
T RB
A E BLER

BORLAND

,

Turbo AssemblefID
Version 2.0

User's Guide

BORLAND INTERNATIONAL. INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, scons VALLEY, CA 95066-0001

Rl

Copyright © 1988, 1990 by Borland International. All rights
reserved. All Borland products are trademarks or registered
trademarks of Borland International, Inc. Other brand and
product names are trademarks or registered trademarks of their
respective holders.

PRINTED IN THE USA.
10 9 8 7 6 5 4 3 2

c o N T E N T s

Introduction 1 Ii " 28
Hardware and software requirements 2
About the manuals 2

Ij ..•...•••••..•......... . " 29
Ikh ~ .. ~ 29

The User's Guide 2 Iks " 30
Notational conventions 3 II 30
How to contact Borland 4 Ila 30

Chapter 1 Installing Turbo
Assembler 7

Files on disk 7
Installing Turbo Assembler 8

1m 31
Iml 31
Imu 32
Imv# 32
Irnx. 32

Chapter 2 Getting started with Turbo"
Assembler 9

In 33
Ip 33

Writing your first Turbo Assembler
program ll

Assembling your first program 11
L' k' fir m mg your st program 13
Running your first program 14
What happened? 14

Modifying your first Turbo Assembler
program ' .. 15

Sending output to a printer 17
Writing your second Turbo Assembler
program .. " 18

Running REVERSE.ASM 19

Iq 34
Ir 34
Is 35
It ~ .. 35
Iv 35
Iw 36
Ix 37
Iz 37
Izd 38
Izi 38
Indirect command files 39
The configuration file 39

Chapter 3 Command-line
reference 21

Chapter 4 The nature of assembly
language 41

Starting Turbo Assembler from DOS 21
Command-line options 24
la 25
Ib 25
Ic 26
Id 26
Ie " 27
Ih or I? ' 27

The architecture of a computer 41
The making of assembly language 43

The 8088 and 8086 processors 46
The capabilities of the 8086 47
Memory 47
Input and output 50
Registers 51

The flags register 52

The general-purpose registers 54
The AX register 54
The BX register 55
The CX register 55
The DX register 56
The SI register 56

. The DI register 57
The BP register 58
The SP register 59

The instruction pointer 61
The segment registers 61

The CS register 65
The DS register 66
The ES register 66
The SS register 66

The 8086 instruction set 67
The IBM PC and XT 67

Input and output devices 68
Systems software for the IBM PC 68

DOS 69
Getting keystrokes 70
Displaying characters on the
screen 71
Ending a program 72

The BIOS 73
Selecting display modes 73

Sometimes you absolutely need to go to
the hard ware 74
Other resources 74

Chapter 5 The elements of an
assembler program 77

The components and structure of an
assembler program 78
Reserved words 79
The format of a line 81

Labels 82
Instruction mnemonics and directives. 85

The END directive 86
Operands 88

Register operands 89
Constant operands 90
Expressions 91
Label operands 92

II

Memory-addressing modes 93
Comments 101

Segment directives 103
Simplified segment directives 104

.STACK, .CODE,and .DATA 104
DOSSEG 108
.MODEL 108
Other simplified segment
directives . 110

Standard segment directives 111
The SEGMENT directive 112
The ENDS directive 112
The ASSUME directive 112

Simplified versus standard segment
directives .. 115

Alloca ting data . 116
Bits, bytes, and bases 116

Decimal, binary, octal, and hexadecimal
notation 119
Default radix selection 123

Initialized data 125
Initializing arrays 125
Initializing character strings 126
Initializing with expressions and
labels 128

Uninitialized data 129
Named memory locations 130

Moving data 132
Selecting data size 133
Signed versus unsigned data 135
Converting between data sizes 136
Accessing segment registers ~ ... 138
Moving data to and from the stack ... 139
Exchanging data 139
I/O 140

Operations 141
Arithmetic operations 141

Addition and subtraction 142
32-bit operands 142
Incrementing and decrementing . 144

Multiplication and division 145
Changing sign 147

Logicaloperations 148
Shifts and rotates 150

Loops and jumps 153
Unconditional jumps 154
Conditional jumps 156
Looping 158

Subroutines 161
How subroutines work 162
Parameter passing 166
Returning values _ 166
Preserving registers 167

An example assembly language
program 168

Chapter 6 More about programming
in Turbo Assembler 173

Using equate substitutions 174
The EQU directive 174

The $ predefined symbol 178
The = directive 179

The string instructions " 180
Data movement string instructions ... 181

LODS 181
STOS 182
MOVS 183
Repeating a string instruction 184
String pointer overrun 185

Data scanning string instructions 185
SCAS 185
CMPS 188

Using operands with string
instructions 189

Multimodule programs 190
The PUBLIC directive 193
The EXTRN directive 194
The GLOBAL directive 197

Include files .. 198
The listing file 200

Annotated source code 201
Listing symbol tables 205

The table of labels 205
The table of groups and segments .. 206

The cross-reference table 207
Controlling the listing contents and
format 210

The line-listing selection directives . 210

iii

%LIST and %NOLIST 211
%CONDS and %NOCONDS 211
%INCL and %NOINCL 212
%MACS and %NOMACS 212
%CTLS and %NOCTLS 212
&UREF and %NOUREF 213
%SYMS and %NOSYMS 213

The listing format control
directives 213

Field-width directives 214
%PUSHLCTL and %POPLCTL .. 215

Other listing control directives 215
Displaying a message during assembly . 215
Assembling source code conditionally .. 216

Conditional assembly directives 217
IF and IFE 217
IFDEF and IFNDEF 218
Other conditional assembly
directives 220
ELSEIF family of directives 222

Conditional error directives 223
.ERR, .ERR1, and .ERR2 223
.ERRE and .ERRNZ 224
.ERRDEF and .ERRNDEF 224
Other conditional error directives .. 225

Pitfalls in assembler programming 225
Forgetting to return to DOS 226
Forgetting a RET instruction 227
Generating the wrong type of return . 228
Reversing operands 230
Forgetting the stack or reserving a too
small stack 230
Calling a subroutine that wipes out
needed registers 231
Using the wrong sense for a conditional
jump 234
Pitfalls with string instructions 235

Forgetting about REP string
overrun 235
Relying on a zero CX to cover a whole
segment ~. 237
Using incorrect direction flag
settings 239

Using the wrong sense for a t:epeated
string comparison 239
Forgetting about string segment
defaults 240
Converting incorrectly from byte to
word operations 241
Using multiple prefixes 242
Relying on the operand(s) to a string
instruction 242

Forgetting about unusual side effects . 243
Wiping out a register with
multiplication 244
Forgetting that string instructions alter
several registers 245
Expecting certain instructions to alter
the carry flag 245
Waiting too long to use flags 246

Confusing memory and immediate
operands 246
Causing segment wraparound 249
Failing to preserve everything in an
interrupt handler 251
Forgetting group overrides in operands
and data tables 252

Chapter 7 Interfacing Turbo
Assembler with Turbo
C 257

Using inline assembly in Turbo C 258
How inline assembly works 260

How Turbo C knows to use inline
assembly mode 264
Invoking Turbo Assembler for inline
assembly 265
Where Turbo C assembles inline
assembly 266
Use the -1 switch for 80186/80286
instructions 267

The format of inline assembly
statements 268

Semicolons in inline assembly 268
Comments in inline assembly 268
Accessing structure/union
elements 269

An example of inline assembly 270
Limitations of inline assembly 274

Memory and address operand
limitations 274
Lack of default automatic variable
sizing in inline assembly 276
The need to preserve registers 277

Preserving calling functions and
register variables 277
Suppressing internal register
variables 277

Disadvantages of inline assembly versus
pureC 277

Reduced portability and
maintainability 278
Slower compilation 278
Available with TCC only 278
Optimization loss 278
Error trace-back limitations 279
Debugging limitations 280
Develop in C and compile the final code
with inline assembly 280

Calling Turbo Assembler functions from
Turbo C 281

The framework 282
Memory models and segments 282

Simplified segment directives and
TurboC 283
Old-style segment directives and
TurboC 285
Segment defaults: When is it
necessary to load segments? 287

Publics and externals 290
Underscores 290
The significance of uppercase and
lowercase 291
Label types 292
Far externals .. : 293

Linker command line 294
Between Turbo Assembler and Turbo
C 295

Parameter-passing 295
Preserving registers 302

. Returning values 302

iv

Calling an assembler function from
C 304
Pascal calling conventions 307

Calling Turbo C from Turbo Assembler. 308
Link in the C startup code 308
Make sure you've got the right segment
setup 309
Performing the call 309
Calling a Turbo C function from Turbo
Assembler 311

Chapter 8 Interfacing Turbo
Assembler with Turbo
Pascal 315

The Turbo Pascal memory map 315
The program segment prefix 316
Code segments 317
The global data segment 317
The stack 317
The heap 318

Register use in Turbo Pascal 318
Near or far? 319
Sharing information with Turbo Pascal . 319

The $1 compiler directive and external
subprograms 319
The PUBLIC directive 320
The EXTRN directive 321

Restrictions on using EXTRN
objects 323

Using segment fixups 324
Dead code elimination 325

Turbo Pascal parameter-passing
conventions 325

Value parameters 325
Scalar types 326
Reals 326
Single, Double, Extended, and Comp:
The 8087 types 326
Poin ters 326
Strings 327
Records and arrays 327
Sets 327

Variable parameters 327

v

Stack maintenance 328
Accessing parameters 328

Using BP to address the stack 328
The ARG directive 329

.MODEL and Turbo Pascal 330
Using another base or index
register 331

Function results in Turbo Pascal 331
Scalar function results 331
Real function results 332
8087 function results 332
String function restilts 332

Pointer function results 332
Allocating space for local data 332

Allocating private static storage .. ' ... 332
Allocating volatile storage 333

Assembly language routines for Turbo
Pascal 334

General-purpose hex conversion
routine . 334
Exchanging two variables 337
Scanning the DOS environment 340

Chapter 9 Advanced programming In
Turbo Assembler 345

Segment override prefixes 345
An alternate form 347
When segment override prefixes don't
work 000 348
Accessing multiple segments 0 349

