starts out undefined and will
probably capture the first screen in all cases . If there are any changes, or if the image
is not a text mode screen, capturing is triggered . If there are not any changes, then the
"between" time is waited, and another triggering is attempted, and so on .

Time to pause thereafter between triggerings (1-255
seconds)

This sets the amount of time between each subsequent triggering attempt . Press Enter
to use the value shown .

If an error occurs . such as out of memory, during Watch triggering, triggering will
revert to Hotkey, thus stopping the auto-triggering .

To use Watch triggering, you usually set the first time to be long enough to enter the
program you want to capture . Then wait for the first tone, which indicates a success-
ful triggering. After you make changes to the screen (or if it changes by itself while
the program is running), you should wait long enough for the next triggering to be at-
tempted. Listen for the tone, and then continue . It is often possible to just go through
a sample session slowly and have CAPTURE save the whole thing at a very natural
pace. Set the between-time longer if you want to have time to make several changes
between captures ; set it shorter to capture frequently .

The Watch triggering feature is helpful with programs that take control of the
keyboard and that do not allow Hotkeys to work .

Screen Mode

After setting the triggering, you can specify how CAPTURE determines the display
mode of the screen .

The CAP TCMD Program

	

67

Mode

Mode
Explicit

How to Determine Display Mode : BIOS (normal), Explicit
(B/E)

You can specify that CAPTURE checks with the BIOS to find out the screen mode,
which is the normal way, or have it always assume an explicit mode . The screen
mode indicates whether the screen memory is to be interpreted as text, 320x200 bit-
mapped, 640x200 bitmapped, etc . Since most programs let the BIOS know the mode,
that is the normal way of determining the screen mode . The other option exists to take
care of those unusual cases some of us run into . Pressing Enter uses the default
shown .

If you answer "E" for Explicit, you will be given the following prompt :

Explicit Display Mode Value

The following list of allowable values is displayed :
0 =BIOS
1 = CGA text mode
2 = Monochrome Adapter Text Mode
3 = CGA 320x200 4 color graphics
4 = EGA 640x200 2 color graphics
5 = EGA 640x350 2 colors (force settings)
6 = EGA 640x350 16 colors (force settings)
7 = Hercules 720x348 page 0
8 = Hercules 720x348 page 1

The first value (0) is the same as BIOS (normal) mode . The second and third (1 and
2) are normal text modes (BIOS modes 3 and 7, respectively) . Use the text modes if
you have two monitors and you want to get from one explicitly .

The two plain graphics modes can also be used to explicitly capture from a given dis-
play adapter. They can also be used if the program you are capturing from does not
let the BIOS know that graphics mode is being used (some spreadsheet programs may
do this, for example) .

The EGA 2-color with forced settings is needed when a program leaves the EGA in a
mode such that you must force the EGA registers to read correctly . This is unusual .

The EGA 16 color must be specified explicitly . The BIOS is not used to distinguish
between 2 and 16 color . Also, this is always a "force" mode, where the EGA Read
Map Select Register and Mode Registers are explicitly set to read the memory planes .
This is the common way of running the EGA, but some programs leave the registers
set differently and you cannot check their state on an EGA . Those programs that
leave the registers set differently may behave strangely on the screen after a screen is
captured.

The Hercules modes must be set explicitly, since there is no standard way of finding
out about Hercules Graphics Card graphics from the BIOS .

68

	

Dan Bricklin's Demo II User Manual

The CAPTURE Program

Note	

There is usually no need to fully understand all of the CAPTCMD options . For most
applications you may not need CAPTCMD at all - the default settings should work .
If you are working with bitmapped images or using a program that takes control of the
keyboard (like some communications packages) and the default settings are inap-
propriate, then you may have to experiment a bit to find out which explicit setting is
appropriate for your application . The wide variety of settings are provided to help
knowledgeable users cope with as many special-case situations as possible . If you
cannot figure out a method that works with your program, you may need to speak to
the developers of the application you are trying to capture to find out how they used
the screen modes .

More information about what is captured is provided in the section on "Bitmapped
Graphics Images" and in the discussion of the I/O Retrieve command .

I f you make a mistake in
CAPTCMD. . .

You can use Ctrl-Break to exit CAPTCMD . It will not start any Timed or Watch trig-
gerings. Re-execute CAPTCMD to try again .

Using Captured Text Images
With Overlays	

Programs use various ways to show blank space on the screen . Often they use space
characters or zero attributes . A slide produced by retrieving a captured text-screen
image that is all text and space characters will obscure any overlays before it . Most
slides that you create with DEMO II only have non-transparent characters where you
explicitly put them; so this "new" type of slide will act differently with respect to
overlays . You may have to insert a ">THIS SLIDE<" overlay as the first overlay in
the overlay list in order to let other overlays be in front of the captured image . Alter-
nately, you could cut "holes" in the slide with Del or the Block Delete (F7) command
to let overlays behind the retrieved slide show through .

Zero attributes that are used to show blank space can result in other behavior: text that
was not visible on the screen when you captured it will appear mysteriously on the
slide . This occurs because the program being captured cleared the screen by leaving
the text the same and just setting the attributes to zero (black on black). DEMO II
treats zero attributes as transparent, so the background, visible attribute shows
through .

The CA PTCMD Program

	

69

70

	

Dan Bricklin's Demo II User Manual

Bitmapped Graphics Images

DEMO II can display bitmapped graphics images on the screen instead of the normal 25 rows of 80
characters . These are often refered to as "graphics screens'" . The program can display these screens, but
not create them or edit them . The images must be produced by another program and imported by using
the CAPTURE program, or shown by reference to images stored in " .PCX" files. While bitmapped
graphics slides cannot be edited or used as overlays or with overlays, they can make use of the run
facility for controlling the displaying and sequencing of slides .

Associated with each slide is its Slide Type . The Slide Type is displayed on the Slides Options menu
which is accessed with the Slides Options command . The type can be either "Normal Text" or "Bit-
mapped Graphics" . With each slide there is also a Switch Type and a Switch Speed . "Bitmapped
Graphics" slides, which we will call bitmapped slides, have an additional item . The item says "Bitmap
Origin: Capture" or "PCX Filename : filename", depending upon the origin of the bitmapped image .
Finally, each slide has a "Palette" setting with Video Bits and other information .

How To Create A Bitmapped Slide

I/o
Retrieve

I/0
Retrieve
Capture

I/0
Retrieve

Text

I/0
Retrieve

PCX

To create a bitmapped slide you use the I/O Retrieve command . You will be
prompted with :

Retrieve : from Capture, from Text file, or reference PCX
file (C/T/P)?

If you have used the CAPTURE program to capture bitmapped screen images, you
can retrieve them by responding with a "C" . New slides will be inserted after the cur-
rent slide and given type "Bitmapped Graphics" with "Bitmap Origin : Capture'" .

Responding "T" lets you import from text files and produces normal, text slides . See
the description of the I/O Retrieve command for more information .

If you type "P" you will be further prompted :

[Filename of PCX file to be referenced (include extension)

To refer to an explicit '" .PCX" file press the "key to specify a string constant, and then
type the file name . A new slide will be inserted after the current slide and given type
"Bitmapped Graphics" with "PCX Filename : filename" . For example, if you created
an image with ZSoft's PC Paintbrush that is in file "c :Apbrush\startup .pcx", you would
respond :

"c :\pbrush\startup .pcx
Enter

Don't forget the quotation mark to start the string constant!

If the name of the file will be in a string variable, you can type the variable's name or
choose it from a list by pressing "?" . Use a variable if you want to use the run actions

How To Create A Bitmapped Slide

	

71

Captured Bitmapped Images

PCX Bitmapped Images

72

to determine which file was used, i .e ., to use a different file on a Hercules system than
on an EGA system .

The two ways of getting bitmapped images are discussed at length below .

Bitmapped images retrieved from the CAPTURE program are stored along with all of
the other slides in RAM and saved in the " .DBD" files .

There are five types of captured bitmapped screens: 320x200 CGA 4 color, 640x200
CGA 2 color, 640x350 EGA 2 color, 640x350 EGA 16 color, and 720x348 Hercules 2
color.

When you execute the Slides Options Palette command, the Video Bits and Palette in-
formation captured along with the slide is displayed . This includes the color-set used
in 320x200 4 color. To change the information, see the description of the Slides Op-
tions Palette command .

Captured bitmapped images display more quickly than PCX images since they are al-
ready in memory when viewed . They take up more memory in the DBD file, and
about the same amount or slightly more on disk . Larger DBD files take longer to
load, so use this form when you want to use CAPTURE, need speed of access, and
when you are not concerned about memory requirements or DBD file-loading time .

Bitmapped images can reside in other non-DBD files separate from the other slides
and their information . These files must be in the " .PCX" Picture File Format . PCX
format is used by a variety of products, most notably ZSoft's PC Paintbrush program
and its upgrades. Similar products (sometimes written by ZSoft) are often included
when you purchase a mouse for your PC .

The PCX format is fairly general, is able to describe almost any size screen image, and
is compacted. DEMO II only recognizes the following types :

If you are not sure what type a particular PCX file is, you can use the PCXDECOD
program (PCXDECOD .EXE on the Program Diskette) . Run PCXDECOD with the
file name as an argument, like this :

Dan Bricklin's Demo II Program User Manual

Horizontal
Dimension

Vertical
Dimension

Bits/
Pixel

Number of
Planes

Bytes/
Line

320 200 2 1 80
640 200 1 1 80
640 350 1 1 80
640 350 1 4 80
720 348 1 1 90

PCXDECOD LOGO .PCX
A formatted listing of the PCX file header will be displayed. The header for PCX files
is described in the ZSoft Technical Reference Manual "Technical Documentation for
PC Paintbrush. PC Paintbrush +, and Frieze Graphics" (ZSoft Corporation, 450
Franklin Road, Suite 100, Marietta, GA 30067; 404-428-0008) . The parts of interest
are labeled "X1", "X2", "Y1", Y2", "Bit/Pixel", "NPlanes" and "Bytes/Line". "Encod-
ing" is assumed to be 1 . Horizontal dimension is X2-X1+1, and vertical dimension is
Y2-Y1+1 .

When you execute the Slides Options Palette command, the Video Bits and Palette in-
formation for this slide is displayed . That information is ignored for PCX bitmapped
slides - the information is derived from the PCX header palette information .

PCX file images take longer to display than captured images since they must be read
in from disk immediately before being displayed . They take up much less space in the
DBD file (about the same as a blank slide) and the same or slightly less on disk . Use
PCX images when you do not need to use Capture (such as when you've created the
PCX image with a paint program or used a PCX format capture program such as
ZSoft's Frieze) and when the size of the DBD file is a concern . If you are using many
high-resolution bitmapped images, you may have to use PCX format and a hard disk
due to memory constraints on the loaded DBD file .

Removing Bitmapped Information

Bitmapped Graphics Images

You can use the Slides Options Text command to turn a bitmapped slide into a normal
text slide . Any captured information is erased . References to PCX files are removed,
but the files themselves are unaffected .

Display Adapters, -BITM Options, and
Switch Speeds for Different Resolutions

The different bitmapped image resolutions and colors can only be displayed on certain
monitors and with certain DEMO II command options . Also, the Slide Switching set-
tings affect them differently . The information is contained in the table below :

Display Adapters, -B/TM Options, and Switch Speeds for Different Resolutions

	

73

Image CGA EGA Hero -BITM Switch Switch
Type 16 32 Slow

	

Fast
320x200 4 color Y Y N Y Y 0 7

640x200 2 color Y Y N Y Y 0 7

640x350 2 color N Y N N Y 0 8

640x350 16 color N Y N - - - -

720x348 2 color N N Y N Y 0 7

Text Y Y Y -- 2 5 (Types 1, 2) 0
Text Y Y Y - - 32000 (Types3,4) 0

74

The CGA, EGA, and Hercules (Herc) modes only display on the appropriate monitor .
If the monitor is not the appropriate type, the message :

Can't display this type bitmapped image on this system
will be displayed whenever the slide is shown . The stored image is unaffected by this
condition - it will display correctly when the right options and/or adapters are used .

The "-bitm l6" and "-bitm32" options to the DEMO2 and RDEMO2 programs reserve
memory for a buffer needed to display the images . If the option is needed and is not
present, an appropriate message will be displayed whenever the slide is shown . The
message will be one of the following :
Need -bitml6
Need -bitm32

The stored image is unaffected by this condition - it will display correctly when the
right option is provided .

The Slide Switch Types 1 and 2 have different minimum and maximum speeds . You
should not use any value other than those from the slow to the fast as shown in the
previous table (i .e ., not less than 0 or more than 7 for 320x200) . Bitmapped slides
only use Switch Types 0 (immediate, normal), 1 (replace top to bottom) and 2 (replace
bottom to top) . See the Slides Options menu description and the "Overview" subsec-
tion on Switching From One Slide To Another for more information about switching .

The 640x350 16-color mode does not need a "-bitm" option and it ignores the Switch
Type setting - it is always switched to as quickly as possible . 640x35016-color im-
ages may appear to display a little slower than other images since they are not moved
to the screen from an intermediate buffer and are often so large in size .

The information about text slides is provided in the table for completeness . For text
slide Switch Types 1 and 2, you will find Switch Speed values most commonly in the
range of 0 to 25 . Note that values above 25 are allowed - they just run very slowly .
For Switch Types 3 and 4, the values between 1 and 200 are useful for making text
look like it is flowing onto the screen, while the values from 500 to 32,000 are useful
for simulating typing .

Dan Bricklin's Demo II Program User Manual

DEMO II has uses for most of the keys on the keyboard ; this section defines those uses .

The keys may be interpreted differently, depending upon the mode that the program is in . The main
modes are edit mode, command mode, prompt/menu/message mode, and run mode .

Edit mode exists whenever there is no command window, prompt, or menu/message on the screen, and
you have not switched by command into run mode . This occurs when you are editing the current slide .
On bitmapped slides, do not use the editing keys that modify the ">THIS SLIDE" character positions .

You are in command mode when a command window is on the screen, and there are no prompts or
menu/messages on the screen. You can switch to command mode from edit mode by pressing the Esc
key

Prompt/menu/message mode occurs when a prompt or menu/message is on the screen .

Run mode occurs when DEMO II is running a slide show . You enter run mode by executing the Run
Run or Run Debug commands, or by using the RDEMO2 program .

Both short and long descriptions of the edit mode keys are provided. You may want to skim the short
form of all of the keys, and then read the long descriptions of just some of the keys .

The keys and their definitions are as follows :

Edit Mode Keys

Short Descriptions

character

	

Overwrites or inserts at the cursor position
keys

arrow keys Moves the cursor one position in the appropriate direction

^<Left Moves the cursor to the next "change
^Right>

Home Moves the cursor to the "edge" of the line
End

^Home Moves the cursor to the upper-left/bottom-right corner of the screen
"End

PgUp Moves the cursor to the next vertical tab stop
PgDn

^PgUp Moves the cursor to the next "change"
^PgDn

Edit Mode Keys

Keys

75

Tab Moves the cursor right/left to the next horizontal tab stop
S-Tab, F4

Enter Moves the cursor to the left margin on next line, or calls up the Block menu

"Enter "Types" the character with value 255 (FF hexadecimal) for a word-wrap New Line

Ins Toggles from overwrite mode to insert mode and back

Del

	

Deletes the character under the cursor

Bkspace Deletes the character before the cursor

Grey + Cycles through attributes for a block, or a character position and the Typing Attribute
Grey-

Grey * Executes the Typing Find command to move the cursor to given characters

Esc Calls up the Main menu

F1

	

Views previous slide

S-F1

	

Views first slide

F2 Views next slide

S-F2

	

Views last slide

F3

	

Starts line drawing

S-F3

	

Inserts new, blank slide after current slide

F4 Moves left to the next horizontal tab stop

S-F4 Sets margin at cursor column

F5 "Type special characters" command

S-F5

	

Inserts new slide after current slide with copy of current slide

F6 Invokes the Block Move command

S-F6 Starts learning a macro

F7 Invokes the Block Delete command

76

	

Dan Bricklin's Demo II Program User Manual

Keys

S-F7 Invokes the Block Copy command

F8 Invokes the Block Paste command

S-F8 Invokes the Block CAB command, bringing up CAB menu, showing current setting

F9 Toggles the marked block

S-F9 Invokes the Block Last command, re-marking block, or moving cursor corner

Fl 0

	

Sets the block/character to the first attribute . Default is inverse

S-F10

	

Sets the block/character to transparent attribute

Alt-0 - Alt-9

	

Invokes the appropriate macro
Alt-A - Alt-Z

Long Descriptions

character Typing a letter, number, or punctuation character overwrites or inserts the character at
keys the cursor position, as with a normal word processor . If the Typing Attribute is not 0,

and the CAB setting is Attrib or Both, the Typing Attribute is assigned to that charac-
ter position . Otherwise, the attribute at the character position remains unchanged .
The cursor moves one position forward, not moving past the screen edge . See the Ins
key, the Global Typing Attribute setting, the Block CAB menu, the Block Wrap com-
mand, and the Typing Direction command for more information .

arrow keys : The left, right, up, and down arrows move the cursor around the screen one character
<Left, Right>

	

at a time, as you would expect . There is no wrap-around from one line to the next .
Up, Down These are "cursor motion" keys .

^<Left The ^<Left and ^Right> (Ctrl-Left Arrow, Ctrl-Right Arrow) keys move the cursor
"Right> left/right to the next "change" on the row . A change is defined as any of the follow-

ing: a switch from blank or transparent characters to non-blank, non-transparent
characters, a switch from non-blank, non-transparent characters to blank or transparent
characters, or a change in the attribute . This is something like a "next word" key, but
is more appropriate for DEMO II . (Note that all of these changes refer to the ">THIS
SLIDE<" part of the current slide, not any overlays or the background .) The "Pgup
and ^PgDn keys work vertically in an analogous way . These are "cursor motion"
keys .

Home The Home and End keys move the cursor left or right, respectively, on the same row .
End They move to one position past the last non-blank, non-transparent character position

or the edge of the screen, whichever comes first . You use these keys to get to the
"edge" of your work . Pressing them twice ensures that you are at the edge of the
screen. (Note that it checks only the ">THIS SLIDE" part of the current slide, not
any overlays or the background .) These are "cursor motion" keys .

Edit Mode Keys

	

77

"Home The "Home (Ctrl-Home) key moves the cursor to the upper-left corner of the screen .
This is a "cursor motion" key .

"End The "End (Ctrl-End) key moves the cursor to the bottom-right corner of the screen .
This is a "cursor motion" key .

PgUp Pressing the PgUp or PgDn keys moves the cursor up/down to the next vertical tab
PgDn stop. See the Typing VTabs command. These are "cursor motion" keys .

^PgUp The ^PgUp and ^PgDn (Ctrl-PgUp, Ctrl-PgDn) keys move the cursor up/down to the
^PgDn next "change" in the column . A change is defined as any of the following : a switch

from blank or transparent characters to non-blank, non-transparent characters, a switch
from non-blank, non-transparent characters to blank or transparent characters, or a
change in the attribute . (Note that all of these changes refer to the ">THIS SLIDE<"
part of the current slide, not any overlays or the background .) The ^<Left and "Right>
keys work horizontally in an analogous way . These are "cursor motion" keys .

Tab These keys move the cursor right/left to the next horizontal tab stop . The Tab key
S-Tab, F4 moves right, the S-Tab (Shift-Tab) and F4 move left . The F4 function key is defined

to be a Shift-Tab for your typing convenience, since it is immediately to the left of the
Tab key on many keyboards and you do not have to press a shift key . See the Typing
HTabs command. These are "cursor motion" keys .

Enter If no block is marked, the Enter key moves the cursor to the Left Margin on the next
row. By default the Left Margin starts as the left edge of the screen .

If a block is marked (i .e ., the block outline is shown on the screen), the Enter key in-
vokes the Block menu as if you had pressed "Esc B" . This is provided as a typing
shortcut and for people who instinctively "finish" a block definition with Enter . In
many cases, you can execute block commands by just pressing a function key when a
block is marked, instead of calling up the Block menu .

"Enter The Ctrl-Enter key "types" the character with value 255 (FF hexadecimal) . Normally
displayed as a blank, this character is interpreted as a forced end of line when word
wrapping. See the Block Wrap command .

Ins The Ins key toggles from overwrite mode (the default) to insert typing mode, and back
again. In overwrite mode, just the character position under the cursor is affected . In
insert mode characters and attributes are pushed to the right, depending upon the CAB
setting. If the CAB setting is Character, then only the characters on the line are af-
fected ; if the CAB setting is Attribute or Both, then characters and attributes are af-
fected . See the character keys (above) and the Block CAB menu .

The Status Indicator shows "Ins" when you are in insert mode . By default, the Status
Indicator displays just this information . See the Typing Status command .

To restrict insert to less than the entire line (so it only pushes part of the line to the
right), you may want to use the Block Wrap operation . See the Block Wrap com-
mand.

78

	

Dan Bricklin's Demo II Program User Manual

Note

Keys

DEMO II does not let you insert characters that would push a non-blank, non-
transparent character off the right side of the screen. When you are typing and
DEMO II just "thuds" at you, not letting you type, check to see if you are in insert
mode by mistake .

Del

	

This key deletes the character position under the cursor. In overwrite mode, the
character is set to transparent (zero) ; if the CAB setting is Attrib or Both, the attribute
is set to transparent (zero), too . In insert mode, the character positions to the right of
the cursor on the line are pulled left by one character position. Attributes are pulled if
the CAB setting is Attrib or Both . To restrict deleting to less than the full line, you
may want to use the Block Wrap command . See the Block CAB menu and the Block
Wrap command .

Bkspace The Bkspace (Backspace) key deletes the character before the cursor . In overwrite
mode, the character is replaced by a transparent character ; if the CAB setting is Attrib
or Both, the attribute is set to transparent . In insert mode, characters (and attributes, if
the CAB setting is Attrib or Both) are pulled from the right . To restrict deleting to less
than the full line, you may want to use the Block Wrap command . See the Block
CAB menu, the Typing Direction command, and the Block Wrap command .

Grey + These keys change the attributes for the marked block, or for a single character and
Grey - the Global Typing Attribute . They let you cycle through a list of attributes by press-

ing them repeatedly until you see the colors/effect that you want .

The Grey + and Grey - keys are usually on the numeric keypad, to the right of the
main keyboard. They should not be confused with the + and - keys, on the main part
of the keyboard near the backspace key, that are the same color as the alphabetic keys .

One of two attribute lists is used . If the Global Grey +/- Cycles setting is "Attributes
in List" (the default), then the list on the Block Attribute menu is used . If the setting is
"All 256 Attributes", then a list of all attributes from 0 to 255 is used .

If a block is marked, the attribute of the character position under the cursor is ex-
amined. If no block is marked, the attribute of the character position immediately to
the left of the cursor is examined .

The attribute list is searched from top to bottom to find the first attribute that matches
the attribute being examined . Then the attribute in the list that is either immediately
after (Grey +) or immediately before (Grey -) that attribute is chosen . The list is con-
sidered to wrap around from top to bottom .

If a block is marked, the entire block is set to the chosen attribute . The block remains
marked, so that you can invoke this command again . You can unmark the block with
the F9 key or the Block Unmark command .

If a block is not marked, the character position to the left of the cursor is given the
chosen attribute, as is the Global Typing Attribute setting .

Edit Mode Keys

	

79

If the chosen attribute is transparent (00), then a "thud" sound is made . This is to act
like a click stop on a dial .

See the Global Typing Attribute setting, the Global Grey +/- Cycles setting, and the
Block Attribute menu .

Note

The attribute list is always searched from top to bottom for the first match . If an at-
tribute appears more than once, only the first instance will be found . This can lead to
your using just part of the list . Be especially careful when you use the Block Attribute
All command to add all 255 attributes to the list . Make sure that you delete any
redundant items, or use the Global "All 256 Attributes" setting for the Grey +/- com-
mands .

Grey * The Grey * key executes the Typing Find command to move the cursor to the next oc-
currence of given characters on a single slide or all slides .

The Grey * key is usually on the numeric keypad to the right of the main keyboard . It
should not be confused with the * key on the main part of the keyboard that you get
when you press the shifted 8 key .

This command prompts you to get the characters to search for . Then it asks whether it
should search just the current slide (T or Enter) or continue and search slides after this
slide (C) .

The cursor moves to the next occurrence of those characters after the current cursor
position . Repeated searches will find successive occurrences of the characters . Note
that it checks only the ">THIS SLIDE<" part of the current slide, not any overlays or
the background .

Esc The Esc key calls up the Main menu and switches to command mode . The commands
on the Main menu are : Block, Typing, Slides, Copy, Overlays, Run, Macro, Global,
I/O, Help, and Quit . Each command is described in a separate section of this manual .

F1

	

The Fl function key switches the current slide to the slide before this slide in the order
of the Slides menu list . You will then be editing that slide . This is the preferred way
to switch from one slide to another. To move a larger number of slides back in the
list, you may want to use the Slides menu and the commands there .

S-F1

	

The S-Fl function key (Shift-F1) switches the current slide to the first slide in the
Slides menu list (slide number {000l1) . You will then be editing that slide .

F2

	

The F2 function key switches the current slide to the slide after this slide in the order
of the Slides menu list . You will then be editing that slide . This is the preferred way
to switch from one slide to another . To move a larger number of slides back in the
list, you may want to use the Slides menu and the commands there .

S-F2

	

The S-F2 function key (Shift-F2) switches the current slide to the last slide in the
Slides menu list. You will then be editing that slide .

80

	

Dan Bricklin's Demo II Program User Manual

Keys

F3 The F3 function, key starts line drawing by executing the Typing Lines command .
You "draw" lines on the slide by using the arrow keys and other cursor motion keys .
Some of the keys behave a little differently than when editing (see the Typing Lines
command description). You end line drawing by pressing Enter or Esc .

S-F3

	

Shift-F3 inserts a new blank slide after the current slide, then switches to editing that
new slide. It puts up an "away next key" prompt when done .

F4

	

This moves the cursor left to the next horizontal tab stop . See the Tab description .

S-F4

	

Shift-F4 sets the left margin to the current cursor column . It is the same as the Typing
Margin command. The left margin only effects the Enter key while editing . See the
Enter key description .

F5 The F5 function key invokes the Typing Chars command to "type" special characters
onto the slide. It puts up the Special Chars menu . See the Typing Chars command .

S-F5

	

Shift-F5 inserts a new blank slide after the current slide, copies the contents of the cur-
rent slide to this new slide and then switches to editing that new slide . It puts up an
"away next key" prompt when done . The copying is the same as that done by the
Copy All command. It copies the contents of the ">THIS SLIDE<" or bitmap infor-
mation, if present, the overlay references, the run actions, the Run Type, the Run
Wait, etc .

F6 The F6 function key invokes the Block Move command to move the contents of the
marked block to a new position . What is moved is affected by the CAB setting . See
the Block Move command and the Block CAB menu .

S-F6 The Shift-F6 key lets you start learning a macro. The display of "L?" in the upper
right corner of the screen prompts you for a letter or number identifying the macro .
Type the letter or number, and then you will be "learning" that macro . Use Ctrl-Break
or Alt-macro character to finish "learning" . See the Macro command section of this
manual. This key is active in all modes except run mode, which makes it more useful
than the Macro Learn command.

F7 This key is the same as the Block Delete command . It deletes the contents of the
marked block or the character position under the cursor, if no block is marked . What
is deleted is affected by the CAB setting . See the Block Delete command and the
Block CAB menu .

S-F7 Shift-F7 is the same as the Block Copy command . See the Block Copy command .

F8 This key invokes the Block Paste command and "pastes" the last text that was Block
Deleted or Block Copied. What is pasted is affected by the CAB setting . See the
Block Paste command and the Block CAB menu .

Edit Mode Keys

	

81

Alt-A - Alt-Z

S-F8 Shift-F8 invokes the Block CAB command and brings up the CAB menu . The current
setting will be highlighted on the menu (Char, Attrib or Both) . The CAB setting af-
fects many editing commands, letting you control whether they affect characters, at-
tributes, or both characters and attributes . See the Block CAB menu description .

Note

Command Mode Keys

This is the only function key that is completely changed from the older Dan
Bricklin's Demo Program . The older program used S-F8 for Block Fill, which is
now merged with the Block menu, and it did not have the CAB setting .

F9 The F9 function key toggles the marked block . If there is no marked block, one is
started at the current cursor position . If there is a marked block, it is unmarked .

S-F9 The Shift-F9 key executes the Block Last command . If there is no block marked, it
re-marks the last marked block . If there is a marked block, it moves the cursor from
corner to corner to let you adjust the block on different edges . The block always ex-
tends from the cursor to the opposite corner . The cursor moves and the opposite
corner stays stationary .

Fl 0 The F10 key sets the currently marked block (or just the character position under the
cursor, if no block is marked) to the first attribute in the Block Attribute menu list .
The default attribute in that position is inverse video (black on white, value 70) .

If you have an attribute that you want to use often, move it to the top of the list ; F10
will set characters to its value . You can make a second common attribute easily ac-
cessible by selecting it from the Block Attribute menu list . The next time you need to
set a block to that attribute, press Enter (to bring up the Block menu), then Enter again
(for the Attrib command), and then Enter one last time (to select the highlighted at-
tribute, which will be the same as selected the previous time) .

S-F10 The Shift-F10 key sets the currently marked block (or just the character position under
the cursor, if no block is marked) to a transparent attribute (zero) .

Alt-0 - Alt-9 The Alt-0 through Alt-9 keys, and Alt-A through Alt-Z keys invoke the appropriate
macros . See the Macro command .

character Pressing a character key selects the command with that character as its initial charac-
keys

	

ter. If there is no command with that initial character, and if there is an item in the list
with that character as an identifier (on the left, usually a number), it is selected .

<Left, Right> The horizontal arrow keys move the highlight from one command in the menu to
another. They wrap from the last to the first .

82

	

Dan Bricklin's Demo II Program User Manual

Up, Down
PgUp, PgDn
Home, End

F1, F2
S-F1, S-F2

Keys

These keys, called the "list perusal keys", move the highlight in the list from item to
item. The up and down arrows move one item at a time . The PgUp and PgDn keys
move one "command box-full" . The Home key moves to the first item in the list, and
the End key moves to the last item in the list .

^Home, "End The Ctrl-Home and Ctrl-End keys move the highlight to the first and last command in
the menu, respectively .

Tab These keys let you select the action arguments to edit in the Run menu only . To edit
S-Tab, F4 the first argument to a run action, you press Tab. To edit the comment, you press " ;" .

See the Run command for more information .

Enter The Enter keys select the currently highlighted command, perhaps applying it to the
currently highlighted item in the list .

Ins This key indents the highlighted action in the Run menu only . See the Run command .

Del This key decreases the indent of the highlighted run action by one space in the Run
menu only. See the Run command .

Esc This key cancels the current command window, and returns either to whatever in-
voked this command window or edit mode, depending upon the command window .

In many command windows (such as the Run menu, the Overlays menu, the Slides
menu, and others) these keys have the normal effect of changing the current slide . In-
formation relevant to the new slide is displayed . In the Overlays Nums menu,
however, these keys move you through the list of overlays for the current slide and do
not change the current slide. See the Overlays Nums menu . In all other cases, these
keys are ignored .

S-F6 This key functions the same as in edit mode, starting macro "learn" mode .

Alt-0 - AIt-9 The Alt-0 through Alt-9 keys, and Alt-A through Alt-Z keys invoke the appropriate
Alt-A - Alt-Z macros. See the Macro command .

Ctrl-Break Pressing Ctrl-Break exits the command window and returns to edit mode .

Prompt/Menu/Message Mode Keys	

Different prompts accept different keys . Macros (Alt-character) can usually be used .

The "away next key" prompts disappear when any key is pressed and that key is ex-
ecuted normally (usually in edit mode) .

The "space to continue" prompts require you to press the space bar to continue ; all
other keys are ignored .

"Fatal" prompts require you to press Enter, and then exit the program .

Prompt/Menu/Message Mode Keys

	

83

Run Mode Keys

84

The "single character" prompts tell you which characters to choose (such as Y or N,
etc .) Just press one of the keys listed ; they are case-insensitive . You can press Esc or
Ctrl-Break to cancel .

The "type-in string" prompts require you to type some characters and then press Enter .
To accept the default shown (if any), just press Enter . To edit the default, start by
pressing an editing key . You can edit your response with the left arrow, right arrow,
Home, End, backspace and Del keys . You can cancel the operation with Esc or Ctrl-
Break. Multiple-line prompts used to set values, which may be variables or strings,
accept some other keys, as shown by the prompt (see the "Overview" section for the
discussion of Variables) .

The menu/messages always list all of the keys that are acceptable . Ctrl-Break may be
used to cancel the operation . Only those keys may be used .

The Ctrl-Break key is special to DEMO II in run mode : it terminates running . All
other keys are defined by you. See the "How Running Works" section of this manual .
The Shift-F6 and Alt-macro keys are treated as normal keys ; they do not invoke the
macro-processing operations .

Dan Bricklin's Demo II Program User Manual

Block

Typing

Slides

Copy

Overlays

Run

Macro

Global

The Main Menu

The Main menu is the first command window you will encounter . You get to the Main menu, while
editing, by pressing the Esc key . The commands on the Main menu are :

Brings up the Block menu . The Block menu contains commands to manipulate blocks
of text and attributes . The Block commands are: Attrib, Begin, Last, Unmark, Delete,
Copy, Save, Paste, Retrieve, Move, Wrap, Exchg, Xlate, Fill, 1-Box, 2=Box, 3 _Box,
4=NoBox, >Cntr, /CAB, and Names . See the "Block Commands" section of this
manual for more information .

Brings up the Typing menu . The Typing menu contains commands that are aids to
editing. The Typing commands are : Lines, Chars, Direction, HTabs, VTabs, Margin,
Status, and Find . See the "Typing Commands" section .

Brings up the Slides command window, showing the list of all of the currently defined
slides, their names, numbers, and relative positions . The Slides commands are : View,
Undo-Edit, Insert, !Delete, Print, Name, Options, Locate, #, Group, and Move . See
the "Slides Commands" section .

Brings up the Copy command window for copying parts of one slide to another . The
Copy commands are : All, Overlays, Run, Slide, and Locate . See the "Copy Com-
mands" section .

Lists and controls the overlays for the current slide . The Overlays commands are :
Nums, Slide, Value, Cursor, Adjust, Group, #, Move, Delete, OK, and Paste . See the
"Overlays Commands" section .

Displays and manipulates the run actions and the Run Type and Run Wait settings for
the current slide . Also used to start running the slides . The Run commands are : Line,
Action, 1st, 2nd, 3rd, ;Comment, Wait, Type, Tab/Ins/Del, #, Vars, Insert, Key/Event,
Delete, Move, Group, Copy, Paste, OK, *Debug, and Run . See the "Run Commands"
section .

Puts up a list of all of the allowable macros, their names, and the number of keystrokes
stored in each. The Macro commands are : OK, Run, Save, Learn, Extend, View,
Name, and Delete . See the "Macro Commands" section .

