
T RB 
A E BLER 

• o/r.. . 
~ ,.. ' . ..... 

BORLAND 



Turbo AssemblefB> 
Version 2.0 

Reference Guide 

BORLAND INTERNATIONAL, INC. 1800 GREEN HILLS ROAD 
P.O. BOX 660001, scons VALLEY, CA 95066-0001 



Rl 

Copyright © 1988, 1990 by Borland International. All rights 
reseNed. All Borland products are trademarks or registered 
trademarks of Borland International. Inc. Other brand and 
product names are trademarks or registered trademarks of their 
respective holders. 

PRINTED IN THE USA. 
10 9 8 7 



c o N T E N T s 

Introduction 1 ? ................................... 19 
Hardware and software requirements .... 1 [] operator .......................... 20 
Wha t's in this manual .................. 1 AND ............................... 21 
Notational conventions ................. 2 BYTE ............................... 21 
How to contact Borland ................ 3 CODEPTR ........................... 21 

Chapter 1 Predefined symbols 5 
DATAPTR ........................... 22 
DUP ................................ 22 

$ .................................... 6 
@code ................................ 7 
@CodeSize ............................ 7 
@Cpu ................................ 7 
@curseg .............................. 8 
@data ................................ 9 
@DataSize ............................ 9 
??date ................................ 9 
@fardata ............................ 10 
@fardata? ............................ 10 
@FileName .......................... 10 
?? filename .. . . . . . . . . . . . . . . . . . . . . . . . . . 10 

DWORD ............................ 23 
EQ ................................. 23 
FAR ................................ 24 
FWORD ............................. 24 
GE ................................. 25 
GT ................................. 25 
HIGH ............................... 26 
LARGE ............................. 26 
LE .................................. 27 
LENGTH ............................ 28 
LOW ............................... 28 
LT .................................. 29 

@Model ............................. 11 
@Startup ............................ 11 
??tirne ............................... 11 
??version ............................ 12 
@WordSize .......................... 12 

MASK .............................. 29 
MOD ............................... 30 
NE ................................. 30 
NEAR .............................. 31 
NOT ................................ 31 

Chapter 2 Operators 13 
Arithmetic precision .................. 13 

Operator precedence ................ 14 
() .................................. 15 

OFFSET ............................. 32 
OR ................................. 32 
PROC ............................... 33 
PTR ................................ 33 

It ••••••••••••••••••••••••••••••••••• 16 PWORD ............................. 35 

+ (Binary) ........................... 16 
+ (Unary) ............................ 16 
- (Binary) ............................ 17 
- (Unary) ............................ 17 
..................................... 18 

QWORD ............................ 35 
SEG ................................ 35 
SHL ................................ 36 
SHORT ............................. 36 
SHR ................................ 37 

/ ................................... 18 SIZE ................................ 37 

: .................................... 19 SMALL ............................. 38 



SYMTYPE ........................... 39 CONST ............................. 65 
TBYTE .............................. 39 .CREF ............................... 65 
THIS ................................ 39 %CREF ............................. 65 
.TYPE ............................... 40 %CREFALL .......................... 65 
TYPE ............................... 41 %CREFREF .......................... 66 
UNKN"OWN ......................... 41 %CREFUREF ........................ 66 
WIDTH ............................. 42 %CTLS .............................. 67 
WORD .............................. 43 .DATA .............................. 67 
XOR ................................ 43 .DATA? ............................. 68 
The special macro operators ............ 44 DATASEG ........................... 68 
& ................................... 44 DB ................................. 69 
<> .................................. 45 DD ................................. 69 
! .................................... 45 %DEPTH ............................ 70 
% ................................... 46 DF .................................. 71 

;; .................................. 46 DISPLAY ............................ 72 
DOSSEG ............................ 72 

Chapter 3 Directives 49 
Sample Directive ..................... 50 
.186 ................................. 51 

DP ................................. 73 
DQ ................................. 73 
DT ................................. 74 

.286 ................................. 51 DW ................................. 74 

.286C ............................... 51 ELSE ................................ 75 

.286P ................................ 52 ELSEIF .............................. 76 

.287 ................................. 52 EMUL .............................. 76 

.386 ................................. 52 END ................................ 77 

.386C ............................... 53 ENDIF .............................. 77 

.386P ................................ 53 ENDM .............................. 78 

.387 ................................. 53 ENDP ............................... 78 

.8086 ................................ 54 ENDS ............................... 79 

.8087 ................................ 54 EQU ................................ 79 

: ................................... 55 
.ERR ................................ 80 
ERR ................................ 81 

= ................................... 55 .ERR1 ............................... 81 
ALIGN .............................. 56 .ERR2 ............................... 81 
.ALPHA ............................. 57 .ERRB ............................... 82 
ARG ................................ 57 .ERRDEF ............................ 82 
ASSUME ............................ 59 .ERRDIF ............................. 83 
%BIN' ............................... 60 .ERRDIFI ............................ 83 
CATS'I'R ............................. 60 .ERRE ............................... 84 
.CODE .............................. 61 .ERRIDN ............................ 84 
CODESEG ........................... 62 .ERRIDNI ........................... 85 
COMM .............................. 62 ERRIF ............................... 85 
COMMENT ......................... 63 ERRIF1 .............................. 85 
%CONDS ........................... 64 ERRIF2 .............................. 85 
.CONST ............................. 64 ERRIFB ............................. 86 

ii 



ERRIFDEF ........................... 86 LOCAL ............................ I07 
ERRIFDIF ........................... 86 LOCALS ........................... 109 
ERRIFDIFI ........................... 86 MACRO ............................ II0 
ERRIFE ............................. 86 %MACS ............................ lll 
ERRIFIDN ........................... 86 MASM ............................. 111 
ERRIFIDNI .......................... 87 MASM51 ........................... 111 
ERRIFN"B ............................ 87 .MODEL ........................... 112 
ERRIFN"DEF ......................... 87 MODEL ............................ 115 
.ERRNl3 ............................. 87 MULTERRS ........................ 116 
.ERRNDEF .......................... 88 NAME ............................. 116 
.ERRNZ ............................. 88 %NEWPAGE ....................... 116 
EVEN ............................... 88 %NCX:ONDS ....................... 117 
EVENDATA ......................... 89 %NCX:REF ......................... 117 
EXITM .............................. 89 %NCX:TLS ......................... 118 
EXTRN .............................. 90 NOEMUL .......................... 118 
.FARDATA .......................... 91 %NOINCL ......................... 119 
.FARDATA? ......................... 92 NOJUMPS .......................... 119 
FARDATA .......................... 93 %NOLIST .......................... 119 
GLOBAL ............................ 93 NOLOCALS ........................ 120 
GROUP ............................. 94 %NOMACS ........................ 120 
IDEAL .............................. 95 NOMASM51 ........................ 121 
IF .................................. 96 NOMULTERRS ..................... 121 
IFl .................................. 96 %NOSYMS ......................... 122 
IF2 .................................. 97 %NOTRUNC ....................... 122 
IFB ................................. 98 NOWARN .......................... 122 
IFDEF ............................... 98 ORG ............................... 123 
IFDIF,IFDIFI ........................ 99 %OUT ............................. 123 
IFE ................................. 99 P186 ............................... 124 
IFIDN,IFIDNI ...................... 100 P286 ............................... 124 
IFN"B ............................... 100 P286N ............................. 124 
IFN"DEF ............................ 101 P286P .............................. 124 
%INCL ............................. I0l P287 ............................... 125 
INCLUDE .......................... 102 P386 ............................... 125 
INCLUDE LIB ....................... 102 P386N ............................. 125 
INSTR ............................. 103 P386P .............................. 125 
IRP ................................ 103 P387 ............................... 125 
IRPC ............................... 104 P8086 .............................. 126 
JUMPS ............................. I04 P8087 .............................. 126 
LABEL ............................. I05 PAGE .............................. 126 
.LALL .............................. I06 %PAGESIZE ........................ 127 
.LFCOND .......................... 106 %PCNT ............................ 127 
%LINUM ........................... I06 PN087 ............................. 127 
%LIST ............................. 106 %POPLCTL ......................... 128 
.LIST ............................... 107 PROC .............................. 128 

iii 



PUBLIC ............................ 130 
PUBLICDLL ........................ 131 
PURGE ............................ 131 
%PUSHLCTL ....................... 132 
QUIRKS ............................ 132 
.RADIX ............................ 133 
RADIX ............................. 133 
RECORD ........................... 133 
REPT .............................. 134 
.SALL .............................. 135 
SEGMENT .......................... 135 
.SEQ ............................... 137 
.SFCOND .......................... 138 
SIZESTR ........................... 138 
.STACK ............................ 138 
STACK ............................. 139 
.STARTUP .......................... 139 
STARTUPCODE .................... 139 
S1RUC ............................. 139 
SUBS1R ............................ 141 
SUBTTL ............................ 142 
%SUBTIL .......................... 142 
%SYMS ............................ 142 
%TABSIZE ......................... 143 
%TEXT ............................. 143 
.TFCOND .......................... 143 
TITLE .............................. 144 
%TITLE ............................ 144 
%TRUNC .......................... 144 
UDATASEG ........................ 145 
UFARDATA ........................ 145 
UNION ............................ 145 
USES .............................. 147 
WARN .. ' ........................... 148 
.XALL ............................. 148 
.XCREF ............................ 149 
.XLIST ............................. 149 

Appendix A Turbo Assembler syntax 
summary 151 

Lexicalgrannrnar .................... 151 
MASM mode expression grannrnar ..... 154 
Ideal mode expression grammar ....... 156 

Iv 

Appendix B Compatibility issues 159 
One- versus two-pass assembly ........ 160 
Environment variables ............... 160 
Microsoft binary floating-point format .. 160 
Turbo Assembler Quirks mode ........ 161 

Byte move to/from segment register. 161 
Erroneous near jump to far label or 
proced ure ........................ 161 
Loss of type information with = and EQU 
directive .......................... 162 
Segment-alignment checking ........ 162 
Signed immediate arithmetic and logical 
instructions ....................... 163 
Masm 5.1 features ................. 163 
Masm 5.1/Quirks mode features ..... 164 

QUIRKS ........................ l64 
MASM51 ....................... 165 
MASM51 and QUIRKS ........... 165 

QASM compatibility ................. 165 

Appendix C Turbo Assembler 
highlights 167 

Extended command-line syntax ... 167 
GLOBAL directive ............... 167 
PUBLICDLL directive ............ 168 
COMM directive extension ....... 168 
Local symbols ................... 168 
Conditional jump extension ....... 168 
Ideal mode ..................... 168 
UNION directive/STRUC nesting . 168 
EMUL and NOEMUL directives ... 169 
Explicit segment overrides ........ 169 
Constant segments ............... 169 
Extended CALL instruction ....... 169 
Extended PUSH and POP 
instructions ..................... 169 
Language-specific extensions ...... 170 
Extended LOOP instruction in 386 
mode .......................... 170 
Extended listing controls ......... 171 
Alternate directives .............. 171 
Predefined variables ............. 171 
Masm 5.0 and 5.1 enhancements ... 171 
Improved SHL and SHR handling . 172 



Multi-pass capability ............. 172 

Appendix 0 Utilities 173 
MAKE: The program manager ........ 173 

How MAKE works ................ 174 
Starting MAKE .................... 175 

The BUlL TINS.MAK file .......... 175 
Command-line options ........... 176 

A simple use of MAKE ............. 177 
Creating makefiles ................. 180 
Components of a makefile .......... 180 

Comments ...................... 181 
Command lists ...................... 181 

Prefixes ...................... 182 
Command body ............... 182 
Batching programs ............. 183 
Executing DOS commands ...... 185 

E li·rul xp Clt es .................... 186 
Special considerations .......... 187 
Examples ..................... 187 
Automatic dependency 
checking ..................... 188 

Implicit rules .................... 189 
Macros ......................... 191 

D fin· e mg macros ............... 192 
U· smg macros ................. 192 
Special considerations .......... 193 
Predefined macros ............. 193 
File name macros .............. 194 

D· . rrechves ........................ 196 
Dot directives ............... . . . . 196 

.PATH.extension .............. 197 
File-inclusion directive ........... 197 
Conditional execution directives ... 198 

Expressions allowed in conditional 
directives ..................... 199 

Error directive .................. 201 
Macro undefinition directive ...... 201 

MAKE error messages .............. 201 
Fatal error messages ............. 202 
Errors .......................... 203 

v 

TLIB: The Turbo Librarian ............ 206 
The advantages of using object modUle 
libraries .......................... 206 
The components of a TLIB command 
line .............................. 207 

The operation list ................ 208 
File and module names ......... 208 
TLIB operations ............... 208 

Using response files ................ 209 
Creating an extended dictionary: The IE 
option ........................... 210 
Setting the page size: The IP option .. 210 
Advanced operation: The IC option . 211 
Examples ......................... 211 

Turbo Link ......................... 212 
Invoking TLINK ................... 212 

Using response files .............. 214 
TLINK options .................... 215 

lx, 1m, Is options ............... 215 
II (line numbers) ................ 217 
Ii (uninitialized trailing segments) . 217 
In (ignore default libraries) ....... 217 
I c (case sensitivity) .............. 217 
I d (duplicate symbols) ........... 217 
Ie (extended dictionary) .......... 218 
I t (tiny model .COM file) ......... 218 
Iv option ....................... 218 
13 (80386 32-bit code) ............ 219 
Restrictions ..................... 219 

Error messages .................... 219 
Fa tal errors ..................... 220 
Nonfatal errors .................. 223 
Warnings ....................... 224 

TOUCH ............................ 225 

Appendix E Error messages 227 
Informa tion messages ................ 227 
Warning and error messages .......... 228 
Fa tal error messages ................. 252 

Index 257 



T A B 

2.1: MASM mode operator precedence ... 14 
2.2: Ideal mode operator precedence .... 15 
3.1: Default segments and types for tiny 

memory model .................. 114 
3.2: Default segments and types for small 

memory model .................. 114 
3.3: Default segments and types for medium 

memory model .................. 114 

vi 

L E s 

3.4: Default segments and types for compact 
memory model ................... 114 

3.5: Default segments and types for large or 
huge memory model ............. 115 

3.6: Default segments and types for Turbo 
Pascal (TP ASCAL) memory model . 115 

D.1: MAKE directives ................ 196 



F G u R E s 

D.1: petalled map of segments ......... 216 

vii 





N T R o D u c T o N 

This book is the second of the two books accompanying the Turbo 
Assembler package. Now that you've probably thoroughly 
perused the first manual (User's Guide) in this set, you'll want to 
look at this one for all the nitty-gritty information. 

The Reference Guide is just that-a straight and to-the-point 
reference about Turbo Assembler. !fyou find you still need to 
know more about the basics of assembly language, go back to the 
User's Guide for some in-depth discussions. 

Hardware and software requirements 

Turbo Assembler runs on the IBM PC family of computers, 
including the XT, AT, and PS/2, along with all true compatibles. 
Turbo Assembler requires MS-DOS 2.0 or later and at least 256K 
of memory. 

Turbo Assembler generates instructions for the 8086, 80186, 80286, 
80386, and 80486 processors. It also generates floating-point 
instructions for the 8087, 80287, and 80387 numeric coprocessors. 

What's in this manual 

Introduction 

Here's what we discuss in this manual: 

Chapter 1: Predefined symbols tells you about Turbo Assembler's 
equates. 

Chapter 2: Operators describes the various operators Turbo 
Assembler provides. 

Chapter 3: Directives provides, in alphabetical order, detailed 
information about all the Turbo Assembler directives. 



Appendix A: Turbo Assembler syntax illustrates Turbo Assembler 
expressions (both MASM and Ideal modes) in modified Backus
Naur form (BNF). 

Appendix B: Compatibility Issues covers the differences between 
MASM and Turbo Assembler MASM mode. 

Appendix C: Turbo Assembler highlights details Turbo 
Assembler's enhancements that add to those of MASM. 

Appendix D: Turbo Assembler utilities describes three of the 
utilities that come with this package: MAKE, TLINK, and TLIB; 
information about GREP, TCREF, and OBJXREF are in files on 
your distribution disks. 

Appendix E: Turbo Assembler error messages describes all the 
error messages that can be generated when using Turbo 
Assembler: information messages, fatal error messages, warning 
messages, and error messages. 

Notational conventions 

When we talk about IBM PCs or compatibles, we're referring to 
any computer that uses the 8088, 8086, 80186, 80286, and 80386 
chips (all of these chips are commonly referred to as 80x86). When 
discussing PC-DOS, DOS, or MS-DOS, we're referring to version 
2.0 or greater of the operating system. 

All typefaces were produced by Borland's Sprint: The Professional 
Word Processor, output on a PostScript printer. The different 
typefaces displayed are used for the following purposes: 

Italics In text, italics represent labels, placeholders, 
variables, and arrays. In syntax expressions, 
placeholders are set in italics to indicate that 
they are user-defined. 

Boldface Boldface is used in text for symbols and 
command-line options. 

CAPITALS In text, this typeface represents instructions, 
directives, registers, and operators. 

Monospace Monospace type is used to display any 
sample code, text or code that appears on 
your screen, and any text that you must 

2 Turbo Assembler Reference Guide 



Keycaps 

actually type to assemble, link, and run a 
program. 

In text, keycaps are used to indicate a key on 
your keyboard. It is often used when 
describing a key you must press to perform a 
particular function; for example, "Press Enter 
after typing your program name a t the 
prompt." 

How to contact Borland 

Introduction 

If, after reading this manual and using Turbo Assembler, 
you would like to contact Borland with comments, 
questions, or suggestions, we suggest the following 
procedures: 

• The best way is to log on to Borland's forum on 
CompuServe: Type GO BPROGB at the main CompuServe 
menu and follow the menus to Turbo Assembler. Leave 
your questions or comments here for the support staff to 
process. 

• If you prefer, write a letter detailing your problem and 
send it to 

Technical Support Department 
Borland International 

P.O. Box 660001 
1700 Green Hills Drive 

Scotts Valley, CA 95066 U.S. 

• You can also telephone our Technical Support department 
at (408) 438-5300. To help us handle your problem as 
quickly as possible, have these items handy before you 
call: 

• product name and version number 
• product serial number 
• computer make and model number 
• operating system and version number 

If you're not familiar with Borland's No-Nonsense License 
statement, now's the time to read the agreement at the front 
of this manual and mail in your completed product 
registration card. 

3 



4 Turbo Assembler Reference Guide 



c H A p T E R 

1 

Predefined symbols 

Turbo Assembler provides a number of predefined symbols that 
you can use in your programs. These symbols can have different 
values at different places in your source file. They are similar to 
equated symbols that you define using the EQU directive. When 
Turbo Assembler encounters one of these symbols in your source 
file, it replaces it with the current value of that predefined symbol. 

Some of these symbols are text (string> equates, some are numeric 
equates, and others are aliases. The string values can be used 
anywhere that you would use a character string, for example to 
initialize a series of data bytes using the DB directive: 

NOW DB ??tirne 

Numeric predefined values can be used anywhere that you would 
use a number: 

IF ??version GT lOOh 

Alias values make the predefined symbol into a synonym for the 
value it represents, allowing you to use the predefined symbol 
name anywhere you would use an ordinary symbol name: 

ASSUME cs:@code 

All the predefined symbols can be used in both MASM and Ideal 
mode. 

If you use the Iml command-line option when assembling, you 
must use the predefined symbol names exactly as ~hey are 
described on the following pages. 

Chapter 7, Predefined symbols 5 



$ 

6 

The following rule applies to predefined symbols starting with an 
at-sign (@): The first letter of each word that makes up part of the 
symbol name is an uppercase letter (except for segment names); the rest 
of the word is lowercase. As an example, 

@CodeSize 
@FileName 
@WordSize 

The exception is redefined symbols, which refer to segments. 
Segment names begin with an at-sign (@) and are all lowercase. 
For example, 

@curseg 
@fardata 

For symbols that start with two question marks (??), the letters are 
all lowercase. For example, 

??data 
??version 

Function Location counter operand 

Remarks This special symbol represents the current location counter. The location 
counter is the current offset within the current segment during assembly. 
(Note: This operand has the same attribute as a near label.) 

The location counter is an address that is incremented to reflect the 
current address as each statement in the source file is assembled. 

Example helpMessage 
helplength 

DB 'This is help for the program.' 
= $ - helpMessage 

After these two lines are assembled, the symbol help Length will equal the 
length of the help message. 

Turbo Assembler Reference Guide 



@Code 

@code 

Function Alias equate for .CODE segment name 

Remarks When you use the simplified segmentation directives (.MODEL, and so 
on), this equate lets you use the name of the code segment in expressions, 
such as ASSUMEs and segment overrides. 

Example . CODE 

@CodeSize 

rnov ax,@code 
rnov dx,ax 
ASSUME ds:@code 

Function Numeric equate that indicates code memory model 

Remarks @CodeSlze is set to 0 for the small and compact memory models that use 
near code pointers, and is set to 1 for all other models that use far code 
pointers. 

You can use this symbol to control how pointers to functions are 
assembled, based on the memory model. 

Example IF @CodeSize EQ 0 
procptr DW PROCl ipointer to near procedure 

@Cpu 

ELSE 
procptr DD PROCl 

ENDIF 
ipointer to far procedure 

Function Numeric equate that returns information about current processor 

Remarks The value returned by @Cpu encodes the processor type in a number of 
single-bit fields: 

Chapter 7, Predefined symbols 7 



@Cpu 

Bit Description 

o 8086 instructions enabled 
1 80186 instructions enabled 
2 80286 instructions enabled 
3 80386 instructions enabled 
7 Privileged instructions enabled 

(80286 and 80386) 
8 8087 numeric processor instructions 

10 80287 numeric processor instructions 
11 80387 numeric processor instructions 

The bits not defined here are reserved for future use. Mask them off when 
using @Cpu so that your programs will remain compatible with future 
versions of Turbo Assembler. 

Since the 8086 processor family is upward compatible, when you enable a 
processor type with a directive like .286, the lower processor types (8086, 
80186) are automatically enabled as well. 

Note: This equate only provides information about the processor you've 
selected at assembly-time via the .286 and related directives. The 
processor type your program is executing on at run time is not indicated. 

Example IPUSH = @Cpu AND 2 ;allow irmnediate push on 186 and above 
IF IPUSH 
PUSH 1234 
ELSE 

mov ax,1234 
push ax 

ENDIF 

@curseg 

8 

Function Alias equate for current segment 

Remarks @curseg changes throughout assembly to reflect the current segment 
name. You usually use this after you have used the simplified 
segmentation directives (.MODEL, and so on). 

Use @curseg to generate ASSUME statements, segment overrides, or any 
other statement that needs to use the current segment name. 

Example . CODE 
ASSUME cs:@curseg 

Turbo Assembler Reference Guide 



@data 

@data 

Function Alias equate for near data group name 

Remarks When you use the simplified segmentation directives (.MODEL, and so 
on), this equate lets you use the group name shared by all the near data 
segments (.DATA, .CONST, .STACK) in expressions such as ASSUMEs and 
segment overrides. 

Example . CODE 

@DataSize 

mov ax,@data 
mov ds,ax 
ASSUME ds: @data 

Function Numeric equate that indicates the data memory model 

Remarks @DataSlze is set to a for the tiny, small, and medium memory models that 
use near data pointers, set to 1 for the compact and large models that use 
far data pointers, and set to 2 for the huge memory model. 

You can use this symbol to control how pointers to data are assembled, 
based on the memory model. 

Example IF @DataSize EQ 1 
lea si,VarPtr 

??date 

mov aI, [BYTE PTR si] 
ELSE 

les si,VarPtr 
mov aI, [BYTE PTR es:si] 

ENDIF 

Function String equate for today's date 

Remarks ??date defines a text equate that represents today's date. The exact format 
of the date string is determined by the DOS country code. 

See also ??time 

Example asmdate DB ??date ; 8-byte string 

Chapter 1, Predefined symbols 9 



@fardata 

@fardata 

Function Alias equate for initialized far data segment name 

Remarks When you use the simplified segmentation directives (.MODEL, and so 
on), this equate lets you use the name of the initialized far data segment 
(.FARDATA) in expressions such as ASSUMEs and segment overrides. 

Example mov ax, @fardata 
mov ds,ax 
ASSUME ds:@fardata 

@fardata? 

Function Alias equate for un initialized far data segment name 

Remarks When you use the simplified segmentation directives (.MODEL, and so 
on), this equate lets you use the name of the uninitialized far data segment 
(.FARDATA?) in expressions such as ASSUMEs and segment overrides. 

Example mov ax,@fardata? 
mov ds,ax 
ASSUME ds:@fardata? 

@FileName 

Function Alias equate for current assembly file 

See also ??filename 

??filename 

10 

Function String equate for current assembly file 

Remarks ??filename defines an eight-character string that represents the file name 
being assembled. If the file name is less than eight characters, it is padded 
with spaces. 

Example SrcName DB ??filename ; 8-bytes always 

Turbo Assembler Reference Guide 



@Model 

@Model 

Function Numeric equate that indicates the model currently in effect 

Remarks @Model returns an integer indicating the current model: 

.O=TINY 

.1 = SMALL 

.2= COMPACT 

.3= MEDIUM 

.4 = LARGE 
115 = HUGE 

See also .MODEL, MODEL 

@Startup 

Function Label that marks the beginning of startup code 

Remarks @Startup is a near label, defined by the .STARTUP or STARTUPCODE 
directive, which marks the beginning of the startup code generated by 
that directive. 

See also .STARTUP, STARTUPCODE 

??time 

Function String equate for the current time 

Remarks ??tlme defines a text equate that represents the current time. The exact 
format of the time string is determined by the DOS country code. 

See also ??date 

Example asmtime DB ??time ; 8-byte string 

Chapter 7 I Predefined symbols 11 



??version 

??version 

Function Numeric equate for this Turbo Assembler version 

Remarks The high byte is the major version number, and the low byte is the minor 
version number. For example, V2.l would be represented as 201h. 

??verslon lets you write source files that can take advantage of features in 
particular versions of Turbo Assembler. 

This equate also lets your source files know whether they are being 
assembled by MASM or Turbo Assembler, since ??verslon is not defined 
byMASM. 

Example IFDEF ??version 
;Turbo Assembler stuff 
ENDIF 

@WordSize 

12 

Function Numeric equate that indicates 16- or 32-bit segments 

Remarks @WordSlze returns 2 if the current segment is a 16-bit segment, or 4 if the 
segment is a 32-bit segment. 

Example IF @WordSize EQ 4 
mov esp,OlOOh 

ELSE 
mov sp,OlOOh 

ENDIF 

Turbo Assembler Reference Guide 



c H A p T E R 

2 

Operators 

Operators let you form complex expressions that can be used as 
an operand to an instruction or a directive. Operators act upon 
operands, such as program symbol names and constant values. 
Turbo Assembler evaluates expressions when it assembles your 
source file and uses the calculated result in place of the 
expression. One way you can use expressions is to calculate a 
value that depends on other values that may change as you 
modify your source file. 

This chapter details the operators Turbo Assembler provides. 

Arithmetic precision 

Chapter 2, Operators 

Turbo Assembler uses 16- or 32-bit arithmetic, depending on 
whether you have enabled the 80386 processor with the .386 or 
.386P directive. When you are assembling code for the 80386 
processor or in Ideal mode, some expressions will yield different 
results than when they are evaluted in 16-bit mode; for example, 

DW (lOOOh * lOOOh) / lOOOh 

generates a word of 1000h in 32-bit mode and a word of 0 in 16-bit 
mode. In 16-bit mode, multiplication results in an overflow 
condition, saving only the bottom 16 bits of the result. 

13 



14 

Operator 
precedence Turbo Assembler evaluates expressions using the following rules: 

Table 2.1 
MASM mode 

operator 
precedence 

• Operators with higher precedence are performed before ones 
with lower precedence. 

• Operators with the same precedence are performed starting 
with the leftmost one in the expression. 

• If an expression contains a subexpression within parentheses, 
that subexpression is evaluated first because expressions within 
parentheses have the highest priority. 

Ideal mode and MASM mode have a different precedence for 
some operators. The following two tables show the precedence of 
the operators in both modes. The first line in each table shows the 
operators with the highest priority, and the last line those 
operators with the lowest priority. Within a line, all the operators 
have the same priority. 

<>, 0, [], LENGTH, MASK, SIZE, WIDTH 

. (structure member selector) 
HIGH, LOW 

+, - (unary) 
: (segment override) 
OFFSET, PTR, SEG, THIS, TYPE 

*, I, MOD, SHL, SHR 

+, - (binary) 
EQ,GE,GT,LE,LT,NE 

NOT 

AND 

OR,XOR 

LARGE, SHORT, SMALL, .TYPE 

Turbo Assembler Reference Guide 



Table 2.2 
Ideal mode 

operator 
precedence 

0, [], LENGTH, MASK, OFFSET, SEG, SIZE, WIDTH 

HIGH, LOW 

+, - (unary) 
*, I, MOD, SHL, SHR 

+, - (binary) 
EQ,GE,GT,LE, LT, NE 

NOT 

AND 

OR, XOR 

: (segment override) 
. (structure member selector) 
HIGH (before pointer), LARGE, LOW (before pointer), 

PTR, SHORT, SMALL, SYMTYPE 

The operators allowed in expressions follow in alphabetical order. 

( ) Ideal, MASM 

Function Marks an expression for early evaluation 

Syntax (expression) 

Remarks Use parentheses to alter the normal priority of operator evaluation. Any 
expression enclosed within parentheses will be evaluated before the 
operator(s) that comes before or after the parentheses. 

See also +, -, *, I, MOD, SHL, SHR 

Example (3 + 4) * 5 ievaluates to 35 
3 + 4 * 5 ievaluates to 23 

Chapter 2, Operators 15 



* 

* 

Function 

Syntax 

Remarks 

See also 

Ideal, MASM 

Multiplies two integer expressions 

expressionl * expression2 

expressionl and expression2 must both evaluate to integer constants. The * 
operator can also be used between a register and a constant to support 386 
addressing modes. 

+, -, I, MOD, SHL, SHR 

Example SCREENSIZE = 25 * 80 ; i chars onscreen 

The * operator can also be used between a register and a constant to 
support 386 addressing modes. 

+ (Binary) Ideal, MASM 

Function Adds two expressions 

Syntax expressionl + expression2 

Remarks At least one of express,ionl or expression2 must evaluate to a constant. One 
expression can evaluate to an address. 

See also -, *, I, MOD, SHL, SHR 

Example x DW 4 DUP (?) 

XPTR DW X + 4 ;third word in buffer 

+ (Unary) Ideal, MASM 

16 

Function Indicates a positive number 

Syntax + expression 

Remarks This operator has no effect. It is available merely to make explicit positive 
constants. 

See also -, *, I, MOD, SHL, SHR 

Example Foo DB +4 ; redundant + 

Turbo Assembler Reference Guide 



- (Binary) 

- (Binary) Ideal, MASM 

Function Subtracts two expressions 

Syntax expressionl - expression2 

Remarks There are three combinations of operands you can use with subtraction: 

See also 

Example 

• expressionl and expression2 can both evaluate to integer constants. 
• expressionl and expression2 can both be addresses as long as both 

addresses are within the same segment. When you subtract two 
addresses, the result is a constant. Ideal mode checks expressionl and 
expression2 for consistency much more stringently than MASM mode. In 
particular, Ideal mode correctly handles subtracting a segment from a 
far pointer, leaving just an offset fixup in cases where this is a valid 
operation. 

• expressionl can be an address and expression2 can be a constant, but not 
vice versa. The result is another address. 

+, *,/, MOD, SHL, SHR 

DATA SEGMENT 
DW 

XYZ EQU 10 
VALl DW XYZ - 1 ;constant 9 
VAL2 DW ? 
V1SIZE DW VAL2 - VALl ;constant 2 
V1BEFORE DW VALl - 2 ;points to DW before VALlE 
DATA ENDS 

- (Unary) Ideal, MASM 

Function Changes the sign of an expression 

Syntax - expression 

Remarks expression must evaluate to a constant. If expression is positive, the result 
will be a negative number of the same magnitude. If expression is negative, 
the result will be a positive number. 

See also +, *,/, MOD, SHL, SHR 

Example LOWTEMP DB -10 ;pretty chilly 

Chapter 2, Operators 17 



Ideal, MASM 

Function Selects a structure member 

Syntax memptr. fieldname 

Remarks In MASM mode, memptr can be any operand that refers to a memory 
location, and field name can be the name of any member in any structure or 
even a constant expression. If memptr is the name of a structure (like 
XINST), there's no requirement that field name be a member in that 
structure. This operator acts much like the + operator: It adds the offset 
within the structure of fieldname to the memory address of memptr, but it 
also gives it the size of field name. 

In Ideal mode, its operation is much stricter. memptr must evaluate to a 
pointer to a structure, and fieldname must be a member of that structure. 
This lets you have different structures with the same field names, but a 
different offset and size. If you want to use a base and/or index register 
for memptr, you must precede it with a typecast for the name of the 
structure you want to access (take a look at the example that follows). 

See also STRUC 

Example x STRUC 
MEMBERl DB 
MEMBER2 DW ? 
X ENDS 
XINST X <> 

ian instance of STRUC X 
;MASM mode 

mov [bx].Mernber2,1 
;Ideal mode 

mov [(X PTR bx) .Mernber2],1 ;notice typecast 

/ Ideal, MASM 

Function Divides two integer expressions 

Syntax expressionl / expression2 

Remarks expressionl and expression2 must both evaluate to integer constants. The 
result is expressionl is divided by expression2; any remainder is discarded. 
You can get the remainder by using the MOD operator with the same 
operands you supplied to the I operator. 

See also +,-,., MOD, SHL, SHR 

18 Turbo Assembler Reference Guide 



Example x = 55 / 10 i= 5 (integer divide) 

Ideal, MASM 

Function Generates segment or group override 

Syntax segorgroup: expression 

Remarks The colon (:) forces the address of expression to be generated relative to the 
specified segment or group. You use this to force the assembler to use 
something other than its default method for accessing expression. 

You can specify segorgroup in several ways: 

• as a segment register: C5, D5, E5, or 55 (or F5 or G5 if you have enabled 
the 80386 processor with the P386 or P386N directive) 

• as a segment name defined with the SEGMENT directive 

• as a group name defined with the GROUP directive 

II as an expression starting with the SEG operator 

expression can be a constant- or a memory-referencing expression. 

Example mov cl,es: [si+4] 
VarPtr DD DGROUP:MEMVAR 

? Ideal, MASM 

Function Initializes with indeterminate data 

Syntax Dx? 

Remarks Dx refers to one of the data allocation directives (DB, DO, and so on). Use 
? when you want to allocate data but don't want to explicitly assign a 
value to it. 

You should use? when the data area is initialized by your program before 
being used. Using? rather than 0 makes the initialization method explicit 
and visible in your source code. 

When you use? as the only value in or outside a CUP expression, no 
object code is generated. If you use? inside a CUP expression that also 
contains initialized values, it will be treated as a O. 

Chapter 2, Operators 19 



? 

Using? outside of a DUP causes the program counter to be advanced but 
no data to be emitted. You can also use? for the same purpose in, for 
example, a structure: 

x struc 
a db 1 
x ends 

xinst ? 

See also DUP 

ideclare structure 

iundefined structure instance 

Example MyBuf DB 20 DUP (?) iallocate undefined area 

( ) operator Ideal, MASM 

20 

Function Specifies addition or indexed memory operand 

Syntax [expressionl] [expression2] 

Remarks This operator behaves very differently in MASM mode and in Ideal mode. 

In MASM mode, it can act as an addition operator, simply adding 
expressionl to expression2. The same limitations on operand combinations 
apply; for example, expressionl and expression2 can't both be addresses. [ ] 
can also indicate register indirect memory operands, using the BX, BP, 51, 
and DI registers. The indirect register(s) must be enclosed within the [ ]. 
An indirect displacement may appear either inside or outside the 
brackets. 

In Ideal mode, [ ] means "memory reference." Any operand that addresses 
memory must be enclosed in brackets. This provides a clear, predictable, 
unambiguous way of controlling whether an operand is immediate or 
memory-referencing. 

See also + 

Example i MASM mode 
mov al,BYTE PTR es:[bx] 
mov al,cs:l0h 

Ideal mode 
mov aI, [BYTE es:bx] 
mov aI, [cs:l0h] 

Turbo Assembler Reference Guide 



AND 

AND Ideal, MASM 

Function Bitwise logical AND 

Syntax expressionl AND expression2 

Remarks Performs a bit-by-bit logical AND of each bit in expressionl and expression2. 
The result has a 1 in any bit position that had a 1 in both expressions and a 
o in all other bit positions. 

See also NOT, OR, XOR 

Example mov al,11110000b AND 10100000B ; loads 10100000B 

BYTE Ideal 

Function Forces expression to be byte size 

Syntax BYTE expression 

Remarks expression must be an address. The result is an expression that points to 
the same memory address but always has BYTE size, regardless of the 
original size of expression. 

You usually use this operator to define the size of a forward-referenced 
expression, or to explicitly state the size of a register indirect expression 
from which the size cannot be determined. 

In MASM mode, you must use the PTR directive preceded with the BYTE 
type to perform this function. 

See also PTR 

Example mov [BYTE bx], 1 
mov [BYTE X],l 
X DB 0 

;byte immediate move 
;forward reference 

CODEPTR Ideal 

Function Returns the default procedure address size 

Mode Ideal 

Syntax CODEPTR expression 

Chapter 2, Operators 21 



CODEPTR 

Remarks CODEPTR returns the default procedure address size depending on the 
current model (WORD for models with NEAR code; DWORD for models 
with FAR code). CODEPTR can be used wherever DATAPTR is used. 

See also DATAPTR 

DATAPTR Ideal 

Function Forces expression to model-dependent size 

Syntax DATAPTR expression 

Remarks Declares expression to be a near or far pointer, depending on selected 
memory model. 

See also CODEPTR, PTR, UNKNOWN 

Example mov [DATAPTR bx],l 

DUP Ideal, MASM 

Function Repeats a data allocation 

Syntax count DUP (expression [,expression] ... ) 

Remarks count defines the number of times that the data defined by the expression(s) 
will be repeated. The DUP operator appears after one of the data 
allocation directives (DB, DW, and so on). 

Each expression is an initializing value that is valid for the particular data 
allocation type that DUP follows. 

You can use the DUP operator again within an expression, nested up to 17 
levels. 

You must always surround the expression values with parentheses, O. 
Example WRDBUF DW 40 DUP (1) i 40 words initialized to 1 

SQUARE DB 4 DUP (4 DUP (0)) i4x4 array of 0 

22 Turbo Assembler Reference Guide 



DWORD 

DWORD Ideal 

Function Forces expression to be doubleword size 

Syntax DWORD expression 

Remarks expression must be an address. The result is an expression that points to 
the same memory address but always has DWORD size, regardless of the 
original expression size. 

You usually use this operator to define the size of a forward-referenced 
expression. 

To perfonn this function in MASM mode, you must use the PTR directive 
preceded by the DWORD type. 

See also PTR 

Example call DWORD FPTR 

EQ Ideal, MASM 

Function Returns true if expressions are equal 

Syntax expressionl EQ expression2 

Remarks expressionl and expression2 must both evaluate to constants. EQ returns 
true (-1) if both expressions are equal and returns false (0) if they have 
different values. 

EQ considers expressionl and expression2 to be signed 32-bit numbers, with 
the top bit being the sign bit. This means that -1 EQ OFFFFFFFFh 
evaluates to true. 

See also GE, GT, LE, LT, NE 

Example ALIE 4 EQ 3 i= 0 (false) 
ATRUTH = 6 EQ 6 i= 1 (true) 

Chapter 2, Operators 23 



FAR 

FAR Ideal 

Function Forces an expression to be a far code pointer 

Syntax FAR expression 

Remarks expression must be an address. The result is an expression that points to 
the same memory address but is a far pointer with both a segment and an 
offset, regardless of the original expression type. 

You usually use this operator to call or jump to a forward-referenced label 
that is declared as FAR later in the source file. 

To perform this function in MASM mode, you must use the PTR directive 
preceded by the FAR type. 

See also NEAR 

Example call FAR ABe ; forward reference 
ABe PRoe FAR 

FWORD Ideal 

24 

Function Forces expression to be 32-bit far pointer size 

Syntax FWORD. e~pression 

Remarks expression must be an address. The result is an expression that points to 
the same memory address but always has FWORD size, regardless of the 
origin~l expression size. 

You usually use this operator to define the size of a forward-referenced 
expression or to explicitly state the size of a register indirect expression 
from which the size cannot be determined. 

To perform this function in MASM mode, you must use the PTR directive 
preceded by the FWORD type. 

See also PTR, PWORD 

Example .386 
call FWORD [bx] 
jmp FWORD funcp 
funcp DF myproc 

;far indirect 48-bit call 
;forward reference 
;indirect pointer to PRoe 

Turbo Assembler Reference Guide 



GE 

GE Ideal, MASM 

Function Returns true if one expression is greater than another 

Syntax expressionl GE expression2 

Remarks expression1 and expression2 must both evaluate to constants. GE returns 
true (-1) if expression1 is greater than or equal to expression2 and returns 
false (0) if it is less. 

GE considers expression1 and expression2 to be signed 33-bit numbers, with 
the top bit being the sign bit. This means that 1 GE -1 evaluates to true, 
but 1 GE OFFFFFFFFh evaluates to false. 

See also EQ, GT, LE, LT, NE 

Example TROOTH = 5 GE 5 
AFIB = 5 GE 6 

GT Ideal, MASM 

Function Returns true if one expression is greater than another 

Syntax expressionl GT expression2 

Remarks expression1 and expression2 must both evaluate to constants. GT returns 
true (-1) if expression1 is greater than expression2, and returns false (0) if it 
is less than or equal. 

GT considers expression1 and expression2 to be signed 33-bit numbers, with 
the top bit being the sign bit. This means that 1 GT -1 evaluates to true, 
but 1 GT OFFFFFFFFh evaluates to false. 

See also EQ, GE, LE, L T, NE 

Example AFACT = 10 GT 9 
NOTSO = 10 GT 11 

Chapter 2, Operators 25 



HIGH 

HIGH Ideal, MASM 

Function Returns the high part of an expression 

Syntax HIGH expression 

Ideal mode only: 
type HIGH expression 

Remarks HIGH returns the top 8 bits of expression, which must evaluate to a 
constant. 

In Ideal mode, HIGH in conjunction with LOW becomes a powerful 
mechanism for extracting arbitrary fields from data items. type specifies 
the size of the field to extract from expression and can be any of the usual 
size specifiers (BYTE, WORD, DWORD, and so on). You can apply more 
than one HIGH or LOW operator to an expression; for example, the 
following is a byte address pointing to the third byte of the doubleword 
DBLVAL: 

BYTE LOW WORD HIGH OBLVAL 

See also LOW 

Example ; MASM and Ideal modes 
magic EQU 1234h 
mov cl,HIGH magic 
Ideal 
;Ideal mode only 
big 00 12345678h 
mov ax, [WORD HIGH big] ;loads 1234h into AX 

LARGE Ideal (386 modes only), MASM 

26 

Function Sets an expression's offset size to 32 bits 

Syntax LARGE expression 

Remarks expression is any expression or operand, which LARGE converts into a 32-
bit offset. You usually use this to remove ambiguity about the size of an 
operation. For example, if you have enabled the 80386 processor with the 
P3SS directive, this code can be interpreted as either a far call with a 
segment and 16-bit offset or a near call using a 32-bit offset: 

jmp [OWORD PTR ABC] 

You can remove the ambiguity by using the LARGE directive: 

Turbo Assembler Reference Guide 



LARGE 

jmp LARGE [DWORD PTR ABC] ;32-bit offset near call 

In this example, LARGE appears outside the brackets, thereby affecting 
the interpretation of the DWORD read from memory. If LARGE appears 

. inside the brackets, it determines the size of the address from which to 
read the operand, not the size of the operand once it is read from memory. 
For example, this code means XYZ is a 4-byte pointer: 

jmp LARGE [LARGE DWORD PTR XYZ] 

Treat it as a 32-bit offset, and JMP indirect through that address, reading a 
JMP target address that is also a 32-bit offset. 

By combining the LARGE and SMALL operators, both inside and outside 
brackets, you can effect any combination of an indirect JMP or CALL from 
a 16- or 32-bit segment to a 16- or 32-bit segment. 

You can also use LARGE to avoid erroneous assumptions when accessing 
forward -referenced variables: 

mov ax, [LARGE FOOBAR] ;FOOBAR is in a USE32 segment 

LARGE and SMALL can be used with other ambiguous instructions, such 
as LlDT and LGDT. 

See also SMALL 

Example ;MASM and Ideal modes 
magic EQU 1234h 
mov bl, HIGH magic 
Ideal 

;Ideal mode only 
big DD 12345678h 
mov ax, [word HIGH big] ;leads 1234h into AX 

LE Ideal, MASM 

Function Returns true if one expression is less than or equal to another 

Syntax expressionl LE expression2 

Remarks expressionl and expression2 must both evaluate to constants. LE returns 
true (-1) if expressionl is less than or equal to expression2 and returns false 
(0) if it is greater. 

LE considers expressionl and expression2 to be signed 33-bit numbers, with 
the top bit being the sign bit. This means that 1 LE -1 evaluates to false, 
but 1 LE OFFFFFFFFh evaluates to true. 

Chapter 2, Operators 27 



LE 

See also EQ, GE, GT, L T, NE 

Example YUP = 5 LT 6 ;true = -1 

LENGTH Ideal, MASM 

Function Returns number of allocated data elements 

Syntax LENGTH name 

Remarks name is a symbol that refers to a data item allocated with one of the data 
allocation directives (DB, DO, and so on). LENGTH returns the number of 
repeated elements in name. If name was not declared using the DUP 
operator, it always returns 1. 

LENGTH returns 1 even when name refers to a data item that you allocated 
with multiple items (by separating them with commas). 

See also SIZE, TYPE 

Example MSG DB "Hello" 
array OW 10 DUP {OJ 
nurnbrs DO 1,2,3,4 
var DQ ? 
Imsg = LENGTH MSG ;= 1, no DUP 
Iarray = LENGTH ARRAY ;=10, DUP repeat count 
Inumbrs = LENGTH NUMBRS ;= 1, no DUP 
Ivar = LENGTH VAR ;= 1, no DUP 

LOW Ideal, MASM 

28 

Function Returns the low part of an expression 

Syntax LOW expression 

Ideal mode only: 
type LOW expression 

Remarks LOW returns the bottom 8 bits of expression, which must evaluate to a 
constant. 

In Ideal mode, LOW in conjunction with HIGH becomes a powerful 
mechanism for extracting arbitrary fields from data items. type specifies 
the size of the field to extract from expression and can be any of the usual 
size specifiers (BYTE, WORD, DWORD, and so on). You can apply more 
than one LOW or HIGH operator to an expression; for example, 

Turbo Assembler Reference Guide 



LOW 

BYTE LOW WORD HIGH DBLVAL 

is a byte address pointing to the third byte of the doubleword DBLVAL. 

See also HIGH 

Example ;MASM and Ideal modes 
magic EQU 1234h 
mov bl,LOW magic 
ideal 
;Ideal mode only 
big DD 12345678h 
mov ax, [WORD LOW big] ;loads 5678h into AX 

LT Ideal, MASM 

Function Returns true if one expression is less than another 

Syntax expression1 LT expression2 

Remarks expressionl and expression2 must both evaluate to constants. L T returns 
true (-1) if expressionl is less than expression2 and returns false (0) if it is 
grea ter than or equal. 

L T considers expressionl and expression2 to be signed 33-bit numbers, with 
the top bit being the sign bit. This means that 1 L T -1 evaluates to false, 
but 1 L T OFFFFFFFFH evaluates to true. 

See also EQ, GE, GT, LE, NE 

Example JA = 3 LT 4 ;true = -1 

MASK Ideal, MASM 

Function Returns a bit mask for a record field 

Syntax MASK recordfieldname 
MASK record 

Remarks recordfieldname is the name of any field name in a previously defined 
record. MASK returns a value with bits turned on to correspond to the 
position in the record that recordfieldname occupies. 

record is the name of a previously defined record. MASK returns a value 
with bits turned on for all the fields in the record. 

Chapter 2, Operators 29 



MASK 

You can use MASK to isolate an individual field in a record by ANDing the 
mask value with the entire record. 

See also WIDTH 

Example STAT RECORD A: 3, b: 4, c: 5 
NEWSTAT STAT <0,2,1> 
mov aI,NEWSTAT ;get record 
and aI,MASK B ;isolate B 
mov aI, MASK STAT ;get mask for entire record 

MOD Ideal, MASM 

Function Returns remainder (modulus) from dividing two expressions 

Syntax expressionsl MOD expression2 

Remarks expressionl and expression2 must both evaluate to integer constants. The 
result is the remainder of expressionl divided by expression2. 

See also +, -, ., /, SHL, SHR 

Example REMAINS = 17 / 5 ;= 2 

NE Ideal, MASM 

30 

Function Returns true if expressions are not equal 

Syntax expressionl NE expression2 

Remarks expressionl and expression2 must both evaluate to constants. NE returns 
true (-1) if both expressions are not equal and returns false (0) if they are 
equal. 

NE considers expressionl and expression2 to be signed 32-bit numbers, with 
the top bit being the sign bit. This means that -1 NE OFFFFFFFFh evaluates 
to false. 

See also EQ, GE, GT, LE, LT 

Example aint = 10 NE 10 ; false = 0 

Turbo Assembler Reference Guide 



NEAR 

NEAR Ideal 

Function Forces an expression to be a near code pointer 

Syntax NEAR expression 

Remarks expression must be an address. The result is an expression that points to 
the same memory address but is a NEAR pointer with only an offset and 
no segment, regardless of the original expression type. 

