

PROGRAM YOUR
IBM PC

No. 1898
$18.95

TO PROGRAM ITSELF!
DAVID D. BUSCH

I J TAB BOOKS Inc. TAB: Blue Ridge Summit, PA 17214

FIRSTEDmON
FIRST PRINTING

Copyright © 1986 by TAB BOOKS Inc.
Printed In the United States of America

Reproduction or publication of the content In any manner, without express
permission of the publisher, Is prohibited. No liability Is assumed with respect to

the use of the Information herein.

Library of Congress Cataloging In Publlcatlon Data

Busch, David D.
Program your IBM PC to program Itself!

Includes Index.
1. IBM Personal Computer-Programming. 2. BASIC

(Computer program language) I. Title.
OA76.8.12594B874 005.265 85-28094

ISBN 0-8306-0898-2
ISBN D-8308-1698-8 (pbk.)

I.•

Contents

Introduction

How to Use This Book

1 Word Counter
Building a Ubrary of Routines 1
How Word Counter Works 2
The Interrupt Routine 4

2 REM-over
The Purpose of REM-over 7
How REM-over Works 7

3 Titler
Entering Different Name and Address Titles 13
Including Time in the Title 13
Generating Program Title Blocks 14

4 Tabber
Advantages of Tabber 19
Programming Tips 20
How Tabber Works 21

5 Screen Editor
The Purpose of Screen Editor 25
How Screen Editor Works 27

vi

Ix

1

7

13

19

25

6 DataBase Starter
Creating Program Skeletons with DB Starter
Who Needs DB Starter 39

37

How DB Starter Works 39
Adding Your Own Subroutines 42

7 Program Proofer
How Program Proofer Works 53
Possible Enhancements 56

8 Automatic Programmer Documentation

9 Global Replacer
Making Changes without a Word Processing Program
Advantages of Global Replacer 69

67

10 Key Definer
Using Key Definer 74
Reasons for Redefining Function Keys
How to Redefine Function Keys 74

74

11 Lister
Uses of Hardcopy Listings 79
Producing Hardcopy Listings without a WP Program 80

12 Translator

13 Indexer
Index 1: Preparing the File for Sorting
The DOS Sort 98
Index 2: Producing the Final List 98

95

14 Error Trapper
Error Trapper Messages 104
The Interrupt Routine 104

15 Visual Maker
How to Design Frames 111
Display Time 113

16 Word Processing Converter
Converting for Compatibility 119
How to Use Word Processing Converter 120

17 Unpacker

18 Creating Your Own DOS Commands
Altering the System Prompt 129
Searching Through Disk Drive Directories 130
Creating Batch Files 130
Creating a Text File 131
More Ways to Use Batch Files 131

37

53

63

67

73

79

85

95

103

111

119

125

129

1 g Music Writer

20 Some Tips
Developing 8 Program with a Word Processor 139
Protecting Your Work 141

Index

/"l -·

133

139

143

".:

Introduction
Are you ready to tap the amazing abilities of one
of the most powerful computers on the market?
Would you like to create your own DOS commands'
Automatically redefine your IBM's special functi .
keys each time you enter BASIC? Command yo:
comp?ter to .write programs for you? All that and
~ore is possible using the unique utility
m this book. programs

Yes, your IBM PC can write its own programs
Instead. of laboriously writing program lin d
::utines that will display a series of instru::i
d alle~n the screen, you can let your computer
~ t work. y ?u need only design the screen,

usmg word Processmg commands, and tell the com
puter how long you want that frame di la d Tb
IBMPC' -& sp ye · e is peu.ectly capable of writin l
program that will d g a comp ete
fi 0 exactly that without the need
or you to write one single line of code

Or, your IBM PC can compose subro~tines fi
you. Do you need some disk input/output routinor
and a string arra t . es

' Y o store data m? Some data lines
perhaps. A menu? Not too eager to write th cod , . e e,

vi

~gure out the proper ON •• GOTO lines? That task
is a snap for the automatic IBM PC.

You may be weary of calculating tabs for.
n~tly-~ormatted screen displays. Wouldn't it be
ruce to Just type PRINT T AB{T) and let the com·
puter figure o~t 'Yhat value T should be? Say no
more. Your wish is well within the capabilities of
the &ca Raton Wonder.

As fabulous a tool as the IBM PC line has been
mo~t users only save half the time they could with
their computers. Because I write dozens of pro
grams a year, one of the first things I did was write
a ~umber of programs that do nothing more than
wnte other programs for me. One of the first, and

f~~ ~ ~~~~e than any other, was Screen Editor.
program that allows drawing on the

screen any menu, title block, instructional screen
or other material that will be ' needed in a program.
Th~n, at the press of the Enter key the screen J'ust
designed • • '
lin T 18 ~gically transformed into program
• es. . en mmutes of coding can be accomplished
ma mmute or less. (Actually, since I have compiled

into machine code the BASIC Screen Editor shown
in this book, the chore takes no more than a sec·
ond or two!)

I also let my Automatic PC use DOS commands
that I have created. I don't have to type DIR B: and
then watch as the directory flies past on the screen.
Instead, I type D B, and see a paged listing that
pauses until I am ready to continue. When I want
to examine a file from DOS, I just type LOOK file
name Band my PC displays the file, again a screen:
fu1 at a time. This book shows you how to install
your own favorite DOS commands and customize
your computer with a special prompt and other
features.

Given the right tools, such as the utility pro
grams here, an hour spent programming can be
more fruitful than several hours under manual
methods. A third or more of the program lines in
some of the examples in this book were prepared
by other programs listed. Some programs were
even used to write enhanced versions of
themselves.

All the programs in this book will work with
IBM PC and PCjr computers with 80-column
displays, Most will also operate on the PCjr with
a 40-column display, with a few changes. Tabber,
for example, asks the user if tabs should be
centered for a 40-column screen, or an 80-column
screen. Because they are written in BASIC and use
no PEEKs, the programs are readily transferable.

Just as PEEKs and POKEs have been avoided
wherever possible, other statements that are DOS
dependent have been avoided. In most cases,
strictly BASIC syntax common to all IBM PC com·
puters is used. All versions of PC-DOS have similar
disk input/output routines for sequential files, which
are used in most of the programs in this book.

This book is only a jumping off point. Many of
the programs were adapted from other programs.
Visual Maker is based on Screen Editor. Global is
descended from Tabber. Similarly, you can take the
ideas and suggestions here and develop programs

· of your own that will streamline your BASIC
development work. In addition, there are some
ideas in Chapter 16 for using other programs you
already own-such as word processors or keyboard

utilities-as shortcuts.
The utility programs in this book actually write

programs for you, modify existing software, or give
your programs new capabilities and power. Hours
of time can be saved on every program written by
the novice or experienced programmer. Some of the
examples were used to write programs in this book
or to modify themselves.

Here is a brief outline of the programs:
Visual Maker. Design a custom "slide" to ap

pear on the screen of your IBM PC, using graphics
or alpha characters. Tell Visual Maker how long
you want that slide to be displayed. Then go on to
the next slide.

Once assembled into the order you want, Vis
ual Maker will write a complete BASIC program
to display the slides you designed for the intervals
requested. No programming is required.

DB Starter. Weary of writing custom data·
base management programs from scratch? DB
Starter will do the BASIC skeleton for you. Enter
the number of menu choices and the prompts to be
included in the menus. It will design the menu for
you. Tell the program you want Input/Output
routines and feed in a few parameters; it will write
the 110 modules automatically. DB Starter will also
construct the necessary ON •• GOTO lines and in·
sert REMarks at line numbers where the program·
mer needs to build up the BASIC skeleton. Your
first several hours of programming are taken care
of for you.

Tabber. Want to enter your screen output for
prompts and other messages? Just type PRINT
T AB(T) in every line you want centered. This pro
gram will go through an entire program, calculate
how long the message is, and write a new program
line that T ABs the proper number of spaces. Works
with 40- or 80-column screens.

Proofer. Find misspelled keywords, mis
matched parentheses, and other errors BEFORE
runtime. This program helps you debug and pro
vides a list of variable names used in the program
as a bonus.

Error Message. If you are impressed with the
long error messages of BASICA, this program will
knock you flat. Append Error Message to your own

BASIC program and insert the appropriate ON ER·
ROR GOTO •• line. Then, any error will be spelled
out in detail-with tips on how to find the exact er·
ror in your program. This will prove to be an ex·
cellent utility for novice programmers or anyone
tracking an elusive bug.

Other programs in the book include:
Screen Writer. Use word processing-like

commands to design a custom screen. Then, press
the Enter key. This program writes the BASIC pro
gram lines you need to reproduce your custom
screen in your own program.

~~Y Definer. You enter the function key
definitions ·you want. This program writes a sim
ple BASIC p:ogram that will make the changes for
you automatically and then erase itself. The file is
stored on your disk so you can invoke your new

function key definitions automatically when you
enter BASIC-or choose from several sets of
definitions!

Word Counter. Count the words in your
document or program. This program works with
any ASCII file.

Glob~ Replacer. Specify a string in your
pr~gram-1t does not have to be a keyword-and
this program replaces it with a string of your choice.

REM-Over. Take remarks out of your pro
gram automatically.
. . Lister. Format your BASIC programs for

listing on your printer.
Translator. This program allows you to write

pro~ms in a foreign language, such as French or
Spamsh. It then translates them to standard IBM
PC BASIC for running.

How to Use This Book
All the programs in this book have been rigorously
tested and will run as described. Working program
listings were transferred directly to a word process
ing program where REMarks were added; the
listings were printed out with no further changes.
Those printouts were photographed for this book.

So, if you type in a program and have difficulty
making it work, odds are very good that a small
typing error could be the source of your problem.
Go back and proof each line carefully. Up to 40
characters are significant in IBM BASIC, so a
variable name that is typed in as TOT AL in one
place and TOTALS in another are two completely
different variables.

These programs have been written to make
your job as easy as possible. Variable names have
been chosen to be descriptive without excessive
length. That is, the variable name CHAR might
be used to count the number of characters in a
document instead of the variable name
CHARACTERS.IN.DOCUMENT.

Some magazines tightly pack program listings

to save space. Most program lines here have only
one or two statements, except where IF •• THEN
•• ELSE logic dictates more complex construction.
I've tried to indent FOR-NEXT loops and mark
each module within a program with a REMARK
so you can see what happens where. Some con
sistency is used in variable names between pro
grams as well. F$ is most often used for disk file
names, A$ for INKEY$ and other INPUT uses, T$
or TEMP$ for temporary string variables, and so
forth. Once you've learned the conventions of this
book, it will be easier to follow the program logic.

If you like, you can even use some of the pro
grams in this book to reduce your work. You may,
for example, choose to abbreviate some frequently
used statements, and then run the Global search
and replace program to make a substitution. Instead
of typing PRINT TAB(dozens of times, abbreviate
it with PZ. You will not be able to debug the pro
gram until the change is made. Once you have
typed all the program lines in, however, save what
you have in ASCII format (more on that later) and

Ix.

mgs and mismatched parentheses. When the basic
work has been done for you, then, and only then,

-----------· ~~··~A .. """'"' 1vu c:u-t: s1aVIng over
a hot keyboard at 3 AM. that computers are the ser·
vants of mankind, not vice-versa. I 1 lo 16 I s ! computer

keyboard
too IBM

c~!e computer

Word Counter
Why not let your IBM PC write its own programs?
After all, much of program writing is nothing more
complicated than building something from an in·
ventory of prefabricated subroutines. Many pro
grams have a great deal in common; it is the
parameters that change. Wouldn't it be simpler just
to provide the parameters and let the computer do
the routine stuff?

BUILDING A LIBRARY OF ROUTINES .
One program may require a line like FOR N = 1

TO 100, while the next will need FOR N = 1 TO
200. Yet, each time, the programmer had to type
in the FOR N = 1 TO part. The reason the computer
never knew enough to supply the FOR N ... 1 TO is
that nobody told it to. The IBM PC and PCjr com·
puters can do practically anything in the area of pro
gram writing, if they are only told exactly what to
do.

Applications generators and other programs that
write other programs are old hat. They have been
around for a number of years and can be purchased

for large computers as well as small. The concept
behind them is simple: many programs have
modules that are much like those used in other soft·
ware. Yet, in many cases the computer program·
mer writes a routine from scratch each time it is
needed. Why not build a library of routines and let
the computer draw on them as needed to write its
own programs?

The basis behind why an IBM PC can write its
own BASIC programs lies in its ability to load into
BASIC from disk two types of files. The normal
way a BASIC program is saved is in compressed
format. That is, BASIC keywords are tokenized,
and a single byte representing that keyword is
loaded onto the disk, instead of the entire keyViord.
Rather than store the five letters that make up
"PRINT," BASIC normally just stores a one-byte
decimal number that represents ••PRINT." When
you type SA VE"file name.bas", a program is
stored on disk in this form.

You can also, however, type SAVE"file
name.bas" ,A. Then the program will be saved in
noncompressed ASCII format. That is, every let··

1

• Program Your IBM PC to Program Itself!

ter and number will be stored, byte for byte, on the
disk exactly as the program appears when listed.
The BASIC interpreter has the capability of doing
this conversion for us. An ASCII file is nothing
more than a text file. It is possible to load a non
compressed program into a word processing pro
gram, edit it using powerful global search and
replace commands, and then save it back to disk
in ASCII form. Some word processors do not nor
mally save in ASCII format, but most have an op
tion or utility that allows you to do this.

Because of BASIC's dual capability, you can
also create programs using a word processor or, in
the case of the programs in this book, through the
use of sequential disk files, which are also ASCII
files. The short program below serves as an
example:

10 OPEN •o•,1,•TEST.BAS· (or,
OPEN "TEST.BAS" FOR OUTPUT
AS 1)

20 PRINT 11,•10 PRINT"1CHR$(34)J
•THIS IS A TEST"J"CHR$(34)

30 CLOSE 1 .

. This test program will write a single line to the
dis~ under the file name TEST.BAS. That line will
be, if loaded into BASIC, a short program in the
form:

10 PRI~T"THIS IS A TEST"

You could also "build" the program lines from
your own parameters. Try this short program:

10 INPUT"E.nter line number
desired:"1LN

20 INPUT"Enter message desired
:"1MESS$. . ·

30 INPUT"Want it to be·PRINT or·
LPRINT" 1 CH$. . .

40 IF CH$="PRINT" OR CH$~ . .
"LPRINT" GOTO 60 .

50 GOTO 30 .
60 OPEN •o• ,1, •TEST.BAS•'

2

70 PROG$=STR$(LN)+CHR$(32)+CH$
+CHR$(32)+CHR$(34)+ MESS$
+CHR$(34)

80 PRINT ll,PROG$
90 CLOSE 1

Mos~ .of the ~rograms in this book with pro
gram wnting routines do nothing more than assem·
~le program lines in this manner. Sometimes the
mput comes from the user. Other times it is
calculated. Still other times, some of the programs
use the SCREEN function to see what has been
printed to the screen and use that information.

HOW WORD COUNTER WORKS
The common thread among the programs is the

use of ASCII files that are programs as if they were
data files. The first program presented, Word
Counter, illustrates the principle, even though it
does not create any new program files itself. In·
stead, Word Counter reads in an ASCII file and
counts f:be number of words. Most commonly, these
files will be word processing text files. Word
Counter, however, could just as easily be used to
count the number of words in a program.

· Most of the techniques used in this book will
be repeated in later programs. Each will be ex·
Plained in detail the first time they are used. So,
early programs are short because explanations are
frequ~nt. Later, longer programs will use many
~hniques tha~ have been previously explained and
will thus require fewer discussions. ·

Programs in this book frequently access other
programs that have been stored in ASCII form on
disk. You must save a program to be used by an·
oth~r program in ASCII form using the ,A option.
H, m running one of the programs here, you see
garbage on the screen, you probably forgot to save
the program in ASCII.
. Word Counter is no exception. It will count
words in a program file just as it will the words in
a text file, but only if both are in ASCII. Figure 1 ·2
presents ~e variables used in Word Counter. The
operator IS asked to enter the name of the file to

Word Counter

A$ Stores text line being examined.
AW Average word length in text.
C$ One-character string from middle of line.
CHAR Number of characters in whole file.
CU Counter of number of words In file.
F$ Text file to be counted.
FL FLAG Indicating end of file reached.
L$ Last character encountered.
N Loop counter.
SW Number of standard words in text

Ag. M. Variables used In Word Counter.

be processed in line 280. That file, F$, is opened,
and one line is input from the disk. The line is
loaded by means of LINE INPUT #1 in line 390.
INPUT #1 will accomplish much the same thing,
except that it will not accept string delimiters, such
as commas and quotation marks, which are com
monly used in both text and program lines. LINE
INPUT imposes no such restriction. It accepts
everything up to the next carriage return. This will
be the end of a program line or a carriage return
in the text itself.

To search for a word, you need to first decide
just what a word is. The easiest thing is to realize
that a word is more or less a group of letters
preceded and followed by a space. "CODEWORD"
is one word, even though two real words are
embedded in it. "OH! NOI" is two words. The
punctuation is not part of each word, but for the
purposes of this program, it is considered so. This
is because Word Counter has been written to look
for each space that is preceded by a nonspace.
Counting spaces would be an inaccurate way of
counting words. There would probably be two
spaces following a sentence, for example. So, the
program instead looks at each character; when it
finds a space, it looks to see if the last character
was a space. If not, the end of a word has been
deemed to have been reached.

Each line input, stored in A$, is looked at one

character at a time in a FOR-NEXT loop begin
ning at line 420. The loop repeats from 1 to the
length of A$. Each time through. C$ is assigned the
value of the next character in the string, through
the use of MID$(A$,N,l). MID$, as you know,
takes the middle portion of a string, starting at posi
tion N (in this case) and with a length that you
specify. In the above example, just one character
was selected. _

If C$ is a space, (CHR$(32)), the program looks
at the last character checked, L$, to see if it was
a space. If it was not a space (that is, it was a
character), the program assumes that the end of a
word has been found, since no word contains an
embedded space. Thus, the word counter, CU, is
incremented by one.

Before the loop goes back to look at the next
character, the current character is stored in L$ (line
380) and becomes the last character.

Once the program has looked at every
character in the string, it drops down to line 470
where the end-of-file flag is tested. If it is one,
meaning the EOF marker has been reached, the
program goes to line 490 to present the results of
the word count. Otherwise, the program goes back
to line 390 to input another line.

When the file is finished, the program prints
the number of words, CU, and then calculates the
average word length, which is the number of

3

4

----·-·- ,_u,..,, """"''"'"' uy LUC llWllUeI" 01

words. The number of characters is also divided by
five to total the amount of "standard," five
character words as well. Of course, most words will
be longer or shorter than five characters, but I use
this length as an average to determine how many
words are in a document.

THE INTERRUPT ROUTINE

In nearly all of the programs in this book, you
may abort at any time by pressing the FlO func·
tion key. This is set up in line 90 of this program
with the ON KEY(lO) command. This is ~
intemJpt-driven routine, meaning that the PC will
execute the specified subroutine at any time (al·
most) that it is triggered. The program does not
have to be sent to the subroutine by encountering
an ON •• GOSUB line. Instead, you can tum the
feature "on" or "off" as you wish. This is done in
line 100. While ON KEY is on, pressing FlO will
send control to line 660, where all files are closed

Listing 1: The Word Counter Program

10 ' *********************
20 ' * *
30 ' * Word Counter *
40 ' * *
so ' *********************
60 DEFINT A-Z

65 ' *** Instructions ***
70 KEY OFF
80 SCREEN O,O,O
90 ON KEYClO) GOSUB 660
100 KEY (10) ON
110 CLS:PRINT:PRINT
120 COLOR 0 ·, 7

ana me program ts ended. If you want to tum the
feature off temporarily, a KEY (10) OFF statement
could be placed in the program.

Note that if the program is waiting for certain
types of input, such as through the use of INPUT$,
the interrupt ~tine will not be triggered until after
you make the expected input. For example, here
are two ways of pausing until the user presses a
key:

100 A$=INPUT$(1)
110 A$=INKEY$:IP A$=•• GOTO 110

The former is considered by some to be more
elegant; however, if you press FlO and no other
key, the program will wait forever at line 100. With
line 110, though, the IBM PC will immediately pro
ceed to the interrupt subroutine whenever FlO is
pressed. For that reason, I've generally stuck to the
use of INKEY$ in this book.

130 LOCATE 4,24 .
140 PRINT • Writer's Word Counter •
150 COLOR 7,0
160 PRINT

1
7
0 PRINT TABC14)•This program will count the number of actual words in a •

180 PRINT TAB(10)"text file, or any file that has been
stored to disk in ASCII

190 PRINT TAB(lO)"format. In addition, it also provides.the
total number of • < .;r·

200 PRINT TABClO)"'standard ' five-character words, and the
average character "

210 PRINT TABClO)"length of the words in the text. •
220 PRINT:PRINT TAB(22)""1
230 COLOR 0,7
240 PRINT " == Hit any key to continue == •
250 COLOR 7,0
260 IF INKEY$="• GOTO 260
270 CLS:PRINT:PRINT

275 ' *** Access Disk File ***

280 PRINT TABClS)•Enter name of file to count: •1
290 LINE INPUT F$
300 CLS
310 LOCATE 15,25
320 COLOR 16,7
330 PRINT"Counting file •1F$
340 COLOR 0,7
350 LOCATE 25,27
360 PRINT" Hit FlO To Abort .,
370 COLOR 7,0
380 OPEN "I",l,F$
390 LINE INPUT il,A$

395 • *** If End of File Found, Set Flag to 1 ***

400 IF EOF(l) THEN FL=l

.,

405 • *** Add Length of A$ to Total Characters in File ***

410 CHAR=CHAR+LENCA$)

415 • *** Loop to look at each character in A$ ***

420 FOR N=l TO LENCA$)
430 : C$=MID$(A$,N,l)
440 : IF C$=CHR$C32) AND L$<>CHR$(32) THEN CU=CU+l
450 : L$=C$
460 NEXT N
470 IF FL=l GOTO 490
480 GOTO 390

I'

Program Your IBM PC to Program ItselfI

485 ' *** Print out Results ***

490 CLS:PRINT:PRINT
500 PRINT TAB(23)"NUMBER OF WORDS =",CU
510 PRINT
520 AW=CHAR/CU
530 PRINT TAB(2l)"AVERAGE WORD LENGTH -• AW
540 PRINT - 1

550 SW=CHAR/5
560 PRINT TAB(l7)"NO. OF FIVE-CHARACTER WORDS =•,sw
570 CLOSE

575 ' *** Run again? ***

580 PRINT:PRINT
590 PRINT TABC22)"Check another file?•
600 LOCATE 15,30
610 COLOR 16,7
620 PRINT" Y/N ?"
630 COLOR 7,0
640 A$=INKEY$:IF A$=•• GOTO 640
650 IF A$="Y• OR A$=•y• THEN RUN
660 CLOSE
670 CLS
680 END

Chapter 2

10 BEH-Tltt•r-
20 BE2S .. IlliUetiu ..

30 ,0,0.
40GIOFF
50COLOB 7.0
60 mur "ElrIE1l nu·

;A$
7 70 llElS - OPDI FILE ..
8 80 OPEB ·o· .1.1*

REM-over
In Chapter 1 we explored opening an ASCil disk
file, either text or program, reading it in line by line,
and then examining the string of characters in order
to count the number of words. The next step is to
alter the file in some way and then write a new,
changed file to disk. Several of the programs in this
book are based on that principle. The first of these
is "REM-over."

THE PURPOSE OF REM-OVER
The program will read in a disk file, like before.

REM-over, however, will print to disk a new file
that is similar to the old one. The only difference
is that when the program encounters a remark,
designated either by "REM" or its abbreviation
" ' ", the remainder of the program line will be
truncated. If a line consists only of a line number
and a remark, the line will be deleted from the pro
gram entirely. The result will be a new program
with all of the comments removed. Depending on
the number of remarks included in the original pro
gram, the new. remarkless version may be

significantly smaller, and therefore consume less
memory space. Figure 2-1 shows an example of a
program that contains remarks; Fig. 2-2 shows this
program after REM-over has been used with it.

HOW REM-OVER WORKS
Ordinarily you might think that deremarking

a program would be ridiculously simple. Since the
IBM PC ignores anything after REM or ', a pro
gram could simply search for those two strings.You
should, however, realize that REM or ' within
quotation marks doesn't "count." That is, when
REM is used as part of an input prompt or in a
PRINT statement, it does NOT appear to be a
remark to the computer. For example:

10 PRINT"This is NOT a REMark.•
:REM But this IS.

REM-over takes care of this stipulation by sim
ply looking at each program line for quotation
marks as well as remarks. If a REM appears after.

10 ' Test of Program REM-OVER
20 REM Will Test REMOVAL of REMARKS
30 ' This Remark will be removed
40 PRINT:PRINT: REM This one wili be r
50 PRINT"This REMARK: REM Will NOT be emoved ••
60 PRINT"This one won't":REM This one ~~~~~ed.

Fig. 2-1. Target program for REM-over.

o~e- ~uote but before the second, it is contained
within the quotation marks. This assumes that the
programmer has not mismatched quotation marks
and has included two for every prompt. In fact the
program will "crash" if it encounters a line like tlus:
10 PRINT "This is NOT a REMark.

• Notice tha~ the second quotation mark is miss
mg? BASIC will run this line just fine, even with
out the quo.tation mark, but the omission is not good
p~ogrammmg practice. It will cause REM-over to
hiccup rather badly.

Figure 2-3 provides the variables used in REM
over. The program begins by asking the operator
for the file name of the program that will have its
remarks REM-oved. This file name, F$, is used to
fo~ the file name of the output file automatically
In line .150;, the second file name, Fl$, is formed
by adding .REM" onto it. If the file name hap
pens not to have an extension, as, for exam
ple, when F$"" "TEST", the new fil
"TEST REM " ill e name, . ' w be legal. Of course, BASIC
program names must end in .BAS, but you can
change these DOS mode using the RENAME
TEST.REM TEST.BAS syntax.

A check is made later in line 150 to see if the

original program name includes a period and an ex
tensi?n: Fl is equal to INSTR(F$,". "). If Fl· O,
~t is if F$ does not contain a period and exten·
s1on, the program goes to line 160•

If however, a period is found, and Fl does NOT
~ ze~?·,!11e portion of the file name up to the
penod (•) (LEFT$(F$,Fl-l)) is taken and
".REM:' is tacked on. Next, both files are o~ened
an~ a ~mgle line is input in line 250. Variable p:
whi~ IS.the position at which the search for REMs
begms, IS set to one. Thus, the initial search for
remarks will begin at the first character of A$.

Because both REM and ' can indicate remarks
two searches must be conducted. First, in line 210:
the pro~ checks for ' and, if an apostrophe is
found, assigns the position of the suspected remark
to the variable R. Control then branches to line 310.

If no apostrophe is located, the program next
checks for "REM"• in line 290. If no remark is
found, then the program line is already remark-free,
and the ~rogram branches to line 460.

P~ible r~mark lines are examined further at
a r?utine begmning at line 310. There, Ql is
assigned the value of the position of a quotation
mark. If none is found, then a remark has indeed
been 1°':41ted and .the control passes to line 370. If
a quotation mark IS detected, then REM-over looks

40 PRINT:PRINT

~g ~RRIINN'l''l':TThhiiss REMARK: REM Will NOT be . one won•t• removed.•

Fig. 2-2. Example of a program with REM-marks removed.

8

A$ Line of program loaded from disk.
8$ Middle string of program line.
F$ File name of program being processed.
F1 $ File name of output file.
N Loop counter.
P Position to begin INSTR search.
01 Position of first quote mark.
02 Position of second quote mark.
R Position of remark.
T$ String remaining after remark deleted.

Fig. 2-3. Variables used in REM-over.

at the rest of the program line, beginning at posi
tion Ql + 1 for a second quotation mark. That value
is Q2. If the position of the remark, R, is less than
Ql (the remark appears before the first quotation
mark) or is more than Q2 (it appears after the sec
ond quotation mark, then a remark is verified, and
the program goes to line 370.

If neither condition is true, the alleged remark
is actually within the quotation marks and is dis·
qualified. The program instead makes P equal to
the next position after the second quotation mark
(Q2+1) and returns control to line 270 to see if any
possible remarks exist after position P. In this way,
an entire, multistatement line can be looked at sec·
tion by section to detect all remarks.

When a valid remark is located, the program
takes all of the program line up to the remark itself,
using A$· (LEFT$,R -1), as in line 370. This, in ef.
feet, truncates the program at the remark.

We are not through yet. After all, some pro
gram lines consist of just a line number and a
remark. Cutting off the remark leaves only the line
number. This is a bit untidy and a waste of com·
puter memory as well. So, the program cycles
through a FOR-NEXT loop from 1 to the length of
A$. Each time through, the string variable B$ is
assigned the value of the middle character at posi·

tion N. This character is checked to see that it is
a number in the range 0-9, since all program lines
begin with numbers. As soon as B$ does not equal
a number, REM-over knows that the line number
is over, and control drops down to line 420.

There, T$ is assigned the rest of A$. IF T$ is
empty, or consists only of a space, the program
knows it has found an "empty" program line and
loops back to line 230 without printing anything to
the disk. That line has been deleted from the pro-
gram entirely. ·

There, T$ is assigned the rest of A$. If T$ is
see if the final character is a colon, as would be the
case if a remark followed a colon on a multistate
ment line:

10 PRINT"HELLO":REM This is a
remark.

If a colon is the last character, it is deleted in ·
line 450. A$ is printed to the screen, so the operator·
can monitor the progress of the program, and
printed to the disk. Control goes back to line 230,
where a check for the end-of-file is made and an·
other program line input from the disk. ·

That's all there is to REM-oving the REM-arks
from your IBM PC programs. ·

L.tstmg :it:: Tne REM-over Program

10 ' ****************
20 ' * *
30 ' * REM-over * 40 ' * *
50 ' ****************

55 ' *** Initialize ***

60 SCREEN 0,0,0
70 KEY OFF ,
80 ON KEY(l0) GOSUB 550
90 ON ERROR GOTO 580
100 KEY<lO) ON
110 COLOR 7,0

115 ' *** Enter filename ***

120 CLS:PRINT:PRINT
130 PRINT TAB(l7)"Enter name of program to have REMARKS

removed:•
140 LINE INPUT F$
150 Fl$=F$+".REM":Fl=INSTRCF$,•.•):IF Fl=O THEN GOTO 160 ELSE

Fl$=LEFT$CF$,Fl-l)+".REM":GOTO 160
160 OPEN •I•,l,F$
170 OPEN •o•,2,Fl$
180 CLS
190 LOCATE 25,30
200 COLOR 16,7
210 PRINT· Hit FlO to abort ••
220 COLOR 7,0 I

230 LOCATE 10,l
240 IF EOF(l) GOTO 490

245 ' *** Load Program Line ***
250 LINE INPUT il,A$
260 P=l

. 265 ' *** Check for REMARKS ***
270 R=INSTRCP,A$,•••)
280 IF R<>O GOTO 310
290 R=INSTRCP,A$, 8 REM•)
300 IF R=O GOTO 460

10

305 • *** Find Quotes, if Any ***

310 Ql=INSTR(P,A$,CHR$(34)):IF Ql=O GOTO 370
320 Ql=Ql+l
330 Q2=INSTRCQ1,A$,CHR$C34))
340 IF R<Ql OR R>Q2 GOTO 370
350 P=Q2+1
360 GOTO 270

365 ' *** Strip off REMARKS ***

370 A$=LEFT$(A$,R-l)
380 FOR N=l TO LENCA$)
390 B$=MID$CA$,N,l)
400 IF ASC(B$)<48 OR ASC(B$)>57 GOTO 420
410 NEXT N
420 T$=MID$CA$,N)
430 IF T$="" GOTO 240
440 IF T$=• • GOTO 240
450 IF RIGHT$(A$ 1 1)=":" THEN A$=LEFT$(A$,CLEN(A$)-l))

455 • *** If line not empty, print to disk ***

460 PRINT A$
470 PRINT #2,A$
480 GOTO 240
490 CLOSE

495 ' *** Again? ***

500 PRINT:PRINT
510 PRINT TAB(29)"Process another file?•
520 PRINT TAB(37)"(Y/N)"
530 A$=INKEY$:IF A$="" GOTO 530
540 IF A$="Y" OR A$="y" THEN RUN ELSE CLS
550 CLOSE
560 CLS
570 END

575 ' *** Error Routine ***
580 IF ERR=53 THEN PRINT"That file is not on your diskl Try

again.•:PRINT:PRINT:RESUME 130
590 PRINT"Unknown error in line •ERL1•.•:RESUME 130

Chapter 3

Titler
Now you are ready for some real action. Making
a few simple changes in an existing program is kid
stuff compared with the "real" thing-that is,
generating a new, never-before-existing program
line from your very own parameters. That's the
function of Titler. This program generates program
title blocks, such as the one shown in Fig. 3-1, that
can be merged with your own programs. You don't
have to tediously write the program lines yourself,
format the title block, or even supply your name
and address every time. The program will do that
for you. As an added feature, your friends can also
use the program by supplying their own names.

ENTERING DIFFERENT
NAME AND ADDRESS TITLES

This capability is carried out through what are
known as default values. That is, the programmer
assigns values to the name, address, and city
variables. (See Fig. 3-2 for a complete list of
variables used in the program.) Every time the pro
gram. is run, the user can simply press the Enter

key when asked whether or not a new name and
address should be input. The question is posed in
line 220. Then an INKEY$ loop repeats until the
operator presses a key, or presses the Enter key.
If N or the Enter key (CHR$(13)) was pressed, the
program drops down to line 400, and N$, AD$, and
CT$ remain as they were defined in lines 60-80.
The default values are used.

If Y or some other key is pressed, however, the
program will ask for a name, address, city, state,
and zip, and will assemble the string variables N$,
AD$, and CT$ on its own. In that way, a regular
user can be accommodated, while a path is left open
for a friend. to use, the. program as well.

. INCLUDING TIME IN THE TITLE
If you want, information other than the name

or address can be incorporated into the title. You
might add a line:

325 CT$ a TIME$

and delete lines 330 through 390.

13

Program Your IBl\f PC to Program ItseJf!

1 • **************************
2 • * * 3 • * Title Maker * 4 • * * 5 • * David o. Busch * 6 • * 515 E. Highland Ave. * 7 • * Ravenna,Ohio 44266 * 8 I *

* 9 • **************************

Ag. 3-1. Sample title produced by Titler.

In this case, the time when the title was created
~ be embedded in the title block instead of the
aty and state names. U you keep your system clock
a~te, thi~ can be a good way to keep track of
various versions of the same program?

GENERATING PROGRAM TITLE BLOCKS
Ne~ the ~ser is asked for the title of the pro

gram he is gomg to add the title block to· this is
sto;e<I in TITLE$. The program checks' to see
which of the four strings-the program title, the

A$ Using In INKEY$ loop.
A Length of widest line In title.

name, the address, or the city-is the longest. The
l?ngest of th~ four s~gs .determines how wide the
title block will be. This width, A, is defined in line
470 as the length of the longest string plus 4. The
extra four characters will leave room for a space
at each end of the longest string plus an asterisk
used as the border.

A disk file named TITLE.BAS is opened and
a s?broutine at Ifne 890 is accessed to prod~ce a
string that contains the next line number that will
be used in our miniprogram. What this subroutine
does is increment a counter, LC, each time it is
called. Then, LN$ is formed by converting the
counter LC to a string value and adding an
apostrophe, because our title block will consist of
remarks, and a space, CHR$(32). Then the
subroutine RETURNs to the main program.

There LN$ is added to the beginning of a string
equal to A+ 2 in length, consisting of all asterisks.
So, the first line might look something like this:

1 I ********************

That line is PRINTed to the disk in line 520.
Then, the subroutine at 890 is called again, and a

AD$ User's address.

:1 Difference between length of line to be Incorporated in title and A.
Number of spaces before line.

82 Number of spaces after line.
C$ User city.

CT$ Name of user's city, state, zip.
LC Line counter.

LN$ · Program line currently being built.
N$ User's name. ·
N Loop counter.
S$ User's state.
TITLE$ Title of program.
Z$ User's Zip cOde.

Ag. 3-2. Variables used by Titler.

14

new line is formed similarly. This line consists of
a line number that is one greater than the last, the
apostrophe, an asterisk, followed by spaces equal
to A, and another asterisk. This line will look like
this:

2 ' * *
The following line will contain the title itself

and will have an asterisk, some spaces, the title,
some more spaces, and another asterisk. The
number of spaces fore and aft will be divided as
equally as possible at each end, so that the title will
be centered. These are calculated by subtracting
the length of the title from A, dividing that by 2,
and assigning that value to the number of spaces
preceding the title, Bl. The number of spaces

Listing 3: The Titler Program

10 ' *******************
20 ' * *
30 • * Program Titler *
40 I * *
50 ' *******************

55 ' *** Defaults ***

60 N$="Your Name Here"
70 AD$="Your Address Here"
80 CT$="Your City, State, Zip"
90 KEY OFF
100 SCREEN 0,0,0
110 COLOR 7,0
120 ON KEY(l0) GOSUB 910
130 KEY (10) ON
140 CLS:PRINT
150 LOCATE 25,29
160 COLOR 16,7
170 PRINT" Hit FlO to abort "1
180 COLOR 0,7
190 LOCATE 8,31
200 PRINT "Title Block Writer"

Titler

following is the number remaining after sub
tracting Bl from B. This is done, instead of simply .
dividing B by two, because the result will not
always be even. It is sometimes necessary to make
Bl one space larger than B.

This centering procedure is repeated in the
following lines in which the name, address, and city
are included in the title block. The block is finished
when a program line identical to line 1 is written
to the disk.

The last step is to close the file and print in
structions to the user that tells him to renumber the ·
target program so that the first line -number is
higher than 10 and then MERGE his program with
the TITLE file.

There, we have created a program from
nothing. Next, things get a little more complicated.

; .

210 COLOR 7,0 n
220 PRINT:PRINT TAB(28)"Enter Name and Address?

15

i' ,,

!
!

I
l

I
I
I
i

I
I
I

16

Program Your IBM PC to Program Itself!

