






Mastering 
Turbo Assembler® 
Second Edition 

Tom Swan 

sAMS 
PUBLISHING 
101 West lOJrd Sm:L'( 

I ndi.llupolis, InJianJ 4()2')O 

OA 
76.73 

s:~ I 
1995 " 



,.. 



To Richard Day. 



Copyright e 1995 by Tom Swan 

SECOND EDITION 

All rights reserved. No parr of this book shall be reproduced. stored in a retrieval 
system. or transmitted by any means, electronic, mechanical. photocopying. recording. 
or otherwise. without wrirren permission from the publisher. No patent liability is 
assumed with respect to the use of the information contained herein. Although every 
precaution has been taken in the preparation of this book, the publisher and author 
assume no responsibility for errors or omissions. Neither is any liability assumed for 
damages resulting from the use of the information contained herein. For information, 
address Sams Publishing, 201 W. 103rd St., Indianapolis, IN 46290. 

International Standard Book Number: 0-672-30526-7 

Library of Congress Catalog Card Number: 94-66280 

98 97 4 3 2 

Interpretation of the printing code: the rightmost double-digit number is the year of 
the book's printing; the rightmost single-digit, the number of the book's printing. For 
example. a printing code of 95-1 shows that the first printing of the book occurred in 
1995. 

Composed in AGaramond MCPdigital by Macmillan Computer Publishing 

Printed in the United States of America 

Trademarks 

All terms mentioned in this book that are known to be trademarks or service marks 
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of 
this information. Use of a term in this book should not be regarded as affecting the 
validiry of any trademark or service mark. Turbo Assembler is a registered trademark of 
Borland International. 



Publisher 
Richard K Swadley Marketing Manager Graphics Image Specialists 

Gregg Bushyeager Becky Beheler 

Acquisitions Manager Steve Carlin 

Greg Wiegand Assistant Marketing Manager Brad Dixon 
Teresa Forrester 

Michelle Milner jason Hand 
Managing Editor Clint Lahnen 
Cindy Morrow Cover Designer Cheri Laughner 

Tim Amrhein Mike Reynolds 

Acquisitions Editor Laura Robbins 

Chris Denny Book Designer Dennis Sheehan 
Craig Smail 

Alyssa Yesh jeffYesh 
Development and Production 

Editor Vice President of Production 
Fran Hatton Manufacturing and Production 

Mona Brown 
jeffValler Michael Brumitt 

Software Development jama Carter 
Specialist Manufacturing Coordinator Charlotte Clapp 

Steve Flatt Paul Gilchrist Mary Ann Cosby 
judy Everly 

Editorial Coordinator Imprint Manager 
Donna Harbin 
Michael Henry 

Bill Whitmer Kelly Dobbs Aleata Howard 
Louisa Klucznik 

Editorial Assistants Team Supervisor Ayanna Lacey 

Carol Ackerman Kary Bodenmiller Kevin Laseau 

Sharon COx Shawn MacDonald 

Lynette Quinn Support Services Manager 
Donna Martin 

Casey Price 

Technical Reviewer 
juli Cook Brian-Kent Proffitt 

Erich Richter 
Greg Guntle Support Services Supervisor SASpringer 

Mary Beth Wakefield jilt Thompkins 
Tina Trettin 

Mark Walche 
Production Analysts Dennis Wesner 

Angela Bannan Michelle Worthington 
Dennis Clay Hager 
Bobbi Satterfield Indexer 

Bront Davis 



Overview 

Part I Programming with Assembly Language 1 

1 Introduction 3 

2 First Steps 19 

3 A Bit of Binary 53 

4 Programming in Assembly Language 73 

5 Simple Data Structures 143 

6 Complex Data Structures 197 

7 Input and Output 247 

8 Macros and Conditional Assembly 299 

9 Disk-File Processing 337 

10 Interrupt Handling 369 

11 Advanced Topics 423 

Part II Application Programming 491 

12 Mixing Assembly Language with Pascal 493 

13 Mixing Assembly Language with C and C++ 531 

14 Programming with Objects 583 

15 Programming for Windows 653 

Part III Reference 701 



16 Assembly Language Reference Guide 703 

17 Turbo Assembler Reference 787 

A Assembling the Disk Files 817 

B File Directory 825 

C Answers to Exercises 829 

Bibliography 867 

Index 871 



Contents 

Part I 

1 

2 

Programming with Assembly Language 1 

Introduction 3 

Learning Assembly Language .............................................. 4 
You Take the High Level and I'll Take the Low LeveL ... 4 
Developing Mental Pictures ............................................ 5 
Preventive Debugging ..................................................... 6 
Striving for the Ideal ....................................................... 7 

Advantages of Assembly Language ...................................... 7 
Disadvantages of Assembly Language .................................. 8 
Hardware Requirements ..................................................... 9 
Software Requirements ..................................................... 10 
Microsoft Windows Users........................ ......................... 11 
How To Use This Book .................................................... 11 

About the Chapters ....................................................... 11 
About the Modules ....................................................... 13 

How To Organize Your Disks .......................................... 13 
Hard Drives ; ................................................................. 13 
Floppy Disk Drives ....................................................... 14 
Older Turbo Assembler Versions .................................. 15 

Entering Program Listings ....................................... ......... 15 
Getting More Help ........................................................... 16 
Summary .......................................................................... 16 
Exercises ... ........................................................................ 17 

First Steps 19 
Assembly Language: Parts and Pieces ................................ 20 

The Header ................................................................... 20 
Equates ......................................................................... 23 
The Data Segment ........................................................ 24 
Reserving Space for Variables ........................................ 25 
The Program Body ....................................................... 27 



A Few Comments on Comments .................................. 29 
The Closing .................................................................. 30 

Assembling a Program ....................................................... 30 
Understanding Object Code ............................................. 32 
Command-Line Options .................................................. 33 
Dealing with Errors .......................................................... 34 
Introducing Turbo Debugger ........................................... 37 

Debugging with an 80386 or Later Processor ................ 37 
Turbo Debugger as Teacher .......................................... 38 

Writing .COM and .EXE Programs .................................. 42 
Writing .COM Programs .............................................. 44 
Assembling .COM Programs ........................................ 45 
It Ain't Over Till ... Actually, It Ain't Ever Over .......... 45 
Writing .EXE Programs ................................................ 46 
Printing Listings ........................................................... 46 
Listing PR132 ............................................................... 48 

Summary .......................................................................... 49 
Exercises ........................................................................... 50 
Projects ............................................................................. 51 

3 A Bit of Binary 53 
Memorabilia ..................................................................... 54 
How Many Bits in a Byte? ................................................ 55 
Binary Arithmetic and Logic ............................................. 56 
Counting in Binary ........................................................... 56 

The Power of2 ............................................................. 58 
Finite Values ................................................................. 58 
The K Game ................................................................. 59 

Binary and Hexadecimal ................................................... 59 
Converting Hexadecimal and Decimal Values .............. 60 

Two's Complement Notation ........................................... 61 
Subtracting by Adding .................................................. 64 



EOITION 

Logical Operators ............................................................. 65 
Masking with AND ...................................................... 65 
Setting Bits with OR ..................................................... 66 
The Exclusive OR Club ................................................ 67 

Shifting and Rotating ........................................................ 69 
Summary .......................................................................... 70 
Exercises ...........................................................•............... 71 
Projects ............................................................................. 72 

4 Programming in Assembly Language 73 
Memory Segmentation ..................................................... 74 

Paragraphs, Segments, and Offsets ................................ 75 
8086 Registers .................................................................. 76 

General-Purpose Registers ............................................. 77 
Pointer and Index Registers ........................................... 77 
Segment Registers ......................................................... 78 
Instruction Pointer ........................................................ 79 
Flags ............................................................................. 79 

Instruction Groups and Concepts ..................................... 80 
Data Transfer Instructions ............................................ 80 
A Moving Example ....................................................... 82 
Running MOY in Turbo Debugger .............................. 83 
Stacking the Deck ......................................................... 84 
How Stacks Operate ..................................................... 85 
A Stack Demo ............................................................... 86 
Running the PUSHPOP Demo .................................... 87 
Stack Management ....................................................... 88 
Exchanging Data .......................................................... 89 

Arithmetic Instructions ..................................................... 90 
Addition Instructions .................................................... 92 
Subtraction Instructions ................................................ 93 
Add and Subtract Demonstration ................................. 94 
Running the ADDSUB Demo ...................................... 95 
Watching Out for Number One ................................... 96 
Sneaky Subtractions ...................................................... 97 

.. 
xu 



Multiplying and Dividing Unsigned Values .................. 97 
Running the MULDIV Demo ...................................... 98 
Multiplying and Dividing Signed Values .................... 100 
Converting Bytes, Words, and Doublewords .............. 100 

Logic Instructions ..................................... ........... ........... 101 
Logical Combinations ................................................. 102 
Running the ANDORXOR Demo ............................. 103 
Testing 0001 00100011 ............................................. 103 
Shifting Bits Around ................................................... 104 
Running the SHIFT Demo ........................................ 106 
Why Shift? .................................................................. 109 
Shifty Multiplies and Divides ...................................... 110 

Flow-Control Instructions .............................................. 110 
Unconditional Transfers ............................................. 112 
Calling Subroutines .................................................... 112 
Running the SUBDEMO Program ............................. 114 
The Long and Short ofIt ............................................ 116 
Passing Values to and from Subroutines ...................... 117 
To Push or Not to Push .............................................. 118 
Jumping Unconditionally ........................................... 119 
Jumping Conditionally ............................................... 120 
Double Jumping............. ........................... ................. 122 
Using Conditional Jumps ........................................... 123 
Conditional Restrictions ............................................. 124 
Learning More About Conditional Jumps ................... 125 

Processor Control Instructions ........................................ 126 
Flag Operations .......................................................... 127 
Getting in Synch ......................................................... 128 
Something for Nothing ............................................... 128 
Saving Jump Space ...................................................... 129 
Using the]UMPS Directive ........................................ 130 

String Instructions .......................................................... 131 
String Index Registers ................................................. 132 
Loading Strings ........................................................... 133 

... 
XlU 



Using Shorthand String Mnemonics ........................... 134 
Addressing String Labels ............................................. 135 
Storing Data to Strings ............................................... 135 
Moving Strings ........................................................... 136 
Filling Memory ......................................................... ,. 136 
Scanning Strings ......................................................... 137 
When Zero Means Zero .............................................. 138 
Comparing Strings ...................................................... 138 

Summary ........................................................................ 139 
Exercises ......................................................................... 140 
Projects ........................................................................... 141 

5 Simple Data Structures 143 

Addressing Data in Memory ........................................... 144 
Memory-Addressing Modes ............................................ 145 

Direct Addresses ......................................................... 146 
Overrides .................. .................................................. 146 
Register-Indirect Addresses ......................................... 147 
Base Addresses ............................................................ 148 
Indexed Addresses ....................................................... 149 
Base-Indexed Addresses ............................................... 149 
Using the ASSUME Directive ..................................... 150 

Expressions and Operators .............................................. 152 
Simple Variables ............................................................. 152 

Wide Open Spaces ...................................................... 153 
Initialized Versus U nitialized Data .................................. 155 
String Variables ............................................................... 157 

Quoting Quotes .......................................................... 158 
Local Labels .................................................................... 159 
An ASCIIZ String Package .. ; .......................................... 160 
Programming in Pieces ................................................... 170 

Public Policy ............................................................... 171 
Assembling and Linking Separate Modules ................. 172 

xiv 



A String 110 Package ...................................................... 173 
Procedures in STRIO ................................................. 176 
Using the STRIO Module .......................................... 177 

Linking Modules into a Program .................................... 179 
New Features in ECHOSTR.ASM ............................. 180 
A Simplified External Example ................................... 181 

Exploring the Strings Module ......................................... 182 
Repeated-Loop Calculations ....................................... 187 

Summary ........................................................................ 193 
Exercises .. ............................ ...................... ...... ............... 194 
Projects ........................................................................... 195 

6 Complex Data Structures 197 

Structures ........................................................................ 198 
Declaring Structured Variables .................................... 198 
A Structured Demo............... .............. .......... .............. 199 
Running the STRUC Demo ....................................... 200 
Using Structured Variables ......................................... 202 
STRIO Structures ....................................................... 203 

More About Numeric Variables ...................................... 204 
Using RADIX ............................................................. 204 
Signed and Unsigned Integers ..................................... 205 
Floating-Point Numbers ............................................. 205 
Binary-Coded Decimals .............................................. 206 

Arrays in Assembly Language .......................................... 206 
Changing Types with LABEL ..................................... 208 
Indexing Arrays ........................................................... 209 
Multibyte Array Values ............................................... 211 

Unions and Records ........................................................ 213 
Declaring RECORD Types ........................................ 214 
Setting Default Bit-Field Values .................................. 215 
Using RECORD Variables ......................................... 216 
What's in a Field Name? ............................................. 216 

xv 



n"r,,,nLrK SECOND EDITION 

Extracting Bit Fields ................................................... 217 
Recombining Bit Fields ............................................... 218 

Efficient Logical Operations ........................................... 220 
Automating Efficient Logical Operations .................... 220 
Automating Record Field Operations ......................... 221 

Using Predefined Equates ............................................... 223 
Running VERSION .; ..................................................... 224 
Converting Numbers and Strings .................................... 225 

Using the BINASC Module ........................................ 231 
Putting BINASC to Work .......................................... 237 
How EQUIP Works ................................................... 240 

Programming a Number Base Converter ........................ 240 
Summary ........................................................................ 243 
Exercises ......................................................................... 244 
Projects ........................................................................... 245 

7 Input and Output 247 
Standard Input and Output ............................................ 248 

Taking a Break ............................................................ 248 
Unfiltered Input ......................................................... 249 
Unfiltered Output ...................................................... 250 
Waiting Around-and Around ................................... 251 
Key Press Checking ..................................................... 252 
Reading Function Keys ............................................... 254 
Flushing the Type-Ahead Buffer ................................. 255 
Introducing DOS Handles .......................................... 256 

Writing DOS Filters ....................................................... 258 
How FILTER Works .................................................. 262 
Customizing FILTER ................................................. 264 

Printing Text .................................................................. 265 
Selecting Printer Features ............................................ 266 

Memory-Mapped Video ................................................. 267 
Cursor Coordinates ..................................................... 269 
More About I/O Ports ................................................ 272 

· XVI 



A Memory-Mapped Video Module ................................. 272 
A SCREEN Demonstration ........................................ 279 
Using the SCREEN Module ....................................... 282 

A Module for Keyboard Control ...................................... 289 
A KEYBOARD Demonstration .................................. 290 
Using the KEYBOARD Module ................................. 292 

Summary ........................................................................ 296 
Exercises ......................................................................... 296 
Projects ........................................................................... 297 

8 Macros and Conditional Assembly 299 

What Are Macros? .......................................................... 300 
Macro Advantages and Disadvantages ............................. 300 
Constructing Macros ...................................................... 301 
Purging Macro Definitions ............................................. 301 
Parameter Substitution ................................................... 302 

Symbolic Parameters ................................................... 304 
Numeric Parameters ................................................... 305 . 
String Parameters ........................................................ 306 

Macros and Variables ...................................................... 307 
Definitions that Repeat ............................................... 308 

Macros and Code ............................................................ 310 
Register Preservation ................................................... 311 
Using the Include Directive ........................................ 312 
Local Labels ................................................................ 313 

Conditional Compilation ................................................ 314 
Defining Conditional Symbols ................................... 314 
Using Conditional Symbols ........................................ 316 
To Define or Not To Define ...................................... 319 
Handling Conditional Errors ...................................... 319 
Ending Macro Expansion ........................................... 320 
GOTO Directive ........................................................ 321 
Meanwhile, Back at the Macro .................................... 321 
Pushing and Popping the Assembler State ................... 322 

.. 
XVIl 



Extracting Bit Fields ................................................... 217 
Recombining Bit Fields ............................................... 218 

Efficient Logical Operations ........................................... 220 
Automating Efficient Logical Operations .................... 220 
Automating Record Field Operations ......................... 221 

Using Predefined Equates ............................................... 223 
Running VERSION ....................................................... 224 
Converting Numbers and Strings .................................... 225 

Using the BINASC Module ........................................ 231 
Putting BINASC to Work .......................................... 237 
How EQUIP Works ................................................... 240 

Programming a N umber Base Converter ........................ 240 
Summary ........................................................................ 243 
Exercises ......................................................................... 244 
Projects ........................................................................... 245 

7 Input and Output 247 

Standard Input and Output ............................................ 248 
Taking a Break ............................................................ 248 
Unfiltered Input ......................................................... 249 
Unfiltered Output ...................................................... 250 
Waiting Around-and Around ................................... 251 
Key Press Checking ..................................................... 252 
Reading Function Keys ............................................... 254 
Flushing the Type-Ahead Buffer ................................. 255 
Introducing DOS Handles .......................................... 256 

Writing DOS Filters ....................................................... 258 
How FILTER Works .................................................. 262 
Customizing FILTER ................................................. 264 

Printing Text .................................................................. 265 
Selecting Printer Features ............................................ 266 

Memory-Mapped Video ................................................. 267 
Cursor Coordinates ..................................................... 269 
More About I/O Ports ................................................ 272 

· XVi 



A Memory-Mapped Video Module ................................. 272 
A SCREEN Demonstration ........................................ 279 
Using the SCREEN Module ....................................... 282 

A Module for Keyboard Control ..................................... 289 
A KEYBOARD Demonstration .................................. 290 
Using the KEYBOARD Module ................................. 292 

Summary ........................................................................ 296 
Exercises ......................................................................... 296 
Projects ........................................................................... 297 

8 Macros and Conditional Assembly 299 
What Are Macros? .......................................................... 300 
Macro Advantages and Disadvantages ............................. 300 
Constructing Macros ...................................................... 301 
Purging Macro Definitions ............................................. 301 
Parameter Substitution ................................................... 302 

Symbolic Parameters ................................................... 304 
Numeric Parameters ................................................... 305 . 
String Parameters ........................................................ 306 

Macros and Variables ...................................................... 307 
Definitions that Repeat ............................................... 308 

Macros and Code ............................................................ 310 
Register Preservation ................................................... 311 
Using the Include Directive ........................................ 312 
Local Labels ................................................................ 313 

Conditional Compilation ................................................ 314 
Defining Conditional Symbols ................................... 314 
Using Conditional Symbols ........................................ 316 
To Define or Not To Define ...................................... 319 
Handling Conditional Errors ...................................... 319 
Ending Macro Expansion ........................................... 320 
GOTO Directive ........................................................ 321 
Meanwhile, Back at the Macro .................................... 321 
Pushing and Popping the Assembler State ................... 322 

xvii 



MASTERING TURBO ASSEMBLER, SECOND EDITION 

Starting a DOS Macro Library ........................................ 324 
Using DOSMACS.ASM ............................................. 331 

Summary ........................................................................ 333 
Exercises ......................................................................... 334 
Projects ........................................................................... 335 

9 Disk-File Processing 337 
Getting a Handle on Files ............................................... 338 
Disk-File Concepts ......................................................... 338 
Maximum Files ............................................................... 339 
Opening and Closing Files .............................................. 339 
Flushing File Buffers ....................................................... 340 
Closing Files ................................................................... 341 
Dealing with Disk Errors ................................................ 341 

Using DiskErr ............................................................. 344 
How DiskErr Works ................................................... 344 

Creating New Files ......................................................... 345 
Reading the DOS Command Line .................................. 346 

Running a PARAMS Demonstration .......................... 349 
Using PARAMS .......................................................... 351 
How PARAMS Works ................................................ 352 

Reading and Writing Text Files ...................................... 354 
How KOPY.ASM Works ............................................ 358 

Reading and Writing Data Files ...................................... 359 
Reading the Disk Direcrory ............................................ 361 

How DR Works ......................................................... 364 
Summary ........................................................................ 366 
Exercises ......................................................................... 367 
Projects ........................................................................... 367 

10 Interrupt Handling 369 
We Interrupt This Program ............................................ 370 
Writing Interrupt Service Routines ................................. 370 
Maskable Versus Nonmaskable Interrupts ...................... 371 
Interrupt Vectors and the 8259 Chip .............................. 372 

... 
XVlll 



Why hIt Doesn't Halt ..................................................... 376 
Servicing Interrupts ......................................................... 377 
Tapping into the PC Timer Interrupt ............................. 380 

Timer Tick Tricks ...................................................... 381 
Interrupts and Variables .............................................. 381 
Interrupting ISRs ........................................................ 382 

The End-of-Interrupt Command .................................... 384 
Interrupts and Stacks ...................................................... 385 
Using int and into Instructions ....................................... 388 
Trapping Divide-Fault Interrupts ................................... 389 
Fixing a Divide Fault ...................................................... 389 
Installing a Divide-Fault Handler ................................... 390 

Testing DIV286 ......................................................... 393 
How DIV286 Works .................................................. 394 

Installing TSR Code in Memory ..................................... 395 
Interrupt-Driven Serial Communications ....................... 397 

Running an ASYNCH Demonstration ....................... 405 
How TRM Works ...................................................... 408 
How To Use the ASYNCH Package ........................... 409 

Debugging with Interrupts ............................................. 414 
Single Stepping ............................................................... 414 

Setting and Clearing tf.. .............................................. 415 
How SINGLE Works ................................................. 419 

Summary ........................................................................ 421 
Exercises ......................................................................... 422 
Projects ........................................................................... 422 

11 Advanced Topics 423 

Advancing Your Assembly Language Knowledge ............ 424 
Binary Coded Decimals .................................................. 424 

BCDs in Memory ....................................................... 425 
Unpacked BCD Instructions ...................................... 426 
Converting Unpacked BCD and ASCII ...................... 427 
Packed BCD Instructions ........................................... 428 

xix 



A BCD Math Package .................................................... 429 
Using the BCD Module .............................................. 434 

Advanced Separate Assemblies ........................................ 438 
Using Communal Variables ........................................ 439 
Using Global Variables ............................................... 440 
Including Global Variables ......................................... 440 
Using the INCLUDELIB Directive ............................ 441 

Processing Tables ............................................................ 442 
How TABLE.ASM Works .......................................... 443 
Practical xlat Uses ....................................................... 443 
How BOXCHAR.ASM Works ................................... 445 
Using xlat with Multiple-Dimension Tables ............... 445 
Other xlat Forms ........................................................ 446 

Declaring Segments the Hard Way ................................. 446 
The SEGMENT Directive .............................................. 447 

Using SEGMENT ...................................................... 450 
The ASSUME Directive ................................................. 451 
The GROUP Directive ................................................... 452 
Using Segments in Programs ........................................... 453 

Using HARDSHEL.ASM ........................................... 456 
Where It's At .............................................................. 456 
How COLDBOOT.ASM Works ............................... 458 

Far Data Segments .......................................................... 458 
Multiple Far Data Segments ....................................... 460 
Uninitialized Far Data Segments ................................. 461 

Programming the 80286 and Later Processors ................ 461 
Using the bound Instruction ....................................... 462 
How BOUND286.ASM Works ................................. 465 
Using enter and leave .................................................. 466 
Using push a and popa ................................................. 467 
Reading and Writing Port Strings ............................... 467 
Immediate Shift and Rotate Values ............................. 468 

xx 



CONTENTS I 

Programming the 80386 ................................................. 468 
Starting to Program the 80386 .................................... 469 
Scanning and Setting Bits ........................................... 470 
Testing Bits ................................................................. 472 
More Conversions ....................................................... 472 
Other 80386 Instructions ........................................... 472 
Double-Precision Shifts ..................... : ........................ 474 

The VERSION Directive ............................................... 474 
Enumerated Data Types ................................................. 475 
Getting SMART ............................................................. 478 

Smart Effective Addresses ............................................ 478 
Sign-Extended Boolean Operations ............................ 479 
Call Me Smart ............................................................ 479 
Pushy Pushy ............................................................... 480 

Some Additional Instructions .......................................... 481 
Loop the Loop ............................................................ 481 
Enter or Leave When Ready ....................................... 482 
Return to Sender ......................................................... 482 
Interrupting 32-Bit Code Segments ............................ 483 
More Pushy Instructions ............................................. 483 
Shifty Instructions ...................................................... 483 
Fast Multiplications .................................................... 484 

Summary ........................................................................ 486 
Exercises ......................................................................... 488 
Projects ........................................................................... 489 

Part II Application Programming 

12 Mixing Assembly Language with Pascal 

491 

493 

Room for Improvement .................................................. 494 
Identifying Critical Code ................................................ 495 
Converting Pascal to Assembly Language ........................ 496 
External Procedures and Functions ................................. 498 

Calling External Routines from Pascal ........................ 498 

. 
XXI 



The Pascal Memory Model ............................................. 499 
PASSHELL's DATA Segment .................................... 500 
Using Static Variables ................................................. 501 
PASSHELL's CODE Segment .................................... 502 

Calling Pascal Procedures ................................................ 502 
The Code-Segment Body ............................................ 503 

A (Somewhat) Crazy Example ......................................... 504 
Understanding PASDEMO ........................................ 507 

Addressing Code-Segment Data ...................................... 508 
Addressing Typed Constants ........................................... 509 
Calling Pascal Functions ................................................. 509 
Addressing Pascal Variables ............................................. 511 
Calling External Functions ............................................. 511 
Passing Parameters .......................................................... 512 

Value Parameters ........................................................ 512 
Returning from External Code .................................... 514 
Variable Parameters .................................................... 514 

Using the TP AS CAL Memory Model ............................. 515 
Using the ARG Directive ................................................ 516 

Deallocating S tacked Parameters ................................. 516 
Writing External String Functions .................................. 517 

How FILLSTR Works ................................................ 518 
Declaring Parameters Without ARG ........................... 519 

Going for Speed .............................................................. 520 
The Pascal Program .................................................... 520 
Examining STRSLOWs Code ................................... 522 
Optimizing STR.PAS ................................................. 524 
How STR.ASM Works ............................................... 525 

Summary ........................................................................ 526 
Exercises ......................................................................... 527 
Projects ........................................................................... 529 

13 Mixing Assembly Language with C and c++ 531 

Mixing C and c++ with Assembly Language .................. 532 
Identifying Critical Code ................................................ 532 

xxii 



~~-~--....... --------------------------

Using Registers ............................................................... 533 
Inline Assemblies ............................................................ 533 

Compiling and Assembling Inline Code ..................... 535 
How To Compile T ALLY.C ....................................... 535 
Pragmatic Assemblies .................................................. 536 
Locations for Data and Code Statements .................... 537 
Enabling 80286/386 Instructions ............................... 538 

Sharing Data ................................................................... 538 
Declaring Assembly Language Data ............................ 539 
C Structures ................................................................ 540 
Sharing Code .............................................................. 541 
How UPDOWN.C Works ......................................... 543 
Behind the Scenes ....................................................... 543 

External Assemblies ......................................................... 544 
Simplified Memory Models ........................................ 545 
Using CSHELL.ASM ................................................. 547 
About Underscores ..................................................... 548 
Using Far Data ........................................................... 548 
Sharing Code .............................................................. 549 
Compiling CFILLSTR.C ............................................ 549 

Calling Assembly Language Functions from C ................ 550 
Assembling and Linking External Modules ..................... 551 

Assembling and Linking Separately ............................. 552 
Easier Linking ............................................................. 553 

Debugging Multilanguage Programs ............................... 554 
How CFILLSTR.C and CFILL.ASM Work ............... 555 

Calling C Functions from Assembly Language ................ 555 
Function Results ............................................................. 557 
LOCAL Variables ........................................................... 558 
Calling C++ Functions from Assembly Language ............ 560 

Name Mangling .......................................................... 560 
Calling Assembly Language Functions from C++ ........ 562 
Multiple External Functions ....................................... 563 
Calling C++ Functions from Assembly Language ........ 563 
Mixing Global Data .................................................... 564 

XX111 



xxiv 

Passing Function Arguments ........................................... 565 
Passing Arguments from c++ to Assembly Language .. 567 
Passing Arguments from Assembly Language to c++ .. 568 
Declaring Procedure Arguments Automatically ........... 569 

Mixing C++ Classes with Assembly Language ................. 570 
Creating the C++ Class ............................................... 571 
Accessing Class Objects from Assembly Language ....... 576 

Summary ........................................................................ 579 
Exercises ......................................................................... 580 
Projects ........................................................................... 581 

14 Programming with Objects 583 
Object-Oriented Programming with TASM ................... 584 
Why Use OOP? .............................................................. 584 

Advantages ofOOP .................................................... 585 
Disadvantages of OOP ............................................... 586 
OOP and Turbo Assembler ........................................ 586 
OOP on Its Own Terms ............................................. 587 

Fundamentals ofTASM Objects ..................................... 589 
Encapsulation ............................................................. 590 
Inheritance .................................................................. 602 
Virtual Methods ......................................................... 609 

Polymorphism ................................................................ 627 
Creating a List Object ................................................. 627 
Using the List Object .................................................. 633 

Other OOP Tips and Tidbits ......................................... 645 
A Bug in the Debugger ............................................... 645 
More on VMT Pointers .............................................. 646 
Initializing a VMT Pointer ......................................... 647 
Calling Ancestor Virtual Methods ............................... 648 
VMT s and Segment Addressing .................................. 648 
Calling Virtual Methods without CALL. .. METHOD 648 



Optimized Tail Recursion ........................................... 650 
Summary ........................................................................ 651 
Exercises ......................................................................... 651 
Projects ........................................................................... 652 

15 Programming for Windows 653 

Introducing Windows Programming with T ASM ........... 654 
Minimum Windows Application ................................ 655 
How to Assemble WHello .......................................... 662 
The Preface ................................................................. 663 
External and Public Declarations ................................ 664 
Data Segments ............................................................ 665 
Startup Code .............................................................. 666 
Initializing the Data Segment Register ........................ 668 
The WinMain Function ............................................. 669 
Window Registration .................................................. 669 
Window Creation ....................................................... 672 
The Message Loop ...................................................... 673 
The Window Procedure .............................................. 675 
Linker Definition File ................................................. 677 
Resource Script File .................................................... 678 

Developing Windows Applications with T ASM ............. 679 
Windows Application Shell ......................................... 679 
How to Assemble WinApp ......................................... 692 
Overview of WinApp .................................................. 692 
Menus ......................................................................... 695 
Dialog Boxes ............................................................... 696 
The Dialog Procedure ................................................. 697 

Summary ........................................................................ 698 
Exercises ......................................................................... 699 
Projects ........................................................................... 700 

xxv 



· XXVI 

I 
i MASTERING TURBO ASSEMBLER, SECOND EDITION 

Part III Reference 701 

703 16 Assembly Language Reference Guide 

About the Reference ....................................................... 704 
Protected-Mode Instructions .......................................... 704 
Going to the Source ........................................................ 704 
Instruction Timings and Binary Encodings ..................... 705 
How To Use the Reference ............................................. 706 

More About the Headers ............................................ 707 
More About the Syntax/Example Sections .................. 707 
More About the Examples and Samples ...................... 709 

17 Turbo Assembler Reference 787 
Symbols .......................................................................... 788 
Operators ........................................................................ 792 
Mode Equivalents ........................................................... 795 
Directives ........................................................................ 797 

A Assembling the Disk Files 817 

Assembly Language Listings ............................................ 818 
Requirements .............................................................. 818 
Instructions ................................................................. 818 

Pascal Listings ................................................................. 819 
Requirements .............................................................. 819 
Instructions ................................................................. 819 

C Listings ....................................................................... 820 
Requirements .............................................................. 820 
Instructions ................................................................. 820 

C++ Listings ................................................................... 820 
Requirements .............................................................. 820 
Instructions ................................................................. 821 

Object-Oriented Listings ................................................ 821 
Requirements .............................................................. 821 
Instructions ................................................................. 821 



Windows Listings ........................................................... 822 
Requirements .............................................................. 822 
Instructions ................................................................. 822 

All Listings ...................................................................... 823 
Requirements .............................................................. 823 
Instructions ................................................................. 823 

Errors During Assembly .................................................. 824 

B File Directory 825 

C Answers to Exercises 829 

Chapter 1 ........................................................................ 830 
Chapter 2 ........................................................................ 831 
Chapter 3 ........................................................................ 832 
Chapter 4 ........................................................................ 833 
Chapter 5 ........................................................................ 834 
Chapter 6 ........................................................................ 836 
Chapter 7 ........................................................................ 841 
Chapter 8 ........................................................................ 843 
Chapter 9 ........................................................................ 846 
Chapter 10 ...................................................................... 850 
Chapter 11 ...................................................................... 851 
Chapter 12 ...................................................................... 854 
Chapter 13 ...................................................................... 856 
Chapter 14 ...................................................................... 859 
Chapter 15 ...................................................................... 864 

Bibliography 867 

Index 871 

.. 
XXVII 





~.~- .... ---------------------------

Preface 

Programmers are always arguing about which language is the best. Try to win C program
mers over to Pascal and they'll tell you to go eat quiche. Try to get Pascal pundits to recog
nize the fresh look of BASIC and you'll probably be told where to GOTO. And don't even 
think of suggesting to FORTH fans that theirs is an obscure language, hardly suitable for 
any "serious" work-unless, that is, you're prepared to be threaded up and tarred right Out 
of town. 

I try to avoid getting into such arguments, which I find to be more amusing than significant. 
What if, instead of programmers, the debaters were chefs arguing about whether a souffle 
will be more heavenly if the recipe is written in French, English, or Spanish? Of course, that's 
silly-you'll get the same results no matter what language spells out the ingredients. Flour is 
flour, right? 

The same is true in programming. All high-level languages must translate their instructions 
into native machine code to run on computer processors such as the PC's 8086, 80386, or 
80486 microprocessors, covered in depth in these pages. With this in mind, it's easy to see 
that, when stripped bare (as the cover of this book seems to suggest), all programming lan
guages actually speak the same tongue-forked as it may be in some cases. 

So, no matter what high-level language you favor, it makes sense to learn assembly language, 
the only computer language that lets you talk to a naked computer in its own dialect. In the 
following chapters, I'll concentrate mostly on how to write entire programs in assembly lan
guage, paying special attention to developing reusable library modules. There are chapters 
that explain how to mix assembly language with Pascal, C, and C++. This neW edition also 
includes chapters on Turbo Assembler's object-oriented features, and on Windows applica
tion development using assembly language. 

To the beginners among you, I add this note: If you've heard that assembly language is dif
ficult, don't believe it. With Turbo Assembler's many features including Ideal mode, and 
with the guiding hand of the marvelous Turbo Debugger, you'll soon be twiddling bits with 
the best of them. Quiche indeed! 

Tom Swan 



Acknowledgments 

They say that writing is a lonely profession. Fortunately, in writing this book's first and sec
ond editions, I've been anything but alone: Those who contributed their talents to this book 
include, at Sams, Greg Croy, Richard Swadley, and Fran Hatton; at Waterside Productions, 
my agents, Bill Gladstone, Matt Wagner, and staff; at Borland International, Nan Borreson; 
and at home, my parents Reyer and Mary Swan, who looked after the house and mail. Thank 
you all for helping to make it possible for me to write this book and survive the experience. 

lowe special and warm regards to Richard Day, to whom this book is dedicated, for love, 
friendship, and understanding. To Fred McGeehan for stimulating conversation and great 
coffee. And to Anne who endures me, God knows how sometimes. 



Programming 
with Assembly 
Language 





Introduction 

-Learning Assembly Language, 4 -Advantages of Assembly Language, 7 -Disadvantages of Assembly Language, 8 -Hardware Requirements, 9 -Software Requirements, 10 -Microsoft Windows Users, 11 -How to Use This Book, 11 -How to Organize Your Disks, 13 -Entering Program Listings, 15 -Getting More Help, 16 -Summary, 16 -Exercises, 17 



1 

4 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Learning Assembly Language 
I remember when I discovered assembly language. The nearest I've come to experiencing the 
same elation was the day I first balanced a two-wheeler, wiggling my way down our street, 
my father's thumb no longer snagging my belt, my fear of falling melting like bee's wax in 
the sun. 

Mastering assembly language gives many programmers the same sort of astonished joy. Why? 
Because assembly language is the only computer language that lets you talk to a computer in 
its native tongue, commanding the hardware to perform exactly as you say. If you like to be 
in charge, if you like to control things, if you're interested in details, you'll be right at home 
with assembly language. 

My goal in writing this book is to offer a guiding hand as you find your own balance in as
sembly language programming. Read the rest of this chapter for suggestions on how to pre
pare your disk and how to make the best use of the book's various parts and pieces. Enter the 
examples--or examine the files on the accompanying disk-puzzle through the exercises and 
projects at the end of each chapter, and don't be afraid to experiment on your own. Above 
all, have fun! (If you become frustrated, see "How To Get More Help" later in this chapter.) 

You Take the High Level and I'll Take the Low Level 
Even though it may appear that a computer "understands" high-level languages such as BASIC, 
Pascal, or C, all computer programs actually run in machine language, the coded bytes that 
drive the computer's central processing unit (CPU). For this reason, machine code is a better 
term for this lowest of low-level computer languages-the only language the CPU knows. 
Because CPUs can't directly execute C and Pascal statements, programs in these and other 
high-level languages must be compiled(translated) to machine code before the programs can 
be used. Similarly, a program written in an interpreted language such as BASIC or LISP must 
be translated to machine code, although in these cases, the translation happens invisibly while 
the program runs, usually one statement at a time. 

Assembly language programs are also translated to machine code by a program called an as
sembler. Despite this similarity with other languages, assembly language is neither high nor 
low level; it's sort of stuck in between. Unlike C and Pascal statements, which might trans
late to dozens of machine-code bytes, assembly language instructions directly relate to indi
vidual machine codes-the major distinction between assembly language and high-level 
computer languages. All languages have their good points, but only assembly language al
lows you to write programs directly in the CPU's indivisible instruction set. 



-_ ...... _-------------------------------

INTRODUCTION 

NOTE 

. Experienced CPro'&ra~ maY.be.frowning because they know that some C statements
atsosameTurOOP.isCaf·stclie~ehts--translatetosingle machine codes. FORTH language fans 
mayalsoarguet~attheit'~xicon'pro\lidesdirecttpw~level access. Even so, while C and 
FO~y ll()lqeth ofhlgij:h:weJ languages, they're still miles above assembly 
J~o' . . . i~Jic.~;. ..GpL:l.; .. :;., 
~ythewaYtsh~d¢dbOx$ ~ct:.~ this6neare uSed throughout this book to point out 
interEi$ting view&anttOther stenery as you travel through the chapters. 

If assembly language and machine code enjoy a one-co-one relationship, why not program 
directly in machine code? The answer is: Machine code is just too cumbersome. While it's 
true that very early computer programs were programmed in machine code, today this is 
almost never done-and with good reasons. For example, many machine codes depend on 
their relative positions in memory. Also, in pure machine code, there are no named 
variables, and there is no way except by fixed addresses to tell a program where values and 
subroutines are stored. This means that if you change one instruction in a 1O,000-byte 
machine-code program, you may have to modifY 9,000 other codes as well! 

Obviously, such hard labor lacks appeal for fun-loving programmers, whose brains, despite 
popular opinion, are not bitmapped and wired with AND gates. Programming directly in 
machine code is drudge work. Programming in assembly language gives you the best of two 
worlds, combining direct access to the computer's lowest levels with features like named 
variables and numeric expressions that make programming in high-level languages practical 
and enjoyable. With assembly language, you can change one instruction and then feed the 
modified code to Turbo Assembler, which translates the entire program to machine code. 
Some people say that assembly language is only one step above machine code. That's true, 
but it's a big step. 

Developing Mental Pictures 
Because assembly language statements directly translate to the CPU's fundamental machine 
codes, the best way to become a crack assembly language programmer is to develop good 
mental models of a computer's inner workings. The more you know about how your com
puter is constructed and the more familiar you are with the functions in DOS and the ROM 
BIOS on PCs, the better you will be able to apply your knowledge of assembly language 
when writing computer programs. 

5 



6 

In later chapters, I concentrate on subject areas that explain in detail how to control various 
parts of a PC's hardware. For example, one chapter deals with the keyboard and display, 
another chapter explains serial communications. The goal in these chapters is to help you 
develop mental models of what really goes on inside your computer, while showing how to 
control the computer's devices with assembly language statements. 

to system. 

Preventive Debugging 
Some people find it difficult to make the intuitive leap between a program's written state
ments and the actions that occur when the program runs. This is especially so with cryptic 
assembly language instructions such as mov ax, bx and xor ex, ex, which appear to have no 
connection with displaying characters on-screen, printing text, and dialing up remote 
systems via modems. Comprehending a program by mentally executing out-of-context 
ssembly language statements can frustrate even the most mechanical of thinkers. But don't 
let such moments ruin your day. This is hard for everybody. 

Using a program such as Turbo Debugger, included with most versions of Borland C++ and 
Pascal, is one way-maybe the best way-to improve your ability to understand an assem
bly language program's actions. Many people consider a debugger to be useful only for help
ing to fix a broken program. But a debugger can offer preventive medicine as well as a cure. 
With Turbo Debugger, you can peer into memory as your program runs, watch processor 
registers change, see memory bytes take on values, and step through a program's actions in 
slow motion. You can also view your assembly language statements along with the corre
sponding machine code, seeing exactly what Turbo Assembler generates from your program 
text. 

Using Turbo Debugger to examine running programs helps you to understand the purpose 
of specific assembly language statements. In future chapters, I'll often suggest using Turbo 
Debugger to check registers and flags, to examine sections of memory, and to run your pro
gram up to temporary stopping places, letting you reflect at your own speed on what the 
program is doing every step of the way. 



--_ ... _-----------------------

NOTE 
; ,/,',~~ )" ;' ,,',' _ - ,<;":;:t. ,';,' __ - " _ ',', ';_ n __ .: __ >:: ._;,,', ,'_ ,<',> -' :. ___ ~/-- ,{~;:_; ":" - :> _,-.<. ,>:: --~;,_ -,'_, ." ,/ ":_":',: ,_~ :;.::.'-~'-:-_\:-;;};:/:;; : __ ~'- ::~ __ :\',-',- >: ___ -~--- .': _ -;, " 

.i7f~~~~~fi~~Jn.thE!\pf~edIrigsectjOn;:~~f@~"af!~re$i.sfer!sa·sniall' .. 
'airiOunttjf"YcJt3ti(erne~:Insi~tne'€.p(J·ptOceSS6t;')\Jl'~'t~rV~'fIOtlsmlCHine<ode· 

.,;~inSlfudiOn.sopera~ ~lred{\tQoglJ~registers.AlIagls a,~~ht~'h}1aIW'1nside thl! 
. . "," , ,. .',...'. ','. a~~I;!~ 

Striving for the Ideal 
Turbo Assembler is actually two assemblers in one. Normally, Turbo Assembler processes 
programs written in the popular MASM syntax (MASM is short for Microsoft Assembler). 
For assembling programs downloaded from bulletin boards, copied from time-share systems, 
or gleaned from MASM books, this is the method to use. 

Examples in this book use Turbo Assembler's Ideal mode, which I believe to be superior to 

MASM syntax--especially for writing stand-alone assembly language programs. With Ideal 
mode, programs assemble faster and are less prone to developing bugs that can result from 
MASM's many known quirks and syntactical freedoms. (The Turbo Assembler User's Guide 
spells out the differences between MASM and Ideal mode instructions.) 

In addition to extra speed and the absence of quirky behavior, Ideal mode offers other ad
vantages. Structures (similar to Pascal records or C structures) can repeat member field names. 
Assembler directives are easier to remember and use. Equated symbols and expressions al
ways have predictable values. And formats for various memory-addressing modes must con
form to generally recognized guidelines. If you don't yet grasp the significance of some of 
these items, you'll have to trust my opinion: Ideal mode is what PC assembly language pro
grammers have needed for years. 

Don't be concerned that by learning Ideal mode, you'll be shut out from using the thou
sands of lines of MASM code in the public domain. After learning Ideal mode, you'll be able 
to read and understand MASM-mode programs with little effort. Most differences between 
the two modes are subtle-a spelling change here, an operand reversal there. I regularly read 
and work on programs in both syntaxes without difficuiry, but I prefer using Ideal mode for 
new projects. 

Advantages of Assembly Language 
Many books list in detail the advantages and disadvantages of programming in assembly lan

. guage. The advantages are rather obvious and well known: low-level access to the computer 
and the promise of top speed that comes from total control over the CPU. High-level 

1 

7 



----------------~----~ ......................................... -~---

8 

language programs tend to run more slowly than assembly language programs because of the 
way a C or Pascal compiler uses standard methods to read and write variables, to call subrou
tines, and so on. In assembly language, if you want to store a variable in a readily accessible 
processor register, that's your business. 

Despite many claims to the contrary, however, there is no guarantee of speed in assembly 
language programming. An experienced C or BASIC programmer can write programs that 
run circles around bungled assembly language jobs. Assembly language gives you nothing 
more than the opportunity to write programs with optimum efficiency-a worthy goal that 
requires time and patience to achieve in practice. But if speed is your aim, you can at least be 
sure of one thing: You've come to the right race track. 

Disadvantages of Assembly Language 
The main disadvantages of assembly language programming most often cited are: increased 
risk of bugs, reduced portability, and the absence oflibrary routines to perform tasks such as 
displaying strings or reading disk-file data. Let's take these one by one. 

Increased risk of bugs I don't agree with this criticism. Bugs are the result of carelessness, 
not the result of features in a computer language. You can write buggy programs in any lan
guage, and you can write bug-free programs in assembly language. I do agree that simple 
bugs in assembly language programs are often more serious than mistakes in C or Pascal. 
Because assembly language gives you complete control of the CPU, a single haywire state
ment can cause a system crash more readily than in high-level languages, where a compiler 

generates the machine code for you. One way to deal with this problem is to run your pro
grams under the control ofT urbo Debugger, which can help reduce the likelihood of a crash. 

Reduced portability By nature, assembly language is tied to the CPU for which a pro
gram is designed. Assembly language instructions translate directly to machine code and, 
therefore, will run only on computers using a compatible CPU. Porting (transferring) an 
assembly language program from one computer to another with a different processor usually 
means starting over from scratch. I have to agree with this gripe. To gain the advantages of 
assembly language, you must give up the ability to port programs easily to other systems. 
You can't have it both ways. 



Absence of library routines All high-level languages have commands to perform com
mon jobs such as displaying strings, printing text, and processing disk files. Also, high-level 
languages let you write mathematical expressions such as (x * 2 + 8). Assembly language 
lacks such niceties, requiring you to write custom code for these and other tasks. Although 
this fact is true, the argument misses the primary point of gaining total control over a 
computer's resources compared with giving up that control to a high-level language's runtime 
library-the opportunity to achieve optimum efficiency and top speed. Furthermore, many 
assembly language libraries are available containing routines to perform typical high-level 
operations. You may have to work a little harder, but there's nothing you can do in a high
level language that you cannot do in assembly. Besides, if you must use certain features in C, 
C++, or Pascal, you can always combine high-level languages with assembly language, as 
Chapters 12 and 13 explain. 

Hardware Requirements 
To make the best use of this book, at a minimum you should have the following equipment: 

• IBM PC, XT, AT, PS/2, or 100% compatible 

• 384K memory (256K if you don't use Turbo Debugger) 

• One or two floppy disk drives 

• Monochrome or color display 

For simplicity, I'll use PC to refer to this basic system, which is perfectly suitable for enter
ing and running most of the examples in this book. You'll probably find the going easier if 
you also have any of the following optional equipment: 

• Printer 

• Hard disk drive 

• Additional memory 

Almost all the programs in this book will run on any IBM computer with an 8086, 8088, 
80286, 80386, 80486, or Pentium processor. A few programs here and there, however, re
quire an 80386 or 80486 (or equivalent). Windows programs require a hard disk drive, but 
then, so does Windows itself. 

NOTE 

r frequently refer to the "8086 processor" and discuss 118086 programminglf methods. Except 
where specifically noted, such references apply equally to the logically equivalent 8088 and 
to the 80286, 80386, 80486, and Pentium processors-all of which recognize the same 8086 

9 



10 

Software Requirements 
In addition to the required hardware listed in the preceding sections, at a minimum you need 
to have the following software: 

• Turbo Assembler 4.0 and Turbo Debugger 4.0 

• DOS 4.01 or a later version 

• Optional: Microsoft Windows 3.1 or a later version (for the programs in 
Chapter 15) 

You can probably use most of the programming techniques in this book with Turbo 
Assembler 3.2 and Turbo Debugger 3.2 shipped with Borland Pascal 7.0. I tested all 
program listings, however, with Turbo Assembler 4.0. 

For entering program listings, you also need a text editor, which Turbo Assembler does not 
supply. Anyone of the following editors will work just fine: 

• The editor in Borland Pascal or C++ 

• Brief 

• VEdit Plus 

• EDIT (from MS-DOS) 

• Epsilon 

• WordS tar (in nondocument mode) 

• SideKick or SideKick Plus notepad 

If you have a Borland language, use the editor built into the integrated version of your com
piler. You can also use any plain ASCII text editor, but don't use a word processor such as 
WordPerfect, which adds formatting codes to text. 

After entering or viewing the disk file for each program, use your editor's "exit-to-DOS" 
command to return to the DOS prompt and then follow the instructions listed and explained 
before each program example. After assembling and experimenting with the program, type 
EXIT and press Enter to return to editing. If your text editor lacks a similar command to 
return to DOS, you'll have to quit the program, assemble, and then rdoad your editor {O 

enter the next example. Some editors such as Brief can run Turbo Assembler directly, but 
you still have to exit to DOS to run the resulting programs. 



Microsoft Windows Users 
If you are running Microsoft Windows, open a DOS prompt window for editing, assem
bling, and trying out this book's sample programs. Except for the Windows programs in 
Chapter 15, you cannot assemble and run this book's listings directly as Windows applica
tions. 

Also, due to the way Windows takes over control of DOS and the ROM BIOS, a few pro
grams in this book may not run correctly in a DOS prompt window. I'll warn you in ad
vance of any such problems. If you experience trouble running some programs, exit Microsoft 
Windows and try again from a DOS prompt. 

How To Use This Book 
Beginners should read this book from front to back. The text and program examples were 
carefully selected to avoid using terms not yet introduced. If you read chapters out of order, 
be aware that many program examples use modules introduced earlier. For example, you 
may not understand the programs in Chapter 9 if you did not read about the modules those 
programs use from previous chapters. To find hints about specific topics, refer to the table of 
contents, and the subject index. 

About the Chapters 
Each chapter in this book follows the same general organization, designed so that you can 
use the book both as a tutorial and as a reference. A flyleaf page lists the chapter's major top
ics. Following this comes the chapter text, which ends with a summary, plus a list of exer
cises to test your knowledge and, except for this chapter, suggested projects. Answers to all 
exercises are included near the back of the book. I did nO[ provide answers for suggested 
projects. 

The book is divided into three parts. Part I, "Programming with Assembly Language," is a 
tutorial on 8086 assembly language. Part II, "Application Programming," describes how to 

mix assembly language with Pascal, C, and C++, how to use Turbo Assembler's object-ori
ented features, and also how to write Windows applications using assembly language. Part 
III, "Reference," lists processor and Turbo Assembler instructions. The following notes briefly 
describe each chapter. 

• Chapter 1, "Introduction," introduces concepts of assembly language programming, 
explains how to use this book, and makes other suggestions, as you no doubt know 
if you've read this far! 

• Chapter 2, "First Steps," describes the parts of an assembly language program, gets 
you started using Turbo Assembler and Turbo Debugger commands, and explains 
how to create .EXE and .COM code files on disk. 

11 



12 

• Chapter 3, "A Bit of Binary," reviews the basics of the binary number system, 
concentrating on concepts that are vital in assembly language programming. 
Beginners: Don't skip this chapter! Experts: Skim the material for a quick refresher. 

• Chapter 4, "Programming in Assembly Language," explores the difficult subject of 
memory segmentation and introduces most of the 8086 instruction set. 

• Chapter 5, "Simple Data Structures," explains addressing modes and shows how to 
reserve memory for variables. You'll also learn how to use the TUB utility program 
to construct a library file containing this book's modules, required by examples in 
future chapters. 

• Chapter 6, "Complex Data Structures," expands on the topics introduced in 
Chapter 5, showing how to create advanced multifield structures, unions, arrays, 
and packed bit-field records. 

• Chapter 7, "Input and Output," gives advice on reading the keyboard and writing 
text to the standard output file (usually the display) from assembly language. Some 
examples call DOS and ROM BIOS routines for these tasks. Others show how to 
improve display performance by writing directly to video RAM buffers. 

• Chapter 8, "Macros and Conditional Assembly," explains how to combine repetitive 
instructions into macros, adding custom commands to assembly language. Also 
discussed are conditional assembly techniques for writing multipurpose programs 
that assemble differently on demand. 

• Chapter 9, "Disk-File Processing," covers assembly language techniques for creating, 
reading, and writing file data stored on disk. Reading disk directories is also ex
plained. 

• Chapter 10, "Interrupt Handling," dives into the intricate and often confusing 
subjects of writing interrupt service routines, tapping into the PC timer, and 
accessing serial 1/0 ports. 

• Chapter 11, "Advanced Topics," discusses some of the less frequently used (and, 
perhaps, poorly understood) Turbo Assembler techniques. 

• Chapter 12, "Mixing Assembly Language with Pascal," unravels the tricky secrets of 
mixing assembly language with Turbo Pascal, with the goal of optimizing program 
performance. 

• Chapter 13, "Mixing Assembly Language with C and C++," shows how to mix 
assembly language with Borland C++, emphasizing optimization as in Chapter 12. 

• Chapter 14, "Programming with Objects," explains how to use Turbo Assembler's 
object-oriented-programming (OOP) features, and also suggests advantages and 
disadvantages of using OOP techniques in assembly language. 



.... 

INTRODUCTION 

• Chapter 15, "Programming for Windows," provides guidelines for writing Win
dows applications purely in assembly language. (The programs in this chapter 
require Microsoft Windows 3.1 or a compatible later version.) 

• Chapter 16, "Assembly Language Reference Guide," is an alphabetic reference to 
the instruction sets for 80x86 processors (excluding protected-mode instructions, 
not used in application programming). 

• Chapter 17, "Turbo Assembler Reference," lists the syntax for Turbo Assembler's 
predefined symbols, operators, MASM- and Ideal-mode equivalents, and directives. 

About the Modules 
Many of the programs are constructed as separate modules, which you can assemble and store 
in a library file for other programs to share. Instructions are given for creating and using a 
suggested library file named MT ALIB, but feel free to store the modules in another file if 
you prefer. 

Refer to the index to find program examples, demonstrations, shells (ready for filling with 
your own code), Pascal and C external routines, macros, and other files. In addition to the 
book's many tested examples, major library modules include: 

• STRINGS.ASM: package of ASCIIZ string subroutines 

• STRIO.ASM: routines for reading and writing ASCIIZ strings 

• BINASC.ASM: conversion utilities for strings and numbers 

• SCREEN.ASM: memory-mapped video procedures 

• KEYBOARD.ASM: routines for reading key presses including function keys 

• DOSMACS.ASM: macros for calling DOS functions 

• DISKERR.ASM: routines for deciphering disk errors 

• PARAMS.ASM: routines to read DOS command-line parameters 

• ASYNCH.ASM: interrupt-driven serial I/O routines 

How To Organize Your Disks 

Hard Drives 
Hard disk drives are more widely used than they were when this book's first edition was 
published. If you don't have a hard drive, see the next section, "Floppy Disk Drives," for 

help setting up a floppy-disk based system. 

13 



14 

The steps for installing Turbo Assembler differ depending on the version you have. Some 
versions are automatically installed with a Borland Language product such as Pascal?O. Others 
must be installed in an existing directory (Turbo Assembler 4.0, for example, is rypically 
installed in C:\BC4\BIN, the "binaries" directory for Borland C++.) 

Follow the steps in your language User's Guide for installing Turbo Assembler. To check 
whether your installation is correct, go to a DOS prompt (open a DOS window if you are 
running Microsoft Windows), then enter tasm. This should display the following lines fol
lowed by a list of command-line options: 

Turbo Assembler Version 4.0 Copyright (c) 1988, 1993 Borland International 
Syntax: TASM [options) source [,object] (,listing] [,xref] 

If you can't seem to run TASM, the cause is probably a mistake in your system PATH. Make 
sure that a command such as the following is in your computer's plain-text AUTO EXEC. BAT 
file: 

PATH=C:\WINOOWSjC:\DOS;C:\BC4\BIN 

Borland Pascal?O users should change C: \BC4\BIN to C: \BP\BIN (or to the directory where 
you install Pascal's executable code files). 

Some versions of Turbo Assembler"such as those that used to be supplied with the discon
tinued Borland product, Application Frameworks, install Turbo Assembler and Turbo 
Debugger in separate directories. In that case, you might have to set your path to something 
like this: 

PATH=C:\WINOOWS;C:\OOSjC:\TASM;C:\TO 

Floppy Disk Drives 
If you do not have a hard drive, you can probably use Turbo Assembler and most of this 
book's programs from floppy disks. You cannot run some of the more sophisticated examples, 
such as those that require Microsoft Windows, but you can still use this book to learn assem
bly language techniques on floppy-disk systems with two drives A: and B:. Used PCs are 
available for very little money, so this is an inexpensive way to get started programming. 

Create a boot disk with operating system files, COMMAND.COM (a DOS program that 
lets you give commands and run other programs from a DOS prompt), your text editor, and 
Turbo Assembler. To create this disk, boot your computer to your DOS master disk in A:. 
Insert a blank disk into B: and enter the following command (the I s option transfers system 
files to the disk): 

format b: /s 



~ ...... ------------------------------------------

Also copy any other programs you need. For example, to use the DOS EDIT program for 
entering and reviewing program listings, copy it to your disk (the exact command depends 
on where the EDIT.EXE file is located-but not all DOS versions provide it): 

copy a:\edit.exe b: 

Finally, copy Turbo Assembler's executable code file, TASM.EXE, to the disk: 

copy tasm.exe b: 

Again, the exact command depends on your version ofT urbo Assembler. Some versions can 
be installed directly to a floppy disk. For additional installation instructions, refer to the User's 
Guide that came with your assembler or compiler. 

After creating your Turbo Assembler floppy disk, edit or create a plain text AUTO EXEC. BAT 
file with a PATH statement such as: 

PATH=A:\jB:\ 

When you reboot your computer, this statement makes it possible to run programs from 
drives A: and B:, regardless of which is the current drive. The only disadvantage of this tech
nique is that you must have formatted disks in both drives at all times, or you may receive a 
"Not ready" error. If this happens, press R to retry the command after inserting a disk. 

Older Turbo Assembler Versions 
You can probably use many of chis book's programs with older versions of Turbo Assembler. 
Depending on your version, however, you may not be able to use object-oriented features or 
write Windows applications. For best results, you should upgrade to Turbo Assembler 4.0. 
If you have version 3.0, you can probably get by, but I tested the programs in the book only 
with version 4.0. 

If you cannot get a program to run with your version, try the original listing file supplied on 
this book's disk. See the disk installation instructions at the end of this book for instructions 
on using these first-edition files. 

Entering Program Listings 
If you are ryping the listings, using your favorice text editor, enter che example programs 
exactly as printed, except for the numbers and colons at the left. These numbers are for refer
ence on/y-don't type them. Try to match the indentations in the listings. You don't have to 
indent every line exactly as printed, but so you can better understand the assembly language 
instructions, try to keep columns aligned more or less as they are in the book. Use your editor's 
tab key to save typing time. 

15 



16 

Each example program is numbered by chapter (1.5, 4.3, and so on) with the name of the 
disk file shown next to the program number (BINASC.ASM ASYNCH.ASM, and so forth). 
Save each program with the suggested disk-file name. Some programs depend on these 
filenames; therefore, if you change the name of one program file, you may have difficulty 
running other programs later. 

Getting More Help 
If you need more help, if you have a burning question, if you find a mistake (horrors!) in this 
book, what should you do? First, don't panic. Second, don't phone. Sorty, but if! took the 
time to speak to all who telephone, I'd never get books like this one finished. That doesn't 
mean I don't want to hear from you. I love to receive letters from readers, and I always tty to 
write back. Limit your questions to one or two, but don't send disks-I can't return them. 
If you wan t to get in touch, here's how: 

• Write to Swan Software, P.O. Box 1303, Key West, FL 33040. 

• Send CompuServe Email to 73627,324l. 

• Write to me in care of Sams Publishing. 

Summary 
The purpose of this book is to guide you through the often difficult world of assembly lan
guage programming for IBM PCs and compatibles running DOS and Windows. Learning 
assembly language does not have to be difficult, despite what you may have heard. This book's 
many examples and topics will help you to acquire programming skills that even many pro
fessional programmers lack. The published programs are modular and well tested, and many 
can be extracted for use in your own work. 

Assembly language is a convenient method for writing machine-code programs. Although 
early programmers wrote computer programs directly in low-level machine code, few pro
grammers would do the same today. Assembly is one step above machine code, while C, Pascal, 
BASIC, Prolog, and others are high-level languages. Because assembly language is closely tied 



---- ...... _-----------------------------------

to the machine code of the computer processor, a good way to learn assembly language pro
gramming is to develop useful mental models of the computer's inner workings. Also, using 
Turbo Debugger as a teaching tool helps explain how assembly language programs operate. 

Turbo Assembler runs in two modes, MASM and Ideal. The example programs in this book 
are all written in Ideal mode, superior in many ways to MASM syntax. 

Assembly language-like all computer languages-has its advantages and disadvantages. The 
major advantages are the promise of extra speed plus the ability to program the computer's 
processor directly. The major disadvantage is that assembly language programs will run only 
on the processor for which they are written. 

Line numbers added to all example programs in this book are purely for reference. When 
entering listings, don't type the numbers and colons. All programs are provided on the disk 
at the back of the book. For best results, you should have Turbo Assembler 4.0. First edition 
files are provided on disk for use with earlier Turbo assembler versions. 

Exercises 
1.1. Why is "machine language" an improper term? 

1.2. What is meant by the terms "high level" and "low level" in describing computer 
languages? 

1.3. What is the major difference between a high-level language and assembly 
language? 

104. Why don't programmers write software directly in machine code anymore? Why 
do you think they ever did? 

1.5. How can a debugger help you to learn assembly language? 

1.6. What is a register? 

1. 7 . What is a flag? 

1.8. What are some of the advantages of Turbo Assembler's Ideal mode? 

1.9. What are the main advantages of programming in assembly language? 

1.10. What are the main disadvantages of programming in assembly language? 

17 





------~.--------------------

First Steps 

-Assembly Language: Parts and Pieces, 20 -Assembling a Program, 30 -Understanding Object Code, 32 -Command-Line Options, 33 -Dealing with Errors, 34 -Introducing Turbo Debugger. 37 -Writing .COM and .EXE Programs, 42 -Summary, 49 -Exercises, 50 -Projects, 51 



2 

20 

Assembly Language: Parts and Pieces 
Assembly language is an odd-looking computer language. The program source-code text is 
sprinkled with three- and four-character unpronounceable words like eli, movsb, and sbb, 
appearing to the untrained eye to follow no preplanned order or to have any relationship 
with one another. And no matter how long you stare at the programmer's comments-the 
text preceded by semicolons at the ends of most assembly language lines-the words often 
seem to have no connection with the program's instructions. 

One reason for this apparent (bur deceiving) disarray is the lack ofbuHt-in control structures 
in assembly language. There are no REPEAT-UNTIL or WHILE constructions to group 
repetitive actions. There are no IF-THEN-ELSE or CASE statements to make decisions, and 
there is no assignment symbol to initialize named variables. Performing such high-level ac
tions requires you to construct programs from a single set oflow-Ievel machine-code instruc
tions, giving the assembly language source-code text a homogenized sameness that tends to 
hide the inner meaning of what the program is doing. Also, assembly language is line
oriented, not statement-oriented as are C, Pascal, and BASIC. Consequently, many lines of 
code are usually needed to perform even simple operations like adding numbers or initializ
ing variables. 

There is order in the apparent jumble, however. Even though Turbo Assembler permits pro
grammers to organize their code in numerous styles, most assembly language programs natu
rally divide into five main sections: header, equates, data, body, and closing. (These are my 
own terms, by the way-there are no standard names for the parts of an assembly language 
program.) The header contains setup information. The equates area declares symbols to which 
you assign various expressions and constant values. The data section declares variables to be 
stored in memory. The body contains the actual program code. The closing marks the end of 
the source-code text. Let's examine each of these parts more closely. 

The Header 
The header begins an assembly language program. In the header are various commands and 
directives, none of which produces any machine code in the final product. The header in
structs the assembler to perform certain actions, generating the finished code file according 
to various options at your disposal. 

Figure 2.1 shows a sample header, similar to the header at the beginning of most example 
programs in this book. (This isn't a complete program-:....so don't bother trying to assemble 
it.) The optional %TITLE line describes the purpose of the program, causing the text between 
quotes to print at the top of each listing page-that is, if you ask Turbo Assembler to print 
a listing. The IDEAL directive switches on Turbo Assembler's Ideal mode. Leave this out to 
assemble a program written in Microsoft Macro Assembler (MASM) syntax. 



%TITLE "Test Header--Don't Assemble!" 
IDEAL 
MODEL small 
STACK 256 

Figure 2.1. Typical. Illitmbly lanflUlgt htatltr. 

Next comes the MODEL directive, which selects one of several memory models (see Table 2.1), 
most of which are used only when combining assembly language with Pascal or C. In stand
alone assembly language programming, the small model is usually the best choice. But don't 
be fooled by the name. The small memory model gives you up to 64K of code plus another 
64K of data for a total maximum program size of 128K-practically a bottomless pit in the 
memory-efficient world of machine code. 

The STACK directive in Figure 2.1 reserves space for the program's stack, an area of memory 
that stores two kinds of data: values temporarily stored by or passed to subroutines and the 
addresses to which subroutines return control. (Stacks also come into play during interrupts, 
a subject for Chapter 10.) Manipulating the stack is an important assembly language tech
nique, which I cover in more detail in the chapters to come. The value after the STACK direc
tive tells Turbo Assembler how many bytes to reserve for the stack segment-256 bytes in 
Figure 2.1. Most programs require only a small stack, and even the largest programs rarely 
require more than about 8K. 

Table 2.1. Memory Models. 
Name Code Data 

tiny near near 

small near near 

medium far near 

Assumptions 

cs dgroup 
ds ss = dgroup 

cs = text -
ds = ss = dgroup 

Description 

Code, data, and stack in 
one 64K segment. Use for 
.COM programs only. 

Code and data in separate 
64K segments. Use for 
small- to medium-size .EXE 
programs. Best choice for 
most stand-alone assembly 
language programs. 

cs = <module> _text Unlimited code size. 
ds = ss dgroup Data limited to one 64K 

segment. Use for large 
programs with minimal 
data. 

continul!S 

2 

21 



PART I - PROGRAMMING WITH ASSEMBLY LANGUAGE 

Table 2.1. continued 
Name Code Data Assumptions Description 

compact near far cs -text Code limited to one 
ds = ss = dgroup 64K segment. Unlim-

ited data size. Use for 
small- to medium-size 
programs with many or 
very large variables. 

large far far cs = <module>_text Unlimited code and 
ds = ss = dgroup data sizes. Use for large 

program and data 
storage requirements. 
as long as no single 
variable exceeds 64K. 

huge far far cs = <module>_text Unlimited code and 
ds = 5S dgroup data sizes. Identical to 

the large memory 
model. (The huge 
model is provided for 
compatibility with high 
level languages.) 

tchuge far far cs = <module>_text Same as the large 
ds = nothing memory model. but 
5S = nothing wi th different register 

assumptions. Use 
mostly for Turbo C 
and Borland C++ 
programming. 

tpascal near far C5 = code Provided for backwards 
ds = data support for early 
ss = nothing versions of Turbo 

PascaL Obsolete for 
Borland Pascal. 

flat near near cs = text For use with OS/2 -
ds 5S flat only; otherwise the same as 

the small memory model. 

22 



Equates 
After the program header come various constant and variable declarations. In assembly lan
guage, constant values are known as equates, referring to the Eau directive that associates val
ues with identifiers such as MaxValue and PortAddress. Turbo Assembler allows you to use 
Eau or, for numeric values only, an equal sign (=). 

Using equated identifiers instead of "magic" numbers like OlOOh and OB800h lets you refer 
to expressions, strings, and other values by name, making programs easier to read and modify. 
(Literal values are magical because of the way they can hide a program's secrets.) Here are a 
few sample equates that could follow the header in Figure 2.1: 

Count EaU 10 
Element EaU 5 
Size Count • Element 
MyBoat Eau 'Gypsy Venus' 
Size 0 

Although most equated symbols simply stand in place for their associated values and expres
sions-similar to the way constants are used in Pascal and C-there are several tricky rules 
to remember when creating and using assembly language equates: 

• After declaring a symbol with Eau, you cannot change the symbol's associated value. 
Redefining an equated symbol (changing count to 11, for example) is never allowed. 

• The same rule is not true for symbols declared with an equal sign (=), and you can 
change these values as often as you like. Notice how the sample equates change the 
value of Size from 50 to O. You can do this anywhere in the program, not just in 
the equate section. 

• Eau can declare all kinds of equates including numbers, expressions, and character 
strings. The equal sign (=) can declare only numeric equates, which can be literal 
values like 10 and OFh, or expressions such as Count • Size and Address + 2. 

• Equated symbols are not variables-neither the symbols nor their associated values 
are stored in the program's data segment. Assembly language instructions can never 
assign new values to equated symbols, regardless of whether Eau or = was used to 

declare the symbols. 

23 



2 

24 

• Although you can declare equates anywhere in your program, it's usually best to 
place them near the beginning where they are most visible. An equate buried deeply 
inside the program's code can easily become the source of a hard-co-find bug. 

• Expressions declared with EOU are evaluated later when the equated symbol is used 
in the program. Expressions declared with an equal sign (=) are evaluated at the 
place where the equated symbol is defined. The assembler stores the equated textof 
EOU symbols but stores only the value of = symbols. 

This last rule is easier to understand by examining a few more examples. Suppose you have 
the following three equates: 

LinesPerPage 
Numpages 
TotalLines 

66 
100 
LinesPerPage • NumPages 

Obviously, TotalLines equals the result of multiplying LinesPerPage times Numpages, or 6,600. 
(AS in most computer languages, an asterisk (*) indicates multiplication.) Because TotalLines 
is declared with the equal sign (=)-indicating a numeric value-the expression is evaluated 
immediately, associating the result of the expression with TotalLines. If you assign a new 
value to NumPages elsewhere in the program, the computed value of TotalLines does not 
change. A different effect occurs, however, if you declare TotalLines with EOU: 

TotalLines EQU LinesPerPage· NumPages 

Internally, Turbo Assembler stores the actual text, not the calculated result, of an expression 
along with all EOU symbols-in this case, the text of the expression LinesPerPage • NumPages. 
Later in the program when you use TotalLines, the assembler inserts this text as though you 
had typed those characters at this place in the source code. The expression is then evaluated 
to produce a final value. If you assign new values co one or both of the symbols used in the 
expression-either NumPages or Linesperpage-the evaluated result changes accordingly. 

This ability to affect the result of equated expressions can be useful. You can program one 
module with an equated expression that changes value depending on equates in other mod
ules. Be aware of the subtle difference between = equates and those that you create with EOU. 

This is a feature that can also create bugs if used carelessly. 

The Data Segment 
A program's data segment usually appears between the equates and the program's instruc
tions. It's possible, but rarely useful, to declare data segments elsewhere and to have multiple 
data segments strewn throughout the program text. Despite this feature, your assembly lan
guage programs will be easier to read and modify if you follow the simpler plan suggested 
here, declaring all your variables between the equates and code. 



~~.----------------------------------------------------

Begin your program's data section with the DATASEG directive. This tells the assembler to store 
variables inside the program's data segment, which can be as large as 64K in the small memory 
model. The data segment can store two kinds of variables: initialized and uninitialized. When 
the program runs, initialized variables have preassigned values, which you specify in the pro
gram text and which are stored inside the program's code file on disk. These values are auto
matically loaded into memory and are readily available when the program runs. Un initialized 
variables are identical to initialized variables in every way except that uninitialized variables 
do not occupy space in the program's code file and. consequently, have unknown values when 
the program runs. Because of this, declaring a large uninitialized variable-an array of con
secutive values or a large buffer to be filled from a disk file, for example-will reduce the size 
of the program's code file. 

Reserving Space for Variables 
Although Chapter 5 describes in detail how to dedarevariables in a program's data segment, 
a few simple examples introduce several important concepts that you need to know now. 
Here's a typical data segment as it might appear after the program's header and equates: 

DATASEG 
numRows DB 25 
numColumns DB 80 
videoBase ow 0B00h 

First comes the DATASEG directive, informing Turbo Assembler to allocate space for the 
program's data segment. Three variables are then declared: numRows, numColumns, and videoBase. 

As a rule, I prefer to capitalize my equated constants (Count, NumPages, and so on) and to 
begin variables with lowercase letters as shown here. This is an arbitrary convention, and 
you can type symbols in uppercase or lowercase as you prefer. Also, some programmers use 
underline characters to make multiword identifiers more readable, for example, writing 
numJows and video_base instead of the mixed case style shown here. 

DB (define byte) and OW (define word) are the two most common directives used to reserve 
space for a program's variables. You'll use these directives repeatedly. Unlike high-level lan
guages where the actual location of variables in memory is usually unimportant, in assembly 
language, you must reserve space in memory for your variables and, in the case of uninitialized 

2 

25 



2 

26 

PART I _ PROGRAMMING WITH ASSEMBLY lANGUAGE 

variables, assign values to that space. Be sure that you understand how this differs from equated 
symbols, which are associated with values and expressions in the source-code text only. Vari
ables have space reserved in the program's data segment in memory. Equated symbols do 
not. 

The symbols associated with variables-numAows, numColumns, and videoBase in the previous 
samples-are called labels. A label points to the item that it labels-in this case the reserved 
memory space for a variable's value. Programs can refer to this space by using the label as a 
pointer to the value in memory. In the assembled program, labels are translated to the memory 
addresses where variables are stored, a process that allows you to address memory by the names 
you invent rather than by literal memory addresses. 

Variables are guaranteed to follow each other inside the data segment-knowledge that you 
can use to perform various tricks. For example, these declarations: 

oATASEG 
aTOm DB 'ABCoEFGHIJKLM" 
nTOz DB " NOPQRSTUVWXYZ' 

seem to be creating two character strings labeled aTOm and nTOz. In memory, however, the 
characters A to Z are stored consecutively, creating one string containing the letters of the 
alphabet. The label nTOz simply points to the middle of this string-there aren't really two 
separate entities in memory. 

Careful readers may be thinking, "But wait! If DB means 'define byte,' what's it doing declar
ing character strings?" Good question. DB has the special abiliry to reserve space for multiple
byte values, from 1 to as many bytes as you need. A string is composed of individual ASCII 
characters, each occupying 1 byte; therefore, DB is simply assembly language's tool for 
declaring character strings, which, after all, are merely series of ASCII byte values stored con
secutively in memory. You can use DB to declare individual characters and byte values, sepa
rated by commas: 

oATASEG 
perfectTen 
theTime 
theDate 

DB 1, 2, 3, 4, 5, 6, 7, 6, 9, 10 
DB 9, 0 i.e., 9:00 
DB 12,15,98 ; Le., 12/15/1998 



...---------------------------------

And, you can also combine character and byte values, creating a two~line string variable with 
the ASCII codes for carriage return and line feed stuck in between. As the following example 
shows, you can use either single or double quotes around character strings: 

combo DB 'Une 111',13,10, 'Une 112' 

Some languages-most notably Pascal--differentiate between single characters and strings 
of multiple characters. In assembly language, the difference between a character and a string 
is one of size only. There are no extra values, length bytes, or termination characters in as~ 
sembly language strings, unless, of course, you put them there. 

You'll learn more about strings later when examining assembly language instructions spe~ 
dally designed to manipulate byte strings in memory. For now, remember that, unlike in 
most high~levellanguages, strings are simply consecutive values in memory, created with the 
DB directive. 

The Program Body 
After the data segment comes the program's body, also known as the code segment-the 
memory chunk that contains your program's assembled code. Inside this area, assembly lan
guage text lines are further divided into four columns: label mnemonic, operand, and com
ment. Each column has an important function, best described by example. In the program 
text, by the way, the amount of spacing between columns is not important. Most people 
align the columns by simply pressing their editor's tab key once or twice. 

Although you haven't met any actual assembly language instructions yet, examine the sample 
data and code segments in Figure 2.2 and try to pick out the four columns. (This is not a 
complete program-so don't bother trying to assemble it.) Although short and sweet, the 
example contains the essential elements of a complete assembly language code segment. To 
provide some data to use, a data segment also declares a single-byte variable named exCode, 

initialized to O. 

2 

27 



2 

28 

PART I _ PROGRAMMING WITH ASSEMBlY LANGUAGE 

After the CODESEG directive in Figure 2.2 are several lines divided into label, mnemonic, op
erand, and comment columns. In the first column are two labels, Start: and Exit:. Labels 
mark the places in a program to which other instructions and directives refer. Lines that don't 
need labels have blanks in this column. In the code segment, a label always ends with a colon 
(:). In the data segment, a label must not end with a colon. (See the exCode label, for ex
ample.) You just have to memorize this rule, which admittedly makes little logical sense. 

In the second column are mnemonics, literally "formulas for remembering things." (By the 
way, the word "mnemonic" has a fascinating history. In Greek mythology, Mnemosyne
pronounced nee-mos-in-nee-is the goddess of memory, the bride of Zeus , and the mother 
of the Muses. While trying to memorize assembly language mnemonics, a silent offering to 
Mnemosyne may not help, but it can't hurt.) Each mnemonic formula in the second col
umn in Figure 2.2 refers to one machine-code instruction--mov for Move, jmp for Jump, 
and int for Interrupt. Some mnemonics are easy to remember: dee for Decrement, shl for 
Shift Left, and 1'01' for Rotate Right. Others look like the handiwork of a crazed typesetter: 
j exz for Jump if ex is Zero, and reI' for Rotate through Carry Right. A few rare cases are 
actually full-blown words: out for Out, push for Push, and pop for Pop. Even so, as you can 
clearly see, assembly language is abbreviated to the extreme. It will take time and patience to 
learn the name and purpose of each mnemonic. You'll meet the full set of8086 mnemonics 
in Chapter 4. Also, Chapter 16, the Assembly Language Reference Guide, lists every mne
monic along with full names and descriptions of how the associated instructions operate. 
Refer to these sections often and memorize as many mnemonics as you can. When reading 
through a program, always pronounce a mnemonic's full name. In time, this will help make 
assembly language, if not easy reading, at least more understandable. 

The third column in Figure 2.2 contains the operands--the values on which the preceding 
mnemonic instruction operates. A few instructions require no operands and, in these cases, 
the third column is blank. Many instructions require two operands; others take only one. 
No 8086 instruction requires more than two operands. The firSt operand is usually called 
the destination. The second operand (if there is one) is called the source. Operands take 
many forms; therefore, it's best to learn the different forms as you meet each mnemonic in
struction. 



label Mnemonic Operand 

DATASEG 
exCode DB 0 

CODESEG 
Start: mov ax, @data 

mov ds, ax 
jmp Exit 
mov ex, 10 

Exit: 
mov ah, 04Ch 
mov aI, {exCode] 
int 21h 
END Start 

Figure 2.2. Tht four columns of an asstmbly I4nguagt program. 

Comment 

A byte variable 

Initialize OS to address 
of data segment 

Jump to Exit label 
This line is skipped! 

DOS funtion: Exit program 
Return exit code value 
Call ~OS. Terminate program 
End of program I entry point 

The fourth and final column is always optional and, if included, must start with a semicolon 
(;). Turbo Assembler ignores everything from the semicolon to the end of the line, giving 
you a place to write a short comment describing what this line does. Nearly every line of 
every example program in this book ends with a comment, which you can leave blank to 
save typing time if you are entering the programs by hand. In your own work, be sure to add 
clear comments that fully describe your program. As you are no doubt beginning to realize, 
especially if assembly language is new to you, this language is cryptic and hard to read. You 
can't add too many comments. 

A Few Comments on Comments 
Sometimes you'll see an assembly language line that begins with a semicolon in the first col
umn. Most programmers write their more lengthy comments this way, identifying various 
program sections and describing tricky sections. (As with comments at the ends of lines, you 
can leave these longer comments blank to save typing time when entering this book's ex
amples.) Many programmers begin their programs with a multiline identifying comment 
like this: 

j-----------------------------------------------
PURPOSE: Predict winning lottery numbers 

i SYSTEM: IBM PC I Turbo Assembler Ideal Mode 
i AUTHOR: Ivan the Unlucky 
j-----------------------------------------------

Another kind of comment exists in MASM mode but, unfortunately, not in Ideal mode. In 
MASM mode, you can start a large comment with the COMMENT directive, followed by a char
acter called the comment delimiter, in turn followed by your comment, and ending with a 

29 



2 

30 

second instance of the same delimiter. To do this in Ideal mode, temporarily switch to MASM 
mode: 

MASM 

COMMENT /* This is a comment, which can 
stretch over several lines and which you 
can easily reformat with your editor's 
paragraph command. */ 

IDEAL 

After the MASM directive enables MASM mode, the COMMENT directive begins a multiline com
ment, defining a backslash as the comment delimiter character. A second backslash ends the 
comment. (The asterisks are purely for show here--I use them only to help my eye pick out 
comments in the text and to make the comments resemble those in C.) Finally, the IDEAL 

directive returns Turbo Assembler to Ideal mode~ The blank lines after MASM and before IDEAL 

let me reformat the entire comment block using my editor's reformat-paragraph command, 
making it easier to edit a lengthy note in the program text. You may want to try this trick if 
your editor has a similar command. 

The Closing 
The final part of an assembly language program is the closing, a single line that tells Turbo 
Assembler it has reached the end of the program. There is only one directive in the closing: 
END. Repeating the last line from Figure 2.2, a typical closing is: 

END Start j End of program / entry point 

The END directive marks the end of the program source-code text. The assembler ignores any 
text below this line-a good place to stick additional notes, by the way. To the right of END, 
you must specifY the label where you want the program to begin running. Usually, this label 
should be the same as the label that precedes the first instruction following the COOESEG di
rective. You can start a program elsewhere, although I can't think of any good reasons for 
doing so. 

Assembling a Program 
Now that you know the form of an assembly language program, the next step is to learn how 
to assemble a program text file to produce a running code file on disk. Use your text editor 
to type in Listing 2.1, FF.ASM, or locate that file on disk. (Remember: Don't type the ref
erence numbers and colons at the left. Type only the text to the right of the colons.) Try to 

align the four columns similarly to the printed text. You don't have to be too exacting-



close is good enough. To save time, leave out the comments. Quit your editor (or tempo
rarily return to DOS if your editor has such a command) and type these lines: 

tasm ff 
t11nk ff 

The tasm command runs Turbo Assembler, which reads FF .ASM and, provided you entered 
the program text correctly, creates a new file FF.OB], containing the assembled code in raw 
form-not yet ready to run. If you receive any errors, check your typing and try again. The 
tlink command runs Turbo Linker, which reads FF.OB] and creates the executable code 
file FF.EXE. Notice that neither command requires you to type the filename extension (.ASM 
or .OB]). You can type these extensions if you want, but why work harder than necessary? 

Now turn on your printer. (If you don't have a printer, you can't use this program. Sorry!) 
Type FF at the DOS prompt and press Enter to send a form-feed command to the printer, 
advancing the paper to the next page. Copy FF.EXE to the directory where you store your 
other utilities and run this program instead of reaching for your printer's form-feed button. 
(My printer is across the room, and I originally wrote FF years ago so I wouldn't have to get 
out of my chair just to advance the paper. So call me lazy.) 

Listing 2.1. FF .ASM. 
1 : \TITLE 'Send printer form feed command -- by Tom Swan' 
2: 
3: IDEAL 
4: 
5: MODEL small 
6: STACK 256 
7: 
8: ;----- Equates 
9: 

10: ASCIIcr EQU 13 ASCII carriage return 
11 : ASCIIff EQU 12 ASCII form feed control code 
12: 
13: CODESEG 
14: 
15: Start: 
16: moy ax, ~ata Initialize OS to address 
17: mov ds, ax of data segment 
18: 
19: moy dl, ASCIIcr Assign cr code to dl 
20: moy ah, 05h OOS function: Printer output 
21: int 21h Call DOS--carriage return 
22: 
23: mov dl, ASCIIff Assign ff code to dl 
24: moy ah, 05h DOS function: Printer output 
25: int 21h Call DOS--form feed 
26: 
27: Exit: 
28: moy ax, 04C00h DOS function: Exit program 
29: int 21h Call OOS. Terminate program 
30: 
31: END Start End of program I entry point 

2 

31 



2 

32 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Understanding Object Code 
Listing 2.1 requires two steps-assembling and linking-to translate an assembly language 
program from text form into an executable program. Turbo Assembler never directly creates 
a program in ready-to-run form but instead generates an intermediate file containing the 
assembled program in a form called the object code. Before you can run the program, you 
must further process the object code with a linker, which creates the executable .EXE file on 
disk. 

For simple programs, this may seem like two steps too many, but there is a good reason for 
dividing the process into assembly and link steps. As you will learn in later chapters, Turbo 
Linker (as well as other linkers) can combine multiple object-code files to produce a single 
executable program. This ability lets you program a large project in small pieces, assemble 
the pieces to create separate object-code files, and then link all the pieces with one command. 
The individual pieces, or modules, can share data and call subroutines declared in other 
modules. Most programmers build libraries of assembled object-code modules, collecting 
their favorite and well-tested building blocks, ready for constructing new programs. For some 
strange reason, in many high-level languages, writing programs in separate pieces this way is 
difficult and requires unusual commands and other incantations to get the job done. Luck
ily, as you will see, linking separately assembled object-code modules created by Turbo As
sembler is easy. 

Inside the object-code file are the machine-code instructions, translated from your assembly 
language text. Also in the object code are various text symbols that you want to share with 
other modules, plus optional information that Turbo Debugger requires. It's not necessary 
to understand every last detail of what's inside an object-code file. Just be aware that Turbo 
Assembler creates this file, always ending in .OB), and never directly creates the finished 
executable code. Only Turbo Linker can do that. 



p 

By the way, Turbo Assembler's object-code files end in the standard .OBJ, and you can link 
these files with other linkers (such as the one supplied with some early versions of DOS) and 
with object-code files produced by languages from other companies (for example, Microsoft 
C). You can, of course, link Turbo Assembler's object-code files with those produced by other 
Turbo Languages. Always use Turbo Linker for this purpose. 

Command-Line Options 
Both Turbo Assembler and Turbo Linker allow you to specifY options on the command line 
ro select various features during assembling and linking. Type tasm and press Enter to list 
Turbo Assembler's command-line options. Type tlink and press Enter to list Turbo Linker's 
command-line options. 

Options are represented by one or more letters, sometimes followed by other information. 
To select an option, type a dash and the option letter or letters between the tasm or tlink 
commands and the filename of the program you are assembling or linking. For example, to 
assemble Listing 2.1 and create a listing file, use the command: 

tasm -1 ff 

You can type this and all other command lines in uppercase or lowercase. You can also use a 
forward slash instead of a dash if you prefer. The option -1 tells Turbo Assembler to gener
ate a listing file in addition to assembling the program, creating both FF.OBJ and FF.LST 
on disk. Try this command and then examine FF.LST with your text editor. Inside, you'll 
find a complete listing of the program along with line numbers, the object-code bytes, and, 
at the end, a listing of the program's symbols. You might want to print a copy of this file for 
reference. 

2 

33 



Turbo Assembler Vers 
ff.ASM 

1 
2 0000 
3 0000 
4 
5 13 
6 12 
7 
8 0100 
9 

10 0000 
11 0000 B8 OOOOs 
12 0003 8E D8 
13 
14 0005 B2 OD 
15 0007 B4 05 
16 0009 CD 21 
17 
18 OOOB B2 OC 
19 0000 B4 05 
20 OOOF CD 21 
21 
22 0011 
23 0011 B8 4COO 
24 0014 CD 21 
25 
26 

DTurbo Assembler 
Symbol Table 

Symbol Name 

??OATE 
??FILENAME 
??TIME 
??VERSION 
@32BIT 
@CODE 
@CODESIZE 

PU 
@CURSEG 

Ff.lst 
5.3 05 13-02 15:53:37 1 

IDEAL 
MODEL small 
STACK 256 

ASCIIcr EQU 13 
ASCIIff EQU 12 

COOESEG 

Start: 
mov ax,@data 
mov ,ax 

mov dl,ASCIIcr 
mov ah,05h 
int 2 

mov dl,ASCIIff 
mov ah,05h 
int 21h 

t: 
mov ax,04COOh 
int 21h 

END Start 
Version 5.3 05 13-02 15:53:37 Page 2 

Type Va 

Text "05 13 02" 
Text " " 
Text "15:53:37" 
Number 0503 
Text 0 
Text TEXT 
Text 0 
Text 0101H 
Text TEXT 

Page 1 





@DATA 
@DATASIZE 
@FILENAME 
@INTERFACE 
@MODEL 
@STACK 
@WORDSIZE 
ASCIICR 
ASCIIFF 
EXIT 
START 

Groups & Segments 

DGROUP 
STACK 

DATA 
TEXT 

.lst 
Text DGROUP 
Text 0 
Text FF 
Text OOOH 
Text 2 
Text DGROUP 
Text 2 
Text 13 
Text 12 
Near16 TEXT:0011 
Near16 TEXT:OOOO 

Bit Size Align Combine 

Group 
16 0100 Para Stack 
16 0000 Word Public 
16 0016 Word ic 

Page 2 

Class 

STACK 
DATA 
CODE 





Turbo Assembler Version 5.3 Copyright (c) 1988, 2000 Inprise Corporation 
Syntax: TASM [options] source [,object] [,listing] [,xref] 
/a,/s Alphabetic or Source-code segment ordering 
/c Generate cross-reference in listing 

~YM[=VAL] Define symbol SYM = 0, or value VAL 
, ,,/r Emulated or Real floating-point instructions 
/h,/? splay this help screen 
/ Search PATH for include files 
/jCMD Jam in an assembler directive CMD (eg. /jIDEAL) 
/kh# Hash table capacity # symbols 
/l,/la Generate listing: l=normal listing, la=expanded listing 
/ml,/rnx,/mu Case sensitivity on symbols: ml=all, rnx=globals, mu=none 
/mv# Set maximum valid length for symbols 
/m# low # multiple passes to resolve forward references 
/n Suppress symbol tables in listing 
/os,/o,/op,/oi Object code: standard, standard w/overlays, Phar , IBM 
/p Check for code segment overrides in protected mode 
/q Suppress OBJ records not needed for linking 
/t Suppress messages if successful assembly 
/uxxxx Set version emulation, version xxxx 
/wO,/w1,/w2 Set warning level: wO=none, w1=w2=warnings on 
/w-xxx,/w+xxx Disable ( ) or enable (+) warning xxx 
/x Include se condit s in listing 
/z Display source line with error message 
/zi,/zd,/zn Debug info: zi full, zd=line numbers only, zn=none 





34 

Kl.)I."KI\~"''1I"'v WITH ASSEMBLY LANGUAGE 

When assembling a program, you can string multiple command-line letters together, op-
tionally separated by spaces. Here are a few more samples: . 

tasm /h 
tasm -1-e 11 
tasm 11 Ie ff 
tasm -zi 11 
tasm -1 -iC:\INCLUDES 11 

Try these on your system. Instead of assembling a program, the first command tells Turbo 
Assembler to display a list of command-line options. For a printed reference, type 
tasm Ih >prn. The second line creates a listing file with cross-referenced line numbers (#10, 
#25, etc.) at the end. The third command does the same but shows how to use slashes in
stead of dashes to specify the option letters. The fourth line adds to FF.OBJ information for 
Turbo Debugger. The last line creates a listing file and specifies a path name for include files. 
(Include files are separate text files that you want Turbo Assembler to insert into your pro
gram. Listing 2.1 doesn't use any include files; therefore, this sample command has no prac
tical effect.) 

Turbo Linker also has various command-line options given in the same way, except that some 
early versions ofTLINK require options to be preceded with a slash {1m} rather than a dash 
(-m). Newer versions of the linker allow slashes or dashes, but when typing multiple letter 
commands, dashes might have to be separated by a space. Here are several examples ofT urho 
Linker command-line options (I tested these with Turbo Linker 6.00; if you have a different 
version, try these commands to find out which option styles work on your system): 

tlink -v 11 
tlink tv 11 
tlink -m -1 11 
tlink Imll 11 
tlink -x 11 
tlink Ix 11 

The first lines give the Iv or -v option to prepare FF.EXE for use with Turbo Debugger. 
The next lines specify two options, selecting an extended map file (saved to FF.MAP on disk) 
and adding to this file additional line number information (II). After trying this command, 
examine FF.MAP with your text editor. The Ix or -x option tells Turbo Linker not to create 
a map file, saving a small amount of disk space and a tiny bit of time during linking. Use this 
command if you don't need the map file, which shows the memory organization of the pro
gram and is generally used by debuggers and as part of a program's documentation. 

Dealing with Errors 
If to err is human, programmers must be superhuman beings. No matter how careful we are, 
no matter how diligent, we all make plenty of mistakes in our day-to-day work. But you 



can't fool Turbo Assembler. At least, you can't force the assembler to accept an illegal con
struction. If you try-whether intentionally or not-you'll receive an error message, a warn
ing, or both. The distinction between errors and warnings is important: 

• Errors are fatal. The resulting object code-if created-will not link and will not 
run. 

• Warnings are not fatal. The resulting object code probably will link but mayor may 
not run correctly. 

Let's make a few intentional errors now so you'll know how to deal with your own mistakes 
later on. If you're using an editor such as Brief that can automatically run Turbo Assembler, 
press the Alt-FlO keys to assemble the next few examples. The error message will then ap
pear at the bottom of your screen, and the cursor will rest on the offending line. If you are 
assembling by typing commands at the DOS prompt, you'll have to reload the program text, 
fix the error, exit to DOS, and try again. 

When it finds an error, Turbo Assembler displays an error message along with the line num
ber in parentheses. Some programmers save these messages in a disk file or print them for 
reference, using commands such as: 

tasm ff>err.txt 
tasm ff>prn 

(save errors in err.txt) 
(save errors to printer~ 

Without the redirection symbol (» and a filename, error messages appear on-screen. Unless 
the errors scrolled off-screen, you can still print a copy of the display by pressing your Shift 
and PrtScr keys. To experiment with errors, copy FF.ASM (Listing 2.1) to a new file, 
FF2.ASM. Then modify line 3 to read IDEA. (Remove the capital L.) At the DOS prompt, 
type tau ff2 to assemble. Be~use Turbo Assembler has no idea what an IDEA is, assembling 
the program produces: 

Assembling file: ff2.ASM 
""Error"· ff2.ASM(3) Illegal instruction 
Error messages: 1 
Warning messages: None 
Passes: 1 
Remaining memory: 375k 

The error message after the "Assembling file ... " line tells you in which file the error occurred, 
shows the line number in parentheses, and gives a brief message about the error. If you need 
more help, look up the error message in the alphabetized list near the end of your Turbo 
Assembler Reference Guide. Changing IDEA back to IDEAL fixes the mistake. Do that and 
then make another error, deleting the colon from the Start label at line 15. Assembling this 
file produces: 

Assembling file: ff2.ASM 
"·Error·· ff2.ASM(15) Illegal instruction 
··Error·· ff2.ASM(31) Undefined symbol: START 

35 



2 

36 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Error messages: 2 
Warning messages: None 
Passes: 1 
Remaining memory: 375k 

Although you've made only one mistake, Turbo Assembler displays two error messages, one 
at line 15 because of the missing colon, and another at line 31. which refers to the Start 

label. Because the first error makes the Start label unrecognizable-labels in the code seg
ment must end with colons, remember-the later reference also fails. This is an example of 
error propagation: one error causing others to occur or to propagate. In a large program, the 
little buggers can sometimes propagate allover the place. If this happens, and especially if 
you suddenly begin receiving errors in sections that previously assembled just fine, try fixing 
only the first couple of reported errors and reassemble. Often, the remaining errors will then 
be gone. 

Returning to our mistake-ridden example, replace the colon at the end ofline 15. Then, add 
to line 14 the two words PROC DUMMY. Don't worry what this means. I just want to show you 
something. Assembling the program now gives: 

Assembling file: ff2.ASM 
"Warning" ff2.ASM(31) Open procedure: DUMMY 
Error messages: None 
Warning messages: 1 
Passes: 
Remaining memory: 375k 

Similar to an error message, a warning tells you something is wrong at a certain line. Notice 
that, in this case, the reported line number is 31, not 14 as you might have expected. A PROC 
directive specifies the start of a procedure, a group of instructions that your program treats as 
a complete routine. Turbo Assembler expects all PROC directives to have matching ENDP (End 
Procedure) directives. Because it finds no such directive by the time it reaches the end of the 
program, the assembler warns you that a procedure was left open somewhere. 

Because this is a warning and not an error, you can link and run the resulting program. In 
this case, the nonexistent open procedure does no harm. In fact, there is no effect whatsoever 
on the resulting code. This may not always be true, however, and you are living dangerously 
if you ignore Turbo Assembler's warnings. For example, a missing ENDP may result from leaning 
on your text editor's delete-line key--or perhaps you accidentally left a procedure unfinished. 
Turbo Assembler is very forgiving of such errors, giving you the freedom in many cases to 
make gross mistakes-the price you pay for the low-level access and potential speed avail
able only in pure assembly language. The assembler is smart enough to warn you about po
tential dangers, but intimate knowledge of your program is still the only way to know for 
certain whether a warning is significant or can be safely ignored. 



Introducing Turbo Debugger 
Although you can fix syntax errors by reading Turbo Assembler's error messages and then 
examining your text to find typos and illegal constructions, fixing logical errors is not so easy. 
Turbo Assembler knows how to assemble a syntactically correct program, but it doesn't 
understand what the program is supposed to do. Often, your programs will not do what you 
think they should. In this event, you can get some much-needed help from a program spe
cifically designed to help you find and repair logical errors: Turbo Debugger. 

Like all debuggers, Turbo Debugger serves as a kind of supervisor, taking control of a pro
gram and letting you examine variables in memory and run the code in slow motion. You 
can tell Turbo Debugger to run a program up to a certain point or until a certain event oc
curs. You can change values in memory, temporarily try out new instructions, and change 
register and flag values. You can also use Turbo Debugger to program in machine code, 
occasionally useful for trying out ideas as long as the number ofinstructions is not too large. 

Such a versatile program is extremely helpful in assembly language programming, where a 
program's logic is difficult to discern from the program's text. Turbo Debugger can also help 
you find errors in C and Pascal programs, although we'll concentrate here on assembly lan
guage debugging. As I mentioned in Chapter I, Turbo Debugger also makes an excellent 
teacher, giving you the opportunity to examine your program and observe the effects of vari
ous instructions. One of the best ways to learn about individual mnemonic instructions is to 

write a short test program, load the program into Turbo Debugger, and examine the results 
in slow motion. If you make the effort to do this every time you have a question about a 
certain instruction, you'll be amazed at the amount of information you'll pick up just by 
watching the instruction in action. 

Debugging with an 80386 or Later Processor 
If your system has an 80386, 80486, or Pentium processor, you can take advantage of spe
cial features in Turbo Debugger. If your system has an 8086,8088, or 80286 processor, you 
can't use these special features. Even so, Turbo Debugger is a powerful program, having many 
commands that you can use to debug programs on any Pc. If your system does have an 80386 
or later-module CPU, insert the following command in your root directory's CONFIG.SYS 
file, specifYing the correct path name to locate the TDH386.SYS device driver file: 

DEVICE=\TDEBUG\TDH386.SYS 

2 

37 



38 

PROGRAMMING WITH ASSEMBLY LANGUAGE 

This enables Turbo Debugger to use special debugging registers available only inside the 80386 
processor. These registers give Turbo Debugger the ability to stop a program when any bytes 
in a specified memory range are changed or even if these bytes are merely examined by a 
program. You can also run your program in virtual memory, exactly simulating how your 
program will run as a stand-alone DOS application. Without an 80386, your program nec
essarily shares memory with the debugger. As a result, some bugs-especially those that de
pend on the program's location in memory-may disappear under control of the debugger 
and then reappear when running the program normally, a tricky problem that can be diffi
cult to fix. 

With the device driver installed, you can use the virtual-memory version ofT urbo Debugger 
TD386.EXE in place of the standard version TD.EXE. (You can still use the standard ver
sion.) Whenever this book tells you to type TO, type TD386 instead. 

NOTE 

The TDHj~ti.SYSddve~ and TD386.EXE debugger are no longer needed with Turbo Assem
bler 4.0. The.instructions in this section apply only to earlier versions of Turbo Assembler and 
Turbo Debugger. 

Turbo Debugger as Teacher 
To demonstrate how to use Turbo Debugger as an assembly language teacher, let's examine 
Listing 2.1 under control of the debugger. First, copy FF.ASM to LF.ASM and load the copy 
into your text editor. You may delete or rename LF .ASM if it exists on disk. Then change 
three lines as follows: 

1: %TITLE 'Send line feed command to printer" 
11: ASCIIlf EQU 10 j ASCII line feed control code 
23: mov dl,ASCIIlf j Assign If code to dl 

These modifications convert the form-feed program into a line-feed program, which you can 
use to advance your printer one line at a time. This may not be that useful a utility program 
to keep around, but these changes will save paper for the upcoming tests. 

After saving LF .ASM, assemble and link the program with options that add debugging in
formation to the .OBJ and .EXE files. This information tells Turbo Debugger about the 
program's symbols, locations of variables, segment organization, and so on. Type these com
mands to prepare the program for debugging: 

tasm /zi If 
tlink Iv If 



If you don't use the Izi and Iv options as shown here, Turbo Debugger can still load your 
program, but the debugger will be able to show only the disassembled machine code. With 
the command-line options, the debugger can show labels, variable structures, source-code 
lines, and other information. In future example programs, whenever I suggest examining a 
program with the debugger, use these same options during assembly and linking. 

NOTE 

Using the I zi and Iv options can greatly increase the size of a program's .081 and .EXE disk 
files. After debugging, reassemble andlinkwithoutthese options to shrink disk-file sizes back 
10 normal. . . 

After assembling and linking with the /zi and Iv options, make sure you have at least the 
LF ASM and LF.EXE files on disk and then load the program under Turbo Debugger's control 
with the command: 

td If 

Remember: If you installed the TDH386.SYS device driver and have an 80386 processor in 
your system, you can use the virtual-memory version of Turbo Debugger by giving the alter
nate command: 

td386 If 

In a moment, you should see Turbo Debugger's display, showing the program's source code. 
(1fT urbo Debugger can't find the program's .ASM file, it will be unable to display the source
code window.) Use the cursor keys to move the flashing cursor up and down, examining the 
program text. You can also use the PgUp, PgDn, Home, and End keys to move around in 
the source-code window. You can only view this text; you can't edit any mistakes you may 
find. To do that, you have to quit Turbo Debugger and use your text editor. 

NOTE ' 

For more help, press Fl (the help key) and read the window that pops up on-screen. At any 
time when using Turbo Debugger, you can get help on the current window by pressing Fl. 

For a different view of your program, press Alt-V-C, selecting the View-CPU-Window com
mand. Press F5 to toggle this window to full screen. The CPU window shows your program's 
source code in an abbreviated form, the actual machine code as stored in memory, the values 

39 



40 

PROGRAMMING WITH ASSEMBLY LANGUAGE 

of registers and flags, and a dump of the memory bytes. Besides showing many more details, 
there's an important difference between this window and the previous one. In the source
code window, also called the module view, you are seeing a copy of the program text. In the 
CPU window, you are peering directly into memory, seeing the actual byte values that are 
there. The CPU window takes you on a kind of fantastic voyage, miniaturized in the style of 
an Isaac Asimov novel and injected into your computer's RAM. Naturally, when perform
ing surgery on bytes in memory, you want to be careful not to kill the patient. Turbo Debugger 
helps prevent catastrophes, but you can still get into trouble by fooling around indiscrimi
nately. 

Press the cursor up and down keys to move the highlighted bar to different instructions. 
Diamonds mark the instructions that belong to your program. Notice that, unlike the source
code window, you can view other areas outside of these marked lines. Press the Tab key to 
move the cursor to other sections of the CPU window. You'll do this from time to time to 
change register values and to modifY bytes in memory. (Don't change anything this time.) 

Press the Tab key until the highlighted bar reappears in the large section. To change the 
appearance of this window, press Alt-Fl 0 and select the Mixed command (press M or move 
the bar to Mixed and press Enter). You can give this same command more easily by pressing 
Ctrl-M, too. The command has three settings: No, Yes, and Both. The settings change the 
view of your program as follows: 

• No shows a disassembly of the machine-code bytes in memory, looking similar to 

assembly language instructions. It is convenient for viewing code when you don't 
have the corresponding .ASM file. This view is less cluttered than the others, and, 
for that reason, many prefer it. 

• Yes shows your source code along with the disassembled machine code. It is used to 

display high-level language lines along with the compiled machine code. Normally, 
you won't use this setting to view assembly language programs. 

• Both is the default and probably the best view in the CPU window, showing the 
machine-code bytes in the left column along with the source-code lines that created 
the code. It doesn't display blank lines. 

Besides showing you different views of your program and memory, Turbo Debugger can 
execute your code in various ways. For practice, turn on your printer (if you have one) and 
then follow these numbered steps to execute the program under Turbo Debugger's control: 

1. Press F9 to run the program to completion. The paper should advance one line. Use 
this command to run a program and then examine the state of memory, registers, 
and flags after the program finishes. 

2. After running the program, press Ctrl-F2 to reset. This reloads the program from 
disk, resetting Turbo Debugger to its original startup condition. (If you forget this 
step and press F9 to run again, you'll see a message asking if you want to reload the 
program.) 



3. Press F6 twice to get back to the source-code window. 

4. Press Alt-V-R to select the View-Registers command. If necessary, press Crrl+F5 
and use the arrow keys to move this window to the far right, or click and drag the 
window with a mouse, uncovering your program's instructions. Press Esc to lock 
the window in its new position. The registers window shows the values of the 
registers and flags inside your computer's processor. This window is extremely 
useful for examining the results of various machine-code instructions, most of which 
affect the values in one or more registers. 

5. In the source-code window, a small arrow to the left of the program's first instruc
tion, mov ax, @data, tells you that this is the next instruction to be executed. Press 
F8 to execute this instruction. When you do this, two things happen: The arrow 
moves down to the next instruction, and the value of the ax register in the registers 
window changes. The instruction "moved" a value into the register-you saw it 
happen. Stepping through individual instructions with F8 lets you run your 
program in slow motion, executing one instruction at a time and pausing to let you 
view the effects of each machine code. 

6. Press F8 again, executing the next instruction, mov ds, ax. Watch the registers 
window-you should see the value of the ds register change to the same value now 
in ax. The mov instruction moved the value of a x into ds. Again, for the time being, 
don't be too concerned with why the program does this. 

7. Press F6 until the flashing cursor reappears in the source-code window. The register 
window is now covered by this window. (F6 switches among aU open windows
you can also press Alt-# where # is the window number 1-9.) 

8. Move the flashing cursor down to the line that reads mov dl, ASCIIlf-three 
instructions beyond the current instruction marked by the arrow. Press F4 to run 
the program from the current instruction down to the instruction at the flashir.g 
cursor. Use this method to execute small sections of code when you don't want to 
pause after each instruction. 

9. Press F6 repeatedly until the registers window reappears. Then press F8 twice, 
executing the next two instructions. Watch the value of the dx register-you should 
see a part of this value change. 

10. The arrow should now point to the int 21 h instruction (at line 25 in Listing 2.1). 
This instruction calls a function in DOS, activating one of the operating system's 
many routines, in this case, sending a character to the printer. Press F8 to execute 
the instruction. If your printer is on, the paper should advance one line. 

11. There's no need to run the program to completion as the remaining instructions 
simply return control to OOS--or, in this case, to Turbo Debugger. Press Alt-X to 
quit the debugger and end the session. 

41 



42 

~V~'"""'M"'<" WITH ASSEMBlY LANGUAGE 

Turbo Debugger has many other commands to let you examine, execute, and modifY your 
program. But the preceding steps are all you need to know to run most assembled examples 
in this book, and to examine the effects of various instructions. In future examples, I'll tell 
you how to use other Turbo Debugger commands. As you can see, a debugger can help you 
examine your program in ways that otherwise would be impossible. When it comes to help
ing you learn assembly language, Turbo Debugger is indeed a great teacher. 

Writing .COM and .EXE Programs 
You probably know that in DOS there are two kinds of executable code files: those that end 
in .COM and those that end in .EXE. You can write assembly language programs to create 
both types. Although most example programs in this book are of the .EXE variety, at times 
you may want to produce a .COM file instead. 

NOTE 
:'-"; . 

'-' 

Microsoft has indicated its desire to kill the •. tOMiil~formatl.butit ha~~fa~oeenunsuc
cessful in the attempt. If you writeyourptogramsj~ t~is f()m1at! .be~Vi~r~thaty6u m~rbe 
making a lot of work for yourself in the futl:lre~ho~ld Mjcrosoffsucceed'ini~~banfsh 
.COMfilesfromthe face of the Earth. "., . ", "'," .' 

Rather than start new programs from scratch, you may find it helpful to begin with a tem
plate containing the bare necessities required by .COM and .EXE programs. Listing 2.2 lists 
a shell for .COM programs. Listing 2.3 lists the corresponding .EXE shell. You can use the 
.EXE shell to save typing time when entering example programs in other chapters. Each tem
plate has several comments beginning with semicolons and suggesting where to place equates, 
variables, and other items, some of which will be new to you. You may remove these com
ments when starting a new program with a copy of one of the templates. 

listing 2.2. COMSHElL.ASM. 
1: %TITLE "Shell for ,COM files -- by Tom Swan' 
2: 
3: IDEAL 
4: 
5: MODEL tiny 
6: 
7: Insert INCLUDE 'filename' directives here 
8: 
9: Insert EQU and = equates here 

10: 
11: DATASEG 
12 : 



13: 
14: 
15: 
16: 
17: exCode 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: Start: 
26: 
27: 
28: 
29: 
30: 
31 : 
32: 
33: 
34: 

Exit: 

If an error occurs and the program should halt, store an 
appropriate error code in exCode and execute a JMP Exit 
instruction. 

DB o 

Declare other variables with DB, DW, etc. here 

CODESEG 

ORG 100h Standard .COM start address (origin) 

Insert program, subroutine calls, etc., here 

mov ah, 04Ch 
mov aI, [exCode] 
int 21h 

END Start 

DOS function: Exit program 
Return exit code value 
Call DOS. Terminate program 

End of program I entry point 

Listing 2.3. EXESHEll.ASM. 
1: %TITLE "Shell for .EXE code files -- by Tom Swan" 
2: 
3: IDEAL 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11 : 
12: 
13: 
14: 
15: 
16 : 
17: 
18: 
19: exCode 
20: 
21: 
22: 
23: 
24: 
25: 
26: 

MODEL 
STACK 

small 
256 

Insert INCLUDE "filename" directives here 

Insert EQU and = equates here 

DATASEG 

If an error occurs and the program should halt, store an 
appropriate error code in exCode and execute a JMP Exit 
instruction. To do this from a submodule, declare the Exit 
label in an EXTRN directive. 

DB o 

Declare other variables with DB, OW, etc. here 

Specify any EXTRN variables here 

CODESEG 

FIRST 

continues 

43 



44 

PROGRAMMING WITH AsSEMBLY LANGUAGE 

listing 2.3. continued 
27: Specify any EXTRN procedures here 
28: 
29: 
30: 
31: 
32: 
33: 

Start: 
mov 
mov 
mov' 

ax, 
dS, 
es, 

@data 
ax 
ax 

Initialize OS to address 
of data segment 

Make es=ds 

34: Insert program, subroutine calls, etc., here 
35: 
36: Exit: 
37: 
38: 
39: 
40: 
41 : 

mov 
mov 
int 

END 

ah, 04Ch 
aI, [exCode) 
21h 

Start 

Writing .COM Programs 

DOS function: Exit program 
Return exit code value 
Call ODS. Terminate program 

End of program I entry point 

Listing 2.2 shows the correct format for writing .COM programs in Ideal mode. Line 5 se
lects the tiny memory model, which combines the program's variables, code, and stack into 
one 64K memory segment. Because of this, .COM programs always occupy 64K of memory 
(or all available RAM, whichever is less), regardless of the program's size on disk. This little
known fact is one reason that .EXE programs are preferred. Although .EXE code files may 
take up more room on disk (because additional information about the program's organiza
tion is included in the file), most small .EXE programs take up much less memory during 
execUtion than the equivalent .COM programs. 

Line 23 shows another characteristic of a .COM program. The ORG (origin) directive tells 
Turbo Assembler that this program's first instruction is to be loaded at address 100h (the 
small h stands for hexadecimal), relative to the beginning of the program's code segment
the chunk of memory designated to hold the assembled machine code. This value is the same 
as the load address for programs written for the CP/M operating system, upon which much 
of DOS is based and which usually ran on computers having a total memory size of 64K. 
Under DOS, .COM programs operate in a kind of pseudo-CP/M address space, despite the 
fact that most modern PCs have ten times the memory capaciry (640K) or more. Today, 
there's almost no good reason to use this ancient code-file format. 

In Chapter 4, you'H meet most 8086 instruction mnemonics; therefore, I won't explain here 
what Listing 2.2 does at lines 30-32. The effect of this code is to return control to DOS 
when the program is finished. All .COM programs must end with these instructions (or an 
equivalent variant). 



Assembling .COM Programs 
To assemble a .COM program requires slightly different commands than described earlier. 
You must pass Turbo Linker the It option, which specifies a tiny model program. For prac
tice, assemble and link Listing 2.2 with these commands: 

tasm comshell 
tlink It comshell 

It Ain't Over Till ... Actually, It Ain't Ever Over 
This is a good time to introduce a most important point: All assembly language programs 
must return control either to another program or to DOS, using commands specifically pro
vided for this purpose. This concept frequently confuses programmers who have written 
programs in other languages like C, Pascal, and BASIC, where programs simply end. Assem
bly language programs never end-they just fade away-that is, they relinquish control to 
another running program. 

You can understand the purpose behind this idea if you remember that the computer's pro
cessor is always processing. As long as the plug is in and the switch is on, there is never a time 
when a computer isn't computing. Even when the DOS prompt silently waits for your next 
command, the computer processor is whizzing away, performing billions of cycles, constantly 
processing the instructions that only appear to make the computer pause. Doing nothing 
takes a great deal of effort for a computer! 

Because of the processor's incessant cycling, a program can never simply end-it has to hand 
over control to another program to give the processor something to do. Forgetting this step 
almost always has drastic results. If you fail to hand over control to another program, the 
processor will continue to process whatever is in memory after the physical end of your pro
gram. That memory might contain anything-leftover code and data from other programs 
or just the random bit patterns that exist when you switch on power. The result of process
ing this unknown information is usually a spectacular crash, garbage on-screen, or worse, 
the permanent destruction of data on disk. Use the templates in Programs 2.2 and 2.3, which 
include the necessary instructions to return control to DOS. That way, you won't acciden
tally forget this important step. 

When most programs end, they give DOS a command to reload a program called 
COMMAND.COM, located on your boot disk or in a hard drive's root directory, usually 
C:\. COMMAND.COM is a program just like any other but with the special purpose of 
letting you give commands to DOS. When you run a program from DOS, 
COMMAND.COM loads your code and passes control to your program's instructions. When 
your program ends, it must return control to COMMAND.COM for the DOS prompt to 
reappear. Be sure you understand this process-it is vital to your ability to write assembly 
language programs. 

45 



46 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Writing .EXE Programs 
Writing a program in .EXE format takes a little more work than writing .COM programs, 
but the result is usually worth the effort. The .EXE format occupies only as much memory 
as required to run your program, leaving the most room possible for storing data, creating 
large arrays, and sharing space with other .EXE programs in a multitasking operating sys
tem. (DOS does not have multitasking abilities-that is, the ability to run two or more pro
grams simultaneously, although you can add this ability to DOS by running Microsoft 
Windows. Writing programs in .EXE format lets these programs organize memory more 
efficiently.) 

The reason that .EXE programs require more work is that variables, the stack, and the ma
chine code are stored in separate memory segments, occupying up to a total of 128K under 
the small memory model. (The small memory model combines the stack and data segments; 
other models allow larger amounts of code and data.) In Listing 2.3, the size of the stack is 
specified by the STACK directive (line 6). The size of the data segment is calculated from 
the combined sizes of the program's variables. The size of the code segment depends on how 
many instructions are in your program. 

Because variables are stored apart from the program's code-unlike in the .COM format, 
where data and code share the same memory segment-the first job in all .EXE programs is 
to initialize the data segment register ds. Lines 30-31 accomplish this task in Listing 2.3, 
assigning the built-in symbol @data to register ax (line 30) and then assigning ax to ds (line 
31). The reason this takes two steps is that you cannot assign values like @data directly to 
segment registers-you can assign values only from other general-purpose registers such 
as ax. 

Ending an .EXE program is identical to ending a .COM program, as lines 37-39 show. Again, 
don't be too concerned here with what these instructions do. Remember, though, that the 
purpose is to pass control back to COMMAND.COM, using a special DOS function. To 
assemble and link Listing 2.3, use these commands. 

tasm exeshell 
tlink exeshell 

Printing listings 
Now that you know how to enter, assemble, and link programs, you may want to print ref
erence listings of the sample programs in this chapter. Because assembly language listings 
tend ro produce lines longer than the standard 80-character width of most printers, the first 
step is to write a program to select your printer's compressed style, usually extending the 
limits a 132-character lines and, on some printers, even more. 



FIRST STEPS 

Listing 2.<:, PR132.ASM, is a simple .EXE style program that selects 132-character output 
on most Epson-compatible printers. Assemble and link the program with these commands: 

tasm pr132 
tlink pr132 

listing 2.4. PR132.ASM. 
1: %TITLE 'Select 132-char printer output -- by Tom Swan" 
2: 
3: IDEAL 
4: 
5: 
6: 
7: 

MODEL small 
STACK 256 

8: DATASEG 
9: 

10: Insert the codes that select your printer's 132-character (or 
11: greater) output style, sometimes called 'compressed" mode. 
12: The values below should work with most Epson-compatible printers. 
13: The last value must be 0! 
14: 
15: prCodes 
16: 
17: 
18: 
19: Start: 
20: 
21: 
22: 
23: 
24: 
25: Next: 
26: 
27: 
28: 
29: 
30: 
31 : 
32: 
33: Exit: 
34: 
35: 
36: 
37: 

DB 27, 15, 0 

CODESEG 

mov ax, @data 
mov ds, ax 

cld 
mov 

lodsb 
or 
iz 
mov 
mov 
int 
imp 

mov 
int 

END 

si, offset prCodes 

aI, al 
Exit 
dl, al 
ah, 05h 
21h 
Next 

ax, 04C00h 
21h 

Start 

Must end in 0! 

Initialize OS to address 
of data segment 

Clear df--auto increment si 
Point si to prCodes 

Load next code into al 
Is al 07 
If yes, jump to exit 
else assign al to dl 

DOS print char function 
Call DOS. Print char. 
Do next code. 

DOS function: Exit program 
Call DOS. Terminate program 

End of program / entry point 

After assembling PR132.ASM, try an experiment. Turn on your printer and type DIR>PRN to 
print a listing of the current directory in your printer's default style. Type PR132 and press 
Enter. Then, type DIR>PRN again, this time printing a directory in compressed style. If this 
doesn't work, you'll probably have to modifY the codes in line 15 for your printer. Check 
your manual for the correct values to use. After the DB directive, you can specifY codes in 

47 



48 

L PART I - PROGRAMMING WITH ASSEMBLY LANGUAGE 

decimal, hexadecimal (start the value with 0 and end with h), or characters (surround one or 
more characters with double or single qUOtes). Some printer manuals list hexadecimal codes 
with preceding dollar signs, as in $1 F. Rewrite such codes in assembly language style: 01 Fh. 
For example, if your printer specifies the sequence Escape-C, $lF, you could use anyone of 
the following lines in place of line 15: 

prCodes 
prCodes 
prCodes 

DB 27, 67, 31, 0 
DB 01Bh, 043h, 01Fh, 0 
DB 27,' C', 01 Fh, 0 

decimal 
hexadecimal 
deCimal, char, hex 

The last value must be 0, marking the end of the sequence. This format-a list of bytes end
ing with O-is a typical construction in assembly language programs, allowing the list to 
contain any number of items-as long as no other value is 0, of course. 

Unless you've written programs in assembly language before, you probably won't understand 
the instructions in PR132.ASM. This is not too important. The purpose of this chapter is to 
get you started, giving you practice entering, assembling, and linking programs-valuable 
experience that you will draw upon later. Even so, you should at least be able to understand 
the idea of this program by reading the comments. The plan is simple: get each of the prCodes 

bytes in turn and send each value to the printer until reaching the 0 byte, marking the end of 
the list. Then, return control to DOS. 

listing PR132 
After entering PR132.ASM, assembling, linking, and testing, you're ready to print a refer
ence listing. Turn on your printer and type PR132 to select compressed output. Then reas
semble the program, this time using the command: 

tasm 11 PR132 

As an alternative, to include a cross-reference of symbols at the end of the listing, use the 
command: 

tasm IIlc PR132 

Either of these commands creates PR132.LST, called the listingfile, ready to print. To print 
the listing file, type the command: 

type pr132.lst>prn 

The listing file contains form-feed control characters to skip page perforations, and for this 
reason, you probably shouldn't print listing files with a word processor, as these programs 
usually handle paging automatically. You might also send the listing to a print spooler, al
lowing you to run other programs while printing continues. Unless you are logged onto a 
network, use the DOS command to spool a listing file: 

print pr132. asm 



FIRST STEPS 

If this is the first time you gave a print command, you'll be asked to supply an output file. 
Usually, juSt press Enter to select the default file PRN. Refer to your DOS manual for more 
information about using the print spooler. You can print multiple listings by separating their 
names with ~paces on the command line-a real time saver if you need to print several 
listing files and want to continue editing and assembling other programs. You can print 
multiple files by separating their names with spaces or by giving separate print commands. 
Assembly language listings tend to be much longer than those produced by high-level 
languages, and a print spooler is a practical necessity for assembly language programmers. 

After printing, copy your listing files to a floppy disk along with the other files related to 
each program. Most people save the listing files for future reference. If you're tight on space, 
you can delete the files ending in .LST. 

NOTE 

8ecause the \TITLE directive line is not included in the listing file, the line numbers printed in 
. this book do not match the line numbers in a printed listjng. Line 3 in the book is line 2 in the 
listing, and so on. To referto your own printed listings while reading this book, subtract 1 
from line number references. (In other words, if I say Hsee line 20," refer to your listing file 
line 19.) 

Summary 
Assembly language programs roughly divide into five sections: header, equates, data, body, 
and closing. The body is further divided into four columns: labels, mnemonics, operands, 
and comments. Labels refer to the positions of variables and instructions, represented by mne
monics. Operands are required by most assembly language instructions, giving instructions 
data to process. Comments, always optional, help you to remember the purpose of various 
instructions. 

Assembling programs produces object code, which must be linked to create an executable 
file, ending either in .EXE or .COM. You can use special option letters to select features in 
Turbo Assembler and Turbo Linker . Turbo Assembler reports errors and warnings on-screen 
during assembly. 

Turbo Debugger can run an assembled program in slow motion and can let you peer into 
memory to see the actual byres that form your program's code and data. You can use Turbo 
Debugger to help pinpoint bugs and also as your personal assembly language teacher, which 
can run test programs and let you observe the effects of executing individual machine-code 
instructions. 

49 



50 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

The .COM code file format is a carry-over from the CP/M operating system. While useful 
in some cases, this format is not recommended for PC programs. All code, data, and the 
stack in a .COM program occupy one 64K memory segment. The .EXE code-file format is 
more efficient, even though programs may occupy slightly more room on disk. In memory, 
.EXE programs occupy only as much memory as needed. Writing .EXE programs takes a 
little more effort because you are responsible for specifying a program's data, code, and stack 
segments. 

Assembly language programs don't end-they pass control to another program, usually 
COMMAND.COM. Forgetting this step can cause serious problems by executing random 
instructions in memory following the physical end of your program. 

A listing file documents a program. Most programmers print listing files of their finished 
programs for future reference. You can use the DOS print spooler to print long listings while 
you continue working. 

Exercises 
2.1. Referring to Listing 2.3, what are the line numbers of the header, equates, data, 

body, and closing? 

2.2. What is the name of the variable in Listing 2.4? 

2.3. How many comments are there in Listing 2.1? 

2.4. What characters precede option letters for Turbo Assembler and Turbo Linker? 

2.5. Suppose you have a program text file named BUGABOO.ASM. What are the 
assembling and linking steps required to create the necessary files to debug 
BUGABOO with Turbo Debugger? 

2.6. Which program do you use, Turbo Assembler or Turbo Linker, to create object 
code? Which do you use to create executable code? What is the purpose of 
creating object code? 

2.7. What is the difference between an error and a warning? What should you do if 
you receive an error or a warning? 

2.8. How do .COM and .EXE code files differ? 

2.9. Suppose you have a program named LISTME.ASM. What are the steps required 
to assemble and print a listing file of this program. 

2.10. What is the correct way to end an assembly language program? 

2.11. What does the DB directive do? What kinds of data can you create with DB? 



Projects 
2.1. Print a reference copy ofT urbo Assembler's option letters. 

2.2. Make a copy of Listing 2.4 and rename the copy PR30.ASM. ModifY this 
program to select your printer's 30-column output style. 

2.3. Create and print listing files for Programs 2.1 through 2.4. 

2.4. Start a floppy disk or hard drive directoty for saving your assembled example 
programs. Create individual subdirectories for each program, naming the 
directories the same as the programs. Then copy all files for each program to the 
appropriate subdirectory. For example, to save Listing 2.1, you could create a 
subdirectory named FF and copy to FF the files: FF.ASM, FF.OBJ, FF.EXE, 
FF.MAP, and optionally FF.LST. 

2.5. Execute Listing 2.4 under control of Turbo Debugger. Press the F8 key to run 
the program a single step at a time. Watch carefully the repetitive action of the 
instructions from line 26 through 32 as the program reads each printer code 
until reaching the 0, marking the end of the list. Bring up the register window 
and watch the ax register, especially for the instruction at line 26. What do you 
think is happening here? 

2.6. Rewrite Listing 2.1 and assemble to a .COM code file. 

51 





r--~~.-.-----------------------

A Bit of Binary 

_ Memorabilia, 54 -How Many Bits in a Byte?, 55 -Binary Arithmetic and Logic, 56 -Counting in Binary, 56 -Binary and Hexadecimal, 59 -Two's Complement Notation, 61 -Logical Operators, 65 -Shifting and Rotating, 69 -Summary, 70 -Exercises, 71 -Projects, 72 



54 

I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Memorabilia 
Bits and bytes are an assembly language program's fuel. The more you know about bits, bytes, 
and the arithmetic and logic operations you can perform on binary values, the more energy 
you'll be able to squeeze from this power source of all digital computing-the lowly binary 
digits, or bits, 0 and 1. 

Physically, of course, there are no binary digits in memory or in the computer's processor
there are only electric charges that are on (energized) or off (not energized). For the purposes 
of programming, however, it's convenient to ignore this fact and pretend that there are in
deed ones and zeros stuffed into the computer's circuit board. Groups of binary digits can 
then represent values, which in turn can stand for all sorts of items: ASCII characters, printer 
control codes, checkbook balances, the date and time, and so on. Other binary values might 
be used to read and write values to input and output ports, which appear to programs like 
other values in memory but which might actually be switches that activate and deactivate 
various circuits that control devices attached to the computer. Storing bits to these locations 
is equivalent to flipping a light switch on and off. In assembly language, simply writing a 
certain value to a specific location can turn on motors, display characters, send values to re
mote systems, and make sounds. 

With such an important role for binary values to play---especially in assembly language pro
gramming-it's important to be intimately comfortable with binary arithmetic and logic. 
That doesn't mean you have to be able to add columns of hexadecimal numbers by hand. 
For this, you may as well use a programmer's calculator. (After all, that's what most profes
sional programmers do.) Even so, a working knowledge of binary principals is vital to your 
ability to write good assembly language programs. By all means, use your calculator, but don't 
ignore learning the basics. Every minute you spend learning these subjects will save you from 
hours of puzzlement in the future. 

NOO . 

Because a good understanding of binary arithmetic and logic operations is so important to 
assembly language programming, this chapter reviews the fundamentals from the beginning. 
If you know your way around the binary number system, you may want to skim this material 
(and look for more advanced tips near the end). 



--~-.--.---~.---

A BIT OF 

How Many Bits in a Byte? 
Let's start with a quick review. There are 8 bits in a byte; 2 bytes in a word; 4 bytes in a 
doubleword; 6 bytes in a farword; and 8 bytes in a quadword. Bits are numbered from right 
to left-bit 0 is always farthest to the right and is called the/east significant digit (LSD). The 
bit farthest to the left is called the most significant digit (MSD). Figure 3.1 illustrates typical 
ways of representing the bits in byte and word values. 

Figure 3.1. 7 6 5 4 3 2 0 

Typical byte and word 

I 1 0 I 0 I 1 I 0 I 1 I I diagrams. 

MSD a·bit Byte LSD 

15 a 7 0 

MSB LSB 

16·bit Word 

7 o 15 a ,--------------
: MSB I LSB MSB 

--------------

\. 
Byte·Swapped Word 

.J as Stored in Memory 

In memory, bytes are stored consecutively one after the other. Each byte has an associated 
address, a unique number that pinpoints this byte's location from all others. To read and 
change byte values in memory, assembly language programs specifY a value's starting address, 
usually but not always in the form of a named label such as temperature or numCumquats. 

Being able to use readable labels instead of actual address values like OFOO:OO 14 is one of the 
main advantages offered by assembly language. 

In 8086 programming, word values are stored in byte-swapped order, with the word's most 
significant byte (MSB) at a higher address than the least significant byte (LSB). In assembly 
language listings, word values are shown in reverse order from the order that the bytes are 
actually stored in memory. (For example, see Figure 3.1, bottom.) This byte-swapped order 

55 



56 

-~-~---~.-----

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

makes arithmetic easier to perform on multibyte values because the least significant bytes, 
which must be added first, are at lower addresses. But the swapped order can also lead to 
confusion for people who have to read the listings and relate printed values to those in memory. 
To locate a word in memory equal to hexadecimal 0201, for example, requires searching for 
the two consecutive bytes, 01 and 02, not for 02 and 01. 

Binary Arithmetic and logic 
Because large values can take many bits to represent, calculating complex equations directly 
in binary is tedious. Fortunately, you don't need to become so fluent in binary arithmetic 
that you can instantly convert a grocery cash register tape from decimal to binary, compute 
the sum, and convert back to decimal all in your head. Some books require you to learn how 
to add, subtract, multiply, and divide directly in binary-operations that programmers in 
the real world would rather do on a computer. My hat's off to you if you find such opera
tions easy. For most purposes, the well-versed assembly language programmer needs to know 
how to perform only four fundamental operations: 

• Count from 0 to 16 in binary without help. 

• Convert values into binary, hexadecimal, and decimal. 

• Understand the logical operations AND, OR, and XOR. 

• Understand how signed (positive and negative) and unsigned (positive only) values 
differ in their binary representations. 

Counting in Binary 
Table 3.1 lists the binary, hexadecimal, and decimal values from 0 to 16. Try to memorize 
this table and mark this page. You'll need these values time and again. 

Table 3.1. 0-16 in Binary, Hexadecimal, and Decimal. 
Binary Hexadecimal Decimal 

0000 00 0 

0001 01 

0010 02 2 

0011 03 3 

0100 04 4 

0101 05 5 

0110 06 6 

0111 07 7 



A BIT OF BINARY 

Hexadecimal Decimal 

1000 08 8 

1001 09 9 

1010 OA 10 

1011 OB 11 

1100 DC 12 

1101 00 13 

1110 DE 14 

1111 OF 15 

10000 10 16 

It's easy to learn how to count and add in binary if you remember one simple fact about 
adding two values expressed in any number system: When you run out of symbols in a col
umn, carry a 1 to the left. You know how to do this in decimal. But with only two symbols 
in binary-or base two--values, a carry from one column to the column on the left occurs 
sooner in binary than in decimal, which has ten symbols and, therefore, can represent larger 
values with fewer numbers of digits. Adding 1 + 1 in decimal requires no carry: 

+ 1 

2 

In decimal, the result can be represented by a single symbol (2). In binary, a single digit can 
be only 0 or 1; therefore, it takes an additional digit to represent a count of two things. Adding 
1 + 1 in binary, then, forces a carry to the column on the left: 

+1 

10 

The result is notten. The result is two expressed as the base two value 10. As you know, adding 
1 to decimal 9 (the highest single digit in base ten) gives 0 in that column with a carry to the 
next column to the left. Likewise, adding 1 to binary 1 (the highest single digit in base two) 
gives 0 in that column with a carry to the next column to the left. Adding in binary is no 
different from adding in decimal-you just run out of symbols more quickly and, as a result, 
have to carry a 1 to the left more frequently. With this rule in mind, you can add any two 
binary values. Let's try this with a more complex addition, writing the carries above the val
ues being added: 

57 



58 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

11 1 11 (carries) 

01101010 
+00101110 

1001 1000 

NOTE 

(first value) 
(second value) 
(sum) 

To avoid confusion, don't say "hundred" for binary 100 or "ten" for 10. Say 1I0ne-zero-zero" 
and "one-zero" pronouncing each digit. 

The Power of 2 
In most number systems (at least in those of the modern world), the position of a digit rep
resents a value equal to the digit multiplied by the column's significance, or power. In deci
mal, for instance, the 3 in 300 stands for the number of hundreds-the power of the third 
column to the left. The rightmost column represents 10 to the zero power, written 10°. The 
second column to the left represents 101

; the next represents 102
; and so on. To find the 

power of any column, write the number of the column's position (starting with 0) as the 
exponent to the number base. Then, multiply that many base values to find the significance 
of the column. For example, the value 103 equals (10 x 10 x 10), or 1000. 

NOTE 

Any base value to the zero power (nO) is traditionally considered to equal 1. Technically 
speaking, the value of a digit in the rightmost column equals the value of that digit times 1. 

Binary values are positional, too. Because binary values are expressed in base 2, binary col
umns represent the powers of 2. In binary, the 1 in 100 stands for one count of the third 
column's power, or 22, which in decimal equals 4 (2 x 2); therefore, 100 in binary is equiva
lent to 4 in decimal. 1000 in binary equals 2\ or 8 (2 x 2 x 2), and so on. 

Finite Values 
Computer programs usually represent numbers with fixed numbers of bits in one or more 
bytes. This makes it practical to store numbers in memory, which is divided into byte-size 
pieces. At the same time, a fixed number of bits places a limit on the number of values that 
can be expressed. A single byte of8 bits, for example, can express values from 0 to 255. A 16-
bit word can express values from 0 to 65,535, and so forth. To express higher values requires 
more bits. 



A BIT OF 

To calculate the maximum value that can be expressed within a fixed number of bits n, use 
the formula 2" - 1. For example, if n is 8, then the maximum value you can express in 8 bits 
equals (2 x 2 x 2 x 2 x 2 x 2 x 2 x 2) 1, or 255. Counting 0, there are 256 values in the range 
o to 255; therefore, the formula for the number of values that a fixed number of bits n can 
express equals 2n. Know these boundaries well. You'll bounce into them all the time. 

The K Game 
Most people use a convenient shorthand to represent I,OOO-byte, or kilobyte, quantities of 
memory as in 64K, 128K, and 640K. These convenient powers of 2-in all cases equal in 
binary to a 1 followed by several zeros-have been adopted by computer users everywhere as 
accurate measurements of RAM, despite the fact that a 64K computer actually has 65,536 
bytes-the full number of values that can be expressed in 16 bits, or 216. 

The address range of the 8086 processor, by the way, is 220, or 1,048,576 bytes-a so-called 
megabyte plus change. As you'll learn in later chapters, the 8086 uses some hocus-pocus to 
reduce two 16-bit address values down to a 20-bit physical address that actually locates indi
vidual bytes within this memory range. The 80486 processor can address up to 2'12 bytes. 
That's four gigabytes of memory, or exactly 4,294,967,296 bytes. (I don't know why they 
call a billion bytes a gigabyte. Maybe it should be a billybyte.) 

When working with address values in binary, try to get used to thinking in powers of 2. 
Measuring memory in K is quick and easy, but it is just too vague for the exacting world of 
assembly language programming. 

Binary and Hexadecimal 
Hexadecimal values are represented in base 16-in other words, with the 16 symbols 0, 1,2, 
3,4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. The hexadecimal digits are made up of the ten deci
mal digits 0 to 9 plus the six letters A to F. 

NOTE 

Some early computer texts used a different set of six letters in place of A to F. One suggested 
U, V, W, X, Y, and Z. Another proposed lowercase I, e, d, hi f, I. Believe it or not, you were 

''', supposed to remembert for tens, e for elevens, d for dozens, h for thirteens, f for fourteens, 
andlfor fifteens! Fortunately,this didn't become one of computerdom's more popular 
standards. 

Counting in hexadecimal is easy (see Table 3.1) if you remember that 1 + F equals hexadeci
mal 10 (16 in decimal). Remember, 1 plus the last symbol in any positional number system 
equals the symbol 10 expressed in that number system. 

59 



60 

_ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Because the hexadecimal number system contains 16 symbols and because 16 is a power of 
2 (24), values in binary are easily converted to and from hexadecimal by substitution. Plainly, 
it's easier to write and remember hex values like B800 than it is to write and remember the 
binary equivalent: 1011 100000000000. Here's another example: 

0100 1111 0101 1100 
4 F 5 C = 4F5C 

The binary value (top) converts to hex (bottom) by substitution from Table 3.1. To convert 
from hex to binary, substitute in the other direction, replacing hex digits with their 4-bit 
binary equivalents. 

Converting Hexadecimal and Decimal Values 
Converting between hexadecimal and decimal is not as simple as converting between hexa
decimal and binary values. The easiest way to accomplish such conversions is to use a 
programmer's calculator designed for this purpose. Or, use a software calculator such as the 
one in Borland's SideKick or Microsoft Windows. That way, you can pop up the calculator 
in the middle of typing a program, do the calculation, and go right back to work. 

For the times when you can't get to your calculator, it pays to know how to convert hexa
decimal and decimal values by hand. This is not as difficult to do as you may think. As in 
binary and decimal, hex digits are positional, representing increasing powers of 16 from right 
to left. Knowing this provides a quick trick for converting any 16-bit value from hexadeci
mal to decimal, requiring you to memorize only these four values: 

16° = 1 
161 = 16 
162 = 256 
163 4,096 

The exponents represent column positions in the hexadecimal value, numbered from right 
(O) to left (3). To convert hexadecimal to decimal, multiply the value of each hex digit by the 
power of its column. Add the multiplications, and you're done. For example: 

8B92 (8 x 4096) + (11 x 256) + (9 x 16) + (2 x 1) = 35,730 

The hexadecimal value 8B92 equals 35,730 in decimaL For the hex digits A-F, use Table 3.1 
to convert mentally to decimal before multiplying. In this example, (B x 256) is equivalent 
to (II x 256). To convert from decimal to hexadecimal, reverse the process, dividing by powers 
of 16. Although this is a little more difficult, you can do the calculation by hand this way: 

(35,730/4096) 8.72... (8 x 4096) = 32,768 (35,730 - 32,768) = 2962 
(2,9621256) = 11.57... (11 x 256) = 2816 (2,962 - 2,816) = 146 



(146/16) '" 9.125 
(2/1) '" 2 

(9 x 16) = 144 
(2 x 1) 2 

8, 11,9,2 = 8B92 

(146 - 144) '" 2 
(2 2) '" 0 

A BfT OF BINARY 

Don't be overwhelmed-this isn't as confusing as it probably looks. Reading each row from 
left to right, look at how the expressions divide a decimal value by decreasing powers of 16, 
throw out the remainder, multiply the whole number by the same power, and subtract the 
result from the total. Then the next line uses the result of this calculation in the next divi
sion, repeating the process until reaching O. If the first division is greater or equal to 16, start 
with a higher power. If a subsequent division is greater or equal to 16, you've made a mis
take. Written down, the expressions seem to be a frightening load of work. But with practice 
and an inexpensive decimal calculator, you can do the conversion in a few seconds. Notice 
how the hex digits pop out of the divisions-8, 11 (b), 9, 2, or hexadecimaI8B92. 

Two's Complement Notation 
Unsigned integers include 0 and all positive whole values. Signed integers include the un
signed integers plus whole values less than O. Within a fixed number of bits, there are a fixed 
number of signed and unsigned values. For instance, in 4 bits, the smallest value is 0000; the 
largest unsigned value is 1111. Converting to decimal, this equals the range ofO-15-a total 
of 16 possible values including O. In 8 bits, the largest unsigned value is 1111 1111, or 255 
decimal-making a total of 256 possible values in one 8-bit byte. The whole numbers in 
mathematics may be infinite, but in computer programming, whole numbers have definite 
limits. 

Because you can express only a fixed number of values within a fixed number of bits, repre
senting negative values in signed binary requires some trickery. A value's sign is either posi
tive (+) or negative (-); therefore, a single bit can represent the sign of an integer-l for negative 
and 0 for positive. That leaves the rest of the bits to represent the signless absolute value. This 
observation leads to a convenient representation for negative integers in binary, called the 
two s complement. 

NOTE 

For simplicity, 0 is considered to be a positive value even though, strictly speaking, 0 is 
neither positive nor negative. 

61 



62 

PART I. PROGRAMMING WITH ASSEMBLY LANGUAGE 

In two's complement notation, if the leftmost bit is 1, the value is negative. If the leftmost 
bit is 0, the value is positive or O. To convert between positive values and two's complement 
notation, first negate each bit (step 1 below)-changing the ones to zeros and the zeros to 
ones-forming an intermediate value called the one s complement. Add 1 to this value (step 2 
below), forming the final two's complement result: 

'01101010 (original value) 
1001 0101 (1. negate each bit-one's complement) 

+ (2. add 1) 

1001 0110 (two's complement) 

The steps are reversible. To convert a two's complement value to its absolute value, perform 
the same steps. For example: 

11111110 
00000001 

+ 1 

00000010 

(two's complement) 
(1. negate each bit) 
(2. add 1) 
(absolute value) 

As this example shows, the absolute value of the 8-bit two's complement 1111 1110 equals 
0010, or 2. In other words, 1111 1110 is decimal-2, represented as a signed binary, two's 
complement value. The conversion steps work no matter how many bits are in the value-
4, 8, 16, or more. The leftmost bit always indicates whether a value is positive (0) or negative 
(1). If negative, performing the two's complement operations finds the absolute value. 

NOTE 

Another way to form the two's complement is to subtract a binary value from 0, although 
negating and adding 1 is simpler to do by hand. 

A good way to understand the purpose of the two's complement is to remember the number 
line you no doubt learned in math class. (See Figure 3.2.) Values to the right of 0 are posi
tive; values to the left are negative. The line extends in two directions farther than human 
minds can imagine. 

With a fixed number of positions for digits-as in a computer's memory-you might imag
ine the familiar number line to be circular. (See Figure 3.3.) The binary values (outside the 
circle) orbit sequentially to the right. Adding one to the highest value (1111) returns to O. 
Signed decimal equivalent values are inside the circle; unsigned values are outside, with the 
binary values written under their decimal counterparts. This figure assumes four binary dig
its are available, although the same idea holds for any fixed number of bits. 



A BIT OF BINARY 

From Figure 3.3, you can see that exactly half of the signed values are negative (-1 to -8). 
The other half are positive (0 to 7). The unsigned values (0 to 15) use the same binary values 
as the signed quantities, a fact that leads to an important rule to remember: Negative binary 
values are negative by convention only. Within a fixed number of bits, all unsigned values have 
corresponding signed values represented by the identical bit patterns such as (9, -7), (13, -3), 
and (15, -1). The binary values for the negative numbers are simply represented in two's 
complement form. 

Figure 3.2. 
Signed-integer number line. 

Figure 3.3. 
With a fixed number of 
binary digits arJaildble, it's 
convenient to imagine the 
fomiliar number line as (I 
circle. 

NOTE 

13 
1101 

12 
1100 

11 
1011 

-4 -3 -2 -1 o 2 

3 
0011 

4 
0100 

5 
0101 

3 4 

A common misconception is that there is one more negative value than there are positive 
values in signed, two's complement notation. Considering that 0 is positive, this is not true
there are equal numbers of positive and negative values. Count them in Figure 3.3. 

63 



64 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Subtracting by Adding 
Two's complement notation is important in binary arithmetic because it gives computer 
circuits the ability to subtract by adding. Also, performing the two's-complement steps
negating the bits and adding I-makes it easy to find the absolute value of negative binary 
values expressed in two's complement notation. If you understand the idea of a circular number 
line (Figure 3.3), you can easily grasp these ideas. Obviously, adding decimal 1 + 9 equals 
10, equivalent to the signed value -6 (binary 1010) on the circular number line-the iden
tical result received by subtracting 1 - 7. Therefore, instead of subtracting 1 - 7, you can 
instead add 1 + 9 and then look up the negative value on the circular number line as the 
two's complement of the result. 

Fortunately, in 8086 assembly language, you don't have to subtract by adding two's comple
ments because the processor has instructions for subtracting values. Even so, it pays to un
derstand the mechanism. The rule is: To subtract one binary value from another, convert 
the second value to two's complement notation and add. For demonstration, let's start with 
a simple subtraction that produces a positive result: 

1001 
- 0101 

0100 

1001 
+ 1011 

10100 

9 
. 5 

4 

On the left, 5 (0101) is subtracted from 9 (1001) directly. In the middle, the two's comple
ment of 5 (lOll) is added to 9. The right column shows the subtraction in decimal. The 
two calculations give identical results, but with a carry out of the middle column for the two's 
complement addition, indicating the result is positive. Now watch what happens when you 
subtract 5 - 9, giving a negative answer: 

0101 0101 
1001 + 0111 (two's complement of 1001-9 decimal) 

7100 0 1100 (two's complement of 0100-4 decimal) 

The left column requires a borrow where none is to be had. On the right, subtracting by 
adding the two's complement of9 decimal to 5 gives 1100, which you know is negative because 
the leftmost bit in 1100 is 1. The two's complement is this is 0100, or 4, the absolute value 
of -4, which is the result of subtracting 5 - 9. In this way, the system of two's complements 
allows you to subtract binary values by adding-simple as 1, 10, 11. 

NOTE 

8086 processors contain two instructions to create the one's and two's complements of 

binary values. The not instruction forms the one's complement. The neg instruction forms the 

two's complement. You'll meet these instructions again in Chapter 4. 



logical Operators 
Three logical operations-AND, OR, and XOR (exclusive or)-are as common in assem
bly language programming as weeds in a garden. (On second thought, they're not as 
common as weeds in our garden.) AND, OR, and XOR give you total control over manipu
lating the individual bits in binary values. You can set and reset single bits withoutoaffecting 
others, isolate one or more bits from bytes and words, and perform other operations. 

Table 3.2 lists the truth tables for AND, OR, and XOR, showing the effects that a logical 
operation has on 2 bits. AND is represented by &, OR by I. and XOR by x. 

Table 3.2. AND, OR, XOR Truth Tables. 
AND (&) OR (I) 

a & b =c a I b = c 

0&0 = 0 010 = 0 

0&1 = 0 011 1 

1 &0 =0 1 10= 1 

1 & 1 = 1 1 I 1 = 1 

XOR(x) 

axb c 

OxO=O 

Oxl=l 

lxO=1 

1 xI = 0 

Study Table 3.2 carefully. The result of ANDing two bits equals 1 only ifbit aand bit balso 
equal!. The resultofORing two bits is 1 ifbit a or bit b equals 1. The result ofXORing twO 
bits is 1 only if bit a or bit b exclusively equals 1. 

Masking with AND 
AND is most often used to mask (isolate) bits in byte and word values. Referring to the AND 
truth table in Table 3.2, you can see that a 1 passes through a a to c only if there is a corre
sponding 1 in column b. You can use this observation to create filters to extract bits from 
bytes. Here's a typical example: 

0101 1101 
&00001111 

00001101 

(original value) 
(AND mask) 

(result) 

The mask is 0000 1111, of OF hexadecimal. Because ANDing 2 bits gives a 1 only if both 
bits are 1, only the least significant 4 digits on the right pass through the mask unchanged. 
The most significant 4 digits on the left are masked out by the zeros in the AND mask. Per
form the truth table operations on each column of this example to prove to yourself that the 
mask works. 

65 



66 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Another typical use for AND masks is to test the value of single bits. First, create a mask with 
a 1 in the test bit position. Then, AND this mask with the test value, allowing a candidate 
bit to pass through. For example, suppose you want to test the leftmost bit, perhaps to deter
mine whether a value is negative in two'S complement nOtation: 

0111 1010 
& 1000 0000 

0000 0000 

10011111 
& 10000000 

10000000 

(original values) 
(AND masks) 

(results) 

The mask (80 hexadecimal) isolates the most significant digit-the one farthest to the left. If 
the original value has a 0 in this position, the result equals O. If the original value has a 1 in 
this position, the result is not O. Following the AND operation, testing if the result is 0 tells 
you whether the original value is negative (in twO's complement notation). In 8086 program
ming, as you will learn, there are other ways to test for negative values. Even so, masking 
single bits this way is an important technique to know. 

Setting Bits with OR 
Contrasting the action of AND, logical OR is most often used to change the value ofindi
vidual bits without affecting other bits in a byte. As Table 3.2 shows, a 1 bit in column b 
always results in a 1 bit in the result c, while an 0 in column b allows the original bit value 
from column 1 to pass through to the result. Notice that this pass-through action is the 
opposite of the AND operation, where a 1 bit in the mask allows bit values to pass through. 
These facts allow OR to set any bit in a byte, as this example demonstrates: 

00101011 
1000 0000 

10101011 

(original value) 
(OR mask) 

(result) 

The OR mask (80 hexadecimal) changes the most significant digit in the original value from 
o to 1. (If that bit was already 1, then it passes through unchanged.) Referring to the OR 
truth table in Table 3.2, perform the OR operation on each column in this example to prove 
to yourself how this works. 

Combined with AND, OR is frequently used to change the settings of a device's switches, 
economically represented as single bits in memory, perhaps stored in registers inside the 
device's interface card plugged into the computer. (A register is a small amount of special
purpose memory, usually inside an integrated circuit chip. The 8086 processor as well as 
other chips on your PC's circuit board have many such registers to hold meaningful values.) 
To see how AND and OR can be used to control devices, imagine a light attached to your 
computer and suppose that bit 3 of a certain register byte value represents the switch to turn 
the light on (l) and off (0). Bits 5, 6, and 7 represent the light's intensity in eight steps from 



000 (dim) to III (bright). Other bits have other meanings and you must be careful not to 
change bits that are of no concern to you. Representing the taboo bits as question marks, the 
intensity as v, and the switch as s, the following operations turn on the light and change the 
intensity to 3: 

76543210 

wv? s??? 
& 00010111 

OOO? O?17 
01101000 

011? 1??? 

(bit position numbers) 

(original settings) 
(AND mask) 

(result of AND) 
(OR mask) 

(result) 

First, an AND mask strips the original value of any 1 bits in positions 7, 6, 5, and 3-the 
bits to be changed to the new settings. The ones in the AND mask preserve the original val
ues in the forbidden positions--4, 2, 1, and O-that must not be changed. After this, an OR 
mask sets bits 7, 6, and 5 to 011 (3 decimal) and also sets bit 3 to 1. Notice how zeros in the 
OR mask allow the values of the preserved bits (?) to pass through unharmed. Now, com
pare the bottom and top lines. The intensity value vvv is changed to 011 and the switch s to 
1. The bits that control other devices are undisturbed. 

Non 

When setting individual bits in bytes, you'll almost always use an AND followed by OR. This 
is one assembly language's most fundamental sequences, and you should learn it by heart. 

The Exclusive OR Club 
The third common logical operator, XOR, is similar to OR but with one important differ
ence. As you can see from Table 3.2, the result cequals 1 only when one but not both of the 
original two values is 1. If both of the original two bits are the same, then the result ofXOR 
is O. This property provides a handy tool for toggling individual bits on and off-without 
having to know beforehand what the original bit values are. As with OR, a 0 in the XOR 
mask allows an original bit value to pass through. This example helps explain the idea: 

10100010 (original value) 
® 11101011 (XOR mask) 

0100 1001 (result) 

67 



68 

Applying XO R to these two values, when both bits are equal, the result is O. When both bits 
are different, the result is 1. Using Table 3.2 as a guide, verifY that each of the columns in 
this example is correct. Then watch what happens when the XOR mask has a 1 bit in every 
position: 

10100101 (original value) 
® 1111 1111 (XOR mask) 

0101 1010 (result) 

Compare the top and bottom lines. Each bit in the original value is reversed in the result. All 
the ones are converted to zeros; all the zeros, to ones. (Adding 1 to this result gives the two'S 
complement of the original value. How interesting.) What's more astounding about XOR is 
that, as if by magic, repeating the identical operation restores the original value: 

0101 1010 (result from previous example) 
® 1111 1111 (same XOR mask, too) 

10100101 (orignal value!) 

You can understand this apparent sleight of hand by observing that, if an XOR mask toggles 
every bit in the original for which there is a corresponding 1 in the mask, then reapplying 
that same mask to the result has to again toggle every bit back to its original value. This 
action-the ability to combine a value via XOR and then restore the original value with a 
second XOR-is frequently used in graphics software to allow objects, represented by bit 
patterns, to pass through each other harmlessly. Other uses for this property are found in 
communications and encryption software. 

As a kind of side show effect-because ofXOR's toggling action-every 1 bit in the mask 
toggles the corresponding bit in the original value on or ofT. Exclusively ORing any value 
with itself always gives O. For example: 

0111 1101 (original value) 
® 0111 1101 (same value as an XOR maSk) 

00000000 (result) 

Remember: The result is 0 when two exclusive-ORed bits have the same value. Obviously, 
XORing two identical values can have only one effect-all zeros in the result. By the way, 
you'll see this trick often in 8086 assembly language programs. There are other ways to change 
a byte to 0, but XORing a value with itself is one of the fastest methods available. 



A BIT OF BINARY 

NOTE . 

Subtracting a value from itself also produces O. For an interesting experiment, try adding the 
two's complement of a value to itself. What do you get for the result? As you can see, there is 
more than one way to skin a byte. 

Returning to the example of a light attached to a computer, you could perform this XOR 
operation to toggle the light on and off without affecting the other bit values: 

vvv? s??? (original settings) 
® 0000 1000 (XOR mask) 

vvv? x??? (result) 

A 1 bit in the XOR mask toggles the corresponding bit s in the original value to its opposite 
value x in the result without affecting any other bits. The importance of this operation is 
that the program doesn't have to know the original value sto toggle the value. All that's known 
is that the result is opposite of the original. If the light was on, now it's off. Ifit was off, now 
it's on. 

Shifting and Rotating 
Shifting bits left and right is another common operation performed on binary values. A shift 
to the left typically moves a 0 bit into the LSD position, pushing the former MSD off the 
edge of the cliff at the far left. A shift to the right does the same, but moves a 0 bit into the 
MSD position, losing the former LSD. Variations on this theme store the lost bit and move 
the value of another single-bit flag into the new LSD or ~SD position. Other variations 
move the LSD or MSD around to the other end-or through a single-bit flag-causing the 
bits to rotate. 

Because bit shifting is such a common operation in assembly language programming, we'll 
pick up this discussion again when meeting the 8086 shift and rotate instructions. But, for 
now, there are two concepts you should understand: multiplication by shifting left and divi
sion by shifting right. To understand how it is possible to multiply and divide by shifting, 
examine this addition: 

0110 1011 (original value) 
+ 0110 1011 (added to itself) 

1101 0110 (shifts value left!) 

69 



70 

As the tOP and bottom lines indicate, adding a value to itself causes the bits to shift one po
sition to the left. Stated differently, a binary multiplication by 2 is equivalent to shifting the 
bits in the value once to the left. Continuing to shift the bits left multiplies the result again 
by 2, thus multiplying the original value by 4, or 22. This leads to a general rule: To multiply 
any value by a power of 2, shift the value left by the exponent's value. To find x times 24_ 
that is, to multiply x by 16-shift x left 4 bit positions. 

Obviously, if shifting left multiplies binary values by successive powers of 2, shifting right 
divides values by 2,4,8, and so on. To find the result of 1010 1111 CAF hexadecimal, or 
175 decimal) divided by 4, just shift the bits right twice: 

1010 1111 (original value) 
0101 0111 (divided by 2) 
0010 1011 (divided by 2 more) 

The result, 0010 1011 (2B hexadecimal, or 43) equals the result of 175 divided by 4-throw
ing away any remainder, that is. Similar to multiplication, to divide by any power of2, shift 
the original value right by the exponent's value. 

There are several catches to these tricks. For one, you can multiply and divide only unsigned 
values by powers of 2. For another, the product must fit within the size of the destination. 
(Multiplying 1111 1111 by 2, for example, is notequal to 1111 111O-a ninth bit is needed 
to represent the correct result.) And, because bits are lost off the fotward end of the shift
with 0 bits coming in from the leading edge-dividing ignores any remainder in the result. 
Despite these restrictions, because shifting bits is one of the fastest operations a digital com
puter processor can perform, whenever you can multiply or divide by shifting, it pays to do 
so. In future chapters, you'll see programming examples that prove this point. 

Summary 
Bits and bytes fuel the computer processor. There are 8 bits in a byte; 2 bytes in a word; 4 
bytes in a doubleword; 6 bytes in a fatword; and 8 bytes in a quadword. In memory, bytes 
are stored consecutively, each byte precisely located by a unique address. Word values are 
stored in byte-swapped order with the most significant bytes at higher addresses. 

Well-dressed assembly language programmers need only four binary basics in their ward
robe: counting from 0 to 16 in binary; converting among binary, hexadecimal, and decimal 
values; understanding logical AND, OR, and XOR operations; and representing negative 
values in twO'S complement notation. 

As in other positional number systems, columns from right to left in binary represent in
creasing powers of the number base. Because 16 is a power of 2, hexadecimal notation gives 
programmers a convenient way to represent binary values by substitution. Converting 



between hexadecimal and binary is easy. Converting between decimal and hexadecimal is 
more difficult-probably best handled by a programmer's calculator. Even so, you should 
learn how to do the conversion by hand, which is not so difficult once you know the tricks. 

Negative values in binary are represented in twO's complement notation. A negative number's 
MSD always equals 1. For simplicity, 0 is considered to be a positive value. Two's comple
ment notation allows processors to subtract by adding and also makes it easy to find the 
absolute value of any negative number expressed in two's complement form. 

The three logical operations AND, OR, and XOR are typically used to manipulate individual 
bits in binary values without disturbing other bits. AND masks combine with binary values 
to isolate one or more bits. OR masks can set individual bits to 1. XOR masks can toggle bits 
from 1 to 0 and back regardless of the original value. AND followed by OR is one of assem
bly language's most common sequences and is typically used to change specific bit values 
without disturbing other bits in bytes. 

Shifting bits left multiplies unsigned binary values by successive powers of 2. Shifting bits 
right divides unsigned binary values by powers of 2, throwing away any remainder. Because 
computers can shift bits very quickly, using these operations can help speed binary math in 
assembly language programs. 

Exercises 
3.1. What does the word "bit" stand for? 

3.2. How many bits are there in a byte? How many bytes are in a word? How many 
words are in a quadword? 

3.3. What do MSD, LSD, MSB, and LSB stand for? 

3.4. What is the sum of the two binary values 0110 101111111001 and 1010 1011 
1I001000? 

3.5. What,re the hexadecimal equivalents of the binary values in question #4 
(inclrlding the sum)? 

3.6. How much in decimal does 27 represent? What column (bit number) in a binary 
value has the power of 27? 

3.7. How much is 3ECA in decimal? How much is decimal 12,152 in binary? Try 
doing this by hand, even if you have a programmers calculator. (Hint: Convert 
the decimal value to hexadecimal and then to binary by substitution.) 

3.8. What AND mask would you use to isolate bits 5, 3, and 2 in an 8-bit byte? 
What OR mask would you use to set bits 7 and 6 [0 I? What XOR mask would 
you use to toggle a byte's MSD on and off? 

71 



72 

ASSEMBLY LANGUAGE 

3.9. [Advanced] Given the job of setting bits 3 and 7 to 1 while toggling bit 2 on/off 
and preserving all other bits in a byte, what combination of masks and logical 
operators would you use? 

3.10. How many bits are there in 2,048 farwords? 

3.11. What are the one's and two's complements of the binary values 1011 1111, 0000 
0001, 10000000, 1110 0001, and 1111 1111? 

3.12. What is the decimal equivalent of the signed binary value 1111 1001? What is 
the decimal equivalent of these same bits as an unsigned binary value? 

3.13. What is the maximum value that you can express in 6 bits? How many values can 
you express in 9 bits? 

3.14. Multiply 0011 1001 by 4 using a bit shift. Divide 1001 1100 by 8 using bit 
shifts. Check your answers in decimal. Why can't you multiply 0101 0101 by 8 
using bit shifting? 

Projects 
3.1. Count in binary and hexadecimal from 0 to 16 without referring to Table 3.1. 

Create YOut own binary-to-hex pocket reference. 

3.2. Device number circles similar to Figure 3.3 for 3- and 5-bit binary values. 

3.3. Why do you suppose processors like the 8086 require words to be stored in byte-
swapped order? 

3.4. Write the bit numbers for a 16-bit word as depicted on the top of Figure 3.1. 

3.5. Write the truth tables for AND, OR, and XOR without referring to Table 3.2. 

3.6. Add several binary values to themselves. What do the results suggest? 



Programming in 
Assembly Language 

-Memory Segmentation, 74 -8086 Registers, 76 -Instruction Groups and Concepts, 80 -Arithmetic Instructions, 90 

eo Logic Instructions, 101 -Flow-Control Instructions, 110 -Processor Control Instructions, 126 -String Instructions, 131 -Summary, 139 -Exercises, 140 -Projects, 141 

/ 



74 

Memory Segmentation 
Before learning about 8086 processor registers and the instruction set, it's helpful to under
stand how the 8086 addresses memory using a system of segments and offiets-two terms that 
have caused more than their fair share of confusion. 

Representing address values internally in 20 bits, the 8086 processor can directly access up 
to 1 megabyte of memory. Because DOS, the ROM BIOS, and a few other items occupy 
some of that space in PCs, most software has to run in a smaller space of about 256K to 

512K. If you want your programs to run on as many PCs as possible, limit your memory 
req uirements to this range. 

NOTE 

later modelprocessorscSuch as the 80386, 80486, and Pentium (also known as the 80586) 
emulate 8086 programming. The methods described in this chapter apply equally to all 
8Ox86CPUs. 

No matter how much memory the processor can address, and no matter how many memory 
chips are installed inside the computer, the smallest memory unit remains the 8-bit byte. As 
mentioned earlier, each byte has a unique location, called the physical address, which pro
grams specify to read and write the bytes they need. Obviously, you need a greater number 
of bits to represent the physical addresses of greater amounts of memory. If your computer 
had only 64K, then the address of any byte would comfortably fit in 16 bits, which can rep
resent values from 0 to 65,535 (2 16 

- l)--or 64K in round numbers. To address the PC's 
maximum 1 megabyte of memory requires a minimum of20 bits. (220 1 equals 1,048,575, 
or hexadecimal FFFFF.) The problem is: 8086 registers are only 16 bits wide. How is it possible 
for the 8086 processor to access the full megabyte of memory in a rypical PC? 

The answer is memory segmentation, a method the 8086 uses to divide its large address space 
into logical64K chunks. With this method, the address of a specific byte can be expressed in 
two values: the address of the chunk, or segment, plus a 16-bit offset from the beginning of 
the segment. Together the combination of segment and offset values is called the logical address. 
The first byte in a segment is at offset 0000, the second at offset 0001, the third at 0002, and 
so on-no matter where the segment physically begins in memory. Figure 4.1 illustrates this 
idea, showing that each location in memory has both a physical address (right) and a logical 
address (left), expressed as an offset from the beginning of a segment boundary. With seg
mentation, the 8086 processor can efficiently address up to 1 megabyte of memory while 
using relatively small, 16-bit registers. As an additional benefit, segmentation makes it easy 
to move programs to new physical locations by changing only the segment base address. The 
offset values within a segment require no adjustments, allowing for relocatable programsthat 
can run identically in different memory locations. 



Figure 4.1. 
Logical addresses all have 
equivalent physical addresses 
in memory. 

Logical Address 

0 
1 

2 
3 

0 
1 

2 
0 
1 

2 
3 
0 
1 
2 
3 

Paragraphs, Segments, and Offsets 

Low Memory 

Segment 

Segment 

Segn1ent 

Segment 

High Memory 

Physical Address 

o 
1 

2 
3 
4 
5 

6 
7 
8 

9 
10 
11 

12 
13 

14 

To locate the beginnings of memory segments, the 8086 processor contains four 16-bit seg
ment registers. Internally, the processor combines the value of one segment register with a 
16-bit offset (the logical address) to create a 20-bit physical address. It does this by first 
multiplying the segment value by 16 and then adding the offset to the result. Because of the 
multiplication-equivalent to shifting the bits left four times, as you recall from Chapter 
3-segment boundaries fall on physical address multiples of 16 bytes. Each of these 16-byte 
memory tidbits is called a paragraph. A simple calculation proves there are a maximum of 
65,536 paragraphs-and, therefore, an equal number of segment boundaries-in the 8086's 
I-megabyte address space (1,048,576116). (Notice that this also equals the number of val
ues you can express in one 16-bit segment register.) Here are a few other important facts 
about segments to keep in mind: 

• Segments are not physically etched in memory-a common misconception. A 
segment is a logical window through which programs view portions of memory in 
convenient 64K chunks. 

• A segment's starting location (that is, the segment's logical address) is up to you and 
can be any value from 0000 to FFFF hex. Each logical segment value (0, 1, 2, ... , 
65,535) corresponds to a physical paragraph boundary (0, 16,32, ... , 1,048,560). 

• Segments can be as small as 16 bytes or as large as 64K (65,536 bytes). The actual 
size of a segment is up to you and your program. 

• Segments do not have to butt up against each other physically in memory, although 
they often do. 

75 



76 

• Segments can overlap with other segments; therefore, the same byte in memory can 
have many different logical addresses specified with different but equivalent segment 
and offset pairs. Even so, each byte has one and only one 20-bit physical address. 

This last point confuses almost everyone on their introduction to memory segmentation. 
Two different segment and offset pairs can (and often do) refer to the same byte in memory. 
If you remember how the processor creates a 20-bit physical address-multiplying the seg
ment value by 16 and adding the offset-you can see that the segment:offset hexadecimal 
values 0000:0010 and 0001:0000 refer to the same physical location. Duplicating in deci
mal how the 8086 processor converts these logical addresses to physical addresses, each cal
culation-(OOOO x 16) + 16 and (0001 x 16) + O-gives the same result, 16. 

NOTE 

By custom, a segment and offset logical address is written with two 4-digit hexadecimal 
numbers separated by a colon, for example, 0140:001 A and FOOO:001 O. When you see 
values like these, you should assume they are hexadecimal. This is easy to forget with 
addresses like 0100:1024 and 0000:001 0, which are not obviously in hexadecimal. 

8086 Registers 
Figure 4.2 illustrates the 8086 registers. The same registers are available in a1l80x86 models. 
(The 80386, 80486, and Pentium CPUs have additional registers and extensions that don't 
concern us here.) If you limit your register use to those listed in Figure 4.2, your programs 
are guaranteed to run on all PCs. The registers are grouped into five categories: 

• General-purpose registers (ax, bx, ex, dx) 

• Pointer and index registers (sp, bp, si, di) 

• Segment registers (es, ds, ss, es) 

• Instruction pointer (ip) 

• Flags (of, df, if, tf, sf, zf, af, pf, ef) 

All 8086 registers are 16 bits wide. In addition, the four general-purpose registers-ax, bx, 
ex, and dx-are subdivided into high and low 8-bit halves. The 16-bit ax register, for ex
ample, is composed of two 8-bit parts, ah and a1. Register bx is divided into bh and b1; ex, 
into eh and e1; and dx, into dh and d1. This flexible arrangement lets you operate directly on 
the full 16-bit register width or work separately with the register's two 8-bit-halves. Remem
ber that changing the value in the 16-bit ax also changes the register's two 8-bit halves a1 
and ah. Likewise, changing the value in e1 also changes the value of ex. 



Figure 4.2. 
8086 registers. 

NOTE 

ax; 
bx: 
ex: 
dx: 

8 bits lJII If 

ah 
bh 
ch 
dh 

PROGRAMMING IN ASSEMBLY LANGUAGE 

8 bits 
al 
bl 
cl 
dl 

Accumulator 
Base 
Count 
Data 

I-----...:b:.::p------l Base Pointer 
sp I Stack Pointer 

81 Source Index 

~:::::::::~d~i::::::::::~ Destination Index 

e8 I Code Segment 
1-____ ..;;;d;.:;8 _____ -I Data Segment 
1-____ ....;8...;,8 _____ -1 Stack Segment 

:=====:::;8=8======:. Extra Segment 
Ip I Instruction Pointer 

litiU.Jof Ill! I ff I tt I Sllzf f,iJ4;M~Jcll Status Flags 
FEDCBA9876543210 

. In this text, registers are written in lowercase-cs, ax, si, and so on. In programs and in other 
references, you'll often see the same registers in uppercase, as AX, BX, DH. Both forms are 
correct. 

General-Purpose Registers 
Assembly language programs refer to registers by their mnemonics, ax, el, ds, and the like. 
But the registers also have less familiar names as shown to the right of Figure 4.2. (The names 
are never used directly in programs, though.) The accumulator ax is usually used to accumu
late the results of additions, subtractions, and so forth. The base register bx often points to 

the starting address (called the base) of a structure in memory. The countregister ex frequently 
specifies the number of times some operation is to repeat. And the data register dx most of
ten holds data, perhaps passed to a subroutine for processing. These definitions are by no 
means fixed, and most of the dme it's up to you to decide how to use a general-purpose reg
ister. For example, just because ex is called the count register, there's no reason you can't 
count things using bx. In some cases, however, certain 8086 instructions require specific 
registers. 

Pointer and Index Registers 
Contrasting the four general-purpose registers, other 8086 registers in Figure 4.2 are closely 
related to specific operations. The stack pointer sp always points to the top of the processor's 

77 



78 

KU~,KM"Vllf'lJ WITH ASSEMBLY LANGUAGE 

stack. (We'll tackle stacks in detail a bit later.) The base pointer bp usually addresses variables 
stored inside the stack. Source index si and destination index di are known as string registers. 
Usually, si and di serve as workhorses for easing the load of processing byte strings. 

NOTE 

A byte string is not the same as a high-level language's character string data type. In assembly 
language, a string is simply a series of consecutive bytes. To avoid confusion, 1'1/ use the term 
character string to refer to an ASCII string as found in most high-level languages. A plain 
string can be any sequence of bytes, which might also represent characters. 

Segment Registers 
The four segment registers--cs, ds, ss, and es-Iocate the start of four 64K segments in 
memory, as illustrated in Figure 4.3. A program is free to allocate more than four segments 
but, in that case, has to swap the correct values in and out of one or more segment registers 
to address the additional segments. 

Segment registers are highly specialized. You can't directly perform math on segment regis
ters or use them to hold the results of other operations. The code-segment register cs addresses 
the start of the program's machine code in memory. The ddta-segment register ds addresses 
the start of the program's variables. The stack-segment register locates the start of the program's 
stack space. The extra-segment register as locates an additional data segment if needed, al
though in many programs, as and ds address the same memory, facilitating some operations 
tied to these registers. Actual segment order does not have to match the order shown in Fig
ure 4.3. As explained before, segments may be stored anywhere in memory and in any order. 

Figure 4.3. 
Segment registers address 
four memory segments. 

cs: Code Segment 

ds: Data Segment 

es: Extra Segment 

ss: Stack Segment 



Instruction Pointer 
The special-purpose instruction pointer ip specifies the next machine-code instruction to be 
executed, relative to the segment located by cs. You'll rarely (if ever) refer to ip directly. In
stead, you'll use instructions that change ip (and possibly cs) to alter the location of the next 
instruction to be executed, thus changing the flow of the program. For example, calling a 
subroutine causes the address of that routine to be loaded into ip (or into the cs: ip pair). 

Flags 
Although the status fogs register is 16 bits wide, only 9 bits are used. (See Figure 4.2.) The 
other 7 bits are of no use to programs. Individual flag bits are represented by single letters 0, 

d, i, t, 5, Z, a, p, and c. Some references (including this one) frequently refer to these as of, 
df, if, and so on. Table 4.1 lists the full name of each flag bit. 

Most of the time, the 8086 flag bits reflect the result of various instructions and operations. 
For example, after an addition, the carry flag cf indicates if the result generated a carry. The 
overflow flag indicates if the result of a signed addition cannot be represented correctly within 
a certain number of bits. Flags also serve multiple purposes. For instance, you might shift a 
register's bits left, transferring the former MSD into the carry flag cf for inspection. Other 
instructions can then take action based on the setting of this and other flag bits. Or you might 
use cf as a single-bit warning device to indicate that an error occurred, allowing other parts 
of the program to be aware that something is amiss. As you learn each assembly language 
instruction, you'll also learn the various roles that flags play in a program's actions. 

Table 4.1. 8086 Flags. 

Symbol Full Name 

o or of Overflow flag 

d or df Direction flag 

i or if Interrupt enable flag 

tor tf Trap (single-step) flag 

5 or sf Sign flag 

z or zf Zero flag 

a or af Auxiliary flag 

p or pf Parity flag 

cor cf Carry flag 

79 



80 

WITH ASSEMBLY LANGUAGE 

Instruction Groups and Concepts 
All 8086 instructions are divided by function into six categories. The rest of this chapter 
examines each of these groups and lists short programs that you can use to view the opera
tion of many 8086 instructions. (Future chapters will introduce the remaining instructions.) 
The six groups are: 

• Data transfer instructions 

• Arithmetic instructions 

• Logic instructions 

• Flow-control instructions 

• Processor control instructions 

• String instructions 

Chapter 16'5 8086 reference lists each instruction with programming examples and full 
descriptions of the kinds of data elements that instructions can process. Please refer to 
Chapter 16 for additional details as you meet new 8086 instructions here. 

Data Transfer Instructions 
Table 4.2 lists the 8086 data transfer instructions. There are four subdivisions in this group: 
General, Input/Output, Address, and Flag. The operands to the right of each mnemonic 
specifY the data elements required by the instruction. Most instruction mnemonics specifY 
destination and source operands. Others require one or no operands. 

Let's look at the first data transfer instruction mov and see how it works. Probably, mov ap
pears in assembly language programs more frequently than any other instruction. From Table 
4.2, you can see that mov requires a source and a destination operand. Notice that the source 
is written after the destination, implying that mov operates this way: 

mov destination <-- source 



Table 4.2. Data Transfer Instructions. 

General Instructions 
rnov destination, source 

pOp destination 

push immediate 

xehg destination, source 

xlat/xlatb table 

Move (copy) byte or word 

Pop data from stack 

Push data onto stack 

Exchange bytes and words 

Translate from table 

Input/Output Instructions 
in accumulator, port Input (get) byte or word 

PROGRAMMING IN ASSEMBLY LANGUAGE 

out port, accumulator Output (put) byte or word 

Address Instructions 
Ids destination, source 

lea destination, source 

Load pointer using ds 

Load effective address 

les destination, source Load pointer using es 

lahf 

popf 

pushf 

sahf 

flag Instructions 
Load ah from (some) flags 

Pop flag register from stack 

Push flag register onto stack 

Store ah into (some) flags 

The source data moves in the direction of the arrow, from right to left. Be careful not to 
reverse the operands, a typical and potentially disastrous mistake. In assembly language pro
grams, the foHowing instruction moves the value of the bx register into the ax register: 

mov ax, bx ; ax <-- bx 

Ifax equals 0000 and bx equals 0123h, then this instruction sets ax equal to 0123h. The 
value of bx does not change. Some programmers like to use a comment to clarify the direc
tion that the data moves. Here's an example: 

mov ex, InurnPagesl j ex <-- Inumpagesl 

This mov instruction moves the value stored at numPages into the ex register. The brackets 
around numPages are important. The label numPages specifies a memory address. But, with 
brackets, [numPages I stands for the data stored at that address. This concept-that a label 
specifies the address of data stored in memory-is vital to your understanding of assembly 
language programming. At all times, you must be careful to specify whether an instruction is 

81 



82 

I'RC)()R!IMMIING WITH LANGUAGE 

to operate on an address value or on the data stored at that address. Brackets are simply tools 
for this purpose, but you must remember to use them correctly. 

You can move data from registers to memory, too. For example, this copies the value in the 
8-bit register dl to the address specified by level: 

mov [level], dl ; [level] c-- dl 

From the brackets, you know that the value of dl moves to the location to which level points. 
Moving data around this way-copying one register value to another and transferring data 
from a register to a location in memory-are some of the most common operations in as
sembly language programming. One thing mov can't do, however, is transfer data directly 
berween rwo memory locations. This never works: 

mov [count], [maxCount] . ??? , ... 

To move the value stored at maxCount into the location addressed by count instead requires 
rwo steps, using a register as an intermediate holding bin: 

mov ax, [maxCount] 
mov [count], ax 

A Moving Example 

ax c __ [maxCount] 
; [count] c-- ax 

Listing 4.1 demonstrates how mov works. Assemble, link, and load the program into Turbo 
Debugger with the commands: 

tasm Izi mov 
tlink Iv mov 
td mov 

Listing 4.1. MOV.ASM. 
1: %TITLE "MOV demonstration 
2: 
3: IDEAL 
4: 
5: MODEL small 
6: STACK 256 
7: 
8: oATASEG 
9: 

10: exCode DB 0 
11 : speed DB 99 
12: 
13: CODESEG 
14: 
15: Start: 
16: mov ax, @data 
17: mov as, ax 
18: 

by Tom Swan" 

One-byte variable 

Initialize OS to address 
of data segment 



19: mov 
20: mov 
21 : mov 
22: mov 
23: 
24: mov 
25: mov 
26: 
27: Exit: 
28: mov 
29: mov 
30: int 
31: 
32: END 

ax, 1 
bx, 2 
cx, 3 
dx, 4 

ah, [speed] 
si, offset speed 

ah, 04Ch 
aI, [exCode] 
21h 

Start 

PROGRAMMING IN ASSEMBLY LANGUAGE 

Move immediate data into 
registers 

load value of speed into al 
Load address of speed into al 

DOS function: Exit program 
Return exit code value 
Call DOS. Terminate program 

End of program I entry pOint 

Running MOV in Turbo Debugger 
You should now have the MOY program loaded into Turbo Debugger. Follow these num
bered steps for a few experiments that will help you to understand what the instructions do: 

1. Press AJt-Y-C to open the CPU window and press F5 to zoom the window to full 
screen. Because the CPU window shows many important details on one display
the stack, registers, flags, memory, and instructions-this is the window you should 
use to run most assembly language programs in this book. 

2. Press F8 to run the program a single step (instruction) at a time as you read the 
following descriptions. (Line numbers reference each line from Listing 4.1.) 

3. Lines 16-17 initialize the ds segment register, first assigning to ax the predefined 
value @data and then assigning this value to ds. (You can assign only values from a 
general-purpose register, a memory variable, or the stack to a segment register-you 
can't directly assign literal values to segment registers.) 

4. Executing lines 19-22 assigns literal values 1, 2, 3, and 4 to the general-purpose 
registers ax, bx, ex, and dx. Stop pressing F8 when Turbo Debugger's instruction 
arrow (to the right of the addresses such as es: 0011) points to the mav ah, [speed 1 
instruction. (If you accidentally go too far, press Ctrl-F2 to reset and then press F8 
until you get back to the right spot.) 

5. The mo\! ah, [speed 1 instruction at line 24 loads the value stored at the location 
addressed by speed into the 8-bit register half ah. Near the top of the display in the 
double-line border, look for the text that reads ds: 0001 63. This tells you the 
value in hexadecimal (63) that is about to be loaded into ah. The ds: 0001 notation 
indicates the address at which this value is stored. Like all addresses, the address has 
two components: a segment value (held by register ds) and an offset 0001. 

6. Press F8 to execute the instruction at line 24 and watch the value of the ax register 
change in the upper-right corner of the display. Notice that the ds :0001 =63 is now 
gone. To see this again, use the up and down arrow keys to move the highlighted 

83 



84 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

bar up and down. You can always move the bar to any individual instruction to see 
the effect of values about to be loaded into registers or written to memory. 

7. Find register si near the upper-right third of the CPU window. Press F8 again, 
executing the instruction at line 25, mov si, offset speed. As you can see, this 
instruction sets register si to 0001, the offset value of the address in the previous 
step. The OFFSET keyword in the mov instruction tells the assembler you intend to 
use the offset address of a label. (OFFSET may be in lowercase-off set - on your 
screen.) 

8. Continue to press F8 until the program ends. Lines 28-30 perform three steps that 
end every EXE program. First, the value of the DOS exit operation (04Ch) is 
loaded into ah. Then, al is assigned the contents of variable exCode, which a 
program can pass back to DOS as an error indicator. A zero value means no error. 
The int 21 h instruction at line 30 calls DOS with these parameters in ah and aI, 

ending the program. 

9. Press Esc followed by Alt-X to quit Turbo Debugger. 

NOTE 

The lowercase h at the end of values such as 21 hand 04Ch tells Turbo Assembler that these 
values are expressed in hexadecimal, always beginning with decimaldigits. In other words, 
you cannot write FfFh. Instead, you must write OFFFh. 

Stacking the Deck 
A stack is a special segment of memory that operates in conjunction with several 8086 in
structions. As with all segments, the location of the stack and its size (up to 64K) are up to 
you and your program to determine. In assembly language programs, the easiest way to cre
ate a stack is to use the STACK directive, as in most example programs in this book. If you 
don't create a stack, you'll receive a warning from Turbo Linker. A stack has three main 
purposes: 

• To preserve register values temporarily 

• To store addresses to which subroutines return 

• To store dynamic variables 

The last of these comes into play more often in high-level language programming, where 
variables are passed via the stack to and from functions and procedures. Similarly, tempo
rary variables may be stored on the stack. These uses are rare in pure assembly language pro
gramming, although you can certainly store variables in stack memory this way if you want. 



PROGRAMMING IN ASSEMBLY LANGUAGE 

How Stacks Operate 
Conceptually, a stack is like a spring-loaded bin of dishes in a restaurant kitchen. The top 
dish on the stack is readily available, but to get to the dishes below, other dishes above must 
first be removed. Placing a new dish on the top of the stack is called a push. Removing a dish 
from the top of the stack, causing other dishes below to move up a notch, is called a pop. 
Because of the way the last dishes pushed onto the stack are the first dishes to be popped, this 
kind of a stack is called a LIFO stack, for "Last-In-First-Out." 

Unlike dishes, values in computer memory can't physically move up and down. Therefore, 
to simulate the action of a moving stack of values requires using registers to locate the base 
address of the stack and the offset address of the top dish-that is, the location where the top 
value of the stack is stored. In 8086 programming, segment register 55 addresses the stack 
segment base. Register sp addresses the top of stack offset in that segment. 

Figure 4.4 illustrates how a small stack of 12 bytes appears in memory. Register 55 addresses 
the base of the stack at segment address OFOO. Register sp addresses offsets from this starting 
address, ranging from 0000 to OOOA. The last byte in the stack is at offset OOOB (in the fig
ure, just to the right of the byte at OOOA). Items in the stack occupy 2-byte words. The pro
gram that prepares this stack would declare a STACK 12 and let the assembler, linker, and 
DOS calculate exactly where in memory the stack will be stored. You don't have to initialize 
registers 55 and sp. DOS does that for you when it loads your assembled program. In the 
figure, sp1 shows where sp points when the program begins running. Notice that the logical 
address in 55: sp points to the byte below the last byte in the stack. 

NOTE 

Because the bottom of an 8086 s~ck is at a higher memory address than the top of the stack, 
terms such as "bottom;" "above,"\and "below" can be confusing. Because these terms are so 
common when discussing stacks, there's nothing to do but live with the ambiguities. Just 
remember that in memory, stacks grow toward lower memory addresses and shrink toward 
higher ground. 

Refer again to Figure 4.4. Several actions occur if you execute these instructions: 

mov ax, 100 
push ax 
mov bx, 200 
push bx 

sp2 

sp3 

The pUSh instruction performs two steps: 

1. 2 is subtracted from sp. 

2. The specified register value is copied to [55: sp 1 . 

85 



86 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Figure 4.4. 
The stack segment. 

Low Memory 

OFOO: 0000 I 

I 
0002 

I 
0004 

0006 
I 

55:5p3 0008 29° 

55 :5p2 OooA 1~0 

55 :5p1 oooe r\.·· .. " .. , I .: ".,):/ ... 
"" .• '::";.:(> 

i 

End 01 
Stack 
Segment 

J/' 

The order of these steps is important. A push first subtracts 2 (not 1) from sp. In Figure 4.4, 
the first such push leaves sp at sp2, where the value of register ax is then stored. Notice that 
this action leaves the stack pointer addressing the most recently pushed word value on the 
stack. 

NOTE 

Become familiar with the notation [ss: sp L which refers to the contents at the offset of sp 

inside the stack segment. Remember that the brackets refer to the value in memory at a 
specified address. 

A Stack Demo 
You can use Turbo Debugger to watch a stack in action-a great way to learn how stacks 
operate. For this purpose, use Listing 4.2, which demonstrates one of the stack's most com
mon uses-to preserve register values. Assemble, link, and load the program into Turbo 
Debugger with the commands: 

tasm IZi pushpop 
tLink Iv pushpop 
td pushpop 

After the listing are step-by-step instructions for running the program under the control of 
Turbo Debugger. 



PROGRAMMING IN ASSEMBLY LANGUAGE 

listing 4.2. PUSHPOP.ASM. 
1 : %TITLE "PUSH/POP demonst rat ion -- by Tom Swan" 
2: 
3: IDEAL 
4: 
5: MODEL small 
6: STACK 256 
7: 
8: DATASEG 
9: 

10: exCode DB 0 
11 : 
12: CODESEG 
13: 
14: Start: 
15: mov ax, @data Initialize OS to address 
16: mov ds, ax of data segment 
17: 
18: push ax Save ax and bx 
19: push bx on the stack 
20: 
21 : mov ax, -1 Assign test values 
22: mov bx, -2 
23: mov cx, 0 
24: mov dx, 0 
25: 
26: push ax Push ax onto stack 
27: push bx Push bx onto stack 
28: pop cx Pop cx from stack 
29: pop dx Pop dx from stack 
30: 
31 : pop bx Restore saved ax and bx 
32: pop ax values from stack 
33: 
34: Exit : 
35: mov ah, 04Ch DOS function: Exit program 
36: mov aI, [exCode] Return exit code value 
37: int 21h Call DOS. Terminate program 
38: 

END / 39: Start End of program / entry point 

Running the PUSH POP Demo 
You should have PUSHPOP running in Turbo Debugger. Follow these steps to see a stack 
In action: 

1. Open and zoom the CPU window with Alt-V-C and F5. Press F8 twice, stepping to 
line 18. Note the values of the ax and bx registers. 

2. Watch the stack values in the lower-right corner-the window with addresses that 
begin with ss:. Press F8 once to push the value of ax onto the stack. Press F8 again 
to push the value of bx. The top of the stack is marked with an arrow at the bottom 

87 



88 

PROGRAMMING WITH ASSEMBLY LANGUAGE 

of the window. (Only Turbo Debugger's designers know why the "top" of the 
stack appears at the "bottom" of this window. I told you such terms tend to be 
confusing.) 

3. Press F8 four times, executing lines 21-24 and loading registers ax, bx, ex, and dx 
with test values. 

4. Press F8 again to execute line 26, pushing the value of a x onto the stack. Observe 
the stack's contents and the value of sp before and after the push. Press F8 once 
more to push bx. 

5. Lines 28 and 29 pop the stack, removing the value at [ss: spJ and adding 2 to sp, 

addressing the next word. Press F8 twice to execute the two lines. Notice that you 
can pop values from the stack into registers other than the ones you pushed earlier. 

6. Press F8 twice again to execute lines 31-32. These instructions restore the values of 
bx and ax to the values they had before executing lines 18-19. 

7. Quit Turbo Debugger with Alt-X. You don't have to run the program to its 
completion. 

Stack Management 
The goal of good stack management is simple: For every push in a program, there must be a 
balancing pop. Matching your pops and pushes keeps the stack pointer right-in other words, 
in synch with the program's ability to store and retrieve the values it needs. 

There are exceptions to the rule that every push must be balanced with a pop. For example, 
you can add and subtract values from sp, perhaps to reserve stack space for storing temporary 
values. And you can end a program with DOS function 4C even if the stack is not in synch. 
But in general, try to keep the stack in a known state at all times. Careless stack management 
is one of the leading causes of serious bugs. 

Consider what happens if you fail to execute a matching pop for every push. In this case, future 
pushes will cause the stack to grow larger and larger, eventually overflowing the segment space 
allotted by your program. This serious error usually results in a crash as areas in memory are 
ovetwritten by the runaway stack pointer. A similar error occurs if you execute more pops 
than pushes, causing a stack underflow and also usually resulting in a crash. 

A good way to prevent such problems is to write your programs in small modules, or sub
routines. In each module, push onto the stack all the registers you plan to use. Then, just 
before this section of code ends, pop the same registers off the stack but in the reverse order. 



For example, here's how you might construct a typical section: 

push ax 
push bx 
push dx 

; Save ax, bx, dx on the stack 

Programming goes here 

pop dx 
pop bx 
pop ax 

Restore dx, bx, ax from the stack 

Presumably, the instructions between the push and pop instructions will use ax, bx, and dx; 

therefore, these registers are pushed onto the stack to preserve the register values. Later, the 
same registers are popped from the stack in reverse order, restoring the original val
ues and keeping the stack in synch. Recalling the analogy of the stack of dishes, you can see 
that popping in reverse order is necessary to restore the previously saved values to the correct 
registers. The last value pushed onto the stack (dx) is the first to be removed, while the first 
dish pushed (ax) is the last to be popped. 

After popping a value from the stack, don't attempt to subtract 2 from sp and reread that same 
value in the future. This is always illegal, even though you may notice while viewing the 
stack in Turbo Debugger that the popped values appear to remain in the stack memory at 
address offsets lower than sp. Only the values located from sp to the bottom of the stack are 
guaranteed to be preserved. All other values in the stack segment are subject to being 
overwritten, possibly by DOS and, even more likely, by interrupts that run concurrently with 
your program. (Chapter 10 explains more about interrupts and stack handling.) Breaking this 
rule is a sure way to break your code. Don't do it! 

Exchanging Data 
Let's examine another instruction from Table 4.2, xchg, which swaps two register values or 
a register value and a byte or word stored in memory. Suppose you want to exchange the 
values in dx and ax. With xchg, you simply write: 

xchg ax, dx ; ax <- dx; dx <- ax 

Even though Table 4.2 lists source and destination operands for xchg, the order of operands 
doesn't matter as the instruction swaps the value of one operand with the other. Without 

89 



90 

xehg, swapping two registers requires either a push onto the stack or a third register. For ex
ample, here's a less efficient method to exchange two 16-bit registers using the stack as an 
intermediate way station for one value: 

push ax 
mov ax, dx 
pop dx 

, stack <- ax 
; ax <- dx 
; dx <- stack (original ax) 

Swapping two 8-bit values takes a third register because you can't push bytes onto the stack
you can push and pop only 16-bit words. Without xehg, to swap two bytes in a1 and ah, you 
could write: 

mov bh, ah 
mov ah, al 
mov al, bh 

bh <- ah 
ah <- al 
al <- bh 

Of course, with xehg, none of this is necessary. (It is instructive to understand how the stack 
and other registers can be used this way. however.) In addition to swapping register values, 
xehg can also swap the value in a register with a value stored in memoI)'. Here are two ex
amples: 

xchg ax. [things] 
xchg [oldCountJ. ex 

j ax <--> [things] 
; ex <--> [oldCountJ 

The first line swaps the value of ax with the value stored at things. The second line swaps ex 

and o1dCount. Again. the order of operands is unimportant. 

NOTE 

Exchanging full 16-bit register values when one of those registers is the accumulator ax 
executes a tiny bit faster than instructions that exchange other registers. Turbo Assembler 
correctly assemblesinstructiolls such as xchg aX,bx and xChg'cx,axi~fastfsingle-byte 
machine-code instructions. Other exchanges that don't involve ax take 2 byres of machine 
code. Be aware that all assemblers are not as smart as Turbo. For example, the assembler in 
DOS DEBUG requires ax to be specified last to generate the single-byte machine-code form. 
Also, pure register exchanges are many times faster than exchanges between reg1stersand 
values in memory. Paying attention to small details like these will help you to squeeze extra 
speed from your code. 

Arithmetic Instructions 
Most computers are great at math; therefore, it may come as a surprise that assembly lan
guage has only a few relatively primitive math operators. There is no exponentiation sym
bol, no floating point. no square root, and no SIN and COS functions built into the 8086 



PROGRAMMING IN ASSEMBLY LANGUAGE 

instruction set. Mathematics instructions in assembly language are restricted to adding, 
multiplying, dividing, and subtracting signed and unsigned binary integer values. Table 4.3 
lists the 8086 math instructions. 

There are two ways to increase the math power of assembly language programming. First, 
you can purchase (or write) a math package with routines that implement the high-level 
functions you need. Another solution is to purchase a math coprocessor chip for your PC, 
although this can be expensive if your computer has an 80286 or 80386 processor, which 
requires a complementary 80287 or 80387 math chip. The 80486 processor contains the 
built-in equivalent of an 80387 math chip. Third, and probably best, is to use a high-level 
language such as Turbo Pascal or Turbo C to code your floating-point expressions. These 
languages come with automatic detectors to sniff out the presence of a math coprocessor, 
and can switch to a software emulator for systems lacking the optional chip. After writing 
your program, you can combine the compiled high-level code with your assembly language 
program (see Chapters 12 and 13). Because math coprocessors have strict requirements about 
data and instruction formats, most compilers generate optimized machine code, and there's 
little advantage to writing floating-point expressions directly in assembly language. 

But don't take this as a negative pronouncement on assembly language math. Even without 
a math library or coprocessor, you can do plenty with the 8086's built-in integer instruc
tions. In fact, most programs get along just fine without any higher math capabilities. You 
certainly don't need floating-point numbers to total the bytes in a disk directory or to count 
the number of words in a text file. For these and other operations, integer math is more than 
adequate. In pure assembly language, such jobs frequently run more quickly than equivalent 
code of compiled high-level languages. 

Table 4.3.8086 Arithmetic Instructions. 

Mnemonic/Operands Description 

Addition Instructions 
aaa 

adc destination, source 

add destination, source 

daa 

inc destination 

ASCII adjust for addition 

Add with carry 

Add bytes or words 

Decimal adjust for addition 

Increment 

Subtraction Instructions 
aas 

cmp destination, source 

das 

ASCII adjust for subtraction 

Compare 

Decimal adjust for subtraction 

continues 

91 



92 

K\A,I<f\/II1M'~I\.J WITH ASSEMBLY LANGUAGE 

Table 4.3. continued 
Mnemonic/Operands Description 

Subtraction Instructions 

dec destination 

neg destination 

sbb destination, source 

sub destination, source 

Decrement byte or word 

Negate (two's complement) 

Subtract with borrow 

Subtract 

Multiplication Instructions 
aam 

imul source 

mul source 

aad 

cbw 

cwd 

div source 

idiv source 

ASCII adjust for multiply 

Integer multiply 

Multiply 

Division Instructions 

ASCII adjust for division 

Convert byte to word 

Convert word to doubleword 

Divide 

Integer divide 

Addition Instructions 
Table 4.3 lists five addition instructions. Two of these, add and adc, sum 2 bytes or words. 
Inc (increment) is a fast instruction to add 1 to a register or value in memory. (The other 
two instructions, aaa and daa, make adjustments to values stored in binary-coded-decimalfor
mat, which you'll meet again later on.) To add an 8-bit value in ah to the 8-bit value in bh, 

you can write: 

add ah, bh j ah <- ah + bh 

As with mov, the add instruction requires source and destination operands. The instruction 
sums these two values and stores the result in the specified destination, replacing the original 
value. In this example, the result is stored in ah. The adc instruction operates similarly but 
adds in the value of the carry flag cf to the result: 

adc ah, bh ; ah <- ah + bh + cf 

If cf equals 1, the result is the same as adding 1 to the sum of ah and bh. After a previous add 

operation, cf is set to 1 if an overflow occurred; therefore, adc is most often used after an 



PROGRAMMING IN ASSEMBLY LANGUAGE 

initial add when summing multibyte values, picking up the possible carries while individu
ally adding each byte in turn. Although you can add words directly, you could use these 
instructions to add the individual bytes of a 16-bit value stored at sum to register ax. These 
instructions double the word at sum; 

mov ax, [word sum] 
add aI, [byte sum] 
adc ah, [byte sum + 1] 
mov [word sum], ax 

Set ax to value of [sum] 
Add LSBs 
Add MSBs with possible carry 
Store value back in memory 

Remember that words are stored in byte-swapped order. In this sample, the first line loads 
the word value into ax. The second line adds the least significant bytes together, storing the 
result in a1 and setting cf to 1 if the addition generates a carry. The third line adds this pos
sible carry to the sum of the most significant bytes. Finally, the fourth line stores the final 
result back in memory. Because the 8086 can manipulate word values directly, you can per-
form this same addition with the simpler instructions: . 

mov 
add 

ax, [word sum] 
[word sum], ax 

j Set ax to value of [sum] 
j Add [sum] to itself 

You must load [sum] into a register before adding because add cannot directly add two val
ues stored in memory-at least one register must be specified. Notice that in these examples 
the word and byte operators tell the assembler what kind of data sum addresses. In some cases, 
the assembler can figure this out on its own. In others, you need to use the operators. There's 
no harm in using them, however. (Chapter 5 explains data formats and operators in more 
detail.) 

Both add and adc can add immediate (literal) values to registers and values in memory. For 
example, this adds 5 to the current value of bx, storing the result in bx: 

add bx, 5 j bx <- bx + 5 

When you need to add only 1 to a value, use inc instead of add-it's faster. Notice from 
Table 4.3 that inc requires only one operand. The following instructions increment four 
general purpose registers by 1: 

inc ax oX <- ax + 1 
inc bx bx <- bx + 
inc cx cx <- CX + 
inc dh dh <- dh + 

The last of these samples increments dh, leaving the value of d1 alone. The other three samples 
increment the full 16-bit registers specified. Remember that you can operate on either of a 
general-purpose register's 8-bit halves without affecting the other half. 

Subtraction Instructions 
Subtracting in assembly language is similar in form to adding. The sub instruction subtracts 
two byte or word values. The sbb instruction does the same but takes into account a possible 

93 



94 

,RCIGR/IMNIING WITH ASSEMBLY LANGUAGE 

borrow from a previous subtraction of multibyte or multiword values. An example shows 
how to subtract bx from ax and store the result in ax: 

sub ax, bx ; ax <- ax bx 

As with add and adc, you can subtract two registers or a register and a value stored in memory. 
You can also subtract immediate values. You should be able to understand the following 
samples by reading the comments to the right of each line: 

sub CX, 5 
sub dx, [score] 
sub [answer], 3 
sub ax, 1 

cx <- CX - 5 
dx <- dx [score} 
{answer] <- [answer] - 3 
ax <- ax - 1 

You can replace the last of these samples with the faster dec instruction, which decrements 
by 1 a register or value in memory. You can decrement byte and word values, as these samples 
show: 

dec ax 
dec dl 
dec si 
dec [balance] 

ax <- ax - 1 
dl <- dl -
si <- si -
[balance] <- [balance] 

Add and Subtract Demonstration 
Listing 4.3 demonstrates the four instructions add, sub, inc, and dec. Assemble, link, and 
run the program under control of Turbo Debugger with the instructions: 

tasm /zi add sub 
tlink Iv add sub 
td addsub 

Listing 4.3. ADDSUB.ASM. 
1 : %TITLE 'ADD, SUB, INC, DEC demo by Tom Swan" 
2: 
3: IDEAL 
4: 
5: MODEL small 
6: STACK 256 
7: 
8: DATASEG 
9: 

10 : exCode DB 0 
11 : count OW 
12 : 
13: CODESEG 
14: 
15: Start: 
16: mov ax, @data Initialize OS to address 
17 : mov ds, ax of data segment 
18 : 



19: 
20: 
21 : 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31 : 
32: 
33: Exit: 
34: 
35: 
36: 
37: 
38: 

mov 
mov 
add 

mov 
add 

add 

inc 
dec 
inc 
dec 

mov 
mov 
int 

END 

ax, 4 
bx, 2 
ax, bx 

CX, 8 
cx, [count I 

[count), cx 

[count] 
[count] 
ax 
cx 

ah, 04Ch 
aI, [exCode] 
21h 

Start 

Running the ADDSUB Demo 

PROGRAMMING IN ASSEMBLY lANGUAGE 

ax <- ax + bx 

cx <- cx + [count] 

[count) <- cx + [count] 

[count] <- [count) + 1 
[count] <- [count] 
ax <- ax + 1 
cx <- CX + 

DOS function: Exit program 
Return exit code value 
Call ~OS. Terminate program 

End of program / entry point 

Press Alt-V-C and F5 to view the CPU window. Watch the register values change as you 
single step through the program by pressing F8 while reading the following descriptions. 
Try to predict register and memory values before executing each instruction. 

Lines 19-21 show how TO add the values in two registers ax and bx, storing the result in ax. 

Try changing the initial values (4 and 2) and rerun the program. Lines 23-26 add register cx 

and variable [count I together. Notice that you can store the result in a register (line 24) or 
back in memory (line 26). To experiment with sub, make a backup copy of ADDSUB.ASM, 
and then change all add instructions to sub, reassemble, link, and run under Turbo Debugger's 
control. 

Lines 28-31 demonstrate how inc and dec increment and decrement variables and register 
values. To see the values in memory change, watch the upper middle ofT urbo Debbuger's 
CPU window. You should see the value stored at [count]. Unfortunately, after executing 
line 29, this value disappears (because the next instruction makes no reference to count's 
location). The next section explains a method to make watching variables easier. 

NOTE 

Quit Turbo Debugger now with the command Alt-X. 

95 



96 

PART I., PROGRAMMING WITH ASSEMBLY LANGUAGE 

Watching Out for Number One 
Turbo Debugger has a "watch window" for viewing variables. As you execute instructions 
that change values in memory, the values listed in the watch window also change. This makes 
it easy to observe the effects of executing assembly language instructions that operate on 
variables. Load Listing 4.3 with the command td add sub, but don't open the CPU window 
just yet. Then follow these steps to inspect the value of count (line 11): 

1. Press Ctrl-F7, type count, and press Enter. Turbo Debugger locates the count 

variable in memory and shows count's initial value in the watch window at the 
bottom of the display. 

2. Press F8 until reaching line 26 (add [count 1, cx). Then press F8 again and watch 
the value of count in the watch window change. 

With the CPU window visible, you can also watch variables using these same techniques, but 
to make the watch window visible, you might have to press F6 several times or press Alt-2. 

When running other example programs in this book, you can add variable names to the watch 
window. Also, there are other ways to view memory with Turbo Debugger-for example, 
the bottom-left corner of the CPU window shows successive bytes from any starting loca
tion. But the watch window is easy to use and has the advantage of showing variables by 
name. Even better, you can change the values of variables without having to reassemble the 
program. To try this, press Ctrl-F2 to reload ADDSUB (or start Turbo Debugger with td 

addsub) and follow these steps: 

1. Press F6 until the watch window borders change to double lines, indicating this 
window is active. Type count and press Enter. This demonstrates another way to 
enter variable names to watch. (If count is already in the window, you can skip this 
step.) 

2. Press Ctrl-C (the watch window's Change command) and enter a new value for 
count. Instead of count' s initial value (1) as listed in the program (line 11), the 
program now begins with your new count value. 

3. Step through the program with F8. The instructions use the new count value. Press 
Ctrl-F2 to reload the program, use F6 to make the watch window active if neces
sary, and enter new values for count until you're familiar with this option. 

These Turbo Debugger commands save time by giving you the ability to change variable 
values and run test programs without having to reassemble your code. When changing vari
able values, you can enter new numbers in hexadecimal, decimal, or binary. In all cases, the 



fIrst character must be a decimal digit. The last character can be d for decimal, h for hexa
decimal, or b for binary. The default is hexadecimal. Here are a few sample values as you 
might enter them into the watch window: 

100 hexadecimal (256 decimal) 
0ffh hexadecimal (255 decimal) 
256d decimal 
1001b binary (9 decimal) 
FFh error--first character must be 0-9 

Sneaky Subtractions 
From Table 4.3, you might think the instructions neg and cmp are out of place. Neg negates 
a binary value. Cmp compares two values. So, what do these instructions have to do with sub
traction? 

In the case of neg, the 8086 processor internally subtracts from ° the value to be negated. 
This value might be stored in a register or in memory. Subtracting a value from 0, as you 
recall, forms the two's complement of that value-identical to toggling all the zeros to ones 
and the ones to zeros, and then adding 1. In 8086 assembly language, it's simpler just to use 
neg to do the same thing. Here are two samples: 

neg ax ; Form two's complement of ax 
neg [value); Form two's complement of [value) 

The relation between cmp and subtraction is not as obvious-that is, until you understand 
that most digital processors perform comparisons between two values by subtracting one value 
from the other and then throwing away the result. The reason for performing comparisons 
this way is to set various flag bits that indicate the condition of the result-for example, 
whether the result is zero, negative, or positive. Cmp performs a subtraction identically to sub 

but saves only the flag values, which other instructions can inspect. (Later in this chapter 
when we get to flow-control instructions, this will make more sense.) For now, just remem
ber that a cmp is the same as a sub with no result, only a possible change to various flags. 

Multiplying and Dividing Unsigned Values 
Multiplication and division require extra care to perform properly. You must be certain to 
place values in the correct registers. After the operation, you must be careful to extract the 
answer from the right places. The best way to learn the ropes is to run an example program 
in Turbo Debugger and demonstrate how mul, imul, diy, and idiv operate. Assemble and 
link Listing 4.4 and load the code into Turbo Debugger with the commands: 

tasm /zi muldiv 
tlink tv mUldiv 
td muldiv 

97 



98 

I'RCIGR!IMMIING WITH ASSEMBLY LANGUAGE 

listing 4.4. MULDIV. ASM. 
1: %TITlE "MUl, DIV, IMUl, IDIV demo 
2: 
3: IDEAL 
4: 
5: MODEL small 
6: STACK 256 
7: 
8: DATASEG 
9: 

10: exCode 
11: opByte 
12: opWord 
13: sourceByte 
14: sourceWord 
15: 
16: CODESEG 
17: 
18: Start: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 

mov 
mov 

mov 
mul 

mov 
mul 

mov 
mul 

31: mov 
32: div 
33: 
34: moy 
35: mov 
36: div 
37: 
38: Exit: 
39: mov 
40: moy 
41 : int 
42: 
43: END 

DB 
DB 
OW 
DB 
OW 

o 
8 
100 
64 
4000 

ax, @data 
ds, ax 

al, !opBytel 
[sourceBytej 

ax, !opWordJ 
[sourceWordl 

ax, [opWord I 
ax 

ax, !opWordl 
!sourceBytel 

ax, [opWord I 
dx, [opWord I 
[sourceWordJ 

ah, 04Ch 
al, ! exCode I 
21h 

Start 

Running the MULDIV Demo 

by Tom Swan" 

Initialize OS to address 
of data segment 

ax <- al * [sourceByte) 

aX,dx <- ax * [sourceWordl 

aX,dx <- ax * ax 

al <- ax div [sourceByte] 

ax <- aX,dx div [sourceWordj 

DOS function: Exit program 
Return exit code value 
Call DOS. Terminate program 

End of program I entry point 

In addition to exCode, MULDIV declares four test variables at lines 11-14. Add these vari
able names to Turbo Debugger's watch window. (Quick tip: press F6 and type the variable 
names.) Then, open the registers window or view the CPU window, whichever you prefer. 
Press F8 to step through each instruction. To start over, press Ctrl-F2. Experiment with 
different values as you follow these suggestions: 



1. Lines 22-23 multiply two unsigned bytes. One byte must be in register a1. The 
other can be in memory, as in this example, or in another 8-bit register. The result 
of the multiplication is stored in the 16-bit register ax. Overflow is not possible as 
255 * 255 equals 65,025-well within the maximum range of a 16-bit word. Prove 
this to yourself by changing opByte and sourceByte to OFFh and rerun the program. 

2. Lines 25-26 are similar but, this time, multiply two 16-bit word values. Two 
registers, dx and ax, hold the result, which can be up to 32 bits long. dx holds the 
most significant part of the result; ax, the least significant part. As with byte 
multiplication, overflow cannot occur. 

3. Lines 28-29 square the value of a register, multiplying ax by itself. You can also 
square an 8-bit value by multiplying a1 by itself. You can't do this with any other 
registers-you can use only ax and a1. 

4. Unes 31-32 demonstrate unsigned division. The source data to the div instruction 
divides into the 16-bit dividend in ax. The whole number quotient is placed in a1 

with any remainder in ah. 

5. Lines 34-36 perform a similar division, this time dividing a 32-bit value in dx and 
ax by the 16-bit word value of sourceWord. Register dx holds the most significant 
word of the original value, and ax holds the least significant word. After the divi
sion, the whole number quotient is stored in ax with any remainder in dx. 

NOTE 

While experimenting with new values, don't attempt to divide by 0. Doing 50 causes the 
processor to generate a signal called the "divide-by-zero" interrupt (see Chapter 10), halting 
the program. Actually, this condition is misnamed as it can occur any time the result of a 
division is too large to fit in the specified destination. For example, the udivide-by-zero" 
interrupt occurs at lines 31-32 when opword = 0F000h and sourcebyte " 1 because OFOOOh is 
larger than the maximum value that a single byte can express. If this condition occurs while 
running Turbo Debugger, try resetting with Ctrl-F2 or quit and reload. 

As you can see from these experiments, unsigned multiplication and division is somewhat 
unfriendly in 8086 assembly language. You must use only the specified registers, and you 
must be aware that 32-bit results and operands are stored in two registers dx and ax. The 
source operand to mu1 and div (see lines 23, 26, 29, 32, and 36) can be a memory location as 
in most of these examples or any general-purpose register. Because the size of the source 
operand determines the size of the result, you should also be aware that accidentally multi
plying a word variable (as in line 26) when you think you are multiplying a byte variable will 
cause dx to change. 

99 



100 

PART I _ PROGRAMMING WITH ASSEMBlY LANGUAGE 

Multiplying and Dividing Signed Values 
The signed multiply (imul) and divide (idiv) instructions operate similarly and use the same 
registers as mul and div. (The i in the mnemonics stands for integer, indicating that signed 
positive and negative values are allowed.) The only difference is in the range of values al
lowed: 

• Signed bytes range from -128 to +127 

• Signed words range from -32,768 to 32,767 

Try a few experiments by modifying Listing 4.4 to use imul in place of mul and idi v in place 
of di v. Enter various positive and negative test values, either by editing lines 11-14 or by 
typing new values in Turbo Debugger's watch window. As you will see from your tests, us
ing signed multiplication and division requires some care. If you get stuck, the following 
notes should help: 

• Remember that negative results are in fWO'S complement notation. 

• Any remainder (ah for 8-bit divisions and dx for word divisions) has the same sign as 
the quotient. 

• An interrupt 0 is generated, possibly halting the program, if you attempt to divide 
by 0 or by any divisor that produces a result larger than the specified destination can 
hold. 

Converting Bytes, Words, and Doublewords 
When using signed binary values, you often need to convert an 8-bit byte value to a 16-bit 
word, perhaps to prepare for a multiplication or division. Because the value may be a nega
tive number in fWO'S complement notation, this can be tricky as you must take care to pre
serve the original value and its sign. To make this easy, use cbw (convert byte to word) and 
cwd (convert word to doubleword). For an example of how these instructions work, insert 
the following lines into Listing 4.4, replacing lines 22-36. Assemble and run under control 
of Turbo Debugger, experimenting with different values for sourceByte and sourceWord: 

mov 
cbw 
mov 
cwd 

aI, [sourceByte I 

ax, [sourceWordl 

Load source byte into al 
Extend sign to ax 
Load source word into ax 
Extend sign to dX,ax 

Try setting sourceByte to -3 decimal and executing the first fWO of these instructions. Be
fore cbw, al equals hexadecimal FD. After, ax equals FFFD-the same value (-3 decimal) 
expressed in 16 instead of8 bits. The cbw instruction extends the 8-bit value (including the 
sign) to the 16-bit destination. Similarly, cwd extends 16-bit values to 32-bit doublewords. 
Except for the number of bits involved, the fWO instructions perform the same job. 

When using these instructions, you must observe a few restrictions. The source value for cbw 

must be in al. The 16-bit result always appears in ax. The source value for cwd must be in ax. 



The 32-bit result always appears in dx and ax. Normally, you'll use cbw and cwd along with 
imul and idiv when you have byte values to multiply or divide into words. But you're cer
tainly free to use these instructions in other ways, too. 

Logic Instructions 
Table 4.4 lists the 8086 logic instructions, organized in two subdivisions: Logical and Shift/ 
Rotate instructions. Logical instructions combine bytes and words with AND, 0 R, and other 
logical operators. Shift/Rotate instructions shift and rotate bytes and words. These concepts 
were introduced in Chapter 3. 

The simplest logical instruction, not, toggles the bits in a byte or word from ones to zeros 
and from zeros to ones. As you know, this is called the one's complement. (Adding 1 to this 
result forms the twO'S complement, although it's much easier to use neg for this purpose.) 
One way to use not is to toggle true and false values. If a zero value represents false and a 
nonzero value represents true, then the following instructions flop register dh from true to 

false and then back to true: 

mov dh, -1 
not dh 

Set dh to true (non zero) 

not dh 
Set dh to "not true," i.e., false 
Set dh to "not false," i.e., true 

Table 4.4.8086 Logic Instructions. 
Mnemonic/Operands Description 

Logical Instructions 
and destination, source Logical AND 

not destination 

or destination, source 

Logical NOT (one's complement) 

Logical OR 

test destination, source Test bits 

xor destination, source Logical Exclusive OR 

Shift/Rotate Instrudions 
rc 1 destination, count 

rc r destination, count 

rol destination, count 

ror destination, count 

sar destination, count 

shl/sal destination, count 

shr destination, count 

Rotate left through carry 

Rotate right through carry 

Rotate left 

Rotate right 

Shift arithmetic right 

Shift left/arithmetic left 

Shift right 

101 



102 

KUl,KI"",'ll1"-' WITH ASSEMBLY lAiXGUAGE 

Remember that neg subtracts a value from 0; not toggles the bits in a value on and off-two 
very different operations. Take care not to confuse the two instructions. A mixup is almost 
sure to lead to a hard-to-find bug. 

Logical Combinations 
Chapter 3 explains the ins and Outs of the logical AND, OR, and XORoperations on binary 
values. The 8086 instructions of the same names perform these logical jobs, combining byte 
and word values according to the rules of the truth tables in Table 3.2. Listing 4.5 demon
strates how the instructions work in assembly language. Assemble, link, and run with Turbo 
Debugger using the commands: 

tasm Izi andorxor 
tlink Iv andorxor 
td andorxor 

Listing 4.5. ANDORXOR.ASM. 
1 : %TITLE 'AND, OR, XOR demonstration 
2: 
3: IDEAL 
4: 
5: MODEL small 
6: STACK 256 
7: 
8: DATASEG 
9: 

10 : ex Code DB 0 
11 : soureeWord OW 0ABh 
12 : wordMask OW 0CFh 
13: 
14 : CODESEG 
15 : 
16: Start: 
17 : mov ax, @data 
18: mov ds, ax 
19: 
20: mov ax, [soureeWordj 
21 : mov bx, ax 
22: mov ex, ax 
23: mov dx, ax 
24: 
25: and ax, [wordMaskj 
26: 
27: or bx, [wordMaskl 
28: 

by Tom Swan' 

16-bit source value 
16-bit mask 

Initialize DS to address 
of data segment 

Set ax, bx, ex, and dx 
to [soureeWordj 

ax <- ax AND mask 

bx <- bx OR mask 



29: xor ex, [wordMaskj ex <- ex XOR mask 
30: 
31 : xor dx, dx dx <- 0000 
32: 
33: Exit: 
34: mov ah, 04Ch DOS function: Exit program 
35: mov aI, [exCode] Return exit code value 
36: int 21h Call ODS. Terminate program 
37: 
38: END Start End of program I entry point 

Running the ANDORXOR Demo 
With the assembledANDORXOR program loaded into Turbo Debugger, follow these steps 
to see the 8086 and, or, and xor instructions in action: 

1. Open Turbo Debugger's CPU window (Alt-V-C) and zoom to full screen (F5). 

2. Watch (Ctrl-F7) variables sourceWord and wordMask to make it easy to enter new test 
values. Press F6 if necessary to bring the watch window into view. 