Lists and sets the current values of various global values, such as the background at-
tribute, size of the marked block, etc . Also used to access the Global Run Action list,
the Global Overlays list, the Variables list, and the Global Block Names list, as well as
to remove the current slide show from the computer's RAM memory . The Global
commands are: Edit, OK, ClearAll, Run, Variables, .Overlays, and Names. See the
"Global Commands" section .

85

86

I/o

Help

Quit

Puts up a menu with the various commands to input and output the slides and other
data. The I/O commands are: Save, Load, Print, Add, Retrieve, Code-Read, and
Write-Code. See the "I/O Commands" section .

Puts up a simple help screen, listing the actions of the function and editing keys. This
is an "away next key" prompt .

Returns to DOS . If DEMO II thinks that you may have made changes that have not
been saved to disk, it will ask you if you want to quit and abandon the changes . You
must answer Y or N ("Yes, quit and abandon changes" or "No, don't quit") .

Dan Bricklin's Demo II User Manual

The commands on the Block command menu manipulate rectangular blocks of text on the current slide .
You can start the definition of a block by using the F9 function key or the Block Begin, Block Last, or
Block Names Block commands . DEMO II shows you what is within the currently defined block (called
the marked block) by surrounding it with a single-line box . The cursor always defines one corner of the
marked block; when you move the cursor, the block's dimensions change . While a block is marked, the
characters immediately outside the block are temporarily obscured by this box . When there is a marked
block on the screen, most other operations continue as normal, such as typing, commands, and editing .
You do operations on the contents of a marked block by invoking one of the Block commands while a
block is marked . The operations usually unmark the block when they are completed .

The Block commands fall into several catagories : block marking, attribute manipulation, cut/paste, text-
position adjust, and box drawing .

Only one marked block can exist at any given time . You can restore the last block marking with the
Block Last command (Shift-F9), and you can keep many block-marking definitions by using the Block
Names commands . The named block definitions can be on a per slide basis and global basis (the latter,
by using the Global Names command), and they can include a name and a comment for each block
definition .

When character positions are deleted, copied, moved, saved, or exchanged, they go into either the
Delete/Paste buffer (Block Delete, Copy, Move, and Exchg commands) or a Named Save Area (Block
Save command). They may then be retrieved . The Delete/Paste buffer is useful for temporarily holding
something - each new Delete/Copy/etc. replaces its contents . The Named Save Areas are more ap-
propriate for blocks that you will want to retrieve repeatedly or keep through a long edit session . They
can be given names to aid in keeping them organized . Both types of buffers are saved and loaded by the
I/O Save and I/O Load commands .

The box drawing commands let you turn the block marking outline into a real box .

The CAB setting, which is set by the Block /CAB command, affects many of these operations as well as
other editing commands . CAB stands for "Character, Attribute, or Both" . The CAB setting specifies
whether these operations operate on just the character part of each character position, the attribute part,
or both the character and attribute part . There are times when you may need all of the combinations, so
the CAB setting is provided to give you control . The description for each command affected by the
CAB setting explains how it is affected .

Command Descriptions

Block
Attrib

The Block Commands

Sets the marked block (or just the character under the cursor, if no block is marked) to
a specified attribute or manipulates a list of those attributes . An attribute describes
how the character appears on the screen, such as inverse video, blinking, or color .
There are up to 256 attributes available, which are determined by your monitor and
display adapter .

When this command is invoked, another command window appears showing a list of
attributes (often called the Attribute List) and commands to manipulate them . Each

Command Descriptions

	

87

88

Block
Attrib
Select

Block
Attrib
Insert

Block
Attrib
Delete

Block
Attrib
Move

Block
Attrib
Name

Block
Attrib
Value

item in the list has the optional name of the attribute, which you can set ; the
hexadecimal value (00 through FF, representing the numbers 0 through 255) ; and a

displayed with that attribute . Those commands follow .

Sets all of the character positions in the marked block (or just the character under the
cursor if there is no block marked) to the highlighted attribute . This is the most
general way to set character positions to a particular attribute . See also the Grey + and
Grey - keys, the F10 and Shift-Fl0 keys, and the Block Xlate command .

Inserts a new attribute definition item below the highlighted one . The new item
defaults to no name and a transparent (zero) value .

Removes the highlighted attribute definition . If there is a group defined, all defini-
tions in the group are deleted . Character positions with deleted attributes are unaf-
fected.

Repositions the highlighted definition in the list . If a group is defined, the entire
group of items is moved. The first item in the list has special meaning to the F 10
function key .

Edits or replaces the attribute name. The name can be used to describe the attribute's
appearance, such as "Blue/White" ; its purpose, such as "Border" or "Error Msgs" ; or
whatever else you want . It is optional .

Edits the hexadecimal representation of the attribute displayed to the right of the
name. Type the appropriate hexadecimal digits (0-9, A-F) or use the up and down ar-
rows to change the value. Use the left and right arrow keys to switch from one digit to
another. The Tab key complements the high order bit of the digit (i .e ., adding or sub-
tracting 8), which is useful for setting the bold or blinking bits . The word "Sample" is
displayed to the right of the digits using the attribute currently defined . Note that the
attribute 00 is special -- it is a transparent attribute (see Overlays commands and the
"Overview" section about Overlays) . Press Enter when the value is what you want .
Esc cancels the command and restores the previous contents .

For a list of attributes and how they display, see the technical reference manual for
your display adapter, or try varying the value and watching the "Sample" . You can
also define them all with the Block Attrib All command, which is described in this
section, and see the "+" samples . There is also an appendix containing a list of com-
mon attribute values .

Three common attributes are usually automatically defined : inverse, normal, and
default. For color displays, the first digit usually affects the character's background
color, and the other digit affects the character itself . The high-order bit of the digits,
which is changed with the Tab key, affects blinking and intensity . On monochrome
adapters, "colors" may be only 0 or 7 (0 is black, 7 is white), with a special case of a
background of 0 and a foreground of 1 producing underlined characters .

Dan Bricklin's Demo II Program User Manual

Block
Attrib

All

Block
Attrib
Group

Block
Begin

Block
Last

Block
Unmark

Block
Delete

Block
Copy

Block
Save

Block
Save

Select

The Block Commands

Inserts the 255 attributes from 1 to 255 below the highlighted item . Note that there
must be at least one item on the list to use this command . You must confirm that you
indeed want to do this . You can define the 0 attribute (transparent) by just inserting an
item with the Block Attrib Insert command .

After defining all of the attributes, you may want to delete many of them. The Group
command aids you in doing that . Also, see the note with the description of the Grey +
and Grey - keys in the "Keys" section for a warning about duplicate attribute defini-
tions . (Duplicates only affect that operation .)

Toggles the group start .

Marks the beginning of a block, starting at the current cursor position . The block is
the rectangle delimited by this beginning screen position ; the cursor defines the op-
posite corner. Move the cursor to expand or contract the block . While a block is
defined, other commands and editing keys can be used normally . The beginning of a
block can also be marked by pressing the F9 key when no block is defined .

Restores the last block definition, if no block is marked . This allows you to use multi-
ple Block commands on the same block without having to do a redefinition .

If a block is already marked, this command moves the cursor to the next corner
(counterclockwise), so that you can adjust the block's dimensions from any corner .

It is identical to the Shift-F9 key .

Cancels the block definition . If a block is defined, the F9 key does the same thing .

Saves a copy of the marked block in the Delete/Paste buffer, then deletes it from the
current slide . The deleted area's characters are made transparent if the CAB setting is
Char or Both, and the area's attributes are made transparent if the CAB setting is At-
trib or Both . If no block is marked, just the character under the cursor is deleted . This
is the same as the F7 key .

Saves a copy of the marked block in the Delete/Paste buffer, which produces the same
result as the Shift-F7 key .

Acts like Block Copy, but puts the copy in a Named Save Area . This command puts
up a command window with a list of currently defined Named Save Areas . If none are
defined, you must create one with the Block Insert command .

The Block Save commands follow .

Saves a copy of the marked block in the Named Save Area selected by the highlight .
Instead of moving the highlight and pressing Enter, you can also type the number to
the left of the name in order to select it .

Command Descriptions

	

89

90

Block
Save
Insert

Block
Save

Delete

Block
Save
Move

Block
Save
Name

Block
Paste

Block
Retrieve

Block
Move

Block
Wrap

Creates a new Named Save Area on the line just below the highlighted one . It also
moves the highlight to that line .

Deletes the highlighted Named Save Area .

Repositions the highlighted Named Save Area. Use the list perusal keys to move .
Press Enter when the list is in the order you like, or use Esc to cancel the command .

Edits the name of the Named Save Area. Type the new name or use the editing keys
to change the current one . Esc cancels the edit and restores the original contents .

Retrieves a copy of the last deleted/copied block from the Delete/Paste buffer, and
uses it to overwrite the area starting at the cursor . A message pops up telling you that
you are Pasting. Press Enter if the text to be pasted is where you want it . If not, use
the cursor keys to move the cursor and the block being pasted until it is where you
want it. You can cancel the command at any time with the Esc key . The F8 key is the
same as the Block Paste command. If the CAB setting is Char or Both, characters are
pasted . If the CAB setting is Attrib or Both, attributes are pasted . Note that copies of
both characters and attributes are always put in the Delete/Paste buffer, so pasting is
unaffected by the state of the CAB setting when the Delete/Paste buffer was last filled .

Acts like Block Paste, but requests the name of a Named Save Area by putting up a
command window similar to that of the Block Save command. When you issue the
Select command on that menu, it acts in a manner similar to the Block Paste com-
mand, displaying a message and allowing you to confirm the Retrieve and its position .

Acts like Block Delete followed immediately by Block Paste, with the cursor position
moving to the upper-left corner of the block before the Paste . This is very useful for
repositioning blocks of text . Note that a copy of the moved text is left in the
Delete/Paste buffer. Also, note that the location definition of the "Last" block (see
Block Last command) is moved along with the block, so that the next Block Last com-
mand will refer to the new location . The Fb key is the same as the Block Move com-
mand .

Word wraps the contents of a block, and lets you type new text and have that con-
tinuously word wrapped as you type . This is a very useful feature for typing com-
ments and text in boxes in tutorials and demonstrations .

When you execute this command, the currently marked block is made into a "word
wrap block". The corners of the block are displayed as boxes, rather than corners, to
indicate a word wrap block . The text in the block is word wrapped so that there is al-
ways a space in the last column of the block . The width of the block always stays the
same, but the bottom extent moves up and down as necessary to fit all of the text . If
the CAB setting is Attrib or Both, all of the attributes in the block are set the same as

Dan Bricklin's Demo II Program User Manual

Block
Exchg

Block
Xlate

Block
Xlate
Value

Block
Xlate
Mono

The Block Commands

the upper left-most character position in the block . All lines are indented from the left
side of the block by the same number of spaces as the first line . The character number
255 (FF hexadecimal), which displays as a blank and can be typed by pressing Ctrl-
Enter, is treated as a "hard carriage return" . This forces the start of a new line.

As long as the word wrap block is defined, any typing, backspacing, or deleting within
the block will cause it to be word wrapped again . The cursor keys may be used .
Typing is always done in insert mode automatically within the block, no matter what
the normal mode . To end a word wrap block and leave the text as it is, you unmark
the block by pressing F9 . You can also use any Block command that unmarks a block
or defines a new block .

You can start word wrapping by pressing F9, typing the first line of text, then pressing
Enter and a "W" to invoke the Block Wrap command . Then you continue typing until
the block is done, making explicit new lines with the Ctrl-Enter key . Finish by either
pressing F9, putting a box around the text (Enter "1" or Enter "2"), centering the text
(Enter ">"), or adjusting its size by first pressing Shift-F9 to make it a normal marked
block again .

Large blocks may be slow to wrap, so you may want to wrap a large block one
paragraph at a time, or only after making changes .

Combines Block Delete and Block Paste to exchange the contents of the Delete/Paste
buffer with the marked block . Only the character positions inside of the marked block
are affected . The CAB setting determines what is deleted and what is pasted . To
undo this operation, re-mark the block with Shift-F9 and do it again (assuming the
blocks exchanged were the same size) .

Converts all of one attribute value into another, which is known in programming terms
as "translating" the attributes . Executing the Block Xlate command brings up the
Block Xlate menu. This command window displays the Attribute Translate Table .
There are 256 items in the Attribute Translate Table, one for each of the 256 possible
attributes . The items specify how to convert each attribute, giving the old and new
value on the left and right, respectively . The highlight starts on the value that cor-
responds to the attribute of the character position under the cursor.

The table is used to translate the attributes on the slides permanently, using the Block
Xlate Block, Block Xlate Slide and Block Xlate All commands, or temporarily on the
display only, using the Translate Attribute Cmd run action .

The commands on the Block Xlate menu follow .

Edits the hexadecimal value on the right, which is the value of the attribute that all
character positions with the value on the left of the item are translated into . Works in
a manner similar to the Block Attrib Value command .

Sets all attributes in the list to convert into normal white-on-black (07), except
transparent (0) and inverse (black-on-white, 70), which are left as no translation . This
is a way to start converting a full-color slide show into all monochrome If there is a
group, only the items in the group are set to monochrome translation .

Command Descriptions

	

91

92

Block
Xlate
Reset

Block
Xlate

Group

Block
Xlate

Block
Xlate
Block

Block
Xlate
Slide

Block
Xlate

All

Block
Fill

Block
1-Box

Block
2=Box

Block
3 _Box

Block
4=NoBox

Block
>Cntr

Sets all attributes in the list to have no translation ; that is, to convert to themselves,
remaining unchanged after translation. You may want to execute this before specify-
ing a translation after you have done another . If there is a group, only the items in the
group are reset .

Toggles the group start .

Lets you move to a specified item . Prompts for the item number, which is the second
part of each line .

Translates all of the attributes in the currently marked block as specified by the At-
tribute Translate Table .

Translates all of the attributes on the current slide as specified by the Attribute Trans-
late Table .

Translates the attributes on all of the slides in the slide show as specified by the At-
tribute Translate Table . This command requests confirmation .

Fills the marked block with the character and/or attribute in the upper left corner,
overwriting anything else in the block . The CAB setting determines what gets
changed: the character, attribute, or both .

Outlines the marked block with a single line box, similar to that of the block definition
outline. Uses the same logic as the Typing Line command . Type "1" to select this
command .

Outlines the marked block with a double-line box, similar to that of the block defini-
tion outline, but using the double-line drawing characters . This command uses the
same logic as the Typing Line command . Type "2" to select this command .

Outlines the marked block with a heavy box, similar to that of the block definition
outline, but using the character-width block characters . Type "3" to select this com-
mand .

Outlines the marked block with blanks, removing any box around it . Use this com-
mand to erase a box around a block, such as before typing in new text and word wrap-
ping it . Type "4" to select this command .

Centers the characters of each row within the block . The attributes are unaffected .
The program centers all text surrounded by blanks or transparent (0) characters . The

Dan Bricklin's Demo II Program User Manual

Block
/CAB

Block
/CAB
Char

Block
/CAB
Attrib

Block
/CAB
Both

Block
Names

The Block Commands

surrounding blank or transparent characters determine whether the "padding" will be
done with blanks or transparent characters .

A common operation is to word wrap a block with the Block Wrap command and then
center the lines with this command .

Calls up the CAB menu . The command that corresponds to the current CAB setting
will be highlighted. (Normally a menu comes up with the first command highlighted ;
this is an exception .) Type "/" to select this command. This command is the same as
the Shift-F8 key .

The CAB setting affects many editing and block operations . CAB stands for "Charac-
ter, Attribute, or Both" . The CAB setting specifies whether these operations operate
on just the character part of each character position, the attribute part, or both the
character and attribute part . There are times when you may need all of the combina-
tions, so the CAB setting is provided to give you control . The description for each
command affected by the CAB setting explains how it is affected by the CAB setting .

The commands on the CAB menu follow .

Sets the CAB setting to "Character" .

Sets the CAB setting to "Attribute"

Sets the CAB setting to "Both" .

Displays the Block Names menu with the block names for the current slide . Each
item in the list is a block name definition . On the left is the extent of the block, shown
in the form "aa/bb:cc/dd", where aa/bb is the row/column of one corner of the block
and cc/dd is the opposite corner . On the right is the optional eight character name of
the block. The block name may be followed by a "(C)", meaning there is a comment
associated with the block .

Note that there is also a Global Block Names menu with block names for the entire
slide show .

Named blocks can be used for several purposes . They can be used to quickly re-mark
any of a number of blocks, such as for translating attributes or word wrapping . They
can be used to annotate a slide show so that future developers can figure out what
things are for - either in a complicated slide show or to explain what a prototype is in
greater detail than shows on the screen . Block names can be listed on printouts of the
slides by using the I/O Print command . By printing to a file, you can use block names
to have field definition information that is used by another program that reads the print
file . This program could convert slides into forms definitions for some database sys-

Command Descriptions

	

93

Block
Names
Block

Block
Names

Comment

Block
Names

Position

Block
Names
Name

Block
Names
Insert

Block
Names

Block
Names
Group

Block
Names
Delete

Block
Names
Move

tern, for example . Block names give you a place to put the extra information you may
need .

The Block Names commands follow .

Uses the highlighted block name definition to set a marked block .

Edits the comment associated with the highlighted block . Prompts for a comment of
up to 70 characters .

Changes the highlighted item's block-position definition to be that of the currently
marked block .

Edits the name of the highlighted block,

Inserts a new block name definition item below the highlight . The currently marked
block's definition is used for the "aa/bb :cc/dd" value .

Moves to the specified item .

Toggles the group start .

Deletes the highlighted item . If there is a group defined, all items are deleted .

Repositions the highlighted item in the list . If a group is defined, the entire group of
items is moved .

94

	

Dan Bricklin's Demo II Program User Manual

The Typing commands helps you to use the special characters of the PC character set and position the
cursor. The commands are :

Typing
Line

Typing
Chars

Typing
Chars
Select

Typing
Chars
Num

The Typing Commands

Switches into line drawing mode . In this mode, moving the cursor causes the program
to "follow" the cursor with line drawing characters . If the cursor "crosses" an already
drawn line, the proper crossing character is put on the screen, if it exists. (The PC
character set does not have all of the combinations you may need .)

If you press "1", a single line will be drawn . If you press "2", a double line will be
drawn. If you press "+", "?" or "=", the character currently under the cursor is used
(and will be repeated over and over again as the cursor is moved). The arrows and
various tabs move the cursor, leaving a trail of the appropriate number of characters .
Backspace works as you would expect, with it knowing the direction you last moved .
Del or Space may be used to erase the character under the cursor without moving . Esc
or Enter both return you to edit mode . The Typing Lines command is the same as the
F3 key .

Note that line drawing "sees" only the characters on the ">THIS SLIDE<" part of the
current slide ; it does not see characters on overlays .

Note also that the Ctrl-Left and Ctrl-Right arrows move to the next minor tab stop
(columns 1, 6, 11, etc .) instead of the normal "next change" . The Home key moves to
column 1 at the left edge of the screen . The End key moves to column 80, at the right
edge. Also, the Ctrl-PgUp and Ctrl-PgDn keys are ignored . Because you usually
draw lines where there is no other text, these other definitions are more appropriate .

Puts up a command window with a list of the special characters available in the PC
character set, with their decimal and hexadecimal values displayed to their right . All
normal typing characters have been removed from the list . Use the List Perusal keys
to scan the list . Pressing Enter to select the highlighted item or typing the character (a
digit or letter) to the left of a list item causes the special character in that item to be
"typed" at the cursor. The command window is removed from the screen, but if you
invoke the Typing Chars command again, the highlight starts on the character you last
chose. The Typing Chars command is the same as the F5 key .

The first five items in the list are copies of the five most recently used special charac-
ters . They are there to help you find commonly used values quickly .

The Typing Chars commands follow .

"Types" the selected character .

Prompts for a decimal value (0 to 255) representing the character to be "typed" . This
command is useful for macros that need to select a particular character .

95

96

Typing
Direction

Typing
HTabs

Typing
HTabs

Set

Typing
HTabs
Clear

Typing
HTabs

All

Typing
HTabs
Default

Typing
VTabs

Typing
VTabs

Set

Typing
VTabs
Clear

Typing
Vtabs

All

Typing
Vtabs

Default

Typing
Margin

Changes the direction the cursor moves when you type text . The backspace key is ad-
justed accordingly . This command puts up a menu to let you choose Right (the nor-
mal way), Left, Up, or Down . This is useful for typing titles, boxes, row numbers, etc .

Puts up a menu for Setting/Clearing the horizontal tab stops (which are used by the
Tab and Shift-Tab keys) .

The Typing HTabs commands follow .

Sets a tab stop at the cursor column .

Clears the tab stop (if any) at the cursor column .

Clears all horizontal tab stops .

Clears all horizontal tab stops, then sets the standard defaults (1, 16, 31, etc .) .

Displays a menu for Setting/Clearing the vertical tab stops (which are used by the
PgUp and PgDn keys) .

The Typing VTabs commands follow .

Sets a tab stop at the cursor row .

Clears the tab stop (if any) at the cursor row .

Clears all vertical tab stops .

Clears all vertical tab stops, then sets the standard defaults (l, 6,11, etc .) .

Sets the column where the cursor positions itself on the next row when you press
Enter in edit mode . The margin column is set to the current cursor column . This is
useful for typing blocks of text that do not start in column 1 . It is independent of the
tab stops . The Shift-F4 key is the same as the Typing Margin command .

Dan Bricklin's Demo II Program User Manual

Typing
Status

Typing
Status
Hide

Typing
Status
Cursor

Typing
Status
Slide

Typing
Status

File

Typing
Status
Ins/Ovr

Typing
Find 1

The Typing Commands

Sometimes when you are typing aligned text you may find the Block Wrap command
useful, instead of using the Typing Margin .

Configures a status display that can appear in the upper-right corner of the screen .
The Status Display, by default, is shown with only the Ins/Ovr information displayed
(so it is normally blank) .

The Status Display is in the form :
rr-cc slide-name-number filename Ins

where "n-cc" is the row and column of the cursor separated by an arrow showing the
current Typing Direction; "slide-name-number" is the name and number of the current
slide ; "filename" is the name of the file, if set; and "Ins" is present if you are editing in
insert mode (as opposed to overwrite mode) .

The Typing Status command puts up another menu with the following commands :

Toggles whether or not the Status Display is shown . Defaults to Yes .

Toggles the cursor row/column Status Display on and off . Defaults to No .

Toggles the slide-name-number Status Display on and off . Defaults to No .

Toggles the file name Status Display on and off . Defaults to No .

Toggles the Insert/Overwrite Status Display on and off . Defaults to Yes .

Moves the cursor forward to the next screen position with specified characters . This is
the same as the Grey * key .

This command prompts you to get the characters to search for . Then it asks whether it
should search just the current slide (T or Enter) or continue to search slides after this
slide (C) .

The cursor moves to the next occurrence of those characters after the current cursor
position . Repeated searches will find successive occurrences of the characters . Note
that it checks on the ">THIS SLIDE" part of the current slide, not any overlays or the
background .

97

98

	

Dan Bricklin's Demo II Program User Manual

Slides
View

Slides
Undo-Edit

Slides
Insert

Slides
!Delete

Slides
Print

Slides
Name

Slides
Options

The Slides Commands

These commands allow you to name, view, create, delete, and modify information about the slides
stored in RAM memory . They appear in a command window that displays a list of the names (if
present) and the relative order of the slides . The Slides commands are :

Changes the screen display to the chosen slide . You either invoke this command
while highlighting the desired slide, or type the number to the left of the slide name .
A message appears displaying the name of the slide on the screen . You can start edit-
ing the slide on the screen by pressing Enter, move to the slide before it or after it on
the Slides list by pressing Fl or F2, go to the first or last slides by pressing Shift-Fl or
Shift-F2, or return to the Slides list display by pressing Esc .

Restores the slide currently on the screen to the way it was the last time you executed
a Slides View command, Fl, F2, Shift-Fl, or Shift-F2 (the Next, Previous, First, and
Last slide keys), or any of a variety of commands, such as I/O Save, Print, etc . It will
not retrieve a slide deleted with the !Delete command ; it just gives you a simple form
of Undo. It is good practice to briefly view another slide (with a quick Fl/F2 or Esc S
Enter) before you do an edit that you may want to undo, such as Block Fill . You can-
not undo an Undo-Edit .

Creates a new slide following the highlighted slide . All slides are renumbered . The
Shift-F3 key inserts a blank slide after the current slide in a similar manner .

Deletes the highlighted slide. If there is a group defined, then the entire group of
slides is deleted. The slides are then renumbered . It is good practice to first Slides
View the slide being deleted, Esc out of the view, and then delete it . Note that you
have to press ! to invoke this command. The ! is harder to type, so you will be less
likely to do it accidentally . The ! is a shifted key, while most other commands are
not. You cannot undo a !Delete .

Toggles the Print Flag setting for the highlighted slide . If there is a group defined, the
entire group is set like the first item in the group . The Print Flag indicator, "(P)", ap-
pears next to the slide's number if it is "On" . You can set the I/O Print command to
print only slides that have the Print Flag setting "On" . It defaults to "Off' .

Edits or replaces the name of the highlighted slide .

Displays the Slides Options information . See the Slide Options subsection below for a
description of this information .

The Slides Options commands follow .

99

100

Slides
Options
Value

Slides
Options

Text

Slides

	

Displays the Video Bits and EGA Color Palette information . See the Slide Options
Options

	

subsection below .
Palette

Returns to the Slides menu .Slides
Options

OK

Slides
Options
F1, F2

S-F1, S-F2

Slides
Locate

Slides

Slides
Group

Slides
Move

Slides
F1, F2

S-Fl, S-F2

Modifies the values associated with the second, third, and (if present) fourth items .
Puts up a variable/value type-in prompt with information about the values that are
needed. See the Slide Options subsection for information about the Switch Type and
Switch Speed values .

Changes a bitmapped slide into a text slide, deleting all of the bitmapped image infor-
mation. This change cannot be undone .

Switches the slide whose options are being shown. This does not change which is the
current slide .

Finds the next slide below the highlighted one whose name starts with given charac-
ters . A "type-in string" prompt appears in the middle of the screen showing the last
name given . You may replace it by typing new characters, edit it, or use it again .
Press Enter to start the search. The highlight will be repositioned over the next slide
whose name starts with the characters . The search is uppercase and lowercase sensi-
tive. If no match is found, the highlight will be left on the last slide . If you want it to
wrap, you can use the Home key to move to the first slide in the list; then you can reis-
sue the Slides Locate command .

Moves the highlight to the slide with the specified position in the list .

Toggles the group setting .

Changes the order of the slides . Use the List Perusal keys to move the highlighted
slide (or, if there is a group, the entire group of slides) . The slides will be renumbered
when you press Enter. The order is important to running and the Fl/F2 keys . Cancel
the command with Esc .

To change the current slide, the Fl, F2, Shift-Fl, and Shift-F2 keys can be used while
the Slides Menu is being displayed .

Dan Bricklin's Demo II Program User Manual

Slide Options

The Slides Commands

Associated with each slide is some extra information used in displaying the characters
or pixels on the screen. This information includes whether a slide has text or bit-
mapped images (Slide Type); how to switch to this slide from the previous slide and at
what speed (Switch Type and Switch Speed) ; and hardware settings that take fuller ad-
vantage of the PC's attributes and color palettes (Palette) .

Slide Type The Slide Type can be either "Normal Text" or "Bitmapped Graphics" . Slides are al-
ways "Normal Text" unless they are created with the I/O Retrieve command or
copied, using Shift-F5 or Copy All, from a bitmapped slide . Bitmapped slides can be
made into normal text slides with the Slides Options Text command ; they cannot,
however, be changed back . Bitmapped slides also indicate whether they were
retrieved from the Capture program or if they have had their images read in from a
PCX file .

Switch Type All slides have a Switch Type . By default the Switch Type is >NONE<, which is the
Switch Speed

	

same as zero. Zero Switch Type means to switch to this slide as quickly as possible .
Some bitmapped slides can only have Switch Type 0, but most others can have Switch
Types 1 and 2, also. Switch Type 1 means to replace the previous image on the screen
with the image of this slide from top to bottom at "Switch Speed" . Switch Type 2 is
the same as l, but from bottom to top. The information on Switch Speeds for bit-
mapped slides is in the "Bitmapped Graphics Images" section of this manual .

Text slides can have Switch Types 0, 1, 2, 3, and 4 . Switch Types 1 and 2 replace the
images from top to bottom and bottom to top, respectively . The Switch Speed is a
number from 0 to 25 or more, and specifies the number of vertical retraces to pause
between each line of text displayed (a vertical retrace is about 1/50-1/60 of a second) .
Switch Types 3 and 4 replace all of the characters and attributes that are different be-
tween the image already on the screen and the new slide from top to bottom . Switch
Type 4 toggles the speaker to make a "click" after every changed item is displayed .
The Switch speed can be any number from 0 to 32,000, and it represents the time to
wait between displaying the different characters . The time will appear about the same
on all machines since the wait mechanism uses the Relative CPU Speed setting (see
the Run Actions Builtin(4) description) . You should experiment with values (such as
100, 1000, 5000) to see which one is appropriate to your needs .

Switch Types 3 and 4 are very useful for simulating typing, fill-in-the-forms, and the
appearance of using a communications line . By starting from a blank screen, you can
have the whole slide come on slowly . By starting from a blank form and then switch-
ing to a form that is filled in, you can get the appearance of a user filling in the form .

Palette

	

Associated with each slide is its Palette settings . Most of the Palette information is
Video Bits quite technical and if you do not understand it, it may not be necessary for your

work. Using the Palette information requires a good understanding of the PC's dis-
play adapters from a very programmer-oriented level .

When you execute the Slides Options Palette command, a type-in prompt will be dis-
played showing the current setting of the slide's "Video Bits" . The Video Bits are
defined as follows :

Slide Options

	

101

Bit 0

	

Blue 3x9 Register Bit
Bit 1

	

Green 3x9 Register Bit
Bit 2

	

Red 3x9 Register Bit
Bit 3

	

Intensified 3x9 Register Bit
Bit 4

	

Alternate 3x9 Register Bit
Bit 5

	

Color Set: 1=Cyan/Magenta/white, 0=Green/Red/Brown
Bit 6

	

Char Backround Attrib High Bit : 1=Blink, 0=Intensity
Bit 7

	

Unused, set to 0
You can modify the value if you want, or leave it alone by just pressing Enter or Esc .
Note that the value is displayed in hexadecimal (Ox??) and you can type in
hexadecimal values by leaving the "Ox" prefix .

You can change the border colors on text slides for CGA systems by modifying the
Blue/Red/Green bits (bit 0 has value 1, bit 1 value 2, bit 2 value 4, etc .) . You can
change whether the high order bit of a character position attribute specifies blinking or
background color intensity by modifying bit 6 (0x40) . You can change the color com-
binations used by 320x200 bitmapped slides by modifying bit 5 (0x20) .

The Video Bits for a noncaptured slide are set from the Default Video Bits setting,
shown on the Global menu . It is "0x70" by default. Captured slides get the settings
that existed when the capturing was done .

If this is a bitmapped image retrieved from Capture and you press Enter, the Video
Bits value will be followed by a type-in prompt for "Palette Entry ?" . If this is non-
zero, then the following type-in prompt values are valid . (If it is non-zero, the other
palette information will be ignored .) The following 17 values that appear (press Enter
to go from one to another, Esc to stop) are used to set the EGA palette registers . They
determine the colors that the EGA actually displays . You should not modify these un-
less you understand the EGA. They are provided for those who need them .

If you modify any palette settings, including Video Bits, you should check the results
on a variety of different systems to see the results - EGA systems act differently than
CGA systems sometimes, etc .

Note

Some display adapters (such as the VGA) briefly blank the screen when the Video
Bits and other palette settings are changed . Try to keep the Video Bits setting the
same so that DEMO II doesn't have to change them when switching from slide to
slide . The "0x70" default setting is the same usually used by most programs you will
Capture . If you suspect that you are getting this flickering, you can always check by
capturing one slide, retrieving it, and then looking at the Video Bits on the slide with
the retrieved image . If it is different than "0x70", you may want to change the Default
Video Bits setting on the Global menu to be that new value, so that new slides will
have that value . You can set the existing slides' Video Bits with the Slides Options
Palette command .

102

	

Dan Bricklin's Demo II Program User Manual

The Copy Commands

These commands let you copy the items associated with one slide to another slide . You can copy the
">THIS SLIDE" part, the overlay references, the run actions and settings, or all of the slide's parts, in-
cluding bitmapped images . The Copy command displays a list of all slides, with the highlight starting
on the slide before the current slide .

Commands

Copy
All

Copy
Overlays

Copy
Run

Copy
Slide

Copy
Locate

Copies all parts of the highlighted slide to the current slide . It pastes the ">THIS
SLIDE<" part on the current slide, adds all of the overlay references to the overlay
list, adds all of the run actions to the current slide, and copies the Run Type and Run
Wait setting . It also copies any bitmapped image, Switch Type, Switch Speed, Block
Names and Palette information . The Overlay and ">THIS SLIDE" part require con-
firmation (it uses the same program code as the Copy Overlays and Copy Slide com-
mands) and are executed after the other operations .

This mechanism is used by the Shift-F5 key to create a new slide that is a copy of the
current slide .

Inserts the overlay references from the highlighted slide into the current slide's over-
lay list . This requires confirmation.

Copies the highlighted slide's Run Type, Run Wait, Switch Type, Switch Speed,
Block Names, Video Bits, and Run Actions . The Run Actions are inserted at the end
of the slide's run action list .

Pastes the highlighted slide's ">THIS SLIDE<' part on the current slide . This re-
quires confirmation .

Finds the next slide below the highlighted one whose name starts with given charac-
ters . Similar to the Slides Locate command .

Commands

	

103

104

	

Dan Bricklin's Demo II Program User Manual

The Overlays Commands

The Overlays commands let you define and manipulate a slide's overlay list . The concept of overlays is
described in detail in the "Overview" section of this manual, and the different types of overlays are
described in the "Types of Overlays" section. You should be familiar with those sections before using
overlays. For some applications, it is also important to understand the use of variables in DEMO II,
which is also discussed in the "Overview" section .

The Overlays command puts up the Overlays menu with a list of the current slide's overlays . The order
in the list is the order in which the overlays are displayed in front of the background . Each item shows
what is being referenced by the overlay and the overlay type .

There are two types of Overlays menus . One is the normal Overlays menu for each slide that you dis-
play by pressing "Esc 0" . The other is the Global Overlays menu that you display by pressing "Esc
G ." . Note that you need to press the period (" .") for the Global .Overlays command .

The Overlays commands are :

Puts up the Overlays Numbers menu which shows the settings associated with the
highlighted overlay item . See the "Types of Overlays" section for a description of
these settings .

The Overlays Nums commands follow .

Edits the value of the highlighted setting . The "Row Offset", "Column Offset",
"Visible", "Max Chars Shown", and "Scan Lines Desc" items put up a type-in prompt
for the constant or variable value for the setting . See the "Overview" section's subsec-
tion on Variables for more information about how to use that kind of type-in prompt .