You usually use this operator to call or jump to a far label or procedure 
with a near jump or call instruction. See the example section for a typical 
scenario. 

To perform this function in MASM mode, you must use the PTR directive 
preceded with the NEAR type. 

See also FAR 

Example Ideal 
PROC farp FAR 

ibody of procedure 
ENDP farp 
istill in same segment 
push cs 
call NEAR PTR farp ifaster/smaller than far call 

NOT Ideal, MASM 

Function Bitwise complement 

Syntax NOT expression 

Remarks NOT inverts all the bits in expression, turning 0 bits into 1 and 1 bits into O. 

See also AND, OR, XOR 

Example mov aI, NOT 11110011b i loads OOOOllOOb 

Chapter 2, Operators 31 



OFFSET 

OFFSET Ideal, MASM 

OR 

Function Returns an offset within a segment 

Syntax OFFSET expression 

Remarks expression can be any expression or operand that references a memory 
location. OFFSET returns a constant that represents the number of bytes 
between the start of the segment and the referenced memory location. 

If you are using the simplified segmentation directives (MODEL, and so 
on) or Ideal mode, OFFSET automatically returns offsets from the start of 
the group that a segment belongs to. If you are using the normal 
segmentation directives, and you want an offset from the start of a group 
rather than a segment, you must explicitly state the group as part of 
expression. For example, . . 

mov si,OFFSET BUFFER 

is not the same as 

mov si,OFFSET DGROUP:BUFFER 

unless the segment that contains BUFFER happens to be the first segment 
in DGROUP. 

See also SEG 

Example . DATA 
msg DB "Starting analysis" 
.CODE 
mov si,OFFSET msg iaddress of MSG 

Function Bitwise logical OR 

Syntax expressionl OR expression2 

Ideal, MASM 

Remarks OR performs a bit-by-bit logical OR of each bit in expressionl and 
expression2. The result has a 1 in any bit position that had a 1 in either or 
both expressions, and a 0 in all other bit positions. 

See also AND, NOT, XOR 

Example mov al,11110000b OR 10101010b ;loads 11111010b 

32 Turbo Assembler Reference Guide 



PROC 

PROC Ideal 

Function Forces an expression to be a near or far code pointer 

Syntax PROC expression 

Remarks expression must be an address. The result is an expression that points to 
the same memory address but is a near or far pointer, regardless of the 
original expression type. !fyou specified the TINY, SMALL, or COMPACT 
memory model with the .MODEL directive, the pointer will be near. 
Otherwise, it will be a far pointer. 

You usually use PROC to call or jump to a forward-referenced function 
when you are using the simplified segmentation directives. The example 
section shows a typical scenario. 

To perform this function in MASM mode, you must use the PTR directive 
preceded with the PROC type. 

See also FAR, NEAR 

Example .MODEL large 
. CODE 
Ideal 
call PROC Test! 

PROC Testl iactually far due to large model 

PTR Ideal, MASM 

Function Forces expression to have a particular size 

Syntax type PTR expression 

Remarks expression must be an address. The result of this operation is a reference to 
the same address, but with a different size, as determined by type. 

Typically, this operator is used to explicitly state the size of an expression 
w hose size is undetermined, but required. This can occur if an expression 
is forward referenced, for example. 

type must be one of the following in Ideal mode: 

• UNKNOWN, BYTE, WORD, DWORD, FWORD, PWORD, aWORD, TBYTE, 
DATAPTR, CODEPTR, or the name of a structure, for data 

• SHORT, NEAR, FAR, PROC for code 

Chapter 2, Operators 33 



PTR 

34 

In Ideal mode, you don't need to use the PTR operator. You can simply 
follow the type directly with expression. 

In MASM mode, type can be any of the following numbers . 

• For data: 

0= UNKNOWN 
1 = BYTE 
2=WORD 
4= DWORD 

• For code: 

OFFFFh = NEAR 

6=PWORD 
8= QWORD 

10 =TBYTE 

OFFFEh= FAR 

Correspondingly, in MASM mode the following keywords have these 
values . 

• For data: 

UNKNOWN =0 
BYTE = 1 
WORD=2 
DWORD=4 
PWORD=6 
FWORD=6 

• For code: 

NEAR = OFFFFh 
FAR =OFFFEh 

FWORD=6 
QWORD=8 
TBYTE = 10 
DATAPTR = 2 or 4 (depending 
on MODEL in use) 

eODEPTR = 2 or 4 (depending 
on MODEL in use) 

PRoe = OFFFFh or OFFFEh 
(depending on MODEL in use) 

See also BYTE, CODEPTR, DATAPTR, DWORD, FAR, FWORD, NEAR, PROC, 
PWORD, aWORD, TBYTE, WORD 

Example mov BYTE PTR[SI], 10 
fld QWORD PTR val 
val DQ 1234.5678 

;byte immediate mode 
;load quadword float 

Turbo Assembler Reference Guide 



PWORD 

PWORD Ideal, MASM 

Function Forces expression to be 32-bit, far pointer size 

See also FWORD 

QWORD Ideal 

Function Forces expression to be quad word size 

Syntax QWORD expression 

Remarks expression must be an address. The result is an expression that points to 
the same memory address but always has aWORD size, regardless of the 
original size of expression. 

You usually use aWORD to define the size of a forward-referenced 
expression, or to explicitly state the size of a register indirect expression 
from which the size cannot be determined. 

To perform this function in MASM mode, you must use the PTR directive 
preceded by the aWORD type. 

See also PTR 

Example fadd [QWORD BXl 
fsubp [QWORD Xl 
• DATA 
X DQ 1.234 

isizeless indirect 
iforward reference 

SEG Ideal, MASM 

Function Returns the segment address of an expression 

Syntax SEG expression 

Remarks expression can be any expression or operand that references a memory 
location. SEG returns a constant that represents the segment portion of 
the address of the referenced memory location. 

See also OFFSET 

Example . DATA 
temp DW 0 
. CODE 
mov ax,SEG temp 

Chapter 2, Operators 35 



SEG 

SHL 

mov ds,ax 
ASSUME ds:SEG temp 

iset up segment register 
itell assembler about it 

Function Shifts the value of an expression to the left 

Syntax expression SHL count 

Ideal, MASM 

Remarks expression and count must evaluate to constants. SHL performs a logical 
shift to the left of the bits in expression. Bits shifted in from the right 
contain 0, and the bits shifted off the left are lost. 

A negative count causes the data to be shifted the opposite way. 

See also SHR 

Example mov al,OOOOOOllb SHL 3 i loads 00011000B 

SHORT Ideal, MASM 

36 

Function Fo!ces an expression to be a short code pointer. 

Syntax SHORT expression 

Remarks expression references a location in your current code segment. SHORT 
informs the assembler that expression is within -128 to +127 bytes from the 
current code location, which lets the assembler generate a shorter JMP 
instruction. 

You only need to use SHORT on forward-referenced JMP instructions, 
since Turbo Assembler automatically generates the short jumps if it 
already knows how far away expression is. 

See also FAR, NEAR 

Example 

Done: 

jmp SHORT done igenerate small jump instruction 
iless than 128 bytes of code here 

Turbo Assembler Reference Guide 



SHR 

SHR . Ideal, MASM 

Function Shifts the value of an expression to the right 

Syntax expression SHR count 

Remarks expression and count must evaluate to constants. SHR performs a logical 
shift to the right of the bits in expression. Bits shifted in from the left 
contain 0, and the bits shifted off the right are lost. 

A negative count causes the data to be shifted the opposite way. 

See also SHL 

Example mov al,80h SHR 2 ; loads 20h 

SIZE Ideal, MASM 

Function Returns size of allocated data item 

Syntax SIZE name 

Remarks name is a symbol that refers to a data item allocated with one of the data 
allocation directives (DB, DO, and so on). In MASM mode, SIZE returns 
the value of LENGTH name multiplied by TYPE name. Therefore, it does 
not take into account multiple data items, nor does it account for,nested 
DUP operators. 

In Ideal mode, SIZE returns the byte count within a DUP. To get the byte 
count of DUP, use LENGTH. 

See also LENGTH, TYPE 

Example msg DB uHellou 

array DW 10 DUP(4 DUP (1), 0) 
numbrs DD 1,2,3,4 
var DQ? 
;MASM mode 
smsg = SIZE msg 
sarray = SIZE array 
snumbrs = SIZE numbrs 
svar = SIZE var 
;Ideal mode 
smsg = SIZE msg 
sarray = SIZE array 
snumbrs = SIZE numbrs 
svar = SIZE var 

Chapter 2. Operators 

;1, string has length 1 
;= 20, 10 DUPS of ow 
;4, length = 1, DD = 4 bytes 
;= 8, 1 element, DQ = 8 bytes 

;1, string has length 1 
;= 20, 10 OUPS of ow 
;4, length = 1, DO = 4 bytes 
;=8, 1 element, DQ = 8 bytes 

37 



SMALL 

SMALL Ideal (386 code generation only), MASM 

Function Sets an expression's offset size to 16 bits 

Syntax small expression 

Remarks expression is any expression or operand. SMALL converts it into a 16-bit 
offset. You usually use this to remove ambiguity about the size of an 
operation. For example, if you have enabled the 80386 processor with the 
P3S6 directive, 

jmp [DWORD PTR ABC] 

can be interpreted as either a far call with a segment and 16-bit offset or a 
near call using a 32-bit offset. You can remove the ambiguity by using the 
SMALL directive: 

jmp small [DWORD PTR ABC] i16-bit offset far call 

In this example, SMALL appears outside the brackets, thereby affecting 
the interpretation of the DWORD read from memory. If SMALL appears 
inside the brackets, it determines the size of the address from which to 
read the operand, not the size of the operand once it is read from memory. 
For example, 

CODE SEGMENT USE32 
jmp small [small DWORD PTR XYZ] 

means XYZ is a 4-byte pointer that's treated as a 16-bit offset and segment, 
and JMP indirect through that address, reading a near JMP target address 
that is also a 16-bit offset. 

By combining the LARGE and SMALL operators, both inside and outside 
brackets, you can effect any combination of an indirect JMP or CALL from 
a 16- or 32-bit segment to a 16- or 32-bit segment. LARGE and SMALL can 
also be used with other ambiguous instructions, such as LlDT and LGDT. 

See also LARGE 

38 Turbo Assembler Reference Guide 



SYMTVPE 

SYMTYPE Ideal 

Function Returns a byte describing a symbol 

Syntax SYMTYPE <expression> 

Remarks SYMTYPE functions very similarly to .TYPE, with one minor difference: If 
expression contains an undefined symbol, SYMTYPE returns an error, 
unlike .TYPE. 

See also .TYPE 

TBYTE Ideal 

Function Forces expression to be IO-byte size 

Syntax TBYTE expression 

Remarks expression must be an address. The result is an expression that points to 
the same memory address but always has TBVTE size, regardless of the 
original size of expression. 

You usually use TBVTE to define the size of a forward-referenced 
expression, or to explicitly state the size of a register indirect expression 
from which the size cannot be determined. 

To perform this function in MASM mode, you must use the PTR directive 
preceded by the TBVTE type. 

See also PTR 

Example fld [TBYTE bxl ; sizeless indirect 
fst [TBYTE Xl ;forward reference 
X DT 0 

THIS Ideal, MASM 

Function Creates an operand whose address is the current segment and location 
counter 

Syntax THIS type 

Remarks type describes the size of the operand and whether it refers to code or 
data. It can be one of the following: 

Chapter 2, Operators 39 



THIS 

• NEAR, FAR, or PROe (PROe is the same as either NEAR or FAR, 
depending on the memory set using the MODEL directive) 

• BYTE, WORD, DATAPTR, eODEPTR, DWORD, FWORD, PWORD, 
QWORD, TBYTE, or a structure name 

You usually use this operator to build EQU and = statements. 

Example ptrl EQU THIS WORD ; same as following statement 
ptr2 LABEL WORD 

,TYPE MASM 

40 

Function Returns a byte describing a symbol 

Syntax . TYPE name 

Remarks name is a symbol that mayor may not be defined in the source file . . TYPE 
returns a byte that describes the symbol with the following fields: 

Bit Description 

o Program relative symbol 
1 Data relative symbol 
2 Constant 
3 Direct addressing mode 
4 Is a register 
5 Symbol is defined 
7 Symbol is external 

If bits 2 and 3 are both zero, the expression uses register indirection (like 
[BX1, and so on). 

If .TYPE returns zero, the expression contained an undefined symbol. 

.TYPE is usually used in macros to determine how to process different 
kinds of arguments. 

See also SYMTYPE 

Example IF (.TYPE ABC) AND 3 
ASSUME ds:SEG abc 
mov ax,SEG abc 
mov ds,ax 

ENDIF 

;is it segment-relative? 

Turbo Assembler Reference Guide 



TYPE 

NPE Ideal, MASM 

Function Returns a number indicating the size or type of symbol 

Syntax TYPE expression 

Remarks TYPE returns one of the following values, based on the type of expression: 

BYTE 1 
WORD 2 
DWORD 4 
FWORD 6 
PWORD 6 
QWORD 8 
TBYTE 10 
NEAR OFFFFHh 
FAR OFFFEh 
constant 0 
structure ~ of bytes in structure 

See also LENGTH, SIZE 

Example bvar DB 
darray DD 10 DUP (1) 
X STRUC 

DW ? 
DT ? 

X ENDS 
fp EQU THIS FAR 
tbvar = TYPE bvar 
tdarray = TYPE dar ray 
tx = TYPE x 
tfp = TYPE fp 

j= 1 
j= 4 
j=12 

jOFFFEh 

UNKNOWN Ideal 

Function Removes type information from an expression 

Syntax UNKNOWN expression 

Remarks expression is an address. The result is the same expression, but with its 
type (BYTE, WORD, and so on) removed. 

Use UNKNOWN to force yourself to explicitly mention a size whenever 
you want to reference a location. This is useful if you want to treat the 
location as a type of union, allowing the storage of many different data 
types. Incorrectly then, if you define another name without an explicit size 

Chapter 2, Operators 41 



UNKNOWN 

to reference the location, the assembler can't use the original data 
allocation size. 

You can also use an address with UNKNOWN size much like you would 
use register indirect memory-referencing for one operand, and pin down 
the size of the operation by using a register for the other operand. By 
defining a name as UNKNOWN, you can use it exactly as you would an 
anonymous register expression such as [BX]. 

To perform this function in MASM mode, you must use the PTR directive 
preceded by the BYTE type. 

See also PTR 

Example . DATA 
workbuf DT 0 
workptr EQU UNKNOWN WORKBUF 

.CODE 
;EXAMPLE 1 

mov [BYTE PTR WORKPTRj,l 
fstp [QWORD PTR WORKPTRj 
mov [WORKPTRj,l 

;EXAMPLE 2 
mov aI, [WORKPTRj 
mov ax, [WORKPTRj 

;can hold up to a DT 
;anonymous pointer 

;store a byte 
;store a qword 
;error--no type 

;no complaint 
;no complaint either! 

WIDTH Ideal, MASM 

42 

Function Returns the wid th in bits of a field in a record 

Syntax WIDTH recordfieldname 
WIDTH record 

Remarks recordfieldname is the name of any field name in a previously defined 
record. WIDTH returns a value of the number of bits in the record that 
recordfieldname occupies. 

record is the name of a previously defined record. WIDTH returns a value 
of the total number of bits for all the fields in the record. 

See also MASK 

Example ;Macro determines maximum value for a field 
maxval MACRO FIELDNAME 
value=2 

REPT WIDTH FIELDNAME - 1 
value = value * 2; 

ENDM 

Turbo Assembler Reference Guide 



WORD 

value = value - 1 
ENDM 

WORD Ideal 

Function Forces expression to be word size 

Syntax WORD expression 

Remarks expression must be an address. The result is an expression that points to 
the same memory address but always has WORD size, regardless of the 
original size of expression. 

You usually use WORD to define the size of a forward-referenced 
expression, or to explicitly state the size of a register indirect expression 
from which the size cannot be determined. 

To perform this function in MASM mode, you must use the PTR directive 
preceded with the WORD type. 

See also PTR 

Example mov [WORD bxl,l iword immediate move 
mov [WORD Xl,l iforward reference 
X DW 0 

XOR Ideal, MASM 

Function Bitwise logical exclusive OR 

Syntax expressionl XOR expression2 

Remarks XOR performs a bit-by-bit logical exclusive OR of each bit in expressionl 
and expression2. The result has a 1 in any bit position that had a 1 in one 
expression but not in the other, and a 0 in all other bit positions. 

See also AND, NOT, OR 

Example mov al,ll110000b XOR llOOOOllb iAL = OOllOOl1b 

Chapter 2, Operators 43 



The special macro operators 

You use the special macro operators when calling macros and within 
macro and repeat-block definitions. You can also use them with the 
arguments to conditional assembly directives. 

Here's a list of the special macro operators: 

& Substitute operator 
<> Literal text string operator 

% 

" 

Quoted character operator 
Expression evaluate operator 
Suppressed comment 

The operators let you modify symbol names and individual characters so 
that you can either remove special meaning from a character or determine 
when an argument gets evaluated. 

& Ideal, MASM 

44 

Function Substitute operator 

Syntax & name 

Remarks name is the value of the actual parameter in the macro invocation or repeat 
block. In many situations, parameter substitution is automatic, and you 
don't have to use this opera tor. You mus t use this opera tor when you 
wish substitution to take place inside a quoted character string, or when 
you want to "paste" together a symbol from one or more parameters and 
some fixed characters. In this case, the & prevents the characters from 
being interpreted as a single name. 

Example MAKEMSG MACRO StrDef,NUM 
MSG & NUM DB '&StrDef' 
ENDM 

If you call this macro with 

MAKEMSG 9,<Enter a value: > 

it expands to 

MSG9 DB 'Enter a value: ' 

Turbo Assembler Reference Guide 



<> 

<> Ideal, MASM 

Function Literal text string operator 

Syntax <text> 

Remarks text is treated as a single macro or repeat parameter, even if it contains 
commas, spaces, or tabs that usually separate each parameter. Use this 
operator when you want to pass an argument that contains any of these 
separator characters. 

You can also use this operator to force Turbo Assembler to treat a 
character literally, without giving it any special meaning. For example, it 
you wanted to pass a semicolon (;) as a parameter to a macro invocation, 
you would have to enclose it in angle brackets «;» to prevent it from 
being treated as the start of a comment. 

Turbo Assembler removes the outside set of angle brackets each time a 
parameter is passed during the invocation of a macro. To pass a 
parameter down through several levels of macro expansion, you must 
supply one set of angle brackets for each level. 

Example MANYDB MACRO VALS 
IRP X, <VALS> 

ENDM 
ENDM 

When calling this macro, you must enclose multiple values in angle 
brackets so they get treated as the single parameter VALS: 

MANYDB <4,6,0,8> 

The IRP repeat directive still has angle brackets around the parameter 
name because the set of brackets around the parameter are stripped when 
the macro is called. 

Ideal, MASM 

Function Quoted character opera tor 

Syntax ! character 

Remarks The! operator lets you call macros with arguments that contain special 
macro operator characters. This is somewhat equivalent to enclosing the 
character in angle brackets. For example, !& is the same as <&>. 

Example MAKEMSG MACRO StrDef,NUM 

Chapter 2, Operators 45 



MSG & NUM DB '&StrDef' 
ENDM 

MAKEMSG <Can't enter !> 99> 

In this example, the argument would have been prematurely terminated if 
the I operator had not been used. 

% Ideal, MASM 

II 

46 

Function Expression evaluate operator 

Syntax % expression 

Remarks expression can be either a numeric expression using any of the operands 
and operators described in this chapter or it can be a text equate. If it is a 
numeric expression, the string that is passed as a parameter to the macro 
invocation is the result of evaluating the expression. If expression is a text 
equate, the string passed is the text of the text equate. The evaluated 
expression will be represented as a numerical string in the current RADIX. 

Use this operator when you want to pass the string representing a 
calculated result, rather than the expression itself, to a macro. Also, a text 
macro name can be specified after the %, causing a full substitution of the 
text macro body for the macro argument. 

Example DEFSYM MACRO NUM 
???&NUM: 

Function 

Syntax 

Remarks 

ENDM 

DEFSYM %5+4 

results in the following code label definition: 

???9: 

Ideal, MASM 

Suppressed comment 

;;text 

Turbo Assembler ignores all text following the double semicolon (;;). 
Normal comments are stored as part of the macro definition and appear in 
the listing any time the macro is expanded. Comments that start with a 
double semicolon (;;) are not stored as part of the macro definition. This 

Turbo Assembler Reference Guide 



• • , , 

saves memory, particularly if you have a lot of macros that contain a lot of 
comments. 

Example SETBYTES MACRO VarName, val 

Chapter 2, Operators 

VarName DB 10 DUP (val) ;;this comment doesn't get saved 
ENDM 

47 



48 Turbo Assembler Reference Guide 



c H 

Chapter 3, Directives 

A p T E R 

3 

Directives 

A source statement can either be an instruction or a directive. An 
instruction source line generates object code for the processor 
operation specified by the instruction mnemonic and its operands. 
A directive source line tells the assembler to do something 
unrelated to instruction generation, including defining and 
allocating data and data structures, defining macros, specifying 
the format of the listing file, controlling conditional assembly, and 
selecting the processor type and instruction set. 

Some directives define a symbol whose name you supply as part 
of the source line. These include, for example, SEGMENT, LABEL, 
and GROUP. Others change the behavior of the assembler but do 
not result in a symbol being defined, for example, ORG, IF, %L1ST. 

The directives presented here appear in alphabetical order 
(excluding punctuation); for example, .CODE appears just before 
CODESEG. 

The reserved keywords % TOC and %NOTOC do not perform any 
operation in the current version of Turbo Assembler. Future 
versions, however, will use these keywords, so you should avoid 
using them as symbols in your programs. 

The directives fall into three categories: 

1. The MASM-style directives: Turbo Assembler supports all 
MASM-style directives. When you use Turbo Assembler in 
Ideal mode, the syntax of some of these directives changes. For 

49 



these directives, the description notes the syntax for both 
modes. 

2. The new Turbo Assembler directives: These directives provide 
added functionality beyond that provided by MASM. 

3. Turbo Assembler directives that are synonyms for existing 
MASM directives: These synonyms provide a more organized 
alternative to some existing MASM directives. For example, 
rather than .LlST and .XLlST, you use %LlST and %NOLIST. As 
a rule, all paired directives that enable and disable an option 
have the form xxxx and NOxxxx. The synonyms also avoid 
using a period (.) as the first character of the directive name. 
The MASM directives that start with a period are not available 
in Turbo Assembler's Ideal mode, so you must use the new 
synonyms instead. 

All Turbo Assembler directives that control the listing file start 
with the percent (%) character. 

In the syntax section of each entry, the following typographical 
conventions are used: 

• Brackets ([ ]) indicate optional arguments (you do not need to 
type in the brackets). 

• Ellipses (. .. ) indicate that the previous item may be repeated as 
many times as desired. 

• Items in italics are placeholders that you replace with actual 
symbols and expressions in your program. 

Sample Directive Mode directive operates in 

Function Brief description of what the directive does. 

Syntax How the directive is used; italicized items are user-defined 

Remarks General information about the directive. 

See also Other related directives. 

Example Sample code using the directive. 

50 Turbo Assembler Reference Guide 



.186 

.186 MASM 

Function Enables assembly of 80186 instructions 

Syntax .186 

Remarks .186 enables assembly of the additional instructions supported by the 
80186 processor. (Same as P186.) 

See also .8086, .286, .286C, .286P, .386, .386C, .386P, P8086, P286, P286N, P286P, 
P386,P386N,P386P 

Example .186 
push 1 ;valid instruction on 186* 

.286 MASM 

Function Enables assembly of non-privileged 80286 instructions 

Syntax .286 

Remarks .286 enables assembly of the additional instructions supported by the 
80286 processor in non-privileged mode. It also enables the 80287 numeric 
processor instructions exactly as if the .287 or P287 directive had been 
issued. (Same as P286N and .286C.) 

See also .8086, .186, .286C, .286P, .386, .386C, .386P, P8086, P286, P286N, P286P, 
P386,P386N,P386P 

Example .286 
fstsw ax ;only allowed with 80287 

.286C 

Function Enables assembly of non-privileged 80286 instructions 

See also .8086, .186, .286, .286P, .386, .386C, .386P, PS086, P286, P286N, P286P, 
P386,P386N,P386P 

Chapter 3, Directives 51 



.286P 

.286P MASM 

Function Enables assembly of all 80286 instructions 

Syntax .286P 

Remarks .286P enables assembly of all the additional instructions supported by the 
80286 processor, including the privileged mode instructions. It also 
enables the 80287 numeric processor instructions exactly as if the .287 or 
P287 directive had been issued. (Same as P286P.) 

See also .8086, .186, .286, .286C, .386, .386C, .386P, P8086, P286, P286N, P286P, 
P386,P386N,P386P 

.287 MASM 

.386 

Function Enables assembly of 80287 coprocessor instructions 

Syntax .287 

Remarks .287 enables assembly of all the 80287 numeric coprocessor instructions. 
Use this directive if you know you'll never run programs using an 8087 
coprocessor. This directive causes floating-point instructions to be 
optimized in a manner incompatible with the 8087, so don't use it if you 
want your programs to run using an 8087. (Same as P287.) 

See also .8087, .387, P8087, PN087, P287, P387 

Example .287 
fsetpm ;only on 287 

Function Enables assembly of non-privileged 80386 instructions 

Syntax .386 

MASM 

Remarks .386 enables assembly of the additional instructions supported by the 
80386 processor in non-privileged mode. It also enables the 80387 numeric 
processor instructions exactly as if the .387 or P387 directive had been 
issued. (Same as P386N and .386C.) 

See also .8086, .186, .286C, .286, .286P, .386C, .386P, P8086, P286, P286N, P286P, 
P386,P386N,P386P 

Example .386 

52 Turbo Assembler Reference Guide 



.386C 

stosd jonly valid as 386 instruction 

.386C 

Function Enables assembly of 80386 instructions 

See also .8086, .186, .286C, .286, .286P, .386, .386P, PS086, P286, P286N, P286P, 
P386,P386N,P386P 

.386P MASM 

Function Enables assembly of all 80386 instructions 

Syntax .386P 

Remarks .386P enables assembly of all the additional instructions supported by the 
80386 processor, including the privileged mode instructions. It also 
enables the 80387 numeric processor instructions exactly as if the .387 or 
P387 directive had been issued. (Same as P386P.) 

See also .8086, .186, .286C, .286, .286N, .286P, .386, .386C, P808S, P286, P286N, 
P286P,P386,P386N,P386P 

.387 MASM 

Function Enables assembly of 80387 coprocessor instructions 

Syntax .387 

Remarks .387 enables assembly of all the 80387 numeric coprocessor instructions. 
Use this directive if you know you'll never run programs using an 8087 
coprocessor. This directive causes floating-point instructions to be 
optimized in a manner incompatible with the 8087, so don't use it if you 
want your programs to run using an 8087. (Same as P387.) 

See also .8087, .287, 8087, PN087, P287, P387 

Example .387 
fsin jSIN() only available on 387 

Chapter 3, Directives 53 



.8086 

.8086 MASM 

Function Enables assembly of 8086 instructions only 

Syntax .8086 

Remarks .8086 enables assembly of the 8086 instructions and disables all 
instructions available only on the 80186, 80286, and 80386 processors. It 
also enables the 8087 coprocessor instructions exactly as if the .8087 or 
8087 had been issued. 

This is the default instruction set mode used by Turbo Assembler when it 
starts assembling a source file. Programs assembled using this mode will 
run on all members of the 80x86 processor family. If you know that your 
program will only be run on one of the more advanced processors, you 
can take advantage of the more sophisticated instructions of that 
processor by using the directive that enables that processor's instructions. 
(Same as P8086.) 

See also .186, .286C, .286, .286P, .386C, .386, .386P, P8086, P286, P286N, P286P, 
P386,P386N,P386P 

.8087 MASM 

S4 

Function Enables assembly of 8087 coprocessor instructions 

Syntax .8087 

Remarks .8087 enables all the 8087 coprocessor instructions, and disables all those 
coprocessor instructions available only on the 80287 and 80387. 

This is the default coprocessor instructions set used by Turbo Assembler. 
Programs assembled using this mode will run on all members of the 80x87 
coprocessor family. If you know that your program will only be run on 
one of the more advanced coprocessors, you can take advantage of the 
more sophisticated instructions of that processor by using the particular 
directive that enables that processor's instructions. (Same as P8087.) 

See also .287, .387,8087, PN087, P287, P387 

Example .8087 
fstsw MEMLOC ino FSTSW AX on 8087 

Turbo Assembler Reference Guide 



Ideal, MASM 

Function Defines a near code label 

Syntax name: 

Remarks name is a symbol that you have not previously defined in the source file. 
You can place a near code label on a line by itself or at the start of a line 
before an instruction. You usually use a near code label as the destination 
of a JMP or CALL instruction from within the same segment. 

The code label will only be accessible from within the current source file 
unless you use the PUBLIC directive to make it accessible from other 
source files. 

This directive is the same as using the LABEL directive to define a NEAR 
label; for example A: is the same as A LABEL NEAR. 

See also LABEL 

Example 
jne A iskip following instruction 
inc si 

A: iJNE goes here 

Ideal, MASM 

Function Defines a numeric equate 

Syntax name = expression 

Remarks name is assigned the result of evaluating expression, which must evaluate 
to either a constant or an address within a segment. name can either be a 
new symbol name, or a symbol that was previously defined using the = 
directive. 

You can redefine a symbol that was defined using the = directive, 
allowing you to use the symbols as counters. (See the example that 
follows.) 

You can't use = to assign strings or to redefine keywords or instruction 
mnemonics; you must use EQU to do these things. 

The = directive has far more predictable behavior than the EQU directive 
in MASM mode, so you should use = instead of EQU wherever you can. 

See also EQU 

Chapter 3, Directives 55 



= 

Example BitMask = 1 
BittBl LABEL BYTE 

REPT 8 
DB BitMask 

;initialize bit mask 

BitMask = BitMask * 2 ;shift the bit to left 
. ENDM 

ALIGN Ideal, MASM 

56 

Function Rounds up the location counter to a power-of-two address 

Syntax ALIGN boundary 

Remarks boundary must be a power of 2 (for example, 2, 4, 8, and so on). 

If the location counter is not already at an offset that is a multiple of 
boundary, single byte NOP instructions are inserted into the segment to 
bring the location counter up to the desired address. If the location 
counter is already at a multiple of boundary, this directive has no effect. 

You can't reliably align to a boundary that is more strict than the segment 
alignment in which the ALIGN directive appears. The segment's alignment 
is specified when the segment is first started with the SEGMENT directive. 

For example, if you have defined a segment with 

CODE SEGMENT PARA PUBLIC 

you can say ALIGN 16 (same as PARA) but you can't say ALIGN 32, since 
that is more strict than the alignment indicated by the PARA keyword in 
the SEGMENT directive. ALIGN generates a warning if the segment 
alignment is not strict enough. 

See also EVEN, EVENDATA 

Example ALIGN 4 ialign to DWORD boundary for 386 
BigNum DO 12345678 

Turbo Assembler Reference Guide 



.ALPHA 

,ALPHA MASM 

Function Sets alphanumeric segment-ordering 

Syntax .ALPHA 

Remarks You usually use .ALPHA to ensure compatibility with very old versions of 
MASM and the IBM assembler. The default behavior of these old 
assemblers is to emit segments in alphabetical order, unlike the newer 
versions. Use this option when you assemble source files written for old 
assembler versions. 

If you don't use this directive, the segments are ordered in the same order 
that they were encountered in the source file. The DOSSEG directive can 
also affect the ordering of segments . 

. ALPHA does the same thing as the IA command-line option. If you used 
the IS command-line option to force sequential segment-ordering, .ALPHA 
will override it. 

See also DOSSEG, .SEQ, 

Example .ALPHA 
XYZ SEGMENT 
XYZ ENDS 
ABC SEGMENT ithis segment will be first 
ABC ENDS 

ARG Ideal, MASM 

Function Sets up arguments on the stack for procedures 

Syntax arg argument [,argument] ... [=symbol] [RETURNS argument [,argument]] 

Remarks ARG usually appears within a PROC/ENDP pair, allowing you to access 
arguments pushed on the stack by the caller of the procedure. Each 
argument is assigned a positive offset from the BP register, presuming that 
both the return address of the function call and the caller's BP have been 
pushed onto the stack already. 

argument describes an argument the procedure is called with. The 
language specified with the .MODEL directive determines whether the 
arguments are in reverse order on the stack. You must always list the 
arguments in the same order they appear in the high-level language 
function that calls the procedure. Turbo Assembler reads them in reverse 

Chapter 3, Directives 57 



ARG 

58 

order if necessary. Each argument has the following syntax (boldface items 
are literal): 

argname[ [ countl ] ] [: [distance] PTR] type] [:count2]] 

argname is the name you'll use to refer to this argument throughout the 
procedure. distance is optional and can be either NEAR or FAR to indicate 
that the argument is a pointer of the indicated size. type is the data type of 
the argument and can be BYTE, WORD, DATAPTR, CODEPTR, DWORD, 
FWORD, PWORD, aWORD, TBYTE, or a structure name. countl and count2 
are the number of elements of the specified type. The total count is 
calculated as countl * count2. 

If you don't specify type, WORD is assumed. 

If you add PTR to indicate that the argument is in fact a pointer to a data 
item, Turbo Assembler emits this debug information for Turbo Debugger. 
Using PTR only affects the generation of additional debug information, 
not the code Turbo Assembler generates. You must still write the code to 
access the actual data using the pointer argument. 

If you use PTR alone, without specifying NEAR or FAR before it, Turbo 
Assembler sets the pointer size based on the current memory model and, 
for the 386 processor, the current segment address size (16 or 32 bit). The 
size is set to WOR D in the tiny, small, and medium memory models and to 
DWORD for all other memory models using 16-bit segments. If you're 
using the 386 and are in a 32-bit segment, the size is set to DWORD for 
tiny, small, and medium models and to FWORD for compact, large, and 
huge models. 

The argument name variables remain defined within the procedure as BP
relative memory operands. For example, 

Funcl PROC NEAR 
ARG A:WORD,B:DWORD:4,C:BYTE = D 

defines A as [BP+4], B as [BP+6], Cas [BP+14], and D as 20. 

Argument names that begin with the local symbol prefix when local 
symbols are enabled are limited in scope to the current procedure. 

If you end the argument list with an equal sign (=) and a symbol, that 
symbol will be equated to the total size of the argument block in bytes. You 
can then use this value at the end of the procedure as an argument to the 
RET instruction, which effects a stack cleanup of any pushed arguments 
before returning (this is the Pascal calling convention). 

Since it is not possible to push a byte-sized argument on the 8086 
processor family, any arguments declared of type BYTE are considered to 

Turbo Assembler Reference Guide 



ARG 

take 2 bytes of stack space. This agrees with the way high-level languages 
treat character variables passed as parameters. If you really want to 
specify an argument as a single byte on the stack, you must explicitly 
supply a count field, as in 

ARG REALBYTE:BYTE:l 

If you don't supply a count for BYTE arguments, a count of 2 is presumed. 

The optional RETURNS keyword introduces one or more arguments that 
won't be popped from the stack when the procedure returns to its caller. 
Normally, if you specify the language as PASCAL or TPASCAL when 
using the .MODEL directive, all arguments are popped when the 
procedure returns. If you place arguments after the RETURNS keyword, 
they will be left on the stack for the caller to make use of, and then pop. In 
particular, you must define a Pascal string return value by placing it after 
the RETURNS keyword. 

See also LOCAL, PROC, USES 

Example A sample Pascal procedure: 

fp PROC FAR 
ARG SRC:WORD,DEST:WORD = ARGLEN 
push bp 
mov bp,sp 
mov di,DEST 
mov si,SRC 
i<Procedure body> 
pop bp 
ret ARGLEN 

fp ENDP 

ASSUME Ideal, MASM 

Function Associates segment register with segment or group name 

Syntax ASSUME segmentreg:name [,segmentreg:name1 ... 
ASSUME segmentreg:NOTHING 
ASSUME NOTHING 

Remarks segmentreg is one of CS, DS, ES, or SS registers and, if you have enabled 
the 80386 processor with the P386 or P386N directives, the FS and GS 
registers. 

name can be one of the following: 

• the name of a group as defined using the GROUP directive 

Chapter 3, Directives 59 



ASSUME 

• the name of a segment as defined using the SEGMENT directive or one 
of the simplified segmentation directives 

• an expression starting with the SEG operator 

• the keyword NOTHING 

The NOTHING keyword cancels the association between the designated 
segment register and segment or group name. The ASSUME NOTHING 
statement removes all associations between segment registers and 
segment or group names. 

You can set multiple registers in a single ASSUME statement, and you can 
also place multiple ASSUME statements throughout your source file. 

See "The ASSUME Directive" in Chapter 9 of the User's Guide for a 
complete discussion of how to use it. 

See also GROUP, SEGMENT 

Example DATA SEGMENT 
mov ax, DATA 
mov ds,ax 
ASSUME ds:DATA 

%BIN Ideal, MASM 

Function Sets the width of the object code field in the listing file 

Syntax %BIN size 

Remarks size is a constant. If you don't use this directive, the instruction opcode 
field takes up 20 columns in the listing file. 

Example %BIN 12 iset listing width to 12 columns 

CATSTR Ideal, MASM51 

60 

Function Concatenates several strings to form a single string 

Syntax name CATSTR string[, string] ••• 

Remarks name is given a value consisting of all the characters from each string 
combined into a single string. 

Each string can be one of the following: 

• a string argument enclosed in angle brackets, like <abc> 

Turbo Assembler Reference Guide 



CATSTR 

II a previously defined text macro 

• a numeric string substitution starting with percent (%) 

See also INSTR, SIZESTR, SUBSTR 

Example LETTERS CATSTR <abc>, <def> ; LETTERS = II abcdef" 

.CODE MASM 

Function Defines the start of a code segment 

Syntax .CODE [name] 

Remarks The .CODE directive indicates the start of the executable code in your 
module. You must first have used the .MODEL directive to specify a 
memory model. If you specify the medium, large, or huge memory model, 
you can follow the .CODE directive with an optional name that indicates 
the name of the segment; otherwise name is ignored. This way you can put 
multiple code segments in one file by giving them each a different name. 

You can place as many .CODE directives as you want in a source file. All 
the different pieces with the same name will be combined to produce one 
code segment exactly as if you had entered all the code at once after a 
single .CODE directive. 

Using the .CODE directive allows the CS register to access the current 
code segment. This behavior is exactly as if you had put this directive 
after each .CODE directive in your source file: 

ASSUME cs:@code 

See also CODESEG, .DATA, .FARDATA, .FARDATA?, .MODEL, .STACK 

Example . CODE 
mov al,X 
• DATA 
X DB ? 

Chapter 3, Directives 

;here comes the code 

;switch to data segment 

61 



CODESEG 

CODESEG Ideal, MASM 

Function Defines the start of the code segment 

Remarks CODESEG is the same as .CODE. 

See also CODE, .DATA, .FARDATA, .FARDATA?, .MODEL, .STACK 

COMM Ideal, MASM 

62 

Function Defines a communal variable 

Syntax COMM definition [,definition] .•. 

Remarks Each definition describes a symbol and has the following format (boldface 
items are literal): 

[distance] [language] symbol name [ [ countl ] ]:type [:count2] 

distance is optional and can be either NEAR or FAR. It specifies whether 
the communal variable is part of the near data space (DGROUP) or 
whether it occupies its own far segment. If you do not specify a distance, it 
will default to the size of the default data memory model. If you are not 
using the simplified segmentation directives (.MODEL, and so on), the 
default size is NEAR. With the tiny, small, and medium models, the 
default size is also NEAR; all other models are FAR. 

language is either C, PASCAL, BASIC, FORTRAN, PROLOG, or 
NOLANGUAGE and defines any language-specific conventions to be 
applied to the symbol name. Using a language in the COMM directive 
temporarily overrides the current language setting (default or one 
established with the .MODEL directive). Note that you don't need to have 
a .MODEL directive in effect to use this feature. 

symbolname is the symbol that is to be communal and have storage 
allocated at link time. If distance is FAR, then symbolname can also specify 
an array element size multiplier to be included in the total space 
computation: 

name [mul tiplier] 

type can be one of the following: BYTE, WORD, DATAPTR, CODEPTR, 
DWORD, FWORD, PWORD, aWORD, TBYTE, or a struchire name. 

The optional count specifies how many items this communal symbol 
defines. If you do not specify a count, one is assumed. The total space 

Turbo Assembler Reference Guide 



COMM 

allocated for the communal variable is the count times the length specified 
by the type field, times the array element size multiplier (if it is present). 

You can define more than one communal symbol by separating each 
definition with a comma (,). 

Communal variables are allocated by the linker. 

In MASM mode, communal symbols declared outside of any segment are 
presumed to be reachable via the DS register, which may not always be a 
valid assumption. Make sure that you either place the correct segment 
value in DS or use an explicit segment override when referring to these 
variables. In Ideal mode, Turbo Assembler correctly checks for whether 
the communal variable is addressable, using any of the current segment 
registers as described with the ASSUME directive. 

Communal variables can't be initialized. Use the GLOBAL directive if you 
wish to initialize data items that are to be shared between modules. The 
linker also doesn't guarantee the allocation of communal variables in any 
particular order, so you can't make assumptions about data items 
allocated by COMM directives on sequential source lines. 

See also EXTRN, GLOBAL, PUBLIC, PUBLlCDLL 

Example COMM buffer:BYTE:512 ; 512 bytes allocated at link time 

COMM FAR abc[41] :BYTE:10 ; 410 bytes (10 elements of 41 
; bytes} allocated at link time 

COMMENT MASM 

Function Starts a comment block 

Syntax COMMENT delimiter [text] 
[ text] 

delimiter 

Remarks COMMENT ignores all text between the first delimiter character and the 
line containing the next occurrence of the delimiter. delimiter is the first 
nonblank character after the COMMENT directive. 

Example COMMENT * 
Any old stuff 

* 

Chapter 3, Directives 63 



%CONDS 

%CONDS Ideal, MASM 

Function Shows all statements in conditional blocks in the listing 

Syntax %CONDS 

Remarks %CONDS is the default conditional listing mode if you don't use any 
listing control directives. (Same as .LFCOND.) 

When %CONDS is in effect, the listing will show all statements within 
conditional blocks, even those blocks that evaluate as false and don't 
result in the evaluation of enclosed statements. 

See also .LFCOND, %NOCONDS, .SFCOND, .TFCOND 

Example %CONDS 
IF 0 

mov ax,l iin listing, despite "IF 0" above 
ENDIF 

.CONST MASM 

64 

Function Defines constant data segment 

Syntax . CaNST 

Remarks The .CONST directive indicates the start of the segment in your program 
containing constant data. This is data your program requires, but it will 
not be changed when the program executes. You can put things such as 
prompt and message strings in this segment. 

You don't have to use this directive when writing an assembler-only 
program. It exists so that you can write routines that interface to high
level languages and then use this for initializing constant data. 

See also .CODE, .DATA, .DATA?, .FARDATA, .FARDATA?, .MODEL 

Example . CaNST 
MSG DB "Execution terminated" 

Turbo Assembler Reference Guide 



CONST 

CONST Ideal, MASM 

Function Defines constant data segment 

See also .CODE, .CONST, .DATA, DATA?, .FARDATA, .FARDATA? 

,CREF MASM 

Function Enables cross-reference listing (CREF) 

Syntax . CREF 

Remarks .CREF allows cross-reference information to be accumulated for all 
symbols encountered from this point forward in the source file. This 
directive reverses the effect of any %XCREF or .XCREF directives that 
inhibited the collection of cross-reference information. 

Turbo Assembler includes cross-reference information in the listing file, as 
well as in a separate.XRF file. 

See also %CREF 

%CREF Ideal, MASM 

Function Enables cross-reference listing (CREF) 

Syntax %CREF 

See also .CREF, %CREFALL, %CREFREF, %CREFUREF, %NOCREF, .XCREF 

Example %CREF 
WVAL DW 0 ;CREF shows WVAL defined here 

%CREFALL Ideal, MASM 

Function Lists all symbols in cross-reference 

Syntax %CREFALL 

Remarks %CREFALL reverses the effect of any previous %CREFREF or 
%CREFUREF directives that disabled the listing of unreferenced or 
referenced symbols. After issuing %CREFALL, all subsequent symbols in 
the source file will appear in the cross-reference listing. 

Chapter 3, Directives 65 



%CREFALL 

By default, Turbo Assembler uses this mode when assembling your 
source file. 

See also %CREFREF, %CREFUREF 

Example %CREFREF 
ARGl EQU [bp+4] ;not referenced, won't be in listing 
%CREFALL 
ARG2 EQU [bp+6] 
ARG3 EQU [bp+8] 
mov ax,ARG3 
END 

;not referenced, appears anyway 
;referenced, appears in listing 

%CREFREF Ideal, MASM 

Function Disables listing of unreferenced symbols in cross-reference 

Syntax %CREFREF 

Remarks %CREFREF causes symbols that are defined but never referenced to be 
omitted from the cross-reference listing. Normally when you request a 
cross-reference, these symbols appear in the symbol table. 

See also %CREF, %CREFALL, %CREFUREF 

Example %CREF 

~oCREFUREF 

abc EQU 4 
xyz EQU 1 
mov ax,xyz 
END 

;will not appear in CREF listing 
;will appear in listing 
;makes XYZ appear in listing 

Ideal, MASM 

Function Lists only the unreferenced symbols in cross-reference 

Syntax %CREFUREF 

Remarks %CREFUREF enables the listing of unreferenced symbols in the symbol 
table cross-reference. When you use this directive, only unreferenced 
symbols appear in the symbol table. To see both referenced and 
unreferenced symbols, use the %CREFALL directive. 

See also %CREFALL, %CREFREF 

Example %CREF 
abc EQU 2 ;doesn't appear in listing 
%CREFUREF 

66 Turbo Assembler Reference Guide 



O/oCREFUREF 

def EQU 1 iappears in listing 
END 

%CTLS Ideal, MASM 

Function Prints listing controls 

Syntax %CTLS 

Remarks %CTLS causes listing control directives (such as %LlST, %INCL, and so on) 
to be placed in the listing file; normally, they are not listed. It takes effect 
on all subsequent lines, so the %CTLS directive itself will not appear in 
the listing file. 

See also %NOCTLS 

Example %CTLS 
%NOLIST ithis will be in listing file 

. DATA MASM 

Function Defines the start of a data segment 

Syntax . DATA 

Remarks The .DATA directive indicates the start of the initialized data in your 
module. You must first have used the .MODEL directive to specify a 
memory model. 

You can place as many .DATA directives as you want in a source file. All 
the different pieces will be combined to produce one data segment, 
exactly as if you had entered all the data at once after a single .DATA 
directive. 

The data segment is put in a group called DGROUP, which also contains 
the segments defined with the .STACK, .CONST, and .DATA? directives. 
You can access data in any of these segments by making sure that one of 
the segment registers is pointing to DGROUP. 

See the .MODEL directive for complete information on the segment 
attributes for the data segment. 

See also .CODE, .CONST, .DATA?, DATASEG, .FARDATA,.FARDATA?, .MODEL, 
.STACK 

Example . DATA 
ARRAY1 DB 100 DUP (0) iNEAR initialized data 

Chapter 3, Directives 67 



. DATA? 

. DATA? MASM 

Function Defines the start of an uninitialized data segment 

Syntax . DATA? 

Remarks The .DATA? directive indicates the start of the uninitialized data in your 
module. You must first have used the .MODEL directive to specify a 
memory model. 

You create uninitialized data using the DUP operator with the? symbol. 
For example, 

DB 6 DUP (?) 

You do not have to use this directive when writing an assembler-only 
program. It exists so that you can write routines that interface to high
level languages and then use this directive for uninitialized data. 

You can place as many .DATA? directives as you want in a source file. All 
the pieces will be combined to produce one data segment, exactly as if you 
had entered all the data at once after a single .DATA? directive. 

The uninitialized data segment is put in a group called DGROUP, which 
also contains the segments defined with the .STACK, .CONST, and .DATA 
directives. 

See .MODEL for complete information on the segment attributes for the 
uninitialized data segment. 

See also .CODE, .CONST, .DATA, .FARDATA, .FARDATA?, .MODEL, .STACK 

Example . DATA? 
TEMP DD 4 DUP (?) iuninitialized data 

DAT ASEG Ideal, MASM 

Function Defines the start of a data segment 

Syntax DATASEG 

Remarks DATASEG is the same as .DATA. It must be used in Ideal mode only. 

See also .CODE ,.CONST, .DATA, .DATA?, .FARDATA, .FARDATA?, .MODEL, 
.STACK 

68 Turbo Assembler Reference Guide 



DB 

DB Ideal, MASM 

Function Allocates byte-size storage 

Syntax [name] DB expression [, expression] ••• 

Remarks name is the symbol you'll subsequently use to refer to the data. If you 
don't supply a name, the data will be allocated, but you won't be able to 
refer to it using a symbolic name. 

Each expression allocates one or more bytes and can be one of the 
following: 

• A constant expression that has a value between -128 and 255. 

• The question mark (?) indeterminate initialization symbol; this allocates 
storage without giving it a specific value. 

• A character string of one or more characters. 

• A repeated expression using the DUP operator. 