230 PRINT:PRINT TABC36)"Y/N ?"
240 PRINT

_250 PRINT TABC23)"(Just Hit <ENTER> to use Defaults)•
260 A$=INKEY$:IF A$=""GOTO 260
270 IF A$=CHR$Cl3) OR A$="N" OR A$="n• GOTO 400

275 ' *** Enter Name, etc. ***

280 CLS:PRINT
290 PRINT TABC34)"Enter name : ";
300 INPUT N$
310~PRINT TABC32)"Enter Address : •;
320 INPUT AD$
330 PRINT TABC32)"Enter City : •;
340 INPUT C$
350 PRINT TABC33)"Enter State : ";
360 INPUT S$
370 PRINT TABC32)"Enter Zip Code : •;
380 INPUT Z$
390 CT$=C$+•,•+s$+" •+z$
400 CLS:PRINT
410 PRINT TABC28)"Enter title of program. I •;
420 INPUT TITLE$
430 A=LEN(TITLE$)
440 IF LENCN$)>A THEN A=LENCN$)
450 IF LENCAD$)>A THEN A=LENCAD$)
460 IF LEN(CT$)>A THEN A=LENCCT$)
470 A=A+4

475 ' *** Open Disk file ***

480 OPEN "O",l,"TITLE.BAS"
490 CLS
500 GOSUB 890
510 LN$=LN$+STRING$CA+2,"*">
520 PRINT il,LN$
530 GOSUB 890
540 LN$=LN$+"*"+STRING$CA,32)+•••
550 PRINT ll,LN$
560 GOSUB 890
570 B=A-LEN(TITLE$):Bl=INT(B/2):B2=B-Bl
580 LN$=LN$+"*"+STRING$(Bl,32)+TITLE$+STRING$CB2,32)+••• 590 PRINT ll,LN$
600 GOSUB 890
610 LN$=LN$+"*"+STRING$CA,32)+"*•
620 PRINT ll,LN$
630 GOSUB 890

-A-LEN(N$):Bl=INTCB/2):B2=B-Bl •••
640 B-$ LN$+"*"+STRING$CB1,32)+N$+STRING$(B2,32)+ 650 LN =
660 PRINT#l,LN$

670 ~s~~E:~~$l:Bl=INT(B/2l:B2=B-nl •••
680 B-A$ LN$+"*"+STRING$(Bl,32)+AD$+STRING$(B2,32)+ 690 LN =
700 PRINT il,LN$

710 ~S~~E:~gT$l:Bl=INT(B/2l:B2=B-Bl •••
720 B-A$ LN$+"*"+STRING$CB1,32)+CT$+STRING$CB2,32)+ 730 LN =
740 PRINT #l,LN$
750 GOSUB 890) "*"
760 LN$=LN$+"*"+STRING$CA,32 +
770 PRINT il,LN$
780 GOSUB 890 •••
790 LN$=LN$+STRING$CA+2,)
800 PRINT il,LN$
810 CLOSE

815 , *** Final Instructions ***

:~~ ~~i~~R;~Cl8)"Renumber your target program so that

Titler

840 ~!~:i"TABClS>"line number is higher than 10, then type•

850 PRINT E "·CHR$C 34)•"TITLE.BAS";CHR$C34) 860 PRINT TABC29)"MERG I I

870 PRINT
880 END

885 ' *** Increment Line num ers b ***

890 LC=LC+l:LN$=STR$CLC)+"'"+CHR$C32)
900 RETURN
910 CLOSE
920 CLS
930 END

17

Chapter 4

1 O PRINT ITAB(TU "This program will insert·
20 PRINT "tabs into your program lines"
30 PRINT "to make for a much more·
40 PRINT "attractive screen appearance·

Tabber
Time for a breather. Tabber is a simple yet elegant
little program that will be very useful to you. It
creates no new program lines, doesn't make your
computer operate 50 percent faster, and won't even
make your laundry whiter.

ADVANTAGES OF TABBER
What Tabber will do is automatically center

various prompts that are printed to the screen using
PRINT or INPUT statements. Instead of sloppy
screen formatting, you can have neat copy. It will
work with both 40- and 80-column screens of PCs
or PCjrs. Best of all, you need to make only one
small change in your programming habits.

To center any prompt, simply type PRINT
~AB(T) instead of calculating the proper tab posi
tion yourself. With messages that were going to be
PRINTed to the screen, just insert T AB(T), as
shown in Fig. 4-1. If a program presently includes
the prompt after an INPUT or LINE INPUT state
ment, you will have to do some rewriting, since
there is no such thing in IBM BASIC (yet) as

an INPUT T AB(n) or LINE INPUT TAB(n)
statement.

Use the second line rather than the first in the
~pies below:

WRONG: 10 INPUT "Enter your
name:" 1A$

RIGHT: 10 PRINT TAB(T) "Enter your
name: 11 1:INPUT A$

You can still run or test programs using.
T AB(T) before they have been run through Tab
ber. This is especially useful· during ·program
development and testing. Simply insert T AB(T) as
you go along. Until the finished program has been ·
processed by Tabber, all prompts with T AB(T) will
be printed flush left, as long as the variable T is
not used within your program. T will have a value
of zero, and the program will tab zero spaces for
each prompt.

When the program is done, save it in ASCII

Program Your IBM PC to Program ItseU!

10 PRINT TABCT>"This program demonstrates the use"
20 PRINT TAB(T)"of TABBER.BAS. Any program using"
30 PRINT TAB(T)"the special 'T' TAB will have that"
40 PRINT TABCT)"prompt centered on the screen."

Fig. 4-1. Target Program to Demonstrate Tabber.

form, and run Tabber. It will search through each
program line. When it finds TAB(T) it will measure
the length of the prompt remaining, calculate how
many spaces must be tabbed to center that message
on a 40- or 80-column screen, and then replace the
"T" with an appropriate number as shown in Fig.
4-2.

PROGRAMMING TIPS
A few programming techniques used in this

program are described in this chapter. Menu input
routines are one area ripe for improvement. Many
programs will offer the operator a choice of actions,
listed in a menu on the screen. Items from menus
can be selected by having the user press the first
letter of the menu item name, enter the whole
choice, or enter a number that precedes the menu
choice.

Having the user type in the whole name is
rarely used, because a simple typing error could in
validate an otherwise correct entry. If a person
~ts a 40-column screen, and types 41 instead, it
~s a shame. to.make him or her redo the whole entry
just for nussmg by one, or worse, having the pro
gram crash because it doesn't recognize the choice.
Entering one character is popular, especially when
a menu is accessed frequently. The user can easily

memorize which letter triggers which menu choice,
because of the mnemonic connection. The follow·
ing is a typical letter-oriented menu:

CL)oad
(S)ave
(E)xit
(C)ontinue

A problem could occur if two menu choices
started with the same letter, and the programmer
could not think of a convenient synonym that used
another initial letter. In addition, such menus force
the nontypist user to hunt around the keyboard for
letters that may be widely separated.

Numeric menus, on the other hand, have
choices that are triggered by keys which are ar·
ranged in a row across the top of the keyboard. The
limitation is that only ten menu choices can be
listed, if you want single-key entry (0-9):

0.) Abort Operation
1.) Load
2.) Save
3.) Exit
4.) Continue

Even there, you open yourself to problems,

10 PRINT TAB(23)"This program demonstrates the use"
20 PRINT TAB(23)"of TABBER.BAS. Any program using"
30 PRINT TAB(23)"the special 'T' TAB will have that"
40 PRINT TAB(25)"prompt centered on the screen."

Ag. 4-2. Example Of a program with TABs Inserted.

20

Tabber

because the simplest input methods could confuse
a null entry Gust pressing ENTER, for example)

.th zero. It is possible to check the CHR$ values
; the entries, to differentiate between zero
(CHR$(48)) and ENTER {CHR$~13)). You c?uld
also extend a numeric menu by using hexadecimal
notation following 9 with A,B,C,D, or E.

220, for example, is an INKEY$ loop that repeats
until a character is pressed. That character, A$, is
converted to a number value, A, in line 230. If A< 1
or A> 2, the program loops back. Otherwise, it sets
the value of S to either 40 or 80, as appropriate.
(Variables used in Tabber are shown in Fig. 4·3.)

· Next, the user enters the file names for the

. In p~ctice, this is seldom needed. Tabber's
menu has only two choices, that betwe~n ~0- and
SO-Column formatting. It also uses a built-in err_or
trap, something that is too often fo~gotten b~ be~
ning programmers. Some will wnte a routine like
this:

10 PRINT"l. > Load program"
20 PRINT"2.> Save program"
30 INPUT"Enter Choice"JCH
40 ON CH GOTO 100,200

"
Now, if a naive user enters .L or S, or some

other letter by mistake, a cryptic REDO FROM
START message will be displayed. That is of ~o
help at all. Entering a number larg~r than 2 will
send the program to the line following 40, what·
ever that is. This could crash the whole program.
You can avoid the REDO message by using CH$
instead of CH in the INPUT, since strings will ac
cept letters as well as numbers. Converting to
numerics, e.g., CH= V AL(CH$) will send you to 01:11"
ON CH GOTO ••• line happily-except you still
haven't handled the inappropriate input that might
result. Also it is necessary for the user to
remember t~ hit the Enter key before the input is
accepted. The user either has to be sophisticated
enough to do this on his or her own, or else you have
to waste one of the IBM PC's 25 screen lines to
prompt the user to do so.

Since all you want is a single character, why
not use INKEY$ to get it? Then, if the character
is not valid, just send control back to the INKEY$
loop until a proper entry is made.

input and output files, and a single line is loaded
from disk in line 330. The next line looks for an
occurrence of "T AB(T)" in the target program line.
Since the string "T AB(T)" is fairly unusual, no ef • ·
fort is made to check to see if it is contained in
quotes or after a remark. Odds are that it will never
appear in your program, except where you actually
do want to center a prompt. This is mentioned
because Tabber did "crash" when it was used to
process itself. That is because of line 340, in which
"TAB(T)" is contained as part of the program_
itself, and not before any prompt. In all other cases,
T AB{T) will be followed by a prompt and a .
matched pair of quote marks. In this case, that was
not so. .

Whenever Tabber finds TAB{T), 1t looks for
the position of the first quote, loads the value of the
rest of the program line from that quote, '?1d then
cuts off the line AFTER the second quote (line 380).
B$ will then contain only the material in the prompt.

The next step is to measure the length of the
prompt subtract that from S, which is the screen
width (~ither 40- or 80-columns), and divide by 2 ..
The resulting number, D, is the number of spaces
that should be tabbed to center the promp~ .

A new program line is then assembled m line

410• taking everything that appears BE~ORE the
TAB(, adding that to a string representation ?f ~e
tab value (the leading space has been deleted m line

400), and finishing off with the rest of the program

lin beninn1ncr with). Thus~ the T has been deleted
e, e;........-a · Th gram then

and replaced with a number. e pro '
loops back to line 340 to see if any more T AB{T) s
a in the program line. This ~ows Tab~r to
P~=s multiple T AB(T)'s appeanng on a smgle .

HOW TABBER WORKS line tains 'once the work is finished, or if a line con
Tabber uses this INKEY$ loop approach. Line

21

Program Your IBM PC to Program Itself!

A$
8$
c
01
D
0$
f $
f 2$
s

Program line being examined.
Portion of program line.
Position of "TAB(T)" In program line.
Position of quote In program line.

Half the difference between prompt length and display line length.
Amount to tab, added to program line.
File to be processed.
Output file.
Length of display line, either 64 or 80.

Fig. 4-3. Variables Used by Tabber.

no TAB(T)'s in the first place, control drops down end-of-file has been reached. If not, the program
to lines 430-440, where A$ is printed to disk and loops back to line 330 to load another program line
screen. A check is made in line 420 to see if the from disk. Otherwise, the processing is finished.

Listing 4: The Tabber Program

10 I ********************
20 I * *
30 ' * Tabber *
40 I * *
50 I ********************

55 ' *** Initialize ***
60 KEY OFF
70 SCREEN 0,0,0
80 COLOR 7,0
90 ON KEYClO) GOSUB 550
100 KEYClO) ON
110 CLS:PRINT:PRINT
120 LOCATE 25,30
130 COLOR 16,7
140 PRINT· Hit FlO to abort •• ,
150 COLOR 7,0
160 LOCATE 4,21
170 PRINT "IS PROGRAM FOR 40 OR 80 COLUMN SCREEN?" 180 PRINT
190 PRINT TAB(33)•1.) 40 COLUMN•
200 PRINT TABC33)"2.) 80 COLUMN•
210 PRINT:PRINT TABC33)"ENTER CHOICE :•
220 A$=INKEY$:IF A$=•• GOTO 220
230 A=VAL(A$)

22

240 IF A<l OR A>2 GOTO 220 _
250 IF A=l THEN S=40 ELSE S-80

255 , *** Enter Name of File to Process ***

260 CLS:PRINT:PRINT E CENTERED " 270 PRINT TAB(20)"ENTER PROGRAM WITH TABS TO B :
280 LINE INPUT F$ ·•
290 PRINT TABC26)"ENTER NAME OF OUTPUT FILE •
300 LINE INPUT F2$
310 OPEN "I",l,F$
320 OPEN "0",2,F2$

325 , *** Load a Line ***

330 LINE INPUT il,A$
340 C=INSTR(A$,"TAB(T)")
350 IF C=O GOTO 430
360 Cl=INSTR(C,A$,CHR$(34))+1
370 B$=MID$(A$,Cl)
380 B$=LEFT$(B$,INSTR(B$,CHR$(34))-l)
390 D=INT((S-LEN(B$))/2)
400 D$=MID$(STR$(D),2)
410 A$=LEFT$(A$,C+3)+D$+MIDCA,C+5)
420 GOTO 340

425 • *** Print to Disk ***
430 PRINT #2,A$
440 PRINT A$
450 IF EOF(l) GOTO 470
460 GOTO 330
470 CLOSE
480 CLS:PRINT:PRINT •
490 PRINT TAB(35)"FINISHED.

495 ' *** Again? ***

500 PRINT:PRINT another file?• 510 PRINT TAB(29)"Process
520 PRINT TAB(37)"(Y/N)"
530 A$=INKEY$:IF A$="" GOTO s3o
540 IF A$="Y" OR A$="y" THEN RUN
550 CLOSE
560 CLS
570 END

Tabber

Chapter 5

10 SCBEEli o.o.o
20 KEY OFf
30COLOR 7,0
40LOCATE10.5
50 DIFSIG=O

A
\i;;I

• •
f.

Screen Editor
The next three programs in the book, Screen
Editor, DB Starter, and Proofer, make up a trilogy
of sorts, called Automatic Programmer. The three
in the Automatic Programmer series are related
programs that might be thought of as integrated,
but aren't. No data files are transferable from one
to the other.

Output, however, from one of three can be pro
cessed or combined with output from the others
quite easily.

These are an attempt to present some profes
sional programming concepts, showing how error
traps, help screens, instructional files, and so forth
can enable programs to be self-documenting and

. usable even by the neophyte.
~ All three make use of a fourth program,
Autoprogrammer Documentation, which serves as
a help file and introduction to all three. It also is
a menu of sorts that can be used to load and run
one of the other programs.

THE PURPOSE OF SCREEN EDITOR
The first.of the Automatic Programmer series

~.., ,

is Screen Editor, which you will find to be one of
the most useful programs in this book. I relied on
it heavily to write instructional screens for many
of the other programs here and even for itself. With '
a few minor changes, the program is compatible ·
with the Microsoft Basic Compiler. A much faster
running compiled version was used, cutting pro
gramming time down from a minute or two to a few ·
seconds. .· ' .:·

Have you ever wished that you could design
your program menus, instruction screens, and other
CRT displays with a word processor· or some
similar program-and then tell your IBM PC
something like the following: -··

"Hey, I want my screen output to l!Xlk like this. ·
Please write a few lines of code for me that will re- ·
produce this in my program." . .

Screen Editor will do exactly that for you. Use
it as a screen-oriented text editor to lay out your
display exactly as you want it to appear. Unlike an
ordinary text editor, however, you can also use
graphics! That is, you can take advantage of any .
of the ASCII special characters defined in the IBM ·

- - - ------ ..,!""'"'""'-& UUl\,U;;1

characters, musical notes, and foreign alphabets. • -· .. ~~~~······················ ...
The program will then write a suitable

subroutine, such as the one shown in Fig. 5-1, that
can be MERGEd with an existing program to pro
duce the desired display.

•
•
•
•
*
•
*
•
•
*

-Menu-

1.) Load disk file
2.) Save disk file
3.) Create file
4.) Access database
5.) Update database

-> Enter choice :

*
*
*
*
*
•

*

Ordinary, line-oriented program input and
editing is somewhat tedious when neat, nicely for
matted screen layout is desired. It's necessary to
use a copy of the IBM PC screen map,and do a
!?"eat deal of laborious notation on WCATE posi
tions. Even less complicated layouts require
calculating TAB positions and other time
consuming tasks. Consider the work that would be
involved in programming a display to provide the
following menu;

•••••••••••••••••••••••••••••••••••••••

20 CLS

With Screen Editor, simply use the arrow keys
to move the cursor around on the full screen. Press

30 PRINT TAB(l3)"***********************************• 40 PRINT TAB(l3)"*
50 PRINT TAB(l3)"* *"
60 PRINT TABC13)"* SCREEN EDITOR *"
70 PRINT TAB(l3)"* *"
80 PRINT TAB(l3)"* *"
90 PRINT TABC13)"* FOR IBM PC *"
100 PRINT TAB(l3)"* *"
110 PRINT 'l'ABC13)"* *"

,,1120 PRINT TAB(l3)"************************************: 30 PRINT
140 PRINT
150 PRINT TAB(20) "THIS IS
160 PRINT A SCREEN PREPARED BY· SCREEN EDITOR"
.170 P'UNr
180 PRINT
190 PRINT
200 PRINT
210 PRINT
220 PRINT
230-PRINT
240 A$=INKEY$:IF A$="" GOTO 240

Fig. 5-1. An example of a program produced by Screen Editor.

26:

character keys to place alphanumerics where
desired. The layout can be quickly done by eye •
Then, press the Enter k~y, spec~ what line
numbers are desired for this subroutme, and c:o1-
lect the finished program module from your disk
a few minutes later. There, stored in ASCII form
(ready for merging) will be program lines that re
produce what you desi~ed on the s~een. Inst~ad
of spending 15 or 20 mmutes of codmg, RUNmg
the program to check the appearance of the out
put, making changes, and so forth, you have three
to five minutes of typing with a word processor-like
tool.

HOW SCREEN EDITOR WORKS
This trick is accomplished by using the

SCREEN function to check each position on the
screen noting what character (if any) has been
placed

1

there by the user, and then assigning each
screen line to a separate element of a string array,
L$(n). (See Fig. 5-2 for a list of the variables used
in Screen Editor.) Then, each of the elements in
L$(n) are used to assemble an appropriate program
line, which PRINTs the entire line to the user's
screen. If, say, line 1 consists of 10 spaces, 60
asterisks, and 10 more spaces, that entire line will

be PRINTed in the resulting program. No calcula
tions need to be made.

Screen Editor, in other words, reproduces your
screen arrangement, spaces and all. It may not be
the most memory efficient way of invoking a
desired screen within your program, but for disk
users with at least 64K of memory available, the
waste will be negligible in comparison to the pro
gramming time saved.

Actually, a nifty technique is used to eliminate
the leading and trailing spaces. As the program
looks at each video line in turn, it sets a BFLAG
when it encounters the first nonspace character,
and an EFLAG when it encounters the LAST
nonspace character on the line.

In assembling the finished program lines, it
constructs a PRINT TAB statement that tabs to
the position of the first nonspace. The following
characters, spaces and all, are reproduced until the
last nonspace, when a closing quote is added. Thus,
a line like:

Hello!
Would not be turned into a program line like

this:

10 PRINT" Hello!

A$
c

Character Input from keyboard, through INKEY$.
Cursor character.

cu
EFLAG
F$
IC
L$
LN$(n)
LN$
N
N1-N9
PR$

Counter.
End of character line flag.
File name of output file.
Increment to Increase line number by.
End of line character.
Stores finished program lines.
Program line currently being built.
Loop counter.
Loop counters.
Program line being built.

Fig. S.2. Variables used In Screen Editor.

Program Your IBM PC to Program Itselfl

Instead, the line would read:

10 PRINT TAB(lO)"Hellol"

The program is divided into several sections.
After going through some preliminary routines, it
asks for a file name for the output file. An input
routine used in several other programs in this book
is accessed here. It starts at line 590.

The program puts the name you enter into
variable F$. Then, a FOR-NEXT loop from 1 TO
LEN(F$) looks at each character in the file name
in tum. The ASC value of the character is
calculated, and if it is greater than 96 and less than
123 (meaning it is a lowercase character), a conver·
sion is made to uppercase. This is accomplished
simply by subtracting 32 from the ASCII code for
the character. That is, CHR$(97) ("a") becomes
CHR$(65) ("A").

BASICA, of course, accepts a mixture of upper
and lowercase in file names; however, I introduced
this programming trick here because it will be used
frequently later in the book, and converting the file
name enables us to simplify some checking done
later on.

For example, in line 640 the program looks to
see if the first four characters of the file name are
HELP or if the whole file name is H. This triggers
a help routine. If the input had not been converted
to uppercase, the program would have had to check
for help, Help, hElp, helP and other combinations.

The routine looks to see if the file name is
longer than 12 characters (eight characters plus a
.BAS extension), and whether or not .BAS has been
added. If it hasn't been, or if the file name is null,
the name is rejected and the user asked to enter
a new one. This routine will not catch ALL illegal
file names, but it should keep the program from
crashing because of the most common errors.

Next the program allows the user to input the
screen design. An INKEY$ keyboard strobing loop
subroutine looks for input (line 240). If Fl has been
pressed, control drops down to the screen view·
ing/program assembly section. Otherwise, Screen

28

Editor looks at the character input to see if it was
Escape (CHR$(27)).

ESC is used as a toggle to turn graphics output
on and off. A toggle is like an on/off pushbutton.
If a feature is off when toggled, it is turned on. If
it i$ on, then the toggle turns it off. Pressing ESC
sets certain flags used by Screen Editor. If graphics
mode was off, it is turned on by setting FLAG to
1 in line 1040.

The characters you press on the keyboard are
printed to the screen. If FLAG .. 0, meaning
graphics are off, the character, CU, will be the same
as the key pressed. If graphics are switched on, CU
will equal CU+ 128 (line 1070), and one of the
characters from the second half of the IBM
character set will be used. You should jot down
which characters are produced by which keys when
in graphics mode in order to use them in your own
screen designs.

Screen Editor also checks to see if you press
ENTER, CHR$(13). If you do, and the cursor is not
already on line 24, then the cursor drops down to
the beginning of the next line. That is done by
changing the value of ROW and COL used with a
LOCATE statement to print the cursor. In this
case, COL is set to 1 (to move the cursor to the first
column at the far left of the screen) and ROW is
set to ROW+ 1, to move the cursor to the next row.
This is not done when ROW• 24, to avoid trying
to move the cursor beyond the bottom of the screen.
(Actually, what would happen would be that the
screen would scroll, spoiling the design.)

Anytime the cursor reaches the middle of the
screen, a BEEP is sounded. In addition, a display
at the bottom of the screen tells you the current
ROW, COL, graphics mode, graphics character, if
any, and how to finish (with Fl) or abort (with
FlO).

I've told you everything except how the cur·
sor is moved on the screen. I used an interrupt
routine, activated similarly to the "FlO to abort"
routine used throughout this book. Instead of using
one of the function keys to trigger the event, how·
ever, I used one of the cursor pad arrow keys.

Th keys have definitions of their own. The
p~s:ees them as KEY(ll) through KEY(14).

IBM h an arrow key is pressed, the program
So, w en utine that changes the value of
branches to a ro . th

W COL either plus or minus, to move e
RO or d wn' or from side to side. You should ,
cursor up, o , d fi

o know that BASIC 2.0 allows you to e me any
~;the other keys on the keyboard. as KEY(15)

h KEY(20) you can even specify that ALT,
tbroug · · · f th

RL SmFT or some combination o ese
CT ,or ' · t ed

d That technique however, 1s no us
be presse · '
~. th kys Please note that you must press e arrow e
once for each space you want to move. ~u :~
hold the key down. If you do, some grap cs
may be printed to the screen, and you'll have to go
back and erase them. The reason this takes place
has to do with the way the IBM scans the keyboard
and cannot be easily corrected through program·
ming.REPEAT: Do not hold down the arrow key~.

Once the screen design is complete, and ~11s
d the program drops to line 1570. First,

presse , if tra cursor
Screen Editor checks to see a s Y .

Screen Editor

the loop counters change, SCREEN looks at each
screen position and then paints it ~hite. I~ the .
character is a nonspace, it is loaded mto ~anable
PR$, and used to construct the program ~e cor·
responding to that screen line. As mentioned,
BFLAG and EFLAG mark the positions of the first
and last nonspace characters. These ~bles are
used to determine the initial TAB positt~n of the
line and the place where the final quotation mark

I C

goes. imilarl t
Actual program lines are written s Y o

those in previous programs in this book. The pro
gram written is ended with an A$= INKE:$:IF
A$=" " GOTO loop to keep your screen unage
displayed until you press a ke~.

Once Screen Editor has wntten a program to
reproduce your screen design, you may MERGE
. t d edit it to suit yourself. Most of the screen 1
d ~ · this book were written with Screen esigns m d' d
Editor, although in many cases they were e it~
to produce flashing characters and other special

features. ti' Pr
Like all the programs in the Automa c o-

. Screen Editor has manY error grammer senes, th . t character has been left on the screen and erases it
(line 1580). Then the program starts ~o nested
FOR-NEXT loops, the outer one covenng ~ch of
the 24 screen lines and the inner one counting off
each column across the screen. As the values for

tra s built in. Entering Help or H t? e m~u
P ts will call up the help file or display a tip ..

promp . d' d · later
More complex error traps will be iscusse m
chapters.

Listing 5: The Screen Editor Program

10 ' **************************:
20 ' * •
30 * screen Edi tor *
40 • *** so ************************
60

65 ' *** Initialize ***
70 DEFINT A-Y
80 ROW=l: COL=l
90 WHITE=l 77
100 ON ERROR GOTO 2000
110 DIM LN$C400)
120 KEY OFF 29

~
~\

~

I
I
I

30

~~~~~----------................................................ &.!!!!!!!lll!!!!!!!!!l!!l!l!!!!!!!!!!J!!!!!!!li 

Program Your IBM PC to Program Itsem 

130 SCREEN 0,0,0 
140 COLOR 7,0 
150 ON KEY(l) GOSUB 1560 
160 ON KEYClO) GOSUB 2340 
170 ON KEYCll) GOSUB 1500 
180 ON KEY(l2) GOSUB 1400 
190 ON KEYC13) GOSUB 1350 
200 ON KEY(l4) GOSUB 1450 
210 KEYClO) ON 
220 WIDE=80 
230 GOTO 260 
240 A$=INKEY$:IF A$="" GOTO 240 
250 RETURN 
260 SP$=CHR$C32) 
270 LA$=STRING$C64,"*") 

275 ' *** Instructions? *** 

280 CLS 
290 GOSUB 400 
300 GOTO 310 
310 PRINT:PRINT 

.. 

320 PRINT TABC20)"-- D 
330 PRINT o you want general instructions ? --• 

~:~m~~;~: TABCl6)"You may also type 'H' or 'HELP' to most input 
350 GOSUB 240 
360 IF A$="N" OR A$="n" THEN CLS: GOTO 550 
370 IF A$="H" OR A$="h" THEN RUN"AUTOPROG.BAS" 
380 IF A$="Y" OR A$="y" THEN RUN"AUTOPROG.BAS" 390 CLS ELSE 350 
400 PRINT TAB(8)"************* 

*******************" ******************************** 
410 PRINT TAB(8)"* I 

Automatic Programmer 

Screen Editor 

*"1 
420 PRINT TAB(8)"* 

••• 
430 PRINT TABCS>•~ 

••• 
By: David D. Busch 

440 PRINT TAB(8)•~ 
*". 450 PRINT TAB(8)"~ 

---------------------46 o ---------------PRINT ---------------------
470 PRINT TAB(8)STRING$(64 "*") 
480 RETURN ' 

*"; 

490 CLS 

Screen Editor 

500 CLOSE 
510 CU=l 
520 : FOR NS=l TO 100 
530 : LN$CN8)="" 
540 : NEXT NS 
550 LN=lO: IC=lO 
560 PRINT:PRINT:PRINT 
570 GOSUB 590 
580 GOTO 710 

585 • *** Enter filename of screen *** 

590 LINE INPUT"ENTER FILE NAME : ";F$ 
600 FOR N=l TO LENCF$) 
610 T=ASCCMID$CF$,N,l)) 
620 IF T>96 AND T<l23 THEN MID$CF$,N,l)=CHR$(T-32) 
630 NEXT N 
640 IF LEFT$(F$, 4)="HELP" OR F$="H" THEN GOSUB 2130 
650 IF LENCF$)>12 THEN PRINT"File name too longl":PRINT:GOT0590 
660 S9=INSTRCF$,".BAS") 
670 IF LENCLEFT$CF$,S9))>8 THEN PRINT"File name too 

longl":PRINT:GOTO 590 
680 IF S9=0 THEN PRINT "MUST INCLUDE .BAS EXTENSIONl":GOTO 590 
690 IF F$="" GOTO 590 .. 
700 RETURN 
710 IF F$="" THEN F$="TEST.BAS" :PRINT:PRINT 

•using default filename TEST.BAS" 

715 ' *** Instructions *** 

720 CLS 
730 PRINT:PRINT 
740 PRINT TAB(ll)"******************** Screen Editor 

**********************" 
750 PRINT TAB(ll)"* 

* ft. I 

760 PRINT TAB(ll)"* 
around screen. * 

770 PRINT TAB(ll)"* 
You may * "1 

Use the cursor pad arrow keys to move . , . 

Press alphanumeric keys to type display. 

hit ESC, followed by a key to enter 780 PRINT TAB(ll)"* 
graphics mode. 

790 PRINT TAB(ll)"* 
keys to * "1 

800 PRINT TABCll)"* 
Use arrow * "1 

* ., 
In graphics, press any key other than arr~w 

leave a trail of that graphics character. 

31 



32 

........................................... _. ______ ~_ 
Program Your IBM PC to Program ltselfl 

810 PRINT TABCll>•• key to move without trail. Exit graphics mode by * •1 

820 PRINT TAB(ll>•• hitting ESC once again to return to text, 
or to * •1 

830 PRINT TAB(ll>•• change to a different graphics character. * ., 
840 PRINT TABCll)•* 

* ., 
850 PRINT TABCll>•• Computer will BEEP when cursor reaches center of the * •1 

860 PRINT TABCll) •• screen. Hit arrow keys once for each move; do NOT * "; 
870 PRINT TAB(ll>•• hold arrow key down, or graphics blockwil be left * "; 
880 PRINT TAB(ll>•• behind. ONE key depression for each move only! * •; 
890 PRINT TAB(ll)•* 

* •.. , 
900 PRINT TAB(ll)•*************************************** ****************** •• 
910 PRINT TABC26)•-- HIT ANY KEY TO BEGIN -- • 920 GOSUB 240 

, 

925 ' *** Look for keyboard input *** 

930 KEYCll) ON:REY(l2) ON:KEY(l3) ON:KEY(14) ON 940 KEYCl) ON 
950 CLS 
960 GOSUB 240 
970 A$=INKEY$:IF A$=•• GOTO 970 
980 IF A$<>CHR$(8) THEN GOTO 1030 
990 COL=COL-l:IF COL<l THEN COL=l 
1000 LOCATE ROW,COL:PRINT CHR$(32)7 1010 CU=O 
1020 GOTO 1080 · , 
1030 IF A$=CHR$(27) AND FLAG2>0 THEN FLAG2=0:GOTO 1090 
1040 IF A$=CHR$C27) THEN FLAG=l:GOTO 970 · · 
1050 IP A$=CHR$(13) ANO ROW<24 THEN LOCATE ROW,COL:PRINT 

CHR$C32) :ROW=ROW+l:COL=! · . ·. · 1060 CU=ASC(A$) .. . 
1070 IP FLAG=! THEN CU=CU+l28:FLAG=O:FLAG2=CU 
1080 IF COL=WIDE/2 THEN BEEP 
1090 LOCATE 25,l . 
1100 COLOR 0,7 
1110 PRINT •column: ., 
1120 COLOR 7,0 
1130 PRINT COLJ 

Screen Editor 

ll40 LOCATE 25,15 
1150 COLOR 0, 7 
1160 PRINT •Row : ., 
1170 COLOR 7 ,O 
1180 PRINT ROW; 
1190 LOCATE 25,25 
1200 COLOR 0, 7 
1210 PRINT· Graphics : •; 

1220 COLOR 23,0 • ON "; ELSE COLOR 7,0:PRINT 1230 IF FLAG2>1 THEN PRINT 
• OFF•+SPACE$(18); 

1240 COLOR 7,0 THEN COLOR 0,7:PRINT "Character :";:COLOR 
1250 IF FLAG2>l CHR$(FLAG2)••COLOR 7,0 

7,0:LOCATE 25,58:PRi:T7·PRINT•F1 TO.PROCESS"1:COLOR 7,0 1260 LOCATE 25,64:COLOR ' • 
1270 LOCATE ROW,COL - ·GOTO 1310 
1280 IF VFLAG=l THEN ~~~-gHR$(FLAG2);:COL=COL+l:GOTO 1320 
1290 IF FLAG2>0 T~~~>l3 THEN PRINT CHR$CCU);:COL=COL+l 
i~~~ ~~ gg!g ~:DCU=l3 THEN PRINT CHR$(43); 
1320 CU=O 
1330 GOTO 970 

*** 1335 , *** Move Cursor 

1350 LOCATE ROW,COL:PRINT CHR$C32)J 
1360 COL=COL+l E 1 
1370 IF COL>WIDE-1 THEN COL=WID -
1380 VFLAG=l . 
1390 RETURN 1080 
1400 LOCATE ROW,COL:PRINT CHR$(32); 
1410 COL=COL-1 
1420 IF COL<l THEN COL=l 
1430 VFLAG=l 
1440 RETURN 1080 · · • 
1450 LOCATE ROW,COL:PRINT CHR$(J2), 
1460 VFLAG=l . 
1470 ROW=ROW+l 
1480 IF ROW>24 THEN ROW=24 

i:~~ ~~~~: ig~~COL:PRINT CHR$(32); 
1510 VFLAG=l 
1520 ROW=ROW-1 
1530 IF ROW<l THEN ROW=l 
1540 RETURN 1080 
1550 GOTO 960 

33 



Program Your IBM PC to Program Itseli! 

2310 PRINT TAB(2g)"CY/N)" 
2320 A$=INKEY$•I 
2330 IF A$="Y"• FA$=:" GOTO 2320 
2340 CLOSE:END OR A$= y" THEN RUN ELSE CLS 

36 

Chapter 6 

10 SCBEEB o.o.o 
20JCE1011 
SOCOLOB 7.0 
40LOCATE 10.5 
50 DEF SEG=O 

• • 

DataBase Starter 
For the microcomputer user, the self-programming 
computer is still some time in the distant future. 
Or is it? There are three things that computers have 
a knack for, processing data, controlling functions, 
and constructing designs from smaller building 
blocks. The first two are simple enough. Ask a com
puter to add 367 to 598, and it will happily com
ply. Tell it to send a signal to port X whenever it 
receives input from port Y, and a computer will 
gladly control your carburetor, monitor your house 
?r keep your Boeing 767 on course. When ah~ 
is available to provide a list of criteria and pa
~eters, a computer is entirely capable of com· 
b!Illilg components from an existing library to 
assemble or "design" a complex product. 

.A computer program is nothing m9re than a 
d~1gn to accomplish a desired task. Once a human 
be~ has determined how to get from point A to 
PQmt B, it's entirely practical to have a computer 
choose from a library of subroutines to put together 
a program. The next program in the Automatic Pro
~er series is DB Starter, which illustrates the 
basic concept. 

CREATING PROGRAM 
SKELETONS WITH DB STARTER 

This program will ask the user for certain pro
gram parameters, such as whether or not a menu 
is needed, whether or not data will be stored in a 
string array, the size of the array, and other in· 
formation, and then "write" a BASIC program 
skeleton that conforms to these parameters. 

Figure 6-1 is a sample program that was writ· 
ten by DB Starter. The array in line 40 of the ex
ample was created and DIMensioned according to 
user input requirements, just as the menu was con· 
structed, and subroutines allocated for later work 
by the human programmer. Two subroutines re
lating to disk 1/0 were actually entirely written by 
the program. The finished code was then saved to 
disk. 

As written, the program will do the following 
things: . 

0 Ask the user for beginning line number and . 
desired line number increments. 



~~~~-----------........... ------------------------!!1!!!!111!1!!!1!1!! 

Program Your IBM PC to Program Itself?

30
40
so
60
70
80
90
100
110
120
130
140
150
160
170
500
1000
1500
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
~640
2650

DATA Name,Address,Phone,Zip
DIM DA$(20, 30),DTA$(4)
NC= 30
FOR G=l TO 4:REAO DTA$(G):NEXT G
CLS:PRINT:PRINT" ********** MENU **********":PRINT
PRINT" 1.) Access Data"
PRINT" 2.) Update Data"

PRINT" 3.) Start Database"
PRINT" 4.) LOAD FILE FROM DISK"
PRINT" 5.) SAVE FILE TO DISK"
PRINT
INPUT"ENTER CHOICE : "1CH$
CH=VALCCH$): IF CH<l OR CH> 5 GOTO 140
ON CH GOSUB 500, 1000, 1500 2000 2500
GOTO 70 ' '

REM ****** INSERT Access Data SUBROUTINE HERE ******
REM ****** INSERT Update Data SUBROUTINE HERE ******
REM ****** INSERT Start Database SUBROUTINE HERE ******
REM ****** LOAD FILE FROM DISK ******

INPUT "ENTER FILE NAME :"•F$ ·
OPEN "I",l,F$ I

INPUT #1,NF
FOR N=l TO NF
FOR COL=l TO NC
INPUT ll,DA$(N,COL)
NEXT COL,N
CLOSE
RETURN

REM ****** SAVE FILE TO DISK ******
INPUT "ENTER FILE NAME •"iF$

OPEN "O",l,F$ •
PRINT #1,NF

FOR N=l TO NF
FOR COL=l TO NC
PRINT fl,DA$(N,COL)•• •
NEXT COL,N I I

CLOSE
RETURN

REM ****** CLEAR SCRE
CLS:PRINT:PRINT:RETURN EN SUBROUTINE ******

REM ****** INKEY$ INPUT SUBROUTINE *****
A$=INKEY$:IF A$="" GOTO 2630
A=VAL(A$)
RETURN

Rg. ~1. An example of a program Produced by OB Starter.

