TO PROGRAM ITSEL 1

, DAVID D BUSCH

PROGRAM YOUR

IBM PC

TO PROGRAM ITSELF!

DAVID D. BUSCH

TAB BOOKS Inc.
Blue Ridge Summit, PA 17214

FIRST EDITION
FIRST PRINTING

Copyright © 1986 by TAB BOOKS Inc.
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability Is assumed with respgct to
the use of the information hereln.

Library of Congress Cataloging in Publication Data

Busch, David D,
Program your IBM PC to program itselfl

Includes index,

1. IBM Personal Computer-ProgrammIng. 2. BASIC
(Computer program language) 1. Title.
QA78.8.125948874 005.265 85-28094
ISBN 0-8306-0898-2

ISBN 0-8306-1898-8 (pbk) -

Contents

Introduction
How to Use This Book

Word Counter

Building a Library of Routines 1
How Word Counter Works 2
The Interrupt Routine 4

- REM-over

The Purpose of REM-over 7
How REM-over Works 7

Titler

Entering Different Name and Address Titles 13
Including Time in the Title 13
Generating Program Title Blocks 14

Tabber

.. Advantages of Tabber 19

Programming Tips 20
How Tabber Works 21

Screen Editor

The Purpose of Screen Editor 25
How Screen Editor Works 27

vi

Ix

13
19

25

10

11
12
13
14
15
16

17
18

DataBase Starter

Creating Program Skeletons with DB Starter 37
Who Needs DB Starter 39

How DB Starter Works 39

Adding Your Own Subroutines 42
Program Proofer

How Program Proofer Works 53
Possible Enhancements 56

Automatic Programmer Documentation

Global Replacer

Making Changes without a Word Processing Program 67
Advantages of Global Replacer 69

Key Definer

Using Key Definer 74
Reasons for Redefining Function Keys 74
How to Redsfine Function Keys 74

Lister
Uses of Hardcopy Listings 79
Producing Hardcopy Listings without a WP Program 80

Translator

Indexer

Index 1: Preparing the File for Sorting 95
The DOS Sort 98

Index 2: Producing the Final List 08
Error Trapper

Error Trapper Messages 104
The Interrupt Routine 104

Visual Maker

How to Design Frames 111
Display Time 113

Word Processing Converter
Converting for Compatibility 119
How to Use Word Processing Converter 120

Unpacker

Creating Your Own DOS Commands

Altering the System Prompt 129

Searching Through Disk Drive Directories 130
Creating Batch Files 130

Creating a Text Fila 131

More Ways to Use Batch Files 131

37

83

63
67

73

79

85
95

103

M

119

125

129

19 Music Writer
20 Some Tips

Developing a Program with a Word Processor 139
Protecting Your Work 141

Index

133
139

143

Introduction

Afre you ready to tap the amazing abilities of one -
of the most powerfy] computers on the market?
Would you like to create your own DOS commands?
Automatxca}ly redefine your IBM’s special function
keys each time you enter BASIC? Command your
computer to write programs for you? All that and
more is possible using the unj ili
in ths s Ing the unique utility programs
Yes, your IBM PC can write i grams
A : te its own pro, 3
Instead. of laboriously writing programplines and
subroutines that will display a series of instructional

€8 on the screen, you can let your computer

do_ all that work. Yf)u need only design the screen

usmgt word processing commands, and tell the com:

ng I\Zr hoxy long you want that frame displayed, The

” PCis perfgctly capable of writing a complete

? gram that wdl do exactly that without the need
or }(f;)u to write one single line of code,

. 1;, your IBM PC can compose subroutines for

| an 0 you need some disk input/output routines

a str?mg array to store data in? Some data lines

perhaps? A meny? N, ot too eager to write the code,

"

figure out the proper ON . . GOTO lines? That task
IS a snap for the automatic IBM PC.

You may be weary of calculating tabs for
n_eatly-f.onnatted Screen displays. Wouldn't it be
nice to just type PRINT TAB(T) and let the com-
ﬁ:ge; f}i{gure oug1 what value T should be? Say no

re. Your wish is well within th
the Boca Raton Wonder, © capabilfes o

As fabulous a tool as the IBM PCline has been,
most users only save half the time they could with
their computers. Because I write dozens of pro-
grams a year, one of the first things I did was write
a number of programs that do nothing more than
write other programs for me, One of the first, and
;m_e I'use more than any other, was Screen Editor.
tis a BASIC program that allows drawing on the
Screen any meny, title block, instructional screen,

or other material that will be needed in a program.
;I‘hc?n, at t{le press of the Enter key, the screen just
stxgn;d is fnaglcally transformed into program
,\0€s. len minutes of coding can be accomplished
10 a minute or less. (Actually, since I have compiled

into machine code the BASIC Screen Editor shown
in this book, the chore takes no more than a sec-
ond or two!)

1 also let my Automatic PC use DOS commands
that I have created. I don’t have to type DIR B: and
then watch as the directory flies past on the screen.
Instead, I type D B, and see a paged listing that
pauses until I am ready to continue. When I want
to examine a file from DOS, I just type LOOK file
name B and my PC displays the file, again a screen”
ful at a time. This book shows you how to install
your own favorite DOS commands and customize
your computer with a special prompt and other
features.

Given the right tools, such as the utility pro-
grams here, an hour spent programming can be
more fruitful than several hours under manual
methods. A third or more of the program lines in
some of the examples in this book were prepared
by other programs listed. Some programs were
even used to write enhanced versions of
themselves.

All the programs in this book will work with
IBM PC and PCjr computers with 80-column
displays, Most will also operate on the PCjr with
a 40-column display, with a few changes. Tabber,
for example, asks the user if tabs should be
centered for a 40-column screen, or an 80-column
screen. Because they are written in BASIC and use
no PEEKs, the programs are readily transferable.

Just as PEEKs and POKEs have been avoided
wherever possible, other statements that are DOS
dependent have been avoided. In most cases,
strictly BASIC syntax common to all IBM PC com-
puters is used. All versions of PC-DOS have similar
disk input/output routines for sequential files, which
are used in most of the programs in this book.

. This book is only a jumping off point. Many of
the programs were adapted from other programs.
Visual Maker is based on Screen Editor. Global is
descended from Tabber. Similarly, you can take the
ideas and suggestions here and develop programs

+of your own that will streamline your BASIC

fievelopment work. In addition, there are some
ideas in Chapter 16 for using other programs you
already own—such as word processors or keyboard

utilities—as shortcuts.

The utility programs in this book actually write
programs for you, modify existing software, or give
your programs new capabilities and power. Hours
of time can be saved on every program written by
the novice or experienced programmer. Some of the
examples were used to write programs in this book
or to modify themselves.

Here is a brief outline of the programs:

Visual Maker. Design a custom “slide” to ap-
pear on the screen of your IBM PC, using graphics
or alpha characters. Tell Visual Maker how long
you want that slide to be displayed. Then go on to
the next slide. ,

Once assembled into the order you want, Vis-
ual Maker will write a complete BASIC program
to display the slides you designed for the intervals
requested. No programming is required.

DB Starter. Weary of writing custom data-
base management programs from scratch? DB
Starter will do the BASIC skeleton for you. Enter
the number of menu choices and the prompts to be
included in the menus. It will design the menu for
you. Tell the program you want Input/Qutput
routines and feed in a few parameters; it will write
the 1/0 modules automatically. DB Starter will also
construct the necessary ON . . GOTO lines and in-
sert REMarks at line numbers where the program-
mer needs to build up the BASIC skeleton. Your
first several hours of programming are taken care
of for you.

Tabber. Want to enter your screen output for
prompts and other messages? Just type PRINT
TAB(T) in every line you want centered. This pro-
gram will go through an entire program, calculate
how long the message is, and write a new program
line that TABs the proper number of spaces. Works
with 40- or 80-column screens.

Proofer. Find misspelled keywords, mis-
matched parentheses, and other errors BEFORE
runtime. This program helps you debug and pro-
vides a list of variable names used in the program
as a bonus.

Error Message. If you are impressed with the
long error messages of BASICA, this program will
knock you flat. Append Error Message to your own

BASIC program and insert the appropriate ON ER-
RORGOTO.. line. Then, any error will be spelled
out in detail—with tips on how to find the exact er-
ror in your program. This will prove to be an ex-
cellent utility for novice programmers or anyone
tracking an elusive bug.

Other programs in the book include:

Screen Writer. Use word processing-like
commands to design a custom screen. Then, press
the Enter key. This program writes the BASIC pro-
gram Ii.nes you need to reproduce your custom
screen in your own program.

Key Definer. You enter the function key
definitions you want. This program writes a sim-
Ple BASIC program that will make the changes for
you automatically and then erase itself. The file is
stored on your disk so you can invoke your new

function key definitions automatically when yoy
enter BASIC—or choose from several sets of
definitions!

; Word Counter. Count the words in your
ocument or program. This program works wi
any ASCII file. t

Global Replacer. Specify a string in your
program—it does not have to be a keyword—and
this program replaces it with a string of your choice.

REM-Over. Take remarks out of your pro-
gram automatically.

- Lister. Format your BASIC programs for
listing on your printer.

Trans:lator. Tms program allows you to write
programsina foreign language, such as French or
Spanish, It then translates them to standard IBM
PC BASIC for running.

How to Use This Book

All the programs in this book have been rigorously
tested and will run as described. Working program
listings were transferred directly to a word process-
ing program where REMarks were added; the
listings were printed out with no further changes.
Those printouts were photographed for this book.

So, if you type in a program and have difficulty
making it work, odds are very good that a small
typing error could be the source of your problem.
Go back and proof each line carefully. Up to 40
characters are significant in IBM BASIC, so a
variable name that is typed in as TOTAL in one
place and TOTALS in another are two completely
different variables.

These programs have been written to make
your job as easy as possible. Variable names have
been chosen to be descriptive without excessive
length. That is, the variable name CHAR might
be used to count the number of characters in a
document instead of the variable name
CHARACTERS.IN.DOCUMENT.

Some magazines tightly pack program listings

to save space. Most program lines here have only
one or two statements, except where IF . . THEN
. . ELSE logic dictates more complex construction.
I've tried to indent FOR-NEXT loops and mark
each module within a program with a REMARK
S0 you can see what happens where. Some con-
sistency is used in variable names between pro-
grams as well. F$ is most often used for disk file
names, A$ for INKEY$ and other INPUT uses, T$
or TEMPS$ for temporary string variables, and so
forth. Once you’ve learned the conventions of this
book, it will be easier to follow the program logic.
If you like, you can even use some of the pro-
grams in this book to reduce your work. You may,
for example, choose to abbreviate some frequently
used statements, and then run the Global search
and replace program to make a substitution. Instead
of typing PRINT TAB(dozens of times, abbreviate
it with PZ. You will not be able to debug the pro-
gram until the change is made. Once you have
typed all the program lines in, however, save what
you have in ASCII format (more on that later) and

ings and mismatched parentheses. When the basic
work has been done for you, then, and only then,

e The seab e yuld dic sldving over

a hoE keyboard at 3 A.M. that com
: . puters are the ser.
vants of mankind, not vice-versa.

CIOIEIElS] cosputer
keyboard
IBM

too

Word Counter

Why not let your IBM PC write its own programs?
After all, much of program writing is nothing more
complicated than building something from an in-
ventory of prefabricated subroutines. Many pro-
grams have a great deal in common; it is the
parameters that change. Wouldn't it be simpler just
to provide the parameters and let the computer do
the routine stuff?

BUILDING A LIBRARY OF ROUTINES

One program may require a line like FORN=1

TO 100, while the next will need FOR N=1 TO
?00. Yet, each time, the programmer had to type
inthe FOR N=1 TO part. The reason the computer
never knew enough to supply the FORN=1TO s
that nobody told it to. The IBM PC and PCjr com-
puters can do practically anything in the area of pro-
gram writing, if they are only told exactly what to

o. -

' Apblications generators and other programs that
write other programs are old hat. They have been
around for a number of years and can be purchased

for large computers as well as small. The concept
behind them is simple: many programs have
modules that are much like those used in other soft-
ware. Yet, in many cases the computer program-
mer writes a routine from scratch each time it is
needed. Why not build a library of routines and let
the computer draw on them as needed to write its
own programs?

The basis behind why an IBM PC can write its
own BASIC programs lies in its ability to load into
BASIC from disk two types of files. The normal
way a BASIC program is saved is in compressed
format. That is, BASIC keywords are tokenized,
and a single byte representing that keyword is
loaded onto the disk, instead of the entire keyword.
Rather than store the five letters that make up
“PRINT,” BASIC normally just stores a one-byte
decimal number that represents “PRINT.” When
you type SAVE'file name.bas”, a program is
stored on disk in this form.

You can also, however, type SAVE"file
name.bas’’,A. Then the program will be saved in
noncompressed ASCII format. That is, every let-’

1

Program Your IBM PC to Program Itself]

ter and number will be stored, byte for byte, on the
disk exactly as the program appears when listed.
The BASIC interpreter has the capability of doing
this conversion for us. An ASCII file is nothing
more than a text file. It is possible to load a non-
compressed program into a word processing pro-
gram, edit it using powerful global search and
replace commands, and then save it back to disk
in ASCII form. Some word processors do not nor-
xpally save in ASCII format, but most have an op-
tion or utility that allows you to do this.

Because of BASIC’s dual capability, you can
also create programs using a word processor or, in
the case of the programs in this book, through the
use of sequential disk files, which are also ASCII

files. The short program below serves as an
example:

10 ngN "o",1,"TEST.BAS" (or,
PEN "TEST.BAS"™ FOR -
oPEN OUTPUT
20 PRINT #1,"10 PRINT" ;CHR$ (34);

"THIS IS A TEST"; *"CHR
30 CLOSE 1 PICHRS(34).

. ’I‘histestpi'ogramwillwﬁteasinglelinetothe
disk under the file name TEST.BAS. That line will

be, if loaded into BASIC, a sh i
Py , a short prom in the

10 PRINT"THIS IS A TEST"

~ You could also “build” the program lines from
your own parameters. Try this short program:

10 INPUT"Enter line number
2~ desired:";LN -
0 INPUT"Enter message desir
(e
20 ;';MESS$ e .
NPUT"Want it to be - PRINT .
‘0 LPRINT";CHS R °F
IF CH$="PRINT* OR CH S
© "LPRINT*" GOTO 60 sé'
50 GOTO 30 .

60 OPEN "O",1,"TEST,pBAS™

2

70 PROG$=STR$ (LN)+CHR$ (32)+CH$

+CHR$ (32)+CHR$ (34)+ MES
+CHRS$(34) 5%

80 PRINT #1,PROGS
90 CLOSE 1

Most of the programs in this book with pro-
gram writing routines do nothing more than assem-
ple program lines in this manner. Sometimes the
Input comes from the user. Other times it is
calculated. Still other times, some of the programs
use the SCREEN function to see what has been
printed to the screen and use that information,

HOW WORD COUNTER WORKS

The common thread among the programs is the
use of ASCII files that are programs as if they were
data files. The first program presented, Word
Counter, illustrates the principle, even though it
does not create any new program files itself, In-
stead, Word Counter reads in an ASCII file and
counts the number of words. Most commonly, these
files will be word processing text files, Word
Counter, however, could just as easily be used to
count the number of words in a program.

- Most of the techniques used in this book will
be .repeated in later programs. Each will be ex-
Plained in detail the first time they are used. So,
early programs are short because explanations are
frequg,nt. Later, longer programs will use many
tef:hmquw that have been previously explained and
will thus require fewer discussions.

- Programs in this book frequently access other
programs that have been stored in ASCII form on
disk. You must save a program to be used by an-
othgr program in ASCII form using the ,A option.
If, in running one of the programs here, you see
garbage on the screen, you probably forgot to save
the program in ASCII,

Wgrd Counter is no exception. It will count
words in a program file just as it will the words in
a text file, but only if both are in ASCIL Figure 1-2
Presents the variables used in Word Counter. The
operator is asked to enter the name of the file to

Word Counter

A3 Stores text line being examined.

AW Average word length in text.

Cc3$ One-character string from middle of line.
CHAR Number of characters in whole file.

cu Counter of number of words in file.

F$ Text file to be counted.

FL FLAG indicating end of file reached.

L$ Last character encountered.

N Loop counter.
sw Number of standard words in text.

Fig. 1-1. Variables used in Word Counter.

be processed in line 280. That file, F$, is opened,
and one line is input from the disk. The line is
loaded by means of LINE INPUT #1 in line 390.
INPUT #1 will accomplish much the same thing,
except that it will not accept string delimiters, such
as commas and quotation marks, which are com-
monly used in both text and program lines. LINE
INPUT imposes no such restriction. It accepts
everything up to the next carriage return. This will
be the end of a program line or a carriage return
in the text itself.

To search for a word, you need to first decide
just what a word is. The easiest thing is to realize
that a word is more or less a group of letters
preceded and followed by a space. “CODEWORD”
is one word, even though two real words are
embedded in it. “OH! NO!” is two words. The
punctuation is not part of each word, but for the
purposes of this program, it is considered so. This
is because Word Counter has been written to look
for each space that is preceded by a nonspace.
Counting spaces would be an inaccurate way of
counting words. There would probably be two
spaces following a sentence, for example. So, the

program instead looks at each character; when it

finds a space, it looks to see if the last character
was a space. If not, the end of a word has been
deemed to have been reached. ,

Each line input, stored in A$, is looked at one

character at a time in a FOR-NEXT loop begin-
ning at line 420. The loop repeats from 1 to the
length of A$. Each time through, C$ is assigned the
value of the next character in the string, through
the use of MID$(A$,N,1). MID$, as you know,
takes the middle portion of a string, starting at posi-
tion N (in this case) and with a length that you
specify. In the above example, just one character
was selected. . ; '

If C$ is a space, (CHR$(32)), the program looks
at the last character checked, L$, to see if it was
a space. If it was nof a space (that is, it was a
character), the program assumes that the end of a
word has been found, since no word contains an
embedded space. Thus, the word counter, CU, is
incremented by one.

Before the loop goes back to look at the next
character, the current character is stored in L$ (line
380) and becomes the last character.

Once the program has looked at every
character in the string, it drops down to line 470
where the end-of-file flag is tested. If it is one,
meaning the EOF marker has been reached, the
program goes to line 490 to present the results of
the word count. Otherwise, the program goes back
to line 390 to input another line.)

‘When the file is finished, the program prints

~ the number of words, CU, and then calculates the

average word length, which is the number of

3

TETTEMELRAN AWaadaayy WivIMCU VY WIC 1UuipeEr o1

words. The number of characters is also divided by
five to total the amount of “standard,” five-
character words as well. Of course, most words will
be longer or shorter than five characters, but I use
this length as an average to determine how many
words are in a document.

THE INTERRUPT ROUTINE

In nearly all of the programs in this book, you
may abort at any time by pressing the F10 func-
tion key. This is set up in line 90 of this program,
with the ON KEY(10) command.. This is an
interrupt-driven routine, meaning that the PC will
execute the specified subroutine at any time (al-
most) that it is triggered. The program does not
have to be sent to the subroutine by encountering
an ON .. GOSUB line. Instead, you can turn the
feature “on” or “off” as you wish. This is done in
line 100. While ON KEY is on, pressing F10 will
send control to line 660, where all files are closed

dnda e program 1s ended. If you want to tyrn the
feature off temporarily, a KEY (10) OFF statement
could be placed in the program.

Note that if the program is waiting for certain
types of input, such as through the use of INPUTS,
the interrupt routine will not be triggered until after
you make the expected input. For example, here

are two ways of pausing until the user presses a
key:

100 A$=INPUT$(1)
110 A$=INKEY$ $IF AS="" GOTO 110

The former is considered by some to be more
elegant; however, if you press F10 and no other
key, the program will wait forever at line 100. With
line 110, though, the IBM PC will immediately pro-
ceed to the interrupt subroutine whenever F10 is
pressed. For that reason, I've generally stuck to the
use of INKEYS$ in this book.

Listing 1: The Word Counter Program
10 ¢ *********************

20 ' * *
30 * * Word Counter =*
40 v * *

SO ¥ AkRAKARRARKRARKXRA K k&
60 DEFINT A-2

65 1 kkx Instructionsg **#

70 KEY OFF

80 SCREEN 0,0,0

90 ON KREY(10) GOSUB 660
100 REY (10) oN :
110 CLS:PRINT:PRINT

120 CoLor 0,7

130 LOCATE 4,24

150 COLOR 7,0

160 PRINT

170 PRINT TAB(14)"This
actual words in a

140 PRINT » Writer's Word Countef »

".program will count the number of

180 PRINT TAB(1l0)"text file, or any file that has been
stored to disk in ASCII

190 PRINT TAB(lO)"goEmat. s

1 number o R

200 §§§§T TAB(10)"'standard ' five-character words, and the
average character " .

210 PRINT TAB(10)"length of the words in the text.

220 PRINT:PRINT TAB(22)"";
COLOR 0,7

gig PRIN " e Hit any key to continue == *

250 COLOR 7,0

260 IF INKEYS$="" GOTO 260

270 CLS:PRINT:PRINT

275 ' **%* Access Disk File ***

280 PRINT TAB(15)"Enter name of file to count: ";

290 LINE INPUT F$

300 CLS

310 LOCATE 15,25

320 COLOR 16,7

330 PRINT"Counting file ";F$

340 COLOR 0,7 ”7 }
350 LOCATE 25 .
360 PRINT" Hié F10 To Abort ";

370 COLOR 7,0

380 OPEN "I",1,FS$S

390 LINE INPUT #1,A$

395 ' *** If End of File Found, Set Flag to 1 **#*

400 IF EOF(1) THEN FL=1
405 * *** AQd Length of A$ to Total Characters in File ***

410 CHAR=CHAR+LEN(AS)

415 * *** I00p to look at each character in A§ ***

420 FOR N=1 TO LEN(AS$)

. =MID$ (A$,N,1) -

328 : gg g$=§HR§z3é) AND L$<>CHR$(32) THEN CU=CU+l
450 3 L$=C$

460 NEXT N

470 IF FL=1 GOTO 490
480 GOTO 390

In addition, it also provides the

Al
=

Program Your IBM PC to Program Itself!

485 ' *** pPrint out Resultg **%

490 CLS:PRINT:PRINT
500 PRINT TAB(23)"NUMBER OF ="
510 PRINT OF WORDS ' CU
g§0 AW=CHAR/CU

0 PRINT TAB(21)"AVERA =
540 PRINT GE WORD LENGTH =",AW
328 SW=CHAR/5

PRINT TAB(17)"NO. OF -

570 CLOSE - FIVE-CHARACTER WORDS =",SW

375 ' *** Run again? **#*

ggo PRINT:PRINT
0 PRINT TAB(22)"Check
600 LOCATE 15,30 another filez®
610 COLOR 16,7
620 PRINT" Y/N 2"
220 COLOR 7,0
0 A$=INKEY$:IF A$="" GOTO 640
650 IF A$="y" QR AS="y"
660 CLOSE P="Y" THEN ROW
670 CcLs
680 END

Chapter 2

10 REM ** Titler ***
20 REY ** Initialize

70 REM ** OPEN FILE *
80 OPEN "0".1.F$

REM-over

In Chapter 1 we explored opening an ASCII disk
file, either text or program, reading it in line by line,
and then examining the string of characters in order
to count the number of words. The next step is to
alter the file in some way and then write a new,
changed file to disk. Several of the programs in this
book are based on that principle. The first of these
is “REM-over.”

THE PURPOSE OF REM-OVER

The program will read in a disk file, like before.
REM-over, however, will print to disk a new file
that is similar to the old one. The only difference
is that when the program encounters a remark,
designated either by “REM?” or its abbreviation
“*", the remainder of the program line will be
truncated. If a line consists only of a line number
and a remark, the line will be deleted from the pro-
gram entirely. The result will be a new program
with all of the comments removed. Depending on
the number of remarks included in the original pro-

ram. the new remarklece warcinn mav he

significantly smaller, and therefore consume less
memory space. Figure 2-1 shows an example of a
program that contains remarks; Fig. 2-2 shows this
program after REM-over has been used with it.

HOW REM-OVER WORKS

Ordinarily you might think that deremarking
a program would be ridiculously simple. Since the
IBM PC ignores anything after REM or ’, a pro-
gram could simply search for those two strings. You
should, however, realize that REM or * within
quotation marks doesn’t “count.” That is, when
REM is used as part of an input prompt or in a
PRINT statement, it does NOT appear to be a
remark to the computer. For example:

10 PRINT"This is NOT a REMark."
:REM But this IS. -

REM-over takes care of this stipulation by sim-

ply looking at each program line for quotation
marks as well as remarks. If a REM appears after .

I 10 ' Test of Program REM-QVER

20 REM Will Test REMOVAL of REMARKS
30 ' This Remark will be removed.
40 PRINT:PRINT: REM This one will be removed.
50 PRINT"This REMARK: REM Will NOT be removed,”
60 PRINT"This one won't":REM This one will,

Fig. 2-1. Target program for REM-over,

one-quote but before the second, it is contained
within the quotation marks. This assumes that the
programmer has not mismatched quotation marks
and has included two for every prompt. In fact, the
program will ““crash” if it encounters a line like this:

10 PRINT "This is NOT a REMark,

Notice that the second quotation mark is miss-
ing? BASIC will run this line just fine, even with-
out the quotation mark, but the omission is not good
Programming practice. It will cause REM-over to
hiccup rather badly.

Figure 2-3 provides the variables used in REM-
over. The program begins by asking the operator
for the file name of the program that will have its
remarks REM-oved, This file name, F$, is used to
fonp the file name of the output file automatically.
In line 150, the second file name, F18, is formed
by adding “.REM” onto it. If the file name hap-
pens not to have an extension, as, for exam-
Ple, when F$= “TEST”, the new file name,
“TEST.REM,” will be legal. Of course, BASIC
program names must end in .BAS, but yo
change these DOS mode using the REYNZI‘\:'Iag
TEST.REM TEST.BAS syntax.

A check is made later in line 150 to see if the

original program name includes a period and an ex-
tension. F1 is equal to INSTR(F$,“.”). If F1=0,
that is if F$ does n0f contain a period and exten-
sion, the program goes to line 160.

If however, a period és found, and F1 does NOT
equal zero, the portion of the file name up to the
period (*.”) (LEFT$(F$,F1-1)) is taken, and
“.REM" is tacked on. N ext, both files are opened,
and a single line is input in line 250. Variable P,
which is the position at which the search for REMs
begins, is set to one. Thus, the initial search for
remarks will begin at the first character of A$.

Because both REM and * can indicate remarks,
two searches must be conducted, First, in line 270,
the program checks for ’ and, if an apostrophe is
found, assigns the position of the suspected remark
to the variable R. Control then branches to line 310.

If no apostrophe is located, the program next
checks for “REM”, in line 290. If no remark is
found, then the Program line is already remark-free,
and the program branches to line 460.

Possible remark lines are examined further at
a routine beginning at line 310. There, Q1 is
assigned the value of the Pposition of a quotation
mark. If none is found, then a remark has indeed
been located and the control passes to line 370. If
2 quotation mark is detected, then REM-over looks

40 PRINT:PRINT

60 PRINT"This one won'tge

S0 PRINT"Thig REMARK: REM wWill NOT be removed.®

Fig. 2-2. Example of a program with REM-marks removed.
8

A$ Line of program loaded from disk.

B$ Middle string of program line.

F$ File name of program being processed.
F13 File name of output file.

N Loop counter.

P Position to begin INSTR search.

Qt Position of first quote mark.

Q2 Position of second quote mark.

R Position of remark.

T$ String remaining after remark deleted.

Fig. 2-3. Variables used in REM-over.

at the rest of the program line, beginning at posi-
tion Q1 + 1 for a second quotation mark. That value
is Q2. If the position of the remark, R, is less than
Q1 (the remark appears before the first quotation
mark) or is more than Q2 (it appears after the sec-
ond quotation mark, then a remark is verified, an

the program goes to line 370. :

If neither condition is true, the alleged remark
is actually within the quotation marks and is dis-
qualified. The program instead makes P equal to
the next position after the second quotation mark
(Q2 +1) and returns control to line 270 to see if any
possible remarks exist after position P. In this way,
an entire, multistatement line can be looked at sec-
tion by section to detect all remarks.

When a valid remark is located, the program
takes all of the program line up to the remark itself,
using A$ = (LEFT$,R-1), as in line 370. This, in ef-
fect, truncates the program at the remark.

We are not through yet. After all, some pro-
gram lines consist of just a line number and a
remark. Cutting off the remark leaves only the line
number, This is a bit untidy and a waste of com-
puter memory as well. So, the program cycles
through a FOR-NEXT loop from 1 to the length of
AS. Each time through, the string variable B$ is
assigned the value of the middle character at posi-

tion N. This character is checked to see that it is
a number in the range 0-9, since all program lines
begin with numbers. As soon as B$ does not equal
a number, REM-over knows that the line number
is over, and control drops down to line 420.
There, T$ is assigned the rest of A$. IF T$ is
empty, or consists only of a space, the program
knows it has found an “empty” program line and
loops back to line 230 without printing anything to
the disk. That line has been deleted from the pro-
entirely. ~ .
graIg‘here, ’Ixs is assigned the rest of AS. If TS is
see if the final character is a colon, as would be the
case if a remark followed a colon on a multistate-

ment line:)

10 PRINT"HELLO":REM This is a
remarke.

If a colon is the last character, it is deleted m
line 450. A$ is printed to the screen, so the operator
can monitor the progress of the program, and
printed to the disk. Control goes back to line 230,
where a check for the end-of-file is made and an-
other program line input from the disk. ~

That’s all there is to REM-oving the REM-arks
from your IBM PC programs. . '

Lisung z: The REM-over Program

10 * *rhkkAhkkkhhkRhkAhkik

20 ' * *
30 * * REM-over *
40 ' * *
S50 ' kkhkkkhkhhkkhkrkkhk

55 ' **% Tnitialize **#*

60 SCREEN 0,0,0

70 KEY OFF .

80 ON KEY(10) GOSUB 550
90 ON ERROR GOTO 580
100 KEY(10) ON

110 COLOR 7,0

115 ' **%* Epnter filename **«*

120 CLS:PRINT:PRINT

130 PRINT TAB(17)"Enter name of program to have REMARKS
removed:"

140 LINE INPUT F$.

150 F1$=F$+".REM':Fl=INSTR(F$,'.'):IF F1=0 THEN GOTO 160 ELSE

Fl$=LEFT$(F$,Fl-l)+“.REM":GOTO 160
160 OPEN "I",1,F$

170 OPEN "o",2,F1$

180 cLs

190 LOCATE 25,30

200 COLOR 16,7

210 PRINT" Hit F10 to abort ",
220 COLOR 7,0

230 LOCATE 10,1

240 IF EOF(1) GoTO 490

245 ' #*x 15,9 Program Line #*x%

250 LINE INPUT #1,A8
260 P=1

265 ' *** Check for REMARKS *hk

270 R=INSTR(P,A§,""'")
280 IF R<>0 GOTO 310
290 R=INSTR(P,A$,"REM')
300 IF R=0 GOTO 460

10

305 ' *** Find Quotes, if Any #*#*%

310 Q1=INSTR(P,A$,CHR$(34)):IF Q1l=0 GOTO 370
1=01+1

g%g 82=INSTR(QI'A$1CHR$(34))

340 IF R<Ql OR R>Q2 GOTO 370

350 P=Q2+1

360 GOTO 270

365 ' *** Strip off REMARKS **#*

370 AS=LEFT$(AS$,R~1)

380 FOR N=1 TO LE?;As)
=MIDS (A$,N
200 e Asci3$)24é OR ASC(B$)>57 GOTO 420
410 NEXT N
420 TS=MIDS (AS$,N)
430 IF T$=7" GOTO 240
=" " GOT)
450 15 giGHT$(A$,1)=":" THEN A$=LEFT$(A$, (LEN(A$)=1))

455

) [] k] *
' *** If line not empty, print to disk **

460 PRINT AS$
470 PRINT $2,A$
480 GOTO 240

490

495

500
510
520
530
540
550
560
570

575
580
590

CLOSE
' xkk Again? k%

PRINT:PRINT .

PRINT TAB(29)"Process another file?"

PRINT TAB(37)"éY<§)é0T0 530
=INKEYS:IF AS=

?; II\$§"YE OR A$="y" THEN RUN ELSE CLS

CLOSE

CLS

END

' *** Error Routine *#**

IF ERR=53 THEN PRINT"That file is not on your diskl Try‘

in.":PRINT:PRINT:RESUME 130 . .
gggNg"Unknown error in line ®“ERL;".":RESUME 130

Chapter 3

Titler

Now you are ready for some real action. Making
afew simple changes in an existing program is kid
stuff compared with the “real” thing—that is,
generating a new, never-before-existing program

line from your very own parameters. That’s the -

function of Titler. This program generates program
title blocks, such as the one shown in Fig. 3-1, that
can be merged with your own programs. Youdon't
have to tediously write the program lines yourself,
format the title block, or even supply your name
and address every time. The program will do that
for you, As an added feature, your friends can also
use the program by supplying their own names.

ENTERING DIFFERENT
NAME AND ADDRESS TITLES

This capability is carried out through what are
knqwn as default values. That is, the programmer
assEgns values to the name, address, and city
Vaqables. (See Fig. 3-2 for a complete list of
variables used in the program.) Every time the pro-
gram is run, the user can simply press the Enter

key when asked whether or not a new name and
address should be input. The question is posed in
line 220. Then an INKEYS$ loop repeats until the
operator presses a key, or presses the Enter key.
If N or the Enter key (CHR$(13)) was pressed, the
program drops down to line 400, and N$, AD$, and
CT$ remain as they were defined in lines 60-80.
The default values are used.

If Y or some other key is pressed, however, the
program will ask for a name, address, city, state,
and zip, and will assemble the string variables N§,
ADS$, and CT$ on its own. In that way, a regular
user can be accommodated, while a path is left open
for a friend to use the program as well.

INCLUDING TIME IN THE TITLE |
If you want, information other than the name

or address can be incorporated into the title. You
might add a line: '

25 CTS=TIMES
and deleté lines 330 through 390.

13

Program Your IBM PC to Program Itself!

PR AL L L LT E e
21 & %
3 * Title Maker *
4 ' & *
51 *% David D. Busch *
6 '* 515 g, Highland ave., =
7' * Ravenna,Ohio 44266 *
8" # *
g 1 AR AL EL LT T T T,

Fig. 3-1. Sample title produced by Titler,

In this case, the time when the title was created
will be embedded in the title block instead of the
city and state names, If you keep your system clock
accurate, this can be a good way to keep track of
various versions of the same program!

GENERATING PROGRAM TITLE BLOCKS
Next, the user is asked for the title of the pro-
gram he is going to add the title block to; this is
stored in TITLE$. The program checks to see
which of the four strings—the Program title, the

name, the address, or the City—is the longest, The

longest of the four strings determines how wide the
title block will be. This width, A, is defined in line
470 as the length of the longest string plus 4. The
extra four characters will leave room for a Space
at each end of the longest string Plus an asterisk
used as the border.

A disk file named TITLE.BAS is opened, and
a subroutine at line 890 is accessed to produce a
string that contains the next line number that wil]
be used in our miniprogram. What this subroutine
does is increment a counter, LC, each time it is
called. Then, LN$ is formed by converting the
counter LC to a string value and adding an
apostrophe, because our title block will consist of
remarks, and a space, CHR$(32). Then the
subroutine RETURNS to the main program.
There LN$ is added to the beginning of a string

equal to A +2 in length, consisting of all asterisks.
So, the first line might look something like this:

1 ********************

That line is PRINTed to the disk in line 520.

Then, the subroutine at 890 is called again, anda

A$ Using in INKEY$ loop.
A Length of widest line in title.
AD$ User's address. ‘ : '
8 Difference between length of line to be incorporated in title and A.
B1 Number of spaces before line.
B2 Number of Spaces after line.
Cs User city.
CTs ~ Name of user's city, state, zip.
LC Line counter, -
LN$ Program line currently being built.
N$ - Users name. '
N Loop counter,
S$ User’s state,
TITLES Title of program,
Z3 User’s Zip code,
Fig. 3-2. Variables yseq by Titler.

14

new line is formed similarly. This line cor;sxits t}(x)f
a line number that is one greater than the last, ua‘;
strophe, an asterisk, follovx(ed.by spaces eq
:(?(1)&., and another asterisk. This line will look like

this:

2! * *

The following line will contain the title it§e1f
and will have an asterisk, some spaces, ‘the t’llt’lt?
some more spaces, and anothe; aster}sl.:. : e
number of spaces fore and aft will be dxﬁge wzixlsl,
equally as possible at each end, so that the ti ectin
be centered. These are calculatgd. b.y subtrab 2g
the length of the title from A, dividing that by 2,
and assigning that value to the number of spaces
preceding the title, B1. The number of spaces

Titler

following is the number remaining after. sub-
tracting B1 from B. This is done, instead of s_,unply .
dividing B by two, because the result will not
always be even. It is sometimes necessary to make
B1 one space larger than B.

This centering procedure is repeated in Vt__he
following lines in which the name, addres§, anc.l city
are included in the title block. The l?lock is ﬁm§hed
when a program line identical to line 1 is written

isk. o
© th’Ie‘gh(:,1 last step is to close the file and print in- ‘
structions to the user that tells him tg repumber th.e
target program so that the first }me 7number. is
higher than 10 and then MERGE his program with

LE file. - :
the ggre, we have created a program from
nothing. Next, things get a little more complicated.