See also DD, DF, DP, DQ, DT, DW 

Example fibs DB 1,1,2,3,5,8,13 
BUF DB 80 DUP (?) 
MSG DB "Enter value: " 

DD Ideal, MASM 

Function Allocates doubleword-sized storage 

Syntax [name] DD [type PTR] expression [,expression] ••• 

Remarks name is the symbol you'll subsequently use to refer to the data. If you 
don't supply a name, the data will 'bE! allocated, but you won't be able to 
refer to it using a symbolic name. 

type followed by PTR is optional. It adds debug information to the symbol 
being defined, so that Turbo Debugger can display its contents properly. 
It has no effect on the data generated by Turbo Assembler. type can be one 
of the following: BYTE, WORD, DATAPTR, CODEPTR, DWORD, FWORD, 
PWORD, QWORD, TBYTE, SHORT, NEAR, FAR ,O'r a structure name. For 
example, 

Chapter 3, Directives 

person STRUC 
name DB 32 DUP(?) 
age DW ? 
person ENDS 

69 



DO 

PPTR DD person PTR 0 ;PPTR is a far pointer 
; to the structure 

Each expression allocates one or more doublewords (4 bytes) and may be 
one of the following: 

• A constant expression that has a value between -2,147,483,648 and 
4,294,967,295. 

• A short (32-bit) floating-point number. 
• The question mark (?) indeterminate initialization symbol; this allocates 

storage without giving it a specific value . 
.. An address expression, specifying a far address in a 16-bit segment 

(segment:offset) or a near address in a 32-bit segment (32-bit offset 
only). 

• A repeated expression using the OUP operator. 

See also DB, OF, OP, OQ, OT, OW 

Example Data32 SEGMENT USE32 
Xarray DB 0,1,2,3 
Data32 ENDS 
Data SEGMENT 
Consts DD 3.141, 2.718 
DblPtr DD Consts 
NrPtr DD Xarray 
Biglnt DD 12345678 
Darray DD 4 DUP (1) 

;floating-point constants 
;16-bit far pointer 
;32-bit near pointer 
;large integer 
;4 integers 

%DEPTH Ideal, MASM 

70 

Function Sets size of depth field in listing file 

Syntax %DEPTH width 

Remarks width specifies how many columns to reserve for the nesting depth field in 
the listing file. The depth field indicates the nesting level for INCLUDE 
files and macro expansions. If you specify a width of 0, this field does not 
appear in the listing file. Usually, you won't need to specify a width of 
more than 2, since that would display a depth of up to 99 without 
truncation. 

The default width for this field is 1 column. 

Example %DEPTH 2 ;show nesting levels> 9 

Turbo Assembler Reference Guide 



OF 

DF Ideal, MASM 

Function Defines far 48-bit pointer (6 byte) data 

Syntax [name] DF [type PTR] expression [, expression] ••• 

Remarks name is the symbol you'll subsequently use to refer to the data. If you 
don't supply a name, the data will be allocated, but you won't be able to 
refer to it using a symbolic name. 

type followed by PTR is optional. It adds debug informa tion to the symbol 
being defined, so that Turbo Debugger can display its contents properly. 
It has no effect on the data generated by Turbo Assembler. type can be one 
of the following: BYTE, WORD, DATAPTR, CODEPTR, DWORD, FWORD, 
PWORD, QWORD, TBYTE, SHORT, NEAR, FAR or a structure name. For 
example, 

person STRUC 
name DB 32 dup(?) 
age DW ? 
person ENDS 
DATA SEGMENT USE32 
PPTR DF person PTR 0 ;PPTR is a 32-bit far pointer 

; to the structure 

Each expression allocates one or more 48-bit far pointers (6 bytes) and may 
be one of the following: 

• A constant expression that has a value between -140,737,488,355,328 
and 281,474,976,710,655. 

• The question mark (?) indeterminate initialization symbol; this allocates 
storage without giving it a specific value. 

• An address expression, specifying a far address in a 48-bit segment 
(segment:48-bit offset). 

• A repeated expression using the DUP operator. 

This directive is normally used only with the 30386 processor. 

See also DB, DD, DP, DQ, DT, DW 

Example .386 
DATA SEGMENT USE32 
MSG DB "All done" 
FmPtr DF MSG ;FAR pointer to MSG 
DATA ENDS 

Chapter 3, Directives 71 



DISPLAY 

DISPLAY Ideal, MASM 

Function Outputs a quoted string to the screen 

Syntax DISPLAY" text" 

Remarks text is any message you want to display; you must surround it with 
quotes ('"'). The message is written to the standard output device, which is 
usually the screen. If you wish, you can use the 005 redirection facility to 
send screen output to a file. 

Among other things, you can use this directive to inform yourself of the 
generation of sections of conditional assembly. 

See also %OUT 

Example DISPLAY "Assembling EGA interface routines" 

DOSSEG Ideal, MASM 

72 

Function Enables DOS segment-ordering at link time 

Syntax DOSSEG 

Remarks You usually use DOSSEG in conjunction with the .MODEL directive, 
which sets up the simplified segmentation directives. DOSSEG tells the 
linker to order the segments in your program the same way high-level 
languages order their segments. 

You should only use this directive when you are writing stand-alone 
assembler programs, and then you only need to use the DOSSEG directive 
once in the main module that specifies the starting address of your 
program. 

Segments appear in the following order in the executable program: 

1. All segments that have the class name 'CODE'. 

2. All segments that do not have the class name 'CODE' and are not in 
the group named DGROUP. 

3. All segments in DGROUP in the following order: 

a. All segments that have the class name 'BEGDATA'. 
b. All segments that do not have the class name 'BEGDA T A', 'BSS', or 

'STACK'. 

c. All segments with a class name of 'BSS'. 

Turbo Assembler Reference Guide 



DOSSEG 

d. All segments with a class name of 'ST ACK'. 

See also .MODEL 

Example DOSSEG 
.MODEL medium 

DP Ideal, MASM 

Function Defines a far 48-bit pointer (6 byte) data area 

See also DB, DO, OF, DO, DT, OW 

DQ Ideal, MASM 

Function Defines a quadword (8 byte) data area 

Syntax [name] DQ expression [, expression] ••• 

Remarks name is the symbol you'll subsequently use to refer to the data. If you 
don't supply a name, the data will be allocated, but you won't be able to 
refer to it using a symbolic name. 

Each expression allocates one or more quadwords (8 bytes) and can be one 
of the following: 

• A constant expression that has a value between _263 and 264-l. 

.. A long (64-bit) floating-point number. 
II The question mark (?) indeterminate initialization symbol; this allocates 

storage without giving it a specific value . 
• A repeated expression using the DUP operator. 

See also DB, DO, OF, DP, DT, OW 

Example HugInt DQ 314159265358979323 
BigFlt DQ 1.2345678987654321 
Qarray DQ 10 DUP (?l 

Chapter 3, Directives 73 



DT 

DT Ideal, MASM 

Function Defines a IO-byte data area 

Syntax [name] DT expression [, expression] ••• 

Remarks name is the symbol you'll subsequently use to refer to the data. If you 
don't supply a name, the data will be allocated, but you won't be able to 
refer to it using a symbolic name. 

Each expression allocates one or more IO-byte values and may be one of the 
following: 

• A constant expression that has a value between _279 and 280_l. 

• A packed decimal constant expression that has a value between 0 and 
99,999,999,999,999,999,999. 

• The question mark (?) indeterminate initialization symbol; this allocates 
storage without giving it a specific value. 

• A IO-byte temporary real formatted floating-point number. 
• A repeated expression using the DUP operator. 

See also DB, DO, DF, DP, DC, DW 

Example PakNum DT 123456 
TempVal DT 0.0000000001 

;beware--packed decimal 
;high precision FP 

DW Ideal, MASM 

Function Defines a word-size (2 byte) data area 

Syntax [name] DW [type PTR] expression [, expression] ••• 

Remarks name is the symbol you'll subsequently use to refer to the data. If you 
don't supply a name, the data will be allocated, but you won't be able to 
refer to it using a symbolic name. 

type followed by PTR is optional. It adds debug information to the symbol 
being defined, so that Turbo Debugger can display its contents properly. 
It has no effect on the data generated by Turbo Assembler. type can be one 
of the following: BYTE, WORD, DATAPTR, CODEPTR, DWORD, FWORD, 
PWORD, aWORD, TBYTE, SHORT, NEAR, FAR or a structure name. For 
example, 

74 Turbo Assembler Reference Guide 



ELSE 

ow 

Narray DW 100 DUP (?) 
NPTR DW WORD PTR narray iNPTR is a near pointer 

i to a word 

Each expression allocates one or more words (2 bytes) and may be one of 
the following: 

• A constant expression that has a value between -32,767 and 65,535. 

• The question mark (?) indeterminate initialization symbol; this allocates 
storage without giving it a specific value. 

• An address expression, specifying a near address in a 16-bit segment 
(offset only). 

• A repeated expression using the DUP operator. 

See also DB, DD, OF, DP, ~O, OT 

Example int DW 12345 
Wbuf DW 6 DUP (?) 
Wptr DW Wbuf 

i16-bit integer 
i6 word buffer 
ioffset--on1y pointer to WBUF 

Function Starts alternative conditional assembly block 

Syntax IF condition 
statementsl 
[ELSE 
statements2] 
ENDIF 

Ideal, MASM 

Remarks The statements introduced by ELSE are assembled if the condition 
associated with the IF statement evaluates to false. This means that either 
statementsl will be assembled or statements2 will be assembled, but not 
both. 

The ELSE directive always pairs with the nearest preceding IF directive 
that's not already paired with an ELSE directive. 

See also ENOIF, IF, IF1, IF2, IFB, IFOEF, IFDIF, IFDIFI, IFE, IFION, IFIDNI, IFNB, 
IFNDEF 

Example IF LargeModel EQ 1 
les di,ADDR 

ELSE 
lea di,ADDR 

ENDIF 

Chapter 3, Directives 75 



ELSEIF 

ELSEIF Ideal, MASM 

Function Starts nested conditional assembly block if an expression is True 

Syntax ELSEIF expression 

Remarks expression must evaluate to a constant and cannot contain any forward
referenced symbol names. If expression evaluates to a nonzero value, the 
statements within the conditional block are assembled, as long as the 
conditional directive (IF, and so on) preceding the ELSEIF evaluated to 
False. 

You may have any number of ELSEIF directives in a conditional block. As 
soon as an ELSEIF is encountered that has a true expression, that block of 
code is assembled, and all other parts of the conditional block defined by 
ELSEIF or ELSE are skipped. You can also mix the various ELSExx 
directives in the same conditional block. 

See also ELSEIF1, ELSEIF2, ELSEIFB, ELSEIFDEF, ELSEIFDIF, ELSEIFDIFI, 
ELSEIFE, ELSEIFIDN, ELSEIFIDNI, ELSEIFNB, ELSEIFNDEF 

Example IF ARGSIZE EQ 1 
mov al,argname 

ELSEIF ARGSIZE EQ 2 
mov ax,argname 

ELSE 
%OUT BAD ARGSIZE 

ENDIF 

EMUL Ideal, MASM 

Function Generates emulated coprocessor instructions 

Syntax EMUL 

Remarks Turbo Assembler normally generates real floating-point instructions to be 
executed by an 80x87 coprocessor. Use EMUL if your program has 
installed a software floating-point emulation package, and you wish to 
generate instructions that will use it. EMUL has the same effect as 
specifying the Ie command-line option. 

You can combine EMUL with the NOEMUL directive when you wish to 
generate real floating-point instructions in one portion of a file and 
emula ted instructions in another portion. 

See also NOEMUL 

76 Turbo Assembler Reference Guide 



END 

Example Finit 
EMUL 
Fsave BUF 

;real 8087 coprocessor instruction 

;emulated instruction 

Function Marks the end of a source file 

Syntax END [startaddressl 

EMUL 

Ideal, MASM 

Remarks startaddress is an optional symbol or expression that specifies the address 
in your program where you want execution to begin. If your program is 
linked from multiple source files, only one file may specify a startaddress. 
startaddress may be an address within the module; it can also be an 
external symbol defined in another module, declared with the EXTRN 
directive. 

Turbo Assembler ignores any text after the END directive in the source 
file. 

Example .MODEL small 
• CODE 
START: 
;Body of program goes here 
END START ;program entry point is "START" 
THIS LINE IS IGNORED 
SO IS THIS ONE 

ENDIF Ideal, MASM 

Function Marks the end of a conditional assembly block 

Syntax IF condi tion 
statements 
ENDIF 

Remarks All conditional assembly blocks started with one of the I Fxxxx directives 
must end with an ENDIF directive. You can nest IF blocks up to 255 levels 
deep. 

See also ELSE, IF,IF1, IF2, IFB, IFDEF, IFDIF, IFDIFI, IFE, IFIDN, IFIDNI, IFNB, 
IFNDEF· 

Example IF DebugMode 
mov ax,O 

Chapter 3, Directives 

;assemble following if debug mode not 0 

77 



ENDIF 

call DebugDump 
ENDIF 

ENDM Ideal, MASM 

Function Indicates the end of a repeat block or a macro 

Syntax ENDM 

Remarks The ENDM directive identifies the end of the macro definition or a repeat 
block. 

See also IRP, IRPC, MACRO, REPT 

Example IRP reg,<ax,bx,cx,dx> 
push reg 
ENDM 

ENDP Ideal, MASM 

78 

Function Indicates the end of a procedure 

Syntax Ideal mode: 
ENDP [procname] 

MASMmode: 
[procname] ENDP 

Remarks If you supply the optional procname, it must match the procedure name 
specified with the PROC directive that started the procedure definition. 

Notice that in Ideal mode, the optional procname comes after the ENDP. 

ENDP does not generate a RET instruction to return to the procedure's 
caller; you must explicitly code this. 

See also ARG, LOCAL, PROC 

Example LoadIt PROC 
;Body of procedure 
ret 

LoadIt ENDP 

Turbo Assembler Reference Guide 



ENDS 

ENDS Ideal, MASM 

EQU 

Function Marks end of current segment structure or union 

Syntax Ideal mode: 
ENDS [segmentname] 
ENDS [strucname] 

MASMmode: 
[segmentname] ENDS 
[strucname] ENDS 

Remarks ENDS marks the end of either a segment, structure, or union. If you 
supply the optional segmentname, it must match the segment name 
specified with the matching SEGMENT directive. Likewise, the optional 
strucname must match the structure name specified with the matching 
STRUC or UNION directive. 

Notice that in Ideal mode, the optional name comes after the ENDS. 

See also SEGMENT, STRUC, UNION 

Example DATA SEGMENT ;start of data segment 
Barray DB 10 DUP (0) 
DATA ENDS ;end of data segment, 

STAT STRUC 
Mode DW ? 
FuncPtr DD? 
ENDS 

; optional "data" included 

;end of structure definition 

Function Defines a string, alias, or numeric equate 

Syntax name EQU expression 

Ideal, MASM 

Remarks name is assigned the result of evaluating expression. name must be a new 
symbol name that has not previously been defined in a different manner. 
In MASM mode, you can only redefine a symbol that was defined using 
the EQU directive if it was first defined as a string equate. 

In MASM mode, EQU can result in one of three kinds of equates being 
generated: Alias, Expression, or String. 

Chapter 3, Directives 79 



EQU 

Alias: Redefines keywords or instruction mnemonics, and also allows you 
to assign alternative names to other symbols you have defined. Alias EQUs 
can be redefined. 

Expression: Evaluates to a constant or address, much like when using the = 
directive. 

String: expression is stored as a text string to be substituted later when 
name appears in expressions. When expression cannot be evaluated as an 
alias, constant, or address, it becomes a string expression. String EQUs can 
be redefined. 

See also = 
Example BlkSize EQU 512 

BufBlks EQU 4 
BufSize EQU BlkSize*BufBlks 
BufLen EQU BufSize 
DoneMsg EQU <'Returning to DOS'> 

ialias for BUFSIZE 

.ERR MASM 

80 

Function Forces an error message 

Syntax .ERR 

Remarks .ERR causes an error message to occur at the line it is encountered on in 
the source file. 

You usually use this directive inside a conditional assembly block that 
tests whether some assemble-time condition has been satisfied. 

See also .ERR1, .ERR2, .ERRB, .ERRDEF, .ERRDIF, .ERRDIFI, .ERRE, .ERRIDN, 
.ERRIDNI, .ERRNB, .ERRNDEF, .ERRNZ 

Example IF $ GT 400h 
. ERR 
%OUT Segment too big 

ENDIF 

isegment too big 

Turbo Assembler Reference Guide 



ERR 

ERR Ideal, MASM 

Function Forces an error message 

Syntax ERR 

Remarks Same as .ERR. 

See also .ERR1, .ERR2, .ERRB, .ERRDEF, .ERRDIF, .ERRDIFI, .ERRE, .ERRIDN, 
.ERRIDNI, .ERRNB, .ERRNDEF, .ERRNZ 

.ERRl MASM 

Function Forces an error message on pass 1 

Syntax . ERRl 

Remarks Normally, Turbo Assembler acts as a single-pass assembler, and the fact 
that .ERR1 forces a message on pass 1 means that the error message will 
always be generated, since there is always at least one pass. The message 
appears on the screen and in the listing file, if one is specified. 

If you use Turbo Assembler's multi-pass capability (invoked with the 1m 
command-line switch), .ERR1 forces the error message on the first assem
bly pass. 

See also .ERR2 

Example .ERRl ithis will appear during pass 1 

.ERR2 MASM 

Function Forces an error message on pass 2 

Syntax .ERR2 

Remarks Normally, Turbo Assembler acts as a single-pass assembler, and the fact 
that .ERR2 forces a message on pass 2 means that no error message is 
actually generated. A pass-dependent warning message is generated, 
however, so that you are alerted to a potentially confusing report. 

If you are use Turbo Assembler's multi-pass capability (invoked with the 
1m command-line switch), .ERR2 forces the error message on the second 
assembly pass. If you have selected a single pass by using Im1, a pass
dependent warning message is forced. 

Chapter 3, Directives 81 



.ERR2 

See also .ERR1 

Example .ERR2 ;this appears in the listing file or on 
;the second assembly pass, depending on the 
;number of assembly passes performed 

.ERRB MASM 

Function Forces an error if argument is blank 

Syntax . ERRB <argument> 

Remarks You always use this argument inside a macro. It tests whether the macro 
was called with a real argument to replace the specified dummy argument. 
If the argument is blank (empty), an error message occurs on the source 
line where the macro was invoked. 

You must always surround the argument to be tested with angle brackets 
« ». 

See also .ERRNB 

Example DOUBLE MACRO ARGl 
.ERRB <ARG1> 
shl ARG1,1 

ENDM 

;require an argument 
;double the argument's value 

.ERRDEF MASM 

82 ' 

Function Forces an error if a symbol is defined 

Syntax . ERRDEF symbol 

Remarks .ERRDEF causes an error message to be generated at the current source 
line number if symbol has already been defined in your source file. 

See also .ERRNDEF 

Example SetMode MACRO ModeVal 
.ERRDEF MODE ;error if already defined 

_MODE EQU ModeVal 
ENDM 

Turbo Assembler Reference Guide 



.ERRDIF 

.ERRDIF MASM 

Function Forces an error if arguments are different 

Syntax .ERRDIF <argumentl>,<argument2> 

Remarks You always use .ERRDIF inside a macro. It tests whether its two 
arguments are identical character strings. If the two strings are not 
identical, an error message occurs on the source line where the macro was 
invoked. The two strings are compared on a character-by-character basis; 
case is significant. If you want case to be ignored, use the .ERRDIFI 
directive. 

You must always surround each argument in angle brackets « »; 
separate arguments with a comma. 

See also .ERRDIFI, .ERRIDN, .ERRIDNI 

Example SegLoad MACRO reg, val 
.ERRDIF <reg>,<es> 
mov ax, val 
mov reg,ax 
ENDM 

;only permit ES register 

.ERRDIFI MASM 

Function Forces an error if arguments are different, ignoring case 

Syntax . ERRDIFI <argumentl>, <argument2> 

Remarks You always use .ERRDIFI inside a macro. It tests whether its two 
arguments are identical character strings. If the two strings are not 
identical, an error message occurs on the source line where the macro was 
invoked. The two strings are compared on a character-by-character basis; 
case is insignificant. If you want case to be significant, use the .ERRDIF 
directive. 

You must always surround each argument in angle brackets « »; 
separate arguments with a comma. 

See also .ERRDIF, .ERRIDN, .ERRIDNI 

Example SegLoad MACRO reg, val 
.ERRDIF <reg>,<es> 
mov ax,val 
mov reg,ax 
ENDM 

Chapter 3, Directives 

;only permit ES register 
;works no matter how reg typed 

83 



.ERRE 

.ERRE MASM 

Function Forces an error if expression is false (0) 

Syntax . ERRE expression 

Remarks expression must evaluate to a constant and cannot contain any forward
referenced symbol names. If the expression evaluates to 0, an error 
message occurs at the current source line. 

See also .ERRNZ 

Example PtrLoad MACRO PTR, val 
.ERRE val ;error if attempt 0 load to pointer 
mov si,val 
ENDM 

.ERRIDN MASM 

84 

Function Forces an error if arguments are identical 

Syntax .ERRIDN <argumentl>, <argument2> 

Remarks You always use .ERRIDN inside a macro. It tests whether its two 
arguments are identical character strings. If the two strings are identical, 
an error message occurs on the source line where the macro was invoked. 
The two strings are compared on a character-by-character basis; case is 
significant. If you want case to be ignored, use the .ERRIDNI directive. 

You must always surround each argument in angle brackets « »; 
separate arguments with a comma. 

See also .ERRDIF, .ERRDIFI, .ERRIDNI 

Example PushSeg MACRO reg, val 
.ERRIDN <reg>,<cs> ;CS load is illegal 
push reg 
mov reg, val 
ENDM 

Turbo Assembler Reference Guide 



.ERRIDNI 

.ERRIDNI MASM 

Function Forces an error if arguments are identical, ignoring case 

Syntax .ERRIDNI <argumentl>,<argument2> 

Remarks You always use .ERRIDNI inside a macro. It tests whether its two 
arguments are identical character strings. If the two strings are identical, 
an error message occurs on the source line where the macro was invoked. 
The two strings are compared on a character-by-character basis; case is 
insignificant. If you want case to be significant, use the .ERRIDN directive. 

You must always surround each argument in angle brackets « »; 
separate arguments with a comma. 

See also .ERRDIF, .ERRDIFI, .ERRIDN 

Example PushSeg MACRO reg, val 
.ERRIDNI <reg>,<cs> 
push reg 
mov reg, val 
ENDM 

iCS load is illegal 
itakes CS or cs 

ERRIF Ideal, MASM 

Function Forces an error if expression is true (nonzero) 

See also .ERRE, .ERRNZ 

ERRIFl Ideal, MASM 

Function Forces an error message on pass 1 

See also .ERR1 

ERRIF2 Ideal, MASM 

Function Forces an error message on pass 2 

See also .ERR2 

Chapter 3, Directives 85 



ERRIFB 

ERRIFB Ideal, MASM 

Function Forces an error if argument is blank 

See also .ERRB 

ERRIFDEF Ideal, MASM 

Function Forces an error if a symbol is defined 

See also .ERRDEF 

ERRIFDIF Ideal, MASM 

Function Forces an error if arguments are different 

See also .ERRDIF 

ERRIFDIFI Ideal, MASM 

Function Forces an error if arguments are different, ignoring case 

See also .ERRDIFI 

ERRIFE Ideal, MASM 

Function Forces an error if expression is false (0) 

See also .ERRE 

ERRIFIDN Ideal, MASM 

Function Forces an error if arguments are identical 

See also .ERRIDN 

86 Turbo Assembler Reference Guide 



ERRIFIDNI 

ERRIFIDNI Ideal, MASM 

Function Forces an error if arguments are identical, ignoring case 

See also .ERRIDNI 

ERRIFNB Ideal, MASM 

Function Forces an error if argument is not blank 

See also .ERRNB 

ERRIFNDEF Ideal, MASM 

Function Forces an error if symbol is not defined 

See also .ERRNDEF 

.ERRNB MASM 

Function Forces an error if argument is not blank 

Syntax . ERRNB <argument> 

Remarks You always use .ERRNB inside a macro. It tests whether the macro was 
called with a real argument to replace the specified dummy argument. If 
the argument is not blank, an error message occurs on the source line 
where the macro was invoked. 

You must always surround the argument to be tested with angle brackets 
« ». 

See also .ERRB 

Example Dolt MACRO a, b 
.ERRNB <B> 

ENDM 

Chapter 3, Directives 

;only need one argument 

87 



.ERRNDEF 

.ERRNDEF MASM 

Function Forces an error if symbol is not defined 

Syntax . ERRNDEF symbol 

Remarks .ERRNDEF causes an error message to be generated at the current source 
line number if symbol has not yet been defined in your source file. The 
error occurs even if the symbol is defined later in the file (forward
referenced). 

See also .ERRDEF 

Example .ERRNDEF BufSize 
BUF DB BufSize 

ino buffer size set 

.ERRNZ MASM 

Function Forces an error if expression is true (nonzero) 

Syntax . ERRNZ expression 

Remarks expression must evaluate to a constant and may not contain any forward
referenced symbol names. If the expression evaluates to a nonzero value, 
an error message occurs at the current source line. 

See also .ERRE 

Example .ERRNZ $ GT lOOOh i segment too big 

EVEN Ideal, MASM 

88 

Function Rounds up the location counter to the next even address 

Syntax EVEN 

Remarks EVEN allows you to align code for efficient access by processors that use a 
16-bit data bus (8086,80186,80286). It does not improve performance for 
those processors with an 8-bit data bus (8088, 80188). 

You can't use this directive in a segment that has BYTE-alignment, as 
specified in the SEGMENT directive that opened the segment. 

If the location counter is odd when an EVEN directive appears, a single 
byte of a NOP instruction is inserted in the segment to make the location 
counter even. By padding with a NOP, EVEN can be used in code 

Turbo Assembler Reference GuIde 



EVEN 

segments without causing erroneous instructions to be executed at run 
time. If the location is already even, this directive has no effect. A warning 
is generated for the EVEN directive if alignment is not strict enough. 

See also ALIGN, EVENDATA 

Example EVEN 
@@A: lodsb 

xor bl,al ialign for efficient access 
loop @@A 

EVEN DATA Ideal, MASM 

Function Rounds up the location counter to the next even address in a data 
segment 

Syntax EVENDATA 

Remarks EVENDATA allows you to align data for efficient access by processors that 
use a 16-bit data bus (8086, 80186, 80286). It does not improve 
performance for those processors with an 8-bit data bus (8088, 80188). 
EVENDATA even-aligns by advancing the location counter without 
emitting data, which is useful for uninitiallzed segments. A warning is 
generated if the alignment isn't strict enough. 

You can't use this directive in a segment that has BYTE-alignment, as 
specified in the SEGMENT directive that opened the segment. 

If the location counter is odd when an EVENDATA directive appears, a 
single byte of 0 is inserted in the segment to make the location counter 
even. If the location is already even, this directive has no effect. 

See also ALIGN, EVEN 

Example EVENDATA 
VARl DW 0 ialign for efficient 8086 access 

EXITM Ideal, MASM 

Function Terminates macro- or block-repeat expansion 

Syntax EXITM 

Remarks EXITM stops any macro expansion or repeat block expansion that's in 
progress. All remaining statements after the EXITM are ignored. 

Chapter 3, Directives 89 



EXITM 

This is convenient for exiting from multiple levels of conditional 
assembly. 

See also ENDM, IRP, IRPC, MACRO, REPT 

Example Shiftn MACRO OP, N 
Count = 0 

REPT N 
shl OP,N 

Count = Count + 1 
IF Count GE 8 

EXITM 
ENDIF 
ENDM 

ino more than 8 allowed 

EXTRN Ideal, MASM 

90 

Function Indicates a symbol is defined in another module 

Syntax EXTRN definition [, definition] ••. 

Remarks Each definition describes a symbol and has the following format: 

[language] name:type [:count] 

language is either C, PASCAL, BASIC, FORTRAN, PROLOG, or 
NOLANGUAGE and defines any language-specific conventions to be 
applied to the symbol name. name is the symbol that's defined in another 
module. Using a language in the EXTRN directive temporarily overrides 
the current language setting (default or one established with the .MODEL 
directive). Note that you don't need to have a .MODEL directive in effect 
to use this feature. 

type must match the type of the symbol where it's defined in another 
module. It can be one of the following: 

• NEAR, FAR, or PROC. PROC is either NEAR or FAR (depending on the 
memory model set using the MODEL directive) 

• BYTE, WORD, DWORD, DATAPTR, CODEPTR, FWORD, PWORD, 
aWORD, TBYTE, or a structure name 

.ABS 

The optional count specifies how many items this external symbol defines. 
If the symbol's definition in another file uses the DUP directive to allocate 
more than one item, you can place that value in the count field. This lets 
the SIZE and LENGTH operators correctly determine the size of the 
external data item. If you do not specify a count, it is assumed to be one. 

Turbo Assembler Reference Guide 



EXTRN 

You can define more than one external symbol by separating each 
definition with a comma (,). Also, each argument of EXTRN accepts the 
same syntax as an argument of ARG or LOCAL. 

name must be declared as PUBLIC or PUBLlCDLL in another module in 
order for your program to link correctly. 

You can use the EXTRN directive either inside or outside a segment 
declared with the SEGMENT directive. If you place EXTRN inside a 
segment, you are informing the assembler that the external variable is in 
another module but in the same segment. If you place the EXTRN 
directive outside of any segment, you are informing the assembler that 
you do not know which segment the variable is declared in. 

In MASM mode, external symbols declared outside of any segment are 
presumed to be reachable via the DS register, which may not always be a 
valid assumption. Make sure that you either place the correct segment 
value in DS, or use an explicit segment override when referring to these 
variables. 

In Ideal mode, Turbo Assembler correctly checks for whether the external 
variable is addressable using any of the current segment registers, as 
described with the ASSUME directive. 

See also COMM, GLOBAL, PUBLIC, PUBUCDLL 

Example EXTRN APROC:NEAR 
call APROC icalls into other module 

. FAR DATA MASM 

Function Defines the start of a far data segment 

Syntax .FARDATA [name] 

Remarks .FARDATA indicates the start of a far initialized data segment. If you wish 
to have multiple, separate far data segments, you can provide an optional 
name to override the default segment name, thereby making a new 
segment. 

You can place as many .FARDATA directives as you want in a source file. 
All the different pieces with the same name will be combined to produce 
one data segment, exactly as if you had entered all the data at once after a 
single .FARDATA directive. 

Chapter 3, Directives 91 



• FAR DATA 

Far data segments are not put in a group. You must explicitly make far 
segments accessible by loading the address of the far segment into a 
segment register before accessing the data. 

See the .MODEL directive for complete information on the segment 
attributes for far data segments. 

See also .CODE, .DATA, .FARDATA?, .MODEL, .STACK 

Example . FARDATA 
FarBuf DB 80 DUP (0) 
. CODE 

mov ax,@fardata 
mov ds,ax 
ASSUME ds:@fardata 
mov al,FarBuf[O] ;get first byte of buffer 

. FAR DATA? MASM 

92 

Function Defines the start of a far uninitialized data segment 

Syntax .FARDATA? [name] 

Remarks .FARDATA? indicates the start of a far uninitialized data segment. If you 
wish to have multiple separate far data segments, you can provide an 
optional name to override the default segment name, thereby making a 
new segment. 

You can place as many .FARDATA? directives as you want in a source file. 
All the different pieces with the same name will be combined to produce 
one data segment, exactly as if you had entered all the data at once after a 
single .FARDATA? directive. 

Far data segments are not put in a group. You must explicitly make far 
segments accessible by loading the address of the far segment into a 
segment register before accessing the data. 

See the .MODEL directive for complete information on the segment 
attributes for uninitialized far data segments. 

See also .CODE, .DATA, .FARDATA, .MODEL, .STACK 

Example .FARDATA? 
FarBuf DB 80 DUP (?) 
. CODE 
mov ax,@fardata? 
mov ds,ax 
ASSUME ds:@fardata? 

Turbo Assembler Reference Guide 



FA R DATA 

mov al,FarBuf[O] ;get first byte of buffer 

FAR DATA Ideal, MASM 

Function Defines the start of a far data segment 

Syntax FARDATA [name] 

Remarks Same as .FARDATA. 

See also .FARDATA 

GLOBAL Ideal, MASM 

Function Defines a global symbol 

Syntax GLOBAL definition [, definition] ... 

Remarks GLOBAL acts as a combination of the EXTRN and PUBLIC directives. Each 
definition describes a symbol and has the following format (boldface 
items are literal): 

[language] name [ [ countl ] ] :type [:count2] 

language is either C, PASCAL, BASIC, FORTRAN, PROLOG, or 
NOLANGUAGE and defines any language-specific conventions to be 
applied to the symbol name. Using a language in the GLQBAL directive 
temporarily overrides the current language setting (default or one 
established with the .MODEL directive). Note that you don't need to have 
a .MODEL directive in effect to use this feature. 

If name is defined in the current source file, it is made public exactly as if 
used in a PUBLIC directive. If name is not defined in the current source 
file, it is declared as an external symbol of type type, as if the EXTRN 
directive had been used. 

type must match the type of the symbol in the module where it is defined. 
It can be one of the following: 

Chapter 3, Directives 

II NEAR, FAR, or PROC 

CI BYTE, WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD, 
aWORD, TBYTE, or a structure name 

.. ABS 

93 



GLOBAL 

The optional count specifies how many items this symbol defines. If the 
symbol's definition uses the DUP directive to allocate more than one item, 
you can place that value in the count field. This lets the SIZE and LENGTH 
opera tors correctly determine the size of the external data item. If you do 
not specify a count, it is assumed to be one. 

The GLOBAL directive lets you have an INCLUDE file included by all 
source files; the INCLUDE file contains all shared data defined as global 
symbols. When you reference these data items in each module, the 
GLOBAL definition acts as an EXTRN directive, describing how the data is 
defined in another module. In the module in which you define the data 
item, the GLOBAL definition acts as a PUBLIC directive, making the data 
available to the other modules. 

You can define more than one public symbol by separating each definition 
with a comma (,). 

You must define a symbol as GLOBAL before you first use it elsewhere in 
your source file. Also note that each argument of GLOBAL accepts the 
same syntax as an argument of EXTRN, ARG, or LOCAL. 

Note: In QUIRKS mode, the GLOBAL directive can be overridden. For 
example, 

global DB ? 

is a legal declaration under QUIRKS, though a warning will be generated. 

See also COMM, EXTRN, PUBLIC, PUBLlCDLL 

Example GLOBAL X:WORD, Y:BYTE 
X DW 0 ;made public for other module 

moval,Y ;Y is defined as external 

GROUP Ideal, MASM 

Function Defines segments as accessible from a single segment register 

Syntax Ideal mode: 
GROUP name segmentname [,segmentname) ... 

MASMmode: 
name GROUP segmentname [,segmentname) .•• 

Remarks name defines the name of the group. segmentname can be either a segment 
name defined previously with the SEGMENT directive or an expression 
starting with SEG. You can use name in the ASSUME directive and also as 

94 Turbo Assembler Reference Guide 



GROUP 

a constant in expressions, where it evaluates to the starting paragraph 
address of the group. 

All the segments in a group must fit into 64K, even though they don't 
have to be contiguous when linked. 

In MASM mode, you must use a group override whenever you access a 
symbol in a segment that is part of a group. In Ideal mode, Turbo 
Assembler automatically generates group overrides for symbols in 
segments that belong to a group. 

In the example shown here, even though varl and var2 belong to different 
segments, they both belong to the group DGROUP. Once the DS segment 
register is set to the base address of DGROUP, varl and var2 can be 
accessed as belonging in a single segment. 

Notice that in Ideal mode, the name comes after the GROUP directive. 

See also ASSUME, SEGMENT 

Example DGROUP GROUP SEG1, SEG2 
SEGl SEGMENT 
VARl DW 3 
SEGl ENDS 
SEG2 SEGMENT 
VAR2 DW 5 
SEG2 ENDS 
SEG3 SEGMENT 
mov ax,DGROUP 
mov ds, ax 
ASSUME DS:DGROUP 
mov ax,VARl 
mul VAR2 
SEG3 ENDS 

;get base address of group 
;set up to access data 
;inform assembler of DS 

IDEAL Ideal, MASM 

Function Enters Ideal assembly mode 

Syntax IDEAL 

Remarks I DEAL makes the expression parser only accept the more rigid, type
checked syntax required by Ideal mode. See Chapter 11 of the User's Guide 
for a complete discussion of the capabilities and advantages of Ideal 
mode. 

Ideal mode will stay in effect until it is overridden by a MASM or QUIRKS 
directive. 

Chapter 3, Directives 95 



IDEAL 

See also MASM, QUIRKS 

Example IDEAL 
rnov [BYTE ds:sil,l ;Ideal operand syntax 

IF Ideal, MASM 

Function Starts conditional assembly block; enabled if expression is true 

Syntax IF expression 

Remarks expression must evaluate to a constant and may not contain any forward
referenced symbol names. If the expression evaluates to a nonzero value, 
the statements within the conditional block are assembled. 

Use the ENDIF directive to tenninate the conditional assembly block. 

See also ENOIF, ELSE, IF1, IF2, IFB, IFDEF, IFDIF, IFDIFI, IFE, IFION, IFIONI, IFNB, 
IFNDEF 

Example IF DoBuffering 
rnov ax,BufNurn 
call ReadBuf 

ENDIF 

IFl Ideal, MASM 

96 

Function Starts conditional assembly block; enabled on pass 1 

Syntax IFl 

Remarks Normally, Turbo Assembler acts as a single-pass assembler, which means 
that the statements within the conditional block are always assembled 
since there is always at least one pass. 

If you use Turbo Assembler's multi-pass capability (invoked with the 1m 
command-line switch), IF1 assembles the statements within the 
conditional block on the first assembly pass. 

When using a forward-referenced operator redefinition, you can't always 
tell from the listing file that something has gone wrong. By the time the 
listing is generated, the operator has been redefined. This means that the 
listing will appear to be correct, but the code would not have been 
generated properly to the object file. 

Use the ENDIF directive to tenninate the conditional assembly block. 

Turbo Assembler Reference Guide 



IFl 

See also ELSE, ENDIF, IF, IF2, IFB, IFOEF, IFOIF, IFDIFI, IFE, IFION, IFIONI, IFNB, 
IFNDEF 

Example IFl 
;This code assembled during first pass 

ENDIF 

IF2 Ideal, MASM 

Function Starts conditional assembly block; enabled on pass 2 

Syntax IF2 

Remarks Normally, Turbo Assembler acts as a single-pass assembler. This means 
that the statements within the conditional block are never assembled, 
since there is only one pass. In this case, a pass-dependent warning 
message is generated to alert you to a potentially hazardous code 
omission. 

If you use Turbo Assembler's multi-pass capability (invoked with the 1m 
command-line switch), IF2 assembles the statements within the 
conditional block on the second assembly pass. No pass-dependent 
warning is genera ted, however. 

When using a forward-referenced operator redefinition, you can't always 
tell from the listing file that something has gone wrong. By the time the 
listing is generated, the operator has been redefined. This means that the 
listing will appear to be correct, but the code would not have been 
generated properly to the object file. 

Use the ENDIF directive to terminate the conditional assembly block. 

See also ELSE, ENDIF, IF, IF1, IFB, IFDEF, IFDIF, IFDIFI, IFE, IFIDN, IFIONI, IFNB, 
IFNDEF 

Example IF2 
;this code assembles on the second assembly pass, 
;if there is one 

ENDIF 

Chapter 3, Directives 97 



IFB 

IFB Ideal, MASM 

Function Starts conditional assembly block; enabled if argument is blank 

Syntax IFB <argument> 

Remarks If argument is blank (empty), the statements within the conditional block 
are assembled. Use IFB to test whether a macro was called with a real 
argument to replace the specified dummy argument. 

You must always surround the argument to be tested with angle brackets 
« ». 

Use the ENDIF directive to terminate the conditional assembly block. 

See also ELSE, ENDIF, IF, IF1, IF2, IFDEF, IFDIF, IFDIFI, IFE, IFIDN, IFIDNI, IFNB, 
IFNDEF 

Example PRINT MACRO MSG 
IFB <MSG> 
mov si,DefaultMsg 
ELSE 
mov si,MSG 
ENDIF 
call ShowIt 
ENDM 

IFDEF Ideal, MASM 

98 

Function Starts conditional assembly block; enabled if symbol is defined 

Syntax IFDEF symbol 

Remarks If symbol is defined, the statements within the conditional block are 
assembled. 

Use the ENDIF directive to terminate the conditional assembly block. 

See also ELSE, ENDIF, IF, IF1, IF2, IFB, IFDIF, IFOIFI, IFE, IFION, IFIONI, IFNB, 
IFNOEF 

Example IFDEF SaveSize 
BUF DB SaveSize DUP (?) 

ENDIF 

;define BUFFER only if 
; SAVESIZE is defined 

Turbo Assembler Reference Guide 



IFDIF, IFDIFI 

IFDIF,IFDIFI Ideal, MASM 

IFE 

Function Starts conditional assembly block; enabled if arguments are different 

Syntax IFDIF <argumentl>,<argument2> 

Remarks You usually use IFDIF inside a macro. It tests whether its two arguments 
are different character strings. Either of the arguments can be macro 
dummy arguments that will have real arguments to the macro call that 
was substituted before performing the comparison. If the two strings are 
different, the statements within the conditional block are assembled. The 
two strings are compared on a character-by-character basis; case is 
significant. If you want case to be ignored, use the IFDIFI directive. 

Use the ENDIF directive to terminate the conditional assembly block. 

See also ELSE, ENDIF, IF, IF1, IF2, IFB, IFDEF, IFDIFI, IFE, IFIDN, IFIDNI, IFNB, 
IFNDEF 

Example loadb MACRO source 
IFDIF <source>,<si> 

mov si,source 
ENDIF 
lodsb 
ENDM 

iset up string pointer 

iread the byte 

Ideal, MASM 

Function Starts conditional assembly block; enabled if expression is false 

Syntax IFE expression 

Remarks expression must evaluate to a constant and may not contain any forward
referenced symbol names. If the expression evaluates to zero, the 
statements within the conditional block are assembled. 

Use the ENDIF directive to terminate the conditional assembly block. 

See also ELSE, ENDIF, IF, IF1, IF2, IFB, IFDEF, IFDIF, IFDIFI, IFIDN, IFIDNI, IFNB, 
IFNDEF 

Example IFE StackSize 
StackSize=1024 

DB StackSize DUP (?) 
ENDIF 

i allocate stack 

Chapter 3, Directives 99 



IFIDN, IFIDNI 

IFIDN,IFIDNI Ideal, MASM 

Function Starts conditional assembly block; enabled if arguments are identical 

Syntax IFIDN <argumentl>,<argument2> 

Remarks You usually use IFION inside a macro. It tests whether its two arguments 
are identical character strings. Either of the arguments can be macro 
dummy arguments that will have real arguments to the macro call that 
was substituted before performing the comparison. If the two strings are 
identical, the statements within the conditional block are assembled. The 
two strings are compared on a character-by-character basis; case is 
significant. If you want case to be ignored, use the IFIONI directive. 

Use the ENOIF directive to terminate the conditional assembly block. 

See also ELSE, ENDIF, IF, IF1, IF2, IFB, IFOEF, IFDIF, IFOIFI, IFE, IFIDNI, IFNB, 
IFNOEF 

Example RDWR MACRO BUF, RWMODE 
mov ax,BUF 
IFIDN <RWMODE>,<READ> 

call ReadIt 
ENDIF 
IFIDN <RWMODE>,<WRITE> 

call WriteIt 
ENDIF 
ENDM 

IFNB Ideal, MASM 

Function Starts conditional assembly block, enabled if argument is nonblank 

Syntax IFNB <argument> 

Remarks If argument is nonblank, the statements within the conditional block are 
assembled. Use IFNB to test whether a macro was called with a real 
argument to replace the specified dummy argument. 

You must always surround the argument to be tested with angle brackets 
« ». 

Use the ENDIF directive to terminate the conditional assembly block. 

See also ELSE, ENOIF, IF, IF1, IF2, IFB, IFDEF, IFDIF, IFDIFI, IFE, IFION, IFIONI, 
IFNDEF 

Example PopRegs MACRO REG!, REG2 

100 Turbo Assembler Reference Guide 



IFNB <REG1> 
pop REG1 

ENDIF 
IFNB <REG2> 

pop REG2 
ENDIF 
ENDM 

IFNB 

IFNDEF Ideal, MASM 

Function Starts conditional assembly block; enabled if symbol is not defined 

Syntax IFNDEF symbol 

Remarks If symbol has not yet been defined in the source file, the statements within 
the conditional block are assembled. 

Use the ENDIF directive to terminate the conditional assembly block. 

See also ELSE, ENDIF,IF, IF1, IF2, IFB, IFDEF, IFDIF, IFDIFI, IFE, IFIDN, IFIDNI, IFNB 

Example IFNDEF BufSize 

%INCL 

BufSize EQU 128 
ENDIF 

;define buffer size if not defined 

Function Allows listing of include files 

Syntax %INCL 

Ideal, MASM 

Remarks Use O/OINCL after a O/ONOINCL directive has turned off listing of INCLUDE 
files. This is the default INCLUDE file listing mode. 

See also O/ONOINCL 

Example %INCL 
INCLUDE DEFS.INC 

Chapter 3, Directives 

;contents appear in listing 

101 



INCLUDE 

INCLUDE Ideal, MASM 

Function Includes source code from another file 

Syntax Ideal mode: 
INCLUDE II filename" 

MASMmode: 
INCLUDE filename 

Remarks filename is a source file containing assembler statements. Turbo Assembler 
assembles all statements in the included file before continuing to assemble 
the current file. 

filename uses the normal DOS file-naming conventions, where you can 
enter an optional drive, optional directory, file name, and optional 
extension. If you don't provide an extension, .ASM is presumed. 

If filename does not include a directory or drive name, Turbo Debugger 
first searches for the file in any directories specified by the II command
line option and then in the current directory. 

You can nest INCLUDE directives as deep as you want. 

Notice that in Ideal mode, you must surround the filename with quotes. 

Example ; MASM mode 
INCLUDE MYMACS.INC 
;Ideal mode 
INCLUDE "DEFS.INC" 

;include MACRO definitions 

;include EQU definitions 

INCLUDELIB Ideal, MASM 

102 

Function Tells the linker to include a library 

Syntax Ideal mode: 
INCLUDELIB II fil ename" 

MASMmode: 
INCLUDELIB filename 

Remarks filename is the name of the library that you want the linker to include at 
link time. If you don't supply an extension with filename, the linker 
assumes .LIB. 

Use INCLUDELIB when you know that the source file will always need to 
use routines in the specified library. That way you don't have to 
remember to specify the library name in the linker commands. 

Turbo Assembler Reference Guide 



INCLUDELIB 

Notice that in Ideal mode, you must surround the filename with quotes. 

Example INCLUDELIB diskio ;includes DISKIO.LIB 

INSTR Ideal, MASM51 

Function Returns the position of one string inside another string 

Syntax name INSTR [start, J stringl, string2 

Remarks name is assigned a value that is the position of the first instance of string2 
in stringl. The first character in stringl has a position of one. If string2 does 
not appear anywhere within stringl, a value of a is returned. 

See also CATSTR, SIZESTR, SUBSTR 

Example COMMAPOS INSTR <aaa, bbb>, <, > ;COMMAPOS :: 4 

IRP Ideal, MASM 

Function Repeats a block of statements with string substitution 

Syntax IRP parameter, <argl [, arg2J •.• > 
statements 

ENDM 

Remarks The statements within the repeat block are assembled once for each 
argument in the list enclosed in angle brackets. The list may contain as 
many arguments as you want. The arguments may be any text, such as 
symbols, strings, numbers, and so on. Each time the block is assembled, 
the next argument in the list is substituted for any instance of parameter in 
the enclosed statements. 

You must always surround the argument list with angle brackets « », 
and arguments must be separated by commas. Use the ENDM directive to 
end the repeat block. 

You can use IRP both inside and outside of macros. 

See also IRPC, REPT 

Example IRP reg, <ax, bx, ex, dx> 
push reg 

ENDM 

Chapter 3, Directives 103 



IRPC 

IRPC Ideal, MASM 

Function Repeats a block of statements with character substitution 

Syntax IRPC parameter, string 
statements 

ENDM 

Remarks The statements within the repeat block are assembled once for each 
character in string. The string may contain as many characters as you 
want. Each time the block is assembled, the next character in the list is 
substituted for any instances of parameter in the enclosed statements. 

Use the ENDM directive to end the repeat block. 

You can use IRPC both inside and outside of macros. 

See also IRP, REPT 

Example IRPC LUCKY, 1379 
DB LUCKY ;allocate a lucky number 

ENDM 

This creates 4 bytes of data containing the values 1,3,7, and 9. 

JUMPS Ideal, MASM 

104 

Function Enables stretching of conditional jumps to near or far addresses 

Syntax JUMPS 

Remarks JUMPS causes Turbo Assembler to look at the destination address of a 
conditional jump instruction, and if it is too far away to reach with the 
short displacement that these instructions use, it generates a conditional 
jump of the opposite sense around an ordinary jump instruction to the 
desired target address. For example, 

jne xyz 

becomes 

je @@A 
jrnp xyz 
@@a: 

If the destination address is forward-referenced, you should use the NEAR 
or FAR operator to tell Turbo Assembler how much space to allocate for 
the jump instruction. If you don't do this, inefficient code may be 

Turbo Assembler Reference Guide 



JUMPS 

generated, due to the nature of single-pass assembly. You can use the 
multi-pass capability of Turbo Assembler (via the 1m command-line 
switch) to force the most efficient code to be generated, but it may 
lengthen the assembly process, depending on the number of passes 
required. Therefore, it's recommended that you use the NEAR or FAR 
operator in the first place. 