3. Press F8 to step through the program, stopping after executing the xor instruction 
in line 31. Try to predict the results of the and. or, and xo r instructions in lines 
25-29, comparing your predictions with the register values ax for and. bx for or, 

and ex for xor. 

4. To experiment with new test values, press Ctrl-F2 to reset the program. Then, with 
the watch window active, position the selector bar on the variable you want to 
change and press Ctrl-C. Enter a new value and press Enter. Then repeat from 
step 3. 

The xor instruction in line 31 of Listing 4.5 sets register dx to 0, a frequently used trick in 
8086 programming. Try line 31 with different test values in dx to prove that this line always 
produces a zero result. 

Testing 0001 00100011 
ANDing two bits produces 1 only if both bits equal 1 ; therefore, the and instruction is often 
used to test whether one or more bits equal 1 in a byte or word value. For example, if you 
need to determine whether bit 2 is set, you can use a mask of 4: 

0011 0111 (Value to test) 
0000 0100 (AND mask) 

00000100 (Result) 

If the result equals 0, then bit 2 in the original value must be O. If the result does not equal 
o as in this sample, then bit 2 of the original value must equal 1. Unfortunately, the and 

103 



104 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

instruction destroys the original value in the process. To perform this operation while pre
serving the test value--perhaps to test several single bits in succession without having to re
load a register-use the test instruction instead of and: 

mov an, [testValuej 
test ah, 04h 

; Load [testValuej into an 
; Test if bit 2 is set 

;-----take action here on bit 2 

mov dh, 80h 
test ah, dh 

; Load mask into dh 
; Test if masked bit is set 

;-----take action here on bit 7 

test ah, [testBit] ; Test bit with variable mask 

j-----take action on the test bit 

As these samples show, you can test literal (also called immediate) values such as 04h and 
80h, values in registers, or values in memory. Test performs a logical and on the operands 
but throws away the result, leaving the destination operand unchanged but sening the flags 
exactly the same as and. After the test instruction, you would normally use a jump instruc
tion (explained later) to take an appropriate action based on the test result. Note the similar
ity between test and emp, which performs a subtraction but throws out the result. The test 

instruction performs an and but throws out the result. 

Shifting Bits Around 
Several shift-and-rotate instructions are available in the 8086 instruction set. As Table 4.4 
shows, there are instructions to shift bits left and right and to rotate values through the carry 
flag ef. The instructions further divide into four subgroups: 

• Plain shifts (shl, shr) 

• Plain rotations (rol, ror) 

• Rotations through ef (reI, rcr) 

• Arithmetic shifts (sal, sar) 

Each of these groups follows a different rule for shifting the bits in bytes and words left 
or right. Despite their subtle differences, the instructions take the same number and types 
of operands. Once you learn how to use one, you know how to use them all. Let's use the 
most common shift shl for demonstration. It specifies a register or memory location plus a 
count, n: 

shl ax, n Shift ax left by n 1 bits 



Strangely enough, n must equal 1 ,or you'll receive an error. (On later-model processors such 
as the 80386, n may be an unsigned 8-bit constant.) The only legal form of this kind of shift 
in 8086 assembly language is: 

shl ax, 1 ; Shift ax left by 1 bit 

To shift values by more than 1 bit at a time on the 8086 requires two steps: first load a count 
value into cl, and then specifY cl as the second operand to the shift instruction: 

mov cl, 5 
shl ax, cl 

; Load count into cl 
; Shift ax left by cl bits 

You must use cl for this-no other register will work as the second operand. You can also 
shift memory locations and 8-bit register halves. For example: 

mov cl, 2 
shl bh, cl 
shl [seconds 1 , 
shl [minutes], cl 

Load count into cl 
Shift bh left by cl bits 
Shift [seconds] left by one bit 
Shift [minutes] left by cl bits 

A few experiments and diagrams will clarifY the differences between the various shift instruc
tions. Use the following commands to assemble and run Listing 4.6 with Turbo Debugger: 

tasm Izi shift 
tlink Iv shift 
td shift 

Listing 4.6. SHIFT.ASM. 
1 : .. TITLE "Shift instruction demonstration -- by Tom Swan" 
2: 
3: IDEAL 
4: 
5: MODEL small 
6: STACK 256 
7: 
8: DATASEG 
9: 

10: exCode DB 0 
11 : operand DB 0Mh 
12: 
13 : CODESEG 
14: 
15: Start: 
16: mov ax, @data Initialize DS to address 
17: mov ds, ax of data segment 
18: 

continues 

105 



PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

listing 4.6. continued 
19: shl [operand] , 1 Shift left 
20: shr [operand] , Shift right 
21 : rol [operand] , Rotate left 
22: ror I operand] , 1 Rotate right 
23: rcl [operand] , 1 Rotate left through carry 
24: rcr [operand] , 1 Rotate right through carry 
25: sal [operand] , Shift arithmetic left 
26: sar [operand] , Shift arithmetic right 
27: 
28: Exit: 
29: mov ah, 04Ch DOS function: Exit program 
30: mov aI, [exCode] Return exit code value 
31 : int 21h Call DOS. Terminate program 
32: 
33: END Start End of program { entry point 

Running the SHIFT Demo 
The following steps assume you have assembled SHIFT.ASM and loaded the program into 
Turbo Debugger. These experiments will help clarify several tricky points about the 8086 
shift instructions: 

1. Listing 4.6 executes each of the seven 8086 shift instructions from Table 4.4. For 
reasons I'll explain later, shl and sal are two names for the identical instruction; 
therefore, although there are eight shift mnemonics, there are only seven actual shift 
instructions. 

2. Figure 4.5 illustrates how the plain shift instructions shl and shr operate. Step 
through (F8) lines 19-20 to experiment with these. Each bit in the destination 
operand shifts one or cl positions to the left or right. For shl, bit 7 (MSD) moves 
into the carry flag (cf), while a 0 bit shifts in from the right. For shr, bit 0 (the 
LSD) moves into the carry flag, while a 0 bit shifts in from the left. 

NOTE 

Although Figures 4.5 through 4.8 show only 8-bit bytes, all shift instructions can operate on 
16-bit values, too. For this reason, bit numbers are not shown in these diagrams. 

3. Figure 4.6 shows how the rotation instructions rol and ror differ from plain shifts. 
They do not shift a 0 bit in from the right or left; instead, the MSD and LSD values 
rotate around to the opposite end. The other bits shift in the indicated direction. 
With rol, the original MSD rotates around to become the new LSD. With ror, the 
original LSD rotates around to the MSD position. These same bits also move into 
the carry flag, just as they do with shl and shr. Step through lines 21-22 to experi-

106 ment with these instructions. 



4. Figure 4.7 illustrates the rotate-through carry instructions, reI and rer. For both of 
these instructions, the l-bit carry flag serves as an extension to the register or 
memory location being rotated. With reI, the MSD shifts into the carry flag while 
the old carry flag value moves into the LSD pOSition. With rer, the LSD shifts into 
the carry flag while the old carry flag moves into the MSD position. The other bits 
shift in the indicated direction. Step through lines 23-24 to experiment with reI 
and rer. 

5. Figure 4.8 illustrates the final shift instruction sar, which is a strange bird. sar 
operates identically to shr except that the MSD retains its original value. Addition
ally, the MSD is copied to the bit on the right. This is easier to see with a few 
example binary values: 

10001000 

11000100 

11100010 

11110001 

11111000 

Figure 4.5. 
Theshl/sal andshr plain 
shift instructions. 

Figure 4.6. 
The r01 and ror rotate 
instructions. 

o 

MSD LSD 

Shift Left (shllsal) 

Shift Right (shr) 

Rotate Left (rol) 

~FMOO~:~~~~~~:LS~D~ 
)0 

Rotate Right (ror) 107 



108 

I.. PWGRAMMING WITH ASSEMBLY LANGUI\GE 

Figure 4.7. 
77Je rel lind rcr mlLlle

tllI·oagb-rarry imtrllcriaw. 

Figure 4.8. 
I7Je sar instruction. 

~........;;.;;.,MSD ~r--r=-~D~ 
~: :~ 

Rotate Left Through Carry (rei) 

~,.:.:.=,--..,MSD ~,...--,.::=..lSD~ 41: :~ 
Rotate Right Through Carry (rer) 

MSD LSD 

Shift Arithmetic Right (sar) 

Starting with the second value, each successive line shows the result of applying sar to the 
value above. The bits shift right just as with shr, but the MSD retains its value and is copied 
to the right. As a result, sar is useful for dividing two's complement negative numbers by 
powers of2. For example, expressed in hexadecimal, successive sar instructions produce this 
sequence: 

8000 -32768 
C000 -16384 
E000 -8192 
F000 -4096 
F800 -2048 

FFFE -2 
FFFF -1 

Additional sar instructions have no effect on hexadecimal FFFF-unlike idiv, which if used 
to divide -1 by 2, gives 0, as you'd expect. 

Unlike other shift-instruction pairs that match a right shift with a similar left shift, sar does 
not have a left-handed partner. Instead, the shl instruction is given a second mnemonic sal, 

making up for the deficiency. The reason that an arithmetic shift left is no different from a 



logical shift left is evident by examining the previous hexadecimal sequence in reverse. If we 
work from the bottom up, these are the same values that applying shl would produce. (Try 
converting the hex values to binary if you have trouble visualizing this.) In a nutshell, sar is 
already balanced by shl/sar, which can multiply negative twO's complement values by pow
ers of 2, and there's no need for a separate instruction. 

NOTE 

When viewing sal instructions in Turbo Debugger, some of the CPU window options display 
this instructIon as shl. This happens because the debugger can't know the context in which 
you areusing one or the other mnemonic; therefore, it displays the more common name. 

Why Shift? 
There are many reasons for programs to employ shift instructions, although twO reasons stand 
out: 

• To move bits into specific positions 

• To multiply and divide by powers of 2 

Moving bits into specific positions and then using logical operators to pack the shifted result 
into other values is a rypical assembly language operation. For example, suppose dh initially 
equals 3, dl equals 5, and the program requires these two numbers to be packed into dh with 
the 3 in the most significant bits and the 5 in the least significant portion of the byte. Here's 
how you might proceed: 

mov dh, 3 dh <- 3 
mov dl, 5 dl <- 5 
mov cl, 4 Load count into cl 
shl dh, cl Shift dh left four bits 
or dh, dl dh <- dh OR dl 

NOTE 

If you have trouble following the logic of this example, replace lines 19-26 in listing 4.6 with 
these five instructions and run the program in Turbo Debugger. Watch register dhas you 
single step through each line. The shl instruction shifts dh left 4 bits, moving the lower 4-bit 
value to the upper position and shifting in zeros from the right. Then the or instruction 
combines the shifted value with dl, packing the two 4-bit values into one B-bit byte. 

109 



110 

~.-~.-.----------------------------

_ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Shifty Multiplies and Divides 
A useful technique to know is how to multiply and divide by powers of 2 using only shift 
instructions. (You learned the basics of this in Chapter 3.) Most of the time, shifts are much 
faster than mul, imul, div, and idiv instructions; therefore, you should always use shifts when 
appropriate. To multiply a value by 8 (or 23), for example, you need only to shift that value 
left 3 times: 

mov ax, 6 
mov cl, 3 
shl ax, cl 

ax <- 6 
Load count into cl 
ax <- ax • a 

Or to divide by 16 (24
), shift right 4 times: 

mov el, 4 
shr ax, el 

; Load count into el 
i ax <- ax I 16 

One problem with multiplication is the possibility of overflow, ignored in these samples. If 
the carry flag equals 1 after a shl by 1, then the result is too large to fit in the destination 
register or memory location. Overflows from shifting by more than 1 are difficult to detect. 
Also, with division, any remainder is lost-dividing 2 into 3 by shifting 3 right equals 1, and 
the remainder is nowhere to be found. 

Flow-Control Instructions 
Table 4.5 lists the 8086 flow-control or jump instructions, those that allow programs to change 
the address of the machine code to be executed next. Without flow-control instructions, a 
program would simply start at the top and run at breakneck speed toward the bottom, with 
no stops, loops, or side trips along the way. With flow-control, programs can make deci
sions, inspect flags, and take actions based on previous operations, bit tests, logical compari
sons, and arithmetic. Also, flow-control instructions give programs the ability to repeat 
instructions based on certain conditions, conserving memory by looping through the same 
sections of code over and over. 

Table 4.5.8086 Flow-Control Instructions. 
Mnemonic/Operands Description 

call target 

jmp target 

ret value 

Unconditional Transfer Instructions 

Call procedure 

Jump unconditionally 

Return from procedure 



retn value 

retf value 

Return from near procedure 

Return from far procedure 

Conditional Transfer Instructions 

j a/ j nbe short-target 

j ae / j nb short-target 

j b / j nae short-target 

j be I j ns short-target 

j e short-target 

j e / j z short-target 

j g / j nle short-target 

j ge / j nl short-target 

j 1/ j nge short-target 

j Ie / j ng short-target 

j ne short-target 

j ne / j nz short-target 

j no short-target 

j np / j po short-target 

j ns short-target 

j 0 short-target 

j p / j pe short-target 

j s short-target 

. j exz short-target 

loop short-target 

loope /loopz short-target 

Jump if above/not below or equal 

Jump if above or equal/not below 

Jump if below/not above or equal 

Jump if below or equal/not above 

Jump if carry 

Jump if equal/O 

Jump if greater! not less or equal 

Jump if greater or equal/not less 

Jump ifless/not greater or equal 

Jump ifless or equal/not greater 

Jump if no carry 

Jump if not equal/O 

Jump if no overflow 

Jump if NOT parity/parity odd 

Jump if NOT sign 

Jump if overflow 

Jump if parity/parity even 

Jump if sign 

Loop Instructions 

Jump if ex equals 0 

Loop while ex <> 0 

Loop while equal/O 

loopne/loopnz short-target Loop while not equal/not 0 

int interrupt-type 

into 

iret 

Interrupt Control Instructions 
Interrupt 

Interrupt on overflow 

Interrupt return 

III 



112 

1-, -"~~-~-~------------------------------

I PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 
L ___ , 

Although there may seem to be an overwhelming number of jump instructions in Table 4.5, 
the forest has only a few easily identified species to memorize. This chapter concentrates on 
the first two categories: conditional and unconditional jumps. Later chapters introduce loops 
and the interrupt control instructions. 

lJnconditional Transfers 
An unconditional tran1£'rchanges the address of the next instruction to be executed. It oper
ates like an exit-only ramp on a highway-once you're in the lane, you're going that-a-way, 
whether you want to or not. And once the processor executes an unconditional transfer, the 
destination instruction will be the next to execute without exception. Unconditional trans
fers load new address values into the ip register and, in some cases, into the cs code-segment 
register, too. Together, cs: ip specifY the address of the next instruction to execute. Chang
ing either or both registers changes the address of this instruction, altering the normal top
to-bottom program flow. 

Calling Subroutines 
One of assembly language's most useful devices is the subroutine, a collection of related in
structions, usually performing one repetitive operation. A subroutine might display a char
acter string on-screen, add a series of values, or initialize an output pon. Some subroutines 
live grandiose lives: making a chess move or logging on to a remote computer. Others play 
more humble roles: displaying a single character or reading a key press from the keyboard. 

Some programmers write long subroutines that perform many jobs on the theory that mul
tiple subroutines can make a fast program run slowly. Don't do this. You may gain a tiny bit 
of speed by combining operations into a massive subroutine, but you are more likely to end 
up with a buggy and hard-to-maintain program over which you will ponder your original 
intentions while questioning the sanity of your decision to become a programmer. 

The best subroutine does one and only one job. The best subroutine is as short as possible 
and only as long as necessary. The best subroutine can be listed on one or two pages of print
out paper. The best subroutine begins, not with code, but with comments describing the 
subroutine's purpose, results, input expected, and registers affected. The best subroutine can 
be understood out of context by someone who has no idea what the entire program is doing. 
In other words, the best subroutine is short and sweet and neat. 

Listing 4.7 demonstrates how to write a subroutine in assembly language. Assemble, link, 
and load into Turbo Debugger as you have the other examples in this chapter, using the 
commands: 

tasm Izi subdemo 
tlink Iv subderno 
td subderno 



Listing 4.7. SUBOEMO.ASM. 
1: %TITLE 'Subroutine demonstration -- by Tom Swan" 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: exCode 
11 : 
12: 
13: 
14: Start: 
15: 
16: 
17: 
18: 
19: 
20: 
21 : 
22: 
23: 
24: 
25: 
26: Exit: 
27: 
28: 
29: 
30: 

IDEAL 

MODEL small 
STACK 256 

OATASEG 

COOESEG 

mov 
mov 

mov 
mov 
mov 
mov 
call 
call 
call 

mov 
mov 
int 

DB o 

ax, @data 
ds, ax 

al, 
bl, 2 
cl, 3 
dl, 4 
AddRegisters 
AddRegisters 
AddRegisters 

ah, 04Ch 
al, [exCode I 
21h 

Initialize OS to address 
of data segment 

Load AL-OL with values 
to add 

AX <- AL+BL+CL+OL 
again 
and again! 

DOS function: Exit program 
Return exit code value 
Call ~OS. Terminate program 

31: ;------------------------------~--------------------------------
32: ; AddRegisters Sum al, bl, cl, and dl 
33: ---------------------------------------------------------------
34: Input: 
35: al, bl, cl, dl = Four 8-bit values to add 
36: Output: 
37: ax = al + bl + cl + dl 
38: Registers: 
39: ax, bh, ch, dh changed 
40: ---------------------------------------------------------------
41: PROC AddRegisters 
42: xor ah, ah 
43: xor bh, bh 
44: xor ch, ch 
45: xor dh, dh 
46: add ax, bx 
47: 
48: 
49: 
50: ENOP 
51 : 
52: 

adc ax, cx 
adc ax, dx 
ret 
AddRegisters 

END Start 

Set ah 
Set bh 
Set ch 
Set dh 

equal to zero 
equal to zero 
equal to zero 
equal to zero 

AX <- AX + BX 
AX <- AX + CX + CF 
AX <- AX + DX + CF 
Return to caller 

End of program I entry point 

113 



114 

,--
. PARri PROGRAMMING WITH ASSEMBLY LANGUAGE 

Running the SUBDEMO Program 
The main pOl-tion of the SUBDEMO program is at lines 14-29. The subroutine is at lines 
31-50. There are several new items in the code: 

• The comments at Jines 31-40 describe the subroutine's name, purpose, input, 
output, and affected registers. The dashed outlines are optional, serving mostly to 
mark the beginnings of many subroutines in a long listing. For many programmers, 
a personal subroutine header style is a valued trademark. If you want to use your 
own format, that's fine-just be sure to include at least the information shown here. 

• The PRoe and ENDP directives (lines 41, 50) mark the subroutine's beginning and 
ending. 

• The ret instruction (line 49) must be included in every subroutine, but nor 
necessarily on the last line as in this example. 

The PRoe and ENDP directives are optional, bm I strongly suggest you use them to mark the 
beginnings and endings of all your subroutines. PRoe and ENDP are directives to Turbo As
sembler-they are not 8086 instructions. The PRoe directive comes first, followed by the 
subromine's name, which labels the address of the first instruction, here at line 42. The ENDP 

directive comes last, optionally followed by the same label name as in the preceding PRoe. 

Including the name here shows which subromine is ending, bm you can leave the name blank 
if you prefer. In line 22, the main program caLls the subroutine by using the call instruction 
along with the label AddRegisters. Two important actions take place when call executes: 

• The return address of the next instruction following the call is pushed onto the 

stack. 

• The address of the subroutine is inserted into register ip Of, in some cases, into 
register pair cs: ip. 

Before starting to run the called subroutine, the 8086 processor pushes the address of the 
instruction following the call onto the stack. This address is called the return address be
cause it marks the location (Q which the subroutine should eventually return control. In this 
example, the first such recurn address is that of the instruction at line another call. After 
pushing this address, tbe processor jumps unconditionally (Q the called label, executing the 
instruction at line 42. The program then continues running from that point, executing the 
instructions in the subroutine. 

The reason for pushing the return address onto the stack becomes clear when the subroutine's 
ret instruction at line 49 executes. Like call, ret causes two important actions to occur: 

• The return address is popped from rhe srack into regisrer ip (or into cs:ip). 

• The program continues running with the instruction following the call that 
previously activated tbe subroutine. 

Figure 4.9 illustrates the action of the three call instructions in lines 22-24 of Listing 4.7. 



PROGRAMMING IN ASSEMBLY LANGUAGE 

Each call causes the subroutine's instructions to begin running until reaching the ret in
struction, which returns control to the instruction immediately after the call. Different places 
in the program can call the same subroutine. To view this action on your computer, load 
Listing 4.7 into Turbo Debugger and follow these steps: 

1. From the CPU window, press F8 six times, stopping just before you execute the 
call instruction at line 22. Notice that registers aI, bl, cl, and dl are loaded with 
values to pass to the subroutine for processing. 

2. Instead of pressing F8 to execute the call instruction, press F7, the "trace into" key. 
You should see the instruction marker jump to the xor instruction at line 42, 
indicating that the subroutine code is ready to run. If you're quick, you might also 
see the return address pushed onto the stack (lower-right corner of the screen). 

3. Press F7 repeatedly until you get to the ret instruction in line 49. Then press F7 
again, executing ret and returning control to the instruction following the call in 
line 22. 

4. Press F7 to again call the same subroutine. And then press F7 repeatedly as you did 
before, stopping after executing the ret instruction for a second time. 

5. The instruction marker should now be poised on line 24, ready to execute the final 
call. This time, instead ofF7, press F8-the key you normally use to single-step 
through programs. F8, the "step over" key, executes the subroutine at full speed, 
stopping only after the subroutine returns rather than showing you the individual 
instructions. Remember, to step through a subroutine, press F7 at the call instruc
tion. To step over a subroutine, press F8. F8 is useful when you're positive that a 
subroutine is functioning correctly and you don't want to waste time single
stepping through the routine's instructions. 

Figure 4.9. 
Subroutine calls and 
returns. 

---{. . • ~mPfQ9ram }-
<Various Instructions> 

cali Subroutine 

cali Subroutine 

cali Subroutine 

<Various Instructions> 

EndotPt~~ 

<Various Instructions> 

ret 

115 



116 

You should be able to understand how the AddRegisters subroutine works in Listing 4.7. 
Read the comments if you need help-there aren't any new instructions here. The xor in
structions at lines 42-45 clear any extraneous values in the upper halves of the registers to be 
added. Then add and adc add the four values in aI, bl, cl, sand dl, placing the sum in ax. 

The Long and Short of It 
Although Table 4.5 lists three return instructions-ret, retf, and retn-there actually are 
only two: retf and retn. The generic ret mnemonic allows Turbo Assembler to decide which 
of the other two returns is appropriate for the memory model in use. To understand the 
difference between retf and retn, you first have to understand the difference between an 
intrasegment and intersegment subroutine call: 

• An intrasegment subroutine call activates a subroutine in the same code segment as 
the call instruction. In other words, upon transferring control to a new location, 
segment register cs remains unchanged; therefore, it's necessary to change only ip to 
run the subroutine. An intrasegment return address is a 16-bit word. 

• An intersegment subroutine call activates a subroutine in a different code segment 
from the segment containing the call. In this case, both cs and ip must be changed 
to the new location and the full 32-bit return address of the instruction following 
the call is pushed onto the stack. 

There is only one call mnemonic because the assembler knows whether a called subroutine 
is near (in the same segment) or far (in a different segment) when it assembles the call. But 
there are two return mnemonics-retn for near, intrasegment calls and retf for far, 
intersegment calls-to allow you to write near and far subroutines as you choose, changing 
the default instruction that Turbo Assembler generates for ret. 

The best way to avoid confusion with these details is to let Turbo Assembler generate the 
correct codes for you. (After all, that's one reason for using an assembler in the first place.) 
To define a near subroutine, use the NEAR operator in the PROC definition; 

PROC SubName NEAR 
insert subroutine instructions here 
ret 

ENDP SubName 

To write an intersegment subroutine, change NEAR to FAR. Turbo Assembler will then assemble 
far calls to this subroutine and replace the ret instruction with retf. 

NOTE 
"," ,'. "" .>,", 

When ~lngthesmalt~rnemorymOOel;as in most of this book's example programs, subrou
tines ate asS\!m~ to be near (in the same code segment as calls to the subroutines). Conse
quently, specifying the NfiAf\operatQfin the PROG declaration is unnecessary. 



PROGRAMMING IN AsSEMBl Y Ln"'UV,~UL 

Passing Values to and from Subroutines 
From Listing 4.7, you can see that subroutine AddRegisters requires four 8~bit registers to 

hold values to add. The subroutine returns the sum of this addition in ax. Passing values in 
registers to subroutines is the most common method for giving subroutines data to process. 
Two other methods are: 

• Storing data in global variables 

• Passing data on the stack 

Subroutines may operate directly on variables declared in the data segment, for example, the 
exCode byte at line 10. Usually, though, this is not a wise choice. Changing global variables 
from inside subroutines can lead to confusion over which subroutine changed which values 
when. In a complex program with hundreds or thousands of subroutines, many of which 
call each other in various sequences, two subroutines that affect the same global values may 
introduce a dangerous kind of bug called a side effictinto your program. This problem de~ 
velops when a program (or another subroutine) calls a subroutine that cb -"ges a global value 
currently used for other purposes. 

Passing data on the stack is a good way to avoid side effects, especially when a subroutine 
requires many parameters. You could modify Listing 4.7 to follow this scheme. Before each 
call (lines 22-24), instead ofloading registers aI, bl, el, and dl with data to process, you 
might use these instructions: 

mov ax, 
puSh ax 
mov ax, 
push ax 
mov ax, 
push ax 

2 

3 

First element 
Push onto stack 
Second element 
Push onto stack 
Third element 
Push onto stack 

mov ax, 4 Fourth element 
push ax Push onto stack 
call AddValues 

Notice that you must load a register (ax here) and then push that register onto the stack
you can't push literal values directly onto the stack. In the subroutine, you may think the 
first job is to pop the parameters from the stack. But this doesn't work: 

PROC AddValues 
pop dx ; 111 
pop cx 
pop bx 
pop ax 

Subroutine instructions 
ret 

ENDP AddValues 

The first pop accidentally removes the return address pushed by the call instruction, caus~ 
ing the subroutine to add the wrong values and to lose its ability to return to the calling place. 

117 



118 

PROGRAMMING WITH ASSEMBLY LANGUAGE 
~-~~~~-~~~~-----------------------

The solution is to remove the return address, pop the parameters, and then replace the re
turn address back onto the stack. This takes another register: 

PROC AddValues 
pop si 
pop dx 
pop cx 
pop bx 
pop ax 
push si 

ret 
ENDP AddValues 

Save return address in si 
Pop 4 parameters 

Replace return address 
Subroutine instructions 

This works, but as you can see, passing values on the stack is not as easy as passing values 
directly in registers. It is possible to address parameters on the stack using a method em~ 
ployed in high-level languages, explained in Chapters 12 and 13. As you'll see, a special form 
of the ret instruction can remove the pushed parameters before popping the return address, 
eliminating some of the complexity of the method described here. 

To Push or Not to Push 
Listing 4.7's comment at line 39 tells you that ax, bh, ch, sdh, and various flags are changed 
by the subroutine. If the calling program uses any of these registers or flags for its own pur
poses, you now have a conflict to resolve. There are two solutions: 

• Save the original register values before the call 

• Save the original register values inside the subroutine 

Ask six programmers, and you shall receive six opinions about which of these two methods 
for preserving registers is best. The first plan saves registers currently in use before calling 
subroutines that change those registers. In Listing 4.7, for example, if the calling program is 
using bh and ch, it might call the subroutine like this: 

push bx 
push cx 
call AddRegisters 
pop cx 
pop bx 

Save bx on the stack 
Save CX, too 
Call subroutine 
Restore cx from the stack 
Restore bx, too 

You must push the entire register (ax, bx, etc.), even if you need to preserve only the 8-bit 
halves (ah, bl, etc.). Pushing the registers onto the stack before the subroutine call saves the 
register values temporarily on the stack, from where the same register values are later restored 
after the subroutine finishes. Notice that the pop instructions must be in the reverse order 
from the push instructions. 

The second school of thought on register preservation makes each subroutine responsible 
for saving and restoring the registers it changes--except, of course, for registers used to pass 



---------_._-_._------------------
PROGRAMMING IN ASSEMBL Y ~t\I"uUt\u( 

values back to callers, With this approach, you could revise AddAegisters (lines 41-49) as 
follows: 

PAoe AddRegisters 
pushf Save flags 
push bx Save changed registers, too 
push cx 
push dx 

Subroutine instructions 
pop dx Restore registers 
pop ex 
pop bx 
popf ; Also restore flags 
ret ; Return to caller 

ENDP AddRegisters 

The calling program now can freely call the subroutine, which guarantees that, if it uses any 
registers for its own purposes, it will restore those registers to their original values before re
turning. This example also saves the flags with pushf and then restores the flags with popf 

just before the subroutine ends. This works because call, push, and ret (among others) do 
not change the flag values. Even so, saving and restoring flags this way is probably unneces
sary, and few programs actually do this. If you need to save flag values, ho ver, this is how 
to do it. 

Which is the best method? Should the caller or the "calIee" save registers affected by the 
subroutine? In practice, I usually make the subroutine responsible for saving the registers it 
changes-probably the preferred method of most assembly language programmers. This does 
entail some wasted effon, however, as the subroutine might needlessly save the value of a 
register that isn't being used by the program that calls the subroutine. Even so, in a typical 
program with dozens of subroutines, many of which call each other in unpredictable sequences, 
it's simply more practical, if not 100% efficient, to let the subroutines save and restore their 
modified registers. Sometimes, however, and especially where top speed is needed, I'll ig
nore this rule of thumb and make the caller responsible for saving needed values. If you do 
this, be sure to carefully document which registers are changed inside the subroutine, or bugs 
are almost sure to surface later. 

Jumping Unconditionally 
The 8086 has well over a dozen different jump instructions (see Table 4.5), One of these, 
j mp, is an unconditional jump; the others are all conditional jumps. The difference berween 
the rwo jump types is important: 

• An unconditional jump always causes the program to start running at a new address. 

• A conditional jump causes the program to start running at a new address only if 
certain conditions are satisfied. Otherwise, the program continues as though the 
conditional jump instruction did not exist. 

119 



120 

PROGRAMMING WITH ASSEMBLY LANGUAGE 

The unconditional jmp works identically to call, except that the return address is not pushed 
onto the stack. The jmp instruction takes a single parameter: the label of the location where 
the program is to transfer control. For an example of how this works, modifY Listing 4.7, 
inserting the following instruction between lines 21 and 22: 

jmp Exit 

When you single-step the modified program in Turbo Debugger, you'll see the jmp instruc
tion skip the three calls in lines 22-24, jumping directly to the mov instruction at the Exit 
label. That's all j mp does. Use the instruction anytime you want to jump from somewhere to 

somewhere else. As with call, that somewhere else may be in the same code segment or in a 
different segment. Turbo Assembler implements the correct jmp for you, making either an 
intrasegment jump (to a different offset in the same code segment, changing only the ip reg
ister) or an intersegment jump (to a different segment and offset, changing both cs and ip). 

Most of the time, you'll use jmp to jump to locations in the same code segment-almost 
always the case with the small-memory model. 

Use illlJl.spadngly to avoid creatilltgttle 
spaghetticorJe, where imaginary I 
like pa~ ina pot. You may as 
such aprogfam does. 

Jumping Conditionally 
Table 4.5 lists the 8086's 18 conditional jump instructions, many of which have two mne
monics representing the same instruction, for example, j e 1 j z and j 91 j nle, making a total of 
30 mnemonics. This may seem to be an overwhelming number of conditional jumps to learn, 
bur, like verb conjugations, the different forms are easy to remember if you separate the root 
(always j for jump) from the endings (a, nbe, e, z, etc.). Each of these endings represents a 
unique condition, as listed in Table 4.6. Once you memorize these meanings, you'll have 
little trouble differentiating among the many kinds of conditional jumps. In the table, the 
endings on the right are negations of the endings on the left. (Two conditional jump mne
monics, j pe and j po do not have negative counterparts.) 

All conditional jumps require a target address-a label marking the location where you want 
the program to continue running if the specified condition is met. For example, following a 
comparison of twO registers with cmp, you might use je (jump if equal) to transfer control to 
a location if the values in the registers are equal. To demonstrate this, suppose you need a 
subroutine to return ex equal to 1 if ax bx or to 0 if ax <> bx. This does the job: 



PROC RegEqual 
mov ex, 
cmp ax, bx 
je Continue 
xor ex, ex 

Preset ex to 0001 
Does ax equal bx? 
Jump if ax = bx 
Else, set cx to 0000 

Continue: 
ret 

ENDP Reg Equal 
Return to caller 

Table 4.6. Conditional Jump Endings. 

Ending Meaning 

a above 

ae above or equal 

b below 

be below or equal 

c carry 

e equal 

g grearer 

ge grearer or equal 

I less 

Ie less or eql' 

0 overflow 

p parity 

pe parity even 

po parity odd 

s sign 

z zero 

Ending 

na 

nae 

nb 

nbe 

nc 

ne 

ng 

nge 

nl 

nle 

no 

np 

ns 

nz 

PROGRAMMING IN ASSEMBLY LANGUAGE 

Meaning 

nor above 

nor above or equal 

not below 

not below or equal 

nor carry 

nor equal 

nor greater 

nor grearer or equal 

not less 

not less or equal 

not overflow 

not parity 

not sign 

not zero 

First, ex is preset to 1, the result that indicares ax equals bx-a fact the subroutine doesn't 
know JUSt yet. Next, a emp compares ax and bx. Remember that emp performs a subtraction 
(ax bX) but throws away the result, setting the zero flag zf to 1 if the result is zero, or to 0 
if the result is not zero. The je conditional jump tests the zero flag, transferring control to 
the Continue label if the condition is met-namely that zf 1, indicating thar ax equals bx 
and, therefore, preserving the preset value in ex. If the condition is not met (zf = 0), then 
the xor instruction sets ex to O. In either case, the ret instruction executes last, returning 
control to the location after the call instruction that activated the subroutine. 

121 



122 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

A downward jump as in this example-skipping an assignment to a register or, perhaps, a 
call to another subroutine-is probably the most typical use for conditional jumps. But you 
can also jump up to create loops in programs. For example, this fragment increments ax by 
1, calling a subroutine Print (not shown here) until ax equals 10: 

xor ax, ax Preset ax to 0000 
Count: 

inc ax 
call Print 
cmp ax, 10 
jne Count 

ax <- ax + 1 
Call subroutine 
Is ax 10? 
Jump if ax <> 10 
Program continues here 

The loop extending from Count: to j ne executes repeatedly as long as ax is not equal (ne) to 

10. As in the previous example, the cmp instruction sets the flags for the following condi
tional jump to test. If the condition is not met-in other words, if ax does nO£ yet equal 
10--control transfers back up to Count, starting the loop over from the inc instruction. When 
ax hits 10, the condition fails, and j ne does not transfer control to the target label, continu
ing instead with the next instruction below. 

Double Jumping 
As you can see from Table 4.5, many conditional jumps have two names for the same in
struction. In all cases, you can use either mnemonic interchangeably. For example j e and j z 
assemble to the identical machine code. 

Why, then, do you need the two different names? The answer is: Simply to make program
ming easier. Literally translated, j z means "jump if the zero flag equals 1" while j e translates 
to "jump if equal." The reason for the two different translations is more obvious when you 
consider how this jump instruction is used. After a cmp operation, if the result is 0, then the 
zero flag is set to 1. Knowing this, you could use j z to test the zero flag and jump to another 
location. 

To avoid forcing you to perform similar mental gymnastics at every step in a program, the 
8086 instructions set provides alternate mnemonics that make more sense in given situa
tions. After a cmp, you simply use j e to test if the operands were equal. Or you can use j ne to 
test if the operands were not equal. In most cases, you don't even have to be aware of which 
flags are set and tested. 

:2"')5 

NOTE 

~ti~i~fcourset Vou'liwanttoknow which flags are being tested by a conditional 

lu~p;~tl~ti~s~ look upthf; instruction's mnemonic; in Chapter 16. Also listed in 
lhls &J!lPt~~re the~act combinations of flag bits inspected by each conditional jump 
ihstl'iJf;tron" 



Using Conditional Jumps 
Learning which conditional jump to use in a given situation takes practice. Reading assem
bly language programs will help, and, as you read through this book, you'll see most of the 
conditional jumps in action. Be sure to memorize the endings in Table 4.6. Also, under
stand the difference between the two phrases, above-below and less-greater, as used in instruc
tions such as jb and jge. Remember these two points: 

• use above-below jumps such as i a and j be with umigned values 

• use less-greater jumps such as i le and ig with signed values 

Because of the wrap-around effect in arithmetic operations on binary values expressed within 
fixed numbers of bits, the difference between comparisons of signed and unsigned values is 
important. (Adding 1 to hexadecimal FFFF, for example, equals 0000 within 16 bits. In 
decimal, this is equivalent to the strange but true equation, 65,535 + 1 = 0.) A few examples 
help clarify this important detail. Suppose you subtract two registers and want to jump to a 
certain location if the result is less than O. This is the correct way to accomplish your goal: 

sub ax, bx ; ax <- ax bx 
jl Negative ; Jump if ax < bx 

If the subtraction of bx from ax results in a negative value, then the condition of j 1 succeeds, 
and control transfers to the address of the Negative label. Obviously, if ax is less than bx, 
then the result of subtracting bx from ax will be negative. Replacing j 1 with j b, through, 
does not work: 

sub ax, bx ; ax <- ax - bx 
jb Negative ; ??? 

The above-below conditional jumps test the results of comparisons and other operations on 
unsigned (positive) whole numbers. Even if bx is greater than ax, the result of subtracting 
unsigned bx from ax is still an unsigned value. To test whether the unsigned ax is greater 
than unsigned bx, you can write: 

cmp ax, bx ; Is unsigned ax > bx? 
ja Greater ; Jump if ax > bx 

The j a (jump if above) instruction correctly tests the result of a comparison between two 
unsigned values. Only ifax is greater than bx does the jump occur. If ax is below or equal to 

bx, then the jump does not occur. On the other hand, ifax and bx were signed values, then 
j a would not be appropriate here-instead, you'd probably want to use the signed condi
tional jump, jg. 

123 



124 

PROGRAMMING WITH ASSEMBLY LANGUAGE 

Get into the habit of using HatliOVE~bE~lm .. r 
signoo(:omparisohs. Do th.isin YOlir'pJ'cOgfaJil!t; 
comments. There's no easy tr!(.'k to learnt.~'jg 
the rules. 

Conditional Restrictions 
All conditional jumps have one major restriction: They can transfer control only a very short 
distance away-exactly 128 bytes back (to a lower address) or 127 bytes forward (to a higher 
address) from the first byte of the instruction immediately following the jump. Counting the 
2 bytes that each conditional jump occupies, you can jump a tiny bit farther ahead than back
a small detail that rarely matters very much. Don't worry. Turbo Assembler will tell you if 
you try to jump too far. 

The conditional jump target in the range of -128 to 127 bytes is called the displacement, a 
value calculated for you by the assembler from the label you supply in your program's text. 
The displacement-not the actual address of the target label-is inserted into the assembled 
machine code for this jump instruction. You never have to calculate the displacement manu
ally, but you should be aware that because the target address is expressed as a displacement, 
conditional jumps have the marvelous property of executing identically at any memory loca
tion withoUt change, leading to an interesting fact about 8086 programming: 

NOTE 

Code that uses only condjtionallu~ Can ~~~~n~r~:m 
relocatable-able to be (eloca*edlnm~f@I)i';Apqmen~X~yted\!X~thpY.~~'iP: 

, :,',,;,,-,," "'" ", ,""- - - " " " - ,,' -j , -~ '< 
? '; ,:':,;'>' 

Although relocatable conditional jumps are usually advantageous, when you absolutely must 
jump conditionally to a far-away location, the limited displacement range can be trouble
some. To jump farther than about 127 bytes away requires a combination of conditional 
and unconditional jumps. For example, suppose you want the program to jump to an Error 

routine if dx equals 1, perhaps halting the program with a message. You could write: 

cmp dx, 1 
jne Continue 
jmp Error 

Continue: 

Is dx 1? 
Jump if dx <> 1 
Error, halt (dx = 1) 

No error, continue program 



PROGRAMMING IN ASSEMBLY LANGUAGE 

If dx equals 1, then the j ne conditional fails, executing the unconditional j mp, which trans
fers control to Error, presumably outof range of jne. When combining jumps this way, care
fully think through the logic-it's easy to pick the wrong conditional, a common source of 
bugs. To avoid confusion, remember this hint: 

than youn9rmally woufd.lJSe if the target is within range. 

~!lIIl,£P:J'lIiIft~~Jjmpto that tar8e.f. 

You can see how this hint works by examining the code for the previous example if the Error 

label is in range of the conditional jump. The much simpler program now becomes: 

; Is dx = 17 cmp dx, 1 
je Error ; Error, halt (dx 1) 

Obviously, this fragment jumps to Error if dx equals 1. To jump conditionally to an out-of
range label requires the opposite conditional (j ne instead of j e) followed by the uncondi
tional j mp to the target. 

Learning More About Conditional Jumps 
To learn more about how each conditional jump instruction operates, try running some of 
the previous examples in Turbo Debugger. You should be able to do this on your own by 
now. Just take one of the test programs you entered earlier and replace the guts with the 
programming from this text-or, even better, make up your own examples. (You'll have to 

supply labels for any subroutine calls and jumps.) 

Chapter 16 lists each conditional jump in detail. Refer to this chapter to learn which flag 
bits are affected by each instruction. Above all, think logically. After a comparison, question 
your motives. Do you want to jump if the result is less or greater (signed), or if the result is 
above or below (unsigned)? Keep your jumps to the minimum distances possible and avoid 
using too many jumps. A typical mistake is to write code like this: 

NotS: 

cmp bx, S 
jne NotS 
moy ax, [countS] 
imp Continue 

moY ax, (count) 
Continue: 

Is bx " S7 
No, jump to NotS 
Yes, Load ax with [countS] 
Jump to skip next instruction 

Load ax with [count] 

Program continues here 

125 



126 

PART I.. PROGRAMMING WITH ASSEMBLY LANGUAGE 

This fragment requires two labels and two jump instructions just to load ax with a different 
value depending on whether bx equals 5. Try not to hop around so much. Prdoading ax 

with one of the two possible results eliminates a label and the unconditional jump: 

moy ax, [count 51 
cmp bx, 5 
je Continue 
moy ax, [count I 

Continue: 

Preset ax <- [count5] 
Is bx 57 
Yes, ax is correct, so jump 
NO, load ax with other value 

Program continues here 

Not only is this shorter and easier to read, the code operates more quickly when bx does not 
equal 5. (A jmp instruction as used here takes more processor time to execute than a mov be
tween a register and memory location; therefore, the two movs are not as wasteful as you may 
think on a casual reading.) 

Processor Control Instructions 
The set of 8086 instructions listed in Table 4.7 directly operate on the processor. In all cases 
but one, these processor control instructions assemble to single-byte codes and require no 
operands. Most of the instructions set or clear individual flag bits. Others synchronize the 
processor with external events and, in one case, nop actually does nothing at all. 

Table 4.7.8086 Processor Control Instructions. 

Mnemonic/Operands 

clc 

cld 

cli 

erne 

stc 

std 

sti 

Description 

Flag Instructions 
Clear carry 

Clear direction (auto-increment) 

Clear interrupt-enable flag 

Complement carry 

Set carry 

Set direction (auto-decrement) 

Set interrupt-enable flag 

External Synchronization Instructions 
esc immediate, source 

hIt 

lock 

wait 

nop 

Escape to coprocessor 

Halt processor 

Lock the bus 

Wait for coprocessor 

Miscellaneous 
No operation 



126 

I.. PROGRAMMING WITH ASSEMBLY LANGUAGE 
'----~~---~~---~~--------~--~-~--~--------------

This fragment requires two labels and two jump instructions just to load ax with a different 
value depending on whether bx equals 5. Try not to hop around so much. Preloading ax 

with one of the two possible results eliminates a label and the unconditional jump: 

mov ax, [count 5] 
cmp bx, 5 
je Continue 
mov ax, [count] 

Continue: 

Preset ax <- [count5] 
Is bx = 51 
Yes, ax is correct, so jump 
No, load ax with other value 

Program continues here 

Not only is this shorter and easier to read, the code operates more quickly when bx does not 
equal 5. (A jmp instruction as used here takes more processor time to execute than a mov be
tween a register and memory location; therefore, the two movs are not as wasteful as you may 
think on a casual reading.) 

Processor Control Instructions 
The set of8086 instructions listed in Table 4.7 directly operate on the processor. In all cases 
but one, these processor control instructions assemble to single-byte codes and require no 
operands. Most of the instructions set or clear individual flag bits. Others synchronize the 
processor with external events and, in one case, nop actually does nothing at all. 

Table 4.7. 8086 Processor Control Instructions. 

Mnemonic/Operands Description 
-------~---~------------------------------

ele 

eld 

eli 

cmc 

stc 

std 

sti 

flag Instructions 

Clear carry 

Clear direction (auto-increment) 

Clear interrupt-enable flag 

Complement carry 

Set carry 

Set direction (auto-decrement) 

Set interrupt-enable flag 

External Synchronization Instructions 

esc immediate, source 

hit 

lock 

wait 

nop 

Escape to coprocessor 

Halt processor 

Lock the bus 

Wait for coprocessor 

Miscellaneous 

No operation 



126 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

This fragment requires two labels and two jump instructions just to load ax with a different 
value depending on whether bx equals 5. Try not to hop around so much. Preloading ax 

with one of the two possible results eliminates a label and the unconditional jump: 

mov ax, [count 5J 
cmp bx, 5 
je Continue 
mov ax, [count] 

Continue: 

Preset ax <- {count5] 
Is bx = 5? 
Yes, ax is correct, so jump 
No, load ax with other value 

Program continues here 

Not only is this shorter and easier to read, the code operates more quickly when bx does not 
equal 5. (A jmp instruction as used here takes more processor time to execute than a mov be
tween a register and memory location; therefore, the two movs are not as wasteful as you may 
think on a casual reading.) 

Processor Control Instructions 
The set of 8086 instructions listed in Table 4.7 directly operate on the processor. In all cases 
but one, these processor control instructions assemble to single-byte codes and require no 
operands. Most of the instructions set or clear individual flag bits. Others synchronize the 
processor with external events and, in one case, nop actually does nothing at all. 

Table 4.7. 8086 Processor Control Instructions. 
Mnemonic/Operands 

ele 

eld 

eli 

erne 

ste 

std 

sti 

Description 

Flag Instructions 
Clear carry 

Clear direction (auto-increment) 

Clear interrupt-enable flag 

Complement carry 

Set carry 

Set direction (auto-decrement) 

Set interrupt-enable flag 

External Synchronization Instructions 
esc immediate, source 

hit 

lock 

wait 

nop 

Escape to coprocessor 

Halt processor 

Lock the bus 

Wait for coprocessor 

Miscellaneous 

No operation 



Flag Operations 
The first group of instructions in Table 4.7 sets and clears individual flag bits. A flag is set 
when it equals L It's clear when it equals O. You can set and clear the carry flag (stc and 
clc), the direction flag (std and cld), and the interrupt flag (sti and eli). You can also comple
ment the carry flag with erne, toggling cf from 1 to 0 or from 0 to 1. 

The direction flag instructions are used exclusively with the string instructions in Table 4.8. 
Chapter 5 explains how to use these instructions. The interrupt flag bit is normally set or 
cleared inside interrupt service routines, as Chapter 10 explains. In general, sti allows most 
kinds of interrupts to occur, while eli prevents their occurrence. 

One typical use for stc and clc is to set the carry flag to pass back a result from a subroutine. 
For example, you could write a routine to test whether a certain bit is set in a value passed in 
register dl: 

PROC TestBit 

Exit: 

test dl, 08h 
j z Exit 
stc 

ret 
ENDP TestBit 

Test bit 3 
Exit if bit 3 = 0 
Set carry flag 

Return to caller 

This procedure tests whether bit 3 equals 1, setting the carry flag to 1 only if it does. The 
test instruction resets the carry flag regardless of the operand values, but it also sets the zero 
flag to 1 only if the result is O-indicating in this example that bit 3 in dl is O. In that event, 
the j z instruction jumps directly to Exit, leaving cf 0. Otherwise, the stc instruction sets 
the carry flag, returning cf = 1. The main program might call the subroutine this way: 

mov dl, [testvaluej 
call TestBi t 
jc BitIsSet 

Load test value into dl 
Call test subroutine 
Jump if bit 3 1 
Program continues if bit 3 0 

After calling TestBit, the jc instruction transfers control to BitIsSet only if cf = 1. Passing 
the carry flag back from a subroutine this way is common in assembly language program
ming. Also, you'll often see routines that use cf to indicate whether an error occurred. For 
example, to call a hypothetical routine DiskRead and check for an error, you might write 
something like this to jump to your error handler if the subroutine fails: 

call DiskRead 
j nc Continue 
jmp Error 

Continue: 

Read the disk (subroutine not shown) 
Continue program if no error (CF 0) 
Else, jump to error handler (CF = 1) 

Program continues here 

127 



128 

ASSEMBLY LANCU."CE 

Getting in Synch 
The 8086 external synchronization instructions are rare birds for which you'll probably have 
only occasional uses. Hit brings the processor (0 a screeching halt, continuing only after re
ceiving one of two kinds of interrupts. (See Chapter 10 for more information about inter
rupts.) The most typical use for hit is to force the processor to wait for a signal from an 
external device, continuing only when the device gives the processor the green light to pro
ceed. 

Wai t and esc are used to interface the 8086 with a math coprocessor. Esc is the only proces
sor control instruction that requires operands. 

Lock causes the 8086 to assert (turn on) a signal that interface circuits can recognize as a notice 
that the bus is in use. (The bus is the collection of lines to and from the processor, memory 
and elsewhere, over which data bits travel their various routes.) Lock is not really a separate 
instruction, but a prefix for another instruction, most often xchg. In a computer with mul
tiple processors accessing the same memory locations, you can use lock to avoid the poten
tial conflict of both processors writing to the same location simultaneously. If you need this 
capability, refer to Intel's documentation (see Bibliography). In most PC programming, Lock 
isn't needed. 

Something for Nothing 
Nop is perhaps the strangest of a1l8086 instructions. From the instruction's name, you may 
think that nop doesn't do anything. And so it doesn't! Executing nop is like accelerating a car 
in neutral-push the pedal to the floorboards and you're still going nowhere fast. But in the 
sometimes wacky world of assembly language programming, even nothing has its purposes. 
Nop comes in handy usually in two ways: 

• To remove another instruction temporarily 

• To save space for a forward jmp 

Nop is most useful when you want to remove an instruction from a program without having 
to reassemble and link. Poking a few nop machine codes (hexadecimal 90) over other instruc
tions is a useful debugging trick. When trying to locate the source of a bug, try replacing a 
suspect instruction or two with nops in the hope that this will reveal hidden mistakes. Often, 
removing instructions is good way to learn what effects those instructions have. For example, 
suppose you want to examine what happens in Listing 4.7 (SUBDEMO) ifline 42 does not 
zero ah. You could remove the instruction in the text, reassemble, link, and test. Or you can 
just load the already assembled code into Turbo Debugger and follow these steps: 

1. Open the CPU window and move the selector bar to the xor instruction at the 
beginning of AddRegisters. Note the address to the left, probably something like 
cs:001D. 



2. Press Tab to move the cursor to the memory dump area in the CPU window's 
bottom-left corner. 

3. Press Ctrl-G to select the Goto command. Then enter the address from step 1, for 
example, cs:OO 1 Dh. (Remember to add the h for hexadecimal!) 

4. The cursor should now be positioned on the first of two bytes, 32 and E4, the 
binary machine codes for the xor ah, ah instruction. VerifY this by comparing the 
bytes in the memory dump area with the disassembled code above. 

5. Change the byte values by ryping 090h 090h and watch the disassembled code above 
when you press Enter. The 2-byte xor instruction instantly changes to two single
byte naps. 

6. Use to step through the modified program, observing what happens (or, rather, 
doesn't happen) to ah when the naps execute. When the subroutine ends (at the ret 
instruction), ax no longer correctly holds the sum of the four registers. As this test 
proves, zeroing ah is necessary to ensure an accurate result. 

7. To reset the program, press Ctrl-F2 or replace the naps with their original machine 
codes, 032h and OE4h. 

Saving Jump Space 
Turbo Assembler will occasionally insert a nap to reserve space for a j mp instruction. Earlier, 
you learned that j mp transfers control unconditionally to a target address. But, depending on 
how far away you are jumping, Turbo Assembler generates one of several machine code forms 
for jmp, adding from 2 to 5 bytes to the assembled program. Normally, you can ignore this 
fact and just let the assembler choose the most efficient form, which it will always do. Even 
so, because Turbo Assembler is a one-pass assembler-reading your source code only one 
time to generate object code-a problem develops with instruction sequences such as: 

Skip: 

or 
jz 
jmp 

ax, bx 
Skip 
Elsewhere 

mov ax, 1 
jmp Continue 

Elsewhere: 
mov ax, 2 

Continue: 

Does ax : bx? 
Jump if yes 
Else jump to Elsewhere 

Set ax to 1 if ax bx 
Skip next command 

Set ax to 2 if ax <> bx 

Program continues 

Although this sequence has no practical purpose, it demonstrates a typical problem. When 
Turbo Assembler reaches the first jmp instruction-which in this case jumps forward to a 
higher memory location-the assembler doesn't yet know how far it is from the jmp to the 
target address at Elsewhere. Always the pessimist, Turbo Assembler assumes the worst-that 
Elsewhere will be greater than 127 bytes ahead. Therefore, the assembler reserves space for a 
3-byte jmp, which has a reach of about +1-32K. Upon reaching Elsewhere, Turbo Assembler 

129 



130 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

realizes its error-Elsewhere is close enough for the shorter 2-byte jmp to reach, within 128 
bytes back or 127 bytes forward. Because the 2-byte jmp operates more quickly than the 
3-byte version, Turbo Assembler goes back and changes the j mp to the 2-byte model. To 
avoid having to reassemble the other instructions between this jmp and Elsewhere, the as
sembler changes the now extra third byte to a nop, then continues on with the rest of the 
program. If you assemble this short example, you'll see code that looks something like this: 

cs:0000 EB 04 
cs:0002 90 

jmp Elsewhere 
nop 

The inserted nop does nothing but occupy space. Because of the preceding unconditional 
jmp, the nop never even executes. To get rid of the do-nothing nop, saving 1 byte, place a 
SHORT directive before the imp target address: 

jmp SHORT Elsewhere 

This forces Turbo Assembler to use the 2-byte jmp version. Of course, if Elsewhere later turns 
out to be farther than 127 bytes away, you'll receive an error and will have to remove the 
SHORT directive. 

Using the JUMPS Directive 
If you insert a JUMPS directive on a line somewhere early in your program, Turbo Assembler 
allows you to use conditional jump instructions to locations that are farther away than the 
normal restriction of about 127 bytes. There's a catch with this directive, however. Suppose 
you write: 

JUMPS 
or ax, ax 
je There 
mov ax, 5 

There: 

Is ax = 07 
Jump if ax 0 
Else set ax to 5 

With the JUMPS directive in effect, when Turbo Assembler assembles the je instruction, it 
actually inserts: 

je There 
nop 
nop 
nop 

There: 

The three nops reserve space for alternate code that the assembler inserts if the target label 
The re is farther away than j e can normally reach: 

jne Temp 
jmp There 

Temp: 



PROGRAMMING IN ASSEMBLY LANGUAGE 

Instead of assembling the j e that you wrote, Turbo Assembler inserts the opposite instruc
tion j ne followed by an unconditional imp-exactly the same as explained earlier. The Temp 
label is just for illustration-a label isn't actually inserted into the program. The problem 
with JUMPS is those extra nops, which are inserted whether or not they are needed. For this 
reason, I prefer to write double jumps explicitly. The JUMPS directive does come in handy as 
a temporary tool, though. After finishing a program design, you can convert the long jumps 
to explicit double jump instructions and remove the JUMPS directive from the final assembly. 
This will eliminate the wasteful nops. 

String Instructions 
The 8086 string instructions in Table 4.8 are powerfullitde engines for processing all kinds 
of data-not just character strings. Remember that strings in assembly language are sequences 
of bytes that mayor may not represent ASCII characters. Despite their suggestive names, the 
8086 string instructions don't care what the bytes mean. String instructions divide into three 
groups: 

• String transfer instructions 

• String inspection instructions 

• Repeat prefix instructions 

Table 4.8.8086 String Instructions. 

Mnemonic/Operands Description 

String Transfer Instructions 

lods source 

lodsb 

lodsw 

movs destination, source 

movsb 

movsw 

stos destination 

stosb 

stosw 

Load string bytes or words 

Load string bytes 

Load string words 

Move string bytes or words 

Move string bytes 

Move string words 

Store string bytes or words 

Store string bytes 

Store string words 

String Inspection Instructions 

cmps destination, source 

cmpsb 

Compare string bytes or words 

Compare string bytes 

continues 

131 



132 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Table 4.8. continued 
Mnemonic/Operands Description 

String Inspection Instructions 

empsw Compare string words 

seas destination Scan string bytes or words 

seasb Scan string bytes 

seasw Scan string words 

Repeat Prefix Instructions 

rep Repeat 

repe (repz Repeat while equal/O 

repne (repnz Repeat while not equal/O 

String transfer instructions move bytes and words from memory to a register, from a register 
to memory, or directly from memory to memory. String inspection instructions let you com
pare and scan bytes and words, searching for specific values. Repeat prefix instructions can be 
attached as prefaces to other string instructions, creating single commands that repeat a 
number of times or cycle until a specified condition is met. A prefixed string instruction can 
quickly fill thousands of bytes with values, copy strings from one location to another, and 
search large memory blocks for values. 

Despite the many mnemonics in Table 4.8, there are actually only five string instructions: 
lods, stos, movs, seas, and emps. The others are shorthand mnemonics for these same com
mands. As you can see in the table, the shorthand names such as lodsb and empsw require no 
operands and, therefore, are easier to use. Similarly, there are only two repeat prefixes: rep is 
identical to repe and repz. And repne and repnz represent the same prefix. The interchange
able names are provided merely to help you document exactly what your program is doing. 

String Index Registers 
All string instructions use specific registers to perform their duties. Unlike other instructions 
that let you decide which registers to use, string instructions are finicky, always operating 
with the same combination of registers ds: si and es: di-the source and destination string 
index registers, which specify offsets in the data and extra segments. 



!!""'"""---------... ~.~~~-~---.. ~. 

The five string instructions load, store, move, compare, and scan bytes and words. While 
performing these jobs, each string instruction also increases or decreases the registers they 
use. Byte operations subtract or add I to s1 or d1 (or both); word operations add or subtract 
2. For example, if s1 equals 0010 hexadecimal, then after a lodsw operation, s1 would be 
advanced to 0012 (or retarded to OOOE, depending on the direction of the string operation). 
Because of this effect on the index registers, by adding a repeat prefix to a string instruction, 
programs can process whole sequences of data with a single command. 

The direction flag df specifies whether string instructions should increase or decrease s1 and 
di. If df 1, then the indexes are decreased toward lower addresses. If df 0, then the 
indexes are increased toward higher addresses. Use cld to dear df, automatically incrementing 
s1 and d1 toward higher addresses. Use std to set df, automatically decreasing si and d1 toward 
lower addresses. 

Loading Strings 
The lods instruction loads data addressed by ds: s1 or es: s1 into al for byte operations or 
onto ax for word operations. Mter this, s1 is increased or decreased, depending on the set
ting of the direction flag df. Byte operations adjust si by 1; word operations, by 2. With this 
instruction, you can construct a simple loop to search for a byte value: 

cld 
Repeat: 

lods (byte ptr ds:s1J 
or aI, al 
jne Repeat 

Auto-increment si 

al <- (ds:s1/; si <- s1 + 1 
Is al = 0? 
Repeat if al <> 0 

133 



134 

1 _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

First, cld clears df, preparing to auto-increment si after each lods, which copies into al the 
byte addressed by ds: si. Then s1 is advanced to address the next byte in memory. After loading 
each byte, an or instruction tests if al equals O. If not, the j ne jumps back to label Repeat:, 

thus repeating this sequence until finding a zero byte. (If no zero byte exists in the segment 
at ds, by the way, this loop will repeat "forever." Take care that you don't introduce a bug 
into your programs with loops such as this.) 

&m.M)\j~ii:~~!CU ~ttlleedge of.a lJegftlQl'lt eausesthe registers 
WQf!l$, if.siordi are equal to OfFFFh, 

kIKt:!WI!>l;:, If the registers equal 0000, subtracting 1 

Using Shorthand String Mnemonics 
Because lods normally operates on the value addressed by ds: s1, Turbo Assembler gives you 
two shorthand mnemonics that do not require operands, lodsb and lodsw. The sb in this 
and other shorthand string mnemonics stands for string byte. The sw stands for string word. 
Table 4.9 lists the equivalent longhand forms for all the shorthand mnemonics. 

Table 4.9. String Instruction Shorthand. 
Shorthand 

lodsb 

lodsw 

stosb 

stosw 

movsb 

movsw 

scasb 

scasw 

cmpsb 

cmpsw 

Equivalent String Instruction 

lods [byte ptr ds:si] 

lods [word per ds:sil 

stos [byte ptr es:di] 

stos [word ptr es:di] 

movs [byte ptr es:di], [byte ptr ds:si] 

movs [word pte es:di], [word per ds:si] 

scas [byte ptr es:dil 

scas [word pte es:di] 

cmps [byte ptr ds:si], [byte ptr es:di] 

cmps [word ptr ds:si], [word ptr es:di] 



Addressing String Labels 
Turbo Assembler allows you to specifY data labels in the long forms of the string instructions 
in Table 4.9. For example, to load into al the first byte of a string sl, you can write: 

DATASEG 
string db 'This is a string', 0 

CODESEG 
mov si, offset string 
lods (string] 

; Assign address of string to si 
; Get first byte of string 

But the instruction lods [string] does not assemble as you may think. Instead, Turbo As
sembler converts this instruction to lodsb, assuming that you previously loaded the offset 
address of string into si. Remember that all string instructions require specific registers to 

address the data on which the instructions operate. Even when you specifY a variable by name 
as in this example, you still have to load si or di with the appropriate addresses for the in
struction. SpecifYing a variable by name merely lets Turbo Assembler verifY that this vari
able is probably addressable by the appropriate registers. The assembler doesn't initialize the 
index registers for you. 

Storing Data to Strings 
Stos and the shorthand mnemonics stosb and stosw store a byte in al or a word in ax to the 
location addressed byes: di. As with lods, stos increments or decrements di by 1 or 2, de
pending on the setting of df and whether the data is composed of bytes or words. Combin
ing lods and stos in a loop can transfer strings from one location to another: 

cld 
Repeat: 

lodsw 
cmp ax, 0FFFFh 
je Exit 
stosw 
jmp Repeat 

Exit: 

Auto-increment si and di 

ax <- (ds:sil; si <- si + 2 
Is ax = 0FFFFh? 
Jump if ax 0FFFFh 
(es:di( <- ax; di <- di + 2 
Repeat until done 

In this example, first the cld instruction prepares to auto-increment si and di. Then, lodsw 
loads into ax the word addressed ds: si, also incrementing si by cwo. Ifax equals the value 
OFFFFh-presumably placed into memory by another routine as an end-of-data marker
the j e instruction exits the loop. Otherwise, stosw stores the word in ax to the location 
addressed byes: di, also incrementing di by 2. The final j mp repeats these actions until de
tecting the OFFFFh marker. Once again, the danger here is that OFFFFh does not exist in 
the data segment. As you'll learn later, there are other ways to code this operation that elimi
nate this problem. 

135 



136 

I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Moving Strings 
Use movs or the shorthand forms movsb and movsw to move bytes and words between twO 
memory locations. Because these instructions do not require an intermediate register to hold 
data on its way from and to memory, they are the fastest tools available by moving data blocks. 
As with other string instructions, you can use the longhand form along with operands, or, as 
most programmers prefer, you can use the simpler shorthand mnemonics. 

Movsb moves 1 byte from the location addressed by ds: si or as: si to the location addressed 
byes: di, incremen ting or decrementing both index registers by 1. Mov sw moves a word be
tween the two locations, incrementing or decrementing the registers by 2. Although you can 
use these instructions alone to transfer one byte or word-or construct a loop to transfer 
many successive values-you'll most often add a repeat prefix as in this sample: 

eld 
mov ex, 100 
rep movsb 

; Auto-increment si, di 
; Assign count to cx 
; Move 100 bytes 

These three little instructions move 100 bytes of memory starting at ds: si to the location 
starting at es: di. The repeat prefix rep repeatedly executes movsb, subtracting 1 from ex after 
each repetition, and ending when ex equals O. You must use ex for this purpose. Without a 
repeat prefix, you'd have to write the instructions this way: 

eld 
mov ex, 100 

Repeat: 
movsb 
dee ex 
jnz Repeat 

Auto-increment si, di 
ASSign count to ex 

[es:dil <- Ids:Sij; advance si & di 
Count number Of LOOps done 
Repeat Loop if cx <> 0 

But, with a repeat prefix, there's no need to go to all this trouble; furthermore, handling the 
counting chores yourself results in slower code. 

NOTE 

. Strange-but-True Departmellt:Some pert~ctly ¥ahd repeated 
senseless code. For example, you can writ~ rep 1_ti';1().ng~xS· . intoBl.. 
Because each new val~etases the previous WllU¢J"IJ1~!the~S:~yt)ra.~.r~a_t(J 
perform such a wa~jJl inSWction. . . . 

Filling Memory 
The stos instruction makes filling memory with a byte or word value easy. Be careful with 
this one. It can erase an entire memory segment in a flash. For example, this stores bytes 
equal to 0 in a 512-byte block of memory, starting at the label Buffer: 



moy ax, SEG Buffer 
moy es, ax 
mov di, OFFSET Buffer 
xor aI, al 
mov cx, 512 
cld 
rep stosb 

PROGRAMMING IN ASSEMBLY L,,,',uvnUL 

Assign segment address of Buffer 
to extra segment register es 

Assign offset address to di 
Assign value to store in memory 
Assign count to cx 
Prepare to autO-increment di 
Set 512 bytes to zeros 

First es is assigned the segment address of the variable to be erased to all zeros. The SEG op
erator returns the segment portion of a variable, here Buffer. This value is first assigned to 
ax, which is then assigned to es. (The two steps are necessary because of the restriction against 
moving literal values directly into segment registers such as es.) After this, di is initialized to 
address the beginning of Buffer , al is set to the value to store in memory, and the number of 
bytes is loaded into ex. Finally, after eld sets df to 1, preparing to auto-increment di, the 
repeated stosb instruction fills Buffer with zeros. By changing only the value assigned to ex, 
this same sequence can fill up to 65,535 bytes. (Set ex to OFFFFh to repeat a string instruc
tion this maximum number of times. To fi1165,536 bytes, add an additional stosb instruc
tion after rep stosb.) 

Scanning Strings 
Use seas to scan strings for specific values. As with other string instructions, you can use the 
longhand or shorthand forms scasb and scasw. Each repetition of seas compares the byte 
value in al or the word value in ax with the data addressed byes: di. Register di is then 
incremented or decremented by 1 or 2. 

Because you can compare single bytes and words with a emp instruction, the scan instruc
tions are almost always prefaced with repe (repeat while equal) or repne (repeat while not 
equal)--or with the mnemonic aliases repz (repeat while zf 1) and repnz (repeat while 
zf 0). For each repetition, these prefixes decrement ex by 1, ending if ex becomes O. (Re
member that repe, repz, and rep are the same instruction.) When these prefixes are used 
with seas or emps (or any of their shorthand equivalents), repetitions also stop when the zero 
flag zf indicates the failure of the scan or the compare. For example, a simple sequence scans 
250 bytes looking for a 0: 

cld 
moy di, OFFSET Start 
mov cx, 250 
xor aI, al 
repne scasb 
j e MatchFound 

Auto-increment di 
Address starting Location with es:di 
Set cx to maximum count 
Set al = 0, the search value 
Scan memory for a match with al 
Jump if a 0 was found at eS:di - 1 

After clearing df with cld, causing scasb to auto-increment di, which is initialized to ad
dress the label Start, ex is loaded with the maximum number of bytes to scan, 250. Then, al 
(holding the search value) is zeroed with an xor instruction. The repne scasb instruction 
scans up to 250 bytes decrementing ex after each repetition, and cycling while ex is not 0 

137 



138 

and while zf indicates that a match has not been found. (You would use repe or repz to cycle 
until a mismatch is found.) Mter the repeated scan, an original j e jumps to MatchFound (not 
shown) only if the search byte was located. The address of that byte is at es: di-1. 

When Zero Means Zero 
If cx equals 0, repeated string instructions cycle 65,536 times. But when you want 0 to mean 
"perform this operation zero times," you must test whether cx is 0 before starting the re
peated string instruction. You could do this with an or followed by a jump: 

Skip: 

or ex, ex 
j z Skip 
rep stosb 

Does ex = 0? 
Jump if yes (ex 0) 
Else repeat stosb 

This sequence jumps to label Skip if cx is O. Only if cx is not 0 does the rep stosb instruction 
execute. This prevents accidentally repeating the string operation 65,536 times-unless, of 
course, that's what you want to do. Instead of this sequence, however, you can use a special 
conditional jump instruction provided for this purpose. 

jcxz Skip 
rep stosb 

Skip: 

Jump if ex = 0 
; Else repeat stosb 

The j cxz instruction performs the same function as the or and j z instructions in the previ
ous example. 

Comparing Strings 
To compare two strings, use cmps or the shorthand forms cmpsb and cmpsw. The instructions 
compare two bytes or words at es:di and ds:si or es:si. As Table 4.9 shows, the operands 
are reversed from the similar operands for movs-an important distinction to keep in mind. 
The cmps comparison subtracts the byte or word at es: di from the byte or word at ds: si or 
es: si, saving the flags of this subtraction but not the result-similar to the way cmp works. 
After the comparison, both si and di are incremented or decremented by 1 for byte com
pares and by 2 for word compares. These instructions are almost always prefaced with a re
peat prefix as in this sample: 

cld 
mov si, OFFSET sl 
mov di, OFFSET s2 
mov CX, strlength 
repe cmpsb 
jb Less 
ja Greater 
je Equal 

AutO-increment si, di 
Address first string with ds:si 
Address second string with es:di 
Assign string length to cx 
Compare the two strings 
Jump is Sl < s2 
Jump if sl > s2 
Jump if sl s2 

This sequence assumes that string Sl is stored in the segment addressed by ds and that string 
s2 is stored in the segment addressed byes. If ds = es, then the two strings would have to be 
stored in the same segment. Mter the initializing steps--dearing df with cId, assigning the 



string addressed to si and di, and setting cx to the maximum number of bytes to compare
the repe empsb repeated string instruction compares the two strings, ending on the first mis
matched byte found. (Youcould also use repne here to compare two strings, ending on the 
first match found.) After the repeated instruction, the flags indicate the final result, which 
you can test by any of the three conditional jumps as shown here. 

Summary 
Segments divide the 8086's large address space into manageable 64K-maximum size chunks, 
allowing programs to address memory using efficient 16-bit pointers. Segment registers point 
to the start of segments in memory. Segments can overlap and can begin at any 16-byte para
graph boundary. 

There are five categories of registers in the 8086 design: the general-purpose registers (ax, 
bx, ex, dx), the pointer and index registers (sp, bp, si, di), the segment registers (cs, ds, ss, 

es), the instruction pointer (ip), and the flags (of, df, if, tf, sf, zf, at, pt, ct). Some regis
ters have specific purposes; others are free to be used however you wish. 

Six main groups divide the 8086 instruction set into data transfer instructions, arithmetic 
instructions, logic instructions, flow-control instructions. processor control instructions, and 
string instructions. Many instructions require one or two operands, usually labeled the des
tination and the source. Other instructions require no operands. 

Stacks in memory resemble a stack of dishes where the last dish placed onto the stack is the 
first to be removed. This is known as a LIFO (Last-In-First-Out) structure. In the 8086 the 
ss: sp register pair locates the base and top of stack in memory. Programs use the STACK di
rective to allocate stack space at run time. 

Subroutines help divide a large program into modules. Programs run subroutines with call 
instructions. Subroutines must end with a ret instruction to retllrn to the instruction fol
lowing the call. By using the PAOC and ENDP directives around subroutine code, Turbo As
sembler automatically assembles the correct calls and returns for intrasegment (same es) and 
intersegment (different cs) subroutines. 

139 



140 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Jump instructions change program flow, altering which instruction is to execute next. There 
are two kinds of jump instructions, conditional and unconditional. Conditional jump target 
addresses are limited to about 127 bytes away. The unconditional jmp instruction has no 
range limit. 

Exercises 
4.1. What are the minimum and maximum sizes of a memory segment for the 8086 

processor? 

4.2. List several ways to set register ax equal to O. 

4.3. Using push and pop, how can you duplicate the effect of the instruction mov 
aX,dx? 

4.4. Describe the difference between neg and not. 

4.5. What combination of instructions can rotate a 16-bit register enough times to 
restore completely the original value in that register? Which shift or rotate 
instructions will also preserve the value of the carry flag? 

4.6. Write a routine to unpack two 4-bit values from an 8-bit byte into two 8-bit 
bytes. For example, if the original value equals 5F hexadecimal, then the two 
results should equal 05 and OF. Assume that the original value is in register ah 
and that the result is to be stored in dh and dl. 

4.7. How might you use a shift instruction to test whether a certain bit, say number 
5, is set in register dh? 

4.8. Suppose that the label Target is farther away than the conditional jump jl can 
reach. How can you recode the following instruction to avoid an error from 
Turbo Assembler? 

jl Target j Jump to Target if Less 

4.9. Without using neg or not, write instructions to form the one's and two's comple
ments of values in bx. 

4.10. Write your own nop instruction. No registers or flags should change by executing 
your custom nop. Can you find more than one way to do nothing? (Your answer 
can take more than a single byte of assembled code.) 

4.11. What do string repeat prefixes do? 

4.12. What instructions would you use to scan 65,536 bytes of memory? 



140 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Jump instructions change program flow, altering which instruction is to execute next. There 
are two kinds of jump instructions, conditional and unconditional Conditional jump target 
addresses are limited to about 127 bytes away. The unconditional jrnp instruction has no 
range limit. 

Exercises 
4.1. What are the minimum and maximum sizes of a memory segment for the 8086 

processor? 

4.2. List several ways to set register ax equal to O. 

4.3. Using push and pop, how can you duplicate the effect of the instruction rnov 

ax,dx? 

4.4. Describe the difference between neg and not. 

4.5. What combination of instructions can rotate a 16-bit register enough times to 
restore completely the original value in that register? Which shift or rotate 
instructions will also preserve the value of the carry flag? 

4.6. Write a routine to unpack two 4-bit values from an 8-bit byte into two 8-bit 
bytes. For example, if the original value equals 5F hexadecimal, then the two 
results should equal 05 and OF. Assume that the original value is in register ah 

and that the result is to be stored in dh and dl. 

4.7. How might you use a shift instruction to test whether a certain bit, say number 
5, is set in register dh? 

4.8. Suppose that the label Target is farther away than the conditional jump j 1 can 
reach. How can you recode the following instruction to avoid an error from 
Turbo Assembler? 

j 1 Target ; Jump to Target if Less 

4.9. Without using neg or not, write instructions to form the one's and two's comple
ments of values in bx. 

4.10. Write your own nop instruction. No registers or flags should change by executing 
your custom nop. Can you find more than one way to do nothing? (Your answer 
can take more than a single byte of assembled code.) 

4.11. What do string repeat prefixes do? 

4.12. What instructions would you use to scan 65,536 bytes of memory? 



140 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 
~-~-~----~~ - ~- - ------------~ 

Jump instructions change program flow, altering which instruction is to execute next. There 
are twO kinds of jump instructions, conditional and unconditional. Conditional jump target 
addresses are limited to about 127 bytes away. The unconditional jmp instruction has no 
range limit. 

Exercises 
4.1. What are the minimum and maximum sizes of a memory segment for the 8086 

processor? 

4.2. List several ways to set register ax equal to O. 

4.3. Using push and pop, how can you duplicate the effect of the instruction moy 

ax,dx? 

4.4. Describe the difference between neg and not. 

4.5. What combination ofinsrructions can rotate a 16-bit register enough times to 

restore completely the original value in that register? Which shift or rotate 
instructions will also preserve the value of the carry flag? 

4.6. Write a routine to unpack twO 4-bit values from an 8-bit byte into two 8-bit 
bytes. For example, if the original value equals 5F hexadecimal, then the twO 
results should equal 05 and OF. Assume that the original value is in register ah 

and that the result is to be stored in dh and dl. 

4.7. How might you use a shift instruction to test whether a certain bit, say number 
5, is set in register dh? 

4.8. Suppose that the label Target is farther away than the conditional jump j1 can 
reach. How can you recode the following instruction to avoid an error from 
Turbo Assembler? 

j1 Target ; Jump to Target if Less 

4.9. Without using neg or not, write instructions to form the one's and two's comple
ments of values in bx. 

4.1 O. Write your own nop instruction. No registers or flags should change by executing 
your custom nop. Can you find more than one way to do nothing? (Your answer 
can take more than a single byte of assembled code.) 

4.11. What do string repeat prefixes do? 

4.12. What instructions would you use to scan 65,536 bytes of memory? 



Projects 
4.1. Write a subrourine co unpack any number of bits from a word, returning those 

bits in the lower portion of a register. In other words, the caller to this subrourine 
should be able to pass a value containing bits, say, in positions 4, 5, and 6. The 
subrourine should rerum those bits in positions 0, 1, and 2, setting all other bits 
to o. 

4.2. Write a subroutine to do the reverse of Project 4.1. That is, the routine should be 
able to pack any number of bits into a certain position in a word, without 
disturbing other bits already there. 

4.3. Create templates on disk for your future programs and procedures. Decide what 
information you will place in your subroutine headers. 

4.4. Write a subroutine to scan memory for a specific byte value, stopping if that byte 
is not found within a certain number of memory locations. Use string instruc
tions from Table 4.8. 

4.5. Write subroutines co copy blocks of memory from one location co another, 
correctly handling variables in the same or in different segments. Use string 
instructions in your answer. 

4.6. Write a routine co change all the characters in an ASCII string to uppercase or 
lowercase. Write your answer with and withour string instructions. 

141 





Simple Data 
Structures 

-Addressing Data in Memory, 144 -Memory-Addressing Modes, 145 -Expressions and Operators, 152 -Simple Variables, 152 -Initialized vs Unitialized Data, 155 -String Variables, 157 -Local Labels, 159 -An ASCIIZ String Package, 160 -Programming in Pieces, 170 -A String I/O Package, 173 -Linking Modules into a Program, 179 -Exploring the Strings Module, 182 -Summary, 193 -Exercises, 194 -Projects, 195 



144 

PART I.. PROGRAMMING WITH ASSEMBLY LANGUAGE 

Addressing Data in Memory 
Of all the subjects in 8086 assembly language programming, the many ways of addressing 
data in memory are probably some of the most difficult to learn. But you'll avoid a lot of 
head scratching if you remember that all data references take one of these three forms: 

• Immediate data references 

• Register data references 

• Memory data references 

Immediate data are values stored directly in the machine code of an instruction. For example, 
when you write: 

mov ax, 5 ; ax <- 5 

the assembler generates a machine-code variant of the mov instruction that loads the immedi
ate value 5 into ax. The 5 is stored directly in the mov instruction's assembled machine code. 
In most cases, immediate data is the only operand or is the second of two operands. (An 
exception is out, which allows immediate data as the first of two operands.) You can never 
change the value of immediate data when the program runs. 

NOTE 

You can, of course, write programs to change machine-code instructions stored in memory. 
Using this technique, you could locate the place where an immediate value is stored and 
change it before the instruction operates. Pulling this trick is generally considered to be bad 
form. Such self-modifying code is often difficult to debug and, worse, cannot be stored in 
ROM, where memory values are permanently etched in silicon. Also, because the 8086 
family processors preloads several instructions at once into a small amount of internal 
memory called the instruction cache, modifying code on-the-fly is unreliable at best. Resist 
the temptation to write self-modifying programs. There are few times (if any) when the results 
are worth the ri sks. 

Register data refers to data held in processor registers. You've already seen many examples of 
this kind of data reference. The machine code generated by the assembler for register data in
cludes appropriate values to cause the instruction to operate on the specified registers, as in: 

add ax, bx ; ax <- ax + bx 

Memory data is the third kind of data reference, of which there are several variations. To avoid 
confusion when learning these variants, remember that the goal is to help the processor cal
culate a 16-bit, unsigned value called the effictive address, or EA. The EA represents an offset 



SIMPLE DATA STRUCTURES 

starting from the base of a segment addressed by one of the four segment registers: cs, ds, 
es, and ss. As you recall from Chapter 4, "Programming in Assembly Language," a segment 
register and offset form a 32-bit logical address, which the 8086 further translates into a physi
cal 20-bit address, uniquely locating any byte in memory. 

You never have to be concerned about calculating an EA or forming the physical20-bit ad
dress-these are the processor's jobs. Your responsibility is to give the processor the data 
necessary to calculate the EA, locating your variables in memory. To do this, you can use 
one of seven memory modes, as described next. 

NOTE 

Chapter 16's Assembly language reference lists the memory-addressing modes available for 
each instruction.Consultthis reference when you are unsure whether an instruction recog
nizes.a specific mode. 

Memory-Addressing Modes 
Table 5.1 lists the seven memory-addressing modes available in 8086 programming. Except 
for string and 110 port addressing, which have special requirements, these addressing modes 
can be used in all instructions that allow referencing data in memory. For instance, although 
the mov instruction is used in the examples in Table 5.1, you can use similar references with 
other instructions such as add, inc, and xor. The following sections describe the first five 
addressing modes, leaving string and 1/0 port addressing for later. 

Table 5.1. 8086 Addressing Modes. 

Addressing Mode Example 

Direct mov ax, [count] 

Register-indirect mov ax, [bx] 

Base mov ax, [ record + bpI 

Indexed mov ax, [array + sil 

Base-indexed mov ax, [recordArray + bx + sij 

String lodsw 

1/0 Port in ax, dx 

145 



146 

"V\.'""""""",, WITH ASSEMBLY LANGUAGE 

Direct Addresses 
A direct address is the literal offset address of a variable in memory, relative to any segment base. 
For example, to refer to variables in the data segment, you can write instructions such as: 

inc [MyMoneyj ; Add 1 to value of [MyMoneyj 

The notation [MyMoney) is assembled to the offset address where the variable MyMoney is stored. 
All such direct address references are permanently fixed in the assembled code and can't be 
changed by a running program. (Self-modifYing programs can change a direct address refer
ence, but, for the reasons already described, this is a poor and unreliable technique.) 

NOTE 

Only the offset address of a direct memory reference is cut into stone. The segment in which 
the variable MyMoney is stored may begin at any paragraph boundary; therefore, there's no 
guarantee that MyMoney will be stored at a specific physical address. 

Overrides 
Direct address references are normally relative to the segment addressed by ds. To change 
this, you can specifY a segment override as in: 

mov ch, [es:OverByte] 

This instruction loads a byte at the label OverByte stored in the segment addressed byes. 
The override instruction es: is required to defeat the processor's normal use of the default 
segment base in ds. You can apply similar overrides to access data in other segments, too. 
Here are three more examples: 

mov dh, (cs:CodeByteJ 
mov dh, (ss:StackByteJ 
mov dh, [ds:DataByteJ 

dh <- byte in code segment 
dh <- byte in stack segment 
dh <- byte in data segment 111 

The first line loads into dh a byte located in the code segment. Because most variables will be 
in a data segment, referring to data stored in the code segment is only occasionally useful. 
The second line loads a byte located in the stack segment. While permissible, this is rarely 
done in practice. The third line unnecessarily specifies ds-direct data references normally 
refer to the segment addressed by ds. Here are a few additional hints that will help you to use 
overrides correctly: 



SIMPLE DATA STRUCTURES 

• Even though you specifY an override as part of the data reference, an override 
actually occupies a byte of machine code and is inserted just before the affected 
instruction. Overrides are instruction prefixes that change the behavior of the next 
instruction to be executed. 

• The effect of an override lasts for only one instruction. You must use an override in 
every reference to data in a segment other than the default segment for this instruction. 

• In Turbo Assembler's Ideal mode, the entire address reference including the segment 
override must be in brackets. Although MASM mode allows a more free-form style, 
Ideal mode's clearer syntax requirements are fully compatible with MASM mode. 

• It is your responsibility to ensure that variables are actually in the segments you 
specifY and that segment registers es and ds are initialized to address those segments. 
Stack ss and code segment cs registers do not ~equire initialization. 

Register-Indirect Addresses 
Instead of referring to variables in memory by name, you can use one of three registers as a 
pointer to data in memory: bx, si, and di. Because a program can modifY register values to 

address different memory locations, register-indirect addressing allows one instruction to op
erate on multiple variables. After loading an offset address into an appropriate register, you 
can refer to (he data stored in memory with instructions such as: 

mov ex, [WORD bxj 
dec [BYTE sij 

; Copy word at [bxj into ex 
; Decrement byte at Isil 

The WORD and BYTE operators are required when Turbo Assembler is unable to determine 
whether the register addresses a word or a byte in memory. In the first line here, data ad
dressed by bx is moved into the 16-bit register ex; therefore, the WORD operator is not needed 
because the assembler knows the size of the data reference from the context of the instruc
tion. SpecifYing the operator as in this sample does no harm, though. In the second line, the 
BYT E operator must be included because the assembler has no other way of knowing whether 
dec is to decrement a byte or a word. 

NOTE 

In instructions such as inc lSi), Turbo Assembler displays a warning but still assembles the 
program, assuming that si addresses a word in memory even if this is not what you intend. 
Always use the WORD and BYTE operators to remove all addressing ambiguities and to reduce 
the likelihood of introducing hard-to-find bugs. 

147 



148 

Register-indirect addressing defaults to the segment addressed by ds. & with direct address
ing, you can use overrides to change this default to any of the other three segments. A few 
examples make this dear: 

add [WORD es:bx], 3 
dec [BYTE ss:si] 
mov cx, [cs:dil 

Add 3 to word at es:bx 
Decrement the byte at ss:si 
Load a word from code segment 

& explained earlier, when using overrides this way, you must be sure that the data you are 
addressing actually exists in the segments you specifY. And, even though overrides to the stack 
segment as in the second sample are allowed, they are rarely of much practical use. 

NOTE 

String instructions use es as the default segment register for index di. Register-indirect 
addressing uses ds as the default segment for di. Don't confuse those two completely different 
addressing modes, even though they use the same index register. 

Base Addresses 
Base addressing employs the two registers bx and bp. References to bx are relative to the data 
segment addressed by ds. References to bp are relative to the stack segment ss and are nor
mally used to read and write values stored on the stack. You can use segment overrides as 
previously described to to data in any of the other segments. 

Base addressing adds a displacement value to the location addressed by bx or bp. This dis
placement is a signed 16- or 8-bit value representing an additional offset above or below the 
offset in the specified register. A typical use for base addressing is to locate fields in a data 
structure. For example: 

mov bx, OFFSET Person 
mov ax, [bx + 5) 

; Point to start of Person 
; Get data 5 bytes beyond 

After assigning to bx the offset address of a variable named Person (not shown), a second mov 

loads into ax a value stored 5 bytes from the start of Person. Similarly, you can use instruc
tions to reference variables on the stack, as in: 

inc [WORD bp + 2] 
dec (BYTE bp - 8] 

; Increment word on stack 
; Decrement byte on stack 

Remember that references to bp are relative to the stack segment ss. (Chapters 12, "Mixing 
&sembly Language with Pascal," and 13, "Mixing Assembly Language with C and CH," 
describe in more detail how to use bp and base addressing to access stacked variables.) The 
displacement value may also be negative as the second line shows. Because displacements are 
16-bit values, the effective range is -32,768 to 32,767 bytes away from the offset addressed 
by bx or bp. 



SIMPLE 

NOTE 

When the displacement is 0, base addressing is identical to register-indirect addressing for 
register bx. Knowing this, Turbo Assembler reduces references such as [bx + 0J to the more 
efficient [bX] (no displacement). The same is not true for references that use bp as in [bp + 0] 

for which [bpi is merely a synonym, not a different addressing mode. (Some references 
confuse this point and list bp as a register-indirect mode register, although this is technically 
incorrect.) 

Indexed Addresses 
Indexed addressing is identical to base addressing except that si and di hold the offset ad
dresses. Unless you specify a segment override, all indexed address references are relative to 
the data segment addressed by ds. Normally, indexed addressing is used to access simple arrays. 
For example, to increment the fifth byte of an array of 8-bit values, you can write: 

inc [BYTE si + 4J ; Add 1 to array element number 5 

Because si + o locates the first array element, a displacement of 4 and not 5 must be used to 
locate the fifth byte in the array. Also, as with base addressing, displacements are signed val
ues and, therefore, can be negative: 

mov dX, [WORD di - 8] ; Load word 8 bytes before di 

NOTE 

When the displacement is 0, base addressing is identical to register-indirect addressing for the 
two registers si anddi. Knowing this, Turbo Assembler reduces references such as lSi + 0] 

and [di + 0) to the more efficient register-indirect equivalents, lsi] and [di(. 

Base-Indexed Addresses 
Base-indexed addressing combines two registers and adds an optional displacement value to 
form an offset memory reference-thus coupling the features of the base- and indexed
addressing modes. The first register must be either bx or bp. The second register must be si 

or di. Offsets in bx are relative to the ds data segment; offsets in bp are relative to the ss stack 
segment. As with other addressing modes, you can use overrides to alter these defaults. A few 
examples help explain this valuable addressing technique: 

mov ax. [bx + si] 
mov ax, Ibx + di] 

Load data segment word into ax 

149 



150 

I _ PROGRAMMING WITH ASSEMBLY lANGUAGE 

mov ax, [bp + si) 
mov ax, (bp + di] 

; Load stack segment word into ax . . . 
Turbo Assembler allows you to reverse the order of the registers, for example, writing [si + bx) 

and [di + bp J. But these are not different addressing modes-just different forms of the same 
references. You can aso add an optional displacement value to any of the four previous variations: 

mov ax, [bx + si + 5] 
mov ax, [bx + di + 5] 
mov ax, [bp + si + 5J 
mov ax, [bp + di + 5] 

Load displaced data segment word into ax 

Load displaced stack segment word into ax 

In addition, you can add overrides to any of these eight basic base-indexed addressing vari
ants to refer to data in segments other than the defaults: 

mov ax, [es:bx + si + 8) 
mov ax, [cs:bp + diJ 

; Use es instead of ds default 
; use cs instead of ss default 

Base-indexed addressing is the 8086's most powerfUl memory reference technique. With this 
method, you can specify a starting offset in bx or bp (perhaps the address of an array), add to this 
an index value in si or di (possibly locating one element in the array), and then add a displace
ment value (maybe to locate a record field in this specific array element). By modifYing the base 
and index register values, programs can address complex data structures in memory. 

In MASM mode, base-indexed address references (and other addressing methods) can have a 
more free-form appearance such as 5[ bx + sil and 5{ bp I [di], leading many people to 
assume that these are unique and mysterious addressing forms. This is not so. There are only 
eight basic forms of base-indexed addressing, as listed earlier. You'll avoid much confusion 
(and lose nothing in the process) if you stick to the standard forms described here and 
required by Ideal mode. 

Using the ASSUME Directive 
An ASSUME directive tells Turbo Assembler to which segment in memory a segment register 
refers. The purpose of ASSUME is to allow the assembler to insert override instructions auto
matically when needed. Always remember that ASSUME is a command to the assembler and 
does not generate any code. 

When using simplified segment addressing-as in most of this book's examples-you'll rarely 
need to use ASSUME. And, by explicitly using segment overrides, you can eliminate the need for 

ASSUME altogether. Even so, it pays to understand how this directive works. Suppose you write: 

CODESEG 
jmp There Skip declaration of v1 

v1 db 5 Store a 5 in the code segment 
There: 

mov ah, [cs;v1J Load 5 into ah 



This code snippet illustrates one way to store data inside the code segment-an unusual but 
allowable practice. The jmp instruction skips over the declaration of a byte variable Y1. (When 
mixing data and code, you certainly don't want to accidentally execute your variables as though 
they were instructions.) The moy instruction uses a segment override (cs:) to load the value 
of y1 into ah. The override is required because direct data references normally default to the 
ds data segment. 

Because Turbo Assembler knows that cs refers to the code segment, it allows you to replace 
the moy instruction with the simpler instruction: 

moy ah, [v1] ; Load 5 into ah from code segment 

Even though an explicit override is not used, Turbo Assembler checks its list of variables, 
detects that y1 is stored in the code segment, and automatically inserts the required override. 
In other cases when Turbo Assembler doesn't know which segment registers refer to which 
memory segments, you must either use an explicit override or tell the assembler what's going 
on with an ASSUME directive. Here's another example: 

CODESEG 
jmp There 

vl db 5 
There: 

mov ax, @code 
moyes, ax 

ASSUME es:_TEXT 
moy ah, [v1] 

Skip declaration of vl 
Store a 5 in this Location 

Assign address of code segment 
to es register 

Load 5 into ah from extra segment 

At;ain, a 5 byte is stored directly in the code segment. In this example, segment register es is 
initialized to address the code segment, assigning the predefined symbol @coda to ax and then 
assigning this value to as. The ASSUME directive tells Turbo Assembler where as now points, 
using the small memory model's name for the code segment _TEXT. Finally, the moy loads the 
value of y1 into ah. Although this appears identical to the earlier example, because of the 
ASSUME directive, the actual instruction assembled is: 

mov ah, [es: v1] 

Because yl is stored in the code segment, however, both [as: y1] and [cs: y1] correctly locate 
the same variable. All that ASSUME does is allow the assembler to insert the override instruc
tions automatically. 

NOTE 

Segment names such as _TEXT are listed with the MODEL directive in your TurbO Assembler 
Reference Guide. Using simplified memory models as explained in Chapter 2, "First Steps", 
usually makes it unnecessary to refer to these names or to use ASSUME directives. 

151 



152 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Expressions and Operators 
Expressions in assembly language have one purpose: to make programs easy to understand 
and, therefore, easy to modify. For example, you might have several equates, associating 
optional values with symbols such as: 

RecSize EOU 10 
NumRecs EOU 25 

Elsewhere you can use the equated symbols in expressions, perhaps to store in memory a 
value equal to RecSize times NumRecs: 

BufSize dw RecSize • NumRecs 

When Turbo Assembler processes this directive, it multiplies RecSize by NumRecs and stores 
the resulting constant (250) in the word variable BufSize. It's important to understand that 
this calculation occurs during assembly-not when the program runs. All expressions evalu
ate to constants in the assembled code. In high-level languages, expressions such as (Columns 

• 16) are evaluated at runtime, possibly with a new value for a variable named Columns en
tered by an operator. In assembly language, expressions reduce to constant values when you 
assemble the program text, not when the program runs. The difference can be confusing at 
first, especially if you're more accustomed to high- than low-level programming. 

Table 5.2 lists Turbo Assembler's Ideal-mode expressions operators, which you can use to 

calculate constant values of just about any imaginable type. MASM-mode operators (listed 
in Turbo Assembler's Reference Guide) are similar. Don't confuse operators such as AND, OR, 

XOR, and NOT with the assembly language mnemonics of the same names. The assembly lan
guage mnemonics are instructions that operate at runtime. The operators are for use in ex
pressions, calculated at assembly time. In this and in other chapters, you'll meet many of 
these operators in action. 

Simple Variables 
Earlier program examples in this book created simple variables with db and dw directives. These 
directives belong ro a family of similar commands, all having the same general purpose: to 
define (meaning to reserve) space for values in memory. The directives differ only in how 
much space they can define and the types of initial values you can specify. Table 5.3 lists all 
seven of these useful directives ranked according to the minimum amount of space each re
serves. Also listed are typical examples, although the directives are not limited to the uses 
shown here. You can type any of these directives in uppercase or lowercase. DB and db have 
the same meaning. 



Wide Open Spaces 
To create large amounts of space, you can string together several db, dw, or other define-memory 
directives, or you can use the DUP or '~q~or, which is usually more convenient. DUP has the 
following form: 

[Label] directive count DUP (expression [,expression) ... ) 

Table 5.2. Expression Operators. 
Operator 

() 

+ 

? 

[ I 

AND 

BYTE 

eODEPTR 

DATAPTR 

DUP 

DWORD 

EO 

FAR 

FWORD 

GE 

6T 

HIGH 

Description 

Parentheses 

Multiply 

Divide 

Add/unary plus 

Subtractl unary 
mmus 

Structure member 

Segment override 

Uninitialized data 

Memory reference 

Logical AND 

Force byte size 

Procedure address 
SlZe 

Model-dependent 
SlZe 

Duplicate variable 

Force doubleword 

Equal 

Far code pointer 

Farword size 

Greater than or equal 

Greater than 

Return high part 

Operator 

LT 

MASK 

MOD 

NE 

NEAR 

NOT 

OFFSET 

OR 

PRoe 

PTR 

PWORD 

OWORD 

SEG 

SHL 

SHORT 

SHR 

SIZE 

SMALL 

SYMTYPE 

TBYTE 

THIS 

Description 

Less than 

Record-field bit mask 

Division remainder 

Not equal 

Near code pointer 

One's complement 

Offset address 

Logical OR 

Near/far code pointer 

Expression size 

32-bit far pointer 

Quadword size 

Segment address 

Shift left 

Short code pointer 

Shift right 

Size of item 

16-bit offiet 

Symbol type 

Ten-byte size 

Refer to next item 

continues 

153 



154 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Table 5.2. continued 

Operator Description Operator Description 

LARGE Force 32-bit offset TYPE Type of item 

LE Less than or equal UNKNOWN Remove type info 

LENGTH N umber of elements WIDTH Bit field width 

LOW Low part WORD Word size 

XOR Exclusive OR 

Table 5.3. Define-Memory Directives. 

Minimum 
Directive Name Use 

db Define byte Bytes, strings 

dw Define word 2 Integers 

dd Define doubleword 4 Long integers 

dp Define pointer 6 32-bit pointer 

df Define far pointer 6 48-bit pointer 

dq Define quadword 8 Real numbers 

dt Define ten bytes 10 BCD numbers 

To create a m ultibyte space, start with an optional label and a define-memory directive from 
Table 5.3, Follow this with a count equal to the number of times you want to duplicate an 
expression, which must be in parentheses. The DUP keyword goes between the count and the 
expression. For example, each of these directives reserves a 10-byte area in memory, setting 
all 10 bytes [Q 0: 

Tenl dt 0 
Ten2 db 10 DUP (0) 

; Ten zero bytes 
; Same as above 

Separating multiple expressions or constant values with commas duplicates each value in turn, 
increasing the total size of the space reserved by the count times the number of items. De
spite a COUnt of 10, therefore, the following directive creates a 20-byte variable-ten repeti
tions of the two bytes 1 and 2. 

Twentyl db 10 DUP (1,2) 20 bytes--1, 2, 1, 2, ... ,2 



SIMPLE DATA STRUCTURES 

You can also nest DUP expressions to create large buffers initialized to a constant value. For 
example, each of the following directives reserves a 20-byte area with all bytes equal to 255: 

Twenty2 db 10DUP (2 DUP (255)) 
Twenty3 db 20 DUP (255) 

j 20 bytes of 255 
j Same as above 

These same examples work with any of the define-memory directives to reserve different 
amounts of space. Most often, though, you'll use db and dw for integer, string, and byte vari
ables, putting the other directives to work only for the special purposes listed in Table 5.3. 
But you are free to use these directives as you please. To create a 20-byte variable of all zeros, 
for example, you could use db as before or dt like this: 

Twenty4 dt 2 DUP (0) 

Of all the define-memory directives, only db has the special ability to allocate space for char
acter strings, storing one ASCII character per byte in memory. Here's a sample, ending in a 
zero byte, a typical construction called an ASCIIZ string. 

Astring db 'String things', 0 

Combining db's string ability with the DUP operator is a useful trick for filling a buffer with 
text that's easy to locate in Turbo Debugger's dump window. You might code a 1,024-byte 
buffer as: 

Buffer db 128 DUP ('=Buffer=') j 1024 bytes 

DUP repeats the 8-byte string in parentheses 128 times, thus reserving a total of 1 ,024 bytes. 
In Turbo Debugger, use the View·Dump command, zoom to full screen with F5, press Alt
FlO, and select Goto to view the program's data segment at DS:OOOO. Then use the PgDn 
key to hunt for this or a similar buffer in memory. There are other ways to find variables 
with Turbo Debugger, but this age-old debugging method is still a useful trick. 

Initialized Versus Unitialized Data 
When you know your program is going to assign new values to variables and, therefore, don't 
care what the initial values are, you can define uninitialized variables-those that have no 
specific values when the program runs. To do this, use a question mark (1) in place of the 
define-memory constant: 

stuff db 
moreStuff dw 
anyStuff dt 

? 
? 
? 

i Byte of unknown value 
; Word of unknown value 
; Ten bytes of unknown values 

To create larger uninitialized spaces, use a question mark inside a DUP expression's parenthe
ses, a useful technique for creating big buffers such as: 

BigBuf dp 8000 DUP (?) j 8000-byte buffer 

155 



156 

PART I.. PROGRAMMING WITH ASSEMBLY LANGUAGE 

The 8,000-byte buffer created by this command contains bytes of no specific values when 
the program runs. Whatever was in the memory occupied by the buffer when DOS loads 
your program is what the buffer will contain. 

When assembling and linking programs with the commands tasm /zi <filename> and tlink 

Iv <filename>, Turbo Debugger fills uninitialized data with zero bytes. Do not rely on this in 
the final program. When assembling and linking without these switches, uninitialized 
variables have indeterminate values. 

The main reason for declaring un initialized variables is to reduce the size of the assembled 
code file. Instead of storing useless bytes on disk, uninitialized space is allocated at run time. 
For this to work, you must follow one of two rules: 

• Place all uninitialized variables last in the data segment 

• Or preface uninitialized variables with UDATASEG 

Usually, the easiest plan is to place uninitialized variables last in the data segment, after vari
ables with initial values. When this isn't practical, use the UDATASEG directive to tell Turbo 
Assembler to relocate an uninitialized variable to the end of the last initialized variable in the 
data segment even though the unintialized variable appears elsewhere in the program text. 
For example, you can write: 

DATASEG 
var1 db 1 
var2 db 2 
UDATASEG 
array db 1000 DUP (7) 
DATASEG 
var3 db 3 

The UDATASEG directive places array after var3 in memory, just as though you had declared 
the large un initialized variable last instead of between the two initialized variables var2 and 
var3. Without UDATASEG, the large array would be "trapped" between var2 and var3, unnec
essarily increasing the size of your code file by 1,000 bytes. 

NOTE . 

Many public domain assembly language source-code listings contain uninitialized variables 
between other initialized variables. When you find such a program, try relocating the 
uninitialized variables to the end of the data segment. Chances are this will reduce the size of 
the assembled code file, sometimes dramatically. 



Be careful when using UDATASEG not to assume that one variable physically foHows another in 
memory, as variables normally do. Some programs expect variables to be ordered in memory 
the way they are declared in the program text and, in these cases, relocating the variables is a 
big mistake. Avoid this problem in your own programs-and add clarity to your source code
by organizing your data segment like this: 

DATASEG 
; initialized variables 
UDATASEG 
j uninitialized variables 

String Variables 
While db can create character-string variables, assembly language has no built-in character
string commands to read and write strings, to delete characters, or to compare one string 
with another. Listing 5.1 adds these and other routines to assembly language programs. But 
first, let's examine a few typical string formats. 

Probably the most common string format is the ASCII$ string-fl series of ASCII characters 
ending in a dollar sign. Use db this way to create an ASCII$ string: 

myString db 'Welcome to my program', '$' 

You don't have to separate the dollar sign from the main string-you could just add $ be
tween the "m" and the closing single quote. Separating the characters as shown here empha
sizes that the dollar sign is a string terminator-not just another character. To display this 
string, use DOS function 09: 

mov dx, OFFSET myString 
mov ah, 09 
int 21h 

Address string with ds:dx 
Specify DOS function 09 
Call DOS to display string 

The first line assigns the offset address of myString in the program's data segment addressed 
by ds. The 09 assigned to ah is the value of the DOS "Output character string" function, 
which int 21 h activates. The int (software interrupt) instruction operates similarly to a sub~ 
routine call and, after DOS finishes executing the function specified in ah, returns control 
to your program starting with the instruction that follows int 21 h. Chapter 10, "Interrupt 
Handling," discusses this and other kinds of interrupts in more detail. 

NOTE 

Consult the Bibliography for references that list other DOS functions that you can call in 
assembly language programs. 

157 



158 

The major problem with ASCII$ strings is obvious-there's no easy way to display a dollar 
sign! Also, it's difficult to read characters from the keyboard or from disk files in to such strings. 
For these reasons, I rarely use ASCII$ strings. Instead, I prefer ASCIIZ strings ending in a 
zero byte-the same format used by most high-level language C and C++ compilers. With 
ASCIIZ strings, you might create an error message by writing: 

diskErr db "Disk read error!', 0 

ASCIIZ strings can be as long as you need-from a single character up to thousands. The 
first byte at the string label is either an ASCII character or a zero byte, also called an ASCII 
null character. If the first is 0, then the string is empty. This fact leads to an easy way to create 
zero-length string variables with the DUP operator: 

stringVar db 81 DUP (0) ; 80-character string + null 

When creating strings this way, always set the DUP count to one more than the maximum 
number of characters you plan to store in the string, leaving room for the null, which must 
always end the string. The only disadvantage of ASCIIZ strings is that DOS has no standard 
routines for reading and writing string variables in this format. The string packages later in 
this chapter fix this deficiency with routines that you can use to read and write ASCIIZ strings. 

Quoting Quotes 
For all strings declared with db, you can surround characters with either apostrophes (') or 
double quotes (") as long as you begin and end with the same symbols. In the ASCII charac
ter set, an apostrophe and a dosing single quote are the same characters. On your keyboard 
and in this book, the symbols are printed with straight up and down lines. But on your dis
play, depending on your operating system and text-editor character set, the single quote apos
trophe symbol may hook down to the left. 

NOTE 

Don't surround strings with opening single quotes ('), usually created by pressing the key in 
the upper left corner of most PC keyboards. (On my laptop, however, this key is to the right of 
the space baLl Opening quotes are not allowed as string delimiters. 

To include a quote mark inside a string, you have several options. The easiest method is to 
use one type of quote mark around the character string containing the other type: 

Quote db 'When "quoting" speech, you can surround', 0 
Unquote db "the text with 'quote marks' like this.", 0 



The double quotes in the first string are inserted as characters. The single quotes in the second 
string are also inserted as characters. Another method is to repeat the same quote used as the 
string delimiter. This is useful for creating strings that contain both single and double quotes: 

CrazyQuotes db 'This' 'string" contains four 'quote' marks', 0 

The repeated single quotes around the word string are inserted as single quote mark charac
ters even though the entire string is delimited by these same characters. You can do the same 
with double quotes, too. 

Local Labels 
Up until now, program examples used code segment labels like Start: and Repeat:. Such 
labels are global to the entire program that declares them. In other words, if you label an 
instruction Here: at the beginning of the program, that label is available to call, jmp, and 
other instructions anywhere else throughout the code. One problem with this is that you 
constantly have to think up new names to avoid conflicts with labels you've already used. 
For short hops, this is a major inconvenience, as in this shorr sample: 

cmp ax, 9 
je SkipIt 
add ex, 10 

SkipIt : 

Does ax 9? 
Skip and below if ax ~ 9 
Else add 10 to ex 

Short jumps such as the je to label SkipIt: are common in assembly language programming. 
Most probably, no other instruction will need to jump to this same label; therefore Skiplt: 

isn't needed beyond this one place. A large program might make hundreds or thousands of 
similar hops, requiring you to invent new names for each one! To reduce this burden, Turbo 
Assembler lets you create local labels, which exists only in the sections of code that need them. 

A local label is identical to any other code label but begins with two at-signs, 111111. Examples of 
local labels include such names as 11111110:, I1II1IHere:, I1II1ITempo:, and l1I@x :. The life of a local la
bel extends only forward and back to the next nonlocal label. Because this includes labels 
defined in PROC directives, jf you surround your procedures with PROC and ENDP, local labels 
in subroutines are visible only inside the routine's code. You can then reuse the same local 
labels elsewhere without conflict. An example helps make this clear: 

jmp There ; Jump to global label 
@@10: 

inc ax 
cmp ax, 10 
j ne @.@10 Jump to local label above 

There: 
emp ax, 20 
je @11110 Jump to local label below 
xor ex, ex 

@.@10: 

159 



160 

I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Don't try to run this example-it's just for illustration. The first imp jumps to the global 
label There: -you can jump to global labels from anywhere in a program. The next j ne jumps 
to local label @@10:. But, which one? There are two. The answer is, the first €I€110:, which 
extends only down to the global label There:. Consequently, the i ne can "see" only the first 
@@10: • For the same reason, the later j e instruction jumps down to the second €I@10: because 
the global There: above blocks the view of the first local label. Some advantages of local la
bels are: 

• Local labels save memory by letting Turbo Assembler reuse RAM for other local 
labels. Global labels are permanently stored in memory during assembly, even if the 
labels are used only once. Local labels are thrown away every time a new non local 
label is encountered. 

• Local labels improve program clarity. For example, a quick scan of a program easily 
picks out the global and local labels. 

• Local labels help reduce bugs by making it more difficult to write long-distance 
hops from one place in a program to another. If you surround your procedures with 
PRoe and ENDP directives, you won't be tempted to jump to a temporary label in the 
midsection of a subroutine-a generally recognized source of bugs. 

Like global labels, local labels must end with colons as in tl@ABC:. When an instruction refers 
to a local label, the label must not have a colon, as in imp €l(M8C. 

An ASCIIZ String Package 
Chapter 4 introduced the 8086 string instructions. Listing 5.1 (STRING .ASM) is a pack
age of 12 ASCIIZ string routines, many of which put these string instructions to good use. 
Lines 18-29 list the names and give brief descriptions of the routines in the package, which 
is organized a little differently from listings you've seen up to now. STRINGS.ASM is a Li
brary moduLe that you must assemble separately and then link with another program. Unlike 
previous program examples, the STRINGS module does not run on its own. Instead, as later 
examples demonstrate, STRINGS requires a host program to use the subroutines in the 
module. To assemble STRINGS, use the command: 

tasm strings 

Or, if you plan to use Turbo Debugger to examine programs that use the string package, use 
the command: 

tasm Izi strings 



Be aware that using the Izi option adds debugging information to the assembled code and, 
for this reason can make the finished code file swell-often enormously. Use the former 
command (without the I zi option) to reduce code-file size. 

Whichever of the two commands you use, the result is a file named STRINGS.OBJ, con
taining the raw assembled code, ready to be linked into a host program. After the 
STRINGS.ASM listing are suggestions that describe how to do this. But, for the purposes of 
running other programs in this book, many of which require the STRINGS package, you 
need to store the STRINGS.OBJ code in a library file. Enter the following command, ignor
ing a probable warning that "STRINGS [was] not found in [the] library:" 

tlib IE mta -+strings 

NOTE 

If you don't have a hard disk drive, you might want to store MTA.lIB on your Turbo Assem
bler disk. If this disk is in drive A:, use the name a :mta instead of mta here and from now on. 
You can then assemble other programs and modules that require the code in MT A.LlB 
without worrying whether the necessary .oB) files are available. 

The result of the tUb command is a file named MTA.LIB (for "Mastering Turbo Assembler 
Library") containing the STRINGS package. The IE option stores an extended dictionary in 
the library file, which helps to speed linking by providing TLINK with additional informa
tion about the library's symbols. The -+strings command tells TLIB to replace any previ
ous version of STRINGS with the new .OBJ code file. Later on, you'll add new object-code 
files to MT A.LIB, which will greatly redue the complexity of assembling and linking pro
grams that use routines in STRINGS and in other separately assembled modules. If you make 
any changes to the STRINGS.ASM listing, repeat the tasm and tlib commands to replace 
the old object code in the MT A.LIB file with the updated programming. 

listing 5.1. STRINGS.ASM. 
1: %TITLE 'String Procedures--Copyright 1989,1995 by Tom Swan" 
2: 
3: IDEAL 
4: 
5: MODEL small 
6: 
7: CODESEG 
8: 

9: PUBLIC MoveLeft, MoveAight, StrNull, StrLength 
10: PUBLIC StrUpper, StrCompare, StrDelete, StrInsert 
11: PUBLIC StrConcat, StrCopy, StrPos, StrAemove 
12: 

continues 

161 



162 

PART I .., PROGRAMMI!'-IG WITH ASSEMBLY LANGUAGE 

Listing 5.1. continued 
13 : 
14: 
15: 
16: 
17: 
18 : 
19: 
20: 
21 : 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 

Assemble with the command TASM STRINGS to create STRINGS.OBJ. To use 
the procedures, add EXTRN <procedure>:PROC statements where 
<procedure> is one of the following identifiers: 

MoveLeft 
MoveRight 
StrNull 
StrLength 
StrUpper 
StrCompare 
St rDelete 
Strlnsert 
StrConcat 
StrCopy 
StrPos 
StrRemove 

memory move with increasing indexes 
memory move with decreasing indexes 
erase all chars in string 
return number of chars in string 
convert chars in string to uppercase 
alphabetically compare two strings 
delete chars from string 
insert chars into string 
attach one string to another 
copy one string to another 
find position of substring in a string 
remove substring from a string 

31: After assembling your program, link with STRINGS.OBJ. For example, 
32: if your program is named MYPROG, first assemble MYPROG to MYPROG.OBJ 
33: and link with the command TLINK MYPROG+STRINGS to create MYPROG.EXE. 
34: 
35: STRING VARIABLES: 
36: A string is a Simple array of characters with one character per 
37: eight-bit byte. A null character (ASCII 0) must follow the last 
38: character in the string. An empty string contains a single nUll. 
39: Declare string variables this way: 
40: 
41 : 
42: 

STRING DB 

43: STRING CONSTANTS: 

81 DUP (0) 80-character string + null 

44: Always allow one extra byte for the null terminator. Character 
45: constants (which may be used as variables) must be properly 
46: terminated. For example: 
47: 
48: 
49: 

C1 db 

SEGMENT REGISTERS: 

'This is a test string.', 0 

50: 
51 : 
52: 
53: 
54: 

Routines in this package assume that ES and OS address the 
same segment. Set ES=DS before calling any of these routines. 

55: ASCNull 
56: 

EQU o ; ASCII null character 



SIMPLE DATA 

57: %NEWPAGE 
58: j---------------------------------------------------------------
59: j Moveleft Move byte-block left (down) in memory 
60: ---------------------------------------------------------------
61: Input: 
62: si address of source string (Sl) 
63: di address of destination string (s2) 
64: bx index sl (il) 
65: dx index 52 (i2) 
66: cx number of bytes to move (count) 
67: Output: 
68: count bytes from Sl[il) moved to the location 
69: starting at s2[i2] 
70: Registers: 
71: none 
72: j---------------------------------------------------------------
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81 : 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 

PROC 

@@99: 

ENOP 
%NEWPAGE 

Moveleft 
jcxz 
push 
puSh 
push 

add 
add 
cld 
rep 

pop 
pop 
pop 

ret 
Moveleft 

@@99 
cx 
si 
di 

si, bx 
di, dx 

movsb 

di 
si 
ex 

Exit if count = 0 
Save modified registers 

Index into source string 
Index into destination string 
Auto-increment si and di 
Move while cx <> 0 

Restore registers 

Return to caller 

91: ---------------------------------------------------------------
92: ; MoveRight Move byte-block right (Up) in memory 
93: ---------------------------------------------------------------
94: Input: 
95: (same as Moveleft) 
96: Output: 
97: (same as Moveleft) 
98: Registers: 
99: none 

100: 
101 : 
102: 
103: 
104 : 
105: 
106: 
107: 
108: 
109: 
110: 
111 : 
112 : 

PROC MoveRight 
jCxz @@99 
push ex 
push di 
push si 

add si, 
add di, 
add si, 
dec si 
add di, 
dec di 

bx 
dx 
cx 

cx 

Exit if count = 0 
Save modified registers 

Index into source string 
Index into destination string 
Adjust to last source byte 

Adjust to last destination byte 

continues 

163 



164 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

listing 5.1. continued 
113: 
114: 
115 : 
116 : 
117 : 
118 : 
119: @@99: 

std 
rep 

pop 
pop 
pop 

Auto-decrement si and di 
movsb Move while cx <> 0 

si Restore registers 
di 
ex 

120: ret Return to caller 
121: ENOP MoveRight 
122: %NEWPAGE 
123: ---------------------------------------------------------------
124: 
125: 
126: 
127: 
128: 
129: 
130: 
131 : 
132: 

; StrNull Erase all characters in a string 

Input: 
di : address of string (s) 

Output: 
s[0J <- null character (ASCII 0) 

Registers: 
none 

StrNull 133: PROC 
134: mov [byte ptr dil, ASCNul1 Insert null at s[0] 

Return to caller 135: ret 
136: ENOP StrNull 
137: %NEWPAGE 
138: ---------------------------------------------------------------
139: ; StrLength Count non-null characters in a string 
140: 
141: Input: 
142: di address of string (s) 
143: Output: 
144: ex number of non-nUll characters in s 
145: Registers: 
146: cx 
147: 

PROC StrLength 
puSh ax 
push di 

xor aI, al 
mov cx, 0ffffh 
cld 

148: 
149: 
150: 
151 : 
152: 
153: 
154: 
155: 
156: 
157: 
158: 

repnz scasb 
not cx 
dec ex 

159: pop di 
160: pop ax 
161: ret 
162: ENDP StrLength 
163: %NEWPAGE 

; Save modified registers 

al <- search char (null) 
ex <- maximum search depth 
Auto-increment di 
Scan for al while [di]<>null & cx<>0 
Ones complement of ex 

minus 1 equals string length 

Restore registers 

Return to caller 



164: 
165: 
166: 
167: 
168: 
169: 
170: 
171 : 
172: 
173: 
174: 
175: 
176: 
177: 
178: 
179: 
180: 
181 : 
182 : 
183: 
184: 
185: 
186: 
187: 
188: 
189: 
190: 
191 : 
192: 
193: 
194: 
195: 
196: 
197: 
198: 
199: 
200: 

; StrUpper Convert chars in string to uppercase 

Input: 
di address of string to convert (s) 

Output: 
lowercase chars in string converted to uppercase 

Registers: 
none 

PROC StrUpper 
puSh ax ; Save modified registers 
push cx 
puSh di 
push si 
call StrLength Set cx = length of string 
jcxz @@99 Exit if length 0 
cld Auto-increment 5i, di 
mov si, di Set si di 

@@10: 
lodsb al <- s [si] ; si <- si + 1 
cmp aI, 'a' Is al >= 'a'? 
jb @@20 No, jump to continue scan 
cmp aI, 'z' Is al <= 'z'? 
ja @@20 No, jump to continue scan 
sub aI, (a!-'A~ Convert lowercase to uppercase 

@@20: 
stosb s[di] <- ali di <- di + 1 
loop @@10 cx <- cx - 1 . , loop if cx <> 0 

@@99: 
pop si Restore registers 
pop di 
pop cx 
pop ax 
ret Return to caller 

ENOP StrUpper 
%NEWPAGE 

201: ,---------------------------------------------------------------
202: ; StrCompare Compare two strings 
203: 
204: Input: 
205: si address of string 1 (sl) 
206: di address of string 2 (s2) 
207: Output: 
208: flags set for conditional jump using jb, jbe, 
209 : j e, j a ,or j ae . 
210: Registers: 
211: none 
212: ---------------------------------------------------------------
213: PROC 
214: 
215: 
216: 
217: 
218: @@10: 
219: 
220: 

StrCompare 
puSh ax 
push di 
push 5i 
cld 

lodsb 
scasb 

j Save modified registers 

Auto-increment si 

al <- [si], si <- si + 1 
Compare al and [diJ; di <- di + 1 

conti""" 165 



166 

_ PROGRAMMING WITH ASSEMBLY LANGUAGE 
-' --~~--~~-~. 

Listing 5.1. continued 
221: 
222: 
223: 
224: 
225: 
226: 
227: 
228: 
229: 
230: 
231: 
232: 
233: 
234: 
235: 
236: 
237: 
238: 
239: 
240: 
241 : 
242: 
243: 
244: 
245: 
246: 
247: 
248: 
249: 
250: 
251 : 

252: 
253: 
254: 
255: 
256: 
257: 
258: 
259: 
260: 
261 : 
262: 
263: 
264: 
265: 
266: 
267: 
268: 
269: 
270: 
271 : 
272: 
273: 
274: 

@@20: 

jne 
or 
jne 

pop 
pop 
pop 
ret 

@@20 
aI, al 
@@10 

s1 
di 
ax 

Exit if non-equal chars found 
Is al=0? (i.e. at end of sl) 
If no jump, else exit 

Restore registers 

Return flags to caller 
ENDP StrCompare 
%NEWPAGE 

; StrDelete 

Input: 
di 
dx 
cx 

Output: 

Delete characters anywhere in a string 

address of string (s) 
index (i) of first char to delete 
number of chars to delete (n) 

n Characters deleted from string 
Note: prevents deleting past end 

at s[i) 
of string 

Registers: 
none 

PROC StrDelete 
push bx 
push cx 
push di 
push si 

bx Source Index 

; Save modified registers 

ex Count I Len I CharsTOMove 
dx Index 

mov bx, dx 
add bx, cx 
call StrLength 
cmp ex, bx 
ja @@10 
add di, dx 
mov [byte ptr diJ, 
jmp short @@99 

@@10: 
mov si, di 
sub cx, bx 
inc cx 
call MoveLeft 

@@99: 
pop si 
pop di 
pop cx 
pop bx 
ret 

ENDP StrDelete 
%NEWPAGE 

ASSign string index to bx 
Source index <- index + count 
cx <- length(s) 
Is length > index? 
If yes, jump to delete chars 
else, calculate index to string end 

ASCNull and insert null 
Jump to exit 

Make source destination 
CharsToMove <- Len - Source Index 
Plus one for null at end of string 
Move chars over deleted portion 

Restore registers 

Return to caller 



275: 
276: ; StrInsert Insert a string into another string 
277: 
278: 
279: 
280: 
281 : 
282: 
283: 
284: 
285: 
286: 
287: 
288: 
289: 
290: 
291: 
292: 
293: 
294: 
295: 
296: 
297: 
298: 
299: 
300: 
301: 
302: 
303: 
304: 
305: 
306: 
307: 
308: 
309: 
310: 
311 : 
312: 
313: 
314: 
315: 
316: 
317: 
318: 
319: 
320: 
321: 
322: 
323: 
324: 
325: 
326: 

Input: 
si 
di 
dx 
NOTE: 

address of string 1 (sl) 
address of string 2 (s2) 
insertion index for s2 (i) 
s2 must be large enough to expand by length(sl)! 

Output: 
chars from string sl inserted at s2[iJ 
sl not changed 

Registers: 
none 

PROC StrInsert 
push ax 
push bx 
push ex 

ax LenInsertion 
ex CharsToMove 

xehg si, di 
call StrLength 
xehg si, di 
mov ax, ex 

call StrLength 
sub ex, dx 
inc ex 

bx sl index 

push dx 
push si 
mov si, di 
mov bx, dx 
add dx, ax 
call MoveRight 
pop si 
pop dx 

xor bx, bx 
mov ex, ax 
call MoveLeft 

pop ex 
pop bx 
pop ax 
ret 

ENDP Strlnsert 
"NEWPAGE 

; Save modified registers 

Exchange si and di 
and find length of sl 

Restore si and di 
Save length(sl) in ax 

Find length of s2 
ex <- length(s2) i + 1· 
cx = (CharsToMove) 

Save index (dx) and si 

Make si and di address 52 
Set sl index to dx (i) 
Set 52 index to i+Lenlnsertion 
Open a hole for the insertion 
Restore index (dx) and si 

Set sl (source) index to zero 
Set ex to Lenlnsertion 
Insert sl into hole in 52 

Restore registers 

Return to caller 

327: ---------------------------------------------------------------
328: ; StrConcat Concatenate (join) two strings 
329: ---------------------------------------------------------------

continues 

167 



168 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

listing 5.1. continued 
330: 
331: 
332: 
333: 
334: 
335: 
336: 
337: 
338: 
339: 
340: 
341 : 
342: 
343: 
344: 
345: 
346: 
347: 
348: 
349: 
350: 
351 : 
352: 
353: 
354: 
355: 
356: 
357: 
358: 
359: 
360: 
361: 
362: 
363: 
364: 
365: 
366: 
367: 
368: 
369: 
370: 
371 : 
372: 
373: 
374: 
375: 
376: 
377: 
378: 
379: 
380: 
381: 
382: 
383: 
384: 

Input: 
si = address of source string (Sl) 
di = address of destination string (S2) 
Note: s2 must be large enough to expand by length(sl)! 

Output: 
chars from sl added to end of s2 

Registers: 
none 

PROC StrConcat 
push bx ; Save modified registers 
push cx 
push dx 

dx s2 destination 

call Strlength Find length of destination (s2) 
mov dx, cx Set dx to index end of string 
xchg si, di Exchange si and di 
call Strlength Find find length of source (s1) 
inc cx Plus one includes null terminator 
xchg si, di Restore si and di 
xor bx, bx Source index = 0 
call Moveleft Copy source string to destination 

pop dx Restore registers 
pop cx 
pop bx 
ret Return to caller 

ENDP StrConcat 
.. NEWPAGE 

; StrCopy Copy one string to another 

Input: 
si address of source string (Sl) 
di address of destination string (S2) 

Output: 
Chars in sl copied to s2 
Note: s2 must be at least length(sl)+l bytes long 

Registers: 
none 

PROC StrCopy 
push bx ; Save modified registers 
push cx 
push dx 

xchg si, di Swap si and di 
call Strlength Find length of source string (s1) 
inc cx Plus one includes null terminator 
xchg si, di Restore si and di 
xor bx, bx Source string index 0 
xor dx, dx Destination string index 0 
call MoveLeft Copy source to destination 



SIMPLE DATA STRUCTURES 

385: 
386: pop dx Restore registers 
387: pop cx 
388: pop bx 
389: ret Return to caller 
390: ENDP StrCopy 
391: %NEWPAGE 
392: 
393: ; StrPos Search for position of a substring in a string 
394: 
395: 
396: 
397: 
398: 
399: 
400: 
401 : 
402: 
403: 
404: 

Input: 
si address of substring to find 
di address of target string to scan 

Output: 
if zf = 1 then dx = index of substring 
if zf = 0 then substring was not found 
Note: dx is meaningless if zf = 0 

Registers: . 
dx 

405: PROC 
406: 

StrPos 
push ax ; Save modified registers 

407: push bx 
408: push cx 
409: push di 
410: 
411: 
412: 
413: 
414: 
415: 
416: 
417: 

Find length of target string 
Save length(s2) in ax 
Swap si and di 
Find length of substring 
Save length(s1) in bx 
Restore si and di 
ax last possible index 

418: 
419: 

call 
mov 
xchg 
call 
mov 
xchg 
sub 
jb 
mov 

StrLength 
ax, cx 
si, di 
StrLength 
bx, cx 
si, di 
ax, bx 
@@20 
dx, 0ffffh 

Exit if len target < len substring 
Initialize dx to -1 

420: @@10: 
421: 
422: 
423: 
424: 
425: 
426: 
427: 
428: 
429: 
430: 
431 : 
432: 
433: 
434: 
435: 
436: 
437: 
438: 
439: 
440: 

@@20: 

ENDP 
.. NEWPAGE 

inc 
mov 
mov 
call 
mov 
je 
inc 
cmp 
jne 

xor 
inc 

pop 
pop 
pop 
pop 
ret 
StrPos 

dx For i o TO last possible index 
Save char at s[bxl in cl 
Replace char with null 
Compare si to altered di 

cl, [byte bx + dil 
[byte bx + dil, ASCNul1 
StrCompare 
[byte bx + 
@@20 
di 
dx, ax 
@@10 

ex, cx 
cx 

di 
ex 
bx 
ax 

dil, cl , Restore replaced char 
Jump if match found, dx=index, zf=1 
Else advance target string index 
When equal, all pOSitions checked 
Continue search unless not found 

Substring not found. Reset zf = 0 
to indicate no match 

Restore registers 

Return to caller 

continues 

169 



170 

PROGRAMMING WITH ASSEMBLY LANGuAGE 

Listing 5.1. continued 

441: ---------------------------------------------------------------
442: ; StrRemove Remove substring from a string 
443: 
444: 
445: 
446: 
447: 
448: 
449: 
450: 
451: 
452: 
453: 

Input: 
si = address of substring to delete 
di address of string to delete substring from 

Output: 
if zf = 1 then substring removed 
if zf 0 then substring was not found 
Note: string at si is not changed 
Note: if zf 0 then string at di is not changed 

Registers: 
none 

454: j---------------------------------------------------------------
455: PROC StrRemove 
456: push cx Save modified registers 
457: push dx 
458: 
459: 
460: 
461 : 
462: 
463: 
464: 
465: 
466: 
467: 
468: 
469: 
470: 
471: 
472: 
473: 

@@99: 

ENDP 

call StrPos 
jne @@99 
pushf 
xchg si, di 
call Strlength 
xchg si, di 
call StrDelete 
popf 

pop dx 
pop cx 
ret 
StrRemove 

END 

Programming in Pieces 

Find substring, setting dx=index 
Exit if substring not found 
Save zf flag 
Swap si and di 
Find length of substring 
Restore si and di 
Delete cx chars at dildxl 
Restore zf flag 

Restore registers 

Return to caller 

End of STRINGS.ASM module 

Before jumping into a description of the routines in the STRINGS module, you should know 
some of the ways that you can combine STRINGS with programs and with Other object
code modules. Modules like STRINGS can declare subroutines, variables, and constants to 
be shared with programs and other modules. An object-code module is a self-contained pack
age, assembled apart from other code, and then linked to a host program, creating the fin
ished executable disk file. 

Dividing large programs into modules is a great time saver. Instead of reassembling the iden
tical code over and over, you can store that code in a separate module, assemble to disk, and 
then link with your program. When modifying existing programs, you have to reassemble 
only the modules that you modifY. Modules also help simplifY complex programs by letting 



SIMPLE DATA STRUCTURES 

you concentrate on smaller and easier to digest chunks of code. In addition, you can store 
object-code modules in library files, making your favorite subroutines instantly available to 
new programs. 

In the source-code text, a separate module differs only slightly from the text of a main pro
gram. Referring to Listing 5.1, you can see that the initial lines are the same as in previous 
listings (for example. see Listing 4.7) but do not include a STACK directive. Only the main 
program can declare a stack segment-separate modules never need to do this. 

Another difference is that separate modules lack the steps in a main program to initialize 
data-segment registers and to return control to DOS when the program ends. Instead, as 
you can see, Listing 5.1 contains a series of procedures. marked by the PROC and ENDP direc
tives. A final END directive ends the text but does not add an entry-point label to END as must 
be done in a main program file (for example, see line 52 in Listing 4.7). Only the main pro
gram can specifY an entry point. 

Public Policy 
Lines 9-11 in STRINGS declare several symbols in PUBLIC directives. These symbols are the 
same names used as labels in PROC procedure headers. (For example, see line 73.) Every sym
bol that you want a module to export to the outside world must be declared in a PUBLIC di
rective as shown here. You can use individual PUBLIC directives to declare symbols one at a 
time or string them together with commas as in this example. Symbols can be the names of 
n)lmeric constants declared with equal signs (=), variables, or code labels. Constants declared 
with EQU cannot be exported. 

NOTE 

In Ideal mode, EQU constants are treated during assembly as text, while equal sign (=) 

constants are treated as values. In MASM mode, some EQU constants are numeric and, 
therefore, can be exported. Other kinds of EQU constants must remain private. This does not 
mean that Ideal mode imposes additional limits on exporting symbols. It just means that, in 
Ideal mode, you always know which constants are exportable. In both modes, only the same 
types of numeric constants can be shared with the outside world. 

All other symbols not declared PUBLIC (ASCNull at line 55, for instance) are private and can
not be used by other programs. Private symbols may be repeated by modules and programs 
without conflicting with the symbols declared private in other modules. Only symbols in 
PUBLIC directives are visible outside of the module. Notice that the symbols in the PUBLIC 

directive have no data-type identifiers-nothing to indicate what the symbols are. As later 
examples demonstrate, this is the responsibility of the program that imports the symbols. 

171 



172 

I eo PROGRAMMING WITH ASSEMBLY LANGUAGE 

NOTE 

Some programmers declare separate PUBLIC directives just above each PROC header. I prefer to 
collect all PUBLIC symbols into one place at the beginning of the file, where I can easily find 
and modify the list. Both methods are correct and have the same effects. 

Assembling and Linking Separate Modules 
Assembling separate modules is easy. ] ust type tasm module where module is the name of the 
text file to assemble. You do not have to specify the .ASM extension after the filename. To 
assemble the module for use with Turbo Debugger, use the command tasm -zi module, which 
adds extra information to the .OB] file so that Turbo Debugger can locate variables and 
subroutines by name. 

To assemble a program that uses the code in separate modules, use either of these same com
mands. You can assemble the main program and all its modules in any order, and none of 
the module's .OB] files needs to be on disk during assembly of any other modules. After 
assembling all modules, you'll have a series of .OB] files on disk. The next step is to link 
these separate pieces together to create the finished code. For example, if your main program 
is THEMEAT.ASM and your modules are LETTUCE.ASM and MUSTARD.ASM, you 
would first assemble each module: 

tasm lettuce 
tasm themeat 
tasm mustard 

You can perform these steps in any order. Or, if these are the only .ASM files in the current 
directory, you can use the simpler command tasm • .ASM to assemble all three files. After 
assembling, you'll have THEMEA T.OB], LETTUCE.OB], and MUSTARD.OB] on disk. 
You then link these object-code files with the command: 

tlink themeat lettuce mustard 

The first name after tlink must refer to the main program. Subsequent names refer to the 
separate modules used in the program. Multiple module names may be listed in any order 
and are separated by spaces. (You can also use plus signs as in tlinK themeat+ lettuce+mustard.) 

The result of linking is a sandwich of all modules plus the main program in one finished 
code file, in this example, THEMEAT.EXE. The name of the result is the same as the name 
of the first object file after TUNK bur with the extension changed to .EXE. To specify a 
different name, SANDWrCH.EXE for instance, add a comma and the new name after the 
object-file list: 

tlink themeat lettuce mustard, sandwich 



SIMPLE DATA STRUCTURES 

A comma must separate the objecdlle list from the new .EXE filename. During linking, 
TLINK creates a map file containing a report of the symbols and their addresses in the fin
ished code. The map file has the same name as the default .EXE file but ends in .MAP, un
less you specify a different name. This assembles the object files (represented here as 
<obj -files», and creates both SANDWICH.EXE and SANDWICH.MAP: 

tlink <obj-files>, sandwich, sandwich 

If you don't want a map file, use the I x option before the object-file list. This saves disk space 
and speeds linking a tiny bit by reducing TLINK's work load. Turbo Debugger does not 
require the map file, but some other debuggers and source-code utility products from other 
companies do. You may also want to save the map file as part of your program's documen
tation. This command specifies no map file: 

tlink Ix <obj-files> 

The final option you can specify with TLINK is the name of one or more library files, which 
contain separately assembled object modules in one disk file. Put spaces between multiple 
library filenames. For example, if you have two libraries, BUTTER.LIB and BREAD.LIB, 
the complete linking command might be: 

tlink <obj-files>, , ,butter bread 

You don't have to specify the .LIB extension. Notice the three commas after the object-file 
list. These commas tell Turbo Assembler to use the default names for the missing items. 
Without the commas, Turbo Linker can't know that BUTTER and BREAD are library files
it would mistake them for .OBJ files. You must add the commas to hold the places for 
optional items you don't specify. With square brackets representing optional items, the 
complete syntax for TLINK 6.0 is: 

tlink [options] objfiles, exefile, mapfile, libfiles, deffile, resfiles 

In this command, ob j files refers to assembled object code files; exef ile is the name of the 
final output code file, mapf ile lists public symbols and other information, libf iles refers to 
libraries such as MT A.LIB (provided on disk) that contain multiple object-code files, deff ile 

is a linker definition file, and resfiles refers to resources combined into the finished code. 
The last two items, deffile and resfiles, are required only for Windows programs. 

A String I/O Package 
Although the STRINGS module can be used alone, another module is needed to display strings 
and to read new strings from the keyboard. This second module makes it easy to experiment 
with STRINGS and also serves as a useful module on its own. Assemble Listing 5.2, STRl 0 .ASM, 
and add the object code to your MT A.LIB library file with the commands: 

173 



174 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

tasm IZi strio 
tlib IE mta -+strio 

For running host programs in Turbo Debugger, you must use the /zi option both here and 
when assembling STRINGS. To reduce code-file size, assemble with tasm strio and rein
stall STRIO in the library. At the tlib command, ignore the probable warning that STRIO 
was not found in the library. You'll see this warning only the first time you add STRIO to 
MTA.UB. At this point, you now have two modules in MT A.UB: STRINGS and STRIO. 
To see a list of the symbols in the library file, enter: 

tlib mta, con 

Or, replace con with prn to send output to the printer. You can also store tlib's ourput in a 
disk file with a command such as tlib mta, temp. txt. Be careful-TUB won't warn you 
before erasing an existing file of the same name. 

Listing 5.2. STRIO.ASM. 
1 : 
2: 
3: 
4; 
5: 
6: 
7: 
8: 
9: 

10 : 
11 : 
12: 
13: 
14 : 
15: 
16: 
17: 
18: 
19: 
20: 
21 : 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31 : 
32: 
33: 
34: 

%TITlE 'String InputlOutput Routines -- by Tom Swan" 

WEAL 

MODEL small 

Equates 

BufSize EOU 255 Maximum string Size «=255) 
ASCnull EQU 0 ASCII null 
ASCcr EOU 13 ASCII carriage return 
ASClf EOU 10 ASCII line feed 

String buffer structure for DOS function 0Ah 

STRUC StrBuffer 
max len db BufSize 
strlen db 0 
chars db BufSize DUP (7) 

ENDS strBuffer 

DATASEG 

buffer StrBuffer <> 

CODESEG 

From: STRINGS.OBJ 

Maximum buffer length 
String length 
Buffer for StrRead 

Buffer variable for ReadStr 

EXTRN Strlength:proc, StrCopy:proc 



35: 
36: 
37: 

PUBLIC StrRead, StrWrite, StrWrite2, NewLine 

38: %NEWPAGE 
39: ;---------------------------------------------------------------
40: ; StrRead Read string with editing keys 
41 : 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61 : 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 
71 : 
72: 
73: 
74: 
75: 

Input: 
di = address of destination string 
cl maximum string length EXCLUDING null terminator 
Note: if cl = 0, StrRead does nothing 
Note: actual variable must be cl+1 bytes long 
Note: string length is limited to 255 characters 

Output: 
String copied from standard input into your buffer 

Registers: 
none 

PROC StrRead 
or 
jz 

puSh 
push 
push 
push 

mov 
mov 
mov 
int 
xor 
mov 
mov 
mov 
call 

pop 
pop 
pop 
pop 

el, el 
@@99 

ax 
bx 
dx 
si 

Is el 07 
If yes, jump to exit 

Save modified registers 

[buffer.maxlenj, el Set maxlen byte 
ah, 0ah DOS Buffered-Input function 
dx, offset buffer.maxlen Address strue with ds:dx 
21h Call DOS to read string 
bh. bh Zero high byte of bx 
bl, [buffer.strlenj bx = # chars in buffer 
[bx+buffer.charsj, ASCnull ; Change cr to null 
si, offset buffer.chars Address buffer with si 
StrCopy Copy chars to user string 

si 
dx 
bx 
ax 

Restore registers 

76: @@99: 
77: ret Return to caller 
78: ENOP StrRead 
79: %NEWPAGE 
80: 
81 : 
82: 
83: 
84: 
85: 
86: 
87: 
88: 

;-----------------------------------------~-----~---------------
; StrWritefStrWrite2 Write string to standard output 
;-------~----------~--------------------------------------------

Input: 
di 
ex 

Output: 

address of string (S) 
number of chars to write (StrWrite2 only) 

string s copied to standard output 

89: Registers: 
90: ex (StrWrite only) 

continues 

175 



176 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

listing 5.2. continued 
91 : 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 

100: 
101 : 
102: 
103: 
104: 
105: 
106: 
107 : 
108: 
109: 
110 : 
111 : 
112 : 

PRoe 

PROe 

ENDP 
ENDP 

%NEWPAGE 

StrWrite 
call Strlength 

StrWrite2 
push ax 
push bx 
push dx 

mov bx, 
mov dx, di 
mov ah, 40h 
int 21h 

pop dx 
pop bx 
pop ax 
ret 
StrWrite2 
StrWrite 

Set cx~length of string 

Alternate entry point 
Save modified registers 

Standard output handle 
ds:dx address string 
DOS write to file or device 
eall DOS (on ret ax~# chars written) 

Restore registers 

Return to caller 
End of alternate procedure 
End of normal procedure 

113: ---------------------------------------------------------------
114: ; Newline Start new line on standard output file 
115: ;---------------------------------------------------------------
116: Input: 

none 
Output: 

117: 
118 : 
119: 
120: 
121 : 
122: 

carriage return, line feed sent to standard output 
Registers: 

123: PROe 
124: 
125: 
126: 
127: 
128: 
129: 
130: ENDP 
131 : 
132: 

ah, dl 

Newline 
mov 
mov 
int 
mov 
int 
ret 
Newline 

END 

ah, 
dl, 
21h 
dl, 
21h 

Procedures in STRIO 

2 DOS write-char routine 
ASCcr load carriage return into 

Write carriage return 
ASClf Load line feed into dl 

Write line feed 
Return to caller 

End of STRID module 

dl 

There are three procedures in the STRIO module, which many programs in this book use. 

The three routines are: 

• StrRead-Read an ASCIIZ string 

• StrWrite-Write an ASCIIZ string 

• Newline-Starr a new output line 



The first two procedures require strings in ASCIIZ form-the same form used by the 
STRINGS module. All three routines use the standard DOS input and output files
usually the keyboard and display. As future programs demonstrate, there are faster ways to 
display text on screen than StrWrite. But even so, this small module comes in handy for 
reading and writing string data. 

Using the STRIO Module 
The three procedures in STRIO.ASM (Listing 5.2) should be easy for you to understand. 
Except for a data structure at lines 18-22, you have already met most of the elements in this 
listing elsewhere. This section explains how to use STRIO's routines in your own programs 
to read and write ASCIIZ strings to the standard input and output files, normally the key
board (input) and display (output). (We'll return to this program again in Chapter 6, "Com
plex Data Structures," which explains complex data structures.) 

StrRead (39-78) 

Assign to es: di the address of any ASCIIZ variable, which can be from 1 to 255 characters 
long plus 1 byte for the null terminator. Normally, ASCIIZ strings can be just about any 
length. But, due to limitations of DOS, you can read strings up to a maximum of only 255 
characters. Also set el to the maximum number of characters you want people to be able to 
enter. If el equals 0, StrRead does nothing. Here's how you might use StrRead to prompt for 
some data to be entered at the keyboard: 

DATASEG 
response db 
COOESEG 

81 dup (0) 

mov di, OFFSET response 
mov cl, 80 
call StrRead 

80-character string + null 

Address response with es:di 
Allow 0 to 80 characters 
Read string 

Notice that cl is set to 80 even though the string variable is 81 bytes long. This allows 1 byte 
for the null terminator at the end of the string. Don't forget this all important rule-you 
must leave room for StrRead to insert the string-terminator byte. StrRead calls DOS func
tion OAh at line 65, which requires the string structure defined at lines 18-22 (further ex
plained in Chapter 6). 

StrWrite (80-110) 

To pass an ASCIIZ string to the standard output (usually the display), call StrWrite with 
es: di addressing the string. If you already know the string length, you can assign the length 
value to ex and call StrWrite2 instead-an example of a nested procedure. Notice how the 
procedure at lines 95-109 nests inside the outer procedure at lines 92-110. The difference 

177 



178 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

between the two procedures is that, after calling StrWri te2, ex is not changed. After calling 
StrWrite, ex equals the string length. The nested procedure defines an alternate entry point 
into the subroutine. 

NOTE 

You don't have to define alternate entry points as nested procedures-you can simply add a 
new label and call or jump to that address. Using nested procedures makes the intention of 
the program perfectly clear-always a good plan, even when other strategies are available. 

A typical use for StrWrite is to display a program's welcome message: 

cr EQU 13 
If EQU 10 
DATASEG 
welcome db 

db 
CODESEG 
mov ax, @data 
mov dS, ax 
moves, ax 

ASCII carriage return 
j ASCII line feed 

cr, If, 'Welcome to Noware Land' 
cr, If, '(C) 1998 by Nobody, Inc.',cr,lf,lf,0 

mov di, OFFSEET welcome 
call StrWrite 

Initialize ds 
Initialize es = ds 
Address string with di 
Display string 

There are several interesting points here that deserve a closer look. First, two equates assign 
the ASCII values of a carriage rerurn and line feed to symbols cr and If. In the data segment, 
a string variable is then created, adding cr and If as needed. In assembly language, the 
flexible db operator lets you easily add control characters this way directly to strings. Also, 
because variables are stored consecutively in memory, only one string variable is acrually here
despite the fact that the string is declared in two separate db directives. Only one null termi
nator is at the end of the second line; therefore, this is one string, not rwo. Notice also how 
the string ends with a carriage return and two line feeds. The first carriage return sends the 
cursor to the far left of the display. After that, successive line feeds send the cursor down (or 
scroll the display up) rwice. There's no need to add another carriage rerum. The ability to 
handle such flexible data structures is one of assembly language's most welcome features. 

In the code segment of this sample, the first three instructions initialize ds and es to address 
the program's data segment. Always perform these steps in programs that use the STRIO 
module (as well as other modules in this book). After this, a mov instruction assigns the ad
dress of string welcome to dL A single call to StrWrite then displays the two-line string. 

The code for StrWrite in STRIO is fairly simple. Lines 102-103 call DOS function 40h 
with cx equal to the string length, bx equal to 1 (representing DOS's standard output file), 
and ds: dx equal to the string address. The other instructions save and restore modified reg
isters (except for ex when calling the StrWrite entry point). 



SIMPLE 

Newline (113-130) 

The final procedure in STRIO is Newline. Call this procedure to start a new line on the dis
play. The procedure works by passing carriage-return and line-feed control codes in register 
dl to DOS function 2, which writes single characters to the standard output. Note that the 
procedure changes ah and dl. 

Linking Modules into a Program 
The good news is: You now possess two useful packages to manipulate, read, and write ASCII 
strings-routines that other programs in this book use heavily and that you'll find many uses 
for in your own code. The bad news is: You have to enter one more program to demonstrate 
how to use routines in separate modules. For this purpose, assemble and link Listing 5.3, 
ECHOSTR.ASM, creating ECHOSTR.EXE, with the command: 

tasm /zi echostr 
tlink eChostr, "mta 

As described earlier, the three commas hold the places of missing items in the tlink com
mand, telling Turbo Linker that mta is the name of a library file. AJso, you need to use the 
/zi option only if you want to run ECHOSTR in Turbo Debugger. To run the program 
from DOS, just type echostr. Then, type any string of characters and press Enter. You should 
see the same string repeated below your typing-proof that the STRIO module is working. 
Admittedly, this is a very simple example. But, as you will soon see, there's much more that 
you can do with STRINGS and STRIO. 

Listing 5.3. ECHOSTR.ASM. 
1 : %TITLE 'String Read Test -- by Tom Swan' 
2: 
3: IDEAL 
4: 
5: MODEL small 
6: STACK 256 
7: 
8: Max Len EQU 128 128-character string 
9: cr EQU 13 ASCII carriage return 

10: If EQU 10 ASCII line feed 
11 : 
12 : 
13 : DATASEG 
14 : 
15: exCode db 0 
16: welcome db 'Welcome to Echo-String', cr, If 
17: db 'Type any string and press Enter', cr,lf,lf, 0 
18: testString db MaxLen DUP (0) , 0 ; MaxLen chars + null 
19 : 
20: 

continues 

179 



180 

I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

listing 5.3. continued 
21: CODESEG 
22: 
23: From STRIO.OBJ: 
24: 
25: EXTRN StrRead:proc, StrWrite:proc, Newline:proc 
26: 
27: 
28: 
29: 
30: 
31 : 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41 : 
42: 
43: 
44: 
45: 
46: 

Start: 

Exit: 

moy 
moy 
moy 

moy 
call 

moy 
mov 
call 
call 
call 

moy 
mov 
int 

END 

ax, @data 
ds, ax 
es, ax 

di, offset welcome 
StrWrite 

di, offset testString 
cx, Maxlen 
StrRead 
Newline 
StrWrite 

ah, 04Ch 
aI, [exCode 1 
21h 

Initialize OS to address 
of data segment 

Make ds=es 

Display welcome message 

di address of testString 
cx = maximum len 
Read string from keyboard 
Start a new display line 
Echo string to display 

DOS function: Exit program 
Return exit code value 
Call DOS. Terminate program 

Start End of program I entry point 

New Features in ECHOSTR.ASM 
The STRINGS and STRIO packages require ds and e5 to address the same data segment. 
Line 30 in ECHOSTR satisfies this requirement by assigning the same value to es as as
signed to ds in the previous line. EXESHELL.ASM (Listing 2.3) contains this instruction so 
you don't forget this important step when needed. 

Line 25 in ECHOSTR shows how to import symbols that are declared in another module's 
PUBLIC directives. The EXTRN directive tells Turbo Assembler that various symbols are exter
nal to this program and that the actual addresses and values for these items will be supplied 
later when the program and all its modules are linked together. There are several things to 

keep in mind when using EXTRN: 

• Every symbol in an EXTRN directive must eventually be resolved to a like symbol 
declared in a PUBLIC directive in a module linked to the program. Otherwise, you'll 
receive an error from Turbo Linker. 

• EXTRN directives must specifY the type of the symbol. In line 25, all three symbols are 
type proc, which tells the assembler that these are subroutine labels and, therefore, 
can be used as targets in call and jmp instructions. You can also declare code labels 



SIMPLE DATA STRUaURES 

as near and far, forcing the assembler (0 generate either intersegment or 
intrasegment subroutine calls. (It's still your responsibility to ensure that the correct 
ret instructions are used in the external routines.) 

• When declaring external variables, allowable types are: byte, word, dword, fword, 

pword, dataptr, qword, and tbyte, corresponding (0 the data directives in Table 5.3. 
You must insert EXTRN directives for variables in the proper data segment, usually just 
after DATASEG. If you accidentally declare external variables inside the CODESEG, the linker 
will be unable to calculate the correct addresses for your external data. 

• External numeric equates are always type abs (for absolute value). A good place for 
these EXTRN symbols is before the DATASEG directive. 

• Object-code modules can declare EXTRN directives, too. For example, see line 34 in 
STRIO.A5M (Listing 5.2), which importS two procedures from the STRINGS 
module. Any module can export its own symbols in PUBLIC directives and import 
external symbols from any other module in EXTRN directives. 

• When multiple modules (including the main host program) refer to the same EXTRN 

symbols, only one copy of the object-code module containing those symbols is 
Hnked into the finished code file. 

• You need to declare only the symbols your program uses. You don't have to declare 
all of the symbols that are declared PUBLIC in a module. Despite this, Turbo Linker 
always links entire modules into the finished code, even if you use only one or twO 
procedures (or other declarations) in that module. 

• To create a complete code file, you must link all modules containing the symbols 
that are declared in EXTRN directives among all the program's modules. Storing 
object code in library files makes linking easier by allowing Turbo Linker to pick 
out only the object-code modules it needs. The entire library is not linked into your 
code-only the necessary modules stored in the library. 

A Simplified External Example 
A few quick examples will help clarify the preceding details about exporting and importing 
equates, variables, and procedure labels. (You don't have to enter and run these samples, 
although you can if you want to.) Here's the object-code module: 

IDEAL 
MODEL small 
PUBLIC Maximum 

Maximum = 100h 
DATASEG 
PUBLIC counter 

counter db Ofh 
CODESEG 
PUBLIC subroutine 

181 



182 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

PROC subroutine 
ret 

ENDP subroutine 
END 

After switching to Ideal mode and specifYing the small memory model, the module declares 
numeric equate Maximum public. In the data segment, another symbol-the byte variable 
counter-is also declared public. In the code segment, a third symbol, subroutine, a proce
dure label, is exported. Notice that the PUBLIC directives are placed in sensible places. A host 
program can import these symbols this way: 

IDEAL 
MODEL small 
STACK 256 

EXTRN Maximum:abs 
DATASEG 

EXTRN counter:byte 
CODESEG 

EXTRN 
Start: 

Sub rout ine: proc 
mov ax, @data 
mov ds, ax 
mov ax, Maximim 
mov cl, [counter] 

Initialize ds to address 
of data segment 

Set ax = Maximum 
Get value of counter 

mov bx, OFFSET counter Get address of counter 
Call external subroutine 

Exit : 
call Subroutione 

mov 
int 
END 

ax, 04C00h 
21h 
Start 

DOS function: Exit program 
Call DOS. Terminate program 

; End of program I entry point 

Look carefully at the placement of the EXTRN directives, especially for count'e rand 
Subroutine. These symbols are placed in the data and code segments so the linker will be 
able to resolve their addresses correctly. The type of the numeric equate is abs. The type of 
the db variable is byte. If the variable had been declared in the other module with dw, the 
type would be word. The Subroutine label is given the type proc. In the main program code, 
these symbols are used exactly as though they were declared directly in the program. If you 
want to assemble and run the finished program in Turbo Debugger, assuming you name the 
module MODULE.ASM and the main program MAIN,ASM, use these commands: 

ta5m Izi module 
ta5m Izi main 
tlink Iv main module 
td main 

Exploring the Strings Module 
Now that you know how to write, assemble, and link separate modules, you're ready to ex

plore the 12 procedures in Listing 5.1, STRINGS. All the procedures in STRINGS operate 
on ASCIIZ strings-sequences of characters ending in a zero byte. You can also use the two 
routines MoveLeft and MoveRight on unterminated byte strings. In the interests of 



SIMPLE DATA STRUCTURES 

speed-and, therefore, in the spirit of blue-blooded assembly language programming-most 
outines in STRINGS do little error checking. For example, when copying one string to 
another, it's your responsibility to ensure that the destination is large enough to hold the 
copied characters. 

The following sections describe each of the routines in STRINGS. Line numbers refer to 
those in Listing 5.1. 

NOTE 

The STRING's and STRIO modules assume that segment registers ds and es address the same 
data segment in memory. Serious bugs are likely to occur if you fail to set ds = es before 
calling any of the routines in these modules. 

Moveleft (58-89) 
MoveRight (91-121) 

These two routines move bytes in memory from one location to another. Other string rou
tines call Moveleft and MoveRight to copy strings, attach one string to another, and insert 
characters into a string. You can also use these routines to fill buffers and to copy blocks of 
memory from place to place. 

Both MoveLeft and MoveRight use a repeated string instruction, movsb at lines 82 and 114. 
The other instructions save and restore register values and prepare si, di, and flag df for the 
memory-block move. Notice how the jexz instruction at line 74 prevents accidentally mov
ing 65536 bytes if ex is 0, jumping in this event to local label @@99: at line 87. A similar 
instruction at line 102 jumps to line 119 for the same reason. (Remember, local labels ex
tend only up or down to the next nonlocallabel; therefore, @@99: can be reused without conflict 
at lines 193,267, and 467.) 

NOTE 

When viewing a repeated string instruction such as rep movsb in Turbo Debugger, press FB to 
execute the instruction to completion. Press F7 to execute one iteration at a time. 

The comments to Moveleft and MoveRight at lines 58-72 and 91-100 list required registers 
and explain the effects of calling each routine. MoveRight requires the same input parameters 
as Moveleft. When using these or any other procedures in STRINGS, always be sure to check 
the "Registers" section in the procedure header, which lists any potentially modified regis
ters. In this case, Moveleft and MoveRight are friendly-they return all original register 

183 



184 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

values intact. This isn't true for all procedures. By the way, the %NEWPAGE directives that be
gin each procedure in the STRINGS listing cause form-feed control characters to be written 
to the listing file, if you create one with Turbo Assembler's /1 command. This makes listings 
neater by starting new procedures at the topS of fresh pages. 

Call MoveLeft with si addressing the source string and di addressing the destination--the 
place to where you want to copy bytes. Assign to bx and dx index values for copying bytes 
somewhere other than the start of the strings. For example, to copy a 20-byte variable v1 to 

the middle of a 40-byte variable v2, you could write: 

DATASEG 
v1 db 
v2 db 
CODESEG 

'12345678901234567890', 0 
40 dup (0) 

j 20-byte string 
; 40-byte string 

mov 5i, OFFSET v1 Assign source address of v1 
Assign destination address 
Set source index (v1[0) 

mov di, OFFSET 
mov bx, 0 
mov dx, 10 
mov ex, 20 
call MovLeft 

v2 

Set destination index (v2110]) 
Specify the number of byes to move 
Move bytes from v1[0] to Y2[10] 

MoyeLeft copies bytes from left (low addresses) to right (high addresses). When the source 
and destination addresses overlap-as they may, for example, when moving bytes inside the 
same string variable-the direction of the move can have important consequences. An ex
ample explains this action: 

mov [buffer!, 0 
mov si, OFFSET buffer 
moy di, si 
xor bx, bx 
moy dx, 1 
mov ex, (LENGTH buffer) 
call MoveLeft 

Set first byte of buffer to 0 
Address start of buffer with si 
Address same buffer with di 
Set source index to 0 
Set destination index to second byte 
Set count ~ Length of buffer - 1 
Fill buffer with 0s 

The first mov sets the first byte in buffer to o. Registers si and di are assigned the same offset 
address of this variable. After this, source index bx is set to 0 (the index position of the first 
byte in bUffer), and dx is set to 1 (the index of the second byte in buffer). Then, using the 
LENGTH operator-which returns the number of bytes in a variable-ex is set to 1 less than 
the length of buffer. Calling MoveLeft with these parameters copies the byte at buffer [0] to 
buffer [1], then from buffer [1] to buffer [2], and so on, filling the entire buffer with the 
value originally at index o. 

NOTE 

A better way to fill a buffer with a byte value is to use a repeated stosb or stosw. MoveLeft is 
fast, but not as fast as a single string instruction! 



SIMPLE DATA STRUCTURES 

When the source and destination addresses overlap and you don't want to replicate the source 
bytes in the destination, you must begin the move at the opposite end of the variables. 
MoveRight accomplishes this by adding cx-1 to si and di (see lines 109-112). Next, std pre
pares to decrement si and di automatically while the repeated string instruction at line 114 
executes. This prevents the source bytes from shifting into the destination, which is espe
cially useful for moving bytes to higher addresses in a variable-for example, to perform an 
insertion in a large text buffer. Here are a few more hints that will help you get the most 
from MoveRight and MoveLeft: 

• When the source and destination addresses overlap, if the source is lower than the 
destination, call MoveRight to prevent accidentally replicating source data into the 
destination. 

• When the source and destination addresses overlap, if the source is higher than the 
destination, call MoveLeft to prevent accidentally replicating source data into the 
destination. 

• When the source and destination addresses do not overlap, always call MoveLeft. This 
routine runs a tiny bit faster because it does not have to adjust si and di by cX-1. 

StrNull (123-136) 

Call StrNull to erase the characters in a string addressed by di. StrNull operates by storing 
a zero byte at the start of the string (line 134). Examine the phrase in brackets, duplicated 
here for reference: 

mov [byte ptr di), ASCNull 

The byte pt r operators tell Turbo Assembler that di addresses an 8-bit byre. Replace byte with 
word if di addresses a 16-bit word. The ptr is optional, and you could revise this line to read: 

mov [byte di), ASCNull 

To use StrNull, assign the address of a string variable to di and call the procedure. For ex
ample, you might use StrNull to set the length of an uninitialized string variable to 0: 

UDATASEG 
string db 81 dup (?) 
CODESEG 
mov di, OFFSET string 
call St rNull 

Uninitialized 80-character string 

Address string with di 
Set string Length to 0 

Because a zero-length ASCIIZ string has a null terminator as its first character, StrNull doesn't 
need to know the maximum string size and, therefore, works with any length string variables. 

185 



186 

Strlength (138-162) 

StrLength calculates how many characters are stored in an ASCIIZ string addressed by di. 

StrLength returns this value in ex, which can then be passed to other routines that need to 

know the length of a string. (Notice that line 146 tells you that ex is subject to change. If you 
are using ex for other purposes and need to call StrLength, you'll have to save ex somewhere-
probably on the stack-and then restore the original value later.) 

Suppose you want to jump to the end of the program if, after prompting for some input, the 
length of the string is O. You could write: 

DATASEG 
string db 'Sample user response string', 0 
CODESEG 
mov di, OFFSET string 
call StrLength 
or ex, ex 
jz Exit 

Address string with di 
Set ex to string Length 
Is ex 0? 
Jump to Exit if ex 0 

StrLength demonstrates how to use the seasb string instruction, introduced in Chapter 4. 
Use seasb to scan byte strings for a specific value; use seasw to scan word strings. The value 
to search for must be in al for byte searches or in ax for word searches. Assign the starting 
address for the scan to es: di and set ex to the maximum number of bytes to scan. Both seasb 

and seasw compare the byte in al or the word in ax with the data at es: di, effectively per
forming a emp. With these instructions, you can devise loops to search for byte and word 
values: 

eld 
mov di, buffer 
mov ex, lenbuffer 
mov al, searehval 
repne scasb 
je Match 
jmp NoMatch 

Prepare to audo-increment di 
Address buffer with eS:di 
Set ex = Length of buffer 
Set al value to find 
Repeat while bytes not equal 
Match found 
Match not found 

In this code, the repne prefix executes scasb repeatedly, while al and the byte at es: di are 
"not equal (ne)," decrementing ex and stopping if this makes ex 0. After the scan, two 
jumps test whether the search ended at a matching byte, jumping to appropriate labels (not 
shown). Because seas sets the same flags as emp, you can follow the scan with conditional 
jumps as shown here. 

The effect of the repeated scan at line 155 in procedure StrLength is to scan an ASCIIZ string, 
stopping when the byte at es: di is ° or when ex decrements to 0, thus preventing a runaway 
condition that might occur if you accidentally pass an un initialized string to the procedure 
and if no zero bytes are in the data segment-unlikely, but possible. 



Repeated-loop Calculations 
Lines 156-157 in StrLength uses an obscure technique to calculate the number of times that 
a repeated string operation executes. The method requires ex to be initialized to OFFFFh 
(-1 in two's complement notation) as done here at line 153. After the repeated scan (line 
155). a simple logical operation calculates the number of times the previous scan had re
peated. To understand how this works, first consider the classic method for calculating the 
repeated string instruction count: 

mov ex,-1 
repnz seasb 
not ex 

, Initialize ex to -1 
j Repeat while [di] <> al and ex <> 0 
j Form one's complement of ex 

The one's complement of ex equals the number of times the repnz seasb loop executed. Why 
this works is easier to fathom by thinking through the effect of a single iteration. Because ex 
initially equals -1, if the seasb StopS after one repetition, then ex will equal-2. or FFFE hexa
decimal. (The repnz prefix subtracts 1 from ex for each repetition of seasb.) The absolute value 
(two's complement) of-2 is, of course, 2-which is 1 too many. You could subtract 1 from the 
absolute value to get the correct answer (2 - 1 = 1 iteration), but recalling from Chapter 3, "A Bit 
of Binary, " that the two's complement of a value equals the one's complement plus 1, you may 
as well just take the one's complement as the final result! By the way, this works for positive 
values, too. If ex equals 32,766 after the scan, then 32,769 loops had been executed. Work out 
in binary the one's complement of32,766 (7FFEh) to prove to yourself that this is so. 

For StrLength's purposes, the classic method's result is 1 too many because the value counts 
the null terminator at the end of the string. For this reason, line 157 decrements ex to give 
the final answer. 

StrUpper (164-199) 

StrUpper converts lowercase letters in a string to uppercase without changing other nonal
phabetic characters. Assign the string address to di and call the procedure this way: 

DATASEG 
Ie db 'abedefghijklmnopqrstuvwxyz' , 0 
CODESEG 
mov di, OFFSET Ie 
eall StrUpper 

j Address string with es:di 
j Convert ehars to uppercase 

The procedure demonstrates two popular string instructions lodsb and stosb, introduced in 
Chapter 4, along with a new instruction, loop (see line 192). The loop instruction subtracts 
1 from ex and, if ex is not yet 0, jumps to the specified target address. In StrUpper, the target 
address is the local label, @@10: at line 183. Loop effectively performs in one step the same job 
as these instructions: 

dee ex ex <- ex - 1 
jnz Target Jump to Target if ex <> 0 

187 



188 

I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Two other variations of loop are loopne/loopnz and loope/loopz. The mnemonic pairs are 
juSt different names for the identical instructions for the same reasons that other instruc
tions such as repne / repnz and j nz / j ne have double names. Loopne and loopnz also jump to 
a target label if, after decrementing ex, this register is not yet O. At the same time, a test is 
made of zf, presumably set or cleared by a previous comparison. For example, to scan a buffer 
from back to front searching for a byte equal to OFFh, you might use code such as: 

mov ex, LENGTH buffer 
mov bx, OFFSET buffer + LENGTH buffer 

@@20: 
dec bx 
cmp [BYTE bx], 0ffh 
loopne @@20 
je Match 

Register ex is set to the maximum number of bytes to scan; bx is set to the address just past 
the end of the buffer. The three instructions after @@20: then decrement the index pointer 
bx, comparing each byte at this address with OFFh. The loopne instruction subtracts 1 from 
ex and jumps to @@20: only if ex is not 0 and if the emp did not detect an 0 FFh byte. After the 
search is completed, a je instruction jumps to label Mateh (not shown) only if the OFFh value 
was found in the buffer. You can use loope similarly to locate bytes or words that don't match 
a certain value. 

As you can see, loop, loope, and loopne are handy instructions for writing search loops. 
Returning to the STRINGS module, in StrUpper, after initializing ex to the string length, 
exiting immediately if the length is 0 (see lines 175-182), the instructions at lines 183-192 
use lodsb, stosb, and loop to scan the string, examining each character with twO cmp in
structions. If a lowercase letter is found, line 189 adjusts the ASCII value to uppercase. Notice 
how the expression in sub al, ' a' 'A' subtracts from al the numeric difference between 
ASCII lowercase and uppercase letters. Characters in assembly language are just numbers 
and, as this demonstrates, you can use them directly in numeric expressions. (BASIC and 
Pascal programmers may find this a bit strange. C programmers are no doubt right at home.) 
Remember that Turbo Assembler evaluates this and other constant expressions during as
sembly, not at run time. You could write sub al,32 to do the same thing, but then the pur
pose of the instruction would be less clear. 

StrCompare (201-229) 

Comparing two strings alphabetically is a surprisingly simple job, as you can see in the StrCompare 

procedure. To use StrCompare, assign the addresses of two strings to si and di and call the pro
cedure. After that, use one of the unsigned conditional jump instructions j b, j be, j e, j a, or j ae 

to test the result of the comparison. For example, to compare strings s 1 and s2 and then jump to 

label StringsLess if s1 is alphabetically less than S2, you can write: 



OATASEG 
51 db 
52 db 
COOESEG 

80 dup (0) 
40 dup (0) 

mov si, OFFSET 51 
mov di, OFFSET s2 
call St rCompare 
jb StringsLess 
jg StringsGreater 

ASCIIZ string variables, presumably 
assigned characters elsewhere 

Address first string with si 
Address second string with di 
Compare 51 and 52 
Jump if sl < 52 
Jump if 51 > 52 
If here, 51 52! 

You can use multiple jumps as shown here without calling StrCompare a second time. The 
string variables do not have to be the same size, and the string lengths can be O. Both strings 
must end with 0 bytes, or StrCompare will start behaving strangely. 

The code works by using lod5b and scasb at lines 219-220, loading a single character into 
a1 and comparing the ASCII value with the character at [es:di]. These two instructions 
also advance 5i and di by 1 (because of the previous c1d instruction at line 217). The j ne at 
line 221 exits the loop if the comparison fails. Obviously, if any characters are different, so 
are the strings, and the alphabetic result is known at the first such difference found. The or 

instruction at line 222 checks whether a1 is 0, indicating that the end of the first string at 
ds: si was found before reaching the end of the second string at es: di. If the end is not found, 
the j ne at line 223 continues the comparison; otherwise, the loop ends. 

You might be wondering what happens if the second string at es: di is shorter than the first 
at ds: sL In this event, assuming that all characters are equal up to the end of the shorter 
string, the scasb at line 220 compares a character from the first string at ds: si with the null 
terminator at the end of the second string at es: di. Obviously, this comparison fails; there
fore, the result indicates that the longer string is alphabetically greater than the shorter. In 
other words, this comparison actually involves the null terminator, which is not a character 
in the string. However, the result is correct. 

It may take a little effort to understand all this by simply reading the text and program. For 
a better picture of how StrCompare works, try running a smail test program in Turbo Debugger 
and compare different strings. Watch in particular the ef and zf flags during the loop at 
lines 218-223. 

StrDelete (231-273) 

StrDelete deletes one or more characters starting at any position in a string and prevents 
you from deleting more characters than exist in the string, making it easy to perform jobs 
such as stripping the extension from the end of a filename or limiting responses to a certain 
number of characters. Assign to di the address of any ASCIIZ string variable, set dx to the 
index of the first character to delete (starting with 0 for the first character in the string), and 
assign to ex the number of characters to delete. For example, this deletes the phrase "and 
tigers" plus one space from a string: 

189 



190 

I.. PROGRAMMING WITH ASSEMBLY LANGUAGE 

DATASEG 
string 
CODESEG 

db 'Lions and tigers and bears, oh my!', 0 

mov di, OFFSET string 
mov dx, 6 
mov ex, 11 
call StrDelete 

Address string with es:di 
Index to the "a' in and 
Number of chars in "and tigers " 
Delete 11 chars at string[6] 

Although StrDelete prevents deleting more characters than exist in the string, dx must address 
a character in the string or point to the null terminator. In other words, dx must be less than or 
equal to the string length. Ignoring this rule might damage other variables and code in memory. 

StrDelete works in two stages. Lines 259-261 handle the condition where you try to delete 
more characters than are in the string. In this case, the mov at line 260 inserts a null at the end 
of the new string and exits. Lines 263-266 delete characters by calling MoveLeft with both 
si and di addressing the same string. This moves the end of the string (including the null 
terminator) over top of the deleted characters. Notice the short operator (line 261) added to 
the jmp target address, telling Turbo Assembler that label @@99: is no more than about 127 
bytes distant. This helps the assembler generate a more efficient form of jmp than is required 
to jump farther away. 

Strlnsert (275-325) 

Call Strlnsert to insert characters from one string into another at any position. Assign to s1 

the address of the source string (the one to insert into the other) and to di the address of the 
destination string (the one to receive the insertion). Assign to dx the index into the destination 
string where you want to begin the insertion. Remember that the first character is at index O. 
The source string is nOt changed. This example inserts the string' tab·A' into another string: 

DATASEG 
destination 
source 
CODESEG 

db 
db 

'Insert into slot~B 
'tab~A ,0 

" 0 

mov si, OFFSET source 
mov di, OFFSET destination 
mov dx, 7 
call St rlnsert 

Address source string with ds:si 
Address destination with es:di 
dx = index of "I" in destination 
Insert source into destination 

The destination string must be large enough to hold the inserted source string to prevent 
overwriting other variables and code in memory. It's up to you to prevent this condition when 
using Strlnsert. 



SIMPLE DATA STRUCTURES 

By this time, you should be able to understand the instructions for Strlnsert from the com
ments in the listing. Hint: The call to MoveRight at line 313 punches a hole in the destina
tion string just large enough to hold the insertion. Then the call to MoyeLeft at line 319 
copies the source-string characters into the hole. The other instructions initialize registers to 

prepare for these two block moves. 

StrConcat (327-359) 

StrConcat concatenates (joins) one string to another. The destination string at es :di must be 
large enough to hold the characters it now has plus the characters from the source string at ds: si. 

The source string is not changed. The following changes "This is" to "This is the end!": 

OATASEG 
source 
destination 
COOESEG 

db 'the end! " 0 
db 'This is o 

moy Si, OFFSET source 
moy di, OFFSET destination 
call StrConcat 

Address source with ds:si 
Address destination with eS:di 
Attach source to destination 

StrConcat calls StrLength at lines 346 and 349, once to find the end of the destination string 
and again to find the length of the source string. Notice how the xchg instructions at 348 
and 351 temporarily swap si and di for these subroutine calls. After these steps, a call to 
MoyeLeft at line 353 performs the attachment. 

StrCopy (361-390) 

StrCopy copies one string variable to another, which must be at least as long as the length of 
the original string plus 1 byte for the nul1 terminator. The procedure is easy to use. Just as
sign the address of the source string to si and the destination to di. Then call StrCopy. Any 
characters in the destination string are subject to permanent erasure. For example, to copy 
the characters in one string to an uninitialized string variable, you could write: 

OATASEG 
Sl db 'Original string', 0 
s2 db 80 dup (7) ; Uninitialized string variable 
COOESEG 
moy 
mov 
call 

si, OFFSET sl 
di, OFFSET s2 
StrCopy 

Address source string with si 
Address destination string with di 
Copy string sl and s2 

The code to StrCopy isn't difficult to understand. An xchg instruction at line 378 swaps si 

and di so that StrLength, which uses di, can return the length of the source string. A second 
xchg (line 381) then restores the original register values. The other instructions in the proce
dure prepare registers for the call to MoveLeft, which performs the actual copy, moving the 
bytes of sl and s2. 

191 



192 

,------------_. __ ._-_._------------------
PART I.. PROGRAMMING WITH ASSEMBLY LANG\JAGE 

StrPos (392-439) 

StrPos is the most complex in the STRINGS module, although the individual instructions 
should all be familiar to you. Call StrPos to determine if and when a substring at ds: si exists 
inside a target string at es: di. After StrPos returns, if zf equals 1, then dx equals the index in 
the target string where the substring begins. If zf is 0, then the substring was not found in 
the target and the value in dx is meaningless. An example shows how to use StrPos to deter
mine if the extension .ASM is in a file-name string: 

OATASEG 
db '.ASM', 0 extension 

filename 
COOESEG 

db 'MYTEST.ASM'. 0 

mov si, OFFSET extension 
mov di, OFFSET filename 
call StrPos 
jz foundExtension 
jmp notfound 

Address substring with ds:si 
Address target string with es:di 
Search for substring in target 
Jump if substring found at dx 
Jump if substring not found 

After the subroutine checks that the substring length is less than or equal to the target string's 
length-otherwise, there's no sense continuing the search-lines 421-429 call StrCompare 

repeatedly until finding the substring or reaching the end of the target. The mov instructions 
at lines 422, 423, and 425 temporarily replace characters in the target with nulls, using the 
powerful base-indexed addressing mode, indexing the string at bx with register di. Repeat
ing this operation and advancing a character at a time in the target eventually examines all 
possible positions where the substring might be located. 

StrRemove (441-471) 

Calling three other subroutines in the STRIN GS module, St rRemove is handy for removing 
substrings from strings. It's simple to use, too. Assign to ds: si the address of the substring to 

delete. Assign to es: di the address of a target string. Then call StrRemove. If the substring is 
found in the target, the characters are removed; otherwise, no changes to the target are made. 
The substring is never changed. As in StrPos, the zf flag indicates the result of the removal: 
1 if the substring was found and removed or 0 if not. Here's an example that deletes an area 
code from a phone number string: 

OATASEG 
phoneNumber 
areaCode 
CODESEG 

db '(800)-555-1212', 0 
db '(800) 0 

Target string 
String to delete 

mov si, OFFSET areaCode 
mov di, OFFSET phoneNumber 
call StrRemove 

Address substring to delete 
Address target string 
Oelete substring from target 



SIMPLE DATA STRUCTURES 

Of interest in StrRemove are the pushf and popf instructions at lines 461 and 466, which save 
and restore the flag registers on the stack. This allows the procedure to return the zf flag 
result of the call to StrPos at line 459-necessary because the calls to StrLength and StrDelete 

change the flags. 

Summary 
All references to data take one of three forms: immediate, register, and memory. Immediate 
data is stored directly in machine-code instructions. Register data refers to values held in 
registers such as ax and ch. Memory references allow five variations: direct, register-indirect, 
base, indexed, and base-indexed. Despite the many different addressing methods available, 
the goal of all memory-addressing modes is to help the processor to form the effective ad
dress, a 16-bit unsigned offset from the start of a memory segment addressed by one of the 
four segment registers. 

Expressions are reduced during assembly to constant values, which programs can use. Un
like a high-level language's expressions, expressions in assembly language are not evaluated 
at run time. Expressions can employ a variety of operators to combine labels, addresses, and 
other values in many different ways. 

Simple variables are created by reserving space in a data segment with directives such as db 

and dw. The DUP operator can be added to these directives to reserve blocks of space. Initial
ized data is stored in the program's code file on disk. Uninitialized data is allocated at run 
time and is not preset to any specific values. The db directive can be used to allocate string 
variables delimited by single or double quotes. 

The scope oflocallabels extends only to the next non local label above or below. A local label 
is similar to a global label but begins with the symbol @@. Local labels help conserve memory 
by letting the assembler reuse RAM for other local labels. They also reduce the need to think 
up new label names for temporary use. 

Modular programming divides large jobs into easy-to-manage pieces. Individual modules 
are assembled separately and then linked to a host program to create the finished code. Modules 
can export code, numeric constants, and variable labels in PUBLIC directives for other mod
ules and programs to share. Programs and modules import symbols from other modules in 
EXTRN directives. The TUB utility program stores object-code modules in library files, which 
can simplify linking multiple modules. 

193 



194 

.-.--------~-----

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Exercises 
5.1. Give examples of instructions that use immediate, register, and memory data. 

5.2. Give examples of instructions that use each of the five memory-addressing 
modes. 

5.3. Construct a data segment with byte, word, string, and one 1 ,024-byte buffer 
variables. Put the buffer into the uninitialized data-segment area. 

5.4. Write a subroutine to initialize your buffer in Exercise 5.3 to contain sequential 
byte values ranging from ° to 255. 

5.5. Insert your subroutine from Exercise 5.4 into an object-code module. Then write 
a host program to call your subroutine. What steps are required to assemble and 
link your module and program? 

5.6. What are some of the advantages of storing object-code modules in library files? 

5.7. What does a PUBLIC directive do? What does EXTRN do? 

5.8. To which local label does the following j mp refer? 
@@40: 

inc ax 
Repeat: 

jmp @@40 
cmp ax, 0 
jl Repeat 
lodsb 
je @@Exit 

@@40: 
xor ex, ex 

@@Exit: 
mov ax, 04Ch 
int 21 h 

5.9. Which of the following equates can be exported in a PUBLIC directive? What 
EXTRN directive is needed to import these symbols into a program? 
IDEAL 
MaxCount = 1000 
cr EQU 13 
If EQU 10 
YesAnswer = 'Y' 
MaxSize EQU 4 
BufferSize = MaxCount • MaxSize 

5.l 0. Show three ways to declare a 20-character string variable. 

5.11. Suppose you have the modules GETDATA, PRINTER, READTEXT, and the 
library file MT A.LIB. What instructions do you need to use to assemble and link 
a main program that uses the three modules plus the STRIO and STRINGS 
modules in the library? 



5.12. What TUB commands can you use to install the three modules in Exercise 5.11? 

5.13. Suppose there is a byte variable named Flag stored in the code segment. What 
instruction or instructions do you need to use to load this byte into register dh? 

5.14. Declare the following string using a db directive: 

'This 'string' can't have 'too' many quotes,' she said. 

Projects 
5.1. Write improved versions of the MoveLeft and MoveRight procedures in the 

STRINGS module by moving 16-bit words at a time with movsw when the ex 

byte count is even. 

5.2. Write a series of test procedures to put the STRINGS and STRIO modules 
through their paces. 

5.3. Rewrite StrConcat so that it calls Strlnsert instead of Move Left. VerifY that your 
procedure operates identically to the original. 

5.4. Write a module to send ASCIIZ strings to the printer. 

5.5. Write a program to use your printer module from Project 5.4 to initialize various 
print options on your printer. 

5.6. [Advanced] Write a new STRINGS module to operate on byte-length strings. A 
byte-length string stores the length of the string in the first byte. The second and 
subsequent bytes stores the characters of the string. There is no null terminator, 
and suing lengths are limited to 255 characters. Your STRINGS module should 
use the same procedure names as the ASIIZ STRINGS module in this chapter. 

195 





Cotnplex Data 
Structures 

_ Structures, 198 

_ More about Numeric Variables, 204 

_ Arrays in Assembly Language, 206 

_ Unions and Records, 213 

_ Efficient Logical Operations, 220 

_ Using Predefined Equates, 223 

_ Running VERSION, 224 

_ Converting Numbers and Strings, 225 

_ Programming a Number Base Converter, 240 

_ Summary, 243 

_ Exercises, 244 

_ Projects. 245 



I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Structures 
A structure is a named variable that contains other variables, called fields. The keyword STRUC 

begins the structure, followed on the same line by any name you want, for example, MyStruct. 

A matching keyword ENDS follows the last field in the structure. You can attach a copy of the 
structure's name after ENDS or leave the name out-similar to the way you can repeat a pro
cedure name after ENDP. For example, this structure contains three fields representing a date: 

STRUC Date 
day db Day field--default value 
month db ? Month field--no default value 
year dw 1991 Year field--default value ~ 1991 

ENDS Date "Date" is optional here 

You can insert fields of any type inside a structure, using the same methods that you use to 
declare plain variables. This example has three fields: day, month, and year. The first rwo fields 
are single bytes, with the first of these values initialized to 1. The second byte field in 
uninitialized. The third field is a word, initialized to 1991. The indentacion of each field is 
purely for show. When defining structures such as this, remember these important points: 

• A structure is not a variable. A structure is a schematic for a variable. 

• Structures may be declared anywhere. The STRUC directive does not have to be 
placed in the program's data segment, although it certainly can be. 

• A structure tells Turbo Assembler about the design of variables that you plan to 
declare later on or that already exist elsewhere in memory. 

• Even though you use directives such as db and dw to define the types of a structure's 
fields, the structure does not reserve space in the data segment or cause any bytes to 

be written to the finished program. 

Declaring Structured Variables 
To use a structure design, you must reserve space in memory for the structure's fields. The 
result is a variable that has the design of the structUre. Starr each such variable declaration 
with a label, followed by the structure name, and ending with a list of default values in angle 
brackets <>. Leave the brackets empty to use the defaults (if any) defined earlier in the struc
ture definition. Returning to the example Date structure again, the program's data segment 
might declare a Date variable like this: 

OATASEG 
birthDay Date <> ; 1-0-1991 

A label birthDay starts the variable declaration. Next comes the structure name Date at the 
same place you would normally use simple directives like dw. The empty angle brackets cause 
this date's fields to assume the default values declared in the structure. Uninitialized default 
field values-as in the month field here-are set to 0 unless all fields in the structure are 
uninitialized, and the variable is declared in the program's uninitialized data segment area. 

198 In that case, the actual field values are undefined. Here are a few more examples: 



DATASEG 
today Date 
dayInDayOut Date 
monthOfSundays Date 

<5,10> 
<11,12,1912> 
<,8,> 

5-10-1991 
11-12-1912 
1-8-1991 

The today date variable replaces the first two default values-day and month-with 5 and 

10. The missing third field value assumes the default from the structure design, here 1991. 
The second variable daylnDayOut replaces all three default values. The third variable 
monthOfSundays specifies a new month value while using the defaults for others, here chang

ing month to 8. The first comma is needed to "get to" the second strucrure field. The second 
comma is not needed, and you could also write: 

monthOfsundays Date <,8> 

A Structured Demo 
A good way to learn more about structures is to examine a few sample structured variables 

with Turbo Debugger using Listing 6.1., STRUC.ASM. Refer to the numbered experiments 
following the listing after you assemble, link, and load the program into Turbo Debugger 
with the commands: 

tasm Izi struc 
tlink Iv struc 
td struc 

listing 6.1. STRUC.ASM. 
1 : %TITLE "TO Structure Demo 
2: 
3: IDEAL 
4: 
5: MODEL small 
6: STACK 256 
7: 
8: STAUC Date 
9: day db 

10: month db ? 
11 : year dw 1991 
12: ENDS Date 
13: 
14: STAUC CityState 

-- by Tom Swan" 

Day--default value = 1 
Month--no default value 
Year--default value 1991 

15: city db '####################' , 0 20 or so chars 
16: state db '##' , 0 2 chars 
17: ENDS CityState 
18: 
19: 
20: DATASEG 
21 : 
22: exCode db 0 
23: 

cominues 

199 



PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Listing 6.1. continued 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31 : 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41 : 
42: 

today 
birthDay 
earthDay 
new Year 

address 
glitterTown 
pennState 
hotSpot 
defaultState 
defaultCi ty 

CODESEG 

Start: 
mov 
mov 

Date 
Date 
Date 
Date 

CityState 
CityState 
CityState 
CityState 
CityState 
CityState 

ax, @data 
ds, ax 

<> 
<8,8,1988> 
<1,1,2001> 
<, ,1990> 

<> 
<'Hollywood', 'CA'> 
<'Pennstate', 'PA'> 
<'Brownsville', 'TX'> 
<,'NHI> 
<'New York City'> 

Initialize OS to address 
of data segment 

43: ; Note: run in Turbo Debugger--program doesn't do anything 
44 : 
45; Exit: 
46; 
47: 
48: 
49: 
50: 

mov 
mov 
int 

END 

ah, 04Ch 
aI, [exCode J 
21h 

Start 

Running the STRUC Demo 

DOS function: Exit program 
Return exit code value 
Call DOS. Terminate program 

End of program I entry point 

You should have assembled STRUC and loaded the code into T mbo Debugger. Follow these 
suggested experimenrs to see how structured variables are stored in memory: 

1. Press the Alt-V and V keys to select the View:Variables command. A window will 
pop into view, listing all the program's variables by name. 

2. Press Tab to move the selection bar into the variable list, and then press the down 
arrow key to move the bar to "today," Notice the field values listed in braces to the 
right of the field names, giving you a quick glance of the data stored in the struc
tured variables. 

3. Press Ctrl-I to inspect the today variable. (You can also press F5 at this point to 

zoom the small window to full screen for a less constricted view.) Turbo Debugger 
lists each field on a separate line, using the names from the STRUC definition and 
showing you the actual values stored in memory. Because db can reserve space for 
both ASCII characters and bytes, the debugger shows these values both ways. JUSt 
ignore the characters for noncharacter byte fields. Integer values are shown in 
decimal and hexadecimal in parentheses. 

4. Press Alt-F3 or Esc to close the inspection window. Move the selector bar down to 
200 the next variable (birthDay) and press Enter-a shorthand method to display an 



COMPLEX DATA STRUCTURES 

inspection window. Compare the listed field values with those in the program at 
line 25. Press Alt-F3 or Esc and repeat these same steps for the remaining two dates 
at lines 26-27. 

5. Lines 14-17 declare another structure CityState, with two string fields city and 
state. So that you can see the default values in Turbo Debugger, these strings are 
preinitialized to hatch marks. Normally, you'd initialize string values with less 
obtrusive symbols such as blanks or nulls. Starting again from the Variables win
dow, move the selector bar to address and press Enter. 

6. The two default fields are now displayed in the inspection window. The bottom of 
this window tells you the type and size of the structure and individual fields. Use the 
cursor keys to move the selector bar to one field (watch how the bottom line 
changes) and press Enter again. This opens up a new inspection window, allowing 
you to view the individual bytes in a field variable. Move the selector bar down to 
any single byte and press Enter one more time to open yet another inspection 
window, this time showing the address of an individual byte. Being able to step 
down into the byte values of a structured variable is one of Turbo Debugger's best 
features for assembly language programming, where finding data structures in 
memory can sometimes be extremely frustrating. 

7. Press Esc several times until only the Variables window is again active (with double
line borders). Move the selector bar down to the next variable value pennState, and 
press Enter. Zoom to full screen with F5. Compare the displayed strings with the 
defaults at line 3l. Notice that only the leading portion of the string field is replaced 
by the text in the angle brackets. The rest of the string is padded (filled) with the 
default characters from the STRUC definition. 

8. Lines 15 and 16 declare this structure's fields as ASCIIZ strings, ending in null 
characters. But, on your display, the nulls appear to be missing. The reason for this 
discrepancy is that Turbo Debugger displays only the initial field value. To prove 
that the nulls are still where they should be, move the selector bar to city and press 
Enter. Then press the PgDn key until the bar rests on the final byte of this field (at 
line 19). Press Enter again and jot down the address (6C89:0060 for me). Press Esc 
twice, then select the state field. Press Enter. The address on my screen is 
6C89:0062-indicating that there is an invisible byte at 6C89:061. We've found 
the null! 

9 . To see the nulls in the string variables, press Esc several times to return to the 
Variables window. Press Alt-V and D to select the View:Dump command. Press 
Ctrl-G and enter the string address from step 8-6C89h:0060h for me. You must 

type the small h letters after the segment and offset address values. Press F5 to zoom. 
You are now looking at the structured variable values as stored in the program's data 
segment. Try to pick out the nulls, which separate the individual string fields. 

201 



202 

I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

10. There's no need to run this program-it doesn't do anything beyond showing you 
how structures are assembled. When you're done experimenting, press Alt-X to 
return to DOS. 

As you can see from these notes, string fields in structures are fixed-length items. The hatch 
marks (#) in the default values at lines 15-16 are replaced by new values assigned in the angle 
brackets at lines 29-34. Turbo Assembler in Ideal mode fills the rest of the string with the 
default characters in the structure definition. (In MASM mode, any remaining characters 
are magically changed to spaces-even if this isn't what you want. Ideal-mode structures are 
much easier to use.) In Turbo Debugger, you can normally see only the first of a list of val
ues declared in db and dw directives. To see each value, you could modify the CityState struc
ture defini tion at lines 14-17, placing each field value on separate lines: 

STRUC CityState 
city db 'NN##################' 
cnull db 0 
st at e db • ## ' 
snull db 0 

ENOS CityState 

Because of the additional fields that now reserve bytes for the string null terminators, you 
also have to modif)' the variable declarations at lines 29-34, adding new values for each field. 
If you don't do this, you'll receive an "override» error during assembly, which happens when 
you try to override a default value such as a single byte with a multiple-byte string. Change 
lines 29-34 as follows, reassemble, and inspect the new variables with Turbo Debugger: 

address 
glitterTown 
pennState 
hotSpot 
defaultState 
defaultCity 

Citystate 
CityState 
CityState 
CityState 
CityState 
CityState 

<> 
<'Hollywood' ,0, 'CA' ,0> 
<'Pennstate' ,0, 'PA' ,0> 
< 'Brownsville' ,0,' TX' ,0> 
<}) I NH '> 

<'New York City'> 

Using Structured Variables 
Using the fields in a structured variable is only a little more difficult than using simple vari
ables, as explained in Chapter 5. All of the same addressing modes are available. Because field 
names are contained by the structure definition, to refer to an individual field, you must 
write both the structure and the field names, separating the rwo with a period. Refer back to 

Listing 6.1. To assign a new value to the day field in today, you can assign an immediate 
value to a field in memory with: 

mov [today.day], 5 j Change day to 5 

You can also load field values into registers as in this instruction, which reads the year into ax: 

mov ax, [today.year] ; Get year into ax 



COMPLEX DATA 

Other variations are possible. You can add, subtract, read, write, and logically combine fields 
and registers. Remember that in all cases, you have to give both the structure and variable 
names so the assembler can generate the correct address to your fields. Here are a few more 
examples: 

inc [earthDay.dayj 
add [newYear.year] , cx 
cmp [today.month], 8 

NOTE 

Add 1 to day field 
Add ex to year field 
Does month 87 

In Turbo Assembler's Ideal mode, field names are local and unique to the structure in which 
the fields are defined. This means you can create multiple STRUC definitions with the same 
field names. For example, you might have two different structures each of which contains 
day, month, and year fields. You can't do the same in the more restrictive MASM mode, where 
all field names are global-meaning that one name can appear in only one structure 
definition throughout a program. For this reason, in MASM mode, you can't have two 
structures such as Customer and Personal with Name fields-you instead have to invent unique 
field names such as Cname and Pname. In Ideal mode, structures are much easier to use, 
although, because field names might be nonunique, you must write both the structure and 
field names separated by periods for all references. 

STRIO Structures 
In Chapter 5, I promised to explain the StrBuffer structure at lines 18-22 in STRIO.ASM, 
Listing 5.2. For reference, that data structure is repeated here: 

BufSize EQU 255 
STRUC StrBuffer 

maxLen db BufSize 
strlen db 0 
chars db BufSize DUP (7) 

ENDS strBuffer 

Maximum string size 

Maximum buffer Length 
String Length 
Buffer for StrRead 

BufSize is an equate equal to 255, the maximum-length string that DOS can read. The 
StrBuffer structure uses this value to declare three fields in the form required by DOS func
tion OAh that reads strings from the standard input file (usually the keyboard). St rRead calls 
this routine to let you enter strings into variables. (See lines 39-78 in Listing 5.2.) This raw 
input is then converted to ASCIIZ format for use with routines in STRINGS, STRIa, and 
other modules in this book. 

Line 27 in Listing 5.2 declares a variable buffer of the StrBuffer structure, using the default 
values in the structure definition. StrRead passes the address of this variable to DOS, which 
handles all the keyboard-processing details, limiting the result to the maximum length specified 
in field maxLen, storing the actual string length in field strLen, and inserting characters (if 
any) into field chars. 203 



204 

PART I"., PROGRAMMING WITH ASSEMBLY LANGUAGE 

Because StrRead calls DOS for input, you can edit your typing with the same function keys 
you are accustomed to using at the DOS prompt. 

When you are done typing, pressing Enter causes DOS to set field strLen to the number of 
characters you typed. DOS also adds an ASCII carriage return to the end of the string. Be
cause this is the wrong terminator for the ASCIIZ format, lines 66-68 in StrRead replace the 
carriage return with an ASCII null before copying the string ro the program's variable (lines 
69-70). 

Notice how the program refers to string fields at lines 62, 64, 67, 68, and 69 using both 
direct- and base-addressing modes. In each case, the structure name is followed by a period 
and a field name. Line 62 srores the value of cl into the maxLen field of buffer. Line 64 shows 
how to find the offset address of a specific field maxLen. Line 68 adds the value of register bx 

to the start of the chars field, locating the address of the carriage return stored in chars. 

More About Numeric Variables 
In assembly language programs, you can represent values in hexadecimal, binary, or deci
maL But, because the three number systems share the same digit symbols, you have to tell 
the assembler which number system you mean. To the end of your numbers, add a b for 
binary and an h for hexadecimal. Add nmhing or d for decimal, [he usual default for all 
numbers. For example, these variables represent the same values in the three number bases: 

v1 dw 0100111101011100b 
v2 dw 04F5Ch 
v3 dw 20316 
v4 dw 20316d 

Binary 
Hexadecimal 
Decimal (default) 
Decimal 

Notice that the hex value (04F5Ch) begins with a leading O. This 0 is required only if the 
first digit is A-F as in the value OFACEh. Even so, it's not a bad idea to include the 0 any
way-if only to be consistent. Hex values must begin with decimal digits because the assem
bler can't know whether FAGEh is a label or a value. As a result, you must observe one strict 
rule when writing numeric values: The first digit of all values in any base must be a digit
o or 1 for binary; 0 to 9 for decimal and hex. Adding a leading 0 to hex value satisfies this 
rule. 

Using RADIX 
Unless you end a number with b or h, Turbo Assembler assumes the value is decimal. To 
change this default behavior, use the RADIX directive. (Radix means "number base.") For 
example, to make hexadecimal the default radix, use the command: 

RADIX 16 ; Default radix is hexadecimal 



For most purposes, it's probably best to stick with the assembler's default decimal radix and 
use hand b to specifY your hexadecimal and binary values. If you forget to change the RADIX 

to hexadecimal in a new program, you could easily mistake 100 for 256 decimal. There's 
just no mistaking 0 lOOh as a hexadecimal value. 

NOTE 

The value following RADIX is always expressed in decimal and must be 2 (binary), 8 (octall, 
10.(decimal), or 16 (hexadecimal) regardless ofthe current radix in effect. Also, if you change 
the default radix, remember to end every decimal value with d. 

Signed and Unsigned Integers 
When declaring values with db and dW, be aware of the differences between signed and un
signed values, as explained in Chapter 3. Unlike high-level languages, assembly language 
enforces no limits on signed number ranges; therefore, as long as the value you specifY fits 
within the space you allocate, the assembler accepts your every wish and command. For ex
ample, you can write: 

v1 dw 32768 
v2 dw -32768 
v3 dw -1 
v4 dw 65535 

08000h 
08000h 
0FFFFh 
0FFFFh 

When Turbo Assembler stores these values in memory, the results may not be what you expect. 
Variable v1 is stored as the unsigned value 32,768 or 08000h. (Note: Commas are used in 
numbers here to make them easier to read. You can't add commas to numbers in programs.) 
Notice that this value is identical to the signed value -32,768-at least it is in the world of 
fixed-length binary values in computer memory. Similarly, -1 and 65,535 both assemble to 
the identical value OFFFFh. As this demonstrates, even though the allowable range of values 
is -32,768 to +65,535, values from -32,768 to -1 and from 32,768 to 65,535 are represented 
identically in binary. A thorough understanding of binary representations and two'S comple
ment notation is the best way to avoid confusion with these idiosyncrasies of assembly lan
guage programming. 

Floating-Point Numbers 
You can also declare floating-point numbers with the dt directive, which reserves 10 bytes of 
memory, much the same as dw reserves 2 bytes. The result of dt with a floating-point value 
is a binary 10-byte real number in standard IEEE (Institute for Electrical and Electronic 
Engineers) format. These values are compatible with the format used by 8087,80287, and 
80387 numeric coprocessors. You can also exchange floating-point values in your assembly 
language programs with most high-level languages to process floating-point expressions. 

205 



206 

KV~IK"",1MIr'\.i WITH ASSEM8l y LANGUAGt 

Without a subroutine package [Q display and process floating-poinr values in assembly lan
guage, floating-poinr values are difficulr to use. To declare a floating-poinr number, use dt 

this way: 

fp dt 3.14159 4000C90FCF80DC33721Dh 

Binary-Coded Decimals 
Another use for dt is to declare packed binary-coded-decimal (BCD) numbers. These values 
are useful especially in business calculations where large numbers are frequently required 
bur where the round-off errors possible with floating-point values are unacceptable. BCD 
values take more room (10 bytes each) and require more time to process than byte and word 
integers, so you won't use this format except in special cases. (Chapter 11 describes BCD 
numbers in detail.) To declare a packed BCD value, use the same dt directive as for floating
point values, but don't use a decimal point. For example: 

bed1 
bed2 
bed3 

dt 
dt 
dt 

1234 
9876543210 
250000 

Each of these declarations reserves 10 bytes of memory, storing the initialized value with 2 
digits per byte. In other words, a BCD value can have up to 20 digits. Values are stored in 
reverse order, so that the previous examples appear in memory with each digit assigned to a 
4-bit nybble in the byte: 

nnnn:0000 34 12 00 00 00 00 00 00 00 00 
nnnn:0000 10 32 54 76 98 00 00 00 00 00 
nnnn:0000 00 00 25 00 00 00 00 00 00 00 

Arrays in Assembly language 
There are no native commands, structures, or methods for declaring and using arrays in as
sembly language programs. In high-level languages such as Pascal and C, you can declare 
arrays and then refer to array items with an index variable. For example, a Pascal program 
might declare an array of ten integers, indexed from 0 to 9: 

VAR intArray : ARRAY! 0. 9 I OF Integer; 

In the program, statements can then refer to the array, perhaps using an index variable for a 
FOR loop to assign values to each array position: 

FOR I := 0 TO 9 DO 
intArray [ I I : = I; 

For those who are not familiar with Pascal, this statement assigns the values 0 through 9 to 

the ten arrayed integers. C and BASIC programmers have similar ways to create and use arrays. 
In assembly language, managing arrays is a little more difficult, but also more flexible 



because it is up to you to write the code to access array values. One way to create an integer 
array, for example, is to use the DUP operator: 

anArray db 10 DUP (7) ; Array of 10 integers 

You can also define ten values in sequence, declaring and initializing the array in a single 
step: 

anArray db 0, 1,2, 3, 4, 5, 6, 7, 8, 9 

Arrays of other structures such as strings and STRUC variable take more effort. For instance, 
suppose you need an array of four 20-byte strings. Because this array is so small, you may as 
well use four separate variables: 

anArray db 
db 
db 
db 

20 DUP (7), 0 
20 DUP (7), 0 
20DUP (7), 0 
20 DUP (?), 0 

anArray[0] 
anArray[l] 
anArray[2] 
anArray[3] 

The four variables are stored consecutively in memory; therefore, the same four 20-byte strings 
(plus 1 byte for the string terminator) can be accessed as individual variables or as a structure 
of four arrayed strings. Unless you love ryping long programs, this approach may be imprac
tical for creating large arrays. Consider how you might create space for one hundred 20-byte 
strings. Using two new directives LABEL and REPT, you can write: 

LABEL 
REPT 

anArray 
100 

db 20DUP (7), 0 
ENOlA 

Byte 

The first line declares the label anArray of type Byte. Other rype names you can use here are 
Word, Dword, Fword, Pwo rd, DataPt r, Oword, and Tbyte. Or you can use a structure name. The' 
LABEL directive tells the assembler how to address the data that follows-it doesn't reserve 
any memory space. In this example, the data that follows are strings, which are always ad
dressed as single bytes. The REPT (Repeat) command repeats any assembly language state
ment for a certain number of times, here 100. Everything between REPT and ENDM (End Macro) 
is repeated as though you had typed this line so many times. (The ENDM command also ends 
macro definitions, a subject for Chapter 8.) 

One useful trick is to change the declaration each time in the definition. For example, to 
create an array of ten integers and assign the values 0 through 9 to each array position, you 
can use this declaration: 

value 0 
LABEL anArray Word 
REPT 10 

dw value 
value = value + 1 

ENDM 

207 



208 

PART I... PROGRAMMING WITH ASSEMBLY LANGUAGE 

The result is an array of Word integers with the values 0,1,2,3,4,5,6,7,8 and 9. The 
numeric value equate is initialized to O. As you recall from Chapter 5, symbols defined with 
equal signs can be redefined later-the key to this method. Inside the REPT definition, a dw 
directive defines one word of memory equal to value. After this, value is increased by 1 for 
the next pass. Remember that expressions such as value" value + 1 are evaluated at assem
bly time and that all the actions just described take place during assembly-not when the 
program runs. The result is an array of ten words initialized to successive values. No code is 
generated by these commands. 

Turbo Debugger's Variables window is unable to show all elements of arrays declared with 
REPT directives as demonstrated here. To see the array, use the View:Dump commands to 
view memory starting at the array's address. 

Changing Types with LABEL 
The LABEL directive is used most often to assign two or more labels of different types to the 
same data in memory. With this technique, you can read and write variables as bytes in some 
instructions but as words (or other types) elsewhere. The directive has three parts: 

LABEL identifier type 

The identifier is treated the same as any other label. The type can be near, far, proc, byte, 
word, dword, fword, pword, dataptr, qword, or tbyte. The type can also be the name of a STRUC 

data structure. Using LABEL, you can declare a value as two bytes, but view the value as a 16-
bit word: 

LABEL ByteValue byte 
WordValue dw 01234h 

The hexadecimal value 01234h is labeled as WardValue and declared as a 16-bit word with 
dw. But the preceding LABEL creates a second byte label ByteValue, which addresses the same 
value in memory. This lets you write instructions such as: 

mov ax, [Wordvalue] 
mov bl, [ByteValue] 
mav bh, [ByteValue + 1] 

Get full 16-bit value 
; Get a-bit LSB 
; Get a-bit MSB 

The first mov loads the full 16-bit value, setting ax to 0 1234h. The second mav loads only the 
first 8 bits of this same value, setting bl to 034h. The third mav loads the second 8 bits, set
ting bh [0 Ol2h. Thus, the final two instructions set bx to the same value as ax. (Remember 
that words are stored in byte-swapped order-the value 0 1234h is stored in memory as the 
two bytes 034h and 012h.) 



·~I 

COMPLEX DATA STRUCTURES 

Using LABEL to assign labels of different types to variables is even more useful for addressing 
structures as collections of typed fields, but also as streams of 16-bit words. Using the Date 

structure from the beginning of this chapter, you could write: 

LABEL OayMonth word 
oneoay Date <> 

OneDay is a single structured variable of type Date. The label DayMonth addresses this same 
memory but considers the data to be of type word. In the program's code, you can refer to 

the first two fields in OneDay normally as One Day . day and OneDay. month. Or, because of the 
additional label, you can load these two byte fields directly into one 16-bit register: 

moy ax, [OayMonthl 
moy aI, [OneOay.day] 
moY ah, [OneDay.monthj 

; load day and month into ax 
j load day into ah 
; load month into al 

The first may performs the identical function as the last two may instructions. Sometimes, as 
this shows, using LABEL can help cut out an instruction or two, and, if that instruction is 
repeated often, this will also improve program performance. 

Indexing Arrays 
Now that you know how to declare arrays, the next step is to investigate ways to read and 
write arrayed values. For example, how do you refer to item number 5? The key to the an
swer is in realizing that array indexes in assembly language are simply addresses-as are all 
references to variables; therefore, regardless of the type of data stored in an array, the goal of 
indexing individual values reduces to these two steps: 

• Multiply the size of the array elements by the array index I 

• Add the result to the array's base address. 

For example, in a simple array of bytes, if lis 0, then I x 2(0) plus the address of array locates 
the first value at array!Oj. The second value (array!l]) is located at the base address of array 
plus 1, and so on. As Figure 6.1 shows, the goal is to convert array index values such as these 
to addresses in memory. Index 0 is equivalent to the address, OOOD-the same as the base 
address of the entire array. Index 1 corresponds to OOOE; index 2, to OOOF; on down to index 
9, which locates the value at offSet 0016. A real-life example will help make this process clear. 
Byte arrays are the easiest to manage, so let's take those first. To load into al the 64th ele
ment of a IOO-byte array, you can write: 

DATASEG 
anArray db 100 DUP (0) 
COOESEG 
mav aI, [anArray + 63] 

209 



210 

PART I.. PROGRAMMII'<G WITH ASSEMBLY LANGUAGE 
L-~. ___ .. ______ .~~_ .. ___ .. __ .. ____________ _ 

Figure 6.1. 
A simple army of bytes as 
the)' might appear ill 
JlltJJW/J" 

Addresses 

0000 

OOOE 

OOOF 

0010 

0011 

0012 

0013 

0014 

0015 

0016 

Low Memory 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

High Memory 

Indexes 

.....- [0] 

.....- [1] 

I .....- (2] 

i .....- [3] 

.....- [4] 

.....- [5] 

.....- [6] 

.....- [7] 

.....- [8] 

.....- [9] 

The 63 in this example is correct because the first array element is at offset O. An index of 64 
would incorrectly locate the 65th item in the array, not the 64th. When calculating array 
indexes, you'll avoid much confusion and frustration if you always remember that the index 
range for an array of 100 items is 0 to 99, not 1 to 100. 

Adding literal values like 63 as in the previous example doesn't allow for much flexibility. In 
most situations, you'll use a register or memory variable to hold the array index. Using the 
base-addressing mode introduced in Chapter 5, you might store an array index value in reg
ister bx. For example, suppose you have a variable named index and you want to load the 
value of anArray [index] into a register. You can write: 

OATASEG 
index 
anArray 
CODESEG 

dw ? 
db 100 CUP (?) 

mov bx, [index] 
mov al, [bx + anArrayl 

Get index value 
a1 <- anArray[index] 

The two data declarations reserve space for a 16-bit index and a 1 OO-byte uninitialized array. 
In the code segment, the first mav loads the current value of index into bx. The second mav 

adds bx to the base address of the array, locating the correct byte and loading the arrayed 
value into al. You can also use registers s i and di to do the same: 



mav si, [index] 
mav aI, lsi + anArrayj 
mav di, [index) 
mav aI, [di + anArray) 

Get index value 
al <- anArray[index] 
Get index value 
al <- anArray[index] 

COMPLEX DATA 

The top two lines perform the same function as the bottom two. Technically, this is the 
indexed- not base-addressing mode, although, as you can see, there's not much practical dif
ference between the two methods. 

NOTE 

You can also use register bp to address arrays, but remember that this register's default 
segment is ss, not ds, which is the default for bx, si, and di in the base- and indexed
addressing modes. 

Multibyte Array Values 
Array addressing becomes trickier when arrayed values occupy more than I byte. Because of 
the computer's binary nature, calculating the addresses of multibyte array elements is sim
plest when the element sizes are powers of 2. In this case, you can use fast shift instructions 
to perform the initial multiplication of the index times the value byte size. Adding the result 
of this multiplication to the array's base address locates any arrayed value, as the following 
fragment demonstrates: 

DATASEG 
index 
anArray 
CODESEG 

dw 
dw 

? 
100 OUP (1) 

may bx, [index) , Get index value 
shl bx, 1 j bx <- index' element-size (2) 
mav ax, [bx + anArray] ; ax <- anArray[index] 

In this example, the element size is 2 bytes; therefore, the easy (and fastest) way to multiply 
the index value by 2 is to shift the value left 1 bit. Compare Figure 6.2 with Figure 6.1. As 
you can see, addresses to the left increase by 2. The calculate the address of the fifth 2-byte 
array value (at index 4), you first multiply 4 x 2 and add the result to the base address of the 
array to get the final offset value of 00 18h. 

211 



212 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Figure 6.2. Low Memory 

When arrayed element sizes Addresses 
LSB MSB 

Indexes 
are powers of2, translating 

r indexes to offiet addresses is 0010 ~ [OJ 

relatively simple, 
0012 ~ [1 J 

0014 ~ [2] 

0016 ~ [3J 

0018 ~ [4J 

001A ~ [5J 

001C ~ [6J 

001E ~ [7] 

0020 ~ [8] 

0022 ~ [9) 

0024 .......- [10) 

High Memory 

Calculating index addresses when element sizes are not powers of2 requires some fancy foot
work to keep the code running as fast as possible. Of course, you can always use mul to per
form the initial multiplication. Consider an array of elements, each occupying 5 bytes. To 
set bx to the offset address of the element at index requires several steps: 

mov ax, [index) Get index value into ax 
mov bx, 5 Set bx element size 
mul bx dx:ax <- index' element size 
mov bx, ax move result to bx (ignoring dx) 
add bx, OFFSET anArray Set bx <- offset address of element 

Only the LSB of the multiplication is important-the high 16 bits in dx of the full 32-bit 
result are ignored. (Presumably another part of this program checks to be sure that index 

values are within bounds.) The problem with this approach is the mul instruction, which can 
take as many as 118 machine cycles to execute. For this reason, it pays to factor out the pow
ers of2 and use a combination of shifts and other fast instructions to calculate the addresses 
of arrayed values: 

mov bx, [index] Get index value into bx 
mov ax, b~ Save value in ax 
shl bx, 1 bx <- bx * 2 
shl bx, bx <- bx • 4 (total) 
add bx, ax bx <- bx • 5 (total) 
add bx, OFFSET anArray Set bx <- address of element 



COMPLEX 

The comments in this fragment show the running total in bx. First, rwo left shifts multiply 
bx by 4. Adding this result to the original index value completes the full multiply-by-5. 
Obviously, 5 of any value equals 4 of that value plus 1 of that same value. Because 4 is a 
power of 2, the program can perform the first part of the multiplication with fast shift in
structions before completing the result with a simple addition. This entire sequence of in
structions runs many times faster than a single mul instruction. 

Such tricks as these aren't always possible. But, in general, when you can use shifts instead of 
multiplication, the results will be faster. The best approach is to pick array element sizes that 
are powers of 2. When that is impossible, try to find a combination of shifts and other in
structions that will give you the correct result. 

Unions and Records 
Defined with a UNION directive, a union has the identical form as a STRUC structure. Like struc
tures, unions contain named fields, often of different data rypes. The difference berween a 
union and a structure is that union fields overlay each other within the variable. A union 
with three byte fields, in other words, actually occupies only a single byte. As the next ex
ample shows, you can use this feature to construct variables that the assembler can reference 
as containing more than one rype of data, similar to the way you learned how to use LABEL 

earlier: 

UNION 
aByte 
aWord 

ENDS 

ByteWord 
db ? 
dw ? 

ByteWord 

An ENDS directive ends the union. In this example, aByte overlays the first byte of aWard. If 
this were a structure, then aByte and aWard would be stored in consecutive locations. Be
cause this is a union, however, aByte and aWard are stored at the same location in memory. 
Therefore, inserting a value into aByte also changes the LSB of aWard: 

mov [aBytej, bh ; Store bh at aByte and aWord's LSB 

When combined with structures, unions give you powerful ways to process variables. For 
example, Figure 6.3 lists a useful structure and union combination that you can use to refer 
to variables as 16-bit words and as 8-bit byres. 

Figure 6.3. STRUC TwoBytes 
Union with nested loByte db ? 

structures. 
hiByte db 7 

ENDS TwoBytes 

UNION ByteWord 
asBytes TwoBytes <> 

asWord dw ? 
ENDS ByteWord 

213 



214 

I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

The TwoBytes structure defines two byte fields, LoByte and hiByte. The union ByteWord also 
defines two fields. First is asBytes, of the previously defined TwoBytes structure. Next is asWord, 

a single 16-bit word. Variables of type ByteWord make it easy to refer to locations as both 
word and double-byte values without the danger of forgetting that words are stored in byte 
reversed order-a problem with the LABEL method. To use the nested union, first declare a 
variable, in this case assigned the value of OFFOOh. 

DATASEG 
data ByteWord <,0FF00h> 

You can now refer to data as a TwoBytes structure or as a 16-bit word. A short example dem
onstrates how to load the same memory locations into either byte or word registers. Because 
the TwoBytes structure is nested inside the union, two periods are required to "get to" the 
byte fields. Notice how the field names reduce the danger of accidentally loading the wrong 
byte of a word into an 8-bit register: 

CODESEG 
mov 
mov 
mov 

Bit Fields 

ai, [data.asBytes.LoByteJ 
ah, [data.asBytes.hiByteJ 
ax, [data.asWordJ 

Load LSB into al 
Load MSB into ah 
Same result 

Many times in assembly language programming you'll need to examine and change one or 
more bits in a byte or word value. You've already learned several ways to accomplish this 
with logical instructions such as or, and and xor to set and clear individual bits without dis
turbing others. For example, to set bit number 2 in a byte register, you can use the instruc
tion. 

or al, 00000100b 

When doing this, it's often helpful to write out the values in binary-just remember the fi
nal b. As you also learned earlier, and can mask values, setting one or more bits to 0: 

and ai, 11110000b 

Even though writing the values in binary helps to clarify exactly which bits are affected by 
the instructions, you still have to count bits and take time to visualize the results of your 
logic. In complex programs, it's very easy to set or reset the wrong bit-a most difficult bug 
to find. To make processing bits easier, Turbo Assembler offers two devices-the RECORD and 
the MASK. 