This command cycles the "Type" setting for Value slides through the different types :
"Normal" (plain String Value or Numeric Value Overlays), "w/ H/W Cursor" (String
or Numeric Value Overlays with H/W Cursor), "Abs Slide Ref' (ABSREF), and "Rel
Slide Ref' (RELREF) . This is how you create those types of overlays, starting from a
normal String or Numeric Value Overlay created with the Overlays Value command
and then cycling to the desired type .

Note

Overlays
Nums

Overlays
Nums
Value

When you use variables to change the appearance of an overlay (such as modifying its
position or making it visible and invisible), changes to the variables' values will not
appear on the screen until the next redisplay . This occurs when a slide is next viewed,
when new input is requested on the current slide, and when an explicit Redisplay run
action is executed . See the "How Running Works" section .

Forgetting to do a redisplay in the middle of a loop is one of the most common mis-
takes when using overlays with variables . If the effect you are trying to produce looks
correct when you run in Debug mode, but not normally, you probably are missing a
Redisplay somewhere .

105

106

Overlays
Nums
OK

Overlays
Nums
F1, F2

S-F1, S-F2

Overlays
Slide

Overlays
Value

Overlays
Cursor

Returns to the Overlays menu .

Switches the settings being displayed from one overlay to another on the same over-
lays list. While this is similar to the normal use of Fl/F2 to move through the list of
slides, it just moves through the numbers for the current list of overlays and does not
change the current slide . This is the only command that has a different definition for
Fl/F2, but it should feel natural and is very helpful .

Inserts a new Slide Overlay definition below the highlight, or creates the first one if
none are defined . A menu/message pops up proposing a slide and constant offsets,
and it shows how the screen would look with that slide actually used as the overlay .
You can then use the arrow keys to change the offsets, press Home to reset the offsets
to 0, or Fl/F2 to change which slide is referenced by the Slide Overlay . You can also
bring up a simplified version of the Slides menu to aid you in finding a slide by press-
ing "S" . Pressing "T" makes the slide reference be to ">THIS SLIDE<" . Finally, you
can press Enter to use the offsets and slide shown, or use Esc to cancel and return the
Overlay to its original status .

Inserts a new Value Overlay definition below the highlight, or creates the first one if
none are defined . A type-in prompt appears so that you can specify the value to be
used for the overlay. Then a menu/message pops up showing the value chosen and
proposing constant offsets. The overlay's position is represented on the screen by a
string of 80 characters with the pattern "1 . ..VAL . . .11 . .VAL . . .21 . ." . The numbers are
positioned like a ruler, so you can see where 37 characters would be, for example .

You can then use the arrow keys to change the offsets or press the Home key to reset
the offsets to 0 . You can also bring up the type-in prompt again to respecify the value
by pressing "V" . Finally, you can press Enter to use the offsets and value shown, or
Esc to cancel any offset changes and return the Overlay to its original state . ("V"
operations are not cancelled .)

Note

When you use Value Overlays, any changes to the variables will not appear on the
screen until the next redisplay. This occurs when a slide is next viewed, when new
input is requested on the current slide, and when an explicit Redisplay run action is
executed. See the "How Running Works" section .

Forgetting to do a redisplay in the middle of a loop is one of the most common mis-
takes when using variable overlays . If the effect you are trying to produce looks cor-
rect when you run in Debug mode, but not normally, you probably are missing a
Redisplay somewhere .

Inserts a new H/W Cursor Overlay definition below the highlight, or creates the first
one if none are defined. A menu/message pops up proposing constant offsets, which
starts at the DEMO II cursor location, and shows how the screen would look with
those offsets . You can then use the arrow keys to change the offsets or press Home to

Dan Bricklin's Demo II Program User Manual

Overlays
Adjust

Overlays
Group

Overlays

Overlays
Move

Overlays
Delete

Overlays
OK

Overlays
Paste

Overlays
F1, F2

S-F1, S-F2

The Overlays Commands

reset the offsets to 0 . Pressing Enter leaves the new offset definitions ; pressing Esc
cancels them .

Adjusts the constant row and column offsets as well as changes the slide or value
referenced by the highlighted overlay definition . It puts up a menu/message similiar
to that shown when you create the overlay definition . See the descriptions for the
Overlays Slide, Overlays Value, and Overlays Cursor commands .

Toggles the group setting .

Moves the highlight to the specified item in the overlays list .

Repositions the highlighted item . If there is a group, then the entire group of overlay
definitions is moved . The order of overlays in the list is important . Characters and at-
tributes on overlays lower in the list can obscure characters and attributes above them .
See the discussion of overlays in the "Overview" section of this manual .

Erases the highlighted overlay definition . If there is a group, the entire group of
definitions is erased . This operation has no effect on the referenced slides or values .

Returns to edit mode .

Removes the highlighted overlay definition and "pastes" a copy of the referenced slide
in the same position onto the ">THIS SLIDE<" part of the current slide . This converts
an overlay reference, which changes in appearance when the referenced slide is
modified, into a fixed copy . The fixed copy does not change and can be edited as part
of the slide . This command is affected by the CAB setting .

This operation is only applicable to Slide Overlays, and appears only on the normal
Overlays menu, not the Global Overlays menu .

Switches the current slide to another slide and displays its overlays list . These keys
can be used while the Overlays menu is displayed .

107

108

	

Dan Bricklin's Demo II Program User Manual

How Run Actions Are Entered, Edited,
and Displayed

The Run Commands

The Run commands let you set the Run Type and Run Wait associated with a slide. In addition, you can
create or edit the action lists associated with each slide. Together, these settings and action lists control
how DEMO II switches from slide to slide when running a slide show, as well as how it modifies vari-
ables, produces sounds, and other effects . Two of the Run commands let you start running the slide
show : one normally, and the other in a debugging mode for testing purposes .

Before using the Run commands, you should be familiar with the concept of running and run action
lists . These are described in the "Overview" section as well as the "How Running Works" section of this
manual . You should also be familiar with how run actions are displayed, which is described in the first
subsection below .

In addition to the normal Run commands that operate on the slides' action lists and settings, there is a
Global Run command that operates on the Global Run Action list. Both commands work in a similar
manner .

DEMO II displays and manipulates run actions in its own unique way . Because run
action lists are similar to programs, you might expect them to be entered and edited by
a normal text program "editor" ; they are not. Each run action is entered and edited
using a menu system similar to the rest of DEMO II . A few extra keys are accepted to
make the process more efficient and natural .

The reason that DEMO II uses a menu system for entering and editing run actions
stems from the way in which the program is used. Most operations can be done in one
or two run actions, such as just viewing another slide or sounding a tone . The selec-
tion of which run actions to execute is usually done by the DEMO II Key/Event sig-
naling mechanism, which requires very little program writing - just the setting of
Key/Event labels. In most cases you are just choosing Key/Event labels or slides to
view out of long lists of alternatives . This method of operation is best served by a
menu mechanism rather than a normal program editor . Plus, you do not have to move
from one environment to another to change the few actions usually associated with
most slides .

Even when you get into more complicated programming, the benefits of a menu sys-
tem appear to outweigh the benefits of a normal editor for most users . Since large
programs are infrequently written for DEMO II, you probably will not get that much
practice to help you learn the format of many of the run actions . The particular menu
system used ensures that syntactically correct programs are always written and
provides the equivalent of an on-line "reference card" . The menu system is also very
keystroke-efficient, letting you create programs quickly .

Let's look at a typical run action line and see how the menu system is used to create
and edit it .

How Run Actions Are Entered, Edited, and Displayed

	

109

Any Key

Key/Event
Label

Run Action

Tone Note 48 For short ;indicate error

1st

	

2nd

	

Comment
Argument

	

Argument

110

The run action line in Figure 1 has a Key/Event label, the run action Tone Note, which
sounds a tone the next time the screen is redisplayed, and a comment :

Figure l . A typical run action line

The "Any Key" on the left is the Key/Event label, the "Tone Note 48 For short" is the
run action, and " ;indicate error" is the comment .

To create this run action line, you first execute the Insert command . (Note that all of
these commands are on the Run menu, so we will not mention the full list of com-
mands to execute when listing the commands .) This brings up a command window
with the Key/Event list - the list of all Key/Events . You select the "Any Key"
Key/Event in a normal DEMO II-like manner. It is the last item in the list, so you can
press End and then Enter. This inserts a new run action line below the line with the
highlight (or it creates the first line if none is present) and displays :

Any Key
A new menu appears at the bottom of the command window and the title of the com-
mand window changes to RUN: ACTION MENU . The menu lets you chose a run ac-
tion .

Some of the more common run actions, such as View and Quit, are listed in this menu .
The rest of the run actions are grouped and can be selected on submenus . The run ac-
tion we want is on the Tone submenu .

The submenus are :

Programming Run actions for testing values, looping, and transferring
Tone

	

Run actions for producing sounds
Other-Slide Run actions for viewing other slides
Key/Event

	

Run actions to continue executing actions on other
action lists

String

	

Run actions to manipulate string values and variables
MiscellaneousRun actions very specific to DEMO II
File

	

Run actions to control file and printer I/O

Dan Bricklin's Demo II Program User Manual

The Run Commands

By selecting the "Note" command on the "Tone" submenu, the run action line changes
to :

Any Key

	

Tone Note VALUE? For 1/18-SECS?
This is the "form" for the Tone Note run action . The form is the standard text of the
command (here, "Tone Note" and "For") along with information about the arguments
to the run action . Arguments are the parameters to the run actions that you provide,
such as numeric values, variables, strings, and slide references . When these argu-
ments are not set, an indication of the type of argument needed is displayed, usually in
uppercase letters ending with a "?" . In this case, there are two arguments to the run
action: the first is a value and the second is an indication of how many 1/18 seconds .
The second argument is also a value, but the "1/18-SECS" provides you with
reference information about the way in which the argument is interpreted .

All run actions have between zero and three arguments, with descriptive text around
the arguments to make the run action readable and understandable .

After chosing this run action, the command window changes back to the "RUN
MENU", and the menu changes to one for entering or editing an argument . The
prompt at the bottom says "Setting first argument (1)" .

To set the note value to 48, you just type "48"

There are other ways of choosing a value that gets you variable names, key or
Key/Event values, or references to strings . After setting the value, you press the Tab
key to move to the next argument . Here you can type the name of the variable "short"
or press "?" to display a list of all variables, and then choose it from the list . Since
there are only two arguments to this run action, if you end the name "short" with a
Tab, you will be editing the comment field . All run action lines can have comments.
They are used for descriptive purposes . Here we just type the comment "indicate
error" and then press Enter to get :

Any Key

	

Tone Note 48 for short

	

;indicate error
The keys we pressed to get this run action were :

I

	

- Select the Key/Event Label
End
Enter
T N

	

- Select the run action
4 8

	

- Give the first argument
Tab

	

- Move to the second argument
S h o r t

	

- Give the second argument
Tab

	

- Set the comment
indicate

	

error
Enter

This is much shorter than that needed in most editors, and (because of the prompts)
easier to produce correctly for the novice .

How Run Actions Are Entered, Edited, and Displayed

	

111

112

To create a new run action line with no Key/Event label, you can use the Line com-
mand. It is the first command on the Run menu, so that you can get a new run action
line by just pressing Enter . Like the Insert command, it then switches to choosing the
run action for the line .

For example, to add a "View Slide >PREVIOUS<" run action without a Key/Event
label, you would press :

Enter

	

- Insert a new line
V

	

- Select the View run action
P

	

- Select the Previous slide
To change the run action on a line, you use the Action command .

To edit an argument, you can just type the number corresponding to the argument (l,
2, or 3), executing the 1 st, 2nd or 3rd commands, or use the Tab and/or Shift-Tab (F4)
keys. The Tab keys change which part you are editing, just like when you are
originally setting the arguments . This use of the Tab keys is unique to the Run com-
mand. You set the comment by executing the ;Comment command or using the
Tab/Shift-Tab keys .

Run actions are often displayed in a manner that indents loops and the parts of
mulitiple line run actions such as "If' . This indenting can be automatic or manual and
is ignored by the running mechanism . Its only purpose is to make the run actions
more readable . Lines that DEMO II thinks should be indented or moved left are
moved by the number of columns listed in the Global Run Action Indent setting on the
Global menu when they are created . You can manually indent a run action line by
pressing the Ins key, and move it left by one character by pressing the Del key . This

Creates
new line

with
Key/Event

label and
run action

Insert

Changes
label of

existing
line

Key!
Event

Action

Tab
Line

(Enter)

Changes

action on
existing line

Tone Note 48

Edits first

argument of
existing run

action

For short ; ; ndicate error

Tab,
S-Tab

1st, 2nd,
3rd,

Edits
specific

part of
existing

run action

Enter

Creates a
new line

with just a
run action

Any Key

`~

	

Finishes editing

Pun Menu

.	.
Del Ins
Changes
indent

Switches from one
part to another

Figure 2 . Editing run actions

Dan Bricklin's Demo II Program User Manual

use of the Ins and Del keys is unique to the Run command and does not affect the In-
sert/Overwrite setting ; nor does it delete any text or run actions .

You can change, add, or delete Key/Event labels with the Key/Event command .

Figure 2 summarizes the information about creating and editing run actions .

Note

Copy/Paste and Other Commands

The Run Commands

String constant run action arguments only display up to eight characters . If the string
constant has more than eight characters, just the first seven are displayed, followed by
a">" character. You can scroll though the entire value when you edit the argument .

Individual or groups of run action lines can be deleted or moved with the Delete and
Move commands, respectively. The Delete and Copy commands put a copy of the
highlighted run action line into the Action Copy/Paste buffer . If there is a group of
lines, then copies of all of the group's lines go into the buffer . These copies of run ac-
tion lines can be pasted into any run action list by using the Paste command . They can
also be saved to a file and reloaded later with the I/O Write-Code and I/O Code-Read
commands, respectively . All information about the copied lines is preserved, if pos-
sible, including references to variables and values, along with their definitions .
References to slides (in the View, Call and Use run actions) are only preserved until
any save or load is done (including Write-Code) or any slide is deleted . In those
cases, the value is undefined, leaving just a "SLIDE-REF?" in the form .

The Type and Wait commands let you set the Run Type and Run Wait values . The
Run Wait is zero by default, and the Run Type is the value on the Global Default Run
Type setting on the Global menu .

The Run and *Debug Commands

The RUN and *Debug commands are used to start the slide show running . RUN starts
it running normally, while *Debug starts it running immediately in Debug Run mode .

You can stop running at any point by pressing the Ctrl-Break key . This will bring up
a prompt asking you whether you want to quit running or continue running but in
Debug mode .

Debug Run mode brings up the Debug menu/message whenever a run action is ex-
ecuted or a key pressing Key/Event is not matched . The menu/message gives you in-
formation about the state of running; it then lets you continue with Debug running
(also called "single step") by pressing Enter, switch to normal continuous running with
"C", examine the list of variables and their values with "V", or stop running with Esc .

The Run and *Debug Commands

	

113

Command Descriptions

114

Run
Line

Run
Action

Run
Action
?List

Run
1st

Run
2nd

Run
3rd

Run
;Comment

Run
Wait

Run
Type

Run
Tab/Ins/Del

Inserts a new blank line below the highlighted one (or creates the first line if there is
none) and then executes the Run Action command . It is the first command on the
Run menu, so you can get a new run action line by just pressing Enter .

Sets the run action on the highlighted line . It brings up the Run Action menu . The
Run Action menu lets you choose from among all of the available run actions . One of
the commands on this menu is the Run Action ?List command, which lists all of the
run actions in menu order . Just press Enter to select an item . All of the other com-
mands on the Run Action menu are described in the "Run Actions" section of this
manual .

Lists the run actions . Press Enter to select an item .

These three commands edit the indicated argument to the highlighted run action . To
select one of these commands, you type "1", "2", or "3", respectively .

Edits the comment part of the highlighted run action line when you press the " ;" key .
If you then start typing, the current comment is replaced . If you start with an editing
key, you can edit the current comment. A comment with no characters causes the en-
tire comment to be removed, including the " ;" .

Sets the slide's Run Wait setting . This value is used when viewing a slide and usually
specifies a time in 1/18 seconds . See the "How Running Works" section for a descrip-
tion of Run Types and how they use the Run Wait setting . When a blank slide is
created, this setting has a value of zero by default .

Sets the slide's Run Type setting . This value is used when viewing a slide to deter-
mine how to process keys and when waiting should be done. See the "How Running
Works" section for a description of Run Types . When a blank slide is created, this
setting gets the Global Default Run Type then in effect .

Has no effect. It is provided so that you have a description of what the Tab, Ins and
Del keys do. Not all people read manuals carefully, and these are useful functions to
know about.

Dan Bricklin's Demo II Program User Manual

Run

Run
Vars

Run
Insert

Run
Key/Event

Run
Key/Event

Select

Run
Key/Event

Run
Key/Event

Key s

Run
Key/Event

Tag

Run
Key/Event

Reset

Run
Delete

The Run Commands

Moves the highlight to the specified line number . For your convenience, the lines are
numbered on the left . These are not for selecting, like the fixed 1-9/A-F on some
other menus, but rather, for identifying all of the lines . Lines are renumbered after In-
serting, Deleting, Moving, etc .

Calls up the Variables menu . This is provided for your convenience .

Inserts a new line following the line with the highlight (or creates the first line if there
is no highlight), then executes the Run Key/Event command followed by the Run Ac-
tion command . This command inserts a new run action line with a Key/Event Label .

Sets the Key/Event label for the highlighted line . This command invokes the
Key/Event list command window, which displays all of the Key/Event names .

The Key/Event menu commands follow .

Selects the Key/Event highlighted . You can also type the character on the left of the
desired line, with this menu command highlighted, to select a Key/Event . The last
Key/Event selected in this manner is highlighted the next time you execute this com-
mand .

Prompts for a Key/Event number . That value is used as the selected Key/Event. This
can be used in macros, so you do not have to know the position of the highlight .

Prompts for you to press a key . The most specific Key/Event that matches that key
will be selected. This is a very useful way of selecting most Key/Events that refer to
key presses, except those that are general, such as "Aa" and "Any Punc" .

Sets a Tag Key/Event label, prompting for a tag name of up to eight characters . See
the description of Tags in the "How Running Works" section.

Clears the Key/Event label so that the run action line has no Key/Event label .

Copies the currently highlighted line (or all of the lines in the group, if there is a
group) to the Action Copy/Paste buffer, erasing any lines that were already there .
Then it deletes the lines from the run action list . If there is a group, it always copies
the lines, even if you cancel the command when it prompts for confirmation .

Run

	

Repositions the highlighted line . If there is a group, the entire group of lines is reposi-
Move

	

tinned. Note that any indenting is not redone to conform to the program's structure .
You may want to use the Ins and Del keys to change the indenting on lines after a
move .

Command Descriptions

	

115

116

Run
Group

Run
Copy

Run
Paste

Run
OK

Run
*Debug

Run
RUN

Run
F1, F2

S-F1, S-F2

Toggles the start of a group of lines . Groups can be moved, deleted, and copied .

Copies the currently highlighted line (or all of the lines in the group, if there is a
group) to the Action Copy/Paste buffer, erasing any lines that were already there .
Turns off the grouping .

Inserts the current contents of the Action Copy/Paste buffer below the highlight (or
creates the first lines, if there are none) . If more than one line is pasted, it is marked as
a group so that you can delete it if you change your mind, move it, etc . You can turn
off the grouping by pressing "G" to execute the Run Group command .

Note that any indenting is not redone to conform to the program's structure . You may
want to use the Ins and Del keys to change the indenting on lines after a paste .

Run action lines are pasted just as they were when they were copied/deleted . Direct
slide references are changed to "SLIDE-REF?" if there was a slide deleted . Direct
slide references are also changed if there was any saving or loading of slides or the
Action Copy/Paste buffer since the lines were put in the buffer . If the run actions refer
to variables that are no longer defined, those variables will be defined as they were
when the lines were put in the buffer .

Returns to editing .

Starts running in Debug mode . Puts up the Debug menu/message before run actions
are executed or when a key pressing Key/Event is not matched . Debug mode is useful
to find out why your slide show is not acting as you expect . Press "*" to select this
command.

Starts running the slide show normally .

Switches the current slide to another slide and displays its run action list .

Dan Bricklin's Demo II Program User Manual

DEMO II has learn-type keyboard macros built in . They allow you to perform a series of, operations and
have your keystrokes recorded. You can then play those keystrokes back by pressing a single key .

There are 36 separate macros, Alt-0 through Alt-9, and Alt-A through Alt-Z . Macros Alt-0 through Alt-
9 are stored with the slides when they are saved . These should be those macros that are specific to a par-
ticular series of slides . Macros Alt-A through Alt-Z are stored in a system file "ALT A Z .SG l" in the
DEMO II System Directory. They are reloaded whenever a file is loaded or memory is cleared, which
occurs at start up and after a Global C1earAll command .

To invoke a macro, you type its name (0-9, A-Z) while holding down the Alt key . While the macro is
being run, the letter R, followed by the macro name, will appear in the upper-right corner of the screen .

The Macro command puts up a command window listing all of the 36 macros . Each item has the name
of the macro (0-9, A-Z), a descriptive name provided by the user, and the current length of the macro in
keystrokes .

The following is a list of the Macro commands .

Returns to editing .

Starts running (playing back) the highlighted macro .

Macro
OK

Macro
Run

Macro
Save

Macro
Learn

The Macro Commands

Saves the current definitions of macros A-Z in the DEMO II system file
"ALT A Z.SG l" . Macros A-Z are not saved by the I/O Save command, but macros
0-9 are .

Starts recording keystrokes for the highlighted macro, erasing any previously stored
keystrokes . The letter L and the name of the macro being recorded appear in the
upper-right corner of the screen . DEMO II starts recording in that macro definition all
keystrokes that you type . The keystrokes will be executed, as well . To stop learning a
macro, press Alt-name, where "name" is the macro being learned (e .g ., Alt-0), or press
Ctrl-Break. You can invoke macros within macros, but illegal combinations, such as
invoking a macro that is running, are caught ; you will then get an error message . You
cannot Save or Load slides in the middle of a macro. (Those commands, as well as
Run Run and Run *Debug, turn off any running or learning of a macro .)

The Shift-F6 key prompts for a letter or number by displaying "L?" in the upper-right
corner of the screen . It then also "learns" the macro associated with that character .
Shift-F6 can be used instead of the Macro Learn command, and it can be used in more
places. For example, you can invoke Shift-F6 in the middle of another command,
while Macro Learn can be invoked only from Edit mode . As with the Macro Learn
command, you stop learning a macro by invoking it or pressing Ctrl-Break.

117

Macro
Extend

Macro
View

Macro
View
OK

Macro
View
Insert

Macro
View

Delete

Macro
Name

Macro
Delete

Continues recording keystrokes for the highlighted macro, appending them to any pre-
vious keystrokes. See Macro Learn .

Displays the contents of the highlighted macro in a command window . You can use
the list perusal keys to see the stored keystrokes .

The Macro View commands are :

Returns to the Macro command window .

Adds a keystroke to the macro definition . Prompts you to press a key . The key you
press is added to the listed macro below the highlight . (Or it becomes the first key, if
there are none .)

Erases the highlighted keystroke from the macro definition .

Edits the descriptive name of the highlighted macro .

Erases the definition of the highlighted macro .

118

	

Dan Bricklin's Demo II Program User Manual

The Global Commands

The Global command puts up a command window which displays several Global Settings. You may
use the list perusal keys to move the highlight to many of the settings, and then change them with the
Edit command . There is also a command to clear memory (erase all slides, etc .), and others to call up
the Global Run menu, the Variables menu, the Global Overlays menu, and the Global Block Names .

The following is a list of the Global Settings ;

No Marked If no block is marked, then the screen position (row, column) and contents of the
Block character under the cursor are displayed . The hexadecimal value of both the text

character and attribute are displayed . Characters on only the current slide's ">THIS
SLIDE<" are shown - not on any overlays . This is useful for differentiating between
transparent characters (00) and blanks (20), as well as looking at attributes of Cap-
tured slides . This value may not be changed by the Global Edit command .

Marked The size of the marked block, if present, in rows and columns . This is useful for find-
Block

	

ing out the size of something on the screen . Just mark it as a block, and see the size
with the Global command . This value cannot be changed by the Global Edit com-
mand .

Memory The amount of memory used and the amount available, both in KBytes (1024 bytes)
and chunks (16 bytes each) . The internal unit of chunks is provided so that you can
get a feel for how DEMO II uses memory when you are trying to minimize the size of
a set of slides . Many operations cannot be done when there is less than about 10-
20KBytes of memory left . This value cannot be changed by the Global Edit com-
mand .

Current The name of the file last loaded, and used as a default . This value cannot be changed
Filename by the Global Edit command .

System Files The name of the directory where DEMO II system files are stored . It is set only by the
Directory DIR option to the DEMO2 DOS command . If it is not set, the DOS Current Directory

is used. The DEMO II System Directory contains the _ALT A Z.SG 1 (Macros A-Z),
P?????? .SG2 (Printer Mappings), and INIT .DBD (InitFile, loaded after memory is

cleared) files .

Display The type of display adapter operation being used . It is only set automatically or by
Adapter option to the DEMO2 DOS command . For a list of options to the DEMO2 DOS com-

mand, see the "DEMO2 and RDEMO2 Programs" section of this manual .

Changes If DEMO II thinks that a change may have been made since the slides were loaded,
Made this is "Yes"; otherwise it is "No" . A warning is posted if you try to execute the Quit

or I/O Load commands when this value is "Yes" . This value is sometimes set even if
you just display a menu that could make changes . The Global Edit command will tog-
gle this value .

119

Typing

	

The attribute that is placed on a character when you are typing . If zero (the default),
Attribute

	

then the screen position's attribute will remain unchanged . Invoking the Global Edit
command when this item is highlighted will bring up a command window, similar to
that of the Block Attribute command, to be used to define/select an appropriate dis-
play attribute . See the Block Attribute command .

The Typing Attribute can be set with the Grey + and Grey - keys, and is only applied
if the CAB setting is Attribute or Both . See the "Keys" and the "Block Commands"
sections .

Grey +l- Determines whether the Grey + and Grey - keys cycle through the attributes in the
Cycles

	

Block Attribute list or all 256 possible attributes . The Global Edit command switches
between these two values . The default value is the Block Attribute list .

Background The attribute of the background of all slides . This is the attribute that is shown when
Attribute

	

all attributes after it are transparent . The Global Edit command works similar to the
Global Typing Attribute value .

This value can also be set while running by the Set Builtin(6) run action .

Background

	

The character that is displayed if no characters are overlaid after it . This character is
Character usually the Space character (20 hexadecimal), but for debugging of overlays and spe-

cial effects you may want some other value . Invoking the Global Edit command when
this item is highlighted will bring up a command window with all of the possible 256
characters . Select one .

This value can also be set while running by the Set Builtin(7) run action .

Menu The attributes of the menu background can be set . The Global Edit command works
Background

	

similar to the Global Typing Attribute value .
Attribute

Menu The attributes of the menu highlight can be set . The Global Edit command works
Highlight

	

similar to the Global Typing Attribute value .
Attribute

Default

	

The initial value used for a slide's Video Bits setting . See the "Slides Commands"
Video Bits

	

subsection, "Slide Options," for more information about the Video Bits setting . The
default value is 70 hexadecimal . The Global Edit command prompts for a new value .
Precede the value with "Ox" or "x" for hexadecimal ; otherwise, decimal values will be
used.

Default The initial value used for a slide's Run Type setting . See the "How Running Works"
Run Type section for a description of the Run Type . The Global Edit command prompts for a

new value .

Run Action The number of character positions to indent new run actions for each level within a
Indent Incr loop, conditional, etc . See the "Run Commands" section. The Global Edit command

prompts for a new value .

120

	

Dan Bricklin's Demo II Program User Manual

The Global Commands

Overlays If "No", overlays are not shown -just the slides' ">THIS SLIDE<'s" themselves . If
Shown "Yes", overlays are shown, too . Toggled by invoking the Global Edit command when

this item is highlighted . This is useful when you are checking out slides and their
overlays. See the "Overlays Commands" section for more information .

Timeout The number of seconds to wait, while running, for the user to press a key before the
During Run Timeout Key/Event is signaled . Invoking the Global Edit command while this item is

highlighted will prompt you for a value from 0 (none) through 999 seconds (about 16
minutes) . The default is 0 (Timeout not signaled) . See the "How Running Works"
section for more information .

This value can also be set while running by the Set Builtin(8) run action .

The following is a list of the Global commands :

Changes the value of the highlighted item . See the list of Global settings listed above
for descriptions of its effect on each setting .

Returns to editing, remembering the item highlighted so it will be highlighted again on
the next Global command .

Erases all slides, settings, etc ., and starts with a clear memory and default settings .
The INIT.DBD file is loaded, if it exists, to set user-defined default values for most
settings, etc. Then the Macros A-Z file is loaded (see Macros Save) .

Calls up the Global Run menu, displaying the Global Run Action list . This works in a
manner similar to the normal slide Run command. See the "Run Commands" section .

Calls up the Variables menu . See the "Variables Menu" section .

Calls up the Global Overlays menu, displaying the Global Overlays list . See the
"Overlays Commands" description. Note that you must press a " ." to invoke this com-
mand.

Calls up the Global Block Names menu, displaying the Global Block Names list. See
the "Block Commands" section for a discussion of Block Names .

121

Global
Edit

Global
OK

Global
CIearAll

Global
Run

Global
Variables

Global
.Overlays

Global
Names

122

	

Dan Bricklin's Demo II Program User Manual

The I/O commands are used to save and load what you are working on, print the screen images, save
screen images to a file, load portions of another slide show, retrieve images captured from other
programs, import text files, and save and load the Action Copy/Paste buffer .

The I/O commands are listed below .

I/0
Save

I/0
Save

Select

I/0
Save
New

I/0
Save
Full

I/0
Save

Dir

I/0
Load

The I/O Commands

Saves all slides, attributes, overlay definitions, run action lists, named save areas, cur-
rent Delete/Paste buffer, cursor location, current slide number, tab settings, etc ., in a
" .DBD" save file. Puts up a command window with the name of the current save file
(if set) followed by a directory listing of " .DBD" save files (which may include the
current save file, if it already exists) . The name of the current default directory that is
being listed is shown in the window title, which is set by the I/O Save Dir command .
You can move the highlight with the list perusal keys, and then select a file to be used
for the Save operation. If the file already exists, you will be asked to confirm that you
indeed want to replace its contents . No " .BAK" file is produced .

Note

The current slide at the time you do an I/O Save is important . That slide will become
the current slide when the " .DBD" file is reloaded. If the " .DBD" file is loaded by
RDEMO2, running will start with that slide as the first slide in the slide show .

The I/O Save commands are :

Uses the highlighted file name .

Prompts for the name of a new file to use in the default directory shown . The file may
or may not exist. Do not type an extension - the correct one will be assumed . The
name given becomes the new "current" file and is selected .

The same as I/O Save New, except you can type a full pathname (with no extension) .

Prompts for a pathname of a directory . That directory becomes the new "default"
directory and is listed . If the value is all blank, then the DOS Current Directory is as-
sumed. A drive specifies, such as "A:", can be used .

Clears everything, then reloads what was saved in a " .DBD" file by the I/O Save com-
mand. DEMO II will then be just as it was when you saved it, with the same slide on
the screen, the same cursor position, etc .

This command operates similarly to the I/O Save command, listing files, etc . If chan-
ges have been made since the last file was loaded or memory cleared, then you will be

123

I/0
Print

Character
Mapping

prompted for a confirmation . After the file is loaded, the Macros A-Z file is reloaded,
if present .

Read errors (such as diskette read errors, but not "file not found" errors) and other er-
rors that occur while reading files, such as out of memory, are often fatal to the opera-
tion of the program . They cause the DEMO II program to display an error message
and then quit, since the partial read may leave DEMO II in an inconsistent state .
These errors should be uncommon .

Controls the printing of slide images, information about slides, etc . Puts up a com-
mand window with the following Printer Settings :

Output To The filename of the current print file, or the word "[PRINTER]" if output is to go to
the PRN device (DOS's standard print device) . Editing this value with the I/O Print
Edit command brings up a command window similar to the I/O Save command, with
the additional command of Printer to set the output to PRN (normally the printer -
see your DOS manual) instead of a file .

The assumed extension for files is " .TXT" . If you start printing to an existing file, you
will be given a choice between replacing its contents and appending to the end .

This value defaults to "[PRINTER]" .

The mapping name, or "No Mapping", "C Language" or "Pascal Language" .

The default is "No Mapping", but you may want to change that to a printer mapping as
explained in the note, below .

If the value is a name, then associated with that name is a file that contains the list of
characters to output in place of what would normally be printed .

If "No Mapping", then characters are output with no change .

If "C Language", then characters with a value below space (decimal 32), above
(decimal 126), and the characters \ and " are output as octal constants in a form ac-
ceptable to the C computer language . For example, the four character "\032" would
be output for the right-arrow symbol instead of the single Ctrl-Z character it repre-
sents . All other characters are output as themselves . This is as an aid to programmers
who want to put screen images with the special characters into their programs .

If "Pascal Language", then all characters are output as #$xx, where xx is the
hexadecimal representation of the character, such as #$1 A . This is useful to users of
some versions of the Pascal programming language, and, with a bit of editing, other
languages, too . Note that the lines produced may be longer than some editors or com-
pilers can handle (320 or more characters wide) . You may have to edit them ap-
propriately or output small chunks by printing from a marked block .

The "C Language" and "Pascal Language" settings are usually used in connection with
printing the screen images to a file, rather than to the printer . You use the "Output
To" setting to set a file to receive the data .

124

	

Dan Bricklin's Demo II Program User Manual

The I/0 Commands

Printer Mappings	

Often you want to output different characters than those that appear on the screen .
The most common case is when the printer does not support that character code . For
example, the right-arrow symbol has a value of decimal 26 . That is the Ctrl-Z code,
and when it is sent to most printer drivers, it indicates the end of a file, and stops print-
ing prematurely . You would want to send a different code in place of the 26 to most
printers . The Printer Mapping facility lets you do this .

A printer mapping lists all of the 256 codes that can be output to the printer, and it
shows what to output instead . Most codes output as themselves (an "A" for an "A",
for example). For others, you can specify up to two replacement codes . If there are
two codes, a backspace code (7) is output between them .

Editing the Character Mapping
Setting	

If the Character Mapping setting is edited with the I/O Print Edit command, a com-
mand window similar to the I/O Save command is displayed . The names listed are
those of printer mapping files in the DEMO II System Directory . Printer mappings
have file names in the form " P??????.SG2", where ?????? is the printer mapping
name. The commands in the Printer Mapping command window are : Select and New,
which are like those in the I/O Save command ; C and Pascal, to use those builtin map-
pings ; Don't, to specify no mapping ; and Mapping, to define or view a user-defined
pnnter mapping .

If Mapping is selected, then a command window with a list of all 256 character codes
is displayed. Next to each character code (shown as a character, a decimal value, and
a hexadecimal value) is the character to output in its place when printing, and a second
character, if present, to be overprinted (by outputting a backspace) over the first . The
commands there are : First, to edit the first character output ; Second, to edit the
second ; Normal, to make the highlighted character output as itself ; Done, to save the
changes in the file ; and Cancel, not to save them . The First and Second commands
use the arrow keys, PgUp/Dn, Home, and End to change the value, or you can just
type the character you want . Press Enter when you have the correct character . Note
that many printers ignore the zero (00) character, so if you output it (such as by having
00 as your Global Background Character), the printout may appear strangely com-
pressed .