This directive has the same effect as using the IJJUMPS command-line 
option. 

See also NOJ UM PS 

Example JUMPS ;enable jump stretching 
jne SHORT @A jcan reach A 

@@A: 

LABEL Ideal, MASM 

Function Defines a symbol with a specified type 

Syntax Ideal mode: 
LABEL name type 

MASMmode: 
name LABEL type 

Remarks name is a symbol that you have not previously defined in the source file. 
type describes the size of the symbol and whether it refers to code or data. 
It can be one of the following: 

See also 

II NEAR, FAR, or PROC. PROC is the same as either NEAR or FAR, 
depending on the memory set using the MODEL directive 

• BYTE, WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD, 
aWORD, TBYTE, or a structure name 

The label will only be accessible from within the current source file, unless 
you use the PUBLIC directive to make it accessible from other source files. 

NotiCe that in Ideal mode, name comes after the LABEL directive. 

Use LABEL to access different-sized items than those in the data structure; 
see the example that follows. 

Example WORDS LABEL WORD jaccess "BYTES" as WORDS 
BYTES DB 64 DUP (0) 

mov WORDS[2],1 ;write WORD of 1 

Chapter 3, Directives 105 



.LALL 

.LALL MASM 

Function Enables listing of macro expansions 

Syntax . LALL 

See also %MACS 

.LFCOND MASM 

Function Shows all statements in conditional blocks in the listing 

Syn tax . LFCOND 

Remarks .LFCOND enables the listing of false conditional blocks in assembly 
listings . . LFCOND is not affected by the IX option. 

See also %CONDS 

%LINUM Ideal, MASM 

Function Sets the width of the line-number field in listing file 

Syntax %LlNUM size 

Remarks %LiNUM allows you to set how many columns the line numbers take up in 
the listing file. size must be a constant. If you want to make your listing as 
narrow as possible, you can reduce the width of this field. Also, if your 
source file contains more than 9,999 lines, you can increase the width of 
this field so that the line numbers are not truncated. 

The default width for this field is 4 columns. 

Example %LlNUM 5 iallows up to line 99999 

%LIST Ideal, MASM 

Function Shows source lines in the listing 

Syntax %LIST 

Remarks %LlST reverses the effect of a %NOLIST directive that caused all listing 
output to be suspended. 

106 Turbo Assembler Reference Guide 



,LIST 

0/0 LI ST 

This is the default listing mode; normally, all source lines are placed in the 
listing output file. 

See also .LlST, %NOLlST, .XLlST 

Example %LIST 
jrnp xyz ithis line always listed 

Function Shows source lines in the listing 

Syntax .LIST 

See also %LlST 

Example .XLIST 
INCLUDE MORE. INC 

.LIST 

iturn off listing 

;turn on listing 

MASM 

LOCAL Ideal, MASM 

Function Defines local variables for macros and procedures 

Syntax In macros: 
LOCAL symbol [,symbol] ••• 

In procedures: 
LOCAL name: type [: count] [, name: type [:count]] ••• [=symbol] 

Remarks LOCAL can be used both inside macro definitions started with the MACRO 
directive and within procedures defined with PROC. It behaves slightly 
differently depending on where it is used. 

Within a macro definition, LOCAL defines temporary symbol names that 
are replaced by new unique symbol names each time the macro is 
expanded. The unique names take the form of ??number, where number is 
hexadecimal and starts at 0000 and goes up to FFFF. 

Within a procedure, LOCAL defines names that access stack locations as 
negative offsets relative to the BP register. The first local variable starts at 
BP (type X count). If you end the argument list with an equal sign (=) and 
a symbol, that symbol will be equated to the total size of the local symbol 
block in bytes. You can then use this value to make room on the stack for 
the local variables. 

Chapter 3, Directives 107 



LOCAL 

108 

Each localdef has the following syntax: 

localname: [ [distance] PTR]type[:count] 

You can use this alternative syntax for each localdef. 

localname[ [count] ] [: [distance] PTR] type] 

localname is the name you'll use to refer to this local symbol throughout 
the procedure. 

type is the data type of the argument and can be one of the following: 
WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD, aWORD, 
TBYTE, or a structure name. If you don't specify a type, and you're using 
the alternative syntax, WORD size is assumed. 

count specifies how many elements of the specified type to allocate on the 
stack. 

The optional distance and PTR lets you tell Turbo Assembler to include 
debugging infonnation for Turbo Debugger, which tells it this local 
variable is really a pointer to another data type. See the PROC directive 
for a discussion of how this works. 

Here are some examples of valid arguments: 

LOCAL X:DWORD:4,Y:NEAR PTR WORD 

Here are some arguments using the alternative syntax: 

LOCAL X[4] :DWORD,Y:PTR STRUCNAME 

The type indicates how much space should be reserved for name. It can be 
one of BYTE, WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD, 
aWORD, or TBYTE for a data value. It can be one of NEAR, FAR, or PROC 
for a code po in ter. 

The LOCAL directive must come before any other statements in a macro 
definition. It can appear anywhere within a procedure, but should 
precede the first use of the symbol it defines. 

See also ARG, MACRO, PROC, USES 

Example OnCarry MACRO FUNC 
LOCAL DONE 
jnc DONE 
call FUNC 

DONE: 
ENDM 

READ PROC NEAR 
LOCAL N:WORD =LSIZE 

;hop around if no carry 
;else call function 

Turbo Assembler Reference Guide 



push bp 
mov bp,sp 
sub sp,LSIZE 
mov N,D 

iBody of func goes here 
add sp,LSIZE 
pop bp 
ret 

READ ENDP 

imake room for local var 
iactually N = [BP-2] 

iadjust stack 

LOCAL 

LOCALS Ideal, MASM 

Function Enables local symbols 

Syntax LOCALS [prefix] 

Remarks Local symbols normally start with two at-signs (@@), which is the default, 
and are only visible inside blocks whose boundaries are defined by the 
PROC/ENDP pair within a procedure or by nonlocal symbols outside a 
procedure. You define a nonlocal symbol using PROC, LABEL, or the 
colon operator. If you use the LOCALS directive, any symbols between 
pairs of nonlocal symbols can only be accessed from within that block. 
This lets you reuse symbol names inside procedures and other blocks. 

prefix is the two-character symbol prefix you want to use to start local 
symbol names. Usually, two at-signs indicate a local symbol. If you have a 
program that has symbols starting with two at-signs, or if you use your 
own convention to indicate local symbols, you can set two different 
characters for the start of local symbols. The two characters must be a 
valid start of a symbol name, for example o? is OK, but .0 is not. When you 
set the prefix, local symbols are enabled at the same time. If you turn off 
local symbols with the NOLOCALS directive, the prefix is remembered for 
the next time you enable local symbols with the LOCALS directive. 

Local symbols are automatically enabled in Ideal mode. You can use the 
NOLOCALS directive to disable local symbols. Then, all subsequent 
symbol names will be accessible throughout your source file. 

See also IDEAL, NOLOCALS 

Example LOCALS 
.MODEL small 
.CODE 
start: 
@@1: unique label 

loop @@1 

Chapter 3, Directives 109 



LOCALS 

one: terminates visibility of @1 above 
loop one 

@@1: unique label 
loop @@1 

Foo PROC NEAR; terminates visibility of @1 above 
@@1: unique label 

loop @@1 
two: doesn't terminate visibility of @@1 

above because in PROCs local labels 
have visibility throughout the PROC 

loop two 
@@1: conflicting label with @@1 above 

loop @@l 
Foo ENDP 
END start 

MACRO Ideal, MASM 

110 

Function Defines a macro 

Syntax Ideal mode: 
MACRO name [parameter [,parameter] ..• ] 

MASMmode: 
name MACRO [parameter [,parameter] ... ] 

Remarks You use name later in your source file to expand the macro. parameter is a 
placeholder you can use throughout the body of the macro definition 
wherever you want to substitute one of the actual arguments the macro is 
called with. 

Use the ENDM directive to end the macro definition. 

See also ENDM 

Example SWAP MACRO a, b 
mov ax,a 
mov a,b 
mov b,ax 
ENDM 

;swap two word items 

Turbo Assembler Reference Guide 



%MACS 

%MACS Ideal, MASM 

Function Enables listing of macro expansions 

Syntax %MACS 

Remarks O/OMACS reverses the effect of a previous O/ONOMACS directive, so that the 
lines resulting from macro expansions appear in the listing. (Same as 
.LALL.) 

See also .LALL, %NOMACS, .SALL, .XALL 

Example %MACS 

MyMac 1,2,3 ;expansion appears in listing 

MASM Ideal, MASM 

Function Enters MASM assembly mode 

Syntax MASM 

Remarks MASM tells the expression parser to accept MASM's loose expression 
syntax. See Appendix B for a discussion of how this differs from Ideal 
mode. 

Turbo Assembler is in MASM mode when it first starts assembling a 
source file. 

See also IDEAL, QUIRKS 

Example MASM 
mov al,es:24h ;ghastly construct 

MASM51 Ideal, MASM 

Function Enables assembly of some MASM 5.1 enhancements 

Syntax MASMSI 

Remarks MASM51 enables the following capabilities that are not normally available 
with Turbo Assembler: 

• SUBSTR, CATSTR, SIZESTR, and INSTR directives 
• Line continuation with backslash (\) 

Chapter 3, Directives 111 



MASM51 

If you also enable Quirks mode with the QUIRKS directive, these 
additional features become available: 

• Local labels defined with @@ and referred to with @F and @B 

• Redefinition of variables inside PROCs 

• Extended model PROCs are all PUBLIC. 

See also NOMASM51 

Example MASM51 
MyStr CATSTR <ABC>, <XYZ> iMYSTR = "ABCXYZ" 

.MODEL MASM 

112 

Function Sets the memory model for simplified segmentation directives 

Syntax .MODEL [model modifier] memorymodel [module name] 
[, [language modifier] language] [,model modifier]] 

.MODEL TPASCAL 

Remarks model modifier must be either NEARST ACK or F ARSTACK if present. This 
prevents Turbo Assembler from making the assumption that 55 is part of 
DGROUP (the default for all models). Note that the syntax allows two 
choices for the placement of the model modifier. Either can be used; the 
placement following memorymodel is provided for compatibility with 
MASM 5.2 (Quick Assembler). 

memorymodel is a model of tiny, small, medium, compact, large, or huge. 
The large and huge models use the same segment definitions, but the 
@DataSize predefined equate symbol is defined differently. (See the 
section "Other Simplified Segment Directives" in Chapter 5 of the User's 
Guide for a description of the @DataSize symbol.) 

When you want to write an assembler module that interfaces to Turbo 
Pascal, you use a special form of the .MODEL directive: 

.MODEL TPASCAL 

This informs Turbo Assembler to use the Turbo Pascal segment-naming 
conventions. You can only use the .CODE and . DATA simplified 
segmentation directives when you specify TPASCAL. There is no need to 
supply a second argument to the .MODEL directive, TPASCAL says it all. 
If you try and use any of the directives that are forbidden with Turbo 
Pascal assembler modules, you will get a warning message. 

To define memorymodel, you must use the .MODEL directive before any 
other simplified segmentation directives such as .CODE, .DATA, .STACK, 

Turbo Assembler Reference Guide 



.MODEL 

and so on. The code and data segments will all be 32-bit segments if 
you've enabled the 80386 processor with the .386 or .386P directive before 
issuing the .MODEL directive. Be certain this is what you want before you 
implement it. Also be sure to put the .MODEL directive before either .386 
or .386P if you want 16-bit segments. 

module name is used in the large code models to declare the name of the 
code segment. Normally, this defaults to the module name with _TEXT 
tacked onto the end. Using the optional module name parameter gives 
you more flexibility in building programs from different files and 
modules. 

language modifier is either WINDOWS, ODDNEAR, ODDFAR, or NORMAL. 
The modifier selects automatic generation of code for stack setup and 
cleanup on procedure entry and exit for MSWindows, and ODDNEAR or 
ODDFAR overlays. NORMAL (the default) selects normal procedure 
entry and exit code. 

language tells Turbo Assembler w ha t language you will be calling from to 
access the procedures in this module. language can be C, PASCAL, BASIC, 
FORTRAN, PROLOG, or NOLANGUAGE. Turbo Assembler automatically 
generates the appropriate procedure entry and exit code when you use 
the PROC and ENDP directives. 

If you specify the C language, all public and external symbol names will 
be prefixed with an underscore C). This is because, by default, Turbo C 
starts all names with an underscore. You don't need MASM51 or QUIRKS 
if you want to prefix all PUBLIC and EXTRN symbols with an underbar C) 
for the C language. 

language also tells Turbo Assembler in what order procedure arguments 
were pushed onto the stack by the calling module. If you set language to 
PASCAL, BASIC, or FORTRAN, Turbo Assembler presumes that the 
arguments were pushed from left to right, in the order they were 
encountered in the source statement that called the procedure. If you set 
language to C, PROLOG, or NOLANGUAGE, Turbo Assembler presumes 
that the arguments were pushed in reverse order, from right to left in the 
source statement. With C, PROLOG, and NOLANGUAGE, Turbo 
Assembler also presumes that the calling function will remove any 
pushed arguments from the stack. For other languages, Turbo Assembler 
generates the appropriate form of the RET instruction, which removes the 
arguments from the stack before returning to the caller. 

Note that use of the .MODEL directive is not required to take advantage of 
the language-specific features mentioned. The PROC, EXTRN, PUBLIC, 
COMM, GLOBAL, and PUBLlCDLL directives, as well as the CALL 

Chapter 3, Directives 113 



.MODEL 

Table 3.1 
Default segments 
and types for tiny 

memory model 

Table 3.2 
Default segments 

and types for small 
memory model 

Table 3.3 
Default segments 

and types for 
medium memory 

model 

Table 3.4 
Default segments 

and types for 
compact memory 

model 

114 

instruction, accept a language specifier that temporarily overrides any 
other language convention in affect for the symbol with which it is used. 
This allows you, for example, to conveniently mix and match procedures 
with C and Pascal calling conventions in the same program. 

!fyou don't supply language, .MODEL simply defines how the segments 
will be used with the simplified segmentation directives. 

The following tables show the default segment attributes for each memory 
model. 

Directive Name Align Combine Class 

.CODE TEXT WORD PUBLIC 'CODE' 

.FARDATA FAR DATA PARA private 'FAR DATA' 

.FARDATA? FAR-SSS PARA private 'FAR-SSS' 

.DATA DATA WORD PUBLIC 'DATA' 

.CONST CONST WORD PUBLIC 'CONST' 

.DATA? BSS WORD PUBLIC 'ESS' 

.STACK" STACK PARA STACK 'STACK' 
• STACK not assumed to be in DGROUP if FARST ACK specified in the MODEL directive. 

Directive Name Align Combine Class 

.CODE TEXT WORD PUBLIC 'CODE' 

.FARDATA FAR DATA PARA private 'FAR DATA' 

.FARDATA? FAR-BSS PARA private 'FAR-BSS' 

.DATA DATA WORD PUBLIC 'DATA' 

.CONST CONST WORD PUBLIC 'CONST' 

.DATA? BSS WORD PUBLIC 'ESS' 

.sTACK· STACK PARA STACK 'STACK' 

• STACK not assumed to be in DGROUP if FARST ACK specified in the MODEL directive. 

Directive Name Align Combine Class 

.CODE name TEXT WORD PUBLIC 'CODE' 

.FARDATA FAR-DATA PARA private 'FAR DATA' 

.FARDATA? FAR-SSS PARA private 'FAR-SSS' 

.DATA DATA WORD PUBLIC 'DATA: 

.CONST CONST WORD PUBLIC 'CONST' 

.DATA? SSS WORD PUBLIC 'ESS' 

.STACK· STACK PARA STACK 'STACK' 
• STACK not assumed to be in DGROUP if FARST ACK specified in the MODEL directive. 

Directive Name Align Combine Class 

.CODE TEXT WORD PUBLIC 'CODE' 

.FARDATA FAR DATA PARA private 'FAR DATA' 

.FARDATA? FAR-SSS PARA private 'FAR-SSS' 

.DATA DATA WORD PUBLIC 'DATA' 

.CONST CONST WORD PUBLIC 'CONST' 

.DATA? BSS WORD PUBLIC 'ESS' 

.STACK" STACK PARA STACK 'STACK' 

• STACK not assumed to be in DGROUP if FARST ACK specified in the MODEL directive. 

Group 

DGROUP 

DGROUP 
DGROUP 
DGROUP 
DGROUP 

Group 

DGROUP 
DGROUP 
DGROUP 
DGROUP 

Group 

DGROUP 
DGROUP 
DGROUP 
DGROUP 

Group 

DGROUP 
DGROUP 
DGROUP 
DGROUP 

Turbo Assembler Reference Guide 



Table 3.5 
Default segments 

and types for large 
or huge memory 

model 

Table 3.6 
Default segments 

and types for Turbo 
Pascal (TPASCAL) 

memory model 
See also 

Directive Name Align Combine Class 

.CODE TI/lmeTEXT WORD PUBLIC 'CODE' 

.FARDATA FAR-DATA PARA private 'FAR DATA' 

.FARDATA? FAR-BSS PARA private 'FAR-BSS' 

. DATA DATA WORD PUBLIC 'DATA' 

.CONST CaNST WORD PUBLIC 'CaNST' 

.DATA? BSS WORD PUBLIC 'BSS' 

.STACK· STACK PARA STACK 'STACK' 
• SfACK not assumed to be in DGROUP if FARST ACK specified in the MODEL directive. 

Directive Name 

.CODE 

.DATA 

Align 

CODE 
DATA 

Combine Class 

BYfE 
WORD 

PUBLIC 
PUBLIC 

.CODE, .DATA, .FARDATA, .FARDATA?, .STACK 

Example .MODEL MEDIUM ;set small data, large code 

·MODEL 

Group 

DGROUP 
DGROUP 
DGROUP 
DGROUP 

Group 

MODEL Ideal, MASM 

Function Sets the memory model for simplified segmentation directives 

Syntax MODEL [model modifier] memorymodel [module name] 
[, [language modifier] language [,model modifier]] 

See also .MODEL 

MULTERRS Ideal, MASM 

Function Allows multiple errors to be reported on a single source line 

Syntax MULTERRS 

Remarks MULTERRS lets more than one error or warning message appear for each 
source line. This is sometimes helpful in locating the cause of a subtle error 
or when the source line contains more than one error. 

Note that sometimes additional error messages can be a "chain reaction" 
caused by the first error condition; these "chain" error messages may desist 
once you correct the first error. 

See also NOMUL TERRS 

Chapter 3, Directives 115 



MULTERRS 

Example MULTERRS 
mov ax, [bptabc ;produces two errors: 

;1) Undefined symbol: abc 
;2) Need right square bracket 

NAME 

Function Sets the object file's module name 

Syntax NAME modulename 

Ideal, MASM 

Remarks This directive has no effect in MASM mode; it only works in Ideal mode. 

Turbo Assembler usually uses the source file name with any drive, 
directory, or extension as the module name. Use NAME if you wish to 
change this default name; modulename will be the new name of the module. 

Example NAME loader 

%NEWPAGE 

Function Starts a new page in the listing file 

Syntax %NEWPAGE 

Ideal, MASM 

Remarks The source lines appearing after O/ONEWPAGE will begin at the start of a 
new page in the listing file. (Same as PAGE with no arguments.) 

See also PAGE 

Example %NEWPAGE 
; Appears on first line of new page 

%NOCONDS Ideal, MASM 

Function Disables the placement of statements in false conditional blocks in the 
listing file 

Syntax %NOCONDS 

Remarks O/ONOCONDS overrides the listing control. When this control is in effect, the 
listing won't show statements within conditional blocks, even those that 
evaluate as false and don't result in the evaluation of enclosed statements. 
(Same as .5FCOND.) 

116 Turbo Assembler Reference Guide 



%NOCONDS 

See also %CONDS, .LFCOND, .SFCOND, .TFCOND 

Example %NOCONDS 
IF 0 

mov ax,l ;not in listing, since "IF 0" above 
ENDIF 

%NOCREF Ideal, MASM 

Function Disables cross-reference listing (CREF) 

Syntax %NOCREF [symbol, ••• 1 

Remarks %NOCREF stops cross-reference information from being accumulated for 
symbols encountered from this point forward in the source file. 

If you use O/ONOCREF alone without specifying any symbols, cross
referencing is disabled completely. !fyou supply one or more symbol names, 
cross-referencing is disabled only for those symbols. (Same as .XCREF.) 

See also %CREF, .CREF, %CREFALL, %CREFREF, O/OCREFUREF, .XCREF 

Example %XCREF xyz 
WVAL DW 0 ;CREF shows WVAL defined here 
xyz DB 0 ;doesn't appear in CREF 

%NOCTLS Ideal, MASM 

Function Disables printing of listing controls 

Syntax %NOCTLS 

Remarks O/ONOCTLS reverses the effect of a previous O/OCTLS directive, which caused 
alllisting-control directives to be placed in the listing file. After issuing 
%NOCTLS, all subsequent listing-control directives will not appear in the 
listing file. 

This is the default listing-control mode that's in effect when Turbo 
Assembler starts assembling a source file. 

See also %CTLS 

Example %NOCTLS 
%LIST ;this will not appear in listing 

Chapter 3, Directives 117 



NOEMUL 

NOEMUL Ideal, MASM 

Function Forces generation of real80x87 floating-point instructions 

Syntax NOEMUL 

Remarks NOEMUL sets Turbo Assembler to generate real floating-point instructions 
to be executed by an 80x87 coprocessor. You can combine this directive with 
the EMUL directive when you wish to generate real floating-point 
instructions in one portion of a file and emulated instructions in another 
portion. 

NOEMUL is the normal floating-point assembly mode that's in effect when 
Turbo Assembler starts to assemble a file. 

See also EMUL 

Example NOEMUL 
finit 
EMUL 

%NOINCL 

;assemble real FP instructions 

;back to emulation 

Function Disables listing of include files 

Syntax %NOINCL 

Ideal, MASM 

Remarks O/ONOINCL stops all subsequent INCLUDE file source lines from appearing 
in the listing until a O/OINCL is enabled. This is useful if you have a large 
INCLUDE file that contains things such as a lot of EQU definitions that 
never change. 

See also O/OINCL 

Example %NOINCL 
INCLUDE DEFS.INC ;doesn't appear in listing 

NOJUMPS 

Function Disables stretching of conditional jumps 

Syntax NOJUMPS 

Ideal, MASM 

Remarks If you use NOJUMPS in conjunction with JUMPS, you can control where in 
your source file conditional jumps should be expanded to reach their 
destination addresses. 

118 Turbo Assembler Reference Guide 



NOJUMPS 

This is the default mode Turbo Assembler uses when it first starts 
assembling a file. 

See also JUMPS 

%NOLIST Ideal, MASM 

Function Disables output to listing file 

Syntax %NOLIST 

Remarks %NOLIST stops all output to the listing file until a subsequent %LlST turns 
the listing back on. This directive overrides all other listing controls. (Same 
as .XLlST.) 

See also %LlST, .LlST, .XLlST 

Example %NOLIST 
add dx,ByteVar 

NOLOCALS 

;not in listing 

Function Disables local symbols 

Syntax NOLOCALS 

Ideal, MASM 

Remarks If local symbols are enabled with the LOCALS directive, any symbol 
starting with two at-signs (00) is considered to be a local symbol. If you 
use symbols in your program that start with two at-signs but you don't 
want them to be local symbols, you can use this directive where 
appropriate. 

Local symbols start off disabled in MASM mode. 

See also LOCALS, MASM 

Example NOLOCALS 
abc PROC 
@@$1: 

loop @@$1 
abc ENDP 
xyz PROC 
@@1: 

loop @@1 
xyz ENDP 

Chapter 3, Directives 

ilabel conflict with @@1 above 

119 



O/oNOMACS 

%NOMACS Ideal, MASM 

Function Lists only macro expansions that generate code 

Syntax %NOMACS 

Remarks %NOMACS prevents the listing source lines that generate no code from 
being listed, for example, comments, EQU and = definitions, SEGMENT and 
GROUP directives. 

This is the default listing mode for macros that's in effect when Turbo 
Assembler first starts assembling a source file. (Same as .XALL.) 

See also .LALL, %MACS,.SALL 

NOMASM51 Ideal, MASM 

Function Disables assembly of certain MASM 5.1 enhancements 

Syntax NOMASM51 

Remarks Disables the MASM 5.1 features described under the MASM51 directive. 
This is the default mode when Turbo Assembler first starts assembling your 
source file. 

See also MASM51 

Example MASM51 
SLEN SIZESTR <ax,bx> iSLEN = 5 
NOMASM51 
CATSTR PROC NEAR 

CATSTR ENDP 

NOMULTERRS 

iCATSTR OK user symbol in 
i non-MASM 5.1 mode 

Ideal, MASM 

Function Allows only a single error to be reported on a source line. 

Syntax NOMULTERRS 

Remarks NOMUL TERRS only lets one error or warning message appear for each 
source line. If a source line contains multiple errors, Turbo Assembler 
reports the most-significant error first. When you correct this error, in many 
cases the other error messages disappear as well. If you prefer to decide for 

120 Turbo ASsembler Reference Guide 



NOMULTERRS 

yourself which are the most important messages, you can use the 
MULTERRS directive to see all the messages for each source line. 

By default, Turbo Assembler uses this error-reporting mode when first 
assembling a source file. 

See also MULTERRS 

Example NOMULTERRS 
mov ax, [bp+abc ione error: 

i1) Undefined symbol: abc 

Will produce the single error message: 

**Error** MULTERRS.ASM(6) Undefined symbol: ABC 

%NOSYMS Ideal, MASM 

Function Disables symbol table in listing file 

Syntax %NOSYMS 

Remarks %NOSYMS prevents the symbol table from appearing in your file. The 
symbol table, which shows all the symbols you defined in your source file, 
usually appears at the end of the listing file. 

See also %SYMS 

Example %NOSYMS inow we won't get a symbol table 

%NOTRUNC Ideal, MASM 

Function Wordwraps too-long fields in listing file 

Syntax %NOTRUNC 

Remarks The object code field of the listing file has enough room to show the code 
emitted for most instructions and data allocations. You can adjust the width 
of this field with the %BIN directive. If a single source line emits more code 
than can be displayed on a single line, the rest is normally truncated and 
therefore not visible. Use the %NOTRUNC directive when you wish to see 
all the code that was generated. 

%NOTRUNC also controls whether the source lines in the listing file are 
truncated or will wrap to the next line. Use the O/oTEXT directive to set the 
width of the source field. 

Chapter 3, Directives 121 



%NOTRUNC 

See also %BIN, %TEXT, %TRUNC 

Example %NOTRUNC 
DQ 4 DUP (1.2,3.4) ;wraps to mUltiple lines 

NOWARN Ideal, MASM 

Function Disables a warning message 

Syntax NOWARN [warnclassl 

Remarks !fyou specify NOWARN without warnclass, all warnings are disabled. !fyou 
follow NOWARN with a warning identifier, only that warning is disabled. 
Each warning message has a three-letter identifier that's described under 
the WARN directive. These are the same identifiers used by the IW 
command-line option. 

See also WARN 

Example NOWARN OVF ;disable arithmetic overflow warnings 
DW 1000h * 1234h ;doesn't warn now 

ORG Ideal, MASM 

122 

Function Sets the location counter in the current segment 

Syntax ORG expression 

Remarks expression must not contain any forward-referenced symbol names. It can 
either be a constant or an offset from a symbol in the current segment or 
from $, the current location counter. 

You can back up the location counter before data or code that has already 
been admitted into a segment. You can use this to go back and fill in table 
entries whose values weren't known at the time the table was defined. Be 
careful when using this technique-you may accidentally overwrite 
something you didn't intend to. 

The ORG directive can be used to connect a label with a specific absolute 
address. The ORG directive can also set the starting location for .COM files 
(ORG lOOh). 

See also SEGMENT 

Example PROG SEGMENT 
ORG 100h ;starting offset for .COM file 

Turbo Assembler Reference Guide 



O/oOUT 

%OUT MASM 

Function Displays message to screen 

Syntax %OUT text 

Remarks text is any message you want to display. The message is written to the 
standard output device, which is usually the screen. If you wish, you can 
use the DOS redirection facility to send screen output to a file. 

Among other things, you can use O/OOUT so you'll know that sections of 
conditional assembly are being generated. (Same as DISPLAY.) 

You can use the substitute operator inside a string passed to the O/oOUT 
directive; for example, 

MAKE DATA MACRO VALUE 
%OUT initializing a byte to: &VALUE& 
DB VALUE 
ENDM 

See also DISPLAY 

Example %OUT Assembling graphics driver 

P186 Ideal, MASM 

Function Enables assembly of 80186 instructions 

See also .186, .S086, .286, .286C, .286P, .386, .386C, .386P, PS086, P286, P286P, P386, 
P386P 

P286 Ideal, MASM 

Function Enables assembly of all 80286 instructions 

See also .8086, .186, .286, .286C, .286P, .386, .386C, .386P, PS086, P286N, P286P, 
P386,P386N,P386P 

Chapter 3, Directives 123 



P286N 

P286N Ideal, MASM 

Function Enables assembly of non-privileged 80286 instructions 

See also .8086, .186, .286C, .286P, .286, .386, .386C, .386P, PS086, P286, P286P, P386, 
P386N,P386P 

P286P Ideal, MASM 

Function Enables assembly of privileged 80286 instructions 

See also .8086, .186, .286C, .286P, .286, .386, .386C, .386P, PS086, P286, P286N, P386, 
P386N,P386P 

P287 Ideal, MASM 

Function Enables assembly of 80287 coprocessor instructions 

See also .8087, .287, .387, P8087, PN087, P387 

P386 Ideal, MASM 

Function Enables assembly of all 80386 instructions 

See also .8086, .186, .286C, .286, .286P, .386C, .386P, .386, PS086, P286, P286N, 
P286P,P386N,P386P 

P386N Ideal, MASM 

Function Enables assembly of non-privileged 80386 instructions 

See also .8086, .186, .286C, .286, .286P, .386C, .386P, .386, PS086, P286, P286N, 
P286P,P386,P386P 

124 Turbo Assembler Reference Guide 



P386P 

P386P Ideal, MASM 

Function Enables assembly of privileged 80386 instructions 

See also .8086, .186, .286C, .286, .286P, .386C, .386P, .386, P8086, P286, P286N, 
P286P,P386,P386N 

P387 Ideal, MASM 

Function Enables assembly of 80387 coprocessor instructions 

See also .8087, .287, .387, 8087, PN087, P287 

P8G86 Ideal, MASM 

Function Enables assembly of 8086 instructions only 

See also .186, .286C, .286, .286P, .386C, .386, .386P, .8086, P286, P286N, P286P, P386, 
P386N,P386P 

P8G87 Ideal, MASM 

Function Enables assembly of 8087 coprocessor instructions 

See also .287, .387, .8087, 8087, PN087, P287, P387 

AAGE M~M 

Function Sets the listing page height and width, starts new pages 

Syntax PAGE [rows] [,eols] 

PAGE + 

Remarks rows specifies the number of lines that will appear on each listing page. The 
minimum is 10 and the maximum is 255. cols specifies the number of 
columns wide the page will be. The minimum width is 59; the maximum is 
255. If you omit either rows or cols, the current setting for that parameter 
will remain unchanged. To change only the number of columns, precede 
the column width with a comma; otherwise, you'll end up changing the 
number of rows instead. 

Chapter 3, Directives 125 



PAGE 

If you follow th~ PAGE directive with a plus sign (+), a new page starts, the 
section number is incremented, and the page number restarts at 1. 

If you use the PAGE directive with no arguments, the listing resumes on a 
new page, with no change in section number. 

See also OfoNEWPAGE, OfoPAGESIZE 

Example PAGE 
PAGE ,80 

istart a new page 
;set width to 80, don't change height 

%PAGESIZE Ideal, MASM 

Function Sets the listing page height and width 

Syntax %PAGESIZE [rows) [,cals) 

Remarks rows specifies the number of lines that will appear on each listing page. The 
minimum is 10 and the maximum is 255. eois specifies the number of 
columns wide the page will be. The minimum width is 59; the maximum is 
255. 

If you omit either rows or eo Is, the current setting for that parameter will 
remain unchanged. If you only want to change the number of columns, 
make sure you precede the column width with a comma; otherwise, you 
will end up changing the number of rows instead. 

See also PAGE 

Example %PAGESIZE 66,132 
%PAGESIZE ,80 

;wide listing, normal height 
;don't change rows, cols = 80 

%PCNT Ideal, MASM 

126 

Function Sets segment:offset field width in listing file 

Syntax %PCNT width 

Remarks width is the number of columns you wish to reserve for the offset within the 
current segment being assembled. Turbo Assembler sets the width to 4 for 
ordinary 16-bit segments and sets it to 8 for 32-bit segments used by the 386 
processor. OfoPCNT overrides these default widths. 

See also OfoBIN, OfoDEPTH, OfoLiNUM 

Example %PCNT 3 
ORG 1234h ;only 234 displayed 

Turbo Assembler Reference Guide 



PN087 

PN087 Ideal, MASM 

Function Prevents the assembling of coprocessor instructions 

Syntax PN087 

Remarks Normally, Borland's Turbo Assembler allows you to assemble instructions 
for the 80x87 coprocessor family. Use PN087 if you want to make sure you 
don't accidentally use any coprocessor instructions. Also, use PN087 if your 
software doesn't have a floating-point emulation package, and you know 
your program may be run on systems without a numeric coprocessor. 

See also .8087, .287, .387, P8087, P287, P387 

Example PN087 
fadd ;this generates an error 

<7'oPOPLCTL 

Function Recalls listing controls from stack 

Syntax %POPLCTL 

Ideal, MASM 

Remarks %POPLCTL resets the listing controls to the way they were when the last 
%PUSHLCTL directive was issued. All the listing controls that you can 
enable or disable (such as %MACS, %LlST, %INCL, and so on) are restored. 
None of the listing controls that set field width are restored (such as 
%DEPTH, %PCNT). The listing controls are saved on a 16-level stack. This 
directive is particularly useful in macros and include files, where you can 
invoke special listing modes that disappear once the macro expansion 
tennina tes. 

See also %PUSHLCTL 

Example %PUSHLCTL 
%NOLIST 
%NOMACS 

%POPLCTL ;restore listings 

Chapter 3, Directives 127 



PROC 

PROC Ideal, MASM 

128 

Function Defines the start of a procedure 

Syntax Ideal mode: 
PROe [language modifier] [language] name 
[distance] [USES item,] [argument [,argument] 
... ] [RETURNS argument [, argument]. •• ] 

MASMmode: 
name PRoe [language modifier] [language] 
[distance] [USES item,] [argument [,argument] 
••• ] [RETURNS argument [, argument]. •• ] 

Remarks name is the name of a procedure. language modifier is either WINDOWS, 
ODDNEAR, ODDFAR, or NORMAL. The modifier selects automatic 
generation of code for stack setup and cleanup on procedure entry and exit 
for MSWindows, ODDNEAR or ODDFAR overlays, or normal procedure 
entry / exit code. The language modifier specified in the PROC directive 
overrides (for this procedure only) any language modifier that has been set 
with a previous .MODEL directive. language is either C, PASCAL, BASIC, 
FORTRAN, PROLOG, or NOLANGUAGE, and selects automatic generation of 
code for stack setup and cleanup on procedure entry and exit for the 
language specified. The language specified in the PROC directive overrides 
(for this procedure only) any language that has been set with previous 
directives. Also note that you no longer need a .MODEL directive in your 
program in order to generate entry or exit code for your procedures. 

The optional distance can be NEAR or FAR; it defaults to the size of the 
default code memory model. If you are not using the simplified 
segmentation directives (.MODEL, and so on), the default size is NEAR. 
With the tiny, small, and compact models, the default size is also NEAR; all 
other models are FAR. distance determines whether any RET instructions 
encountered within the procedure generate near or far return instructions. 
A FAR procedure is expected to be called with a FAR (segment and offset) 
CALL instruction, and a NEAR procedure is expected to be called with a 
NEAR (offset only) CALL. 

item is a list of registers and single tokens that the procedure uses. item is 
pushed on entry and popped on exit from the procedure. You can supply 
more than one item by separating the items with spaces. For example, 

Mine PROe USES ax bx foo 

would save and restore the AX and BX registers, as well as the word at 
location foo. 

Turbo Assembler Reference Guide 



PRoe 

argument describes an argument the procedure is called with. The language 
specified in the PROC directive, or in the .MODEL directive if none was 
specified in PROC, determines whether the arguments are in reverse order 
on the stack. You must always list the arguments in the same order they 
appear in the high-level language function that calls the procedure. Turbo 
Assembler reads them in reverse order if necessary. Each argument has the 
following syntax (boldface items are literal): 

argname [[count1]] [: distance] PTR] type] [: count2] 

argname is the name you'll use to refer to this argument throughout the 
procedure. distance is optional and can be either NEAR or FAR to indicate 
that the argument is a pointer of the indicated size. type is the data type of 
the argument and can be BYTE, WORD, DWORD, FWORD, PWORD, 
aWORD, TBYlE, or a structure name. countl and count2 are the number of 
elements of the specified type. The total count is calculated as countl * 
count2. 

If you don't specify type, WORD is assumed. 

If you add PTR to indicate that the argument is in fact a pointer to a data 
item, Turbo Assembler emits this debug information for Turbo Debugger. 
Using PTR only affects the generation of additional debug information, not 
the code Turbo Assembler generates. You must still write the code to access 
the actual data using the pointer argument. 

If you use PTR alone, without specifying NEAR or FAR before it, Turbo 
Assembler sets the pointer size based on the current memory model and, 
for the 386 processor, the current segment address size (16 or 32 bit). The 
size is set to WORD in the tiny, small, and medium memory models, and to 
DWORD for all other memory models using 16-bit segments. If you're using 
the 386 and are in a 32-bit segment, the size is set to DWORD for tiny, small, 
and medium models, and to FWORD for compact, large, and huge models. 

The optional RETURNS keyword introduces one or more arguments that 
won't be popped from the stack when the procedure returns to its caller. 
Normally, if you specify the language as PASCAL or TPASCAL when using 
the .MODEL directive, or as PASCAL in the PROC directive itself, all 
arguments are popped when the procedure returns. If you place arguments 
after the RETURNS keyword, they will be left on the stack for the caller to 
make use of, and then pop. In particular, you must define a Pascal string 
return value by placing it after the RETURNS keyword. 

Use the ENDP directive to end a procedure definition. You must explicitly 
specify a RET instruction before the ENDP if you want the procedure to 
return to its caller. 

Chapter 3, Directives 129 



PROC 

Within PROC/ENDP blocks you may use local symbols whose names are 
not known outside the procedure. Local symbols start with double at-signs 
(@@). 

You can nest PROC/ENDP directives if you want; if you do, the local 
symbols nest also. 

Argument names that begin with the local symbol prefix when local 
symbols are enabled are limited in scope to the current procedure. 

See also ARG, ENDP, LOCAL, LOCALS, .MODEL, USES 

Example ReadLine PROC NEAR 
;body of procedure 

ReadLine ENDP 

call ReadLine 

PUBLIC Ideal, MASM 

130 

Function Declares symbols to be accessible from other modules 

Syntax PUBLIC [language) symbol [,[language) symbol). •• 

Remarks language is either C, PASCAL, BASIC, FORTRAN, PROLOG, or 
NOLANGUAGE, and defines any language-specific conventions to be 
applied to the symbol name. Using a language in the PUBLIC directive 
temporarily overrides the current language setting (default or one 
established with the .MODEL directive). Note that you don't need to have a 
.MODEL directive in effect to use this feature. 

symbol is published in the object file so that it can be accessed by other 
modules. If you do not make a symbol public, it can only be accessed from 
the current source file. 

You can declare the following types of symbols to be public: 

• data variable names 
• program labels 
• numeric constants defined with EQU 

See also COMM, EXTRN, GLOBAL 

Example PUBLIC XYPROC ;make procedure public 
XYPROC PROC NEAR 

Turbo Assembler Reference Guide 



PUBLlCDLL 

PUBLICDLL Ideal, MASM 

Function Declares symbols to be accessible as dynamic link entry points from other 
modu1es 

Syntax PUBLICDLL [language] symbol [, [language] symbol] ••• 

Remarks symbol is published in the object file as a dynamic link entry point so that it 
can be accessed by other programs under OS/2. This statement is used only 
to help build an OS/2 dynamic link library. !fyou don't make a symbol 
public, it can only be accessed from the current source file. 

In most cases, you declare only PROC labels to be PUBLlCDLL. Other 
program labels, data variable names, and numeric constants defined with 
EQU may also be declared to be PUBLlCDLL. 

The optional language specifier causes any language-specific conventions to 
be applied to the symbol name. For instance, using the C language specifier 
would cause the symbol name to be preceded by an underscore character 
when published in the object file. Valid language specifiers are C, PASCAL, 
BASIC, FORTRAN, PROLOG, and NOLANGUAGE. 

See also COMM, EXTRN, GLOBAL, PUBLIC 

Example PUBLICDLL XYPROC 
XYPROC PROC NEAR 

;make procedure XYPROC 
iaccessible as dynamic 
ilink entry point 

PURGE Ideal, MASM 

Function Removes a macro definition 

Syntax PURGE macroname [,macroname] ••• 

Remarks PURGE deletes the macro definition specified by the macroname argument. 
You can delete mu1tiple macro definitions by supplying all their names, 
separa ted by commas. 

You may need to use PURGE to restore the original meaning of an 
instruction or directive whose behavior you changed by defining a macro 
with the same name. 

See also MACRO 

Example PURGE add 
add ax,4 

Chapter 3, Directives 

ibehaves as normal ADD now 

131 



%PUSHLCTL 

%PUSHLCTL Ideal, MASM 

Function Saves listing controls on stack 

Syntax %PUSHLCTL 

Remarks %PUSHLCTL saves the current listing controls on a 16-level stack. Only the 
listing controls that can be enabled or disabled (O/oiNCL, %NOINCL, and so 
on) are saved. The listing field widths are not saved. This directive is 
particularly useful in macros, where you can invoke special listing modes 
that disappear once the macro expansion terminates. 

See also %POPLCTL 

Example %PUSHLCTL 

QUIRKS 

%NOINCL 
%MACS 
%POPLCTL 

;save listing controls 

;back the way things were 

Function Enables acceptance of MASM bugs 

Syntax QUIRKS 

Ideal, MASM 

Remarks QUIRKS allows you to assemble a source file that makes use of one of the 
true MASM bugs. You should try to stay away from using this directive, 
since it merely perpetuates source code constructs that only work by 
chance. Instead, you should really correct the offending source code so that 
it does what you really intended. 

See the section "Turbo Assembler Quirks Mode" (page 161) in Appendix B 
for a complete description of this mode. 

See also IDEAL, MASM 

Example QUIRKS 
BVAL DB 0 
mov BVAL,es ;load register into byte location 

132 Turbo Assembler Reference Guide 



.RADIX 

.RADIX MASM 

Function Sets the default radix for integer constants in expressions 

Syntax .RADIX expression 

Remarks expression must evaluate to either 2,8, 10, or 16. Constants in expression are 
always interpreted as decimal, no matter what the current radix is set to. 

Example . RADIX 8 ; set to octal 
DB 77 ;63 decimal 

RADIX Ideal, MASM 

Function Sets the default radix for integer constants in expressions 

Syntax RADIX 

See also .RADIX 

RECORD Ideal, MASM 

Function Defines a record that contains bit fields 

Syntax Ideal mode: 
RECORD name field [, field] .•• 

MASMmode: 
name RECORD field [,field] ... 

Remarks name identifies the record so that you can use this name later when 
allocating memory to contain records with this format. Each field describes a 
group of bits in the record and has the following format: 

fieldname:width[=expression] 

fieldname is the name of a field in the record. If you use fieldname in an 
expression, it has the value of the number of pits that the field must be 
shifted to the right in order to place the low bit of the field in the lowest bit 
in the byte or word that comprises the record. 

width is a constant between 1 and 16 that specifies the number of bits in the 
field. The total width of all fields in the record cannot exceed 32 bits. If the 
total number of bits in all fields is 8 or less, the record will occupy 1 byte; if 

Chapter 3, Directives 133 



RECORD 

it is between 9 and 16 bits, it will occupy 2 bytes; otherwise, it will occupy 4 
bytes. 

expression is an optional field that provides a default value for the field; it 
must be preceded with an equal sign (=). When name is used to define 
storage, this default value will be placed in the field if none is supplied. 
Any unused bits in the high portion of the record will be initialized to O. 

The first field defined by RECORD goes into the most-significant bits of the 
record with successive fields filling the lower bits. If the total width of all 
the fields is not exactly 8 or 16 bits, all the fields are shifted to the right so 
that the lowest bit of the last field occupies the lowest bit of the byte or 
word that comprises the record. 

See also STRUC 

Example MyRec RECORD val:3=4, MODE:2, SIZE:4 

REPT Ideal, MASM 

134 

Function Repeats a block of statements 

Syntax REPT expression 
statements 

ENDM 

Remarks expression must evaluate to a constant and cannot contain any forward
referenced symbol names. 

The statements within the repeat block are assembled as many times as 
specified by expression. 

REPT can be used both inside and outside of macros. 

See also ENDM, IRP, IRPC 

Example REPT 4 
shl ax,l 

ENDM 

Turbo Assembler Reference Guide 



.SALL 

.SALL MASM 

Function Suppresses the listing of all statements in macro expansions 

Syntax . SALL 

Remarks Use .SALL to cut down the size of your listing file when you want to see 
how a macro gets expanded. 

See also .LALL, %MACS, %NOMACS, .XALL 

Example . SALL 

SEGMENT 

Function 

Syntax 

iinvoke macro MyMacro 4 
add ax,si ithis line follows MYMACRO in listing 

Defines a segment with full attribute control 

Ideal mode: 
SEGMENT name [align] [combine] [use] [' class'] 

MASMmode: 
name SEGMENT [align] [combine] [use] [' class'] 

Ideal, MASM 

Remarks name defines the name of a segment. If you have already defined a segment 
with the same name, this segment is treated as a continuation of the 
previous one. 

You can also use the same segment name in different source files. The linker 
will combine all segments with the same name into a single segment in the 
executable program. 

align specifies the type of memory boundary where the segment must start. 
It can be one of the following: 

BYTE Use the next available byte address 
WORD Use the next word-aligned address 
DWORD Use the next doubleword-aligned address 
PARA Use the next paragraph address (16-byte aligned) 
PAGE Use the next page address (256-byte aligned) 

PARA is the default alignment type used if you do not specify an align type. 

combine specifies how segments from different modules but with the same 
name will be combined at link time. It can be one of the following: 

Chapter 3, Directives 135 



SEGMENT 

136 

• AT expression: Locates the segment at the absolute paragraph address 
specified by expression. expression must not contain any forward
referenced symbol names. The linker does not generate any data or code 
for AT segments. You usually use AT segments to allow symbolic access 
to fixed memory locations, such as the display screen or the ROM BIOS 
data area. 

• COMMON: Locates this segment and all other segments with the same 
name at the same address. The length of the resulting common segment 
is the length of the longest segment. 

• MEMORY: Concatenates all segments with the same name to form a single 
contiguous segment. This is the same as the PUBLIC combine type. 

• PRIVATE: Does not combine this segment with any other segments. 

• PUBLIC: Concatenates all segments with the same name to form a single 
contiguous segment. The total length of the segment is the sum of all the 
lengths of the segments with the same name. 

• STACK: Concatenates all segments with the same name to form a single 
contiguous segment. The linker initializes the stack segment (55) register 
to the beginning of this segment. It initializes the stack pointer (5P) 
register to the length of this segment, allowing your program to use 
segments with this combine type as a calling stack, without having to 
explicitly set the 55 and 5P registers. The total length of the segment is 
the sum of all the lengths of the segments with the same name. 

• VIRTUAL: Defines a special kind of segment which will be treated as a 
common area and attached to another segment at link time. The VIRTUAL 
segment is assumed to be attached to the enclosing segment. The 
VIRTUAL segment also inherits its attributes from the enclosing segment. 
The ASSUME directive considers a VIRTUAL segment to be a part of its 
parent segment; in all other ways, a VIRTUAL segment is treated just like 
a normal segment. The linker treats virtual segments as a common area 
that will be combined across modules. This permits static data that comes 
into many modules from Include files to be shared. 

PRIVATE is the default combine type used if you do not specify one. 

use specifies the default word size for the segment, and can only be used 
after enabling the 80386 processor with the P386 or P386N directive. It can 
be one of the following: 

• USE16: This is the default segment type when you do not specify a use
segment attribute. A USE16 segment can contain up to 64K of code 
and/or data. If you reference 32-bit segments, registers, or constants 
while in a USE16 segment, additional instruction bytes will be generated 
to override the default 16-bit size. 

Turbo Assembler Reference Guide 



SEGMENT 

• USE32: A USE32 segment can contain up to 4 Gb (gigabytes) of code 
and/or data. If you reference 16-bit segments, registers, or constants 
while in a USE32 segment, additional instruction bytes will be generated 
to override the default 32-bit size. 

class controls the ordering of segments at link time. Segments with the same 
class name are loaded into memory together, regardless of the order in 
which they appear in the source file. You must always enclose the class 
name in quotes (' or "). 

The ENDS directive closes the segment opened with the SEGMENT 
directive. You can nest segment directives, but Turbo Assembler treats 
them as unnested; it simply resumes adding data or code to the original 
segment when an ENDS terminates the nested segment. 

See also CODESEG, DATASEG, GROUP, MODEL 

Example PROG SEGMENT PARA PUBLIC' CODE' 

PROG ENDS 

.SEQ MASM 

Function Sets sequential segment-ordering 

Syntax .SEQ 

Remarks .SEQ causes the segments to be ordered in the same order in which they 
were encountered in the source file. By default, Turbo Assembler uses this 
segment-ordering when it first starts assembling a source file. The DOSSEG 
directive can also affect the ordering of segments . 