Declaring RECORD Types 
RECORD is a directive that lets you give names to bit fields in bytes and words. You simply 
specify the width of each field-in other words, the number of bits the field occupies. T urba 
Assembler then calculates the position of the field for you. For example, this RECORD defines 
signedByte as an 8-bit value with two fields: 



RECORD signedByte sign:1, value:7 

After the RECORD directive comes the record's name, followed by a series of named fields. Each 
field name ends with a colon and the width of the field in bits. The sign field in this example 
is 1 bit long. The value field is 7 bits long. Separate multiple fields with commas. If the total 
number of bits is less or equal to 8, Turbo Assembler assumes the record is a byte; otherwise, 
it assumes the record is a word. You can't construct records larger than a word, although you 
can create multifield structures containing multiple bit fields, which would accomplish the 
same thing. You don't have to specify exactly 8 or 16 bits, although most programmers do, 
inserting dummy fields to flesh out a bit record to account for every bit, whether used or 
not. 

Creating variables of a RECORD type is similar to creating variables of structures and unions. 
In fact, the three forms appear identical, leading to much confusion over the differences 
berween structures and records. A few samples will clear the air: 

DATASEG 
v1 
v2 
v3 
v4 
v5 

signedByte 
slgnedByte 
signedByte 
signedByte 
SignedByte 

<> 
<1> 
<,5> 
<1,127> 
<3,300> 

default values 
sign = 1, value default 
sign - default, value = 5 
sign = 1, value = 127 
sign 1 I value = 44 

A record variable declaration has three parts: a label, the RECORD name, and rwo angle brack
ets with optional values inside. The first sample declares v1 as a variable of type signedByte. 

Because no values are specified in brackets, the default values for all bit fields are used. (In 
this case, the defaults are O. In a moment, you'll see how to set other defaults.) The second 
sample sets the sign bit of v2 to 1, leaving the value field equal to the default. The third line 
sets value to 5, letting the sign field assume the default value. The fourth line assigns values 
to both fields in the variable, setting sign to 1 and value to 127. The fifth line shows what 
happens when you try to use out-of-range values such as 3 and 300. In this case, the actual 
values inserted into the record equal the attempted values modulo (division remainder) 2", 
where n equals the number of bits in the field. 

Setting Default Bit-Field Values 
Normally, the default field values in RECORD variables are O. To change this, add to the field 
width an equal sign and the default value you want. For example, to create a RECORD with an 
MSD default of 1 and a second field defaulting to 5, you can write: 

RECORD minus Byte msign:1 = 1, mvalue:7 5 

Declaring a variable of this type with empty angle brackets sets the msign field to 1 and the 
mvalue field to 5. Specifying replacement values in brackets as explained before overrides these 
new defaults. Notice that different field names are used here. Even though the names are 
contained in the RECORD defInition, Turbo Assembler considers these names to be global
active at all places in the program or module. Therefore, you must use unique field names 
among all your RECORD definitions in one module. 215 



216 

NOTE 

Unlike RECORD field names, STRUC and UNION field names are not global. You can reuse 
structure and union field names for other purposes, but not record field names, which must 
be unique throughout the program. Perhaps a future release of Turbo Assembler will remove 
this inconsistency and make RECORD field names local to the record. At present, this is not the 
case. 

Using RECORD Variables 
After declaring a RECORD type and a few variables of that type, you can use several different 
methods to read and write bit-field values in those variables. To demonstrate how to do this, 
we first need a new RECORD type: 

RECORD person sex:1 ,married:1,children:4,xxx:1 ,age:7,school:2 

RECORDS like this one can pack a lot of information into a small space. In this example, only 
16 bits are needed to store five facts about a person-with field sex equal to 0 for male and 
1 for female, married equal to 0 if false or 1 if true, children ranging from 0 to 15, a I-bit 
dummy field xxxx reserved for future use, an age field ranging from 0 to 127, and school 

from 0 to 3, representing four levels of a person's schooling. Figure 6.4 illustrates how these 
fields are packed into one 16-bit word. As with all 16-bit values, the two 8-bit bytes of this 
variable are stored in memory in reverse order, with bits 0-7 (LSB) at a lower address than 
bits 8-15 (MSB). 

What's in a Field Name? 
Turbo Assembler converts bit-field names into the number of right shifts required to move 
the field to the rightmost position in the byte or word. The value is equal to the byte or word 
bit position of the least significant digit for this field. Referring to the person record, then, 
sex = 15, married", 14, children", 10, xxx = 9, age 2, and school = O. (See Figure 6.4.) 
You can use these field name constants as simple EQU equates. Normally, though, you'll 
use the values to shift bit fields into the rightmost position in a register, making it easy to 
process individual field values. The process works in reverse, too. If the children bit-field 
value is already in the rightmost position of ax, shifting ax left by the value of children moves 
the bit-field value into its proper position, ready to be packed into the record. 

Figure 6.4. 
A record packed with six 
bit fields stores a tot of 
information itl a smlltt 
space. 

15 14 13 12 11 10 9 B 7 6 5 4 3 2 0 

11111111111111111 
I I I 
sex:1 I children:4 xxx:1 age:7 school:2 

married: 1 



Using field names instead of manually counting bits saves time and helps prevent bugs. For 
example, to increment the age field, you can shift the appropriate bit-field value to the 
rightmost position in a word register, increment the register, and then shift the result back 
into position. Before doing this, however, you must strip out other bits from the variable. 
To help with this step, Turbo Assembler provides an operator called MASK, which takes the 
name of a bit field and generates an appropriate and mask with bits equal to 1 in all positions 
for this field. A good way to organize your masks is to use names similar to the associated 
fields: 

maskSex 
maskMarried 
maskChildren 
maskAge 
maskSchool 

MASK sex 
MASK married 
MASK children 
MASK age 
MASK school 

Each new identifier-for example, maskSex and maSkMarried-is assigned a mask for each 
bit field (except for xxx, which we'll just ignore). The names make the purpose of the various 
symbols easy to remember, although you can use whatever names you like. You don't have 
to preface the identifiers with "mask." With the bit-field names and masks, it's easy to iso
late and process bit-field information without having to calculate the positions of fields in 
records. An example explains how this works. First, declare a variable named subject of type 
person: 

DATASEG 
subject person <> 

Then, to set single bit fields to 1, use or to combine the mask with the record's current value: 

CODESEG 
or [subject), maskSex ; Set sex field 
or [subject), maskMarried ; Set married field; 1 

To reset single-bit fields to 0, use the NOT operator along with the bit mask, toggling all bits 
in the mask. The following shows two ways to proceed: 

and [subject), NOT maskSex 
mov ax, [subject) 
and ax, NOT maskMarried 
mov [subject), ax 

Extracting Bit Fields 

Change sex field to 0 
Load subject into ax 
Change married field to 0 
Store result back in memory 

For bit fields of more than 1 bit, the process is similar but requires additional steps to isolate 
the values. There are several possible methods you could use, but these steps always work: 

1. Copy the original variable into a register 

2. AND the register with the field mask 

3. Shift the register right by the field-name constant 

217 



218 

After copying the variable into a register (either 8 or 16 bits wide, depending on the variable's 
size), step 2 isolates the field's bits, stripping other fields out of the record, thus setting all 
other bits but those in the desired field to O. Step 3 then shifts the isolated field bits to the 
rightmost position in the register. To add a new member to our subject's family, use these 
steps: 

mov ax, [subject] 
and ax, maskChildren 
mov cl, children 
shr ax, cl 
inc ax 

Step l--copy the variable 
Step 2--isolate the bit field 
Prepare shift count 
Step 3--shift field to right 
Add 1 to number of children 

The mov and and instructions copy the subject variable into ax and strip other fields out of 
the value, leaving only the bits that apply to children. After loading the shift count into cl, 
the shr instruction shifts the children field to the far right of ax, preparing for inc to incre
ment this value. If the children field was already rightmost in the variable-making the shift 
count equal to O-the shift instructions can be skipped. For example, you could write: 

@@10: 

mov 
or 
jz 
shr 

cl, children 
cl, cl 
@@10 
ax, cl 

inc ax 

Move shift count into cl 
Is count = 07 
Jump if yes, cl = 0 
Else shift ax, cl times 

Add 1 to number of children 

A bener approach is to use a conditional IF directive, which Chapter 8 explains in more detail. 
This lers the assembler, rather than the program, decide whether shifting is required. After 
completing steps 1 and 2 to copy and mask the record variable, the following instructions 
shift the result right only if the children constant is greater than 0: 

IF children aT 0 
mov cl, children Move nonzero count into cl 
shr ax, cl Shift ax, el times 

ENDIF 
inc ax Add 1 to number of children 

If the expression in the conditional IF is true, then Turbo Assembler assembles the code up 
to the next ENDIF directive. If the expression is false, then the code is ignored. This method 
eliminates the unnecessary comparison, jump, and shift instructions of the previous tech
lllque. 

Recombining Bit Fields 
After extracting a bit field and processing its value, you now need a way to insert the result 
back into a record variable. Assuming the result is rightmost in a register, follow these four 
steps: 

1. Shift the register left by field-name constant 

2. AND the register with the field mask 



3. AND the original value with NOT field mask 

4. OR the register into the original value 

Step 1 shifts the value into its correct position, again using the field name as the shift count 
but this time shifting left instead of right. Step 2 is an optional safety valve, which limits the 
new value to the field's width in bits. If you are positive that the new field value is within the 
proper range, you can skip this step. But any out-of-range values-accidentally giving our 
subject the burden of 45 children, for example-can change the values of other fields. For 
this reason, it's a good idea to mask the new value this way before combining the value back 
into the original variable. Step 3 complements step 2 by setting all bits of the field in the 
original value to O-in a sense, punching a hold in the original value like a cookie cutter 
punching OUt a circle in dough. Step 4 then Ors the new value into this punched-out hole, 
completing the process. 

To demonstrate these four steps in assembly language, the following code fragment moves 
the children field (now rightmost in register ax) back into the sub j ect variable: 

mov cl, children 
shl ax, cl 
and ax, maskChildren 
and [subject), NOT maskChildren 
or [subject], ax 

Move shift count into cl 
Step l--shift into position 
Step 2--Limit value 
Step 3--punch a hole 
Step 4--drop value into hole 

As with the previous steps that extract a bit field, you can use a conditional IF directive to 
skip the shift if children", 0, indicating that this field is already rightmost in the variable. 
Also, you can eliminate the first and if the result cannot possibly be larger than I5-the 
maximum value that the 4-bit children field can express. 

Putting the extraction and recombination steps together, here's another example that adds 
10 to our sUbject's age field: 

mov ax, [subject] Copy the variable into ax 
and ax, maskAge Isolate the age field 
mov cl, age Prepare shift count 
shr ax, cl Shift age field to right 
add ax, 10 Age 10 to SUbject's age 
shl ax, cl Shift age back into position 
and ax, maskAge Limit age to maximum range 
and [subject], NOT maskAge Punch a hold in (zero) age field 
or [subject] , ax Drop new age value into hole 

Many programmers avoid using RECORD bit fields, probably because they do not understand 
the techniques. This fact is evident from the many assembly language programs that declare 
fixed constants for shift values and masks, making the code much more difficult to modifY. 
If you take the rime to learn how to use RECORD and MASK, defining your packed records as 
described here, you'll be able to write programs that automatically adjust for new situations
a change to the number of bits in the school field or a newly found uses for the reserved xxx 
single-bit field. You can also change the default values assigned to fields without having to 

219 



220 

I.. PROGRAMMING WITH ASSEMBLY LANGUAGE 

hunt through a lot of cryptic statements, making changes to programs that don't need fix
ing! Just change your RECORD definitions, and you're done. The same advantages apply to 
STRUC and UNION, which help take much of the complexiry out of working with complex data 
structures. 

Efficient Logical Operations 
The saying "There's always room for improvement" is especially true in assembly language. 
One improvement that's often missed is the replacement of word-based instructions for 
shorter, and potentially faster, byte-based instructions that perform identical jobs in certain 
situations. 

For example, when testing a bit in a record, or when setting or exclusive-ORing bits, it's 
possible to use a byte-based instruction even when operating on a 16-bit word value when 
the target bit is in the low-order portion of the word. An example will help clarifY the prob
lem and its solution. Consider the following bit-field record: 

RECORD BitRec b0:1, bl:4, b2:3, b3:7 

Logical and, or, test, and xor instructions can manipulate bits in BitRec record variables by 
refening to the b0, b1, b2, and b3 labels. You can, for instance, set bit b2 in the ax register 
with the instruction: 

or ax, b2 

When assembled, this generates a word-based instruction that takes three machine code bytes: 

00 07 00 

That same instruction, however, is more efficiently coded as follows, which performs the 
identical job and has the same effect on processor flags: 

or aI, b2 

When assembled, this instruction takes only two machine code bytes: 

0C 07 

Even though the variable is in the 16-bit register ax, an 8-bit instruction that refers to the 8-
bit low-order byte register al has the identical effect. 

Automating Efficient logical Operations 
To automate the selection of efficient logical instructions, Turbo Assembler 3.0 and later 
versions provide four pseudo instructions: SETFLAG, MASKFLAG, TEST FLAG, and FLIPFLAG. With 
them, the assembler can choose the most efficient forms of logical instructions automati
cally. For example, the assembler replaces this instruction: 



SETFLAG ax, b2 

with the more efficient: 

or aI, 07 

rather than the equivalent, but less efficient, instruction that might appear to be necessary: 

or ax, b2 

The following code snippet shows how to use the pseudo instructions. Comments show the 
assembled code. For example, in the first line, the SETFLAG instruction is encoded as a byte
based logical or instruction. The equivalent, but potentially inefficient, instruction follows 
on the second line. Notice that in the case of logical and, in this example, a byte-based in
struction replacement is not possible: 

SETFLAG ax, b2 or aI, 07 0C07 
or ax, b2 or ax, 0007 0D0700 
MASKFLAG ax, b2 and ax, 0007 250700 
and ax, b2 and ax, 0007 250700 
TESTFLAG ax, b2 test al, 07 AB07 
test ax, b2 test ax, 00007 A90700 
FLIPFLAG ax, b2 xor aI, 07 3407 
xor ax. b2 xor ax, 0007 350700 

Automating Record Field Operations 
Turbo Assembler 3.0 and later versions provide two addi tional pseudo instructions, SETF I ELD 
and GETFIELD that greatly simplifY working with bit-field records. Before using them, you 
should be familiar with the discussions in this chapter on using record variables along with 
MASK values to set and retrieve bit values packed into bytes and words. 

A few examples show how these new instructions can simplify the steps for inserting and 
extracting person record fields. So you don't have to flip pages, here is the record declaration 
again: 

RECORD person sex:1, married:1, children:4. xxx:1, age:7, school:2 

As you learned, it takes a combination of shift, rotate, and logical instructions to set and 
retrieve values in person record fields, but Turbo Assembler 3.0 and later versions can create 
the necessary instructions for you. For example, first prepare a register to hold a person record: 

xor ax. ax ; Clear person record 

That simply clears register ax to zero. To insert a value into the record's children field, first 
assign the value to a register (bl here), and use SETFIELO as follows: 

mov bl, 3 Move no. children to bl 
SETFIELD children ax. bl ; Set children field in ax 

221 



222 

The second line inserts the value of bl into ax without disturbing other bits in ax . To do that, 
Turbo Assembler writes the following logical operations in place of the SETFIELD pseudo 
instruction: 

rol bl, 02 
or ah, bl 

The first instruction rotates the children value len two positions, and the second instruc
tion logically ORs that value into ax. The assembler also chooses a more efficient byte-form 
of the logical or rather than operating on the full 16-bit word. 

You can use SETFIELD similarly to insert values into any record field-an age value, for ex
ample: 

mov bl, 43 ; Move age to bl 
SETFIELD age ax, bl ; Set age field in ax 

This generates another set of rotate and logical operations to insert into ax an age value from 
bl, without disturbing other record fields. 

To extract bit-field values from records, use GETFIELD. For example, the following instruc
tion sets bl to the number of children in the person record held in register ax: 

GETFIELD Children bl. ax ; Get children into bl (destroys bhl) 

Assuming the preceding SETFIELD instructions were executed, this sets bl to 03. In place of 
the pseudo GETFIELD instruction, Turbo Assembler writes the following instructions: 

mov bl,ah 
ror bl,02 
and bl,0F 

The first line moves the portion of the record that contains the desired bit-field value (a h) 
into bl. The second line rotates that value right two positions, moving it to the rightmost 
spot in bl. The third line applies the literal mask 0Fh to isolate the desired value, which in 
this example, sets bl to 03. 

Similarly, you can use GETFIELD to extract the age value from the record in ax: 

GETFIELD age bl, ax ; Get age into bl (destoys bhl) 

The assembler generates another set of logical operations that in this case set bl to 43. the 
age value packed in the record. 

One danger with GETFIELD is that it always uses the full 16-bit target register, even though 
you specify only the low-order portion. In the preceding twO GET FIELD examples, as the com
ments indicate, the most significant byte in bh is destroyed by the logical instructions that 

Turbo Assembler creates. 

You may use other registers and memory references with SETFIELD and GETFIELD--you don't 
have to use ax and bl as demonstrated here. The full syntax for both pseudo instructions 
follow: 



SETFIELD field_name destination_rIm, source_reg 
GETFIELD field_name destination_reg, source_rIm 

COMPLEX DATA 

Use these rules to construct SETFIELD and GETFIELD instructions. Each requires a field name 
followed by destination and source specifications. The destination for SETFIELD may be a 
register or a memory reference. Its source must be a register. The destination for GETFIELD 
must be a register. Its source may be a register or memory reference. 

NOTE 

The actual instructions generated for SETFIELD and GETFIELD depend on the operand values, 
the registers and memory references, and the positions of values in bit-field records. The 
preceding examples show only one of several possible instruction sequences. To investigate 
others, create sample SETFIELD and GETFIELD instructions and view the assembled code in 
Turbo Debugger's CPU window. 

Using Predefined Equates 
Turbo Assembler knows a few predefined equates that you can use as default values for pro
gram variables. Table 6.1 lists these equates, all of which begin with two question marks. 

Listing 6.2, VERSION.ASM, demonstrates how to use these equates to create a version
making string automatically when the program is assembled. Assemble, link, and run the 
program with the commands: 

tasm version 
tlink version", mta 
version 

Table 6.1. Predefined Equates. 
Symbol Meaning 

??Oate 

??Filename 

??Time 

??Version 

Today's date in the DOS country-code style 

The module or program's disk-filename 

The current time in the DOS country-code style 

Turbo Assembler version number 

VERSION uses the STRIO and STRINGS modules from Chapter 5; therefore, the Uink 
command assumes that the assembled code for these modules is stored in MT A.LIS. If you 
want to examine the program in Turbo Debugger, add the Izi option to tasm and the Iv 

option to Uink-as you probably know by now. 

223 



224 

6.2. VERSION.ASM. 
1: %TITLE "Automatic Program Version Demo -- by Tom Swan" 
2: 
3: 
4: 
5: 
6: 
7: 

IDEAL 

MODEL small 
STACK 256 

8: cr 
9: If 

EQU 
EQU 

13 
10 

ASCII carriage return 
ASCll line feed 

10: 
11: 
12: 
13: 
14: exCode 
15: 

DATASEG 

16: ident db 
17: db 
18: 

CODESEG 

db o 

cr, If, ??FileName, 
cr, If, 0 

19: 
20: 
21 : 
22: 
23: 
24: 
25: 

From STRIO.OBJ 

26: Start: 
27: 
28: 
29: 
30: 
31 : 
32: 
33: 
34: Exit: 
35: 
36: 
37: 
38: 

EXTRN StrWrite:proc 

mov 
mov 
mov 

mov 
call 

mov 
mov 
int 

ax, @data 
ds, ax 
es, ax 

di, OFFSET ident 
StrWrite 

ah, 04Ch 
aI, [exCodeJ 
21h 

??Date, ??Time 

Initialize DS to address 
of data segment 

Make es = ds 

Address program id string 
Display string 

DOS function: Exit program 
Return exit code value 
Call DOS. Terminate program 

39: END Start End of program / entry point 

Running VERSION 
Lines 16-17 create an ASCIIZ string, starting and ending with a carriage return and line feed 
plus a null terminator. Inside the string, the predefined equates ??FileName, ??Date, and 
??Time are used in a db directive to create a string with these three values, separated by a few 
spaces. Running the program displays a line similar to: 

version 02/15/95 08:13:23 



The nice feature about building the automatic string is that merely reassembling the pro
gram automatically changes the version date and time. This simple device is very useful for 
keeping track of program updates. 

Converting Numbers and Strings 
In high-level languages, you can read and write numeric values directly. For example, to let 
someone enter a number and then display the result, assuming n is an integer, you might use 
these Pascal statements: 

Write( 'Enter a value: ' ); 
ReadLn( n )i 

WriteLn( 'Value is: " n ); 

Native assembly language lacks similar abilities. Instead, you have to read and write strings 
and then convert those strings to and from binary values for processing, storing on disk, and 
so on. Of course, high-level languages must do this internally, too! 

Listing 6.3, BINASC.ASM, is a module that you can use to make this process easier to pro
gram. The module has routines that can convert 16-bit values to and from signed and un
signed decimal, hexadecimal, and binary ASCIIZ strings. Assemble to BINASC.OB] and 
store this code in your MT A.LIB file with the commands: 

tasm /z binasc 
tlib /E mta -+binasc 

As with the modules in Chapter 5, ignore the warning that BINASC is not in the library. It 
won't be until you install it the first time. Also, be aware that BINASC uses two procedures 
from STRINGS; therefore, you won't be able to link programs to BINASC until at least 
both of these modules are installed in MT A.UB. 

listing 6.3. BINASC.ASM. 
1: .. TITLE "Binary to/from ASCII Conversion -- by Tom Swan" 
2: 
3: IDEAL 
4: 
5: MODEL small 
6: 
7: Equates 
8: 
9: ASCnull EOU o ASCII null character 

10: 
11: DATASEG 
12: 
13: COOESEG 
14: 
15: From STRINGS.OBJ 
16: 

continues 

225 



226 

PROGRAMMING WITH ASSEMBLY LANGuAGE 

listing 6.3. continued 
17 : 
18: 
19 : 
20: 
21 : 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31 : 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41 : 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61 : 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 

%NEWPAGE 

EXTRN StrLength:proc, StrUpper:proe 

PUBLIC HexOigit, ValCh, NumToAseii 
PUBLIC BinToAscHex, SBinToAscDec, BinToAscOec, BinToAscBin 
PuBLIC AscToBin 

; HexDigit Convert 4-bit value to ASCII digit 

Input: 
dl value limited to range 0, ,15 

Output: 
dl ASCII hex digit equivalent 

Registers: 
dl 

PROC HexDigit 
cmp dl, 10 
j b @@10 
add dl, 'A'-10 
ret 

@@10: 
or dl, '0' 
ret 

ENDP HexDigit 
%NEWPAGE 

Is dl < 10 (i.e, hex 'A')? 
If yes, jump 
Else convert to A, B, C, 0, E, or F 
Return to caller 

Convert digits 0 to 9 
Return to caller 

; ValCh Convert ASCII digit char to binary value 

Input: 
dl 
bx 

Output: 

ASCII digit '0',. '9' i 'A',. 'F' 

cf 
cf 

Registers: 
dx 

PROC ValCh 
cmp 
jbe 
sub 

@@10: 
sub 
test 
jnz 

xor 
cmp 

@@99: 
erne 
ret 

ENDP ValCh 

base (2-binary, 10-decimal, 16-hexadecimal) 

0: dx = equivalent binary value 
1: bad char for this number base (dx is meaningleSs) 

dl, '9' 
@@10 
dl, 7 

dl, '0' 
dl, 0f0h 
@@99 

dh, dh 
dx, bx 

Check for possible hex digit 
Probably '0' .. '9', jump 
Adjust hex digit to 3A .. 3F range 

Convert ASCII to decimal 
Check 4 msbs (sets cf=0) 
Jump if error (not digit or A-F) 

Convert byte in dl to word in dx 
Compare to number base (cf=l if ok) 

Complement ef to set/reset err flag 
Return to caller 



COMPLEX DATA STRUCTURES 

71: %NEWPAGE 
72: ---------------------------------------------------------------
73: ; NumToASCII convert unsigned binary value to ASCII 
74: ---------------------------------------------------------------
75: Input: 
76: ax 16-bit value to convert 
77: bx base for result (2=binary;10~decimalj16=hex) 
78: ex minimum number of digits to output 
79: di address of string to hold result 
80: Note: assumes string is large enough to hold result 
81: Note: creates full result if cx is less than the number 
82: of digits required to specify the result or cx 0 
83: Note: if cx=0 and ax=0 then length of string will be 0 
84: set cx=l if you want string to '0' ifax=0 
85: Note: assumes (2<=bx<=16) 
86: Output: 
87: none 
88: Registers: 
89: ax, cx 
90: ---------------------------------------------------------------
91 : 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 

PROC 

si 

100: @@10: 
101 : 
102: 
103: 
104: 
105: 
106: 
107: @@20: 
108: 
109: 
110 : 
111 : 
112: 
113: 
114: @@30: 
115: 
116 : 
117: 
118: @@40: 
119 : 
120: 
121 : 
122: 
123: 
124: 
125: ENDP 

NumToASCII 
push 
push 
push 

count 

xor 
jCxz 

xor 
div 
call 
push 
inc 
loop 

inc 
or 
jnz 
mov 
jcxz 
cld 

of 

dx 
di 
5i 

digits 

si, si 
@@20 

on stack 

dx, dx 
bx 
HexDigit 
dx 
si 
@@10 

cx 
ax, ax 
@@10 
cx, si 
@@40 

pop ax 
stosb 
loop @@30 

; 
Normal entry point 
Save some modified registers 

Set digit-count to zero 
If ex=0, jump to set cX=l 

Extend ax to 32-bit dxax 
ax<-axdx div bx; dx<-remainder 
convert dl to ASCII digit 
Save digit on stack 
Count digits on stack 
Loop on minimum digit count 

Set cx = 1 in case not done 
Is ax = 0? (all digits done) 
If ax <> 0, continue conversion 
Set cx to stack char count 
Skip next loop if cx=0000 
Auto-increment di for stosb 

Pop next digit into al 
Store digit in string; advance di 
LOOp for cx digits 

mov 
pop 
pop 
pop 

[byte dil, ASCnull Store null at end of string 
si 
di 
dx 

ret 
NumToASCII 

j Restore saved registers 

Return to caller 

continue:; 

227 



228 

LANGUAGE 

Listing 6.3. continued 
126: %NEWPAGE 
127: , 
128: i BinToAscHex Convert binary values to ASCII hex strings 
129: j---------------------------------------------------------------
130: Input: 
131 : 
132: 
133: 
134: 
135: 
136: 
137: 
138: 
139: 
140: 
141 : 

ax 16-bit value to convert 
cx minimum number of digits to output 
di address of string to hold result 
Note: assumes string is large enough to hold result 
Note: outputs full result if cx is less than the number 

of digits required to specify the result 
Output: 

none 
Registers: 

ax, cx 

142: PROC 
143: 

BinToAscHex 
push bx 

144: mov bx, 16 
145: call NumToAscii 
146: pop bx 
147: ret 
148: ENDP BinToAscHex 
149: %NEWPAGE 

Save bx on stack 
Set base = 16 (hex) 
Convert ax to ASCII 
Restore bx 
Return to caller 

150: ---------------------------------------------------------------
151: i BinToAscDec Convert binary values to ASCII decimal strings 
152: 
153: 
154: 
155: 

Input: 
Same as BinToAscHex 

Output: 
156: none 
157: Registers: 
158: ax, cx (indirectly) 
159: 
160: PROC BinToAscDec 
161: push bx 
162: mov bx, 10 
163: call NumToAscii 
164: pop bx 
165: ret 
166: ENDP BinToAscDec 
167: %NEWPAGE 

Save bx on stack 
Set base = 10 (decimal) 
Convert ax to ASCII 
Restore bx 
Return to caller 

168: ---------------------------------------------------------------
169: ; SBinToAscDec Convert signed binary to ASCII decimal strings 
170: 
171 : 
172: 
173: 
174: 
175: 
176: 
177: 

Input: 
Same as BinToAscHex (ax = signed 16-bit value) 

Output: 
none 

Registers: 
ax, cx 



178: 
179: 
180: 
181 : 
182: 
183: 
184: 
185: 
186: 
187: 
188: 
189: 
190: 
191 : 
192: 
193: 
194: 
195: 
196: 
197: 
198: 
199: 
200: 
201: 
202: 
203: 
204: 
205: 
206: 
207: 
208: 
209: 

PROC SBinToAseDec 
push bx 
push di 
cmp ax, 0 
jge @@10 
neg ax 
mov [byte dij, 
inc di 

@@10: 
mov bx, 10 
call NumToAscii 
pop di 
pop bx 
ret 

ENDP SBinToAscDec 
%NEWPAGE 

-

Save bx and di 

IS signed ax < 0? 
Jump if ax >= 0 
Form twos complement of ax 
Insert '-' in string 
Advance string pointer 

Set base 10 (decimal) 
Convert ax to ASCII 
Restore bx and di 

Return to caller 

---------------------------------------------------------------, 
i BinToAscBin Convert binary values to ASCII binary strings 

Input: 
Same as BinToAscHex 

Output: 
none 

Registers: 
ax, ex (indirectly) 

PROC BinToAscBin 
puSh bx 
mov bx, 2 
call NumToAscii 
pop bx 
ret 

Save bx on stack 
Set base 2 (binary) 
Convert ax to ASCII 
Restore bx 
Return to caller 

210: ENDP BinToAscBin 
211: %NEWPAGE 
212: ---------------------------------------------------------------
213: 
214: 
215: 
216: 
217: 
218: 
219: 
220: 
221: 
222: 
223: 
224: 
225: 
226: 
227: 
228: 
229: 
230: 
231 : 
232: 
233: 
234: 
235: 
236: 

i ChToBase Return number base for string 

Note: 

Input: 
Private subroutine for AscToBin. Don't call directly. 

si = pointer to null terminator at end of string 
Note: assumes length of string >= 1 

Output: 
bx = 2(binary) , 10(decimal/default), 16(hexadecimal) 
si = address of last probable digit character in string 

Registers: 
bx, dl, si 

;---------------------------------------------------------------
PROC ChToBase 

mov dl, [byte si-1\ ; Get last char of string 
mov bx, 16 Preset base to 16 (hexadecimal) 
cmp dl, 'H' Is it a hex string? 
je @@10 Jump if hex 
mov bx, 2 Preset base to 2 (binary) 
cmp dl, 'B' Is it a binary string? 
je @@10 Jump if binary 
mov bx, 10 Preset base to 10 (decimal) 
cmp dl, '0' Is it a decimal string? 
jne @@20 Jump if NOT decimal 

continues 229 



230 

listing 6.3. continued 
237: @@10: 
238: 
239: @@20: 
240: 

dec 

ret 

si Adjust si to last probable digit 

Return to caller 
241: ENDP ChToBase 
242: %NEWPAGE 
243: ---------------------------------------------------------------
244: ; AscToNum convert ASCII characters to binary 
245: 
246: 
247: 
248: 
249: 
250: 
251 : 
252: 
253: 
254: 
255: 
256: 
257: 
258: 
259: 
260: 
261: 
262: 
263: 
264: 
265: 
266: 
267: 
268: 
269: 
270: 
271 : 
272: 
273: 
274: 
275: 
276: 
277: 
278: 
279: 
280: 

Note: 
Private subroutine for AscToBin. Don't call directly. 

Input: 
ax 
bx 
di 
s1 

Output: 
cf 
cf 

Registers: 

initial value (0) 
number base (2=binary, 10=decimal, 16=hexadecimal) 
address of unsigned string (any format) 
address of last probable digit char in string 

o ax unsigned value 
bad character in string (ax is meaningless) 

ax, cx, dx, si 

PROC AscToNum 
mov cx, Initialize multiplier 

@@10: 
cmp si, di At front of string? 
je @@99 Exit if at front (cf=0) 
dec si 00 next char to left 
mov dl, [byte sil Load char into dl 
call ValCh Convert dl to value in dx 
jc @@99 Exit if error (bad char) 
push cx Save cx on stack 
xchg ax, cx ax=multiplier; cx=partial value 
mul dx dxax <- digit value • multiplier 
add cx, ax cx <- cx ... ax (new partial value) 
pop ax Restore multiplier to ax 
mul bx dxax <- multiplier' base 
xchg ax, cx ax=partial value; cx=new multiplier 
jmp @@10 do next digit 

@@99: 
ret Return to caller 

ENDP AscToNum 
%NEWPAGE 

281: ; AscToBin Convert ASCII strings to binary values 
282: ---------------------------------------------------------------
283: Input: 
284: di = ASCIIZ string to convert to binary 
285: 'H' at end of string = hexadecimal 
2B6: 'B' at end of string = binary 
287: 'D' or digit at end of string decimal 
288: at s[0] indicates negative number 
289: Note: no blanks allowed in string 



Output: 290: 
291: 
292: 
293: 
294: 
295: 
296: 

cf 1: bad character in string (ax undefined) 
cf 0: ax value of string 
Note: chars in string converted to uppercase 
Note: null strings set ax to zero 

Registers: 
ax 

297: ---------------------------------------------------------------
298: PROC AscToBin 
299: push bx 
300: push cx 
301: push dx 
302: push si 
303: 
304: 
305: 
306: 
307: 
308: 
309: 
310: 
311 : 
312: 
313: 
314: (9(910: 
315: 
316: 
317: 
318: 
319: 
320: 
321: 
322: @@20: 
323: 
324: @@99: 
325: 
326: 
327: 
328: 
329: 
330: ENDP 
331: 
332: 

call 
call 
xor 
jcxz 
mov 
add 
cmp 
pushf 
jne 
inc 

call 
call 
rcl 
popf 
jne 
neg 
dec 

rcr 

pop 
pop 
pop 
pop 
ret 
AscToBin 

END 

StrUpper 
StrLength 
ax, ax 
(9(999 
si, di 
si, cx 
{byte dil, 

(9@10 
di 

ChToBase 
AscToNum 
bx, 1 

@@20 
ax 
di 

bx, 

si 
dx 
cx 
bx 

Using the BINASC Module 

Save modified registers 
(some of these are changed 
in subroutines called by 
this procedure) 

convert string to uppercase 
Set cx to Length of string at di 
Initialize result to zero (cf=0) 
Exit if length = 0. ax=0, cf=0 
Address string at di with si 
Advance si to null at end of string 
Check for minus sign 
Save result of compare 
Jump if minus sign not found 
Advance di past minus sign 

Set bx=number base; si to last digit 
Convert ASCII (base bx) to number 
Preserve cf by shifting into bx 
Restore flags from minus-sign check 
Jump if minus sign was not found 
else form twos complement of ax 
and restore di to head of string 

Restore cf result from AscToNum 

Restore registers 

Return to caller 

End of module 

There are eight subroutines in BINASC that you can call from your own programs. (See 
lines 19-21.) Two other subroutines are called by the routines in the module. The following 
notes describe each subroutine and list several sample program fragments. After this section 
are two full programs that also demonstrate how to use the routines described here. 

231 



232 

I... PROGRAMMING WITH ASSEMBLY LANGUAGE 

HexDigit (24-42) 

HexDigit converts a 4-bit value in register dl co the equivalent ASCII hex digit. You prob
ably won't need co call this routine, although you certainly can if you find a purpose for it. 
Other routines in the module call HexDigi t as part of their algorithms co convert longer bi
nary values to ASCII. 

ASCII digits 0 through 9 have the hexadecimal values 030h through 039h. As a result of this 
clever design, adding hex 30h converts any single digit to ASCII. The value 04h is 34h in 
ASCII, OSh is 03Sh, and so on. Also, to convert an ASCII digit character to its equivalent 
binary value is a simple matter of reversing the process, subtracting 30h. 

Unfortunately, this neat plan fails to accommodate the 16 hexadecimal symbols 0-9 and A
F, requiring HexDigi t to check at line 35 if dl is less than 10 decimal. If not, line 37 performs 
the conversion, changing the values OAh, OBh, OCh, OOh, OEh, and OFh into the correct 
ASCII character, A-F. Otherwise, the or instruction at line 40 inserts 30h into the value, 
converting the decimal digits 0-9 to ASCII. 

HexDigit assumes that the most significant four bits are O. In other words, dl must be limited 
to the range 0 to 15 or the results will not be correct. 

ValCh (44-70) 

ValCh reverses what HexDigit does, converting ASCII digit characters 0-9 and A-F into equiva
lent binary values. Because this routine is used to convert strings in various number bases, 
the code checks for characters that do not belong to the specified base in bx. To use ValCh, 

assign a digit character to dl and the number base to bx-2 for binary, 10 for decimal, or 16 
for hexadecimal: 

mov dl, 'A' 
mov bx, 16 
call ValCh 

Character to convert 
Number base = hex 
convert dl to binary in dx 

ValCh returns the converted value in register dx. If a bad character is detected, flag cf is set co 
1, in which case the value in dx should not be trusted. Usually, you should follow ValCh with 
a conditional jump that tests for this: 

call ValCh 
j c Error 

j Convert char in dl to value in dx 
; Jump if bad digit detected 

The procedure uses a few methods that may not be obvious on a casual reading. Lines 57-59 
check for a hex character A-F, converting these digits to the ASCII characters with values 
03Ah through 03Fh. (You might call these values pseudo-hex characters.) After this step, 
dl holds either an illegal character or a value in the range 030h through 03Fh, simplifying 
the upcoming conversion. 



r-----~-

The next step is to convert the value in dl to binary by removing 030h (line 61). As explained 
in the comments co HexDigit, subtracting 030h converts characters to binary. In this case, 
the subtraction works also for the pseudo-hex characters from the previous steps. 

The instructions at lines 65-66 complete the conversion by zeroing the upper half of dx-using 
the typical 8086 xor method. After this, dx is compared to the number base in bx. As long as the 
result is less than the base, the value is within range; otherwise, the original character must have 
been illegal. Unfortunately, this comparison leaves error flag ef in the opposite state that's needed, 
a problem easily fixed by the erne instruction at line 68, which complements the carry flag, tog
gling it from 1 to 0 or from 0 to 1. This is also required if the test at line 62 detects an ASCII 
character value not in the range 030h through 03Fh. 

Num T oASCII (72-125) 

NumToASCII is a general-purpose binary number to ASCII converter that you can use co con
vert values to ASCII strings in any number base from 2 to 16. Because NurnToASCI I requires 
considerable effort and planning to use correctly, you might want to call other routines such 
as BinToASCHex and BinToAseDee, which call NumToASCI I to perform their conversions. I'll explain 
these routines in a moment. You should at least study NumToASCIl's code, if only to under
stand how the programming operates. 

Lines 76-85 list NumToASCII's register requirements along with a few important notes. The 
procedure assumes that register ax holds the value to convert, bx equals the number base (as 
explained for valch), ex equals the minimum number of digit characters to insert in the string, 
and es: di addresses a string variable large enough to hold the result. A few hints about these 
requirements will help you co understand the programming: 

• For safety, make sure your string variable is at least 5 bytes long for hex values, 6 
bytes for decimal values, and 17 bytes for binary values. These lengths ensure that 
the result will fit and include 1 extra byte for the all-important string terminator. 

• Set ex to 1 if you want a zero value co be converted to '0' and not a blank string. If 
ex and the value to convert are both 0, the result is a zero-length string. 

• The base in bx is not limited to 2, 10, and 16. You can convert binary values to octal 
by setting bx to 8, or to other bases as well. Register bx must be in the range 2-16. 

• The usual numeric qualifying characters b, d, and h that end values like OFA9Ch, 
0111001Ob, and 12345d are not inserted into the string. You must add these 
characters if you need them. 

• NurnToASCII can't convert negative (two's complement) values to strings. To do this, 
call SBinToAseDee, which is designed to handle signed integers. 

Although longer than most subroutines in this book, NurnToASCII uses a simple method to 

convert values to ASCII. The div instruction at line 102 repeatedly divides the subject num
ber by the base, calling HexDigi t to convert the remainder in dx to ASCII. Each of these 
characters is pushed onto the stack (line 104.) This· action repeats until register ex becomes 233 



234 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

o at the Loop instruction (line 106). When this happens, the code at lines 108-11 0 checks 
whether ax is 0, indicating that the value has been completely converted. Ifax is not 0, then 
ex did not specify enough digits to hold the full result, and the jump at line 110 loops back 
to local label @@10: for another division until this condition is satisfied. The result is to push 
onto the stack at least the minimum number of digits required to represent the converted 
number, or as many digits as ex specifies, whichever is greater. 

Line 105 counts in si the number of divisions performed, a value checked at lines 111-112. 
If si 0, there aren't any digits. (Both ex and ax must have been 0.) If this condition is not 
detected, the code at lines 113-117 pops each digit from the stack-in the reverse order that 
the digits were pushed-and stores the digit characters in the string variable (line 116). The 
final step is to insert the null terminator (line 119) before ending the procedure. 

BinToAscHex (127-148) 
Bin T oAscDec (150-166) 
SBinToAscDec (168-192) 
BinToAscBin (194-210) 

These four routines require the same parameters; therefore, I'll describe them together. 
BinToAseHex converts 16-bit unsigned values to hexadecimal strings. BinToAseOee converts 
16-bit unsigned values to decimal strings. SBinToAseOee converts 16·bit signed values in two's 
complement notation to decimal strings. And BinToAseBin converts 16-bit values to binary. 

NOTE 

Always be sure to allocate enough string space to hold the result of converting numbers to 
ASCII. Be conscious that binary values might be 16 digits long. Remember to leave an extra 
byte for the null terminator. leave extra room to be safe. To keep your code running fast, 
these routines do not prevent accidentally overwriting other variables in memory. 

To use one of these converters, assign to ax an appropriate value. Set ex to the minimum 
number of digits you want in the result-at least 1 if you need zeros to come out as "0." Set 
es: di to the address of your string variable, which may be uninitialized. For example, to load 
a value from memory and convert to a string, you can write: 

DATASEG 
value dw 1234 A 16-bit decimal value 
string db 20 DUP (?) More than enough space 
CODESEG 
mov ax, @data 
mov ds, ax Initialize ds and es to 
mov es, ax address program's data segment 



mov ax, [value) 
mov cx, 1 
mov di, OFFSET string 
call BinToAscDec 

Get value to convert 
At least one digit, please 
Address the string variable 
Convert ax to decimal string 

You can replace the call to BinToAscDec with any of the other three routines-the rest of the 
steps remain the same. As a reminder, this example includes the steps to initialize ds and es. 
BINASC calls routines in STRINGS, which requires es to equal ds. 

The conversion routines are not difficult to understand. Three of the four routines are ex
tremely simple, merely saving bx, setting bx to the appropriate base, and calling NumToASCII 
to perform the actual conversion. You can, of course, call NumToASCII directly if you want. 

SBinToAscDec is more complex than the other three routines because it has to deal with pos
sible negative values in rwo's complement notation. Line 181 checks for negative values by 
comparing ax with O. Ifax is positive (MSD = 0), then the procedure performs a straight 
conversion, identical to BinToAscDec. Ifax is negative, then line 183 uses neg to calculate the 
absolute value. The next line then insertS a minus sign into the string. Line 185 increments 
the string pointer di to skip the minus sign, causing the subsequent call to NumToASCII to 

start inserting digits at this new position. Register di is then restored at line 189. (Line 180 
pushed di onto the stack for this reason.) 

NOTE 

When calling SBinToAscOec, be sure to leave one extra character for the minus sign. The 

minimum string length is 7-that is, as long as the minimum number of digits requested in cx 
is less than or equal to 6. 

ChToBase (212-241) 
AscToNum (243-278) 

These rwo routines are private to the BINASC module, and you'll probably find few direct 
uses for them. (You may want to examine the code, though.) ChToBase returns a value in bx 
equal to the probable number base for a string ending in D or 0-9 for decimal, H for hexa
decimal, and B for binary. (The letters must be capitals~lowercase d, h, and b will not work 
here.) Register si addresses the string's null terminator on entry to ChToBase, and on return, 
si addresses the last probable digit character in the string. Other than these points, the code 
is self-explanatory. 

AscToNum performs a raw conversion from ASCII to binary, calling ValCh in a loop at lines 
261-275. For each character loaded at line 265 into dl, ValCh returns the equivalent value or 
indicates an error by setting cf. The code at lines 268-274 multiplies the temporary result by 

235 



236 

I-'RCIGR~,MMINC WITH ASSEMBLY LANGUAGE 

the multiplier (initialized at line 260), which is in turn multiplied by the number base (line 
273). Repeating these steps increases the multiplier by the power of each successive column, 
multiplying that result by the value of the digit character in each column until done. Most of 
the instructions in this section are here to perform some fancy footwork so that the correct 
values appear in the necessary registers at the right times. For a better understanding of how 
this works, execute this section in Turbo Debugger and pay dose attention to the register 
values. 

AscToBin (280-330) 

Call AseToBin to convert strings to binary values. The string format must be ASCIlZ and 
may end in d or a digit for decimal values, h for hexcadecimal, or b for binary. Set es: di to 

the address of the strings to convert. After AseToBin finishes, the carry flag ef indicates if the 
result in ax is valid (ef 0) or if an illegal character was detected in the string (Cf = 1). No 
blanks are allowed in the string, which is converted to uppercase. (Use StrCopy in STRINGS 
to copy the original string if you want to preserve it.) Zero-length strings set ax to O. The 
following illustrates the various string formats accepted by AscToBin: 

DATASEG 
s1 db '12345', 0 
s2 db '54321d', 0 
s3 db '-9876', 0 
s4 db 'F19Ch', 0 
s5 db '1010b',0 
CODESEG 
mav di, OFFSET s1 
call AscToBin 
j c Error 

DeCimal string (default) 
Decimal string ending in d 
Negative decimal string 
Hexadecimal string 
Binary string 

Address string s1 (or s2-s5) 
Convert string to value in ax 
Jump if error, else continue 

As you can see from these samples, hexadecimal numbers do not require a leading digit as 
they do in assembly language programs. Signed integer values can range from -32,768 to 

+32,767. Unsigned integers can range from 0 to 65,535. Unusual values in the range -65,535 
to -32,769 are illegal but do not cause errors. These values and others outside the allowable 
ranges "wrap around" to equivalent binary values. 

The procedure operates by calling Strupper and St rLength in STRINGS to convert the string 
to uppercase and to set ex to the string length. If cx is 0, the procedure ends (see line 307) 
with ax equal to O. If the string length is not 0, lines 308-313 check if the first character is a 
minus sign, saving the result of the comparison at line 310 on the stack with a pushf instruc
tion. ChTo8ase (line 315) then sets bx to the appropriate number base by testing the end of 
the string for D, H, or B character. Then AscToNum performs the actual conversion to binary. 
After this, the flags from the minus-sign comparison are restored (line 318) and the value in 
ax is negated to twO's complement notation (line 320) if a minus sign had been found. Notice 
how this plan allows converting both unsigned and signed integer ranges with the same code-
65,535 and -1 are both correctly converted to the same binary value. 



Two rotate instructions demonstrate one way to preserve the carry flag, which indicates 
AscToBin's success or failure. Line 317 rotates bx once to the left, shifting the carry flag into 
bX's LSD. This must be done because the very next instruction (popf) could change cf, the 
result of calling AscToNum. Later at line 323, the saved carry flag is rotated back into cf with 
rcr-a neat trick that works, if you can spare a register. 

Putting BINASC to Work 
Two example programs demonstrate how you can use BINASC to convert values to strings. 
Listing 6.4, EQUIP.ASM, also defines a RECORD variable (line 20) to extract bit fields from a 
system variable that indicates the kind of equipment attached to your computer. The pro
gram uses routines from BINASC and STRIO and indirectly from STRINGS, which must 
be installed in MT A.LIB. Assemble and link the program with the commands: 

tasm equip 
tlink equip", mta 
equip 

Type line 20 all on one line. Due to space limitations, line 20 is printed in this book as two 
lines. You must run this program from a DOS prompt. Because of advances in modern pes 
and operating systems, EQUIP is less valuable as a utility than it was when this book's first 
edition was published in 1989. However, the program stili serves as a useful demonstration 
of the BINASC module. 

listing 6.4. EQUJP.ASM. 
1 : 

2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11 : 
12: 
13: 
14: 
15: 

%TlTLE 

EOS 
cr 
If 

'Display PC Equipment Info -- by Tom Swan" 

IDEAL 

MODEL small 
STACK 256 

Equates 

EaU 0 End of string terminator 
EaU 13 ASCII carriage return 
EaU 10 ASCII line feed 

16: Define byte records with fields for equipment information 
17: 
18: I! NOTE: Type the line 20 on ONE line !! 
19: 

continues 237 



238 

----------------------~ ... ----... -

"J\J~"rvliVllI'" WITH ASSEMBLY LANGUAGE 

listing 6.4. continued 
20: RECORD Equip printers:2, x:1, game:1, ports:3, y:1, drives:2, mode:2, ram:2, ,:1, 

disk: 1 
21 : 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31 : 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41 : 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61 : 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69; 
70: 
71: 
72: 
73: 

Define masks for isolating individual bit fields 

j AND Mask 

maskPrinters 
maskGame 
maskPorts 
maskDrives 
maskMode 
maskDisk 

DATASEG 

exCode 

welcome 

strPrinters 
strGame 
st rPorts 
strDrives 
strMode 
strDisk 

string 

CODESEG 

db 

db 
db 

db 
db 
db 
db 
db 
db 

db 

Field 

MASK printers 
MASK game 
MASK ports 
MASK drives 
MASK mode 
MASK disk 

o 

cr,lf, 'Equipment determination' 
cr,lf,' (C) 1995 by Tom Swan' ,cr,lf,lf,EOS 

'Number of printers ........ ' EOS 
'Game 1/0 port.... ......... EOS 
'Number of RS232 ports .. ... EOS 
'Disk drives (minus 1) ..... ' EOS 
'Initial video mode........ EOS 
'Has disk drive (l=yes) .... EOS 

40 DUP (?) j Work string 

From STRIO.OBJ and BINASC.OBJ 

Start: 

EXTRN BinToAscOec:proc, StrWrite:proc, NewLine:proc 

mov 
mov 
mov 

mov 
call 
int 
mOil 

mov 
mOil 

mov 
call 

Initialize OS to address 
of data segment 

ax, @data 
ds, ax 
es, ax , Make es ds 

di, OFFSET welcome 
StrWrite 
l1h 
bx, ax 

di, OFFSET strPrinters 
dx, maskPrinters 
el, printers 
Showlnfo 

Address welcome message 
Display message 
BIOS equipment determination 
Save information in bx 

Address item label 
Assign AND mask 
ASSign shift count 
Display label and info 



74; 
75: 
76: 
77: 
78: 
79: 
80: 
81 : 
82; 
83: 
84: 
85: 
86: 
87: 
88; 
89: 
90: 
91 : 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 

100: 
101 : 
102: 
103: 

Exit: 

.. NEWPAGE 

mall 
mall 
mall 
call 

mall 
mall 
mall 
call 

mall 
mall 
mall 
call 

mall 
mall 
mOil 
call 

mOil 
mOil 
mOil 
call 

mall 
mall 
int 

di, OFFSET strGame Next item 
dx, maskGame 
cl, game 
Showlnfo 

di, OFFSET strPorts Next item 
dx, maskPorts 
el, ports 
ShowInfo 

di, OFFSET strDrilles Next item 
dx, maskDriVes 
cl, drilles 
ShowInfo 

di, OFFSET strMode Next item 
dx, maskMode 
el, mode 
Showlnfo 

di, OFFSET strDisk Next item 
dx, maskDisk 
cl, disk 
Showlnfo 

ah, 04Ch DOS function; Exit program 
aI, [exCode J Return exit code lIalue 
21h Call DOS. Terminate program 

104: ---------------------------------------------------------------
105: ; Showlnfo Display label and equipment lIalue 
106: ;---------------------------------------------------------------

Input: 
bx 
cl 
dx 
di 

Output: 

Equipment data from int 
Bit field shift count 
Bit field AND-mask 
Address of label string 

11 h 
107: 
108: 
109: 
110 : 
111 : 
112: 
113: 
114: 
115 : 
116: 

label and data value displayed 
Registers: 

ax, CX 

117: PROC 
118: 
119 : 
120: 
121 : 
122: 
123: 
124: 
125: 
126: 
127: 
128: ENDP 
129: 

ShowInfo 
mOil 
and 
shr 
call 
mall 
mall 
call 
call 
call 
ret 
Showlnfo 

ax, bx 
ax, dx 
ax, cl 
StrWrite 
di, OFFSET string 
cx, 1 
BinToAscDec 
StrWrite 
Newline 

Assign eqUipment value to ax 
Isolate bit field in ax 
Shift field far right in ax 
Display label at di 
Address work string 
Request at least 1 digit 
Convert ax to ASCIIZ string 
Display string 
Start a new line 
Return to caller 

130: END Start End of program I entry point 

239 



240 

How EQUIP Works 
The mask constants at lines 28-33 are used to extract each of the Equip RECORD's fields as 
defined at line 20. The Showlnfo subroutine at lines 104-128 does the work, using dx as the 
mask value. Most of the program is concerned with making calls to this routine (see lines 
69-97). Line 66 calls a BIOS (Basic Input/Output System) ROM routine via interrupt IIh, 
which all Pcs support, to load the system configuration into register ax. 

The Showlnfo subroutine calls 8inToAscDec to convert the masked and shifted value in ax to 

a string for displaying with a call to St rWri te (line 125). Figure 6.5 shows a sample run of 
the program. 

Figure 6.5. 
Sample run of Listing 6.4, 
EQUJP.ASM. 

Equipment determination 
(C) 1995 by Tom Swan 

Number of printers .......... 1 
Game I/O port ............... 0 
Number of RS232 ports ....... 2 
Disk drives (minus 1) ....... 0 
Initial video mode .......... 2 
Has disk drive (1 = yes) .... 1 

Programming a Number Base Converter 
Putting together many of the ideas in this chapter, Listing 6.5, CONVERT.ASM, is a useful 
utility that you can use to convert values among binaty, decimal, and hexadecimal number 
bases. The program demonstrates how to use many of the procedures in the BINASC mod
ule. Figure 6.6 shows a sample CONVERT session. 

Figure 6.6. 
Sample run of Listing 6.5. 
CONVERTASM. 

Convert binary, hexadecimal, decimal values 
Ic) 1995 by Tom Swan 
Press Enter to quit. 

Value to convert? 745 

Binary............. 0000001011101001 
Hexadecimal........ 02E9 
Unsigned decimal... 745 
Signed decimal..... 745 

Value to convert? face 

··ERROR: Illegal character in string 

ValUe to convert? faceh 

Binary...... ....... 1111101011001110 
Hexadecimal. ....... FACE 
Unsigned decimal... 64206 
Signed decimal..... -1330 



Because most of the groundwork is done by the STRINGS, STRIO, and BINASC modules, 
which should be in your MTA.LIB file, the CONVERT program is mostly a series of call 

instructions to the appropriate subroutines. Just about every other instruction is a mov to 

prepare registers for these calls. As a result, you should have little trouble reading the pro
gram and, by studying the comments, understanding what each line does. Assemble, link, 
and run CONVERT with the commands: 

tasm convert 
tlink convert", mta 
convert 

listing 6.5. CONVERT.ASM. 
1 : 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11 : 
12: 
13: 
14: 
15 : 
16 : 
17: 

%TITLE 

EOS 
cr 
If 
max Len 

18: exCode 
19: 

"Convert 

IDEAL 

MODEL 
STACK 

Equates 

EQU 
EQU 
EQU 
EQU 

DATASEG 

20: welcome db 
21: db 
22: db 
23: prompt db 
24: error db 
25: binary db 
26: hex db 
27: deCimal db 
28: sdecimal db 
29: 
30: value dw 
31: response db 
32: 
33: 
34: 
35: 

CODESEG 

binary, hex, decimals -- by Tom Swan" 

small 
256 

0 End of string 
13 ASCII carriage return 
10 ASCII line feed 
40 Maximum entry string length 

db o ; DOS error code 

cr,lf, 'Convert binary, hexadecimal, decimal values' 
cr,lf, '(c) 1995 by Tom Swan' ,cr,lf 
cr,lf, 'Press Enter to quit.' ,cr,lf,EOS 
cr,lf,lf, 'Value to convert? " EOS 
cr,lf, "'ERROR: Illegal character in string' ,EOS 
cr,lf, 'Binary..... .... .... ',EOS 
cr,lf, 'Hexadecimal........ ',EOS 
cr,lf, 'Unsigned decimal... ',EOS 
cr,lf,'Signed decimal ',EOS 

? 
maxLen+1 DUP (?) 

Result of AscToBin 
String for user response 

36: 
37: 

From STRINGS.OBJ & STRIO.OBJ 

38: 
39: 
40: 
41 : 
42: 

EXTRN StrLength:proc, StrRead:proc 
EXTRN StrWrite:proc, NewLine:proc 

From BINASC.OBJ 

continues 241 



,....",,".""', ------~---,~.'"------------------------

242 

Listing 6.5. continued 
43: 
44 : 
45: 
46: 
47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61 : 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 
71 : 
72: 
73: 
74: 
75: 
76: 

Start: 

Again: 

EXTRN BinToAscHex:proc, SBinToAscDec:proc, BinToAscDec:proc 
EXTRN BinToAscBin:proc, AscToBin:proc 

mov ax, @data 
mov ds, ax 
mov es, ax 

mov di, OFFSET welcome 
call StrWrite 

Prompt for value to convert 

mov di, OFFSET prompt 
call StrWrite 
mov di, OFFSET response 
mov cx, max Len 
call StrRead 
call NewLine 
call StrLength 
jcxz Exit 

Convert entered chars to binary 

call AscToBin 
mov [value], ax 
jnc Continue 
mov di, OFFSET error 
call StrWrite 
jmp Again 

Initialize OS to address 
of data segment 

Make es ds 

Display welcome message 

Display prompt string 

Get user response 
Maximum string length 

Start new display line 
Did user press Enter? 
Exit if yes (cx~0) 

Convert string to ax 
Save result in variable 
Jump if cf is 0--no error 
Else qisplay error message 

Let user try again 

Convert binary value to various string number formats 

77: Continue: 
78: 
79: 
80: 
81 : 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91 : 
92: 
93: 

mov 
call 
mov 
mov 
mov 
call 
call 

mov 
call 
mov 
mov 
mov 
call 
call 

di, OFFSET binary 
StrWrite 
ax, [value I 
cx, 16 
di, OFFSET response 
BinToAscBin 
StrWrite 

di, OFFSET hex 
StrWrite 
ax, [value] 
cx, 4 
di, OFFSET response 
BinToAscHex 
StrWrite 

Display binary label 

Get value to convert 
Minimum number of digits 
Use same string for result 
Convert to binary digits 
Oisplay result 

Display hex label 

Get value to convert 
Minimum number of digits 
Use same string for result 
Convert to hex digits 
Display result 



f---
£ r ,c 
~t 

~-

94: mov 
95: call 
96: mov 
97: mov 
98: mov 
99: call 

100: call 
101 : 
102: mov 
103: call 
104: mov 
105: mov 
106: mov 
107: call 
108: call 
109: jmp 
110: Exit : 
111 : mov 
112: mov 
113: int 
114: 
115: END 

Summary 

di, OFFSET decimal 
StrWrite 
ax, [value] 
cx, 1 
di, OFFSET response 
BinToAscDec 
StrWrite 

di, OFFSET sdecimal 
StrWrite 
ax, [value] 
ex, 1 
di, OFFSET response 
SBinToAscDec 
StrWrite 
Again 

ah, 04Ch 
aI, [exCode J 
21h 

COMPLEX DATA STRUCTURES 

Display decimal label 

Get value to convert 
Minimum number of digits 
Use same string for result 
Convert to decimal digits 
Display result 

Display signed decimal label 

Get value to convert 
Minimum number of digits 
Use same string for result 
Convert to signed decimal 
Display result 
Repeat until done 

DOS function: Exit program 
Return exit code value 
Call DOS. Terminate program 

Start End of program I entry point 

Structures are not variables; they're schematics that you can use to create multifield variables. A 
structure definition begins with STRUC and ends with ENDS. Default field values in the definition 
can optionally be overridden in a variable of the structure's design. To refer to the fields of a 
structure, write the structure variable's name, a period, and the field name. String fields in Ideal 
mode are padded with the default characters defined in the structure definition. 

Decimal is the normal radix (number base) in assembly language programs. Hex values must 
begin with one decimal digit and end with h. Binary values end with b. Decimal values end 
with nothing or d. You can change the radix with the RADIX directive. 

Turbo Assembler lets you specifY signed integers in the range -32,678 to 65.535, but values in 
the ranges -32,768 to -1 and 32,768 to 65.535 are represented identically in binary. You can 
declare floating-point numbers in IEEE format with the dt directive, although using floating
point values in assembly language is difficult. The same directive can create binary-coded
decimal (BCD) numbers, which pack rwo digits into single bytes for numbers up to 20 digits 
long. BCD numbers are useful in business calculations because they avoid round-off errors that 
can occur in results of floating-point expressions. 

Although assembly language lacks built-in array mechanisms, the base- and indexed-addressing 

modes can be used to read and write individual array elements. There are many ways to create 
arrays in memory and, with the LABEL and REPT directives, you can even build arrays with auto
matically assigned values. The goal of array indexing is to calculate the address of an individual 
arrayed value. This is easiest to do when array element sizes are 1 byte or a power of2. 

243 



244 

PART I.. PROGRAMMING WITH ASSEMBLY LANGUAGE 

Unions appear to be identical to structures but are declared with the UNION directive. A union's 
fields overlay each other in the union variable, differing from a structure where fields are 
distinct. Combinations of structures and unions make it possible to create complex data struc
tures in assembly language. 

The RECORD directive declares packed bit-field bytes and words. Field names in a record are 
constants that represent the number of shifts required to move field values to the rightmost 
position in a register or variable. The MASK operator converts a bit-field constant to a binary 
mask that can be used with logical instructions such as and and or to extract and combine 
bit-field values. 

To automatically generate the most efficient logical or, and, test, and xor instructions, you 
can instead use these pseudo instructions respectively: SETFLAG, MASKFLAG, TESTFLAG, and 
FLIPFLAG. 

If you have Turbo Assembler 3.0 or later, you can use the pseudo instructions SETFIELD and 
GETFIElD to insert and extract bit fields packed in records. 

Turbo Assembler's predefined equates can be used, among other things, to create an auto
matic version stamp every time a program is assembled. 

The BINASC module in this chapter converts signed and unsigned binary values to ASCIIZ 
strings and also converts ASCIIZ strings in three number bases to binary values. The rou
tines are particularly useful for converting numeric input entered in ASCII at the keyboard 
into binary values for processing. 

Exercises 
6.1. Create a structure named Time with fields for hours, minutes, and seconds. 

6.2. Declare Time variables with predefined 24-hour-c1ock values for 10:30:45, 
14:00:00, 16:30, and midnight. 

6.3. Create a variable named theTime of type Time from exercise #6.1 and write the 
assembly language instructions: to set the time to 15:45: 12; to increment the 
hour; to reset the time to 00:00:00; and to copy theTime to a second variable 
oldTime. 

6.4. Assume the default radix has been changed to 16. What are the decimal values 
of: 00001011, 10000000b, 1234, 4321d, FACE and OOFF? 

6.5. Create variables for the floating-point values 2.5, 88.999, and 0.141. Create 
binary-coded-decimal values for 125,000 and 1,250,500. What is the largest 
possible BCD value you can create? 



6.6. Create arrays of 45 two-byte words; 100 four-byte (doubleword) values; 1024 
bytes; and 75 binary-coded-decimal values. How many bytes do each of your 
arrays occupy in memory? 

6.7. Create a word index variable and, using this value, write instructions to load bx 

with the address of any element for the four arrays in exercise #6.6. 

6.8. Define a union similar to Figure 6.3's ByteWord, but with fields that allow 
accessing values as bytes, words, and doublewords. Show example instructions for 
accessing variables as any of the three types. 

6.9. Design a packed record named inventory with four bit fields (width in bits 
shown in parentheses): location (3), status 0), quantity (5), and vendor (4). 
How many bytes does a variable with this design occupy in memory? What are 
the range of values each field can represent? 

6.1 O. Write instructions to perform these operations on your inventory record from 
question #9: create a variable named inv of type inventory, set location to 3, set 
status to 1, add 6 to quantity, load vendor field into dh, toggle the status field, 
and zero all fields in the record. Hint: Use the MASK operator to create and masks. 

6.11. Write a program ADDHEX.ASM to display the sum of two hexadecimal values 
entered at the keyboard. Use routines as needed from the BINASC, STRINGS, 
and STRIa modules in your answer. 

6.12. Add an automatic version stamp to your answer in exercise #6.11. 

Projects 
6.1. Write routines to pack and unpack BCD numbers, converting a standard dt 2-

digit-per-byte format to a 20-byte variable containing 1 digit per byte. 

6.2. Write a logical calculator to display the results of performing AND, OR, XOR, 
NOT, NEG, SHL, and SHR operations on binary values. Users should be able 
to enter values and instructions at the keyboard. 

6.3. [Advanced] Write a new version ofBINASC named BINASC32 to handle 32-bit 
decimal integers. 

6.4. Write a program to create an array of string records. Then write subroutines to 
let people enter and display field values in each record. (Note: Don't be con
cerned with saving your data on disk, a subject covered in Chapter 9.) 

6.5. Construct general-purpose subroutines to pack and unpack bit fields in record 
variable words. Your code should work with both word and byte values. 

6.6. Write a general-purpose array index address calculator that returns the offset 
address for any array value of any byte size. 

245 





Input and Output 

-Standard Input and Output, 248 -Writing DOS Filters, 258 -Printing Text, 265 -Memory-Mapped Video, 267 -Memory-Mapped Video Module, 272 -A Module for Keyboard Control, 289 -Summary, 296 -Exercises, 296 -Projects, 297 



248 

Standard Input and Output 
If you want your programs to run on as many different DOS systems as possible, not only 
IBM PCs, you must use standard methods for reading input from the keyboard and for writing 
output to the display-not to mention communicating with other devices such as printers 
and plotters. 

DOS provides several standard I/O functions, the simplest of which read and write one char
acter at a time. For example, you can read a character from the standard input device into 
register al with two simple instructions: 

moy ah, 1 
int 21 h 

; Specify DOS "Character Input" function 
; Call DOS. Character returned in al 

If the standard ourpur device is the main console, as it usually is, reading input this way 
echoes each key press to the display. Because DOS I/O is redirectable, however, there's .no 
guarantee that the input data will come from the keyboard. Unknown to the program, the 
person using the computer may have executed a command to tell DOS to change the 
standard input file from the keyboard to a disk file: 

program <afile.txt 

The advantage of using DOS functions to read data from the standard input file is that your 
program does not have to perform any special actions to permit someone changing from where 
input comes or to where output goes. For most purposes, the program is blissfully unaware 
of physical I/O device details. If someone wants to print a program's output instead of see
ing it on screen, that's fine with DOS and the program. Similarly, to write a single character 

to the standard OUtpUt device takes only a few simple commands: 

moy ah, 2 
mov dl, [thechar] 
int 21 h 

; Specify DOS "character Output' function 
; Move character ~nto dl 
; Call DOS 

The character for output is loaded into dl from a byte variable theChar (not shown). Once 
again, because output for DOS function 2 may be redirected, there's no guarantee that this 
code will write a character to the display. For example, someone could execute a command 
such as the following to send your program's output to a serial output port, which might be 
attached to any sort of device. 

program >com1 

Taking a Break 
DOS functions 1 and 2 check whether Ctrl-C-the break command-was typed some time 
earlier. If so, DOS executes interrupt 23h, which halts the program. (Chapter 10 explains 
interrupts in more detail. As used here, an interrupt is similar to a subroutine call.) To avoid 
unexpectedly breaking out of a program when someone presses Ctrl-C, you have three choices: 



INPUT /I"ID 

• Use a different DOS function 

• Replace the code for interrupt 23h with your own Ctrl-C handler 

• Tell the device driver to ignore Ctrl-C key presses. 

Usually, the first choice is the best-other input methods are available that pass Ctrl-C back 
to your program just like any other key press. Writing your own interrupt handler is prob
ably more work than necessary. The third choice takes more work (as I'll explain later in this 
section) but may be useful in some cases. A device driver is a program in a highly specialized 
form that interfaces with physical devices such as keyboards, printers, and displays. Many 
good DOS programming references explain this form. 

Always remember that both of the standard inpur and output character functions 1 and 2 
check for Ctrl-C key presses. When this happens due to a call to the DOS input function 1, 
your program never receives the Ctrl-C. When a Ctrl-C is detected during a call to DOS 
ourput function 2, the character in dl is passed to the standard output file beforethe Ctrl-C 
check takes place. 

These checks for special characters are called filters because of the way they filter out certain 
key presses and characters for special action. In addition to filtering Ctrl-C, input and out
pur functions 1 and 2 also filter other control codes, performing the actions listed in Table 
7.1. Except for Ctrl-C, Ctrl-P, and Ctrl-S, which apply only to output, these actions occur 
for both input and output functions 1 and 2. 

Unfiltered Input 
When you don't want to filter Ctrl-C and other control codes, you can use one of two functions: 

• DOS function 6: Direct console I/O 

• DOS function 7: Unfiltered input without echo 

Function 6 is included in DOS mostly to accommodate programs converted from CP/M, which 
has a similar function for direct console lIO. Because there are other, and probably better, ways 
to access input and output devices directly in DOS, there's rarely any good reason to use 
function 6. Instead, it's usually best to employ function 7 to read characters quietly-that is, 
without echoing key presses to the standard output device and without filtering Ctrl-C. 
Except for the function number, the code is identical to the code for function 1: 

mov ah, 7 
int 21h 

; Specify DOS • Input without echo" 
; Call DOS. Character returned in al 

This method does not check for Ctrl-C or Crrl-Break key presses and, therefore, prevents 
people from ending programs prematurely. Other control codes in Table 7.1 are returned to 
your program as normal key presses. To add filtering to input without echoing characters to 

the standard output device, use function 8, which generates the interrupt 23h break signal 
to end the program if DOS detects a Ctrl-C or Ctrl-Break key press. Except for this action, 
funcdon 8 is identical to function 7. 

249 



250 

"',-,MII''''''''''-' WITH ASSEMBLY L~NGUAGE 

Table 7.1. Standard I/O Control Codes. 

ASCII Code Action 

Ctrl-C 03 Generate interrupt 23h (break) 

Ctrl-G 07 Ring the bell 

Crrl-H 08 Nondestructive backspace 

Ctrl-I 09 Tab forward 

Ctrl-J 10 Line feed (with possible scroll) 

Ctrl-M 13 Carriage return 

Ctrl-P 16 Toggle PRN device onloff 

Ctrl-S 19 Stop output until next key press 

Unfiltered Output 
As explained earlier, you can write ASCII$ strings with DOS function 9. Besides requiring 
the strange ASCU$ dollar-sign string format, function 9 (as function 2) detects Ctrl-C and 
responds to the other control codes in Table 7.1. If you must use these functions, prevent 
people from breaking out of a running program by calling DOS function 44h, "Device-driver 
control" or IOCTL-available beginning with DOS version 2. This function lets you re
program the output device driver to ignore Ctrl-C and Ctrl-Break key presses. First, call 
function 44h with al equal to 0, reading the current device control birs from the device driver: 

mov ax, 4400h 
mov bx, 1 
int 21 h 

; DOS function 44h, item 00: get device info 
; Specify standard output 
; Call ODS. Returns data in dx 

The device driver's bit settings are now in register dx. Bit 5 of the device driver settings tells 
tbe driver whether to process all data (bit = 1), or whether to filter characters for Ctrl-C and 
Ctrl-Break (bit = 0). Setting bit 5 turns off filtering: 

mov ax, 4401h 
xor dh, dh 
or dl, 20h 
int 21 h 

DOS function 44h, item 01: set device info 
dh must be 0 for this function call 
Set bit 5--process binary data 
Call DOS with data in dx 

This technique disables Ctrl-C, Ctrl-S, and Ctrl-P filtering, not only for your program but 
also [or any other programs including DOS itself that call functions 2 and 9 to pass data to 
the standard output device. For instance, after reprogramming the device driver, you will 
not be able to press Ctrl-C to interrupt a long directory started with the OIR command. So, 
as the video stores say, "Be kind: Rewind"-that is, before your program ends, clear bit 5 
with the identical seven previous instructions but replace or dl, 20h with and dl, 00Fh to 

restore Ctrl-C checking. 



r -~--~-----~-------------------------

INPUT AND OUTPUT 

Waiting Around-and Around 
A program that reads input via DOS functions 1,7, and 8 can become trapped in an endless 
cycle, waiting for key presses until the cows come home. (As far as I can tell, they always do. 
But, never mind.) Many times, you'll want a program to respond to key presses when they 
occur but to continue other operations if no input is ready. For example, a word processor 
could perform a lengthy search-and-replace operation, ending early if you press the Esc key. 
Or a simulation could update the display, taking various actions in real time as you type 
commands. There are two ways to achieve these goals: 

• Interrupt-driven, buffered input 

• Polling 

In the first method, incoming data forces the CPU to execute special code designed to store 
input in memory buffers for later processing. (Chapter 11 explains this method in detaiL) In 
the second method, a program periodically polls the input device, reading input only after 
detecting waiting data. If no input is available, the program continues with other operations. 

With polling, you must read input often enough to avoid losing characters. For example, if 
someone presses two keys before you check the keyboard for new input, the first key press 
might be lost. Fortunately, routines in the IBM PC's ROM BIOS automatically respond to 

key presses, storing ASCII codes in a type-ahead buffer. When DOS reads data from the key
board, it actually removes characters from this buffer. As a result, the only danger is that the 
buffer can fill before the program requests input. Even this danger is minimized by an auto
matic bell that sounds, warning a speedy typist to slow down. 

Remember that the type-ahead buffer stores only keyboard input. When input and output are 
redirected to other devices, characters are probably not buffered, and you must poll the input 
device often enough to avoid losing data. This is an especially exasperating problem with 
serial I/O, which DOS calls auxiliary I/D. When communicating with a remote computer, 
perhaps via modem, your program will almost certainly lose incoming data if it does not 
check for new input often enough. Even the time required for a simple disk write can cause 
several characters to slip by unnoticed. Consequently, it's best to use other methods for serial 
I/O on DOS systems and especially on IBM PCs, as explained in Chapter 11'5 discussion of 
interrupt processing. 

251 



252 

• PROGRAMMING WITH ASSEMBLY LANGUAGE 

Key Press Checking 
To check whether incoming data is waiting to be read, use DOS function 11, "Get Input 
Status," which returns al equal to 0 if no input data is ready or to OFFFh if a character is 
waiting to be read. (Zero and offh are the only two values returned by function U; therefore, 
just checking whether al equals 0 is adequate.) With this method, you can write a simple loop 
to call a subroutine repeatedly, processing new characters only as they become available: 

@@10: 
call OtherStuff 
mov ah, 11 
int 21 h 
or aI, al 
j e @@10 
mov ah, 7 
int 21h 
call ProcessChar 
Jmp @@10 

Code to execute until char is ready 
DOS function "Get Input Status" 
Call DOS. Result in al 
IS al 07 
Jump if al ~ 0. No input is waiting 
Else read character with no echo 
Call DOS. Character returned in al 
Process new input data in al 
Play it again, Sam 

This fragment repeatedly calls OtherStuff (not shown) until function 11 indicates that a 
character is ready. When a new character becomes available-probably as a result of some
body pressing a key-function 7 reads the character. It then calls ProcessChar (also not shown) 
to take appropriate actions, which might include ending the program on detecting the Esc 
or another key. In fact, this simple example could be used as the emire "main loop" of any 
program that needs to continue processing while responding to key presses as they become 
available. Unfortunately, there's a fly in the ointment: Function II also detects Ctrl+C and 
Ctr! + Break, ending the program via interrupt 23h if those keys are pressed. This effectively 
destroys the advantage of using function 7 co read unfiltered input. Even reprogramming 
the device driver as described earlier is of no help this time. 

The answer is to call BIOS routine 16h instead of DOS to test whether a key press is avail
able. When ah equals 1, this routine returns the zero flag zf equal to 1 if the type-ahead buffer 
is empty or to 0 if at leaS{ one character is in the buffer. In addition, if a character is waiting 
to be read, the BIOS routine returns the character in al and its scan code (keyboard key 
number) in ah. When ah initially equals 0, the same function removes and returns in ax one 
character from the type-ahead buffer. These routines give you the means to program com
pletely unfiltered, quiet I/O. The previous code now becomes: 

@@10: 
call OtherStuff 
mov ah, 1 
int 16h 
jz @@10 
xor ah, ah 
int 16h 
call ProcessChar 
jmp @@10 

Code to execute until char is ready 
Select "Input Status' routine 
Call BIOS keyboard I/O function 
Jump if zf ~ 1. No input is waiting 
Select "Read Character" routine 
Call BIOS Keyboard I/O function 
Process new input data in al 
Once more, from the top 

With this technique, no sequence of key presses can end the program prematurely. Having 
solved the problem for input, another BIOS function also lets you display characters with no 



INPUT AND OUTPUT 

Ctr/-C or Ctr/-Break filtering. With this function, you can program a procedure ProcessChar 

to display characters read by the previous sample code: 

PROC ProcessChar 
cmp aI, 27 
je Exit 
mov bl, 15 
mov ah, 14 
int 10h 
ret 

ENDP ProcessChar 

Is al = Escape key? 
If yes, exit program 
Foreground color for graphics displays 
Select 'Write TTY' routine 
Call BIOS Video I/O function 
Return to caller 

First, al is compared with the ASCII code for Esc (27), jumping to the Exit label (not shown) 
if you press the Esc key. (Providing a way to end the program is essential when not relying 
on DOS to end the program upon sensing Ctrl-C or Ctrl-Break.) If Esc is not detected, bl 

is assigned a foreground color, required only for graphics displays. Then ah is set to 14 deci
mal, selecting the BIOS "Write TTY" routine-so called because its simple character out
put resembles that of a Teletype machine, in other words, lacking facilities for positioning 
the cursor, changing character colors and attributes, clearing to ends of lines, and so on. Still, 
interrupt 10h is useful for reasonably fast output, especially when you want the program to 
have total control over I/O. 

NOTE 

The BIOS Write TTY routine of interrupt 10hfilters Ctrl-G (be!!), Ctrl-H (backspace), Ctrl-J 
(line feed), and Ctrl-M as described in Table 7.1. Other control codes in Table 7.1 are 
displayed as graphics characters. 

As with most good things in life, you pay a price by calling the ROM BIOS I/O routines. As 
you can see from the last several samples, the program has eliminated all calls to DOS. Con
sequently, the program will now run only on IBM PCs and 100% compatibles that contain 
the proper ROM BIOS routines. The code may not execute on plain DOS systems or under 
other operating systems that run pseudo-versions of DOS. Because there are so many mil
lions ofPCs installed in offices throughout the world, this may not be as severe a problem as 
it has been in times past. However, when using these techniques, you should at least include 
a warning along with your program not to attempt execution on noncompatible systems. 

A more nagging problem is the loss of I/O redirection, one of DOS's most appealing good
ies. Calling BIOS routines to give programs total comrol over character I/O means that your 
program users will no longer be able to redirect input to come from a text file or to send 
output to the printer. Many programmers consider such loss an advantage, giving their pro
grams complete control over what is primed, what appears on display, and so forth. But, for 
small programs and utilities, I/O redirection is a helpful feature to have, and you may want 
to consider using standard DOS function calls in such cases. 

253 



254 

PART I., PROGRAMMING WITH ASSEMBLY LANGuAGE 

Reading Function Keys 
The ASCII character set directly represents only 32 control codes with values from ° to 31, 
95 symbols with values from 32 to 126, plus a delete character with the value 127 (alias, 
rubout). Including uppercase and lowercase letters, punctuation and various Crrl, Shift, and 
Alt combinations, there simply aren't enough codes ro cover all the key combinations of
fered by even a small 83- or 84-key PC keyboard. 

~ ;')~. fY'1,," ""'*j- jf;'.:x~ ~ " ,',. ~-';i ,\');~; .. :.,;-~, "':;: ;:~)' l~" ~t ~ - ~ < ~ ~:: 
, , 

Although the PC extends the usual set of 128 ASCII codes with values ranging from 128 to 

255, these values are reserved for graphics characters, which you can use to draw boxes, 

~isplay mathematical symbols, Greek leiters, and arrows, among other symbols. Enter these 

codes by pressing and holding the All-key, and then typing on the numeric keypad the ASCII 

value of the symbol you want. 

To handle the special keys, the DOS input methods discussed in the previous section return 
two codes representing a function key. The first code, always 0, is called the lead-in charac
ter. When any keyboard input routine returns a 0, the next character indicates which func
tion key was pressed. This scheme leads to code such as: 

mov ah, 1 
int 21 h 
or aI, al 
jnz NormalChar 
int 21h 
jnz FunctionKey 

Specify DOS 'Character Input' function 
Call DOS. Character returned in al 
Check for lead-in from keyboard 
Jump to process a normal character 
Call DOS for next character 
Jump to process a function key 

As this shows, two DOS calls (0 function 1 are required (0 detect and read function keys, 
including special keys such as Ins, Del, PgUp, PgDn, the cursor keys, and the numbered 
function keys F I-F 1 ° found on all PC keyboards. Normal characters are processed by jumping 
to NormalChar (not shown); function keys by jumping ro FunctionKey (also not shown). 

The previous sample sets ah to 1 for only the first call to DOS with int 21h. There's no need 

to set ah to 1 a second time because DOS preserves all registers except those specifically 

returned by various functions; therefore, it's safe to assume that unused registers remain 

unchanged between calls to DOS. When using this trick, take care that you don't inadvert

ently change the function number in ah, or disaster is sure to strike. 

Many programmers use the double-DOS-call method, but I find this to be cumbersome in 
practice. Even though you can detect function keys, there's still no simple way to represent 



~ ...•.....• , ..•.•. ' ..... It 
~ .' 

I 
r 
f· 

_ ... __ ... _--------------------------

INPUT liND OUTPUT 

these keys as plain characters, as you can other keys like A and Q. For this reason, I map (that 
is, translate) function key values to single codes, a method described later in this chapter along 
with the listing for a keyboard input module you can add to your library. 

Flushing the Type-Ahead Buffer 
When prompting for a yes or no response to a dangerous operation-formatting a disk or 
erasing an important disk file-it's a good idea to flush (empty) the type-ahead buffer before 
reading the keyboard, thereby forcing people to consider carefully their answers to your 
program's more serious questions. These are two ways to flush the type-ahead buffer. The first 
is rather obvious-simply keep reading and throwing away key presses until none is available: 

@@10: 
mov 
int 
jz 
xor 
int 
jmp 

@@20: 

ah, 
16h 
@@20 
ah, 
16h 
@@10 

1 

ah 

Select "Input Status" routine 
Call BIOS keyboard I/O function 
Jump if zf 1. No input is waiting 
Select "Read Character" routine 
Read and throwaway one character 
Jump to repeat loop 
Type-ahead buffer is now empty 

This code is similar to previous samples, calling BIOS interrupt 16h with ah equal to 1 to 
test whether input is available. If there is (as indicated by zf = 0), ah is set to 0, and interrupt 
16h is again called to read one character from the type-ahead buffer, repeating these steps 
until no more characters are available. 

You can also call one of the DOS character input functions, numbers 7 or 8 usually, to flush 
the type-ahead buffer. Be aware that this doesn't work if input has been redirected. 

Another possibility is to call a special DOS function that clears the type-ahead buffer and 
then executes another character-input command. If your program must run on all DOS 
systems, this is the method to use. First, load ah with the function number OCh. Then load 
the number of another input command into al: either 1,6, 7, 8, or OAh. If using OAh, the 
"Get String" command, also set ds: dx to the address of the buffer to use for string input. 
Call DOS with int 21 h, which flushes the type-ahead buffer and then executes the function 
specified in a1. For example: 

mov ah, 0Ch 
mov aI, 7 
int 21 h 

Select 'Reset input buffer & execute" 
1, 6, 7, 8, or 0Ah allowed 
Call DOS to flush buffer and 

execute the command in al 

Some assembly language programmers employ yet another technique to empty the type-ahead 
buffer, fiddling with two pointers (addresses) that keep track of the buffer's head and tail. 

255 



256 

PROGRAMMING WITH ASSEMBLY LANGUAGE 

These pointers address the beginning (head) and end (tail) of the type-ahead buffer some
where in memory. A third pointer locates the starr of the buffer. By definition, when the 
head and tail pointers are equal, the buffer is empty. All three pointers are located in the 
BIOS data segment at 0040h, an area reserved for system variables. As the following frag
ment demonstrates, you can use this information to empty the type-ahead buffer by setting 
the head and tail pointers equal (Q the buffer's starting address: 

bufferStart EOU 0080h 
head EOU 001Ah 
tail EOU 001Ch 

mov ax, 0040h 
mov ds, ax 
mov ax, [bufferStart] 
eli 
mov [head] , ax 
mov [tail] , ax 
sti 

Buffer-start pointer 
Head pointer 
Tail pointer 

Address BIOS data segment 
with ds register 

Get buffer starting address 
Prevent interrupts from occurring 
Assign address to head pointer 
Head = tail, emptying the buffer 
Allow interrupts again 

First, segment register ds is set to the BIOS data segment beginning at 0040h. Then ax is 
loaded with the value stored at [bufferStart 1, which holds the offset address of the type
ahead buffer. Inserting this value into both the head and tail pointers empties the buffer. 
The eli (clear interrupt) instruction prevents a keyboard interrupt from occurring during 
tbe time that the two pointers are being adjusted. The sti instruction again allows inter
rupts after the buffer is cleared. 

The "keyboard interrupt" referred to here is known as a hardware interrupt. Every time you 
press a key, this interrupt causes a routine in the ROM BIOS to run, reading and storing key 
presses in the type-ahead buffer, as previously explained. This action can happen at just 
about any time, independently of whatever other code is running. Because of this, interrupts 
are temporarily disabled while clearing the type-ahead buffer to prevent the unlikely but 
possible event of your pressing a key before the erasure is completed. 

Introducing DOS Handles 
Another useful way to move data in and out of programs is to read and write files, identified 
by values called handles. The word "file" refers to disk files, as well as to devices such as the 
display, keyboard and printer. Instead of writing code to access such different devices di
rectly, you can instead read from and write to logical files assigned to the devices, employing 



INPUT>\ND OUTPLT 

a single set of DOS function calls to communicate with a wide variety of hardware. (We'll 
return to the subject of handles in Chapter 9, which covers how to use handles to read and 
write disk files.) 

When DOS loads and runs a program, it initializes several standard files. Table 7.2 lists the 
five handles associated with these files, showing the values that assembly language programs 
can use to communicate with the display, keyboard, printer, and one serial I/O channel. 

When you issue a DOS command to redirect 110, using the redirection character < to specifY 
a new input device or file and> to specifY a new output device or file, DOS closes handles 0 
and 1 and then reopens these defaults to the new devices, thus switching lIO away from the 
usual CON device, that is, the display and keyboard. This happens before your program 
begins running; therefore, all you have to do is read from handle 0 and write to handle 1 to 

give people complete control over your program's 110. 

Handle 2 is most often used for displaying error messages. Because I/O redirection affects 
only handles 0 and 1 and because handle 2 normally refers to the console, when redirecting 
output to another device, writing to handle 2 still goes to the display. This lets you display 
progress and error messages without worrying whether the messages will interfere with other 
output. (You can write anything you want to handle 2; you don't have to use this handle for 
only error messages.) 

Handle 3 is assigned to the first serial port, also known as COM 1. But, because DOS handles 
serial 1/0 so poorly, you should probably not try to use this handle for communicating with 
remote systems via modems and high-speed RS-232 interfaces. 

Handle 4 is associated with the printer, which may be plugged into the computer's parallel 
or serial ports. Some assembly language programmers use the ROM BIOS printer routine, 
interrupt 17h, which works only for parallel printers. While this is the normal configuration 
for most PC systems, many installations still have serial printers. Writing to the standard 
print device is the best way to accommodate all possible printer setups. 

Table 7.2. Standard DOS Handles. 
Handle Device Name Device 

0 CON Standard input device 

1 CON Standard output device 

2 CON Standard error Output device 

3 AUX Auxiliary (serial lIO) device 

4 PRN Standard listing device (printer) 

257 



258 

PROGRAMMING WITH ASSEMBLY LANGUAGE 

Writing DOS Filters 
Using standard DOS I/O file-handling techniques, you can write filter programs that read 
the standard input file, perform some operation on incoming data, and then write the modi
fied data to the standard output file. Multiple filter programs can be combined with a spe
cial character called a pipe, represented by a vertical bar (I). A pipe routes the output of one 
filter to the input of the next filter, which can route its output to a third filter, and so on. 
Combining multiple filters, each with a simple purpose-for instance, sorting text lines and 
extracting data based on various criteria-lets you build complex on-the-spot commands to 

solve problems that might otherwise require custom programming. 

Along with its other utility programs, DOS provides three standard filter programs: FIND, 
MORE. and SORT. (Refer to your DOS manuals for information on using these programs.) 
You can also add your own filters to this basic set. To help you get started, Listing 7.1, 
FILTER.ASM, is a shell that handles most of the low-level details involved with filter pro
gramming. FILTER is a complete filter, reading from the standard input device and writing 
to the standard output device. Because the program is only a shell, it doesn't perform any 
useful function. After the listing, I'll explain how to modify the shell to do something worth
while. Just so you know whether you entered the program correctly, you can assemble FIL
TER with the command tasm filter. 

If YOLI try to run FILTER without supplying input and output files, the computer will appear to 

"hang." Press Ctrl-Z (the DOS "end-of-file" key) and Enter to recover. 

Listing 7.1. Fl L TER.ASM. 
1 : %TITLE 'Filter Shell -- Copyright (e) 1989,1995 by Tom Swan' 
2: 
3: 
4: 
5; 
6; 
7: 
8: 
9; 

10; 
11 ; 

12: 
13: 
14: 
15; 
16 : 
17: 
18: 

IDEAL 

MODEL small 
STACK 256 

Equates 

InputHandle EOU 
OutputHandle EOU 
ErrOutHandle EOU 
bell EOU 
cr EOU 
If EOU 
eof EOU 

0 Standard input handle 
Standard output handle 

2 Standard error-out handle 
07 ASCII bell 
13 ASCII carriage return 
10 ASCII line feed 
26 DOS end-of-file char (-Z) 



--_ .... _--------------------------

19: 
20: 
21 : 
22: exCode 
23: 
24: 

DATASEG 

DB o I/O error code 

25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41 : 
42: 
43: 
44: 

Error messages 

45: 
46: 
47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61 : 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 
71 : 

errMessage DB bell, cr, If, 'FILTER ERROR: , 

lenErrMessage $-errMessage 

codeAccess EQU 5 
errAccess DB 'access denied', cr, If 
lenErrAccess $-errAccess 

codeNotOpen EQU 6 
errNotOpen DB 'bad handle or file not open', cr, If 
lenErrNotOpen $-errNotOpen 

codeDiskFull EQU 29 
errDiskFull DB 'disk full', cr, If 
lenErrDiskFull $-errDiskFull 

errGeneral DB 'unknown cause', cr, If Code ? 
lenErrGeneral $-errGeneral 

Input buffer 

oneChar DB ? 

CODESEG 

Start: 
moy ax, @data 
mov ds, ax 
mov es, ax 

Repeat: 
call ReadChar 
jz Done 

Process [oneChar] 

call WriteChar 
jnz Repeat 
mov [exCodel, 
jmp Exit 

Done: 
moy [oneChar], 
call WriteChar 

Holds one input character 

here 

codeDiskFull 

eof 

Initialize OS to address 
of data segment 

Make es = ds (optional) 

Read next character 
End loop if at end-of-file 

Write processed character 
Repeat unless disk is full 
Set error code 

and skip eof write 

Write end-of-file character 
to standard output. Do NOT 
check for disk full here! 

continues 

259 



260 

ART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Listing 7.1. continued 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81 : 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91 : 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 

100: 
101 : 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111 : 
112: 
113: 
114: 
115 : 
116: 
117: 
118: 
119: 
120: 
121 : 
122: 
123: 
124: 
125: 

Exit: 
cmp 
j z 
call 

@@99: 
mov 
mov 
int 

%NEWPAGE 

; ReadChar 

Input: 
none 

Output: 
zf = 0 
zf = 

Registers: 
ax 

PROC ReadChar 
push 
push 
push 

mov 
mov 
mov 
mov 
int 
jnc 
mov 
jmp 

@@10: 
or 

pop 
pop 
pop 
ret 

ENDP ReadChar 
%NEWPAGE 

[exCode], 0 
@@99 
DisplayError 

ah, 04Ch 
aI, [exCode] 
21h 

Check for pOSSible error 
Jump if no error detected 

else display error message 

DOS function: Exit program 
Return exit code value 
Call DOS. Terminate program 

Read one character from standard input 

a1 = next input character (0 .. 255) 
no more input available 

bx 
cx 
dx 

ah, 03Fh 
bx, InputHandle 
cx, 1 
dx. offset oneChar 
21h 
@@10 
(exCode] , al 
Exit 

ax, ax 

dx 
cx 
bx 

; Save modified registers 

Read-device function number 
Specify input handle 
Number of chars to read 
Store input at ds:dx 
Call DOS. Get input. 
Jump if no error indicated 
else save error code 
and exit program early 

Set/clear zero flag (zf) 

Restore registers 

Return to caller 

---------------------------------------------------------------, 
; WriteChar Write one character to standard output 

Input: 
[oneChar] = character to write 

Output: 
zf = 0 
zf = 

Registers: 
ax 

character written to standard output file 
output device is full (disk output only) 



f .: 
'! ~ ~ 

f:tF' 
~ ~\Y-~ 
!C ~ 
~"i~ 

126: 
127: 
128: 
129: 
130: 
131 : 
132: 
133: 
134: 
135: 
136: 
137: 
138: 
139: 
140: 
141 : 
142: 
143: 
144: 
145: 
146: 
147: 
148: 
149: 
150 : 
151 : 
152: 
153: 
154: 
155: 
156: 
157: 
158: 
159: 
160: 
161 : 
162: 
163: 
164: 
165: 
166: 
167: 
168: 
169: 
170: 
171 : 
172: 
173: 
174: 
175: 
176: 
177: 
178: 
179: 
180: 
181 : 
182: 
183: 

INPUT AND OUTPUT 

PROG WriteGhar 
puSh bx 
puSh cx 
puSh dx 

mov ah, 040h 
mov bx, Output Handle 
mov cx, 1 
mov dx, offset oneChar 
int 21h 
jnc @@10 
mov [exCode] , al 
jmp Exit 

@@10: 
or ax, ax 

pop dx 
pop ex 
pop bx 
ret 

ENDP WriteGhar 
%NEWPAGE 

Save modified registers 

Write-device function number 
Specify output handle 
Number of chars to write 
Take input from ds:dx 
Call DOS. Write output. 
Jump if no error detected 
else save error code 
and exit program early 

Set/clear zero flag (zf) 

Restore registers 

Return to caller 

; DisplayError Display error message 
; ---- - ----- - ---- - - -- - - -- -- ----'- ------------------------ -- -------

Input: 
[exCode] 

Output: 
non-zero error code 

none: error message sent to standard error-output device 
Registers: 

ax, bx, ex, dx 

PROG DisplayError 
mov ex, lenErrMessage 
mov dx, offset errMessage 
call DisplayString 

cmp (exCodej, eodeAeeess 
jne @@10 
mov ex, lenErrAccess 
mov dx, offset errAeeess 
jmp DisplayString 

@@10: 
cmp [exGode] , codeNotOpen 
jne @@20 
mov ex, lenErrNotOpen 
mov dx, offset errNotOpen 
jmp DisplayString 

@@20: 
cmp [exCode], codeDiskFull 
jne @@30 
mov ex, lenErrDiskFull 
mov dx, offset errDiskFull 
jmp DisplayString 

@@30: 
mov cx, lenErrGeneral 
mov dx, offset errGeneral 

Length of common string 
Address of common string 
Display first part message 

Test for codeAccess err 
Jump if not this code 
Set string length 
Set string address 
Display string 

Other error values 

continues 261 



262 

listing 7.1. continued 
184: DisplayString: 
185: mov 
186: mov 
187: int 
188: ret 
189: 

ah, 040h 
bx, ErrOutHandle 
21h 

Write-device function number 
Specify error output handle 
Call DOS. Write output. 
Return to caller 

190: ENDP DisplayError 
191 : 
192: END Start End of program I entry pOint 

How FItTER Works 
FILTER uses DOS handles to read and write characters to the standard input and output 
devices. The program also correctly handles error conditions-including a tricky disk-full 
condition that many similar programs fail to detect-and illustrates a few other goodies that 
you can put into operation in your own code. 

The three equates at lines 11-13 are assigned the values of three standard DOS handles. (See 
Table 7.2.) Later on, these equates are passed to appropriate DOS functions to read and write 
characters. Lines illustrate a different way to declare character strings. In place of the 
ASCII$ and ASCnZ methods described before, these strings are unterminated. The first string, 
errMessage at line 27, creates a string preceded by bell, carriage return, and line-feed control 
characters. Writing this string rings the bell and starts a new display line, as well as writing 
the visible characters, "FILTER ERROR:" Line 28 shows how to assemble a numeric equate 
equal to the length of the string. Here's a similar example: 

DATASEG 
dumbJoke 
LenString 

db "My Texas fleas have dogs.' 
$ - dumbJoke 

The dollar sign ($) is called the location counter. Turbo Assembler replaces $ with the current 
offset address at this place in the program-in this case, relative to the data segment, although 
you can use this symbol in any other segment, too. Because an offset address is just a value, as is 
the label dumbJoke, subtracting dumbJoke from the location counter afterthe string calculates the 
string length. You can use the same trick with any other label to calculate structure and array 
sizes or even to find the number of bytes of code berween rwo points in the code segment. 

Non . 
In MASM mode, you can use either an EQU directive or an equal sign to equate symbols and 
expressions involving the location counter $. In Ideal mode, you must use an equal sign
EQU will not work. The reason for this is that Ideal mode stores EQU assignments as text, 
evaluating expressions only later when you use the equated symbol. Equal-sign equates are 
evaluated at the declaration point. For the $ symbol to have the correct value, therefore, the 
expression must be evaluated where it is declared, not later when the symbol is used! 



INPUT AND OUTPUT 

In FILTER, the series of strings and string lengths at lines 27-43 are error messages, associ
ated with values assigned by EQU directives. For example, codeAccess is the error code for 
the string errAeeess, which has the length LenErrAccess. By the way, using similar names 
this way is a good technique for keeping programs organized, especially when you have more 
than just a few symbols to track. 

Lines 58-.-67 perform FILTER's input and output duties, repeatedly calling two subroutines 
ReadChar and Wri teChar, reading one character from the standard input device, and storing 
that character in a variable oneChar (line 48). At line 62, you can insert your own program
ming to process this character before the call to Wri teChar at line 64 sends oneChar on its way 
to the standard output. 

Lines 68-70 add an end-of-file control character, ASCII 26 (Ctrl-Z), to the end of the out
put file. (Some programs require this character; others do not. It's probably best to write the 
marker just to be safe.) 

FILTERASM ends by first inspecting the exCode variable, which hasn't been used up until 
now. In this program, an error code may be stored in exCode by either ReadChar orWriteChar. 
In that event, a third subroutine Disp1ayError sends an appropriate message to the standard 
error-output device handle number 2. After this, the program ends via DOS function 04Ch, 
passing the exCode value back in a1 (lines 77-79). 

The code at lines 58-75 is carefully constructed to respond to all possible I/O errors. If 
ReadChar returns the zf flag set, then there is no more input to process, and line 60 jumps to 
the Done label, where the end-of-file marker is written. If WriteChar returns the zf flag set, 
then the output file must be a disk text file and the disk is full, a condition that DOS strangely 
does not report as an error. Many programs skip this all-important step of checking for a 
disk-full condition as at lines 64-.-67 here. 

The rest of the FILTER shell is composed of three subroutines that you can call in your own 
programs. The next section describe how to do this. 

Readchar (82-113) 

ReadChar demonstrates how to read one character from the standard input device (handle 
0). DOS function 03Fh, "Read from file or device," requires bx to hold the handle number, 
ex to hold the maximum number of characters to read, and ds:dx to hold a pointer to the 
location where DOS should store the input data. This routine returns cf set if an error is 
detected, in which case the error code (either 5 or 6) is stored in exCode at line 104 followed 
by a jump to the Exit label, ending the program immediately jf an error occurs. The or in
struction at line 107 sets or clears zf. Ifax is 0, then no more data is available from the input 
file; otherwise, ax equals the number of characters actually read, which may be fewer than 
the maximum specified in ex. 

263 



264 

PART I • PROGRAMMING WITH ASSEMBLY LANGUAGE 

WriteChar (115-146) 

WriteChar calls DOS function 040h, "Write to file or device," [Q write one character [Q the 
standard output device (handle 1). Again. bx equals the handle number; ex, the number of 
characters; and ds: dx, the address of the data [Q be written. If ef is set on return from DOS 
function 040h, lines 137-138 store the error code in al in variable exCode and jump to the 
Exit label. Line 140 sets or dears zf as described before. 

DisplayError (148-190) 

DisplayError demonstrates how to display error (and other) messages in filter programs, using 
the same DOS function (040h) used in WriteChar. In this case, however, bx is assigned the 
standard error-output handle at line 186, with ex equal to the string length and ds: dx ad
dressing the string variable. Because handle 2 is used, even if the standard Output is redi
rected, error messages are still written to the display. 

Customizing FI LTER 
Because FILTER reads characters from the standard input device and writes characters to 

the standard output device, you can use 110 redirection characters « and» and a pipe (I) to 

execute the program. To modify the program to do something useful, first copy FIL TER.ASM 
to LC.ASM and replace line 62 in the copy with the code in Figure 7.l. 

Mter adding the new lines, assemble and link with the commands: 

tasm Ic 
tlink Ic 

You now have a new filter program LC to convert text files to all lowercase. One good use for 
LC is to convert to lowercase public domain assembly language listings, many of which are in 
all uppercase, which I find difficult to read. Before processing your valuable files, try the pro
gram on a copy of any text file. If your file is named OLDFILE.TXT, issue the command: 

lc <oldfile.txt >newfile.txt 

to convert the text in OLDFILE.TXT to lowercase and write the result to a new file named 
NEWFILE.TXT. No changes are made to OLDFILE.TXT. 

mov aI, [oneChar] Load al with input char 
cmp aI, 'A' Test if > 'A' 
jb @@10 Jump is al < 'A' 
cmp aI, 'Z' Test if al < 'Z' 
ja @@10 Jump if al > 'Z' 
add aI, 'a'-'A' Convert A-Z to a-z 
mov [oneChar], al Save converted character 

@@10: 

Figure 7.1. 
Code to replace line 62 ill Listing 7.1, converting the FIL"T}."R.ASM sheIL to LC.ASM. 



NOTE. 

One danger with redirected I/O and filter programs is that you receive no warning that an 

existing file is about to be overwritten by the new output. Be careful not to erase an important 

file when typing the output filename after the output redirection character >. Always keep 

backup copies of your files! 

Another way to use a filter program like LC is to pipe the output of one filter into the input 
of another. For example, to display a sorted disk directory in all lowercase, use the command: 

DIR is, of course, a DOS command; LC is the filter from this chapter; MORE is a standard 
DOS filter program that inserts pauses at every screenfull oflines; and SORT is another stan
dard filter that sortS text lines. Because the display is the standard output file, there's no need 
to redirect output in this case. When you do want to redirect piped output, for example to 

print a directory in lowercase, use a command like this: 

dir:le >prn 

Printing Text 
The printer is just another output device; therefore, the easiest way to print text is to write to 
the standard list-device handle, number 4. (See Table 7.2.) For example, you can print a 
string with code such as this: 

DATASEG 
string DB 
LenString 
CODESEG 

'This string is printed' 
$ - string 

mov ah, 
mov bx, 
mov ex, 
mov dx, 
int 21h 

040h 
4 
LenString 
offset st ring 

DOS function 'Write to File or Device' 
Standard list device handle number 
Assign length of string 
Assign string address to ds:dx 
Call DOS to print string 

After this code executes, register ax equals the number of characters printed, unless cf is set, 
in which case ax equals an error code, probably 5 (access denied) or 6 (bad handle or file nor 
open). If ef is not set, it's also possible, although unlikely, for ax to be less than ex, indicat
ing that only some of the characters were successfully printed. You can deal with this situa
tion if you want, but for most printing jobs, it's not necessary, continuing instead with: 

j ne Continue 
mov [errorCodej, ax 
jmp Error 

Continue: 

No error--continue 
Else store error code 
Exit program 

265 



266 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

An easy way to print single characters is to use DOS function 5, which sends the character in 
dl to the standard list device associated with handle 4: 

mov ah, 5 
mov dl, [anyChar] 
int 21h 

DOS printer output 
Place character in dl 
Call DOS to print one character 

Both this and the previous methods ensure portability and will work with just about any 
printer/interface combination your program is likely to meet. As mentioned earlier, you can 
also print a character by calling the ROM BIOS interrupt 17h, although this method won't 
work with serial printers: 

mov ah, 0 
mov aI, [anyChar] 
mov dx, 0 
int 17h 

Select print routine of interupt 17h 
Place character in al 
Printer number 0, 1, or 2 
Call ROM BIOS to print one character 

After this code, if ah equals 1, then the character was not printed-probably because the printer 
is either off line, or, perhaps, there is no printer. Use this method only if you are sure that 
your program will drive a printer attached to the computer's parallel interface, and you are 

sure the system has an IBM-compatible BIOS. 

Selecting Printer Features .. 
All modern printers understand a variety of control codes to select various features, switch 
on underlines, print in bold face, and so on. To select a feature is a simple matter of "print
ing" the correct control-code sequence. When the printer receives such a sequence, it inter
prets the values as instructions instead of ASCII codes to print. For example, to switch to 

compressed text on most Epson-compatible printers, you can write: 

mov ah, 5 
mov dl, 14 
int 21h 

DOS printer output 
; Compressed-text control code 
; "Print" the command 

Some commands required two or more successive codes, usually starting with an escape char
acter (ASCII 27). Probably, the best way to handle such codes is to write a small subroutine 
to print one character: 

PROC PrintChar 
mov ah, 5 DOS printer output 
int 21h Print character 
ret Return to caller 

ENDP PrintChar 

Then place the value to print in dl and call PrintChar. To turn on underlining, you can write: 

mov dl, 27 
call PrintChar 
mov dl, 45 
call PrintChar 
mov dl, 1 
call PrintChar 



This sends the sequence 27, 45, 1, which tells the printer to begin to underline subsequent 
text. (Change the 1 to 0 to cancel underlining.) Table 7.3 lists a subset of the more popular 
comrol sequences understood by many printers. Consult your primer manual for other codes. 

Table 7.3. Typical Printer Control Sequences. 
ASCII Code Decimal Values Action 

BELL 7 Ring printer's bell 

HT 9 Horizontal tab (forward) 

LF 10 Line feed 

VT 11 Vertical tab 

FF 12 Form feed 

CR 13 Carriage return 

SO 14 Double width text on* 

SI 15 Compressed text on 

DC2 18 Compressed text off 

DC4 20 Double width text off 

CAN 24 Clear primer buffer 

ESC,-,NUL 27.45,0 Underlining off 

ESC,-,SOH 27.45,1 Underlining off 

27,69 Emphasized text on 

ESC,F 27,70 Emphasized text off 

ESC,W,NUL 27,87,0 Double width text off 

ESC,W,SOH 27,87,1 Double width text on 

'Cancelled by CR, LF, or DC4 

Memory-Mapped Video 
To paraphrase a well-known writer whose name is similar to mine (but ends with a big bad 
Wolfe instead of a beautiful Swan), assembly language programmers like to power their code 
to the edge of the envelope. To achieve the best possible output speed in PC programming, 
there's only one way to fly-write characters directly to the PC's memory-mapped video. 

Although there are several different kinds of video adapters and systems available for IBM 
PCs and compatibles, all use one of two special memory areas that other circuits read to dis
play text on screen. These areas, called video or regen buffers, begin at segment address OBOOOh 
for monochrome and Hercules displays and at OB800h for graphics systems, including CGA, 267 



268 

-------_ ....... -_ ..... _---

PART I .. PROGRAMMING WITH ASSEMBLY LANGUAGE 

EGA, and VGA standards. Each word in the buffer specifies an extended ASCII character 
value from 0 to 255 plus a second byte that selects attributes such as bold face and underlin
ing on monochrome systems or background and foreground colors on color monitors. Al
though there are many different modes and features of these display standards that you can 
use, when it comes to displaying text by directly writing to the video buffers, the process is 
relatively straightforward. 

The reason for having rwo video buffers, by the way, is that the original IBM PC allowed 
both monochrome and color graphics adapters to be used simultaneously. Although most 
people use a single CRT and adapter card today, obviously, such dual use requires rwo buff
ers to hold screen dara. The first job, then, is to discover whether the system has a mono
chrome or color adapter-or which of the rwo is active in systems with both setups. Do this 
by calling the ROM BIOS interrupt 10h with ah equal to 15 decimal: 

DATASEG 
vBASE dw 
CODESEG 

mov [v8ASEj, 
mov ah, 15 
int 10h 
cmp aI, 1 
jne @@10 
mov [v8ASE] , 

@@10: 

? 

08800h 

0B000h 

Video buffer base address 

Initialize default segment address 
ROM BIOS 'Get video state" number 
Call BIOS video 1/0 service 
Is result monochrome? 
Jump if not monochrome 
Else change default segment address 

These instructions call the BIOS video routine with int 10h and check the result returned in 
a1. If al is 7, this is a monochrome system (including those with the popular Hercules adapter); 
otherwise, the system has a graphics card of some kind. Accordingly, the word variable v8ASE 

is set to the proper segment address for other routines to use. 

After this step, writing a character to the display is a simple matter of poking an ASCII value 
and an 8-bit attribute code into a memory location, offset from the segment specified by 
vBASE. There are several ways to proceed, but the method I have found easiest to use is to 
load es with the segment address and di with the offset: 

moves, [vBASEj 
mov di, 0 

; Address video buffer segment with es 
; Assign offset address to di 

After this, load an ASCII value into al and the attribute or color value into ah and execute 
stosw to display the character: 

mov aI, [anyCharj 
mov ah, [attribute] 
stosw 

Load character to display into al 
; Load attribute into ah 
; Store ax at eS:di 

If you are going to store successive characters and attributes with this method, execute a cld 

instruction before the first stosw to prepare for auto-incrementing di. When displaying only 
one character, it doesn't matter whether di increases or decreases, so you can leave this step 
out. 



Figure 7.2 illustrates that characters in monochrome and color video memory buffers are 
composed of character and attribute bytes. Figure 7.3 shows the format of a character at
tribute byte, which is identical for both color and monochrome adapters. Of course, you see 
colors only on color displays. On monochrome systems, "colors" are shown as underlines, 
bold face, and reversed (black on bright) video. 

In the video buffer memory, character bytes are stored at even addresses; attribute bytes, at 
odd addresses. When reading and writing the character value and attribute together into a 
l6-bit register, remember that the 8086 stores word values in byte-swapped order. Conse
quently, assuming the value of di is even, executing either of the following two instructions 
loads the character value into al and the attribute into ah: 

lodsw 
mov ax, (es:di] 

Figure 7.2. 
Screen positions and video 
buffirs. 

Figure 7.3. 
Monochrome and color 
attribute byte. 

; al <- character; ah <- attribute 
; Same, but di is not changed 

(even) (odd) 
addr addr + 1 

7 6 5 4 3 

Blink Intensity 

Cursor Coordinates 

2 0 

80 x 25 
Display 

To position the cursor to a specific location, call BIOS interrupt lOh with ah equal to 2, 
dh equal to the row number, and dl equal to the column. Location (0,0) is at the upper 
left corner; therefore, the maximum column is 79 and the maximum row 24 for a typical 
80x25 character display. Because some video systems can display multiple pages, you must 

269 



270 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

also assign a page number to bh. Usually, you can get away with specifying the default page 
0, positioning the cursor with: 

xor bh, bh 
mov ah, 2 
mov dh, [row] 
mov dl, [column] 
int 10h 

Select page 0 (default) 
Specify set-cursor routine number 
Load row into dh 
Load column into dl 
Call sros video r/o service 

If your program uses other page numbers, or if you change pages with: 

mov ah, 5 
mov al, 1 

int 10h 

; Specify change-page routine number 
j Specify page number 1 (second page) 
j Call sros video r/o service 

then you should request the current page number before changing the cursor location. Do 
this by calling interrupt 10h with ah equal to 15 decimal: 

mov ah, 15 
int 10h 

; Specify get-video-state routine number 
; Call sros video IIO service 

This loads the current display page number into bh, sets ah to the display width (usually 80) 
and, as described earlier, also sets a1 to the current display mode. With the page number in 
bh, you can then position the cursor without worrying that you may be doing this on the 
wrong page-an error that even some commercial programs make. (If you've ever used a 
program where the cursor sometimes disappears or behaves strangely, you're probably see
ing this problem in action.) 

NOTE 

If you change text display pages, be sure to switch back to page 0 before your program ends. 

Snow Code 

Snow is beautiful stuff, but not when it "drifts" onto a computer display. Unfortunately, by 
writing directly to video display memory in eGA text mode, you can introduce snow by 
interfering with the timing of circuits responsible for updating, or refreshing, the screen. (The 
same problem does not occur with monochrome, Hercules, and newer EGA and VGA dis
play adapters.) This refreshing action is performed automatically about 60 times a second 
creating the illusion of stability when the truth is anything but. 

eGA displays are rarely used on modern pes, and dealing with this problem isn't as neces
sary as it was in the past. Even so, if you want your DOS assembly language programs to 
work on all pes, you must provide code for older systems. Also, the techniques described in 
this section are generally useful on other computer systems where similar methods for creat
ing smooth displays may be required. 



The trick in eliminating snow is to access video memory only during the time when display 
circuits are not likely to read data at the same addresses. The most reliable time to do this is 
during the vertical retrace period when the CRT beam moves invisibly from the bottom to 
the top of the display afrer finishing one full refresh cycle. Writing to video buffer memory 
during this time is guaranteed not to interfere with the CGA's own timing requirements. 
Detecting the vertical retrace period requires reading a register in the Motorola 6845 CRT 
Controller with an in instruction, which, along with its sister instruction out, have the gen
eral forms: 

In accumulator, port 
out port, accumulator 

The accumulator may be either a1 (to input a byte) or ax (to input a word). The port specifies 
the physical address of the device being read and must be a number from 0 to 255 or a value 
in dx from 0 to 65,535. An in instruction reads a byte or word from a port. An out instruc
tion writes a byte or word to a port. For some ports, simply reading or writing the correct 
address causes an action to occur and, in this case, the data transfer is meaningless. 

To eliminate CGA snow, an in instruction reads the 6845 controller's status register byte at 
address 03dah. Ifbit 3 of the result in a1 is 1, then a vertical retrace operation is in progress, 
and it's safe to poke a character quickly into memory. The code to accomplish this is: 

M6845 EQU 03dah 

mov dx, M6845 
@@10: 

in al, dx 
test aI, 08h 
j e @@10 

Address of CGA 6845 CRT Controller 

Set dx to input port address 

Read 6845 status 
Test if bit 3 = 1 
Repeat if bit 3 = 0 

Immediately after this, it's safe to store a character and attribute into the video regen buffer. 
You can use any of the addressing methods described in this book, but the fastest way is to 
employ a string stosw instruction. Assuming that eS:di addresses the video buffer and that 
ex holds the character in el and attribute in ch, you can follow the previous code with: 

mov ax, cx 
stosw 

; Move character/attribute into ax 
; Store ax at eS:di 

Unfortunately, all this effon to prevent snow on CGA text screens negates most of the speed 
gained from writing directly to video buffers in the first place. Worse, because the program 
now has to check whether "snow control" is required before writing every character, output 
to other display types goes more slowly, too. For these reasons, you may want to consider 
writing two library modules, one with snow control and the other without. Also, be aware 
that some users are willing to put up with snow to achieve faster displays, so you should al
ways make snow removal optional. Unfortunately, some reviewers and computer journalists 
have decided that snow is totally unacceptable, failing in many cases to point out that the 
trade-off is a severe loss of output speed. Many people welcome the extra speed even if they 
have to watch an occasional snowfall. 

271 



272 

---_ .. _- --~ ..... . --------.. -.--..... ---~ 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

More About I/O Ports 
As the previous section suggests, reading and writing portS with in and out instructions are 
among the lowest oflow-level, hardware-specific programming jobs you can perform. Port 
addresses are hard-wired into computer and interface circuits, and you can't change the ad
dresses in a program. Some interfaces allow you to select port addresses by flipping switches 
or installing a jumper wire. Also, it's possible to design interface cards that have program
mable port addresses but, in practice, this is highly unusuaL Most port addresses are fixed. 

Because port addresses can differ from computer to computer, directly accessing I/O ports 
can limit programs to running only a specific computer modeL Some addresses such as serial 
I/O ports (discussed in Chapter 10) are always set to one value or another. Others are added 
by manufacturers to control special features. For example, the following instructions switched 
one of my older computer systems (an ALR 386/2) between slow and fast speeds: 

j Switch to slow speed 
mov aI, OEAh 
out 64h, al 
j Switch to fast speed 
mov aI, 0E5h 
out 64h, al 

Assign value to al 
Output al to port 64h 

Assign value to al 
Output al to port 64h 

Undoubtedly, these same instructions will fail on a different system, so don't try them un
less you're using the same computer. If you do write such hardware-dependent code, you 
should give users the ability to change the port address assignments, to select alternate code 
(perhaps to call a DOS routine for systems without a certain feature), or to bypass the hard
ware-specific instructions altogether. 

A Memory-Mapped Video Module 
Listing 7.2, SCREEN .ASM, includes several procedures that implement the memory-mapped 
video ideas in this chapter. As with STRINGS, STRIO, and BINASC, the program is in the 
form of a library module and, therefore, requires linking to a host program before running. 
(A full example follows this section.) There are several new techniques in SCREEN.ASM, 
described later in the section "Using the SCREEN Module." But all the 8086 instructions 
in the listing have been introduced in this and in earlier chapters, and you should have little 
trouble understanding most of the code. Assemble and store SCREEN in your MT A.LIB 
library file with the commands: 

tasm IZi screen 
tlib IE mta -+screen 

Repeat these instructions if you later modifY SCREEN. (As explained for other modules, 
ignore a possible warning that SCREEN is not in the library.) You can remove the / zi switch 
to reduce code-file size if you don't plan to run assembled programs in Turbo Debugger. 



INPUT AND OUTPUT 

listing 7.2. SCREEN.ASM. 
1: %TITLE "Memory-Mapped Video -- Copyright (c) 1989,1995 by Tom Swan" 
2: 
3: 
4: 
5: 
6: 
7: 

NOTE: You must call ScInit before calling other routines 

8: 
9: 

10: 
11 : 
12: 
13: 
14: 
15: 
16: 
17: 
18: 

in this package! 

IDEAL 
MODEL small 

MaxRow EOU 25 Maximum number of display rows 
MaxCol EOU 80 Maximum number of display columns 
MonoBASE EOU 0b000h Monochrome RAM segment address 
DefaultBASE EOU 0b800h Other mode RAM segment address 

Character attribute byte & AND masks 

19: RECORD attrByte Blink:1, Background:3, Intensity:1, Foreground:3 
20: 
21: BlinkMask 
22: BackMask 
23: IntensityMask 
24: ForeMask 
25: 
26: 
27: 
28: DATASEG 
29: 
30: att ribute 
31: vBASE 
32: 
33: 

EOU 
EOU 
EOU 
EOU 

MASK 
MASK 
MASK 
MASK 

attrByte <0,0,7> 

Blink 
Background 
Intensity 
Foreground 

ow oefaultBASE 
Attribute, default values 
Video RAM buffer address 

34: 
35: 

ScRow: Array of offsets (from vBASE) in video RAM buffer 

36: BytesPerRow = MaxCol * 2 
37: row = 0 
38: LABEL ScRow Word 
39: REPT MaxRow 
40: DW ( row * BytesPerRow 
41: row = row + 1 
42: ENDM 
43: 
44: 
45: 
46: 
47: 
48: 
49: 

CODESEG 

PUBLIC ScGotoXY, ScReadXY, ScPokeChar, ScPokeStr, ScClrRect 
PUBLIC ScSetBack, ScSetFore, ScBright, ScDim, ScBlink 
PUBLIC ScNoBlink, ScGetAttribute, ScSetAttribute, ScInit 

continues 

273 



274 

listing 7.2. continued 
50: %NEWPAGE 
51: ---------------------------------------------------------------
52: ; SetVidAddr Prepare video-RAM address 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61 : 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 
71 : 
72: 
73: 
74: 
75: 
76: 
77: 

Note: 
Private subroutine for ScPokeChar and ScPokeStr 

Input: 
dh row (0 is top line) 
dl column (0 is at far left) 

Output: 
es:di video RAM buffer address for (row, column) 
Note: dh and dl are not checked!! 

Registers: 
bx, dx, di, es changed 

PROC SetVidAddr 
mov es, [vBASEl Set es to video segment 
xor bh, bh Zero upper half of bx 
mov bl, dh Assign row to bl 
shl bx, Multiply row (bx) times 

address 

2 
mov di, [scRow+bxl Set di to video buffer row address 
xor dh, dh Convert column to 16-bit word 
shl dx, Multiply column (dx) times 2 
add di, dx Add column offset to row address 
ret Return to caller 

ENDP SetVidAddr 
%NEWPAGE 

78: ; ScGotoXY Set cursor position 
79: 
80: 
81 : 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91 : 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 

100: 

Input: 
dh 
dl 

row (0 is top line) 
column (0 is at far left) 

Output: 
Cursor in current page repositioned to (row, column) 

Registers: 
none 

PROC ScGotoXY 
puSh 
push 
mov 
int 
mov 
int 
pop 
pop 
ret 

ENDP ScGotoXY 
%NEWPAGE 

ax 
bx 
ah, 15 
10h 
ah, 2 
10h 
bx 
ax 

Save modified registers 

Get display page number into bh 
Call BIOS video service 
BIOS function number 
Call BIOS--set cursor position 
Restore registers 

Return to caller 

101: ; ScReadXY Get cursor pOSition 
102: 



103: Input: 
104: none 
105: Output: 
106: dh = row (0 is top line) 
107: dl = column (0 is at far left) 
108: 
109: 
110: 
111: 
112 : 
113: 
114: 
115: 
116: 
117 : 
118: 
119: 
120: 
121 : 
122: 
123: 
124: 

Registers: 
dx changed 

PROC ScReadXY 
push ax 
push bx 
push cx 
mov ah, 
int 10h 
mov ah, 
int 10h 
pop cx 
pop bx 
pop ax 
ret 

ENDP ScReadXY 
%NEWPAGE 

; Save modified registers 

15 Get display page number into bh 
Call BIOS video service 

3 BIOS function number 
Call BIOS--get cursor position 
Restore registers 

Return to caller 

125: ---------------------------------------------------------------
126: ; ScPokeChar Poke a character into the display 
127: 
128: 
129: 
130: 
131 : 
132: 
133: 
134: 
135: 
136: 
137: 

Input: 
al 
dh 
dl 

Output: 

ASCII character code 
row (0 is top line) • 
column (0 is at far left) • 

Character in al displayed at position (row, column) 
• Note: Rowand Column values not checked!! 

Re9isters: 
ax, bx, dx, di changed 

138: PROC 
139: 

ScPokeChar 
push es Save es segment register 

Prepare es:di 140: 
141 : 
142: 
143: 

call SetVidAddr 
mov ah, (attribute] 
stosw 
pop es 

Assign attribute to ah 
Display attribute and char 
Restore es register 

144: ret Return to caller 
145: ENDP ScPokeChar 
146: %NEWPAGE 
147; ---------------------------------------------------------------
148: ; ScPokeStr Poke a string into the display 
149: 
150: 
151 : 
152: 
153: 
154: 
155: 
156: 
157: 
158: 
159: 
160: 

Input: 
cx number of characters to write 
dh row (0 is top line) • 
dl column (0 is at far left) * 
ds:si = address of ASCII string (any format) 

Output: 
• Note: Rowand Column values not checked!! 

Note: Any string terminator is ignored 
Registers: 

ax, bx, cx, dx, di, si changed 

c01uinues 275 



276 

_ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Listing 7.2. continued 
161 : 
162: 
163: 
164: 
165: 
166: 
167: 
168: 
169: 
170: 
171 : 
172: 
173: 
174: 
175: 
176: 
177 : 
178: 
179: 
180: 
181 : 
182: 
183: 
184: 
185: 
186: 
187: 
188: 
189: 
190: 
191 : 
192: 
193: 
194: 
195: 
196: 
197: 
198: 
199: 
200: 
201: 
202: 
203: 
204: 
205: 
206: 
207: 
208: 
209: 
210: 
211 : 
212: 
213: 
214: 
215: 

PROC ScPokeStr 
push es Save es segment address 
call SetVidAddr Prepare es:di 
mov ah, [attribute] Assign attribute to ah 
cld Auto-increment si, di 

@@10: 
lodsb Get next char into al 
stosw Display attribute and char 
loop @@10 lOOp on cx 
pop es Restore es segment address 
ret Return to caller 

ENDP ScPokeStr 
%NEWPAGE 

; ScClrRect Clear rectangular area on display 

Input: 
ch, cl 
dh, dl 

Output: 

row & column of upper left corner 
row & column of lower left corner 

Rectangle defined by ch,cl 
to current attributes 

Registers: 
ax 

PROC ScClrRect 
mov ah, 6 
mov aI, 0 
mov bh, [attribute] 
int 10h 
ret 

ENDP ScClrRect 
%NEWPAGE 

& dh,dl cleared 

Select BIOS scroll routine 
Tells routine to clear area 
Get attribute to use 
Call BIOS video service 
Return to caller 

;---------------------------------------------------------------
; ScSetBack Set background color (attribute) 

Input: 
al background color 

Output: 
Background color set for ScPokeChar and ScPokeStr 

Registers: 
al 

;------------------~---------------~~-------~-------------------
PROC ScSetBack 
IF Background GT 0 

ENDIF 

push cx If background not in Isbs 
then shift bits into 
position for ORing into 
attribute byte 

mov 
shl 
pop 

and 
and 
or 

cl, Background 
aI, cl 
cx 

al,BackMask Isolate bits in al 
[attribute], NOT BackMask i Zero background bits 
[attribute], al Add background to attribute 

ret Return to caller 
ENDP ScSetBack 



216: .. NEWPAGE 
217: ---------------------------------------------------------------
218: ; ScSetFore Set foreground color 

Input: 
al foreground color 

Output: 

219: 
220: 
221 : 
222: 
223: 
224: 
225: 
226: 

Foreground color set for ScPokeChar and ScPokeStr 
Registers: 

al 

227: PROC ScSetFore 
228: IF Foreground GT 0 
229: push ex 
230: 
231: 
232: 
233: ENDIF 

mov 
shl 
pop 

cl, Foreground 
aI, el 
ex 

If foreground not in Isbs 
then shift bits into 
position for ORing into 
attribute byte 

234: and aI, ForeMask , Isolate bits in al 
235: and [attribute], NOT ForeMask ; Zero foreground bits 
236: or [attribute], al Add foreground to attribute 
237: ret Return to caller 
238: ENDP SeSetFore 
239: .. NEWPAGE 
240: 
241 : 
242: 
243: 
244: 
245: 
246: 
247: 
248: 
249: 
250: 
251: 
252: 
253: 
254: 
255: 
256: 
257: 
258: 
259: 
260: 
261 : 
262: 
263: 
264: 
265: 
266: 
267: 

SeBright 
SeDim 
SeBlink 
SeNoBlink 

Input: 
none 

Output: 

Turn on intensity bit 
Turn off intensity bit 
Turn on blink bit 
Turn off blink bit 

Attribute's intensity & blink bits modified 
Registers: 

none 

PROC SeBright 
or [ at t r ibut e I , IntensityMask 
ret 

ENDP SeBright 

PROC SeDim 
and [attribute], NOT IntensityMask 
ret 

ENDP SeDim 

PROC SeBlink 
or [attribute], BlinkMask 
ret 

ENDP SeBlink 

continues 

277 



278 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

listing 7.2. continued 
268: PROC 
269: 

ScNoBlink 
and [attributej, NOT BlinkMask 

270: ret 
271: ENDP ScNoBlink 
272: %NEWPAGE 
273: ---------------------------------------------------------------
274: j ScGetAttribute Get current attribute value 
275: 
276: 
277: 
278: 
279: 
280: 
281: 
282: 

Input: 
none 

Output: 
dl current attribute value 

Registers: 
dl 

283: PROC ScGetAttribute 
284: 
285: 
286: 
287: 

mov dl, [attribute] 
ret 

ENDP ScGetAttribute 
%NEWPAGE 

Get attribute byte 
Return to caller 

288: ,---------------------------------------------------------------
289: j ScSetAttribute Change attribute value 
290: 
291 : 
292: 

Input: 
al 

293: Output: 
new attribute value 

294: none: attribute stored for later use 
295: Registers: 
296: none 
297: ---------------------------------------------------------------
298: PROe ScSetAttribute 
299: mov [attribute], al 
300: ret 
301: ENOP ScSetAttribute 
302: %NEWPAGE 

Set attribute byte 
Return to caller 

303: ---------------------------------------------------------------
304: j ScInit Initialize SCREEN package 

306: Input: 
307: none 
308: Output: 
309: vBASE initialized 
310: Registers: 
311: none 
312: ---------------------------------------------------------------
313: 
314: 
315: 
316: 
317: 
318: 
319: 
320: 

PROC ScInit 
push 
push 
mov 
int 
cmp 
jne 
mov 

ax 
bx 
ah, 15 
10h 
aI, 7 
@@10 
[vBASE] , 

Save modified registers 

BIOS function number 
Get video mode in al 
Is mode monochrome? 
If no, jump 

MonoBASE Assign monochrome address 



321 : @@10: 
322: pop bx Restore registers 
323: pop ax 
324: ret Return to caller 
325: ENDP ScInit 
326: 
327: END End of module 

A SCREEN Demonstration 
To give you a model program for experimenting with the new SCREEN module while you 
read the later procedure descriptions, here's a quick demonstration. Listing 7.3, CHARS.ASM, 
displays a chart of your system's video display attributes and colors. The program also shows 
how to combine the STRIO module from Chapter 5 with the memory-mapped video rou
tines in SCREEN without conflict, even though both of these modules have similar subrou
tines. Assemble, link, and run CHARS with the commands: 

tasm IZi chars 
tlink Iv chars", mta 
chars 

Listing 7.3. CHARS.ASM. 
1: %TITLE "Display Character/Attribute Ref -- by Tom Swan" 
2: 
3: IDEAL 
4: 
5: MODEL small 
6: STACK 256 
7: 
8: 
9: cr 

10: lf 
11: ChartRow 
12: 
13: 
14: DATASEG 
15: 
16: exCode 
17: welcome 
18: 
19 : 
20: template 
21 : 
22: 
23: blinkString 
24: 
25: 
26: CODESEG 
27: 

EOU 
EOU 
EOU 

DB 
DB 
DB 
DB 
DB 
DB 
DB 
DB 

13 
10 
7 

o 

ASCII carriage return 
ASCII line feed 
Row for attribute chart 

'Character attributes by Tom Swan' ,cr,lf 
'Rows=background, Columns=foreground' ,cr,lf 
'First char is dim, second char is bright' ,0 

00 01 02 03 04 05 06 07',cr,lf 
'00' ,cr,lf, '01' ,cr,lf, '02' ,cr,lf, '03' ,cr,lf 
'04' ,cr,lf, '05' ,cr,lf, '06' ,cr,lf, '07' ,0 
'This line should be blinking.', 0 

28: 
29: 
30: 

From STRINGS.OBJ, STRIO.OBJ 
EXTRN StrLength:proc, StrWrite:proc 

continues 
279 



280 

listing 7.3. continued 
From SCREEN.OBJ 31 : 

32: 
33: 
34 : 
35: 
36: 

EXTRN ScInit:proc, ScGotoXY:proc, ScClrRect:proc 
EXTRN ScPokeChar:proc, ScSet8ack:proc, ScSetFore:proc 
EXTRN ScPokeStr:proc, ScDim:proc, ScBright:proc 
EXTRN ScBlink:proc, SCNoBlink:proc 

37: Start: 
38: mov 
39: mov 
40: mov 
41: 
42: call 
43: call 
44: call 
45: call 
46: 
47: mov 
48: mov 
49: call 
50: 
51: Exit: 
52: 
53: 
54: 
55: 
56: 

mov 
mov 
int 

ax, @data 
ds, ax 
es, ax 

ScInit 
Setup 
Attributes 
Blinking 

dh, 23 
dl, 0 
ScGotoXY 

ah, 04Ch 
aI, [exCode J 
21h 

57: SETUP: Initialize display 
58: 
59: PROC 
60: 
61 : 
62: 
63: 
64 : 
65: 
66: 
67: 
68: 
69: 
70: 
71: 
72: 

SetUp 
mov 
mav 
mov 
mov 
call 
mov 
mov 
call 
mov 
call 
mov 
mov 
call 

ch, 0 
cl, 0 
dh, 24 
dl, 79 
ScClrRect 
dh, 1 
dl, 0 
ScGotoXY 
di, offset welcome 
StrWrite 
dh, ChartRow 
dl, 0 
ScGotoXY 

Initialize OS to address 
of data segment 

Make es = ds 

Initialize SCREEN package 
Set up display 
Display attribute chart 
Display blinking chars 

Position cursor on next to 
last display line before 
ending program. 

DOS function: Exit program 
Return exit code value 
Call DOS. Terminate program 

Clear screen 

Display welcome message 

Display chart template 

73: mov di, offset template 
74 : 
75: 
76: ENDP 
77: 
78: 

call StrWrite 
ret 
Setup 

79: ATTRIBUTES: Display attribute chart 
80: 
81: UDATASEG 
82: row 
83: column 
84: background 
85: foreground 
86: 

DB 
DB 
DB 
DB 

? 
? 
? 
? 

Uninitialized variables 



III'!tr....-· ---------------~-,-. .,~ .. ~~.--.. --~~-.-. ~---~----

~J, 

INPUT AND OUTPUT 

87: CODESEG 
88: PROC Attributes 
89: mov [row], Chart Row 
90: mov [background], 0 
91: @@10: 
92: 
93: 
94: 
95: 
96: 
97: @@20: 
98: 
99: 

100: 
101 : 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111 : 
112: 
113: 
114: 
115: ENDP 
116: 
117: 

inc 
mov 
call 
mov 
mov 

add 
mov 
call 
call 
call 
inc 
call 
call 
inc 
cmp 
jbe 

inc 
cmp 
jbe 

[ row] 
aI, [background] 
ScSetBack 
[column], 1 
[foreground], 0 

[column], 3 
aI, [foreground] 
ScSetFore 
ScDim 
OneChar 
[column] 
ScBright 
OneChar 
[foreground] 
[foreground], 7 
@@20 

[background] 
[background], 7 
@@10 

ret 
Attributes 

Initialize row 
Initialize background 

Next row 
Set background attribute 

Initialize column 
Initialize foreground 

Move to next column 
Set foreground attribute 

First char is dim 

Next char is bright 

Repeat for all foregrounds 

Repeat for all backgrounds 

118: ONECHAR: Local subroutine for ATTRIBUTES 
119: 
120: PROC 
121 : 
122: 
123: 
124: 
125: 
126: ENDP 
127: 
128: 
129: 
130: 
131: PROC 
132: 
133: 
134: 
135: 
136: 
137: 
138: 
139: 
140: 
141 : 
142: 

OneChar 
mov dh, [row] 
mov dl, [column] 
mov aI,' A' 
call ScPokeChar 
ret 
OneChar 

Get row number 
Get column number 
Character to display 
Display char 

BLINKING: Display blinking/non-blinking text 

Blinking 
mov aI, 0 
call ScSetBack 
mov 
call 
call 
call 
mov 
call 
mov 
mov 
mov 

aI, 7 
ScSetFore 
ScBright 
ScBlink 
di, offset blinkString 
StrLength 
dh, 19 
dl, 0 
si, offset blinkString 

Set background to black 

Set foreground to white 
Make it whiter than white 
Turn on blinking 
Address string with di 
Set cx to string length 
Assign location to dh, dl 

Address string with si 

(ontinul's 

281 



282 

--~ ~-- ..... -~---

listing 7.3. continued 
143: call ScPokeStr 
144: call ScNoBlink 
145: ret 
146: ENDP Blinking 
147: 
148: END Start 

Using the SCREEN Module 

Display the string 
Turn off blinking 

End of program I entry point 

There are 14 public procedures in SCREEN plus one private subroutine used internally. You 
can call any of the public procedures from your own programs. This section describes how 
each of these routines operates and also points out interesting techniques that you can put to 

work in your own projects. Refer to CHARS.ASM (Listing 7.3) for real-life examples while 
you read these descriptions. Unless specifically noted otherwise, all line numbers here refer 
to those in SCREEN.ASM, Listing 7.2. 

NOTE 

The most important rule to remember is to call ScInit before using any of the SCREEN 
routines described next. This step initializes \lBASE to address the correct video buffer 
segment. If you forget to call ScI nit, your programs will not run correctly on systems with 
monochrome display adapters. 

SelVidAddr (51-75) 

SetVidAddr is called privately by other SCREEN procedures; therefore, you'll probably never 
need to use this procedure directly. The methods employed in the subroutine are applicable 
to a wide range of programming problems, and you may want to take time to understand 
how SetVidAddr works. The procedure takes a row and column number in dh and dl and 
returns es: di to the correct segment and offSet address for the corresponding character and 
attributes bytes at any screen position. 

Line 66 initializes es by loading the value of \lBASE. Lines 67-73 then calculate the offset 
into the video buffer for the row and column values in dh and dl. In the interest of speed, no 
checks are performed on these values. As a result, if you try to write to out-of-bounds loca
tions, you could overwrite values elsewhere in memory. Obviously, you'll want to prevent 
such disasters by checking dh and dl before calling SCREEN routines unless you are positive 
that the values are in range. 

There are several well-known methods for calculating a video buffer's offset address for spe
cific row and column screen positions. Usually, a complex formula is used, similar to the 
methods for locating values in arrays as described in Chapter 6. (A video buffer is, after all, 



just an array of characters and attribute values.) But, there's a better way, using a data struc
ture called lookup table, created at lines 36-42 and duplicated here for reference: 

BytesPerRow = MaxCol • 2 
row 0 
LABEL ScRow Word 
REPT Max Row 

dw ( row • BytesPerRow 
row = row + 1 

ENOM 

The result of this construction is similar to the auto-initialized arrays introduced in Chapter 
6, but with a few new twists. The LABEL directive assigns to label ScRow of type Word the start
ing address of the array. the REPT ... ENDM section repeats for the number of times specified by 
MaxRow (defined at line 11). On each pass through the repeated loop, a dw directive initializes 
a word value equal to the row number times the number of bytes in one buffer row, using the 
BytesPerRow numeric equate, calculated earlier. The number of bytes in one buffer row equals 
the number of display columns (MaxCol) times 2-because each displayed character, as you 
recall, is composed of one character and one attribute byte. After each word is stored in 
memory, row is incremented for the next cycle. 

Assembling the repeated loop creates a table of words corresponding to the offset addresses of 
the leftmost character on each display line-(O,O), (0,1), (0,2), ... , (0,79). SetvidAddr picks up 
the correct new address from this table by first multiplying the row number by 2 (lines 67-69) 
and then loading the address from the table into di (line 70). At this point, di addresses the row 
containing the character and attribute at the position specified by dh and dl. The final step is to 
add the column number times 2 to di, thus advancing the pointer to the exact display address 
for this row. Lines7l-73 accomplish this with two logical instructions (xor and Shl) followed by 
an add. The multiplication by 2 accounts for the character and attribute bytes at each position. 

By using logical instructions and a lookup table to avoid repeated calculations, SetVidAddr 

runs very fast. In your own programs, whenever you need to calculate values from param
eters that are mostly within known ranges (as the row and column numbers are here), con
sider precalculating and storing the values in a lookup table instead. This can greatly increase 
program speed--especially for routines like SetVidAddr that will be called thousands of times 
during a typical program run. 

ScGotoXY (77-98) 
ScReadXY (100-123) 

Because these two routines complement each other, it's appropriate to describe them together. 
ScGotoXY positions the cursor to the location specified in dh (row) and dl (column), calling 
the BIOS 10h routine as described earlier in this chapter. ScReadXY returns the cursor's cur
rent location in these same registers. Both routines also set bh to the current display page 
number (lines 91-92 and 115-l16)-an important step that many programs ignore in their 
cursor-positioning routines. (The page number is not returned in bh to your program.) 283 



284 

One way to use ScGotoXY is demonstrated in procedure Setup in CHARS.ASM, Listing 7.3, 
at lines 59-76, which position the cursor before calling STRIO's StrWrite. This works be
cause StrWrite calls DOS function 040h, which writes text to the current cursor position 
when the standard output file is the console. The same method does not work, however, with 
the output routines in SCREEN, which display text at locations independent of where the 
cursor is. Instead, you must call ScAeadXY to find out where the cursor is and then pass this 
location to one of the other routines (described later) that display text: 

call ScReadXY Get cursor location 
push dx Save row and column 
mov aI, '@' Character to display 
call ScPokeChar Display character at (dl, dh) 
pop dx Restore row and column values 
inc dl Increment column 
call ScGotoXY Position cursor 

In practice, you also have to check whether incrementing the column number in dl would 
move the cursor beyond the right screen edge, but at least this sample shows the general strat
egy. When adding memory-mapped video routines to your own code, remember that it's 
always your responsibility to control the cursor and to decide where text is to appear. 

ScPokeChar (125-145) 
ScPokeStr (147-172) 

These two routines are short and very fast. ScPokeChar displays the character in aI, which 
may be any extended ASCII code from 0 to 255, at the row and column specified dh and dl. 
If there's any chance that these values might be out of range, precede calls to ScPokeChar and 
ScPokeStr with code such as: 

cmp dh, 24 Is dh (row) <- 24? 
jbe @@10 Jump if dh <- 24 
mov dh, 24 Else set dh - 24 

@@10: 
cmp dl, 79 Is dl (column) <- 79? 
jbe @@20 Jump if dl <- 79 
mov dl, 79 Else set dl 79 

@@20: 

You can then safely call ScPokeChar to display a single character, without worrying that this 
will accidentally overwrite other memory locations. Of course, for top speed, you can leave 
such checks out if you are sure that row and column numbers are within range. For example, 
the following code places a plus sign at the end of every display row: 

@@10: 

mov dh, 24 
mov dl, 79 

mov aI, '+' 
push dx 
call ScPokeChar 
pop dx 
dec dh 
jns @@10 

Initialize dh to maximum row 
Initialize dl to maximum column 

Character to display 
Save dx--changed by ScPokeChar 
Display one character 
Restore dx 
Subtract one from row number 
Jump if dh >= 0 



Note how this code fragment decrements the rOw number in dh, looping to @@10: as long as 
the result is positive or O. When dh is decremented below 0, the sign flag sf is set to 1, caus
ing the j ns instruction not to jump. 

To keep these routines running fast, they do not include the snow control checking instruc
tions described earlier. If you are using CGA text display and are having problems with snow, 
you may want to modifY both procedures to write to the video buffer during the vertical 
retrace period. 

Both SePokeChar and SePokeStr display text using the current attribute setting, which other 
routines in SCREEN can modify. (For example, see SeSetBaek and SeSetFore.) The 
CHARS.ASM program offers a good example of how to display characters in all possible 
variations. Also, both routines call SetVidAddr to initialize es :di to the correct address in the 
video buffer corresponding to the requested row and column. 

SePokeStr displays an entire string, which mayor may not be in ASCIIZ format. To use this 
routine, you must set ex to the number of characters to display, dh and dl to the row and 
column number where you want the first character to appear, and ds: si to the address of the 
first character in the string. If your string is in ASCIIZ format, you can call the STRINGS 
StrLength routine to initialize ex prior to calling SePokeStr, as in this sample, which displays 
a string at the top of the display: 

DATASEG 
string DB 'My Program. VerSion 1.00.', 0 
CODESEG 
mov ax, @data 
mov ds, ax 
moves, ax 
mov di, offset string 
call StrLength 
xor dx, dx 
mov si, di 
call ScPokeStr 

NOTE 

Initialize segment registers 
ds and es to address the program's 
data segment 

Address string with di 
Set ex to string Length 
Position at (0,0) 
Address string with si 
Display string 

Displaying lext with SePokeChar and SePokeStr never causes the display to scroll. This means 
you can poke a character to the lower right corner at position (79,24) without disturbing any 
text on display. Also, these two routines display a symbol for every extended ASCII code from 
o to 255 including carriage returns, line feeds, bells, and other control codes. 

285 



286 

I.., PROGRAMMING WITH ASSEMBLY LANGUAGE 

ScClrRect (174-192) 

ScC1rRect clears a rectangle defined by registers ch and c1 (top left row and column) and dh 

and d1 (bottom right row and column). Be sure these registers are within range before call
ing ScC1rRect, which does not check for out-of-bounds values. The procedure calls ROM 
BIOS interrupt 10h with ah equal to 6 (the number of the video service routine's scroll-up 
command). When a1 equals 0, this routine clears the defined display area using the attribute 
specified in bh (see line 189). 

Some programmers devise their own super-fast clear screen routines, which you certainly can 
do using methods described earlier for writing to the video buffer. For example, you might 
simply erase the entire video buffer, using a repeated stosw command to set every character 
to a blank (ASCII 20h) and every attribute to a certain background color (0 for black, prob
ably). For most uses, however, the standard method used in ScC1rRect is more than adequate. 

ScSetBack (194-215) 
ScSetFore (217-238) 

Use these routines to change the foreground and background attribute settings for sub
sequent calls to ScPokeChar, ScPokeStr, and ScC1rRect. Call ScSetBack with a1 equal to a new 
background color with values from 0 to 7. Call ScSetFore with a1 equal to a new fore
ground color with values also from 0 to 7. Table 7.4 lists the color values for CGA, EGA, and 
VGA displays. (To obtain the foreground colors in the intensified column, you must call 
SeBright and ScDim, described next. Background colors can't be imensified.) Table 7 .5 lists equiva
lent values and associated effects for monochrome displays. You can also call SeBright, ScDim, 

ScBlink, and SeNoBlink for additional variations. Also, other foreground and background 
values in the range 0-7 are allowed but produce the same visible effects as the values in the table. 

ScSetBack and SeSetFore use the packed bit-field methods described in Chapter 5 to modifY 
individual values in attribute bytes, defining an attrByte record at line 19 corresponding to 

Figure 7.3. Nmice how the IF /ENDIF conditional statements at lines 205-210 and 228-233 
prevent unnecessary code from being assembled if the Foreground or Background fields are 
already far right in the byte. In this case, because the attribute byte format is unlikely to change, 
the extra IF / ENDIF statements are probably unnecessary. Even so, the instructions demon
strate how to wfite routines to allow fOf possible changes to other less stable RECORD designs. 



~~ 

Table 7.4. Foreground and Background Color Values. 
Value Color Intensified (foreground only) 

0 Black Dark gray 

1 Blue Light blue 

2 Green Light green 

3 Cyan Light cyan 

4 Red Light red 

5 Magenta Light magenta 

6 Brown Yellow 

7 White Bright white 

Table 7.5. Monochrome Attribute Values. 

Background Foreground Effect 

0 0 

0 1 

0 7 

7 0 

ScBright (240-256) 
ScDim (258-261) 
ScBlink (263-266) 
ScNoBlink (268-271) 

No display 

Underline 

Normal text 

Reversed text 

INPUT AND OUTPuT 

These four routines modify the Blink and Intensity bits in the attribute variable declared 
at line 30. The instructions use and and or masks to set and clear these bits, further modify
ing the values assigned by ScSetFore and ScSetBack for future calls to ScPokeChar, ScPokeStr, 

and ScClrRect. The names and purposes of the routines should be obvious. 

287 



288 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

. NOTE" , 

Due to hardware limitations, you can blink only foreground colors. Background colors don't 

blink. Also, on color displays, some "dim" colors actually appear brighter than their "intensi

fied" partners. I find it helpful to think of "intense" colors as being mixed with white paint

rather than being "brighter." 

ScGetAttribute (273-286) 
ScSetAttribute (288-301) 

Instead of calling ScSetFore, ScSetBack, ScBr ight, ScDim, ScBlink, and ScNoBlink, you can 

call ScSetAttr ibute with any 8-bit attribute value. Subsequent calls to ScPokeChar, ScPokeSt r, 

and ScClrRect will then use the new value for all displayed text. In most cases, this is faster 

than calling multiple combinations of other routines to select various color attributes. Along 

with ScGetAttribute, the routines also allow you to save and restore the current attribute at 

times when you want to make a temporary color change. For example, to display a flashing 

error message in red, you might use code such as: 

call ScGetAttribute Load current attribute into dl 
push dx Save value on stack 
mov aI, 4 Assign red color to al 
call ScSetFore Change foreground to red 
call ScBright Intensify color 
call ScBlink Set foreground blinking 

;------display error message here with new attributes 

pop ax ; Pop saved attribute off stack 
call ScSetAttribute ; Reset attribute to previous value 

Another useful technique is to build attribute values by calling ScSetFore and ScSetBack 

(among others) and then store the result in a variable for later use. For example, you might 

do this in a setup utility that lets people adjust the colors of the main program: 

DATASEG 
customColor 
CODESEG 
mov aI, 6 
call ScSetFore 
call ScBright 
mov aI, 1 
call ScSetBack 

db 

call ScGetAttribute 
mov [customColorj ,'dl 

o 

Assign yellow color to al 
Change foreground to yellow 
Intensify color 
Assign blue color to al 
Change background to blue 
Get composite attribute 
Save attribute for later 

To use the attribute, all you have to do is load [customColor 1 into al and call ScSetAttribute. 

You don't have to repeat any of the other steps. 



INPUT AND 

Scinit (303-325) 

The final routine in the SCREEN module is Selnit, which you must remember to call at 
the beginning of your program before using SePokeChar or SePokeStr to display text. Be
cause vBASE is preinitialized to the color display segment address (see line 31), if you forget 
to call Selnlt, your program will not operate on systems with monochrome (including Her
cules) display adapters. 

A Module for Keyboard Control 
Most of the time, the methods described at the beginning of this chapter provide adequate 
keyboard input abilities for assembly language programming. But, there are also times when 
standard DOS function calls are inadequate. For one, you may not want people to be able to 

redirect input. And, for another, DOS makes special- and function-key handling difficult 
by requiring two DOS-function calls to read single keystrokes. 

To answer these challenges, Listing 7.4, KEYBOARD.ASM, contains two routines that I've 
found helpful. All key presses including ASCII characters, control keys, and function keys 
can be read with a single subroutine call. Following the listing is an example that explains 
how this works. Assemble KEYBOARD and install in the MTA.LIB library file with the 
commands: 

tasm IZi keyboard 
tlib IE mta -+keyboard 

As always, ignore the possible warning that KEYBOARD is not in the library and leave out 

the /zl option to reduce code-file size if you don't plan to run host programs in Turbo 
Debugger. 

Listing 7.4. KEYBOARD.ASM. 
1: .. TITLE "Keyboard Input Routines -- Copyright ee) 1989,1995 by Tom Swan" 
2: 
3: IDEAL 
4: 
5: MODEL small 
6: 
7: 
8: CODESEG 
9: 

10: PUBLIC KeyWaiting, GatCh 
11 : 
12: .. NEWPAGE 
13: j---------------------------------------------------------------
14: j KeyWaiting Test if a keypress ls available 
15: j---------------------------------------------------------------

continues 

289 



290 

r~~-~-~ ---.. -~ .. ~~--------~ 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Listing 7.4. continued 
16: Input: 

none 
Output: 

17: 
18 : 
19: 
20: 
21: 
22: 
23: 

zf : 0 
zf 

Registers: 

(JNZ) Character is waiting to be read 
(JZ) No character is waiting 

24: PROC 
25: 
26: 
27: 
28: 

none (flags only) 

KeyWaiting 
push ax 
mov ah, 
int 16h 
pop ax 

29: ret 
30: ENDP KeyWaiting 
31: %NEWPAGE 
32: 

Save mOdified register 
BIOS check buffer function 
Call BIOS keyboard service 
Restore register 
Return to caller 

33: ; GetCh Return ASCII, Control, or Function key value 
34: 
35: Input: 
36: none 
37: Output: 
38: zf : 0 (ah 1) 
39: zf = (ah 0) 
40: 
41 : 
42: 

Registers: 
a)( 

43: PROC 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: @@10: 
52: 
53: 
54: 
55: 
56: @@20: 
57: 
58: 
59: ENDP 
60: 
61 : 

GetCh 
xor 
int 
or 
jnz 
xchg 
add 
jmp 

xor 
cmp 
jb 
inc 

or 
ret 
GetCh 

END 

ah, ah 
16h 
aI, al 
@@10 
ah, al 
aI, 32 
short @@20 

ah, ah 
aI, 32 
@@20 
ah 

ah, ah 

(JNZ) al ASCII character 
(JZ) al ASCII control or function 

BIOS read-key function 
Call BIOS keyboard service 
Is ASCII code = 07 
If no, jump (not a special key) 
Else set ah<-0, al<-scan code 
Adjust scan code to >= 32 
Jump to exit 

Initialize ah to 0 
Is ASCII code < 32 (i.e. a Ctrl)? 
If yes, jump (al=control key) 
Else set ah 1 (al=ASCII char) 

Set or clear zf result flag 
Return to caller 

End of module 

A KEYBOARD Demonstration 
Listing 7.5, KEYS.ASM, demonstrates how to use the KEYBOARD module. When you 
run the program, press any key to see the key type and numeric value. (Note: You may 



~ ... 

find that function-key values are different than in many other programs. The reason for this 
discrepancy is explained later.) Press Esc to end the program. Assuming you have assembled 
and installed the other modules in this and previous chapters, assemble, link, and run KEYS 
with the commands: 

tasm Izi keys 
tlink Iv keys", mta 
keys 

listing 7.5. KEYS.ASM. 
1 : 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11 : 
12: 
13 : 

%TITLE 

cr 
If 

"Display 

IDEAL 

MODEL 
STACK 

EOU 
EOU 

DATASEG 

14: exCode 
15: charKey 
16: funcKey 
17: numString 
18: welcome 
19: 
20: 
21 : 
22: 
23: 
24: 

CODESEG 

Key Values -- Copyright (c) 1989,1995 by Tom Swan" 

small 
256 

13 
10 

DB 
DB 
DB 
DB 
DB 
DB 
DB 

ASCII carriage return 
ASCII line feed 

o 
'Character key 0 
'Function key 0 
7 DUP (0) 
cr,lf, 'Display Key Values--by Tom Swan' 
cr,lf, 'Press any key, or press Esc to quit' 
cr,lf, 1f ,0 

25: 
26: 
27: 

From BINASC.OBJ 

28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41 : 

Start: 