Listing 3: The Titler Program
10 ¥ Akkkkkkkkkkhkhhhhkkk
*
" %
30 ' * Program Titler :
LI]
¢ kkhhkkhkhkkhkkkkkkhkkkk

55 ' *%%x Defaults ***

60 N$="Your Name Here"

70 Ag$="Your Address Here" .
80 CT$="Your City, State,‘Zip
90 KEY OFF

100 SCREEN 060,0

110 COLOR 7,

120 ON REY(10) GOSUB 910

130 KEY(10) ON

140 CLS:PRINT

150 LOCATE 25;29

160 COLOR 16 oo
170 PRINT" Hit F10 to abort ";
180 COLOR 06731

190 LOCATE

200 PRINT "T{tle Block Writer"
210 COLOR 7,0

220

?I
PRINT:PRINT TAB(28)"Enter Name and Address

15

Program Your IBM PC to Program Itself!

230 PRINT:PRINT TAB(36)"Y/N 2"

240 PRINT

- 250 PRINT TAB(23)"(Just Hit <ENTER> to use Defaults)"
260 AS=INKEY$:IF AS=""GOTO 260

270 IF A$=CHR$(13) OR AS$="N" OR A$="n" GOTO 400

275 ' *** Enter Name, etc, *#*#*

' 280 CLS:PRINT
--290 PRINT TAB(34)"Enter name : ",

300 INPUT N$

310.PRINT TAB(32)"Enter Address ;3 ";

320 INPUT ADS
- 330 PRINT TAB(32)"Enter City : =;

340 INPUT c$:

350 PRINT TAB(33)'Enter-State : "

360 INPUT s$

370 PRINT TAB(32)"Enter Z2ip Code : »;

380 INPUT z2$

390 CTS$=C$+","4+53+" "4+28$

400 CLS:PRINT

410 PRINT TAB(28)"Enter title of program : ";
420 INPUT TITLES '
430 A=LEN(TITLE$)

440 IF LEN(N$)>A THEN A=LEN(NS$)

450 IF LEN(ADS)>A THEN A=LEN(ADS$)

460 IF LEN(CT$)>A THEN A=LEN(CTS$)
470 A=A+4

475 ' *** open Disk file **x%

480 OPEN "0",1,"TITLE.BAS"

490 CLs

500 GOsSUB 890

510 LN$=LN$+STRING$(A+2,"*')

520 PRINT #1,LNS

530 GOsuB 890

540 LN$=LN$+'*"+STRING$(A,32)+"*'
550 PRINT #1,LN$

560 GOSUB 890

570 B=A-LEN(TITLE$):Bl=INT(B/2):BZ=B-Bl |

280 LNS=LN$+"*"4STRINGS (B1 32)+TI mhw
590 ERINE 1 in: +32)+TITLES+STRINGS (B2,32)+
600 GOSUB 890 |

610 LNS=LN$+**"+STRINGS (A, 32 +nkn

620 PRINT #1,LNg P(R32)

630 GOSuB 899 |

16

=A-LEN(N$):B1=INT(B/2) :B2=B-Bl
238 §N2=iN$+'*"+STRING$(Bl,32)+N$+STRING$(BZ,32)+'*'
660 PRINT#éégN$
670 GOSUB _
=A-LEN(ADS$) :B1=INT(B/2) :B2=B-B1
ggg gN?=£N$i~**+STRING$(31,32)+AD$+STRING$(BZ,32)+'*'
700 PRINT #%6LN$
710 GOSUB 8 :
=A-LEN(CT$) :B1=INT(B/2) :B2=B-B1l
338 gng=iN$i"*“+STRING$(Bl,32)+CT$+STRING$(B2,32)+“*"
740 PRINT #16LN$
GOSUB 89
;28 LN$=LNS$+"*"+STRINGS (A,32)+"*"
770 PRINT #16LN$
80 GOSUB 89
;90 LN$=LN$+STRINGS$ (A+2,"*")
800 PRINT #1,LNS
810 CLOSE

815 ' *** Final Instructions ***

s PRINT
g§8 gg?NT TAB(18)"Renumber your target program so that

first™

ggg ggigg TAB(29)"MERGE ";CHR$(34);"TITLE.BAS";CHR$(34)
870 PRINT
880 END

885 ' *** Increment Line numbers **#*

890 LC=LC+1:LN$=STR$(LC)+"'"+CHR$(32)
900 RETURN

910 CLOSE

920 CLS

930 END

Titler

»
840 PRINT TAB(1l8)"line number is higher than 10, then type

17

Chapter 4

TAB(T)

10 PRINT

"This program will insert”
20 PRINT "tabs into your program lines"

30 PRINT "to make for 2 much more”

40 PRINT "attractive screen appearance”

Tabber

Time for a breather. Tabber is a simple yet elegant
little program that will be very useful to you. It
creates no new program lines, doesn’t make your
computer operate 50 percent faster, and won't even
make your laundry whiter.

ADVANTAGES OF TABBER

What Tabber will do is automatically center
various prompts that are printed to the screen using
PRINT or INPUT statements. Instead of sloppy
screen formatting, you can have neat copy. It will
work with both 40- and 80-column screens of PCs
or PCjrs, Best of all, you need to make only one
small change in your programming habits.

~~ To center any prompt, simply type PRINT
TAB(T) instead of calculating the proper tab posi-
tion yourself. With messages that were going to be
PRINTed to the screen, just insert TAB(T), as
shown in Fig. 4-1. If a program presently includes
the prompt after an INPUT or LINE INPUT state-
ment, you will have to do some rewriting, sicce
there is no such thing in IBM BASIC (yet) as

an INPUT TAB(n) or LINE INPUT TAB(n)
statement.

Use the second line rather than the first in the
examples below: ‘

WRONG: 10 INPUT "Enter your
name:";A$

RIGHT: 10 PRINT TAB(T)"Enter your
name:"; :INPUT A$

You can still run or test programs using.
TAB(T) before they have been run through Tab-
ber. This is especially useful during program
development and testing. Simply insert TAB(T) as
you go along. Until the finished program has been -
processed by Tabber, all prompts with TAB(T) will -
be printed flush left, as long as the variable T is
not used within your program. T will have a value
of zero, and the program will tab zero spaces for
each prompt. , .)

When the program is done, save it in ASCII

Program Your IBM PC to Program Itselfl

10 PRINT TAB(T)"This program demonstrates the use"
§g PRINT TAB(T)"of TABBER.BAS.

PRINT TAB(T)"the special 'T' TAB will have that"
40 PRINT TAB(T)"prompt centered on the screen.”®

Any program using"

Fig. 4-1. Target Program to Demonstrate Tabber.

form, and run Tabber. It will search through each
program line. When it finds TAB(T) it will measure
the length of the prompt remaining, calculate how
many spaces must be tabbed to center that message
on a 40- or 80-column screen, and then replace the

:g” with an appropriate number as shown in Fig.

PROGRAMMING TIPS

A few programming techniques used in this
program are described in this chapter. Menu input
routines are one area ripe for improvement. Many
programs will offer the operator a choice of actions,
listed in 2 menu on the screen. Items from menus
can be selected by having the user press the first
lettc;r of the menu item name, enter the whole
choice, or enter a number that precedes the menu
choice.

Having the user type in the whole name is
rarfely used, because a simple typing error could in-
validate an otherwise correct entry. If a person
yvants a 40-column screen, and types 41 instead, it
is a shame to make him or her redo the whole entry
just for missing by one, or worse, having the pro-
gram crash because it doesn’t recognize the choice.
Entering one character is popular, especially when
amenu is accessed frequently. The user can easily

memorize which letter triggers which menu choice,
pecause of the mnemonic connection. The follow-
ing is a typical letter-oriented menu:

(L)oad
(S)ave
(E)xit
(C)ontinue

A problem could occur if two menu choices
started with the same letter, and the programmer
could not think of a convenient synonym that used
another initial letter. In addition, such menus force
the nontypist user to hunt around the keyboard for
letters that may be widely separated.

Numeric menus, on the other hand, have
choices that are triggered by keys which are ar-
r_anged in a row across the top of the keyboard. The
limitation is that only ten menu choices can be
listed, if you want single-key entry (0-9):

0.) Abort Operation
1.) Load

2.) Save

3.) Exit

4.) Continue

Even there, you open yourself to problems,

10 PRINT TAB(23)"This program 4 .
20 PRINT TAB(23)"0f TARBRS ang onstrates the user

30 PRINT TAB(23)"the s
pecial 'T¢
40 PRIN? TAB(25)"prompt centered on the screen."™

Any program using"
TAB will have that"

Fig. 4-2. Example of a program with TABs inserted.

20

pecause the simplest input methods could confuse
a null entry (ust pressing ENTER, for example)
with zero. It is possible to check the CHRS values
of the entries, to differentiate between zero
(CHR$(48)) and ENTER (CHR$(13)). You c?uld
also extend @ numeric menu by using hexadecimal
notation, following 9 with A,B,C,D, or E.
. TIn practice, this is seldom needed. Tabber’s
menu has only two choices, that between 40- and
80-column formatting. It also uses a built-in error
trap, something that is too often forgotten by begm
ing programmers. Some will write a routine like
this:

10 PRINT"1l.) Load program"
20 PRINT"2.) Save program”
30 INPUT"Enter Choice";CH
40 ON CH GOTO 100,200

Now, if a naive user enters L or S, or some
other letter by mistake, a cryptic REDO FROM
START message will be displayed. That is of no
help at all. Entering a number larger than 2 will
send the program to the line following 40, what-
ever that is. This could crash the whole program.
You can avoid the REDO message by using CH$
instead of CH in the INPUT, since strings will ac-
cept letters as well as numbers. Converting to
numerics, e.g., CH=VAL(CH$) will send you to our
ON CH GOTO . . . line happily—except you still
haven't handled the inappropriate input that might
result. Also, it is necessary for the user to
remember to hit the Enter key before the input is
accepted. The user either has to be sophisticated
enough to do this on his or her own, or else you have
to waste one of the IBM PC’s 25 screen lines to
prompt the user to do so.

Since all you want is a single character, why
not use INKEYS$ to get it? Then, if the character
is not valid, just send control back to the INKEY$
loop until a proper entry is made.

HOW TABBER WORKS
Tabber uses this INKEY$ loop approach. Line

Tabber

220, for example, is an INKEY$ loop that repeats
until a character is pressed. That character, A$, is
converted to 2 number value, A, in line 230. If A<1
or A>2, the program loops back. Otherwise, it sets
the value of S to either 40 or 80, as appropriate.

_(Variables used in Tabber are shown in Fig. 4-3.)

Next, the user enters the file names for the
input and output files, and a single line is loaded
from disk in line 330. The next line looks for an
occurrence of “TAB(T)” in the target program line.
Since the string “TAB(T)” is fairly unusual, no ef--
fort is made to check to see if it is contained in
quotes or after a remark. Odds are that it will never
appear in your program, except where you actually
do want to center a prompt. This is mentioned
because Tabber did “crash” when it was used to
process itself. That is because of line 340, in which.
“TAB(T)” is contained as part of the program
itself, and not before any prompt. In all other cases,
TAR(T) will be followed by a prompt and a_
matched pair of quote marks. In this case, that was '
not so.

Whenever Tabber finds TAB(T), it 1ooks for
the position of the first quote, loads the value of the
rest of the program line from that quote, and then
cuts off the line AFTER the second quote (line 380).
BS$ will then contain only the material in the prompt.

The next step is to measure the length of the
prompt, subtract that from S, which is th'e screen
width (either 40- or 80-columns), and divide by 2.
The resulting number, D, is the number of spaces
that should be tabbed to center the prompt.

A new program line is then assembled in line
410, taking everything that appears BEF.ORE the
TAB(, adding thattoa string representation f’f t.he
tab value (the leading space bas been deleted in line
400), and finishing off with the rest of the program
line, beginning with). Thus, the T has been deleted
and replaced with a number. The program the'n
loops back to line 340 to see if any more TAB(T)'s
appear in the program line. This all.ows ’l‘abb_er to
process multiple TAB(T)’s appearing on a single

line. . , o)
Once the work is finished, or if a line contains

21

Program Your IBM PC to Program Itself!

A$ Program line being examined.

B$ Portion of program line.

C Position of “TAB(T)” in program line.

Cc1 Position of quote In program line.

D Half the ditference between prompt length and display line length.

D$ Amount to tab, added to program line.
F$ File to be processed.
F2%$ Output file. ’

S Length of dispiay line, either 64 or 80.

Fig. 4-3. Variables used by Tabber,

no TAB(T)'s in the first place, control drops down end-of-file has been reach
to lines 430-440, where A$ is printed to disk and

screen. A check is made in line 420 to see if the from disk. Otherwise,

ed. If not, the program
loops back to line 330 to load another program line

the processing is finished,

Listing 4: The Tabber Program
‘ 10 ¢ ********************

20 ' % *
30 * x Tabber *
40 ' %) *
SO ' RARARARARARARARAAR AR

55" *x% Injtialize *#4

60 KEY OFp

* 70 SCREEN 0,0,0

90 ON KEY(10) GOsuB 550

100 KEY(10) ON

110 CLS:PRINT: PRINT

120 LocaTE 25,30

130 COLOR 16,7 : ’
140 PRINT® Hit F10 to abort, ",
150 COLOR 7.0 ‘ '
160 LOCATE 4,21

170 PRINT "IS PROGRAM FOR 4 | :
180 PRINT OR 80 COLUMN SCREEN?"

190 PRINT TAB(33)"1.) 40 COLUMN®

200 PRINT TAB(33)"2.) 80 COLUMN"®

210 PRINT:PRINT TAB(33)"ENTER CEOICE :"
220 A$=INKEY$:IP AS$="" GOTO 220
230 A=VAL(a$) P ‘

22

240
250

255

260
270
280
290
300
310
320

325
330

IF A<l OR A>2 GOTO 220
IF A=1 THEN S=40 ELSE S=80

1 #%* Enter Name of File to Process **%

¢:PRINT:PRINT .
gg?ng TAB(20)"ENTER PROGRAM WITH TABS TO BE CENTERED:"
INE INPUT F$)
gRINT TAB(26)"ENTER NAME OF OUTPUT FILE :"
LINE INPUT F2$
OPEN "I",1,F$
OPEN "O",2,F2$

' %*% J,0ad a Line ***

LINE INPUT #1,A$

C=INSTR(AS$,"TAB(T)")

IF C=0 GOTO 430

Cl1=INSTR(C,A$,CHR$(34))+1
=MID$(A$,Cl)

gZ=LEFg$(Bé,INSTR(B$,CHR$(34))-1)

D=INT((S-LEN(B$);{2)

D$=MIDS$ (STRS$ (D),

Ag=LEFT$(A$,C+3)+D$+MID$(A$,C+5)

GOTO 340

' *%% print to Disk ***

PRINT #2,A$

PRINT A$

IF EOF(1) GOTO 470

GOTO 330

CLOSE

CLS:PRINT:PRINT

PRINT TAB(35)"FINISHED."

' kkk Again? kA%

PRINT:PRINT

PRINT TAB(29)"Process another file?"
PRINT TAB(37)"(Y/N)"

A$=INKEYS$:IF AS$="" GOTO 530

IF A$="Y" OR A$="y" THEN RUN

CLOSE

CLS

END

Tabber

Chapter 5 o

’

E‘:'zo KEY OFF

"—30 COLOR 2,0

-—-40 LOCATE 10.5

-—-50 DET SEG=0

Screen Editor

The next three programs in the book, Screen
Editor, DB Starter, and Proofer, make up a trilogy
of sorts, called Automatic Programmer. The three
in the Automatic Programmer series are related
programs that might be thought of as integrated,
but aren’t. No data files are transferable from one
to the other.

Output, however, from one of three can be pro-
cessed or combined with output from the others
quite easily.

' These are an attempt to present some profes-
sional programming concepts, showing how error
traps, help screens, instructional files, and so forth
Can enable programs to be self-documenting and

. usable even by the neophyte.

* All three make use of a fourth program,
Autoprogrammer Documentation, which serves as
a help file and introduction to all three. It also is
a menu of sorts that can be used to load and run
one of the other programs.

THE PURPQSE OF SCREEN EDITOR
The first of the Automatic Programmer series

is Screen Editor, which you will find to be one of
the most useful programs in this book. I relied on .
it heavily to write instructional screens for many -
of the other programs here and even for itself. With :
a few minor changes, the program is compatible -
with the Microsoft Basic Compiler. A much faster .
running compiled version was used, cutting pro-
gramming time down from a minute or two to a few ;
seconds. :
Have you ever wished that you could desxgn '
your program menus, instruction screens, and other
CRT displays with a word processor or some
similar program—and then tell your IBM PC
something like the following:

“Hey, I want my screen output to look like this.
Please write a few lines of code for me that will re-
produce this in my program.” ‘

Screen Editor will do exactly that for you Use
it as a screen-oriented text editor to lay out your
display exactly as you want it to appear. Unlike an -
ordinary text editor, however, you can also use
graphics! That is, you can take advantage of any
of the ASCII special characters defined in the IBM

BN v -a

characters, musical notes, and foreign alphabets.
The program will then write a suitable
subroutine, such as the one shown in Fig. 5-1, that
can be MERGEA with an existing program to pro-
duce the desired display.
. Ordinary, line-oriented program input and
editing is somewhat tedious when neat, nicely for-
matted screen layout is desired. It’s necessary to

S T aE T enAese

use a copy of the IBM PC screen map,and do a°

great deal of laborious notation on LOCATE posi-
tions. Even less complicated layouts require
calculating TAB positions and other time-
?onsunﬁng tasks. Consider the work that would be
involved in Programming a display to provide the
following menu:

ISt i L 1 T 1 TYTIN |

— Menu —

1.) Load disk file '
2.) Save disk file .
3.) Create file N
4.) Access database '
5.) Update database ’

.'.'....ll.

—> Enter choice :

".t't't.."t....'.'t.'..t'.t..'..'i."

With Screen Editor, simply use the arrow keys
to move the cursor around on the full screen. Press

20 cLs

40 PRINT TAB(13)n+

110 PRINT TAB(13)n+

130 PRINT
140 PRINT
150 PRINT

170 PRINT

180 PRINT

/190 PRINT

1200 PRINT

210 PRINT

220 PRINT

230 PRINT S

240 AS=INKEY$:IF Ag=" gomo 240

30 PRINT TAB(13) "**************i********************n

20 PRINT TAB(13)n* ke
60 PRINT Tag(13)n# n
70 PRINT TaB(13)ns SCREEN EDITOR *n
PRINT TAB(13)"* xn
90 PRINT TAB(13)n# FOR IsM PC xn
100 PRINT TAB(13)n% n
*n

120 PRINT TAB(13) "******n***********u*****u******

TaB(20) »
160 DRINT) "THIS IS A SCREEN PREPARED BY- SCREEN EDITOR"

*n
xn

Fig. 5-1. An example of a Program produced by Screen Editor,

26:

character keys to place alphanumerics where
desired. The layout can be quickly done by eye.
Then, press the Enter key, specify what line
numbers are desired for this subroutine, and col-
lect the finished program module from your disk
a few minutes later, There, stored in ASCII form
(ready for merging) will be program lines that re-
produce what you designed on the screen. Instead
of spending 15 or 20 minutes of coding, RUNing
the program to check the appearance of the out-
put, making changes, and so forth, you have three
to five minutes of typing with a word processor-like

tool.

HOW SCREEN EDITOR WORKS

This trick is accomplished by using the
SCREEN function to check each position on the
screen, noting what character (if any) has been
placed there by the user, and then assigning each
screen line to a separate element of a string array,
L$(n). (See Fig. 5-2 for a list of the variables used
in Screen Editor.) Then, each of the elements in
L$(n) are used to assemble an appropriate program
line, which PRINTS the entire line to the user’s
screen. If, say, line 1 consists of 10 spaces, 60

be PRINTed in the resulting program. No calcula-
tions need to be made.

Screen Editor, in other words, reproduces your
screen arrangement, spaces and all. It may not be
the most memory efficient way of invoking a
desired screen within your program, but for disk
users with at least 64K of memory available, the
waste will be negligible in comparison to the pro-
gramming time saved.

Actually, a nifty technique is used to eliminate
the leading and trailing spaces. As the program
looks at each video line in turn, it sets a BFLAG
when it encounters the first nonspace character,
and an EFLAG when it encounters the LAST
nonspace character on the line.

In assembling the finished program lines, it
constructs a PRINT TAB statement that tabs to
the position of the first nonspace. The following
characters, spaces and all, are reproduced until the
last nonspace, when a closing quote is added. Thus,
a line like: :
Hello!

Would not be turned into a program line like
this:

asterisks, and 10 more spaces, that entire linewill 10 PRINT" Hellol
A% Character input from keyboard, through INKEYS. .
C Cursor character.
Cu Counter.
EFLAG End of character line flag.
F$ File name of output file.
(o Increment to increase line number by.
LS End of line character.
LN$(n) Stores finished program lines.
LNS Program line currently being built.
N Loop counter.
~ N1-N9 Loop counters.

PR$ Program line being built.

Fig. §-2. Variables used in Screen Editor.

Program Your IBM PC to Program Itselfl
Instead, the line would read:

10 PRINT TAB(10)"Hello!"

The program is divided into several sections.
After going through some preliminary routines, it
asks for a file name for the output file. An input
routine used in several other programs in this book
is accessed here. It starts at line 590.

The program puts the name you enter into
variable F$. Then, a FOR-NEXT loop from 1 TO
LEN(F?$) looks at each character in the file name
in turn. The ASC value of the character is
calculated, and if it is greater than 96 and less than
123 (meaning it is a lowercase character), a conver-

. sion is made to uppercase. This is accomplished
simply by subtracting 32 from the ASCII code for
the character. That is, CHR$(97) (“‘a’’) becomes
CHR$(65) (“A”).

BASICA, of course, accepts a mixture of upper
and lowercase in file names; however, I introduced
this programming trick here because it will be used
frequently later in the book, and converting the file
name enables us to simplify some checking done
later on.

For example, in line 640 the program looks to
see if the first four characters of the file name are
HELP or if the whole file name is H. This triggers
a help routine. If the input had not been converted
to uppercase, the program would have had to check
for help, Help, hElp, helP and other combinations.

The routine looks to see if the file name is
longer than 12 characters (eight characters plus a
.BAS extension), and whether or not .BAS has been
added. If it hasn’t been, or if the file name is null,

the name is rejected and the user asked to enter
a new one. This routine will not catch ALL illegal
file names, but it should keep the program from
crashing because of the most common errors.
Next the program allows the user to input the
screen design. An INKEY$ keyboard strobing loop

- subroutine looks for input (line 240). If F1 has been

pressed, control drops down to the screen view-
ing/program assembly section. Otherwise, Screen

28

Editor looks at the character input to see if it wag
Escape (CHR$(27)).

ESC is used as a foggle to turn graphics output
on and off. A toggle is like an on/off pushbutton,
If a feature is off when toggled, it is turned on. If
it is on, then the toggle turns it off. Pressing ESC
sets certain flags used by Screen Editor. If graphics

-mode was off, it is turned on by setting FLAG to
1 in line 1040.

The characters you press on the keyboard are
printed to the screen. If FLAG=0, meaning
graphics are off, the character, CU, will be the same
as the key pressed. If graphics are switched on, CU
will equal CU+128 (line 1070), and one of the
characters from the second half of the IBM
character set will be used. You should jot down
which characters are produced by which keys when
in graphics mode in order to use them in your own
screen designs.

Screen Editor also checks to see if you press
ENTER, CHR$(13). If you do, and the cursor is not
already on line 24, then the cursor drops down to
the beginning of the next line. That is done by
changing the value of ROW and COL used witha
LOCATE statement to print the cursor. In this
case, COL is set to 1 (to move the cursor to the first
column at the far left of the screen) and ROW is
set to ROW + 1, to move the cursor to the next row.

This is not done when ROW = 24, to avoid trying
to move the cursor beyond the bottom of the screen.
(Actually, what would happen would be that the
screen would scroll, spoiling the design.)

Anytime the cursor reaches the middle of the
screen, a BEEP is sounded. In addition, a display
at the bottom of the screen tells you the current
ROW, COL, graphics mode, graphics character, if

. any, and how to finish (with F1) or abort (with

F10).

I've told you everything except how the cur-
sor is moved on the screen. I used an interrupt
routine, activated similarly to the “F10 to abort”
routine used throughout this book. Instead of using
one of the function keys to trigger the event, how-
ever, I used one of the cursor pad arrow keys.

evs have definitions of their own. The
IBI\,;T gésgeisythem as KEY(11) through KEY(14).
So, when an arrow key is pressed, the progran;
br;nches to a routine that char}ges the value tl?
ROW or COL, either plus or minus, to move ;
cursor up, down, or from side to side. You should .
also know that BASIC 2.0 allows you to define any
of the other keys on the keyboard. as KEY(I'?‘)
through KEY(20). You can even sgemfy that ALT,
CTRL, or SHIFT, or some combmathn of these
be pressed. That technique, however, 18 not used
herel.’lease note that you must press the arrow keys
once for each space you want to move. Y9u cannot
hold the key down. If you do, some gra’phlcs blocks
may be printed to the screen, and you 11 have to go
back and erase them. The reason this takes place
has to do with the way the IBM scans the keyboard
and cannot be easily corrected through program-
ming. REPEAT: Do not hold down the arrow key§.
Once the screen design is complete, and F.l is
pressed, the program drops to line 1570. First,
Screen Editor checks to see if a stray cursor
character has been left on the screen and erases it
(line 1580). Then the program starts t.wo nested
FOR-NEXT loops, the outer one covering e.ach of
the 24 screen lines and the inner one counting off
each column across the screen. As the values for

Screen Editor

the loop counters change, SCREEN looks at each
screen position and then paints it white. If the.
character is a nonspace, it is loaded into variable
PRS$, and used to construct the program line cor-
responding to that screen line. As mentioned,
BFLAG and EFLAG mark the positions of the first
and last nonspace characters. These variables are
used to determine the initial TAB position of the
line, and the place where the final quotation rflark
goesActual program lines are written similarly to
those in previous programs in this book. The pro-
gram written is ended with an A$=1NKE}($:IF
A$=*" GOTO loop to keep your screen image
displayed until you press a ke}t.

Once Screen Editor has written a program to
reproduce your screen design, you may MERGE
it and edit it to suit yourself. Most of ‘the screen
designs in this book were written with Scrfeen
Editor, although in many cases they were edxtgd
to produce flashing characters and other special
feahiriise all the programs in the Automatic Pro-

er series, Screen Editor has many ferror
traps built in. Entering Help or H tf’ the mppt
prompts will call up the help file or dlsplas.r a tip.
More complex error traps will be discussed in later

chapters.

Listing 5: The Screen Editor Program

65 * xx* Initialize ***

70 DEFINT A-Y

80 ROW=1:COL=1

90 WHITE=177

100 ON ERROR GOTO 2000
110 DIM LN$(400)

120 KEY OFF

10 ° * *
20 ! .

30 ! * Screen Editor *
40 ! * *
50 ¢ **************************
60 !

29

Program Your IBM PC to Program Itself! N

30

130 SCREEN 0,0,0

140 COLOR 7,0

150 ON KEY(l) GOSUB 1560
160 ON KEY(10) GOSUB 2340
170 ON KEY(11l) GOSUB 1500
180 ON KEY(12) GOSUB 1400
190 ON KEY(13) GOSUB 1350
200 ON KEY(14) GOSUB 1450
210 KEY(10) ON

220 WIDE=80

230 GOTO 260

240 AS$=INKEY$:IF AS="" GOTO 240
250 RETURN

260 SP$=CHR$(32)

270 LA$=STRINGS$(64,"*")

275 ' *** Instructions? *#*

280 CLS

290 GOSUB 400

300 GOTO 310

310 PRINT:PRINT
320 PRINT TAB(20)"
330 PRINT

340 PRINT TAB(16)"You may also type 'H' or 'HELpP' to most input
prompts." '

350 GOSUB 240

360 IF A$="N" OR A$="p" THEN CLS: GOTO 550

370 IF A$="H" OR AS="h" THEN RUN"AUTOPROG.BAS"™

ggg éESA$='Y" OR A$="y" THEN RUN"AUTOPROG.BAS" ELSE 350

400 PRINT TAB(8)"**akkkknn
*******************"

410 PRINT TAB(8)"*

*"’

420 PRINT TAB(B::? Automatic Programmer

430 PRINT TAB(8)"*
. Screen Editor

440 .
PRINT TAB(SI:f By: David D. Busch

450 PRINT TAB(8)"*

== Do you want general instructions ? --"

2;0 PRINT *"
0 PRINT TAB(8)STRING nan

480 RETURN 7(64,mam)

490 CLS

Screen Editor
500 CLOSE
10 CU=1
220 ¢ FOR N8=1 TO 100
530 ¢ LNS(N8)=""
540 ¢ NEXT N8 :

550 LN=10:IC=10
560 PRINT:PRINT:PRINT
570 GOSUB 590
580 GOTO 710
585 ' *** Enter filename of screen ***
590 LINE INPUT"ENTER FILE NAME ¢ ";F$
600 FOR N=1 TO LEN(Fi;)
10 T=ASC(MIDS(FS$,N
830 15 555 AND 1133 THEN MIDS (F$,N,1)=CHR$ (T-32)
630 NEXT N
IF LEFTS$(F$, 4)="HELP" OR F$="H" THEN GOSUB 2130
ggg IF LEN(F$)>i2 THEN PRINT"File name too longl”.PRINT GOTO 590
660 S9=INSTR(FS$," .BAS") |
670 IF LEN(LEFTé(Fs S9))>8 THEN PRINT"File name too v'
long " :PRINT:GOTO 590 -
680 Ig 39 =0 THEN PRINT "MUST INCLUDE .BAS EXTENSION!' GOTO §9Q
690 IF F$="" GOTO 590

700 RETURN
710 IF F$="" THEN F$="TEST.BAS"™ :PRINT:PRINT

*Using default filename TEST.BAS"
715 ' *** Ingtructions **#

720 CLS

;ig ggigg gﬁ;?fl)n*******************t Screen Editor

RAARRRRRAAARKRARAARARAAN

750 PRINT TAB(11)"*
® N,

760 PRINT TAé(ll)'* Use the cursor pad arrow keys to move

a d screen. * ";
770 PRINT TAB(11)"* Press alphanumeric keys to type aisplay.
You ma * ®
780 PRINT TAB(11)"+ hit ESC, followed by a key to enter
raphics mode. * "
790 gRIST TABTll)'* In graphics, press any key °ther than arrow
keys to * mw;
800 PRINT TAB(1l1l)"*

leave a trail of that graphics character.
Use arrow * "; .-

31

R L E———

Program Your IBM PC to Program Itself!

810 PRINT TAB(1l1)"#

mode by * ",

820 PRINT TAB(11)"*

or to * v,

830 PRINT TAB(11)"=*
% =

key to move without trail. Exit graphijcg

hitting ESC once again to return to text,

change to a different graphics character,
?
840 PRINT TAB(1l)"=*
ik =

850 PRINT TAB(11)"+ Computer will BEEP when cursor reaches
center of the * =,

860 PRINT TAB(11)"x*
do NOT * n
870 PRINT TAB(11)"*
be left =« ".
880 PRINT TAB(11)"*
only! ko,
890 PRINT TAB(1]l)"*
* 0,

Screen. Hit arrow keys once for each move;

hold arrow key down, or graphics block will

behind. ONE key depression for each move

’ : ' '
900 PRINT TAB(ll)'******t********************************
****************** n,

910 PRINT TAB(26)"-- HIT ANY KEY TO BEGIN —- =
920 GOSUB 240

925 ' *** Look for keyboard input *%=

940 KEY(1) ON

950 cLs

960 GOSUB 240

970 A$=INKEYS:IF A$="" GOTO 970

980 IF A$<>CHR$(8) THEN GOTO 1030
990 COL=COL-1:I1F COL<1 THEN COL=1
1000 LSCSTE ROW,COL: PRINT CHR$(32);

1020 GOTO 1080

1030 1P A$=CHR$(27) anp FLAG2>0 THEN FLAG2=0:GOT6 1090
1040 IF A$=CHR$(27) THEN.FLAG=1:GOTO'970 E

1050 1F A$=CHR$(13) AND ROW<24 THEN LOCATE ROwW OL:PRINT
CHR$(32)=ROW=ROW+1:COL=1 R ' .(C
- 1060 CU=ASC(a$)

1070 IF FLAG=1 THEN CU=CU+128: FLAG=(=
1080 IF COL=WIDE/2 Thgy BEEP 0:FLAG2 cq
1090 rocate 25,1 '

1100 COLOR 0,7

1110 PRINT "Columng "

1120 COLOR 7,0

1130 PRINT cOL;

930 KEY(11) ON:KEY(12) ON:KEY(13) ON:KEY(14) ON

Screen Editor

40 LOCATE 25,15
iiSO COLOR 0,7 .
1160 PRINT "Row : "
1170 COLOR 7,0
1180 PRINT ROW;
1190 LOCATE023,25

OLOR 0,

iggg SRINT“ Graphics : “;

iggg §3L2§A§3;2 THEN PRINT " ON "; ELSE COLOR 7,0:PRINT

" OFF"+SPACES$(18);
i%gg gnggAgégl THEN COLOR 0'7=§?§2§G;$h?éggggr7:;
: ATE 25,58:PRINT CHR H R ,.
1260 LOCATE 25.64.COLOR 16,7:PRINT"FL 10 PROCESSH s
OCATE ROW, COL
i B s T TR ety 1
1298 ig ggegzng CU<>13 THEN PRINT CHRS$(CU); :COL=COL+1l
1310 IF CUZ0 OR CU=13 THEN PRINT CHRS(43);
1320 CU=0
1330 GOTO 970

; :COLOR
:COLOR 7,0

1335 ' *%% Move Cursbr'***

1350 LOCATE ROW,COL:PRINT CHR$(32);
1360 COL=COL+1 o
1370 IF COLO>WIDE-1 THEN COL=WIDE-1
1380 veLaGsl -
1390 RETUR

1400 LOCATE ROW,COL:PRINT CHR$(32);
1410 COL=COL-1

1420 IF COL<1 THEN COL=1

1430 veLaG=l

1440 RETURN . .
1450 LOCATE ROW,COL:PRINT CHR$(32);
1460 VFLAG=1 . R
1470 ROW=ROW+

1480 IF ROW>24 THEN ROW=24

1490 RETURN 1080 .
1500 LOCATE ROW,COL:PRINT CHRS(32);
1510 VFLAG=1 |

1520 ROW=ROW-1

1530 IF ROW<1 THEN ROW=1

1520 RETURN 1080

1550 GOTO 960

33

36

Program Your IBM PC to Program Itself!

2310 PRINT TAB(29)"(Y/N)"

2320 A$=INKEY$:IF A$="" GOTO 2320

2330 IF aAg="y~

2340 CrLosm:pnp % 2¥='Y" THEN RUN ELSE CLS

Chapter 6

=20 XEY OFF

=30 COLOR 2,0
E=40 LOCATE 10,5
E= 50 DEF SEG=0

‘DataBase Starter

For the microcomputer user, the self-programming
computer is still some time in the distant future.
Oris it? There are three things that computers have
aknack for, processing data, controlling functions,
and constructing designs from smaller building
blocks. The first two are simple enough. Ask a com-
puter to add 367 to 598, and it will happily com-
ply. Tell it to send a signal to port X whenever it
receives input from port Y, and a computer will
gladly control your carburetor, monitor your house,
or keep your Boeing 767 on course. When a human
18 available to provide a list of criteria and pa-
rgn_xeters, a computer is entirely capable of com-
bining components from an existing library to
assemble or “design’ a complex product.

A computer program is nothing more than a

- design to accomplish a desired task. Once a human

being has determined how to get from point A to
pomt B, it’s entirely practical to have a computer
choose from a library of subroutines to put together
aprogram. The next program in the Automatic Pro-

grammer series is DB Starter, which illustrates the
basic concept.

CREATING PROGRAM :
SKELETONS WITH DB STARTER

This program will ask the user for certain pro-
gram parameters, such as whether or not a menu
is needed, whether or not data will be storedina
string array, the size of the array, and other in-
formation, and then “write” a BASIC program
skeleton that conforms to these parameters.

Figure 6-1 is a sample program that was writ-
ten by DB Starter. The array in line 40 of the ex-
ample was created and DIMensioned according to -
user input requirements, just as the menu was con- .
structed, and subroutines allocated for later work
by the human programmer. Two subroutines re-
lating to disk I/O were actually entirely written by
the program. The finished code was then saved to
disk.

As written, the program will do the following
things: AR)

O Ask the user for begmmng line number and
desired line number increments.

Program Your IBM PC to Program Itself!