• SEQ does the same thing as the IS command-line option. If you used the IA 
command-line option to force alphabetical segment-ordering, .SEQ will 
override it. 

See also .ALPHA, DOSSEG 

Example . SEQ 
xyz SEGMENT 
xyz ENDS 
abc SEGMENT 
abc ENDS 

Chapter 3, Directives 

;this segment will be first 

137 



.SFCOND 

.SFCOND MASM 

Function Prevents statements in false conditional blocks from appearing in the listing 
file 

Syntax . SFCOND 

See also %CONDS, .LFCOND, %NOCONDS, .TFCOND 

SIZESTR Ideal, MASM51 

Function Returns the number of characters in a string 

Syntax name SIZESTR string 

Remarks name is .assigned a numeric value that is the number of characters in a 
string. A null string <> has a length of zero. 

See also CATSTR,INSTR, SUBSTR 

Example RegList EQU <si di> 
RegLen SIZESTR RegList iRegLen = 5 

.STACK MASM 

138 

Function Defines the start of the stack segment 

Syntax .STACK [size] 

Remarks size is the number of bytes to reserve for the stack. If you do not supply a 
size, the .STACK directive reserves 1 Kb (1024 bytes>. 

You usually only need to use .STACK if you are writing a standalone 
assembler program. If you are writing an assembler routine that will be 
called from a high-level language, that language will normally have set up 
any stack that is required. 

See also .CODE, .CONST, .DATA, .DATA?, .FARDATA, .FARDATA?, .MODEL, STACK 

Example . STACK 200h iallocate 512 byte stack 

Turbo Assembler Reference Guide 



STACK 

STACK Ideal, MASM 

Function Defines the start of the stack segment 

See also .CODE, .CONST, .DATA, .DATA?, .FARDATA, .FARDATA?, .MODEL, .STACK 

,STARTUP MASM 

Function Generates startup code for the particular model in effect. 

Syntax . STARTUP 

Remarks .STARTUP causes startup code to be generated for the particular model in 
effect at the time. The near label @5tartup is defined at the beginning of the 
startup code and the program's END directive becomes END @Startup. This 
directive is provided for Microsoft Quick Assembler compatibility. 

See also @5tartup, STARTUPCODE 

STARTUPCODE Ideal, MASM 

Function Generates startup code for the particular model in effect. 

Syntax STARTUPCODE 

Remarks STARTUPCODE causes startup code to be generated for the particular 
model in effect at the time. The near label @5tartup is defined at the 
beginning of the startup code and the program's END directive becomes END 

@Startup. This directive is provided for Microsoft Quick Assembler 
compatibility. 

See also @5tartup, .STARTUP 

STRUC Ideal, MASM 

Function Defines a structure 

Syntax Ideal mode: 
STRUC name 

fields 
ENDS {name] 

MASMmode: 

Chapter 3, Directives 139 



STRUC 

name STRUC 
fields 

[name] ENDS 

Remarks The difference in how STRUC is handled in Ideal and MASM mode is only 
in the order of the directive and the structure name on the first line of the 
definition, and the order of the ENDS directive and the optional structure 
name on the last line of the definition. In Turbo Assembler, you can nest the 
STRUC directive and also combine it with the UNION directive. 

name identifies the structure, so you can use this name later when allocating 
memory to contain structures with this format. 

fields define the fields that comprise the structure. Each field uses the 
normal data allocation directives (DB, OW, and so on) to define its size. fields 
may be named or remain nameless. The field names are like any other 
symbols in your program-they must be unique. In Ideal mode, the field 
names do not have to be unique. 

You can supply a default value for any field by putting that value after the 
data allocation directive, exactly as if you were initializing an individual 
data item. If you do not want to supply a default value, use the? 
indeterminate initialization symbol. When you use the structure name to 
actually allocate data storage, any fields without a value will be initialized 
from the default values in the structure definition. If you don't supply a 
value, and there is no default value, ? will be used. 

Be careful when you supply strings as default values; they will be truncated 
if they are too long to fit in the specified field. If you specify a string that is 
too short for the field in MASM mode, it will be padded with spaces to fill 
out the field. When in Ideal mode, the rest of the string from the structure 
definition will be used. This lets you control how the string will be padded 
by placing appropriate values in the structure definition. 

At any point while declaring the structure members, you may include a 
nested structure or union definition by using the STRUC or UNION directive 
instead of one of the data allocation directives, or you may use the name of 
a previously defined structure. 

When you nest structures or unions using the STRUC or UNION directive, 
you still access the members as if the structure only has one level by using a 
single period (.) structure member operator. When you nest structures by 
using a previously defined structure name, you use multiple period 
operators to step down through the structures. 

See also ENDS, UNION 

Example IDEAL 

140 Turbo Assembler Reference Guide 



.MODEL small 
DATASEG 
STRUC B 

Bl DO 
B2 DB 

ENDS 

STRUC A 
Al OW 
A2 DO 
BINST 
STRUC 

0 
E 

ENDS 
ENDS 

AINST 
CINST 
DINST 

CODESEG 

A 
A 
A 

o 

B <> 

DB "XYZ" 
DQ 1.0 

<> 

mov aI, [AINST.BINST.B2] 
mov aI, [AINST.D] 
mov ax, [WORD CINST.BINST.Bl] 

END 

i first field 
isecond field 

STRUC 

SUBSTR Ideal, MASM51 

Function Defines a new string as a substring of an existing string 

Syntax name SUBSTR string,position[,size] 

Remarks name is assigned a value consisting of characters from string starting at 
position, and with a length of size. The first character in the string is position 
1. If you do not supply a size, all the remaining characters in string are 
returned, starting from position. 

string may be one of the following: 

II a string argument enclosed in angle brackets,like <abc> 
II a previously defined text macro 
III a numeric string substitution starting with percent (%) 

See also CATSTR,INSTR,SIZESTR 

Example N = OAh 
HEXC SUBSTR <0123456789ABCDEF>,N + 1,1 iHEXC = "A" 

Chapter 3, Directives 141 



SUBTTL 

SUBTTL MASM 

Function Sets subtitle in listing file 

Syntax SUBTTL text 

Remarks The subtitle appears at the top of each page, after the name of the source 
file, and after any title set with the TITLE directive. 

You may place as many SUBTTL directives in your program as you wish. 
Each directive changes the subtitle that will be placed at the top of the next 
listing page. 

See also %SUBTTL 

Example SUBTTL Video driver 

%SUBTIL Ideal, MASM 

Function Sets subtitle in listing file 

Syntax %SUBTTL II text ll 

Remarks The subtitle text appears at the top of each page, after the name of the 
source file, and after any title set with the % TITLE directive. Make sure that 
you place the subtitle text between quotes (""). 

You may place as many %SUBTTL directives in your program as you wish. 
Each directive changes the subtitle that will be placed at the top of the next 
listing page. 

See also SUBTTL 

Example %SUBTTL IIOutput routines II 

%SYMS Ideal, MASM 

Function Enables symbol table in listing file 

Syntax %SYMS 

Remarks Placing %SYMS anywhere in your source file causes the symbol table to 
appear at the end of the listing file. (The symbol table shows all the symbols 
you defined in your source file.) 

142 Turbo Assembler Reference Guide 



O/oSYMS 

This is the default symbol listing mode used by Turbo Assembler when it 
starts assembling a source file. 

See also O/ONOSYMS 

Example %SYMS ;symbols now appear in listing file 

%TABSIZE Ideal, MASM 

Function Sets tab column width in the listing file 

Syntax %TABSIZE width 

Remarks width is the number of columns between tabs in the listing file. The default 
tab column width is 8 columns. 

See also O/OBIN, %PAGE, %PCNT, %TEXT 

Example %TABSIZE 4 ;small tab columns 

%TEXT Ideal, MASM 

Function Sets width of source field in listing file 

Syntax %TEXT width 

Remarks width is the number of columns to use for source lines in the listing file. If 
the source line is longer than this field, it will either be truncated or 
wrapped to the following line, depending on whether you've used 
%TRUNC or %NOTRUNC. 

See also O/OBIN, %DEPTH, %NOTRUNC, %PCNT, % TRUNC 

Example %TEXT 80 ;show 80 columns from source file 

,TFCOND MASM 

Function Toggles conditional block-listing mode 

Syntax . TFCOND 

Remarks Normally, conditional blocks are not listed by Turbo Assembler, and the 
first .TFCOND encountered enables a listing of conditional blocks. If you use 
the IX command-line option, conditional blocks start off being listed, and 

Chapter 3, Directives 143 



.TFCOND 

the first .TFCOND encountered disables listing them. Each Hme .TFCOND 
appears in the source file, the state of false conditional listing is reversed. 

See also %CONDS, .LFCOND, %NOCONDS, .SFCOND 

TITLE MASM 

Function Sets title in listing file 

Syntax TITLE text 

Remarks The title text appears at the top of each page, after the name of the source 
file and before any subtitle set with the SU BTTL directive. 

You may only use the TITLE directive once in your program. 

See also SUBTTL, %SUBTTL, % TITLE 

Example TITLE Sort Utility 

<Yo TITLE Ideal, MASM 

Function Sets title in listing file 

Syntax %TITLE" text" 

Remarks The title text appears at the top of each page, after the name of the source 
file and before any subtitle set with the %SUBTTL directive. Make sure that 
you place the title text between quotes (""). 

You may only use the % TITLE directive once in your program. 

See also SUBTTL, %SUBTTL, TITLE 

Example %TITLE "I/O Library" 

%TRUNC Ideal, MASM 

Function Truncates listing fields that are too long 

Syntax %TRUNC 

Remarks % TRUNC reverses the effect of a previous %NOTRUNC directive. This 
directive changes the object-code field and the source-line field so that too
wide fields are truncated and excess information is lost. 

144 Turbo Assembler Reference Guide 



See also %NOTRUNC 

Example %TRUNC 
DD 1,2,3,4,5 

UDATASEG 

idon't see all fields 

Function Defines the start of an uninitialized data segment 

%TRUNC 

Ideal, MASM 

See also .CODE, .CONST, .DATA, DATA?, .FARDATA, .FARDATA?, .MODEL, .STACK 

UFARDATA Ideal, MASM 

Function Defines the start of an uninitialized far data segment 

See also .CODE, .DATA, .FARDATA, .FARDATA?, .MODEL, .STACK 

UNION Ideal, MASM 

Function Defines a union 

Syntax Ideal mode (disabled by Quirks): 
UNION NAME 

fields 
ENDS [name] 

MASMmode: 
NAME UNION 

fields 
[name] ENDS 

Remarks The only difference in how UNION behaves in Ideal and MASM mode is in 
the order of the directive and the union name on the first line of the 
definition, and the order of the ENDS directive and the optional union name 
on the last line of the definition. Turbo Assembler allows you to nest UNION 
and to combine it with STRUC. 

A UNION is just like a STRUC except that all its members have an offset of 
zero (0) from the start of the union. This results in a set of fields that are 
overlayed, allowing you to refer to the memory area defined by the union 
with different names and different data sizes. The length of a union is the 

Chapter 3, Directives 145 



UNION 

146 

length of its largest member, not the sum of the lengths of its members as in 
a structure. 

name identifies the union, so you can use this name later when allocating 
memory to contain unions with this format. 

fields define the fields that comprise the union. Each field uses the normal 
data allocation directives (DB, OW, etc.) to define its size. The field names 
are like any other symbols in your program-they must be unique. 

You can supply a default value for any field by putting that value after the 
data allocation directive, exactly as if you were initializing an individual 
data item. If you don't want to supply a default value, use the? 
indeterminate initialization symbol. When you use the union name to 
actually allocate data storage, any fields that you don't supply a value for 
will be initialized from the default values in the structure definition. If you 
don't supply a value and there is no default value, ? will be used. 

Be careful when you supply strings as default values; they will be truncated 
if they are too long to fit in the specified field. If you specify a string that is 
too short for the field, it will be padded with spaces to fill out the field. 

At any point while declaring the union members, you may include a nested 
structure or union definition by using the STRUC or UNION directive 
instead of one of the data-allocation directives. When you nest structures 
and unions using the STRUC or UNION directive, you still access the 
members as if the structure only has one level by using a single period (.) 
structure member operator. When you nest unions by using a previously 
defined union name, you use multiple period operators to step down 
through the structures and unions. 

See also ENDS, UNION 

Example UNION B 
BMEMl OW 
BMEM2 DB ? 

ENDS 
UNION A 

B OW ? 
C DO? 

BUNION B <> 
STRUC 
o DB nXyzn 

E OQ 1.0 
ENDS 

ENDS 
AINST A <> 

mov al,[AINST.BUNION.BMEM1] 

ifirst field--offset 0 
isecond field--offset 0 
istarts at 0 

iat offset 0 
iat offset 1 

iallocate a union of type A 
imultiple levels 

Turbo Assembler Reference Guide 



USES 

USES 

mov aI, [AINST.D] ;single level 

Ideal, MASM 

Function Indicates register/data usage for procedures 

Syntax USES item [, item] ..• 

Remarks USES appears within a PROC/ENDP pair and indicates which registers or 
data items you want to have pushed at the beginning of the procedure and 
which ones you want popped just before the procedure returns. 

item can be any register or single-token data item that can be legally 
PUSHed or POPped. There is a limit of 8 items per procedure. 

Notice that you separate item names with commas, not with spaces like you 
do when specifying the item as part of the PROC directive. You can also 
specify these items on the same line as the PROC directive, but this directive 
makes your procedure declaration easier to read and also allows you to put 
the USES directive inside a macro that you can define to set up your 
procedure entry and exit. 

You must use this directive before the first instruction that actually 
generates code in your procedure. 

Note: USES is only available when used with language extensions to a 
.MODEL statement. 

See also ARG, LOCALS, PROC 

Example MyProc PRoe 
USES cx,si,di,foo 

mov cx,lO 
mov 

rep movsb 
ret 

MyProc ENDP 

foo,cx 

;this will pop ex, SI, & 01 registers, and the word 
iat location foo 

Chapter 3, Directives 147 



WARN 

WARN Ideal, MASM 

Function Enables a warning message 

Syntax WARN [warnc1assl 

Remarks If you specify WARN without warnclass, all warnings are enabled. If you 
follow WARN with a warning identifier, only that warning is enabled. Each 
warning message has a three-letter identifier: 

ALN Segment alignment 
ASS Assumes segment is 16-bit 
BRI< Brackets needed 
ICG Inefficient code generation 
LCO Location counter overflow 
OPI Open IF conditional 
OPP Open procedure 
OPS Open segment 
OVF Arithmetic overflow 
PDC Pass-dependent construction 
PRO Write-to-memory in protected mode needs CS override 
PQK Assuming constant for [const] warning 
RES Reserved word warning 
TPI Turbo Pascal illegal warning 

These are the same identifiers used by the /W command-line option. 

See also WARN 

Example NOWARN OVF ;disable arithmetic overflow warnings 
OW lOOOh * l234h ;doesn't warn now 

.XALL MASM 

Function Lists only macro expansions that generate code or data 

See also .LALL, %MACS, %NOMACS, .SALL 

148 Turbo Assembler Reference Guide 



.XCREF 

.XCREF MASM 

Function Disables cross-reference listing (CREF) 

See also %CREF, .CREF, %NOCREF 

.XLIST MASM 

Function Disables output to listing file 

See also %LlST, .LlST, %NOLIST 

Chapter 3, Directives 149 



150 Turbo Assembler Reference Guide 



A p p E N D x 

A 

Turbo Assembler syntax summary 

This appendix uses a modified Backus-Naur form (BNF) to 
summarize the syntax for Turbo Assembler expressions, both in 
MASM mode and in Ideal mode. 

Note: In the following sections, the ellipses ( ... ) mean the same 
element is repeated as many times as it is found. 

Lexical grammar 

valid_line 

white_space valid_line 
punctuation valid_line 
number _string valid_line 
id_string valid_line 
null 

white_space 

space_char white_space 
space_char 

space_char 

All control characters, characters> 128, ~ ~ 

Appendix A, Turbo Assembler syntax summary 151 



152 

Id_strlng 

id_char id_strng2 

Id_strng2 

id_chr2 id_strng2 
null 

Id_char 

$, %, -' ?, alphabetic characters 

Id_chr2 

id_chars plus numerics 

number_string 

num_string 
str_string 

num_strlng 

digits alphanums 
digits ',' digits exp 
digits exp ; Only if MASM mode in aDD, DQ, or DT 

digits 

digit digits 
digit 

digit 

o through 9 

alphanums 

digit alphanum 
alpha alphanum 
null 

Turbo Assembler Reference Guide 



alpha 

alphabetic characters 

exp 

E + digits 
E - digits 
E digits 
null 

str_strlng 

Quoted string, quote enterable by two quotes in a row 

punctuation 

Everything that is not a space_char, id_char, "", '"", or digits 

The period (.) character is handled differently in MASM mode 
and Ideal mode. This character is not required in floating-point 
numbers in MASM mode and also cannot be part of a symbol 
name in Ideal mode. In MASM mode, it is sometimes the start of a 
symbol name and sometimes a punctuation character used as the 
structure member selector. 

Here are the rules for the period (.) character: 

1. In Ideal mode, it is always treated as punctuation. 

2. In MASM mode, it is treated as the first character of an ID in 
the following cases: 

a. When it is the first character on the line, or in other special 
cases like EXTRN and PUBLIC symbols, it gets attached to 
the following symbol if the character tha t follows it is an 
id_chr2, as defined in the previous rules. 

b. If it appears other than as the first character on the line, or 
if the resulting symbol would make a defined symbol, the 
period gets appended to the start of the symbol following 
it. 

MASM mode expression grammar 

mexpr1 

Appendix A, Turbo Assembler syntax summary 153 



154 

'SHORT' mexprl 
'.TYPE'mexprl 
'SMALL'mexprl (16-bit offset cast [386 only]) 
'LARGE' mexprl (32-bit offset cast [386 only]) 
mexpr2 

mexpr2 

mexpr3 'OR' mexpr3 .. . 
mexpr3 'XOR' mexpr3 .. . 
mexpr3 

mexpr3 

mexpr4 'AND'mexpr4 ... 
mexpr4 

mexpr4 

'NOT'mexpr4 
mexprS 

mexpr5 

mexpr6 'EQ' mexpr6 .. . 
mexpr6 'NE' mexpr6 .. . 
mexpr6 'LT'mexpr6 .. . 
mexpr6 'LE' mexpr6 .. . 
mexpr6 'GT' mexpr6 .. . 
mexpr6 'GE' mexpr6 .. . 
mexpr6 

mexpr6 

mexpr7 '+' mexpr7 .. . 
mexpr7 '-' mexpr7 .. . 
mexpr7 

mexpr7 

mexpr8 '*' mexpr8 .. . 
mexpr8 'I' mexpr8 .. . 
mexpr8 'MOD' mexpr8 .. . 
mexpr8 'SHR' mexpr8 .. . 
mexpr8 'SHL' mexpr8 .. . 

Turbo Assembler Reference Guide 



mexprB 

mexpr8 

mexpr9 'PTR'mexprB 
mexpr9 
'OFFSET' mexprB 
'SEG' mexprB 
'TYPE' mexprB 
'THIS' mexprB 

mexpr9 

mexprl0 ':' mexprl0 ... 
mexprl0 

mexpr10 

'+' mexprl0 
'-' mexprl0 
mexprll 

mexpr11 

'HIGH'mexprl1 
'LOW'mexprll 
mexpr12 

mexpr12 

mexpr13 mexpr13 ... (Implied addition only if,[, or '(' present) 
mexpr12 mexpr13 '.' mexprB 

mexpr13 

'LENGTH'id 
'SIZE'id 
'WIDTH'id 
'MASK'id 
'(' mexprl ')' 
'[' mexprl ']' 
id 
const 

Appendix A, Turbo Assembler syntax summary 155 



Ideal mode expression grammar 

156 

pointer 

'SMALL' pointer (16-bit offset cast [386 only]) 
'LARGE' pointer (32-bit offset cast [386 only]) 
type 'PTR' pointer 
type 'LOW' pointer (Low caste operation) 
type 'HIGH' pointer (High caste operation) 
type pointer 
pointer2 

type 

'UNKNOWN' 
'BYTE' 
'WORD' 
'DWORD' 
'QWORD' 
'PWORD' 
'TBYTE' 
'SHORT' 
'NEAR' 
'FAR' 
struct_id 
'TYPE' pointer 

polnter2 

pointer3 ',' id (Structure item operation) 
pointer3 

polnter3 

expr ':' pointer3 
expr 

expr 

'SYMTYPE' expr (Symbol type operation) 
expr2 

expr2 

expr3 'OR' expr3 '" 

Turbo Assembler Reference Guide 



expr3 'XOR' expr3 ... 
expr3 

expr3 

expr4 'AND' expr4 ... 
expr4 

expr4 

'NOT' expr4 
exprS 

expr5 

expr6 'EQ' expr6 .. . 
expr6 'NE' expr6 .. . 
expr6 'LT' expr6 .. . 
expr6 'LE' expr6 .. . 
expr6 'GT' expr6 .. . 
expr6 'GE' expr6 .. . 
expr6 

exprS 

expr7 '+' expr7 .. . 
expr7 '-' expr7 .. . 
expr7 

expr7 

exprB ,*, exprB .. . 
exprB '/'. exprB .. . 
exprB'MOD' exprB .. . 
exprB 'SHR' exprB .. . 
exprB 'SHL' exprB .. . 
exprB 

exprS 

'+' exprB 
'-' exprB 
expr9 

expr9 

Appendix A, Turbo Assembler syntax summary 157 



158 

'HIGH' expr9 
'LOW' expr9 
exprl0 

expr10 

'OFFSET' pointer 
'SEG' pointer 
'SIZE'id 
'LENGTH'id 
'WIDTH'id 
'MASK'id 
id 
canst 
'(' pointer ')' 
'[' pointer '] (Always means 'contents-of ') 

Turbo Assembler Reference Guide 



A p p E N D x 

B 

Compatibility issues 

Turbo Assembler in MASM mode is very compatible with MASM 
version 4.0, and additionally supports all the extensions provided 
by MASM versions 5.0 and 5.1. However, 100% compatibility is an 
ideal that can only be approached, since there is no formal 
specification for the language and different versions of MASM are 
not even compatible with each other. 

For most programs, you will have no problem using Turbo 
Assembler as a direct replacement for MASM version 4.0 or 5.l. 
Occasionally, Turbo Assembler will issue a warning or error 
message where MASM would not, which usually means that 
MASM has not detected an erroneous statement. For example, 
MASM accepts 

abc EQU [BP+2] 
PUBLIC abc 

and generates a nonsense object file. Turbo Assembler correctly 
detects this and many other questionable constructs. 

If you are having trouble assembling a program with Turbo 
Assembler, you might try using the QUIRKS directive; for 
example, 

TASM /JQUIRKS MYFILE 

which may make your program assemble properly. If it does, add 
QUIRKS to the top of your source file. Even better, review this 
appendix and determine which statement in your source file needs 

Appendix B, Compatibility issues 159 



the QUIRKS directive. Then you can rewrite the line(s) of code so 
that you don't even have to use QUIRKS. 

If you're using certain features of MASM version 5.1, you'll need 
MASM51 in your source file. These capabilities are discussed later 
in this appendix. 

One- versus two-pass assembly 

See Chapter 3 In the User's 
Guide for a complete 

discussion of this option. 

Normally, Turbo Assembler performs only one pass when 
assembling code, while MASM performs two. This gives Turbo 
Assembler a speed advantage, but can introduce minor 
incompatibilities when forward references and pass-dependent 
constructions are involved. TASM 2.0 introduces a new 
command-line option (1m) to specify the number of passes 
desired. For maximum compatibility with MASM, two passes 
(1m2) should be used. 

Environment variables 

See Chapter 3 In the User's 
Guide for a discussion of how 

to do this. 

In keeping with the approach used by other Borland language 
products, Turbo Assembler does not use environment variables to 
control default options. Instead, you can place default options in a 
configuration file and then set up different configuration files for 
different projects. 

If you have used the INCLUDE or MASM environment variables to 
configure MASM to behave as you wish, you will have to make a 
configuration file for Turbo Assembler. Any options that you have 
specified using the MASM variable can simply be placed in the 
configuration file. Any directories that you have specified using 
the INCLUDE variable should be placed in the configuration file 
using the II command-line option. 

Microsoft binary floating-point format 

160 

By default older versions of MASM generated floating-point 
numbers in a format incompatible with the IEEE standard 
floating-point format. MASM version 5.1 generates IEEE floating-

Turbo Assembler Reference Guide 



point data by default and has the .MSFLOAT directive to specify 
that the older format be used. 

Turbo Assembler does not support the old floating-point format, 
and therefore does not let you use .MSFLOAT. 

Turbo Assembler Quirks mode 

Byte move tol 
from segment 

register 

Erroneous near 
jump to for label 

or procedure 

Some MASM features are so problematic in nature that they 
weren't included in Turbo Assembler's MASM mode. However, 
programmers occasionally like to take advantage of some of these 
"quirky" features. For that reason, Turbo Assembler includes 
Quirks mode, which emulates these potentially troublesome 
features of MASM. 

You can enable Quirks mode either with the QUIRKS keyword in 
your source file or by using the IJQUIRKS command-line option 
when running Turbo Assembler. 

The constructs that follow cause Turbo Assembler to generate 
error messages in MASM mode, but are accepted in Quirks mode. 

MASM does not check the operand size when moving segment 
registers to and from memory. For example, the following is 
perfectly acceptable under MASM: 

SEGVAL 0... ? 
USEFUL DB 

rnov SEGVAL, es ;overwrites part of "USEFUL"! 

This is clearly a programming error that only works because the 
corruption of USEFUL does not affect the program's behavior. 
Rather than using Quirks mode, redefine SEGVAL to be a OW, as 
was presumably intended. 

With MASM, a far jump instruction to a target within the same 
segment generates a near or a short jump whether or not the 
target is overridden with FAR PTR: 

CODE SEGMENT 
jrnp abc 
jrnp FAR PTR abc ;doesn't generate far JMP 

Appendix B, Compatibility issues 161 



Loss of type 
information with = 

and EQU 
directive 

Segment-

abc LABEL FAR 
CODE ENDS 

Turbo Assembler normally assembles a far JMP instruction when 
you tell it that the destination is a far pointer. If you want it to 
behave as MASM does and always treat it as a short or near jump 
if the destination is in the same segment, you must enable Quirks 
mode. 

Examine the following code fragment: 

x DW 0 
Y = OFFSET X 

rnovax,Y 

MASM will generate the instruction MOV AX,[X] here, where 
Turbo Assembler will correctly generate MOV AX,OFFSET X. This 
happens because MASM doesn't correctly save all the information 
that describes the expression on the right side of the = directive. 

This also happens when using the EQU directive to define 
symbols for numeric expressions. 

alignment MASM allows the ALIGN directive to specify an alignment that is 
checking more stringent than that of the segment in which it is used. For 

example, 

162 

CODE SEGMENT WORD 
ALIGN 4 isegment is only word aligned 

CODE ENDS 

This is a dangerous thing to do, since the linker may undo the 
effects of the ALIGN directive by combining this portion of 
segment CODE with other segments of the same name in other 
modules. Even then, you can't be guaranteed that the portion of 
the segment in your module will be aligned on anything better 
than a word boundary. 

You must enable Quirks mode to accept this construct. 

Turbo Assembler Reference Guide 



Signed 
immediate 

arithmetic and 
logical 

instructions 

Masm 5.1 features 

Each of the extensions listed 
here Is detal/ed earlier In this 

book In Chapter 2 or 
Chapter 3. 

MASM version 4.0 only sign-extends immediate operands on 
arithmetic instructions. When Turbo Assembler is not in Quirks 
mode, it does sign-extension on immediate operands for logical 
instructions as well. This results in shorter, faster instructions, but 
changes the size of code segments containing these constructs. 
This may cause problems with self-modifying code or any code 
that knows approximately how long the generated instructions 
are. The following code shows an instruction that both MASM 
and Turbo Assembler generate correctly, and another that Turbo 
Assembler generates correctly and MASM version 4.0 does not: 

add ax,-l iMASM and Turbo do sign-extend 
xor cx,OFFFFh iMASM 4 uses word immediate 

Here MASM version 4.0 generates the byte sequence 81 F1 FFFF 
for the XOR instruction, and Turbo Assembler generates the 
shorter but compatible 83 F1 FF. 

Some of the new features introduced with MASM version 5.1 are 
always available when using Turbo Assembler. Other features 
must be enabled with the MASM51 directive. Some features of 
MASM 5.1 and Turbo Assembler (implemented more powerfully 
by Turbo Assembler) are discussed in a previous section, "Turbo 
Assembler Quirks Mode," on page 161. 

When Turbo Assembler first starts assembling your source file, it 
is in MASM mode with MASM 5.1 features disabled. This is like 
starting your program with the MASM and NOMASM51 directives. 

The following MASM 5.1 features are always available: 

• Parameters and local arguments to PROC directive 

• .TYPE operator extensions 

• COMM directive extension 
• .CODE sets CS ASSUME to current segment 
• .MODEL directive high-level language support 

• List all command-line option (lLA) 

• Additional debug information with OW, DO, and OF directives 
• ELSEIF family of directives 

Appendix 8, Compatibility Issues 163 



Masm 5.1 /Quirks 
mode features 

• @Cpu and @WordSlze directives 

• % expression operator with text macros 
• OW, DO, and OF debug information extensions 

The following features are available when you use MASM51: 

• SUBSTR, CATSTR, SIZESTR, and INSTR directives 

• Line continuation with backslash 

These features are only available when you use both MASM51 and 
QUIRKS: 

• Local labels defined with @@ and referred to with @F and @B 
• Redefinition of variables inside PROCs; :: definitions 

• Extended model PROCs are all PUBLIC 

Since several features of MASM 5.1 adversely affect some of 
Turbo Assembler's features, we've provided an alternative 
through Turbo Assembler that achieves what MASM 5.1 intended. 
To use these features, you must enable Quirks mode with the 
QUIRKS directive and the MASM 5.1 features with the MASM51 
directive. 

Here is a short summary of w ha t is covered under the various 
opera ting modes of T ASM: 

QUIRKS 1. Allows far jumps to be generated as near or short if CS 
assumes agree. 

164 

2. Allows all instruction sizes to be determined in a binary 
operation solely by a register, if present. 

3. Destroys OFFSET, segment override (and so on) information 
on = or numeric EQU assignments. 

4. Forces EQU assignments to expressions with PTR or : in them 
to be text. 

5. Disables UNION directive. 

6. Allows GLOBAL directive to be overridden. 

Turbo Assembler Reference Guide 



MASM51 1. Enables Instr, Catstr, Substr, Sizestr, and \ line continuations. 

2. Makes EQU's to keywords TEXT instead of ALIASes. 

3. No longer discards leading whitespace on %textmacro in 
macro arguments. 

MASM51 and QUIRKS Everything listed under QUIRKS and MASM51 in this summary, 
and the following: 

1. Enables @@F and @@B local labels. 

2. In extended models, automatically makes PUBLIC procedure 
names. 

3. Makes near labels in PROCs redefinable in other PROCs. 

4. Enables:: operator to define symbols that can be reached 
outside of current PROC. 

5. Makes "old-style" line continuation characters work the same 
way as in MASM 5.1 when they appear at the end of a line. 

QASM compatibility 

Turbo Assembler 2.0 has new and modified directives to support 
source code for MASM 5.2 (QASM): 

• .STARTUP and STARTUPCODE generate startup code for the 
particular model in effect at the time. These also define the near 
label @Startup and cause the END statement at the end of the 
module to generate the equivalent of END @Startup. Note: 
Only the STARTUPCODE directive is available in IDEAL mode. 

• .MODEL and MODEL: It is now possible to select a third field in 
the .MODEL directive to specify the stack association with 
DGROUP: NEARSTACK, or FARSTACK. For example, 
.MODEL SMALL, C, FARSTACK 

would specify that the stack not be included in DGROUP. This 
capability is already provided in TASM through the model 
modifiers of the same name. The additional field is provided 
only for MASM compatibility. 

• @Model is a predefined symbol that reflects the model currently 
in effect: 0 = TINY, 1 = SMALL, 2 = COMPACT, 3 = MEDIUM, 4 
= LARGE, 5 = HUGE. 

Appendix 8, Compatibility Issues 165 



166 Turbo Assembler Reference Guide 



A p 

Chapter 11 in the User's 
Guide provides you with 
more details about Ideal 

mode. 

Extended command
line syntax 

GLOBAL directive 

p E N D x 

c 

Turbo Assembler highlights 

Besides its high compatibility with MASM, Turbo Assembler has 
a number of enhancements that you can use simultaneously with 
the typical MASM-style statements. These enhancements can be 
used both in Ideal mode and in MASM mode. 

Here we'll introduce you to each of the enhancements and point 
you to where more-detailed discussions of each topic can be 
found in the manual. 

Turbo Assembler has a greatly improved command-line syntax 
that is a superset of the MASM command-line syntax. You can 
specify multiple files to assemble by entering each individually or 
by using wildcards (* and ?). You can also group files so that one 
set of command-line options applies to one set of files, and 
another set applies to a second set of files. (For a complete 
description of Turbo Assembler command-line options, turn to 
Chapter 3 of the User's Guide.) 

The GLOBAL directive lets you define variables as a cross 
between an EXTRN and a PUBLIC. This means you can put 
GLOBAL definitions in a header file that's included in all source 
modules and then define the data in just one module. This gives 
you greater flexibility, since you can initialize data defined with 
the GLOBAL directive and you can't with the COMM directive. 
(Chapter 6 in the User's Guide shows you how to use GLOBAL; 
Chapter 3 in this book defines GLOBAL.) 

Appendix C, Turbo Assembler highlights 167 



PUBLlCDLL directive 

COMM directive 
extension 

Local symbols 

Conditional jump 
extension 

Ideal mode 

UNION directive/STRUC 
nesting 

168 

The PUBLlCDLL directive lets you define program labels and 
procedures to be dynamic link entry points as well as publicizing 
them to your other modules, which allows you to build dynamic 
link libraries in assembly code. (See Chapter 3 in this book for a 
complete definition of PUBLlCDLL.) 

The COMM directive has been extended to allow the array element 
size and the array element count to be selected independently of 
each other for FAR communal variables. (See Chapter 3 in this 
book for a complete discussion of the COMM directive.) 

The LOCALS and NOLOCALS directives control whether symbols 
that start with two at-signs (@@) are local to a block of code. These 
two directives are also defined in Chapter 3 of this book. (For 
more information on local symbols, refer to the section "Local 
labels" in Chapter 9 of the User's Guide.) 

The JUMPS and NOJUMPS control whether conditional jumps get 
extended into the "opposite sense" condition and a near jump 
instruction. This lets you have a conditional jump with a 
destination address further away than the usual-128 to +127 
bytes. ("Automatic jump sizing" in Chapter 9 of the User's Guide 
discusses how to use this feature.) 

Turbo Assembler's Ideal mode gives you a new and more rational 
way to construct expressions and instruction operands. By 
learning just a few simple rules, you can handle complex 
instruction operands in a better manner. (Chapter 11 of the User's 
Guide introduces Ideal mode.) 

Unions are like structures defined with the STRUC directive 
except that all the members have an offset of zero (0) from the 
start of the structure, effectively "overlaying" all the members. 

In Turbo Assembler, you can nest STRUC and also combine it 
with UNION. The section entitled "The STRUC directive" in 
Chapter 9 of the User's Guide shows you how to use this directive. 
Cha pter 3 in this book provides a complete definition of both 
STRUC and UNION. 

Turbo Assembler Reference Guide 



EMUL and NOEMUL 
directives 

Explicit segment 
overrides 

You can control whether floating-point instructions are emulated 
or are real coprocessor instructions with the EMUL and NOEMUL 
directives. Within a single source file, you can switch back and 
forth as many times as you wish between emulated and real 
floating-point instructions. 

The Turbo Assembler lets you explicitly force a segment override 
to be generated on an instruction by using one of the SEGCS, 
SEGDS, SEGES, SEGSS, SEGFS, or SEGGS overrides. They 
function much like the REP and LOCK overrides. 

The section en titled "Segment override prefixes" in Chapter 9 of 
the User's Guide shows you how to use these overrides. 

Constant segments The Turbo Assembler lets you use a constant value any time that 
a segment value should be supplied. You can also add a constant 
value to a segment. For example, 

Extended CALL 
instruction 

Extended PUSH and 
POP instructions 

jmp FAR PTR OFFFFh:O 
LOWDATA SEGMENT AT 0 

ASSUME DS:LOWDATA+40h 
mov ax,DS: [3FH] 

LOWDATA ENDS 

;jump into the ROM BrOS 

;DS points to BIOS data area 
;read word from BrOS data area 

The section entitled "The SEGMENT directive" in Chapter 9 of 
the User's Guide explains this in more detail. 

The CALL instruction has been extended in Turbo Assembler to 
allow high-level language routines to be called in a language
independent manner. Any CALL instruction can now specify a 
language and an argument list for the routine being called. Turbo 
Assembler automatically generates the necessary stack setup and 
cleanup code required to pass the arguments to a high-level 
routine written in the specified language. (See chapters 7 and 8 in 
the User's Guide for examples of how to use this feature with the 
Turbo languages.) 

The PUSH and POP instructions have been extended in Turbo 
Assembler to allow more than one argument to appear in a single 
PUSH or POP instruction. For example, 

push ax dx 
pop dx ax 

;equivalent to PUSH AX then PUSH DX 
;equivalent to POP DX then POP AX 

Appendix C, Turbo Assembler highlights 169 



Lang uage-specific 
extensions 

Extended LOOP 
instruction in 386 mode 

170 

In addition, the PUSH instruction allows constant arguments 
even when generating code for the 8086 processor. Such 
instructions are replaced in the object code by a 10-byte sequence 
that simulates the 80186/286/386 PUSH immediate value 
instruction. 

The CALL, COMM, EXTRN, GLOBAL, .MODEL, PROC, and PUBLIC 
statements have been extended in Turbo Assembler to allow 
high-level language routines and symbols to be specified and 
accessed in a language-independent manner. These extensions 
allow you to write generic code that is automatically modified by 
Turbo Assembler, according to the rules of the language you 
specify in a particular statement. For example, you could write a 
routine that takes several parameters, manipulates them, and then 
calls a routine in a high-level language before returning to its 
caller. Normally you would have to tailor such a routine to a 
particular language's calling conventions, including language
specific code to perform stack setup on procedure entry, correctly 
access parameters on the stack, set up and clean up the stack 
when calling the high-level routine, and clean up the stack when 
the procedure returns to its caller. Any symbol-naming 
conventions (such as C's requirement that underscores precede all 
symbol names) would have to be hard-coded into your routine as 
well. (Chapters 7 and 8 in the User's Guide provide you with 
examples of how to use this feature with the Turbo languages.) 

Now, using the extended statements, Turbo Assembler performs 
all these chores for you. You only need to specify which language 
conventions to apply when using each statement. This allows you 
to mix and match calling conventions in each module on a 
procedure-by-procedure basis. The PROC and .MODEL statements 
include further extensions to ease language-independent 
programming. 

When you are writing code for the 80386, Turbo Assembler lets 
you determine explicitly whether the LOOP instruction should 
use the CX or the ECX register as its counter. 

The section entitled ''New versions of LOOP and JCXZ" in 
Chapter 10 of the User's Guide shows you how to use this 
instruction. 

Turbo Assembler Reference Guide 



Extended listing 
controls 

Alternate directives 

You have much greater control over the format and the content of 
the listing file with Turbo Assembler. You can control whether 
INCLUDE files are listed, push and pop the listing control state, 
and control the width of all the fields in the listing, including 
whether they get truncated or wrap to the next line. 

Chapter 5 of the User's Guide provides a description of all the 
options you can use. 

The Turbo Assembler provides alternative keywords for a 
number of directives, in particular those that start with a period 
(.). All alternative listing control directives start with a percent 
sign (%), and all alternative processor control directives start with 
aP. 

Refer to Chapter 3 in this book for a complete list of all the 
directives that Turbo Assembler supports. 

Predefined variables The Turbo Assembler defines a number of variables that have a 
value you can access from your source files. These include ??date, 
??tlme, ??filename, and ??verslon, in addition to the predefined 
variables supported for MASM 5.0 compatibility. 

Masm 5.0 and 5.1 
enhancements 

Take a look at Chapter I, "Predefined symbols," of this book for a 
definition of these variables. 

Turbo Assembler has all the extensions Masm 5.0 and 5.1 have 
over MASM 4.0. If you are not familiar with these extensions, 
here's a list of where to look for some of the more important 
topics: 

.80386 Support: See "The 80386" in Chapter 10 of the User's 
Guide. 

• Simplified Segmentation Directives: See "Simplified segment 
directives and 80386 segment types" in Chapter 10 of the 
User'Guide. 

• String Equates: See ''Using equate substitutions" in Chapter 6 
of the User's Guide. 

• RETF and RETN Instructions: See "How subroutines work" in 
Chapter 5 of the User's Guide. 

iii Communal Variables: See the COMM directive in Chapter 3 in 
this book. 

Appendix C, Turbo Assembler highlights 171 



Improved SHL and SHR 
handling 

Multi-pass capability 

172 

• Explicitly Including Library Flies: See the INCLUDELIB directive 
in Chapter 3 of this book. 

• Predefined Variables: See "Siinplified segment directives" in 
Chapter 5 and also Chapter 9 of the User's Guide. 

When you use SHL and SHR as part of an arithmetic expression, 
MASM does not permit the shift count to be negative. Turbo 
Assembler accepts negative shift counts and performs the 
opposite type of shift. For example, 16 SHL -2 is equivalent to 16 
SHR2. 

Turbo Assembler 2.0 can pass over your source code more than 
once either for compatibility with some of MASM's pass
dependent constructions or to remove NOP instructions that were 
added to the code because of forward references. This feature is 
enabled by the command-line switch /m#, where # is the 
maximum number of passes allowed. Turbo Assembler 
automatically assesses the need to perform extra passes up to the 
maximum that you specify. (See Chapter 3 in the User's Guide for a 
complete description of this option.) 

Turbo Assembler Reference Guide 



A p p E N D x 

D 

Utilities 

Turbo Assembler provides six powerful stand-alone utilities. You 
can use these stand-alone utilities with your Turbo Assembler 
files, as well as with your other modules. 

These highly useful adjuncts to Turbo Assembler are 

II MAKE (including the TOUCH utility; the stand-alone program 
manager MAKE) 

II TLINK (the Turbo Linker) 

II TLIB (the Turbo Librarian) 
II GREP (a file-search utility) 

II OBJXREF (an object module cross-referencer) 
CI TCREF (a cross-reference utility) 

This appendix documents MAKE, TLINK, and TLIB; CREP, 
OBJXREF, and TCREF are documented in text files available to 
you on disk. 

MAKE: The program manager 

Appendix D, Utilities 

Borland's command-line MAKE, derived from the UNIX program 
of the same name, helps you keep the executable versions of your 
programs current. Many programs consist of many source files, 
each of which may need to pass through preprocessors, 
assemblers, compilers, and other utilities before being combined 
with the rest of the program. Forgetting to recompile" a module 

173 



How MAKE works 

Cautlonl 

174 

that has been changed-or that depends on something you've 
changed-can lead to frustrating bugs. On the other hand, recom
piling everything just to be safe can be a tremendous waste of time. 

MAKE solves this problem. You provide MAKE with a descrip
tion of how the source and object files of your program are pro
cessed to produced the finished product. MAKE looks at that 
description and at the date stamps on your files, then does what's 
necessary to create an up-to-date version. During this process, 
MAKE may invoke many different compilers, assemblers, linkers, 
and utilities, but it never does more than is necessary to update 
the finished program. 

MAKE's usefulness extends beyond programming applications. 
You can use MAKE to control any process that involves selecting 
files by name and processing them to produce a finished product. 
Some common uses include text processing, automatic backups, 
sorting files by extension into other directories, and cleaning 
temporary files out of your directory. 

MAKE keeps your program up-to-date by performing the 
following tasks: 

• Reads a special file (called a makefile) that you have created. 
This file tells MAKE which .OBI and library files have to be 
linked in order to create your executable file, and which source 
and header files have to be compiled to create each .OBI file. 

• Checks the time and date of each .OBI file against the time and 
date of the source and header files it depends on. If any of these 
is later than the .OBI file, MAKE knows that the file has been 
modified and that the source file must be recompiled. 

• Calls the compiler to recompile the source file. 
• Once all the .OBI file dependencies have been checked, checks 

the date and time of each of the .OBI files against the date and 
time of your executable file. 

• If any of the .OBI files is later than the .EXE file, calls the linker 
to recreate the .EXE file. 

MAKE relies completely upon the timestamp DOS places on each 
file. This means that, in order for MAKE to do its job, your 
system's time and date must be set correctly. If you own an AT or 
a PS/2, make sure that the battery is in good repair. Weak 

Turbo Assembler Reference Guide 



Starting MAKE 

MAKE stops If any command 
it has executed is aborted 

via a Control-Break. Thus, a 
Control-Break stops the 

currently executing com
mand and MAKE as well. 

Appendix 0, Utilities 

batteries can cause your system's clock to lose track of the date 
and time, and MAKE will no longer work as it should. 

The original IBM PC and most compatibles didn't come with a 
built-in clock or calendar. If your system falls into this category, 
and you haven't added a clock, be sure to set the system time and 
date correctly (using the DOS DATE and TIME commands) each 
time you start your machine. 

To use MAKE, type make at the DOS prompt. MAKE then looks for 
a file specifically named MAKEFILE. If MAKE can't find 
MAKE FILE, it looks for MAKEFILE.MAK; if it can't find that or 
BUILTINS.MAK (described later), it halts with an error message. 

What if you want to use a file with a name other than MAKEFILE 
or MAKEFILE.MAK? You give MAKE the file (·f) option, like this: 

make -fmyfile.mak 

The general syntax for MAKE is 

make option option ... target target ... 

where option is a MAKE option (discussed later), and target is the 
name of a target file to be handled by explicit rules. 

Here are the MAKE syntax rules: 

• The word make is followed by a space, then a list of make 
options. 

.. Each make option must be separated from its adjacent options 
by a space. Options can be placed in any order, and any number 
of these options can be entered (as long as there is room in the 
command line). All options that do not specify a string (-5 or-a, 
for example) can have an optional - or + after them. This 
specifies whether you wish to turn the option off 0 or on (+). 

• After the list of make options comes a space, then an optional 
list of targets. 

• Each target must also be separated from its adjacent targets by a 
space. MAKE evaluates the target files in the order listed, re
compiling their constituents as necessary. 

If the command line does not include any target names, MAKE 
uses the first target file mentioned in an explicit rule. If one or 
more targets are mentioned on the command line, they will be 
built as necessary. 

175 



The BUILTINS.MAK file You will often find that there are MAKE macros and rules that 
you use again and again. There are three ways of handling them. 

• First, you can put them in every makefile you create. 
• Second, you can put them all in one file and use the !Include 

directive in each makefile you create. (See page 196 for more on 
directives.) 

• Third, you can put them all in a BUlL TINS.MAl< file. 

Each time you run MAKE, it looks for a BUlL TINS.MAK file; 
however, there is no requirement that any BUlL TINS.MAl< file 
exist. If MAKE finds a BUlL TINS.MAK file, it interprets that file 
first. If MAKE cannot find a BUlL TINS.MAK file, it proceeds 
directly to interpreting MAKEFILE (or whatever makefile you 
specify). 

The first place MAKE searches for BUlL TINS.MAl< is the current 
directory. If it's not there, and if you're running under DOS 3.0 or 
higher, MAKE then searches the directory from which 
MAKE.EXE was invoked. You should place the BUILTINS.MAl< 
file in the same directory as the MAKE.EXE file. 

MAKE always searches for the makefile in the current directory 
only. This file contains the rules for the particular executable 
program file being built. The two files have identical syntax rules. 

MAKE also searches for any !Include files (see page 197 for more 
on this MAKE directive) in the current directory. If you use the--l 
(include) option, it will also search in the directory specified with 
the --I option. 

Command-line options Here's a complete list of MAKE's command-line options. Note that 
case (upper or lower) is significant; the option -d is not a valid 
substitute for -D. 

176 Turbo Assembler Reference Guide 



Option 

-1or-h 

-a 

-8 

-Didentifier 

-Diden=string 

-ffilename 

-i 

-I directory 

-K 

-n 

-s 

-s 

-Uidentifier 

-W 

What it does 

Prints a help message. 

Causes an automatic dependency check on .OBJ files. 

Builds all targets regardless of file dates. 

Defines the named identifier to the string consisting of the single character 1 (one). 

Defines the named identifier iden to the string after the equal sign. The string cannot contain 
any spaces or tabs. 

Uses filename as the MAKE file. If filename does not exist and no extension is given, tries 
FILENAME.MAK. 

Does not check (ignores) the exit status of all programs run. Continues regardless of exit 
status. This is equivalent to putting '-' in front of all commands in the MAKEFILE (described 
below). 

Searches for include files in the indicated directory (as well as in the current directory). 

Keeps (does not erase) temporary files created by MAKE. All temporary files have the form 
MAKE####.$$$, where #### ranges from 0000 to 9999. 

Prints the commands but does not actually perform them. This is useful for debugging a 
makefile. 

Does not print commands before executing. Normally, MAKE prints each command as it is 
about to be executed. 

Swaps MAKE out of memory while executing commands. This significantly reduces the 
memory overhead of MAKE, allowing it to compile very large modules. 