EXTRN BinToAscOec:proc 

From STRIO.OBJ 
EXTRN StrWrite:proc, NewLine:proc 

From KEYBOARD.OBJ 
EXTRN Keywaiting:proc, Getch:proc 

mov ax, @data 
mov ds, ax 
mov es, ax 

mov di, offset 
call StrWrite 

welcome 

Initialize OS to address 
of data segment 

Make es ds 

Display welcome message 

continues 

291 



292 

- ~~~.-~ .... ~~~-
--~~.~~ ..... ~~~~~~~ 

_ PROGRAMMING WITH ASSEMBLY LANGUAGE 

listing 7.5. continued 
42: Repeat: 
43: call KeyWaiting Wait for any keypress 
44: )Z Repeat Repeat until key waiting 
45: call GetCh Read keypress 
46: mov di, offset charKey Address charKey string 
47: jnz @@10 Jump if key is a character 
48: cmp aI, 27 Was Escape key pressed? 
49: je Exit If yes, jump to exit 
50: mov di, offset funcKey Address funcKey string 
51 : @@10: 
52: call StrWrite Display key-type label 
53: xor ah, ah Convert al to 16 bits 
54: mov cx, 1 Minimum number of digits 
55: mov di, offset numString Address number string 
56: call BinToAscDec Convert number to string 
57: call StrWrite Display key value 
58: call Newline Start new display line 
59: jmp Repeat Get next keypress 
60: 
61 : Exit : 
62: mov ah, 04Ch DOS function: Exit program 
63: mov aI, [exCode] Return exit code value 
64: i.nt 21h Call DOS. Terminate program 
65: 
66: END Start End of program I entry point 

Using the KEYBOARD Module 

NOTE 

Line numbers in the following descriptions refer to those in Listing 7.4 unless otherwise noted. 

KeyWaiting (13-30) 

KeyWai t ing returns the zf flag cleared (equal to 0) if a character is waiting to be read from the 
keyboard type-ahead buffer. If the zf flag is set (equal to 1), then no character is waiting. Use 
KeyWai ting in loops such as: 

@@10: 
call AnyProcedure 
call KeyWai ting 
j z @@10 
call GetCh 

Code to execute while waiting 
Check for a key press 
Jump if no key was pressed 
Read character from keyboard 



INPUT AND OUTPUl 

GetCh (32-59) 

GetCh is my personal answer to the dilemma of reading PC function keys. The "normal" 
method is to call a DOS input routine twice-once to read the lead-in null character (ASCII 
0) and a second time to read the function-key value. Because of this scheme, all programs 
must detect function keys to avoid displaying these special values as text. (You have probably 
seen programs that forget to do this, writing Ks and other strange letters when you press an 
arrow or other function key.) 

With GetCh, zero flag zf indicates whether the value returned in ah is a plain ASCII character 
(zf " 0) or is a function or control key (zf = 1). ASCII character values range from 32 to 

255. Function- and control-key values range from 0 to 255. A single call to GetCh is all you 
need to process any keystrokes. Table 7.6 lists the function- and control-key values returned 
by GetCh for zf 1. Table 7.7 lists additional values for keys with normal ASCII values in 
the first two columns (zf = 0) and various CuI, Alt, and a few Shift+Ctri combinations for 
those same keys in the other columns (zf " 1). Values that are not available are marked with 
dashes. Key combinations that return the same values as other combinations are in paren
theses. All values in both tables are in decimal. 

Using GetCh is easy. Just call the subroutine and then inspect the state of zf to distinguish 
between plain ASCII and function or control keys: 

call GetCh 
jz FunctionKey 
jnz ASCIIKey 

j Get a character from keyboard 
j Call routine for function/control keys 
j Call routine for normal ASCII keys 

The code in GetCh works by calling ROM BIOS interrupt 1Gh with ah equal to 0, reading 
the next key press, or taking a key-press value from the type-ahead buffer. The BIOS inter
rupt routine returns the keyboard scan code (a number representing the key's position) in ah 

and the ASCII value in a1. If a1 is 0, then ah represents a function key; otherwise, the key is 
a plain ASCII character. The code at lines 48-50 adds 32 to function-key values to prevent 
conflicts with control codes in the range 0-31. For this reason, the values returned by GetCh 

do not match similar functions in most high-level languages. Use the KEYS program along 
with Tables 7.6 and 7.7 to determine which keys produce which values. The other instruc
tions in GetCh set ah to 1 for ASCII characters or to 0 for function and control keys. Line 57 
then ORs ah with itself to set zf to 1 only if ah is O. 

Table 7.6. GetCh Function- and Control-Key Values. 
Normal +Ctrl +Alt 

Fl 91 116 126 136 

F2 92 117 127 137 
F3 93 118 128 138 

contil1ues 

293 



WITH ASSfMBl y LANGUAGE 

Table 7.6. continued 

Norma! +Ctrl +A!t 

F4 94 119 129 139 
F5 95 120 130 140 
F6 96 121 131 141 
F7 97 122 132 142 
F8 98 123 133 143 
F9 99 124 134 144 
FlO 100 125 135 145 
Ins 114 (14) 
Del 115 (115) 
Home 103 (03) 151 
PgUp 105 (l05) 164 
PgDn 113 (113) 150 
Up 104 (104) 
Down 112 (I 12) 
Left 107 (107) 147 
Right 109 (109) 148 
End 111 (III) 149 
Esc 27 ( 27) ( 27) 

Table 7.7. Additional GetCh Key Values. 

Key Norma! +Shift +Ctr! +A!t 

A 97 65 62 
B 98 66 2 80 
C 99 67 3 78 
D 100 68 4 64 
E 101 69 5 50 
F 102 70 6 65 

G 103 71 7 66 

H 104 72 8 67 
105 73 9 55 

294 



Key Normal + Shift +Ctrl +Alt 

J 106 74 10 68 
K 107 75 11 69 
L 108 76 12 70 
M 109 77 13 82 
N 110 78 14 81 
0 III 79 15 56 
p 112 80 16 57 

Q 113 81 17 48 
R 114 82 18 51 
S 115 83 19 63 
T 116 84 20 52 
U 117 85 21 54 
V 118 86 22 79 
W 119 87 23 49 
X 120 88 24 77 

Y 121 89 25 53 
Z 122 90 26 76 
0 48 41 161 
1 49 33 152 
2 0 64 35 153 
3 51 35 154 
4 52 36 155 
5 53 37 156 
6 54 94 30 157 
7 55 38 158 
8 56 42 159 
9 57 40 160 
] 93 125 29 
[ 91 123 27 

45 95 31 162 

295 



296 

I _ PROGRAMMING WITH ASSEMSl y LANGUAGE 

Summary 
Standard DOS 110 methods may not be glamorous, but they allow programs to run on as 
wide a variety of systems as possible. One advantage of using standard DOS I/O is to give 
computer operators the ability to redirect input and output without the program's (or your) 
advance knowledge. 

The type-ahead buffer fills with keystrokes independently of other program actions. Evety 
key press causes an interrupt routine to capture the key value and store it in memoty. When 
the keyboard is the standard input device, as it usually is, calls to DOS input functions re
move key values from the type-ahead buffer. Erasing the keyboard buffer is a simple matter 
of resetting two pointers that mark the first and last character in the buffer. 

Handles are values that refer to logical files, which provide a common interface between pro
grams and various peripheral devices. DOS initializes five handles, which programs can use to 
write to the display, read the keyboard, display error messages, access a communications port, 
and print text. One good use for handles is to write simple filter programs that can have their 
input and output piped together with other filters to perform complex operations. 

The dollar sign ($) is Turbo Assembler's location counter, equal to the current address at any 
place in a program. This symbol is particularly useful to determine the sizes of variables, es
pecially strings. In Ideal mode, equated expressions involving the location counter must be 
assigned with the equal-sign operator. 

Printing text is most easily accomplished by writing to the DOS standard list device, using 
one of the preassigned handles. Calling the ROM BIOS to print text is not a good idea be
cause this routine does not work with printers attached to a serial port. 

There's no faster way to display text than to write characters directly to memory-mapped 
video buffers. The memory buffers store characters along with attribute values, which select 
colors and features such as underlining and reverse video on monochrome systems. Using 
memory-mapped video techniques on older CGA text displays can produce snow. This prob
lem can be eliminated by synchronizing the program with the display's vertical retrace sig
nal, but the trade-off is a serious loss of output speed. 

Exercises 
7.1. What are three DOS functions that programs can use to input single characters? 

Write the assembly language instructions to call these functions. 

7.2. Write a program to read single characters from the keyboard, convert the 
characters to uppercase (regardless of whether the Caps Lock or Shift keys are 
pressed), and write the modified characters to the standard output file. Pressing 
Esc should end your program. 



INPUT AND OUTPUT 

7.3. Write a subroutine that returns the zero flag set (zf 1) if the Esc key has been 
pressed. The subroutine should return the zero flag cleared (zf 0) if: a) there is 
no key press waiting to be read, or b) there is a key press waiting and the value of 
that key is not Esc. The subroutine should return zf 1 only if a key is waiting 
and that key is Esc. The subroutine should not pause for input and should 
preserve all registers. (ASCII Esc equals 27 decimal.) 

7.4. Revise your answer in Exercise 7.3 to return zf = 1 if function key Fl is pressed. 
Write your solution without using GetCh in the KEYBOARD module. (Hint: 
DOS returns a null [0] followed by 03Bh for key Fl.) 

7.5. What is a handle? How are handles used? How many handles are preassigned by 
DOS? 

7.6. Why are filter programs useful? Name at least one filter supplied with DOS. 

7.7. Create an equate that automatically is assigned the length of the string "} hate 
meeses to pieces." 

7.8. Write a subroutine to fill the screen with any single character passed as a param
eter in register a1. Use the SCREEN module in your answer. 

7.9. Displaying the string "ERROR: Dumb mistake detected" with bright white 
flashing letters on a red background on color displays. Use the SCREEN module 
in your answer. (Note: On monochrome displays, a red background appears 
black. Under Microsoft Windows, depending on your display mode and type, 
flashing characters may not be available.) 

7.10. What routine must call in the SCREEN module to ensure correct operation on 
monochrome displays? 

7 .11. Write a subroutine to return the zero flag set (zf = 1) if an operator presses the Y 
key. The zero flag should be cleared (zf = 0) if any other key is pressed. Preserve 
all registers. Use the KEYBOARD module in your answer. 

Projects 
7.1. Develop an object-code module with CRT terminal functions such as clear 

screen, clear to end of line, clear to end of screen, position cursor, and ring the 
bell. The module should use standard DOS function calls. 

7.2. Write a subroutine to insert a sequence of characters (preferably an ASCIIZ 
string) into the keyboard type-ahead buffer. How might you use such a routine? 

7.3. Write a filter to convert tab control characters in a text file to blanks. Write 
another filter to convert blanks to tabs. 

297 



298 

I.. PROGRAMMING WIlH ASSEMBLY LANGUAGE 

7.4. Write a program to select all (or most of) your printer's special print modes. 
Make the program easy to modifY for other printer models. 

7.5. ModifY the SCREEN module to eliminate snow on CGA text displays. 

7.6. [Advanced] Write an object-code module to scroll the display up, down, left, and 
right without calling BIOS routines to perform these actions. 



Macros and 
Conditional 
Assetnbly 

-What Are Macros?, 300 -Macro Advantages and Disadvantages, 300 -Constructing Macros, 301 -Purging Macro Definitions, 301 -Parameter Substitution, 302 -Macros and Variables, 307 -Macros and Code, 310 -Conditional Compilation, 314 -Starting a DOS Macro Library, 324 -Summary, 333 -Exercises, 334 -Project, 335 



298 

"" PROGRAMMING WITH ASSEMBLY LANGUAGE 

Wrire a program to selecr all (or most of) your printer's special print modes. 
Make rhe program easy ro modifY for other printer models. 

7.5. Modify the SCREEN module to eliminate snow on CGA text displays. 

7.6. [Advanced] Write an object-code module ro scroll the display up, down, left, and 
right without calling BIOS routines to perform these actions. 



Macros and 
Conditional 
Assentbly 
------------------------------------------------~ 

_ What Are Macros?, 300 

_ Macro Advantages and Disadvantages, 300 

_ Constructing Macros, 301 

_ Purging Macro Definitions, 301 

_ Parameter Substitution, 302 

_ Macros and Variables, 307 

_ Macros and Code, 310 

_ Conditional Compilation, 314 

_ Starting a DOS Macro Library, 324 

_ Summary, 333 

_ Exercises, 334 

_ Project, 335 



300 

PART I .~ PROGRAMMING WiTH ASSEMBLY LANGUAGE 

What Are Macros? 
As you gain experience in assembly language programming, you'll undoubtedly repeat your
self many times, retyping the same instruction sequences over and over. To reduce the amount 
of repetition in a program, you can store one or more instructions in a named macro defini
tion and then use the simpler macro name whenever you need the same code. When Turbo 
Assembler assembles a macro name, it replaces the name with the instruction sequence from 
the macro definition. In addition, you can pass parameters to macros, changing the assembled 
instructions to handle new requirements. With macros, you invent new commands to cus
tomize Turbo Assembler to operate according to your tastes. 

In addition to a wide selection of macro operators and directives, Turbo Assembler provides 
a set of conditionaL assemb{y directives that are often used inside macro definitions. These 
directives let you write programs that assemble differently based on various conditions usu
ally listed at the beginning of a module or program. For example, you can write programs 
that assemble special code for debugging, but then remove that code from the final version. 

Macro Advantages and Disadvantages 
Some programmers never use macros. Others create extensive libraries of complex macro 
definitions, extending assembly language to the point of having more macro identifiers in 
their programs than common assembly language mnemonics. Used this way, macros tend to 
be persona!, letting programmers mold their individuality into Turbo Assembler. 

For team programming projects, macros can help to ensure consistent coding techniques. 
For example, a software company might develop a macro library of common routines, re
ducing the frequency of bugs introduced by simple carelessness. Macros could be written to 
drive special hardware such as a custom CRT controller or a plotter. Team members would 
then be required to use the macros for all 1/0 to the device, ensuring that correct instruction 
sequences for specific operations are assembled. 

Macros can also help clarify program logic by replacing cryptic assembly language mnemon
ics with macro names such as GetValue and RingBell. A good set of macro names can make 
assembly language programs look almost like Pascal or C. 

But, despite these and other advantages, macros do have a few drawbacks. Unlike separate 
object-code modules that you can stuff into a library file for linking directly into programs, 
macros are stored in text form and, therefore, must be reassembled for each separate module. 
For this reason, an extensive macro library can increase assembly time, especially if only a 
few of the many macros in a library are actually used. Also, while helping to customize and 
clarify assembly language, macro definitions can easily hide the effects of individual instruc
tions. A good example of this is a macro instruction that changes a register value-a fact that 
will not be obvious by simply reading the listing. Like subroutines, macros require careful 
documentation detailing the use of registers, flags, and variables. 



MACROS AND CONDITIONAL ASSEMBLY 

Constructing Macros 
You can define a macro anywhere in a program, but the most common (and probably the 
best) location of macro definitions is in the beginning of a file, near other equates, records, 
and structures. The simplest macro startS with the keyword MACRO and a name, followed 
by one or more instructions, and ends with ENDM: 

MACRO Terminate 
mov ah, 04Ch 
mov al, (exCode] 
int 21 h 

ENOM Terminate 

" 'Exit program' function 
Load exCode into al 
Call ~OS. Terminate progr~m 

You probably recognize these instructions-they're the same as those used in most of this 
book's programs to transfer control back to COMMAND.COM when the program is fin
ished. If you insert this macro definition into a program-preferably above the DATASEG 
directive-you can then end the program by simply writing Terminate. During assembly, 
Turbo Assembler replaces the macro name with the instructions from the definition, a pro
cess called macro expansion. Of course, if you use the Terminate macro only once, it's hardly 
worth the effort to store the instructions in a macro. Even so, there's little doubt what Ter· 

minate means, and the additional clarity added to the program is itself an important benefit. 

Notice that comments in this macro begin with double semicolons. AJ5 you know, comments 
normally begin with single semicolons. Both kinds of comments are allowed in macros, but 
those with single semicolons are written to the listing text file if you request one with the 
/1 option when assembling. If the program uses the same macro dozens or more times, the 
repetitive comments are unsightly and might lengthen printing time. In that case, you can 
eliminate the comments from the macro expansions by preceding the text with double semi
colons. (The comments are still listed along with the macro definition.) 

Purging Macro Definitions 
After reading a macro definition, Turbo Assembler remembers the macro name and instruc
tion sequences throughom the program. When assembling large programs with extensive 
macro libraries, the assembler could run out of room for new symbols if your system has 
limited memory capacity. If this happens and you receive an om-oF-memory error during 
assembly, you can purge the macro definitions you don't need, releasing additional memory 
For other uses. To purge a macro, use the PURGE keyword along with the macro name: 

PURGE Terminate 

After purging Terminate, Turbo Assembler no longer recognizes the macro name. Anothe'r 
reason to purge a macro definition is to replace a macro temporarily in a library with a new 
instruction sequence. This can be useFul when you need to test a revision to a macro that 
you'll later add to the Full macro library. For example, to change Terminate into a code se
quence that restarts the program, you can write: 

301 



302 

PART I <@Ii PROGRAMMING WITH ASSEMBLY LANGUAGE 

PURGE Terminate 
MACRO Terminate 

jmp Start 
ENDM Terminate 

The PURGE directive removes Terminate's old definition, after which a new macro of the same 
name is created. If you do this at the beginning of the program, every place that Terminate 
formerly ended the program will now jump to the beginning of the code at label Start: (not 
shown). You might do this to create a presentation version of your code, which runs nor
mally but "never" ends. 

Turbo Debugger normally treats macro instructions as though they were native assembly 

language commands. Pressing F7 or F8 when the cursor is at a macro name executes a" 

instructions associated with the macro. To execute a macro's individual instructions one by 

one, view the CPU window and press Ctrl-M to select the display style you prefer. Pressing F7 

or 1'8 will then move separately through the macro's instructions. 

Parameter Substitution 
Adding parameters to macro definitions lets you change the way the macro expands at as
sembly time. Macro definitions can have three types of parameters: 

• Symbolic parameters 

• Numeric parameters 

• String parameters 

Symbolic parameters refer to register names, instruction mnemonics, and other assembly lan
guage keywords and identifiers. Numeric parameters are signed and unsigned integers or ex
pressions. String parameters are plain, unterminated character strings. The use of a param
eter determines the parameter's type and, for this reason, some parameters can represent more 
than one type of data. Name your parameters the same way you name other identifiers, list

ing the names on the first line of the macro definition: 

MACRO 

ENDM 

Swap16 
push 
push 
pop 
pop 
Swap16 

v1, v2 
[word v1] 
[word v2] 
[word v1] 
[word v2] 

This macro, named Swap16, defines two parameters v1 and v2, called dummy parameters or, 
more correctly, formal parameters. There are no actual variables named v 1 and v2 in the pro

gram-the two identifiers belong strictly to the macro definition. Multiple parameters are 



MACROS AND CONDITIONAL 

separated by commas. The code inside the Swap16 macro uses the parameter names in push 
and pop instructions, first pushing the two words v1 and v2 onto the stack, and then imme
diately popping the same two parameters off the stack in the opposite order. The effect is to 

exchange the values of two variables in memory. 

To use a macro with parameters, write the macro name followed by the actual items to pro

cess. For example, if you declare two word variables countA and countS, you can use the pre
vious macro to swap their values: 

DATASEG 
countA dw 100 
countS dw 200 
CODESEG 
swap16 countA, countS 

CountA and countS are called actual parameters because they represent the actual values to 

process. When expanding the macro, Turbo Assembler replaces the dummy (formal) param
eters v1 and v2 with the actual parameters countA and countS, assembling the swap16 macro 
as though you had written: 

push [word countA] 
push [word countB] 
pop [word countA] 
pop [word countB] 

You can also pass register names to Swap16, representing pointers to data to swap. Ifbx ad
dresses countS, then you could write: 

swap16 bx, countA ; swaps word at [bx] with [countA] 

As an alternative, you can separate multiple parameters with blanks instead of commas. For 
example, this is identical to the previous instruction: 

swap16 bx countA ; separate parameters with commas or blanks 

Because the dummy parameters can be replaced by symbols such as bx or by labels such as 
countA (which represent offset address values), in this example, v1 and v2 are numeric as well 
as symbolic parameters. The actual type depends on how the parameters are eventually used. 

As these samples illustrate, parameters let you create general-purpose macros that you can 
reprogram to meet new demands. Understanding how to declare and use parameters is cru
cial to writing effective macros that do more than simply repeat common insrruction se
quences. The next section examines each of these kinds of macro parameters in detail. 

Parameter names such as vl and v2 in the previous sample macros are local 10 the macro 
definitions. You can use the same names elsewhere as labels in other parts of the program 
without conflict. 

303 



304 

ASSEMBl y LANGUAGE 

Symbolic Parameters 
Symbolic formal parameters can be replaced by any actual symbols, mnemonics, directives, 
and keywords normally used in assembly language programming. One use for symbolic pa
rameters is to define new names for instructions. For example, you can give the processor a 
spelling lesson, replacing mov with Move: 

MACRO Move 
mov 

aSym, bSym 
aSym, bSym 

ENDM Move 

ln this example, aSym and bSym are the symbolic dummy parameters that are replaced by the 
names of registers or other text when the macro is used: 

Move 
Move 
mov 

ax, bx 
[value], ex 
ex, dx 

Assembles to mov ax, bx 
; Assembles to mov [value], ex 
; Assembles normally 

You can now use mov or Move with identical results. (Touch typists may find this macro help
ful, especially if, like me, you're constantly typing movewith an eby mistake instead of mov.) 
You can also create symbolic dummy parameters that become new global labels when the 
macro is expanded. To demonstrate how this works, here's how to write a macro to reserve 
space for a word variable, the name of which is passed to the macro as a parameter: 

MACRO DeclareWord 
vName 
ENDM 

dw vValue 
DeclareWord 

vName, vValue 

The DeclareWard macro expands to a dw directive, reserving one word of memoty labeled 
vName and initialized to vValue. To create a word variable with the initial value of 100, you 
can write: 

DeclareWord TheCount, 100 

Of course, it's just as easy to use dw directly. A similar but more practical example illustrates 
how to write macros that automatically label variables according to their initial values. To 
accomplish this requires using the substitute operator &, which tells Turbo Assembler that 
the text after & is the name of a dummy parameter and not something else. The reason for 
this is easier to see in an example: 

MACRO Aword 
Word&vNum 
ENDM Aword 

vNum 
dw vNum 

The Award macro declares one formal parameter vNum. At the dw directive, the label Word&vNum 

tells Turbo Assembler that vNum refers to the formal parameter of this name. Without the &, 
the assembler would not be able to know that vNum in WordvNum refers to the formal param
eter. Using the Award macro automatically labels word variables: 

Aword 1 
Aword 2 
Aword 3 



MACROS AND CONDITIONAL ASSEMBLY 

The effect is to create three 16-bit variables named Word1, Word2, and Word3, as though you 
had written: 

Word1 dw 1 
Word2 dw 2 
Word3 dw 3 

Notice that with the macro, a single change modifies both the value and the label. For ex
ample, changing the 3 to 8 creates a word variableword8 initialized to 8. Without the macro, 
you'd have to change two numbers to do the same. 

Numeric Parameters 
As you can see in some of the previous examples, symbolic parameters are sometimes treated 
as numbers. For example, vNum in the Aword macro is a symbol when used as part of a label 
and a number when used to initialize a word variable. The context of the parameter's use 
determines the data type. A parameter is numeric only when a later instruction requires a 
number at this place. Let's examine another macro that uses both symbolic and numeric 
parameters: 

MACRO ShiftLeft destination, count 
push ex 
mov el, count 
shl destination, cl 
pop cX 

ENDM ShiftLeft 

The ShHtLeft macro defines twO parameters-destination, representing the register or 

memory location to shift, and count, representing the number of times to shift the target 
value left. You could write similar macros for other shift and rotate instructions, too. The 
instructions in the macro save ex on the stack, assign the numeric count parameter to cl, 
shift the destination left that many times, and then restore e1. To use the macro, write com
mands such as: 

Shift Left 
ShiftLeft 
ShHtLeft 

ax, 5 
[value]! 3 
<[word bx]>, 2 

The first line shifts the value of ax left five rimes. The second line shifts variable value (not 
shown) left three times. The third line demonstrates a problem with parameters that have 
blanks. If you try to write: 

ShHtLeft [word bx], 2 

you receive an error that the operand types do not match the macro definition. This occurs 
because blanks or commas separate multiple actual parameters. (Multiple formal parameters 
in the macro definition must be separated with commas.) To solve this dilemma, use < and 
> (0 surround parameters that contain blanks, as in: 

305 



PART I .. 

Shift Left 
Shift Left 

PROGRAMMING WITH ASSEMBLY LANGUAGE 

<[byte si]>, 4 
<[word bx + diJ>, 2 

When passing expressions to macro numeric parameters, you must decide when you want 
the expression to be evaluated. Normally, parameters are passed to the macro in text form 

with expressions such as MySize * MyCount being eval uated inside the macro. To force evalu
ation to occur before the macro is expanded, preface the expression with a percent sign %, 
the "Expression evaluate operator." For example: 

ShiftLeft ax, MySize * MyCount 

This points out a particularly troublesome aspect of macros and numeric parameters. Un

fortunately, Turbo Assembler ignores the' MyCount portion of the expression, thinking that 

these sym bois are merely extra parameters. To pass the expression to the macro, you have to 

use angle brackets as explained previously: 

Shift Left ax, <MySize • MyCount> 

This solution is less than perfect, however, because the expression MySize • MyCount is passed 

as text to the macro. To evaluate and pass the expression result, use a leading percent sign 
like this: 

ShiftLeft ax, %MySize * MyCount 

The percent sign forces the assembler to evaluate the expression and pass the final result to 

the macro. This can be useful if the macro's formal parameter (count in this example) is used 

more than once. If you pass an expression as text, the assembler has to evaluate the expres
sion each time it is used. If you pass the result of an expression, though, evaluation occurs 
only once. 

String Parameters 
As in the previous samples, you must surround string parameters with < and >, which tell 
the assembler that the enclosed text is literal, including blanks and punctuation normally 

used to separate individual identifiers. A useful macro employs this technique to declare 

ASCIIZ-format character string variables: 

MACRO ASCIIZ 
name db 
name&len dw 
ENDM ASCIIZ 

name, chars 
'&chars', 0 
$ - name - 1 

String + null terminator 
Length of chars 

The ASCI I Z macro defines rwo parameters-name, which is used to create rwo labels, and 
chars, the characters that make up the string. Inside the macro, the db directive creates a 

null-terminated string, using name as the label. The & operator tells Turbo Assembler (hat 

cllars is the name of a parameter. This is necessary tOprevem the assembler from creating a 
string of the five characters: 'c', 'h', 'a', 'r', and's', which it would do if the literal quotes were 

not used in the macros. The dw directive stores the length of the string (minus the null termi-

306 namr) as a word variable that follows the string. Although not part of the standard ASCIIZ 



MACROS AND CONDITIONAL ASSEMBLY 
. __ ~ __ ~ ______ ~ ___ ~ __ J 

format, this length value gives programs a quick way ro determine the length of a string-at 
least for string constants that don't change length. Notice how another & operator creates a 
label beginning with name and ending in "len." For example, if name is MyString, the length 
word would be labeled MyStringLen. To use the ASCIIZ macro, surround the characters for 
the string in angle brackets: 

ASCIIZ 51, <Any old string will do> 
ASCIIZ 52, <Commas, and periods, work too.> 

When Turbo Assembler processes these lines, it creates two strings, one at label sl and an
other at s2. In addition, the assembler stores the lengths of the strings at s1Len and s2Len. As 
a result, you can use the StrLength procedure in the STRINGS module to calculate string 
lengths or to load the lengths directly, as these examples illustrate: 

mov di, offset sl Address string s1 with di 
call StrLength ; Calculate cx = string length 
mov CX, [sllen] ; Same as above two instructions 

If the string length changes, you could call StrLength and then store the result at s1len. As
suming ex equals the new string length, you could write: 

mov [sllen], cx ; Save new string length 

NOTE ' 

Use Turbo Debugger's View:Variables command to examine the labels and values created by 
the ASCIIZ macro. 

To create strings with characters interpreted specially in a macro, use an exclamation point 
(1), the "Quoted character operator." For example, to include an angle bracket as a character 
in a string, you can use the line: 

ASCIIZ 53, <Couldn' 't locate !> > 

The effect is to create a variable s3 equal to the string "Couldn't locate -->," which you 
would probably follow with a second string, perhaps a filename that couldn't be found on 
disk. The quoted character operator inserts the angle bracket (» as a character. Notice also 
the double apostrophes, needed here to insert a single apostrophe because the ASCIIZ macro 
uses this same character as string delimiters. 

Macros and Variables 
A good use for macros is to add custom data types such as the ASCIIZ macro to assembly 
language. Any combination of directives such as dw and db, as described in previous chapters, 
can be used in macro definitions. Along with the DUP operator, this makes it easy to write 
macros to create arrays: 

307 



308 

PART I .. PROGRAMMING WITH ASSEMBLY LANGUAGE 

MACRO WordArray aName, aSize, aValue 
aName&count dw aSize 
aName dw aSize DUP (aValue) 
ENDM WordArray 

WordArray has three parameters: a label identifier (aName), the number of words in the array 
CaSize), and the initial value to assign to each word (avalue). In the macro's body, the first 
dw directive creates a variable equal to the number of words in the array, labeling this variable 
by the array name plus "count." The second dw directive declares the array values, using the 
DUP operator to reserve space for aSize values initialized to aValue. Two examples show how 
to use the macro: 

WordArray 
WordArray 

a1, 10, 0 
a2, 100, ? 

Expanding these macro commands creates two arrays, the first at label a1 with ten words 
initialized to 0 and the second at label a2 with 100 uninitialized words. Two variables a1 count 
and a2count are also created and initialized to the number of words in each array. Programs 
can read these variables to find out how many values the arrays hold: 

mov 
mov 

cx, [a1countl 
CX, [a2count I 

Set cx number of words in arrayal 
j Set cx number of words in array a2 

Definitions that Repeat 
Three directives-lRP, lRPC, and REPT-can be used to construct macros that repeat instruc
tions, usually with different parameters on each repetition. The directives can be used alone 
or inside macros to create powerful new commands. As with plain macro definitions, end 
your repeating definitions with ENDM. Earlier, you learned how to use the REPT directive to 
create automatically initialized arrays. (For example, see lines 36-42 in Listing 7.2, 
SCREEN .ASM.) lRP operates similarly, but takes arguments listed inside angle brackets and 
separated by commas: 

lRP register, <ax, bx, cx, dx> 
inc register 

ENDM 

When expanded during assembly, the effect is to create four inc instructions, one for each of 
the four registers listed in brackets: 

inc ax 
inc bx 
inc cx 
inc dx 

The TRPC directive operates similarly to TRP but, instead of using arguments in brackets, it 
repeats the instructions for each lener in a string. (The C in TRPC stands for Character.) As 
the next example demonstrates, you can use TRPC to create strings where each character is 
stored in a word instead of a byte, as db normally does: 



MACROS AND CONDITIONAL ASSEMBLY 

LABEL chars WORD 
IRPC nextChar, ABCDEFG 

dw ' &nextChar' 
ENDM 

The LABEL directive is necessary in this case because the assembler doesn't allow a label to 

preface an lRPC construction directly. The dummy parameter nextChar takes successive char
acters from the string ABCDEFG, which does not require surrounding quotes. On each repeti
tion, a dw directive creates a two-character variable consisting of a space and the ASCII value 
in this loop's nextChar. Notice how & identifies nextChar as a parameter name. The effect of 
this example is the same as writing: 

char dw , A' 
dw . S' 
dw C' 
dw . D' 
dw E' 

To see these characters in Turbo Debugger, use the View:Variables command, press Tab and 
arrow keys to position the cursor to chars, and call up the View:Dump window. 

You can use lRP, lRPC, and REPT inside macros, too, which lets you give names to repeated 
constructions. A typical example uses lRP to push registers onto the stack at the start of a 
procedure: 

MACRO PushReg registers 
IRP reg, <registers> 

ENDM 
ENDM 

push reg 

Notice that two ENDM directives are required--one to end the IRP command and the other to 
end the macro. A corresponding macro pops the registers from the stack, presumably at the 
end of a procedure: 

MACRO popReg registers 
IRP reg, <registers> 

pop reg 
ENDM 

ENDM 

In each macro, a dummy parameter named registers passes the register list to lRP. The reg 

parameter in the lRP loop takes successive values from this list, assembling one push or pop 

instruction for each reg value until the list is empty. Together, PushReg and PopReg simplifY 
procedure design by making it unnecessary to write instruction sequences such as: 

pUSh ax 
push bx 
push ex 
pUSh dx 309 



310 

PROGRAMMING WITH ASSEMBLY LANGUAGE 

Instead, to push these same four registers, you can simply write: 

PushReg <ax, bx, ex, dx> 

The four registers listed inside angle brackets expand to four push instructions, one for each 
At the end of the procedure, you would then use PopReg to restore these registers in 

the reverse order. With the two macros, you can write your procedures in this general form: 

PROC Subroutine 
PushReg <ax, bx, ex, dx, si, di> 

Subroutine's instructions 

PopReg <di, Si, dx, ex, bx, ax> 
ret 

ENDP Subroutine 

iNOTE 

Before I'm accused of not practicing what I preach, I'd better explain that, to avoid using 
techniques before they are introduced and because macros are always optional, program 
listings in this book do not employ macros in procedures as suggested here to save and 
restore registers. You can certainly modify the listings to use PushReg and PopReg, which can 
save typing and can also help to eliminate bugs by forcing you to Jist pushed and popped 
registers on easy-to-compare single lines. 

Macros and Code 
As mentioned earlier, macros let you invent new commands that expand to individual as
sembly language instructions. Used this way, a macro is a kind of subroutine that is insened 
directly in line with other instructions instead of requiring a call to activate. In fact, one 
way to optimize programs for top speed is to replace subroutine calls with macros that per
form the same jobs. This can improve the program's performance by eliminating call and 
ret instructions. For example, suppose you have the procedure: 

PROC Dec Reg 
dec ax 
dec bx 
dee ex 
dec dx 
ret 

ENDP Dec Reg 

After debugging the program, you decide to unroll the subroutine's instructions-that is, 
inserting the instructions directly where they are needed. The easiest way to do this is to create 
a macro: 



r-----... ----.... ~~~ .... ~~------ .... ~~----------~~~ .... ---~-~-~-.----~-_._------_._-

MACROS AND 

MACRO DeeReg registers 
rRP reg, <registers> 

dec reg 
ENDM 

ENDM 

There are simpler ways to write this macro, of course, but while going to the trouble of put
ting macros into the code, you may as well make the macro as versatile as possible. After 
designing DecReg, you can then use your text editor's global search and replace (or a utility 
program) to translate all the call DecReg instructions to: 

DeeReg <ax, bx, ex, dx> 

If DecReg is called often in the program, perhaps from inside a critical loop, the unrolled 
code runs faster by eliminating multiple executions of call and ret instructions. In addi
tion, DecReg is even more useful as a macro than a subroutine because the macro allows you 
to decrement any combination of registers, which the procedure cannot do. 

Macros can also nest; that is, you can use a macro name inside another macro definition. 
Such macros can be powerful, but they can also expand to many lines of code. 

Register Preservation 
A potential danger lurks when a macro changes the value of one or more registers. Because 
the register names do not appear in the source code, you can easily miss this fact and expect 
a register to retain an important value. Some programmers write macros that preserve all 
registers with push and pop instructions: 

MACRO DispChar ch 
push ax Save ax 
push dx Save dx 
mov ah, 2 , , Load function number into ah 
mov dl, '&ch' Load character to display 
int 21h Call DOS--display character ch 
pop dx Restore saved dx 
pop ax Restore saved ax 

ENOM DispChar 

The DispGhar macro defines a single parameter ch, which is assigned to register dl, again 
using the & operator to tell the assembler that ch is a parameter name and not the two 
characters c and h in quotes. Next, the number of the DOS standard Output routine (2) is 
assigned to ah, after which int 21 h calls DOS to write the character in dl to the standard 
Output file. Two pairs of push and pop instructions save and restore the values of the registers 
used by the macro. In the program, you might use this macro to display a character: 

311 



312 

PART I.. PROGRAMMING WITH ASSEMBLY LANGUAGE 

DispChar <0> 

If the DispChar macro does not preserve the registers it uses, you might easily forget that calling 
DispChar changes the values in ah and dl. Of course, the downside of this is that multiple 
uses ofDispchar push and pop the same registers over and over, even when unnecessary. It's 
impossible to say whether you should or shouldn't preserve registers in your macros-the 
choice is up [Q you. If you don't, be careful to document the registers used by your macros
or get settled for some nice, long sessions with Turbo Debugger while you try to figure out 
why your programs aren't working. 

Using the Include Directive 
Although you can declare individual macros at the start of your program, a better plan is to 
store macro definitions in a separate text file and then load that file during assembly. To do 
this, insert an INCLUDE directive such as: 

INCLUDE "MACROS.ASM" ; Read library of macro definitions 

You must use quotes around filenames when assembling INCLUDE directives in Ideal mode. In 
MASM mode, the quotes are not required, but then, you also can't end the line with a 
comment as shown here because the assembler would consider the comment to be part of 
the filename. 

You can also include files containing other assembly language text-you don't have to use 
INCLUDE [Q load only macro definitions. The text in the included file is inserted inco the pro
gram and assembled, as though the two files were one. Many programmers store a program's 
equates in separate files to be included as needed in one or more modules. An INCLUDE direc
tive can appear anywhere inside the program text and can be used to load equates, macros, 
variables, and assembly language instructions. You can also nest multiple INCLUDE directives, 
having an included file include some more text, which includes still another file, and so forth. 

In practice, it's probably best not to use INCLUDE to insert variables and instructions into 
programs. A better idea is to write separate object-code modules for these items and then 
link the code to your program, using the techniques explained for modules such as SCREEN 
and STRINGS in this book. Remember that included text is assembled over and over along 
with the other instructions in a program, while separately assembled object-code modules 
are immediately ready for linking. 



r 
I 
I 
I 

MACROS AND CONDITIONAL ASSEMBLY 

local labels 
Use the LOCAL directive inside a macro to create automatically-numbered local labels. The 
assembler creates the actual labels for you: eliminating the messy job of having to construct 
unique labels for macro loops and jump targets. 

Insert a LOCAL directive after the macro's opening line: 

MACRO AnyMacro 
LOCAL @@yonder, @@ponder 

ENDM AnyMacro 

Turbo Assembler replaces the labels yonder and ponder with numeric, local labels such as 
@@0001, @@0002, and @@0003. The symbols yonder and ponder are for your use in writing the 
macro-they do not appear in the actuallabe1s that the assembler creates. 

A more practical example demonstrates LOCAL. Following is a macro that uses LOCAL to create 
a loop: 

MACRO CalIOn register, subroutine 
LOCAL @@restart, @@exit 

push register 
or register, register 
jz @@exit 

@@restart: 

@@exit : 

ENDM 

call subroutine 
dec 
jnz 

register 
@@restart 

pop register 
CallOn 

" save register 
is register zero? 
if yes exit, else continue 

call the subroutine 
subtract 1 from register 
jump if register is not zero 

restore register 

The CallOn macro calls a subroutine by the number of times specified in a register argu
ment. A LOCAL directive creates two local labels, @@restart and @@exit. Instructions in the 
macro save and restore the specified register, call the subroutine, decrement the register, and 
jump to the local labels depending on the register's value. 

Use the macro by first writing a subroutine to call. The example here simply returns: 

PROC AnyProc 
ret 
ENDP AnyProc 

Next, initialize a counting register, and call the subroutine with these instructions: 

mov dx, 4 ; Assign count to dx 
CalIOn dx, Anyproc ; Call Anyproc four times 

The assembler expands this CallOn macro instruction to create the following code: 

313 



314 

PART I - PROGRAMMING WITH ASSEMBI y LANGUAGE 

push dx 
or dx, dx 
jz @@0001 

@@0000: 
call AnyProc 
dec dx 
jnz @@0000 

@@0001: 
pop dx 

The assembler replaces the two local labels, @@restart and @@exit, with the numeric labels 
@@0000 and @@0001. Most important, if you reuse the same macro within the scope of those 
labels, the assembler creates twO new labels, @@0002 and @@0003. This means you can use the 
CallOn macro repeatedly without introducing conflicting labels into the program. 

Conditional Compilation 
Conditional compilation directives form a kind of mini-language built into Turbo Assem
bler. With conditional directives, you can change the way a program assembles based on 
various conditions, normally defined at the start of a program module (or stored in a sepa
rate INCLUDE file) and assigned to identifiers called conditional symbols. For example, you could 
define a conditional symbol named DisplayType to indicate which kind of display adapter 
the computer has. To modifY the program for new display hardware, you simply change 
DisplayType to the correct value and reassemble. Some software companies build hundreds 
of such symbols into programs, letting programmers quickly generate custom applications 
for customers by simply tweaking a few symbols here and there. 

Table 8.1 lists Turbo assembler's conditional compilation directives, none of which directly 
generates any machine code. Pass-dependent directives such as ERRIFl and ERRIF2 are in
cluded for compatibility with MASM, which processes assembly language programs in two 
passes. Because Turbo Assembler is a one-pass assembler, these directives should not be used. 
(Nor should they ever be needed.) 

Defining Conditional Symbols 
Define conditional symbols just as you do other equates, assigning a value, which must be 
numeric, to a named identifier. For example, to define a conditional symbol named 
DisplayType, you could write: 

DisplayType 

You can also use EQU to define conditional symbols, but normally you should use an equal 
sign, which creates a numeric symbol. Because the "1" in this example isn't very meaningful, 
you'll probably define other equates for assigning to your conditional symbols. For example, 
you might set up four symbols representing various common display types: 



CGAAdapter 
MonoAdapter 
EGAAdapter 
VGAAdapter 

o 

2 
3 

The actual values don't matter in this example-it's the names we're after, which lend extra 
readability to programs, as in the perfectly clear assignment: 

DisplayType EGAAdapter 

Table 8.1. Conditional Compilation Directives. 
Directive 

ELSE 

ELSEIF 

ENDIF 

ERR 

ERRIF 

ERRIFl 

ERAIF2 

ERAIFB 

ERRIFDEF 

EARIFDIF 

ERRIFDIFI 

ERRIFE 

EARIFIDN 

ERAIFIDNI 

ERRIFNB 

ERRIFNDEF 

EXITM 

GOTO target 

IF 

IFl 

IF2 

IFB 

IFDEF 

Assemble next lines if previous IF is false 

End of ELSE directive. Begin new IF 

End of IF directive 

Force assembler to display error message 

Error if an expression is true 

Error if on pass 1 * 
Error if on pass 2* 

Error if an argument is blank 

Error if an argument is defined 

Error if arguments differ 

Error if arguments differ (ignoring case) 

Error if an expression is false (equal to 0) 

Error if arguments are identical 

Error if arguments are identical (ignoring case) 

Error if an argument is not blank 

Error if an argument is not defined 

Stop macro expansion immediately 

Continue macro expansion at target 

Assemble if expression is true 

Assemble if on pass 1 * 

Assemble if on pass 2* 

Assemble if an argument is blank 

Assemble if a symbol is defined 

continues 

315 



316 

--_ .... _---_ ..... ---

PART I.. PROGRAMMING WITH ASSEMBLY LANGUAGE 

Table 8.1. continued 

Directive 

IFDIF 

IFDIFI 

IFE 

IFIDN 

IFIDNI 

IFNB 

IFNDEF 

Assemble if arguments differ 

Assemble if arguments differ (ignoring case) 

Assemble if an expression is false (equal to 0) 

Assemble if arguments are identical 

Assemble if arguments are identical (ignoring case) 

Assemble if argument is not blank 

Assemble if argument is not defined 

*Note: Pass 1 and 2 conditional directives, included for compatibility with MASM, should not be used 

in Turbo Assembler. 

At this point in the program, the symbol DisplayType is said to be defined regardless of the 
value the symbol has. A symbol is defined as soon as you equate any value to that symbol. A 
symbol is undefined if the symbol is never assigned a value. Be sure to understand the differ
ence between the value of a symbol and the fact that a symbol is or is not defined. These 
hints further explain the distinction: 

• A symbol is defined when you equate any value to that symbol. The actual value is 
unimportant . 

• A symbol is undefined if you never equate a value to that symbol. 

• Testing whether a symbol is defined is not the same as testing whether a symbol has 
a specific value. 

• For best results, use the equal sign to define conditional symbols, which should be 
numeric. This also allows you to later redefine the same symbols if necessary. 

When creating conditional symbols, remember that symbol names represent simple values. 
This is important because conditional directives such as IF and IFE work only with expres
sions and arguments that evaluate to integer values. 

Using Conditional Symbols 
The most common use for conditional symbols is to select which of two or more sections of 
code is actually assembled. For example, suppose you need two versions of a program-one 
for debugging purposes and another for the final production model. The debugging version 
might include special instructions to display stack usage, dump important vari~bles to the 
printer, and so forth. Naturally, you don't want to include such features in the production 
model. Conditional compilation directives make it easy to assemble either version by simply 
defining a few conditional symbols at the top of the program module: 



False 
True 
Debugging 

o 

True 

Value meaning false 
Value meaning true 
False for production 

MACROS AND 

You now have a way to tell the assembler which version to create, depending on the setting 
of Debugging. This lets you change variables, insert code, call debugging procedures, and 
modifY other program features, all by setting Debugging to True and False. In the data seg
ment, you could test Debugging in a conditional directive to change the program's identifY
ing string: 

DATASEG 
IF Debugging 
programID 
ELSE 
programID 
ENDIF 

db 

db 

'Chess vl.0 (TEST MODEL)', 0 

'Chess vl.0', 0 

When Turbo Assembler processes this directive, if Debugging is True (equal to any nonzero 
value), the "TEST MODEL" string is assembled; otherwise, the production string is as
sembled. Only one string is ever included in the final code, even though the program text 
appears to repeat "Chess v 1.0" wastefully. There's no such waste because, if Debugging is False, 

the first db directive is completely skipped during assembly. Remember that conditional direc
tives are commands to Turbo Assembler-the IF, ELSE, and ENOl F directives generate no code 
and are not instructions that execute at runtime. 

Another test of Debugging might be used later on in the program's code segment. For ex
ample, perhaps the program must call a special subroutine to initialize values required only 
during debugging. This does the job: 

If Debugging EQ True 
call DebugInit ; Initialize for debugging 

ENDIF 

If Debugging equals True, then the call instruction to Debuglnit is assembled. Otherwise, the 
assembler completely skips the call. Another section of the program could then insert the 
debugging procedure only if Debugging is True: 

IF Debugging 
PROC DebugInit 

Debugging initialization subroutine 

ret Return to caller 
ENDP Debuglnit 
ENDIF 

Both the call to the subroutine and the procedure itself are added to the finished product 

only if Debugging is True. If Debugging is False, the program is assembled as though these 
items didn't exist. 

317 



318 

PART I.. PROGRAMMING WITH ASSEMBLY LANGUAGE 

You may have noticed in these samples that one IF directive used the expression IF Debugging 

EQ True, while the other simply states IF Debugging. Both forms are correct and have the same 
effect-as long as you follow the convention that any nonzero value (usually 1 or -1) represents 
True and that 0 represents False. The EQ operator in the first conditional directive is one of sev

erallisted in Table 8.2 that you can use in similar conditional expressions. 

IF directives must be followed (eventually) by ENDIF, marking the end of the conditional 
section. In between, you can insert an optional ELSE clause, selecting alternate instructions 
that assemble if the expression evaluates to false. This lets you use IF alone: 

Table 8.2. Constant Expression Operators. 

AND Logical AND 

EQ Equal 

GE Greater or equal 

GT Greater than 

LE Less or equal 

LT Less than 

MOD Modulus (integer division remainder) 

NE Not equal 

NOT One's complement (bit toggle) 

OR Logical OR 

SHL Shift left 

SHR Shift right 

XOR Logical exclusive OR 

IF Debugging 
; code for debugging True 
ENDIF 

or, with ELSE to select alternate instructions: 

IF Debugging 
; code for debugging True 
ELSE 
; code for debugging False 
ENDIF 



To Define or Not To Define 
Instead of using IF to test if an expression evaluates to true (not 0) or IFE to test for false 
(equal to 0), you can use the IFDEF and IFNDEF directives to test if a symbol is defined or not 
defined. As you recall from earlier, a symbol is defined as soon as you give it a value. In a 
program, if you write: 

IFDEF Debugging 
call DebugInit 
ENDIF 

the call is assembled only if Debugging was assigned a value, no maner what that value is. To 
define Debugging, you might add to the beginning of the program the line: 

Debugging ; Define Debugging 

To undefine the symbol, just remove this line or insert a semicolon at far left, converting the 
line into a comment. You can also test if symbols are not defined with statements such as: 

IFNDEF Debugging 
welcome db 'Production version 5.01', 0 
ENDIF 

IFDEF and IFNDEF are most useful when used along with Turbo Assembler's Id option, which 
you can use to define symbols at the DOS command line. To assemble a program named 
Banana with debugging features, you could issue the command: 

tasm IdDebugging=1 Banana 

The IdDebugging=1 defines the Debugging symbol when you assemble the program-there's 
no need to add a Debugging equate to the program source text. (The value assigned to the 
symbol is unimportant.) Notice that there is no space between the Id and the symbol name. 
Later, after debugging is no longer needed, assembling normally undefines Debugging, strip
ping the test code from the finished version: 

tasm Banana 

Handling Conditional Errors 
You can create multiple conditionals with IF, ELSE, and ELSEIF, ending the whole shebang with 
ENDI F. For example, to define a string according to the display types listed earlier, you can write: 

DATASEG 
IF DisplayType EQ CGAAdapter 
displayID db 'CGA Adapter', 0 
ELSEIF DisplayTYpe EQ MonoAdapter 
displayID db 'Monochrome Adapter', 0 
ELSEIF DisplayType EQ EGAAdapter 
displayID db 'EGA Adapter', 0 
ELSEIF DisplayType EQ VGAAdapter 
displaylD db 'VGA Adapter', 0 
ENDIF 

319 



-----... ----.... -~.-.-~-.. - .. -

320 

Only one string is defined in the final code, depending upon the DisplayType setting. How
ever, this example is incomplete because it does not allow for the possibility that DisplayType 

could specify an unknown value. To handle this condition, you could replace ENDIF with: 

ELSE 
displayIO 
ENDIF 

db 'Unknown adapter type', 0 

Or, to prevent the program from assembling with an unknown condition, you can force an 
error [0 occur by replacing the original ENDIF with: 

ELSE 
ERR 
DISPLAY -"Error" Unknown DisplayType value" 
ENDIF 

When this is assembled, if the DisplayType is unknown, the ERR directive forces Turbo As
sembler [0 display a "user generated" error message. The DISPLAY directive also displays a 
quoted string, in this example, telling you that something is wrong with DisplayType. As
sembling the program generates this text on screen: 

Assembling file: TEST.ASM 
"Error" Unknown DisplayType value 
"Error" TEST.ASM(102) User generated error 
Error messages: 1 
Warning messages: None 
Remaining memory: 331k 

Ending Macro Expansion 
Use the ENDM directive to end a macro expansion immediately. The directive is often useful 
for creating debugging macros that you want to delete from the final assembled program, 
but still retain in the assembly language text. For example, here's a macro that pushes four 
registers and pauses with a jump instruction that repeats itself endlessly: 

MACRO PauseMae 
LOCAL @(ilhere 

IFNDEF DEBUGGING 

ENDIF 
EXITM 

push ax 
pUSh bx 
push ex 
push dx 

(il@here: jmp @(ilhere ;; Pause program 
ENDM PauseMae 

Insert the PauseMae macro to push ax, bx, ex, and dx, and then to jump in a continuous loop 
at label @@here:. Because this halts the program, you should execute this code only under 
control of a debugger so you can break our of the endless loop with a keypress (Ctrl+ Break, 
for example). 



The macro uses an IFNDEF conditional directive to test whether a symbol, DEBUGGING, is not 
defined. If it isn't, EXITM immediately exits the macro expansion, and therefore, the effect is 
to delete the macro's instructions entirely from the program. If DEBUGGING is defined, EXITM 

is skipped and the push and jmp instructions are inserted. Define DEBUGGING with an equate 
such as the following-convert it to a comment or delete the line to not define DEBUGGING: 

DEBUGGING EQU 

GOlO Directive 
Your Turbo Assembler manual contains information on another directive, GOTO, which trans
fers macro expansion to another location. I find the directive to have questionable value, but 
you are supposed to be able to use it like this: 

MACRO AnyMac 

GOTO location 

location: 

ENDM AnyMac 

On reaching the GOTO, the assembler continues macro expansion at the designated target la
bel, location in this example. 

According to the Turbo Assembler User's Guide, you should not be able to use GOTO inside 
a conditional directive to alter macro expansion: 

MACRO AnyMac 
IFDEF DEBUGGING 

GOTO location 
ENDIF 
location: 

ENDM AnyMac 

This example, however, which is similar to the one in the Guide, does not work because it 
causes the macro processor to skip over the ENDIF directive. Consequently, the assembler 
terminates with the error "Open conditional" and the program does not assemble. 

But never mind. The example is pointless since other conditional directives such as IFDEF, 
IFNDEF, ELSEIF, and EXITM already give all the control needed over macro expansion. Frankly, 
I have found no practical use for the GOTO directive. If you do, please let me know. 

Meanwhile, Back at the Macro ... 
Another new directive, WHI LE, makes it possible to expand macros a specified number of times. 
For example, consider a simple macro that pushes the accumulator, ax, OntO the stack: 

MACRO PushAX 
push ax 

ENDM 321 



322 

--~ .. ------------------- ~------
PART I .. PROGRAMMING WITH ASSEMBLY LANGUAGE 

To repeat the macro, you can of course write it multiple times: 

PushAX 
PushAX 
PushAX 
PushAX 

---~~ ... ----

But with WHILE, you can create a loop that expands the macro while an expression remains 

true. Here's one way to use WHILE to expand the preceding macro a specified number of times: 

count 4 
WHILE count GT 0 
PushAX 

count count - 1 

ENDM 

The first line defines a numeric symbol, count, initialized to 4. (This line might appear in 

another file, or at the beginning of the program.) The WHILE directive expands the PushAX 

macro while count is greater than (GT) zero. Inside the WH I LE directive, count is redefined to 

a value one less than its current value after each expansion of PushAX. Notice that the entire 

construction ends with ENDM-the WHILE directive is itself a predefined macro. 

Pushing and Popping the Assembler State 
Use the PUSHSTATE and POPSTATE directives to save and restore Turbo Assembler's operating 

state. The directives are particularly useful in macros that change various assembler options 

such as the current radix, or that use the SMART and NOSMART directives and other values. You 

may, however, use PUSHSTATE and POPSTATE outside of macro bodies to save and restore the 
assembler state at any time. 

Inserting PUSHSTATE into a program preserves the following options and settings. Inserting a 
POPSTATE directive restores the most recently saved state values: 

• The current VERSION setting (for example, T400) 

• The operating mode (for example, IDEAL or MASM) 

• Switch selections including EMUL, NOEMUL, MULTERRS, NOMULTERRS, SMART, NOSMART, 

JUMPS, NOJUMPS, LOCALS, and NO LOCALS 

• Code generation selection (for example, P8086 or P386) 

• The current RADIX 

• The current local label prefix (for example, LOCALS @@) 

PUSHSTATE and POPSTATE are useful in macros, especially those that will be used under a vari

ety of conditions. You can use the directives anywhere in a program like this: 



~ .. 

MACROS AND CONDITIONAL 
------------------_ .. _- ... _-_._------------

PUSH STATE 
radix 2 
NOJUMPS 

POPSTATE 

In that example, after PUSHSTATE saves the current assembler state, the program selects a ra
dix of 2 and specifies the NOJUMPS switch. The ellipsis indicates where to insert instructions 
that require these settings. After that section of the program finishes, POPSTATE restores the 
previous settings. 

You may also use the directives to create a macro that saves and restores the assembler's state. 
Simply begin and end the macro like this: 

MACRO AnyMac 
PUSHSTATE 

radix 2 

POPSTATE 
ENOM AnyMac 

In the sample AnyMac macro, PUSHSTATE preserves the assembler's operating state before the 
macro sets the radix to 2. The ellipsis shows where to insert other macro instructions that 
require this radix setting. Just before the end of the macro body, POPSTATE restores the oper
ating state to its former values. 

Based on my test programs, when using the directives in macros, you must insert them after 
a LOCALS directive. Borland does not document or explain this oddity, but you can see its 
effect by a.~sembling the following test macro: 

MACRO AnyMac 
LOCAL @@here 
PUSHSTATE 

radix 2 
POPSTATE 
@@here; 
ENDM AnyMac 

Use the macro somewhere in your program by also inserting this instruction into a code 
segment: 

AnyMac 

If you then move PUSHSTA TE in the macro to before the LOCAL directive, Turbo Assem bier reports 
the error, "Symbol already different kind: @@HERE." Although the reason for this error is 
unclear, you can prevent it by always writing PUSHSTATE after a LOCAL directive. 

323 



324 

WITH ASSEMBLY LANGUAGE 

NOTE 

According to Borland, Turbo Assembler maintains a 16-level stack for use with these 
directives. Nesting PUSHSTATE more than 16 times is therefore not recommended, although 
tests show that doing 50 does not cause the assembler to report an error. Likewise/it is up to 
you to match every PUSHSTATE with a POPSTATE-a mistake here is also not considered an 
error, nor is the inclusion of more POPSTATES than PUSHSTATEs. All of these conditions would 
seem to cause problems for the assembler, but because you receive no warnings or errors 
about them, you should use these directives with extreme care. 

Starting a DOS Macro Library 
Many assembly language programs spend a great deal of time calling DOS routines, all of 
which have special requirements, for example, expecting values to be in certain registers. The 
DOS macros in this section can help make writing programs easier in twO ways: by reducing 
to single names the common sequences for calling DOS routines and by helping to docu
ment register assignments and other requirements. 

Do not assemble the macros in Listing 8.1, DOSMACS.ASM. Instead, store the text file on 
disk and add the macros to your programs by including this line somewhere in the begin
ning of your program (preferably just before the DATASEG directive): 

INCLUDE 'OOSMACS.ASM" 

Listing 8.1. DOSMACS.ASM. 
1: ; DOS Macros for Ideal mode -- by Tom Swan 
2: %NOLIST 
3: 
4: ,---------------------------------------------------------------
5: ; MS_DOS Call any DOS function 
6: ---------------------------------------------------------------

Input: 7: 
8: 
9: 

functionNumber DOS function number 
Output: 

10 : 
11 : 
12 : 
13: 

depends upon specific function 
Registers: 

14: MACRO 
15: 
16: 
17: ENDIA 
18: 

depends upon specific function 

MS_DOS functionNumber 
mov ah, functionNumber 
int 21 h 
MS_DOS functionNumber 

Assign function number 
Call DOS 



MACROS AND CONDITIONAL ASSEMBLY 

19: 
20: ; (01h) OOS_GetChar 

Input: 
none 

Output: 

Get character with echo 
21 : 
22: 
23: 
24: 
25: 
26: 
27: 
28: 

al next character from standard input 
Registers: 

29: MACRO 
30: 
31 : 
32: ENDM 
33: 

ax 

DOS_GetChar 
mov ah, 
int 21 h 
DOS_GetChar 

" Assign DOS function number 
Call DOS 

34: ---------------------------------------------------------------
35: j (02h) DOS_PutChar Write character to standard output 

Input: 
36: 
37: 
38: 
39: 
40: 
41 : 
42: 
43: 

dl = ASCII character (0-255) 
Output: 

none 
Registers: 

44: MACRO 
45: 
46: 
47: EN OM 
48: 
49: 

ah 

DOS_PutChar 
mov ah, 2 
int 21 h 
DOS_PutChar 

Assign DOS function number 
" Call DOS 

50: ; (05h) OOS_PrintChar Send character to standard list device 
51: ---------------------------------------------------------------
52: Input: 
53: dl = ASCII character (0-255) 
54: Output: 
55: none 
56: Registers: 
57: ah 
58: j---------------------------------------------------------------
59: MACRO DOS_PrintChar 
60: mov ah, 5 
61 : int 21 h 
62: ENOM DOS_PrintChar 
63: 
64: 

Assign DOS function number 
Call DOS 

65: j (07h) OOS_GetRawChar Get unfiltered char with no echo 
66: ---------------------------------------------------------------
67: 
68: 
69: 
70: 
71 : 
72: 
73: 

Input: 
none 

Output: 
al = next character from standard input 

Registers: 
ax 

continues 

325 



326 

_ PROGRAMMING WITH ASSEMBLY LANGUAGE 

listing 8.1. continued 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81 : 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91 : 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 

100: 
101 : 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111 : 
112 : 
113 : 
114 : 
115 : 
116 : 
117 ; 
118 : 
119 : 
120; 
121 : 
122: 
123: 
124: 
125: 
126; 

MACRO DOS_GetRawChar 
mov ah, 7 
int 21 h 

ENDM DOS_GetRawChar 

; (08h) DOS_GetCharNoEcho 

Input: 
none 

Output; 

Assign DOS function number 
" Call DOS 

Get filtered char with no echo 

al = next character from standard input 
Registers: 

ax 

MACRO DOS_GetCharNoEcho 
mov ah, 8 
int 21 h 

" Assign DOS function number 
" Call DOS 

ENDM DOS_GetCharNoEcho 

; (09h) DOS_PutString Write ASCII$ string to standard output 

Input; 
string = label of ASCII$ variable 

Output: 
none 

Registers: 
ah, dx 

MACRO DOS_PutString string 
mov ah, 9 ;; Assign DOS function number 
mov dx, offset string;; Address string with ds:dx 
int 21 h ;; Call DOS 

ENDM DOS_PutString 

; (0Bh) DOS_Keypressed Check if a keyboard character is waiting 
;---------------------------------------------------------------

Input: 
none 

Output: 
zf = 0 
zf = 

Registers: 
ax 

(jnz) A character is waiting to be read 
(jz) No character is waiting 

MACRO DOS_Keypressed 
mov ah, 0Bh ! ! Assign DOS function number 
int 21h , . Call DOS 
or aI, al Set/clear zf 

ENOM OOS_Keypressed 



MACROS AND CONDiTIONAL 

127: 
128: ; (0Eh) DOS_SetDrive Change current drive 
129: ---------------------------------------------------------------
130: Input: 
131: dl'" drive number (0=A:, 1=B:, 2=C:, ... , 25=Z:) 
132: Note: F: to Z: requires LASTDRIVE=Z in CONFIG.SYS file 
133: Output: 
134: al = total number of drives available 
135: Registers: 
136: ax 
137: ---------------------------------------------------------------
138: MACRO DOS_SetDrive 
139: 
140: 

mov ah, 0Eh Assign DOS function number 
Call DOS int 21 h 

141: ENDM DOS_SetDrive 
142: 
143: ---------------------------------------------------------------
144: ; (19h) DOS_GetDrive Get current drive number 
145: ---------------------------------------------------------------
146: Input: 
147: none 
148: Output: 
149: al drive number (0=A:, 1=B:, 2=C:, ... , 25=Z:) 
150: Registers: 
151: ax 
152: ---------------------------------------------------------------
153: MACRO DOS_GetDrive 
154: 
155: 

mov ah, 19h Assign DOS function number 
Call DOS 

156: ENDM 
157: 

int 21 h 
DOS_Get Drive 

158: j---------------------------------------------------------------
159: ; (25h) DOS_SetVector Set interrupt vector 
160: ---------------------------------------------------------------
161 : 
162: 
163: 
164: 
165: 
166: 
167: 
168: 

Input: 
interrupt 
address 

Output: 
none 

Registers: 
ax, dx 

interrupt number (0-255) 
label at start of interrupt routine 

169: MACRO 
170: 

DOS_Setvector interrupt, address 

171 : 
172: 
173: 
174: 
175: 
176: 
177: 
178: ENDM 
179: 

push ds 
mov ax, 
mOil ds, 
mov dx, 
mov ah, 
mov al, 
int 21 h 
pop ds 

" Save current ds register 
SEG address ;; Assign segment address of 
ax interrupt service to ds 
OFFSET address jj Assign offest address to dx 
025h " Assign DOS function number 
interrupt Assign interrupt number to al 

" Call DOS 
Restore ds segment register 

DoS_Setvector 

c07uinues 

327 



328 

.. ~~-.--.. ~~~~-

PART I .. 

listing 8.1. continued 
180: 
181 : 
182: 
183: 
184: 
185: 
186: 
187: 
188: 
189: 
190: 
191 : 
192: 
193: 
194 : 
195: 
196: 
197: 
198: 
199: 
200: 
201 : 
202: 
203: 
204: 
205: 
206: 
207: 
208: 
209: 
210: 
211 : 
212: 
213: 
214: 
215: 
216: 
217: 
218: 
219: 
220: 
221 : 
222: 
223: 
224: 
225: 
226: 
227: 
228: 
229: 
230: 
231 : 
232: 
233: 
234: 

; (35h) OOS_GetVector Get interrupt vector 

Input: 
interrupt interrupt number 

Output: 
es:bx ~ segment:offset address of interrupt 

Registers: 
ax, bx, es 

MACRO OOS_GetVector interrupt 
mov aI, interrupt "Assign interrupt number to al 
mov ah, 35h Assign DOS function number 
int 21 h Call DOS 

ENOM OOS_GetVector 

Change current directory 

Input: 
dirName ~ label of ASCIIZ string in ds data segment 

Output: 
cf 0 (inc) Change was successful 

cf IjC) Change was not successful 
error code (3=directory not found) ax 

Registers: 
ax, dx 

MACRO DOS_ChOir dirName 
mov ah, 3Bh , , Assign DOS function number 
mov dx, OFFSET dirName ;; Assign string address to 
int 21h Call DOS 

ENOM DOS_ChOir 

; (3Ch) OOS_CreateFile Create new file 

Input: 
fileName label of ASCIIZ string in ds data segment 
cx = attribute to use in directory 

Output: 
cf 
ax 

cf 
ax 

Registers: 

00 normal file 
01 read-only (access denied for read/write) 
02 hidden (OIR does not show name) 
04 system file 

o : (inc) File created 
file handle for future operations 

1 : (ie) File not created 
error code 
3 path not found 
4 no more handles available 
5 access denied 

ds:dx 



235: ax, dx 
236: ;---------------------------------------------------------------
237: MACRO DOS_CreateFile fileName 
238: mOil ah, 3Ch j; Assign DOS function number 
239: mOil dx, OFFSET fileName Assign name address to ds:dx 
240: int 21h ;; Call DOS 
241: ENDM DOS_CreateFile 
242: 
243: ,---------------------------------------------------------------
244: i (3Dh) DOS_OpenFile Open file for 1/0 

245: ---------------------------------------------------------------
246: Input: 
247: fileName = label of ASCIIZ string in ds data segment 
248: Output: 
249: cf 0: (j nc) File opened 
250: ax file handle for future operations 
251 : 
252: 
253: 
254: 
255: 
256: 
257: 

cf 
ax 

1 : (jC) File not opened 
error code 
2 file not found 
3 path not found 
4 no more handles allailable 
5 access denied 

258: Registers: 
259: ax, dx 
260: ---------------------------------------------------------------
261: MACRO 
262: 
263: 
264: 
265: 
266: ENDM 
267: 

DOS_OpenFile fileName 
mOil ah, 3Dh i i Assign DOS function number 
mOil aI, 02 ;; Open for read/write access 
mOil dx, OFFSET fileName jj Assign name address to ds:dx 
int 21 h j; Call DOS 
DOS_OpenFile 

268: j---------------------------------------------------------------
269: ; (3Eh) DOS_CloseFile Close a prelliously opened file 
270: ;---------------------------------------------------------------
271: 
272: 
273: 
274: 
275: 
276: 
277: 
278: 

Input: 
bx 

Output: 
cf 

cf 
ax 

279: Registers: 
280: ax 

file handle from DOS_CreateFile or DOS_OpenFile 

o (jnc) File closed 

(jc) File not closed 
error code 
6 bad handle or file was not open 

281: ---------------------------------------------------------------
282: MACRO DOS_CloseFile 
283: 
284: 
285: ENDM 
286: 

mOil ah, 3Eh 
int 21h 
DOS_CloseFile 

Assign DOS function number 
Call DOS 

287: j---------------------------------------------------------------
288: ; (3Fh) DOS_ReadFile Read from file or delliee 
289: ,---------------------------------------------------------------
290: j Input: 

continues 

329 



330 

PART I .. PROGRAMMING WITH ASSEMBLY LANGUAGE 

Listing 8.1. continued 
291 : 
292: 
293: 
294: 
295: 
296: 
297: 
298: 
299: 
300: 
301: 
302: 
303: 
304: 
305: 
306: 
307: 
308: 
309: 
310: 
311 : 
312: 
313: 
314: 
315: 
316: 
317: 
318: 
319: 
320: 
321 : 
322: 
323: 
324: 
325: 
326: 
327: 
328: 
329: 
330: 
331: 
332: 
333: 
334: 
335: 
336: 
337: 
338: 
339: 
340: 
341 : 
342: 
343: 
344: 
345: 
346: 
347: 

bx file handle from DOS_CreateFile or DOS_OpenFile 
ex ~ number of bytes requested to read 
buffer label of destination buffer in 
Note: buffer must be at least ex bytes 

ds data segment 
long! 

Output: 
cf o : (jnc) Read was successful 
ax actual number of bytes read (0~at end of file) 

cf 1: (jc) Read was not successful 
ax error code 

5 access denied 
6 ~ bad handle or file was not open 

Registers: 
ax, dx 

;----------~----------------------------------------------------

MACRO DOS_ReadFile buffer 
mov ah, 3Fh " Assign DOS function number 
mov dx, OFFSET buffer j; Address buffer with ds:dx 
int 21h Call DOS 

ENDM DOS_ReadFile 

j (40h) DOS_WriteFile Write to file or device 

Input: 
bx file handle from DOS_CreateFile or DOS_OpenFile 
cx number of bytes requested to write 
buffer label of source buffer in ds data segment 

Output: 
cf 
ax 

o (jnc) Write was successful 
actual number of bytes written (0=disk is full) 

cf 
ax 

1 : (jC) Write was not successful 
error code 
5 access denied 
6 ~ bad handle or file was not open 

Registers: 
ax, dx 

MACRO 

ENDM 

DOS_WriteFile buffer 
mov ah, 40h 
mov dx, OFFSET buffer 
int 21 h 
DOS_WriteFile 

Assign DOS function number 
;; Address buffer with ds:dx 
Call DOS 

;---------------------~------------------------~----------------
Change location for next read/write 

;--------------------------------~------------------------------
Input: 

bx file handle from DOS_CreateFile or DOS_OpenFile 
cx 
dx 

Output: 
cf 
dx 
ax 

high word of 32-bit byte offset 
low word of 32-bit byte offset 

o : (jnc) Seek was successful 
high word of 32-bit offset position after seek 
low word of 32-bit offset position after seek 



cf 1: (jc) Seek was not successful 
ax error code 

Registers: 
ax 

6 = bad handle or file was not open 

;----------------------------------------------------~-~--------
MACRO DOS_Seek 

mov ah, 42h Assign DOS function number 
xor aI, al Seeks to absolute position 
int 21h Call DOS 

ENDM DOS_Seek 

; (47h) DOS_GetDir Get name of current directory 

Input: 
string = address of 64-byte (minimum) variable 

Output: 
directory name inserted into string in ASCIIZ format 

Registers: 
ax, dl, si 

MACRO DOS_GetDir string 
mov ah, 47h , , Assign DOS function number 
xor dl, dl o specifies current drive 

in cX,dx 

mov si, OFFSET string j; Address string with ds:si 
int 21h Call DOS 

ENDM DOS_GetDir 

; (4Ch) DOS_Terminate End program 

lnput: 
code = [label) or value to pass to DOS or parent process 

Output: 
none 

Registers: 
ax 

;---------------------------------------------------------------
MACRO DOS_Terminate code 

mov ah, 4Ch 
mov aI, code 
int 21 h 

ENDM DOS_Terminate 

%LIST 

Using DOSMACS.ASM 

Assign DOS function number 
" Assign return code 
)' Call DOS 

Most of the macros in DOSMACS should be self-explanatory-just read the comments pre

ceding each macro for a list of all requirements, output, and modified registers. The 
DOSMACS.ASM file begins with a %NOLIST command to prevent listing the macro definitions 
even if you specifY the /1 listing option during assembly. This reduces the length of your pro
gram listings by not repeating the same text for all modules that include the macros. For refer-
ence, Table 8.3 lists each macro along with the associated function number in hexadecimal. 331 



332 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Table 8.3. DOSMACS Macros. 

No. MACRO Name and Parameters 

MS_DOS functionNumber 

Olh DOS_GetChar 

02h DOS_PutChar 

OSh DOS_PrintChar 

07h DOS_GetRawChar 

08h DOS_GetCharNo Echo 

09h DOS_PutString string 

OBh DOS_Keypressed 

OEh DOS_SetDrive 

19h DOS_GetDrive 

2Sh DOS _ SetVector interrupt, address 

3Sh DOS_GetVector interrupt 

3Bh DOS_ChDir dirName 

3Ch DOS_CreateFilejileName 

3Dh Dos_OpenFilej6leName 

3Eh DOS_CloseFile 

3Fh DOS_ReadFile bu~r 

40h DOS_WriteFile bujTer 

42h DOS_Seek 

47h DOS_GetDir string 

4Ch DOS_Terminate code 

DOSMACS contains only a subset of DOS functions. A good project would be to expand 
DOSMACS to the full DOS set; be aware that this will also increase the time it takes to 
assemble programs that include the macros. 

You can also call DOS functions by number, using the MS_DOS macro instead ofloading 
ah and executing int 21h. Remember that this changes ah. To display a character loaded 
into dl, you could write: 



MACROS AND CONDITIONAl ASSEMBLY 

mov dl, 'A' ; Character to display 
MS_DOS 2 ; Call DOS output-character function 

To use a macro that specifies parameters, read the comments, load a register, or allocate space 
for a variable and use the label identifier as the parameter. For writing ASCII$ strings to the 
standard output file, use instructions such as: 

DATASEG 
Welcome 
CODESEG 

db 'Welcome to my program', '$' 

DOS_PutString Welcome ; Display welcome message 

Some macros return results in registers and flags. For instance, to check whether a character 
is available from the keyboard, you can write: 

@@10: DOS_Keypressed 
i z Continue 
DOS_GetRawChar 
call ProcessChar 

Continue: 

Is a keypress waiting? 
Jump if not 
Else get the char (no echo) 
Call routine to process char 

If DOS_Keypressed sets the zf flag, then no character is waiting to be read, and the program 
continues at label Continue:. If zf is reset, then a second macro DOS_GetRawChar reads the 
character and calls a subroutine ProcessChar (not shown) to handle the keystroke. The mac
ros help document the program by converting DOS function numbers into understandable 
names. 

NOn: . 

If you receive a strange error such as an "Undefined symbol" when using known keywords 
such as OFFSET, check that you have specified all required parameters. Also, try surrounding 
parameters with angle brackets as in <OFFSET CodeLabel>. If you still can't determine what's 
causing an error, insert %MACS at the start of the program and assemble with the 11 option to 
create a listing showing your macro calls along with the expanded instructions. You should 
be able to figure out what is going wrong by reading this listing. 

Summary 
By storing common instruction sequences in macro definitions, you add custom commands 
to Turbo Assembler. Macros can clarifY assembly language, reduce the size of the program 
text, and help to ensure consistent programming methods, especially in team projects. Mac
ros have a few drawbacks, such as requiring modules to reassemble the macro library repeat
edly and hiding effects on register values. 

A macro definition begins with MACRO and ends with ENDM. Purging a macro with PURGE 

removes the macro definition from memory, conserving RAM and letting you replace 
individual macros, perhaps for testing revisions. 333 



334 

PART I .. PROGRAMMING WITH ASSEMBLY LANGUAGE 

There are three types of macro parameters: symbolic, numeric, and string. Formal param
eters are listed in the macro definition. Actual parameters are listed when the macro is used. 
In the program, when Turbo Assembler encounters a macro name, it expands the macro, 
replacing the macro name with the instructions'from the macro definition and inserting the 
actual parameters for the formal parameter names, Parameters let you write programmable 
macros that change according to new requirements, 

Macros can be used to define new data types, using common directives like db and dw. Code 
macros can be used to unroll subroutines, replacing call instructions with in-line code, an 
important optimization technique that can increase program speed, Repetitive macros can 
generate multiple instructions for lists of register values and characters, 

Use the LOCAL directive inside a macro to create automatically-numbered local labels, Use 
the ENDM directive to end a macro expansion immediately. Use WHILE to repeat a macro ex
pansion a specified number of times, or while some other condition remains true. 

To preserve the assembler's state, including many ofits options and settings, insert a PUSHSTATE 

directive anywhere in a program. To restore the most recently saved assembler state, insert a 
POPSTATE directive, You may also use PUSHSTATE and POPSTATE inside macros. 

Conditional symbols and directives let you write programs that assemble differently based 
on conditions defined at the beginning of the program. A conditional symbol is a numeric 
equate, By definition, a symbol is defined when you assign a value, Various directives such as 
IF and IFE can test the value of symbols and expressions involving symbols, Other directives 
such as IFDEF and IFNDEF test if symbols are defined, 

Multiple macros are often stOred in text files and then loaded into modules with an INCLUDE 

directive, This chapter includes a sample macro library, DOSMACS,ASM, with several macros 
for calling common DOS functions, 

Exercises 
8,1, What are some of the advantages and disadvantages of using macros? 

8,2, Write a macro names Startup to initialize registers es and ds at the start of a 
program, 

8.3. What value or values should the conditions true and false have? What value or 
values are typically used to represent true? 

8.4. What do double semicolons ;; do? 

8,5. How do you throwaway a macro definition? 

8.6, How do you specify a parameter's type in a macro definition? 

8,7. Write macros stz and clz to set and clear the zero flag zf. The macros should 
not affect any other flags and should preserve all register values. 



""-

8.8. Write a macro to assign a literal value to any segment register. Show how to use 
your macro to set es to the address of the color video buffer OB800h. 

8.9. What instruction or instructions would you use to add the hypothetical macro 
library files FLOAT.MAX, BIOSMAC.TXT, and CUSTOM.MAX to program? 

8.10. Create a conditional symbol named HasFastCrt set to true or false at the begin
ning of a program, indicating whether the system has a memory-mapped video 
display, as do all PCs, or a slower "dumb" terminal, such as might be found on 
mainframes and older PCs. Use your symbol in a subroutine that displays a 
character, appropriately selecting the SCREEN module's ScPokeChar routine (see 
Chapter 7) or a similar DOS output function. The procedure should operate 
identically in all respects regardless of the selected hardware. You may use 
DOSMACS.ASM in your answer. 

Projects 
8.1. Apply the same idea expressed in exercise #8.10 to all procedures in the 

SCREEN module, creating a module that you can assemble for PCs with 
memory-mapped video or for systems using a slower dumb terminal as the main 
console. 

8.2. Write a module to select features for a variety of printers, conditionally selecting 
code to switch on bold face printing, underlining, and other options. Construct 
your code to allow printing text on plain printers lacking such features. 

8.3. Create a BIOSMAC.ASM library of macros similar to DOSMACS.ASM in this 
chapter. Your routines should make it easy to call ROM BIOS functions, as 
listed in a PC reference book Bibliography). 

8.4. Locate a public domain assembly language listing (or take one of the listings 
from this book) that makes repeated subroutine calls. Replace the subroutines 
with macros, injecting code directly in line with other instructions. Test the 
effects this has on program speed and code-file size. 

8.5. Create a library of macros files and object-code modules that make it easy to add 
standard debugging features to programs. Include routines to display (or print) 
stack usage by procedures, to list values of key variables, and to verifY other 
values, for example, the range of an array index. 

8.6. Write macros that use conditional directives to create variables in ASCIIZ and 
ASCII$ formats, with and without automatic length variables. 

335 





Disk-File Processing 

-Getting a Handle on Files, 338 -Disk-File Concepts, 338 -Maximum Files,339 -Opening and Closing Files, 339 -Flushing File Buffers, 340 -Closing Files, 341 -Dealing with Disk Errors, 341 -Creating New Files, 345 -Reading the DOS Command Line, 346 -Reading and Writing Text Files, 354 -Reading and Writing Data Files, 359 -Reading the Disk Directory, 361 -Summary, 366 -Exercises, 367 -Projects, 367 



338 

Getting a Handle on Files 
The concept of a file handle was introduced beginning with DOS version 2.0. As explained 
in Chapter 7, "Input and Output," handles are nothing mysterious. They are simply 16-bit 
unsigned integers that DOS and programs use to refer to logical files attached to devices such 
as printers and keyboards. This chapter expands on that theme, showing how to use handles 
in assembly language programs to process data stored in disk files-including files on floppy 
disks, hard disk drives, and similar devices. 

Before DOS 2.0, disk file I/O was accomplished by maintaining data structures called file
control blocks (FCB). Various fields in an FCB keep track of the location affected by subse
quent read or write operations, the size of records in a file, plus other facts, many of which 
are required by DOS but seldom (if ever) of direct use in a program. File handles simplify 
disk file 110 by eliminating the need to create and keep track of FCBs, but without sacrific
ing any operational abilities. After creating a new file or opening an existing file on disk, a 
single file handle is all you need to activate even the most sophisticated file operations. For 
these reasons and because Microsoft discourages using older FCB function calls, this chapter 
concentrates exclusively on the newer file-handle methods. 

Disk-File Concepts 
Before writing programs to read and write data in disk files, it's important to understand a 
few universal concepts associated with disk file 110. Later in this chapter, you'll learn how to 
put these important concepts into practice: 

• You must open a file before you can read data from the file or write new data to 
disk. Opening existing files preserves information previously stored in the file. 

• Creating a new file also opens the file for 110 but erases any information stored in 
an existing file of the same name, if one exists. 

• DOS temporarily stores in memory buffers the data you write to disk files. Never 
assume that a disk write operation actually transfers any data to disk. 

• Closing a file writes any buffered data to disk, ensuring that all data previously 
written is saved. 

• Closing a file also updates the file's entry in the disk directory and releases the file 
handle for future use. 

• The current location is a pointer to the place in the file where the next read or write 
operation will begin. DOS keeps this pointer for you. You can move the current 
location around at will to access data at different locations in a file, but there is only 
one such pointer associated with each open file. 



DISK-FILE PROCESSING 

Maximum Files 
Every program can simultaneously have open a maximum of 20 files, up to a grand rotal of 
255 files for all active programs. When one program runs another by calling the DOS Exec 
function 04Bh, DOS allocates to the new program a maximum of20 file handles, as long as 
this does not exceed the total of255 file handles permirted for all executing programs. End
ing a program with DOS function 04Ch closes all active file handles, releasing the handles 
for use by other programs. Out of the 20 available file handles available to each active pro
gram, DOS reserves the five handles 0 through 4 for standard I/O devices (see Chapter 7) 
therefore, programs are normally limited to opening 15 files. To increase this limit, you can 
close one or more of the standard handles. For example, programs that don't call DOS func
tions to drive the printer and serial 1/0 ports can gain twO more files by executing: 

mOil ah, 03Eh DOS Close-File function number 
mOil bx, 3 Set bx to AUX file-handle number (3) 
int 21h Call DOS to close file 
inc bx Set bx to PRN file-handle number (4 ) 

int 21h Call DOS to close file 

Opening and Closing Files 
Opening a file for reading and writing is like opening a door before carrying furniture in and 
out. After opening a file, you may read and write data in the file as often as you wish
provided, of course, no errors occur. To open a disk file in assembly language, pass the 
address of the filename in ASCIIZ string format to DOS function 03Dh as in this sample: 

DATASEG 
fileName 
CODESEG 

DB 'C:\TASMITEST.ASM', 0 

mOil 
mOil 
mOil 
mOil 
mOil 
int 
jc 

ax, @data 
ds, ax 
dx, offset fileName 
ah, 03Dh 
aI, 0 
21h 
Error 

Initialize ds to address 
of data segment 

Address filename with ds:dx 
DOS Open-File function number 
o ~ Read-only access 
Call DOS to open file 
Call routine to handle errors 

The filename may specify a disk drive letter and subdirectory path names as in this sample. 
Mter initializing segment register ds (as you must do in all programs), use ds:dx to address 
the filename for function call 03Dh. In addition, register al is set to 0, telling DOS to allow 
only read operations on this file. Under DOS 2.0 and later versions, al can be one of three 
values: 

• al '" 0 '" Read-only operations 

• al '" 1 = Write-only operations 

• al 2 '" Read and write operations 

339 



340 

I.. PROGRAMMING WITH ASSEMBLY LANGUAGE 

Under DOS 3.0 and later versions, additional values for shared files in a networked system 
are available. (See the Bibliography for DOS references that describe these values.) After calling 
DOS to open a file, the carry flag cf indicates whether the operation was successful. As the 
previous sample code shows, this lets you use conditional jumps such as jc to jump to an 
error routine if the operation fails, probably because the registered file was not found. In this 
case, ax holds one of the error codes listed in Table 9.1. If no error occurred, then ax holds 
the file handle. which you can use for subsequent operations. Usually, it's a good idea to 
store this handle immediately in a variable, freeing ax for other uses: 

DATASEG 
handle DW ? ; Word variable for file handle 
CODESEG 
, 
; open file with DOS function 03Dh 

mov [handle], ax ; Save file handle for later 

Table 9.1. Open-file Error Codes. 

Error Code 

01 

02 

03 

04 

05 

OCh 

File sharing not enabled 

File does not exist 

Path or file does not exist 

No more handles available 

Access denied (wrong file attribute) 

Bad access value in register al 

Flushing File Buffers 
A file buffor is an area of memory that serves as a kind of way station for data traveling to and 
from disk. Your program may also create private file buffers for storing data. Be aware that 
DOS has its own file buffers, controlled by the BUFFERS n command in your CONFIG.SYS 
file. Most authorities recommend setting n to 20 to ensure at least one buffer for each of the 
maximum number of files a program might use. 

When you write data to a file, the data is probably stored temporarily in a file buffer instead 
of being written directly to disk. Later, when the program reads other data from the file, 
opens a new file, or performs other file operations, DOS may flush the modified buffers to 

disk to make room in memory for the new data. Always be aware of this delayed action-the 
data you write to disk may not be permanently stored until later. To force any buffered data 
to be written to disk, duplicate the file handle with DOS function 45h and then close the 
duplicate, leaving the original file handle open: 



mov ah, 45h 
mov bx, (handle) 
int 21h 
jc Error 
mov bx, ax 
mov ah, 3Eh 
int 21h 
jc Error 

Closing Files 

Duplicate-handle function number 
Handle to duplicate 
Call DDS 
Jump if error occurs (Cf = 1) 
Assign duplicate handle to bx 
Close-file function number 
Call DOS 
Jump if error occurs (cf = 1) 

Closing a file is simple-just pass in register bx the handle of any open file to function 03Eh. 
Closing a file instructs DOS to write to disk any data held in memory buffers and to update 
the directory entry for the file, recording the file size, date, and time. Assuming that you 
opened the file as described previously and saved the file handle, close the file with: 

mov 
mov 
int 
jc 

bx, [handle I 
ah, 03Eh 
21h 
Error 

Assign handle to bx 
DOS Close-File function number 
Call DOS to close the file 
Jump if error detected 

After calling DOS function 03Eh, check the carry flag as suggested here with a j c instruc
tion. If cf = 1, then ax holds an error code, probably 6, indicating that the handle is bad 
(maybe you didn't assign the correct handle to ox) or the file was not open. 

Closing files releases their handles for future use. Although it's good programming practice 
to dose all open files before ending a program, DOS function 04Ch, which almost all ex
ample programs in this book use to transfer back to DOS, also doses alJ open file handles as 
one of its clean-up chores. This means that you can open several files, read and write data, 
and just end your program with confidence that DOS will save to disk any modified data in 
memory. 

Dealing with Disk Errors 
When processing files, you must be careful to detect and deal with all possible error condi
tions. This is especially important in assembly language programming, which lacks the built
in error mechanisms typically found in Pascal and BASIC. It's your responsibility (0 detect 
errors, to display appropriate warnings and messages, and to take appropriate actions when 
the disk is full and when other problems occur. 

In all cases, the carry flag indicates the success (cf = 0) or failure (cf = 1) of a file operation; 
therefore, you should always check the carry flag after every file function call. What you do 
after this is up to you. On the simplest level, you can simply end the program whenever an 
error occurs. (Remember that this closes all open files.) Or you might return (0 a known 
place-the main menu, for example-allowing users to retry the failed operation. For more 

341 



342 

I., PROGRAMMING WITH ASSEMBLY l,,,r;GUAGE 

details, you can also call function 059h, which interrogates DOS for additional error 
information. (You can do this afrer any 21 h call, by the way. The function is not just for file 
operations.) 

Listing 9.1, DISKERR.ASM, uses this method in a subroutine to obtain extended error in
formation from DOS and to display an appropriate message. The program is written as a 
library module, which you can link to your own programs (and to others in this chapter) as 
part of your error-control logic. Assemble the module and add the object code to your 
MT ALIB library file with the commands: 

tasm /zi diskerr 
tlib IE mta -+diskerr 

Repeat these steps if you later modify DISKERR.ASM, and ignore the usual warning that 
DISKERR is not in the library the first time you execute the tUb command. To reduce code
file size, leave Out the /zi option, required only for running programs in Turbo Debugger. 

listing 9.1. DISKERR.ASM. 
1: %TITLE "Disk-Error Handler 
2: 

by Tom Swan" 

3: IDEAL 
4: 
5: MODEL small 
6: 
7: DATASEG 
8: 
9: errString 

10: 
11: err00 DB 
12: err01 DB 
13: err02 DB 
14: err03 DB 
15: err04 DB 
16: err05 DB 
17: err06 DB 
18: err07 DB 
19: err08 DB 
20: err09 DB 
21: err0A DB 
22: err0B DB 
23: err0C DB 
24: err0D DB 
25: err0E DB 
26: err0F DB 
27: err10 DB 
28: err11 DB 
29: err12 DB 
30: err13 DB 
31: err14 DB 
32: err15 DB 
33: err16 DB 
34: err1? DB 
35: err18 DB 

DB ' .. ERROR: o 

'Unknown cause', 0 
'Bad function number', 0 
'File not found', 0 
'Path not found', 0 
'Too many open files', 0 
'Access denied', 0 
'File handle invalid', 0 
'Memory control blocks destroyed', 0 
'Not enough memory for operation', 0 
'Bad memory block address'. 0 
'Bad environment', 0 
'Bad format', 0 
'Bad access code', 0 
'Bad data', 0 
'Unknown cause', 0 
'Bad disk drive letter', 0 
'Removing current directory is not allowed', 0 
'Device is not the same', 0 
'No more files available', 0 
'Disk is write-protected', 0 
'Unknown unit', 0 
'Disk drive is not ready', 0 
'Unknown command' I 0 
'Data (CRe) error', 0 
'Bad structure length', 0 



36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: 
55: 

err19 
errlA 
errlB 
errlC 
errlD 
errlE 
errlF 

errors 

DB 'Seek error', 0 
DB 'Unknown type of medium', 0 
DB 'Sector not found', 0 
DB 'Printer is out of paper', 
DB 'Disk write error', 0 
DB 'Disk read error', 0 
DB 'General failure', 0 

DW err00, err01 , err02, err03, 
OW err08, err09, err0A, err0B, 
DW err10, errl1 , err12, err13, 
DW err18, err19, errlA, errlB, 

COOESEG 

From STRIO.OBJ 
EXTRN NewLine:proc, StrWrite:proc 

PUBLIC DiskErr 

DISK-FILE PROCESSING 

0 

err04, err05, err06, err07 
err0C, err0D, err0E, err0F 
err14, err15, err16, err17 
err1C, errlD, err1E, errlF 

56: .. NEWPAGE 
57: ---------------------------------------------------------------
58: ; DiskErr Write disk error message to standard output 

Input: 
59: 
60: 
61 : 
62: 
63: 
64: 
65: 

none (cf=l following a DOS file operation) 
Output: 

none (error message displayed) 
Registers: 

ax, bp, bx, cx, dx, di, si changed 
66: j---------------------------------------------------------------
67: PRoe DiskErr 
68: push 
69: push 
70: 
71 : 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81 : 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91 : 
92: 
93: 

@@10: 

ENDP 

mov 
xor 
int 
pop 
pop 

cmp 
jbe 
xor 

shl 
mov 
mov 
push 
call 
mov 
call 
pop 
call 
call 
ret 
DiskErr 

END 

ds 
es 
ah, 59h 
bx, bx 
21h 
es 
ds 

ax, 1Fh 
@@10 
ax, ax 

ax, 
bx, ax 

Save segment registers 
modified by DOS fn 59h 

DOS Extended err fn num 
Must be zero 
Get extended error info 
Restore segment registers 

Is ax > lFh? 
Jump if ax <= lFh 
Use "Unknown Cause' message 

Multiply ax by 2 
Copy ax to bx 

di, [errors+bx] Get address of string 
di 
Newline 
di, offset 
StrWrite 
di 
StrWrite 
Newline 

errString 

Save di temporarily 
Start new display line 
Address first part of message 
Write ERROR message 
Restore address of message 
Write message to std out 
Start a new display line 
Return to caller 

End of module 

343 



344 

Using DiskErr 
To use the DISKERR module, add an EXTRN DiskErr: Proc command to your program. Then, 
assuming your program is named MYSTUFF.ASM, assemble and link to your library file 
with the commands: 

tasm mystuff 
tlink mystuff", mta 

In your program code, after detecting an error from a file or disk directory DOS function, 
call DiskErr to display an appropriate message on screen. After this, you must take evasive 
action, ending the program or repeating a menu as suggested earlier. DiskErr doesn't do any
thing to solve the cause of an error-it just calls DOS for additional information and dis
plays a message. Later in this chapter, you'll see examples of Disk Err at work. (For example, 
peek ahead to Listing 9.4, line 156.) 

How DiskErr Works 
In addition to performing a useful operation, the DiskErr procedure demonstrates an inter
esting assembly language technique for selecting elements from an array of variable-length 
items, in this case, an array of ASCIIZ strings. First, the strings are declared at lines 11-42, 
giving each string a unique label, err01, err02, etc. Then, a second array at lines 44-47 is 
created using each suing label. Remember that labels are addresses; therefore, the errors ar
ray is simply a list of the 16-bit offset addresses of each variable-length character string. 

Each entry in the errors array points to the error string associated with an error code value 
(0-1 Fh), used as index values into errors. (See Figure 9.1.) After obtaining the extended er
ror information from DOS (lines 68-74), the error code value is multiplied by 2 (because 
each errors entry is a 2-byte word), after which line 82 loads di with the address of the cor
rect string. The rest of the procedure displays the string, prefacing the text with " •• ERROR:." 

Figure 9.1. 
A n array of offset addresses 
(center) loCtltes indexed 
elements (left) from an array 
of variable-length strings 
(right). Listing 9.1 uses this 
technique in the DiskErr 

procedure to select 
individual strings from a/1 
ASCIIZ st/'ing army. 

Address 

280 
282 
284 

Errors Array 

-- -----(error code) 286 _______ _ 

j JlE ::::: :-=-=-t-+ 
... / / 

288 :E I::::::::j 

Strings 

errOO 
errOl 
err02 
err03 
err04 
err05 
err06 
errO? 

errlD 
err1E 
errlF 



Creating New Files 
As far as the program instructions are concerned, creating a new file is similar to opening an 

. existing file. Assign the address of an ASCIIZ string containing the file's name and set ex to 
one of the values listed in Table 9.2. This value is placed in the file's attribute byte in the 
disk directory, affecting future operations on the file. Most of the time, set ex to O. After 
completing these initialization steps, call function 03Ch to create the file: 

DATASEG 
fileName DB 
handle OW 
CODESEG 
mov ax, @data 
mov ds, ax 
mov dx, offset 
mov ah, 03Ch 
xor ex, ex 
int 21h 
jc Error 
mov [handle 1, 

'C:\NEWFILE.TXT', 0 
? 

Initialize ds to address 
of data segment 

fileName Address filename with ds:dx 

ax 

DOS Create-File function number 
Specify normal file attributes 
Call DOS to create the file 
Jump if an error is detected 
Save handle for later 

As usual, the carry flag indicates the success or failure of function 03Ch. If ef = 1, then ax 

holds an error code-3, 4, or 5, as listed in Table 9. I-otherwise, ax holds the file handle, 
saved by this example in a global variable handle. 

One danger with creating new files is that DOS does not check whether a file of the same 
name exists. If you create a file of an existing name, the old file's contents are erased or 
truncated, as some DOS references say. For this reason t it's wise to test if a file already exits 
before calling DOS function OKh to create a new file and possibly erasing existing data. 
Later in this chapter are examples of how to do this in assembly language. 

Table 9.2. Create-File Attributes. 
Value 

00 

01 

02 

04 

Normal file (most data files) 

Read-only (write operations fail) 

Hidden (invisible to DIR directory) 

System file (better to use Hidden instead) 

345 



346 

I.. PROGRAMMING WITH ASSEMBLY LANGUAGE 

Reading the DOS Command line 
The traditional DOS program lets you enter one or more filenames, options, and other data 
on the command line. In other words, you want people to be able to type commands such 
as: 

C>textsort Id file1.txt file2.txt 

Presumably, this hypothetical command runs a text sorting program, which operates on 
file1.txt, writes the finished output to file2.txt, and uses an option Id to select a descending 
sort. Most high-level languages provide methods for reading parameters like these separated 
by spaces after the filename. Bur in assembly language there are no similar built-in mecha
nisms, and reading the DOS command-line parameters is more difficult. In this section, you'll 
assemble a program that adds this essential feature to your assembly language programs. 

When COMMAND.COM loads an .EXE code file, it prepares a 256-byte block of memory 
called the Program Segment Prefix (PSP), which contains among other items any text entered 
on the DOS command line after the program name. These characters are called the com
mand taiL Upon starting an .EXE program, both ds and es address the PSp, of which 128 
bytes are devoted co scoring the command tail. Unfortunately, this same area-from offset 
80h to FFh-also serves as a temporary disk buffer for some DOS functions; therefore, the 
first job is to copy the text out of the PSP into a variable for safe keeping. 

The actual number of characters in the command tail is stored at offset 0080h in the PSP. 
The first character (if there is one) is at 0081 h. The laSt character is always a carriage return 
(ODh). Listing 9.2, PARAMS.ASM, uses these facts to extract the command-line parameters 
from the PSp, saving the individual parameters as uppercase ASCIIZ strings in a 128-byte 
buffer in the program's data segment. Like other modules in this book, PARAMS requires a 
host program before it will run. In a moment, I'll list a sample host. For now, assemble 
PARAMS and install the object code in your MTA.UB library file with the commands: 

tasm /zi params 
tlib IE mta -+params 

As always, ignore the error that PARAMS isn't in the library, which it won't be until you 
install it the first time. Repeat these commands if you later modifY the listing. Remove the 
/zi option to conserve disk space, unless you plan to run programs with Turbo Debugger. 

Listing 9.2. PARAMS.ASM. 
1: %TlTLE "Parse DOS Command-Line Params 
2: 
3: IDEAL 
4: 
5: MODEL small 
6: 
7: 

Copyright (e) 1989,1995 by Tom Swan" 



-------------------~---- ------------~ ----.. --.~ 

DISK-FILE PROCESSING 

8: 
9: 

10: 
11 : 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21 : 

TailLen EQU 
CommandTail EQU 

DATASEG 

numParams DW 
paramS DB 

CODESEG 

0080h 
0081 h 

? 
128 DUP (?) 

Offset of param len byte 
Offset of parameters 

Number of parameters 
128-byte block for strings 

PUBLIC ParamCount, GetParams, GetOneParam 

22: %NEWPAGE 
23: -------.-------------------------------------------------------
24: ; Separators Private routine to check for blanks, tabs, and crs 
25: --------------------------------------.---.--------------------
26: 
27: 
28: 
29: 
30: 
31 : 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41 : 
42: 
43: 
44: 

Input: 
ds:si addresses character to check 

Output: 
zf 
zf 

1 (j e) 
o (jne) 

character is a blank, tab, or cr 
character is not a separator 

Registers: 
al 

PROC Separators 
mov aI, lsi] 
cmp aI, 020h 
je @@10 
cmp aI, 009h 
je @@10 
cmp aI, 00Dh 

@@10: 
ret 

ENDP Separators 
%NEWPAGE 

Get character at 
Is char a blank? 
Jump if yes 
Is char a tab? 
Jump if yes 
Is char a cr? 

Return to caller 

ds:si 

45: ,---------------------------------------------------------------
46: ; ParamCount Return number of parameters 
47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 

Input: 
none 

Output: 
dx number of command-line parameters 
Note: When calling GetOneParam, cx should be less 

than the value returned in dx by ParamCount 
Registers: 

dx 

PROC ParamCount 
mov dx, [numParamsl 
ret 

ENDP ParamCount 
%NEWPAGE 

Get value from variable 
Return to caller 

62: ;---------------------------------------------------------------
63: ; GetParams Get DOS Command-Line Parameters 

continues 

347 



348 

PART I ., PROGRAMMING WITH ASSEMBLY LANGUAGE 

Listing 9.2. continued 
64: 
65: 
66: 
67: 
68: 
69: 
70: 
71 : 
72: 
73: 
74: 
75: 
76: 

Input: 
ds = Program Segment Prefix IPSP) 
es = Program's data segment 
Note: until you change it, ds addresses the PSP 
when all .EXE programs begin 

Output: 
global params filled with ASCIIZ strings 
[numParamsj number of parameters 
ds = Program's data segment (es not changed) 

Registers: 
aI, bx, dx, si, di, ds 

77: PROC 
78: 

GetParams 

79: 
80: 
81 : 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91 : 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 

100: 
101 : 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111 : 
112: 
113: 
114: 
115: 
116: 

@@10: 

@@20: 

@@30: 

@@40: 

Initialize counter (ex) and index registers (Si,di) 

xor ch, ch 
mov cl, [ds:TailLenl 
inc cx 
mov si) CommandTail 
mov di, offset params 

Skip leading blanks and tabs 

call Separators 
jne @@20 
inc si 
loop @@10 

Zero upper half of cx 
ex = length of parameters 
Include cr at end 
Address parameters with si 
Address destination with di 

Skip leading blanks & tabs 
Jump if not a blank or tab 
Skip this character 
LOOp until done or cx=0 

Copy parameter strings to global params variable 

push cx 
jcxz @@30 
cld 
rep movsb 

Save ex for later 
Skip movsb if count = 0 
Auto-increment si and di 

; copy ex bytes from ds:si to es:di 

Convert blanks to nulls and set numParams 

push es Push es onto stack 
pop ds Make ds = es 
pop cx Restore length to cx 
xor bx, bx Initialize parameter count 
jcxz @@60 Skip loop if length = 0 
mov Si, offset params Address parameters with si 

call Separators Check for blank, tab, or cr 
jne @@50 Jump if not a separator 
mov [byte ptr sij, 0 Change separator to null 
inc bx Count number of parameters 



117 : 
11 B: 
119 : 
120: 
121 : 
122: 

@@50: 

@@60: 

ine 
loop 

mov 
ret 

si 
@@40 

InumParamsl, 

123: ENDP GetParams 
124: %NEWPAGE 

bx 

DISK -F ILE PROCESSING 

Point to next character 
Loop until cx equals 0 

Save number of parameters 
Return to caller 

125: ---------------------------------------------------------------
126: ; GetOneParam Get one parameter address by number 
127: 
12B: 
129: 
130: 
131 : 
132: 
133: 
134: 
135: 
136: 

Input: 
ex parameter number (0:first) 
Note: cx should always be less than the value 

returned in dx by ParamCount 
Output: 

di = offset of ASCIIZ string for this parameter 
Registers: 

aI, ex, di 

PROC GetOneParam 
xor aI, al Init search value 
mov di, offset params Address parameter 

to 0 
strings 

137: 
13B: 
139: 
140: 
141 : 
142: 
143: 
144: 
145: 
146: 
147: 

jcxz @@99 If number=0, jump to exit 
cmp ex, [numParamsj Compare number with max 
jae @@99 Exit if > maximum number 
cld Auto-increment di 

@@10: 
seasb Scan for null terminator 
jnz @@10 Repeat until found 
loop @@10 Repeat for count in cx 

14B: @@99: 
149: ret Return to caller 
150: ENDP GetOneParam 
151 : 
152: END End of module 

Running a PARAMS Demonstration 
To understand how the PARAMS module works, it will help to assemble and run a test 
program. Meer this are details about how to use PARAMS in your own code. Save Listing 
9.3 as SHOWPARM.ASM and assemble, link, and run with the commands: 

tasm Izi showparm 
tlink Iv Showparm", mta 
showparm param1 param2 param3 

NOTE ' 

The tlink command assumes that object-code modules PARAMS, BINASC, STRINGS, and 
STRIO from this and previous chapters are installed in MTA-LIB. 

349 



350 

nv'on~'''''''''V WITH ASSEMBLY LANGUAGE 

Listing 9.3. SHOWPARM.ASM. 
1: %TITLE "Display DOS Command-Line Params -- Copyright Ic) 1989,1995 by Tom Swan" 
2: 
3: IDEAL 
4: 
5: 
6: 
7: 
8: 
9: 

10: exCode 
11: string 
12: sl 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: Start: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31 : 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41 : 

42: 
43: @@10: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: 

MODEL small 
STACK 256 

DATASEG 

o 
20 DUP (0) 

DB 
DB 
DB 'Number of parameters , 0 

CODESEG 

From PARAMS.OBJ 
EXTRN ParamCount:Proc, GetParams:Proc, GetOneParam:Proc 

From BINASC.OBJ, STRINGS.OBJ, STRIO.OBJ 
EXTRN BinToAscDec:Proc, Newline:Proc, StrWrite:Proc 
EXTRN BinToAscHex:Proc, Strupper:Proc 

mov 
mov 
call 

ax, @data 
es, ax 
GetParams 

Display number of parameters 

call 
mov 
call 
call 
mov 
mov 
mov 
call 
call 
call 

xor 

call 
cmp 
je 
push 
call 
call 
call 
call 
pop 
inc 
jmp 

Newline 
di, offset sl 
StrWrite 
ParamCount 
ax, dx 
ex, 1 
di, offset string 
BinToAscDec 
StrWrite 
Newline 

cx, cx 

ParamCount 
cx, dx 
Exit 
cx 
GetOneParam 
StrUpper 
StrWrite 
Newline 
cx 
cx 
@@10 

Set ax to data segment 
Set es to data segment 
Get parameters with ds PSP 
Note: ds now equals es 

Start new display line 
Address st ring 
Display string 
Get number of parameters 
Assign count to ax 
Specify at least one digit 
Address work string 
Convert ax to decimal digits 
Display number 
Start a new display line 

Initialize count to zero 

Get number of parameters 
Compare counter to number 
Exit when ex dx 
Save ex on stack 
Get address of one parameter 
Convert to uppercase 
Display parameter string 
Start a new display line 
Restore saved ex value 
Advance to next parameter 
Repeat until done 



55: Exit : 
56: mov 
57: mov 
58: int 
59: 
60: END 

Using PARAMS 

ah, 04Ch 
aI, [exCode 1 
21h 

Start 

DOS function: Exit program 
Return exit code value 
Call DOS. Terminate program 

End of program I entry point 

The PARAMS module (Listing 9.2) contains three procedures-ParamCount (45-60), 
GetParams (62-123), and GetOneParam {I25-150)-that you can call to extract command

line parameters. As shown in SHOWPARM (Listing 9.3) at lines 24-26, start your program 
by setting es to the program's data segment and then immediately call GetParams: 

mov 
mov 
call 

ax, @data 
es, ax 
GetParams 

Set ax to data segment 
; Set es to data segment 
; Get parameters with ds z PSP 

Notice that this differs from the usual start-up sequence by not initializing ds. Because ds 

addresses the PSP when the program begins, you must not change ds before calling GetParams; 
otherwise, the procedure won't be able to find the command-tail characters. As an added 

benefit, GetParams assigns the value of es to ds, so there's no need to initialize ds after calling 
the procedure. 

Because of the effect that GetParams has on ds, you should never call this procedure more 
than once at the sta,l of a program. 

After these initializing steps, the individual parameters are available as ASCIIZ strings. Call 
ParamCount to set dx to the number of strings in memory. Because the first parameter is number 
0, the maximum parameter number is always one less than the value ParamCount returns in 
dx-that is, unless dx is 0, in which case there aren't any parameters. To use an individual 
parameter string, assign the parameter number co cx and call GetOneParam as SHOWPARM 
demonstrates (line 48). This assigns the offset address of the ASCIIZ string for this param
eter to di, which you can then pass co any procedure that operates an ASCIIZ string. For 
example, to open a file entered as the first parameter, you can start your code segment with: 

mov ax, @data Set ax to data segment 
mov es, ax Set es to data segment 
call GetParams Get parameters with ds PSP 
call ParamCount Get number of parameters (dx) 
or dx, dx Does number ~ 07 
jz Exit Exit if no parameters entered 

351 



352 

PART I • PROGRAMML'\G WITH ASSEMBLY LANGUAGE 

At this point, the program ends if no parameters are entered. (A better program might also 
display a message, telling the user what to do next time.) If there is at least one parameter, 
the program continues, first locating the address of parameter string number 0, passing this 
address to DOS function 03Dh to open the file, and jumping to an error handler if an error 
is detected: 

xor cx, cx Specify parameter number 0 
call GetOneParam Get address of parameter 
mov dx, di Address ASCIIZ string with ds:dx 
mov ah, 03Dh Select DOS function 03Dh 
int 21h Call DOS to open the file 
jc Error Jump if error detected 
mov [handle 1 , ax Else, save handle for later 

You can also call GetOneParam to locate a parameter string and pass the address to any of the 
ASCIIZ string procedures in the STRINGS and STRIO modules. For example, to convert 
all parameters to uppercase, execute this code: 

call ParamCount Get number of parameters 
@@10: 

or dx, dx Does number = 0? 
j z @@20 Jump if yes 
dec dx Else subtract 1 from number 
mov CX, dx Assign param number to cx 
call GetOneParam Get address of parameter string 
call StrUpper Convert string to uppercase 
jmp @@10 Repeat until finished 

@@20: 

If you don't do this, parameters are stored in mixed uppercase and lowercase, exactly as ryped 
on the DOS command line. You might take advantage of this fact by programming case
sensitive option letters. For example, the lowercase option I s could have a different effect 
from the uppercase IS. 

How PARAMS Works 
GetParams in the PARAMS module (Listing 9.2, lines 62-123) copies the command-tail 
characters into a global variable params, declared at line 15. Before doing this, the procedure 
skips any leading blanks or tabs (lines 89-93) entered after the filename. At this point, reg
ister ex equals the count of the number of characters in the parameter block. If this count is 
0, line 99 skips the copy operation, carried our by the repeated string command at line 1 ° 1. 
The rest of the procedure scans the copied characters looking for parameter separators
blanks, tabs, and carriage returns-converting these characters to nulls and consequently also 
converting the parameters to ASCIIZ strings. 



DISK-FILE PROCESSING 

Because GetParams converts two adjacent blanks, tabs, and carriage returns to nulls, it's 
possible to introduce zero-length parameters accidentally by typing several spaces between 
parameters on the DOS command line. This does no harm-just ignore any null parameter 
strings returned by GetOneParam. 

GetOneParam (I 25-150) scans the parameter block, looking for ASCII nulls and setting reg
ister di to the address of the requested string. The first part of the procedure checks that the 
parameter number in ex is in range, limiting the scan to the number of strings in memory. 
(If you specifY a parameter number that is out of range, the procedure returns the address of 
the first parameter if there is one.) The code at lines 143-147 demonstrates an important 
assembly language technique for scanning a list of variable-length items. For reference, the 
code is repeated here: 

cld 
@@10: 

scasb 
jnz @@10 
loop @@10 

Auto-increment di 

Scan for null terminator 
Repeat until found 
Repeat for count in ex 

First, df is cleared by cld so that scasb increments di automatically on each pass through the 
loop. (The code assumes that register di addresses the first parameter string to be scanned.) 
The scasb instruction compares the byte at res :di] to the value in aI, previously initialized 
to 0 (line 138). The result of scasb is to set the zero flag zf if the compared bytes match. If 
no match is found, the j nz instruction repeats the scasb; otherwise, the program continues 
to the loop instruction. At this point, ex equals the number of strings remaining to be scanned 
in the parameter black. The loop instruction subtracts 1 from ex and, if this does not make 
ex equal to 0, jumps to label @@10:; starting another scan of the next string. When ex be
comes 0, di addresses the first character of the requested string. 

Returning to the PARAMS module, ParamCount (Listing 9.2, lines 45-60) simply returns 
the value of the global variable numParams. Another way to accomplish the same task is to 

declare the ParamCount variable public, adding the label to PUBLIC directive inside the data 
segment (line 20). If you make this change to PARAMS.ASM, you can remove the ParamCount 
procedure and use an EXTRN directive to refer to the external variable: 

EXTRN numParams:Word 

This tells the assembler that numParams addresses a Word variable in an external module 
to which you plan to link the host code. You can then read and write values to [numParamsl 
just as though you had declared this variable in the main module. As you can see from the 

353 



354 

I., PROGRAMMING WITH ASSEMBLY LANGUAGE 

listings in this book, I generally prefer to declare only procedures public, returning values via 
subroutines rather than allowing other modules to access global variables directly. This helps 
avoid possible conflicts that might occur if twO procedures change the same value. But there's 
no technical reason to prevent modules from sharing data this way. 

Reading and Writing Text Files 
When learning how to process file data in any new language, a good place to start is with a 
simple program that copies one file character by character (or byte by byte) to a new file. 
With this basic shell available, it's a simple matter to insert code to modifY characters on 
their way through the program. You can use this same design to write programs to convert 
characters to uppercase or lowercase letters, to count the number of words in a file, to en
crypt data with a password, and to perform other useful operations. 

Listing 9.4, KOPY.ASM, expects you to emer twO filenames on the DOS command line. 
The program opens and reads the first file, creates a new file of the second filename, and 
copies every byte of the first file to the second. If a file of the second name already exists, the 
program asks for permission to remove the old file. If you don't enter exactly twO param
eters, the program displays instrucrions. These features represent the bare minimum design 
that programs of this nature probably should follow. Assemble and link KOPY with the 
commands: 

tasm Izi KOPY 
tlink Iv kopy", mta 

Omit the Izi and Iv options unless you want to test KOPY in Turbo Debugger. From the 
DOS command line, type KOPY and press Enter to display instructions. Or supply two 
filenames for KOPY to process. For example, to copy the file ORIGINAL.TXT to a new file 
named NEWTEXT.TXT, emer: 

kOPY original.txt newtext.txt 

Listing 9.4. KOPY.ASM. 
1: %TITLE "copy Input to Output -- Copyright (c) 1989,1995 by Tom Swan" 
2: 
3: IDEAL 
4: 
5: MODEL small 
6: STACK 256 
7: 
8: cr 
9: If 

10 : 
11 : 

EOU 
EOU 

12: DATASEG 
13 : 

13 
10 

ASCII carriage return 
ASCII line feed 



14: exCode 
15: 
16: inFile 
17: out File 
18: oneByte 
19: 
20: prompt 
21: diskFull 
22: 
23: notes D8 
24: DB 
25: DB 
26: DB 
27: DB 
28: DB 
29: D8 
30: D8 
31: DB 
32: DB 
33: 
34: 
35: 
36: 

CODESEG 

DB 

DW 
DW 
DB 

o 

o 
o 
o 

Input file handle 
Output file handle 
Byte 1/0 variable 

DB cr,lf, 'Erase this file? (yIn) " 0 
DB cr,lf, '""ERROR: Disk is full', 0 

cr,lf, 'KOPY copies all bytes from one file to a new file' 
cr,lf, 'as a demonstration of file read and write methods' 
cr,lf, 'in assembly language. The program can be modified' 
cr,lf, 'to process data on its way to the output file,' 
cr,lf, 'although this version makes no changes to the' 
cr,lf, 'information in the input file. Use the program by' 
cr,lf, 'supplying two filenames: the first name is the' 
cr,lf, 'file you want to read; the second is the new file' 
cr,lf, 'you want KOPY to create:' ,cr,lf 
cr,lf, 'KOPY <input file> <output file>' ,cr,lf, 0 

37: 
38: 
39: 
40: 
41 : 
42: 

From STRIO.OBJ 

43: 
44: 
45: 
46: Start: 
47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61 : 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 
71 : 

19@10: 

EXTRN StrWrite:Proc, NewLine:Proc 

From DISKERR.OBJ 
EXTRN DiskErr:Proc 

From PARAMS.OBJ 
EXTRN GetParams:Proc, ParamCount:Proc, GetOneParam:Proc 

Initialize and display notes if no parameters entered 

mov ax, I9data 
mov es, ax 
call GetParams 
call ParamCount 
r;mp dx, 2 
je 19@10 
mov di, offset notes 
call StrWrite 
jmp Exit 

Attempt to open the input file 

xor cx, cx 
call GetOneParam 
mov dx, di 
xor aI, al 
mov ah, 3Dh 
int 21h 
jnc @@20 
jmp Errors 

Set ax to data segment 
Set es to data segment 
Get parameters with ds PSP 
Get number of parameters (dx) 
Does count 2? 
Continue if param count 2 
Address text with di 
Display notes 
Exit program 

Specify parameter number 0 
Get address of parameter string 
Address filename with ds:dx 
Specify read-only access 
DOS Open-file function 
Open the input file 
Continue if no error 
Else jump to error handler 

continues 
355 



356 

listing 9.4. continued 
72: 
73: 
74: @@20: 
75: 
76: 
77: 
78: 
79: 
80: 
81 : 
82: 
83: 
84: 
85: 
86: 
87: 
88: @@30: 
89: 
90: 
91 : 
92: 
93: 
94 : 
95: 
96: 
97: @@40: 
98: 
99: 

100: 
101 : 
102: 
103: 
104: 
105: @@50: 
106: 
107: 
108: 
109: 
110 : 
111 : 
112 : 
113: @@60: 
114 : 
115 : 
116 : 
117 : 
118: 
119: 
120: 
121 : 
122: 
123: @@70: 
124: 
125: 
126: 

Check whether the output file already exists 

mov [inFilel, ax 
mov ex, 1 
call GetOneParam 
mov dx, di 
call FileExists 
jC @@30 
call StrWrite 
call Confirm 
je @@30 
jmp Exit 

Attempt to create the output file 

mov 
call 
mov 
xor 
mov 
int 
jnc 
jmp 

mov 

cx, 1 
GetOneParam 
dx, di 
cx, cx 
ah, 3Ch 
21h 
@@40 
Errors 

10utFilel, ax 

Save input file handle 
Specify parameter number 
Get address of parameter string 
Address filename with ds:dx 
Does output file exist? 
Jump if file does not exist 
Display filename 
Else confirm file removal 
Continue if permission given 
Else exit program 

Specify parameter number 1 

Get address of parameter string 
Address filename with ds:dx 
Specify normal attributes 
DOS Create-file function 
Create the output file 
Continue if no error 
Else jump to error handler 

Save output file handle 

At this pOint, the input and output files are open and 
their handles are stored at inFile and outFile, The next 
step is to read from the input file and write each byte 
to the output, 

mov 
mov 
mov 
mov 
int 
jnc 
jmp 

or 
jz 
mov 
mov 
mov 
mov 
int 
jnc 
jmp 

or 
jnz 

ah, 3Fh 
bx, [inF ile I 
cx, 1 
dx, offset oneByte 
21h 
@@60 
Errors 

ax, ax 
@@80 
ah, 40h 
bx, [outFilel 
cx, 1 
dx, offset oneByte 
21h 
@@70 
Errors 

ax, ax 
@@50 

DOS Read-file function 
Set bx to input file handle 
Specify one byte to read 
Address variable with ds:dx 
Call DOS to read from file 
Jump if no error detected 
Else jump to error handler 

Check for end of input file 
ax=0=end of file; jump 
DOS Write-file function 
Set bx to output file handle 
Specify one byte to write 
Address variable with ds:dx 
Call DOS to write to file 
Jump if no error detected 
Else jump to error handler 

Check for disk-full condition 
Repeat for next byte 



DISK-FILE PROCESSING 

127: 
128: 
129: 
130: 
131 : 
132: 
133: 
134 : 
135: 
136: 
137: 
138: 
139: 
140: 
141 : 
142: 
143: 
144: 
145: 
146: 
147: 
148: 
149: 
150: 
151 : 
152: 
153: 

@@80: 

Exit : 

154: Errors: 
155: 
156: 
157: 
158: 
159: %NEWPAGE 

Handle special case of disk-full condition 

mov 
call 

di, offset diskFul1 
StrWrite 

Address disk-full message 
Display message 

Close the input and output files, which is not strictly 
required as ending the program via function 04Ch also closes 
all open files. Note: errors are handled only when closing 
the output file because no changes are made to the input. 

mov bx, [inFilej Get input file handle 
mov ah, 3Eh DOS Close-file function 
int 21h Close input file 
mov bx, [outFilej Get output file handle 
mov ah, 3Eh DOS Close-file function 
int 21h Close output file 
jnc Exit Exit if no errors detected 
jmp Errors Else jump to error handler 

mov ah, 04Ch DOS function: Exit program 
mov aI, [exCodej Return exit code value 
int 21h Call DOS. Terminate program 

Instructions jump to here to handle any I/O errors, which 
cause the program to end after displaying a message. 

mov 
call 
jmp 

[exCodej, al 
DiskErr 
Exit 

Save error code 
Display error message 
Exit program 

160: ,---------------------------------------------------------------
161: ; FileExists Test whether a file already exists 
162: 
163: 
164: 
165: 
166: 
167: 
168: 
169: 
170: 
171 : 
172: 
173: 
174: 
175: 
176: 
177: 
178: 
179: 
180: 
181 : 

Input: 
ds:dx = address of ASCIIZ filename 

Output: 
cf = 0 (j nc) 
cf = 1 (j c) 

Registers: ax, bx 

PROC FileExists 
xor aI, 
mov ah, 
int 21h 
jc @@99 
mov bx, 
mov ah, 
int 21h 
clc 

@@99: 
ret 

ENDP FileExists 

File of 
File of 

al 
3Dh 

ax 
3Eh 

this name exists 
this name does not exist 

Specify read-only access 
DOS Open-file function 
Call DOS to open the file 
Exit--file doesn't exist 
Copy handle to bx 
DOS Close-file function 
Close the file 
Clear carry flag (file exists) 

; Return to caller 

contillttes 

357 



358 

PART I .. PROGRAMMING WITH ASSEMBLY LANGUAGE 

listing 9.4. continued 
182: %NEWPAGE 
183: 
184: ; Confirm 

Input: 
none 

Output: 

Get Yes/No confirmation from user 
185: 
186: 
187: 
188: 
189: 
190: 
191 : 
192: 

zf = 0 (jnz) = user typed N or n 
zf 1 (jz) user typed Y or y 

Registers: ax, CX, di 

193: PROC 
194: 
195: 
196: 
197: 
198: 
199: 
200: 
201: 
202: 
203: 
204: 
205: 
206: @@20: 
207: 
208: @@99: 
209: 
210: ENOP 
211 : 
212: 

Confirm 
mov 
call 
mov 
int 
cmp 
je 
cmp 
je 
cmp 
je 
cmp 
jne 

cmp 

ret 
Confirm 

END 

di, offset 
StrWrite 
ah, 1 
21h 
aI, 'Y' 
@@99 
aI, 'y' 
@@99 
aI, 'N' 
@@20 
aI, 'n' 
Confirm 

aI, '@' 

Start 

How KOPY.ASM Works 

Prompt Address prompt string 
Display message 
DOS GetChar function 
Get user response 
Compare with Y 
Exit if char Y 
Compare with y 
Exit if char y 
Compare with N 
Handle No response 
Compare with n 
Repeat if not Y, y, N, n 

Reset zero flag (zf=0) 

Return to caller 

End of program I entry point 

KOPY.ASM demonstrates how ro process files one character at a time, copying the comenrs 
of one disk file to another. Because this requires numerous calls ro DOS, the program runs 
more slowly than the DOS COpy and XCOpy commands, which perform similar duties. Al
though you can certainly use KOPY as a utiliry, the program is more useful as a shell for 
writing new programs that process all the characters in a file. For example, make a copy of 
KOPY.ASM ro a new file named UPCASE.ASM (the finished file is already on disk) and 
insert code between lines 115 and 116 to modifY the value srored in variable oneByt e: 

mov 
cmp 
jb 
cmp 
ja 
sub 
mov 

@@Continue: 

aI, I oneByte J 
aI, 'a' 
@@Continue 
aI, 'z' 
@@Continue 
aI, 32 
[oneByte], al 

Get input byte 
Is byte >= 'a'7 
Jump if byte < 'a' 
Is byte <" 'z'7 
Jump if byte> 'z' 
Convert Lower- to uppercase 
Store char back in variable 



DISK-FILE PROCESSING 

You'll probably also want to revise the instructions at label notes (lines 23-32). After mak
ing these changes, assemble and link the program with the commands: 

tasm upease 
tlink upease", mta 

Lines 74-84 demonstrate how to check whether a file already exists, preventing a disaster 
that can easily occur if you accidentally specify the wrong output filename. Subroutine 
FileExists (lines 160-181) tries to open the file, returning the carry flag cleared if no errors 
are detected. Otherwise, the carry flag is set, indicating that this file can't be found. The pro
cedure is careful to close the file if the open operation succeeds (lines 176-177). If the code 
didn't do this, repeated calls to FileExists could eventually cause DOS to run out of handles. 

Another subroutine, Confirm (lines 183-210), displays a message and waits for you to an
swer Y for Yes or N for No, confirming whether you want to erase an existing file. 

After the preliminary steps of getting the filename parameters, checking for an existing file, 
and asking your permission to erase any old data-steps that occupy most of the program
lines 105-125 perform the actual copying, calling DOS function 03Fh to read from the in
put file and function 040h to write to the Output file. Carefully study this section to see how 
errors are handled, calling DiskErr (line 156) in the DISKERR module. Also observe how 
lines 124-130 deal with the onerous disk-full error condition. 

To read from an open file, pass to DOS function 03Fh the file handle in bx and the number 
of bytes to read in ex. Also assign to ds: dx the address of a variable at least ex bytes long. 
DOS reads from the file, deposits the data at the address you specify, and returns the carry 
flag cleared if no errors are detected. In this case, ax equals the number of bytes actually read, 
which may be less than the number you request. If the carry flag is set, then ax equals the 
error code. If no errors occur and ax equals 0, then there is no more data in the input file to 

read. 

To write to a file, pass to DOS function 0040h the file handle in bx and the number of bytes 
to write in ex. Also assign the address of the source data to ds: dx. DOS writes up to ex bytes 
from ds: dX, returning the carry flag cleared if no errors occur. If the carry flag is set, then ax 
equals the error code. If no errors occur, then ax equals the number of bytes actually written. 
But, ifax is 0, then the disk is full, requiring special action. 

Reading and Writing Data Files 
Of course, text files are just a special case of a data file, which might contain any kind of 
information-name and address records, statistics, raw data from bar code readers, and so 
on. In assembly language programming, the contents of a file are unspecified, and it's up to 
you to write programs that choose correct methods for reading and writing data in various 
formats. Even so, you can use the same DOS functions discussed previously to process all 
files, regardless of the type of data they contain. 

359 



360 

PART I .. PROGRA,\'1MING WITH ASSEMBLY LANGUAGE 

However, there is a big difference between reading and writing files one byte or character at 
a time and processing files that contain multibyte records. In most cases, programs need the 
ability to read and write such records in arbitrary order, for example, to allow editing record 
number 1,068 out of the 3,277 records stored on disk-without requiring the entire file to 
be copied to a new location. In general, doing this requires twO new file I/O concepts, add
ing to the list at the beginning of this chapter: 

• A seek operation positions the internal location pointer to the first byte of a record 
in the file. 

• Reading or writing a specified number of bytes after a seek operation affects only 
one file record, leaving other data unchanged. 

The concept of seeking in a file simply means to position DOS's internal file pointer, which 
tells DOS where to read or write data in each open file. The important rule to remember in 
assembly language file processing is that DOS always seeks to a byte position, no matter how 
many bytes each file record occupies. Therefore, to position the file pointer to the beginning 
of a multibyte record, the first job is to multiply the size of the record by the record number. 
(The first record in a file is number 0.) Assuming that the record size is stored in a variable 
named reeSize and the record number is in ax, begin with: 

moy 
mul 

ex, [reeSize I 
ex 

; ex = record size in bytes 
j ax:dx <- ax • ex 

The mul instruction multiplies the record number in ax by the record size in ex, storing the 
32-bit result in ax (lower half) and dx (upper half). These values must then be transferred to 
ex (upper half) and dx (lower half) to accommodate the requirements of the DOS seek func
tion 042h: 

moy ex, dx ex <- MSW of result 
moY dx, ax dx <- LSW of result 
moy ah, 042h DOS Seek-file function 
moy aI, 0 Seek from beginning of file 
moy bx, [handle] Assign fiel handle to bx 
int 21h POSition file pointer 
jc Error Handle error 

After performing these steps, the next read or write to the file occurs at the new position. To 
read a record into a variable named Buffer, you can execute: 

may ah, 03Fh DOS Read-file function 
moy bx, [handle] Assign file handle to bx 
mov ex, [recSize] ex number of bytes to read 
moy dx, offset Buffer ds:dx = destination address 
int 21h Read ex bytes from file 
je Error Handle error 

Because reading (and writing) also advances the file pointer to the next record, you do not 
have to perform another seek if you want to read multiple records starting from a certain 
position. Writing an individual record is identical to the previous sample, but it calls func-



DISK-FILE PROCESSING 

tion 040h instead of 03Fh. Also, some of the steps shown here for the sake of completeness 
may be unnecessary in practice. For example, bx already equals the file handle from the seek 
operation, so there's no need to reload the register. 

You can also change the way the DOS seek function 042h operates. If al = 0, as it did in a 
previous sample, then the byte position value in cx: dx is considered to be absolute-in other 
words, relative to the beginning of the file. If al = 1, then the position value represents an 
offset relative to the current location. You can use this feature to advance to the next record: 

xor cx, cx Zero upper half of value 
mov dx, [recSize] cx:dx = size of record in bytes 
mov ah, 042h DOS Seek-file function 
mov aI, 1 Seek from current position 
mov bx, [handle] Assign file handle to bx 
int 21h Position file pointer 
jc Error Handle error 

If al 2, the seek is performed backwards from the end of the file. This suggests a handy 
way to position the file pointer to the end of the file, perhaps in preparation for attaching 
new data at the end: 

xor cx, cx Zero upper half of value 
xor dx, dx Zero Lower half of value 
mov ah, 042h DOS Seek-file function 
mov aI, 2 Seek from end of file 
mov bx, [handle] Assign file handle to bx 
int 21h Position file pointer 
jc Error Handle error 

Reading the Disk Directory 
Two DOS functions make reading directories easy. The basic plan is to call the first func
tion to start scanning a directory and then repeatedly call the second function to scan the 
rest of the directory, finding all matches in the directory for wild card strings such as *. *, * .PAS, 
or MYFILE.???-identical to the filenames and wild cards you can type in a DOS DIR com
mand. In assembly language programs, these strings are conveniently stored in ASCIIZ for
mat. 

Listing 9.5, DR.ASM, demonstrates how to read a disk directory, displaying a simple file 
listing similar in style to the result of the command dir Iw . .fu; with DIR, the program allows 
you to type an optional wild card string. For example, typing dr *. asm lists all the .ASM files 
in the current directory. Typing dr alone lists all files. Assemble and link DR.ASM with the 
( Jmmands: 

tasm I zi dr 
tlink Iv dr", mta 

The tlink command assumes that object-code modules PARAMS, STRINGS, and STRIO 
from this and previous chapters are stored in the MT A.LIB library file. 

361 



- ~---- .... ----
---~.--...... ---

362 

Listing 9.5. DR.ASM. 
1: %TITlE 'Display Disk Directory -- by Tom Swan" 
2: 
3: 
4: 
5: 
6: 
7: 
8: FileName 
9: 

10: 

exCode 

IDEAL 

MODEL 
STACK 

DATASEG 

small 
256 

EQU 

DB 

30 Offset to filename in dirData 

0 

11 : 
12: 
13: 
14 : 
15 : 
16: 
17: 
18: 
19: 
20: 

default Spec DB .. 0 Default ASCIIZ wild card 
DTAseg 
DTAofs 
dirData 

21 : 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: Start: 
30: 
31 : 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41 : 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 

@@10: 

Exit: 

%NEWPAGE 

DW ? Segment for DTA 
OW ? Offset for DTA 
DB 43 DUP (?) Holds one directory entry 

CODESEG 

From PARAMS.OBJ 
EXTRN GetParams:Proc, GetOneParam:Proc, ParamCount:Proc 

From STRINGS.OBJ, STRIO.OBJ 
EXTRN Strlength:Proc, StrWrite:Proc, Newline:Proc 

mov ax, @data Set ax to data segment 
mov es, ax Set es to data segment 
call GetParams Get parameters with ds PSP 
call NewLine Start new display line 
call ParamCount Get number of parameters (dx) 
mov di, offset defaultSpec Address default search string 
or dx, dx Does dx = 0? 
jz @@10 Jump if dx (num params) = 0 
xor cx, cx Else specify param #0 
call GetOneParam Get address of parameter 

mov bx, offset Action Address action subroutine 
call DirEngine Scan directory entries 

call Newline Start new display line 
mov ah, 04Ch DOS function: Exit program 
mov aI, [exCode] Return exit code value 
int 21h Call DOS. Terminate program 



50: ,---------------------------------------------------------------
51: ; DirEngine Directory scan 'engine' 

address of subroutine 

52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 

Input: 
cs:bx 
ds:di 

Output: 
address of ASCIIZ search string (e,g, *,ASM) 

routine at cs:bx called for each directory entry match 
Registers: 

61: PROC 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 
71 : 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81 : 
82: 
83: 
84: 
85: 
au: @@10: 
87: 
88: @@20: 
89: 
90: 
91 : 
92: 
93: 
94: 
95: 
96: 
97 : 
98: 
99: 

100: 
101 : 
102: 
103: 
104 : 
105: 

@@99: 

ENOP 
.. NEWPAGE 

ax, cx, dx + any changed in action subroutine at cs:bx 

DirEngine 

Get current Disk Transfer Address (DTA) and save 

puSh 
puSh 
mov 
int 
mov 
mov 
pop 
pop 

es 
bx 
ah, 2Fh 
21h 
[DTAseg], es 
[DTAOfS], bx 
bx 
es 

Save registers modified 
by DOS 2Fh function 

DOS Get DTA function 
Get current DTA 
Save segment address 
Save offset address 
Restore registers 

Set new DTA to global 43-byte dirData variable 

mov 
mov 
int 

dx, offset dirData 
ah, 1Ah 
21h 

Address variable with ds:dx 
DOS Set DTA function 
Set new DTA 

Scan directory for matches to string at ds:dx 

mov 
mov 
mov 
imp 

mov 

int 
ic 
call 
imp 

Restore 

push 
mov 
mov 
mov 
int 
pop 
ret 

ah, 4EI') 
cx, 10h 
dx, di 
short @@20 

ah, 4Fh 

21h 
@@99 
bx 
@@10 

original DTA address 

ds 
ds, [DTAseg] 
dx, [OTAofsl 
ah, lAh 
21h 
ds 

DirEngine 

DOS SearCh-first function 
Attribute--files + subdirs 
Address string with ds:dx 
Skip next assign to ah 

DOS Search-next function 

Search first/next entry 
Exit on error or done 
Call Action subroutine 
Repeat until done 

Preserve current ds 
Assign old DTA address 
to ds:dx 

DOS Set-OTA function 
Reset to old DTA 
Restore ds 
Return to caller 

continues 

363 



364 

PROGRAMMING WITH ASSEMBLY LANGUAGE 

Listing 9.5. continued 

106: ---------------------------------------------------------------
107: ; Action Called for each directory entry "hit' 
108: 
109: 
110 : 
111 : 
112 : 
113 : 
114 : 
115: 
116 : 
117: 
118 : 
119 : 
120: 
121 : 
122: 
123: 
124: 
125: 
126: 
127: 
128 : 
129: 
130: 

Input: 
dirData = directory entry (as returned by DOS) 

Output: 
one file/subdirectory name displayed 

Registers: 
ah, dl, CX, di 

PRoe Action 
mov di, offset dirData + FileName 
call StrWrite 
call StrLength 
sub cx, 16 
neg cx 

@@10: 
mov ah, 2 
mov dl, 
int 21h 
loop @@10 
ret Return to caller 

ENDP Action 

END Start End of program / entry point 

How DR Works 

-------.......... -~~~~ 

DR illustrates a couple of new assembly language techniques. Line 41 assigns the offset 
address of a subroutine to register bx, passing this value to DirEngine (lines 50-104). Then, 
at line 91, DirEngine calls this subroutine with the instruction: 

call bx ; Call routine at cs:bx 

There is no difference between this kind of a subroutine call and the more familiar variety 
where you specifY the routine's label as an immediate value. But the bx method allows you to 

pass different subroutine addresses to another routine. In this program, the technique allows 
you to change the action taken for each directory match or "hit." As this demonstrates, writ
ing rourines to accept the address of another routine as an input parameter is a valuable tech
nique. 

Most of the DirEngine subroutine is concerned with preserving and setting the Disk Trans
fer Address (DT A), the memory location that DOS uses for some nonhandle file operations. 
When reading directories, DOS copies individual directory entries into a 43-byte DT A, which 
you must provide. Study the comments in DirEngine and be sure you understand how the 
code saves and preserves the current DT A-not strictly required in this example, as ending 
the program makes restoring the original DT A unnecessary. However, in a larger program, 
it's a good idea to preserve the DTA as shown here. 



DISK-FILE PROCESSING 

The Action subroutine (lines 106-128) displays one filename from the DT A filled in by 
DirEngine. Figure 9.2 illustrates the format of the directory fields in this 43-byte variable. 
Here, the program needs only the one field at offset 30 decimal, locating the first byte of an 
ASCIIZ string containing the entry's filename. Displaying this string requires setting di to 
the offiet address inside the dirData DTA variable, calculated by adding the known offset to 
the filename (30) plus the offset address of dirData: 

mov di, offset dirData + FileName 

Then, StrWrite (from STRIO.OBJ) displays the filename. To align the columns, three in
structions then calculate how many blanks are required between the last character of each 
filename and the stact of the next column: 

call 
sub 
neg 

StrLength 
cx, 16 
cx 

Figure 9.2. 
Directory entry format. 

Find length of filename string 
Subtract length-16 
Find absolute value (two's complement) 

5 4 

(bits) 15 10 4 

3 

o 

2 

Years from 
1980 

(Ms) 15 

o 

8 4 o 

There are other ways to set ex to the number of blanks required to flesh out a variable-length 
column, but this trick usually works. First, subtract the length of the variable-length part 
(the filename's length in this case) from the fixed column width, 16 here. Assuming that the 
variable length part is less than 16, this produces a negative number in two's complement 
form. Negate this result to find the absolute value-the number of blanks to write to align 
the cursor to the next column to the right. The reason for performing the subtraction this 
way is that you cannot write: 

sub 16, CX . ??? 
, 4 •• 

which gives you an "Illegal Immediate" error. The 8086 sub instruction cannot subtract a 
register from a literal value-it can only subtract literal values from registers and other values 
stored in memory. Following sub with neg is one way to circumvent this restriction. 

365 



366 

WITH ASSEMBLY LANGUAGE 

Summary 
File handles first appeared in DOS version 2.0, replacing the older and no longer recom
mended FCB methods for disk file I/O. Handles simplifY disk-file processing by eliminating 
the need to create and maintain FCB records, which contain information that is seldom of 
direct use to programs. 

Files must be opened to make the data they contain available to programs. Creating a new 
file erases any data stOred in a file of the same name. Memory buffers stOre data on its way to 
and from disk-you should never assume that a disk write operation actually transfers bytes 
to disk. Closing a file flushes (writes) any buffered data to disk, updates the disk directOry, 
and releases the file handle. The current location points to the place in a file where the next 
read or write operation will occur. These are important and universal file I/O concepts to 
learn. 

Programs can open up to 20 files, as long as the total specified in a CONFIG.SYS files=n 
command is not exceeded, up to a maximum of255 handles for all active programs. Because 
DOS reserves handles 0 to 4 for standard I/O, programs are normally limited to opening 15 
files simultaneously. You can slightly increase this limit by closing one or more of the five 
standard handles. 

Because data written to disk is buffered in memory, the only reliable method for ensuring 
that all information is saved on disk is to close the file. The DOS "flush buffer" command is 
inadequate for this task. Ending programs with DOS function 04Ch automatically closes all 
open files; therefore, programs may safely end with files left open. 

Disk errors must be carefully handled in assembly language, which, unlike most high-level 
languages, has no built-in features to detect errors and take appropriate actions. When writ
ing to disk, it's especially important to handle a disk-full condition, which DOS doesn't flag 
as an error. Extended error information is also available, either by using the DISKERR module 
in this chapter or by calling DOS directly. The DISKERR module also demonstrates how to 

create an array of variable-length items, such as character strings. 

The traditional DOS program allows you to type parameters on the command line, passing 
options, filenames, and other information to programs. You can use the PARAMS module 
in this chapter to convert parameters into easy-tO-use ASCIIZ strings. 

Processing text files one character at a time is a simple matter of calling DOS functions to 
read input and write output. You can also use the same functions to process multi byte records 
in other kinds of data files. With the help of the DOS seek function, you can operate on 
individual records without disturbing other data in the file. 

Another pair of DOS functions let you read disk directories, matching filenames with wild 
cards such as *.TXT. Each entry from the directory is loaded by DOS into a memory area 
called the DT A, from which you can extract directory information. 



Exercises 
9.1. What does closing a file do? 

9.2. What does opening a file do? 

9.3. Write a subroutine to prompt for a filename and, unless the user simply presses 
Enter, to open the file (if it exists). 

9.4. Write a subroutine to flush any in-memory data to disk. The subroutine input 
should include the filename and a file handle. 

9.5. Write a subroutine to read a record of n bytes by number from an open data file. 

9.6. Write a subroutine to return the next record past the current record of n bytes 
from an open data file. 

9.7. Write a subroutine to return the zero flag set if an option letter such as -d or /z is 
located among the parameters entered on the DOS command line. 

9.8. Write a routine to separate a DOS filename from its extension, returning a single 
string exactly 12 characters long. (For examples of this format, rype OIR /wat the 
DOS prompt.) ModifY DR to use the new routine to display filenames in this 
new format. 

9.9. What instructions could you insert into the KOPY.ASM program shell to 
remove all the control codes (except for carriage returns and line feeds) from a 
text file? (As an alternative, you can replace control codes with blanks.) 

9.10. Modify a copy of DR.ASM to list all the .COM and .EXE code files in the 
current disk directory. 

Projects 
9.1. Rewrite the PARAMS module to eliminate null parameter strings if any are 

detected in the command tail. 

9.2. Write a new version of KOPY.ASM that reads n bytes from a file into a large 
program variable of a suitable size, for example, 256 or 512 bytes long. Then 
devise a subroutine to return characters from your buffer. What does this do to 
the speed of KOPY? 

9.3. Describe how you might design a program to operate simultaneously on more 
than the maximum of IS or so files allowed by DOS. What data structures and 
variables does the program need? What are the probable subroutines required? 

9.4. Convert DR.ASM to a library module that any program can use. 

367 



368 

---------- ---------------------

PART I... PROGRAMMING WITH ASSEMBLY LANGUAGE 

9.5. Because command-line parameters are usually short, the 128-byte params buffer 
in Listing 9.2, PARAMS.ASM, is rarely filled to the brim. Come up with a plan 
to limit the size of this buffer to only as much space as needed to store the 
command tail, reducing space currently wasted at the end of this buffer. 

9.6. Write subroutines to read and write ASCIlZ strings a line at a rime, recognizing 
the carriage-return and line-feed control codes as line separators in a text file. 



Interrupt Handling 

_ We Interrupt This Program ... , 370 

_ Writing Interrupt Service Romines, 370 

_ Maskable Versus Nonmaskable Interrupts, 371 

_ Interrupt Vectors and the 8259 Chip, 372 

_ Why hit Doesn't Halt, 376 

_ Servicing Interrupts, 377 

_ Tapping into the PC Timer Interrupt, 380 

_ The End-of-Interr~pt Command, 384 

_ Interrupts and Stacks, 385 

_ Using int and into Instructions, 388 

_ Trapping Divide-Fault Interrupts, 389 

_ Fixing a Divide Fault, 389 

_ Installing a Divide-Fault Handler, 390 

_ Installing TSR Code in Memory, 395 

_ Interrupt-Driven Serial Communications, 397 

_ Debugging with Interrupt: 414 

_ Single Stepping, 414 

_ Summary, 421 

_ Exercises, 422 

_ Projects, 422 



370 

PART I _ PROGRAMMI:\}G WITH ASSEMBLY lANGUAGE 

We I nterrupt This Program ... 
An interrupt is an event that temporarily halts a running program, executes a subroutine called 
an interrupt service routine (ISR), and then restarts the original program as though nothing 
had happened. This action resembles the interruption of a television program for an "im
portant message," resuming the normal broadcast after an announcer reads the news. 

In computer programming, interrupts help to eliminate poLling-repeatedly examining pe
ripheral devices such as keyboards, printers, and light pens to see whether they require 
input or whether they have output ready for processing. Instead, such devices may generate 
an interrupt signal, which automatically runs an appropriate ISR, servicing the device's needs 
upon demand. By this action, devices can use interrupts to run their own personal programs 
independently of other software actions. In 8086 programming, this classic definition of 
interrupts is extended with two kinds of interrupt signals: 

• External interrupts 

• Internal interrupts 

External interrupts occur when a device attached to the processor generates an interrupt sig
nal. Internal interrupts occur from within the processor in two ways: as the result of software 
int instructions and from certain conditions such as dividing by 0 with diY, which generates 
a default interrupt signal (called an exception) for this error condition. In addition, internal 
int interrupts-also called software interruptJ--can simulate the external kind, a useful tech
nique for debugging external ISRs. 

Writing Interrupt Service Routines 
An ISR can do anything that other assembly language code can do. An ISR is nothing more 
than a special kind of subroutine, called by the interrupt actions just described. Putting aside 
a few of the more subtle issues for the moment, there are four basic rules to follow when 
coding your own interrupt service routines: 

• Save all registers at the beginning of the routine 

• Execute sti to process interrupts from within the ISR 

• Restore all registers at the end of the routine 

• Execute iret as the last instruction 

External interrupts may occur at any time; therefore, it's vital that an external ISR makes no 
changes to any register values. There's no telling which registers might be in use when an 
external interrupt occurs; as a consequence, forgetting to save and restore a register changed 
inside the service routine is likely to have disastrous effects on other software. Internal ISRs 



may change register values because programs have more control over when this kind of 
interrupt can occur. (Internal ISRs operate similarly to subroutines.) Execute an sti in
struction, setting the interrupt-enable flag (if), if you want other interrupts to be able to 
interrupt the current service routine. Otherwise, new interrupts will not be recognized until 
your routine executes an iret (Interrupt Return) instruction, which must be last in every 
interrupt service routine. 

Although interrupts may occur at any time, they are recognized by the processor only 
between other instructions. In other words, if an interrupt occurs during a mul instruction, 
which might take as long as 139 machine cycles to complete, the mul will be completed 
before the interrupt is recognized. As a result of this potential delay, and because most 
instructions take differing numbers of cycles to execute, even the most regular interrupt 
signals are likely to be processed at irregular time intervals. Repeated string instructions such 
as rep movsb can be interrupted between repetitions. 

Maskable Versus Nonmaskable Interrupts 
The 8086 processor family has rwo input pins that can be attached to external interrupt
generating devices. These pins, or input lines, are: 

• Maskable Interrupts (INTR) 

• Nonmaskable Interrupts (NMI) 

The INTR line is used by most interrupt-generating devices to signal the processor that the 
device needs servicing. The eli and sti instructions affect interrupts coming in on this line. 
Executing eli prevents-or masks-the processor from recognizing INTR interrupts. Ex
ecuting st i allows the processor to again recognize INTR interrupt signals. Neither of these 
twO instructions has any effect on the second interrupt line NMI, which cannot be disabled. 
Usually, NMI is reserved for disaster control, executing code when a power drop is detected, 
halting the system if a memory error occurs, and so forth. In the original IBM PC design, 
NMI handles memory parity errors, which occur if a bad memory bit is detected. Today, 
other devices share NMI, complicating NMI interrupt servicing. 

The sti and eli instructions have no effect on software interrupts-those generated by an 
int instruction in a program or by the occurrence of a divide fault and similar conditions. 
Regardless of the setting of if, you can always execute int to force an interrupt service rou
tine to run. 

371 



372 

PART I.. PROGRAMMING WITH ASSEMBLY LANGUAGE 

NOTE 

Some programmers are mistaken in their belief that NMI can be disabled. It can't. However, 
in the IBM pc, it's possible to disable other circuits that generate interrupt signals to the NMI 
line into the processor, thus preventing NMI from occurring. On the IBM XT and true 
compatibles, you might be able to mask NMI by writing DOh (disable) or o8oh (enable) to 
output port DAoh. This may not have the effect you want, however, because this does not 
prevent other programs from enabling NMJ after you disable them. Also, be aware that some 
peripheral interface circuits use NMI for their own purposes. 

Interrupt Vectors and the 8259 Chip 
With only two interrupt lines INTR and NMI, you might think that the 8086's interrupt 
possibilities are severely limited. But, with the help of another chip, Intel's 8259 Program
mable Interrupt Controller (PIC), IBM PCs can service up to eight interrupt-generating de
vices. (IBM ATs cascade a second PIC to service even more devices. Most modern PCs are 
similar to this design.) Each device is assigned one PIC level number from 0 to 7 (up to 15 
on ATs) with lower numbers having higher priorities. This means that, if two interrupts occur 
simultaneously, the 8259 controller gives priority service to the device with the lowest num
ber. Table 10.1 lists the devices associated with each PIC level. Level 2 serves as a channel 
between two cascaded 8259s on AT computers. Because NMI is also externally generated, 
it's listed in the table, although this line is not attached to an 8259 controller. 

Table 10.1. External Hardware Interrupts. 

PIC Level Interrupt Number 

0 08h 

1 09h 

2 OAh 

3 OBh 

4 OCh 

5 OOh 

6 DEh 

7 OFh 

8 070h'" 

9 071h* 

Device 

Timer (software dock) 

Keyboard 

To slave 8259 

Secondary serial 1/0 (COM2) 

Primary serial 1/0 (COM1) 

Fixed (hard) disk 

Removable (floppy) disk 

Parallel printer 

Hardware clock 

To Master 8259 Level 2 



PIC Level 

10 

11 

12 

13 

14 

15 

NMI 

onh* 

073h* 

074h* 

075h* 

076h* 

077h* 

02h 

*IBM AT and compatibles only. 

Device 

Numeric coprocessor 

Fixed (hard) disk 

Memory parity 

As you can see from Table 10.1, each PIC level is associated with a second value called an 
interrupt number-also called an interrupt type or an interrupt levet-ranging from 08h to 
OFh on PC-, Pc]r-, and XT-type computers with an additional eight levels on ATs. This 
dual-numbering system for external interrupts confuses many people. Remember that the 
PIC level refers to the actual pin on the 8259 controller to which the device is attached. The 
interrupt number identifies the ISR that runs when this device requires servicing. In pro
gramming, you can ignore the PIC level and refer to interrupts by their interrupt numbers 
instead. 

Table 1 0.2 lists the full range of interrupt numbers assigned in typical PCIXT -type comput
ers. Except for the first eight external interrupts from Table 10.1, which are repeated in this 
table, most of the interrupts from this complete set are of the internal software variety. Re
gardless of the kind of interrupt, every interrupt number is associated with a unique inter
rupt vector, stored at the locations listed in the center of Table 10.2 

Table 10.2. Software Interrupt Numbers and Vectors. 
Interrupt Number Vector Location 

OOOh OOOOh 

001h 0OO4h 

002h 0008h 

003h OOOCh 

004h OOlOh 

OOSh OO14h 
006h OO18h 

007h OOlCh 

Purpose 

Divide faults 

Single step (trap) 

Nonmaskable interrupt (NMI) 

Breakpoint 

Overflow 

Prim screen 

* 
* 

continut's 

373 



PART I - PROGRAMMING WITH ASSEMBLY LANGUAGE 

Table 10.2. continued 

Number Vector Location 

OOsh 0020h Timer (software clock) 

009h 0024h Keyboard 

OOAh 002Sh * 

OOBh 002Ch Secondary serial I/O (COM2) 

OOCh 0030h Primary serial I/O (COM!) 

OODh 0034h Fixed (hard) disk 

OOEh 003Sh Removable (floppy) diskerre 

OOFh 003Ch Parallel primer 

OIOh 0040h Video 

OlIh 0044h Equipmem check 

O12h 004Sh Memory check 

013h 004Ch disk 

Ol4h 0050h RS-232I/O 

O15h 0054h Cassette (PC), Aux (AT) 

O16h 005Sh Keyboard 

017h 005Ch primer 

O18h 0060h BASIC in ROM 

O19h 0064h Bootstrap 

OIAh 006Sh Time of day 

OIBh 006Ch Keyboard Crrl-Break 

OlCh 0070h User-installed timer routine 

OIDh 0074h Video initialization 

OIEh 007Sh Disk parameters primert 

OIFh 007Ch Bit-mapped characters pointert 

020h-03Fh OOSOh-OOFCh Reserved for DOS 

04Oh-06Fh 01 OOh-O I BCh Various 

070h OICOh Hardware clock 

071h OlC4h * 

072h OlC8h * 

073h Olcch 

374 



Interrupt Number Vector Location 

074h 01DOh 

075h 01D4h 

076h 0lD8h 

077h Oldch 

078h-OFFh 01 EOh-03FCh 

* Reserved or not used. 
tNot an interrupt service routine. 

Purpose 

* 
Numeric coprocessor 

Fixed (hard) disk 

* 

Various 

An interrupt vector is simply a pointer-a 32-bit (4-byte) address with segment and offset 
values-stored in the lowest addresses of memory, from 0000:0000 through 0000:30FF. Each 
vector locates the start of the interrupt service routine associated with one interrupt number, 
ranging from 00 to FFh, for a total of up to 256 software and hardware interrupts in a rypi
cal PC design. When an external interrupt signal is generated by one of the devices listed in 
Table 10.1, the 8259 controller activates the processor's INTR line, waits for an acknowl
edgment (which occurs automatically), and then sends the appropriate interrupt number to 
the processor. The processor uses this interrupt number to pick out the right vector from 
low memory and calls the ISR. A similar action occurs when a program calls a software 
interrupt with an int instruction or when an internal interrupt is generated as the result of a 
divide fault or similar condition. For both external and internal interrupts, several events 
occur after the processor receives the interrupt number: 

• The flags are pushed OntO the stack 

• The if and tf flags are cleared 

• the ip and cs registers are pushed onto the stack 

• The interrupt vector is copied to cs:ip 

The last step of this process causes the interrupt service routine to begin running at the vec
tor address stored in memory for the interrupt number, as listed in Table 10.2. By changing 
one or more of these vectors, you can insert your own interrupt service routines in place of 
the default code that services interrupts on your system. You can also chain your interrupt 
services to existing ISRs, a method that you can use to recognize certain key presses as acti
vation commands, allowing other key presses to pass through unchanged. When the ISR is 
finished servicing the interrupt, it executes an iret instruction, which causes these actions to 
occur: 

• The cs and ip registers are popped from the stack 

• The flags are popped from the stack 

375 



376 

",,,me,,,,,,,,,,,,, WITH ASSEMBLY LANGUAGE 

The first of these actions causes the interrupted program to continue running normally. The 
second step restores any flags that may have been changed by instructions inside the ISR. 
Because the flags are automatically saved and restored this way and because a hardware in
terrupt is serviced only if the if flag is set (via an sti instruction, for example), you never 
need to execute sti inside an ISR to allow future interrupts to be serviced after the ISR is 
finished~a common misconception. The original flags are pushed onto the stack before if 

and tf are cleared by the processor; therefore, if if is set beforehand, it will be set after iret 

executes. You need to execute sti in your service routine only if you want interrupts to be 
recognized during execution of the ISR. 

When you want an ISR to return flag values~for example, as often done by the DOS func
tion int 21 h instruction~you have two choices: Change the flag values on the stack before 
executing iret or remove the flags from the stack and execute a plain ret instead. Remem
ber that an interrupt service routine is just a special kind of subroutine; therefore, to pass 
back flags changed inside the routine, you can use code such as: 

retf 2 ; Return and discard 2 stack bytes 

This returns from the ISR and, after popping the code segment and instruction pointer reg
isters from the stack, removes 2 bytes from the stack. Those 2 bytes hold the flag values that 
were pushed onto the stack when the ISR was activated. Do this only for internal ISRs, which 
programs call like subroutines. By discarding the flags saved on the stack by the processor 
after acknowledging an interrupt, you effectively convert the ISR to a plain subroutine, which 
can end in ret. You can then use call instructions to execute the same code, starting from a 
different entry point, of course. Although you won't often use this trick, it's useful to under
stand that an rSR is just a special kind of subroutine, and it's up to you to decide what the 
code does and how it returns control to its callers. 

Why hit Doesn't Halt 
Closely related to interrupt programming, the hlt instruction behaves differently than you 
might think. Upon executing hlt, the 8086 processor pauses, effectively stopping the pro
gram at this location. At this time, if interrupts are enabled, an interrupt signal to the 
processor's INTR line is recognized as usual, causing the interrupt service routine to execute 
and, thus, breaking out of the halted condition. When the ISR ends, processing continues 
with the instruction following the hlt. In other words, hlt doesn't really halt-it waits for 
an interrupt to occur. If interrupts are disabled, however, hlt can indeed lock up the com
puter system by preventing recognition ofINTR signals. Therefore, to bring the 8086 to its 
knees, you might be able to execute: 

cli ; Disable interrutps by clearing if 
hIt ; Halt until interrupt, which can't occur! 



INTERRUPT HANDLING 

After these two instructions, only two events can unlock the processor: a RESET or an NMI, 
both of which ignore the setting of if. (RESET is an input line to the processor, which may not 
be connected to a reset button on your system. Many early PCs did not have reset buttons.) 

A more practical use for hI t is to synchronize programs to external events, pausing until an 
interrupt signal from a specific device occurs. The key to this idea is the sti instruction, which 
sets the if flag, enabling INTR interrupts to be recognized. However, this recognition oc
curs only after the next instruction following the sti; therefore, to synchronize a program 
with an external interrupt, you should never write: 

sti ; Allow interrupts to occur 
cli j Disable interrupts ??? 

Because interrupts are recognized only after the instruction following sti, if that instruction 
disables interrupts, then even the sneakiest interrupt signal will not have enough time to sneak 
through. The correct way to synchronize a program to an external event is with code such as: 

cli Disable interrupts 
sti Enable interrupts following next instruction 
hIt Pause for an INTR interrupt to occur 
cli Disable interrupts again (optional) 

If interrupts are already disabled, the first eli is not needed. The second eli is needed only 
if you want to prevent additional interrupts from occurring. By following sti with hlt, your 
program is assured of continuing only upon receipt of an external interrupt INTR signal, 
generated, for example, by a key press or a character received at a serial input pon. 

Servicing Interrupts 
ISR code follows the same basic design for external and internal interrupts. This section 
demonstrates how to write ISRs to handle interrupts and also explores a few subtleties of 
interrupt handling in 8086 assembly language. 

Listing 10.1, SLOWMO.ASM, taps into the PC's free-running timer interrupt to add regu
lar pauses to a program, slowing code execution to a crawl. This can be a useful device for 
debugging a fast program when the action speeding by is too chaotic to see. The program 
also demonstrates the correct way to handle interrupts that come in via the 8259 PIC chip. 
When the interrupt is from the PC timer interrupt, special care is required to avoid disrupt
ing the system clock. SLOWMO serves as a platform for illustrating these subjects. Assemble 
and link SLOWMO with your MTA.LIB file using the commands: 

tasm slowmo 
tlink slowmo", mta 

377 



378 

PART I _ PROGRAMMING WITH ASSEMBlY lANGUAGE 

listing 10.1. SLOWMO.ASM. 
1: %TITLE 'Slow Motion Interrupt -- Copyright (c) 1989,1995 by Tom Swan' 
2: 
3: IDEAL 
4: 
5: 
6: 

MODEL small 
STACK 256 

7: 
8: delay 
9: cr 

10: If 
11: BIOSData 
12: LowTimer 
13: PIC8259 
14: EOI 
15: 
16: 
17 : 
18: exCode 
19: string 
20: 
21: timerSeg 
22: timerOfs 
23: 
24: 
25: 
26: 

DATASEG 

COOESEG 

EQU 
EOU 
EQU 
EOU 
EOU 
EOU 
EOU 

DB 
DB 
DB 
DW 
OW 

0010h 
13 
10 
040h 
006Ch 
0020h 
0020h 

o 

Amount of delay 
ASCII carriage return 
ASCII line feed 
8IOS data segment address 
Address of low timer word 
8259 PIC chip port address 
End of interrupt value 

'This is a test of the timer', cr, If 
slow-mo interrupt handler', cr, If, 0 

? Saved vector for original 
? Int 1Ch ISR 

27: 
28: 
29: 

From STRIO.08J, KEYBOARD.OBJ 
EXTRN StrWrite:proc, KeyWaiting:proc 

30: Start: 
31: mov 
32: mov 
33: mov 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: @@10: 
54: 
55: 
56: 
57: 

mov 

push 
mov 
int 
mov 
mov 
pop 

push 
mov 
push 
pop 
mov 
int 
pop 

mov 

call 
call 
jz 

ax, @data 
ds, ax 
es, ax 

[wOrd cs:differencej,delay 

es 
ax, 351Ch 
21h 
[timerSeg 1, es 
(timerQf s J, bx 
es 

ds 
ax, 251Ch 
cs 
ds 
dx, offset SlowMo 
21h 
ds 

di, offset string 

StrWrite 
KeyWaiting 
@@10 

Initialize DS to address 
of data segment 

Make es = ds 

; Set amount of delay 

Save es register 
Get interrupt 1C vector 
Call DOS for vector 
Save segment value 
Save offset value 
Restore es 

Save ds register 
Set interrupt 1C vector 
Make ds = cs to address 
the new ISR, placing full 
address into ds:dx 

Set new interrupt vector 
Restore ds 

Address test string 

Display string 
Check for a keypress 
Loop until any keypress 



INTERRUPT HANDLING 

58: 
59: 
60: 
61 : 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 

Exit : 

%NEWPAGE 

push 
mov 
mov 
mov 
int 
pop 

mov 
mov 
int 

ds 
ax, 
dx, 
dS, 
21h 
ds 

ah, 
al, 
21h 

251Ch 
[timerOfs] 
ItimerSeg) 

04Ch 
[exCode] 

Save ds, changed below 
Set interrupt 1C vector 
Get saved offset value 
Get saved segment value 

Restore ds 

DOS function: Exit program 
Return exit code value 
Call DOS. Terminate program 

71: ; SlowMo Slow Motion Timer Interrupt Service Routine 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 

Input: 
none 

Output: 
none (waits for time difference) 

Registers: 
none 

Variables declared inside the code segment, where they 
will be easy to find during execution of the ISR 

84: inProgress 
85: difference 

DB 
OW 

o 
o 

In-progress flag (0=no, l=yes) 
Relative pause time 

86: 
87: PRDC 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 

100: 
101 : 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110 : 
111 : 
112 : 
113: 

@@10: 

SIOwMO 

Test the inProgress flag, which indicates if a previous 
copy of SlowMo is already executing. This must be prevented 
or the system will lock up. 

cmp 
jne 
inc 

sti 
push 
push 
push 

mov 
out 

mov 
mov 
mov 

mov 
sub 
cmp 
jb 

[byte cs:inProgress], 0 
@@99 
[byte cS:inProgress] 

ax 
ds 
dx 

aI, EOI 
PIC8259, al 

ax, BIOSData 
ds, ax 
ax, [word LowTimer] 

dx, [wOrd LowTimer] 
dx, ax 
dx, [cs:differencel 
@@10 

Check in-progress flag 
Jump if SlowMo is running 
Else, set flag = 

Allow interrupts to occur 
Save modified registers 

al end-of-interrupt value 
Issue end of interrupt 

Address BIOS data area 
with ds 

Get low word of timer value 

Get new timer value into dx 
Subtract new-old timer 
Compare to difference 
Loop until difference passes 

continues 

379 



380 

listing 10.1. continued 
114 : Disable interrupts while we clean up and exit after the pause 
115 : 
116: eli Disable interrupts 
117 : dee [byte cs:inProgressj Reset in-progress flag 
118 : pop dx Restore saved registers 
119 : pop ds 
120: pop ax 
121 : @@99: 
122: iret ; Interrupt return 
123: ENDP SlowMo 
124 : 
125: END Start End of program I entry point 

Tapping into the PC Timer Interrupt 
All IBM PCs-and even less than 100% compatibles-contain a hardware timer that gen
erates an interrupt signal approximately 18.2 times or "ticks" per second. In the ROM BIOS, 
interrupt 08h services these interrupt signals, which are connected to the 8259 PIC's input 
line O. (See Table 10.1.) This gives the timer interrupt the highest priority. As long as inter
rupts are enabled, the timer ISR will be the first to execute if more than one interrupt signal 
occurs simultaneously. 

The ROM BIOS timer ISR performs two basic functions. First, the code increments a 32-
bit value, thus counting the tmal number of timer ticks that have occurred since the system 
was switched on. (This value is zeroed every 24 hours-not necessarily at midnight.) Sec
ond, another counter that controls how long the diskette motor stays on is decremented. 
When this value becomes 0, the disk drive motor is turned off Of it was on), which leaves the 
disk drive turning long enough to improve floppy disk read and write speeds. (Every time 
the diskette starts, it takes a moment for the spindle to corne up to speed. If the motor were 
turned off immediately after each read and write, those pauses would slow disk 1/0 unac
ceptably.) As you can see, the timer ISR is the PC's heartbeat and, like all hearts, arresting its 
duties for toO long can lead to problems; therefore, it's usually wise never to turn off inter
rupts with eli for more than 1118.2 (about 0.05) seconds before issuing sti to swiech inter
rupts back on. 

The timer ISR performs a third function that lets you hook into the PC's heartbeat. At every 
timer tick, this routine executes a software interrupt number 01 Ch, which normally causes 
no action to occur. By installing your own 01 Ch ISR, your code is executed about 18.2 times 
per second in addition to the timer's other duties. SLOWMO.ASM uses this feature to add 
pauses to a running program. 



-~-- '~."'--"'---------..... --... --... -~~-- ... ~ .... 

Timer Tick Tricks 
The first step in hooking into the PC timer interrupt is to save the current interrupt 01 Ch 
vector, as Listing 10.1 does at lines 37-42, calling DOS function 035h to obtain the vector 
address in registers es: bx, which are saved in the variables timerSeg and timer0fs. Next, lines 
44-50 call DOS function 025h with the address of the new interrupt vector-equal to the 
offset in the code segment of the SlowMo procedure starting at line 87. This replaces the original 
vector with the address of the new ISR. You could also switch off interrupts and insert the 
address directly into the appropriate low-memory slot, but calling the DOS routines written 
for this purpose is easier. Notice how register ds is set to the current code segment with: 

push 
pop 

cs 
ds 

; Push cs onto stack 
j Pop the cs value into ds 

This is a useful trick to remember and avoids assigning a segment value to a third register 
(ax, for example) only to then assign that value to the destination. When installing your own 
ISRs, if you use code similar to lines 37-50 to replace existing vectors with the addresses of 
your own routines, be sure to save and restore segment registers es and ds as illustrated here. 

Non· " ' . '. ' 

Always restore any interrupt vectors you change in your program. When your program ends, 
your ISRs are subject to being overlayed by subsequent commands and programs. Therefore, 
leaving an ISR running after a program ends without also laking steps to protect the memory 
the ISR occupies is almost certain to cause a system crash. DOS does not restore vectors that 
your program changes. 

Lines 52-56 display a test string and wait for you to press any key, ending the program. During 
this loop, the SlowMo ISR executes, seemingly on its own, but actually as a result of the ROM 
BIOS timer routine's call to interrupt OlCh at the rate of 18.2 times per second. Although 
this may appear to make the loop at lines 52-56 and the ISR run concurrently, remember 
that interrupts cause the program to pause while the ISR runs-thus, the concurrency is only 
an illusion conjured by the magic of the PC's timer interrupt. 

After you press a key, the program ends. Just before this, lines 58-63 call DOS function 025h 
once again, but this time with the vector saved earlier. This replaces the original interrupt 
01 Ch ISR (probably, but not necessarily, addressing a lone iret instruction) that was in ef
fect before SLOWMO began. 

Interrupts and Variables 
Listing 10.1's SlowMo ISR procedure (lines 70-123) executes when the ROM BIOS timer 
interrupt executes software interrupt 01 Ch. Because this can happen at any time-in be
tween an instruction in the main program, during a call to DOS, or even during a call to 

381 



382 

I.. PROGRAMMING WITH ASSEMBLY LANGUAGE 

another ROM BIOS routine-the values of segment registers es and ds cannot be trusted to 

locate the program's data segment. Because of this, an ISR must be careful to initialize ds 

(and es if necessary) before loading or changing data segment variables. One way to do this 
is to save ds and then assign it the value of the data segment, as is usually done at the start of 
the program: 

push 
mov 
mov 

pop 
iret 

ds 
ax, @data 
ds, ax 

Interrupt code g09 here 

ds 

Save current ds 
assign data segment address 
to ds by way of ax 

i Restore ds 
i Return from interrupt 

The ISR must do this at the stan of its code every time it runs, saving the current ds value, 
which the interrupted code may be using to address its own variables. Another method, dem
onstrated at lines 84-85, is to declare ISR variables inside the code segment. This method 
requires using a cs: segment override to tell the assembler (and the CPU) to use cs as the 
base address for locating variables in memory. For example, to load the inProgress byte into 
aI, you could execute: 

mov aI, [byte cs:inProgressj 

If you did not use the cs: override, the assembler would assume that ds addresses the current 
data segment, a common mistake that often leads to disaster. Because there's no way to pre
dict the value of ds or any other register during an externally executed ISR, addressing vari
ables without either reinitializing ds or without using a segment override to access data in 
the code segment could overwrite memory locations belonging to other programs. 

Interrupting ISRs 
As explained earlier, the timer interrupt is the PC's heartbeat. Because it's vital that the timer 
not be disabled for very long, interrupts must be turned on in the SlowMo ISR (line 97). This 
poses a tricky problem. Ifinterrupts are on, it's very likely that the ISR could actually inter
rupt itself. In this case, the ISR code would pause, the flags, cs and ip registers would be 
pushed onto the stack, and the timer interrupt would be serviced. If this happened repeat
edly with no opportunity for the ISR invocations to unwind, the stack would eventually 
overflow, probably leading to a system crash. 

When a routine is allowed to interrupt itself, it is said to be reentrant-in other words, a new 
instance of the code sequence can begin running from the top before a previous instance 
finishes. Such code must allocate fresh space for variables-global variables won'r do. To 
understand why, consider the S!owMo 15K Because there is only one each of the inProgress 

and difference variables at lines 84-85, the new invocation of the code will use these same 



INTERRUPT HANDLING 

variables, possibly changing their values, if the ISR is allowed to interrupt itself. Therefore, 

when this second execution of SlowMo ends, causing the original instance to pick up again, 
the variables may have changed-a side effect that must be prevented if the routine is to be 
truly reentrant. 

You may have heard that DOS and the ROM BIOS are not reentrant. This means that the 
routines access global variables, similar to those in SlowMo. Such routines can't reenter 
themselves because there is only one set of variables. In reality, however, some DOS and 
BIOS routines are reentrant, despite their use of global variables. The timer interrupt is a 
prime example-it certainly may and does interrupt itself without conflict. In fact, to keep 
the system time correct, it must do so. 

Obviously, because it uses only one set of global variables, out SlowMo routine is definitely 
not reentrant. But, to keep the system clock running during SlowMO's lengthy pause, inter
ruptS mustbe enabled-even though this will cause subsequent timer interrupts to reexecute 
SlowMo, in effect "pausing the pause" and stopping the system dead in its tracks. We have a 

difficult problem to solve: The vital PC timer interrupts must be allowed to execute during 
a lengthy pause, while our own SlowMo ISR must be prevented from interrupting itself, which 
it will do anyway as a result of the timer ISR executing another 01 Ch interrupt. Whew! 

Luckily, there's a simple answer to this typical conflict, demonstrated here at lines 93-95. 
First, the inProgress byte is examined. If this byte is 0, the ISR is allowed to run normally. 
If the inProgress byte is not 0, the program assumes that a previous instance of the ISR has 
been interrupted. This must be so because only line 95 sets inProgress to 1 (via an inc in
struction) and only line 117 resets inProgress to O. If inProgress is not 0 at the start ofSlowMO, 
then the instructions between lines 98-116 must have been interrupted by a timer tick, caus
ing SlowMo to be reentered. The simple inProgress flag detects this condition, allowing only 
one instance of the ISR to execute. As a result, the ROM BIOS timer ISR may continue to 

run during an execution of SlowMo, keeping the system clock on time. 

The Print Screen function uses a similar trick to prevent you from pressing the PrtSc key more 
than once while a screen dump is in the process of printing. When you press the PrtSc key 
and printing begins, a second PrtSc key press actually restarts the Print Screen function. But a 

flag similar to inProgress indicates that a previous printing operation is executing, thus 
preventing multiple screen printouts when only one is wanted. 

383 



384 

PART I,.. PROGRAMMI"IG WITH ASSEMBLY lANGU,~GE 

The End-of-Interrupt Command 
Line 97 is SLOWMO.ASM turns on interrupts with sti, allowing the PC limer to continue 
running during SlowMo's pause. Because timer interrupts come in via the 8259 PIC as de
scribed earlier, sti alone is not sufficient to allow future interrupts to be recognized. In ad
dition to st i, you must also tell the 8259 PIC that you want fresh interrupts to be processed. 
Do this by issuing an end-ofinterrupt (EO I) command to the 8259 pOrt: 

EOI EQU 02011 End-of-interrupt value 
PIC8259 EQU 02011 8259 port address 

sti Allow interrupts to occur 
mov al, EOI al = end-of-interrupt value 
out PIC8259, al Issue end of interrupt 

Both E0I (the end-of-interrupt equate) and PIC8259 (the port address equate) have the same 
value 020h, a meaningless coincidence. The sti instruction sets the if flag in the processor, 
which was reset automatically by the processor upon recognizing the interrupt signal that 
caused the ISR to begin running. Setting if allows the processor to again recognize external 
interrupt signals. Because those signals come from the 8259, the end-of-interrupt command 
also must tell the 8259 to pass the interrupts it receives along to the processor. Executing sti 
alone is not enough. When servicing interrupts generated via the 8259-and any interrupts 
called from inside the associated ISRs, as in the case of SlowMo-you must issue this same 
three-instruction sequence to allow future external interrupts to occur. 

You are probably getting the idea by now that servicing interrupts-particularly those at
tached to the PC timer-requires you to be on your tOes. Most of the work in writing ISRs 
is overhead-avoiding conflicts with global variables, dealing with reentrancy issues, mak
ing sure future interrupts can occur, saving and restoring register values, and so on. The ac
tual gutS of an ISR may be relatively simple, as they are in this example at lines 105-112. 
These instructions examine the low word of the timer tick value, which the ROM BIOS 
timer ISR increments as described earlier. When this value increases by the amount of the 
di fference variable, the SlowMo ISR exits. 

Notice that no instruction in the closed loop at lines 108-112 changes the LowTimer value 
directly. If you were to read this code out of context, the loop would seem to be incomplete, 
and you might assume that you had found a bug. If no instruction changes LowTimer, then 
the subtraction at line 110 will always be 0, causing the j b at line 112 to repeat endlessly. 
The fact that this does not happen proves that the ROM BIOS timer ISR is executing inde
pendently of the loop, incrementing the timer counter 18.2 times a second and eventually 
causing the j b to allow the program to continue. 



INTERRUPT HANDLING 
-.-" .. -~"--.~"------------ "_ .. _------

Interrupts and Stacks 
Because external interrupts can occur at any time, there's no way to predict the values of 
segment registers when an external ISR begins running. The only segment register you can 
depend upon is cs. Obviously, this register always equals the value of the current code seg
ment containing the instructions that are now executing. But es, ds, and ss might point 
anywhere. As explained earlier, to reference local data, you must initialize ds and es, preserv
ing their current values for restoring just before the ISR ends. Unfortunately, correct han
dling of the stack-segment register is not so simple. 

In Listing 1O.l's ISR procedure SlowMo, three words are pushed onto the stack at lines 98-
100. But which stack? DOS has its own stack space, as does the main program. In addition, 
there may be other ISRs in memory that have their own stacks. If any of these programs is 
interrupted, the value of ss will be the value assigned by that program. In other words, ISRs 
normally use whatever stack segment is current when the interrupt occurs. SlowMo simply 
assumes that at least three words of stack space are available-in addition to the three words 
required by the processor, which pushes onto the stack the flags and cs: ip registers before 
executing the ISR. 

In most cases, it's probably safe to assume that a little stack space will always be available. 
But to many programmers, such an assumption is a painfully vague pill to swallow in the 
meticulous world of computer programming that demands exacting perfection from its prac
titioners. If relying on faith seems chancy-and especially if your ISR requires more than a 
few bytes of stack memory-you must switch to a local stack. 

NOTE 

In your own programs, always add a few more bytes to your STACK directive than strictly 
required. Otherwise, you may cause problems for ISRs, ROM BIOS routines, DOS, and other 
resident code that assumes a few stack bytes will be available. Some DOS references 
recommend a minimum stack size of 2,048 bytes, although simple examples such as the 
programs in this book can usually get away with far less. 

Changing stacks in an ISR is not difficult, but you must execute the instructions in the cor
rect order. The reason for this is that the 8086 temporarily disables interrupts for exactly one 
instruction whenever you assign a value to a segment register. In other words, when you write 
the familiar initialization code, 

mov ax, @data 
mov ds, ax 
mov dx, offset string 

385 



386 

.. PROGRA.'vlMING WITH ASSEMBLY lANGUAGE 

interrupts are off for the mov to dx-a fact that's not evident from the source text. In this 
example, the effect on interrupts is unimportant. But consider what happens when chang
ing the stack-segment register: 

mov ax, offset stackSpace 
mov ss, ax 
mov sp, offset endOfStack 

Register sp is the stack pointer, locating the current top of the stack relative to the segment 
address in 55. Because two instructions are required to change both 55 and 5P, if an interrupt 
occurred between the assignment to 5S and the assignment to 5P, the old stack pointer would 
be used along with the new stack segment-a dangerous situation that can easily lead to a 
system crash. For this reason, interrupts are disabled for one instruction after the assignment 
to 55-jUSt enough time to assign the endOfStack value to 5p. Interrupts are also disabled for 
pop instructions involving a segment register. Remember, this effect lasts for only one in
struction, and the mov to 5p must immediately follow the mav to ss. 

When assigning a value to S5, always follow immediately with an assignment to sp. Never 
reverse these two instructions and never insert an instruction between the two assignments. 
These steps are not optional! 

In an ISR routine, to switch to a local stack, first declare some space in your program's code 
segment. There are many possible approaches, but this works: 

ALIGN 
myStack 
endOfStack 

DB 512 OUP (0) 
$ 

; Local 512-byte stack 

The ALIGN directive ensures that the stack begins on a word boundary, in other words, at 
an even address. The stack begins at myStack and, in this sample, is 512 bytes long. A nu
meric equate endOfStack marks the bottom of the stack space. Next, save the current values 
of 5S and 5P in global variables, which you'll use later to restore the registers to their values 
at the start of the routine: 

oldSS ow 0 Hold stack segment 
oldSP ow 0 Hold stack offset 

PROe ISR 
mov [cs:oldSSj, ss Save stack segment 
mov [cs;oldSP], sp Save stack pointer 



INTERRUPT HANDLING 

Because the variables are declared in the code segment, a segment override ·cs: is needed to 
save ss and sp at the correct locations. After this, you're ready to switch the local stack, as
signing the current code-segment value to ss and the endOfStack offset to sp. Note that this 
still requires one word of stack space for pushing cs: 

push cs 
pop 5S 
mov sp, offset endOfStack 

; Push current code segment 
; Pop cs value into S5 
; Interrupts disabled temporarily 

To eliminate even this much stack usage requires using a third variable to save ax (or another 
register). Because you can't assign the value of one segment register to another, the current 
cs value is first assigned to ax, which is then assigned to ss: 

oldAX ow 0 Variable in code segment 
mov [cs:oldAX), ax Save ax in variable 
mov [cs:oldSSj, ss Save stack segment 
mov [cs:oldSPj, sp Save stack pointer 
mov ax, cs ASSign cs to ax 
mov 5S, ax Assign ax to ss (SS = cs) 
mov sp, offset endOfStack Interrupts disabled temporarily 

Later, you can restore ax from the saved value at cs: oldAX. Usually, you don't have to go to 
such lengths-at least three words of stack space must have been available to execute the ISR 
in the first place, and it's reasonable to assume that at least one more word will be available. 

Because the stack grows from high-memory addresses toward low-memory addresses, sp must 
be initialized to point to the end of the stack, not to the beginning. Also, because a pUSh 

instruction decrements the stack pointer by 2 before transferring the pushed word to the 
location addressed by ss: sp, it's safe for sp to address the memory location just afterthe last 
byte allocated to the stack. But some programmers prefer to use an alternate instruction to 

load sp: 

mov sp, offset endOfStack-2 

which points ss: sp to the last word in the stack, rather than to the byte beyond the bottom 
of the stack. This wastes one word of stack space but ensures that sp never points to any
where bur a legal stack location. 

After switching to the local stack, you can push registers, refer to variables relative to bp, and 
so on. Remember, your new stack might be shared by any other interrupts that occur during 
this ISR's execution. After the ISR is done, restore the original stack with the instructions: 

mov 
mov 

55, [c5:oldSSj 
sp, [cs: oldSPj 

; Restore stack segment register 
; Restore stack pointer register 

Again, be sure to execute these instructions in this order without any other intervening in
structions as interrupts will be tern porarily disabled during the assignment to sp. 

387 



388 

I.. PROGRAMMING WITH ASSEMBLY LANGUAGE 

Saving and restoring ss and sp from global variables brings up the old question of reentrancy 
again. In the previous examples, because the new stack space is a global variable, the ISR 
must be prevented from interrupting itself. Attempting to write a completely reentrant ISR that 
switches to a local slack will certainly put hair on your chest. You'll need fresh stackspace 
and variables for each ISR invocation or, al the very least, an inProgress flag as in SlowMo to 
prevent a reentered ISR from corrupting a stack used by a previous call to the same routine. 

Using int and into Instructions 
As you know, DOS functions are called by the software interrupt instruction int 21 h. True 
interrupts are generated externally and can occur at any time. Software interrupts called by 
int can occur only when a program executes this instruction. Therefore, software interrupts 
operate more like common subroutines than ISRs. Except for this difference, internal soft
ware and external hardware interrupts are identical, vecroring through values in low memory 
ro the start of the ISR with the flags and es: ip registers pushed on the stack. Software inter
rupts end with the same iret instruction, too. 

One interesting fact is that int calls are not disabled by dearing if with eli. You can always 
caJl software interrupts even when external interrupts are disabled. You can even call an ex
ternal ISR with an int instruction. For example, it's perfectly legal to "generate" your own 
timer tick with: 

int 08h ; Force a timer tick 

There may not be any good reason for forcing the ROM BIOS timer ISR to run as the result 
of a software interrupt instruction, but there's nothing to prevent you from doing this
even though doing so frequently is likely to throw the system clock out of kilter. Also, be 
aware that some ISRs (the BIOS code for keyboard interrupt 09h, for example) assume that 
certain registers in various circuits have data to process. This might not be true if you force 
a hardware interrupt to occur via a software int instruction. But calling hardware interrupts 
with software int instruction is a useful technique for debugging external ISRs, letting you 
simulate the effects of hardware that, perhaps, doesn't yet exist. 

In addition to int, you can also use the instruction into (interrupt on overflow) to force an 
interrupt type 4 if the overflow flag is set (Of = 1) as the result of a previous arithmetic in
struction. In practice, the into instruction is rarely used, and the interrupt vectOr for inter
rupt number 4 normally points to a plain iret instruction, thus having no effect even if a 
program does execute into. You can assign this vector (using DOS function 025h as described 
earlier) to your own ISR if you want to handle overflows with an ISR of your own design. 



INTERRUPT HANDLING 

Trapping Divide-Fault Interrupts 
The misnamed "divide-by-zero" interrupt is the source of much misinformation. A div or 
idiv instruction causes an automatic interrupt type 0 whenever the result of a division is 
larger than the maximum value that can be held in the destination (ax or al) and also when 
the divisor is O. For example, this code causes an interrupt type 0: 

mov 
xor 
xor 
div 

ax, 100h 
dx, dx 
bx, bx 
bx 

Assign 100h to ax (Low word) 
Zero dx (high word) 
Zero bx (divisor) 
Divide ax:dx by bx 

Because the divisor (bx) is 0, the di v fails, executing the ISR at the vector stored at 0000:0000-
the first location in memory. What many people fail to realize is that the following code also 
generates a divide-by-zero interrupt: 

mov 
mov 
div 

ax, 100h 
bl, 1 

bl 

Assign 100h to ax 
; Set divisor (bl) to 
; Interrupt type 0 generated 

The result of dividing 100h by 1 is, of course, 100h. But because this value is too large to fit 
within an 8-bit divide's destination register aI, an interrupt type 0 is generated. even though 
the divisor is definitely not O. For this reason, the divide-by-zero interrupt is better named 
the "divide-fault" interrupt, which you can't circumvent with code such as: 

or bl, bl Is divisor 01 
jne @@10 Jump if yes (bl '" 0) 
call Error Call error handler 

@@10: 
div bl ?? 

Despite appearances, this does not prevent an interrupt type 0 from occurring. Checking whether 
the divisor is 0 before executing di v is a waste of time because an interrupt type 0 occurs when
ever the result of a division exceeds the capacity of the destination register. When this happens, 
an ISR inside DOS executes, halting the program-an event that commercial programs must 
prevent. The solution is to install a custom divide-fault ISR to replace the DOS ISR for inter
rupt O. As you will see, however, this is more difficult to do than you may suspect. 

Fixing a Divide Fault 
What should happen when a divide fault occurs? The answer depends on the application. A 
calculator program should probably display an error symbol. A spreadsheet program might 
insert an error message into a "cell" on screen. Another less critical program might simply 
ignore the condition-useful in some cases, as long as the program executing the division is 
aware of this possibility. A common approach is to write a simple ISR such as: 

PROC DivFault 

ENDP 

xor ax, ax 
iret 
DivFault 

Optionally set quotient to 0 
Return from interrupt 

389 



390 

PART I..., PROGRAMMING WITH ASSEMBLY LANGUAGE 

Reassigning the interrupt 0 vector to Di vFaul t causes an iret instruction to execute if a di
vide fault occurs, which would seem to be the easy way to ignore such an error. The quotient 
is optionally reset to O-a reasonable (if not correct) answer in the event of a divide error. 
Unfortunately, this solution works only on systems with 8086/88 processors. On systems 
with 80286 and later-model processors, the iret in this example actually returns to the same 
div or idiv that caused the interrupt to occur--effectively locking the system. The reason 
this happens is that an interrupt level 0 pushes the address of the next instruction for 8086/ 
88 processors, but it pushes the address of the current instruction for 80286 and later proces
sors. This is an extremely nasry problem for programmers who have to write code to run on 
a wide range of PCs, XTs and AT s. 

Correctly handling this unusual condition requires some fancy footwork. The answer is to 

adjust the offset return address on the stack to skip the div or idiv instruction that caused 
the ISR to begin running. Some references recommend just adding 2 to the offset portion of 
the return address on the stack and then ending the ISR with iret. But this common plan 
fails to take into account that a div or idi v instruction can be 2 or 4 bytes long, depending 
on whether the divisor is a register (2 bytes) or a memory location (4 bytes). Dealing with 
this situation requires peeking back at the machine code of the di v or idi v instruction. If the 
first two bits of the second byte equal 1, then the operand is a register; otherwise, the oper
and is a memory reference. Knowing this, the program can adjust the return address by 2 or 
4, skipping the div or idiv on executing iret. 

Deciphering the bits that make up individual machine codes is painstaking work and, 
fortunately, is rarely necessary. See Bibliography for references that document that exact bit 
formats for other machine-code instructions. 

Installing a Divide-Fault Handler 
A good way to handle divide faults is to install a memory-resident program to trap rype 0 inter
rupts if they occur. After doing this, all divide errors are routed through the new ISR, preventing 
DOS from halting a program unexpectedly. Listing 10.2, DN286.ASM, accomplishes this while 
also demonstrating how to write memory-resident assembly language programs. 

Despite its name, DIV286.ASM is not restricted to running on computers with 80286 
processors. You may run this program on any PC with an 80286, 80386, 80486, Pentium, or 
compatible processor. 



INTERRUPT HANDLING 

Assemble DIV286 and link with the commands: 

tasm div286 
tlink It div286", mta 

Don't run DIV286 just yet-you'll first want to execute a second program (described in a 
moment) to test the effects of the new interrupt handler. Notice the /t switch in the tlink 

command; it is necessary to create a .COM file instead of the usual .EXE format. Memory 
resident .EXE code files are more difficuh to write, although they can be larger than resident 
.COM files, which are limited to about 64K For our purposes, the .COM format is more 
than adequate. 

You must have an 80286 or later-model processor to use DIV286.ASM. To create a similar 
program for 8086 and 8088 systems, replace lines 42-61 with the much simpler DivFaul t 

procedure listed earlier. You might want to name this program DIV86.ASM. A copy of the 
finished program is included on the disk. 

Listing 10.2. DIV286.ASM. 
1 : 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

%TITLE '80286 and later-model Divide-Fault ISR -- by Tom Swan' 

IDEAL 

MODEL 

cr EOU 
If EOU 

10: 
11: DATASEG 
12: 
13: welcome DB 
14: DB 
15: string DB 
16: 
17 : 
18: CODESEG 
19: 
20: 
21 : 

ORG 

tiny 

13 
10 

cr, If, '80286/386 Divide-Fault Handler Installed' 
cr, If, 'Address = ',0 
40 dup (?) 

100h ; Standard .COM start address (origin) 

22: EXTRN StrWrite:proc, BinToAscHex:proc, NewLine:proc 
23: 
24: Start: 
25: jmp Begin Jump over resident ISR 
26: 

continues 

391 



392 

Listing 10.2. continued 
27: %NEWPAGE 
28: ---------------------------------------------------------------
29: ; DivFault Divide-Fault handler ISR 
30: 
31 : Input: 
32: none (called internally upon a DIV or IDIV fault) 
33: Output: 
34: ax 0 (al=8-bit quotient, ax=16-bit quotient) 
35: 
36: Note: Program continues normally with the instruction 
37: following the DIV or IDIV that caused the fault. 
38: 
39: Registers: 
40: ax changed 
41: ---------------------------------------------------------------
42: PROC DivFault 
43: sti 
44: push 
45: 
46: 
47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: @@10: 
55: 
56: 
57: 
56: 
59: 
60: 
61: ENDP 
62: 
63: Begin: 
64: 
65: 
66: 
67: 
66: 
69: 
70: 
71 : 
72: 
73: 
74: 
75: 
76: 
77: 

mov 
push 
push 
Ids 
lodsw 
and 
cmp 
je 
add 
add 
xor 

pop 
pop 
pop 
iret 
DivFault 

mov 
mov 
int 
mov 
call 
mov 
call 
mov 
mov 
int 
mov 
call 
call 

bp 
bp, sp 
si 
ds 
sit [bp + 21 

ah, 0C0h 
ah, 0C0h 
@@10 
[word bp + 2], 2 
[word bp + 21, 2 
ax, ax 

ds 
si 
bp 

ax, 2500h 

Enable CPU interrupts 
Save current bp register 
Address stack values with ss:bp 
Save other modified registers 

Address DIV or IDIV with ds:si 
Get DIV plus second byte (in ah) 
Isolate first two bits (MOD field) 
Are bits 17 (register based instr) 
Jump if yes--DIV is 2 bytes long 
; DIV is 4-bytes add 2 to offset 
; Add 2 (or 2 more) to offset 
Set quotient to 0 (remainder also 0 
for 8-bit divide only) 

Restore saved registers 

Return from interrupt 

Set new vector for Divide 
dx, offset DivFault 
21h 
di, offset welcome 
StrWrite 
ax, cs 
ShoWAX 
dl, I.' 

ah, 2 
21h 
ax, offset DivFault 
ShowAX 
Newline 

Display welcoming message 

Display segment value 

Display a colon (:) 

Display offset value 



INTERRUPT H.~NDlI"C 

78: Terminate and stay resident, keeping only the code up to 
79: the end of the new Divide-Fault ISR 
80: 
81: Exit: 
82: mov 
83: int 
84: 

dx, offset Begin 
27h 

New free mem address 
Terminate, stay resident 

85: Subroutine to display AX in hexadecimal 
86: 
87: PRDC 
88: 

ShowAX Show value in AX 
mov cx, 4 

89: mov di, offset string 
Minimum number of chars 
Address of string variable 
Convert AX to hex 90: 

91 : 
92: 
93: ENDP 
94: 
95: 

call BinToAscHex 
call StrWrite 
ret 
ShowAX 

END Start 

Testing DIV286 

Display hex string 
Return to caller 

End of program I entry point 

To test the before and after effects of DIV286, assemble Listing 10.3, DIVFAULT.ASM, 
which forces a divide fault to occur. Assemble and link (Q MT A.LIB in the usual way: 

tasm divfault 
tlink divfault, , , mta 

Run the test program by ryping divfaul t and pressing Enter. This should generate the DOS 
message "Divide Overflow, halting the program prematurely. Depending on your version 
of DOS (and, perhaps, other resident programs loaded into memory), you may have (Q reboot 
by pressing Ctrl-Alt-Delete. Some DOS versions are known (Q become unstable following a 
divide-fault error. 

Next, execute DIV286 to install the resident ISR. (On 8086 and 8088 systems, run the 
modified DIV86 program instead. Do not run DIV86 if your system has an 80286 or later 
processor.) Then run DIVFAULT again. This rime, you should see the message "Program 
continued normally," proving that DOS no longer halts the program upon receiving a di
vide-fault interrupt. 

Run DIV286 or DIV86 only one time or you'll needlessly install multiple copies of the divide
fault handler in memory_ 

393 



394 

PART I .. PROGRAMMING WITH ASSEMBLY LANGUAGE 

Listing 10.3. DIVFAUn.ASM. 
1: %TITLE "Divide Fault Demonstration -- by Tom Swan" 
2: 
3: 
4: 

IDEAL 

5: MODEL small 
6: STACK 256 
7: 
8: cr 
9: If 

10: 
11 : 

EQU 
EQU 

12: DATASEG 
13: 
14: exCode 
15: message1 
16: message2 
17 : 
18 : 
19: CODESEG 
20: 

13 
10 

DB 
DB 
DB 

o 

ASCII carriage return 
ASCII line feed 

cr,lf, 'Forcing a divide by zero fault ... ' ,0 
cr,lf, 'Program continued normally' ,cr,lf,0 

21: From STRIO.OBJ 
22: EXTRN StrWrite:proc 
23: 
24: Start: 
25: mov 
26: mov 
27: mov 
28: 
29: mov 
30: call 
31 : 
32: mov 
33: xor 
34: div 
35: 
36: Exit: 
37: mov 
38: call 
39: 
40: mov 
41: mov 
42: int 
43: 

ax, @data 
ds, ax 
es, ax 

di, offset message1 
StrWrite 

ax, 100h 
bx, bx 
bx 

di, offset message2 
StrWrite 

ah,04Ch 
al,[exCode] 
21h 

Initialize OS to address 
of data segment 

Make es ds 

Address welcome message 

Assign value to ax 
Zero divisor 
Force Divide-Fault Exception 

Address "continued' message 
Display string 

DOS function: Exit program 
Return exit code value 
Call DOS. Terminate program 

44: END Start End of program / entry point 

How DIV286 Works 
DIV286 calls the DOS Terminate-and-Stay-Resident (TSR) software interrupt 27h at line 
83, installing in memory a copy of the divide fault ISR at lines (28-61). Executing int 27h 

returns control to COMMAND.COM but tells DOS to retain all occupied memory up to 

the address in cs : dx. Line 82 sets dx to the offset address just below the last instruction to be 



~ .. -- .... ---------------------------

kept in memory-in this example, the iret at line 60. There are other ways to install TSR 
code-for example, DOS function 031 h-but when the size of the program is relatively small 
(less than about 64K), interrupt 27h is much easier to use. 

Notice that a DATASEG directive is used to declare program variables at lines 11-15. Be
cause this is a .COM program, the data and code segments are actually one and the same. 
The stack segment in a .COM program also shares the same 64K segment; consequently, 
the program does not specify a separate stack in a STACK directive. 

By the way, variables declared after a DATASEG directive in a .COM program are stored above 
(at a higher address than) the executable code. As a result. these variables do not remain in 
memory after executing interrupt 27h. Variables that must remain resident after the program 
ends should be declared in the code segment at an offset below (at a lower address than) the 
address passed to interrupt 27h in cs: dx. 

Installing TSR Code in Memory 
The first instruction in a TSR program usually jumps over the code that is to remain in 
memory after the program ends (see line 25). The actual first instruction in the program is at 
the destination of this jump-in DIV286, at label Begin: (line 63). Here, the divide-fault 
interrupt vector is changed to the address of the new ISR-the resident portion of this pro
gram at lines 28-61. 

Be sure you understand that DIV286 is really two programs in one convenient package. The 
code that runs when you execute DIV286 starts at line 15, jumps to line 63, and ends at line 
93. The resident DivFaul t procedure does not execute at this time. Instead, this ISR remains 
in memory after D IV286 ends, ready to handle a divide error when it occurs. The sole pur
pose of the DIV286 program is to install the DivFault ISR and to display a memory on
screen that this has been done. To help you locate the code in memory (if you need to do 
this), DIV286 also displays the address where DivFault resides. 

After DIV286 ends, leaving the DivFault ISR behind, a subsequent divide-fault interrupt 
executes the ISR, starting at line 43, which immediately executes sti, allowing other inter
rupts to be serviced while Di vFault runs. At this point, the stack contains the system flags 
plus the address of the div or idiv instruction that caused the interrupt to occur. Borrowing 
a popular technique from high-level languages, DivFault locates the return address on the 
stack, first executing the instructions: 

pUSh 
mav 

bp 
bp, sp 

Save current bp 
; Address stack with bp 

395 



396 

The order of these two instructions is important. First, the current value of register bp is saved 
on whatever stack space happens to be in use. Then the value of the stack pointer sp is as
signed to bp, thus addressing the stack with ss: bp. (Addressing memory with the bp register 
defaults to the segment addressed by ss. You could use other registers to address data on the 
stack, but bp is the most convenient.) 

Figure 10.] illustrates how the stack appears during execution of the DivFault ISR. (The 
return address, flags, and other values on a stack make up what's known as a procedure's 
stack frame.) When addressing variables on the stack, it helps to draw a diagram of the stack 
frame. Disturbing the wrong data on the stack can have disastrous results, so there's precious 
little room for error. Figure] 0.1 labels the stack pointer at different stages, while Di vFaul t 

executes: 

spO: The stack pointer before the divide-fault interrupt occurs. 

sp]: The stack pointer after the divide-fault interrupt signal is processed. 
The processor has pushed the flag, cs, and ip registers onto the stack. 

sp2: The stack pointer after pushing the current value of bp 

sp3: The stack pointer after pushing registers si and ds 

The plan is to read the values of cs: ip from the stack, examine the div or idiv instruction, 
and increment the return address by either 2 or 4 bytes. To do this, register bp was assigned 
the value of sp2, thus addressing stack byte number 4. (The numbers in the diagram are there 
just for reference-they don't refer to real memory addresses.) Because each box in the fig
ure represents a 2-byte word, the 16-bir ip register value is at [bp ... 2]. The cs register value 
is at [bp + 4]. If you wanted to access the flags on the stack, you could use [bp ... 8]. 

Figure 10.1. 
The stackfi-ame during 
execution of the DiliFau/t 
ISR in DJV286.A!::,'M. 

sp3 

sp2 [bpI 

sp1 [bp+2] 

[bp+4] 

[bp+6] 

sp4,spO 

o 

2 

4 

6 

8 

10 

12 

14 

Low Memory Addresses 

Old ds Register 

Old sl Register 3 

Old bp Register 5 

div or idiv's ip Register 7 

div or idiv's cs Register 9 

Flags 11 

13 

15 

High Memory Addresses 



Line 48 ofDIV286.ASM executes Ids co load the ds and si registers with the address of the 
div or idiv instruction that caused the divide-fault interrupt. You could just as well use two 
mov instructions to load the words at [bp + 2] and [bp + 4], but Ids performs the same job 
and is shorrer and a little faster. (You can use any 16-bit register as the destination for the 
offset portion of the address, not only si.) 

After line 48, ds: si addresses the faulty di v or idi v. Line 49 loads the first word of this in
struction into ax for examination. If the first 2 bits are equal to 1, then this is a 2-byte in
struction; otherwise, it's a 4-byte version. Lines 53-54 increment the offset portion of the 
rerum address on the stack accordingly by 2 or 4 bytes. 

The net effect of these actions is to ignore the div or idiv that caused the interrupt type O. 
Register ax is cleared (line 55), setting the 8-bit (aI) or 16-bit (ax) quotient to O. (Note: For 
8-bit divides, this also sets the remainder in ah to 0.) Because the return address was 
incremented, when the interrupt ends at line 60, program execution continues with the in
struction following the faulty divide. 

Interrupt-Driven Serial Communications 
DOS has its critics but even fans agree with detractors about one thing: Asynchronous serial 
I/O (also called auxiliary 110) in DOS is about as useful as shoes for a mermaid. Although 
there are two DOS functions available for reading (function 3) and writing (function 4) 
characters to a serial 1/0 port, experts generally agree that programs using these functions 
are unreliable except, perhaps, at the slowest baud rates. There are at least three possible so
lutions to the problem: 

1. Write a custom device driver for reading and writing to a serial ports as a named 
file. 

2. Call the BIOS asynchronous interrupt 14h directly for all serial communications. 

j. Install interrupt-driven code to read and write characters independently of DOS 
and the BIOS. 

Number 1 is a good idea, especially if you need to access special communications hardware
a multiport peripheral card, for example. However, writing custom device drivers is a sub
ject that would require an entire chapter and. therefore, is an impractical solution ro cover 
here. (Most good DOS programming references discuss this subject in detail.) Number 2 is 
also good. The ROM BIOS in all PCs handles asynchronous serial 110 with excellent re
sults. But, even though number 3 requires direct access co hardware registers-thus making 
the program difficult to transfer to non-PCs-an interrupt-driven asynchronous serial I/O 
package makes writing communications programs so much easier than the other two meth
ods that most programmers prefer this approach. 

397 



398 

Listing lOA, ASYNCH.ASM, can serve as the basis for any communications program. The 
code implements a buffered, interrupt-driven, input channel for incoming data and uses a 
non-interrupt-driven method for output. After the listing is an example program that dem
onstrates how to use the ASYNCH module. Assemble, link, and install ASYNCH In 

MTA.LIB with the commands: 

tasm Izi asynch 
tlib IE mta -+asynch 

As usual, ignore any warning about ASYNCH not being in the library. If you change any of 
ASYNCH.ASM, repeat these rwo steps. Take Out the Izi option to reduce code-file size by 
stripping the information for Turbo Debugger. 

Change the equate value at line 9 to 0 for COM1: or to 1 for COM2:. 

Listing 10.4. ASYNCH.ASM. 
1: %TITLE "Asynch Serial Comm Module -- by Tom Swan" 
2: 
3: IDEAL 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21 : 
22: 

MODEL small 

PUBLIC ComPort 

ComPort = 0 

IF ComPort EQ 0 
Port 
VectorNum 
EnableIRQ 
DisableIRQ 

ELSEIF ComPort EQ 
Port 
VectorNum 
EnableIRQ 
DisableIRQ 

ELSE 

0 COM1: , 1 

EQU 03F8h 
EQU 0Ch 
EQU 0EFh 
EQU 10h 

EQU 02FBh 
EQU 0Bh 
EQU 0F7h 
EQU 0Bh 

23: DISPLAY "ComPort must be 0 or 1" 
24: ERR 
25: ENDIF 
26: 
27: Adapter register addresses 
28: 

COM2: 

8250 base address 
Interrupt vector number 
Mask to enable 8259 IRQ 
Mask to disable 8259 IRQ 

same comments as above 



29: 
30: 
31 : 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41 : 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: 
55: 
56: 

TxRegister 
RxRegister 
IntEnable 
IntIdent 
LineCont rol 
ModemControl 
LineStatus 
ModemStatus 

Other equates 

Ctr18259_0 EOU 
Ctr18259_1 EQU 
EOI EOU 
BufSize EOU 

OATASEG 

vectorSeg ow 
vectorOfs OW 
bufHead OW 
bufTail OW 
buffer DB 

COOESEG 

Port + 0 Transmit Register 
Port + 0 Receive Register 
Port + 1 Interrupt Enable Register 
Port + 2 Interrupt Identification 
Port + 3 Line Control Register 
Port + 4 Modem Control Register 
Port + 5 Line Status Register 
Port + 6 Modem Status Register 

020h 8259 port 
021h 8259 port (masks) 
020h 8259 end-of-interrupt 
2048 Size of input buffer 

? Old vector segment 
? Old vector offset 
? Buffer head pointer 
? Buffer tail pointer 
BufSize OUP (?) Input buffer 

57: PUBLIC AsynchInit, AsynchStop, AsynchStat 
58: PUBLIC AsynchOut, AsynchIn, AsynchInStat 
59: 
60: %NEWPAGE 
61: ---------------------------------------------------------------
62: ; EmptyBuffer Empty the input buffer 
63: ---------------------------------------------------------------
64: Note: 
65: Private to module 
66: Input: 
67: none 
68: Output: 
69: none 
70: Registers: 
71: none 
72: ---------------------------------------------------------------
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81 : 
82: 

PROC 

ENOP 

EmptyBuffer 
eli 
push ax 
mov ax, offset 
mov [bufHead J , 
mov [bufTailJ, 
pop ax 
sti 
ret 
EmptyBuffer 

Prevent interrupts 
Save ax 

buffer Buffer is empty when 
ax the head and tail pointers 
ax are equal 

Restore ax 
Enable interrupts 
Return to caller 

continues 

399 



400 

listing 10.4. continued 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91 : 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 

100: 
101 : 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111: 
112: 
113: 
114: 
115 : 
116: 
117 : 
118: 
119: 
120: 
121 : 
122: 
123: 
124: 
125: 
126: 
127: 
128: 
129: 
130: 
131 : 
132: 
133: 
134: 
135: 
136: 
137: 
138: 
139: 

%NEWPAGE 

; AsynchInit Initialize serial port and install ISR 

Input: 
none 

Output: 
none 

NOTE: Precede (usually) with call to int 14h to 
set baud rate 

NOTE: Interrupt-driven input begins immediately 
upon exit from this routine. 

WARNING: You must call AsynchStop before your 
program ends to avoid a system crash! 

Registers: 
ax, bx, dx 

PROC AsynchInit 

call EmptyBuffer ; Initialize buffer 

Save and reassign interrupt vector 

push ds 
push es 
mov ax, 3500h + VectorNum 
int 21h 
mov [vectorSegj, es 
mov [vectorOfsj, bx 
push cs 
pop ds 
mov dx, offset AsynchISR 
mov ax, 2500h + VectorNum 
int 21h 
pop es 
pop ds 

Save segment registers 

Get vector address 
Call DOS 
Save segment address 
Save offset address 
Address AsynchISR 

with ds:dx, and call 
DOS function 25h to 
set the new vector 
address. 

Restore saved registers 

Enable 8259 interrupt (IRQ) line for this asynch adapter 

in 
and 
out 

Enable 

mov 
in 
and 
out 
mov 
mov 
out 

aI, Ctr18259_1 
aI, EnableIRQ 
CtrI8259_1, al 

Read 8259 enable masks 
Clear masked bit 
Write new 8259 masks 

8250 interrupt-on-data-ready 

dx, LineControl First, read the line control 
aI, dx register, and clear bit 
aI, 07Fh 7, the Divisor Latch Access 
dx, al Bit, or DLAB 
dx, IntEnable With DLAB=0, set bit 0 of 
aI, 1 interrupt enable register 
dx, al to 1, enabling interrupt 



140: 
141 : 

Clear 8250 status and data registers 

@@10: 
mov 
in 
mov 
in 
mov 
in 
mov 
in 
test 
jz 

Set 

mov 
in 
or 
out 

bit 

dx, RxRegister 
aI, dx 
dx, LineStatus 
aI, dx 
dx, ModemStatus 
aI, dx 
dx, Intldent 
aI, dx 
aI, 1 
@@10 

3 of modem control 

dx, ModemControl 
aI, dx 
aI, 08h 
dx, al 

Clear data register 
by reading port 

Clear line status 
by reading port 

Clear modem status 
by reading port 

Check interrupt ident 
register 

Bit 1 should be 
Jump if interrupt pending 

register 

Interrupts will be 
aCknowledged as soon as 
this bit is set to 1 

Done! 

142: 
143: 
144: 
145: 
146: 
147: 
148: 
149: 
150: 
151 : 
152: 
153: 
154: 
155: 
156: 
157 : 
158: 
159: 
160: 
161 : 
162: 
163: 
164: 
165: 

Empty input buffer again, just in case a stray character 
managed to squeak in 

call EmptyBuffer Empty buffer again 

166: ret Return to caller 
167: ENDP Asynchlnit 
168: %NEWPAGE 
169: 
170: AsynchStop Uninstall Asynch ISR 
171: ------------------------------ -----------------------
172: Input: 
173: none 
174: Output: 
175: none 
176: 
177: WARNING: Always call AsynchStop before your program 
178: ends or a system crash is inevitable! 
179: 
180: Registers: 
181: aI, dx 
182: ---------------------------------------------------------------
183: PROC AsynchStop 
184: 
185: 
186: 
187: 
188: 
189: 
190: 
191 : 
192: 

Mask (disable) 8259 IRQ interrupt 

in 
or 
out 

aI, Ctr18259_1 
aI, DisableIRQ 
Ctr18259_1, al 

Disable 8250 interrupt 

Read 8259 masks 
Mask IRQ bit 
Write new masks 

continues 

401 



402 

PROGRAMMING WITH ASSEMBLY LANGUAGE 

Listing 10.4. continued 
193: 
194: 
195: 
196: 
197: 
198: 
199: 
200: 
201: 
202: 
203: 
204: 
205: 
206: 
207: 
208: 
209: 
210: 
211 : 
212: 
213: 
214: 
215: 
216: 
217: 
218: 
219: 
220: 
221 : 
222: 
223: 
224: 
225: 
226: 
227: 
228: 
229: 
230: 
231: 
232: 
233: 
234: 
235: 
236: 
237: 
238: 
239: 
240: 
241: 
242: 
243: 
244: 
245: 
246: 
247: 

mov dx, LineCont rol First, read the line control 
in aI, dx register, and clear bit 
and aI, 07Fh 7, the Divisor latch Access 
out dx, al Bit, or DlAB 
mov dx, IntEnable With DlAB=0, clear all bits 
xor aI, al to disable interrupts 
out dx, al Write new register value 

Set bit 3 in modern control register to 0 

mov dx, ModemControl Assign port address 
in aI, dx Get current register 
and aI, 0F7h Clear bit 3 
out dx, al Output new register value 

Interrupts are disabled. Restore saved interrupt vector. 

puSh ds 
mov ax, 
mov dx, 
mov dS, 
int 21h 
pop ds 

ret 
ENDP AsynchStop 
%NEWPAGE 

2500h + VectorNum 
[vectorOfsl 
[vectorSegj 

Save segment register 
Set interrupt vector 
Get saved offset 
Get saved segment 
Set interrupt vector 
Restore saved register 

Return to caller 

----~-------------~--------------------------------------------, 
; AsynchStat Get status for output 
;----------------------------------------------------------------

Input: 
none 

Output: 
ah 
al 

line status 
modem status 

Registers: 
ax, dx 

PROC AsynchStat 
mov ah, 3 
mov 
int 
ret 

dx, ComPort 
14h 

ENDP AsynchStat 
%NEWPAGE 

Get-status function number 
0=COM1:, 1=COM2: 
Call BIOS RS232_IO service 
Return to caller 

; AsynchOut Output a byte (to output port) 

Input: 
al 

Output: 
none 

Registers: 
none 

character (or byte) to output 



248: PRoe 
249: 
250: 
251: @@10: 
252: 
253: 

AsynchOut 
push dx 
push ax 

mov dx, LineStatus 
in al, dx 

254: and al, 020h 
255: jz 1;1@10 
256: pop ax 
257: mov dx, TxRegister 
258: out dx, al 
259: pop dx 
260: ret 
261: ENDP AsynchOut 
262: %NEWPAGE 

Save modified dx 
Save char in al 

Address Line Status Register 
Get line status 
Isolate Trasmit Holding Reg. 
Jump if THRE is not empty 
Restore character 
Address transmit register 
Output char in al 
Restore saved dx 
Return to caller 

263: ,---------------------------------------------------------------
264: ; AsynchIn Input a byte (from buffer) 
265: j---------------------------------------------------------------
266: Input: 
267: none 
268: Output: 
269: a1 = char from buffer 
270: 
271: Note: if buffer is empty, al will be zero, with 
272: no indication that this is not an input value. 
273: Precede with call to AsynchInStat to avoid reads 
274: from an empty buffer. 
275: 
276: 
277: 
278: 
279: 
280: 

Registers: 
aI, bx 

----------------------------------------~----------------------, 
PROC Asynchln 

xor al, al Preset result to null 
281: mov bx, [bufTailJ Get tail pointer 
282: cmp bx, [bufHeadj Test if buffer is empty 
283: je @@99 Exit if empty (al=0) 
284: mov aI, [byte ptr bx] Else read char from buffer 
285: inc [bufTailj Advance tail pointer 
286: cmp [word ptr bufTail], offset buffer + 8ufSize j At end? 
287: jb 1;11;199 ; Jump if not so 
288: mov [bufTail] , offset buffer; Else reset tail pointer 
289: @@99: 
290: ret ; Return to caller 
291: ENDP AsynchIn 
292: %NEWPAGE 
293: ---------------------------------------------------------------
294: ; AsynchInStat Get status of input buffer 
295: ---------------------------------------------------------------
296: Input: 
297: none 
298: Output: 
299: dx number of bytes (or chars) in buffer 
300: Registers: 
301: dx 
302: 

1 

continues 

403 



404 

Listing 10.4. continued 
303: PROC 
304: 
305: 
306: 
307: 
308: @@99: 

AsynchlnStat 
mov dx, [bufHead] 
sub dx, [bufTail] 
jge @@99 
add dx, BufSize 

Get head pointer 
Subtract tail from head 
Jump if result >M 0 
Handle negative result 

309: ret Return to caller 
310: ENDP AsynchlnStat 
311: %NEWPAGE 
312: ---------------------------------------------------------------
313: ; AsynchlSR Asynchronous input interrupt service routine 
314: ---------------------------------------------------------------
315: Input: 
316: none 
317: Output: 
318: none (char read and deposited in buffer) 
319: 
320: NOTE: This version ignores buffer overflows 
321 : 
322: 
323: 
324: 

Registers: 

325: 
326: 
327: 
328: 
329: 
330: 
331 : 
332: 
333: 
334: 
335: 
336: 
337: 
338: 
339: 
340: 

PROC 

341: @@10: 
342: 
343: 
344: 
345: @@20: 
346: 
347: 
348: 
349: 
350: 
351: 
352: 
353: 
354: 
355: ENDP 
356: 
357: 

none 

AsynchISR 
push ax ; Save modified registers 
push bx 
push ds 
push dx 

mov ax, @data Address local data with ds 
mov ds, ax 
mov dx, RxRegister dx ; Receive Register 
in aI, dx Read byte from port 
mov bx, [bufHead] Get head pointer 
mov [byte ptr bx], al Store byte in buffer 
inc bx Advance head pointer 
cmp bx, offset buffer + BufSize Is ptr at end? 
i b @@10 Jump if not 
mov bx, offset buffer Else reset to beginning 

cmp 
jne 
mov 

mov 
mov 
out 

pop 
pop 
pop 
pop 

bx, [bufTail] 
@@20 
bx, [bufHead I 

[bufHead) , bx 
aI, EOr 
Ctrl8259_0, al 

dx 
ds 
bx 
ax 

iret 
AsynchISR 

END 

Check for overflow 
Jump if no overflow 
Cancel pointer advance 

Save new head pointer 
Issue end-of-interrupt to 
8259 port 

Restore saved registers 

Return from interrupt 

End of module 



~-~,--~--------------------------~-------...,."......,..--

INTIRRUPT 

Running an ASYNCH Demonstration 
Listing 10.5, TRM.ASM, demonstrates how to use the ASYNCH package. Although not a 
complete terminal emulator, TRM is useful for debugging communications with a remote 
system. It's frequently helpful to be able to see not only normal ASCII text but also every 
comrol byte and goes in and out of a communications link. TRM displays normal text nor
mally, but brackets control codes with their ASCII values. For example, a carriage return 
and line feed are displayed as [13] [10]. Just seeing the sequence of comrol codes coming in 
from a remote source is often all that's needed to fix communications problems. Assemble 
and link TRM with the commands: 

tasm Izi trm 
tlink Iv trm", mta 

NOTE 

If you have access to two PCs, connect them with a serial cable and execute TRM on both 
systems. Then type control codes and press Esc, Enter, and so on to see how TRM displays 
text and controls. If you don't have two PCs, you might be able to use TRM with a modem, 
but you'll have to either enter modem-initialization commands manually or use a full-blown 
terminal program to log on to a remote system before running TRM. 

Listing 10.5. TRM.ASM. 
1 : %TITLE "Terminal Emulator -- Copyright (c) 1989,1995 by Tom Swan' 
2: 
3: IDEAL 
4: 
5: MODEL small 
6: STACK 1024 
7: 
8: From ASYNCH.OBJ 
9: EXTRN ComPort:abs 

10: 
11 : cr EQU 13 ASCII carriage return 
12: If EQU 10 ASCII line feed 
13: bd9600 EOU 0e3h 9600 baud, no parity, 1 stop, 8 bits 
14: ExitKey EOU 100 GetCh value for F10 
15: 
16: 
17: DATASEG 
18: 
19 : exCode DB 0 
20: 

continu(s 

405 



----- ~ .. ---.... 

listing 10.5. continued 

406 

21: welcome 
22: 
23: 
24: 
25: 
26: 
27: string 
28: 
29: 
30: 
31 : 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41 : 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 

Start: 

DB 
DB 
DB 
DB 
DB 

cr, If, 'Terminal Emulator by Tom Swan', cr, If 
cr, If, 'Configured for 9600 baud. Displays' 
cr, If, 'control codes in brackets for debugging' 
cr, If, 'an RS232 serial line. Press F10' 
cr, If, 'to exit.', cr, If, If, 0 

DB 80 DUP (?) i Miscellaneous string 

CODESEG 

From ASYNCH.OBJ 
EXTRN Asynchlnit:proc, AsynchStop:proc, AsynchStat:proc 
EXTRN AsynchOut:proc, Asynchln:proc, AsynChlnStat:proc 

From KEYBOARD.OBJ 
EXTRN KeyWaiting:proc, GetCh:proc 

From BINASC.OBJ 
EXTRN BinToAscDec:proc 

From STRIO.OBJ 
EXTRN StrWrite:proc 

mov ax, @data Initialize oS to address 
mov ds, ax of data segment 
mov es, ax Make es ds 

mov di, offset welcome Display welcoming message 
call StrWrite 

Initialize baud rate and Asynch package 

mov ah, 0 
mov aI, bd9600 
mov dx, ComPort 
int 14h 
call Asynchlnit 

Perform terminal 110 emulation 

BIOS RS232 init function 
configuration 
Port number (0 or 1) 
Call RS232_IO service 
Initialize asynch package 



63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 
71 : 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81 : 
82: 

Emulate: 

@@10: 

@@20: 

83: Exit: 
84: 
85: 
86: 
87: 
88: 
89: %NEWPAGE 
90: 

call 
or 
jz 
call 
call 
jmp 

call 
jz 
call 
jnz 
cmp 
je 

call 
jmp 

End 

call 
mov 
mov 
int 

of 

AsynchinStat 
dx, dx 
@@10 
Asynchln 
DispChar 
Emulate 

KeyWaiting 
Emulate 
GetCh 
@@20 
al, ExitKey 
Exit 

AsynchOut 
Emulate 

emulation. 

AsynchStop 
ah,04Ch 
al,[exCode] 
21h 

Deinitialize 

INTERRUPT 

Any chars come in yet? 
Check if dx > 0 
dx=0, check for keypress 
Read char from buffer 
Display character locally 
Continue emulation 

Check if key was pressed 
LOOp if not 
Else get keypress 
Jump if not fn or ctrl key 
Program-exit key pressed? 
Jump to Exit if yes 

Else send char on its way 
LOop until done 

Asynch package and exit. 

Halt Asynch package 
DOS function: Exit program 
Return exit code value 
Call DOS. Terminate program 

91 : 
92: 
93: 
94: 
95: 
96: 
97: 

; DispChar/OneChar Display any ASCII value 

Input: 
al ASCII value (0 .. 255) 

Output: 
none 

98: NOTE: Control codes are displayed as [13] [10J etc. for 
99: debugging a serial I/O line. 

100: Registers: 
101: ax, cx, dl, di 
102: j---------------------------------------------------------------
103: PROC DispChar 
104: cmp al, 32 
105: j ae OneChar 
106: 
107: 
108: 
109: 
110: 
111 : 
112 : 
113 : 
114: 
115: 
116: 
117 : 

Display bracketed control codes 

xor ah, ah 
mov cx. 1 
mov di, offset string 
call BinToAscDec 
mov al, '[ , 
call OneChar 
call StrWrite 
mov aI, 'J' 

Is character a control? 
Jump if not 

Convert al to 16-bit value 
Specify at least one char 
Address string variable 
Convert to string 
Display [ char 
Display char in al 
Display ctrl-code string 
"Fall through' to OneChar 

continues 

407 



PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Listing 10.5. continued 
118: PRoe 
119 : 
120: 
121 : 
122: 
123: ENDP 
124: 
125: ENDP 
126: 
127: 

OneChar 
mov 
mov 
int 
ret 
OneChar 

DispChar 

END 

How TRM Works 

dl, al 
ah, 2 
21h 

Start 

Assign char to dl 
DOS output-char function 
Call DOS to display char 
Return to caller 

End of program I entry point 

Listing 10.5, TRM.ASM, demonstrates how to use the ASYNCH package routines, described 
in detail after this section. Lines 55-58 call BIOS function 14h to initialize the primary serial 
port, passing the baud rate and other parameters in register a1. The default setting used here 
is 9600 baud, no pariry, 1 stop bit, and 8 data bits (see line 13). 

Table 10.3 lists the meanings of the bits in the 8-bit value passed in a1 with ah = 0 and dx set 
to the ComPort value to BIOS interrupt 14h. The top of the table lists the bit numbers and 
meanings for each field. Below this are the bit settings you can use to select various configu