38

o Ask if a string array will be used to store
data and if so, allow the user to specify whether
the ~Y will be one- or two-dimensional. The
elements that should be DIMensioned are also
input.

o A menu of reasonable size (i.e., which can
fit on a single screen) may be specified. Each choice
can be described. Program lines to print the menu
to the screen will be created, along with an ''enter
choice" prompt.

D Each of the menu choices will be assigned
a subroutine line number-marked with a
REMark-so the programmer can flesh them out
later. An ON CH GOSUB ••• line will be created
sending control to each of the menu subroutines.

D Disk file 1/0 subroutines that will save or
load data stored in a one- or two-dimensional array
are automatically created.

D The user can also specify several other
. subroutines, such as CLS:PRINT:PRINT and

A$= INKEY$: IF A$=" " GOTO •••

DB Starter will then create the basics of a sim
ple data base management program that must be
completed by the programmer. It doesn't complete
the program, but does save a great deal of typing
time. Arguably, there is a much simpler way of ac
complishing nearly the same thing. Write out an
all-purpose program containing the most-used
modules and then SA VE that program on a conve
nient disk. When the time comes to create a new
program, you can simply load the general module,
delete lines not needed, renumber, and do other
minor work to tailor it into a skeleton for the new
project. Or you can use structured programming
techniques with common variable names, routines,
and so on to build a great many program modules
that can be readily transferred from one program
to another.

WHO NEEDS DB STARTER

Programs that Write other programs make the
most sense when developed for the unsophisticated

DataBase Starter

user. That might include someone who is incapable
of taking an all-purpose program and changing the
code to fit a new purpose-a nonprogrammer, or
a beginning programmer. Given a sufficiently
sophisticated version of DB Starter, the user might
be able to answer a series of prompts to inform the
computer just what type of task had to be per
formed and then receive a finished program that
will do the job.

DB Starter can only do a few things. While
keeping the size of the program down to what will
comfortably fit in this book, I've left the door open
for ambitious programmers to expand its ca
pabilities and apply the concepts to their own work.

HOW DB STARTER WORKS
Let's look at how the program works. The

variables used are shown in Fig. 6-2. DB Starter
consists of a series of modules, each designed to
"create" a specific type of BASIC code. The
mechanics are simple. The lines of the target pro
gram are assembled from the "library'' of words
and phrases built into DB Starter. As each line of
the target program is completed, it is stored in a
string array, LN$(n). The particular element of
LN$(n) is determined by a counter, CU.

Each time a new target program line is ini
tiated, control is sent to a subroutine at line 670.
There, the line number of the target (LN) is in
cremented by IC (LN = LN +IC). IC is defined as
10 in line 490; however, you can change this to
some other value or add an INPUT statement to
permit the user to enter an increment at runtime.
Next CU is increased by one so that the new pro
gram line will be stored in the next available ele
ment of LN$(n). Finally, the new line number (LN)
is converted into a string and assigned as the first
part of LN$(CU), along with a pair of spaces.

For example, if LN = 100 and IC= 10 when co?
trol is sent to line 670 of DB Starter, LN$(CU) will
equal "110 " when it RETURNs. So, each ele
ment of LN$(n) will begin with a line number,

39

Program Your IBM PC to Program Itseli?

A$
CFLAG
CH$
COL$
cu
D3$
D4
DI
f $
IC
IOFLAG
LN$(n)
MENU$(n)
Ml
N
N1-N9
NW
P$
P1$
ROW$
Y$

Fig. 6-2. Variables used In DB Starter.

Character Input from keyboard through INKEY$.
Check to see end of DATA Input.
User choice input.

Number of elements In second dimension of array.
Counter.
Data string.
Number of data Items entered by user.
Choice entered by user.
File name for output file.
Increment for line numbers.
Whether or not user will need 10 routines.
Program lines being built.

· label for menu choices.
Number of choices to be on menu.
Loop counter.
Loop counters.
Loop counter.
Substring of program line.
Substring of program line.
Number of rows In user array.
Middle part of string.

usually. Jar~er by IC from the previous element. The .
exception Is when LN has been given a different
value. somewhere else in the program,

. Frrst, DB Starter asks the user whether or not
some DATA lines should be written. You can enter
the data el.ements consecutively, separated by
commas. It IS not necessary to enter line numbers
or ~e word DATA at the beginning of each line.
Fl IS p:essed when the DATA is finished.

before activating the key-trapping routine.
So we use INKEY$, which will also accept

co~s as input, but which does not delay the trig·
genng of the Fl key-interrupt. Any key pressed is
~dded to the "answer," D3$, until the Enter key
IS pressed Gust like LINE INPUT). .

. A ~erent INPUT routine is used here, begin
rung at line~· We can't use INPUT, because that
stateme~t won t. accept a comma in an entry. LINE
INPUT IS unswtable in this case, because it will
accept any key, including Fl as an entry and we
yrant to use Fl to signal when the DATA are fin.
!Shed. Ii L~ INPUT were used, the PC would
pause and wait until the Enter key was pressed

40

A check is made in line 1040 to make sure that
any given DATA line does not end in a comma. A
counter, D4, keeps track of how many DATA items
have been entered. This is used later, when writing
a READ DATA routine.

Next line 1140 asks the user whether or not a
string array will be used to store data. Ii so, the
number of dimensions are input into variable DI.
~ DI= 2, the user is asked to provide the desired
size for each of the two dimensions (ROW and
COL). Ii DI== l, only ROW is used. The target pro-

gram line is created by combining the line number
(already stored in LN$(n), remember) with DIM,
and the array dimensions, enclosed in parentheses.
If a two-dimensional array has been specified, an
additional line is developed that defines variable NC
(number of columns) equal to COL. NC is used later
in the target program to control disk ~put and
output.

At this point, the program may create a line
that looks like this:

150 DIM DA$(20,20)

If a menu is needed, DB Starter obligingly
creates a line that labels one. Note that to make a
PRINT statement, it is necessary to combine
PRINT with quotation marks around the material
to be printed. CHR$(34) (quotation marks) is stored
in Pl$, and this string variable used whenever
quotation marks are needed in the target program.

The user is asked to input the number of
choices required for the menu. Ii DI== 0 (that is, no
string array was dimensioned), the program as·
sumes that disk file 110 will not be required and
does not offer the choice of taking advantage of the
built·in disk 110 subroutines. Of course, disk files
consisting of nothing but numeric values are possi
ble. But the greater flexibility of storing both string
and numeric data as strings (and then converting
to numbers with VAL, as needed), makes it simpler
for DB Starter to assume that disk files will be
loaded into and out of a string array only.

If a string array has been specified, the user
is asked if "Save file to disk" and "Load file from
disk" will be included in the menu. Ii so, IO FLAG
is set to 2. The user has told the program how many
choices will be included on the menu. This value
is transferred to CH, which is used as a parameter
for a FOR-NEXT loop that allows input of the
names of the menu choices.
• If the built-in disk 1/0 routines are desired, two
is subtracted from CH, so that the user does not
have to bother to input these. That is, if five menu
choices will be used, but two of them will be for

DataBase Starter

disk 110, the programmer has to enter only the
other three. Then, the menu display lines are
created for all but the disk routines.

Now things begin to get a little tricky. For each
menu choice, the program has to create a
subroutine location for the target program to branch
to. Space has to be allocated for these. Instead of
using LN, and incrementing it by IC, another
variable, NU, is used. NU is incremented by IC*50
for each of the menu subroutines. For example, if
IC= 10, then each of the subroutines will be spaced
500 lines apart from each other. The starting line
numbers for each menu subroutine are stored in an
array NU(n).

Next a string representation of each menu
subroutine starting line number is needed (for an
ON CH GOSUB 500, 1000, 1500, etc. statement).
These are assembled with a comma tacked onto the
end. Next, and INPUT "ENTER CHOICE :";CH$
line is created for the target program. An error trap
is also built. When the target program is run, if
V AL(CH$) is less than one or is greater than MI
(the number of menu choices available), the input
is refused.

All these subroutines in the ON CH GOSUB
••• line will eventually RETURN, so control is sent
back to the beginning of the menu. Its starting line
number had been stored in IM(l) earlier and is used
to build a control-branching instruction. To aid the
programmer in finishing the skeletal program, a
REM is inserted at each of the menu subroutine
starting line numbers. Remember, it's not a good
idea to send control to a REM line (these might be
deleted later), so don't just begin writing the code
at the next available line number following the
remark.

The next portion builds a simple disk input
module which will ask the user for a file name,
open that sequential file, input from th_e file the.
number of items in the file, and then begm a FOR
NEXT loop from 1 to the number of items in the
file. Within the loop, INPUT #1 loads the data. If
the relevant array is two-dimensional, a nested·
FOR-NEXT loop, from 1 to the number of columns

~~-----------------------------

Program Your IBM PC to Program Itseur

(NC-defined early in the program), is used. Actual
construction of the disk input module is fairly clear
cut. Its mirror-image twin is the Create Disk Out·
put routine, which performs its function in nearly
the same manner.

ADDING YOUR OWN SUBROUTINES
Other modules that are frequently needed can

be added to DB Starter's library as needed. I used
a clear screen and INKEY$ routines as examples. ·
You are free to add your own favorite subroutines
as you desire. The final portion of the program
saves the finished target program to disk under any
desired legal name. A noncompressed (Ascm file

Ustlng 6: The DB Starter Program

that can be loaded, finished, debugged, and used
as desired is created.

. DB Starter is simple enough to form the basis
for a much more complex code-generating system.
A big drawback is the need to anticipate just what
capabilities will be needed in the finished program,
U a subroutine isn't in the program generating
system's h"brary, or if the parameters are beyond
its capabilities (i.e., a three-dimensional array is re
quired), the necessary code will have to be built up
from scratch.

It's still beyond the capability of microcom·
puters to use logic to create. Our silent servants
must wait for instructions from us before doing
anything at all, no matter how simple.

10 • ***************************
20 • * *
30 ' * DataBase Starter *
40 • * *
50 • *************************** 60 •

65 ' *** Initialize ***
70 DEFINT A-Y
80 DIM LN$(40Q),NU(20)
90 KEY OFF .
100 KEY l,•• ·.
110 SCREEN 0 1 0

1
0

120 COLOR 7~0
. 130 ON KEY(l) GOSUB 3440
140 ON KEYClO) GOSUB 3460
lSO·KEY<lO> ON
160 ON ERROR GOTO 2810
170 GOTO 200
180 A$=INKEY$:IF A$=•• GOTO 180
190 RETURN
200 CU=l
210 Pl$=CHR$(34) . .
220 P$=S2$+•PRINT"+Sl$+Pl$+S5$
230 CLS .
240 GOSUB 330

. ·;

DataBase Starter

250 GOTO 260

255 , *** Instructions? ***

TAB(l4 >"-- Do you want general instructions ? --"
260 PRINT TABCl 2)"You may also type 'H' or 'HELP' to most input 270 PRINT

prompts."
280 GOSUB 180
290 IF A$="N " OR A$="n"

" n OR A$="h" 300 IF A$= H " n
310 IF A$="Y" OR A$= y
320 CLS
330 LOCATE 2, 15

THEN CLS: GOTO 490
THEN RUN"AUTOPROG.BAS"
THEN RUN"AUTOPROG.BAS" ELSE 280

340 COLOR 0 I 7 DB St rter " 350 PRINT" Automatic Programmer -- a
360 COLOR 7 ,O
370 PRINT
380 RETURN
390 CLS
400 CLOSE .
410 CU=l: NU=l
420 : FOR N=l TO 20
430 : NU(N)=O
440 : NEXT N
450 NU$=""
460 : FOR N8=1 TO 100
470 : LN$CN8)=""
480 : NEXT NS
490 LN=lO: IC=lO
500 PRINT: PRINT: PRINT
510 GOSUB 530
520 GOTO 650

Of program *** 525 · • *** Enter file name

530 LINE INPUT"ENTER FILE NAME : " 7F$
540 FOR N=l TO LEN (F$)

550 T=ASCCMIDCF,N,l)) MID$(F$ N l)=CHR$(T-32)
560 IF T>96 AND T<l23 THEN ' ' :

570 NEXT N . $ "H~· THEN GOSUB 2920 ..
580 IF LEFTCF, 4)="HELP" O~ ~ = too long!":PRINT
590 IF LENCF$)>12 THEN PRINT File name

:GOTO 530

600 S9=INSTR(F$,".BAS") " 'l name too
610 IF LEN(LEFTCF,S9))>8 THEN PRINT Fl. e .

lonql":PRINT!~OTO ~~n

44

Program Your IBM PC to Program Itself!

630 IF F$="" GOTO 530
640 RETURN
650 IF F$="" THEN F$="TEST"
660 GOTO 710

665 ' *** Increment line number ***
670 LN=LN+IC
680 CU=CU+l
690 LN$(CU)=STR$(LN)+"
700 RETURN "

705 ' *** Start writing program ***
710 CLS:PRINT:PRINT

715 ' *** Data Lines ***

720 PRINT"Would you like to build some data lines?" 730 PRINT

740 PRINT TAB(l8)"Enter Y/N or ";CHR$(34);"H";CHR$C34);"CHELP)" 750 GOSUB 180
760 IF A$="H" OR A$="h" THEN GOSUB 3390: GOTO 710
770 IF A$="N" OR A$="n" GOTO 1130
780 IF A$="Y" OR A$="y" GOTO 840
790 GOTO 750
800 CU=CU+l
810 GOSUB 670
820 LN$(CU)=LN$(CU)+"DATA •
830 RETURN
840 KEY(l) ON

850 PRINT"Enter data elements to be written into program."
860 PRINT"Separate with commas. Input no more than two lines"
870 P~INT"of DATA, then hit ENTER and input another pair of 11nes. 11

880 PRINT "It is not necessary to enter the word DATA. Enter .in• · ..
890 PRINT"this form: 35,20,Address,Phone~Zip • 900 D3$="" ·

910 L9C~TE 20,l:PRINT" Enter ";CHR$(34);"Fl";CHR$C34);" to
f~n1sh.":LOCATE 21,l:PRINT"Enter your DATA :" 920 LOCATE 22,5

930 PRINT SPACE$(60)
940 LOCATE 22,5
950 PRINT D3$;
960 A$=INKEY$:IF A$="" GOTO 960
970 IF A$=CHR$(8) AND 03$<>"." THEN

DataBase Starter

3$=LEFT$(03$,LEN(D3$)-l):GOTO 920
980 ~F A$=CHR$Cl3) THEN PRINT:GOTO 1020
990 D3$=D3$+A$
1000 PRINT A$ 1

1010 GOTOcF£:g=l THEN GOTO 1130
1020 IF 03$ "" THEN LOCATE 19,l:PRINT"You must enter data or
1030 ~~FOR ;=l TO lOOO:NEXT N:LOCATE 19,l:PRINT SPACE$(40);

1040 ~;o~~G~i~(D3$, l)="," THEN D3$=LEFT$CD3$, LEN(D3$)-l)
1050 FOR N7=1 TO LENCD3$)
1060 Y$=MID$ (03 $, N7 r 1)
1070 IF Y$=", n THEN D4=D4+ 1
1080 NEXT N7
1090 04=04+1
1100 GOSUB 800
1110 LN$(CU)=LN$(CU)+D3$
1120 IF CFLAG=O GOTO 900

1125 • *** Build arrays ***
1

1130 CLS:PRINT:PRINT di k I/O data in a string 1140 PRINT"Will this program store s
array?"

1150 GOSUB 180 O GOTO 1130 1160 IF A$="H" OR A$="h" THEN GOSUB 303 :

,·\ -

1170 IF A$="N" OR A$="n" THEN 1450
1180 IF A$="Y" OR A$="y" THEN 1190 ELSE 1150 :i

~~~~ ~~i~~.:I~1 the array have one or two dimensions?" 
1210 GOSUB 180 3030. GOTO 1200 1220 IF A$="H" OR A$="h" THEN GOSUB • 
1230 DI=VAL(A$) 
1240 IF DI<l OR OI>2 THEN 1210 
1250 IF DI=l GOTO 1350 f" t dimension (ROW)";ROW$ 
1260 INPUT"How many elements inLEFt~e$(R~~$ l)="H" THEN 
1270 IF LEFT$ CROW$, 1 )="h" OR ' 

GOSUB 3140: GOTO 1260. . sion (COL) :";COL$ . 
1280 INPUT"Enter elements 1n second$C~~~:n l)="H" THEN · 
1290 IF LEFT$(COL$, l)="h" OR LEFT ' 

GOSUB 3140: GOTO 1280 
1300 ROW=VAL(ROW$) 
1310 COL=VAL(COL$) 
1320 IF ROW<l THEN ROW=l 
1330 IF COL<l THEN COL=l 
1340 GOTO 1390 W$ 
1350 INPUT" How large should the array be" ;RO i ·. 



46 

Program Your IBM PC to Program Itself! 

1360 IF LEFT$(ROW$, l)="H" OR LEFT$CROW$, l)="h" THEN 
GOSUB 3140: GOTO 1350 

1370 ROW=VALCROW$) 
1380 IF ROW<l THEN ROW=l 
1390 LN$CCU)=LN$CCU)+"DIM DA$(" +STR$(ROW) 
1400 IF DI=l THEN LN$CCU)=LN$CCU)+")": GOTO 1450 
1410 LN$CCU)=LN$(CU)+"," +STR$(COL)+ 11 )• 

1420 GOSUB 670 
1430 LN$CCU)=LN$CCU)+"NC=" +STR$(COL) 
1440 IF D4>0 THEN LN$CCU-l)=LN$CCU-l)+",DTA$(" +STR$(04)+")" 

: GOTO 1460 
1450 IF D4>0 THEN GOSUB 670: LN$CCU)=LN$CCU)+"DIM DTA$(" 

+STR$CD4)+")" . 
1460 IF D4>0 THEN CU=CU+l: GOSUB 670: LN$CCU)=LN$CCU)+"FOR G=l 

TO " +STR$(D4)+":READ DTA$(G):NEXT G 

1465 • *** Build Menus *** 

1470 PRINT"Will this program need a menu?" 
1480 GOSUB 180 
1490 IF A$="H" OR A$="h" GOTO 2980 
1500 IF A$="N" OR A$="n• THEN 2030 
1510 IF A$="Y" OR A$="y" THEN PRINT A$: GOTO 1520 ELSE 1480 1520 GOSUB 670 
1530 LN$CCU)=LN$CCU)+"CLS:PRINT:" +P$+" ********** MENU 

**********" +Pl$+":PRINT" 
1540 IM(l )=LN ' 
1550 CLS:PRINT:PRINT 
1560 INPUT"How many choices on the menu"1CH$ 
1570 IF LEFT$CCH$, l)="H" OR LEFTS•CH$, l)="h" THEN GOSUB 3190 : GOTO 1550 
1580 MI=VAL(CH$) 
1590 IF MI<2 GOTO 1550 
1600 IF DI=O THEN 1680 
1610 IF MI=2 THEN CH=MI: GOTO 1710 
1620 PRINT"Will the choices include 'Save file to disk' and 

'Load file-from disk' ? •1 
1630 GOSUB 180 
1640 IP A$="H" OR A$="h•. THEN GOSUB 330.0: GOTO 1620 
1650 IF A$="Y" OR A$="y• THEN IOFLAG=2: PRINT A$: GOTO 1680 
1660 IF A$=•n• OR A$="N" THEN PRINT A$: GOTO 1680 1670 GOTO 1630 
1680 CH=MI 
1690 IF CH=IOFLAG THEN N=l: GOTO 1800 , 
1700 CH=CH-IOFLAG 
1710 : FOR N=l TO CH 
1720 : PRINT"Enter label for menu choice t"JN . 

DataBase Starter 

1730 : 
1740 : 

INPUT MENU$CN) 
IF MENU$(N)="HELP" OR MENU$(N)="H" OR MENU$CN)="h" 
THEN GOSUB 3270: GOTO 1720 

l 750 : ~~iT ~=l TO CH 1760 
: GOSUB 670 

i~~~ : LN$CCU)=LN$CCU)+P$+STR$CNW)+".) • +MENU$(NW)+Pl$ 
1790 • NEXT NW $ $ ( ) • ) 00 IF IOFLAG=2 THEN GOSUB 670: LN$CCU)=LN$CCU)+P +STR N + • 18 

n +"LOAD FILE FROM DISK" +Pl$: GOSUB 670: 
LN$(CU)=LN$CCU)+P$+STR$CN+l)+".) " +"SAVE FILE TO DISK" 
+Pl$ 

1810 GOSUB 670 II 

1820 LN$CCU)=LN$CCU)+"PRINT 
1830 : FOR NW=l TO MI 
1840 : NU=NU+IC*50 
1850 : NU(NW)=NU II II 

1860 : NU$=NU$+STR$(NU)+ r 
1870 : NEXT NW 
1880 NU$=LEFT$CNU$, (LENCNU$)-l)) 
1890 GOSUB 670 n CE • +Pl$+" •CH$" 1900 LN$CCU)=LN$CCU)+"INPUT" +Pl$+ ENTER CHOI : 1 

1910 GOSUB 670 $ IF CH<l OR CH> 11 +STR$CMI)+" 1920 LN$CCU)=LN$CCU)+"CH=VALCCH ): 
GOTO" +STR$CVALCLN$CCU-l))) 

1930 GOSUB 670 
1940 LN$(CU)=LN$CCU)+"ON CH GOSUB" +NU$ 
1950 GOSUB 670 
1960 LN$CCU)=LN$CCU)+"GOTO II +STR$CIM(l)) 
1970 : FOR N=l TO MI-IOFLAG 
1980 : GOSUB 670 
1990 : LN=NUCN) • ****** INSERT • 
2000 : LN$ (CU)=STR$ CNUCN))+ REM ******• 

+MENU$(N)+" SUBROUTINE HERE • +" 
2010 : NEXT N 
2020 IF IOFLAG<>2 THEN 2510 
2030 GOSUB 670 
2040 PRINT . . 11 REM ****** LOAD FILE FROM 2050 IF MI=O THEN LN$ CCU)=LN$ CCU)+ 

DISK": GOTO 2080 
2060 LN=NU{N) FILE FROM DISK 
2070 LN$CCU)=STR$CNU(N) )+" REM ****** LOAD 

******" 
2080 GOSUB 670 E NAME • • 
2090 LN$(CU)=LN$(CU)+"INPUT 11 +Pl$+"ENTER FIL • 

+Pl$+"1F$" 
2100 GOSUB 670 

47 



-

48 

Program Your IBM PC to Program Itselfl 

2110 LN$(CU)=LN$(CU)+• OPEN • +Pl$+•1• +Pl$+•,l,F$" 
2120 GOSUB 670 
2130 LN$(CU)=LN$(CU)+• INPUT 11,NF• 
2140 GOSUB 670 
2150 LN$CCU)=LN$(CU)+"FOR N=l TO NF" 
2160 GOSUB 670 
2170 IF DI=2 THEN LN$(CU)=LN$(CU)+"FOR COL=l TO NC": GOSUB 670 
2180 LN$(CU)=LN$(CU)+"INPUT il,DA$(N" 
2190 IF DI=2 THEN LN$(CU)=LN$(CU)+",COL)• ELSE 

LN$(CU)=LN$(CU)+")• 
2200 GOSUB 670 
2210 LN$(CU)=LN$(CU)+"NEXT" 
2220 IF DI=2 THEN LN$(CU)=LN$(CU)+" COL,N" 
2230 GOSUB 670 
2240 LN$(CU)=LN$(CU)+"CLOSE" 
2250 GOSUB 670 
2260 LN$(CU)=LN$(CU)+"RETURN" 
2270 GOSUB 670 
2280 IF MI=O THEN LN$(CU)=LN$(CU)+" REM ****** SAVE FILE TO 

DISK ******": GOTO 2310 
2290 LN=NU(N+l) 
2300 ::~!;~~=S'l'R$(NU(N+l))+" REM ******SAVE FILE TO DISK 
2310 GOSUB 670 
2320 LN$(CU)=LN$(CU)+•INPUT • +Pl$+"ENTER FILE NAME ·" 

+Pl$+"1F$" • 
2330 GOSUB 670 
2340 LN$(CU)=LN$CCU)+" OPEN " +Pl$+"0" +Pl$+",l,F$" 2350 GOSUB 670 
2360 LN$(CU)=LN$(CU)+• PRINT il NF" 
2370 GOSUB 670 ' 
2380 LN$CCU)=LN$CCU)+"FOR N=l TO NF" 
2390 GOSUB 670 ~ · 
24

00 IF DI=2 THEN LN$CCU)=LN$CCU)+"FOR COL=l TO NC": GOSUB 670 
2410 LN$(CU)=LN$(CU)+"PRINT il DA$(N" 
2420 IF DI=2 THEN LN$CCU)=LN$CCU)+" COL)" ELSE 

LN$(CU)=LN$(CU)+")• ' 
2430 LN$CCU)=LN$CCU)+"J" +Pl$•" • +Pl$ 
2440 GOSUB 670 ' 
2450 LN$(CU)=LN$(CU)+"NEXT" 
2460 IF DI=2 THEN LN$(CU)=LN$CCU)+" COL,N• 2470 GOSUB 670 . 
2480 LN$(CU)=LN$CCU)+"CLOSE" 
2490 GOSUB 670 
2500 LN$(CU)=LN$CCU)+"RETURN" 

2505 ' *** Subroutines ? *** 

DataBase Starter 

2510 PRINT" Do you want a 'CLEAR SCREEN' subroutine? • J 
2520 GOSUB 180 
2530 IF A$="H" OR A$="h" THEN GOSUB 3360: GOTO 2510 
2540 IF A$="Y" OR A$="y" THEN PRINT A$: GOTO 2570 
2550 IF A$="N" OR A$="n" THEN PRINT A$: GOTO 2610 
2560 GOTO 2520 
2570 GOSUB 670 
2580 LN$CCU)=LN$(CU)+• REM ****** CLEAR SCREEN SUBROUTINE 

******" 
2590 GOSUB 670 
2600 LN$ CCU)=LN$ CCU)+"CLS:PRINT:PRINT:RETURN" 
2610 PRINT"Do you want an 'INKEY$-INPUT' subroutine? "J 
2620 GOSUB 180 
2630 IF A$="H" OR A$="h" THEN GOSUB 3360: GOTO 2610 
2640 IF A$="N" OR A$="n" THEN PRINT A$: GOTO 2750 
2650 IF A$="Y" OR A$="y" THEN PRINT A$: GOTO 2670 
2660 GOTO 2620 
2670 GOSUB 670 
2680 LN$ CCU)=LN$ (CU)+" REM ****** INKEY$ INPUT SUBROUTINE 

*****. 
2690 GOSUB 670 
2700 LN$(CU)=LN$CCU)+"A$=INKEY$:IF A$=" +Pl$+Pl$+" GOTO " 

+STR$CLN) 
2710 GOSUB 670 
2720 LN$ CCU)=LN$ CCU)+"A=VAL(A$)" 
2730 GOSUB 670 
2740 LN$ (CU)=LN$ (CU)+"RETURN" 

2745 ' *** Write program to disk *** 

2750 OPEN"O", 1, F$ 
2760 : FOR Nl=l TO CU 
2770 : PRINTil, LN$ C Nl) 
2780 : NEXT Nl 
2790 CLOSE 
2800 RUN 

2805 ' *** Error Trap *** 

2810 PRINT: PRINT 
2820 PRINT TAB(20) "*****· UNKNOWN ERROR *****" 
2830 PRINT TAB ( 2 5) "IN LINE "1 ERL 
2840 FOR N9=1 TO 500 
2850 NEXT N9 
2860 CLS: PRINT: PRINT 
2870 RETURN 
2880 PRINT 

49 



50 

Program Your IBM PC to Program Itself! 

2890 PRINT TABC15)"Hit any key to resume program" 
2900 GOSUB 180 
2910 RETURN 

2915 ' *** Help Routines *** 
2920 GOSUB 2860 
2930 PRINT"You should enter the f=j lename you want -- it must" 
2940 PRINT"be a legal Disk basic name, or your input will be" 
2950 PRINT"rejected." 
2960 PRINT 
2970 RETURN 530 
2980 GOSUB 2860 
2990 PRINT"Menus may be designed using a special• 
3000 PRINT"module that asks for number of choices, labels,etc.• 3010 GOTO 1470 
3020 GOTO 2880 
3030 GOSUB 2860 
3040 PRINT"Many forms of data are conveniently stored in a string" 
3050 PRINT"array which looks like this: DA$Crow,col). A checkbook" 
3060 PRINT"represents data that can be stored in a 

two-dimensional" 
3070 PRINT"array. Each check number represents a row while payee• ' 
3080 PRINT"amount, balance, etc. represent columns. These arrays• 
3090 PRINT"can be conveniently stored and loaded to and from disk." 
3100 PRINT"Use a one-dimensional array for information which has only" · 
3110 PRINT"one 'field' per record. If rows and columns are involved• 
3120 PRINT"use a two dimensional array • 
3130 GOTO 2880 • 
3140 GOSUB 2860 
315

0 ~!!NT"Enter how large each dimension of the array should 

~f;g ::i:~=ii~rn~ampkle, might want an array: DA$C30,30)." 
memory.• o ma e much larger than you need to save 

3180 GOTO 2880 
3190 GOSUB 2860 
3200 ~~!~T"Most programs with multiple functions need a menu so 

------~ 

DataBase Starter 

3210 PRINT"user may choose. Automatic PrograJ[IIIler will design a 
menu" . 

3220 PRINT"for you and write apprcpriate input and error 
trapping• 

3230 PRINT"routines. Or, you may design your own menu. You 
must• 

3240 PRINT"then wr~te your own input routine, or use theINKEY$" 
3250 PRINT"subroutine provided." 
3260 GOTO 2880 
3270 GOSUB 2860 
3280 PRINT"Enter the label or prompt for this menu choice :• 
3290 GOTO 2880 
3300 GOSUB 2860 . . 
3310 PRINT"If you have specified a string array, and need disk 

I/O" 
3320 PRINT"You should enter Yes. Program will write these 

routines" 
3330 PRINT"for you, and reduce number of menu choices you have" 
3340 PRINT"to input by two. Menu labels will be created for 

you." 
3350 GOTO 2880 
3360 GOSUB 2860 
3370 PRINT"Enter Yes if you want this subroutine in your 

program• 
3380 GOTO 2880 
3390 GOSUB 2860 1 ·th" 
3400 PRINT"You may build data lines automati~ally, a ong wi 

11 3410 PRINT"a routine to read them into a string array. Just 
3420 PRINT"enter the data information when asked" 
3430 GOTO 2880 
3440 CFLAG=l 
3450 KEYCl) OFF: RETURN 1020 
3460 CLOSE:END 

51 



Chapter 7 

l 0 SCJIEEli1 o.o.o 
20Dl OFP 
socotoa 7.o 
0 LOCATE 10.5 

50 DEF SEG-0 

A v 

• • 

Program Proofer 
In the two previous Automatic Programmer ex
amples, I've shown you how to let your computer 
write its own screens and assemble program 
skeletons. Now, here's Program Proofer, which · 
allows an IBM PC to partially debug its own pro
grams by checking the spelling of keywords and 
some syntax errors. 

Some program errors caused by misspelled 
words lurk deep within seldom called code. Or
dinarily, obvious bugs will surface during program 
development, because the interpreter will note a 
syntax error when the line is run. The experienced 
programmer will try to test a program with all 
possible conditions and parameters in order to give 
each section of code a workout. Program 
subro~tines should be tested individually and when 
combined with the main program. · 

!n ~e real world, however, such thorough 
testing is not always done. Errors will not be 
d~~ected for some time, because the specific con
ditions that invoke those program lines are rare. In 
~e wo~t possible situations, these mistakes are 

dden m error traps designed to help the un-

sophisticated user, or they may cause the loss of 
valuable data. Program Proofer will check evecy 
line of a program and detect all bad keywords. It 
will catch only typos, however. If you used 
LPRINT when you meant PRINT, the bug will slip 
by unchecked. 

HOW PROGRAM PROOFER WORKS 
Program Proofer was inspired by the plethora 

of spelling checker programs that have become 
available in the past few years. These useful soft
ware tools take any text document and compare 
each word against an internal dictionary. Any word 
in your text that does not appear in the dictionacy 
is flagged as a possible spelling error. 

This program works on exactly the same prin
ciple, but with a much smaller dictionacy of 172 
keywords. These are the reserved words named by 
IBM in the BASIC user's manual. Some are com
mands or functions that are not implemented, but 
all were included to make this program compati
ble with later releases of DOS and BASIC. 

Program Proofer examines every word in a 



Program Your IBM PC to Program ItseUI 

target program. It ignores words inside quotes
prompts, for example-numbers, and arithmetic 
operators. The only letter combinations that are left 
are keywords, variables (Fig. 7-1), and misspelled 
words. Although it would be possible to tell which 
of ~e remaining words are variables-leaving only 
the mcorrect keywords-I decided not to implement 
this feature. As written, Program Proofer has the 
added capability of providing a variable cross
reference listing that includes line numbers. 

Not throwing out variables also means that the 
operator has the opportunity to look for variables 
~t may have been spelled wrong, as well. This 
18 lDl~rtant to IBM PC users. Under some versions 
of Microsoft Basic for other computers 
PREVIOU? and PREVIUS would appear as th~ 
same variables, although PREVIOUS and 
PEVIOUS would not. With those Microsoft 

BASICs, o~y. the first two letters of the Variable 
~~e are significant. So, finding such misspellings 
IS important. 

With the IBM PC, however, longer variable 
names ~e allowed, and so finding errors is even 
more ~mportant. .PREVIOUS and PREVIUS 
would, m fact, be different variables and cause an 
error if the difference was unintended. 

This program will handle most ASCII format 
BASIC programs. Multiple statements per line are 
okay. Keywords should have spaces separating 
them, and there should be a space after the line 
number and before the first word in the line. These 
spaces are required by IBM BASIC, anyway, but 
Proofer needs them in order to find other errors. 

When asked for the target program name enter 
the file specification of the previously saved .A.sen 
format pro~ It will be stored in the variable F$. 

A$ 
BAD${n) 
0$ 

Line of text being proofed. 

02 
F$ 
L 
LP 
M$ 
N 
N1-N9 
NI 
NU 
p 

PAR$(n) 
PFLAG 
SEG$. 
TEST$ 
WRO$(n,nQ. 
Z3 
zu 

Array storing bad words and variables. 
Temporarily stores gOOd keyword names. 
ASCII value of first character In keyword. 
File name of program being proofed. 
Length of the program segment being proofed. 
Number of left parentheses found 
Middle string of SEG$. • 
Loop counter. 
Loop counters. 
Counter. 
Counter. 

Position. of space In program line being checked. . 
Lines with odd number of parentheses. 
Send output to printer. 
Program segment being proofed. 
Program segment being tested. 
Array storing gOOd keywords. 
Number of line printed. · · . .· 
Number of lines printed. 

Fig. 7-1. Variables used In Program Proofer. 

.. ' , 

54 

(For a complete list of the variables used in 
Proofer, see Fig. 7-1.) Each line in the target pro
gram will be examined separately, and all words 
not included within quotation marks compared with 
the internal dictionary. If a match is not found, the 
questionable word (which may also be a variable) 
~stored away for later reference. The number of 
parentheses are counted, and any missing ones 
noted. Program Proofer will also locate absent 
quotation marks, and list all the variables used in 
the program. In all cases, line numbers are provided 
to make tracking down the errant bugs easier. 

Here, briefly, is how Program Proofer works. 
The 172 keywords are stored in a string array, 
WRD$(26,30). Each of 26 rows in the array corre
spond to one of the 26 letters of the alphabet. The 
30 columns allow for up to 30 keywords beginning 
with that letter. For example, ABS is stored in 
WRD$(1,l), while AND is placed in WRD$(1,2). 

This is accomplished in a FOR-NEXT loop 
beginning at line 770. The keyword is read from 
a data line, and the first letter examined to deter
mine its ASCII value. Then 64 is subtracted to ar
rive at the alphabetic position and the 
corresponding ROW of WRD$(row,col). CDBL, 
which begins with C (ASCil 67), is directed to Row 
3 (67 minus 64). The column is determined by a 
counter, A, which is incremented every time a new 
keyword is READ, and reset to one each time a new 
ROW is opened (A2 < > PREVIOUS.) 

As IBM BASIC expands with new features, 
statements, and functions, Program Proofer may 
be updated to include these new keywords and com
mands. Add the word to the proper position in the 
DATA lines and change the 172 to the new 
numbers of keywords. If a given letter of the 
alphabet now has more than 30 keywords, it will 
be necessary to reDIMension WRD$(row,col) as 
well. 

1:Jie target program (F$) is OPENed, and a line 
at a time LINE INPUT into variable A$. The first 
~ce in the program line is assumed to follow the 

e number, and the rest of the line is stored in 

Program Proofer 

SEG$. A FOR-NEXT loop from one to L:.-10ength 
~f S~G$) examines each character in the program 
line m turn. 

When certain delimiters are reached, the pro
gram assumes that the end of a word or variable 
has be~n located. These delimi.ters include a space, 
quotation mark, comma, semicolon, parentheses, 
colon, and arithmetic signs such as plus, minus, 
equals, or less than. At this point, control drops to 
a subroutine, where that portion of the line, 
TEST$, is subjected to a series of tests. 

If TEST$= " " (null), or if the value of the first 
character is greater than zero (signifying a number), 
then the program jumps back and begins looking· 
at the next section of the program line; This pro
gram won't accept a keyword or variable begin
ning with a number. 

When "REM" or its abbreviation " ' " is en
countered, the program knows that the rest of the 
program line should be ignored. 

Once TEST$ gets past these checks, it enters 
a FOR-NEXT loop from one to 30, which compares 
TEST$ with all the elements of WRD$(row,col) 
beginning with the same letter of the alphabet as 
TEST$. If a match is found, FLAG is set to one, 
and control drops to 1210. If no match is found 
before the end of the list of keywords beginning 
with the appropriate letter is reached, FLAG is set 
to zero, and control drops to 1210, where a counter, 
NU, is incremented, and the suspect word stored . 
in string array BAD$(n), along with the line number 
in which it appears. The word itself is positioned 
first, followed by the line number, so that the array 
may later be sorted into alphabetical order. · 

Then, whether or not there was a match, , 
TEST$ is nulled, and the rest of the line looked at : 
for additional statements, variables, and keywords. ' . 

Any time a quotation mark is encountered, 
SFLAG is set to one, and any additional characters 
in a line are ignored until the second ("close quote") 
is located. Then the following words are considered 
and checked normally. Though no specific check· 
for missing quotation marks is built in, they will .· 



56 

Program Your IR.'f PC to Program Itselil 

stand out like a sore thumb, because in the final 
listing, words inside prompts will be listed as bad 
words. 

A check 1is included for absent parentheses, 
however. Each right parenthesis encountered in a 
program line increments variable RP, while left 
parentheses increase the value of LP by one. After 
the whole program line has been checked, Program 
Proofer compares LP and RP. If they don't match, 
the line in which the error appears is stored in a 
string array P AR$(n), along with a note as to 
whether it is a left or right parenthesis that is miss
ing. Note: if one statement is missing a left paren
thesis, while another statement later in that line is 
missing a right parenthesis, the LP and RP will 
match, and the error will not be caught. This should 
occur very rarely, however. 

When the end of file (EOF) marker is en
countered, the user is asked if results should be 
directed to a printer as well as to the screen. The 
suspect words are then printed out in groups of 16 
word/line (each word occupies one line). 

A counter, ZU, keeps track of how many words 
are printed or listed. A word/line combination is 

Usting 7: The Program Proofer Program 

displayed only if it does not equal the PrevlQ · 
word/lin7. So •. if a .varia~le o~ t:ad word a~ 
several times ma single line, it IS pointed out;. 
once. When ZU can be evenly divided by 16 ~ 
program branches to a "paging" subroutine~h 
1570. 

Once the variables and bad words are~ 
the program displays all the lines which colllaii : 
missing parentheses. · 

POSSIBLE ENHANCEMENTS 

A number of enhancements are possible. Tu . 
program could be extended to check each varialf ·. 
against the keyword list, using INSTR, to see if ym · 

have inadvertently included a nonallowabl 
keyword within a variable name. 

Checking the spelling of a computer program 
is much easier than proofreading a documat, 
because the number of legal words is sevm1J 
limited. Once a computer is told what words 111 '. 

allowable in a program, it is a simple matter tom 
some of the tedious debugging to the machirt, 
which will benefit most from clear instructiom. 

*************************** 
* * * 
* 

Program-Proofer * 

10 t_ I ' 

20 I 

30 I 

40 I 

50 I 

60 I 
* *************************** 

65 ' *** Initialize *** 

70 DEFINT A-Y 
80 KEY OFF 
90 ON lraYUO) GOSOB 1940 
100 KEYUO) ON 
110 SCREEN O,O,O 
120 COLOR 7,0 . 
130 ON ERROR GOT() 1700 
140 DIM WRD$C26,30),PAR$C30),BA0$(200) 

150 GOTO 180 -"" 
160 A$=INKEY$: IF A$-
170 RETURN 
180 CLS 
190 GOSUB 300 
200 GOTO 210 

GOTO 160 

205 1 *** Instructions *** 

Program Proofer 

210 PRINT: PRINT . ? " 
(20) " Do you want instructions --220 PRINT TAB --

230 PRINT You may also type 'H' or 'HELP' to most 240 PRINT TAB ( 8)" 
input: prompts." 

250 GOSUB 160 360 
260 IF A$="N" OR A$="n" THEN CLS: GOTO 
270 IF A$="H• OR A$="h" THEN RUN"AUTOPROG.BAS: 
280 IF A$="Y" OR A$="y" THEN RUN"AUTOPROG.BAS ELSE 250 
290 CLS • " 
300 PRINT TAB(T)"Automat1c Programmer 
310 PRINT TAB(T)"PROGRAM PROOFER" 
320 PRINT TAB(T)"By: David D. Busch" 
330 RETURN 
340 CLS 
350 CLOSE 
360 PRINT:PRINT 

f d *** 365 • *** Input filename to be proo e 

370 LINE INPUT.ENTER FILE NAME : ";F$ 
380 FOR N=l TO LEN(F$) 
390 T=ASC(MID$CF$,N,l)) ID$(F$ N l)=CHR$(T-32) 
400 IF T>96 AND T<l23 THEN M 1 ' 

410 NEXT N 11 OR F$ "H" THEN GOSUB 1870 
420 IF LEFT$(F$, 4)="HELP •p·l= name too longl":PRINT:GOTO 370 430 IF LENCF$)>12 THEN PRINT 1 e 
440 S9=INSTR(F$,".BAS") "Fil name too 
450 IF LEN(LEFT$(F$,S9))>8 THEN PRINT e 

longl":PRINT:GOTO 370 TENSIONJ"·GOTO 370 460 IF S9=0 THEN PRINT "MUST INCLUDE .BAS EX • 
470 IF F$="" GOTO 370 
480 RESTORE OAD BSAVE CALL,CDBL 
490 DATA ABS,AND,Asc,ATN,AUTO,B~~~c~i CLEAR CLOSE,cLs,cotoR 
500 DATA CHAIN,CHDIR,CHR$,CINT, , D CVI CVS 
510 DATA COM,COMMON,CONT,COS,CSNG,CSRLIN,CVSNG DEFSTR ' 
520 DATA "DATA",DATE$,DEF,DEFDBL5,DEEi~~TE~iRoN'ENVIRONS,EOF 530 DATA DELETE,DIM,DRAW,EDIT,EL ' ' ' 



Program Your IBM PC to Program Itself! 

stand out like a sore thumb, because in the final 
listing, words inside prompts will be listed as bad 
words. 

A che~1is included for absent parentheses, 
however. Each right parenthesis encountered in a 
program line increments variable RP, while left 
parentheses increase the value of LP by one. After 
the whole program line has been checked, Program 
Proofer compares LP and RP. If they don't match, 
the line in which the error appears is stored in a 
string array P AR$(n), along with a note as to 
whether it is a left or right parenthesis that is miss
ing. Note: if one statement is missing a left paren
thesis, while another statement later in that line is 
missing a right parenthesis, the LP and RP will 
match, and the error will not be caught. This should 
occur very rarely, however. 

· When the end of file (EOF) marker is en
countered, the user is asked if results should be 
directed to a printer as well as to the screen. The 
suspect words are then printed out in groups of 16 
word/line (each word occupies one line). 

A counter, ZU, keeps track of how many words 
are printed or listed. A word/line combination is 

Listing 7: The Program Proofer Program 

displayed only if it does not equal the previous 
word/line. So, if a variable or bad word appears 
several times in a single line, it is pointed out just 
once. When ZU can be evenly divided by 16, the 
program branches to a "paging" subroutine at line 
1570. 

Once the variables and bad words are listed, 
the program displays all the lines which contain 
missing parentheses. 

POSSIBLE ENHANCEMENTS 

. A number of enhancements are possible. The 
program could be extended to check each variable 
against the keyword list, using INSTR, to see if you 
have inadvertently included a nonallowable 
keyword within a variable name. 

Checking the spelling of a computer program 
is much easier than proofreading a document, 
because the number of legal words is severely 
limited. Once a computer is told what words are 
allowable in a program, it is a simple matter to leave 
some of the tedious debugging to the machine, 
which will benefit most from clear instructions. 

10 c'. ·· · 
20 • *************************** 

* . ~ * 
* . 30 • 

40 • 
. SQ I 

60 .. • .. 

Program·Proofer 

* * *************************** 
* 

65 '''*** Initialize *** 
70 DEFINT A-Y 

·ao KEY OFF 
90 ON KEY(l0) GOSUB 1940 

. 100 KEY(lO) ON 
110 SCREEN 0 1 0 1 0 
120·COLOR 7,0 
130 ON ERROR GOTO 1700 
140 DIM WRD$(26,30),PAR$(30),BAD$(200>° 

56 

Program Proofer 

150 GOTO 180 
160 A$=INKEY$ : IF A$="" GOTO 160 
170 RETURN 
180 CLS 
190 GOSUB 3 0 0 
200 GOTO 210 

t . *** 205 , *** Instruc ions 

210 PRINT: PRINT • • 
(20) " Do you want instructions ? --220 PRINT TAB --

230 PRINT 
240 PRINT TAB ( 8)" You may also type 'H' or 'HELP' to most 

input prompts." 
2 ~~ i~s~~=!~2 OR A$="n" THEN CLS: GOTO 360 • 
~70 IF A$="H" OR A$="h" THEN RUN"AUTOPROG.BAS • ELSE 250 
280 IF A$="Y" OR A$="y" THEN RUN"AUTOPROG.BAS 
290 CLS n 
300 PRINT TAB(T) "Automatic Programmer 
310 PRINT TAB(T) "PROGRAM PROOFER" 
320 PRINT TAB(T) "By: David D. Busch" 
330 RETURN 
340 CLS 
350 CLOSE 
360 PRINT: PRINT 

f d *** 365 • *** Input filename to be proo e 

NAME • ",·F$ 370 LINE INPUT"ENTER FILE • 
380 FOR N=l TO LEN ( F$ ) 