Undefines any previous definitions of the named identifier. 

Makes the current specified non-string options (like -s and -a) to be the default (writes them 
to MAKE.EXE). The default options are displayed by -1 or -h with plus signs following. 

A simple use of 
MAKE For our first example, let's look at a simple use of MAKE that 

doesn't involve programming. Suppose you're writing a book, 
and decide to keep each chapter of the manuscript in a separate 
file. (Let's assume, for the purposes of this example, that your 
book is quite short: It has three chapters, in the files CHAP1.MSS, 
CHAP2.MSS, and CHAP3.MSS.) To produce a current draft of the 
book, you run each chapter through a formatting program, called 
FORM.EXE, then use the DOS COpy command to concatenate the 
outputs to make a single file containing the draft,like this: 

MAKE can also backup files, 
pull files out of different 

subdirectories, and even 
automatically run your 

programs should the data 
files they use be modified. 

Appendix 0, Utilities 177 



178 

Chap1.MSS form.9> Chapt1.TXT 

Chap2.MSS form.~ Chapt2.TXT Book.TXT 

Chap3.MSS form.9> Chap3.TXT 

Like programming, writing a book requires a lot of concentration. 
As you write, you might modify one or more of the manuscript 
files, but you don't want to break your concentration by noting 
which ones you've changed. On the other hand, you don't want to 
forget to pass any of the files you've changed through the 
formatter before combining it with the others, or you won't have a 
fully updated draft of your book! 

One inelegant and time-consuming way to solve this problem is 
to create a batch file that reformats every one of the manuscript 
files. It might contain the following commands: 

FORM CHAP1.MSS 
FORM CHAP2.MSS 
FORM CHAP3.MSS 
COpy fA CHAP1.TXT+CHAP2.TXT+CHAP3.TXT BOOK. TXT 

Running this batch file would always produce an updated version 
of your book. However, suppose that, over time, your book got 
bigger and one day contained 15 chapters. The process of refor
matting the entire book might become intolerably long. 

MAKE can come to the rescue in this sort of situation. All you 
need to do is create a file, usually named MAKEFILE, which tells 
MAKE what files BooK.TXT depends on and how to process 
them. This file will contain rules that explain how to rebuild 
BOOK.TXT when some of the files it depends on have been 
changed. 

In this example, the first rule in your makefile might be 

book.txt: chapl.txt chap2.txt chap3.txt 
copy fa chapl.txt+chap2.txt+chap3.txt book. txt 

What does this mean? The first line (the one that begins with 
book. txt:) says that BOOK.TXT depends on the formatted text of 

Turbo Assembler Reference Guide 



Appendix D, Utilities 

each of the three chapters. If any of the files that BOOK.TXT 
depends on are newer than BOOK.TXT itself, MAKE must rebuild 
BOOK.TXT by executing the COPY command on the subsequent 
line. 

This one rule doesn't tell the whole story, though. Each of the 
chapter files depends on a manuscript (.MSS) file. If any of the 
CHAP?TXT files is newer than the corresponding .MSS file, the 
.MSS file must be recreated. Thus, you need to add more rules to 
the makefile as follows: 

chapl.txt: chapl.mss 
form chapl.mss 

chap2.txt: chap2.mss 
form chap2.mss 

chap3.txt: chap3.mss 
form chap3.mss 

Each of these rules shows how to format one of the chapters, if 
necessary, from the original manuscript file. 

MAKE understands that it must update the files that another file 
depends on before it attempts to update that file. Thus, if you 
change CHAP3.MSS, MAKE is smart enough to reformat Chapter 
3 before combining the .TXT files to create BooK.TXT. 

We can add one more refinement to this simple example. The 
three rules look very much the same-in fact, they're identical 
except for the last character of each file name. And, it's pretty easy 
to forget to add a new rule each time you start a new chapter. To 
solve these problems, MAKE allows you to create something 
called an implicit rule, which shows how to make one type of file 
from another, based on the files' extensions. In this case, you can 
replace the three rules for the chapters with one implicit rule: 

.mss.txt: 
form $*.mss 

This rule says, in effect, "If you need to make a file out of an .MSS 
file to make things current, here's how to do it." (You'll still have 
to update the first rule-the one that makes BOOK.TXT, so that 
MAKE knows to concatenate the new chapters into the output 
file. This rule, and others following, make use of a macro. See page 
191 for an in-depth discussion of macros.) 

179 



Creating 
makefiles 

Components of a 
makefile 

180 

Once you have the makefile in place, all you need to do to create 
an up-to-date draft of the book is type a single command at the 
DOS prompt: MAKE. 

Creating a program from an assortment of program files, include 
files, header files, object files, and so on, is very similar to the 
text-processing example you just looked at. The main difference is 
that the commands you'll use at each step of the process will 
invoke preprocessors, compilers, assemblers, and linkers instead 
of a text formatter and the DOS COpy command. Let's explore 
how to create makefiles-the files that tell MAKE how to do these 
things-in greater depth. 

A makefile contains the definitions and relationships needed to 
help MAKE keep your program(s) up-to-date. You can create as 
many makefiles as you want and name them whatever you want; 
MAKE FILE is just the default name that MAKE looks for if you 
don't specify a makefile when you run MAKE. 

You create a makefile with any ASCII text editor, such as Sprint, 
MicroStar, SideKick, or your favorite editor. All rules, definitions, 
and directives end at the end of a line. If a line is too long, you can 
continue it to the next line by placing a backslash (\) as the last 
character on the line. 

Use whitespace (blanks and tabs) to separate adjacent identifiers 
(such as dependencies) and to indent commands within a rule. 

Creating a makefile is almost like writing a program, with defini
tions, commands, and directives. These are the constructs allowed 
in a makefile: 

• comments 

• explicit rules 

• implicit rules 
• macro definitions 

• directives: 

• file inclusion directives 
• conditional execution directives 
• error detection directives 

Turbo Assembler Reference Guide 



• macro undefinition directives 

Let's look at each of these in more detail. 

Comments Comments begin with a pound sign (#) character; the rest of the 
line following the # is ignored by MAKE. Comments can be 
placed anywhere; they don't have to start in a particular column. 

Explicit and Implicit rules are 
discussed following the 
section on commands. 

Command lists 

Appendix D, Utilities 

A backslash will not continue a comment onto the next line; 
instead, you must use a # on each line. In fact, you cannot use a 
backslash as a continuation character in a line that has a comment. 
If the backslash precedes the #, it is no longer the last character on 
the line; if it follows the #, then it is part of the comment itself. 

Here are some examples of comments in a makefile: 

t Makefile for my book 

t This file updates the file BOOK. TXT each time I 
t change one of the .MSS files 

t Explicit rule to make BOOK. TXT from six chapters. Note the 
t continuation lines. 

book. txt: chapl.txt chap2.txt chap3.txt\ 
chap4.txt chapS.txt chap6.txt 
copy fa chapl.txt+chap2.txt+chap3.txt+chap4.txt+\ 

chapS.txt+chap6.txt book.txt 

t Implicit rule to format individual chapters 
.mss.txt: 

form $*.mss 

Both explicit and implicit rules (discussed later) can have lists of 
commands. This section describes how these commands are pro
cessed by MAKE. 

Commands in a command list take the form 

[ prefix ... ] command_body 

Each command line in a command list consists of an (optional) list 
of prefixes, followed by a single command body. 

181 



182 

Prefixes 

The prefixes allowed in a command modify the treatment of these 
commands by MAKE. The prefix is either the at-sign (@) or a 
hyphen (-) followed immediately by a number. 

Prefix 

@ 

-num 

What it does 

Prevents MAKE from displaying the command before 
executing it. The display is hidden even if the -s option is not 
given on the MAKE command line. This prefix applies only 
to the command on which it appears. 

Affects how MAKE treats exit codes. If a number (num) is 
provided, then MAKE aborts processing only if the exit status 
exceeds the number given. In this example, MAKE aborts 
only if the exit status exceeds 4: 

-4 myprog sample.x 

If no -num prefix is given and the status is nonzero, MAKE 
stops and deletes the current target file. 

With a hyphen but no number, MAKE will not check the exit 
status at all. Regardless of the exit status, MAKE continues. 

Command body 

The command body is treated exactly as if it were entered as a 
line to COMMAND.COM, with the exception that pipes (I> are not 
supported. 

In addition to the <, >, and » redirection operators, MAKE adds 
the« and && operators. These operators create a file on the fly 
for input to a command. The « operator creates a temporary file 
and redirects the command's standard input so that it comes from 
the created file. If you have a program that accepted input from 
stdin, the command 

myprog «! 
This is a test 

would create a temporary file containing the string "This is a 
test \n", redirecting it to be the sole input to myprog. The 
exclamation point (I) is a delimiter in this example; you can use 
any character except # or \ as a delimiter for the file. The first line 
containing the delimiter character as its first character ends the 
file. The rest of the line following the delimiter character (in this 

Turbo Assembler Reference Guide 



Macros are covered starting 
on page 191. 

Appendix D, Utilities 

case, an exclamation point) is considered part of the preceding 
command. 

The && operator is similar to «. It creates a temporary file, but 
instead of making the file the standard input to the command, the 
&& operator is replaced with the temporary file's name. This is 
useful when you want MAKE to create a file that's going to be 
used as input to a program. The following example creates a 
"response file" for TLINK: 

MYPROG.EXE: $ (MYOBJS) 
tlink Ie @&&! 

cos $ (MYOBJS) 
$* 
$* 
$ (MYLIBS) EMU.LIB MATHS.LIB CS.LIB 

Note that macros (indicated by $ signs) are expanded when the 
file is created. The $* is replaced with the name of the file being 
built, without the extension, and $(MYOBJS) and $(MYLIBS) are 
replaced with the values of the macros MYOBJS and MYLIBS. 
Thus, TLINK might see a file that looks like this: 

cos a.obj b.obj c.obj d.obj 
MYPROG 
MYPROG 
w.lib x.lib y.lib z.lib EMU.LIB MATHS.LIB CS.LIB 

All temporary files are deleted unless you use the -K command
line option. Use the -K option to "debug" your temporary files if 
they don't appear to be working correctly. 

Batching programs 

MAKE allows utilities that can operate on a list of files to be 
batched. Suppose, for example, that MAKE needs to submit 
several assembler files to Turbo Assembler for processing. MAKE 
could run TASM.EXE once for each file, but it's much more 
efficient to invoke T ASM.EXE with a list of all the files to be 
assembled on the command line. This saves the overhead of 
reloading Turbo Assembler each time. 

MAKE's batching feature lets you accumulate the names of files to 
be processed by a command, combine them into a list, and invoke 
that command only once for the whole list. 

183 



184 

To cause MAKE to batch commands, you use braces in the 
command line: 

command command-line ••• { batch-item} ••• rest-of-command 

This command syntax delays the execution of the command until 
MAKE deteimines what command (if any) it has to invoke next. If 
the next command is identical except for what's in the braces ( ( ... } 
), the two commands will be combined by appending the parts of 
the commands that appeared inside the braces. 

Here's an example that shows how batching works. Suppose 
MAKE decides to invoke the following three commands in 
succession: 

tasm {filel.asm } 
tasm {file2.asm } 
tasm {file3 .asm} 

Rather than invoking Turbo Assembler three times, MAKE issues 
the single command 

tasm filel.asm file2.asm file3.asm 

Note that the spaces at the ends of the file names in braces are 
essential to keep them apart, since the contents of the braces in 
each command are concatenated exactly as-is. 

Here's an example that uses an implicit rule. Suppose your 
makefile had an implicit rule to compile assembler programs to 
.OBI files: 

.asm.obj: 
TASM -c {$< } 

As MAKE uses the implicit rule on each assembler file, it expands 
the macro $< into the actual name of the file and adds that name 
to the list of files· to compile. (Again, note the space inside the 
braces to keep the names separate.) The list grows until MAKE 
discovers that it has to run a program other than T ASM, or if 
there are no more commands to process, or if MAKE runs out of 
room on the command line. If this happens, MAKE puts as much 
as it can on one command line and puts the rest on the next 
command line. When the list is done, MAKE invokes T ASM (with 
the -c option) on the whole list of files at once. 

Turbo Assembler Reference Guide 



Appendix 0, Utilities 

executing DOS commands 

MAKE executes the 005 "internal" commands listed here by 
invoking a copy of COMMAND. COM to perform them: 

break del prompt 
cd dir rd 
chdir 
cls 
copy 
ctty 
date 

echo 
erase 
md 
mkdir 
path 

rem 
ren 
rename 
rmdir 
set 

time 
type 
ver 
verify 
vol 

MAKE searches for any other command name using the DOS 
search. algorithm: 

1. MAKE first searches for the file in the current directory, then 
searches each directory in the path. 

2. In each directory, MAKE first searches for a file of the specified 
name with the extension .COM. If it doesn't find it, it searches 
for the same file name with an .EXE extension. Failing that, 
MAKE searches for a file by the specified name with a .BA T 
extension. 

3. If MAKE finds a .BAT file, it invokes a copy of COM
MAND.COM to execute the batch file. 

If you supply a file-name extension in the command line, MAKE 
searches only for that extension. Here are some examples: 

• This command causes COMMAND.COM to change the current 
directory to C: \include: 

cd c:\include 

• MAKE uses the full search algorithm in searching for the 
appropriate files to perform this command: 

tlink lib\cOs x y,z,z,lib\cs 

• MAKE searches for this file using only the .COM extension: 
myprog.com geo.xyz 

• MAKE executes this command using the explicit file name 
provided: 

c:\myprogs\fil.exe -r 

185 



186 

Explicit rules The first rule in the last example is an explicit rule-a rule that 
specifies complete file names explicitly. Explicit rules take the 
form 

target [target] ... : [source source ... ] 
[command] 
[command] 

w.here target is the file to be updated, source is a file on which 
target depends, and command is any valid DOS command 
(including invocation of .BA T files and execution of .COM and 
.EXE files). 

Explicit rules define one or more target names, zero or more 
source files, and an optional list of commands to be performed. 
Target and source file names listed in explicit rules can contain 
normal DOS drive and directory specifications; they can also 
contain wildcards. 

.. Syntax here is important. 

• target must be at the start of a line (in column 1). 

• The source file(s} must be preceded by at least one space or tab, 
after the colon. 

• Each command must be indented, (must be preceded by at least 
one blank or tab). As mentioned before, the backslash can be 
used as a continuation character if the list of source files or a 
given command is too long for one line. 

Both the source files and the commands are optional; it is possible 
to have an explicit rule consisting only of target [target ... J 
followed by a colon. 

The idea behind an explicit rule is that the command or com
mands listed will create or update target, usually using the source 
files. When MAKE encounters an explicit rule, it first checks to see 
if any of the source files are themselves target files elsewhere in the 
makefile. If so, MAKE evaluates that rule first. 

Once all the source files have been created or updated based on 
other rules, MAKE checks to see if target exists. If not, each com
mand is invoked in the order given. If target does exist, its time 
and date of last modification are compared against the time and 
date for each source. If any source has been modified more recently 
than target, the list of commands is executed. 

Turbo Assembler Reference Guide 



Appendix D, Utilities 

A given file name can occur on the left side of an explicit rule only 
once in a given execution of MAKE. 

Each command line in an explicit rule begins with whitespace. 
MAKE considers all lines following an explicit rule to be part of 
the command list for that rule, up to the next line that begins in 
column 1 (without any preceding whitespace) or to the end of the 
file. Blank lines are ignored. 

Special considerations 

An explicit rule with no command lines following it is treated a 
little differently than an explicit rule with command lines . 

• If an explicit rule includes commands, the only files that the 
target depends on are the ones listed in the explicit rule . 

• If an explicit rule has no commands, the targets depend on two 
sets of files: the files given in the explicit rule, and any file that 
matches an implicit rule for the target(s). This lets you specify a 
dependency to be handled by an implicit rule. 

Examples 

Here's one example of an explicit rule: 
prog.exe: myprog.asm prog2.asm include\stdio.inc 

tasm It myprog.asm # Recompile myprog using Turbo Assembler 
tasm It prog2.asm # Recompile prog2 using Turbo Assembler 
tlink myprog prog2, prog 

Here are some better examples: 

1. prog.exe: myprog.obj prog2.obj 
tlink myprog prog2, prog 

2. myprog.obj: myprog.asm include\stdio.inc 
tasm myprog.asm 

3. prog2.obj: prog2.c include\stdio.inc 
tasm prog2.asm 

The first rule states that 

1. PROG.EXE depends on MYPROG.ASM, PROG2.ASM, and 
STDIO.lNC. 

and 

187 



188 

2. If any of the three change, PROG.EXE can be rebuilt by the 
series of commands given. 

However, this may create unnecessary work because, even if only 
MYPROG.ASM changes, PROC2.ASM will still be recompiled. 
This is because all of the commands under a rule will be executed 
as soon as that rule's target is out-of-date. 

The three examples show three good ways to build the same 
assembler program. Only the modules affected by a change are 
rebuilt. If PROC2.ASM is changed, it's the only one recompiled; 
the same holds true for MYPROG.ASM. But if the include file 
STOIO.INC is changed, both are recompiled. (The link step is 
always done if any of the source is changed.) 

Automatic dependency checking 

Turbo Assembler works with Borland's MAKE to provide 
automatic dependency checking for include files. T ASM produces 
.OBI files that tell MAKE what include files were used to create 
those .OBI files. MAKE's -a command-line option checks this 
information and makes sure that everything is up-to-date. 

When MAKE does an automatic dependency check, it reads the 
include files' names, times, and dates from the .OBI file. If any 
include files have been modified, MAKE causes the .OBI file to be 
recompiled. For example, consider the following makefile: 

.asm.obj: 
tasm -c $* 

Now assume that the following source file, called MYFILE.ASM, 
has been compiled with T ASM: 

'include <stdio.inc> 
'include "dcl.inc" 

void myfile () {} 

If you then invoke MAKE with the following command line 

make -a myfile.obj 

it checks the time and date ofMYFILE.ASM, and also of 
STOIO.INC and DCL.INC. 

Turbo Assembler Reference Guide 



Implicit rules MAKE allows you to define implicit rules as well as explicit ones. 

Appendix D, Utilities 

Implicit rules are generalizations of explicit rules; they apply to all 
files that have certain identifying extensions. 

Here's an example that illustrates the relationship between the 
two rules. Consider this explicit rule from the preceding example: 

myprog.obj: myprog.asm include\stdio.inc 
tasm -c myprog.asm 

This rule is typical because it follows a general principle: An .OBI 
file is dependent on the .asm file with the same file name and is 
created by executing TASM. In fact, you might have a makefile 
where you have several (or even several dozen) explicit rules 
following this same format. 

By rewriting the explicit rule as an implicit rule, you can eliminate 
all the explicit rules of the same form. As an implicit rule, it 
would look like this: 

.asm.obj: 
tasm -c $< 

This rule means /I Any file ending with .OBI depends on the file 
with the same name that ends in .asm." The .OBI file is created 
with the second line of the rule, where $< represents the file's 
name with the source (.asm) extension. (The symbol $< is a special 
macro. Macros are discussed starting on page 191. The $< macro 
will be replaced by the full name of the appropriate .asm source 
file each time the command executes.) 

Here's the syntax for an implicit rule: 

.source_extension. target_extension: 
[command] 
[command] 

As before, the commands are optional and must be indented. 

source_extension (which must begin with its period in column 1) is 
the extension of the source file; that is, it applies to any file having 
the format 

fname.source _extension 

Likewise, the target_extension refers to the file 

fname.target_extension 

189 



190 

where fname is the same for both files. In other words, this implicit 
rule replaces all explicit rules having the format 

fname.target_extension: fname.source_extension 
[command] 
[command] 
... ) 

for any fname. 

Note MAKE uses implicit rules if it can't find any explicit rules for a 
given target, or if an explicit rule with no commands exists for the 
target. 

The extension of the file name in question is used to determine 
which implicit rule to use. The implicit rule is applied if a file is 
found with the same name as the target, but with the mentioned 
source extension. 

For example, suppose you had a makefile (named MAKEFILE) 
whose contents were 

.asm.obj: 
tasm -c $< 

If you had an assembler program named RA TIO.ASM that you 
wanted to compile to RA TIO.OB], you could use the command 

make ratio.obj 

MAKE would take RATIO.OBJ to be the target. Since there is no 
explicit rule for creating RA TIO.OB], MAKE applies the implicit 
rule and generates the command 

tasm -c ratio.asm 

which, of course, does the compile step necessary to create 
RATIO.OBI· 

MAKE also uses implicit rules if you give it an explicit rule with 
no commands. Suppose you had the following implicit rule at the 
start of your makefile: 

.asm.obj: 
tasm -c $< 

You could then remove the command from the rule: 

myprog.obj: myprog.asm include\stdio.inc 
tasm -c myprog.asm 

and it would execute exactly as before. 

Turbo Assembler Reference Guide 



If you're using Turbo Assembler and you enable automatic 
dependency checking in MAKE, you can remove all the rules that 
have .OBI files as targets. With automatic dependency checking 
enabled and implicit rules, the three-rule assembler example 
shown in the section on explicit rules becomes 

.asm.obj: 
tasm -c $< 

prog.exe: myprog.obj prog2.obj 
tlink lib\cOs myprog prog2, prog, , lib\cs 

You can write several implicit rules with the same target exten
sion. If more than one implicit rule exists for a given target exten
sion, the rules are checked in the order in which they appear in 
the makefile, until a match is found for the source extension, or 
until MAKE has checked all applicable rules. 

MAKE uses the first implicit rule that involves a file with the 
source extension. Even if the commands of that rule fail, no more 
implicit rules are checked. 

All lines following an implicit rule, up to the next line that begins 
without whitespace or to the end of the file, are considered to be 
part of the command list for the rule. 

Macros Often, you'll find yourself using certain commands, file names, or 
options again and again in your makefile. For instance, if you're 
writing an assembler program that uses the medium memory 
model, all your TASM commands will use the switch -mm, which 
means to compile to the medium memory model. But, suppose 
you wanted to switch to the large memory model? You could go 
through and change all the -mm options to -mi. Or, you could 
define a macro. 

Appendix 0, Utilities 

A macro is a name that represents some string of characters. A 
macro definition gives a macro name and the expansion text; 
thereafter, when MAKE encounters the macro name, it replaces 
the name with the expansion text. ' 

Suppose you defined the following macro at the start of your 
makefile: 

MODEL = m 

This line defines the macro MODEL, which is now equivalent to the 
string ffi. Using this macro, you could write each command to 
invoke T ASM to look something like this: 

191 



192 

tasm -c -m$(MODEL) myprog.c 

When you run MAKE, each macro (in this case, $ (MODEL) ) is 
replaced with its expansion text (here, m). The command that's 
actually executed would be 

tasm -c -mm myprog.asm 

Now, changing memory models is easy. If you change the first 
line to 

t-KlDEL = 1 

you've changed all the commands to use the large memory model. 
In fact, if you leave out the first line altogether, you can specify 
which memory model you want each time you run MAKE, using 
the -0 (define) command-line optio~: 

make -DMODEL = 1 

This tells MAKE to treat MODEL as a macro with the expansion 
text I. 

Defining macros 

Macro definitions take the form 

macro_name = expansion text 

where macro_name is the name of the macro. macro_name should 
be a string of letters and digits with no whitespace in it, although 
you can have whitespace between macro_name and the equal sign 
(=). The expansion text is any arbitrary string containing letters, 
digits, whitespace, and punctuation; it is ended by newline. 

If macro_name has previously been defined, either by a macro 
definition in the makefile or by the -0 option on the MAKE com
mand line, the new definition replaces the old. 

Case is significant in macros; that is, the macro names model, 
Model, and MODEL are all different. 

Using macros 

You invoke macros in your makefile using this format 

$(macro _name) 

You need the parentheses for all invocations, even if the macro 
name is just one character long (with the exception of the 

Turbo Assembler Reference Guide 



See page 196 for Information 
on directives. 

Appendix 0, Utilities 

predefined macros). This construct-$ (macro_name) -is known as a 
macro invocation. 

When MAKE encounters a macro invocation, it replaces the 
invocation with the macro's expansion text. If the macro is not 
defined, MAKE replaces it with the null string. 

Special considerations 

Macros In macros: Macros cannot be invoked on the left side 
(macro_name) of a macro definition. They can be used on the right 
side (expansion text), but they are not expanded until the macro 
being defined is invoked. In other words, when a macro 
invocation is expanded, any macros embedded in its expansion 
text are also expanded. 

Macros In rules: Macro invocations are expanded immediately in 
rule lines. 

Macros In directives: Macro invocations are expanded imme
diately in IIf and lellt directives. If the macro being invoked in an 
IIf or lellf directive is not currently defined, it is expanded to the 
value 0 (FALSE). 

Macros in commands: Macro invocations in commands are 
expanded when the command is executed. 

Predefined macros 

MAKE comes with several special macros built in: $d, $*, $<, $:, $., 
and $&. The first is a test to see if a macro name is defined; it's 
used in the conditional directives IIf and lellt. The others are file 
name macros, used in explicit and implicit rules. In addition, the 
current DOS environment strings (the strings you can view and 
set using the 005 SET command) are automatically loaded as 
macros. Finally, MAKE defines two macros: __ MSDOS_-, 
defined to be 1 (one); and __ MAKE_ -' defined to be MAKE's 
version in hexadecimal (for this version, Ox0300). 

Macro 

$d 
$* 
$< 
$: 
$. 
$& 

What it does 

Defined as a test macro 
Base file name macro with path 
Full file name macro with path 
Path only macro 
Full file name macro, no path 
Base file name macro, no path 

193 



194 

Defined Test Macro ($d) The defined test macro ($d) expands to 1 
if the given macro name is defined, or to 0 if it is not. The content 
of the macro's expansion text does not matter. This special macro 
is allowed only in IIf and !ellf directives. 

For example, suppose you want to modify your makefile so that if 
you don't specify a memory model, it'll use the medium one. You 
could put this at the start of your makefile: 

!if !$d(MODEL) i if MODEL is not defined 
MODEL=m i define it to m (MEDIUM) 
!endif 

If you then invoke MAKE with the command line 

make -DMODEL=l 

then MODEL is defined as 1. If, however, you just invoke MAKE 
by itself, 

make 

then MODEL is defined as m, your "default" memory model. 

File name macros 

The various file name macros work in similar ways, expanding to 
some variation of the full path name of the file being built. 

Base file name macro ($*): The base file name macro is allowed in 
the commands for an explicit or an implicit rule. This macro ($*) 
expands to the file name being built, excluding any extension, like 
this: 

File name is A:\P\TESTFILE.ASM 
$* expands to A:\P\TESTFILE 

For example, you could modify this explicit rule 

prog.exe: myprog.obj prog2.obj 
tlink lib\cOs myprog prog2, prog, , lib\cs 

to look like this: 

prog.exe: myprog.obj prog2.obj 
tlink lib\cOs myprog prog2, $*, , lib\cs 

When the command in this rule is executed, the macro $* is 
replaced by the target file name (without extension), prog. For 
implicit rules, this macro is very useful. 

For example, an implicit rule for T ASM migh t look like this: 

Turbo Assembler Reference Guide 



Appendix D I Utilities 

.asm.obj: 
tasm -c $* 

Full file name macro ($<): The full file name macro ($<) is also 
used in the commands for an explicit or implicit rule. In an 
explicit rule, $< expands to the full target file name (including 
extension), like this: 

File name is A:\P\TESTFILE.ASM 
$< expands to A:\P\TESTFILE.ASM 

For example, the rule 

mylib.obj: mylib.asm 
copy $< \oldobjs 
tasm -c $* 

copies MYLIB.OBJ to the directory \OLOOBJS before compiling 
MYLIB.ASM. 

In an implicit rule, $< takes on the file name plus the source exten
sion. For example, the implicit rule 

.asm.obj: 
tasm -c $*.asm 

produces exactly the same result as 

.asm.obj: 
tasm -c $< 

because the extension of the target file name must be .asm. 

File-name path macro ($:): This macro expands to the path name 
(without the file name), like this: 

File name is A:\P\TESTFILE.ASM 
$: expands to A:\P\ 

File-name and extension macro ($.): This macro expands to the 
file name, with an extension but without the path name, like this: 

File name is A:\P\TESTFILE.ASM 
$. expands to TESTFILE.ASM 

File name only macro ($&): This macro expands to the file name 
only, without path or extension, like this: 

File name is A:\P\TESTFILE.ASM 
$& expands to TESTFILE 

195 



196 

Directives 

Table D.l 
MAKE directives 

Turbo Assembler's MAKE allows something that other versions of 
MAKE don't: directives similar to those allowed in C, assembler, 
and Turbo Pascal. You can use these directives to perform a 
variety of useful and powerful actions. Some directives in a 
makefile begin with an exclamation point (I) as the first character 
of the line. Others begin with a period. Here is the complete list of 
MAKE directives: 

.AUTODEPEND Turns on autodependency checking. 
!ELlF Conditional execution. 
!ELSE Conditional execution. 
!ENDIF Conditional execution. 
!ERROR Causes MAKE to stop and print an error message. 
!IF Conditional execution . 
.IGNORE Tells MAKE to ignore return value of a command. 
!INCLUDE Specifies a file to include in the makefile . 
. NOAUTODEPEND Turns off autodependency checking . 
. NOIGNORE Turns off .ignore . 
. NOSILENT Tells MAKE to print commands before executing 

them . 
. NOSWAP Tells MAKE to not swap itself in and out of memory . 
. PATH.EXT Gives MAKE a path to search for files with extension 

.EXT. 
.sILENT 

. SWAP 
!UNDEF 

Tells MAKE to not print commands before executing 
them. 
Tells MAKE to swap itself in and out of memory . 
Causes the definition for a specified macro to be 
forgotten. 

Dot directives Each of the following directives has a corresponding command
line option, but takes precedence over that option. For example, if 
you invoke MAKE like this: 

make -a 

but the makefile has a .NOAUTODEPEND directive, then 
autodependency checking will be off . 

. AUTODEPEND and .NOAUTODEPEND turn on or off 
autodependency checking. It corresponds with the -a command
line option . 

.IGNORE and .NOIGNORE tell MAKE to ignore the return value 
of a command, much like placing the prefix - in front of it 
(described earlier). They corresponds with the -I command-line 
option. 

Turbo Assembler Reference Guide 



.SILENT and .NOSILENT tell MAKE whether or not to print 
commands before executing them. They corresponds with the -s 
command-line option . 

. SW AP and .NOSW AP tell MAKE to swap itself out of memory. 
They corresponds with the -S option . 

• PATH.extenslon 

This directive, placed in a makefile, tells MAKE where to look for 
files of the given extension. For example, if the following is in a 
makefile: 

.PATH.asm = C:\TASMCODE 

.asm.obj: 
tasm $* 

tmp.exe: tmp.obj 
tasm tmp.obj 

MAKE will look for TMP .ASM, the implied source file for 
TMP .OBI, in C: \ TASMCODE instead of the current directory. 

The .PATH is also a macro that has the value of the path. The 
following is an example of the use of .P ATH. The source files are 
contained in one directory, the .OBI files in another, and all the 
.EXE files in the current directory . 

• PATH.asm = C:\TASMCODE 
.PATH.obj = C:\OBJS 

.asm.obj: 
tasm -0$ (.PATH.obj) \$& $< 

.obj.exe: 
tasm -e$&.exe $< 

tmp.exe: tmp.obj 

File-inclusion directive A file-inclusion directive (!Include) specifies a file to be included 
into the makefile for interpretation at the point of the directive. It 
takes the following form: 

Appendix D, Utilities 

!Include "filename" 

You can nest these directives to any depth. If an include directive 
attempts to include a file that has already been included in some 
outer level of nesting (so that a nesting loop is about to start), the 
inner include ~irective is rejected as an error. 

197 



Conditional execution 
directives 

How do you use this directive? Suppose you created the file 
MODEL.MAC that contained the following: 

! if ! $d (MODEL) 
MODEL=m 
!endif 

You could use this conditional macro definition in any makefile 
by including the directive 

!include "MODEL.MAC" 

When MAKE encounters !include, it opens the specified file and 
reads the contents as if they were in the makefile itself. 

Conditional execution directives (!If, lellf, leise, and lend If) give 
you a measure of flexibility in constructing makefiles. Rules and 
macros can be made conditional, so that a command-line macro 
definition (using the -0 option) can enable or disable sections of 
the makefile. 

The format of these directives parallels those in C, assembly 
language, and Turbo Pascal: 

!if expression 
[ lines ] 
!endif 

!if expression 
[ lines ] 
!else 
[ lines ] 
!endif 

!if expression 
[ lines ] 
!elif expression 
[ lines] 
!endif 

Note [lines] can be any of the following statement types: 

198 

• macro_definition 
• explicit_rule 
• implicit_rule 
• include_directive 
.if~roup 
• error_directive 
• undef_directive 

Turbo Assembler Reference Guide 



Appendix D, Utilities 

The conditional directives form a group, with at least an lit 
directive beginning the group and an lend It directive closing the 
group. 

• One !else directive can appear in the group. 
• lellt directives can appear between the lit and any !else 

directives. 
• Rules, macros, and other directives can appear between the 

various conditional directives in any number. Note that 
complete rules, with their commands, cannot be split across 
conditional directives. 

• Conditional directive groups can be nested to any depth. 

Any rules, commands, or directives must be complete within a 
single source file. 

AlllIf directives must have matching lend It directives within the 
same source file. Thus the following include file is illegal, 
regardless of what's in any file that might include it, because it 
doesn't have a matching lendlt directive: 

!if $(FILE_COUNT) > 5 
some rules 

!else 
other rules 

<end-of-file> 

Expressions allowed in conditional directives 

Expressions are allowed in an lit or an !ellt directive; they use an 
assembler-like syntax. The expression is evaluated as a simple 32-
bit signed integer. 

You can enter numbers as decimal, octal, or hexadecimal 
constants. For example, these are legal constants in a MAKE 
expression: 

4536 t decimal constant 
0677 t octal constant (distinguished by leading 0) 
Ox23aF t hexadecimal constant (distinguished by leading Ox) 

An expression can use any of the following operators: 

Operator Operation 

Unary operators 

negation (unary minus) 
bit complement (inverts all bits) 

199 



200 

logical NOT (yields a if operand is nonzero, 1 otherwise) 

Binary operators 

+ addition 
subtraction 

• multiplication 
division 

% remainder 

» right shift 
« left shift 

& bitwise AND 
I bitwise OR 
A bitwise exclusive OR (XOR) 

&& logical AND 
II logical OR 

> ~reater than 
< ess than 
>= ~reater than or equal 
<= ess than or equal 
-- equalitli 
1= inequa ity 

Ternary operator 

? : The operand before the? is treated as a test. 

If the value of the first operand is nonzero, then the second 
operand (the part between the? and :) is the result. 

If the value of the first operand is zero, the value of the 
result is the value of the third operand (the part after the :). 

Parentheses can be used to group operands in an expression. In 
the absence of parentheses, all the unary operators take 
precedence over binary operators. The binary operators have the 
same precedences as they do in assembler, and are listed here in 
order of decreasing precedence. 

* I % multiplicative operators 
+ - additive operators 
« » bitwise shift operators 
<= >= relational operators 
< > relational operators 
= != relational operators 
& bitwise AND 
A bitwise exclusive OR 
I bitwise OR 
&& logical AND 

Turbo Assembler Reference Guide 



II logical OR 

Operators of equal precedence are executed from left to right, 
except for nested ternary operators (1:), which are executed right 
to left. 

Since this many layers of operator precedence can be confusing, 
we recommend that you use parentheses liberally in your 
expressions. 

You can invoke macros within an expression; the special macro 
$dO is recognized. After all macros have been expanded, the 
expression must have proper syntax. 

Error directive The error directive (!error) causes MAKE to stop and print a fatal 
diagnostic containing the text after ferror. It takes the format 

Macro undefinition 
directive 

MAKE error 

!error any_text 

This directive is designed to be included in conditional directives 
to allow a user-defined error condition to abort MAKE. For 
example, you could insert the following code in front of the first 
explicit rule: 

! if ! $d (MODEL) 
t if MODEL is not defined 
!error MODEL not defined 
!endif 

If you reach this spot without having defined MODEL, then 
MAKE stops with this error message: 

Fatal makefile 4: Error directive: MODEL not defined 

The macro "undefinition" directive (!undef) causes any definition 
for the named macro to be forgotten. If the macro is currently 
undefined, this directive has no effect. The syntax is 

!undef macro_name 

messages MAKE diagnostic messages fall into two classes: errors and fatal 
errors . 

Appendix 0, Utilities 

• When a fatal error occurs, compilation immediately stops. You 
must take appropriate action and then restart the compilation. 

201 



202 

• Errors indicate some sort of syntax or semantic error in the 
source makefile. 

The following generic names and values appear in the error 
messages listed in this section. When you get an error message, 
the appropriate name or value is substituted. 

In manual 

argumenf(s) 
expression 
filename 
line number 
message 

What you'll see onscreen 

The command-line or other argument 
An expression 
A file name (with or without extension) 
A line number 
A message string 

The error messages are listed in ASCII alphabetic order; 
messages beginning with symbols come first. Since 
messages that begin with one of the variables just listed 
cannot be alphabetized by what you will actually see when 
you receive such a message, all such messages have been 
placed at the beginning of each error message list. 

For example, if you have tried to link a file named 
NOEXIT.ASM, you might receive the following actual 
message: 

noexit does not exist--don't know how to make it 

In order to look this error message up, you would need to 
find 

filename does not exlst-don't know how to make It 

at the beginning of the list of error messages. 

If the variable occurs later in the text of the error message 
(for example, "Illegal character in constant expression: 
expression"), you can find the explanation of the message in 
correct alphabetical order; in this case, under 1. 

Fatal error messages filename does not exist - don't know how to make It 
There's a nonexistent file name in the build sequence, and 
no rule exists that would allow the file name to be built. 

Circular dependency exists In makefile 
The makefile indicates that a file needs to be up-to-date 
BEFORE it can be built. Take, for example, the explicit 
rules: 

filea: fileb 

Turbo Assembler Reference Guide 



fileb: filee 
filee: filea 

This implies that filea depends on fileb, which depends 
on filee, and filee depends on filea. This is illegal, since 
a file cannot depend on itself, indirectly or directly. 

Error directive: message 
MAKE has processed an #error directive in the source 
file, and the text of the directive is displayed in the 
message. 

Incorrect command-line argument: argument 
You've used incorrect command-line arguments. 

No terminator specified for In-line file operator 
The makefile contains either the && or« command
line operators to start an in-line file, but the file is not 
terminated. 

Not enough memory 
All your working storage has been exhausted. You 
should perform your make on a machine with more 
memory. !fyou already have 640K in your machine, 
you may have to simplify the source file, or unload 
some memory-resident programs. 

Unable to execute command 
A command failed to execute; this may be because the 
command file could not be found, or because it was 
misspelled, or (less likely) because the command itself 
exists but has been corrupted. 

Unable to open makefile 
The current directory does not contain a file named 
MAKE FILE, and there is no MAKEFILE.MAK. 

Unable to redirect input or output 
MAKE was unable to open the temporary files 
necessary to redirect input or output. !fyou are on a 
network, make sure you have rights to the current 
directory. 

Errors Bad file name format In Include statement 
Include file names must be surrounded by quotes or 
angle brackets. The file name was missing the opening 
quote or angle bracket. 

Appendix 0, Utilities 203 



204 

Bad undef statement syntax 
An lundef statement must contain a single identifier 
and nothing else as the body of the statement. 

Character constant too long 
Character constants can be only one or two characters 
long. 

Command arguments too long 
The arguments to a command were more than the 
127-character limit imposed by DOS. 

Command syntax error 
This message occurs if 

• The first rule line of the makefile contained any leading 
whitespace. 

• An implicit rule did not consist of .ext.ext:. 
• An explicit rule did not contain a name before the: 

character. 

• A macro definition did not contain a name before the = 
character. 

Command too long 
The length of a command has exceeded 128 characters. 
You might wish to use a response file. 

Division by zero 
A divide or remainder in an !If statement has a zero 
divisor. 

Expression syntax error In !If statement 
The expression in an !if statement is badly formed-it 
contains a mismatched parenthesis, an extra or missing 
operator, or a missing or extra constant. 

File name too long 
The file name in an !include directive is too long for 
the compiler to process. File names in DOS can be no 
longer than 64 characters. 

If statement too long 
An If statement has exceeded 4,096 characters. 

Illegal character in constant expression X 
MAKE encountered some character not allowed in a 
constant expression. If the character is a letter, this 
probably indicates a misspelled identifier. 

Turbo Assembler Reference Guide 



Appendix 0, Utilities 

Illegal octal digit 
An octal constant was found containing a digit of 8 or 
9. 

Macro expansion too long 
A macro cannot expand to more than 4,096 characters. 
This error often occurs if a macro recursively expands 
itself. A macro cannot legally expand to itself. 

Misplaced ellf statement 
An !elif directive is missing a matching Iif directive. 

Misplaced else statement 
There's an !else directive without any matching !If 
directive. 

Misplaced endif statement 
There's an !endlf directive without any matching IIf 
directive. 

No file name ending 
The file name in an include statement is missing the 
correct closing quote or angle bracket. 

Redefinition of target filename 
The named file occurs on the left side of more than one 
explicit rule. 

Rule line too long 
An implicit or explicit rule was longer than 4,096 
characters. 

Unable to open Include file filename 
The named file cannot be found. This can also be 
caused if an include file included itself. Check whether 
the named file exists. 

Unexpected end of file In conditional started on line line 
number 

The source file ended before MAKE encountered an 
!endlf. The !endlf was either missing or misspelled. 

Unknown preprocessor statement 
A ! character was encountered at the beginning of a 
line, and the statement name following was not error, 
undef, If, ellf, Include, else, or endlf. 

205 



TLIB: The Turbo Librarian 

The advantages 
of using object 

module libraries 

206 

TLIB is a utility that manages libraries of individual.OBJ 
(object module) files. A library is a convenient tool for 
dealing with a collection of object modules as a single unit. 

The libraries included with Turbo Assembler were built 
with TLIB. You can use TLIB to build· your own libraries, or 
to modify your own libraries, libraries furnished by other 
programmers, or commercial libraries you have purchased. 
You can use TLIB to 

• create a new library from a group of object modules 
• add object modules or other libraries to an existing library 

• remove object modules from an existing library 
• replace object modules from an existing library 
• extract object modules from an existing library 
• list the contents of a new or existing library 

When it modifies an existing library, TLIB always creates a 
copy of the original library with a .BAK extension. 

TLIB can also create (and include in the library file) an 
extended dictionary, which may be used to speed up 
linking. See the section on the IE option (page 210) for 
details. 

Although TLIB is not essential to creating executable 
programs with Turbo Assembler, it is a useful programmer's 
productivity tool. You will find TLIB indispensable for large 
development projects. If you work with object module 
libraries developed by others, you can use TLIB to maintain 
those libraries when necessary. 

When you program in assembler, you often create a 
collection of useful assembler directives. You are likely to 
split those directives into many separately compiled source 
files. You use only a subset of functions from the entire 
collection in any particular program. It can become quite 
tedious, however, to figure out exactly which files you are 
using. If you always include all the source files, on the other 

Turbo Assembler Reference Guide 



hand, your program becomes extremely large and 
unwieldy. 

An object module library solves the problem of managing a 
collection of assembler directives. When you link your 
program with a library, the linker scans the library and 
automatically selects only those modules needed for the 
current program. In addition, a library consumes less disk 
space than a collection of object module files, especially if 
each of the object files is small. A library also speeds up the 
action of the linker, because it only opens a single file, 
instead of one file for each object module. 

The components 
of a TLiB 

command line 
Run TLIB by typing a TLIB command line at the DOS 
prompt. To get a summary of TLIB's usage, just type TLIB 
and press Enter. 

Component 

tlib 

libname 

IC 

IE 

IPsize 

operations 

listfile 

Description 

The TLIB command line takes the following general form, 
where items listed in square brackets ([like this]) are 
optional: 

tlib libname [Ie] [IE] [lPsize] [operations] [, listfile] 

The command name that invokes TLIB. Note: If the named library does not exist and 
there are add operations, TLIB creates the library. 

The DOS path name of the library you want to create or manage. Every TLIB command 
must be given a libname. Wildcards are not allowed. TLIB assumes an extension of .LIB if 
none is given. We recommend that you do not use an extension other than .LIB, since 
both T ASM and TC's project-make facility require the .LIB extension in order to 
recognize library files. 

The case-sensitive flag. This option is not normally used; see page 211 for a detailed 
explanation. 

Create extended dictionary; see page 210 for a detailed explanation. 

Set the library page size to size; see page 210 for a detailed explanation. 

The list of operations TLIB performs. Operations may appear in any order. If you only 
want to examine the contents of the library, don't give any operations. 

The name of the file listing library contents. The listfile name (if given) must be preceded 
by a comma. If you do not give a file name, no listing is produced. The listing is an 
alphabetical list of each module, followed by an alphabetical list of each public symbol 
defined in that module. The default extension for the listfile is .LST. 

Appendix D, Utilities 207 



208 

You can direct the listing to the screen by using the listfile name CON, or to the printer 
by using the name PRN. 

The following sections provide details about using TLIB. For 
examples of how to use TLIB, refer to the "Examples" section on 
page 211. 

The operation list The operation list describes what actions you want TLIB to do. It 
consists of a sequence of operations given one after the other. 
Each operation consists of a one- or two-character action symbol 
followed by a file or module name. You can put whitespace 
around either the action symbol or the file or module name, but 
not in the middle of a two-character action or in a name. 

You can put as many operations as you like on the command line, 
up to the DOS-imposed line-length limit of 127 characters. The 
order of the operations is not important. TLIB always applies the 
operations in a specific order: 

1. All extract operations are done first. 
2. All remove operations are done next. 
3. All add operations are done last. 

Replacing a module means first removing it, then adding the 
replacement module. 

File and module names 

When TLIB adds an object file to a library, the file is simply called 
a module. TLIB finds the name of a module by taking the given file 
name and stripping any drive, path, and extension information 
from it. (Typically, drive, path, and extension are not given.) 

Note that TLIB always assumes reasonable defaults. For example, 
to add a module that has an .OBJ extension from the current 
directory, you only need to supply the module name, not the path 
and .OBJ extension. 

Wildcards are never allowed in file or module names. 

TUB operations 

TLIB recognizes three action symbols (-, +, *), which you can use 
singly or combined in pairs for a total of five distinct operations. 
For operations that use a pair of characters, the order of the 

Turbo Assembler Reference Guide 



To create a library, add 
modules to a library that 

does not yet exist. 

You can't directly rename 
modules in a library. To 

rename a module, extract 
and remove It, rename the 
file just created, then add It 

back into the library. 

Using response 
files 

Appendix 0, Utilities 

characters in not important. The action symbols and what they do 
are listed here: 

Action 
symbol Name Description 

+ Add TLIB adds the named file to the library. If the 
file has no extension given, TLIB assumes an 
extension of .OBJ. If the file is itself a library 
(with a .LIB extension), then the operation adds 
all of the modules in the named library to the 
target library. 

If a module being added already exists, TLIB 
displays a message and does not add the new 
module. 

Remove TLIB removes the named module from the 
library. If the module does not exist in the 
library, TLIB displays a message. 

A remove operation only needs a module name. 
TLIB allows you to enter a full path name with 
drive and extension included, but ignores 
everything except the module name. 

* Extract TLIB creates the named file by copying the cor-
responding module from the library to the file. 
If the module does not exist, TLIB displays a 
message and does not create a file. If the named 
file already exists, it is overwritten. 

-* Extract & TLIB copies the named module to the 
*- Remove corresponding file name and then removes it 

from the library. This is just a shorthand for an 
extract followed by a remove operation. 

-+ Replace TLIB replaces the named module with the cor-
+- responding file. This is just shorthand for a remove followed 

by an add operation. 

When you are dealing with a large number of operations, or if 
you find yourself repeating certain sets of operations over and 
over, you will probably want to start using response files. A 
response file is simply an ASCII text file that contains all or part of 
a TLIB command. Using response files, you can build TLIB com
mands larger than would fit on one DOS command line. 

To use a response file pathname, specify @pathname at any position 
on the TLIB command line. 

209 



Creating an 
extended 

dictionary: The IE 
option 

Setting the page 
size: The IP option 

210 

• More than one line of text can make up a response file; you use 
the "and" character (&) at the end of a line to indicate that 
another line follows. 

• You don't need to put the entire TLIB command in the response 
file; the file can provide a portion of the TLIB command line, 
and you can type in the rest. 

• You can use more than one response file in a single TLIB 
command line. 

See "Examples" for a sample response file and a TLIB command 
line incorporating it. 

To speed up linking with large library files (such as the standard 
ex.LIB library), you can direct TLIB to create an extended dictionary 
and append it to the library file. This dictionary contains, in a very 
compact form, information that is not included in the standard 
library dictionary. This information enables TLINK to process 
library files faster, especially when they are located on a floppy 
disk or a slow hard disk. All the libraries on the Turbo Assembler 
distribution disks contain the extended dictionary. 

To create an extended dictionary for a library that is being modi
fied, use the IE option when you invoke TLIB to add, remove, or 
replace modules in the library. To create an extended dictionary 
for an existing library that you don't want to modify, use the IE 
option and ask TLIB to remove a nonexistent module from the 
library. TLIB will display a warning that the specified module was 
not found in the library, but it will also create an extended 
dictionary for the specified library. For example, enter 

tlib IE mylib -bogus 

Every DOS library file contains a dictionary (which appears at the 
end of the .LIB file, following all of the object modules). For each 
module in the library, this dictionary contains a 16-bit address of 
that particular module within the .LIB file; this address is given in 
terms of the library page size (it defaults to 16 bytes). 