ration parameters. 

Table 10.3. Interrupt 14h Configuration Bits. 

7 6 5 (baud rate) 4 3 (parity) 

0 0 o ( 110) 0 o (none) 

0 0 1 ( 150) 0 1 (om 

0 0(300) 1 (even) 

0 1 1 ( 600) 

0 0(1200) 

0 1 (2400) 

0(4800) 

1 (9600) 

2 (stop bits) 

0(1) 

1 (2) 

1 

o 
o (data bits) 

o (???) 

0(7) 

1 (8) 

Line 59 calls Asynchlni t to install the AsynchISR interrupt handler. Be aware that incoming data 
will be stored in the input buffer as soon as Asynchlnit finishes--so don't delay checking for 
incoming data toO long after this step. The loop at lines 63-79 checks for input, reads characters 
from the input buffer, checks for local key presses, and exits when you press FlO. (Pressing Esc 
to end is inappropriate in this program because you may want to pass an Esc character to a re-

408 mote device.) Subroutine OispChar at lines 90-125 displays an ASCII value or control code. 



INTERRUPT 

DispChar demonstrates an assembly language trick that's worth learning. Examine the nested 
procedure OneChar at lines 118-123, which displays a single character by calling DOS func
tion 2. Above this, line 114 (in the outer procedure) calls OneChar. But look closely at the 
entire OispChar procedure--there is only one return instruction at line 122, despite the fact 
that there are two subroutines here. This is not a mistake! After the mav at line 116, the pro
gram "falls through" to the OneChar subroutine, running this code as an extension of the outer 
procedure DispChar. Earlier, however, DispChar calls this inner portion of itself as a subrou
tine. When the call at line 112 executes, the ret at line 122 passes control back to line 113. 
When the program falls through into OneChar after line 116, this same ret instruction passes 
control back to the code that originally called DispChar. When using this trick, be sure to 
document your program carefully so that others will understand what's happening. 

How To Use the ASYNCH Package 
ASYNCH.ASM contains seven routines to read and write asynchronous serial data at any 
baud rates supported by your hardware. (Unless stated otherwise, line numbers in the fol
lowing sections refer to Listing 10.4.) The seven routines are: 

1. Asynchlnit Initializes the ASYNCH package 

2. AsynchStop Deinitializes the ASYNCH package 

3. AsynchStat Returns the status of the serial port 

4. AsynchOut Writes 1 byte to the serial port 

5. Asynchln Reads 1 buffered input byte 

6. AsynchInStat Returns status of input buffer 

7. AsychISR Inputs interrupt service routine 

Programs never directly call AsynchISR-this is the interrupt service routine that automati
cally handles input from a serial port. Most of the time, you'll use the other six routines in 
this order: 

1. Call ROM BIOS interrupt 14h to set the baud rate. Because PCs already have this 
initialization code built in, ASYNCH does not duplicate this programming. 

2. Call Asynchlnit to initialize the ASYNCH package and install the AsynchISR code. 

3. Use AsynchStat to determine the status of the serial port-for example, to see if the 
hardware is ready to accept a character for output. 

4. Call AsynchOut to send characters to the remote system. 

5. Call AsynchlnStat to find out if any characters are stored in the input buffer. 

6. If AsynchlnStat reports at least one character in the buffer, call Asynchln to extract a 
character from the buffer. 

7. Call AsynchStap to detach the AsynchISR code and halt interrupt-driven input. 

10 

409 



410 

NOTE 

Be sure to call AsynchStop before your program ends, or a system crash is practically 
guaranteed. Leaving AsynchISR (or any other ISR) in memory after passing control back to 
COMMAND.COM is sure to cause serious problems. 

ASYNCH Equates and Variables 

ASYNCH.ASM assigns a series of equates for addressing two integrated circuits: an 8250 asyn
chronous I/O chip and the 8259 interrupt controller that you learned h~w to control earlier in 
this chapter. Line 9 determines whether the package accesses the primary (ComPort 0) or sec
ondary (ComPort = 1) serial ports available on most PCS. Line 7 declares this equate public. In 
your own programs, import the ComPort value by adding this line to your other equates: 

EXTRN ComPort:abs 

Lines 11-25 assign values to four constants depending on the value of ComPort. Notice how 
errors are handled at lines 22-25. Try assembling the program with ComPort equal to 3 to see 
the effect of these statements. First, line 23 displays an error message with the DISPLAY 
directive. Then line 24 executes ERR, displaying Turbo Assembler's user error message and 
preventing the .OBJ file from being created. 

Lines 29-36 assign additional equates for reading and writing registers located at various offsets 
from the base Port value, which is initialized at either line 12 or 18. The program uses these 
values to control the 8250 chip directly without calling DOS or BIOS routines. A few more 
equates at lines 40-43 reference the 8259 interrupt controller as explained before. 

You can change BufSize (line 43) to increase or decrease the size of the input buffer. The 
best size depends on the type of communications program you're writing. A program that 
reads and writes lines of text might get away with a small buffer, perhaps no larger than 256 
bytes. A terminal emulator should probably be able to store the equivalent of several text 
screens in memory. The default value 2048 is a reasonable compromise. 

Ring Around the Asynch Buffer 

The variables at lines 50-52 reserve space for the input buffer. Two pointers bufHead and 
bufTail address bytes in this buffer. When these variables poin t to the same address, the buffer 
is empty. New bytes are stored in the buffer at the location addressed by bufHead. Bytes are 
extracted from the buffer at the location addressed by bufTail. These two pointers are 
incremented until reaching the end of the buffer, when they are reset to the beginning of 



INTERRUPT HANDLING 

this variable. As data flows in and out, bufHead and bufTail chase each other around the 
buffer space, creating a structure called a queue in which the oldest data in the buffer is the 
first to leave. Study lines 280-346 to see how this structure is implemented in ASYNCH. 

Asynchinit (84-167) 

Asynchlni t initializes communications by first emptying the input buffer with a call to a private 
subroutine EmptyBuffer at lines 61-82. Next, the current interrupt vector for the selected 
I/O port is saved in two variables vectorSeg and vectorOfs. (See lines 112-115.) Even though 
it's unlikely that another communications program would be running at the same time as 
yours, it's a good policy to save and restore all changed interrupt vectors. After this step, lines 
116-120 install the new AsynchISR code. 

The next instructions (lines 126-159) configure the 8250 and 8259 registers. As you can see, 
several steps are required to switch on interrupts and clear registers. These notes will help 
explain the programming in this section: . 

• The interrupt request line (IRQ) for the appropriate interrupt type must be en
abled, allowing the 8259 PIC to pass this interrupt signal to the processor. (See lines 
126-128 and Table 10.1.) Unless this is done, interrupts from 8250 serial I/O chip 
would be blocked from the processor's INTR line. 

• Next, the 8250 serial I/O chip must be told to generate an interrupt signal when
ever a new byte of data comes in from the remote source. (See lines 132-138.) This 
signal is sent to the 8259 PIC, which, as the previous note explains, passes the 
interrupt request to the processor. 

• Several 8250 registers are cleared (see lines 142-152) by reading them with in 

statements. When the interrupt will be allowed to occur. (Some references name 
this bit "OUT2." Another bit "OUT1" can be used to reset an internal Hayes 
compatible modem.) This step--acting as a kind of communications ignition 
switch-allows the AsynchISR to begin receiving input as soon as the out at line 159 
is executed. 

• Just in case a stray character got into the input buffer during any of the previous 
steps, line 164 calls EmptyBuffer again to empty the input buffer. 

After executing this intricate sequence, the next character to come into the 8250 will cause 
an interrupt signal to be sent to the 8259 PIC, which will pass the signal to the 8086 proces
sor, which-after completing any in-progress instruction-will transfer control to the vec
tor for the interrupt type also passed to the 8086 by the 8259 PIC. The next effect of these 
complex actions is to cause the AsynchISR code at lines 312-355 to read and deposit one 
character into the input buffer. 

411 



412 

"KU'JM'~IV""'u WITH ASSEM8l Y LANGUAGE 

AsynchStop (169-218) 

AsynchStop reverses what Asynchlnit does. Always call AsynchStop before your program ends. 
First, lines 187-189 disable interrupts by resetting the IRQ bit in the 8259 interrupt 
controller. Although this step alone prohibits future 8250 interrupts from reaching the pro
cessor, to be on the safe side, lines 193-206 disable 8250 interrupts and reset bit 3 of the 
modem control register, putting these registers back to their normal noninterrupt states. The 
final instructions in this procedure restore the saved interrupt vector (lines 21 0-215), de
taching the AsynchISR code, 

AsynchStat (220-236) 

AsynchStat returns the status of the 8250 chip. Instead of directly accessing 8250 registers, 
the procedure calls BIOS routine 14h, Table 1 0.4 lists the bits and their meanings in ah and 
al following a call to AsynchStat. 

One way to use AsynchStat is to test ah bit 5 before writing characters. After calling AsynchStat, 

if this bit equals 0, then a previous character has not yet been sent on its way. You might call 
this procedure in a loop such as: 

@@10: 
call AsynchStat 
test ah, 020h 
jz @@10 
call OutputChar 

Table 10.4. AsynchStat Results. 

Line Status Register 
ah bit = 1 

0 Data ready 

Overrun error 

2 Parity error 

3 Framing error 

4 Break interrupt 

5 TX holding reg empty 

6 TX shift reg empty 

7 Time out 

Note: TX= Transmit, RX=Receive 

get Line status 
Is bit 5 = 1? 
NO, jump if bit 5 0 
Call output routine 

Modem Status Register 
at bit = 1 

0 Delta clear to send 

Delta data set ready 

2 Trailing edge ring detect 

3 Delta RX line detect 

4 Clear to send 

5 Data set ready 

·6 Ring indicator 

7 RX line signal detect 



AsynchOut (238·216) 

AsynchOut could call AsynchStat for the line status, but lines 251-255 demonstrate another 
way to do the same thing, directly reading the line status port with an in instruction. Only 
when bit 5 is equal to 1, indicating that the transmit holding register is empry and ready to 

receive another character, is the out instruction at line 258 allowed to send the character in 
a1 to the output. 

Asynchln (263-291) 

Call Asynchln to read one character from the input buffer. Because the procedure has no 
effect if the buffer is empty, you should precede Asynchln with a call to AsynchlnStat, de
scribed next. Notice how lines 285-288 increment bufTail, wrapping the pointer around to 
the front of the buffer if necessaty. 

AsynchinStat (293-31 0) 

AsynchlnStat simply subtracts bufTail from bufHead, returning in dx the number of charac
ters held in the input buffer. Normally, you'll just check if dx is 0 after calling AsynchlnStat. 

If dx is not 0, call Asynchln to read one character from the buffer. Remember always that 
characters may be coming into the buffer even as AsynchlnStat is executing; therefore, the 
value returned in dx may not be exact by the time you examine the register. 

The instruction at line 307 finds the correct positive value of a negative result from the sub
traction at line 305. This is needed because the bufTail and bufHead pointers could be greater 
or less than each other at any time except when the buffer is empty. 

AsynchlSR (312-355) 

You should be able to follow the programming in AsynchISR by reading the comments. Notice 
how the all important end-of-interrupt signal is given to the 8259 PIC (lines 347-348), al
lowing future interrupts to be processed. Line 334 reads a character by executing an in in
struction on the 8250 receive-data register (RxRegister). The other instructions stuff the 
character into the input buffer, advancing bufHead unless the buffer is full. 

NOTE . 

Error handling in AsynchISR is minimal at best. If the input buffer overflows, subsequent 
characters are simply jgnored. This means that your program must call Asynchln often enough 
to prevent overflows. If this is not possible. you will have to modify AsynchISR to: a) set a flag 

413 



PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

indicating that an overflow has occurred and b) send a stop signal to the remote system to 
prevent new input. Normally, the stop signal must be sent several characters before overflow 
occurs to give the remote system's software a chance to detect the overflow condition. Of 
course, you then have to send a start signal to the remote system to begin receiving input 
again. There isn't room here to list the code for all of this-consult Bibliography for an 
excellent reference on the subject of serial communications. 

Debugging with Interrupts 
The breakpoint interrupt, rype 3, is reserved for debugging. (See Table 10.2.) Although Turbo 
Debugger lets you press F2 to set a breakpoint, halting a program just before executing a 
particular instruction, you can also cause a temporary halt by inserting the line: 

int 3 ; Set breakpoint 

When you run a program with this instruction under control of Turbo Debugger (and most 
other debuggers), the program halts when int 3 executes. When running the program from 
DOS, the breakpoint has no effect because the sector for interrupt rype 3 normally points to 

a plain iret instruction in DOS. You can insert as many int 3 instructions as you like into 
a program. When setting many breakpoints in a large program, you may find this easier to 
do than other methods provided by Turbo Debugger. 

Single Stepping 
Setting the trap flag (tf = 1) causes the processor to run in a single-step mode. In this state, 
nearly every instruction is followed by a type 1 automatic interrupt signal, allowing an ISR 
to examine registers and memory, display values, and monitor other program effects. Install
ing your own ISR for this interrupt number gives you a way to gain control of an executing 
program after almost every instruction. 

NOTE 

Turbo Debugger sets tf for its own single-step command, so don't use these techniques in 
programs that you want to run under control of the debugger. The same is true for other. 
debuggers, too. 

A few instructions do not cause rype 1 interrupts to occur. These instructions include all 
prefixes such as rep, assignments via mov and pop to segment registers (which, as you recall, 
temporarily turns off interrupts, including rype 1) and the wait instruction. But after other 

414 instructions execute with tf 1, these three steps are taken: 



1. The flags, cs, and ip registers are pushed onto the stack 

2. The tf and if flags are cleared 

3. The ISR at interrupt type l's vector is executed 

Because the second step clears both the trap and interrupt flags, the single-step ISR does not 
run in single-step mode; therefore, you do not have to be concerned that this ISR will at
tempt a self-examination by interrupting itself, even if you allow interrupts to be recognized 
(as you probably should) by executing sti in the ISR. When the ISR finishes, the iret in
struction restores the flag settings, throwing the processor back into single-step mode. 

Setting and Clearing tf 
Because there are no built-in instructions for setting and clearing tf, another method must 
be found. At first, you might be tempted to tty using the lahf and sahf instructions, which 
transfer values between some processor flags and ah. But this doesn't work because lahf and 
sahf affect only the af, cf, pf, sf, and zf flags-of, df, if, and tf can't be changed with 
sahf. 

One answer to the problem is to push the flags onto the stack with pushf, pop the flag values 
into ax, modifY the tf bit, push the flags back onto the stack and execute popf, transferring 
the modified flag values back into the flag register: 

pushf 
pop 
or 
pUSh 
popf 

ax 
ax, 0100h 
ax 

Push flags onto the stack 
Transfer flags into ax 
Set tf bit = 1 
Push modified flags onto the stack 
pop stack into flag register 

To reset tf, disabling single stepping, change the or instruction to and ax, OFEFFh. The only 
problem with this method is that the instructions to disable single stepping must execute in 
single-step mode. Although this probably won't cause any harm, there is a more elegant so
lution--enable and disable the trap flag inside the single-step ISR, which as you recall, ex
ecutes at full speed. 

Listing 10.6, SINGLE.ASM, demonstrates this method, placing the processor in single-step 
mode for a sample subroutine that counts to 100. During this time, if a local counter reaches 
50, the single-step ISR pauses to display a message. Pressing any key continues the program. 
This simulates how to write a single-step ISR to examine variables in memoty, which you 
might do to learn which sections of a buggy program are changing those variables. (Turbo 
Debugger has commands for performing similar operations, of course, but knowing how to 

install your own debugging code is still a useful technique.) Assemble and link SINGLE.ASM 
with the commands: 

tasm single 
tlink single", mta 

1 

415 



416 

NOTE 

Do not execute SINGLE in Turbo Debugger (or in any other debugger). If the debugger throws 
the processor into single-step mode, a conflict may occur. 

Listing 10.6. 51 NGLE.A5M. 
1 : 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10 : 
11 : 
12 : 
13: 
14 : 
15: 
16: 
17 : 
18 : 
19: 
20: 
21 : 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41 : 
42: 
43: 
44: 
45: 

%TITLE 'Single-Step (Trap) Demo -- Copyright (C) 1989,1995 by Torn Swan" 

IDEAL 

MODEL small 
STACK 256 

cr EOU 13 ASCII carriage return 
If EOU 10 ASCII line feed 
Trapping EOU 0 'Single-stepping is enabled" 
TurnOnTrap EOU Code to enable single-step 
TurnOffTrap EOU 2 Code to disable single-step 

DATASEG 

exitC 

spaces 

offMsg 
onMsg 
pauseMsg 
countMsg 

DB 

DB 

DB 
DB 
DB 
DB 

o 

o ; String of 4 blank characters 

cr, If, 'Single-step trap is off', cr, If, 0 
cr, If, 'Single-step trap is on', cr, If, 0 
'Press any key to continue ... " 0 
cr, If, If, 'Count 50!', cr, If, 0 

trapSwHch DB o Trap enable/disable switch 
Miscellaneous string string 

count 
trapSeg 
trapOfs 

Start: 

DB 
OW 
DW 
OW 

CODESEG 

40 DUP (7) 
? 
? 
? 

For Counter subroutine 
Old int type 1 

vector address 

From STRIO.OBJ, BINASC.OBJ, KEYBOARD.OBJ 
EXTRN StrWrite:proc, NewLine:proc, BinToAscDec:proc 
EXTRN GetCh:proc 

mov 
mov 
mov 

ax, @data 
ds, ax 
es, ax 

Initialize DS to address 
of data segment 

Make es ds 

Save int type 1 vector and reassign to Stepper ISR 



46: 
47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61 : 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69; 
70; 
71 : 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 

Exit: 

92: PROC 
93: 
94: 
95: 

mov ax, 3501h 
int 21h 
mov [trapSeg] , es 
mov [trapOfs] , bx 
push ds 
mov ax, 2501h 
push cs 
pop ds 
mov dx, offset Stepper 
int 21h 
pop ds 
push ds 
pop es 

Execute sample code at full speed 

mov 
call 

di, offset offMsg 
Counter 

Get int type 1 vector 
Call DOS 
Save segment value 
Save offset value 
Save current ds register 
Set int type 1 vector 
to the address of 
the Stepper ISR 

Restore ds 
Set es equal to ds 

Display 'Trapping is off' 
Call sample subroutine 

Execute sample code in single-step mode 

mov 
mov 
int 
call 
mov 

di, offset onMsg 
[trapSwitch], TurnOnTrap 
1 

Display 'Trapping is on" 
Tell ISR to turn 

on trapping 
sample subroutine 

Tell ISR to turn 
off trapping 

Counter , Call 
[trapSwitch), TurnOff Trap 

Reexecute sample code at full speed 

mov di, offset offMsg Display "Trapping is off" 
call Counter Call sample subroutine 

push ds Save current ds register 
mov ax, 2501h Reset int type 1 vector 
mov ds, [trapSegj to the address saved 
mov dx, [trapOfs] at trapSeg and trapOfs 
int 21h 
pop ds Restore ds 
mov ah, 04Ch DOS function: Exit program 
mov aI, [exitC] Return exit code value 
int 21h Call DOS. Terminate program 

Subroutine: Displays string, pauses, and counts to 100 

Counter 
call 
call 
rnov 

StrWrite 
Pause 
[count], 0 

Display id message 
Wait for keypress 
Zero count 

continues 

417 



418 

listing 10.6. continued 
96: @@10: 
97: inc [count] count <- count + 1 
98: mov ax, (count J Convert count to string 
99: mov cx, 4 Minimum string size 

100: mov di, offset string 
101 : call BinToAscDec 
102: call StrWrite Display string 
103: mov di, offset spaces Display 4 blanks 
104: call StrWrite 
105: cmp (count] , 100 Repeat until count 100 
106: jb @@10 
107: ret Return to caller 
108: ENDP Counter 
109: 
110: 
111 : Subroutine: Display message and wait for keypress 
112: 
113: 
114: 
115: 
116: 
117: 
118: 
119: 
120: 
121 : 
122: 
123: 
124: 
125: 
126: 
127: 
128: 
129: 
130: 
131 : 
132: 
133: 
134: 
135: 
136: 
137: 
138: 
139: 
140: 
141 : 
142: 
143: 
144 
145: 
146: 
147: 
148: 
149: 
150: 

PROC Pause 
mov 
call 
call 
call 
ret 

ENDP Pause 

%NEWPAGE 

j Stepper 

Input: 

di, offset pauseMsg 
StrWrite 
GetCh 
Newline 

Single-Step trap ISR 

[trapSwitch] = TurnOnTrap 
Single-step mode enabled 

[trapSwitchl = TurnOff Trap 
Single-step mode disabled 

(trapSwitchj = ??? 

Output: 
none 

Registers: 
none 

PROC Stepper 
sti 
push 
mov 
push 
push 
push 
push 
push 
push 
push 
push 

no action 

bp 
bp, sp 
ax 
bx 
cx 
dx 
di 
si 
ds 
es 

Display pause message 

Wait for a keypress 
Start new display line 
Return to caller 

Allow interrupts 
Save current bp register 
Address stack with bp 
Save all registers 



151: Address local data with ds, es 
152: 
153: 
154: 
155: 
156: 

mov 
mov 
mov 

ax. @data 
ds, ax 
es, ax 

Initialize OS to address 
of data segment 

Make es ds 

157: Test trapSwitch to turn single-step mode on/off 
158: 
159: 
160: 
161 : 
162: 
163: 
164: @@10: 
165: 
166: 
167: 
168: 
169: 
170: @@20: 
171 : 
172: 
173: 
174: 
175: 
176: 
177: 

cmp 
jne 
or 
mov 
jmp 

cmp 
jne 
and 
jmp 

[trapSwitch]. TurnOnTrap 
@@10 
[word bp+6J. 0100h 
[trapSwitch]. Trapping 
@@99 

[trapSwitch]. TurnOff Trap 
@@20 

Set tf (enable trap) 
'Trapping is enabled' 
Exit 

[word bp+6], 0FEFFh Reset tf (disable trap) 
@@99 Exit 

Insert single-stepping trap code here 

cmp 
jne 
mov 
call 

[count], 50 
@@99 
di, offset countMsg 
Str'Write 

IS count = 50 
If not, exit 
Else display count message 

178: call Pause 
[count] 
Newline 

And wait for keypress 
To allow program to continue 179: inc 

180: call 
181 : 
182: @.@99: 
183: 
184: 
185: 
186: 
187: 
188: 
189: 
190: 
191 : 
192: 
193: ENOP 
194: 
195: 

pop es 
pop ds 
pop si 
pop di 
pop dx 
pop cx 
pop bx 
pop ax 
pop bp 
iret 
Stepper 

END Start 

How 51 NGLE Works 

Restore all registers 

Return from interrupt 

End of program / entry point 

When you run SINGLE, you first receive a message that the single-step trap is off. Press Enter 
and the program then calls a subroutine to count from 1 to 100 at full speed. Mter this, 
single-step mode is turned on by setting tf. Pressing Enter again calls the counting subrou
tine, which as you can see, runs much more slowly because every instruction is interrupted, 
giving the custom ISR control. When this ISR detects a count of 50, it halts the counting 
and asks you to press any key. Press Enter to resume operation. To show that you can return 419 



420 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

from single stepping to full speed at any time, the program resets the trap flag. Press Enter a 
final time to count once again at top speed. 

Three equates in SINGLE-Trapping, TurnOnTrap, and TurnOffTrap at lines 1O-12-define 
three states recognized by the Stepper ISR (lines 138-193). Byte variable trapSwitch at line 
26 holds one of these three values, which alter the way Stepper runs. If trapSwi tch equals 
TurnOnTrap, then Stepper enables single stepping by setting the tf flag. If trapSwitch equals 
TurnOffTrap, then Stepper disables single stepping by resetting tf. If trapSwitch equals Trap
ping, then Stepper runs a small section of code that examines the global count variable (see 
line 28). When count equals 50, the program displays a message and asks you to press a key. 

SINGLE begins by saving the current vector for interrupt type 1 and then changing this vector 
to address the custom Stepper ISR (lines 46-58). Next, the program calls the Counter subrou
tine (lines 92-108), which coums to 100, displaying columns of values on screen. After this first 
call to Counter, which runs at full speed, the trapSwi tch is set to TurnOnTrap (lines 67-68). Line 
69 then immediately forces a trap to interrupt type 1 with the software interrupt command: 

int 

This causes the Stepper ISR to begin running for the first time. When the ISR senses that 
the trapSwHch is set to TurnOnTrap (lines 159-163), an or instruction modifies the tf flag 
stored on the stack by the int instruction, using the bp register method for addressing stack 
variables. After setting the flag bit on the stack, the next iret instruction, which restores the 
actual flags from the saved values on the stack, throws the processor into single-step mode. 
To do this, line 162 changes the trapSwi tch to Trapping, and the program jumps to exit the 
ISR, skipping the rest of the code. 

As soon as the iret at line 192 executes, the program starts running in a single-step mode. 
Interrupts of type 1 are now automatically generated by the processor after nearly every in
struction, causing the Stepper ISR to run at this frequency. But this time, because the 
trapSwitch was set to Trapping, the jump at line 160 bypasses the code that sets tf, execut
ing the main ISR body at lines 165-180. The first job is to test the trapSwi tch again to see if 
the program is requesting single-step mode to be turned off. If so, the and instruction at line 
167 modifies the flag bit on the stack (similar to the way this bit was set earlier) and jumps 
to exit the ISR. Upon executing the iret this time, tf remains off (it's off during the ISR, 
remember), causing the program to continue at full speed. 

If the t rapSwi tch equals Trapping, then line 166 jumps to the instructions at lines 170-180, 
which examine the count variable and pause if this value equals 50. (To prevent pausing more 
than once, line 179 increments count.) By replacing only this section (lines 174-180), you 
can use the Stepper ISR in your own programs to examine whatever you want after almost 
every instruction executes. To do this, copy lines 10-12,26, and the Stepper ISR at lines 
123-193. Remove lines 174-180 and insert your own test instructions. Then, to enable single 
stepping, use the instructions: 

mov 
int 

[trapSwitch), TurnOnTrap 
1 



INTERRUPT 

To disable single stepping, returning the processor to full speed, execute: 

mov [trapSwitehl, TurnOff Trap 

Non 

Before returning to DOS, you must disable single stepping in any program that sets the tf 
flag. Failure to follow this rule could hang the computer, forcing you to reboot. If the program 
ends unexpectedly, reboot as soon as possible-if you are able. 

Summary 
An interrupt is a signal that causes an executing program to pause, run a special subroutine called 
an interrupt service routine (ISR), and then resume normal execution. In the 8086 processor 
family, there are two kinds of interrupt signals: external and internal. External interrupts can 
occur at any time. Internal or software interrupts occur only when programs execute an int or 
into instruction or when certain conditions occur, such as a divide-by-zero exception. 

Because an external interrupt signal can occur at any time, external ISRs must preserve all regis
ters. Flags are preserved automatically by the processor when it recognizes an interrupt signal. 
Internal ISRs may pass values in registers back to programs, similar to the way common subrou
tines operate. In either case, interrupts are never processed until the current instruction finishes. 

Maskable interrupts can be temporarily disabled with eli and enabled with sti instructions. 
Nonmaskable interrupts can't be disabled. (You may be able to disable circuits that generate 
nonmaskable interrupts.) On pes, externally generated interrupts are piped to an 8259 in
terrupt controller (PIC) chip, which resolves conflicts between multiple interrupts and passes 
interrupt signals to the processor's single INTR input line. 

Interrupt vectors are stored in low memory at segment 0000, from offset OOOOh to 03ffh. 
You can install your own ISR code by inserting the address of your routine into the correct 
vector location for the appropriate interrupt number. DOS contains functions to return 
interrupt vector values and to insert new values in the interrupt vector table. If you change 
any vectors, it's your responsibility to restore their original values before your program ends. 

Divide errors occur when the divisor to div or idiv is 0, or when the result of the division is 
too large to fit in the 8- or 16-bit destination. A divide error causes an automatic interrupt 
type 0 to be generated, executing the ISR at the vector stored in location 0000:0000 and 
usually halting the program. This condition can be prevented by installing a custom ISR to 
trap the interrupt. But the job is complicated by subtle differences between 8086/88 and 
80286/386 and later processors. Solving this problem is tricky, but it can be done as an ex
ample in this chapter demonstrates. 

A good method to write programs to communicate with remote computers over a serial line 

1 

or through a modem is to use interrupt-driven routines to capture data as it comes in, thus 421 



r~U\J~"'IVIM""\J WITH ASSEMBlY lANGUAGE 

eliminating the problems that can occur when a program pauses for a disk write or another 
operation for too long, resulting in lost data. The ASYNCH package in this chapter demon
strates the techniques. An accompanying terminal program helps debug a serial interface line. 

Although Turbo Debugger can run programs in single-step mode, it's useful to know how 
to install your own single stepper. The SINGLE program in this chapter illustrates how to 

do this and can serve as a shell for your own single-stepping debugging sessions. 

Exercises 
10.1. Why is it important to save register values in an external ISR? 

10.2. What does iret do? 

10.3. What instruction disables interrupts? What instruction enables interrupts? What do 
these instructions do? In an ISR, what are logical locations for these instructions? 

lOA. Write code to install a new ISR named NewISR for interrupt number OICh. Write 
code to restore the original interrupt vector before the program ends. 

10.5. Can an interrupt service routine be interrupted by another interrupt? 

10.6. After processing an externally generated interrupt on PCs, what instructions 
must you execute to ensure that future interrupts are recognized? 

10.7. The external Print Screen interrupt on PCs is number 5. Write a subroutine that 
printS the screen. It should not be necessary to press the PrtSc key! 

10.8. What is the difference berween a divide-fault interrupt on 8086/88 and 802861 
386 and later processors? 

10.9. What instruction can you use to insert breakpoints in programs? 

10.10. Write instructions to set the trap flag, using a method different from the rwo that 
are described in this chapter. 

Projects 
10.1. Rewrite the TRM program, adding subroutines to emulate a full CRT terminal. 

10.2. Improve the ASYNCH module by adding code to send a stop signal (usually 
ASCII 0 13h or Ctrl-S) before the input buffer overflows. Also add code to send a 
start signal (usually ASCII Ollh or Ctrl-Q), allowing input to again be received. 

10.3. [Advanced) Add interrupt-driven output routines to ASYNCH.ASM. (Note: You'll 
need additional references for the 8250 and 8259 chips to accomplish this project.) 

lOA. Write a version of the divide-fault program (DIV286.ASM) that uses conditional 
compilation to create a program for all processor models. 

10.5. Convert the SINGLE program to a library module for adding single-step 
debugging code to any program. (Hint: Use the call bx method from Listing 
9.5, DR.ASM, line 91, to call custom code from inside the single-step ISR.) 

422 10.6. Write a program to print a report of all interrupt numbers and vector addresses. 



----------_ .. _.-.. _- ---------------

Advanced Topics 

_ Advancing Your Assembly Language Knowledge, 424 

_ Binary Coded Decimals, 424 

_ A BCD Math Package, 429 

_ Advanced Separate Assemblies, 438 

_ Processing Tables, 442 

_ Declaring Segments the Hard Way, 446 

_ The SEGMENT Directive, 447 

_ The ASSUME Directive, 451 

_ The GROUP Directive, 452 

_ Using Segments in Programs, 453 

_ Far Data Segments, 458 

_ Programming the 80286 and Later Processors, 461 

_ Programming the 80386, 468 

_ The VERSION Directive, 474 

_ Enumerated Data Types, 475 

_ Getting SMART, 478 

_ Some Additional Instructions, 481 

_ Summary, 486 

_ Exercises, 488 

_ Projects, 489 



424 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Advancing Your Assembly Language Knowledge 
In the preceding chapters, you learned how to use most of the 8086 instruction set, and you 
entered and ran many examples illustrating various assembly language techniques. At this 
point, you're probably ready to begin writing your own programs-if you haven't done so 
already. But, we still have some fenile ground to cover, including a few new instructions for 
business mathematics and table processing, special instructions in 80286, 80386 and later
model processors, and directives that simplify sharing data among multiple program mod
ules. 

Many of you may someday tackle a large assembly language project that requires special data
segment handling not provided by the simplified memory models used by most programs in 
this book. For this, you'll probably want to specify segments the hard way, telling Turbo 
Assembler and Turbo Linker the exact size and location of data and code segments. You may 
also want to attach a for data segment-a quick way to double your program's data capacity. 
This chapter covers these and other subjects, collected here in a kind of grab bag of tips, 
hints, and programs for advanced assembly language programming. 

Binary Coded Decimals 
Numbers in business application programming must be large and precise-two requirements 
that pose special problems for assembly language programmers accustomed to dealing with 
relatively small binary values. For example, representing dollar amounts with word integers 
ranging from -32,768 to +32,767 won't do--after adding an imagined decimal point, 
amounts are limited to the penny-pinching range, -$327.68 to +$327.67. 32-bit doubleword 
values ranging from -$21,474,836.48 to +$21,474,836.47 are better, but may still be too 
restrictive for businesses that need to keep running totals on inventory and payroll and for 
other accounting purposes. Also, converting such double-precision values to and from ASCII 
is time consuming. Floating-point representations are even worse, introducing the possibil
ity of round-off errors, which may be acceptable for scientific measurements that allow for 
such errors, but which are unacceptable in business. 

One answer to these problems is to store numbers in binary coded decimal (BCD) form, 
which is easily converted to and from ASCII, and which can store very large numbers con
tainingup to 20 digits fur a maximum dollar amount of$999,999,999,999,999,999.99 (about 
a trillion trillion). There are two main variations of BCD numbers: 

• Packed BCD numbers store 2 digits per byte, usually with individual digits in high
to-low order, but with the bytes in low-to-high order. 

• Unpacked BCD numbers store 1 digit per byte, ordering the bytes in either low
to-high or high-to-Iow sequence. 



Packed BCD numbers are probably the most common, storing 2 decimal digits in each byte-
1 digit in the upper 4 bits and the other in the straight binary. Because 4 bits can represent 
binary values from 0 to 15, using 4 bits to represent numbers ranging from only 0 to 9 wastes 
a little space in each byte. (Another way to look at this is to consider that a packed BCD byte 
can store values from only 0 to 99 while a binary byte can normally represent values from 0 
to 255.) 

Unpacked BCD numbers are mostly used as an intermediate form for converting packed 
BCD numbers to and from ASCII characters. As you'll see in a moment, there is a nearly 
direct relationship between ASCII and unpacked BCDs. Unfortunately, this format is even 
more inefficient, capable of representing values ranging from only 0 to 9 in a single byte. 

BeDs in Memory 
You can create packed and unpacked BCD variables in memory with the dt and db direc
tives. The dt directive creates a 10-byte, 20-digit, packed BCD value. For example: 

packed dt 81659247 j Packed BCD number 

This command always allocates 10 bytes, III this case, storing the value 
00000000000081659247 at label packed. Ignoring leading zeros, Figure ILl shows how 
this value is stored in memory. The lower two digits (4 and 7) occupy the first byte, the next 
higher two digits (9 and 2) occupy the second byte, and so on. As you'll see in a moment, 
this semireversed ordering makes it easy to perform mathematics operations on two packed 
BCD numbers. 

Turbo Assembler lacks directives for creating unpacked BCD numbers, although you can 
use db if you're careful. For example, here is the same value, 81,659,247, allocated as an 
unpacked 20-byte BCD number: 

unpaCked db 7,4,2,9,5,6,1,8,O,O j Unpacked BCD number 
db 0,0,0,0,0,0,0,0,0,0 

Figure 11.2 iHustrates how this value appears in memory, again ignoring leading digits. Like 
the packed format (Figure 11.1), the digits are reversed, an arbitrary choice that depends 
only on how other software uses the unpacked values. You can just as easily store unpacked 
BCDs the other way around-as long as you're prepared to write the necessary code to handle 
this format. 

" " 

NME • 

Turbo Debugger recognizes packed BCD numbers and can display their values in the Watch 
and Variable windows. The debugger does not recognize unpacked BCD numbers. Use the 
View:Dump command to view the bytes of unpacked values. 

425 



426 

I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

4-bit 'Nybbles' Figure 11.1. 
The packed BCD value 
81,659,247 i1S stored in 
memory. 

4/1 ~~ 
~D~~ 

a-bits a-bits a-bits a-bits 

Figure 11.2. 
The unpacked BCD vaLue 
81.659,247 as stored in 
memory. 

I 07 I 04 I 02 I 09 I 05 I 06 I 01 I 08 I 

a bytes 

Unpacked BCD Instructions 
Four 8086 instructions aaa, aad, aam, and aas convert unpacked BCD digits to and from 
binary values, making operations on BCD numbers easy to write. Let's take these one by 
one. 

Use aaa (ASCII Adjust After Addition) after adding two single-digit BCD bytes with add or 
adc. The sum must be in a1. If the sum is greater than 09, then ah is incremented, and al is 
adjusted to be within the range 0-9. For example, to add the twO digits 04 and 08, you can 
write: 

mov bl, 04h 
mov aI, 0ah 
add aI, bl 
xor ah, ah 
aaa 

First digit in bl 
Second digit in al 
Sum must be in al 
Zero ah 
Adjust to unpaCked BCD 

This adds the unpacked values 04 and 08, placing the sum in a1. Because the addition is done 
in binary, al in this example now equals OCh. To convert this value back to unpacked BCD 
form, xor zeros ah, and aaa is executed. Because in this example the sum in al is greater than 
9, ah is incremented, and al is adjusted. The result is ax = 0102-the answer (12) in un
packed BCD format. 

A similar instruction aas (ASCII Adjust After Subtraction) adjusts the difference of two un
packed BCD digits after sub or sbb. If a borrow was required, then 1 is subtracted from ah, 
and al is adjusted to be within the range 0-9. For example, to subtract 08 from 0406, you 
can write: 

mov ax, 0406h 
mov bl, 08h 
sub aI, bl 
aas 

Assign first value to ax 
Assign second value to bl 
Subtract 0406h 08H 
Adjust to unpacked BCD 

The binary subtraction leaves ax = 04feh, which aas then converts to the unpacked BCD 
value 0308h, or 38 decimal-the result of subtracting 46 - 8. 



Two other instructions aad (ASCII Adjust Before Division) and aam (ASCII Adjust After 
Multiplication) convert unpacked BCD values to and from binary, which you might do before 
and after BCD multiplication and division. But don't be taken in by the suggestive mne
monics-you can use these instructions at other times, too. You don't have to follow aad 

with a division or precede aam with a multiplication. 

To convert two unpacked BCD numbers in ax to binary, use aad. Because the largest such 
number that ax can hold is 0909h, aad always zeros ah while setting a1 to the binary equiva
lent of the BCD digits. For example: 

mov ax, 0406h 
aad 

; Assign unpacked BCD to ax 
; Convert. ax ~ 002Eh (46 deCimal) 

The unpacked BCD value 0406h in ax is converted to the binary equivalent value 002Eh (46 
decimal) by aad. To reverse the process, convening binary val ues to unpacked BCD, use aam 

as in this sample: 

mov a)(, 005Fh 
aam 

j Assign binary value to ax 
j Convert. a)( = 0905h (05F hexadecimal) 

The binary value 005Fh (95 decimal) in ax is converted to the unpacked BCD equivalent 
0905h by aam. The largest such value that aam can handle in ax is 0063h (99 decimal). 

Converting Unpacked BCD and ASCII 
Because the upper 4 bits of an unpacked BCD byte always equal 0 (see Figure 11.2), con
verting unpacked BCDs to and from ASCII is easy. Recall that the ASCII digits 0-9 are en
coded as the hexadecimal values 30h-39h; therefore, to convert unpacked BCD digits to ASCII 
is a simple matter of setting the upper 4 bits to 3: 

mov ax, 0307h ; Assign unpacked BCD to ax 
or ax, 3030h ; Convert to ASCII (ax = 03337h) 

Oring ax with 3030h sets the upper 4 bits in both ah and al to 3, changing 0307h to 3337h

the two ASCII encoded digits 33h (3) and 37h (7). Converting ASCII digits to unpacked 
BCD format is equally simple-just use and to strip the ASCII information from each digit: 

mov ax, '81' ; Assigns 03831h to ax 
and ax, 0F0Fh ; Convert to unpacked BCD (ax = 0801h) 

After assigning the string '81' (equal to 03831 h) to ax, a logical AND with the mask 0F0Fh 

sets the upper 4 bits of both ah and a1 to 0, thus converting the digits to unpacked BCD 
format. 

NOTE . 

The order of digits in the previous two samples is not reversed as shown in Figure 11.2. When 
converting unpacked BCDs to and from ASCII, you have to pay attention to such details. 

427 



428 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Packed BCD Instructions 
Two "Decimal" instructions daa and das operate on packed BCD values, similar to the way 
the "ASCII" instructions aaa and aas work. Use daa after adding two packed BCD bytes 
containing two digits each as in: 

xor ah, ah 
mov aI, 087h 
mov bl, 035h 
add aI, bl 
daa 

Zero ah 
Set al to packed BCD 87 
Set bl to packed BCD 35 
Add al <- al + bl 
Convert. al 22h, cf,ah = 1 

The xor zeros ah for reasons explained later. The two packed BCD values 87h and 35h are 
assigned to al and bl. An add instruction adds the values, placing the binary sum in aI, which 
then equals 0BCh. Executing daa converts this binary value to packed BCD, setting al to 22h. 
But the correct answer is 122 (87 + 35), not 22, and the code must be completed by check
ing the carry flag for a possible overflow: 

jnc @@10 
inc ah 
@@10: 

Skip increment if cf 0 
; Add 1 to ah 

Technically, if daa detects an overflow when the packed BCD result after addition is greater 
than 99 (the maximum BCD value that 1 byte can store), both cf and af flags are set to 1; 
otherwise, both flags are cleared. In practice, you can just check cf to detect this condition. 
In this example, ah is incremented, setting ax to the correct answer 0122h. This is the reason 
that ah was zeroed earlier. 

NOTE 

After daa, if af 1 and cf = 0, then the result in al is within the range 10h to 99h-in other 
words, a carry was generated out of the lower 4 bits of the answer-a fact of little practical 
value. 

The complement to daa is das, which adjusts packed BCD values after subtraction by sub or 
sbb. Because subtraction can generate negative numbers, using das requires a little extra care. 
First, let's look at a sample that produces a positive result: 

mov aI, 062h 
mov bl, 036h 
sub aI, bl 
das 

Set al to packed BCD 62 
Set bl to packed BCD 36 
Subtract al <- al bl 
Convert. al = 026h 

The packed BCD values 62h and 36h are assigned to al and bl. A sub instruction subtracts 
the values, depositing the binary difference (02Ch) in al. Executing das converts this binary 
value to packed BCD, changing al to 026h-the correct answer in decimal for the subtrac
tion 62 - 36. After this, if cf equals 0, then no borrow was required; therefore, the answer in 
al can be used directly. 



---.~ •... ~~ .... ~~~~~~~--.--~ .... --.. -- .~---. ~.--... 

ADVANCED 

NOTE * 

Technically, both cf and af must equal 0 to indicate no borrow. If cf = 0 but af = 1, then a 
borrow was required by the lower digits. If you run the previous sample in Turbo Debugger, 
you'll see this happen. Subtracting 62 36 requires a borrow for the lower two digits (2 and 
6). Normally, you can ignore this special condition and just inspect cf to see if a borrow was 
required for the full subtraction. 

When a subtraction generates a negative result, the process becomes more complicated. You 
must check the carry flag to detect a borrow from the subtraction, indicating that the result 
in al is a negative decimal complement, which can then be further manipulated to find the 
absolute value of the answer. An example helps clarify how to do this: 

mov aI, 036h 
mov bl, 062h 
sub aI, bl 
das 
jnc @@10 
neg al 
das 
@@10: 

Set al to packed BCD 36 
Set bl to packed BCD 62 
Subtract al <- al - bl 
Convert. al = 074h 
Jump if no borrow 
Negate al (in binary) 
Convert to packed BCD 

As before, al and bl are assigned the packed BCD values to be subtracted. A sub instruction 
subtracts bl from aI, which in this sample creates a negative (two's complement) binary re
sult in al equal to OD4h. This value is converted to packed BCD format by das, changing al 

to 74h. But this is not the correct answer-(36 62) = -26, not 74. A check of the carry flag 
by inc detects this condition, indicating that al is a decimal complement, converted to an 
absolute value by subtracting 100. (74 100 -26, the correct answer.) The easiest (though 
perhaps not most obvious) way to find the decimal complement is to execute neg, which 
subtracts its operand value (al in this case) from O. Because this leaves the answer in al in 
binary, another das again converts the result back to packed BCD format, setting al at long 
last to the correct absolute value answer, 26. 

A BCD Math Package 
Performing math operations on multiple-precision value5--those containing more bytes or 
words than can comfortably fit within registers and, therefore, requiring multiple operations 
to add, subtract, multiply, and divide-adds an additional level of difficulty to program
ming BCD procedures. To demonstrate some of the issues involved in writing such rou
tines, and to give you a few useful procedures that you can use in your own code, Listing 
11.1, BCD.ASM, contains six subroutines to add and subtract packed BCD values and to 

convert BCD numbers among packed, unpacked, and ASCIIZ string formats. There's also 
a procedure that copies a packed BCD 10-byte value to another BCD variable. Assemble 
and stOre the module in MT A.LIB with the commands: 

429 



430 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 
... __ .. __ .. _--_ .. _------------------------------

tasm Izi bcd 
tlib IE mta -+bcd 

As usual, ignore the warning that BCD is not in the library-it won't be until you install it 
the first time. If you make any changes to the programming, use these same commands to 
reassemble and install the new module. Instructions for using the BCD module follow the 
listing. 

Listing 11.1. BCD.ASM. 
1 : 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10 : 
11 : 
12: 
13 : 
14: 
15: 
16: 
17 : 
18: 
19: 
20: 
21 : 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31 : 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41 : 
42: 
43: 
44: 

%TITLE 'Binary Coded Decimals (BCD) -- by Torn Swan' 

IDEAL 

MODEL small 

Equates 

ASCIINUll 
PackedSize 
UnpackedSize 

EOU 
EOU 
EOU 

o 
10 
20 

ASCII end-of-string null character 
Bytes in a packed BCD value 
Bytes in an unpacked BCD value 

note: PackedSize must be evenl 

UDATASEG 

TempUPBCD DT ?, ? Unpacked BCD word space (20 bytes) 

%NEWPAGE 

; BCDAdd 

Input: 

CODESEG 

PUBLIC BCDAdd, BCDSubtract, PackedToUnpacked 
PUBLIC UnpackedToPacked, BCDToASCII, BCDCopy 

Add two packed BCD numbers 

si address of source BCD value (10 bytes) 
di address of destination BCD value (10 bytes) 

Output: 
destinationBCD <- destinationBCD + sourceBCD 
cf 0 No error 
cf 1: Overflow error occurred 

Registers: 
none 

PROC BCDAdd 
push 
push 
push 

ax 
cx 
di 

j Save modified registers 



45: 
46: 
47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 

@@10: 

ENDP 
%NEWPAGE 

push si 

cld 
clc 
mov cx, 

lodsb 
adc aI, 
daa 
stosb 
loop @@10 

pop si 
pop di 
pop cx 
pop ax 
ret 
BCDAdd 

Auto-increment si & di 
Clear carry for 1st adc 

PackedSize Assign loop count to cx 

Get two digits of source 
[byte diJ Add two digits of dest + cf 

Adjust to packed BCD format 
Store result in destination 
Loop until done (cx = 0) 

Restore saved registers 

Return to caller 

64: ,---------------------------------------------------------------
65: ; BCDSubtract Subtract two packed BCD numbers 
66: 

PROC 

@@10: 

ENOP 
100: %NEWPAGE 

BCDSubtract 
push ax 
push cx 
push di 
push si 

cld 
clc 
mov CX, PackedSize 

lodsb 
sbb [byte diJ, al 
mov aI, (byte di] 
das 
stosb 
loop @@10 

pop si 
pop di 
pop cx 
pop ax 
ret 
BCDSubtract 

Auto-increment si & di 
Clear carry for 1st sbb 
Assign loop count to cx 

Get two digits of source 
dest <- dest source bytes 
Load binary result into al 
Adjust to paCked BCD format 
Store result in destination 
LOop until done (cx = 0) 

Restore saved registers 

Return to caller 

continues 

431 



432 

Listing 11.1. continued 
101 : 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111: 
112: 
113: 
114: 
115 : 
116: 
117: 
118: 
119: 
120: 
121 : 
122: 
123: 
124: 
125: 
126: 
127: 
128: 
129: 
130: 
131 : 
132: 
133: 
134: 
135: 
136: 
137: 
138: 
139: 
140: 
141 : 
142: 
143: 
144: 
145: 
146: 
147: 
148: 
149: 
150: 
151 : 
152: 
153: 
154: 

; PackedToUnpacked Convert packed BCD to unpacked BCD 

Input: 
si 
di 

address of source packed BCD value (10 bytes) 
address of destination unpacked BCD value (20 bytes) 

Output: 
destinationBCD <- unpacked( sourceBCD ) 

Registers: 
none 

PROC PackedToUnpacked 
push ax 
push cx 
push di 
push si 

cld 

; Save modified registers 

mov cx, PackedSize 
Auto-increment si & di 
Assign loop count to ex 

@@10: 
lodsb 
mov ah, al 
shr ah, 1 
shr ah, 
shr ah, 
shr ah, 
and aI, 0Fh 
stosw 
loop @@10 

pop si 
pop di 
pop cx 
pop ax 
ret 

ENDP packedToUnpacked 
%NEWPAGE 

; UnpackedToPacked 

Input: 

Get two digits of source 
Copy digits from al to ah 
Shift upper digit to 

lower 4 bits of ah 

Mask upper digit from al 
Store ax to destination 
LOOp until done (cx = 0) 

Restore saved registers 

Return to caller 

Convert unpacked BCD to packed BCD 

s~ 

di 
Output: 

address of source unpacked BCD value (20 bytes) 
address of destination packed BCD value (10 bytes) 

destinationBCD <- paCked( sourceBCD ) 
Registers: 

PROC UnpackedToPacked 
push ax ; Save modified registers 
push cx 
push di 
push si 

cld Auto-increment si & di 



ADVANCED TOPIcs 

mov 
@@10: 

Iodsw 
shl 
shl 
shl 
shl 
or 
stosb 
loop 

pop 
pop 
pop 
pop 
ret 

cx, PackedSize 

ah, 
ah, 
ah, 
ah, 
aI, ah 

@@10 

si 
di 
cx 
ax 

Assign loop count to cx 

Get two digits of source 
Shift digit to 
upper 4 bits of ah 

Pack 2 digits into al 
Store al to destination 
LOOp until done (cx = 0) 

Restore saved registers 

Return to caller 

155: 
156: 
157: 
158: 
159: 
160: 
161 : 
162: 
163: 
164: 
165: 
166: 
167: 
168: 
169: 
170: 
171: 
172: 
173: 

ENDP Unpacked To Packed 
%NEWPAGE 

174: ; BCDToASCII convert packed BCD value to ASCII 
175: 
176: Input: 
177: si address of source packed BCD value (10 bytes) 
178: di address of destination ASCIIZ string (21 bytes) 
179: Output: 
180: ASCIIZ <- ASCII( sourceBCD) + null character 
181: Registers: 
182: none 
183: ---------------------------------------------------------------
184: PROC 
185: 
186: 
187: 
188: 
189: 
190: 
191 : 
192: 
193: 
194: 
195: 
196: 
197: 
198: 
199: @@10: 
200: 
201 : 
202: 
203: 
204: 
205: 
206: 
207: 
208: 
209: 
210: 

BCOTOASCII 
push 
pUSh 
push 
push 

push 
mov 
call 
pop 

Address 
mov 

mov 

std 
lodsw 
or 
xchg 
cld 
stosw 
loop 
mov 

pop 
pop 

ax 
ex 
di 
si 

di 
di, offset TempUPBCO 
PackedToUnpacked 
di 

j Save modified registers 

Save destination address 
Use temporary work area 
Unpack source to temp 
Restore destination address 

last word of temporary work space 
si, offset TempUPBCD + unpackedSize - 2 

cx, PackedSize 

ax, 03030h 
ah, al 

@@10 
[byte dil, ASCIINull 

si 
di 

Assign loop count to cx 

Auto-decrement si 
Get two digits into ax 
Convert to ASCII 
Swap characters 
AutO-increment di 
Store chars in destination 
Loop until done (cx 0) 
Store end-of-string marker 

Restore saved registers 

continues 

433 



434 

t'RC)GRI\MIVIING WITH ASSEMBLY LANGUAGE 

Listing 11.1. continued 
211: pop ex 
212: pop ax 
213: ret Return to caller 
214: ENDP BCDToASCII 
215: .. NEWPAGE 
216: 
217: ; BCDCopy Copy a packed BCD value 
218: 
219: 
220: 
221: 
222: 
223: 
224: 
225: 
226: 
227: 
228: 
229: 
230: 
231: 
232: 
233: 
234: 
235: 
236: 
237: 
238: 
239: 
240: 
241: 
242: 

Input: 
si = address of source BCD value (10 bytes) 
di = address of destination BCD value (10 bytes) 

Output: 
destinationBCD <- sourceBCD 

Registers: 
none 

PROC BCOCopy 
puSh ex 
push di 
push si 

eld 
mov cx, PackedSize/2 
rep movsw 

pop s1 
pop di 
pop cx 
ret 

ENOP . BCOCopy 

; Save modified registers 

Auto-increment si & di 
Assign lOOP count to cx 
Copy using word moves 

Restore saved registers 

Return to caller 

END End of BCD module 

Using the BCD Module 
The six routines in the BCD module recognize the packed and unpacked BCD data formats 
described at the beginning of this chapter (See Figures 11.1 and 11.2.) Packed BCD values 
must be 10 bytes long and may contain up to 20 digits. Unpacked BCD values must be 20 
bytes long and may also contain up to 20 digits. It's your responsibility to ensure that vari
ables are large enough to hold the results of various operations. Also, because string instruc
tions are used by all subroutines, segment registers es and ds must address the same data 
segment. To use the package in a program, declare the subroutines you need in EXTRN state
ments usually just after a CODESEG directive as in: 

CODESEG 
EXTRN BCDAdd:proc, BCDSubtract:proc, packedToUnpacked:proc 
EXTRN Unp~ckedToPacked:proc, BCDToASCII:proc, BCDCopy:proc 



AOVASCED TOPICS 

You can then run any of the six routines with call instructions. The following notes explain 
each of the routines, listing line numbers from Listing 11.1 in parentheses. 

NOTE ' 

All BCD values must be unsigned. To use these routines with negative numbers, you must 
keep track of the sign separately. Also, be aware that Turbo Assembler 1.0 contains a bug that 
prevents declaring negative BCD values correctly with the dt directive. This problem has 
been corrected in later versions. 

BCDAdd (28-62) 

Assign the offset addresses of two packed BCD numbers to si and di and call BCDAdd to add 
the values, replacing the value addressed by di with the sum. (You can use BCDCopy as de
scribed later to preserve the modified value if necessary.) After BCDAdd, if cf = 1, an overflow 
occurred; otherwise, the answer is within the maximum BCD range. Here's an example of 
how to use BCDAdd to add two BCD values v1 and v2: 

DATASEG 
v1 dt 81659247 ; BCD 81,659,247 
v2 dt 74295618 ; BCD 74,295,618 
CODESEG 
mov ax, @data Initialize ds to address 
mov ds, ax of data segment 
mov es, ax Make es + ds 
mov si, offset vi Address vi with si 
mov di, offset v2 Address v2 with di 
call BCDAdd Add v2 <- vl + v2 
jc Exit Jump to Exit if overflow 

As a reminder, the steps for initializing ds and es are shown here. (To save space, examples 
that follow leave these required steps OUt.) Registers si and di are assigned the offset addresses 
of two packed BCD values to add. Then BCDAdd adds vl + v2, storing the result at v2. If this 
causes an overflow to occur, j c jumps to the Exit label (not shown). 

As with unsigned addition in binary, overflows cause a "wrap-around" effect in the answer. In 
other words, the result of adding 3 to 99999999999999999998 is 00000000000000000001. 
If this is acceptable to your program, you can ignore overflows. 

435 



436 

I _ PROGRAMMING WITH AsSEMBLY LANGUAGE 

The code to BCDAdd demonstrates one way to add two multiple-precision values. The direc
tion flag is cleared with eld (line 47) so that the later string instructions increment si and di, 

thus advancing the pointers through the bytes of the BCD values. Remember that packed 
BCDs are stored in reverse byte order (see Figure 11.1); therefore, the lodsb and ade instruc
tions at lines 51-52 first add the least significant digits, then the next higher digits, and so 
on until the loop count in ex decrements to 0 at line 55, ending the repeated loop. The daa 

at line 53 converts the result of each addition to packed BCD before stosb stores this value 
in the destination. 

Notice how the ele at line 48 clears the carry flag. Because of this, the first ade performs an 
add (adding a 0 carry to the answer). This trick eliminates the need to use the add instruction 
to sum the low-order values, followed by subsequent ade instructions to add higher-order 
values with possible carries. 

BCOSubtract (64-99) 

BCDSubtraet operates similarly to BCDAdd. In fact, only three instructions differ (compare lines 
89-90 to lines 52-53). Assign the offset addresses to two packed BCD values to si and di 

and then call BCDSubtraet to calculate the difference, storing the result in the variable ad
dressed by di. If ef = 1 after BCDSubtraet, then underflow occurred and, as with unsigned 
binary subtractions, the value at di "wraps around." In other words, subtracting BCD 03 

from 01 produces 99999999999999999998 and sets cf to 1. Here's an example: 

DATASEG 

vl 
v2 
CODESEG 
mov 
mov 
call 
jc 

dt 81659247 
dt 74295618 

si, offset v2 
di, offset v1 
BCDSubtract 
Exit 

BCD 81,659,247 
BCD 74,295,618 

Address v2 with si 
Address v1 with di 
Subtract v2 <- v2 - v1 
Exit on underflow 

Take care to assign the offset addresses in the correct order, remembering that the value at si 

is subtracted from the value at di, which is also replaced with the answer. You might want to 
call BCDCopy to preserve the original value addressed by di. 

The two instructions at lines 88-89 subtract packed BCD bytes in the correct order (desti
nation-source) and then load the answer into al for the subsequent conversion to packed 
BCD form with das at line 90. Other than these three instructions, the rest of the procedure 
operates as explained for BCDAdd. 



!to 

PackedToUnpacked (101-136) 
UnpackedT oPacked (138-171) 

Call PackedToUnpacked to convert a packed BCD value to unpacked format. Register si must 
address a lO-byte packed BCD variable. Register di must address a 20-byte space to hold the 
result. The value at si is not changed. Make sure that at least 20 bytes are available at di to 
prevent PackedToUnpacked from ovetwriting other data or code in memory. The packed BCD 
value must be in the format created by dt as illustrated in Figure I I. I-individual digit pairs 
are stored in high-to-Iow order. PackedTounpacked stores one BCD digit per byte (upper 4 
bits cleared) in low-to-high order. (See Figure 11.2.) 

Call UnpackedToPacked to reverse these steps, converting an unpacked BCD 20-byte value to 
a packed BCD 1 O-byte variable. Register si must address the unpacked 20-byte BCD value. 
Register d1 must address a lO-byte space to hold the result. The value at s1 is not changed. 
As with PackedToUnpacked, make sure that at least 10 bytes are available at d1 to prevent the 
procedure from ovetwriting other items in memory. 

Both of these procedures use similar methods to load and convert values. Notice how both 
byte and word forms of string instructions (lines 121, 128, 157, and 163) are used along 
with the logical AND and OR and shift instructions to shuffle digits into the proper posi
tions for the conversions. You should be able to follow these instructions by reading the 
comments, but, if you need a little help, run a test program in Turbo Debugger and watch 
the ax register as you pack and unpack various BCD variables. 

BCDToASCIl (173-214) 

This routine converts a packed BCD value as created by dt to an ASCIIZ string, which must 
be at least 21 bytes long. Failure to observe this minimum length restriction could ovetwrite 
other values in memory. Along with the StrWrite routine from the STRIO package in 
Chapter 5, "Simple Data Structures," you can use BCDToASCII to display (or print) BCD 
values. For example: 

DATASEG 
v1 dt 
string db 
CODESEG 

81659247 
40 dup (0) 

mov 
mov 
call 
call 
call 

s1, ofset v1 
di, offset string 
BCDToASCII 
StrWrite 
Newline 

BCD 81,659,247 
At least 21 byteS! 

Address v1 with si 
Address string with d1 
Convert BCD to ASCIIZ 
Write string to output 
Start a new output line 

437 



438 

_ PROGRAMMING WITH ASSEMBLY LANGUAGE 

This code writes 00000000000081659247 to the standard output file, usually the display. 
As you can see, the string is unformatted, and you may want to add commas and a decimal 
point, strip leading zeros, and perhaps attach a dollar sign, possibly using some of the STRING 
module's procedures described in Chapter 5. 

The code at lines 190-207 may seem overly complex for what should be a simple conver
sion. The instructions are necessary (as you'll see if you work through them in Turbo 
Debugger) because of the format differences between packed and unpacked values and strings. 
The procedure calls PackedToUnpacked at line 192, first converting the packed BCD value to 
unpacked format. Then, after initializing si to address the end of the string (line 196), a 
loop at lines 199-206 converts digit pairs to ASCII (see line 202), swaps the digits with xchg, 
and stores the result in correct order into the string variable. A final mov at line 207 tags on 
a null terminator, required by the ASCIIZ string format. 

8CDCopy (216-240) 

Call BCDCopy to copy one packed BCD variable to another. Register s i addresses the original 
value. Register di addresses the destination, which must be at least 10 bytes long. After BCDCopy, 
the value at di is replaced with the value from si. For example: 

DATASEG 
v1 dt 7295155 ; BCD 7,295,155 
v2 dt ? 
CODESEG 
mov si, offset v1 Addf'ess v1 (Souf'ce) with si 
mov di, offset v2 Addf'ess v2 (destination) with di 
call BCDCoPY Copy BCD at v1 to v2 
call BCDAdd Add v2 <- v2 + v1 (Le. , v1 * 2) 

In this sample, BCDCopy copies the value at v1 to the uninitialized value at v2. After this, BCDAdd 
adds the two variables, setting v2 to v1 times 2. 

Advanced Separate Assemblies 
Turbo Assembler has three directives that can smooth some of the bumps associated with 
assembling large, multi module programs. This section describes how to use the directives: 

• COMM--Communal 

• GLOBAL-Global Variables 

• INCLUDELIB-Indude Library Module 



NOTE 

Turbo Linker 2.0 and earlier versions do not support the COMM directive. 

Using Communal Variables 
The COMM directive defines communal variables, which are similar to unintialized variables and 
can be declared in multiple modules. For example, suppose several modules use a lOO-byte 
array of bytes plus an index variable. You can declare these variables in COMM directives this 
way: 

DATASEG 
COMM near index:Word 
COMM near array:Byte:100 

Multiple definitions can be separated by commas in a single COMM statement, but separate 
lines as shown here are easier to read. The first item after COMM is optional and can be either 
near or far, indicating whether this variable is addressable in the current data segment or in 
another segment. When using a simplified memory model, it's not necessary to specifY near 
or far-Turbo Assembler will check all references to communals, issuing an error if you try 
to address a variable in the wrong segment. The second item is the name of the variable fol
lowed by a colon and size, which can be byte, word, dword, fword, pword, qword, or tbyte. 
You can also specifY a structure name. After this comes an optional colon and count value 
(: 100 in the second line of [he example), [elling the assembler how many bytes to allocate for 
this item. If you don't specifY a count, Turbo Linker allocates space for only one element of 
the specifierl size. 

The actual storage space for communal variables is not allocated until you link the modules. 
Variables of the same names declared in multiple modules are overlayed in the result. This 
way, instead of declaring variables PUBLIC in the defining modules and EXTRN in the using 
modules, you can simply define all variables communal in all modules and let Turbo Linker 
reduce all such multiple references to single variables. 

The price you pay for this convenience is the inability to initialize communal variables. Like 
all un initialized variables, communal variables have no specific values when the program runs. 
There's also no guarantee about where or in what order the variables will appear in memory
so don't assume that two communal variables will be in consecutive locations when the pro
gram runs. To avoid these restrictions and still enjoy the benefits of not having to use PUBLIC 

and EXTRN, Turbo Assembler has a similar but more flexible directive GLOBAL, described next. 

439 



440 

PROGRAMMING WITH ASSEMBLY LANGUAGE 

Using Global Variables 
The GLOBAL directive is similar to COMM but allows you to assign initial values to variables that 
multiple modules share. Using the same two variables described in the previous section, one 
module might declare and initialize array and index variables with the statements: 

DATASEG 
GLOBAL index:Word 
GLOBAL array:Byte:100 
, 
index dw 
array db 

o 
100 dup (1) 

Inside the current data segment, two GLOBAL directives declare a word index and a byte ar 

ray. The data types after the colon may be the same as for COMM. The optional count (100) 
after the array declaration tells the assembler how many bytes this variable occupies. You 
have to specifY a count only if the allocation directives (db, dW, and the like) declare multiple
values or use the dup operator; otherwise, the assembler has no way of knowing that array in 
this example is not a single byte. The actual two variables are declared and initialized as usual, 
creating an index initialized to 0 with dw and an array of 100 bytes each initialized to I with 
db. 

To refer to these same variables in other modules, just repeat the GLOBAL directives. The ac
tual variable allocations (using dw and db, for example) must appear in only one module. As 
these examples demonstrate, the variables are now accessible from all program modules with
out a single PUBLIC or EXTRN. 

Including Global Variables 
A good way to organize a large multimodule program is to keep global variables in a separate 
file and then include that file in all modules. This keeps the variables in one handy place and 
avoids nasry surprises and conflicts that can arise when using hundreds of PUBLIC and EXTRN 

directives. Also, in situations like this, you'll begin to appreciate the real power of the GLOBAL 

directive. A good approach is to declare your global variables in a text file, perhaps named 
GLOBALASM: 

j GLOBAL.ASM file 

GLOBAL index:Word 
GLOBAL array:Byte:100 
, 
j other globals 

Then, in each module that needs to refer to one or more global variables, add this statement 
usually somewhere after a OATASEG directive: 

AMODULE.ASM (partial) 



DATASEG 
INCLUDE "GLOBAL. ASM" 

; other Local variables 

You can still declare other local variables in this module-only the global variables are shared 
with other modules. The INCLUDE directive loads the global declarations from GLOBAL.ASM, 
making the definitions available to the module. In addition, you need an initialization mod
ule that actually declares the variables: 

; INIT.ASM (partial) 
DATASEG 
INCLUDE "GLOBAL. ASM" 
index dw 0 
array db 100 dup (1) 

INIT.ASM declares and initializes the variables. Again, GLOBAL.ASM is included, just as 
in other modules. (You can either assemble INIT.ASM just as you do other separate mod
ules or include the text in your main program.) With GLOBAL, you avoid using PUBLIC and 
EXTRN, while you add the ability to store all global variables and initializations in one or two 
handy files. Also, you avoid the restriction of COMM, which does not allow initialization of 
variables. 

Using the INCLUDELIB Directive 
In most of the preceding chapters, instructions are given for adding module .OB] files to the 
MTA.LIB library file. Turbo Linker commands then refer to this file to extract the modules 
containing procedures declared in EXTRN directives in a program's (or other module's) code 
segment. To simplifY the link command, you can insert an INCLUDELIB directive, which tells 
the linker to look in a named library file for modules. For example, you can add this line 
somewhere near the beginning of the main program: 

INCLUDE 'MIA" 

If you don't add a file-name extension, the linker assumes the name ends with .LIB. The file 
name may also have path information as in "c:\library\MTA.LIB." You can now assemble 
and link the program with commands such as: 

tasm myprog 
tlink myprog 

Because of the INCLUDELIB directive, the necessary modules are extracted from MTA.LIB 
automatically without referring to the library file explicitly in the tlink command. Put the 
INCLUDELIB directive only in the main module-don't use this directive to refer to the same 
library file in more than one module at a time. 

441 



442 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

NOTE 

Even with an INCLUDELIB directive, you still have to use EXTRN dir~ctives to import procedures 
declared PUBLIC in library modules. 

Processing Tables 
k a general rule of thumb, if you can look up values in a table rather than calculate those 
same values with numeric expressions, your programs will gain speed. Usually, it takes only 
a couple of instructions to look up a value, while it takes several instructions to perform a 
calculation. If you can use the special 8086 table-processing instruction xlat (Translate From 
Table), you may be able to save even more time. 

The xlat instruction requires ds: bx to address a table of bytes. An index value in al is added 
to this address, locating one of the bytes in the table. Executing xlat loads this byte into aI, 

replacing the register's original value. In other words, the index value in al is translated to an 
associated byte from the table. A smail example explains how this works. ksemble and link 
Listing 11.2, TABLE.ASM, with the commands: 

tasm Izi table 
tlink Iv table 

listing 11.2. T ABlE.ASM. 
1 : 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11 : 
12: 
13: 
14: 
15: 
16: 
17: 
1B: 
19: 
20: 
21: 
22: 
23: 
24: 

%TITLE "Table translation 

IDEAL 

MODEL small 
STACK 256 

DATASEG 

Copyright (c) 1989,1995 by Tom Swan" 

-------------------------------------------------, 
jindexes 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 

btable db 0, 1, 4, 9, 16, 25, 36, 49, 64, 81 

CODESEG 

Start: 
mov aX,@data Initialize DS to address 
mov dS,ax of data segment 

mov bx, offset btable Address btable with ds:bx 
mov ex, 9 ASSign loop count to ex 

@@10: 
mov aI, el Copy index value to al 



25: xlat Translate from btable 
26: loop @@10 Loop on ex 
27: 
28: Exit: 
29: mov aX,04C00h DOS function: Exit program 
30: int 21h Call DOS. Terminate program 
31 : 
32: END Start End of program I entry point 

How TABlE.ASM Works 
Load the assemble TABLE program into Turbo Debugger with the command td t able and 
press Alt-V-C to switch the CPU window. Press F5 to zoom the window to full screen and 
then follow these steps: 

1. Press F7 rwice, then once again to load bx with the offset address of the btable 

variable at line 13. Press F7 again to load cx with the loop count (9). 

2. The cursor should be on the mov instruction. Press F7 to copy cl to a1. You should 
see the al register (upper right of the screen) change to 09. 

3. Press F7 to execute the xlat instruction, translating the value in al to a value in the 
btable addressed by ds: bx. On the first time through the loop, this changes al to 

51 h (81 decimal)-rwice the original value in a1. 

4. Press F7 repeatedly to execute all passes through the loop, setting al to smaller and 
smaller index values, which are translated to other bytes from the btable. 

This experiment demonstrates how xlat works, translating index values in al to table bytes, 
although you could do the same job more easily by simply adding al to itself. A more useful 
example follows. 

Practical xlat Uses 
One of the most common uses for xlat is to translate ASCII characters to other characters, 
perhaps in " terminal emulator program that needs to pass certain values to a remote system 
when you press a control key. The easy way to program this is to create a table of values, 
indexed by the original ASCII characters. As an example of how this works, Listing 11.3, 
BOXCHAR.ASM, translates keys Alt-l, Alt-2, ... , Alt-O to ten extended ASCII characters 
commonly used on PCs to draw boxes. Assemble, link, and run the program with MT A.LIB 
on disk and the commands: 

tasm boxehar 
tlink boxchar", mta 
boxchar 

Press Alt and any digit key to display a box character. This illustrates how xlat can translate 
key codes to other ASCII values. Press F 1 0 to end the demonstration. 

443 



444 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

listing 11.3. BOXCHAR.ASM. 
1: %TITLE "Box char demonstration -- by Tom Swan" 
2: 
3: 
4: 

IDEAL 

5: 
6: 
7: 

MODEL small 
STACK 256 

8: cr 
9: lf 

10: Fn10 
11: Lowlndex 
12: HighIndex 
13: 
14: DATASEG 
15 : 
16: message db 
17: db 
18: db 
19: 
20: ctable db 
21 : 
22: 
23: 

CODESEG 

EOU 
EOU 
EOU 
EOU 
EOU 

13 
10 
100 
152 
161 

ASCII carriage return 
ASCII line feed 
GetCh value for F10 
GetCh value for Alt-1 
GetCh value for Alt-0 

cr, If, 'Sample Character Table Translation' 
cr, lf, 'Press Alt-1 to Alt-0 to display characters' 
cr, lf, 'Press F10 to end', cr, lf, lf, 0 

179, 180, 191, 192, 193, 194, 195, 196, 217, 216 

24: 
25: 

EXTRN StrWrite:proc, GetCh:proc 

26: Start: 
27: 
26: 
29: 
30: 
31 : 
32: 
33: @@10: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41 : 
42: 
43: 
44: 
45: 
46: 
47: 
46: 
49: Exit: 
50: 
51 : 
52: 
53: 

moy 
moy 
moy 

mov 
call 

call 
jnz 
cmp 
je 
cmp 
jb 
cmp 
ja 
sub 
moy 
xlat 
mov 
mov 
int 
jmp 

moy 
int 

END 

ax, @data 
ds, ax 
es, ax 

di, offset message 
StrWrite 

GetCh 
@@10 
al, Fn10 
Exit 
aI, Lowlndex 
@@10 
al, HighIndex 
@@10 
aI, LowIndex 
bx, offset ctable 

dl, al 
ah, 2 
21h 
@@10 

aX,04C00h 
21h 

Initialize OS to address 
of data segment 

Make es = ds 

Display instructions 

Get key press 
Repeat if not function key 
Check for F10 
Exit if F10 pressed 
Verify that al is within 

range of Lowlndex to 
Highlndex 

Convert al to 0 .. n 
Address ctable with ds:bx 
Translate a1 from ctable 
Moye new char in al to dl 
DOS "display char" function 
Call DOS to display char 
Repeat until done 

DOS function: Exit program 
Call DOS. Terminate program 

Start End of program I entry point 



ADVANCED 

How BOXCHAR.ASM Works 
The ctable variable at line 20 defines the extended ASCII characters for the keys Alt-I, 
Alt-2, ... , Alt-O. The code at lines 31-39 calls GetCh in the KEYBOARD module (see Chap
ter 7, "Input and Output") for a key press, returned in al. The other instructions in this 
section check for FlO, which ends the program, and check that al is within the range of 
Lowlndex to Highlndex. After this, line 42 subtracts the value of Lowlndex from aI, thus re
ducing the key value range from 151-161 to 0-10. Then lines 43 and 44 translate this ad
justed index value to one of the table values, displaying this character with a call to DOS 
function 2 (lines 45-47). 

Using xlat with Multiple-Dimension Tables 
On occasion, xlat comes in handy fur translating values in al representing the column number 
in two-dimensional matrix. Along with the lea (Load Effective Address) instruction, work
ing with such complex arrays is not as difficult in assembly language as you may imagine. 
For example, suppose you have the following 4-row by 8-column matrix: 

OATASEG 
matrix db 00Fh, 04Bh, 087h, 0C3h , 00Fh, 04Bh, 01Eh, 05Ah 

db 096h, 002h, 01Eh, 05Ah, 020h, 069h, 0A5h, 0Elh 
db 02Dh, 069h, 03Ch, 078h, 0B4h, 0F0h , 03Ch, 078h 
db 090h, 0D2h, 04Fh, 067h, 003h, 079h, 099h, 000h 

Next, suppose the program assigns a column number to al in the range 0-7 and a row num
ber to si in the range 0-3. To load the byte at matrix[row,columnj requires only a few in
structions: 

CODESEG 
mov 
mov 
mov 
shl 
lea 
xlat 

al, 4 
si , 2 
cl , 3 
si, cl 
bx I [matrix + si] 

Load column number into al 
Load row number into si 
Load shift count into cl 
si <- si • 8 
ds:bx addresses table row 
al <- table[row, cOlumn] 

Here, al equals 4 and si equals 2, the row and column index numbers. The third mav and 
shl instructions multiply the row number in si by the number of bytes in one row-8 in 
this example. Then lea loads bx with the offset address of this row. After loading bx, an xlat 

instructi,m translates the column index in al to the byte at the indexed column in this row 
of the table. The lea instruction has the same effect as the two instructions: 

mov bx, offset matrix 
add bx, si 

Instead of doing this, always use lea-it's faster than computing a complex address
reference manually by addition. You can use any of the addressing modes discussed in Chapter 
5 as the parameter to lea. You can also assign the result to any general-purpose register. al
though bx is commonly used with the instruction. 

445 



446 

Other xlat Forms 
The xlat instruction allows a few variations. You can supply a table variable as a parameter 
to xlat, letting Turbo Assembler veriry that the variable is addressable by ds: bx, which you 
still must initialize. For example: 

mov 
mov 
xlat 

bx, offset atable 
aI, I index] 
ratable] 

Address atable with bx 
Load index value into al 
Translate al from table (ds:bx) 

With a parameter to xlat, Turbo Assembler verifies that atable is in the segment addressed 
by ds. You can use a similar construction with a segment override to reference a table located 
in a segment addressed byes: 

mov 
mov 
xlat 

bx, offset atable 
aI, [index] 
[es:atable] 

Address atable with bx 
Load index value into al 
Translate al from table (es:bx) 

The segment override changes x1at's usual segment base register ds to es. You must speciry 
a parameter in this case, but if you don't want to refer to the variable by name, you can also 
use bx this way: 

mov 
mov 
xlat 

bx, offset at able 
aI, [index] 
[es:bx] 

Address at able with bx 
load index value into al 
Translate a1 from table (es:bx) 

In addition, you can use the shorthand mnemonic xlatb in exactly the same way as xl at 
without a parameter: 

mov bx, offset atable 
mov aI, [index] 
xlatb 

Address atable with bx 
Load index value into al 
Translate al from table (ds:bx) 

To be honest, it's not clear to me why the xlatb mnemonic even exists-you can just use 
x1at without a parameter to perform the identical task. The only significant difference be
tween the twO names is that the x1atb mnemonic may never have a parameter, while xlat 
may be used with or without a parameter. 

Declaring Segments the Hard Way 
Most of the programs in this book take advantage ofT urbo Assembler's simplified memory 
models, using directives such as CODESEG and DATASEG to define the start of the program's 
code and data segments. For most purposes, this gives you all the control you need to sepa
rare code from data and to organize your program sensibly. On rhe rare occasions that you 
need more control over the names and sizes of segments, however, simplified memory mod
els may be inadequate. At such times, you must declare segments "the hard way," using the 
SEGMENT, ASSUME, and GROUP directives. 



The SEGMENT Directive 
SEGMENT tells Turbo Assembler to collect whatever follows into one memory segment, which 
can store data, code, or the stack. A program can declare many segments, assigning various 
attributes and names that cause the data or code to be combined according to all sorts of 
rules and regulations. The full syntax for SEGMENT is: 

SEGMENT name {align} {combine} {use} {'class} {access} 

The segment name is required and can be any identifier you like-similar to any other pro
gram label. The other four elements are optional (as indicated by the brackets). Each oper
and has its own rules and formats, explained in the following notes: 

• nam(}--Any identifier such as MY DATA or SEGA45X. You can repeat the same name in 
multiple SEGMENT declarations, even in multiple program modules. Turbo Assembler 
combines all equally named segments into one large segment. You can locate this 
segment in memory by assigning the offset address of name to a segment register. 
You need to specify the following attributes only the first time you declare a 
segment. 

• align--S pecifies a boundary restriction for the start of the segment. Table 11.1 lists 
the various symbols that you can use for align. During assembly, if the current 
location at the start of the segment does not satisfy the specified rule for this align 
type, the assembler's location counter is advanced by an appropriate amount, 
forcing the segment to begin farther down (at a higher address) and possibly wasting 
a few bytes. If you don't specify an alignment, segments are aligned to the next 
highest 16-byte paragraph (PARA alignment). 

• combin(}--Specifies rules for organizing segments and for combining multiple 
segments in memory. Table 11.2 lists the symbols that you can use for combine. The 
default combine rule is Private. 

• us(}--Applies only to 80386, or later-model processors, in programs using the P386, 
P386N, P486, P586, and similar directives that enable special processor instructions 
and extended registers not available on the 8088 and 8086 CPUs. Table 11.3 lists 
the symbols that you can use for use. Most programs do not need this operand. 

• 'class'--Serves as a kind of category specification. All segments with identical' clasl 
names-even those with different name names-are physically loaded together in 
me-mory when the program runs. 

• access--For use only in protected-mode programs that are linked to a DOS extender 
using the Phar Lap linker. (Turbo Linker does not support this feature.) Assemble 
programs with the lop option. Specifies to the linker the types of access restrictions 
to assign to a protected mode segment, according to the various types listed in Table 
11.4. 

447 



448 

PART I _ PROGRAMMING WITH ASSEM8LY LANGUAGE 

Table 11.1. SEGMENT align Symbols. 

Symbol Align Segment to the Next ... 

Byte Byte address (current location) 

Word Word address (LSD of address 0) 

Dword 

Para 

Page 

MemPage 

Doubleword address (2 LSDs of address 0) 

16-byte paragraph (4 LSDs of address 0) 

256-byte page (8 LDSs of address = 0) 

Start segment on next memory page (4K boundary) 

Table 11.2. SEGMENT combine Symbols. 

Symbol Meaning 

At expression 

Common 

Memory 

Private 

Public 

Stack 

Locate segment at the address specified by expression, which 
must be an absolute paragraph address such as OFOOh or 
0040h. Use this option to refer to data already in memory such 
as ROM BIOS variables. 

Segments of the same name are overlayed. The size of the 
segment equals the size of the largest of all segments. Use this 
option to refer to common variables among multiple modules. 

Identical to Public. Causes segments of the same names to be 
joined one after the other. 

The default setting. Causes segments of the same name to be 
treated as separate segments. You must initialize a segment 
register to address each segment before you can access variables 
in the segment. 

Causes all segments of the same name to be joined one after the 
other in memory, in the order declared in the program. The 
result is one large segment containing all data or code in all 
segments. You need to initialize a segment register to address 
only the first of all combined segments to access variables 
declared in the segments. 

Use this option only to declare stack space, usually in the main 
program module. All .EXE programs must declare a stack 
segment. The linker inserts information in the .EXE file that 
DOS uses to load registers ss and sp automatically at runtime. 



Symbol 

Unlnit 

Virtual 

Meaning 

You don't have to load these registers in your program. 
Multiple segments of the same name with the combine-type 
STACK are joined one after the other to form one large stack 
segment. This allows separate modules to declare as much space 
as needed for the stack. (Remember to add extra room for 
DOS, BIOS, and interrupt handlers.) 

Forces TASM to display a warning that data is written to an 
uninitialized segment. You might use this feature to warn users 
that a segment in a module requires initialization before use 
because the segment is allocated memoty at runtime. 

Declares a common area that must be inside another segment. 
Typically used for collecting static data (or initialized variables) 
from multiple modules into a common space inside another 
segment. The virtual segment has the same attributes as the 
segment in which it is declared. 

Table 11.3. SEGMENT use Symbols. 

Use16 

Use32 . 

The default setting. Enables 16-bit segment displacement (offset) 
addressing and limits segment size to 64K. 

Enables 32-bit segment displacement (offset) addressing and allows a 
maximum segment size of 4GB (gigabytes or billions of bytes). 

Table 11.4. SEGMENT access Symbols. 

ExecOnly 

ExecRead 

ReadOnly 

ReadWrite 

Segment may contain only executable code (no data) 

Segment may contain executable code and read-only data 

Segment may contain only read-only data (no code) 

Segment may contain variable data (no code) 

449 



450 

Using SEGMENT 
A few examples will help explain how to set up segments in your own programs. Suppose 
you need three word variables in a data segment. You can declare them this way: 

SEGMENT Dseg Para Public 'DATA' 
v1 dw 0 
v2 
v3 
ENDS 

dw 
dw 
Dseg 

1 
2 

The ENDS directive marks the end of the segment and must be included. You may add the 
same name Dseg here after ENDS or leave the space to the right blank. The segment is aligned 
to the next highest 16-byte paragraph in memory (Para) and, because of the Public combine 

type, is added to all other segments that are either named Dseg or that have the same 'class' 
name 'DATA'. To find the variables in this segment, you must initialize an appropriate seg
ment register, usually ds. For example, to load dx with the value of variable v2 requires these 
steps. 

mov ax, Dseg 
mov ds, ax 
ASSUME ds:Dseg 
mov dx, [v2] 

We'll get to ASSUME in a moment, but, for now, be aware that you must initialize a segment 
register to refer to variables in segments. In most cases, you can do this by assigning the value 
of the segment name-Dseg in this example. the problem is: These instructions are floating 
in space-they too must go in a segment. A rypical code segment for a main program mod
ule might be: 

SEGMENT Cseg Para Public 'CODE' 
Start: 

mov 
mov 

ax, Dseg 
dS, ax 

moves, ax 
ASSUME ds:Dseg, es:Dseg 

j other instructions go here 

ENDS 
END 

Cseg 
Start 

Assign segment address 
to ds 
and to es 

; End of code segment 
; End of text 

The code segment named Cseg is aligned to the next highest paragraph boundary, and the 
segment is combined with other Csegs in other modules or with segments of different names 
but with 'CODE' class designations. Notice how END specifies a start address, which the linker 
uses to insert information in the .EXE file for DOS to load the code segment (or segments) 
properly into memory, initialize cs, and jump to the first program instruction. 

In addition to code and data segments, a STACK segment is required, or Turbo Linker will 
warn youthat the program has no stack-a serious error unless the program is of the .COM 
variety. A typical stack segment is: 



SEGMENT Sseg Word Stack 'STACK' 
theStack db 126 dup ("'Stack") 
ENDS 

Because of the combine type Stack, the ss: sp registers are automatically initialized to stack 
space, which is aligned to the next highest word address. The class name 'STACK' causes 
multiple stack segments of the same class to be combined, just as for other segments. Don't 
confuse these two items, which are usually spelled the same; only the combine type tells the 
linker that this is a stack segment. The stack space is allocated in this sample by a db direc
tive, storing 128 copies of the string' "Stack*' in 1 ,024 bytes. During debugging, this makes 
finding the stack in memoty easy-just hunt for the' **Stack*' strings. Also, after the pro
gram is finished, you can examine the declared stack and see how much stack space was used 
by looking for where the strings are obliterated. (Remember to add extra room for interrupt 
handlers-never pare your stack space down to the bare minimum.) 

NOTE 

One problem with this method is that stack data is stored in the .EXE code file on disk. In the 
finished version, you may want to convert your stack to a simplified memory model STACK 
directive or declare unintialized stack space using the question mark operator (?) instead of 
literal strings. This will reduce the code-file size. 

These three e1ements- data, code, and stack segments-are usually the minimum require
mems in a program that declares stacks "the hard way." Before using these ideas to write a 
full program, you also need to understand what ASSUME does, 

The ASSUME Directive 
To understand the ASSUME directive, think of your program as existing in two time dimen
sions. The first dimension is assembly time--the actions that occur when Turbo Assembler 
assembles the program text. The second dimension is run time--the actions that occur when 
COMMAND.COM loads your program into memoty and executes the first instruction. 

The ASSUME directive belongs strictly to the assembly time dimension-it has no effect on 
the program at run time. Use ASSUME to tell Turbo Assembler that segment registers such 
and such address segments so and so. For example, given the previous data-segment declara
tion for Oseg, to initialize the es register to address the segment in memoty, you can write: 

mov ax, Dseg 
mov ex, ax 
ASSUME eS:Dseg 

ASSign address of Dseg 
to es via ax 

Tell Turbo ssembler where es points 

451 



452 

At run time, the twO mav instructions load es with the address of the Dseg data segment. At 
assembly rime, the ASSUME directive tells Turbo Assembler where es currently points. The 
reasol1 both steps are necessary is that Turbo Assembler assembles bur doesn't "understand" 
assembly language code; therefore, you must rell the assembler to where es points, even though 
the previous instructions loaded es to that very same segment. ASSUME takes the general form: 

ASSUME segReg:segNameINOTHING, ... , segReg:segNamelNOTHING 

The segReg may be cs, ds, es, or ss. 80386 and later-model programs can also specify the fs 
and gs registers, which are not available on the 8086 and 80286. The segName must refer to 
the name of the segment as declared in a SEGMENT directive. (As you'll see in a moment, segName 

can also refer to a segment group.) Instead of a segName, you can use the word NOTHING, which 
rells the assembler that the specified register addresses no specific segment at the moment. 

By using ASSUME, you give Turbo Assembler the capability to perform twO actions: 

• Verify addressability of variables in data segments. 

• Add segment overrides automatically as needed. 

The second of these advantages is most important. By using ASSUME, Turbo Assembler can 
insef[ an es: segment override instruction. For example, suppose the previous Dseg segment 
is addressed only byes. This instruction: 

ASSUME eS:Dseg 
mav dx, [vlJ 

is actually assembled as: 

mav dx, les:vl] 

You can still specify the segment override, bur you don't have to. ASSUME lets Turbo Assem
bler decide whether an override is needed. This is particularly handy when using string in
structions and when referring to multiple segments with both ds and es. By using ASSUME 
after every assignment to a segment register, you ensure that Turbo Assembler will do every
thing possible to verify that memory references at least make sense and that variables are 
actually in the segments addressed by segment registers. 

You can also specify multiple assumptions separated by commas. For example, using the 
segment declarations from the previous discussion for SEGMENT, a typical ASSUME directive might 
be: 

ASSUME cs:Cseg, ds:Dseg, es:NOTHING, ss:Sseg 

The GROUP Directive 
Now that you have the tools you need to declare segments the hard way, you'll probably 
want to use a GROUP directive to simplify references to multiple segments, GROUP has the form: 



ADVANCED TOPIcs 

GROUP name segName [, ... , segNamej 

The name and GROUP elements are reversed when assembling in MASM mode. The name can 
be any unused identifier such as dgroup or stacksegs. After the name comes one or more 
segName, which must be the names used in other SEGMENT declarations. 

NOTE 

The GROUP segName can also be an expression beginning with SEG as in GROUP newgroup SEG 

myLabel, although this use is rare. Usually, it's better to define named segments with SEGMENT 

and use the names in a GROUP directive. 

Use GROUP when you have multiple segments of different names that you want to address 
with a single segment register. The segments may not have the same class names. In fact, if 
both the segment and class names are different, a GROUP directive is the only way to ensure 
that multiple segments are combined in memory. For example, if three modules declare data 
segments named Dseg, LocaLSeg, and OtherSeg, you could use this GROUP directive: 

GROUP OataGroup Oseg, LocalSeg, OtherSeg 

Despite whether these segments are of the same class, they will be joined into one large seg
ment in memory. You can now refer to all variables in the three segments by initializing ds 

(or es) and telling Turbo Assembler where ds now points: 

mov ax, OataGroup 
mov ds, ax 
ASSUME dS:OataGroup 

; Assign address of DataGroup 
; to ds via ax 
; Tell Turbo Assembler where ds points 

Instead ofloading ds with the offset of an individual segment, you now can load the offset to 

the group name, in this case DataGroup. The same group name is also used in an ASSUME di
rective, telling Turbo Assembler to where ds points. 

After grouping multiple segments this way, offsets to individual variables in all joined seg
ments are automatically computed. As long as the ds or es segment registers address the group 
name, you can be confident that all your variables are directly addressable. The only restric
tion is that all grouped segments can occupy no more than 64K 

Using Segments in Programs 
When not using simplified memory models, declaring segments requires careful planning. 
Most of the time, a simplified model will do the job, but there is one little-known restriction 
on all such models. In your T urho Assembler Reference Guide, in the discussion of the. MODEL 

directive (in Ideal mode, it is spelled MODEL with no period), several tables list the segment 

453 



454 

PART I.. PROGRAMMING WITH ASSEMBLY LANGUAGf 

names used by various simplified models. For reference, Table 11.4 lists these names for the 
small memory model, but showing the Ideal-mode directives used to declare each segment 
type. 

NOTE 

Most of the other memory models use names that are similar to those in Table 11.4. If you 
need to know what these names are, refer to the Turbo Assembler Reference Guide or 
assemble a program with the command tasm /1 filename. You'll find the segment names 
near the end of the .LST listing file. 

Table 11.5 reveals a disturbing feature of simplified memory models. The data, uninitialized 
data, constant, and stack segments are combined under the group name DGROUP. This means 
that the totaL size of these segments is limited to 64K! In other words, the more stack space 
you declare, the less room you have for data. This is not true just for the small memory modeL 
All simplified memory models group the stack and data segments together in DGROUP. 

Table 11.5. Simplified Small Memory Model Segments. 

Directive * Name Combine Class 

CODESEG TEXT Word Public 'CODE' -

FAR DATA FAR_DATA Para Private 'FAR_DATA' 

UFARDATA FAR_BSS Para Private 'FAR_BSS' 

DATASEG DATA Word Public 'DATA' DGROUP 

CONST CONST Word Public 'CONST' DGROUP 

UDATASEG BSS Word Public '8SS' DGROUP -
STACK STACK Para Stack 'STACK' DGROUP 

'Note: Ideal mode only. 

By declaring your own segments, you can eliminate this restriction, as demonstrated in List
ing 11.4, HARDSHEL.ASM-a "hard-way" version of the EXESHELL.ASM program from 
Chapter 2, "First Steps." Use HARDSHEL.ASM as a template for your own programs when 
you want full control over segments. The shell allows space for two 64K data segments, one 
64K stack segment, and a 64K code segment for a total potential program size of about 256K. 
To assemble the shell (which doesn't do anything, although it does run) and to print copies 
of the listing and map files, enter the commands: 



tasm /1 hardshel 
tlink hardshel 
type hardshel.lst >prn 
type hardshel.map >prn 

Listing 11.4. HARDSHEL.ASM. 
1: "TITLE" .EXE shell; nonsimple segments -- Copyright (c) 1989,1995 by Tom Swan" 
2: 
3: IDEAL 
4: 
5: Insert EQU and equates here 
6: 
7: 
8: SEGMENT SSeg Para Stack 'STACK' 
9: 

10: 
11 : 
12: 

db 
db 

13: ENDS SSeg 
14: 
15: 

1024 dup ('**Stack*') 
8192 dup (?) 

16: SEGMENT DSeg Word Public 'DATA' 
17: 
18: exCode 
19 : 

DB o 

8K debugging stack 
8K uninitialized stack 

20: 
21: 
22: 
23: 

Declare other variables with DB, OW, etc. here 

24: ENDS 
25: 
26: 

Specify any EXTRN variables here 

DSeg 

27: SEGMENT ESeg Word Public 'EDATA' 
28: 
29: 
30: 
31: ENDS 
32: 
33: 

Alternate (far) data segment 

ESeg 

34: SEGMENT CSeg Word Public 'CODE' 
35: 
36: 
37: 
38: Start: 
39: 
40: 
41 : 
42: 
43: 
44: 
45: 

Specify any EXTRN procedures here 

ASSUME ds:DSeg 
mov ax, DSeg 
mov ds, ax 
ASSUME es:ESeg 
mov ax, ESeg 
mov es, ax 

Initialize OS to address 
of data segment 

Initialize ES to address 
of extra data segment 

46: Insert program, subroutine calls, etc., here 
47: 
48: Exit: 

continues 

455 



456 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

listing 11.4. continued 
49: mOil 
50: mOil 
51 : int 
52: 
53: ENOS CSeg 
54: 
55: END 

ah, 04Ch 
aI, [exCodej 
21h 

Start 

DOS function: Exit program 
Return exit code lIalue 
Call DOS. Terminate program 

End of Code segment 

End of program I entry point 

Using HARDSHEL.ASM 
A few notes will help you to use the HARDSHEL.ASM template. Line 10 is commented 
out. Remove the semicolon and turn line 11 into a comment to add 8K of **Stack* strings 
to the code file. When debugging, you can then examine the stack memory to see how much 
stack space the program actually uses. 

Two segments Dsag and Esag are declared at lines 16-31. These segments are not grouped 
together, although they could be if you want. (Of course, grouping multiple data segments 
also limits the total size of the combined segments to 64K.) Examine how the code at lines 
39-44 initializes the es and ds segment registers to address the fWO separate segments. 

NOTE 

Most of the modules in this book assume that es and ds address the same data segment. 
When using HARDSHEL.ASM, you may have to modify these modules or temporarily 
reassign es to .:Is before calling module subroutines. 

The code segment at lines 34-53 may contain up to 64K. If you need more space than this, 
you can declare additional code segments and make far subroutine calls to routines in these 
modules. If you do this, be sure to end the subroutines with retf not rat. 

Where It's At 
Table 11.2 lists the combine types that you can use in a SEGMENT directive. One of these types 
is At, which locates a segment at a specific address in memory. Such a segment is a phan
tom--a means to overlay variables declared in the program but already existing in memory 
as the result of other processes. This technique is especially useful for referring to variables 
that belong to DOS and the ROM BIOS. Obviously, such variables are not created by your 
own code but are initialized when you switch on the computer's power. There are fWO ways 



to locate BIOS data. You can simply equate a symbol to an address in memory and read or 
write values to that address. (Consult a hardware technical reference for these addresses.) For 
improved clariry, however, which can help to avoid bugs caused by writing to the wrong 
places, it's a good idea to declare an At segment, as demonstrated by Listing 11.5, 
COLDBOOT.ASM. Assemble and link the program with the commands: 

tasm cold boot 
tlink cold boot 

NOTE 

Running COlDBOOT reboots your system I erasing any data in memory. Don't run the 
program unless that's what you want to do. 

Listing 11.5. COLDBOOT.ASM. 
1: %TITLE "Perform Warm or Cold Reboot -- by Tom Swan" 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11 : 
12: 
13: 

IDEAL 
MODEL 
STACK 

WarmBoot 
ColdBoot 

BIOSDataLoc 
ResetFlagLoc 

small 
256 

EQU 
EQU 

EQU 
EQU 

1234h 
1234d 

0040h 
0072h 

Skips power-on system tests (POST) 
Other value may work 

Segment address of BIOS data 
Offset to ResetFlag in BIOS data 

14: Tell assembler where the ResetFlag word is located 
15: 
16: SEGMENT BIOSData at BIOSDataLoc 
17: ORG ResetFlagLoc 
18: LABEL ResetFlag Word 
19: ENDS 
20: 
21: CODESEG 
22: 
23: Start: 

mov 
mov 

ax, BIOSDataLoc 
dS,ax 

ASSUME DS:BIOSData 

mov [ResetFlag],ColdBoot 

Address BIOSData segment 
with ds 

; Set ResetFlag 

24: 
25: 
26: 
27: 
28: 
29: 
30: 
31 : END Start ; End of program / entry point 

457 



458 

ASSEMBLY LANGUAGE 

How COlDBOOT.ASM Works 
The COLD BOOT program declares one "hard-way" segment, even though it also uses a 
simplified memory modeL There's nothing wrong with this-you can combine memory 
models and custom segments at will. This program declares one segment at the absolute 
address 0040h, which happens to be the start of the ROM BIOS data segment: 

SEGMENT BIOSData at BIOSDataLoc 

When the program runs, this segment is not actually loaded into memory; therefore, you 
can't insert initialized variables into BIOSData. That would be a bad idea anyway-you'd be 
changing values that belong to the ROM BIOS. Usually, you'll refer to variables that already 
exist, as demonstrated by lines 16-19. An ORG directive sets the origin to 0072h (symboli
cally named ResetFlagLoc), which represents the address of the system reset flag. The LABEL 

directive assigns a word label ResetFlag to this address so that later instructions have a way 
to refer to the data at this spot. The reason for using ORG is to avoid having to insert other 
variable declarations at lower addresses, which the program doesn't need. There's no reason 
to insert declarations for the entire BIOS data segment just to refer to a single variable. 

With these details out of the way, lines 24-27 perform the crucial steps of loading ds with 
the address of BIOS Data and using an ASSUME directive to tell Turbo Assembler where ds now 
points. After this, a mov assigns to ResetFlag the value of ColdBoot, declared at line 8. 

On some PCs, merely assigning that value to the system reset flag reboots the computer. On 
other PCs, you need to execute a jump to address FOOO:OOOO, at which a jmp instruction 
jumps to the ROM BIOS boot subroutine. On still other systems, you can execute int 19h 

to reboot. Unfortunately, it's difficult to determine which of these various reboot methods 
will work on a given machine. COLO BOOT .ASM works on my system (a Toshiba T 4400C 
laptop), but it may not work on yours. 

NOTE 

Exit Microsoft Windows and close any programs before running COLDBOOT. 

Line 7 shows the value to assign to ResetFlag if you want to perform a warm boot-the 
same effect as pressing Ctrl-Alt-Oelete. Using this value in place of ColdBoot at line 29 still 
restarts my system but bypasses memory and other hardware tests, thus saving a little time. 

Far Data Segments 
When you need extra data space but you still want to use simplified memory models, you 
can use the FARDATA directive to create as many additional data segments as you need. There's 
only one rule to remember-it's up to you to initialize segment registers to access data in far 



ADVANCED 

segments. Other than this minor complication, using far data segments is easy. For example, 
suppose you want to put all your program strings in a separate segment, thus leaving room 
in the default data segment for other variables. First, declare the segment with a FARDATA 

directive: 

FARDATA 
51 db 
s2 db 
s3 db 

'Welcome to TurboCalc' , 0 
'Copyright 1999 by PC Universe', 0 
'Support hot line: 800-555-1212', 0 

That's all you have to do to create a far data segment. Because such segments are not in
cluded in DGROUP (see Table 11.4), they are not combined with other segments. Consequently, 
to access variables in a far data segment, you must initialize one or more segment registers in 
your program code. For example, if you want to display the strings in this sample using rou
tines in the STRIa module, you'll have to initialize both es and ds with: 

COOESEG 
mov ax, @farOata Load address of far data segment 
mov ds, ax Assign to ds 
moves, ax 
ASSUME ds;@farData, es:@farData 

Assign also to es 
Tell Turbo Assembler! 

First, es and ds are initialized to the address of the far data segment, using the predefined 
@farData symbol. The required ASSUME directive tells Turbo Assembler about this change to 
ds. You can then import routines in other modules such as STRIa and display strings with 
code such as: 

EXTRN 
mov 
call 
call 

StrWrite:proc, NewLine:proc 
d1, offset s1 
StrWrite 
Newline 

To again restore es and ds to the default data segment, execute the usual instructions: 

mov ax, @data 
mov ds, ax 
moves, ax 

Initialize ds to address 
of data segment 

Make es = ds 
ASSUME dS:@data, es:@data Tell Turbo Assembler 

Don't forget the ASSUME directive. Remember, it's a good idea (and in this case required) al
ways to tell Turbo Assembler about your assignments to segment registers. Another possibil
ity is to push and pop segment registers to switch temporarily to a far data segment. For 
instance, suppose you want to load dx with a variable v1 allocated in a FARDATA segment: 

FAR DATA 
v1 
CODESEG 
push 
mov 
mov 
ASSUME 
mov 
pop 
ASSUME 

dw 99 

ds 
ax, @farData 
ds, ax 
ds:@farData 
dx, [ v1j 
ds 
ds:@data 

Variable in far data segment 

Save current ds on stack 
Assign address of far data 
segment to ds 
Tell Turbo Assembler where ds pOints 
Load value from far segment into dx 
Restore original data segment register 
Tell Turbo Assembler where ds points 

459 



460 

PART I _ PROGRAMMING WrrH ASSEMBl y LANGUAGE 

Again, ASSUME directives keep Turbo. Assembler infarmed about the changes to ds. Dan't 
forget the ASSUME after the pop ds instructian. Even thaugh this restores ds to its ariginal 
value, this actian accurs at a runtime. Yau still have to. tell Turbo. Assembler what's gaing an 
during assembly time. 

Multiple Far Data Segments 
Narmally, if yau insert multiple FARDATA directives in variaus madules, all far data segments 
are cambined into. ane segment up to. 64K lang. By adding an aptianal name to the direc
tives, yau can declare as many separate far data segments as you need. Let's assume yau need 
two such segments. Here's haw yau might begin: 

FARDATA FarOut 
vi 
v2 

dw 
dw 

1 

2 

FARDATA FartherOut 
v3 dw 3 
v4 dw 4 

The program now has two distinct far data segments FarOut and FartherOut. Each af these 
segments can be as large as 64K, increasing the program's total data space to 192K (includ
ing the default data segment less stack space and other items in DGROUP). The unique FARDATA 

names prevent the segments from being cambined. 

NOTE . 

If you repeat the same names after multiple FARDATA directives, the segments are combined as 
though the aptional names did not exist. 

To. lacate yaur data in various far data segments, 10. ad a segment register with the name you 
assigned to FAR DATA. Use an ASSUME directive to tell Turbo. Assembler where the segment reg
isters paint. Far example, suppose yau want to laad ex with the value of vi (in the FarOut 

segment) and dx with the value af v3 (in the FartherOut segment). 

mov ax, FarOut Initialize ds to 
mov ds, ax address FarOut segment 
ASSUME ds:FarOut Tell Turbo Assembler 
mov ax, FartherOut Initialize es to 
mov es, ax address FartherOut segment 
ASSUME es:FartherOut Tell Turbo Assembler 
mov ex, [vi J Load FarOut's vi into ex 
mov dx, [v3] Load FartherOut's v3 into dx 

Because the ASSUME directives always keep Turbo. Assembler informed about where ds and es 

point, the final twa mov instructians can simply laad the variables by name. The assembler 
checks that vi and v3 are addressable with these instructions and, in the case of the mov to dx 



--~-~ ..... ----------

ADVANCED TOPICS 

from [v31, inserts an es: segment override, required because es addresses the segment in 
which v3 is declared. You can see this if you examine the machine code to this program frag
ment with Turbo Debugger. Look for hexadecimal 26h, the machine-code value for the es : 
segment override prefix. 

Uninitialized Far Data Segments 
Another directive UFARDATA begins an uninitialized far data segment, similar to an un initialized 
regular data segment declared with UDATASEG. Because the far segment is not part of a DGROUP, 
it becomes a distinct segment just like a FARDATA segment, but with variables containing no 
predetermined values. Always use the question mark (?) when declaring variables in UFARDATA 
segments. For example: 

UFAROATA 
? index 

array 
dw 
db 1024 dup (?) 

As long as you do not specify any initial values, the variables exist only at runtime. To locate 
variables in the uninitialized data area, use the symbol filFarData? this way: 

mov ax, @FarData? 
mov ds, ax 
ASSUME ds:@FarData? 

This assigns the address of the far segment to ds. When declaring multiple far data segments 
with UFARDATA, add a name as previously explained for FARDATA and assign the value of that 
name to a segment register and also in an ASSUME directive. For example, here are two dis
tinct uninitialized far data segments, each with the capacity to hold 64K of data: 

UFARDATA BlackHole 
space dw ? 
moreSpace dw ? 

UFARDATA BlackerHole 
deepSpace dw ? 
deeperSpace dw ? 

To initialize ds to address BlackHole and es to address BlackerHole, execute the code: 

COOESEG 
mov ax, BlackHole 
mov ds, ax 
mov ax, BlackerHole 
moves, ax 
ASSUME ds:BlackHole, es:BlackerHole 

Programming the 80286 and Later Processors 
If you are certain that your program will run on a system with an 80286 processor (or a later
model compatible processor), you can use special instructions that Intel introduced with the 

461 



462 

80286. If you do this, be aware that your program will not run on systems with 8086 and 
8088 processors. To enable the special instructions, use one of the two commands: 

• P286-Enable all 80286 instructions 

• P286N-Enable only 80286 non-protected-mode instructions 

Most of the time you'll use P286N-protected-mode instructions enabled by P286 are strictly 
for writing multitasking operating software and are rarely (if ever) useful in applications pro
gramming, on which this book concentrates. For more information about writing operating 
systems, see the Intel and other references listed in the Bibliography. 

NOTE 

Using the P286 or P286N directives does not limit your code to running on PCs with 80286 
processors. Because later-model processors are compatible with the 80286, the directives 
also enable special instructions for 80386, 80486, and 80586 (Pentium) CPUs. In this section, 
I refer to all of these processors collectively as the 80286. 

Because 80286 flags and registers are identical to those in 8086 processors, you can begin 
programming the 80286 immediately. (Actually, there are a few new flags, but these are used 
only by protected-mode instructions that don't concern us here.) In addition, the 80286 
recognizes all 8086 instructions as described in this and previous chapters. Table 11.6 lists 
the new instructions available on 80286 and later processors. 

Also refer to Chapter 16, "Assembly Language Reference Guide," for more details on the 
instructions in Table 11.6. The two string instructions, which can read to and write strings 
from hardware ports, each have shorthand forms, listed separated here even though the mne
monics represent the identical instructions. The ins, insb, and insw mnemonics represent 
one instruction, as do the outs, outsb, and outsw mnemonics. 

Three instructions bound, enter, and leave were added to the 80286 specifically for use by 
high-level language compilers, although you can certainly use these instructions in pure as
sembly code, toO, as explained next. 

Using the bound Instruction 
The bound instruction verifies that an index is within a specified range-sometimes called 
range checking in a high-level language. Because most such languages make subroutine calls 
to check array index values, using the bound instruction can increase program speed while 
retaining the safety of using range checks, which many programmers disable to gain speed. 

The bound instruction requires two operands. The first operand must be a 16-bit register 
such as dx or bx containing an index value to be verified by bound. The second operand is the 



r }_---r 

address of a 32-bit doubleword variable in memory containing the low and high ranges al
lowed for the index value. If the value of the first operand is outside of the specified range, 
the processor issues an interrupt type 5. Obviously, you also have to install an appropriate 
interrupt service routine to handle this interrupt. 

NOTE 

Interrupt type 5 happens to service the "Print Screen" function in ATs and compatibles, 
resulting in a classic conflict that began with the release of the 8086 and 8088 chips. At that 
time, Intel reserved interrupt 5 for its own use--a restriction that IBM ignored when it 
designed the original Pc. later on, when releasing the 80286, Intel claimed its due rights and 
programmed interrupts into the bound instruction. (Of course, the company must have known 
that this would conflict with the PC's PrtSc key.) So now, if you use bound to check array 
indexes and an index is found to be outside of the allowable range, unless you disable the 
PrtScr key, the error also prints the display contents. Worse, this happens over and over until 
you reboot. A funny story, but nobody's laughing. 

As an example of how to install a bound interrupt handler, Listing 11.6 simulates an index 
range-checking error. Assemble, link, and run the program with the commands: 

tasm bound286 
tlink bound286", mta 
bound286 

Table 11.6. 80286 Instructions (Non-Protected-Mode). 

Mnemonic/Operands 

bound destination, source 

enter immediate, immediate 

ins destination, dx 

insb 

insw 

leave 

outs dx, source 

outsb 

outsw 

popa 

pusha 

Description 

Check array bounds 

Make a procedure stack frame 

Input string from port 

Input string bytes from port 

Input string words from port 

Leave procedure (after enter) 

Output string to POrt 

Output string bytes to port 

Output string words to port 

Pop all general registers 

Push all general registers 

463 



464 

'U~,IV\"OMII" .. WITH ASSEMBLY LANGUAGE 

NOTE 

Run the following program only on systems with an 80286 or later-model processor. 

Listing 11.6. BOUND286.ASM. 
1 : 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10 : 
11 : 
12: 
13: 
14 : 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31 : 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41 : 
42: 
43: 
44: 
45: 
46: 

%TITLE "Bound Test--80286/386 only! -- by Tom Swan" 

exCode 

P286N 
IDEAL 

MODEL small 
STACK 256 

DATASEG 

DB 

db 

0 

'**Error: array index out of bounds', 0 errorMsg 
normalMsg db 'Program ending with no errors', 0 

10wRange 
highRange 
oldSeg 
oldOfs 

COOESEG 

OW 
OW 
OW 
OW 

100 
199 
? 
? 

From STRIO.OBJ 

lowest index range 
Highest index range 
Saves interrupt 5 segment 
Saves interrupt 5 offset 

EXTRN StrWrite:proc, NewLine:proc 

Start: 
mov 
mov 
mov 

push 
mOil 

int 
mOil 
mOil 

pop 

push 
mOil 

mov 
push 
pop 
int 
pOp 

mov 

ax, @data 
dS, ax 
es, ax 

es 
ax, 03505h 
21h 
[oldsegl, es 
[oldOfsl, bx 
es 

ds 
ax, 02505h 
dx, offset Int5ISR 
cs 
ds 
21h 
ds 

bx, 2 

Initialize OS to address 
of data segment 

Make es ds 

Save es 
Get interrupt 5 vector 
Call DOS 
Save segment address 
Save offset address 
Restore es 

Save ds 
Set new interrupt 5 vector 
To this offset address 
And to this code 

segment address 
Call DOS 
Restore ds 

Assign index value to bx 



ADVANCED TOPIcs 

47: bound bx, IlowRangej Test index range 
48: 
49: mov di, offset normalMsg Display "no errors" 
50: call StrWrite message 
51 : call Newline 
52: 
53: Exit: 
54: push ds Save ds on stack 
55: mov ax, 02505h Set interrupt 5 vector 
56: mov dx, 10ldOfsj To this offset and 
57: mov ds, [oldSegj This segment 
58: int 21h Call DOS 
59: pop ds Restore ds 
60: 
61: mov ah, 04Ch DOS function: Exit program 
62: mov aI, [exCodej Return exit code value 
63: int 21h Call DOS. Terminate program 
64: 
65: Interrupt 5 service routine: Abort program 
66: 
67: PROC Int5ISR 
68: mov ax, @data Reset ds and es just 
69: mov ds, ax to be safe 
70: mov as, ax 
71 : mov di, offset errorMsg Address error message 
72: call StrWrite Display message 
73: call Newline 
74: jmp Exit Exit program 
75: ENDP Int5ISR 
76: 
77: END Start End of program I entry point 

How BOUND286.ASM Works 
Most of BOUND286.ASM is concerned with changing and restoring the vector to inter
rupt 5, a subject covered in Chapter 10, "Interrupt Handling." The ISR at lines 67-75 is a 
little different from normal. Instead of preserving and restoring registers as is usually required, 
the code simply initializes ds and es (unnecessary, perhaps, but a good idea anyway) and, 
after displaying an error message, jumps to the program's Exit label, halting execution if bound 

detects an error. 

Lines 46-47 demonstrate bound. Register bx is loaded with the index value to check. Change 
the 2 to 150 (or any other legal index in the range 100-199). When you run the program, 
you'll receive a different message, proving that the ISR for interrupt 5 was not activated. 

Lines 16-17 store the low and high index range values tested by bound. These two values 
must be together in memory and in the order shown here. AJthough line 47 uses simple di
rect addressing to locate these values, you can also use other addressing modes with bound 

(see Chapter 4, "Programming in Assembly Language"). 

465 



466 

Using enter and leave 
The enter and leave instructions are useful for preparing procedure stack frames, allocating 
and reclaiming stack space for local variables in subroutines. Such variables are dynamic
existing only for as long as the procedure runs. These methods are usually employed by high
level languages as part of their procedure and function implementation methods, but you 
can use the instructions in pure assembly code if you want. (See Chapters 12, "Mixing As
sembly Language with Pascal," and 13, "Mixing Assembly Language with C and " for 
more information on addressing local stack variables.) 

Use enter as the first instruction in a procedure. Enter takes two operands, both of which 
must be literal numbers. (The operands can be expressions or equates as long as the result is 
a literal number.) The first operand represents the number of bytes to reserve on the stack. 
The second operand represents the procedure's nesting level. If three procedures nest inside 
each other, the innermost procedure is at level 2, the middle procedure is at level 1, and the 
outer procedure is at level O. Nesting levels are provided mostly to handle languages such as 
Pascal, which allow nested (child) procedures to access local variables declared in outer (par
ent) procedures. 

When enter executes, it performs the work of three 8086 instructions: 

push 
mav 
sub 

bp 
bp, sp 
sp, n 

Save current bp 
; Assign stack painter to bp 
; Allocate stack space for variables 

First, bp is pushed into the stack, preserving its current value. Then the stack pointer sp is 
assigned to bp, allowing instructions to use this register to address the procedure's local vari
ables. Space for the variables is then allocated by subtracting the value of enter's first param
eter n from the stack pointer. 

In any procedure that uses enter, execute leave just before ret to reclaim the stack space 
allocated by enter and to restore sp and bp. The leave instruction performs the same jobs as 
these two 8086 instructions: 

mov 
pop 

sp, bp 
bp 

Restore stacker pointer from bp 
Restore saved bp 

Copying bp to sp reclaims any space allocated on the stack before restoring the saved value of 
bp, which may be used by other procedures to address their own local variables. As an ex
ample of a complete procedure that uses enter and leave, here's a sample subroutine that 
allocates space for four word variables on the stack: 



---_. __ ._, 
------------------_ .. _---_ .. 

ADVANCED TOPICS ' 
----.----------.~ 

P286N 
PRoe AnyProe 

enter 
mov 
mov 
mov 
mov 
leave 
ret 

ENDP AnyProc 

8. 0 
[word bp 01. 4 
[word bp - 2], 3 
[word bp - 41. 2 
[word bp 6], 1 

Reserve 8 bytes on stack 
Assign 4 to v1 
Assign 3 to v2 
Assign 2 to v3 
Assign 1 to v4 
Reclaim reserved stack space 
Return to caller 

The enter instruction reserves 8 bytes of stack space-room for four word variables. The 
instruction also prepares bp to address the variables, as illustrated by several mov instructions. 
The first word is at [bp - 0], the second is at [bp . 2], and so on. In place of word, you can 
specify byte, dword, and other qualifiers to address data of different sizes. The leave instruc
tion reclaims the stack space used by the local variables (also destroying their values in the 
process) and restores sp and bp, preparing for the ret instruction. 

Using pusha and popa 
Two instructions pUSh and pop all general-purpose registers, usually at the beginning and 
end of an interrupt service routine, although you might use the instructions in procedures, 
too. Execute pusha to push registers ax, ex, dx, bx, sp, bp, si, and di in that order. Notice 
that the stack pointer is also pushed. But the value copied to the stack for sp equals the value 
of sp before executing pusha. 

The complementary instruction popa removes all general-purpose registers from the stack. 
Executing papa (usually after a previous pusha) pop registers di, si, bp, sp, bx, dx, ex, and ax 

in that order. Technically, the value for sp is discarded because, if papa actually restored sp 

before popping the remaining di, si, and bp, these registers would receive the wrong values 
and the stack would shrink by three words too many. The effect of popa is just what you 
probably expect: all general-purpose registers are restored to the values they had before the 
most recent pusha. Segment registers are not saved and restored by pusha and papa. 

Reading and Writing Port Strings 
The two 80286 (and later-model CPU) string instructions ins and outs read and write strings 
at hardware POftS specified by dx. These instructions and their shorthand forms (see Table 
11.6) operate similarly to other string instructions. In the case of ins, registers es : di address 
an area where the string data is to be stored. Executing ins reads one byte or word from the 
specified port, storing the data at es: di. If df = 0, then di is incremented by 1 for bytes or 
by 2 for words. If df = 1, then di is decremented by like amounts. Usually, ins is prefaced 
by the rep prefix and a count in ex to load multiple bytes and words with code such as; 

467 



468 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

DATASEG 
string 
strlen 
CODESEG 
P286N 
mov 
mov 
mov 
ASSUME 
mov 
mov 
cld 
rep 

db 80 dup (?) 
$ - string 

dx, port number 
ax, SEG string 
es, ax 
es:SEG string 
di, offset string 
cx, strlen 

insb 

Assign port number to dx 
Address segment containing 
string with es 

Tell tasm where es points 
Address string with es:di 
Assign repeat count to cx 
Auto-increment di 
Load string bytes from port 

To complete this example, you must load an actual port number into dx. Even then you may 
not be able to run this code unless your system has a port from which you can read strings. 
(Most pes don't.) Still, this demonstrates how to use insb for peripherals or custom systems 
with the appropriate hardware. 

You can use similar code to write strings to Output ports. With the outs instruction, the port 
number is in dx, and ds: si addresses the soutce string data. Or you can use an override to 

address strings with es as in: 

cld 
rep outs dx, [byte es:sil ; Output string to port 

Usually, outs is used as in this sample with a repeat prefix and a count in ex to send multiple 
bytes and words to hardware ports. If df 0, then si is incremented by 1 for bytes or by 2 
for words. If df = 1, then si is decremented by like amounts. 

Immediate Shift and Rotate Values 
A subtle improvement in 80286 instructions is the ability to specifY immediate shift and rotate 
values greater than 1. This means that the 8086 instructions: 

mov 
shl 

el, 4 
ax, cl 

can be simplified to: 

shl ax, 4 

Assign shift count to cl 
; Shift ax left four times 

This same change applies to all 8086 shift and rotate instructions. You can still specifY a shift 
count in el if necessary. 

Programming the 80386 
If your system has an 80386 or later-model processor, you have all of the 8086 and 80286 
instructions at your disposal-plus the advantage of extra-speedy processing, as you no doubt 



ADVANCED 

already know. As with the 80286, the 80386 and successors have protected- and non
protected-mode instructions. With few exceptions, the protected-mode instructions are 
identical to those in the 80286. In addition to running in protected and non-protected modes, 
the new processors include a third mode for running programs in a virtual 8086 machine. 
Such advanced programming techniques are the realm of multitasking software such as Xenix, 
OS/2, and Windows. As mentioned earlier, Turbo Debugger can run programs in this mode 
for better control over system crashes, accesses to restricted memory locations, and so on. 
There isn't room here to describe how to write operating system software, but the good news 
is that if you stick to 8086 instructions, no matter what mode the 80386 is in, your pro
grams will run. 

If you are certain your program will be executed on an 80386 or later, you can take advan
tage of several additional instructions listed in Table 11.6. 

Starting to Program the 80386 
Figure 11.3 illustrates the 80386-family 32-bit registers and flags. Notice that all the 8086 
registers ar~ available but are extended to a full 32-bit width. Segment registers are identical, 
although there are two more (fs and 9S). You can use the extended registers with most 8086-
type instructions. For example, to clear the 32-bit accumulator, write: 

P386N 
xor eax, eax 

To enable 80386 instruction, use the P386N (non-protected mode) or P386 (all modes) direc
dves. You can do [his on any system-you don't have to have an 80386 to assemble and link 
your program. Of course, you must have an 80386 or later processor to run the resulting 
code. 

Many of the instructions in Table 11.7 are 32-bit variations of the similar 8086 instructions 
you already know how to use. For example, cmpsd works identically to cmps (Compare Strings) 
but adds the ability to compare doubleword values in addition to the usual bytes and words. 
Similarly, insd, lodsd, movsd, outsd, scasd, and stosd add doubleword abilities to the 8086 
string instructions lods, movs, and scas plus the 80286 instructions ins and outs. Other 
instructions use 32-bit extended registers to perform operations similar to those available on 
the 8086 and 80286. There are also a few newcomers, as described in the following sections. 

469 



470 

I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Scanning and Setting Bits 
Use bsf (Bit Scan Forward) and bsr (Bit Scan Reverse) to load a register with the position 
number of the first bit equal to 1 found in a byte, word, or doubleword. Forward scans go 
from the LSD (bit 0) to the MSD; reverse scans go the other way, from the MSD to the 
LSD. If no bits equal to one are found, zf is set to O. One way to use the instructions is to set 
e1 to the number of bits required to shift a single bit to the LSD position. For example: 

P386N 
mov bx, 00100000b 
xor el, el 
bsf ex, bx 
shr bx, el 
@@10: 

Set bit 5 to 1 
Zero el in ease all bits 0 
Scan from bit 0 to 15 
Shift bit into LSD position 

In this sample, the value to test is in bx, shown here in binary for clarity. Bit number 5 in the 
value equals I; therefore, the bsf instruction sets ex to 5. After this, shr shifts bx to move the 
single bit to the LSD position. In this case, both bsf and bsr produce the identical results. 
But consider the case where more than one bit equals 1: 

P386N 
mov bx, 00010110b 
bsf ex, bx 
bsr ex, bx 

Set bits 1, 2, and 4 
Sets ex to 1 
Sets ex to 4 

The bsf instruction locates the first I bit starting from bit 0, thus setting ex to I. The bsr 

instruction scans in the other direction, setting ex to 4-the position of the first 1 bit from 
MSD in bx. 

Table 11.7. 80386 Instructions (Non·Protected·Mode). 

Mnemonic/Operands 

bs f destination, source 

bsr destination, source 

bt destination, source 

bte destination, source 

btr destination, source 

bts destination, source 

edq 

empsd 

ewde 

insd 

lfs destination, source 

19s destination, source 

Description 

Bit scan forward 

Bit scan reverse 

Bit test 

Bit test and complement 

Bit test and reset 

Bit test and set 

Convert doubleword to quadword 

Compare string doublewords 

Convert word to extended doubleword 

Input string doublewords 

Load printer and fs 

Load pointer and gs 



ADVANCED TOPICS 

Mnemonic/Operands Description 
~----------------------~---------------------------

Iss destination, source 

Iodsd 

movsd 

movsx destination, source 

movzx destination, source 

outsd 

popad 

popfd 

push ad 

pushfd 

scasd 

set condition 

Load pointer and ss 

Load string doublewords 

Move string doublewords 

Move and extend sign 

Move and extend zero sign 

Output string doublewords 

Pop all 32-bit registers 

Pop all 32-bit flags 

Push all 32-bit registers 

Push all 32-bit flags 

shId destination, source, count 

shrd destination, source, count 

Scan string doublewords 

Set byte conditionally 

Double-precision shift left 

Double-precision shift right 

Store string doublewords stosd 

Figure 11.3. 
80386 registers and flags. r 

32 bits 

\:;; 16 bitSa~ 
a bits-l-a bits 

eax: 
ax: 

ah: I al: 
Accumulator 

bx: 

bh: I bl: 
ebx: Base 

cx: 

ch: I cl: 
ecx: Count 

dx: 
dh: I dl: 

Data edx: 

eebsP~:: I sp: I Stack Pointer 
1-. ______ -I-__ ...:b:.tP;;.: __ -4 Base POinter 

eSI: 51: Source Index 
edi: di: Destination Index 

I--___ cs_: __ -I Code Segment 

1-__ ..;;d..;;S;..: __ -I Data Segment 

t-___ ss-:-"_· __ -I Stack Segment 
t-__ -:e_s_: __ -I Extra Segment 
1--___ f.;...S: __ --1 Extra Segment 

.--_____ ...;=====9;:5:: ====::: Extra Segment 

eip: I I Instruction Pointer 

iiiiii~R~illi~iQ~ Status Flags 
33222222222211111111110000000000 
10987654321098765432109876543210 471 



472 

I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Testing Bits 
The bt, btc, btr, and bts instructions all do similar but slightly different jobs. Each instruc
tion takes two operands. The operands may each be a 16- or 32-bit register; the second op
erand may also be an immediate value. Whatever its form, the second operand represents 
the bit number to copy from the first operand to the carry flag. For example, this sets cf 

to 1: 

mov dx, 00100000b ; Set bit 5 to 1 
bt dx, 5 ; Copy bit 5 to cf 

The other three instructions work exactly the same way but have different effects on the bit 
in the original value after copying the bit to cf. The btc instruction complements (toggles) 
the original bit; btr resets the original bit to 0; and bts sets the bit to 1. A few examples help 
make this clear: 

mov dx, 01010011b 
btc dx, 7 
btr dx, 0 
bts dx, 3 

Assign initial valeu to dx 
cf 0; dx 11010011 (bit 7 <- 0) 
cf 1; dx = 11010010 (bit 1 <- 0) 
of 0; dx = 11011010 (bit 3 <- 1) 

The btc instruction in this sample copies bit 7 of dx to cf and complements the original bit 
in dx. The btr instruction copies bit 0 to cf and then resets that bit to O. The bts instruction 
copies bit 3 to cf and then sets that bit to 1. 

More Conversions 
In addition to cbw, which converts bytes to words, and cwd, which converts words to 

doublewords, you can use cdq to convert 32-bit doublewords to 64-bit quadwords and cwde 

ro convert words ro doublewords in the extended accumulator eax. These instructions are 
useful when working with signed integers of different sizes. A simple example explains how 
to use the new 80386 additions: 

mov 
owde 
cdq 

ax, -3 Set ax to -3 (ax = 0FFFDh) 
Sets eax to -3 (eax 0FFFF FFFDh) 
Sets edx:eax to -3 (edx 0FFFF FFFFh; 

eax = 0FFFF FFFDh) 

The 16-bir value in ax (-3) is converted to the full 32-bit width of the extended accumulator 
eax by cwde. This value is then further extended into two registers edx and eax. In all cases, 
register assignments are fixed as shown here-you can only extend values in ax to eax and 
edx. You can't extend values in other general-purpose registers. 

Other 80386 Instructions 
You can load pointers into general-purpose registers plus the two additional segment regis
ters fs and gs with lfs and 19s. A third instruction Iss lets you initialize 5S and sp. These 



operate identically to 1es and Ids but load segment values into the specified segment regis
ters. For example: 

DATASEG 
ptr48 dw 1, 2, 3 
CODESEG 
P386N 
1fs ebx, [pword ptr48j Loads ptr48 into fs:ebx 
19s edi, [pword ptr48j Loads ptr48 into gs:edi 
jiss esp, [pword ptr48] Loads ptr48 into ss:esp 

Notice the pword qualifier to the memory reference in the second operand of each instruc
tion. This tells Turbo Assembler that the variable, declared here with a multipart dw direc
tive, is really a 48-bit pointer (I 6-bit segment and 32-bit offset). The 1 fs instruction sets ebx 
to 000200001h and fs to 0003h, picking up these values at labelptr48 in data segment. 
Similarly, the 19s instruction sets edi to 000200001h and gs to 0003h. The Iss instruction 
sets ss and esp to similar values but probably also crashes the system. For this reason, the Iss 
instruction is shown here as a comment. You must exercise great care when using Iss to change 
the stack segment and pointer. 

Other useful instructions include two more commands movsx and movzx. Use these to assign 
signed and unsigned values from small registers or memory variables to larger registers. With 
both instructions, the first operand must be a 16- or 32-bit extended register. The second 
operand may be an 8- or 16-bit register or memory reference. For example, if you have a 
signed 8-bit value in b1, you can transfer the value to a 16-bit register dx with: 

mov bl,-7 
movsx dx, bi 

; Initialize bl to -7 (8 bits) 
; Sets dx to -7 (16 bits) 

Or you can copy a 16-bit value to a 32-bit register with: 

mov dX,-8 
movsx eax, dx 

; Initialize dx to -8 (16 bitS) 
j Sets eax to -8 (32 bitS) 

Use movzx to do the same, but with unsigned values. For example: 

mov bl, 255 
movzx ax, bl 
mov bx, 25890 
movzx eax, bx 

Initialize bl to 255 (8 bitS) 
Set ax to 255 (16 bits) 
Initialize bx to 25,890 (16 bits) 
Set eax to 25,890 (32 bits) 

Similar to the 80286 pusha and popa instructions, use pushad and popad to push and pop all 
32-bit general-purpose extended (doubleword) registers. Execute pushad to push registers eax, 
ecx, edx, ebx, esp, ebp, eSi, and edi in that order. The value pushed for esp equals the value 
of the stack pointer before executing pushad. Execute popad to remove these same registers 
from the stack in this order: edi, esi, ebp, esp, ebx, edx, ecx, and eax. The value for esp is 
discarded, although esp is still restored to the same value it had prior to pushad. 

473 



474 

PART I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

One other instruction set-condition is similar to a conditional jump. The effect, however, 
is to set a byte register or memory value to 1 or 0 depending on whether the specified condi
tion is satisfied. For instance: 

cmp ax, 1 
sete bh 

sets bh to 1 only if ax equals 1. The endings to set are the same as for the conditional jump 
instructions: setb, seta, setz, setnle, and so on. See set-condi tion in Chapter 16 for a com
plete list of mnemonics and flag settings tested by this instruction. 

Double-Precision Shifts 
The last two instructions to cover are shld and shrd, which take an unusual three operands. 
In most cases, when you need to shift 32-bit registers, you can just use the 8086 shift and 
rotate instructions such as shr and rcr, specifYing an extended register as in: 

mov 
shl 

eax, 4 
eax, 3 

; Initialize eax to 4 (32 bits) 
; Multiply eax by 8 

The doubleword shift instructions operate a bit differently. The first operand to shld and 
shrd specifies the destination and may be a word or doubleword register or memory refer
ence. The second operand, which must be a word or doubleword register, holds the bits to 

be shifted into the first operand. The third operand represents the number of bits to be shifted 
in the indicated direction (right for shrd and left for shld). This operand may be an imme
diate value 0 to 31 or the register cl. For example: 

shld eax, ebx, 4 i Shift first 4 bits of ebx -> eax 

shifts 4 bits from ebx and eax. The value in ebx does not change. Loops with shld or shrd 

instructions are especially useful for performing multiple-precision shifts on very large val
ues. For a more complete example of how this works, see the sample code in Chapter 16 for 
shld. 

The VERSION Directive 
Turbo Assembler 4.0 adds a new VERSION directive that replaces some other directives in earlier 
assemblers. For example, some TASM releases used the QUIRKS symbol, now obsolete, to 

emulate various Microsoft Assembler (MASM) syntactical oddities. 

You can use VERSION to assemble programs written for most versions ofMASM and TASM. 
Table 11.8 lists the arguments you can specifY. For example, to assemble a TASM 2.5 pro
gram using Turbo Assembler 4.0, insert this directive somewhere near the beginning of the 
source listing: 

VERSION T250 



ADVANCED TOPICS 

Table 11.B. VERSION arguments. 
Argument Assembler Version 

M400 MASM 4.0 

M500 MASM 5.0 

M510 MASM 5.1 

M520 MASM 5.2 aka Quick ASM 

T100 TASM 1.0 

T101 TASM 1.01 

T200 TASM 2.0 

T250 TASM 2.5 

T300 TASM 3.0 

T310 TASM 3.1 

T320 TASM 3.2 

T400 TASM 4.0 

The VERSION directive replaces these symbols found in previous assembler releases: 

MASM51 , NOMASM51, QUIRKS, SMART, NOSMART 

Enumerated Data Types 
Equating names and numbers is a time honored programming technique for writing under
standable computer programs-in any language, not just assembly. For example, in the ab
sence of any explanation, this instruction is meaningless: 

mov aI, 8 

Of course, that moves the value 8 into the al register. But what does 8 represent? In a calen
dar program, it might represent the month of October. In a game, it might represent a level 
of play. There's no telling what this program is doing. 

You might add a comment to make the program more understandable: 

mov aI, 8 ; Assign October to al 

But why not go the extra mile and create a symbol that represents the number mnemoni
cally? For example, you can define a symbol OCTOBER that is equivalent to the value 8: 

OCT08ER EQU 8 

475 



476 

PROGRAMMING WITH ASSEMBLY LANGUAGE 

You can then use the symbol in the program, making the purpose of statements perfectly 
clear without the need for clarifYing comments: 

moy aI, OCTOBER 

An enumerated data type is a programming technique that automates the equating of sym
bols and numbers (most often sequential ones). Rather than type EQU directives and assign 
literal values, you can use an ENUM directive to create a series of symbols. 

For example, in a program that uses the days of the week, you might create an enumerated 
data type like this: 

ENUM ETDays SUN, MON, TUE, WED, THU, FRI, SAT 

The data type, ETDays, represents the symbols SUN through SAT, which are internally repre
sented as the numeric values 0 through 6. By convention, I precede the data type name with 
ET for "enumerated type," but you can use another name if you want. 

An enumerated data type is just a declaration-it doesn't occupy any memoty in the final 
program. To use an enumerated data type, in addition to declaring it, you must define space 
for an object of that type, usually in the program's data segment. For example, this creates a 
variable named aDay of the data type ETDays: 

aDay ETDays ? 

That is roughly equivalent to a DB directive. The question mark indicates that the variable 
is undefined, and its memory will be allocated at runtime. To define an explicit value for an 
enumerated variable, specifY an initial value like this: 

aDay ETDays WED 

That creates a variable named aDay initialized to the symbol WED. Internally, this stores 3 in 
aOay, but that fact is unimportant in this symbolic representation. 

Enumerated data types are used the same as equated symbols. The preceding day names, for 
example, are similar to individual equates: 

SUN EQU 0 
MON EQU 1 

SAT EQU 6 

But there's an important difference between equated symbols and enumerated data types. 
Not only does the assembler assign the symbolic values for you, with ENUM, the assembler can 
also guard against some kinds of improper operations. For instance, you might attempt to 
assign the symbol TUE as a 16-bit word to a variable in memory: 

moy ax, TUE 
moy [aDayl, ax 



This produces the error message Operand types do not match because the second statement 
attempts to store a word in the 8-bit variable. Because the enumerated data type is a byte, 
storing a 16-bit value in it is illegal. The correct code is: 

mov aI, TUE 
mov [aDaYI, al 

With individually equated symbols, the assembler cannot detect this kind of error. Enumer
ated data types can therefore help prevent bugs. 

An alternate multiline form of the ENUM directive is sometimes usefuL Here's how you might 
use it to declare a set of month names: 

ENUM ETMonths 
JANUARY 
FEBRUARY 
MARCH 
APRIL 
MAY 
JUNE 
JULY 
AUGUST 
SEPTEMBER 
OCTOBER 
NOVEMBER 
DECEMBER 

The end result is a set of enumerated symbols, JANUARY through FEBRUARY, that are equated 
with the sequential values 0 through 11. Notice that when using this form, the symbols are 
written on separate lines between braces, and are not separated with commas. 

Sometimes, you might want to change the values associated with enumerated symbols. For 
example, JANUARY is conventionally associated with 1, FEBRUARY with 2, and so on. To change 
the value associated with a symbol, assign it a new value like this: 

ENUM ETMonths 
JANUARY 
FEBRUARY 
MARCH 

DECEMBER 

You can make similar assignments to anyone or more enumerated symbols. The next sym
bol is one greater. FEBRUARY, in other words, is now equal to 2, MARCH is 3, and so on. 

Create a variable of the ETMonths data type like this: 

aMonth ETMonths ? 

477 



478 

PART I.. PROGRAMMI'IG WITH ASSEMBLY LANGUAGE 

Then, assign it a value using statements such as: 

mov al, SEPTEMBER 
mov laMonthl, al 

Getting SMART 
With the SMART directive enabled, Turbo Assembler can help you to write more efficient as
sembly language programs. With this directive, the assembler replaces some rypes ofinstruc
tions with shorter or faster ones. Turn on smart-code generation by adding the directive near 
the beginning of your program's listing: 

SMART 

Turn off smart code by inserting NOSMART: 

NOS MART 

You might want to use NOSMART when debugging a program .50 that you Seelne actual 
instructions you write. With SMART ineffect,riuringdehugglng, 'furbo.Debl,.lgger!sCPU 
window may show instructions that you didn't write. 

Smart Effective Addresses 
Using SMART, Turbo Assembler can replace some kinds of address calculations with more 
efficient offsets. For example, suppose you want to address a variable defined in a data seg
ment: 

OATASEG 
data ow ? 

You can use the lea (load effective address) instruction to load the address of data into a 
register: 

CoOESEG 
lea ax, [datal 

That instruction, however, is wasteful of time and memory. A shorter, faster instruction that 
performs the identical operation simply moves the offiet address of data (relative to its data 
segment) into ax: 

mov ax, offset data 



With SMART code generation, Turbo Assembler automatically replaces the lea instruction with 
an equivalent mav, which takes fewer bytes and is faster. The assembler makes the replace
ment only when the target address can be equated to a relative offset. 

Sign-Extended Boolean Operations 
Some instructions such as and have sign-extended forms that take a byte or two less memory. 
Turbo Assembler's SMART directive can select these more efficient instructions automatically. 
For example, this code fragment defines a word of data, and then performs a logical and on 
it with a mask of -2: 

OATASEG 
data OW 1234h 
COOESEG 
and [data], -2 

Under normal circumstances, the and instruction is assembled using a 16-bit literal form of 
the instruction, encoded in machine language as the following code stream bytes (the as
sembled instruction is shown at right): 

81260100FEFF and word ptr [0001] ,FFFE 

The hexadecimal value FFFE (the byte order is swapped in the instruction) represents -2 as a 
16-bit literal value. That value, however, can be more efficiently represented as the hexa
decimal byte FE by using the sign-extended form of the and instruction, which extends the 
byte internally to a word. With SMART code generation in effect, Turbo Assembler selects this 
alternate and instruction by writing these bytes to the code stream: 

83260100FE and word ptr [0001] ,FFFE 

Call Me Smart 
When calling far subroutines from within the same code segment, the following instruction 
generates inefficient code: 

call far Subroutine 

In this case, it is more efficient to push the current code segment register (cs) onto the stack 
and execute a near call: 

push cs 
call near Subroutine 

This has the same effect but is faster. With SMART code generation enabled, Turbo Assembler 
automatically replaces far calls with a push and a near call when source and target code seg
ment addresses are the same. 

479 



480 

PART [_ PROGRA,MMlriG WITH ASSEMBLY L",riGUAGE 

i]:'i'-</: >~~F'" <, 

My tests indicate that, contrary to. Borland's dQcumentati()l1~ ......... .. ......<>ig~fib-ation{th't·. 
NOSMART directive does not tum off jntrasegmentcal.l.instnjetj(1)!lQPti~~tiOn,AlthoUgbthi:y .... 
appears to be a bug in Turbo Assempler4.0,it's h~to ilTlilslne any~reas~;f~ .....•...•.•• if 

disabling this feature, so the problem is a minor Orle. . ..•• . .::;.;; ,1;' 

Pushy Pushy 
The 80386 and later processors permit pushing constant values onto the stack. This can be 
useful for passing arguments to functions. For example, using only 8086 instructions, you 
must load a register and push it onto the stack like this: 

mov ax, 10 Load value into ax 
push ax Push value onto stack 
call Subroutine Call a subroutine 
pop ax Pop value from stack 

With the 80386 and later processors, you can push a literal constant value directly, replacing 
the preceding code with: 

push 
call 
pop 

10 Push value onto stack 
Subroutine ; Call a subroutine 
ax ; Pop value from stack 

For better portability of programs, Turbo Assembler's SMART code generation makes it 
possible to use the same technique even on 8086 processors in which the push instruction 
cannot push constant values. If you enable only 8086 instructions by inserting the P8086 

directive into a program, Turbo Assembler replaces the preceding code with the following 
instructions: 

push ax Punch a hole into the stack 
push bp Save current bp register 
mov bp,sp Address stack with bp 
mov word ptr [bp+02J ,00M ; Drop value into hole 
pop bp ; Restore saved bp 

This sequence employs a cute trick for inserting constant values into the 8086 stack. The 
first pUSh instruction "punches a hole" in the stack's memory, creating a space in which the 
constant value will be inserted. The second push saves bp for addressing the stack. After set
ting bp equal to sp, a mov instruction drops the constant value 10 (000A hexadecimal) into the 
punched hole. Finally, pop restores the saved bp value. 



Some Additional Instructions 
Turbo Assembler 4.0 adds several new instruction mnemonics to those specified for 80386 
and later-model processors. These aren't new instructions. They are selectors for different, 
and sometimes more efficient, instruction forms that may come in handy from time to time. 
The following sections discuss how to use the alternate instructions. 

NOTE 
,-,' <;"', . -~ __ >:S:-.- <')/./&(: 

Ansainple~r ...... .rjgjl'lt~ine~~secti 
the PS66 ·diretti.veiJl~!K: .. pr<;l8rjll)l;~ enalJl~J.t~\ii1$tn.ictiMs, 

Loop the Loop 
The loop instruction is one of the most useful in the 8086 instruction set. With it, you can 
set a loop count in ex, and automatically create a loop that cycles for the specified number of 
times. For example, this code fragment uses loop to call a subroutine (not shown): 

mov 
@@99: 

call 
loop 

ex, 10 

Subroutine 
@@99 

Set loop count in ex 

Call subroutine 
loop on ex 

The loop instruction decrements ex, and if the register is nonzero, jumps to the designated 
label (@@99). 

All of this works fine until you begin programming with 32-bit code segments using the 80386 
and later processors. Under normal circumstances, Turbo Assembler assembles loop instruc
tions that use the ex register if the code segment is the 16-bit variery, but that use the eex 

32-bit register for 32-bit code segments. 

If you want to use the 16-bit ex register in a 32-bit code segment loop instruction, you are 
out ofluck-unless, that is, you employ one of the alternate loop instructions provided by 
Turbo Assembler. For example, you can use loopw (the w stands for word): 

loopw @@99; Loop on 16-bit ex 

481 



482 

This is not a new instruction. It simply specifies that cx should be used as the loop counter 
even in a 32-bit code segment. Likewise, you can use the extended 32-bit ecx register as a 
counter in a 16-bit code segment by employing the alternate loopd (the d stands for 
doubleword) instruction: 

100pd @@99 j Loop on 32-bit ecx 

The above form is especially useful for writing loops that must cycle more than 65,536 times. 

As you may recall, there are five standard loop instructions-loop, loope, loopz, loopne, and 
loopnz. (Look them up in Chapter 16, "Assembly Language Reference Guide," if you need 
a refresher on what these instructions do.) 

To those instructions, append w after loop to select the word (I6-bit cx) alternate forms
loopw, loopwe, loopwz, loopwne, and loopwnz. Append d after loop to select the doubleword 
(32-bit ecx) forms-loopd, loopde, loopdz, loopdne, and loopdnz. 

Enter or leave When Ready 
Earlier in this chapter, I explained how to use enter and leave. When using an 80386 or 
later-model processor and 32-bit code segments, the assembler normally inserts instructions 
that select the extended ebp and esp 32-bit registers for these instructions. 

As with the loop instruction, you can use alternate forms of enter and leave to force the use 
of 16- or 32-bit registers regardless of the segment size. Replace enter with enterw and leave 
with leavew to select 16-bit bp and sp register instructions. Replace enter with enterd and 
leave with leaved to select 32-bit ebp and esp register instructions. 

Return to Sender 
Programming the 80x86 processor family requires constant attention to address formats. 
When calling subroutines, for example, you need to use a near 16-bit call if that subroutine 
returns via a near ret instruction. Using Ideal mode, PROC directives, and simplified memory 
models, however, you can usually ignore these facts and let Turbo Assembler choose the correct 
call and ret instructions for you. 

In cases where you want more control over your subroutine instructions, you may specifY 
retn to always select a near, 16-bit return instruction. Or, use retf to always select a far, 
32-bit return. When you do that, it is your responsibility to use the correct call instruction. 
Preface the subroutine address with near or far as needed: 

call near Subroutine j Must return via retn 
call far Subroutine ; Must return via retf 

Alternatively, you may use the retcode instruction with Turbo Assembler 2.0 or greater. This 
instruction automatically selects a near or far return based on the current memory model. 



Assemble. some test programs and examinetllem withiTurboQebuggertoverify that·· ret&bde 

inserts t~expected fwm instructions. 

Interrupting 32-Bit Code Segments 
When using 32-bit code segments along with interrupt service routines, Turbo Assembler 
normally selects an interrupt-return instruction based on the current code segment size. This 
affects the size of register values popped from the stack. In 32-bit code segments, doubleword 
registers are popped; in 16-bit code segments, word registers are popped. 

Usually, the default instructions are what you want. If, however, you want to force the as
sembler to pop 16-bit word registers in a 32-bit code segment, use the iretw instruction in 
place of iret. If you want to pop 32-bit extended registers in a 16-bit code segment, use 
iretd. 

More Pushy Instructions 
Another set of instructions select among 16- and 32-bit pusha, papa, pushf, and papf instruc
tions (see the reference in Chapter 16 for information on what they do). Normally, these 
instructions push and pop 16-bit registers and flags in 16-bit code segments, and 32-bit ex
tended registers and flags in 32-bit code segments. 

Alternate forms of these instructions always push specific registers regardless of code segment 
size. Use pushaw, papaw, pushfw, and papfw to push and pop 16-bit registers and flags. Use 
pushad, papad, pushfd, and papfd to push and pop 32-bit registers and flags. 

NOTE 

Assembler' s User's (jllidein(;qtr~lydoctiroonts these alternate in~!ilclions\it 11~1'l'1 
even mehtionthe doubleword instructiOQtoqns). rhe precedinginfQrmltltil'mis ba~t:J~ test 
programS----Y(lusnoulduse Turbo Debi4ggfir to· verify that the c(lrrectinstructionfMf1.inserted 
into your progrtim~. 

Shifty Instructions 
The 80386 and later processors provide an alternate form of rotate and shift instructions 
reI, rer, ral, rar, shl, shr, sal, and sar. For example, to shift the contents of the accumu
lator ax left three bit positions, you can use the instruction: 

shl ax, 3 

483 



484 

_ PROGRAMMING WITH ASSEMBLY LA.NGUAGE 

The 8086 processor) however) can shift values only one bit position at a time when a con
stant is used to specify the shift count. Using 8086 code (insert a P808a directive in your 
program) you must write three separate instructions to perform the preceding operation: 

shl ax) 1 
shl ax) 1 
shl ax) 1 

So you can use the newer form in 8086 programs, Turbo Assembler replaces shift constant 
values greater than one with the appropriate number of individual shift instructions when 
8086-code generation is in effect. 

Fast Multiplications 
Assembly language programmers take great pride in finding the most efficient methods for 
performing a variety of operations. Multiplying two values quickly, for example, is often 
possible by using combinations of shift and other logical instructions rather than the imul 

(integer multiply) instruction. (Look it up in the function reference if you are not familiar 
with it.) 

Toss in the complication of writing code for multiple processors, from the 8086 to the 80386, 
and it becomes doubly tough to find the best instruction sequences for multiplications. That's 
why Turbo Assembler 3.0 introduced a new pseudo instruction, FASTIMUL, which generates 
the most efficient instructions for multiplications, on all processors. 

Some examples show how to take advantage of this new command. FASTIMUL's syntax is: 

FASTIMUL destination_reg, source_rIm, value 

The first argument must be a destination register-the place where you want to store the 
result of a multiplication. The second argument may be a register or a memory reference to 
a variable. The third argument must be a literal value. In place of FASTIMUL, Turbo Assem
bler generates one or more instructions that multiply the value times the source, and store 
the result in the destination. You may use 32-bit registers with appropriate processors such 
as the 80386 and 80486. 

FASTIMUL is deceptively simple to use, but the results may surprise you. The following, for 
example, multiplies bx times 4, and stores the result in ax: 

FASTIMUL ax, bx, 4 

Because it is more efficient to perform this multiplication using a shift-left instruction, Turbo 
Assembler writes the following instructions in place of FASTIMUL: 

sill bX,02 
mov aX,bx 



Similarly, with an appropriate processor, you can multiply 32-bit registers: 

P386 
FASTIMUL eax, ebx, 4 

In place of the FASTIMUL instruction, Turbo Assembler generates the following 32-bit code: 

shl ebx,02 
mov eax,ebx 

Specifying a 16-bit processor model such as the 8086 generates a different sequence. Con
sider the same multiplication using the P8086 directive: 

P8086 
FASTIMUL ax, bx, 4 

The FASTIMUL in this case generates three instructions because shifts on the 8086 can move 
only one bit position at a time: 

shl bX,1 
shl bX,1 
mov aX,bx 

The preceding examples merely scratch the surface of what FASTIMUL can do. A less obvious 
optimization occurs when multiplying by a literal value that is not a power of two. Consider 
this instruction with 8086-code generation in effect: 

P8086 
FASTIMUL ax, bx, 3 

In place of this FASTIMUL, Turbo Assembler generates the following three instructions: 

mov ax. bx 
shl bx, 1 
add ax, bx 

It takes a bit of mental effort to verify that these instructions actually multiply bx by 3, and 
it takes more than a little insight to realize that the resulting code is the most efficient solu
tion. Many assembly language programmers, for example, would probably write the follow
ing code: 

mov aI, 16 
mov bl, 3 
imul bl 

As a general rule, any replacement for an imul instruction that uses immediate values (3 in 
this case) is probably better because of the numerous CPU cycles that this time-wasting in
struction consumes. In some cases, however. and especially with 32-bit processors such as 
the 80386 and 80486, imul might still be the best choice, as this example shows: 

P386 
FASTIMUL eax, ebx. 123456 

485 



486 

I _ PROGRAMMING WITH ASSEMBLY LANGUAGE 

Multiplying ebx by the literal value 123456 is best done by an imul instruction, which Turbo 
Assembler generates for the preceding FASTIMUL command: 

imul eax, ebx, 0001E240 

Similarly, with 80386 or later-model code generation in effect, the assembler uses an imul 

instruction for non-simple literal operands (such as 1234 in this 16-bit multiplication): 

P386 
FASTIMUL ax, bx, 1234 

In place of this FASTIMUL, the assembler generates the imul instruction: 

imul ax, bx, 0402 

That instruction, however, is not available to 8086 processors, which have only a limited 
form of imul. When generating code for the 8086, you can use FASTIMUL instructions not 
only for efficiency's sake, but also to improve portability. For example, if you specify the 
P8086 directive for the same multiplication as before: 

P8086 
FASTIMUL ax, bx, 1234 

the assembler generates the following sequence of shift and add instructions: 

shl bX,l 
mov aX,bx 
shl bX,l 
shl bX,l 
shl bX,l 
add aX,bx 
shl bX,l 
shl bX,l 
add aX,bx 
shl bX,l 
add aX,bx 
shl bX,l 
shl bX,l 
shl bX,l 
add aX,bx 

Although this works, and it does make it possible to write portable multiplication instruc
tions for all 80x86 processors, you should be aware that FASTIMUL can in some cases cause 
your code file to balloon in size. 

Summary 
Binary-coded-decimal values store 20-digit numbers in a format that's easy to convert to and 
from ASCII characters. Packed BCDs store 2 digits per byte. Unpacked BCDs store 1 digit 
per byte. The dt directive creates 20-digit packed BCD variables. Although there is no simi
lar directive to create unpacked BCD variables, db is an adequate substitute. 



-------------------~~~=~ 

The aaa and aas instructions adjust binary results after adding and subtracting unpacked 
BCD values back to unpacked BCD format. The aad and aam instructions convert between 
binary and unpacked BCD values. Despite the suggestive names of these two instructions, 
they don't have to be used in conjunction with division and multiplication. Converting un
packed BCDs to and from ASCII takes only a simple and or an or instruction because of the 
ASCII encoding scheme used for digits 0-9. The daa and das instructions adjust binary re
sults after adding and subtracting packed BCD values back to packed BCD format. 

Communal variables, which can't be assigned initial values, are declared with the COMM direc
tive. Similar to communal variables, global variables declared with the GLOBAL directive can 
have initial values and can be shared among multiple modules. GLOBAL eliminates the need to 

declare variables PUBLIC in one module and EXTRN in others-just put all your global decla
rations in one or two files and assemble and link your application using INCLUDE directives to 
load global definitions into individual modules. In large projects, you may also want to specifY 
a default library file with the INCLUDELIB directive, which simplifies linking. 

Use xlat to translate byte index values to bytes stored in table form in memory. This can 
save time because looking up values in memory is usually faster than performing complex 
calculations. A typical use for xlat is to translate ASCII codes to other symbols. The instruc
tion can also be used (often along with lea) to select values from two-dimensional maxtrixes. 

Simplified memory models take care of many details that you must specifY yourself when 
declaring segments "the hard way" with the SEGMENT directive. A typical .EXE program needs 
at least three such segments--one for data, one for code, and one for the stack. Various rules 
and naming conventions change the way Turbo Assembler and Linker organize your pro
gram and load segments into memory, combining some segments into units and leaving others 
separate. 

When declaring your own segments, you must initialize segment registers, remembering al
ways that such assignments occur at run time. Use the ASSUME directive, which operates at 
assembly time, to tell Turbo Assembler about the segment register assignments your pro
gram makes. Another related directive GROUP collects multiple segments of different names 
and, perhaps different, classes into one large segment up to 64K long. 

By declaring segments with a combine type equal to At, you create a phantom segment that's 
overlayed on variables or code already existing in memory when your program runs. This 
gives you a way to read and write variables-and call or jump to procedures-that belong to 
other processes such as the ROM BIOS. 

When you need additional space for variables, you can attach one or more far data segments 
to a simplified memory model. Far data segments can be initialized or un initialized and, with 
an optional name after the FAR DATA and UFARDATA directives, can reserve multiple chunks of 
64K memory for use by even "small" memory-model programs. 

487 



488 

The 80286 and later-model processors add several new instructions to the basic 8086 set of 
mnemonics. The 80386 adds even more instructions plus extended 32-bit registers, flags, 
and two more segment registers. Although Turbo Assembler can assemble code for these 
processors on any system, the results run only on computers with the appropriate hardware. 

A new VERSION directive makes it possible to assemble programs written for all Turbo As
sembler, and many Microsoft Macro Assembler, versions. VERSION replaces former options 
such as QUIRKS. 

Use ENUM to create enumerated data types for a series of symbols that can be represented 
numerically. The symbols resemble individual numeric equates, but the assembler can guard 
against some kinds of errors-storing a word into a byte variable, for example. 

The SMART directive enables the assembler to replace instructions with more efficient forms 
in many cases. Use NOSMART to turn off smart-code generation. 

Other new instructions and optimizations in Turbo Assembler 4.0, as explained in this chapter, 
help you to write more efficient code. 

Exercises 
11.1. How many digits would there be in a hypothetical packed 4-byte BCD value? 

How many digits would there be in a hypothetical unpacked 6-byte BCD value? 
How many BCD digits does the dt directive allow you to specifY in a value? 

11.2. Write code to convert a packed BCD byte in register al to binary in register ax. 

11.3. What GLOBAL directives do you need to share the following variables among 
multiple modules? 

string db 

count dw 

BCD dt 

'This is an ASCIIZ string,' 0 

o 
123456789 

11.4. Using ><lat, write code to translate a value in cl to the following values (equal to 
the cubes of 0-6): 

cl cl*cl*cl 

0 0 

2 8 

3 27 

4 64 

5 125 

6 216 



11. 5. What does ASSUME do? 

11.6. Declare a dam segment named MoreData aligned to the next highest 256-byte 
page and combined with other segments of the class 'DATA'. Store a word 
variable named MyWord in your segment and show the necessary code required to 
load ax with the value of My Word. 

11.7. What does GROUP do? How would you use GROUP to refer to the four segments 
SomeData, MoreData, TableSeg, and StringSeg. 

11.8. The PC KbFlag (keyboard flag) byte is stored at offset 0 17h in the BIOS data 
segment at 040h. Bit 6 of this value indicates whether the CapsLock key is on (1) 
or off (0). Write a program to display the current setting of this key. Use an 
absolute At data segment in your answer. 

11.9. Write an 80286 interrupt service routine shell that saves and restores all general
purpose registers. 

11.10. Write the equivalent 8086 code to duplicate the following 80386 instructions: 

bt dx, 3 

btc dx, 12 

btr dx, 8 

bts dx, 1 

Projects 
11.1. Add multiplication and division procedures to BCD.ASM. Hint: Unpack packed 

BCD variables and use aad and aam to convert values to and from binary. 

11.2. Write ASCIIZ string-formatting commands to add decimal points and dollar 
signs and (optionally) to strip leading zeros from packed BCD values. Hint: Use 
the BCDToASCII procedure in BCD.ASM to perform the raw conversion from 
BCD to ASCII digits, then use STRINGS procedures to insert and delete 
characters. 

11.3. Using a PC technical reference (see Bibliography), write an include file that 
defines an absolute (At) data segment for all or most ROM BIOS variables. 

11.4. Develop a set of macros to assemble programs with 8086, 80286, and 80386 
(and later) instructions based on a conditional symbol assigned at the beginning 
of a module. Duplicate as many special 80286 and 80386 instructions as you 
can, using only 8086 instructions. 

11.5. Hunt for program examples in this book that might be improved by assembling 
with special 80286 and 80386 instructions. Use your macros from Project 11.4 
to reassemble the code and run time trials to test your assumptions. 

11.6. Write a module that allows you to program various function key presses into 
other key strokes with the xlat command. Design the module so that you can 
reprogram the command keys in a program. 489 





Application 
Programming 





Mixing Assembly 
Language with 
Pascal 

_ Room for Improvemem, 494 

_ IdemifYing Critical Code, 495 

_ Converting Pascal to Assembly Language, 496 

_ External Procedures and Functions, 498 

_ The Pascal Memory Model, 499 

_ Calling Pascal Procedures, 502 

_ A (Somewhat) Crazy Example, 504 

_ Addressing Code-Segmem Data, 508 

_ Addressing Typed Constams, 509 

_ Calling Pascal Functions, 509 

_ Addressing Pascal Variables, 511 

_ Calling External Functions, 511 

_ Passing Parameters, 512 

_ Using the TPASCAL Memory Model, 515 

_ Using the ARG Directive, 516 

_ Writing External String Functions, 517 

_ Going for Speed, 520 

_ Summary, 526 

_ Exercises, 527 

_ Projects, 529 



494 

Room for Improvement 
In an ideal programming world, high-level language compilers would generate the fastest, 
smallest, and best machine code for any program design. If that were possible, there would 
be no need for this chapter-perhaps no need for this book. But it's not possible. Despite 
many improvements in compiler design, no high-level language is yet able to duplicate the 
tight, fast, clever code written by an experienced assembly language expert. 

Why should this be? A probable answer is: because compilers generalize the tasks they per
form. There's only one way to write a FOR loop in Pascal, but there are dozens of ways to 

implement that same FOR loop in assembly language. For a compiler to choose the ideal 
implementation method in every situation-and consider every consequence on other sec
tions of the program-the compiler would need the intellect of a genius, the understanding 
of an artist, and the intuition of a fortune teller. Today' s high-level language compilers are 
smart, but they aren't that smart. 

Of all the Pascal compilers available, Turbo Pascal comes the closest to reaching the ideal. 
Turbo's compiled machine code runs fast, takes up little disk space, and can be used without 
modification in many cases. However, as good as Turbo Pascal is, there's still room for im
provement, and a little assembly language sprinkled here and there can remarkably improve 
program speed and reduce code-file size. Also, adding assembly language to Pascal can make 
it easier to access hardware registers and perform other low-level tasks such as writing char
acters directly to video memory. 

NOTE 

This chapter assumes that you have some familiarity with Pascal and that you know how to 
install and run your compiler. You may use the sample programs in this chapter with most 
versions of Turbo Assembler, Turbo Pascal, and Borland Pascal. 

Even more important than knowing how to add assembly language to Pascal is knowing when 
to do so--and when not. Always keep in mind that, by writing a portion of a program in 
assembly language, you'll have to rewrite that same code from scratch if you later need to 
transfer the program to a non-8086 computer. To reduce future headaches, it helps to fol
Iowa few simple guidelines: 

• Convert only critical code to assembly language 

• Write procedures and functions in Pascal first, then recode in assembly language 

• Keep Pascal backup copies of converted procedures and functions so you can easily 
return the program [0 pure Pascal 



MIXING ASSEMBLY LANGUAGE WITH PASCAL 

Critical code refers to those sections of a program that bear more than their fair share of the 
total execution time. In most programs, a few procedures, functions, and loops always ex
ecute more frequently than others. Because these critical procedures account for the major 
share of a program's running time, rewriting the instructions in assembly language can dra
matically improve a program's performance. In fact, many experts agree that most programs 
spend about 90% of their total operating time executing about 10% of the instructions in 
the entire program; therefore, a small improvement in the critical-code sections can have a 
major impact on program speed. 

Conversely, recoding the other 90% of the instructions into assembly language may pro
duce less dramatic results. In fact, the amount of actual improvement can be zero. For ex
ample, you probably shouldn't rewrite a simple prompt that lets someone type in a file name. 
People can type only so fast and, even if the code runs more efficiently, the perceived benefit 
will be nil. Don't waste your time rewriting sections of a program that already operate as 
quickly as necessary. 

Identifying Critical Code 
Identifying the critical 10% of a program is not always easy. In some cases, your experience 
with the program will tell you which sections need to be redone. For instance, you may know 
that a certain display is not coming on screen with the snap, crackle, and pop that you know 
the computer is capable of producing. In other cases, your experience with Pascal will tell 
you that certain operations-for example, direct access to hardware ports-will probably run 
faster in assembly language. 

At other times the choices are not as obvious, and you may need a profiler program such as 
Turbo Profiler, which is provided with some versions ofT urbo and Borland Pascal, to help 
locate the critical code areas. The profiler monitors a running program and builds tables of 
statistics to identify the instructions that execute more frequently than others. After profil
ing a program, you can recode these sections in assembly language, leaving the other less 
critical code in Pascal. This approach to program optimization helps reduce programming 
time and promises dramatic improvements in performance. 

Even with the help of a profiler, however, it's easy to lose sight of your objective and end up 
revising far too much code. Remember that your aim is to identify the critical sections and 
then convert these sections to assembly language. While doing this, you should also be con
tinually testing and retesting the program, observing the results of your work. You'll find the 
going easier if you: 

• Don't profile programs that use overlays 

• Do use a variety of sampling rates 

• Do optimize large programs in pieces 

495 



496 

ApPLICATION PROGRAMMING 

In large programs that use overlays to conserve memory by loading independent code sec
tions into the same areas of RAM, it's probably best to optimize the overlays as though they 
were individual programs. Most programmers develop large software systems by first writing 
the overlays as stand-alone programs rather than waste time compiling and linking other 
sections already completed. The final program code is constructed as one of the last steps 
before production. Following this approach makes optimization easier. You can simply pro
file the individual overlays before they are combined into the finished program. You may 
want to consider using this method for your next large program. 

The sample rate refers to how frequently the profiler monitors a running program. The IBM 
PC s internal clock, ticking away at 18.2 times per second, is too slow to produce a useful 
profile because too many instructions are likely to execute in 1118 second-practically an 
eon to a computer. For this reason, some profilers reprogram the internal clock to achieve a 
sampling rate of between 40 and 30,000 samples per second. Finding the correct sampling 
rate can be difficult; therefore, it's a good idea to profile the same program using at least three 
rates such as 500, 1,000, and 2,000. 

Never attempt to profile and optimize a large program all at once. If your Pascal program is 
larger than about 10,000 lines, you'll need to devise a plan for optimizing the program one 
section at a time. One possibility is to profile the overlays separately. Or your profiler may 
allow you to insert commands into your source code to limit monitoring to specific areas. 

Converting Pascal to Assembly Language 
After locating the critical code in a Pascal program, you're ready to begin converting the Pascal 
statements to assembly language. At this point, you have three methods at your disposal. 

• InLine statements 

• InLine procedures and functions 

• External procedures and functions 

InLine statements are actually commands to the Pascal compiler to inject machine language 
instructions directly into the code that the compiler normally generates. Suppose, for example, 
that you want to disable interrupts. Because there's no Pascal statement to do this directly, 
an InLine statement inserts the code for the 8086 eli instruction into the compiled output: 

InLine( $FA ); {cli disable interrupts} 
{ statements to execute with interrupts disabled } 
InLine( $FB ); { sti -- enable interrupts again} 



MIXING ASSEMBLY LANGUAGE 

Usually, InLine statements are most useful for inserting a limited number of machine-code 
instructions. Because you have to use machine-code values, InLine statements are inconve
nient for converting larger Pascal sections into assembly language. 

NmE . 

A good way to obtain the machine-code binary values for various instructions is to write a 
small assembly language program and then execute the assembled code in Turbo Debugger. 
Use the View/CPU command and copy the bytes to InLine statements. 

The second method is to use an InLine procedure or function. These devices operate much 
like assembly language macros, inserting machine code into a program where the name of 
the procedure or function appears. Early in the Pascal program, you declare such procedures 
like this: 

PROCEDURE Clrlntj InLine( $FA )j 
PROCEDURE Setlntj InLine( $FB )j 

Functions are declared similarly. The effect is to associate the machine-code bytes in the InLine 

statements with the procedure identifiers Clrlnt and SetInt. Later on, when you use these 
identifiers, the Pascal compiler insertS the machine code directly into the compiled code. 
You might, for example, use statements such as: 

Clrlntj 
Writeln( 'Interrupts are off' ); 
Setlnt; 
Writeln( 'Interrupts are on' ); 

The advantage of this method is that it hides the machine language. Although it appears as 
if procedure calls are made to Clrlnt and SetI nt, the compiler actually inserts machine lan
guage directly into the code stream. This improves the program's portability by isolating the 
machine language to one place in the program source code. For another system, you can 
easily convert the code by replacing the InLine procedures with real Pascal procedures. This 
is far preferable to having to hunt through a program to locate all the InLine statements 
sprinkled throughout. 

NOTE 

The previous InLine examples are similar to those in my book, Mastering Turbo Pascal, 
which includes more details on using assembly language in Pascal. 

497 



498 

II _ ApPLICATION PROGRAMMING 

External Procedures and Functions 
Although it requires more organizational effort, writing external assembly language proce
dures and functions that you assemble separately from the Pascal source code is usually the 
best method. There are several reasons why this is so: 

• The Pascal program retains a higher degree of portability 

• External routines can be debugged separately 

• External routines can be used with other languages 

If you write your programs purely in Pascal and then selectively convert individual proce
dures and functions, you will improve your program's portability. After optimizing, if you 
need to transfer a program to another computer-for example, a Macintosh with a 68000 
processor-it's relatively simple to replace the optimized assembly language modules with 
the original Pascal code that you wisely saved on disk. Then, after the program is working 
correctly on the new computer, you would starr optimizing sections of the code in that 
computer's native tongue. 

Another advantage of using external assembly language routines is to simplifY debugging. In 
most cases, you can write simple test programs (either in Pascal or in assembly language) to 

put your code through its paces. The same code might also be usable with other languages 
such as C or BASIC. Many programmers build a library of such routines, ready to insert into 
their high-level programs. 

Subroutine calling conventions and memory models differ among languages; therefore, you 
can't always use the same external routines without making some changes. Even so, external 
-assembly language code is easier to revise for this purpose than direct InLine injections. 

Calling External Routines from Pascal 
To add external assembly language procedures to Pascal, you'll need to perform these steps: 

• Write a NEAR or FAR assembly language PROC 

• Declare the PROC PUBLIC, exporting the external procedure's label to Pascal 

• Use the {$L <file>} Pascal compiler command to load the assembled .OBJ module 
from disk during compilation 

• Declare the procedure EXTERNAL in Pascal 



MIXING ASSEMBLY LI"""'-'V"'U< 

The assembly language procedure has the same format as in other stand~alone object~code 
modules in this book. Be careful to declare the procedure as NEAR or FAR so that Pascal knows 
whether to make a long (other segment) or shon (same segment) call to the procedure code. 
(Procedures are NEAR by default.) Also, so that Pascal can locate the start of the procedure 
code in the .OBJ module, you must place the procedure name in a PUBLIC statement. The 
general format is: 

PUBLIC ProcName 
PROC ProcName NEAR 
i----- Code in procedure 
ret ; Return to caller 
ENDP ProcName 

Change NEAR to FAR for a far (other segment) procedure. In the Pascal program, use the {$L 

<file>} compiler command to load the assembled object code during compilation. Also, 
declare the procedure in a Pascal EXTERNAL declaration, which tells the compiler the name of 
the procedure plus the names, numbers, and types of any parameters. In Pascal, assuming 
the module is named MYCODE.OBJ, you would use these lines: 

{$L MYCODE.OBJ} 
PROCEDURE ProcNamei EXTERNAL; 

In this example, ProcName has no parameters. If it did, you would declare them here. (I'll 
cover parameter passing later in this chapter.) After completing these steps, you're ready 
to call the external procedure. To do this, just use the procedure name (ProcName here) as a 
statement--exacdy the way you call other Pascal procedures. You can also declare external 
functions, as later examples demonstrate. Upon reading the {$L} directive, Turbo Pascal au~ 
tomatically combines the external code in the .OBJ file into the final .EXE file on disk 
(or into memory if you are using Pascal's integrated development environment). All you 
have to do is compile the program-there are no extra linking steps to perform. 

The Pascal Memory Model 
Although the foregoing describes the necessary elements to write an external assembly lan
guage procedure for a Pascal program, one important element is missing: the format of the 
assembly language source text. Unfonunately, the format used in most programs in this book 
won't work because Pascal has its own way of organizing memory. Instead, you must use 
one of two different models for the Pascal compiler to be able to combine the assembled 
object~code file with the compiled Pascal statements. 

Listing 12.1, PASSHELL.ASM, is a do-nothing shell that you can fill in with real code and 
data for your own Pascal external modules. As you can see, the shell declares data and code 
segments the hard way instead of using the simplified memory models of most other examples 
in this book. Following the listing, I'll explain why this is necessary. 

1 

499 



500 

ApPLICATION PROGRAMMING 

Listing 12.1. PASSHELLASM. 
1: %TITLE • Turbo Pascal .OBJ shell -- copyright (c) 1989,1995 by Tom Swan" 
2: 
3: IDEAL 
4: 
5: SEGMENT DATA word public 
6: 
7: Insert EXTRN data declarations here 
8: 
9: Insert static (unitialized) variables here 

10: 
11: ENDS DATA 
12: 
13: 
14: SEGMENT CODE byte public 
15: 
16: ASSUME cs:CODE, ds:DATA 
17 : 
18: Insert PUBLIC code declarations here 
19: 
20: Insert EXTRN code declarations here 
21 : 
22: 
23: %NEWPAGE 
24: ---------------------------------------------------------------
25: ; PROCEDURE ProcName( <parameters> ); 
26: 
27: PROC 
28: 
29: ENDP 
30: 
31: %NEWPAGE 

ProcName NEAR 
ret ; Return to caller 
ProcName 

32: ---------------------------------------------------------------
33: ; FUNCTION FuncName( <parameters> ) : <type>; 
34: ---------------------------------------------------------------
35: PROC 
36: 
37: ENDP 
38: 
39: ENDS 
40: 
41 : 

FuncName NEAR 
ret 
FuncName 

CODE 

END 

PASSHEll's DATA Segment 

; Return to caller 

End of module 

The PASSHELL listing declares data and code segments "the hard way," using SEGMENT di
rectives instead of selecting a simplified memory model in a MODEL directive. Lines 5-11 de
clare a public data segment-aligned to even word addresses-so that Pascal can find the 
segment's beginning and end. 



MIXING ASSEMBLY L""'UV.",uc 

NOTE 

Aligning the data segment on even addresses can improve access speed to 16-bit data. 
Specifying word alignments in the SEGMENT directive forces the first variable in the segment to 
be aligned at an even address,skipping a byte if necessary to make this happen. If you 
declare any byte variables in the data segment, however, you can throw the word alignment 
out of whack for subsequent variables. To avoid this, follow single-byte db directives with 
your own dummy-byte values, ensuring word alignment for all variables. This is necessary 
only in super time-critical code, however. For most programs, you can ignore the subtleties of 
segment alignment. 

Inside the data segment, you can declare variables just as you can in any other assembly lan
guage module. There is one important difference: All variables must be uninitialized In Other 
words, these declarations will not work: 

astring 
counter 
asciiEsc 

db 
dw 
db 

15, 'A sample string' 
100h 
27 

Turbo Assembler accepts these declarations, but Turbo Pascal does not recognize the initial
ized data. This happens because the global data segment is a phantom in a compiled Pascal 
program, existing only when the program is executed; therefore, you can't declare preinitialized 
variables in the external module. Instead, you must use declarations such as: 

astring 
counter 
asciiEsc 

db 
dw 
db 

16 DUP (1) 
'1 
'1 

These commands allocate space for a 16-character string, a word, and a byte. When the pro
gram runs, the variables have no specific values, and it's up to you to figure out how to ini
tialize them. Also, such variables are strictly for use in the assembly language module-you 
cannot export variable labels to Pascal. The reason for this restriction is that Pascal lacks an 
EXTERNAL directive that can be applied to variables. The EXTERNAL keyword in Pascal works 
only with procedures and functions. (There is a way to circumvent this problem, using a 
technique explained later in this chapter.) 

Using Static Variables 
You can get static, preinitialized variables into an assembly language module, but the method 
requires a little help from the Pascal compiler. Instead of using db and dw directives in the 
assembly language text, declare the variables in the Pascal program as typed constants. For 
example, the Pascal program might include the lines: 

CONST astring: string[151 = 'A sample string'; 
counter : integer = $100; 
asciiEsc: byte = 27j 

1 

501 



502 

In the assembly language data segment, you can import these Pascal constants with an EXTRN 

directive, which tells Turbo Assembler that the actual addresses of the real data will be sup
plied later during compilation: 

SEGMENT DATA word public 
EXTRN astring : BYTE, counter: WORD, asciiEsc : BYTE 

ENOS DATA 

You can now use astring, counter, and asciiEsc as though these variables were declared 
directly in the assembly language module. Notice that a string in Pascal is a byte pointer in 
assembly language. It's still up to you to figure out ways to use variables of Pascal data types 
such as strings, records, and sets. 

PASSHELL's CODE Segment 
Lines 14-39 in PASSHELL declare the module's CODE segment, aligned to any address (byte) 

and made PUBLIC for the Pascal compiler. Line 16 uses an ASSUME directive to inform Turbo 
Assembler about the relation between segment registers cs and ds and the module's segments. 
Pascal places no restrictions on register es; therefore, no declaration for this register is needed. 
If you plan to address the data segment with es, you can change line 16 to: 

ASSUME cs:CODE, ds:DATA, es:DATA 

Remember that the ASSUME directive merely tells the assembler about the module's organiza
tion-it does not generate any code or ensure that segment registers actually address specific 
segments. In particular, you must be careful to initialize es, which is not preserved between 
calls ro internal Pascal routines. Pascal initializes ds ro address the global data segment, of 
which there can be only one, up to 64K long. Consequently, you do not have to initialize ds 
in your module's code. 

NOTE 

Pascal takes care of allocating space for the stack. Never declare stack space or reassign 55 in 
your external modules. 

Calling Pascal Procedures 
Line 18 shows where to insert PUBLIC declarations. Mter the keyword PUBLIC insert the names 
of all the procedures in the module that you want to export to Pascal. You don't have to list 
evety procedure. For example, a module can have local subroutines for the private use of 
other procedures inside the module. But every name in the PUBLIC declaration must have a 
corresponding EXTERNAL procedure or function declaration in the Pascal text. Also, remem
ber that only code, not data, can be declared public. 



Line 20 shows where to insert EXTRN declarations. These refer to Pascal procedures and func
tions that you want to call from within your assembly language code. For example, suppose 
you have a Pascal routine named Pause, which displays a message and waits for you to press 
the Enter key: 

PROCEDURE Pause; 
BEGIN 

Writeln; 
Write( 'Press <Enter> to continue ... · ); 
ReadLn 

END; { Pause } 

To export Pause from Pascal to an assembly language module, you must be sure that the 
Pascal compiler knows the name of the procedure before it loads the assembled object code. 
One way to do this is to declare Pause FORWARD before the {$L <f He>} directive that loads the 
file from disk. If the assembly language module is named ANYCODE.OB], you could use 
these Pascal statements near the beginning of the program: 

PROCEDURE Pause; FORWARD; 
{$L ANYCODE.OBJ} 

To call Pause from within the external assembly language module, construct the CODE 
segment something like this: 

SEGMENT CODE byte public 
ASSUME cS:CODE, ds:DATA 
EXTRN Pause:NEAR 
PROC MyProc NEAR 

call Pause 
ret 

ENDP MyProc 
ENDS 

Call Pascal procedure 

The EXTRN directive tells Turbo Assembler that Pause is a near procedure (in the same code 
segment). If this is not so-for example, if in the Pascal text you used the {$F+} directive to 
turn on far-code generation or if the procedure is listed in the interface section of a unit
then you must declare Pause as FAR. The actual call to Pause is no different than calls to other 
assembly language subroutines. In this example, however, there are no parameters. If there 
were, you'd also have to pass the parameters in the exact way expected by the Pascal code
a subject we'll tackle in a moment. 

The Code-Segment Body 
Lines 24-37 in PASSHELL list empty shells for external procedures and functions. The only 
difference between a procedure and a function is that a function returns a value-a proce
dure does not. (In Pascal, functions are used in expressions, while procedures are called by 
name in statements.) 

503 



504 

PART II _ ApPLICATION PROGRAMMING 

The final section in PASSHELL appears at lines 39-41. Because a simplified memory model 
is not used, the CODE segment must be terminated with an ENOS directive (line 39). The 
END at line 41 tells the assembler that this is the last line of the source text. You may not 
specifY an entry point label after END, as you do for stand-alone assembly language .EXE pro
grams. 

A (Somewhat) Crazy Example 
Listing 12.2, PASDEMO.ASM, and Listing 12.3, PASDEMO.PAS, will help answer many 
questions about how to pass code and data back and forth among Pascal and assembly lan
guage modules. The example is a little "crazy"-it doesn't perform any useful actions other 
than to demonstrate various subjects (discussed after the listings). Except for parameter passing, 
the program illustrates almost every combination of sharing code and data and will serve as 
a useful guide for your own projects. To assemble and compile the test, use these commands: 

tasm Izi pasdemo 
tpc Iv pasdemo 

If you have Borland Pascal, replace tpc with bpc. Do the same for all.instructions in this 
chapter that refer to tpc. For these commands to work, you must have installed the com
mand-line compiler. 

The options Izi and Iv add debugging information to PASDEMO.EXE so that Turbo 
Debugger can show you both the Pascal and assembly language source-code lines along with 
the assembled and compiled machine code. Another choice is to create a file named 
MAKEFILE containing these lines: 

pasdemo.exe: pasdemo.obj pasdemo.pas 
tpc Iv pasdemo 

pasdemo.obj: pasdemo.asm 
tasm Izi pasdemo 

With this text stored on disk in a file named MAKEFILE, type Make to create 
PASDEMO.EXE. (If you name MAKEFILE something else, MAKEPAS.MAK for example, 
type make -fmakepas.mak to create PASDEMO.EXE.) The MAKEFILE statements declare 
that PASDEMO.EXE depends on (is created from) PASDEMO.OBJ and PASDEMO.PAS. 
If either of these rwo files changes, then the tpc command compiles the Pascal program, 
combining this code with the assembled object code. The second part of MAKEFILE states 
that PASDEMO.OBJ depends on PASDEMO.ASM. If this file changes, then Turbo As
sembler assembles PASDEMO.ASM, creating PASDEMO.OBJ (which also causes 
PASDEMO.PAS to be recompiled). 



listing 12.2. PASDEMO.ASM. 
1: %TITLE "Test Pascal ,OBJ module -- Copyright (c) 1989,1995 by Tom Swan' 
2: 
3: 
4: 
5: 
6: 

IDEAL 

Data segment combines with Pascal's global data segment 

7: SEGMENT OATA word public 
8: 
9: 

10: 
11 : 
12: asmCount 
13 : 
14: ENDS 
15: 
16: 
17: 
18: 

Import typed constants and variables from Pascal 
EXTRN value WORD, cr : BYTE, If : BYTE 

dw ? ; Static variable 

DATA 

Code segment combines with Pascal's main program 

19: SEGMENT CODE byte public 
20: 
21: ASSUME 
22: 

CS:CODE, ds:DATA j EKplain memory model to assembler 

23: 
24: 
25: 

EKport public procedures to Pascal 
PUBLIC AsmProc, CountPtr 

26: Import procedures and functions from Pascal 
27: EXTRN PasProc: NEAR, PasFunc : NEAR 
28: 
29: 
30: ---------------------------------------------------------------
31: ; PROCEDURE AsmProc; 
32: ---------------------------------------------------------------
33: 
34: Preinitialized variables must go in the code segment 
35: testString db 'AsmProc: Should be a "hatch mark' --> '$' 
36: 
37: PROC 
38: 

AsmProc NEAR 

39: j----- Call a Pascal procedure 

call PasProc pasProc is in PASDEMO,PAS 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: 
55: 

Use local data stored in the code segment 

push ds 
push cs 
pop ds 

ASSUME ds : CODE 
mov dK, 
mov ah, 
int 21h 
pop ds 

ASSUME ds : DATA 

offset testString 
09h 

Save Pascal's ds register 
Address code segment with 
register ds 

Inform assembler 
Address the test string 
Display the test string by 
calling DOS function 9 

Restore Pascal's ds register 
Inform assembler 

12 

continues 505 



506 

PART" .. ApPLICATION PROGRAMMING 

Listing 12.2.continued 

56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81 : 

ENDP 

Get typed-constants from Pascal and use local static variables 

mov 
mov 

ax, [value] 
[asmCountl, ax 

Get value from Pascal 
Initialize static variable 

Call a Pascal function for a character value 

call PasFunc 
mov dl, al 
mov ah, 2 
int 21h 

Get variables from Pascal 

mov ah, 2 
mov dl, [cr] 
int 21h 
mov dl, [If] 
int 21h 
ret 

AsmProc 

Get test char from Pascal 
Assign char to dl 
Display char with DOS 
function 2 

DOS display-char function 
Get cr from Pascal 
Perform carriage return 
Get If from Pascal 
Perform line feed 
Return to caller 

82: .. NEWPAGE 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91 : 
92: 
93: 
94: 

; FUNCTION CountPtr : intPtr; 

PROC CountPtr NEAR 
mov dx, sm asmCount 
mov ax, OFFSET asmCount 
ret 

ENDP CountPtr 

ENDS CODE End 

END End 

Pass segment address in dx 
Pass offset address in ax 
Return to caller 

of code segment 

of module 

Listing 12.3. PASDEMO.PAS. 
1 : { Test program, to be linked to externals in PASDEMO.OBJ } 
2: 
3: {$D+} { Include debugging information } 
4: 
5: PROGRAM PasDemOj 
6: 
7: CONST 
8: value: Integer 1234; { Typed-constant declaration } 
9: 



10: TYPE 
11: IntPtr; 'Integerj 
12: 
13: VAR 

{ POinter to integer type 

14: cr, If : Chari { Global variables} 
15: 
16: PROCEDURE PasProCi FORWARD; Must come before $L directive} 
17: FUNCTION PasFunc: Chari FORWARD; 
18: 
19: {$L PASDEMO.OBJ} Load the assembled object code } 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 

{ External declarations, telling Pascal the format of the 
external routines in PASDEMO.ASM. } 

PROCEDURE AsmPrOCj EXTERNALj 
FUNCTION Countptr: IntPtr; EXTERNAL; 

PROCEDURE PasProCj 
VAR I: Integerj 
BEGIN 

{ Can't be exported to ASM module 

30: Writeln('PasProc: Inside the Pascal procedure') 
31: END; { PasProc } 
32: 
33: FUNCTION PasFunc: Char; 
34: BEGIN 
35: PasFunc:; '#' { Pass a character to ASM module} 
36: ENDj { PasFunc } 
37: 
38: BEGIN 
39: cr:; chr(13)j 
40: If: chr(10); 
41: AsmProc; 
42: Writeln( 'Main: asrnCount 
43: END. 

NOTE 

countPtr' ) 

In the following sections, line numbers prefaced with lip" refer to PASDEMO.PAS, while 
those prefaced with Na" refer to PASDEMO.ASM. 

Understanding PASDEMO 
Lines a7-14 declare the assembly language module's data segment. An EXTRN directive im
ports one variable constant value and two variables cr and 1 f from the Pascal code (see lines 
p8. p14). Notice that the Pascal program does not have to export variables and variable con
stants but that the assembly language module must import these items to make the names 
available to assembly language instructions. 

1 

507 



508 

PART II _ ApPLICATION PROGRAMMING 

Line al2 declares a static un initialized variable. The question mark must be used here be
cause initialized variables are not permitted in external code. 

The PUBLIC directive at line a24 exports AsmProc and countPtr assembly language modules 
(see lines a30-90) to Pascal. Lines p24-25 correspondingly declare these two routines EX· 

TERNAL, allowing calls to this code from within the Pascal program. Notice how line p25 speci
fies the function result type, which is declared as a Pascal data type (a pointer to an integer) 
back at line pll. 

Another EXTRN directive, this time in the code segment at line a27, imports a Pascal proce
dure PasProc and a function PasFunc into the assembly language module. This code is called 
at lines a41 and a64, illustrating how to call Pascal routines from external assembly language 
modules. The NEAR qualifiers in the EXTRN directive (line a27) tell the assembler that this code 
is in the same segment. FAR qualifiers would be necessary if the Pascal routines were com
piled with the {$F+} directive or if they appear in the interface section of a unit. In the Pascal 
text, PasProc and PasFunc are declared FORWARD (see lines pl6-17), making these identifiers 
known to the compiler before the {$L} command at line p 19, which loads the assembled object 
code from disk. The Pascal code for this routine appears at lines p27-36. 

Addressing Code-Segment Data 
Although you can't declare initialized variables in the data segment of an assembly language 
module to be linked to Pascal, you can insert data into the code segment as shown at line a35 
in PASDEMOASM. Be careful to separate code and data, preferably placing the variables 
outside of your PROC directives. 

NOTE 
', .. :,'-:«~~,;::,;;.~,,;- _ ',' '~-'-;:~:'5;~/,':'::>,':~:f,~;'[::; <':;'!~'~';:~'7"~~'~; >'>,;w:;'l:'/",:::~;,"_:~:{,>;\>,: -',' <_--,~,<: ':'_>-":"~:':;'_':;::-";-:',\.',,:; .,;' , '<':'!':- ", <'\ ". <:':' 
Themaln.cooesegmentjna~~· ....... .. . J~~J~nm1~4J~aridjoCfudeS!he 
main program bodyplus~1Iglobalproceduresandfunctions/·'SO·.it/5 beSt 10 keep the· number 
and size of initializerl variables here toa rriinimum, 

Addressing variables in the code segment requires using a code-segment override (cs:) in the 
memory reference. More difficult is passing the address of such variables to other routines, 
especially to DOS function calls, demonstrated here at lines a45-53. First, the current ds 

register is saved on the stack. This is vital. Pascal requires ds to point to the global data seg
ment at all times. If you change ds in the assembly language module and forget to restore the 
register's original value before returning to Pascal, the program will almost surely suffer a 
horrendous crash. 



MIXING ASSEMBLY LANGUAGE WITH 

NOTE 

Despite this dire warning about changing ds, you may change es at any time. Pascal makes 
no assumptions about the segment addressed byes. However, you should not assume that es 

will r$inits value between calls to external subroutines. 

Lines a46-47 set ds equal to cs, addressing the code segment with the data-segment register. 
Because of this, it's a good idea to use an ASSUME directive (line a48) to teli Turbo Assembler 
about the change to ds. After these steps, lines a49-51 cali DOS function 9 to display an 
ASCII$ string. Then, line a52 restOres Pascal's ds segment register value, requiring another 
ASSUME (line a53) to inform Turbo Assembler that ds again addresses the DATA segment. 

Addressing Typed Constants 
Lines a58-59 in PASDEMO.ASM initialize the global asmcount variable, declared at line 
a12. First, the typed constant value (see line p8) in the Pascal text is moved into register ax 

(line a5S). Turbo Assembler knows that value addresses a 16-bit word because of the EXTRN 

declaration at line alO. As this illustrates, it's up to you to ensure that your EXTRN directives 
specifY the correct data types for variables declared in Pascal. If you declared value to be type 
byte, Turbo Assembler has no way of knowing that this is wrong. 

Line a59 assigns the value in ax ro the asmcount uninitialized static variable stored in the data 
segment. As you can see from this example, there's no indication in the program (lines 
a58-59) about where the variables are declared. You can read and write variables (and vari
able constants) the same way whether they are declared in the assembly language module or 
in the Pascal text. 

NOTE 

Unlike variables and typed constants, you can't export CONST and TYPE declarations from 
PasCal to assembly language. Plain constants and data-type identifiers can be used only in 
the Pascal program. 

Calling Pascal Functions 
Calling Pascal functions from within an assembly language module is similar to calling Pas
cal procedures. After calling PasFunc (line a64), (he value returned in ax by the function is 
assigned to register dl. Because PasFunc returns a character, only the low half of ax is needed. 
This character is then displayed using DOS function 2. 

509 



510 

NOTE 
, ,. 

. " . 
It's y()ur responsibility to use function valUes appropriately in theassemblvlanguagemodu Ie 
and to know which~i5ters are affected \)YcallfngPaSca,lfuncti9ns: Table 1,2.1, (copied in 
part from Masterins Turbo Pasca~fjsts funstion,result s,izes and,the registers used ~return 
values of these types." , , ' , ,. • ' ; ,. 

Table 12.1. Pascal Function Types and Sizes. 
Function Type Size in Bytes 

Boolean 

Char 

Enumerated (8-bit) 1 

Enumerated (16-bit) 2 

ShortInt 

Byte 1 

Integer 2 

Word 2 

Longlnt 4 

Single See note 1 

Double See note 1 

Real 6 
words 

Extended See note 1 

Crimp See note I 

Pointer 4 
String See note 2 

Register{s) 

al 

al 

al 

ax 

al 

al 

ax 

ax 

dx = high, ax = low words 

dx high, bx = mid, ax :: low 

dx = segment, ax = offset 

Note 1. These function types are returned in the math coprocessor top·of.stack register. 

Note 2. String functions receive a pointer to a temporary work space created by the caller to the 

function, The function stores characters at this address. returning the pointer undisturbed on the stack. 



Addressing Pascal Variables 
Lines a72-76 execute a carriage return and line feed, passing to DOS function 2 the values 
of two Pascal variables cr and 1 f, which are declared at line p 14 and initialized in Pascal at 
lines p39-40. (If you think this is an odd way to start a new display line, you're right. Even 
so, the code illustrates how to pass data from Pascal to an external module.) Notice that these 
variables are imported into the assembly language module as bytes in the EXTAN declaration 
at line alO. The variables (and typed constants) are stored in Pascal's global data segment 
and, therefore, are easily accessed as shown here. 

NOTE 

Variables .Iocal to Pascal procedures and functions-for example, the jntegervari~ble I. at line 
p28--cannot be accessed from inside an assembly language module.lcicalv~riables in 
Pascal exist only while the declaring. procedures or functions are actlve;,t~refor~, you cannot 
tell Turbo Assembler where these variables will be in memory until the Rn:>grl'nn runs. To get 
around this restriction, you must pass local variables by value or by address .as parameters to 
external procedures and functions. . 

Calling External Functions 
Lines a83-90 implement a small external function that demonstrates several additional con
cerns. The function name is made public (line a24) and declared as an EXTERNAL function in 
the Pascal text (line p25). The data type for this function is a pointer to type integer, de
fined as IntPtr in the Pascal program at line plIo The assembly language module can't use 
this data type directly, and the program has to return values in the proper registers expected 
by Pascal for this and other function types. Turbo Assembler can't check the correctness of 
external function results. 

In this case, because the type is a pointer, Pascal expects dx to hold the segment and ax the offset 
values of the address (see Table 12.1 and lines a87-88). In the Pascal code, line p42 uses this 
address by dereferencing the function identifier, displaying an integer value in a Wri teln state
ment. But what is this value? Looking again at the assembly language code, you can see that lines 
a87 -88 assign the address of the asmCount uninitialized variable, declared in the data segment at 
line aI2. The SEG operator returns the segment value of the label's address. The OFFSET operator 
returns the offset value. Together, the two values exactly locate asmcount in memory, displaying 
the value of this variable in the Wri teln statement. This demonstrates how to pass external vari
ables to Pascal. Remember, a PUBLIC declaration for data labels is accepted by Turbo Assembler 
but rejected by T urho Pascal because, except for variable constants, the Pascal data segment doesn't 
exist until the program runs. Passing the address of a variable to Pascal is required to transfer 
variables from external modules to Pascal programs. 

12 

511 



512 

NOTE 

You can also pass pointers as procedure and function parameters, as the next section 
explains. However, using pointer functions to locate variables declared in assembly language 
modules is usually the best approach because of the additional programming required to 
manipulate procedure and function parameters. 

Passing Parameters 
External assembly language routines become more complicated when variable and value 
parameters are added. There are many issues involved: whether the parameters are passed by 
value or by reference; how to handle special cases such as strings and arrays; how to ensure 
that the stack is correctly configured for return to Pascal; and how to perform all of this in 
reverse-that is, when passing parameters from inside the assembly language module to Pascal 
procedures and functions. 

The best way through this thicket of details is to have a thorough understanding of Pascal 
programming and to have a good grasp on how the Pascal compiler implements procedures 
and functions in machine code. Don't forget that you have one of the world's best teachers 
at your disposal-Turbo Debugger. Examining test Pascal programs at the machine-code 
level with the View; CPU command is a great way to learn how Pascal implements statements 
in machine code. 

Value Parameters 
Value parameters are passed as simple variables on the stack. For example, to pass an integer 
parameter, Pascal pushes the value of the parameter onto the stack before calling the proce
dure that requires that value. A Pascal procedure such as: 

PROCEDURE Count( 1 : Integer ); 

would be called in machine language with instructions similar to: 

mov 
push 
call 

ax, I I J 
ax 
Count 

Get value of I 
; Push l's value onto the stack 
; Call procedure 

The compiled code for the Count procedure has to retrieve the value of I from the stack. In 
Pascal, procedures and functions do this by referencing the stack with register bp. Conse
quently, compiled procedures and functions normally begin with: 

push 
mov 

bp 
bp, sp 

Save current bp value 
; Address stack with bp 



MIXING ASSEMBlY LANGUAGE 

Figure 12.1 illustrates the stack at the start of count after these two instructions execute. The 
value of I is under the 2-byte return address, which is in turn under the saved value of bp. 

(Each numbered box in this diagram represents one byte. The numbers do not represent real 
addresses in memory, though.) 

Figure 12.1. 
Stack showing one Pascal 
value parameter. o 

2 

4 

sp2 [bpI 6 

sp1 [bp+2] 8 

spO [bp + 4] 10 

Low Memory Addresses 

3 

5 

Old bp Register 7 

Return Address 9 

--Value of ,.- 11 

High Memory Addresses 

Counting from bp to the start of 1, you can see that adding 4 to bp finds the start of 1. There
fore, to load ax with the value stored at this location on the stack, you can write: 

mov ax, [word bp + 4) i Assign l's value to ax 

You can also refer to values directly with instructions such as: 

inc (word bp + 4] ; I := I + 1 

One complication with this arises in FAR procedures. In these routines, the return address is 
4 bytes long, having both segment and offset parts. (See Figure 12.2.) Therefore, to load the 
value of I, use the correct offset 6, instead of 4: 

mov ax, [word bp + 6) 

Figure 12.2. 
Stack after calling a FAR 

procedure with one value 
parameter. 

j Load 1 into ax (FAR routine) 

o 

2 

sp2 [bpI 4 

sp1 [bp+2] 6 

[bp +4] 8 

spO [bp + 6] 10 

Low Memory Addresses 

Old bp Register 

Retum Address (Offset) 

Return Address (Segment) 

--Value of 1--

High Memory Addresses 

3 

5 

7 

9 

11 

12 

513 



514 

Returning from External Code 
When the external assembly language routine ends, it must use a special form of the ret in
struction to remove the parameter bytes from the stack in addition to ret's normal duty of 
popping the return address and continuing the program after the call that activated the rou
tine. In this case, there are two parameter bytes on the stack; therefore, the routine would 
end with: 

ret 2 ; Return and pop 2 bytes from stack 

The optional immediate value following ret is added to the stack pointer after popping the 
return address into ip (and cs in the case of an intersegment FAR call). Remember that the 
intermediate value represents the number of bytes of all parameters passed on the stack Be
cause Pascal never pushes a value less than 2 bytes long--even single-byte characters are passed 
as 2-byte words-the optional ret value in Pascal external routines should always be an even 
number. 

Variable Parameters 
Variable parameters-those prefaced with VAR in the Pascal procedure or function param
eter list-are passed by reference, that is, by address. The 4-byte address of each such vari
able is passed on the stack and referenced just like any other value. The assembly language 
code can use the address as a pointer to the actual value somewhere else in memory. This is 
easier to see with a few examples. Suppose the previous procedure declares a variable param
eter: 

PROCEOURE Count( VAR I : Integer ); 

In the compiled code, the caller to the Count procedure pushes the address of I ontO the stack 
Assuming I is stored in the program's data segment, the compiled instructions might be similar 
to: 

mov 
push 
push 
call 

di, offset I 
ds 
di 
Count 

Get offset of variable I 
Push segment address of I 
Push offset address of I 
Call Count procedure 

At the start of Count, after saving and assigning to bp the stack-pointer register, the stack appears 
as in Figure 12.3. With the stack configured as in this figure, you can get the value of I into 
the assembly language module in several ways. One possibility is to load es and another reg
ister Cdi is a good choice as is bx) from the stack: 

mov 
mov 

es, (word bp + 6] 
di, [word bp + 4] 

; Get segment value 
; Get offset value 

Mter doing this, es: di addresses the value of I in memory. Be aware that this location could 
be anywhere-in a data segment or, perhaps, in a stack segment if, for example, I is a local 
variable declared in a Pascal procedure or function. Another way to accomplish the same 
result is to use the les instruction: 



les 
mov 

di, [bp + 4) 
ax, [word es:di) 

MIXING ASSEMBLY LANGUAGE WITH PASCAL 

Load es:di with address of 
Load value of I into ax 

figure 12.3. Low Memory Addresses 

Stack with one variable 
parameter. o 

2 

Sp3 [bp] 4 

sp2 [bp + 2] 6 

sp1 [bp + 4] 8 

spO (bp + 6] 10 

3 

Old bp Register 5 

Return Address 7 

Address of I (Offset) 9 

Address 011 (Segment) 11 

High Memory Addresses 

The les instruction loads both es and di (or another general purpose register) with the ad
dress stored at the specified location, here 4 bytes in advance of where s s : bp points. The 
second instruction then addresses this location to load the value of the variable parameter 
into ax. A similar instruction Ids can be used to load the segment portion of an address into 
ds. Because Pascal needs ds to address the global data segment, if you use Ids, be sure to save 
and restore the original value of ds before your external routine ends. 

Using the TPASCAL Memory Model 
One way to simplifY addressing variables on the stack is to use a special Turbo Assembler 
memory model TPASCAL, designed for use with early versions of Turbo Pascal. You do not 
have to use TPASCAL with Borland Pascal. The advantages of this method are: 

• You can use simplified CODESEG and DATASEG directives instead of declaring named 
segments manually. 

• Turbo Assembler automatically prepares and restores the bp register for you. 

• Parameter addresses on the stack are precalculated, allowing you to address param
eters by name rather than computing stack offsets, for example, as in [bp + 8]. 

• The correct immediate value is added automatically to the ret instruction to remove 
parameter bytes from the stack. 

A disadvantage of the TPASCAL memory model is the inability to prevent Turbo Assembler 
from generating instructions to prepare bp for addressing stack variables. Even in procedures 
that have no parameters, these instructions are blindly inserted. One of the reasons for add
ing assembly language to Pascal in the first place is to strip every unnecessary instruction, 
honing your code to a fine edge. Using TPASCAL is convenient in some cases-as in the fol
lowing examples. But, for the ultimate in low-level control, you must declare SEGMENT direc-
tives manually as in PASSHELL.ASM. 515 



516 

PART II _ ApPLICATION PROGRAMMING 

Using the ARG Directive 
With the TPASCAl memory model in effect, you can use an ARG directive to simplify 
parameter addressing. ARG tells Turbo Assembler the names and sizes of parameters passed to 
external PROCs on the stack. The assembler uses this information to calculate the offset values 
relative to ss: bp where the parameter values are stored. 

NOTE 

AM works with other memory lnPdels"andwitnnonsimplifi~ segments, too. HoWeverl there 
is a difference.WiththeTPASCAlmemQl)' mod~,parameters must·appearin ARG directives in 
the same order they appear in Pascal'procedu;eand function declarations. When not using 
TPASCAL, you mustlist parameters in the reverse order. 

ARG requires a series of elements separated by commas, with each element describing one 
parameter. For example, this Pascal procedure declaration: 

PROCEDURE StoreNum( MyNumber : Integer )i 

has the corresponding PROC declaration: 

PROC StoreNum NEAR 
ARG MyNumber:WORD 

Mter executing this, move the value ofMyNumber into a register using assembly language in
structions such as: 

mov ax, [MyNumber] i Load ax with value of MyNumber 

Contrast this with the usual method of addressing stack variables relative to bp: 

mov ax, (word bp + 4J 

If you later change the number of parameters passed to the procedure--or if you change the 
procedure type from NEAR to FAR-reassemble the external object-code module to adjust the 
location of My Number on the stack. Without an ARG directive, you must recalculate and change 
the literal 4 manually, greatly increasing the chances of introducing a bug if you make a 
mistake. 

Deallocating Stacked Parameters 
If you follow an ARG parameter list with an equal sign and a temporary name, Turbo As
sembler calculates the number of bytes occupied by all parameters and assigns this value to 

the name you supply. For example, the following sets ArgSize to the number of bytes occu
pied by the two parameters, his and hers: 



PROC Share NEAR 
ARG his:WORD, hers:WORD =ArgSize 

When not using the TPASCAL memory model, you can use ArgSize with ret to remove pa
rameter bytes from the stack: 

ret ArgSize ; Return and deallocate stack parameters 

Don't do this when using the TPASCAL memory model, in which case Turbo Assembler auto
maticallyadds the correct value to ret (assuming you specified the correct number and sizes 
of parameters in an ARG directive). When using the TPASCAL memory model, always end your 
external PROCs with a plain ret instruction. (You can still add =ArgSize to the ARG directive 
and use the value equated to ArgSize in other ways.) 

Writing External String Functions 
A third option lets you specifY parameters that are not to be removed from the stack when 
your external routine ends. To do this, follow the element list (plus an optional ;ArgSize 
command) with RETURNS, in turn followed by a list of parameters that should remain on the 
stack when the PROC ends. 

In Pascal, the only time you'll probably need RETURNS is when writing external string func
tions. When Pascal calls a string function, it first pushes the function result-a 4-byte 
pointer--onto the stack before pushing other parameters (if there are any) passed to the func
tion. The function result pointer addresses a temporary area where your external code can 
store the characters of the string returned by the function. When the external routine ends, 
Pascal expects the string function pointer to remain on the stack. (Instructions following the 
subroutine call later remove these bytes or just pass the address to another procedure or func
tion that uses the function's string result.) Because of this special action, if you declare the 
function result in the ARG's main parameter list, the procedure will not work because Turbo 
Assembler deallocates the parameter bytes plus the function result pointer at the ret instruc
tion. 

Listing 12.4, FILLSTR.ASM, demonstrates the correct way to write an external Pascal string 
function. Listing 12.5, FILLSTR.PAS, shows how to link the external module to a Pascal 
program. Assemble, compile, and run the Pascal test with the commands: 

tasm fillstr 
tpc fillstr 
fillstr 

12 

517 



.. __ ... _--_ .... ---------

Listing 12.4. FILLSTR.ASM. 
1: %TITLE 'Pascal String-Filler Function -- Copyright (C) 1989,1995 by Torn Swan" 
2: 
3: IDEAL 
4: 
5: MODEL TPASCAL 
6: 
7: CODESEG 
8: 
9: PUBLIC FillString 

10 : 
11: %NEWPAGE 
12: :---------------------------------------------------------------
13: : FUNCTION FillString( n : Byte: ch : Char) : String; 
14: ;---------------------------------------------------------------

F111String NEAR 15: PROC 
16: ARG n:BYTE:2, c:BYTE:2 RETURNS string:dwORD 
17 : 

les di, [string) 
mov aI, [n) 
cld 
stosb 
xor ch, ch 
mov cl, al 
mov aI, [ c] 
jcxz @@99 

18: 
19: 
20: 
21 : 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31 : 

repnz stosb 
@@99: 

ret 
ENDP FillString 

END 

Listing 12.5. FILLSTR.PAS. 
1: PROGRAM FillStr; 
2: 

es:di addresses fn result 
Load n into al 
Auto-increment di 
Initialize string length 
Zero upper half of cx 
cx : requested string len 
al : fill character 
Exit if length : 0 
Store cx chars in string 

Return to caller 

End of module 

3: { Test using the FillString external function } 
4: 
5: VAR 
6: 

s : String; 

7: FUNCTION FillString( n Byte; ch Char) String; EXTERNAL; 
8: {$L FILLSTR.OBJ} 
9: 

10: BEGIN 
11 : s:: F illSt ring ( 45, '@' ); 

12: Writeln( 'After filling: s) 
13: END. 

How FILLSTR Works 
Line 16 in FILLSTR.ASM constructs an ARG declaration to return a parameter on the stack. 

518 For reference, this line is repeated below: 



ARG n:BYTE:2, c:BYTE:2 RETURNS string:dword 

First come the two parameters nand c, each of which are single bytes. Notice that the ch: char 
parameter from the Pascal text is renamed c here because ch in assembly language refers to 
the high byte of register cx and can't be used for an identifier. (I purposely contrived this 
conflict to illustrate that, in the ARG declaration, parameter names can be anything you like
they don't have to mirror their Pascal counterparts.) 

Because Pascal always pushes values onto the stack in multiples of 2 bytes, an additional 
qualifier : 2 is added to the two parameters, telling Turbo Assembler that, even though it 
should address nand c as bytes, it should consider these variables to occupy 2 bytes of stack 
space. If you don't include the : 2, Turbo Assembler will miscalculate the number of bytes 
occupied by the parameters and will not correctly fix up the stack when the external routine 
ends. 

NOTE 

The symptom of an incorted: stack &atJocatiol'l is' Ii ~s~ckdverfl()W"etrQr .!ffyou receive . 
this error, check that all single-byte parameters haVe a :'2 specifjCat~in' ydurARG lists. 

Following the two parameters is the phrase RETURNS string:dword. The name string can be 
any identifier, which simply gives you a way to refer to the function result inside the external 
code. The: dword part of this directive tells Turbo Assembler that string addresses a 4-byte 
value on the stack. (A string function actually returns a pointer in Turbo Pascal, and point
ers are always 4 bytes.) 

You can address the string function result in various ways. The easiest method is to load es: di 
or ds: si with the address of the area reserved for the result: 

les di, [string] i es:di addresses function result 

After this, the string's length byte is located at es: di. The first character of the string is at 
es: d1 + 1, and so on. Storing characters at es :di passes those characters back as the string 
function result. You don't have to perform any other steps to return the string to the caller 
to the external function. In FILLSTR.ASM, a repeated stosb instruction uses these methods 
to return a string filled with n characters of any ASCII value. 

Declaring Parameters Without ARG 
There's another way to declare parameters that doesn't use ARG--just place the parameter list 
after the PRoe and NEAR or FAR directive. For example, you can replace lines 15-16 in 
FILLSTR.ASM with: 

PRoe FillStr1ng NEAR n:BYTE:2, c:BYTE:2 RETURNS string:dword 

12 

519 



520 

In other words, if you write everything on one line, you don't need an ARG directive. But 
because long PROC declarations such as this can be confusing to read, I prefer to list argu
ments in a separate ARG directive. The results are identical, however, and you can use which
ever method you like. 

Going for Speed 
Let's face it. There's only one reason to spend time optimizing Pascal or any other language 
with system-dependent assembly language: to achieve the blinding speed that, when used 
well, only assembly language promises. In this section, you'll write a Pascal program, take 
apart the machine code generated by Turbo Pascal, and write highly optimized replacement 
external code in assembly language. AE you'll see, the results are worth the effort. 

The Pascal Program 
First, we need a Pascal program. Listing 12.6, STR.PAS, contains two useful procedures, 
ASCI IZtoSt rand St rToASCI IZ, which convert Pascal strings to and from the ASCIIZ format 
used by many assembly language programs in this book. To save space here, the optimized 
version of the Pascal code is listed. For test purposes, therefore, after you enter this program, 
copy STR.PAS to another file named STRSLOW.PAS (both files are provided on disk). 

Next, load STRSLOW.PAS into your editor and delete lines 12, 18-19,30,36-37, and 45. 
The lines are already deleted if you are using the supplied disk files. This converts the listing 
to pure Pascal, eliminating the references to the external routines that you'll add back later. 
After making the modifications, compile STRSLOW with the command: 

tpc Iv strslow 

Listing 12.6. SIR.PAS. 
1: PROGRAM StringConversionj 
2: 
3: { Convert ASCIIZ strings and Pascal strings} 
4: 
5: TYPE ASCIIZString ARRAY [ 0 .. 255 ) OF Char; 
6: ASCnZptr 'ASCIIZString; 
7: 
8: VAR a ASCIIZString; 
9: s : String; 

10: 
11 : 
12: {$L STR.OBJ} 
13: 
14: 



MIXING ASSEMBLY LANGUAGE WITH PASCAL 

15: { Convert an ASCIIZ string (a) to a Pascal string (s) } 
16: 
17: PROCEDURE ASCIIZtoStr( a : ASCIIZString; VAR s : String ); 
18: EXTERNAL; 
19: (* 
20: VAR Len : Integer; 
21: BEGIN 
22: Len:= 0; 
23: WHILE! Len < 255 ) AND ( a( Len I <> Chr( 0 ) ) 00 
24: BEGIN 
25: Len := Len + 1; 
26: sl Len I := al Len - 1 I 
27: END; { while } 
28: sl 0 J := Chr( Len 
29: END; { ASCIIZtoStr } 
30: ") 
31 : 
32: 
33: { Convert a Pascal string (s) to an ASCIIZ string (a) } 
34: 
35: PROCEDURE StrToASCIIZ( s : String; VAR a : ASCIIZString ); 
36: EXTERNAL; 
37: (" 
38: VAR Len, I : Integer; 
39: BEGIN 
40: Len:= Length! s ); 
41: FOR I := 1 TO Len 00 
42: a ( I - 1 I : = s ( I I i 
43: al Len I := Chr( 0 ) 
44: END; { StrToASCIIZ } 
45: ") 
46: 
47: 
48: { Display an ASCIIZ string } 
49: 
50: PROCEDURE ShowASCIIZ( a : ASCIIZString ); 
51: VAR I : Integer; 
52: BEGIN 
53: 1:= 0; 
54: WHILE ( I < 255 ) AND ( al I I <> Chr(0) ) 00 
55: BEGIN 
56: Write ( al I ); 
57: I :" I + 1 
58: END { while } 
59: END; { ShowASCIIZ 
60: 
61 : 
62: BEGIN 
63: s:= 'This is a test'; 
64: StrtoASCIIZ( s, a ); 
65: ShowASCIIZ( a ); 
66: Writeln; 
67: s:="; 
68: ASCIIZtoStr{ a, s ); 
69: Writeln! s ) 
70: END. 

521 



522 

PART II _ ApPLICATION PROGRAMMING 

Examining STRSLOW's Code 
After compiling STRSLOW, to see the machine code produced by Turbo Pascal', run the 
program under control of Turbo Debugger with the command: 

td strslow 

Then, press F7 repeatedly to step through the program. When you get inside the StrToASCIIZ 

and ASCIIZtoStr procedures, use the ViewlCPU command to look at the machine code that 
Turbo Pascal generates for these routines. You may be amazed at the lengths to which the 
Pascal compiler goes to convert apparently simple high-level statements into machine code. 
In many cases, Turbo Pascal generates very tight and fast-executing code. But, obviously, 
this is not one of those cases. With a little assembly language, we can do much better. 

Figure 12.4 lists the disassembled assembly language that corresponds with the Pascal proce
dure StrToASCI IZ (lines 35-44 in STR.PAS). The comments should help you to understand 
most of what's happening here. (Calls to undocumented Turbo Pascal runtime routines are 
marked "(internal sub)" and are not explained. When viewing this code in Turbo Debugger, 
some of the instructions will have slightly different formats.) 

NOTE 

Depending on your version of TUrbo~. BorlandPascaltt~actualrriachjne c~e produced 
may differ ffDm that shown in Figure 12.4. 

Lines 7-18 in Figure 12.4 point out one reason that even superb high-level language com
pilers like Turbo Pascal can sometimes generate slowly executing code. This procedure hap
pens to have a string parameter s passed by value; therefore, the compiler correctly assumes 
that string s might be changed inside the procedure. As a result, and because strings and 
other arrays are always passed internally by address, the code at lines 7-18 blindly copies the 
entire string to a temporary work space on the stack-a process that repeats every time you 
call the procedure. However, as you can see in the Pascal code, the string is not changed, and 
all this code is unnecessary, a fact that the compiler JUSt isn't smart enough to discern. 

There are other places in this code (and in the other procedure, ASCIIToStr) that could stand 
improvements, too. For example, line 28 apparently isn't needed as ax must already have the 
value stored at [bp 0102h] due to the earlier instruction at line 24. These observations seem 
to suggest that pure assembly language routines will save space and run more quickly. 



[ 
~.';.",. 
r~·"'" . 
~;.,'" 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

; PROCEDURE StrTOASCIIZ( s : String; VAR a 

PRoe 

Len 

For I 

StrTOASCIIZ NEAR 

push 
mov 
mov 
call 
sub 
les 
push 
push 
lea 
push 
push 
mov 
push 
call 

bp 
bp, sp 
ax, 0106h 
far ptr (internal 
sp, 0106h 
di, [dword ptr bp 
es 
di 
di, 
ss 
di 

[bp - 0100h) 

ax, 00ffh 
ax 

sub) 

+ 8) 

far ptr (internal sub) 

Length (s) 

mov 
xor 
mov 

mov 
mov 
mov 
cmp 
jg 
mov 
imp 

aI, [bp-0100h) 
ah, ah 
[bp 0102h], ax 

To Len 00 

ax, [bp 0102h), ax 
[bp -0106h), ax 
ax, 0001h 
ax, [bp - 0106h] 
@@09 
[bp - 0104h], ax 
short @@08 

35 @@07: 
36 inc [word bp - 0104h] 

5[1] 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 

; a[ I -1 ] : 

@@08: 
mov 
mov 
mov 
dec 
les 
add 
mov 
mov 
cmp 
jne 

; a[ Len) : 

@@09: 
mov 
les 
add 
mov 

di, [word bp - 0104h) 
dl, [byte bp+di-0100h] 
ax, [word bp - 0104h] 
ax 
di, [dword bp + 04) 
di,ax 
[byte es:di], dl 
ax, [word bp 0104h) 
ax, [word bp - 0106h] 
@@07 

Chr (0) 

ax, [word bp -0102h] 
di. [word bp + 04] 
di. ax 
[byte es:dil, 0 

END; { StrToASCII } 

mov 
pop 
retn 

ENDP StrTo ASCIIZ 

sp,bp 
bp 
8 

Figure 12.4. 

ASCIIZString) ; 

Save bp on stack 
Address params with bp 
Check if 106h stack bytes 
are available 

Reserve stack space for 5 
es:di = address of 5 
Push source address (seg 

and offset) 
ss:di = address of s copy 
Push destination address 

(seg and offset) 
Number of bytes to copy 
Push count 
Copy string to temp variable 

Get length of 5 
Zero upper half of ax 
Initialize Len variable 

Assign Len to ax 
Assign Len to stop value 
Assign start value to ax 
Is start > stop value? 
If yes, skip For loop 
Else initialize I 
Jump into Loop 

Increment control var (I) 

Assign I to di 
Get char at s[II 
Set ax to I 
Adjust ax to I - 1 
eS:di addresses a 
Advance di to ali - 11 
Store char from s[ I ) 
Set ax to control var ( I 
Compare with stop value 
Jump if ax <> stop value 

Set ax to Len 
es:di addresses a 
eS:di addresses a[ Len 
Store 0 at a[ Len ] 

Restore stack pOinter 
Restore saved bp register 
Return saved bp register 