Locallabels 0 0 ... 0 . 0 0 349
Automatic jump-sizing .. 0 .. 0 . 0 353
Forward references to code and data 0 0 . 358
Using repeat blocks and macros . 0 . 0 . 0 0 362

Repeat blocks 0 .. 0 362
Repeat blocks and variable
parameters 0 . 0 0 0 ... 0 0 364

Macros 0 000.00.0000 ... 0 0.365
Nestingmacros 00000 ... 00.0 .. 0.0369
Macros and conditionals 0 0 0 . 369
Stopping expansion with EXITM 0 0 371
Defining labels within macros 371

Fancy data structures .0.0 .. 00 .. 0 0 373
The STRUC directive .. 0 0 . 374

Advantages and disadvantages of using
STRUC 377

Unique structure field names 378
Nesting structures 378
Initializing structures 379

The RECORD directive 380
Accessing records 382

The WIDTH operator 383
The MASK operator 384

. Why use records 385
The UNION directive 387

Segment directives 389
The SEGMENT directive 389

The name and align fields 390
The combine field 390
The use and class fields 392
Segment size, type, name, and
nesting 392

Segment-ordering 393
The GROUP directive 395
The ASSUME directive 397
The simplified segment directives 400
A multisegment program 404

Chapter 10 The 80386 and other
processors 409

Switching processor types in assembler
code 410
The 80186 and 80188 411

New instructions 411
PUSHAandPOPA 411
ENTER and LEAVE 412
BOUND 413
INSandOUTS 414

Extended 8086 instructions 415
Pushing immediate values 415
Shifting and rotating by immediate
values ; 416
Multiplying by an immediate
value 416

The80286 417
Enabling 80286 assembly 418

The80386 419
Selecting 80386 assembly mode 419

vi

New segment types 420
Simplified segment directives and
80386 segment types 423
The FWORD 48-bit data type 424

New registers 425
The 32-bit general-purpose
registers 426
The 32-bit flags register 428
The 32-bit instruction pointer 428
New segment registers 429

New addressing modes 431
New instructions 434

Testing bits 435
Scanning bits 436
Moving data with sign- or zero-
extension 437
Converting to DWORD or QWORD
data 437
Shifting across multiple words 438
Setting bytes conditionally 439
Loading SS, FS, and GS 440

Extended instructions 441
Special versions of MOV 441
32-bit versions of 8086 instructions . 442

New versions of LOOP and
JCXZ 442
New versions of the string
instructions 444
IRETD 444
PUSHFD and POPFD 445
PUSHAD and POP AD 445

New versions ofIMUL 445
Mixing 16-bit and 32-bit instructions and
segments 446
An example 80386 function 449

The 80287 453
The 80387 453

Chapter 11 Turbo Assembler Ideal
Mode 455

What is Ideal mode? 456
Why use Ideal mode? 456
Entering and leaving Ideal mode 457
MASM and Ideal mode differences 458

Ideal mode tokens 459
Syr,nboltokens 459
Duplicate member names 460
Floating-point tokens 460

EQU and = directives 461
Expressions and operands 461

Square brackets operator 461
Example operands 462

Operators 464
Periods in structure members 464
Pointers to structures 464
The SYM1YPE operator 465
The HIGH and LOW operators 465
The Optional PlR operator 466
The SIZE operator 466

Directives 467
Listing controls 467
Directives starting with a period (.) . 468
Reversed directive and symbol
name 469

vii

Quoted strings as arguments to
directives 469

Segments and groups 470
Accessing data in a segment belonging
to a group 470

Defining near or far code labels 472
External, public, and global symbols .473
Miscellaneous differences 474

Suppressed fixups 474
Operand for BOUND instruction .. 474
Comments inside macros 475
Local symbols 475

A comparison of MASM and Ideal mode
programming 475

MASM mode sample program .. 476
Ideal mode sample program 477

An analysis of MASM And Ideal
modes 479

References

Index

483

485

T A B

5.1: TASM reserved words 80
5.2: The operation of the 8086 AND, OR, and

XOR logical instructions 148
5.3: Conditional jump instructions 157
6.1: Source and destination for the MUL and

IMUL instructions 244
7.1: Register settings when Turbo Centers

assembler 287
9.1: Default segments and types for tiny

memory model 401

viii

L E s

9.2: Default segments and types for small
memory model 401

9.3: Default segments and types for medium
memory model 401

9.4: Default segments and types for compact
memory model 401

9.5: Default segments and types for large or
huge memory model 402

9.6: Default segments and types for Turbo
Pascal (TP ASCAL) memory model . 402

F G u

2.1: The edit, assemble, link, and run
cycle 12

3.1: Turbo Assembler command line 22
4.1: Five subsystems 42
4.2: Memory address space of the 8086 ... 48
4.3: Separate memory and I/O address of

8086 50
4.4: Registers of the 8086 52
4.5: Flags register of the 8086 53
4.6: AX, BX, SP, and the stack 60
4.7: 20-bit memory addresses 62
4.8: Calculation of memory address by

mov 63
4.9: DOS and BIOS systems software as a

control and interface layer 69
5.1: The memory location of the character

string CharString 94
5.2: Addressing the character string

CharString 95
5.3: Using BX to address CharString 96
5.4: Storing WordVar and DwordVar 119
5.5: From binary 001100100 (decimal 1(0) to

octal 1440 121
5.6: From binary 01100100 (decimal 100) to

hexadecimal64 121
5.7: Example of five-entry array 126
5.8: Example of a shift left 150
5.9: Example of SAR (arithmetic right

shift) 151

Ix

R E s

5.10: Example of ROR (rotate right) 152
5.11: Example ofRCR (rotate right and

carry) 153
5.12: Operation of a subroutine 162
6.1: Memory variables: offset vs. value .. 247
6.2: An example of segment

wraparound 250
6.3: Three segments grouped into one

segment group 252
7.1: Turbo C compile and link cycle 260
7.2: Turbo C compile, assembly, and link

cycle 262
7.3: Compile, assemble, and link with Turbo

C, Turbo Assembler, and TLINK ... 281
7.4: State of the stack just before executing

Test's first instruction 296
7.5: State of the stack after PUSH and

MOV 297
7.6: State of the stack after PUSH, MOV, and

SUB 298
7.7: State of the stack immediately after

MOV BP, SP 308
·8.1: Memory map of a Turbo Pascal 5.0

program 316
9.1: Locations and initial values of the fields

in 1Rec 381
10.1: The registers of the 80386 426

N T R

Introduction

o D u c T o N

Welcome to Borland's Turbo Assembler, a multi-pass assembler
with forward-reference resolution, assembly speeds of up to
48,000 lines per minute (on an IBM PS/2 model 60), MASM
compatibility, and an optional Ideal mode extended syntax.
Whether you're a novice or an experienced programmer, you'll
appreciate these features along with a number of others we've
provided to make programming in assembly language easier.
We'll mention just a few of the highlights here and describe them
in detailla ter in the book:

• full 80386 support
• improved syntax type-checking
• simplified segmentation directives

• improved listing controls

• PUSH, POP extensions
• extended CALL statement with arguments and optional

language parameter

• local labels
!!! local stack symbols and calling arguments in procedures

• structures and unions

• nested directives
• Quirks mode to emulate MASM

• full source debugging output for Turbo Debugger

• built-in cross-reference utility (TCREF)

• configura tion and command files

Turbo Assembler is a powerful command-line assembler that
takes your source (.ASM) files and produces object (.OBJ)
modules. You then use TLINK.EXE, Borland's high-speed linker
program, to link your object modules and create executable (.EXE)
files.

Turbo Assembler is set up to work with the 80x86 and 80x87
processor families. (For more information about the instruction
sets of the 8Ox86/80x87 families, consult the Intel data books.)

Hardware and software requirements

Turbo Assembler runs on the IBM PC family of computers,
including the XT, AT, and PS/2, along with all true compatibles.
Turbo Assembler requires MS-DOS 2.0 or later, and at least 256K
of memory.

Turbo Assembler generates instructions for the 8086, 80186, 80286,
and 80386 processors. It also generates floating-point instructions
for the 8087, 80287, and 80387 numeric coprocessors.

About the manuals

2

Turbo Assembler comes with two books and a quick-reference
guide: Turbo Assembler User's Guide (this book), Turbo Assembler
Reference Guide, and Turbo Assembler Quick-Reference Guide. The
User's Guide provides basic instructions for using Turbo
Assembler and a thorough examination of assembler
programming. The Reference Guide describes the operators,
predefined symbols, and directives Turbo Assembler uses. The
Quick Reference is a handy guide to processor and coprocessor
instructions.

Here's a more detailed look at what the User's Guide contains.

The User's Guide Chapter 1: Installing Turbo Assembler tells you about the files on
your distribution disks and what you need to do to install Turbo
Assembler on your system.

Chapter 2: Getting started In Turbo Assembler provides you with
an introduction to programming in assembly language, and a few
sample programs to make you comfortable using the command
line switches.

Chapter 3: Command-line reference details all the command-line
options, plus tells you about using the configuration file and
command files.

Turbo Assembler User's Guide

Chapter 4: The nature of assembly language leads you through a
discussion of computers in general and the 8088 processor in
particular.

Chapter 5: The elements of an assembler program describes the
basic components of assembler, with some good solid information
about directives, instructions, accessing memory, segments, and
more.

Chapter 6: More about programming In Turbo Assembler goes one
step further than Chapter 5, discussing some advanced aspects of
Turbo Assembler-more about directives, string instructions, and
so on. This chapter also covers some common pitfalls you may
encounter as an assembly progralnmer.

Chapter 7: Interfacing Turbo Assembler with Turbo C describes
how to use Turbo C, a high-level language, with assembly
language. We detail how to link assembler modules to Turbo C
and how to call Turbo Assembler functions from Turbo C.

Chapter 8: Interfacing Turbo Assembler with Turbo Pascal tells
you how to interface your assembler code with your Turbo Pascal
code; sample programs are also provided.