~~~ i;A;;~~I~~~F;<~2;> ~HEN MID$(F$,N,l)=CHR$CT-3 2 ) 

410 NEXT N $ n n THEN GOSUB 1870
420 IF LEFT$(F$, 4)="HELP" ORF= H "·PRINT:GOTO 370
430 IF LEN(F$)>12 THEN PRINT"File name too long! • .

440 S9=INSTR(F$,".BAS") " 'l me too
450 IF LEN(LEFT$(F$,S9) >>8 THEN PRINT Fi e na

longl":PRINT:GOTO 370 ENSIONl"·GOTO 370
460 IF S9=0 THEN PRINT "MUST INCLUDE .•BAS EXT •
470 IF F$="" GOTO 370

480 RESTORE BSAVE CALL,CDBL
490 DATA ABS,AND,Asc,ATN,AUTO,BEEP,~io~~EAR cLosE,cLs,coLoR
500 DATA CHAIN ,CHDIR,CHR$,CINT ,CIRC I I CVI CVS
510 DATA COM,COMMON,CONT,COS,CSNG,CSRLIN,CVDNG DEFSTR ..
520 DATA "DATA" ,DATE$,DEF,DEFDBL,DEFINTE:i~oN' ENVIRONS,EOF
530 DATA DELETE,DIM,DRAW,EDIT,ELSE,END, '

57

58

Program Your IBM PC to Program Itself?

54 0 DATA EQV, ERASE, ERDEV, ERDEV$, E.tU,, ERR, ERROR ,.EXP, FIELD
550 DATA FILES,FIX,FN,FOR,FRE,GET,GOSUB,GOTO,HEX$,IF,IMP
560 DATA INKEY$,INP,INPUT,INPUTl,INPUT$,INSTR,INT,

INTER, IOCTL, KEY
570 DATA KILL,LEFT$,LEN,LET,LINE,LIST,LLIST,LOAD,LOC,LOCATE
580 DATA LOF,LOG,LPOS,LPRINT,LSET,MERGE,MID$,MKDIR,MKD$,MKI$
590 DATA MKS$,MOD,MOTOR,NAME,NEW,NEXT,NOT,OCT$,OFF,ON,OPEN
600 DATA OPTION,OR,OUT,PAINT,PEEK,PEN,PLAY,PMAP,POINT,POKE
610 DATA POS,PRESET,PRINT,PRINT#,PSET,PUT,RANDOMIZE,READ,"REM"
620 DATA RENUM,RESET,RESTORE,RESUME,RETURN,RIGHT$,RMDIR,RND
630 DATA RSET,RUN,SAVE,SCREEN,SGN,SHEELL,SIN,SOUND,SPACE$
640 DATA SPC(,SQR,STEP,STICK,STOP,STR$,STRIG,STRING$,SWAP
650 DATA SYSTEM,TAB,TAN,THEN,TIME$,TIMER,TO,TROFF,TRON,USING
660 DATA USR,VAL,VARPTR,VARPTR$,VIEW,WAIT 1 WEND,WHILE,WIDTH
670 DATA WINDOW,WRITE,WRITE#,XOR
680 CLS:PRINT:PRINT
690 PRINT TAB(l0)"THIS MODULE WORKS ONLY ON FILES WHICH HAVE"
700 PRINT TAB(l0)"BEEN SAVED IN NON-COMPRESSED (ASCII) FORMAT"
710 PRINT TAB(l0) " Use this syntax: SAVE

";CHR$(34);"filename"iCHR$(34)",A"
720 PRINT
730 PRINT TAB(8)"If you see garbage loading, you probably have•
740 PRINT TAB(8)"forgotten to save your file in ASCII format • 750 PRINT •
760 PRINT TAB(l2)" -- A few seconds please -- •

765 ' *** Read GOOD names into array ***
770 I FOR N=l TO 172
780 I READ 0$
790 : D2=ASC(LEFT$(D$, 1))-64
800 : IF D2<>PREVIOUS THEN PREVIOUS=D2: D=l
810 : WRD$(D2,D)=D$
820 : D=D+l
830 : NEXT N
840 PRINT:PRINT
850 CLS:PRINT:PRINT
860 PRINT TAB(l4)• -- Reading in Program Lines -- • 870 PRINT

875 ' *** Open Program, Read in Lines ***
880 OPEN"I",l, F$
890 IF EOF(l)THEN 1310
900 LINE INPUTfl, A$
910 TEST$=""
920 PRINT A$
930 FL=O

Program Proofer

940 SFLAG=O
950 P=INSTR (A$, CHR$ (3 2))
960 SEG$=MID$ (A$ I P+l)
970 L=LEN (SEG$) + 1

975 1 *** Check for keyword delimiter ***

980 : FOR Nl=l TO L
990 : M$=MID$ (SEG$ I Nl I 1)
1000 : IF SFLAG<>l THEN 1020
1010 : IF M$=CHR$ (34) THEN 1050 ELSE 1230

20 : IF M$=")" ORM$="+" OR M$="-" OR M$=CHR$ (32) OR M$="="
lO ORM$="(" ORM$=CHR$(34)0RM$=" 1 " ORM$=":" ORM$="<"

ORM$=">" ORM$="#" ORM$="/" ORM$="*" OR M$=CHR$Cl0)
OR M$="" THEN 1050

1030 :
1040 :
1050 :
1060 :

TEST$=TEST$+M$
GOTO 1230
IF SFLAG=l THEN SFLAG=O: TEST$="": GOTO 1230
IF M$=CHR$(34)THEN SFLAG=l:IF MID$(SEG$,
Nl-l,l)=CHR$C32)THEN TEST$=""
IF M$="(" THEN LP=LP+l
IF M$=")" THEN RP=RP+l
FL=O
IF TEST$="" THEN 1230
IF TEST$="REM" OR TEST$="'" THEN 1240
IF VAL(TEST$)>0 THEN TEST$="": GOTO 1230
A=ASC(LEFT$(TEST$, 1))
IF A<65 OR A>90 THEN TEST$="": GOTO 1230
A=A-64

FOR N2=1 TO 30
IF WRD$(A,N2)="" THEN FLAG=O:N2=30: GOTO 1210

1070 :
1080 :
1090 :
1100 :
1110 :
1120 :
1130 :
1140 :
1150 :
1160 :
1170 :
1180 :
1190 :
1200 :
1210 :

IF TEST$=WRD$(A,N2) THEN FLAG=l: N2=30: GOTO 1210
NEXT N2

FLAG=O
IF FLAG=O THEN NU=NU+l: BAD$CNU)=TEST$+" : LINE
"+LEFTCA, P)

1220 : TEST$=""
1230 : NEXT Nl
1240 IF RP=LP THEN 1290
1250 NI=NI+l

1255 ' *** Paren missing ***
1260 PAR$(NI)="LINE • +LEFT$(A$, P)+" : MISSING •
1270 IP RP>LP THEN P$="LEFT" ELSE P$="RIGHT"
1280 PAR$(NI)=PAR$(NI)+P$+" PARENTHESIS"
1290 RP=O :LP=O

59

-
Program Your IBM PC to Program Itself!

60

1300 GOTO 890

1305 • *** Display results ***
1310 CLS:PRINT:PRINT
1320 PRINT TAB(8)"Do you want output to go to printer?"
1330 GOSUB 160
1340 IF A$="Y• OR A$="y" THEN PFLAG=l
1350 GOSUB 1610
1360 ZU=l

1365 ' *** Show BAD words and Variables ***
1370 : FOR N4=1 TO NU
1380 IF ZU MOD 16=0 THEN GOSUB 1570
1390 : IF BAD$(N4)=BAD$(N4-l)TZEN 1430
1400 : PRINT BAD$(N4)
1410 : IF PFLAG=l THEN LPRINT BAD$ (N4)
1420 : ZU=ZU+l
1430 : NEXT N4
1440 GOSUB 1570
1450 Z3=1

1455 ' *** Show Missing Parens ***
1460 : FOR Z3=1 TO NI
1470 : IF Z3 MOD 16=0 THEN GOSUB 1570
1480 : PRINT PAR$(Z3)
1490 : IF PFLAG=l LPRINT PAR$(Z3)
1500 : NEXT Z3
1510 PRINT
1520 PRINT TAB(20)" -- END OF LIST -- "
1530 PRINT
1540 PRINT TAB(l5)"HIT ANY KEY TO RETURN TO MAIN MENU"
1550 GOSUB 160 .
1560 GOTO 340
1570 PRINT
1580 PRINT TAB(22)"HIT ANY KEY"
1590 GOSUB 160
1600 RETURN
1610 CLS:PRINT:PRINT
1620 PRINT
1630 PRINT

i~~~ ~:i:i TABC14)• . ** POSSIBLE MISPELLINGS AND VARIABLES**'
1660 RETURN

Program Proofer

1665 , *** Error Trap ***

1670 IF ERR<>53 GOTO 1740
1680 CLS: PRINT
1690 PRINT TAB(20)"That file does not exist!"
1700 FOR N9=1 TO 500
1710 NEXT N9
1720 CLS
1730 RESUME 840
1740 PRINT:PRINT
1750 PRINT TAB (20) "***** UNKNOWN ERROR *****"
1760 PRINT TAB(25)"IN LINE "JERL
1770 FOR N9=1 TO 500
1780 NEXT N9
1790 RESUME 340
1800 CLS: PRINT: PRINT
1810 RETURN
1820 PRINT
1830 PRINT TABC15) "Hit any key to resume program"
1840 GOSUB 160
1850 RETURN
1860 GOSUB 1800

1865 ' *** Help Routine ***
1870 CLS: PRINT
1880 PRINT TAB(8)"Program wants the name of file to be

proofread. Must"
1890 PRINT TAB< 8 >"be a legal Disk basic name, or your input

will be"
1900 PRINT TAB(8) "rejected ••
1910 PRINT
1920 LINE INPUT"ENTER FILENAME : "1 F$
1930 RETURN
1940 CLOSE
1950 END

61

.. ;

Chapter a

10 SCllEEH o.o.o
20 JC!! OFF
30COLOR 7,0
40LOCATE 10.5
50 DEF SEGaO

®

• •
Automatic

Programmer Documentation
Care to coast awhile? Here's a program you don't
even have to key in. Well, that is not entirely ac
curate. Automatic Programmer Documentation is
a help file for the preceding three modules. It is in
cluded here to demonstrate how such help pro
grams can be used to make a complex piece of
~ftware more usable by a beginner. The program
itself actually has no other function than to serve
as an introduction to the Automatic Programmer ·
series. You have four options in this case.

1. If you have purchased the disk containing
all the programs in this book, the program is in
cluded on your disk. It will be called as needed by
the three Automatic Programmer programs and
serves as a menu gateway to them •.

2. You may type in the program as presented.
3: You can type in the working program lines,

but wnte the display lines using Screen Editor. It
will prepare the screens for you with less typing
on your part.

4. Just skip this chapter entirely and do with·

out the help file when running the other three
programs.

Help files are one way of making programs self
documenting. At the same time, they allow the pro
grammer to keep the size of the main program
within reasonable limits. In this instance, the
Automatic Programmer programs each have some
help messages built in for use when the program
is running. The help file is used only at the beginn·
ing because loading AUTOPROG.BAS erases any
variable values that had been established by the
calling program. Going from this file back to one
of the other programs initializes the variables once
again.

There are several ways around this problem.
One solution is to place needed values into pro
tected locations in memory, which are not written
over by new programs. You can then PEEK these
values and restore them to the variables. BASIC
also allows CHAINing between programs to ac
complish the same thing using only BASIC key-

63

Program Your IBM PC to Program ItseU!

words. A better choice might be to store each help
screen in the form of a sequential file, READ in that
file, and print the information to the screen. The
variables that the message is read into can be used
over and over with each new message, and so only
a given amount of memory is taken up.. This doesn't
take into account variable "garbage collection," but
that should be a problem only when help screens
are accessed frequently, and the messages are very
long. ·

You can see from this that professional-level
programs may have as much programming time
devoted to help messages and error traps as to the
actual program functions themselves. Such pro
grams are very long (and would be tedious to type

in). Be thankful that this book keeps the eon
to a bare minimum. You can get enough he!1
operate the programs successfully-but ni _,
much that you won't be able totypetheminataD.

Now, wasn'tthateasy?Whentheuser~
HELP in one of the Automatic Pro~
modules, a branch to a line that reads RUN
"~UTOPROG.BAS" will take place. This program
will then be loaded, and display the introduction to
~e other programs. At the end, and INKEY$1oop
will a~cept one of three menu choices, loadingw
RUNmg one of the three Automatic Pro~
modules. That's all there is to it. Class dismisseiJ
for recess.

Listing 8: The Automatic Programmer Documentation Program

64

10 ' *********************************
20 ' * *
30 ' * Auto Programmer Instructions *
40 ' * *
so ' *********************************
60 KEY OFF
70 ON KEY(lO) GOSUB 1030
80 KEY<lO) ON
90 SCREEN 01 01 0
100 COLOR 7,0
110 ON ERROR GOTO 250
120.CLS
130 PRINT TABC30)•Automatic Programmer•
140 PRINT TABC3l)•By:David D. Busch•
150 PRINT:PRINT

i;~ ~:i:~ i:~:::This program allows you to use your computer to write•
180 PRINT • some of the Basic program lines for many common programs'
190 PRIN TABC 8>.automatically. It will produce a 'skeleton' coding•
200 PRIN~ i!::::. structure which you can 'flesh' out with subroutines of'
210 PRINT T .Y~ur own. Many initial 'housekeeping' tasks, such as•
220 PRINT T:~:~.f1mensioning an array, CLEARing memory, writing instruct·'
230 PRINT onal screens <like this one>, menus, are done for you.•
240 GOTO 290
250 IF ERR=S3 GOTO 270 .
260 PRINT•UNKNOWN ERROR IN
270 PRINT•PLEASE INSE LINE t•ERL:FOR N=l TO SOO:NEXT N:RESUME 120
280 PRINT• IN DISK DR~~EeISK CONTAINING PROPER FILES•
290 PRINT TAB(8 • :CLS:LOCATE 3,8:RESUME 850
300 PRINT TABc 8 :.~ata base management programs lend themselves to•
310 PRINT TABC 8>. hi; f pproach. Automatic Programmer has a number oP
320 PRINT use u functions that will save you time:•

330 PRINT TABCS>•l.) You can use it to write • instructional screens.

Automatic Programmer Documentation

340
PRINT TABCS)•Instead of mapping out pages, like this one, and writing•

50 PRINT TAB(8)"program lines to reproduce the text on the screen, you•
3 PRINT TABC8)•can enter the material exactly as you want it to appear• m PRINT TAB(8) •using cursor control and full-screen editing, All alpha"

380 PRINT TAB(S)•numeric characters and symbols may be used. Then, .pro-"

390 PRINT TAB(S)•gram lines will be written and saved to disk.•
400 GOSUB 960
410 PRINT TABCS)• After a screen has been created, you may renumber it•
420 PRINT TAB(S)•so that the line numbers do not conflict with an existing•
430 PRINT TABCS)•program, and MERGE the two. This process may be repeated"
440 PRINT TAB(8)•to create several frames or menus for a business, computer•
450 PRINT TAB(8)•aided instruction, games, or other program.•
460 PRINT
470 PRINT TAB(8)•2.) Automatic Programmer may also be used to create•.
480 PRINT TABC8)•entire program skeletons for you to work with. The•
490 PRINT TAB(8)• 1 screen' writer module may be used, along with several•
500 PRINT TAB(8)•others. It will write program lines to dimension a•
510 PRINT TAB(S)•string array, build di.sk I/O routines to fill an array•
520 PRINT TAB(8)•and dump its contents to a disk file.•
530 PRINT
540 PRINT TAB C 8) • If your program will use DATA lines, you may simply•
550 PRINT TAB(S)"enter the actual data itself. Automatic Programmer will•
560 PRINT TAB(S)•insert line numbers, DATA statements, and write a routine"
570 PRINT TAB(8) •to READ that data into an array for later manipulation.•
580 GOSUB 960
590 PRINT TAB(8) • You may construct a menu, too. If you choose to•
600 PRINT TAB(S)•build a custom menu, you can make use of the screen•
610 PRINT TAB C 8) •writer routine. The computer can also build a menu for•
620 PRINT TAB(S)•you, from your input of the number of choices, labels for•
630 PRINT TAB(S)•those choices, and other data.•
640 PRINT TAB(S)• When using this feature, the program will write ON... •
650 PRINT TAB(S)•GOSUB lines for you, ~nd insert REMARK pointers at those•
660 PRINT TAB(S)•locations so you know where to write each subroutine. •
670 PRINT
680 PRINT TABCS)• The program lines written include error traps and"
690 PRINT TAB(8)"other helpful features that you do not have to program•
700 PRINT TAB(S)•yourself. Although Automatic Programmer will not write•
710 PRINT TAB(8)•a complete program, it will get the basics out of the"
720 PRINT TABCS)•way fast, and allow you to use your creativity where it•
730 PRINT TABC8)•counts the most.•
740 PRINT
750 PRINT TAB(8)•3. > Automatic Programmer can also be used, to a•
760 PRINT TABCS)•limited extent, to proofread the programs you have writ-•
770 PRINT TAB(8) •ten. It will check for misspelled keywords, mismatched"
780 PRINT TAB(8)•parentheses, and some other errors. •
790 GOSUB 960
800 LOCATE 8, 8
810 PRINT •Please note:•
820 PRINT

8

8
3
4
0 PRINT TABCS>•o Program to be proofed must be saved in ASCII form.•
0 GOSUB 960

850 PRINT TABClS)•Hit 'R' to repeat instructions.• :;o PRINT TAB (18) • -= Press z=•
8 0 PRINT TAB C 18) • 1. > To run Screen Edi tor•
8~0 PRINT TABC18) •2.) To run DB Starter•

90 ~ APR$INT TAB<l8)•3.) To run Program Proofer•
2 INKEY$:IF A$=•• GOTO 900

65

-

Program Your IBM PC to Program Itselfl

910 IF A$="R• OR A$="r"GOTO 120
920 IF A$=•1• THEN RUN"SCREEN.BAS•
930 IF A$=•2• THEN RON "DBSTART.BAS"
940 IF A$="3• THEN RUN •PROOFER BAS"
950 GOT0,900 •
960 LOCATE 25,12
970 COLOR 0,7
980 PRINT •-- BIT ANY KEY FOR MORE 990 COLOR 7,0 . 1 FlO TO SKIP INSTRUCTIONS --•i
1000 IF INKEY$=•• GOTO lOOO
1010 CLS:LOCATE 3,1 .
1020 RETURN
1030 CLS:LOCATE 8 l
1040 RETURN 860

1

Chapter 9

Global Replacer
So far, you've seen that the key to teaching your
IBM PC to program itself has been to provide it
with a simple set of instructions that it can follow
to do what you want. Many times, these are almost
trivial, repetitious tasks that the computer can do
much faster than we can. For example, a human
could easily go through a program looking for
REMarks, and deleting them manually. We, how
ever, might overlook one or two. And, even with
the IBM PC's screen editor, moving the cursor
around and pressing DEL or BACKSPACE re
peatedly is time consuming and a bit boring. With
programs like REM -over, we have been able to
command the IBM PC to do this task for us.

So called global search and replace is another
feature that can automate a time consuming or
error ~rone task. With this capability you can find
~ery instance of a string, and if you wish, change
ft to something else.

Global search and replace is a strong feature
of • WP microcomputer word processing programs. All
wbi programs for the IBM PC have this capability,

ch allows the user to search through a text file

and change all occurrences of one string to another.
If you wrote PRINT and you meant LPRINT, the
change will take just a few seconds.

MAKING CHANGES WITHOUT
A WORD PROCESSING PROGRAM

What if you want to do the same function not
on a text file, but a program file? Some word pro
cessing programs will load an ASCII format pro
gram, allow text manipulation, and then save the
new program, again in ASCII; however, not all WP
software allows this. Many do not let you choose
which instances to replace (they are always global).
That is, you may have the choice of replacing ALL
occurrences, or of searching to each spot and then
manually typing in the replacement string. Some
of us do not have word processing programs in any
case either because we don't use our PCs for word
proc~ssing, haven't gotten around to buying a WP
program, or can't justify the cost of one. .

Here is the solution to your problems. It 1s an
other program in the "REM-over" mold. This one,
Global Replacer, demonstrates how one program

Program Your IBM PC to Program Itseli!

can be adapted to perform a second function. In
concept, the two are almost identical. The dif
ference is instead of searching for remarks and then
deleting them, the program looks for ANY string
of the operator's choice. Then the string is replaced
with a second string.

Unlike some word processing programs, how·
ever, the user is shown each occurrence of the
search string and offered the opportunity to replace
it. You can pick and chose which to replace and
which to leave alone.

The search string is input into S$ in line 230.
(Figure 9· 1 shows the variables used in Global
Replacer.) Since LINE INPUT is used, the string
can contain commas and other string delimiters.
The replacement string is entered into RE$, in line
260. Then the input and output files are opened,
and the first program (or text) line loaded into A$,
in line 360.

The user has been offered the option of
whether or not the program queries before malt·
ing the replacement. A search routine, which is
basically identical to that used in REM-over,
hunts for the string. The difference is that in line

390, where the former program had
R=INSTR(P,A$,"REM"). Global substitutes S$
for REM. If R does not equal zero, then the string
searched for has been successfully located. At that
point, the program line is cut apart into two sec·
tions. L$ stores everything in the line up to the
beginning of the search string. R$ includes the rest
of the line AFTER the search string. Another
string, Y$, which is a series of blanks of the same
length as the replacement string, is constructed.

If the user has specified querying, control goes
to line 460, where an INKEY$ loop awaits
keyboard input. Each time through the loop, L$,
Y$, and R$ are printed on the same line; then there
is a short delay, and L$, RE$, and R$ are printed.
The result is a flashing display with the left and
right portions of the program line remaining on the
screen, while the potential replacement flashes on
and off in its place. A Replace it? prompt asks for
a decision. The program will only replace the string
if a Y is entered. Any other key will leave the pro
gram line as it was.

Once the string has been replaced, the program
branches back to search the rest of the line. If the

A$ Stores program line being searched.
BS USed In INKEY$ loop.
CH$ USed in INKEY$ loop.
E length of string being searched for.
F$ File name of program being searched.
F1 S Name of output file.
L$ left portion of program line.
N1 Loop counter.
P Position to begin search.
R Position of searched for string.
RE$ Replacement string.
S$ String to search for.

YS String of spaces as long as string replacing with.

Fig. 9-1. Variables used In Global.

68

- string is not found, the program line is
1inted to the disk in line 700. and a new program

it fetched.

J.DVANTAGES OF GLOBAL REPLACER
Global Replacer is a short but powe:£W ~ro-

that will let you make changes rapidly ma
~program. Should you decide to change the
~eofa variable, substitute one keyword for an·
tiher (e.g., LPRINT for PRINT). or. do s.o~e
aanges of prompts and other matenal wi~n
qootatlon marks, it will handle them all. Its chief

Ustlng 9: The Global Replacer Program

10 I ****************
20 I * *
30 1 * GLOBAL *
40 I * *
50 I UtUtt*********

55 1 *** Initialize ***
60 KEY OFF
70 SCREEN 0 , 0 , 0
80 ON KEY<lO) GOSUB 790
90 KEY<lO) ON
100 COLOR 7 , 0
110 CLS: PRINT: PRINT
120 LOCATE 25, 30

Global Replacer

advantage over using a text editor for the same
chore is the ability to examine each line before mak·
ing the change. In addition, those without word pro
cessing programs can use this utility.

As always, you can abort this program by
pressing FlO. Your original file will not be harmed
-nothing is done to it, in any case. GLOBAL, like
most of the other programs in this book, only reads
in the original file and writes an entirely new file
with the changes to disk. The source file is un·
touched, and thus aborting the program has no ef
fect on it.

130 COLOR 16, 7
140 PRINT· Hit FlO to abort. • 1
150 COLOR 7 , 0
160 LOCATE 4 , 2 0

165 ' *** Enter names of files ***

170 PRINT •Enter name of
180 LINE INPUT F$
190 PRINT TAB (2 6) "Enter
200 LINE INPUT Fl$
210 CLS: PRINT: PRINT
220 PRINT TAB (2 6) "Enter
230 LINE INPUT S$
240 CLS: PRINT: PRINT

d ••
program to be processe •

name of output file :•

string to search for :•

69

Program Your IBM PC to Program Itself!