The library page size determines the maximum combined size of 
all object modules in the library-it cannot exceed 65,536 pages. 
The default (and minimum) page size of 16 bytes allows a library 

Turbo Assembler Reference Guide 



Advanced 
operation: The Ie 

option 

If you want to use the library 
with other linkers (or allow 

other people to use the 
library with other linkers), for 

your OMl protection you 
should not use the Ie option. 

Examples 

Appendix 0, Utilities 

of about 1 MB in size. To create a larger library, the page size must 
be increased using the IP option; the page size must be a power of 
2, and it may not be smaller than 16 or larger than 32,768. 

All modules in the library must start on a page boundary. For 
example, in a library with a page size of 32 (the lowest possible 
page size higher than the default 16), on the average 16 bytes will 
be lost per object module in padding. If you attempt to create a 
library that is too large for the given page size, TLIB will issue an 
error message and suggest that you use IP with the next available 
higher page size. 

When you add a module to a library, TLIB maintains a dictionary 
of all public symbols defined in the modules of the library. All 
symbols in the library must be distinct. If you try to add to the 
library a module that would cause a duplicate symbol, TLIB 
displays a message and won't add the module. 

Normally, when TLIB checks for duplicate symbols in the library, 
uppercase and lowercase letters are not considered as distinct. For 
example, the symbols lookup and LOOKUP are treated as 
duplicates. 
It may seem odd that, without the IC option, TLIB rejects symbols 
that differ only in case. The reason is that some linkers fail to 
distinguish between symbols in a library that differ only in case. 
Such linkers, for example, will treat stars, Stars, and STARS as the 
same identifier. TLINK, on the other hand, has no problem 
distinguishing uppercase and lowercase symbols, and it will 
properly accept a library containing symbols that differ only in 
case. In this example, then, Turbo Assembler would treat stars, 
Stars, and STARS as three separate identifiers. As long as you use 
the library only with TLINK, you can use the TLIB IC option 
without any problems. 

Here are some simple examples demonstrating the different 
things you can do with TLIB. 

1. To create a library named MYLIB.LIB with modules X.OBJ, 
Y.OBJ, and Z.OBJ, type 

tlib mylib +x +y +z 

211 



Turbo Link 

The new TLINK has more 
features, handles much 

larger programs, and is quite 
fast. 

Invoking TLINK 

212 

2. To create a library as in #1 and get a listing in MYLIB.LST too, 
type 

tlib rnylib +x +y +z, rnylib.lst 

3. To get a listing in CS.LST of an existing library CS.LIB, type 

tlib cs, cs .lst 

4. To replace module X.OBJ with a new copy, add A.OBJ and 
delete Z.OBJ from MYLIB.LIB, type 

tlib rnylib -+x +a -z 

5. To extract module Y.OBJ from MYLIB.LIB and get a listing in 
MYLIB.LST, type 

tlib rnylib *y, rnylib.lst 

6. To create a new library named ALPHA, with modules A.OBJ, 
B.OBJ, ... , G.OBJ using a response file: 

First create a text file, ALPHA.RSP, with 

+a.obj +b.obj +c.obj & 
+d.obj +e.obj +f.obj & 
+g.obj 

Then use the TLIB command, which produces a listing file 
named ALPHA.LST: 

tlib alpha @alpha.rsp, alpha.lst 

Turbo Link (TLINK) is an extremely fast and compact linker; it's 
invoked as a separate program and can also be used as a 
standalone linker. This section describes how to use TLINK as a 
standalone linker. 

You can invoke TLINK at the DOS command line by typing tlink 
with or without parameters. When it is invoked without 
parameters, TLINK displays a summary of parameters and 
options that looks like this: 

Turbo Assembler Reference Guide 



In addition to the slash, you 
can also use a hyphen to 

precede TUNKs commands. 
So, for example, 1m and-m 

are equivalent. 

Appendix D, Utilities 

Turbo Link Version 3.0 Copyright (c) 1987. 1990 Borland International 
Syntax: TUNK objfiles. exefl1e. mapfl1e. libfl1es 
'XXXX indicates use response fl1e xxxx 
Options: I,. • map file with publics 

Ix • no map fl1e at all 
11 • 1n1t1al1ze all segments 
11 • 1ncl ude source line numbers 
Is • detailed map of segments 
In • no default l1brar1es 
Id • warn if duplicate symbols in libraries 
Ic • lower case significant in symbols 
13 • enable 32-bit processing 
Iv • include full symbol1c debug infomation 
Ie • ignore Extended Dictionary 
It • create COM fl1e 

In TLINK's summary display, the line 

The syntax is: TLINK objfiles, exefile, mapfile, libfiles 

specifies that you supply file names in the given order, separating 
the file types with commas. 

For example, if you supply the command line 

tlink Ie mainline wd In tx,fin,mfin,lib\eomm lib\support 

TLINK will interpret it to mean that 

II case is significant during linking (Ie). 

• the .OBJ files to be linked are MAINLINE.OBJ, WD.OBJ, 
LN.OBJ, and TX.OBJ. 

• the executable program name will be FIN.EXE. 

• the map file is MFIN.MAP. 
&I the library files to be linked in are COMM.LIB and 

SUPPORT. LIB, both of which are in subdirectory LIB. 

TLINK appends extensions to file names that have none: 

II .OBI for object files 
II .EXE for executable files 

II .MAP for map files 

II .LIB for library files 

If no .EXE file name is specified, TLINK derives the name of the 
executable file by appending .EXE to the first object file name 
listed. If, for example, you had not specified FIN as the .EXE file 
name in the previous example, TLINK would have created 
MAINLINE.EXE as your executable file. 

When you use the It option, the executable file extension defaults 
to .COM rather than .EXE. 

213 



214 

TLINK always generates a map file, unless you explicitly direct it 
not to by including the Ix option on the command line. 

• If you give the 1m option, the map file will include a list of 
public symbols. 

• If you give the Is option, the map file will include a detailed 
segment map. 

These are the rules TLINK follows when determining the name of 
the map file. 

• If you don't specify any .MAP files, TLINK derives the map file 
name by adding a .MAP extension to the .EXE file name. (You 
can give the .EXE file name on the command line or in the 
response file; if no .EXE name is given, TLINK will derive it 
from the name of the first .OBJ file.) 

• If you specify a map file name in the command line (or in the 
response file), TLINK adds the .MAP extension to the given 
name. 

Even if you specify a map file name, if you use the Ix option, 
TLINK won't create any map files at all. 

Using response files TLINK lets you supply the various parameters on the command 
line, in a response file, or in any combination of the two. 

A response file is just a text file that contains the options and/or 
file names that you would usually type in after the name TLINK 
on your command line. 

Unlike the command line, however, a response file can be 
continued onto several lines of text. You can break a long list of 
object or library files into several lines by ending one line with a 
plus character (+) and continuing the list on the next line. 

You can also start each of the four components on separate lines: 
object files, executable file, map file, libraries. When you do this, 
you must leave out the comnia used to separate components. 

To illustrate these features, suppose that you rewrote the previous 
command-line example as a response file, FINRESP, like this: 

Ie mainline wd+ 
In tx,fin 
mfin 
lib\eomm lib\support 

You would then enter your TLINK command as 

Turbo Assembler Reference Guide 



TLiNK options 

tlink @finresp 

Note that you must precede the file name with an "at" character 
(@) to indicate that the next name is a response file. 

Alternately, you might break your link command into multiple 
response files. For example, you can break the previous command 
line into the following two response files: 

File name 

LISfOB]S 

LISfLIBS 

Contents 

mainline+ 
wd+ 
In tx 
Iib\comm+ 
lib \support 

You would then enter the TLINK command as 

tlink Ie @listobjs,fin,mfin,@listlibs 

TLINK options can occur anywhere on the command line. The 
options consist of a slash (I), a hyphen (-), or the DOS switch 
character, followed by the option-specifying character (m, x, i, I, 5, 

n, d, c,3, v, e, or t). (The DOS switch character is I by default. You 
can change it by using an INT 21H call.) 

If you have more than one option, spaces are not significant (/m/e 
is the same as 1m Ie), and you can have them appear in different 
places on the command line. The following sections describe each 
of the options. 

Ix, 1m, Is options By default, TLINK always creates a map of the executable file. 

Appendix 0, Utilities 

This default map includes only the list of the segments in the 
program, the program start address, and any warning or error 
messages produced during the link. 

If you want to create a more complete map, the 1m option will add 
a list of public symbols to the map file, sorted alphabetically as 
well as in increasing address order. This kind of map file is useful 
in debugging. Many debuggers can use the list of public symbols 
to allow you to refer to symbolic addresses when you are 
debugging. 

215 



Figure D.l 
Detailed map of 

segments 

216 

The Is option creates a map file with segments, public symbols 
and the program start address just like the 1m option did, but also 
adds a detailed segment map. The following is an example of a 
detailed segment map: 

Address Length Class Segment Narae Group Module Alignment/ 
(Bytes) Combi ning 

0000:0000 OE5B C-COOE S-SYHB TEXT G- none M-SYHB.C ACBP-28 
00E5:oo0B 2735 C-COOE S-QUACTEXT G- none M-QUAL.C ACBP-28 
0359:0000 002B C-COOE S-scoPY TEXT G- none M-SCOPY ACBP-28 
035B:000B 003A C-COOE S-LRSH TEXT G- none M-LRSH ACBP-20 
035F:0005 0083 C-COOE S-PACA-TEXT G- none M-PACA ACBP-20 
0367:0008 oo5B C-COOE S-PACOIEXT G- none M-PACO ACBP-20 
036D:0003 0025 C-COOE S-PSBPIEXT G- none M-PSBP ACBP-20 
036F:0008 05CE C-COOE S-BRIC TEXT G- none M-BRK ACBP-28 
03CC:0006 066F C-CODE S-FLOXT TEXT G- none M-FLOAT ACBP-20 
0433:0006 OOOB C-DATA S- DATA- G-OGROUP M-SYHB.C ACBP-48 
0433:0012 0003 C-OATA S-llATA G-DGROUP M-QUAL.C ACBP-48 
0433:00E6 OOOE C-OATA S-IlATA G-OGROUP M-BRK ACBP-48 
0442:0004 0004 C-BSS S--SSS G-OGROUP M-SYHB.C ACBP-48 
0442:0008 0002 C-BSS S--BSS G-OGROUP M-QUAL.C ACBP-48 
0442:000A OOOE C-BSS S-:sSS G-OGROUP M-BRK ACBP-48 

For each segment in each module, this map includes the address, 
length in bytes, class, segment name, group, module, and ACBP 
information. 

If the same segment appears in more than one module, each 
module will appear as a separate line (for example, SYMB.C). 
Most of the information in the detailed segment map is self
explanatory, except for the ACBP field. 

The ACBP field encodes the A (alignment), C (combining), and B 
(big) attributes into a set of four bit fields, as defined by Intel. 
TLINK uses only three of the fields, the A, C, and B fields. The 
ACBP value in the map is printed in hexadecimal: The following 
values of the fields must be DR'ed together to arrive at the ACBP 
value printed. 

Field Value Description 

The A field 00 An absolute segment 
(alignment) 20 A byte-aligned segment 

40 A word-aligned segment 
60 A paragraph-aligned segment 
80 A page-aligned segment 
AO An unnamed absolute portion of storage 

The C field 00 May not be combined 
(combination) 08 A public combining segment 

The B field 00 Segment less than 64K 
(big) 02 Segment exactly 64K 

Turbo Assembler Reference Guide 



II (line numbers) 

Ii (uninitialized trailing 
segments) 

In (ignore default 
libraries) 

Ie (case sensitivity) 

Id (duplicate symbols) 

Appendix D I Utilities 

The /I option creates a section in the .MAP file for source code line 
numbers. To use it, you must have created the .OB] files by com
piling with the -y (Line numbers ... On) or -v (Debug information) 
option. If you tell TLINK to create no map at all (using the Ix 
option), this option will have no effect. 

The /I option causes uninitialized trailing segments to be output 
into the executable file even if the segments do not contain data 
records. This option is not normally necessary. 

The In option causes the linker to ignore default libraries specified 
by some compilers. You'll need this option if the default libraries 
are in another directory, because TLINK does not support 
searching for libraries. You may want to use this option when 
linking modules written in another language. 

The Ie option forces the case to be significant in public and 
external symbols. For example, by default, TLINK regards cloud, 
Cloud, and CLOUD as equal; the Ie option makes them different. 

Normally, TLINK will not warn you if a symbol appears in more 
than one library file. If the symbol must be included in the 
program, TLINK will use the copy of tha t symbol in the first file 
on the command line in which it is found. Since this is a 
commonly used feature, TLINK does not normally warn about 
the duplicate symbols. The following hypothetical situation 
illustrates how you might want to use this feature. 

Suppose you have two libraries: one called SUPPORT. LIB, and a 
supplemental one called DEBUGSUP .LIB. Suppose also that 
DEBUGSUP.LIB contains duplicates of some of the routines in 
SUPPORT.LIB (but the duplicate routines in DEBUGSUP.LIB 
include slightly different functionality, such as debugging 
versions of the routines). If you include DEBUGSUP.LIB first in 
the link command, you will get the debugging routines and not 
the routines in SUPPORT. LIB. 

If you are not using this feature or are not sure which routines are 
duplicated, you may include the Id option. TLINK will list all 
symbols duplicated in libraries, even if those symbols are not 
going to be used in the program. 

217 



Ie (extended 
dictionary) 

It (tiny model .COM 
file) 

Given this option, TLINK will also warn about symbols that 
appear both in an .OB] and a .LIB file. In this case, since the 
symbol that appears in the first (left-most) file listed on the com
mand line is the one linked in, the symbol in the .OB] file is the 
one that will be used. 

With Turbo Assembler, the distributed libraries you would use in 
any given link command do not contain any duplicated symbols. 
So while EMU.LIB and FP87.LIB (or CS.LIB and CL.LIB) 
obviously have duplicate symbols, they would never rightfully be 
used together in a single link. There are no symbols duplicated 
between EMU. LIB, MATHS.LIB, and CS.LIB, for example. 

The library files that are shipped with Turbo Assembler all 
contain an extended dictionary with information that enables 
TLINK to link faster with those libraries. This extended dictionary 
can also be added to any other library file using the IE option with 
TLIB (see the section on TLIB starting on page 206). The Ie option 
disables the use of this dictionary. 

Although linking with libraries that contain an extended 
dictionary is faster, you might want to use the Ie switch if you 
have a program that needs slightly more memory to link when an 
extended dictionary is used. 

Unless you use Ie, TLINK will ignore any debugging information 
contained in a library that has an extended dictionary. 

If you compile your file in the tiny memory model and link it with 
this option toggled on, TLINK will generate a .COM file instead of 
the usual .EXE file. Also, when you use It, the default extension 
for the executable file is .COM. 

Note: .COM files may not exceed 64K in size, cannot have any 
segment-relative fix ups, cannot define a stack segment, and must 
have a starting address equal to 0:100H. When an extension other 
than .COM is used for the executable file (.BIN, for example), the 
starting address may be either 0:0 or O:l00H. 

Iv option The Iv option directs TLINK to include debugging information in 
the executable file. If this option is found anywhere on the 
command line, debugging information will be included for all 
modules that contain debugging information. You can use the Iv+ 
and Iv- options to selectively enable or disable inclusion of 

218 Turbo Assembler Reference Guide 



debugging infonnation on a module-by-module basis. For 
example, this command 

tlink modl /v+ mod2 mod3 /v- mod4 

includes debugging informa tion for modules mod2 and mod3, but 
not for modl and mod4. 

/3 (80386 32-bit code) The 13 option should be used when one or more of the object 
modules linked has been produced by T ASM or a compatible 
assembler, and contains 32-bit code for the 80386 processor. This 
option increases the memory requirements of TLINK and slows 
down linking, so it should be used only when necessary. 

Restrictions There is only one serious restriction to TLINK; TLINK does not 
generate Windows or OS/2 .EXE files. 

Error messages 

Appendix D, Utilities 

Previous restrictions that no longer apply: 

• Common variables are now supported. 

• Segments that are of the same name and class that are 
uncombinable are now accepted. They aren't combined, and 
they appear separately in the map file. 

• Any Microsoft code can now be linked with TLINK. 

TLINK can of course be used with Turbo C (both the integrated 
environment and command-line versions), T ASM, Turbo Prolog, 
and other compilers. 

TLINK has three types of errors: fatal errors, nonfatal errors, and 
warnings. 

• A fatal error causes TLINK to stop immediately; the .EXE file is 
deleted. 

• A nonfatal error does not delete .EXE or .MAP files, but you 
shouldn't try to execute the .EXE file. 

• Warnings are just that: warnings of conditions that you 
probably want to fix. When warnings occur, .EXE and .MAP 
files are still created. 

The following generic names and values appear in the error 
messages listed in this section. When you get an error message, 
the appropriate name or value is substituted. 

219 



220 

In manual What you'll see on screen 

filename 
group 
module 
segment 
symbol 
XXXXh 

A file name (with or without extension) 
A group name 
A module name 
A segment name 
A symbol name 
A 4-digit hexadecimal number, followed by h 

The error messages are listed in ASCII alphabetic order; messages 
beginning with symbols come first. Since messages that begin 
with one of the variables just listed cannot be alphabetized by 
what you will actually see when you receive such a message, all 
such messages have been placed at the beginning of each error 
message list. 

For example, if you have tried to link a file named NOEXlT.OBJ, 
you might receive the following actual message: 

noexit.obj: bad object file 

In order to look this error message up, you would need to find 

filename: bad object file 

at the beginning of the list of error messages. 

If the variable occurs later in the text of the error message (for 
example, "Invalid segment definition in module module"), you can 
find the message in correct alphabetical order; in this case, under 
1. 

Fatal errors When fatal errors happen, TLINK stops and deletes the .EXE file. 

filename: bad object file 
An ill-formed object file was encountered. This is most 
commonly caused by naming a source file or by naming an 
object file that was not completely built. This can occur if the 
machine was rebooted during a compile, or if a compiler did 
not delete its output object file when a Ctrl-Brk was pressed. 

filename: unable to open file 
This occurs if the named file does not exist or is misspelled. 

group: group exceeds 64K 
This message will occur if a group exceeds 64K bytes when the 
segments of the group are combined. 

Turbo Assembler Reference Guide 



Appendix D, Utilities 

module: bad .obj file, virtual LEDATA with no VlrDef 
This message indicates an error in the debug information in an 
object file. Either the compiler generated a bad object file or the 
object file has been damaged. 

module: bad .obj file, virtual reference with no VlrDef 
This message indicates an error in the debug information in an 
object file. Either the compiler generated a bad object file or the 
object file has been damaged. 

segment: segment exceeds 64K 
This message will occur if too much da ta was defined for a 
given data or code segment, when segments of the same name 
in different source files are combined. 

symbol In module module1 conflicts with module module2 
This error message can result from a conflict between two 
symbols (either public or communal). This usually means that a 
symbol with different attributes is defined in two modules. 

Bad character In parameters 
One of the following characters was encountered in the com
mand line or in a response file: 

"*<=>?[] 
or any control character other than horizontal tab, line feed, 
carriage return, or elr/-Z 

Cannot generate COM file : data below Initial CS:IP defined 
This error results from trying to generate data or code below 
the starting address (usually 100) of a .COM file. Be sure that 
the starting address is set to 100 by using the (ORG 100H) 
instruction. This error message should not occur for programs 
written in a high-level language. If it does, ensure that the 
correct startup (CO) object modules are being linked in. 

Cannot generate COM file: Invalid Initial entry point address 
You used the It option, but the program starting address is not 
equal to 100H, which is required with .COM files. 

Cannot generate COM file : program exceeds 64K 
You used the It option, but the total program size exceeds the 
.COM file limit. 

Cannot generate COM file : segment-relocatable Items present 
You used the It option, but the program contains segment
relative fixups, which are not allowed with .COM files. 

221 



222 

Cannot generate COM file: stack segment present 
You used the It option, but the program declares a stack 
segment, which is not allowed with .COM files. 

Invalid entry point offset 
This message occurs only when modules with 32-bit records 
are linked. It means that the initial program entry point offset 
exceeds the 005 limit of 64K. 

Invalid group definition In module module 
This error can occur if an attempt was made to assign a 
segment to more than one group. It can also result from a 
malformed GRPDEF record in an .OBI file. This latter case 
could result from custom-built .OBI files or a bug in the 
translator used to generate the .OBI file. 

Invalid Initial stack offset 
This message occurs only when modules with 32-bit records 
are linked. It means that the initial stack pointer value exceeds 
the DOS limit of 64K. 

Invalid segment definition In module module 
This message will generally occur only if a compiler produced 
a flawed object file. If this occurs in a file created by Turbo C, 
recompile the file. If the problem persists, contact Borland. 

Invalid switch in parameter block 
This results from a logic error in TLINK or in the integrated 
development environment. 

msdos error, ax = XXXXh 
This occurs if a DOS call returned an unexpected error. The ax 
value printed is the resulting error code. This could indicate a 
TLINK in ternal error or a 005 error. The only 005 calls 
TLINK makes where this error could occur are read, write, 
seek, and close. 

Not enough memory 
There was not enough memory to complete the link process. 
Try removing any terminate-and-stay-resident applications 
currently loaded, or reduce the size of any RAM disk currently 
active. Then run TLINK again. 

Not enough memory to link 
TLINK requires at least 145K free memory in order to run. Try 
to free up some memory by releasing terminate-and-stay
resident programs. 

Turbo Assembler Reference Guide 



Relocation offset overflow In module module 
This error only occurs for 32-bit object modules and indicates a 
relocation (segment fixup) offset greater than the DOS limit of 
64K. 

Relocation table full 
The file being linked contains more base fixups than the stan
dard DOS relocation table can hold (base fixups are created 
mostly by calls to far functions). 

Symbol limit exceeded 
This message results from the linker's internal symbol table 
overflowing. This usually means that the programs being 
linked have exceeded the linker's capacity for public or external 
symbols. 

Table limit exceeded 
This error message results from exceeding some internal 
limitation of TLINK. Try reducing the size of your application 
before retrying a link. Getting this error message usually means 
you've exceeded the linker's capacity for public or external 
symbols. Too many distinct segments can also cause this error 
message. 

32-blt record encountered In module module: use "/3" option 
This message occurs when an object file that contains 80386 32-
bit records is encountered, and the /3 option has not been used. 
Simply restart TLINK with the /3 option. 

Unknown option 
A forward slash character (/) or hyphen (-) was encountered 
on the command line or in a response file without being 
followed by one of the allowed options. 

Write failed, disk full? 
This occurs if TLINK could not write all of the data it 
attempted to write. This is almost certainly caused by the disk 
being full. 

Nonfatal errors TLINK has three nonfatal errors. As mentioned, when a nonfatal 
error occurs, the .EXE and .MAP files are not deleted. These errors 
are treated as fatal errors under the integrated environment. 

Appendix D, Utilities 

Fixup overflow In module module, at segname:xxxxh, target 
= symbol 

This indicates an incorrect data or code reference in an object 
file that TLINK must fix up at link time. 

223 



224 

This message is most often caused by a mismatch of memory 
models. A near call to a function in a different code segment is 
the most likely cause. This error can also result if you generate 
a near call to a data variable or a data reference to a function. In 
either case the symbol named as the target in the error message 
is the referenced variable or function. The reference is in the 
named module, so look in the source file of that module for the 
offending reference. 

If this technique does not identify the cause of the failure, or if 
you are programming in assembly language or a high-level 
language besides Turbo C, there may be other possible causes 
for this message. Even in Turbo C, this message could be 
generated if you are using different segment or group names 
than the default values for a given memory model. 

Out of memory 
This error is a catchall for running into a TLINK limit on 
memory usage. This usually means that too many modules, 
externals, groups, or segments have been defined by the object 
files being linked together. 

Undefined symbol <symbol> In module <module> 
The named symbol is referenced in the given module but is not 
defined anywhere in the set of object files and libraries 
included in the link. Check to make sure the symbol is spelled 
correctly. You will usually see this error from TLINK for Turbo 
C symbols if you did not properly match a symbol's 
declarations of pascal and cdecl type in different source files, 
or if you have omitted the name of an .OBI file your program 
needs. 

Warnings TLINK has five warning messages. 

Warning: symbol defined in module module Is duplicated In 
module module 

The named symbol is defined in each of the named modules. 
This could happen if a given object file is named twice in the 
command line. 

Warning: no stack 
This warning is issued if no stack segment is defined in any of 
the object files or in any of the libraries included in the link. 
This is a normal message for the tiny memory model in Turbo 
C, or for any application program that will be converted to a 
.COM file. For other programs, this indicates an error. 

Turbo Assembler Reference Guide 



TOUCH 

You can use the DOS 
wildcards • and? with 

TOUCH. 

Important! 

Appendix D, Utilities 

Warning: no stub for fixup in module at segment:xxxxh 
This error occurs when the target for a fixup is in an overlay 
segment, but no stub segment is found for the segment. This is 
usually the result of not making public a symbol in an overlay 
that is referenced from the same module. 

Warning: segment segment is in two groups: group1 and group2 
The linker found conflicting claims by the two named groups. 

There are times when you want to force a particular target file to 
be recompiled or rebuilt, even though no changes have been 
made to its sources. One way to do this is to use the TOUCH 
utility. TOUCH changes the date and time of one or more files to 
the current date and time, making it "newer" than the files that 
depend on it. 

You can force MAKE to rebuild a target file by touching one of the 
files that target depends on. To touch a file (or files), type 

touch filename [filename ... ] 

at the DOS prompt. TOUCH will then update the file's creation 
date(s). Once you do this, you can invoke MAKE to rebuild the 
touched target file(s). 

Before you use the TOUCH utility, it's vitally important to set 
your system's internal clock to the proper date and time. If you're 
using an IBM PC, XT, or compatible that doesn't have a battery
powered clock, don't forget to set the time and date using the 
DOS "time" and "date" commands. Failing to do this will keep 
both TOUCH and MAKE from working properly. 

225 



226 Turbo Assembler Reference Guide 



A p p E N D x 

E 

Error messages 
This chapter describes all the messages that Turbo Assembler 
generates. Messages usually appear on the screen, but you can 
redirect them to a file or printer using the standard DOS 
redirection mechanism of putting the device or file name on the 
command line, preceded by the greater than (» symbol. For 
example, 

TASM MYFILE >ERRORS 

Turbo Assembler generates several types of messages: 

• informa tion messages 
• warning messages 
• error messages 
• fatal error messages 

Information messages 

Appendix E, Error messages 

Turbo Assembler displays two information messages: one when it 
starts assembling your source file(s) and another when it has 
finished assembling each file. Here's a sample startup display: 

Turbo Assembler Version 1.00 Copyright (C) 1988 Borland International 
Assembling file: TEST.ASM 

When Turbo Assembler finishes assembling your source file, it 
displays a message that summarizes the assembly process; the 
message looks like this: 

227 



Error messages: None 
Warning messages: None 
Remaining memory: 279k 

You can suppress all information messages by using the fT 
command-line option. This only suppresses the infonnation 
messages if no errors occur during assembly. If there are any 
errors, the fT option has no effect and the normal startup and 
ending messages appear. 

Warning and error messages 

228 

Warning messages let you know that something undesirable may 
have happened while assembling a source statement. This might 
be something such as the Turbo Assembler making an 
assumption that is usually valid, but might not always be correct. 
You should always examine the cause of warning messages to see 
if the generated code is what you wanted. Warning messages 
won't stop Turbo Assembler from generating an object file. These 
messages are displayed using the following fonnat: 

**Warning** filename(line) message 

If the warning occurs while expanding a macro or repeat block, 
the warning message contains additional information, naming the 
macro and the line within it where the warning occurred: 

**Warning** filename(line) macroname(macroline) message 

Error messages, on the other hand, will prohibit Turbo Assembler 
from generating an object file, but assembly will continue to the 
end of the file. Here's a typical error message format: 

**Error** filename(line) message 

If the error occurs while expanding a macro or repeat block, the 
error message contains additional information, naming the macro 
and the line within it where the error occurred: 

**Error** filename (line) macroname(macroline) message 

The following warning and error messages are arranged in 
alphabetical order: 

Turbo Assembler Reference Guide 



Appendix E, Error messages 

Argument needs type override 
The expression needs to have a specific size or type supplied, 
since its size can't be determined from the context. For 
example, 

mov [bx],l 

You can usually correct this error by using the PTR opera tor to 
set the size of the operand: 

mov WORD PTR[bx],l 

, Argument to operation or Instruction has Illegal size 
An operation was attempted on something that could not 
support the required operation. For example, 

Q LABEL QWORD 
QNOT = not Q ican't negate a qword 

Arithmetic overflow 
A loss of arithmetic precision occurred somewhere in the 
expression. For example, 

x = 20000h * 20000h ioverflows 32 bits 

All calculations are performed using 32-bit arithmetic. 

ASSUME must be segment register 
You have used something other than a segment register in an 
ASSUME statement. For example, 

ASSUME ax:CODE 

You can only use segment registers with the ASSUME directive. 

Assuming segment Is 32 bit 
You have started a segment using the SEGMENT directive after 
having enabled 80386 instructions, but you have not specified 
whether this is a 16- or 32-bit segment with either the USE16 or 
USE32 keyword. 

In this case, Turbo Assembler presumes that you want a 32-bit 
segment. Since that type of code segment won't execute 
properly under DOS (without you taking special measures to 
ensure that the 80386 processor is executing instructions in a 
32-bit segment), the warning is issued as USE32. 

You can remove this warning by explicitly specifying USE16 as 
an argument to the SEGMENT directive. 

229 



230 

Bad keyword In SEGMENT statement 
One of the align/combine/use arguments to the SEGMENT 
directive is invalid. For example, 

DATA SEGMENT PAFA PUBLIC iPAFA should be PARA 

Can't add relative quantities 
You have specified an expression that attempts to add together 
two addresses, which is a meaningless operation. For example, 

ABC DB ? 
DEF = ABC + ABC ierror, can't add two relatives 

You can subtract two relative addresses, or you can add a 
constant to a relative address, as in: 

XYZ DB 5 DUP (0) 
XYZEND EQU $ 
XYZLEN = SYZEND - XYZ 
XYZ2 = XYZ + 2 

iperfectly legal 
ilegal also 

Can't address with currently ASSUMEd segment registers 
An expression contains a reference to a variable for which you 
have not specified the segment register needed to reach it. For 
example, 

DSEG SEGMENT 
ASSUME ds:DSEG 
mov si,MPTR 

DSEG ENDS 
XSEG SEGMENT 
MPTR DW ? 
XSEG ENDS 

Can't convert to pointer 

ino segment register to reach XSEG 

Part of the expression could not be converted to a memory 
pointer, for example, by using the PTR operator, 

mov cl, [BYTE PTR al] ican't make AL into pointer 

Can't emulate 8087 instruction 
The Turbo Assembler is set to generate emulated floating-point 
instructions, either via the IE command-line option or by using 
the EMUL directive, but the current instruction can't be 
emulated. For example, 

EMUL 
FNSAVE [WPTR] ican't emulate this 

Turbo Assembler Reference Guide 



Appendix E, Error messages 

The following instructions are not supported by floating-point 
emulators: FN5AVE, FN5TCW, FN5TENV, and FN5T5W. 

Can't make variable public 
The variable is already declared in such a way that it can't be 
made public. For example, 

EXTRN ABC:NEAR 
PUBLIC ABC ;error, already EXTRN 

Can't override E5 segment 
The current statement specifies an override that can't be used 
with that instruction. For example, 

stos DS:BYTE PTR[dij 

Here, the 5T05 instruction can only use the ES register to 
access the destination address. 

Can't subtract dissimilar relative quantities 
An expression subtracts two addresses that can't be subtracted 
from each other, such as when they are each in a different 
segment: 

SEGl SEGMENT 
A: 
SEGl ENDS 
SEG2 SEGMENT 
B: 

mov ax,B-A 
segments 
SEG2 ENDS 

;illegal, A and B in different 

Can't use macro name in expression 
A macro name was encountered as part of an expression. For 
example, 

MyMac MACRO 
ENDM 
mov ax,MyMac ;wrong! 

Can't use this outside macro 
You have used a directive outside a macro definition that can 
only be used inside a macro definition. This includes directives 
like ENDM and EXITM. For example, 

DATA SEGMENT 
ENDM ;error, not inside macro 

231 



232 

Code or data emission to undeclared segment 
A statement that generated code or data is outside of any 
segment declared with the SEGMENT directive. For example, 

;First line of file 
inc bx 
END 

ierror, no segment 

You can only emit code or data from within a segment. 

Constant assumed to mean Immmedlate constant 
This warning appears if you use an expression such as [0], 
which under MASM is interpreted as simply O. For example, 

mov ax[O] imeans mov ax,O NOT mov ax,DS:[O] 

Constant too large 
You have entered a constant value that is properly formatted, 
but is too large. For example, you can only use numbers larger 
than Offffh when you have enabled 80386 instructions with the 
.386 or .386P directive. 

CS not correctly assumed 
A near CALL or JMP instruction can't have as its target an 
address in a different segment. For example, 

SEGl SEGMENT 
LAB 1 LABEL NEAR 
SEGl ENDS 
SEG2 SEGMENT 

jmp LABl ierror, wrong segment 
SEG2 ENDS 

This error only occurs in MASM mode. Ideal mode correctly 
handles this situation. 

CS override In protected mode 
The current instruction requires a CS override, and you are 
assembling instructions for the 286 or 386 in protected mode 
(P286P or P386P directives). For example, 

P286P 
.CODE 

CVAL DW 
mov CVAL, 1 igenerates CS override 

The IP command-line option enables this warning. When 
running in protected mode, instructions with CS overrides 
won't work without you taking special measures. 

Turbo Assembler Reference Guide 



Appendix E, Error messages 

CS unreachable from current segment 
When defining a code label using colon (:), LABEL or PROC, 
the CS register is not assumed to either the current code 
segment or to a group that contains the current code segment. 
For example, 

PROGI SEGMENT 
ASSUME cs:PROG2 

START: ierror, bad CS assume 

This error only occurs in MASM mode. Ideal mode correctly 
handles this situation. 

Declaration needs name 
You have used a directive that needs a symbol name, but none 
has been supplied. For example, 

PROC ierror, PROC needs a name 
ret 

ENDP 

You must always supply a name as part of a SEGMENT, PROC, 
or STRUC declaration. In MASM mode, the name precedes the 
directive; in Ideal mode, the name comes after the directive. 

Directive Ignored in Turbo Pascal model 
You have tried to use one of the directives that can't be used 
when writing an assembler module to interface with Turbo 
Pascal. Read about the .MODEL directive that specifies Turbo 
Pascal in Chapter 3 of this manual. Refer to Chapter 8 of the 
User's Guide for information about interfacing to Turbo Pascal. 

Directive not allowed Inside structure definition 
You have used a directive inside a STRUC definition block that 
can't be used there. For example, 

x STRUC 
MEMI DB ? 

ORG $+4 
MEM2 DW ? 
ENDS 

ierror, can't use ORG inside STRUC 

Also, when declaring nested structures, you cannot give a 
name to any that are nested. For example, 

FOO STRUC 

ENDS 

F002 STRUC 
ENDS 

ican't name inside 

233 



234 

If you want to use a named structure inside another structure, 
you must first define the structure and then use that structure 
name inside the second structure. 

Duplicate dummy argument: _ 
A macro defined with the MACRO directive has more than one 
dummy parameter with the same name. For example, 

XYZ MACRO A, A 
DB A 
ENDM 

ierror, duplicate dummy name 

Each dummy parameter in a macro definition must have a 
different name. 

ELSE or ENDIF without IF 
An ELSE or ENDIF directive has no matching IF directive to 
start a conditional assembly block. For example, 

BUF DB 10 DUP (?) 
ENDIF 

Expecting offset quantity 

ierror, no matching IFxxx 

An expression expected an operand that referred to an offset 
within a segment, but did not encounter the right sort of 
operand. For example, 

CODE SEGMENT 
mov ax, LOW CODE 

CODE ENDS 

Expecting offset or pointer quantity 
An expression expected an operand that referred to an offset 
within a specific segment, but did not encounter the right sort 
of operand. For example, 

CODE SEGMENT 
mov ax,SEG CODE ierror, code is a segment not 

i a location within a segment 
CODE ENDS 

Expecting pointer type 
The current instruction expected an operand that referenced 
memory. For example, 

les di,4 ino good, 4 is a constant 

Expecting scalar type 
An instruction operand or operator expects a constant value. 
For example, 

Turbo Assembler Reference Guide 



Appendix E Error messages 

BB DB 
rol ax,BB iROL needs constant 

Expecting segment or group quantity 
A statement required a segment or group name, but did not 
find one. For example, 

DATA SEGMENT 
ASSUME ds:FOO ierror, Faa is not group or segment name 

Faa DW 0 
DATA ENDS 

Extra characters on line 
A valid expression was encountered, but there are still 
characters left on the line. For example, 

ABC = 4 shl 3 3 imissing operator between 3 and 3 

This error often happens in conjunction with another error that 
caused the expression parser to lose track of what you intended 
to do. 

Forward reference needs override 
An expression containing a forward-referenced variable 
resulted in more code being required than Turbo Assembler 
anticipated. This can happen either when the variable is 
unexpectedly a far address for a JMP or CALL or when the 
variable requires a segment override in order to access it. For 
example, 

ASSUME cs:DATA 
call A 

A PROC FAR 
mov ax,MEMVAR 

DATA SEGMENT 
MEMVAR DW ? 

ipresume near call 
JOOPS, it's far 
jdoesn't know it needs override 

iOOpS, needs override 

Correct this by explicitly supplying the segment override or 
FAR override. 

Global type doesn't match symbol type 
This warning is given when a symbol is declared using the 
GLOBAL statement and is also defined in the same module, but 
the type specified in the GLOBAL and the actual type of the 
symbol don't agree. 

10 not member of structure 

235 



236 

In Ideal mode, you have specified a symbol that is not a 
structure member name after the period (.) structure member 
operator. For example, 

IDEAL 
STRUC DEMO 

DB ? 
ENDS 
COUNT DW 0 

mov ax, [(DEMO bxl .COUNT] ;COUNT not part of structure 

You must follow the period with the name of a member that 
belongs to the structure name that precedes the period. 

This error often happens in conjunction with another error that 
caused the expression parser to lose track of what you intended 
to do. 

Illegal forward reference 
A symbol has been referred to that has not yet been defined, 
and a directive or operator requires that its argument not be 
forward -referenced. For example, 

IF MYSYM 

ENDIF 
MYSYM EQU 1 

;error, MYSYM not defined yet 

Forward references may not be used in the argument to any of 
the IFxxx directives, nor as the count in a CUP expression. 

lIIegallmmeciiate 
An instruction has an immediate (constant) operand where one 
is not allowed. For example, 

mov 4,al 

Illegal Indexing mode 
An instruction has an operand that specifies an illegal 
combination of registers. For example, 

mov aI, [sitax] 

On all processors except the 80386, the only valid combinations 
of index registers are: BX, BP, 51, DI, BX+5I, BX+DI, BP+5I, 
BP+DI. 

Illegal Instruction 
A source line starts with a symbol that is neither one of the 
known directives nor a valid instruction mnemonic. 

Turbo Assembler Reference Guide 



move ax,4 ishould be "IDV" 

Illegal Instruction for currently selected processor(s) 
A source line specifies an instruction that can't be assembled 
for the current processor. For example, 

.8086 
push 1234h ino immediate push on 8086 

When Turbo Assembler first starts assembling a source file, it 
generates instructions for the 8086 processor, unless told to do 
otherwise. 

If you wish to use the extended instruction mnemonics 
available on the 186/286/386 processors, you must use one of 
the directives that enables those instructions (P186, P286, 
P386). 

Illegal local argument 
The LOCAL directive inside a macro definition has an 
argument that is not a valid symbol name. For example, 

x MACRO 
LOCAL 123 inot a symbol 
ENDM 

Illegal local symbol prefix 
The argument to the LOCALS directive specifies an invalid 
start for local symbols. For example, 

LOCALS XYZ ierror, not 2 characters 

The local symbol prefix must be exactly two characters that 
themselves are a valid symbol name, such as _oJ 00, and so on 
(the default is @@). 

Illegal macro argument 
A macro defined with the MACRO directive has a dummy 
argument that is not a valid symbol name. For example, 

X MACRO 123 
ENDM 

Illegal memory reference 

iinvalid dummy argument 

An instruction has an operand that refers to a memory location, 
but a memory location is not allowed for that operand. For 
example, 

mov [bx),BYTE PTR A ierror, can't move from MEM to MEM 

Appendix E, Error messages 237 



238 

Here, both operands refer to a memory location, which is not a 
legal form of the MOV instruction. On the 80x86 family of 
processors, only one of the operands to an instruction can refer 
to a memory location. 

Illegal number 
A number contains one or more characters that are not valid 
for that type of number. For example, 

Z = OABCGh 

Here, G is not a valid letter in a hexadecimal number. 

Illegal origin address 
You have entered an invalid address to set the current segment 
location ($). You can enter either a constant or an expression 
using the location counter ($), or a symbol in the current 
segment. 

Illegal override In structure 
You have attempted to initialize a structure member that was 
defined using the DUP operator. You can only initialize 
structure members that were declared without DUP. 

Illegal override register 
A register other than a segment register (C5, D5, E5, 55, and on 
the 80386, FS and G5) was used as a segment override, 
preceding the colon (:) operator. For example, 

mov dx:XYZ,l iDX not a segment register 

Illegal radix 
The number supplied to the .RADIX directive that sets the 
default number radix is invalid. For example, 

.RADIX 7 ino good 

The radix can only be set to one of 2,8, 10, or 16. The number is 
interpreted as decimal no matter what the current default radix 
is. 

Illegal register multiplier 
You have attempted to multiply a register by a value, which is 
not a legal operation; for example, 

movax*3,1 

The only context where you can multiply a register by a 
constant expression is when specifying a scaled index operand 
on the 80386 processor. 

Turbo Assembler Reference Guide 



Appendix E, Error messages 

Illegal segment address 
This error appears if an address greater than 65,535 is specified 
as a constant segment address; for example, 

Faa SEGMENT AT 12345h 

Illegal use of constant 
A constant appears as part of an expression where constants 
can't be used. For example, 

rnov bx+4,S 

Illegal use of register 
A register name appeared in an expression where it can't be 
used. For example, 

x = 4 shl ax ican't use register with SHL operator 

Illegal use of segment register 
A segment register name appears as part of an instru.ction or 
expression where segment registers cannot be used. For 
example, 

add SS,4 iADD can't use segment regs 

Illegal USES register 
You have entered an invalid register to push and pop as part of 
entering and leaving a procedure. The valid registers follow: 

AX ex D5 E5 
BX D1 DX 51 

!fyou have enable the 80386 processor with the .386 or .386P 
directive, you can use the 32-bit equivalents for these registers. 

Illegal warning 10 
You have entered an invalid three-character warning identifier. 
See the options discussed in Chapter 3 of the User's Guide for a 
complete list of the allowed warning identifiers. 

Instruction can be compacted with override 
The code generated contains NOP padding, due to some 
forward -referenced symbol. You can either remove the forward 
reference or explicitly provide the type in forma tion as part of 
the expression. For example, 

jrnp X iwarning here 
jmp SHORT X ino warning 

X: 

239 



Invalid model type 
The model directive has an invalid memory model keyword. 
For example, 

.MODEL GIGANTIC 

Valid memory models are tiny, small, compact, medium, large, 
and huge. 

Invalid operand(s) to Instruction 
The instruction has a combination of operands that are not 
permitted. For example, 

fadd ST(2),ST(3) 

Here, FAD D can only refer to one stack register by name; the 
other must be the stack top. 

Labels can't start with numeric characters 
You have entered a symbol that is neither a valid number nor a 
valid symbol name, such as 123XYZ. 

Line too long-truncating 
The current line in the source file is longer than 255 characters. 
The excess characters will be ignored. 

Location counter overflow 
The current segment has filled up, and subsequent code or data 
will overwrite the beginning of the segment. For example, 

ORG OFFFOh 
ARRAY DW 20 DUP (0) ; overflow 

Missing argument list 
An IRP or IRPC repeat block directive does not have an 
argument to substitute for the dummy parameter. For example, 

IRP X ;no argument list 
DB X 

ENDM 

IRP and IRPC must always have both a dummy parameter and 
an argument list. 

Missing argument or < 
You forgot the angle brackets or the entire expression in an 
expression that requires them. For example, 

ifb ineeds an argument in <>5 

240 Turbo Assembler Reference Guide 



Appendix E, Error messages 

Missing argument size variable 
An ARG or LOCAL directive does not have a symbol name 
following the optional = at the end of the statement. For 
example, 

ARG A:WORD,B:DWORD= 
LOCAL X:TBYTE= 

ierror, no name after = 

isame error here 

ARG and LOCAL must always have a symbol name if you have 
used the optional equal sign (=) to indicate that you want to 
define a size variable. 

Missing COMM 10 
A COMM directive does not have a symbol name before the 
type specifier. For example, 

COMM NEAR ierror, no symbol name before "NEAR" 

COMM must always have a symbol name before the type 
specifier, followed by a colon (:) and then the type specifier. 

Missing dummy argument 
An IRP or IRPC repeat block directive does not have a dummy 
parameter. For example, 

RP 
DB X 

ENDM 

ino dummy parameter 

IRP and IRPC must always have both a dummy parameter and 
an argument list. 

Missing end quote 
A string or character constant did not end with a quote 
character. For example, 

DB "abc 
mov al,'X 

imissing II at end of ABC 
imissing , after X 

You should always end a character or string constant with a 
quote character matching the one that started it. 

Missing macro 10 
A macro defined w~th the MACRO directive has not been given 
a name. For example, 

MACRO 
DB A 
ENDM 

ierror, no name 

Macros must always be given a name when they are defined. 

241 



242 

Missing module name 
You have used the NAME directive but you haven't supplied a 
module name after the directive. Remember that the NAME 
directive only has an effect in Ideal mode. 

Missing or Illegal language 10 
You have entered something other than one of the allowed 
language identifiers after the .MODEL directive. See Chapter 3 
of this book for a complete description of the .MODEL directive. 

Missing or Illegal type specifier 
A statement that needed a type specifier (like BYTE, WORD, 
and so on) did not find one where expected. For example, 

RED LABEL XXX ierror, "XXX" is not a type specifier 

Missing term In list 
In Ideal mode, a directive that can accept multiple arguments 
(EXTRN, PUBLIC, and so on) separated by commas does not 
have an argument after one of the commas in the list. For 
example, 

EXTRN XXX:BYTE"yyy:wORD 

In Ideal mode, all argument lists must have their elements 
separated by precisely one comma, with no comma at the end 
of the list. 

Missing text macro 
You have not supplied a text macro argument to a directive 
that requires one. For example, 

NEWSTR SUBSTR iERROR - SUBSTR NEEDS ARGUMENTS 

Model must be specified first 
You used one of the simplified segmentation directives without 
first specifying a memory model. For example, 

.CODE ierror, no .MODEL first 

You must always specify a memory model using the .MODEL 
directive before using any of the other simplified segmentation 
directives. 

Module Is pass-dependent--compatlblllty pass was done 
This warning occurs if a pass-dependent construction was 
encountered and the 1m command-line switch was specified. A 
MASM-compatible pass was done. 

Turbo Assembler Reference Guide 



Appendix E, Error messages 

name must come first 
You put a symbol name after a directive, and the symbol name 
should come first. For example, 

STRUC ABC ierror, ABC must come before STRUC 

Since Ideal mode expects the name to come after the directive, 
you will encounter this error if you try to assemble Ideal mode 
programs in MASM mode. 

Near jump or call to different CS 
This error occurs if the user attempts to perform a NEAR CALL 
or JMP to a symbol that's defined in an area where CS is 
assumed to a different segment. 

Need address or register 
An instruction does not have a second operand supplied, even 
though there is a comma present to separate two operands; for 
example, 

mov ax, ino second operand 

Need angle brackets for structure fill 
A statement that allocates storage for a structure does not 
specify an initializer list. For example, 

STRI STRUC 
Ml DW 
M2 DD 

ENDS 
STRI ino initializer list 

Need colon 
An EXTRN, GLOBAL, ARG, or LOCAL statement is missing the 
colon after the type specifier (BYTE, WORD, and so on). For 
example, 

EXTRN X BYTE,Y:WORD iX has no colon 

Need expression 
An expression has an operator that is missing an operand. For 
example, 

x = 4 + * 6 

Need file name after INCLUDE 
An INCLUDE directive did not have a file name after it. For 
example, 

INCLUDE iinclude what? 

243 



244 

In Ideal mode, the file name must be enclosed in quotes. 

Need left parenthesis 
A left parenthesis was omitted that is required in the 
expression syntax. For example, 

DB 4 DUP 7 

You must always enclose the expression after the DUP operator 
in parentheses. 

Need pointer expression 
This error only occurs in Ideal mode and indicates that the 
expression between brackets ([]) does not evaluate to a 
memory pointer. For example, 

mov ax, [WORD PTR] 

In Ideal mode, you must always supply a memory-referencing 
expression between the brackets. 

Need quoted string 
You have entered something other than a string of characters 
between quotes where it is required. In Ideal mode, several 
directives require their argument to be a quoted string. For 
example, 

IDEAL 
DISPLAY "ALL DONE" 

Need register In expression 
You have entered an expression that does not contain a register 
name where one is required. 

Need right angle bracket 
An expression that initializes a structure, union, or record does 
not end with a> to match the < that started the initializer list. 
For example, 

MYSTRUC STRUCNAME <1,2,3 

Need right parenthesis 
An expression contains a left parenthesis, but no matching 
right parenthesis. For example, 

x = 5 * (4 + 3 

You must always use left and right parentheses in matching 
pairs. 