Chapter 9: Advanced programming In Turbo Assembler provides
you with more details about everything we've touched on in
earlier chapters, such as segment override prefixes, macros,
segment directives, and so on.

Chapter 10: The 80386 and other processors covers programming
with the 80386.

Chapter 11: Turbo Assembler Ideal mode tells you all about Ideal
mode and why you'll want to use it.

References lists several useful books about assembly
programming.

Notational conventions

Introduction

When we talk about IBM PCs or compatibles, we're referring to
any computer that uses the 8088, 8086, 80186, 80286, and 80386
chips (all of these chips are commonly referred to as 80x86). When
discussing PC-OOS, DOS, or MS-DOS, we're referring to version
2.0 or greater of the operating system.

3

All typefaces were produced by Borland's Sprint: The Professional
Word Processor, output on a PostScript printer. The different
typefaces displayed are used for the following purposes:

Italics In text, italics represent labels, placeholders,
variables, and arrays. In syntax expressions,
placeholders are set in italics to indicate that they
are user-defined.

Boldface Boldface is used in text for directives, instructions,
symbols, and operators, as well as for command
line options.

CAPITALS In text, capital letters are used to represent
instructions, directives, registers, and operators.

Monospace Monospace type is used to display any sample
code, text or code that appears on your screen, and
any text that you must actually type to assemble,
link, and run a program.

Keycaps In text, keycaps are used to indicate a key on your
keyboard. It is often used when describing a key
you must press to perform a particular function;
for example, "Press Enter after typing your program
name at the prompt."

How to contact Borland

4

If, after reading this manual and using Turbo Assembler, you
would like to contact Borland with comments, questions, or
suggestions, we suggest the following procedures:

• The best way is to log on to Borland's forum on CompuServe:
Type GO BPROGB at the main CompuServe menu and follow the
menus to Turbo Assembler. Leave your questions or comments
here for the support staff to process .

• If you prefer, write a letter detailing your problem and send it
to

Technical Support Department
Borland International

P.O. Box 660001
1700 Green Hills Drive

Scotts Valley, CA 95066 U.S.A.

Turbo Assembler User's Guide

Introduction

• You can also telephone our Technical Support department at
(408) 438-5300. To help us handle your problem as quickly as
possible, have these items handy before you call:

• product name and version number
• product serial number
• computer make and model number
• operating system and version number

If you're not familiar with Borland's No-Nonsense License
statement, now's the time to read the agreement at the front of this
manual and mail in your completed product registration card.

5

6 Turbo Assembler User's Guide

c H

Files on disk

A p T E R

1

Installing Turbo Assembler

Before we get you up to speed on programming in assembler,
you'll need to get one thing out of the way. Take the Turbo
Assembler disks and make copies (via DOS) of each one to create
your "working" copies. Once you've done that, put the original
disks away. (There's a fee to replace disks that you damage, so
only use the originals to make backups and work copies.)

If you are going to use Turbo Assembler as a replacement for
MASM, read Appendix B in the Reference Manual to see in which
areas Turbo Assembler behaves differently from MASM.

Note: Be sure to read the README file before working with
Turbo Assembler. This file contains the latest information about
the program, as well as corrections and/or additions to the
manuals.

• TASM.EXE: Turbo Assembler

• TLINK.EXE: Turbo Linker
• MAKE.EXE: Command-line MAKE utility

• TLIB.EXE: Turbo Librarian
• README.COM: Program to display README file
• README: Any last minute information about the software and

documentation

Chapter 7, Installing Turbo Assembler 7

• TCREF.EXE: A source file cross-reference utility

• OBJXREF.COM: Object file cross-reference utility

• GREP.COM: Grep utility

• TOUCH.COM: A file-update utility

• INSTALL.EXE: Installation program

• MMACROS.ARC: An archived file of MASM mode macros

Installing Turbo Assembler

8

The INSTALL disk contains a program called INST ALL.EXE that
will assist you with the installation of Turbo Assembler 1.0. There
are two options for installation:

1. Hard Disk Users: This option allows you to pick the
subdirectories where the files will be loaded.

2. Floppy Disk Users: This option will install the files necessary
to use Turbo Assembler on a two-drive system. Be sure to
have four fonnatted disks ready before you start.

To start the installation, change your current drive to the one that
has the INSTALL program on it and type INSTALL. You will be
given instructions for each prompt in a box at the bottom of the
screen. For example, if you will be installing from drive A, type

INSTALL

Before you install Turbo Assembler, be sure to read the README
file to get further infonnation about this release.

Note: If you will be running INSTALL on a laptop or any other
system that uses an LCD display, you should set your system to
black-and-white mode before running INSTALL. You can do this
from DOS with the following command line:

mode bw80

You can also force INSTALL to come up in black-and-white mode
by using the Ib switch:

INSTALL /b

Turbo Assembler User's Guide

c H A p T E R

2

Getting staried with Turbo Assembler

If you've never programmed in assembly language before, this is
the place to begin. You might have heard that assembly language
programming is a black art suited only to hackers and wizards.
Don't believe it! Assembly language is nothing more than a
human form of the language of the computer itself and, as you'd
expect, the computer's own language is highly logical. As you
might also expect, assembly language is very powerful-in fact,
assembly language is the only way to tap the full power of the
Intel80x86 family, the processors at the heart of the IBM PC
family and compatibles.

You can write whole programs in nothing but assembly language
or you can, if you want, mix assembly language into programs
written in Turbo C, Turbo Pascal, Turbo Prolog, Turbo Basic, and
other languages. Either way, with assembly language, you can
write small and blindingly fast programs. As important as speed
is the assembly language code's ability to control every aspect of
your computer's operation, down to the last tick of the system
dock.

In this chapter, we'll introduce you to assembly language and
explore the unique qualities of assembly language programming.
You'll enter and run several working assembly language
programs, both to get a feel for the language and to get used to
working with the assembler.

Chapter 5, "The elements of an assembler program," picks up
where this chapter leaves off, covering the structure of ~n

Chapter 2, Getting started with Turbo Assembler 9

10

assembly language program and fundamental program elements
and summing up everything you've learned with a full-fledged
example program.

Chapter 6, "More about programming in Turbo Assembler,"
continues to explore assembly language programming, and
Chapter 9 , "Advanced programming in Turbo Assembler,"
progresses to memory models, macros, and other advanced
topics.

Naturally, we can't make you expert assembly language
programmers in the course of a few chapters; we're simply
introducing you to assembly language and getting you started on
the road to writing your own programs. We strongly suggest that
you get one of the many excellent books devoted entirely to
assembly language programming and PC architecture (see the
references at the end of this book). In addition, you may find
IBM's DOS Technical Reference, BIOS Interface Technical Reference,
and Personal Computer XT Technical Reference manuals to be useful
reference material; these manuals document the assembly
language programming interface to the systems software and
hardware of IBM's personal computers.

Before you read further, you might want to read Chapter 3,
"Command-line reference," to familiarize yourself with the
command-line options. You should also install Turbo Assembler
(make working copies of your Turbo Assembler disks or copy the
files from your Turbo Assembler disks onto your hard disk) as
described in Chapter 1, ''Installing Turbo Assembler," if you
haven't already done so.

One final point: Assembly language is a complex topic, and there
are many things you will need to know in order to write even a
relatively simple assembly language program. Sometimes we'll
have to use features in our examples that we haven't discussed
yet, simply because we have to start somewhere. Bear with us; we'll
explain everything in due course. If, at any time, you're curious
about a specific feature, just look in Chapter 3, "Directives," in the
Reference Guide.

With that out of the way, and with Chapter 3 of the second
volume close at hand, it's time to create your first assembly
language program.

You can follow this tutorial step by step, typing in all the code
examples as you go, or you can unpack the example file on disk
(when you install Turbo Assembler) and have all the programs at

Turbo Assembler User's Guide

your fingertips. (Whatever your decision, the file names are
provided at the beginning of each example for your convenience.

Writing your first Turbo Assembler program

Assembling your
first program

In the world of programming, the first program is traditionally a
program that displays the message, "Hello, world" and that's as
good a place as any for us to start.

Get into your text editor of choice (one that outputs ASCII files),
and type in the following lines that make up the program
HELLO.ASM:

.MODEL small

.STACK 100h
• DATA

HelloMessage DB 'Hello, world' ,13,10,'$'
.CODE
mov ax,@data
mov ds,ax iset OS to point to the data segment
mov ah,9 iDOS print string function
mov dx,OFFSET HelloMessage ipoint to "Hello, world"
int 21h idisplay "Hello, world"
mov ah,4ch iDOS terminate program function
int 21h iterminate the program
END

As soon as you've entered HELLO.ASM, save it to disk.

If you're familiar with C or Pascal, you might be thinking that the
assembler version of "Hello, world" seems a bit long. Well, yes,
assembler programs do tend to be long because each assembler
instruction by itself does less than a C or Pascal instruction. On
the other hand, you've got complete freedom in combining those
assembler instructions in any way you want. That means that,
unlike C and Pascal, assembler lets you program the computer to
do anything it's capable of-and that's often worth typing a few
extra lines.

Now that you've saved HELLO.ASM, you'll want to run it. Before
you can run the program, though, you'll have to convert it into an
executable (able to be run or executed) form. This requires two
additional steps, assembling and linking, as shown in Figure 2.1,

Chapter 2, Getting started with Turbo Assembler 11

Figure 2.1
The edit, assemble, link, and

run cycle

12

which depicts the complete edit, assemble, link, and run program
development cycle.

Create a New Program

Assembler Source File
HELLO.ASM

Assemble

!
Object File

HELLO.OBJ

I
Link

l
Executable File

HELLO.EXE

I
Run

!
(If changes are needed) ~

The assembly step turns your source code into an intermediate
form called an object module, and the linking step combines one or

Turbo Assembler User's Guide

Linking your first
program

more object modules into an executable program. You can do
your assembling and linking from the command line.

To assemble HELLO.ASM, type

TASM hello

Unless you specify another file name, HELLO.ASM will be
assembled to HELLO.OBJ. (Note that you don't need to type in
the file extension name; Turbo Assembler assumes .ASM in this
case.) This is what you'll see onscreen:

Turbo Assembler Version 2.0 Copyright (c) 1988, 1990 by Borland
International, Inc.