30 DATA Name,Address,Phone, 2ip

40 DIM DAS$(20, 30),DTAS(4)

50 NC= 30

60 FOR G=1 TO 4:READ DTA$(G) :NEXT G

70 CLS:PRINT:PRINT" Kikkkkkxkx MENUY AXARkXkkkkn DD
80 PRINT" 1.) Access Data") N
90 PRINT" 2.) Update Data"

100 PRINT" 3.) Start Database"
i%g ggig;‘: 4.) LOAD FILE FROM DISK"
5.) SAVE FILE "
130 PRINT *O DISK
i.gg INPUT"ENTER CHOICE : ":CHS '
CH=VAL(CHS$): IF CH<1 OR CH> 5 GOTO
160 ON CH GOSUB 500 S0
170 GoTo 50 ¢ 1000, 1500, 2000, 2500

khkhkhhh
REM ***xx%x TNgpRp Start Data i,
REM **%k«* JOAD FILE FROM Slgzss*§HE§OUTINE HERE S
INPUT "ENTER FILE NAME $":FS -
OPEN "I",l,FS)
INPUT #1,NF

FOR N=1 TO NF

FOR COL=1 TO NC

INPUT #1,DAS(N,COL)

NEXT COL,N

CLOSE

RETURN

REM **kkaxx SAVE FIL &
INPUT "ENTER FILE NA&ET?"?:E[?K‘ Rkkkk

OPEN "O",1,F$)

PRINT #1,NF
FOR N=1 TO NF
SO§ COL=1 TO NC

RINT #1,DA$(N " -
NEXT COL.N $(N,coL);v~,
CLOSE '

RETURN

REM **k%kax CLEAR SCRE , o :
CLS:PRINT:PRINT:RETURN EN SUBROUTINE kbbb

REM **%kxn INKEY$ INPU
T SUBROUTINE #*#%#»
AS=INKEYS$:IF Ag=nw
A=VAL(AS) - GOTO 2630
RETURN

2620
2630
2640
2650

Fig. 6-1. An éxample of a program produced by DB Starter,

38

[0 Ask if a string array will be used to store
data, and if so, allow the user to specify whether
the array will be one- or two-dimensional. The
clements that should be DIMensioned are also
input.
mp O A menu of reasonable size (i.e., which can
fit on a single screen) may be specified. Each choice
can be described. Program lines to print the menu
tothe screen will be created, along with an “‘enter
choice” prompt.

O Each of the menu choices will be assigned
a subroutine line number—marked with a
REMark—so the programmer can flesh them out
Jater, An ON CH GOSUB.. . . line will be created
sending control to each of the menu subroutines.

O Disk file I/O subroutines that will save or
load data stored in a one- or two-dimensional array
are automatically created.

0O The user can also specify several other

- subroutines, such as CLS:PRINT:PRINT and

A$=INKEY$: IF A$=“" GOTO...

DB Starter will then create the basics of a sim-
ple data base management program that must be
completed by the programmer. It doesn’t complete
the program, but does save a great deal of typing
time. Arguably, there is a much simpler way of ac-
complishing nearly the same thing. Write out an
dl-purpose program containing the most-used
modules and then SAVE that program on a conve-
nient disk. When the time comes to create a new
program, you can simply load the general module,
de}ete lines not needed, renumber, and do other
minor work to tailor it into a skeleton for the new
Project. Or you can use structured programming
techniques with common variable names, routines,
ad 50 on to build a great many program modules
that can be readily transferred from one program
to another, , ‘

WHO NEEDS DB STARTER

Programs that write other programs make the
most sense when developed for the unsophisticated

DataBase Starter

user. That might include someone who is incapable
of taking an all-purpose program and changing the
code to fit a new purpose—a nonprogrammer, or
a beginning programmer. Given a sufficiently
sophisticated version of DB Starter, the user might
be able to answer a series of prompts to inform the
computer just what type of task had to be per-
formed and then receive a finished program that
will do the job.

DB Starter can only do a few things. While
keeping the size of the program down to what will
comfortably fit in this book, I've left the door open
for ambitious programmers to expand its ca-
pabilities and apply the concepts to their own work.

HOW DB STARTER WORKS

Let’s look at how the program works. The
variables used are shown in Fig. 6-2. DB Starter
consists of a series of modules, each designed to
“create” a specific type of BASIC code. The
mechanics are simple. The lines of the target pro-
gram are assembled from the “library”’ of words
and phrases built into DB Starter. As each line of
the target program is completed, it is stored in a
string array, LN$(n). The particular element of
LN$(n) is determined by a counter, CU,

Each time a new target program line is ini-
tiated, control is sent to a subroutine at line 670.
There, the line number of the target (LN) is in-
cremented by IC (LN=LN+IC). IC is defined as
10 in line 490; however, you can change this to
some other value or add an INPUT statement to
permit the user to enter an increment at runtime.
Next CU is increased by one so that the new pro-
gram line will be stored in the next available ele-
ment of LN$(n). Finally, the new line number (LN)
is converted into a string and assigned as the first
part of LN$(CU), along with a pair of spaces.

For example, if LN =100 and IC=10 when con-
trol is sent to line 670 of DB Starter, LN$(CU) will
equal “110 " when it RETURNS. So, each ele-
ment of LN$(n) will begin with a line numbgr,

& 39

Program Your IBM PC to Program Itself]

A$ Character input from keyboard through INKEY$.
CFLAG Check to see end of DATA input.
CH$ User choice input. '
COL$ Number of elements in second dimension of array.
Ccu Counter.
D3$ Data string. : .
D4 Number of data items entered by user.
DI Choice entered by user.
F$ * File name for output file.
IC ‘ Increment for line numbers.
IOFLAG ~ Whether or not user will need IO routines.
LN$(n) Program lines being built.
MENUS$(n) ~ Label for menu choices.
Mi Number of choices to be on menu.
N S Loop counter.
N1-N9 Loop counters.
Nw Loop counter.
P$ Substring of program line. -
P18 Substring of program line.
ROwWS Number of rows in user array.
Y$ ~ Middle part of string.

Fig. 6-2. Variab!es used in DB Starter.

usually larger by IC from the previous element, The

eéxception is when LN has been given a different
value somewhere else in the program.

. First, DB Starter asks the user whether or not

some DATA lines should be written. You can enter

the data elements consecutively, separated by

commas. It is not necessary to enter line numbers
or the word DATA at the beginning of each line.,
F1 is pressed when the DATA is finished. :
) A different INPUT routine is used here, begin;
ning at line 840. We can’t use INPUT, because that
statement won’t accept a comma inan
INPUT is unsuitable in this case, because it will
accept any key, including F1 as an entry, and we
Wwant to use F1 to signal when the DATA are fin-
ished. If LINE INPUT were used, the PC would
pause and wait until the Enter key was pressed

40

entry. LINE

before activating the key-trapping routine.
So we use INKEY$, which will also accept

- commas as input, but which does not delay the trig:

gering of the F1 key-interrupt. Any key pressed is
fldded to the “answer,” D3$, until the Enter key
1s pressed (just like LINE INPUT).

A check is made in line 1040 to make sure that

any given DATA line does not end in a comma. A
counter, D4, keeps track of how many DATA items
have been entered. This is used later, when writing
a READ DATA routine,

_ Next line 1140 asks the user whether ornot a
string array will be used to store data. If so, the

number of dimensions are input into variable DI -

If DI=2, the user is asked to provide the desired
size for each of the two dimensions (ROW and
COL).IfDI=1, only ROW is used. The target pro-

line is created by combining the ling number
(already stored in LN$(n), rememtfer) with DIM,
and the array dimensions, enclosed in pare.nt':heses.
If a two-dimensional array has been spec}fxed, an
additional line is developed that defines yanable NC
(cumber of columns) equal to COL. NC is used later
in the target program to control disk ix;put and
output.)
At this point, the program may create a line
that looks like this:

150 DIM DA$(20,20)

If a menu is needed, DB Starter obligingly
creates a line that labels one. Note that to make a
PRINT statement, it is necessary to combine
PRINT with quotation marks around the material
to be printed. CHR$(34) (quotation marks) is stored
in P1$, and this string variable used whenever
quotation marks are needed in the target program.

The user is asked to input the number of
choices required for the menu. If DI =0 (that is, no
string array was dimensioned), the program as-
sumes that disk file I/O will not be required and
does not offer the choice of taking advantage of the
built-in disk I/O subroutines. Of course, disk files
consisting of nothing but numeric values are possi-

~ ble. But the greater flexibility of storing both string

and numeric data as strings (and then converting
tonumbers with VAL, as needed), makes it simpler
for DB Starter to assume that disk files will be
loaded into and out of a string array only.

If a string array has been specified, the user
isasked if “Save file to disk”” and “Load file from
disk” will be included in the menu. If so, IOFLAG
55ett0 2, The user has told the program how many
choices will be included on the menu. This value
Btransferred to CH, which is used as a parameter
for a FOR-NEXT loop that allows input of the
names of the menu choices.

. Ifthe built-in disk /O routines are desired, two
18 subtracted from CH, so that the user does not
hav? tobother to input these. That is, if five menu
hoices will be used, but two of them will be for

DataBase Starter

disk I/O, the programmer has to enter only the
other three. Then, the menu display lines are
created for all but the disk routines.

Now things begin to get a little tricky. For each
menu choice, the program has to create a
subroutine location for the target program to branch
to. Space has to be allocated for these. Instead of
using LN, and incrementing it by IC, another
variable, NU, is used. NU is incremented by IC*50
for each of the menu subroutines. For example, if

'IC=10, then each of the subroutines will be spaced

500 lines apart from each other. The starting line
numbers for each menu subroutine are stored in an
array NU(n). SRR
Next a string representation of each menu
subroutine starting line number is needed (for an
ON CH GOSUB 500, 1000, 1500, etc. statement).
These are assembled with a comma tacked onto the
end. Next, and INPUT “ENTER CHOICE :”;CH$
line is created for the target program. An error trap
is also built. When the target program is run, if
VAL(CHS$) is less than one or is greater than MI
(the number of menu choices available), the input
is refused. :
All these subroutines in the ON CH GOSUB
. .. line will eventually RETURN, so control is sent
back to the beginning of the menu. Its starting line
number had been stored in IM(1) earlier and is used
to build a control-branching instruction. To aid the
programmer in finishing the skeletal program, a
REM is inserted at each of the menu subroutine
starting line numbers. Remember, it’s not a good
idea to send control to a REM line (these might be
deleted later), so don’t just begin writing tl_le. code
at the next available line number following the
mark. . _) \
" The next portion builds a simple dlSk input
module, which will ask the user for a file name,
open that sequential file, input from th.e file the_
number of items in the file, and then bfagm a.FOR-
NEXT loop from 1 to the number of items in the
file. Within the loop, INPUT #1 lo.ads the data. If
the relevant array is two-dimensional, a nested-
FOR-NEXT loop, from 1 to the number of columns

Program Your IBM PC to Program Itself!

(NC—defined early in the program), is used. Actual
construction of the disk input module is fairly clear-
cut. Its mirror-image twin is the Create Disk Out-
put routine, which performs its function in nearly
the same manner. :

ADDING YOUR OWN SUBROUTINES

Other modules that are frequently needed can
be added to DB Starter’s library as needed. I used
a clear screen and INKEY$ routines as examples,
You are free to add your own favorite subroutines
as you desire. The final portion of the program
saves the finished target Pprogram to disk under any
desired legal name. A noncompressed (ASCII) file

that can be loaded, finished, debugged, and ygeq
as desired is created.

. DB Starter is simple enough to form the bagig
for a much more complex code-generating System.
A big drawback is the need to anticipate just what
capabilities will be needed in the finished program,
If a subroutine isn’t in the program generating
system’s library, or if the parameters are beyond
its capabilities (i.e., a three-dimensional array is re-
quired), the necessary code will have to be built up
from scratch.

It’s still beyond the capability of microcom-
puters to use logic to create. Our silent servants
must wait for instructions from us before doing
anything at all, no matter how simple,

Llstlng 6: The DB Star;er Program

651 Ax Initialize ## _
70 DEFINT A~y .
80 DIM LN$(40Q),Nu(20)
90 KEY OFF ' o
100 KEY 1,%»

110 SCREEN 0,0,0

120 COLOR 7,0

-130 ON REY(1) Gosus 3440

140 ON KEY(10) Gosyg 3460 -
150 'KEY(10) oN

160 ON ERROR GoTO 2810

170 coro 200 - 7. '
180 A$=INKEYS:IF A$="" GOTO 180
190 RETURN -~ = . . 7

200 Cu=1 v C e
210 P1$=CHR$(34) . . L
220 P$=SZ$+'PRINT”+Sl$+P1$+SS$
230 CLS . .
240 GOSUB 330

10 ¢ *jk***t*********************
20 | *
30 "~ * DataBase Starter
501 S ***************************"

'

*

DataBase Starter

250 GOTO 260
255 ' k%% Instructions? *#*%*

"-~ Do you want general instructions ? --':
ggg ggigg ggg&g;"You ma;yr also type 'H' or 'HELP' to most input

prompts.”

280 S a=*N" OR A$="n" THEN CLS: GOTO 490

= ="h" THEN RUN"AUTOPROG.BAS"
ggg ig §§;:§: 8§ 2§="y” THEN RUN"AUTOPROG.BAS"™ ELSE 280

320 CLS
330 LOCATEOZ_;IS

OLOR _
;gg SRINT" l'\utomatic Programmer -
360 COLOR 7,0
370 PRINT
380 RETURN
390 CLS
400 CLOSE - 1
410 CU=1:NU=
420 : FOR N=1 TO 20
430 ¢ NU(N)=0 .
440 ¢ NEXT N
450 NUs=""
460 ¢ FOR N8=1 TO 100
470 LN$(N8)=""
480 ¢+ NEXT N8
490 LN=10:IC=10
500 PRINT:PRINT:PRINT
510 GOSUB 530
520 GOTO 650

DB Starter "

525 ' *%x%x Enter file name of program ***
530 LINE INPUT"ENTER FILE NAME : ";F$
540 FOR N=1 TO LEN(F]$.;) .

= IDS(FS,N : _ -32
ggg gFA’i‘g;rg Alfll() 5‘2153 THEN MID$(F$cN:l)—CI'¥R$(T 32) |
| | " ‘ 2920
ggg ?gszgTS(F$. 4)="HELP" OR F$="H" TﬂgnocgggglnszINT
390 IF LEN(F$)>12 THEN PRINT"File name to

:GOTO 530
600 S9=INSTR(F$,".BAS") , e too
610 IF LEN(LEFT$(F$,S9))>8 THEN PRINT"File na \

longt! " :PRINT:COTO 520

Program Your IBM PC to Program Itself!

630 IF F$="" GOTO 530

640 RETURN

650 IF F$="" THEN F$="TEST"
660 GOTO 710

665 ' *** Increment line number ***
670 LN=LN+IC

680 CU=CU+1

690 LN$(CU)=STR$(LN)+"

700 RETURN :

705 ' **% gtart writing program *#*

710 CLS:PRINT:PRINT

715 ' *%% Data Lineg *+*

730 PRINT
750 GOSUB 180

770 IF A$="N" OR A$="n" GOTO 1130
780 IF A$="y" OR A$="y" GOTO 840
790 GOTO 750

800 Cu=Cu+1

810 GOsuB 670

820 LNS (CU)=LN$(CU)+"DATA *

830 RETURN

840 KEY(1) ON

860 PRINT"Separate with commas.
870 PRINT"of DATA,

linesg,”
880 PRINT "It is
in®

890 PRINT"this forms
900 D3§="n |

910 LOCATE 20,1:PRINT"

finish.":LOCATE 21,1 :PRINT
920 LOCATE 22,5 o

930 PRINT SPACE$(60)
940 LOCATE 22,5

950 PRINT D3§;

960 AS=INKEYS:IF Ag$="® gomo 960
970 IF A$=CHR$(8)'AND,D3$<>W? THEN

720 PRINT"Would you like to build some data lines?"

740 PRINT TAB(18)"Enter Y/N or ";CHR$(34);"H';CHR$(34);"(HELP)"
760 IF A$="H" OR A$="h" THEN GOSUB 3390:

850 PRINT"Enter data elements to be written

C Input no more than two lines"
then hit ENTER ang input another pair of

not necessary to enter the word DATA,
»35,20,Address,Phoné;zip "

Enter "7CHRS (34);"F1"; CHR$ (34) ;" to
"Enter your DATA "

GOTO 710

into program."”

Enter

90 D3$=D3$+A$
gooo PRINT AS;
1010 GOTO 960

+GOTO 910

1070 IF Y$=","
1080 NEXT N7
1090 D4=D4+1
1100 GOSUB 800

array?"
1150 GOSUB 180
1160 IF A$="H"
1170 IF A$="N"
1180 IF A$="Y}"
1190 GOSUB 670

1220 IF A$="H"

1230 DI=VAL(AS)
1240 IF DI<1 OR DI>2 ’(I)‘HEN 1210
1250 IF DI=1 GOTO 135 . .
1260 INPUT"How many elements in the first d;Tan SHEN
1270 IF LEFTS$ (ROWS, 1)="2; OR LEFT$(ROWS, 1)= H o
GOSUB 3140: GOTO 12 \
1280 INPUT"Enter elements in second dlmensi?fnéso;;EN
1290 IF LEFT$(COL$, 1)="h" OR LEFT$(COL$, 1)=
~ GOSUB 3140: GOTO 1280

1300 ROW=VAL(ROW$)
1310 COL=VAL(COLS)
1320 1P ROW<1 THEN ROW=1
1320 IF COL<1 THEN COL=1

0 GOTO 1390 " o E
1350 INPUT"HOwW large should the array be";ROWS

DataBase Starter

=LEFT$(D3$,LEN(D3$)~1):GOTO 920
QNJ?gSAgECH§$(13; THEN PRINT:GOTO 1020

=1 THEN GOTO 1130
1020 Ig gggiﬁanHEN LOCATE 19,1:PRINT"You must enter data or
1030 E-FOR N=1 TO 1000:NEXT N:LOCATE 19,1:PRINT SPACE$(40);

1110 LN$(CU)=LN$(CU)+D3$
1120 IF CFLAG=0 GOTO 900

1125 * *** Build arrays ***

tPRINT:PRINT . .
ﬂig gggNg“Will this program store disk I/0 data in a strin

OR A$="h" THEN GOSUB 3030: GOTO 1130
OR A$="n" THEN 1450
OR A$="y" THEN 1190 ELSE 1150

OR A$="h" THEN GOSUB 3030: GOTO 1200:-

1040 IF RIGHT$(D3$, 1)="," THEN D3$=LEFT$(D3$, LEN(D3S$)-1)
1050 FOR N7=1 TO LEN(D3$)

=MID$ (D3$, N7, 1)
e oot R RhEN Daspa+l

4

.y,
Ck

s]) -
1200 PRINT"Will the array have one or two dimensions?"
1210 GOSUB 180

’

nsion (ROW)";ROW$

i AN

coLs

Program Your IBM PC to Program Itself]

1360 IF LEFT$(ROW$, 1)="H" OR LEFTS$(ROW$, 1)="h" THEN
GOSUB 3140: GOTO 1350 ‘

1370 ROW=VAL(ROWS$)

1380 IF ROW<1 THEN ROW=1

1390 LN$(CU)=LN$(CU)+"DIM DAS(" +STRS (ROW)

1400 IF DI=1 THEN LN$(CU)=LN$(CU)+")": GOTO 1450

1410 LN$(CU)=LN$(CU)+"," +STRS (COL)+")"

1420 GOSUB 670 . '

1430 LN$(CU)=LN$(CU)+"NC=" +STR$ (COL)

1440 IF D4>0 THEN LN$ (CU-1)=LN$(CU-1)+",DTA$(" +STR$(D4)+")"
¢ GOTO 1460 . ' '

1450 IF D4>0 THEN GOSUB 670: LN$(CU)=LN$ (CU)+"DIM DTAS("
+STR$(D4)+")" ‘ ' :

1460 IF D4>0 THEN CU=CU+l: GOSUB 670: LN$(CU)=LNS$(CU)+"FOR G=1
TO "™ +STR$(D4)+":READ DTAS$(G) :NEXT G '

1465 ' *** Byjild Menus kxk

1470 PRINT"Will this program need a menu?"
1480 GOSUB 180 S

1490 IF A$="H" OR AS$="h" GOTO 2980

1500 IF AS$="N" OR AS$="n" THEN 2030

1510 IF as="y" OR A$="y" THEN PRINT A$: GOTO 1520 ELSE‘1480
1520 GOSUB 670 '

1530 LN$(CU)=LN$(CU)+"CLS=PRINT:" +PS+"
XARKXXXXXAN 4D]S+" PRINT® = -

1540 IM(1)=LN

1550 CLS:PRINT:PRINT . o -

1560 INPUT"How many choices on the menu®;CHS

1570 IF LEFT$(CH$, 1)="H" OR LEFTS'CH$, 1)="h" THEN GOSUB 3190
' ¢ GOTO 1550 -

1580 MI=VAL(CHS)

1590 1F MI<2 GOTO 1550

1600 IF DI=0 THEN 1680 :

1610 IF MI=2 THEN CH=MI: GOTO 1710

1620 PRINT"Will the choices inclug
- 'Load file from disk®' 2 »;

1630 GOsuB 180 : LT)

1640 IP A$="H" OR A$="h" THEN GOSUB 3300: GOTO 1620 .

1650 IF A$="Y" OR AS="y" THEN JIOFLAG=2: PRINT A$: GOTO 1680 -

1660 IF A$="n" QR A$="N" THEN PRINT A$: GOTO 1680
1670 GOTO 1630 : '

1680 CH=MI

1690 IF CH=IOFLAG THEN N=1: GOTO 1800
1700 CH=CH-IOFLAG '
1710 : FOR N=1 TO CH

1720

PRINT"Enter label for menu choice #";N:;T -

Akkkkkkkh® MENU

'Save file to disk' and

46

DataBase Starter

INPUT MENUS (N)

1730 4 =" " NUS$ (N)="H" OR MENU$(N)="h"
. IF MENU$(N)="HELP" OR ME
1740 THEN GOSUB 3270: GOTO 1720
0 : NEXT N
160+ FOR NMi~L 1O Cx
izlgg : lc'.;-gs(CU)=LN$(CU)+P$+STR$(NW)+".) " $MENUS (NW)+P1$
1790 ¢ NEXT NW

00 IF IOFLAG=2 THEN GOSUB 670: LN$(CU)=LN$(CU)+P$+STR$(N)+".)
18 » 4nT10AD FILE FROM DISK"™ +P1$: GOSUB 670: :]
LN$ (CU)=LN$(CU)+P$+STRS(N+1)+",) " +"SAVE FILE TO DISK

+P1$ 670

GOSUB
%g%g INS(CU)=LNS$(CU)+"PRINT"
1830 : FOR NwW=l TO MI
1840 NU=NU+IC*50
1850 NU(NW)=NU o
1860 NUS=NUS+STRS(NU)+",
1870 ¢« NEXT NW
1880 NUS=LEFT$(NUS, (LEN(NUS)-1))
1890 GOSUB 670

o &9 @9 o8 o

. "
1900 LN$(CU)=LN$ (CU)+"INPUT" +P1$+"ENTER CHOICE : * +P1$+";CH$

1910 GOSUB 670

n
1920 LN$(CU)=LN$(CU)+"CH=VAL(CH$): IF CH<1 OR CH> " +STR$(MI)+

GOTO" +STRS$(VAL(LNS(CU-1))) :
1930 GOSUB 670
1940 LN$(CU)=LN$(CU)+"ON CH GOSUB" +NUS
1950 GOSUB 670
1960 LN$(CU)=LNS(CU)+"GOTO " +STR$(IM(1))

1970 ¢+ FOR N=1 TO MI-IOFLAG

1980 GOSUB 670

1990 LN=NU(N) . .
2000 : LNS(CU)=STR$(NU(N))+" REM :*::*:*ﬁlfin}'r
o +MENUS (N)+" SUBROUTINE HERE

2010 ¢+ NEXT N v

2020 IF IOFLAG<>2 THEN 2510

2030 GOSUB 670

2040 PRINT

2050 IF MI=0 THEN LN$(CU)=LN$(CU
DISK": GOTO 2080

2060 LN=NU(N)

M DISK
2070 LN$(CU)=STR$ (NU(N))+" REM ****** LOAD FILE FROM

Rhkkkkikn
2080 GOSUB 670 AME :*
2090 LN$(CU)=LN$ (CU)+"INPUT " +P1$+"ENTER FILE N
+P1S+" ; F$"

.);" REM **kkk* LOAD FILE FROM

2100 GOSUB 670

47

Program Your IBM PC to Program Itself!

18

2110 LN$(CU)=LN$(CU)+" OPEN " +P1$+"I" +P1$+",1,Fs$"

2120 GOSUB 670

2130 LN$(CU)=LN$(CU)+" INPUT #1,NF"

2140 GOSUB 670

2150 LN$(CU)=LN$(CU)+"FOR N=1 TO NF"

2160 GOSUB 670

2170 IF DI=2 THEN LN$(CU)=LN$(CU)+"FOR COL=1 TO NC": GOSUB §7¢

2180 LN$(CU)=LN$(CU)+"INPUT #1,DAS$(N"

2190 IF DI=2 THEN LN$ (CU)=LN$(CU)+",COL)" ELSE
LN$(CU)=LNS$(CU)+")"

2200 GOSUB 670

2210 LN$(CU)=LN$(CU)+"NEXT"

2220 IF DI=2 THEN LN$(CU)=LN$(CU)+" COL,N"

2230 GOSUB 670

2240 LN$(CU)=LN$(CU)+"CLOSE"

2250 GOSUB 670

2260 LNS$(CU)=LN$ (CU)+"RETURN"

2270 GOSUB 670

2280 IF MI=0 THEN LN$ (CU)=LN$(CU) +"
DISK ***xk%xw: GOTQ 2310

2290 LN=NU(N+1)

2300 LNS$(CU)=STR$ (NU(N+1))+"
kkkkkkn

2310 GOSUB 670 s '

2320 LN$ (CU)=LN$(CU)+"INPUT * +P1$+"ENTER FILE NAME :"
+P1S$+";Fs" :

2330 GOSUB 670

2340 LN$(CU)=LN$(CU)+" OPEN " +p1§+"0" +P1$4",1,F$"
2350 GOSUB 670 | | o :

2360 LN$ (CU)=LN$ (CU) +" PRINT #1,NF"
2370 GOSUB 670

2380 LN$ (CU)=LN$ (CU) +"FOR N=1 TO NF"
2390 GOSUB 670 -

2400 IF pI=2 THEN‘LN$(CU)=LN$(CU)+"FOR COL=1 TO NC": GOSUB 670
2410 LN$(CU)=LN$(CU)+"PRINT #1,DAS$(N"

2420 IF DI=2 THEN LNS(CU)=LN$(CU)+",COL)" ELSE
LN$ (CU)=LN$ (CU)+")»

2430 LNS(CU)=LN$(CU)+";" 4p1g4n. m 4
2440 Gosus 670 & - @ ¢ PHT4T 4718

2450 LN$ (CU)=LN$ (CU) +"NEXT®

2470 GOSUB. 670 S)=LN3 (CU) COL;N

2480 LN$ (CU)=LNS$ (CU)+"CLOSE"
2490 GOSUB 670

2500 LN$(CU)=LN$ (CU)+"RETURN®

REM ***%%* SAVE FILE TO

REM **%%%% SAVE FILE TO DISK

2505 ' %xx Subroutines 7 #aw -

DataBase Starter

2510 PRINT"Do you want a 'CLEAR SCREEN' subroutine? *;
s ggsgg=}§9 OR A$="h" THEN GOSUB 3360: GOTO 2510
1t IF A$="Y" OR AS$="y" THEN PRINT A$: GOTO 2570
gggIF A$="N" OR A$="n" THEN PRINT A$: GOTO 2610

2560 GOTO 2520

2570 GOSUB 670)

2580 LN$(CU)=LN$(CU)+
****;*%70

gggg ggg?cuwms (CU)+"CLS : PRINT: PRINT : RETURN"

2610 PRINT"Do you want an 'INKEY$-INPUT' subroutine? ";
0

gggg ggsg§=};g" OR AS="h" THEN GOSUB.3360: GOTO 2610

2640 IF AS="N" OR AS$="n" THEN PRINT AS$: GOTO 2750

2650 IF AS$="Y" OR AS$="y" THEN PRINT A$: GOTO 2670

2660 GOTO 2620

2670 GOSUB 670 .

2680 LN$(CU)=LNS$(CU)+
RhkkkkW

B 670

gggg Sgg?CU)=LN$(CU)+"A$=INKEY$:IF A$=" +P1$+P1$+" GOTO "
+STRS$ (LN)

2710 GOSUB 670

2720 LN$(CU)=LN$(CU)+"A=VAL(AS)"

2730 GOSUB 670

2740 LN$(CU)=LNS$ (CU)+"RETURN"

REM #**%*%% INKEY$ INPUT SUBROUTIN

2745 ' *** Write program to disk ***

2750 OPEN"O",1, F$

2760 : FOR N1=1 TO CU
2770 PRINT#1, LNS(N1)
2780 ¢ NEXT N1

2790 CLOSE

2800 RUN

2805 ' **%x Error Trap ***

2810 PRINT:PRINT

2820 PRINT TAB(20)"***** UNKNOWN ERROR
2830 PRINT TAB(25)"IN LINE ";ERL

2840 FOR N9=1 TO 500

2850 NEXT N9

2860 CLS:PRINT:PRINT

2870 RETURN

2880 PRINT

kkkkk®

REM **%%%* CLEAR SCREEN SUBROUTINE

E

49

Program Your IBM PC to Program Itself!

50

2890 PRINT TAB(15)"Hit any key to resume program"
2900 GOSUB 180
2910 RETURN

2915 ' **% Help Routineg **#

2920 GOSUB 2860

the filename you want == it must®
2940 PRINT"be a legal Disk basic name, or your input will be"
2950 PRINT"rejected.”

2960 PRINT
2970 RETURN 530
2980 GOSUB 2860

2990 PRINT"Menus may be designed using a special®

3000 PRINT"module that asks for number of choices, labels, etc,*
3010 GOTO 1470

3020 GOTO 2880
3030 GOSUB 2860
3040 PRINT"Many

string"
3050 PRINT"array which looks like this:
3060

forms of data are conveniently stored in a

checkbook™ DA§(row,col). a
[o]e]

PRINT"represents data that

. € can be stored in a
two-dimensional”

3070 PRINT:array. Each check number represents a row, while
payee
3080 PRINT"amount, balance, etc, represent columns. These
arrays" :
3090 gﬁIET:can be conveniently stored and loaded to and from
sk.
3100 ﬁRINT"gss a one-dimensional array for information which
as only '
3110 PRINT"one 'field' per record. If rows and columns are
3120 involvegn
PRINT"use a tyo dimensional "
3130 GOTO 2880 array
3140 GOSUB 2860
3150

ngNT"Enter how large each dimension of the array should

PRINT"For example,
PRINT"Do not make
memory,"

GOTO 2880

GOSUB 2860

:ﬁ:HT"MOSt programs with multiple functions need a menu SO

3160
3170

3180
3190
3200

might want ap array: DA$(30,30)."
much larger than You need to save

DataBase Starter

3210 PRINT"user may choose. Automatic Programmer will design a

”
32ﬂ)g§§§T"for you and write apprcpriate input and error
ing")
3230 ;;?gg"rgutines. Or, you may design your own menu. You
must”

3240 PRINT"then write your own input routine, or use the INREY$"

3250 PRINT"subroutine provided."

3260 GOTO zgggo

g%gg ggggg'ﬁ:nter the label or prompt for this menu choice :*

3290 GOTO Zgggo

gggg gg?ggnlf you have specified a string array, and need disk
I/0"

3320 PéINT'You should enter Yes.

nes")
3330 ggggé"for you, and reduce number of menu choices you have"

3340 PRINT"to input by two. Menu labels will be created for
you."

3350 GOTO 2880

gggg ggggg'ggggr Yes if you want this subroutine in your
program®

3380 GOTO 2880

gigg ggigg'gggomay build data lines automatically, along with"

i tring array. Just"
PRINT"a routine to read them ;nto as
gigg PRINT"enter the data information when asked"
3430 GOTO 2880
3440 CFLAG=1
3450 KEY(1) OFF: RETURN 1020
3460 CLOSE:END

Program will write these

51

Chapter 7

10 SCREEN 0,0,0 ———————

20 KEY OFF

=40 LOCATE 10,5

$0 COLOR 2.0——————

E=50 DEF SEG=0

'Program Proofer

In the two previous Automatic Programmer ex-
am'ples., I've shown you how to let your computer
write its own screens and assemble program

skeletons. Now, here’s Program Proofer, which

allows an IBM PC to partially debug its own pro-
grams by checking the spelling of keywords and
some syntax errors.

Some program errors caused by misspelled
v{ordg lurk deep within seldom called code. Or-
dinarily, obvious bugs will surface during program
development, because the interpreter will note a
Syntax error when the line is run. The experienced
programmer will try to test a program with all
Possible conditions and parameters in order to give
each s‘ection of code a workout. Program
subro}ltmes should be tested individually and when
Combined with the main program. S
testixl? the real world, however, such thorough
e ctg dxs not alwa.ys done. Errors will not be
P e fox: some time, because the specific con-
e ns that mvgke th.ose program lines are rare. In

.ddwor§t possible situations, these mistakes are
€0 In error traps designed to help the un-

sophisticated user, or they 'may cause the loss of

" valuable data. Program Proofer will check every

line of a program and detect all bad keywords. It
will catch only typos, however. If you used
LPRINT when you meant PRINT, the bug will slip
by unchecked.

HOW PROGRAM PROOFER WORKS

Program Proofer was inspired by the plethora
of spelling checker programs that have become
available in the past few years. These useful soft-
ware tools take any text document and compare
each word against an internal dictionary. Any word
in your text that does not appear in the dictionary
is flagged as a possible spelling error. ‘

This program works on exactly the same prin-
ciple, but with a much smaller dictionary of 172
keywords. These are the reserved words named by
IBM in the BASIC user’s manual. Some are com-
mands or functions that are not implemented, but
all were included to make this program compati-
ble with later releases of DOS and BASIC.

Program Proofer examines every word in a

Program Your IBM PC to Program Itself!

target program. It ignores words inside quotes—
prompts, for example—numbers, and arithmetic
operators. The only letter combinations that are left
are keywords, variables (Fig. 7-1), and misspelled
words. Although it would be possible to tell which
of the remaining words are variables—leaving only

the incorrect keywords—1I decided not to implement

this feature. As written, Program Proofer has the

added capability of providing a variable cross- °

reference listing that includes line numbers,

Not throwing out variables also means that the
operator has the opportunity to look for variables
that may have been spelled wrong, as well. This
is important to IBM PC users. Under some versions
of Microsoft Basic for other computers,
PREVIOUS and PREVIUS would appear as the
same variables, although PREVIOUS and
PEVIOUS would not. With those Microsoft

BASICs, only the first two letters of the variable
name are significant. So, finding such misspellings
is important.

With the IBM PC, however, longer variahle
names are allowed, and so finding errors is even
more important. PREVIOUS and PREVIUS
would, in fact, be different variables and cause an

- error if the difference was unintended,

This program will handle most ASCII format
BASIC programs. Multiple statements per line are
okay. Keywords should have spaces separating
them, and there should be a space after the line
number and before the first word in the line. These
Spaces are required by IBM BASIC, anyway, but
Proofer needs them in order to find other errors,

When asked for the target program name, enter
the file specification of the previously saved ASCII

format program. It will be stored in the variable F§,

A Line of text being proofed.
BAD$(n) Array storing bad words and variables.
-~ Ds Temporarily stores good keyword names,
- D2 ASCII valus of first character in keyword.
F$ File name of program being proofed.
L Length of the program segment being proofed. -
LP Number of left parentheses found.
M$ Middle string of SEGS.
N Loop counter.
N1-N9 Loop counters.
NI o Counter,
NU . - Counter. ’
P ~ Position of space in program line being checked.
PAR$(n) Lines with odd number of parentheses.
PFLAG Send output to printer. ' '
SEG$ Program segment being prodfed.
TEST$ 4, Program segment being tested.
WRD$(nnl) . Array storing good keywords, =
Z3 . " Number of ling printed. “
- ZU Number of lines printed. .

Fig. 7-1. Varlables used In Program Proofer,

54

lete list of the variables used in
gr?);f:r c:er:%ig. 7-1.) Each line in the target pro-
w’ﬂl be examined separately, and all wor.ds
pot included within quotation marks compared with
e internal dictionary. If a match is not foum}, the
questionable word (which may also be a variable)
isstored away for later reference. Thg m.xmber of
parentheses are counted, and any missing ones
nted. Program Proofer will also }ocate absex.lt
quotation marks, and list all the variables use.d in
the program. In all cases, line numbers are proylded
to make tracking down the errant bugs easier.

. Here, briefly, is how Program Proofer works.
The 172 keywords are stored in a string array,
WRD$(26,30). Each of 26 rows in the array corre-
spond to one of the 26 letters of the alphabet. The
30 columns allow for up to 30 keywords beginning
with that letter. For example, ABS is stored in
WRD$(1,1), while AND is placed in WRD$(1,2).

This is accomplished in a FOR-NEXT loop

beginning at line 770. The keyword is read from
adata line, and the first letter examined to deter-
mine its ASCII value. Then 64 is subtracted to ar-
rive at the alphabetic position and the
cwrresponding ROW of WRD$(row,col). CDBL,
which begins with C (ASCII 67), is directed to Row
3(67 minus 64). The column is determined by a
tounter, A, which is incremented every time a new
keyword is READ, and reset to one each time a new
ROW is opened (A2 < > PREVIOUS.)
- As IBM BASIC expands with new features,
statements, and functions, Program Proofer may
beupdated to include these new keywords and com-
mands. Add the word to the proper position in the
DATA lines and change the 172 to the new
tumbers of keywords. If a given letter of the
dphabet now has more than 30 keywords, it will
be 1lllecessary to reDIMension WRD$(row,col) as
well

The target program (F$) is OPENed, and a line
4atime LINE INPUT into variable A$. The first
%ace in the program line is assumed to follow the

¢ tumber, and the rest of the line is stored in

Program Proofer

SEG$. A FOR-NEXT loop from one toL 1 (length
of SEG$) examines each character in the program
line in turn,

When certain delimiters are reached, the pro-
gram assumes that the end of a word or variable
has been located. These delimiters include a space,
quotation mark, comma, semicolon, parentheses,
colon, and arithmetic signs such as plus, minus,
equals, or less than. At this point, control drops to
a subroutine, where that portion of the line,
TESTS, is subjected to a series of tests.