250 PRINT TAB(25)"Enter string to replace with :"
260 LINE INPUT RE$
270 CLS:PRINT:PRINT
280 PRINT TABC17)"Do you want to choose whether to replace

each?"
290 PRINT TABC37)"CY/N)"
300 CH$=INKEY$:IF CH$="" GOTO 300
310 IF CH$="Y" OR CH$="y" THEN CH=l
320 CLS

325 ' *** Open Disk Files ***

330 OPEN "I",l,F$
340 OPEN "0",2,Fl$
350 IF EOF(l) GOTO 730

355 ' *** Load a line ***

360 LINE INPUT fl,A$
370 IF CH=l THEN CLS
380 P=l
390 R=INSTR(P,A$,S$)
400 IF R=O GOTO 700
410 L$=LEFT$CA$,R-l)
420 E=LEN(S$)
430 R$=MID$CA$,R+E)
440 Y$=STRING$CLEN(RE$),32)
450 IF CH=O THEN GOTO 670

455 ' *** Replace it? ***

460 B$=INKEY$
470 LOCATE 3,4
480 PRINT L$;
490 COLOR 0,7
500 PRINT Y$;
510 COLOR 7,0
520 PRINT R$
530 FOR Nl=l TO 50:NEXT
540 LOCATE 3,4
550 PRINT L$1
560 COLOR 0,7
570 PRINT RE$1
580 COLOR 7,0
590 PRINT R$
~~~ ~~~-~~=l TO 50:NEXT 

620 PRINT "Replace it? ( Y/N). 
630 IF B$="" GOTO 460 
640 IF B$="Y" OR B$="y" GOTO 670 
650 P=INSTR(P 1 A$ 1 S$)+LEN(S$)-l 
660 GOTO 390 
670 A$=L$+RE$+R$ 
680 P=INSTR(P ,A$ ,RE$ )+LEN(RE$ )-1 
690 GOTO 390 

695 • *** Print to disk *** 

700 PRINT i2 ,A$ 
710 IF CH=O THEN PRINT A$ 
720 GOTO 350 
730 CLOSE 

735 ' *** Do it again? *** 

740 PRINT:PRINT 
750 PRINT TAB(29)"Process another file?" 
760 PRINT TAB C 37)" C Y/N) • 
770 A$=INKEY$:IF A$="" GOTO 770 
780 IF A$="Y" OR A$="y" THEN RUN 
790 CLOSE 
800 CLS 
810 END 

Global Replacer 



Chapter 10 

I PRINT~ 
TAB( f 2 A$-

INPUT$(l) 
F3 F4 

f 5 F6 

F7 FS 

F9 f 10 

Key Definer 
A long time ago, in a galaxy far, far away, 
microcomputers didn't have function keys. Some 
didn't even have cursor keys! All users had 
available were the standard alphanumerics and, if 
they were lucky, a control key, an escape key, and 
a few others. This lack of available extra keys led 
to some interesting programming solutions. Word· 
Star, which could be used on computers without 
cursor keys, required strange combinations of 
control-key plus another key to move the cursor 
around on the screen. Some commands called for 
two and three key combinations. 

Even more interesting, one popular word pro
cessing program for the Tandy line asked the user 
to think of the @ key as a control key. Of course, 
that meant that there was no way to print the @ 
~cter-except that the programmer "moved" 
it to Shift-0 (shift-zero). Without a CAPS LOCK 
~ey, this same WP program used Shift-@. And so 
it went. . 
. One of the nicest features of the latest genera· 

tion of microcomputers, like the IBM PC and PCjr, 

is that they include lots of extra keys. In addition 
to 10 function keys, there are control keys, in
cluding ALT, INS, DEL, NUM WCK, BREAK, 
ESC, and others. 

These keys can be used to make programming 
easier and programs easier to use. Function keys 
are used in two ways. First, you can write the pro
gram with an ON KEY(n) GOSUB interrupt, so that 
when the designated key is pre~ed, control goes 
to the desired subroutine. Or, you may actually 
want the key to return a set of characters when it 
is pressed. The IBM PC boots up set to return 
strings like LIST, WAD, SA VE, and so forth when 
a function key is hit. . . 

You may sniff that, of course, it is a simple mat-
ter to write a program so that hitting a ftmction key, 
like Fl will take the user to a desired subroutine ' - . . 
in a flash. That has been done repeatedly m this 
book. But, you continue, there's not a lot of use in 
having LIST or SCREEN 0,0,0 available to the pro
grammer at the touch of a key. 

Well, you should know by now that if yo~ don't 

73 



Program Your IBM PC to Program Itself? 

like the way your Automatic IBM is treating you
cbange it! Key Definer is a short program that will 
write an even shorter program that redefines all 10 
special function keys for you automatically. 

USING KEY DEFINER 
There are two ways to use Key Definer. First, 

you can run the program from BASIC, and enter 
the new key definitions you'd like. When you're fin· 
ished, hit Fl. As if by magic, Key Definer will be 
gone from memory, and your new key definitions 
will be implemented. What's more, there will be 
a new disk file that you can run anytime you like 
to summon those same key definitions. 

That disk file is the second way to use this pro
gram. It can compile a selection of different func· 
tion key settings-as many as you want-that you 
can load at your command. Or, you can have those 
definitions loaded automatically by means of a 
" t "DOS cus om command you have created. (Cus· 
tom DOS commands will be explained in Chapter 
18.) In this mode~ you could type BASIC23 from 
DOS, and have Key Definition File #23 activated 
Or, you might want to put this line in yo~ 
AUTOEXEC.BAT file: 

BASIC KEYDEF.BAS 

, Eve~ time your PC is booted, it will go to 
BASIC with the key definitions in the specified file 
name. (I used KEYDEF.BAS here) loaded au· 
to~tically. We'll explore this aspect later. You can 
enJoy Key Definer right now! 

REASONS FOR 
REDEFINING FUNCTION KEYS 

~xactly ?ow and why would you redefine the 
:~ ~ction ~eys of your PC? Those who think 

special function keys are best applied as a kind 
of shorthand to elimina' t · . e typmg m GOTO or other 
P~se~ suffer from a failure of imagination Th 
mce thing about general · • e like the IBM . tha -purpose nucrocomputers 

IS t they can be CllStom-configured 

74 

to perform specialized tasks tailored to the exact 
needs of the end user. Thanks to the sophistication 
of DOS 2.0 and beyond, patches, special ROM 
trid~es, and utility programs, many features can~ 
available on power-up, or, at most, at the press of 
a few keys. 

User-programmable special function keys can 
do a great deal more than print out a lengthy BASIC 
keyword. Here are some applications you might llOC 

have thought of. 
Program a key so that Fl produces FILES or 

SYSTEM or some other command you use fre
quently. Your function keys can store a string of 
up to 15 characters, enabling you to redefine them 
to include lines you frequently use in programs, 
such as A$= INPUT$(1), or OPEN "0",l,F$. 

User-programmable keys are truly the pro
grammer's friend. Do you frequently renumber 
your programs during writing to make additional 
room between lines? Program a key to yield 
RENUM 10,10 whenever you strike it. Set another 
key to PRINT TIME$. Then, hit that function key 
to see the correct time anytime you want. Your uses 
are limited only by the number of keys available 
for programming. 

HOW TO REDEFINE FUNCTION KEYS 
The correct syntax for redefining the PC's 

function keys is as follows: 

KEY n,string 

For example: 

KEY l,"RENUM 10,10" 
KEY 10,"FILES" 

You do not need to activate these function keys 
with the KEY ON statement. Once defined, they 
are instantly ready for your use while programming 
in command mode. You can turn off the display of 
the key definitions in line 25 by entering KEY OFF, 
and turn it back on again with KEY ON. That af· 

fec!S only the display. Between times, pressing Fl 
Jill still produce the string defined for that key. To 
tJU]y turn it off, you need to define the key as a null 

string: 

KEY lr 111 

KEY lo,•• 
Don't confuse the strings produced by press· 

mg a special function key with the ON KEY(n) 
GOSUB feature. That is entirely different. You can 
have redefined keys (useful from command mode) 
and ON KEY(n) routines (useful in your programs) 
at the same time, with different results. 

Here is the main difference: when ON KEY(n) 
~activated, statements like LINE INPUT will ig· 
nore the function key's string, but still recognize 
that the function key has been pressed. Assume you 
have redefined Fl to equal "RENUM 10,10". If 
you ran the following program line: 

10 LINE INPUT AS 

and pressed Fl, followed by the Enter key, then 
RE.'IDM 10,10 would be printed to the screen, and 
A$would equal "RENUM 10,10". 

However, add these three lines: 

5 ON KEY(l) GOSUB lOO:KEY(l) ON 
50 STOP 
100 PRINT "YOU PRESSED Fl l" 

~ow, ~hen line 10 is run, if you press Fl, 
nothing will appear on the screen. Neither will 
BASIC branch to line 100. Instead, it will wait until 
you press the Enter key Gust in case you want to 
~ter 8?meth!ng into the LINE INPUT) and then 
~ediately Jump to line 100. A$ will not contain 
. NUM 10,10." So, our redefmed keys do not 

ho
mterfere with ON KEY(n). You've also learned 

wev tha LINE ' · m • er, t INPUT won't let you jump im· 
~tely to the subroutine you want to interrupt 
~ For that reason, programs using function key 
Interrupts in this book that require LINE INPUT-

Key Definer 

type entries (that is, commas and other delimiters 
must be acceptable) use INKEY$ and concat
enation. 

You now know enough about the IBM's func· 
tion keys to know that Key Defmer is a very sim
ple program. Figure 10-1 shows the variables used. 

A string array is set up in line 60 to hold 10 key 
definitions, one for each of the 10 special function 
keys. Then Fl, used to end the input session, is ac· 
tivated. 

You are asked which key to define. Here I use 
the A$= INKEY$ technique mentioned, so that Fl 
can, indeed, interrupt the entry when we are 
finished. 

The key to be defined, K, will be given your 
desired string, D$. Your definition is checked to 
make sure that it is 15 characters or less. You can 
enter nothing, to cancel out a key completely, if you 
wish. 

A counter, CU, keeps track of the number of 
keys defined, and the K element of the array D$(n) 
is loaded with your chosen string. This process 
repeats as many times as you want until Fl is 
pressed. You may define any or all of the 10 func
tion keys, redefine some, skip some, or any com· 
bination. 

When Fl is pressed, the program branches to 
line 520, where a file, KEYDEF.BAS is opened. A 
FOR-NEXT loop from 1 to 10 writes your defini· 
tions to the disk. If you have not defined a key, a 
null definition is written. Note: this will cancel out 
any default definitions for those keys. 

Variable C corresponds to the line number in, 
the new short program being created. The first line · 
number will always be one. If you have defined 10 
keys, then 10 line numbers will be used. ,The p~o- , 

K Key to be redefined. 
K$ New string to assign to that key. 
N Loop counter. 

Fig. 1~1. Variables used in Key Definer. 

75 

-

i 
I 

I 
\ 



Program Your IBM PC to Program Itself! 

gram line is built from the line number, C, plus 
"KEY" + STR$(N) + " , " + CHR$(34) + D$(N) 
+ CHR$(34). This produces a line like: 

1 KEY S,"RENUM 10,lO• 

The final step is to write one more line, con· 
taining the command NEW. Then the new program 

Listing 10: The Key Definer Program 

10 • ***************** 
20 • * * 
30 ' * KEY DEFINER * 
4Q I * * 
so • ***************** 

SS ' *** Initialize *** 
60 DIM 0$ <15) 
70 KEY OFF 

, 80 SCREEN 0,0,0 
90 COLOR 7,0 
100 ON KEY(l) GOSUB 520 
110 ON KEYClO) GOSUB 680 
120 KEYCl) ON 
130 KEYClO) ON 

. 140 CLS:PRINT:PRINT 
150 K$=ww 

just created, KEYDEF.BAS will be run. It will 
redefine your keys and then erase itself from mem· 
ory when it encounters the NEW command. The 
program KEYDEF.BAS, however, still resides on 
your disk and can be used later if you wish. 
RENAME it under some other file name so that 
subsequent runs of Key Definer won't write over 
the existing file with the new one. 

160 PRINT TAB(26).Which key to define (1-10)?• 
170 PRINT 

180 PRINT TAB(33)"Hit Fl to finish definitions.• 
-~90 PRINT TABC33)•Hit FlO to abort and end program• 

195:' *** Enter key to be defined *** 
•·!~ ' 

200·0$=·· 

210 LOCATE 12,S:COLOR 0,7:PRINT 0 DEFINE KEY i "J: 
.. , COLOR 7 , 0 : PRINT K$ 

. 220 A$=INKEY$:IF A$=•• GOTO 220 
23 0 IF A$=CHR$Cl3) THEN GOTO 270 
240 IF A$<"0" oa A$>"9" GOTO 220 
250 K$=K$+A$ 
260 GOTO 210 
270 K=VAL(K$) . 
280 IF K<l OR K>lO THEN GOTO 140 

76 

Key Definer 

285 , *** Enter def ini ti on *** 

O LOCATE 12, 27: PRINT"Enter def ini ti on for key 29 
F"JMID$(STR$(K),2);•, then [ENTER]" 

300 LOCATE 14,5:PRINT SPACE$C20)1 
310 A$=INKEY$: IF A$=n" GOTO 310 

0 IF A$=CHR$ ( 8) AND D$<>"" THEN 32 
D$=LEFT$CD$,LENCD$)-l):LOCATE 14,5:PRINT SPACE$~~0): 
LOCATE 14,5:GOTO 360 ELSE IF A$=CHR$(8) AND D$= 
THEN GOTO 3 6 0 

330 D$=D$+A$ 
340 IF A$=CHR$ ( 13) GOTO 420 
350 IF LENCD$)>15 THEN BEEP:LOCATE 25,4:PRINT 

SPACE$C70)1:COLOR 0,7:LOCATE 25,4:PRINT"ONLY 15 CHARACTERS 
PLEASE!!"J:FOR N=l TO lOOO:NEXT N:LOCATE 25,4:COLOR 
7,0:PRINT SPACE$(50);:D$="":GOTO 290 

360 LOCATE 14 r 5 
370 PRINT 0$ 
380 LOCATE 25 1 4 
390 COLOR 0, 7 
400 PRINT• LENGTH OF STRING : "nCOLOR 7,0:LOCATE 25,29:PRINT 

LEN(D$)J:COLOR 0,7:LOCATE 25,40:PRINT" LIMIT 15 ";: 
COLOR 7 ,0 

410 GOTO 310 
420 CU=CU+l 
430 D$=LEFT$ ( D$ , LEN ( D$ )-1) 

435 ' *** Append C/R ? *** 

440 LOCATE 25, 4 
450 PRINT"End with carriage return? CY/N) "J 
460A$=INKEY$:IF A$="" THEN GOTO 460 
470 IF A$=•y• OR A$=•y• THEN GOTO 480 ELSE M$="" :GOTO 500 
480 IF LENCD$)=15 THEN BEEP:LOCATE 25,4:PRINT 

SPACE$(55)J:LOCATE 25,4:PRINT"Sorry, too long for C/R. 
Re-enter.";:FOR N=l TO lOOO:NEXT N:LOCATE 25,4:PRINT 
SPACE$(40)nD$=••:GOTO 290 

490 M$=CHR$ ( 13) 
500 0$ (K)=D$+M$ 
510 GOTO 140 · 

515 ' *** Write file to disk *** 
520 OPEN "0" 11 1 "KEYDEF. BAS" 
530 C=C+l 
540 L$=STR$ (C)+• KEY ON• 
550 PRINT ll,L$ 

77 

-



78 

Program Your IBl\I PC to Program Itself! 

560 FOR N=l TO 10 
570 IF D$(N)="" GOTO 630 
580 C=C+l 
590 M$="" 
600 IF RIGHT$(0$(N),l)=CHR$(13) THEN 

M$="+CHR$(13)":D$(N)=LEFT$(D$(N),LEN(D$(N))-l) 
610 L$=STR$ (C)+" KEY"+STR$ (N)+" 1 "+CHR$ ( 34 )+D$ (N)+CHR$ (34) $ 
620 PRINT fl,L$ +M 
630 NEXT N 
640 C=C+l 
650 PRINT ll,STR$(C)+"NEW" 
660 CLOSE l 
670 RUN "KEYDEF.BAS" 
680 CLOSE:END 

,. 

Chapter 11 

10 SQEEJl o.o.o 
2001011 
SO COLOR 7.0 
40LOCATE10.5 
50 DtFSEG=O 

r'1 v 

• • 

Lister 
l!ardcopy program listings are a necessary evil 
ljproduct of programming. You can't RUN a 
isling. If you find one in a magazine, you have to 
ljjt~in, spend hours debugging it, and then cross 
rourfingers and hope the typesetters didn't make 
amistake. (It is for that reason that the programs 
ii this book were reproduced directly from 
l'intouts from working, tested programs.) 
· .You can't change a hardcopy listing. If you 

1£cide to make a change in a program, it's 
~to do that with the actual computer, and 
!lien Printout a whole new listing. 

USES OF HARDCOPY LISTINGS 
So, why do we have these hardcopy printouts? 

:en. for one thing, a listing is less costly to repr~ 
i ;~ the program on some other medium. 
alo~ . dad~ and a half programs in this book, 

g ~th witty documentation and tutorial ex· 
~:n for l~ss than $1 per program. The disks 

contain the text and programs prior to 

publication cost a bit more than that. A listing, 
which can be duplicated for a few cents a page, is 
an economical way of distributing a program in a 
form that the user can eventually transport to his 
or her microcomputer. 

Listings are a fairly universal medium of ex· 
change, as well. You can type some of these pro
grams into nonIBM computers using similar 
BASICs, but incompab'ble disk formats. 

For the programmer, a listing can be a debug· 
ging tool as well. There, laid out in its entirety, is 
the full program. It is possible to jump back and 
forth between subroutines much faster by using 
your eyes than by typing LIST 100-300 at the 
keyboard. Also you can view several subroutines 
at once, which may be difficult on the screen, if they 
are long or in different parts of the program. 

As I said, hardcopy listings are a necessary evil. 
Our job is to make them slightly less evil, if possi· 
ble. The way that you can do this is by formatting 
the listings to be a bit more readable, neater, and 
easier to understand. · _, 

79 



Program Your IBM PC to Program Itself? 

A$ Stores program line being listed. 
C$ Used In INKEY$ loop. 
COL$ Width of printout. 

L$ Name of file to be listed. 
LL Unes listed. 
N Loop counter. 
P Page number. 
PG Lines per page. 

A$ Middle string of line being listed. 

Fig. 11-1. Variables used in Uster. 

PRODUCING HARDCOPY 
LISTINGS WITHOUT A WP PROGRAM 
. You can, if you wish, use many word process. 
mg programs to format and print out your li f 
I present Lister, which will do the job from ~fc· 
for those who do not have word pr . ' 
programs. ocessing 

Lis~er combines some of the features of pro
grams introduced previously. Like many, it loads 
a program and looks at each line. Then it examines 
the contents and performs some small trick that 

will 
we 

programmers fmd of value. In this case, it will 

10 ' ********************* 
20 ' * * 
30 ' * Word Counter * 
40 ' * * 
50 ' ********************* 
60 CLEAR 4000 
70 DEFINT A-Z 
80 CLS:PRINT:PRINT 
90 PR;NT TABC2l)"Writer's Word Counter 

100 PRINT 
110 PRINT TAB(6)"This program will 

c
1

ount the number of actual words 
n a " 

120 PRINT TAB(2)"text file, or any 
~ile that has been stored to disk 
in ASCII • 

130 PRINT TAB(2)"format. In addition 
~~ !lso provides the total number' 

140 PRINT TAB(2)"'standard ' fi 
charact d ve 

h 
er wor s, and the average 

c aracter " 
150 PRiINtThTABC2>"length of the words 

n e text. • 
160 PRINT:PRINT TAB(l7)"== Hit an 

key to continue == • Y 
170 IF INKEY$="" GOTO 170. 
180 CL~:PRINT:PRINT' *** A 

Disk File *** ccess 

Fig. 11-2. An example of a listing produced by Uster. 

80 

fDrnlal program listings into neat, paged groups. 
The program asks the user to enter the name 

rA the file to be listed on the lineprinter. The 
nnmber of columns wide is entered, along with the 
DUIDber of lines per page. Th~n the fil~ is opened 
and a line input into A$. (A hst of vanables used 
mLister is shown in Fig. 11-1.) 

The program then commences a FOR-NEXT 
kc!l that begins 10 characters to the left of the 
~column width.That is, if 50 columns are 
&sired, the program starts checking a line to be 
i.lted at the 40th character. This is considered the 
"hot" zone. At this point, the program begins look
ilgfor either a colon or a space. When one is found, 
isplits the program line at the colon or space, and 
LPRINTs the two parts, with some spaces added 

Usting 11: .The Lister Program 

10 I *********** 
20 I t * 
30 ' * Lister * 
40 I t * 
50 I *********** 

SS ' *** Initialize *** 
60 KEY OFF 
70 ON KEYClO) GOSUB 570 
80 KEY(lO) ON 
90 SCREEN 0 , O , O 
100 COLOR 7 , O 
110 CLS: PRINT: PRINT 
120 LOCATE 25, 4 
130 COLOR 16,7 
140 PRINT " Hit FlO to abort "J 

145 ' *** Enter filename *** 
150 COLOR 7, O 

Lister 

to indent the second portion of the line past the line 
number above. The counter for the number of lines 
printed so far, LL, is also incremented. Whenever 
LL is greater than the number of lines desired per 
page, a new page is started, with an appropriate 
heading. 

Note: because some computer setups hang up 
when attempts are made to LUST without a 
printer being switched on or connected, leave the 
REMs shown in place while typing and debugging 
Lister. When everything is working fine, remove 
them, and your listing will go to the printer as well 
as to the screen. Figure 11-2 shows an example of 
another program in this book that has been 
LLISTed using Lister. 

~60 LOCATE 8, 24 

1~~ PRINT "Enter name of file to be listed:" 
l LINE INPUT L$ 
90 PRINT TABC29)"How many columns wide?" 

200 INPUT COL$ 

81 



82 

Program Your IBM PC to Program Itself? 

210 COL=VAL(COL$) 
220 PRINT TAB(28)"How many 
230 INPUT PG$ 
240 PG=VAL(PG$) 
250 P=l 
260 GOSUB 500 

lines per page?" 

265 • *** Open Disk File *** 

270 OPEN "I",l,L$ 
280 IF EOF(l) GOTO 440 
290 IF LL>PG THEN GOSUB 500 

295 • *** Look For Space or Colon *** 
300 LINE INPUTl1,A$ 
310 : FOR N=COL-10 TO COL 
320 : R$=MID$(A$,N,l) 

, 330"':· IF R$=CHR$(32) GOTO 380 
340 : IF R$=":" GOTO 380 
350 : NEXT N 
360 LPRINT A$ 
370 GOTO 280 
380 L$=LEFT$(A$,N) 
390 LPRINT L$:LL=LL+l 
400 LPRINT STRING$(5 1 32)J 
410 A$=MID$(A$,N+l) 
420 IF A$="" GOT0190 
430 GOTO 310 
440 CLOSE 

445 • *** Do it again ? *** 
450 PRINT:PRINT 
460 PRINT TAB(3l)"List another file?" 
470 PRINT TAB(37)"(Y/N)" 
480 A$=INKEY$:IF A$•"" GOTO 480 
490 IF A$•"Y" OR A$="y" THEN RUN ELSE END 

495 ' *** Page Routine *** 
500 LPRINT:LPRINT:LPRINT:LPRINT 
510 PRINT:PRINT:PRINT"Please insert another page.• 
520 C$=INKEY$:IF C$•"" GOTO 520 
530 LPRINT L$1" Listing Page "JP 
540 LL=O 
550 P=P+l 

560 RETURN 

b t *** 565 1 *** A or 

570 CLOSE 
580 CLS 
590 END 

Lister 

83 



Chapter 12 

I 0 salEEH 0,0,0 
201tEl OFF 
SOCOLOl\ 7,0 
40LOCATE 10.5 
50 DEF SEG=O 

® . 

• • 

Translator 
Most of the BASIC language's limitations stem 
from its original purpose as a high-level language 
that would be easy for beginners to learn and use. 
Its strongest point-the simple English keywords
provides an artificial barrier for those whose pri
mary language is not English. Some of the largest 
Spanish-speaking communities in the world, for ex
ample, are in the United States. The availability of 
a BASIC in Spanish might make it easier for these 
citizens to use computers at an earlier age. 

A machine language Spanish-Basic interpreter 
would be ideal. Programs could be written in a 
Hispanic version of BASIC, run, tested, and 
debugg~d in that form. Unfortunately, that would 
beamaJorundertaking, best tackled by a software 
house with some hopes of recouping the time in
vestment through sales. But one-tenth of a loaf is 
often better than none. Translator is a simple 
rudo-compiler that converts programs written in 
Panish Tiny BASIC to standard BASIC for 

running. 

Most readers will not remember Tiny BASIC, 
which was a very small version of BASIC used on 
some early microcomputers because it could be fit 
in an BK ROM. It lacked many features we now 
consider standard in an advanced language like that 
available from the IBM PC. _., 

The Translator program displays all the com
mands, statements, and functions available; this 
display can be summoned by entering HELP (or 
AYUOA) while the program is running. 

The Translator program allows the user pro
gram to write the source code using Spanish 
keywords, instead of the English Basic equivalent. 
As each line is entered, the program checks it for 
various criteria (each must begin with a line 
number, and no more than one statement is allowed 
per line) and generates a new line o! code, repl?c
ing each of the Spanish keywords With the E~hsh 
equivalent. Both versions may be saved to disk or 
listed at any time. Figure 12-1 provides an exam· 
ple of Spanish and English versions of a ~rogram. 



-
Spanish Version 

10 IMPRIMA "PROGRAMMA• 
20 ENTRE •su NOMBRE :•;A$ 
30 SI A$="DAVID 9 LUEGO IMPRIMA •aoLA DAVI01• 
40 SI A$<>"DAVID" VAYA SUB 100 
SO FIN 
100 IMPRIMA 9 HOLA,•;A$ 
110 RETORNE · 

English Version 

10 PRINT "PROGRAMMA• 
20 INPUT •su NOMBRE :•;A$ 
30 IP A$a"DAVID" THEN PRINT •aoLA DAVI01• 
40 IP A$<>"DAVID" GOSUB 100 
SO END 
100 PRINT •aoLA,•;A$ 
110 RETURN 

Fig. 12·1. An example of a program produced by Translator. 

Translator combines some of the features of 
~lo~ Replacer and Program Proofer. It compares 
~ts mtei;ial list of allowable keywords with those 
m t?e mput lines, and replaces them with the 
eqwvalents.as needed. Figure 12·2 lists the vari
ables used m Translator. 
~ Edi~ is .~ccomplished by reentering the line. 
. ,'; ;.nglish < compiled") version of the program 
JS o ~ect c~e" that may be loaded and run under 
your BASIC mterpreter, like any BASIC pro 
: ~ng as the code entered in Spanish conf=d 

e normal syntax rules of BASIC 
. Ideally, the program should be us~d by a 

soSn wh.o already knows standard BASIC to teapechr· 
a PanISh·speakin ·. The S . g person how to program. . 
th . be parush words chosen are not necessaril 

e ~t possible equivalents for BASIC k . dy 
replaced ·The BAS! eywor s 
using tw~ crit . ~ trans~tions were chosen 
short and ena. e _Spanish words had to be 

mean approxunately what the BASIC 

86 

equivalents mean. Because keywords are, in effect, 
commands, the imperative form of the verbs were 
used. Second, programming was made easier by se

lecting Spanish words that were either the same 
length or longer than the BASIC keywords. 

To use the program, the student types RUN, 
in English, and is shown a summary of the COlll' 

mands and statements available. This list can be 
summoned at any time by typing HELP or AYUDA 
at the > prompt. An existing program may be 
loaded from the disk using the CARGE command. 
Prompts ask for the name of the program in 
Spanish and English. Then the program can be 
edited or new lines added. 

At any time a specific line in Spanish can be 
seen by entering ALISTE xxx, wherexxxistheline 
number. By typing ALISTE, the entire program will 
be presented a section at a time. Entering LIST, 
in English, will display the compiled English ver
sion. NEUVO (NEW) or CORRA (RUN) will erase 

A$(n) 
A$ 
A1$ 

Difference In length of keywords. 
Line entered by user. 

B 
c 
COM$ 
CP$(n) 
cu 
E2$(n) 
F$ 
F3$ 
FLAG 
G 

Used in INKEY$ loop. . 
Position of quote in line input. 
Position of colon in line input. 
Command entered by user. 
Array storing program lines in English. 
Counter. 
Array storing program lines In Spanish. 
File name. 
File name. 
Shows whether instructions have been displayed. 
Loop counter. 

IG$ 
L 
N 

Program line input by user. 
Length of program line. 
Loop counter. 

NE$ 
NI$ 

Name of program in Spanish. 
Name of program in English. 

Fig. 12·2. Variables used In Translator. 

the current program in memory and allow the user 
to start over. 

Only line numbers between 1 and 200 may be 
used, and only single statements are allowed per 
line. Spaces must be used after line numbers and 
between words. It is permissible to end a line with 
a space, as one is added automatically. Spaces are 
essential, because in searching for keywords, the 
program looks not for, say, the letters SI, but for 
<space>Sl<space>. Otherwise, by the time 
the loop that searches for keywords got to 
SIGUIENTE, the word would have been changed 
to IFGUIENTE. 
· . Actual translation from Spanish to English is 
Simple. The programmer enters a line loaded into 
A$ in line 1350. The entry is changed to all upper· 
case letters. Then the first four characters are 
che~ed to see if any of the allowable commands 
are mcluded. If not, the line must begin with a line 
number, or else an error message is generated. A 

check is made for a colon outside quotation marks; 
which would indicate a multiple statement line. An 
error trap also checks to make sure that the line 
number is within the range allowed. 

A FOR-NEXT loop beginning at line 17 40 com
pares each word in the line with the permissible 
keywords, and if one is found, the equivalent Eng· 
lish keyword is substituted for the Spanish 
keyword. Several subroutines take care of LISTing 
the program lines, stored in two string arrays. The 
program keeps track of the high line number used 
so far, in variable HIGH.NUMBER, and only goes 
to that value when LISTing. In that way, a lot of 
time is not wasted trying to LIST program lines 
that do not exist. · 

The only hitch in Translator is a problem com· · 
mon to all compilers. The programmer canno~ run 
the program to test it until it has been compiled. 
Then if bugs are found, the compiled version ~
not be changed because, in this case, the Spamsh 

87 



Program Your IBM PC to Program Itself! 

speaking person supposedly cannot iinderstand the 
BASIC object code. Of course, an English-speaking 
person can edit it, but for those for whom 
Translator was intended, the object code may mean 
about as much as a machine language dump. 

Because Translator was meant as a learning 
tool, it was designed to be easy to change. 
Keywords can be added by appending them to the 
proper locations in the DATA lines and add· 
ing numeric DATA that shows the difference in 

Listing 12: The Translator Program 

10 *************** 
20 * * 
30 ' * Translator * 
40 * * 
so *************** 

SS 1 *** Initialize *** 

60 KEY OFF 
70 ON KEY(l0) GOSUB 2370 
80 KEY (10) ON 
90 BIGH.NUMBER=200 
100 GOTO 180 
110 LOCATE 2S,19 
120 COLOR 16,7 
130 PRINT· == Hit any key == ., 
140 IF INKEY$=•• GOTO 140 
lSO COLOR 7 1 0 
160 CLS 
170 RETURN 
180 DEFINT A-Z 
190 SCREEN O,O,O 
200 COLOR 7,0 
210 KEY OFF 
220 NUMBER.WORDS=21 
230 L2z200 

length between the longer Spanish keyword and the 

shorter English equivalent. The variable NlJM. 
BER.WORDS must also be changed toreflectthe 
new number of words. 

This program will compile from any language, 
The user could select keywords in, say, French.and 
enter them with their English BASIC counterparts 
in the DAT A lines. All the prompts in Spanish will 
have to be changed as well, but these have pur· 
posely been kept to a minimum in the program. 

240 Cl$zCHR$(34) 
2SO C2$:sCffR$(S8) 
260 C3$:sCffR$(32) 

~~~ ~i~ A(21), E$(21), E2$(200), CP$(200), E3$(21), SPAN$(21) 
290 RESTORE .

as

29S ' *** Null arrays ***

300 I FOR Nal TO 200
310 a E2$(N)•••

Translator

320 I CP$ (N)•u
330 1 NEXT N

335 , *** Read Difference Data ***

340 1 FOR N==l TO NUMBER. WORDS
350 I READ A(N)
360 1 NEXT N

365 • *** Read Spanish and English keyw"rds ***

370 1 FOR N=l TO NUMBER. WORDS
380 1 READ E3$ (N)
390 1 E3$(N)=C3$+E3$(N)+C3$.
400 1 READ SPAN$ (N)
410 1 SPAN$ (N)-=C3$+SPAN$ (N)+C3$
420 I NEXT N

425 1 *** Equalize length ***
430 1 FOR N==l TO NUMBER. WORDS
440 1 E$(N)=E3$(N)+STRING$(A(N), 32)
450 1 NEXT N
460 DATA 0, 2 I 0 , 2, 0 I 2I1, 1, 1, 1, 0 I 3I2I2;1, 3, 1, 0I1, 1, l
470 DATA IF, SI, RUN, CORRA, INPUT, ENTRE, LIST, ALISTE, END, ·

FIN, PRINT, IMPRIMA, READ, LLEVE, DATA, DATOS, THEN,
LUEGO, FOR, PARA, STOP, CESE, NEXT, PROXIMO

480 DATA CLS, BORRE, GOTO, VAYA A, RESTORE, RESTAURE
490 DATA GOSUB, VAYA SUB, RETURN, RETORNE, ON, EN
500 DATA STEP, GRADA, REM, NOTA, LET, HACE
510 FLAG==l

515 ' *** Instructions ***
520 PRINT TAB(T) •SPANISH-ENGLISH PROGRAM TRANSLATOR•
530 PRINT TAB(T)•oo you want instructions (Y/N)?•
540 Al$aINKEY$
550 IP Al$a0 THEN 540
560 IF Al$=•y• OR Al$=•y• THEN S90
570 IF Al$=•N• OR A1$==•n• THEN CLS: GOTO 1330
580 GOTO S40
590 CLS:PRINT ' . • ' '·
600 PRINT TAB (8) •This program allows Spanish-speaking student~ t~. · ·
610 PRINT TAB (8) •write programs using Spanish keywords inst:a ~
620 PRINT TAB(8)•the English equivalents. Most Tiny BASIC ey-
630 PRINT TAB (8) •words may be used.• ram•
640 PRINT TAB (a) •The program prepares two versions ofdt~e irof ish.
650 PRINT TAB(8)•-- one in Spanish, and a •translate ' ng
660 PRINT TAB(8)•version.• i h the •
670 PRINT TAB(8)•Although programs may be written

1
i~ Spa~ !n' inte~-·

680 PRINT TAB (8) •may not be RUN in that form <th s s no En -•
690 PRINT TAB(8)•preter) until they have been translated into g
700 PRINT TAB(8) •lish-BASIC •• '
710 PRINT be•
720 PRINT TAB(8) •Both the Spanish and English version\m1~e The•
730 PRINT TAB (8) •saved to disk under filenames of ~our d c RgN n~rm-• . 740 PRINT TAB(8) •English version can then be loade an

89

-
Program Your IBM PC to Program Itseli!

90

750 PRINT TAB(8)•ally.•
760 PRINT TAB(8)•To use, type in program, using the Spanish keywords•
770 PRINT TAB(8)•where needed. Only one statement is allowed per •
780 PRINT TAB(8)•line. User .,
790 COLOR 17,0
800 PRINT •must•11COLOR 7,0:PRINT• add a space after line numbers•
810 PRINT TAB (8). and • J: COLOR 17, 0: PRINT· a11 • J: COLOR 7, 0: PRINT· keywords -
even before quotation marks.•
820 PRINT TAB(S)•Only line numbers between 1 and 200 may be used.•
830 GOSUB 110
840 PRINT TAB<8~•To edit any line, just re-enter that line number •
850 PRINT TAB(8)•and the new line.•
860 PRINT
870 PRINT TAB(8)•0ther BASICA keywords not translated may be •
880 PRINT TAB(8)•incorporated into the program if they adhere to
890 PRINT TAB(8)•correct syntax. These include :•
900 PRINT TAB(8)•ELSE,INSTR,RIGHT$,LEFT$, as well as functions,•
910 PRINT TAB(8)•(INT,RND), operators (AND,OR).•
920 PRINT STRING$(50, 32)J
930 PRINT TAB(8)•If you have any questions type either 'HELP' or•
940 PRINT TAB(8)• 1AYUDA'. You will be shown a list like theses•
950 GOSUB 110
960 GOSUB 1120

I

970 PRINT TAB(8)•A typical program might look something like this : •
980 PRINT STRING$(50, 32)J
990 PRINT TAB(l41•10 ENTRE •;Cl$1•c0Mo SE LLAMA•1cl$1•1A$•
1000 PRINT TAB(l4)•20 SI A$=•1Cl$1•JosE•1cl$;• VAYA A 40•
1010 PRINT TAB(l4)•30 CESE•
1020 PRINT TAB(l4)•4o IMPRIMA •;cl$;•HoLA JOSE";Cl$•
1030 PRINT TA8(14)•so FIN"
1040 GOSOB 110
1050 IF INKEY$ =•• THEN 1050
1060 FLAG=O
1070 CLS
1080 GOTO 1330
1090 GOSUB 1110
1100 GOTO 1330
1110 CLS
1120 PRINT • Los Mandados:•
1130 PRINT
1140 PRINT •Ahorre (ahorrar una programma al disk)•
1150 PRINT "CARGE (cargar una programma de disk)•
1160 PRINT "ALisTE· (Alistar una programma en espanol>•
1170 PRINT •LIST <Alistar una programma en ingles)•
1180 PRINT "AYUDA,CORRE,NUEVO BORRE"
1190 PRINT '
1200 PRINT •tas declaraciones:·
1210 PRINT
1220 PRINT "IF=SI RUN=CORRA
1230 PRINT •END=FIN LIST=ALISTE
1240 PRINT •READ=LLEVE TBEN=LUEGO
1250 PRINT •oATA=DATOS GOTO::zVAYA A
1260 PRINT •FOR=PARA STOP=CESE
1270 PRINT •oN=EN STEP=GRADA
1280 PRINT •REM=NOTA LET=HACE
1290 GOSUB 110
1300 IF FLAG-1 THEN RETURN

INPUT=ENTRE" .
PRINT=IMPRIMA•
NEXT=PROXIMO"
RESTORE=RESTAURE•
CLS=BORRE"
GOSUB=VAYA sue•
RETURN=RETORNE"

Translator

1310 CLS
1320 RETURN

1325 • *** Get Keyboard Input ***
1330 PRINT">• I
1340 Pl•O
1350 LINE INPUT A$
1360 TEMP$=="•
1370 FOR Nl=l TO LEN(A$)
1380 T$=MID$ (A$, Nl 11)
1390 T=ASC (T$)
1400 IF T>96 AND T<l23 THEN T=T-32
1410 TEMP$=TEMP$ +CHR$ (T)
1420 NEXT Nl
1430 A$=TEMP$
1440 COMMAND.LINE$==LEFT$ CA$, 4)

1445 • *** Check for Command ***
1450 IF COMMAND.LINE$=•AL1s• THEN 1880
1460 IF COMMAND.LINE$=•AHOR" THEN 2040
1470 IF COMMAND.LINE$=•CARG" THEN 2170
1480 IF COMMAND.LINE$=•LIST" THEN 2300
1490 IF COMMAND.LINE$=•AYUD" THEN GOSUB 1110: GOTO 1330
1500 IF COMMAND.LINE$="HELP• THEN GOSUB 1110: GOTO 1330
1510 IF COMMAND.LINE$=•coRR• THEN 280
1520 IF COMMAND.LINE$="NUEV• THEN 280
1530 IF COMMAND.LINE$•"BORR• THEN CLS: GOTO 1330
1540 IG$=A$
1550 A$,..A$+CHR$ (32)
1560 B=INSTR(A$, Cl$)
1570 C=INSTR (A$, C2 $)
1580 IF C=O AND B=O THEN 1660
1590 IF B=O THEN 1650
1600 W$=MID$ (A$, B+l)
1610 Pl•INSTR(W$, Cl$)+B
1620 IF C<B THEN 1650
1630 IF C>Pl THEN 1650
1640 GOTO 1660 , ' • O
1650 IF C<>O THEN PRINT• SOLAMENTE UNA DECLARACION CADA LINEA : GOTO 133
1660 T$•••

1665 ' *** Check for line number ***
1670 : FOR T=l TO LEN(A$)
1680 I IF MID$(A$, T, l)•CHR$C32)THE:': 1710
1690 : T$=T$+MID$ (A$, T, l)
1700 I NEXT T
1710 LI•VAL (T$) QTJE • L2: GOTO
1720 IP LI>L2 THEN PRINT•coMENCE LA LINEA CON UN NUMERO MENOS '
1330 330
1730 IF LI<l THEN PRINT"COMENCE LA LINEA CON UN NUMERO• a GOTO l

1735 ' *** Look for Spanish keywords ***
1740 a FOR G=l TO NUMBER.WORDS

91

Program Your IBl'tf PC to Program ItselfI

92

1750 t P.INSTR(A$, SPAN$(G))
1760 t IF P>O THEN 1820
1770 t NEXT G
1780 E2$(LI)•IG$
1790 CP$(LI)sA$
1800 IF LI>BIGB.NUMBER THEN HIGH.NUMBERsLI
1810 GOTO 1330
1820 IF P<B THEN 1850
1830 IF P>Pl THEN 1850
1840 GOTO 1770
1850 L•LEN(E$(G))

1855 1 *** Make Substitution ***
1860 MID$(A$, P, L)•E$(G)
1870 GOTO 1770

1875 ' *** List Spanish Program Lines ***
1880 V=INSTR(A$, CJ$)
1890 IF V•O THEN 1950
1900 V2$•MID$(A$, V)
1910 V3•VAL(V2$)
1920 IF VJ>O THEN PRINT E2$(V3) ELSE 1950
1930 PRINT
1940 GOTO 1330
1950 CU=-l
1960 CLS
1970 I FOR N=l TO HIGH.NUMBER
1980 I IF E2$(N)••• OR E2$(N)••,• THEN 2020
1990 I PRINT E2$(N)
2000 I CU=CU+l
2010 I IF CU/14•INT(CU/14)THEN PRINT•EMPOJE < ENTER >•11 INPUT E$
2020 I NEXT N
2030 GOTO 1330

2035 ' *** Save Programs to Disk ***

2040 INPUT•NOMBRE DE LA PROGRAMA EN ESPANOL a• JNE$
2050 INPUT•NOMBRE DE LA PROGRAMA EN INGLES 1•1NI$
2060 OPEN•o•,1, NE$
2070 I FOR N=l TO 200
2080 I PRINTfl, E2$(N)J CHR$(13)J
2090 1 NEXT N
2100 CLOSE l
2110 OPEN•o•,1, NI$
2120 I FOR N•l TO 200
22130 t PRINTfl, CP$(N)J CHR$(13)J
140 I NEXT N