Assembling file: HELLO.ASM
Error messages: None
Warning messages: None
Passes: 1
Remaining memory: 266K

You won't receive any warnings or errors if you typed
HELLO.ASM exactly as shown. If you get warnings or errors,
they'll appear onscreen, along with the line numbers to indicate
where they occurred. If you get errors, check your code and make
sure it's precisely the same as the code we've shown you, then
assemble the program again.

After you've successfully assembled HELLO.ASM, you're only
one step away from running your first assembler program. Once
you've linked the just-assembled object code into an executable
form, you can run the program.

To link the program, you'll use TLINK, the linker accompanying
Turbo Assembler. At the command line, type

TLINK hello

Again, there's no need to enter the extension name; TLINK
assumes it's .OBJ. When linking completes (again, after a few
seconds at most), the linker automatically gives the .EXE file the
same name as your object file, unless you've specified otherwise.
When linking is successful, this message appears onscreen:

Turbo Link Version 3.0 Copyright (c) 1987, 1990 by Borland
International, Inc.

Chapter 2, Getting started with Turbo Assembler 13

Running your first

Errors can occur during the linking process, although that's
unlikely with this example program. If you do receive any link
errors (they'll appear onscreen), modify your code to exactly
rna tch the code shown here, then assemble and link again.

program Now you're ready to run your program. Type hello at the DOS
prompt. The message

Hello, world

will be displayed onscreen. And that's all there is to it-you've
just created and run your first Turbo Assembler program!

What happened?

14

Now that you've gotten HELLO.ASM up and running, let's go
back and figure out exactly what happened along the path from
entering text to running the program.

When you first entered the assembler source code, the text was
stored by your text editor in memory. If the computer had been
turned off at this point, for whatever reason, the source code
would have been lost; consequently, we suggest you save your
source code early and often in order to avert possible tragedy.
When you saved the source code to disk, a permanent copy of the
text was stored in the file HELLO.ASM, where it would survive
even if you shut off your computer. (HELLO.ASM might not
survive a disk crash, however, so we also suggest that you back
up your disks regularly.) HELLO.ASM is a standard ASCII text
file; you can display it at the DOS prompt by typing

type hello.asm

and you can edit it with any text editor.

When you assembled HELLO.ASM, Turbo Assembler turned the
text instructions in HELLO.ASM into their binary equivalents in
the object file HELLO.OBI. HELLO.OBI is an intermediate file,
partway between source code and an executable file. HELLO.OBI
contains all the information needed to make executable code out
of the instructions that started out in HELLO.ASM, but it's in a
form that can readily be combined with other object files into a
single program. In Chapter 6, "More about programming in
Turbo Assembler," you'll see how useful this can be when you're
developing large programs.

Turbo Assembler User's Guide

Next, when you linked HELLO.OB], TLINK converted it into the
executable file HELLO.EXE. Finally, you ran HELLO.EXE when
you typed hello at the prompt.

Now type

dir hello.*

to list the various HELLO files on your disk. You'll find
HELLO.ASM, HELLO.OB], HELLO.EXE, and HELLO.MAP.

Modifying your first Turbo Assembler program

Now go back to your editor and modify your program to accept a
bit of input from the outside world. (The outside world is you,
typing at your keyboard.) Change the code to the following:

.MODEL small

.STACK 100h
• DATA

TimePrompt DB 'Is it after 12 noon (Y/N)?$'
GoodMorningMessage LABEL BYTE

DB 13,10,'Good morning, world!',13,10,'$'
GoodAfternoonMessage LABEL BYTE

DB 13,10,'Good afternoon, world!' ,13,10,'$'
• CODE
mov
mov
mov
mov
int
mov

ax,@data
ds,ax
dx,OFFSET TimePrompt
ah,9
21h
ah,1

iset OS to point to data segment
;point to the time prompt
;DOS print string function #
idisplay the time prompt
;DOS get character function #

int
cmp
jz

21h
al,'y'
IsAfternoon

;get a single-character response
ityped lowercase y for after noon?
iyes, it's after noon

cmp al,'Y'
jnz IsMorning

IsAfternoon:

ityped uppercase Y for after noon?
ino, it's before noon

mov dx,OFFSET GoodAfternoonMessage ;point to the afternoon
; greeting

jmp DisplayGreeting
IsMorning:

mov dx,OFFSET GoodMorningMessage ;point to the before noon
i greeting

DisplayGreeting:
mov ah,9
int 21h

Chapter 2, Getting started with Turbo Assembler

iDOS print string function #
;display the appropriate greeting

15

16

mov ah,4ch
int 21h
END

;005 terminate program function t
;terminate the program

You've added two important new capabilities to your program:
input and decision-making. This program asks you whether it's
after noon, then accepts a single-character response from the
keyboard. If the character typed is an uppercase or lowercase Y,
the program displays a greeting appropriate for the afternoon;
otherwise, it gives a morning greeting. All the essential elements
of a useful program-input from the outside world, data
processing and decision-making, and output to the outside
world-are present in this code.

Save the modified program to disk. (This replaces your original
version of HELLO.ASM with the modified code, so the original
version will be lost.) Then reassemble and relink the program just
as you did in the previous examples. Run the program again by
typing hello at. the DOS prompt. The message

Is it after 12 noon (YIN)?

is displayed, with the cursor blinking after the question mark,
waiting for your response. Press Y. The program responds

Good afternoon, world!

HELLO.ASM is now an interactive, decision-making program.

In the course of your assembler programming, you will surely
make a wide variety of mistakes in typing and in program syntax.
Turbo Assembler ca tches many mistakes for you as it assembles
your code, reporting all such errors. The mistakes reported fall
into two categories: warnings and errors. Turbo Assembler
displays a warning message if it detects something suspicious, but
not necessarily wrong, in your code; sometimes warnings can be
ignored, but it's always best to check them out and make sure you
understand the problem. Turbo Assembler displays an error
message if it encounters something clearly wrong in your code
that makes it impossible to complete assembly and generate an
object file.

In other words, warnings are cautionary or nonfatal, while errors
must be fixed before you can run a program. The many error and
warning messages Turbo Assembler can generate are covered in
Appendix E in the Reference Guide.

Turbo Assembler User's Guide

Sending output to
a printer

As with any programming language, Turbo Assembler can't catch
logic errors for you. Turbo Assembler can tell you whether your
code can be assembled, but it can't tell you whether the assembled
code will perform as you intended it to-only you can be the
judge of that.

Don't worry if the example code doesn't make much sense to you
right now. Even programmers experienced in other languages
take some time to become fluent in 8086 assembly language;
there's really nothing quite like it under the sun. At this point,
you're just getting a feel for what assembler programs look like.
Later in this chapter, and in Chapter 5, "The elements of an
assembler program," we'll cover each of the elements of the
programs presented.

To list or send your program to a printer, consult your specific
text editor's manual. Turbo Assembler source files are normal
ASCII text files, so you can also print any assembler source file
from the DOS prompt with the PRINT command.

The printer is a handy output device; not only will you sometimes
want to send your program files to the printer, but you'll also
want your programs to send output to the printer on occasion.
The following is a version of the "Hello, world" program that
displays its output on the printer rather than on the screen:

.MODEL small

.STACK 100h
• DATA

HelloMessage DB 'Hello, world' ,13,10,12
HELLO_MESSAGE_LENGTH EQU $ - HelloMessage

• CODE
mov ax,@data
mov ds,ax
mov ah,40h

;set OS to point to the data segment
;DOS write to device function f

mov bx,4
mov cx,HELLO_MESSAGE_LENGTH
mov dx,OFFSET HelloMessage
int 21h
mov ah,4ch
int 21h
END

;printer handle
;number of characters to print
i string to print
iprint "Hello, world"
;DOS terminate program function f
;terminate the program

In this version of the "Hello, world" program, you've replaced the
OOS function to print a string on the screen with a OOS function

Chapter 2. Gefflng started with Turbo Assembler 17

that sends a string to a selected device or file-in this case, the
printer. Enter and run the program, and see that a sheet con
taining the familiar ''Hello, world" message is printed. (Don't
forget to save the program before running it. Again, this saves the
modified code in HELLO.ASM, and the previous version of the
program will be lost.)

You can modify this program to send output to the screen rather
than to the printer, displaying "Hello, world" onscreen again,
simply by changing

mov bx,4 ;printer handle

to

mov bx,l ;standard output handle

Make this change, then reassemble and relink before running the
program again. You'll note that when the output is displayed on
the screen, the final character shown is the universal symbol for
"female" (~). This is actually a formfeed character, which the
program sent to the printer to force it to eject the sheet on which
you'd printed "Hello, world." Since the screen doesn't have
sheets, it doesn't know about formfeeds, so it simply displays the
corresponding member of the PC's character set when told to
print a formfeed character.

Writing your second Turbo Assembler program

18

Now you're ready to enter and run a program that actually does
something, REVERSE.ASM. Go back into your text editor and
enter the following:

.MODEL small

.STACK 100h
• DATA

MAXIMUM_STRING_LENGTH EQU 1000
StringToReverse DB MAXIMUM_STRING_LENGTH DUP(?)
ReverseString DB MAXIMUM_STRING_LENGTH DUP(?)

• CODE
mov ax,@data
mov ds,ax
mov ah,3fh
mov bx,O

;set DS to point to the data segment
;DOS read from handle function f
;standard input handle

mov cx,MAXIMUM_STRING_LENGTH ;read up to maximum number of
; characters

Turbo Assembler User's Guide

Running

mov dx,OFFSET StringToReverse istore the string here
int 21h iget the string
and ax,ax iwere any characters read?
jz Done ino, so you're done
mov cx,ax iPut string length in ex, where

i you can use it as a counter
push cx isave the string length
mov bx,OFFSET StringToReverse
mov .si,OFFSET ReverseString
add si,cx
dec si ipoint to the end of the

i reverse string buffer
ReverseLoop:

mov aI, [bx]
mov [si],al
inc bx
dec si

loop ReverseLoop
pop cx
mov ah,40h
mov bx,l

iget the next character
istore the characters in reverse order
ipoint to next character
ipoint to previous location
i in reverse buffer
imove next character, if any
iget back the string length
iDOS write from handle function f

mov dx,OFFSET ReverseString
int 21h

istandard output handle
iprint this string
iprint the reversed string

Done:
mov ah,4ch
int 21h
END

iDOS terminate program function f
iterminate the program

You'll see what the program actually does in a moment; first, as
always, you should save your work.