If TEST$=* " (null), or if the value of the first
character is greater than zero (signifying a number),

then the program jumps back and begins looking

at the next section of the program line. This pro-
gram won’t accept a keyword or variable begin-
ning with a number. : :
When “REM?” or its abbreviation *“”* " is en-
countered, the program knows that the rest of the
program line should be ignored. R
Once TESTS$ gets past these checks, it ente

a FOR-NEXT loop from one to 30, which compares

TEST$ with all the elements of WRD$(row,col)
beginning with the same letter of the alphabet as

TESTS$. If a match is found, FLAG is se? to one, -
and control drops to 1210. If no match is found

before the end of the list of keywords begigning
with the appropriate letter is reached, FLAG isset
to zero, and control drops to 1210, where a counter,

NU, is incremented, and the suspect w.ord stored .-
in string array BAD$(n), along with the: line qu;nber
in which it appears. The word itself is positioned -

first, followed by the line number, so that the array
may later be sorted into alphabetical order.

h,
Then, whether or not there was a match,
TESTS$ is nulled, and the rest of the line looked at - -
for additional statements, variables., and keywords. ‘.
Any time a quotation mark is encountered,

SFLAG is set to one, and any additiogal characte{’s
in a line are ignored until the second (“close ql.lote)
is located. Then the following words are considered

and checked normally. Though 10 sp_eciﬁc chﬁ
for missing quotation marks is built in, they wil -

Program Your IBM PC to Program Itself!

stand out like a sore thumb, because in the final
listing, words inside prompts will be listed as bad
words.

A checkis included for absent parentheses,
however. Each right parenthesis encountered in a
program line increments variable RP, while left
parentheses increase the value of LP by one. After
the whole program line has been checked, Program
Proofer compares LP and RP. If they don't match,
the line in which the error appears is stored in a
string array PAR$(n), along with a note as to
whether it is a left or right parenthesis that is miss-
ing. Note: if one statement is missing a left paren-
thesis, while another statement later in that lineis
. missing a right parenthesis, the LP and RP will
match,andthemorwﬂlnotbemught.Thisshodd
occur very rarely, however,

When the end of file (EOF) marker is en-
countered, the user is asked if results should be
directed to a printer as well as to the screen. The
suspect words are then printed out in groups of 16
word/line (each word occupies one line),

A Counter, ZU, keeps track of how many words
are printed or listed. A word/line combination is

displayed only if it does not equal the e :

word/line. So, if a variable or bag word ar;;’
several times in a single line, it i Pointeq oy
once. When ZU can be evenly divideg by 16,

program branches to a “‘paging” subroutise i}

1570.
Once the variables and bad words are fiy

missing parentheses,

POSSIBLE ENHANCEMENTS

A number of enhancements are possible. Ty
program could be extended to check each vari
against the keyword list, using INSTR, tosee ity

have inadvertently included a nonallow

keyword within a variable name,
Checking the spelling of a computer proga

is much easier than proofreading a documet

because the number of legal words is severdy

limited. Once a computer is told what wordsar ;_
allowable in a program, it is a simple mattertolm §
some of the tedious debugging to the maix §
which will benefit most from clear instructin

Listing 7: The Program Proofer Program

65 ' #** Initialize *as

70 DEFINT A-y
gg KRY OFF
ON KEY(10) Gos
100 KEY(10) ON UB 1540
110 0,0,0
- 7.0 .
130 O¥ ERROR GoTO 17

00
140 pImM WRD$(26,30),PAR$(30)

10 v : t*ttt**t***itt*t*t****t****

20 ¢ * *
. [

28 ’ : Program ‘Proofer *

*

gg [}] it*tiittttttttttt*itt*tit**
' -

+BAD$(200)

the program displays all the lines which eony

TO 180
128 gg=INKEY$:IF A$="" GOTO 16
170 RETURN '
180 CLS ‘
190 GOSUB 300
200 GOTO 210

205

NT:PRINT . .
g%g ggiNT TAB(20)"-- Do you want instructions ? --"

230 PRINT
240 PRINT TAB(8)"

250 GOSUB 160

260
270
280
290
300
310
320
330
340
350
360

365

370
380
390
400
410

Program Proofer

¢ **% Instructions ***

Ydu may also type 'H' or 'HELP' to most
input prompts."®

OR A$="n" THEN CLS: GOTO 360
OR A$="h" THEN RUN"AUTOPROG.BAS"
OR A$="y" THEN RUN"AUTOPROG.BAS"™ ELSE 250

IF A$="N"
IF A$="H"
IP AS="Y"
CLS . .
PRINT TAB(T)"Automatic Programmer
PRINT TAB(T)"PROGRAM PROOFER" .
PRINT TAB(T)"By: David D. Busch"®
RETURN

CLS

CLOSE

PRINT:PRINT

' *%* Input filename to be proofed ***

LINE INPUT"ENTER FILE NAME :
FOR N=1 TO Llsi:N(Fi ;)
=ASC(MID$ (F$,N _
IF T>96 AND T<123 THEN MIDS$(F$,N,1)=CHR$(T-32)
NEXT N |
= SUB 1870
T$(F$, 4)="HELP" OR F$="H" THEN GO . .
g igg(gé)iiz THEN PRINT"File name too longl".PRINT.GQTO 370

S9=INSTR(FS$,"™ .BAS") i

IF LEN(LEFTé(F$,S9))>8 THEN PRINT"File name too

long!" :PRINT:GOTO 370 .

IF g;=0 THEN PRINT "MUST INCLUDE .BAS EXTENSION!":GOTO 370
IF F$="" GOTO 370

RESTORE

DATA ABS,AND,ASC,ATN,AUTOpBEEP,BLOAD,BSAVEégnginggLOR
DATA CHAIN,CHDIR,CHR$,CINT,CIRCLE,CLEAR,CSVI éVS ’

DATA COM,COMMON,CONT,COS,CSNG,CSRLIN,CVD&G DéFSTR

DATA 'DATA",DATE$,DEF,DEFDBL,DEFINT,DEFS N'ENVIRONS EOF
DATA DELETE,DIM,DRAW,EDIT,ELSE,END,ENVIRO ’ ’

"iF$

Program Your IBM PC to Program Itself!

stand out like a sore thumb, because in the final
listing, words inside prompts will be listed as bad
words.

A check;is included for absent parentheses,
however. Each right parenthesis encountered in a
program line increments variable RP, while left
parentheses increase the value of LP by one. After
the whole program line has been checked, Program
Proofer compares LP and RP. If they don’t match,
the line in which the error appears is stored in a
string array PAR$(n), along with a note as to
whether it is a left or right parenthesis that is miss-
ing. Note: if one statement is missing a left paren-
thesis, while another statement later in that line is
missing a right parenthesis, the LP and RP will
match, and the error will not be caught. This should
occur very rarely, however. . :

- When the end of file (EOF) marker is en-
countered, the user is asked if results should be
directed to a printer as well as to the screen. The

- suspect words are then printed out in groups of 16
word/line (each word occupies one line).

_ A counter, ZU, keeps track of how many words

 are printed or listed. A word/line combination is

displayed only if it does not equal the previous
word/line. So, if a variable or bad word appears
several times in a single line, it is pointed out just
once. When ZU can be evenly divided by 16, the
program branches to a ““paging” subroutine at line
1570. :

Once the variables and bad words are listed,
the program displays all the lines which contain
missing parentheses.

i

POSQIBLE ENHANCEMENTS

. A number of enhancements are possible, The
program could be extended to check each variable
against the keyword list, using INSTR, to see if you
have inadvertently included a nonallowable
keyword within a variable name. :

Checking the spelling of a computer program
is much easier than proofreading a document,
because the number of legal words is severely
limited. Once a computer is told what words are
allowable in a program, it is a simple matter to leave
some of the tedious debugging to the machine,
which will benefit most from clear instructions.

Llsﬂng 7: The Program Proofér Program

65 'Uwkx Injtialize ks

- 70 DEFINT A-Y
- 80 KEY OFF : :

90 ON KEY(10) GOSUB 1940
100 KEY(10) ON .
120 COLOR 7,0 - i
130 ON ERROR GOTO 1700

-56°

10,\) . ********‘******************* .
20 * ‘ * - - *
Azg_:? - * Program'Proofer._ *
: .] . - . *
50 ‘l)) ***************************
60 1 s ‘

140 DIM WRD$(26,30),PARS (30),BADS (200)

Program Proofer

70 180
izg gg=INKEY$=IF A$="" GOTO 16
170 RETURN | :
180 CLS
190 GOSUB 300
200 GOTO 210

205 ' *** Instructions ***

RINT:PRINT : , |
gg ggigg gAB(ZO)"-- Do you want instructions ? --"
230 PRINT
240 PRINT TAB(8)" .
input prompts.

60
%28 (I;gsgg;'l'.N" OR A$="n" THEN CLS: GOTO 360

="H" ="h" THEN RUN"AUTOPROG.BAS"
%gg g :§="g" 8§ 2§="y" THEN RUN"AUTOPROG.BAS"™ ELSE 250
ggg lc’gim‘ TAB(T)"Automatic Programmer"
310 PRINT TAB(T)"PROGRAM PRQOFER .
320 PRINT TAB(T)"By: David D. Busch‘
330 RETURN
340 CLS
350 CLOSE
360 PRINT:PRINT

Ybu may also type 'H' or 'HELP' to most

365 ' *** Input filename to be proofed *** .
370 LINE INPUT"ENTER FILE NAME : ";F$

380 FOR N=1 TO LgN(Fi ;)

390 T=ASC(MIDS$(F$,N _ _

400 IF T>96 AND T<123 THEN MID$(F$,N,1)=CHR$(T-32)
o NEXT N "H" THEN GOSUB 1870 -
420 IF LEFT$(F$, 4)="HELP" OR F$="H" TH w: PRINT:GOTO 370
430 IF LEN(F$)>12 THEN PRINT"File name tco longl®: _

440 S9=INSTR(F$," .BAS") . |
450 IF LEN(LEFT%(F$,S9))>8 THEN PRINT"File name too |
long!":PRINT:GOTO 370 ", 370
160 IF 39=o THEN PRINT "MUST INCLUDE .BAS EXTENSION!":GOTO
2;0 IF F$="" GOTO 370 |
0 RESTORE CDBL
490 DATA ABS,AND,ASC,ATN,AUTO,BEEP,BLOAD, BgAgﬁégg%gS ,COLOR
500 DATA CHAIN,CHDIR,CHR$,CINTrCIRCLE'CLEéV{) oVI,CVS
510 DATA COM,COMMON,CONT,COS:CSNG'CSRLIN'EFS{IG DEFSTR .
320 DATA "DATA",DATES$,DEF, DEFDBL,DEFINT,D !

RONS, EOF "
330 DATA DELETE,DIM,DRAW,EDIT,ELSE, END,ENVIRON, ENVIRONS,
57

Program Your IBM PC to Program Itself!

540
550
560

570
580
590
600
610
620
630

760
765

770
780
790
800
810
820
830

58

DATA EQV,ERASE,ERDEV,ERDEV$,ERL,ERR,ERROR,EXP,FIELD

DATA FILES,FIX,FN,FOR,FRE,GET,GOSUB,GOTO,HEX$,IF,IMP

DATA INKEY$,INP,INPUT,INPUT#,INPUT$,INSTR,INT,

INTER, IOCTL,KEY

DATA KILL,LEFT$,LEN,LET,LINE,LIST,LLIST,LOAD,LOC,LOCATE
DATA LOF,LOG,LPOS,LPRINT,LSET,MERGE,MID$,MKDIR,MKD$,MKI$
DATA MKS$,MOD,MOTOR,NAME,NEW,NEXT,NOT,OCT$,OFF,ON,OPEN
DATA OPTION,OR,OUT,PAINT,PEEK,PEN,PLAY,PMAP,POINT,POKE
DATA POS,PRESET,PRINT,PRINT#,PSET,PUT,RANDOMIZE,READ,"REM”
DATA RENUM,RESET,RESTORE,RESUME,RETURN,RIGHT$,RMDIR,RND
DATA RSET,RUN,SAVE,SCREEN,SGN,SHEELL,SIN,SOUND,SPACES
DATA SPC(:SQR,STEP,STICK,STOP,STR$,STRIG,STRING$,SWAP
DATA SYSTEM,TAB,TAN,THEN,TIME$,TIMER,TO,TROFF,TRON,USING
DATA USR,VAL,VARPTR,VARPTR$,VIEW,WAIT,WEND,WHILE,WIDTH
DATA WINDOW,WRITE,WRITE#,XOR

CLS:PRINT:PRINT :

PRINT TAB(10)"THIS MODULE WORKS ONLY ON FILES WHICH HAVE"
PRINT TAB(10)"BEEN SAVED IN NON-COMPRESSED (ASCII) FORMAT"
PRINT TAB(10) " Use this syntax: SAVE
';CHR$(34);'filename';CHR$(34)",A" .
PRINT

PRINT TAB(8)"If you see garbage loading, you probably have"
PRigg TAB(8)"forgotten to save your file in ASCII format."
PR

PRINT TAB(12)" ~= A few Seconds please =-- "
! *%* Read GOOD names into array *#»

FOR N=1 TO 172
READ D$
D2=ASC(LEFT$(D$, 1))-64
IF D2<>PREVIOUS THEN PREVIOUS=D2: D=1
WRD$ (D2,D)=D$ -
D=D+1

¢ NEXT N

840 PRINT:PRINT

850 CLS:PRINT:PRINT
860 PRINT TAB(14)"* --
870 PRINT

Reading in Program Lineg —- »

875 ' *** Open Program, Read in Lineg ###
880 OPEN"1I",1, F$

890 IF EOF(1)THEN 1310

900 LINE INPUT#1, aA$ '

910 TEST$="w.

920 PRINT AS$

930 FL=0

940 SFLAG=0

0 SEG$=MID$ (AS$, P+l1)
3;’0 L=LEN(SEG$)+1

g5 ' ##* Check for keyword delimiter ###

: FOR Nl1=1 TO L
gg: M$=MID$ (SEG$, N1, 1)

1000 ¢
1010
1020

1030
1040
1050
1060

1070
1080
1090
1100
1110

1130

Program Proofer

50 p=INSTR(AS, CHR$(32))

IF SFLAG<>1 THEN 1020
IF M$=CHR$(34)THEN 1050 ELSE 1230
IF M$=")" OR M$="+" OR M$="-" OR M$=CHR$(32) OR Mg="="
OR M$="(" OR M$=CHR$(34)O0R M$="," OR M$=":" OR M3="¢"
OR M$=">" OR M$="#" OR M$="/" OR M$="#" OR M$=CHR$(10)
OR M$="" THEN 1050
TESTS$S=TESTS$+M$
GOTO 1230
IF SFLAG=1 THEN SFLAG=0: TEST$="": GOTO 1230
IF M$=CHR$(34)THEN SFLAG=l1:IF MID$(SEGS,
N1-1,1)=CHR$(32)THEN TEST$=""
IF M$="(" THEN LP=LP+l
IF M$=")" THEN RP=RP+1
g $="" THEN 1230
IF TESTS= H
IF TEST$="REM" OR TESTS$="'" THEN 1240
IF VAL(TESTS$)>0 THEN TEST$="": GOTO 1230
A=ASC(LEFT$(TESTS, 1))
IF A<65 OR A>90 THEN TEST$="": GOTO 1230
A=A-64 30 ,
N2=1 TO
Fo?F WRD$(A,N2)="" THEN FLAG=0:N2=30: GOTO 1210 10
IF TEST$=WRD$(A,N2) THEN FLAG=1l: N2=30: GOTQ 12,
NEXT N2 |
FLAG=0 :]
IF FLAG=0 THEN NU=NU+l: BAD$(NU)=TEST$+" : LINE
"+LEFT$ (A$, P)
120 ; TEST$="nm
1230 ¢ NEXT N1
1240 IF RP=LP THEN 1290
1250 NI=NI+1

1120

1140
1150
1160
1170
1180
1190
1200
1210

0 00 00 65 00 S0 90 00 SO 99 ¢ o eo se 0O

1255 ' *#% paren missing ***

1260 PAR$(NI)="LINE " +LEFT$(AS$, P)+" : MI§SING "
1270 IF RPLP THEN P$="LEFT® ELSE P$="RIGHT

1280 PARS (NI)=PAR$ (NI)+P$+" PARENTHESIS"
1290 RP=0;1,p=0 *

Program Your IBM PC to Program Itself!

60

1300
1305

1310
1320
1330
1340
1350
1360

1365

1370
1380
1390
1400
1410
1420
1430
1440
1450

1455

1460
1470
1480
1490
1500

1510

1520
1530
1540

1550

1560
1570
1580
1590
1600
1610
1620
1630
1640
1650

1660

GOTO 890

' #x* Display results ***

CLSsPRINT:PRINT .
PRINT TAB(8)"Do you want output to go to printer?"
GOSUB 160

IF A$="Y" OR A$="y" THEN PFLAG=1

GOSUB 1610

ZU=1

' *%* Show BAD words and Variables *#¥%

~ FOR N4=1 TO NU :
IF ZU MOD 16=0 THEN GOSUB 1570
IF BAD$(N4)=BADS$(N4-1)TIEN 1430
PRINT BADS(N4)
IF PFLAG=1 THEN LPRINT BAD$(N4)
ZU=2U+1 ‘ '

NEXT N4
GOSUB 1570
23=1

¢ 08 8 48 00 o0

' *** Show Missing Parensg **#

FOR 7Z3=1 TO NI
IF Z3 MOD 16=0 THEN GOSUB 1570
PRINT PAR$(2Z3)
IF PFLAG=1 LPRINT PAR$(Z3)
NEXT 23
PRINT ’
FRINT TAB(20)"™ ~- END OF LIST == "
PRINT
PRINT TAB(15)"HIT ANY KEY TO RETURN TO MAIN MENU"
GOSUB 160 : - :
GOTO 340
PRINT '
PRINT TAB(22)"HIT ANY KEY"
GOSUB 160
RETURN

CLS:PRINT:PRINT
PRINT

PRINT |
PRINT TAB(14)"
PRINT

0 S0 08 00 o0

RETURN

Program Proofer

1465 * *** Error Trap ***%

§70 IF ERR<>;3 GOTO 1740
iggg gg?ﬁgRﬁB(ZO)"That file does not existi"
1700 FOR N9=1 TO 500
1710 NEXT N9
20 CLS
%;30 RESUME 840
1740 PRINT:PRINT
1750 PRINT TAB(20Q)"***%* UEKNOWN ERROR
1760 PRINT TAB(25)"IN LINE ";ERL
1770 FOR N9=1 TO 500
1780 NEXT N9
1790 RESUME 340
1800 CLS:PRINT:PRINT
1810 RETURN
1820 PRINT]
1830 PRINT TAB(15)"Hit any key to resume program
1840 GOSUB 160
1850 RETURN
1860 GOSUB 1800

khkkkn

1865 ' *** Help Routine **¥*

1870 CLS:PRINT .

1880 PRINT TAB(8)"Program wants the name of file to be
proofread. Must"® .

1890 PRINT TAB(8)"be a legal Disk basic name, or your input
will be" _

1900 PRINT TAB(8)"rejected.”

1910 PRINT

1920 LINE INPUT"ENTER FILENAME s";F$

1930 RETURN

1940 CLOSE

1950 END

** POSSIBLE MISPELLINGS AND VARIABLES **'

61

Chapter 8

F—20 KEY OFP

E=30 COLOR 2,0

=40 LOCATE 10,5
£= 350 DEF SEG=0

Automatic

Programmer Documentation

Care to coast awhile? Here’s a program you don't
even have to key in. Well, that is not entirely ac-
curate. Automatic Programmer Documentation is
ahelp file for the preceding three modules. It is in-
cluded here to demonstrate how such help pro-
grams can be used to make a complex piece of
§oftware more usable by a beginner. The program
itself actually has no other function than to serve

as an introduction to the Automatic Programmer

series. You have four options in this case.

1. If you have purchased the disk containing
all the programs in this book, the program is in-
cluded on your disk. It will be called as needed by
the three Automatic Programmer programs and
Serves as a menu gateway to them. .

2. Youmay type in the program as presented.
bt 3.. You can type in the working program lines,

ut write the display lines using Screen Editor. It
will prepare the screens for you with less typing
0n your part.

4. Just skip this chapter entirely and do with-

out the help file when running the other three
programs.

Help files are one way of making programs self-
documenting. At the same time, they allow the pro-
grammer to keep the size of the main program
within reasonable limits. In this instance, the
Automatic Programmer programs each have some
help messages built in for use when the program
is running. The help file is used only at the beginn-
ing because loading AUTOPROG.BAS erases any
variable values that had been established by the
calling program. Going from this file back to one
of the other programs initializes the variables once
again. , '
There are several ways around this problem.
One solution is to place needed values into pro-
tected locations in memory, which are not written
over by new programs. You can then PEEK these
values and restore them to the variables. BASIC
also allows CHAINing between programs to ac-
complish the same thing using only BASIC key-

63

Program Your IBM PC to Program Itself!

words. A better choice might be to store each help
screen in the form of a sequential file, READ in that
file, and print the information to the screen. The
variables that the message is read into can be used
over and over with each new message, and so only
a given amount of memory is taken up. This doesn’t
take into account variable “garbage collection,” but
that should be a problem only when help screens
are accessed frequently, and the messages are very
long. ' '
You can see from this that professional-level
programs may have as much programming time
devoted to help messages and error traps as to the
actual program functions themselves. Such pro-
grams are very long (and would be tedious to type

in). Be thankﬁxl that this book keeps the con
to a bare minimum. You can get enough hefpy,
operate the programs successfully—py ,mp
much that you won't be able to type ther inaujsl0

Now, wasn't that easy? When the USE speg
HELP in one of the Automatic Programn
modules, a branch to a line that reys ROy
“AUTOPROG.BAS" will take place. Thi progan
will then be loaded, and display the introductionty
the other programs. At the end, and INKEYS$ oy
will accept one of three menu choices, loadingzng
RUNing one of the three Automatic Programme
modules. That’s all there is to it. Class disni
for recess.

20 ' *
40 *

60 KEY OFF

70 ON KEY(10) GOSUB 1030
80 KEY(10) ON

90 SCREEN 0,0,0

100 COLOR 7,0

110 ON ERROR GOTO 250
120 CLS '

130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280

290 PRINT TAB(8)"Data b
ase
300 PRINT TAB(8)"thisg approgzg

310 PRIN "
320 Palug TAB(8)"useful functions

330

PRINT TAB(31)"By:David D. "
PRINT:PRINT Y P+ Busch

PRINT TAB(8)"This program allows
PRINT TAB(8)"some of the Basic
PRINT TAB(B)'automatically.

PRINT TAB(8)"your own.

GOTO 290
IF ERR=53 GOTO 270 '

PRINT*PLEAS

64

Listing 8: The Automatic Programmer Documentation Program

10 ¥ AR AR RRARRRNRRRARRNRAAARRRRAARR

30! : Auto Programmer Instructions *

50 ¢ ************t******t************t

PRINT TAB(30)"Automatic Programmer®

you to use your computer to write"

Itprigiam lines for many common prograns'
w produce a 'skeleton' coding®

PRINT TAB(8)"structure which you can 'flesh' out with subroutines of'

C Many initial
PRINT TAB(B)'dlmensioning aﬁ array,

PRINT
FRIN TAB(8)"ional screens (like this one), menus, are done for you.'

PRINT® '

INT Unxnognlggxoa IN LINE $"ERL:FOR N=1 TO 500:NEXT N:RESUME 120
PRINT* 1N D ERT DISK CONTAINING PROPER FILES"
ISK DRIVE" :CLS:LOCATE 3,8:RESUME 850
agement programs lend themselves to"
» Automatic Programmer has a number of
that will save you time:"

PRINT ' ‘
TAB(»B)"l.V) ¥You can use it to write instructional screens.’

housekeeping' tasks, such as \
CLEARing memory, writing instruct

340 PRINT
350 PRINT
360 PRINT
370 PRINT
180 PRINT
390 PRINT
400 GOSUB
410 PRINT
420 PRINT
430 PRINT
{40 PRINT
450 PRINT
460 PRINT
470 PRINT
480 PRINT
490 PRINT
500 PRINT
510 PRINT
520 PRINT
530 PRINT
540 PRINT
5§50 PRINT
560 PRINT
570 PRINT
580 GOSUB
590 PRINT
600 PRINT
610 PRINT
620 PRINT
630 PRINT
640 PRINT
650 PRINT
660 PRINT
670 PRINT
680 PRINT
690 PRINT
700 PRINT
710 PRINT
120 PRINT
730 PRINT
140 PRINT
150 PRINT
160 PRINT
170 PRINT
780 PRINT

790 GOSUB 960
800 LOCATE 8,8

810 PRINT
820 PRINT
830 PRINT

840 GosuB 96

850 PRINT
860 PRINT
870 PRINT
880 PRINT
890 PRINT

900A$=INKEY$SIF A$="" GOTO 900

Automatic Programmer Documentation

TAB(8)"Instead of mapping out pages, like this one, and writing”
TAB(8)"program lines to reproduce the text on the screen, you"
TAB(8)"can enter the material exactly as you want it to appear"
TAB(8)"using cursor control and full-screen editing. All alpha®
TAB(8)"numeric characters and symbols may be used. Then, . .pro-*
TAB(8)"gram lines will be written and saved to disk."

960

TAB(8)" After a screen has been created, you may renumber it"
TAB(8)"so that the line numbers do not conflict with an existing™
TAB(8)"program, and MERGE the two. This process may be repeated”
TAB(8)"to create several frames or menus for a business, computer”
TaB(8)"aided instruction, games, or other program,” T

TAB(8)"2.) Automatic Programmer may also be used to create®
TAB(8)"entire program skeletons for you to work with. The"
TAB(8)"'screen' writer module may be used, along with several®
TAB(8)"others. It will write program lines to dimension a"
TAB(8)"string array, build disk I/0 routines to fill an array”
TAB(8)"and dump its contents to a disk file."

TAB(8)" If your program will use DATA lines, you may simply®
TAB(8)"enter the actual data itself. Automatic Programmer will"
TAB(8)"insert line numbers, DATA statements, and write a routine"
TAB(8)"to READ that data into an array for later manipulation.”
960

TAB(8)" You may construct a menu, too. If you choose to*
TAB(8)"build a custom menu, you can make use of the screen®
TAB(8)"writer routine. The computer can also build a menu for"
TAB(8)"you, from your input of the number of choices, labels for"
TAB(8)"those choices, and other data.”

TAB(8)™ When using this feature, the program will write ON...
TAB(8)"GOSUB lines for you, and insert REMARK pointers at those"
TAB(8)"locations so you know where to write each subroutine. *

TAB(8)" The program lines written include error traps and"
TAB(8)"other helpful features that you do not have to program®
TAB(8)"yourself. Although Automatic Programmer will not write"
TAB(8)"a complete program, it will get the basics out of the"”
TAB(8)"way fast, and allow you to use your creativity where it"
TAB(8)"counts the most."

TAB(8)"3,) Automatic Programmer can also be used, to a*"
TAB(8)"limited extent, to proofread the programs you have writ-*
TAB(8)"ten. It will check for misspelled keywords, mismatched"
TAB(8)"parentheses, and some other errors. "

"Please note:"™
TAg(B)'o Program to be proofed must be saved in ASCII form."

TAB(18)"Hit 'R' to repeat instructions.®
TAB(18)" == pPress ==="

TAB(18)"1.) To run Screen Editor"
TAB(18)%"2.) To run DB Starter"
TAB(18)"3.) To run Program Proofer"

65

Program Your IBM PC to Program Itself]

910 IF A$="R" OR A$="r"GO
= TO 120

350 IF A$="1" THEN RUN"SCREEN.BAS"
948 %g 2§=:§: ggEN RUN "DBSTART.BAS"

AS= EN RUN "
950 GoTo 30 UN "PROOFER,.BAS"
960 LOCATE 25,12
970 COLOR 0,7

990 COLOR 7,0
IF INREY$="" GOT
1010 CLS:LOCATE 3,1 . 0 1000
1020 RETURN ;
0 CLS:LOCATE 8
1020 RETURN 8ep o'

980 PRINT "-- |
HIT ANY KEY FOR MORE, F10 TO SKIP INSTRUCTIONS =—-";

Chapter 9

" Global Replacer

% far, you've seen that the key to teaching your
IBM PC to program itself has been to provide it
with a simple set of instructions that it can follow
to|do what you want. Many times, these are almost
trivial, repetitious tasks that the computer can do
much faster than we can. For example, a human
could easily go through a program looking for

REMarks, and deleting them manually. We, how- -

ever, might overlook one or two. And, even with
the IBM PC’s screen editor, moving the cursor
around and pressing DEL or BACKSPACE re-
peatedly is time consuming and a bit boring. With
programs like REM-over, we have been able to
ummand the IBM PC to do this task for us.
f So called global search and replace is another
tture that can automate a time consuming or
mlgxr:;?:n tcask% With this capability you can find
€0 . . .
it something elas :frmg, and if you wish, change
¢ m(i}cl:bal search and replace is a strong feature
W ocomputer word processing programs. All
whicl;ll'omms for_ the IBM PC have this capability,
allows the user to search through a text file

and change all occurrences of one string to another.
If you wrote PRINT and you meant LPRINT, the
change will take just a few seconds. :

MAKING CHANGES WITHOUT
A WORD PROCESSING PROGRAM

What if you want to do the same function not
on a text file, but a program file? Some word pro-
cessing programs will load an ASCII format pro-
gram, allow text manipulation, and then save the
new program, again in ASCII; however, not all WP
software allows this. Many do not let you choose
which instances to replace (they are always global).
That is, you may have the choice of replacing ALL
occurrences, or of searching to each spot and then
manually typing in the replacement string. Some
of us do not have word processing programs inany-
case, either because we don’t use our PCs for word
processing, haven't gotten around to buying a WP
program, or can’t justify the cost of one. :

Here is the solution to your problems. It is an-
other program in the “REM-over” mold. This one,
Global Replacer, demonstrates how one program

Program Your IBM PC to Program Itself!

can be adapted to perform a second function. In
concept, the two are almost identical. The dif-
ference is instead of searching for remarks and then
deleting them, the program looks for ANY string
of the operator’s choice. Then the string is replaced
with a second string.

Unlike some word processing programs, how-
ever, the user is shown each occurrence of the
search string and offered the opportunity to replace
it. You can pick and chose which to replace and
which to leave alone.

The search string is input into S$ in line 230.
(Figure 9-1 shows the variables used in Global
Replacer.) Since LINE INPUT is used, the string
can contain commas and other string delimiters.
The replacement string is entered into RE$, in line
260. Then the input and output files are opened,
and the first program (or text) line loaded into A$,
in line 360. :

The user has been offered the option of
whether or not the program queries before mak-
ing the replacement. A search routine, which is
basically identical to that used in REM-over,
hunts for the string. The difference is that in line

390, where the former program had
R=INSTR(P,A$,“REM"), Global substitutes S$
for REM. If R does not equal zero, then the string
searched for has been successfully located. At that
point, the program line is cut apart into two sec-
tions. L$ stores everything in the line up to the
beginning of the search string. R$ includes the rest
of the line AFTER the search string. Another
string, Y$, which is a series of blanks of the same
length as the replacement string, is constructed.

If the user has specified querying, control goes
to line 460, where an INKEY$ loop awaits
keyboard input. Each time through the loop, L$,
Y$, and R$ are printed on the same line; then there
is a short delay, and L$, RE$, and R$ are printed.
The result is a flashing display with the left and
right portions of the program line remaining on the
screen, while the potential replacement flashes on
and off in its place. A Replace it? prompt asks for
a decision. The program will only replace the string
if a Y is entered. Any other key will leave the pro-
gram line as it was.

Once the string has been replaced, the program
branches back to search the rest of the line, If the

A$ Stores program line being searched.
8% Used In INKEY$ loop.
CH$ Used in INKEY$ loop.
E Length of string being searched for.
F$ File name of program being searched.
F1$ Name of output file.
LS Left portion of program line.
N1 Loop counter.
P Position to begin search.’
"R Position of searched for string.
RE$ Replacement string.
Ss$ String to search for.
Y$ String of spaces as long as string replacing with.

Fig. 8-1. Variables used in Global.

68

.+ is not found, the program line is
ﬁ&ﬁi disk in line 700, and a2 new program

g fetched.
[VANTAGES OF GLOBAL REPLACER

i rful pro-

Replacer is a short but powerful ¢
Glt(;:)aatl willplet you make changes rapidly in a
gf::;program. Should you decide to change the
; sofavariable, substitute one keyword for an-
p for PRINT), or do some

g, LPRINT A
ﬁfgg if prompts and other material within

quiaion marks, it will handle them all. Its chief

Global Replacer

advantage over using a text editor for the same
chore is the ability to examine each line before mak-
ing the change. In addition, those without word pro-
cessing programs can use this utility.

As always, you can abort this program by
pressing F10. Your original file will not be harmed
—nothing is done to it, in any case. GLOBAL, like
most of the other programs in this book, only reads
in the original file and writes an entirely new file
with the changes to disk. The source file is un-
touched, and thus aborting the program has no ef-
fect on it.

Lsting 9: The Global Replacer Program
10 [t***************
[*

%'+ GLOBAL :

i LI
50 ¢ e Y 122222332 3]

551 %% Initialize ***

60 KEY OFF
70 SCREEN 0,0,0

8 ON KEY(10) GOSUB 790

% KEY(10) ON

100 COLOR 7,0

110 CLS:PRINT:PRINT

120 LOCATE 25,30

130 COLOR 16,7

10 PRINT* Hit F10 to abort. “;
150 COLOR 7,0

160 LOCATE 4,20

15 ¥ *x% Enter names of files

180 LINE INPUT F$

200 LINE INPUT F1$

00 CLS:PRINT:PRINT

20 PRINT TAB(26)"Enter string
30 LINE INPUT S$

U0 CLS:PRINT:PRINT

190 PRINT TAB(26)"Enter name of output file

kkk

, .
110 PRINT "Enter name of program to be processed @

to search for "

69

Program Your IBM PC to Program Itself!

N
.

250 PRINT TAB(25)"Enter string to replace with

260 LINE INPUT RES$ '

270 CLS:PRINT:PRINT

280 PRINT TAB(17)"Do you want to choose whether to replace
each?"

290 PRINT TAB(37)"(Y/N)"

300 CHS$S=INKEY$:IF CH$="" GOTO 300

310 IF CH$="Y" OR CH$="y" THEN CH=1

320 CLS :

325 T Open Disk Files ***

330 OPEN "I",1,F$
340 OPEN "O",2,F1$
350 IF EOF(1) GOTO 730

355 ' *** L,oad a line ***

360 LINE INPUT #1,A$
370 IF CH=1 THEN CLS
380 p=1
- 390 R=INSTR(P,AS$,S$)
400 IF R=0 GOTO 700
410 L$=LEFT$(AS,R-1)
420 E=LEN(SS$)
430 R$=MIDS$(AS$,R+E)
440 Y$=STRINGS$(LEN(RES$),32)
450 IF CH=0 THEN GOTO 670

455 ' *** Replace it? *#**

460 B$=INKEYS$

470 LOCATE 3,4

480 PRINT L$;

490 COLOR 0,7

500 PRINT Y$;

510 COLOR 7,0

520 PRINT R$

530 FOR Nl=1 TO 50:NEXT
540 LOCATE 3,4 . .
550 PRINT LS$;

560 COLOR 0,7

570 PRINT RES;

580 COLOR 7,0

590 PRINT R$:

| 600 FOR Nl1=1 TO S0 :NEYT

PRINT "Replace it? (y/N)"
gggIF B$="" GOTO 460
§40 IF B$="Y" OR B$="y" GOTO 670
GN)P=INSTR(P,A$,S$)+LEN(S$)-1
660 Go'ro$39g$+R$
70 A$=L$+R
280P=INSTR(P,A$,RE$)+LEN(RE$)-1

690 GOTO 390
§95 ' *** print to disk *kk

700 PRINT #2,AS

710 IF CH=0 THEN PRINT a$
720 GOTO 350

730 CLOSE

735 ' *** Do it again? khk

PRINT:PRINT
;ég PRINT TAB(29)"Process another file?"
760 PRINT TAB(37)"(Y/N)"
770 A$=INKEY$:IF a$="" GOTO 770
780 IF A$="Y" OR AS="Yy" THEN RUN
790 CLOSE
800 CLS
810 END

Global Replacer

Chapter 10

As-
INPUT$(1)

A RN, RN NS

Key Definer'

A_ long time ago, in a galaxy far, far away,
microcomputers didn’t have function keys. Some
didn’t even have cursor keys! All users had
available were the standard alphanumerics and, if
they were lucky, a control key, an escape key, and
afew otl'lers. This lack of available extra keys led
to some interesting programming solutions. Word-
Star, which could be used on computers without
cursor keys, required strange combinations of
control-key plus another key to move the cursor
around on the screen. Some commands called for
two and three key combinations.