Turbo Assembler Reference Guide 



Appendix E, Error messages 

Need right square bracket 
An expression that references a memory location does not end 
with a] to match the [that started the expression. For example, 

mov ax, lsi ierror, no closing ] after SI 

You must always use square brackets in matching pairs. 

Need stack argument 
A floating-point instruction does not have a second operand 
supplied, even though there is a comma present to separate 
two operands. For example, 

fadd ST, 

Need structure member name 
In Ideal mode, the period (.) structure member operator was 
followed by something that was not a structure member name. 
For example, 

IDEAL 
STRUC DEMO 

DB 
ENDS 
COUNT DW 0 

mov ax, [(DEMO bx).] 

You must always follow the period operator with the name of a 
member in the structure to its left. 

Not expecting group or segment quantity 
You have used a group or segment name where it can't be 
used. For example, 

CODE SEGMENT 
rol ax, CODE ierror, can't use segment name here 

One non-null field allowed per union expansion 
When initializing a union defined with the UNION directive, 
more than one value· was supplied. For example, 

U UNION 

ENDS 

DW ? 
DD ? 

UINST U <1,2> ierror, should be <?,2> or <1,?> 

A union can only be initialized to one value. 

Only one startup sequence allowed 

245 



246 

This error appears if you have more than one .STARTUP or 
STARTUPCODE statement in a module. 

Open conditional 
The end of the source file has been reached as defined with the 
END directive, but a conditional assembly block started with 
one of the IFxxx directives has not been ended with the ENDIF 
directive. For example, 

IF BIGBUF 
END ;no ENDIF before END 

This usually happens when you type END instead of ENDIF to 
end a conditional block. 

Open procedure 
The end of the source file has been reached as defined with the 
END directive, but a procedure block started with the PROC 
directive has not been ended with the ENDP directive. For 
example, 

MYFUNC PROC 
END ;no ENDIF before ENDP 

This usually happens when you type END instead of ENDP to 
end a procedure block. 

Open segment 
The end of the source file has been reached as defined with the 
END directive, but a segment started with the SEGMENT 
directive has not been ended with the ENDS directive. For 
example, 

DATA SEGMENT 
END ;no ENDS before END 

This usually happens when you type END instead of ENDS to 
end a segment. 

Open structure definition 
The end of the source file has been reached as defined with the 
END directive, but a structure started with the STRUC directive 
has not been ended with the ENDS directive. For example, 

X STRUC 
VALl OW ? 

END ;no ENDS before it 

This usually happens when you type END instead of ENDS to 
end a structure definition. 

Turbo Assembler Reference Guide 



Appendix E, Error messages 

Operand types do not match 
The size of an instruction operand does not match either the 
other operand or one valid for the instruction; for example, 

ABC DB 5 

mov ax,ABC 

Pass-dependent construction encountered 
The statement may not behave as you expect, due to the one
pass nature of Turbo Assembler. For example, 

IF! 

ENDIF 
IF2 

ENDIF 

iHappens on assembly pass 

iHappens on listing pass 

Most constructs that generate this error can be re-coded to 
avoid it, often by removing forward references. 

Pointer expression needs brackets 
In Ideal mode, the operand contained a memory-referencing 
symbol that was not surrounded by brackets to indicate that it 
references a memory location. For example, 

B DB 0 
mov al,B iwarning, Ideal mode needs [B) 

Since MASM mode does not require the brackets, this is only a 
warning. 

Positive count expected 
A CUP expression has a repeat count less than zero. For 
example, 

BUF -1 DUP (?) ierror, count < 0 

The count preceding a DUP must always be lor greater. 

Record field too large 
When you defined a record, the sum total of all the field widths 
exceeded 32 bits. For example, 

AREC RECORD RANGE:12,TOP:12,BOTTOM:12 

Recursive definition not allowed for EQU 
An EQU definition contained the same name that you are 
defining within the definition itself. For example, 

247 



248 

ABC EQU TWOTIMES ABC 

Register must be AL or AX 
An instruction which requires one operand to be the AL or AX 
register has been given an invalid operand. For example, 

IN CL,dx ;error, "IN" must be to AL or AX 

Register must be OX 
An instruction which requires one operand to be the DX 
register has been given an invalid operand. For example, 

IN AL,cx ;error, must be DX register instead of CX 

Relative jump out of range by _ bytes 
A conditional jump tried to reference an address that was 
greater than 128 bytes before or 127 bytes after the current 
location. If this is in a USE32 segment, the conditional jump can 
reference between 32,768 bytes before and 32,767 bytes after the 
current location. 

Relative quantity Illegal 
An instruction or directive has an operand that refers to a 
memory address in a way that can't be known at assembly 
time, and this is not allowed. For example, 

DATA SEGMENT PUBLIC 
X DB 0 

IF OFFSET X GT 127 ;not known at assemble time 

Reserved word used as symbol 
You have created a symbol name in your program that Turbo 
Assembler reserves for its own use. Your program will 
assemble properly, but it is good practice not to use reserved 
words for your own symbol names. 

Rotate count must be constant or CL 
A shift or rotate instruction has been given an operand that is 
neither a constant nor the CL register. For example, 

rol ax,DL ;error, can't use DL as count 

You can only use a constant value or the CL register as the 
second operand to a rotate or shift instruction. 

Rotate count out of range 
A shift or rotate instruction has been given a second operand 
that is too large. For example, 

Turbo Assembler Reference Guide 



Appendix E, Error messages 

.8086 
shl DL,3 
.286 
ror ax,40 

ierror, 8086 can only shift by 1 

ierror, max shift is 31 

The 8086 processor only allows a shift count of 1, but the other 
processors allow a shift count up to 31. 

Segment alignment not strict enough 
The align boundary value supplied is invalid. Either it is not a 
power of 2, or it specifies an alignment stricter than that of the 
align type in the SEGMENT directive. For example, 

DATA SEGMENT PARA 
ALIGN 32 
ALIGN 3 

jerror, PARA is only 16 
ierror, not power of 2 

Segment attributes Illegally redefined 
A SEGMENT directive re-opens a segment that has been 
previously defined, and tries to give it different attributes. For 
example, 

DATA SEGMENT BYTE PUBLIC 
DATA ENDS 
DATA SEGMENT PARA ierror, previously had byte alignment 
DATA ENDS 

If you re-open a segment, the attributes you supply must either 
match exactly or be omitted entirely. If you don't supply any 
attributes when re-opening a segment, the old attributes will be 
used. 

Segment name Is superfluous 
This warning appears with a .CODE xxx statement, where the 
model specified doesn't allow more than code segment. 

Smart code generation must be enabled 
Certain special features of code generation require SMART 
code generation to be enabled. These include PUSH of a 
pointer, POP of a pointer, and PUSH of a constant (8086 only). 

String too long 
You have built a quoted string that is longer than the 
maximum allowed length of 255. 

Symbol already defined: _ 
The indicated symbol has previously been declared with the 
same type. For example, 

249 



250 

BB DB 1,2,3 
BB DB ? ;error, BB already defined 

Symbol already different kind 
The indicated symbol has already been declared before with a 
different type. For example, 

BB DB 1,2,3 
BB DW ? ierror, BB already a byte 

Symbol has no width or mask 
The operand of a WIDTH or MASK operator is not the name of a 
record or record field. For example, 

B DB 0 

mov ax, MASK B ;B is not a record field 

Symbol Is not a segment or already part of a group 
The symbol has either already been placed in a group or it is 
not a segment name. For example, 

DATA SEGMENT 
DATA ENDS 
DGROUP GROUP DATA 
DGROUP2 GROUP DATA ;error, DATA already belongs to DGROUP 

Text macro expansion exceeds maximum line length 
This error occurs when expansion of a text macro causes the 
maximum allowable line length to be exceeded. 

Too few operands to Instruction 
The instruction statement requires more operands than were 
supplied. For example, 

add ax ;missing second arg 

Too many errors or warnings 
No mor~ error messages will be displayed. The maximum 
number of errors that will be displayed is 100; this number has 
been exceeded. Turbo Assembler continues to assemble and 
prints warnings rather than error messages. 

Too many Initial values 
You have supplied too many values in a structure or union 
initialization. For example, 

XYZ STRUC 
A1 DB ? 
A2 DD ? 
XYZ ENDS 

Turbo Assembler Reference Guide 



Appendix E, Error messages 

ANXYZ XYZ <1,2,3> ierror, only 2 members in XYZ 

You can supply fewer initializers than there are members in a 
structure or union, but never more. 

Too many register multipliers In expression 
An 80386 scaled index operand had a scale factor on more than 
one register. For example, 

mov EAX, [2*EBX+4*EDX) itoo many scales 

Too many registers In expression 
The expression has more than one index and one base register. 
For example, 

mov ax, [BP+S1+D1) jcan't have S1 and D1 

Too many USES registers 
You specified more than 8 USES registers for the current 
procedure. 

Trailing null value assumed 
A data statement like DB, OW, and so on, ends with a comma. 
TASM treats this as a null value. For example, 

db 'hello' ,13,10 isarne as •.• ,13,10? 

Undefined symbol 
The statement contains a symbol that wasn't defined anywhere 
in the source file. 

Unexpected end of file (no END directive) 
The source file does not have an END directive as its last 
statement. 

All source files must have an END statement. 

Unknown character 
The current source line contains a character that is not part of 
the set of characters that make up Turbo Assembler symbol 
names or expressions. For example, 

add ax,!1 jerror, exclamation is illegal character 

Unmatched ENDP: 
The ENDP directive has a name that does not match the PROC 
directive that opened the procedure block. For example, 

ABC PROC 
XYZ ENDP jerror, XYZ should be ABC 

251 



Unmatched ENDS: 
The ENDS directive has a name that does not match either the 
SEGMENT directive that opened a segment or the STRUC or 
UNION directive that started a structure or union definition. For 
example, 

ABC STRUC 
XYZ ENDS 
DATA SEGMENT 
CODE ENDS 

;error, XYZ should be ABC 

;error, code should be DATA 

USE32 not allowed without .386 
You have attempted to define a 32-bit segment, but you have 
not specified the 80386 processor first. You can only define 32-
bit segments after you have used the .386 or .386P directives to 
set the processor to be 80386. 

User-generated error 
An error has been forced by one of the directives, which then 
forces an error. For example, 

. ERR ;shouldn't get here 

USES has no effect without language 
This warning appears if you specify a USES statement when no 
language is in effect. 

Value out of range 
The constant is a valid number, but it is too large to be used 
where it appears. For example, 

DB 400 

Fatal error messages 

252 

Fatal error messages cause Turbo Assembler to immediately stop 
assembling your file. Whatever caused the error prohibited the 
assembler from being able to continue. Here's a list of possible 
fatal error messages. 

Bad switch 
You have used an invalid command-line option. See Chapter 3 
of the User's Guide for a description of the command-line 
options. 

Turbo Assembler Reference Guide 



Appendix E, Error messages 

Can't find @file _ 
You have specified an indirect command file name that does 
not exist. Make sure that you supply the complete file name. 
Turbo Assembler does not presume any default extension for 
the file name. You've probably run out of space on the disk 
where you asked the cross-reference file to be written. 

Can't locate file 
You have specified a file name with the INCLUDE directive 
that can't be found. Read about the INCLUDE directive in 
Chapter 3 in this book to learn where Turbo Assembler 
searches for included files. 

An INCLUDE file could not be located. Make sure that the 
name contains any necessary disk letter or directory path. 

Error writing to listing file 
You've probably run out of space on the disk where you asked 
the listing file to be written. 

Error writing to object file 
You've probably run out of space on the disk where you asked 
the object file to be written. 

File not found 
The source file name you specified on the command line does 
not exist. Make sure you typed the name correctly, and that 
you included any necessary drive or path information if the file 
is not in the current directory. 

File was changed or deleted while assembly In progress 
Another program, such as a pop-up utility, has changed or 
deleted the file after TurbO Assembler opened it. Turbo 
Assembler can't re-open a file that was previously opened 
successfully. 

Insufficient memory to process command line 
You have specified a command line that is either longer than 
64K or can't be expanded in the available memory. Either 
simplify the command line or run Turbo Assembler with more 
memory free. 

Internal error 
This message should never happen during normal operation of 
Turbo Assembler. Save the file(s) that caused the error and 
report it to Borland's Technical Support department. 

Invalid command line 

253 



254 

The command line that you used to start Turbo Assembler is 
badly formed. For example, 

TASM ,MYFILE 

does not specify a source file to assemble. See Chapter 3 of the 
User's Guide for a complete description of the Turbo Assembler 
command line. 

Invalid number after 
You have specified a valid command-line switch (option), but 
have not supplied a valid numeric argument following the 
switch. See Chapter 3 of the User's Guide for a discussion of the 
command-line options. 

Maximum macro expansion size exceeded 
A macro expanded into more text than would fit in the macro 
expansion area. Since this area is up to 64 Kb long, you will 
usually only see this message if you have a macro with a bug in 
it, causing it to expand indefinitely. 

Out of hash space 
The hash space has one entry for each symbol you define in 
your program. It starts out allowing 16,384 symbols to be 
defined, as long as Turbo Assembler is running with enough 
free memory. If your program has more than this many 
symbols, use the IKH command-line option to set the number of 
symbol entries you need in the hash table. 

Out of memory 
You don't have enough free memory for Turbo Assembler to 
assemble your file. 

If you have any TSR (RAM-resident) programs installed, you 
can try removing them from memory and try assembling your 
file again. You may have to reboot your system in order for 
memory to be properly freed. 

Another solution is to split the source file into two or more 
source files, or rewrite portions of it so that it requires less 
memory to assemble. You can also use shorter symbol names, 
reduce the number of comments in macros, and reduce the 
number of forward references in your program. 

Out of string space 
You don't have enough free memory for symbol names, file 
names, forward-reference tracking information, and macro 
text. You can use the IKS command-line option to allocate more 

Turbo Assembler Reference Guide 



Appendix E, Error messages 

memory to the string space. Normally, half of the free memory 
is assigned for use as string space. 

Too many errors found 
Turbo Assembler has stopped assembling your file because it 
contained so many errors. You may have made a few errors 
that have snowballed. For example, failing to define a symbol 
that you use on many lines is really a single error (failing to 
define the symbol), but you will get an error message for each 
line that referred to the symbol. 

Turbo Assembler will stop assembling your file if it encounters 
a total of 100 errors or warnings. 

Unexpected end of file (no END directive) 
Your source file ended without a line containing the END 
directive. All source files must end with an END directive. 

255 



256 Turbo Assembler Reference Guide 



80287 coprocessor 
.287 directive 52, 124 

80387 coprocessor 
.387 directive 53, 125 

.8086 directive 54 

.8087 directive 54 
80186 processor 

.186 directive 51, 123 
80286 processor 

N 

.286 directive 51, 123, 124 

.286C directive 51 

.286P directive 52 
80386 processor 

.386 directive 52, 124 

.386C directive 53 

.386P directive 53, 124, 125 
32-bit code 219 
arithmetic operations 13 
Ideal vs. MASM mode 170 

8087 coprocessor 
.8087 directive 54, 125 
emulating 118 

.186 directive 51 

.286 directive 51 

.287 directive 52 

.386 directive 52 

.387 directive 53 
8086 processor 

.8086 directive 54, 125 
- + and + - (TUB action symbols) 209 
<> (angle brackets) operator 

within macros 45 
$* (base file name macro) 194 
.286C directive 51 
.386C directive 53 
$. (file name and extension macro) 195 
$& (file name only macro) 195 
$: (file-name path macro) 195 
$< (full file name macro) 195 

Index 

D E 

-? MAKE help option 177 
.286P directive 52 
.386P directive 53 
[ ] operator 20 
/3 TUNK option 219 
-* and *- (TUB action symbol) 209 
+ (binary) operator 16 
- (binary) operator 17 
: (colon) directive 55 
: (colon) operator 19 

local symbols and 109 

x 

- (hyphen) MAKE command (ignore exit status) 
182 

# (MAKE comment character) 181 
&& operator 

MAKE 182, 183 
o operator 15 
« operator 

MAKE 182 
» operator 

MAKE 182 
;; operator, within macros 46 
. (period) character 

Ideal vs. MASM mode 153 
. (period) operator 18 
* (TLIB action symbol) 209 
+ (TLIB action symbol) 209 
- (TUB action symbol) 209 
+ (unary) operator 16 
- (unary) operator 17 
_ character, Turbo C and 113 
= directive 55 

Ideal vs. MASM mode 162 
@ MAKE command 182 
* operator 16 
/ operator 18 
? operator 19 
! operator, within macros 45 
& operator, within macros 44 

257 



% sign 
directives 50 
within macros 46 

@-sign 
local symbols and 109 

$ symbol 6 
-D MAKE option 192 

conditional execution and 198 
/m command-line option 160 
/m option 81,96, 97, 104 
/ml option, case sensitivity 5 

A 
-a (autodependency check) MAKE option 177 
-a MAKE option 188 
ACBP field 216 
add rrUB action symbol) 209 
addition, operator 16, 20 
alias values 5 
ALIGN directive 56 

Ideal vs. MASM mode 162 
alignment 

attribute 216 
.ALPHA directive 57 
AND operator 21 
angle brackets, within macros 45 
ARC directive 57 

BYrE type and 58 
Turbo Debugger and 58, 129 

arithmetic operations 13 
Ideal vs. MASM mode 163 

assembling 
conditional 75 

directives 96-101 
ENDIF directive 77 
error messages 80 
EXITM directive 89 
listing files 106 

ASSUME directive 59 
attributes 

ACBP 216 
alignment 216 
big 216 
combining 216 

.AUTODEPEND MAKE directive 196 
autodependencies 

MAKE option 196 

258 

automatic dependency checking 
MAKE (program manager) 188 

B 
-B MAKE option (build all) 177 
base file name macro (MAKE) 194 
Basic Input/Output System See BIOS 
batch files 

MAKE 183, 184 
big attribute 216 
%BIN directive 60 
bit fields, directive 133 
bit masks 29 
bitwise complement operator 31 
bitwise OR operator 32 
brackets operator 20 
BUILTINS.MAK 176 

defined 175 
BYrE operator 21 
BYrE type, ARC directive and 58 
bytes, DB directive 69 

c 
C, linking to 113 
/C TLIB option (case sensitivity) 207, 211 
/ c TLINK option (case sensitivity) 217 
CALL instruction 

Ideal vs. MASM mode 169 
case sensitivity 

string comparisons 83, 84 
TLIB option 207, 211 
TLINK and 217 

CATSTR directive 60, 111 
characters 

displaying 123 
literal 45 
quoted 45 

@code symbol 7 
.CODE directive 61 
code segment, directive 61,62 
CODEPTR operator 21 
CODE SEC directive 62 
@CodeSize symbol 7 
colon directive 55 
colon operator 19 

local symbols and 109 

Turbo Assembler Reference Guide 



.COM files 
generating 

TLINK 218 
limitations 218 
size 218 

combining attribute 216 
COMM directive 62 

Ideal vs. MASM mode 168 
command-line compiler 

MAKE and 196, 197 
options 

-v (debugging information) 217 
debugging information (-v) 217 

command-line syntax 
Ideal vs. MASM mode 167 

commands 
printing 

MAKE option 196 
COMMENT directive 63 
comments 63 

in makefiles 181 
suppressing 46 

comparisons, case sensitivity and 83,84 
compatibility with other assemblers 57, 

159-165, See also MASM compatibility 
compiler options See individual listings 
conditional 

jumps 104, 118, 168, See jumps, conditional 
conditional assembly 

ELSE directive 75 
ENDIF directive 77 
error messages 80 
EXITM directive 89 
false conditionals 116, 138 
IFl directive 96 
IF2 directive 97 
IFB directive 98 
IFDEF directive 98 
IFDIF directive 99 
IFE directive 99 
IFIDN directive 100 
IFNB directive 100 
IFNDEF directive 101 
listing files 106, 116, 138, 143 
macros 99, 100 
screen display 123 

conditional execution directives 180 

Index 

conditional execution directives (MAKE) 198 
expressions in 199 

%CONDS directive 64 
.CONSf directive 64 
CONST directive 65 
constants 

integer 133 
segments, Ideal vs. MASM 169 

@Cpu symbol 7 
CREF 117, 149 
%CREF directive 65 
.CREF directive 65 
%CREFALL directive 65 
%CREFREF directive 66 
%CREFUREF directive 66 

cross-reference 
disabling 117 
in listing files 65, 117, 149 

un referenced symbols 66 
cross-reference utility See OBJXREF utility; 

TCREF utility 
CS register, .CODE directive and 61 
%CTLS directive 67 
@curseg symbol 8 

D 
$d MAKE macro (defined test) 194 

expressions and 201 
-D MAKE option (define identifier) 177 
/ d TLINK option (duplicate symbols) 217 
data 

allocating 19, 22, 28 
segment 

directives 64, 65, 67-68 
EVENDAT A directive 89 
uninitialized 145 

size 
DQ directive 73 
DT directive 74 
SIZE operator 37 

structures See structures 
types, UNKNOWN 41 
uninitialized 68 

.DATA? directive 68 

.DATA directive 67 
@data symbol 9 
DATAPfR operator 22 

259 



DATASEG directive 68 
@DataSize symbol 9, 112 
date 9 
??date symbol 9 
DB directive 69 
DD directive 69 

Turbo Debugger and 69 
debugging 

ARG directive and 58 
DD directive and 69 
DF directive and 71 
DW directive and 74 
information 217 
LOCAL directive and 108 
MAKE 177 
map files 215 
PROC directive and 129 
TLINK and 218 

defined test macro (MAKE) 194 
dependency checking 

MAKE (program manager) 188 
%DEPfH directive 70 
DF directive 71 
directives 49-149, 180, See also individual 

listings 
byte storage 69 
code segment 61, 62 
comments 63 
communal variables 62 
conditional assembly 75, 76, 77, 96-101, 106, 
138, 143 
conditional jumps 104, 118 
coprocessor emulation 76 
cross-reference 65, 117, 149 
current segment 122 
data segment 64, 65, 67-68, 89, 145 
data size 73, 74 
disabling symbol table 121 
doubleword storage 69 
equate 55, 79 
error messages 80-88, 120, 122, 148 
even address 88, 89 
expressions 133 
external symbols 90 
false conditionals 116, 138 
far data 145 

260 

global symbols 93 
Ideal mode 95 
Ideal vs. MASM mode 171 
include file listing 118 
include files 101, 102 
integer constants 133 
labels 105 
linking libraries 102 
listing controls 117 
listing files 64-67, 70, 101, 106-107, 116, 119, 
13-~7,1~1~~a1~-1~1~1G 
local symbols 109, 119 
local variables 107 
macro expansion 89, 106, 111, 120, 148 
macros 110, 131, 135 
MASM mode 111, 120, 132 
memory model 112, 115 
module names 116 
near data 55 
pointers 71, 73 
procedures 78, 128 
processor 

control 123-125 
mode 51-54 

program termination 77 
public symbols 130 
pushing/popping registers 147 
quoted strings 72 
records 133 
repeating 103, 104, 134 
segments 135, 145 

alignment 56, 88 
groups 94 
names 59 
ordering 57, 72, 137 

stack 57 
stack segment 138, 139 
string 

concatenation 60 
definition 141 
position 103 
size 138 

structures/ unions 79, 139, 145 
suppressing floating-point 127 
symbols 82, 87, 88, 109 

table 142 

Turbo Assembler Reference Guide 



directories 
include files 

MAKE 177 
listing files 121-122 

Disk Operating System See DOS 
DISPLAY directive 72 
division, operators 18, 30 
DOS 

commands 
MAKE and 185 

date 9 
environment strings 

macros and 193 
paths 

MAKE 197 
segment ordering 72 
time 11 

DOSSEG directive 72 
doublewords 

DD directive 69 
DWORD operator 23 

DP directive 73 
DQ directive 73 
DT directive 74 
DUP operator 22 
duplicate symbols 

.LIB and .OBJ files and 217 
TLINK and 217 

DW directive 74 
Turbo Debugger and 74 

DWORD operator 23 

E 
IE TLIB option 207, 210 
Ie TLINK option 218 
!elif MAKE directive 198 

defined test macro and 194 
macros and 193 

ELSE directive 75 
!else MAKE directive 198 
ELSEIF directive 76 
EMUL directive 76 
END directive 77 
ENDIF directive 77 
!endif MAKE directive 198 
ENDM directive 78 
ENDP directive 78 

Index 

ENDS directive 79 
environment 

DOS 
macros and 193 

environment variables, MASM mode 160 
EQ operator 23 
EQU directive 5, 79 

Ideal vs. MASM mode 162 
THIS operator and 39 

equal (=) directive 55 
Ideal vs. MASM mode 162 

equate directives 55, 79 
Ideal vs. MASM mode 79 

equate substitutions 5 
ERR directive 81 
.ERRI directive 81 
.ERR2 directive 81 
.ERR directive 80 
.ERRB directive 82 
.ERRDEF directive 82 
.ERRDIF directive 83 
.ERRDIFI directive 83 
.ERRE directive 84 
.ERRIDN directive 84 
.ERRIDNI directive 85 
ERRIFl directive 85 
ERRIF2 directive 85 
ERRIF directive 85 
ERRIFB directive 86 
ERRIFDEF directive 86 
ERRIFDIF directive 86 
ERRIFDIFI directive 86 
ERRIFE directive 86 
ERRIFIDN directive 86 
ERRIFIDNI directive 87 
ERRIFNB directive 87 
ERRIFNDEF directive 87 
.ERRNB directive 87 
.ERRNDEF directive 88 
.ERRNZ directive 88 
!error MAKE directive 201 
error messages 227-255 

conditional assembly 80 
directives 80-88, 120, 122, 148 
disabling 122 
fatal 252 
macros 87 

261 



multiple 115 
symbols 82, 86-88 
warning 228 

errors 
MAKE (list) 202-205 
TLlNK (list) 219 

EVEN directive 88 
EVENDATA directive 89 
examples 

MAKE (program manager) 177 
batch files 184 

exclamation mark, within macros 45 
.EXE files 

debugging information 218 
exit codes 

MAKE and 182 
EXITM directive 89 
explicit rule 180, 186 
expressions 

byte size 21 
double word size 23 
evaluating 46 
far pointer size 24, 35 
integer constants 133 
MAKE and 199, 201 
operators in 13-43 
order of evaluation 14 
quad word size 35 
size of 33 
ten-byte size 39 
word size 43 

extended dictionary 210 
TLlB and 207, 210 

extensions, file, supplied by TLINK 213 
external symbols 90 
extract and remove (TLIB action) 209 
EXTRN directive 90 

Ideal vs. MASM mode 91 

F 
-f MAKE option 177 
-f MAKE option (MAKE file name) 175 
far data 10 

DF directive 71 
DP directive 73 
.FARDATA? directive 92 

262 

FARDATA directive 93 
.FARDATA directive 91 
operator 24 
UFARDATA directive 145 

FAR operator 24 
?FARDATA? directive 92 
@fardata? symbol 10 
FARDATA directive 93 
.FARDATA directive 91 
@fardata symbol 10 
fatal error messages 252 
file-inclusion directive (Hnclude) 197 
file name macros (MAKE) 195 
file names 10 
??filename symbol 10 
@FileName symbol 10 
files 

assembly 10 
extensions 213 
listing See listing files 
names 

extensions (meanings) 213 
updating 174 

floating-point 
emulation 118 

Ideal vs. MASM mode 169 
Ideal vs. MASM mode 160 
instructions 1 
suppressing assembly 127 

forward references, FAR operator 24 
forward slash operator 18 
full file name macro (MAKE) 195 
FWORD operator 24 

G 
GE operator 25 
general-purpose registers See individual 

listings 
GLOBAL directive 93 

Ideal vs. MASM mode 167 
global symbols 93 
greater than operators 25 
GROUP directive 94 
grouping segments 9,94 
GT operator 25 

Turbo Assembler Reference Guide 



H 
-h MAKE option 177 
help 

MAKE 177 
HIGH operator 26 
hyphen (-) MAKE command 182 

-I MAKE option 176, 177 
-i MAKE option 177 
Ii TLINK option 217 
IDEAL directive 95 
Ideal mode 95, 168 

expression grammar 156 
incl ude files 102 
labels 105 
linking libraries 102 
local symbols 109 
MASM mode vs. 159-165 
operator precedence 14 
predefined symbols 5 
segment groups 95 

IFl directive 96 
IF2 directive 97 
IF directive 96 
!if MAKE directive 198 

defined test macro and 194 
macros and 193 

IFB directive 98 
IFDEF directive 98 
IFDIF directive 99 
IFDIFI directive 99 
lFE directive 99 
IFIDN directive 100 
IFIDNI directive 100 
IFNB directive 100 
IFNDEF directive 101 
ignore exit status (MAKE command) 182 
.IGNORE MAKE directive 196 
implicit rule 180 
%INCL directive 101 
INCLUDE directive 102 
include files 

automatic dependency checking (MAKE) 188 
GLOBAL directive and 93 
Ideal mode 102 

Index 

listing 101, 118, 127 
MAKE 176 

directories 177 
!include directive (MAKE) 176 
!include MAKE directive 197 
INCLUDELIB directive 102 
inequality operator 30 
input/output, screen 123 
INSfR directive 103, 111 
instruction set See individ uallistings 
integers, constants 133 
I/O, screen 123 
IRP directive 103 
IRPC directive 104 

J 
IJJUMPS option 105 
jumps 

conditional 104 
Ideal vs. MASM mode 168 
size of 118 

forward referenced 104 
Ideal vs. MASM mode 161 
Quirks mode 161 
SHORT operator and 36 
size of 104 

JUMPS directive 104 

K 
-K MAKE option 177, 183 

L 
II TLINK option (line numbers) 217 
LABEL directive 105 

Ideal mode 105 
labels 

defining 105 
PUBLIC directive and 105 

.LALL directive 106 
Language extensions 

MASM compatibility 170 
language syntax 151-158 
LARGE operator 26 
LE operator 27 
LENGTH operator 28 
less than operators 27, 29 

263 



lexical grammar 151 
.LFCOND directive 106 
.LIB files 

duplicate symbols in 217 
libname (rLIB option) 207 
libraries 

creating 207 
including 102 
object files 206 

creating 209 
page size 210 
TLINKand 

ignoring 217 
lines 

numbering 
TLINK and 217 

linking See also TLINK utility 
high-level languages 113 
libraries 102 
Turbo Pascal 112 

%LINUM directive 106 
%LIST directive 106 
.LIST directive 107 
listfile (rLIB option) 207 
listing files 106 

%BIN directive 60 
conditional assembly 143 
conditional blocks 106 
control directives 64, 67, 117, 127, 132, 171 
cross-reference information 65, 117, 149 
directives 50, 70 
disabling 119, 149 
error messages 81 
false conditionals in 116, 138 
format 106, 116, 121, 125, 126, 142-144 
include files in 101, 118 
macro expansion 106, 111, 120 
suppressing macros 135 
titles 142, 144 
unreferenced symbols 66 

LOCAL directive 107 
Turbo Debugger and 108 

local symbols 109 
disabling 119 
Ideal vs. MASM mode 109, 168 

local variables 107 
LOCALS directive 109 

264 

location counter operand 6 
logical operations 

AND 21 
Ideal vs. MASM mode 163 
NOf31 
OR 32 
SHL36 
SHR37 
XOR43 

LOOP instruction 
Ideal vs. MASM mode 170 

LOW operator 28 
L T operator 29 

M 
1m TLINK option 214 
MACRO directive 110 
macros 

conditional assembly 100 
conditional assembly directives 99 
defining 110 
deleting 131 
DOS environment strings and 193 
DOS path MAKE 197 
error messages 83, 84, 85, 87 
expansion 

directives 120 
EXITM directive 89 
listing files 111, 148 
suppressing listing 135 

invocation 
defined 193 

IRP directive and 103 
IRPC directive and 104 
listing 106, 127 
local variables 107 
MAKE 191 

$d 
in expressions 201 

base file name ($*) 194 
creating 192 
defined 191 
defined test 194 
!elifdirectiveand 193,194 
file name and extension ($.) 195 
file name only ($&) 195 
file-name path($:) 195 

Turbo Assembler Reference Guide 



full file name ($<) 195 
lif directive and 193, 194 
_MAKE_193 
predefined 193 
undefining 201 
using 192 
version number 193 

MAKE (program manager) 189 
operators within 44-47 

%MACS directive 111 
MAKE 

debugging 177 
directives 

conditional execution 198 
expressions in 199 

defined 196 
!elif 198 

defined test macro and 194 
macros and 193 

!else 198 
!endif 198 
!error 201 
file inclusion 197 
!if 198 

defined test macro and 194 
macros and 193 

!include 197 
!undef 201 

errors (list) 202-205 
macros 

$d 201 
undefining 201 

operators and 199 
options 

-D 
conditional execution and 198 

define identifier 
conditional execution and 198 

_MAKE_ macro 193 
MAKE (program manager) 173-205 

-? option 177 
-a option 177 
automatic dependency checking 177, 188 
-B option 177 
batching files and 183 
build all option 177 
BUILTINS.MAK file 175 

Index 

clocks and 174 
commands 

@ 182 
- (hyphen) 182 
hyphen (-) 182 
-num 182 

-D option 177 
default option 177 
define identifier option 177 
directives 

196 
196 

command-line compiler options and 196, 
197 
defined 196 
196 
196 
196 
197 
196 
197 

don't print command option 177 
DOS commands and 185 
example 177 
exit codes and 182 
explicit rules 

considerations 187 
defined 186 
example 181, 187 

-f option 175, 177 
file name option 175, 177 
functionality 174 
-h option 177 
help option 177 
hide commands 182 
-I option 176, 177 
-i option 177 
ignore exit status option 177 
implicit rules 179 

discussion 189 
example 181 
explicit rules and 189 

include files directory 177 
!include directive 176 
-K option 177, 183 
keep files option 177, 183 
macros 191, 193 

265 



base file name ($"') 194 
creating 192 
defined 191 
defined test 194 
example 189 
file name and extension ($.) 195 
file name only ($&) 195 
file-name path ($:) 195 
full file name ($<) 195 
predefined 193 
using 192 

makefiles 
comments in 181 
creating 180 
defined 178 
naming 180 
parts of 180 

modifying 225 
-n option 177 
options 176 

-a 188 
-D 192 
define 192 
using 175 

.PATH directive 197 
print command option 177 
printing commands 196 
redirection operators 182 
-5 option 177 
-s option 177 
swap MAKE out of memory option 177 
swapping in memory 197 
syntax ru1es 175 
-U option 177 
undefine option 177 
-w option 177 
wildcards and 186 

map 
of executable file, generated by TLINK 215 

map files 
debugging 215 
generated by TLINK 214 

MASK operator 29 
MASM51 directive 111, 160 
MASM compatibility 159-165 

80386 processor 170 
ALIGN directive 162 

266 

alternate directives 171 
arithmetic operations 163 
BYTE operator 21 
CALL instruction 169 
COMM directive 168 
command-line syntax 167 
conditional jumps 168 
constant segments 169 
directives 49, 111, 120 
DWORD operator 23 
enhancements 167-172 
environment variables 160 
equate directives 55, 162 
expression grammar 154 
FAR operator 24 
floating-point 

emulation 169 
format 160 

FWORD operator 24 
GLOBAL directive 167 
jumps 161 
language-specific extensions 170 
listing controls 171 
local symbols 119, 168 
logical operations 163 
LOOP instruction (80386) 170 
.MODEL directive 112 
multi-pass capability 172 
NEAR operator 31 
operator precedence 14 
predefined 

symbols 5 
variables 171 

PROC operator 33 
PUBLICDLL directive 168 
PUSH and pop instructions 169 
Quirks mode 111, 132, 159, 161, 164 
QWORD operator 35 
segment 

alignment 162 
groups 95 
ordering 57 
overrides 169 
registers 161 

shifts 172 
signed instructions 163 
TBYrE operator 39 

Turbo Assembler Reference Guide 



Turbo C and 113 
two-pass asssembly 160 
unions 168 
UNKNOWN operator 42 
variable redefinition 112 
versionS.1 111, 120, 160, 164 
??version symbol 12 

MASM directive 111 
MASM mode See MASM compatibility 
math coprocessor See numeric coprocessor 
memory 

models 
directives 112, 115 
pointers 7, 9,21,22 
Turbo Pascal 112 

operands 20 
swapping MAKE in 197 

Microsoft Assembler See MASM compatibility 
MOD operator 30 
MODEL directive 115 
.MODEL directive 112 

RETURNS keyword and 59, 129 
modular programming 

code segment 61 
combine types 135 
COMM directive and 62 
EXTRN directive 90 
module names 116 
PUBLIC directive 130 

module names, TLIB 208 
modulus operator 30 
MS-DOS See DOS 
MULTERRS directive 115 
multi-pass compatibility 

Ideal vs. MASM mode 172 
multiplication, operator 16 

N 
-n MAKE option 177 
In TLINKoption 217 
NAME directive 116 
NE operator 30 
near data 9 

: directive 55 
operator 31 

NEAR operator 31 
%NEWP AGE directive 116 

Index 

.NOAUTODEPEND MAKE directive 196 
%NOCONDS directive 116 
%NOCREF directive 117 
%NOCTLSdirective 117 
NOEMUL directive 118 
.NOIGNORE MAKE directive 196 
%NOINCL directive 118 
NOJUMPS directive 118 
%NOLISI' directive 119 
NOLOCALS directive 119 
%NOMACS directive 120 
NOMASMSl directive 120 
NOMUL TERRS directive 120 
.NOSILENT MAKE directive 196 
.NOSWAP MAKE directive 197 
%NOSYMS directive 121 
NOT operator 31 
NOTHING keyword 60 
%NOTOC directive 49 
%NOTRUNC directive 121 
NOWARN directive 122 
-num MAKE command 182 
numeric coprocessor 

emulating 76, 118 
suppressing assembly 127 

o 
.OBJ files 

duplicate symbols in 217 
libraries 

advantages of using 206 
creating 209 
TLIBand 206 

object files 
module name 116 

OFFSET operator 32 
offsets 

size operator 26 
SMALL operator 38 

operands 
memory 20 
THIS operator 39 

operations (TLIB option) 207 
operators 13-47, See also individual listings 

addition 16, 20 
allocated data 28 
comments 46 

267 



data size 37 
division 18, 30 
equality 23 
expression evaluate 46 
expression size 23-24, 33-35, 39, 43 
greater than 25 
Ideal vs. MASM mode 20 
inequality 30 
less than 27, 29 
literal text string 45 
logical 21, 31, 32, 36-37, 43 
macros 44-47 
MAKE 182 

precedence 201 
MAKE and 199 
modulus 30 
multiplication 16 
offset size 26, 38 
order of precedence 14, 15 
pointers 33, 36 
quoted character 45 
records 42 
repeating 22 
segment address 35 
substitute 44 
subtraction 17 
symbol 39, 40, 41 

OR operator 32 
ORG directive 122 
OS/2 

PUBLICDLL directive and 131 
%OUT directive 123 

P 
P8086 directive 125 
P8087 directive 125 
P186 directive 123 
P286 directive 123 
P287 directive 124 
P386 directive 124 
P387 directive 125 
P286N directive 124 
P386N directive 124 
P286P directive 124 
P386P directive 125 
/P TLIB option (page size) 210 
PAGE directive 125 

268 

page size (libraries) 210 
%P AGESIZE directive 126 
parentheses operator 15 
Pascal See Turbo Pascal 
.PATH directive (MAKE) 197 
PC-DOS See DOS 
%PCNT directive 126 
percent sign 

directives 50 
within macros 46 

period 
Ideal vs. MASM mode 153 
operator, Ideal mode 18 

PN087 directive 127 
pointers 

48-bit 71, 73 
CODEPfR operator 21 
DATAPfR operator 22 
DF directive 71 
PROC operator 33 

POP instruction 
Ideal vs. MASM compatibility 169 

%POPLCTL directive 127 
precedence 

MAKE operators 201 
TLIB commands 208 

precedence (operators) 14, 15 
predefined symbols See symbols 
PROC directive 128 

RETURNS keyword 59, 129 
PROC operator 33 
procedures 

ending 78 
local variables 107 
start of 128 

processor control directives 123-125 
processor type, determining 7 
program termination, END directive and 77 
Prolog 

linking to 113 
PfR operator 33 

debugging and 58, 69-71, 74, 108, 129 
PUBLIC directive 130 
public symbols 130 
PUBLICDLL directive 131 

Ideal vs. MASM mode 168 
PURGE directive 131 

Turbo Assembler Reference Guide 



PUSH instruction 
Ideal vs. MASM mode 169 

%PUSHLCfL directive 132 
PWORD operator 35 

Q 
quadwords 

DQ directive 73 
operator 35 

question mark 
operator 19 
symbols using 6 

QUIRKS directive 111, 132, 159, 164 
QUIRKS mode 111 
Quirks mode 161, 164 
QWORD operator 35 

R 
RADIX directive 133 
.RADIX directive 133 
RECORD directive 133 
records 

bit fields 133 
bit masks 29 
WIDTH operator 42 

redirection operators 
MAKE 182 

registers See individual listings 
remove (TLIB action) 209 
repeating instructions 22, 103, 104, 134 
replace (TLIB action) 209 
REPT directive 134 
response files 

defined 214 
TLIB 209 
TLINK and 214 

restrictions, TLINK 219 
RETURNS keyword 59, 129 

5 
/5 option 137 
-S MAKE option 177 
-s MAKE option 177 
/s TLINK option 214 
.5ALL directive 135 
SEG operato~ 35 

Index 

SEGMENT directive 135 
segments 

address operator 35 
alignment 

Ideal vs. MASM mode 162 
types 135 

alphabetical order 57 
ASSUME directive 59 
combine types 135 
constant 

Ideal vs. MASM mode 169 
current 8, 122 
data 145 
defining 135 
directives 135 

memory model 112, 115 
OFFSET operator 32 
simplified 7, 8, 9, 10 

end of 79 
groups 9, 94 

Ideal mode 95 
map of 

ACBP field and 216 
TLINK and 215 

names 59 
NOTHING keyword 60 
OFFSET operator 32 
ordering 72, 137 
override 19 

Ideal vs. MASM mode 169 
registers See also individual listings 

Ideal vs. MASM mode 161 
Quirks mode 161 

sequential order 137 
size 12 
stack 138, 139 
unini tialized 

TLINK and 217 
semicolon, within macros 46 
.SEQ directive 137 
.SFCOND directive 138 
shifts 

counts 36-37 
Ideal vs. MASM mode 172 

SHL operator 36 
SHORT operator 36 
SHR operator 37 

269 



sign, changing 17 
signed instructions 

Ideal vs. MASM mode 163 
,SILENT MAKE directive 196 
simplified segment directives 7, 8, 9, 10 

memory model 112, 115 
size of data 37, 73, 74 
SIZE operator 37 
SIZESTR directive 111, 138 
slash, operator 18 
SMALL operator 38 
source files 

separately compiled 206 
square brackets, operator 20 
stack, ARG directive 57 
STACK directive 139 
stack segment directive 138, 139 
.ST ACK directive 138 
@Startup symbol 11 
STARTUPCODE directive 139 
strings 

concatenating 60 
defining 60, 141 
directives 141 
DISPLAY directive 72 
displaying 72 
literal 45 
position 103 
quoted 45 
size 138 

STRUC directive 139 
Ideal vs. MASM mode 140 
vs. UNION 145 

structures 
defining 139 
directive 139 
ENDS directive 79 
LABEL directive and 105 
nesting 140 
period operator 18 

SUBsrR directive 111, 141 
subtraction 

Ideal vs. MASM mode 17 
operator 17 

SUBITL directive 142 
%SUBTTL directive 142 
.SWAP MAKE directive 197 

270 

symbol tables 
listing files 142 

suppressing 121 
symbols 5-12 

$6 
aliases 5 
@code 7 
@CodeSize 7 
communal 62 

Ideal vs. MASM mode 63 
multiple 63 

@Cpu 7 
cross-referencing 65 
@curseg 8 
@data 9 
@DataSize 9 
??date 9 
defining 105 
duplicate 

warning ('fLINK) 217 
error messages 82, 86, 87, 88 
external, EXTRN directive 90 
@fardata? 10 
@fardata 10 
??filename 10 
@FileName 10 
global 93 
local 109 

disabling 119 
@Model11 
operators 41 
public 130, 131 
Startup@Startup 11 
SYMTYPE operator 39 
??time 11 
.TYPE operator 40 
undefined 88 
unreferenced 66 
??version 12 
@WordSize 12 

%SYMS directive 142 
SYMTYPE operator 39 
syntax 151-158 

command-line See command-line syntax 
lexical grammar 151 
TLIB207 
TLINK 213 

Turbo Assembler Reference Guide 



T 
ItTLlNK option 213, 218 
% T ABSIZE directive 143 
TASM 

TLINK and 219 
T ASM, summary, operating modes 164 
TBYfE operator 39 
termination, END directive and 77 
text strings See strings 
% TEXT directive 143 
.TFCOND directive 143 
THIS operator 39 
13 TLINK option (80386 32-bit code) 219 
time 11 
??time symbol 11 
TITLE directive 144 
% TITLE directive 144 
TLIB 

action symbols 
defined 208 

case sensitivity 207 
extended dictionary 207 

TLlB. .. 
options 

page size UP) 210 
TLIB (librarian) 206-212 

action symbols 
* 209 
+209 
-209 
-+and+-209 
-* and *- 209 
add 209 
extract 209 
extract and remove 209 
list 208 
remove 209 
replace 209 

capabilities 206 
case sensitivity 211 
examples 211 
extended dictionary 210 
libraries 

creating 207 
mod ule names 208 
operations 208 

precedence 208 

Index 

options 
IC 207, 211 
case sensitivity 207,211 
IE 207, 210 
extended dictionary 207, 210 
libname207 
listfile 207 
operations 207 
tlib 207 
using 207 

response files 
using 209 

syntax 207 
TLINK 

ACBP field and 216 
case sensitivity and 217 
duplicate symbols warning 217 
libraries 

ignoring 217 
map files 

debugging 215 
options 

map files 
public symbols in 215 
segments in 215 

TLINK (linker) 212-225 
assembler code and 219 
.COM files and 218 
command-line syntax 213 
debugging information 218 
errors 219, 219-224 

fatal 
defined 219 

nonfatal 
defined 219 

executable file map generated by 215 
extended dictionary 218 
file extensions supplied by 213 
invoking 212 
map files 215 

public symbols in 215 
segments in 215 

map files and 214 
options 215 

Ic217 
case sensitivity 217 
.COM files 218 

271 



/d217 
debugging information (Jv) 218 
duplicate symbols warning 217 
/e218 
extended dictionary 218 
file extension 213 
/i 217 
/1217 
libraries 

ignoring 217 
line numbers 217 
/m 214, 215 
map files 213, 214, 215 
/n217 
/s 214, 215 
source code line numbers 217 
It 213, 218 
32-bit assembler code and 219 
13219 
uninitialized trailing segments 217 
Iv (debugging information) 218 
Ix 213, 215 

response files 214 
example 215 

restrictions 219 
segment limit 224 
starting 212 
warnings 

defined 219 
list 224 

% TOC directive 49 
TOUCH 

MAKE and 225 
wildcards and 225 

TP ASCAL memory model 112 
trailing segments, uninitialized 217 
%TRUNC directive 144 
Turbo C, linking to 113 
Turbo Debugger 

ARG directive and 58, 129 
DD directive and 69 
DF directive and 71 
DW directive and 74 
LOCAL directive and 108 

Turbo Librarian See TUB utility 
Turbo Link See TLINK utility 

272 

Turbo Pascal 
ARG directive and 59 
linking to 112 
.MODEL directive 112 
PROC directive and 129 

Turbo Prolog, linking to 113 
two-pass assemblers 

compatibility with 81, 97 
two-pass assembly 

MASM compatibility 160 
TYPE operator 41 
.TYPE operator 40 
types, data 41 

u 
-U MAKE option 177 
UDATASEG directive 145 
UFARDATA directive 145 
!undef MAKE directive 201 
UNDER Model@Model symbol 11 
UNDER SfARTUP.STARTUP directive 139 
underscore 

local symbols and 109 
Turbo C and 113 

UNION directive 140, 145 
vs. SfRUC 145 

unions 
directive ·145 
Ideal vs. MASM mode 168 

UNKNOWN operator 41 
USES directive 147 

v 
-v option (debugging information) 217 
Iv TUNK option (debugging information 218 
variables 

communal 62 
local 107 
predefined 

Ideal vs. MASM mode 171 
redefining 112 

??version symbol 12 
version number (Turbo Assembler) 12 

w 
-W MAKE option 177 

Turbo Assembler Reference Guide 



WARN directive 148 
warning messages 228 

directives 148 
disabling 122 

warnings 
TLINK 

defined 219 
list 224 

WIDTH operator 42 
wildcards 

MAKE and 186 
TOUCH and 225 

Windows compatibility 
.MODEL directive 113 

Index 

PROC directive 128 
WORD operator 43 
words 

OW directive 74 
WORD operator 43 

@WordSize symbol 12 

X 
/ x TLINK option 213 
.xALL directive 148 
.xCREF directive 149 
.XLIST directive 149 
XOR operator 43 

273 















TURB 
A EMBLER® 

BORLAND 

1800 GREEN HILLS ROAD, P.O. BOX 660001, SCOTTS VALLEY, CA 95067-0001, (408) 438-5300 • PART II 15MN-ASD03-20 • BOR 1491 
UNIT 8 PAVILIONS, RUSCOMBE BUSINESS PARK, TWYFORD, BERKSHIRE RG10 9NN, ENGLAND 
43 AVENUE DE L'EUROPE-BP 6, 78141 VELIZY VILLACOUBLAY CEDEX FRANCE 