REVERSE.ASM To run REVERSE.ASM, you must first assemble it; type

TASM reverse

then type

TLINK reverse

to create the executable file.

Type reverse at the prompt to run your program. If Turbo
Assembler reports any errors or warnings, carefully check your
code to see that it matches the code shown previously, then try
running the program again.

Chapter 2, Geffing started with Turbo Assembler 19

20

After you run your program, the cursor will sit blinking onscreen.
Apparently, the program is waiting for you to type something.
Try typing

ABCDEFG

then press Enter. The program displays

GFEDCBA

and ends. Type reverse agam at the command line. This time, type

0123456789

and press Enter. The program displays

9876543210

Now it's clear what REVERSE.ASM does: It reverses whatever
string of characters you type in. Speedy manipulation of
characters and strings is one of the areas in which assembly
language excels, as you'll see in the next few chapters.

Congratulations! You've entered, assembled, linked, and run
several assembler programs, and you've seen the fundamentals of
assembler programming-input, processing, and output-in
action.

If you don't want an object file but you do want a listing file, or if
you want a cross-reference file but don't want a listing file or
object file, you can specify the null device (NUL) as the file name.
For example,

TASM FILE1"NUL,

assembles file FILEl.ASM to object file FILE1.0BJ, doesn't
produce a listing file, and creates a cross-reference file FILEl.XRF.

Now you're ready to learn the basic elements of assembler
programming, covered in Chapter 5, liThe elements of an
assembler program."

Turbo Assembler User's Guide

c H A p T E R

3

Command-line reference

This chapter is dedicated to familiarizing you with Turbo
Assembler's command-line options. We'll describe each of the
command-line options you can use to alter the assembler's
behavior, then show how and when to use command files. Finally,
we describe the configuration file.

Starting Turbo Assembler from DOS

Turbo Assembler has a very powerful and flexible command-line
syntax. If you start Turbo Assembler without giving it any
arguments, like this,

TASM

you'll get a screenful of help describing many of the command
line options and the syntax for specifying the files you want to
assemble. Figure 3.1 shows you how this looks.

Chapter 3, Command-line reference 21

Figure 3.1
Turbo Assembler command

line

22

Turbo Assembler Version 2.0 Copyright (C) 1988, 1990 by Borland
International, Inc.

Syntax: TASM [options] source [,object] [,listing] [,xref]

/a,/s
/c
/dSYM[=VAL]
/e,/r
/h,/?
/iPATH
/jCMD
/khl,/ksl
/l,/la
/ml,/mx,/mu
/mvl
/ml
/n
/p
/q
/t
/wO,/wl,/w2
/w-xxx,/w+xxx
/x
/z
/zi,/zd

Alphabetic or Source-code segment ordering
Generate cross-reference in listing
Define symbol SYM = 0, or = value VAL
Emulated or Real floating-point instructions
Display this help screen
Search PATH for include files
Jam in assembler directive CMD (eg. /jIDEAL)
Hash table capacity I, String space capacity I
Generate listing: l=normal listing, la=expanded listing
Case sensitivity on symbols: ml=all, mx=globals, mu=none
Set maximum valid length for symbols
Allow I mUltiple passes to resolve forward references
Suppress symbol tables in listing
Check for code segment overrides in protected mode
Suppress OBJ records not needed for linking
Suppress messages if successful assembly
Set warning level: wO=none, w1=w2=warnings on
Disable (-) or enable (+) warning xxx
Include false conditionals in listing
Display source line with error message
Debug info: zi=full, zd=line numbers only

With the command-line options, you can specify the name of one
or more files that you want to assemble, as well as any options
that control how the files get assembled.

The general form of the command line looks like this:

TASM fileset [; fileset] ...

The semicolon (i) after the left bracket (D allows you to assemble
multiple groups of files on one command line by separating the
file groups. If you prefer, you can set different options for each set
of filesi for example,

TASM Ie FILE1; la FILE2

assembles FILE1.ASM with the Ie command-line option and
assembles file FILE2.ASM with the la command-line option.

In the general form of the command line, fileset can be

[option] ••• sourcefile [[+] sourcefile] ...
[, [objfile] [, [listfile] , [, [xreffile]]]]

This syntax shows that a group of files can start off with any
options you want to apply to those files, followed by the files you

Turbo Assembler User's Guide

want to assemble. A file name can be a single file name, or it can
use the normal OOS wildcard characters If- and ? to specify
multiple files to assemble. If your file name does not have an
extension, Turbo Assembler adds the .ASM extension. For
example, to assemble all the .ASM files in the current directory,
you would type

TASM *
If you want to assemble multiple files, you can separate their
names with the plus sign (+):

TASM MYFILEI + MYFlLE2

You can follow the file name you want to assemble by an optional
object file name, listing file name, and a cross-reference file name.
If you do not specify an object file or listing file, Turbo Assembler
creates an object file with the same name as the source file and an
extension of .OBJ.

A listing file is not generated unless you explicitly request one. To
request one, place a comma after the object file name, followed by
a listing file name. If you don't explicitly provide a listing file
name, Turbo Assembler creates a listing file with the same name
as the source file and the extension .LST. If you supply a listing
file name without an extension, .LST is appended to it.

A cross-reference file is not generated unless you explicitly
request one. To request one, place a comma after the listing file
name, followed by a cross-reference file name. If you don't
explicitly provide a cross-reference file name, Turbo Assembler
creates a cross-reference file with the same name as the source file
and the extension .XRF. If you supply a cross-reference file name
without an extension,.XRF is appended to it. (TCREF, a cross
reference utility, is described Oil disk.)

If you want to accept the default object file name and also request
a listing file, you must supply the comma that separates the object
file name from the listing file name:

TASM FILEl" TEST

This assembles FILEl.ASM to FILE1.0BJ and creates a listing file
named TEST.LST.

If you want to accept the default object and listing file names and
also request a cross-reference file, you must supply the commas
that separate the file names:

Chapter 3, Command-line reference 23

TASM MYFILE",MYXREF

This assembles file MYFILE.ASM to MYFILE.OBJ, with a listing in
file MYFILE.LST and a cross-reference in MYXREF.XRF.

If you use wildcards to specify the source files to assemble, you
can also use wildcards to indicate the object and listing file names.
For example, if your current directory contains XXI.ASM and
XX2.ASM, the command line

TASM XX*,YY*

assembles all the files that start with XX, generates object files that
start with W, and derives the remainder of the name from the
source file ·name. The resulting object files are therefore called
YYI.OBJ and YY2.0BJ.

If you don't want an object file but you do want a listing file, or if
you want a cross-reference file but don't want a listing file or
object file, you can specify the null device (NUL) as the file name.
For example,

TASM FlLEl"NUL,

assembles file FILE1.ASM to object file FILE1.0BJ, doesn't
produce a listing file, and creates a cross-reference file FILEI.XRF.

Command-line options

24

The command-line options let you control the behavior of the
assembler, and how it outputs information to the screen, listing,
and object file. Turbo Assembler provides you with some options
that produce no action, but are accepted for compatibility with the
current and previous versions of MASM:

Ib Sets buffer size
Iv Displays extra statistics

You can enter options using any combination of uppercase and
lowercase letters. You can also enter your options in any order
except where you have multiple II or Ij options; these are
processed in sequence. When using the Id option, you must also
be careful to define symbols before using them in subsequent Id
options.

Note: You can override command-line options by using
conflicting directives in your source code.

Turbo Assembler User's Guide

/a

/b

Figure 3.1 on page 22 summarizes the Turbo Assembler
command-line options; here's a detailed description of each
option.

Function Specifies alphabetical segment-ordering

Syntax fa

la

Remarks The la option tells Turbo Assembler to place segments in the object file in
alphabetical order. This is the same as using the .ALPHA directive in your
source file.

You usually only have to use this option if you want to assemble a source
file that was written for very early versions of the IBM or Microsoft
assemblers.

The Is option reverses the effect of this option by returning to the default
sequential segment-ordering.

If you specify sequential segment-ordering with the .SEQ directive in
your source file, it will override any la you provide on the command line.

Example TASM / a TEST!

This command line creates an object file, TEST1.0BJ, that has its segments
in alphabetical order.

Syntax fb

Remarks The Ib option is included for compatibility. It performs no action and has
no effect on the assembly.

Chapter 3, Command-line reference 25

Ie

Ie

Id

26

Function Enables cross-reference in listing file

Syntax Ie

Remarks The Ie option enables cross-reference information in the listing file. Turbo
Assembler adds the cross-reference information to the symbol table at the
end of the listing file. This means that, in order to see the cross-reference
information, you must either explicitly specify a listing file on the
command line or use the II option to enable the listing file.

For each symbol, the cross-reference shows the line on which it is defined
and all lines that refer to it.

Example TASM /1 /e TEST!

This code creates a listing file that also has cross-reference information in
the symbol table.

Function Defines a symbol

Syntax Idsymbol [=value or expression]

Remarks The Id option defines a symbol for your source file, exactly as if it were
defined on the first line of your file with the = directive. You can use this
option as many times as you want on the command line.

You can only define a symbol as being equal to another symbol or a
constant value. You can't use an expression with operators to the right of
the equal sign (=). For example, IdX=9 and IdX= Yare allowed, but
IdX= Y -4 is not allowed.

Example TASM /dMAX=lO /dMIN=2 TESTl

This command line defines two symbols, MAX and MIN, that other
statements in the source file TESTl.ASM can refer to.