I}ven more interesting, one popular word pro-
cessing program for the Tandy line asked the user
to think of the @ key as a control key. Of course,
that meant that there was no way to print the @
fhamctgr—except that the programmer “‘moved”
;:to Sl_nft-O (shift-zero). Without a CAPS LOCK
key, this same WP program used Shift-@. And so
1t went, -

" One of the nicest features of the latest genera-
on of microcomputers, like the IBM PC and PCir,

is that they include lots of extra keys. In addition
to 10 function keys, there are control keys, in-
cluding ALT, INS, DEL, NUM LOCK, BREAK,
ESC, and others. :

These keys can be used to make programming
easier and programs easier to use. Function keys
are used in two ways. First, you can write the pro-
gram with an ON KEY(n) GOSUB interrupt, so that
when the designated key is pressed, control goes
to the desired subroutine. Or, you may actually
want the key to return a set of characters when it
is pressed. The IBM PC boots up set to return
strings like LIST, LOAD, SAVE, and so forth when
a function key is hit. . ;

You may sniff that, of course, it is a simple mat-

ter to write a program so that hitting a functionkey,

like F1, will take the user toa desired subroutine

in a flash. That has been done repeatedly in this

book. But, you continue, there’s not a lot of use in

having LIST or SCREEN 0,0,0 available to the pro-
er at the touch of a key.

Well, you should know by now that if you dpn’t

73

R P P

i T e e e { ¢ S .

Program Your IBM PC to Program Itself!

like the way your Automatic IBM is treating you—
change it! Key Definer is a short program that will
write an even shorter program that redefines all 10
special function keys for you automatically.

USING KEY DEFINER

There are two ways to use Key Definer. First,
you can run the program from BASIC, and enter
the new key definitions you'd like. When you'’re fin-

“ished, hit F1. As if by magic, Key Definer will be
gone from memory, and your new key definitions
will be implemented. What’s more, there will be
a new disk file that you can run anytime you like
to summon those same key definitions.

That disk file is the second way to use this pro-
gram. It can compile a selection of different func-
tion key settings—as many as you want—that you
can load at your command. Or, you can have those
definitions loaded automatically by means of a
“custom”” DOS command you have created. (Cus-
tom DOS commands will be explained in Chapter
18.) In this mode, you could type BASIC23 from
ggS, and have Key Definition File #23 activated.

» you might want to put this line in

AUTOEXEC.BAT file; your

BASIC KEYDEF.BAS

Every time your PC is booted, it will go to
BASIC with the key definitions in the speciﬁe%i file
name (I used KEYDEF.BAS here) loaded au-
torpatxcally. We'll explore this aspect later. You can
enjoy Key Definer right now!

REASONS FOR '
REDEFINING FUNCTION KEYS

Exactly how and why would you redefine
special fqnction keys of your PC? Those who thFul:l‘:
that special function keys are best applied as a kind
of shorthand to eliminate typing in GOTO or other
p?n‘aseg suffer from a failure of imagination. The
ryce thing ab9ut general-purpose microcomputers
like the IBM is that they can be custom-configured

74

to perform specialized tasks tailored to the exat
needs of the end user. Thanks to the Sophisticatioy
of DOS 2.0 and beyond, patches, special ROM car-
tridges, and utility programs, many features canbe
available on power-up, or, at most, at the pressof
a few keys.

User-programmable special function keys can

- doa great deal more than print out a lengthy BASI;

keyword. Here are some applications you might gt
have thought of.

Program a key so that F1 produces FILES, or
SYSTEM or some other command you use fre
quently. Your function keys can store a string of
up to 15 characters, enabling you to redefine then
to include lines you frequently use in programs,
such as A$=INPUT$(1), or OPEN “0” 1 F§.

User-programmable keys are truly the pro
grammer’s friend. Do you frequently renumber
your programs during writing to make additiona!
room between lines? Program a key to yield
RENUM 10,10 whenever you strike it. Set another
key to PRINT TIMES. Then, hit that function key
to see the correct time anytime you want. Your uses
are limited only by the number of keys available

for programming.

HOW TO REDEFINE FUNCTION KEYS

The correct syntax for redefining the PC’
function keys is as follows:

KEY n,string

For example:

KEY 1,"RENUM 10,10"
KEY 10,"FILES"

You do not need to activate these function kess
with the KEY ON statement. Once defined, they
are instantly ready for your use while programminé
in command mode. You can turn off the displzy o
the key definitions in line 25 by entering KEY OFF,
and turn it back on again with KEY ON. That af

the display. Between times, pressing F1
mﬁl groduce the string defined for that key. To
iy turn it off, you need to define the key as a null

mng: .

KEY l'ﬂn
gy 10,""

Don't confuse the strings produced by press-
g a special function key with the ON KEY(n)
(0SUB feature. That is entirely different. Youcan
ve redefined keys (useful from command mode)
21 ONKEY(n) routines (useful in your programs)
the same time, with different results.

Here is the main difference: when ON KEY(n)
sactivated, statements like LINE INPUT will ig-
wre the function key’s string, but still recognize
that the function key has been pressed. Assume you
bave redefined F1 to equal “RENUM 10,10”. If
you ran the following program line:

10 LINE INPUT AS

ad pressed F1, followed by the Enter key, then
RENUM 10,10 would be printed to the screen, and
B would equal “RENUM 10,10”.

However, add these three lines:

50N REY(1) GOSUB 100:KEY(1l) ON
i sTop

100 PRINT "YOU PRESSED F11"

lflow, when line 10 is run, if you press F1,
wthing will appear on the screen. Neither will
BASIC branch to line 100. Instead, it will wait until
Tupress the Enter key (just in case you want to
filer something into the LINE INPUT) and then
mediately jump to line 100. A$ will not contain

NUM 10,10.” So, our redefined keys do not

iterfere with ON KEY(n). You've also learned,

kowever, hat LINE INPUT won't let you jump im-
nediately to the subroutine you want to interrupt
with. For ﬂ'lat reason, programs using function key
Werupts in this book that require LINE INPUT-

Key Definer

type entries (that is, commas and other delimiters
must be acceptable) use INKEY$ and concat-
enation. '

You now know enough about the IBM’s func-
tion keys to know that Key Definer is a very sim-
ple program. Figure 10-1 shows the variables used.

A string array is set up in line 60 to hold 10 key
definitions, one for each of the 10 special function
keys. Then F1, used to end the input session, is ac-
tivated.

You are asked which key to define. Here I use
the A$ = INKEYS$ technique mentioned, so that F1
can, indeed, interrupt the entry when we are
finished.

The key to be defined, K, will be given your
desired string, D$. Your definition is checked to
make sure that it is 15 characters or less. You can
enter nothing, to cancel out a key completely, if you
wish. v

A counter, CU, keeps track of the number of
keys defined, and the K element of the array D$(n)
is loaded with your chosen string. This process
repeats as many times as you want until Flis
pressed. You may define any or all of the 10 func-
tion keys, redefine some, skip some, or any com-
bination. et

When F1 is pressed, the program branches to
line 520, where a file, KEYDEF.BAS is opened. A
FOR-NEXT loop from 1 to 10 writes your defini-
tions to the disk. If you have not defined a key, a
null definition is written. Note: this will cancel out
any default definitions for those keys. o

Variable C corresponds to the line number. in’
the new short program being created. The first line-
number will always be one. If you have defined 10
keys, then 10 line numbers will be used. :I‘he pro-

K Key to be redefined.
K$ New string to assign to that key. |
N Loop counter. ‘ :

Fig. 10-1. Variables used in Key Definer.

75

Program Your IBM PC to Program Itself!

gram line is built from the line number, C, plus
“KEY” + STR$(N) + “, " + CHR$(34) + D$(N)
+ CHR$(34). This produces a line like:

1 KEY 5,"RENUM 10,10"

The final step is to write one more line, con-
taining the command NEW. Then the new program

just created, KEYDEF.BAS will e run, It 4
redefine your keys and then erase itself from mey
ory when it encounters the NEW command, Tte
program KEYDEF.BAS, however, still resides og
your disk and can be used later if You wish,
RENAME it under some other file name g that
subsequent runs of Key Definer won't write over
the existing file with the new one.

Listing 10: The Key Definer Program

10 ! kRRRERRRARARKAKAR

20 ' # *
30 ' * REY DEFINER *

40 ' * *
50 ' kkkxkkhkkkkkkkkkkk

55 ' *%% Injtialize ***
60 DIM D$(15)
70 REY OFF
- 80 :SCREEN 0,0,0
90 COLOR 7.0
100 ON KEY(1l) GOSUB 520
110 ON KEY(10) GOSUB 680
120 KEY(1) ON '
130 KEY(10) oON
140 CLS :PRINT:PRINT
150 K$="»

170 PRINT
180 PRINT

153 S
200 D$="» :
210 LOCATE 12,5:COLOR 0,7 :PRINT"
¢ -~ COLOR 7,0;PRINT K$ ’
220 A$=INKEYS:IF A$="" GOTO 220
gzg %g 23:5555(13) THEN GOTO 270
OR Ag§>ngn
250 K$=K$+A$; \ 6010 220
260 GOTO 21¢
270 K=VAL(KS$)

0 IF R<1 OR K>10 THEN GOTO 140

76

160 PRINT TAB(26)"Which key to define (1-10)2"

TAB(33)"Hit Fl1 to finish definitions.”
{.90 PRINT TAB(33)"Hit F10 to abort and end program®

195:1 #** Enter key to be defineq *+#

DEFINE KEY # ";:

Key Definer

a85 ! *** Enter definition **#

ATE 12,27:PRINT"Enter definition for key
0 ge?ums(s'i‘ns (K),2):;", then [ENTER]"
100 LOCATE 14,5:PRINT SPACE$(20);
110 A$=INKEY$ s IF AS="" GOTO 310

=CHR$(8) AND D$<>"" THEN
e [I)gzi}SBFgg(g$,LEN(D$)-l):LOCATE 14,5:PRINT SPACES$(20):

LOCATE 14,5:GOTO 360 ELSE IF AS$S=CHR$(8) AND D§$=""

THEN GOTO 360

30 D$=D$+A$
;OIF A$=CHR$ (13) GOTO 420
150 IF LEN(D$)>15 THEN BEEP:LOCATE 25,4:PRINT
SPACE$(70); :COLOR 0,7:LOCATE 25,4:PRINT"ONLY 15 CHARACTERS

= : s 5,4:COLOR
PLEASE!I";:FOR N=1 TO 1000:NEXT N:LOCATE 25,
7,0:PRINT SPACE$(50); :D$="":GOTO 290
360 LOCATE 14,5

370 PRINT D$
380 LOCATE 25,4

390 COLOR 0,7
§00 PRINT * ' LENGTH OF STRING : ";:COLOR 7,0:LOCATE 25,29:PRINT

LEN(D$); :COLOR 0,7:LOCATE 25,40:PRINT" LIMIT 15 ";:

COLCR 7,0
410 GOTO 310
20 CU=CU+1
430 D$=LEFT$ (D$,LEN(D$)~-1)

35 ' #*% Append C/R ? **#*

440 LOCATE 25,4

:50 PRINT"End with carriage retgrzgo

60 AS=INKEY$:IF A$="" THEN GOT

410 IF A$="Y" OR A$="y" THEN GOTO 480 ELSE M$="":GOTO 500

480 IF LEN(D$)=15 THEN BEEP:LOCATE 25,4:PRINT
SPACE$(55) ; sLOCATE 25,4:PRINT"Sorry, too long for C/R.
Re-enter."; :FOR N=1 TO 1000:NEXT N:LOCATE 25,4:PRINT
SPACE$(40); :D$="":GOTO 290

490 M$=CHR$(13)

300 D$(K)=D$+M$

510 GOTO 140 -

(Y/N)";

A5 ! *%*% Write file to disk ***

520 OPEN "O",1,"KEYDEF.BAS"
330 C=C+1

40 1$=STR$ (C) 4" KEY ON®
0 PRINT §1,L$

Program Your IBM PC to Program Itself!

560 FOR N=1 TO 10
570 IF DS$(N)="" GOTO 630

580 C=C+1

590 M$=""

600 ;g §fggg§:§§(u).1)=cnns(13) THEN

=)":D$ (N)=LEFTS$ (D$ (N) , LEN(DS$ (N

610 L$=STR$(C)+" KEY"+STR " W4CH)1

620 PRINT 3118 $(N)+", +CHR$(34)+D$(N)+CHR$(34)+M
630 NEXT N

240 C=C+l

50 PRINT #1,STRS(C)+"NEW"
660 CLOSE 1 ' =
670 RUN "KEYDEF.BAS".
680 CLOSE:END

78

Chapter 11

=130 COLOR 7,0

—40 LOCATE 10.3

F—350 DEF SEG=0

Lister

firdoopy program listings are a necessary evil
Imduct of programming. You can’'t RUN a
king. If you find one in a magazine, you have to
eit in, spend hours debugging it, and then cross
mﬁngers and hope the typesetters didn’t make
fmlst.ake. (It is for that reason that the programs
n'thxs book were reproduced directly from
mutouts from working, tested programs.)

‘You can't change a hardcopy listing. If you
ide to make a change in a program, it’s
#essary to do that with the actual computer, and
baprintout a whole new listing.

%S OF HARDCOPY LISTINGS

S‘;-OWhY do we ha\{e these hardcopy printouts?

. '°’$thmg, alisting is less costly to repro-
Wlfng de Program on some other medium.
g i tha 0zen and a half programs in this book,
oy fO:';ttY documentation and tutorial ex-
Sl oo than $1 per program. The disks
tontain the text and programs prior to

publication cost a bit more than that. A listing,
which can be duplicated for a few cents a page, is
an economical way of distributing a program ina
form that the user can eventually transport to his
or her microcomputer. '

Listings are a fairly universal medium of ex-
change, as well. You can type some of these pro-
grams into nonIBM computers using similar
BASICs, but incompatible disk formats.

For the programmer, a listing can be a debug-
ging tool as well. There, laid out in its entirety, is
the full program. It is possible to jump back and
forth between subroutines much faster by using
your eyes than by typing LIST 100-300 at the
keyboard. Also you can view several subroutines
at once, which may be difficult on the screen, if they
are long or in different parts of the program.

As I said, hardcopy listings are a necessary evil.
Our job is to make them slightly less evil, if possi-
ble. The way that you can do this is by formatting
the listings to be a bit more readable, neater, and

easier to understand.

79

Program Your IBM PC to Program Itself!

A% Stores program line being listed.
C$ Used in INKEY$ loop.

COL$ Width of printout.

L$ Name of file to be listed.
LL Lines listed.

N Loop counter.

P Page number.

PG Lines per page.

R$ Middle string of line being listed.

Fig. 11-1. Variables used in Lister.

PRODUCING HARDCOPY
LISTINGS WITHOUT A wp PROGRAM

You can, if you wish, use many word process.
ing programs to format and print out yoyr listings
I present Lister, which will do the job from BASIC‘
for those who do not have word processing'
programs.

Lister combines some of the features of pre
grams introduced previously. Like many, it loads
a program and looks at each line. Then it examiges
the contents and performs some small trick that we
programmers will find of value. In this case, it wil

10 *
*

w
o
- - -

50!
60 CLEAR 4000
70 DEFINT a-2
80 CLS:PRINT:PRINT

100 PRINT
in a "

in Ascir »

character "

in the text, »

Disk File #*»#

Rhkkhhkhhhhhhhhkhkhhhhhk

: Word Counter *

hhhkkhhdhkhhhhshhikskkk

90 PR'I|NT TAB(21l)"Writer's Word Counter

110 PRINT TAB(6)"This program will
count the number of actual words

120 PRINT TAB(2)"text file, or any
‘ file that has been stored to disk

130 PRINT TAB(2)"format,
étf: glso provides the total number

140 PRINT TAB(2)"*standard ! five
character words, and the average

150 PRINT TAB(2)"length of the words

160 PRINT:PRINT TAB(17)"

key to continue ,
170 1F INKEY$="" GoTO 170

- 180 CLS:PRINT:PRINT' ### Access

== w

*

*

In addition,

== Hit any

Fig. 11-2. An example of a listing produced by Lister,

80

listings into neat, paged groups.
mfﬁf ;33:;;1 asksgthe user to enter the name
 the file to be listed on the lineprinter: The
unber of columns wide is entered, alpng with the
gber of lines per page. Then the fll(? is opened
gialine input into AS$. (A list of variables used
o Lister is shown in Fig. 11-1.)

The program then commences a FOR-NEXT
jp that begins 10 characters to the left of the
ksired column width.That is, if 50 colms are
gsred, the program starts checking a line to be
itedat the 40th character. This is considered the
#” z0ne, At this point, the program begins look-
igforeither 2 colon or a space. When one is found,
iglits the program line at the colon or space, and
IPRINTS the two parts, with some spaces added

Lister

to indent the second portion of the line past the line
number above. The counter for the number of lines
printed so far, LL, is also incremented. Whenever
LL is greater than the number of lines desired per
page, a new page is started, with an appropriate
heading.

Note: because some computer setups hang up
when attempts are made to LLIST without a
printer being switched on or connected, leave the
REMs shown in place while typing and debugging
Lister. When everything is working fine, remove
them, and your listing will go to the printer as well
as to the screen. Figure 11-2 shows an example of
another program in this book that has been
LLISTed using Lister. '

Listing 11: The Lister Program

109 dhkkkkkhihk

200 *
0!'* Lister *
0 * *

50 ! kkkkkkkkkkk

5 ' %% Initialize ***

§0 KEY OFF

70 ON KEY(10) GOSUB 570
80 KEY(10) ON

9 SCREEN 0,0,0

100 COLOR 7,0

110 CLS:PRINT: PRINT

120 LOCATE 25,4

130 COLOR 16,7

U5 ' *#%* Enter filename ***

150 COLOR 7,0
160 LOCATE 8,24

180 LINE INPUT L$

200 INPUT COLS

10 PRINT " Hit F10 to abort "3

10 PRINT "Enter name of file to be listeds:"

190 prINT TAB(29)"How many coluinns wide?"

81

Program Your IBM PC to Program Itselfl

82

210
220
230
240
250
260

265

270

280
290

295
300

310
320

"3307e

340
350
360
370
380
390
400
410
420
430
440

445

450
460
470
480
490

495

500
510
520
530

L=VAL(COL$)
ggINT TAB(28)"How many lines per page?"
INPUT PG$
PG=VAL(PGS$)
P=1
GOSUB 500

' *%* Open Disk File *#*

OPEN "I",1,L$
IF EOF(1) GOTO 440
IF LL>PG THEN GOSUB 500

! *** Look For Space or Colon *** .

LINE INPUT#1,AS .

¢ FOR N=COL-10 TO COL
H R$=MID$(A$ 'Nyl)

B IF R$=CHR$(32) GOTO 380
H IF R$="3:" GOTO 380
$ NEXT N

LPRINT A$

GOTO 280

LS=LEFT$(A$,N)

LPRINT L$:LL=LL+1
LPRINT STRING$(5'32)3
AS=MIDS$ (A$,N+1)

IF A$="" GOTO190

GOTO 310

CLOSE

' *** Do {t again 7 **#

PRINT:PRINT

PRINT TAB(31)"List another file?"
PRINT TAB(37)*(Y/N)"

A$=INKREY$:IF A$="" GOTO 480
IF A$="y" OR AS$="y" THEN RUN ELSE END

! *¥%*% page Routine #**#

LPRINT:LPRINT:LPRINT:LPRINT

PRINT:PRINT:PRINT"Please insert another page."
C$=INKEY$:IF CS=nn GOTO 520 pad .

LP&INT L$;» Listing Page ";p

540 LL=0

550

P=P+1

560 RETURN

565 ' #%% Abort ***

570 CLOSE
580 CLS
590 END

Lister

83

Chapter 12

Y L

=10 SCREEN 0,0,0

20 KEY OFF

E=30 COLOR 7,0

E—40 LOCATE 10.5

F—=50 DEF SEG=0

Translator

Most of the BASIC language’s limitations stem
from its original purpose as a high-level language
that would be easy for beginners to learn and use.
Its st?ongest point—the simple English keywords—
provides an artificial barrier for those whose pri-
mary language is not English. Some of the largest
Spanish-speaking communities in the world, for ex-
ample, are in the United States. The availability of
a'l?ASIC in Spanish might make it easier for these
atzens to use computers at an earlier age.

A mac!line language Spanish-Basic interpreter
would be ideal. Programs could be written in a
Hispanic version of BASIC, run, tested, and
g:bugggd in that form. Unfortunately, that would
hoa major undertaking, best tackled by a software
vesu; with some hopes of recouping the time in-
0& ent through sales. But one-tenth of a loaf is

en better _than none. Translator is a simple
gseuqo-cotr}pxler that converts programs written in
m Tiny BASIC to standard BASIC for

Most readers will not remember Tiny BASIC,
which was a very small version of BASIC used on
some early microcomputers because it could be fit
in an 8K ROM. It lacked many features we now
consider standard in an advanced language like that
available from the IBM PC.

The Translator program displays all the com-
mands, statements, and functions available; this
display can be summoned by entering HELP (or
AYUDA) while the program is running. .

The Translator program allows the user pro-
gram to write the source code using Spanish
keywords, instead of the English Basic equivalent.
As each line is entered, the program checks it for
various criteria (each must begin with a line
number, and no more than one statement is allowed
per line) and generates a new line of code, replac-
ing each of the Spanish keywords with the English
equivalent. Both versions may be saved to disk or
listed at any time. Figure 12-1 provides an exam-
ple of Spanish and English versions of a program.

Spanish Version

50 FIN

110 RETORNE
English Version
10 PRINT

50 END
100 PRINT
110 RETURN

10 IMPRIMA "PROGRAMMA"

20 ENTRE "SU NOMBRE :";AS$

30 SI A$="DAVID" LUEGO IMPRIMA "HOLA D "
40 SI AS$<>"DAVID" VAYA SUB 100 Aviot

100 IMPRIMA "HOLA,";A$

" PROGRAMMA™

20 INPUT "SU NOMBRE :";AS$

30 IP A$="DAVID" THEN PRINT
40 IF A$<>"DAVID" GOSUB 100

"HOLA,";A$

"HOLA DAVID("

A$(n) Ditference in length of keywords.

A$ Line entered by user.

Al$ - Used in INKEY$ loop. ,

B Position of quote in line input.

C Position of colon in line input.

coM$ Command entered by user.

CP$(n) Array storing program lines in English.
CuU Counter. '

E2%(n) Array storing program lines in Spanish.
F$ File name.

F3$ File name. S
FLAG Shows whether instructions have been displayed.
G Loop counter.

IG$ Program line input by user.

L Length of program line.

N Loop counter.

NE$ Name of program in Spanish.

NI$ Name of program in English.

fig. 121 An example of a program produced by Translator.

Translator combines some of the f,
qubal Replacer and Program Proofer. Ite:ot;r;:r:sf
}ts mtex:nal list of allowable keywords with those
::; utxhv:l ;n;tmt lines,d and replaces them with the
valents as needed. Fi -2 li i
able;,:dx used in Translatoilgure 2 lts the -
‘ tmg is accomplished by reenterin i
:I‘l‘l‘e E.nghsh (“compiled”) version of thegptxl']:grh:;
1s “object code” that may be loaded and run under
your BASIC interpreter, like any BASIC program
:1;: long as the code entered in Spanish conformeé
tl;g ex;tl)lrm:lh syntax rules of BASIC.

_ ¥, the program should be used b -
:og wh9 already. knows standard BASIC t}; 2&3
xzia‘ﬁmbspe-akmg person how to program. -
thé Bes: Spanish wor'ds chosen are not necessarily
t lacédpAossible equivalents for BASIC keywords

) . The BASIC translations were chosen

USIng two criteria. The Spanish words had to be

short and mean approximately what the BASIC

86

equivalents mean. Because keywords are, ineffid,
commands, the imperative form of the verbs wee
used. Second, programming was made easier by
lecting Spanish words that were either the sant
length or longer than the BASIC keywords.

To use the program, the student types AN,
in English, and is shown a summary of the comr
mands and statements available. This list can b
summoned at any time by typing HELP or AYUDA
at the > prompt. An existing program may b
loaded from the disk using the CARGE commaid
Prompts ask for the name of the program
Spanish and English. Then the program can k¢
edited or new lines added. ‘

At any time a specific line in Spanish can ¢
seen by entering ALISTE xxx, where xxxis thelié
number. By typing ALISTE, the entire progral Wl
be presented a section at a time. Entering LIS
in English, will display the compiled English ve"
sion. NEUVO (NEW) or CORRA (RUN) willeré¥

Fig. 12-2. Variables used In Translator.

the current program in memory and allow the user
to start over.

Only line numbers between 1 and 200 may be
used, and only single statements are allowed per
line. Spaces must be used after line numbers and
between words. It is permissible to end a line with
aspace, as one is added automatically. Spaces are
essential, because in searching for keywords, the
program looks not for, say, the letters SI, but for
<space>SI<space>. Otherwise, by the time
the loop that searches for keywords got to
SIGUIENTE, the word would have been changed
to IFGUIENTE.

_ Actual translation from Spanish to English is
Smple. The programmer enters a line, loaded into

A$inline 1350, The entry is changed to all upper- -

tase letters, Then the first four characters are
thecked to see if any of the allowable commands
weincluded. If not, the line must begin with a line
tumber, or else an error message is generated. A

check is made for a colon outside quotation marks,
which would indicate a multiple statement line. An
error trap also checks to make sure that the line
number is within the range allowed. '

A FOR-NEXT loop beginning at line 1740 com-
pares each word in the line with the permissible
keywords, and if one is found, the equivalent Eng-
lish keyword is substituted for the Spanish
keyword. Several subroutines take care of LISTing
the program lines, stored in two string arrays. The
program keeps track of the high line number used
so far, in variable HIGH.NUMBER, and only goes
to that value when LISTing. In that way, a lqt of
time is not wasted trying to LIST program lines
that do not exist. :

The only hitch in Translator isa problem com-

mon to all compilers. The programmer cannot. run
the program to test it until it has. been cqmpded.
Then if bugs are found, the compiled version can-
not be changed because, in this case, the Spanish

87

Program Your IBM PC to Program Itself!

speaking person supposedly cannot understand Fhe
BASIC object code. Of course, an English-speaking

person can edit it, but for those for whom

Translator was intended, the object code may mean
about as much as a machine language dump.
Because Translator was meant as a learning
tool, it was designed to be easy to change.
Keywords can be added by appending them to the
proper locations in the DATA lines and add-
ing numeric DATA that shows the difference in

length between the longer Spanish keyword an e
shorter English equivalent. The variable NUy.
BER.WORDS must also be changed to reﬂecu‘he
new number of words.

This program will compile from any language,
The user could select keywords in, say, French, g
enter them with their English BASIC counterparts
in the DATA lines. All the prompts in Spanishwil
have to be changed as well, but these have pur.
posely been kept to a minimum in the program,

Listing 12: The Translator Program

lo ! RERRRARRRRAA A AN
20 T % &
30 ' * Translator *
40 " & *

50
55

60
70
80
90
10
110
120
130
140
150
160
170
180
. 190
200
210
220
230
240
250
260
270
280
290

- 295
300
310

88

V AAhkRARARRR R AR

' %%% Tnitialize wax

KEY OFF

ON KEY(10) GOSUB 2370
KEY (10) ON
HIGH.NUMBER=200

0 GOTO 180

LOCATE 25,19
COLOR 16,7

PRINT" == Hit any key == "3

IF INREY$="" GOTO 140. .
COLOR 7,0 o
CLS

RETURN

DEFINT A-32

SCREEN 0,0,0

COLOR 7,0

KEY OFF
NUMBER.WORDS=21

L2=200 o
Cl$=CHR$(34)

C2$=CHR$ (58)

C3$=CHR$ (32)

DIM A(21), E
cLs et ESQ21), E28(200

' %% Null arrays #es

: FOR N=) TO 200
H E2S(N)=nvwn»

Y, CP$(200), 'E3$(21), span$(2l)

320
330

335
340

Translator

CP$(N)=""
NEXT N

2% Read Difference Data *#*

FOR N=1 TO NUMBER.WORDS

350 3 READ A(N)

360 ¢+ NEXT N

365 ' *#** Read Spanish and English keywords s##
370 + FOR N=1 TO NUMBER.WORDS '
380 ¢ READ E3$(N)

390 3 E3$(N)=C3$+E3$(N)+C3$

400 ¢ READ SPANS(N) :

410 ¢ SPANS (N)=C3$+SPANS (N)+C3

420 ¢+ NEXT N

{25 ' *#* Equalize length **¥

430
440
450

FOR N=1 TO NUMBER.WORDS
E$(N)=E3$(N)+STRINGS (A(N), 32)
NEXT N

460 DATA 0'2,0,2,0,2,1,l,1,1,0,3,2,2,1,3,1,0,1,1,1

470 DATA IF, SI, RUN, CORRA, INPUT, ENTRE, LIST, ALISTE, END, .
FIN, PRINT, IMPRIMA, READ, LLEVE, DATA, DATOS, THEN,
LUEGO, FOR, PARA, STOP, CESE, NEXT, PROXIMO

480 DATA CLS, BORRE, GOTO, VAYA A, RESTORE, RESTAURE

490 DATA GOSUB, VAYA SUB, RETURN, RETORNE, ON, EN

500 DATA STEP, GRADA, REM, NOTA, LET, HACE

510 FLAG=1

515 ' #%% Ingtructions *#*#*

520 PRINT TAB(T)"SPANISH-ENGLISH PROGRAM TRANSLATOR®
530 PRINT TAB(T)"Do you want instructions (Y/N)2"
540 A1$=INKEY$

350 IP Al$="" THEN 540

360 IF Al$="Y" OR Al$="y"™ THEN 590

570 IF A1$="N" OR Al$="n" THEN CLS: GOTO 1330

380' GOTO 540

330 CLS:PRINT '

600 PRINT TAB(8)"This program allows Spanish-speaking students to ® .

i d of"

610 PRINT TAB(8)"write programs using Spanish keywords instea of*
:gg PRINT TAB(8)"the English equivalents. Most Tiny BASIC key-*

PRINT TAB(8)"words may be used.” .
640 PRINT TAB(8)"The program prepares two versions of the groggﬁ.
228 PRINT TAB(8)"-- one in Spanish, and a 'translated ', Eng

PRINT TAB(8)"version." .
€70 PRINT TAB(8)"Although programs may be written in Spanisg,iﬁlég--
§80 PRINT TAB(8)"may not be RUN in that form (this is not a

-
630 PRINT TAB(8)"preter) until they have been translated into Eng

00 PRINT TAB(8)"1ish-BASIC." . .

?’%g PRINT ' 1ish versions may be®
PRINT TAB(8)"Both the Spanish and English v .

130 PRINT TAB(8)"saved to d?sk under filenames of Y°urdcggtilc:8rﬁgee‘

40 PRINT TAB(8)"English version can then be loaded an

89

Program Your IBM PC to Program Itself!

750 PRINT TAB(8)"ally."

760 PRINT TAB(8)"To use, type in program, using the Spanish keyworgs®
770 PRINT TAB(8)"where needed. Only one statement is allowed per

780 PRINT TAB(8)"line. User ";

790 COLCR 17,0

800 PRINT "must";:COLOR 7,0:PRINT" add a space after line numbersg*®

810 PRINT TAB(8)"and "3:COLOR 17,0:PRINT"all®;:COLOR 7,0:PRINT* keywords -
even before quotation marks."

820 PRINT TAB(8)"Only line numbers between 1 and 200 may be used."

830 GOSUB 110

840 PRINT TAB(8)"To edit any line, just re-enter that line number
850 PRINT TAB(8)"and the new line."

860 PRINT

870 PRINT TAB(8)"Other BASICA keywords not translated may be .

880 PRINT TAB(8)"incorporated into the program if they adhere to "
890 PRINT TAB(8)"correct syntax. These include 3"

900 PRINT TAB(B)'ELSE,INSTR,RIGHTs,LEFTS, as well as functions,"

910 PRINT TAB(8)"(INT,RND), operators (AND,OR)."

920 PRINT STRINGS (50, 32);

930 PRINT TAB(8)"If you have any questions type either 'HELP' or"

940 PRINT TAB(8)"'AYUDA'. You will be shown a list like these:"

950 GOSUB 110

960 GOSUB 1120

970 PRINT TAB(8)"A typical
980 PRINT STRING$(50, 32);
990 PRINT TAB(14)"10 ENTRE ";C1$;“COMO SE LLAMA";C1$;3";AS"™
1000 PRINT TAB(14)"20 SI A$=';C1$3"JOSE";C1$;" VAYA A 40"
1010 PRINT TAB(14)"30 CESE"
1020 PRINT TAB(14)"40 IMPRIMA
1030 PRINT TAB(14)"50 FIN®
1040 GOSUB 110

1050 IF INKEY$ ="* THEN 1050
1060 FLAG=(Q

1070 cLs

1080 GOTO 1330

1090 GOSUB 1110

program might look something like this ; *

";Cl$;"HOLA JOSE";Cl$"

1100 GOTO 1330
1110 cLS
1120 PRINT * Log Mandadoss®
ﬂ:30 PRINT ’

40 PRINT "Ahorre (ahorrar una pro "

gramma al disk)
1150 PRINT "CARGE (cargar una programma de disk)"
i%ﬁo PRINT :ALISTE‘ (Alistar una programma en espanol)*®
130 FRE L coth o Sl 0 ooien)
"

1190 pRIne ! +NUEVO, BORRE

200 PRINT "lLag decla -
iglo PRINT raciones:

20 PRINT "IF=ST RUN=CORRA '}

= INPUT=ENTRE"

igig ggiNT :END=FIN LIST=ALISTE PRINT=IMPRIMA®
1250 PRIgT .READ=LLEVE TEEN=LUEGO NEXT=PROXIMO"
12 T "DATA=DATOS GOTO=VAYA A RESTORE=RESTAURE"
1278 gﬁg; :ggg;gm STOP=CESE CLS=BORRE"
1280 PRINT *REM=NOTA gggz;gggn A RETUBN RERORNE"

1290 GOSUB 119

RETURN=RETORNE"
1300 :

IF FLAG=1 THEN RETURN

90

Translator

1310 CLS
1320 RETURN

1325 ! *** Get Keyboard Input ###

usopnxgr'>':
Pl=
B;g LINE INPUT A$
1360 TEMP$=""
1370 FOR Nl=1 TO LEN(AS)
1380 T$=MID$(A$,N1,1)
1390 T=ASC(T$)
1400 IF T>96 AND T<123 THEN T=T-32
1410 TEMP$=TEMP$+CHRS$ (T)
1420 NEXT Ebb:ll’$
AS=T
iﬁg cchMMAND.LmzssLEF'rs (A$, 4)

1445 ' *#** Check for Command #*##*

THEN 1880

THEN 2040

THEN 2170 A
THEN 2300 R
THEN GOSUB 1110: GOTO 1330
THEN GOSUB 1110: GOTO 1330
THEN 280

THEN 280

THEN CLS: GOTO 1330

1450 IF COMMAND.LINE$="ALIS"
1460 IF COMMAND.LINE$="AHOR"
1470 IP COMMAND.LINES$="CARG"
1480 IF COMMAND.LINE$="LIST"
1490 IF COMMAND.LINE$="AYUD"
1500 IF COMMAND.LINE$="HELP"
1510 IF COMMAND.LINE$="CORR"
1520 IF COMMAND,LINE$="NUEV"
1530 IF COMMAND,LINE$="BORR"
1540 1G$=a$

1550 A$=A$+CHRS$(32)

1560 B=INSTR(AS$, C1$)

1570 C=INSTR(AS, C2$)

1580 IF C=0 AND B=0 THEN 1660
1590 IF B=0 THEN 1650

1600 W$=MID$ (AS, B+1l)

1610 P1=INSTR(W$, Cl$)+B

1620 IP C<B THEN 1650

1630 IF C>P1 THEN 1650

1640 GOTO 1660

1660 Tg=mw

1665 * ##% Check for line number *##
1670 : FOR T=1 TO LEN(A$) .
IF MID$(A$, T, 1)=CHR$(32)THEYN 1710
10 L e
I=VAL(T$)
ﬁgg IF LI>L2 THEN PRINT"COMENCE LA LINEA CON UN NUMERO MENOS QUE

1735 * #+ ook for Spanish keywords #*** . =

140 : POR G=1 TO NUMBER.WORDS

1650 IF C<>0 THEN PRINT'SOLAMENTE UNA DECLARACION CADA LINEAf: GOTO 1330

1730 IF LI<1 THEN PRINT"COMENCE LA LINEA CON UN NUMERO": GOTO 1330

"31.23 GOTO

91

Program Your IBM PC to Program Itself!