Commented assembly language for the Str ToASCI IZ procedure in STRPAS (modified. nonoptimized version. renamed 
STRSLOW.PAS). 523 



----------------------------------- -----_ .. ---

1 

524 

PART II _ ApPLICATION PROGRAMMING 

Optimizing STR.PAS 
Listing 12.7, STR.ASM, replaces the ASClIZtoStr and StrToASCIIZ procedures in STR.PAS 
with assembly language external routines. (If you've been following along, you copied 
STR.PAS to STRSLOW.PAS earlier. Be sure you have the original copy of STR.PAS on 
disk for the next steps.) Assemble, compile, and run the test with the commands: 

tasm str 
tpe str 
str 

Listing 12.7. STR.ASM. 
1: %TITLE 'ASCIIZ and Pascal Strings -- Copyright (c) 1989,1995 by Tom Swan' 
2: 
3: IDEAL 
4: 
5: MODEL TPASCAL 
6: 
7: CODESEG 
8: 
9: PUBLIC ASCIIZtoStr, StrToASCIIZ 

10 : 
11: %NEWPAGE 
12: ,---------------------------------------------------------------
13: ; PROCEDURE ASCIIZtoStr( a : ASCIIZString; VAR s : String )j 

14: ;---------------------------------------------------------------
15: PROC ASCI IZtoStr NEAR 
16 : 
17: 
18: 
19: 
20: 
21 : 
22: 
23: 
24: ~~10: 

25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: @@20: 
34: 
35: 
36: 
37: 
38: ENDP 
39: 

ARG a:dword, s:dword ArgSize 
push ds 
les di, [s] 
push di 
inc di 
Ids si, la] 
eld 
xor cl, el 

cmp cl, 255 
je @@20 
lodsb 
or aI, al 
jz ~@20 

inc cl 
stosb 
jmp @@10 

pop di 
mov [byte es:dil, cl 
pop ds 
ret 
ASCIIZtoStr 

Save Pascal's ds register 
Address s with es:di 
Save address for later 
Address s[11 with eS:di 
Address a with ds:si 
Auto-increment si, di 
Set Len (cl) to zero 

Is Len = 255 yet? 
If yes, exit 
Get char (al <- alII) 
Is al = 0 (ASCII null)? 
If char = null. exit 
Len := Len + 1 
s[ Len J :- a[ Len 1 I 
LOOP until done 

es:di again addresses s(0) 
s[ 0 I :- Chr( Len ) 
Restore Pascal's ds register 
Return to caller 



MIXING ASSEMBLY LANGUAGE WITH PASCAL 

40: %NEWPAGE 
41: ---------------------------------------------------------------
42: ; PROCEDURE StrToASCIIZ( s : String; VAR a : ASCIIZString ); 
43: ;---------------------------------------------------------------
44: PROC StrToASCIIZ NEAR 
45: ARG s:dword, a:dword = ArgSize 
46: push ds 
47: les di, raj 
48: Ids si, Is) 
49: cld 
50: 
51 : 
52: 
53: 
54: 
55: @@10: 
56: 
57: 
58: 
59: ENDP 
60: 
61 : 

xor ch, ch 
lodsb 
mov cl, al 
jcxz @@10 
repnz movsb 

mov [byte es:dij, cl 
pop ds 
ret 
StrToASCIIZ 

END 

How STR.ASM Works 

Save Pascal's ds register 
Address a with es:di 
Address s with ds:si 
Auto-increment si, di 
Zero upper half of cx 
al := Length( s ) 
cx : string length 
Exit if length = 0 
Transfer s to a 

a[ Len I := Chr( 0 ) 
Restore Pascal's ds register 
Return to caller 

End of module 

You've seen all the instructions, commands, and other items in STRASM and, therefore, 
should have little trouble understanding how the code works. Notice how ARG is used to make 
addressing the parameters on the stack easy, without requiring confusing and error-prone 
specifications like [word bp + 4). Also, the TPASCAL memory model lets Turbo Assembler 
initialize and restore bp automatically and add the proper immediate value to the ret instruc
rions, removing parameters from the stack as necessary. 

I used the memory model so that this example would work correctly with most versions of 
Turbo Assembler and Turbo Pascal. Remember: You don't need to use TPASCAL with Borland 
PascaL 

Pay special attention to lines 18, 21, and 47-48, which load es:di and ds:si with the ad
dresses of the a and s parameters. Because this potentially changes ds-the variables may not 
be in the Pascal program's data segment-the procedures carefully preserve ds. 

Another optimization technique demonstrated here takes advantage of the fact that, even 
though a is a value parameter to ASCIIZtoStr and that s is a value parameterto StrToASCIIZ, 
Turbo Pascal always passes strings and arrays by address. Therefore, because these variables 
aren't changed, the optimized external code skips the steps of copying the values as done in 
the code generated by the compiler. 

525 



526 

PART II _ ApPLICATION PROGRAMMING 

NOTE 

In this example, variables a and s are stored in'the data segment and, if you run the test in 
Turbo Debugger, you may observe that dadoesn't actually change at lines 21 and 48. But 
another program could pass parameters to these procedures that are not stored in the data 
segment. In which case, ds probably would change. Such details are the source of many 
bugs, and the best preventionisa thorough knowledge of how Pascal works on.the machine
code level. Don't assume that, just because you don't see a register value changing one time, 
that it won't change at another. 

The speed gains in STR.ASM are mostly due to the use of fast 8086 string instructions at 
lines 27, 31, and 54. Contrast these instructions to the laborious methods employed in the 
pure Pascal output. (See Figure 12.4.) There's just no substitute for keeping values in fast 
general-purpose registers, using string indexes si and di, and taking advantage of powerful 
string instructions such as lodsb and movsb. As you can see, a little assembly language added 
to Pascal can go a long way toward improving program performance. 

In Turbo Pascal's favor, I am forced to admit here that STR.PAS could be written to run 
quite a lot faster by using unique Turbo Pascal instructions such as Move. Even though I could 
be accused of "cooking the books" to create a good example of assembly language optimiza
tion, there are times when you may want to avoid Turbo's unique commands-even if this 
results in slower code. By restricting your programs to standard Pascal commands-as de
fined by Jensen and Wirth (see Bibliography)-your code will be easier to transfer to other 
systems. In fact, I sometimes write three versions of a program: one in standard Pascal, an
other optimized in Turbo Pascal, and a third optimized in assembly language, replacing pro
cedures and functions from either of the first two versions. This takes extra work, of course, 
but also greatly improves the prospects that the code will run with minimum modifications 
on a variety of hardware. 

Summary 
Compilers are smarter today than ever before, but they're still no match for a clever assembly 
language programmer. Even programs compiled to super-fast code by Turbo Pascal can of
ten be improved. But knowing how to add assembly language to Pascal is only half the story. 
Knowing when to do so is equally if not more important. Usually, it's best to convert only 
critical code, leaving noncritical sections in Pascal. To maintain a program's portability to 
other systems, it's also wise to write the Pascal statements first before converting critical sec
tions to assembly language. 



MIXING ASSEMBLY LANGUAGE WITH PASCAL 

Finding the critical code is not always easy, but most experts agree that programs generally 
spend about 90% of their time executing about 10% of their instructions. Optimizing that 
critical 10% can greatly increase performance. Optimizing the other 90% may be a waste of 
time. A profiler can help identify critical sections by keeping statistical data about an execut
mg program. 

Turbo and Borland Pascal allow you to use InLine statements, InLine procedures and func
tions, and external procedures and functions to add assembly language to Pascal. The last of 
these is usually best because it improves the chances of porting the program to another sys
tem. External routines also can be assembled and debugged separately and might be usable 
with other languages, too. 

Pascal's unusual memory model requires special handling, requiring you to declare data and 
code segments the hard way for the most flexible results. As an alternative, the TPASCAL memory 
model can be used with early versions of Turbo Pascal, although this has the disadvantage of 
adding startup instructions to every procedure, whether needed or not. 

You can call external procedures and functions from Pascal, and you can call Pascal proce
dures and functions from assembly language. You must be careful to know which procedures 
are NEAR and which are FAR. You can also import data from Pascal into external modules, but 
because Pascal lacks an EXTERNAL directive for variables, you can't export data from assembly 
language to Pascal. (You can pass the addresses of external data to Pascal and, with this method, 
gain access to external variables.) 

Writing Pascal functions requires extra care to be sure that proper values are passed back to 
callers in the correct registers. Parameters further complicate the job of writing external code, 
requiring assembly language modules to address variables on the stack. Using the ARG direc
tive can help (especially when used with the TPASCAL memory model) by letting external code 
address parameters by name instead of error-prone expressions such as [bp + 8]. TPASCAL is 
not required with Borland Pascal. 

Of course, the ultimate goal of adding assembly language to Pascal is to add speed to pro
grams. As an example in this chapter demonstrates, the results of optimizing can save memory, 
reduce code-file size, and greatly enhance performance. 

Exercises 
12.1. What is "critical code"? 

12.2. What does a profiler do? 

12.3. The cIc instruction's machine code is OF8h. The stc instructions's machine code 

is OF9h. Write InLine statements and procedures using these instructions to set 
and clear the carry flag. 

527 



528 

12.4. What is the correct way to code the following Pascal procedure declaration in an 
external assembly language module? 
{$F+} 
PROCEDURE PlayBall; 

12.5. Suppose you have an external assembly language module named 
NEWSTUFF.ASM, assembled to NEWSTUFF.OB]. In it are one procedure 
01dStuff and an integer function 01derStuff. What Pascal statements are 
required to incorporate the Pascal and assembly language files? 

12.6. Why is the TPASCAL memory model potentially disadvantageous? What are the 
advantages and alternatives? 

12.7. Given the following Pascal declarations, write the directive or directives required 
to import the values into an assembly language module. Which (if any) of these 
declarations can't be imported into the external module? 
TYPE Months = (Jan, Feb, Mar, Apr, May, 

Jun, Jul, Aug, Sep, Oct, Nov, Dec); 

CONST MaxLevel = 17; 
AreaCode : Integer 555; 
Esc = 1127; 

VAR YourName : String; 
Score : Integer; 
SalesPerMonth : Array! Months I OF Integeri 

12.8. Given the following Pascal procedure, write the necessary instructions to call the 
routine from inside an assembly language module named ASCII.OB]: 
PROCEDURE WriteASCII( ch : Char Ii 
BEGIN 

Writeln( 'ASCII value = " Ord(ch) 
ENDj 

12.9. Suppose you have a global variable declared with dd named LongVa1ue. What 
assembly language instructions do you need to use to pass this value back to 
Pascal as a function result type? 

12.10. [Advanced.] Using an ARG directive and, for Turbo Pascal, assuming the TPASCAL 
memory model is being used, write the assembly language code required to 

replace the Pascal LotsOfParams procedure shown here with an external module 
that loads parameter a into ex and b into dx, adds 5 to number, and loads a1 with 
ch. Write a Pascal program to test your code. (Hint: Write a Pascal version first, 
examine the code in Turbo Debugger, and then write the assembly language 
module.) 
PROCEDURE LotsOfParams( a, b : Integerj 

VAR number: Integer; VAR ch : char ); 



Projects 
12.1. Convert the STRINGS module from Chapter 5 to external procedures that can 

be linked to Pascal programs, adding ASCIIZ string abilities to Turbo Pascal. 

12.2. Write a terminal emulator in Pascal, using external procedures from Chapter 10's 
ASYNCH module to initialize and drive the serial I/O port. 

12.3. Identify the critical code as best you can in a sizable Pascal program, preferably 
one of about 1,000 lines. (Most public domain libraries have suitable candi
dates.) Optimize key procedures and functions in the program and document the 
improvements. 

12.4. Pascal's Write and Writeln have to handle multiple parameters, integers, real 
numbers, and strings. They're handy, but they can also produce needlessly 
lengthy machine-code instruction sequences. Write simplified string 1/0 proce-
dures for writing Pascal string variables to the standard output. . 

12.5. Develop a fast direct-video package in assembly language for displaying strings at 
high speed on PCs. 

12.6. Use Turbo Debugger to examine the machine code for Turbo Pascal's standard 
CRT unit, supplied with most versions of Turbo and Borland Pascal. Identify 
and comment as many of the instructions as you can. (Doing this is a good way 
to learn how Pascal compiles programs, but don't worry if you can't figure out 
every instruction.) 

529 





Mixing Assentbly 
Language with C 
and c++ 

_ Mixing C and C++ with Assembly Language, 532 

_ Identifying Critical Code, 532 

_ Using Registers, 533 

_ Inline Assemblies, 533 

_ Sharing Data, 538 

_ External Assemblies, 544 

_ Calling Assembly Language Functions from C, 550 

_ Assembling and Linking External Modules, 551 

_ Debugging Multilanguage Programs, 554 

_ Calling C Functions from Assembly Language, 555 

_ Function Results, 557 

- LOCAL Variables, 558 

_ Calling C++ Functions from Assembly Language, 560 

_ Passing Function Arguments, 565 

_ Mixing C++ Classes with Assembly Language, 570 

_ Summary, 579 

_ Exercises, 580 

_ Projects, 581 



13 

532 

PART II _ APPliCATION PROGRAMMING 

'Mixing C and c++ with Assembly Language 
The reasons for adding assembly language to Turbo C and Borland C++ programs are the 
same as the reasons discussed in Chapter 12 for optimizing Turbo Pascal-speed and access 
to the lowest reaches of the hardware. But the pitfalls are identical, too--reduced program 
portability and an increased likelihood of bugs. For most programs, Borland C and C++ 
compilers generate tight fast code that's hard to beat. Still, no compiler is as clever as a crack 
assembly language expert, and, many times, the only way to add real zip to a program is to 
drop a little machine code into your deep and true blue "c" using one of two methods: 

• Inline statements 

• External functions 

lnline statements inject assembly language directly into C and C++ source code. This tech
nique is quick and easy but does have a few drawbacks, as I'll explain later. External JUnc
tions, while more difficult to manage than inline statements, have the advantage of giving 
you full access to all of Turbo Assembler's features. This chapter examines both methods, 
listing many examples that you can use as templates for your own projects. 

NOTE 
. ", ".'~ .. <~::" ': ~'v ."', V'v • ~-:" ~f< lv v_":.'"v',·:'5~-:~, V'v • 

This chapter assumes that yciu have,~~famUiarity,~>C.wiC*~~¥pu~hpw 
to it'lstall and run your compiler. y()~ may usethe<sam~;progt;~iri~is,~~;:-vit9rnosf. 
versionS ofTurbo Assembler, turbo C, TUfbo~++, 8ndBorlandC+,.. .. a " ',t, 
examples near the end oftJJe chapter ~ujr~ B<>rla~t++and 1:udK/' ,', VerelQ&4l; 
orgrealer. Also, while reading thischaptf!r, if yOu experience 'a liule~ia·ttltdQnlt be~:~ 
alarmed. A few paragraphs from Chapter 12 are Intentiomilly duplicated here. 

Identifying Critical Code 
As explained in Chapter 12, a program's critical code usually amounts to about 10% of the 
instructions, which often can share as much as 90% of the processing burden. Rewriting this 
critical 1 0% in fast assembly language should produce remarkable speed improvements, while 
optimizing the other 90% may be a waste of time. For this reason, the primary mixed-lan
guage rule to remember is: Don't rewrite statements that already run as fast as necessary. 

Locating a program's critical code is not always easy. Sometimes, your familiarity with the 
program will tell you which sections could stand a little extra juice. At other times, you'll 
need the help of a commercial profiler, such as Borland's Turbo Profiler, to monitor a pro
gram and create a statistical report, listing heavily traveled routines. 



A good battle plan is to write your program entirely in C and c++ and then, after debugging 
your code, convert selected areas to assembly language. Keep track of the results as you go 
along and try to keep the amount of assembly language to a minimum. That may seem to be 
strange advice to find in an assembly language book, but one of the main reasons for writing 
a program in a high-level language is to improve the chances for transferring the code to 
another computer. To keep these chances alive, it's probably best to use as little assembly 
language as possible. (Besides, a little machine code goes a long way.) 

Using Registers 
You can use all processor registers in your assembly language routines. To prevent mishaps 
in C and c++ functions, you must restore bp, es, ds, sp, and ss to the values they had at 
the start of your routine. You can safely assume that calls to other functions will not change 
these registers. 

Registers ax, bx, ex, dx, d i, s i, and es are free for the taking, and you do not have to 
preserve the values of these registers before your routine ends. This freedom applies to other 
functions, too, so be aware that these same registers can change if you call C and c++ func
tions from your assembly language routines. 

Because the compiler uses di and si for register variables, if you use either of these twO reg
isters in inline assembly language statements, the compiler turns off'register variable optimi
zations, avoiding a possible conflict with your code. Unfortunately, this can also slow down 
the very code you're trying to revise for extra speed. For this reason, it's usually best to avoid 
using di and si unless absolutely necessary. When linking external assembly language mod
ules, it's up to you to preserve si and di for other functions that use register variables. 

Inline Assemblies 
An inline assembly language statement begins with the word asm and is followed by an as
sembly language mnemonic plus any operands required by the instruction. For example, to 
synchronize a program with an external interrupt signal, you can write: 

/* wait for an interrupt */ 
asm sti 
asm hlt 
printf('Interrupt reeeived\n")j 

When early versions of Turbo C compile a program with embedded asm commands, the 
compiler first creates an assembly language text file for the entire program, inserting your 
assembly language instructions along with the compiled code for other C statements into 
the text. The compiler then calls Turbo Assembler and Linker to assemble and link the pro
gram into the final code file. More recent versions ofT urbo and Borland C++ can compile 
asm statements without calling TASM. The complete syntax for asm is: 

533 



534 

PART II _ ApPLICATION PROGRAMMING 

asm [label) mnemonic/directive operands[;)[/* C comment·/) 

The oprionallabelis allowed only for data directives. You can't label instruction mnemon
ics. For example, to create a word variable named ForWord, you can write: 

asm Forword dw ? 

To label an instruction in a function, you must use a C labet-an identifier followed by a 
colon: 

ThisLocation: 
asm inc ax 

asm or ax, ax 
asm jz ThisLocation 

The mnemonic/directive may be any legal assembly language instruction or Turbo Assembler 
directive. The operands to the mnemonic or directive as the same as those used in "pure" 
assembly code. For example, you can increment an integer variable named Level with the 
command: 

int Level; 
asm inc (word Level]; 

Notice that the word qualifier is necessary to tell the assembler the size of the Level. You have 
to add word, byte, tbyte, and other qualifiers only if the size of a variable is ambiguous. In 
unambiguous cases, you can leave the qualifier out: 

int Bevel; 
asm mov ax, [Bevelli 

This moves the value of Bevel into ax. Because ax is a word register, Turbo Assembler as
sumes that Bevel is the same size. Also, as demonstrated here, you don't have to be concerned 
with where variables are located-the same assembly language constructions work for vari
ables on the stack or variables in the data segment-just use the variable names as in these 
samples. 

The semicolon at the end of an asm statement is optional. Don't confuse the semicolon with 
an assembly language comment character-the compiler removes the semicolon before as
sembly. For this reason, to comment an assembly language statement, you must use C-sryle 
comments as in: 

int Swivel; 
int Drivel; 
asm mov ex, [Swivel]; 
asm shl ax, cl 
asm mov [Drivel), ax; 

/* Load ex with value of Swivel */ 
1* Shift ax left by value in cl */ 
1* Save shifted ax in Drivel */ 

The semicolons at the ends of the asm lines and the C comments between /* and */ are stripped 
from the text before assembly. (I prefer to leave out the semicolons as in the middle asm state
ment in the example.) 



MIXING ASSEMBLY LANGUAGE WITH 

Compiling and Assembling Inline Code 
There are several ways to compile C programs with embedded asm instructions. To demon
strate the differences between these methods, refer to Listing 13.1, T ALLY.C The notes after 
the listing explain how to compile the program. 

Listing 13.1. TALL Y.c. 
1: /* TALLY.C ---- A Short Inline Assembly Language Example */ 
2: 
3: #inelude <stdio.h> 
4: 
5: int main(vOidl 
6: { 
7: int votes; 
8: int tally; 
9: 

10: votes = 100; 
11: tally = 500; 
12: printf( "Tally : %d\n', tally); 
13: asm mov ax, [votes); 
14: asm add (tally), ax; 
15: printf('Tally: %d\n", tally); 
16: return 0; 
17: 

How To Compile TAllY.C 
T ALLY.C uses two embedded asm statements to add the value of an integer variable votes to 

another variable tally, having the same effect as the C statement: 

tally = tally + votes; 

With early versions ofT urbo C, to compile, assemble, and link the program, use the command: 

tee tally 

You must use the DOS command-line compiler TCCEXE for this. You can't use the inte
grated editor and compiler program TCEXE to compile programs containing inline a5m 

statements. During compilation, when Turbo C reaches the first a5m statement, it displays 
"Warning 13" and restarts compiling the program from the beginning. Normally, Turbo C 
compiles directly to .0Bl code files and then calls Turbo Linker to join the program's object 
and library modules to create the final .EXE code file. Because of the embedded asm state
ments, Turbo C instead compilers to an .ASM text file, in this case creating the file 
TALLY.ASM. This file contains the entire C program in assembly language form along with 
the asm statements. Next, Turbo C calls Turbo Assembler to assemble TALLY.ASM to 
T ALLY.OB]. Then, after removing T ALLY.ASM from disk, the compiler calls Turbo Linker 
to link TALLY.OBl with an appropriate Turbo C library and other files, creating the fin
ished T ALLY.EXE code file-lots of action for such a shon command. 535 



13 

536 

The problem with this method is the time wasted by compiling the program up the first asm 

statement, when Turbo C finally realizes it has to generate an assembly language text file 
instead. You can avoid this by specifYing the -B option on the command line. (The B must 
be in uppercase.) For example: 

tee -B tally 

compiles TALLY.C to TALLY.ASM, assembles TALLY.ASM to TALLY.OB], and links 
TALLY.OB] with a library file to create TALLY.EXE. TALLY.ASM is erased from disk. To 
save the assembly language text file, use the -8 option (which also must be in uppercase): 

tee -s tally 

This compiles TALLY.C to TALLY.ASM but does not assemble to link the result. Use this 
command when you want to examine the assembly language generated by Turbo C, giving 
you a close look at the instructions used to implement commands such as for loops and func
tion calls. After examining the assembly language text, repeat the compilation with a -B 

command to create the finished program. (You can also assemble TALLY.ASM separately, 
but then you'll have to run Turbo Linker to join TALLY.OB] with an appropriate Turbo C 
run-time library as explained in the Turbo C User's Guide and later in this chapter.) 

More recent versions of Turbo C++ and Borland C++ can compile asm statements directly 
without creating an intermediate .ASM text file. Because the C++ compilers normally ex
pect filenames to end with the extension .CPP, you must specifY .C for C programs. For 
example, to compile TALLY.C with Borland C++ 4 or 4.5, type this instruction at a DOS 
prompt (change bee to tee if you are using Turbo C++): 

bee tally.e 

You can still create the intermediate assembly language text, and have the compiler call Turbo 
Assembler to assemble the program, by specifYing the -8 option: 

bee -8 tally.e 

Or, use -8 to save the assembly language file (TALLY.ASM) for inspection with a text editor: 

bee -S tally. e 

Pragmatic Assemblies 
Another method to compile programs such as TALLY.C with embedded asm commands is 
to insert the line: 

#pragma inline 

at the beginning of the module. To try this, add #pragma inline to TALLY.C between lines 
1 and 2 (or as the first line) and compile with the command: 

tee tally 



As you can see, the #pragma directive-an ANSI C standard method for activating a compiler's 
custom features--does the same job as the -B command-line option, avoiding the time that's 
otherwise wasted restarting the compiler after reaching the first asm statement. 

You may use this same method with more recent versions ofT urbo C++ and Borland C++. 
However, because these compilers can compile asm statements directly, there's usually little 
reason to use the #pragma in line directive. Doing so causes the compilers to generate inter
mediate .ASM files and to call Turbo Assembler. Unless you have a good reason for compil
ing your programs this way, the end result is simply a waste of time. 

Locations for Data and Code Statements 
Every line of C and C++ code is either inside or outside a function, and you can insert asm 
statements in both places. The exact location of an asm statement affects where the code or 
directive is assembled. When an asm statement appears outside a function, it's assembled into 
the program's data segment. When an asm statement appears inside a function, it's assembled 
into the program's code segment. Usually, to create variables, you'll insert asm statements 
outside functions; to create code, you'll insert them inside functions. Here's a sample of both 
uses: 

asm count db ? 
int main() 
{ 

asm shl [count], 1 
asm shl [count], 1 
return 0; 

f* multiply count by 4 *f 

The variable count is declared in the program's data segment (relative to ds). The statements 
inside function main multiply count by 4, using fast shift instructions instead of mul. If you 
declare variables inside a function, the data is assembled into the code segment, requiring 
special handling: 

int main() 
{ 

asm jmp OverThere 
asm count db ? 

OverThere: 
asm shl [count), 1 
asm shl [count), 1 
return 0; 

f* multiply count by 4 *f 

Because the variable count is now in the code segment, a j mp instruction is required to avoid 
accidentally executing the value of count as machine code. Notice that the shl references to 
count are unchanged-the compiler automatically inserts segment overrides (in this case, cs:) 

as needed to refer to variables in their proper segments. 

537 



13 

536 

The problem with this method is the time wasted by compiling the program up the first a5m 

statement, when Turbo C finally realizes it has to generate an assembly language text file 
instead. You can avoid this by specifying the -8 option on the command line. (The B must 
be in uppercase.) For example: 

tee -8 tally 

compiles TALLY.C to TALLY.ASM, assembles TALLY.ASM to TALLY.OB], and links 
TALLY.OB] with a library file to create TALLY.EXE. TALLY.ASM is erased from disk. To 
save the assembly language text file, use the -s option (which also must be in uppercase): 

tee -s tally 

This compiles TALLY.C to TALLY.ASM but does not assemble to link the result. Use this 
command when you want to examine the assembly language generated by Turbo C, giving 
you a close look at the instructions used to implement commands such as for loops and func
tion calk After examining the assembly language text, repeat the compilation with a -8 

command to create the finished program. (You can also assemble TALLY.ASM separately, 
but then you'll have to run Turbo Linkerto join TALLY.OB] with an appropriate Turbo C 
run-time library as explained in the Turbo C User's Guide and later in this chapter.) 

More recent versions of Turbo C++ and Borland C++ can compile a5m statements directly 
without creating an intermediate .ASM text file. Because the C++ compilers normally ex
pect filenames to end with the extension .CPP, you must specify .C for C programs. For 
example, to compile T ALLY.C with Borland C++ 4 or 4.5, type this instruction at a DOS 
prompt (change bee to tee if you are using Turbo C++): 

bee tally.e 

You can still create the intermediate assembly language text, and have the compiler call Turbo 
Assembler to assemble the program, by specifying the -8 option: 

bee -8 tally.e 

Or, use -S to save the assembly language file (TALLY ASM) for inspection with a text editor: 

bee -S tally.e 

Pragmatic Assemblies 
Another method to compile programs such as TALLY.C with embedded asm commands is 
to insert the line: 

#pragma inline 

at the beginning of the module. To try this, add #pragma in line to T ALLY.C between lines 
1 and 2 (or as the first line) and compile with the command: 

tee tally 



As you can see, the #pragma directive-an ANSI C standard method for activating a compiler's 
custom features--does the same job as the -8 command-line option, avoiding the time that's 
otherwise wasted restarting the compiler after reaching the first asm statement. 

You may use this same method with more recent versions of Turbo C++ and Borland C++. 
However, because these compilers can compile asm statements directly, there's usually little 
reason to use the #pragma inline directive. Doing so causes the compilers to generate inter
mediate .ASM files and to call Turbo Assembler. Unless you have a good reason for compil
ing your programs this way, the end result is simply a waste of time. 

locations for Data and Code Statements 
Every line of C and C++ code is either inside or outside a function, and you can insert asm 
statements in both places. The exact location of an asm statement affects where the code or 
directive is assembled. When an asm statement appears outside a function, it's assembled into 
the program's data segment. When an asm statement appears inside a function, it's assembled 
into the program's code segment. Usually, to create variables, you'll insert asm statements 
outside functions; to create code, you'll insert them inside functions. Here's a sam pie of both 
uses: 

asm count db ? 
int main() 
{ 

asm shl [count), 
asm shl [count], 
return 0; 

'* multiply count by 4 0, 

The variable count is declared in the program's data segment (relative to dS). The statements 
inside function main multiply count by 4, using fast shift instructions instead of mul. If you 
declare variables inside a function, the data is assembled into the code segment, requiring 
special handling: 

int main () 
{ 

asm jmp OverThere 
asm count db ? 

OverThere: 

} 

asm shl [count]. 
asm shl [count], 
return 0; 

'* multiply count by 4 *' 

Because the variable count is now in the code segment, a jmp instruction is required to avoid 
accidentally executing the value of count as machine code. Notice that the shl references to 

count are unchanged-the compiler automatically inserts segment overrides (in this case, cs:) 
as needed to refer to variables in their proper segments. 

537 



13 

538 

Enabling 80286/386 Instructions 
You can enable 80286 and 80386 instructions by inserting appropriate Turbo Assembler 
directives into the code. For example, to switch on non-protected 80286 instructions, use 
the command: 

asm .2B6C 

Remember to use the MASM format instead of the Ideal-mode equivalent P286N, unless 
you also switch to Ideal mode. If you do this, remember to switch back to MASM mode, 
which is used for the compiler's own assembly language output: 

asm Ideal 
asm P2B6N 
asm MASM 

/* switch on Ideal mode "/ 
/* enable B02B6 non-protected instructions "/ 
/" switch back to MASM mode "/ 

Sharing Data 
Inline asm statements have ready access to C and C++ variables and structures--one of the most 
attractive advantages of the inline method over the traditional external module approach (de
scribed later in this chapter). Table 13.1 lists C and C++ data types, showing the assembly lan
guage qualifiers to use in ambiguous references, the number of bytes occupied by variables of 
each type, and the equivalent Turbo Assembler directive to create variables of the same size. Note 
that dq can be used to create initialized double floating point variables in assembly language but 
that there is no Turbo Assembler directive to create float variables directly. 

In asm statements, you can refer to named C variables of the types in Table 13.1 with code 
such as: 

unsigned char initial; 

initial = 'T'; 
asm mov dl, [initial) 
asm mov ah, 2 
asm int 21h 

/" Load character into dl */ 
/" Send character to OOS "/ 
/* standard output function */ 

Table 13.1. C and C++ Data Types. 

Data Type 

unsigned char 

char 

enum 

unsigned short 

short 

unsigned int 

Qualifier 

Byte ptr 

Byte ptr 

Word ptr 

Word ptr 

Word ptr 

Word ptr 

Bytes Directive 

db 

db 

2 dw 

2 dw 

2 dw 

2 dw 



Data Type Qualifier Bytes Directive 

int Word ptr 2 dw 

unsigned long Dword ptr 4 dd 

long Dword ptr 4 dd 

float Dword ptr 4 

double Qword ptr 8 dq 

long double Tbyte ptr 10 dt 

near * Word ptr 2 dw 

far * Dword ptr 4 dd 

The unsigned character variable initial is loaded into dl by an asm statement. From Table 
13.1, because dl and the unsigned char data type are both bytes, there's no need to use a 
Byte qualifier in the reference, although doing so is harmless: 

asm mov dl, [Byte ptr initial) 

The brackets, which are normally used to indicate a reference to memory rather than the 
value (that is, the address) of a label, result in the assembly language statement: 

mov dl, [[Byte ptr initial)) 

The double brackets cause no trouble, so don't worry about them. (Unless you're compiling 
with the -8 option, you won't see these brackets anyway.) You can avoid this odd double
bracket behavior by not using brackets in the asm statement: 

asm mov dl, initial 

although now, the program is less clear. (Does initial refer to the address or the value of 
this variable?) 

Declaring Assembly language Data 
You can also declare variables for use only by your assembly language statements. For example, 
to create a 16-bit word named TwoBytes and load the variable's value into ex, you can write: 

asm TWoBytes db 1. 2 
int main() 
{ 

asm mov ex, [Word ptr TwoBytes) 
return 0 

The TwoBytes variable is declared in the program's data segment (outside a function), using 
the db directive to store 2 byres (1 and 2) in memory. An assembly language statement then 
loads the value of TwoBytes into ex, setting cl to 1 and eh to 2. The Word ptr qualifier is 
necessary to refer to TwoBytes as a 16-bit word. 539 



540 

Because TwoBytes is declared in an asm statement, you can't refer to the variable with C or 
C++ code. For this reason, unless you need private variables for your assembly language in
structions, you'll usually declare variables and refer to them from assembly language. 

C Structures 
Member (field) names in structures are internally stored as offset values from the beginning 
of the structure. For example, the structure: 

struct PersonRec { 
char Name[50]; 
char Address[60)j 
char CityStZip[60]j 
char AgelnYears; 
Person; 

assigns offset values to Name, Address, and Ci tyStZip representing the positions of these fields 
in the PersonRec structure. Keeping this fact in mind, you have to use both the variable and 
member identifiers separated by a period to refer to structure fields in an assembly language 
statement: 

asm mov si, offset Person.Address 

which assembles to: 

mov si, 0038h 

The 0038h (which might be a different value on your system if you view this in Turbo 
Debugger) represents the offiet from the beginning of the data segment to the Address field
that is, Person + Address. Contrast this with the instruction: 

asm mov aI, Byte ptr Person.AgelnYears 

which assembles to: 

mov aI, Byte ptr OGROUP:_Person + 170 

In this case, the value of the AgelnYears field is loaded into a1. The 170 represents the offset 
value of this field from the start of the Person record. (the compiler adds underscores to vari
able names-but more about that later.) 

Many times, you'll want to refer to structures with pointers, usually loaded into bx. For ex
ample, to initialize bx to the address of the Person record, use the statement: 

asm mov bx, offset Person 

With ds: bx addressing Person, you can now load the values or addresses of other fields rela
tive to the pointer: 

asm mov dl, [bx.AgelnYears] 



No size qualifier such as Byte ptr is needed because both the field and register are the same 
SIze. 

When two or more structures have identical field names, you must resolve ambiguous pointer 
references by adding the structure name in parentheses before field names. For example, 
suppose there is another record eype named Customers with a field CitystZip-the same field 
name as in the PersonRec structure. To load si with the offset address of the CityStZip field 
from a variable TheBaker of eype Customers addressed by bx, you can write: 

asm mov bx, offset TheBakery 
a5m lea 5i, [bx.(struet Customers) CityStZipl 

The first asm command loads bx with the offset address ofTheBake ry. The second command 
loads si with the effective address of the Ci tyStZip field relative to bx. The structure name 
in parentheses lets the compiler resolve the ambiguous field name reference to CityStZip. 

Sharing Code 
Inline assembly language statements can call C and c++ functions, and C and c++ state
ments can call functions written entirely in assembly language. Let's start with the easier of 
these two techniques, showing how to write a complete function in assembly language and 
call that function with C statements. Compile. assemble, and link Listing 13.2, UPDOWN.C, 
and with the command: 

tee -v updown.e 

If you are using Borland C++, replace tee with bee. 

You need to use the -v option only if you want to examine the source code while running 
the program in Turbo Debugger. If you want to examine the assembly language output, enter 
the following command and use your test editor to view the UPDOWN.ASM file: 

tee -s updown.e 

listing 13.2. UPDOWN.C 
1: /* Inline Assembly Language Function Demonstration */ 
2: 
3: #pragma inline 
4: 
5: #include <stdio.h> 
6: #include <string.h> 
7: 
8: extern void BumpStrUp(unsigned char far * TheString, 
9: int Stringlength)j 

10: 
11: extern void BumpStrDown(unsigned char far * TheString, 
12: int Stringlength)j 

continues 

541 



13 

542 

Listing 13.2. continued 
13: 
14: char *MixedUp = 'UppER aNd LOwEr CaSE'; 
15: 
16: int main() 
17: { 
18: 
19: 
20: 
21 : 
22; 
23: 
24: } 
25: 

printf("Before BumpStrUp: \s\n', MixedUp); 
BumpStrUp( MixedUp, strlen(MixedUp) )i 
printf("After BumpStrUp: \s\n', MixedUp)i 
BumpStrDown( MixedUp, strlen(MixedUp) )i 
printf("After BumpStrDown; \s\n', MixedUp); 
return 0; 

26: void BumpStrUp(unsigned char far * TheString, 
27: int StringLength) 
28: 
29: asm les di, TheString 
30: asm mov cx, StringLength 
31: asm jcxz Exit 

'* Address string with es:di *' 
'" Load string length into cx "' 
'" Exit if length = 0 "' 

32: asm cld 
33: NextChar: 
34: asm mov aI, es:[Byte ptr di) 
35: asm cmp aI, 'a' 
36: asm jb NotLower 
37: asm cmp aI, 'z' 
38: asm ja NotLower 
39: asm sub aI, 32 
40: NotLower: 
41: asm stosb 
42: asm loop NextChar 
43: Exit:; 
44: } 
45: 

'" Auto-increment di *' 

'* Load next character "' 
'" Skip conversion if *' 
'" character is not "' 
'" lowercase *' 
'" Convert to uppercase *' 
'* Store character in string "' 
'" Loop until done "/ 

46; 
47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 

void BumpStrDown( unsigned char far" TheString, 
int StringLength ) 

asm les di, TheString 
asm mov cx, StringLength 
asm jcxz Exit 

asm cld 
NextChar: 

asm mov aI, 
asm cmp aI, 

es: [Byte 
'A' 

asm jb NotUpper 
asm cmp aI, 'z' 
asm ja NotUpper 
asm add aI, 32 

NotUpper: 
asm stosb 
asm loop NextChar 

~xit: j 
} 

ptr dil 

'* Address string with es:di "/ 
'" Load string length into cx "' 
'" Exit if length 0"/ 

'" Auto-increment di "/ 

," Load next character "' ," Skip conversion if *' 
," character is not *' ," uppercase "' ,. Convert to lowercase ., 
," Store character in string "' ," Loop until done ., 



MIXING ASSEMBLY LANGUAGE WITH C AND C++ 

How UPDOWN,C Works 
Lines 8-12 declare two external functions BumpStrUp and BumpSt rDown, which convert strings 
to all uppercase or to all lowercase. For convenience, the functions are listed together with 
the main program, but they could be in separate modules if you're prepared to handle all the 
details of linking the modules to create a finished executable code file. 

The main function (lines 16-24) calls the external functions, displaying the effect on a string 
variable (line 14) addressed by a far pointer. Function BumpStrUp (26-44) lists two param
eters, a far char pointer and an integer representing the string length. The first assembly 
language instruction (line 29) uses les to load the es: di registers with the full 32-bit address 
of the string. You should be able to understand the purpose of the other instructions from 
the comments to the right of most lines. 

Line 43 illustrates an idiosyncrasy of labels in ANSI C, which specifies that a label must be 
followed by a statement. Because you assembly language code needs a method to jump to 

the end of the function, this poses a problem-solved here by an extra semicolon after the 
Exit: label. 

The BumpStrDown function (lines 46-64) is nearly the same as BumpStrUp except for lines 55-
59, which convert uppercase letters to lowercase. 

Behind the Scenes 
UPDOWN.C has a few backstage surprises that are not evident from the program listing. 
As you'll discover if you examine the assembly language output, both BumpStrUp and 
BumpStrDown begin with the instructions: 

push 
mov 
push 
push 

bp 
bp, sp 
si 
di 

Save bp on stack 
Address stack with bp 
Save si 
Save di 

The first and second instructions save bp before equating this same register with sp, prepar
ing to address parameters on the stack. The second and third instructions save the values of 
si and di. This is done because the functions use di; therefore, the compiler takes the safe 
route and saves both si and di to avoid all possibility of a conflict with any register variables 
used by other routines that may call this one. Later on, both functions end with: 

pop 
pop 
pop 
ret 

di 
si 
bp 

Restore saved di 
Restore saved si 
Restore saved bp 
Return to caller 

This restores di, si, and bp to their original values before returning to the instruction fol
lowing the call that activated the function. 

543 



13 

544 

PART II _ ApPLICATION PROGRAMMING 

As you can see from this, when using embedded asm statements, the compiler takes care of 
the details associated with addressing parameters, saving and restoring register variables, keep
ing the stack "right," and manipulating bp. While this is certainly helpful, there are disad
vantages to having so much help. For one thing, neither custom function uses si; therefore, 
saving and restoring this register is a waste of time. Also, in this case, there isn't any need to 
save and restore di either because the main program, which calls the custom functions, has 
no register variables, and no conflict is possible by changing di. 

For better control over such details-and to avoid having to preface each assembly language 
statement with asm-you can write external assembly language modules to link to Turbo C 
programs. This takes more work, but the results are often worth the trouble, as the next sec
tion explains. 

External Assemblies 
Because Turbo Assembler and Borland C and C++ compilers can create the same .OB) code
file format, you can write portions of a program in C or C++ and other parts in assembly 
language, and then use Turbo Linker to join the object-code files into the finished .EXE 
program. The compilers are also able to run the assembler and linker directly, simplifYing 
compilation, at least for relatively small programs. Despite adding complexity to a program
ming project, external assembly language methods offer several advantages over inline asm 
statements: 

• Reduced compilation time 

• Assembly language modules can use Ideal mode 

• No "hidden" instructions are added 

• The C or C++ program retains a higher degree of portability 

• External routines can be debugged separately 

• External routines can be used with other languages 

Compilation times are reduced because the compiler no longer has to generate an assembly lan
guage text file, required fur assembling embedded inline asm statements. You can use the pre
ferred Ideal mode in your assembly language modules, which also helps Turbo Assembler to run 
fust. No extra instructions, stack manipulations, or push and pop instructions are added-items 
that the compiler inserts into inline asm functions whether needed or not. 

If you write your programs purely in C or C++ and then selectively convert individual func
tions to assembly language, you will improve your program's portability. After optimizing, 
if you need (0 transfer a program (0 another computer-for example, a Macintosh with a 
68000 processor-it's relatively simple to replace the optimized assembly language modules 



If 
I 
! 
i 

MIXING 

with the original C code that you wisely saved on disk. Then, after the program is working 
correctly on the new computer, you would start optimizing sections of the code in that 
computer's native tongue. 

External assembly language routines can also simplifY debugging. You can assemble and debug 
external routines apart from the main program-a far easier task than hunting for small 
monsters in the jungle of an 80K code file. You might also be able to use your external rou
tines with other languages. Despite these many advantages, there are a few drawbacks to be 
aware of when using external routines: 

• You can no longer mix C and C++ and assembly language statements as you can 
with asm statements. You must code entire functions in assembly language. 

• You must have a good understanding of segments and segment registers, addressing 
modes, simplified memory models, and related directives. (Of course, you've carefully 
read every word in this book, so these details won't give you any problems.) 

• The steps to compile and link a program may be more complex, although the 
compiler can help by running the assembler and linker directly. 

Simplified Memory Models 
The good news about external routines is that "hard-way" SEGMENT directives are completely 
unnecessary. Segment names, classes, and other segment options are identical for C and C++ 
and Turbo Assembler memory models. This means you can use simplified memory-model 
directives such as DATASEG, CODESEG, FAR DATA , and CONST to organize your assembly lan
guage module's data and code segments. If you really must declare segments manually, you 
can certainly do so-as long as you're careful to follow the various conventions expected by 
the compiler and linker. I can hardly imagine a situation where this is necessary, however, so 
I won't waste space discussing the details here. Consult your C and C++ user's and reference 
guides for more information. 

Listing 13.3, CSHELL.ASM, shows one of the many possible ways to organize an external 
assembly language module. You can use CSHELL as a template for your own designs, in
serting various items where shown by comments in the listing. There's no reason to assemble 
this program-it doesn't do anything useful, but you can assemble it with: 

tasm Iml cshell 

The Iml option tells Turbo Assembler to switch on case sensitivity. This matches the way C 
and C++ compilers work, considering names such as MyFunction and myfunCTion to be dif
ferent identifiers. 

545 



546 

PART II _ ApPLICATION PROGRAMMING 

Listing 13.3. CSHELL.ASM. 
1: .. TITLE "Shell for C .OBJ modules -- by Tom Swan" 
2: 
3: 
4: 
5: 
6: 
7: DATASEG 
8: 
9: 

10: 
11 : 
12: 
13: 
14: 
15: 
16: FAR DATA 
17: 
18: 
19: 
20: 
21: CODESEG 
22: 
23: 
24: 
25: 
26: 
27: 
28: .. NEWPAGE 
29: 

IDEAL 

MODEL small 

Insert PUBLIC data declarations here 

Insert EXTRN data declarations here 

Insert initialized variables here 

Insert far data segment variables here 

Insert PUBLIC code declarations here 

Insert EXTRN code declarations here 

30: ; <type> funcname( <parameters> ) 
31: -------------------------------------------------------------------------
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41 : 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 

PROC 

ENDP 

funcname NEAR 
push bp 
mov bp, sp 

sub sp, n 
push di 
push si 

Insert inst ructions 

pop si 
pop di 
mov sp, bp 

pop bp 
ret 
funcname 

END 

here 

Optional: reserve space for locals 
Optional: save register var di 
Optional: restore register var si 

Optional: restore si 
Optional: restore di 
Optional: restore sp 

Restore old bp pointer 
Return to caller 

End of module 



NOTE 

If your assembly language module declares no near or far variables, you may remove the 
DATASEG and FARDATA directives from CSHElLASM. 

Using CSHELL.ASM 
CHSELL begins by selecting Ideal mode and specifying the small memory model. Change 
small to tiny, medium, compact, large, or huge, matching the memory model used by your 

C or C++ program. Notice the absence ofDOSSEG and STACK directives. This allows the com
piler and linker to arrange segments as needed by runtime library routines and to specify the 
stack size, usually 4K unless you change it (see _stklen in your C or C++ reference guide). 

The shell has three segments: two for data (DATASEG and FARDATA) and one for code (CODESEG). 
As the comments in the listing indicate, you can declare variables and code PUBLIC, thus 
sharing items in the assembly module with other modules. For example, to create a word 
integer and export the variable to C or C++, you could insert these lines after DATASEG: 

; In the assembly language module: 
PUBLIC _AsmValue 
.-AsmValue dw 100 

The _AsmValue label is exported by PUBLIC to other modules, including those written in Cor 

C++. A corresponding declaration in the main program tells the compiler about the external 
variable: 

'* In the C or C++ program: */ 
extern int AsmValue; 

Likewise, a variable in the program can be imported by the assembly language module. All 
symbols are public in C and C++; therefore, the text JUSt declares a variable normally: 

f* In the C or C++ program: *f 
int NewValue; 
main( ) 
{ 

NewValue = 500; 

Then, in the assembly language module, to import NewValue, insert an EXTRN directive inside 
the data segment: 

DATASEG 
EXTRN _Newvalue:Word 

You can now use _ NewValue in assembly language statements. For example, to copy the value 
of the imported variable _NewValue to the word variable _AsmValue declared in the assembly 
language module, you could use these commands in the code segment: 

547 



3 

548 

COOESEG 
mov 

·mov 
ax, (_NewvalueJ 
(_AsmValuel, ax 

; Load varaible into ax 
; Copy to assembly module variable 

The code segment (lines 21-50) includes a shell for an external function. Line 32 declares 
the function name, which should be made public with the line: 

PUBLIC funcname 

The shell function is declared NEAR (line 32), indicating that the code will be stored in the 
same segment as the call instructions to the function. You can take out or change NEAR to 
FAR if you plan to call the function from another segment. 

Lines 33-34 and 46 prepare, save, and restore bp for addressing function parameters on the 
stack, using methods explained in a moment. The instructions at lines 36-38 and 42-44 are 
optional. You need to save and restore si and di only if these registers are used in the func
tion. Also, you can subtract a value from sp to create space for temporary (local) variables 
(see line 36), later reclaiming this space by assigning bp to sp (see line 44). 

About Underscores 
As several of the previous examples show, you must preface all PUBLIC and EXTRN symbols 
with underscores. You need to do this only in the assembly language module (not in the C 
or C++ source) because the compiler adds an underscore to all global symbols unless you are 
using the -u option to compile programs. (Don't use this option unless you're also prepared 
to recompile the entire C runtime library, which expects global symbols to be underscored.) 
If you receive "undefined symbol" errors during linking, the cause may be a missing under
score in an assembly language module. 

Using Far Data 
If you declare variables in a far data segment after the FAROATA keyword, you must prepare a 
segment register to locate the variables in memory. (See chapter 11 for a more complete dis
cussion on this subject.) First, declare your variables after a FAROATA directive: 

FAROATA 
_OuterLimits dw ? 

Next, in the code segment, you must prepare a segment register before using the variable. 
One approach is to use the SEG operator to load the address of the far data segment: 

mov ax, SEG _OuterLimits ; Address far data segment 
moves, ax ; with es 
mov [es:_OuterLimitsj, dx ; Store dx to variable 

Or, you can use the predefined @fardata symbol: 

mov 
mov 
mov 

ax, IiIfardata 
es, ax 
(es:_OuterLimitsl, dx 

Address far data segment 
with es 

Store dx to variable 



Sharing Code 
Calling assembly language functions is identical to calling C or C++ functions. fu an ex
ample, Listing 13.4, CFILLSTR.C, declares an external function to fill strings with charac
ters. The example also demonstrates how to replace functions with assembly language. I'll 
list commands for compiling and assembling CFILLSTR later-as you'll see, there are many 
ways to proceed. 

Listing 13.4. CFlllSTR.C 
1: /* Test CFILLSTR External Module 
2: 
3: #include <stdio.h> 
4: #include <string.h> 
5: 

by Tom Swan "/ 

6: extern void fillstring(unsigned char far" thestring, 
7: int stringlength, char fillchar); 
8: 
9: char "test; "Filled to the brim'; 

10: 
11: int main() 
12: { 
13: printf("Before fillstring: %s\n", test); 
14: fillstring( test, strlen(test), '@' ); 

15: printf("After fillstring: %s\n", test); 
16: return 0; 
17: 
18: 
19: / * 
20: void fillstring( unsigned char far • thestring, 
21: int stringlength, char fillchar ) 
22: 
23: int i; 
24: 
25: for (i = 0; i < stringlength; i++) 
26: thestringl i) fillehar; 
27: 
28: * / 

Compiling CFlllSTR.C 
Temporarily delete lines 19 and 28, activating the function at lines 20-27. Later, you'll re
place this "pure C" version of the fillstring function with an optimized assembJy language 
module. But first, compile and run the program with the commands: 

tee -v efillstr 
cfillstr 

If you are using Borland C++, enter the following commands (replace bee with tee for Turbo 
C++): 

bee -v cfillstr.c 
efillstr 549 



550 

PART II _ ApPLICATION PROGRAMMING 

Use the -v option only if you want to examine the code with Turbo Debugger. If you do 
that, you may also want to use the ViewlCPU command to examine the machine code for 
fillstring. As Figure 13.1 shows, the compiler's output is impressively tight, but we can 
still do better. Notice that, unlike inline asm statements, only si and not di is saved and re
stored, a small improvement. Even so, instructions such as les inside the for loop are inef
ficient. The compiler apparently isn't smart enough to realize that es isn't changed anywhere 
else in the loop; therefore, reinitializing the register on each pass is unnecessary. 

NOTE 

Depending on your version ofTurboCiTurbot++,or Borland C++, the aCtual machine 
code produced may differ from that shown in Figure 13.1. 

Calling Assembly Language Functions from C 
Replace the comment brackets /* and * / at lines 19 and 28 in CFILLSTR. C if you removed 
these lines. Then, save Listing 13.5, CFILL.ASM, which contains an assembly language ver
sion of the fillstring function. Instructions for assembling the modules into a finished pro
gram follow the listing. 

Figure 13.1. 
The filLstringfimction from 
CFlLLSTR. C as disas
Jembled by Turbo Debugger. 

Listing 13.5. CFlLl.ASM. 

_fillstring: void fillstring( unsigned char far· thestring, 
CS! 022c55 push bp 
cs:022D 8BEC mov bp,sp 
cs: 022F 56 push si 

CFILLSTRN37: for (i = 0; i < stringlengthj i++) 
cs:0230 33F6 xor si,si 
cs:0232 EB0A jmp 023E 

CF I LLSTAN38: thestring[ i ] = fillchar; 
cs!0234 8A460A mov aI, [bp + 0A] 
cs:0237 C45E04 les bx, [bp + 04] 
cs:023A 268800 mov es:[bx + sij,al 
cs:023D 46 inc si 
cs:023E 3B7608 cmp si,[bp + 08] 
cs:0241 7CF1 jl CFILLSTAN38 (0234) 

CFILLSTRN39: 
cs:0243 5E pop si 
cs:0244 50 pop bp 
cs:0245 C3 ret 

1: %TITLE 'Fill C Strings Demonstration -- by Tom Swan' 
2: 
3: IDEAL 
4: 
5: MODEL small 
6: 



MIXING ASSEMBLY LANGUAGE WITH C 

7: CODESEG 
8: 
9: PUBLIC _fillstring 

10: 

11: ,------------------------------------------------------------------------
12: ; void fillstring( unsigned char far * thestring, 
13: int stringlength, char fillchar ) 
14: ------------------------------------------------------------------------
15: PROC 
16: 

_fillstring NEAR 

17: ARG thestring:Dword, stringlength:Word, fillchar:Byte 
18: 
19: 
20: 
21 : 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 

@@99: 

ENDP 

push bp 
mov bp, sp 
mov cx, [stringlengthl 
jcxz @@99 
push di 
les di, [thestring] 
mov aI, [fillcharl 
repnz stosb 
pop di 

pop bp 
ret 
_fillstring 

END 

Save old bp pointer 
Address parameters 
Assign string len to cx 
Exit if length 0 
Save di 
Address string with eS:di 
Assign fill char to al 
Store characters in string 
Restore saved di 

Restore saved bp 
Return to caller 

End of module 

Assembling and Linking External Modules 
You should now have two files on disk, CFILLSTR.C (with the fillstring function con
verted back to a comment) and CFILL.ASM, containing the assembly language replacement 
for this same function. There are several methods you can use to assemble, compile, and link 
the separate modules (and similar multiple-file programs) to create the finished .EXE pro
gram. The simplest technique is to let Turbo C do all the work: 

tcc cfillstr cfill.asm 

If you are using Borland C++, enter the following command (replace bee with tee for Turbo 
C++): 

bce efillstr.e cfill.asm 

Either way, the command first compiles CFILLSTR.C to CFILLSTR.OB). Then, recogniz
ing the .ASM file-name extension as an assembly language module, the compiler calls Turbo 
Assembler to assemble CFILL.ASM to CFILL. OB J. Finally, the compiler calls Turbo Linker 
to join the object-code modules into CFILLSTR.EXE. When you have only a few modules 
to compile and assemble, this one-step method is the easiest to use. 

551 



"11 ~ 'I --P-AR-T-II--~-----A-pp-Llc-A-Tl-O-N-P-RO-G-RA-M-M-IN-G------------------------------------------------

552 

NOTE 
~ "', " .\,'0 . ' ":' ~~ ,:i "'~: ';>:':,; J~ . • :/> '; ~ ",)~>:.i:<~; ~'~·~l,~J· <;':). - "J:~" ',,(' "~~\.,, .. ~o;!~~·;:~~';t~~,~:(?",,!~,~~:1~:~' _/'y '-;~ 

J .p{lr~yd.id notnametbe,~IllD1ylan8v~gemodukl'nthi~.e~etflL~;;f,,·, 
.• ~;CProg~rn(CfJttSTR.Q·has~\it:lIRle;~~~;·Qr.'~iVqlf~~~~B:,~'.:,. , 

.. ' oruseanearJp'ersfonofTurboCt1be:Compi~er;~theentke~~:~~':/ ••.. 
·larmUa8etoCFI~lSTR~;th~ser~the'JsSemblY1ang\f~~·. .' . .. ~~';;~;i~' 
waming~f()r ·~f~tyi~I~~.,Usei»ffer~i~~4'or.y(liJllCana~se ", ". "" 

J~~;~~~i""'< '" ...... "'M:~"'~~ 

Assembling and linking Separately 
When you have many modules, you'll save time by assembling and linking separately. The 
first step is to assemble all your .ASM files. Because the fillstring example has only one 
such file, a single command does the job: 

tasm Iml efill 

The I ml option turns on case sensitivity, meaning that symbols such as UpAndDown and 
upanddown are considered to be different, as they normally are in C and C++ programs. (Turbo 
Assembler usually ignores case sensitivity, so the Iml option is necessary to avoid errors dur
ing linking.) After assembling all external modules, compile the main program. Again, this 
example has only one .C file, so only one command is needed: 

tee -e efillstr 

Or, with Borland C++, use this command (replace bee with tee for Turbo C++): 

bee -e efillstr.e 

The -e option means "compile only," generating CFILLSTR.OB] but not linking the pro
gram into a finished code file. To include all modules, you have to complete this step your
self, calling Turbo Linker to join the object-code files along with the appropriate runtime 
library routines to create CFILLSTR.EXE. There are two ways to accomplish this task: the 
long way and the not-so-long way. Let's cover the more difficult long way first: 

tlink e:\te\lib\e0s efillstr efill, efillstr" e:\te\lib\es 

Edit the pathnames as needed for your installation. For example, using Borland C++ 4, you 
might use this command: 

tlink e:\be4\lib\e0s efillstr efill, efillstr" e:\be4\lib\es 



~. ----------------------------------------------------------------------------, 
MiXING AsSEMBLY LANGUAGE 

~ .. --------------------------------------------------------------------------~ 

The first item after tLink specifies an object-code file in the \LIB directory for the appropri
ate memory model, in this case COS.OB]. (The 0 is a zero; not the letter 0.) The second and 
third items list the .OB] code files to link--any order for these files is okay. A comma sepa
rates the list of .OB] files from the name to use the finished code file, in this case, 
CFILLSTR.EXE. Two commas then follow, holding a place for an optional map file, not 
created in this example. Finally, the run-time library is specified, also in the \LIB directory. 

The COS object-code file and CS library file names must match the memory model used by the 
program. The final letter of these two file names represent one of the models listed in Table 13.2. 

Easier linking 
An easier (but slightly less quick) method for linking separate modules is to use the compiler 
as a "front end" to Turbo Linker. In other words, by giving various compiler commands, 
you can skip compiling and go straight to linking. Doing this eliminates the need to specify 
runtime library filenames and, therefore, simplifies the link command. For example, to as
semble, compile, and link the CFILLSTR demo takes three commands: 

tasm Iml cfill 
tcc -e efillstr 
tee -ms efillstr.obj efill.obj 

Or, if you are using Borland C++, enter these commands (replace bee with tee for Turbo C++): 

tasm Iml efill 
bee -c efillstr.c 
bee -ms efillstr.obj cfill.obj 

The first twO commands are the same as described before. The third command calls the 
compiler a second time, using the -ms option to specify a memory model, in this case smalL 
(See Table 13.2 for other memory-model option letters.) After the memory-model option 
are the object-code files to link. Although you must include the .OB] file-name extension 
with each file, this not-50-long linking method simplifies most of the dirry work of running 
Turbo Linker directly. 

Table 13.2. Runtime Library Filenames. 
Memory Model Object File Library File TCCOption 

Tiny COT.OB] CS.LIB -mt 

Small COS.OB] CS.LIB -ms 

Medium COM.OB] CM.LIB -mm 

Compact COCOB] CL.LIB -mc 

Large COL.OB] CL.LIB -ml 

Huge COH.OB] CH.LIB -mh 

553 



554 

Debugging Multilanguage Programs 
There are two approaches to debugging programs that mix C or C++ and assembly language. 
The first method adds debugging information only for C or C++ statements. To do this, 
compile with the one-step command: 

bee -v efillstr.e efill.asm 

This is the same command listed earlier but with a -v option added to include debugging 
information in CFILLSTR.EXE. You can then debug the code with: 

td eflllstr 

The problem is, this command does not allow you to see your assembly language source 
code-only C and C++ source lines are listed in the main window. To also see assembly lan
guage, you must assemble and link separately, using the more complex methods discussed in 
the previous section. using the CFILL.ASM and CFILLSTR.C examples, the complete steps 
are: 

tasm Iml Izi efill 
tee -e -v efillstr 
tee -ms -Iv efillstr.obj efill.obj 

If you are using Borland C++, enter these commands instead (replace bee with tee for Turbo 
C++): 

tasm Iml Izi efill 
bee -c -v cfillstr.c 
bee -ms -Iv efillstr.obj efill.obj 

First, CFILL.ASM is assembled, using the Imi option to switch on case sensitivity and Izi to 

include debugging information in CFILL.OBj. Next, the compiler compiles CFILLSTR.C, 
specifying compilation only (-c) and adding more debugging information to CFILLSTR.OBj 
(-v). Finally, the compiler is called into service as a front end for Turbo Linker. The -illS 

option selects an appropriate memory model. The -lv option passes an option letter, in this 
case v, to Turbo Linker so that all of the debugging information in both CFILLSTR.OBj 
and CFILL.OBj is transferred to the finished code file CFILLSTR.EXE. The result can then 
be loaded into Turbo Debugger with: 

td efillstr 

If you try this, press F7 repeatedly to step through the program. When you get to call to 
fillstring, Turbo Debugger switches to the assembly language source, letting you step 
through the individual instructions in the external module. When the assembly language 
module finishes, you again see the program's source code. (Of course, for this to work, both 
CFILLSTR.C and CFILL.ASM must be in the current directory.) 



How CFlllSTR.C and CFllL.ASM Work 
Now that you know how to assemble, compile, and link multiple modules in assembly 
language and C or C++, let's take a closer look at how the rwo files work together. First, 
examine CFILLSTR.C (Listing 13.4) lines 6-7, which declare function fillstring external, 
using the extern directive. This allows the compiler to determine that the code for the call to 
fillstring at line 14 will be supplied later. (If it isn't, Turbo Linker displays an error.) 

Listing 13.5, CFILL.ASM, replaces the fillstring function with an assembly language mod
ule. Line 9 declares _fillstring to be public, adding an underscore to conform with the C 
and C++ rule for all global symbols. Inside the function, an ARG directive (line 17) simplifies 
addressing parameters passed on the stack. Without ARG, you'd have to calculate offsets from 
bp and use instructions such as: 

mov ex, [bp + 61 

assuming, that is, that the parameter you want is 6 bytes ahead of where S5: bp points. In
stead of using this error-prone method, ARG lets you list the function parameters in the same 
order that the identifiers appear in the function prototype (see lines 12-13). For each param
eter separated by commas, list the name and size, using one of the size qualifiers from Table 
13.1, but without the ptr suffix. Using ARG this way allows lines 21 and 24-25 to refer to 
parameters by name. Of course, you still have to be careful to specify the correct sizes for 
your variables. 

After loading the appropriate registers, line 26 uses a repeated string instruction to store the 
requested number of characters into the string. No checks are made on this length-so be 
careful, or you'll overwrite other items in memory. Compare this with the compiled code in 
Figure 13.1 for the pure C version of fillstring. It doesn't take much detective work to 

know that a single string instruction runs faster than the C for loop, which takes eight as
sembly language instructions. 

The assembly language fillstring also preserves register di just in case a register variable is 
being used by another function that calls fillstring. But notice how lines 23 and 27 post
pone saving and restoring di until after the previous code checks the string length and exits 
if the length is 0 (lines 21-22). Although this may be a minor improvement, it could reduce 
running times if fillstring is called frequently with zero-length strings. 

Calling C Functions from Assembly Language 
So far, you've learned how to share variables berween C or C++ and assembly language and 
how to call external assembly language functions from a C or C++ program. Going the other 
direction-that is, calling a C or C++ function from an assembly language module-is also 
possible, but it requires care to accomplish properly. 

555 



556 

If the function has no parameters, the process is simple. Just declare the C or C++ function 
in an EXTRN directive and use a call instruction: 

CODESEG 
EXTRN _cfunction:proc 

call _cfunction 

This assumes that a function named cfunction exists in the program to be linked with the 
assembly language module. Once again, an underscore is added in the assembly language 
declaration (but not in the C or C++ text). 

When functions require parameters, the process becomes more difficult. Simple parameters 
such as characters and integers are often passed directly on the stack. Complex variables such 
as strings, structures, and arrays are passed by reference, that is, by address. Also, many func
tions return results in specific registers. When calling C or C++ functions from assembly 
language, it's your responsibility to take care of these details. 

First, let's look at the simplest case, calling a function with one integer parameter: 

void showscore( int thescore ) 
{ 

printf("\nThe score is: %d\n", thescore); 

From inside an assembly language module, to call the showscore function, passing the value 
of a word variable as thescore, you can write: 

CODESEG 
EXTAN 
mov 
pUSh 
call 
pop 

_Showscore:proc 
ax, 76 
ax 
_Showscore 
ax 

Assign score to a register 
Pass parameter on stack 
Call the C function 
Fix the stack 

First, a sample score is assigned to ax (any other registers would do as well), which is then 
pushed onto the stack before calling _showscore. After returning from the function, a word 
is popped from the stack. This is required because in C and C++ it is the caller's responsibil
ity to remove parameters from the stack. (If you read chapter 12, you '11 recall that, in PascaL 
procedures and functions take care of removing stacked parameters before returning.) When 
you have several parameters, it may be better just to add the total number of bytes to sp. For 
example, to call a function that takes four 16-bit parameters, you might use: 

push [v1] Push four word variables (not shown) 
push [v2] onto the stack 
push [v3] 
puSh [v4] 
call aCfunction Call a C function -
add sp, e Remove parameters 



MIXING ASSEMBLY 

Push multiple parameters in the reverse order in which they are declared in the C or C++ 
function. Assuming the fillstring function is defined as: 

void fillstring( unsigned char far' the string, 
int stringLength, char fillchar ); 

to call this function from assembly language and fill a string variable with blanks, requires 
several steps. First, the assembly language module declares a string variable: 

DATASEG 
PUBLIC _astring 
_astring db 80 dup (0) 

Then, the same module declares _fillstring in an EXTRN directive and calls the function to 

fill the string variable with blanks: 

CODESEG 
EXTRN _fillstring:proc 

xor ah, ah Zero upper half of ax 
mov aI, Assign blank char to al 
push ax Push fillchar parameter 
mov ax, 79 Assign string Length to ax 
push ax Push stringLength parameter 
push ds ; Push segment of string address 
mov ax, offset _astring ; Assign offset address to ax 
push ax Push offset of string address 
call _fillstring ; Call the function 
add sp, 8 j Remove parameters from stack 

Each parameter-the fill character, string length, and 32-bit pointer to the string variable
is pushed onto the stack in the reverse order as listed in the function definition. In the case 
of the pointer, the segment address ds is pushed before the offset. After the call to _fillstring, 
8 bytes are added to the stack pointer sp, removing the parameters from the stack. 

Even though in this example the _fillstring function is actually written in assembly language, 
calling pure C and C++ functions is no different. When you are not sure about exactly how to 
call a library routine (the ubiquitousprintf (), for example), run a test program in Turbo Debugger 
and examine the compiled machine code. This will tell you what parameters are required and 
will also give you many new insights into how compilers convert C and C++ statements to as
sembly language--knowledge that you can use for your own external modules. 

Function Results 
Many C and C++ functions return values in registers or, in the case of float, double and 
long double values, in the math coprocessor top of stack (st (0). Table 13.3 lists the regis

ters used to return various data types. All 8-bit types are returned in al; 16-bit types, in ax; 
and 32-bit types, in dx : ax, with the low-order portion of the value (for example, the offSet of 
a pointer in ax. 

557 



1 3 

558· 

Table 13.3. Function Result Types. 
Data 

Unsigned char 1 al 

Char 1 al 

Enum 2 ax 

Unsigned short 2 ax 

Short 2 ax 

Unsigned int 2 ax 

rnt 2 ax 

Unsigned long 4 dx:ax 

Long 4 dx:ax 

Float 4 st(0) (8087 stack) 

Double 8 st (0) (8087 stack) 

Long double 10 st(0) (8087 stack) 

Near * 2 ax 

Far * 4 dx:ax 

LOCAL Variables 
In addition to variables declared in the data segment or shared with a C or C++ program, 
you can also use local variables on the stack in your assembly language modules. A local vari
able exists only while the function runs. Stack space is created for the variable at the start of 
the function and is then reclaimed before the function ends. The way, other functions can 
share the same memory for their own local variables, cutting down on the program's total 
memory requirements. You probably know how to declare local variables in C and C++ func
tions, for example, as control variables in a for loop: 

void countup() 
{ 

int i; 
for Ii = 0; i < 10; i++) 

printer( "%d ", i ); 

Integer variable i is allocated memory on the stack at the start of the countup function and 
exists only while the function runs. You can do the same in an assembly language module 
with a LOCAL directive. Here's an example of a complete function: 

PROC _cfunction NEAR 
LOCAL i:Word =stacksize 
push bp 
mov bp, sp 



~ ... ------------.-------.------.. ----.~------------, 

@@10: 

sub sp, stacksize 
mov [i], 0 

inc liJ 

Code to use Local variable [il 

tiL 10 
@@10 
sp, bp 
bp 

MIXING ASSEMBLY LANGUAGE WITH C 

cmp 
jne 
mov 
pop 
ret ; Return to caller 

ENOP _cfunction 

The LOCAL directive in this example prepares a variable i of type Word. The =stacksize is 
assigned the tOtal number of bytes occupied by all local variables-in this case, 2 bytes. This 
value is subtracted from sp after preparing to address variables on the stack. Then, to refer to 
i, use instructions such as mov, inc, and cmp. Because of the LOCAL directive, references such 
as [i I are translated into: 

mov [bp - 2J, 0 
inc [bp - 21 

and so on. With LOCAL, you don't have to calculate the negative offsets from bp to locate 
variables on the stack-you can JUSt use the variable names. 

Notice the mov sp I bp instruction just before this sample function restores bp. Because bp 
doesn't change during the function, you can reset sp from bp, removing the local variable 
space from the stack, or you can add stacksize to sp with: 

add sp, stacksize 

Either metl}od works, but restoring sp from bp is faster. You can also declare multiple local 
variables with statements such as: 

LOCAL i:Wordj j:Wordj c:Byte =stacksize 

You can then use the three local variables i, j, and c, after subtracting stacksize from the 
stack pointer to reserve space on the stack. (You must always do this. LOCAL simplifies ad
dressing local variables; it doesn't create space for the variables in memory.) 

NOTE . 

I included local variables in this sectionbt!cause you should know how to use them. But 
remember that one of the reasons compiled C and C++ programs can run slowlyjsthat 
addressing local variables takestime~ Th~same is true f~rPascaland other languages. One of 
the motives behind adding assembly language tohiBh.Je~llangl.l~gec6dei(t() squ~le as 
much speed as possible into a program. And, ol)e way to do thcitistostore'variablesin fast 
processor registers instead of on the stack. The morale is: Don't use technjquesthatseem 
interesting; go for the techniques that give you the speed gains you're after. 

559 



3 

560 

Calling C++ Functions from Assembly Language 
c++ extends the C language with object-oriented classes and some additional syntax rules 
that, in general, help programmers write more reliable code. All of the preceding informa
tion on mixing C and assembly language applies equally well to C++, but there are a few 
curveballs you need to know about--don't let them throw you. 

This section explains how to mix C++ and assembly language, and also demonstrates how to 
interface assembly modules with C++ classes. You must have Turbo C++ or Borland C++ to 
compile the programs. I used Borland C++ and Turbo Assembler versions 4.0 and 4.5 to test 
all programs in this section. 

Name Mangling 
c++ permits function-name overloading, meaning that two different functions may have the 
same names provided they differ in at least one parameter. This programming device is handy, 
but it poses a problem for common linkers. 50 that linkers can distinguish between multiple 
functions that have the same names, C++ mangles their names by combining them with their 
parameters. The result is a new, though unpronounceable, name that is unique for all of a 
module's functions. 

An example shows what mangled names look like. As you may know, using C++ 110 streams, 
you can write a string and start a new line with the following statement: 

cout « 'Write me to the standard output" « endl; 

The endl manipulator sends a carriage return and line feed to the standard output. When 
you link this program to the 110 stream library, C++ mangles the endl identifier, passing the 
following declaration to the linker: 

extrn @endl$qr7ostream:near 

The symbol @endl$qr7ostream is the mangled function name, which the compiler creates 
using an unspecified algorithm. By the way, I found this name by compiling a C++ test pro
gram with the -8 option and then inspecting the resulting .A5M text file. 

Unfortunately, mangled function names create a major problem for programmers who need 
to combine C++ and assembly language. To interface with C++ modules, you have two 
choices: 

1. Compile your C++ modules to .ASM text files, and copy the mangled names for use 
in assembly language modules. 

2. Disable name mangling for C++ functions called from assembly language, or for 
subroutines called from C++. 



~---------------------------------------------------------------------- -----------~ 

The second option is usually best, although this choice is not always practical. You might, 
for example, have to interface with an existing C++ function library, or you might have to 
interface with overloaded functions. In those cases, you will have to compile the C++ code 
to discover the mangled names, which you can use in EXTRN directives in your assembly lan
guage modules as explained in this chapter. This will make your programs highly unportable, 
as the name mangling algorithm could very well change in future compiler versions. 

Most times, however, it is best to disable name mangling when mixing assembly language 
and C++. Listings 13.6, CPPFUNC.CPP and 13.7, CPPLOOP.ASM, show the basic tech
niques. I'll explain how the program works after the listings. Compile, assemble, link, and 
run it with these commands (replace bee with tee for Turbo C++): 

bcc -c cppfunc 
tasm Iml cpploop 
bcc cppfunc.obj cpploop.obj 
cppfunc 

Running the program displays the following three lines: 

Welcome to C++ and Assembly Language 
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
That's all folks! 

Listing 13.6. CPPFUNC.CPP. 
1: II Calling C++ and assembly language functions -- by Tom Swan 
2: 
3: #include <iostream.h> 
4: 
5: extern "C" void LOOp{); /I 
6: extern "C' void Terminate(); II 

Prototype function in asm module 
Prototype function in C++ module 
Declare data in asm module 
Define global data in C++ module 

7: extern int len; 
8: char c; 
9: 

10: int main() 
11: { 

/I 
/I 

12: cout« 'Welcome to C++ and Assembly Language" « endl; 
13: 
14: c '@' ; 
15: len 40; 
16: LOOp(); 
17: return 0; 
18: } 
19: 

II Assign value to C++ global data 
II Assign value to asm module data 
II Call asm module function 
I I End program 

20: II Function called by external loop() in asm module 
21: extern "C· 
22: void Terminate() 
23: { 
24: cout« endl « "That's all folks I" « end I ; 
25: 

561 



3 

562 

PART II _ ApPLICATION PROGRAMMING 

Listing 13.7. CPPLOOP.ASM. 
1: %TITLE 'C++ and Assembly Language External Function -- by Tom Swan' 
2: 
3: IDEAL 
4: MODEL small 
5: 
6: Data segment 
7: 
8: OATASEG 
9: 

10: 
11: _len 
12: 
13: 

EXTRN _c:BYTE 
OW 0 
PUBLIC _len 

14: Code segment 
15: 
16: COOESEG 
17: 

Data declared in C++ module 
Data declared in asm module 
Make data available to C++ 

18: EXTRN _Terminate:PROC Function in C++ module 
19: PUBLIC _Loop Function in asm module 
20: 
21: ,------------------------------------------------------------------------
22: ; void LOOp(); 
23: ------------------------------------------------------------------------
24: PROC 
25: 
26: 
27: @@10: 
28: 
29: 
30: 
31 : 
32: @@99: 
33: 
34: 
35: ENDP 
36: 
37: 

_LOOp 
mov 
jcxz 

mov 
mov 
int 
loop 

call 
ret 
_LOOp 

END 

NEAR 
cx, Llen] 
@@99 

ah, 2 
dl, Lc] 
21h 
@@10 

Terminate -

Get length from asm module 
Exit if length = 0 

Select DOS output function 2 
Get character from C++ module 
Call DOS to output character 
Loop on ex 

Call function in C++ module 
Return to caller 

End of module 

Calling Assembly Language Functions from C++ 
To call an assembly language function from a C++ module, declare the function prototype 
as you would for pure C++ code, but precede it with extern "C' as shown at line 5 in 
CPPFUNC.CPP: 

extern 'c' void LOOp(); 

This declares a function named Loop that returns no value. The extern preface tells the com
piler that the function's implementation is located in another module (the compiler doesn't 
need to know that the function will be written in another language). The quoted ·C· turns 



MIXING ASSEMBLY LANGUAGE 

off name mangling so that you can use the symbol_Loop in the assembly language module 
instead of the mangled name. (You still must add a leading underscore as shown, however.) 

Line 16 in the c++ module calls Loop. The assembly language module, CPPLOOP.A5M, 
provides that function's implementation. 50 the linker can join both modules, the assembly 
language module makes _Loop (with a leading underscore) public at line 19. The function 
itself at lines 24-35 implements the function's actions. (For test purposes, the function out
puts a character a specified number of times. This produces the row of @ symbols you see 
when you run the program.) 

Multiple External Functions 
When declaring multiple external assembly language functions, you can use individual extern 
declarations as in the sample listing, or you can encase multiple declarations in braces. For 
example, you can declare three functions like this: 

extern "CO void flC); 
extern 'C" void f2() i 
extern "CO void f3(); 

Or, you can use a single extern declaration, and list each function in braces: 

extern "CO { 
void f1 () i 
void f2(); 
void f3(); 

The two formats produce the same results: three functions, fl, f2, and f3, with unmangled 
names. In the assembly language module, you can refer to these functions by adding leading 
underscores, as in _fl, _f2, and _f3. 

Calling C++ Functions from Assembly Language 
Calling a c++ function from an assembly language module poses the same problem with 
name mangling. For simplicity, it's usually best to turn off name mangling using the same 
technique outlined in the preceding sections. Listing 13.6, CPPFUN C.CPP, shows a sample 
declaration at line 6: 

extern "C' void Terminate () ; 

Despite the fact that the function is declared extern, it is implemented at lines 21-25. This 
may seem odd, but remember that the compiler doesn't care how functions are implemented. 
An "external" function can be written in another module in C++, assembly language, or any 
other language. External functions can also be written in the same module in which they are 
declared as shown here. The extern declaration merely tells the compiler not to expect a func
tion to be implemented in the current module-there is no prohibition in doing so, how
ever. The only reason for using extern in this case is to disable name mangling. 

563 



13 

564 

Notice that in the function's implementation, you must repeat the extern ·c· preface (see 
line 21). This preface is part of the function prototype, and therefore, it must be repeated in 
the function's implementation. The test function, Terminate, displays a message before the 
program ends. 

The c++ module does not call Terminate. That happens in the assembly language module 
CPPLOOP.ASM. Because the function exists in another module, the first step is to declare 
it EXTRN in the module's code segment as shown at line 18: 

EXTRN _Terminate:PROC 

NOTE 

·Usethe EXTRN(noE)directive ill assembly fanguage.Use the extern (witb e).oirective in C++. 

The EXTRN directive specifies a function (PROC) named _Terminate that exists in another module. 
The assembler doesn't need to know how that function is implemented---only that it doesn't 
exist in the current module. Declaring the function external permits the program to call it as 
line 33 demonstrates. This is all you need to do to call a c++ function from an assembly 
language module. There are some additional complications, however, when you need to pass 
arguments back and forth between c++ and assembly language functions. I'll attack those 
problems a bit later. 

Mixing Global Data 
The CPPFUNC.CPP and CPPLOOP.ASM listings also demonstrate how to access global 
data in C++ and assembly language modules. The demonstration program uses two global 
variables-an int value len and a char variable c. The assembly language Loop funcdon dis
plays the specified character len times. 

Just to keep things interesting, I defined the len variable in the assembly language module. 
I defined the character in the C++ code. Each module declares both symbols so that both 
modules may access the program's global data. 

NOTE 

.To df!cla~ 'a symbol merely ~\Ies if' nartie; and a type.tq·~n~,~~~~;b 
fQf·an objedt9 whichthe symbol refers.T~.distinCti()Jl~#!~"0 .'~ 
. beilllportant espeCially when progtamll'ling with mixedlanSuages~iri .. mo~mooul.. '.;.' 
example, youd~/aftt.a symfJoJexternaflyin one moduk!,-~~tyQU~;ac~.fs~rs 
defin~iful°ctinanOtllermodu~.MOst Jmportant,~~'~~~'l ." .• #~~ .. 
symbol (as long as iller do soidentkallyJ, but only onerl'lOdUle can dtl/pe'an opjOCfsStOiage; 

•• ' - - 'r • -,. .' c;'r ' ';.,,, 



-------------------------------

Because len is defined in the assembly language module, the c++ module must declare that 
symbol extern (see line 7): 

extern int len j 

In this case, you do not have to specifY "C" because c++ mangles only function, not data, 
names. (C++ mangles class names, however, but more on that later.) 

The global character e is declared and defined in the C++ module (see line 8): 

char Cj 

Lines 14-15 in CPPFUNC.CPP assign values to these two global variables. These statements 
refer directly to the variables-it doesn't matter to C++ that one variable is defined in the 
C++ module and the other in the assembly language component of the program. You use 
global data in the same ways regardless of where that data is defined. 

The assembly language module, CPPLOOP.ASM, also declares both global data symbols. 
Line 10 uses an EXTRN directive in the module's data segment to declare a BYTE data object_c 
(note the leading underscore added to the symbol's name). This data object is defined in the 
C++ module. 

The other value, len, is declared and defined in the assembly language module. This requires 
two steps. Define a word named _len as shown at line 11, and then, make that symbol pub
lic (see line 12) so that other modules can use the value. 

Lines 25 and 29 show how to use the global data in assembly language. Even though _len is 
defined in the assembly language module, and _cis defined in the C++ module, the program 
refers to both symbols using the same syntax. It doesn't matter to the assembler where a glo
bal variable is defined. 

Passing Function Arguments 
The C++ and assembly language mixture grows more complex when you toss in function 
arguments. It takes careful planning and programming to call functions across modules and 
to pick up arguments from the stack. The next two listings, 13.8, CPPARG.CPP and 13.9, 
ASMARG.ASM, demonstrate the basic techniques. I'll explain how the program works in 
the sections following the listings. Compile, assemble, link, and run the demonstration with 
these commands (replace bee with tee for Turbo C++): 

bee -c cpparg 
tasm Iml asmarg 
bec epparg.obj asmarg.Obj 
cpparg 

Running the program displays the following three lines: 

xxxxxxxxxx 
yyyyyyyyyyyyyyyyyyyy 
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzz 565 



3 

566 

PARTII _ ApPliCATION PROGRAMMING 

Listing 13.8 .CPPARG.CPP. 
1: II Pass arguments to/from assembly language 
2: 
3: #include <iostream.h> 
4: 
5: extern 'C' void CPPFunctiOn(char c, int k); 
6: extern 'C' void ASMFunction(char c, int k); 
7: 
8: int main () 
9: { 

10: CPPFunction('x', 10); 
11: ASMFunction('y', 20); 
12: return 0; 
13: 
14 : 

II Call C++ function 
II Call ASM function 

15: II Function called by C++ and asm modules 
16: extern 'C' 
17: 
18: 
19: 
20: 

void CPPFunction(char c, int k) 
{ 

21: 
22: } 

for (int i = 0; i < k; i++) 
cout « c; 

cout « endl j 

listing 13.9. ASMARG.ASM • 

By Tom Swan 

1 : .. TITLE 'C++ and Assembly Language Arguments -- by Tom Swan" 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11 : 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21 : 
22: 
23: 
24: 
25: 
26: 
27: 

cr 
If 

IDEAL 
MODEL small 

Equates 

EQU 13 Carriage return 
EQU 10 Line feed 

Code segment 

CODESEG 

EXTRN _CPPFunction:PROC 
PUBLIC _ASMFunction 

Function in C++ module 
Function in asm module 

; void ASMFunction(char c, int k); 

PROC _ASMFunction NEAR 

ARG c_offset:byte, k_offset:word 

pUSh 
mov 
mov 

bp 
bp, sp 
cx, [k_offsetJ 

Save caller's bp 
Set up for addressing arguments 
Get loop count (k) 



28: jcxz @@99 Exit if k ::~ 0 
29: @@10: 
30: mov ah, 2 Select DOS output function 2 
31 : mov dl, Ic_offset] Get character (c) to display 
32: int 21h Call DOS to output character 
33: loop @@10 Loop on cx 
34: mov dl, cr Output carriage return 
35: int 21h 
36: mov dl, If Output line feed 
37: int 21h 
38: @@99: 
39: mov ax, 30 Push count argument 
40: push ax onto stack 
41 : mov aI, ' z' Push character argument 
42: push ax onto stack 
43: call _CPPFunction Call C++ function & pass args 
44: add sp, 4 Adjust stack on return 
45: 
46: pop bp Restore caller's bp 
47: ret Return to caller 
48: ENDP ASMFunction -
49: 
50: END End of module 

Passing Arguments from c++ to Assembly language 
The demonstration program uses two functions. CPPFunction (defined in the C++ module) 
and ASMFunction (defined in the assembly language module). As before. each function is 
declared with extern "C" to disable name mangling. and in the case of ASMFunC!ion, to des
ignate that this function's implementation is in a separate module. 

NOTE 

As with data objects, you declare a function merely to give it a name, a return type, and to 
list any parameters. You define a function when you write its statements. The distinction is 
important because you may declare a function in many modules, but you may define it only 
once. 

Even though the functions are written differently, as lines 10-11 show, they are used identi
cally. It doesn't matter to C++ how you implement your functions. 

The two functions perform the identical task-writing a certain number of characters to the 
standard output file. CPPFunction is written in C++; ASMFunction is written in assembly lan
guage. Unlike the earlier demonstration that used global data, the new functions receive ar
guments on the stack. Lines 10-1 1 pass character and length arguments to the functions. 

567 



568 

PART II _ ApPLICATION PROGRAMMING 

Function ASMFunction in the assembly language module, ASMARG.ASM, obtains its func
tion arguments using an ARG directive following the procedure header (line 23). The argu
ments are listed in the same order as they are in the C++ function prototype: 

ARG c_offset:byte, k_offset:word 

Arguments declared this way are not data objects; they are offsets from register bp into the 
stack. Using ARG this way lets the assembler calculate the offsets for you-but you must specify 
the correct data types. A char variable in C++ is a byte in assembly language; a C++ int is 
equivalent to an assembly language word, and so on. 

Lines 27 and 31 show how to load the parameters into registers. For these statements to work, 
however, you must preserve and prepare register bp as shown at lines 25-26. These 
instructions save bp's current value, and then set bp to the current stack pointer. The assem
bly language program can then use the ARG offsets, c_offset and k_offset, to access the passed 
arguments. 

Remember to restore bp's saved value as shown at line 46 before returning from the assembly 
language function. 

Passing Arguments from Assembly Language to C++ 
The reverse process-passing arguments from assembly language to C++-requires a differ
ent strategy. In the sample program, line 43 calls _CPPFunction in the C++ module. That 
function expects to receive two arguments, which the assembly language module provides 
by pushing values onto the stack. 

This is simple enough to do as lines 39-42 demonstrate, but be sure to push the values in the 
correct order. Push the rightmost argument first, and you can't go wrong. For example, lines 
39-40 push the integer len value; lines 41-42 push the character. This order is the reverse in 
which the arguments are declared in the function prototype (see CPPARG.CPP line 5). 

NOH 

Even though the character argument requires a byteoi storage; the p~ogiampushes a word 
onto the stack at line 40. It isn't possible to push a single byte onto the stack. 

There's one other vital step that you must not forget. Because C++ functions do not clean up 
their own stacks, you must delete the pushed arguments after calling the C++ function. Line 
44 in the assembly language module, ASMARG.ASM, shows how to perform this essential 
task. You could pop the pushed values, but it's easier just to add the appropriate value to the 
stack pointer. (Be sure to calculate the correct size. Because the program pushes two words, 
the sample code subtracts four bytes from sp.) 



Declaring Procedure Arguments Automatically 
By using an alternate form of the PRoe directive, you can simplifY the job of receiving argu
ments passed by a C++ statement to assembly language functions. The end results are the 
same, but you might want to compare the rwo techniques and choose the one that suits your 
tastes. The method shown here eliminates the need to prepare and restore register bp, but is 
otherwise the same as the preceding technique. 

Listing 13.10, ASMARG2.ASM, replaces ASMARG.ASM. First compile, assemble, and link 
the listings as explained in the preceding section, and then assemble and bind the new mod
ule using these commands (replace bee with tee for Turbo C++): 

tasm Iml asmarg2 
bcc -ecpparg2.exe cpparg.obj asmarg2.obj 
cpparg2 

Running the CPPARG2.EXE program produces the same output as the original 
demonstration. 

Listing 13.10. ASMARG2.ASM. 
1: ""TITLE "C++ Arguments Part 2 
2: 
3: IDEAL 
4: MODEL small 
5: 
6: Equates 
7: 

by Tom Swan" 

8: cr 
9: If 

EQU 

EOU 
13 
10 

Carriage return 
Line feed 

10: 
11 : Code segment 
12: 
13: CODESEG 
14 : 
15 : 
16: 
17: 

EXTRN _CPPFunction:PROC 
PUBLIC _ASMFunction 

Function in C++ module 
Function in asm module 

18: ,------------------------------------------------------------------------
19: ; void ASMFunction(char c, int klj 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 

PROC _ASMFunction C c_arg:byte, k_arg:word 

mov cx, [k_arg] Get argument k 
jcxz @@99 Exit if k == 0 

@@10: 
mov ah, 2 Select DOS output function 2 
mov dl, [c_arg] Get character to display 
int 21h Call DOS to output character 
loop @@10 Loop on cx 
mOil dl, cr Output carriage return 
int 21h 

continues 

569 



1 3 

570 

Listing 13.10. continued 
32: mo\! dl, If 
33: int 21h 
34: @@99: 
35: mo\! ax, 30 
36: push ax 
37: mo\! aI, 'z' 
38: push ax 
39: call CPPFunction -
40: add sp, 4 
41 : 
42: ret 
43: ENDP _ASMFunction 
44: 
45: END 

Output line feed 

Push count argument 
onto stack 

Push character argument 
onto stack 

Call C++ function & pass args 
Adjust stack on return 

Return to caller 

End of module 

At line 21, the modified listing declares _ASMFunction and its arguments with single directive: 

PROC _ASMFunction C c_arg:byte, k_arg:word 

The c after the function name specifies that arguments are for the C language (that is, they 
are pushed onto the stack in right to left order). The remainder of the line is the same as for 
an ARG directive. 

The result, however, is that Turbo Assembler automatically writes instructions to save, ini
tialize, and restore bp. When using this alternate technique, do not push and pop bp explicitly. 
Except for this change, the other programming remains the same. 

Mixing c++ Classes with Assembly Language 
One of the main reasons for using C++ is to write object-oriented programs with classes. 
Adding assembly language to OOP code, however, is extremely difficult for several reasons: 

• The internal formats of class objects, member functions, and especially virtual 
functions, depend on the compiler's implementation. These formats, some of which 
are obscure or poorly documented, may also differ between compiler versions. 

• Unlike plain C++ functions, you cannot disable name mangling for C++ classes and 
member functions. Technically, you might be able to do this in limited cases, but 
because overloaded names are essential to the techniques of C++ programming, it 
isn't practical to disable name mangling for object-oriented code. This makes 
referring to class and member function names in assembly language extremely 
difficult because you have to do so by writing mangled names. 

• Numerous C++ features such as exception handling, multiple inheritance, operator 
overloading, and other programming methods that C++ programmers take for 
granted demand utmost skill to accomplish in assembly language. 



MIXING ASSEMBl Y L""'uU.~U[ 

• Because the C++ language continues to evolve, anything you write today might be 
out of date by the time you assemble your code. Writing portable assembly language 
interfaces to C++ is, for all practical purposes, an impossible dream. 

So, what is the solution? As every quarterback knows, the answer is simple: When you can't go 
forward, punt. 

Creating the C++ Class 
Listing 13.11, CPPOOP.CPP, demonstrates the first step of a simple method for mixing 
C++ classes, object-oriented programming, and assembly language. The technique is guar
anteed to work with all versions of C++, and is fully portable (except, of course, for the as
sembly language code itself). 

As I've suggested elsewhere in this book, when mixing languages, it's usually best to write 
the high-level code first and then, after you get the program working, convert selected func
tions to assembly language. 

In this case, however, because it is so difficult to interface directly with assembly language 
from C++, a different strategy is called for in the form of additional functions that serve as an 
interface between a class and the assembly language module. Class member functions call 
these extra functions, which in turn call the assembly language code. Although this method 
adds one extra function call, and thus reduces the advantage of using assembly language some
what (though not a great deal), the resulting programming is easy to write and maintain. 

Compile, assemble, link, and run the sample listings with the following commands (replace 
bee with tee for Turbo C++): 

bee -e eppoop 
tasm Iml asmfill 
bee eppoop.obj asmfill.obj 
eppoop 

Running the demonstration program displays the following lines: 

Buffer : b1, size = 10 byte(s) 
Contents: ~~@~@~~~~ 

Buffer : b2, size = 15 byte(s) 
Contents: ############### 

Buffer : b3, size = 25 byte(s) 
Contents: *** •• ******************** 

Buffer : b1, size = 10 byte(s) 
Contents: 1111111111 

Buffer : b2, size = 15 byte(s) 
Contents: 222222222222222 

Buffer : b3, size 25 byte(s) 
Contents: 3333333333333333333333333 

1 

571 



572 

PART 1/ _ ApPLICATION PROGRAMMING 

For demonstration purposes, the sample program declares a class, TBuffer, for creating buffer 
objects filled with specified byte values. The program displays the size of each buffer, which 
is dynamically created and managed by the class using the C++ new operator. The assembly 
language module fills the class object buffers using a fast string instruction loop. To do that, 
the assembly language module must call the buffer objects' class member functions to deter
mine the size of the buffer and the fill character to use. These actions also demonstrate how 
to pass class objects between assembly language and C++ modules. 

Listing 13.11, CPPOOP.CPP, is the first listing. It declares and implements the TBuffer 

class, and also prepares an interface for the assembly language module. 

listing 13.11. CPPOOP.CPP. 
1 : 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11 : 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21 : 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31 : 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 

II Object--oriented c++ and assembly language -- by Tom Swan 

#include <iostream.h> 

class TBuffer { 

II Constructor and destructor 
public: 

TBuffer(char c, int bS)j 
-TBUffer(); 

II Member functions 
public: 

void SetFillChar(char c) 
{ fillChar = Cj } 

char GetFillChar() 
{ return fillCharj 

int GetFillSize() 
{ return fillSize; 

void FillBuffer(); 
void ShowBuffer(const char *s); 

II Private data members 
private: 

} j 

char fillCharj 
int fillSize j 
char far *bufferj 

II Character to insert in buffer 
II Size of buffer in bytes 
II Pointer to buffer 

II External a5m module function declaration 
extern "C" void ASMFillBuffer(TBuffer far &bo, char far *buffer)j 

II External cpp module function declarations 
extern "C" char CPPGetFillChar(TBuffer &bo)j 
extern 'C' int CPPGetFillSize(TBuffer &bo); 

int main() 
{ 

TBuffer b1( '@', 10); II Construct objects 



~ 
40: 
41 : 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61 : 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 
71 : 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81 : 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91 : 
92: 
93: 
94: 
95: 

MIXING ASSEMBLY LANGUAGE WITH C AND C++ 

TBuffer b2( '#', 15); 
TBuffer b3(' *', 25); 

b1 .ShowBuffer( "b1"); I I Display object buffers 
b2.ShowBuffer( "b2"); 
b3.ShowBuffer("b3"); 

b1.SetFiIIChar( '1'); II Set fill chars and refill buffer 
b1.FiIIBuffer(); 
b2.SetFiIIChar( '2'); 
b2.FiIIBuffer(); 
b3.SetFiIIChar( '3'); 
b3.FiIIBuffer(); 

b1.ShowBuffer( "b1"); I I Display object buffers 
b2.ShowBuffer("b2"); 
b3.ShowBuffer("b3"); 

return 0; II End program 

II Implement TBuffer constructor 
TBuffer: :TBuffer(char c, int bs) 
{ 

fillChar = c; 
f illSize = bs; 
buffer = 0; 
if (fillSize <= 0) return; 
buffer = new char[fiIISize]; 
FillBuffer() ; 

II Save fill character 
II Save buffer size 
II Initialize buffer pointer 
II Exit if size is <= zero 
II Allocate memory for buffer 
II Fill buffer with characters 

II Implement TBuffer destructor 
TBuffer: :-TBuffer() 
{ 

delete buffer; II Dispose of allocated memory 

II Implement fill-buffer member function 
II Calls external assembly language function 
void TBuffer: :FiIIBuffer() 
{ 

ASMFiIIBuffer(*this, buffer); II Call function in asm module 

1* C++ equivalent code for above function call 
if (buffer == 0) return; 

* I 
} 

for (int i = 0; i < GetFiIISize(); i++) 
buffer[i] = GetFiIIChar(); 

II Implement show-buffer member function 
void TBuffer: :ShowBuffer(const char *s) 
{ 

cout « endl; 
cout « "Buffer II « 5; 

continues 

573 



574 

Listing 13.11. continued 
96: cout«", size = ' « GetFillSize() « ' byte(s)" « endl; 
97: cout« 'Contents: "; 
98: for (int i ~ 0; i < GetFillSize(); i++) 
99: cout « buffer[i]; 

100: cout« endl; 
101 : 
102: 
103: II Return fill character for object bo 
104: II Called by external asm function 
105: extern "C" 
106: char CPPGetFillChar(TBuffer &bo) 
107: { 
108: return bo.GetFillChar()j 
109: 
110 : 
111: II Return buffer size for object bo 
112: II Called by external asm function 
113: extern 'C' 
114: int CPPGetFillSize(TBuffer &bo) 
115: { 
116: return bo.GetFillSize()j 
117 : 

Lines 5-28 declare the TBuffer class. This is pure C++. Notice that some member functions 
are implemented inline (lines 14-19), and others are implemented normally (lines 20-21). 
With the interfacing technique explained here, member functions could also be virtual, al
though none is in this example. You may also use multiple inheritance and all other C++ 
programming methods. 

Lines 30-31 declare an external assembly language function that the TBuffer class uses. This 
function is declared with an extern ·c· directive, just as in the preceding examples. In addi
tion to turning off name mangling for the ASMFullBuffer function name, the designation 
also tells the compiler that the function's implementation is in a separate module. 

Two other C++ functions are similarly declared at lines 34-35. The assembly language mod
ule calls these functions to obtain data members from a TBuffer class object. 

QUICK REVIEW 

line 31 declares an assemblYlartgLlageflindiootob~rtailed~t~:ti~jJl4.Jfi1edare 
c++ functions to be called from assernbfyJanguage.,Oespitetheir.diffemltu_ithededara~ 
tions are identical in form. '. 'i' . 

Closely examine the arguments in these three functions. The first argument in each case is a 
reference to a TBuffer object. This demonstrates one way to pass class objects to and from 
assembly language modules. You may pass other arguments as well. For example, 



r 

MIXING ASSEMBLY LANGUAGE WITH C AND C++ 

ASMFHIBuffer receives a pointer to a char buffer-the destination that the assembly lan
guage module fills. 

The main function creates three TBuffer objects (lines 39-41), filled with different characters 
in variously sized buffers. Lines 43-45 call a class member function to display the buffer 
contents. Lines 47-52 change the fill character and call another member function to refill 
the buffer. Lines 54-56 again display the buffers' contents. 

At lines 62-70, the class constructor allocates memory for a buffer using the new operator 
(see line 68). The constructor calls FillBuffer to fill the allocated memory with the desig
nated character. 

A destructor at lines 73-76 deletes the memory allocated by the constructor to TBuffer objects. 

Following the constructor and destructor are the implementations of the TBuffer class member 
functions. The first such function, FillBuffer, shows how the class interfaces with the as
sembly language module. Line 82 calls the assembly language function, ASMFHIBuffer, to 
perform the actions for the FHIBuffer member function. 

In other words, rather than replace TBuffer: : FillBuffer directly with assembly language, 
the program simply calls the assembly language module from inside the class member func
tion. There is one complication, however-you must pass the object address to the assembly 
module so that the function can obtain data and call other functions related to that object. 
To do that, pass an object's address as "this as shown to a reference parameter. (If you pre
fer, instead of a reference, you can pass an object pointer. In that case, pass this without 
dereferencing it.) 

For comparison, lines 85-87 list the c++ equivalent code for the ASMFillBuffer function. 
Notice that the c++ code calls two member functions, GetFillSize and GetFillChar, to ob
tain the buffer size and fill character. This is simply good OOP technique. The class's data 
members are private, and are accessed strictly by calling member functions. Writing assem
bly language code to do the same, however, requires a bit of extra effort as you will learn in 
the next listing. 

First, however, let's finish explaining the c++ code. Lines 92-101 implement the ShowBuffer 

member function, which displays the buffer contents. There's no assembly language here. 

Lines 105-117 implement two functions that the assembly language module calls. These 
functions represent the interface between the assembly language code and the c++ TBuffer 

class. Function number one, CPPGetFillChar, returns the class's fill character. Function number 
two, CPPGetFillSize, returns the buffer's size. 

Each function is an external, C-style, function, not a C++ class member. Each function re
ceives a reference to a TBuffer object, and each simply returns the values of class member 
functions. In this case, those functions are encoded inline, and therefore, despite appearances, 
there's very little additional overhead. The key advantage is that the assembly language module 

575 



576 

PART II _ APPliCATION PROGRAMMING 

can call these two interface functions to obtain data from a class object. Calling class mem
ber functions such as GetFillChar and GetFillSize directly would be very much more diffi
cult (and implementation dependent). Calling the two extra interface functions 
CPPGetFillChar and CPPGetFillSize makes it possible to use standard C interfacing between 
the class and the assembly language module. 

Accessing Class Objects from Assembly Language 
Listing 13.12, ASMFILL.ASM, implements the assembly language function, _ASMFillBuffer, 

called by the TBuffer class. The listing also demonstrates how to pass and receive reference 
arguments to class objects. (The identical techniques work for object pointers as well because 
C++ references are physically, if not syntactically, identical to pointers.) 

listing 13.12. ASMFILL.ASM. 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21 : 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31 : 
32: 
33: 
34: 
35: 
36: 

.. TITLE 'External function for a C++ class object -- by Tom Swan" 

IDEAL 
MODEL small 

Code segment 

CODESEG 

EXTRN _CPPGetFiIIChar:PROC 
EXTRN _CPPGetFiIISize:PROC 
PUBLIC _ASMFillBuffer 

Function in C++ module 
Function in C++ module 
Function in asm module 

; void ASMFillBuffer(TBuffer far &bo, char far "buffer); 

PROC _ASMF illBuffer NEAR 

ARG bo_offset:DWORD, buffer_offset:DWORD 

pUSh bp Save caller's bp 
mov bp, sp Set up for addressing arguments 
push di Save di if used for register vars 

les di, lbo_offset] Get bo object address into eS:di 
push es Push bo object address segment 
push di Push bo object address offset 
call - CPPGetFillChar Call C++ function, pass Object arg 
add sp, 4 Adjust stack pOinter to delete arg 
push ax Save char result in al on stack 

les di, lbo_offset] Get bo object address into es:di 
push es Push bo object address segment 
push di Push bo object address offset 
call -CPPGetFillSize Call C++ function, pass object arg 
add sp, 4 Adjust stack pointer to delete arg 



37: 
36: 
39: 
40: 

(9(999: 

ENDP 

mov 
les 
pop 

jCxz 
cld 
rep 

pop 
pop 
ret 

MIXING ASSEMBLY LANGUAGE WITH C AND C++ 

cx, ax ; Copy int result in ax to cx 
di, [buffer_offset] j Get buffer address into eS:di 
ax ; Retrieve fill character from stack 

(9@99 

stosb 

di 
bp 

_ASMFillBuffer 

END 

As I did for the C++ module, I'll explain most lines in the assembly language module. This 
should give you the information you need to handle all interfacing problems between your 
own C++ OOP code and assembly language. 

The module's code segment declares two external functions, _CPPGetGillChar and 
_CPPGetFillSize. These are the functions defined in the C++ module that interface with a 
TBuffer object. The key concept here is that the assembly language module does not call 
class member functions directly. Instead, the assembly language calls interface functions that 
perform that chore. 

In addition, line 12 makes the assembly language function _ASMFillBuffer public so that 
the C++ module can call it. 

Lines 17-52 implement the function, which is passed two arguments on the stack. An ARG 
directive at line 19 prepares two DWORD offsets for accessing these arguments. They are DWORDs 
because 32-bit pointers are used. (The arguments are dedaredforin the C++ module.) 

As I explained, when using ARG, you must save and initialize register bp for addressing argu
ments passed on the stack. Lines 21-22 handle this task. I also push register di because the 
function uses this register. 

NOTE 

Turbo e;l urbo C++, and BorlandC-l-+usesiilnddiforregistefvariables.U~leSs you 
disable register variables, you should save an<:/'re5tore si and diin func;;tionsltlat use these 
registers. 

1 

577 



578 

Line 25 shows how to obtain the address of a class object passed to an assembly language 
function. The les instruction loads the address referenced on the stack relative to bp into the 
es: di registers. After this step, in other words, es: di address the TBuffer object passed by 
reference to _ASMFillBuffer. 

We need that object address in order to call its GetFillChar member function. But, as I've 
said, calling member functions directly is too difficult to do correctly and, besides, would 
make the program highly implementation dependent. To avoid these nasty problems, sim
ply call an interface function such as _CPPGetFilIChar, which calls the actual class member 
function. The interface function requires the address of a TBuffer object, which the assem
bly language function pushes onto the stack at lines 26-27. 

Following the function call, as with all calls to C and c++ functions, the program deletes the 
pushed argument by adding an appropriate value to the stack pointer (see line 29). 

The _CPPGetFillChar interface function returns the fill character in register ax. We need this 
value a bit later, so line 30 pushes it onto the stack for safe keeping. 

Next, the program calls the second interface function _CPPGetFillSize. First, les at line 32 
loads the buffer address, which is pushed onto the stack before calling the interface function 
at line 35. The stack is adjusted after this function call (line 36), and the returned fill size 
integer is moved into register ex (line 37). 

Line 38 again uses les to load es:di with the address of the buffer, passed to the assembly 
language function as its second argument. Finally, line 39 pops the saved character back 
into ax. 

In programs that use multiple parameters, I find it helpful to insert a comment that describes 
the states of various registers at strategic locations. The comments at lines 41-43 indicate the 
values stored in aI, ex, and es: di at this point in the program's execution. It's instructive to 
review the preceding code at this point to verifY that each register is prepared properly. 

With the dirty work Out of the way, the assembly language function can proceed to fill the 
buffer with the designated character. This is the easiest part of the process. Line 45 skips the 
next two instructions if the buffer length is zero. Line 46 ensures that the fill direction is 
forward (to greater addresses), Line 47 performs the fill in a flash, using the super fust re
peated stosb (store string byte) instruction. 

Finally, lines 49-51 restore the saved values of the di and bp registers before returning to the 
function's caller. 



MIXING ASSEMBLY Ll\l'I'uUl\ut 

Summary 
The main reasons for adding assembly language to C and c++ programs are to add speed to 
your code and to provide low-level access to the hardware. Borland's C and C++ compilers offer 
two methods for injecting assembly language into programs: inline asm statements and external 
functions. Inline statements are easy to use but aren't as versatile as external functions. 

Because most programs spend 90% of the time running about 10% of the instructions, finding 
and optimizing a program's criticall 0% often produces remarkable speed increases. Rewrit
ing the other 90% may be a waste of time. Don't rewrite C or C++ statements that already 
run as fast as necessary. 

Registers bp, CS, ds, bP, and ss must be restored before an assembly language module ends. 
Registers ax, bx I ex, dx, d1, s1, and es may be used freely. Because compiled C and C++ 
programs use d1 and s1 for register variables, it's a good idea to preserve these two registers. 

Inserting inline asm statements causes early versions ofT urbo C to generate an assembly lan
guage text version of the entire program. This file can then be assembled and linked to create 
the finished program. You can save time by using the -8 option to compile programs to as
sembly language from the start, or you can insert to compile programs to assembly language 
from the start, or you can insert an equivalent #pragma 1nline statement. Another option 
-8 lets you examine the assembly language text file, which is normally removed. 

Inline asm statements inside functions go in the program's code segment. Inline asm state
ments outside functions go in the program's data segment. You can share code and data with 
C and C++, and you can access C and C++ structures in assembly language statements. 

Writing external assembly language functions takes more work than injecting asm statements 
directly inco a C or C++ program, but the results are often worth the effort. External mod
ules save compilation time by letting you develop programs in pieces-and there's no need 
to compile the program to assembly language text. You can also use Ideal mode in assembly 
languages modules. Best of all, simplified memory models make writing external functions 
easier than if you had to declare segments "the hard way," which you still can do if you want. 
Assembling, compiling and linking multimodule programs is tricky, but using the compiler 
as a "front end" to Turbo Linker can save time and hassle. 

Calling assembly language functions from C or C++ is identical to calling other functions. 
Going the other way---calling functions from assembly language-requires you to push func
tion parameters onto the stack and then, after the function returns, to remove those param
eters. You can also declare local variables in functions, although programs may run faster if 
you can use a register to hold temporary values. 

579 



580 

Name mangling in C++ complicates the task of mixing C++ and assembly language. Disable 
name mangling with extern 'C" declarations for assembly language functions called by C++, 
and also for C++ functions called by assembly language modules. 

Interfacing C++ classes and assembly language directly is too difficult, and is far too imple
mentation dependent. Instead of attempting to call class member functions directly from 
assembly language, a more practical method demonstrated in this chapter uses interface func
tions that call the actual class members. Passing object references to these functions makes it 
relatively simple to mix assembly language and C++. Best of all, the end results are portable 
and independent of implementation details. 

Exercises 
13. L What are the two ways of adding assembly language to C programs? How does 

compilation differ between the two methods? 

13.2. When is it necessary to save and restore registers si and di in an assembly 
language function? When is it not necessary to do this? 

13.3. Write an inline assembly language function to display the values of the 8086 
flags. The only C statement you may use is a call to printf to display the 
results-the rest of the instructions should be asm statements. Hint: See Figure 
4.2 for flag bit positions. 

13.4. Suppose you have C structure names Things and a variable of this structure 
named MyThings. What inline asm statement can you use to load the address of a 
structure field named OneThing? 

13.5. What command-line option can you use to compile a program to assembly 
language text? What is the danger of doing this? 

13.6. Suppose you have two external functions named FUNCl.ASM and 
FUNC2.ASM. What commands are required to assemble, compile, and link the 
external modules to a main C program named MAIN.C, creating a finished 
program named MAIN.EXE? Assume the program uses the small memory 
model. 

13.7. What ARG directive can you use to address the parameters of the following 
function protorype? 

extern void copystring( unSigned char far * source, 
unsigned char far * destination, 
int sourcelen l; 

13.8. What C statements are needed to call the external function as defined in question 
number #I3.?? 



MIXING ASSEMBLY LANGUAGE WITH C AND 

13.9. Write an external module to finish the copystring function listed in questions 
#13.7 and #13.8. The module should copy source len characters from a source 

string to the destination string. 

13.10. Given the external function in question #13.9, what assembly language state
ments do you need to call the function to pass the address and length of two 
strings string1 and string2, declared in an external data segment? 

Projects 
13.1. Compile various C or C++ programs (perhaps from a public domain library) 

with the -5 option, creating .ASM files that you can examine. Hunt for state
ments where inline asm code would improve running times. Recompile, run-time 
trials, and keep track of the results of your optimizations. 

13.2. Convert the procedures in ASYNCH.ASM module from Chapter lO (or another 
module if you prefer) to external C or C++ functions. 

13.3. The standard C printf function is certainly versatile-able to write all sorts of 
string, character, and numeric data to the standard output. But programming 
such versatility takes time. Write a set of simplified output functions for writing 
strings and integers. 

13.4. Develop a fast direct-video library of external C functions for displaying text on 
the PC's memory-mapped video screen. 

13.5. Write a C or C++ program to convert all the text in a file to lowercase, perhaps 
also capitalizing sentences. After debugging your program, selectively convert 
sections to assembly language to improve running times. 

13.6. Use Turbo Debugger to trace function calls to various routines in Borland C++ 
or Turbo C's runtime library. Document as much of the code as you can. (This 
is a useful exercise for learning how standard functions are implemented in 
assembly language.) 

581 



---------------------------------------------_ ......... __ . 



Programming with 
Objects 

_ Object-Oriented Programming with TASM, 584 

_ Why Use 00 P?, 584 

_ Fundamentals ofTASM Objects, 589 

_ Polymorphism, 627 

.. Other OOP Tips and Tidbits, 645 

_ Summary, 651 

_ Exercises, 651 

_ Projects, 652 



584 

Object-Oriented Programming with TASM 
Object-oriented programming, or OOP, has become the mainstay of high-level languages 
such as C++ and Borland Pascal. Until recently, if you wanted to use OOp, you had to write 
code with one of those languages or with a less well-known application-development system 
such as Smalltalk or Actor. 

Beginning with TASM 3.0, however, you can now write object-oriented programs in assem
bly language. Exactly why you might want to do that is one of the most difficult aspects of 
learning to use OOP, so before digging into TASM's object-oriented features, read the fol
lowing sections for an overview of OOP and its value to programmers. 

Why Use OOP? 
In a nutshell, OOP makes it possible to write computer programs largely by constructing 
objects. An object is simply a structure that relates data and code (see Figure 14.1), collec
tively known as the object's members. The object encapsulates its members in one handy pack
age. 

Figure 14.1. 
An object if a structure that 
encapsulates data and code. 

An object 

" 
Code 

Here are a couple of key points about the object in Figure 14.1. 

• The code in an object usually performs some operation on the object's data. This is 
not a requirement but is usually the case. An object's code consists of subroutines, 
called methods, that you write the same way as conventional subroutines. 

• The data inside an object is hidden. Only the object's code may directly access the 
object's data. As usual in assembly language, you can easily break this rule, but you 
deviate from OOP's regulations at your own peril. An object's data can be any 
variables (bytes, words, arrays, structures, pointers) and so on, even other objects) 
that you might define in a conventionally-written program. 

• To use an object, you must create storage for it. The storage is called an instance
the object-oriented equivalent of a variable of a data type such as a byte or a word. 
You may define as many instances of an object as you need. 



• You can construct new objects based on existing ones-a technique called inherit
ance. Using inheritance, you can write entire programs simply by enhancing a 
library of existing objects. 

Programming with objects offers several advantages over conventional techniques-but there 
are also a few drawbacks that you need to consider. The following sections describe many of 
OOP's features, advantages, and disadvantages. 

Advantages of OOP 
To understand the value of objects, consider how most programmers write conventional code. 
First, they define the program's data by reserving storage for bytes, words, and other struc
tures. Then, they write subroutines to operate on that data. Or, they write statements that 
pass data to subroutines, or that pass addresses in registers or that push values onto the stack 
for a subroutine to use. 

There is nothing wrong with this conceptual model for writing computer programs. But when 
programs grow beyond the moderately complex stage, one part of a program might inad
vertently change data that another part requires, causing buggy twists and turns in the 
program's execution that can be difficult to unravel. 

Even top-notch programmers are surprised to discover how easy it is to create such tangles. 
For example, you might define a global count variable, which you use in a loop that cycles a 
specified number of times. If that loop calls another subroutine, which calls other subrou
tines-a common situation-the danger exists that a statement somewhere deep inside the 
program might also use count for its own purposes. This critical but easily missed error re
sults in a buggy loop that modifies its own controlling parameter and causes the program to 
fail. 

Object-oriented programming can help prevent these kinds of conflicts. Because objects 
encapsuiatecode and data, the use of data is restricted to a defined set of subroutines. Encap
sulation offers programmers two distinct advantages: 

• When a bug arises due to the misuse of data, you are almost certain to find the 
problem among the offending object's code. Especially in large programs, being able to 
restrict debugging to relatively small sections is a tremendous advantage in main
taining applications and identifying trouble spots. 

• It's easier to add new code to object-oriented programs. Because the use of data is 
restricted to an object's subroutines, you can safely use data in new programming 
without introducing conflicts in other modules. You always know the limits ofdata's 
use. This aspect of OOP is of key importance to developers, especially in applica
tions written by programming teams. 

585 



586 

Disadvantages of OOP 
Despite its rosy prospects, OOP has a few drawbacks. It is initially more difficult to design 
an object-oriented application. If you are the kind of programmer who, when freshly inspired 
by a great new idea can't wait to start typing instructions, OOP might be the wrong pro
gramming model for you. With 00 P, careful planning is essential to achieving reliable re
sults. 

OOP tends to be of more value in large programs than in small ones. The sample listings in 
this chapter, for example, might seem to use overly complex methods for relatively simple 
operations. If you write medium to small programs, OOP might increase your code's com
plexity. (Even small programs, however, can often use libraries of existing objects advanta
geously.) 

OOP and Turbo Assembler 
Turbo Assembler's 00 P features resemble those in Pascal and C++, although there are some 
important differences that I'll describe in this chapter. In assembly language, for instance, it 
is your responsibility to construct various tables, pointers, and to perform operations such as 
loading registers that are automatic in other languages. 

It is also easier to get into trouble with OOP in Turbo Assembler than it is in other lan
guages, which have built-in safeguards that can prevent mistakes. For example, C++ and 
Borland Pascal compilers can verifY that statements use the correct types of objects. In as
sembly language, all bets are off and it's relatively simple to break OOP's rules (as it is to 

break conventional programming's rules). 

One other disadvantage of OOP in Turbo Assembler is that object instances (that is, vari
ables of a certain object data type) are incompatible with C++ classes and Pascal objects. If 
you intend to combine assembly and high-level OOP code, it is probably best to use the 
high-level language to construct your object-oriented modules. See Chapter 13, "Mixing 
Assembly Language with C and C++" for suggestions about mixing assembly language to 

high-level C++ OOP. 

NOTE 

Turbo Debugger's object-oriented commands (ViewIHi~rarchy, for exalllple)do not recog
nize TASM objects. You may inspect object instances In TurboDebiJgger, but they are shown 
as structures, not objects. 

Despite these drawbacks of using OOP in Turbo Assembler, there are many good reasons 
for selecting this programming model to write assembly language applications. As I suggested, 



PROGRAMMING 

OOP is tailor-made for large applications, especially those written by programming teams. 
Also, debugging, maintenance, and future revisions are potentially simpler due to OOP's 
design. 

Another good reason to use OOP is to convert an existing high-level C++ or Pascal object
oriented program into pure assembly language. If you need to convert high level OOP code 
to assembly language, TASM's OOP features will greatly simplifY the conversion. 

OOP on Its Own Terms 
Like all technologies, OOP comes with its own terms, many of which you will encounter in 
this chapter. Scan these terms now to become familiar with them, but don't be concerned if 
some of the concepts are unclear. 

NOTE 

The following glossary also explains differences and similarities between C++, Borland 
Pascal, and Turbo Assembler's OOP terminologies. Turbo Assembler's terms more closely 
resemble those used in Borland Pascal than in C++. 

Base object-An object that is used to derive another object. The derived object 
inherits the properties of the base object. More than one derived object may inherit 
the properties of the same base object. For example, a graphics program might 
declare a general-purpose object TGraphics, and then use that object as a base to 
derive special-purpose objects such as TCircle and TRectangle. The base object 
provides data and code that are common to all related objects. The derived objects 
add data and code that are specific to their needs. Any object may be a base object. 
See also Derived object. 

CIasJ-The C++ term for Object as used in Turbo Assembler and Borland Pascal. 
See Object. 

Constructo1'-A special method that initializes an object instance. Turbo Assembler 
does not support the concept of a constructor, although as I show in this chapter, 
you can program its equivalent. (In C++, constructors can be called automatically. 
In assembly language, it is your responsibility to call an object's constructor.) 

Derived object-An object that inherits the properties (data and code) of another 
base object. A derived object may be used as a base object from which another 
object may be derived (see Base object). The collection of base and derived objects in 
an object-oriented program creates a hierarchy of related objects. Typical OOP code 
consists of many such object hierarchies. In Turbo Assembler, a derived object may 
inherit the properties of only one base object (see also Single and Multiple 
inheritance.) 

587 



588 

Destructor-A special method that is used to destroy an object instance. Turbo 
Assembler does not support the concept of a destructor. 

Encapsulation-The process of relating data and code in an object. Although not 
required to do so, an object's code (that is, its assembly language subroutines) 
usually performs some operation on or with the object's encapsulated data. Encap
sulation restricts the use of data to a defined set of subroutines, which can simplify 
debugging, maintenance, and revisions. 

Inheritance--The contents of an object that is derived from another object. The 
derived object inherits the base object's data and code. By using inheritance, you can 
enhance existing objects quickly and easily. See also Base object, Derived object, 
SingLe inheritance, and MultipLe inheritance. 

Instance--Storage for an object. Also called an Object instance. Ar. instance of an 
object is similar to a variable of a data type such as a byte or a word. In Turbo 
Assembler, you define instances using the same syntax as for structures. (An instance 
is equivalent to a C++ class object.) 

Member-Any component of an object. A method, for example, is a member of an 
object. A variable in an object is a data member. 

Method-Another term for an object's subroutines. See also Static method and 
Virtual method (A method is equivalent to a C++ member fonction.) 

Multiple inheritance--A feature of some OOP languages that permits deriving new 
objects, using inheritance, from more than one base object. T ASM does not support 
multiple inheritance (see Single inheritance). 

Object--A special structure that relates data and code. It's important to understand 
that an object is merely a source-code description of related data and code. Objects 
exist solely in the program text; they do not exist at runtime. To use an object in a 
program, you must create an instance of it similar to the way you create variables of 
other data types such as bytes and words. (An object in Turbo Assembler is equiva
lent to a C++ class.) 

Object instance--Same as Instance. 

Polymorphism--The process by which an object instance can determine an action to 

be performed on or for that object. The action is implemented as a virtual method. 
A pointer (the ds: si registers, for example) might address a instance of a graphics 
object derived from a common base. Calling that instance's virtual Draw method 
draws a circle if the pointer addresses a Circle instance, or a rectangle if the pointer 
addresses a Rectangle instance. The correct function is selected at runtime without 
the program explicitly stating the object's type in a call instruction. With polymor
phism, you modifY the actions of existing code by writing new objects and virtual 
methods. See also Virtual method. 



Single inheritance-The technique of building a derived object from a single base 
object. All OOP languages, including Turbo Assembler, support single inheritance. 
See also Multiple inheritance. 

Static method--An object's subroutine. Calls to static methods are identical to calls 
to non-object-oriented subroutines. The addresses of static methods are bound into 
call instructions at link time. 

Virtual method--An object's subroutine. Calls to virtual methods are made indi
rectly to addresses stored in an object's virtual method table. The addresses of 
virtual methods are bound into the call instruction at run time. See also Polymor
phism. 

Virtual method table (VMT}-A table of virtual method addresses. Every object that 
has one or more virtual methods must have an associated virtual method table. It is 
your responsibility to create this table and to insert and initialize a pointer to the 
VMT in every object instance. 

Fundamentals of TASM Objects 
To learn how to use OOP in Turbo Assembler programs, you need to master three funda
mental techniques. These are: 

• Encapsulation 

• Inheritance 

• Virtual methods 

You also need to learn how to combine those techniques using polymorphism to create ob
jects that can determine their own actions. The rest of this chapter is devoted to these topics. 
I'll first explain the techniques of encapsulation, inheritance, and virtual methods in general 
terms, and then show how to implement those techniques using Turbo Assembler objects. 
Finally in this chapter, I'll explain how to create and use a Jist object that demonstrates the 
wonderful world of programming with polymorphism. 

NOTE 

Borland's user guide suggests using Ideal mode for object-oriented programs,. but for 
unexplained reasons, all examples in the guide and on disk use MASM mode. Worse, many 
of the printed examples contain mistakes and do not workcorrectly.Needless to say, these 
facts have prevented many assembly language programmers from using TASM's object
oriented features. All example programmingin this chapter uses Ideal mode. Because there is 
no official documentation on Ideal mode and COP, I derived most of the syntax and example 
programs in this chapter by experimentation. 

589 



590 

Encapsulation 
Objects are similar to structures created with the STRUC directive. In case you need a refresher 
course on using assembly language structures, following is a quick review. 

A STRUC associates multiple variables under a single name. For example, to create a STRUC 

named POint, you can use a declaration such as this: 

STRUC Point 
x dw ? 
Y dw ? 

ENDS Point 

The declaration creates a structure named Point that contains two word variables, x and y. 

The structure is merely a description of a data type-it does not occupy any space at runtime. 
To use the structure, you must define a variable of its type. For example, you might insert 
these instructions in a data segment: 

DATASEG 
pl Point <> 

p2 Point <45, 66> 

The first line starts the data segment. The second line defines a variable pl of the Point Struc
ture-in other words, pl is a memory space that consists of twO word variables named pl . x 
and pl. y. The third line also defines a variable p2 of the Point structure. In addition, the 
third line initializes its two word variables to 45 and 68, respectively. 

You create objects using a special form of the STRUC directive. Actually, objects are structures
but in addition to containing data, an object also specifies subroutines, called members, that 
usually operate on or with that data. Typically, some of those members assign values to the 
object's data. Other members might return the data's values. Members can perform addi
tional tasks as well. 

Following is a sample object, TPoint, that declares four methods: two for changing the object's 
x and y variables, and two for returning those values: 

STRUC TPoint METHOD { 
getx:dword = TPoint_getx 
gety:dword = TPoint_gety 
setx:dword = TPoint_setx 
sety:dword TPoint_sety 
} 
x dw ? 
Y dw ? 

ENDS TPoint 

Compare this STRUC with the non-object-oriented Point structure. The keyword METHOD tells 
the assembler that this structure specifies the names of subroutines to be associated with the 
object. Subroutine declar;itions in braces follow the METHOD keyword. Each declaration is in 
the form: 

getx:dword = TPoint_getx 



PROGRAMMING WITH 

This states that the object has an associated method named get x, and that the address of that 
method is to be stored in a dword (32-bit) pointer. (Small memory model programs may use 
a word offset in place of dword.) The method pointer (get x) is initialized to the address of the 
actual subroutine (TPoint_getx), which you must write somewhere in the program using the 
PROC directive as you do for other subroutines (of course, a complete example would have 
additional instructions): 

PROC TPoint_getx PASCAL 
ret 

ENOP TPoint_getx 

The naming convention that I use is arbitrary, but works well. I begin object names with T, 
which indicates the object is a data Type. The method name (getx for example) describes the 
purpose of the object's subroutine-in this case, to get the value of the object's x variable. 
The actual subroutine name in the PROC directive combines the object name, an underscore, 
and the method name (TPoint_getx). These conventions help me to recognize the relation
ships among objects, methods, and subroutines. 

The other TPoint object methods--gety, setx, and sety-are declared similarly. Each is a 
dword pointer initialized to the address of an actual subroutine implemented elsewhere. 

After the object's methods are any associated variables, in this case, two un initialized words, 
x and y. Instances (that is, variables) of the TPoint object consist of those two words, just as 
in a common structure. Use the TPoint object as you would any structure. These statements, 
for example, define two TPoint instances: 

pl TPoiot <> 

P2 TPoint <12, 34> 

It is important to understand that the TPoint object's methods are not stored in the object 
itself. The object merely associates code and data-it doesn't actually store code and data in 
the same place. The preceding two instances pl and p2 occupy four bytes each--exacdyenough 
room for each instance's two word variables, x and y. 

NOTE 

The preceding paragraph will make better sense if you think of objects as data types similar to 
those built into assembly language-bytes and words, for example. A byte is a data type, 
which merely describes the nature and size of a kind of information. To use a byte, you must 
define a variable of that type using the DB (define byte) directive. Operations such as addition 
and subtraction that you can perform on bytes aren't stored inside the byte variables. Those 
operations are instead written as subroutines or instructions to which you pass byte values. 
The difference in object-oriented programming is that, rather than pass data to subroutines, 
you call methods for object instances. In that sense, the instance "knows" how to perform 
operations on itself. 

591 



592 

PART II _ ApPLICATION PROGRAMMING 

These facts lead to an important observation: objects and structures are really one and the same. 
They differ, however, in how you use them. You use struccures as you do any other variables, 
but with objects, you call methods to operate on instance data. To help you understand how 
this works, the next fWO listings flesh out the full TPoint object. 

Listing 14.1, TPOINT.lNC, shows how to declare and implement a Turbo Assembler ob
ject. The file is stored in the OOP\ENCAPSUL direlStpry. (All programs in this chapter are 
similarly stored in their own directories.) The module is d'Csigned to be included into a pro
gram with the INCLUDE directive, so don't attempt to assemble it just yet. Later, I'll explain 
how do that. Scan TPOINT.lNC now, then turn to the line-by-line discussion following 
the listing. 

NOTE 

Borland suggests storing object declarations in files ending with the extension .ASO (for 
assembly language object). I use .INC instead because my text editors are programmed to 
recognize that filename extension. You can name your object module files using any other 
extension if you want. 

listing 14.1. oop \encapsul\ TPOI NT.INC. 
1: %TITLE 'TPoint object -- by Tom Swan' 
2: 
3: GLOBAL TPoint_getx:PROC 
4: GLOBAL TPoint_gety:PROC 
5: GLOBAL TPoint_setx:PROC 
6: GLOBAL TPoint_sety:PROC 
7: 
8: STRUC TPoint METHOD { 
9: getx:dword TPoint_getx 

10: gety:dword = TPoint_gety 
11: setx:dword = TPoint_setx 
12: sety:dword = TPoint_sety 
13: } 
14: x dw ? 
15: y dw ? 
16: ENDS TPoint 
17: 
18: CODESEG 
19 : 

Begin TPoint object declaration 
Return object's x data 
Return object's y data 
Change object'S x data 
Change object'S y data 
End of method declarations 
Object'S x data 
Object's y data 
End TPoint object declaration 



20: 'IINEWPAGE 
21 : 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 

TPoint getK method 

Input: 
ds:si = instance address 

Output: 
ax = instance.x data 

Registers: 
ax 

30: j---------------------------------------------------------------
31: PROC TPoint_Qetx PASCAL 
32: mov ax, [(TPoint PTR si).x] Move instance x data into ax 
33: ret Return to caller 
34: ENDP TPoint_Qetx 
35: 'IINEWPAGE 
36: ---------------------------------------------------------------
37: j TPoint_gety TPoint gety method 
38: j---------------------------------------------------------------
39: Input: 
40: ds:si = instance address 
41: Output: 
42: ax = instance.y data 
43: Registers: 
44: ax 
45: ---------------------------------------------------------------
46: PROC TPoint_gety PASCAL 
47: mov ax, [(TPoint PTR si).y] 
48: ret 
49: ENDP TPoint_gety 
50: 'IINEWPAGE 

Move instance y data into ax 
Return to caller 

51: j---------------------------------------------------------------
52: i TPoint_setx TPoint setx method 
53: ---------------------------------------------------------------
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 

Input: 
ds:si instance address 
x (word) parameter 

Output: 
none 

Registers: 
ax 

PROC TPoint_setx PASCAL 
ARG @@x:word 
USES ax 
mov ax, [@@xj 
mov [(TPoint PTR si) .x], ax 
ret 

ENDP TPoint setx 
'liN EWPAGE 

Create stack offset to param x 
Preserve ax (optional) 
Move x param into ax 
Move x param into instance.x 
Return to caller 

70: j---------------------------------------------------------------
71: j TPoint_sety TPoint sety method 
72: j---------------------------------------------------------------

conTinues 

593 



594 

PART II _ APPLICATION PROGRAMMING 

Listing 14.1. continued 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 

Input: 
ds:si = instance address 
y (word) parameter 

Output: 
none 

Registers: 
ax 

81: PROC 
82: 

TPoint_sety PASCAL 
ARG @@y:word Create stack offset to param y 

Preserve ax (optional) 83: 
84: 
85: 
86: 

USES 
mov 
mov 
ret 

ax 
ax, [@@y) 
[(TPoint PTR si). y), ax 

Move y param into ax 
Move y param into instance.y 
Return to caller 

87: ENDP 

Lines 8-16 declare the TPoint object, which has four methods and two variables. The mod
ule also has four GLOBAL statements at lines 3-6, which publish method subroutine names 
such as TPoint_getx so other modules can call them. 

NOTE 

When used to export a symbol as done here for TPoint's methods, GL08Alis interFeted as a 
PUBLIC directive. When used to import a symbol, as might be done by'arlOtherffioaide~' 
needs to use the TPoint object, GLOBAL is interpreted as an EXTRN directive. You coukfuse' 
PUBLIC and EXTRN directives with object methods, but the dual-purpose GL08Al directive is 

more convenient. 

After these declarations, at line 18 the module begins or continues the program's code seg
ment. Following that are the object's method implementations-in other words, its subrou
tines, which are stored along with the program's other code. The TPoint_getx method, for 
example, is implemented as a subroutine at lines 31-34. 

This subroutine has only two instructions. Line 32 moves the value of an object instance's x 

variable into the ax register. Line 33 returns to the method's caller. fu this part of the listing 
demonstrates, you write object methods the same way you write conventional subroutines. 

There is, however, one major difference between TPoint_getx and conventional code. Like 
all methods, TPoint_getx must be called in reference to an instance of the TPoint object. By 
convention, registers ds: si address this instance. 

Line 32, for example, obtains the value of the instance's x variable by addressing the object 
instance with ds: si. Carefully examine the syntax in this line-it differs from the syntax in 



PROGRAMMING WITH OBJECTS 

Borland's User Guide, which doesn't explain how to use Ideal mode with TASM's OOP 
features. You must use parentheses around the subexpression (TPoint PTR si) so that the 
assembler treats this as a unit. You also must tell the assembler the type of object addressed 
by ds: si (TPoint in this example). Finally, you must include a PTR directive to indicate an 
indirect reference to memory. 

NOTE 

Call ing TPoint_getx requires a special form of the call instruction provided by the directive 
CALL. •• METHOO that is unique to Turbo Assembler. Following the next listing, 1'1/ explain how 
to use this directive. 

The next method in TPOINT.INC TPoint_gety, is identical to TPoint_getx but returns 
the value of an object instance's y variable (see lines 46-49). 

Two more methods, TPoint_setx and TPoint_sety, complete the implementation ofTPoint's 
methods. The method at lines 62-68 demonstrates how to receive arguments passed by in
structions that call the method. In this case, TPoint_setx requires its caller to pass a 16-bit 
word of data to store in an object instance's x variable (line 63). 

You may pass information to methods using any technique you wish in a register, for ex
ample, as a global variable, or on the stack. The demonstration method uses a stack argu
ment, declared as: 

ARG @@x:word 

The directive tells the assembl~r to calculate the offset into the stack of a 16-bit word param
eter, and to give that offset the name @@x. You may use any name you want-because of its 
local-symbol preface (@@), the symbol is limited for use in the current PROC. This means that 
another PROC may define an argument named @@x without conflicting with this one. 

NOTE 

When using ARG, it is important to select a consistent language in addition to the memory 
model. All methods in the TPoint object (and others in this chapter) use the PASCAL model, 
which makes the called subroutines responsible for cleaning up their own stack frames. 

Following the ARG directive, TPoint_setx also tells the assembler that it uses the ax register 
(line 64). The USES directive automatically inserts push and pop instructions to save and re
store registers. You don't have to use USES, but it's convenient for ensuring that a subroutine 
saves and restores critical registers. Separate multiple registers with commas as in: 

595 



'11 ~ 'I --P-AR-T-I-I-~-----A-p-Pl-IC-A-TIO-N--P-RO-G-R-AM-M-IN-G---------------------------------------------------

596 

USES ax, cx, si, es 

By virtue of the ARG directive, it's a simple matter to refer to arguments passed on the stack. 
For example, to load the value of the x argument into ax, the subroutine executes this in
struction at line 65: 

mov ax, [@@xl 

Line 66 then stores that value in the object instance's x variable. The TPoint_sety method at 
lines 81-87 resembles TPoint_setx, but inserts a 16-bit argument into an object instance's y 

variable. 

The next step is to use the TPoint object by including its module in a host program. Using 
an object involves three key techniques: 

• Defining object instances 

• Addressing object instances 

• Calling object methods 

Listing 14.2, ENCAPSUL.ASM, demonstrates these techniques. You may now assemble the 
program, which includes the TPOINT. INC module. Change to the OOP\ENCAPSUL direc
tory, and type make to assemble and link the program. Or, you can enter the following two 
instructions. Either way, be sure to add debugging information to the ENCAPSUL.EXE 
program, which, like many of this book's example programs, doesn't produce anyon-screen 
output. You need to use Turbo Debugger, as described after the listing, to investigate how 
the program works. 

tasm Izi encapsul 
tlink Iv encapsul 

listing 14.2. oop \encapsul\ENCAPSU l.ASM. 
1 : %TITlE 'TPoint object demonstration -- by Tom Swan" 
2: 
3: IDEAL Select Ideal mode syntax 
4: 
5: JUMPS Enable auto~conditional jumps 
6: 
7: LOCALS @@ Enable block-scoped labels 
B: 
9: MODEL large, PASCAL Select a memory model and language 

10: 
11: STACK 1000h Allocate program stack 
12: 
13: INCLUDE 'tpoint.inc" Include TPoint object module 
14: 
15: DATASEG Start of data segment 
16: 
17: exCode DB 0 Program exit code 
1B: 



PROGRAMMING WITH 

19: Define TPoint instances 
20: 
21: p1 
22: p2 
23: 
24: 
25: 
26: Start: 
27: 
28: 
29: 
30: 
31 : 
32: 
33: 
34: 
35: 
36: 
37: 

TPoint <> 
TPoint <01h, 02h> 

CODESEG 

moy ax, @data 
moy ds, ax 

Call TPoint methods 

si, offset pl 

Default TPoint instance 
Initialized TPoint instance 

Start of code segment 

Initialize OS to address 
of data segment 

moy 
CALL si METHOD TPoint:getx 

Address instance with ds:si 
Call object method 

moy 
CALL 

Si, offset p2 
si METHOD TPoint:gety 

Address instance with ds:si 
Call object method 

38: Pass literal arguments to methods 
39: 

moy si, offset p1 Address instance with ds:si 
CALL si METHOD TPoint:setx, 03h Pass argument to method 

moy si, offset p1 Address instance with ds:si 
CALL si METHOD TPoint:sety, 04h Pass argument to method 

40: 
41 : 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61 : 

Pass register arguments to methods 

moy 
moy 
CALL 

moy 
mov 
CALL 

Exit: 
moy 
moy 
int 

END 

si, offset p2 
dx, 05h 

Address instance with ds:si 
Load argument into dx 

si METHOD TPoint:setx, dx Pass dx on stack to method 

Si, offset p2 
cx, 06h 

Address instance with ds:si 
Load argument into cx 

si METHOD TPoint:sety, cx Pass cx on stack to method 

ah, 04Ch 
aI, [exCode) 
21h 

Start 

DOS function: Exit program 
Return exit code value 
Call DOS. Terminate program 

End of program I entry point 

Several directives are required at the beginning of an object-oriented assembly language pro
gram. You can experiment with variarions on the types and numbers of directives, but I've 
found these to work best in most cases: 

IDEAL 
JUMPS 
LOCALS @@ 
MODEL large, PASCAL 
STACK 1000h 

597 



598 

You'll find these same directives in other listings in this chapter (see lines 3-11 in Listing 
14.2). The first line selects Turbo Assembler's Ideal mode. In addition to its other benefits 
(discussed elsewhere in this book), Ideal mode makes a structure's symbols local to that struc
ture. In MASM mode, a structure's symbols are global and must be unique throughout the 
entire program. This is why Ideal mode requires GLOBAL directives, but despite this added 
complication, local structure symbols simplify programming by eliminating possibly con
flicts among different structures. 

The JUMPS directive enables automatic conditional jumps, making it possible for the assem
bler to generate more efficient code. The LOCALS directive declares ~~ as the local-symbol prefix. 
You will use many local symbols in 00 P, and the use of a local prefix will prevent conflicts 
that would probably arise if you declared symbols such as ~~x and @@y globally. Also, some 
OOP directives generate code that requires this local-symbol preface. 

The MODEL directive in this example (line 9) selects the large memory model. Because object
oriented programs tend to be large, this is usually the correct model to use. It is possible, 
however, to write small and huge memory-model OOP code as I'll explain later in this chap
ter, but the addressing details in small-model code can be tricky. For best results, use the 
large model until you know your way around. 

NOTE 

The MTA.lIB library on the book's diskjs assembled for the small memOry model. If you link 
an object-oriented large-model program to this library, you must first create large-model 
versions of all library modules by editing the MODEL directives. for example, to create a large
model version of the STRINGS module, change the MODEL to large -in STRINGS.A~M, then 
reassemble and insert the module in MTA.uB using the supplied MAKE filE on disk. 

The MODEL directive at line 9 also specifies the PASCAL language. This does not mean the pro
gram is written for Pascal. It merely changes the code inserted by the assembler for the PROC 

and ENDP directives. With the PASCAL language model, you declare and pass arguments on 
the stack in the same order. For example, if a method requires x and y arguments, you must 
declare and pass them in that order. In addition, the PASCAL model causes the assembler to 
delete all arguments from the stack by inserting a special form of the ret instruction that 
adjusts the stack pointer, sp. Other models (the C model, for example) require the calierto a 
subroutine to clean up the stack. Generally, this is inconvenient, and because OOP code 
tends to use lots of arguments passed to methods, PASCAL is the best choice. 

Finally, the program defines a stack (line 11). Again, because of the heavy use of stack argu
ments in OOP code, a larger than normal stack may be required. I used 1000h for all pro
grams in this chapter. You may have to increase this value in large programs with many 
objects. 



.-~-.~.----------------------

To use the TPoint object, the sample program includes the TPOINT.INC module (line 13). 
If your program uses more than one object, it should include all modules at this location. 

Following those steps, the sample program defines global variables, two of which are object 
instances. First, a DATASEG directive at line 15 begins the program's global data segment. The 
exit code variable at line 17 is the same as used in most of this book's programs. Lines 21-22 
demonstrate two ways to define object instances. 

The first line (21) creates an instance of the TPoint object named pl. Because the angle brackets 
are empty in this statement, the values of the instances x and y variables are uninitialized. 
When viewed in Turbo Debugger, they are set to zero, but in the program's normal use, 
they might equal any value left over in memory. 

The second line (22) defines another object instance, but specifies initial values for the 
instance's variables. This line creates an instance with x set to 01 hand y set to 02h. 

The program next demonstrates how to address object instances and how to call object 
methods. There's one vital rule to memorize: you must call an object method in reftrence to an 
object imtance. In other words, you never call methods out of context; instead, you must specifY 
an object instance on which that method operates. 

There are many ways to address object instances-you could pass their addresses as stack 
variables or you could address them using any combination of registers you choose. Register 
addressing is probably best, and for consistency, it's a good idea to use the same registers 
throughout the program to address all object instances. By convention, I use ds: si. 

Because the sample program's instances are in the data segment, register ds is already initial
ized by the preparatory instructions at lines 27-28. Only one other step is required to ad
dress instance p1: 

mov si, of fset p1 

That instruction moves the offset address of instance p1 into si. Now, ds: si properly ad
dress a TPoint object instance, and the program can call any of that object's methods to per
form operations on or for that instance. For example, to call the TPoint_getx method, which 
returns the instance's x variable, line 33 executes this special form of the call instruction: 

CALL si METHOO TPoint:getx 

Actually, that's not an assembly language instruction-it's a CALL ... METHOD directive, which 
is unique to Turbo Assembler. To distinguish the directive from common subroutine calls, 
I type it in uppercase, but you can use lowercase if you prefer. The CALL ... METHOD directive's 
syntax is somewhat complex: 

CALL <instance_ptr> METHOO {<object_name>:} 
<method_name> {USES {segreg:}offsreg}{<extended_call_parameters>} 

599 



4 

600 

The first element, <instanee_ptr>, can be the address of an object or a reference to a register. 
Because I always address instances with ds: si, I insert si berween the CALL and METHOD key
words. This satisfies the syntax, but in this case, the register isn't otherwise used. (Later in 
this chapter, when you investigate virtual methods, this part of the CALL •.. METHOD syntax 
becomes more important.) 

Next, CALL .•• METHOD permits you to specify an object name. Always do this. You must refer 
to an object by riame (especially in Ideal mode) in order to also refer to any of that object's 
members. In this case, you need to insert the name of a method you want to call-the 
TPoint: getx method, for example, as demonstrated in line 33. 

NOTE 

Specify method names In CALL •.•• uelHoDstateffientsb'(typin8 the object~arne;a colon, and 
the. method name; Do flOtusethe aClualSllpr9utine naTe. For e~1lfT1p1e{:cl$Hn~}~ sh~1 
TPOlrl!:getxis the correcfwayto refer to t~ getl(~hod in theTPoi!l~.obje(;t.I~,actual . 

. sUbrout.i.n.e .is named TPoint.Jj8tlC in·lbe TPOINT.lNC module. . , ... '. . 
- .. -" - . ,/ " . -

As the CALL .•• METHOD syntax indicates, you can specify a USES clause in the directive to 
preserve any registers that the method changes. I prefer to make the methods themselves pre
serve all registers except those used to pass back information to callers, so I rarely insert USES 
in CALL ..• METHOD statement. If you want to use this option, however, type it like this: 

CALL si METHOD TPoint:getx USES ex, di 

Finally in a CALL ..• METHOD instruction, you may list any arguments to be pushed onto the 
stack. These arguments may be literal values, memoty references, or registers. Regardless of 
form, however, they are always passed on the stack. For example, to pass the value 03h co the 
TPoint object's setx method, line 41 uses the instruction: 

CALL si METHOD TPoint:setx, 03h 

F rom that directive, Turbo Assembler generates instructions to push 03h onto the stack. The 
setx method, as I explained for the TPOINT.INC module, uses an ARG directive to access 
that argument. 

You can also pass register values to methods. For example, you can move a value into ex (or 
another register) and pass that value with the instruction: 

mov ex, 04h 
CALL si METHOD TPoint:setx, ex 

Despite appearances, however, the second line does not pass a value in ex to the setx method. 
It pushes ex's value onto the stack, and the method still must use an ARG directive to access 
that value. (See also lines 48-50 for another example of passing a register value to a method.) 



--_ ... _-_. __ .. __ ..... _---------_. 

NOTE 

Methods may use values passed in registers. If you specify those regiSters as CALL ••• METHOD 

arguments, however, they sti II will be pushed onto the stack, and you mustdedare an ARG 

directive for those arguments:rhis enables Turbo Assemblerto generate a retllminstruc:tion 
that deletes the pushedargumentbytes byadjustingthestackpointer.lfroudon't useARG, 
the stack will overflow, and you should check that alJmethQds~pecify .AAG directives for 
everyargument in CAL!-.. METI:IOO directives. . 

It is highly instructive at this point to run the ENCAPSUL demonstration program in Turbo 
Debugger. Follow these suggestions to investigate how the program works: 

1. Change to the OOP\ENCAPSUL directory, and type make to create the 
ENCAPSUL.EXE code file if you haven't done so already. Enter td encapsul to 

start Turbo Debugger and load the demonstration program. 

2. Use the arrow keys to move the flashing cursor up to the p2 instance, and press 
Ctrl+ W to add it to the Watches window. Do the same for p1. The Watches window 
should now have two TPoint entries. Notice that they are shown as "struc" vari
ables, which in reality is what object instances are. Notice also that p2's x and y 

variables are initialized to the values in angle brackets in the instance's definition. 

3. Press F7 three times to execute the instructions that initialize ds and that address p1 
with ds: si. Press F7 again to execute the first CALL ••. METHOD instruction. The 
display changes to the TPOINT.INC module, and the cursor is poised at the moy 
instruction in the TPoint_getx method. 

4. Press Alt+VR to bring up the Registers window, then press F7 to execute the moy 
instruction. Notice that ax changes to the value of the addressed instance's x 
variable. Press F7 again to execute the method's ret instruction, which ends this 
CALL ..• METHOD. 

5. Press F7 four more times to execute the next CALL. •• METHOD, and observe the use of 
modified registers, which Turbo Debugger highlights. These steps return the y 

variable value for the p2 instance. 

6. The program is now paused at the instruction that moves the offset of instance p1 to 
si. Press F7 to execute that instruction. Registers ds: si now address the p1 instance. 

7. Before executing the next CALL ••. METHOD, open the CPU window (press Alt+ VC and 
hit F5 to expand the window to full screen). You will find instructions that look 
something like these: 

push ax 
push bp 
moy bp,sp 

601 



4 

602 

mov word ptr [bp+02),0003 
pop bp 
push CS 
call tpoint~setx 

nop 

You are viewing the acmal instructions that Turbo Assembler generates fonhe 
CALL ••. METHOD command (the one at line 41 in the listing). The first five instruc
tions "punch a hole" in the stack, creating a space for the argument to be passed to 
the method. The push cs instruction simulates a far call, after which, a near call 

performs the acmal call to the method subroutine. The nop is a placeholder, left over 
from the optimization that TASM performs to convert far calls to efficient push cs 

and near call instructions. This nop wastes a byte, but the end result is faster than 
the equivalent far call. (The assembler makes this modification for all far subrou
tine calls, not only for object-oriented CALL ••. METHOD directives.) 

Use Turbo Assembler's F7 key to run the remaining instructions. You may do this while 
viewing the Module or CPUwindows. In the Modulewindow, you execute CALL. •• METHOD 

and other instructions as individual commands, even though as you have seen, they might 
actually contain multiple steps. In the CPU window, you execute those steps individually. 
Try running the program both ways to further investigate how it works. Press Alt+X to exit 
the debugger. 

Before continuing with the next section, be sure you understand: 

• How to declare an object and use GLOBAL directives for its methods (review the first 
part of Listing 14.1). 

• How to implement an object method and address object instances (review the 
subroutines in the second part of Listing 14.1). 

• How to define an object instance (review the data segment in Listing 14.2). 

• How to address an object instance and call its methods (review the code segment of 
Listing 14.2). 

Inheritance 
By using inheritance, you create new objects from existing ones. The new, or derived object, 
inherits the methods and variables of its ancestor, or base object. In other words, the derived 
object is a copy of the base object to which you can add new methods and variables. 

Those added methods can be completely new, or they can replace methods of the same names 
in the base object. Additionally, replacement methods in the derived object can call the base 
object methods they replace. You cannOt replace an object's data members; only its meth
ods. You can, however, add new data members to derived objects. 



r 

In this section, you learn how to use inheritance to create derived objects in Turbo Assem
bler. The following three listings demonstrate: 

• how to derive a new object based on an existing object 

• how to call a derived object's methods 

• how a replacement method can call a base object's method 

Listing 14.3 declares the sample program's base object, named TBase for simplicity. (You 
can use any name you like for your own objects.) The object has no practical value, but is a 
useful template for your own OOP tests. I often create an object like this one to experiment 
with ideas before implementing them in real code. Don't try to assemble the listing yet-I'll 
explain how to do that at the appropriate time. 

listing 14.3. oop\inherit\TBASE.INC. 
1: %TITLE 'TBase object -- by Tom Swan' 
2: 
3: GLOBAL TBase_init:PROC 
4: GLOBAL TBase_getData:PROC 
5: 
6: STRUC TBase METHOD { 
7: init:dword = TBase_init 
8: getData:dword = TBase_getData 
9: } 

10: TBase_data 
11: ENDS TBase 
12 : 
13: CODESEG 
14: 

dw ? 

Declare base object 
TBase object method 
TBase object method 
End of object methods 
TBase object data 
End of base object 

15; ---------------------------------------------------------------
16: ; TBase_init TBase init method 
17: ---------------------------------------------------------------
18: Input: 
19: ds:si = instance address 
20: arg1 = word to store in instance 
21: Output: 
22: argl -> instance.TBase_data 
23: Registers: 
24: 

.25: 
26: 
27: 
28: 
29: 
30: 
31: 

PROC 

32: ENDP 
33: 

none 

TBase_init PASCAL 
ARG @@data:word ; Create offset to argument on stack 
USES ax ; Preserve ax register (optional) 
mov ax, [@@data] ; Move argument into ax 
mov [(TBase PTR si).TBase_datal, ax ; Save ax in instance 
ret 
TBase init 

continues 

603 



------------------------ ............... ~ ........ -

604 

Listing 14.3. continued 
34: ;---------------------------------------------------------------
35: ; TBase_getData TBase getData method 
36: ;---------------------------------------------------------------
37: Input: 
38: ds:si = instance address 
39: Output: 
40: ax = instance.TBase_data 
41: Registers: 
42: ax 
43: ;---------------------------------------------------------------
44: PROe TBase_getData PASCAL 
45: 
46: 

mov ax, [(TBaSe PTR si).TBase_dataj ; ax <- base data 
ret 

47: ENDP TBase_getData 

The TBase object declares a single variable (TBase_data), and two methods (lines and 
6-11). The first method, TBase_init, initializes an instance of the TBase object-that is, it 
sets the instance's variable or variables to specified values. The second method, TBase _get Data, 

returns the instance's variable or variables. 

The module next implements the object's methods. Lines 26-32 program the TBase_init 

method, which requires a word argument passed by a CAll ... METHOD instruction. The method 
stores that argument in the TBase_data variable. 

The TBase_getOata method returns an object instance's TBase_data variable in register ax. 

Listing 14.4, TDERlVED.INC, shows how to derive a new object using TBase. The listing 
shows the relationship between a base and derived object, and it also introduces a few related 
techniques. You need to study one additionallisring before using the module, so don't as
semble the program yet. 

Listing 14.4. oop \inherit\ TDERIVED.lNC. 
1: %TITLE 'TOerived object -- by Tom Swan' 
2: 
3: GLOBAL TOerived_init:PROC 
4: GLOBAL TOerived_getOata:PROe 
5: 
6: STRUC TOerived TBase METHOD { 
7: init:dword = TOerived_init 
8: getData:dword = TOerived_getoata 
9: 

10: TOe rived_data dw ? 
11: ENDS TOerived 
12: 
13: CODESEO 
14: 

Declare derived object from base 
TOe rived object method 
TOe rived object method 
End of object methods 
TOerived object data 
End of derived object 



PROGRAMMING WITH OBJECTS 

15: j---------------------------------------------------------------
16: j TDerived_init TDerived init method 
17: ---------------------------------------------------------------
18: Input: 
19: ds:si instance address 
20: arg1 = word to store in base instance data 
21: arg2 = word to store in derived instance data 
22: Output: 
23: arg1 -> instance.TBase_data 
24: arg2 -> instance.TDerived_data 
25: Registers: 
26: none 
27: ---------------------------------------------------------------
28: PROC TDerived_init PASCAL 
29: ARG @@data1:word, 
30: @@data2 :word 

USES ax 31: 
32: 
33: 
34: 
35: 
36: 

mov ax, [@@data1 J Move arg1 into ax • 
CALL si METHOD TBase:init, ax Call base init method· 
mov ax, [@@data2j Move arg2 into ax 
mov [(TDerived PTR si).TDerived_dataj, ax i Store in instance 

37: ENDP 
38: 

ret 

39: • These mov and call statements can also be written as: 
40: CALL si METHOD TBase:init, [@@data1] 
41 : 
42: 
43: ; TDerived_getData TDerived getData method 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51 : 
52: 

Input: 
ds:si instance address 

Output: 
ax instance.TBase_data 
dx instance.TDerived_data 

Registers: 
ax, dx 

53: PROC 
54: 

TDerived_getData PASCAL 
CALL si METHOD TBase:getData 

55: mov dx, [(TDerived PTR si).TDerived_dataJ 
56: ret 
57: ENDP TDerived_getData 

ax <- base data 
dx <- derived data 

YOll declare a derived object as YOll do any other, but with one difference. After the new 
object's name, insert the base object's name. For example, line 6 declares the TOe rived object 
like this: 

STRUC TDerived TBase METHOD 

The declaration causes TOerived to begin life as a copy ofTBase. In other words, TOerived 

inherits the variables and methods from TBase. To its inheritance, TOerived declares twO 

replacement methods and a new data member. 

605 



4 

606 

The data member, TDerived_data, is added to the TBase_data variable inherited from the 
base object. In other words, instances of the TDerived_data object now have two variables
one named TBase_data and one named TDerived_data. 

Figure 14.2. 
Base and derived objects. 

TBase 

TBase:init method 
TBase:getData method 

TBase_data variable 

Base object 

TDerived 

TBase:init method 
TBase:getData method 
TOarived:init method 

TDerived:gatOate method 

TBase_data variable 
TBase_data variable 

Derived object 

Conceptually, the base and derived objects are structured as Figure 14.2 illustrates. The de
rived object inherits the members from its base object. New members in the derived object 
are shown in bold face. 

The two methods, init an.d getData, replace the methods inherited from TBase. It would be 
possible for the derived object to declare completely new methods simply by giving them 
unique names, but the sample object doesn't do this. 

As Figure 14.2 illustrates, the new methods don't eliminate the methods they replace-TBase' s 
subroutines are still alive and well in their original module. When a program calls a derived 
replacement method, however, it calls the replacement code. Often, that code in turn calls 
the base object's method to perform part of a desired operation in addition to new program
ming added to the replacement. This is not a requirement, however, and replacement meth
ods sometimes do not call their inherited methods. 

For example, lines 28-37 implement the replacement init method for the TOe rived object. 
The replacement method requires two 16-bit arguments to be stored in an instance's vari
ables-TDerived instances now have two such variables. 

To initialize the inherited TBase _data variable, lines 32-33 call the base object's in it method. 
Registers ds: si already address the instance, so they don't require initialization. The code 
merely loads ax with the first of the subroutine's two arguments, and calls the TBase object's 
init method. 

Those steps initialize the inherited portion of the object instance. To finish the job, lines 
34-35 store the second argument in the TDerive_data variable-the new one that TDerived 

adds to its inherited members. Now both of the instance's data variables are initialized. 



PROGRAMMING WITH OBJECTS 

Method TDerived_getData similarly calls its base object's method of the same name (get Data) 

to obtain the instance's data (line 54). The next instruction moves the derived object instance's 
data into dx. In this way, the replacement method returns the instance's two variables in 
register's ax and dx. Notice especially how the derived object methods call their base object 
methods to build on existing code. These techniques--enhancing objects through inherit
ance and replacement methods-are the heart and soul of object-oriented programming. 

Listing 14.5, INHERlT.ASM, shows how to use the base and derived objects from the pre
ceding two listings. You may now assemble and link the demonstration program, which 
includes the TBASE.INC and TDERlVED.lNC modules. Change to the OOP\INHERlT 
directory and rype make. Or, execute these individual commands: 

tasm /zi inherit 
tlink Iv inherit 

NOTE 

The demonstration program produces no output. For a better understanding of how the 
program works, load it into Turbo Debugger with the command td inherit. Add the 
program's variables to the Watches window, and use the debugger's F7 key to single step the 
program's instructions while you read the line-by-line discussion that follows the listing. 

Listing 14.5. oop\inherit\JNHERIT.ASM. 
1 : %TITLE 'Inheritance demonstration -- by Tom Swan" 
2: 
3: IDEAL 
4: 
5: JUMPS 
6: 
7: LOCALS @@ 
8: 
9: MODEL large, PASCAL 

10: 
11 : STACK 1000H 
12: 
13: INCLUDE "tbase.inc" 
14: 
15: INCLUDE 'tderived.inc' 
16: 
17 : OATASEG 
18: 
19: exCode db 0 Program exit code 
20: 

continues 

607 



608 

listing 14.5. continued 
21: b1 
22: 
23: d1 
24: 
25: 
26: 

TBase <> Define base object instance 

TDerived <> Define derived object instance 

CODESEG 

27: Start: 
28: mov ax, ~data Initialize OS to address 

of data segment 29: mov ds, ax 
30: 
31 : 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41 : 
42: 
43: 
44: 
45: Exit: 

mov 
CALL 

mov 
CALL 

mov 
CALL 

mov 
CALL 

46: mov 
47: mov 
48: int 
49: 
50: END 

si, offset b1 
si METHOD TBase:init, 
0001h 

si, offset d1 
si METHOD TDerived:init, 
0002h, 0003h 

si, offset b1 
si METHOD TBase:getData 

si, offset d1 
si METHOD TDerived:getData 

Address instance b1 
Call base init method 
Pass argument to method 

Address instance d1 
Call derived init method 
Pass arguments to method 

Address instance b1 
Get data into ax 

Address instance d1 
Get data into ax, dx 

ah, 04Ch 
aI, [exCode I 
21h 

DOS function: Exit program 
Return exit code value 
Call DOS. Terminate program 

Start End of program I entry point 

&> lines 21-23 show, you define derived-object instances no differently from base object in
stances. A derived object is used the same way as any other object. In fact, as you will see later 
on, a derived object may itself be a base object for another object. There is no practical limit 
on the number of objects that you may derive from others. 

Lines 31-33 call a base object's init method, to which the CALL ... METHOD statement passes 
the value 0001 h. When you trace this code in Turbo Debugger, you see that the method stores 
the passed argument value in the instance's TBase_data variable. 

NffiE . 

CALL. .. ilETHODinstJ:ud~on5 can be lengthv: F9r better readabilitYl you may write them on 
separate tineS.iii shown here. End ~achpreceding line with the U continuation symbol," a 
backslash (\) (see lines 32.and 36, for example). 



r 

PROGRAMMING WITH OBJECTS 

Lines 35-37 perform a similar job, but call the derived object's init method. This method 
requires two arguments, here the literal values 0002h and 0003h. When you trace this instruc
tion in Turbo Debugger, you first arrive in TDerived's init method. That method calls the 
TBase object's init, which stores the first argument in the instance's TBase_data variable. 
The derived init then stores the second argument in TDerived_data. In this way, the two 
methods initialize the object's two variables. 

Lines 39-43 call TBase and TDerived getData methods to retrieve the values of the instances' 
variables. Open the Registers window (press Alt+ VR) to inspect these values as you trace this 
portion of the code. 

Before continuing with the next section, be sure to understand: 

• How to derive an object from a base object. 

• How to define base and object instances. 

• How to call base and derived object methods. 

• How to call a base object's method from inside a derived object's replacement 
method. 

Figure 14.3. 
Calls to virtual methods are 
made indirectly by looking 
up subroutine addresses from 
a Virtual Method Table 
(VMT) at runtime. 

Virtual Methods 

call instruction address 

address 

address 

address 

address 

Virtual Method 
Table (VMn 

Up to now, the object methods you have examined are static methods. That is, their addresses 
are permanently fIXed in memory, and consequently, Turbo Assembler can create conven
tional call instructions to the object's subroutines. 

Virtual methods differ from static methods in the way you address them. Instead of comput
ing a virtual method's address during assembly. the assembler generates instructions that 
extract the address at runtime from a virtual method table (VMT). Calls to virtual methods 
are indirect-they are made by reference to entries in a VMT (see Figure 14.3). 

Every object that has one or more virtual methods must have a VMT, and every instance of 
that object must have a VMT pointer that addresses the VMT. CALL ••• METHOD directives 
automatically extract these addresses, but it is your responsibility to create the VMT and to 
link it to every object instance by initializing the instance's VMT pointer. 

609 



----------------------------.. -~-.-

610 

Those basic facts explain what virtual methods are, but do not explain why you might want 
to use them. Virtual methods are the most powerful tools in object-oriented programming, 
but their value may not be obvious at first. In brief, virtual methods enable programs to use 
polymorphism, a fancy word for a relatively simple concept, explained by the code in this 
section. 

Figure 14.4. 
When a pointer 
addresses an object 
imtance, calls to the 
object's virtual methods 
are computed by looking 
them up from a virtual 
method table, 

CALL .. METHOD instuction 

Program pointer 

L object instance A -- Virtual Method Table (VMT) A -- Virtual method A 
object instance B -- Virtual Method Table (VMT) B -- Virtual method B 
object instance C -- Virtual Method Table (VMT) C -- Virtual method C 

Figure 14.4 illustrates polymorphism conceptually. In the diagram, a CALL ••• METHOD instruc
tion attempts to call a method for an object instance addressed by a program pointer (ds: si 

for example). Because the method is virrual, its address is taken from the VMT that is 
addressed by a pointer stored in the object instance. Consider what happens if a program 
instruction changes that pointer to address a different object instance. The same CALL ••. METHOD 

imtruction will then call a diffirent virtual method. This is polymorphism--object instances 
determine at runtime which virtual methods to call. The instances, in other words, deter
mine their own actiom. 

You implement virtual methods the same way you implement static methods. It is the way 
you call virtual methods that differentiates them from static methods. 

To add virtual methods to an object requires one new keyword and three new directives. 
Follow these steps: 

1. Insert one or more virtual methods in the object declaration by prefacing the 
method declarations with VIRTUAL. 

2. Insert a VMT pointer in the object's data section by using the TBLPTR directive. 

3. Define memory space for the VMT by using the TBLINST directive. 

4. Initialize the VMT pointer for every object instance by using the TBLINIT directive. 

A few code fragments illustrate those four steps. Here's a sample object, TBase, that declares 
a virtual method and a VMT pointer: 

STRUC TBase METHOD { 
construct:dword TBase_construct Static method 
VIRTUAL action:dword TBase_action Virtual method (step #1) 

TBLPTR 
TBase_data dw ? 

ENDS TBase 

VMT pointer (step #2) 
Other object data 



The object may have other static methods, and it can have as many virtual methods as needed. 
Precede each virtual method with the VIRTUAL keyword. 

NOTE 

An obiect derived from TBase inherits the VMT pointer created by TBLPTR. The derived object 
should not define its own VMT pointer. Only the base object in a hierarchy of related objects 
may use this directive. 

Mter declaring the object, you must define a virtual method table that stores the object's 
virtual method addresses. Turbo Assembler automatically inserts the proper addresses into 
this table-all you need to do is create it. But you must create a VMT for every object that 
has one or more virtual methods, a rule that applies equally to base and derived objects. If a 
base object defines a VMT, an object derived from that base must also define its own VMT. 
The derived object inherits its base object's VMT pointer, not the virtual method table. 

To define a VMT, follow the object's declaration with a TBLINST directive. This directive 
creates a VMT for the most recently declared object. You might also want to open a segment 
for storing VMTs. For example, you might follow the preceding object declaration with these 
instructions: 

; step #3 
DATASEG 
TSLINST 

You might also follow those instructions with a CODESEG directive in order to implement an 
object's methods, but that's not a requirement. You could, for example, declare multiple 
objects, define their VMTs, and then implement their methods in another module. Many 
different arrangements of files, declarations, and modules are possible, though I prefer to 
insert each object's declarations and methods in a single file to be included in the final pro
gram. This approach makes it easy to use objects in different programs, and with a little ex
tra help (as I'll explain in the next section) it also makes it possible to create objects that work 
with small, large, and huge memory models. 

Finally, write a static method that initializes the object's VMT pointer (the one declared by 
the TBLPTR directive). I call this method a constructor, though strictly speaking, Turbo As
sembler objects don't have the equivalent of C++ or Pascal constructors. Use the TBLINIT 
directive in the constructor to initialize an object instance's VMT pointer. For example, as
suming that ds: si addresses the object instance, here's one way to write the TBase object's 
constructor: 

PROC TBase_construct PASCAL 
TSLINIT TSase PTR si ; Initialize VMT pointer 
ret 

ENDP TSase_construct 

611 



14 

612 

You must call the object's constructor for every instance of the TBase object. Each such in
stance has its own VMT pointer, which must be individually initialized. Call the construc
tor as you do any other static method. For example, in the data segment, first define a TBase 
instance: 

b1 TBase <> 

Next, in the code segment, address b1 with ds: si and call the TBase objed s construct method: 

mov si, offset b1 
CALL si METHOD TBase:construct 

NOTE 

A constructor cannotbevirtual because,inordertoicallvirtual methodSj'theob;ect instance's 
VMT pointer must beassigned theaddt~s' {jf th~t object's VMT. ThepulpQseQf the construc
tor is.to perform this task, although it may execute.other initializationsa~~II: 

To call a virtual method, use the same CALL ... METHOD directive that calls static methods but 
with one difference required in Ideal mode. In addition to specifYing si as the instance pointer, 
you must tell the assembler to what base object si points. For example, these instructions 
address the b1 instance with ds: si and call the object's acti~n virtual method: 

mov si, offset b1 
CALL TBase PTR si METHOD TBase:action 

The second line generates instructions that look up the action subroutine's location from 
the VMT addressed by the TBase instance's VMT pointer. The magic of this instruction is 
in the fact that si could address a derived object instance in which case the derived objed s 
action subroutine will be called. Suppose, for example, that you declare an object TDerived 

from TBase. You also declare a replacement action method in the new object. You then de
fine the object, address it with ds: si and call the act ion subroutine: 

DATASEG 
d1 TDerived <> 
CODESEG 

Define derived object instance 

mov si, offset d1 Address instance with ds:si 
CALL TBase PTR s1 METHOD TBase:action ; Calls TDerived:action! 

Even though the CALL •.. METHOD instruction specifies TBase, the instruction actually calls 
TDerived's virtual action method. Now, compare the last line in this code fragment with the 
last line of the preceding example. The instructions are identical-all that's changed is the 
object that ds: si addresses. You might call this proof of polymorphism-the object itself de
termines which virtual action method to call. 



The next several listings demonstrate these concepts. First, however, Listing 14.6, 
OOMACROS.INC presents a few macros that simplifY working with virtual methods. The 
macros, which I modified and converted to Ideal mode using similar MASM-mode macros 
supplied on Turbo Assembler 4.0's disks, make it possible to write OOP code for small, large, 
and huge memory models. On this book's disk, the file is stored in the OOP subdirectory. 
Don't assemble the text-you have to include it in another program as I'll explain. 

listing 14.6. oop\OOMACROS.INC. 
1: %TITLE "TASM OOP VMT macros -- by Tom Swan" 
2: 
3: ;---- Small memory model macros and equates 
4: 
5: IF (@CodeSize EO 0} 
6: 
7: 
8: 
9: 

MACRO VMTSeg 
CODESEG 
ENDM VMTSeg 

@VMTSeg @code 
10: 
11 : 
12: 
13: 
14: 
15: 
16: 
17: 

MACRO LoadVMTSeg reg 

18: 
19: 
20: ELSE 
21 : 

ENDM 

MPtr 

push cs 
pop reg 

EOU <WORD> 

" Store VMTs in code segment 

Equate VMTSeg with code segment name 

" Prepare VMT segment addressing register 
" Push code segment onto stack 

Pop cs into desired segment register 

Virtual functions are 16-bit addresses 

22: Large and huge memory model macros and equates 
23: 
24: SEGMENT VMT_Seg PUBLIC ;; Store VMTs in separate data segment 
25: ENDS VMT_Seg 
26: 
27: MACRO VMTSeg 
28: SEGMENT vMT_Seg. , Use VMTSeg macro to create VMT segment 
29: ENDM VMTSeg 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 

MACRO LoadVMTSeg reg 
push bx 
mov bx, @VMTSeg 
mov reg, bx 
pop bx 

ENDM LoadvMTSeg 

MPtr EOU <DWORD> 

42: ENDIF 

Equate vMTSeg with our data segment 

prepare VMT segment addressing register 
" Save register used by macro 
" Move segment address into bx 

Move bx into desired segment register 
" Restore saved bx 

" Virtual functions are 32-bit addresses 

continues 

613 



614 

Listing 14.6. continued 
43: 
44: Define Virtual Method Table macro (all memory models) 
45: 
46: 
47: 
48: 
49: 
50: 
51 : 

MACRO Make_VMT 
vMTSeg 
TBLINST 
ENDS 
CODESEG 

ENDM Make_VMT 

" Start new segment for large & huge models 
Create the virtual method table 
End segment started by vMTSeg macro 
Resume code segment 

The OOMACROS.INC module uses conditional directives to alter its programming de
pending on the current memory model. Line 5 examines the CodeSize symbol. If equal to 
zero, then the small memory model is being used; otherwise the large or huge models are in 
effect. 

NOTE 

I tested the macros in OOMACROS.lNC only for the small, large, and huge models if you use 
a different model,besuretO,retestJb~thoroughly. 

" :,/, -' ':' -" ) - "'7'-: \~-" ,'r,--"', ,'i:' .!~ -', '-,'- ,.j , 

The VMTSeg macro is a symbol that is equated to CODESEG for small model programs (lines 
7-9), or to a separate VMT_Seg data segment for large and huge models (lines 24-25 and 
27-29). You don't need to use the VMTSeg macro in a program. 

Use the LoadVMTSeg macro to initialize a segment register to address the segment that stores 
VMTs. The macro makes it possible to write memory-model-independent code. For example, 
before calling one or more virtual methods, in any memory model, insert this instruction to 
initialize es to address the VMT segment: 

LoadVMTSeg es 

Under the small memory model, this use of the LoadVMTSeg macro (lines 13-16) executes 
these instructions: 

push cs 
pop es 

The two instructions set es equal to cs. By convention, in small-model programs, VMTs are 
stored in the code segment. (This is not a requirement, but is a result of using the macros in 
OOMACROS.INC.) 

Under the large and huge models, the LoadVMTSeg macro generates these instructions: 



push bx 
mov bx, @VMTSeg 
moves, bx 
pop bx 

Thus es is set to the address of the separate VMT segment, named @VMTSeg (lines 31 and 
33-38). 

OOMACROS.INC also defines a symbol, MPtr, equated to a WORD for small model programs 
(line 18) or to a DWORD for large and huge models (line 40). You may use this macro in object 
declarations to create memory-model-independent objects. Under the small model, method 
addresses are 16-bit offsets; under the large and huge models, they are 32-bit segment and 
offset values. To automate the selection of the correct pointer size, in your object declara
tion, replace dword with MPtr as in this fragment: 

STRUC TBase METHOD { 
construct:MPtr TBase_construct 
VIRTUAL action:MPtr = TBase_action 

TBLPTR 

ENDS TBase 

Also include the OOMACROS.INC file before the object declaration. You can now assemble 
the object for the small, large, and huge memory models. 

Finally in OOMACROS.INC is a macro that you should use to define VMTs. Insert the 
macro where you would normally use a TBLINST directive, usually after each object 
declaration: 

STRUC TBase METHOD 

ENDS TBase 
Make_VMT 

Object declaration 
Object method and data declarations 
End of object declaration 
Use this macro instead of TBLINST 

Under the small memory model, Make_VMT switches to the code segment, inserts the VMT 
(by using TBLINST), then reestablishes the code segment with a CODESEG directive (which isn't 
needed in this case, but does no harm). 

Under large and huge models, Make_VMT switches to the separate VMT segment, inserts the 
VMT (again using TBLINST), and then continues the code segment with CODESEG. The result 
is an object that you can use in small, large, and huge memory-model programs. 

The next three listings put the preceding concepts and macros into action. The program is a 
modified version of the inheritance demonstration in this chapter. This version, however, 
adds virtual methods to the TBase and TDerived objects. A demonstration program defines 
instances of those objects and calls their virtual methods. (The files also make a useful tem
plate for starting new object-orienced programs--just copy them to another directory and 
use your editor's global search and replace command to change the object names.) 

615 



616 

PART II _ ApPLICATION PROGRAMMING 

NOTE 

All files for the next demonstration program are stored in the OOP\ VIRTUAL directory. To 
follow along, change to that directory now. 

Listing 14.7, TBASE.INC, declares and implements the TBase object. The module assumes 
that the OOMACROS.INC file has already been included by a host program. Don't attempt 
to assemble the program-I'll let you know when you can do that. A line-by-line discussion 
follows the listing. 

listing 14.7. oop\virtual\TBASE.lNC. 
1: %TITLE 'TBase object -- by Tom Swan" 
2: 
3: GLOBAL TBase_construct:PROC 
4: GLOBAL TBase_init:PROC 
5: GLOBAL TBase_getData:PROC 
6: GLOBAL TBase_action:PROC 
7: 
8: STRUC TBase METHOD 
9: construct:mptr 

10: init:mptr 
11: getData:mptr 
12: VIRTUAL action:mptr 
13: 
14: TBLPTR 
15: TBase_data 
16: ENDS TBase 
17: 

dw 

TBase_construct 
TBase_init 
TBase_getData 
TBase action 

? 

18: Make_VMT Define TBase VMT 
19: 
20: CODESEG 
21 : 
22: 

Instance constructor 
Instance initializer 
Static method 
Virtual method 

Virtual method table pointer 
TBase object data 

23: ; TBase_construct TBase constructor (initialize VMT pointer) 
24: 
25: Input: 
26: ds:si = instance address 
27: Output: 
28: VMT ptr initialized 
29: Registers: 
30: 
31: 
32: PROC 
33: 
34: 
35: ENDP 
36: 

none 

TBase_construct PASCAL 
TBLINIT TBase PTR si 
ret 
TBase_construct 

; Initialize instance VMT pointer 



r 

~ .. --~ .. ----- --____ C"~l 

PROGRAMMING WITH OBJECTS 

37; ,---------------------------------------------------------------
38; ; TBase_init TBase init method (initialize> instance data) 
39; ---------------------------------------------------------------
40: 
41 : 
42: 
43: 
44: 
45; 
46: 
47: 

Input; 
ds:si instance address 
arg1 ~ word to store in instance 

Output: 
arg1 -> instance.TBase_data 

Registers: 
none 

48: PROC 
49: 

TBase_init PASCAL 
ARG @@data:word Create offset to argument on stack 

50: USES ax Preserve ax register (optional) 
51: mov ax, I@@data] Move argument into ax 
52: mov [(TBase PTR si).TBase_datal, ax ; Save ax in instance 
53: 
54: ENDP 
55: 

ret 
TBase_init 

56: ---------------------------------------------------------------
57: ; TBase_getData TBase getData method 
58: 
59: 
60: 
61 : 
62: 
63: 
64: 
65: 

;------------------------------~---------~----------------------
Input: 

ds:si = instance address 
Output: 

ax = instance.TBase_data 
Registers: 

ax 

TBase_getData PASCAL 66: PROC 
67: mov ax, [(TBase PTR si}.TBase_data) ; ax <- base data 
68: ret 
69: ENDP 
70: 
71: ,---------------------------------------------------------------
72: ; TBase_action TBase action VIRTUAL method 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 

j---------------------------------------------------------------
Input: 

ds:si = instance address 
Output: 

ax = 0000 (arbitrary operation for demo) 
Registers: 

81: PROC 
82: 
83: 
84: ENDP 

ax 

TBase_action PASCAL 
xor ax, ax 
ret 
TBase_action 

; ax <- 0000h 

I'll describe only what's new in TBase. First, I added a constructor (line 9) method named 
construct. As I mentioned, this method must be stadc because its job is to initialize an ob
ject instance's VMT pointer. Until that happens, the program must not call any virtual 
methods for those instances. I also added the virtual method action (line 12). The TBase 

object declares a VMT pointer using the TBLPTR directive (line 14). 

617 



618 

All static and virtual methods must have corresponding GLOBAL directives as shown at lines 
3-6. There are no syntactical differences between static and virtual methods in GLOBAL 

directives. 

Following the object declaration, the Make_VMT macro defines a VMT for TBase. Always use 
this macro (or the TBLlNST directive if you are not using the macros in OOMACROS.INC) 
immediately after each object declaration. 

Line 20 begins or continues the program's code segment. Because the Make_VMT macro has 
already performed this step, line 20 isn't needed, but I included it anyway for consistency 
with other programs in this chapter. It does no harm to execute multiple COOESEG directives. 

Lines 22-35 implement the TBase constructor. As I explained, this method has one required 
purpose-to initialize the VMT pointer for every instance of the object. Line 33 performs 
the step by using the TBLINIT directive. The method assumes that ds: si addresses the object 
instance. 

NOTE 
.. . . 

It's best to separate the processes of consfructingandinitializing object instances, An object's 
constructor initializes theVMT poi~tedoranobject instance. Theiobject'sinitiaJizer assigns 
values to the instance's variables. Do not attempt to combine these steps into one method. As 
you witllearn from the next listing, a derived ob~ rllust have its own coostructor, but it 
usually will call its baseooject's initializerto assign values to inherited variables. Remember 
also that J use the word constructor differently than inC-H andPasca[. a.nqthi!t these are my 
conventions, not Turbo Assembler's. 

Finally in TBASE.INC is the implementation of the TBase object's virtual method, 
TBase_action (lines 71-84). The actual subroutine is no different from a static method, or 
from any other subroutine. In this demonstration, TBase_action performs no useful opera
tions, but just to give the method something to do, line 82 sets register ax to z~ro by execut
ing an xor instruction. Later, when you run this section's demonstration program in Turbo 
Debugger, this action provides a means to verify that TBase_action, and not another sub
routine, was called. 

Next, Listing 14.8, TDERIVED.INC (in the OOP\vIRTUAL directory), declares and 
implements a derived object, TOe rived, from TBase. This module is a revised edition of the 
similar file and object in this chapter's discussion ofinheritance. As for the preceding listing, 
I'll discuss only what's new and improved in the modified file. 



listing 14.8. oop\virtual\TDERIVED.lNC. 
1: %TITLE 'TDerived object -- by Tom Swan' 
2: 
3: GLOBAL TDerived_construct:PROC 
4: GLOBAL TOerived_init:PROC 
5: GLOBAL TOerived_getOata:PROC 
6: GLOBAL TOerived_action:PROC 
7: 
8: 
9: 

STRUC TOerived TBase METHOD 

10: 
11 : 
12: 
13 : 

construct:mptr 
init:mptr 
getOata:mptr 
VIRTUAL action:mptr 

TOerived_construct 
= TOerived_init 
= TOerived_getOata 

TOerived_action 

14: TOerived_data dw ? 
15: ENOS TOerived 
16: 
17: Make_VMT Define TOerived VMT 
18: 
19: COOESEG 
20: 

Instance constructor 
Instance initializer 
Replacement static method 
Replacement virtual method 

TOerived object data 

21: j---------------------------------------------------------------
22: j TOerived_construct TOerived constructor 
23: ---------------------------------------------------------------
24: Input: 
25: ds:si = instance address 
26: Output: 
27: VMT ptr initialized 
28: Registers: 
29: none 
30: ---------------------------------------------------------------
31: PROC TOerived_construct PASCAL 
32: TBLINIT TBase PTR si ; Initialize instance VMT pointer 
33: ret 
34: ENOP TOerived_construct 
35: 
36: 
37: 
38: 
39: 
40: 
41 : 
42: 
43: 
44: 
45: 
46: 
47: 
48: 

, ---------------------------------------------------------------
; TDerived_init TOerived init method 
j-------------------------------------~-------------------------

Input: 
ds:si = instance address 
arg1 word to store in base instance data 
arg2 = word to store in derived instance data 

Output: 
arg1 -> instance.TBase_data 
arg2 -> instance.TDerived_data 

Registers: 
none 

49: PROC 
50: 

TOerived_init PASCAL 
ARG @@data1:word, Create stack offsets to arguments 

51 : @(!Idata2:word 
52: USES ax i Preserve ax (optional) 
53: 

continues 

619 



620 

listing 14.8. continued 
54: 
55: 
56: 
57: 

CALL si METHOD TBase:init, ax ; Call base init method 
mall ax, [@@data2j ; Move arg2 into ax 
mov [(TOerived PTR si).TOerived_dataj, ax ; Store in instance 

58: ENOP 
59: 

ret 
TDerived_init 

60: preceding mov and call statements can also be written as: 
61: CALL si METHOD TBase:init, [@@data1j 
62: 
63: 
64: ; TDerived_getData TDerived get Data method 

Input: 
ds:si instance address 

Output: 
ax instance.TBase_data 
dx instance.TDerived_data 

Registers: 
ax, dx 

65: 
66: 
67: 
68: 
69: 
70: 
71 : 
72: 
73: ;--------------------------------~--------------~----- ----------
74: PROC 
75: 
76: 
77: 
78: ENOP 
79: 

TOe rived_get Data PASCAL 
CALL si METHOD TBase:getOata ax <- base data 
mov dx, [(TOerived PTR si).TDerived_dataj dx <- derived data 
ret 
TOerived_getOata 

80: ,---------------------------------------------------------------
81: ; TOerived_action TOerived action VIRTUAL method 

Input: 
ds:si = instance address 

Output: 

82: 
83: 
84: 
85: 
86: 
87: 
88: 

ax 0ffffh (arbitrary operation for demo) 
Registers: 

ax 
89: j---------------------------------------------------------------
90: PROC TOerived_action PASCAL 
91 : 
92: 
93: ENOP 
94: 

mov ax, 0ffffh 
ret 
TOerived_action 

j ax <- 0ffffh 

95: Use this to call ancestor function in TDerived_action: 
96: call TBase_action 

The TDerived object inherits the methods and variables from TBase (lines 8-15). The new 
object declares a replacement constructor (line 9), a vital step that you must remember in all 
derived objects that use virtual methods. The constructor will initialize the derived object's 
VMT pointer, which is inherited from TBase. Notice that TOerived does not declare this pointer 
with the TBLPTR directive---only one base object in a hierarchy of related objects may use this 
directive. 



PROGRAMMING WITH OBJECTS 

TOerived also declares replacement methods for the ini t, getData, and action static and vir
tual methods. In addition, the object declares a variable at line 14. 

Be sure to understand at this stage that TDerived has three data members-a VMT pointer 
and word inherited from TBase, and a new variable declared at line 14. 

VMT pointers are inherited; VMTs are not, and as line 17 shows, you must use the Make_ VMT 
macro (or the TBLINST directive if you are not using the macros in OOMACROS.INC) to 
create a VMT for the derived object. 

After the object declaration and VMT definition, the module implements TDerived's meth
ods. Lines 21-34 implement the object constructor, which as in TBase, uses the TBLINIT di
rective (line 32) to initialize the VMT pointer for TDerived object instances. 

NOTE 

Do not call the base object's constructor from a derived constructor. Derived object instances 
must address their own VMTs, not the VMTs of any base objects. 

TDerived's static methods, TOerived_init and TDerived_getData, are unchanged. See this 
chapter's discussion of inheritance for descriptions of these subroutines. (Note: lines 60-61 
show an alternate technique for calling a base object method and passing along an argument 
that was passed to the derived object method. Rather than load the argument into a register 
and pass it to the base object method as shown at lines 53-54, you can pass it directly in a 
CALL .•. METHOD instruction as shown at line 61.) 

As in TBase, the derived object's virtual action method (lines 80-93) performs no useful 
operation. JUSt to give the subroutine something to do, however, the mov instruction at line 
91 sets ax to 0ffffh. When you run the next listing's test program in Turbo Debugger, this 
value helps distinguish between calls to the derived and base objects' action methods. 

Also as in TBase, notice that TDerived_action is simply a plain subroutine, like any other. It 
is how you call virtual methods that make them special; not. their implementations. 

Listing 14.9, VIRTUAL.ASM, puts the preceding three listings, objects, and macros, into 
action. You may now assemble and link the demonstration program. To do that, change to 
the OOP\vIRTUAL directory and type make. Or, enter these commands: 

tasm Izi virtual 
tlink Iv virtual 

621 



622 

NOTE 

The VIRTUAl.ASM program produces no output RUIl the program under Turbo Debugger to 
examine how the program works. . .. 

listing 14.9. oop\virtuaIWIRTUAl.ASM. 
1: .. TITLE "Virtual function demonstration -- by Tom Swan" 
2: 
3: IDEAL 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11 : 
12: 
13: 
14 : 
15: 
16 : 
17 : 
18: 
19: 
20: 

JUMPS 

LOCALS @@ 

MODEL large, PASCAL 

STACK 1000H 

INCLUDE .. \oomacros.inc" 

INCLUDE "tbase. inc ': 

INCLUDE "tderived.inc" 

DATASEG 

21: exCode db o ; Program exit code 
22: 
23: Define objects with no default values 
24: 
25: b1 
26: d1 
27: 
28: 
29: 
30: 
31: b2 
32: d2 
33: 
34: 
35: 
36: 
37: b3 
38: d3 
39: 
40: 

TBase <> 

TDerived <> 

Define objects with explicit default values 
and place holders (0) for VMT pOinters 

TBase <0, 987> 
TDerived «0, 654>, 321> 

Define objects with explicit default values 
and explicit vmt pOinters. 

TBase <@TableAddr_TBase, 987> 
TOerived «@TableAddr_TDerived, 654>, 321> 

41: CODESEG 
42: 
43: Start: 
44: 
45: 
46: 

mov 
mov 

ax, @data 
ds, ax 

Initialize OS to address 
of data segment 



47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61 : 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 
71 : 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: Exit : 
82: 
83: 
84: 
85: 
86: 

mov si, offset b1 
LoadVMTSeg es 
CALL si METHOO TBase:construct 
CALL si METHOD TBase:init, 01h 
CALL TBase PTA si METHOD TBase:action 

mov si, offset d1 
LoadVMTSeg es 
CALL si METHOD TDerived:construct 
CALL si METHOD TDerived:init, 02h, 03h 
CALL TBase PTA si METHOD TBase:action 

mov si, offset d1 
LoadVMTSeg es 
CALL TBase PTA si METHOD TBase:action 

mov si, offset b2 
LoadVMTSeg es 
CALL si METHOD TBase:construct 
CALL TBase PTR si METHOD TBase:action 

mov si, offset d2 
LoadVMTSeg es 
CALL si METHOD TDerived:construct 
CALL TBase PTR si METHOD TBase:action 

mov si, offset b3 
LoadVMTSeg es 
CALL TBase PTR si METHOD TBase:action 

mov si, offset d3 
LoadVMTSeg es 
CALL TBase PTR si METHOD TBase:action 

Address instance bl 
Initialize es (VMT seg) 
Prepare bl 's VMT ptr 
Initialize instance data 
Call virtual function 

Address instance d1 
Initialize es 
Static function call 
StatiC function call 
Virtual function call 

Calls TDerived:action 

Calls TBase:action 

Calls TDerived:action 

Calls TBase:action 

Calls TDerived:action 

mov 
mov 
int 

ah, 04Ch 
aI, [exCode] 
21h 

DOS function: Exit program 
Return exit code value 
Call DOS. Terminate program 

END Start End of program I entry point 

The sample listing demonstrates several key techniques of virtual methods: 

• It shows how to write a memory-madel-independent program. 

• It shows three ways to define instances of objects that use virtual methods. 

• It shows the proper way to initialize instances of objects that use virtual methods. 

• It shows how to call virtual methods for object instances addressed by pointers 
(polymorphism) . 

623 



624 

You may change the memory model in line 9 to small, large (its current value), or huge. 

Other memory models may also work, but I tested only those three. I urge you to try at least 
the small and large models, and to examine the object instances in Turbo Debugger. You 
might also want to use TD's View: Data command to locate virtual method tables, which are 
configured differently, and stored in different segments, depending on the memory model. 

Lines 13-17 include the OOMACROS.INC, TBASE.INC, and TDERIVED.INC files. 
When using the VMT macros, be sure to include OOMACROS.INC before declaring any 
objects. 

Lines 25-26 show the standard way to define object instances. These definitions are the same 
as ones you have already examined-the fact that the objects have virtual methods has no 
bearing on how you define uninitialized instances of those objects. 

If, however, you wish to override the default values of variables in your object definitions, 
you must also account for the VMT pointer in each of those instances. Lines 31-32 show 
one way to satisfy this rule. The first definition defines an instance, b2, of the TBase object. 
That instance's TBase_data variable is assigned the value 987. The instance's VMT pointer 
is given the value 0, a placeholder that will be changed when the program calls the object's 
constructor for b2. 

Line 32 shows how to initialize a derived object and its inherited variables and VMT pointer, 
using nested angle brackets. The inner expression, <0, 654>, assigns zero to the inherited 
VMT pointer and 654 to the inherited TBase_data variable. The outer expression < ..• ,321 > 

assigns 321 to the TDerived_data variable. As with b2, the derived-object instance's VMT 
pointer will be initialized when the program calls the object constructor for d2. 

Lines 37-38 demonstrate an alternate technique for initializing object instances. When you 
declare an object and its associated VMT, Turbo Assembler creates a symbol that represents 
the VMT's address. The symbol is given the name 

@TableAddr_<object name> 

where <object name> is the object's declared name. For example, @TableAddr_TBase repre
sents the address of the TBase object's VMT. @TableAddr_TDerived represents the address of 
the TDerived object's VMT. 

You may use these symbols to completely initialize object instances as shown at lines 37-38. 
Line 37 initializes a base object; line 38 initializes a derived object using nested angle brack
ets as in the definition at line 32. 

When defining objects this way, you do not have to call the object's constructors to initialize 
the VMT pointers. They are already initialized. But you should still write a constructor for 
objects that use virtual methods because you can use this alternate technique on~with static 
objects defined in the program text. You cannot, for example, use the method to construct 



PROGRAMMING WITH OBJECTS 

an object for which you allocate some memory, perhaps by calling a DOS function. For that 
reason, I do not recommend using the technique illustrated at lines 37-38 except in special 
circumstances. Instead, use the techniques at lines 25-26 or 31-32 to define object instances, 
and always call the object's constructor for each of those instances. 

Lines 47-51 demonstrate how to do that for the first instance, b1, of the TBase object. Line 
47 addresses the instance with ds: si. Line 48 is new-it uses the LoadVMTSeg macro to ini
tialize register es to the segment where VMTs are stored. (This macro is strictly needed only 
in small memory-model programs. Its use, however, guarantees a model-independent result.) 

Lines 49-50 construct and initialize the b1 object instance. You mustcall the constructor as 
demonstrated at line 49 before calling any virtual methods. Failing to do so will almost cer
tainly crash the program and may halt your computer's operating system. 

Compare the CALL ... METHOD instructions in lines 50-51. The first of the two lines calls a 
static method, ini t, for the TBase object. The second line calls a virtual method, action, for 
the same object. Turbo Assembler uses the specified register (si in this case) to locate the 
object's VMT (by using the VMT pointer stored in the instance), and to call the subroutine 
addressed by the VMT. By the way, you may use the same syntax to call static methods. In 
other words, you may rewrite line 50 as follows: 

CALL TBase PTR si METHOD TBase:init, 01h 

You might want to call all methods that way (prefacing si with your object name and PTR). 

You can then change methods from static to virtual simply by revising their object declara
tions. If a method will always be static, however, the PTR preface isn't needed. It is required 
only to permit Turbo Assembler to generate instructions for accessing VMT entries. 

It is instructive to examine the code that Turbo Assembler generates for a virtual method 
subroutine call such as the one at line 51. To do this with Turbo Debugger, type make to 
assemble and link the program, then rype td virtual to load it into the debugger. Press F8 
until the cursor reaches line 51. Then use the View:CPU command to view the generated in
structions. (Press F5 to expand the window to full screen.) 

Under the large memory model, you'll find these instructions: 

les bX,[si) 
call es:far [bx) 

The les instruction loads the 32-bit address stored at ds: si into registers es: bx. In other 
words, because the VMT pointer is the first data member in the instance, the instruction 
copies the VMT pointer's value into es: bx. This is why the VMT pointer must be the first member 
in an object instance. 

The second instruction performs an indirect call to another address. That address is, in this 
case, the first entry in the object's VMT. If the object had other virtual methods, the gener
ated call instruction would be something like this: 

625 



626 

call es:far [bx+04) 

The virtual method addresses are stored in the VMT, and the indirect call uses es: bx, possi
bly adjusted by adding an offset such as 04, to load the subroutine address from the table. 
The actual call is made to that address. In this way, calls to virtual methods are redirected at 
runtime to the proper location. 

Under the small memory model, Turbo Assembler generates a different sequence for the 
CALL ••• METHOD instruction at line 51: 

mov bx, [si) 
call as: [bx] 

The first instruction loads the offset address of the object's VMT into bx, but the second 
instruction uses the unitialized segment register e s to locate the virtual method address. This 
might be a bug in Turbo Assembler, or even though the User Guide has no information on 
this subject, the assembler might simply expect es to be initialized to the segment that stores 
VMTs. Assuming the latter, the LoadVMTSeg macro in OOMACROS.INC initializes es prop
erly regardless of memory model. If you don't want to store your small-model VMTs in the 
code segment, you must be sure to initialize es to the proper segment address before calling 
virtual methods. It is probably easier, however, to use large model in which case you do not 
need to use LoadVMTSeg. 

The remainder of the program starting at line 53 (refer back to Listing 14.9, oop\virtual\ 
VIRTUAL.ASM) demonstrates how to call constructors, static, and virtual methods for other 
object instances defined in the program's data segment. Run the program under Turbo 
Debugger, and add the program's instances bl, dl, b2, d2, b3, and d3 to the Watcheswindow 
(move the cursor to each instance and press Ctrl+ W). 

Next, press F7 to trace each subroutine call. Do this in the Module window until you are 
familiar with the code, and then view the instructions in the CPUwindow to trace the actual 
instructions. You may want to open the Registers window using the View command to in
spect register values. 

Pay particular attention to the CALL. •. METHOD instructions at lines 57, 61, 66, 71, 75, and 
79. Though each of these instructions is identical, the program calls TBase_action or 
TDerived_action depending on the type of object instance addressed by ds: si. This is poly
morphism at work. The object instances themselves, by way of their VMT s, determine at 
runtime which virtual methods to call. 

It is highly instructive to repeat these experiments in Turbo Debugger for different memory 
models. Change large to small at line 9, reassemble, and trace the results in Turbo Debugger. 
Notice the different sizes ofVMT pointers, and also inspect the code generated for 
CALL .•• METHOD instructions. 



Polymorphism 
The listings in this section put polymorphism to practical use. The listings implement an 
object, TList, that can store lists of instances of another kind of object, TItem. After present
ing these two objects, I'll explain how to derive new objects from TItem and insert them into 
a linked list. 

Creating a List Object 
The first job in creating a list object is to invent a generic item to be stored on the list. The 
TItem object in Listing 14.10, TITITEM.lNC, is called an abstract object because it is never 
used to define object instances. To store an object on a list, you derive a new object from 
TIt em. In this way, you can derive as many different kinds of objects you need and store them 
all on the same list. The list can handle any kind of information-all you need to do is derive 
your objects from TItem. 

Listing 14.10. oop\list\TlTEM.INC. 
1: %TITLE 'TItem object -- by Tom Swan' 
2: 
3: GLOBAL TItem_construct:PROC 
4: GLOBAL Tltem_init:PROC 
5: GLOBAL Tltem_print:PROC 
6: 

continues 

627 



628 

ApPLICA nON PROGRAMMING 

Listing 14.10. continued 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16 : 
17 : 
18: 
19 : 
20: 
21 : 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31 : 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61 : 
62: 

STRue TItem METHOD 
construct :mptr 
init:mptr 
VIRTUAL print:mptr 

TItem_construct 
TItem_init 
TItem_print 

TBLPTR 
next dw? 

ENDS TItem 

Define TItem VMT 

eODESEG 

TItem constructor 
TItem initializer 
Print or display item 

Virtual method table pointer 
POinter to next item 

, -----------------------------------------------------~---------
j TItem_construct TItem constructor 

Input: 
ds:si : TItem instance address 

Output: 
VMT ptr initialized 

Registers: 

PRoe 

none 

TItem_construct PASCAL 
TBLINIT TItem PTR si 
ret 

ENDP TItem_construct 

i Initialize VMT pointer 

, ---------------------------------------------------------------
; TItem init Initialize item "next" pointer 
;---------------------------------------------------------------

Input: 
ds:si = TIt em instance address 

Output: 
next field <- nil (0000) 

Registers: 
none 

PROC TItem_init PASCAL 
mov [(TItem PTR si).next\, 0 
ret 

ENDP TItem_init 

i Set next field to zero 

;---~-----------------------------------------------------------
Print item 

Input: 
ds:si = TItem instance address 

Output: 
none 

Registers: 
none 

PRoe 

VIRTUAL 

TItem_print PASCAL 
ret ; Instructions supplied by actual items 

ENDP TItem print 



Lines 7-14 in TITEM.lNC declare the TItem object, which has a constructor (construct), 
an initializer (ina), and a virtual method print. The object defines a VMT pointer (line 
12), and also a variable next (line 13). The next variable represents the 32-bit address of the 
next item in the list. If this variable is zero, the item is the last (or only) listed value. 

Line 16 creates a VMT for TItem. Remember: an object derived from TItem requires its own 
VMT, but it inherits the VMT pointer from TItem. Do not use the TBLPTR directive in 
objects derived from TItem. Do use the Make_VMT macro to define a VMT for your derived 
objects. 

NOTE 

enOMA· 

A constructor method (lines 30-33) initializes a TItem object instance's VMT pointer. This 
code is similar to that in other constructors you have seen in this chapter. 

TItem's initializer (lines 45-48) sets the next variable in object instances to zero, the value 
that indicates no next object in the list. In your derived objects, be sure to call TItem: init to 
initialize the inherited next variable. 

TItem's virtual print method (lines 60-62) performs no action. Derived objects are expected 
to replace this method with code that is appropriate to the type of stored information. 
TItem_print is called an abstract method. It serves merely as a placeholder for actions to be 
defined in derived objects. 

Listing 14.11, TLIST.INC, declares and implements the TList object, which manages a linked 
list of TIt em object instances (or any instances of objects derived from TItem). TList's meth
ods are a bit more complex than others in this chapter. If you have trouble following the 
line-by-line discussion after the listing, load the sample host program (the last listing in the 
chapter) into Turbo Debugger and trace the methods in TList. 

listing 14.11. oop\list\TLlST.lNC. 
1: %TITLE 'TList object by Tom Swan' 
2: 
3: GLOBAL TList_construct:PROC 
4: GLOBAL TList_init:PROC 
5: GLOBAL TList_getCount:PROC 
6: GLOBAL TList_insertltem:PROC 
7: GLOBAL TList_printAll:PROC 
8: 

continues 

629 



630 

listing 14.11. continued 
9: 

10 : 
11 : 
12: 
13: 
14 : 
15: 
16 : 
17: 
18: 
19 : 
20: 
21 : 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31 : 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41 : 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61 : 
62: 
63: 
64: 
65: 

STRUC TList METHOD 
construct:mptr 
init :mptr 
getCount:mptr 
VIRTUAL insertItem:mptr 
VIRTUAL printAII:mptr 

TBLPTR 
root dw? 
num dw? 

ENDS TList 

TList_ const ruct 
TList_init 
TList_getCount 
TList_insertItem 
TList_printAll 

Define TList VM 

CODESEG 

TList constructor 
TList initializer 
Return number of items 
Insert TItem into list 
Print or display all items 

Virtual method table pointer 
Ptr to first item in list 
Number of listed items 

;-----------------~---------------------------------------------
; TList_construct TList constructor 

Input: 
ds:si = TList instance address 

Output: 
VMT ptr initialized 

Registers: 
none 

;-------------------------~-------------------------------------
PROC TList_construct PASCAL 

TBLINIT TList PTR si j Initialize VMT pointer 
ret 

ENDP TList_construct 

--------------------------------~-~----------~-------- ---------, 
j TList_init Initialize list to empty state 

Input: 
ds:si ~ TList instance address 

Output: 
root field <- nil (0000) (empty list) 

Registers: 
none 

PROC TList_init PASCAL 
mov [ (TList PTR Si). root], 0 
mov [ (TList PTR si).numl,0 
ret 

ENDP TList init 

Set 
Set 

root to zero (empty) 
num items to zero 

---------------------------------~-----------------------------, 
j TList_getCount Return number of listed items 

Input: 
ds:si = TList instance address 

Output: 
ax number of items in list 

Registers: 
ax 



66: PROC 
67: 
68: 
69: ENDP 
70: 

TList_getCount PASCAL 
mov ax, [(TList PTR si).numl Get num field from list 
ret 
TList_getCount 

71: ---------------------------------------------------------------
72: ; TList_insertltem Insert an item into the list VIRTUAL 
73: ---------------------------------------------------------------

TList instance address 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81 : 

Input: 
ds:si 
arg 

Output: 
TItem 16-bit address (offset into data segment) 

Item 
Registers: 

none 

instance linked into list 

82: PROC 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: ENDP 
92: 

TList_insertItem PASCAL 
ARG @@item:word 
USES ax, bx 
mov ax, [(TList PTR si).root) 
mov bx, [@@item] 
mov [(TItem PTR bx).nextJ, ax 
mov [(TList PTR si).root), bx 
inc [(TList PTR si) .num) 
ret 
TList_insertItem 

Stack offset to argument 
Preserve ax and bx 
Set ax to list root ptr 
Set bx to item ptr 
Set item. next root 
Set list.root item ptr 
Increment num items 

93: j---------------------------------------------------------------
94: ; TList_printAll Call print for all listed items VIRTUAL 
95: ---------------------------------------------------------------
96: Input: 
97: ds:si TList instance address 
98: Output: 
99: depends on items' print methods 

100: Registers: 
101: none 
102: ---------------------------------------------------------------
103: PROC TList_printAll PASCAL 
104: USES si, es 
105: LoadVMTSeg es 
106: mov si, [(TList PTR si).root) 

Preserve registers 
Initialize es (optional*) 
Set si to list root ptr 

107: @@10: 
108: or si, si Test 5i for 0 (nil) 
109: 
110: 
111 : 
112: 
113: @@99: 
114: 
115: ENDP 
116: 

jz @@99 Jump to exit if si = 0 
CALL TItem PTR 5i METHOD TItem:print Call item's print method! 
mov 5i, [(TItem PTR 5i) .next) ,Set 5i to next item ptr 
jmp @@10 j Loop until done 

ret 
TLi5t_printAll 

117: ; • Optional depending on memory model 

631 



632 

The TList object (lines 9-19) declares three static and two virtual methods. The object also 
defines a VMT pointer (line 16) and two variables: root, which addresses the first TItem 
instance in the list (or is zero if the list is empty), and num, which holds the number oflisted 
objects. Line 21 defines a VMT for TList. 

As in all of this chapter's objects that have at least one virtual method, TList's constructor 
(lines 35-38) initializes a TList instance's VMT pointer by using the TBLINIT directive. 

TList's initializer (lines 50-54) sets the two variables, root and num, to zero. Programs should 
define a TList object instance, address that instance with ds:si, and call the object's con
structor and initializer before inserting any TItem instances into the list. 

Method TList_getCount (lines 66-69) returns in register ax the number of items in a list. 
This value is convenient for writing loops that perform actions on listed items. 

Method TList_insertItem (lines 82-91) inserts an instance of an object derived from TItem 
into a list. Pass the offset address of the TIt em-derived instance as an argument to the method. 
Line 85 sets ax to the current list root, which points to the first item (if any) on the list. Line 
86 assigns to bx the passed argument offset of the new instance to be inserted in the list. 

Lines 87-88 insert the TItem instance into the list. This is done by setting the item's inher
ited next pointer to the address of the first item currently on the list (or to zero if the Itst is 
empty). After that, the root is set to the address of the new item, which becomes the new 
first listed item. Finally, line 89 increments num to keep account of the number oflisted items. 

Virtual method TList_printAll demonstrates a good use for polymorphism. This method 
uses ds: si to address a list's first item (lines 105-106). (The LoadVMTSeg macro at line 105 is 
needed only for small memory model programs, but is included so that the TList and TItem 
objects can be used with any memory models.) 

The loop at lines 107-112 addresses each item in the list. First, line 108 checks whether si 
is zero, indicating that the last item has been processed, or that the list is empty. If si is zero, 
line 109 jumps out ofthe loop, ending the method. Otherwise, line 110 calls the item's vir
tual print method. 

Because that method is virtual, the actual print method that is called depends on the type of 
item on the list. In an object derived from TItem, you should insert your own print method 
to perform whatever action you want. TList's printAll method will call your object's print 
method from line 110. 



Line III assigns the next variable from the current item to si, after which line 112 jumps to 
restart the loop. In this way, all items are processed by following their next pointers. 

Using the list Object 
To use the TUst object, we first need some objects to store on a list. All such items must be 
derived from TItem, but there are no other significant restrictions. You can easily store any 
kind of data on a list, and you can mix different types of object instances on the same list
features that are difficult to program using conventional assembly language techniques. 

Listing 14.12, TINTOB].INC, shows an example of an object, TIntObj, derived from TItem. 

The new object stores an integer value. Use it to create lists of 16-bit integers. 

Listing 14.12. oop\list\l'INTOBJ.lNC. 
1: lItiTITLE "TIntObj object -- by Tom Swan" 
2: 
3: GLOBAL TlntObj_construct:PROC 
4: GLOBAL TIntObj_init:PROC 
5: GLOBAL TIntObj_print:PROC 
6: 
7: STRUC TIntObj TItem METHOD { 
8: construct:mptr = TlntObj_construct 
9: init:mptr = TlntObj_init 

10: VIRTUAL print:mptr = TIntObj_print 
11 : 
12: 
13: 
14: 
15: 
16: 
17: 
18 : 
19: 
20: 
21: 
22: 
23: 

data_i 
ENDS TIntObj 

Make_VMT 

DATASEG 

TIntObLbuffer 
TIntObLmsg 

CODESEG 

dw ? 

Define TIntObj VMT 

db 20 OUP (0) 
db 'Integer item = 

24: From BINASC.OBJ, STRIO.OBJ 

, 
0 

TIntObj constructor 
TlntObj initializer 
Print or display item 

16-bit integer data 

25: EXTRN BinToAscHex:Proc, NewLine:Proc, StrWrite:Proc 
26: 
27: ;---------------------------------------------------------------
28: j TIntObj_construct TIntObj constructor 
29: j---------------------------------------------------------------
30: Input: 
31: ds:si = TlntObj instance address 
32: Output: 
33: VMT ptr initialized 
34: Registers: 
35: none 
36: ;---------------------------------------------------------------

continues 

633 



634 

Listing 14.12. continued 
37: PAOC 
38: 
39: 
40: ENOP 
41 : 

TIntObj_construct PASCAL 
TBLINIT TIntObj PTA si 
ret 
TIntObj_construct 

Initialize VMT pOinter 

42: j---------------------------------------------------------------
43: j TIntObLinit Initialize item "next" pOinter 

Input: 
ds:si TIntObj instance address 

44: 
45: 
46: 
47: 
48: 
49: 
50: 

arg 16-bit integer to store in instance 
Output: 

instance.data_i <- arg 
Aegisters: 

51: none 
52: ---------------------------------------------------------------
53: PAOC TIntObj_init PASCAL 
54: AAG @@data:word 
55: USES ax 
56: CALL si METHOD Tltem:init 
57: mov ax, [@@datal 
58: mov [(TIntObj PTA 5i) .data_i], ax 
59: ret 
60: ENOP TlntObj_init 
61 : 
62: 
63: j TIntObj_print Print item 

PRoe TIntObLprint PASCAL 
USES ax, ex, di, es 
push ds 
pop es 
mov di, offset TlntObj_msg 
call StrWrite 
mov ax, [(TIntObj PTR si).data_il 
mov cx, 1 
mov di, offset TIntObj_buffer 
call BinToAseHex 
call StrWrite 
call Newline 
ret 

ENOP TIntObLprint 

Call TItem ancestor init 
Get argument from stack 
Assign arg to instance 

VIATUAL 

The TIntObj object (lines 7-13) inherits the members from TItem. The new object provides 
its own constructor and initializer methods (lines 8-9), and also replaces the virtual print 



method. Remember, TItem's print method is a mere placeholder-the print method in the 
derived object will perform the real action when a program calls a list's printAll method. 

TIntObj defines a variable, data_i, at line 12 for holding the item's integer value. TIntObj 
inherits the VMT pointer from TItem, so it is not necessary to insert a TBLPTR directive in the 
object declaration (in mct, doing so would be an error). TIntObj also inherits the next vari
able from TItem, thus a TIntObj instance has the capability of being linked into a list. 

Line 15 uses the Make_ VMT macro to create a VMT for TIntOb j. I've said this before, but I'll 
hammer it home again. A derived object inherits a VMT pointer, but not a VMT. All ob
jects, including derived and base object, that have one or more virtual methods must define 
their own VMT s. 

Lines 19-20 define a string buffer and a string message for use in the object's methods. These 
values are collected into the main program's data segment. 

Line 22 continues the module's code segment, after which lines 24-25 declare three external 
subroutines used by object methods. These subroutines are from the BINASC.OB] and 
STRIO.OB] modules from this book. The assembled modules are in the MTA.LIB library 
file, supplied on the book's disk. Any program that uses TIntObj must be linked to that li