Turbo Assembler User's Guide

/e

Function Generates floating-point emulator instructions

Syntax Ie

Ie

Remarks The Ie option tells Turbo Assembler to generate floating-point instructions
that will be executed by a software floating-point emulator. Use this
option if your program contains a floating-point emulation library that
mimics the functions of the 80x87 numeric coprocessor.

Normally, you would only use this option if your assembler module is
part of a program written in a high-level language that uses a floating
point emulation library. (Turbo C, Turbo Pascal, Turbo Basic, and Turbo
Prolog all support floating-point emulation.) You can't just link an
assembler program with the emulation library, since the library expects to
have been initialized by the compiler's startup code.

The Ir option reverses the effect of this option by enabling the assembly of
real floating-point instructions that can only be executed by a numeric
coprocessor.

If you use the NOEMUL directive in your source file, it will override the Ie
option on the command line.

The Ie command-line option has the same effect as using the EMUL
directive at the start of your source file, and is also the same as using the
IjEMUL command-line option.

Example TASM / e SECANT
TCC -f TRIG.C SECANT.OBJ

The first command line assembles a module with emulated floating-point
instructions. The second command line compiles a C source module with
floating-point emulation and then links it with the object file from the
assembler.

/h or /?

Function Displays a help screen

Syntax /h or /?

Remarks The Ih option tells Turbo Assembler to display a help screen that describes
the command-line syntax. This includes a list of the options, as well as the
various file names you can supply. The 11 option does the same thing.

Chapter 3, Command-line reference 27

Ih or I?

Ii

28

Example TASM /h

Function Sets an Include file path

Syntax /iPATH

Remarks The II option lets you tell Turbo Assembler where to look for files that are
included in your source file by using the INCLUDE directive. You can
place more than one II option on the command line (the number is only
limited by RAM).

When Turbo Assembler encounters an INCLUDE directive, the location
where it searches for the Include file is determined by whether the file
name in the INCLUDE directive has a directory path or is just a simple file
name.

If you supply a directory path as part of the file name, that path is tried
first, then Turbo Assembler searches the directories specified by II
command-line options in the order they appear on the command line. It
then looks in any directories specified by II options in a configuration file.

If you don't supply a directory path as part of the file name, Turbo
Assembler searches first in the directories specified by II command-line
options, then it looks in any directories specified by II options in a
configuration file, and finally it looks in the current directory.

Example TASM / i \ INCLUDE / iD: \INCLUDE TEST!

If the source file contains the statement

INCLUDE MYMACS.INC

Turbo Assembler will first look for \ INCLUDE \ MYMACS.INC, then it
will look for D:\INCLUDE\MYMACS.INC. If it still hasn't found the file,
it will look for MYMACS.INC in the current directory. If the statement in
your source file had been

INCLUDE INCS\MYMACS.INC

Turbo Assembler would first look for INCS\MYMACS.INC and then it
would look for \INCLUDE\MYMACS.INC, and finally for D:\
INCLUDE\MYMACS.INC.

Turbo Assembler User's Guide

/j

/kh

Function Defines an assembler startup directive

Syntax /jdirective

Ij

Remarks The Ij option lets you specify a directive that will be assembled before the
first line of the source file. directive can be any Turbo Assembler directive
that does not take any arguments, such as .286, IDEAL, %MACS, I

NOJUMPS, and so on. See Chapter 3 in the Reference Guide for a complete
description of all Turbo Assembler directives.

You can put more than one Ij option on the command line; they are
processed from left to right across the command line.

Example TASM /j .286 /jIDEAL TEST!

This code assembles the file TEST1.ASM with 80286 instructions enabled
and Ideal mode expression-parsing enabled.

Function Sets the maximum number of symbols allowed

Syntax /khnsymbols

Remarks The Ikh option sets the maximum number of symbols that your program
can contain. If you don't use this option, your program can only have a
maximum of 8,192 symbols; using this option increases the number of
symbols to nsymbols, up to a maximum of 32,768.

Use this option if you get the Out of hash space message when assembling
your program.

You can also use this option to reduce the total number of symbols below
the default 8,192. This releases some memory that can be used when you
are trying to assemble a program but don't have enough available
memory.

Example TASM /khlOOOO BIGFILE

This command tells Turbo Assembler to reserve space for 10,000 symbols
when assembling the file BIGFILE.

Chapter 3, Command-line reference 29

/ks

/ks

/1

/10

Function Sets the maximum size of Turbo Assembler's string space

Syntax /kskbytes

Remarks Usually the string size is determined automatically and does not need to
be adjusted. However, if you have a source file that results in an Out of
string space message, you might want to increase the string space size by
using this option. Try starting with a value of 100, and increase it until
your program assembles without error. The maximum allowable value for
kbytes is 255.

Example TASM Iksl50 SFILE

This tells Turbo Assembler to reserve 150K of string space.

Function Generates a listing file

Syntax Ii

Remarks The II option indicates that you want a listing file, even if you did not
explicitly ~pecify it on the command line. The listing file will have the
same name as the source file, with an extension of .LST.

Example TASM 11 TEST!

This command line requests a listing file that will be named TEST1.LST.

Function Shows high-level interface code in listing file

Syntax /la

Remarks The Iia option tells Turbo Assembler to show all generated code in the
listing file, including the code that gets generated as a result of the high
level language interface .MODEL directive.

Example TASM Ila FILEl

30 Turbo Assembler User's Guide

1m

Iml

Function

Syntax

Remarks

Sets the maximum number of assembly passes

Im[npasses]

1m

Normally, Turbo Assembler functions as a single-pass assembler. The 1m
option allows you to specify the maximum number of passes that the
assembler should make during the assembly process. T ASM automatically
decides whether it can perform less than the number of passes specified. If
you don't specify npasses, a default of five is used.

Some modules contain constructions that assemble properly only when
two passes are done. If multiple passes are not enabled, such a module
will produce at least one "Pass-dependent construction encountered"
warning. If the 1m option is enabled, Turbo Assembler will assemble this
module correctly but will not optimize the code by removing NOPs, no
matter how many passes are allowed. The warning IIModule is pass
dependent-<:ompatibility pass was done" is displayed if this occurs.

Example TASM 1M2 TESTl

This tells Turbo Assembler to use up to two passes when assembling
TESTl.

Function Treats symbols as case-sensitive

Syntax Iml

Remarks The Iml option tells Turbo Assembler to treat all symbol names as case
sensitive. Normally, uppercase and lowercase letters are considered
equivalent so that the names ABCxyz, abcxyz, and ABCXYZ would all refer
to the same symbol. If you specify the Iml option, these three symbols will
be treated as distinct. Even when you specify Iml, you can still enter any
assembler keyword in uppercase or lowercase. Keywords are the symbols
built into the assembler that have special meanings, such as instruction
mnemonics, directives, and operators.

Example TASM Iml TESTl

where TESTl.ASM contains the following statements:

abc OW 0
ABC OW 1 inot a duplicate symbol

Chapter 3. Command-line reference 31

/mu

/mu

/mv#

/mx

Mov Ax,!Bp] imixed case OK in keywords

Function Converts symbols to uppercase

Syntax /mu

Remarks The Imu option tells Turbo Assembler to ignore the case of all symbols. By
default, Turbo Assembler specifies that any lowercase letters in symbols
will be converted to uppercase unless you change it by using the Iml
directive.

Example TASM /mu TEST!

makes sure that all symbols are converted to uppercase (which is the
default):

EXTRN myfunc:NEAR
call myfunc idon't know if declared as

i MYFUNC, Myfunc, ••.

Function Sets the maximum length of symbols.

Syntax tmv'

Remarks The Imv# option sets the maximum length of symbols that T ASM will
distinguish between. For example, if you set Imv3, TASM will see ABCC
and ABCD as the same symbol, but not AB.

Function Makes public and external symbols case-sensitive

Syntax /rnx

Remarks The Imx option tells Turbo Assembler to treat only external and public
symbols as case-sensitive. All other symbols used (within the source file)
are treated as uppercase.

32 Turbo Assembler User's Guide

In

Ip

/mx

You should use this directive when you call routines in other modules
that were compiled or assembled so that case-sensitivity is preserved; for
example, modules compiled by Turbo C.

Example TASM Irnx TEST1;

where TESTl.ASM contains the following source lines:

EXTRN Cfunc:NEAR
rnyproc PROC NEAR
call Cfunc

Function Suppresses symbol table in listing file

Syntax In

Remarks The In option indicates that you don't want the usual symbol table at the
end of the listing file. Normally, a complete symbol table listing appears at
the end of the file, showing all symbols, their types, and their values.

You must specify a listing file, either explicitly on the command line or by
using the II option; otherwise, In has no effect.

Example TASM II In TEST!

This code generates a listing file showing the generated code only, and not
the value of your symbols.

Function Checks for impure code in protected mode

Syntax Ip

Remarks The Ip option specifies that you want to be warned about any instructions
that generate "impure" code in protected mode. Instructions that move
data into memory by using a CS: override in protected mode are
considered impure because they might not work correctly unless you take
special measures.

You only need to use this option if you are writing a program that runs on
the 80286 or 80386 in protected mode.

Example TASM Ip TEST!

Chapter 3. Command-line reference 33

/p

/q

/r

34

where TEST1.ASM contains the following statements:

.286P
CODE SEGMENT
temp OW ?

mov CS:temp,O ;impure in protected mode

Function Suppresses .OBI records not needed for linking

Syntax /q

Remarks The Iq option removes the copyright and file dependency records from
the resulting .OBI files, making it smaller. Don't use this option if you are
using MAKE or a similar program that relies on the dependency records.

Function Generates real floating-point instructions

Syntax Ir

Remarks The Ir option tells Turbo Assembler to generate real floating-point
instructions (instead of generating emulated floating-point instructions).
Use this option if your program is going to run on machines equipped
with an 8Ox87 numeric coprocessor.

The Ie option reverses the effect of this option in generating emulated
floating-point instructions.

If you use the EMUL directive in your source file, it will override the Ir
option on the command line.

The Ir command-line option has the same effect as using the NOEMUL
directive at the start of your source file, and is also the same as using the
IjNOEMUL command-line option.