Note

If your printer "hangs" while printing slides with special characters and you are not
using a printer mapping, you should switch to using one .

To help you set up a printer mapping, two common ones are provided on the Demo II
Program Diskette - PRINT and ASCII (PPRINT.SG2 and PASCII.SG2, respec-
tively). The PRINT printer mapping is for printers that know about most of the codes,
such as the common IBM and Epson printers . The ASCII printer mapping should
work with just about all printers, and it only uses the normal 96 printing ASCII
characters . For both printer mappings, the unprintable codes are replaced by printable
ones such as "-" overprinted by ">"for right arrow, and "?" for many others .

125

Output :

	

Whether or not to output the text of slides . Editing this value cycles through "No" ;
Text "Yes, with CR/LF", which outputs a "Carriage Return, Line Feed" combination after

each line ; and "Yes, without CR/LF", which outputs one line after another for reading
by specially written programs .

The default value is "Yes, with CR/LF" .

Output :

	

Editing this value cycles through "None" ; "Interspersed", which outputs alternating
Attributes

	

text/attribute bytes like the PC hardware requires ; and "Separate", which outputs first
all the text and then all the attributes .

The default value is "None" .

Outputting attributes is useful for input to custom-written programs, when using the
Language mappings, and when you want to see what the attributes are . You may want
to do a separate printing of the attributes with a special mapping that gives them un-
derstandable symbols (such as " ." for normal (07), "I" for inverse (70), and "B" for
blinking) .

Output :

	

Outputs the slide name and number, as shown on the Slides list, after each slide is
Names! printed. Editing toggles between "Yes" and "No" .

Numbers

The default value is "Yes" .

Output :

	

Outputs the definitions of all overlays for each slide printed as well as the Global
Overlay Lists

	

Overlay list . The position offsets and other settings of the overlays are also printed .
Editing this value toggles between "Yes" and "No" .

The default value is "Yes" .

Output :

	

If "Yes", outputs all run action lists for each slide, outputs the slide's Run Type, Run
Run Into Wait, Switch Type, and Switch Speed values, and outputs the Global Run Action list

after all slides are printed . Editing toggles between "Yes" and "No" .

The default value is "Yes" .

Output :

	

If "Yes", outputs the Variables list after all slides are printed . Editing toggles between
Variables

	

"Yes" and "No" .
List

The default value is "Yes" .

Output :

	

If "Yes", outputs the Block Names list for each slide, and outputs the Global Block
Block Names

	

Names list after all slides are printed . Editing toggles between "Yes" and "No" .

The Block Name, the position, and the comment (if present) are output .

The default value is "Yes" .

The Block Names can be used to provide comments about portions of a slide . You
can write specially designed programs to read this information from a " .TXT" file

126

	

Dan Bricklin's Demo II Program User Manual

Output :
Slides That
Reference

Slide

After Slide

How Many
Slides to
Output

I/o
Print
Edit

produced by the I/O Print command. The information could be interpreted, for ex-
ample, as field definitions for a forms package or linkage data for a help system .

If "Yes", outputs a list of all slides that reference the printing slide in a Key/Event
label, a View action, a Use action, a Slide Call action, or a Slide Overlay . This in-
cludes references to >NEXT< and >PREVIOUS< that actually refer to the slide . The
words "Run" and "Overlay" appear next to each line, indicating what type of reference
was made . Editing toggles between "Yes" and "No" .

The default value is "Yes" .

Page Break Whether or not to output a Form Feed character after each slide and its information are
output. Editing toggles between "Yes" and "No" .

The default value is "No" .

The I/0 Commands

Blank Lines

	

How may blank lines to output after each slide and its information (follows the Page
After Slide Break After Slide's Form Feed) . If set to zero, you can print slides up against each

other, simulating one big, tall screen . You can use this to let DEMO II help you mock
up printed reports or print forms . Editing this prompts you for a number .

The default value is l .

Trim Trailing

	

If "Yes", suppresses blanks (hexadecimal 20) and zero (00) characters on the right of
Blanks each line . This may speed printing on some printers . Editing toggles between "Yes"

and "No" .

The default value is "Yes" .

When outputting to a program that expects exactly 2000 character positions with the
Text setting "Yes, without CR/LF", you will probably need this set to "No" .

Block This setting appears if there is a block marked .
Marked

If a block is marked, then only the contents of the marked block are output from each
slide . This can be useful when putting a message into a program by printing to a file,
shortening the output when you mainly want to look at the other information, etc .

This value may not be edited .

The number of slides to output, starting with the one currently displayed . Editing this
value prompts for a number. The letter "A" causes all slides to be printed . The letter
"F" prints all slides with the Print Flag set.

The default value is l .

The I/O Print commands are :

Modifies the highlighted values . See the description with each I/O Print setting .

127

128

I/o
Print
OK

I/O
Print
Start

I/0
Add

I/o
Retrieve

I/o
Code-Read

I/o
Write-Code

Returns to edit mode .

Starts outputting to the printer or a file, as shown in the settings . You can cancel
printing, once it has started, by pressing Ctrl-Break .

Loads slides from a " .DBD" file and adds them to the current set of slides . You
specify the name of a file from which to load the slides in a manner similar to the I/O
Save command. After selecting a file, DEMO II prompts you for the numbers of the
first and last slides to reload. The slides themselves are inserted as new slides after the
current slide .

This command loads the images of the indicated slides as well as their Run Type, Run
Wait, Switch Type, Switch Speed, and Palette settings, and their run action lists and
overlay lists . If references are made to variables that are not defined, the definition
and value are copied, too. If references are made to slides that are not among those
being added, the references are reset to "not set" .

Inserts screen images into the current slide show . The images can come from the
CAPTURE program, from text files, or are references to " .PCX" files. The images are
stored in new slides inserted after the current slide .

The I/O Retrieve command prompts you for the type of retrieving to be done .

"C" means to retrieve from the CAPTURE program . See the "CAPTURE Program"
section of this manual .

"T" means to read text images from a file . You will be prompted for a file name with
its extension . The file will be read into successive slides . The attributes will all be
transparent. The characters in the file will be read onto the slides with CR resetting to
the first column ; LF going to the first column on the next row ; FF (^L) going to a new
slide; and going past row 25, going to a new slide . All other characters come in as
themselves .

"P" means to create a bitmapped image slide that references a " .PCX" file . You will
be prompted for the name of the file . The name may be a string variable or a string
constant. You start a string constant with the "character and end with Enter . If you
use a variable, its current value will be used each time the slide is displayed .

Reads run actions saved with the I/O Write-Code command . The run actions are read
into the Actions Copy/Paste buffer for pasting into run action lists by using the Run
Paste command . I/O Code-Read puts up a menu similar to the I/O Save command .
See the "Run Commands" section for a description of the Actions Copy/Paste buffer .

Writes the contents of the Actions Copy/Paste buffer to a file, and puts up a menu
similar to the I/O Save command . See the "Run Commands" section for a description
of the Actions Copy/Paste buffer . The files are given the extension " .DBC" .

Dan Bricklin's Demo II Program User Manual

Types of Variables

The "Passed On" Setting

The Variables Menu

The Variables menu lets you view and manipulate the Variables list . You can select variables, set their
values, create new variables, and delete them . The Variables menu is accessed from a variety of places,
including the Global menu, the Run menu, and type-in prompts that can accept a variable name .

Variables can be used in DEMO II to control many settings, such as those associated with overlays, and
the Run Type and Run Wait values . They can also be used to hold viewer input when simulating a
database forms system . You can test and modify the values of variables while the slide show is running
by using run actions .

The Variables list displays all of the defined variables, listing their names, their current values, their
positions in the list, and their Passed On setting .

Variables can be of two types : numeric or string .

Numeric variables have integer values from -32768 through 32767 . In computerese,
they hold 16-bit signed values .

String variables have two parts . The first part is space for 80 characters of data . In
computerese, that's an array of 80 bytes . Each character can hold a value from 0 to
255, usually representing one of the 256 characters in the PC's character set . The
second part of the string is a number from 0 to 80, which specifies the number of
chararacters that have valid data. This is called the length of the string . Each time
you assign a value to a string variable, the length is set .

When you create a variable, you select its type . You can change its type by using the
Variables Value command to assign a new value . Only this type of assignment can
change the type of a variable . Assignments made while running, such as with the "_"
run action, do not change the variable's type . This is done so that the amount of
memory used during running remains constant .

You can determine a variable's type from the way in which its value is displayed in
the Variables list . If it begins with a ", then it is a string variable. If it is a number
(possibly followed by the character it represents), it is a numeric variable . String vari-
ables show the length in parenthesis after the value .

Each variable has its name and its Passed On setting associated with it . The name
may be from 1 to 8 characters long, and should be unique . If you change the name, all
references to that variable will automatically have the name changed, too .

The Passed On setting is used to preserve variable values when you switch from one
file to another while running . You switch with the File and View Slide In File run ac-
tions . The current value of a variable is kept if variables with the identical name and
type exist in both the file executing the run action and the file being loaded, and the

The "Passed On" Setting

	

129

Miscellaneous

The Variables Commands

130

Vars
OK

Vars
Insert

Vars
Delete

Vars
Move

Vars
Group

Passed On setting for both is set "on" . This result ignores the value that was saved in
the file being loaded. You would use this feature, for example, to pass an error count
from one file to another while running . You could also use this feature to pass on the
name of the file to load upon completion, and perhaps to pass on the slide number to
view in that file . A maximum of 43 variables may be "Passed On" to the next file .

When a string value is used in a run action or in a setting, and a numeric value is
needed, the first character of the string is treated as a number. For example, the letter
"A" would be 65, its ASCII value . If the string has a length of zero, it is treated as if
no value were set, often defaulting to zero .

When a numeric value is used in a run action or in a setting, and a string value is
needed, the number is converted to a string with a single character . If the value is be-
tween 0 and 255, it is used directly . For example, 65 would become the string "A" .
Otherwise, a zero character value is used . If no value is set, it is treated as a zero-
length string .

The character positions in string values are numbered from 1 to 80, when referenced
individually by run actions .

Returns to the previous menu or editing, depending upon the situation .

Inserts a new variable definition below the highlight, or creates the first one if none
existed . You will be prompted for the type of the new variable : N for numeric, S for
string. The new variable will be given the name ">NONAME<" and a default value .
You should give it a name with the Variables Name command .

This is one way of creating a new variable . The more common way is to refer to the
variable by name where it is needed, such as in a run action . If a variable with that
name is not defined, you will be prompted to see if you want to create one . Variables
created in this way are always put at the top of the variables list . You may want to
reorder the list with the Variables Move command, if you prefer to see them in a dif-
ferent order .

Erases the highlighted variable and its value . If there is a group, the entire group of
variables is deleted. All references to the variable are changed so that none are set .

Repositions the highlighted variable in the list . If there is a group, the entire group of
variables is moved .

Toggles the group start .

Dan Bricklin's Demo II Program User Manual

Vars

Vars
Locate

Vars
Name

Vars
Value

Vars
Passed-On

Moves the highlight to the specified position in the variables list .

Moves the highlight downward to the next variable that starts with the given charac-
ters .

Edits the variable's name. Changes all references to the variable to the new name .

Changes the variable's value . The type of value you enter determines the type of the
variable . If you enter a string value (starting with a "), the variable will be switched to
a string value if it was a numeric value . If you enter a numeric value (starting with a
number or "-"), the variable will be switched to a numeric value if it was a string
value .

The highlighted variable's Passed On setting will be toggled . The letters "PO" appear
to the right of the variable's position number if set "on" .

The Variables Menu

The Variables Commands

	

131

132

	

Dan Bricklin's Demo II Program User Manual

Run Actions

This section contains a list of all the run actions . Each action is described in detail, along with notes and
examples that you may find helpful .

These actions can be inserted in the Run Actions list for a given slide, or in the Global Run Actions list .
You insert an action by either using the Run Insert command, which also adds a Key/Event label to the
action line, or by using the Run Line action . Note that the Run Line action is the first one in the Run
menu, so you can execute it by just pressing Enter on the Run menu .

You can change actions on an action line by using the Run Action command . You can change the
Key/Event label on an action line by using the Run Key/Event command .

See the "Run Commands" section for more information about the commands on the Run Menu, and the
"How Running Works" section for more information about running in general .

Which Run Actions Do 1 Use?

There are so many run actions that, at first, you may feel that it is hard to know which
ones to use . That is not really the case. Very few of the run actions are used frequent-
ly. In fact, the most commonly used run action is the first one, the View Slide run ac-
tion. Other commonly used run actions are : Quit, Tone Beep, File, and "_" .

If you have a programming background, when you are performing many operations
the run actions you need should be obvious . For example, if you are testing condi-
tions, you use the If run actions . If you are manipulating strings, you use the run ac-
tions on the String submenu . For those without a programming background, the ex-
amples in the manual and on the diskette should show you how things can be done .

You may find it helpful to look over the list of run action menu items in the "Com-
mand List" section of the manual . Each item has a short, one-line description .

You should also look at the values controlled by the Get Builtin and Set Builtin run
actions on the Miscellaneous submenu . These can be very useful for special effects .

Remember that you do not have to use, or understand, all of these run actions . A com-
plete set is provided for those who need them . You may not be one of those people .
Users of the older Dan Bricklin's Demo Program did very well with only View
Slide, a few tones, Quit, File, Use, Global, and just a few other run actions . .

Run Actions Listed in Menu Order

The run actions descriptions are presented in this section of the manual in the same
order as the Run Action ?List command, which is basically the same order as the
menus. A list in that order appears below . The Run menu submenu item and the
menu item on the final menu, which are used to access the run action, are listed on the
left. You can use the submenu and menu item listings to find the run action descrip-
tion in this section . A list of the run action forms presented in alphabetic order fol-
lows this list.

Run Actions Listed in Menu Order

	

133

Su enu

	

Menu Item
View
Quit
Nothing

/

Incr
Decr

Tone

	

Beep
Thud
Sound
Note
Melody

Other-Slide

	

Call
Return
After
File
Slide-File
Offset-View
View-Abs
Name
DispThenTag

Key/Event

	

Transfer
Call-K/E
Return-K/E
Use
Global
Default

Prog

1 34

If=
If
If <
I f <=
If !_
I f >=
If >
If In
If Between
If Upper
If Lower
If Alpha
If #Num
If NumLet
If Func-Key
If Edit-Key
If Text
If Key
If WaitKey
If 'Waiting
If Shift
If Ctrl
If *Alt
-Else
For
While
While
While <
While <_
While !_
While >_
While >_
While In
While Betwn
While Upper
While Lower

Action Form in Menu Order	
View Slide SLIDE-REF?
Quit
(nothing)
VARIABLE? = VALUE?
VARIABLE? = VALUE? + VALUE?
VARIABLE? = VALUE? - VALUE?
VARIABLE? = VALUE? * VALUE?
VARIABLE? = VALUE? / VALUE?
VARIABLE? = VALUE? o VALUE?
VARIABLE? = VALUE? & VALUE?
VARIABLE? = VALUE? I VALUE?
Increment VARIABLE? By VALUE?
Decrement VARIABLE? By VALUE?
Tone Beep
Tone Thud
Sound STRING? For VALUE? Times
Tone Note VALUE? For 1/18-SECS?
Melody STRING?
Call Slide SLIDE-REF?
Slide Return
Slide Return After
File FILENAME?
View SLIDENUM? In File FILENAME?
Offset View VALUE?
View Absolute SLIDENUM?
VARIABLE? = Slide With Name : STRING?
View Slide SLIDENUM?, Then Tag STRING?
Transfer To Key/Event VALUE?
Call Key/Event VALUE?
Key/Event Return
Use Actions On SLIDE-REF?
Use Global Actions
Continue with Default Action
If (VALUE? = VALUE?)

	

(upper/lowercase insensitive)
If (VALUE? _= VALUE?) (uppper/lowercase sensitive)
If (VALUE? < VALUE?)
If (VALUE? <= VALUE?)
If (VALUE? != VALUE?)

	

(not equal ; case sensitive)
If (VALUE? >= VALUE?)
If (VALUE? > VALUE?)
If (VALUE? In STRING?)
If (VALUE? <= VALUE? <= VALUE?)
If (VALUE? Is Upper-Case)
If (VALUE? Is Lower-Case)
If (VALUE? Is Alphabetic)
If (VALUE? Is Numeric)
If (VALUE? Is Alphanumeric)
If (VALUE? Is Function Key)
If (VALUE? Is Edit Key)
If (VALUE? Is Text)
If (VALUE? Is Key)
If (Waiting For Key)
If (Not Waiting For Key)
If (Shift Key is Down)
If (Ctrl Key is Down)
If (Alt Key is Down)
-Else
For VARIABLE? = FIRST? To LAST?
While (VALUE? = VALUE?)

	

(case insensitive)
While (VALUE? _= VALUE?)

	

(case sensitive)
While (VALUE? < VALUE?)
While (VALUE? <= VALUE?)
While (VALUE? != VALUE?)

	

(not equal ; case sensitive)
While (VALUE? >= VALUE?)
While (VALUE? >= VALUE?)
While (VALUE? In STRING?)
While (VALUE? <= VALUE? <= VALUE?)
While (VALUE? Is Upper-Case)
While (VALUE? Is Lower-Case)

Dan Bricklin's Demo II Program User Manual

String

Misc

File

While Alpha
While #Num
While NumLt
While Func
While Edit
While Text
While Key
While Wait
While 'Wait
While Shift
While Ctrl
While *Alt
Block
Leave
Again
Select
Case
Otherwise
Done
End If
End For
End While
End Block
End Select
Goto-Tag
Tag-Call
Return-from

Set
Get
Append
Backspace
Delete
Insert
Overwrite
Fill
Erase
Length
Process
Convert
Where
Trim
Xtract
Replace
Key
Current
Flush
Redisplay
Pause
Long-Pause
NextKey
Input
Exec
Mouse
AttribTrans
Transltcmds
Debug
Get-Builtin
Set-Builtin
Open
Close
Read
#Read
Write
*WriteNCRLF
Seek
Print
&PrintNCRLF

Run Actions Listed in Menu Order

While
While
While
While
While
While
While
While
While
While
While
While
Block
Leave
Again
Select (VALUE?)
Case VALUE? :

	

(uppercase/lowercase insensitive)
Otherwise :
Done Select
End-If
End-For
End-While
End-Block
End-Select
Goto Tag STRING? (1 to 8 char constant)
Call Tag STRING? (1 to 8 char constant)
Return From Tag Call

STRING-VARIABLE? [POSITION?] = VALUE?
VARIABLE? = STRING? [POSITION?]
Append VALUE? To STRING-VARIABLE?
Backspace STRING-VARIABLE?
Delete COUNT? At STRING? [POSITION?]
Insert VALUE? Before STRING-VARIABLE? [POSITION?]
Overwrite STRING-VAR?[POSITION?] With STRING?
Fill STRING-VARIABLE? With COUNT? of VALUE?
Erase STRING-VARIABLE?
VARIABLE? = Length(STRING?)
Process-Char STRING-VAR?
Convert VALUE? To VARIABLE?
VARIABLE? = Where In STRING? Is VALUE?
Trim STRING-VARIABLE?
Extract STRING-VARIABLE? From START? To END?
Replace STRING? With STRING? In STRING-VAR?
VARIABLE? = Current Key/Event
VARIABLE? = Current Slide Number
Flush Type-Ahead
Redisplay Screen
Pause VALUE? 1/18-Seconds
Pause VALUE? Even If Key Pressed
Next Key
VARIABLE? = Input A Key
ERRORCODE? = Exec FILENAME? With ARGUMENT-STRING?
Mouse (COMMAND?, VALUE?, VALUE?)
Translate Attribute STRING? To STRING?
Translate Attribute Cmd VALUE?
Debug
VARIABLE? = Builtin(VALUE?)
Builtin(VALUE?) = VALUE?
ERRORCODE? = Open File FILENAME? For MODE :R/W/U/A?
Close File
ERRORCODE? = Read Text Into STRING-VARIABLE?
ERRORCODE? = Read COUNT? Bytes Into STRING-VAR?
ERRORCODE? = Write STRING?
ERRORCODE? = Write STRING? With No CR/LF
ERRORCODE? = Seek To VALUE?
Print STRING?
Print STRING? With No CR/LF

(VALUE? Is Alphabetic)
(VALUE? Is Numeric)
(VALUE? Is Alphanumeric)
(VALUE? Is Function Key)
(VALUE? Is Edit Key)
(VALUE? Is Text)
(VALUE? Is Key)
(Waiting For Key)
(Not Waiting For Key)
(Shift Key is Down)
(Ctrl Key is Down)
(Alt Key is Down)
Repeat
Group

Run Actions

135

Run Actions Listed in Alphabetic Order

SubMenu

String
String

Prog
Prog
String
String
Prog
Misc
Misc
Key/Event
Other-Slide
Prog
Prog
File
Key/Event
String
Misc
Misc
Misc

String
Prog
Prog
Prog
Prog
Prog
Prog
Prog
String
Misc
String
Other-Slide
String
Misc
Prog
Prog
Prog

Misc
String
Key/Event
Prog
String
Tone
Misc
Misc

Other-Slide
File

136

Below is a list of the run actions in alphabetic order as they are displayed in the action
form. The Run menu submenu item, and the menu item on the final menu which is
needed to access the run action, are listed on the left . You can use the submenu and
menu item listings to find the run action description in this section . The descriptions
are presented in menu order. A listing appears above of all the run action forms in
menu order .
Menu Item

VARIABLE? = VALUE?
Get

	

VARIABLE? = STRING? [POSITION?]
Set

	

STRING-VARIABLE?[POSITION?] = VALUE?
+

	

VARIABLE? = VALUE? + VALUE?
VARIABLE? = VALUE? - VALUE?

*

	

VARIABLE? = VALUE? * VALUE?
/

	

VARIABLE? = VALUE? / VALUE?
%

	

VARIABLE? = VALUE? o VALUE?
&

	

VARIABLE? = VALUE? & VALUE?
VARIABLE? = VALUE? I VALUE?

Again
Append
Backspace
Block
Get -Builtin
Set-Builtin
Call-K/E
Call
Tag-Call
Case
Close
Default
Convert
Key
Current
Debug
Decr
Delete
Done
-Else
End Block
End For
End I f
End Select
End While
Erase
Exec
Xtract
File
Fill
Flush
For
Goto-Tag
If
Incr
Input
Insert
Return-K/E
Leave
Length
Melody
Mouse
Next Key
Nothing
Offset-View
Open

Action Form in Alphabetic Order

Again
Append VALUE? To STRING-VARIABLE?
Backspace STRING-VARIABLE?
Block Repeat
VARIABLE? = Builtin(VALUE?)
Builtin(VALUE?) = VALUE?
Call Key/Event VALUE?
Call Slide SLIDE-REF?
Call Tag STRING?

	

(1 to 8 char constant)
Case VALUE? :

	

(case insensitive)
Close File
Continue with Default Action
Convert VALUE? To VARIABLE?
VARIABLE? = Current Key/Event
VARIABLE? = Current Slide Number
Debug
Decrement VARIABLE? By VALUE?
Delete COUNT? At STRING? [POSITION?]
Done Select
-Else
End-Block
End-For
End-If
End-Select
End-While
Erase STRING-VARIABLE?
ERRORCODE? = Exec FILENAME? With ARGUMENT-STRING?
Extract STRING-VARIABLE? From START? To END?
File FILENAME?
Fill STRING-VARIABLE? With COUNT? of VALUE?
Flush Type-Ahead
For VARIABLE? = FIRST? To LAST?
Goto Tag STRING?

	

(1 to 8 char constant)
If (condition)
Increment VARIABLE? By VALUE?
VARIABLE? = Input A Key
Insert VALUE? Before STRING-VARIABLE? [POSITION?]
Key/Event Return
Leave Group
VARIABLE? = Length(STRING?)
Melody STRING?
Mouse (COMMAND?, VALUE?, VALUE?)
Next Key
(nothing)
Offset View VALUE?
ERRORCODE? = Open File FILENAME? For MODE :R/W/U/A?

Dan Bricklin's Demo II Program User Manual

First Level Run Actions

View View Slide SLIDE-REF?

Run Actions

This action lets you switch from the current slide that is being displayed to another
slide . Unlike most of the other actions, it takes one argument which is a reference to
the slide to view, instead of a variable or value . For example, instead of referring to
the fifth slide by having the number 5, you actually show the slide on the screen . If
the slide order is changed, the same slide in its new position is still referenced .

When setting the argument, another slide (usually the slide before or after the current
slide, if it exists) is shown with a message box in the corner . You can use the Fl/F2
keys to change which slide is displayed . Pressing Enter selects the slide shown .

Pressing the S key instead of Enter shows the list of all slides . You can use the Locate
command at that point to quickly find a slide that is far from the current slide . Select-
ing it gets you back to the message box .

Pressing N or P chooses the Next or Previous slide, respectively . This is not an ab-
solute reference to those slides, but one that is resolved at the time the action is ex-
ecuted. If you insert a new slide between a slide and one that was its "Next", the
reference will be to the new next slide . If you make an explicit reference to the next

First Level Run Actions

	

137

Prog Otherwise Otherwise :
String Overwrite Overwrite STRING-VAR?[POSITION?] With STRING?
Misc Pause Pause VALUE? 1/18-Seconds
Misc Long-Pause Pause VALUE? Even If Key Pressed
File Print Print STRING?
File &PrintNCRLF Print STRING? With No CR/LF
String Process Process-Char STRING-VAR?

Quit Quit
File #Read ERRORCODE? = Read COUNT? Bytes Into STRING-VAR?
File Read ERRORCODE? = Read Text Into STRING-VARIABLE?
Misc Redisplay Redisplay Screen
String Replace Replace STRING? With STRING? In STRING-VAR?
Prog Return-from Return From Tag Call
File Seek ERRORCODE? = Seek To VALUE?
Prog Select Select (VALUE?)
Other-Slide Return Slide Return
Other-Slide After Slide Return After
Other-Slide Name VARIABLE? = Slide With Name : STRING?
Tone Sound Sound STRING? For VALUE? Times
Tone Beep Tone Beep
Tone Note Tone Note VALUE? For 1/18-SECS?
Tone Thud Tone Thud
Key/Event Transfer Transfer To Key/Event VALUE?
Misc AttribTrans Translate Attribute STRING? To STRING?
Misc TransltCmds Translate Attribute Cmd VALUE?
String Trim Trim STRING-VARIABLE?
Key/Event Use Use Actions On SLIDE-REF?
Key/Event Global Use Global Actions
Other-Slide Slide-File View SLIDENUM? In File FILENAME?
Other-Slide View-Abs View Absolute SLIDENUM?

View View Slide SLIDE-REF?
Other-Slide DispThenTag View Slide SLIDENUM?, Then Tag STRING?
String Where VARIABLE? = Where In STRING? Is VALUE?
Prog While While (condition)
File Write ERRORCODE? = Write STRING?
File *WriteNCRLF ERRORCODE? = Write STRING? With No CR/LF

138

Quit

slide (showing its name and number), the reference will follow the slide as its position
changed with the insert.

Pressing E exits from the Run menu and lets you edit the slide being displayed .

Note 1

View is the normal way to switch explicitly to another slide . The Call Slide action is
only used when you want to view one or more slides and then return. Note that when
you want to go to the next slide no matter which key is pressed, you may not need any
actions at all . See the description of the Run Type value .

Note 2

Next and Previous are always relative to the slide being displayed . If you "Use" the
actions on another slide or have Global Actions, Next and Previous are still relative to
the slide on the screen, not the slide being used or the slide on the screen when the
Global action was defined .

Note 3

When another slide is viewed, a series of operations occur . These involve signaling
certain Key/Events in order, and then taking default actions for most of them . This is
all described in detail in the section "How Running Works" . You may want to skim
that section .

Briefly, first the Key/Event "Viewed" is signaled . The default action is to display the
slide and then signal "Displayed ." The default action for "Displayed" depends upon
the Run Type value . It usually waits the Wait Value amount of time . For type 0, it
then views the next slide . For type l, it then signals "WaitDone ." That, in turn, sig-
nals "Readkey" . The default for "Readkey" is to input a key from the keyboard and
then signal "Keypress", which by default signals the key itself as a Key/Event . The
default for all keys is to view the next slide .

Usually, most of this can be ignored, and you can just check the definition for the Run
Types and put in actions for the Key/Events that correspond to keystrokes . There are
cases, though, in which you may want to "get control" at a special point : to log
keystrokes to a file, for example, or even to implement your own set of Run Types .

Quit

Stops the program from running the slides and returns to editing . Any variables
whose values have been changed retain their new values, and the last slide displayed
remains on the screen . Runtime only versions of the program return to DOS .

Note

You can also stop running by pressing Ctrl-Break . You will be asked if you want to
quit (the default - press Q, Esc or Enter) or continue running with Debug on (D) .

Dan Bricklin's Demo II Program User Manual

Nothing

Sets the action to nothing - a blank line. This is useful for making a program more
readable. You can still have comments on the line, and you can add an action later
with the Run Action command .

Note

It is often helpful to make the first action for a Key/Event (the one with the Key/Event
labeling the left) blank, so that you can insert other actions between the Key/Event
label and the first real action .

i VARIABLE? = VALUE?

The value on the right is assigned to the variable on the left . If the variable is a string
variable, then a string value is used . If it is a numeric variable, then a numeric value is
used.

Remember, when converted to numbers, string values have the value of their first
character (e .g ., "A" is 65, its ASCII value) . When converted to strings, numeric
values are a one-character string with the character represented by the value, or 0 if
they are >255 or <0 (e.g ., 65 is "A") .

Note

When string variables are first created, they are given the value of no characters
(length is 0) . When numeric variables are created, they are given the value 0 . It is al-
ways good practice, though, to explicitly assign initial values to variables . Otherwise
you may get unwanted results the second time you run a series of slides while editing .

String values can be set to null (length 0) by either using this action or erase :
strngl = ""

or
Erase strngl

They both have the same effect .

VARIABLE' = VALUE? + VALUE?

Add the numeric value of the two values on the right, and assign the result to the vari-
able on the left .

Run Actions

VARIABLE? = VALUE?- VALUE?

The second value on the right of the "_" is subtracted from the first value on the right .
The difference is assigned to the variable on the left .

VARIABLE? = VALUE? * VALUE?

The product of the right two values is assigned to the variable on the left .

First Level Run Actions

	

139

Tone Run Actions

140

l

Incr

Decr

Tone
Beep

Tone
Thud

Tone
Sound

VARIABLE? = VALUE?! VALUE?

The integer quotient, found by dividing the first numeric value to the right of the "_"
by the second value, is assigned to the variable on the left .

VARIABLE? = VALUE? % VALUE?

The integer remainder, when dividing the first numeric value on the right of the "_" by
the second value, is assigned to the variable on the left (e .g ., x=15%10 assigns 5 to x) .

VARIABLE? = VALUE? & VALUE?I

The variable on the left of the "_" is assigned the computer-type, Boolean AND of the
16 bits of the first value on the right with the 16 bits of the second value on the right .

VARIABLE? = VALUE? I VALUE,

The variable on the left of the "_" is assigned the computer-type, Boolean OR of the
16 bits of the first value on the right with the 16 bits of the second value on the right .

Increment VARIABLE? By VALUE?

The value on the right is added to the current value of the variable, and then the result
is assigned to the variable .

Decrement VARIABLE? By VALUE?

The value on the right is subtracted from the current value of the variable, and the dif-
ference is assigned to the variable .

These are the run actions for producing sounds .

Tone Beep

Makes a "beep" sound immediately after the next time a slide is displayed or
redisplayed (with the Redisplay action) .

Tone Thud

Makes a "thud" sound immediately after the next time a slide is displayed or
redisplayed (with the Redisplay action) .

Sound STRING? For VALUE? Times

Immediately (not waiting for display time) makes the sound described by the string for
the appropriate number of times .

Dan Bricklin's Demo II Program User Manual

Tone
Note

Tone
Melody

Other-Slide Run Actions

Other-Slide
Call

Run Actions

The string consists of the letters A-Z (case insensitive), where each character tells the
program to wait a specified amount of time and then toggle the position of the
speaker. The letter A represents a short time between moving the speaker, B a slightly
longer time, . . ., and Z the longest time .

Example	

To make a "cluck" sound, like a tick-tock clock, you could use :
Sound "BBBCFFFHHHHKKKKKPPPP" For 1 Times
You would get a "zipping" or "ripping" sound from :
Sound "QQQQQQQQRRRRRRRRMMMMMMMMHHHHHHHHBBBBBBBB" 1 Times

Note

The time constant used to create the sounds is the "system speed" that is determined at
start-up. You can get/set this value with the Builtin(4) actions .

Tone Note VALUE? For 1/18-SECS?

Sounds the note, specified by the numeric value, for the specified number of clock
ticks (1 /18 .2th seconds) . The note numbers are specified in the Tone Chart Appendix .
The sound is made immediately after the next time the screen is updated on a display
or redisplay .

Melody STRING?

Plays a series of tones on the PC's speaker . The string specifies the notes and their
duration . No wait is done for a redisplay - the sound is made immediately .

The string consists of three-digit sequences, optionally separated by spaces . The first
two digits in the sequence are the note number (see the Tone Chart Appendix), and the
third is the duration of the note in 1/9 seconds . The note 00 is interpreted as a pause
(silence) . A comma (",") turns the sound off for an instant, which can be useful when
two identical notes immediately follow one another .

Example	

To play the start of "Mary Had A Little Lamb", you could use the action :
Melody "523 501 482 502 522,522 524 502,502 504 522 552

554"

These are the run actions for viewing other slides, both in the current slide show, and in other files .

Call Slide SLIDE-REF?

Switches from the current slide, which is being displayed, to another slide, and return
to this slide (or the one following it) at a later point . Its operation is very similar to the

Other-Slide Run Actions

	

141

142

Other-Slide
Return

Other-Slide
After

Other-Slide
File

View action . You return by using either the Slide Return or Slide Return After ac-
tions .

See the View action above for more information and a variety of notes .

Note

You may call a slide that continues switching from slide to slide and then calls another
slide, etc . The maximum number of Call Slide actions that can be executed, without
executing their respective Slide Returns or Slide Return Afters, is 99 .

In general there should always be a Slide Return or Slide Return After executed for
each Call Slide . More than one slide can Call a given slide, similar to subroutines in a
normal computer language . Ifyou are not going to return, use the View action .

Slide Return

Returns from a corresponding Call Slide action by moving back to and "viewing" the
most recent slide that has done a Call Slide action and has not been "returned" to .

Note

There are two types of returns, the Slide Return and the Slide Return After . Make
sure that you use the one that is appropriate in each case . For example, to go to an
error-message slide when an incorrect key is pressed and then return to that same slide
where the incorrect key was pressed to let the user try again, use Slide Return. If you
want to show a set of slides at the beginning of each chapter and then continue, use
Slide Return After.

Slide Return After

Functions like Slide Return, but returns to the slide immediately following the slide
that made the call .