2150 CLOSE l
2160 GOTO 1330

2165 ' *** Load Programs From Disk ***

~~~~ ~=::::g::~ g: ~ PROGRAMA EN ESPANOL t • J F$ 
2190 OPEN•1•,1, F$ PROGRAMA EN INGLES 1•1Fl$ 

2200 1 FOR N=l TO 200 
2210 1 LINE INPUT fl, E2$(N) 
2220 1 NEXT N 
2230 CLOSE 1 
22400PEN•I",l, F3$ 
2250 s FOR N=l TO 200 
2260 s LINE INPUT fl, CP$(N) 
2270 1 NEXT N 
2280 CLOSE l 
2290 GOTO 1330 
2300 CU•l 

2305 1 *** List Programs *** 
2310 1 FOR N=l TO HIGH.NUMBER 
2320 1 IF CP$(N)<>• 11 THEN PRINT CP$(N): CU=CU+l 

Translator 

2330 1 IF CU/l4•1NT(CU/14)THEN PRINT•EMPUJE < ENTER >•11 INPUT E$ 
2340 s NEXT N 
2350 PRINT 
2360 GOTO 1330 
2370 CLOSE: END 

93 

t 

t' 
l 
l 

l 
I 

I 
~ 

I 
f 
~ 
i 
f .. 

.t 

d 



Chapter 13 

10 SCllEE5 o.o.o 
2on1 on 
30 COLOR 7.0 
40 LOCATE 10.5 
50 DD' SEG=O 

A 
\;;,/ 

• • 

Indexer 
Are you using your IBM PC or PCjr to write a term 
paper, article, or book? If so, you may need to 
prepare an index or glossary for your project. Or, 
are you curious about the scope of your vocabulary? 
These two programs, Index 1 and Index 2, will 
make your work quite a bit easier. Index 1 will take 
most reasonably-sized documents-text or program 
files both-and throw out the punctuation marks 
and numbers. DOS will SORT this list for you, and 
then Index 2 will go through it and discard 
d~licates and many plurals of a root word. You 
~d up with an alphabetized listing only of the 
umque words in your document. 

I rec.ently wrote these programs to help in the 
~tion of a book I was working on. I ran about 
Fdooo words through them and ended up with a 

of a few thousand unique words that I further 
~ndensed to form my glossary and index. The ln
exe! programs will also work with your shorter 
: items, such as letters, short stories, or school 
~ents. Odd punctuation won't throw it and 

cap1ta!izea , words are automatically converted to 

lowercase. You can even use the program on your 
BASIC programs to find out what keywords were 
used. Line numbers and other nonalpha characters 
will be discarded, as well. 

INDEX 1: PREPARING 
THE FILE FOR SORTING 

Indexer might be a candidate for the misnomer 
of the year award. But then, Lotus 1-2-3 doesn't 
have anything to do with yoga, either. The BASIC 
programs themselves don't really index or sort 
anything, although that is the end result. l_nstead, 
they serve as a preliminary "filter" to strip off un
wanted characters and numbers, in effect deciding 
what is a word and what isn't. The legal words are 
written to disk, where DOS's SORT filter can rear-
range the list in alphabetical order. . 

Becauseof thesizeofthefilesprocessedbythis 
program, I didn't bother with including a BASIC 
sort routine,which would be much too slow. T?e. 
program could take hours to sort such a h~e list 
in memory using only Basic techniques. Smee In- · 

95 



Program Your IBM PC to Program ItseUI Indexer 

a can file letting pc result taken very 
about candidate filename line pcjr root takes view 
accomplished capitalized files list perform routine temporarily vocabulary 
added chapter filter listing place run term wanted 
all character find lot plurals school text was 
allow characters first lowercase position scope than we 
alone check following machine preliminary search that well 
alphabetical chr follows made preparation see the were 
alphabetized code for make prepare separate them what 
also comes form mandatory process serve themselves when 
although command from many processed sets then where 
america compare furnished mark produced short these which 
amplitude computers further marks producing shorter they will 

an condensed glossary may program should this willing 

and conversion go million programs since thousand wind 

another converted goes minutes project size through with 
any curious gotten misnomer properly slow throw won 

anything deciding greater most punctuation so to word 
anyway different had much quite something too wordlist 

appeared discard has my ran sort two words 

are discarded have my doc read sorted type work 

array disk help my list reads space under working 

article do i need really spaces unique would 

·as ' document ibm stored unwanted wrd 
'· new rearrange 

ascii documents if newly reasonably stories up write 

assignments does in next recently string uppercase written 

at dos including non recommend strip us wrote 

automatically down index note redefined such use year 

award drive indexer nothing remainder symbol used yet 

awhile duplicate individual numbers remove syntax users you 

. back duplicates initial odd requires system using your 

basic each instead of reside take variable 
·be easier instr off 
because effect into on The program Index 1 reads in each line of ~~ur 
been else is once dexer requires a disk drive anyway, I figured most 
beginning end it one users would be willing to learn to use DOS's built- file, in line 260, and sets the initial search position 

between· ended·- items only in sort. The DOS sort routine is fast and efficient. for spaces p at one. Then INSTR is used to find 
bit'; ends keywords coops It requires, however, that the indexing process take the first ~c~ences of a space, which is used by 
book ; enter language or place in two parts. First the file is prepared for this program to mark the ends of words. A check 
both entering last order sorting, DOS sorts it, and then the sorted file is ex- is made to remove any pwictuation marks that may 
bother equivalent learn other amined for unique words. have been "attached" to the ends of our w~rd~. 
broken The newly fowid word is stored temporarily tn 

. built 
. even left our Although the machine language sort of your 
fast legal:· out . bl WRD$ and A$ is redefined as the re-

by few paper 
word ~Y by DOS is very fast, parsing the docu- vana e , $ WRD$ . 

called figured 
less ment mto individual words takes a few minutes. I'd mainder of the string following WRD · 

18 

: ·, ... .. letters parsing recommend letting the program run for awhile as then converted to all lowerca~e l~~~s, to .:111~~ 
Ag. 13-1• The sorted list of word; In this chapter. you do something else. us to sort words like "Amenca, nos. 



Program Your IBl\f PC to Program Itself! 

"amplitude" properly. Computers see uppercase 
and lowercase letters as different, so that a follows 
z. The conversion is accomplished in a routine 
beginning at line 350, where the ASCII code for 
each character is figured. If it is greater than 
CHR$(64) and less than CHR$(92) then 32 is added 
to the character, producing the lowercase 
equivalent. All other characters are left alone. 

The newly lowercased WRD$ is written to disk 
in line 450, and the program goes back to process 
the next word. 

When your file has been broken down into sep
arate words by Index 1, you can then go to DOS, 
using the SYSTEM command, and perform the 
SORT. 

THE DOS SORT 
SORT.EXE, furnished with DOS, should reside 

on your disk. You enter the file name your word 
list is stored under and then a new file name for 
the sorted word list, using the following syntax: 

SORT <filetosort >sortedf ile 

98 

Listing 13a: The Index 1 Program 

10 I ******************** 
20 I * * 
30 ' * Indexer Part One * 
40 * * 
50 ******************** 

55 ' *** Initialize *** 

60 SCREEN 0,0,0 
70 COLOR 7 ,O . 
80 KEY OFF 
90 ON KEY(l0) GOSUB 570 
100 KEY(l0) ON · 
110 CLS 
120 LOCATE 25,30 
130 COLOR 16,7 . 
140 PRINT" Bit FlO to abort. • 1 

Note that the space between the file name-to
sort and the greater than symbol ( >) is mandatory, 
If you had run Index 1 on MYDOC.TXT and pr0o 
duced MYLIST. TXT, and wanted the sorted re
sult to go to a disk file called RESULT, you would 
enter: 

SORT <MYLIST.TXT >RESULT 

INDEX 2: PRODUCING THE FINAL LIST 
Once the sort has taken place, you can view the 

list by entering TYPE RESULT from DOS. Oops. 
A lot of duplicate words in the file? A million A's? 
A thousand occurrences of the? That's where Index 
2 comes in. This program does nothing more than 
read in your sorted RESULT wordlist and compare 
each word with the last one. Only if they are dif· 
ferent will the program write the word out to yet 
another disk file. When this is accomplished, you 
will have a sorted, alphabetized list of unique words 
that appeared in your document. 

A sorted list of the words in this chapter, pr0o 
cessed by Indexer is shown in Fig. 13-1. 

145 , *** Enter filenames *** 
150 COLOR 7 10 
160 LOCATE 2, 1 
170 CU=O 
180 INPUT" ENTER FILENAME TO PROCESS : "1F$ 
190 INPUT"ENTER OUTPUT FILENAME" 1Fl$ 
200 OPEN "I• 11, F$ 
210 OPEN "0" 121 Fl$ 
220 LOCATE 25110 
230 COLOR 161 7 
240 PRINT " READING/WRITING FILE "I 
250 COLOR 7 I 0 

255 ' *** Read in a line *** 
260 LINE INPUTtl ,A$ 
270 P=l 
280 R=INSTRCP ,A$ ,CHR$ ( 32)) 
290 IF R=O THEN GOTO 4 8 0 
300 WRD$=LEFT$ (A$ ,R-1) 
310 A$=MID$ (A$ ,R+l, 255) 
320 IF WRD$=" • THEN GOTO 270 
330 WRD$=T2$+WRD$ 
340 T2$="" 

345 ' *** Change to lowercase *** 
350 FOR N=l TO LEN(WRD$) 
360 T$=MID$ ( WRD$ 1 N 1 l) 
370 T=ASC(T$) 
380 IF T>64 AND T<92 THEN T=T+32 
390 IF T<97 OR T>l22 THEN GOTO 420 
400 TEMP$=TEMP$+CHR$ (T) 
410 NEXT N 
420 WRD$=TEMP$ 
430 LOCATE 25,10 
440 TEMP$=•• 

445 ' *** Print word to disk *** 
450 PRINT i2 1 WRD$ 
460 CU=CU+l 
470 GOTO 270 
480 T2$=A$ 
490 IF EOF(l) GOTO 510 
SOO GOTO 260 

Indexer 

99 



Program Your IBM PC to Program Itselfl 

SlO CLOSE 

SlS ' *** Show results *** 

S20 LOCATE 2S,10 
S30 PRINT SPACE$(40)J 
S40 LOCATE 2S,10 
S50 PRINT"FINISHED -- •1 
S60 PRINT CUJ" words found."1 
S70 CLOSE 
S80 END 

Listing 13b: The Index 2 Program 

10 ' ******************** 
20 ' * * 
30 ' * Indexer Part Two * 
40 ' * * 
SQ I *******~************ 

SS ' *** Initialize *** 

60 SCREEN 0,0,0 
70 COLOR 7,0 
80 KEY OFF 
90 ON KEY(l0) GOSUB 390 
100 KEYClO) ON 
110 CLS 
120 LOCATE 25,30 
130 COLOR 16,7 
140 PRINT" Hit FlO to abort •• , 

145 ' *** Enter filenames *** 

lSO COLOR 7,0 
160 LOCATE 4,1 
170 CU=O 
180 INPUT"ENTER FILENAME TO PROCESS ·"·F$ 
190 INPUT"ENTER OUTPUT FILENAME"•Fl$• 1 

200 OPEN "I",l,F$ I 

210 OPEN •o•,2,Fl$ 
220 LOCATE 2S,10 
230 COLOR 16,7 
240 PRINT • READING/WRITING FILE • •· 
2SO COLOR 7,0 • 1 

100 

255 • *** Read a word *** 

260 LINE INPUTil,A$ 
270 IF A$<>LAST$ GOTO 290 
280 GOTO 260 

285 ' *** Write Unique Word *** 

290 PRINT i2,A$ 
300 CU=CU+l 
310 LAST$=A$ 
320 IF EOF<l) GOTO 340 
330 GOTO 260 

335 ' *** Show Results *** 

340 LOCATE 25,10 
350 PRINT SPACE$ ( 4 0 ) J 
360 LOCATE 25, 10 
370 PRINT"FINISHED --- "1 
380 PRINT CUJ" unique words found.• 
390 CLOSE 
400 END 

Indexer 

101 



Chapter 14 

l 0 S<:BEEJI o.o.o 
20UY OF? 
socotoa 7.o 
40LOCATE10.5 
50 Dn' SEG-0 

A v 

• • 

Error Trapper 
Error Trapper is dedicated to all of you who have 
written programs containing a bug or two. Readers 
who have never made a mistake in their programs 
can skip this chapter and go on to the next. Okay, 
who's left? 

I'll address the rest of this chapter to the three 
or four reader& who occasionally make a mistake 
~their program.ming. Error Trapper is especially 
llllled at those of you who are very creative in their 
errors, and who trigger some the more obscure 
error messages, like: 

~LEXASCOMMAND: NOT RECOGNIZED. 
E RELACE SHELL 

Don't go scrambling for your manuals. I just · 
made that up. But do you understand all of the error 
messages that you DO see? This is quite a long 
program-more than 300 lines-but you only have 
~type in Error Trapper once. Then you can use 
ttto teach new programmers or to avoid having to 
reach for the BASIC manual every time an error 
l>:Curs during program writing. 

Our handy Basic interpreters are nice enough 
to point errors out to us during runtime. It would 
have been nice to have the syntax errors, at least, 
brought to our attention when the program line was 
first entered. But, no, the computer is not that 
courteous. (Some computers actually do this, 
though.) Instead, the IBM PC reserves judgement 
until we actually try to run the program. 

Few amateur programs and darned few profes
sional BASIC programs take advantage of the error 
trapping possibilities of the IBM PC. I haven't used 
ON ERROR much in this book. Instead, I have tried 
to anticipate what errors might be made and pre
vent them where possible. Many programs won't 
accept improper input, or prompt you for the type 
of information you should enter next. This concept 
has been carried to extremes in Music Writer, in 
Chapter 19. · 

Sometimes an unanticipated error takes place. 
Usually this will be in a poorly debugged pro~ 
that does not have sufficient error traps built m. 
Often the errors will occur during program debug-
ging itself. 

103 



Program Your IBM PC to Program Itself! 

Ordinarily when an error takes place, the com· 
puter will stop the program at that point and de
liver a one-line message outlining the error, such 
as "NEXT without FOR.'' You can, however, use 
the ON ERROR interrupt to send the program on 
to a special error trapping routine. If, say, the error 
is "File not Found," your program can display a 
message like "Insert the Automatic Programmer 
Disk in Drive B, and press ENTER." That way, 
the user is not dumped out of the program into 
BASIC without a hint of what to do next. 

The PC is nice enough not only to tell us that 
there is an error, but also to point out exactly what 
type of error has been made. A clever error code 
number, which can be manipulated by the program, 
is supplied. In many cases, a routine, like the one 
described above, could be written to recover from 
the error. Or, in other cases, the error number could 
be used to supply the operator with some hint of 
what he or she has done wrong. 

For another example, you could supply a 
friendly prompt on the order of "Program tried to 
divide by zero. Are you sure all the amounts you 
entered are correct?" would be nice. Admittedly, 
many programmer's don't understand enough 
about errors to do anything about them. 

ERROR TRAPPER MESSAGES 
That's where Error Trapper comes in. BASIC 

does provide nice long error messages. Some of 
the more esoteric error messages, however, may 
puzzle the best of us. Do you really know what sort 
of mis~e will trigger an "lliegal Direct" message? 
~pro~ when appended to your own pro

gram., will spell it out for you. It provides REALLY 
long error messages. Instead of just telling you how 
you goofed, it will suggest situations that might 
have produced the error and places to check for the 
bug. . 

Fo~ example, if you see "Out of Data," you 
kno":, m fact, that the computer would like more 
data items. ~rror Trapper suggests that perhaps 
several data items were left out by mistake, or that 

104 

the FOR-NEXT loop that reads the data is too 
large. 

"Illegal Function Call" suggests that the pro
. grammer list the off ending line, and print out from 
command mode some of the values of the variables. 

THE INTERRUPT ROUTINE 
Little understood is how the IBM PC manages 

to do something about errors. The secret is in line 
10070, which is an ON ERROR GOTO ••• com· 
mand that summons the computer's interrupt 
routine. Interrupts, as you have seen, are different 
than normal statements. If a program line says IF 
INKEY$ .. " " GOTO, it will act on that only at the 
exact moment that the line is interpreted by Basic. 
In order to make INKEY$ work, the program has 
to loop back, over and over, until something 
happens. 

Once ON ERROR has been activated, however, 
the computer can go on to the other things. The 
program can perform all sorts of different functions, 
and the interrupt routine will remain dormant ... 
until an error occurs. Then it will obey the com
mand and send control to the line previously 
specified. 

You can't even tum the interrupt routine off 
by exiting the program. Try this: run Error TraP" 
per, and press break at some point. Then, trigger 
an error by typing in a syntax error or some other 
goof from command mode. Oops! The program is 
running again, and you are at line 10080. You didn't 
even type RUN. That is the interrupt routine at 
work. 

Once an error has taken place, Error Trapper 
looks to see what kind of error it is. An error 
deposits a value in the reserved variable ERR. !he 
same error always produces the same umq~e 
number. So, I use that number in this program m 
an ON •• GOSUB line that directs control to the 
appropriate error message. In a real program, ~u 
might substitute some type of error trap for e 
message. The trap might be a routine that corrects 
the error. 

For example, if the error were "File Not 

Error Trapper 

F d " you might write a routine that asks the 
oun ~check the file name or deposit the correct 

: in the drive. Then it would ask again for ~he 
file name. Using RESUME, followed b~ a line 
Jllllilber, control can be returned to the main body 
of the program. 

If you append Error Trapper to your own pro
grams, you will want to move the early parts of this 
program, such as the ON ERROR line,' and the 
DIMension statement, as well as the READ loop, 
earlier in the program, so they will be activated 
BEFORE the main body of the program is run; 

Listing 14: The Error Trapper Program 

10000 I 

10010 I 

10020 I 

10030 I 

10040 I 

10050 I 

*************************** 

* * 
* Error Trapper * 

* * *************************** 

10060 DIM ER ( 51> 
10070 DATA l,2,3,4,S,6,7,8,9,10,ll,12,13,14,15,16,17,18,19 
10080 DATA 20, 22, 23, 24, 25, 26, 27 ,29, 30, 50 ,51,52,53 ,54,55 ,57 ,58 
10090 DATA 61,62,63,64,66,67,68,69, 70, 71, 72, 73, 74,75,76 
10100 FOR N=l TO 51 
10110 READ ER(N) 
10120 NEXT N 
10130 CLS: PRINT 
10140 ON ERROR GOTO 10160 
10150 GOTO 10150 1 ***·BRANCH TO YOUR PROGRAM *** 
10160 FOR N=l TO 51 . 
10170 IF ER(N)=ERR THEN EC=N:GOTO 10210 
10180 NEXT N 
10190 PRINT "Unprintable error" 
10200 RESUME 
10210 CLS . ·. 
10220 ON EC GOSUB 10240, 10300, 10340 ,10400 ,10460 ,10560 ,10640 

,10110,1osoo,10900,11000,11010,11100,11160,11240 
,11310,11370,11420,11480,11510,11550,11610,11670, 
11740,11760,11810,11860,11900,11920,ll950 

10230 ON EC-30 GOSUB ll980,12050,12090,12160,12220,l2250, 
12310,12340,12420,12450,12520,12590,12630, 
12660,12780,12810,12840,12890,12920,12960,12990 

10240 PRINT "Next without For• in FOR first" 
10250 PRINT:PRINT"Program got to NEXT withoutd7~count~~pe9'GOTO from" 
10260 PRINT"Check for incorrect GOTO. Also, 1 you 
10270 PRINT"COMMAND mode?" 
10280 PRINT .. 
10290 GOTO 13020 . 
10300 PRINT"Syntax error• rentheses or quotes• 
10310 PRINT "Check for misspelled keywords, missing pa · 
10320 PRINT "as well as bad punctuation." 
10330 GOTO 13020 
10340 PRINT "Return Without Gosub" tine improperly.• ' 
10350 PRINT "Program may have gotten to a subro1;1 to this subroutine" 
10360 PRINT "Check program lines immediately pno~ llow running" 
l0370 PRINT "to make sure program control does no a 
10380 PRINT "into the following module." 
10390 GOTO 13020 

105 



Program Your IBM PC to Program Itself! 

10400 PRINT •out of Data• 
10410 PRINT •program was asked to Read more data items than were• 
10420 PRINT •available. Check Data lines to be sure that none• 
10430 PRINT •were left out by mistake. FOR-NEXT loop may also• 
10440 PRINT •be too large for number of items in Data.• 
10450 GOTO 13020 . 
10460 PRINT •Illegal Function Call~ 
10470 PRINT •Program tried to perform an operation using an illegal• 
10480 PRINT •parameter. Print the values of the variables in the• 
10490 PRINT •program line. One will probably be a value that is • 
10500 PRINT •unsuited for one of the functions of that line.• 
10510 PRINT •For example, you might have PEEK(N) in the line, and• 
10520 PRINT •discover than N equals 70,000. Or, in the case of• 
10530 PRINT •PRINT CHR$(N) that, through some error in the program,• 
10540 PRINT •N equals 256, or a larger number.• 
10550 GOTO 13020 
10560 PRINT •overflow• 
10570 PRINT •A number is too large. If a variable is an integer,• 
10580 PRINT •this will occur if the number is larger than 32767• 
10590 PRINT •single or double precision numbers can only be in the range• 
10600 PRINT •of about l.7E+ <or minus) 38. By changing a variable• 
10610 PRINT •from integer to single or double precision, most • 
10620 PRINT •overflow errors will be avoided.• 
10630 GOTO 13020 
10640 PRINT •out of Memory• 
10650 PRINT •Most likely, your program uses up too much memory • 
10660 PRINT •because of very large arrays. Cut down on array size• 
10670 PRINT •if possible. Improperly nested branching routines• 
10680 PRINT •c10 GOSUB 10, in the worst possible case) can also• 
10690 PRINT •cause this, but rarely.• 
10700 GOTO 13020 
10710 PRINT •undefined line• 
10720 PRINT •You typed a GOTO or GOSUB line, without entering • 
10730 PRINT•the line where control was directed. or, in editing,• 
10740 PRINT •you killed a program section without the corresponding• 
10750 PRINT :line which called that section. It is a good idea• 
10760 PRINT to use a cross-reference utility to find out if a• 
10770 PRINT• program line is called from elsewhere in a program• 
10780 PRINT •before killing it.• 
10790 GOTO 13020 
10800 PRINT •subscript Out of Range• 
10810 PRINT •Program tried to use an array element larger than was• 
10820 PRINT •oIMensioned. Print out current value of the subscript• 
10830 PRINT :in the affected program line. If it is 11, you may• 
10840 PRINT .have forgotten to DIMension that array, or you have• 
10850 PRINT spelled the array name differently in the program line.• 
10860 PRINT •For examples• 
10870 PRINT •10 DIM ST$(20)• 
10880 PRINT •20 S2$(12)•A$• 
10890 GOTO 13020 
10900 PRINT•ouplicate Definition• 
10910 PRINT •Redimensioned Array• · ~~;;~ ~=~=i =~~ace DIM statements at beginning of program, where• 
10940 PRINT •Ifey are not likely_ to be encountered more than once.• 
109 • a program will be repeated, use the RUN command• 
109~~ ~=~=i ~~fmake sure the GOTO directs control AFTER the DIM statement.• 

an array is being DIMensioned with a variable,• 

Error Trapper 

970 
PRINT •(as in DIM A$ <N> >, make sure that the variable has been• 

i~980 PRINT •assigned a value earlier in the program• 
10990 GOTO 13020 • 
11000 PRINT•oivision by Zero 
11010 

PRINT •program error has produced a zero value in a variable• 

1020 
PRINT•that is used in a division operation. Check variable• i103o PRINT•to make sure it is not spelled incorrectly or that the• 

ll040 PRINT•wrong variable is not being use~. Find out why it is• 
11050 PRINT"zero when a value was expected. 
11060 GOTO 13020 
ll070 PRINT"Illegal direct• 
ll080 PRINT •The INPUT command cannot be used as a direct command." 
11090 GOTO 13020 
lllOO PRINT"Type Mismatch• . • 
l1110 PRINT •program tried to assign a string value to a numeric 
lll20 PRINT •variable or vice versa. For example: A$=~, or A=CHR$CN!·" 
lll30 PRINT •In most cases, these are caused by forgetting to include 
lll40 PRINT •the $ in a string variable or array.• 
ll150 GOTO 13020 
ll160 PRINT •out of String Space• 11 
ll170 PRINT"Unlike some other BASICS, IBM BASIC allocates the 
mso PRINT"Needed memory for strings dynamically. If you see" 
lll90 PRINT"this message, then your string variables caused BASIC" 11 

11200 PRINT•to exceed the amount of memory left, even after st7in2 
11210 PRINT•garbage ·collection. Look for ways to reduce the size 
11220 PRINT" of your program.• 
11230 GOTO 13020 
11240 PRINT" String Too Long• b 255 b tes" 
11250 PRINT"String variables and array elements can only e 11 Y 
11260 PRINT •long. Take string variables in pro~ram line, and 11 

11270 PRINT •find length by typing PRINT LENCvariable$) in co~nd 
11280 PRINT •mode. The find why attempt was made to make this 
11290 PRINT •string that long.• 
11300 GOTO 13020 
11310 PRINT •string Formula Too Complex• 
11320 PRINT •Avoid such complex formulae ass• NlA$l 
11330 PRINT• A$=(LEFT$(MID$(A$,INSTR(B$,C$),LEN(A$))-l,~ LE You will• 
11340 PRINT •areak operations down into seveiralhcom~o~~n p~;ces anyway.• 
11350 PRINT •Never get all the parentheses n t e rig ' 
11360 GOTO 13020 
11370 PRINT •can't Continue• d d d or • 
11380 PRINT •Either you typed CONT after progra~. ha t~~ ~r~gram>. • 
11390 PRINT •a program line was edited (thus en ing 
11400 PRINT •You must start the RUN over•• 
11410 GOTO 13020 
11420 PRINT"Undefined User Function• h s not• 
11430 PRINT•You tried to call a DEF FN function that a sure that" 
11440 PRINT"been defined. Check your spelliing t~l:~k~he same as• 
11450 PRINT•the function you have defined s spe 
11460 PRINT" the one you are calling•• 
11470 GOTO 13020 
11480 PRINT •No Resume• 
11490 PRINT •Program ended during error trapping•• 
11500 GOTO 13020 · 
11510 PRINT•Resume without Error• 
11520 PRINT "You forgot, deleted, or 
11530 PRINT •oN ERROR GOTO message. 

• bypassed the necessary • 
Place early in program. 

107 



11540 GOTO 13020 _ 
11550 PRINT"Missing Operand• 
11560 PRINT "Program neglected to include one of the necessary operands.• 
11570 PRINT •Examplesa• 
11580 PRINT "A$=LEFT$(A$)" 
11590 PRINT "POKE 28513 • 
11600 GOTO 13020 
11610 PRINT•Line buffer overflow• 
11620 PRINT•A line can only be 255 characters. You tried• 
11630 PRINT"to enter one longer than that. Try using 
11640 PRINT•multiple statements on different lines. Reduce• 
11650 PRINT•the size of your variable names.• 
11660 GOTO 13020 
11670 PRINT•Device timeout• 
11680 PRINT"BASIC will only wait for input from a device, such• 
11690 PRINT•as the Asynchronous Adapter for a fixed period of• 
11700 PRINT•time. If no input is received in that span, you• 
11710 PRINT"will receive this error message. If using COM,• 
11720 PRINT•check your cables. Try again.• 
11730 GOTO 13020 
11740 PRINT.Device Fault• 
11750 GOTO 11680 
11760 PRINT.FOR without NEXT· 
11770 PRINT"You will only see this error message if a• 
11780 PRINT•program ends with BASIC in the middle of a• 
11790 PRINT.FOR-NEXT loop. This may or may not be a problem.• 
11800 GOTO 13020 
11810 PRINT•out of paper• 
11820 PRINT•Your printer has sent a signal to your computer indicating it is" 
11830 PRINT•out of paper. If you receive this message and there• 
11840 PRINT•is paper in your printer, ch0 ck for hardware fault.• 
11850 GOTO 13020 
11860 PRINT.WHILE without WEND· 
11870 PRINT.Check for improper branching within your program• 
11880 PRINT•loop improperly.• 
11890 GOTO 13020 
11900 PRINT.WEND without WHILE· 
11910 GOTO 11870 
11920 PRINT.Field Overflow• 
11930 PRINT •More than 255 bytes were allocated to a random-access buffer.• 
11940 GOTO 13020 
11950 PRINT•Internal error• 
11960 PRINT •whoops. Disk operating system goofed.• 
11970 GOTO 13020 
11980 PRINT •aad File Number• 
11990 PRINT •File buffer number that has not been assigned with an• 
12000 PRINT •OPEN statement was used. - Examplez• 
12010 PRINT •10 OPEN •;CHR$C34)1•0•1CHR$(34)J• 1 F$• 
12020 PRINT •20 PRINT f2,A$• 1 1 

12030 PRINT •Note that PRINT 11 should have been used instead.• 
12040 GOTO 13020 
12050 PRINT.File Not Pound• 
12060 PRINT •File by that name not on disks currently in drive(s).• 
12070 PRINT •or, you spelled filename wrong • 
12080 GOTO 13020 • 
12090 PRINT•Bad File Mode• 
12100 PRINT •You tried to write to a buffer that had been opened for• 

108 

Error Trapper 

•i put or vice versa. Example:• 
12110 ~:~:; • 1~ OPEN •;cHRSC34>;•o•;cHR$C34>;•,1,Fs• 
1m~ PRINT •20 PRINT 11,As· • buo PRINT •change the o to I 

12150 GOTO T~~~f ~ already open" 
12160 P~~:T•An OPEN statement was encountered for a sequential• 
12170 P •file that was already open. Or, you tried to kill an• 
12180 ~:~:i•open file. Look for improper GOTOs or GOSUB! that would• 
m~~ PRINT"send the program back to the OPEN statement. 
12210 GOTO 13020 • 
12220 PRINT.Disk I/0 error 
12230 PRINT •oOOPSl Another computer error." 
12240 GOTO 13020 i t w 

12250 PRINT.File already ex s s. h 
• ill onl see this message if you are using t e• 

1122226700 PPRRIINNTT·~~ w command~ and the name you specify matches a filename• 
d th disk KILL the old file if you• 

12280 PRINT"already being use on e • Or use a different filename.• 
12290 PRINT.do not want it, and try again. 
12300 GOTO 13020 
12310 PRINT.Disk Full• • 
12320 PRINT •insert new disk, or kill files. 
12330 GOTO 13020 
12340 PRINT"Input Past End• f disk than was• 
12350 PRINT •program tried to load mor~ d~~~e r~~ FOR-NEXT loop that• 
12360 PRINT •Available. Check for emp Y l. ' hat row adding• 
12370 PRINT •is too large. With sequential file\t tgcan 1check• 
12380 PRINT • an IF EOFCfile buffer) GOTO xxx dsta ~e~ to the next• 
12390 PRINT •for the end of the file, and• sen con ro 
12400 PRINT •module in an orderly manner• 
12410 GOTO 13020 
12420 PRINT•Bad Record Number• 1 340• 
12430 PRINT •Record number in a PUT statement larger than ' 
12440 GOTO 13020 
12450 PRINT•Bad Filename• form to all rules for naming• 
12460 PRINT •Filename not legal. Must con .. 
12470 PRINT •programs or files in Disk Basic. • 
12480 PRINT •If variable being used for file name bein assigned.• 
12490 PRINT •check to make sure illegal vahlu~ ~~; name\egality.• 
12500 PRINT •Error traps can be made to c ec 
12510 GOTO 13020 
12520 PRINT.Direct Statement In File• disk file that is not• 
12530 PRINT •You cannot load, run, or merge ah n attempting to load• 
12540 PRINT •a Basic program. This occurs w e possibly an actual• 
12550 PRINT •a text file stored in ASCII form or~emoved from the• 
12560 PRINT •program that has had a line number 
12570 PRINT •beginning of the line.• 
12580 GOTO 13020 
12590 PRINT•Too Many Piles• space on your diskett:, or• 

Try new disk or name. 12600 PRINT •rhere is no more directory 
12610 PRINT•your file name is invalid. 
12620 GOTO 13020 
12630 PRINT"Device unavailable.• n printer on.• 
l i drive, door ope ' 
2640 PRINT"Check to see if disk is n 

12650 GOTO 13020 
12660 PRINT•communication buffer overfl.,w. • h d ta already in the• 
l2670 PRINT•Your program has not read all t e a 

109 



Program Your IBM PC to Program Itself! 

12680 PRINT•communications buffer before trying to load more to it.• 
12690 PRINT•You can RESUME at a point that will allow clearing the• 
12700 PRINT•buffer before trying to input additional data.• 
12710 PRINT" You can also enlarge the communications buffer by using• 
12720 PRINT •/c: when entering BASIC. Your program can also arrange• 
12730 PRINT •to exchange stop/start signals such as Control-S and Control-Q• 
12740 PRINT• with the other computer to keep the buffer from become too full. 
12750 PRINT• Or, try using a lower baud rate. BASIC can only handle 
information• 
12760 PRINT•so fast.• 
12770 GOTO 13020 
12780 PRINT"Disk Write Protected" 
12790 PRINT •write protect notch is covered. Or disk is in upside downt• 
12800 GOTO 13020 
12810 PRINT"Disk not ready• 
12820 PRINT•Drive door open, or no disk in drive.• 
12830 GOTO 13020 
12840 PRINT.Disk media error.• 
12850 PRINT•Your diskette may be bad. Copy any files• 
12860 PRINT•you can to a new disk. Try to reformat to• 
12870 PRINT•see if disk is still usable.• 
12880 GOTO 13020 
12890 PRINT"You tried to use an Advanced BASIC feature from• 
12900 PRINT.Disk Basic. Load proper BASIC, and reload program.• 
12910 GOTO 13020 
12920 PRINT•Rename across disks.• 
12930 PRINT•You tried to renama a file, but specified the" 
12940 PRINT•wrong disk. Try again.• 
12950 GOTO 13020 
12960 PRINT•Path/file access error.• 
12970 PRINT•You tried to use a path or filename to an inaccessible file.• 
12980 GOTO 13020 
12990 PRINT"Path not found.• 
13000 PRINT•Dos could not find the path you used. Try again.• 
13010 GOTO 13020 
13020 PRINT.This error occurred in line •iERL 
13030 RESUME 10140 

110 

Chapter 15 

1 O SCIEDI o.o.o 
2ont on 
SOCOLOB 7.0 
40LOCATE10.5 
50 DEF SEGaO 

A v 

• • 

Visual Maker 
1'oougb photographic in nature, conventional slide 
IOOws used in business presentations rely more on 
l!l!material, charts, and graphs than on actual pie· 
lorlalsubjects. Visual Maker is a program written 
It the IBM PC that allows designing a series of 
!!It and graphics "frames," specifying how long 
each should appear on the CRT screen, and assem· 
Oling them into a finished slide show. 

HOW TO DESIGN FRAMES 
Absolutely no user programming is required. 

The operator simply "draws" on the CRT screen, 
~the arrow keys for cursor control, and plac· 
Ilg alphanumeric characters and any type of 
~phic blocks wherever desired. Then, the Fl is 
lit, and that frame is stored to disk. Then a BASIC 
- that will display the frames as desired in 
lCOJnpleted, ready-to-run slide show is written. 

Visual Maker is similar in concept to Screen 
Emtor, which writes BASIC subroutines that repro
~-~esir~d instructional screens. In fact, .I us~d 
"-!ten Editor to write all the instructions m Vis· 

ual Maker. The idea is to allow the user to enter 
various parameters and then have the computer 
generate BASIC code automatically. 

you can use V 1SUa1 Maker in several :flexiole 
ways. It can be used to generate a slide show, s:art 
t finish Or you can create one frame at a tune 
t~ build ~ slide "library." Then individual frames 
can be renumbered appropriately and ~embled 
into a finished show. Thus, you may design :v~ 
dozen or several hundred frames that can e use 
and reused in multiple slide programs. !i =~ 
slide sequence program produced by Vis 

is pro~d~d in F~·~;eric key reproduces that 
Striking an P ch like a word process· 

symbol on the screen,.1?u an of the available 
ing program. In addition, y b bi++lnrr the 

. be summoned Y ·""'"6 

graphic characters can eric key. You get 
ESC key followed by an alphan~ ESC a second 
out of graphics mode by press 

time. . 'tten for Visual Maker is 
. The screen editor.~ a ·ven screen line 
a fairly simple one. Exiting from gi 

111 



10 CLS 
20 PRINT TAB(7)•This ls a sample frame produced by Visual Maker • 
30 PRINT TAB(7)•I am writing these directions on the screen of ; 
40 PRINT TAB(7)•my IBM PC. When I am finished, I will press • 
50 PRINT TAB(7)•Fl0, and this frame will be written to disk • 
60 PRINT • 
70 PRINT 
80 PRINT 
90 PRINT 
100 PRINT TAB(lO)•Graphicsc may also be inserted into the • 
110 PRINT TAB(lO)•frames, although, because my daisy-wheel • 
120 PRINT TAB(lO)•printer cannot reproduce graphics, I will • 
130 PRINT TAB(lO)•not use any in this sample frame • 
140 PRINT • 
150 PRINT TABClO)•------------------------------------------------- . 
160 PRINT TAB(lO>•+ In many cases, normal symbols can substitute + • 
170 PRINT TAB(lO>•+ for graphics anyway.... + • 
180 PRINT TAB(l0)•--------------------------190 PRINT ----------------------- • 
200 PRINT 
210 PRINT 
220 PRINT 
230 PRINT 
240 PRINT 
250 F::sTIMER+lO 
260 IF TIMER<F THEN GOTO 260 
270 CLS 
~;~ ~:i:i TABC2)•This is the second frame in the sample program. • 

300 PRINT 
310 PRINT 
320 PRINT 
330 PRINT 
340 PRINT TAB(S)•I intend' to have thl i 350 PRINT s d splayed for 10 seconds. • 
360 PRINT 
370 PRINT 
380 PRINT . 
390 PRINT 
400 PRINT 
410 PRINT 

. 420 PRINT 
430 PRINT 
440 PRINT 
450 PRINT 
460 PRINT 
470 PRINT 
480 PRINT 
490 PRINT 
500 PRINT 
510 FaTIMER+lO ·. . 
520 IF TIMER<P' THEN. GOTO. 520 
530 CLS 

Fig. 15:'1. Variables used In Visual Maker. 

112 

inowd only be done at a point in which a space 
, iJreadY exists, otherwise the character ~eft in the 
~position will be erased. Or, the line can be 

• inJsbed. The cursor will wrap around to the next. 
• me graphic blocks can be used to build c~i:ts, 
.. ppbs, and other material; When you are satisfied 

tith the screen design, hit Fl. 

DISPLAY TIME 
At this point, the program uses the SCREEN 

function to look at each position on the screen, 
blilding a line in a manner identical to the method 
isedin Screen Writer. The main change is that 

· each screen program line set is concluded with a 
ine that limits the amount of time that screen is 
msplayed. 

You will be asked how long you want the slide 
s.iown. That number, LENGTH$, is used to write 
a line that constructs a line that checks the value 
liTIMER during the display of the slide. As long 
1TIMER is less than F, which is its value when 
~ slide was first displayed plus the value of 
LENGTII$, the frame will continue to be displayed. 

TIMER, as you may know, keeps track of 
~seconds in 0.01 second increments. You can 
~this reversed variable in our own programs. A 
typical use is to get a random number to reseed the 
random number generator for games programs: 

100 RANDOMIZE TIMER 

Ustlng 15: The Visual Maker Program 

10 I 

20 I 

30 I 

40 I 

50 I 

60 I 

************************ 
* * 
* 
* 

Visual Maker * 
* ************************ 

65 ' *** Initialize *** 
70 DEPINT A-Y 
80 ROWz:l 1 COL•l 
90 tlBITE•219 

Y: ou can also use TIMER with an interrupt 
routme to send a program to a desired subroutine 
when a given number of seconds has elapsed. 

100 ON TIMER(60) GOSUB 200 
110 TIMER ON 
••• 
••• 
200 PRINT "One minute has passed!• 

This type of routine is valuable because our 
program can be doing other things while TIMER 
is ticking off. With Visual Maker, however, we 
don't want anything to happen other than the image 
to remain on the screen. So, the delay is something 
like this: 

100 INPUT "Enter number of 
seconds to delay •11 

110 F=TIMER+D 
120 PRINT"This is the image1• 
130 IF TIMER<F GOTO 130 
150 cts· 
160 PRINT "Image displayed for 

" • D • • seconds• I I 

That's roughly what's done for each frame pro
duced by Visual Maker, except that the value for 
D is entered once, and the program line built from 
thatinfonnation.Whentheslideshowisrun,each 
frame will be shown for the desired interval. When 
the specified time has elapsed, the screen is cleared, 
and the program goes on to the next frame. 

113 



Program Your IBM PC to Program Itself! 

100 DIM LN$(400) 
110 KEY OFF 
120 SCREEN 0,0,0 
130 COLOR 7,0 
140 ON KEYCl) GOSUB 1390 
150 ON KEY(l0) GOSUB 2120 
160 KEY(l0) ON 
170 ON KEY(ll) GOSUB 1330 
180 ON KEY(l2) GOSUB 1230 
190 ON KEY(l3) GOSUB 1180 
200 ON KEYC14) GOSUB 1280 
210 WIDE=80 
220 GOTO 250 
230 A$=INKEY$:IF A$=•• GOTO 230 
240 RETURN 
250 SP$=CHR$C32) 
260 CLS 
270 CU=l 
280 : FOR N8=1 TO 100 
290 : LN$CN8)=•• 
300 : NEXT NS 
310 LN=lO:IC=lO 
320 PRINT:PRINT:PRINT 
330 GOSUB 350 
340 GOTO 470 

345 ' *** Enter filename of program *** 

350 LINE INPUT•ENTER FILE NAME s •1F$ 
360 FOR N=l TO LEN(F$) 
370 T=ASC(MID$(F$,N,l)) 
380 IF T>96 AND T<l23 THEN MID$CF$,N,l)=CHR$(T-32) 
390 NEXT N 
400 IF LEN(F$)>12 THEN PRINT.File name too long1•1PRINT1 

GOTO 350 
410 S9=INSTR(F$,•.BAS•) 
420 IP LEN(LEFT$CF$,S9)))8 THEN PRINT.File name too 

longs•:PRINT:GOTO 350 
430 IP S9=0 THEN PRINT •MUST INCLUDE .BAS EXTENSIONl•aGOTO 350 
440 IF F$••• GOTO 350 
450 OPEN F$ FOR OUTPUT AS l 
460 RETURN 
470 CLS 
480 PRINT:PRINT 
490 PRINT TAB(ll)•********************•J 
500 COLOR 0,7 
510 PRINT • Visual Maker ., 
520 COLOR 7,0 
530 PRINT •*********************• * ., 5 4 0 PRINT TAB ( 11 ) • * * • 
550 PRINT TAB(ll)•* Use the cursor pad arrow keys to move around screen. * • 1 
560 PRINT TAB(ll)•• Press alphanumeric keys to type display. You may * .' 
570 PRINT TABCll>•• hit ESC, followed by a key to enter graphics mode. * • 1 
580 PRINT TAB<ll>•• In graphics, press any key other than arrow keys to * •' 
590 PRINT TAB<ll)•• leave a trail of that graphics character. Use arrow * •' 
600 PRINT TAB(ll)•• key to move without trail. Exit graphics mode by * .: 
610 PRINT TAB(ll)•• hitting ESC once again. 

114 

Visual Maker 

* •. l)•* I 

120 PRINT TAB< 11 ) .. Computer will BEEP when cursor reaches center of the * • 1 
630 PRINT TAB(~l) .. screen. Hit arrow keys once for each move1 do NOT : :1 
110 PRINT TT~~n>•* hold arrow key down. * .: 
150 PRINT • * I 

160 PRINT TAB(ll) •• p ess Fl to finish input. You will be asked how * •1 
110 PRINT TAB<l11 >,.* l~ng you want each slide to be displayed. . * •1 
180 PRINT TAB ( 1 · * • 1 

690 PRINT TAB(ll) ::**************************************************** ** • 1 
700 PRINT TAB ( 11 ) . 
710 PRINT TAB ( 26) • • J 
720 COLOR 16, 7 TO BEGIN • 
130 PRINT • -- HIT ANY KEY --
140 COLOR 7 r 0 
750 GOSOB 230 

755 ' *** Look for keyboard input *** 

760 KEY(ll) ON:KEY(l2) ON:KEYC13) ON:KEYC14) ON 
770 KEY(l) ON 
780 CLS 
790 GOSOB 230 
800 A$=INKEY$:IP A$=•• GOTO 800 
810 IP A$<>CHR$ ( 8) THEN GOTO 860 
820 COL=COL-l:IF COL<l THEN COL=l 
830 LOCATE ROW,COL:PRINT CHR$(32)J 
840 CO=O 
850 GOTO 910 2 O GOTO 920 
860 IP A$=CHR$ ( 27) AND FLAG2>0 THEN FLAG = : 
870 IP A$=CHR$ ( 2 7) THEN FLAG

2
=
4

lT: ~~~O R~~~ROW+l: COL=l 
880 IP A$=CHR$ (13) AND ROW< 

:~~ ~"~~~!t> THEN CU=CU+l28:FLAG=O:FLAG2=CU 
910 IP COL=WIDE/2 THEN BEEP 
!20 LOCATE 25,l 
930 COLOR 0 , 7 
940 PRINT •column l • J 
!SO COLOR 7 , 0 
960 PRINT COLJ 
!70 LOCATE 25,15 
980 COLOR 0 , 7 
990 PRINT •Row l • J 
1000 COLOR 7 I 0 
1010 PRINT ROW J 
1020 LOCATE 25 I 25 
1030 COLOR 0 , 7 
1040 PRINT· Graphics I • ' 

1050 COLOR 2 3 , O • ON • J ELSE COLOR 7, 0: PRINT • 
1060 IP FLAG2>1 THEN PRINT 

OFF 1 +SPACE$ ( 18) J 
1070 COLOR 7, O • cter : • p COLOR 
1080 IP FLAG2>1 THEN COLOR 0 r 7: PRIN~G~~~~~OLOR 7, 0 

7,0:LOCATE 25,55:PRINT CHR$(F 1 END FlO-AbOrt•r: 
1090 LOCATE 25,58:COLOR l6,7:PRINT• F -

COLOR 7,0 
' llOO LOCATE ROW,COL 

lllO IP VFLAG""l THEN VFLAG=O :GOTO 1140 COL=COL+l:GOTO 1140 
1120 IP FLAG2>0 THEN PRINT CHR$ ( FLAG2) J : 

115 



Program Your IBM PC to Program Itselft 

1130 IP CU>O AND CU<>l3 THEN PRINT CHR$(CU)J:COL=COL+l 
1140 IP CU=O OR CU=l3 THEN PRINT CHR$(43)J 
1150 CU=O 
1160 GOTO 800 

. 1165 ' *** Move Cursor *** 

. 1170 LOCATE ROW,COL 
1180 PRINT CHR$(32)J 
1190 COL=COL+l 
1200 IP COL>WIDE-1 THEN COL=WIDE-1 
1210 VPLAG=l 
1220 RETURN 910 
1230 LOCATE ROW,COL:PRINT CBR$(32)J 
1240 COL=COL-1 
1250 IF COL<l THEN COL=l 
1260 VFLAG=l 
1270 RETURN 910 
1280 LOCATE ROW,COL:PRINT CHR$(32)J 
1290 VFLAG=l 
1300 ROW=ROW+l 
1310 IF ROW>24 THEN ROW=24 
1320 RETURN 910 
1330 LOCATE ROW,COL:PRINT CBR$(32)J 
1340 VFLAG=l 
1350 ROW=ROW-1 
1360 IF ROW<l THEN ROW=l 
1370 RETURN 910 
1380 GOTO 790 

1385 ' *** Check Screen Routine *** 

1390 RETURN 1400 
1400 GOSUB 1920 
1410 IP SCREEN(ROW COL)=43 THEN L 1420 LOCATE 25,1 ' OCATE ROW,COL:PRINT CBR$(32)J 
1430 PRINT SPACE$CWIDE-l)J 
1440 LOCATE 25,10 
1450 COLOR 16,7 
1460 PRINT • Reading the Screen •1 
1470 COLOR 7,0 
1480 IF FFLAG=l THEN GOTO 1530 
1490 LN$(CU)=LN$CCU)+•KEY OFF• ELSE FFLAG=l 
1500 LN=LN+IC 
1510 CU=CU+l . 
1520 GOSUB 1920 
1530 LN$(CU)=LN$(CU)+•cLs• 
1540 LN=LN+IC 
1550 CU=CU+l 
1560 : FOR N=l TO 24 
1570 ·:, ·' BFLAG=O 
1580 : EFLAG=O 
1590 I N3=0 
1600 1 PR$=•• 

1
1

6
610 I FOR Nl=l TO WIDE 

20 1 . N3=N3+1 . 
1630 1 T=SCREEN(N,Nl) 

LOCATE N,Nl:PRINT CHR$CWHITE)J 
IF BFLAG>O THEN 1670 
IF T<>32 THEN BFLAG=N3: EFLAG=N3 ELSE 1690 
PR$=PR$+CHR$(T) 
IF T<>32 THEN EFLAG=N3 

NEXT Nl 

1640 
1650 
1660 
1670 
1680 : 
1690 : 
1700 : IF RIGHT$(PR$, l)=CHR$C32)THEN 

PR$=LEFT$(PR$,LEN(PR$)-l) 
IF EFLAG=WIDE THEN L$=•1• ELSE L$=•• 
IF BFLAG=O THEN 1750 
LN$(CU)=STR$(LN)+• PRINT TAB(• 

1710 : 
1720 I 
1730 I +STR$(BFLAG-l)+•)•+CHR$(34)+MID$CPR$, 11 

EFLAG-(BFLAG-2))+CHR$(34)+L$ 
1740 : GOTO 1760 
1750 : LN$(CU)=STR$(LN)+• PRINT• 
1760 : CU=CU+l 
1770 : LN=LN+IC 
1780 : NEXT N 
1790 CU=CU-1 
1800 LOCATE 25,10 
1810 LN=LN+IC 
1820 PRINT•eow many seconds should this frame be displayed•1 
1830 INPUT LENGTH$ 
1840 LN$(CU)=STR$(LN)+• F=TIMER+•+LENGTPS 
1850 CU=CU+l 
1860 LN=LN+IC 
1870 LN$(CU)=STR$(LN)+• IP TIMER<F THEN GOTO •+STR$(LN) 
1880 CU=CU+l 
1890 LN=LN+IC 
1900 LN$CCU)=STR$(LN)+• CLS• 
1910 GOTO 1970 
1920 LN=LN+IC 
1930 CU=CU+l 
1940 LN$(CU)=STR$(LN)+• • 
1950 RETURN 

1955 ' *** Write to Disk *** 
1960 CLS 
1970 : FOR N=l TO CU 
1980 : PRINT tl,LN$(N) 
1990 : PRINT LN$(N) 
2000 : NEXT N 
2010 DEF SEG=O 
2020 POKE 1050,PEEK(l052) 
2030 LOCATE 25 1 10 
2040 PRINT SPACE$(50)J 
2050 LOCATE 25 1 21 
2060 PRINT •produce another frame? •1 
2070 COLOR 16 1 7 
2080 PRINT •(Y/N)•J 
2090 COLOR 7 1 0 
2100 A$=INKEY$:IF A$=•• GOTO 2100 
2110 IF A$=•y• OR A$=•y• THEN ROW=l:COL=l:FLAG•O: 

FLAG2=0:GOTO 780 
2120 CLOSE 
2130 CLS 
2140 END 

Visual Maker 



Chapter 16 

l O SCBEDI o.o.o 
20lll OF1 
lOCOLOI 7,0 

0LOCATE10.5 
50 DD' SEG-0 

A v 

• • 

Word Processing Converter 
~1eryone agrees that standards are necessary to · 
r.ake personal computers really useful. As a result, 
&ire are dozens of different standards, not only be
tleen computers, but within a single computer line. 
Auresult, you may find that your DOS 1.1 won't 
read 9-sector disks created by DOS 2.0 and greater, 
~one word processing program will use entirely 
iifferent control codes than another. 

The latter is a particular problem, because we 
often must trade text files with other IBM users. 
Your computer has 255 different character codes 
lreco · (" gmzes ignoring the extended codes for the 
lllOillent). Only 52 of those are required for the 
rand lowercase letters, and a dozen or so more 

common punctuation, numbers, and other 
:raphics characters. The ASCII codes for these 
mod been fairly well standardized. (Although Com· 
ne;re, for one, uses a different arrangement.) 
~ufa occupy the. codes. from 32 to 128. Most 
~ cturers assign vanous graphic characters to 
~~II codes from 128 to 255, and many of the 

from 0 to 32 are devoted to agreed upon uses, 

such as CHR$(13) for carriage return, and 
CHR$(10) for linefeed. 

Word processing programs usually need to in· 
dicate special conditions by a single character. The 
software author usually accomplishes this by 
assigning an ASCII code to that particular function. 
One may signify a page break; another might be 
a special end-of-paragraph marker. It is a common 
practice to insert soft carriage returns that can be 
eliminated by reformatting, as differentiated from 
hard carriage returns that mark the fixed end o~ 
lines. . od 

There are no standards for these special c es, 
so software authors choose their own from the 
codes 128 to 255, or 0 to 32. Some WP programs 
use "escape" codes as well-these are a two
character code consisting of CHR$(27) plus some: 

other character. 

CONVERTING FOR COMPATIBILITY 
Now if you need to manipulate a WP file from 

gram
, wi"th another you may have tern"ble 

one pro • . 

119 



Program Your IBM PC to Program ltseli! 

problems. At best, some of the control codes will 
be different and force you to make a lot of changes. 
At worst, none of them will match, and the text will 
be almost unreadable. Most WP programs have a 
nondocument mode (useful for editing BASIC pro
grams, for example) that minimizes the differences. 
You might even be able to perform a global search 
and replace to substitute your WP program's con
trol codes for those in the original file. 

Better yet, use Converter, which will read a 
text file and convert control codes from one format 
to another. Converter has been set up so you can 
substitute the codes that apply to your particular 
word processing program and the one you most fre
quently convert from and to. If you have several, 
you can prepare a different version of the program 
for each. 

HOW TO USE 
WORD PROCESSING CONVERTER 

How do you determine what the relevant con
trol codes are? The software manual may tell you. 
If not, I suggest running the following short pro
gram and writing down the CHR$ codes displayed 
when various appropriate points in the copy are 
reached. 

100 LINE INPUT ''ENTER 
FILENAME";F$ 

110 OPEN "I",l,F$ 

120 LINE INPUT#l,A$ 
130 FOR N=l TO LENCA$) 
140 T$=MID$CA$,N,l) 
150 PRINT ASCCT$)J" "JT$J 
160 B$=INPUT$(1) 
170 NEXT N 
180 GOTO 120 

Each time you press a key, another character 
and its ASCII code will be displayed. Look for ends 
of paragraphs, possible page markers, and other 
codes. Write them down, find the equivalent for the 
other WP program (the same way) and then make 
the substitution in Converter. 

The variables used in Converter are listed in 
Fig. 16-1. The file names of the two word-processor 
programs are defined in lines 120 and 130. Then 
the control codes for program A and program Bare 
defined. The sample program includes page 
marker, carriage return, end of page, and soft car· 
riage return. You can substitute control codes that 
best suit your application. 

An array, CHARACTER$(row,col) is used to 
store these codes. The same routine can be used 
to convert either way, because FROM and INTO 
are defined in line 530, depending on the mode. The 
appropriate elements of CHARACTER$(row,col) 
are invoked during the conversion. 

In line 570, one line of text is input into A$. 
Then a FOR-NEXT loop from 1to4 (change this 

A$ 
FILEA$ 
FILEB$ 
FROM 

Used In INKEY$ loop. 
File name A. 

G 
l$ 
SMALLEST 
TO 

Ag. 16-1. Variables used in Converter. 

120 

File name B. 
Which mode Is to be converted from. 
l.Ocation In string of any code. 
Left portion of string up to code. 
First appearance of any of the codes to be converted. 
Which mode is to be converted to. 

~you have more than four codes to exchange) 
starts. 

You need to find the first occurrence of ANY 
~the control codes in A$. The program looks for 
each in turn and stores in SMALLEST the posi· 
tion of the earliest. Variable Nl keeps track of 
which of the codes was the earliest one. · 

If a code is found, the leftmost portion of the 
program line is extracted up to the code, in line 630, 
and printed to the disk file. Then A$ is redefined 
as the remainder of the line, in line 640. 

Ustlng 16: The Converter Program 

10 I ************** 
20 I * * 
30 ' * Converter * 
40 I * * 
50 I ************** 
60 I 

65 ' *** Initialize *** 
70 SCREEN 0 ,O ,0 
80 KEY OFF 
90 COLOR 7 ,0 
100 ON KEYClO) GOSUB 750 
110 KEY( 10) ON 
120 FILEA$="Program A" 
130 FILEB$="Program B" 
140 CLS 
150 LOCATE 25,30 
160 COLOR 16, 7 
170 PRINT" Hit FlO to abort. "1 
180 COLOR 7, 0 

Word Processing Converter 

When the whole file is read, you are offered the 
opportunity to convert another. Converter is the 
least "finished" of any program in this book. You'll 
have to tailor it to your own word processing pro
grams in order for it to work at all. By this time, 
however, you should have learned enough about 
handling ASCII files to make this chore a breeze. 
If not, go back to the beginning of the book and 
start reading again until you catch up with the rest 
of us. Go ahead. We'll wait. 

. ,_.' 

t ' 

190 LOCATE 4, 8 · utility ==" 
200 PRINT "== WP File Translation 
210 PRINT: PRINT . h 
220 PRINT TAB(l2)" By: David o. BUSC 

230 PRINT:PRINT 

*** 235 ' *** Define codes to exchange 

240 PAGE.MARKER.A$=CHR$Cl2) 
250 PAGE.MARKER.B$=CHR$(142) 

., 

··' ., 



Program Your IBM PC to Program Itselft 

260 CARRIAGE.RETURN.A$=CHR$(27)+CHR$(69) 
270 CARRIAGE.RETURN.B$=CHR$Cl3) 
280 END.OF.PAGE.A$=CHR$(27)+CHR$(69)+CHR$C27)+CHR$(71) 
290 END.OF.PAGE.B$=CHR$(141) 
300 SOFT.RETURN.A$=CHR$C27)+CHR$(70) 
310 SOFT.RETURN.B$=CHR$(4) 
320 CHARACTER$(1,l)=PAGE.MARKER.A$ 
330 CHARACTER$Cl,2)=PAGE.MARKER.B$ 
340 CHARACTER$(2,l)=CARRIAGE.RETURN.A$ 
350 CHARACTER$(2,2)=CARRIAGE.RETURN.B$ 
360 CHARACTER$C3,l)=ENO.OF.PAGE.A~ 
370 CHARACTER$(3,2)=END.OF.PAGE.B$ 
380 CHARACTER$C4,l)=SOFT.RETURN.A$ 
390 CHARACTER$(4 1 2)=SOFT.RETURN.B$ 

395 ' *** Enter filename *** 

400 PRINT TABCS>"Enter name of file to process :" 
410 PRINT TAB(8)""J 
420 LINE INPUT F$ 
430 PRINT TAB(8)"Enter name of output file: • 
440 PRINT TAB(8)""J 
450 LINE INPUT F2$ 

455 ' *** Set Mode *** 

460 PRINT:PRINT 
470 PRINT TAB(4)"Do you want to:" 
480 PRINT TAB(6)"1.) Convert from "JFILEA$J" to "1FILEB$J" 

format• 
490 PRINT TAB(6)"2.) Convert from "FILEB$J" to 

"1FILEA$J"format" 
500 A$=INKEY$:IF A$="" GOTO 500 
510 A=VAL(A$) 
520 IF A<l OR A>2 GOTO 500 
530 IF A=l THEN FROM=l:INT0=2 ELSE FROM=2:INTO=l 

535 ' *** Open Disk files *** 

540 OPEN "I",l,F$ 
550 OPEN "0",2,F2$ 
560 IF EOF(l) GOTO 690 

565 ' *** Load a line *** 

570 LINE INPUTfl,A$ 
580 FOR N=l TO 4 

122 

Word Processing Converter 

590 G=INSTR(A$ ,CHARACTER$ (N,FROM)) 
600 

IF G<>O AND G<SMALLEST THEN SMALLEST=G:Nl=N 
610 NEXT N 
620 IF G=O THEN GOTO 670 ) 
630 L$=LEFT$(A$,SMALLEST-l)+CHARACTER$(Nl,INTO 
640 A$=MID$CA$,SMALLEST+l) 
650 PRINT 12 1 L$ J 
660 GOTO 580 
670 PRINT 12 ,.1\.$ J 
680 GOTO 560 
690 CLOSE 

695 • *** Do again? *** 

700 CLS 
710 LOCATE 25,10 • 
720 PRINT"Process another file? : 
730 A$=INKEY$:IF A$=•• THEN GOTO 730 
740 IF A$="Y" OR A$="y" THEN RUN 
750 CLS 
760 CLOSE 
770 END 



Chapter 17 

I 0 SCBEEJ1 O.O.O 
2omorr 
socotoa 7.o 

~ v 
0 LOCATE I 0.5 

50 DEF S'EG=O 

• • 

Unpacker 
Unpacker is the last demonstration of ways to 
manipulate ASCII files. The final program in the 
book, Music Writer, will create files, but not edit 
them. This program will read in your ASCII for
mat program files and, where possible, rewrite 
them so that each statement is on a separate line. · 
This may make debugging easier and the program 
a bit simpler to understand. It has some limitations, 
but they are few. 

By now you should understand how Unpacker 
works even without any explanation. The concept 
is simple enough to be explained in a few sentences. 
The program reads in each program line, as we 
have done previously. It looks for colons, which sep
arate statements. If a colon is found, the line is bro
ken at that point, and the remainder of the program 
line is assigned a new line number and printed as 
the next line. Colons inside quotation marks are ig
nored. There is no provision to allow for colons 
after REMarks, however, so you should use some 
caution. Figure 17-1 lists the variables used in Un
packer. 

Line 350 sets P, the variable that indicates the 
position at which the search will begin, to one. 
Then, as each program line is read in, starting at 
line 360, the program looks for the first space in 
the line, s, the first occurrence of the resezyed word: 
"IF", and the position of a colon. The first and sec
ond appearances of quotation marks are also noted. 

If you happen to have left off a closing quota
tion mark, the rest of the program line will be con
sidered to be within the quote by the computer. In 
this case, the position of the missing quote is set 
as the length of the program line. 

Next, the Unpacker looks to see if G, the posi- • 
tion of the colon, is greater than that of the first 
quotation mark and less than that of the second, , 
meaning that it is inside the quotation marks. The \ 
position of "IF" is also examined to make sure it ; 
is not inside quotation marks. If either condition is · 
true, then P is set to the position after the second · 
quote, and the program. loops back to c~ntinue the : 
search. · ., . 

If the colon or "IF" are not within quotation : 

.. 
125 



1 

Program Your IBM PC to Program ltselfl 

A$ Line Input from the file. 
F$ File being processed. 
F2$ Output filename., 
F Location of "IF". 
G Location of colon. 
LN Line number. 
01 ,02 Location of quotation marks. 
S Location of first space In the remaining line. 

Fig. 17-1. Variables used in Unpacker. 

marks then the program goes on to process the line. 
As you know, when the PC encounters an IF state
ment, the rest of the program line is carried out only 
if the statement that follows IF is true, except 
where an ELSE is provided. In fact, there may be 
nested IFs and ELSEs that can truly make the logic 
difficult to follow. In fact, this is to much for a sim· 
ple program like Unpacker. We don't want to mess 
up true statements that follow "IF,'' so when IF 
is found, the program stops dividing up the line and 
continues to the next. In other words, it avoids the 
problem by skipping it altogether. This is a time 
honored programming practice that is frowned 
upon. If however, we can achieve 90 percent of the 
desired goals of Unpacker without going through 
c0ntortions, it may be worth it to bend the rules a 

Llstin~ 17: The Unpacker Program 

10 ' ************** 
'20 ' * * 
· 30 ' * ,. Unpacker * 

40. f * I * 
507t ************** 

'60 •' . 

· 65 ' *** Initialize *** 

70 SCREEN 0,0,0 
80 KEY OFF ·:·1 

90 ON KEYC10) GOSUB 700 1
' 

126 

bit. Points of diminishing returns CAN be reached 
even in programming. 

If there is no IF, the line number of the cur· 
rent line is calculated. Since the first characters on 
a line, up to the first space, will always be the line 
number, the program can find the line number by 
taking LEFT$ (A$,S-1). 

LN$ is defined as everything from the begin· 
ning of the line up to the colon (minus one). LN$ 
is printed to the disk file in line 580. A$ is redefined 
as everything following the colon. A new line 
number is needed for A$, so LN + 1 is used. Then 
the program goes back to look at the new A$ for 
additional colons. That's all there is to this simple 
but useful utility program. 

100 KEY(l0) ON 
110 COLOR 7 ,O 
120 CLS:PRINT:PRINT 
130 LOCATE 25 1 30 
140 COLOR"lH6!7t FlO to abort. "J 
150 PRINT l. 

160 COLOR 7 ,O 
170 LOCATE 4,12 
180 COLOR 0,7 U Packer Utility==" 
190 PRINT "== n 
200 COLOR 7 ,O 
210 PRINT:PRINT • B • David D. Busch" 
220 PRINT TAB(l2) Y• 

*** 
f ·1ename to process 

225 • *** Enter 1 

230 PRINT:PRINT 
240 PRINT • 
250 PRINT TAB(8} Enter 

•• 
f f ile to process • 

name o 

260 PRINT TAB(8)""J 
270 LINE INPUT F$ 
280 PRINT TAB(8)"Enter 

f output file :" name o 

290 PRINT TAB(S)""J 
300 LINE INPUT F2$ 

files *** 
305 ' *** Open disk 

310 PRINT:PRINT 
320 OPEN •1•,1,F$ 
330 OPEN "0",2,F2$ 

*** 
335 • *** start new line 

340 IF EOF(l) GOTO 640 

~~g ~~~E INPUTfl,A$ 

365 ' *** Look for spaces, 

*** IF, and colons , 

CllR$(32l> 
370 S=INSTR(P1A$1"IF •) 
380 F=INSTR(P,A$1 ELSE GOTO 480 
390 G=INSTR(P,A$i~~·~gEN GOTO 410 
400 IF S<>O AND GG-5) 
410 T$=MI~!iA;OsLEN(T$) $(32> THEN SFLAG=l 
420 FOR N - $ N2 l)<>CllR 
430 IF MID$(T I I 

440 NEXT N2 

. Unpacker 

,. 

127 



Program Your IBM PC to Program Itselil 

:~~ iF-SFLAG=l THEN SFLAG=O:GOTO 480 
470 S;Li~!~~~~~os~;~ID$(A$,G+LENCT$)) 

475 ' *** Find Quotes *** 

480 Ol=INSTRCP,A$,CHR$CJ4 )) 
~~~ ~;=INSTR(Ql+l,A$,CHR$(J4 )) 
510 IF GQlO>OTAND 02=0 THEN Q2=LEN(A$)