Example TASM /r SECANT
TPC /$N+ /$E- TRIG. PAS

The first command line assembles a module with real floating-point
instructions. The second compiles a Pascal source module with real
floating-point instructions that links in the object file from the assembler.

Turbo Assembler User's Guide

Is

It

Iv

Function Specifies sequential segment-ordering

Syntax Is

/s

Remarks The Is option tells Turbo Assembler to place segments in the object file in
the order in which they were encountered in the source file. By default,
Turbo Assembler uses segment-ordering, unless you change it by placing
an Is option in the configuration file.

If you specify alphabetical segment-ordering in your source file with the
.ALPHA directive, it will override Is on the command line.

Example TASM Is TEST!

This code creates an object file (TEST1.0BJ) that has its segments ordered
exactly as they were specified in the source file.

Function Suppresses messages on successful assembly

Syntax It

Remarks The It option stops any display by Turbo Assembler unless warning or
error messages result from the assembly.

You can use this option when you are assembling many modules, and you
only want warning or error messages to be displayed onscreen.

Example TASM It TEST!

Syntax Iv

Remarks The Iv option is included for compatibility. It performs no action and has
no effect on the assembly.

Chapter 3, Command-line reference 35

/w

/w

36

Function Con troIs the generation of warning messages

Syntax /w
w- [warnclass]
w+ [warnclass]

Remarks The Iw option controls which warning messages are emitted by Turbo
Assembler.

If you specify Iw by itself, "mild" warnings are enabled. Mild warnings
merely indicate that you can improve some aspect of your code's
efficiency.

If you specify Iw- without warnclass, all warnings are disabled. If you
follow Iw- with warnclass, only that warning is disabled. Each warning
message has a three-letter identifier:

ALN Segment alignment
ASS Assuming segment is 16-bit
BRK Brackets needed
ICG Inefficient code generation
LCO Location counter overflow
OPI Open IF conditional
OPP Open procedure
OPS Open segment
OVF Arithmetic overflow
POC Pass-dependent construction
PQK Assuming constant for [const] wa~ing
PRO Write-to memory in protected mode needs CS override
RES Reserved word warning
TPI Turbo Pascal illegal warning

If you specify Iw+ without warnclass, all warnings are enabled. If you
specify Iw+ with warnclass from the preceding list, only that warning will
be enabled.

By default, Turbo Assembler first starts assembling your file with all
warnings enabled except the inefficient code-generation (ICG) and the
write-to-memory in protected mode (PRO) warnings.

You can use the WARN and NOWARN directives within your source file to
control whether a particular warning is allowed for a certain range of
source lines. See Chapter 3 in the Reference Guide for more information on
these directives.

Turbo Assembler User's Guide

Ix

Iz

Example TASM Iw TEST!

The following statement in TEST1.ASM issues a warning message that
would not have appeared without the Iw option:

mov bx,ABC ;inefficient code generation warning
ABC = 1

With the command line

TASM Iw-OVF TEST2

no warnings are generated if TEST2.ASM contains

dw lOOOh * 20h

Function Includes false conditionals in listing

Syntax Ix

/w

Remarks If a conditional IF, IFNDEF, IFDEF, and so forth evaluates to False, the Ix
option causes the statements inside the conditional block to appear in the
listing file. This option also causes the conditional directives themselves to
be listed; normally they are not.

You must specify a listing file on the command line or via the II option,
otherwise Ix has no effect.

You can use the .LFCOND, .SFCOND, and .TFCOND directives to override
the effects of the Ix option.

Example TASM Ix TESTl

Function Displays source lines along with error messages

Syntax Iz

Remarks The Iz option tells Turbo Assembler to display the corresponding line
from the source file when an error message is generated. The line that
caused the error is displayed before the error message. With this option
disabled, Turbo Assembler just displays a message that describes the
error.

Chapter 3, Command-line reference 37

/z

/zd

/zi

Example TASM / z TEST!

Function Enables line-number information in object files

Syntax /zd

Remarks The Izd option causes Turbo Assembler to place line-number information
in the object file. This lets Borland's stand-alone debugger, Turbo
Debugger, display the current location in your source code, but does not
put the information in the object file that would allow the debugger to
access your data items.

If you run out of memory when trying to debug your program under
Turbo Debugger, you can use Izd for some modules and Izi for others.

Example TASM / zd TEST!

Function Enables debug information in object file

Syntax /zi

Remarks The Izi option tells Turbo Assembler to output complete debugging
information to the object file. This includes line-number records to
synchronize source code display and data type information to allow you
to examine and modify your program's data.

The Izi option lets you use all the features of Turbo Debugger to step
through your program and examine or change your data items. You can
use Izi on all your program's modules, or just on those you're interested in
debugging. Since the Izi switch adds information to the object and
executable programs, you might not want to use it on all your modules if
you run out of memory when running a program under Turbo Debugger.

Example TASM /zi TEST!

38 Turbo Assembler User's Guide

Indirect command files

At any point when entering a command line, Turbo Assembler
lets you specify an indirect command file by preceding its name
with an "at" sign (@). For example,

TASM /dTESTMODE @MYPROJ.TA

causes the contents of the file MYPROJ.TA to become part of the
command line, exactly as if you had typed in its contents directly.

This useful feature lets you put your most frequently used
command lines and file lists in a separate file. And you don't have
to place your entire command line in one indirect file, since you
can use more than one indirect file on the command line and can
also mix indirect command files with normal arguments; for
example,

TASM @MYFILES @IOLIBS /dBUF=1024

This way you can keep long lists of standard files and options in
files, so that you can quickly and easily alter the behavior of an
individual assembly run.

You can either put all your file names and options on a single line
in the command file or you can split them across as many lines as
you want.

The configuration file

Turbo Assembler also lets you put your most frequently used
options into a configuration file in the current directory. If
running on DOS 3.x or later, it also looks in the directory that
TASM was loaded from. This way, when you run Turbo
Assembler, it looks for a file called T ASM.CFG in your current
directory. If Turbo Assembler finds the file, it treats it as an
indirect file and processes it before anything else on the command
line.

This is helpful when you have all the source files for a project in a
single directory and you know that, for example, you always
want to assemble with emulated floating-point instructions (the Ie
option). You can place that option in the TASM.CFG file, so you
don't have to specify that option each time you start Turbo
Assembler.

Chapter 3, Command-line reference 39

40

The contents of the configuration file have exactly the same
format as an indirect file. The file can contain any valid
command-line options, on as many lines as you want. The options
are treated as if they all appeared on one line.

The contents of the configuration file are processed before any
arguments on the command line. This lets you override any
options set in the configuration file by simply placing an option
with the opposite effect on the command line. For example, if
your configuration file contains

la Ie

and you invoke Turbo Assembler with

TASM Is Ir MYFILE

where MYFILE is your program file, your file will be assembled
with sequential segment-ordering (Is) and real floating-point
instructions (lr), even though the configuration file contained the
la and Ie options that specified alphabetical segment-ordering and
emulated floating-point instructions.

Turbo Assembler User's Guide

c H A p T E R

4

The nature of assembly language

Earlier, we said that assembly language is the computer's own
language. In order to understand what that means, you first need
to understand exactly what a computer is. Then we'll teach you
just what it is that makes assembly language unique among the
many languages of the computer world.

In this chapter we'll cover the nature of computers in general, and
the 8086 processor in particular, to give you an understanding of
the special strengths of assembly language programming on the
8086. We'll also discuss issues of assembly language
programming specifically related to the IBM PC.

The architecture of a computer

Deep down, a computer is nothing more than a device that moves
data from one place to another, sometimes transforming the data
in various logical and arithmetical ways. For our purposes,
however, it's more useful to view a computer as a system
consisting of five functional subsystems-input, control,
arithmetic and logical processing, memory, and output-as
shown in Figure 4.1.

(For the moment, we're talking about computers in general; we'll
get to the 8088 shortly.)

Chapter 4, The nature of assembly language 41

42

Figure 4.1
Five subsystems

Arithmetic Subsystem

(Add, subtract,
multiply, divide,
and, or,
exclusive-or, etc.)

Input Output

Subsystem Control Subsystem
Subsystem

(Keyboard,
(Overall Coordination)

(Display,
Mouse, Printer,
Joystick, Plotter,
Disk) Disk)

Memory Subsystem

(Up to 1 megabyte of
RAM and/or ROM)

The arithmetic subsystem of the computer is the aspect most
people think of when they think ofa computer. After all, what is a
computer if not a number-cruncher? As it turns out, though, most
computers spend very little time crunching numbers, and a great
deal of time working with character strings and performing input
and output; what need does a word processor have for
arithmetic? Nonetheless, the arithmetic subsystem is important,
for it is there that not only addition, subtraction, multiplication,
and division are performed, but logical operations (such as and,
or, and exclusive-or) as well.

It's all very well to perform arithmetic, but where do the source
values for, say, addition come from, and where does the result of
each operation go? The computer's memory subsystem comes into
play here, providing instantly accessible storage for many
thousands of characters or numbers. Computers also have floppy
and hard disk drives, which provide permanent (but relatively
slow) storage for enormous amounts of data, but these are
actually input/output (I/O) devices, not part of the memory
subsystem.

Turbo Assembler User's Guide

Programs without Input and
output tend to be rare, since
they can't accept new data

(rom the outside world and
can't do anything with what

ever results they do
generate.

The making of
assembly

language

The input subsystem allows programs to manipulate data from
the outside world, ranging from single keystrokes to mouse
motions to whole databases stored in disk files. The output
subsystem lets programs display prompts and results on screens
and printers, and send data to disk files and tapes.

Finally, the control subsystem ties together the operation of the
other four subsystems and controls data movement.

The control and arithmetic subsystems together form what is
known as the processing unit, or processor. A processor forms the
core of any computer, providing data processing and controlling
the memory, input, and output subsystems. The processor sets the
tone for any computer, since it controls the operation of each of
the subsystems and coordinates them into a smoothly functioning
unit.

Nowadays, an entire processor is frequently built on a single chip.
For instance, the 8088 is a processor on a chip, complete with
arithmetic processing, control, and interfaces to input, output, and
memory.