1750 ¢ P=INSTR(AS$, SPANS(G))
1760 s IF P>0 THEN 1820

1770 ¢+ NEXT G

1780 E2$(LI)=IG$

1790 CP$(LI)=A$

1800 IF LI>BIGH.NUMBER THEN HIGH.NUMBER=LI
1810 GOTO 1330

1820 IF P<B THEN 1850

1830 IF P>P1 THEN 1850

1840 GOTO 1770

1850 L=LEN(E$(G))

1855 ! #**+ Make Substitution #*#

1860 MID$(AS$, P, L)=E$(G)
1870 GOTO 1770

1875 * **+* List Spanish Program Lines *#*

1880 V=INSTR(AS$, C3$)

1890 IF V=0 THEN 1950

1900 v2$=MID$(AS, V)

1910 V3=VAL(V2$)

1920 IF V3>0 THEN PRINT E2$(V3) ELSE 1950

1930 PRINT

1940 GoTO 1330

1950 Cu=1

1960 CLS

1970 : FOR N=1 TO HIGH.NUMBER

1980 : IF E2§(N)="" OR E2$(N)="," THEN 2020
1990 . PRINT E2$(N)
2000 & CU=CU+1
2010 s IF CU/14=INT(CU/14)THEN PRINT*EMPUJE < ENTER >"3s INPUT E$
2020 3 NEXT N '
2030 GOTO 1330

2035 * *** saye Programs to Digk **#

2040 INPUT"NOMERE DE LA PROGRAMA EN ESPANOL :";NE$

2050 INPUT"NOMERE DE LA PROGRAMA EN INGLE ®3NI
2060 OPEN"O",1, NE$. v N NG s" e

ggzg ¢ FOR N=1 TO 200

t PRINT$#1, E2$(N

2009 ¢ NELRINTHL, E2S(N); CHR$(13)s
2100 CLOSE 1

2110 OPEN"O",1, NI$

2120 ¢+ FOR N=1 TQ 200

2130 3 pPRINT
2140 :+ NEXT N #1, CP$(N); CHR$(13);

2150 CLOSE 1
2160 GOTO 1330

2165 ' *#x poag Programs From Disk ##*

2170 INPUT"NOMBRE DE LA PROGRAMA EN ESPANOL t*3F$

2180 INPUT*NOMBRE DE
2150 OPEN"I®,) . ps " L* PROGRAMA EN INGLES 1")F3$

9

Translator

FOR N=1 TO 200
3328 i LINE INPUT #1, E2$(N)
2220 ¢+ NEXT N
2230 CLOSE 1
2240 OPEN"I",1, F3$
2250 3+ FOR N=1 TO 200
2260 ¢ LINE INPUT #1, CP$(N)
2270 3+ NEXT N
2260 CLOSE 1
2290 GOTO 1330
2300 CU=1

2305 ' *** List Programs ###

2310 + FOR N=1 TO HIGH.NUMBER
2320 ¢ IF CP$(N)<>"" THEN PRINT CP$(N): CU=CU+l

2330 3+ IP CU/14=INT(CU/14)THEN PRINT"EMPUJE < ENTER >";: INPUT E$
2340 + NEXT N

2350 PRINT

2360 GOTO 1330

2370 CLOSE:END

93

e gy e m e

Chapter 13

7~

F—20 KEY OFF

=10 COLOR 2.0

——40 LOCATE 10.5

E—50 DEF SEG=0

Indexer

Areyou using your IBM PC or PCjr to write a term
Japer, artic_le, or book? If so, you may need to
Jrepare an'mdex or glossary for your project. Or,
areyou curious about the scope of your vocabulary?
These two programs, Index 1 and Index 2, will
nzke your work quite a bit easier. Index 1 will take
most reasonably-sized documents—text or program
fles both~and throw out the punctuation marks
::d numbers. DOS will SORT this list for you, and
del;i Index 2 will go through it and discard
lllpdcates .and many plurals of a root word. You
¥iid up with an alphabetized listing only of the
ique words in your document.

Irecently wrote these programs to help in the
groeg&anon of a book I was working on. I ran about
lisiof av;ords through th_em and ended up with a
wﬂdensefiw thousand unique words that I further
i to form my glossary and index. The In-

itemsgl’ams will also work with your shorter
g,) t:uch as letters, short stories, or school
Qpitalizeg - 0dd punctuation won’t throw it, and

words are automatically converted to

lowercase. You can even use the program on &our
BASIC programs to find out what keywords were
used. Line numbers and other nonalpha characters
will be discarded, as well. :

INDEX 1: PREPARING
THE FILE FOR SORTING

Indexer might be a candidate for the misnomer
of the year award. But then, Lotus 1-2-3 doesn’t
have anything to do with yoga, either. The BASIC
programs themselves don’t really index or sort
anything, although that is the end result. Instead, .
they serve as a preliminary “filter” to strip off un-
wanted characters and numbers, in effect deciding
what is a word and what isn’t. The legal words are
written to disk, where DOS’s SORT filter can rear-
range the list in alphabetical order.

Because of the size of the files processed by this
program, I didn’t bother with including a BASIC
sort routine,which would be much too slow. The .
program could take hours to sort such a huge list
in memory using only Basic techniques. Since In--

85

Program Your IBM PC to Program Itself!

a
about
accomplished
added
all
allow
alone
alphabetical
alphabetized
also
although
america
amplitude
an
and
another
any
anything
anyway
appeared
are
array
article
-as.
ascii .
assignments
at
automatically
award
awhile
“back
basic
"be |
because
been
beginning
between"
bit" . .
book
both
bother
.-broken
“built
by
called,

Fig. 13-1. The sorted list of words.ln

can
candidate
capitalized
chapter
character

~characters

check

chr

code
comes
command
compara
computers
condensed
conversion
converted
curious
deciding
different
discard
discarded
disk

do
document
documents
does

. dos

down

drive
duplicate
duplicates
each ’
easier

- effect
‘else

end
endeqd -
ends
enter

- entering

equivalent

_even

fast
few |
figured

this chapter.

file
filename
files
filter
find
first
following
follows
for

form
from
furnished
further
glossary
go

goes
gotten
greater
had
has
have
help

including
index
indexer
individual
initial
instead
instr
into

is

it

items
keywords
language
last.
learn

~left -

legal -
less
letters

S,

letting
line
list
listing
lot
lowercase
machine
made
make
mandatory
many
mark
marks
may
million
minutes
misnomer
most
much
ny
mydoc
mylist
need
new
newly
next
non
note
nothing
numbers
odd
of
off
on
once
one
only
o0oops
or
order
other
our
out
paper
parsing

o0 result
per root
perform routine
place run
phﬂals school
osition scope
preliminary search
preparation see
prepare separate
process serve
processed sets
produced short
producing shorter
program should
programs since
project size
properly slow
punctuation so :
quite somethin
ran sort
read sorted
reads space
really spaces
rearrange stored
reasonably stories
recently string
recommend strip
redefined such
remainder symbol
remove syntax
requires system
reside take

Indexer
taken very
takes view
temporarily vocabulary
term wanted
text was
than we
that well
the were
them what
themselves when
then where
these which
they will
this willing
thousand wind
through with
throw won
to word
too wordlist
two words
type work
under working
unique would
unwanted wrd
up write
uppercase written
us wrote
used yet
users you
using your
variable '

dexer requires a disk drive anyway, I figured most
wsers would be willing to learn to use DOS’s built-
msort. The DOS sort routine is fast and efficient.
ltrequires, however, that the indexing process take
place in two parts. First the file is prepared for
suting, DOS sorts it, and then the sorted file is ex-
amined for unique words.

Although the machine language sort of your
¥ord array by DOS is very fast, parsing the docu-
ment into individual words takes a few minutes. I'd
écommend letting the program run for awhile as
Jou do something else.

The program Index 1 reads in each line of your
file, in line 260, and sets the initial search position
for spaces, P, at one. Then INSTR 1s us_ed to find
the first occurrences of a space, which is used by
this program to mark the ends of words. A check
is made to remove any punctuation marks that may
have been “attached” to the ends of our wqrd§.

The newly found word is stored temporarily in
variable WRD$, and A$ is redefined as the re-
mainder of the string following WRDS. WRla)IT f;
then converted to all lowercase le’a’ttﬁrs, tso" 0 y
us to sort words like «America,” “DOS,” an

Program Your IBM PC to Program Itself!

“amplitude” properly. Computers see uppercase
and lowercase letters as different, so that a follows
Z. The conversion is accomplished in a routine
beginning at line 350, where the ASCII code for
each character is figured. If it is greater than
CHR$(64) and less than CHR$(92) then 32 is added
to the character, producing the lowercase
equivalent. All other characters are left alone.

The newly lowercased WRD$ is written to disk
in line 450, and the program goes back to process
the next word.

When your file has been broken down into sep-
arate words by Index 1, you can then go to DOS,
using the SYSTEM command, and perform the
SORT.

‘THE DOS SORT

SORT.EXE, furnished with DOS, should reside
on your disk. You enter the file name your word
list is stored under and then a new file name for
the sorted word list, using the following syntax:

SORT <filetosort >sortedfile

Note that the space between the file Dame+g.
sort and the greater than symbol (>)is mandatory
If you had run Index 1 on MYDOC.TXT agdpy
duced MYLIST.TXT, and wanted the sorted re.
sult to go to a disk file called RESULT, you would
enter:

SORT <MYLIST.TXT >RESULT

INDEX 2: PRODUCING THE FINAL LIST

Once the sort has taken place, you can view the
list by entering TYPE RESULT from DOS, Ogys,
A lot of duplicate words in the file? A million A'Y
A thousand occurrences of the? That's where Index
2 comes in. This program does nothing more tha
read in your sorted RESULT wordlist and compare
each word with the last one. Only if they are dif
ferent will the program write the word out to yet
another disk file. When this is accomplished, you
will have a sorted, alphabetized list of unique words
that appeared in your document.

A sorted list of the words in this chapter, pro
cessed by Indexer is shown in Fig. 13-1.

Listing 13a: The Index 1 Program

10 ¢ RARARkkkkhhhhhhhkkhk

20 ' * *
30 ' * Indexer Part One *
40 ' *

50 ¢ ********************

55 ' *** Injtialize *#*

60 SCREEN 0,0,0
70 COLOR 7,0
go KEY OFF ‘
0 ON KEY(10) GOSUB
100 KEY(10) oN 370
i%o CLS o
0 LOCATE 25,30
130 COLOR 16,7

98

140 PRINT® Hit F10 to qbbri. "3

145 ' *** Enter filenames ***

150 COLOR 7,0
160 LOCATE 2,1

0 CU=0
igo INPUT"ENTER FILENAME TO PROCESS :";F$

190 INPUT"ENTER OUTPUT FILENAME";Fl$
200 OPEN "I",1,F$

210 OPEN "O",2,Fl$

220 LOCATE 25,10

230 COLOR 16,7

240 PRINT " READING/WRITING FILE : ";
250 COLOR 7,0

255 ' *** Read in a line ***

260 LINE INPUT#1,AS

270 P=1

280 R=INSTR(P,A$,CHRS$(32))

290 IF R=0 THEN GOTO 480

300 WRD$=LEFT$ (A$,R~1)

310 AS=MID$ (AS,R+1,255)

320 IF WRD$="" THEN GOTO 270
330 WRD$=T2$+WRDS .
340 T2§=""

35 ' *** Change to lowercase ***

350 FOR N=1 TO LEN(WRD$)

360 T$=MIDS (WRD$,N,1)

370 T=ASC(TS$)

380 IF T>64 AND T<92 THEN T=T+32
390 IF T<97 OR T>122 THEN GOTO 420
400 TEMP$=TEMP$+CHRS (T)

410 NEXT N

'| 420 WRD$=TEMP$

430 LOCATE 25,10
440 TEMpP§="»

U451 #x* print word to disk ***

450 PRINT #2,WRD$

460 cu=cu+1

470 GoTo 270

180 T2$=pg

49 IF EOF(1) GoOTO 510
500 GoTO 260

Indexer

g9

Program Your IBM PC to Program Itself!

510 CLOSE

515 ' *** Show results ***

520 LOCATE 25,10

530 PRINT SPACES$(40);

540 LOCATE 25,10

550 PRINT"FINISHED - ",
560 PRINT CU;" words found.";
570 CLOSE

580 END

Listing 13b: The Index 2 Program

10 V hkkkrkxhkkhkkhkkhkkihkkk
20 1 % *
30 ' * Indexer Part Two *
40 ' * *
50] ********************

55 ' *** Injtialize *#**

60 SCREEN 0,0,0

70 COLOR 7,0

80 KEY OFF

90 ON KEY(10) GOSUB 390
100 REY(10) ON

110 cLs

120 LOCATE 25,30

130 COLOR 16,7

140 PRINT" Hit F10 to abort. ";

’

145 ' *** Enter filenameg *#*

150 COLOR 7,0
160 LOCATE 4,1
170 cu=0

180 INPUT"ENTER FILENAME TO PROCESS s";F$

190 INPUT"ENTER OUTPUT FILENAME™:F
200 OPEN "I",1,Fs$ PELS

210 OPEN "0",2,F1$
220 LOCATE 25,10
230 COLOR 16,7

250 COLOR 7,0 / NG FILE : “;

100

255 1 KR Read a word #***

0 LINE INPUT#1,AS$
330 IF A$<OLAST$ GOTO 290

280 GOTO 260

285 ' *** Write Unique Word **#*

290 PRINT #2,A$

300 CU=CU+1

310 LAST$=AS

320 IF EOF(1) GOTO 340
330 GOTO 260

335 ' *#** Show Results ***

340 LOCATE 25,10

350 PRINT SPACES$(40);

360 LOCATE 25,10

370 PRINT"FINISHED =~- ";

380 PRINT CU;" unique words found."
390 CLOSE

400 END

Indexer

101

Chapter 14

’ 4

4
¥ L

F—10 SCREEN 0,0,0

r— 20 KEY OFF

=30 COLOR 7,0
E=40 LOCATE 10.5
=50 DEF SEG=0

Error Trapper

Er{or Trapper is dedicated to all of you who have
witten programs containing a bug or two. Readers
who have never made a mistake in their programs
anskip this chapter and go on to the next. Okay,
who's left? o

I'laddress the rest of this chapter to the three
gfouf readers who occasionally make a mistake
ntheir programming. Error Trapper is especially
imed at those of you who are very creative in their
tmors, and who trigger some the more obscure
fror messages, like:

WIX COMMAND: NOT R
: E .
ILEASE RELACE SHELL COGNIZED

mad]e)gl; t g0 scrambling for your manuals. I just’
vy tup. But do you understand all of the error
m grais that you DO see? This is quite a long
e _—Elore than 300 lines—but you only have
ittoteagx rror Trapper once. Then you can use
T tlll]ew programmers or to avoid having to
o r the BASIC manual every time an error
during program writing.

Our handy Basic interpreters are nice enough
to point errors out to us during runtime. It would
have been nice to have the syntax errors, at least,
brought to our attention when the program line was
first entered. But, no, the computer is not that
courteous. (Some computers actually do this,
though.) Instead, the IBM PC reserves judgement
until we actually try to run the program.

Few amateur programs and darned few profes-
sional BASIC programs take advantage of the error
trapping possibilities of the IBM PC. I haven’t used
ON ERROR much in this book. Instead, I have tried
to anticipate what errors might be made and pre-
vent them where possible. Many programs won't
accept improper input, or prompt you for the type
of information you should enter next. This concept
has been carried to extremes in Music Writer, in
Chapter 19.

Sometimes an unanticipated error takes place.
Usually this will be in a poorly debugged program
that does not have sufficient error traps built in.
Often the errors will occur during program debug-

ging itself.
103

Program Your IBM PC to Program Itself!

Ordinarily when an error takes place, the com-
puter will stop the program at that point and de-
liver a onc-line message outlining the error, such
as “NEXT without FOR.” You can, however, use
the ON ERROR interrupt to send the program on
to a special error trapping routine. If, say, the error
is “File not Found,” your program can display a
message like “Insert the Automatic Programmer
Disk in Drive B, and press ENTER.” That way,
the user is not dumped out of the program into
BASIC without a hint of what to do next.

The PC is nice enough not only to tell us that

there is an error, but also to point out exactly what

type of error has been made. A clever error code
number, which can be manipulated by the program,
is supplied. In many cases, a routine, like the one
described above, could be written to recover from
the error. Or, in other cases, the error number could
be used to supply the operator with some hint of
what he or she has done wrong.

For another example, you could supply a
friendly prompt on the order of “Program tried to
divide by zero. Are you sure all the amounts you
entered are correct?”” would be nice. Admittedly,
many programmer’s don’t understand enough
about errors to do anything about them.

ERROR TRAPPER MESSAGES

That’s where Error Trapper comes in. BASIC
does provide nice long error messages. Some of
the more esoteric error messages, however, may
puzzle the best of us. Do you really know what sort
of misbgke will trigger an “Illegal Direct” message?

This program, when appended to your own pro-
gram, will spell it out for you, It provides REALLY
long error messages, Instead of just telling you how
you goofed, it will Suggest situations that might
gave Produced the error and places to check for the

ug. - ,

Fog example, if you see “Out of Data,” you
know', in fact, that the computer would like more
data items. Error Trapper suggests that perhaps
several data items were left out by mistake, or that

104

the FOR-NEXT loop that reads the data is tog
large.
“Illegal Function Call” suggests that the pro-

grammer list the offending line, and print oyt frop

command mode some of the values of the Variables,

THE INTERRUPT ROUTINE

Little understood is how the IBM PC manages
to do something about errors, The secret isin line
10070, which is an ON ERROR GOTO... com
mand that summons the computer's interrupt
routine. Interrupts, as you have seen, are different
than normal statements. If a program line says [F
INKEY$=* " GOTO, it will act on that only atthe
exact moment that the line is interpreted by Basic,
In order to make INKEY$ work, the program has
to loop back, over and over, uatil something
happens.

Once ON ERROR has been activated, however,
the computer can go on to the other things. The
program can perform all sorts of different functions,
and the interrupt routine will remain dormant...
until an error occurs. Then it will obey the com-
mand and send control to the line previously
specified.

You can’t even turn the interrupt routine off
by exiting the program. Try this: run Error '!‘rap
per, and press break at some point. Then, trigger
an error by typing in a syntax error or some othgr
goof from command mode. Oops! The program 8
running again, and you are at line 10080. You _dxdnt
even type RUN. That is the interrupt routine a
work.

Once an error has taken place, Error Trapper
looks to see what kind of error it is. An eror
deposits a value in the reserved variable ERR. The
same error always produces the same unqu
number. So, I use that number in this program it
an ON . . GOSUB line that directs control to the
appropriate error message. In a real program, you
might substitute some type of error trap for the
message. The trap might be a routine that corrects
the error. : wrte Not

For example, if the error were “Fil¢

fond,” you might write a routine ghat asks the
ger to check the file name or deposit th.e correct
ik in the drive. Then it would ask again for ghe
% name. Using RESUME, followed by. a line
amber, control can be returned to the main body

o the program.

Error Trapper

1f you append Error Trapper to your own pro-
grams, you will want to move the early parts of this
program, such as the ON ERROR line, and the
DIMension statement, as well as the READ loop,
earlier in the program, so they will be activated
BEFORE the main body of the program is run.

Listing 14: The Error Trapper Program

10060 DIM ER(51)

10100 FOR N=1 TO 51

10110 READ ER(N)

10120 NEXT N

10130 CLS:PRINT L

10140 ON ERROR GOTO 10160

10160 FOR N=1 TO 51

10180 NEXT N

10190 PRINT "Unprintable error®
10200 RESUME

10210 cLs ¢

10240 PRINT "Next without For®

10270 PRINT*COMMAND mode?"
10280 PRINT -
10290 Goto 13020

10300 PRINT"Syntax error"

10330 GOTO 13020
10340 pRINT *Return Without Gosub"

10390 oo 13020

T332 333222223222 22222223

10000 * v
10010 * * ~ s
10020 * * Error Trapper v
®
iggig : AARRRARRARRARRRRRRARARRARAR
10050 * |

ATA 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19
T DATA 20:53"25 54" 25 36271293050 51.52.53.54.55.57, 58
10090 DATA 61.62,63.64,66,67,68,69,70,71,72,73,74,75,76

10150 GOTO 10150 ' *#*#%.BRANCH TO YOUR PROGRAM #%#
10170 IF ER(N)=ERR THEN EC=N:GOTO 10210

) 0640
10220 ON EC GOSUB 10240,10300,10340,10400,10460,10560,1
,10710,10800,10900,11000,11070,11100,11160:{%238
,11310,11370,11420,11480,11510,11550,11610, '
11740,11760,11810,11850,11900,11920,119500 L2250
10230 ON EC-30 GOSUB 11980,12050,12090,12160,12220, ,
12310,12340,12420,12450,12520,12590,12630,12990
12660,12780,12810,12840,12890,12920,12960,

10250 PRINT:PRINT"Program got to NEXT without enc 0T0 from"
10260 PRINT*Check forgincorrect GOTO. you type G :

10310 PRINT *Check for misspelled keywords,
10320 PRINT *as well as bad punctuation.

10350 PRINT *program may have gotten to a subrou
10360 pRINT 'Chegk prog¥am lines immediately Pnot allow running”
10370 PRINT "o make sure program contrel does no

10380 PRINT ®into the following module.

ountering FOR first®
also, did

missing parentheses or qpotes'

improperly.” .
broutin:o tgis subroutine®

105

Program Your IBM PC to Program Itself!

10400
10410
10420
10430
10440
10450
10460
10470
10480
10490
10500
10510
10520
10530
10540
10550
10560
10570
10580
10590
10600
10610
10620
10630
10640
10650
: 10660
. 10670
10680
10690
10700
10710
10720
10730
© 10740
10750
10760
10770
10780
10790
10800
10810
10820
10830
10840
10850
10860
10870
- 10880
10890
10900
10910
- 10920
10930
10940
10950
10960

106

NT "Out of Data"
ggiNT *program was asked to Read more data items than were®
PRINT "available. Check Data lines to be sure that none®
PRINT "were left out by mistake. FOR-NEXT loop may also®
PRINT "be too large for number of items in Data,."
GOTO 13020 -
PRINT "Illegal Function Call" 7
PRINT "Program tried to perform an operation using an illegal®
PRINT "parameter. Print the values of the variables in the"
PRINT "program line. One will probably be a value that is *®
PRINT "unsuited for one of the functions of that line.*
PRINT "For example, you might have PEEK(N) in the line, ang"
PRINT “discover than N equals 70,000. Or, in the case of"
PRINT "PRINT CHR$(N) that, through some error in the program,”
PRINT "N equals 256, or a larger number."
GOTO 13020
PRINT "Overflow"
PRINT "A number is too large. If a variable is an integer,®
PRINT "this will occur if the number is larger than 32767"
PRINT "single or double precision numbers can only be in the range®
PRINT *of about 1.7E+ (or minus) 38. By changing a variable *
PRINT "from integer to single or double precision, most *
PRINT "overflow errors will be avoided.”
GOTO 13020
PRINT "Out of Memory"
PRINT "Most likely, your program uses up too much memory *
PRINT "because of very large arrays. Cut down on array size"
PRINT "if possible. Improperly nested branching routines®
PRINT "(10 GOSUB 10, in the worst possible case) can also"
PRINT “cause this, but rarely.®
GOTO 13020
PRINT "Undefined line" .
PRINT "You typed a GOTO or GOSUB line, without entering *
PRINT"the line where control was directed. Or, in editing,"
PRINT "you killed a program section without the corresponding®
PRINT "line which called that section. It is a good idea"™
PRINT "to use a cross-reference utility to find out if a"
PRINT" program line is called from elsewhere in a program"
PRINT "before killing it."
GOTO 13020 ,‘
PRINT "Subscript Out of Range” '
PRINT "Program tried to use an array element larger than was®
PRINT "DIMensioned. Print out current value of the subscript®
PRINT "in the affected program line. If it is 11, you may"
PRINT "have forgotten to DIMension that array, or you have®

PRINT "spelled the array name differently in the program line.”
PRINT "For example:® Y prog)

PRINT "10 DIM ST$(20)"
PRINT "20 852$(12)=aA$"
GOTO 13020
PRINT"Duplicate Definition®
gg%sg :R:dimensioned Array" ’

Place DIM statements at beginning of program, where"
PRINT :they are not likely to be gncoungeredpmoge than once."
PRINT' If a program will be repeated, use the RUN command® - .
PRINT"Or make sure the GOTO directs control AFTER the DIM statement
PRINT "If an array is being DIMensioned with a variable,” '

Error Trapper

w(as in DIM A$(N)), make sure that the variable has been"
igg;g 52% -;ssigned a value earlier in the program®

GoTO 13020

i%gg pRINT"Division by Zero®

0 PRINT "Program error has produced a zero value in a variable"
noio pRINT"that is used in a division operation. Check variable®
11030 PRINT"to make sure it is not spelled incorrectly or that the"
igAOPRINT'WI°“9 variable is not being used. Find out why it is"
11050 PRINT"zero when a value was expected.”
11060 GOTO Eigio 1 direct”

ega

Hg;g gggg *The INPUT command cannot be used as a direct command.”
11090 GOTO 13020

™ e Mismatch® .
ﬁﬂg gggr "I"%Eogram tried to assign a string value to a numeric®

- L]
syariable or vice versa. For example: A$=§, or A=CHR$(N).
iﬁgg ggigg *In most cases, these are caused by forgetting to include®
11140 PRINT "the $ in a string variable or array."
11150 GOTO 13020

INT "Out of String Space®”
iﬁgg;glNT'Unlike some other BASICs, IBM BASIC allocates the"

i . If you see"
INT"Needed memory for strings dgnamically
iﬁgg ggm’r"this message, then your string variables caused BﬁSﬁ:'-
11200 PRINT"to exceed the amount of memory left, even afteﬁ s ?zeg
11210 PRINT*garbage collection. Look for ways to reduce the si

11220 PRINT"0f your program.®”
11230 GOTO 13020

RINT®*String Too Long" "
ﬁggg gRINT"String variables and array elements can only be 255 bytes

line, and *
INT "long. Take string variables in program ! .
ﬁggg ggm'r "£ind length by typing PRINT LEN(vamble;;ki“tgi‘s“‘l‘“d
11280 PRINT "mode. The find why attempt was made to
11290 PRINT "string that long.”
11300 GOTO 13020 "
11310 PRINT "String Formula '{oo <£:omp1<le§e as:®
11320 PRINT "Avoid such complex formu _
11330 PRINT * X$=(LEFT$(MID$(A$'INSTR(Bs,C$).LEN(AS)) i;:sm"“gi’win.
11340 PRINT "Break operations down into several comrjogt léces: anyway."
11350 PRINT "Never get all the parentheses in the right p
iggOGOTO 13020 {nue®
0 PRINT "Can't Continue or "
11380 PRINT "Either you typed CONT after Progfam.hadtggdggégtam).'
11390 PRINT "a program line was edited (teus ending
11400 PRINT "You must start the RUN over.
11410 GOTO 13020 .
ﬁ:gg PRINT"Undefined User l{'tlmct‘isgr;' o
PRINT"You tried to call a e tha
11440 BRINT*been defined. Check your spelling to make Suc ..
11450 PRINT"the function you have defined is spe
1460 PRINT*the one you are calling.®
img GOTO 13020
PRINT "No Resume" "
11490 PRINT "Program ended during error trapping.
ﬁggg goro 13020 » . .
RINT"Resume Without Error necessary
11520 PRINT "You forgot, deleted, or bypassed §;e1n program.”

11530 PRINT "ON ERROR GOTO message. Place ear

107

aAaAugs

11540
11550
11560
11570
11580
11590
11600
11610
11620
11630
11640
11650
11660
11670
11680
11690
11700
11710
11720
11730
11740
11750
11760
11770
11780
11790
11800
11810
11820
11830
11840
11850
11860
11870
11880
11890
11900
11910
11920
11930
11940
11950
11960
11970
11980
11990
12000
12010
12020
12030
12040
12050
12060
12070
12080
12090
12100

108

Gua avuL AR LW WU Liugiaul ALSCLH

GOTO 13020 .

PRINT"Missing Operand"®

PRINT "Program neglected to include one of the necessary operands,*
PRINT “"Examples:"

PRINT "AS=LEFT$(AS$)"

PRINT "POKE 28513 *

GOTO 13020

PRINT"Line buffer overflow"
PRINT"A line can only be 255 characters. You tried"
PRINT"to enter one longer than that. Try using

PRINT*multiple statements on different lines. Reduce"
PRINT"the size of your variable names."

GOTO 13020

PRINT"Device timeout®

PRINT®"BASIC will only wait for input from a device, such"
PRINT"as the Asynchronous Adapter for a fixed period of"
PRINT"time. If no input is received in that span, you"
PRINT"will receive this error message. If using COM,"
PRINT"check your cables. Try again."

GOTO 13020

PRINT"Device Fault"

GOTO 11680

PRINT"FOR without NEXT"

PRINT"You will only see this error message if a"
PRINT®"program ends with BASIC in the middle of a"
PRINT"FOR-NEXT loop. This may or may not be a problem."
GOTO 13020

PRINT"Out of paper"

PRINT"Your printer has sent a signal to your computer indicating it is"
PRINT"out of paper. If you receive this message and there"
gg;gT;%gzgaper in your printer, check for hardware fault."

PRINT"WHILE without WEND"

PRINT"Check for improper branching within your program®
PRINT"loop improperly.”
GOTO 13020 ‘

PRINT"WEND without WHILE®"
GOTO 11870

PRINT"Field Overflow"

PRINT "More than 255 bytes were allocated to a random-access buffer."
GOTO 13020 o °

PRINT"Internal error®

PRINT “Whoops. Disk operating syst "
GOTO 13020 pe 9 system goofed

gRINT *Bad File Number"
RINT "File buffer number that has not been assigned with an®
gﬁgg :ggEg staEement was used. . Example:" s

PEN ";CHR$(34);"0";CHR . . '
PRINT *20 PRINT §2,a8% 0 O JCoRe(34)3%,1,F%

PRINT "Note that PRINT #1 sho .
GOTO 13020 #1 should have been used instead.

PRINT"File Not Pound®

PRINT "File by that name not on disks currently in drive(s).”

PRINT "Or, you spell
GOTO 13026 ¥ pelled filename wrong."

PRINT"Bad File Mode" : ' |
PRINT "You tried to write to a buffer that had been opened for”

1112200 PRINT"send the

LITOT Arapper

winput, or vice versa. Example:"
Hugggigg 'lngPéN " ;CHR$(34);"0";CHR$ (34);",1,F$"
i »20 PRINT #1,AS$"

PRINT
1253 PRINT "Change the O to I"

¢0TO 13020
iﬁgg pRINT"File already open” .
12170 PRINT"An OPEN statement was encountered for a sequential

that was already open. Or, you tried to kill an"
12180 Pﬁigg:ggﬁ file. Look for improper GOTOs or GOSUBS that would®
12190 P program back to the OPEN statement.®

210 GOTO 13020

12220 PRINT*Disk I/O error® .
12230 PRINT *000PS] Another computer error.
1240 GOTO 13020

*File already exists
ggzg gﬁi?«g-f}éu will only see this message if you are using the®

filename"
*NAME command, and the name you specify matches a

N Niralready being used on the disk. KILL the old file if you*
12290 PRINT"do not want it, and try again., Or use a different filename.

12300 6oTO 13020

12310 PRINT*Disk Full®

12320 PRINT "Insert new disk,
12330 GOTO 13020

INT"Input Past End®
gg;g :ng 'Psogram tried to load more data from disk than was"

3 - that"
sAvallable. Check for empty file, or FOR-NEXT loop thas
gggg gﬁig '?:atoo large., With sequential files thattgrov;'cgggieg '
12380 PRINT * an IF EOF(file buffer) GOTO XXX statemerlx tcathe Coxt”
17330 PRINT "for the end of the file, and send control 0
12400 PRINT "module in an orderly manner.
%mg GOTO 13020 4 Number®
2420 PRINT"Bad Record Numbe
1430 PRINT "Record number in a PUT statemen
12440 GOTO 13020 .
12450 PRINT"Bad Fllename™
12460 PRINT "Filename not legal.
1470 PRINT "programs or files in Disk Basic. .
1480 PRINT "If variable being used for file name being assigned.®
1290 PRINT "check to make sure illegal value not be 79 Frrii,. o
1500 PRINT "Error traps can be made to check for n
12510 GOTO 13020
12520 PRINT"Direct Statement In File®
1530 PRINT "You cannot load, run, or merge a
13540 PRINT "a Basic program. _ This occurs when
12550 PRINT "a text file stored in ASCII form ofs pov
1560 PRINT "program that has had a line number rem
12570 PRINT "beginning of the line.”®
ﬁggg GOTO 13020 o
PRINT"Too Many Files" jskette, ©
12600 PRINT "There xi’s no more directory spacé ondﬁ;:rogl:ame.'
12610 PRINT"your file name is invalid. Try new
gggg gowo 13020 .
RINT" lable.
12649 PRINT'gﬁ‘ééietgn:‘ézlif disk is in drive, door opens
12650 GOTO 13020 -
12660 PRINT*Communication buffer overflow.

or kill files."

t larger than 1,340%

Must conform to all rules for naming"®
]

disk file that is not:

ttempting to load
®possibly an actual’

ed from the"

printer on."

dy in the®
1%10 PRINT"Your program has not read all the data alreacy

109

Program Your IBM PC to Program Itself!

12880
12890
12900
12910
12920
12930
12940
12950
12960
12970
12980
12990
13000
13010
13020
13030

12680 PRINT"communications buffer before trying to load more to it.*

12690 PRINT"You can RESUME at a point that will allow clearing the*

12700 PRINT"buffer before trying to input additional data.”

12710 PRINT" You can also enlarge the communications buffer by using®
12720 PRINT "/C: when entering BASIC. Your program can also arrange"
12730 PRINT "to exchange stop/start signals such as Control-S and Control-g*
12740 PRINT®" with the other computer to keep the buffer from become too fyl}
12750 PRINT® Or, try using a lower baud rate. BASIC can only handle '
information® ;

12760 PRINT"so fast."

12770 GOTO 13020

12780 PRINT"Disk Write Protected"

12790 PRINT "Write protect notch is covered. Or disk is in upside down)®
12800 GOTO 13020

12810 PRINT"Disk not ready"

12820 PRINT"Drive door open, or no disk in drive.®

12830 GOTO 13020

12840 PRINT"Disk media error.” .

12850 PRINT"Your diskette may be bad. Copy any files"

12860 PRINT"you can to a new disk. Try to reformat to"

12870 PRINT"see if disk is still usable."

GOTO 13020

PRINT"You tried to use an Advanced BASIC feature from"
PRINT"Disk Basic. lLoad proper BASIC, and relocad program."
GOTO 13020

PRINT"Rename across disks.”

PRINT"You tried to renamz a file, but specified the"
PRINT"wrong disk. Try again.®

GOTO 13020

PRINT"Path/file access error.®

PRINT"You tried to use a path or filename to an inaccessible file."
GOTO 13020

PRINT"Path not found."

PRINT"DOS could not find the path yo . .
GOTO 13020 P you used. Try again

PRINT"This error occurred in line *;ERL
RESUME 10140

110

Chapter 15

— 4

F—10 SCEEEN 0.0.0

—

e J oot
———
pre——

—20 KEY OFF

=30 COLOR 2.0
F—40 LOCATE 10.5
E=50 DEF SEG=0

|

|

Though photographic in nature, conventional slide

{ fovsused in business presentations rely more on

It material, charts, and graphs than on actual pic-
il subjects. Visual Maker is a program written
frthe IBM PC that allows designing a series of
ftand graphics “frames,” specifying how long
thshould appear on the CRT screen, and assem-
{ing them into a finished slide show.

KW T0 DESIGN FRAMES

Absolutely no user programming is required.
'ﬂ}wperator simply “draws” on the CRT screen,
tugthe arrow keys for cursor control, and plac-
% dphanumeric characters and any type of
Fplic blocks wherever desired. Then, the F1is
b that frame is stored to disk. Thena BASIC
Wgram that will display the frames as desired in
lwmpleted. ready-to-run slide show is written.

Visual Maker s similar in concept to Screen

 Which writes BASIC subroutines that repro-
desired instructional screens. In fact, I used
Editor to write all the instructions in Vis-

Visual Maker

ual Maker. The idea is to allow the user to enter
various parameters and then have the computer
generate BASIC code automatilely.

You can use Visual Maker in several flexible
ways. It canbe used to generate a slide show, s§art
to finish. Or, you can create one fr?rpe at a time
to build a slide “library.” Then individual frames

can be renumbered appropriately and assembled

i ished show. Thus, youmay design several
ﬁgezfci)?several hundred frames that can be useld
and reused in multiple slide programs. A saMrzi et:
slide sequence program produced by Visual

is p?:iiigglgnFallgx;hﬁ‘:r}leﬁc key reproduces that
symbol on the screen, x.nuch like a vg:rd apvrﬁae&sé
ing program. In addition, any of ! ehitting be
graphic characters can be summoneq g g
ESC key followed by an alphanufnengs gy; fouge
out of graphics mode by pressing :
nme’i‘ he screen editor written for \'ﬁsual I\/Ieaellclelx;n 1:
a fairly simple one- Exiting from a given St

11

10 CLS
20 PRINT TAB(7)"This is a sample frame produced by Visual Maker., *

30 PRINT TAB(7)"I am writing these directions on the screen of "
40 PRINT TAB(7)"my IBM PC. When I am finished, I will press *®
50 PRINT TAB(7)"F10, and this frame will be written to disk, *®
60 PRINT
70 PRINT
80 PRINT
90 PRINT .
100 PRINT TAB{10)"Graphics may also be inserted into the "
110 PRINT TAB(10)"frames, although, because my daisy-wheel *
120 PRINT TAB(10)"printer cannot reproduce graphics, I will *
130 PRINT TAB(10)"not use any in this sample frame. ®
140 PRINT
150 PRINT TAB(10)"
160 PRINT TAB(10)"+ In many cases, normal symbols can
170 PRINT TAB(10)"+ for graphics anyway....ym ¢ substitute I
180 PRINT TAB(1l0)"
190 PRINT
200 PRINT
210 PRINT
220 PRINT
230 PRINT
240 PRINT
250 F=TIMER+10
260 IF TIMER<F THEN GOTO 260
270 CLS
L
%gg ggigg TAB(2)"This is the second frame in the sample program. *
300 PRINT
310 PRINT
320 PRINT
330 PRINT L
. _
323 ;ﬁ%gg TAB(5) I»;ntend to have_this displayed for 10 seconds. "
360 PRINT '
- 370 PRINT
380 PRINT -
390 PRINT
400 PRINT.
410 PRINT
. 420 PRINT
430 PRINT
440 PRINT
450 PRINT
460 PRINT
470 PRINT
480 PRINT
490 PRINT
500 PRINT =
g%g F=TIMER+10 = . . .
IP TIMER ‘ B -
530 oLS <F THEN GOTO 520

Fig. 15_-1._Varlabl§s used in Visual Maker, = .