= HEN GOTO 610
520 IF G>Ql AND G<Q2 530 IF F>Ql AN THEN P=Q2+l:GOTO 370
540 IF F>O ANDDF~ciQiH~:EN P=Q2+l:GOTO 370
550 LN=VAL(LEFT$(A$,S-l);OTO 610
560 LN$=LEFT$(A$,G-l) ,
570 A$=MI0$(STR$(LN+l),2)+" "+MID$(A$,G+l)

575 ' *** Write to

580 PRINT t2,LN$
590 PRINT LN$
600 GOTO 370
610 PRINT t2,A$
620 PRINT A$
630 GOTO 340
640 CLOSE

Disk ***

645 ' *** Do again? ***

650 CLS
660 LOCATE 25,10
670 PRINT"P
680 A$=INKE~$~~;s a~~~her file?
690 IF A$="Y" OR~$$-" GOTO 680
700 CLS - Y" THEN RUN

710 CLOSE
720 END

!8

(Y/N)"

Chapter 18

10 SCiEEH o.o.o
20Ul Off
30 COLOJl 7,0

OLOCATE 10.5
50DUSEG=0

®

• •
Creating Your

Own ·oos Commands
keyboard. On powerup, the PC will look for a
special batch file, AUTOEXEC.BAT. If it finds it,
those commands will be executed automatically,

Most of this book has been concerned with BASIC
programming tips and utilities. However, I've men
tioned some of the interesting things you can do
with PCDOS, and it might be fun to slip in a few
of them for you to play with. For example, wouldn't
you like to create your own DOS commands?

I, for one, have not yet gotten accustomed to
the PC's keyboard, and typing in DIR B: can be
fraught with confusion as I try to remember to hit
the Shift key to get the colon. I don't even bother
anymore. When I want to see the directory of drive
B:, I just type D B. If I happen to be logged onto
B:, I can just hit D.

Some of us are fair spellers, but have difficulty
remembering acron'Yms and abbreviations. Is it
"CHKDSK", or "CHCKDSK" or what? No bother.
With my computer system, I just type CHECK A
or CHECK B to examine the desired drive.

This magic is worked through BATCH files.·
These are system files, nothing more than ASCII
text, with the .BAT extension. When you invoke
a batch file, the IBM PC will look at each line and
attempt to execute it as if it were entered from the

without your needing to do anything·

ALTERING THE SYSTEM PROMPT
AUTOEXEC.BAT is a good way to custom·

configure your system the way you want it. You
can run utilities that set the system clock to a clock
board you've installed, activate a RAM drive, or
do other tasks on powerup. Here's a line that is in
my own AUTOEXEC.BAT file: .

PROMPT thhhhhh_ng

A bit cryptic: right? PROMPT lets you alter the
system prompt, using 5everal special characters,
each preceded by a dollar sign to differentiate the
special characters from any other string you might
want to include in the prompt. Here are the special
characters that are legal: '

t ·the time

129

Program Your IBM PC to Program Itself!

d the date
p the directory of the default drive
v the DOS version number
n the default drive name
g the greater than symbol
1 the less than symbol
b a blank space
q the equals sign
h backspace
e ESCAPE

Go to the next line on the screen

So, typing PROMPT ng would set the
system prompt to the default drive name and the
greater than symbol, like this:

A> or B>

That is the normal prompt setting. You can
change the prompt to include the time, date, DOS
version number, and other information as you want.
Perhaps you have deciphered my own system
prompt shown above. It looks something like this~
as a two-line prompt:

22:37
A>

I include the time, $t, followed by six
backspaces, $h, so the seconds and fraction are
written over. I care only about whole minutes. Then
the prompt drops down a line and prints the nor·
ma1 default drive and ">" information. When I
need to know the time, I simply press the Return
key, and my system prompt tells me. The rest of
the time the clock ticks away unobtrusively. As a
side benefit, I can tell at a glance how long it has
been since I used my PC. I press the Return key
and compare with the system prompt above it.

SEARCHING THROUGH
DISK DRIVE DIRECTORIES

There is one very important line you should in·

30

elude in your AUTOEXEC.BAT file, especially if
you want to define your own DOS commands. That
line looks something like this:

PATH A:\1B:\

That command, once invoked, will cause the
system to search through the directories of your
disk drives in that order when it cannot locate a
batch file or command in the currently logged
directory.

I repeat: the PATH command can tell DOS to
look on other disk drives besides the currently
logged disk for a batch file or command.

Do you understand what that means? If you
have tried to load BASIC, which is stored on k
when you happen to be logged to B:, you probably
have wished that DOS were smart enough to go
look on a different drive if it couldn't locate a file.
Well now, at least with command files and batch
files, you can tell DOS to do that very thing! It
makes it practical to use batch files as new DOS
commands, because it does not matter where you
happen to be logged when you decide to use a com·
mand. The command will be faster if it is located
on the logged drive, but it will work on any drive
that you have specified with the PATH command.

CREATING BATCH FILES
Now, on to the batch files themselves. When

you type a file name with no extension, DOS first
looks to see if there is a .COM or .EXE file with
that name. Then it checks to see if there is a .BAT
file that matches. If so, it will execute that batch
file. If you wanted to invent a command called
"CHECK," which would invoke CHKDSK, you
could create a batch file called CHECK.BAT with
the single line: CHKDSK. Then, typing CHECK
would summon CHKDSK automatically.

To write your own batch file, just copy from
the console. Here is a sample session:

COPY CON:CHECK.BAT<ENTER>

CHKDSK<F6> ·
(l) files copied.

Using F6 instead of the Enter key. ends your
batch file input, while saving you a carr;age return
in the file. Now, the batch file you ~ve Just created
is useful; however you can make it more so. DOS
allows you to specify up to 10 parameters o: :e
same line as the command invoking the bate e.
These parameters will be dropped into the batch
file in the locations indicated by numbers you put

th un1, O" um. 1" "%2" "%3", and so forth. ere, ·10 , 70 , , th
They will be included in the order you place em
on the command line, but they do not ha~e :o ~
in the same order in the batch file. Try this line
your CHECK batch file:

CHKDSK %1: IF

Now, from DOS you type:

CHECKB

When the batch file is executed, nos sub
stitutes the B parameter for the %1, and the com·

mand is now:

CHKDSK B: /F

CHKDSK will do a check of drive. B: plus £i;t
. ed b the IF switch. That s

any lost data, as dir~ct Y DOS command.
all there is to creating that new

Try this one:

COPY CON:D.BAT
DIR %1: /W

ing: Now, you can invoke D.BAT by typ •

DA or DB

Creating Your Own DOS Commands

shown in columns, but pausing when the screen is
filled. · ·

CREATING A TEXT FILE
Having difficulty remembering the syntax ~or

certain DOS internal or external commands, ~e
the MORE filter? We can't have a batch file with
the same name as a .COM or .EXE file, so I have
created a file that shows me, page by page, a text
file, from DOS, using MORE. I call it LOOK.~AT.

. This one needs two parameters, o~e for the ~e t?
be looked at and one for the drive on which it

resides:

COPY CON:LOOK.BAT
MORE<%2:%l

N I type LOOK MYFILE.TXT B, when I
owl' ,_ t MYFILE which is on drive B:. DOS wantto OOA. a • .

substitutes, coming up with:

MORE<B:MYFILE.TXT

. ens to be the syntax, which I never
This bapp MORE screen display filter

remember, to use the I look at it a screen at
MYFILE.TXT, so can .

on . MORE- pause m between
a time, with the -
pages. It's slick.

MORE WAYS TO USE BATCH FILES
d you'd like DOS to have.

Think of any ~Tb t I'd like to be logged
When ~am ~n ~~e aASI~, I just type BASICB,
onto drive B., an ha Ill ? You probably can create
and guess what ppens. mmands of your own.
a batch file to implement co nflicts in batch file

. . d the rules: no co 10
Keep m mm . ting commands. Only
names between exi;d %0 through %9, can be
parameters, number SHIFT a batch file subcom·
used, unless you .use licat~ and not particularly

f th drive you want. The
and get the directory. 0 e . the wide format.
/W will display the directory m the directory
You could substitute fP and have

d .rri.,.,•'s a bit comp · Id man • .i iuu. 10 parameters are Wlwie y.
useful since more than . t d in con· . ht however be mteres e

You IIDi ' '

'.131

Program Your IBM PC to Program Itself!

~tructing your batch files and DOS commands us·
~the other batch subcommands available. These
mclude PAUSE, which stops the batch file til
press a key, REM, which allows you t~m~
remarks, and BREAK, which tells DOS to look for
a con~ol break whenever a program asks for DOS
functions.

You can also make batch files into little pro
grams on their own with IF, GOTO, and FOR sub-

132

commands. This chapter is not intended
complet~ tutorial on batch files. But I h ~o be a
ten you interested in find' ope I ve got· th mg out more ways to

em to make your Automatic IBM PC use
more efficiently for you. Just kee . . operate
computer can do anything you teN ?1 mmd that the
IBM is supplied with modes of ins~tcto.do, and the
to none. ions second

Chapter 19

10 ScmH o.o.o
2oxu on
30COLOB 7,0
40LOCATE 10.5
50Dn'SEG=O

r.:Js v

• •

Music Writer
I have one more program for you. Music Writer will
write programs that play songs! All you have to do
is enter the names of the notes and bow long you
want them played. The program will write lines
that, when run, will play the song you have entered.