Note

or

See the note to the Slide Return action above .

File FILENAME?

Loads another file in place of the current set of slides, variables, etc ., and starts run-
ning with the slide that was on the screen when it was saved. The argument is a string
with the name of the file to be loaded . It can be a full pathname, and includes exten-
sions. The Attribute Translate Table is not loaded, so translating can continue .

Examples
File "lesson2 .dbd"

or
File "c :\cbt\lesson3 .dbd"

Dan Bricklin's Demo II Program User Manual

Other-Slide
Slide-File

Other-Slide
Offset-View

Other-Slide
View-Ab-

solute

Other-Slide
Name

filename = "graphicl .dbd"
File filename

Note

View SLIDENUM? In File FILENAME?

Offset View VALUE?

Run Actions

Any variables that appear both currently and in the file being loaded, which have the
Passed On setting set "on" in both places, will have the current value passed on to the
new file, replacing the value loaded from the file in this instance .

Functions like the File action, but in addition, starts running with the specified slide
number in that file .

This is a variation of the View action that uses a value rather than a slide reference .
The value specifies a slide relative to the current slide to view .

Example	

To view the slide after the next slide, you could use :
Offset View 2

To view the slide 3 slides before this slide, you could use :
Offset View -3

View Absolute SLIDENUM?

This is a variation of the View action that uses a value instead of a slide reference .
The value is the number of the slide to view, with 1 being the first slide .

You can find out a slide's number with the Slide With Name run action, and with the
Current Slide Number run action .

Example

To view the third slide :

View Absolute 3

VARIABLE?= Slide With Name : STRING?

The variable on the left is assigned the number of the first slide with a name that starts
with the value of the string on the right . The search starts with slide l, and if no match
is found, the value is 0 .

Example

To view the slide with a name that starts with "Main Menu", you could use :

Other-Slide Run Actions

	

143

Key/Event Run Actions

144

Other-Slide
Display-
then-Tag

Key/Event
Transfer

Key/Event
Call-

Key/Event

mm slide = Slide With Name : "Main Menu"
View Absolute mm slide

View Slide SLIDENUM?, Then Tag STRING?

This is a variation of the View action that uses the slide number instead of a slide
reference. It is similar to the View Absolute action, except that instead of doing the
normal operations when the slide is viewed (signaling "Viewed", waiting, checking
the slide Run Type, etc .), it immediately does a Goto-Tag of the string . See the Goto-
Tag action below .

When you use this action, the slide viewed is not displayed until the next redisplay .
Redisplaying occurs when a Redisplay command is executed or when the last action
in an action list is executed - see the "How Running Works" section. You may want
to have the actions at the tag end by doing a Transfer to Key/Event "Viewed" . This is
a very programmer-oriented feature, and is not meant for general use .

Transfer To Key/Event VALUE?

This action allows you to signal a particular Key/Event . See the section, "How Run-
ning Works", for a detailed description of how the lists of actions are searched for a
match when a Key/Event is signaled .

You can use this action to have more than one key do some processing, and then start
doing what another key would have done .

Note 1

The "last typed" Key/Event value is not affected by a Transfer. The "last typed"
Key/Event always refers to the last key typed, which you can get/set with the Buil-
tin(1) actions. The last key typed value is also used by the Process-Char action, not
the event last signaled .

Note 2

When a Transfer action is done, like all Key/Event signaling, the searching for a
match starts at the top of the list of the current slide, not the slide being Used or the
Global Run Action list .

Note 3

Pressing "!" when setting the value brings up a list of Key/Events and their values .

Call Key/Event VALUE?

This is a variation of the Transfer To Key/Event action . The only difference is that the
action line where the call is made is remembered so that it can be used in a cor-

Dan Bricklin's Demo II Program User Manual

Key/Event
Return-
from-

Key/Event

Key/Event
Use

Key/Event
Global

responding Key/Event Return action . Key/Events may be called to a depth deter-
mined by the Run Stack (see "How Running Works") .

Key/Event Return

Use Actions On SLIDE-REF?

Run Actions

Returns execution to the action line immediately following the corresponding Call
Key/Event action .

Searches the run action list of the referenced slide for a match to the Key/Event that
got you to the most recent Key/Event label . This lets you say "do whatever that slide
would do." This action, unlike most actions, has a slide reference as its argument in a
manner similar to the View Slide action .

See the "How Running Works" section for more information about searching and the
Use action .

Note 1

The Key/Event label that got you to this action may be more or less explicit than the
one that will match on the slide Used . For example, if the Key/Event being matched
is "z" and you matched "Any Lower" on this slide, the Key/Event label "Zz" can still
match on the slide being Used .

Note 2

If the Key/Event does not find a match on the slide being Used, then the Global Run
Actions will be searched . If the Key/Event does not find a match on the Global Run
Action list, then the default action for that Key/Event will be executed . For
keystrokes, the default is to view the next slide . See "How Running Works" for more
information about defaults .

An action on the slide being Used can have Use run actions that refer to other slides .
There is no limit to the depth of such references . If there is a loop, you will need to
press Ctrl-Break to stop the searching .

Use Global Actions

Searches the Global Run Action list for a match to the Key/Event that got you to the
most recent Key/Event label .

See the "How Running Works" section for more information about searching and the
Global action .

Note 1

The Key/Event label that got you to this action may be more or less explicit than the
one that will match on the Global Run Action list . For example, if the Key/Event
being matched is "z" and you matched "Any Lower" on this slide, the Key/Event label
"Zz" can still match on the Global Run Action list .

Key/Event Run Actions

	

145

146

Key/Event
Default

Prog
If

Note 2

If the Key/Event does not find a match on the Global Run Action list, then the default
action for that Key/Event will be executed . For keystrokes, the default is to view the
next slide . See the "How Running Works" section for more information about
defaults .

Be careful about having the Use Global Actions run action on the Global Run Action
list ; you will have to Ctrl-Break out of the loops!

Continue with Default Action

Executes the default action for the Key/Event that got you to the most recent
Key/Event label . This lets you add some processing to the special Key/Events, such
as "Viewed", "Displayed", etc ., and then continue normally . See "How Running
Works" for a list of the default actions . Do not use this action if a Tag Call or Goto
Tag is the most recent Key/Event .

Example	

To add a "Woodpecker" sound to be played whenever a particular slide is viewed, you
could add this set of actions with Key/Event label :

Displayed Sound "hhhhhhmmmrrtrrmmmhhhhh" For 10 Times
Continue with Default Actions

Note	

In some cases you will want to use a Use Global Actions run action instead of a Con-
tinue with Default Action run action . The most common time is on a slide's run ac-
tion list when the Global Run Action list has a Key/Event label for the Key/Event
being continued, and you want those global run actions to be executed .

Programming Run Actions	

These are the run actions for testing values, looping, and transferring to other run actions .

The If actions allow you to test a variety of conditions . You can execute different ac-
tions depending upon the results of the tests .

All of the If actions have a similar syntax . The general form is :
If (condition)

true-actions
true-action2 . . .

End-If
or :

Dan Bricklin's Demo II Program User Manual

Prog
If

Prog
If

If (VALUE?= VALUE?)

If (VALUE? == VALUE?

I f (condition)
true-actionl
true-actionl . . .

-Else

false-actionl
false-actionl . . .

End-If

Run Actions

The "true" actions are executed if the condition is true ; otherwise they are skipped .
The "false" actions are executed if the condition is false ; otherwise they are skipped.
The -Else and the "false" actions are optional . All If actions, though, must have a cor-
responding End-If.

The If actions are defined by using the Programming If command to show a menu of
conditions. The -Else action is on the Programming menu, and the End-If action is on
the Programming End menu . Alternatively, you can use the ?List command on the
main Run Action menu to get a list of all actions .

The actions that are added to new lines, with the Run Line command, are automatical-
ly indented by the amount specified on the Global menu . The default is three spaces .
This is a one-time addition of space - it is not recalculated if the If action is removed .
You can always increase or decrease the indenting on a given line by pressing the Ins
or Del keys, respectively . The indenting only makes the actions more readable ; it has
no effect on execution . You can turn off the automatic indenting by setting the Global
Indent Increment to 0 .

The true and false actions can be any type of action, including other If actions . They
may not have a Tag or Key/Event label .

The If actions may be nested (along with loops, Call Key/Events, Call Tags, etc .) to a
depth determined by the Run Stack (see "How Running Works") .

Compares the first value to the second value . If the values are the same, the condition
is "true" ; otherwise it is "false."

If both values are strings, then a string comparison is made ; otherwise, a numeric com-
parison is done .

String values are the same if they are the same length and have the same characters .
This test is uppercase/lowercase insensitive - that is, "abcd" and "AbCd" are con-
sidered to be the same . Use the If == action if you need a case-sensitive comparison .

Compares the first value to the second value . If the values are the same, the condition
is "true" ; otherwise it is "false ."

If both values are strings, then a string comparison is made ; otherwise, a numeric com-
parison is done .

Programming Run Actions

	

147

148

Prog
If

Prog
If

<-

Prog
If

Prog
If

>_

String values are the same if they are the same length and have the same characters .
This test is uppercase/lowercase sensitive - that is, "abcd" and "AbCd" are con-
sidered different . Use the If = action if you need a case insensitive comparison .

Note

The initial character of the command is the same as If = . In order to select this com-
parison, you must move the cursor to the == command and press Enter . If you just
typed =, you would get the = comparison, not the == one .

If (VALUE?< VALUE?)

Compares the first value to the second value . If the numeric value of the first value is
less than the second, the condition is "true" ; otherwise it is "false ." This is a signed
comparison (-1 is less than 0) .

If (VALUE? <= VALUE?

Compares the first value to the second value . If the numeric value of the first value is
less than or equal to the second, the condition is "true" ; otherwise it is "false ." This is
a signed comparison (-1 is less than 0) .

Note

The initial character of the command is the same as If < . In order to select this com-
parison, you must move the cursor to the <= command and press Enter . If you just
typed <, you would get the < comparison, not the <= one .

If (VALUE? != VALUE?)

Compares the first value to the second value. If the values are not the same, the condi-
tion is "true" ; otherwise it is "false ."

If both values are strings, then a string comparison is made . Otherwise, a numeric
comparison is done .

String values are the same if they are the same length and have the same characters .
This test is uppercase/lowercase sensitive - that is, "abcd" and "AbCd" are con-
sidered different. Use the If = action if you need a case insensitive comparison . Note
that you may have to put the actions in the -Else section . (You may have an If im-
mediately followed by an -Else, if there is nothing to be done in the "true" part .)

If (VALUE? >= VALUE

Compares the first value to the second value . If the numeric value of the first value is
greater than or equal to the second, the condition is "true" ; otherwise it is "false ." This
is a signed comparison (-1 is less than 0) .

Dan Bricklin's Demo II Program User Manual

Prog
If

Prog
If
In

Prog
If

Between

Prog
If

Upper

Prog
If

Lower

Prog
If

Alpha

Prog
If

#Num

If (VALUE?> VALUE?)

Compares the first value to the second value . If the numeric value of the first value is
greater than the second, the condition is "true" ; otherwise it is "false ." This is a signed
comparison (-1 is less than 0) .

Note

The initial character of the command is the same as If >_ . In order to select this com-
parison, you must move the cursor to the > command and press Enter . If you just
typed >, you would get the >= comparison, not the > one .

If (VALUE? In STRING?)

This condition is "true" if any one of the characters in the string is the same as the
value . If the value is numeric, it is treated as the character value . This is case-sensi-
tive .

Example

This would result in a "true" comparison :
If ("e" In "AEIOUaeiou")

If (VALUE? <= VALUE? <= VALUE?)

Run Actions

The condition is "true" if the second value is greater than or equal to the first, as well
as less than or equal to the third; otherwise it is "false." All values are treated as
numeric, and comparisons are on signed values (-1 is less than 0) .

If (VALUE? Is Upper-Case)

The condition is "true" if all of the characters in the value are uppercase letters . It is
"false" otherwise . The value is treated as a string .

If (VALUE? Is Lower-Case)

The condition is "true" if all of the characters in the value are lowercase letters . It is
"false" otherwise . The value is treated as a string .

If (VALUE?Is Alphabetic)

The condition is "true" if all of the characters in the value are alphabetic (a-z, A-Z) . It
is "false" otherwise . The value is treated as a string .

~If (VALVE?Is Numeric)

The condition is "true" if all of the characters in the value are numeric (0-9) . It is
"false" otherwise. The value is treated as a string .

Programming Run Actions

	

149

150

Prog
If

NumLet

Prog
If

Func-Key

Prog
If

Edit-Key

Prog
If

Text

Prog
If

Key

Prog
If

WaitforKey

Prog
If

Awa iti ng

Prog
If

Shift

If (vALuE? Is Alphanumeric)

The condition is "true" if all of the characters in the value are alphanumeric (a-z, A-Z,
0-9) . It is "false" otherwise . The value is treated as a string .

If (VALUE? Is Function Key)

The condition is "true" if the value represents a valid function key Key/Event (Fl-FIO,
Shift Fl-Shift F 10, Ctrl Fl-Ctrl F 10, Alt Fl-Alt F l 0) . It is "false" otherwise . The
value is treated as a numeric value . Pressing "!" when setting the value brings up a list
of Key/Events and their values .

If (VALUE?ls Edit Key)

The condition is "true" if the value represents a valid edit Key/Event (Enter, Back-
space, ^Backspace, Esc, Ins, Del), or a valid cursor Key/Event (arrows, Home, End,
etc .) . It is "false" otherwise . The value is treated as a numeric value . Pressing "!"
when setting the value brings up a list of Key/Events and their values .

If (VALUE? IS Text)

The condition is "true" if all of the characters in the value are text (any letters, any
numbers, and any punctuation) . It is "false" otherwise . The value is treated as a
string .

If (VALUE? Is Key)

The condition is "true" if the value represents a Key/Event that is from the keyboard
and not a pseudo-key like "Displayed" or "Any Letter" . It is "false" otherwise . The
value is treated as a numeric value . Only the fact that the value is in the range of legal
values is checked - not every value in that range is legal . Pressing "!" when setting
the value brings up a list of Key/Events and their values .

If (Waiting For Key)

The condition is "true" if no keys have been "typed ahead" and none are waiting to be
processed . It is "false" if the user has pressed keys that have not been read and
processed .

If (Not Waiting For Key)

The condition is "true" if the user has pressed keys that have not been read and
processed (i .e ., there is "type ahead") . It is "false" if no keys are "typed ahead ."

If (Shift Key is Down)

The condition is "true" if either of the "Shift" keys is currently pressed . The Shift keys
switch from lowercase to uppercase, etc . It is "false" if neither of them are pressed .

Dan Bricklin's Demo II Program User Manual

Prog
If

Ctrl

Prog
If

*Alt

Prog
-Else

Prog
For

-Else

Run Actions

If (Ctrl Key is Down)

The condition is "true" if the Ctrl key is currently being pressed . It is "false" other-
wise .

If (Alt Key is Down)]

The condition is "true" if the Alt key is currently being pressed . It is "false" if no Alt
key is being pressed .

Marks action as the end of the "true actions" and the beginning of the "false actions ."
The -Else is paired with the last If action without a corresponding End-If. For each If
action there may be only one -Else action . The -Else is optional - if there are no
"false actions", the -Else may be omitted . See the discussion above for more informa-
tion on the If action .

For VARIABLE? = FIRST? To LAST?

Lets you execute a series of actions a specified number of times . It is analogous to the
FOR statement in a language such as BASIC .

The general form of a For loop is :
For loopvar = valuel To value2

loop-actionl
loop-actionl . . .

End-For
When the For action is executed, the loop variable is assigned the numeric value l . If
value 1 is greater than value2, the loop actions are not executed, and execution con-
tinues with the action after the End-For action . If value 1 is less than or equal to
value2, the loop actions are executed .

Each time, after the loop actions are executed and the End-For action is encountered,
the loop variable is incremented by l . That new value is then compared with the cur-
rent value of value2 . If it is still less than or equal to value2, the loop actions are ex-
ecuted again . If the loop variable's incremented value is now greater than value2, ex-
ecution resumes with the action after the End-For action .

The actions that are added to new lines (with the Run Line command) are automatical-
ly indented by the amount specified on the Global menu . (Default is three spaces .)
This is a one-time addition of space - it is not recalculated if the For action is
removed. You can always increase or decrease the indenting on a given line by press-
ing the Ins or Del keys, respectively. The indenting only makes the actions more
readable; it has no effect on execution . You can turn off the automatic indenting by
setting the Global Indent Increment to 0 .

The loop actions can be any type of action, including other For actions . They may not
have a Tag or Key/Event label . The actions can modify the value of the loop variable .

'rogramming Run Actions

	

151

152

Prog
While

The For actions may be nested (along with Ifs, Call Key/Events, Call Tags, etc .) to a
depth determined by the Run Stack (see "How Running Works") .

In addition to the End-For action, you can use the Again action to act as if you en-
countered the End-For in the middle of the actions . You can also use the Leave Group
action to exit the loop at any point and continue executing after the End-For action .

Example	

To display the current slide five times, with the variable "c offset" successively
having the values 5,10,15, 20 and 25 (for example, to change the column offset of an
overlay), you could use the actions :

For lv = 1 To 5
c _offset = 5 * lv
Redisplay Screen

End-For
To do the same thing, but to skip the 20 value (only displaying four times), you could
use :

For lv = 1 To 5
If (lv = 4)

Again
End-If
c offset = 5 * lv
Redisplay Screen

End-For

Allows you to test a variety of conditions, and then repeatedly execute a series of ac-
tions as long as the condition is "true ."

All of the While actions have a similar syntax . The general form is :
While (condition)

while-actionl
while-actionl . . .

End-While
If the condition is "false" when the While action is initially encountered, the while ac-
tions are skipped, and execution continues immediately following the matching End-
While action. If the condition is "true," the while actions are executed, and then the
condition is checked again . If it is still "true," the actions are executed again . If it is
now "false," execution resumes after the End-While .

The actions that are added to new lines (with the Run Line command) are automatical-
ly indented by the amount specified on the Global menu . (Default is three spaces .)
This is a one-time addition of space - it is not recalculated if the While action is
removed. You can always increase or decrease the indenting on a given line by press-
ing the Ins or Del keys, respectively . The indenting only makes the actions more

Dan Bricklin's Demo II Program User Manual

Prog
While

Prog
While

Prog
While

readable; it has no effect on execution . You can turn off the automatic indenting by
setting the Global Indent Increment to 0 .

The While actions can be any type of action, including other While actions . They can-
not have a Tag or Key/Event label .

The While actions can be nested (along with Ifs, Call Key/Events, Call Tags, etc .) to a
depth determined by the Run Stack (see "How Running Works") .

In addition to the End-While action, you can use the Again action to act as if you en-
countered the End-While in the middle of the actions . You can also use the Leave
Group action to exit the loop at any point and continue executing after the End-While
action .

While (VALUE? = VALUE?

Compares the first value to the second value . If the values are the same, the condition
is "true" ; otherwise it is "false ."

If both values are strings, then a string comparison is made ; otherwise, a numeric com-
parison is done .

String values are the same if they are the same length and have the same characters .
This test is uppercase/lowercase insensitive - that is, "abcd" and "AbCd" are con-
sidered the same. Use the While == action if you need a case-sensitive comparison .

While (VALUE? == VALUE?)

While (VALUE? < VALUE/)

Run Actions

Compares the first value to the second value . If the values are the same, the condition
is "true" ; otherwise it is "false ."

If both values are strings, then a string comparison is made ; otherwise, a numeric com-
parison is done .

String values are the same if they are the same length and have the same characters .
This test is uppercase/lowercase sensitive - that is, "abcd" and "AbCd" are con-
sidered to be different . Use the While = action if you need a case-insensitive com-
parison .

Note

The initial character of the command is the same as While = . In order to select this
comparison, you must move the cursor to the == command and press Enter . If you
just typed =, you would get the = comparison, not the == one .

Compares the first value to the second value . If the numeric value of the first value is
less than the second, the condition is "true" ; otherwise it is "false ." This is a signed
comparison (-1 is less than 0) .

Programming Run Actions

	

153

154

Prog
While

Prog
While

Prog
While

>_

Prog
While

Prog
While

In

While (VALUE? <- VALUE?)

Compares the first value to the second value . If the numeric value of the first value is
less than or equal to the second, the condition is "true" ; otherwise it is "false ." This is
a signed comparison (-1 is less than 0) .

Note

The initial character of the command is the same as While < . In order to select this
comparison, you must move the cursor to the <= command and press Enter . If you
just typed <, you would get the < comparison, not the <= one .

While (VALUE? I - VALUE?)

Compares the first value to the second value . If the values are not the same, the condi-
tion is "true" ; otherwise it is "false ."

If both values are strings, then a string comparison is made ; otherwise, a numeric com-
parison is done .

String values are the same if they are the same length and have the same characters .
This test is uppercase/lowercase sensitive

	

that is, "abcd" and "AbCd" are con-
sidered different .

While (VALUE? >- VALUE?)

Compares the first value to the second value . If the numeric value of the first value is
greater than or equal to the second, the condition is "true" ; otherwise it is "false ." This
is a signed comparison (-1 is less than 0) .

While (VALUE? > VALUE?)

Compares the first value to the second value . If the numeric value of the first value is
greater than the second, the condition is "true'" ; otherwise it is "false." This is a signed
comparison (-1 is less than 0) .

Note

The initial character of the command is the same as While >_ . In order to select this
comparison, you must move the cursor to the > command and press Enter. If you just
typed >, you would get the >= comparison, not the > one .

While (vALUE? In STRING?)

This condition is "true" if any one of the characters in the string is the same as the
value. If the value is numeric, it is treated as the character value . This is case-sensi-
tive .

Dan Bricklin's Demo II Program User Manual

Prog
While
Upper

Prog
While
Lower

Prog
While
Alpha

Prog
While
#Num

Prog
While

NumLet

Prog
While

Func-Key

Prog
While

Edit-Key

Prog
While
Text

While (VALUE? Is Upper-Case)

The condition is "true" if all of the characters in the value are uppercase letters . It is
"false" otherwise. The value is treated as a string .

Run Actions

Prog

	

While (VALUE? <= VALUE? <= VALUE?)
While

Between

	

The condition is "true" if the second value is greater than or equal to the first, as well
as less than or equal to the third ; otherwise it is "false ." All values are treated as
numeric, and comparisons are on signed values (-1 is less than 0) .

While (VALUE? Is Lower-Case)

The condition is "true" if all of the characters in the value are lowercase letters . It is
"false" otherwise. The value is treated as a string .

While (VALUE? Is Alphabetic)

The condition is "true" if all of the characters in the value are alphabetic (a-z, A-Z) . It
is "false" otherwise . The value is treated as a string .

While (VALUE? Is Numeric)

The condition is "true" if all of the characters in the value are numeric (0-9) . It is
"false" otherwise . The value is treated as a string .

While (VALUE? Is Alphanumeric)

The condition is "true" if all of the characters in the value are alphanumeric (a-z, A-Z,
0-9) . It is "false" otherwise . The value is treated as a string .

While (VALUE? Is Function Key)

The condition is "true" if the value represents a valid function key Key/Event (F1-F10,
Shift F1-Shift F10, Ctrl Fl-Ctrl F10, Alt Fl-Alt Fl0) . It is "false" otherwise . The
value is treated as a numeric value . Pressing "!" while setting the value brings up a list
of Key/Events and their values .

While (VALUE? Is Edit Key)

The condition is "true" if the value represents a valid edit Key/Event (Enter, Back-
space, "Backspace, Esc, Ins, Del), or a valid cursor Key/Event (arrows, Home, End,
etc .) . It is "false" otherwise . The value is treated as a numeric value . Pressing "!"
while setting the value brings up a list of Key/Events and their values .

While (VALUE? Is Text)

The condition is "true" if all of the characters in the value are text (any letters, any
numbers and any punctuation) . It is "false" otherwise . The value is treated as a string .

Programming Run Actions

	

155

156

Prog
While
Key

Prog
While

WaitforKey

Prog
While

^Waiting

Prog
While
Shift

Prog
While

Ctrl

Prog
While

*Alt

While (vAwE? Is Key)

The condition is "true" if the value represents a Key/Event that is from the keyboard,
and not a pseudo-key like "Displayed" or "Any Letter" . It is "false" otherwise . The
value is treated as a numeric value . Only the fact that the value is in the range of legal
values is checked - not every value in that range is legal . Pressing "!" while setting
the value brings up a list of Key/Events and their values .

While (Waiting For Key)

The condition is "true" if no keys have been "typed ahead" and are waiting to be
processed . It is "false" if the user has pressed keys that have not been read and
processed .

Example	

To have a tone produced every second after a slide is displayed and until a key is
pressed, then sound a different tone, and then process the key, you could use the fol-
lowing on the slide's run action list with a "Readkey" Key/Event label :

Readkey

	

While (Waiting For Key)
Melody "481"
Pause 18 1/18-Seconds

End-While
Melody "602"
Continue with Default Action

Note that the Melody action is used, not the Tone Note action, since the Tone Note ac-
tion does not sound the tone until next time the screen is redisplayed .

While (Not Waiting For Key)

The condition is "true" if the user has pressed keys that have not been read and
processed (i .e ., there is "type ahead") . It is "false" if no keys are "typed ahead ."

While (Shift Key is Down)

The condition is "true" if either of the "Shift" keys are currently pressed . (The Shift
keys switch from lowercase to uppercase, etc .) It is "false" if neither of them are
pressed .

While (Ctrl Key is Down)

The condition is "true" if the Ctrl key is currently being pressed . It is "false" other-
wise .

While (Alt Key is Down)

The condition is "true" if the Alt key is currently being pressed . It is "false" if no Alt
key is being pressed .

Dan Bricklin's Demo II Program User Manual

Prog
Block

Prog
Leave

Block Repeat

The Block Repeat action allows you to execute a series of actions repeatedly . You
only exit the loop when an explicit Leave Group or transfer action of some sort is ex-
ecuted . It is similar to a "While (True)" loop .

The general form is :
Block Repeat

block-actions
block-action2 . . .

End-Block
When the Block Repeat action is initially encountered, the block actions are executed,
and then re-executed each time the End-Block action is encountered . Execution con-
tinues with the action immediately following the End-Block, if a Leave Group action
is executed. The block can also be exited by executing a variety of transfer actions
such as View, Transfer, Goto, Return, File, Use, Global, Continue with Default Ac-
tion, etc .

The actions that are added to new lines (with the Run Line command) are automatical-
ly indented by the amount specified on the Global menu . (Default is three spaces .)
This is a one-time addition of space - it is not recalculated if the Block Repeat action
is removed . You can always increase or decrease the indenting on a given line by
pressing the Ins or Del keys, respectively . The indenting only makes the actions more
readable; it has no effect on execution . You can turn off the automatic indenting by
setting the Global Indent Increment to 0.

The block actions can be any type of action, including other Block Repeat actions .
They cannot have a Tag or Key/Event label .

The Block Repeat actions can be nested (along with Ifs, Call Key/Events, Call Tags,
Loops, etc.) to a depth determined by the Run Stack (see "How Running Works") .

In addition to the End-Block action, you can use the Again action to act as if you en-
countered the End-Block in the middle of the actions . You can also use the Leave
Group action to exit the loop at any point and continue executing after the End-Block
action .

Note

Block Repeat loops can be used to let you transfer control around a group of actions .
You can have the last action in the block be a Leave Group action, so that the loop is
executed, at most, once . Throughout the block, whenever you want to transfer to the
action following the block, you execute a Leave Group action . With complicated con-
ditionals, this can sometimes be a more straightforward way of writing the program .

Leave Group

Run Actions

Terminates the execution of the enclosing For, While, or Block Repeat loop . Execu-
tion resumes with the action immediately following the matching End action .

Programming Run Actions

	

157

158

Prog
Again

Prog
Select

Again

Terminates the execution of one loop through the enclosing For, While, or Block
Repeat loop. Execution resumes as if the matching End action were encountered (i .e .,
executing the loop again or exiting, as appropriate) .

Select (VALUE?)

Allows you to execute any one of a number of groups of actions, depending upon the
value of its argument . It is similar to the Switch statement in the C language .

The general form for using Select is :
Select (svalue)

Case val uel
selectl-actionl
selectl-actionl . . .

Case value2 :
selectl-actionl
selectl-actionl . . .

Case vat ue3 : . . .
Otherwise :

select0-actionl
selectO-actionl . . .

End-Select
When the Select action is executed, actions are skipped until a Case action, with a
value the same as the svalue, is encountered. Then the actions after the Case action
are executed. Execution continues, even if other Case or Otherwise actions are en-
countered (e .g ., the selectl actions would be executed in the example above after the
select 1 actions, if svalue matched value 1) . The Done Select action causes execution
to skip over all actions that follow until the closing End-Select action . The com-
parison with the svalue is numeric, if either svalue or valuen is numeric, and a case in-
sensitive string comparison, if both are strings . The Otherwise action is like a Case
action that matches all values .

The actions that are added to new lines (with the Run Line command) are automatical-
ly indented by the amount specified on the Global menu . (Default is three spaces .)
This is a one-time addition of space - it is not recalculated if the Block Select action
is removed. You can always increase or decrease the indenting on a given line by
pressing the Ins or Del keys, respectively . The indenting only makes the actions more
readable; it has no effect on execution . You can turn off the automatic indenting by
setting the Global Indent Increment to 0 .

The select actions can be any type of action, including other Select actions . They can-
not have a Tag or Key/Event label .

The Select actions can be nested (along with Ifs, Call Key/Events, Call Tags, Loops,
etc.) to a depth determined by the Run Stack (see "How Running Works") .

Dan Bricklin's Demo II Program User Manual

Prog
Case

Prog
Otherwise

Prog
Done

Prog
End

If-End

Leave Group and Again actions, encountered as one of the Select actions, refer to the
containing loop (For, While, Block Repeat) .

Example	

To view the slide appropriate to a user's response to a question, you could use the fol-
lowing actions :

Select (response)
case "blue" :

View Slide start blue [0014]
case "red" :

View Slide start red [0038]
case "green" :

View Slide start green [0053]
case "orange" :

Melody "481601721"
Call Slide Not Yet [0007]
Erase response
Done Select

Otherwise :
Tone Beep

End-Select

Case VALUE?

Otherwise :

Run Actions

Specifies the start of a group of actions that are to be executed following a Select ac-
tion, if the value matches the select value . See the description of the Select action,
above .

Specifies the start of a group of actions that are to be executed following a Select ac-
tion, no matter what the select value . See the description of the Select action, above .

Done Select

Causes the actions that follow to be skipped until the closing End-Select action after a
Select action . See the description of the Select action .

End-If

Marks the end of the group of actions after an If action . For each If action there must
be one, and only one, End-If action . See the description of the If action .

Programming Run Actions

	

159

160

Prog
End

For-End

Prog
End

While-End

Prog
End

Block-End

Prog
End

Select-End

Prog
Goto-Tag

End-For

Marks the end of the group of actions to be executed after a For action . For each For
action there must be one, and only one, End-For action . See the previous description
of the For action .

End-While

Marks the end of the group of actions to be executed after a While action . For each
While action there must be one, and only one, End-While action . See the previous
description of the While action .

End-Block

Marks the end of the group of actions to be executed after a Block Repeat action . For
each Block Repeat action there must be one, and only one, End-Block action . See the
previous description of the Block Repeat action .

End-Select

Marks the end of the groups of actions that are affected by a Select action . For each
Select action there must be one, and only one, End-Select action . See the previous
description of the Select action .

Goto Tag STRING?

Allows you to have an action other than the succeeding one execute next . See the sec-
tion, "How Running Works", for a detailed description of Key/Events and Tags .

Note that the string must be a constant, not a variable .

The Key/Event "Tag", with a name which is the same as the string, is searched for
normally . (The search begins from the top of the displayed slides' Run Action list . If
it is not there, then the search continues on the Global Run Action list . If a match is
not found there, too, it is an error . You can also use the Use action). Execution then
resumes with the action following that Tag action .

This action is similar to, though not the same as, a GOTO statement in some other lan-
guages . It lets you label an action, and then transfer to that action from one or more
places . Note that this all occurs while one slide is on the screen . This does not change
the slide being viewed .

The feature of searching the Global actions (and other slides' action lists with Use),
lets you share common code among many slides .

Action lines with a Tag Key/Event label have no other action . They just have the one
to eight character name of the Tag . You create Tag labels by Inserting a Key/Event-
labeled action line in the normal manner, i .e ., Insert to make a new one, Run
Key/Event to change the current line's Tag . Then select the Tag command. Type the
name of the tag in response to the prompt, and then press Enter .

Dan Bricklin's Demo II Program User Manual

Prog
Tag-Call

Prog
Return-

from-Tag

Prog

To be a match, Tag names must be exactly the same as the string being searched for .
It is case-sensitive .

Note

The Key/Events "Any Tag" and "Anything!" match all tag names . You can have an
action that has a Key/Event label of "Any Tag" and an action of Use Actions On Slide .

Example	

One application of the Goto Tag action could be to allow several keys to do some
specific processing or testing, and then branch to common code, such as indicating a
user error . For example, the following code processes the user responses A and 0 if
the variable notyet is not 1 . Otherwise, it sounds an error indication, remembers that
an error has occurred, and views a slide with an error message :

Aa

	

If (notyet = 1)
Goto Tag "early"

End-If
View Slide Adjust Menu [0205]

Oo

	

If (notyet =1)
Goto Tag "early"

End-If
View Slide Options Menu [0349]

Tag : "early"
Tone Beep
had err = 1
View Slide Early Error [0192]

Call Tag STRING?

Return From Tag Call

Returns execution to the action line immediately following the corresponding Call
Tag action .

Continues execution with the next action line, even if it has a Key/Event label .

Run Actions

Similar to the Goto Tag action, with the added feature of allowing you to return to the
next action when a Return From Tag Call action is executed . This is similar to the
Call Subroutine operation in many computer languages .

Call Tag actions can be nested (along with loops, Ifs, Call Key/Events, etc .) to a depth
determined by the Run Stack (see "How Running Works") .

Programming Run Actions

	

161

String
Set

String
Get

Normally, sequential execution of actions stops when a line with a Key/Event label on
the left is encountered, and new keyboard input is read and processed . This command
inhibits that from happening, i .e., the sequential execution continues .

This command is useful when you want to do the same processing for more than one
Key/Event .

Example	

The A, B, and C keys all display an error indication, although A only does it in
novice" mode :
Aa

	

If (novice = 0)
View Slide Advanced A [0303]

End-If

Bb
Cc

	

Tone Beep
View Slide ABC Error [0499]

String Run Actions

These run actions are for manipulating string values and string variables .

STRING-VARIABLE?[POSITION?] - VALUE?

Assigns the value to a specified position in the string. The position is a value from 1
(the first position in the string) through the current length of the string . This operation
does not extend the string - assigning to a position that does not exist is ignored . If
the value is a number >255 or <0, a 0 is used .

Example

If strl had the value "ABODE", the action
strl [3] _

would change strl to "ABxDE" .

VARIABLE? - STRING 4POSITION?]