112

| godd only be done at a point in which a space
| oty exists,

{ ror position :
] gished. The cursor will wrap around to the next.

otherwise the character left in the
will be erased. Or, the line can be

gaphic blocks can be used to build charts,
pighs, and other material. When you are satisfied

{ e screen design, hit F1.

{ upLAY TIME

At this point, the program uses the SCREEN
imeton to ook at each position on the screen,
hifing aline in @ manner identical to the method

{ wiin Screen Writer. The main change is that

uh screen program line set is concluded with a
e that limits the amount of time that screen is
fiplayed.

Youwill be asked how long you want the slide
gon. That number, LENGTHS, is used to write
Jlze that constructs a line that checks the value
4TIMER during the display of the slide. Aslong
sTIMER is less than F, which is its value when

{ e side was first displayed plus the value of

INGTHS, the frame will continue to be displayed.
TIMER, as you may know, keeps track of
tapsed seconds in 0.01 second increments. You can

{ wthisreversed variable in our own programs. A
{ tmiczl use is to get a random number to reseed the

"x'ou can also use TIMER with an interrupt
routine to send a program to a desired subroutine
when a given number of seconds has elapsed.

100 ON TIMER(60) GOSUB 200
110 TIMER ON

200 PRINT "One minute has passed!"”

This type of routine is valuable because our
program can be doing other things while TIMER
is ticking off. With Visual Maker, however, we
don’t want anything to happen other than the image
to remain on the screen. So, the delay is something
like this:

100 INPUT "Enter number of
seconds to delay ";l

110 F=TIMER+D .
120 PRINT"This is the image!

130 IF TIMERCF GOTO 130

150 CLS' . v_
160 PRINT "Image displayed for

":D;" seconds"

That's roughly what's done for each frame pro-
duced by Visual Maker, except that’the vz_llue for
D is entered once, and the program hmj. built from
that information. When the slide show 1s run, each

| miom mumber generator for games programs: frame will be shown for the desired interval. Wh:;
i the specified time has elapsed, the screer;:;lear)
{ 00 RANDOMIZE TIMER and the program goes on to the pext frame.
Usting 15: The Visual Maker Program
b RRARRRRRRRRRRRRAARRRAARR
0 % N
P' * visual Maker *
0 % s
g: RRRARRRRRRRRRRRRAAARRRRN
50 #0r Injtialize www
10 DEFINT A~y '
0 WHITE=219
‘ 113

Program Your IBM PC to Program Itself!

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340

345

350
360
370
380
390
400

410
420

430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610

114

DIM LN$(400)

KEY OFF

SCREEN 0,0,0

COLOR 7,0

ON KEY(1) GOSUB 1390
ON KEY(10) GOSUB 2120
KEY(10) ON

ON KEY(11) GOSUB 1330

ON KEY(12) GOSUB 1230

ON KEY(13) GOSUB 1180

ON KEY(14) GOSUB 1280
WIDE=80

GOTO 250

A$=INKEY$:IF A$="" GOTO 230
RETURN

SP$=CHR$ (32)

CLS ,

Cu=1

¢ FOR N8=1 TO 100

H LN$(N8)=""

t NEXT N8

LN=10:IC=10
PRINT:PRINT:PRINT

GOSUB 350

GOTO 470

' *%% Enter filename of program **#

LINE INPUT"ENTER FILE NAME
FOR N=1 TO LEN(F$)
T=ASC(MID$(F$,N,1))

£§X$>§6 AND T<123 THEN MID$(F$,N,1)=CHR$(T-32)

IF LEN(F$)>12 THEN PRINT"Pile name too longl"™:PRINT:
GOTO 350

S9=INSTR(F$," .BAS") '

IF LEN(LEFT$(F$,S9))>8 THEN PRINT"File name too
longi":PRINT:GOTO 350

IP $9=0 THEN PRINT "MUST INCLUDE .BAS EXTENSION!":GOTO 350

";F$

IF F$="" GOTO 350

OPEN F$§ FOR OUTPUT AS 1

RETURN

CLS

PRINT:PRINT

PRINT TAB(II).*t**t*t*************l,
COLOR 0,7

PRINT " Visual Maker “;
COLOR 7,0

PRINT RAKARRARRAAAARARARANAAD
PRINT TAB(1ll)"*

PRINT TAB(11)"* Use the cursor pad arrow ke' 0
ys to move around screen.
ggigg TAB(ll):: Press alphanumeric keys to type display. You may
PRIND TAB(ll)" hit ESC, followed by a key to enter graphics mode.
PRIN TAB(11)"* In graphics, press any key other than arrow keys to
T SRB(11)"* leave a trail of that graphics character. Use arrov

PRINT TAB(11)"* key to move without tr de b
PRIN';‘ TAB(11)"* hitting ESC once againfu. Exit graphics mo Y

L 3R BE BE b B BE R J

J

Visual Maker

PRINT TAB(11)"* * 0,

620 TAB(11)"* Computer will BEEP when cursor reaches center of the * ";

! ”PR?;% TAB(11)"* screen. Hit arrow keys once for each move; do NOT * »;
§§g gng TAB(11)"* hold arrow key down. : :;
nk .

“63 fﬁgg g:gtﬁ;" press F1 to finish input. You will be asked how : ::
|:t130 PRINT 'I‘AB(ll):: long you want each slide to be displayed. - * .:
'590 PRINT TAB(ll)l***i***ti**t***tttt*fi***ﬁttt*t*i*tttl***tttiitttttttt* ';

{0 prINT TAB(11)
: ;10 PRINT TAB(26)""3

{1 150 cosuB 230
1755 + ##* Look for keyboard input ***

.‘ %0 KBY(11) ON:KEY(12) ON:KEY(13) ON:KEY(14) ON

1l 220 coL=COL~1:IF COL<1 THEN COL=1
1| 30 LOCATE ROW,COL:PRINT CHR$(32)3
§i 340 CO=0

11 %0 1P A$=CHR$(27) AND FLAG2>0 THEN FLAG2=0:GOTO 920

1| 830 CUsASC(AS)

11 %40 PRINT *Columns ™3
1| %0 erInT cor;

{1 %0 cozor 0,7
4| 90 PRINT "Row 3 "3

{| 1030 coLor 0,7

120 COLOR 16,7
130 BRINT * ==
740 COLOR 7,0

HIT ANY KEY TO BEGIN -= ®

10 REY(1) ON

780 CLS 230

190 GOSUB

300 A$=INKEY$:IF A$="" GOTO 800
§10 IF AS<>CHR$ (8) THEN GOTO 860

§50 60TO 910

110 IP A$=CHR$(27) THEN FLAG=1:GOTO 800 .
#0 IF A$=CHR$(13) AND ROW<24 THEN ROW=ROW+1:COL=1

0 IF FLAG=1 THEN CU=CU+128:FLAG=03:FLAG2=CU
410 IP COL=WIDE/2 THEN BEEP

920 LOCATE 25,1

130 COLOR 0,7

%50 COLOR 7,0

970 LOCATE 25,15

1000 COLOR 7,0
1010 PRINT ROW;
1020 LOCATE 25,25

}ggg PRINT* Graphics 3 "3
COLOR 23,0 : "
100 IF PLAG2>] THEN PRINT " ON "3 ELSE COLOR 7,0:PRINT A .
- cg§F'+SPACE$(18)’ &

oR 7,0 oR
1080 IF FLAG2>1 THEN COLOR 0,7:PRINT 'Characlxc,grrz ;"’chon
7,01L0CATE 25,553 PRINT CHRS (FLAG2)3:COLOY Juo ., .
1090 LOCATE 25,583COLOR 16,7:PRINT" F1-END

COLOR 7,0

100 rocaTe ROW,COL
110 1P vFLAG=1 THEN VFLAG=0:GOTO 1140 =COL+1:GOTO 1140
0 IF FLAG2>0 THEN PRINT CHR$(FLAG2)j3:COL=)

115

Program Your IBM PC to Program Itself!

1130 IF CU>0 AND CU<>13 THEN PRINT CHR$(CU);:COL=COL+l
1140 IF CU=0 OR CU=13 THEN PRINT CHR$(43);

1150 CU=0 _

1160 GOTO 800

1:1165 ' *%% Move Cursor ***

. 1170 LOCATE ROW,COL

1180 PRINT CHR$(32)3

1190 COL=COL+1l

1200 IF COL>WIDE-1 THEN COL=WIDE-1l
1210 VFLAG=1l

1220 RETURN 910

1230 LOCATE ROW,COL:PRINT CHR$(32);
1240 COL=COL-1

1250 IF COL<1 THEN COL=1

1260 VFLAG=1

1270 RETURN 910

1280 LOCATE ROW,COL:PRINT CHR$(32);
1290 VFLAG=1

1300 ROW=ROW+1

1310 IF ROW>24 THEN ROW=24

1320 RETURN 910

1330 LOCATE ROW,COL:PRINT CHR$(32);
1340 VFLAG=1

1350 ROW=ROW-1

1360 IF ROW<1 THEN ROW=1l

1370 RETURN 910

1380 GOTO 790

1385 ' #*%x* Check Screen Routine *#*#

1390 RETURN 1400
i400 GOSUB 1920

410 IF SCREEN(ROW,COL)=43 THEN LOCAT
1420 Tochon oNe E ROW,COL:PRINT CHR$(32);
1430 PRINT SPACES (WIDE-1);
1440 LOCATE 25,10
1450 COLOR 16,7
. 1460 PRINT " Reading the Screen ";

i:gg COLOR 7,0

IF FFLAG=1 THEN GOTO 1530 ELS =

1490 LN$(CU)=LN$(CU)+"KEY OFF" # FRLAG=L
1500 LN=LN+IC
1510 CU=CU+1
1520 GOsuB 1920
1530 LN$(CU)=LN$(CU)+"CLS"
1540 LN=LN+IC
1550 CU=CU+1
1560 s FOR N=1 TO 24

1570 :, . BFLAG=0
1580 3 EFLAG=0
1590 s+ . N3=0 ~
iggo t PR§="w o

0 s FOR Nl=1 TO WID
1620 3 N3=N3+1 B
1630 s - T=SCREEN(N, N1)

414R.

1640 ¢ LOCATE N,N1:PRINT CHR$(WHITE);
1650 3 IF BFLAG>0 THEN 1670
1660 3 IF T<>32 THEN BFLAG=N3: EFLAG=N3 ELSE 1690
1670 3 PR$=PR$+CHRS (T)
1680 3 IF T<>32 THEN EFLAG=N3
1690 s NEXT N1
1700 + IF RIGHT$(PR$, 1)=CHR$(32)THEN
PR$=LEFT$ (PR$, LEN(PR$)-1) .
1710 :+ IF EFLAG=WIDE THEN L$=";" ELSE L$=""

1720 ¢ IF BFLAG=0 THEN 1750 .

1730 LN$ (CU)=STR$ (LN)+* PRINT TAB(
+STR$(BFLAG-1)+')'+CHR$(34)+MID$(PR$, 1,
EFLAG-(BFLAG-2))+CHRS$ (34)+L$

GOTO 1760
i;gg : LN$ (CU)=STR$ (LN)+" PRINT*®
1760 s CU=CU+1
1770 3 LN=LN+IC
1780 ¢+ NEXT N
1790 CU=CU-1

1600 LOCATE 25,10
=LN+1 .
ig%g gﬁlgg'ngw many seconds should this frame be displayed®;
1830 INPUT LENGTHS
1840 LN$(CU)=STR$(LN)+' F=TIMER+'+LENGTES
1850 CU=CU+1
N=LN+IC
iggg gNS%CU)=STR$(LN)+' IF TIMERCF THEN GOTO "+STR$(LN)
1880 CU=CU+1
1890 LN=LN+IC .
1900 LN$(CU)=STR$(LN)+" CLS
1910 GOTO 1970
1920 LN=LN+IC
1930 CU=CU+1 .
1940 LN$(CU)=STR$(LN)+"
1950 RETURN

1955 * **% Write to Disk ***

1960 CLS

1970 ¢+ FOR N=1 TO CU
1980 PRINT #1,LN$(N)
1990 PRINT LN$(N)
2000 ¢ NEXT N

2010 DEF SEG=0

2020 POKE 1050,PEEK(1052)
2030 LOCATE 25,10

3040 PRINT SPAcgi(so):

050 LOCATE 25, - "
2060 PRINT "Produce another frame? i
2070 COLCR 16,7
ggao PRINT '(g/n>‘:

90 COLOR 7,
gigg ?i igi%gf:gg A§='Y' THEN ROW=13:COL=1:FLAG=0:
FLAG2=0:GOTO 780
2120 CLOSE
2130 CLS

Visual Maker

2140 END

117

Chapter 16

—

-P= 1
—
_—

—10 SCREEN 0,0,0

— 20 KEY OFF

E=30 COLOR 2,0

F=30 DEF SEG=0

——40 LOCATE 10.5

e personal computers really useful. As a result
tireare dozens of different standards, not only be:
Zeen computers, but within a single computer line.
m;result, you may find that your DOS 1.1 won’t
" Bsector disks created by DOS 2.0 and greater,
ﬁfone word processing program will use entirely

erﬁnt contrpl codes than another.

i n::ul;Ittter isa partIcular problem, because we
s trade text files with other IBM users.
int .Dute.r has_255 different character codes
mengglzeosxélgnonng the extended codes for the
Wancil y 52 of those are required for the
o owercase Iett.ers, and a dozen or so more
gl c(;nc h:;lrl:ctuatlon, numbers, and other
eeen cters. The ASCII codes for these
ol £, y well standardized. (Although Com-
o’ccur one, uses a different arrangement.)
Mnufacuuzy the. codes. from 32 to 128. Most
BeASCIT cors assign various graphic characters to
s es from 128 to 255, and many of the
m 0 to 32 are devoted to agreed upon uses,

Irryone agrees that standards are necessary to -

Word Processing Converter

such as CHR$(13) for carriage return, and
CHR$(10) for linefeed. R

Word processing programs usually need to in-
dicate special conditions bya single character. The
software author usually accomplishes this by
assigning an ASCI code to that particular function.
One may signify a page break; another might be
a special end-of-paragraph marker. It is a common
practice to insert soft carriage returns that can be
eliminated by reformatting, as differentiated from
hard carriage returns that mark the fixed end of
lines. '
There are no standards for these special codes,
so software authors choose their own from the
codes 128 to 255, or 0 to 39, Some WP programs
use “escape” codes as well—-these are a two-
character code consisting of CHR$(27) plus some

other character.
CONVERTING FOR COMPATIBILITY

Now, if you need to manipulatea WP file from
one program with another, you may have terxﬂ)lg

119.

Program Your IBM PC to Program Itself!

problems. At best, some of the control codes will
be different and force you to make a lot of changes.
At worst, none of them will match, and the text will
be almost unreadable. Most WP programs have a
nondocument mode (usefut for editing BASIC pro-
grams, for example) that minimizes the differences.
You might even be able to perform a global search
and replace to substitute your WP program’s con-
trol codes for those in the original file.

Better yet, use Converter, which will read a
text file and convert control codes from one format
to another. Converter has been set up so you can
substitute the codes that apply to your particular
word processing program and the one you most fre-
quently convert from and to. If you have several,
you can prepare a different version of the program
for each.

HOW TO USE
WORD PROCESSING CONVERTER

How do you determine what the relevant con-
trol codes are? The software manual may tell you.
If not, I suggest running the following short pro-
gram and writing down the CHRS$ codes displayed
when various appropriate points in the copy are
reached. .
100 LINE INPUT "ENTER

FILENAME";F$
110 OPEN "I",1,F$

120 LINE INPUT#1,AS

130 FOR N=1 TO LEN(AS$)
140 T$=MIDS(AS$,N,1)

150 PRINT ASC(T$);"™ ";T$;
160 B$=INPUTS(1)

170 NEXT N

180 GOTO 120

Each time you press a key, another character
and its ASCII code will be displayed. Look for ends
of paragraphs, possible page markers, and other
codes. Write them down, find the equivalent for the
other WP program (the same way) and then make
the substitution in Converter.

The variables used in Converter are listed in
Fig. 16-1. The file names of the two word-processor
programs are defined in lines 120 and 130. Then
the control codes for program A and program Bare

- defined. The sample program includes page

marker, carriage return, end of page, and soft car-
riage return. You can substitute control codes that
best suit your application.

An array, CHARACTERS$(row,col) is used to
store these codes. The same routine can be used
to convert either way, because FROM and INTO
are defined in line 530, depending on the mode. The
appropriate elements of CHARACTERS$(row,col)
are invoked during the conversion.

In line 570, one line of text is input into A$.
Then a FOR-NEXT loop from 1 to 4 (change this

A$ Used in INKEY$ loop.
FILEAS File name A.
FILEB$ File name B.
FROM ' Which mode is to be converted from.
G Location in string of any code.
LS Left portion of string up to code.
- SMALLEST First appearance of any of the codes to be converted.
R TO -~ Which mode is to be converted to.

Fig. 16-1. Variables used in Converter.

120

{ fyou have more than four codes to exchange)

Y;)u need to find the first occurrence of ANY

| (ithe control codes in A$. The program looks for .

uch in turn and stores in SMALLEST the posi-
fon of the earliest. Variable N1 keeps track of
yhich of the codes was the earliest one.
If a code is found, the leftmost portion of the
gram line is extracted up to the code, in line 630,
and printed to the disk file. Then AS$ is redefined

{ ithe remainder of the line, in line 640.

Word Processing Converter

When the whole file is read, you are offered the
opportunity to convert another. Converter is the
least “finished” of any program in this book. You'll
have to tailor it to your own word processing pro-
grams in order for it to work at all. By this time,
however, you should have learned enough about

" handling ASCII files to make this chore a breeze.

If not, go back to the beginning of the book and
start reading again until you catch up with the rest

of us. Go ahead. We'll wait. -

Listing 16: The Converter Program

10 ! kkkhkhdhkkkdkkkk
20" * *
30 ' * Converter *
40 v * *
50 ¢ khkkhkhkkkkhkkkkk
60 '

65 ' *%* Initialize ***

70 SCREEN 0,0,0

80 KEY OFF

90 COLOR 7,0 ,
100 ON KEY(10) GOSUB 750
110 KEY(10) ON

120 FILEA$="Program A"

130 FILEB$="Program B"

140 cLs

150 LOCATE 25,30

160 COLOR 16,7 :

180 COLOR 7,0

190 LOCATE 4,8
200 PRIN
210 PRINT:PRINT

230 PRINT:PRINT

240 PAGE.MARKER.A$=CHR$(12)
250 PAGE.MARKER.B$=CHR$ (142)

170 PRINT" Hit F10 to abort. .

n== WP File Translation utility ==

220 PRINT TAB(12)" By: David D. Busch

235 ' #** pefine codes to exchang

e kkk

121

Program Your IBM PC to Program Itself!

260 CARRIAGE.RETURN.A$=CHR$(27)+CHR$(69)

270 CARRIAGE.RETURN.B$=CHR$(13)

280 END.OF.PAGE.A$=CHR$ (27)+CHR$(69)+CHRS$(27)+CHR$(71)
290 END.OF.PAGE.B$=CHR$(141) _ S
300 SOFT.RETURN.A$=CHR$(27)+CHR$(70) '
310 SOFT.RETURN.B$=CHR$(4)

320 CHARACTERS$(1,1)=PAGE.MARKER.A$

330 CHARACTERS$(1l,2)=PAGE.MARKER.B$

340 CHARACTER$(2,1)=CARRIAGE.RETURN.AS$

350 CHARACTERS$(2,2)=CARRIAGE.RETURN.BS

360 CHARACTER$(3,1)=END.OF.PAGE.A$

370 CHARACTER$(3,2)=END.OF.PAGE.B$

380 CHARACTER$(4,1)=SOFT.RETURN.AS

390 CHARACTERS$(4,2)=SOFT.RETURN,.B$

395 ' *** Enter filename **#*

400 PRINT TAB(8)"Enter name of file to process :"
410 PRINT TAB(8)"";

420 LINE INPUT F$

430 PRINT TAB(8)"Enter name of output file: "

440 PRINT TAB(8)""; '

450 LINE INPUT F2$

455 ' **% got Mode ***

k460 PRINT:PRINT
470 PRINT TAB(4)"Do you want to:"

format"
490 PRINT TAB(6)"2.) Convert from "FILEBS;" to
" :FILEAS;"format" ‘
500 AS=INKEYS$:IF A$="" GOTO 500
510 A=VAL(AS)
520 IF A<l OR Aa>2 GOTO 500
530 IF A=1 THEN FROM=1:INTO=2 ELSE FROM=2: INTO=1

535 ' *%* QOpen Disk fileg #***
540 OPEN "I",1,F$

550 OPEN "O",2,F2$

560 IF EOF(1l) GOTO 690

565 ' *** I0ad a line *#**

570 LINE INPUTH1,A$
580 FOR N=1 TO 4

122

Word Processing Converter

=INSTR(AS CHARACTER$ (N,FROM)) o
23% (I;FIG<>0 ANI') G<SMALLEST THEN SMALLEST=G:N1=N

610 NEXT N
=0 THEN GOTO 670
ggg £§=2E2'T$ (AS,SMALLEST-1)+CHARACTER$ (N1, INTO)
640 AS=MIDS$(AS ,SMALLEST+1)
650 PRINT #2,L$;
660 GOTO 580
670 PRINT #2,A$;
680 GOTO 560
690 CLOSE

695 ' %%% Do again? Ll A

700 CLS

710 LOCATE 25,10

720 PRINT"Process an
730 AS=INKEY$:IF A$=-
740 IF A$="¥Y" OR AS="Y
750 CLS

760 CLOSE , B
770 END

other file?";
=n THEN GOTO 730
» THEN RUN

480 PRINT TAB(6)"1.) Convert from ";FILEAS$;" to ";FILEB$;"

Chapter 17

’

f)

e G,

10 SCREEN 0,0,0

|

=20 KEY OFF

=30 COLOR 7,0

=40 LOCATE 10,5

F— 30 DEF SEG=0

——

Unp.acker is the last demonstration of ways to
manipulate ASCII files. The final program in the
book, Music Writer, will create files, but not edit
them. This program will read in your ASCII for-
mat program files and, where possible, rewrite
the'm so that each statement is on a separate line.-
Th.xs may make debugging easier and the program
abit simpler to understand. It has some limitations,
but they are few. - SR
By now you should understand how Unpacker
jNO{ks even without any explanation. The concept
18 simple enough to be explained in a few sentences.
he program reads in each program line, as we
have done previously. It looks for colons, which sep-
arate statements. If a colon is found, the line is bro-
lfen at that point, and the remainder of the program
line is assigned a new line number and printed as
the next line. Colons inside quotation marks are ig-
nored. There is no provision to allow for colons
after REMarks, however, so you should use some
Caution. Figure 17-1 lists the variables used in Un-
Packer.

Unpacker

Line 350 sets P, the variable that indicates the
position at which the search will begin, to one,
Then, as each program line is read in, starting at
line 360, the program looks for the first space in-
the line, S, the first occurrence of the reserved word .
“IF”’, and the position of a colon. The first and sec-. -
ond appearances of quotation marks are also noted. . -

If you happen to have left off a closing quota-
tion mark, the rest of the program line will be con-
sidered to be within the quote by the computer. In -
this case, the position of the missing quote is set
as the length of the program line. -~ i

Next, the Unpacker looks to see if G, the posi-
tion of the colon, is greater than that of the first -
quotation mark and less than that of the second, .
meaning that it is inside the quotation marks. The :
position of “IF” is also examined to make sure it |
is not inside quotation marks. If either condition is ’
true, then P is set to the position after the second |
quote, and the program loops back to continue the *
search. C- :

If the colon or “IF” are not

within quotaﬁon

125

Program Your IBM PC to Program Itselfl

A$ Line input from the file.

F$ File being processed.

F2$ Output filename.

F Location of “IF".

G Location of colon.

LN . Line number.

Q1,Q2 Location of quotation marks.

S Location of first space in the remaining line.

Fig. 17-1. Variables used in Unpacker.

marks then the program goes on to process the line.
As you know, when the PC encounters an IF state-
ment, the rest of the program line is carried out only
if the statement that follows IF is true, except
where an ELSE is provided. In fact, there may be
nested IFs and ELSEs that can truly make the logic
difficult to follow. In fact, this is to much for a sim- ~
ple program like Unpacker. We don’t want to mess
up true statements that follow “IF,” so when IF
is found, the program stops dividing up the line and
continues to the next. In other words, it avoids the
problem by skipping it altogether. This is a time
honored programming practice that is frowned
upon. If however, we can achieve 90 percent of the
dej:sired goals of Unpacker without going through
contortions, it may be worth it to bend the rules a

bit. Points of diminishing returns CAN be reached
even in programming.

If there is no IF, the line number of the cur-
rent line is calculated. Since the first characters on
a line, up to the first space, will always be the line
number, the program can find the line number by
taking LEFT$ (A$,S-1).

LNS$ is defined as everything from the begin-
ning of the line up to the colon (minus one). LN§
is printed to the disk file in line 580. A$ is redefined
as everything following the colon. A new line
number is needed for A$, so LN +1 is used. Then
the program goes back to look at the new A§ for
additional colons. That’s all there is to this simple
but useful utility program. ’ -

'Llsﬁng; 17: The Unpacker Program

10 ! Ehkkkkkkkkhkkkkk
20 v * : B
30 ' * Unpacker *
40 ' * . Lk
5.V Akkkkhkkhkhkkkkk
.60 '

65 ' #xx Initialize ##+

70 SCREEN 0,0,0
80 KEY OFF

90 ON KEY(10) GOSUB 700

126

. Unpacker

100 KEY(lO?I gN
0 COLOR 7/«
50 CLS:PRINT:PRINT
130 LOCATEI%S _,’30
OR .
igg g?&t\l'r" Hzxt 10 to abort. ¢
160 COLOR 7.0
170 LOCATE04 6‘.\.2 "
igg gggg% "-'-== Un Packer ptility ==
200 COLOR ;f'{gNT . -
T i . .Busc
3212?) gﬁgfr TAB(12)" BY: pavid D

k%
225 ' *** Enter filename to process *7

PRINT: PRINT _ :]
it T of file to process
250 PRINT TAB(S)"Enter name
260 PRINT TAB(8)""}

T F$ ut fi
280 gégnggig(s)"Enter name of OutP

ne e
290 PRINT TAB(8)" i
300 LINE INPUT F2%

1e "

. Y3,
305 ' *** Open aisk files

310 PRINT:PRINT
320 OPEN "I",1,F%
330 OPEN "O",2,F2%

'Y 2.3
335 1 k¥ Start new line

340 IF EOF(1) GgoTo 640
P=1
ggg LINE 1NPUT#1.A$

[3
colons ***
65 . *** Look for gpacess 1F, and
365 "

370 S=INSTR(P,A$,Ei]i:l;ﬁi:;ﬂ)
380 F=INSTR(P,A$ ’

") SE GOTO 480
200 G=IN§§%(iﬁg$é>s) ;EN GOTO 410 EL

400 IF S E26)

430 i%Rmﬁ§§%T§?Nz,1)<>CHR$(32’ TH

430

12

/

Program Your IBM PC to Program Itself!

450 IF SFLAG=1 THEN SF
LAG=0:GOTO 480

460 A$=LEFT$(AS$,S)+

470 SFLAG=0=GO§6 ;7gID$(A$rG+LEN(T$))

475 ' *** Find Quotes xkk

480 Ql=INSTR(P,AS$,CH

= +CHR$ (34))
ggg ?%—INSTR(QI+1,A$,CHR$(34))
20 Q1>0 AND Q2=0 THEN Q2=LEN(AS$)
230 ig g:ngHEN GOTO 610 ‘

AND G<Q2 THEN P=Q2+1;

gig %g §>Ql AND F<Q2 THEN P=Q2+l;gggg g;g
o >0 AND F<G THEN GOTO 610

0 LN=VAL(LEFT$(AS$,S-1))
ggo LN$=LEFT$(AS$,G-1) :

0 A$=MIDS$(STR$(LN+1),2)+" "+MIDS$(AS$,G+l)

’

575 ' *** Write to Disk ***

580 PRINT #2,L
590 PRINT LN$ Ny
600 GOTO 370

610 PRINT #2,A$
620 PRINT A$

630 GOTO 340

640 CLOSE

645 ' **% Do again? ***

220 CLS

0 LOCATE 25,10

670 PRINT”Proéess an

ggg ?$=INKEY$:IF A$=e§hggT§ié§? (x/m
F A$="Y" OR AS$="y" :

290 ors y" THEN RUN

710 CLOSE

720 END

Eeui—

Chapter 18

—

& e

=10 SCREEN 0.0.0

—20 KEY oﬁ@

r— ,—-——-—-———_
=130 COLOR e

= 40 LOCATE 105 ey
=

E—50 DEF SEG=0
®

\

on

~ Creating Your
Own DOS Commands S

Most of this book has been concerned with BASIC
I{rogramming tips and utilities. However, I've men-
tlgned some of the interesting things you can do
with PC-DOS, and it might be fun to slip in a few
of them for you to play with. For example, wouldn’t
you like to create your own DOS commands?

1, for one, have not yet gotten accustomed to
the PC’s keyboard, and typing in DIR B: can be
fraught with confusion as I try to remember to hit
the Shift key to get the colon. 1 don’t even bother
anymore. When I want to se€ the directory of drive
B:, I just type D B. If I happen to be logged onto
B:, I can just hit D. : ‘ ;

Some of us are fair spellers, but have difficulty
remembering acronyms and abbreviations. Is it
“CHKDSK”, or “CHCKDSK” or what? No bother.
With my computer system, I just type CHECKA
or CHECK B to examine the desired drive.

This magic is worked through
These are system files, nothing more than ASCII
text, with the .BAT extension. When you invoke
a batch file, the IBM PC will look at each line and

attempt to execute it as if it were entered from the

BATCH files.’

keyboard. On powerup, the PC will look for a
special batch file, AUTOEXEC.BAT. If it finds it,
those commands will be executed automatically,
without your needing to do anything. =~

ALTERING THE SYSTEM PROMPT

AUTOEXEC.BAT is a good way to custom-
configure your system the way you want it. You
can run utilities that set the system clock tod clock
board you've installed, activate a RAM drive, or
do other tasks on powerup. Here's a line that is in
my own AUTOEXEC.BAT file: o

pROMPT $tShshshehsnsns_§nsa

right? PROMPT lets you alter the

" Abit cryptic,
system prompt, using several special charaCters,
each preceded by 2 dollar sign to differentiate the
special characters from any other string you might
want to include in the prompt. Here are the Speaal

characters that are legal: L 5

t :the time
129

Program Your IBM PC to Program Itselfl

the date

the directory of the default drive
the DOS version number

the default drive name

the greater than symbol

the less than symbol

a blank space

the equals sign

backspace

ESCAPE ‘
Go to the next line on the screen

to Qo ~R D 9T o

So, typing PROMPT ng would set the
system prompt to the default drive name and the
greater than symbol, like this:

A> or B>

That is the normal prompt setting. You can

change the prompt to include the time, date, DOS
version number, and other information as you want.
Perhaps you have deciphered my own system
prompt shown above. It looks something like this,
as a two-line prompt:

22:37
A>

I include the time, $t, followed by six
backspaces, $h, so the seconds and fraction are
written over. I care only about whole minutes. Then
the prompt drops down a line and prints the nor-
mal default drive and “>" information. When I
need to know the time, I simply press the Return
key, and my system prompt tells me. The rest of
the time the clock ticks away unobtrusively. As a
side benefit, I can tell at a glance how long it has
been since I used my PC. I press the Return key
and compare with the system prompt above it.

SEARCHING THROUGH
DISK DRIVE DIRECTORIES

There is one very important line you should in-

P

clude in your AUTOEXEC.BAT file, especially if
you want to define your own DOS commands. That
line looks something like this:

PATH A:\;B:\

That command, once invoked, will cause the
system to search through the directories of your
disk drives in that order when it cannot locate a
batch file or command in the currently logged
directory.

I repeat: the PATH command can tell DOS to
look on other disk drives besides the currently
logged disk for a batch file or command.

Do you understand what that means? If you
have tried to load BASIC, which is stored on A:
when you happen to be logged to B:, you probably
have wished that DOS were smart enough to go
look on a different drive if it couldn’t locate a file.
Well now, at least with command files and batch
files, you can tell DOS to do that very thing! It
makes it practical to use batch files as new DOS
commands, because it does not matter where you
happen to be logged when you decide to use a com-
mand. The command will be faster if it is located
on the logged drive, but it will work on any drive
that you have specified with the PATH command.

CREATING BATCH FILES

Now, on to the batch files themselves. When
you type a file name with no extension, DOS first
looks to see if there is a .COM or .EXE file with
that name. Then it checks to see if there isa .BAT
file that matches. If so, it will execute that batch
file. If you wanted to invent a command called
“CHECK,” which would invoke CHKDSK, you
could create a batch file called CHECK.BAT with
the single line: CHKDSK. Then, typing CHECK
would summon CHKDSK automatically.

To write your own batch file, just copy from
the console. Here is a sample session:

COPY CON:CHECK.BAT<ENTER>

CHKDSK<F6> =
(1) files copied.

Using F6 instead of the Enter key. ends your
batch file input, while saving you a carriage return
in the file. Now, the batch file you have just created
is useful; however you can make it more so. DOS
allows you to specify up to 10 parameters on t.he
same line as the command invoking the batch file.
These parameters will be dropped into the batch
fle in the locations indicated by numbers you put
there, “%0”, “%1”, “gp2”, “%3", and so forth.
They will be included in the order you place them
on the command line, but they do not haye _to be
in the same order in the batch file. Try this line 1n

your CHECK batch file:
CHKDSK %a1: /[F
Now, from DOS you type:

CHECK B

When the batch file is executed, DOS su;-
stitutes the B parameter for the %1, and the co

mand is now:

CHKDSK B: /F

CHKDSK will do a check of drive B: plus fi’x
any lost data, as directed by the /F switch. T ha:1 s
all there is to creating that new DOS command.

Try this one:

COPY CON:D.BAT
DIR %l: /W

Now, you can invoke D.BAT by typing:

DAorDB
i ;e you want. The
and get the directory of the drive g e format.

M) - h
/W will display the directory 1 .
You could substitute /P and have the directory

Creating Your Own DOS Commands

shown in columns, but pausing when the screen is
filled. ’ = :

CREATING A TEXT FILE
Having difficulty remembering the syntax for
certain DOS internal or external commands, h}(e
the MORE filter? We can’t have a batch file with
the same name as a .COM or .EXEbﬁle, so Iah:ez
file that shows me, page DY page,
gz?tfig:x DOS, using MORE. 1 callit LOOK.BAT.

* This one needs two parameters, one for the file to

be looked at and one for the drive on which it
resides:

COPY CON:LOOK. BAT
MORE<%2:%1

B, whenl
Now, I type LOOK MYFILETXT \

want to look at MYFILE, whichis on drive B:. DOS
substitutes, coming up with:

MORE<B:MYFILE. TXT

hich I never
This happens to be the syntax, Wi
remember, to useé the MORE screen display filter .

MYF I can look at it a screen at
o EE'TXT,.E;\)/IORE— pause in between

MORE WAYS 70 USE BATCH FILES
Think of any command yow'd nge DOS to have‘i
‘When [am on drive A:, but I’@ like to bg&g%é%
onto drive B:, and in BASIC, I just type maté
d guess what happens? You probably can ate
?batch file to implement commands of your OWI.

Keep in mind the rules: no conflicts in batch file

isti ds. Only 10

between existing comman
gzrmafnseters, numbered %0 through ;/;9,5320 g
used, unless you use SI%III‘“H%I‘t édaatﬁit;%t p;ﬁ beor
mand. That’s a bit comp ot B

useful si ce more than 10 . .
Yosllxn might, however, be interested in COI

Bk

Program Your IBM PC to Program Itself!

structing your batch files and DOS comm
. ands us-
ing the other batch subcommands available. T;:si
include PAUSE, which stops the batch file until you
press a key, REM, which allows you to embed
;e;tﬁ;, ;:egREAKh , which tells DOS to look for
2 contral ¥ whenever a program asks for DOS

You can also make batch files into li

: to little

grams on their own with IF, GOTO, and FOR 5:;

132

commands. This chapter is not i

t ot intend
oompletg tutorial on batch files. But I ho;fed Ifo ol
ten you interested in finding out more wa e

them to make your Automatic IBM PCyzxfgrzst:

(r:noore efficiently for you. Just keep in mind that th

IBﬁp_uter can do apything you tell it to do, and th:
i1s supplied with modes of instructions

to none. . second

Chapter 19

e

— P
=10 SCREEN 0,0,0]

=20 KEY OFF
=30 COLOR 2.0

F—40 LOCATE 10,5

F=50 DEF SEG=0

- Music

I have one more program for you. Music Writer will
write programs that play songs! All you have to do
is enter the names of the notes and how long you
want them played. The program will write lines
that, when run, will play the song you have entered.

Music Writer uses BASIC's PLAY command,
which can play strings of notes through the PC’s
speaker. Unlike the SOUND command, which re-
quires that you enter the frequencies of the notes:

10 SOUND 440,10

PLAY lets you enter the actual note names: ’-7

‘10 PLAY "A#BCD#"
or

10 F$="B¢DEF"
20 PLAY F$ _

... Asyou might have noted, sharped notes are in-

Writer
dicated by following the letter name witha § (or +,
since sharped notes are half a tone higher.) Flats
are indicated with a minus sign. That s, B- would
be B-flat. Music students will know that only half
a tone separates some notes, so in those cases flats
and sharps are not allowed. For example, Band C
are only a half-tone apart, so B# and CHlat are il-
legal. The IBM PC is smart enough to know this.
Your PLAY string can include other characters
in addition to the notes A to G. If youinclude “0”,
followed by a number 0 to 6, an octave will be cho-
sen. Each octave goes from Cto B. AN “L”, fol-
lowed by a number from 1 to 64 will indicate the
length of a note, with 1 being a whole note, 22 half
. note, on up to 64, (a 64th note, or 1/64th of a beat.)