Music Writer uses BASIC's PLAY command,
which can play strings of notes through the PC's
speaker. Unlike the SOUND command, which re
quires that you enter the frequencies of the notes:

10 SOUND 440,10

PLAY lets you enter the actual note names:

10 PLAY "AIBCDI"

or

10 F$="BCDEF"
20 PLAY F$

"·· As you might have noted, sharped notes are in·

dicated by following the letter name with a I (or +,
since sharped notes are half a tone higher.) Flats
are indicated with a minus sign. That is, B- would
be B-flat. Music students will know that only half
a tone separates some notes, so in those cases flats
and sharps are not allowed. For example, B and C
are only a half-tone apart, so Bl and C-flat are il·

. legal. The IBM PC is smart enough to know this.
Your PLAY string can include other charactera

in addition to the notes A to G. If you include "0",
followed by a number 0 to 6, an octave will be cho
sen. Each octave goes from C to B. AN "L", fol·
lowed by a number from 1 to 64 will indicate the
length of a note, with 1 being a whole note, 2 a half

.. note, on up to 64, (a 64th note, or 1164th of a beat.)
A "P'.' (for pause) can be used with the same
numbers to produce a rest, or silence, of the in·

· dicated length. ·
Using a "T" in your string, accompanied by a

number from 32 to 255, will set the tempo, in quar·
ter notes per minute. The default is 120.

. You can also include several other strings, such

Program Your IBM PC to Program ltselfl

as "ML" for music legato or "MS" for music stac·
cato. You really need to know your music to use
these correctly. Consult the IBM BASIC guide for
tips on using these commands.

A typical string might look like this:

10 F$="L8ACDEP2GiDL16ACDE04"

Now, you can sit down at your PC and write
these strings, using sheet music if you wish. It is,
however, easy to make a mistake, and writing a pro
gram to play the strings can be time consuming.
The Automatic PC can do it for you.

Music Writer will let you enter strings and per
form some error checking to make sure that each
"L" or "P" is always followed by a number in the
range 1-64 and that numbers don't appear where
they don't belong. Only the correct notes will be
allowed, with Cflat automatically filtered out.

Pressing Fl will stop the programming at any
time. As always, you can abort by pressing FlO.

The program, the variables in which are shown
in Fig. 19-1, works like this: the file name for the
output file is entered, and the file opened. Then a
string, F$, which includes the notes and characters
that can be input, is defined.

The last note entered, at location 5,5 (row 5,
column 5) is erased from the screen. Then an

INKEY$ loop starts to wait for you to press a key.
If the key pressed is backspace (CHR$(8)), and
notes have been entered, the rightmost character

· is deleted from NOTE$, which stores the notes
entered so far.

If E$ equals carriage return (CHR$(13)), the
program begins processing the string you have
entered. The first step is to change any lowercase
letters to uppercase. Then the ASCII value of the
first character in A$, and the VAL are taken. The
LAST character entered, R$, is also found, so the
program can see if a "P," "L," or "T" was entered.
If so, it insists that the next entry be a number in
the proper range. If wrong entries are made, the
program branches to various error routines. When
NOTE$ becomes longer than 200 characters, or if
you press Fl, the program writes the NOTE$ to
disk, building a PLAY program line, in a manner
similar to the way lines are built in many other pro
grams in this book. At the same time, the program
PLAYS the NOTE$ you have compiled.
, You'll find that Music Writer gives you a fast
way to key in your favorite tunes, while keeping
you from making many input errors. In fact, I've
carried the error trapping almost to extremes. After
you press each key, the program will prompt you
as to what type of input is expected next. If the oc·
tave you've chosen is too high, it will tell you that.

A$
COL
DELAY
E$
F$

String entered by user.
Column to print string.
Delay loop counter.
Used in INKEY$ loop.
Allowable characters.

LN$
MUSIC$
N
A$

ROW
u

Fig. 19-1. Variables used In Music Writer.

134

Current line number of program being written.
Filename of program being written.
Loop counter.
Last character entered.
Row to print string.
ASCII value of first character In A$.

_... -------~

If the tempo is too slow or fast, you'll be notified.
The proper input format is displayed on the screen

at all times.
In short you should press the Enter key after

each note is' completed. For example, if you want
the notes, A, B-flat, C, you would type
A<ENTER>, B-<ENTER, and C<ENT~R>.
As soon as you type in the A, the program~ tell
you that the next character must be a .plus, nunu~,
or tor Enter. It doesn't check to see if the note is
a legal one, e.g., B-flat, until you press the Enter
key, however.
, When you type a letter such as 0 or T or p or
L, which must be followed by a number value, the

Listing 19: The Music Writer Program

10 • ****************
* 20 • * .

30 , * MUSIC WRITER *
40 • * *
50 • ****************

55 • *** Initialize ***

60 CLS
70 SCREEN 0,0,0
80 COLOR 7,0
90 KEY OFF .
100 ON KEY(l) GOSUB gJO
110 ON KEY(10) GOSUB 9so
12 O KEY (1) ON .
130 KEY(lO) ON.
140 LOCATE 10,l
150 PRINT·SPACE$(65)J
160 LOCATE. 10,l

Music Writer

program will immediately add the character to the
string, without your having to press enter. Then
you will be told that the next entry must be a
number. you can always backspace to correct a
note or other character entered in error. If you
backspace to correct an entry and go back as far
as one of those letters, then your n~ entt"! must
again be a number. I've made Music. Wnter as
foolproof as possl'ble. It's almost im~ibfe ~ ~e
an illegal entry. Incorrect entries are still within the,
realm of possibility. So I haven't removed all the
fun for you. If you wish, you can com~se some .
awful-sounding music-just more efficiently.

. f"l ***
name for output i e

l65 • *** Enter

i~g ~~~:T"ENTER FILENAME FOR MUSIC
190 LINE INPUT F$
200 FOR N=l TO LEN(F$)
210 T=ASC(MID$(F$,N,l))

. " . . ,

135

Program Your IBM PC to Program Itself?

220 IF T>96 AND T<l23 THEN MID$(F$,N,l)=CHR$CT-32)
230 NEXT N
240 IF LEN(F$)>12 THEN PRINT"File name too

longl":PRINT:GOTO 140
250 S9=INSTR(F$,".BAS")
260 IF LEN(LEFT$(F$,S9))>8 THEN PRINT"File name too

longl":PRINT:GOTO 140
270 IF S9=0 THEN PRINT "MUST INCLUDE .BAS EXTENSION!":

GpTO 140
280 IF F$="" GOTO 140
290 OPEN "O",l,F$
300 GOTO 370
310 LOCATE 25,55
320 COLOR 16,7
330 PRINT "Fl-QUIT SONG FlO-ABORT"J
340 COLOR 7,0
350 RETURN
360 FOR N=l TO 500:NEXT N
370 CLS:GOSUB 310
380 LOCATE 2,10
390 PRINT 8 START ENTRY NOW :•
400 F$="A-AtA+B-C+CiD-DID+E-FIF+G-GIG+OLPTMX<>MFMBMNMLMSX"
410 ROW=l0:COL=5
420 LOCATE 5,5
430 PRINT SPACE$(70)
440 GOSUB 1010
450 LOCATE 5,5
460 X=CSRLIN:Y=POS(Z)

465 ' *** Wait for input ***

470 E$=INKEY$:IF E$="" GOTO 470

475 ' *** Handle backspace ***

480 IF E$=CHR$(8) AND LENCNOTE$)<1 THEN GOTO 470
490 IF E$=CHR$(8) THEN LFLAG=O:LOCATE ROW,COL:PRINT

SPACE$(LEN(NOTE$)):NOTE$=LEFT$(NOTE$,(LEN(NOTE$)-l)):
G$=RIGHT$(NOTE$,l):IF G$="T" OR G$="P" OR G$="L" OR
G$="0" THEN LFLAG=l:GOTO 810 ELSE GOTO 810

495 ' *** Check for required number ***

500 IF LFLAG=l AND VAL(E$)<1 THEN LOCATE 25,1:
PRINT"A Number Please!!! "J:BEEP:
FOR Nl=l TO 800:NEXT Nl:GOTO 900

510 IF LFLAG=l AND VAL(E$)>0 THEN LFLAG=O

flat or natural ***
515 ' *** Check for required sharp or

" " $-"+" OR E$=CHR$(13} OR E$="t• THEN
520 IF E$= - OR EIN-T SPACE$(50)• ELSE IF NFLAG=l THEN

LOCATE 2 5 , 1: PR I .

BEEP:LOCATE X,Y:GOTO 470
530 LOCATE X,Y 96 AND A<l23 THEN A=A-32:E$=CHR$CA}
540 A=ASC(E$}:IF A>
550 X=CSRLIN:Y=POSCZ)+l

b *** 555 ' *** Prompt for a num er
-•o• OR E$="L" THEN LOCATE

560 IF E$="P" OR E$="T" OR E$-ATE 25 l•COLOR 0,7:PRINT"
25,l:PRINT SPACE$CSO!!:~gioR 7,0~LFLAG=l
Now enter a number. ,.

570 LOCATE X,Y G=l THEN A$=E$:E$=CBR$(13)
580 PRINT E$7:IF LFLA

h flat or natura 1 ***
585 ' *** Prompt for s arp, .

THEN LOCATE 25,l:COLOR
590 IF INSTRC"ABCDEFG",E$)<>O - (flat), or

o,7:PRINT"NOW i ~~.+ ~~~a~~~~LOCATE x,Y:NFLAG=l
<ENTER>(natural)THEioA$=A$+E$:GOT0 470

600 IF E$<>CHR$Cl3>
610 IF A$="" GOTO 420
620 U=ASC(A$)
630 NUMBER=VAL(A$) $-"O" THEN GOTO 660
640 IF NUMBER(>F0$ ~R$}!O-THEN GOTO 900
650 IF INSTR '
660 R$=RIGHT$(NOTE$,l) " • THEN GOTO 790 ,
670 IF NUMBER<7 AND_!$: ~HEN GOTO 690 ELSE G~TO 730
680 IF R$="P" OR R~-2~-•ML" THEN GOTO 730
690 IF RIGHT$C:~T~HEN GOTO 870
700 IF NUMBEERR><l THEN GOTO 900
710 IF NUMB
720 GOTO 790 R$-"0" THEN GOTO 790 THEN GOTO 790
730 IF NUMBER<7 AND ~MBER<256 AND R$="T"
740 IF NU$~~~~>~~E~N~OT0 880
750 IF R - EN GOTO 780
760 IF R$<>"0" TH THEN GOTO 890
770 IF U<47 OR U>54 THEN GOTO 900
780 IF U>46 ~NgRu~~~"+" OR A$="1" ~~~~TE$)-l}):GOTO 770
790 IF A$="-$·NOTE$=LEFT$(NOTE$,(LE .

A$=R$+A •
800 NOTE$=NOTE$+A$
810 LOCATE ROW,COL
820 PRINT NOTE$ THEN GOTO 910
830 IF LENCNOTE$)>200 137

Program Your IBM PC to Program Itself?

840 A$=""

138

850 NFLAG=O
860 GOTO 420

865 ' *** Notify of errors ***

870 LOCATE 25,l•PRINT " 880'LOCATE 25,l:PRINT"TNOTE OR REST TOO LONG"••GOT
890 LOCATE 25,l;PRINT"O~~O INCORRECT"1:GOTO 900 0 900
900 LOCATE 25,25:COLOR ~ WRONG"::GOTO 900

"::BEEP:FOR DELAY=lOTb·~~OINT" INVALID CHOICE
7,0:PRINT SPACE$(:NEXT DELAY•LOCAT 910 GOSUB 930 SOl1:A$=••:GOTO 420 • E 25,l:COLOR

920 GOTO 420

925 ' *** Write song to disk ***

930 LN=LN+lO
940 PLAY NOTE$
950 LN$=STR$(LN)+"
960 PRINT tl,LN$
970 NOTE$=""
980 CLOSE
990 CLS
1000 END

"+"PLAY " +CHR$(34)+NOTE$+CHR$(34)

1005 • *** Show entry style ***

1010 LOCATE 3 JO
1020 PRINT"Ent . 1030 LOCATE 5 ~~ in following
1040 PRINT"N I .
1050 LOCATE ~t;Onames:

style:"

1060 PRINT"Pa~ses•
1070 LOCATE 7 30 •
1080 PRINT"Le~gth•
1090 LOCATE 8 30 •
illlOO PRINT"Octaves•

0 LOCATE 9 30 •

ii~g ::~~i;Te~po:

B- <ENTER>"

P<ENTER> 2<ENTER>"

L<ENTER> 2<ENTER>"

O<ENTER> l<ENTER>"

T<ENTER> 60<ENTER>"

l
j

Chapter 20

10 SCJIEDl o.o.o
20XEY OFF
30 COLOll 7.0
40LOCATE10.5
50 DE:FSEG:O

~
\iJ

• •

, .

Some Tips
The whole aim of this book has been to show you
ho~ to make your programming more efficient by
l~tting other programs write your code for you. The
sixteen programs presented so far generate pro
gram lines, modify software. or perform other tasks
for you. But there is no reason to· limit your
automatic IBM PC to just those utilities included
here. Actually, there are many, many programs on
the market that will streamline your work.

DEVELOPING A PROGRAM
WITH A WORD PROCESSOR

There is one tool you may not have thought of,
unless you are an old time programmer, write in
assembly language, or write for compilers. That
utility is your word processor. Word processors of
today have much in common with text editors that
have been used in the past to write programs that
are compiled or assembled into machine language
code. Most Basic programmers today, however,
have never written a program with a text processor.
The majority have worked only with interpreters.
An interpreter is, of course, a computer program

that takes the instructions written by the program·
mer and translates them into the computer's ma·
chine tanguage each time a line is run.

That is, when a line like FOR N = 1 1TO
50:B =A+ C:NEXT N is encountered, the inter·
preter will calculate the machine code fifty different
times. This is why interpreters are so much slower
than machine tanguage programs. There are, bow·
ever, advantages to interpreters. One is that a pro
gram can be written a small part at a time, and each
section run, tested, and then modified immediately.
Another advantage is that interpreters can include
error trapping features that handle improper user
input-such as attempts to store numbers larger
than 32767 in an integer variable-that might have
been unanticipated when the program was written.

Compilers and assemblers are less forgiving.
Code is written, and the source code u5ed to pro
duce the run-time object code. Mistakes·can only
be corrected by modifying the source code and com·
piling or assembling new object code. Partially
because of this, BASIC interpreters have been the
favored program development tool. And, IBM PC

139

Program Your IBM PC to Program Itselfl

BASIC programmers have missed some of the
editing and program writing tools possible with
word processors.

Of course, the PC has both screen and line
editing. It's nice to be able to move the cursor
around and change code rapidly. Those of us ac
customed to word processing, however, appreciate
other features, such as global searching and replac
ing, and zipping from one portion of a document
to another.

But wait. What if the program were loaded into
the word processor as if it were a document? The
arrow keys could be used to zip the cursor around
the program, and changes made by overtyping,
global search and replace, and other powerful
features.

The only "trick" to using a word processing
program as a program editor is to remember to save
the program from BASIC in ASCII form. Then it
usually can be loaded into the word processing pro
gram. You must also take care to store the program
from the WP software in ASCII or nondocument
mode, as well. If you forget this step and attempt
to load the program, only a few characters of gar
bage will appear on the screen. Don't panic. Return
to the word processing program, reload the com
pressed program file, and then re-SA VE it in
ASCII.

What can you do with a program in text form?
For starters, how about formatted listings even
slicker than those produced by LISTER? The lat
ter was provided both as an illustration and for
those who do not have a WP program; however,
a word processing program was used to print out
the listings reproduced in this book. The word pro
cessing software divided up the program lines into
pages and printed a header at the top of each page.

My WP program allows setting the window of
the IBM PC's screen to the same width as the paper
being used, so it was simple to scroll down through
the program text to see when lines were too long.
In most programs, for clarity, line breaks were cho
sen and the next part of a line indented. A word
processing program was also used to add spacing

140

between REMarks and the program lines preceding
and following.

Although original code cannot be tested while
in a WP program, there are advantages that make
them very desirable. Here are a few tips for using
a word processing program to streamline your pro
gram writing. Those of you with other WP pro
grams can use them as well, by applying the
particular syntax and commands of your favored
text processor.

0 Put your most-used modules at the tips of
your fingers. Several phrases and program lines
were written and encased in blocks given unique
markers. If your WP software does not allow mark·
ing multiple blocks, perhaps you can store these
phrases in the Library or boilerplate file. Then,
when a phrase like A$= INKEY$:IF A$=" "
GOTO was needed, it was a simple matter to in·
stall it from the built-in library of routines.

Of course, it would have been simpler to write
subroutines and call these rather than write the
code over and over, even automatically. But,
"easier" is not always as clear for someone attemp
ting to understand a BASIC program, so in many
cases, subroutines were avoided. Programming
speed did not slow down, however, because of the
power of the word processing program.

0 Global searches, replaces, and deletions
made writing the programs in this book much
easier, as well. Halfway through a program, on
discovering that a variable name was ill-chosen, it
was a simple matter to replace all occurrences in
a couple seconds. REM • • • could be changed to
' • •• almost instantly. Some program screens, writ·
ten using Screen Editor, had PRINT TAB(O) in a
number of places. All the T AB(O) appearances
could be deleted quickly.

Care has to be taken when using this feature,
however. A word processor will not check to see
whether or not the string being changed is inside
quotation marks. Changing all PRINTs to
LPRINTs can result in some undesired modifica
tions, such as LPRINT becoming LLPRINT, or "IS

Some Tips

YOUR PRINTER ON?" being transformed into
"IS YOUR LPRINTER ON?"

PROGRAMl.BAS PROGRAM2.BAS, and so on.
This system works fine, but few of us can

ber What we called the last version when we
0 Programs can be "cleaned up" quite eas~y.

It is fast and efficient to zip through a program ~th
a word processor and touch up sloppy codmg,
change all-uppercase prompts to upper and lo~er
case, or delete undesired spaces. After ~ting
TABBER, I wanted to go through some earlier pro
grams and center prompts. Unfortunately some
program lines had prompts with, horrors,

remem . . h .
are ready to save the next version. Eit er w~ m-

embedded spaces:

10 PRINT w DO YOU WANT TO;"
20 PRINT " 1.) RUN A

30 PRINT R

40 PRINT R

PROGRAM"
2.) EXIT THIS

PROGRAM"
ENTER CHOICE:"

Whil 'twas eas:y to type like that when writing
ei · · the pro-

the original program, someone typmg m t
from this book would be bard pressed to coun

:Z:umber of spaces needed ~o pro~~~~
lines on the screen. B:y replacing all b re lac
PRINT" one space was cl~ up. !hen YpiJNT
. all PRINT" with simple
mg . k the excess spaces
statements and quotation mar ~ted Then the
inside the prompts were e · d d
PRINT T AB(T)'s could be put where neede , an
TABBER could be used successfull:Y·

PROTECTING YOUR WORK .
. ck . As a program is de-

Here's another qw . tip. the work in pro-
d . · ood practice to save

velope , 1t .1s g . . call Thus, should a power
gress to disk peno~i ~ of work is not lost.
failure occur, hours wo cku s are very

With disk-based systems, ba P grammers
. . f ct that manY pro

easy-so sunple, m a ' king disk's directory,
end a session, look at the wor. tucked away
and see 10 or more versions

voke FILES to check, or play it safe and skip a

number or two. ded
Here's a short program that can be ap~n

onto the end of any program you are wor~g on
and used to automatically SAVE an.upda~ru:.~·
sion of the program, under an appropnate .~ d~
When you type GOTO 30000 at any .pom
program development, the module will .collect th:

t TIME$ extract the hour and mmutes, an
curren •
use that to make the file name.

30000 B$=TIME$:H$=MID$(B$,10,2)
30010 M$=MID$(B$,13,2) S
30020 F$="PROG"+B$+M$+.BA
30030 SAVE F$

Save these lines in ASCII form on your disk,
d th APPEND or MERGE it to any program

an en . ch does not have line numbers that
you ~oose (wbi want to EDIT line 30020, replac·
~onflict). Y ?u ~:ROG" with any four letters that
mg the strtng . gful for the program you are
are more meanm back u the program to
developing. If Ydi~uskwandrit: auto~tically, add the
two (or more) v
following lines:

30025 Fl$="A:"+F$:F2$="B;"+F$
30035 SAVE Fl$:SAVE F2$

les are just two of the
These short e~P elf to make your pro-

tiliti. you can wnte yours .
u e~ . Thi book should have given you
grammmg easier. s of the automatic IBM PC
ideas for others. The ~all the work, and the pro
is to let the computer o .
grammer do all the creating.

141

A
alphabetized word list, 98
alphabets

foreign, 26
ALT key, 73
applications generators, 1
arrays ·

dimensioning, 39
arrow keys, 28
ASC, 120
ASCII codes, 119
ASCII files, 2
ASCII format, 1
assemblers, 139
AUTOEXEC.BAT, 129
automatic coding of screens, 111
Automatic Programmer, 25
Automatic Programmer Documenta-

tion, 63
Automatic Programmer Documenta-

tion program, 64

B
backups, 141
BASIC program, 1
BAT files, 130
batch file parameters, 131 : ·
BATCH files, 129 .

creating, 130

Index·
blocks

title, 13
border characters, 26
BREAK key, 73
BREAK subcOmmand, 132
bugs, 103
building program lines, 2

c
centering prompts, 19
centering titles, 15
CHAIN, 63 .
characters

border, 26
charts, 111
CHA$, 3
CHA$ codes, 120
CHA$(), 28
clear screen routine, 42
code, 139 .
coding screens

automatic, 111
COM files, 130
command mode, 75
commands

DOS, 129
Commodore codes, 119
compatibility

word processor,_ 119

compilers, 139
compressed format, 1 '
constructing designs, 37
control codes, 120
control key, 73
controlling functions, 37 ·
converter · ·'

word processing, 119
. Converter program, 121 ...
crash proofing programs, 20 ·
creating BATCH files, 130 ·
creating DOS commands, 129
CRT displays, 25
CRT screen, 111
cursor keys, 73
cursor pad arrow keys, 28

D
data files, 2
DataBase Starter program, 37, 42
debugging

automatic, 53 ·
program, 103

default values, 13
defining keys, 29
DEL key, 73
dimensioning arrays, 39
directories · · '•

disk drive, 130

143
. ·~ .. :

. . ,, '. , . .
• .. !•

• 1 l •

REM-over program, 10 SHIFT, 131
disk drive directories, 130 Global Replacer program, 69 line number Increments, 37 processing data, 37

REM arks subroutines
disk file 110. 39 global search and replace, 67 lines program

removing, 7 adding, 42
disk files glossary, 95

• one-statement, 125 Automatic Programmer
removing REMarks, 7 prefabricated, 1

sequential, 2 GOTO loop, 29 list Documentation, 64
replace

displays graphics, 25 alphabetized, 98 Converter, 121
global, 67 T

CRT, 25 graphics on screen, 111 Lister program, 79, 81 oataBase Starter, 42
routine TAB(), 19

Documentation graphs, 111 listings Error Trapper, 105
error trapping, 104 Tabber program, 19, 22

Automatic Programmer, 63
program, 79 Global Replacer, 69

interrupt, 4 tempo, 133
DOS commands H LOCATE, 28 Index 1, 98

sort, 97 testing
creating, 129 hardcopy program listings, 79 lowercase letters, 28 Index 2, 100

routines program, 53
DOS SORT, 95 help files, 63

Key Definer, 76
library of, 1 text file, 131

DOS sort routine, 97
M Lister, 81

menu, 20 TIMER ON, 113 I menu Input routines, 20 Music Writer, 135
program writing, 2 timing of graphics, 111

E 110 disk file, 39 menus, 39 REM-over, 10
Tiny BASIC, 85

editor Increments
letter oriented, 20 Screen Editor, 29

s tips, 139
screen, 111 line number, 37 numeric, 20 Tabber, 22

SCREEN, 27 title blocks
efficiency Index, 95 MERGE, 29 Titler, 15

CRT, 111 program, 13
programming, 139 Index 1 program, 98 messages Translator, 88

positions on, 113 Titler program, 13, 15
entry errors, 20 Index 2 program, 100 error, 103, 104 Unpacker, 126

screen displays, 25 titles
centering, 15 ...

error messages, 103, 104 Indexer program, 95
Microsoft BASIC, 54 Visual Maker, 113

screen editor, 111
toggle, 28

Error Trapper program, 103, 105 INKEY$,4,21,29, 75 MID$,3 Word Counter, 4
Screen Editor program, 25, 29 program debugging, 103 tokenized format, 1

errors
INKEY$ routine, 42 mode

screen formatting, 19
Translator program, 85, 88

entry, 20 INPUT#, 3
nondocument, 140 program lines

SCREEN function, 2, 27, 113
ESC key, 73

input routines multiple drives building, 2
search u

escape key, 73 menu, 20
search of, 130 program listings

global, 67
Unpacker program, 125, 126

EXE files, 130 INS key, 73
Music Writer program, 133, 135 hardcopy, 79

search of multiple drives, 130
uppercase letters, 28

Instructional screens, 111
Program Proofer program, 53, 56

sequential disk files, 2
user-programmable function keys,

F interpreter
N program skeletons, 37

sharps, 133
74

file names, 141
Spanish-BASIC, 85 names program testing, 53

SHIFT subcommand, 131
files

Interpreters, 139 file, 141 program title blocks, 13
skeletons v

ASCll,2
Interrupt

names of variables, 54 program writing, 1 .
program, 37

values

BATCH, 129, 130
ON ERROR, 104

nondocument mode, 140 program writing routines, 2
slide show, 111

default, 13

data, 2
ON KEY(), 73 notes Programmer

slides, 111 variable names, 54

disk, 2
Interrupt-driven routine, 4

muslcal, 26, 133 Automatic, 25
SORT version numbers, 141

help, 63
NUM LOCK key, 73 programming efficiency, 139 cos. 95 Visual Maker, 111

program, 2
K number programs

sort routine Visual Maker program, 113

protection of, 141 key
line, 37 BASIC, 1

DOS, 97
text, 2

function, 4
numbers crash proofing, 20

SORT.EXE, 98 w
filter

Key Definer program, 74, 76 random, 113 PROMPT, 129
sorted words, 96 Word Counter program, 2, 4

DOS's SORT, 95
KEY OFF, 74

numeric menus, 20 prompts
SOUND command, 133

word list

flats, 133
KEYON, 74

centering, 19
source code, 139 alphabetized, 98

FOR-NEXT loop, 3
KEY(), 29

0 Proofer Spanish language, 85 word processing converter, 119

format
KEY() OFF, 4

object code, 139 program, 56 Spanish Tiny BASIC, 85 word processing programs, 67• 80
ASCII, 1

KEY() ON, 4
octaves, 133 protection of files, 141 Spanish-BASIC interpreter, 85 word processors

compressed, 1
keys, 73

ON ERROR Interrupt, 104 pseudo-compiler, 85
staccato writing programs with, 139

tokenized, 1
arrow, 28

ON KEY routines, 75
Q music, 134 words

formatting
defining, 29

ON KEY(), 73
stal'ler sorter, 96

screen, 19
redefining, 74

ON KEY() command, 4 quotation marks, 8 database, 37 unique, 95

frames
keywords

ON TIMER, 113
R string array, 39 writing

creation of, 111
misspelled, 53

ON ••• GOSUB, 39
subcommand program, 1

function

RANDOMIZE TIMER, 113 BREAK, 132 writing programs with word pro-
SCREEN, 2, 27

L p redefined keys, 75 PAUSE, 132 cessors, 139
function key, 4

language
parameters, 1 redefining keys, 74 REM, 132

function keys, 73
Spanish, 85

batch file, 131 REM subcommand, 132 user-programmable, 74 legato
PATH, 130

G music, 134
PAUSE subcommand, 132 letter oriented menus, 20
PLAY command, 133 generator

letters
positions on screen, 113 random number, 113

upper- and lowercase, 28 powerup, 129 , generators
LINE INPUT, 75

processing applications, 1
LINE INPUT #, 3

word, 119

144 145

. ,
.;

... , ------------~

• ~ , , ' ! ~ ... ~ ·-- ,

Program Your IBM PC to Program Itself!

If you are intrigued with the possibilities of the programs included in Program Your IBM PC to Pro
gram Itself I (TAB Book No.1898), you should definitely consider having the ready-to-run disk con
taining the software applications. This software is guaranteed free of manufacturer's defects. (If
you have any problems, return the disk within 30 days, and we'll send you a new one.) Not only
will you save the time and effort of typing the programs, the disk eliminates the possibility of er
rors that can prevent the programs from functioning. Interested?

Available on disk for IBM PC and compatibles, 64 Kor greater at $24.95 for each disk plus $1.00
shipping and handling.

r----------------------------------, I I'm interested. Send me: I
I disk for the IBM PC, 64 K or greater (6630$) I I TAB BOOKS catalog I
I Check/Money Order enclosed for $24.95 plus $1.00 shipping and handling I
I for each disk ordered. I
I VISA MasterCard I
I Account No pires I I I
I I
I Name I I I
I Address I
I I
I City State Zip I
I I I Signature I
I Mail To: TAB BOOKS Inc. I
I P.O. Box 40 I I Blue Ridge Summit, PA 17214 I

I I
I (Pa. add 6% sales tax. Orders outside U.S. must be prepaid with lntematlonal money orders In U.~~I~~~ I
I I

~------------------------------------

I

I

Other Bestsellers From TAB
0 ADVANCED dBASE 111• APPLICATIONS-Baker

. ~n Invaluable. collecti~n of ready-to-use dBASE Ill ap
plications for getting maximum productivity from Ashton
Tate's state-of-the-art database management software! In·
cludes how-to's for setting up and maintaining computerized
~les for !"a~agin~ employees, payroll, Inventory, accoun
ting apphcat1ons, time management, tracking sales and per
forming marketing research, and more. 448 pp. 120 illus.
7" x 10". •
Paper $21.95 Hard $28.95
Book No. 2618

0 PROGRAMMING WITH dBASE 111•
With this excellent sourcebook at your side, using

dBASE Ill is a snap! You'll discover how to take advantage
of all this fourth generation software's data handling
capabilities plus learn how to unlock the power of dBASE
Ill as a complete programming language! Also includes an
appendix detailing the differences between dBASE II and
dBASE Ill, with full instructions for using dConvert-the utility
program used to convert dBASE II programs to dBASE 1111
3C4 pp., 215 illus. 7" x 10".
Paper $17.95 Book No. 1976 .,
0 USING FRAMEWORK™-A PICTORIAL GUIDE

Here's the hands-on, how-to explanations you need to
take command of this all-new software package. From start·
to-finish, this pictorial guide is packed with easy-to-follow,
step-by-step explanations, examples, and programs for us
ing all of Framework's functions: database management,
spreadsheet, communications, word processing, and
graphics. 320 pp., 300 illus. 7" x 10".
Paper $18.95 Hard $26.95
Book No. 1966

0 NETWORKING WITH THE IBMit NETWORK™ AND
CLUSTER TM

A complete guide In Installing, using, and programming
IBM's new state-of-the-art Network™ and ClusterTMr Writ·
ten In easy-to-understand terminology and packed with
plenty of examples and illustrations, it provides easy entry
Into LAN's for anyone who Is just getting started-and in
particular for those who have or are considering the purchase
of IBM's Network or Cluster. 480 pp., 225 illus. 7" x 10".
Paper $19.95 Hard $29.95
Book No. 1929

. '

0 IBM• pcTM EXPANSION GUIDE-Phllllps
If you're confused and frustrated by all the adver·

tlsements for IBM PC-Compatible accessories that crowd the
pages of today's computer publications, this is the book to
have before you invest another penny In computer equip
ment! Thorough and completely up-to-date, this time-saving
guide provides all the background information and specific
use-test data you need to make the best performance/value
choices for all types of PC hardware, whether you have an
IBM PC, Portable, PCjr, XT, AT, XT/370, 3270-PC, or PC
compatible. 368 pp. 7" x 10".
Paper $17.95 Hard $24.95
Book No. 1911

0 ADVANCED APPLICATIONS FOR PFS• AND THE
IBM9 ASSISTANT SERIES •

Capitalize on the power and flexibility of PFS9 and
IBM9 Assistant Series software with this goldmine of ready
to-use applications! Each module is given extensive, In-depth
coverage, Including predesigned applications organized
around real-world applications and needs. It's an Invaluable
productivity tool for anyone using these bestselling software
modules. 224 pp., 212 illus. 7" x 10".
Paper $16.95 Hard $22.95
Book No. 1989

D MONEY MANAGEMENT WORKSHEETS FOR
1·2-3 ™ISYMPHONY™-Maffel

Turn your IBM PCf' or PC-COmpatible Into a full-time
financial manager with the help of this huge collection of
over 60 customized worksheets designed especially for the
powerful 1·2-3/Symphony business software! Using these
Invaluable worksheets, you can do everything from balanc
ing your checkbook and planning your budget to managing
investments, even playing the stock market. 192 pp., 80 illus.
7" x 10".
Paper $14.95 Hard $21.95
Book No. 1968

0 MASTERING SYMPHONY™-Bolocan
Anyone who's purchased the new Symphony package

from Lotus ••• or who's thinking of trading up from Lotus
1-2-3™ ••• will find this an essential guide! Covering each
of Symphony's functions separately and In-depth, this uni
que guide clarifies and gives sample programs and diagrams
to demonstrate the software's spreadsheet, word process
ing, data management, graphics, and communications
features. 240 pp., 170 illus. 7" x 10". ·
'Paper $16.95 Hard $22.95
Book No. 1948

D SERIOUS PROGRAMMING FOR THE IBMit
PC™J)(T™/AT9

Here's your key to learning how programs can be de
veloped and designed for your own specific purposes to
really do the job you need accomplished. You'll cover dif·
ferent aspects of program design, including using
subroutines to build an effective subroutine library of your
own, get special tips on learning to write a user's guide and
creating help screens. 208 pp., 113 illus. 7" x 10".
Paper $14.95 Hard $21.95
Book No. 1921 ..

0 dBASE 11• -A COMPREHENSIVE USER'S
MANUAL-Bharucha

A logical, easy-to-follow guide that takes you from com
puter novice to expert programmer in dBASE Ill Just some .
of the unique features that set this guide apart from ordinary
user manuals Include: How to create and maintain a.
database: Explanations of dBASE functions: Details on how
to use COPY to create standard text files from dBASE files
•.. a requirement for communicating with other software;
and much more. 320 pp., 7" x 10".
Paper $18.95 Hard $24.95 ··
Book No. 1884

................................ ______________ ~~~~------JJ;-. __________ ~w-~;.;;~ut~L~""~"~·k~@iR, .. -! ';•·'t:

Other Bestsellers From TAB . .

0 IBM PC® GRAPHICS-Craig and Bretz
Now, this practical and exceptionally complete guide

provides the answers to questions and the programs you
need to utilize your IBM PC's maximum potential. This is
a collection of immediately useful programs covering a wide
variety of subjects that are sure to captivate your interest
••• expand your programming horizons ••• and providing
a wealth of sophisticated graphics techniques. 272 pp., 138
illus., including 8-page color section. 7" x 10".
Paper $15.95 Hard $19.95
Book No. 1860

0 1001 THINGS TO DO WITH YOUR IBM
PC® -Sawusch and Summers

Here's an outstanding sourcebook of microcomputer
applications and programs that span every use and interest
from game playing and hobby use to scientific, educational,
financial, mathematical, and technical applications. It pro
vides a wealth of practical ideas that even a novice can put
to work! This volume contains a goldmine of actual programs,
printouts, flowcharts, diagrams, and illustrations. 256 pp.,
30 illus.
Paper $11.95 Hard $15.95
Sook No. 1826

0 STAR POWER: MasterfngWordStar®, MallMerge®,
SpellStar® , DataStar® , SuperSort® CalcStar® , ln
foStar™, Starlndex™, CorrectStariu, StarBurst®;
ReportStar™, & PlanStar™

Here in one comprehensive, easy-to-use sourcebook,
Is all the hands-on guidance you need to get the most pro
ductive use from Starline microcomputer software from
MicroPro for your KA YPRO® , IBM® , PC, Apple® , or other
CP/M based micro. 320 pp., 133 illus. 7" x 10".
Hard $24.95 Book No. 1742

•Prices subject to change without notice.

0 MAKING MS-DOS AND PC.DOS WORK FORYOU-
The Human Connection

Here's a clear, plain English description of MS.COS
(Micr?soft Dis~ Operating Sy~tem) and PS-DOS (the IBM
PC disk operat_ing system). This outstanding guide also in
cludes a special programmers section listing commands
needed to create, run, and ''debug" programs, and a handy
"commands at a glance" that gives you fast reference to
all MS/PC-DOS commands! 224 pp., 93 illus. 7• x 10•.
Paper $14.95 Hard $19.95
Sook No. 1848

0 LOTUS 1·2·3™ SIMPLIFIED-Bolocan
Lotus 1 ·2·3 is the dynamic new business software Iha!

offers an incredible range of data-handling capabilities. Now,
here's an outstanding guide that can make it really as sim
ple as 1, 2, 3. From the very first steps of installing and us
ing Lotus 1·2-3 to the procedures for designing and using
your own spreadsheets, this user-friendly manual gives you
the understanding necessary to utilize the capabilities of
Lotus 1-2-3. 192 pp., 195 illus. 7" x 10".
Paper $10.95 Book No.1748

0 FUNDAMENTALS OF IBM PC® ASSEMBLY
LANGUAGE-Schnelder

Here's your chance to leam assembler-a language that
can open the door to a whole new world of programming
on the IBM PC! This book shows how the assembler
language can overcome the limitations offered by BASIC and
how users can also use assembler subroutines along with
their BASIC programs. You'll open the door to al~Sf
unlimited programming on your IBM PC! 320 pp., 160 illus.
7" x 10".
Paper $15.50 Hard $19.95
Book No. 1710

Look for these and other TAB books at your local bookstore.

TAB BOOKS Inc.
P.O. Box 40
Blue Ridge Summit, PA 17214

Send for FREE TAB catalog describing over 900 current titles In print.