"x"

Assigns the current value of the specified position in the string to the variable . The
string can be a constant or a variable . The position must be a value from 1 through the
current length of the string ; otherwise a value of zero is produced .

If the variable is numeric, it is set to a number between 0 and 255 . If it is a string vari-
able, then it is set to be a string with a single character having the value .

To extract more than one character from a string, use the Extract run action .

1 62

	

Dan Bricklin's Demo II Program User Manual

String
Append

String
Backspace

String
Delete

String
Insert

Example

If n had the value 2, the action

oh = "AEIOU"[n]
would set ch to "E" .

Append VALUE?To STRING-VARIABLE?

Adds one or more characters to the end of a string variable's current value . If the
value is a string, the string variable is extended in length and the characters are added
to the end. If the value is numeric, it is treated as a single character string, and that
one character is added to the end of the string . Characters, which extend the string
variable past a length of 80 characters, are ignored .

Example	

If stri had the value "Now is" and str2 had the value "the time", the action

Append str2 To stri
would set str 1 to "Now is the time" .

Backspace STRING-VARIABLE?

If str 1 had the value "12345", the action
Backspace stri

would set str 1 to "1234" .

Delete COUNT? At STRING?[POSITIONi

Insert VALUE? Before STRING-VARIABLE fPOSITION?]

Run Actions

Decreases the string variable's length by one if greater than 0, and the last character in
the string is removed .

Example

Removes the number of characters specified by the count from the string variable,
starting at the indicated position . The string is shortened by that amount, and the
length is adjust accordingly .

Example

If stri had the value "The real value", the action

Delete 5 At strl[4]
would set stri to "The value" .

Adds one or more characters into a string variable's current value . If the value is a
string, the string variable is extended in length and the characters are added starting at
the specified position . This pushes the existing characters to the right . If the value is
numeric, it is treated as a single character string and that one character is added .

String Run Actions

	

163

164

String
Overwrite

String
Fill

String
Erase

Characters to be inserted, which extend the string variable past a length of 80 charac-
ters, are ignored .

Example

If strl had the value "The value", the action
real" Before strl[4]Insert

would set strl to "The real value" .

Overwrite STRING-VARIABLE?[POSITION?] With STRING?

Replaces characters in the string variable with the characters in the string value, start-
ing at the specified position. If the value is a numeric value instead of a string value, it
is treated as a single character string ; just one character position is changed . If more
characters are being replaced than currently exist in the string variable, the length is
extended, up to a maximum of 80 . (Extra characters are ignored .) You cannot start
overwriting past the last existing character .

Example

If strl had the value "The real value", the action
Overwrite strl[5] With "fake"

would change strl to "The fake value" .

Fill STRING-VARIABLE? With COUNT? of VA! I iE?

The current value of the string variable is replaced by a string consisting of the
specified number of the value . The value may be a string (the first character is used)
or a number (the character number if not <0 or >255 ; zero otherwise) ; the count must
be between 0 and 80 .

Example

If strl had the value "Testing", the action
Fill strl With 4 of

would change strl to "xxxx" .

Note

The Fill action is very useful for initializing strings to 80 blanks, etc ., when you need
fixed-sized lines for saving to a file or other purposes . You could use an = action with
a constant of 80 blanks, but the Fill action might be more readable . Since identical
constants are only stored once, there may or may not be an advantage to using Fill for
saving space. (No matter how many constant strings you had that were 80 blanks, it
would only take up about 112 bytes .)

Erase STRING-VARIABLE?

Sets the value of the string variable to be a zero-length string .

Dan Bricklin's Demo II Program User Manual

String
Length

String
Process

Note

VARIABLE?- Length(STRING?)

If sin had the value "ABCDEF", the action
n = Length (strl)

would set n to 6 .

Process-Char STRING-VAR?

Run Actions

When string variables are first created, they are given the value of no-characters
(length is 0) . It is always good practice, though, to explicitly assign initial values to
variables . Otherwise, when editing, you may get unwanted results the second time
you run a series of slides . The Erase action is useful to do this initialization .

Assigns the variable the current length of the string value . It will be a number be-
tween 0 and 80, inclusive . The length of a number is 1 .

Example

Processes the last key typed, and the appropriate action is taken to "type in" to the
string variable . If the key was a character (letters, numbers, punctuation, etc .), it is ap-
pended to the string . If the key was a backspace, the last character is removed from
the string . All other keys are ignored. If there is not room to insert a character, or if
there are no characters to erase, a Tone Thud action is automatically executed . This
causes a Thud sound at the next screen redisplay .

The Grey +, Grey -, and Grey * keys are converted into their normal key equivalents .
This changes the remembered last key to +, -, and *, respectively .

This action is used along with a Value Overlay of a string variable on the current slide
to simulate the user "typing in" to a field, etc .

Note

This action uses the "last key typed" value (see the Set Builtin(1) action on the Miscel-
laneous Run Action menu) . This is not necessarily the value of the Key/Event last
matched, since a Transfer, Goto Tag, or Call Tag action may have been executed .
You can change the value of the "last key typed" with the Set Builtin(1) action .

Example	

If the current slide has the string variable "buffer" as a Value Overlay, you can use the
following actions to let the user add to its value, remove characters with backspace,
and view the next slide upon pressing Enter :

Enter

	

View Slide >NEXT<
Any Key

	

Process-Char buffer
Note that the action with the Key/Event label "Enter" appears before the Any Key ac-
tion. This is necessary because the actions are searched in order from top to bottom

String Run Actions

	

165

166

String
Convert

String
Where

String
Trim

for a match, and Any Key would match Enter . You should always put the more
specific labels first .

To clear the variable "buffer" before the slide is displayed, you could add the actions :
Viewed

	

Erase buffer
Continue with Default Action

Convert VALUE? To VARIABLE?

Converts the value to the type of the variable and stores it in the variable . This is used
to convert from numbers to strings, and from strings to numbers .

If the variable is a string, the value is interpreted as a signed integer and converted to a
string. This string value is stored in the string and replaces whatever value was there
previously .

If the variable is numeric, the value is interpreted as a string and converted to a num-
ber. Characters other than 0-9 and the minus sign are ignored . Only numbers between
-32768 and 32767 are converted correctly, since variables can only hold a 16-bit
signed value .

Example

If n was a numeric variable, the action
Convert "4321" To n

would set n to 4321 .

If strl was a string variable, the action
Convert -2,791 To strl

would set strl to "-2791" .

VARIABLE? = Where In STRING? Is VALUE?

Sets the variable to the first position in the string that has the value. The value can be
a number which is interpreted as a single character string, or a string . If the value is a
string with a length greater than I, the position returned is the first position of the
match. If there is no match, the variable is set to zero . The comparison is upper-
case/lowercase sensitive .

Example

The action
n = Where In "This is a test" Is "is"

would set n to 3 .

Trim STRING-VARIABLE?

Removes the leading and trailing space characters from the current value of the string
variable .

Dan Bricklin's Demo II Program User Manual

String
Extract

String
Replace

Miscellaneous Run Actions

Misc
Key

Example

If strl had the value"

	

This is centered

	

", the action
Trim strl

would set strl to "This is centered" .

Extract STRING-VARIABLE? From START? To END?

The current value of the string variable will have all but the characters from the start
position to the end position removed .

Example

If strl had the value "ABCDEFGH", the action

Extract strl from 3 to 5
would set strl to "CDE" .

Replace STRING? With STRING? In STRING-VARIABLE?

The characters in the string variable, which also occur in the first string, are replaced
by the corresponding characters (those in the same position) in the second string .
Programmers often call this a translate operation .

This action can be used to convert a string to all uppercase or lowercase, to convert all
punctuation to spaces to ease parsing, and so on .

Example

Run Actions

If strl had the value "Fewor Spelling Errors", the action :
Replace "aeiouAEIOU" With "aaaaaAAAAA" In stri

would set strl to "Fawar Spallang Arrays" .

These run actions are very specific to DEMO II . They access internal values, and trigger specific opera-
tions .

VARIABLE?- Current Key/Event

The value of the last Key/Event which matched a Key/Event label is assigned to the
variable . Note that this is not necessarily the last character typed, since there may
have been an intervening Goto Tag, Call Tag, or Transfer action .

Example

If you pressed the "x", the action
Any Letter n = Current Key/Event

would set n to 120 ('x') .

Miscellaneous Run Actions

	

167

168

Misc
Current

Misc
Flush

Misc
Redisplay

VARIABLE?= Current Slide Number

Assigns the number of the slide currently being viewed to the variable . This value can
be used in subsequent View Absolute or View Slide In File actions .

Flush Type-Ahead

Discards and ignores any keys that the user has typed but that have not yet been
processed (i .e ., keys "typed ahead") .

Normally, you want the user to be able to type and have all keys remembered as the
computer "catches up" with the typing . There are times, though, when you want to
discard any keys that are typed "too early ." An example would be after a user error
was detected, or after a long pause when the user may have gotten impatient and
pressed "Space to continue" too many times .

Note that slides with Run Type 2 automatically flush type-ahead before waiting for
keyboard input .

Redisplay Screen

Displays the slide currently being viewed on the screen along with any changes that
may have occurred because of variable-value modifications . Also, any sounds that
wait for Redisplay are sounded immediately after the screen is updated . Bitmapped
screens are not updated, although the sounds are made . (This is an optimization since
bitmapped screens often take a relatively long time to display, and may require a disk
access .)

The screen is automatically redisplayed whenever a slide is viewed and whenever new
input is requested after run actions are executed . The screen is also redisplayed after
every step in Debug running . If the screen updates correctly in Debug, but not nor-
mally, you may need Redisplay actions in the middle of your loops, etc .

See the section, "How Running Works", for a more complete description of redisplay-
ing .

Example

If str was a string variable used as a Value Overlay on the current slide, and the fol-
lowing actions were executed :

Erase str
For n = 1 To 10

Pause 9 1/8-Seconds
Append "x" To str
Redisplay Screen

End-For
you would see first one "x", then "xx", then "xxx", etc ., increasing every half second .
If the Redisplay action were removed, no changes would appear on the screen until
the next redisplay, and then "xxxxxxxxxx" would show .

Dan Bricklin's Demo II Program User Manual

Misc
Pause

Misc
Long-Pause

Misc
NextKey

Misc
Input

Misc
Exec

Pause VALUE? 1118-Seconds

Execution pauses for the specified amount of time. As soon as there is any type-
ahead, the pause terminates . The system clock is used for the timing, so the pause is
independent of CPU speed. The pause is actually about 18 .2 units per second .

Pause VALUE? Even If Key Pressed

Run Actions

Execution pauses for the specified amount of time, regardless of any type-ahead . The
system clock is used for the timing, so the pause is independent of CPU speed . The
pause is actually about 18 .2 units per second .

Next Key

Reads the next keypress, and then processes in the normal way, looking for a match-
ing Key/Event label . It is similar to what happens when there are no more actions to
process, or an action with a Key/Event label is encountered . (The full operation is to
redisplay the screen, then signal the Readkey Key/Event, which by default inputs a
key and then processes it.)

VARIABLE?= Input A Keys

Reads the next keypress from the keyboard. (If there is any type-ahead, it is used
first.) The value is assigned to the variable, which should be numeric since keypresses
can have values greater than 255 . The value is also assigned to the "last key pressed"
value used by the Process-Char action .

Example	

The following actions sound a tone, and then wait for the user to press a key to con-
tinue . The key is ignored .

Melody "602"
Flush Type-Ahead
n = Input A Key

ERRORCODE? = Exec FILENAME? With ARGUMENT STRING?

Lets you execute other programs running under DOS and then return to this one . Its
operation must be fully understood in order to have it work correctly .

There must be enough room in memory, in addition to DEMO II, to run the requested
program. Normally DEMO II uses all memory, so you must restrict the amount used
by having the "-MEM" option on the command line when you execute DEMO II . The
"-MEM" option is followed by a space and then the number of Kbytes of memory to
use for slides, etc . The rest is reserved for the Exec action . The amount of memory to
specify should be at least enough to load your largest file . (See the Global menu for
an indication of how much memory a given file uses .) The amount left for the Exec
action must be enough to hold a new COMMAND.COM environment and invoke the

Miscellaneous Run Actions

	

169

170

requested program . If there is not enough memory, a suitable code is returned in the
errorcode variable .

Failure to use the "-MEM" command option is the most common error when using this
action .

The file name is the name of the file to be executed . It can be a full path (starting with
optional drive, then 'V", etc.), or just a file name . If it has an extension (such as
" .EXE"), then the file with that extension is searched for . If there is no " ." or exten-
sion, first the file with no extension is searched for, and then the name with " .EXE" .
The search follows the normal DOS conventions, including using the PATH setting .

The argument string is passed to the new program as its argument .

The screen is not changed, so the new program should be aware of that, if necessary .
If it changes the screen modes, it should set them back when done .

Upon return, the errorcode variable is assigned the following :
-1 - File or pathname not found
-2 - File is not executable
-3 - Not enough memory to execute
-4 - Microsoft C codes E2BIG or EINVAL (rare)

The code will be 0 if all is OK, and a positive exit code value if the program has an
exit code. (Exit codes are used by ERRORLEVEL in batch files) . The "rare" -4 error
should never occur - it means a DEMO II system error has occurred .

If the file name is "*" (a single character string consisting of an asterisk), the argument
string is passed to COMMAND.COM to execute. This allows you to execute internal
DOS commands such as COPY, batch files, etc . Note that exit codes are not returned
- successful execution always results in 0 .

The Microsoft C library routines SPAWNLP and SYSTEM are used to implement this
action .

Example

To print a file on the printer, you could execute the actions
status = Exec "*" With "copy file .txt pr:"
If (status != 0)

View Slide Exec Error [0015]
End-If

To get a DOS shell, you could use
status = Exec " command .com" With "

and return to DEMO II with the DOS Exit command.

Note

If you are calling a program with no arguments, you need to have a null (") second
argument to the Exec action . You cannot leave it undefined. You get a null argument
by pressing the "key and then pressing Enter or Tab .

Dan Bricklin's Demo II Program User Manual

Misc
Mouse

Mouse (COMMAND?, VALUE?, VALUE?)

Run Actions

Allows you to make use of a compatible mouse or other pointing device while run-
ning. It implements a large subset of the Microsoft Mouse Function Calls . The full
calls are defined in the Microsoft Mouse Programmer's Reference Guide (from
Microsoft Corporation, Document Number 990973002-600-R00-1186), as well as in
IBM's Mouse Technical Reference (68X2229 S68X2229-00) . You should be familiar
with those calls before attempting to use the Mouse actions . This is the only DEMO
11 use of a mouse .

The Mouse action forms are :
Mouse (0, arg2, arg3)
Mouse reset and status (Function 0) . Arg2 is set to 0 if no mouse hardware and
software are found, -1 if it is . Arg3 is set to the number of buttons on the mouse .
Mouse (1, arg2, arg3)
Show Cursor (Function 1) . Increments the internal mouse cursor flag . See the Mouse
documentation . Note that the cursor is always automatically hidden and then re-
shown during a redisplay . This can make a very blinky cursor . It is often better to in-
terrogate the mouse position and move an overlay or a H/W cursor overlay by chang-
ing a variable . If you are staying on one screen during the processing, and not
redisplaying (such as a bitmapped image), there should not be so much of a problem .
Mouse (2, arg2, arg3)
Hide Cursor (Function 2) . Decrements cursor flag . See Show Cursor, above .
Mouse (3, arg2, arg3)
Button Status A (Function 3). Sets arg2 to the state of the two mouse buttons . Bit 0 is
set to 1 if the left button is down, 0 if up . Bit 1 is set to 1 if the right button is down, 0
if it is up . For example, 1 means that the left button is currently down, 2 means just
the right button is down, and 3 means they are both being pressed .
Mouse (-3, arg2, arg3)
Button Status B (Function 3) . Sets arg2 to the current mouse column position
(horizontal position in units - usually pixels). Sets arg3 to the current mouse row
position (vertical) .
Mouse (4, arg2, arg3)
Set Mouse Cursor Position (Function 4) . Arg2 and Arg3 are the horizontal and verti-
cal coordinates, respectively .
Mouse (5, arg2, arg3)
Get Button Press Information A (Function 5) . Arg2 specifies which button to check .
If it is 0, the left button is checked ; if 1, the right button is checked . Upon return, arg2
is set to the current status of the buttons (same as Button Status A, above) . Arg3 is set
to the number of button presses since the last such call .
Mouse (-5, arg2, arg3)
Get Button Press Information B (Function 5) . Returns additional values associated
with the last Mouse Get Button Press Information A call (see above) . Arg2 is set to

Miscellaneous Run Actions

	

171

172

Misc
Attrib-

Translate

the horizontal coordinate of the last press of the specified button . Arg3 is set to the
vertical position .
Mouse (6, arg2, arg3)
Mouse (-6, arg2, arg3)
Get Button Release Information A & B (Function 6) . These are the analogous calls
for button release to the Button Press calls, above .
Mouse (7, arg2, arg3)
Set Min & Max Horizontal Cursor Position (Function 7) . Arg2 specifies the minimum
position, and arg3 the maximum .
Mouse (S, arg2, arg3)
Set Min & Max Vertical Cursor Position (Function 8) . Arg2 specifies the minimum
position, and arg3 the maximum .
Mouse (9, arg2, arg3)
Set Graphics Cursor Block (Function 9) . Arg2 is a specification for the cursor hot
spot . It is calculated by : (horizontal * 100) + vertical . Arg3 is a string with the ap-
propriate bytes . A good way to set the arg3 value, since it may have many nonprint-
able values, is to read it in from a file with a #Read action if you doo not want lots of
assignment statements .
Mouse (10, arg2, arg3)
Set Text Cursor Software (Function 10) . Arg2 and arg3 specify the screen mask and
the cursor mask .
Mouse (-10, arg2, arg3)
Set Text Cursor Hardware (Function 10) . Arg2 and arg3 specify the scan line
start/stop values .
Mouse (11, arg2, arg3)
Read Mouse Motion Counters (Function 11) . Arg2 is set to the horizontal mickey
count since the last such call . Arg3 is set to the vertical mickey count . A mickey is
1/200 of an inch .
Mouse (15, arg2, arg3)
Set Mickey/Pixel Ratio (Function 15) . Arg2 is the horizontal mickey/pixel ratio, and
arg3 is the verttcal ratio .
Mouse (19, arg2, arg3)
Set Double-Speed Threshold (Function 19) . Arg3 (not arg2) is the threshold speed in
mickeys/second .

All other command values are ignored .

Translate Attribute STRING?To STRING?

Sets elements of the Attribute Translate Table . This is the same table used by the
Block Xlate command . The table specifies how to translate each of the 256 attributes .
This action sets the table element specified by each position in the first string to the
value in the same position in the second string . The actual translation is done by using
the Translate Attribute Cmd action .

Dan Bricklin's Demo II Program User Manual

Misc
Translate-

Cmds

Translate Attribute Cmd VALUE?

Run Actions

Controls the attribute translation process . The translation allows you to change at-
tributes dynamically before they are displayed on the screen . This lets you show the
same set of slides on a variety of monitors and adapters, with color showing as color,
and an appropriate translation into black and white .

The values accepted are as follows :
Translate Attribute Cmd 0
Turns off translation . Attributes are displayed as themselves .

Translate Attribute Cmd 1
Turns on translation . All text screens have their attributes translated by the Attribute
Translate Table before being displayed . This has no effect on the actual slides, only
the displayed image is changed . To make the translation permanent, use the Block
Xlate command.
Translate Attribute Cmd 2
Resets the Attribute Translate Table to do no translation . That is, all attributes will be
translated into themselves .
Translate Attribute Cmd 3
Sets the Attribute Translate Table to do default, monochrome translation . All at-
tributes will be translated into normal video (07) except inverse (70), which stays the
same. You may want to set other items explicitly after using this action, such as
making some color combinations go to underline or bright (if the monitor/display
adapter combination has them) .

Note

You should determine the translation that is needed by either asking the user ("Is this
in color on your screen?", "Is this underlined?") or by checking the adapter type with
the Get Builtin(5) action and guessing what would be appropriate .

Example	

The following actions could be used in response to the question "Is this in color on
your screen (YIN)?" . They would do a mono translation that would turn all attributes
into normal except inverse (70), which would stay inverse, and 41, 47, and 76, which
would be turned into underline (01) :

Miscellaneous Run Actions

	

173

174

Misc
Debug

Misc
Get

2
3
4

Debug

Note that if you just wanted the normal color-to-mono translation, you could skip lines
2 through 7, leaving you with :

1 Nn

	

Translate Attribute Cmd 3 - set to mono xlate
Translate Attribute Cmd 1 - turn on translation
. . .

	

-join color code . . .
Yy

	

View Slide >NEXT<

Starts single-step Debug running . This is like setting a "breakpoint" in other program-
ming systems. You can use this action to start debugging at a particular point or when
a particular condition occurs, rather than at the start of running . Note that if you press
Ctrl-Break while running, you will be given the option to enter Debug mode or stop
running . This is another way to start debugging at a particular point .

Example	

If you know that there are problems with your actions at a particular point in a slide
show, but only when string str has a length of 5, you could add the following actions
to start step-by-stepping at that point :

slen = Length(str)
If (slen = 5)

Debug
End-If

VARIABLE?= Builtin(VALUE?)

Gets the value of a variety of internal settings . Many of them can be set with the Set
Builtin action, below .

List of Builtin Options
0

	

Random Number
1

	

Last Typed

Dan Bricklin's Demo II Program User Manual

1 Nn Translate Attribute Cmd 3 - set to mono xlate
2 Fill strl With 3 of 0 - what to translate

3 strl [1] = 65 - blue/red (hex 41)
4 strl [2] = 71 - white/red (hex 47)
5 strl[3] = 118 - brown/white (hex 76)
6 Fill str2 With 3 of 1 - into underlined (O1)
7 Translate Attribute strl To str2 -addnew3
8 Translate Attribute Cmd 1 - turn on translation

9 - join color code . . .
10 Yy View Slide >NEXT<

Run Actions

2

	

Elapsed Timer Ticks

3

	

Elapsed Seconds

4

	

Relative CPU Speed (10=IBM PC)

5

	

Display Adapter (0=Mono,1=CGA,2=EGA,3=Herc,S=VGA)

6

	

Background Attribute

7

	

Background Character

8

	

Timeout Value

9

	

BIOS Shift State (including Num Lock)

-1

	

Run Wait Value

-2

	

Run Type Value

-3

	

Day of Week (0=Sunday)

-4

	

Year (1987, etc .)

-5

	

Month

-6

	

Day of Month

-7

	

Hours

-8

	

Minutes

-9

	

Seconds

-10

	

Hundredth Seconds

-11

	

DOS Environment Setting DEMO2V

-12

	

Command Option -.ERG Value

-13

	

Kbytes Free

-14

	

Kbytes Total

Full Descriptions

var = Builtin (0)

Gets the next random number, a value between 0 and 32767 . To get a number be-

tween 0 and n, you use the remainder of the random number with n+1 . For example,

to get numbers from 0 to 10, you get the remainder with 11 :

n = Builtin (0)

var = Builtin (1)

Gets the Key/Event value of the key "last typed," which is the value used by the

Process-Char action .

var = Builtin (2)

Gets the elapsed time in timer ticks (1193180/65536 = 18 .206481 per second) . The

starting time is power-on of the machine unless you reset it with a Set Builtin action .

Since only values from 0-32767 are returned (about 1800 seconds, or slightly under 30

minutes), you should reset the starting time first, and only use it to time short intervals .

var = Builtin (3)

Gets the elapsed time in seconds . The starting time is power-on of the machine unless

you reset it with a Set Builtin action. Since only values from 0-32767 are returned (a

little over 9 hours), you should reset the starting time first . While most time conver-

sions in this program use 18 clock ticks per second as an approximation, this operation

Miscellaneous Run Actions

	

175

176

is much more accurate; it should be almost identical to the system clock, since it uses
18.206481 .
var = Builtin (4)
Gets the relative CPU speed calculated when the program started . This value is used
by some of the timing routines, such as the Sound action and some of the Switch dis-
play operations . A normal, original, IBM PC has a value of 10. (For those who care,
the value is determined by timing a loop with : mov di,[si] ; inc di ; loop) . This value is
provided for those times when you need to know the characteristics of the machine
you are on, so that you can do something faster on a faster machine and slower on a
slower machine, or for whatever other purpose you may want .
var = Builtin(5)
Gets the display adapter type . You may need this to translate attributes automatically
on a monochrome system (using the Translate Attribute action), or to show the most
appropriate bitmapped graphics (higher-res on an EGA, lower on a CGA, and Her-
cules on a Hercules card) . The values are as follows :

0 - Monochrome Display Adapter
1 - Color Graphics Adapter (CGA)
2 - Enhanced Graphics Adapter (EGA)
3 - Hercules Graphics Card (Hercules)
4 - reserved, treated like CGA
5

	

VGA, treated like EGA
= Builtin (6)var

Sets the variable to the current background attribute value . This is the value shown on
the Global menu as Background Attribute .
var = Builtin (7)
Gets the current background character value .
var = Builtin (8)
Gets the current timeout value (the value shown on the Global menu) .
var = Builtin (9)
Sets the variable to the current shift state (BIOS location 40 :17). The bits are as fol-
lows :

Bit 0 - Right shift key currently pressed (1)
Bit 1 - Left shift key currently pressed (2)
Bit 2 - Ctrl key currently pressed (4)
Bit 3 - Alt key currently pressed (8)
Bit 4 - Scroll Lock locked (16)
Bit 5 - Num Lock locked (32)
Bit 6 - Caps Lock locked (64)
Bit 7

	

Insert locked (128)
You can use the computer-type AND and OR actions to manipulate these values, if
you know how . See the example in Set Builtin(9) .
var = Builtin (-1)
Gets the Run Wait value for the currently viewed slide .

Dan Bricklin's Demo II Program User Manual

Misc
Set

var = Builtin(-2)
Gets the Run Type value for the currently viewed slide .
var = Builtin (-3)
Gets the day of the week, as set in the system : 0=Sunday, l=Monday, etc .
var = Builtin (-4)
Gets the year, as set in the system, e.g ., 1987 .
var = Builtin (-5)
Gets the month, as set in the system . I=January, 2=February, etc .
var = Builtin(-6)
Gets the day of the month, as set in the system .
var = Builtin(-7)
Gets the hour of the day, as set in the system .
var = Builtin(-8)
Gets the current minute of the hour, as set in the system .
var = Builtin(-9)
Gets the current second of the minute, as set in the system .
var = Builtin(-10)
Gets the current hundreths of a second, as set in the system .
var = Builtin (-11)
Sets var (a string variable!) to the current value of the DOS environment variable
"DEMO2V", up to 80 characters .
var = Builtin(-12)
Sets var (a string variable!) to the value provided after the "-ARG" option to the
DEMO II command. For example, "D2 test -arg convert" sets the variable to "con-
vert" . This lets you pass arguments to a slide show from command level or a batch
file .
var = Builtin(-13)
Gets the number of KBytes free (the same as the KBytes left value on the Global
menu) .
var = Builtin(-14)
Gets the number of KBytes total available to load a file .

Buiitin(VALUE?) = VALUE?

Run Actions

Sets the value of a variety of internal settings . They can all be read with the Get Buil-
tin action, described above . See also the list of Builtin options there .

An additional Set Builtin (number 10) simulates spinning the diskette on drive A . It is
provided for compatibility with Dan Bricklin's Demo Program, and may help to
make a demonstration more realistic. You can sometimes get the same effect, or bet-
ter, with the File operations .

Miscellaneous Run Actions

	

177

178

Builtin (0) = value
Resets the random number generator . A value of 1 resets the set of numbers to the
"standard" starting point . Any other value sets it to a different starting point . You can
use the Builtin(2) value (the elapsed time in timer ticks) to get a "random" starting
value to set Builtin(0) .
Builtin (1) = value
Sets the "last typed" value, which is used by the Process-Char action .
Builtin (2) = value
Builtin (3) = value
Both reset the elapsed-time counter to 0.
Builtin (4) = value
Sets the Relative CPU speed value . The value must be greater than 0 or else it is ig-
nored. There may be a good reason to set this, but I can't think of too many . It's
setable for completeness .
Builtin (5) = value
Sets the display adapter that the system thinks it has when it determines what type of
bitmapped images are allowed . Setting this can have unpredictable results .
Builtin (6) = value
Sets the background attribute . Takes effect the next time the screen is displayed .
Builtin (7) = value
Sets the background character . Takes effect the next time the screen is displayed .
Builtin (8) = value
Sets the Timeout value, which is the Timeout During Run value shown on the Global
menu. It determines how much time to wait for user input before producing the
pseudo-key "Timeout" . This value must be greater than or equal to 0. Zero means
that no checking for tmeout will occur .
Builtin (9) = value
Sets the BIOS shift-state information (BIOS location 40 :17). See the Get Builtin (9)
description for a list of the bit assignments . You can use this action to force the Num
Lock and Caps Lock bits to be off. (The lights will be turned off on ATs and PS/2s,
etc .) .

For example, to turn off the Num Lock, you could use the actions :
n = Builtin (9)
n=n & 223
Builtin (9) = n

The value 223 is the same as hex DF, which is all bits on, except the Num Lock bit 5 .
You can calculate it by taking 255 and subtracting the value of the bit you want to turn
off. Bit 0 is 1, bit 1 is 2, etc .

You can force the bits on by using the OR action . To turn on the Caps Lock bit, you
could use the actions :

Dan Bricklin's Demo II Program User Manual

File Run Actions

These run actions control file and printer I/O

File
Open

File
Close

ERRORCODE? = Open File FILENAME? For MODE:R/W/U/A?

Run Actions

n = Builtin (9)
n=n 164
Builtin (9) = n

Builtin (1O) = value
Spins the A diskette drive . The value is ignored . This works even if a diskette is not
in the drive. For those readers who are technically minded, it does a ROM-BIOS
Verify Diskette operation (int 13H, AH=4) of drive 0, head 0, sector l, track 0; then
another one of sector l, track 10 . If the BIOS returns an error, a reset (AH=O) is done .
The interrupt-enable bit in the CPU is set (STI instruction) after each BIOS call to en-
sure compatibility with some computers from Compaq .

Opens a normal DOS file . The file name is a string . The third argument is the mode
in which you want to operate on the file . The mode must be a numeric or string value
with the value of a single character . The accepted values are R for reading the file ; W
for writing the file (truncating it first, if it already exists) ; U for updating the file in
place; and A to write starting at the current end of the file (appending) . The error code
is returned to set the first argument .

The codes returned are :
0-OK
1 - Access violation (write a directory, etc .)
2 - File or pathname not found
3 - Microsoft C codes EEXIST or EMFILE (rare, mean

system error)

Example

To open the file "TEMP.LOG" and add to the end, if it already exists, you could use
the actions :

status = Open File "temp .log" For
If (status != 0)

View Slide Open Error [0039]
End-If

Close File

Closes the currently open file . Only one file may be open at any given time . In order
to open a second file, you must close the first file before you do the second Open ac-
tion .

File Run Actions

	

179

180

File
Read

File
Read#

File
Write

File
*Write
NCRLF

Note

You must close files when you are finished with them . This writes out any last bit of
information, and keeps the disk consistent . Turning off power to the computer when a
file is open can have an unpredictable effect on the rile system .

ERRORCODE?= Read Text Into STRING-VARIABLE?

Reads the next line of text from the currently open file and puts it into the string vari-
able . The error code variable is set to 0 if all is OK, to 1 if an End-of-File has been
encountered (no characters read), and to 2 if the file was not open for read or was
locked .

A "line" is terminated by a CR (carriage return character, Hex OD), or a CR/LF (car-
riage return/line feed combination, Hex OD OA) . If a line has more than 80 characters,
it is broken up into chunks with a maximum of 80 . Subsequent Read Text actions
retrieve the subsequent characters .

ERRORCODE? = Read COUNT? Bytes Into STRING-VAR?

Reads the next specified number of bytes into the string variable from the currently
open file. The error code variable is set to 0 if all is OK, to 1 if an End-of-File has
been encountered (no characters read), and to 2 if the file was not open for read or was
locked.

All characters are treated the same, including CR and LF .

Note

You use this type of Read action when you have a specific number of characters to
read from a file . Frequently there are fixed-length "records" . You use the Seek action
to position the file at the appropriate byte, and then read in the required number of
characters .

Use the Read action instead of the Read# action when you are reading a file that is
made up of a series of "text lines," each delimited by a CR or CR/LF .

ERRORCODE? = Write STRING?

Writes the characters in the string value to the currently open file, adding a CR/LF at
the end. The error code value is set to 0 if the write was successful, to 1 if the file is
read only or locked, to 2 if there is no room left on the output device (disk full), and to
3 in the rare event (DEMO II system error) that Microsoft C error code EBADF is
returned .

ERRORCODE?= Write STRING? With No CR/LF

Writes the characters in the string value to the currently open file . No CR/LF is added
at the end. The error code value is set to 0 if the write was successful, to 1 if the file is
read only or locked, to 2 if there is no room left on the output device (disk full), and to

Dan Bricklin's Demo II Program User Manual

File
Seek

File
Print

File
&Print-
NCRLF

Print STRING?

Print STRING? With No CR/LF

Run Actions

3 in the rare event (DEMO II system error) that Microsoft C error code EBADF is
returned .

You can use this action, along with the plain Write action, to create lines longer than
80 characters . This is especially useful for wide reports for later printing . You can
also use this action to write out the parts of a line one at a time, with only the last part
having a plain Write with CRILF. It may be better, though, to build up a line by ap-
pending to a string . Then output the entire string as a line when done .

ERRORCODE?= Seek To VALc F~

Moves the "current position" in the currently open file to the specified byte (0-32767,
with 0 being the first character) . Do not use a value out of this range . The error code
variable is set to the value 0 if the seek is successful, and to non-zero otherwise . If a
file is opened for Update ("U"), you can read a series of bytes (usually with the Read#
action), and then write them back out (usually with *WriteNCRLF) after using the
Seek action to move back to the same position .

Outputs the characters in the string value to the printer, adding a CRILF at the end .
Note that it outputs to the standard print device known as "stdprn" in the DOS techni-
cal reference manuals .

Outputs the characters in the string value to the printer, with no extra CRILF added at
the end . Note that it outputs to the standard print device known as "stdprn" in the
DOS technical reference manuals .

You can use this action, along with the plain Print action, to create lines longer than
80 characters . This is especially useful for printing wide reports . You can also use
this action to print the parts of a line one at a time, with only the last part having a
plain Print with CRILF . It may be better, though, to build up a line by appending to a
string . Then output the entire string as a line when done .