A “P” (for pause) can be used with the same

numbers to produce a rest, or silence, of the in-

" dicated length. :
Usinga “T" in your string, accompanied by a

ter notes per minute. The default is 120.

" number from 32 to 255, will set the tempo, in quar-

" You can also include several other strings, such :,

{5
E

133

Program Your IBM PC to Program Itself!

as “ML” for music legato or “MS” for music stac-
cato. You really need to know your music to use
these correctly. Consult the IBM BASIC guide for
tips on using these commands.

A typical string might look like this:

10 F$="L8ACDEP2G#DL16ACDEO4"
Now, you can sit down at your PC and write

these strings, using sheet music if you wish. It is,
however, easy to make a mistake, and writing a pro-

gram to play the strings can be time consuming.

The Automatic PC can do it for you.

Music Writer will let you enter strings and per-
form some error checking to make sure that each
“L” or “P” is always followed by a number in the
range 1-64 and that numbers don’t appear where
they don’t belong. Only the correct notes will be
allowed, with C-flat automatically filtered out.

Pressing F1 will stop the programming at any
time. As always, you can abort by pressing F10.

The program, the variables in which are shown
in Fig. 19-1, works like this: the file name for the
output file is entered, and the file opened. Then a
string, F'$, which includes the notes and characters
that can be input, is defined.

~ The last note entered, at location 5,5 (row 5,
column 5) is erased from the screen. Then an

INKEYS$ loop starts to wait for you to press a key.
If the key pressed is backspace (CHR$(8)), and
notes have been entered, the rightmost character

-is deleted from NOTES, which stores the notes
entered so far.

If E$ equals carriage return (CHR$(13)), the
program begins processing the string you have
entered. The first step is to change any lowercase
letters to uppercase. Then the ASCII value of the
first character in A$, and the VAL are taken. The
LAST character entered, R$, is also found, so the
program can see ifa “P,” “L,” or “T” was entered.

" If so, it insists that the next entry be a number in

the proper range. If wrong entries are made, the
program branches to various error routines. When
NOTES$ becomes longer than 200 characters, or if
you press F1, the program writes the NOTES$ to
disk, building a PLAY program line, in a manner
similar to the way lines are built in many other pro-
grams in this book. At the same time, the program
PLAYS the NOTE$ you have compiled.

You'll find that Music Writer gives you a fast
way to key in your favorite tunes, while keeping
you from making many input errors. In fact, I've
carried the error trapping almost to extremes. After
you press each key, the program will prompt you
as to what type of input is expected next. If the oc-
tave you’ve chosen is too high, it will tell you that.

A% String entered by user.
coL Column to print string.
DELAY Delay loop counter.

E$ Used in INKEYS$ loop.
F$ Allowable characters.
LN$

Current line number of program being written.

MusIC$ Filename of program being written,
N " Loop counter.

R$ Last character entered.

ROW - Row to print string.

U . ASCIl value of first character in A$.

Fig. 19-1. Variables used in Music Writer,

134

e tempo is too slow or fast, you'll be notified.

I’If‘}tg prope]; input format is displayed on the screeg
imes.
* alllntlsrixlort, you should press the Entffr key after
each note is completed. For example, if you want
the notes, A, Bflat, C, you would type
A<ENTER>, B-<ENTER, and C<ENTI::R> .
As soon as you type in the A, the program w111 tell
you that the next character mustbe a plus, minus,
or § or Enter. It doesn’t check to see if the note 1S
alegal one, e.g., B-flat, until you press the Enter
er.

FCY%'II:‘ZV: ;ou type a letter suchasOQor TorPor
L, which must be followed by a number value, the

Music Writer

program will immediately add the character to the
string, without your having to press enter. Then
you will be told that the next entry must be a
number. You can always backspace to correct a
note or other character entered in ervor. If you
backspace to correct an entry and go back as far
as one of those letters, then your nex.t entrs_r must
again be a number. I've made Music Writer as
foolproof as possible. Ir's almost imposs:ibfe to }xxatllile
an illegal entry. Incorrect entries are still within the ‘
realm of possibility. So 1 haven’t removed all the
fun for you. If you wish, you can Compose some
awful-sounding music—just more efficiently.

Listing 19: The Music Writer Program

.10 L) ****************
20 ' X . - *
30 ' * MUSIC WRITER :

" *
gg J ****************

55 ' *%% Initialize khk

60 CLS

70 SCREEN 0,0,0
80 COLOR 7,0

90 KEY OFF -
100 ON KEY(l) GOSUB 9330
110 ON KEY(10) GOSUB
120 KEY(1) ON

130 KEY(lO)lgNl

140 LOCATE 10, -
150 PRINT: SPACE$(65)i
160 LOCATE 10,1

165 v x%*% Enter name £

170 BEEP
180 PRIN

190 LINE INPUT F$
200 FOR N=1 TO LEN(F$)

210 T=ASC(MID$(F$.N.1>)

orlbutput fil

T"ENTER FILEM _FOR ﬂU

e kk¥®

SIC "¢

135

Program Your IBM PC to Program Itself!

220 IF T>96 AND T<123 THEN MIDS(F$,N,1)=CHRS$(T-32)

230 NEXT N

240 IF LEN(F$)>12 THEN PRINT"File name too
long!":PRINT:GOTO 140

250 S9=INSTR(F$," .BAS") \

260 IF LEN(LEFT$(F$,S9))>8 THEN PRINT"File name too
longl":PRINT:GOTO 140

270 IF S9=0 THEN PRINT "MUST INCLUDE .BAS EXTENSION{":
GOTO 140

280 IF F$="" GOTO 140

290 OPEN "O",1,F$

300 GOTO 370

310 LOCATE 25,55

320 COLOR 16,7

330 PRINT "Fl-QUIT SONG Fl1l0-ABORT";

340 COLOR 7,0

350 RETURN

360 FOR N=1 TO 500:NEXT N

370 CLS:GOSUB 310

380 LOCATE 2,10 :

390 PRINT"START ENTRY NOW :*" ‘

400 F$="A-A#A+B-C+C#D-D#D+E-F#F+G-G#§G+OLPTMX<>MFMBMNMLMSX"

410 ROW=10:COL=5 o

420 LOCATE 5,5

430 PRINT SPACES(70)

440 GOSUB 1010

450 LOCATE 5,5

460 X=CSRLIN:Y=POS(2)

465 ' *** Hajit for input *#**
470 E$=INKEY$:IF E$="" GOTO 470
475 ' *** Handle backspace **#%

480 IFP E$=CHR$(8) AND LEN(NOTE$)<1 THEN G

490 IF E$=CHR$(8) THEN LFLAG=0:LOCATE ROW?gng;gINT
SPACES (LEN(NOTES$)) :NOTE$=LEFT$ (NOTE$, (LEN(NOTES$)-1)):
G$=RIGHTS (NOTE$,1):IF G$="T" OR G$="P" OR G$="L" OR
G$="0" THEN LFLAG=1:GOTO 810 ELSE GOTO 810

495 ' *** Check for required number *##

500 IF LFLAG=1 AND VAL(E$)<1 THEN LOCATE 2
PRINT"A Number Pleasel!! "; :BEEP: Sl
FOR Nl=1 TO 800:NEXT N1:GOTO 900 :

510 IF LFLAG=1 AND VAL(E$)>0 THEN LFLAG=0

*.
515 ' *** Check for required sharp oI flat or natural **

= E$="4#" THEN
="-" OR E$="+" OR E$=CHR$(13) OR "
320 igcgiE 25,1 :PRINT SPACE$(50); ELSE 1F NFLAG=1 THEN
BEEP: LOCATE X,Y:GOTO 470
p4 es
gig kgggg?Eg;le A>96 AND A<123 THEN A=A-32:E$ CHR$ (B)
550 X=CSRLIN=Y=POS§Z)+1

555 ' *** Prompt for a number kkk

= OCATE
E$="0" OR E$="L" THEN L
5 LgCATE 25,1:COLOR 0,7 :PRINT"
COLOR 7,0:LFLAG=1

560 IF ES$="P" OR ES$="T"
25,1 :PRINT SPACE$(501;:
Now enter a number. "7t

570 LOCATE X,Y¥

580 PRINT E$;:IF LFLAG=1 THEN A$=E$:E$=CHR$(13)

ik
585 ! *** prompt for sharp, flat or natural

<>0 ’)

0'7=PRINT'NOW : 9R OR 7 0:LOCATE X,Y:NFLAG=1

R> (natural) ; :COL r0:L

600 §§N§§<>CHR$(13) THEN A$=A$+E$.GOTO 470

610 IF AS$="" GOTO 420

620 U=ASC(A$;L(A$)
ER=V.

gig ?gMgUMBER>O OR R$=“0'NnggoGggg 660

650 IF INSTR(F$,A$)=0 THE

1))
660 R$=RIGHT$(NOTE$, 00
670 18 NoMEe 0 Agg §i:“g;E§HEngoggo ELSE GOTO 730
RS D (NOTES s T0 730
283 ig RiGHT$(NOTE$,2)="¥3"833EN GO
700 IF NUMBER> 64 THEN GO

710 1IF NUMBER<1 THEN GoTo 900

90 790 | "
;gg gg?gU;BER<7 AND R$="0" THEN GogOR$="T“ THEN GOTO 790

740 IF NUMBER>3§E§NgO$gMg§%<256 AN
IF R$="T" T

;28 IF R$O"O" THEN GOTO 780O 890

770 IF U<47

7
Tho 17 Dode B LT UL R e

: =LE
A$=R$+A$.NOTE$
800 NOTE$=NOTE$+A$
810 LOCATE ROW,COL A
820 PRLE P 200 THEN GoTO 910

-1)):GoTO 770

830 IF LEN(NOTES)>

137

Program Your IBM PC to Program Itself! Chapter 20

840 Ag=""
850 NFLAG=0
860 GOTO 420 | : :
865 ' *** Notify of errors *** : ,ﬁ — 3 ‘ -
o ——————
870 LOCATE 25,1:PRINT "NOTE OR REST TOO ’ =10 SCREER 0.0.0
: : LONG"; :G = A=
880 LOCATE 25,1:PRINT"TEMPO INCORRECT"; :GOTO Soo 0 200 \ ' = e
890 LOCATE 25,1:PRINTOCTAVE WRONG?; :G0TO 900 e e—
00 E?CATE 25,25:COLOR 0,7:PRINT" INVALID CHOICE x S Speeetpear———11
; :BEEP:FOR DELAY=1 TO 800:NEXT DELAY:LOCATE 25,1:COLOR = =|?

7,0:PRINT SPACE$(50); :A$="":
910 GOSUB 930 $(50);:A5="":G0TO 420
920 GOTO 420

=

925 ' *** Write song to disk ***

930 LN=LN+10
940 PLAY NOTE$

970 NOTES$="" , -

380 CLOSE N . BRI
20 CLS A - . o t takes the instructions written by the program-
1000 END ' The whole aim of this book has been to s?xgw you tha o5 et them into the computer’s ma-
: how to make your programming more efficient by ~ mer an e 2 line is run. : ;
1005 ' *** Show entry style **# | | etingoter rograms wite YO KTl The o T, when 2line like FOR N=1/TO
‘ : i gram ted so far generate pro- ' . . e
1010 LOCATE 3,30 ' | sgxl);t;elxl}ng;om()dig g;m, or perfofm other tasks 50:B=A.+ C:NEXT N is enf:ouélégreg&y thd?ff 1:::;':

t for you i3ut there is no reason o limit your preter will mjcu]ate.the machine coce chsl

] at ities included times. T his is why interpreters are so mu ower

1030 LOCATE 5,30 than machine language programs. There are, how-

here. Actually, there are mat, %% progama ot ever, advantages to interpreters. One is that a pro-

1040 PRINT"Note names: B- | |
: B=- <ENTER>" , _ | :
iggg ggggggps 39 ‘ ‘ the market that will streamiine your work: gram canbe writtena small part ata time, and each
1060 PRINT® 3‘:338 P<ENTER> 2<ENTER>" | . DEVELOPING A PROGRAM - sectionrun, tested, anﬁe?‘t"“iﬁ‘:dr‘:‘;‘:?;ﬁg‘;
1080 PRINT"Length: . WITH A WORD PROCESSOR . = Another advantage is that interprete
: L<E _ . : : : r
1090 LOCATE 8,30 NTER> 2<ENTER>" ' " There is one tool you may not have thought of, error trapping featurest:h ta; ggfiuxxﬁfggge {alrlzeer
ﬁg g PRINT"Octaves: O<ENTER> 1<ENTER>" ‘ unless you are an old time programmer, write in mput——sum;h. as age;:;;; S L o that might bove
1120 gggng 9,30 ' , assembly language, or write for compilers. That ~than 3276 t.u.l anted when the program was written.
1130 RETugNTempo : TCENTER> GOCENTER>" ' ’ | utlity is your word DI vgﬁd lzrogietzigrtshgi beencznn?gﬂl:ga and assemblers are less forgiving.
: ' in common with texté S : HrO~
Eﬁtybl;i;ez:ﬁnmtﬁg past to write progras that Code i written, :n(g) ;2; ?Otg:e hf{?gtiku::d@:: f)’:ﬂy
are compiled or assembled into machine language duce the nmb - difying the source code and com
code. Most Basic programmers today, however, b‘.’.correae‘issemymnn ew object code. Partially
have.never written a Prograiy witha fet! proce.::SOI'.‘ %eﬂ?a%lsiro? this lt;Ag‘Ig interpxlfeters have been th
« e th 1 ers.]
The majority have worked 0£1zvx;tguﬁ:?r2egr am favored program development tool. And, IBM K

An interpreter is, of course,

138 13

Program Your IBM PC to Program Itselfl

BASIC programmers have missed some of the
editing and program writing tools possible with
word processors.

Of course, the PC has both screen and line
editing. It’s nice to be able to move the cursor
around and change code rapidly. Those of us ac-
customed to word processing, however, appreciate
other features, such as global searching and replac-
ing, and zipping from one portion of a document
to another.

But wait. What if the program were loaded into
the word processor as if it were a document? The
arrow keys could be used to zip the cursor around
the program, and changes made by overtyping,
global search and replace, and other powerful
features.

‘The only “trick” to using a word processing
program as a program editor is to remember to save
the program from BASIC in ASCII form. Then it
usually can be loaded into the word processing pro-
gram. You must also take care to store the program
from the WP software in ASCII or nondocument
mode, as well. If you forget this step and attempt
to load the program, only a few characters of gar-
bage will appear on the screen. Don’t panic. Return

-to the word processing program, reload the com-
pressed program file, and then re-SAVE it in
ASCIIL

‘What can you do with a program in text form?
For starters, how about formatted listings even
slicker than those produced by LISTER? The lat-
ter was provided both as an illustration and for
those who do not have a WP program; however,
a word processing program was used to print out
the listings reproduced in this book. The word pro-
cessing software divided up the program lines into

pages and printed a header at the top of each page.

My WP program allows setting the window of
the IBM PC’s screen to the same width as the paper
being used, so it was simple to scroll down through
the program text to see when lines were too long.
In most programs, for clarity, line breaks were cho-
sen and the next part of a line indented. A word
Processing program was also used to add spacing

140

between REMarks and the program lines preceding
and following.

Although original code cannot be tested while
in a WP program, there are advantages that make
them very desirable. Here are a few tips for using
a word processing program to streamline your pro-
gram writing. Those of you with other WP pro-
grams can use them as well, by applying the
particular syntax and commands of your favored
text processor.

O Put your most-used modules at the tips of
your fingers. Several phrases and program lines
were written and encased in blocks given unique
markers. If your WP software does not allow mark-
ing multiple blocks, perhaps you can store these
phrases in the Library or boilerplate file. Then,
when a phrase like A$=INKEY$:IF A§=“"
GOTO was needed, it was a simple matter to in-
stall it from the built-in library of routines.

Of course, it would have been simpler to write
subroutines and call these rather than write the
code over and over, even automatically. But,
“‘easier” is not always as clear for someone attemp-
ting to understand a BASIC program, so in many
cases, subroutines were avoided. Programming
speed did not slow down, however, because of the
power of the word processing program.

DO Global searches, replaces, and deletions
made writing the programs in this book much
easier, as well. Halfway through a program, on
discovering that a variable name was ill-chosen, it
was a simple matter to replace all occurrences in
a couple seconds. REM *** could be changed to
? #** almost instantly, Some program screens, writ-
ten using Screen Editor, had PRINT TAB(0)ina
number of places. All the TAB(0) appearances
could be deleted quickly.

Care has to be taken when using this feature,
however. A word processor will not check to see
whether or not the string being changed is inside
quotation marks. Changing all PRINTs to
LPRINTS can result in some undesired modifica-
tions, such as LPRINT becoming LLPRINT, or “IS

Some Tips

PROGRAM1.BAS PROGRAM2.BAS, and so on.
This system works fine, but few. of us can
remember what we called the last version when we
are ready to save the next version. Either we in-
voke FILES to check, or play it safe and skipa

ber or two.
numHere’s, a short program that can be appgnded
onto the end of any program you are working on
and used to automatically SAVE an.updated ver-
sion of the program, under an appropriate .ﬁle ;ax{le.
‘When you type GOTO 30000 at any point during

YOUR PRINTER ON?” being transformed into
«[S YOUR LPRINTER ON?” .

0O Programs can be “cleaned up” quite easi}y.
Itis fast and efficient to zip through a program v.nth
a word processor and touch up sloppy coding,
change all-uppercase prompts to upper and lo?v.er-
case, or delete undesired spaces. After \jvnnng
TABBER, I wanted to go through some earlier pro-
grams and center prompts. Uniort'unately some
program lines had prompts with, horrors,

. i the
embedded spaces: rogram development, the module wxll.collect
YOU WANT TO:" EunentTLMf-:iextgacglzh;:;f and minutes, and
. 2 ’ e the X
%g gg?lgg " 1.) lgggcgw . use that to
30 PRINT * 2.) EXIZ :ﬁzs 30000 B$=TIME$:H$=B;II;$)(B$,10.2)
L ICE:" 30010 M$=MID$(13$,1 l:1$+ oas
40 PRINT " ENTER CHO H 30020 Fe="PROG A .

s 0030 SAVE F$

While it was easy to type like tha&twl'lenwnung 3

the original program, someoné typing in the pro;
gram from this book would be hard pressed to count

rmat the
the number of spaces needed to properly fo at e

i disk,
lines in ASCII form on your
andstlalx glfsl;%ND or MERGE it to any program

i ot have line pumbers that
youchoos Gebich o EDIT line 30020, replac-

: . By replacing all P : want to
s st syt 0 oy et
. " ith simple P) for the program you are
ing all PRI ti nm?rks the excessspaces are mOI® MR T vack up the program to
statements and QUOTAT0 1im’inated. Then the developing. If you drives automatically, add the
inside the pron"lptS b t where needed,and two (or mo_re) disk

PRINT TAB(T)’s could be pu following lines:

TABBER could be used successfully.

—wp:"+F§sF2$="B: "+F$
95 F1$="A:"+F$:F
38835 SAVE F1§:SAVE F29

These short examples are just two of the

PROTECTING YOUR WORK .
Here's another quick tip. Asa progralI{n i;spi:
veloped, it is good practice to save the wor.

e d a power i elf to make your pro-
gress to disk penml’lcauzt.ll'l;lfmv\sr’;ll:?sﬂnot lost. ~ utilities yOU c?:rw’lflt:ies%zzfs}de have given you
failure occur, hours WO o cleups are Very easi The goal of the automatic IBMP

With disk-based systems, rogrammers ideas for others. do all the work, and the pro-
easy—so simple, in fact, ﬂ‘atk{féngisi's directory, istolet th?1 co:;lptllllt:::reating
1 k at the wor — grammer do *
:23 asseeess l10(;l ' })(:'0 more versions tucked away
141

Index -

_________——-———_-'—_'

A .
alphabetized word list, 98
alphabets

foreign, 26
ALT key, 73
applications generators, 1
arrays) :
dimensioning, 39
arrow keys, 28
ASC, 120
ASClI codes, 119
ASCHi files, 2
ASCII format, 1
assemblers, 139
AUTOEXEC.BAT, 129°
automatic coding of screens, 1))
Automatic Programmer, 25
Automatic Programmer Documenta-
tion, 63
Automatic Programmer Documenta-
tion program, 64

B
backups, 141 ,
BASIC program, 1
BAT files, 130 - _
batch file parameters, 131
BATCH files, 129
creating, 130

blocks

title, 13 o
border characters, 26
BREAK key, 73
BREAK subcommand, 132
bugs, 103

building program lines, 2

centering prompts, 19
centering titles, 15
CHAIN, 63 '
characters
border, 26
charts, 111
CHRS, 3 -
CHRS$ codes, 120 -
CHR$(), 28
clear screen routine, 42
code, 139 .
coding screens
automatic, 111
COM files, 130
command mode, 75
commands
DOS, 129 -
Commodore codes, 119
compatibility :
word processor, 119

compilers, 139
compressed format, 1 i
constructing designs, 37
control codes, 120
control key, 73
controlling functi
converter

word processing, 119

ons, ar A

_Converter program, 121 .

crash proofing programs, 20
creating BATCH files, 130
creating DOS commands, 129
CRT displays, 25

CRT screen, 111

cursor keys, 73

cursor pad arrow keys, 28

D
data files, 2)
DataBase Starter program, 37,42
debugging '
automatic, 53 ’
rogram, 103
default values, 13
defining keys, 29
DEL key, 73 N
dimensioning arrays, 39
directories s
disk drive, 130

disk drive directories, 130
disk file 1/Q, 39
disk files

sequential, 2
displays

CRT, 25
Documentation

Automatic Programmer, 63
DOS commands

creating, 129
DOS SORT, 95
DOS sort routine, 97

editor
screen, 111
efficiency
programming, 139
entry errors, 20
error messages, 103, 104
Error Trapper program, 103, 105
errors

entry, 20
ESC key, 73
escape key, 73
EXE files, 130

F

file names, 141
files

ASCII, 2

BATCH, 129, 130

data, 2

disk, 2

help, 63

program, 2

protection of, 141

text, 2
filter

DOS’s SORT, 95
flats, 133
FOR-NEXT loop, 3
format

ASCIL, 1

compressed, 1

tokenized, 1
formatting

screen, 19
frames

creation of, 111
function

SCREEN, 2, 27
function key, 4
function keys, 73

user-programmable, 74]

generator '
random number, 113

-generators '
applications, 1

144

Global Replacer program, 69
global search and replace, 67
glossary, 95

GOTO loop, 29

graphics, 25

graphics on screen, 111
graphs, 111

H
hardcopy program listings, 79
help files, 63

|

110 disk file, 39
increments

line number, 37
index, 95
Index 1 program, 98
Index 2 program, 100
Indexer program, 95
INKEYS$, 4, 21, 29, 75
INKEYS$ routine, 42
INPUT #, 3
input routines

menu, 20
INS key, 73
instructional screens, 111
interpreter

Spanish-BASIC, 85
Interpreters, 139
interrupt

ON ERROR, 104

ON KEY(), 73
interrupt-driven routine, 4

K

key

function, 4
Key Definer program, 74, 76
KEY OFF, 74
KEY ON, 74
KEY(), 29
KEY() OFF, 4
KEY() ON, 4
keys, 73

arrow, 28

defining, 29

redefining, 74
keywords

misspelied, 53

L

language

Spanish, 85
legato :

music, 134
letter oriented menus, 20
letters :

upper- and lowercase, 28
LINE INPUT, 75
LINE INPUT #, 3

line number increments, 37
lines

. One-statement, 125
list

alphabetized, 98
Lister program, 79, 81
listings

program, 79
LOCATE, 28
lowercase letters, 28

M

menu input routines, 20
menus, 39

letter oriented, 20

numeric, 20
MERGE, 29
messages

error, 103, 104
Microsoft BASIC, 54
MID$, 3
mode

nondocument, 140
multiple drives

search of, 130
Music Writer program, 133, 135

N

names

file, 141
names of variables, 54
hondocument mode, 140
notes

musical, 26, 133
NUM LOCK key, 73 .
number

line, 37
numbers

random, 113
numeric menus, 20 .

-0
object code, 139
octaves, 133
ON ERROR interrupt, 104
ON KEY routines, 75
ON KEY(), 73
ON KEY() command, 4
ON TIMER, 113
ON...Gosus, 39

parameters, 1

batch tile, 131
PATH, 130 -
PAUSE subcommand, 132
PLAY command, 133
positions on screen, 113 .
powerup, 129
processing

word, 119

processing data, 37
program
Automatic Programmer
Documentation, 64
Converter, 121
DataBase Starter, 42
Error Trapper, 105
Global Replacer, 69
Index 1, 98
Index 2, 100
Key Definer, 76
Lister, 81
Music Writer, 135
REM-over, 10
Screen Editor, 29
Tabber, 22
Titler, 15
Translator, 88
Unpacker, 126
Visual Maker, 113
Word Counter, 4
program debugging, 103
program lines
building, 2
program listings
hardcopy, 79
Program Proofer program, 53, 56
program skeletons, 37
program testing, 53
program title blocks, 13
program writing, 1
program writing routines, 2
Programmer
Automatic, 25
programming efficiency, 139
programs
BASIC, 1
crash proofing, 20
PROMPT, 129
prompts
centering, 19
Proofer
program, 56 .
protection of files, 141
pseudo-compiler, 85

Q
quotation marks, 8

R
RANDOMIZE TIMER, 113
redefined keys, 75
redefining keys, 74
REM subcommand, 132

REM-over program, 10
REMarks

removing, 7
removing REMarks, 7
replace

global, 67
routine

error trapping, 104

interrupt, 4

sort, 97
routines

library of, 1

menu, 20

program writing, 2

]
SCREEN, 27
CRT, 111
positions on, 113
screen displays, 25
screen editor, 111
Screen Editor program, 25, 29
screen formatting, 19
SCREEN function, 2, 27, 113
search L 67
lobal,
segrch of multiple drives, 130
sequential disk files, 2
sharps, 133
SHIFT subcommand, 131
skeletons
program, 37
slide show, 111
slides, 111
SORT
DOS, 95
sort routine
DOS, 97
SORT.EXE, 98
sorted words, 96
SOUND command, 133
source code, 139 85
Spanish language,
Sg:nish Tiny BASIC, 85
Spanish-BASIC interpreter, 85
staccato
music, 134
starter
database, 37
string array, 39
subcommand
BREAK, 132
PAUSE, 132
REM, 132

SHIFT, 131
subroutines

adding, 42

prefabricated, 1

T

TAB(), 19
Tabber program, 19, 22
tempo, 133
testing

program, 53
text file, 131
TIMER ON, 113
timing of graphics, 111
Tiny BASIC, 85
tips, 139
title blocks

program, 13
Titler program, 13, 15
titles

centering, 15 3
toggle, 28
tgggnized format, 1
Translator program, 85, 88

u
Unpacker program, 125, 128
uppercase letters, 28
user-programmable function keys,

74

\'
values
default, 13
variable names, 54
version numbers, 141
Visual Maker, 111 -

. Visual Maker program, 113

w
Word Counter program, 2, 4
word list
alphabetized, 98
word processing converter, 119
word processing programs, 67, 80
rd processors
wowritg:g programs with, 139
words
sorter, 96
unique, 95
writing .
ram,
wrﬂfﬁg programs with word pro-

cessors, 139

145

Program Your IBM PC to Program Iltself!

If you are intrigued with the possibilities of the programs included in Program Your IBM PC to Pro-
gram Itself! (TAB Book No.1898), you should definitely consider having the ready-to-run disk con-
taining the software applications. This software is guaranteed free of manufacturer’s defects. (If
you have any problems, return the disk within 30 days, and we’ll send you a new one.) Not only
will you save the time and effort of typing the programs, the disk eliminates the possibility of er-
rors that can prevent the programs from functioning. Interested?

Available on disk for IBM PC and compatibles, 64 K or greater at $24.95 for each disk plus $1.00
shipping and handling.

= I'm interested. Send me: =
= disk for the IBM PC, 64 K or greater (6630S) =
i TAB BOOKS catalog i
| Check/Money Order enclosed for $24.95 plus $1.00 shipping and handling i
| for each disk ordered.]
I VISA MasterCard [
= Account No Expires =
| :
I Name

| |
= Address =
1 Ciy : State Zip I
1 _

| Signature =
i

§ Mail To: TAB BOOKS Inc. =
i P.O. Box 40 -
| Blue Ridge Summit, PA 17214 -
! i
I i
I (Pa. add 6% sales tax. Orders outside U.S. must be prepald with international money orders in U.s_l: :gn‘agg]
| ; |
L------------------------------------

Other Bestsellers From TAB

O ADVANCED dBASE II® APPLICATIONS—Baker
An invaluable collection of ready-to-use dBASE Ill ap-
plications for getting maximum productivity from Ashton
Tate’s state-of-the-art database management software! in-
cludes how-to's for setting up and maintaining computerized
files for managing employees, payroll, inventory, accoun-
ting applications, time management, tracking sales and per-
forming marketing research, and more. 448 pp., 120 illus.
7" x 10", ‘
Paper $21.95 Hard $28.95
Book No. 2618)

00 PROGRAMMING WITH JdBASE ili®

With this excellent sourcebook at your side, using
dBASE lll is a snap! You'll discover how to take advantage
of all this fourth generation software’s data handling
capabilities plus learn how to unlock the power of dBASE
Il as a complete programming language! Also includes an
appendix detailing the differences between dBASE Il and
dBASE Iil, with full instructions for using dConvert—the utility
program used to convert dBASE Il programs to dBASE ill!
3C4 pp., 215 illus. 7" x 10" R
Paper $17.95 Book No. 1976

0 USING FRAMEWORK™—A PICTORIAL GUIDE
Here’s the hands-on, how-to explanations you need to
take command of this all-new software package. From start-
to-finish, this pictorial guide is packed with easy-to-follow,
step-by-step explanations, examples, and programs for us-
ing all of Framework's functions: database management,
spreadsheet, communications, word processing, and
graphics. 320 pp., 300 illus. 7" x 10". o
Paper $18.95 Hard $26.95
Book No. 1966

0 NETWORKING WITH THE IBM® NETWORK™ AND
CLUSTER™

A complete guide In Installing, using, and programming
IBM's new state-of-the-art Network™ and Cluster™! Writ-
ten in easy-to-understand terminology and packed with
plenty of examples and illustrations, it provides easy entry
into LAN’s for anyone who is just getting started—and in
particular for those who have or are considering the purchase
of IBM's Network or Cluster. 480 pp., 225 illus. 7" x 10",
Paper $19.95 Hard $29.95
Book No. 1929

O IBM® PC™ EXPANSION GUIDE—Phillips

If you're confused and frustrated by all the adver-

tisements for IBM PC-compatible accessories that crowd the
pages of today’s computer publications, this is the book to
have before you invest another penny in computer equip-
ment! Thorough and completely up-to-date, this time-saving
guide provides all the background information and specific
use-test data you need to make the best performancelvalue
cholces for all types of PC hardware, whether you have an
IBM PC, Portable, PCjr, XT, AT, XT/370, 3270-PC, or PC
compatible. 368 pp. 7 x 10",

Paper $17.95 Hard $24.95
Book No. 1911

~ Book No. 1921 - -

0 ADVANCED APPLICATIONS FORPFS® AND THE
IBM® ASSISTANT SERIES . s
Capitalize on the power and flexibility of PFS® and
IBM® Assistant Series software with this goldmine of ready-
to-use applications! Each module is given extensive, in-depth
coverage, including predesigned applications organized
around real-world applications and needs. It's an invaluable
productivity tool for anyone using these bestselling software
modules. 224 pp., 212 illus. 7" x 10", :
Paper $16.95 Hard $22.95
Book No. 1989 DR

0 MONEY MANAGEMENT WORKSHEETS FO
1-2-3™/SYMPHONY™—Maffei L
Turn your 1IBM PC® or PC-compatible into a full-time
financial manager with the help of this huge collection of
over 60 customized worksheets designed especially for the
powerfu! 1-2-3/Symphony business software! Using these
invaluable worksheets, you can do everything from balanc-
ing your checkbook and planning your budget to managing
investments, even playing the stock market. 192 pp., 80 illus.
7" x 10", .
Paper $14.95 Hard $21.95
Book No. 1968 S

00 ' MASTERING SYMPHONY™—Bolocan -

Anyone who’s purchased the new Symphony package
from Lotus . . . or who’s thinking of trading up from Lotus
1-2.3™ _ __ will find this an essential guide! Covering each
of Symphony’s functions separately and in-depth, this uni-
que guide clarifies and gives sample programs and diagrams
to demonstrate the software’s spreadsheet, word process-
ing, data management, graphics, and communications
features. 240 pp., 170 illus. 7" x 10”. - s
Paper $16.95 Hard $22.95
Book No. 1948

1 SERIOUS PROGRAMMING FOR THE IBM®
PCTM/XTT™M/AT®

Here's your key to learning how programs can be de-
veloped and designed for your own specific purposes t0
really do the job you need accomplished. You'll cover dif-
ferent aspects of program design, including using
subroutines to build an effective subroutine library of your
own, get spacial tips on learning to write a user's guide and
creating help screens. 208 pp., 113 fllus. 7* x 10”.
Paper $14.95 . . Hard $21.95

0 dBASE I1® —A COMPREHENSIVE USER'S . -
MANUAL—Bharucha Uk

Alogical, easy-to-follow guide that takes you from com- §
puter novice to expert programmer in dBASE Ilf Just some
of the unique features that set this guide apart from ordinary

user manuals Include: How to create and maintain a. ik

database: Explanations of dBASE functions: Details on how
1o use COPY to create standard text files from dBASE files
. .. a requirement for communicating with other software;
and much more. 320 pp., 7" x 10",

Paper $18.95 Hard $24.95
Book No. 1884 I

Other Bestsellers From TAB

[0 IBM PC® GRAPHICS—Craig and Bretz

Now, this practical and exceptionally complete guide
provides the answers to questions and the programs you
need to utilize your IBM PC’s maximum potential. This is
a collection of immediately useful programs covering a wide
variety of subjects that are sure to captivate your interest
... expand your programming horizons . . . and providing
a wealth of sophisticated graphics techniques. 272 pp., 138
illus., including 8-page color section. 7” x 10”.
Paper $15.95 Hard $19.95
Book No. 1860

0 1001 THINGS TO DO WITH YOUR I1BM
PC® —Sawusch and Summers '

Here's an outstanding sourcebook of microcomputer
applications and programs that span every use and interest
from game playing and hobby use to scientific, educational,
financial, mathematical, and technical applications. It pro-
vides a wealth of practical ideas that even a novice can put
to work! This volume contains a goldmine of actual programs,
printouts, flowcharts, diagrams, and illustrations. 256 pp.,
30 ilius.

Paper $11.95
Book No. 1826

Hard $15.95

0 STARPOWER: Mastering WordStar® , MailMerge® ,
SpeliStar® , DataStar® , SuperSort®, CalcStar®, In-
foStar™, Starindex™, CorrectStarﬁ‘, StarBurst® ,
ReportStar™, & PlanStar™

Here in one comprehensive, easy-to-use sourcebook,
is all the hands-on guidance you need to get the most pro-
ductive use from Starline microcomputer software from
MicroPro for your KAYPRO® , IBM® , PC, Apple® , or other
CP/M based micro. 320 pp., 133 illus. 7 x 10",
Hard $24.95 Book No. 1742

*Prices subject to change without notice.

[0 MAKING MS-DOS AND PC-DOS WORK FOR YOU~
The Human Connection

Here's a clear, plain English description of MS.008
(Microsoft Disk Operating System) and PS-DOS (thg By
PC disk operating system). This outstanding guide alsy in
cludes a special programmers section listing commands
needed to create, run, and “'debug” programs, and a han
*commands at a glance” that gives you fast referencs to
all MS/PC-DOS commands! 224 pp., 93 illus. 77 x 10,
Paper $14.95 Hard $19.95
Book No. 1848 :

00 LOTUS 1-2-3™ SIMPLIFIED—Bolocan

Lotus 1-2-3 is the dynamic new business software thal
offers an incredible range of data-handling capabifities. Now,
here's an outstanding guide that can make it really as sim-
ple as 1, 2, 3. From the very first steps of installing and us-
ing Lotus 1-2-3 to the procedures for designing and using
your own spreadsheets, this user-friendly manual gives you
the understanding necessary to utilize the capabilities of
Lotus 1-2-3. 192 pp., 195 illus. 7" x 10".
Paper $10.95 Book No. 1748

1 FUNDAMENTALS OF IBM PC® ASSEMBLY
LANGUAGE—Schneider

Here's your chance to leam assembler—a language that
can open the door to a whole new world of programming
on the IBM PC! This book shows how the assembier
language can overcome the limitations offered by BASIC and
how users can also use assembler subroutines along with
their BASIC programs. You'll open the door to aimost
unlimited programming on your IBM PC! 320 pp., 160 illus.
7" x 10",
Paper $15.50 Hard $19.95
Book No. 1710

- Look for these and other TAB books at your local bookstore.
w

TAB BOOKS Inc. .

P.O. Box 40

o Blue Ridge Summit, PA 17214)
w

-~ Send for FREE TAB catalog describing over 900 current titles in print. '

-2

830L-0898

ISBN D