brary. (A sample program at the end of this chapter shows the necessary steps.) 

The TIntObj constructor (lines 37-40) initializes an object instance's VMT pointer-the same 
task performed by all constructors in this chapter's sample objects. 

TIntObj's initializer demonstrates an important OOP technique for derived objects. The 
derived object's ini t method has two jobs: it must call the base object's ini t method to ini
tializevariables declared for TItem (and inherited by the derived object), and it must initial
ize its own data. 

The first job--calling the ancestor object method-takes place at line 56. TItem: init re
quires no arguments, and because ds: si already address an object instance, a single 
CALL ... METHOD directive satisfies this requirement. 

The second job--initializing the derived object's own data-takes place at lines 57-58. First, 
the passed argument is assigned to ax, which is then assigned to the object instance's data_i 
variable. By the way, you may replace these two lines with the single instruction: 

mov [(TlntObj PTR si).data_iJ, [@@datal 

TIntObj's replacement virtual method TIntObLprint uses the string and binary-to-ASCII 
subroutines from this book to display an object instance's integer value. The code also dem
onstrates that you can easily mix object-oriented and conventional subroutines. You must 
be careful to preserve register values--especially ds: si and es, which address object instances 
and VMT segments, but the programming is otherwise straightforward. 

635 



636 

Lines 76-77 display the string" Integer item "''', defined at the beginning of the module 
(line 20). Line 78 loads ax with the object instance's data_i integer value, which is converted 
to string form by BinToAscHex, and stored in a buffer (line 19). Lines 82-83 display this buffer 
and start a new display line. 

Lists are not limited to storing integer data-simply by deriving a new object from TItem, 

it's possible to store any other kind of data as well. For example, Listing 14.13, 
TSTROBJ.lNC, shows how to create a string object. With the TStrObj object in this mod
ule, and with the TIntObj object from the preceding section, you can create lists of strings 
and integers. 

listing 14.13. oop\list\TSTROBJ.lNC. 
1 : 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21 : 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31 : 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 

""TITLE "TStrObj object -- by Tom Swan" 

GLOBAL TStrObj_construct:PAOC 
GLOBAL TStrObj_init:PROC 
GLOBAL TStrObj_print:PROC 

STRUC TStrObj TItem METHOD 
construct:mptr = TStrObj_construct 
init:mptr = TStrObj_init 
VIATUAL print:mptr TStrObj_print 

} 
data_s dw ? 

ENDS TStrObj 

Make_VMT Define TStrObj VMT 

DATASEG 

TStrObLmsg db 'String item 

CODESEG 

From STAIO.OBJ 
EXTAN NewLine:Proc, StrWrite:Proc 

o 

TStrObj constructor 
TStrObj initializer 
Print or display item 

Ptr to null-terminated string 

;---------------------------------------------------------------
; TStrObj_construct TStrObj constructor 

Input: 
ds:si = TStrObj instance address 

Output: 
VMT ptr initialized 

Registers: 
none 

;-----------------------------------------------------------~---

PAOC 

ENDP 

TStrObj_construct PASCAL 
TBLINIT TStrObj PTR si 
ret 
TStrObj_construct 

i Initialize VMT pointer 



.-~~ 

~:l: 

~k 
~" , 

PROGRAMMING WITH 

40: 
41: ---------------------------------------------------------------

Initialize item "next" pointer 

TStrObj instance address 

43: 
44: 
45: 
46: 
47: 
48: 
49: 

Input: 
ds:si 
arg 

Output: 
16-bit offset to string in data segment 

instance.data_s <- arg 
Registers: 

50: none 
51: j---------------------------------------------------------------
52: PROC TStrObj_init PASCAL 
53: ARG @.@data:word 
54: USES ax 
55: CAll s1 METHOD TItem:in1t 
56: mov ax, [@@dataj 
57: mov [(TStrObj PTR sil .data_sl, ax 
58: ret 
59: ENDP TStrObj_init 
60: 

Call TItem ancestor in1t 
Get argument from stack 
Assign arg to instance 

61: ,---------------------------------------------------------------
62: ; TStrObj_print Print item VIRTUAL 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 

;---------------------------------------------------------------
Input: 

ds:si TStrObj instance address 
Output: 

none 
Registers: 

71: PROC 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: ENDP 

none 

TStrObLprint PASCAL 
USES di, es 
push ds 
pop es 
mov di, offset TStrObj_msg 
call StrWrite 
mov di, [(TStrObj PTR si).data_sj 
call StrWrite 
call Newline 
ret 
TStrObLprint 

Preserve regiSterS 
Set es equal to ds 
for extrn subroutines 

Address label string 
Display string 
Get instance string ptr 
Display string 
Start new display line 

TStrObj (lines 7-13) mirrors the design ofTIntObj. Both objects are derived from TItem, and 
both declare similar static and virtual methods. Line 12, however, defines a data_s variable, 
which represents the offset to a string. (You might also store string data directly in an ob
ject-TStrObj demonstrates just one of countless possible techniques for storing data in 
objects.) 

Line 15 uses the Make_VMT macro to create a VMT for the TStrObj. Okay, I promise, this is 
the last time I'll mention these rules: derived objects inherit VMT pointers; they don't inherit 
VMTs. 

637 



638 

Line 19 defines a string message to display when TStrObj object instances are printed. Line 
24 imports two MTA.LIB library routines for starting a new display line and for writing a 
string to the standard output file. 

TSt rObj 's constructor (lines 36-39) performs the usual job of initializing an object instance's 
VMT pointer using the TBLINIT directive. 

TStrObj'S initializer (lines 52-59) calls the TItem init method to initialize inherited data, 
and assigns to data_s the passed word argument, which represents a string's offset address 
(lines 56-57). 

Finally in the new module, lines 71-81 implement TStrObj's virtual print method. As in 
TIntObj's print method, some register manipulation is necessary to preserve es and Si, but 
the rest of the programming is straightforward. Lines 75-76 display the message defined at 
the beginning of the module. Lines 77-79 display the TStrObj instance's string data and start 
a new output line. 

At this stage, you now have all of the components needed to create a list of string and integer 
data. The sample host program in Listing 14.14, LIST.ASM, demonstrates how to combine 
the preceding elements into a finished application. You may now assemble and run the dem
onstration. Change to the OOP\LIST directory and type make, or enter these commands 
(modifY the directory path to the MT A.LIB library file, provided on the book's disk, as nec
essary): 

tasm I zi list 
tlink Iv list", .. \ .. \MTA. LIB 

Listing 14.14. oop\list\lIST.ASM. 
1 : %TITLE OUst object demonstration -- by Tom Swan" 
2: 
3: IDEAL 
4: 
5: JUMPS 
6: 
7: LOCALS @@ 
8: 
9: MODEL small, PASCAL 

10: 
11 : STACK 1000H 
12: 



13 : 
14: 
15: 
16 : 
17: 
18: 
19: 
20: 
21 : 
22: 
23: 
24: 
25: 
26: 
27: 
28: 

exCode 

29: list 
30: 
31 : 
32: 
33: i 1 
34: i2 
35: i3 
36: 
37: 
38: 
39: sl 
40: s2 
41 : 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 

str1 
str2 

str3 
str4 
str5 
strNum 
strBuf 

60: Start: 
61 : 
62: 
63: 

INCLUDE " .. \oomacros.inc" 

INCLUDE 'titem.inc" 

INCLUDE "tlist. inc' 

INCLUDE "tintobj.inc· 

INCLUDE 'tstrobj .inc' 

DATASEG 

db 0 Program exit code 

Define list instance 

TList <> 

Define integer item instances 

TIntObj <> 
TIntObj <> 
TIntObj <> 

Define string item instances 

TStrObj <> 
TStrObj <> 

Define static strings for string instances 

db 'Some colors: Red, White, Blue' , 0 
db 'Some days: Monday, Tuesday, Friday' , 

Define various program strings 

db 'After initializing list ... ' , 0 
db 'After inserting integer items ... ', 0 
db ' After inserting string items ... ·, 0 
db 'Number of items in list = , 0 
db 20 DUP (0) 

CODESEG 

From BINASC.OBJ, STRIO.OBJ 

0 

EXTRN BinToAscDec:Proc, NewLine:Proc, StrWrite:Proc 

mov 
mo\! 

ax, I,ldata 
dS, ax 

Initialize OS to address 
of data segment 

64: Initialize the list instance 
65: 

continues 

639 



640 

PART II _ ApPLICATION PROGRAMMING 

Listing 14.14. continued 
66: 
67: 
68: 
69: 
70: 
71: 
72: 
73: 

mOil si, offset list 
LoadVMTSeg es 
CALL si METHOD TList:construct 
CALL 

moy 
call 

si METHOD TList:init 

di, offset str3 
DisplayItems 

74: Initialize integer item instances 
75: 
76: mOil si, offset i 1 
77: LoadVMTSeg es 
78: CALL s1 METHOD TIntObj:construct 
79: CALL si METHOD TIntObj:init, 01h 
80: 
81: mOil si, offset i2 
82: LoadVMTSeg es 
83: CALL si METHOD TlntObj : construct 
84: CALL si METHOD TIntObj:init, 02h 
85: 
86: mOil si, offset i3 
87: LoadVMTSeg es 
88: CALL si METHOD TIntObj:construct 
89: CALL si METHOD TIntObj :init, 03h 
90: 
91: Initialize string item intances 
92: 

mOil si, offset sl 
LoadVMTSeg es 
CALL 5i METHOD TStrObj:construct 

93: 
94: 
95: 
96: 
97: 
98: 
99: 

CALL si METHOD TStrObj:init, offset strl 

100: 
101 : 
102: 
103: 
104 : 
105: 
106: 
107: 
108: 
109: 
110 : 
111 : 
112 : 
113: 
114 : 
115: 
116: 
117: 
118 : 

mOil 5i, offset s2 
LoadvMTSeg es 
CALL s1 METHOD TStrObj:construct 
CALL si METHOD TStrObj:init, offset 

Insert integer item instances into list 

mOil si, offset list 
LoadVMTSeg es 
mOil ax, offset 11 
call InsertItem 
mOil ax, offset i2 
call InsertItem 
mOil ax, offset i3 
call InsertItem 

mOil di, offset str4 
call DisplayItems 

Insert string item instances into list 

str2 



~ .. -----------------------------------------------------------------------, 

119 : 
120: 
121 : 
122: 
123: 
124: 
125: 
126: 
127: 
128: 
129: 
130: 
131 : 

Exit: 

mov 
call 
mov 
call 

mov 
call 

mov 
mov 
int 

ax, offset sl 
InsertItem 
ax, offset s2 
InsertItem 

di, offset str5 
DisplayItems 

ah, 04Ch 
aI, [exCode] 
21h 

DOS function: Exit program 
Return exit code value 
Call DOS. Terminate program 

132: j---------------------------------------------------------------
133: ; InsertItem Insert object instance into list 
134: ---------------------------------------------------------------
135: Input: 
136: ax offset to instance in data segment 
137: Output: 
138: none 
139: Registers: 
140: 
141 : 

si 

InsertItem PASCAL 142: PROC 
143: mov si, offset list 
144: 
145: 
146: 
147: ENDP 
148: 

LoadVMTSeg es 
CALL TList PTR si METHOD TList:insertItem, ax 
ret 
InsertItem 

149: j---------------------------------------------------------------
150: j DisplayItems Display all listed items 
151: ---------------------------------------------------------------
152: 
153: 
154: 
155: 
156: 
157: 
158: 
159: 
160: 
161 : 
162: 
163: 
164: 
165: 
166: 
167: 
168: 
169: 
170: 
171 : 
172: 

Input: 
di = address of string message 

Output: 
none 

Registers: 
none 

PROC DisplayItems PASCAL 
USES es 

mov si, offset list 
LoadVMTSeg es 
CALL si METHOD TList:getCount 
push ax 

push 
pop 
call 
call 
call 

ds 
es 
Newline 
StrWrite 
Newline 

Address list instance 
Prepare es register 
Get nurn items in list 
Save result on stack 

Make es = ds for 
extrn subroutines 

Start new display line 
Display message at di 
Start new display line 

continues 

641 



642 

listing 14.14. continued 
173: mov di, offset strNum Address num items label 
174: call StrWrite Display label 
175: 
176: pop ax Get number of listed items 
177 : mov ex, 1 Minimum digits to output 
178: mOil di, offset strBuf Address working string 
179: call BinToAseDee Convert integer to string 
180: call StrWrite Display string 
181 : eall Newline Start new display line 
182: 
183: mov si, offset list Address list instance 
184: loadvMTSeg es ; prepare es register 
185: CAll Tlist PTR si METHOD TList:printAll ; Display all items 
186: ret 
187: ENDP DisplayItems 
188: 
189: END Start End of program I entry point 

Running the LIST demonstration program produces the following output on-screen: 

After initializing list ... 
Number of items in list 0 

After inserting integer items ... 
Number of items in list : 3 
Integer item: 3 
Integer item = 2 
Integer item = 1 

After inserting string items ... 
Number of items in list = 5 
String item : Some days: Monday, Tuesday, Friday 
String item = Some colors: Red, White, Blue 
Integer item = 3 
Integer item 2 
Integer item = 1 

Those lines illustrate that a list may be empty, contain objects of one type (integers), and 
also contain objects of different types (integers and strings). The number of objects on the 
list is reported in each case. 

All of those operations are handled almost entirely by the TItem, TList, TIntObj, and TStrObj 

objects and methods. In addition, the messages you see on-screen are displayed by virtual 
print methods, which demonstrate how polymorphism alters the program's actions simply 
by plugging objects into a list. 



Line 9 selects the small memory model for the demonstration program. Although you may 
assemble the program for the large or huge models (the TItem and TList objects work with 
any memory model), because the demonstration program calls subroutines in MT A.LIB, it 
must be assembled for the small model. 

Line 1 includes the OOMACROS.INC file, which defines memory-model-independent 
macros used by the program's objects. The program includes the object modules at lines 
15-21. 

Line 29 defines the program's TList instance, list. There's only one list in this demonstra
tion, but there's no restriction on the number of lists that a program can define. 

The program also needs a few instances to insert into the list. Lines 33-35 define three inte
ger instances of the TIntObj object. Lines 39-40 define two string instances of the TStrObj 

object. Object instances could also be stored in memory buffers-simply use ds: si to ad
dre<s a space of an appropriate size, and call the object constructor and initializer methods to 
prepare that space. You could obtain the memory by calling a DOS function, or you could 
start a new data segment. The location of object instances is up to you. 

643 



644 

PART II _ ApPLICATION PROGRAMMING 

Lines 49-53 define a few miscellaneous strings and a string buffer for messages displayed at 
runtime. These messages indicate which part of the program is running. 

Lines 66-69 initialize the list object instance by addressing it with ds: si and by calling the 
TList constructor and initializer methods. The list is now ready to accept instances of ob
jects derived from TItem. 

Lines 71-72 display the current state of the list, which is empty at this stage. On-screen, you 
see these messages (press Alt+F5 if you are running Turbo Debugger, then press any key to 
return): 

After initializing list ... 
Number of items in list = 0 

For simplicity, a local subroutine, DisplayItems (lines 159-187), produces that display. In 
the subroutine, lines 162-165 call the TList getCount method to obtain the number of items 
in the list. That value is converted to a string and displayed at lines 167-181. Next, lines 
183-185 call the list's printAll method, which calls each virtual print method for all items 
on the list. The listed objects themselves determine which virtual print method is called. Use 
Turbo Debugger to trace the CALL ... METHOD instruction at line 185 for an eye-opening and 
practical demonstration of polymorphism. 

Return to the main listing at lines 76-89, which initialize the program's three integer object 
instances. Lines 93-101 similarly initialize the two string object instances. As I mentioned, 
you must call the constructor and initializer methods for every object instance. Each instance 
has its own VMT pointer, which must be individually initialized to the address of the object's 
VMT. Each instance also has its own variables. All of these elements must be properly ini
tialized before using the object instances in any other way. 

Lines 105-112 insert the three integer instances into the list. This is done simply by passing 
the offset address of each instance to the list's InsertItem method. After those instructions, 
lines 114-115 again call the local DisplayItems subroutine-this time, however, the list has 
three integer items, and on-screen, you see the messages: 

After inserting integer items ... 
Number of items in list = 3 
Integer item = 3 
Integer item = 2 
Integer item = 1 

Be sure to understand that the final three lines are displayed by the TIntObj virtual print 
method. The program, however, doesn't call that method directly-instead, the object in
stances themselves determine which method to call 

Lines 119-122 conrinue the demonstration by inserting the program's suing instances into 
the list. Again, this is simply done by passing the offset address of each instance to the TList 



object's Insert Item method. Lines 124-125 then call Displayltems again to display the list's 
current state. On-screen, you see: 

After inserting string items ... 
Number of items in list 5 
String item = Some days: Monday, Tuesday, Friday 
String item = Some colors: Red, White, Blue 
Integer item = 3 
Integer item = 2 
Integer item 1 

The list now has five items-two strings and three integers. You could add more instances to 
the list, and you could derive other kinds of objects from TItem to list different information. 
All you need to do is derive a new object from TItem and implement its methods. At a mini
mum, the object needs a constructor, an initializer, and a virtual print method. 

Other OOP Tips and Tidbits 
So far, I purposely restricted this chapter to the information required to write OOP applica
tions in assembly language. The following tips and tidbits are for advanced programmers 
who want to go beyond the fundamentals, and also for those who want a better understand
ing of how Turbo Assembler creates and uses object instances. 

A Bug in the Debugger 
When debugging 00 P code, be aware of an apparent bug in Turbo Debugger than can crash 
your system. The bug can cause the computer to lock horns, and it might halt DOS or 
Windows. ' 

You may be experiencing this problem ifTD halts with an unhandled exception 0D, which 
is apparently due to the debugger not setting register es properly when inspecting some kinds 
of object instances. The error seems to occur when inspecting instances of a derived object 
that does not declare any new data members. Attempting to inspect or watch an instance of 
such a derived object raises the exception. 

To work around the problem, define a dummy data byte or word in the derived object. For 
example, design your derived object like this: 

STRUC TDerived TBase METHOD { 
j methods 
} 

dummy_data dw ? j Temporary: remove from final code 
ENDS TDerived 

You may remove the dummy data after debugging. You might also use conditional assembly 
directives to remove the data declaration automatically from your final application. 

645 



646 

More on VMT Pointers 
A VMT pointer is a 16- or 32-bit variable that addresses an object's VMT. Each instance of 
an object that has one or more virtual methods must have a VMT pointer. There's only one 
VMT, however, for any single object. All instances of the same object share that same VMT. 
Figure 14.5 illustrates how object instances, VMT pointers, and VMTs appear conceptually 
in memory. 

Figure 14.5. 
Each instance of an object 
has a VMT pointer, which 
addresses the/irst entry of 
the object's VMT. The 
entries in the VMT address 
the object's virtual methods. 

VMT Pointer' 

Other data 

VMT Pointer 

Other data 

VMT Pointer 

Other data 

Object instance C 

address 

address 

address 

Virtual Method 
Table (VMT) 

Virtual method 

Virtual method 

Virtual method 

Virtual method 

Virtual method 

Turbo Assembler's TBLPTR directive names VMT pointers@MPTR_<object_name>. For example, 
TIt em's VMT pointer is named @MPTR_TITEM. Any derived objects (TIntObj and TStrObj, for 
instance) inherit this pointer. 



The generated pointer symbols represent offsets into the object structure. The actual VMT 
pointers are 16-bit words in small memory model programs, and 32-bit double words in 
large and huge model programs. The following fragment from the listing file shows the Struc
ture of TI tern and TStrObj objects. Notice how TSt rOb j inherits the VMT pointer (@MPTR_TITEM) 
and NEXT variables from TItem. The word values are the offsets into the object structures that 
the symbols represent. 

TITEM 
@MPTR_TITEM Word 0000 
NEXT Word 0002 

TSTROBJ 
fiiMPTR_TITEM Word 0000 
NEXT Word 0002 
DATA_S Word 0004 

There are two important facts to learn from this information. One, a VMT pointer must be 
the first data element in an object. Two, an object consists only of data. Despite the fact that 
objects encapsulate code and data, in reality, object instances contain only data. The associa
tion of code is handled strictly in the source text (for static methods), and by way ofVMT 
pointers (for virtual methods). 

Initializing a VMT Pointer 
You may use the information in the preceding section to initialize a VMT pointer differ
ently from the standard method, which uses the TBLINIT directive. Given an object TBase, 

for example, you can use code something like this (ds: si addresses the instance to be 
initialized) : 

mov word ptr [Si.@Mptr_TBase], offset @TableAddr_TBase 
if @CodeSize eq 1 

mov word ptr [si.@Mptr_TBase+2], seg @TableAddr_TBase 
end if 

In small memory models, the first mov instruction assigns to the object instance's VMT pointer 
the VMT address represented as @TableAddr_TBase. 

In large and huge models, the first mov instruction initializes the offset portion of the VMT 
pointer. The third line, after the conditional if directive, initializes the pointer's segment 
value. The preceding code is generated by the directive: 

TBLINIT lSi] 

~OTE 

. af9IJOdlheTBLIItUP(svment, which 
t~~~m¥:tletp fail'inJqeal ooe. . .. 

647 



4 

648 

Calling Ancestor Virtual Methods 
From inside a virtual method in a derived object, to call the base object's virtual method, 
always use a static function calL Do not use CALL .•• METHOD. For example, in a derived object's 
virtual method action, to call the base object's action method, use code like this: 

PROC TDerived_action PASCAL 
call TBase_action j Call replaced base-object virtual method 
ret 

ENDP TDerived_action 

The important observation here is that virtual methods are just subroutines like any other. 
They are addressed, however, by entries in the object's VMT, which is addressed by the object 
instance's VMT pointer. If you insert something like this in place of the preceding call, your 
code is likely to hang or crash: 

CALL TBase PTR si METHOD TBase:action j 111 

That may seem to be the correct way to call an ancestor object's virtual method, but because 
the ds: si registers address the derived object instance, the instruction actually makes a recur
sive call to the derived method-the same one that is attempting to call the ancestor method. 
As a result, the stack quickly overflows with return addresses and the program fails. 

If you experience stack overflows in object-oriented programs, the likely cause is a virtual 
method that attempts to call its inherited ancestor virtual method of the same name using 
CALL ... METHOD. Replace that code with a static call instruction to the method subroutine. 

VMTs and Segment Addressing 
By convention, object instances are addressed by ds: si. This is not a hard and fast rule, but 
it's the convention I adopted for this chapter, and I recommend that you address allinstances 
consistently. Using a variery of register combinations to address object instances is simply 
too confusing. 

Be aware also that Turbo Assembler uses segment register es to address VMTs. For this rea
son, it can be difficult to use as to address object instances. 

As usual in assembly language, register assignments are up to you to make. However, I've 
found that using ds: si to address object instances, and reserving es to address VMTs, leads 
to the most reliable results. 

Calling Virtual Methods without CALL...METHOD 
You may call virtual methods without CALL ... METHOD. For example, in small memory model 
programs, you may use code such as this: 



r t; . 

-. -.~-.... -~.-~ .. ----~-. -------- .-._---_ .. _-----

push cs 
pop es 
mov bx, lsi] 
call es:[bx] 

Push code segment register 
Make es equal to cs 
Assign VMT pointer to bx 
Indirectly call subroutine using VMT entry 

The code assumes that ds : si address the object instance and that the instance's VMT pointer 
is the first item in the instance structure. The first two lines initialize es to the address of the 
code segment-assuming that you store VMTs in that segment. If you store them elsewhere-
in the data segment, for example-initialize es accordingly. 

The third line moves the 16-bit VMT pointer from the object instance into bx. The final 
instruction indirectly calls the first method at the address in the VMT. To call the second 
virtual method, add 02 to bx. To call the third method, add 04, and so on. For example: 

call es:[bx+02] ; Call second virtual method (small model) 
call es:[bx+04) i Call third virtual method (small model) 

In small memory-model programs, VMT pointers are 16-bit offsets, but you must address 
VMTs using the es and bx registers (a full 32-bit pointer). Entries in the VMT are 16-bit 
offsets, and all code is assumed to be in the program's code segment. 

In large and huge memory model programs, VMT pointers are 32-bit addresses, as are VMT 
entries. Calling virtual methods therefore requires a little more effort. For example, you can 
use code like this: 

mov bx, lF62 
moves, bx 
les bx, lsi) 
call es:far [bx] 

Move VMT segment into bx 
Set es to VMT segment 
Load eS:bx with VMT pointer from instance 
Indirectly call first virtual method in VMT 

The first two lines initialize es to the segment where VMT s are stored. The actual address 
value, lF62, will be different in your programs (and is best replaced with the segment name). 
The third line uses the les instruction to load es: bx with the 32-bit pointer in the object 
instance addressed by ds: si. The call instruction on the final line calls the subroutine at the 
address in the VMT's first entry. Because those entries are full 32-bit addresses, you must 
add 04 rather than 02 to access other virtual methods. For example, to call the second virtual 
method in an object, use the instruction: 

call es:far [bx+04) ; Call second virtual method (large and huge models) 

All of the preceding examples assume that VMT pointers are the first data elements of object 
instances. It is possible to design instances that store VMT pointers elsewhere (or that use 
multiple VMT pointers), but these techniques require careful programming and debugging. 
In these cases, instead of CALL .•. METHOD, use the code fragments in this section as guides for 
calling virtual methods. 

649 



650 

Optimized Tail Recursion 
A variation of the CALL ... METHOD directive can optimize some kinds of methods (virtual or 
static). When a method ends with a CALL .. ,METHOD instruction, you can often gain a tiny bit 
of speed by using a well-known optimization technique called optimized tail recursion. 

This technique isn't limited to object-oriented programming. In general, when any subrou
tine ends with a call instruction followed by a return, that call can be replaced with a imp. 

For example, consider what happens in a subroutine that ends with the twO instructions: 

call OtherSubroutine 
ret 

When OtherSubroutine returns via its own ret instruction, the program simply executes 
another ret. The twO returns are obviously redundant, and the preceding two instructions 
can be replaced with: 

jmp OtherSubroutine 

This chops the tail off the subroutine, causing it to jump to OtherSubroutine, which returns 
to the original caller. In the balance, you have gained stack space and reduced twO ret in
structions to one. This is why the technique is called optimized tail recursion. (Like many 
technical terms, the process sounds more exotic than it really is.) 

Object-oriented programs can use Turbo Assembler's JMP ... METHOD directive to perform a 
similar optimization for some kinds of methods. The first step is to identifY any methods 
that end with a CALL ... METHOD instruction, or that can be modified to do so. For example, 
change to the OOP\lNHERIT directory and load the TDERIVED.INC file into your edi
tor (or refer back to Listing 14.4), 

The TDerived_getData method near the end of the file begins with a CALL .•. METHOD instruc
tion. Because the order of the method's instructions is not critical in this subroutine, the 
CALL ... METHOD directive can be moved to just above ret. If you want to follow along, revise 
the method to look like this: 

PROC TDerived_getData PASCAL 
mov dx, [(TDerived PTA si).TDerived_dataj 
CALL si METHOD TBase:getData ; Move this line to here 
ret 

ENDP TDerived_getData 

In your own code, always assemble, link, and test the program at this stage to be sure the 
modified method works correctly. If all is well, you may replace the method's final two in
structions with JMP ... METHOD. Simply change CALL to JMP and delete ret. The optimized 
method is now: 

PROC TDerived_getData PASCAL 
mov dx, [(TDerived PTR si).TDerived_dataJ 
JMP si METHOD TBase:getData 

ENDP TDerived_getData 



r 
~ .. 
i 

Summary 
Object-oriented programming, or OOP, uses objects to encapsulate data and code. Turbo 
Assembler's OOP features make it possible to write object-oriented programs in assembly 
language. 

Advantages of OOP include potentially easier debugging, maintenance, and revisions
especially in large programs. Disadvantages include the increased initial difficulty of 
designing an object-oriented program and the fact that few if any standards exist for object 
structures. 

Three key techniques characterize OOP: encapsulation, inheritance, and virtual methods. 
In Turbo Assembler, you encapsulate data and code in special STRUC declarations, called objects. 
An object (called the derived object) may inherit the code and data members of another object 
(called the base object). The object's subroutines, or methods, may be static (called directly) 
or virtual {called by looking up the subroutine addresses from a virtual method table {VMTI. 

All objects that have one or more virtual methods must define a VMT pointer (or inherit the 
pointer from a base object). All such objects must also define a VMT. Objects inherit VMT 
pointers, but not VMTs. The VMT pointer in each object instance must be initialized to 

point to the object's VMT. 

Use the CALL ••• METHOD directive to call object methods and to pass arguments to them. You 
may replace CALL. •• METHOD in some cases with JMP ••• METHOD to optimize methods that end 
with calls to other methods. 

Polymorphism is the process of creating objects that use virtual methods to select actions at 
runtime. The TList and TItem objects in this chapter demonstrate how to use polymorphism 
to create lists of different kinds of object instances. 

Exercises 
14.1. Add CALL ••• METHOD statements to ENCAPSUL.ASM (Listing 14.2) to set both of 

object P2's data members to zero. 

14.2. Declare a new object, TReet, that defines the upper left and lower right coordi
nates of an imaginary rectangle. Think of this object as a means for designating 
rectangular regions on a text or graphics display. Include some methods that you 
think the object will need. 

14.3. Design a method that receives two word arguments. Insert statements in the 
method that load the arguments into registers ex and dx. The method should 
preserve the registers it uses. (The result of this exercise makes a useful shell for 
beginning new methods.) 

14.4. Show the steps required to call an imaginary static method, AnyStaUe, declared 
by an object, TAnyObjeet. 

651 



652 

PART II _ APPLICATION PROCRAMMING 

14.5. Show the steps required to call an imaginary virtual method, AnyVirtual, 

declared by an object, TAnyObj ect. 

14.6. Advanced. Create a new object, TDateObj, derived from this chapter's TItem object 
(Listing 14.10). Your object should have data members that can store the date 
(year, month, and day). (Hint: TItem declares a virtual method. Be sure to 
include all necessary virtual-method components in TDateObj.) 

14.7. Advanced. Using your TDateObj object from exercise 14.6, modifY LIST.ASM 
(Listing 14.14) to store and display two TDateObj instances on the program's list. 

Projects 
14.1. ModifY TList to be derived from TItem so that TList instances can themselves be 

stored on lists. Write a demonstration program that shows how a program can 
create a list of lists, which could contain lists of other lists, and so forth-in other 
words, multidimensional arrays. 

14.2. Advanced. Expand TList to include other methods for searching, inserting, 
deleting, and rearranging TItem instances from lists. What kinds of methods do 
you think your programs will need? Should you implement those methods now, 
or should you wait until you have a use for them? (These are important questions 
to ponder in object-oriented programming, but there are no correct answers. I 
pose them because you should consider these issues in your own programming.) 

14.3. Convert one or more object-oriented programs from a C++ or Pascal tutorial to 
assembly language. Keep a log of the difficulties you encounter. 

14.4. Convert the object-oriented list demonstration and its associated modules in this 
chapter to C++ or Pascal. 

14.5. Advanced. Reassemble the MTA.LIB library for the large and huge memory 
models, and revise the list demonstration (Listing 14.14) in this chapter to use 
the large model. Create small, large, and huge memory-model library files, and 
invent a system for linking to the correct library. 

14.6. Advanced. Write a uriliry program that displays the address values in a virtual 
method table. 



Programming for 
Windows 

_ Introducing Windows Programming with TASM, 654 

_ Developing Windows Applications with T ASM, 679 

_ Summary, 698 

- Exercises, 699 

.. Projects, 700 



15 

654 

PART II _ ApPLICATION PROGRAMMING 

Introducing Windows Programming with TASM 
Although most Windows developers write their programs in C, you can also use Turbo As

sembler to write sofrware for this popular operating system. With assembly language, you 
gain full control over an application's startup and shutdown instructions, and you can effi
ciently use registers and perform other optimizations not available to high-level-language 
programmers. 

But writing Windows programs in assembly language isn't easy. There's little information 
available on the subject, and what has been published is of poor quality. For example, Borland's 
own documentation on TASM and Windows is sparse and contains numerous errors. Worse, 
the sample Windows programs on T ASM' s disks are incomplete or have serious bugs that 
can crash Windows and cause a loss of information. (Do not base your own code on TASM's 
examples!) 

To help correct these oversights, this chapter introduces Windows programming with T ASM 
in Ideal mode. In the following sections, you'll find line-by-line descriptions of two com
plete Windows applications, which demonstrate the following key Windows programming 
techniques in assembly language: 

• How to write a startup module 

• How to initialize a Windows application 

• How to call Windows functions 

• How to register window classes 

• How to create and display a window 

• How to write a message loop 

• How to receive, respond to, and send messages 

• How to design and use a dialog box 

• How to design and use popup menu commands 

• How to paint graphics in a window 

Although there's a lot of information in this chapter, it is not a complete tutorial to Win
dows programming. I'll introduce as much of the subject as one chapter allows, but to write 
finished Windows applications in assembly language, you'll also need a tutorial such as Charles 
Petzold's Programming Windows 3.1, or one of my own books, Mastering Windows 
Programming with Borland C++ or Type and Learn Windows Programming Using WinScope. 
In addition, to go beyond the information in this chapter, you will also need a Windows 
API (application programming interface) reference plus other utilities and files supplied with 
a Windows development system. 



PROGRAMMING FOR 1I1I"'nrI'A/C 

NOTE: 

Turbo Assembler does not provide all necessary tools and files required to assemble and link 
Windows code files. In addition to the files you re(:eive with Turbo Assembler, you also need 
utilities such as resource and help-system compilers, an import library (for linking programs 
to Windows functions), and Turbo Debugger for Windows (TDW). The programs in this 
chapter require Turbo Assembler 4.0 (usually installed in the directory C:\ TASM), and also 
Borland c++ 4.0, 4.5, or a later version (usually installed In thedirectPrYC:\BC4or 
C:\BC45). In addition, the directory C:\BC4\BIN must be on the system path in order to link 
the example programs in this chapter. On disk, this chapter's programs are provided in source 
and executable forms so you can study and run the examples even if you don't have 
Borland C++. 

Minimum Windows Application 
Always keep in mind one fact about Window applications-they are simply DOS programs 
that run under control of the Windows operating system. Unlike common DOS applica
tions, however, Windows programs must obey many new rules and regulations, which makes 
it tough to master the necessary techniques. 

Listing 15.1, WHELLO.ASM, demonstrates the basic requirements of Windows assembly 
language programs. Assembling and linking the program requires two additional files in 
Listings 15.2 (WHELLO.DEF) and 15.3 (WHELLO.RC). I'll explain the purpose of each 
of these files after the listings. Unless I mention otherwise, line number references are to 
WHELLO.ASM. 

Listing 15.1. WHElLO.ASM 
1: %TITLE 'Bare Windows program in assembly language -- by Tom Swan" 
2: 
3: IDEAL 
4: 
5: JUMPS 
6: 
7: P2B6 
B: 
9: LOCALS @@ 

10 : 
11: MODEL large, WINDOWS PASCAL 
12: 
13: ;----- Include Windows declarations (MASM mode required) 
14: 
15: %NOINCL 
16: 

continues 

655 



656 

Listing 15.1. continued 
17: 
18: 
19: 
20: 
21 : 
22 : 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31 : 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41 : 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49; 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61 ; 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 

MASM 

INCLUDE windows.inc 

IDEAL 

Define external functions imported from Windows 

EXTRN tnitTask:PROC 
EXTRN WaitEvent:PROC 
EXTRN tnitApp:PROC 
EXTRN Loadtcon:PROC 
EXTRN LoadCursor:PROC 
EXTRN CreateWindow:PROC 
EXTRN ShoWWindow:PROC 
EXTRN updateWindow:PROC 
EXTRN RegisterClass;PROC 
EXTRN GetMessage:PROC 
EXTRN TranslateMessage:PROC 
EXTRN DispatchMessage:PROC 
EXTRN PostQuitMessage:PROC 
EXTRN DefWindowProc:PROC 

Define global program procedures called internally 

GLOBAL PASCAL WinMain:PROC 
GLOBAL PASCAL Apptnit:PROC 
GLOBAL PASCAL AppRun:PROC 
GLOBAL PASCAL RegisterWin:PROC 

Define program procedures exported to Windows 

PUBLIC WndProc 

Define resource equates 

EQU 100 

Global initialized variables 

DATASEG 

The following 16-byte buffer must be first in the program's 
data segment. Windows uses this area for its own purposes. 

exCode 
szAppName 
szWndName 

DB 
DB 
DB 
DB 

16 DUP (0) 
o 
'WHello' , 0 
'WHelloWin' , 0 

Global uninitialized variables 

UDATASEG 

Reserved for Windows 
Exit code returned to DOS 
App name or window title 
Window class name 



psp OW ? 
pszCmdLine OW ? 
hPrevInst OW ? 
hInstance OW ? 
cmdShow OW ? 
msg MSGSTRUCT ? 

CODESEG 
Start: 

71 : 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81 : 
82: 
83: 
84: 
85: 
86: 

Begin required initializations 

call InitTask 
or ax, ax 
jnz @@InitTaskOk 
jmp @@InitFail 

87: 
88: @@InitTaskOk: 
89: 

Program segment prefix 
Pointer to command line string 
Handle to previous instance 
Handle to this instance 
Window display style 
Message loop structure 

Initialize this task 
Test result in ax 
Continue if ax is not zero 
Else exit with error code 

90: Save various items returned by InitTask 
91: 
92: 
93: 
94: 
95: 
96: 
97: 

mov 
mov 
mov 
mov 
mov 

[pSPI, es 
[pszCmdLinel, bx 
[hPrevInstj, si 
[hInstancel, di 
[cmdShow). dx 

98: Continue required initializations 
99: 

100: 
101 : 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111 : 
112 : 
113 : 
114 : 
115 : 
116 : 
117 : 
118 : 
119: 
120: 
121 : 

push 
call 
push 
call 
or 
jnz 
jmp 

@@InitAppOk: 

call 
jmp 

@@InitFail: 

mov 

Exit: 
mov 
mov 
int 

0 
WaitEvent 
di 
InitApp 
ax, ax 
@@InitAppOk 
@@InitFail 

WinMain 
Exit 

lexCodel.0ffh 

ah. 04Ch 
aI, [exCode] 
21h 

Program segment prefix 
Pointer to command line (es:bx) 
Previous program instance handle 
This program instance handle 
Window display style 

Push task ID (0 ; current task) 
Clear any waiting events 
Push program instance handle 
Initialize application queue 
Test result in ax 
Continue if InitApp successful 
Else exit with error code 

Inits done--start application 
Jump to exit 

Startup error code -1 

DOS function: Exit program 
Return exit code value 
Call DOS. Terminate program 

continues 

657 



658 

II _ 
ApPLICATION PROGRAMMING 

listing 15.1. continued 
122: 
123: 
124: 
125: 
126: 
127: 
128: 
129: 
130: 
131 : 
132: 
133: 
134: 
135: 
136: 
137: 
138: 
139: 
140: 
141 : 
142: 
143: 
144: 
145: 
146: 
147: 
148: 
149: 
150: 
151 : 
152: 
153: 
154: 
155: 
156: 
157: 
158: 
159: 
160: 
161 : 
162: 
163: 
164: 
165: 
166: 
167 : 
168: 
169: 
170: 
171 : 
172: 
173: 
174: 
175: 
176: 
177: 
178: 

; WinMain Equivalent to WinMain in a C program 
;-----------------------------------------------------~---------

Input: 
none 
Note: This procedure isn't required, but it permits Turbo 

Debugger to skip over the startup code and begin 
tracing here. Apparently, this happens because TO 
recognizes WinMain as the application entry pOint. 

Output: 
none 

Registers: 
none 

PROC WinMain PASCAL 
call AppInit Initialize application 

Execute message loop call AppRun 
ret 

ENOP WinMain 

; AppInit 

Input: 
hPrevlnst 
hlnstance 
cmdShow 

Output: 
none 

Registers: 
ax 

PROC Applnit 
USES 

call 
mov 

Register and create the app's window 

Handle to previous instance (global) 
Handle to this instance (global) 
Window display style (global) 

PASCAL 
di, si 

RegisterWin Register program's main 
si, [hlnstance) Use s1 to hold instance 

Create element of window from registered window class 

push ds Segment for szWndName 
push OFFSET szWndName The window's class name 
push ds Segment for szAppName 
push OFFSET szAppName Caption for title bar 
push WS_OVERLAPPEOWINOOW The window's style 
push 0 Low word of Style 
push CW_USEOEFAULT Starting x coordinate 
push CW_USEOEFAULT Starting y coordinate 
push CW_USEOEFAULT Starting width 
pUSh CW_USEOEFAULT Starting height 
puSh 0 Handle to parent window 
puSh 0 Handle to menu (none) 
push si Program instance handle 
push 0 Optional user parameters 
push 0 Optional user parameters 
call CreateWindow Create window element 
mov di, ax Save window handle in di 

window 
handle 

(none) 

(none) 
(none) 



PROGRAMMING FOR WINDOWS 

179: 
160: Begin process of showing main window 
161 : 
182: 
183: 
164: 
185: 

puSh 
push 
call 

di 
[cmdShowj 
ShoWWindow 

Push window handle 
Push window style 
Make window visible 

186: Force immediate painting of window contents 
187: 
188: 
189: 
190: 
191 : 
192: ENOP 
193: 

push 
call 

ret 
AppInit 

di 
UpdateWindow 

Push window handle 
Update window contents 

194: ,---------------------------------------------------------------
195: i AppRun Run the application (the "message loop·) 
196: ---------------------------------------------------------------
197: Input: 
196: none 
199: Output: 
200: none 
201 :, Aegiste rs: 
202: ax 
203: ---------------------------------------------------------------

AppRun PASCAL 204: PAOC 
205: @@10: 
206: push ds Push msg segment address 
207: 
206: 
209: 
210: 
211 : 
212: 
213: 
214: 
215: 
216: 
217: 
218: 
219: 
220: 
221: @@99: 
222: 
223: ENOP 
224: 

push 
push 
push 
push 
call 
or 
jz 
puSh 
puSh 
call 
push 
push 
call 
jmp 

ret 
AppRun 

OFFSET msg 
NUll 
NUll 
NUll 
GetMessage 
ax, ax 
@@99 
ds 
OFFSET msg 
TranslateMessage 
ds 
OFFSET msg 
DispatchMessage 
@@10 

Push msg offset address 
Unused 
Unused 
Unused 
Get next message 
Did GetMessage return zero? 
If yes, exit loop 
Push msg segment address 
Push msg offset address 
Translate keyboard messages 

·Push msg segment address 
Push msg offset address 
Send message to window proc 
loop until app ends 

225: ---------------------------------------------------------------
226: i AegisterWin Register the program's main window class 
227: 
228: 
229: 
230: 
231: 
232: 
233: 
234: 
235: 

Input: 
hPrevInst 
hInstance 

Output: 
none 

Registers: 
ax 

Handle to previous instance (global) 
Handle to this instance (global) 

COlltinues 659 



15 

660 

----------------- ........ --~-

Listing 15.1. continued 
236: PROC 
237: 
238: 
239: 
240: 
241 : 
242: 
243: 
244: 
245: 
246: 
247: 
248: 
249: 
250: 
251: 
252: 
253: 
254: 
255: 
256: 
257: 
258: 
259: 
260: 
261 : 
262: 
263: 
264: 
265: 
266: 
267: 
268: 
269: 
270: 
271 : 
272: 
273: 
274: 
275: 
276: 
277: 
278: 
279: 
280: 
281: 
282: 
283: il1!l99: 
284: 
285: ENDP 
266: 

RegisteMNin PASCAL 
LOCAL il@Wc:WNDCLASS 
USES di, si 

cmp 
jne 
mov 

[hPrevInst I, 0 
ilil99 
si, [hInstancel 

Allocate structure on stack 
Preserve registers 

Is a prior instance running? 
If yes, jump to exit 
use si to hold instance handle 

Assign values to global window class structure l!l@Wc 

mov 
mov 
mov 
mov 
mov 
mov 

[@@Wc.clsStylel, NULL 
[WOAD PTA il@Wc.clsLpfnWndProc 
[WOAD PTR (l!l@Wc.clsLpfnWndProc) 
(@@Wc.clsCbClsExtral, 0 
[il@Wc.clsCbWndExtral, 0 
[il@Wc.clsHInstancel, si 

I, OFFSET WndProc 
+ 21, SEG WndProc 

Get and assign icon handle from app's resources 

push 
push 
push 
call 
mov 

si 
o 
ID_ICON 
LoadIcon 
[@@Wc.clsHIconl, ax 

Get and assign a cursor handle 

pUSh 
push 
push 
call 
mov 

o 
o 
IDC_ARAOW 
LoadCursor 
[@@Wc.clsHCursOr], ax 

Program instance handle 
High word of resource 10 
Low word of resource 10 
Load icon from app's resources 
Save resulting icon handle 

Instance handle (none) 
High word of resource 10 
Low word of resource 10 
Load standard cursor 
Save resulting cursor handle 

Assign remaining window class structure values 

mov 
mov 
mov 
mov 
mov 

[@@Wc.clsHbrBackgroundl, COLOR_WINDOW + 
[WORD PTA l!lilwc.clsLpszMenuName I, NULL 
[WORD PTA (@@Wc.clsLpszMenuName) + 2 I, NULL 
[WORD PTA @@wc.clsLpszClassName I, OFFSET szWndName 
[WOAD PTR (@@Wc.clsLpszClassName) + 21, ds 

Register the window class 

push ss 
lea ax, (il@Wcl 
push ax 
call RegisterClass 

ret 
RegisterWin 

Push segment of wc 
Load ax with wc offset 
Push offset of wc 
Register the window clasS 



287: 
288: 
289: 
290: 
291 : 
292: 
293: 
294: 
295: 
296: 
297: 
298: 

j---------------------------------------------------------------
j WndProc Main Window Procedure (called by Windows) 
j---------------------------------------------------------------

Input: 
hWnd 
uMsg 
wp 
lp 

Output: 
Depends on 

Registers: 
ax, dx 

WORD (stack) 
WORD (stack) 
WORD (stack) 
OWORD (stack) 

message 

Handle to window 
Message identifier 
Optional word parameter 
Optional double word parameter 

299: ---------------------------------------------------------------
300: PROC WndProc WINDOWS PASCAL FAR 
301: ARG hWnd:WORD, uMsg:WORD, wp:WORD, lp:DWORD 
302: USES si 
303: 
304: mov 
305: cmp 
306: je 
307: jmp 
308: 
309: @@WMDESTROY: 
310: push 
311: call 
312: xor 
313: 
314: 
315: 

xor 
jmp 

316: @@DEFWINDOWPROC: 

Si, luMsg] 
si, WM_DESTROY 
@@WMDESTROY 
@@DEFWINDOWPROC 

o 
PostOuitMessage 
dx, dx 
ax, ax 
@@99 

317: push [hWnd) 
318: push si 
319: push [wP] 
320: puSh IIp] 
321 : call DefWindowProc 
322: @@99: 
323: ret 
324: ENDP WndProc 
325: 

Use si to hold message 
Is message WM_DESTROY? 
If yes, jump to process message 
Else jump to default processor 

Push user-defined exit code 
Call Windows to post WM_OUIT msg 
Return 0L (DWORD zero) in ax:dx 

Push window handle 
Push message value 
Push optional word parameter 
Push optional long parameter 
Call default message handler 

326: END Start End of program I entry point 

Listing 15.2. WHELLD.DEF. 
1 : NAME WHELLO 
2: DESCRIPTION 'WHello vl.00a (C) 1995 by Tom Swan' 
3: EXETYPE WINDOWS 
4: STUB 'WINSTUB.EXE' 
5: CODE PRELOAD MOVEABLE DISCARDABLE 
6: DATA PRELOAD MOVEABLE MULTIPLE 
7: HEAPSIZE 1024 
8: STACKSIZE 8192 
9: EXPORTS WndProc 

661 



662 

Listing 15.3. WHELLO.RC. 
1: #define IO_ICON 100 
2: 
3: IO_ICON ICON whello.ico 

How to Assemble WHelio 
Use MAKEFILE on the book's disk to assemble and link the WHello demonstration pro
gram, If you receive any error messages, modify the pathnames in this file. You must have 
Turbo Assembler 4.0 and Borland C++ 4.0, 4.5, or later versions installed on your hard drive. 
C: \ T ASM\BIN and C:\BC4\BIN, or the equivalent directories, must be on the system PATH. 

There are many ways to assemble and link WHello. Change to the WIN\ WHELLO 
subdirectory, and then type one of the following commands: 

make 
make -OOEBUG 
make -DLISTING 
make -DDEBUG -DLISTING 

The first command assembles and links the program. The second command does the same 
but also adds debugging information to the final code file so you can run it with TDW. The 
third command generates a program listing file, WHELLO.LST. The fourth command as
sembles and links the program, and also adds debugging information and generates a listing 
fik. . 

Add option -B to any of those commands to rebuild the entire program from scratch. You 
might do that, for example, after you make a change to a module and you want to reassemble 
with debugging information. 

For easier assembly, on disk you'll find two batch files. Type build to run BUILD.BAT, 
which assembles and links all program modules. Type mak (with no trailing e) to run 
MAKBAT, which assembles and links any modified program modules. Both batch files add 
debugging information and generate a listing file. 

After assembling and linking the program, open the Windows File Manager and change to 
the WIN\WHELLO directory. Select WHELLO.EXE to run the program, which displays 
the Window in Figure 15.1. Try moving the window around, expand it to full screen, and 
perform other common operations. As these tests suggest, though simple, WHello is a com
plete Windows application. Use your normal method to end the program-for example, press 
Alt+F4, double-dick the button at upper left, or click that button to open the system menu 
and select the Close command. 



Figure 15.1. 
WHelk s simple display. 

The Preface 
There are several preparatory steps you must perform before you can write the first instruc
tion in a Windows program. Lines 3-11 in WHELLO.ASM (Listing 15.1) select Turbo 
Assembler's Ideal mode, enable jump optimizations, specify 80286 instructions (Windows 
3.1 requires an 80286 or later model processor), and engage local symbols prefaced with @@. 

Line 11 is the most important in the set. It selects the large memory model, and also specifies 
the WINDOWS and PASCAL options. 

You may use other memory models, but the large model is probably best for assembly lan
guage. Windows functions must be called using far, 32-bit addresses, and there's little to be 
gained by writing small memory-model code. (It might be advantageous, however, to call 
local subroutines using 16-bit offset addresses. In that case, you can use the small memory 
modeL) 

You must specify WINDOWS and PASCAL in a MODEL directive so that Turbo Assembler adds the 
necessary prolog and epilog instructions to subroutines. These options alter the instructions 
generated for the PAOC and ENDP directives, which you should use to begin and end sub
routines. 

NOTE: 

Advanced programmers can use different calling conventions for internal subroutines-it is 
not necessary to add Windows prolog instructions to every procedure. In that case, however, 
be sure to specify WINDOWS, PASCAL, and FAR in your program's callback functions as shown in 
WINHEllO.ASM at line 300. (A callback function is a subroutine that Windows calls-but 
more on that later.) 

Lines 15-21 include the file WINDOWS.INC, usually found in C:\TASM\INCLUDE. If 
you have Borland C++, you'll find an identical copy of this file in C:\BC4\INCLUDE. The 
same file is also supplied with the Microsoft Windows Software Development Kit (SDK). In 
this file are various structure and symbol declarations-assembly language equivalents to the 
declarations in the WINDOWS.H header file for C programs. The file's declarations are in 

663 



664 

MASM mode, so you must switch to that mode (line 17) before including the file. Because 
of this switch, you must not use quote marks around the file name (line 19). Line 21 switches 
back to Ideal mode for the rest of the module. Line 15 prevents writing WINDOWS.INC 
to the program's listing file. 

NOTE: 

Do not.use the STACK directive ina WindoWsapPt!OU~n.WindOws~aJlo(ates~ for)'O.r. 
program's sta~k a~9rdingto thellaJu~~ified a.Hoker .definition file (WflE.llO.[)EF in 
thl~e~anplcl.· .' f:,;' " 'tA :1; "c,;' "c ,'/' 

External and Public Declarations 
A Windows program consists largely of calls to the Windows API, which contains hundreds 
of functions. Before you can call a Windows function, you must declare it external (EXTRN) 

to your program as demonstrated at lines 25-38. Simply add new functions to this list using 
the style shown: 

EXTRN ShowWindow:PROC 

If you did not specify the large memory model and the PASCAL option in a MODEL directive, 
use the full form instead: 

EXTRN PASCAL ShowWindow:FAR 

. Lines 42-45 declare the program's own subroutines GLOBAL, and also select the PASCAL calling 
convention for them. You may use a different calling convention for local subroutines, but 
PASCAL permits easy passing of arguments on the stack. The four GLOBAL directives are not 
required-they simply declare the subroutines so statements can call them from any loca
tion. In a large program with many modules, you might want to store GLOBAL directives in a 
separate file and include it in other modules. 

Line 49 declares a different kind of subroutine, known as a callback fonction. You never call 
a callback function. Instead, you pass the callback subroutine's address to Windows, which 
calls it back at the appropriate times. In this case, WHello has only one callback function
WndProc, which must be declared PUBLIC (line 49). You must write callback functions in the 
proper form as demonstrated later in the listing. 

Line 53 declares the symbol ID_ICON, equated to the value 100. The symbol identifies a re
source, which in this example is the program's system icon that Windows displays when you 
minimize the program's window. 



Data Segments 
Windows programs may define initialized and uninitialized data. Initialized data is stored in 
the program's .EXE code file, and is loaded into memory at runtime. Uninitialized data is 
allocated memory bytes at runtime that have no predetermined values. 

Use the DATASEG directive to create space for your program's initialized data. You must use 
this directive, even if your code has no global variables, and you must reserve the first 16 
bytes of the data segment for Windows' private use (lines 57-62). 

Following these required 16 bytes, define any global variables that your program uses. In 
this case, WHello has three initialized variables: exCode holds a value returned to DOS when 
the program terminates; szAppNarne represents the application name (also displayed as the 
main window's tide); szWndNarne represents the name of the window class, which describes a 
window's characteristics. Window classes must have unique names throughout an applica
tion-usually, their names are formed by adding "Win" to the module name as I did at line 
65, but you may use another name if you prefer. 

iridsr,.,bDName and s~WndName stands for "zenrterminated strlng'",You'lI see 
!»Y':'tOJIIII1!gpr~aceli in Windows symbols.For example, lpfn stands for 

'Nfl means /lwor~ parameter, /I lp means ('long parameter," and so 
WtlVlt,Wc:. application contains thousands of symbols, and these naming 

,mrwl!!Iltjl~J; help keep programs readable, and therefore, easier to modify and maintain. 

In addition to initialized data, a Windows program may allocate memory for variables that 
will be assigned values at runtime. Precede all such declarations with a UOATASEG directive as 
shown at line 69. 

Lines 71-76 declare WHello's uninitialized data. The sample program doesn't use the first 
two variables, which hold the program segment prefix (that is, the segment address where 
DOS expects to find various items related to this program), and the offset address of the 
command-line string if one was passed to the program. These values might be useful in more 
advanced applications. 

Lines 73-75 are required in all Windows programs. The hPrevlnst and hlnstance variables 
are program instance handles. As you learn more about Windows programming, you'll fre
quently run across the word handle. A handle is simply an integer value that represents an 
internal object of some kind. A program instance handle, for example, uniquely identifies 
the task which is the executing code of an application. A window handle represents a window's 
data structure maintained by Windows. You pass handles to various functions-to display a 
specific window, for example, or to draw graphics inside its borders. 

665 



15 

666 

The hPrevlnst handle at line 73 refers to a previous program instance if you have run more 
than one copy ofWHello. The hlnstance handle at line 74 refers to the current program 
instance. Try running more than one copy ofWHello now. Each instance shares the same 
code in memory, but receives its own data segment. You may run as many program instances 
as memory allows. (Some applications, however, prevent you from executing them more than 
once.) 

The cmdShow variable at line 75 represents the main window's style. Usually, this value is set 
to 1 to indicate that the window should be displayed normally. But it can be anyone of the 
following values, declared in WINDOWS.INC: 

SW_SHOWNORMAL = 1 
SW_SHOWMINIMIZED = 2 
SW_SHOWMAXIMIZED 3 

Line 76 in the sample program's uninitialized data segment defines a message structure of 
the type MSGSTRUCT, declared in WINDOWS.INC. Windows uses many structures to de
scribe various items. In this case, msg represents a message, which is obtained and processed 
by the program's message loop--but more on that and related subjects later. 

NOTE: 

YPU~Y'~~al~the~T~~and~;~a~~~~~t~;~'\: ....•..•.............•........ 
h~todefine aU)'aljablMin onepl~1 OI'iWenin onelOOdlfle.BeSUte;;~;'lO"'~e 
the fj~t 16 bytesintheinitializeddata~tfor Windowsl private ~~:(~.~·~?C~· ·;;{~?~~:i~: ,- - '. - --_,_--/~;;~ -', ", - -" - : -"",' -,'-,' ','-t.t _ ,_,,~_>: ~;;~-- r 

Startup Code 
C programmers know that function WinMain is where Windows programs begin executing. 
But that's true only for the program's C statements. Before WinMain comes critical low-level 
code that all Windows programs must execute. 

Most Windows development systems provide this critical code in a startup module. If you 
have Borland C++, for example, you'll find the Windows startup module in file COW.ASM 
located in the C: \BC4\LIB\ST ART UP directory. Other development systems such as Borland 
Pascal for Windows automatically add startup code to compiled programs. Typically, the 
startup module calls a few Windows functions, initializes some required variables, and calls 
WinMain. 

In assembly language, you must provide all startup instructions, as demonstrated at lines 78-
120 in WHELLOASM (refer to Listing 15.1). Despite its name, the startup code is also 
responsible for terminating a Windows application. You must correctly program all startups-
any mistakes here will surely cause serious problems. One advantage to writing your own 



startup code, however, is the elimination of excess baggage. Borland's C++ startup module, 
for instance, prepares various tables, calls static class-object constructors, and performs other 
initializations required by standard-library functions that are of no value to assembly lan
guage programmers. 

The first step should be a call to I ni tTask, a Windows API function declared EXTRN at line 
25. The function requires no arguments, so as line 83 demonstrates, you simply call it. 

Line 84 tests the result of Ini tTask returned in register ax. If this value is not zero, line 85 
continues the program by jumping to the label at line 88. If InitTask returned zero, Win
dows could not initialize the task (usually because of a lack of memory). In that event, line 
86 jumps to label InitFail. 

NOTE: 

Most documentation on Windows is in (,and therefore, you may need to know ( to write 
assembly language code for specific operations. For example, you must pass all required 
arguments to Windo~s functions on the stack, and you must refer to values returned in 
various registers, but the official documents explain these steps only for C.Hint: Usethe 
Borland c++ -soption totompile sample ( programs into the equivalent.ASMassembly 
language text. You can then examine the generated text for guidelines. 

In general, Windows functions return 16-bit values in register ax. They return 32-bit values 
in ax: dx. If those values represent an address, the segment portion is in dx; the offset is in ax. 
With few exceptions (InitTask, for instance) Windows functions preserve registers di, si, 
bp, and ds. If you use other registers to store variables, push them onto the stack before call
ing a Windows function, then pop them off the stack after the call. 

Returning to the sample program (refer back to Listing 15.1), lines 92-96 save the values 
returned by InitTask. Among them are the program's instance handles and main-window 
style. 

Lines 100-106 continue the initialization process. First, lines 100-101 call WaitEvent, which 
clears any waiting events for a given task. Line 100 pushes the required argument, equal to 
the task's ID (zero represents the current task). There is always one such event-the one that 
started this task. The call at line 101 dears this event, and also checks the Windows scheduler 
to check for any other tasks that might be scheduled for execution. 

Lines 102-103 perform the third and final required initialization-calling the Ini tApp func
tion, which initializes the application's message queue, a small amount of memory that holds 
the application's messages. Register ax indicates whether Ini tApp was successfuL Ifax is zero, 
the program must end immediately because it has no message queue. Otherwise, line 110 
calls WinMain, where the application's action begins. 

1 

667 



668 

Lines 100-103 also demonstrate an intriguing aspect of programming Windows in assembly 
language. If you examine disassembled high-level-language applications (as I did when re
searching this chapter), you may find instructions such as these in the startup code: 

xor ax, ax 
push ax 
call WaitEvent 
mov ax, [hlnstancej 
push ax 
call InitApp 

That fragment is logically equivalent to the instructions in WHELLO.ASM at lines 100-
103. However, instead of zeroing ax and then pushing it onto the stack, it is simpler to push 
a literal zero value. Also, because di holds the program's instanc~ handle returned by the 
preceding call to Ini tTask, line 102 pushes that value rather than reloading it from the 
hlnstance global variable. 

In this case, these small optimizations have a tiny, and probably imperceptible, effect on the 
program's speed. But other small improvements can go a long way. In assembly language. 
you decide how to use registers and memory. In C, Pascal, and other languages. the compiler 
makes many of these decisions for you. 

The startup code is also responsible for terminating a Windows program, which is the same 
as ending a DOS program. Lines 118-120 terminate the WHello program after its WinMain 
function returns. Line 115 stores -1 in the global ex Code variable, which normally equals 0 if 
no errors were detected. The instructions at lines 118-120 copy this value into ax along with 
the DOS function code 04Ch, and then execute interrupt 21h to return to Windows. The 
Windows operating system takes over this and other interrupts from DOS. so even though 
line 120 appears to return to DOS, it actually passes control back to Windows. 

Initializing the Data Segment Register 
Each instance of a program-in other words, each new copy of the program that you ex
ecute-receives its own data segment from Windows. You must allow Windows to provide 
the data segment address and to initialize register ds. This happens when Windows loads the 
application, thus ds is already initialized before the program executes its first instruction. 

Never set ds to@data as you do for DOS programs-and as Borland's example programs on 
T ASM' s disks incorrectly show. Do not begin your program s startup code with these imtructiom: 

mov ax, @data ; HOW to destroy a Windows application 
mov ds, ax ; in two easy steps! 

This very bad error causes all program instances to refer to the same data segment. When 
one of those instances ends, the others' data references are to unprotected memory. Such 
references can lead to GPFs (general protection faults) and can cause DOS and Windows to 



become unstable. Worse, your system's memory manager may cancel Windows altogether 
and return you to a DOS prompt, which may cause a permanent loss of any unsaved documents. 

WARNING: > 

Initializing ds may be harmful to your program's health. Always allow Windows to assign a 
value tods. 

The WinMain Function 
As I mentioned, Line 110 in Listing 15.1, WHELLO.ASM, calls subroutine WinMain. This 
step isn't required-the subroutine simply calls two others (see lines 136-140), so WinMain's 
effect is nil. You may remove WinMain by replacing line 110 with the two instructions: 

call Applnit 
call AppRun 

The only reason for including WinMain is to fool Turbo Debugger for Windows into treating 
the code as though it were a C program. Apparently, TOW recognizes WinMain as a Win
dows application's startup location. 

When you start TOW, select File I Open and enable the Execute startup code check box to begin 
tracing the program at the first statement in WinMain. Disable this check box to begin tracing 
at the program's startup instructions (at the call to Ini tTask in WHello). Except to enable 
this trick, WinMain has no practical purpose in an assembly language program. 

Window Registration 
Aside from its startup and shutdown code, a Windows application can be broadly divided 
into two stages. Stage one registers a window class, and creates an instance of that class to 
serve as the program's main window. Stage two executes the program's message laop, which 
receives messages intended for the program and passes them along to their final destination. 

NOTE: 

A message loop is needed because Windows employs a system of non-preemptive 
multitasking. This means that each program instance is responsible for providing the opportu
nity for other programs to run. A preemptive multitasking operating system is itself respon
sible for allocating time to running tasks (time sharing). If a Windows program executes 
lengthy sequences of instructions without eventually returning to the message loop, other 
programs will be prevented from running normally. 

669 



670 

PART II _ ApPLICATION PROGRAMMING 

I'll cover stage two in a later section. Stage one is further divided into two operations: win
dow class registration and window creation. In WHello, when WinMain calls Applnit, line 
157 immediately calls RegisterWin, a subroutine at lines 236-285. This subroutine registers 
the program's main-window class. 

A window class is a description of a window's characteristics-its border style, color, icon, 
cursor shape, and so on. In addition to these data elements, a window class specifies the ad
dress of a subroutine-called a window procedure--that is responsible for handling messages 
sent to the window. 

You must register a window class before you can create instances (also called elements) of 
that class. You may create as many elements of a window class as your program needs. The 
same class is used by multiple program instances; therefore, only the first instance should 
register the class. Subsequent instances should use that same registered class to create their 
main window elements. 

Before registering a window class, always check whether there are any prior program instances. 
Lines 240-241 do that by examining hPrevlnst, which stores the previous program's instance 
handle returned by Ini tTask. If this value is not zero, it identifies a previous task; therefore, 
the current task is not the first one and it's safe to assume the window class has already been 
registered. Otherwise, lines 242-282 initialize a WNDCLASS structure's members and pass the 
structure's address to the RegisterClass function (line 282). 

As I mentioned, this chapter is not a full introduction to Windows programming, so I'll explain 
only a few key points of window registration. You can find complete descriptions of window 
class values in a Windows tutorial. Notice that line 242 uses si to hold the program's in
stance handle-a small but important optimization. In general, registers si and di are avail
able for often-used values, but be sure to preserve these registers by pushing them onto the 
stack. Or as in WHello, list registers in a USES directive, (line 238) which automatically in
serts the necessary push and pop instructions into the subroutine's prolog and epilog. 

For demonstration purposes, I declared the WNDCLASS structure, @@we, as a local variable on 
the stack (line 237). You don't have to do this-you could define global space for we, per
haps in the program's uninitialized data segment. Because it is on the stack, however, we is 
removed from existence after the RegisterWin subroutine returns. The structure isn't needed 
after this time, so it makes little sense to keep it in the global data segment. 

Lines 247-248 assign the address of the window's callback function, WndProe, to @@we. Be
cause of this assignment, window elements created from the class have their messages pro
cessed by this important subroutine, which I'll explain in detail a bit later. 

Lines 255-259 designate a system icon for the program's main window by pushing two ar
guments onto the stack and calling the Windows Loadleon function. This sequence demon
strates an important, and often exasperating, aspect of programming Windows in assembly 



language. Some arguments such as the program instance handle pushed from si at line 255 
are 16-bit values. Others, such as the resource ID of the system icon, are 32-bit values, and 
therefore, require two push instructions as shown at lines 256-257. In all cases, when calling 
Windows functions, you must push the correct number of bytes onto the stack or serious 
problems might later develop. Always double check the number and sizes of functions argu
ments by referring to a Windows API reference and by disassembling small example pro
grams written in C, Pascal, or another high-level language. 

NOTE: 
, ~-::;,~ ~ " <.-, 

'if .yOu usestrlllgStOltIentuyresourGes,ptJsh the stting's segment address first followed by its 
offset'for example, you lTIight use the instructions push ds and push OFFSET id_ieon at lines 
256-257. I prefer to identify resources by integer values, and for such values, it is necessary to 
push a zero flag value that represents a phony segment address. An application data segment 
address cannot be zero, and therefore, Windows recognizes this value as an indicator that the 
offset is an integer resource identifier rather than an address. If you know Windows program
ming in C, you'll recognize the instructions at lines 256-257 as the equivalent of the 
MAKEINTRESOURCE macro. 

Lines 263-266 call another Windows function, which also requires rwo arguments-a 16-
bit instance handle and a 32-bit resource identifier. The call instruction at line 266 speci
fies a cursor shape for the mouse cursor when it moves into the window's client area (the 
space inside the window's borders). After calling LoadCursor, the program transfers the re
turn value in register ax to the elsHCursor field (short for "window class cursor handle") in 
the window class structure. 

After those and other assignments to the window class structure, the program calls 
RegisterClass to register the window class information. Lines 279-281 show how to pass a 
local stack variable by address to a function. Obviously, the variable's segment address is the 
same as the stack, so line 279 simply pushes ss. Line 280 loads the variable's stack offset into 
ax by using the lea (load effective address) instruction. Line 281 pushes the offset value onto 
the stack, and then line 282 calls RegisterClass. You can use similar code to pass other stack
based arguments to functions. 

You don't have to use local variables as I did for we. For example, if the program defined a 
global variable for the WNDCLASS structure, simply pass the address of that structure to 
RegisterClass. To make this change, first define we with UDATASEG as follows: 

UDATASEG 
we WNDCLASS ? 

671 



672 

PART II _ ApPLICATiON PROGRAMMING 

Then, in the RegisterWin subroutine, assign values to we's fields rather than to the local vari
able t!lt!lwe's. (The code is otherwise identical.) Finally, pass the variable's address to 
RegisterClass with these instructions: 

push ds 
push OFFSET we 
call RegisterClass 

Push segment address of wc in the data segment 
Push offset address of we 
Register window class using values in we 

NOTE ' 

",'" ,_.: --:: '<" <_~~ __ --_~ __ /:L-,'" ',_ :_ .~<-~,;_-:i~_;:--_/>_(:-_2~_:>\~·( __ --: <-_----.?:.--,--~;-\: _--_--,--:.-';'_~,~-~> ,,:f'{f?:-~J;~~: 
.Itisuptoyouto deci~where~o;store'your"'~~s·Yark1b1El$Cl;fh~:.... '. . . . ..:~\a·'· 
global variable in this caseisthat.cocc~.~.f!1e!OO"¥ ;eyen .. .afI;9r:~~J~~itonger .. ; 
needed. The advantage is simplercOOe. . . . .... 

Window Creation 
After the program registers its window class, the next job is to create an element of that class 
for use as the program's main window. Do this by calling another Windows function, 
CreateWindow. Also, memorize this rule: Only the first program instance should register a win
dow class, but every program instance must create its own window element of that class. 

NOTE 
'~f ,,',J:\i,'::ffi_S< \-;;-~>_ ·:~:-;'*(;;:d:r{.' 

If you read the preceding chapter onobject--orientedprogramming,'()I"Uy~ have~:. 
experience with OOP, you may notice similarities betWeen window classes aQdwindow' 
elements,8s compared to objects and objectinstanc~(or in C++,cl8$sesanddaSsobj(lCtS~.: 
You might think of a window class as a data type that describes a Wi~~fS cb1lraCt~isti~;'~ 
window element lsan instance of a windowdass-it n~present$\on~or,.rOOr~·~~I,,~ii¥l~ 
that have the class' scharacteristics. Most important, each'~indOwdaS5nas an~ai~t~.' 
window procedure, which is the rough equivaJentofanobjeCt's~WrinC.f:+/it4" .": 
member functions). Window classes encapslJlatedata and Codet juSt3$obj#arid,c+~';:~~,~ 
classes do in DOP. This is not to suggest ttlatWindowsis objectorientedl~t'jt~empl~ 
the concepts of encapsulation, and to a limited extent, of inheritanCe itlwiridow classes:'," . 

The CreateWindow function requires a smorgasbord of arguments, pushed onto the stack by 
the instructions at lines 162-176. Here again, I won't cover each and every value, which most 
Windows tutorials explain. I commented each line, however, so you can compare the in
structions with a C program's call to CreateWindow, which looks something like this: 

WNDCLASS WCi 

if (lhPrevlnst) { 



we.style = NULLj 
we.lpfnWndProe = WndProej 
we.ebClsExtra = 0; 
we.ebWndExtra 0j 
we.hInstanee = hInstj 
we.h;eon = LoadIeon(hInst,MAKEINTRESOURCE(ID_ICON))j 
we.hCursor = LoadCursor(NULL, IDC_ARROW)j 
we.hbrBaekground = COLOR_WINDOW + 1; 
we.lpszMenuName = MAKEINTRESOURCE(ID_MENU)i 
we.lpszClassName = WndNamej 
RegisterClass(&we)i 

If successful, CreateWindow returns a handle to the newly created window element. Line 178 
stores this handle in di for safekeeping, but you could also save it in a global variable for later 
use. Next, at lines 182-183, the program pushes the window handle onto the stack along 
with the global emdShowvalue (returned by InitTask during the program's startup). Line 184 
then calls ShowWindow to make the window visible. In C, the equivalent statement is: 

ShowWindow(hWnd, nCmdShow)j 

When calling Windows functions, push argumentvaluesJn,the.same left:~to:r~ghtorderas 
shown .inthe equivalent C statements. This works because Windows functions use the PASCAl 

calling cQnvention. Also under this conventio~ffunctionsremove all arguments from the 
stack on retum~ and therefore, you shouldnotpop~ anyfuncnonarguments you'pash onto the 
stac::k.ln fact, doing so can destroy the stack and cause serious bugs. 

Finally in subroutine AppIni t, lines 188-189 call UpdateWindow, which isn't required, but causes 
the window's contents to be updated immediately by generating a WM_PAINT message. (The 
WinApp program at the end of this chapter shows how to handle this message.) 

Eventually, the window's contents will be properly displayed anyway, and you may delete 
lines 188-189. It's a nice touch, however, to have a new program's window pop into view as 
quickly as possible. Calling Updatewindow as shown here is one way to ensure that this hap
pens. 

The Message Loop 
Up to now, all of the code that you have examined could be collected under the heading 
"Prelude to Symphony in WAn (WA for Windows Application, that is). The program is 
properly initialized, its window class is registered (if this is the first program instance), and 
an element of that window has been created for use as the program's main window. That 
window has been made visible and the window's contents, if any, have been displayed. It is 

time for the crescendo to crest and the cymbals to crash. Let the program's real music begin! 

673 



674 

Maybe that's overly dramatic for a computer program, but in Windows terms, the main beat 
of an application is in its message loop. It is here that the program obtains messages that rep
resent events such as mouse clicks and menu selections. The message loop routes messages to 
their proper destinations--usually one or more window procedures that carry out the event's 
actions. 

Despite its importance, the message loop is a simple piece of code, as WHello demonstrates 
in the subroutine AppRun at lines 204-223. Even if you aren't a C programmer, it is helpful 
to compare the assembly language with the usual version written in C: 

MSG msgj 
while (GetMessage(&msg, NULL, NULL, NULL)) { 

TranslateMessage(&msg); 
DispatehMessage(&msg)j 

In WHELLO.ASM, lines 206-211 pass to GetMessage the address of a message structure 
variable, msg, along with three nulls representing unused parameters. GetMessage obtains the 
next message if any from the application's message queue. If the function returns zero, then 
the message received was WM _ au IT and the message loop should end (see lines 212-213). 
Otherwise, lines 214-216 call TranslateMessage, which converts virtual-key messages such 
as WM_KEYDOWN and WM_KEYUP into equivalent WM_CHAR character messages. Finally, lines 217-
219 call DispatchMessage, which sends the message to the appropriate window procedure 
for processing. 

The message loop uses a global variable, msg, of type MSGSTRUCT (defined at line 76). This is 
the assembly language equivalent to the ",sa structure in C. It is appropriate to use a global 

uninitialized variable for the message structure because the message loop remains active for 
nearly the entire runtime life of the program. This also simplifies addressing. For example, 
compare references to msg in the message loop with the local window class structure we in 
subroutine RegisterWin at lines 236-285. 

NOTE 

Notice how the messageloop'sjlllP instruct~on at Jine 220 jumps to thelocallal::M:!l "18 at 
line 205. It mayseP.fTI just as well to jump to the beginning of the subroutine at lal::M:!l AppRun, 

but don't do that! When using a MODEL directive such as PASCAL and WINDOWS, Turbo Assembler 
inserts various prolog and epiJog instructions in place of the PROC and ENOP directives. For 
example, if you use TDW's View/CPU command to inspect these instructions, you'll find 
instructions that save register tip and then assign it the current stack pointer sp,for addressing 
stack-based parameters. If a jmp instruction returns to the beginning of the subroutine, the 
program wi II agai n execute the prolog instructions, which can cause a serious bug. To avoid 

"this problem, always jump to a local label even though, from the source text, that label 
appears to be at the beginning of the subroutine. 



The Window Procedure 
Each message received by a program's message loop and sent to the DispatchMessage func
tion must eventually be handled by a window procedure or by a default message handler in 
Windows. As I explained, a window procedure is a subroutine that is addressed by a window 
class structure (refer back to lines 247-248 in WHELLO.ASM). For example, if you move 
the mouse cursor into a window and click the right button, Windows sends the window 
procedure (via the program's message loop) a WM_LBUTTONDOWN message. 

Much of Windows programming involves writing code for various messages that you expect 
to receive for a particular kind of window. You pass other messages to a default handler, usually 
DefWindowProc in the Windows API. The default handler performs routine operations such 
as opening menus, and moving and resizing windows. 

A typical window procedure might contain programming for dozens of related and unre
lated messages. For this reason, writing window procedures is sometimes called event-driven 
programming. Under this conceptual model, rather than write instructions that depend on 
their order of execution, you write code that responds independently to specific events such 
as mouse clicks and key presses. That code's order of execution depends on how users run 
the program, not on the placement of the program's instructions. 

Following are a few key points to keep in mind when writing an event-driven window pro
cedure. Line numbers refer to WINHELLO.ASM: 

• A window procedure must be reentrant-that is, it must be capable of being called 
recursively. This rule is necessary because if the window procedure calls a Windows 
function, as is often the case, that function might trigger an event and generate a 
message that leads to another call to the same window procedure before the current 
subroutine invocation returns. It is possible for many such recursive calls to become 
stacked up like planes in fog over a busy airport, and writing to global variables in a 
reentrant subroutine is like ordering those planes fly in the same air space-a crash 
is nearly certain. For a safe landing, use local variables and arguments, and preserve 
any used registers (see lines 301-302). 

• A window procedure should return a 32-bit value in registers ax: dx. For most 
messages, set both registers to zero if your code handles a message (see lines 312-
313). 

• Pass all unhandled messages to DefWindowProc as WHELLO.ASM's window 
procedure demonstrates (lines 317-321). Return from the window procedure 
immediately after calling this function, thus passing DefWindowProc's result in ax: dx 
back to the window procedure's caller. 

• A main-window procedure must implement at least one message: WM_DESTROY. Call 
PostQuitMessage as WHELLO.ASM demonstrates (lines 310-310 in response to 
this message. 

675 



676 

PART II _ APPLICATION PROGRAMMING 

• Refer to a Windows API reference for requirements of specific messages and for the 
meanings of the wp and Ip parameters. The purpose and use of these parameters vary 
widely among different messages. 

With those points in mind, examine WHELLO's window procedure (refer to lines 300-324 
in WHELLO.ASM). The procedure is declared a little differently from others in the sample 
listing: 

PAOC WndProc WINDOWS PASCAL FAA 

You must use the PROC directive, and you must configure the procedure for WINDOWS. The 
subroutine must use the PASCAL calling convention and it must be FAR. Regardless of the 
program's memory model, Windows calls the function using a full 32-bit address, and the 
subroutine must return by using a far-return instruction. Because the PROC directive includes 
the FAR key word, Turbo Assembler automatically supplies this instruction in place of ret at 
line 323. 

Line 301 is also required. It declares four parameters that Windows passes on the stack to 
the window procedure: 

AAG hWnd:WOAD, uMsg:WORD, wp:WOAD, Ip:OWOAD 

• hWnd: WOAD is the handle of the window element for which this message is intended. 

• uMsg: WORD is the unsigned integer value of the message. 

• wp:WORD is an optional16-bit value passed along with the message. Its purpose and 
meaning depend on the message. 

• Ip: DWORD is an optional 32-bit value passed along with the message. Its purpose and 
meaning depend on the message. 

Line 302 employs the USES directive to automatically save and restore register si, which the 
window procedure uses to hold a copy of the message value in the stack variable uMsg. If your 
code also uses di, be sure to add it to the USES directive: 

USES si, di 

You don't have to store values in si and di, but using a register is always more efficient than 
a memory reference. Because a lengthy window procedure might have to process dozens of 
messages, it's usually best to copy the message value into si (or another register) as line 304 
demonstrates. Next, compare that value with one of the messages your code handles. In this 
case, the sample window procedure handles only a single message, WM_DESTROY. If si equals 
that message value, line 306 jumps to the section that handles ii:; otherwise, line 307 jumps 
to a default handler. 



NOTE ' 

By convention, I use local labels such as ~DESTROY for the code that handles the 
WI,,-DESTROYmessage. You can name your window procedure labels as you wish, but my 
convent.ionhelps identify what messages each section processes. 

Lines 309-314 handle the WM_DESTROY message by calling the Windows API function 
PostQui tMessage. After calling this function, the window procedure sets ax: dx to zero, which 
indicates to Windows that the message has been successfully handled. Line 314 then jumps 
to the ret instruction that ends the procedure. 

Lines 316-321 demonstrate the correct way to process unhandled messages. First, push the 
window handle, the message value (in si if you use this register), the optional word, and the 
double word parameters. Then call DefWindowProc to handle the message. Immediately re
turn from the window procedure after this cali, thus passing back the return value in ax: dx 

from DefWindowProc. 

In a fully fledged Windows application, a window procedure will be much more complex 
than the relatively simple one in WHELLO.ASM. The sample code, however, demonstrates 
the basic structure of all window procedures. In the next section's sample program, you learn 
how to expand this structure to process other types of messages. 

Linker Definition File 
Before turning to a more involved sample program, you need to examine two additional files 
that are required for creating a Windows executable code file. The first file, WHELLO.DEF 
(refer back to Listing 15.2) is called a linker definition file. It specifies the size of the heap 
(where dynamic variables created at runtime can be stored) the stack, and other items. 

Most Windows tutorials and development systems explain linker definition-file options. I'll 
cover only those used here. Line numbers refer to Listing 15.2: 

1. NAME is the name of the application, and should normally equal its code-file name 
minus any filename extension. This name is unquoted. 

2. DESCRIPTION is any string delimited with single quotes. Most programmers insert the 
application name, version, and a copyright notice. The string is embedded into the 
executable code file. 

3. EXETYPE must be WINDOWS. Some references indicate that a Windows version number 
may be used here (WINDOWS 3.1 for example), but Turbo Linker does not recognize 
this format. 

677 



678 

4. STUB specifies the name of a DOS program that is executed if a user attempts to run 
the program from a DOS prompt (which is not permitted). Usually, the stub simply 
displays the message "This program must be run under Microsoft Windows" and 
ends, but the stub can perform any action you need. In fact, you can combine a 
Windows application with any DOS program simply by specifYing a different stub, 
and in this way, you create a dual DOS/Windows executable code file. Some 
installation utilities use this trick so they may be executed as DOS or Windows 
programs. The WINSTUB.EXE code file indicated here is supplied by Borland 
C++ and is usually found in the directory C:\BC4\BIN. This directory must be on 
the system PATH so the linker can find the stub. 

5. CODE specifies the attributes of the program's code segment. Most applications 
should use the three options shown here, which preload the code into memory 
when the program is executed, permit Windows to move the code if necessary to 

make room in memory, and also permit Windows to discard the code segment 
temporarily from memory when the program is inactive. 

6. DATA specifies the attributes of the program's data segment. Most applications 
should use the three options shown here, which preload initialized variables when 
the application is run, allow Windows to move the data segment to make room in 
memory, and also create a new data segment for each program instance. 

7. HEAPSIZE selects the size of the heap in bytes. Windows stores dynamic variables 
such as graphics brushes and some other items on the heap. (The use of heaps in 
assembly language is beyond the scope of this chapter, but is essentially the same as 
in C or Pascal.) Use a value at least as large as shown here. 

8. STACKSIZE specifies the size of the program's stack. Use a value at least as large as 
shown here. 

9. EXPORTS lists any subroutines exported to Windows-for example, a window 
procedure called by Windows. Because WndProc is declared public in the source text, 
(see line 49 in WHELLO.ASM), the EXPORTS directive is redundant and you can 
delete it. 

Resource Script File 
The final file in the mix contains resource script instructions, which configure the program's 
resources. A resource is any binary data that is stored in the program's executable code file. 
Instructions in the program load resources into memory from the code file image, and use 
those resources for a variety of purposes. 

For example, a program's menu commands are usually stored in a menu resource. A system 
icon can be stored as an icon resource. A dialog box with all of its buttons and controls are 
stored in a dialog resource, and so on. You can also create your own resources, which can 
have any values you desire. 



PROGRAMMING FOR WINDOWS 

Listing 15.3, WHELLO.RC, lists the sample application's sole resource, an icon stored on 
disk in the bitmap file WHELLO.ICO. Resource scripts are compiled by a resource com
piler, usually Microsoft's RCEXE utility supplied with most Windows development sys
tems (but not with Turbo Assembler). In addition to RCEXE, Borland C++ also supplies 
its own BRCEXE utility, which is functionally equivalent to RC, but runs faster. 

When you compile a resource script file, you create a binary version of the script in a file that 
ends with the extension .RES. Compiling WHELLO.RC with this command, for example, 
creates WHELLO.RES: 

brc whello. rc 

The instruction at line 3 in WHELLO.RC copies the icon file WHELLO.ICO to 
WHELLO.RES, which the linker binds into the program's code file, WHELLO.EXE. The 
WHELLO.ICO and WHELLO.RES files are therefore not needed at runtime-the execut
able code file contains the entire application, including its resources. 

The script file (see line 1 ofWHELLO.RC) also defines ID_ICON, using C-style notation, 
to represent this resource. One problem with assembly language programming for Windows 
is that the script compiler does not recognize eau directives. You therefore must define each 
resource identifier twice-using C-style #define directives in the resource script, and again 
using eau directives in the assembly language. (See, for example, line 53 in WHELLO.ASM.) 

Developing Windows Applications with TASM 
The following listings show more about writing Windows applications in assembly language. 
The demonstration program executes a dialog box, has a popup menu, displays graphics in 
a window, and uses a message box to prompt users whether to quit the program. 

I selected these features because they demonstrate typical code that you will need in most 
Windows programs. There's still a lot more to Windows programming than explained here, 
but you should be able to use the following listings as guidelines for many different types of 
applications. 

Windows Application Shell 
All ofWinApp's files are listed together in this section. After the listings, I describe how the 
program works. Unless stated otherwise, all line number references are to WlNAPP.ASM. 
Following is an inventory of the program's files. Figure 15.2 shows the program's display, 
including its simple graphics (the rectangle inside the window's borders) and popup menu. 

• Listing 15.4, WlNAPP.ASM, contains the program's instructions. 

679 



680 

PART II _ APPLICATION PROGRAMMING 

Figure 15.2. 
WinApp 5 display with 
simple graphics and 
a popup menu. 

• Listing 15.5, WINAPP.OEF, the linker definition file, configures code and data 
segments and supplies miscellaneous information to the linker. 

• Listing 15.6, WINAPP.RC, is the program's resource script. It specifies an icon, a 
menu, and a dialog box. To compile this resource script you need a resource 
compiler and the WINOOWS.H header file supplied with all Windows C and c++ 

development systems. Turbo Assembler does not provide these items. 

• Listing 15.7, WINAPP.RH, defines resource identifiers using C-style #define 

directives. This file is included into the resource script. 

• Listing 15.8, WINAPP.RI, defines the equivalent resource identifiers using assem
bly language EQU directives. This file is included into WINAPP.ASM. 

Listing 15.4. WINAPP.ASM. 
1 : %TITLE "Windows application shell in assembly language -- by Tom Swan" 
2: 
3: IDEAL 
4: 
5: JUMPS 
6: 
7: P286 
8: 
9: LOCALS @@ 

10: 
11 : MODEL large, WINDOWS PASCAL 
12: 
13: Include Windows declarations (MASM mode required) 
14: 
15: %NOINCL 
16: 
17: MASM 
18: 
19: INCLUDE windows. inc 
20: 
21 : IDEAL 
22: 
23: Include resource identifiers 
24: 
25: INCLUDE "winapp.ri" 
26: 
27: Define external functions imported from Windows 
28: 



29: EXTRN 
30: EXTRN 
31: EXTRN 
32: EXTRN 
33: EXTRN 
34: EXTRN 
35: EXTRN 
36: EXTRN 
37: EXTRN 
38: EXTRN 
39: EXTRN 
40: EXTRN 
41: EXTRN 
42: EXTRN 
43: EXTRN 
44: EXTRN 
45: EXTAN 
46: EXTAN 
47: EXTRN 
48: EXTAN 
49: EXTRN 
50: EXTAN 
51: EXTAN 
52: EXTRN 
53: 

InitTask:PROC 
WaitEvent:PAOC 
InitApp:PROC 
LoadIcon:PAOC 
LoadCursor:PROC 
CreateWindow:PAOC 
ShowWindow:PAOC 
UpdateWindow:PROC 
RegisterClass:PROC 
GetMessage:PAOC 
TranslateMessage:PAOC 
DispatchMessage:PROC 
PostQuitMessage:PAOC 
DefWindowProc:PROC 
SendMessage:PROC 
MakeProclnstance:PROC 
FreeProcInstance:PAOC 
DialogBox:PAOC 
EndDialog:PROC 
MessageBox:PROC 
DestroYWindow:PAOC 
BeginPaint:PROC 
EndPaint:PAOC 
Aectangle:PAOC 

54: Define global program procedures called internally 
55: 
56: 
57: 
58: 
59: 
60: 
61 : 
62: 

GLOBAL 
GLOBAL 
GLOBAL 
GLOBAL 
GLOBAL 
GLOBAL 

PASCAL 
PASCAL 
PASCAL 
PASCAL 
PASCAL 
PASCAL 

WinMain:PROC 
Applnit:PAOC 
AppAun:PROC 
RegisterWin:PROC 
WinAppCommands:PAOC 
HelpAbout:PAOC 

63: Define program procedures exported to Windows 
64: 
65: PUBLIC WndProc 
66: PUBLIC DlgProc 
67: 
68: Global initialized variables 
69: 
70: 
71 : 

DATASEG 

72: The following 16-byte buffer must be first in the program's 
73: data segment. Windows uses this area for its own purposes. 
74: 
75: 
76: exCode 
77: szAppName 
78: szWndName 
79: szDIgString 
80: 

DB 16 DUP (0) 
DB 0 
DB 'WinApp', 0 
DB 'WinAppWin' , 0 
DB 'End program?', 0 

81: Global uninitialized variables 
82: 

Reserved for Windows 
Exit code returned to DOS 
App name or window title 
Window class name 
Message-box string 

continues 

681 



682 

Listing 15.4. continued 
83: UDATASEG 
84: 
85: psp ow ? 
86: pszCmdLine ow ? 
87: hPrevInst ow ? 
88: hInstance ow ? 
89: cmdShow DW ? 
90: msg MSGSTRUCT ? 
91 : ps PAINTSTRUCT ? 
92: 
93: CODESEG 
94: 
95: Start: 
96: 
97: Begin required initializations 
98: 
99: 

100: 
101 : 
102: 
103: 
104: 
105: 

call 
or 
j nz 
imp 

@@InitTaskOk: 

InitTask 
ax, ax 
@@InitTaskOk 
@@InitFail 

Program segment prefix 
Pointer to command line string 
Handle to previous instance 
Handle to this instance 
Window display style 
Message loop structure 
WM_PAINT structure 

Initialize this task 
Test result in ax 
Continue if ax is not zero 
Else exit with error code 

106: Save various items returned by InitTask 
107: 
108: 
109: 
110: 
111 : 
112: 
113: 
114: 
115: 
116: 
117: 
118 : 
119 : 
120: 
121 : 
122: 
123: 
124: 
125: 
126: 
127: 
128: 
129: 
130: 
131 : 
132: 
133: 
134: 
135: 
136: 

mov 
mov 
mov 
mov 
mov 

[pSP], es 
[pszCmdLine], bx 
[hPrevInstj, si 
[hInstance], di 
[cmdShow), dx 

Continue required initializations 

push 0 
call WaitEvent 
push di 
call InitApp 
or ax, ax 
i nz @@InitAppOk 
imp @@InitFail 

@@InitAppOk: 

call WinMain 
imp Exit 

@@InitFail: 

mov [exCodej, 0ffh 

Exit: mov ah, 04Ch 
mov aI, [exCodej 
int 21h 

.. NEWPAGE 

Program segment prefix 
Pointer to command line (es:bx) 
Previous program instance handle 
This program instance handle 
Window display style 

Push task ID (0 current task) 
Clear any waiting events 
Push program instance handle 
Initialize application queue 
Test result in ax 
Continue if InitApp successful 
Else exit with error code 

Inits done--start application 
Jump to exit 

Startup error code = -1 

DOS function: Exit program 
Return exit code value 
Call DOS. Terminate program 



PROGRAMMING fOR \1\1"".-.,,,.,,, 

137: ,---------------------------------------------------------------
138: ; WinMain Equivalent to WinMain in a C program 
139: ---------------------------------------------------------------
140: Input: 
141 : 
142: 
143: 
144: 
145: 
146: 

none 
Note: This procedure isn't required, but it permits Turbo 

Debugger to skip over the startup code and begin 
tracing here. Apparently, this happens because TO 
recognizes WinMain as the application entry point. 

Output: 
147: none 
148: Registers: 
149: none 
150: ---------------------------------------------------------------
151: PROC 
152: 
153: 
154: 

WinMain PASCAL 
call Applnit 
call AppRun 
ret 

155: ENOP WinMain 
156: %NEWPAGE 

Initialize application 
Execute message loop 

157: 
158: 
159: 
160: 
161 : 
162: 
163: 
164: 
165: 
166: 
167: 

; Applnit Register and create the app's window 

Input: 
hPrevlnst 
hInstance 
cmdShow 

Output: 
none 

Registers: 
ax 

Handle to previous instance (global) 
Handle to this instance (global) 
Window display style (global) 

168: ---------------------------------------------------------------
169: PROC AppInit PASCAL 
170: USES di, si 
171 : 
172: 
173: 
174: 

call 
mov 

RegisterWin 
si, [hlnstance] 

Register program's main window 
Use s1 to hold instance handle 

175: Create element of window from registered window class 
176: 
177: 
178: 
179: 
180: 
181 : 
182: 
183: 
184: 
185: 
186: 
187: 
188: 
189: 
190: 

push 
push 
push 
push 
push 
push 
puSh 
push 
push 
push 
push 
push 
push 
push 

ds 
OFFSET szWndName 
ds 
OFFSET szAppName 
WS_OVERLAPPEOWINDOW 
0 
CW_USEDEFAULT 
CW_USEDEFAULT· 
CW_USEDEFAULT 
CW_USEOEFAULT 
0 
0 
si 
0 

Segment for szWndName 
The window's class name 
Segment for szAppName 
Caption for title bar 
The window's style 
Low word of Style 
Starting x coordinate 
Starting y coordinate 
Starting width 
Starting height 
Handle to parent window (none) 
Handle to menu (none) 
Program instance handle 
Optional user parameters (none) 

continues 

683 



684 

Listing 15.4. continued 
191 : 
192: 
193: 
194: 
195: 
196: 
197: 
198: 
199: 
200: 
201 : 
202: 
203: 
204: 
205: 
206: 
207: 
208: 
209: 
210: 
211 : 
212: 
213: 
214: 
215: 
216: 
217: 
218: 
219: 
220: 
221 : 
222: 
223: 
224: 
225: 
226: 
227: 
228: 
229: 
230: 
231: 
232: 
233: 
234: 
235: 
236: 
237: 
238: 
239: 
240: 
241: 
242: 
243: 
244: 

pUSh 
call 
mov 

o 
CreateWindow 
di, ax 

Optional user parameters (none) 
Create window element 
Save window handle in di 

Begin process of showing main window 

push 
push 
call 

di 
[cmdShowl 
ShovNIindow 

Push window handle 
Push window style 
Make window visible 

Force immediate painting of window contents 

pUSh 
call 

ret 
ENDP Applnit 
.. NEWPAGE 

; AppRun 

Input: 
none 

Output: 
none 

Registers: 
ax 

PROC AppRun 
@@10: push 

push 
push 
push 
push 
call 
or 
jz 
push 
push 
call 
push 
push 
call 
jmp 

@@99: ret 
ENDP AppRun 
%NEWPAGE 

di 
UpdateWindow 

Push window handle 
Update window contents 

Run the application (the "message loop", 

PASCAL 
ds Push msg segment address 
OFFSET msg Push msg offset address 
NULL Unused 
NULL Unused 
NULL Unused 
GetMessage Get next message 
ax, ax Did GetMessage return zero? 
@@99 If yes, exit loop 
ds Push msg segment address 
OFFSET msg Push msg offset address 
TranslateMessage Translate keyboard messages 
ds Push msg segment address 
OFFSET msg Push msg offset address 
DispatchMessage Send message to window proc 
@@10 Loop until app ends 

---------------------------------------------------------------, 
; RegisterWin Register the program's main window class 

Input: 
hPrevInst 
hInstance 

Output: 

Handle to previous instance (global) 
Handle to this instance (global) 



» r 
l 
i 
r 
~~> 

~,~-
t 

245: 
246: 
247: 
248: 
249: 
250: 
251: 
252: 
253: 
254: 
255: 
256: 
257: 
258: 
259: 
260: 
261: 
262: 
263: 
264: 
265: 
266: 
267: 
268: 
269: 
270: 
271: 
272: 
273: 
274: 
275: 
276: 
277: 
278: 
279: 
280: 
281: 
282: 
283: 
284: 
285: 
286: 
287: 
288: 
289: 
290: 
291: 
292: 
293: 
294: 
295: 

none 
Registers: 

ax 

PROC RegisterWin PASCAL 
LOCAL ~wc:WNDCLASS Allocate structure on stack 

Preserve registers USES di. si 

cmp 
jne 
mov 

[hPrevInstl, 0 
@@99 
si. [hInstance I 

Is a prior instance running? 
If yes, jump to exit 
Use si to hold instance handle 

Assign values to global window class structure @@wc 

mov 
mov 
mov 
mov 
mov 
mov 

[@@wc.clsStylel. NULL 
[WORD PTR ~wc.clsLpfnwndProc 
[WORD PTR (@@Wc.clsLpfnWndProc) 
[@@wc.clsCbClsExtraj, 0 
[@@wc.clsCbWndExtraj. 0 
[@@wc.clsHlnstancel. si 

I, OFFSET WndProc 
+ 2), SEG WndProc 

Get and assign icon handle from app's resources 

push 
push 
push 
call 
mov 

Get and 

push 
push 
push 
call 
mov 

si 
0 
ID_ICON 
LoadIcon 
[@@wc.clsHlconl , ax 

assign a cursor handle 

0 
0 
IDC_ARROW 
LoadCursor 
[@@wc.clsHCursorl , ax 

Program instance handle 
High word of resource ID 
Low word of resource ID 
Load icon from app's resources 
Save resulting icon handle 

Instance handle (none) 
High word of resource ID 
Low word of resource ID 
Load standard cursor 
Save resulting cursor handle 

Assign remaining window class structure values 

mov [@@wc.clsHbrBackground), COLOR_WINDOW + 
mov [WORD PTR @@wc.clsLpszMenuName I, ID_MENU 
mov [WORD PTR (@@wc.clsLpszMenuNamel + 2 I. 0 
mov [WORD PTR @@wc.clsLpszClassName I. OFFSET szWndName 
mov [WORD PTR (@@wc.clsLpszClassName) + 2], ds 

Register the window class 

push 
lea 
push 
call 

ss 
ax, [@@WC) 
ax 
RegisterClass 

Push segment of wc 
Load ax with wc offset 
Push offset of wc 
Register the window class 

continues 

685 



686 

Listing 15.4. continued 
296: 
297: 
298: 
299: 
300: 
301 : 
302: 
303: 
304: 
305: 
306: 
307: 
308: 
309: 
310: 
311: 
312: 
313: 
314: 
315: 
316: 
317: 
318: 
319: 
320: 
321: 
322: 
323: 
324: 
325: 
326: 
327: 
328: 
329: 
330: 
331: 
332: 
333: 
334: 
335: 
336: 
337: 
338: 
339: 
340: 
341: 
342: 
343: 
344: 
345: 
346: 
347: 
348: 
349: 
350: 
351 : 

@@99: 
ret 

ENDP RegisterWin 
%NEWPAGE 

; WndProc Main Window Procedure (called by Windows) 

Input: 
hWnd 
uMsg 
wp 
Ip 

WORD (stack) 
WORD (stack) 
WORD (stack) 
DWORD (stack) 

Handle to window 
Message identifier 
Optional word parameter 
Optional double word parameter 

Output: 
Depends on 

Registers: 
ax, dx 

message 

PROC WndProc WINDOWS PASCAL FAR 
ARG hwnd:WOAD, uMsg:WOAD, wp:WOAD, Ip:DWORD 
USES di, si 

mOI/ di, [hWndl 
mOI/ si, [uMsgl 
cmp si, WM_DESTAOY 
je @@WMDESTAOY 
cmp si, WM_CLOSE 
je @@WMCLOSE 
cmp si, WM_PAINT 
je @@WMPAINT 
cmp si, WM_COMMAND 
je @@WMCOMMAND 
jmp @@DEFWINDOWPROC 

Process WM_DESTAOY message 

@@WMDESTROY: 
push 
call 
jmp 

o 
PostQuitMessage 
@@AETUANZEAO 

Process WM_CLOSE message 

@@WMCLOSE: 

Use di to hold window handle 
use si to hold message 
Is message WM_DESTROY? 
If yes, jump to process message 
Is message WM_CLOSE7 
If yes, jump to process message 
Is message WM_PAINT? 
If yes, jump to process message 
Is message WM_COMMAND? 
If yes, jump to process message 
Else jump to default processor 

Push user-defined exit code 
Call Windows to post WM_QUIT msg 
Aeturn 0L (long 32-bit zero) 

push di Push window handle 
push ds Push segment of dialog string 
push OFFSET SZDlgString Push offset of dialog string 
push ds Push segment of title string 
push OFFSET szAppName Push offset of title string 
push MB_ICONQUESTION OR MB_YESNO Push message-box styles 
call MessageBox call Windows function 
cmp ax, IDYES Did user select Yes button? 
jne @@RETURNZEAO If no, exit WM_CLOSE prOcessor 
push di Else push window handle 
call DestroyWindow Destroy window and end program 
jmp @@RETURNZERO Return 0L (long 32-bit zero) 



PROGRAMMING FOR WINDOWS 

352: 
353: 
354: 
355: 
356: 
357: 
358: 
359: 
360: 
361: 
362: 
363: 
364: 
365: 
366: 
367: 

@@WMPAINT: 
push 
push 
push 
call 
mov 

Call 

push 
push 
push 
push 
push 
call 

di 
ds 
OFFSET ps 
BeginPaint 
si, ax 

a GOI function 

si 
10 
25 
200 
150 
Rectangle 

Push window handle 
Push segment of ps structure 
Push offset of ps structure 
Initiate GOI painting 
Save device context handle in 

Push HOC 
Push rectangle coordinates 

j Draw the rectangle 

368: Insert other GOI function calls here 
369: 
370: 
371 : 
372: 
373: 
374: 
375: 
376: 
377: 

push di 
push ds 
push OFFSET ps 
call EndPaint 
jmp @@RETURNZERO 

Process WM~COMMANO message 

378: @@WMCOMMANO: 
pUSh 
push 
push 
call 
jmp 

di 
[wp] 
[lp] 
WinAppCommands 
@@RETURNZERO 

Push window handle 
Push segment of ps structure 
Push offset of ps structure 
End GOI painting 
Return 0L (long 32-bit zero) 

Push window handle 
Push word parameter 
Push long parameter 
Call our command handler 
Return 0L (long 32-bit zero) 

379: 
380: 
381 : 
382: 
383: 
384: 
385: 
386: 

Call Windows default message handler 

387: @@OEFWINOOWPROC: 
388: push di 
389: push si 
390: puSh [wp] 
391: push IIp] 
392: call OefWindowProc 
393: j mp @@99 
394: 
395: @@RETURNZERO: 

Push window handle 
Push message value 
Push optional word parameter 
Push optional long parameter 
Call default message handler 
Return OefWindowProc result 

si 

396: 
397: 

xor ax, ax Return 0L (OWORO zero) in ax:dx 

398: @@99: 
399: 
400: ENOP 

xor dx, dx 

ret 
WndProc 

continues 

687 



688 

PART II _ ApPLICATION PROGRAMMING 

listing 15.4. continued 
401 : 
402: 
403: 
404: 
405: 
406: 
407: 
408: 
409: 
410: 
411 : 
412: 
413: 
414: 
415: 
416: 
417: 
418: 
419: 
420: 
421 : 
422: 
423: 
424: 
425: 
426: 
427: 
428: 
429: 
430: 
431 : 
432: 
433: 
434: 
435: 
436: 
437: 
438: 
439: 
440: 
441 : 
442: 
443: 
444: 
445: 
446: 
447: 
448: 
449: 
450: 
451: 
452: 
453: 
454: 

%NEWPAGE 

j DlgProc Dialog procedure (called by Windows) 

Input: 
hWndDlg 
uMsg 
wp 
lp 

Output: 
Depends on 

Registers: 
ax 

WORD (stack) 
WORD (stack) 
WORD (stack) 
DWORD (stack) 

message 

Handle to dialog window 
Message identifier 
WM_COMMAND identifier 
Optional double word parameter 

PROC DlgProc WINDOWS PASCAL FAR 
ARG hWndDlg:WORD, uMsg:WORD, wp:WORD, lp:DWORD 
USES si 

mov si, [uMsg] 
cmp si, WM_INITDIALOG 
je @@WMINITDIALOG 
cmp si, WM_COMMAND 
je @@WMCOMMAND 
jmp @@RETURNFALSE 

Process WM_INITDIALOG message 

@@WMINITDIALOG: 
jmp @@RETURNTRUE 

Use si to hold message 
Is it WM_INITDIALOG? 
If yes, jump to process messasge 
Is it WM_COMMAND? 
If yes, jump to process message 
Other messages--exit 

Insert any initializations here 
Exit and return TRUE 

Process WM_COMMAND message (for dialog buttons, etc.) 

@@WMCOMMAND: 
mov 
cmp 
je 
jmp 

si, [wp] 
si, IDOK 
@@IDOK 
@@RETURNFALSE 

Use si to hold WM_COMMAND id 
IS it IDOK? 
If yes, jump to process command 
Else exit and return FALSE 

Process lOOK command (e.g. when user selects the OK button) 

@@IDOK: 
push 
push 
call 

jmp 

@@RETURNTRUE: 
mov 
jmp 

@@RETURNFALSE: 
mov 

@@99: ret 
ENDP DlgProc 

[hWndDlg] 
0 
EndDialog 

@@RETURNTRUE 

ax, TRUE 
@@99 

ax, FALSE 

Push dialog window handle 
Push value to return to caller 
End the dialog 
Enable to add more commands 

Return BOOL true value 

Return BOOL false value 



455: .. NEWPAGE 
456: j---------------------------------------------------------------
457: ; WinAppCommands Menu command subroutine 
45B: j---------------------------------------------------------------
459: Input: 
460: hWnd WORD (staCk) Handle to window 
461: wp WORD (stack) Word parameter (command ID) 
462: lp DWORD (stack) Optional double word parameter 
463: Output: 
464: none 
465: Registers: 
466: none 
467: ---------------------------------------------------------------
468: PROC WinAppCommands PASCAL 
469: ARG hWnd:WORD, wId:WORD, lp:DWORD 
470: USES di, si 
471 : 

mov di, [hWnd) Move window handle into di 
mov si, [wId) Move command ID into si 
cmp si, CM_DEMO_EXIT Is command CM_DEMO_EXIT? 
je tltlCMDEMOEXIT If yes, jump to process 
cmp si, CM_HELP_ABOUT IS command CM_HElP_ABOUT? 
je tltlCMHELPABOUT If yes, jump to process 

472: 
473: 
474: 
475: 
476: 
477: 
47B: 
479: 

jmp @@99 Unrecognized command exit 

480: Process the menu's Demo:Exit command 
481: 
482: 
483: 
484: 
485: 
4B6: 
487: 
488: 
489: 
490: 
491 : 
492: 
493: 
494: 
495: 
496: 
497: 
498: 
499: 
500: 
501: 
502: 
503: 
504: 
505: 
506: 
507: 
508: 
509: 
510: 

@@CMDEMOEXIT: 
push di Push window handle 
push WM_CLOSE Push message to send 
push 0 Push unused word parameter 
push 0 Push unused long parameter (1 ) 
push 0 Push unused long parameter (2) 
call SendMessage Send WM_ClOSE message 
jmp @@99 

Process the menu's Help:About command 

Push window handle 
@@CMHELPABOUT: 

push 
call 

jmp 

di 
HelpAbout 

@@99 
Call our about-box subroutine 
Enable to add more commands 

@@99: ret 
ENDP WinAppCommands 
.. NEWPAGE 
j------------------------------------------------~--------------
j HelpAbout About box subroutine 

Input: 
hWnd 

Output: 
none 

Registers: 
none 

WORD (stack) Handle to dialog-owner window 

continues 

689 



688 

PART II _ ApPLICATION PROGRAMMING 

Listing 15.4. continued 
401: 
402: 
403: 
404: 
405: 
406: 
407: 
408: 
409: 
410: 
411 : 
412: 
413: 
414: 
415: 
416: 
417: 
418: 
419: 
420: 
421 : 
422: 
423: 
424: 
425: 
426: 
427: 
428: 
429: 
430: 
431: 
432: 
433: 
434: 
435: 
436: 
437: 
438: 
439: 
440: 
441 : 
442: 
443: 
444: 
445: 
446: 
447: 
448: 
449: 
450: 
451: 
452: 
453: 
454: 

%NEWPAGE 

; DlgPr-oc Dialog pr-ocedur-e (called by Windows) 
;---------------------------------------------------------------

Input: 
hWndDlg 
uMsg 
wp 

WORD (stack) 
WORD (stack) 
WORD (stack) 
DWORD (stack) 

Handle to dialog window 
Message identifier
WM_COMMANO identifier-

lp Optional double wor-d par-ameter-
Output: 

Depends on message 
Register-s: 

ax 

PROC DIgPr-oc WINDOWS PASCAL FAR 
ARG hWndDlg:WORD. uMsg:WORD, wp:WORD, Ip:DWORD 
USES si 

mOil 
cmp 
je 
cmp 
je 
jmp 

si, [uMsg] 
si, WM_INITDIALOG 
@@WMINITDIAlOG 
si, WM_COMMAND 
@@WMCOMMAND 
@@RETURNFALSE 

Process WM_INITDIALOG message 

@@WMINITDIAlOG: 
jmp @@RETURNTRUE 

Use si to hold message 
Is it WM_INITOIAlOG? 
If yes, jump to pr-ocess messasge 
Is it WM_COMMAND? 
If yes, jump to pr-ocess message 
Other- messages--exit 

Insert any initializations her-e 
Exit and r-etur-n TRUE 

Pr-ocess WM_COMMAND message (for- dialog buttons, etc.) 

@@WMCOMMAND: 
mov 
cmp 
je 
jmp 

Si, [wP] 
51, IDOK 
@@lOOK 
@@RETURNFAlSE 

Use si to hold WM_COMMAND id 
Is it lOOK? 
If yes, jump to pr-ocess command 
Else exit and r-etur-n FALSE 

Pr-ocess lOOK command (e.g. when user- selects the OK button) 

@@IDOK: 
pUSh 
push 
call 

jmp 

@@RETURNTRUE: 
mOil 
jmp 

@@RETURNFALSE: 

[hWndDlg) 
o 
End Dialog 

@@RETURNTRUE 

ax, TRUE 
@@99 

mOil ax, FALSE 
@@99: r-et 
ENDP OlgPr-oc 

Push dialog window handle 
Push value to r-etur-n to caller 
End the dialog 
Enable to add mor-e commands 

Retur-n BooL true value 

Retur-n Bool false value 



r 
I 
f 

t ... 
I 

455: 
456: 
457: 
458: 
459: 
460: 
461: 
462: 
463: 
464: 
465: 
466: 
467: 
468: 
469: 
470: 
471 : 
472: 
473: 
474: 
475: 
476: 
477: 
478: 
479: 
480: 
481 : 
482: 
483: 
484: 
485: 
486; 
487: 
488: 
489: 
490: 
491: 
492: 
493: 
494: 
495: 
496: 
497: 
498: 
499: 
500: 
501: 
502: 
503: 
504: 
505: 
506: 
507: 
508: 
509: 
510: 

PROCRAMMII'iC FOR \O/"",y".« 

%NEWPAGE 
, ---------------------------------------------------------------
; WinAppCommands Menu command subroutine 
j~--------------------------------------------------------------

, 

Input: 
hWnd 
wp 
lp 

Output: 
none 

Registers: 
none 

WORD (stack) 
WORD (stack) 
DWORD (stack) 

Handle to window 
Word parameter (command 10) 
Optional double word parameter 

---~-----------------------------------------------------------

PROC WinAppCommands PASCAL 
ARG hWnd:WORD, wId:WORD, Ip:OWORD 
USES di, si 

mov di, [hWndj Move window handle into di 
mov si, [wId) Move command 10 into si 
cmp si, CM_DEMO_EXIT Is command CM_DEMO_EXIT? 
je @tlCMDEMOEXIT If yes, jump to process 
cmp si, CM_HELP_ABOUT Is command CM_HELP_ABOUT? 
je @tlCMHELPABOUT If yes, jump to process 
jmp t1t199 Unrecognized command exit 

Process the menu's Demo:Exit command 

tltICMDEMOEXIT: 
push di Push window handle 
push WM_CLOSE Push message to send 
push 0 Push unused word' parameter 
push 0 Push unused long parameter (1) 
push 0 Push unused long parameter (2) 
call SendMessage Send WM_CLOSE message 
jmp tI@99 

Process the menu's Help:About command 

Push window handle 
tI@CMHELPABOUT: 

push 
call 

jmp 

di 
HelpAbout 

@@99 
Call our about-box subroutine 
Enable to add more commands 

t1t199: ret 
ENDP WinAppCommands 
"NEWPAGE 

; HelpAbout 

Input: . 
hWnd 

Output: 
none 

Registers: 
none 

About box subroutine 

WORD (stack) Handle to dialog-owner window 

continues 

689 



690 

listing 15.4. continued 
511 : PROC HelpAbout PASCAL 
512: ARG hWnd:WORD 
513: USES di, si 
514: 
515: puSh SEG DlgProc Push dialog procedure segment 
516: push OFFSET DlgProc Push dialog procedure offset 
517: push [hlnstancel Push program instance handle 
518: call MakeProclnstance Make procedure instance 
519: mov di, dx Save segment address in di 
520: mov si, ax Save offset address in si 
521: 
522: push [hlnstancel Push program instance handle 
523: push 0 Push segment value (0 = flag) 
524: push ID_ABOUT Push dialog box resource ID 
525: push [hWnd) Push owning window handle 
526: push di Push procedure instance segment 
527: push si Push procedure instance offset 
528: call DialogBox Execute dialog box 
529: 
530: push di Push procedure instance segment 
531 : push si Push procedure instance offset 
532: call FreeProclnstance Free procedure instance 
533: 
534: ret 
535: ENDP HelpAbout 
536: 
537: END Start End of program I entry point 

Listing 15.5. WINAPP.DEF. 
1 : NAME WINAPP 
2: DESCRIPTION 'WinApp \11.00 (C) 1995 by Tom Swan' 
3: EXETYPE WINDOWS 
4: STUB 'WINSTUB.EXE' 
5: CODE PRELOAD MOVEABLE DISCARDABLE 
6: DATA PRELOAD MOVEABLE MULTIPLE 
7: HEAPSIZE 1024 
8: STACKSIZE 8192 
9: EXPORTS WndProc 

10: DlgProc 

Listing 15.6. WINAPP.RC. 
1: #include <windows.h> 
2: #include ·winapp.rh" 
3: 
4: ID_ICON ICON winapp.ico 
5: 
6: ID_MENU MENU 
7: BEGIN 
8: POPUP '&Demo" 



9: BEGIN 
10: MENUITEM "E&xit', CM_DEMO_EXIT 
11: END 
12: POPUP '&Help" 
13: BEGIN 
14: MENUITEM "&About ... ·, CM_HELP_ABOUT 
15: END 
16: END 
11: 
18: ID_ABOUT DIALOG 6, 15, 180, 98 
19: STYLE WS_DLGFRAME : WS_POPUP 
20: CAPTION 'About WAbout" 
21: { 
22: DEFPUSHBUTTON 'OK', lOOK, 13, 47, 16, 40 
23: ICON ID_ICON, -1, 12, 16, 18, 16 
24: CONTROL" ", -1, "static', SS_BLACKFRAME, 42, 8, 133, 81 
25: LTEXT "WinApp vl.00', -1, 55, 18, 112, 8 

PROGRAMMING FOR 

26: LTEXT "Copyright \251 1995 by Tom SWan", -1, 54, 35, 112, 8 
27: LTEXT "All rights reserved', -1, 55, 52, 112, 8 
28: LTEXT "From Mastering Turbo Assembler 2nd Ed', -1, 55, 69, 112, 8 
29: } 

listing 15.7. WINAPP.RH. 
1: II =========================================================== 
2: II winapp.rh -- Resource constants (resource or C modules) 
3: II =========================================================== 
4: 
5: II Resource identifiers 
6: 
7: #define ID_ICON 100 
8: #define ID_MENU 100 
9: #define ID_ABOUT 100 

10: 
11: II Menu command identifiers 
12: 
13: Hdefine CM_DEMO_EXIT 101 
14: Hdefine CM_HELP_ABOUT 999 

listing 15.8. WINAPP.RI. 
1: =========================================================== 
2: winapp.ri -- Resource constants (assembly language modules) 
3: =========================================================== 
4: 
5: Resource identifiers 
6: 
7: ID_ICON 
8: ID_MENU 
9: ID_ABOUT 

10 : 

EOU 
EOU 
EOU 

100 
100 
100 

continues 

691 



5 

692 

GRAMMING 

Listing 15.8. continued 
11: j Menu command identifiers 
12: 
13: CM_DEMO_EXIT EOU 101 
14: EOU 999 

How to Assemble WinApp 
Use the same commands to assemble and link WinApp that you used for WHello. Change 
to the WIN\WINAPP directory and type make, or use the BUILD.BAT (type build) or 
MAKBAT (type mak) batch files. For more information, refer to the instructions in this chapter 
under "How to Assemble WHello." 

NOTE: 

Use TOW toiracEnNirlAPP/~'ttxJeas;~~u"readaooutltsinstructionS."ASSemble and link by 
typing build, start TOW, and use the File/Open command to open wrNAPp.EXE. 

Overview of WinApp 
Much of the WinApp program (refer to Listing 15.4) is similar to WHello, so I'll describe 
only significant differences here. Line 25 includes resource identifiers from WINAPP.RL A 
typical Windows application has numerous resources, and its usually best to declare the iden
tifiers in a separate file as shown here. 

Lines 29-52 declare more than a few Windows API functions, but except for the number of 
functions, this section is the same as in WHello. You may add any Windows function to this 
list, but ifit grows much larger, you might want to store the declarations in a separate file. 
(Hint: Sort the file alphabetically so you can easily determine whether a function is already 
listed. The order of declarations is unimportant.) 

Lines 56-66 declare the program's global procedures, and also make public its two callback 
functions, WndProc and DlgProc, so that Windows can call them. Because of the statements 
at lines 65-66, the linker definition file does not have to export the subroutine names. There's 
no harm in doing so, however, as shown in WINAPP.DEF at lines 9-10 (Listing 15.5). 

The program's data segment (refer again to Listing 15.4) is similar to WHello's, but declares 
a few more variables that I'll explain later. The startup code is identical in both programs. As 
in WHello, WinMain (lines 151-154) isn't required, but enables TDW's Execute startup code 
option to function correctly. 



~ ... --.------

Window registration and display operations are the same in WHello and WinApp, but there 
is one significant difference. Lines 285-286 assign a menu resource, identified by ID_MENU, to 
the window class structure's clslpszMenuName variable. In English, clslpsz stands for "win
dow class long pointer to a zero-terminated string." To create a popup menu in a window, 
simply insert menu commands into the resource script file, and assign the menu's resource 
identifier to the window class structure. 

NOTE: 

There are other ways to activate popup menus in Windows programs, but assigning a 
resource identifier to the window class is the simplest. A good Windows tutorial should cover 
alternate methods, which are beyond the scope of this introductory chapter. 

The message loop in WinApp (lines 219-236) is also identical to the same code in WHello. 
The two programs begin to differ, however, starting at line 313 in WINAPP.ASM, at the 
start of the main-window procedure, WinProc. 

As in WHello, WndProc handles messages intended for the program's main window. In this 
case, the procedure uses register di to hold that window element's handle (line 317) and it 
uses si to hold the message value (line 318). Lines 319-327 inspect the message value in si 

and jump to the appropriate section of the window procedure that handles the message, or 
to a default handler. WndProc handles four messages: 

• WM_DESTROY indicates that the window element is being destroyed, and because it is 
the program's main window, this message also terminates the program by calling 
PostQuitMessage. The code for this message is the same in WHello and WinApp. 

• WM_ClOSE indicates that the user has attempted to close the window-by pressing 
Alt+F4, for example. The WinApp program uses this message to display a prompt 
that confirms the window's closure, providing the user a chance to continue the 
program rather than end it. (Similar programming can help prevent loss of informa
tion-for example, you could prompt the user to save an edited file before the 
program ends.) 

• WM]AINT indicates that the window's contents require drawing. Windows generates 
this message in response to a variety of events. For example, maximizing the 
window to full screen generates a WM_PAINT message, as does uncovering a window 
by moving another window aside. 

• WM_COMMAND indicates that the user has selected a command from the window's 
popup menu. An additional subroutine in WinApp handles this program's com
mands-but more on that later. 

693 



694 

To fully understand the sample program, you should examine and trace the code for each of 
these messages. The instructions at local label @@WMCLOSE handle the WM_CLOSE message; the 
code at @@WMPAINT handles WM_PAINT, and so on. The instructions at @@RETURNZERO set ax:dx 

to zero before returning from the window procedure. This is the correct finish for most 
messages, but you should confirm each message's requirements in a Windows API reference. 

To display the message box that prompts you whether to terminate the program, WndProc 

calls the Windows MessageBox function at line 345. To this function you must pass a host of 
arguments as shown and commented by the preceding instructions at lines 339-344. The 
result is a message box dialog that operates on its own until dosed by one of its buttons (see 
Figure 15.3). 

Figure 15.3. 
WinApp s message-box that 
prompts users whether to end 
the program. 

When the window procedure receives a WM]AINT message, it must respond by updating the 
window's contents. The first step in this process is to call the API BeginPaint function as 
demonstrated at lines 353-356. To this function you must pass the address of a paint struc
ture, which in this case is a global variable in the data segment. (This section cannot be called 
recursively; therefore, a global variable is allowed.) BeginPaint fills the paint structure, ps, 

with values that you may use for displaying objects in the window by calling a Graphics Device 
Interface (GO!) function. 

There's much more to GOI programming than I can cover in one chapter, so I'll show only 
one sample function call here. You call most GOI functions using similar techniques, how
ever, and you can find additional examples in most Windows tutorials. 

Usually, the first argument passed to a GOI function is a device context handle (HOC) ob
tained from BeginPaint. The handle idel1tifies the context in which output is to occur. In 
most cases, that context is the video display that shows the window, but it could also repre
sent another output device such as a plotter or printer. 

BeginPaint stores the HOC in the paint structure, but for convenience, the function returns 
the same handle in register ax. Line 357 takes advantage of this fact by assigning ax to regis
ter si. Because the window procedure has already selected the message to process, si is again 
available for use-an optimization that few if any high-level languages would perform. 

Most GOI functions require arguments such as coordinate values, strings, and other values. 
Lines 362-365, for example, push literal coordinates for a rectangle onto the stack. Finally, 

line 366 calls the GOI Rectangle function, which displays the rectangle shown in 
Figure 15.2. 



r 

The final step in processing a WM_PAINT message is to call EndPaint, which counters the ear
lier call to BeginPaint. Pass the window's handle and the address of the initialized paint struc
ture, and then return ax:dx equal to zero (see lines 370-374). 

Lines 378-383 handle the program's menu commands. Each command's programming could 
be inserted at this place, but for more modular and easier-to-maintain code, I prefer to call 
a local subroutine such as WinAppCommands. To that subroutine, WndProc passes the window 
handle, word, and long argument values by pushing these values onto the stack. (In the next 
section, I'll explain what WinAppCommands does.) 

Finally, lines 388-393 call the default message handler, DefWindowProc, for messages not 
processed by the program's window procedure. This ensures that common operations such 
as window resizing, movements, popup menus, and so on work normally. 

Menus 
WinApp's popup menu has only rwo commands-FilelExit (which ends the program) and 
He~lAbout(which displays an informational dialog box). Though relatively simple, the pro
gram demonstrates the basic steps for implementing menu commands far more complex than 
these. 

First, design the menu as a resource script as lines 6-16 in WINAPP .Re show (refer back to 

Listing 15.6). Most development systems such as Borland's Resource Workshop supply a 
menu editor that writes resource script statements, but you can type the menu instructions 
into an .Re file manually as I did here. 

After designing the menu, assign its resource identifier to the window class (lines 285-286 in 
WINAPP.ASM, Listing 15.4). Windows will then display the menu under the window's 
top border, and will issue a WM_COMMAND message to the window procedure when users select 
a menu command. 

That message's wp parameter identifies which command was selected, and is set to the value 
in the menu resource for that command. For example, when you select Wi nApp , s FilelExit 
command, wp is set to that command's resource identifier value, CM_DEMO_EXIT (see line 13 in 
files WINAPP.RH and WINAPP.RI, and also line 10 in the resource script file, 
WINAPP.RC). 

In response to WM_COMMAND, WinApp's window procedure, WndProc, calls WinAppCommands (lines 
468-499). In this subroutine, the code at Jines 472-478 copies the window handle argument 
hWnd to register di and the command identifier to si. Mter these steps, lines 474-478 jump 
to an appropriate local label to process individual commands. For example, when you select 
File I Exit, line 475 jumps to the local label @@CMDEMOEXIT. 

695 



15 

696 

PART II _ ApPLICATION PROGRAMMING 

The instructions at that label (lines 482-489) demonstrate how to send a message to a win
dow by calling SendMessage in the Windows API. In response to a command to exit the 
program, WinApp sends the window a WM_CLOSE message. This causes Windows to call the 
window procedure, which as you may recall, displays a message box that confirms your in
tention to quit. 

WinAppCommands handles the program's other menu command by calling another subroutine, 
HelpAbout (lines 494-495). This subroutine displays the program's informational dialog, 
discussed in the next section. 

NOTE 

When using WinApp as a starting pla~e for your own programs, you can enable the com
mented jinp at line 496 and add additional command instructions after this instruction. 

Dialog Boxes 
A dialog box is a specialized window that usually contains a variety of controls for selecting 
program options, displaying information, inputting data, and performing other interactive 
operations. Most Windows development systems come with a dialog editor such as the one 
in Borland's Resource Workshop that you can use to design dialog boxes. 

The output of a dialog editor is a script of resource commands similar to those at lines 18-29 
in WINAPP.RC, Listing 15.6. Few programmers would type these awkward instructions 
manually, so I won't explain them here. When it comes to dialogs, it's best to use an inter- . 
active editor that can create the necessaty resource script statements. 

As with all resources, a dialog is uniquely identified, in this example, by the symbol ID_ABOUT. 

The HelpAbout subroutine in WINAPP.ASM (see lines 511-534) uses this identifier to ex
ecute the dialog-a process that requires several critical steps. 

The first of those steps creates a procedure instance, imaginatively called a thunk, which ini
tializes the data segment register and then calls the program's code so the program can find 
its global data. The resulting indirect subroutine call makes a thunking noise that only pro
grammers who also see leprechauns can hear. 

The procedure instance for a dialog box is the subroutine that handles the dialog's messages. 
This resembles a window procedure (but is not exactly the same). In WinApp, subroutine 
DlgProc (lines 415-454) handles messages for the program's about-box dialog, shown in 
Figure 15.4. 



Figure 15.4. '''''i'M'' 
WinApp s about-box dialog. 

After creating the dialog's procedure instance, the HelpAbout subroutine calls the Windows 
DialogBox function (lines 522-528). Except for the ID_ABOUT resource identifier at line 524 
and for the name of the dialog procedure at lines 515-516, you may use the code in HelpAbout 
to activate most dialog boxes. 

After DialogBox returns, you must free the procedure instance you created by calling 
MakeProclnstance. Lines 530-532 show the proper way to satisfY this requirement. 

The Dialog Procedure 
You program a dialog box's actions in a dialog procedure, similar to the way you program a 
window's actions in a window procedure. Like a window procedure, a dialog procedurere
ceives messages intended for the dialog window. 

A dialog procedure, however, differs significantly from a window procedure. You declare both 
kinds of subroutines using a PROC directive (line 415), and you specifY the same types and 
numbers of arguments (line 416). But a dialog procedure returns a BOOl true or false value in 
ax rather than a 32-bit value returned by a window procedure in ax: dx. Also, a dialog proce
dure does not call a default message handler for unprocessed messages. 

A dialog procedure must include programming for at least the messages shown in the sample 
listing (refer to lines 415-454). Windows sends the first message, WM_INITDIAlOG, just before 
the dialog becomes active. You should use this opportunity to initialize any variables that 
the dialog requires. In this case, WinApp's dialog has no variables, and as line 429 shows, the 
dialog procedure simply jumps to the section in the subroutine that returns a true value. 
Nevertheless, even if there are no initializations to perform, the dialog procedure must re
turn true for the WM_INITDIAlOG message. If for some reason the procedure cannot success
fully initialize its variables, it should return false to cancel the dialog's activation. 

The second required message is WM_COMMAND--the same message issued for menu commands. 
In this case, however, the message results from the selection of a dialog's buttons, from a 
command in the dialog's system menu if there is one, or from a keypress such as Enter or 
Esc. 

As with menu commands, the wp parameter identifies which button or command was se
lected. One of those commands might be lOOK, which indicates that the user has elected to 
close the dialog by selecting an OK button or by pressing Enter if that button is the default. 

697 



15 

698 

Other dialogs might have may other buttons and commands, but all dialog procedures should 
include programming for IDOK. 

The proper response to that command in this case is to call the Windows EndI;Jialog func
tion as shown at lines 441-444. To that function pass the dialog's window handle and any 
value to return to the dialog's caller. The DialogBox function returns this value in ax (set to 
zero in the sample code at line 443). You may use this value as you wish, though WinApp 
ignores it. 

Summary 
Writing Windows applications in assembly language requires a great deal of study and ef
fort, but provides several advantages. With assembly language, you have total control over a 
program's startup and shutdown code, and you can use registers and memory to their best 
advantage. You can also eliminate excess baggage attached to Windows programs by high
level-language compilers. 

This chapter introduces Windows programming techniques for Turbo Assembler's Ideal 
mode, but it is not a complete tutorial on Windows programming. To go beyond the infor
mation in this chapter, you'll need a Windows API reference, and you will also need files 
and utilities supplied with most C, C++, and other high-level-language development sys
tems. Turbo Assembler does not provide all of the files and utilities you need to write Win
dows applications. 

For easier programming, use the MODEL directive along with the WINDOWS and PASCAL options. 
These options automatically add prolog and epilog code to subroutines. Declare EXTAN all 
Windows API functions that your program calls. 

You may define initialized (DATASEG) and unitialized (UDATASEG) variables. You must reserve 
the first 16 bytes of initialized data for Windows' private use. 

A window class is a structure that describes window characteristics. The first instance of a 
Windows application should register a window class. That and any subsequent program 
instances should create at least one window element of the class for use as the program's main 
window. 



A window class also specifies a window procedure, to which Windows passes messages. Writing 
a window procedure is often called event-driven programming. A typical window procedure 
includes programming for many different kinds of messages that Windows generates in re
sponse to events. A program can also send its own messages. Unhandled messages should be 
passed to a default message handler, usually DefWindowProc. 

Resources are binary data that the linker binds into the program's executable code file. Ex
amples of resources in this chapter include menus, icons, and dialog boxes. Resources are 
typically created in a resource script file (or by using an interactive editor). A resource com
piler converts the script to a binary file ending with the filename extension .RES. The linker 
binds this image into the final program. Turbo Assembler does not provide a resource com
piler or editor. 

A dialog procedure programs the actions for a dialog box. Like a window procedure, a dialog 
procedure responds to messages sent to the dialog window. A dialog procedure, however, 
returns a BOOL true or false value, and it does not call a default message handler for unproc
essed messages. 

Exercises 
15.1. The Windows GDI function Ellipse draws an oval or circle. Show the declara

tions that enable an assembly language program to call the function. 

15.2. The GetWindowsDirectory function obtains the path of the Windows directory, 
usually C;\WINDOWS on most computers. Parameter IpszSysPath addresses a 
string buffer where the function stores its results. Parameter cbSysPath equals the 
size in bytes of the string buffer, and should be at least 144. Show how to call 
this function in an assembly language program to obtain the Windows path. Also 
show any data declarations needed. GetWindowsDirectory is defined in C as 
follows: 

UINT GetWindowsDirectory(LPSTR IpszSysPath, UINT cbSysPath)j 

15.3. Modify WHello to display its window maximized to full screen when the 
program is first executed. 

15.4. Modify WHello to sound a beep when the user quits the program. You may use 
the following instructions-your job is to figure out where to insert them: 
pUSh 0 
call MessageBeep 

15.5. Modify WinApp to save its main-window handle in a global variable named 
wMainHnd. 

15.6. Advanced. Modify WinApp to display its about-box dialog when the program is 
first started. Hint: One possible answer uses the modification from Exercise 15.5. 

699 



700 

Projects 
15.1. The WHello and WinApp demonstration programs in this chapter contain 

several duplicate sections-the AppRun message-loop and startup instructions, for 
example, are identical in both programs. Separate these sections into modules, 
and assemble them individually to create .OBJ code files for linking to Windows 
applications. 

15.2. Set a breakpoint in TOW for the call to OefWindowProc at line 392 in 
WINAPP.ASM, and examine the message values in si to discover the kinds of 
standard messages that Windows processes. Try to match the message identifiers 
in WINDOWS.lNC. Even better, write these messages to a text file-you have 
just created your own message tracing utility! 

15.3. Write your own stub program to display a custom message if users attempt to 
execute your Windows programs from a DOS prompt. Your stub might display a 
copyright notice, and also give instructions for how to run Windows and start 
the application. 

15.4. ModifY WinApp to parse a command-line string of options. For example, to 
expand the program's window to full screen at startup, users could run WinApp 
with the Program Manager's FilelRun command by entering winapp -x. To test 
your code, write a program that displays option strings passed to the program. 

15.5. ModifY WinApp's about-box dialog to dose automatically after a specified length 
of time (say, three seconds or so). Hints: Use the Windows function 
GetTickCount as a timer-look up its specifications in an API reference. One way 
to dose the dialog window is to send it a WM_COMMANO message with a word 
parameter equal to lOOK, which simulates the selection of the dialog's OK button. 



r 

Reference 





Assembly Language 
Reference Guide 

_ About the Reference, 704 

_ Protected-Mode Instructions, 704 

_ Going to the Source, 704 

_ Instruction Timings and Binary Encodings. 705 

_ How to Use the Reference, 706 



-----------------------------~ ..... -~-

704 

About the Reference 
This chapter lists all 8086, 8088,80286,80386,80486, and Pentium non-protected-mode 
mnemonics in alphabetic order, showing the affected flags, listing the syntax for all instruc
tion forms, and giving examples and descriptions that explain how the instructions work. 
The material here supplements the information in the preceding chapters; therefore, to get 
the most from this reference, you may also want to consult the Subject Index to locate more 
details about specific instructions. Read the next sections for hints on using this chapter and 
for the meanings of various terms. 

Protected-Mode Instructions 
Protected-mode 80286, 80386, 80486, and Pentium instructions are not included in this 
reference. These instructions are typically used only for writing operating system code that 
needs to juggle multiple processes apparently running at the same time but in fact executing 
in sequence. The protected-mode programming's main purpose is to switch among such 
processes rapidly enough to give the illusion of simultaneous execution. 

Some people may criticize the omission of protected-mode instructions in this reference but, 
after much thought about the subject, I decided that to list the instructions without also 
including the necessaty background material required to write multitasking operating sys
tem software would be nothing more than a waste of space. For application programming, 
protected-mode instructions are not needed. Even so, this book would be incomplete if it 
did not at least mention the protected-mode instruction set. (See Table 16.1.) For a list of 
books that contain more information about using these instructions and about writing 
multitasking operating systems, see the Bibliography. 

NOTE 

S~iaI80?86t 80386, 80400,and1'entium hon-protected-mode instructions such as bound, 
···ente\,,;'l.ave, and the condltiona1setinstructions are covered here in detail along with syntax 

deSdiptiQn$ for extended n.:bitregisters. Also, instructions restricted to specific processors 
ar~~tearlymarked. . 

Going to the Source 
At least five sources were used to confirm the instruction formats and flag settings in this 
chapter. When any of these references did not exactly agree (which was often the case), the 
documentation printed here was confirmed by experiment. This extensive cross-checking 
turned up a surprising number of mistakes in various Intel and Microsoft references. Natu
rally, all of these errors are corrected here. 



Table 16.1. Protected-Mode Instructions. 
Mnemonic 

arp1 

clts 

1ar 

19dt 

lidt 

lldt 

1msw 

151 

ltr 

mov (386) 

sgdt 

sidt 

sldt 

smsw 

str 

verr 

verw 

*80386, 80486, and Pentium only. 

Description 

Adjust RPL Field of Selector 

Clear Task-Switched Flag in CRO 

Load Access Rights Byte 

Load Global Descriptor Table Register 

Load Interrupt Descriptor Table Register 

Load Local Descriptor Table Register 

Load Machine Status Word-

Load Segment Limit 

Load Task Register 

Move To/From Special Registers* 

Store Global Descriptor Table Register 

Store Interrupt Descriptor Table Register 

Store Local Descriptor Table Register 

Store Machine Status Word 

Store Task Register 

VerifY Segment for Reading 

VerifY Segment for Writing 

Instruction Timings and Binary Encodings 
Because this book is primarily a practical guide to programming applications in assembly 
language, instruction timings and binary encodings for machine codes generated by the as
sembler are not listed. If you need to, you can find this data in the Intel references listed in 
the Bibliography. 

The timing values, which many references blindly copy but which, I suspect, few program
mers actually use, are omitted here for good reasons. Formulas that calculate theoretical tim
ings for specific instructions tend to be inaccurate in practice. Factors such as the on-chip 
instruction cache, which preloads a certain amount of machine code for faster execution, 
plus the existence of multiple interrupt signals and memory wait states in real-life computer 
systems are likely to throw monkey wrenches into even the most carefully constructed 
timing formulas. A stopwatch and a good profiler will do you more good than hours spent 
calculating instruction loop timings. In general, your programs will run as fast as possible if 
you simply adhere to a few suggestions for selecting among various instruction formats: 

705 



PART III _ REFERENCE 

• Instructions that refer to the accumulator-aI, ax, or eax (80386 and later proces
sors only)-may run faster than all other forms. (The instructions may also occupy 
fewer bytes of machine code.) Because of this, any such instructions are always listed 
first in this chapter's Syntax/Example sections. For instance, see the first two lines of 
the syntax for adc plus the first line of the 80386/486 syntax forms. 

• Instructions that use only registers for all operands usually run faster than when 
these same instructions refer to data stored in memory. This is especially so when an 
8086 instruction refers to data located at odd addresses because the 8086 can load 
data from even addresses a tiny bit more quiddy. In other words, if you have a 
choice between using a register and a memory variable, use the register-your 
program may run faster. 

• Arithmetic instructions imul, mul, div, and idiv are notoriously slow. Always use 
shifts and rotates to multiply and divide by powers of 2 or use a math coprocessor if 
possible. 

Binary-machine-code formats for instructions are also not listed. In fact, the complicated bit 
formats and binary operation codes for individual instructions are rarely mentioned anywhere 
in this book. After all, one reason for using an assembler is to avoid having to worry about 
such details. On the very rare occasion that you need to know the exact bits generated for a 
specific instruction, you can just as easily write a test program and examine the assembled 
code with Turbo Debugger. 

That about sums up what's not here. Now, let's take a look at what the reference does contain. 

How To Use the Reference 
The reference that follows describes each mnemonic separately except for conditional jump 
and set (80386/486 only) instructions, which are listed in tables for easier lookup. (See en
tries for j -condi tion and set-condition.) A few mnemonics that generate the same machine 
codes such as cmps, cmpsb, cmpsw, and cmpsd are listed together, but only when this does not 
disrupt the reference's alphabetic order. For example, sal and shl are listed separately, even 
though these two mnemonics represent the identical instruction. 

The data for each mnemonic are divided into sections, each with a specific purpose. The 
divisions are: 

• Header-Lists the mnemonic, name, processors on which the instruction is avail
able, and effects on flag settings. 

• Purpose--Gives a brief description of the instruction. Read these parts for quick 
reference and while browsing. 

• Syntax/Examp~Shows the various forms that the instruction may take and lists 
allowable register and memory operands. This section also shows a typical program 
example for each instruction form. When the instruction is available on multiple 
processors, any unique syntax forms for 80286, 80386, and later processors are 

706 listed separately. 



• Sample Code--Places the instruction in a brief programming sample, giving a 
practical example of the way this instruction might be used in a typical program. 

• Description-Fully explains how the instruction operates and frequently refers to the 
Sample Code section to explain further how to apply the instruction. Also, any 
unusual uses of flags and register assignments are described here. 

• See Also--Refers to other instructions related in some way to this one. 

More About the Headers 
As a sample of the reference headers, Figure 16.1 duplicates the header for the and instruc
tion. The mnemonic and is listed in lowercase, telling you exactly how to spell the instruc
tion in a program. The name of the instruction is printed directly across from the mnemonic. 
Under these rwo items is a list of processors and flags. The 80186 processor, which is not 
used in any PC computers, is not listed here. The functionally equivalent 8086 and 8088 
processors are listed jointly as 8086/88. The column marked 80386/486 refers to the 80386, 
80486, Pentium, and (cross your fingers) to future compatible processors. Six new instruc
tions added to this revised edition-bswap, cmpxchg, invd, invlpg, wbinvd, and xadd - require 
an 80486 or later-model processor. The filled-in triangles under the processor numbers in
dicate which processors support this instruction. In this sample, the header indicates that 
and is available on all four processors. 

The flags are listed to the right of the processor numbers. (See Figure 16.1.) Under each flag 
are one or more symbols that indicate how this instruction affects the flag bits. A digit 0 or 
1 indicates that the instruction resets or sets the flag to this value. A lowercase u indicates 
that, after the instruction executes, the value of this flag is undefined. A dash (-) indicates 
that the instruction does not change the setting of this flag. A filled-in triangle ( ... ) tells you 
that the flag value is subject to change according to the rules listed in Table 16.2. When 
other rules and conditions apply or, in a few cases where more than one symbol is listed (see 
sal, for example), the flag settings are discussed in the instruction's Description. 

and 
Processor: 8086/88 80286 80386/486 

Figure 16.1. 
A sample reference header. 

More About the Syntax/Example Sections 

logical AND 

Flags: of df if tf sf zf af pf cf 
o --- ...... u .... o 

Table 16.3 lists the symbols used in the Syntax/Example sections. Along with this table, the 
syntax references tell you exactly what forms of each instruction are allowed. For example, 
one of the syntax and example lines for shl is: 

shl regWI memW, c! shl [aword + bxJ, cl 707 



16 

708 

I _ REFERENCE 

Table 16.2. Standard Flag Usage. 
Name Set to 1 reset to 0 

of Overflow Positive value is too large, or negative value is too small 

sf Sign MSD of value == I 

zf Zero FuH-width result = 0 

af Auxiliary Carry out of or borrow to four LSDs of al occurred 

pf Parity Eight LSDs of result have an even number of ones (even 
parity) 

cf Carry Carry out of or borrow to full-width result occurred 

Table 16.3. Symbols Used in the Reference. 

& 

[] 

farTarget 

nearTarget 

shortTarget 

imm6 

immB 

immW 

immDW 

memB 

memW 

memDW 

memFW 

memQW 

memALL 

regB 

regW 

regDW 

no operands 

Either or 

And 

Items in brackets are optional 

Address reference in foreign segment 

Address reference within current segment 

Address reference within -128 to 127 bytes 

A 6-bit value (esc instruction only) 

Any 8-bit immediate value 

Any 16-bit immediate value 

Any 32-bit immediate value 

Any 8-bit-byte memory reference 

Any 16-bit-word memory reference 

Any 32-bit-doubleword memory reference 

Any 48-bit-farword memory reference 

Any 64-bit-quadword memory reference 

Any B. W, DW, FW, or QW memory reference 

Any 8-bit-byte general register 

Any 16-bit-word general register 

Any 80386/486 32-bit-doubleword general register 

Requires no operands 



r-!> 

~ ----------------------------------------------------------------------------, 
ASSEMBLY LANGUAGE REFERENCE GUIDE .... '-----------------------------------------' 

~, 

Table 16.3 reveals that this form of shl requires two operands: a word (16-bit) general
purpose register or a word memory reference and the register cl. The example to the right of the 
syntax shows how an instruction of this form might appear in a program. Remember that this 
example is only one of many possible combinations of registers and memory references. 

More About the Examples and Samples 
All examples and sample code sections were assembled and tested directly from this text. You 
can be sure that every scrap of code listed here represents actual instructions as they might 
appear in programs for the sample code sections. To run the code, you'll need to insert the 
instructions into a copy ofEXESHELL.ASM from Chapter 2. You'll also have to initialize 
the ds and es segment registers appropriately. 

If you do 'U"""flYc\I' 

ports. Jecause ">'\""'c"'",""'" 
too samples of 
They may evenca'lJ5e a 
warh!Jlg younottO

C 

timthec~. 

aaa ASCII Adjust After Addition 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 
u ---uu.&u.& 

Purpose Adjusts numeric sum of two unpacked BCD digits to unpacked 
BCD format, which is easily converted to ASCII. 

Syntax/Example aaa no operands 
Sample Code mov ah, 07 

mov aI, 08 
add aI, ah 
sub ah, ah 
aaa 
or ax, 3030h 

aaa 
First digit = 07 
Second digit = 08 
Sum in al = 0Fh (15 decimal) 
Clear ah to 00 
Adjust: ah = 01, al = 05 
Convert digits to ASCII 

1 

709 



6 

710 

Description 

See Also 

aad 

After adding two unpacked BCD digits and storing the 8-bit 
result in aI, aaa converts al back to unpacked BCD format. If 
the previous add generated a carry or if al is greater than 9, then 
ah is incremented, and both cf and af are set to 1; otherwise, cf 
and af are set to O. The four MSDs (upper half) of al are always 
zeroed. fu the example shows, after aaa, you can OR either or 
both ah and al with 030h to convert the BCD result to ASCII. 

aad, aam, aas, daa, das 

ASCII Adjust Before Division 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

Syntax/Example 
Sample Code 

Description 

See Also 

aam 

u 

Converts two unpacked BCD digits in ax to binary. 

aad no operands aad 

mov ah, '7" Set ah to ASCII '7' 
mov aI, '6' Set al to ASCII '6' 
and ax, 0F0Fh Convert ASCII to BCD (ax 0706h) 
aad Convert to binary (ax 004Ch) 

fusign two unpacked BCD values to ah (most significant digit) 
and al (least significant digit), then execute aad to convert the 
digits to a 16-bit binary value in ax. Despite the instruction's 
name, aad can be used at any time-it doesn't have to precede a 
division. The largest possible value that aad can convert is 0909, 
equal to hexadecimal 063h, or 99 in decimal. Consequently, 
after using aad on unpacked BCD values from 0000 to 0909, 
register ah always equals O. 

aaa, aam, aas, daa, das 

ASCII Adjust After Multiplication 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

u £ £ u £ u 

Converts 16-bit binary values from 0 to 99 decimal in ax to 

unpacked BCD digits, which are easily converted to ASCII. 

Syntax/Example aam no operands 

Sample Code mov ax, 04Ch 
aam 

aam 

Set ax to 76 decimal 
; Convert to BCD (ax = 0706h) 

Description 

or ax, 3030h ; Convert ax to ASCII (ax = 3736h) 

Use aam to convert a value in ax less or equal to hexadecimal 
063h (99 decimal) from binary to unpacked BCD format, with 
the most significant digit in ah and the least significant digit in 



See Also 

aas 

AsSEMBLY LANGUAGE REFERENCE GUIDE 

a1. This operation reverses what aad does. Despite aam's name, 
you do not have to precede the instruction with a multiplication. 

aaa, aad, aas, daa,das 

ASCII Adjust After Subtraction 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

u u u • u • 

Adjusts numeric difference of fWO unpacked BCD digits to 

unpacked BCD format, which is easily converted to ASCII. 

Syntax/Example aas no operands aas 
Sample Code mov ah, 01 Set ah to BCD 01 

Description 

See Also 

adc 

mov aI, 04 Set al to BCD 04 
mov bl, 07 Set bl to BCD 07 
sub aI, bl a1 <- al - b1 (14-7) 
aas Adjust to BCD (ax 0007) 
or ax, 3030h Convert ax to ASCII (ax = 3037h) 

Subtract fWO BCD digits, place the result in aI, and execute aas 
to convert the numeric difference to BCD format, which can 
then be converted to ASCII. If the previous sub required a 
borrow, then aas also subtracts 1 from ah and sets af and ef to 
1; otherwise, ah is unchanged, and the fWO flags are set to O. The 
example subtracts 07 (in bl) from 0104 (14 decimal in unpacked 
BCD formae in ax), giving the BCD answer in ax-0007. 

aaa, aad, aam, daa, das 

Add With Carry 

Processor: 8086/88 80286 80386/486 Flags: of df if ef sf zf af pf cf . - - ..... 
Purpose Adds byees, words, and doublewords (80386/486 only) plus the 

current value (I or 0) of the carry flag. 
Syntax/Example adc ai, immB ade aI, 2 

adc ax, imm W ade ax, 1024 
adc regB I memB, immB ade b1, 2 
adc regWI memW, immW ade [word bxl, 1024 
adc regWI mem W, immB ade ex, 2 
adc regB I memB, regB ade [byte bx], d1 
adc regWI mem W, regW ade dx, bx 
adc regB, regB I memB ade b1, bh 
adc regw, regWI memW ade dx, [word bx] 

80386/486 only 
adc eax, immDW ade eax, 65537 
adc regDWI memDW, immDWade edx, 65537 711 



712 

PART III _ REFERENCE 

Sample Code 

Description 

SeeA/so 

add 

adc regDWI memDW, immB adc [dword bxl. 2 
adc regDWI memDW, regDW adc edx, ecx 
adc regDW, regDWI memDW adc ecx, [dword bxJ 

DATASEG 
var dd 01FFFEh 
CODESEG 

131070 decimal 

mov ax, 5 Value to add 
mov bx, offset var Address var 
add (word bxJ, ax Add Low-order word 
adc [word bx + 21. 0 Add in carry (var = 131075) 

When adding multibyte or multiword values, use adc after the 
initial add of the low-order values to add in possible carries to the 
higher-order bytes and words. The example demonstrates how 
this works, adding 5 to the doubleword value stored at label var. 
The adc adds a possible carry generated by the initial add of the 
low-order word and the immediate value 5. 

add, sbb, sub 

Add Without Carry 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 
£ ---£££££ 

Purpose Adds two byte, word, or doubleword (80386/486 only) 
operands. 

Syntax/Example add at, immB add al, 2 

Sample Code 

add ax, imm W add ax, 1024 
add regB I memB, immB add bl, 2 
add regWI memW, immW add (word bxJ, 1024 
add regWI memW, immB add ex, 2 
add regB I memB, regB add (byte bx], dl 
add regWI memW, regW add dx, bx 
add regB, regB I memB add bl, bh 
add regw, regWI memW add dx, (word bxj 

803861486 only 
add eax, immDW 
add regDWI memDW, immDW 
add regDWI memDW, immB 
add regDWI memDW, regDW 
add regDW, regDWI memDW 
DATASEG 
var dd 01FFFEh 
CODESEG 
mov ax, [word varj 
mov dx, [word var + 2] 

add eax, 65537 
add edx, 65537 
add [dword bx], 2 
add edx. ecx 
add ecx, [dword bxj 

131070 decimal 

Load ax:dx with 
doubleword value 



Description 

See Also 

and 
Processor: 8086/88 ... 

Purpose 

Syntax/Example 

Sample Code 
Description 

See Also 

add ax, [word var) 
ade dx, [word var + 2) 
mov [word var), ax 

ASSEMBLY LANGUAGE REFERENCE GUIDE 

Add Low-order word 
Add high-order word + ef 
Store ax:dx to 

mov [word var + 2), dx doubleword value 

Use add to add any two byte, word, or doubleword (80386 only) 
values stored in registers or in memory variables. (Both of the 
two operands can't be memory references.) The sum of the two 
operands is stored in the first operand. When adding multi byte 
values, follow add with ade, adding in a possible carry. The 
sample uses add with ade to add a doubleword value to itself. 

ade, sbb, sub, xadd 

Logical AND 

80286 80386/486 ... ... Flags: of df if tf sf zf af pf cf 
o --- ...... u ... o 

Logically ANDs two byte, word, or doubleword (80386/486 
only) values. 

and at, immB 
and ax, immW 
and regB I memB, immB 
and regWI mem W, imm W 
and regWI mem W, immB 
and regB I memB, regB 
and regWI memW, regW 
and regB, regB I memB 
and regw, regWI mem W 

80386/486 only 
and eax, immDW 
and regDWI memDW, immDW 
and regDWI memDW, immB 
and regDWI memDW, regDW 
and regDW, regDWI memDW 

and aI, 0Fh 
and ax, 0FF00h 
and bl, 01h 
and [word bx), 0800h 
and ex, 0080h 
and [byte bx), dl 
and dx, ex 
and bl, bh 
and dx, [word bx] 

and eax, 0FF000000h 
and edx, 0FFFF0000h 
and [dword bx], 01h 
and edx, eex 
and eex, [dword bx] 

and dl, 0Fh ; Set upper 4 MSDs to 0 

Use and to perform a logical AND on the bits in any two byte, 
word, or doubleword (80386/486 only) values stored in registers 
or in memory variables. (Both of the two operands can't be 
memory references.) The corresponding bits in the first operand 
are set to 1 only if the bits in both of the operands equal 1. The 
sample uses and to set the first 4 bits in a byte register to O. 

or, xor, test 

713 



------------------------------------ ...... --~-

16 

714 

bound Check Array Index Against Bounds 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 
.... .... 

Purpose Verifies that an array index is within a specified range. 

Synt.ax/Example bound regW, memDW bound si, [word bxl 

Sample Code 

Description 

See Also 

bsf 

80386/486 only 
bound regDW, memQW bound esi, [qword bxl 

OATASEG 
LowBound OW 100 
highBound OW 199 
CODESEG 
P2S6 
mov si, 105 ; Load si with index value 
bound si, [LowBoundj j Cheek if index is in bounds 

Assign the index value to the first operand and the address of the 
index range values to the second operand. This structure must 
contain two words (or, optionally, two doublewords on the 
80386/486) with the lower value first (at the lower address). If 
the value of the first operand is not within the numeric range of 
these two values, a type 5 interrupt is shared by the Print Screen 
function; therefore, you must trap and prevent Print Screen 
operations before using bound. 

iret 

Bit Scan Forward 

Processor: 8086/88 80286 80386/486 
.... 

Flags: of df if tf sf zf af pf cf 
- .... 

Purpose 

Syntax/Example 

Scans bits in LSD to MSD order. 
bsf regW, regWI mem W bsf ex, dx 
bsf regDW, regDWI memDW bsf eex, [dword varj 

Sample Code P3S6 

Description 

mov dx, 0S00h 
bsf ex, dx 
jz short @@10 
shr dx, el 

iii@10: 

Set bit number 11 to 1 
Sean (ex = 000Bh) 
Skip shift if all bits = 0 
Shift dx by el (dx 0001) 

The first operand to bsf holds the result of scanning the second 
operand from right to left (starting at bit 0). If all bits are 0, then 
zf is set to 1, and the first operand is unchanged. If a 1 bit is 
located, then zf is set to 0, and the first operand is set to the bit 



See Also 

bsr 

ASSEMBLY LANGUAGE I{fFI'RENCE 

number. The sample uses this value to shift a bit in dx into the 
LSD position. 

bsr 

Bit Scan Reverse 

Processor: 8086/88 80286 80386/486 
... Flags: of df if tf sf zf af pf cf 

- ... 
Purpose Scans bits in MSD to LSD order. 
Syntax/Example bsr regw, regWI memW bsr ex, [word bx] 

bsr regDW, regDWI memDW bsr eex. edx 

Sample Code P386 

Description 

See Also 

bswap 

mov dx, 0040h 
bsr ex, dx 
jz short @@10 
shr dx, el 

@@10: 

Set bit number 6 to 
Sean (ex = 0006h) 
Skip shift if all bits 0 
Shift dx by el (dx 0001h) 

The first operand to bsr holds the result of scanning the second 
operand from left to right (starting at the MSD). If all bits are 0, 
then zf is set to 1, and the first operand is unchanged. If a 1 bit 
is located, then zf is set to 0, and the first operand is set to the 
bit number. The sample uses this value to shift a bit in dx into 
the LSD position. 

bsf 

Byte Swap 

Processor: 8086/88 80286 80386 80486 Flags: of df if tf sf zf af pf cf 
... - - - - -

Purpose Swaps bytes in a 32-bit register to convert values between little
and big-endian formats. 

Syntax/Example bswap regDW bswap eax 

Sample Code P486 

Description 

mov eax, 0ABCD1234h ASSign test value to eax 
bswap eax Swap bytes (eax 3412CDAB) 
bswap eax Swap bytes (eax ABCD1234) 

Use this instruction on 80486 and later-model processors to 
convert data between little- and big-end ian forms. Intel proces
sors store data in little-endian form (least significant values at 
lower addresses). Motorola processors store data in big-endian 
form (least significant values at higher addresses). You can use 
bswap to convert data files for computer systems based on these 
processors such as pes and Macintoshes. 

1 

715 



716 

PART III _ REFERENCE 

See Also 

bt 

As the Sample Code demonstrates, the instruction operates as a 
toggle. You can use bswap to convert data without having to 
determine the data's current format. 

Be sure to specify a 32-bit register for this instruction. If you 
specify a 16-bit register, the results are undefined. 

xchg 

BitTest 

Processor: 8086/88 80286 80386/486 
.& 

Flags: of df if tf sf zf af pf cf 
- - - .& 

Purpose 

Syntax/Example 

Sample Code 

Description 

See Also 

btc 

Copies a bit to the carry flag. 

bt regWI mem W, immB 
bt regWI mem W, regW 
bt regDWI memDW, immB 
bt regDWI memDW, regDW 

P386 

mov dX, 0200h 
bt dx, 9 
jc @@10 
call procedure 

@@10: 

bt 
bt 
bt 
bt 

ax, 14 
[word varj, cx 
eax, 8 
[dword varj, ecx 

ASSign a test value to dx 
Copy bit number 9 to cf 
Test cf 
Call procedure if bit 9 0 

The first operand to bt must be a word or doubleword register 
or memory reference. The second operand may be a word 
(0-15) or doubleword (0-31) register or immediate value. 
Executing bt copies the bit from the first operand at the position 
specified by the second operand to cf. You can then use jc or 
j nc to test whether this bit was 1 or o. 
btc, btr, bts, test 

Bit Test and Complement 

Processor: 8086/88 80286 80386/486 
.& 

Flags: of df if tf sf zf af pf cf 
- - - - - - .& 

Purpose Copies a bit to the carry flag and then complements the bit in 
the original value. 

Syntax/Example btc regWI mem W, immB btc ax, 14 
btc regWI memW, regW btc [word varj, cx 
btc regDWI memDW, immB btc eax, 8 
btc regDWI memDW, regDW btc [dword varj, ecx 



ASSEMBLY LANGUAGE REfERENCE GUIDE 

Sampk Code P3S6 

Description 

See Also 

btr 

mov dx, 0200h 
btc dx, 9 
jC @@10 
call procedure 

@@10: 

Assign a test value to dx 
Copy bit number 9 to cf and complement 
Test cf 
Call procedure if bit 9 0 

The operands and actions ofbtc are identical to bt, but after 
copying the specified bit to cf, that bit is complemented 
(toggled) in the original value. In the sample, this leaves dx equal 
to O. Despite this, the zero flag is not set. 

bt, btr, bts, test 

Bit Test and Reset 

Processor: 8086/88 80286 80386/486 .. Flags: of df if tf sf zf af pf cf 
- - - .. 

Purpose 

Syntax/Exampk 

SampkCode 

Description 

See Also 

bts 

Copies a bit to the carry flag and then resets the bit in the 
original value. 

btr regWI mem W, immB 
btr regWI mem W, regW 
btr regDWI memDW, immB 
btr regDWI memDW, regDW 
P3S6 

btr [word var], 5 
btr dx, cx 
btr [dword var], 6 
btr edx, ecx 

mov dx, 0ABCDh Assign test value to dx 
mov cx, 15 Assign bit number to cx 
btr dx, cx Copy bit to cf and reset 

The operands and actions ofbtr are identical to bt, but after 
copying the specified bit to cf, that bit is reset to 0 in the 
original value. In the sample, this changes dx to 02BCDh. 

bt, btc, bts, test 

Bit Test and Set 

Processor: 8086/88 80286 80386/486 .. Flags: of df if tf sf zf af pf cf .. 
Purpose 

SyntaxlExampk 

Copies a bit to the carry flag and then sets the bit in the original 
value. 
bts regWI memW, immB 
brs regWI memW, regW 
bts regDWI memDW, immB 
bts regDWI memDW, regDW 

bts dx. 4 
bts [word varj, ex 
bts eax, 3 
bts [dword varl. edx 

717 



718 

PART III _ REFERENCE 

Sample Code 

Description 

See Also 

call 

P3B6 

mov dx, 0ASCDh Assign test value to dx 
mov cx, 14 Assign bit number to cx 
bts dx, CX Copy bit to cf and set 

The operands and actions ofbts are identical to bt, but after 
copying the specified bit to cf, that bit is set to 1 in the original 
value. In the sample, this changes dx to OEBCDh. . 

bt, btc, btr, test 

Call Procedure 
Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 
Syntax/Example 

Sample Code 

Description 

See Also 

Calls a subroutine procedure. 
call near Target call Here 
call for Target call far ptr There 
call regW call bx 
call mem W call [word bx] 
call memDW call [dword bx] 

80386/486 only 
call reg DW 
call memFW 
call Times2 
jmp Exit 
PROC Times2 
add ax, ax 
adc dx, dx 
ret 

ENDP 

call eax 
call [fword sil 

Call subroutine 
Exit program 
Subroutine 
Add doubleword in 
ax: dx to itself 

Return from subroutine 

The call instruction pushes the address of the next instruction 
onto the stack and then jumps to the target location, causing the 
instructions in the subroutine procedure to begin executing. 
Usually, a ret instruction ends the subroutine, popping the 
return address from the stack and continuing the program with 
the instruction that follows the original call. In most programs, 
the target will be a label, marking the first instruction of the 
subroutine. But the target may also be a memory reference or a 
16-bit register that holds the address of the subroutine. The 
sample calls a small subroutine Times2, which adds the value in 
ax: dx to itself. The ret instruction causes the program to 
continue from jmp Exit. 

ret 



ASSEMBLY LANGUAGE REFERENCE GUIDE 
~.-------------------------------------------------------------------------~ 

ebw Convert Byte to Word 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

Syntax/Example 
Sample Code 

Description 

See Also 

edq 

Extends a signed byte to a signed word. 

cbw no operands cbw 

mov aI, -1 ; Set al to -1 
cbw ; Extend al to ax (ax -1) 

Use cbw to extend an 8-bit signed value in al to a 16-bit signed 
value of the same magnitude in ax. The instruction works by 
copying the MSD of al to all bits in ah, thus setting ah to OFFh 
if al was negative (MSD = 1) or setting ah to OOh if al was 
positive (MSD = 0). 

cdq, cwd, cwde 

Convert Doubleword to Quadword 

Processor: 8086/88 80286 80386/486 
.... 

Flags: of df if tf sf zf af pf cf 

ele 

Purpose 

Syntax/Example 
Sample Code 

Description 

See Also 

Extends a signed doubleword to a signed quadword. 

cdq no operands cdq 

P386 
mov eax, -1 ; Set eax to -1 
cdq ; Extend eax to eax:edx (eax:edx = -1) 

Use cdq to extend a 32-bit signed value in eax to a 64-bit signed 
value of the same magnitude in the register pair eax: edx. The 
instruction works by copying the MSD of eax to all bits in edx, 
thus setting edx to OFFFFFFFFh if eax was negative (MSD = 1) 
or setting edx to 0 if eax was positive (MSD =: 0). 

cbw, cwd, cwde 

Clear Carry Flag 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

Syntax/Example 
Sample Code 

Sets carry flag to O. 

dc no operands clc 

PRoe AnyProc 
; Procedure code 
@@ErrExit: 

- - - - - 0 

719 



16 

720 

Description 

See Also 

eld 

stc 
ret 

@@NoErrExit: 
clc 
ret 

ENDP AnyProc 

Set Carry (error) 
Return to caller 

Clear carry (no error) 
Return to caller 

Executing clc resets the carry flag to O. Ai; the sample code 
demonstrates, the instruction is often used to pass an error flag 
back from a subroutine, clearing cf if no error was detected. 

cmc, stc 

Clear Direction Flag 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 
o 

eli 

Purpose 

Syntax/Example 
SampleCotk 

Description 

See Also 

... ... 
Clears direction flag to O. 

eld no operands cld 

DATASEG 
s1 db 'Copy me' Source string 
s2 db 80 dup (1) Destination string 
CODESEG Note: assume es = ds 
mov cx, 4 Assign count to cx 
mov si, offset s1 Address source with ds:si 
mov di, offset s2 j Address destination with e5:di 
cld Auto-increment si and di 
rep movsb Copy 4 chars from source to destination 

Use cld to reset the direction flag to O. Always execute cld before 
a repeated string operation, which increments either or both si 
and di automatically if df = 0. The sample uses cld to prepare 
for a repeated movsb string instruction, copying 4 characters from 
string s1 to 52. 

5td 

Clear Interrupt Flag 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 
o ... 

Purpose 

Syntax/Example 
Sample Cotk 

... ... 
Clears the interrupt-enable flag to O. 

eli no operands cli 

sti 
hIt 
cli 

Enable interrupts 
Wait for interrupt to occur 
Disable interrupts 



Description 

See Also 

eme 

Executing eli disables maskable interrupts from being recognized. 
To ensure proper PC operations, interrupts should not be disabled 
for long periods. The sample suggests one way to synchronize a 
program with an external event, pausing with hIt until an interrupt 
occurs and then immediately disabling interrupts. 
sti 

Complement Carry Flag 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 
- .. 

Purpose 
Syntax/Example 
Sample Code 

Description 

See Also 

emg 
Processor: 8086/88 .. 

Purpose 
Syntax/Example 

Complements (toggles) the carry flag. 

cmc no operands cmc 

PROC AnyProc 
i Procedure code 
@@Exit: 

cmc 
ret 

ENDP 

Complement error flag 
Return to caller 

Use emc to complement the carry flag, changing cf to 0 if it was 1 
or to 1 ifit was O. One use for cmc is in a procedure that returns cf 
as an error flag, but because of other operations leaving cf in the 
opposite state, must toggle the carry flag before returning. 
clc, stc 

Compare 

80286 80386/486 Flags: of df if tf sf zf af pf cf .. .. .. - .. ........ 
Compares two operands. 
cmp at, immB emp aI, 2 
cmp ax, immW emp ax, 1024 
cmp regB 1 memB, immB cmp bl, 2 
cmp regWI memW, immW emp [word bx], 1024 
cmp regWI mem W, immB cmp ex, 2 
cmp regB I memB, regB cmp [byte bx], dl 
cmp regWI mem W, regW cmp dx, bx 
cmp regB, regB I memB cmp bl, bh 
cmp regW, regWI mem W emp dx, [word bxl 

803861486 only 
cmp eax, immDW cmp eax, 65537 
cmp regDWI memDW, immDW cmp [dword sil, 99123 
cmp regDWI memDW, immB cmp [dword bx], 2 
cmp regDWI memDW, regDW cmp edx, ecx 
cmp regDW, regDWI memDW cmp ecx, [dword bxl 

1 

721 



722 

Sample Code 

Description 

See Also 

cmp ax, cx 
je f!if!i10 
inc ax 

f!i@10: 

Compare ax and cx 
Jump if ax cx 
Increment ax if ax <> cx 

Use cmp to compare any two byte, word, or doubleword (80386 
only) values. Both operands may not be memory references. Norm
ally, you'll follow a cmp with a conditional jump instruction, taking 
appropriate action based on the result of the comparison. The 
sample uses cmp to test if registers ax and cx hold the same value. If 
not, ax is incremented. The cmp instruction works by subtracting the 
second operand from the first, throwing out the result, but saving 
the flags, which can then be tested. Consequently, when using cmp 
to determine how one value differs from another, assign the oper
ands in the same order as the expression you need. For example, if 
you want to know whether ax < bx, use cmp ax, bx fOllowed by j 1. 

cmps, cmpxchg, sub 

cmps cmpsb cmpsd cmpsw Compare String 

Processor: 8086/88 ... 
Purpose 

SyntnxlExample 

Sample Code 

Description 

80286 80386/486 Flags: of df if tf sf zf af pf cf ............ ... ... 
Compare strings of values. 

cmps {es:}memB, memB 
cmps {es:}memW, memW 
cmpsb no operands 
cmpsw no operands 

80386/486 only 

... ... 

cmps [byte dest], [byte source] 
cmps [word es:si], [word dil 
cmpsb 
cmpsw 

cmps {es:}memDW, memDWcmps [dword destj, [dword source] 
cmpsd no operands cmpsd 

DATASEG 
sl db 'Woe is me' 
s2 db 'Woe is you' 
CODESEG 
ASSUME es: DGROUP 
mov si, offset s1 
mov di, offset s2 
mov cx, 10 
cld 

Tell TASM where es points 
Address source string 
Address destination string 
Assign count to cx 
Auto-increment si, di 

repe cmps [s1], [s2] Find first mismatch 
repe empsb Note: same as above line 

The string comparison instructions compare two values in memory. 
Prefacing the instructions with repe or repne and storing a count 
value in ex builds instructions that can compare sequences of values. 
The first operand is the source and must be addressed by ds: si 
unless a segment override is used as in [es: label J. The second 



See Also 

cmpxchg 
Processor: 8086/88 

operand is the destination and must be addressed byes: di. The 
instructions subtract {source} - [destination}, discarding the result 
and saving the flags-similar to the way cmp works. In addition, if 
df 0, si and di are advanced by the number of bytes being 
compared. If df 1, the index registers are decremented. 

Use cmps if you want Turbo Assembler to verifY that the operands 
are addressable by ds: si or es: si and byes: di and also when you 
need to apply an es: override to the source operand. Or use the 
other three shonhand mnemonics if you don't want to specifY 
explicit operands--cmpsb for byte comparisons, cmpsw for word 
comparisons, and cmpsd (80386 only) for doubleword comparisons. 
No matter what form of the instruction you use, it is still your 
responsibility to load si and di with the correct addresses. (For 
example, the last two lines in the sample, which finds the first 
mismatched character in two strings, produce the identical code.) 

ins, insb, insd, insw, lods, lodsb, lodsd, lodsw,movs,movsb, 
movsd,movsw, outs, outsb, outsd, outsw, seas, seasb, scasd, 
scasw, stos, stosb, stosd, stosw 

80286 80386 80486 
A 

Flags: of df if 
A 

Compare and Exchange 

tf sf zf af pf cf 
-AAAAA 

Purpose Compares and exchanges data between the accumulator and a 
destination, which can be a register or a memory reference. 

Syntax/Example cmpxchg regB I memB, regB empxchg bh, ah 
cmpxchg regW I mem W, regW empxehg bx, ax 
cmpxchg regDW I memDW, regDWempxehg ebx, eax 

Sample Code mov ebx, 12345678h Assign test value to ebx 
mov eax, 87654321h Assign test value to eax 
cmpxchg ebx, eax Moves ebx into eax 
cmpxehg ebx, eax Moves eax into ebx 

Description This two-part instruction, available only on 80486 and later-model 
processors, begins by performing a emp on the accumulator and 
another register or value in a memory location. If the accumulator 
(eax in the Sample Code) differs in value from the destination 
(ebx), the destination value is loaded into the accumulator. If the 
accumulator and destination values are equal, the destination is 
loaded into the accumulator. Obviously, however, in that event the 
net effect is nil, although the transfer still occurs. 

See Also 

Flags are set as for the cmp instruction. The zf flag is set to 1 if 
the source and destination values are equal; it is set to 0 if the two 
values are initially not equal. In other words, if zf is zero, the value 
in the accumulator was changed to the destination value. 

cmp, xchg 723 



724 

PART III _ REFERENCE 

cwd Convert Word to Doubleword 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

Syntax/Example 
Sample Code 

Description 

See Also 

cwde 

Extends a signed word to a signed doubleword. 

cwd no operands cwd 

moy ax, -1 ; Set ax to -1 
cwd ; Extend ax to ax:dx (ax:dx = -1) 

Use cwd to extend a 16-bit signed value in ax to a 32-bit signed 
value of the same magnitude in the register pair ax: dx. The 
instruction works by copying the MSD of ax to all bits in dx, 
thus setting dx to OFFFFh if ax was negative (MSD 1), or 
setting dx to 0 if ax was positive (MSD 0). 

cbw, cdq, cwde 

Convert Word to Extended Doubleword 

Processor: 8086/88 80286 80386/486 ... Flags: of df if tf sf zf af pf cf 

Purpose 

Syntax/Example 
Sample Code 

Description 

See Also 

daa 

Extends a signed word to a signed extended doubleword. 

cwde no operands cwde 

moy ax, -1 ; Set ax to -1 

cwde j Extend ax to eax (eax -1) 

Use cwde to extend a 16-bit signed value in ax to a 32-bit signed 
value of the same magnitude in eax. The instruction works by 
copying the MSD of ax to all bits in the high word of eax, thus 
setting the high word to OFFFFh if ax was negative (MSD = 1), 
or setting the high word to 0 if ax was positive (MSD 0). 

cbw, cdq, cwd 

Decimal Adjust After Addition 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 
u - - - ............... 

Purpose 

Syntax/Example 

Sample Cotk 

Adjusts numeric sum of two packed BCD digits to packed BCD 
format. 

daa no operands daa 

moy aI, 053h 
moy bl, 018h 
add aI, bl 
daa 

Pack 5 and 3 into al 
Pack 1 and 8 into bl 
al <- al + bl (al = 068h) 
Adjust result (al 071h) 



Description 

See Also 

das 

ASSEMBl Y LANGUAGE REFERENCE GUJDE 

After adding two packed 8-bit bytes and placing the result in aI, 
execute daa to convert the binary sum back to packed BCD 
format. Ifboth af and cf equal!, then the sum was greater than 
99 decimal. (You can use this information to generate a carry in 
a multidigit addition.) If af = 1 but cf = 0, then the sum of the 
lower two digits was greater than 9 and a carry is automatically 
taken into account for the high digit of the result. (You can 
normally ignore this condition.) If both af and cf are 0, then no 
carries were generated (and daa does not change the value in a1). 

aaa, aad, aam, aas, das 

Decimal Adjust After Subtraction 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 
u - - - .......... 

Purpose Adjusts numeric difference of two packed BCD digits to packed 
BCD format. 

Syntax/Example das no operands das 

Sample Code may aI, 007h Pack 0 and 7 into a1 
may b1, 014h Pack 1 and 4 into b1 
sub aI, b1 a1 <- a1 - b1 (a1 = 0F3h) 
das Adjust result (a1 = 093h) 

Description After subtracting two packed BCD values, place the result in a1 and 
execute das to convert the result back to packed BCD format. If 
both cf and af equal 0, then no borrows were needed during the 
subtraction. If cf 0 and af = 1, then a borrow was needed for 
the lower 2 digits and the result is adjusted accordingly. (You can 
normally ignore this condition.) If cf = 1, then the result is a 
negative decimal complement and you can subtract 100 from the 
result in a1 to find the absolute value. In other words, if cf = 1 and 
a1 93h, as in the sample, the corrected value is -7, or (93 100). 

See Also aaa, aad, aam, aas, daa 

dec Decrement 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

Syntax/Example 

.. .. ...... 
Subtract 1 from a register or variable. 

dec regB I memB dec c1 
dec regWI memW dec [word yar) 

80386/486 only 
dec regDWI memDW dec edx 

725 



16 

726 

PART III _ REFERENCE 

Sample Code 

Description 

See Also 

div 

mov ex, 100 Assign count to ex 
@@10: 
call AnyProc Call a procedure 
dec ex Subtract 1 from count 
jnz @@10 Jump if ex > 0 

Use dec to decrease a byte, word, or doubleword (80386 only) 
register or memory value by I. This is similar to subtracting 1 from 
unsigned values with sub, but faster. The sample demonstrates one 
way to construct a loop, calling AnyProc (not shown) 100 times and 
continuing past j nz only afrer dec finally decrements ex to O. 

inc 

Unsigned Divide 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

Syntax/Example 

Sample Code 

Description 

u 

Divides two unsigned values. 

div regB I memB div dl 
div regW I memW div [word varj 

80386/486 only 
div regDW I memDW div [dword bx] 

DATASEG 
var dd 01FFFEh ; 131070 decimal 
CODESEG 

u u u u u 

mov ax, [word var] Load low word into ax 
mov dx, [word var + 2] Load high word into dx 
mov bx, 1024 Load divisor into bx 
div bx ax <- 131070 I 1024 (ax 127) 

Use div to divide unsigned integer values. The operand refers to 
the divisor. The dividend registers are determined by the divisor 
size. Byte divisors are divided into ax, placing the quotient in al 
and the remainder in ah. Word divisors are divided into dx:ax 
(low-order word in ax), placing the quotient in ax and the 
remainder in dx. Doubleword divisors (80386 only) are divided 
into edx: eax (low-order doubleword in eax), placing the quo
tient in eax and the remainder in edx. 

If the result of the division is greater than the maximum value 
the designated quotient register can hold--or if the divisor 
equals O-then a type 0 interrupt is generated. Unless steps are 
taken to trap this interrupt, DOS will halt the program and 
display a divide error message. This is further complicated by the 
fact that, for 8086/88 processors, the interrupt return address is 



See Also 

enter 

for the instruction following diY, but, for 80286 and 80386 
processors, the interrupt rerurn address points to the div that 
caused the fault. 

idiv 

Enter Procedure 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

Syntax/Example 

Sample Code 

Description 

See Also 

esc 

Creates a stack frame for a procedure's local variables. 

enter immW,O enter 2,0 
enter immW,l enter 8,1 
enter immW, immB enter 0,3 

PROC AnyProc 
enter 8,0 Reserve 8 bytes for local variables 

j Procedure code 
leave Reclaim reserved stack space 
ret Return to caller 

ENDP AnyProc 

Mostly used by high-level languages, enter prepares bp and 
subtracts from sp the number of bytes specified by the first 
operand, reserving space for variables on the stack, which can 
then be addressed by ss: bp. The second operand equals the 
nesting level and can be either an immediate 0 or 1 for fastest 
operation or a higher immediate value. The level is used by 
languages such as Pascal that allow true procedure nesting, 
providing a method for inner procedures to access local variables 
declared on outer levels. The sample shows how to use enter to 
reserve 8 bytes of stack space for variables. To recover this space, 
execute leave JUSt before ret. 

leave, ret 

Escape 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

Syntax! Example 

Sample Code 

Passes instructions to a coprocessor. 
esc imm6, regB I regW esc 5, ax 
esc imm6, mernAll esc 5, [var] 

fld st(0) Push operand 
wait Wait required for 
esc 8, ax 8087 

1 

727 



728 

Description 

See Also 

hit 

You can use esc to pass instructions to a coprocessor. The first 
operand represents the instruction's operation code. The second 
operand specifies a destination or source value for the 
coprocessor instruction. Because Turbo Assembler recognizes 
math coprocessor instruction mnemonics, esc is rarely of much 
practical use. If you do use esc, be aware that the 8087 requires a 
wai t instruction before every math coprocessor instruction. 
Turbo Assembler automatically inserts wai ts as needed
another reason to use coprocessor mnemonics instead of esc. 

wait 

Halt 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 
... 

Purpose 

Syntax/Example 
Sample Code 

Description 

See Also 

idiv 
Processor: 8086/88 ... 

Purpose 

Syntax/Example 

Sample Code 

... 
Halts until interrupt or reset. 

hit no operands hI t 

cli 
hlt 

Disable maskable interrupts 
; Pause until NMI or reset 

sti ; Enable maskable interrupts 

Execute hIt to pause until the next interrupt signal is acknowl
edged or until a reset signal is received. If maskable interrupts are 
disabled, hlt pauses the program until a reset signal or until a 
nonmaskable interrupt is acknowledged. 

eli, sti 

Signed Integer Divide 

80286 80386/486 Flags: of df if tf sf zf af pf cf 
... ... 

Divides twO signed values. 

idiv regB I memB 
idiv regW I memW 

803861486 only 
idiv regDW I memDW 
mov ax, 100 
mov bl, -3 
idiv bl 
neg al 

u - u u 

idiv dl 
idiv (word varj 

idiv [dword bxl 

Assign dividend to ax 
ASSign divisor to bl 

u u u 

al <- ax I bl (remainder in ah) 
Find absolute value of al 



r 

Description 

See Also 

imul 
Processor: 8086/88 

.... 
Purpose 

Syntax/Example 

Use idiv to divide signed integer values. The operand refers to 

the divisor. The dividend registers are determined by the divisor 
size. Byte divisors are divided into ax, placing the quotient in al 
and the remainder in ah. Word divisors are divided into dx:ax 
(low-order word in ax), placing the quotient in ax and the 
remainder in dx. Doubleword divisors (80386/486 only) are 
divided into edx: eax (low-order doubleword in eax), placing the 
quotient in eax and the remainder in edx. The remainder always 
has the same sign as the original dividend. 

The sample divides 100 decimal by -3, placing the quotient in al 
(ODFh) and the remainder in ah (OI). Remember that negative 
values like ODFh are expressed in two's complement form. To 
find the absolute value (3 in this case), use neg as in the sample. 

If the result of the division is greater than the maximum value the 
designed quotient register can hold--or if the divisor equals 0-
then a type 0 interrupt is generated. Unless steps are taken to trap 
this interrupt, DOS will halt the program and display a divide error 
message. This is further complicated by the fact that, for 8086/88 
processors, the interrupt return address points to the instruction 
following div, but for 80286 and 80386/486 processors, the 
interrupt return address points to the div that caused the fault. 

div 

Signed Integer Multiply 

80286 80386/486 Flags: of df if tf sf zf af pf cf 
.... .... 

Multiples two signed values. 

imul regB I memB 
imul regW I memW 

80286, 80386/486 only 
imul regw, immB 
imul regw, immW 

.... - u u u 

imul [byte bx] 
imul ex 

imul ex, 9 
imul bx, 451 
imul ex, [word 

u .... 

bxJ, imul regw, regW I memW, immB 
imul regw, regW I memW, immW imul ax, bx, 300 

80386/486 only 
imul regDW I memDW imul [dword bx] 
imul regDW, immB imul ebx, 10 
imul regDW, immDW imul eax, 32769 
imul regw, regW I memW imul bx, ex 
imul regDW, regDW I memDW imul eex, [dword\bx] 
imul regDW, regDW I memDW, immB imul eax, edx, 12 

3 

imul regDW, regDW I memDW, immDW imul eax, [dword bx], 35790 

729 



730 

Sample Code 

Description 

See Also 

• In 

mov aI, 4 
mov bl, -2 
imul bl 

mov aI, 127 
mov bl, -128 
imul bl 

Multiplicand 
Multiplier 
ax <- al * bl 
(ax 0FFF8h, cf = of = 0) 
Multiplicand 
Multiplier 
ax <- al * bl 
(ax 0C080h, cf = of = 1) 

Depending on the processor, imul has three basic formats, taking 
from one to three operands. Some forms require explicit regis
ters. The simplest form multiplies a byte register or variable by 
aI, placing the result in ax. A similar form multiplies a word 
register or variable by ax, placing the result in dx: ax (low-order 
word in ax). On the 80386/486 only, imul can multiply eax by a 
doubleword register or variable, placing the result in edx: eax. 
With all these forms, ifboth cf and of equal 0 after imul, then 
the high-order portion of the result is merely the sign extension 
of the low-order portion. In other words, as the first part of the 
sample shows, multiplying 4 * -2 sets ax to OFFF8h. Because cf 
and of are 0, ah (OFFh) extends the sign of the 8-bit answer in al 
(OF8h), creating a full 16-bit value. When cf and of are both set 
to 1, as in the second part of the sample, then the result occupies 
the full width of the destination register-in this case ax, which 
equals the two's complement value OC080h, or -16,256 in 
decimal, the product of 127 * -128. 

80286 and 80386/486 processors expand on these basic forms with 
multiple-operand imul instructions. In the two-operand format, 
the first operand is the multiplicand; the second operand is the 
immediate byte or word multiplier. The product replaces the 
specified multiplicand register. In the three-operand format, 
the first operand specifies a destination register for the product, the 
second register holds the multiplicand, and the third operand is 
the immediate byte or word multiplier. The 80386/486 further 
expands these forms, allowing various combinations of double
word registers, memory references, and immediate values. With all 
these variations, if cf and of are 0 after imul, then the product 
exactly fits within the specified destination register (always the first 
operand); otherwise, the produce is too large for this register. 

mul 

Input From Port 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose Inputs values from pons. 



r 

Syntax/Example 

Sample Code 

Description 

See Also 

• Inc 

in al immB 
in ai, dx 
in ax, immB 
in ax, dx 

80386 only: 
in eax, immB 
in eax, dx 
Ctrl8259 EOU 021h 

in al, Ctrl8259 
and al, EnableIRO 

in 
in 
in 
in 

in 
in 

, , 

aI, 14h 
aI, dx 
ax, 01Fh 
ax, dx 

eax, 0Fh 
eax , dx 

8259 masks port 

Read 8259 enable masks 
Clear masked bit 

out Ctr18259, al Write new 8259 masks 

The in instruction reads the value of a hardware port into al, ax 
or eax (80386/486 only). As the sample shows, in is often used 
in conjunction with out and logical instructions such as and and 
or to examine and change bit switches at various port addresses 
in the computer. The simplest form of in reads a byte value into 
al from an immediate port address in the range 0-255. To 
access higher port addresses, specify the address in the dx register. 

ins, out 

Increment 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 
Syntax/Example 

Sample Code 

Description 

See Also 

.. .. ....... 
Adds 1 to a register or variable. 

inc regB I memB inc [byte bxJ 
inc regW I memW inc dx 

80386/486 only 
inc regDW I memDW inc ecx 

mov dx, 0 Initialize dx <- 0 
(\1(\110: 
call AnyProc Call a procedure 
inc dx dx <- dx + 1 
cmp dx, 1000 Does dx = 10001 
jne @@10 Jump if dx <> 1000 

Use inc to increase a byte, word, or doubleword (80386/486 
only) register or memory value by 1. This is similar to adding 1 
to unsigned values with add, but faster. The sample uses inc to 

construct a simple loop, using dx as a control value to call a 
procedure AnyProc (not shown) 1000 times. (There may be 
more efficient ways to construct such a loop.) 

dec 

731 



16 

732 

PART III _ REFERENCE 

ins insb insd insw Input From Port To String 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

int 

Purpose Inputs values from ports to a sequence of bytes, words, or 
doublewords in memory. 

Syntax/Example ins di I memB, dx 
. ins di I memW; dx 
insb no operands 
insw no operands 

rep ins [var], dx 
rep ins [word var], dx 
rep insb 
rep insw 

Sample Code 

Description 

See Also 

80386/486 only 
ins regDW I memDW; dx rep ins [dword varJ, dx 
insd no operands rep insd 

j ! NOTE: Don't run this sample! 

mov cx, 100 
mov dx, 049h 
mov di, offset sl 
cld 

Number of words to read 
Specify port address 
Address destination 
Auto-increment di 

rep insw Load string from port 

As with all string instructions, the register assignments for ins 
and its shorthand forms insb, insd (80386/486 only), and insw 
are fixed, even if you specify address labels explicitly. The 
destination resister is always es : di, and the segment cannot be 
overridden. The port number must be placed in dx. (Don't 
forget to do this also for the shorthand mnemonics!) If df = 0, 
then ins increments di; if df 1, ins decrements di. Normally, 
you'll preface ins with rep, repeating the instruction for the 
number of times specified in cx as illustrated in the sample. 

cmpsb, cmpsd, cmpsw, lods, lodsb, lodsd, lodsw, movs, movsb, 
movsd, movsw, outs, outsb, outsd,outsw, scas, scasb, scasd, 
scasw, stos, stosb, stosd, stosw 

Call Interrupt Service Routine 

Processor: 8086/88 .. 80286 80386/486 .. .. Flags: of df if tf sf zf af pf cf 
o 0 

Purpose 

Syntax/Example 

Calls interrupt service routine by number. 

int 3 int 3 

int immB int 21 h 



~., ________ 1 
Sample Code 

Description 

See Also 

into 

DATASEG 
message db 'Mastering Turbo Assembler', '$' 

CODESEG 
mov dx, offset message Address message string 
mov ah, 9 Specify DOS function number 
int 21h Call DOS function handler 

Although there are two forms of int, they appear the same in 
programs. The first form is a special I-byte code (OCCh) that 
debuggers typically use to replace instructions at specified 
breakpoints. You can insert this code yourself to cause most 
debuggers (Turbo Debugger included) to halt at various loca
tions. The second form specifies a byte value as the interrupt 
number, which can range from 0 to 255, representing one of 
256 four-byte vector pointer addresses stored in memory 
beginning at address 0000:0000. Executing int runs the inter
rupt service routine at the vectored address for this interrupt 
number. Just before this, the processor pushes onto the stack the 
flags and the return address, which are restored in the interrupt 
service routine by executing iret. In addition, the interrupt and 
trap flags are set to O. (These two flags are restored by iret, and, 
because the flags are changed only for the interrupt service 
routine, some 8086 references incorrectly indicate that if and tf 
are not changed by int.) 

into, iret 

Interrupt On Overflow 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf ... ... - -

Purpose 
Syntax/Example 
Sample Code 

Description 

See Also 

Generates a type 4 interrupt if of = 1. 

into no operands into 

P386 
imul ecx, [dword bx) ; ecx <- ecx .. [bx) 
into ; Interrupt on overflow 

By installing an interrupt service routine for interrupt 4, you can 
use into to force execution of this code if the overflow flag is set 
by a previous operation. The instruction into behaves like int, 
pushing the flags and return address onto the stack, resetting tf 
and if, and jumping to the vector for interrupt 4. The interrupt 
code can then deal with the error and execute iret to resume 
program execution. The sample demonstrates how you might 
use into to detect an overflow from an imul instruction for an 
80386 processor. 

int, iret 

733 



734 

invd Invalidate Cache 

Processor: 8086/88 80286 80386 80486 
A 

Flags: of df if tf sf zf af pf cf 

Purpose 

Syntax/Example 
Sample Code 

Description 

See Also 

invlpg 

Flushes the 80486 internal instruction cache, and also issues a 
special bus cycle that hardware designers can use as a command 
to flush any caches that are external to the processor. 

invd no operands invd 

P486 
invd ; Flush cache and issue flush bus cycle 

Use this instruction only on 80486 processors. It requires no 
operands and it affects no flags. Intel states that invd is "imple
mentation dependent," meaning that future processors may 
implement the instruction differently. There are few if any good 
reasons f<?r application-level programs to use this instruction. 

invlpg,wbinvd 

Invalidate US Entry 

Processor: 8086/88 80286 80386 80486 
A 

Flags: of df if tf sf zf af pf cf 

Purpose Invalidates an entry in the TLB, otherwise known as the "trans
lation lookaside buffer." 

Syntax/Example invlpg memAll invlpg table 

Sample Code (none: see Description) 

Description This instruction is valid only for 80486 processors, and Intel 
states that it mayor may not be provided on future CPUs. The 
instruction is used to invalidate entries in the TLB, which 
translates linear and physical addresses. It should not be used in 
application programming. 

See Also invd, wbinvd 

iret iretd Interrupt Return 

Processor: 8086/88 80286 80386/486 Flags: of df if rf sf zf af pf cf 
A AAAAAAAA 

Purpose Returns from an interrupt service routine. 

Syntax/Example iret no operands iret 

803861486 only 
iretd no operands iretd 



r 

Sample Code 

Description 

See Also 

i-condition 
Processor: 8086/88 .. 

Purpose 

Syntax/Example 
Sample Code 

Description 

See Also 

PROC MyISR 
push ax 
sti 

j Procedure code 
iret 

ENDP 

Save any changed registers 
Enable maskable interrupts 

Return from interrupt 

Execute iret as the last instruction in an interrupt service 
routine (ISR). The instruction pops the return address cs: ip 
from the stack and the flags, continuing the program from the 
point of the interruption. Use the same iret whether the 
interrupt was generated externally or internally by a fault 
condition such as an illegal division or by the int and into 
instructions. On 80386/486-based systems only, iretd can be 
used to return to a 32-bit segment, popping the full-width eip 
extended instruction pointer from the stack. 

int, into 

Jump Conditionally 

80286 80386/486 Flags: of df if tf sf zf af pf cf .. .. - - -

Jumps to a new location if certain flags are set and/or reset. 

condition short Target j ge @@30 

cmp ax, 1024 ; Compare ax and 1024 
jb @@20 j Jump if ax < 1024 

All conditional jumps operate similarly and, therefore, are listed 
together here for easy reference. Also, although some of the 
mnemonics represent the same instructions (for example, j e and 
jz), the mnemonics are listed separately. As Table 16.4 shows, 
certain flag settings control whether the jump is made. The 
target address of a conditional jump is a signed displacement of 
-128 to + 127 bytes away from the address of the following 
instruction. On 80386 systems only, displacements may range 
from -32,768 to +32,767 bytes. 

The sample demonstrates how to use a conditional jump after a 
cmp to test the value of a register. Comparing ax with 1,024 and 
following with j b jumps to the target address if the value of ax is 
below 1,024. Conditions that use the words "above" and "below" 
refer to unsigned comparisons; conditions that use the words 
"greater" and "less" refer to signed comparisons. 

jmp 

735 



Table 16.4. Conditional Jump Reference. 
Instruction Jump if·· Flags 

]a above (cf = 0) & (zf = 0) 

Jae above or equal (cf = 0) 

jb below (cf = 1) 

jbe below or equal (cf = I) I (zf 1) 

JC carry (cf = 1) 

JCxz cx equals 0 

Jecxz ecx equals 0 - (80386/486 only.) 

Je equal (zf = I) 

jg greater (sf = of) & (zf = O) 

jge greater or equal (sf = of) 

jl less (sf <> of) 

jle less or equal (sf <> of) I (zf = l) 
JO overflow (of = 1) 

JP parity (pf = 1) 

Jpe parity even (pf = 1) 

Jpo parity odd (pf = O) 

js sign (sf = 1) 

JZ zero (zf = l) 

Jna not above (cf = 1) I (zf = l) 
jnae not above or equal (cf = 1) 

jnb not below (cf = 0) 

jnbe not below or equal (cf = 0) & (zf = 0) 

jnc not carry (cf 0) 

Jne not equal (zf = O) 

Jng not greater (sf <> of) I (zf = l) 
jnge not greater or equal (sf <> of) 

jnl not less (sf = of) 

jnle not less or equal (sf = of) & (zf = 0) 

Jno not overflow (of = 0) 

Jnp not parity (pf = 0) 

Jns not sign (sf = 0) 

736 
jnz not zero (zf = 0) 



!l'" .. ~--~.-----------------------------------.J 

• Imp Jump Unconditionally 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 
Syntax/Example 

Sample Code 

Description 

See Also 

lahf 

Jumps to a new location. 
jmp shortTarget imp short @@10 

jmp near Target imp CloseBy 
jmp forTarget jmp far OverThere 
jmp regW I memW imp bx 
jmp memDW jmp [dword bx] 

803861486 only 
jmp regDW 
or bx, bx 
jnz Continue 
jmp Exit 
Continue: 

jmp ecx 

Does bx 01 
Jump if bx <> 0 
Else jump to exit 

The jmp instruction causes program execution to continue at the 
address specified as a displacement from the instruction following 
the j mp. In assembly language programs, Turbo Assembler 
calculates the displacement from a label that you specifY as the 
operand, automatically using the most efficient form of the 
instruction possible. There's rarely any good reason to calculate 
displacements manually. 
When jumping to higher addresses, use the SHORT operator as in 
j mp SHORT Nearby, or Turbo Assembler will insert wasteful nop 
instructions to allow for the possibility that the address later will 
prove to be farther than about 128 bytes away. 
In place of an explicit label, you can specifY the target address in 
a register or via a memory reference. The 80386/486 allows 
extended registers to hold 32-bit offset addresses. This powerful 
ability is especially useful in creating "jump tables," which 
contain lists of locations to which control passes based on certain 
conditions. 
j-condition 

load Flags Into ah Register 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

Syntax/Example 
Sample Code 

Copies sf, zf, saf, and cf to ah. 

lahf no operands lahf 

lahf 
test ah, 0Dh 
jnz @@10 

Load flags in to ah 
Test sf, zf, cf 
Jump if any flag = 1 737 



738 

Description 

See Also 

Ids 

Execute lahf to load the five flags sf(7), zf(6), af{4), pf(2), 
and cf (0) into lower 4 bits of register ah. Bit numbers are shown 
in parentheses. After executing lahf, other bits in ah are unde
fined and may also change. 
sahf 

Load Pointer and ds 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

lea 

Purpose Loads pointer from memory into a register and ds. 
Syntax/Example Ids regw, memDW Ids si, [bp + 41 

Sample Code 

Description 

See Also 

803861486 only 
Ids regDW, memFW 
push cs 
mov ax, offset var 
push ax 

pUSh bp 

Ids edi, [bxl 
Push segment 
Load offset 
Push offset 

Save bp 
mov bp, sp Address stack with bp 
Ids si, [bp + 21 Load pointer to ds:si 

Use Ids to load both a 16-bit general-purpose register (usually 
Si) and the ds segment register with a 32-bit pointer stored in 
memory. The memDWoperand may be any of the usual 
addressing modes, except for a direct address, which is not 
permitted. The 80386/486 can load a 48-bit pointer into an 
extended 32-bit register plus ds. The sample demonstrates how 
to pick up a pointer, perhaps passed to a subroutine by address 
on the stack. The first part of the sample pushes the segment cs 
and offset values of a variable (not shown) onto the stack; the 
second part uses Ids along with bp to load ds: si with the pointer 
value. 
leal les, Ifs, 19s, Iss 

Load Effective Address 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purp.ose Loads offset address of memory reference into a register. 

Syntax/Example lea regw, memW lea bx, [bp + 2] 

80386/486 only 
lea regW I regDW, memW I memDW lea edi, [dword bp + 2] 



r 

Sample Code 

Description 

See Also 

leave 

DATASEG 
array db 80 dup (0) 
eODESEG 
lea bx, [array + sij 
mov bx, offset array 
add bx, si 

ASSEMBLY LANGUAGE KEFt:RtNU 

Use this ... 
... instead of these 
two lines 

lea bx, [array + bp + si] Use this ... 
mov bx, offset array ... instead of these 
add bx, bp three lines 
add bx, si 

Use lea to load the offset address, also called the effective 
address, into a word register or a doubleword register on 80386/ 
486 systems. When you need to use a complex memory refer
ence repeatedly-or when you need to load a register, usually bx, 
with the address of a table element perhaps for use with the xlat 
instruction-you can use lea to compute the offSet address. The 
sample demonstrates how doing this can perform the work of 
two or three instructions. The first code line performs the same 
task as lines two and three; the fourth code line does the same 
job as the last three lines. 

Ids, les, Ifs, 19s, Iss 

Leave Procedure 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 
Syntax/Example 
Sample Code 

Description 

See Also 

A 

Removes from the stack local variable space allocated by enter. 

leave no operands leave 

PROe AnyProc 
enter 6,0 

; Procedure code 
leave 
ret 

ENDP AnyProc 

Reserve 6 bytes for local variables 

Reclaim reserved stack space 
Return to caller 

Just before a ret instruction, use leave to reclaim stack space 
previously allocated by enter at (he start of a procedure. Usually, 
high-level language compilers use leave and enter to implement 
functions and procedures, but you can certainly use these 
instructions in pure assembly language programs, too. A leave 
performs the two steps mov sp, bp and pop bp, thus restoring the 
stack pointer and bp, which was pushed onto the stack by enter. 

enter, ret 

739 



740 

PART III _ REfERENCE 

les Load Pointer and es 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose Loads pointer from memory into a register and es. 

Syntax/Example les regw, memDW les di, [bp + 4] 

Sample Code 

Description 

See Also 

Ifs Igs 

80386/486 only 
les regDW, memFW les esi, [bx] 

push ds Push segment 
mov ax, offset var Load offset 
push ax Push offset 

push bp Save bp 
mov bp, sp Address stack with bp 
les di, [bp + 2] Load pOinter to eS:di 

Use les to load both a 16-bit general-purpose register (usually 
di) and the es segment register with a 32-bit pointer stored in 
memory. The memDWoperand may be any of the usual 
addressing modes, except for a direct address, which is not 
permitted. The 80386/486 can load a 48-bit pointer into an 
extended 32-bit register plus es. The sample demonstrates how 
to set es: di to point to a variable, perhaps passed to a subroutine 
by address on the stack. The first part of the sample pushes the 
segment ds and offset values of var (not shown) onto the stack; 
the second part uses les along with bp to load es: di with the 
pointer value. 

Ids, lea, 1 fs, 19s, Iss 

Load Pointer and fSI gs 

Processor: 8086/88 80286 80386/486 ... 
Flags: of df if tf sf zf af pf cf 

Purpose 

Syntax/Example 

Sample Code 

Loads pointer from memory into a register and fs (1 fs) or into 
gs (lgs). 

Ifs regw, memDW lfs di, [bp + 4] 

Ifs regDW, memFW lfs eSi, [bxJ 

19s regw, memDW 19s di, [bp + 4] 
19s regDW, memFW 195 e5i, [bx] 

push cs 
push 0 

Push segment 
; Push high offset 



Description 

See Also 

lock 

ASSEMBLY LANGUAGE "m:I\CI'L[ 

push offset var Push low offset 

puSh bp Save bp 
mov bp, sp Address stack with bp 
19s edi, [bp + 2] Load pointer to gs:edi 

Use lfs and 19s to load a 16- or 32-bit offset pointer plus a 
16-bit segment address value into any 16- or 32-bit register and 
either the fs or gs segment registers, available only on 803861 
486 systems. Except for the ability to load 48-bit pointers, these 
two instructions are similar to Ids and les and are typically used 
in procedures to access variables passed to subroutines by address 
on the stack. 

Ids, lea, les, Iss 

Lock the Bus 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 
SyntttxlExample 
Sample Code 

Description 

See Also 

Asserts bus lock signal for next instruction. 

lock no operands lock xchg [semaphore 1, al 
j Note: Don't run this! 
mov dl, 1 Set dl to 1 

@@10: 

Lock xchg [semaphore], dl ; Exchange dl & memory 
or dl, dl Does dl = 01 
j z @@10 Jump until dl <> 0 

Use lock as a prefIx to instructions that reference memory shared 
by more than one processor. (PCs have single processors, so lock 
is rarely used in PC programming.) Typically, lock prefaces xchg 
on 8086/88 systems; movs, ins, and outs on 80286/386/486 
systems; and adc, add, and, bt, btc, btr, bts, dec inc, neg, not, 
or, sbb, sub, and xor on 80386/486 systems when one operand is 
a memory reference. It's not necessary to preface xchg with lock 
on 80286/386/486 systems, which do this automatically. 

The hypothetical sample shows a typical use for lock-setting a 
flag called a semaphore to prepare for exclusive use of a device or, 
perhaps, other memory blocks. The lock on the xchg prevents 
twO processors from accessing the same byte; therefore, if dl is 0, 
the program can safely proceed while the other processor, which 
is running a similar or even the same routine, will pause until the 
fIrst process again resets the semaphore to O. 
xchg 

741 



742 

Load String lods lodsb lodsd lodsw 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

Syntax/Example 

Sample Code 

Description 

See Also 

Loads strings of values into the accumulator. 

lods (es:}memB lods [byte source) 
lods {es:}mem W lods [word es: sil 
lodsb no operands lodsb 
lodsw no operands lodsw 

80386/486 only 
lods (es:}memDW 
lodsd no operands 

lods [dword source) 
lodsd 

mov si, offset string; Address string with ds:si 
mov ex, MaxCount Maximum loops to do 
cld Auto-increment si 

@@10: 
lodsb al <- [ds:si); si <- si + 1 
call Subroutine Call a procedure 
loop Loop until ex = 0 

The operand to lods is always ds: si or, with a segment override, 
es: si. Even if the operand refers to a label by name, you still must 
initialize si to address this variable-all that Turbo Assembler can 
do is check that the variable you specifY is actually in the expected 
segment. Most of the time, you'll use the shorthand mnemonics 
lodsb, lodsd (80386/486 only), and lodsw to load bytes, words, 
and doublewords into aI, ax, and eax. Each time lodS executes, if 
df 0, si is incremented; if df = 1, si is decremented. 

The instruction is used most often in a loop that scans a string of 
values, as demonstrated in the sample. Register si is initialized to 
address a variable, ex is assigned the maximum number of loops 
to execute, and df flag is cleared so that lodsb will advance si. 
The loop then loads bytes at ds: si into aI, calling a subroutine 
(not shown) and looping until ex equals O. 

You can preface lods with repeat prefIxes such as repe, but it 
makes little sense to do so as the effect is to load a single value 
into the accumulator, a job more easily performed with other 
instructions. 

empsb, cmpsd, empsw, ins, insb, insd, insw, movs, movsb, movsd, 
movsw, outs, outsb, outsd, outsw, seas, scasb, seasd, seasw, stos, 
stosb, stosd, stosw 



-~- ..... ------------------------

loop Loop on ex 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 
Syn~/ExAmple 

SAmple Cotle 

Description 

See Also 

loope loopz 

Decrements ex and then jumps if ex is not O. 

loop short Target loop StartLoop 

jcxz @@20 Skip loop if ex 0 
@@10: 
call Subroutine 
loop @@10 

@@20: 

Call a procedure 
ex <- ex -1; jump if ex <> 0 

This instruction is very handy for constructing loops that repeat for 
the number of times specified by register ex. At each loop execu
tion, ex is decremented by 1. If this leaves ex not equal to 0, then a 
jump is made to the lOOp's target address, which must be no more 
than 126 bytes above (at a lower address than) the loop and no 
more than 127 bytes below (at a higher address). Because loop 
decrements ex before testing whether ex is 0, if ex 0 at the start of 
a repeated section, that section will execute 65,536 times. To pre
vent this, precede the repeated section with jexz as in the sample. 

jexz, loope, loopz, loopne, loopnz 

Loop on ex While Equal 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 
SyntllXIExttmple 

SAmple Cotle 

Description 

Decrements ex and then jumps conditionally if ex is not O. 
loope shortTarget loope @@20 
loopz short Target loopz StartLoop 

DATASEG 
array db ' ABCDEFG',0 
arraySize = $-array 

CODESEG 
moy ex, arraySize 
moy si, offset array 
eld 

@@10: 

Assign array size to ex 
Address array with ds:si 
Auto-increment si 

lods [byte array) al <- [ds:siJ; si <- si + 
crop aI, 32 Does al 32? 
loope @@10 Jump while yes & ex <> 0 
je AIIBlank Jump if string = all blanks 
dec si si addresses first nonblank 

Use either loope or lOopz, both of which represent the same 
instruction, to decrement ex and jump to a target address if this 

743 



16 

744 

See Also 

leaves ex not equal to 0 and if zf = 1, presumably set or reset from 
a previous comparison. As with loop, the target must be within 126 
bytes back and 127 bytes forward of loope. The sample shows how 
to use loope to scan a byte array. The array length is assigned to ex; 
the array address to si. Then a three-instruction loop loads 
successive array bytes into al, jumping to @il10: from the loope 
instruction if ex is not 0 and if the previous emp found 32-the 
ASCII value for a blank character. After the loop, a j e detects 
whether all characters in the string were blank. If not, si is 
decremented, thus pointing to the first nonblank character. 

loop, loopne, loopnz 

loopne loopnz Loop on ex While Not Equal 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Iss 

Purpose 
Syntax/Example 

Sample Code 

Description 

See Also 

Decrements ex and then jumps conditionally if ex is not O. 

loopne short Target loopne ~~Begin 
loopnz shortTarget loopnz 111111110 

moy ex, arraySize ; Assign array size to ex 
moy si, offset array + arraySize -1; Address end of array 
std Auto-decrement si 

11111110: 
lods [byte array) 
emp aI, '.' 
loopne ~~10 
jne Exit 

a1 <- [ds:siJ: si <- si -1 
Does al = '.'? 
Jump while no & ex <> 0 
Jump if no '.' found 

inc s1 s1 addresses '.' 

These rwo mnemonics represent the same instruction and 
operate nearly identically to loope and loopz, except that the 
jump to a target address is made only if, after decrementing ex, 
this leaves ex <> 0 and if zf = 0. The sample uses loopne to 
locate a period in a file-name string, starting the scan at the end 
of the string and jumping to Exit (not shown) if no period is 
found or incrementing si to the period character if found. 

loop, loope, loopz 

Load Pointer and ss 

Processor: 8086/88 80286 80386/486 
A 

Flags: of df if tf sf zf af pf cf 

Purpose 
Syntax/Example 

Loads pointer from memory into a register and ss. 

Iss regw, memDW Iss si, [bp + 2] 
Iss regDW, memFW Iss edi, [bxJ 



Sample Code 

Description 

See Also 

mov 

Save old stack segment 
and old stack pOinter 

mov [oldsS], ss 
mov [oldsp], sp 
Iss sp, [newstack] Load ss:sp with new values 

mov sp, [oldsp] ; Restore sp (interrupts disabled) 
mov ss, [oldss] ; Restore ss 

On 80386/486 systems, use Iss to load a 16- or 32-bit offset 
pointer plus a 16-bit segment address value into any 16- or 32-
bit register and the ss stack segment register. Normally. the 
offset value will be loaded into sp, but there's no restriction on 
using Iss to load other registers. One way to use Iss is to pick 
up the address of an alternative stack as the sample demonstrates. 

Ids, lea, les, 1 fs 

Move Data 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 
Syntax/Example 

Sample Code 

Description 

Moves values between registers or between registers and memory. 

mova4 memB mov aI, [abyte] 
mov ax, mem W mov ax, [aword I 
mov memB, al mov [abyte], al 
mov mem W, ax mov [aword], ax 
mov regB I memB, regB I immB mov dl, el 
mov regW I memW, regW I immW mov [aword], 1024 
mov regB, memB mov dl, [abyte] 
mov regw, memW mov dx, [aword] 

80386/486 only 
mov eax, memDW 
mov memDW, eax 
mov regDW I memDW, regDW I 
mov regDW, memDW 

DATASEG 
var db 10 dup (0) 
CODESEG 

mov bx, 0 
mov cx, 10 

@@10: 

mov eax, [adword] 
mov [adword], eax 

immDW mov edx, 99999 
mov edx, [adword] 

A 10-byte variable 

Initialize bx to 0 
Initialize ex to 10 

mov [byte var + bxj, cl Copy cl to memory 
inc bx Increment pointer 
loop @@10 Loop on cx 

The mov instruction is probably the most heavily used of all 
instructions in 8086 programming. Various forms of mov allow 
transferring bytes, words, and doublewords (80386/486 only) 

1 

745 



746 

See Also 

between registers or between registers and memory, using all the 
usual memory-addressing modes. 

There are a few restrictions on mav that are not evident from the 
syntax list. The direction of mav is from right to left-transfer
ring the value of the second operand to the first. The value of the 
second operand is never affected. When both operands are 
registers, only one of those operands may be a segment register; 
therefore, it's legal to write moves, ax and mav [award], ds, but 
it's notlegal to write mav ds, es. When one operand is a 
segment register, interrupts are disabled for the next instruction, 
allowing a mav to ss to be followed with a mav to sp, eliminating 
the danger that an interrupt signal will occur before the full stack 
pointer ss : sp is initialized. Another restriction is that both 
operands may not be memory references-all moves to and from 
memory must pass through a register. (See mays for an instruc
tion that can move values between two memory locations.) 

When one register operand is aI, ax, and eax (80386/486 only), 
Turbo Assembler generates a faster form of mav. If the accumula
tor is free, you should use it in mav instructions to improve 
program performance. 

The sample shows how mav is used to initialize registers, used 
here to store the successive values 10,9, ... ,1 in a variable. 
Another mav copies the value of cl to memory using base
addressing mode with bx. 

mays, lads, stas 

movs movsb movsd movsw Move String 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 
Syntax/Example 

Sample Code 

Moves strings of values directly between two memory locations. 
movs memB, (es:}memB maYs [var1], [var2) 
movs memW, {es:}memW movs [var3j, [es:si] 
movsb no operands movsb 
movsw no operands movsw 

803861486 only 
movs memDW, {es:}memDW 
movsd no operands 
mov ax,~data 
mov dS,ax 
mav eS,ax 
ASSUME es:DGROUP 
mov si, offset string 
mav di, offset strcopy 

mays [edi]. [es:var4] 
movsd 

Initialize ds to address 
of data segment 
Make es " ds 
Tell tasm where es paints 
Address source string 
Address destination 



r 

Description 

See Also 

movsx 

ASSEMBLY LANGUAGE REFERENCE GUIDE 

mov ex, strlen Assign count to ex 
jexz Exit Don't copy if ex 0 
eld Auto-increment si, di 
rep movsb Copy string to streopy 

The movs instruction, plus its shorthand forms movsb, movsd 
(80386/486 only), and movsw, moves one value in memory directly 
to another memory location. The first operand must be es : di, 
addressing the destination for the move. The second operand must 
be ds: si or with a segment override es: si, addressing the source 
for the move. The extended 32-bit registers edi and esi may be 
used in 803861486 programs. Executing movs copies I byte from 
the source location to the destination. After this, if df 0, both si 
and di (or esi and edi) are advanced by the number Of bytes being 
moved. If df = 1, the two registers are decremented by the number 
of bytes being moved. These register assignments are flXed--even, 
as in some of the examples, if you specifY explicit labels, which 
Turbo Assembler will check to ensure that the variables are in the 
appropriate segments. It's still your responsibility to load di and si 
with the offSet addresses of the variables. The shorthand forms of 
movs require no operands. There are no operational differences 
between the different mnemonics. 

Usually, movs is prefaced with a rep prefix, repeating the instruc
tion for the number of times specified in ex. As the sample 
shows, this lets you create powerful instructions to move blocks 
of memory from one place to another-in this case, copying 
string to strcopy. As a reminder, the instructions to initialize 
segment registers are also shown in the sample. Effectively using 
movs (as well as other string instructions) requires careful 
planning and control of segment registers. 

empsb, empsd,cmpsw, ins, insb,insd, insw, lods, lodsb, lodsd, 
lodsw, outs, outsb, outsd, outsw, rep, seas, scasb, seasd, seasw, 
stos, stosb, stosd, stosw 

Move and Extend Sign 

Processor: 8086/88 80286 80386/486 ... Flags: of df if tf sf zf af pf cf 

Purpose Moves signed values from smaller registers and memory loca
tions into larger registers, extending the sign bit. 

Syntax/Example movsx regw, regB I memB movsx dx, al 

Sample Code 

movsx regDW, regB I memB movsx eax, [abyte) 
movsx regDW, regW I mem W movsx edx, dx 

mov aI, -1 
mov dx, 0 
movsx dx, al 

al -1 
dx 00000h 
dx 0FFFFh 

747 



748 

Description 

See Also 

mOVlX 

mov [abyte], -1 
mov eax, 0 
movsx eax, [abyte] 
mov ax, -1 
mov edx, 0 

[abyte] = -1 

eax = 000000000h 
eax 0FFFFFFFFh 

ax = -1 
edx = 000000000h 

movsx edx, ax edx = 0FFFFFFFFh 

On 80386/486 systems, use movsx to copy signed values with fewer 
numbers of bits to larger registers. For example, you can use movsx 
to load a word register such as ax with a byte value from memory 
and have the processor automatically initialize ah, extending the 
sign of the copied value as needed. The destination (first operand) 
to movsx must be a register. The source (second operand) may be a 
register or memory reference. The samples demonstrate how to use 
movsx to transfer values between dissimilar registers. 

mov,movs, movzx 

Move and Extend Zero Sign 

Processor: 8086/88 80286 80386/486 

• 
Flags: of df if tf sf zf af pf cf 

Purpose Moves unsigned values from smaller registers and memory 
locations into larger resisters, zeroing the most significant digits. 

Syntax/Example movz.x regw, regB I memB movzx bx, [abyte] 
movz.x regDW, regB I memB movzx edx, dl 
movzx regDW, regW I memW movzx edx, [aword] 

Sample Code mov aI, -1 al 1 

Description 

See Also 

mov dx, -1 dx = 0FFFFh 
movzx dx, al dx = 00001h 

mov [abyte], 
mov eax, -1 
movzx eax, [abyte] 

[abyte] = 1 
eax 0FFFFFFFFh 
eax = 000000001h 

mov ax, 1 ax = 1 
mov edx, -1 edx = 0FFFFFFFFh 
movzx edx, ax edx = 000000001h 

On 80386 systems, use movzx to copy unsigned values with fewer 
numbers of bits to larger registers-similar to the way you can use 
movsx. For example, movzx can load an extended 32-bit register 
such as ecx with a word value from memory and have the processor 
automatically zero the upper 16-bits of ecx. The destination (first 
operand) to movzx must be a register. The source (second operand) 
may be a register or memory reference. The samples demonstrate 
how to use movzx to transfer values between dissimilar registers. 

mov, movs, movsx 



r 
I 
i 

i 
~#-------------------------------------------------------------------------, 

mul Unsigned Multiplication 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 
Syntax/Example 

Sample Code 

Description 

See Also 

.... --:-uuuu .... 

Multiplies two unsigned values. 

mul regB I memB mul bl 
mul regW I memW mul [award] 

80386/486 only 
mul regDW I memDW mul ebx 

DATASEG 
multiplicand dw 1024 
multiplier dw 32 
answer dw 0 
CODESEG 
may ax, [multiplicand] 
mul [multiplier] 
jc Exit 

Load multiplicand into ax 
dx:ax <- ax * multiplier 
Jump if result> 16 bits 

may [answer], ax Else store answer 

Unsigned multiplication in 8086 programming is considerably 
similar than signed multiplication (see imul). The single operand 
to mul must be a general-purpose register or a memory reference, 
representing the multiplier. The size of the multiplier determines 
the location of the multiplicand and product. If the multiplier is 
a byte, then the multiplicand is aI, and the product is deposited 
in ax. If the multiplier is a word, then the multiplicand is ax, and 
the result is placed in dx: ax with ax holding the low-order 
portion of the result. If the multiplier is a doubleword (80386/ 
486 only), then the multiplicand is in eax, and the product 
appears in edx: eax, with the low-order 32 bits in eax. Overflow 
of the destination registers is not possible. 
After mul, the of and cf flags can be used to determine the size of 
the result. Both flags are set to 1 if the product takes more bits 
than the specified source; otherwise, both flags are set to 0. 
Thus, if cf = 0 after mul bl, then ah is 0, and the 8-bit result fits 
in al. If cf = 1 after mul bx, then the result occupies the full 32-
bit double register dx: ax. As the sample demonstrates, you can 
optionally test cf (or of) after mul to detect a result larger than 
the size of the original operands. 

imul 

749 



16 

750 

neg Two's Complement Negation 

Processor: 8086/88 80286 80386/486 Flags: of df 

• 
if tf sf zf af pf cf 

••••• 
Purpose 

Syntax/Example 

Sample Code 

Description 

See Also 

nop 

Negates (forms two's complement) of a value. 

neg regB I memB neg [abyte I 
neg regW I mem W neg ax 

80386/486 only 
neg regDW I regDW neg edx 

mov ax, 6 
mov dx, 8 

Assign values to 
ax and dx 

sub ax, dx ax <- ax - dx (ax = 0FFFEh) 
jae ~~10 Jump if ax >= 0 
neg ax Find absolute value (ax = 0002) 
mov dl, '-' Display a minus sign 
mov ah, 2 via DOS function 2 
int 21h Call DOS 

@~10: Continue here 

Apply neg to form the two's complement of a register or memory 
value. When the original value is a negative number in two's 
complement form, neg finds the absolute positive equivalent of the 
value. The instruction operates by subtracting the original value 
from 0, an operation that is logically equivalent to toggling all bits 
in the value from 0 to 1 and from 1 to 0, and then adding 1. As the 
sample demonstrates, if the resuJt of a subtraction is negative, a 
minus sign can be sent to the standard DOS output file, and the 
resuJt in ax can be negated. Not shown is the code afi:er ~~10: that 
would then write the absolute value of ax to the standard output, 
thus displaying the full negative number in decimal. 

not 

No Operation 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

Syntax/Example 

Sample Code 

Occupies 1 byte of machine code but has no operational effect. 

nop no operands nop 

jmp ~@20 
nop 

~~20 

Jump to forward label 
; Inserted by Turbo Assembler ... 

... if this label is within about 
128 bytes 



Description 

See Also 

not 

Turbo Assembler inserts nop instructions to reserve bytes in cases 
where the exact size of an instruction is determined by code later in 
the program. For example, a j mp to a forward label is assumed to be 
3 bytes long. But if the j mp destination proves to be within about 
128 bytes, the assembler changes the jmp to a more efficient 2-byte 
form, leaving the unneeded third byte equal to a nop. (You can 
avoid this situation by prefacing the target address of forward labels 
with the SHORT operator.) Another use for nop is during debugging. 
If you want to remove an instruction, instead of quitting the 
debugger, loading your editor, making a modification, and 
reassembling, just poke a few nop bytes (90h) over the instruction. 
You can then run the program and examine the effects without this 
instruction in place-a useful debugging technique. Some refer
ences recommend using nop to adjust the timing of software loops, 
although because it is almost impossible to predict the exact timings 
of multiple instructions in 8086 programming-especially in an 
interrupt-driven computer system-this use of nop is dubious. 

The nop instruction is identical to the instructions xchg ax, ax 
and xchg eax, eax (80386/486 only), both of which assemble to 
the same machine code as nop. 

xchg 

One's Complement Negation 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 
Syntax/Example 

Sample Code 

Description 

See Also 

Toggles all 1 bits to 0 and all 0 bits to 1 in a value. 

not regB I memB not dh 
not regW I mem W not dx 

803861486 only 
not regDW I memDW not [dword var) 

DATASEG 
false EQU 0 
true EQU -1 
flag db true 
CODESEG 

cmp [flag), false 
je @@10 
call Subroutine 

@@10: 

Value representing false 
Value representing true 
Initialize flag to true 

Is the flag false? 
Jump if flag false 
Else call a subroutine 

not [flag] Toggle flag value 

Use not to toggle all 1 bits in a value to 0 and all 0 bits to 1. 
This is often useful for toggling the value of a true and false flag, 
as in the sample. (The referenced subroutine is not shown.) 

neg 751 



6 

752 

III _ REfERENCE 

or Logical OR 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

Syntax/Example 

Sample Code 

Description 

See Also 

o ...... u ... 0 

Logically ORs CWo byte, word, or doubleword (80386/486 only) 
values. 

or ai, immB 
or ax, immW 
or regB I memB, immB 
or regW I memW, immW 
or regW I memW, immB 
or regB I memB, regB 
or regW I mem W, regW 
or regB, regB I memB 
or regW, regW I memW 

80386/486 only 

or aI, 80h 
or ax, 01h 
or bl, 0Mh 
or [word bxj, 
or ex, 03h 

0800h 

or [byte bxl, dl 
or dx, dx 
or bl, bh 
or dx, [word bx] 

or eax, immDW or eax, 080000000h 
or regDW I memDW, immDW 
or regDW I memDW, immB or 
or regDW I memDW, regDW or 
or regDW, regDW I memDWor 

mov ax, 01234h 
and ax, 000FFh 
or ax, 08000h 

or dx, dx 
jzTarget 

or edx, 0FFFF0000h 
[dword bxl, 01h 
edx, eex 
eex, [dword bx I 

ax = 01234h 
ax = 00034h 
ax = 08043h 

Does dx '" 07 
Jump if dx = 0 
Continue if dx <> 0 

Use or to perform a logical OR on the bits in any two byte, 
word, or doubleword (80386/486 only) values stored in registers 
or in memory variables. (Both of the two operands can't be 
memory references.) The corresponding bits in the first operand 
are set to 1 only if the bits in either or both of the operands 
equal 1. The first part of the sample uses or to set the MDS of a 
word value in ax to 1, after ah is zeroed by a previous and with a 
mask of OOOFFh. 

Another rypical use for or is to test whether a value equals 0, as 
the second part of the sample demonstrates. ORing a value with 
itself sets the zero flag to 1, without changing the original value, 
only if all bits in the value are O. Note that this also sets both ef 
and of to 0, a fact that might be useful in some circumstances. 

and, xor 



out Output to Port 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 
SyntAx/Example 

Sample Code 

Description 

See Also 

Outputs values to ports. 
out immB, at out 14h, al 
out dx, at out dx, al 
out immB, ax out 01 Fh, ax 
out dx, ax out dx, ax 

803861486 only 
out immB, eax 
out dx, eax 
Ctrl8259 EQU 021h 

out 0Fh, eax 
out dx, eax 

8259 masks port 

in aI, Ctrl8259 Read 8259 enable masks 
and aI, EnableIRQ Clear masked bit 
out Ctrl8259, al Write new 8259 masks 

The out instruction writes a value in aI, ax, or eax (80386/486 
only) to a hardware port. As the sample shows, out is often used 
in conjunction with in and logical instructions such as and and 
or to examine and change bit switches at various port addresses 
in the computer. (This is the same sample shown for in.) The 
simplest form of out writes a byte in al to an immediate port 
address in the range 0-255. To access higher port addresses, 
specify the address in the dK register. 

in, outs 

outs outsb outsd outsw Output From String to Port 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

SyntAx/Example 

... ... 
Outputs a sequence of bytes, words, or doublewords from 
memory to ports. 
outs dx, [es:jsi I memB 
outs dx, [es:jsi I mem W 
outsb no operands 
outsw no operands 

rep outs dx, [varJ 
rep outs dx, [word varj 
rep outsb 
rep outsw 

803861486 only 
outs dx, regDW I memDWrep outs dx, [dword varl 
outsd no operands rep outsd 

753 



754 

Sample Cotle 

Description 

See Also 

pop 

j Note: don't run this! 

DATASEG 
string db 'A string is a wonderful thing' 
slen " $-string 
CODESEG 
mov si, offset string Address string with ds:si 
mov dx, <port number> Assign port number to dx 
mov cx, slen Assign string length to cx 
cld Auto-increment si 
rep outsb Send string to output port 

As with all string instructions, outs (and its shorthand forms outsb, 
outsd [80386/486 only], and outsw) register assignments are ftxed, 
even if you specifY address labels explicitly. The source resister is 
ds: si unless an es: override is used as in [byte es: si] or [word 
es :var]. The port number must be placed in dx. (Don't forget to 

do this also for the shorthand mnemonics.) If df '" 0, then outs 
increments si; if df = 1, outs decrements si by the number of 
bytes being sent to the output port with each use of outs. Nor
mally, you'll preface outs with rep, repeating the instruction for the 
number of times specifted in cx as illustrated in the sample. 

cmpsb, cmpsd, cmpsw, ins, insb, insd, insw, lods, lodsb, lodsd, 
lodsw, movs, movsb, movsd, movsw, scas, scasb, scasd, scasw, stos, 
stosb, stosd, stosw 

Pop from Stack 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 
SyntnxlExample 

Sample Code 

Removes a word or doubleword (80386 only) from the stack. 

pop regW pop ax 
pop mem W pop [word var j 
pop es I ds I ss pop es 

803861486 only 
pop regDW pop ecx 