File Run Actions

	

181

182

	

Dan Bricklin's Demo II Program User Manual

This is a list of all of the commands in DEMO II, listed hierarchically, with the prompts that appear
below them in the command windows,

BLOCK
ATTRIB

Select
Insert
Delete
Move
Name
Value
All
Group

BEGIN
LAST
UNMARK
DELETE
COPY
SAVE

Select
Insert
Delete
Move
Name

PASTE
RETRIEVE

Select
Insert
Delete
Move
Name

MOVE
WRAP
EXCHG
XLATE

Value
Mono
Reset
Group

Block
Slide
All

BLOCK

Command List

Commands to manipulate blocks of text
Set block (or one character, if no block marked) to attribute
Select attribute
Make new attribute definition
Remove attribute definition
Reposition attribute in list
Edit attribute name
Edit hexadecimal value
Insert ALL 255 attributes
Toggle group start
Mark the beginning of a block at the cursor
Restore the last block definition
Stop showing a block definition
Save a copy of marked block, then delete it from screen
Save a copy of marked block without deleting it
Save a copy of marked block to a named retrieve area
Save to highlit save area
Make new save area
Delete save area
Reposition save area in list
Edit save area name
Retrieve deleted/copied block at cursor, then confirm position
Retrieve a named retrieve area at cursor, then confirm position
Retrieve highlit save area
Make new save area
Delete save area
Reposition save area in list
Edit save area name
Use cursor to move marked block (like cut/paste)
Word-wrap characters in block (until terminated by unmarking)
Swap contents of delete/paste with block
Translate selected attributes in block or on all slides
Set value to translate to
Set all colors to mono
Set all attribs to themselves
Toggle group start
Go to specified item
Translate attribs in block
Translate attribs on slide
Translate ALL SLIDES

183

184

FILL
1-BOX
2-BOX
3 _BOX
4=NOBOX
CNTR
/CAB

Char
Attrib
Both

NAMES
Block
Comment
Position
Name
Insert

Group
Delete
Move

TYPING
LINES
CHARS

Select
Num

DIRECTION
Right
Left
Up
Down

HTABS
Set
Clear
All
Default

VTABS
Set
Clear
All
Default

MARGIN
STATUS

Hide
Cursor
Slide

Fill block with contents of upper-left position
Surround block with single-line box
Surround block with double-line box
Surround block with thick box
Remove box around block
Center lines within block
Set what Delete, Paste, typing, and editing affect : Chars and/or Attribs
Characters Only
Attributes Only
Both Chars & Attribs
Display list of block names and definitions
Make selected item current block
Edit block's comment
Redefine item to current block
Edit name of highlighted block
Insert current block as new item
Move to specific item
Toggle start of group
Delete block name definition(s)
Reposition item

Aids for nontext typing : line drawing, special chars, etc .
Make cursor keys draw lines
Choose special character from list
Choose Char
Input Decimal #
Change typing direction to up, down, left, or right

Set/Clear horizontal tab stops
Set tab stop at cursor
Clear tab stop at cursor
Clear all tab stops
Clear and set to defaults
Set/Clear vertical tab stops
Set tab stop at cursor
Clear tab stop at cursor
Clear all tab stops
Clear and set to defaults
Set column, where cursor goes, when Enter is pressed
Configure Status Display
Toggle whether on not to show Status Display
Toggle cursor position display
Toggle slide name/number display

Dan Bricklin's Demo II Program User Manual

File

	

Toggle file name display
Ins/Ovr

	

Toggle Insert/Overwrite display
Find

	

Move cursor to location with specified characters

SLIDES

	

View, create, delete, etc ., other slides
VIEW

	

Show slide
UNDO-EDIT

	

Restore slide as when last viewed
INSERT

	

Create new slide after this one
!DELETE

	

Erase slide(s) . Type !, not D .
PRINT

	

Toggle Print Flag (all Group like first)
NAME

	

Edit name of slide
OPTIONS

	

Show/Edit color/bitmap options
Value

	

Set value of highlighted item
Slide Type
Switch Type
Switch Speed
Bitmap Origin/PCX Filename

Text

	

Make slide NOT bitmapped
Palette

	

Show/Change video settings
OK

	

Return to previous menu
LOCATE

	

Find slide with given name
#

	

Move to specific number slide
GROUP

	

Toggle start of group
MOVE

	

Change order of slides

COPY

	

Copy entire contents of slides
ALL

	

Copy overlays, actions, and slide
OVERLAYS

	

Copy overlays from slide only
RUN

	

Copy run actions from slide only
SLIDE

	

Copy slide without overlays only
LOCATE

	

Find slide given name

OVERLAYS

	

Display slides one on top of another, variables on slides, etc .
NUMS

	

Set values for row/col offsets, whether or not overlay is displayed, etc .
Value

	

Set value of highlighted item
Row Offset
Column Offset
Visible
Max Chars Shown
Type
Scan Lines Desc

OK

	

Return to previous menu
SLIDE

	

Insert overlay showing another slide at the same time as the current
slide

View

	

Show slide to select and adjust
Locate

	

Find slide with given name

OVERLAYS

	

185

Command List

186

This-Slide
VALUE
CURSOR
ADJUST
GROUP

MOVE

DELETE
OK
PASTE

RUN
LINE
ACTION

Programming
If

In
Between
Upper
Lower
Alpha
#Num
NumLet
Func-Key
Edit-Key
Text
Key
WaitforKey
"Waiting
Shift
Ctrl
*Alt

-Else

For
While

Make reference to THIS SLIDE
Insert overlay showing a variable or constant with the current slide
Insert overlay displaying the Hardware Cursor
Change position or item for existing overlay
Toggle group start
Move highlight to specified overlay
Change order (2nd displays after 1 st, 3rd after 2nd, etc . Current slide
last.)
Erase overlay(s)
Return to editing
Paste overlay as shown, then remove overlay definition

Setup and automatically go from slide to slide
Insert a new blank line below the current line, then set action
Set operation for this line
"Programming" actions such as IF, FOR and SELECT
Execute following actions if condition met, else skip to .ELSE or END-
IF
"True" if first value equals second value (strings not case sensitive)
"True" if first value equals second value (strings case sensitive)
Condition met ("True") if first numeric value less than second
"True" if first numeric value less than or equal to second
"True" if first value does not equal second (strings not case sensitive)
"True" if first numeric value greater than or equal to second
Condition met ("True") if first numeric value greater than second
"True" if value (single character) is contained in string
"True" if value is >= one value and <= the other
"True" if value contains only uppercase letters (A-Z)
"True" if value contains only lowercase letters (a-z)
"True" if value contains only uppercase or lowercase letters
"True" if value contains only digits (0123456789)
"True" if value contains only digits or letters
"True" if value is a function key Key/Event number
"True" if value is an editing/cursor key Key/Event number
"True" if value is a text character (0-9, A-Z, punctuation, etc .)
"True" if value is Key/Event number of key user can press
"True" if waiting for user to press key (no keys "typed ahead")
"True" if keys "typed ahead"
"True" if either shift keys are currently being pressed
"True" if Ctrl key is currently being pressed
"True" if Alt key is currently being pressed
Execute following actions if previous condition not met, else skip to
END
Repeatedly execute a group of actions for a specified number of times
Repeatedly execute a group of actions while a condition is met
"True" if first value equals second value (strings not case sensitive)

Dan Bricklin's Demo II Program User Manual

RUN

<-

In
Between
Upper
Lower
Alpha
#Num
NumLet
Func-Key
Edit-Key
Text
Key
WaitforKey
Awaiting
Shift
Ctrl
*Alt

Block
Leave
Again
Select
Case
Otherwise
Done
End

If-End
For-End
While-Enc
Block-End
Select-End

Goto-Tag
Tag-Call
Return-from-Tag

View
View
Locate
Next
Previous

Tone
Beep

Command List

"True" if first value equals second value (strings case sensitive)
Condition met ("True") if first numeric value less than second
"True" if first numeric value less than or equal to second
"True" if first value does not equal second (strings not case sensitive)
"True" if first numeric value greater than or equal to second
Condition met ("True") if first numeric value greater than second
"True" if value (single character) is contained in string
"True" if value is >= one value and <= the other
"True" if value contains only uppercase letters (A-Z)
"True" if value contains only lowercase letters (a-z)
"True" if value contains only uppercase or lowercase letters
"True" if value contains only digits (0123456789)
"True" if value contains only digits or letters
"True" if value is a function key Key/Event number
"True" if value is an editing/cursor key Key/Event number
"True" if value is a text character (0-9, A-Z, punctuation, etc .)
"True" if value is Key/Event number of key user can press
"True" if waiting for user to press key (no keys "typed ahead")
"True" if keys "typed ahead"
"True" if either shift keys are currently being pressed
"True" if Ctrl key is currently being pressed
"True" if Alt key is currently being pressed
Repeatedly execute a group of actions (use Leave action to stop)
Stop executing actions in group and resume after END
Continue executing FOR/WHILE/BLOCK from first action in group
Skip actions until CASE action that matches specified value
Specify value to match last SELECT action
Match last SELECT action no matter what the value
Skip to END of Select group
Matching END to IF, FOR, WHILE, BLOCK, and SELECT
End to match most recent If
End of For group
End of While group
End of Block group
End of Select Case/Otherwise list
Continue executing with actions that follow specified Tag Key/Event
Like Goto-Tag, but execution can be resumed with Return-from-Tag
Resume execution with action following last Tag-Call
Continue executing, even if next line has a Key/Event on the left
Change display to show a specific other slide
Show slide to select
Find slide with given name
Use next slide in sequence
Use previous slide in sequence
Make beep, thud, sound, single note, or melody
Make Beep sound at next redisplay of screen

187

188

Thud
Sound
Note
Melody

Other-Slide
Call
Return
After
File
Slide-File
Offset-View
View-Absolute
Name

Make Thud sound at next redisplay
Sound arbitrary sound (see Manual)
Sound particular note for a specified amount of time
Play a series of notes listed in a string
Other ways to change display to show another slide
View specified slide, then redisplay this slide after Return action
Redisplay slide that last did a slide Call
Display slide following slide that last did a slide Call
Load another file and start with default slide
Load another file and start with specified slide
Display a slide the specified number of slides from the current slide
Display a slide with the specified number
Set variable to number of first slide whose name matches specified
string
Display slide with specified number, then go to Tag on that slide
Stop running (and return to editing if not runtime version)
Leave line blank (no action)
Continue executing actions with another Key/Event action list
Continue executing with action list that matches specified Key/Event
Like Transfer, but execution can be resumed with Return-from-
Key/Event

Return-from-Key/Event Resume execution with action following last Call-Key/Event
Use

	

Search for Key/Event match on specified slide's action list
Global

	

Search for Key/Event match on Global Run Action List

Display-then-Tag
Quit
Nothing
Key/Event

Transfer
Call-Key/Event

Default
?List
String

Set
Get
Append
Backspace
Delete
Insert
Overwrite
Fill
Erase
Length
Process
Convert
Where
Trim
Xtract
Replace

Miscellaneous
Key
Current

Continue by doing default action for current Key/Event
Choose action from one long list of all actions
Actions to manipulate string/character values and variables
Set character position in string to a given value (first is l, then 2 . . .)
Set variable to the character in the specified position in string
Append the characters in the first string to the end of the second
Shorten string by removing last character
Shorten string by removing character in specified position
Add character or string into string at specified position
Replace character(s) at specified position in string with new ones
Make string consist of a specified number of a character only
Shorten string to have no characters set
Set variable to the left of = with number of characters in string
Have current Key/Event "edit" the string, adding and backspacing
Convert a string to a number or number to a string, setting variable
Set variable to number of first position in string that matches value
Remove leading and trailing space characters from string
Remove all but specified part of string and leave in variable
In 3rd string replace chars matching 1 St string with corresp, ones in 2nd
Miscellaneous actions including Builtin and I/O
Assign current Key/Event value to variable
Assign number of current slide to variable

Dan Bricklin's Demo II Program User Manual

RUN

Flush
Redisplay
Pause
Long-Pause
Next Key
Input
Exec
Mouse
AttribTranslate
TransIateCmds
Debug
Get-Builtin
Set-Builtin

File
Open
Close
Read
#Read
Write
*WriteNCRLF
Seek
Print
&PrintNCRLF

*

Incr
Decr

1ST
2ND
3RD
;COMMENT
WAIT
TYPE
TAB/INS/DEL

VARS
OK
Insert
Delete
Move

Command List

Ignore all keys that have just been "Typed-Ahead"
Update screen
Pause for specified time or until key pressed
Pause for specified time even if key pressed
Get next keypress, then process as Key/Event
Get next keypress, assign to variable, then continue
Execute external .EXE or .COM file (See Manual!!!)
Control optional mouse (See Manual)
Set items in Attribute Translate Table
Control use of the Attribute Translate Table
Start step-by-step RUN mode
Assign specified internal value to variable (See Manual)
Assign new value to specified internal value (see Manual)
Actions to Open, Close, Read and Write files, and Print
Open file for Read ("R"), Write ("W"), Update ("U"), Append ("A")
Finish using file
Read next line in file, setting string variable and error code
Read specified number of bytes into string
Write string into file, followed by CR/LF
Write string into file without adding CR/LF
Have next Read or Write be at specified byte in file (0-32767)
Print string on PRN :
Print string on PRN; without adding CR/LF
Assign value on the right of = to variable on the left
Add two values and put the result into variable to the left of =
Subtract second value from first and put remainder into variable on left
Multiply two values and put the product into variable on left
Divide first value by second and put quotient into variable on left
Divide first value by second and put integer remainder into variable
Result is a computer AND of the first value with the second
Result is a computer OR of the first value with the second
Add value to variable
Subtract value from variable
Define first argument to action
Define second argument to action
Define third argument to action
Set comment for line
Set amount of time to wait after displaying this slide
Set what to do after the wait (the slide's Run Type)
Use the Tab key for 1 St Arg, Ins/Del to indent/un-indent current line
Move to specific line number
Show list of variables and their values
Return to previous menu
Create new variable
Delete variable(s)
Reposition variable(s) in list

189

Group

Locate

Name

Value

Passed-On

INSERT

KEY/EVENT

Select

Key

Tag

Reset

DELETE

MOVE

GROUP

COPY

Paste

OK
*DEBUG

RUN

MACRO

OK

RUN

SAVE

LEARN

EXTEND

VIEW

OK

Insert

Delete

NAME

DELETE

Toggle start of group variable

Move highlight to specific position in list

Find next variable with given name

Edit name of variable

Edit value of variable

Toggle "Passed-On" setting for variable

Insert a new line, then set Key/Event label and action

Set Key/Event label for current line

Select Key/Event

Prompt for key/event number

Prompt for sample key press

Set Tag Key/Event and name

Reset to no Key/Event label

Do Copy, then delete line(s)

Move line(s)

Set/Clear start of group of lines

Save line(s) for future Pasting or I/O Write-Code

Insert previously Deleted/Copied lines below current line

Return to editing

Do RUN, but stop before each action

Start displaying the slides automatically

Learn and then playback keystrokes

Return to editing

Execute keystrokes saved in macro

Store A-Z (0-9 go with slides)

Start recording keystrokes

Continue recording keystrokes

Display contents of macro

Return to Macro Menu

Add item to macro

Remove item

Edit name of highlighted macro

Erase macro definition

GLOBAL

	

View/Change global settings

EDIT

	

Change value of highlighted item

No Marked Block/Marked Block

Memory

Current Filename

System Files Directory

Display Adapter

Changes Made

Typing Attribute

Select

	

Select attribute

Insert

	

Make new attribute definition

190

	

Dan Bricklin's Demo II Program User Manual

GLOBAL

Delete
Move
Name
Value
All
Group

Grey +l- Cycles
Background Attribute

Select
Insert
Delete
Move
Name
Value

Remove attribute definition
Reposition attribute in list
Edit attribute name
Edit hexadecimal value
Insert ALL 255 attributes
Toggle group start

Select attribute
Make new attribute definition
Remove attribute definition
Reposition attribute in list
Edit attribute name
Edit hexadecimal value

All

	

Insert ALL 255 attributes
Group

	

Toggle group start
Background Character
Menu Background Attribute

Select
Insert
Delete
Move
Name
Value

Select attribute
Make new attribute definition
Remove attribute definition
Reposition attribute in list
Edit attribute name
Edit hexadecimal value

All

	

Insert ALL 255 attributes
Group

	

Toggle group start
Menu Highlight Attribute

Select
Insert
Delete
Move
Name
Value
All
Group

Default Video Bits
Default Run Type
Run Action Indent Increment
Overlays Shown
Timeout During Run

OK
CLEARALL
RUN
VARIABLES

OK
Insert

Select attribute
Make new attribute definition
Remove attribute definition
Reposition attribute in list
Edit attribute name
Edit hexadecimal value
Insert ALL 255 attributes
Toggle group start

Return to editing slide
Erase all slides, etc ., and start anew
View Global Run Actions
View Variables List
Return to previous menu
Create new variable

Command List

191

I/0
SAVE

Select
New
Full
Dir

LOAD
Select
New
Full
Dir

PRINT
Edit

Output To
Character Mapping

Select

	

Use highlighted name
New
C
Pascal
Don't
Mapping

First
Second
Normal
Done
Cancel

192

Delete
Move
Group

Locate
Name
Value
Passed-On

.OVERLAYS
NAMES

Block
Comment
Position
Name
Insert

Group
Delete
Move

Delete variable(s)
Reposition variable(s) in list
Toggle start of group variable
Move highlight to specific position in list
Find next variable with given name
Edit name of variable
Edit value of variable
Toggle "Passed-On" setting for variable
Display Global Overlays List
Display Global list of block names and definitions
Make selected item current block
Edit block's comment
Redefine item to current block
Edit name of highlighted block
Insert current block as new item
Move to specific item
Toggle start of group
Delete block name definition(s)
Reposition item

Save, Load, Print, etc .
Save all slides, attributes, save areas, etc ., in a file
Use highlighted filename
Type in explicit filename
Type in explicit full pathname
Change default dir shown above
Clear everything, then reload all from a saved file
Use highlighted filename
Type in explicit filename
Type in explicit full pathname
Change default dir shown above
Output slides to printer/file in selected format
Change value of highlighted item

Type in explicit name
Output in C Language format
Output in Pascal Language format
No mapping of characters
Define/View current character mappings
Edit first character to output
Character to output after Backspace
Output character as itself
Save mapping in file
Return to Printer Menu (doesn't Save)

Dan Bricklin's Demo II Program User Manual

HELP

QUIT

Output : Text
Output : Attributes
Output: Names/Numbers
Output : Overlay Lists
Output : Run Info
Output : Variables List
Output : Block Names
Output : Slides That Reference Slide
Page Break After Slide
Blank Lines After Slide
Trim Trailing Blanks
(Block Marked -- Output From Within Block, Only)
How Many Slides to Output

Return to editing slides
Output as set above
Insert slides, etc ., from selected slides in other file
Use highlighted filename
Type in explicit filename
Type in explicit full pathname
Change default dir shown above
Insert screen images from CAPTURE, PCX files, Text files
Load Action Copy/Paste Buffer with saved code
Use highlighted filename
Type in explicit filename
Type in explicit full pathname
Change default dir shown above
Save contents of Action Copy/Paste Buffer in a file
Use highlighted filename
Type in explicit filename
Type in explicit full pathname
Change default dir shown above

Reference for what keys do what, etc .

Return to DOS

OK
Start

ADD
Select
New
Full
Dir

RETRIEVE
CODE-READ

Select
New
Full
Dir

WRITE-CODE
Select
New
Full
Dir

Command List

193

194

	

Dan Bricklin's Demo II Program User Manual

This section lists some of the differences between the older Dan Bricklin's Demo Program and DEMO
II. Almost all of the changes are upwards-compatible, so an experienced user of the older program
should be able to start using the new program right away . We do, though, recommend at least looking
at the "Overview" section of this manual and running RUNME on the Second Diskette to get ac-
quainted with the new features .

Upgrading

Differences From the Older
Dan Bricklin's Demo Program 1 A

To upgrade from the older program to DEMO II, you just start using DEMO2.EXE in-
stead of DEMO.EXE, RDEMO2 .EXE instead of RDEMO.EXE, and the new CAP-
TURE.COM and CAPTCMD.EXE instead of the older version of CAPTURE and the
CAPTOFF program .

DBD files created with the older program will load into DEMO2 and RDEMO2 cor-
rectly. They will be converted into the new format and, when written out, will only be
readable by DEMO II .

You don't have to learn all the new features to use this new version . The main
changes are the addition of many new choices to each menu . The old choices are
usually still there .

Look through the list of changes and additions that follow in this section .

You will find the Run menu structured differently. It now includes what was the Run
Handlers menu . You still add handlers, now called "run action lines with Key/Event
labels", by executing the Run Insert command . The View run action is almost identi-
cal to the old View command . The "Keys: Yes/No" setting has been replaced by the
Run Type command, and the Wait setting by the Run Wait command . See the section,
"Run Commands", for more information . You may want to try the tutorial on the
Second Diskette, which shows how to set run actions .

Note that the items on the Run list are no longer automatically sorted . You must en-
sure that "a" comes before "Any Key", for example . Also, you should usually use
"Any Key" where you used to use "Anything" . See the section, "How Running
Works", for more information about "Anything!" .

The Overlays commands have changed a bit . You create a new slide overlay with
the Overlay Slide command, not the Insert command .

Since DEMO2 and RDEMO2 use more memory than their older counterparts, some
large old files may be too big to fit . You will get "Error reading file" or "Out of
Memory" messages when you load these files . You should load them into the older
DEMO program instead, write them out as two smaller files, and then convert them
separately .

Upgrading

	

195

Changes

196

Note that the macro format of DEMO II is different from the older format . The Alt-0
through 9 macros are not loaded from old DBD files, and your old "ALT A Z .SG 1"
file must be replaced by a new one . Do not try to use an old "ALT A Z.SGI "file
with DEMO II.

CAPTURE works like the older version . The main difference is that you must run it
with the same DOS Current Directory as you will be in when you run DEMO II . It
has many new features, but you don't have to learn about them if you don't want to .

How VI Files Are Converted
Into DEMO II Format

Just about everything controlling the running of a slide show in V 1 has a counterpart
in DEMO II, so the conversion is pretty complete . When V 1 files are loaded, they
will take up a little more memory due to a few factors . Tones take up an extra run ac-
tion line or two . "Any NonPrnt", which does not have an exact analogue in DEMO II,
is converted into "Any Edit, Any Cursor, Any FuncKey" . "Anything", which is less
extensive in VI, is converted into "Any Key, Any Tag, Timeout" . Events are con-
verted into using Tags "Event_1" through "Event 9" . The "Keys: Yes/No" setting is
converted to Run Types 1 and 0, respectively . The "I/O : Yes" setting is converted into
"Viewed: Builtin(10)=l" . The "Clear Buffer: Yes" setting is converted into "Viewed :
Erase TIBUFFER" . The variable "TIBUFFER" is used instead of the old Type-In
Buffer.

You may want to look at the run actions and overlays in a converted file, and remove
the unnecessary parts . These include the comments explaining "Anything" and other
nondirect conversions, as well as the extra Key/Event labels for old "Anything's"
where you really meant just "Any Key" .

There is a new DBD file format. Both the older format and the newer formats can be
read, but only the new format is written .

The Ctrl-Left and Ctrl-Right arrows move to the next change, not the next minor tab
stop .

The Home and End keys stop the cursor at the edge of what is typed instead of going
to the screen edge . If the cursor is beyond the edge of what is typed, it moves to the
screen edge . Pressing them twice always moves the cursor to the screen edge .

The items on the old Run menu have been implemented differently . There is a Run
Wait command to set the wait value ; Run Type command to set the Run Type
(replaces Keys : Yes/No) ; the I/O spin the diskette operation is replaced by the Set
Builtin(10) action ; and the Clear operation is replaced by the Erase action .

The old Overlays Copy menu has been moved to the Main menu .

The Shift-F5 key uses the Copy All command, and now copies run information as well
as overlay information .

The old Block Fill menu has been moved into the Block menu .

Dan Bricklin's Demo II Program User Manual

Additions

The Shift-F8 key calls up the Block CAB menu .

The old Typing Position command has been moved to the Typing Status menu .

There is a new Macro save format, so old macros cannot be used .

The CAPTURE command no longer uses the F l h interrupt, so it should work on a
wider variety of machines .

The Run list is no longer sorted automatically . DEMO II keeps the order you set .

DEMO command

The DEMO2 command can use the DEMO2 DOS Environment String to get options .

The display adapter type is automatically determined in a wider variety of circumstan-
ces, including EGA, VGA, Hercules, and Compaq .

The -MEM option has been added to the DEMO2 command .

The -BIT 16 and -BITM32 options have been added to the DEMO2 command for use
with bitmappped graphics displaying .

The -ARG option has been added to the DEMO2 command to pass arguments to the
running slide show .

DEMO2 restores the video mode and cursor when returning to DOS .

General

Differences From the Older Dan Bricklin's Demo Program 1 A

There are now both numeric and string variables . These variables can affect overlay
positioning, turn overlays on and off, be used as multiple "type-in buffers" (to use the
old term), be manipulated and tested while running, and much more .

New Bitmapped Image slides can refer to " .PCX" files or have captured information
about CGA, EGA and Hercules graphics images .

New overlay types now exist : Numeric and String Value, Absolute and Relative Slide
Reference, and Attribute .

The CAB ("Character, Attribute, Both") setting has been added . This determines
whether typing, deleting, moving, etc ., affect just the characters, just the attributes, or
both .

Keys

Delete and Backspace are affected by the CAB setting .

The Ctrl-PgUp and Ctrl-PgDn keys move the cursor to the edge vertically .

Grey + and Grey - cycle through different attributes for a block, or a character position
and the Typing Attribute .

Additions

	

197

198

Grey * executes the new Typing Find command to move the cursor to given charac-
ters .

Menus

Many menus have the new Group command that lets you group consecutive items for
deletion, moving, etc .

Many menus have the new # command that lets you move to a specified item .

Block Commands

The Attribute list now displays a sample for all attributes in the list, not just the one
being changed .

The new Block Attrib All command defines all 255 visible attributes .

The Block Last and Shift-F9 commands move the cursor from corner to corner, if a
block is already marked .

The new Block Wrap command word-wraps text within a block . Text can now be
continuously word-wrapped as you type .

The new Block Exchng command exchanges the Delete/Paste buffer with the contents
of a block .

The new Block Xlate command converts attributes within a block, on a slide, or on all
slides. This can also be done during runtime to convert from color to monochrome
temporarily with the Translate Attribute run action .

The new Block 3Box command creates a heavy line box .

The new Block 4=NoBox command erases a box .

The new /CAB command displays and modifies the CAB settling .

The new Block Names command manipulates named marked block references

Typing Commands

The new Typing Chars Num command lets you specify a special character by value .

The new Typing Status menu lets you configure a status display (upgrades old Posi-
tion Indicator) . This includes cursor position, slide name and number, current file
name, and insert/overwrite indication . The insert/overwrite indication is always on by
default.

The new Typing Find command lets you move the cursor forward to the next screen
position with specified characters .

Slides Commands

The new Slides Print command toggles the new Print Flag . You can set printing to
print all slides with this flag present .

Dan Bricklin's Demo II Program User Manual

There is a new structure to the Overlays command .

The Overlays command title includes slide name and number .

The new Overlays Nums command associates variables with overlay positioning
and/or presence .

The new Visible overlay setting controls whether or not an overlay is shown under
control of a variable .

There is a new Max Chars Shown overlay setting .

Run Commands

Differences From the Older Dan Bricklin's Demo Program 1A

The new Slides Options command views and sets Switch Type, Switch Speed, Video
Bits, and Palette .

The new Slide Switch Type and Switch Speed settings control how DEMO II switches
from one slide to another, either as quickly as possible, or at the set speed from top to
bottom or bottom to top. This applies to both text slides and bitmapped slides . For
text slides, you can also just replace the changed characters and attributes at the speed
set, with an optional click sound after each changed character position is displayed .

The new Video Bits setting controls border colors, 320x200 color set, and blink vs . in-
tensity for the background attribute color in text mode .

The new Palette setting adjusts EGA color palette for 640x350 16-color bitmapped
images .

Copy Commands	

The new Copy All command copies overlays and run information .

The new Copy Run command copies run action lists (which used to be called "run
handlers"), Run Type, Run Wait, Switch Type, Switch Speed, Block Names, Video
Bits, and Palette information .

Overlays Commands

There is a new structure to the Run command .

The Run command title includes slide name and number .

A Run Actions List concept has been implemented, allowing more than one action
when a Key/Event is matched . This allows you to execute simple programs con-
structed out of run actions when a key is pressed .

Over 100 new run actions have been added, including arithmetic operators to change
variables, additional sound-generating actions, Slide Return After, view particular
slide in another file, View Absolute, If, While, For, Select/Case, Goto, string
manipulation, PC timer access, primitive mouse control, file and printer I/O, and much
more .

You will find more Key/Events, including all of the standard PC key combinations,
such as Alt-letter, Ctrl-letter, and the Grey +/-/* keys .

Additions

	

199

200

The new Tag Key/Event implements Basic Language "GOSUB" and "GOTO"-like
run actions .

The new Viewed, Displayed, Readkey, and Keypress Key/Events give you greater
control over running .

The new Run Type setting for each slide implements several built-in ways of switch-
ing from slide to slide and reading keys, including optional flushing of type-ahead and
individual-slide time outs .

There is a menu-driven editor for creating and modifying run action lists .

Comments are now allowed on run action lines to improve readability .

Optional indenting improves the readability of run actions .

The new Run Key/Event # command selects Key/Event by value .

The new Run Key/Event Key command lets you specify a Key/Event by just pressing
the key to which it corresponds .

The new Run Delete/Copy/Paste commands manipulate the new Action Copy/Paste
buffer. This allows you to replicate run actions or move them from slide to slide or
file to file .

An enhanced Debug mode provides more information .

Ctrl-Break can either stop running or start Debug mode .

Access to shift-state information detects whether the Shift, Ctrl, or Alt keys are up or
down .

Macro Commands

There are new Macro View Insert and Macro View Delete commands for editing
macros .

Global Commands

Additional Global settings have been added .

New Global Overlays list lets you pop up overlays over all slides, possibly controlled
by variables .

New Global Block names have been added .

1/O Commands

There are additional Print settings for the new features .

The I/O Add command loads more information, including run actions and overlay
definitions .

I/O Retrieve can read normal text files (creating a text slide) and reference " .PCX"
files (creating a bitmapped image slide) .

Dan Bricklin's Demo II Program User Manual

Deletions

Differences From the Older Dan Bricklin's Demo Program 1 A

New I/0 Write-Code and I/0 Write-Code commands save and load the Action
Copy/Paste buffer .

CAPTURE Program	

The new CAPTURE command has setable Hot Key as well as Timed Triggering .

The CAPTURE command captures more information, including H/W cursor position .

The CAPTURE command can capture a variety of bitmapped graphics images .

A new CAPTCMD command controls CAPTURE.

The old Run and Run Handlers pair of menus have been replaced by the new single
Run menu .

The old "Events" actions and Key/Events have been replaced by multiple run actions
per Key/Event and the Tag Key/Event .

The Type-In Buffer has been replaced by a more general use of many variables .

The Cursor Attribute setting has been replaced by an algorithm for inverting the
foreground and background colors to create a cursor attribute .

Deletions

	

201

202

	

Dan Bricklin's Demo II Program User Manual

The Tone Note and Melody run actions require you to use explicit tone values . These
values are integers from 0 to 99 for Tone Note and 1 to 99 for Tone Melody. They
represent musical notes . DEMO II uses the timer in the PC to produce these tones .
Like Run Wait values, they are independent of the clock speed of the CPU (i .e ., they
will sound the same on an AT as on a PC) .

The notes are represented by the values as follows :
OCTAVE : 0 1 2 3 4 5 6

Appendix A : Tone Chart

7

	

8

NOTE
A

	

07 19 31 43 55 67 79 91
A#

	

08 20 32 44 56 68 80 92
B

	

09 21 33 45 57 69 81 93
C

	

10 22 34 46 58 70 82 94
C#

	

11 23 35 47 59 71 83 95
D

	

00 12 24 36 48 60 72 84 96
D#

	

01 13 25 37 49 61 73 85 97
E

	

02 14 26 38 50 62 74 86 98
F

	

03 15 27 39 51 63 75 87 99
F#

	

04 16 28 40 52 64 76 88
G

	

05 17 29 41 53 65 77 89
G#

	

06 18 30 42 54 66 78 90

For convenience when transcribing tunes from sheet music, a portion of the chart is
shown differently below :

203

204

	

Dan Bricklin's Demo II Program User Manual

Appendix B : Attribute Chart

The charts below list the attribute values for Block Attribute Value settings . They also
describe the way that these values will display on a standard IBM Color/Graphics
Adapter (and EGA) and monitor, and on the IBM Monochrome Adapter and monitor .

Note that not all monitor/adapter combinations will display the same colors for a given
attribute . For example, brown is sometimes orange . To check, use the sample value
displayed by the Block Attribute Value command to check how it displays, or load the
ATTRIBS .DBD file on the Second Diskette and look at the display there .

Monochrome monitors on CGAs can give undesirable results when displaying colors,
and some monochrome adapters (IBM's Monochrome Display Adapter and the Her-
cules Graphics Card) show underlined or bright in place of some of the colors . If you
want the display to look the same on all combinations that viewers may have, the only
attributes that should be used are Normal (07) and Inverse (70) .

You can use the Block klate command to change attributes permanently, and the
Translate run actions to do it temporarily while running .

To create an attribute value, use two characters : the first, from the Background
column, and the second from the Foreground column . For example, White charac-
ters on a Blue background would be 17.

205

CGA Character
Background Value

CGA Character
Foreground Value

Black 0 Black 0
Blue 1 Blue 1
Green 2 Green 2
Cyan 3 Cyan 3
Red 4 Red 4
Magenta 5 Magenta 5
Brown 6 Brown 6
White 7 White 7
Black w/Blink 8 Gray 8
Blue w/Blink 9 Light Blue 9
Green w/Blink A Light Green A
Cyan w/Blink B Light Cyan B
Red w/Blink C Light Red C
Magenta w/Blink D Light Magenta D
Brown w/Blink E Yellow E
White w/Blink F Bright White F

Blink vs . Bright

206

You can use the Video Bits setting (see the Slides Options command) to change the
blink attributes into bright. For example, Blinking Blue on Black (81) would turn into
Blue on Grey. You do this by setting the Video Bits bit 6 to zero . For example, the
normal Video Bits setting is 0x70. You would change it to 0x30 to change blinking to
intensity .

Dan Bricklin's Demo II Program User Manual

Monochrome Display Adapter Attributes Value

White (Green) Character on Black (Normal) 07
Underlined Normal 01
Black on White (Inverse) 70

Normal w/Blink 87
Underlined Normal w/Blink 81
Inverse w/Blink FO

Normal Bright OF
Underline Bright 09

Normal Bright w/Blink 8F
Underline Bright w/Blink 89

About the Program and Documentation

DEMO II was designed and written by Dan Bricklin . It is a major upgrade to the
original Dan Bricklin's Demo Program . The program consists of over 30,000 lines of
C language code, written in Microsoft C version 4 .0, and about 5,000 lines of code
and constants written for Microsoft Macro Assembler . The CAPTURE program is a
major upgrade to the CAPTURE program that came with the original Demo program,
and these modifications were also done by Dan Bricklin . The programming was done
on a Tandy 3000HD . Some of the testing was done on an IBM PC, a Compaq Port-
able III, and an IBM PS/2 Model 50 .