pop memDW pop [dword varj 
pop fi I gs pop gs 

push ax Save ax on stack 
push bx ; Save bx on stack 

various instructions 

pop bx 
pop ax 

push cs 
pop es 

Restore saved bx value 
Restore saved ax value 

Push cs onto the stack 
Pop ds, making ds = cs 



Description 

See Also 

popa 

ASSEMBLY LANGUAGE REFERENCE GUIDE 

Execute pop to remove one word or doubleword (80386/486 only) 
value from the stack location addressed by ss: sp or by ss: esp on 
the 803861486. After copying the stack value into the specified 
register, sp or esp are incremented by the number of bytes trans
ferred. Having done this, the value above (at a lower address than) 
the new stack pointer is subject to being overwritten by other code. 

The most common use for pop (see first part of sample) is to restore 
a register value previously inserted into the stack with push. 
Another use for pop is to load a segment register as in the second 
part of the sample, which sets es equal to e5. (Popping into the es 
register is forbidden.) When popping values into a segment register, 
interrupts are temporarily disabled for the next instruction, thus 
allowing pop 55 to be followed by pop sp without the danger that 
an interrupt will occur before the full stack pointer is initialized. 

Often neglected is the ability to pop values into word and 
doubleword (80386/486 only) memory locations, using all 
memory-addressing modes. Thus, instructions such as pop 
[aword + bx + s1] and pop [aword + s1] are perfectly allow
able, if somewhat unusual, commands. 

popa, popad, popf, popfd, push,pusha, pushad, pushf, pushfd 

Pop All General-Purpose Registers 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose Removes registers d1, s1, bp, sp (discarded), bx, dx, ex, and 
ax from the stack. 

Syntax/Example popa no operands 

Sample Code PROC AnyProc 
pusha 

popa 

; Save all general-purpose registers 

Description 

See Also 

; Procedure code 

popa Restore general-purpose registers 
ret Return to caller 
ENDP 

Use popa on 80286 and 80386/486 systems to pop the 16-bit 
registers di, s1 bp, sp, bx, dX, ex, and ax in that order from the 
stack. Although the saved value for sp is removed from the stack, 
the value is not inserted into sp. Normally, you'll use pop a after pre
viously having executed pusha to push these same register values (in 
the opposite order). The instruction uses 16 bytes of stack space. 

pop, popad, popf, popfd, push, pusha, pushad, PU5hf,pushfd 

755 



------------------------------------

6 

756 

popad Pop All General·Purpose Doubleword Registers 

Processor: 8086/88 80286 80386/486 ... Flags: of dE if tf sf zf af pf cf 

Purpose 

Syntax/Example 
Sample Code 

Description 

See Also 

popf 

Removes registers edi, esi, ebp, esp (discarded), ebx, edx, ecx, 
and eax from the stack. 

popad no operands popad 

pushad j Save general-purpose 32-bit registers 

j other code 

pop ad ; Restore saved registers 

Use popad on 80386/486 systems to pop the 32-bit registers edi, 
eSi, dbp, esp, ebx, edx, ecx, and eax in that order from the stack. 
Although the saved value for esp is removed from the stack, the 
value is not inserted into esp. Normally, you'll use popad after 
previously having executed- pushad to push these same register 
values (in the opposite order). The instruction uses 32 bytes of 
stack space. 

pop, popa,popf, popfd, push, pusha,pushad, pushf, pushfd 

Pop Flags 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 
........................... 

Purpose 

Syntax/Example 
Sample Code 

Description 

See Also 

Removes all flags from the stack. 

popf no operands popf 

xor 
push 
popf 

ax, ax 
ax 

Set ax 0000 
Push ax onto stack 
Pop stack into flags, thus 
resetting all flags to 0 

Execute popf to remove the top word from the stack and insert 
the bits in that word into the 8086 flags. Normally, you'll do 
this after previously executing pushf to push the flag values, 
perhaps to preserve the result of a comparison or other instruc
tion. Another use for popf is to remove the flags from the stack 
in an interrupt service routine. You can also assign various bit 
values in a word register, push that register onto the stack, and 
then execute popf to transfer the bits to the flags, thus setting the 
flags to your new values. 

pop, popa, popad,popfd,push, pusha, pushad, pushf, pushfd 



popfd Pop Extended Flags 

Processor: 8086/88 80286 80386/486 .. Flags: of df if tf sf zf af pf cf .................. 
Purpose 

SyntaxlExample 
Sample Code 

Description 

See Also 

push 

Removes extended 80386 flags except vm and rf from the stack. 

popfd no operands popfd 

pushfd i Save extended flags 

; other code 

popfd ; Restore extended flags 

Execute popfd to remove the two tOP words from the stack and 
insert the bits in those words into the 80386/486 extended flag 
register. Normally, you'll do this after previously executing 
pushfd to push the extended flag values, perhaps to preserve the 
results of a comparison or other instruction. (See popf for other 
potential uses.) The 80386/486 vm (virtual 8086 flag, bit 17) and 
rf (resume flag, bit 16) are not changed by popfd. 

pop, popa, popad, popf, push, pusha, pushad, pushf, pushfd 

Push Onto Stack 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 
SyntaxlExample 

Sample Code 

Transfers values to the stack. 

push regW push ax 
push memW push [word bx] 
push cs I es I ds I ss push cs 

80286, 803861486 only 
push immB push 0Fh 
push imm W push 256 

803861486 only 
push regDW 
push memDW 
push immDW 
pushfi I gs 
push ax 
push bx 
push cx 

push ecx 
push [dword bxl 
push 99999 
push gs 

Save ax on stack 
Save bx on stack 
Save cx on stack 

other code that changes ax, bx, cx 

757 



6 

758 

Description 

See Also 

pusha 

pop cx 
pop bx 
pop ax 

P386 
push 99999 

Restore original cx 
Restore original bx 
Restore original ax 

Turbo Assembler incorrectly disallows this 

db 066h, 068h But you can code the instruction 
dd 99999 with these two lines 

Use push to transfer a word or doubleword (80386 only) to the 
stack. Executing push first decrements the stack pointer by 2 (or 
by 4 in the case of an 80386 doubleword pUSh). Then the value 
of the specified operand is copied into the location addressed by 
ss : sp. Note that this causes the stack to grow toward lower
memory addresses. The most common use of push is to save 
register values onto the stack, as the first part of the sample 
demonstrates. Later, pop can be used to remove the saved 
values, restoring the original registers. 

It is legal to push but not to pop the value of the code-segment 
register cs. Also, you can puSh values from memory, using all the 
usual addressing modes. Thus, instructions such as push [bx] 
and push [value + si] are legal but often neglected forms of the 
instruction. In addition, the 80286 and 80386/486 processors 
allow pushing immediate values, for example push 0 or push -1. 

A bug in Turbo Assembler 1.0 prevents pushing 32-bit immedi
ate values with instructions such as push 99999, which produces 
a "constant too large" error. To circumvent this presumably 
temporary problem, use the db and dd commands in the second 
part of the sample to insert the machine code for this instruction 
directly into your program. 
pop, popa, popad, popf, popfd, pusha, pushad, pushf, pushfd 

Push All General·Purpose Registers 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

Syntax/Example 
Sample Code 

Transfers registers ax, cx, dx, bx, sp, bp, si, and di to the stack. 

pusha no operands pusha 

PROC Anyproc 
pusha 

; other code 

popa 
ret 
ENDP 

; Save general-purpose registers 

Restore registers 
Return t~ caller 



Description 

See Also 

ASSEMBLY ~""'UV"VL 

Use pusha to push registers ax, ex, dx, bx, sp, bp, si, and di onto 
the stack in that order. The value pushed for sp is the value of sp 
prior to executing pusha. (This value is later discarded by popa, 
thus having no harmful effect on sp.) Normally, you'll follow 
pusha with pop a to restore the saved registers, most often in a 
subroutine or interrupt service routine. 

pop, popa,popad, popf, popfd, push, pushad, pushf, pushfd 

pus had Push All General-Purpose Doubleword Registers 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

Syntax/Example 
Sample Code 

Description 

See Also 

pushf 

Transfers registers eax, ecx, edx, esp, ebp, esi, and edi to the 
stack. 

pushad no operands pushad 

PROC AnyProc 
pushad ; Save 32-bit general-purpose registers 

; other code 

popad Restore 32-bit registers 
ret Return to caller 
ENDP 

Use pushad to push the 80386/486 32-bit registers eax, ecx, edx, 
ebx, esp, ebp, esi, and edi onto the stack in that order. The value 
pushed for esp is the value of esp prior to executing pushad. (This 
value is later discarded by popad, thus having no harmful effect on 
esp.) Normally, you'll follow pushad with popad to restore the saved 
registers, most often in a subroutine or interrupt service routine. 

pop, popa, popad, popf,popfd, push, pusha, pushf, pushfd 

Push Flags 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

Syntax/Example 
Sample Code 

Transfers the flags to the stack. 

pushf no operands pushf 

or ax, ax 
puShf 

Test whether ax = 0 
; Save result of comparison 

; other code that may modify flags 

popf Restore result of ·or' 
jz Exit Jump if ax was 0 759 



760 

Description 

See Also 

pushfd 

Execute pushf to transfer the 8086 16-bit flag register to the 
stack. All flag bits as well as unused bits are pushed. You can pop 
this word into a general-purpose register or use popf to restore 
the saved flag bits, perhaps to recover the results of an earlier 
comparison. 

pop, popa, popad, popf,popfd,push, pusha,pushad, pushfd 

Push Extended Flags 

Processor: 8086/88 80286 80386/486 
... 

Flags: of df if tf sf zf af pf cf 

rei 

Purpose 
Syntax/Example 
Sample Code 

Description 

See Also 

Transfers the 80386 extended flags to the stack. 

pushfd no operands pushfd 
P3S6 
pushfd ; Push extended flags 
pop eax ; Copy flags into eax 

Execute pushfd to transfer the 80386/486 32-bit extended flag 
register to the stack. All flag bits as well as unused bits are 
pushed. You can pop this doubleword into a general-purpose 
extended register or use popfd to restore the saved flag bits, 
perhaps to recover the results of an earlier comparison. 

pop, popa, popad,popf, popfd, push, pusha, pushad, pushf 

Rotate Left Through Carry 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 
Syntax/Example 

Sample Code 

"'u - - - - ... 
Rotates bits leftward through the carry flag. 

rel regB I memB, 1 reI aI, 1 
rel regB I memB, cl reI [abyte I, el 
rei regW I memW, 1 reI [aword], 1 
rel regW I memW, cl reI bx, el 

80286, 80386/486 only 
rel regB I memB, immB 
rei reg W I mem W, immB 

reI dl, 4 
reI [aword], 4 

80386/486 only 
rel regDW I memDW, 1 reI eax, 1 

rel regDW I memDW, cl reI [dword bxl, el 
rd regDW I memDW, immBrel eex, 4 

mov el, 4 
reI ax, el 

Assign rotation eount to el 
; Rotate ax left by count in cl 



Description 

See Also 

rcr 

Use reI to rotate the bits in word, byte, and doubleword 
(80386/486 only) registers and memory values to the left 
(toward the MSDs) including the carry flag ef as part of the 
original value. In other words, the old MSD shifts into ef, which 
shifts into the new LSD, while all other bits shift one position to 
the left. Repeating this action would eventually restore the 
original value and ef. 

For all processors, the second operand specifies the number of 
bit rotations to perform. On the 8086 and 8088 processors, if 
the second operand is literal, it must equall. To rotate more 
than one bit, you must assign the rotation count to el and 
specify this register as the second operand. The 80286 and 
803861486 processors allow you to use any immediate value as 
the second operand, for example as in reI ex, 4 to rotate ex 4 
bits left. The 80386/486 further extends these forms by allowing 
rotations involving 32-bit extended registers. 
When the second operand is an immediate 1, after reI the of 
flag equals the exclusive OR of ef and the MSD of the newly 
rotated value. Thus, if of = 1 after reI reg I mem, 1, then the 
upper 2 bits of the original value were either 11 or 00. One way 
to use this knowledge is to stop a rotation as soon as a 1 bit 
appears in the rotated value's MSD. For example, if the original 
value in ax is 01 OOOOOOb, executing reI ax! 1 results in ef = 0 
and ax = 10000000b, which sets of to 1, a condition that you 
can test with j 0 or j no. In all other cases, when the second 
operand to reI is not an immediate 1, the of flag is not defined. 
Also, if the rotation count is 0, of and ef are left unchanged-an 
oddity of little practical value. 
rer, rol, ror, sal, sar, shl, shr 

Rotate Right Through Carry 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 
Syntax/Example 

~u - - - - - ~ 

Rotates bits rightward through the carry flag. 
rcr regB I memB, 1 rer aI, 1 
rcr regB I memB, c/ rcr [abyte I, el 
rcr regW I memW, 1 rer [aword], 1 
rcr regW I memW, c/ rcr bx, el 

80286, 803861486 only 
rer regB I memB, immB rcr dl, 4 
rcr regW I memW, immB rer [aword], 4 

803861486 only 
rcr regDW I memDW, 1 rcr eax, 1 
rcr regDW I memDW, cl rer [dword bxj, el 
rcr regDW I memDW, immB rer eex, 4 

" 

761 



16 

762 

Sample Coele 

Description 

See Also 

mov cl, 2 ; Assign rotation count to cl 
rcr ax, cl j Rotate ax right by count in cl 

Use rer to rotate the bits in word, byte, and doubleword 
(80386/486 only) registers and memory values to the right 
(toward the LSDs) including the carry flag ef as part of the 
original value. In other words, the old LSD shifts into cf, which 
shifts into the new MSD, while all other bits shift one position 
to the left. Repeating this action would eventually restore the 
original value and cf. 

For all processors, the second operand specifies the number of 
bit rotations to perform. On the 8086 and 8088 processors, if 
the second operand is literal, it must equall. To rotate more 
than 1 bit, you must assign the rotation count to cl and specify 
this register as the second operand. The 80286 and 803861486 
processors allow you to use any immediate value as the second 
operand, for example as in rer dx, 3 to rotate dx 3 bits right. 
The 80386/486 further extends these forms by allowing rota
tions involving 32-bit extended registers. 

When the second operand is an immediate 1, after rcr the of 
flag equals the exclusive OR of the two MSDs of the newly 
rotated value. Thus, if of = 1 after rc r reg I mem, 1, then cf and 
the original MSD were different; otherwise, they were both 
equal to 1 or o. Stated another way, of = 1 indicates a change in 
sign of the original value as a result of the rotation. In all other 
cases, when the second operand to rcr is not an immediate 1, 
the of flag is not defined. Also, if the rotation count is 0, of and 
ef are left unchanged-an oddity of little practical value. 

rel, rol, ror, sal, sar, shl, shr 

rep repe repz Repeat, Repeat While Equal 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

Syntax/Example 
Conditionally repeats a string instruction. 

rep movs I movsb I movsw rep movs [byte di], [byte es:sij 
rep stos I stosb I stosw rep stosw 
repe cmps I cmpsb I cmpsw repe cmps [word str1), [word 
str2] 
repz cmps I cmpsb I cmpsw repz empsb 
repe seas I seasb I seasw repe seasw 
repzscas I scasb I scasw repz seas [byte es:varl 

80286, 803861486 only 
rep ins I insb I insw rep insb 
rep outs I outsb I outsw rep outs dx, [word es:sil 



Sample Cotle 

Description 

See Also 

803861486 only 
rep movs I movsd 
rep stos I stosd 
rep ins I insd 
rep outs I outsd 
repe emps I empsd 
repz emps I empsd 
repe seas I seasd 
repz seas I seasd 
UDATASEG 
string db 80 dup (7) 
strlen "$ string 
COOESEG 
mov ax, @data 
moves, ax 
ASSUME es:DGROUP 
mov di, offset string 
mov ex, strlen 
eld 
mov aI, 
rep stosb 

rep movs [dword ediJ, [dword esiJ 
rep stosd 
rep ins [dword varl, dx 
rep outs dx, [dword si] 
repe empsd 
repz emps [dword str1J, [dword str2] 
repe seasd 
repz seas [dword es:esi] 

Uninitialized variable 
Length of string 

Initialize es 
segment register 

Tell tasm where es points 
Address string with es:di 
Assign string length to ex 
Auto-increment di 
Assign ASCII value to al 
Fill string with blanks 

The three mnemonics rep, repe, and repz represent the same 
instruction prefix, which may be attached to any string instruc
tion as shown in the examples and the sample code. Even though 
the mnemonics are identical, the effects differ depending on the 
strong instruction that is prefaced. Use rep before movs, stos, 
ins, and outs-plus the shorthand mnemonics for these instruc
tions. Use repe and repz before emps and seas plus shorthand 
equivalents. 

The rep prefix repeats the string instruction that follows the 
number of times specified in ex. The repe and repz also repeat a 
string instruction by the value in ex but end the repetition if, 
after any iteration, zf " 0. Thus, you can use these two prefixes 
to repeat a string compare or scan for a certain number of times 
or until the string instruction locates a specific value. The lods 
instruction (and its shorthand mnemonics) may be repeated, 
although there is never any good reason to do so. (The result of a 
repeated lods instruction is to load the accumulator with one 
value after all repetitions are finished-there is no way to use the 
intermediate loaded values.) 

See the various string instructions elsewhere in this chapter for 
more details and for the operands that you may use with 
instructions such as emps, which, for brevity, are not repeated 
here. Also, although the repeat prefixes are listed here as not 
changing any flags, be aware that the string instructions follow
ing the prefixes can change flag settings. 

emps, ins,movs, out~ repne, repnz, seas, stos 

1 

763 



764 

repne repnz Repeat While Not Equal 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

Syntax/Example 

Sample Code 

Description 

See Also 

repz 
Processor: 8086188 ... 

See 

Conditionally repeats a string compare or scan instruction. 

repne emps I empsb I empsw repne cmps [word str1 J, [word str2J 
repnz emps I empsb I empsw repnz cmpsb 
repne seas I seasb I seasw repne scasw 
repnz seas I seasb I seasw repnz scas [byte es: var J 

80386/486 only 
repne emps I empsd 
repnz emps I empsd 
repne seas I seasd 
repnz seas I seasd 
DATASEG 

repne cmpsd 
repnz cmps [dword str1J. [dword str 2] 
repne scasd 
repnz scas [dword es:esiJ 

string db 'Thisstringhasn' 'tanyblanks' 
strlen $ string 
GODESEG 
mov ax, @data Initialize es 
moves. ax segment register 
ASSUME es:DGROUP Tell tasm where es pOints 
mov di, offset string + strlen 1 j Address end of string 
mov cx, strlen Assign string length to cx 
std Auto-decrement di 
mov aI, 
repne scasb 
jcxz Exit 

Value to search for 
Scan for blanks 
Exit if no blanks found 
e.:di addresses last nonblank 

The repne and repnz prefixes, both of which represent the same 
machine code. repeat a cmps or scas string instruction (plus 
shorthand mnemonics) for the number of times specified in cx 
but end the repetitions early if an iteration sets zf 1. For more 
details, see the notes for repe and repz, which operate similarly 
but recognize the opposite flag value for zf. The example 
demonstrates how to use repne to scan a string from back to 
front, leaving di addressing the last nonblank in the string or, if 
no blanks were found, jumping to label Exit (not shown). 

cmps, ins, movs, outs, rep, repe, repz, scas, stos 

Repeat While Zero 

80286 80386/486 Flags: of df if tf sf zf af pf cf 
... ... 

rep repe 



ret retf retn Return, Return Far or Near 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

Syntax/Example 

Sample Code 

Description 

See Also 

Returns from a subroutine procedure. 

ret no operands ret 
retn no operands retn 
retf no operands retf 
ret imm W ret 6 
rem imm W retn 16 
retf imm W retf 4 

PROe AnyProc 

; procedure code 

ret ; Return to caller 
ENDP AnyProc 

The three ret mnemonics are typically used as the final instruc
tion of a procedure activated by call. Both ret and retn, which 
are synonyms for the same instruction, pop the 16-bir return 
address from the stack into register ip, continuing the program 
with the instruction that follows the call, which previously 
pushed this address onto the stack before activating the proce
dure. The retf instruction pops two words from the stack, 
assigning the first word to cs and the second to ip. Thus, the 
program continues in a different code segment. Use retf only if 
you made a for call to the subroutine, usually by using the 
instruction call FAR AnyProc. 

When using simplified memory models (as in most of this book's 
example programs), it's probably best to use only ret. This lets 
Turbo Assembler decide whether to assemble the code for retf or 
retn as needed and also to use the appropriate call instruction. 
You can force near and far calls and returns, but be aware that using 
retf when you should have used retn will undoubtedly cause a 
system crash sooner or later-probably sooner. 

You may follow any of the three mnemonics with an unsigned 
value, which will be added to the stack pointer after the return 
address is popped. High-level languages such as Pascal use this 
form of ret to end procedures and functions to which param
eters have been passed on the stack. Adjusting the stack pointer 
with ret lets the procedure itself remove the stacked parameters 
instead of leaving it to the calling code. Because the optional 
value added to ret is immediate (fixed), the method is not as 
helpful in languages such as C, which allow a variable number 
of parameters to be passed to functions. 

call 765 



766 

rol Rotate left 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

SyntaxlExample 

Sample Code 

Description 

See Also 

Rotates bits leftward. 

rol regB I memB, 1 
rol regB I memB, cI 
rol regW I memW, 1 
rol regW I memW, cI 

Au - - - A 

rol aI, 1 
rol [abyte), el 
rol [aword), 1 

rol bx, el 

80286, 803861486 only 
rol regB I memB, immB rol dl,4 
rol regW I mem W, immB rol (aword), 4 

803861486 only 
rol regDW I memDW, 1 rol eax, 1 

rol regDW I memDW, cI rol [dword bx), el 
rol regDW I memDW, immB rol eex, 4 

mov el, 5 ; Load count into el 

rol [aword). el j Rotate word left 5 times 

Use rol to rotate the bits in word, byte, and doubleword 
(80386/486 only) registers and memory values to the left 
(toward the MSDs). The old MSD shifts into the new LSD 
position while all other bits shift one position to the left. In 
addition, the old MSD is copied into ef. Repeating this action 
would eventually restore the original value but not necessarily 
restore ef. (This is nearly identical to the way reI operates, 
except that ef is not treated as an extra bit in the rotated value.) 

For all processors, the second operand specifies the number of 
bit rotations to perform. On the 8086 and 8088 processors, if 
the second operand is literal, it must equal 1. To rotate more 
than 1 bit, you must assign the rotation count to el and specify 
this register as the second operand. The 80286 and 803861486 
processors allow you to use any immediate value as the second 
operand, for example as in rol dx. 2 to rotate dx 2 bits left. The 
80386/486 further extends these forms by allowing rotations 
involving 32-bit extended registers. 

When the second operand is an immediate 1. after rol the of 
flag equals the exclusive OR of ef and the MSD of the newly 
rotated value. (See reI for an expanded discussion of these flag 
values.) In all other cases, when the second operand to reI is not 
an immediate 1, the of flag is not defined. Also, if the rotation 
count is 0, of and ef are left unchanged-an oddity of lit de 
practical value. Of more use might be the associated fact that, 
after every rol, ef equals the LSD of the newly rotated value. 

reI, rer, ror, sal, sar, shl, shr 



ror 
Processor: 

Purpose 

8086/88 
A 

Syntax/Example 

Sample Code 

Description 

80286 
A 

80386/486 
A 

Rotates bits rightward. 

ror regB I memB, 1 
ror regB I memB, cl 
ror regW I mem W, 1 
ror regW I mem W, cl 

80286, 80386/486 only 
ror regB I memB, immB 

ASSEMBLY LANGUAGE REFERENCE GUIDE 

Flags: of df if tf sf 
Au 

ror aI, 1 
ror [abyte] , cl 
ror [aworq] , 1 
ror bx, cl 

ror dl, 4 

Rotate Right 

zf af pf cf 
- - - A 

ror regW I mem W, immB ror [aworq], 4 

80386/486 only 
ror regDW I memDW, 1 ror eax, 1 

ror regDW I memDW, cl ror [dword bx], cl 
ror regDW I memDW, immB ror ecx, 4 

mov cl, 8 
ror ax, cl 

Load count into cl 
Rotate ax right 8 times 
(Note: this is the same 
as xchg ah, all) 

Use ror to rotate the bits in word, byte, and doubleword 
(80386/486 only) registers and memory values to the right 
(toward the LSDs). The old LSD shifts into the new MSD 
position while all other bits shift one position to the right. In 
addition, the old LSD is copied into cf. Repeating this action 
would eventually restore the original value, but not necessarily 
restore cf. (This is nearly identical to the way rcr operates, 
except that cf is not treated as an extra bit in the rotated value.) 

For all processors, the second operand specifies the number of 
bit rotations to perform. On the 8086 and 8088 processors, if 
the second operand is literal, it must equal 1. To rotate more 
than 1 bit, you must assign the rotation count to cl and specifY 
this register as the second operand. The 80286 and 803861486 
processors allow you to use any immediate value as the second 
operand, for example as in ror ah, 4 to rotate ah 4 bits right. 
The 80386/486 further extends these forms by allowing rota
tions involving 32-bit extended registers. 

When the second operand is an immediate 1, after ror the of 
flag equals the exclusive OR of the two MSDs of the newly 
rotated value. Thus, if of = 1 after ror reg I mem, 1, then the 
original LSD and MSD bits were different; otherwise, these two 
end bits in the value were both equal to 1 or o. In all other cases, 
when the second operand to ror is not an immediate 1, the of 
flag is not defined. Also, if the rotation count is 0, of and cf are 
left unchanged-an oddity of little practical value. Of more use 767 



-----------------~ ............... ---.... -~ .... -.- ... -.-

768 

See Also 

sahf 

might be the associated fact that, after every ror, ef equals the 
MSD of the newly rotated value. 

reI, rer, rol, sal, sar, shl, shr 

Store ah Register to Flags 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

••••• 

sal 

Purpose 
Syntax/Example 
Sample Code 

Description 

See Also 

Copies bits 7, 6, 4, 2, and 0 from ah to the marked flags. 

sahf no operands sahf 

xor ah, ah ; Zero ah 
sahf ; Zero sf, zf, af, pf, cf 

Execute sahf to store bits from ah into five flags. With bit 
numbers in parentheses, the affected flags are sf(7), zf(6), af(4), 
pf(2), and cf(O). Other flags are not affected. The instruction is 
sometimes used in conjunction with a math coprocessor. 

lahf 

Shift Arithmetic Left 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 
Syntax/Example 

Sample Code 

Shifts bits leftward. 

sal regB I memB, 1 
sal regB I memB, ci 
sal regW I memW, 1 
sal regW I mem W, ci 

80286, 80386/486 only 

.u ~ • • u • • 

sal [abyte), 1 
sal ax, cl 
sal dx, 1 
sal [aword + bx), cl 

sal regB I memB, immB sal cx, 8 
sal regW I memW, immB sal [word bp + 4], 4 

80386/486 only 
sal regD W I memD W, 1 sal edx, 1 
sal regDW I memDW, cl sal [dword es:di), cl 
sal regDW I memDW, immB sal [dword bx), 4 

DATASEG 
value dd 12345678 

CODESEG 
shl [word value I, 1 
rcl [word value + 2J, 1 
jc Exit 

A doubleword value 
to be multiplied by 2 

Shift-low order word 
Shift high-order word 
Jump if overflow detected 



r 

Description 

See Also 

sar 

The sal and shl mnemonics are synonyms for the same instruc
tion and generate the identical machine code. Normally, you'll 
use sal to multiply unsigned values by powers of2 and shl to 
simply shift bits left into position. Using sal lends additional 
clarity to a program by indicating a mathematical shift, but you 
can use the two mnemonics interchangeably. 

Executing sal or shl shifts the old MSD of the value into the 
carry flag. A zero bit shifts into the new LSD. Repeating this 
action eventually sets all bits in the specified register or memory 
location to O. 

When the second operand is an immediate 1, after shifting, of = 

1 only if the new ef does not equal the new MSD. If of = 0, 
then the new ef and MSD bits are different. You might use this 
knowledge to detect a zero bit shifting into the MSD position of 
an initially nonzero value. When the second operand is not an 
immediate 1, of is not defined. 

The sample shows how to use word shifts and rotations (see reI) 
to multiply a doubleword value by 2. The initial shl shifts the 
low-order word, copying the MSD into ef. Then, reI rotates the 
high-order word, shifting in ef to the new LSD (of the high
order word). Subsequent reI instructions could be added to shift 
even larger multibyre values. If after the final reI the carry flag 
equals 1, then an overflow has occurred. 

reI, rc~ rol, ror, sar, shl, shr 

Shift Arithmetic Right 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 
Syntax/Example 

Shifts bits rightward. 
sar regB I memB, 1 
sar regB I memB, cI 
sar regW I memw'l 
sar regW I mem W, cI 

80286, 803861486 only 

Au - A A u A A 

sar bl, 1 

sar eh, cl 
sar [award I , 
sar [word bxl, cl 

sar regB I memB, immB sar [byte bp + 21, 4 
sar regW I memW, immB sar dx, 4 

80386/486 only 
sar regDW I memDW, 1 sar [dword bp - 8], 
sac regDW I memDW, cl sar eax, cl 
sar regDW I memDW, immB sar edx, 16 

769 



770 

PART III _ REFERENCE 

Sample Code 

Description 

See Also 

sbb 
Processor: 8086/88 ... 

Purpose 

Syntax/Example 

DATASEG 
value dw 08000h 
CODESEG 

-32,768 

mov cl, 4 Assign shift count to cl 
sar [value], cl Value = -2048 (-32,768/16) 

Unlike sal and shl, which are synonyms, sar is nota synonym 
for shr. This often confuses people, but there's a good reason for 
the apparent discrepancy. The sar instruction shifts a register or 
memory value to the right, copying the old LSD bit into cf, but, 
unlike shr, sar does not alter the old MSD bit. By this action, the 
original sign of the shifted value remains unchanged; therefore, 
you can use sar to divide signed integers by powers of 2, while 
shr can divide only unsigned integers. The sample demonstrates 
how this works, using sar to divide -32,768 by 16, or 2. 

When the second operand to sar is an immediate 1, of is set to 
O. When the second operand is not an immediate 1, the effect on 
of is not defined. 

When using sar to divide signed negative values in two's 
complement form by powers of2, be aware that -1 (OFFFFh, for 
example) divided by 2 equals -1, not o. Some references refer to 
this effect as "truncation toward negative infinity," suggesting 
that sar does not generate the same answers in all cases as idiv 
by powers of2, which gives 0 for -1/2 (that is, "truncation 
toward zero"). 

rcl, rcr, rol, ror, sal, shl, shr 

80286 80386/486 ... ... Flags: of ... 
Subtract Integers with Borrow 

df if tf sf zf af pf cf 
- - - ... ... ... ... ... 

Subtracts integers, taking a possible borrow from a previous sub 
or sbb into account. 

sbb at, immB sbb al, 8 
sbb ax, immW sbb ax, 256 
sbb regB I memB, immB sbb [byte bx] , 4 
sbb regW I memW, immW sbb [word si], 600 
sbb regW I memW, immB sbb dx, 3 
sbb regB I memB, regB sbb ah, al 
sbb regW I mem W, regW sbb dx, ax 
sbb regB, regB I memB sbb cl, [byte bp + 4] 
sbb regw, regW I mem W sbb ax, bx 



r 

Sample Cot:le 

80386/486 only 
sbb eax, immDW sbb eax, 35 
sbb regDW I memDW, immB sbb ecx, 4 
sbb regDW I memDw'immDW sbb [dword bxj, 18 
sbb regDW I memDW, regDW sbb [dword bx + si], eax 
sbb regDW, regDW I memDW sbb edx, [dword bp + 6] 

DATASEG 
v1 dd 87654321 
v2 dd 12345678 
CODESEG 

A doubleword value 
Value to subtract from v1 

mov ax, [word v2j Get low word of v2 
mov dx, [word v2 + 2] Get high word of v2 
sub [word v1], ax Subtract low words 
sb [word v1 + 2J, dx Subtract high words with borrow 

Description After a sub or sbb on multibyte, word, or doubleword (803861 
486 only) values, use sbb to subtract the higher-order portions of 
the values, taking a possible borrow into account. When you are 
not subtracting multipart values this way, always use sub instead, 
which does not take a borrow into account. 

Usually, sbb is used as in the sample to subtract two large 
integers, in this case two doubleword values labeled v1 and v2. 
First, the program loads ax and dx with the value of v2. Then sub 
subtracts the low-order words and sbb finishes the subtraction, 
subtracting the high-order words and taking a possible borrow 
from sub into account. (Note: Doubleword values can be 
subtracted directly on 80386/486 systems.) 

See Also sub 

Scan S tr in g seas seasb seasd seasw 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf ... ... ............ 
Purpose 
Syntax/Example 

Scans a string to search for specific values. 
scas memB 
scas memW 
scasb no operands 
scasw no operands 

80386/486 only 
scas memDW 
scasd no operands 

seas [byte di] 
seas [word string] 
scasb 
scasw 

seas [dword string] 
seasd 

771 



772 

PART III ~ REFERENCE 

Sample Code 

Description 

See Also 

DATASEG 
string db '2Bh or not 2Bh' 
strlen $ - string 
CODESEG 

A string 
String length 

mov aX,@data 
mov eS,ax 
ASSUME es:DGROUP 
mov di, offset string; 
mov ex, strlen 
mov aI, 
repne seasb 

Initialize es 
to address data segment 

Tell tasm where es points 
Address string with es:di 
ASSign length to ex 
Assign search value to al 
Scan for first blank 

;----- di now addresses the "0" in "or" 

As with all string instructions, register assignments are fixed for 
seas and the shorthand equivalent forms seasb, seasd (803861 
486 only), and seasw. The instruction subtracts a byte, word, or 
doubleword value addressed byes: di and is usually used with 
repeat prefixes repe and repne to scan variables for specific 
values. Like emp, the result of the subtraction is discarded--only 
the flags are retained. Byte values are subtracted from alj word 
values, from ax. On 80386/486 systems, doubleword values 
addressed by either es: di or es: edi are subtracted from eax. A 
segment override is not allowed; therefore, the string values must 
be stored in the segment addressed byes. After seas, if df 0, 

then di (or edi) is incremented by the size of the specified 
operand-by 1 for bytes, 2 for words, and 4 for doublewords. If 
df '" 1, then di (or edi) is decremented by the operand size. 

The sample uses seasb to scan a character string, looking for the 
first blank character. After this code executes, if ex equals 0, then 
no blanks were found. To search for the first character not 
matching the value in aI, you would use the repe repeat prefix 
instead of repne. 

empsb, empsd, empsw, ins, insb, insd, insw, lods, lodsb, lodsd, 
lodsw,movs,movsb, movsd,movsw, outs, outsb,outsd,outsw, stos, 
stosb, stosd, stosw 

set-condition Set Byte Conditionally 

Processor: 8086/88 80286 80386/486 
.A. 

Flags: of df if tf sf zf af pf cf 

Purpose Stores a byte value to a register or to memory if the specified 
condition is true (byte stored = 1) or false (byte stored = 0). 

Syntax/Example setcondition regB I memB setae al 



Sample Code 

Description 

See Also 

DATASEG 
bits db 01101001b 
bytes db 8 dup (1) 
CODESEG 
P386 

ASSEMBl y L"~'\JU,'\Jt KEFE,RENICE 

Packed bits in a byte 
Eight bytes 

moy bx, offset bytes; Address bytes with ds:bx 
moy ah, [bits) Load packed bits into ah 
moy cx, 8 Assign loop count to cx 

@@10: 
shl ah , Shift 1 bit into cf 
setc [byte bxJ Set or reset unpacked byte 
inc bx Address next byte 
loop @@10 CX <- CX - 1; jump if cx <> 0 

On 80386/486 systems, follow a cmp instruction with any of the 
set-condition instructions listed in Table 16.5. You can also use 
these instructions after test or any other code that affects various 
flags. If the condition specified in the center column of the table 
is met according to the flag settings listed to the right, then the 
destination byte register or memory value is set to 1, indicating 
"true"; otherwise, the destination is set to O. These conditions 
mirror those supported by the conditional jump instructions (see 
j-condition in this chapter) except for jexz and jecxz, which 
have no equivalent set-condition instructions. 

The sample demonstrates how to use setc to unpack the bits in a 
byte. On each pass through the loop, if the shr instruction shifts a 
1 into ef, then sete sets the byte at [bx I to 1; otherwise, sete resets 
the byte to O. After this loop finishes, the uninitialized bytes 
variable holds the eight values: 00 01 01 00 01 00 00 01. 

j-condition 

Table 16.5. Conditional set-condition Reference. 
Instruction Set byte to 1 if. .. else set byte to 0 

seta above 

setae above or equal 

setb below 

setbe below or equal 

setc carry 

sete equal 

setg . greater 

setge greater or equal 

sed less 

Flags 

(cf=- 0) & (zf 0) 

(cf = 0) 

(cf = 1) 

(cf = 1) I (zf = 1) 

(cf 1) 

(zf = 1) 

(sf = of) & (zf = 0) 

(sf = of) 

(sf <> of) 

continw:s 

773 



774 

PART III _ REFERENCE 

Table 16.5. continued 
Instruction 

setle 

seto 

setp 

setpe 

setpo 

sets 

setz 

setna 

setnae 

setnb 

setnhe 

setnc 

setne 

setng 

setnge 

setnl 

setnle 

setno 

setnp 

'setns 

setnz 

shl 

Set byte to 1 i/ .. else set byte to 0 

less or equal 

overflow 

parity 

parity even 

parity odd 

sign 

zero 

not above 

not above or equal 

not below 

not below or equal 

not carry 

not equal 

not greater 

not greater or equal 

not less 

not less or equal 

not overflow 

not parity 

not sign 

not zero 

Flags 

(sf <> of) I (zf = 1) 

(of = 1) 

(pf = 1) 

(pf = 1) 

(pf = 0) 

(sf = 1) 

(zf = 1) 

(cf = 1) I (zf = 1) 

(cf = 1) 

(cf = 0) 

(cf = 0) & (zf 0) 

(cf = 0) 

(zf = 0) 

(sf <> of) I (zf = 1) 

(sf <> of) 

(sf = of) 

(sf of) & (zf = 0) 

(of 0) 

(pf = 0) 

(sf = 0) 

(zf = 0) 

Shift Left 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 
u ... A ... ... ... Au - - A A 

Purpose 

Synttlx/Example 
Shifts bits leftward. 

shl regB I memB, 1 
shl regB I memB, cl 
shl regWI memW, 1 
shl regWI memW, cl 

shl [abyte), 1 
shl ax, cl 
shl dx, 1 
shl [aword + bx), cl 



r 

Sample Code 

Description 

See Also 

shld 

80286, 80386/486 only 
shl regB I memB, immB 
shl regWI memW, immB 

80386/486 only 
shl regDWI memDW, I 
shl regDWI memDW, cl 
shl regDWI memDW, immB 

shl cx, 8 
shl [word bp + 4], 4 

shl edx, 1 
shl [dword eS:di], cl 
shl [dword bx], 4 

mov cl, 4 ; Assign shift count to cl 
shl ax, cl i Multiply ax by 16 (2') 

The shl and sal instructions generate the identical machine 
code. See the notes on sal for a description of how shl operates 
and the flags that are affected. 

rcl, rcr, rol, ror, sal, sar, shr 

Double-Precision Shift Left 

Processor: 8086/88 80286 80386/486 
A 

Flags: of df if tf sf zf af pf cf 
u A A u A A 

Purpose 
Syntax/Example 

Sample Coth 

Description 

Shifts bits of multiple values leftward. 
shld regWI memW, regW, immB shld ax, bx, 1 
shid regDWI memDW, regDW, immB shld [bx], eax, 2 
shId regWI mem W, regW, cI shld bx, cx, cl 
shld regDWI memDW, regDW, cI shld [ediJ, edx, cl 

DATASEG 
v1 dd 00012345h 
v2 dd 6789ABCDh 
CODESEG 
P386 

First 4 of 8 words 
Second 4 of 8 words 

mov cl, 8 Assign shift count to cl 
mov eax, [v2] Load second 4 words into eax 
shld (v1], eax, cl Shift eax into [v1] cl times 
shl [v2], cl Finish 64-bit shift by cl 

iv1 01234567 Values after above code 
;v2 = 89ABCD00 is finished 

On 80386/486 systems, use shld to shift double-precision values 
to the left. The first operand specifies the destination and may be 
a word or doubleword register or memory reference. The second 
operand specifies the source bits that are shifted into the first 
operand. This value must be a word or doubleword register. The 
third operand specifies the number of shifts to perform and may 
be an immediate value from 0 to 31 or a value in register cl. 
Values greater than 31 are treated modulo 32. 

1 

775 



------------------ ....... --.~ 

See Also 

shr 
Processor: 8086/88 

• 
Purpose 

Syntax/Example 

Sample Code 

Description 

776 

The sample shows a typical use for shld. Two doubleword values 
v1 and v2 form a 64-bit variable in memory. Only four instruc
tions are required to shift this variable left by any number of bits 
(up to 31 )-8 in this sample. First, the shift count is loaded into 
cl. Then the second part of the value is loaded into eax. The 
shld instruction shifts the bits from eax into the doubleword 
value [v1], which also shifts to the left an equal number of 
times. The shl instruction finishes the shift by shifting [v2] by 
the same count in el. The effect is to multiply in a very short 
time the full 64-bit double-precision value by 28 (256 decimal). 

shrd 

Shift Right 

80286 80386/486 Flags: of df if tf sf zf af pf cf 

• • .u - . • u •• 
Shifts bits rightward. 

shr regB I memB, 1 shr [abyte], 1 
shr regB I memB, cl shr ax, el 
shr regWI memW, 1 shr dx, 1 
shr regWI memW, cl shr [aword + bx), el 

80286, 80386/486 only 
shr regB I memB, immB shr ex, 8 
shr regWI memW; immB shr [WOrd bp + 4), 4 

80386/486 only 
shr regDWI memDW, 1 shr edx, 1 
shr regDWI memDW, cl shr [dword es:di] , el 
shr regDW I memDW, immB shr [dword bx), 4 

mov ax, 10500 Assign value to ax 
mov el, 3 j ASSign shift count to el 
shr ax, el ; Divide 10500 by 8 (ax = 1312) 

Executing shr shifts the old LSD of a byte, word, or doubleword 
(80386/486 only) value into the carry flag. A zero bit shifts into 
the new MSD. Repeating this action will eventually set all bits in 
the specified register or memory location to O. Be aware that shr 
and sar are not synonyms, despite the fact that the counterpart 
instructions sal and shl are synonyms. (See these other instruc
tions for more details.) 

When the second operand to shr is an immediate 1, of is set to 
the MSD of the original value. When the second operand is not 
an immediate 1, the effect on of is not defined. 



r 

See Also 

ASSEMBLY L""'uUf\'ur KI:FERI:NCE 

The sample demonstrates a common use for shr, dividing 
unsigned values by powers of 2. First, a value is loaded into ax, 
and the shift count is assigned to el. Then shr shifts ax right by 
the number of times specified in el. The result equals 10,500 
divided by 23, or 1,312 dropping the remainder. 
reI, rcr, rol, ror, sal, sar, shl 

shrd Double-Precision Shift Right 

Processor: 8086/88 80286 80386/486 
A 

Flags: of df if tf sf zf af pf cf 
u - A A u A A 

stc 

Purpose 
Syntax/Example 

Sample Code 

Description 

See Also 

Shifts bits of multiple values rightward. 

shrd regWI mem W, regw, immB 
shrd regDWI memDW, regDW, immB 
shrd regWI mem W, regw, cl 
shrd regDWI memDW, regDW, cl 

shrd [bx], ax, 3 
shrd [edil, edx, 4 
shrd ax, bX, el 
shrd eax, ebx, el 

shrd edx, eex, 4 
shrd ecx, ebx, 4 
shrd ebx, eax, 4 
shr eax, 4 

Shift bits in four 
general-purpose 
registers by 4 

On 80386/486 systems, use shlr to shift double-precision values 
to the right. The first operand specifies the destination and may 
be a word or doubleword register or memory reference. The 
second operand specifies the source bits that are shifted into the 
first operand. This value must be a word or doubleword register. 
The third operand specifies the number of shifts to perform and 
may be an immediate value from 0 to 31 or a value in register el. 
Values greater than 31 are treated modulo 32. 
You can use shrd to divide multiple-precision values by powers 
of 2. The sample demonstrates this idea by shifting 4 times left a 
128-bit (16-byte) value held in registers eax, ebx, eex, and edx 
with the highest-order portion of the value in eax. This divides 
the multiple-precision value by 24, or 16. For more information, 
read the notes to shld, which operates identically to shrd except 
for the direction of the shift. 
shld 

Set Carry Flag 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 
- - - 1 

Purpose Sets the carry flag to 1. 

Syntax/Example stc no operands ste 
777 



778 

PART III _ RmRENCE 

Sample Code 

Description 

See Also 

std 

PROC AnyProc 
; Procedure code 
@@ErrExit: 
stc Set carry (error) 
ret Return to caller 

@@NoErrExit: 
clc ; Clear carry (no error) 
ret j Return to caller 

ENDP AnyProc 

Executing stc sets the carry flag to 1. As the sample code 
demonstrates, the instruction is often used to pass an error flag 
back from a subroutine, setting cf if an error was detected. (This . 
is the same example shown for clc.) 

clc, cmc 

Set Direction Flag 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

Syntax/Example 
Sample Code 

Description 

See Also 

Sets the direction flag to 1. 

std no operands std 

DATASEG 
string db 10 dup (?) 
strlen = $ string 
CODESEG 

mov aX,@data 
mov eS,ax 

Initialize es to address 
of data segment 

Tell tasm where es pOints 
Assign string length to ex 

ASSUME es:DGROUP 
mov cx, strlen 
mov di, offset 
std 

string + strlen 1 di addresses 
Auto-decrement di 

@@10: 
mov aI, cl Assign next value to al 
stos [string] Store al in string 
loop @@10 cx <- CX 1; jump if ex <> 0 

string end 

Use std to set the direction flag to 1. Always execute std (or the 
companion instruction cld) before a repeated string operation, 
which decrements either or both si and di automatically if df = 
1. The sample demonstrates how to use std after first initializing 
cx to the length of a 10-byte string variable and addressing the 
end of the string with es:di. The three-instruction loop assigns 
successive values to aI, which stos stores in the string, also 
decrementing di automatically because df = 1. The effect is to 
set string to the ten values 1, 2, ... , 10. 

cld 



ASSEMBLY LANGUAGE REFERENCE GUIDE 

sti Set Interrupt-Enable Flag 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 
1 

Purpose 

Syntax/Example 
Sample Code 

Description 

See Also 

Sets interrupt-enable flag to 1. 

sti no operands sti 

cli j Disable maskable interrupts 

j Code runs with maskable interrupts disabled 

sti j Enable maskable interrupts again 

Executing sti sets the interrupt-enable flag if to 1, allowing the 
processor to recognize maskable interrupts. The instruction is 
commonly used as one of the first commands in an interrupt 
service routine, which begins running with if = 0. Setting if to 
1 with sti allows interrupts to be recognized during execution of 
the ISR. 

cli 

stos stosb stosd stosw Store String 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 
Syntax/Example 

Sample Code 

Stores strings of values into memory. 

stos memB stos [byte destination] 
stos memW stos [word destination] 
stosb no operands stosb 
stosw no operands stosw 

80386/486 only 
stos memDW 
stosd no operands 
DATASEG 

stos 
stosd 

buffer db 512 dup (0ffh) 
CODESEG 
mov aX,@data 
mov eS,ax 
ASSUME es:DGROUP 
mov di, offset buffer 
mov cx, 512 / 2 
xor ax, ax 
cld 
rep stosw 

[dword destination] 

Initialize es to address 
of data segment 

Tell tasm where es pOints 
Address buffer with es:di 
Assign buffer size / 2 to cx 
Set ax to 0000 
Auto-increment di 
Fill buffer with 00 words 

779 



780 

PART III _ REFERENCE 

Description 

See Also 

sub 

Use stos or the equivalent shorthand mnemonics stosb, sstosd 
(80386/486 only), and stosw to store strings of values in 
memory. Like all string instructions, register assignments are 
fixed even if you specifY an explicit address label as the operand 
to stos. (The shorthand mnemonics do not require operands.) 
The instruction stores the value of aI, ax, or eax (80386/486 
only) to the location addressed byes: di. The size of the value 
stored depends on the size of the specified operand, unless you 
choose a shorthand mnemonic-stosb to store bytes, stosw to 
store words, and stosd to store 80386/486 doublewords. After 
the instruction executes, if df = 0, di is incremented by the size 
of the value stored-by 1 for bytes, 2 for words, or 4 for 
doublewords. If df = 1, then di is decremented by this amount. 

Usually, stos is used with the rep repeat prefix along with a 
count value in ex to store values in multiple locations. As the 
sample demonstrates, this provides a fast and easy way to fill 
memory blocks with values, in this case, initializing a 512-byte 
buffer with zeros. Because the buffer size (512) is evenly divisible 
by 2, stosw is used instead of stosb, repeating for 256 instead of 
512 times. 

empsb, empsd, empsw, ins, insb, insd, insw, lods, lodsb, lodsd, 
lodsw, movs, movsb, movsd, movsw, outs, outsb, outsd, outsw, seas, 
seasb, seasd, seasw 

Subtract 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

Syntax/Example 

... ... ............ 
Subtracts integers. 
sub a£ immB 
sub ax, immW 
sub regB I memB, immB 
sub regWI memW, immW 
sub regWI memW, immB 
sub regB I memB, regB 
sub regWI mem W, regW 
sub regB, regB I memB 
sub regw, regWI memW 

803861486 only 
sub eax, immDW 
sub regDWI memDW, immB 
sub regDWI memDW, immDW 
sub regDWI memDW, regDW sub 
sub regDW, regDWI memDW 

sub aI, 3 

sub ax, 1000 
sub dl, 5 

sub [word bx), 256 

sub bx, 8 
sub [byte eS:dil. dl 
sub ex. ex 
sub ah, al 
sub dx, [word bp + 4] 

sub eax. 164532 

sub [dword bp - 8), 2 
sub edx, 99999 
[dword array + bx + dil, edx 
sub edi, eex 



Sample Code 

Description 

See Also 

test 

ASSEMBLY LANGUAGE REFERENCE GUIDE 

DATASEG 
v1 dd 155612 
v2 dd 35996 
COOESEG 
mov ax, [word v2] 
sub [word v1]. ax 

A doubleword value 
Value to subtract from v1 

Load low-order v2 into ax 
Subtract low-order words 

mov ax, [word v2 + 2] Load high-order v2 into ax 
sbb [word v1 + 2], ax Subtract high-order words 

Use sub to subtract two signed or unsigned bytes, words, or 
doublewords (80386/486 only). The second operand is subtracted 
from the first, replacing the original value of the first operand. The 
sub instruction typically subtracts two values directly or begins a 
multiple-precision sequence that subtracts values larger than the 
maximum register size. When doing this, follow sub with one or 
more sbb instructions to complete the subtraction and take possible 
borrows into account. The sample demonstrates how this works, 
subtracting a doubleword value v2 from another doubleword value 
v1 and storing the result in v1. (Doublewords can be subtracted 
directly only on 80386/486 systems.) 

sbb 

Test Bits 

Processor: 8086188 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

Syntax/Example 

Sample Code 

Description 

o - ...... u ... 0 

Compares values, performing a logical AND. 

test al immB test al, 00001000b 
test ax, imm W test ax, 000Fh 
test regB I memB, immB test [byte bx], 080h 
test regWI memW, immW test dx, 01000h 
test regB I memB, regB test ah, cl 
test regWI mem W, regW test ax, cx 

80386/486 only 
test eax, immDW test eax, 02h 
test regDWI memDW, immDWtest [dword bx + di], 04000000h 
test regDWI memDW, regDW test edx, ebx 

mov ax, -1 
test ax, 08000h 
jz @@10 
neg ax 
@€I10: 

Load test value into ax 
Does MSD = 11 
Jump if MSD <> 1 
Else find absolute value 

The test instruction is identical in every way to and except that the 
result of the logical AND operation is discarded-only the flags are 
retained, which can be inspected by a conditional jump. The most 

1 

781 



782 

PART III _ REFERENCE 

See Also 

wait 
Processor: 8086/88 

A. 

Purpose 

Syntax/Example 
Sample Code 

Description 

See Also 

common use for test is to determine whether one or more bits 
equal 1 in byte, word, or doubleword values (80386/486 only). To 
demonstrate this, the sample loads a test value into ax and then 
applies test with the immediate value 08000h-in other words, 
a binary value with a 1 bit in the MSD position. If this value AND 
ax equals 0, thus setting zf to 1, then ax's MSD must be 0; other
wise, ax's MSD is 1. The j z instruction detects this condition, 
executing neg to find the absolute value of ax only if the value is 
a two's complement negative quantity (MSD = 1). 

and 

Wait Until Not Busy 

80286 80386/486 Flags: of df if tf sf 
A. A. 

Waits until the processor's BUSY pin is inactive. 

wait no operands wait 

cstat dw 0 ; Coprocessor status word 
CODESEG 

zf af pf 

; Turbo Assembler inserts a wait here automatically 
fstsw [cstatj Store status at cstat 
wait ; Wait until finished 
mov ax, [cstat 1 ; Load status into ax 

cf 

Executing wai t Stops the processor umil the BUSY pin becomes 
active (set to high), indicating that the attached device is not 
busy. The instruction is used typically to synchronize code with 
a coprocessor, allowing the program to continue only after 
finishing a calculation or other instruction. The 80287,80387, 
and on-board 80486 math coprocessors automatically synchro
nize with the main processor and do not require explicit wai ts. 
The 8087 math coprocessor requires a wait before every 
coprocessor instruction. Turbo Assembler automatically inserts 
wait's as required by the 8087. As the sample demonstrates, you 
may also have to follow a coprocessor instruction with wait when 
boththe coprocessor and program instruction access the same 
memory locations. Because the coprocessor runs independently 
of the main processor, unless wa it is used before the mov to ax, 
the program may attempt to read the value at cstat before the 
coprocessor finishes storing a value there. Although Turbo 
Assembler inserts a wai t before the fstw instruction, to prevent 
all possibility of a conflict, you still have to add a following wait. 

esc 



r 

ASSEMBLY LANGUAGE REFERENCE GUIDE 

wbinvd Write Back and Invalidate Cache 

Processor: 8086/88 80286 80386 80486 Flags: of df if tf sf zf af pf cf 

Purpose Flushes the 80486 internal instruction cache, and also issues a 
special bus cycle that hardware designers can use as a command 
to write back to memory any caches that are external to the 
processor. 

Syntax/Example wbinvd wbinvd 

Sample Code P48B 

Description 

See Also 

xadd 

wpinvd 
db 0fh 

Flush cache and issue write-back bus cycle 
Use with Turbo Assembler 4.0 

db 09h which does not recognize wpinvd 

Use this instruction only on 80486 processors. It requires no 
operands and it affects no flags. Intel states that wbinvd is 
"implementation dependent," meaning that future processors 
may implement the instruction differently. As with invd, there 
are few if any good reasons for application-level programs to use 
this instruction. 

Note: A bug in Turbo Assembler 4.0 prevents assembling 
wbinvd. Turbo Debugger 4.0, however, recognizes it. To insert 
this instruction into a program, you can define the bytes 0fh and 
09h as shown by the last two lines of the example. 

invd, invlpg 

Exchange and Add 

Processor: 8086/88 80286 80386 80486 
.... 

Flags: of df if tf 
.... 

sf zf af pf cf 
.................... 

Purpose 
Syntax/Example 

Adds and exchanges two values. 

xadd regB I memB, regB 
xadd regW I memW, regW 
xadd regDW I memDW, regDW 

xadd ah, bh 
xadd ax, bx 
xadd eax, ebx 

Sample Code P48B 

Description 

See Also 

mov eax, 012340000h 
rnov ebx, 00000ABCDh 
xadd eax, ebx 
12340000h 

ASSign test value to eax 
Assign test value to ebx 
eax = 1234ABCDh, ebx 

This instruction copies the value in the del)tination register or 
memory location (eax the Sample Code) to the source register 
(ebx), and also places the sum of the original two operands in the 
destination (eax). Flags are set as for an add instruction. 

add, xchg 
783 



784 

xchg Exchange 

Processor: 8086/88 80286 80386 ... Flags: of df if tf sf zf af pf cf 

Purpose 
Syntax/Example 

Sample Code 

Description 

Exchanges register values with other register and memory values. 

xchg ax, regW xehg ax, ex 
xchg regw, ax xehg bx, ax 
xchg regB; regB I memB xehg dh, dl 
xchg regB I memB, regB xehg [byte bp + 4], ah 
xchg regw, regWI mem W xehg ax, bx 
xchg regWI memW, regW xehg [word bx], dx 

80386/486 only 
xchg eax, regDW 
xchg regDW, eax 

xehg eax, ebx 
xehg eex, eax 

xchg regDW, regDWI memDW 
xchg regDWI memDW, regDW 

xchg edx, [dword bx + dil 
xchg [dword var], eax 

DATASEG 
array db 80 dup (?) 
arraysize $ array 
newbx dw offset array 
newcx dw arraysize 
CODESEG 
PROC Outer 
call Inner 

Addressed by [bxJ 
Size of array 
Place to hold bx 
Place to hold ex 

; Initialize/preserve bx, cx 

i other code in procedure 

PROC Inner 
xehg bx, [newbxj 
xchg CX, [newcxj 

Initialize/restore bx 
Initialize/restore ex 

ret Return to caller 
ENDP Inner 
ENDP Outer 

Use xchg to exchange two byte, word, or doubleword (80386/ 
486 only) values, which can be in registers or in memory 
locations. The two operands-of which at least one must be a 
register-exchange values without requiring the use of an 
intermediate value on the stack or in another register. The 
sample uses xchg to initialize and save the values of two registers 
bx and cx. The call to Inner at the beginning of the Outer 
procedure swaps the registers with two word variables. When the 
procedure finishes, the code falls through to Inner, again 
executing the two xchg instructions before returning to Outer's 
caller, thus restoring bx and cx to their original values, while 
storing the registers' current values. Later, when the procedure is 
again called, bx and cx will be loaded with the values they had at 



See Also 

xlat xlatb 

the end of the procedure's previous run, allowing the code to 
pick up where it left off. 

Trivia department: The special form xchg aX,ax generates the 
identical machine code as a nop instruction-the single byte 90h. 
bswap, cmpxchg, lock, nop, xadd 

Translate From Table 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf ... ... ... 
Purpose 
Syntax/Example 

Sample Code 

Description 

See Also 

Looks up (translates) a byte value from a table. 
xlat memB xlat [es:tablel 
xlatb no operands xlatb 
DATASEG 
table db 120, 202, 100, 64, 98, 250, 14, 8 
CODESEG 
moy aI, 3 
moy bx, offset table 
xlatb 

Load index into al 
Address table with ds:bx 
Sets al to 64 

The xlat instruction translates a value in al to an associated 
value from a table of bytes. The table must be addressed by 
ds: bx or, using an es: override, byes: bx. The value in al 
represents an index into the table with the first table byte having 
the index value O. Executing xlat loads the byte at ds: bx + alor 
es: bx + al into a1. The sample demonstrates how this works; it 
loads al with the fourth byte (index = 3) from a small table, 
setting al to 64. 

The plain xl at instruction does not require an operand. If you 
add an operand, it may refer to bx as in xlat [bxl and xlat 
[es: bx I, or it may refer to the table by name as in xlat [table I 
and xlat [es: table I. No matter what form you choose, 
however, you still have to load bx with the offSet address of the 
table-the instruction doesn't do this for you. The shorthand 
form xlatb, which performs identically to xlat, may not be used 
with an operand. 

Some references suggest using lea to load bx with the effective 
address of a table element. For example, you could use the 
instruction lea bx, [matrix + sil to initialize bx to the offset 
address of two-dimensional matrix row indexed by si and then 
use xlatb to translate a column index in al to one of the bytes 
from that row. Another typical use for xlat is to translate ASCII 
characters to alternate symbols, perhaps to allow people to 
reprogram keyboards or to convert values to different character
set encodings. 

lea 785 



786 

_ REFERENCE 

x 0 r Exclusive OR 

Processor: 8086/88 80286 80386/486 Flags: of df if tf sf zf af pf cf 

Purpose 

o .&.&u.&O 

Logically exclusive ORs two byte, word, or doubleword (80386 
only) values. 

Syntax/Example xor at, immB 
xor ax, immW 

xor aI, 0FFh 
xor ax, 08000h 

Sample Code 

Description 

See Also 

xor regB I memB, immB 
xor regWI memW, immW 
xor regWI memW, immB 
xor regB I memB, regB 
xor regWI memW, regW 
xor regB, regB I memB 
xor regw, regWI mem W 

80386/486 only 
xor eax, immDW 
xor regDWI memDW, immDW 
xor regDWI memDW, immB 
xor regDWI memDW, regDW 
xor regDW, regDWI memDW 

xor [byte bx), 01h 
xor ex, 0400h 
xor [word bp + 2), 10h 
xor ah, cl 
xor dx, ex 
xor ah, [byte bxl 
xor dx, dx 

xor eax, 004000000h 
xor edx, 0FFFFFFFFh 
xor [dword bx], 01h 
xor eax, eax 
xor edx, [dword bx + sil 

xor ax, ax ; Sets ax to 0000 
xor bx, 0FFFFh ; Forms one's complement of bx 

Use xor to perform the logical exclusive OR operation to two 
byte, word, or doubleword (80386 only) values. The result of 
the operation replaces the value of the first operand. The second 
operand is often referred to as the mask. A typical use for xor is 
to toggle bits on and off, changing ones to zeros and zeros to 
ones. Also, due to the rules of the exclusive OR, because 1 can 
only result when the two original corresponding bits are differ
ent, performing xor on a register with itself sets that register to 
O-a common 8086 technique that saves 1 byte. (The instruc
tion mov ax, 0 takes 3 bytes; xor ax, ax takes 2.) 

and, or, not 



Turbo Assembler 
Reference 

_ Symbols, 788 

_ Operators, 792 

_ Mode Equivalents, 795 

_ Directives, 797 



17 

788 

Symbols 
Table 17.1 describes various italicized symbols used throughout this chapter while Table 17.2 
describes in more detail the symbols for warnclass. The predefined symbols in Turbo Assem
bler are detailed in Table 17.3. 

Table 17.1. Symbols and Meanings. 
Symbol Meaning 

I 

[] 

[] ... 

align 

argument 

boundary 

class 

codesym 

columns 

combine 

condition 

count 

datasym 

definition 

distance 

dx 

entry point 

expr 

field name 

fields 

filename 

groupname 

language 

either or 

optional* 

a numeric series or continuation 

a repeating optional element 

is equivalent co 

byte I word I dword I para I page 

macro parameters 

a power of2 (e.g., 2, 4, 8) 

text representing a segment classification 

a code symbol (i.e., a label) 

number of columns 

at expr I common I memory I private I public I stack 

expression evaluating to true «> 0) or false (=0) 

1, 2, ... , 65535 

a data symbol (i.e., a label) 

a directive element defined in the directive syntax 

near I far 

db I dd I df I dp I dq I dt I dw 

a code label defining the start of a program 

numeric expression 

name of a record field name 

any data allocation created by db, dw, etc. 

a file name with or without path and drive information 

name of a multiple segment group 

basic I c I fortran I pascal I prolog 



macroname 

memorymodel 

memref 

name 

parameter 

prefix 

recordname 

register 

rows 

segexpr 

segmentname 

segname 

segreg 

slze 

statements 

structname 

text 

type 

use 

warnclass 

width 

TURBO ASSEMBLER REFERENCE 

name of a defined macro 

tiny I small I medium I compact I large I huge I tpascal 

memory reference 

an identifier such as MyData or YourCode 

a replaceable dummy parameter 

two-character local label prefix, normally @@ 

name of a record data type 

ax I bx I ex I di I ds I dx I es I si I 
(80386/486 only:) eax I ebx I eex I edi I edx I esi 

number of rows 

SEG expr (see SEG operator) 

name of a segment 

segreg I segmentname I segexpr 

csldsleslss 

a whole number constant 

assembly language instructions or directives 

name of a structure 

any sequence of characters 

near I far I proc I byte I word I dataptr I dword I fword I 
pword I qword I tbyte I structname 

usel61 use32 

M400-(MASM 4.0) I M500-(MASM 5.0) I M510-
(MASM 5.1) I M520-(MASM 5.2 aka Quick ASM) I 
TIOO-(TASM LO) I TlOI-(TASM 1.01) I T200-
(TASM 2.0) I T250-(TASM 2.5) I T300-(TASM 3.0) I 
T310-(TASM 3.1) I T320-(TASM 3.2) I T400-
(TASM 4.0) 

aln I ass I brk I kg I leo I opi I opp lops I ovf I pdc I pqk I pro 
I res I tpi (See Table 17.2.) 

a whole number constant 

'Don't confuse the square brackets [J, which surround optional items, with the square brackets used in 
a program's indirect memory references as in mov ax, [count). 

789 



790 

PART III _ REFERENCE 

Table 17.2. Symbols for warnclass. 

aln segment alignment 

ass assumes 16-bit segment 

brk brackets needed 

ieg inefficient code generation 

gtp global and symbol type mismatch 

int interrupt 3 (int 3) generation 

leo location counter overflow 

mep MASM compatibility pass 

opi open IF conditional 

opp open procedure 

ops open segment 

ovf arithmetic overflow 

pde pass-dependent construction 

pqk assuming constant for [const] 

pro protected-mode memory-write needs cs: override 

res reserved word 

tpi Turbo Pascal illegal construction 

uni uninitialized segment warning off 

Table 17.3. Turbo Assembler Predefined Symbols. 
Symbol Type 

@32Bit numeric 

@Code alias 

@CodeSize numeric (byte) 

Description 

Segment model; 0 16-bit, 
1 = 32-bir 

Code segment name 

o = small, compact model; 1 
= other models 

.. 



Symbol Type Description 

@Cpu numeric (word) Enabled processor instruc-
tions; bit numbers (1 = on, 0 
= off): 0-8086; 1-80186; 2-
80286;3-80386;4-80486;5-
80586; 6-unused; 7 -protected 
mode; 8-8087;9-unused; 10-
80287; 11-80387; 12, 13, 14, 
15-unused 

@CurSeg alias Current segment name 

@Data alias Near data segment name 

@DataSize numeric (byte) Data memory model: 0 := 

tiny, small, medium; 1 = 
compact; 2 = huge 

@FarData alias Far data segment name 

@FarData? alias Far uninitialized data 
segment name 

@FileName alias Assembly file name as an 
equated symbol 

@Interface numeriC Language or operating system; 
bit numbers: O-no language; 
1-C; 2-SysCal; 3-
StdCall; 4-Pascal; 5-
Fortran; 6-Basic; 7-Prolog; 
8--C++. Bit 7 represents 

. DOS/Windows (0) or 
Windows NT (1) if another 
language bit is also on 

@Object alias Name of current object 

@Stack alias Segment or group assumed 
for register ss 

@Startup alias N ear label marking stan of 
program using the 
STARTUPCODE directive 

@Table_<object-name> alias Table data type that contains 

an object's method table 

continues 

791 



17 

792 

Table 17.3. continued 

Symbol Type 

~Tableaddr_<object-name> 

~WordSize 

nOate 

??FileName 

??Time 

??Version 

alias 

numeric (byte) 

string 

string 

string 

numeric (word) 

Description 

Label for the address of an 
object's virtual method table 

Segment address size: 2 = 16 
bit; 4 = 32 bit 

Today's date 

Assembly file name as a 
character string 

Current time in DOS 
country-code format 

Turbo Assembler version 
number: high byte = major 
revision numbers, low byte 
minor revision numbers 

Note: Equates of type alias represent other symbols. For example, @code represents the name of the 

current code segment-any place you can use a segment name, you can use an alias instead. Numeric 

equates reptesent whole number values--use them any place you would use another numeric equate. 

String equates represent unterminated character strings, which you can insert in db directives to create 

variables containing the file name, date, and time. 

Operators 
Operators are printed in Table 17.4 in uppercase to make them more visible. In programs, 
you may write operators in uppercase or lowercase. Table 17.5 lists possible SYMTYPE values. 
SYMTYPE is equivalent to MASM's . TYPE operator (with a leading period). The TYPE operator 
(without a leading period) returns a value as listed in Table 17.6. If positive, TYPE represents 
the expr size in bytes. If negative, TYPE represents a NEAR or FAR pointer. Turbo Assembler 
requires MASM mode to be enabled before using TYPE. Despite appearances, TYPE is not 
equivalent to MASM's . TYPE operator. 

Table 17 .4. Turbo Assembler Operators. 
Symbol Syntax 

() (expr) 
.. expr .. expr 

+ expr + expr 

Description 

evaluate expression 

. multiply 

add 



r 

Symbol 

+ 

? 

[ ] 

AND 

BYTE 

CODEPTR 

DATAPTR 

DUP 

DWORD 

EO 

FAR 

FWORD 

GE 

GT 

HIGH 

LARGE 

LE 

LENGTH 

LOW 

LT 

MASK 

MOD 

NE 

NEAR 

NOT 

TURBO ASSEMBLER REFERENCE 

Syntax 

+expr 

expr expr 

-expr 

memref.field 

expr/expr 

segname I groupname:expr 

dx? 

lmemref] 

expr AND expr 

BYTE [PTR] expr 

Description 

unary plus 

subtract 

unary minus 

structure member separator 

divide 

segment override 

uninitialized data 

indirect reference 

logical AND 

8-bit byte data 

CODEPTR Procedure address size (2-small 
models; 4-large models) 

DATAPTR Data address size (2-small 
models; 4-large models) 

count DUP (expr(, expr] . .. ) duplicate 

DWORD [PTR] expr 32-bit doubleword data 

expr EO expr equals 

FAR [PTR I expr far-code address 

FWORD [PTR] expr 48-bit far-data pointer 

expr GE expr greater than or equal 

expr GT expr greater than 

HIGH expr high order of 

LARGE expr force offset to 32 bits 

expr LE expr less than or equal 

LENGTH datasym length of (element count) 

LOW expr low order of 

expr L T expr less than 

MASK recordname I fieldname bit mask 

expr MOD expr modulo (division remainder) 

expr NE expr not equal 

NEAR expr near code address 

NOT expr one's complement 

continues 

793 



17 

794 

Table 17.4. continued 
Symbol 

OFFSET 

OR 

PRoe 

PTR 

PWORD 

aWORD 

SEG 

SHL 

SHORT 

SHR 

SIZE 

SMALL 

SYMTYPE 

TBYTE 

THIS 

TYPE 

UNKNOWN 

WIDTH 

WORD 

XOR 

Syntax 

OFFSET expr 

expr OR expr 

PROe codesym 

type PTR expr 

PWORD [PTR 1 expr 

awORD [PTR] expr 

SEG expr 

expr SHL count 

SHORT expr 

expr SHR count 

SIZE datasym 

SMALL expr 

SYMTYPE expr 

TBYTE [PTR] expr 

THIS type 

TYPE expr 

UNKNOWN expr 

WIDTH record I field 

WORD [PTR I expr 

expr XOR expr 

Description 

offset address 

logical OR 

code procedure 

pointer to 

far-data pointer 

64-bit quadword data 

segment address 

bit shift left 

short code address 

bit shift right 

size in bytes 

16-bit small offset 

type of symbol (See Table 17.5) 

80-bit ten byte data 

assign current address 

size of symbol (See Table 17.6) 

remove type information 

record field bit width 

16-bit word data 

logical exclusive OR 



r 

Table 17.5. Possible SYMTYPE Values. 
Bit Number 

o 
1 

2 

3 

4 

5 
6 

7 

If bit = 1, then the symbol ... 

belongs to a code segment 

belongs to a data segment 

is a constant (i.e., an equate) 

is a direct memory reference 

is a register 

is defined 

(unused bit) 

is external to module 

Note: If bits 2 and 3 equal 0, then the symbol is an indirect memory reference such as [bx + si J. If all 

bits equal 0, then the symbol is not defined. (This condition produces an assembly error when using 

SYMTYPE in data allocation directives such as db and dw.) 

Table 17.6. Possible TYPE Values. 
Value Type Represented Value 

0 constant 8 

1 BYTE 10 

2 WORD OFFFFh 

4 DWORD OFFFEh 

6 FWORD or PWORD n 

Mode Equivalents 
The MASM- and Ideal-mode equivalents are listed in Table 17.7. 

Table 17.7. MASM- and Ideal-Mode Equivalents. 

MASM Mode Ideal Mode 

.186 

.286 

.286C 

P186 

P286 

P286N 

Type Represented 

aWORD 

TBYTE 

NEAR 

FAR 

number of bytes 
in a structure or 
table or union 

continuer 795 



Table 17.7. continued 

MASMMode Ideal Mode 

.286P P286N 

.287 P287 

.386 P386 

.386C P386N 

.386P P386N 

.387 P387 

.486 P486 

.486C P486N 

.486P P486N 

.487 P487 

.586 P586 

.586C P586N 

.586P P586N 

.587 P587 f 

.8086 P8086 

.8087 P8087 

.ALPHA DOSSEG 

.CODE CODESEG 

COMMENT (none) 

.CONST CONST 

.CREF %CREF 

. DATA DATASEG 

. DATA? UDATASEG 

. ERR ERR 

.ERRl ERRIFl 

.ERR2 ERRlF2 

.ERRB ERRlFB 

.ERRDEF ERRlFDEF 

.ERRDIF ERRlFDIF 

.ERRDIFI ERRlFDIFI 

.ERRE ERRlFE 

796 .ERRlDN ERRlFDN 



r 
I 

! 

i, 
TURBO 

MASMMode Idea/Mode 

.ERRIDNI ERRIFIDNI 

.ERRNB ERRIFNB 

.ERRNDEF ERRlFNDEF 

.ERRNZ ERRlF 

. FAR DATA FAR DATA 

.FARDATA? UFARDATA 

.LALL %MACS 

.LFCOND %CONDS 

.LIST %LIST 

.MODEL MODEL 

%OUT DISPLAY 

PAGE %PAGESIZE 

. RADIX RADIX 

.SALL %NOMACS 

.SEQ (none)* 

.SFCOND %NOCONDS 

.STACK STACK 

SUBITL %SUBTTL 

.TFCOND (none) 

TITLE %TITLE 

. TYPE SYMTYPEt 

.xALL (none) 

.xCREF %NOCREF 

.XLIST %NOLIST 

*Turbo Assembler normally collecrs segments in sequential order as encountered during assembly. With 

early TASM versions, use rhe DOSSEG (. ALPHA) direcrive to collect segments in alphabetic order. 

OOSSEG is obsolete in TASM 4.0. There is no Ideal-mode equivalent to rhe MASM .SEQ direcrive. 

tThis is an operator. All other symbols in this table arc direcdves. 

Directives 
Most operators and directives are printed in uppercase in Table 17 .8a through 17 .8f to make 
them more visible. In programs, you may write operators and directives in uppercase or low
ercase. Only Ideal-mode directives are listed in this table. See Table 17.8a for the equivalent 
MASM-mode directives. 797 



17 

798 

Table 17.Sa. Turbo Assembler 1.0 Directives. 
Directive 
Name 

Define near-code label 
codesym: 

= 
Define numeric equate 
name", expr 

ALIGN 
Align location COunter 
ALIGN boundary 

ARG 
Define procedural arguments 
ARG arglist [",name} [RETURNS arglist} 
arglist ::",definition [,definition}. .. 
definition ::=name:typedef 
typedef::=type I PTR [type} I [distance[PTR[type]]] 

ASSUME 
Set default segment register 
ASSUME segreg:segmentname f,segreg:segmentname}. .. 
ASSUME segreg:NOTHING f,segreg:NOTHING] ... 
ASSUME NOTHING 

O/OBIN 
Set listing object-code field width 
%BIN size 

CODESEG 
Start new code segment 
CODESEG [name} 

COMM 
Define communal variable 
COMM definition f,definition}. .. 
definition ::= [distance} name:type[:count} 

O/OCONDS 
List all conditional statements 
%CONDS 



r 

Directive 
Name 
Syntax 

CONST 
Start of constant data segment 
CONST 

%CREF 
List cross references 
%CREF 

%CREFALL 
List aU cross-reference symbols 
%CREFALL 

%CREFREF 
List only referenced symbols in cross reference 
%CREFREF 

%CREFUREF 
List only unreferenced symbols in cross reference 
%CREFUREF 

%CTLS 
List listing controls 
%CTLS 
DATASEG 
Start new data segment 
DATASEG 

DB 
Define byte 
[name} DB exprf,expr}. .. 

DD 
Define doubleword 
[name} DD [type PTR] exprf,expr}. .. 

%DEPTH 
Set listing nesting depth level 
%DEPTH size 

DF 
Define farword pointer 
[name} DF [type PTR} exprf,expr} ... 

DISPLAY 
Display quoted string during assembly 
DISPLAY "text' 

continues 
799 



17 
Table 17.8a. continued 

Directive 
Name 
Syntax 

DOSSEG* 
Enable standard DOS segment order 
DOSSEG 

DP 
Define far 48-bit pointer 
[name} DP [type PTR} exprf,expr}. .. 

DQ 
Define quadword 
[name} DQ exprf,expr} ... 

DT 
Define ten-byte variable 
[name} DT exprf,expr}. .. 

DW 
Define word 
[name} OW [type PTR} exprf,expr}. .. 

ElSE 
Start alternate conditional block 
IF condition 
statements 
ELSE 
statements 
ENDIF 

EMUL 
Emulate coprocessor instructions 
EMUL 

END 
End of source text 
END [entry point} 

ENDIF 
End of conditional block 
IF condition 
statements 
ENDIF 

800 ·Obsolete in TASM 4.0 



Directive 
Name 

ENDP 
End of procedure 
ENDP {name} 

ENDS 
End of segment or structure 
ENDS {name} 

EQU 
Equate symbol (name) to value (expr) 
name EQU expr 

ERR 
Force error message 
ERR 

ERRIF 
Force error if expr is true 
ERRIF condition 

ERRIFI 
Force error if pass 1 
ERRIFI 

ERRIF2 
Force error if pass 2 
ERRIF2 

ERRIFB 
Force error if argument blank 
ERRIFB argument 

ERRIFDEF 
Force error for defined symbol 
ERRIFDEF name 

ERRIFDIF 
Force error for different arguments 
ERRIFDIF argumentl, argument2 

ERRIFDIFI 
Force error for different arguments ignoring case 
ERRIFDIFI argumentl, argument2 

ERRIFE 
Force error if expr is false 
ERRIFE expr 

T URSO ASSEMBLER "m;,,",-" 

continues 801 



802 

PART III _ REfERENCE 

Table 17.8a. continued 

Directive 
Name 

ERRIFIDN 
Force error for identical arguments 
ERRIFIDN argumentl, argument2 

ERRIFIDNI 
Force error for identical arguments ignoring case 
ERRIFIDNI argument}, argument2 

ERRIFNB 
Force error if argument is not blank 
ERRIFNB argument 

ERRIFNDEF 
Force error if symbol is not defined 
ERRIFNDEF name 

EVEN 
Align code to even address 
EVEN 

EVEN DATA 
Align data to even address 
EVEN DATA 

EXITM 
Exit macro 
EXITM 

EXTRN 
Define external symbol 
EXTRN definition [,definition}. .. 
definition ::= name:type{:count} 

FARDATA 
Start of far data segment 
FARDATA [name} 

GLOBAL 
Define global symbol 
GLOBAL definition [,definition} 
definition ::= name:type[:count} 

. GROUP 
Define segment group 
GROUP name segmentname [,segmentname}. .. 



Directive 
Name 
Syntax 

IDEAL 
Switch to Ideal mode 
IDEAL 

IF 
Assemble if condition is true 
IF condition 

1Ft 
Assemble if on pass 1 
IFl 

IF2 
Assemble if on pass 2 
IF2 

IFB 
Assemble if argument is blank 
IFB argument 

IFDEF 
Assemble if symbol is defined 
IFDEF name 

IFDIF 
Assemble if arguments differ 
IFDIF argument], argument2 

IFDIFI 
Assemble if arguments differ ignoring case 
IFDIFI argument], argument2 

IFE 
Assemble if expr equals 0 (is false) 
IFE expr 

IFIDN 
Assemble if arguments are identical 
IFIDN argument], argument2 

IFIDNI 
Assemble jf arguments are identical ignoring case 
IFIDNI argument], argument2 

IFNB 
Assemble if argument is not blank 
IFNB argument 

TURBO ASSEMBLER KEFI:RENCf 

continues 803 



1 
..,. 
J" 

Table 17.8a. continued 
Directive 
Name 

Syntax 

IFNDEF 
Assemble if name is not defined 
IFNDEF name 

.", %INCL 
List include files 
%INCL 

INCLUDE 
Include separate file 
INCLUDE "filename" 

INCLUDELIB 
Include library file during linking 
INCLUDELIB "filename" 

IRP 
Insert repeated parameter 
IRP parameter, <text[,textj. .. > 

statements 
ENDM 

IRPC 
Insert repeated parameter for characters 
IRPC parameter, text 
statements 
ENDM 

JUMPS 
Enable conditional jump adjustments 
JUMPS 

LABEL 
Define typed symbol 
LABEL name type 

%LINUM 
",f,' Set listing line number field width 

%LINUM size 

%LIST 
Listing on 
%LIST 

..... , 804 



Directive 
Name 

LOCAL 
Define local symbol in macros 
LOCAL name{,name}. .. 

LOCAL 
Define local symbol in procedures 
LOCAL definition {,definition] ... [=name] 
definition ::= name:type[:count] 

LOCALS 
Enable local labels 
LOCALS [prefix] 

MACRO 
Start macro definition 
MACRO name [parameter {,parameterj. . .] 

%MACS 
List macro expansions 
%MACS 

MASM 
Enable MASM-compatible assembly 
MASM 

MASM51* 
Enable MASM version 5.1 enhancements 
MASM51 

MODEL 
Select memory model 
MODEL memorymodel {,language] 

MULTERRS 
Enable multiple errors per line 
MULTERRS 

NAME 
Change module name 
NAME filename 

*Replaced with VERSION in version 3.0. See Table 17.8d. 

continues 

805 



7 

806 

PART III _ 

Table 17.8a. continued 
Directive 
Name 

%NEWPAGE 
Start new listing page 
O/ONEWPAGE 

O/ONOCONDS 
List no false conditional statements 
%NOCONDS 

%NOCREF 
List no cross reference 
O/ONOCREF {name {,name}. . .} 

%NOCTLS 
List no listing controls 
O/ONOCTLS 

NOEMUL 
Disable coprocessor emulation 
NOEMUL 

O/ONOINCL 
List no include files 
O/ONOINCL 

NOJUMPS 
Disable conditional jump adjustments 
NOJUMPS 

%NOUST 
Disable listing 
O/ONOLIST 

NOLOCALS 
Disable local labels 
NOLOCALS 

%NOMACS 
List only code-generating macro statements 
%NOMACS 

NOMASM51* 
Disable MASM version 5.1 enhancements 
NOMASM51 

·Replaced with VERSION in version 3.0. See Table 17.8d. 



Directive 
Name 

NOMULTERRS 
Disable multiple errors per line 
NOMULTERRS 

%NOSYMS 
List no symbol table 
%NOSYMS 

%NOTRUNC 
Word-wrap long fields in listing 
%NOTRUNC 

NOWARN 
Disable warning message 
NOWARN [warnclass} 

ORG 
Set location counter origin 
ORG expr 

P186 
Enable 80186 instructions 
P186 

P286 
Enable aU 80286 instructions 
P286 

P286N 
Enable 80286 non-protected-mode instructions 
P286N 

P287 
Enable 80287 coprocessor instructions 
P287 

P386 
Enable all 80386 instructions 
P386 

P386N 
Enable 80386 non-protected-mode instructions 
P386N 

TURBO f"\"'cMI>'tK W':cco,,,,rc 

continues 

807 



808 

Table 17.8a. continued 
Directive 
Name 

P387 
Enable 8087 coprocessor instructions 
P387 

P8086 
Enable only 8086/88 instructions 
P8086 

P8087 
Enable 8087 coprocessor instructions 
P8087 

%PAGESlZE 
Set listing page height and width 
%PAGESIZE [rows} {,columns} 

%PCNT 
Set listing segment:offset field width 
%PCNT width 

PN087 
Disable coprocessor instructions 
PN087 

%POPLCTL 
Pop listing controls from assembler stack 
%POPLCTL 

PROC 
Define new procedure 
PROC name {distance} /USES reglist} [arglist} [=name] 

/RETURNS arglist} 
reglist ::= register [register]. .. 
arglist ::= definition {,definition]. .. 
definition ::= name:typedef 
typedef::: type I PTR {type} I {distance tpTR {type]ll 

PUBLIC 
Define public symbol 
PUBLIC name {,name}. .. 



r 

Directive 
Name 

PURGE 
Delete macro definition 
PURGE macroname {,macroname}. .. 

%PUSHLCTL 
Push listing controls onto assembler stack 
O/OPUSHLCTL 

QUIRKS* 
Enable MASM quirks 
QUIRKS 

RADIX 
Set default radix 
RADIX expr 

RECORD 
Define bit-field record 
RECORD name definition {,definition}. .. 
definition ::= fieldname:width[=expr} 

REPT 
Repeat statements 
REPT expr 
statements 
ENDM 

SEGMENT 
Define segment 
SEGMENT name [align} [combine} [use} ['class} 

STACK 
Start new stack segment 
STACK [sizel 

STRUC 
Define structure 
STRUCT name 
fields 
ENDS [name} 

O/OSUBITL 
Declare listing subtitle 
O/OSUBTTL "text" 

*Replaced with VERSION in version 3.0. See Table 17.8d. 
continues 809 



'17 

810 

PART III _ REFERENCE 

Table 17.8a. continued 
Directive 
Name 
Syntax 

%SYMS 
Enable listing symbol table 
%SYMS 

%TABSIZE 
Set listing column tab width 
% T ABSIZE width 

%TEXT 
Set listing source field width 
%TEXT width 

%TITLE 
Set listing title 
% TITLE "text" 

%TRUNC 
Truncate long fields in listings 
%TRUNC 

UDATASEG 
Start new uninitialized data segment 
UDATASEG 

UFARDATA 
Start new uninitialized far data segment 
UFARDATA 

UNION 
Define union 
UNION name 
fields 
ENDS [name] 

USES 
Auto push and pop registers (language models only) 
USES register [,register}. .. 

WARN 
Enable a warning message 
WARN [warnclass} 



r 
: 
i 

Table 17.8b. Turbo Assembler 2.0 Directives. 
Directive 
Name 
Syntax 

P486 
Enable 80486 instructions 
P486 

P486N 
Enable 80486 non-protected-mode instructions 
P486N 

P487 
Enable 80487 coprocessor instructions 
P487 

P586 
Enable 80586 (Pentium) instructions 
P586 

P586N 
Enable 80586 non-protected-mode instructions 
P586N 

P587 
Enable 80587 coprocessor instructions 
P587 

PUBLICDLL 
Define dynamic link library entry points 
PUBLICDLL [language] symbol [,[language] symbol] ... 

ru::TCODE 
Generate model-dependent ret 
RETCODE 

STARTUPCODE 
Insert model-dependent initialization code 
STARTUPCODE 

1 

811 



812 

PART III _ REfERENCE 

Table 17.8c. Turbo Assembler 2.5 Directives. 
Directive 
Name 
Syntax 

ENTERD 
Same as enter but use ebp and esp 

ENTERD 

ENTERW 
Same as enter but use bp and sp 

ENTERW 

LEAVED 
Same as leave but use ebp and esp 

LEAVED 

LEAVEW 
Same as leave but use bp and sp 

LEAVEW 

Table 17 .8d. Turbo Assembler 3.0 Directives. 
Dil'ective 
Name 

CATSTR 
Contatenate string text macros 
name CATSTR string [,string} ... 

ENUM 
Create enumerated data type 
name ENUM [name [,name]) 
[{name [,name) .. . }] 

EXITCODE 
Insert model-dependent termination code 
EXITCODE expr 

FASTIMVL 
Generate efficient imul or shift/add instructions 
FASTIMUL register, register I memref, value 

FLIPFLAG 
Generate efficient XOR instruction 
FLIPFLAG register, memref 



Directive 
Name 

GETFIELD 
Get a value from a record field 
GETFIELO name register, memref I register 

GOTO 
Stan macro expansion at label 
GOTO label 

INSTR 
Find substring in string macro 
name INSTR [start_expr,J string1, string2 

LARGESTACK 
Override MODEL stack size to 32-bit 
LARGESTACK 

MASKFLAG 
Generate efficient bitwise AND instruction 
MASKFLAG register, memref 

SETFIELD 
Set a value in a record field 
SETFIELD name memref I register, register 

SETFLAG 
Generate efficient bitwise OR instruction 
SETFLAG register, memref 

SIZESTR 
Return length of string macro 
name SIZESTR string 

SMALLSTACK 
Override MODEL stack size to 16-bit 
SMALLSTACK 

SUBSTR 
Define text macro as substring 
name SUBSTR string, position_expr [,size_exprJ 

TABLE 
Declare table of object methods 
Created by T ASM: See Chapter 14 

TURBO 

continues 

813 



814 

RmRENCf 

Table 17.8d. continued 
Directive 
Name 

TBLINIT 
Initialize VMT pointer 
TBLINIT ds: bx 

TBLINST 
Creates VMT instance for an object 
TBLINST 

TBLPTR 
Locate an object's virtual table 
TBLPTR 

TESTFLAG 
Generate efficient TEST instruction 
TESTFLAG register, memref 

TYPEDEF 
Create a data type name 
TYPEDEF name type 

VERSION 
Select assembler compatibility mode 
VERSION version_id 

WHILE 
Repeat macro body 
WHILE expr 

macro_body 

ENDM 

Table 17.8e. Turbo Assembler 3.1 Directives. 
Directive 
Name 

POPSTATE 
Pop Turbo Assembler state from internal stack 
POPSTATE 



r 

-----~--~ .. ----------~ ~--- -------------------; 

Directive 
Name 
Syntax 

PUSHSTATE 
Push Turbo Assembler state onto internal 16-level stack 
PUSHSTATE 

Table 17.Bf. Turbo Assembler 3.2 Directives. 
Directive 
Name 
Syntax 

lRE1W 
Pop flags as WORD in 32-bit isr return 
IRETW 

POPAW 
Pop all word registers in 32-bit code 
POPAW 

POPFW 
Pop flags as WORD in 32-bit code 
POPFW 

PROCDESC 
Declare procedure prototype 
PROCDESC name [description] 

(seePROC) 

PROClYPE 
Create procedure (user-defined) data type 
PROCTYPE name [description] 
(seePROC) 

PUSHAW 
Push all word registers in 32-bit code 
PUS HAW 

PUSHFW 
Push flags as WORD in 32-bit code 
PUSHFW 

TURBO ASSEMBLER REFERENCE 

815 





r 

Assetnbling the 
Disk Files 

_ Assembly Language Listings, 818 

_ Pascal Listings, 819 

_ C Listings, 820 

_ C++ Listings, 820 

_ Object-Oriented Listings, 821 

_ Windows Listings, 822 

_ All Listings, 823 

_ Errors During Assembly, 824 



818 

If you haven't done so already, follow the instructions inside the back cover to install the 
files on the supplied disk. Also see the README.TXT file on disk for additional notes. This 
appendix suggests methods for assembling and compiling the installed files. 

Assembly language listings 
Use the MAKEASM.MAK file to assemble all assembly-language listings except for the ob
ject-oriented programs in Chapter 14 and the Windows applications in Chapter 15. This 
MAKE file also rebuilds the MTA.LIB library file, in which copies of various support mod
ules such as STRINGS.OB] and STRIO.OB] are stored for easier linking. 

Requirements 
• Turbo Assembler 4.0. 

• The system PATH must include the directory where TASM.EXE, TLINK.EXE, 
and TLIB.EXE are stored, usually C\tasm \bin. 

• The MT A.LIB file must be in the current directory. This file will be created and 
updated automatically if necessary. 

Instructions 
1. Change to the MTA directory. For example, enter the commands: 

c: 
cd \mta 

2. Run the MAKE utility, which issues commands as directed by instructions in the 
file, MAKEFILE. (A copy of this file is also provided in MAKEASM.MAK.) Enter 
the command: 

make 

3. In some cases, the text will suggest modifications to various programs. After you 
make these changes, save the modified file to disk and retype make. This will 
assembl~ and link only the modified program. 



4. To delete extra files created during assembly, enter: 

make clean 

Pascal Listings 
Follow the instructions in this section to compile the Borland Pascal listings in Chapter 12, 
"Mixing Assembly Language with Pascal." 

Requirements 
• Turbo Assembler 4.0. 

• Borland Pascal 7.0. Earlier versions of Turbo Pascal might also work but are untested. 

• The system PATH must include the directory where T ASM.EXE and TLINK.EXE are 
stored, usually C:\tasm\bin. On some Borland Pascal installations, however, Turbo 
Assembler might be installed in C:\bp7\bin along with the Borland Pascal compiler. 

Instructions 
1. Change to the MTA directory. For example, enter the commands: 

c: 
cd \mta 

2. Run the MAKE utiliry, which issues commands as directed by instructions in the 
file, MAKEPAS.MAK. Enter the command: 

make -fMAKEPAS.MAK 

NOTE 

"(iUlMst w;¢the.PQt ~mm~md,ll~ 
fu~ P~lif fQr:~~s'to COtl1~I~W 

; ~ "';: '_ . :;-. '~,: '" \,- _ '> _ "': /i"' """ ' 

819 



PART III _ REfERENCE 

C listings 
Follow the instructions in this section to compile the C listings in Chapter 13, "Mixing 
Assembly Language with C and C++." 

Requirements 
• Turbo Assembler 4.0. 

• Borland C++ 4.0 or 4.5. Earlier versions of Turbo C++ may also work but are 
untested. 

• The system PATH must include the directory where TASM.EXE and TLINK.EXE 
are stored, usually C:\tasm\bin. On some Borland C++ installations, however, 
Turbo Assembler might be installed in C:\bc4\bin along with the Borland C++ 
compiler. Use C:\bc45\bin for version 4.5. 

Instructions 
1. Change to the MTA directory. For example, enter the commands: 

c: 
cd \mta 

2. Run the MAKE utility, which issues commands as directed by instructions in the 
file, MAKEC.MAK. Enter the command: 

make -fMAKEC.MAK 

NOTE 

You must use the 00$, comma"d-line Botland CH Qr"furboC++ ~OO\pijiks.~ ma1~ 
use Turbo C++ for Windows to compile the sample programs; ." '" 

c++ listings 
Follow the instructions in this section to compile the C++ listings in Chapter 13. 

Requirements 
• Turbo Assembler 4.0. 

• Borland C++ 4.0 or 4.5. 

• The system PATH must include the directory where TASM.EXE and TLINK.EXE 
are stored, usually C:\tasm\bin: On some Borland C++ installations, however, 
Turbo Assembler might be installed in C:\bc4\bin along with the Borland C++ 

820 compiler. Use C:\bc45\\bin for version 4.5. 



r 

Instructions 
1. Change to the MTA directory. For example, enter the commands: 

c: 
cd \mta 

2. Run the MAKE utility, which issues commands as directed by instructions in the 
file, MAKECPP.MAK. Enter the command: 

make -fMAKECPP.MAK 

NOTE 

You must use the DOS, command·llne Borland C++ compiler. You may not use Turbo C++ 
for Windows to compile the sample programs. 

Object-Oriented Listings 
Follow the instructions in this section to assemble the listings in Chapter 14, "Programming 
with Objects." 

Requirements 
• Turbo Assembler 4.0. 

• The system PATH must include the directory where TASM.EXE and TLINK.EXE 
are stored. usually C:\tasm\bin. 

• MTALIB must be in the \MTA directory (LIST program only). 

Instructions 
1. Change to the program's directory. For example. enter the commands: 

c: 
cd \mta\oop\virtual 

2. Run the MAKE utility, which issuescommands as directed by instructions in the 
file. MAKEFILE. Enter the command: 

make 

3. Perform the preceding two commands for each of the following directories: 

\mta\oop\encapsul 
\mta\oop\inherit 
\mta\oop\list 
\mta\oop\virtual 

821 



822 

NOTE 
" .' _ "tr;j~_ytl,:_'_ ~'., . " ,,:.-i:'2 ~ ~';-',:~~_~;/h~~"Li ;.'t <{~C _ _::!.:,,;~if'~{~'-f-~~Y--_:r~~t!?d:f.' -

ExcWt for USTde~nstrationithe~-orje,l')t~programsPfoducE!'~ .•....... , 
anctarejnterlded to be traced with Turbooetxigger.Seethete~jn01~~. 
,i~~~~~T .....• '.~. '. t ~\ .'.... ..... ~ .. '":~\,,'il:li! .. {:p·#··>:·;~~,·~r~l··l 

Windows Listings 
Follow the instructions in this section to assemble the listings in Chapter 15, "Programming 
for Windows." 

Requirements 
• Turbo Assembler 4.0. 

• Borland C++ 4.0 or 4.5, another C or C++ Windows developmentr system, or the 
Microsoft Windows SDK. 

• The system PATH must include the directory where T ASM.EXE and TLINK.EXE 
are stored, usually C:\tasm\bin. 

• The system PATH must also include the directory where various Windows utilities 
such as the Borland resource compiler BRC.EXE are stored. 

• The file WINDOWS.lNC must be in C:\tasm\include. 

• The file WINDOWS.H must be in C:\bc4\include. Use C:\bc45\include for 
version 4.5. 

Instructions 
1. Change to the program's directory. For example, enter the commands: 

c: 
cd \mta\win\whello 

2a. Run the MAKE utiliry, which issues commands as directed by instructions in the 
file, MAKEFILE. You must assemble the programs from a DOS prompt. Enter the 
command: 

make 

2b. Alternatively, run one of the supplied batch files, BUILD.BAT or MAK.BAT, to 
assemble with debugging infurmation, and to create a listing output file. For 

example, to rebuild the program from scratch, enter the command: 

build 



r 

3. Use the Windows File Manager to select and run the resulting .EXE code file. Or, 
you may use the Program or File Manager's FilelRun commands and enter the 
program's pathname (c:\lIta\win\whello\whello.exe for example). 

4. Perform the preceding commands for each of the following directories: 

\mta\win\whello 
\mta\win\winapp 

NOTE 

If Y9U receive e~~;dtIrin~assemblyandlinking, youmlghtlfJave to edltthe pathnamesin 
the MAKEFllEs in directories WHElLO and WINAPP. ~ 

All Listings 
To assemble all listings (except the object-oriented examples in Chapter 14 and the Win
dows programs in Chapter 15), you may use the supplied MAKEALL.BAT batch file. Fol
low these instructions. 

Requirements 
• Turbo Assembler 4.0. 

• Borland C++ 4.0. 

• Borland Pascal 7.0. 

• MAKE.EXE. 

• The assembler, compiler, and MAKE executable files, and also the Borland linker, 
must be on the current PATH. . 

Instructions 
1. Change to the MTA directory. For example, enter the commands: 

c: 
cd \mta 

2. Run the MAKEALL.BAT batch file by entering the command: 

makeall 

823 



824 

Errors During Assembly 
If you receive error messages, follow these suggestions: 

• Check your system s imtallation. In addition to this book's listings, you must purchase 
and install Turbo Assembler 4.0. Some listings require Borland c++ 4.0 or 4.5 and 
Borland Pascal 7.0. The Windows examples also require utilities and files not 
supplied by Turbo Assembler. 

• Check your system s configuration. TASM.EXE, TLINK.EXE, and TLIB.EXE must 
be on the system PATH. At least 90% of errors reported by readers are due to an 
improperly configured system. Be sure to type your PATH statement in 
AUTOEXEC.BAT exactly as shown in this appendix, with no extra spaces or 
punctuation. For most readers, the PATH statement should look something like 
this, although the directory names depend on your installation: 

PATH 

C:\windowsjC:\dosjC:\tasm\bin 

• Add all imtallation directories to PATH. If you have Borland C++ or Borland Pascal, 
also add these installation directories to the PATH. In that event, use a statement 
such as the following (change bc4 to bc45 if you have version 4.5): 

PATH 
C:\windowsjC:\dos;C:\tasm\bi;C:\bc4\bin;C:\bp7\bin 

• Never attempt to configure your system for more than one assembler or compiler at a 
time. Do not, for example, specify MASM and TASM directories in the PATH. 
This rule is especially important for C and C++ compilers, which refer to files that 
are named similarly, but that contain different contents. For example, if you have 
Borland C++ and Microsoft C/C++, create separate AUTO EXEC. BAT files to 
configure your system for working with only one of those compilers at a time. 

• Read the text. Some error messages, warnings, and strange happenings are expected. 
Before you report that a program causes your system to reboot, check whether the 
program is supposed to do that. Always read about the program before running it. 

• Upgrade Turbo Assembler to version 4.0 or later. If you have an earlier assembler 
version, see the instructions in the README.TXT file on disk for extracting the 
first-edition files. You might be able to use these files temporarily until you upgrade 
your assembler. 

• MAKE doesn't do anything. This is normal. MAKE compares file dates and times to 
determine if a program is already assembled, compiled, or linked. To force MAKE 
to issue its commands anyway, add the -8 (build) option. For example, enter make -B. 



File Directory 



826 

PART III 4a REFERENCE 

After installing the disk supplied with this book, compare the installation directory (usually 
C\MTA) with the following tree diagram. This will verify that your installation is complete. 
To produce this listing, I installed the files and entered the following DOS command: 

tree c:\mta If la >tree.txt 

listing B.l. File inventory. 
Directory PATH listing for Volume CDRIVE 
Volume Serial Number is 0000·0000 
C: \MTA 

ADDHEX.ASM 
ADDSUB.ASM 
ANDORXOR.ASM 
ASMARG.ASM 
ASMARG2.ASM 
ASMFILL.ASM 
ASYNCH.ASM 
BCD.ASM 
BINASC.ASM 
BOUND2B6.ASM 
BOXCHAR.ASM 
CAPSLOCK.ASM 
CFILL.ASM 
CFILLSTR.C 
CFLAGS.C 
CHARS.ASM 
COLDBOOT.ASM 
COMSHELL.ASM 
CONVERT.ASM 
COPYSTR.ASM 
CPPARG.ASM 
CPPARG.CPP 
CPPFUNC.CPP 
CPPLOOP.ASM 
CPPOOP.ASM 
CPPOOP.CPP 
CSHELL.ASM 
DA TETI ME . ASM 
DISKERR.ASM 
DIV286.ASM 
DIV86.ASM 
DIVFAULT.ASM 
DOSMACS.ASM 
DR.ASM 
DT.ASM 
ECHOSTR.ASM 
EQUIP.ASM 
EXESHELL.ASM 
FF .ASM 
FILLSTR.ASM 
FILLSTR.PAS 
FILTER.ASM 





828 

listing B.l. continued 

, 
I 

WINAPP,RH 
WINAPP,RI 

\-WHELLO 
BUILD ,BAT 
MAK.BAT 
MAKEFILE 
WHELLO.ASM 
WHELLO.DEF 
WHELLO.EXE 
WHELLO.ICO 
WHElLO.OBJ 
WHELLO.RC 
WHELLO.RES 

+-001 
I 
I , , 

MTA001.EXE 

\ -OOP 

I , 

OOMACROS.INC 
TDATEOBJ, INC 
TRECT. INC 

+-ENCAPSUL 
ENCAPSUL,ASM 
MAKEFILE 
TPOINT.INC 

I , 
+-VIRTUAL 

I , , , 

MAKEFILE 
TBASE. INC 
TDERIVED.INC 
VIRTUAL.ASM 

+-INHERIT 
INHERIT.ASM 
MAKEFILE 
TBASE. INC 

LIST 

TDERIVED.INC 

LIST.ASM 
MAKEFILE 
TINTOBJ . INC 
TITEM. INC 
TLlST. INC 
TSTROBJ. INC 



Answers to Exercises 



--- ---------- ............ -~-

830 

Chapter 1 
1.1 Machine language, an improper synonym for assembly language, refers to the 

binary code that drives a computer processor; therefore, machine code is a better 
term. 

1.2 Most computer languages are high level. C, Pascal, BASIC, and others, while 
varying in many ways, are all considered to be high-level languages. Machine 
code is the lowest of low-level languages. Assembly language is somewhere in 
between, giving programmers a way to program the CPUdirecdy while taking 
advantage of features normally found in high-level languages. 

1.3 Individual assembly language instructions translate (assemble) directly to single 
machine codes. Individual high-level language statements usually translate 
(compile) to many machine codes. 

1.4 Machine code is cumbersome because many codes depend on their position in a 
program or refer to fixed addresses in memory. Modifying machine code directly 
is impractical. Early programmers had no choice in the matter because there 
weren't any computer languages-not even assembly language-in the dawn of 
the computer age. 

1.5 Debuggers such as Turbo Debugger help programmers fix broken programs by 
running code at slow speed, stopping at various locations, so you can examine 
processor registers and memory values. These same features provide ways to 
examine the inner workings of programs, too, and can help prevent system 
crashes. 

1.6 A register is a small amount of memory located inside the CPU and directly 
affected by certain machine-code instructions. 

1.7 A flag is a single bit of memory located inside the CPU and, like registers, 
directly affected by certain machine-code instructions. 

1.8 Ideal mode assembles faster than MASM mode. Ideal mode syntax is easier to 
understand and use than MASM mode. Ideal mode adds features that are 
especially useful for writing stand-alone assembly language programs. 

1.9 Advantages of assembly language include the promise (but not the guarantee) of 
top speed and the ability to directly control the CPU and peripheral devices 
attached to the computer. 

1.10 Many disadvantages are often cited about assembly language. The major disad
vantage is the difficulty of transferring assembly language programs from one 
processor to another. Doing so usually means writing the program over from 
scratch. 



ANSWERS TO EXERCISES 

Chapter 2 
2.1 Header: 1-6, Equates: 7-11; Data: 12-24; Body: 25-40; Closing: 41. 

2.2 prCodes 

2.3 There are 14 comments in Listing 2.1. Did you miss the comment in line 8? 

2.4 Turbo Assembler allows either a dash (-) or a forward slash (I). Early versions of 
Turbo Linker allow only a forward slash. Turbo Linker 6.00 allows a dash or a 
slash. 

2.5 tasm -zi bugaboo 

tlink Iv bugaboo 

2.6 Turbo Assembler creates object code. Turbo Linker further processes object-code 
files to create executable programs. The purpose of object code is to allow 
programmers to write and assemble large programs in separate pieces, or mod
ules. Turbo Linker can join multiple modules to create the finished code file. 

2.7 An error is fatal-the resulting object code will not link or run. A warning is not 
fatal-the resulting object code might link and run. If you receive an error, you 
should examine and fix the line identified by the number in parentheses. If you 
receive a warning, you should probably do the same, unless you are certain, based 
on your intimate knowledge of the program, that the warning may be safely 
ignored. 

2.8 A .COM code file organizes its data, code, and stack in one memory segment. 
An .EXE code file separates the programs data, code, and stack into separate 
memory segments. Writing .EXE programs takes a little more work than writing 
.COM programs. Programs in .COM format always occupy 64K of memory. 
Programs in .EXE format occupy only as much memory as they need. 

2.9 tasm -1 listme 
type 1istme.1st>prn 

OR 

tasm -1-c listme 
type 1istme.1st>prn 

2.10 Assembly language programs do not end-they hand over control to another 
program, usually COMMAND.COM. 

2.11 DB reserves space for one or more byte variables in memory. You can use DB to 

reserve space for single and multiple bytes, plus one or more character strings. 

831 



832 

PART III _ REFERENCE 

Chapter 3 
3.1 Binary digit. 

3.2 There are 8 bits in a byte and 2 bytes in a word. There are 4 words in a quadword. 

3.3 MSD-most significant digit; LSD-least significant digit; MSB-most 
significant byte; LSB-Ieast significant byte. 

3.4 0110 10 11 1111 1001 
+ 1010 1011 1100 1000 
1 0001 0111 11 00 000 1 

3.5 6BF9 
+ABC8 
117C1 

3.6 (2x2x2x2x2x2x2) = 128. The value 27 is the power of column number 7, the 
seventh column from the right. Did you remember that the rightmost column 
(LSB) is number O? 

3.7 3ECA = (3x4096) + (14x256) + (12x16) + (lOxl) = 16,704 
2F78 = (2x4096) + (15x256) + (7x16) + (8xl) = 12,152 
2F78 = 0010 1111 0111 1000 

3.8 AND mask = 0010 1100 
OR mask 1100 0000 
XOR mask = 1000 0000 

Did you remember that bits are numbered from right to left, starting with O? If 
not, see Figure 3.1 and try again. 

3.9 a??? ab?? (a=bits 3,7; b=bit 2; ?=to preserve) 
AND 0111 0111 (AND mask) 

0??? 0b?? (sresult of AND) 
OR 1000 1000 (OR mask) 

1??? 1b?? (result of OR) 
XOR 0000 0100 (XOR mask) 

1??? 16?? (result of XOR; 6 = NOT b) 

3.10 (6 x 2046 x 6) = 96,304 

3.11 Original Value One's Complement Two's Complement 
1011 1111 01000000 01000001 
00000001 11111110 11111111 
10000000 01111111 10000000 
11100001 0001 1110 0001 1111 
11111111 00000000 00000001 



3.12 1111 100 1 (original signed value) 
00000110 (one's complement) 
00000111 (two's complement) 

Forming the two's complement of 1111 1011 equals 7, indicating that the 
original binary value is -7 in two's complement notation. 

3.13 Six bits can express values up to (2*2*2*2*2*2) - 1, or 63. Nine bits can express 
up to (2*2*2*2*2*2*2*2*2), or 512, including O. 

3.14 0011 1001 x 4 = 11100100 (shiftleft2times) 
57 x 4 = 228 ( in decimal) 

1001 1100 I 8 = 0001 0011 (shift right 3 times) 
156 I 8 = 19 (in decimal) 

You cant multiply 0101 0101 by 8 accurately using left shifts because the result 
is larger than 8 bits. 

Chapter 4 
4.1 The minimum size of a segment is 16 bytes because a segment must begin on a 

16-byte boundary in memory-therefore, segments must either overlap or be 
separated by at least 16 bytes. The maximum size of a segment is 65,536 bytes 
(roughly 64K). 

4.2 xor ax, ax 
sub ax, ax 
mov ax, 0 
and ax, 0 
mov el, 16 
shl ax, el or shr 

4.3 push dx Push dx onto stack 
pop ax Pop value of dx into ax 

4.4 neg furms the twos complement of a byte or word; not forms the ones comple
ment of a byte or word. 

4.5 mov el, 17 
reI ax, el ; or rer 

The reI and rer instructions treat ef as though it were the 17th bit of a word (or 
the 9th bit of a byte). Therefore, these are the only twO instructions that can 
rotate a value back to its original state and preserve ef. 

4.6 mov dh, ah 
mov el, 4 
shr dh, el 
mov dl, ah 
and dl, 0Fh 

Copy original value to dh from ah 
Prepare to execute 4 shifts 
Shift upper 4 bits right 
Copy original value to dl from ah 
Strip all but lower 4 bits 

833 



834 

PART III _ REFERENCE 

4.7 mov cl, 3 Prepare to execute 3 shifts 
shl dh, cl Shift bit 5 into cf 
jc BitIsSet Jump only if cf = 1 

4.8 jl Target Jump if less to Target 
jnl Continue Jump if not less to Continue 
jmp Target Jump if less to Target 
Continue: 

4.9 xor bx, 0FFFFh Ones complement of bx 
inc bx plus 1 forms twos complement 

4.10 mov ax, ax 

OR 

jmp short next: 
next: 

4.11 A string repeat prefix repeats one of the four string instructions cmps, lods, seas, and 
stos by the number of times specified in ex. When used with cmps and seas, the 
repetitions Stop when zf indicates that the comparison or scan condition failed. 

4.12 xor cx, cx 
rep scasb i Or repe or repz 

Chapter 5 
5.1 mov ax, 

xor cx, cx 
mov bx, [index 1 

5.2 inc [banKBalance] 
sub [word bx), 5 
mov ax, [bp + 10] 
and [byte si + 6] , 

Immediate data 
Register data 
Memory data 

Direct addressing 
Register-indirect 
Base addressing 

0Fh Indexed addressing 

[bxl) 

mov [word bx + di + 2], 0; Base-indexed addressing 

5.3 

5.4 

DATASEG 
aByte db 0 
aWord dw 0 
aString db 'This is 
UDATASEG 
aBuffer db 1024 DUP 

mov di, offset 
mov cx, 1024 
cld 

@@10: 
mov aI, cl 
stosb 

a string' 

(7) 

aBuffer Address aBuffer with 
Assign loop count to 
Auto-increment di 

Assign value to al 
Store al in aBuffer 

addressing 

di 
cx 



loop @@10 
ret 

5.5 tasm module 
tasm program 

[di] 
Loop until cx ~ 0 
Return to caller 

tlink program module ; Or tlink program + module 

5.6 The linker can extract only the modules it needs. Using the extended dictionary 
option speeds linking. 

5.7 PUBLIC directives export procedure, numeric constant, and variable labels from 
one module to others. EXTRN imports these same kinds of symbols into a module. 

5.8 The jmp refers to the second @@40: local label (the one under the je instruction) 
because the global Repeat: label blocks the view of the first @@40: from j mp. 
Remember that local labels extend only up and down to the nearest global label. 

5.9 The MaxCount, YesAnswer, and BufferSize equates can be exported in a PUBLIC 
directive. If you didn't include YesAnswer in your answer, remember that 
characters in assembly language are just numbers expressed in ASCII in the 
program text. 

5.10 s1 db 20 DUP (1) 

s2 db '12345678901234567890' 
s3 db 'abcdefghij' 

db 'klmnopqrst' 

The last two lines create a single string variable with 20 characters because 
variables are stored sequentially in memory. 

5.11 tasm printer 
tasm getdata 
tasm readtext 
tasm YourProgram 
tlink YourProgram",mta 

Or, for the link step: 
tlink YourProgram printer get data readtext strings strio 

5.12 tUb IE mta -+printer 
tlib IE mta -+getdata 
tlib IE mta -+readtext 

5.13 CODESEG 
jmp 

Flag db 
@@10: 

short @@10 
0fh 

Jump over data 
Store byte in code segment 

mov dh, [cs:Flag] Load byte into dh 

Storing data in the code segment this way is not usually necessary (and is, 
perhaps, unwise). Still, the technique is available if you need it. To refer to the 
byte requires using the segment override instruction prefix cs:. 

835 



836 

5.14 quotable db 

db 

"This' 'string" can' 't have 'too' many' 

'quotes,' she said.' 

There are several possible answers, but this answer works. For space reasons and 
for demonstration purposes, this answer is listed on two lines. You could declare 
the entire string on one line. 

Chapter 6 
6.1 STRUC Time 

hours db ° O-23 
minutes db ° O-59 
seconds db ° O-59 

ENDS 

6.2 Assuming the default field values are 0: 

6.3 

DATASEG 
TenThirtyFortyFive Time <10,30,45> 
FourteenHundred Time <14> Or <14,,> or <14,O,O> 
SixteenThirty Time <16,30> Or <16,30,> 

Midnight Time <> 

DATASEG 
theTime Time <> 
oldTime Time <> 

CODESEG 
i set the time to 15:45:12 
mov (theTime.hoursj, 15 
mov [theTime.minutesj, 45 
mov [theTime.seconds], 12 

i Increment the hour 
inc [theTime.hoursj 

or <16,30,O> 
Or <O,O,O> 

i Reset the time to OO:OO:OO (assumes es = data segment) 
xor aX,ax ax <- OOOO 
mov di, OFFSET theTime i Address theTime with es:di 
cld 
stosw 
stosb 

Zero hours and minutes fields 
Zero seconds 

; Copy theTime to oldTime 
mov aI, [theTime.hours) 
mov [oldTime.hours) , al 
mov aI, [theTime.minutesj 
mov [oldTime.minutes), al 



6.4 

6.5 

mov aI, [theTime.seconds] 
mov [oldTime.seconds]. al 

00001011 (hex) = 4113 
10000000 (binary) = 128 
1234 (hex) 4660 
4321d (decimal) = 4321 
FACE (label!) = not a value 
00FF (hex) '" 255 
DATASEG 
f1 dt 2.5 
f2 dt 88.999 
f3 dt 0.141 
bcd1 dt 125000 
bcd2 dt 1250500 

The largest possible binary-coded-decimal number is 20 digits long, or 
99,999,999,999,999,999,999. 

6.6 DATASEG 
WordArray dw 
DoubleArray dd 
Buffer 1024 db 
BCDArray dt 

6.7 DATASEG 
index dw 0 
CODESEG 
; WordArray 
mov bx, [index] 
shl bx, 1 

45 DUP (0) 
100 DUP (0) 
1024 DUP (0) 
75 DUP (0) 

Word array index 

90 bytes 
400 bytes 
1024 bytes 
750 bytes 

Get index value 
Multiply by 2 

add bX, OFFSET WordArray Add to array address 

; DoubleArray 
mov bx, [index) 
shl bx, 1 
shl bx, 

Get index value 
Multiply by 4 

add bx, OFFSET DoubleArray; Add to array address 

; Buffe r1024 
mov bx, [index] Get index value 
add bx, OFFSET Buffer1024 Add to array address 

j BCDArray 
mov bx, [index) Get index value 
mov ax, bx Save in ax temporarily 
mov cl, 3 Assign shift count 
shl bx, cl Multiply index by 8 
shl ax, 1 Multiply index by 2 
add bx, ax Finish multiply by 10 
add bx, OFFSET BCDArray Add to array address 

837 



838 

6.8 STRUC FourBytes 
by tel db ? 

byte2 db ? 
byte3 db ? 
byte4 db 1 

ENOS FourBytes 

STRUC TwoWords 
10Word dw ? 
hiWord dw ? 

ENOS TwoWords 

UNION ByteWordOWord 
asBytes FourBytes <> 

asWords TwoWords <> 

asOWord dd ? 
ENOS ByteWordOWord 

DATASEG 
vl ByteWordOWord <> 

CODESEG 
mov ah, [vl.asBytes.byte3] 
mov ax, [vl.asWords.hiWord] 
mov bx, offset v1.asDWord 
mov ax, [bx] 
mov dx, [bx + 2) 

6.9 RECORD inventory location:3, status:l, Quantity:5, vendor:4 

This record occupies one word because more than 8 bits are specified. The range 
of values for each field are: 

location 
status 
Quantity 
vendor 

o to 7 
o to 
o to 31 
o to 15 

6.10 maskLocation 
maskStatus 
maskQuantity 
maskVendor 

MASK location 
MASK status 
MASK Quantity 
MASK vendor 

DATASEG 
inv inventory <> 
COOESEG 

Set location to 3 
and [inv] , NOT mask Location 
or [inv) , 3 SHL location 

Set status to 
or [invl, maskStatus 

Punch hole in record 
Insert 3 into hole 

Set single bit 



Add 6 to quantity field 
mov ax, [inv] 
and ax, maskOuantity 
mov cl, quantity 
shr ax, cl 
add ax, 6 
shl ax, cl 
and ax, maskOuantity 
and [invJ. NOT maskOuantity 
or [inv] .ax 

Load vendor field into dh 
mov dx, [invJ 
and dx, maskVendor 
mov cl, vendor 
shr dx. cl 
xchg dh. dl 

Toggle the status field 
xor [invJ. maskStatus 

Zero all fields in the record 

Load record into ax 
Isolate quantity field 
Assign shift count to cl 
Move value to right 
Add 6 to value 
Shift back into position 
Limit value (optional) 
Punch hold in value 
Insert new quantity 

Load record into dx 
Isolate vendor field 
Assign shift count to cl 
Move to right of dx 
Swap result from dl into dh 

o -> 1; or 1 -> 0 

xor ax, ax Set ax = 0000 
mov [inv]. ax Set inv = ax 

6.11 There are several possible answers to this question, the following being one of the 
simplest. To save space here, ADDHEX.ASM does not flag errors, as it probably 
should. See the CONVERT program in Chapter 6 for hints on how you can 
improve ADDHEX. Assemble and link the program with the commands: 

tasm add hex 
tlink addhex.,. mta 

listing Answers.l. ADDHEX.ASM. 
1 : %TITLE 'Sum of two hex values -- by Tom Swan' 
2: 
3: IDEAL 
4: 
5: MODEL small 
6: STACK 256 
7: 
8: DATASEG 
9: 

10: exCode DB 0 
11 : prompt1 DB 'Enter value 1 : 

, 
0 

12: prompt2 DB 'Enter value 2: , 
0 

13: string DB 20 DUP (?) 
14: 
15: CODESEG 

continues 
839 



c 

840 

Listing Answers.l. continued 
16: 
17: 
18: 
19: 
20: 
21: Start: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: Exit: 
38: 
39: 
40: 
41 : 

EXTRN 
EXTRN 
EXTRN 

mov 
mov 
mov 

mov 
call 
push 
mov 
call 
pop 
add 
mov 
mov 
call 
call 

mov 
mov 
int 

StrLength:proc 
StrWrite:proc, StrRead:proc, NewLine:proc 
AscToBin:proc, BinToAscHex:proc 

ax, @data 
ds, ax 
es, ax 

di, offset prompt1 
GetValue 
ax 
di, offset prompt2 
GetValue 
bx 
ax, bx 
cx, 4 
di, offset string 
BinToAscHex 
StrWrite 

ah, 04Ch 
aI, [exCodel 
21h 

Initialize OS to address 
of data segment 

Make eS=ds 

Address prompt #1 
prompt for input 
Save first value 
Address prompt #2 
Prompt for input 
Get first value 
ax <- sum of values 
Request 4 digits 
Address string 
Convert ax to string 
Display answer 

DOS function: Exit program 
Return exit code value 
Call ~OS. Terminate program 

42: GetValue: di=address of promptj output: ax=value entered in hex 
43: PROC GetValue 
44: call StrWrite 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 

ENOP 

mOil 
mov 
call 
call 
call 
mov 
mOil 
call 
ret 
GetValue 

END 

di, offset string 
Cl, 4 
StrRead 
NewLine 
StrLength 
bx, cx 
[word bx + dil, 'h' 
AscToBin 

Start End of program I entry point 

6.12 See lines 16-17 and 31-32 in Listing 6.2 VERSION.ASM, if you are having 
trouble with this one. 



Chapter 7 
7.1 

7.2 

7.3 

mov ah, Specify DOS Character Input function 
int 21h Call DOS. Character returned in al 

mov ah, 7 Specify DOS Unfiltered input without echo 
int 21h Call DOS. Character returned in al 

mov ah, 8 Specify DOS Filtered input without echo 
int 21h Call ~OS. Character returned in al 

@@10: 
mov ah, 7 Unfiltered input without echo 
int 21h 
cmp aI, 27 ASCII ESC 
je Exit Exit on Esc key 
cmp aI, 'a' Check for lowercase letter 
jb @@20 
cmp aI, ' z' 
ja @@20 
sub aI, 'z' - 'Z'; Convert to uppercase 

@@20: 
mov dl, al Assign character to dl 
mov ah, 2 Character output function number 
int 21h Call DOS to write character 
jmp @@10 

In the sub instruction, instead of'z' - 'Z', you can also use 'a' - 'A' or just 32. 

PROC Esc Key 
push 
mov 
int 
or 
je 
mov 
int 
cmp 
je 

@@10: 
or 

@@20: 
pop 

ax 
ah, 11 
21h 
aI, al 
@@10 
ah, 7 
21h 
aI, 27 
@@20 

aI, 

ax 

Save ax on stack 
Get input status 
Call DOS 
Does al 0? (i.e., no key waiting) 
Jump if so (zf = 1) 
Unfiltered input without echo 
Call DOS to get key press 
Does al = Esc? 
Jump if al = Esc (zf = 1) 

Set zf = 0 

Restore saved ax 
ret Return to caller 

ENDP EscKey 

There are other good solutions. For example, the second j e can be replaced with 
a jmp short @@20 as zf is already set or cleared correctly by the previous cmp. 
Theres no need to reset zf to 0 if al does not equal 27. As this shows, juggling 

c 

841 



c 

842 

flags can be tricky. Run tests in Turbo Debugger if youre having trouble under
standing how the code works. 

7.4 Replace the cmp and j e instructions just above label ((>((>10: in the answer to 

question #7.3 with: 

or aI, al Does lead-in = 0? 
jne ((>@20 No, so exit (cant be F1) 
int 21h Call DOS to get second key press 
cmp aI, 03Bh Does al F1 code? 
jmp short ((>((>20 Exit with zf properly set 

7.5 A handle is a 16-bit number that represents a logical file. DOS lets you specifY 
handles to direct a programs I/O to and from various logical files. DOS preas
signs five handles. 

7.6 Filter programs read from the standard input file and write to the standard 
output file; therefore, their input and output can be piped together with other 
filters to create complex commands out of relatively simple programs. DOS 
supplies three standard filters: SORT, FIND, and MORE. 

7.7 DATASEG 

7.8 

string db 'I hate meeses to pieces' 
strlen $ - string 

j al=char to display; changes bx, dx, di 

PROC FillScreen 
push ax Save ax on stack for later use 
mov dh, 24 Initialize dh to maximum row 

@@10: 
mov dl, 79 Initialize dl to maximum column 

@((>20: 
pop ax Get character to display 
push ax Save character on stack again 
push dx Save dx--changed by ScPokeChar 
call ScPokeCharj Display one character 
pop dx Restore dx 
dec dl Subtract 1 from column number 
jns ((>@20 Jump if dl >= 0 
dec dh Subtract 1 from row number 
jns ((>@10 Jump if dh >= 0 
pop ax Restore original ax value 
ret Return to caller 

ENDP FillScreen 

This subroutine demonstrates how to save values temporarily on the stack. Each 
time through the loop at label @@20:, the character is popped from the stack and 
then immediately pushed for the next pass. In this way, the stack serves as a 
temporary holding place for the variable-an especially useful technique when all 



registers are used for other purposes. The initial push at the start and the pop at 
the end are both required to make this method work. 

7.9 The following is not a complete program. To test the code, add the instructions 
at appropriate places to a copy of EXESHELLASM from Chapter 2. 

Red EaU 4 
White EaU 7 

Value for red attribute 
Value for white attribute 

DATASEG 
message db 'ERROR: Dumb mistake detected', 0 

CODESEG 
EXTRN ScReadXY:proc, ScPikeStr:proc, StrLength:proc 
EXTRN ScSetBack:proc, ScSetFore:proc, ScBright:proc 
EXTRN ScBlink:proc 
mov al, Red 
call ScSetBack 
mov aI, White 
call ScSetFore 
call ScBright 
call ScBlink 
mov di, offset message 
call StrLength 
call ScReadXY 
mov si, offset message 
call ScPokeStr 

7.10 Sclnit. 

7.11 PROC 

iliI10: 

YesNo 
push ax 

call 
je 
cmp 
je 

GetCh 
iliI10 
aI, 'y'; 
@il99 

Assign red color to al 
Set background to red 
Assign white color to al 
Set foreground to white 
Make it whiter than white 
Blink foreground 
Address message with eS:di 
Set cx = length of message 
Get current cursor location 
Address message with ds:si 
Display message at cursor 

Save ax on stack 

Get key press 
Reject function and control keys 
Does key = lowercase y? 
Jump if yes 

cmp aI, 'V' j Does key = uppercase Y? 
iliI99: 

pop 
ret 

ENDP YesNo 

Chapter 8 

ax 

8.1 The advantages include: 

Restore saved ax from stack 
Return to caller 

Macros can reduce repetition 
Macros can clarify assembly language 
Macros let you customize Turbo Assembler 

843 



c 

844 

The disadvantages are: 

Macros can hide effects on register values 
Macros can increase assembly time 

8.2 MACAO Startup 
mov ax, @data , , Initialize segment registers 
mov ds, ax , , ds and es to address the 

programs 
mov es, ax , , data segment 

ENDM Startup 

8.3 I) Any nonzero value represents true; 2) only zero represents false; and 3) 1 or-1 
typically represent true. 

8.4 Comments preceded with double semicolons are not written to a listing file 
created with the /1 option during assembly. Comments preceded by single 
semicolons are listed each time the macro is used in the program. A double 
semicolon can reduce listing file size and, therefore, decrease printing time. 

8.5 Use the PURGE directive to throwaway a macro definition. 

8.6 You don't specify parameter types in macro definitions. Parameter types depend 
on how the parameters are used inside the macro. 

8.7 MACAO stz Set zf flag " 1 

8.8 

push ax 
lahf 
or ah, 
sahf 
pop ax 

, , 
, . 

040h . , 
, , 
, , 

ENDM stz 

MACRO clz , , 
push ax , . 
lahf , , 
and ah, 0bfh , , 
sahf 
pop ax , , 

ENDM clz 

Macro definition 
MACAO AssignSeg reg, 

push ax 
mov ax, value 
mov reg, ax 
pop ax 

ENDM AssignSeg 

Assign color video 
AssignSeg es, 0B800h 

Save ax on stack 
Load flags into ah 
Set bit 6 (zf) 
Store ah to flags 
Restore ax 

Clear zf flag 0 
Save ax on stack 
Load flags into ah 
Clear bit 6 
Store ah to flags 
Restore ax 

value 

buffer address to es 



r 

8.9 INCLUDE "FLOAT.MAX" 
INCLUDE "BIOSMAC.TXT" 
INCLUDE ·CUSTOM.MAX· 

8.10 

Did you remember the quotes required around file names in Turbo Assemblers 
Ideal mode? 

True -1 
False 0 
jHasFasCrt True For Pcs 
HasFastCrt False For plain MS-DOS systems 

PROC WriteAChar 
IF HasFastCrt 

call ScPokeChar Fast write to x,y 
ELSE 

cmp al,' . 
jae (l1(l1HFC10 
mov aI, . 

(l1(l1HFC10: 
cmp dh, 24 
jne @@HFC20 
cmp dl, 79 
je (l1@HFC99 

@@HFC20: 
xchg dx, bx 
call ScReadXY 
push dx 
xchg bx, dx 
call ScGotoXY 
mov dl, al 
MS_DOS 2 
pop dx 
call ScGotoXY 

ENDIF 
@(l1HFC99: 

ret 
ENDP WriteAChar 

Reject control codes 
Jump if not a control 
Char to display for controls 

Does row = maximum? 
Jump if not 
Does column = maximum? 
Exit to prevent scroll I 

Preserve requested x,y 
Get current cursor position 
Save current position 
Restore requested x,y 
Position the cursor 
Assign character to dl 
Call DOS output char function 
Restore saved cursor position 
Put cursor back where it was 

j Return to caller 

The answer to this problem is trickier than it seems at first. Because ScPokeChar 
ignores the cursor position, poking characters directly into the video memory 
buffer, the DOS replacement code must read and restore the cursor to its original 
position. Also, because writing a character to the bottom right corner causes the 
display to scroll up one line, the code must prevent characters from being 
displayed at this position. Because concrol codes such as carriage recurns and line 
feeds cause actions when written via DOS but not ScPokeChar, control codes 

c 

845 



c 

846 

must be converted to another character (in this case, a period). Obviously, then, 
the two routines can't be 100% identical, and the best you can do is come close. 

Chapter 9 
9.1 Closing a file writes or flushes to disk any data held in DOS buffers, updates the 

entry for this file in the disk directory, and releases the file handle for use with 
other files. 

9.2 Opening a file is required before you can read and write data in the file. Unless 
an error occurs, when DOS opens a file, it returns a file handle that you can 
subsequently use to refer to the opened file. 

9.3 DATASEG 
prompt 
string 

db 
db 

'File?' 0 
65 dup (0) 

CODESEG 
Input none 
Output: cf = 0 : ax 

cf 0: ax 
entered) 

Regs ax, CX, di 
PROC OpenFile 

file handle, string = file name 
error code (or 0 if no file 

mov di, offset prompt 
call StrWrite 

Address prompt string 
Dispiay prompt 

mov 
mov 
call 
call 
jcxz 
mov 
mov 
mov 
int 
ret 

di, offset string 
cx, 64 

Address input string 
Limit to 64 characters 
Get file name 

@@10: 

StrRead 
StrLength 
@@10 
dx, di 
ah, 03Dh 
aI, 2 
21h 

xor ax, ax 
stc 

ret 
ENDP OpenFile 

Check length in cx 
Exit if length = 0 
Address string with ds:dx 
DOS Open-File function 
2 = Read/Write access 
Call DOS to open file 
Return (cf result) 

NO error code in this case 
Set carry to indicate file is not 

open 
Return to caller 

9.4 Input ; bx=file handle; dx=address of file name 
Output : File flushed and reopened. (Location changed 

to beginning of file.) cf=0:no errors; cf=1:error 
Regs : ax 

PROC FlushFile 



mov 
int 
jc 
mov 
mov 
int 

(!I(!I99:ret 

ah, 03Eh 
21h 
~tl99 

ah, 03Dh 
aI, 2 
21h 

ENDP FlushFile 

DOS Close-File function number 
Call DOS to close the file 
Exit on errors 
DOS Open-File function 
2 = Read/Write access 
Call DOS to open file 
Return (cf = result) 

9.5 Input cx=record size; ax=record number; bx=file 

9.6 

handle 
ds:dx=address of buffer 

Output : cf=1:error (ax ;; code) ; cf=0:success 
Regs ax 

PROC ReadRecord 
push cx Save record size 
push dx Save buffer address 
mul cx ax:dx <- ax * cx 
mov cx, dx cx <- MSW of result 
mov dx, ax dx <- LSW of result 
mov ah, 042h DOS Seek-File function 
mov al, 0 Seek from beginning of 
int 21h Position file pointer 
jc (!I(!I99 Exit on errors 
mov ah, 03Fh DOS Read-File function 
pop dx Retrieve buffer address 
pop cx Retrieve record size 
int 21h Read cx bytes from file 

@@99:ret Return to caller 
ENDP ReadRecord 

Input cx=record size; bx=file handle 
ds:dx=address of buffer 

Output 
loaded 

cf;;1:error (ax = code); cf=0:next record 

Regs cx, dx 
PROC ReadNextRec 

push cx Save record size 
push dx Save buffer address 
mov dx, cx dx <- cx 
xor cx, cx Zero upper half of value 
mov ah, 042h DOS Seek-File function 

file 

mov al, Seek from current position 
int 21h Position file painter 
mov ah, 03Fh DOS Read-File function 
pop dx Retrieve buffer address 
pop cx Retrieve record size 
int 21h Read cx bytes from file 
ret Return to caller 

ENOP ReadNextRec 847 



c 
9.7 

9.8 

848 

Input ah=option letter e.g., 'P' (case sensitive) 
Note Must have called GetParams earlier 
Output cf=l:not found; cf=0:option (e.g., -P) found 
Regs aI, cx, di 

PROC OptionLetter 
call ParamCount dx=number of parameters 
mov cx, dx 

~~10: 

jcxz ~~99 

dec cx 
push cx 
call GetOneParam 
call StrLength 
cmp cx, 2 
pop cx 
jb ~~10 

mov aI, - , 

scasw 
jnz ~~10 

clc 
ret 

~~99:stc 

ret 
ENDP OptionLetter 

; Add these variables to 
oneDot DB , , 0 
one Blank DB ' , , 0 

Transfer num to cx 

Exit if all params checked 
Count number params done 
Save count on stack 
Get param addr in di 
Get length of param string 
Test string length 
Restore count from stack 
Jump if length < 2 chars 
al='-' j ah=option letter 
Compare ax with [ds:dij 
Jump if compare fails 
Clear carry 
Return success! 
Set carry 
Return failure 

DR.ASM between lines 18 and 19 
Single dot string 

; Single blank string 

Insert this procedure between lines 129 and 130 and 
also insert a call ExpandName instruction between 
lines 117 and 118 

Input : ds:di addresses file name in directory DTA 
Output: name expanded, e.g., xxx.txt --> xxx txt 

PROC ExpandName 

~@'05: 

@'~10: 

~@'20: 

mov si, offset OneDot 
call StrPos 
jnz iI~05 

cmp dx, 0 
j ne ~@'10 

call StrLength 
mov dx, cx 
jmp short @.@.20 

mov cx, 1 
call StrDelete 

Address '.' string 
Is there a '.' here? 
Jump if no 
But is '.' at front? 
Jump if no 

Get string length 
And assign to dx 
Skip delete steps next 

Number of chars to delete 
Delete' , (if there) 

mov si, offset OneBlank; Address " string 



r 

@@30: 

@@99: 

call StrLength 
cmp 
je 
call 
jmp 

cx, 12 
@@99 
StrInsert 
@@30 

Get string length 
Is length = 12 yet? 
Exit if yes 
Insert blank into string 
Repeat until done 

ret Return to caller 
ENOP ExpandName 

9.9 Insert into KOPV.ASM between lines 115 and 116: 

mov al, 
cmp al, 

[oneBytel Get input byte 
Is byte >= " ? 

ANSWERS TO EXERCISES 

jge 
cmp 
je 

@@Continue 
al, 13 
@@Continue 

Jump if yes (not a control) 
Is byte a carriage return? 
Jump if yes 

mov al, " 
mov [oneBytel , al 

@@Continue: 

Change controls to blanks 
Store char back in variable 

9.10 ; Add these lines to OR.ASM between lines 18 and 19 
comExtn DB .COM, 0 ; .COM file extension 
exeExtn DB .EXE, 0 ; .EXE file extension 
; Replacement for Action procedure in OR.ASM, lines 

116-128 
PROC Action 

push si 

@@05: 

@@10: 

mov di, offset 
mov si, offset 
call StrPos 
jz @@05 
mov si, offset 
call StrPos 
jnz @@99 

call ExpandName 

call StrWrite 
call StrLength 
sub ex, 16 
neg cx 

mov ah, 2 
mov dl," 
int 21h 
loop @@10 

@@99:pop si 
ret 

ENOP Action 

Save si 
dirData + FileName ; Address filename 
comExtn Check for .COM extensions 

Is '.COM' there? 
Jump if yes 

exeExtn Check for .EXE extensions 
Is '.EXE'there? 
Exit if no 

OPTIONAL: see answer to question #9.8 

Write file name 
Tab to next column 

Restore si 
Return to caller 

c 

849 



c 

850 

Chapter 10 
10.1 External interrupts can occur at any time; therefore, changing a register could 

destroy a value being used by the interrupted program. 

10.2 An iret instruction pops the flags and return address off the stack, resuming the 
program with the instruction just after the place where the interruption occurred. 

10.3 The cli instruction disables maskable interrupts. The sti instruction enables 
maskable interrupts. Both instructions operate by clearing and setting the 
interrupt-enable flag if. In an ISR, a cli instruction could appear anywhere but 
is unnecessary because interrupts are disabled when the ISR begins to run. An 
sti instruction should appear near the beginning of the ISR if you want inter
rupts to be recognized during the ISR's execution. Placing an sti before iret is 
always unnecessary because ending the interrupt restores thei f flag to its 
previous state. 

lOA DATASEG 
oldSeg dw ? 
oldOfs dw ? 

CODESEG 

Stores original vector segment 
Stores original vector offset 

Install new vector 
push ds 
push es 
mov ax, 351Ch 
int 21h 
mov [oldSeg], es 
mov [oldOfs], bx 
mov 
push 
pop 

ax, 251Ch 
cs 
ds 

Save ds register 
Save es register 
Get interrupt lC vector 
Call DOS for vector 
Save segment value 
Save offset value 
Set interrupt lC vector 
Make ds cs to address 

the new ISR, placing full 
mov dx, offset NewISR; address into ds:dx 
int 21h Set new interrupt vector 
pop es Restore es 
pop ds Restore ds 

push 
mov 
mov 
mov 
int 
PoP 

Restore original 
ds 
ax, 251Ch 
dx, [oldOfs J 
ds, [oldSeg] 
21h 
ds 

vector 
Save ds, changed below 
Set interrupt lC vector 
Get saved offset value 
Get saved segment value 

Restore ds 

10.5 Yes, but you have to execute an sti instruction to set the interrupt-enable flag, 
allowing maskable interrupts to be recognized. 



10.6 sti Enable interrupts 
mov aI, 020h End-of-interrupt value 
out 020h, al Output to 8259 port 

10.7 PROC PrintScreen 
int 5 Call "hardware' interrupt 5 
ret Return to caller 

ENDP PrintScreen 

10.8 When a divide fault occurs, causing an interrupt type 0 signal, the 8086/88 
processors push the address of the next instruction after the div or idiv that 
caused the fault. The 80286/386 and later processors push the address of the 
divide instruction. 

10.9 int 3 

10.10 
push 
puShf 
mov 
or 
popf 
pop 

; Set breakpOint 

Set trap flag (tf) 
bp 

bp, sp 
[word bp], 0100h 

bp 

Save bp 
Push flags onto stack 
Address stack with bp 
Set tf in saved flags 
Restore flags from stack 
Restore bp 

Chapter 11 
11.1 There would be 8 digits in a hypothetical packed 4-byte BCD value (2 digits per 

byte). There would be 6 digits in a hypothetical6-byte unpacked BCD value (1 
digit per byte). The dt directive allocates 10 bytes. At 2 digits per byte, that's 
enough room to hold up to 20 packed BCD digits. 

11.2 mov aI, 079h ASSign packed BCD to al 
mov ah, al Copy value to ah 
mov cl, 4 Assign shift count to cl 
shr ah, cl Shift BCD MSD to LDS position 
and aI, 00Fh Mask other digit in al 
aad Convert unpacked BCD to binary 

The trick here is to convert the packed BCD byte in al to unpacked form in ax 
(I digit per byte), using shr and and instructions to manipulate the bits. With the 
data in this format, aad converts the value to binary in ax. 

11.3 GLOBAL string:Byte ; or, GLOBAL string:Byte:25 
GLOBAL count:Word 
GLOBAL BCD:TByte 

The string GLOBAL definition can also be string: Byte: 25, although it's not 
necessary in this case to specify the exact length of the string variable. 

851 



852 

11.4 DATASEG 
cubes db 0, 1, 8, 27, 64, 125, 216 i cubes of 0 to 6 
CODESEG 
mov aI, cl 
mov bx, offset cubes 
xlat 

Copy index in cl to al 
Address table with ds:bx 
Translate al from table 

11.5 ASSUME tells Turbo Assembler where a specified segment register points. Using 
ASSUME lets the assembler verify that references to named variables are correct. 

11.6 SEGMENT MoreData Page Public 'DATA' 
MyWord dw 1234h 
ENDS MoreData 

CODESEG 
mov ax, MoreData Address MoreData segment 
mov ds, ax with ds 
ASSUME ds:MoreData Tell Turbo Assembler where ds pOints 
mov ax, [MyWordl Load ax with value of MyWord 

11.7 GROUP combines multiple segments that have different names and, possibly, 
different classes, into one segment up to 64K long. To group the four listed 
segments under the name DataGroup, use the command: 

GROUP DataGroup SomeData, MoreData, TableSeg, StringSeg 

Then you can address the data in the grouped segment by first initializing a 
segment register to the stan of the group: 

mov ax, DataGroup 
mov ds, ax 
ASSUME ds:DataGroup 

11.8 Execute these commands to assemble, link, and run the program, which calls a 
procedure in the STRIO library module: 

tasm caps lock 
tlink capslock", mta 
capslock 

Listing Answers.2. CAPSLOCK.ASM. 
1: %TITLE "Test CapsLock Key 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 

IDEAL 
MODEL 
STACK 

BIOSDataLoc 
KbFlagLoc 
CapsLockFlag 

small 
256 

EQU 0040h 
EQU 017h 
EQU 040h 

by Tom Swan' 

Segment address of BIOS data 
Offset to keyboard flag 
Capslock key bit 

11: SEGMENT BIOSData at BIOSDataLoc 
12: ORG KbFlagLoc 



13: LABEL KbFlag Byte 
14: ENDS BIOSData 
15: 
16: DATASEG 
17: 
18: CapsString db 'CapsLock is: , ,0 
19: Cap sOn db 'ON', 0 
20: CapsOff db 'OFF', 0 
21: 
22: CODESEG 
23: 
24: EXTRN StrWrite:proc 
25: 
26: ASSUME DS:BIOSData 
27: 
28: Start: 
29: mov ax, BIOSDataLoc Address BIOSData segment 
30: mov es, ax with es 
31: ASSUME es: BIOSData Tell tasm where es points 
32: mov bl, [es:KbFlagJ Load keyboard flag into bl 
33: mov ax, @data Initialize ds and es 
34: mov ds, ax to default data segment 
35: mov es, ax 
36: ASSUME es:@data, es:@data Tell tasm where es, ds point 
37: mov di, offset CapsString Address string with di 
38: call StrWrite Display string 
39: mov di, offset CapsOn Address 'ON' with di 
40: test bl, 040h Test caps lock flag bit 
41 : jnz @@10 Jump if bit <> 0 
42: mov di, offset CapsOff Else address 'OFF" with di 
43: @@10: 
44: call StrWrite Display 'ON" or "OFF" 
45: mov ax, 04C00h DOS function: Exit program 
46: int 21h Call DOS. Terminate program 
47: 
48: END Start End of program I entry point 

11.9 P286N 
PROC ISR286 

pusha ; Push all general-purpose registers 

Other code goes here 

popa Pop all general-purpose registers 
iret Return from interrupt 

ENOP ISR286 

11.10 This problem reduces to two tasks: Transfer a certain bit to the carry flag and 
then either do nothing to the original bit bt, complement the bit btc, reset the 
bit btr, or set the bit bts. The following shows how to accomplish these tasks for 
bit 3. Other bits require different mask values, but the code is the same. 

853 



c 

854 

PART III _ REFERENCE 

@@10: 

To transfer bit 3 (mask = 0008h) to cf: 

test 
jz 
stc 

dx, 08h 
@@10 

zf <- resultj cf <- 0 
Jump if bit = 0 
Else set carry 

Then, to complement, reset and set bit 3: 

xor 
and 
or 

dx, 08h 
dx, NOT 08h 
dx, 08h 

Complement bit 3 
Reset bit 3 

Set bit 3 

Chapter 12 
12.1 Critical code refers to program statements that account for most of a program's 

total execution time. 

12.2 A profiler monitors a running program and prepares statistics that can help 
identify the programs critical code. 

12.3 InLine($F8)j clc clear carry flag} 
InLine($F9)j { stc -- set carry flag} 

PROCEDURE clcj InLine($F8) j clear carry flag } 

PROCEDURE stCj InLine($F9) j set carry flag } 

12.4 PUBLIC PlayBall 
PROC PlayBall FAR 

ret j Return to caller 
ENDP PlayBall 

Did you remember to declare this procedure FAR, required because of the Pascal 
{$F+} declaration? 

12.5 {$L NEWSTUFF. OBJ} 
PROCEDURE OldStuffj EXTERNALj 
FUNCTION OlderStuff : Integerj EXTERNALj 

12.6 Using the TPASCAL memory model adds push bp and mov bp, sp instructions to 
every procedure, whether or not these instructions are needed to address param
eters on the stack. The advantage of the TPASCAL memory model is the ability it 
gives you to use simplified segment directives DATASEG and CODESEG in external 
modules. The alternative is to declare segments manually with SEGMENT directives, 
also requiring the use of ASSUME to inform the assembler to which memory 
segments cs, ds, and es refer. TPASCAL is not required with Borland Pascal. 

12.7 Plain constants and types such as Months, Max Level, and Esc identifiers can't be 
imported into an assembly language module. The other declarations can be 
imported into a data segment this way: 



SEGMENT DATA word public 
EXTRN AreaCode : WORD, YourName BYTE, 
Score : WORD 

EXTRN SalesPerMonth : WORD 
ENDS DATA 

12.8 In the Pascal program: 

PROCEDURE WriteASCII; FORWARDj 
{$L ASCII .OBJ} 

In the object-code module: 

SEGMENT CODE byte public 
ASSUME cs:CODE, ds:DATA 
EXTRN WriteASCII: NEAR 
PROC AnyProc NEAR 

mov ax, 'a' 
push ax 

Pass character as word 
on stack 

call WriteASCII Call Pascal procedure 
ret 

ENDP AnyProc 
ENDS 

12.9 mov 
mov 
ret 

ax, [word LongValue1 
dx, [word Longvalue + 11 

12.10 The assembly language module, TESTASM.ASM: 

IDEAL 
MODEL TPASCAL 
CODESEG 
PUBLIC LotsOfParams 

PROC LotsOfParams NEAR 
ARG a:Word, b:Word, Number: dword , char:dword 
mov cx, [a) Load a into cx 
mov dx, [b} Load b into dx 
les di, [Number] Address Number with es:di 
add [word es:diJ, 5 Add 5 to number 
les si, [charI Address ch with es:si 
mov aI, [byte es:sil; Load ch into al 
ret Return to caller 

ENDP LotsOfParams 

END j End of module 

The Pascal program, TESTPAS.PAS: 

PROGRAM TestPasj 
VAR Score : Integer; ch : char; 

ANSWERS TO EXERCISES c 

continues 

855 



856 

T III _ REFERENCE 

{$L TESTASM.OBJ} 
PROCEDURE LotsOfParams(a,b : Integer; VAR number 
Integer; VAR ch : char); EXTERNAL; 

BEGIN 
ch := 'A'; 
score := 100; 
Writeln('Before score = " score); 
LotsOfParams(1, 2, score, chI; 
Writeln( 'After score = " score) 

END. 

Chapter 13 
13.1 The two methods of adding assembly language to C programs are: inline asm 

statements and external functions. Inline statements require Turbo C to compile 
the entire program into an .ASM text file and then assemble and link this file 
separately. External functions are assembled separately and then linked with a 
compiled Turbo C program in .OBJ code-file format. Borland C++ can assemble 
inline asm statements directly. 

13.2 External functions must save and restore si and di (if these registers are used), 
but only if another function using register variables calls the external code. It is 
never necessary to save and restore si and di in C functions that use inline asm 
statements. In that case, the compiler automatically saves and restores these 
registers while ;tlso turning off register variables, thus preventing any possibility 
of a conflict. 

13.3 To compile this program, supplied on the disk in file CFLAGS.C, enter bee 
eflags. e or tee eflags. 

#pragma inline 
#include <stdio.h> 

void showflags(void); 

int main () 
{ 

} 

showflags(); 
return 0; 

void showflags(void) 
{ 

unsigned int theflags; 

printf("- - - - 0 D ITS Z - A - P - C\n'); 
asm pushf 1* push flags onto stack *1 
asm pop [theflags] /* pop flags into the flags *1 



asm mov cx, 16 /" assign loop count to cx */ 
Again: 

asm rol [Word ptr theflags), /* rotate bit to LSD position */ 
asm push cx /" save loop count on stack */ 
printf (''lid' , (theflags & 1)); /" display value of LSD */ 
asm pop cx /" restore saved loop count */ 
asm loop Again /" repeat until done */ 
printf('\n"); /* start new output line "I 

} 

13.4 asm lea bx, MyThings. OneThing 

13.5 Use the -s option (the S must be in uppercase) to compile a program to assembly 
language text. For example, to compile CHECKERS.C, you could use the 
command: 

tcc -S checkers 

For Borland C++, enter: 

bcc -8 checkers.c 

The result is a file named CHECKERS.ASM containing the program in assem
bly language form. The danger of this command is that any existing 
CHECKERS.ASM file is erased with no prior warning. 

13.6 Using Borland C++ as a front end to Turbo Linker: 

tasm Iml func1 
tasm Iml func2 
bcc -c main 
bcc -ms main.obj func1.obj func2.obj 

Or. to link directly, replace the fourth line with: 
tlink \tc\lib\cOs main func1 func2, main,. \bC4\lib\cs 

13.7 ARG source: DWord, destination: DWord, sourcelen :Word 

13.8 #include <stdio. h> 

extern void copystring (unSigned char far" source, 
unsigned char far" destination, 
int sourcelen); 

char "source = 'Source'; 
char "destination = "Destination'; 

maine ) 
{ 

printf ("Before destination: 'lis \n", destination); 
copystring(source, destination, 6); 
printf('After destination: %s\n", destination); 

857 



c 

858 

13.9 %TITLE ·Copy String External C Function" 

13.10 

IDEAL 
MODEL small 

CODESEG 

PUBLIC _copystring 

PROC _copystring NEAR 

ARG source:DWord, destination:DWord, sourcelen:Word 

puSh bp 
mov bp, sp 
mov cx, [sourcelen) 
jcxz @@99 

Save bp 
Address params with bp 
Load length into cx 
Exit if cx .. 0 

push 
les 
lds 
cld 

ds Save ds on stack 
di, [destination]; Address dest with es:di 
si, [source) Address source with ds:si 

rep movsb 
pop ds 

@@99: 
pop bp 
ret 

ENOP _copystring 

END 

OATASEG 

Auto-increment si, di 
Copy source chars to dest 
Restore ds 

Restore bp 
Return to caller 

; End of module 

string1 db 'A Source String', 0 
sHen $ - string1 
string2 db 'A Destination String' , 0 

CODESEG 

mov ax, sHen - 1 Load string length into ax 
push ax Push length parameter 
push ds Push dest segment address 
mov ax, offset string2; Push dest offset address 
push ax 
push ds Push source segment address 
mov ax, offset string1; Push source offset address 
push ax 
call _copy string Call external function 
add sp, 10 Remove parameters from stack 



r 

ANSWERS TO EXERCISES 

Chapter 14 
14.1 mov si, offset p2 

CALL si METHOD TPoint:setx, 0 

CALL si METHOD TPoint:sety, 0 

14.2 Following is just one of many possible answers. On disk, file TRECT.INC is in 
the OOP subdirectory. 

Listing Answers.3. TRECT.INC. 
1: .. TITLE "TRect object -- by Tom S,wan' 
2: 
3: GLOBAL TRect_getCoords:PROC 
4: GLOBAL TRect_setCoords:PROC 
5: 
6: STRUC TRect METHOD { 
7: getCoords:dword TRect_getCoords 
8: setCoords:dword TRect setCoords 

Begin TRect object declaration 
Get coordinate values 

9: } 
10: left dw ? 
11: top dw ? 
12: right dw ? 
13: bottom dw ? 
14: ENDS TRect 
15: 
16: CODESEG 
17: 
18: .. NEWPAGE 

Set coordinate values 
End of method declarations 
Coordinates of upper-left and 
lower-right corners of 
the rectangle 

End TRect object declaration 

19: ---------------------------------------------------------------
20: ; TRect_getCoords TRect getCoords method 

Input: 
21 : 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31 : 

ds:si = instance address 
Output: 

ax left coordinate 
bx top coordinate 
cx right coordinate 
dx bottom coordinate 

Registers: 
cx, dx, si, di 

32: PROC TRect_getCoords PASCAL 
33: mov ax, [(TRect PTR si).left] 
34: mov bx, [(TRect PTR si) .top] 
35: mov cx, [( TRect PTR si). right] 
36: mov dx, [(TRect PTR si).bottom] 
37: ret 
38: ENDP' TRect_getCoords 
39: .. NEWPAGE 
40: 
41: ; TRect_setCoords 
42: 
43: ; Input: 

TRect setCoords method 

continues 

859 



860 

REFERENCE 

Listing Answers.3. continued 
44: ds:si = instance address 
45: left coordinate (word, on stack) 
46: top coordinate (word, on stack) 
47: right coordinate (word, on stack) 
48: bottom coordinate (word, on stack) 
49: Output: 
50: none 
51: Registers: 
52: ax 
53: ;---------------------------------------------------------------
54: PROC TRect_setCoords PASCAL 
55: ARG @@left:word, @~top:word, @@r1ght:word, @@bottom:word 
56: moy ax, [@@leftl 
57: may [(TRect PTR s1) .left I, ax 
58: moy ax, [~@topl 

59: moy [(TRect PTR si).top J, ax 
60: moy ax, [~~rightl 

61 : may [( TRect PTR si). right ], ax 
62: mov ax, {@@bottom] 
63: moy [(TRect PTR si).bottom ], ax 
64: ret 
65: ENDP TRect_setCoords 

14.3 PRoe TAnyObject_twoWords PASCAL 

ARG @@W1:WORD, @@w2:WORD 

USES cx, dx 
moy cx, [@@w1j 
moy dx, [@@w2J 

Insert other instructions here 
ret 

ENDP TAnyObject_twoWordS 

Declare procedure 

Specify required arguments 

Preserve used registers 

Load argument into cx 
Load argument 2 into dx 

Return to caller 

14.4 First, set si to the offset address of an instance, v, of the TAnyObj ect object, then 
call the AnyStat1c method as shown on the second line: 

moy s1, offset v 

CALL s1 METHOD TAnyObject:AnyStatic 

14.5 Compare the following code with the static function call in the preceding 
exercise. In both cases, the program addresses the object instance v with S1, but 
the virtual call requires two steps. First, load register es with the segment address 
of the object's virtual method table (required only for small memory model 
programs). This assumes that the program also includes the OOMACROS.INC 
file. Next, call the virtual method as shown on the third line. In Ideal mode, it is 
necessary to preface the use of register S1 with TAnyObj ect PTR, which tells the 
assembler the type of object that the register addresses: 



mov si, offset v 

LoadVMTSeg es 

CALL TAnyObject PTR si METHOD TAnyObject:AnyVirtual 

14.6 LisdngAnswersA, TDATEOB].INC, shows one way to create an object, 
TDateObj derived from TItern, that can store day, month, and year values. On 
disk this file is stored in the OOP subdirectory. 

Listing Answers.4. TDATEOBJ.INC. 
1: ~TITLE "TOateObj object -- by Tom Swan" 
2: 
3: GLOBAL TDateObj_construct:PROC 
4: GLOBAL TDateObj_init:PROC 
5: GLOBAL TDateObj_setOate:PROC 
6: GLOBAL TDateObj_getDate:PROC 
7: GLOBAL TDateObj_print:PROC 
8: 

STRUC TOateObj TItem METHOD { 9: 
10: 
11 : 
12: 
13: 

construct:mptr = TOateObj_construct 
init :mptr = TDateObLinit 
setDate:mptr = TOateObj_setOate 
getOate:mptr TOateObj_getOate 

14: 
15: } 
16: 
17: 
18: 
19: 

VIRTUAL print:mptr = TOateObj_print 

year dw 
day dw 
month db 

ENDS TDateObj 
20: 
21: Make_VMT 
22: 
23: DATASEG 
24: 
25: dayBuf 
26: daySep 
27: monthBuf 
28: monthSep 
29: yearBuf 
30: TDateObj_msg 
31 : 
32: CODESEG 
33: 

? 
? 
? 

Define TOateObj VMT 

db '00' 
db '/' 
db '00' 
db '/' 
db '0000', 0 
db 'Oate item = 

34: j----- From BINASC.OBJ, STRIO.OBJ 

, 0 

TDateObj constructor 
TDateObj initializer 
Change or initialize date 
Get day, month, year data 
Print or display item 

35: EXTRN BinToAscDec:Proc, NewLine:Proc, StrWrite:Proc 
36: 
37: ---------------------------------------------------------------
38: ; TDateObj_construct TDateObj constructor 
39: j---------------------------------------------------------------
40: Input: 
41: ds: si = TDateOb j instance address 
42: Output: 
43: VMT ptr initialized 
44: Registers: 

continues 
861 



c 

862 

PART III _ REFERENCE 

Listing Answers.4. continued 
45: 
46: 
47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61 : 
62: 
63: 
64: 
65: 
66: 
67: 
68; 
69; 
70: 
71 : 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81 : 
82: 
83: 
84: 
85: 
86: 
87; 
88; 
89: 
90; 
91 ; 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 

100: 

PROC 

ENDP 

none 

TDateObj_construct PASCAL 
TBLINIT TDateObj PTR si 
ret 
TDateObj_construct 

; Initialize VMT pointer 

; TDateObLinit .Initialize item "next" pointer 
;------------------~--------------------------------------------

Input: 
ds:si = TDateObj instance address 

Output: 
instance data bytes set to zero 

Registers: 
ax 

j---------~-----------------------------------------------------
PROC TDateObj_init PASCAL 

CALL si METHOD TItem:init 
CALL si METHOD TDateObj:setDate, 0, 0, 0 
ret 

ENDP TDateObj_init 

;--------~------------------------------------------------------
; TDateObj_setDate Change or initialize a TDateObj instance 

Input: 
ds:si 
year 
day 
month 

TDateObj instance 
(word, on stack) 
(word, on stack) 
(word, on stack) 

address 

Output: 
arguments 

Registers: 
stored in TDateObj instance 

ax 

PROC TDateObj_setDate PASCAL 
ARG ~~year:WORD, ~~day:WORD, ~~month:WORD 

mov ax, [~~yearl 

mov [(TDateObj PTR si).year], ax 
mov ax, I~~day) 

mov [(TDateObj PTR si).day), ax 
mov ax, I~~monthl 

mov [(TDateObj PTR Si) .monthj, al 
ret 

ENDP TDateObj_setDate 

; TDateObj_getDate Return a TDateObj instance's data 

Input: 
ds:si = TDateObj instance address 

Output: 
ax instance. year 
ex instance. day 
dl instance.month 



101: ; Registers: 
102: ax, ex, dl 
103: ---------------------------------------------------------------
104: 
105: 
106: 
107: 
108: 
109: 
110: 

PROC 

ENDP 

TDateObi_getDate PASCAL 
mov ax, [ (TDateObj PTR si).year] 
mov ex, [ (TDateObj PTR si) .day] 
mov dl, [ (TDateObj PTR si) .month] 
ret 
TDateObj_getDate 

111: ;---------------------------------------------------------------
112: ; TDateObLprint Print item VIRTUAL 
113: ---------------------------------------------------------------
114: Input: 
115: ds:si TDateObj instance address 
116: Output: 
117: none 
118: Registers: 

none 119: 
120: 
121 : 
122: 
123: 
124: 
125: 
126: 
127: 
128: 
129: 
130: 
131 : 
132: 
133: 
134: 
135: 
136: 
137: 
138: 
139: 
140: 
141 : 
142: 
143: 
144: 
145: 
146: 
147: 
148: 
149: 
150: 
151 : 
152: 

PROC TDateObLprint PASCAL 
USES ax, ex, di, es 

push ds 
pop es 
mov di, offset TDateObLmsg 
call StrWrite 

mov ax, [ (TDateObj PTR si) .dayl 
mov ex, 2 
mov di, offset dayBuf 
call BinToAscOec 

mov ah, 0 
mov aI, [ (TDateObj PTR Si) .month] 
mov ex, 2 
mov di, offset monthBuf 
call BinToAscDec 

mov ax, [ (TDateObj PTR si). yearl 
mov ex, 4 
mov di, offset yearBuf 
call BinToAscDec 

mov [daySepl, ' I ' 
mov [monthSep J , ' I ' 
mov di, offset dayBuf 
call StrWrite 

call Newline 
ret 

ENDP TDateObLprint 

Preserve registers 

Set es equal to ds 
for extrn subroutines 

Address label string 
Display string 

Start new display line 

14.7 Include the TDATEOJ3J.INC file from the preceding exercise: 

INCLUDE "tdateobj.inc" 

863 



864 

PART III _ REFERENCE 

Define two date instances in the program's data segment. Also define a string for 

labeling the new code's output: 

datel TDateObj <> 

date2 TDateObj <> 

str6 db 'After inserting date items ... ', 0 

Initialize the date instances with these instructions: 

mov si, offset datel 
LoadVMTSeg es 
CALL si METHOD TDateObj:construct 
CALL si METHOD TDateObj:init 
CALL si METHOD TDateObj:setDate, 1954, 12, 7 

mov si, offset date2 
LoadVMTSeg es 
CALL si METHOD TDateObj:construct 
CALL si METHOD TDateObj:init 
CALL si METHOD TDateObj:setDate, 1998, 02, 15 

Insert the date instances on the list and call Displayltems to display them along 
with the other items: 

mov si, offset list 
LoadvMTSeg es 
mov ax, offset datel 
call Insertltem 
mov ax, offset date2 
call Insertltem 
mov di, offset str6 
call DisplayItems 

Chapter 15 
15.1 There are two answers. If you specify the large memory model along with WINDOWS 

and PASCAL in a MODEL directive, you may use this short-form declaration: 

EXTRN Ellipse:PROC 

Alternatively, for the large and all other memory models, you may use the full 
declaration: 

EXTRN PASCAL Ellipse:FAR 

15.2 Define a string buffer and a symbol that represents the buffer's size in byres. 
Insert the declarations in the program's uninitialized data segment (you could 

also insert them in the initialized segment after a.DATASEG directive, but that 

would needlessly expand the program's code file by 144 bytes): 



ANSWERS TO EXERCISES 

UDATASEG 
szSysPath db 144 dup(?) ; String buffer 
cbSysPath $ - szSysPath ; Size of buffer in bytes 

Also declare the GetWindowsDirectory function in an EXTRN directive: 

EXTRN PASCAL GetWindowsDirectory:FAR 

Call the function by passing it the two data arguments. GetWindowsDirectory 
returns the number of characters inserted into the buffer, not including the null 
terminator, which the function appends to the string. Call the function as 
follows, either in response to a menu command or at any place after the program 
calls Applnit {or you could add the code to the end of that subroutine}: 

push ds 
push OFFSET szSysPath 
push cbSysPath 
call GetWindowsDirectory 

15.3 Change line 96 from this: 

mov [cmdShowj, dx 

To this: 

Push segment of szSysPath buffer 
Push offset of szSysPath buffer 
Push length of buffer in bytes 
Call Windows function 

mov [cmdShow), SW_SHOWMAXIMIZED 

15.4 The best place to insert the instructions is immediately after the @@WMDESTROY 
label in the WndProc subroutine. Regardless of how the user quits the program, 
this section of code is guaranteed to execute and sound the beep. Did you also 
remember to declare the MessageBeep function EXTRN? 

15.5 First add the following definition to the program's uninitialized data segment 
{after the UDATASEG directive}: 

wMainHnd DW ? 

Then, insert this instruction after line 193 in WINAPP.ASM in the Applnit 
subroutine: 

mov [wMainHnd). ax 

15.6 The "un-Windows" answer simply calls the HelpAbout subroutine. Although this 
may work (depending on where you insert the call), the preferred approach is to 

send the window a message that simulates the HelplAboutcommand. You can do 
that with the following instructions, which you can insert into WinMain immedi-
ately after the call to Applnit: . 

push [wMainHnd) Push main window handle (see exercise 15.5) 
push WM_COMMAND Push message value 
push CM_HELP_ABOUT Push command identifier for message 
push 0 Push unused long parameter (high word) 
push 0 Push unused long parameter (low word) 
call SendMessage Send message to simulate menu-command selection 

865 





Bibliography 

Borland International Turbo Assembler 4.0, Turbo 
Debugger 4.0, Turbo Pascal, Turbo C++, Borland C++. Scotts 
Valley, CA. 

Programs in this book were tested with the most recently 
available versions. Some versions of Pascal, C, and C++ are 
supplied with Turbo Assembler. Version 4.0 of Turbo Assem
bler is also available by separate purchase from Borland. 

Brief BorL:md International. CA. 

I used Brie/to write all the programs in this book as well as the 
text for the chapters. There are many good programming 
editors on the market, but you won't go wrong if you choose 
this one. 

CampbeU, Joe C Programmers Guide to Senal Communica
tions, Second Edition. Indianapolis, IN: Sams Publishing, 1994. 

Every programmer who plans to write communications software 
in any language should read this superb book. Note: A C com
piler is required-the author uses Aztec C, although your 
favorite compiler will probably work if you don't mind making 
a few alterations to the listings. 



868 

Duncan, Ray Advanced MS-DOS. Redmond, W A: Microsoft Press, 1986. 

This is one of the best MS-DOS programming books around. It contains many 
assembly language examples plus well-organized MS-DOS and IBM PC BIOS 
function references and includes an especially good chapter that explains how to 
write installable device drivers. 

Intel Corporation iAPX 86/88, 186/188 Users Manual-Programmers Reference. 
Santa Clara, CA, 1986. 

Serious assembly language programmers should consider purchasing this and the 
next technical references from Intel, makers of the 8086, 8088, 80186, 80286, 
80386, 80486, and other processors-among other products. Despite errors here 
and there, the references list complete details about machine-code bit formats and 
instruction timings-data that you may need for detailed assembly language work. 
Helpful pseudocode listings describe how individual instructions operate. You 
probably won't find these references in book stores; for more information, write to: 
Intel Literature Sales, P.O. Box 58130, Santa Clara, CA 95052-8130. In the U.S. 
and Canada, you may order these references by calling the toll-free number, (800) 
548-4725. 

Intel Corporation 80286 and 80287 Programmers Reftrence Manual Santa 
Clara, CA, 1987. 

Intel Corporation 80386 Programmer's Reftrence Manual Santa Clara, 
CA,1987. 

Intel Corporation i486 Microprocessor Programmer's Reftrence Manual Santa 

Clara, CA, 1990. 

Jensen, K., and Wirth, N. Pascal User Manual and Report, 2nd ed. New York: 
Springer-Verlag, 1974. 

This is the book that started the Pascal ball rolling. Now seriously out of date. the 
reference is useful primarily as a general guide to designing portable programs in 
standard Pascal that you plan to optimize with assembly language using the meth
ods discussed in Chapter 12. Beware: Some standard procedures such as get and put 

are not supported by Turbo Pascal. 

Kernighan, B., and Ritchie, D. The C Programming Language, 2nd ed. 
Englewood Cliffs: Prentice Hall, 1988. 

Every beginning C programmer should read this tutorial from cover to cover. Like 
the Jensen and Wirth Pascal guide, Kernighan and Ritchie (the popular alternate 
title for the book) is especially useful as a guide to designing portable programs in 
standard C that you plan to optimize with assembly language using the methods 
discussed in Chapter 13. 



Microsoft Corporation Microsoft Macro Assembler 5.1 Reference. Redmond, WA, 
1987. 

If you have Turbo Assembler, you don't need to purchase the Microsoft Macro 
Assembler. But if you don't mind paying for two assemblers, the MASM references 
are well written and make useful additions to your programming library. Note: 
MASM does not support Turbo Assembler's Ideal mode. 

Strauss, Edmund 80386 Technical Reference. New York, NY: Brady, 1987. 

A general guide to the 80386, this book duplicates much of the material in the Intel 
80386 Programmer's Reference ManuaL Even so, you'll find some good information 
here on using protected-mode instructions. 

Swan, Tom Mastering Turbo Pascal 6. 0, Fourth Edition. Indianapolis, IN: 
Howard W. Sams, 1988. 

See Chapter 14, "Pascal Meets Assembly Language", for more information about 
adding inline assembly language to Turbo Pascal. Note: This chapter was written 
before Turbo Assembler existed. 

Tanenbaum, Andrew S. Operating Systems: Design andlmplementation. 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987. 

Beyond a doubt, this is one of the best (maybe the best) book ever written about 
multitasking, multiuser operating systems. The text is witty and accurate but highly 
technical at times. Although the content is aimed at C programmers and contains 
very little assembly language code, understanding the book's content is a prerequi
site to getting started with 80386 protected-mode programming of multitasking 
operating systems. 

The Waite Group The Waite Group's MS-DOS Papers. Indianapolis, IN: Howard 
W. Sams, 1988. 

Many assembly language examples and interesting tidbits from several different 
authors make for interesting reading. It contains useful hints about IBM PC and 
assembly language programming. . 

869 





Index 

Index Section 

Symbols 

, (commas), macro parameters, 
303 

! (exclamation point), macro 
string characters, 307 

% (percent sign), expression 
evaluate operator, 306 

%NOLIST command, 331 
& (substitute operator), 304, 306 
;; (double semicolons), macro 

comments, 301 
< (1/0 redirection character), 

264-298 
< > (angle brackets), macro 

expressions, 305 
= (equal sign), defining condi

tional symbols, 316 
> (1/0 redirection character), 

264-298 
I (1/0 redirection character), 

264-298 
o (zero), string instructions, 138 
0040h function, 359 

03Dh function, 339 
03Eh function, 341 
03Fh function, 359 
042h function, 360 
04Ch function, 339 
059h function, 342 
16-bit code segments, 483 
16-bit integers (OOP), 633 
286 microprocessors 

instructions, 463 
programming, 461-468 

32-bit code segments 
doublewords, converting to 

64-bit quadwords, 472 
instructions, 483 
interrupts, 483 
shifting rewgisters, 474 

386 microprocessors 
bits 

scanning/setting, 470 
testing, 472 

instructions, 470-474 
programming, 468-474 
rotate instructions, 483 



shift instructions, 483 
Turbo Debugger, 37-38 

45h function, 340 
486 microprocessors (Turbo Debugger), 

37-38 
80286 processors, inline statements 

(C),538 
80386 processors, inline statements 

(C),538 
8086 processors 

data transfer (mov), 80-90 
instructions, 126-131 

flags, 127 
JUMPS directive, 130-131 
nop,128-130 
synchronization, 128 

memory segmentation, 74 
offiets, 76 
paragraphs, 75-76 

registers, 76-79 
flags, 79 
general-purpose, 77 
index, 77-78 
instruction pointer (ip), 79 
pointer, 77-78 
segments, 78 

string instructions, 131-139 
addressing labels, 135 
comparing, 138-139 
index registers, 132-133 
loading, 133-134 
memory, 136-137 
mnemonics, 134 
moving, 136 
scanning, 137-138 
storing data, 135 
zero, 138 

8259 processor (interrupts), 372-376 

A 

_ASMFiUBuffer function, 576 
aaa (Adjust After Addition) instruction, 

426,709-710 
aad (Adjust Before Division) instruction, 

427,710 
aam (Adjust After Multiplication) 

instruction, 427, 710-711 
aas (Adjust After Subtraction) instruction, 

426,711 
About command (Help menu), 695 
absolute values 

integers, 61 
two's complement, 64 

access operand, segments (programs), 447 
accessing 

asm statements (C variables), 538-544 
class objects, 576-578 
far data segment variables, 459 

adc (Add With Carry) instruction, 
711-712 

add (Add Withont Carry) instruction, 
712-713 

adding BCD values, 435 
addition operators, 92-93 
addresses, 26 

arrays, 209 
muLtibyte, 211-213 

binary, 59 
byres, ss 
code segments (programs), 508-509 
flow-control, 110-126 

jumps, 119-126 
return instructions, 116 
subroutines, 112-113, 116-119 
unconditionaL transfers, 112 

optimiz.ing, 478 
parameters, 516-517 
Pascal variables, 511 
returning, 482 
segments (programs), 452 
stack variables, 51 5 



typed constants, 509 
variables (verifying), 446 

addressing 
labels (string instructions), 135 
memory, 144-145 

ASSUME directive, 150-151 
base, 148-149 
base-indexed, 149-150 
direct, 146 
indexed, 149 
MASM mode, 150 
modes, 145-151 
overrides, 146-147 
register-indirect, 147-148 

ADDSUB.ASM (listing 4.3), 94-95 
al registers (values), 339 
align operand, 447 
aligning columns (text lines), 27 
Alt-V-C key command, 443 
and (Logical AND) instruction, 713 
AND operator 

bits, 103-104 
masking, 65-66 

ANDORXOR.ASM (listing 4.5), 102-103 
angle brackets « », macro 

expressions, 305 
apostrophes, string variables, 158-171 
application shell (Windows), 679-692 
applications 

binary encodings, 705 
instruction timings, 705 
Windows, 655-662 

creating with TASM, 679-698 
dialog boxes, 696-698 
naming conventions, 665 
pop-up menus, 693, 695 

ARG directive, 516-517 
methods, 601 

arguments 
ASMARG.AS (listing 13.9), 566 
ASMARG2.ASM (listings 13.10), 

569-570 
assembly language, passing to C++, 

567-568 

C++, passing to assembly language, 568 
CPPARG.CPP. (listing 13.8), 566-569 
functions 

declaring automatically, 569-570 
passing, 565-570 

passing to functions, 480 
arithmetic (math operators), 90-101 

addition, 92-93 
subtraction, 93-94 

arrays, 206-213 
addressing, 209 

multibyte, 211-213 
creating with macros, 307 
displaying, 208 
errors (accessing), 344 
indexing, 209-211 
LABEL directive, 208-209 
values (translating), 445 

ASCII characters 
converting to/from unpacked BCD 

numbers, 427 
string formats, 157-158 
translating to other characters, 443 

ASCIIZtoStr procedure, 520 
converting to assembly language, 524 

AscToBin subroutine (BINASC.ASM 
listing 6.3), 236-245 

AscToNum subroutine (BINASC.ASM 
listing 6.3), 235-236 

asm statements Online statements), 537 
ASMARG.AS (listing 13.9), 566 
ASMARG2.ASM (listing 13.10), 

569-570 
ASMFILLAS (listing 13.12), 576-577 
assembler programs, 4-5 
assembling 

external modules, 551-553 
modules (programming), 172-173 
programs, 30-32 

. COM programs, 45 
errors, 35-37 
warnings, 35-37 

source code (programs), 316 

873 



assembly language, 7-9 
arguments, passing to C++, 567-570 
attributes, 4-7 
binary digits, 54 
bugs, 8 
C 

debugging, 554-555 
global data, 564-565 

C++ classes, 570-578 
CFILL.ASM (listing 13.5), 550-551 
CFILLSTR.C (listing 13.4),549-550 
classes, accessing objects, 576-578 
closing lines, 30 
code segments, 27-29 
components, 20-30 
converting to C, 533 
data segments, 24 

initialized variables, 25 
uninitiaLized variables, 25 
variables, 25-27 

data sharing with Pascal, 504-508 
data types, adding, 307 
~OS, reloading, 45 
external assemblies 

simplified memory models, 545-547 
Turbo Linker, 544-550 

functions 
_ASMFiLLBuffir, 576 
caLLing, 549 
calling C jUnctions, 555-557 
calling C++ jUnctions, 560-565 
callingfrom C, 550-551 
callingfrom C++, 562-563 
external, 563-564 

hardware requirements, 9-10 
headers, 20-22 
inline statements (C), 533-538 

compiling, 535 
sharing code, 541-542 

libraty routines, 9 
listings, 818-819 
local variables, 558-559 
operating state, 323 
portability, 8-9 
software requirements, 10 

statements 
actions, 6-7 
declaring variables, 539-540 

text lines 
columns, 27, 29-35 
mnemonic column, 28-29 

underscores, 548 
UPOOWN. C (listing 13.2), 541-544 
variables 

addresses, 26 
exCode variable, 27 
labels,26 

ASSUME directive, 451-452, 502,509 
memory-addressing, 150-151 

asterisk (*), 24 
ASYNCH.ASM (listing 10.4), 398-404 

Asynchln, 413 
Asynchinit, 411 
AsynchlnStat, 413 
AsynchISR, 413-414 
AsynchOut, 413 
AsynchStop, 412 
buffers, 410-411 
equates, 410 
routines, 409-414 
variables, 410 

Asynchln rountine (listing 10.4), 413 
Asynchinit (listing 10.4),411 
AsynchlnStat rountine (listing 10.4),413 
AsynchISR rountine (listing 10.4), 

413-414 
AsynchOut rountine (listing 10.4), 413 
asynchronous serial 1/0, 397-414 
AsynchStop rountine (listing 10.4),412 
At segments, 456 
attributes (files), 345 

B 

balancing stacks, 88-89 
base memory-addressing, 148-149 
base objects (OOP), 587-652 
base two values (binary values), 57 
base-addresses (arrays), 209 



---- ..... ----- . ----------------------------

base-indexed memory-addressing, 
149-150 

BCD (Binary-Coded Decimals), 206 
BCD.ASM program module (listing 11.1), 

430-434 
BCDAdd routine (listing 11.1), 435-436 
BCDCopy routine (listing 11.1), 438 
BCDs (binary coded decimals), 206, 

424-429 
mathematical operations, 429-438 
memory variables, 425 
storing, 436 
values 

adding, 435 
displaying/printing, 437 

variables, 434 
BCDSubtract routine (listing 11.1),436 
BCDToASCII routine (listing 11.1), 

437-438 
binary values 

address values, 59 
arithmetic, 56, 57-59 
base two values, 57 
Binary-Coded Decimals (BCD), 206 
BINASC.ASM (listing 6.3),225-231, 

236-239 
EQUJP.ASM (listing 6.4), 237-239 

conversion table, 56-59 
CONVERT.ASM (listing 6.5),241-243 
converting, 240-243 

tolfrom packed BCD numbers. 428-429 
tolfrom unpacked BCD numbers. 426 

defaults. 204-206 
digits, 54 
encodings, 705-706 
floating-point numbers. 205-206 
hexadecimal values, 59 
negative values. 63 
RADIX directive, 204-205 
rotating, 69 
shifting, 69 
subtraction, 64 

binary coded decimals, lee BCDs 
BINASC.ASM (listing 6.3), 225-231 

EQUIP.ASM (listing 6.4), 237-245 
subroutines, 231-237 

AscToBin. 236-237 
.AscToNum, 235-236 
Bin ToAscBin, 234-235 
Bin ToAscDec, 234-235 
Bin ToAscHex, 234-235 
ChToBase, 235-236 
HexDigit, 232 
NumToASClL 233-234 
SBinToAscDec, 234-235 
VaICh,232-233 

BITS 

BinToAscBin subroutine (listing 6.3), 
234-235 

BinToAscDec subroutine (listing 6.3), 
234-235 

BinToAscHex subroutine (listing 6.3), 
234-235 

BIOS (Basic Input-Output System), 6 
bit fields (unions), 214 

inserting into records, 218-220 
isolating values, 217-218 
MASK operator, 217 
names, 216-217 
RECORD directive, 214-216 
setting defaults, 215-216 

bits, 54 
386 microprocessors 

scanning/setting, 470 
testing, 472 

AND operator, 103-104 
bytes. 55-56 
logical operations, 220-223 

GETFlELD,221-223 
instructions, 220-221 
SETFlELD,221-223 

LSD (least significant digit), 55 
maximum values, 58-59 
MSD (most significant digit), 55 
OR operator, 66-67 

875 



rotating, 69 
shifring, 69, 104-106 

division, 110-112 
moving, 110-112 
multiplication, 110-112 

Boolean operations (sign-extended), 479 
boundinstruction,462~5,714 

interrupt handlers, 463 
BOUND286.ASM program module 

(listing 11.6),464-465 
BOXCHAR.ASM program module 

(listing 11.3),444 
break command, 248-249 
bsf (Bit Scan Forward), 470, 714-715 
bsr (Bit Scan Reverse), 470, 715 
bswap (Byte Swap) instruction, 715-716 
bt (Bit Test) instruction, 716 
boc (Bit Test and Complement) 

instruction, 716-717 
btr (Bit Test and Reset) instruction, 717 
bts (Bit Test and Set) instruction, 717-718 
buffers 

ASYNCH.ASM (listing 1004),410-411 
files, flushing, 340-341 
memory input, 251 
type-ahead, flushing, 255-256 
video, 267 

BUFFERS = n command, 340 
bugs, 8 
see also debugging 
bytes, 54 

addresses, 55 
converting to words, 472 
gigabytes, 59 
kilobytes (k), 59 
megabytes, 59 
numer of bits, 55-56 
signed values, converting to words, 

100-101 

c 
C language 

assembly language 
calling C fonctions, 555-557 
callingfonctiom,550-551 
debugging, 554-555 
global data, 564-565 

converting to assembly, 533 
external functions, 532 
function results, 557-558 
inline statements, 532-538 

asm statements, 537 
compiling, 535 
microprocessors, 538 

listings, 820 
registers, 533 
structures (fields), 540-541 

C++ language 
arguments, passing to assembly language, 

568-570 
assembly language 

calling C++ fonctiom, 560-565 
classes, 570-578 

CPPFUNC.CPP (listing 13.6), 561 
CPPLOOP.ASM (listing 13.7), 562 
functions 

assembly language, 562-563 
name-overloading, 560-562 
results, 557-558 

listings, 820-821 
call instruction, 718 
CALL ... METHOD directive, 599 
callback functions (subroutines), 664 
calling 

functions 
assembly language, 549-551 
assemblylanguageftom C++, 562-563 
Cftom assembly, 555-557 
C++ ftom assembly, 560-565 

interrupts, 388 
subroutines (flow-control), 112-113 
virtual methods, 612 



c;alls 

external functions, 511-512 
Pascal 

external routines, 498-499 
fUnctions, 509-510 
procedures, 502-504 

subroutines with DR.ASM program 
module, 364 

Windows functions, 673 
case-sensitivity (command-lines), 33-35 
cbw (Convert Byte to Word) instruction, 

719 
cdq (Convert Doubleword to 

Quadword),719 
Central Processing Unit (CPU), 4-5, 7 
CFILL.ASM (listing 13.5), 550-551, 555 
CFILLSTR.C (listing 13.4), 549 

CFILL.ASM (listing 13.5), 555 
compiling. 549-550 

character strings, 26 
characters 

lIO redirection, 264-298 
macros 

keyboard availability, 333 
strings, 307-308 

CHARS.ASM (listing 7.3),279-282 
ChToBase subroutine, BINASC.ASM 

(listing 6.3), 235-236 
class operands, segments (programs), 447 
classes 

ASMFILL.AS (listings 13.12),576-577 
assembly language, accessing objects, 

576-578 
C++ and assembly language, 570-578 
CPPOOP.CPP (listing 13.11), 572-574 
OOP, 587-652 
TBuffer,572 
windows registration, 670-672 

clc (Clear Carry Flag) instruction, 
719-720 

cld (Clear Direction Flag) instruction, 720 
clearing trap flag (tf), 415-419 
di (Clear Interrupt Flag) instruction, 

720-721 

dosing files, 339-341 
closing line, 30 

(OMMANO-UI\ES 

cmc (Complement Carry Flag) 
instruction, 721 

cmp (subtraction operator), 97 
cmp (Compare) instruction, 721-722 
cmps (Compare String) instruction, 

722-723 
cmpxchg (Compare and Exchange) 

instruction, 723 
code, sharing intine statements (C), 

541-542 
CODE directive (linker definition files), 

678 
code segments, 27-29, 503 

addresses, 508-509 
overrides, 508 
text lines (columns), 27 
variables (exCode variable), 27 

CODESEG directive, 28 
cold boots (system startup), 457-458 
COLD BOOT .ASM program module 

{listing 11.5),457-458 
columns (text lines) 

aligning, 27 
comments columns, 29-35 
mnemonic column, 28-29 
operands columns, 28-29 

.COM programs 
assembling, 45 
writing, 42, 44 

combinations (logic instructions), 
102-103 

combine operand, 447 
COMM directive, 439 
command line (DOS) 

parameters 
extracting, 346, 351-352 
strings, 35 J 

reading, 346-354 
command tails, 346 
command-lines 

case-sensitivity, 33-35 

877 



COMMAND-LINES 

parameters, 346, 351-352 
reading, 346-354 
options, 33-34 
reading, 346-354 

commands 
%NOLIST, 331, 333 
adding to dialog boxes, 698 
BUFFERS", n, 340 
CPU window, 40-44 
directives, 798-815 

ARG, 516-517, 601 
ASSUME, 451-452, 502, 509 
CALL.METHOD, 599 
CODESEG directive, 28 
COMM,439 
COMMENT directive, 29 
conditional compilation, 314-324 
DA TASEG, 665 
DATASEG directive, 25-27 
db, 152-155,425 
DB (define byte) directive, 25-26 
dt,425 
dw,152-155 
DW (define word) directive, 25 
ENDM, 320 
ENDS, 450 
EQU directive, 23-24 
EXTRN, 353, 502-503, 564-567 
FARDATA,458-461 
GLOBAL,440 
GO TO, 321 
GROUP, 453 
IDEAL directive, 20, 30 
INCLUDE. 441 
INCLUDELIB,441-442 
JUMPS, 130-131,598 
LABEL (arrays), 208-209 
linker definition files, 677 
LOCAL,559 
LOCALS, 598 
macros, 323 
memory, 154 
MODEL, 21, 598 
NOSMART, 478 

OOP, 597 
ORG (origin) directive, 44 
P286, 462 
P286N, 462 
POPSTATE,322 
PUBLIC, 171-172 
PUSHSTATE, 322-324 
RADIX (numeric values), 204-205 
RECORD,214-216 
SEGMENT, 447-451, 500 
SMART, 478-481 
STACK directive, 21, 385 
STRUC, 590-602 
TITLE directive, 49 
UDATASEG,156 
UFARDATA,461 
UNION,213 
VERSION, 474-475 

EXTRN DiskErr:Proc, 344 
File menu (Exit), 695 
Help menu (About), 695 
instructions, 706-786 

16-bit code segments, 483 
286 microprocessors, 463 
32-bit code segments, 483 
386 microprocessors, 470-474 
8086 microprocessor, 126-139 
aaa,426 
aad,427 
aam,427 
aas,426 
addition, 92-93 
bound, 462-465 
Ma, 428 
dtls,428 
doubleword shift, 474 
enter, 466-467, 482 
FASTIMUL, 484-489 
hit (interrupts), 376-377 
ins, 467 
lea, 445, 478 
leave, 466-467, 482 
logic, 101-110 
100p,481 



mul360 
optimizing with SMART directive, 

478-481 
outs, 467 
packed BCD numbers, 428-429 
popa, 467 
protected-mode, 705 
pusha, 467 
rotate (386 microprocessors), 483 
scasb,353 
shift (386 microprocessors), 483 
statements vs. actions, 6 
subtraction, 93-94 
timing values, 705-706 
unpacked BCD numbers, 426-427 
xiat, 443-446 

macros, 300 
View:Variables (Turbo Debugger), 

307-309 
commas (,), macro parameters, 303 
COMMENT directive, 29 
comments, 29-35 

columns (text lines), 27 
macros, 301 

communal variables, 439 
compact memory models, 22 
comparing string instructions, 138-139 
compiling 

CFILLSTR.C (listing 13.4), 549-551 
inline statements (C), 535 
listings, B23 
TALLY.C (listing 13.1),535-542 

COMSHELL.ASM program (listing 2.2), 
42-43 

conditional assembly directives 
(macros),300 

conditional compilation directives, 
314-324 

ENDIF,31B 
error handling, 319 
IF,31B 
IFDEF,319 
IFNDEF,319 

---- .. ~--.- .. - .. -------.. ----~---

symbols 
assembling program source code, 

316-318 
testingfor definition, 319 
undefining, 319 

WHILE,321-322 
conditional jumps, 120-124 

displacement restrictions, 124-125 
references, 736 
Turbo Debugger, 125-126 

conditional set-condition references, 
773-774 

conditional symbols 
assembling program source code, 316-31B 
defining, 314-316 

CONFlG.SYS files, BUFFERS = n 
command, 340 

configurations (Windows resources), 
678-679 

constant expression operators, 318 
constant values 

inserting in stacks, 480 
typed addresses, 509 

constructors (OOP), 587-652 
control codes (1/0), 250 
conversion table (binary values), 56-59 
CONVERT.ASM (listing 6.5),241-243 
converting 

32-bit doublewords to 64-bit quadwords, 
472 

ASCII digits to/from unpacked BCD 
numbers, 427 

ASCIIZtoStr procedure to assembly 
language, 524 

binary values 
tolfrom packed BCD numbers, 428-429 
tolfrom unpacked BCD numbers, 426 

bytes to words, 472 
C to assembly language, 533 
hexidecimal values to decimal values, 

60-61 
numeric values, 225-243 

879 



packed BCD numbers 
to ASCIIZ strings, 437 
to!from binary values, 428-429 
to!from unpacked BCD numbers, 437 

Pascal to assembly language, 496-497, 
520-526 

signed values (bytes to words), 100-10 1 
strings, 225-240 
StrToASCIIZ procedure 

to assembly umguage, 524 
unpacked BCD numbers 

to!fromASCll digits, 427 
to!from binary values, 426 
to!from packed BCD numbers. 437 

words to doublewords, 472 
coordinates (cursors), 269-271 
copying packed BCD numbers, 438 
CPPARG.CPP. (listing 13.8), 566-569 
CPPFUNC.CPP (listing 13.6), 561 
CPPLOOP.AM (listing 13.7), 562 
CPPOOP.CPP (listing 13.11), 572-574 
CPU window, 39-44 
CreateWindow function, 672 
critical code, 532-533 
CSHELLASM (listing 13.3), 546-548 
Ctrl+I key command, 643 
Ctrl+M key command, 302 
Ctrl+ W key command, 643 
cursors (coordinates), 269-271 
customizing FILTER.ASM. (listing 7.1), 

264-265 
cwd (Convert Word to Doubleword) 

instruction, 724 
cwde (Convert Word to Extended 

Doubleword), 724 

D 

daa (Decimal Adjust After Addition), 428, 
724-725 

das (Decimal Adjust After Subtraction), 
428,725 

data, writing to files, 340 

DATA directive (linker definition 
files), 678 

data files (ceading/writing), 359-361 
data segments, 24 

creating, 458-461 
initialized variables, 25 
registers (initializing), 668-669 
uninitialized variables, 25 
variables, 25-27 

data sharing (assembly language/Pascal), 
. 504-508 
data transfer (mov command), 80-90 
data types 

adding to assembly language, 307 
enumerated,475-478 

DATASEG directive, 25-27, 665 
DB (define bytes) directive, 25-26 
db directives, 152-155,425 
deallocating stack parameters, 516-517 
debugging, 6-7 

hard disks, 341-344 
interrupts, 414 
macros, 320-321 
microprocessors, 37-38 
multilanguage programs, 554-555 
OOP, 585,648 
single-step mode, 414-421 

SINGLE.ASM (listing 10.6),416-421 
trap flag (tj), 415-419 

trap flag (tf), 414-421 
clearing, 415-419 
setting, 415-419 

Turbo Debuggger, 37-42 
conditional jumps, 125-126 
mov (data transfer), 83-84 
watch window, 96-97 

dec (Decrement) instruction, 725-726 
decimals, 56 

Binary-Coded Decimals (BCD), 206 
CONVERT.ASM (listing 6.5),241-243 
converting, 240-243 
hexidecimal, converting, 60-61 



-~~--...... ---~ .~-~ 

declaring 
derived objects, 618-620 
function arguments, 569-570 
parameters, 51 9 
segments (programs), 447-451, 455 
structured variables, 198-199 
symbols, 565 
variables 

assembly language, 539-540 
uninitialized, 156 

Windows functions (external), 664 
default handler (windows), 675 
defaults (union fields), 215-216 
defining 

communal variables, 439 
conditional symbols, 314-316 
macros, 301 

derived objects (OOP), 587-652 
declaring/implementing, 618-620 

DESCRIPTION directive (linker 
definition mes), 677 

destructors (OOP), 588-652 
device context handle (HDC), 694 
dialog boxes 

commands, adding, 698 
Windows applications, 696-698 

DialogBox function, 698 
direct memory-addressing, 146 
directives, 798-815 

ARG,516-517 
methods, 601 

ASSUME, 451-452,502,509 
CALL..METHOD, 599 
CODESEG directive, 28 
COMM,439 
COMMENT directive, 29 
conditional compilation, 314-324 
DATASEG,665 
DATASEG directive, 25-27 
db, 152-155, 425 
DB (define byte) directive, 25-26 
dt,425 
dw,152-155 
OW (define word) directive, 25 

ENDM,320 
ENDS, 450 
EQU directive, 23-24 
EXTRN, 353, 502-503, 564-567 
FARDATA,458-461 
GLOBAL,440 
GOTO, 321 
GROUP, 453 
IDEAL directive, 20, 30 
INCLUDE,441 
INCLUDELIB,441-442 
JUMPS, 598 

8086 processor instructions, 130-131 
LABEL (arrays), 208-209 
linker definition files, 677 
LOCAL, 559, 598 
macros, 323 
memory, 154 
MODEL, 598 
MODEL directive, 21 
NOSMART, 478 
OOP,597 
ORG (origin) directive, 44 
P286,462 
P286N,462 
POPSTATE,322 
PUBLIC, 171-172 
PUSHSTATE,322-324 
RADIX (numeric values), 204-205 
RECORD 

reading, 216 
union fields, 214-215 
writing, 216 

SEGMENT, 447-451,500 
SMART,478-481 
STACK (Interrupt Subroutines), 21, 385 
STRUC, 590-602 
TITLE directive, 49 
UDAT ASEG, 156 
UFARDATA,461 
UNION,213 
VERSION,474-475 
see also commands 

881 



directories 
installation, 826-828 
reading, 361-365 

Disk Transfer Address (DTA), 365 
DiskErr program module, 344 
DISKERR.ASM program module (listing 

9.1),342-344 
disks 

erasing, flushing type-ahead buffers, 
255-256 

formatting, flushing type-ahead buffers, 
255-256 

displacement restrictions (conditional 
jumps),124-125 

DisplayError routine (listing 7.1),264 
displaying 

arrays, 208 
BCD values, 437 
strings, 173-179 

div (Unsigned Divide) instruction, 389, 
726-727 

DN286.ASM (listing 10.2), 391-393 
DIVFAULT.A (listing 10.3), 394 
divide-faults 

DIV286.ASM (listing 10.2), 391-393 
testing, 393-394 

DIVFAULT.A (listing 10.3), 394 
interrupts 

handling, 389-390 
installing handlers, 390-395 
trapping, 389 

division 
bits, shifting, 110-112 
signed values, 100 
unsigned values, 97-98 

DOS (Disk Operating System), 6 
assembly languages, reloading, 45 
asynchronous serial 110, 397-414 
command line, 346-354 
Exec functions 

0040h,359 
03Dh,339 
03Eh,341 
03Fh,359 

042h,360 
04Ch,339 
059h, 342 
45h,340 

filters, 258-265 
functions 

break command, 248-249 
input, 248 
interrupts, 388 
key presses, 252-253 
unfiltered input, 249-250 
unfiltered output, 250 

handles, 256-257 
FILTER.ASM (listing 7.1), 262-264 

macro libraries, 324-333 
DOSMACS.ASM program (listing 8.1), 

324-333 
double jumps, 122 
double semicolons (;;), macro 

comments, 301 
doubleword (bytes), 55,474 
DR.ASM program module (listing 9.5), 

362-364 
dt directive, 425 
DTA (Disk Transfer Address), 365 
dummy parameters, see furmal parameters 
DUP operator, 153-155 
DW (define word) directive, 25 
dw directives, 152-155 
dynamic variables (procedures), 466 

E 

ECHOSTR.ASM (listing 5.3),179-181 
encapsulation (OOP), 588-602 
End of Interrupt (EOI), 384 
EndDialog function, 698 
ENDIF conditional compilation directive, 

318 
ENDM directive (macros), 309, 320, 450 
enter instruction, 466-467, 482, 727 
entering program listings, 15-16 
enumerated data types, 475-478 
EOI (End oflnterrupt), 384 



EQU directive, 23-24 
equal sign (=),24,316 
equates 

asterisk (*), 24 
ASYNCH.ASM (listing 10.4),410 
equal sign (=), 24 
predefined, 223-224 
rules, 23-24 
VERSION.ASM (listing 6.2),224-225 

equates (constant values), 23-24 
EQUIP.ASM (listing 6.4), 237-239 
erasing disks, flushing type-ahead 

buffers, 255-256 
errors 

arrays, 344 
handling 

conditional compiLation directives, 319 
hard disks, 341-344 

open-file codes, 340 
programs, 34-37 
Undefined symbol, 333 

esc instruction, 727-728 
exclamation point (I), macro string 

characters, 307 
Exclusive OR operator (XOR), 67-69 
exCode variable, 27 
.EXE programs, 42, 46 
executing macro instructions, 302 
EXESHELL.ASM program (listing 2.3), 

43-44 
EXETYPE directive (linker definition 

files),677 
Exit command (File menu), 695 
expanding macros, 302-307 
exponents, 58 
exporting 

modules, 181-182 
procedures to Pascal, 502 

EXPORTS directive (linker definition 
files),678 

expressions, 152 
macros, 306 
operators, 153 
passing to macros, 306 

external assemblies 
CSHELL.ASM (listing 13.3), 546-548 
simplified memory models, 545-547 
Turbo Linker, 544-550 

external functions, 563-564 
C language, 532 
calling, 511-512 
Pascal conversion, 498-499 

external interrupts, 370 
external modules 

assembling, 551-553 
linking, 551-553 

external string functions, 517-520 
extracting 

command line parameters, 346, 351-352 
MT A.LlB library file modules, 441 

EXTRN directive, 353, 502-503, 564-567 
EXTRN DiskErr:Proc command, 344 

F 

Fl function key (help), 39 
F5 function key, 443 
F7 function key, 302, 443, 522 
F8 function key, 302 
flO function key, 443 
far data segments 

creating, 458-461 
optimizing, 479 

FARDATA directive, 458-461 
farword (bytes), 55 
FASTIMUL instruction, 484-489 
FCBs (file-control blocks), 338 
FF.ASM program (listing 2.1),31 
FF.EXE program, 31 
fields 

C structures, 540-541 
structured variables, 202-203 
structures, 198 
unions, 213-220 

bit, 214 
inserting into records, 218-220 
isoLating vaLues, 217-218 
MASK operator, 217 

883 



FiElDS 

names, 216-217 
RECORD directive, 214-216 
setting defaults, 215-216 

File menu commands (Exit), 695 
file pointers (positioning), 361 
file-control blocks (FeB), 338 
files 

attributes, 345 
availability, 339 
buffers, flushing, 340-341 
closing, 339-341 
creating, 345 
data (reading/writing), 359-361 
handles, 256-257, 338 
I/O, 338, 360 
inventory, 826-828 
opening, 339-340 
processIng 

by character, 358-359 
by records, 360-361 

text, 354-359 
filling memory (string instructions), 

136-137 
FILLSTR.ASM program module (listing 

12.4),518 
FILLSTR.PAS program (listing 12.5), 518 
FILTER.ASM. (listing 7.1), 258-262 

customizing, 264-265 
DOS handles, 262-264 
routines 

filters 

DisplayError, 264 
ReadChar, 263 
WriteChar, 264 

DOS, 258-265 
FILTER.ASM. (listing 7.1), 258-262 
unfiltered input, 249-250 
unfiltered output, 250 

finding 
index values, 442 
values, 442 

flags, 7 
8086 processor instructions, 127 
ISR (Interrupt Subroutines), 376 

registers (8086), 79 
trap flag (d), 414-421 

clearing, 415-419 
setting, 415-419 

flat memory models, 22 
FLIPFLAG (logical operations), 220 
floating-point numbers, 205-206 
floppy disk drives, 14-15 
flow-control, 110-126 

jumps 
conditional, 120-124 
displacement restriction, 124-125 
double, 122 
Turbo Debugger, 125-126 
unconditional, 119-120 

return instructions, 116 
subroutines, 112-113 

intersegment, 116 
intrasegment, 116 
passing values, 117-118 
pushes, 118-119 

unconditional transfers, 112 
flushing 

file buffers, 340-341 
type-ahead buffers, 255-256 

formal parameters (macros), 302 
formatting disks, flushing type-ahead 

buffers, 255-256 
FORTH language, 5 
function keys 

F5,443 
F7,302,443,522 
F8,302 
FlO, 443 
reading, 254-255 

functions 
0040h,359 
03Dh,339 
03Eh,341 
03Fh,359 
042h,360 
04Ch,339 
059h,342 
45h,340 



arguments 
declaring automatically, 569-570 
passing, 565-570 

assembly language 
_ASMFiUBuffir, 576 
calling, 549 
calling C fUnctions, 555-557 
calling C++ fUnctions, 560-565 
callingfrom C, 550-551 
caliingfrom CH, 562-563 

C language results, 557-558 
C++ language. name-overloading, 

560-562 
CreateWindow. 672 
DialogBox.698 
DOS 

break command, 248-249 
input, 248 
interrupts, 388 
key presses, 252-253 
unfiltered input, 249-250 
unfiltered output, 250 

EndDialog. 698 
external, 563-564 

calling, 511-512 
external (Pascal conversion), 498-499 
external string, 517-520 
GDI,694 
Inline (Pascal conversion), 497 
Pascal, 509-51 0 
pointers (passing), 512 
Prim Screen, 383 
procedures. 503 
variables, 558-559 
Windows 

calling, 673 
declaring external, 664 

WinMain, 666, 669 

HDC (DEVICE CONTEXT 

G 

GDJ (Graphics Device Interface), 694 
general-purpose registers (8086),77 

removing from stacks, 467 
GetCh procedure (listing 7.4),293-295 
GETFIELD (logical operations), 221-231 
GetOneParam procedure, 351-353 
GetParams procedure, 351-352 
gigabytes, 59 
global data (C/assembly language), 

564-565 
GLOBAL directive, 440 
global labels, 304 
global variables, 440-441 

returning values, 353 
GOTO directive (macros), 321 
GPFs (general protection faults), 668 
GROUP directive, 452-453 
grouping segments (programs), 453 

H 

handlers, interrupt divide-faults, 389-395 
handles 

DOS, FILTER.ASM. (listing 7.1), 
262-264 

files, 256-257, 338 
closing, 341 

hard drives 
debugging, 341-344 
directories, 361-365 
files, 338 
organ izing, 13-14 

HARDSHELASM program module 
(listing 11.4),455-456 

hardware 
assembly language requirements, 9-10 
floppy disk drives, 14-15 
hard drives, 13-14 
macros as device drivers, 300 

HOC (device context handle), 694 

885 



headers, 20-22 
IDEAL directive, 20 
MODEL directive, 21 
STACK directive, 21 

HEAPSIZE directive (linker definition 
files),678 

help, 16,39 
Help menu commands, 695 
hexadecimal values, 56-59 

CONVERT.ASM (listing 6.5),241-243 
converting, 240-243 

to decimal values, 60-61 
defaults, 204-206 
RADIX directive, 204-205 

HexDigit subroutine (listing 6.3), 232 
hit (Halt) instruction, 728 

interrupts, 376-377 
huge memory models, 22 

110 (Input/Output) 
asynchronous serial, 397-414 
control codes, 250 
DOS functions, 248 
files, 338, 360 
function keys, 254-255 
redirection characters 

<,264-298 
>,264-298 
1,264-298 

ROM BIOS 110 routines, 253 
IDEAL directive, 20, 30 
Ideal mode (TASM), 654 

attributes, 7 
fields (structured variables), 203 
MASM mode equivalents, 795-797 

idiv (Signed Integer Divide) instruction, 
100,728 

IF conditional compilation directive, 318 
IFDEF conditional compilation 

directive, 319 
IFNDEF conditional compilation 

directive, 319 

importing modules, 181-182 
imul (Signed Integer Multiply) 

instruction, 100,729-730 
in (Input From Port) instruction, 730-731 
inc (Increment) instruction, 731 
INCLUDE directive, 312, 441 
INCLUDEUB directive, 441-442 
increasing file availability, 339 
index registers 

8086,77-78 
string instructions, 132-133 

index values 
finding, 442 
translating to table bytes, 443 

indexed memory-addressing. 149 
indexing 

arrays, 209-211 
bound instruction, 462-465 
range-checking errors, 463 

inheritance 
OOP, 588-652 

multiple, 588-652 
objects, 602-626 
single, 589-652 

oop\inherit\TBASE.lNC (listing 14.3), 
603-604 

oop\inherit\TDERIVED.INC 
(listing 14.4), 604-605 

oop \inhert\INHERIT.ASM 
(listing 14.5),607-608 

INIT.ASM program module, 441 
initialized variables, 25, 155-157 
initializing 

data segment registers, 668-669 
segments (programs), 450 

InLine functions/procedures (Pascal 
conversion), 497 

inline statements (C), 532, 533-538 
asm statements (access to C variables), 

537-544 
assembly language, sharing code, 541-542 
compiling, 535 
microprocessors, 538 



Pascal conversion, 496 
TALLY.C (listing 13.1), 535-542 

input, 248-257 
break command, 248-249 
DOS functions, 248 
filters (DOS), 258-265 
function keys, 254-255 
interrupts, 248-249 
key presses, 252-253 
memory buffers, 251 
polling, 251 
ROM BIOS I/O routines, 253 
type-ahead buffers, flushing, 255-256 
unfiltered, 249-250 

ins (Input From Port To String) 
instruction, 467, 732 

inserting 
constant values into stacks, 480-481 
directives in macros, 323 
macros in programs, 301 
subroutines with macros, 310 

installation directory, 826-828 
installing 

bound instruction (interrupt handlers), 
463 

interrupt divide-fault handlers, 390-395 
TSRs (Terminate and Stay Resident), 

395-397 
instances (OOP objects), 588 
instruction pointer registers (8086), 79 
instructions, 706-786 

16-bit code segments, 483 
286 microprocessors, 463 
32-bit code segments, 483 
386 microprocessors, 470-474 
8086 microprocessor, 126-131 

flags, 127 
JUMPS directive, 130-131 
nop. 128-130 
string, 131-139 
synchronization. 128 

8086 processor (string), 131-139 
aaa,426 
aad,427 

aam, 427 
aas, 426 
addition, 92-93 
bound, 462-465 
daa, 428 
das,428 
doubleword shift, 474 
enter, 466-467, 482 
FASTIMUL,484-489 
hIt (interrupts), 376-377 
ins, 467 
lea, 445, 478 
leave, 466-467, 482 
logic, 101-11 0 
loop, 481 
mul,360 
optimizing with SMART directive, 

478-481 
outs, 467 
packed BCD numbers, 428-429 
popa,467 
protected-mode, 705 
pusha, 467 
rotate (386 microprocessors), 483 
scasb,353 
shift (386 microprocessors), 483 
subtraction, 93-94 
timing values, 705-706 
unpacked BCD numbers, 426-427 
xlat, 443-446 

int (Call Interrupt Service Routine) 
instruction, 388, 732-733 

integers 
absolute values, 61 
signed, 61-64, 205 
two's complement, 61-64 
unsigned, 205 

internal interrupts, 370 
interrupts, 370 

32-bit code segments, 483 
8259 processor, 372-376 
asynchronous serial 110, 397-414 
bound instruction (handlers), 463 
break command, 248-249 

887 



debugging, 414 
div instruction, 389 
divide-faults 

handling, 389-390 
installing handlers, 390-395 
trapping, 389 

DOS functions, 388 
EOI (End ofInterrupt), 384 
external, 370 
hit instruction, 376-377 
int instruction, 388 
internal, 370 
into instruction, 388 
ISRs (Interrupt Subroutines), 370-371 
keyboard,256 
maskable (lNTR), 371-372 
nonmaskable (NMI), 371-372 
numbers, 373 
PC timer, 380-383 

interrupting ISRs, 382-383 
variables, 381-382 

PICS (Programmable Interrupt Chips), 
372-376 

polling, 370 
SLOWMO.AS (listing 10.1), 378-380 
stacks, 385-388 
variables, 381-382 
vectors, 375-376 

restoring, 381-411 
intersegment subroutines, 116 
into (Interrupt On Overflow) instruction, 

388,733 
INTR (maskable interrupts), 371-372 
intrasegment subroutines, 116 
invd (Invalidate Cache) instruction, 734 
invlpg (Invalidate TLB Entry) instruction, 

734 
iret (Interrupt Return) instruction, 

734-735 
IRP directive (macros), 308 
IRPC directive (macros), 308 
ISRs (Interrupt Subroutines), 370 

flags, 376 
interrupting, 382-383 

reentrant, 382-383 
STACK directive, 385 
variables, 381-382 
writing, 370-371 

j-condition Oump Conditionally) 
instruction, 735-736 

imp Oump Unconditionally) instruction, 
737 

jumps 
conditional, 120-124 

displacement restrictions, 124-125 
Turbo Debugger, 125-126 

double, 122 
nop instruction, reserving space, 129-130 
unconditional, 119-120 
see also flow-control 

JUMPS directive, 598 
8086 processor instructions, 130-131 

K 

key commands 
Alt+V+C, 443 
Ctrl+I,643 
Ctrl+W, 643 
Ctrl+M,302 

key presses, 252-253 
keyboard 

interrupts, 256 
KEYBOARD.ASM (lisdng 7.4), 289-290 
KEYS.ASM (listing 7.5),291-292 
module, 289-295 

KEYBOARD.ASM (listing 7.4), 289-290 
procedures 

GetCh, 293-295 
Key Waiting, 292 

KEYS.ASM (listing 7.5),291-292 
KeyWaiting procedure (listing 7.4), 292 



-------------------_. __ . 

keywords 
macros, 301 
PURGE, 301 

kilobytes (k), 59 
KOPY.ASM program module 

(listing 9.4), 354-358 

l 

label column (text lines), 27 
LABEL directive (macros), 309 

arrays, 208-209 
labeling 

macros, 313-314 
variables with macros, 304 

labels 
local, 159-160 
string instructions, 135 
variables, 26 

labf (Load Flags Into ab Register), 
737-738 

languages, 4-5 
assembly language 

advantages, 7-8 
attributes, 4-7 
code segments, 27-29 
components, 20-30 
data segments, 24-25 
disadvantages, 8-9 
essentials to understanding, 5-6 
hardware requirements, 9-10 
headers, 20-22 
software requirements, 10 

C language 
assembly language, 550-551, 554-555, 

564-565 
converting to assembly, 533 
external functions, 532 
function results, 557-558 
inline statements, 532-538 
listings, 820 
registers, 533 
structures (fields), 540-541 

LISTIN< ,~ 

c++ language 
arguments, passing to assembly lang/lfl?Y, 

568-570 
assembly language, 560-565, 570-578 
CPPFUNC.CPP (listing 13.6),561 
CPPLOOP.ASM (listing 13.7),562 
functions, 557-558, 562-563 
listings, 820-821 

FORTH language, 5 
machine code, 4-5 

large memory models, 22 
Ids (Load Pointer and ds) instruction, 738 
lea (Load Effective Address) instruction, 

445,478,738-739 
leave instruction, 466-467, 482, 739 
les (Load Pointer and es) instruction, 740 
lfs 19s (Load Pointer and fs, gs) 

instruction, 740-741 
library strings, 160-170 
library routines, 9 
LIFO stacks, 85 
linkers 

definition files (Windows), 677-678 
Turbo Linker, 32 

external assemblies, 544-550 
stacks, 84 

linking 
external modules, 551-553 
modules (programming), 172-173 
modules into programs, 179-182 
object codes, 32 
program modules (0 library files, 441-442 

list objects (OOP), 627, 633 
listings 

2.1 FF.ASM program, 31 
2.2 COMSHELL.ASM, 42-43 
2.3 EXESHELL.ASM program, 43-44 
2.4 PR132.ASM program, 47 
4.1 MOY.ASM, 82-83 
4.2 PUSHPOP.ASM, 87 
4.3 ADDSUB.ASM, 94-95 
4.4 MULDIY. ASM, 98 
4.5 ANDORXOR.ASM, 102-103 
4.6 SHIFT.ASM, 105-106 

889 



4.7 SUBDEMO.ASM, 113 
5.1 STRINGS.ASM, 161-170 
5.2 STRIO.ASM, 174-176 
5.3 ECHOSTR.ASM, 179-180 
6.1 STRUCASM, 199-200 
6.2 VERSION.ASM, 224 
6.3 BINASCASM, 225-231 
6.4 EQUIP.ASM, 237-239 
6.5 CONVERT.ASM, 241-243 
7.1 FILTERASM., 258-262 
7.2 SCREEN.ASM, 273-279 
7.3 CHARS.ASM, 279-282 
7.4 KEYBOARD.ASM, 289-290 
7.5 KEYS.ASM, 291-292 
8.1 DOSMACS.ASM program, 324-333 
9.1 DISKERR.ASM program module, 

342-344 
9.2 PARAMS.ASM program module, 

346-349 
9.3 SHOWPARM.ASM program 

module, 350-351 
9.4 KOPY.ASM program module, 

354-358 
9.5 DRASM program module, 362-364 
10.1 SLOWMO.AS,378-380 
10.2 DIV286.ASM, 391-393 
10.3 DIVFAULT.ASM, 394 
lOA ASYNCH.ASM, 398-404 
10.5 TRM.ASM, 405-409 
10.6 SINGLE.ASM, 416-419 
11.1 BCD.ASM program module, 

430-434 
11.2 T ABLE.ASM program module, 

442-443 
11.3 BOXCHAR.ASM program 

module, 444 
1104 HARDSHEL.ASM program 

module, 455-456 
11.5 COLDBOOT.ASM program 

module, 457-458 
11.6 BOUND286.ASM program 

module, 464-465 
12.1 PASSHELL.ASM program 

module, 500 

12.2 PASDEMO.ASM program module, 
505-506 

12.3 PASDEMO.PAS program module, 
506-507 

12.4 FILLSTRASM program 
module, 518 

12.5 FILLSTR.PAS program, 518 
12.6 STRPAS program, 520-521 
12.7 STRASM program module, 

524-525 
13.1 TALLY.C, 535 
13.2 UPDOWN.C, 541-544 
13.3 CSHELL.ASM, 546-548 
1304 CFILLSTR.C, 549 
13.5 CFILL.ASM, 550-551 
13.6 CPPFUNCCPP, 561 
13.7 CPPLOOP.ASM, 562 
13.8 CPPARG.CPP., 566-569 
13.9 ASMARG.AS, 566 
13.10 ASMARG2.ASM, 569-570 
13.11 CPPOOP.CPP, 572-574 
13.12 ASMFILL.ASM, 576-577 
14.1 oop\encaps\TPOINT.INC, 592-594 
14.2oop\encaps\ENCAPSUL.ASM, 

596-597 
14.3 oop\inherit\TBASE.INC, 603-604 
1404 oop\inherit\TDERIVED.INC, 

604-605 
14.5 oop\inhertUNHERIT.ASM, 

607-608 
14.6 oop\OOMACROS.INC, 613-614 
14.7 oop\virtual\TBASE.INC program, 

616-617 
14.8oop\virtual\TDERIVED.INC 

program, 619-620 
14.90op\virtual\VIRTUAL.ASM, 

622-623 
14.10 oop\list\TITEM.INC, 627-628 
14.11 oop\list\TLIST.INC, 629-631 
14.12 oop\list\TINTOBJ.INC, 633-634 
14.13 oop\!ist\TSTROBJ.INC, 636-637 
14.14 oop\list\LIST .ASM, 638-642 
15.1 WHELLO.ASM program module, 

655-661 



15.2 WHELLO.DEF program, 661 
15.3 WHELLO.RC program, 662 
15.4 WINAPP.ASM program module, 

680-690 
15.5 WINAPP.DEF program, 690 
15.6 WINAPP.RC program, 700 
15.7 WINAPP.RH program, 691 
15.8 WINAPP.Rl program, 691-692 
assembly language, 818-819 
C language, 820 
C++ language, 820-821 
compiling, 823 
object-oriented programming, 821-822 
Pascal, 819 
printing, 46-48 
Windows, 822-823 

loading string instructions, 133-134 
LOCAL directive (macros), 313-314, 559 
local labels, 159-160 
local variables (functions), 558-559 
LOCAlS directive, 598 
lock (Lock the Bus) instruction, 741 
lods (Load String) instruction, 133-134, 

742 
lodsb (string mnemonics), 134 
lodsw (string mnemonics), 134 
logic instructions, 101-110 

AND operator (bits), 103-104 
ANDORXOR.ASM (listing 4.5), 

102-103 
combinations, lO2-103 
shifting bits, 104-106 

logical operations 
bit fields 

GETFIELD,221-223 
SETFIELD,221-223 

efficiency, 220-223 
logical operators, 65-69 

AND (masking), 65-66 
OR, 66-67 
XOR,67-69 

loop (Loop on ex) instruction, 743 
loop instruction, 481 

loope loopz (Loop on ex While Equal) 
instruction, 743-744 

loopne loopnz (Loop on ex While Not 
Equal),744 

loops, STRlNGS.ASM (listing 5.1), 187 
LSD (least significant digit), 55 
Iss (Load Pointer and ss)instruction, 745 

M 

machine code, 4-5 
registers, 7 

macros, 300 
characters, keyboard availability, 333 
conditional assembly directives, 300 
creating arrays, 307 
debugging, 320-321 
defining, 301 
directives, 323 
DOS libraries, 324-333 
DOSMACS.ASM file, 332 
ENDM directive, 309, 320 
expanding, 302-307 
expansions 

specifYing, 321 
transferring, 321 

expressions 
evaluating, 306 
passing, 306 

GOTO directive, 321 
INCLUDE directive, 312 
inserting 

in programs, 301 
subroutines, 310 

instructions 
executing, 302 
global labels, 304 

IRP directive, 308 
IRPC directive, 308 
keywords, 301 
LABEL directive, 309 
LOCAL directive, 313-314 
local labels, 313-314 
naming, 300 

891 



nesting, 311 
numeric parameters, 305-306 
parameters, 302-307 
POPSTATE directive, 322 
preserving registers, 311 
pros/cons, 300 
purging, 301-302 
PUSHST ATE directive, 322 
repeating, 308 
replacing, 301 
source code, 310-314 
storage, 300 
storing in text files, 312 
string characters, 307 
string parameters, 306-307 
symbolic parameters, 304-305 
terminating,320-321 
variables, 307 
VMTSeg,614 
writing procedures, 310 

MASK operator (union fields), 217 
maskable interrupts (INTR), 371-372 
MASKFLAG (logical operations), 220 
masking (AND operator), 65-66 
MASM mode, 7 

Ideal mode equivalents, 795-797 
memory addressing, 150 
text lines (comments columns), 29 

math operators, 90-101 
addition, 92-93 
ADDSUB.ASM (listing 4.3), 94-95 
division, unsigned values, 97-98, 100 
MULDIV. ASM (listing 4.4), 98-99 
multiplication 

signed values, 100 
umigned values, 97-98 

subtraction, 93-94 
cmp,97 
neg, 97 

Turbo Debugger (watch window), 96-97 
mathematical operations 

BCDs, 429-438 
multiplication, 484-489 

maximum values of bits, 58-59 
medium memory models, 21 
megabytes, 59 
members (OOP objects), 588 
memory 

addressing, 144-145 
ASSUME directive,,150-151 
base, 148-149 
base-indexed, 149-150 
direct, 146 
indexed, 149 
MASM mode, 150 
modes, 145-151 
overrides, 146-147 
register-indirect, 147-148 

BCD variables, 425 
buffers (input), 251 
directives, 154 
DTA,365 
optimizing flushing file buffers, 340 
Pascal model, 499-502 
registers, 7 
segmentation (8086 processor), 74 

offsets, 76 
optimizing, 454 
paragraphs, 75-76 

simplified models (external assemblies), 
545-547 

stacks, 85-86 
balancing, 88-89 
exchanging data, 89-90 
pops, 85 
pushes, 85 

string instructions, 136-137 
TPASCAL model, 515 
TSRs (Terminate and Stay Resident), 

395-397 
memory models, 21-22 
memory-mapped video, 267-272 

buffers, 267 
cursor coordinates, 269-271 
modules, 272-289 
snow, 270-271 



message loops (Windows), 669, 673-674 
messages (windows), 693 

passing, 675 
methods 

ARG directive, 601 
OOP, 588-652 

optimizing, 652 
static methods, 589 
virtual, 589, 609-626 

microprocessors 
286,461-468 
8086 processor 

instructions, 126-131 
memory segmentation, 74-76 
registers, 76-79 
string instructions, 131-139 

8259 processor interrupts, 372-376 
debugging, 37-38 
inline statements (C), 538 
instructions, 706-786 
programming, 461 
protected-mode instructions, 705 

Microsoft Windows, 11 
see also Windows 

mnemonics 
instructions, 706-786 
string instructions, 134 
text lines, 27-29 

MODEL directive, 21, 598 
modes (memory-addressing), 145-151 

ASSUME directive, 150-151 
base, 148-149 
base-indexed, 149-150 
direct, 146 
indexed, 149 
overrides, 146-147 
register-indirect, 147-148 

modules, 13 
assembling, 172-173 
DiskErr, 344 
ECHOSTR.ASM (listing 5.3),179-181 
exporting, 181-182 

--_ ..... _-----

MULTIPLICATION 

external 
assembling, 551-553 
linking, 551-553 

importing, 181-182 
keyboard, 289-295 
linking, 172-173 
memory-mapped video, 272-289 
programming 

linking, 179-182 
sharing code, 170-173 

see also program modules 
mov (data transfer), 80-90, 745-746 

MOV.ASM (listing 4.1),82-83 
stacks, 89-90 
string instructions, 136 
Turbo Debugger, 83-84 

MOV.ASM (listing 4.1),82-83 
MoveLeft procedure, 183-185 
MoveRight procedure, 183-185 
moving 

bits (shifting), 110-112 
string instructions, 136 

movs (Move String) instruction, 746-747 
movsx (Move and Extend Sign) instruc

tion, 747-748 
moVLX (Move and Extend Zero Sign) 

instruction, 748 
MSD (most significant digit), 55 
MT A.LIB library files, extracting 

modules, 441 
mul (Unsigned Multiplication) 

instruction, 360,749 
MULDlV. ASM (listing 4.4), 98-99 
multibyte arrays, addressing, 211-213 
multiple characters strings, 27 
multiple inheritance (OOP), 588 
multiplication 

bits (shifting), 110-112 
operators 

signed values, 100 
unsigned values, 97-98 

893 



N 

NAME directive (linker definition 
files),677 

name operand, 447 
name-overloading, c++ functions, 

560-562 
naming 

fields (union), 216-217 
macros, 300-302 
conventions (Windows applications), 665 

navigating records, 361 
neg (Two's Complement Negation) 

instruction, 97, 750 
two's complement, 64 

negative binary values, 63 
nesting macros, 311 
NewLine procedure, 179 
NMI (nonmaskable interrupts), 371-372 
nonmaskable interrupts (NMI), 371-372 
nop (No Operation) instruction, 128-130, 

750-751 
NOSMART directive, 478 
not (One's Complement Negation) 

instruction, 751 
two's complement, 64 

numbers (BCD storage), 424 
numeric parameters (macros), 302, 

305-306 
numeric values 

binary (RADIX directive), 204-206 
Binary-Coded Decimals (BCD), 206 
BINASC.ASM (listing 6.3),225-231, 

236-239 
CONVERT.ASM (listing 6.5),241-243 
converting, 225-243 
decimal (RADIX directive), 204-206 
floating-point numbers, 205-206 
hexadecimal (RADIX directive), 204-206 
integers 

signed,205 
unsigned, 205 

NumToASCII subroutine (listing 6.3), 
233-234 

o 
object codes, 32-33 
object-oriented programming, $~ OOP 
objects . 

class (accessing), 576-578 
debugging, 585 
OOP, 584, 588-589 

16-bit integers, 633 
base, 587-652 
derived, 587-652,618 
inheritance, 602-626 
instances, 588-652 
list, 627, 633 
members, 588-652 
polymorphism, 627-645 
static methods, 589 
string, 636 
virtual methods, 589, 609-626, 

650-652 
VMT pointers, 649-652 

oop\encaps\ENCAPSUL.ASM 
(listing 14.2),596-597 

oop\encaps\TPOINT.INC (listing 14.1), 
592-594 

structures, 590-602 
Turbo Assembler, 589-626 

encapsulation, 590-602 
offsets (memory segmentation), 76 
one's complement, 62 

neg instruction, 64 
not instruction, 64 

OOP (Object-Oriented Programming), 
584-589 

classes, 587-652 
constructors, 587-652 
debugging, 585, 645-646 
destructors, 588-652 
directives, 597 

ARG,601 
CALL ... METHOD, 599 
JUMPS, 598 
LOCALS, 598 
MODEL,598 



encapsulation, 588-652 
inheritance 

multiple, 588-652 
single, 589-652 

methods, 588-652 
optimizing, 652 
virtual, 609-626, 650-652 

listings, 821-822 
objects, 584, 588-626 

16-bit integers, 633 
base, 587-652 
derived, 587-652 
encapsulation, 590-602 
inheritance, 602-626 
imtances, 588-652 
list, 627, 633 
members, 588-652 
polymorphism, 627-645 
static methods, 589 
string, 636 
virtual methods, 589 
VMT pointers, 649, 650-652 

polymorphism, 588 
Turbo Assembler, 586-587 

oop\encaps\ENCAPSUL.ASM 
(listing 14.2), 596-597 

oop\encaps\TPOINT.INC (listing 14.1), 
592-594 

oop\inherit\TBASE.INC (listing 14.3), 
603-604 

oop\inherit\TDERIVED.INC 
(listing 14.4), 604-605 

oop\inhert\lNHERIT.ASM (listing 14.5), 
607-608 

oop\list\LIST.ASM (listing 14.14), 
638-642 

oop\list\TINTOBJ.INC (listing 14.12), 
633-634 

oop\list\TITEM.INC (listing 14.10), 
627-628 

oop\list\TLIST.INC (listing 14.11), 
629-631 

oop\list\TSTROBJ.INC (listing 14.13), 
636-637 

OUT (OUTPUT TO PORT) INSTRLCTIOt\ 

oop\OOMCROS.INC (listing 14.6), 
613-614 

oop\vinual\TBASE.INC program (listing 
14.7),616-617 

oop\vinual\TDERIVED.INC program 
(listing 14.8), 619-620 

oop\virtual\VIRTUAL.ASM (listing 14.9), 
622-623 

open-file error codes, 340 
opening files, 339-340 
operand columns (text lines), 27 
operands 

bound instruction, 462 
columns (text lines), 28-29 

operations (logical instructions), 220-223 
operators, 152,792-794 

constant expressions, 318 
DUP,153-155 
expressions, 153 
logical, 65-69 

AND,65-66 
OR,66-67 
XOR,67-69 

MASK (union fields), 217 
math, 90-101 

addition, 92-93 
division, 97-98 
multiplication, 97-98 
subtraction, 93-94 

SYMTYPE values, 795 
TYPE values, 795 

optimizing 
addresses, 478 
far data segments, 479 
instructions with SMART directive, 

478-481 
memory, flushing file buffers, 340 
methods (OOP), 652 
procedures (stacks), 466 

or (Logical OR) instruction, 752 
OR operator (bits), 66-67 
ORG (origin) directive, 44 
out (Output to Port) instruction, 753 

895 



896 

output, 248-257 
printers, 265-267 

control sequences, 267-298 
selectingftatures, 266-267 

unfiltered, 250 
outs (Output From String to Port) 

instruction, 753-754 
outs instruction, 467 
overlaying variables, 456 
overloading functions (C++), 560-562 
overrides (memory-addressing), 146-147 

p 

P286 directive, 462 
P286N directive, 462 
packed BCD numbers, 425 

converting 
to ASCIIZ strings, 437 
to/ftom ASCII digits, 437-438 
to/ftom binary values, 428-429 
to/ftom unpacked BCD numbers, 437 

instructions, 428-429 
variable lengths, 434 
variables, 438 

PackedToUnpacked routine 
(listing 11.1), 437 

paragraphs (memory segmentation), 75-76 
ParamCount procedure, 351 
parameters 

addresses, 516-5 17 
bytes, removing from stacks, 514 
declaring, 519 
macros, 302-307 
stacks 

deallocating, 516-517 
fixed,517 

values (passing), 512-513 
variables (passing), 514-515 

PARAMS.ASM program module, 352-354 
PARAMS.ASM program module 

(listing 9.2), 346-349 

Pascal 
code shells, 499-502 
converting to assembly language, 

496-497,520-526 
external routines, 498-499 
external string functions, 517-520 
functions, 509-510 
listings, 819 
memory model, 499-502 
procedures, 502-504 
sharing with assembly language, 504-508 
static variables, 501-502 
variables, 511 

PASDEMO.ASM program module 
(listing 12.2), 505-506 

PASDEMO.PAS program module 
(listing 12.3), 506-507 

PASSHELLASM program module 
(listing 12.1), 500 

passing 
arguments to functions, 480 
function arguments, 565-570 
function pointers, 512 
value parameters, 512-513 
variable parameters, 514-515 
window messages, 675 

passing values (subroutines), 117-118 
PC timer (interrupts), 380-383, 381 

interrupting ISRs, 382-383 
variables, 381-382 

Pentium microprocessors 
(Turbo Debuggers), 37-38 

percent sign (%), expression evaluate 
operator, 306 

phantom segments, 456 
PICS (Programmable Interrupt Chips), 

372-376 
pointer registers (8086),77-78 
pointers 

functions (passing), 512 
interrupt vectors, 375-376 

poDing 
input, 251 
interrupts, 370 



polymorphism 
OOP, 588,627-645 
virtual methods, 610 

pop (Pop from Stack) instruction, 
754-755 

pop-up menus (Windows applications), 
693,695 

pop a (Pop All General-Purpose Registers), 
467, 755 

popad (Pop All General-Purpose 
Doubleword Register) instruction, 756 

popf (Pop Flags) instruction, 756 
popfd (Pop Extended Flags) 

instruction, 757 
pops (stacks), 85 

balancing, 88-89 
POPSTATE directive, 322 
portability (assembly language), 8-9 
ports (strings), 467 
powers (exponents), 58 
PR132.ASM program (listing 2.4), 47-49 
predefined equates, 223-224 
Print Screen function, 383 
printers, 265-267 

control sequences, 267-298 
selecting features, 266-267 

printing 
listings, 46-48 
PR132.ASM program, 49 

procedures 
ASCIIZtoStr, 520 
dynamic variables, 466 
exporting to Pascal, 502 
external (Pascal conversion), 498-499 
GetOneParam, 351-353 
GetParams, 351, 352 
InLine (Pascal conversion), 497 
KEYBOARD.ASM (listing 7.4) 

GetCh, 293-295 
KeyWaiting,292 

NewLine. 179 
ParamCount, 351 
Pascal, 502-504 

SCREEN.ASM (listing 7.2) 
ScB/ink, 287-288 
ScBright. 287-288 
ScCLrRect. 286 
ScDim. 287-288 
ScGetAttribute, 288 
ScGotoXY, 283-284 
Scinit.289 
ScNoBlink, 287-288 
ScPokeChar. 284-285 
ScPokeStr. 284-285 
ScReadXY, 283-284 
ScSetAttribute.288 
ScSetBack, 286-287 
ScSetFore, 286-287 
SetVidAddr, 282-283 

stacks, optimizing, 466 
STRINGS.ASM (listing 5.1),182-193 

MoveLejt.183-185 
MoveRight. 183-185 
StrCompare, 188-189 
StrConcat, 191 
StrCopy, 191 
StrDeLete.189-190 
Strlnsert.190-191 
StrLength, 186 
StrNu11, 185 
StrPos, 192 
StrRemove, 192-193 
StrUpper, 187-188 

StrRead, 177 
StrToASCIIZ, 520 
StrWrite,177-178 
vs. functions, 503 
windows. 675-677 
WinProc,693 
writing with macros, 310 

processing 
files 

by character, 358-359 
by records, 360-361 

object codes (linkers), 32 
tables, 442-446 

897 



PROCESSOR INSTRUCTIONS (8086) 

processor instructions (8086), 126-131 
processors 

286, 461-468 
8086 processor 

flags, 127 
instructions, 126-131 
JUMPS directive, 130-131 
memory segmentation, 74-76 
registers, 76-79 
nop, 128-130 
string instructions, 131-139 
synchronization, 128 

8259 processor interrupts, 372-376 
debugging, 37-38 
inline statements (C), 538 
instructions, 706-786 
programming, 461 
protected-mode instructions, 705 

profaJers 
programs, 495 
Turbo Profiler, 532 

program listings (entering), 15-16 
program modules 

BCD.ASM (listing 11.1),430-434 
BOUND286.ASM (listing 11.6), 

464-465 
BOXCHAR.ASM (listing 11.3), 444 
COLDBOOT.ASM (listing 11.5), 

457-458 
communal variables, 439 
DISKERR.ASM (listing 9.1), 342-344 
DR.ASM (listing 9.5), 362-364 
FILLSTR.ASM (listing 12.4),518 
global variables, 440, 440-441 
HARDSHEL.ASM (listing 11.4), 

455-456 
INIT.ASM, 441 
KOPY.ASM (listing 9.4),354-358 
linking to library files, 441-442 
oop\virtual\VIRTUAL.ASM 

(listing 14.9), 622-623 
PARAMS.ASM (listing 9.2),346-349 
PASDEMO.ASM (listing 12.2),505-506 
PASDEMO.PAS (listing 12.3), 506-507 

PASSHELL.ASM (listing 12.1), 500 
SHOWPARM.ASM (listing 9.3), 

350-351 
STR.ASM (listing 12.7), 524-525 
T ABLE.ASM (listing 11.2), 442-443 
WHELLO.ASM (listing 15.I), 655-661 
WINAPP.ASM (listing 15.4),680-690 

Program Segment Prefix (PSP), 346 
programming 

286 microprocessors, 461-468 
386 microprocessors, 468-474 
critical code, 532-533 
modules, 170-173 
processors, 461 
Windows with T ASM, 654-679 

programs 
16-bit code segments, 483 
32-bit code segments 

instructions, 483 
interrupts, 483 

assembler programs, 4-5 
assembling, 30-32 
bits, maximum values, 58-59 
code segments, 503 

addresses, 508-509 
.COM programs 

assembling, 45 
writing, 42-44 

COMSHELL.ASM (2.2),42-43 
conditional compilation directives, 

314-324 
critical code, 495-496 
data segments, 24-25 

creating, 458-461 
registers, initializing, 668-669 

debuggers, 6-7 
Turbo Debugger, 37-42 

DOSMACS.ASM (listing 8.1), 324-333 
errors, 34-37 
.EXE programs, 42, 46 
EXESHELL.ASM programs (listing 2.3), 

43-44 
FF.ASM (2. 1), 31 
FF.EXE,31 



file handle maximums, 339 
FILLSTR.PAS (listing 12.5), 518 
flow-control, 110-126 

jumps, 119-126 
return instructions, 116 
subroutines, 112-113, 116-119 
unconditional transflrs, 112 

initialized data, 665 
linkers, Turbo Linker, 32 
macros, 300-301 
modules, linking, 179-182 
oop\/ist\LIST.ASM (listing 14.14), 

638-642 
oop\list\TINTOBJ.INC (listing 14.12), 

633-634 
oop\list\ TITEM.INC (listing 14.10), 

627-628 
oop\list\TLIST.INC (listing 14.11), 

629-631 
oop\list\TSTROBJ.INC (listing 14.13), 

636-637 
oop\virtual\TBASE.lNC (listing 14.7), 

616-617 
oop\virrual\TDERIVED.INC 

(listing 14.8),619-620 
options/settings (saving), 322 
PR132.ASM program (listing 2.4), 47 
profilers, 495 
segment overrides, 452 

xlat instruction, 446 
segments, 450-451 

access operand, 441 
addresses, 452 
align operand, 441 
At, 456 
class operand, 441 
combine operand, 441 
declaring, 446-451, 455 
grouping, 453 
name operand, 441 
optimizing memory, 454 
phantoms, 456 
registers, 450 

PUSHST A TE DIRECTIVE 

smail memory model, 454 
stacks, 450 

source code, assembling with conditional 
symbols, 316 

startup code, 666-668 
state values, restoring, 322 
step throughs, 522 
STR.PAS (listing 12.6),520-521 
TSRs (Terminate and Stay Resident), 

395-397 
Turbo Assembler 

Ideal mode, 1 
MASMmode, 1 
versions, 15 

uninitialized data, 665 
uninitialized far data segments, 461 
variables, overlaying, 456 
warnings, 35-37 
WHELLO.DEF (listing 15.2),661 
WHELLO.RC (listing 15.3), 662 
WINAPP.DEF (listing 15.5), 700 
WINAPP.RC (listing 15.6), 700 
WINAPP.RH (listing 15.7), 691 
WINAPP.RI (listing 15.8), 691-692 
see also applications 

protected-mode instructions, 705 
PSP (Program Segment PrefIX), 346 
PUBLIC directive, 171-172 
PURGE keyword, 301 
purging macros, 301-302 
push (Push Onto Stack) instruction, 

757-758 
pusha (Push All General-Purpose 

Registers), 467, 758-759 
push ad (Push All General-Purpose 

Doubleword Registers) instruction, 759 
pushes 

balancing, 88-89 
subroutines, 118-119 
stacks,85 

pushf (Push Flags) instruction, 759-760 
pushfd (Push Extended Flags) 

instruction, 760 
PUSHPOP.ASM (listing 4.2),87-88 
PUSH STATE directive, 322-324 

899 



VU/IUWUKU (Bms) 

Q 

quadword (bytes), 55 
quotes, string variables, 158-171 

R 

RADIX directive, 204-205 
range-checking errors (indexes), 463 
rcl (Rotate Left Through Carry) 

instruction, 760-761 
rcr (Rotate Right Through Carry) 

instruction, 761-762 
ReadChar routine (listing 7.1),263 
reading 

data files, 359-361 
directories, 361-365 
DOS command line, 346-354 
function keys, 254-255 
port strings, 467 
text files, 354-359 

RECORD directive (union fields), 
214-216 

records 
fields (union), 218-220 
navigating, 361 
unions, 214-215 

redirection characters (1/0), 264-298 
reentrant ISRs (Interrupt Subroutines), 

382-383 
references (tables), 446 
register-indirect memory-addressing, 

147-148 
registers, 533 

8086 microprocessors, 76-79 
flags, 79 
general-purpose, 77 
index, 77-78 
instruction pointer (ip), 79 
pointer, 77-78 
segment, 78 

al values, 339 
data segments (programs), 668-669 

memory, 7 
Turbo Debugger, 38 

preserving with macros, 311 
removing from stacks, 467 
segments (programs), 450 
string instructions (index), 132-133 

registration (window classes), 670-672 
reloading DOS, 45 
removing 

general-purpose registers from stacks, 467 
parameter bytes from stacks, 514 
registers from stacks, 467 

rep (Repeat) instruction, 762-763 
repe (Repeat While Equal) instruction, 

762-763 
repeating macros, 308 
replacing macros, 301 
repne (Repeat While Not Equal) 

instruction, 764 
repz (Repeat While Zero) instruction, 764 
resource script files (Windows), 678-679 
resources (Windows) 

configuring, 678-679 
identifying, 671 

restoring 
programs, 322 
vector interrupts, 381-411 

return instructions (flow-control), 116 
returning 

addresses, 482 
global variables, 353 

rol (Rotate Left) instruction, 766 
ROM BIOS 

1/0 routines, 253 
timer, 380 

ror (Rotate Right) instruction, 767-768 
rotate instructions, 483 
rotating 

bits, 69 
logic instructions, 101-110 
values (286 programming), 468 



routines 
ASYNCH.ASM (listing 1004),409-414 

Asynehln, 413 
Asynehinit, 411 
AsynehlnStat, 413 
AsynehISR, 413-414 
AsynehOut, 413 
AsynehStop, 412 

BCDAdd (listing 11.1),435-436 
BCDCopy (listing 11.1),438 
BCDSubtract (listing ILl), 436 
BCDToASCII (listing 11.1),437-438 
external (Pascal), 498-499 
FILTER.ASM. (listing 7.1) 

DisplayError, 264 
ReadChar, 263 
WriteChar, 264 

PackedToUnpacked (listing 11.1),437 
UnPackedToPacked (listing ILl), 437 

running 

s 

ADDSUB.ASM (listing 4.3), 95 
ANDORXOR.ASM (listing 45), 103 
MULDIV. ASM (listing 4.4), 98-99 
PUSHPOP.ASM (listing 4.2),87-88. 
SHIFT.ASM (listing 4.6), 106-109 
STRUC.ASM (listing 6.1), 200-202 
SUBDEMO.AS (listing 4.7), 114-116 
VERSION.ASM (listing 6.2), 224-225 

sahf (Store ah Register to Flags) 
instruction, 768 

sal (Shift Arithmetic Left) instruction, 
768-769 

sample rates (program profilers), 496 
sar (Shift Arithmetic Right) instruction, 

769-770 
saving 

assembly language, operating state, 323 
programs, options/settings, 322 

sbb (Subtract Integers with Borrow), 
770-771 

SCREEN.ASM (LISTING 7.2l 

SBinToAscDec subroutine (listing 6.3), 
234-235 

scanning 
386 microprocessors, 470 
string instructions, 137-138 

scas (Scan String) instruction, 137-138, 
771-772 

scasb instruction, 353 
ScBlink procedure (listing 7.2),287-288 
ScBright procedure (listing 7.2),287-288 
ScClrRect procedure (listing 7.2),286 
ScDim procedure (listing 7.2), 287-288 
ScGetAttribute procedure 

(listing 7.2), 288 
ScGotoXY procedure (listing 7.2), 

283-284 
Sci nit procedure (listing 7.2), 

289-292 
ScNoBlink procedure (listing 7.2), 

287-288 
ScPokeChar procedure Oisting 7.2), 

284-285 
ScPokeStr procedure (listing 7.2), 

284-285 
ScReadXY procedure (listing 7.2), 

283-284 
SCREEN.ASM (listing 7.2),273-279 

procedures, 282-291 
SeB/ink, 287-288 
SeBright, 287-288 
SeClrReet, 286 
SeDim, 287-288 
SeGetAttribute, 288 
SeGotoXY, 283-284 
Seinit, 289 
SeNoBlink, 287-288 
SePokeChar, 284-285 
SePokeStr, 284-285 
SeReadXY, 283-284 
SeSetAttribute, 288 
SeSetBaek, 286-287 
SeSetFore, 286-287 
SetVidAddr, 282-283 

901 



SCSETATTRIBUTE PROCEDURE (LISTING 7.2) 

ScSetAttribute procedure (listing 7.2),288 
ScSetBack procedure (listing 7.2), 

286-287 
ScSetFore procedure (listing 7.2),286-287 
searching values, 442 
SEGMENT directive, 447-451,500 

access operand symbols, 449 
align operand symbols, 448 
combine operand symbols, 448-449 
use operand symbols, 449 

segment registers (8086), 78 
segments (programs), 450-451 

access operand, 447 
addresses, 452 
align operand, 447 
At, 456 
class operand, 447 
combine operand, 447 
declaring, 446-451, 455 
grouping, 453 
name operand, 447 
optimizing memory, 454 
phantoms, 456 
registers, ini tializing, 450 
small memory model, 454 
stacks, 450 

serial communications 
ASYNCH.ASM (listing 10.4), 398-404 
asynchronous serial 110, 397-414 
TRM.ASM (listing 10.5),405-409 

set-condition instruction, 772-774 
SETFIELD (logical operations), 221-231 
SETFLAG (logical operations), 220 
setting 

386 microprocessors (bits), 470 
trap flag (tf), 415-419 

SetVidAddr procedure (listing 7.2), 
282-283 

sharing 
code, inline statements (C), 541-542 
programming modules, 170-173 

flSsembling, 172-173 
linking, 172-173 
PUBLIC directives, 171-172 

. shift instructions (386 microprocessors), 
483 

SHIFT.ASM (listing 4.6), 105-109 
shifting 

32-bit registers, 474 
bits, 69, 104-106 

division, 111-112 
moving, 109-110 
multiplication, 110-112 

logic instructions, 101-110 
SHIFT.ASM (listing 4.6), 105-109 
values (286 programming), 468 

shl (Shift Left) instruction, 775-776 
shld (Double-Precision Shift Left) 

instruction, 776 
SHOWPARM.ASM program module 

(listing 9.3), 350-351 
shr (Shift Right) instruction, 777 
shrd (Double-Precision Shift Right) 

instruction, 778 
sign-extended Boolean operations, 479 
signed integers, 205 

two's complement, 61-64 
signed values 

converting bytes to words, 100-101 
division, 100 
multiplication, 100 

simplified memory models (external 
assemblies), 545-547 

single inheritance (OOP), 589 
single-step mode 

debugging, 414-421 
trap flags (tf). 415-419 

SINGLE.ASM (listing 10.6),416-421 
SINGLE.ASM (listing 10.6),416-421 
SLOWMO.AS (listings 10.1),378-380 
small memory models, 21 
SMART directive, 478-481 
snow (memory-mapped video), 270-271 
software, see programs 
source code (programs) 

assembling with conditional symbols, 316 
macros, 310-314 



---- ...... _------

space (variables), 152-155 
STACK directive, 21 

ISRs (Interrupt Subroutines), 385 
stacks,84 

balancing, 88-89 
constant values, inserting, 480 
exchanging data, 89-90 
fixed parameters, 517 
interrupts, 385-388 
LlFO,85 
memory, 85-86 
parameter bytes (removing), 514 
parameters 

deailocating, 516-517 
fixed, 517 

pops, 85 
procedures, 466 
pushes, 85 
PUSHPOP.ASM (listing 4.2),87-88 
registers, removing, 467 
segments (programs), 450 
variables (addresses), 515 

STACKSIZE directive (linker definition 
files},678 

standard flags, 708 
startup code, 666-668 
statements 

actions, 6-7 
assembly language, declaring variables, 

539-540 
static methods (OOP), 589 
static variables (Pascal), 501-502 
stc (Set Carry Flag) instruction, 778 
std (Set Direction Flag) instruction, 779 
step throughs (programs), 522 
stt (Set Interrupt-Enable Flag) 

instruction, 780 
storage (macros), 300 

string instructions, 135 
storing 

BCDs, 436 
macros in text files, 312 
numbers in BCD form, 424 
string characters in words vs. bytes, 308 

SlRINGS 

stos (Store String) instruction, 780 
STR.ASM program module (listing 12.7), 

524-525 
STR.PAS program (listing 12.6), 520-521 
StrCompare procedure, 188-189 
StrConcat procedure, 191 
StrCopy procedure, 191 
StrDelete procedure, 189-190 
string instructions, 131-139 

addressing labels, 135 
comparing, 138-139 
index registers, 132-133 
loading, 133-134 
memory, filling, 136-137 
mnemonics, 134 
moving, 136 
scanning, 137-138 
storing data, 135 
zero, 138 

string objects (OOP), 636 
string parameters (macros), 302, 306-307 
string variables, 157-159 

apostrophes, 158-171 
quotes, 158-171 

strings 
ASCII, 157-158 
characters 

storing in words vs. bytes, 308 
strings, 26 

command line parameters (locatingl 
passing), 351 

converting, 225-240 
displaying, 173-179 
library module, 160-170 
multiple characters strings, 27 
ports (readingiwriting), 467 
procedures 

NewLine, 179 
StrRead, 177 
Str WI'ite, 177-178 

STRINGS.ASM (listing 5.1),161-170 
STRIO.ASM (listing 5.2), 175-176 

903 



STRINGS.ASM (listing 5.1), 161-170 
procedures, 182-193 

MoveLejt,183-185 
MoveRight, 183-185 
StrCompare, 188-189 
StrConcat, 191 
StrCopy, 191 
StrDelete, 189-190 
StrImert, 190-191 
StrLength, 186 
StrNult, 185 
StrPos, 192 
StrRemove, 192-193 
StrUpper, 187-188 

repeated string operations, 187 
StrInsert procedure, 190-191 
STRIO.ASM (listing 5.1), 203-204 
STRIO.ASM (listing 5.2), 175-176, 

180-181 
StrLength procedure, 186 
StrNuil procedure, 185 
StrPos procedure, 192 
StrRead procedure, 177 
StrRemove procedure, 192-193 
StrToASCIIZ procedure, 520 

converting to assembly language, 524 
STRUC directive, 590-602 
STRUC.ASM (listing 6.1),199-202 
structures, 198-204 

C language 
asm statement access, 538-544 
fields,540-541 

fields, 198 
objects, 590-602 
STRUC.ASM (listing 6.1), 199-202 
unions, 213-220 
variables 

declaring, 198-199 
fields, 202-203 
STRIO.ASM (listing 5.1), 203-204 

StrUpper procedure, 187-188 
StrWrite procedure, 177-178 
STUB directive (linker definition 

files), 678 

sub (Subtract) instruction, 781 
SUBDEMO.AS (listing 4.7), 113-116 
subroutines 

BINASC.ASM (listing 6.3),231-237 
AscToBin, 236-245 
AscToNum, 235-236 
Bin ToAscBin, 234-235 
Bin ToAscDec, 234-235 
Bin ToAscHex, 234-235 
ChToBase, 235-236 
HexDigit, 232 
Num ToASCIl, 233-234 
SBinToAscDec, 234-235 
VaICh,232-233 

callback functions, 664 
calling with DR.ASM program 

module, 364 
flow-concrol, 112-113 

intersegment, 116 
intrasegment, 116 
passing values, 117-118 
pushes, 118-119 

inserting with macros, 310 
ISR (Incerrupt Subroutines), 370 
SUBDEMO.AS (listing 4.7), 113-116 
tail recursion, 652 

substitute operator (&), 304 
subtraction (math operators) 

binary, 64 
cmp, 97 
neg, 97 
operators, 93-94 

symbolic parameters (macros), 302-305 
symbols, 788-789 

conditional compilation directives 
assembling program source code, 

316-318 
defining, 314-316 
testingfor definition, 319 
undefining,319 

declaring, 565 
enumerated data types, 477 
SEGMENT directive 

access operand, 449 
align operand, 448 



combine operand, 448-449 
use operand, 449 

Turbo Assembler, 790-792 
warn class, 790 

SYMTYPE values (operators), 795 
synchronization, 8086 processor 

instructions, 128 
system startup, cold booting, 457-458 

T 

T ABLE.ASM program module (listing 
11.2), 442-443 

table references, 446 
tail recursion (subroutines), 652 
TALLY.C (listing 13.1), 535-542 
TASM 

creating Windows applications, 679-698 
Ideal mode, 654 
programming Windows, 654-679 

TBuffer class, 572 
tchuge memory models, 22 
terminating macros, 320-321 
test (Test Bits) instruction, 782 
TESTFLAG (logical operations), 220 
testing 

386 microprocessors (bits), 472 
conditional symbols for definition, 319 

text 
files (reading/writing), 354-359 
printing, 265-267 

text lines 
columns, 27 

aligning, 27 
comments columns, 29-35 
operands columns, 28-29 

mnemonic columns, 28-29 
timer (PC) 

interrupts, 380-383 
variables, 381-382 

timing values (instructions),705-706 
tiny memory models, 21 
TITLE directive, 49 
TPASCAL memory model, 22, 515 

T URSO DESUGG ER 

transferring macro expansions, 321 
translating 

ASCII characters, 443 
index values to table bytes, 443 
value arrays, 445 

trap flag (tf), 414-421 
clearing, 415-421 
swing, 415-421 

trapping interrupt divide-faults, 389 
TRM.ASM (listing 10.5), 405-409 
TSRs (Terminate and Stay Resident), 

395-397 
Turbo Assembler 

dosing line, 30 
.COM programs, 45 
command-lines, 33-34 
directives 

CODESEG directive, 28 
COMMENT directive, 29 
DATASEG directive, 25-27 
DB (define byte) directive, 25 
DB (define bytes) directive, 26 
DW (define word) directive, 25 
EQU directive, 23-24 
iDEAL directive, 30 
ORG (origin) directive, 44 
TITLE directive, 49 

.EXE programs, 46 
objects, 589-626 

encapsulation, 590-602 
OOP, 586-587 
programs (errors), 34-37 
symbols (predefined), 790-792 
versions, 15 
version I .0, 798-810 

versiol! 2.0, 811 
vt'l'si(nJ 2.5, 812 
version 3.0, 812-814 
version 3. I, 814 
version 3.2, 815 
vmion 4.0" 481-486 

Turbo Debugger, 6-7, 37-42 
conditional jumps, 125-126 
CPU window, 39-44 

905 



microprocessors, 37-38 
mov (data transfer), 83-84 

. variable window (arrays), 208 
View:Variables command, 307, 309 
watch window, 96-97 

Turbo Linker, 32 
external assemblies, 544-550 
stacks,84 

Turbo Profiler, 532 
two's complement, 61-63 

absolute values, 64 
neg instruction, 64 
not instruction, 64 

TYPE values (operators), 795 
type-ahead buffers, flushing, 255-256 
typed constants (addresses), 509 

u 
UDATASEG directive, 156 
UFARDATA directive, 461 
unconditional jumps, 119-120 
unconditional transfers (flow-control), 

112 
Undefined symbol error, 333 
undefining conditional symbols, 319 
underscores (assembly language), 548 
unfiltered 

input, 249-250 
output, 250 

uninitialized 
far data segments, 461 
variables,25,155-157 

UNION directive, 213 
unions 

bit fields, 214 
inserting into records, 218-220 
isolating values, 217-218 
MASK operator, 217 
names, 216-217 
RECORD directive, 214-216 
setting defaults, 215-216 

fields, 213-220 

records, 214-215 
structures, 213-220 

unpacked BCD numbers 
converting 

to/from ASCII digits, 427 
to/from binary values, 426 
to/from packed BCD numbers, 437 

instructions, 426-427 
variable lengths, 434 

UnPackedToPacked routine 
(listing 11.1), 437 

unsigned integers, 205 
unsigned values 

division, 97-98 
multiplication, 97-98 

UPDOWN. C (listing 13.2), 541-544 

v 
ValCh subroutine (listing 6.3),232-233 
value parameters, passing. 512-513 
values 

arrays (translating), 445 
enumerated data types, 477 
fields (union), isolating, 217-218 
rotating (286 programming), 468 
searching, 442 
shifting (286 programming), 468 
subroutines, 117-118 

variables, 25-27 
addresses, 26 

verifYing, 446 
assembly language, declaring, 539-540 
ASYNCH.ASM (lising 1004),410 
C language, asm statement access, 

538-544 
communal, 439 
directives 

db,152-155 
dw,152-155 

exCode variable, 27 
exporting, 181-182 
far data segments, 459 



global, 440-441 
returning values, 353 

importing, 181-182 
initialization modules, 441 
initialized, 25,155-157 
interrupts, 381-382 
labeling with macros, 304 
labels. 26 
local functions, 558-559 
macros, 307 
overlaying. 456 
parameters, passing, 514-515 
Pascal (addresses), 511 
space, 152-155 
stacks (addresses), 515 
static (Pascal), 501-502 
strings, 157-159 

apostrophes, 158-171 
quotes, 158-171 

structures, 198-204 
declaring, 198-199 
fields, 202-203 
STRlO.ASM (listing 5.1). 203-204 

uninitialized,25, 155-157 
vectors (interrupts), 375-376 

restoring, 381-411 
verifying variable addresses, 446 
VERSION directive, 474-475 
VERSION.ASM (listing 6.2), 224-225 
video 

buffers, 267 
CHARS.ASM (listing 7.3),279-282 
memory-mapped, 267-272 

cursor coordinates. 269-271 
modules. 272-289 
snow. 270-271 

SCREEN.ASM (listing 7.2),273-279 
procedures. 282-290 

View:Variables command (Turbo 
Debugger),307-309 

virtual method table (VMT), 589 

virtual methods 
calling, 612 

WINDOWS 

OOP, 589, 609-626, 650-652 
oop\OOMCROS.INC (listings 14.6), 

613-614 
polymorphism, 610 

VMT (virtual method table), 589 
VMT object pointers (OOP), 649-652 
VMTSeg macro, 614 

w 
wait (Wait Until Not Busy) 

instruction, 783 
warndass symbols, 790 
warnings (programs), 35-37 
watch window (Turbo Debugger), 96-97 
wbinvd (Write Back and Invalidate 

Cache),783 
WHELLO.ASM program module 

(listing 15.1),655-661 
WHELLO.DEF program (listing 15.2), 

661 
WHELLO.RC program (listing 15.3), 662 
WHILE conditional compilation directive, 

321-322 
WINAPP.ASM program module 

(listing 15.4), 680-690 
WINAPP.DEF program (listing 15.5), 700 
WINAPP.RC program (listing 15.6), 700 
WINAPP.RH program (listing 15.7), 691 
WINAPP.RI program (listing 15.8), 

691-692 
Windows, 11 

applicarion shell, 679-692 
applicarions, 655-(162 

crl"luiJig with II1S/'.I, r,.-')·()')S 

dialog /)(}xC's. 6%-6')8 
ilt/willg CiJI//lI'lIIi(I/IJ. 665 
pop-up 1lI£"1I1tJ, 6')3-6')5 

CreareWindow funcrion. 672 
funcrions 

cailing, 673 
declaring external, 664 

907 



908 

linker definition files, 677-678 
listings, 822-823 
message loops, 669, 673-674 
programming with T ASM, 654-679 
resource script files, 678-679 
resources 

configuring, 678-679 
identifying, 671 

windows 
classes (registration), 670-672 
creating, 672-673 
default handler, 675 
messages, 693 

passing, 675 
procedures, 675-677 

WinMain function, 666, 669 
WinProc procedure, 693 
words 

bytes, 55 
converting to doublewords, 472 
signed values converting to bytes, 

100-101 
WriteChar routine (listing 7.1),264 
writing 

.COM programs, 42-44 
data to files, 340 
data files, 359-361 
DOS filters, 258-265 
.EXE programs, 42, 46 
external string functions, 517-520 
ISR (fmerrupt Subroutines), 370-371 
port strings, 467 
procedures with macros, 310 
programs (Ideal mode), 7 
text files, 354-359 

x·Y·z 
xadd (Exchange and Add) instruction, 

784-785 
xchg (Exchange) instruction, 784-785 
xlat (Translate From Table) instruction, 

443-446, 785 
XOR (Exclusive OR), 220-223, 786 

masking, 67-69 

zero (string instructions), 138 



GET CONNECTED 
to the ultimate source 

of computer information! 

The MCP Forum on CompuServe 
Go online with the world's leading computer book publisher! 
Macmillan Computer Publishing offers everything 
you need for computer success! 

Find the books that are right for you! 
A complete online catalog, 
plus sample chapters and tables of contents 
give you an in-depth look at all our books. 
The best way to shop or browse! 

,... Get fast answers and technical support for 
MCP books and software 

,... Join discussion groups on major computer 
subjects 

,... Interact with our expert authors via e-mail 
and conferences 

,... Download software from our immense 
library: 

Source code from books 
Demos of hot software 
The best shareware and freeware 
Graphics files 

MACMILLAN 
COMPUTER 
PUBLISHING 

Macmillan Comp Publ+ Forum 

•• 

Join now and get a free 
CompuServe Starter Kit! 

To receive your free CompuServe Intro
ductory Membership, call 1-800-848-
8199 and ask for representative #597. 

The Starter Kit includes: 
:. Personal 10 number and paswvonl 

:. $1 S credit on the system 

:. Subscription to CompuS"rtJt'Magtlz,il/(' 

.. ~ CompuServe 