This manual was written by Dan Bricklin using Xerox Ventura Publisher 1 .1 . Most of
the original typing and almost all of the illustrations were done directly in Ventura .
Much of the text on the package itself was produced using Aldus PC PageMaker .
Proofing was done on an Apple Laserwriter, with final output on a Linotronic 100 .
The sample files on the diskettes were written by Dan Bricklin .

The "tomato" cover design was done by Doliber Skeffington Design, of Boston, who
also created the identity system for the Boston Computer Society . The design of the
inside of the book was done by Dan Bricklin, with some assistance from his father,
Baruch Bricklin of Bricklin Graphics in Philadelphia. The parts of the package were
designed and purchased with the aid of Jennifer Gushing of Software Garden, Inc .

Acknowledgements

Appendix C : Miscellaneous

I would like to thank all of you who helped make this product possible .

There are the purchasers of the original Demo program, who showed that this is a
valuable and useful tool . Their numerous suggestions and comments were the most
influential part in deciding upon the new features .

There are the beta testers of DEMO II . Without their help this product would not have
been shipped . They helped valiantly to find numerous bugs, and their experiences and
comments had great influence on the documentation . Since many who helped may be
barred from using their names by their companies, I will not list their names .

Finally, there are my relatives and friends who put up with my inavailability and
preoccupation during the long development period .

Acknowledgements

	

207

208

	

Dan Bricklin's Demo II Program User Manual

7 111
#, 7
> char in run actions, 113
>THIS SLIDE<

See THIS SLIDE
% action, 175

Definition, 140
& action, 178

Definition, 140
+ action

Definition, 139
- action

Definition, 139
action, 29, 41,162
Definition, 161

/ action
Definition, 140

Ox
See Hexadecimal

I . . .VAL. . .11 . .,106
320x200,102
=action, 29, 32,161,174

Definition, 139, 162
"End key

Definition, 78, 83
^Enter key

Definition, 78
^Home key

Definition, 78, 83
^Left key

Definition, 77
^PgDn key

Definition, 78
^Pgup key

Definition, 78
^Right key

Definition, 77
ALT A Z.SG1 file, 60,117
FILE O.DBD file, 60
INIT.DBD file, 59,121
P??????.SG2 files, 60,125
PASCII.SG2 file, 125
PPRINT.SG2 file, 125
action, 179

Definition, 140

A
A: drive, 177
Absolute Slide Reference

See Overlays, ABSREF
ABSREF

See Overlays
Action

See Run actions
Action Copy/Paste buffer

See Run Action Paste buffer
Action line

See Run action line
Action list

See Run action list
Add slides from other file, 128
Again action

Definition, 158
Alt key, 176
Alt-char key, 81, 84

Definition, 82
AND action, 140
Annotate, 27
Any Key, 29, 33 - 34, 37, 44,165
Any Letter, 167
Any Tag, 40,161
Anything!, 37, 40, 43,161
Append action

Definition, 163
Append actions, 168
-Arg, 59

During run, 175
Arguments, 59,111,170
Arithmetic operators, 139
Arrow keys

Definition, 77, 82 - 83
ASCII, 60,125
Ass igment, 139
Atomic operations for viewing, 43
ATTRIB

See Overlays (Attribute)
ATTRIB.DBD file, 205
Attribute, 4, 26, 54 - 55, 82, 87 - 89, 91
- 93

Chart, 205
Creating, 88
Cycling through, 79
Finding value of, 119

Attribute list, 26, 79, 82, 87
Attribute translate, 91
Attribute Translate Table, 91,142,172 -
173
Attribute Value Overlay

See Overlays
Automatic running

See Running
"Away next key" prompt

See Prompts

B
Background character and attribute, 12,
120,175
Backspace action

Index

Definition, 163
Backspace key, 5

See also Bkspace key
Backup, 1,61
BIOS, 68
BIOS shift state, 175
-Bitm 16, 59,73-74
-Bitm32, 59, 73 - 74
Bitmapped graphics images, 4, 49, 58 -
59, 71,168

Types, 72
Bkspace key

Definition, 79
Blinking/Intensity bit, 102, 206
Block, 87

Definition, 85
See also Marked block

Block /CAB
Definition, 93

Block /CAB Attrib
Definition, 93

Block /CAB Both
Definition, 93

Block /CAB Char
Definition, 93

Block 1-Box, 26
Definition, 92

Block 2=Box, 26
Definition, 92

Block 3_Box, 26
Definition, 92

Block 4=NoBox, 92
Block Attrib, 26

Definition, 87
Block Attrib All

Definition, 89
Block Attrib Delete

Definition, 88
Block Attrib Group

Definition, 89
Block Attrib Insert, 88
Block Attrib Move

Definition, 88
Block Attrib Name

Definition, 88
Block Attrib Select

Definition, 88
Block Attrib Value, 205

Definition, 88
Block Begin, 5

Definition, 89
Block CAB, 82
Block Cntr, 26

Definition, 92
Block Copy, 81

Definition, 89

209

Block Delete, 69, 81, 89
Block Exchng

Definition, 91
Block Fill

Definition, 92
Block Last, 82

Definition, 89
Block menu, 26, 78
Block Move, 26, 81

Definition, 90
Block Names

Definition, 93
Block Names #

Definition, 94
Block Names Block

Definition, 94
Block Names Comment

Definition, 94
Block Names Delete

Definition, 94
Block Names Group

Definition, 94
Block Names Insert

Definition, 94
Block Names Move

Definition, 94
Block Names Name

Definition, 94
Block Names Position

Definition, 94
Block Paste, 81

Definition, 90
Block Repeat action

Definition, 157
Block Retrieve

Definition, 90
Block Save

Definition, 89
Block Save Delete

Definition, 90
Block Save Insert

Definition, 90
Block Save Move

Definition, 90
Block Save Name

Definition, 90
Block Save Select

Definition, 89
Block Unmark

Definition, 89
Block Wrap

Definition, 90
Block Xlate, 26

Definition, 91
Block Xlate #

Definition, 92
Block Xlate All

Definition, 92
Block Xlate Block

Definition, 92
Block Xlate Group

Definition, 92

210

Block Xlate Mono
Definition, 91

Block Xlate Reset
Definition, 92

Block Xlate Slide
Definition, 92

Block Xlate Value
Definition, 91

Boolean operators, 140
Border colors, 102
Bottom-right, 26
Box, creating, 26
Breakpoint, 174
Builtin

See Get Builtin
See Set Builtin

C
C language, 124
CAB, 107
CAB setting, 78 - 79, 82, 89 - 90, 92

Definition, 5
Setting it, 93
Typing, 77

Call Key/Event action
Definition, 144

Call Slide action, 159
Definition, 141

Call Tag action, 40
Definition, 161

Caps Lock key, 176
Turning on/off, 178

CAPTCMD, 63
Definition, 65

Capture, 4, 22, 27, 56, 63,128
Definiton, 64
Flushing screens, 65
Retrieving, 71
Screen mode, 67
Stopping triggering, 67
Timed triggering, 66
Triggering, 65
Turning off, 65
Watch triggering, 67

CAPTURE.RDV file, 63
Case action, 34

Definition, 159
Center text, 26
CGA, 4,56-58, 68, 73,102,176, 205
Changes from the old version of
DEMO, 195
Changes made setting, 119
Character, 4, 93,119
Character keys

Definition, 77, 82
Character mapping

See Printer mappings
Characters, special

See Special characters
Chunk, 119
Clear all, 121

Close File action
Definition, 179

Color
See Attribute

Color attribute chart, 205
Color combination (320x200 bit-
mapped), 102
Column offset

See Overlays
Command mode, 75, 80
Command system, 6
Command windows, 6
COMMAND.COM, 58,169 -170
Comment, 94,110
Communications line, simulate, 17
Compaction, 5, 56

Capture, 63
Compaq, 57,179
Conditionals, 38 - 39,146
Continue with Default Action action,
32, 34, 44-45, 47,166

Definition, 146
Conversion

Between string and numeric, 10, 166
Characters for printing, 125

Convert action
Definition, 166

Convert attributes
See Attribute Translate Table

Copies, 61
Copy

Definition, 85
Copy All

Definition, 103
Copy of slide, 81
Copy Overlays

Definition, 103
Copy Run

Definition, 103
Copy run actions, 113
Copy Slide

Definition, 103
CPU speed, 175
Create blank slide, 81
Create copy of slide, 81
Ctrl key, 176
Ctrl-Alt-Del key, 63
Ctrl-Break key, 7, 61, 69, 81, 84,117,
138

Definition, 83
Ctrl-End key, 26
Ctrl-Home key, 26
Current Key/Event action

Definition, 167
Current slide, 13, 42, 80,123,168
Current Slide Number action

Definition, 168
Cursor, 78, 87, 89, 95

Definition, 5
Moving, 77, 80
Simulate, 54

Cursor motion keys, 5

Dan Bricklin's Demo II Program User Manual

D
Day of month, 175
Day of week, 175
DBC files, 128
DBD files, 57, 59,123
Debug, 47, 56

Debug mode definition, 113
Debug action, 174
Debugging while running, 113
Decrement action, 32

Definition, 140
Default action, 146
Default Run Type, 46,120
Default Video Bits, 102,120
Defaults

Cursor, 52
Key/Events, 43
Max Chars Shown, 51
Printer, 124
Run Type, 46
Setting initial values, 59
Video Bits, 102
Visible, 50

Del, 69
Del key, 5

Definition, 79, 83
Delete, 7
Delete action

Definition, 163
Delete/Paste buffer, 89 - 91
DEMO II, 1,1,57
DEMO Version 1A, 195
DEMO2

Definition, 57
Options, 57

DEMO2 environment string, 59
DEMO2.EXE, 57, 217
DEMO2V environment string, 175
Demonstration of existing product, 27
Description, in a command window, 7
Differences from old version, 195
-Dir, 58, 60
Display, 45
Display adapter, 4, 57 - 58,119

Finding out during run, 175
Display adapters

Snow, 58
Displayed, 44

Definition, 43
Done Select action

Definition, 159
DOS
COMMAND.COM, 58
Cursor, 52
Environment string, 59,175
Execute while running, 169
Return to, 27, 86
SET command, 59
Version, 57

Drawing, 26
Drive A,177

E
Echo viewer typing, 33
Edit mode, 7, 75
Editing, 5
EGA, 4, 56, 58, 64, 68, 73,102,176,
205
EGA palette registers, 102
Elapsed Time, 175
-Else action, 32, 39

Definition, 151
EMS/LIMM memory, 58
End key

Definition, 77, 83
End-Block action

Definition, 160
End-For action, 168

Definition, 160
End-If action, 32, 39,161-162,170,
174,179

Definition, 159
End-Select action, 34,159

Definition, 160
End-While action

Definition, 160
Enhanced memory, 58
Enter, 165
Enter key, 81

Definition, 78, 83
Environment string, 59,175
Erase action, 34, 139, 159, 166, 168

Definition, 164
Erase all, 121
Errors

During Exec action, 170
Fatal, 8
RDEMO2, 61
Reading, 124

Esc key, 7, 81, 85, 90
Definition, 80, 83

Exchange block, 91
Exec action, 59

Definition, 169
Extended memory, 58
Extract action

Definition, 167

F
Fl key

Definition, 80, 83
F10 key, 26, 88

Definition, 82
F2 key

Definition, 80, 83
F3 key, 26

Definition, 81
F4 key

Definition, 78, 83
F5 key, 26

Definition, 81
F6 key, 26

Definition, 81
F7 key, 69

Definition, 81
F8 key

Definition, 81
F9 key, 5, 26, 89

Definition, 82
Fatal error

See Errors
File

Access while running, 179
Contents, 21
Load from, 123
Print slides to, 21
Save to, 123

File action, 129
Definition, 142

File names, 57, 119,123,170
Fill, 92
Fill action, 174

Definition, 164
Find characters, 80
Flush type-ahead, 18, 28, 45,168
Flush Type-Ahead action, 169

Definition, 168
For action, 168

Definition, 151
Function keys, 8

G
Get Builtin action, 46 - 47, 59,178 -179

Definition, 174
Get String action

Definition, 162
Global

Definition, 85
Global ClearAll, 59 - 60

Definition, 121
Global Default Run Type, 28
Global Edit

Definition, 121
Global Names

Definition, 121
Global OK

Definition, 121
Global overlay list, 15, 30, 52
Global .Overlays

Definition, 121
Global overlays list, 105
Global Run, 20
Global Run

Definition, 121
Global run action list, 20, 38, 41, 46,
145
Global settings, 119
Global Typing Attribute

See Typing Attribute
Global Variables

Definition, 121
GOSUB

See Tags

211

212 Dan Bricklin's Demo II Program User Manual

GOTO
See Tags

Goto Tag action, 40, 161
Definition, 160

Graphics
See Bitmapped graphics images

I/O Save Select
Definition, 123

I/O Write-Code, 22, 32
Definition, 128

IBM Topview, 57
If action, 32,39,47,161-162,170,

Lines, 26
Linking two files, 142
List perusal keys, 7
List, in command windows, 7
Load/Save, 21

Passed On setting, 129
Grey * key 174,179 Loops, 38- 39,151,15

Definition, 80
Grey +/- cycles setting, 120
Grey +/- keys, 26

Definition, 79

Definition, 146
Importing text files, 128
Increment action, 32

Definition, 140

M
Macro, 81,117

Group, 7 Indenting
See Run actions

Init file, 59
Input A Key action

Definition, 169

Definition, 85
Invoking, 117
Loading, 124

Macro Delete
Definition, 118

H
H/W Cursor, 33, 51- 52, 55-56, 106

On Captured slides, 56
Scan lines, 52

Hard disk, l, 57, 73
Help

Definition, 86
-Herc, 58
Hercules, 4, 58, 68, 73,176, 205

Ins key, 5,176
Definition, 78, 83

Insert, 7
Insert action

Definition, 163
Insert mode, 5, 78
Insert slides from other file, 128

Macro Extend
Definition, 118

Macro Learn
Definition, 117

Macro Name
Definition, 118

Macro OK
Hexadecimal, 10, 55, 88,124
Highlighted item, 7, 83
Highlights

Simulate, 54
Home key

Definition, 77, 83
Hotkey, 63, 65

Changing, 66
Hour, 175
Hundredths of a second, 175

I
I/O

Definition, 86
I/O Add, 21

Definition, 128
I/O Code-Read, 22, 32

Definition, 128

Insert text from ASCII file, 128
Insert/Overwrite status display, 97
Inverse video, 26, 205

K
Key/Event label, 19 - 20,109,162

Definition, 36
Order, 20, 37
Tags treated differently, 41

Key/Event Return action
Definition, 145

Key/Events, 20,160
Cursor key, 150
Definition, 36
Edit key, 150
Function key, 150
Signaling, 36, 40,144

Keypress, 45

Definition, 117
Macro Run

Definition, 117
Macro Save

Definition, 117
Macro View

Definition, 118
Macro View Delete

Definition, 118
Macro View Insert

Definition, 118
Macro View OK

Definition, 118
Macros, 60
Main menu, 7, 80

Definition, 85
Mappings

See Printer mappings
Margin, 26, 78, 81, 96

I/O Load Definition, 43 Marked block, 5, 26, 78, 82, 93,119,
Definition, 123 Keys 127

I/O Print, 21,99
Definition, 124

I/O Print Edit
Definition, 127

I/O Print OK

Definitions, 75
Keys, processing, 43

L

Definition, 87
Matching, 36
Max Chars Shown

See Overlays
MDA, 58, 68,176, 205

Definition, 128 L?, 117 Melody action, 44,159,169,169,203
I/O Print Start

Definition, 128
Last block, 89
Last Typed, 174

Definition, 141
-Mem, 58,169

I/O Retrieve, 5, 22, 27, 71
Definition, 128

I/O Save, 21,27
Definition, 123

I/O Save Dir
Definition, 123

Learn macro, 81
Leave Group action

Definition, 157
Left margin

See Margin
Legal, 61, 217

Memory
Allocating, 58
Amount used, 5,15,164
Amount used/amount free, 119,175
Bitmapped graphics images, 72
Capture, 63 - 64

I/O Save Full
Definition, 123

I/O Save New

Length action, 32,174
Definition, 165

License, 61

DEMO2, 57
For Exec action, 169
Low, 119

Definition, 123 License Agreement and Warranty, 217 Overlays, 15

RDEMO2, 57, 61
Saving, 12, 15,73
What is kept in memory, 21

Menu attributes, 120
Menu, in a command window, 7, 82
Menus, simulating, 30
Menus/messages, 8
Messages, 8
Microsoft C,170
Microsoft Windows, 57
Minute, 175
-Mono, 58
Monochrome, 58

Attributes, 205
Convert to, 91,173

Month, 175
Mouse action

Definition, 171
Move, 7
Move block, 90
Multiple files in a slide show, 142
Music, 141,203

N
Named Save Area, 89 - 90
New blank slide, 81
New copy slide, 81
Next Key action, 41

Definition, 169
Next slide, 16,137
NONAME,130
NONE, 101
Normal attribute, 205
Normal text, 71
Notes, 203
Nothing action

Definition, 139
Num Lock key,176

Turning on/off, 178
Numeric values

See also Overlays

0
Offset View action

Definition, 143
Offsets

See Overlays
Old version of DEMO, 195
On-line information, 1
Open File action

Definition, 179
Options, 57
OR action, 140
Otherwise action, 34

Definition, 159
Outline, 92
Output : settings for printing, 126
Output to, 124
Overlay list

Definition, l l

Overlays
See also Global overlay list
ABSREF, 52
Attribute, 54
Column offset, 50- 51, 55,105
Definition, 85
Examples, 30- 31, 33
H/W cursor, 55 - 56
List, 105
Max Chars Shown, 51- 52,105
Memory requirements, 15
Numeric value, 51
On/Off, 121
Order displayed, 14
Overview, 11, 13, 15
Problems with captured images, 69
RELREF, 31,53
Row offset, 50-51,55, 105
Scan Lines Desc, 52, 55,105
Set type, 105
Slide, 49
String Value, 33, 50
Transparent and nontransparent, 12
Types, 15,49
Visible, 50-51,55, 105
w/ H/W Cursor, 51
What gets covered by what, 12
Why use, 12

Overlays #
Definition, 107

Overlays Adjust, 49
Definition, 107

Overlays Cursor, 55
Definition, 106

Overlays Delete
Definition, 107

Overlays Group
Definition, 107

Overlays list, 105
Overlays Move

Definition, 107
Overlays Nums, 49

Definition, 105
Overlays Nums OK

Definition, 106
Overlays Nums Value

Definition, 105
Overlays Nums Visible, 30
Overlays OK, 107
Overlays Paste

Definition, 107
Overlays Shown, 121
Overlays Slide, 49
Overlays Slides

Definition, 106
Overlays Value, 51

Definition, 106
Overwrite action

Definition, 164
Overwrite mode, 5, 78

P
Paintbrush

See PC Paintbrush
Palette

Definition, 101
Pascal language, 124
Passed On setting

See Variables
Paste, 90
Pause action, 168

Definition, 169
Pause Even If Key Pressed action

Definition, 169
Pause Event If Key Pressed action, 47
PC Paintbrush, 22, 71- 72
PCX files, 4, 22, 72

Adding to slide show, 128
Checking header, 73
Referencing, 71
Written specification, 73

PCXDECOD .EXE, 72
PgDn key

Definition, 78, 83
PgUp key

Definition, 78, 83
Pixels, 4
Pop up,15,15,29
Previous slide, 16,137
Print action

Definition, 181
Print Flag, 22, 99,127
Print With No CR/LF action

Definition, 181
Printer, 21,125

How many slides to output, 127
Settings, 126
Stops prematurely, 125
While running, 179

Printer mappings, 60,124 -125
[PRINTER], 124
Printing, 124
PRN,124
Process Key

Definition, 43
Process-Char action, 33 - 34

Definition, 165
Prompt/menu/message mode, 75
Prompts, 7

Away next key, 8
Single character, 8
Space to continue, 8
Type-in string, 8
Type-in string, for values, 10

Prototyping,16, 28

Q
Quit, 27

Definition, 86
Quit action, 61

Definition, 138

213

R
Random number, 174
RDEMO2, 27 - 28

Definition, 60
RDEMO2.EXE, 57, 217
Read # action

Definition, 180
Read keypress,169
Read Text action

Definition, 180
Readkey, 44 - 45

Definition, 43
Record keystrokes, 117
Records, 180
Redisplay, 43, 47, 56

Definition, 42,168
Redisplay Screen action, 44, 47,168

Definition, 168
Reference card, 109
Registration card, l
Relative CPU speed, 175
Relative Slide Reference

See Overlays, RELREF
RELREF

See Overlays
Replace action

Definition, 167
Replace slide on screen, 17
Restarting slide show, 28
Retrieve, 71
Return, 142, 145, 161
Return From Tag Call action, 40

Definition, 161
Right-aligned, 26
Row offset

See Overlays
Run

Definition, 85
Submenus,110

Run #
Definition, 115

Run 1st
Definition, 114

Run 2nd
Definition, 114

Run 3rd
Definition, 114

Run Action, 21
Definition, 114

Run Action ?List
Definition, 114

Run Action Indent Increment, 120
Run action line, 36

Save/Load, 22
Run action list, 19,41,109

Definition, 36
Run Action Paste buffer, 22,128
Run actions, 19, 109,133

Arguments, 111
Changing, 114
Common ones, 21

214

Default, 20
Definition, 36
Diagram, 112
How to set, 110
Indenting, 40,112,120
Listed in different orders, 133, 135
Nesting, 39
Which to use, 133

Run command, 20
Run ;Comment

Definition, 114
Run Copy, 22, 32

Definition, 116
Run Debug

Definition, 116
Run Delete, 22

Definition, 115
Run Group

Definition, 116
Run Insert, 20

Definition, 115
Run Key/Event, 20

Definition, 115
Run Key/Event #

Definition, 115
Run Key/Event Key

Definition, 115
Run Key/Event Reset

Definition, 115
Run Key/Event Select

Definition, 115
Run Key/Event Tag

Definition, 115
Run Line, 20

Definition, 114
Run menu, 19
Run mode, 75
Run Move

Definition, 115
Run OK

Definition, 116
Run Paste, 22, 32

Definition, 116
Run Run, 61

Definition, 116
Run Stack

Clearing, 40
Definition, 39

Run Tab/Ins/Del
Definition, 114

Run Type,18, 28-29, 45,175
Definition, 18, 114
Diagram, 18, 46

Run Vars, 28
Definition, 11 5

Run Wait, 18, 28, 45,175
Definition, 114

RUNME,1
Running

See also Run action list
Complete diagram, 43
Debugging, 113

Definition, 4
Detailed description, 35
Overview, 17, 19
Processing a key,17,19
Simplified diagram, 42
Starting, 113
Stopping, 17

Runtime only
See RDEMO2

S
S-Fl key

Definition, 80, 83
S-F10 key

Definition, 82
S-F2 key

Definition, 80, 83
S-F3 key, 27

Definition, 81
S-F4 key, 26

Definition, 81
S-F5 key, 27, 31

Definition, 81
S-F6 key, 84,117

Definition, 81
S-F7 key

Definition, 81
S-F8 key

Definition, 82
S-F9 key, 89

Definition, 82
S-Tab key

Definition, 83
Save/Load, 21
Scan lines, 52
Scan Lines Desc

See Overlays
Screen capturing

See Capture
Scroll Lock key, 176
Search for characters, 80
Second, 175
Seek To action

Definition, 181
Select, 7
Select action, 34,159

Definition, 158
Self-running demonstration, 46
Set Builtin action, 47,178 -179

Definition, 177
Set String action

Definition, 162
Shift state, 176
Shift-F6 key, 117
Shift-Tab key

Definition, 78
Signaling

See Key/Events
"Single character" prompt

See Prompts
Single step running, 113

Dan Bricklin's Demo II Program User Manual

215

Slide options, 101 Sounds, 140 See also Overlays
Slide overlays, 49 "Space to continue" prompt Trim action
Slide Return action See Prompts Definition, 166

Definition, 142 Special characters, 26 TXT files, 60,124
Slide Return After action Special effects, 16, 49,177 Type-ahead, flush

Definition, 142 Spin diskette, 177 See Flush type-ahead
Slide Shows Start-up message, 61 "Type-in string" prompt

Arguments, 59 Statement label See Prompts
Definition, 3 See Tags Typing
Distributing copies, 27 Status display, 97 Definition, 85

Slide Type, 71,101 String run actions, 162 -163,165 Typing Attribute, 77, 79,120
Slide With Name action, 53 Strings Typing Chars, 26, 81, 95

Definition, 143 See also Overlays Typing Chars Num
SLIDE-REF?, 113 I/O, 180 Definition, 95
Slides Length, 50-51, 165 Typing Chars Select

See also Switching and Viewing String value overlays, 50 Definition, 95
Bitmapped, 4 Subroutine calling Typing direction, 26
Changing order, 100 See Tags Definition, 96
Definition, 3, 85 Switch Speed, 101 Typing Direction Down, 26
Finding, 100 Allowed values, 73 Typing Find, 80
Number, 143, 168 Switch Type, 101 Definition, 97
Palette, 101 Switch Types, 16, 74 Typing HTabs
Reference, 137 Switching, 16 Definition, 96
Retrieved, 56 System directory, 58,119 Typing HTabs All
Text, 4 Definition, 60 Definition, 96
Types, 4 Typing HTabs Clear
Video Bits, 101 T Definition, 96

Slides # Typing HTabs Default
Definition, 100 Tab key, 112 Definition, 96

Slides Group, 27 Definition, 78, 83 Typing HTabs Set
Definition, 100 Tab stops, 78 Definition, 96

Slides Insert Tag, 144 Typing Line
Definition, 99 Tag Key/Event label, 161 Definition, 95

Slides list, 99 Tags, 38-39,41, 115,160 Typing Lines, 26, 81
Slides Locate Definition, 40 Typing Margin, 26, 81

Definition, 100 Terminal, simulate, 17 Definition, 96
Slides Move, 27 Text files (importing), 128 Typing Status

Definition, 100 Text slide, 4 Definition, 97
Slides Name, 27 THIS SLIDE, 13 -15, 30,49 - 50, 56, Typing Status Cursor
Slides Names 69, 77-78, 80, 95, 119,121 Definition, 97

Definition, 99 As an overlay, 106 Typing Status File
Slides Options, 71 Thud with Grey +/-, 80 Definition, 97

Definition, 99 Timeout, 46 - 47,175 Typing Status Hide
Slides Options OK Timeout During Run, 47, 121 Definition, 97

Definition, 100 Title, 6 Typing Status Ins/Ovr
Slides Options Palette Tone Beep action, 31- 32, 34, 37,159, Definition, 97

Definition, 100 161-162 Typing Status Slide
Slides Options Text, 73 Definition, 140 Definition, 97

Definition, 100 Tone chart, 203 Typing VTabs
Slides Options Value Tone Note action, 203 Definition, 96

Definition, 100 Definition, 141 Typing VTabs All
Slides Print, 22 Tone Thud action, 32, 37 Definition, 96

Definition, 99 Definition, 140 Typing VTabs Clear
Slides Undo-Edit Topview, 57 Definition, 96

Definition, 99 Transfer to Key/Event action, 32, 44, 47 Typing VTabs Default
Slides View Definition, 144 Definition, 96

Definition, 99 Translate attribute, 91 Typing VTabs Set
Slow, 58 Translate Attribute action, 174 Definition, 96

See Switch Types Definition, 172 Typing, echo viewer, 33, 51
-Snow, 57 Translate Attribute Cmd action, 174 Typing, simulate, 17
Sound action, 146 Definition, 173

Definition, 140 Transparent, 82,119

U
Undo, 99
Unmark block, 89
Upgrading from the old DEMO, 195
Upper-Left, 26
Use Actions On Slide action, 38, 41,
43,138,161

Definition, 145
Use Global Actions action, 38, 47

Definition, 145
User

Definition, 17

V
Variables

As wait value, 28
Changing type, 131
Creating, 130
Diagram, 10
Display typing, 33
Initialize, 47
List, 129
Overview, 9
Passed On setting, 9,129
Setting/Changing value, 131
Type-in string prompt, 10
Types, 129

Variables menu
Definition, 129

Vars #
Definition, 131

Vars Delete
Definition, 130

Vars Group
Definition, 130

Vars Insert
Definition, 130

Vars Locate
Definition, 13 1

Vars Move
Definition, 130

Vars Name
Definition, 131

Vars OK
Definition, 130

Vars Passed-On
Definition, 131

Vars Value
Definition, 131

VGA, 58, 64,102,176
Video Bits

Definition, 101
View Absolue action

Definition, 143
View Absolute action, 168
View action

See View Slide action
View Slide action, 29, 31- 34, 37,159,
161-162,165,170,174,179

Definition, 137

216

View Slide In File action, 129, 168
Definition, 143

View Slide Then Tag action, 40
Definition, 144

Viewed, 34, 44, 47,166
Definition, 43

Viewer
Definition, 17

Viewer typing, 33
Viewing, 42 - 43,137
Visible setting

See Overlays

w
Wait

Also called Pause
Wait Time, 18

See also Run Wait
WaitDone, 20, 28 - 29, 45, 47

Definition, 43
Where action

Definition, 166
While action

Definition, 152
Windows, Microsoft, 57
Word-wrap, 26, 78, 90

Forced new line, 91
Write action

Definition, 180
Write With No CR/LF action

Definition, 180

X
x

See Hexadecimal

Y
Year, 175

Z
ZSoft

See PC Paintbrush

Dan Bricklin's Demo II Program User Manual

License Agreement anal Warranty

This software product is licensed by Software Garden, Inc ., (SGI) to you, the original purchaser for your use only on the terms
set forth below . BY OPENING THE DISKETTE PACKAGE YOU ARE INDICATING YOUR ACCEPTANCE OF
THESE TERMS. If you do not accept these terms, contact SGI or the place where you purchased the product within 10 days of
receipt for a full refund .

In consideration of your accepting the terms of this Agreement and payment of a license fee as pa

	

rice you paid for the
product, SGI grants you non-exclusive licenses as follows :

You may use the programs (DEMO2.EXE, RDEMO2.EXE, CAPTURE .COM, CAPT~

	

'DECOD.EXE),
" .DBD" files, and other files on the diskettes in this package on compatible hardware .

You may make Backup copies of the programs and files to protect yourself from er
Only one (1) copy of each of the programs and files may be in operation at any

	

e
You may duplicate an unlimited number of "RDEMO2 Diskettes" for use h- ~Je ~ _ Diskette" is a

diskette that contains RDEMO2 .EXE for the purpose of running a " .DBD" ' • eg, .AXE by you or at
your request and where that " .DBD" file is on the diskette when it is dur'

	

~~G ~®
Other than as stated above, you may not copy, alter, translate, d~ %0 e1(gams or documentation;

nor transfer, rent, lease, sub-license or otherwise distribute the bet ((' ,ove (or cause not to he dis-
played) any copyright notices or startup messages contained it

	

P tee
SGI reserves all rights, including copyrights, not expressly g .

	

a4 doe
SGI warrants to you that it is the owner of the copyright to . \(indemnify you against all claims from

third parties challenging such ownership, provided that you providt .iiy such claim and permit SGI to defend or
settle the claim .

Before making copies of RDEMO2 .EXE you will ascertain its fitnc d our use, and check that it is sufficiently free from
error or malfunction for use by the intended recipients of the copies . Yt-agree to indemnify SGI and Dan Bricklin against all
claims or liability which relate to your use of RDEMO2 .EXE, or any third party use of "RDEMO2 Diskettes," provided that SGI
gives you prompt notice of any such claim and permits you to defend or settle the claim .

The programs are warranted by SGI to substantially conform to the documentation and SGI's published specifications,
provided that they are used as set forth here and in the documentation . Nevertheless, due to the complex nature of computer
programs, the programs in this package (like all large programs) will probably never be completely error-free . The physical dis-
kettes and documentation enclosed in this package are warranted by SGI to be free from defects in materials and workmanship that
prevent you from operating the programs . These warranties extend for a period of 60 days from the date of purchase . SGI will
replace defective diskettes or documentation, or correct substantial program errors free of charge during that period . You must
return the defective items to SGI, postage prepaid, with a dated proof of purchase within those 60 days (contact SGI for shipping
instructions before sending) . In the event that SGI is unable to replace the defective diskettes or documentation, or correct the sub-
stantial program errors, SGI will refund your purchase price and the licenses will terminate . These are your sole remedies for any
breaches of warranty .

Other than as stated above, the programs are licensed, and the documentation and other files on the diskettes are
provided, "AS IS," without any warranty as to performance, accuracy, or freedom from error, or as to any results
generated through use of such material, including, without limitation, any implied warranties of merchantability or fitness
for a particular purpose. You assume the entire risk as to the results and performance of this product. SGI and Dan
Bricklin specifically do not warrant that the program will meet your requirements or operate without interruption or
error. SGI's obligation to replace defective media, documentation and programs as provided above shall be your sole and
exclusive remedy for any and all claims against SGI or Dan Bricklin arising out of or in connection with this product,
whether made or suffered by you or any other person and whether based in contract or tort . Under no circumstances,
whether in contract or in tort, shall SGI or Dan Bricklin be liable for indirect, consequential, special, or exemplary
damages such as but not limited to loss of revenue, data, or anticipated profits, lost business, or other economic loss arising
out of or in connection with this Agreement or your use or inability to use the diskettes, the documentation or the
programs . In any event, any liability of SGI or Dan Bricklin arising out of or in connection with this Agreement or your
use or inability to use this product, whether based in contract or tort, shall not exceed the amount you paid, if any, for the
product.

These licenses shall terminate upon your failure to comply with the terms and conditions of this Agreement .
This Agreement is to be interpreted by the laws of the Commonwealth of Massachusetts .
This Agreement may not be assigned by you without the written consent of SGI, which consent will not be unreasonably with-

held . This Agreement shall be binding upon the respective successors and assigns of the parties .
This Agreement sets forth the entire agreement of the parties and supersedes all prior understandings and agreements, written or

oral .

Software Garden, Inc . / PO Box 373 / Newton Highlands, Massachusetts 02161 / U .S .A. / 617-332-2240

217

PIN 1034-1-B

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136
	page 137
	page 138
	page 139
	page 140
	page 141
	page 142
	page 143
	page 144
	page 145
	page 146
	page 147
	page 148
	page 149
	page 150
	page 151
	page 152
	page 153
	page 154
	page 155
	page 156
	page 157
	page 158
	page 159
	page 160
	page 161
	page 162
	page 163
	page 164
	page 165
	page 166
	page 167
	page 168
	page 169
	page 170
	page 171
	page 172
	page 173
	page 174
	page 175
	page 176
	page 177
	page 178
	page 179
	page 180
	page 181
	page 182
	page 183
	page 184
	page 185
	page 186
	page 187
	page 188
	page 189
	page 190
	page 191
	page 192
	page 193
	page 194
	page 195
	page 196
	page 197
	page 198
	page 199
	page 200
	page 201
	page 202
	page 203
	page 204
	page 205
	page 206
	page 207
	page 208
	page 209
	page 210
	page 211
	page 212
	page 213
	page 214
	page 215
	page 216
	page 217
	page 218
	page 219
	page 220
	page 221
	page 222
	page 223
	page 224
	page 225
	page 226
	page 227
	page 228