It's with the processor that we make the connection between the
architecture of the computer and the unique nature of assembly
language.

We've said that the processor orchestrates the activities of the five
subsystems of a computer-adding values, moving them about
from memory to output, and so on-but that begs a fundamental
question: How does the processor know which operations to
perform? So far, the computer has all the capabilities we need, but
no script to follow.

The answer is surprisingly simple: The processor fetches data
from memory, and that data tells it what to do next. Data that tells
a processor what to do is usually called "instructions," but
instructions are simply values stored in memory, just like any
other data. The set of instructions that a processor can execute
(the instruction set) corresponds exactly to the actions that that
processor's hardware can perform. Put another way, a processor's
instructions comprise all the operations that any software can
ever ask the processor to do.

Chapter 4, The nature of assembly language 43

44

For example, if a processor lacks a multiplication instruction, then
there is no way the hardware of that computer can perform a
multiplication. Multiplication can instead be performed in
software by perfonning adds and shifts, but this tends to be much
slower. The key point here is that a processor's instruction set
reflects the actions that the computer's hardware is inherently
capable of perfonning. By the same token, each processor's
assembly language is unique to that processor because each
processor has unique capabilities and, therefore, a unique
instruction set.

Each instruction value has a specific, well-defined meaning to a
given processor. For example, the instruction value 4 tells the 8088
to add the value stored at the next memory address to the AL
register. (Don't worry about what the AL register is right now
we'll get to that soon.) Consequently, a processor can be put
through a desired sequence of actions by an appropriate series of
instruction values; indeed, a program is nothing more than a
sequence of instruction values.

How does a processor know which instruction to execute next? By
maintaining an internal pointer that points to the place in
memory where the value of the next instruction to be performed
is stored. When that next instruction is read from memory and
executed, the pointer is advanced to the following instruction.
Some instructions can set the instruction pointer to a new value;
this gives a processor the ability to execute nonsequential series of
instructions, and even the ability to perform different series of
instructions depending on certain conditions.

Great, but what does that have to do with assembly language?
Just this: A processor's instruction set is that processor's assembly
language. Or, rather, assembly language is a human-oriented form
of a processor's instruction set (known as the processor's machine
language), which an assembler such as Turbo Assembler then
converts to machine language. While assembly language and
machine language are functionally equivalent, assembly language
is much easier for people to program in. After all, surely you'd
rather program with instructions like

add al,l

than with

4
1

Turbo Assembler User's Guide

wouldn't you? Both forms work equally well, but assembly
language lets you work with mnemonic names for machine
language instructions, with the assembler translating from
mnemonic instructions to their machine-language equivalents.
This is, of course, a tremendous advantage, since humans simply
don't think very well in purely numeric languages. Basically,
assembly language is a direct analog to machine language, but
implemented in a form with which humans can work efficiently.

The good news about assembly language is that it lets you control
the processor's actions one by one, for maximum efficiency. The
bad news is that each of the processor's actions, taken
individually, tend to do relatively little, reflecting the limited
repertoire of which the processor is actually capable. For example,
the process of adding two long integers and storing the result in a
third long integer takes only one line in C:

i = j + k;

but requires six lines in 8088 assembler:

mov ax, [j]

mov dx, [j+2]
add ax, [k]

adc dx, [k+2]
mov [i],ax

mov [i+2] ,dx

Of course, the C code compiles to no less (and possibly more)
than the same six machine language instructions required by the
assembler code, but it is easier to write the one line of C code than
the six lines of assembler. (Remember, assembler instructions
reflect the basic ability of the computer, and programs written in
all languages must eventually be translated to machine language
before they can be run.)

Why use assembler at all if it's harder to program in than other
languages? For one thing, assembler lets you reach any part of
memory and control any input or output device directly, since
assembly language programs can do anything the processor is
capable of. For another, because assembler is the native language
of the computer, it stands to reason that well-written assembler
code must be the fastest code possible. The quality of the code
produced by any other language suffers from the need to translate
from that language to machine language, but assembler code
maps directly to machine language, with not one whit of

Chapter 4, The nature of assembly language 45

efficiency lost. In assembly language, you tell the computer what
to do, and it does it-no more and no less.

Of course, if you write an inefficient assembler program, it won't
run very rapidly, since the processor does exactly what assembly
language programs specify. Similarly, assembly language has
relatively little built-in support for data-type conversion, or fc;>r
guarding against mistakes, such as accidentally overwriting a
variable or running off the end of an array. What all this means is
that assembly language gives you the ability to write wonderfully
fast and clever programs, but those programs demand more care
and skill from you as a programmer than do programs written in
other languages.

Now that you understand how a processor and its assembly
language relate to one another, let's look specifically at assembly
language for the 8088.

The 8088 and 8086 processors

46

The 8088 is the processor used in the IBM PC and XT computers,
which form perhaps one of the most successful line of computers.
However, the 8088 is actually only one of a family of processors
known as the iAPx86 family. Other members of this family
include the 8086 processor used in the IBM Models 25 and 30; the
80286 processor used in the IBM AT, and the IBM PS/2 Models 50
and 60; and the 80386 processor used in the IBM PS/2 Model 80.
Each of these processors is, in some way, different from the 8088.
Chapter 10, liThe 80386 and other processors," provides a detailed
discussion of the various members of the iAPx86 family. The one
thing all iAPx86 family processors share is the ability to run code
written for the 8086 and 8088 processors.

The 8086 is actually the root of the iAPx86 family tree. The 8088 is
just an 8086 with a scaled-down external data bus; while the 8086
can transfer data to and from memory 16 bits at a time, the 8088
can transfer data only 8 bits at a time. The two processors have
exactly the same instruction sets. Consequently, the assembly
language used to program the IBM PC and its successors is
properly known as 8086 assembly language, not 8088 assembly
language. For the remainder of this chapter, understand that 8086
assembly language includes the 8088 as well.

Turbo Assembler User's Guide

The capabilities of
the 8086

The 8086 runs at 4.77 or 8 MHz
speeds; the 80286 can run at

6, 8, 10, 12, 16, and 20 MHz:
the 80386 can run at 16, 20,

25, and 33 MHz.

Memory

By today's standards, the 8086 is a processor of modest
capabilities. After all, the 8086 was designed ten years ago, and
ten years of technological evolution have brought major
innovations to the chip-design field. Nonetheless, the 8086
remains an important processor. One reason for this is the sheer
number of IBM PCs and compatibles; no one can afford to ignore
ten-million-plus computers. Another reason, however, is that the
8086 meets the needs, even today, of advanced software.

The 8086 can address a large amount of memory (over one million
characters or other byte-sized-8-bit-values), has a powerful
instruction set, and properly programmed can support high
performance programs. But the 8086 is not a super-fast processor,
not every language is capable of providing decent performance on
the 8086, and no other language can match assembly language
when it comes to writing excellent 8086 programs.

The resources the 8086 provides to the assembly language
programmer are memory, input and output (I/O) interfacing,
registers, and, of course, instructions. We'll explore those
resources next.

The 8086 is capable of addressing 1 megabyte (which is 2 to the
20th power or 1,048,576 storage locations, each of which is 8 bits
long) of memory at anyone time. The first byte of memory is at
address 0, and the last byte of memory "is at address OFFFFFh as
shown in Figure 4.2 on page 48.

(The last address, OFFFFFb, was given in hexadecimal, or base 16,
notation as denoted by the h suffix; it is equivalent to 1,048,575 in
the familiar decimal, or base 10, notation.) Fluency in hexadecimal
notation is essential in assembly language programming. We'll
touch on hexadecimal notation in Chapter 5, liThe elements of an
assembler program."

Chapter 4, The nature of assembly language 47

Figure 4.2
Memory address

space of the 8086

48

Hexadecimal
Address
00000
00001
00002
00003
00004
00005
00006
00007
00008
00009
OOOOA
OOOOB
OOOOC
00000
OOOOE
OOOOF
00010

FFFEF
FFFFO
FFFF1
FFFF2
FFFF3
FFFF4
FFFF5
FFFF6
FFFF7
FFFF8
FFFF9
FFFFA
FFFFB
FFFFC
FFFFD
FFFFE
FFFFF

Decimal
Address

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1048559
1048560
1048561
1048562
1048563
1048564
1048565
1048566
1048567
1048568
1048569
1048570
1048571
1048572
1048573
1048574
1048575

One byte, 8 bits long, can hold one character, or one integer value
in the range 0 to 255. That doesn't mean that the 8086 can't handle
larger values. Two bytes taken together (known as a word) can
hold one integer value in the range 0 to 65,535; the 8086 can
manipulate word values as readily as byte values.

Four bytes taken together (known as a doubleword, or dword) can
hold one integer value in the range 0 to 4,294,967,295, or can hold
one single-precision floating-point value. Eight bytes together

Turbo Assembler User's Guide

(known as a quadword, or qword) can hold one double-precision
floating-point value. The 8086 doesn't handle these two data types
directly; however, the 8087 numeric coprocessor can work directly
with floating-point values and extended precision integer values,
and given the proper software, the 8086 can be made to handle
virtually any data type, albeit fairly slowly.

At any time, an 8086 program can read or change the contents of
any of the more than 1,000,000 bytes of memory. For example, the
code fragment

mov ax,O
mov ds,ax
mov bx,O
mov aI, [bx]

loads the contents of the byte at address 0 into the AL register.
Don't worry about the details here; the point is that the 8086's
memory address space provides for storage of slightly more than
1,000,000 working values that the 8086 can access quickly and
flexibly.

One megabyte (Mb) is a considerable amount of memory, far
more than the 64K (2 to the 16th power, or 65,536 bytes)
addressable by the processors that preceded the 8086. On the
other hand, the 8086's latest descendent, the 80386, can address
about 4,000 times as much memory as the 8086, so you can see
that the 8086 is, in fact, a little squeezed for memory space. Also,
in the IBM PC, only 640K of the 1 Mb address space is actually
available for use as general-purpose memory; the rest of the
address space is dedicated to use by system software and the
memory used for the display. Then, too, don't forget that
instructions, as well as data, are stored in memory, so both
program code and data must fit into no more than 640K of
memory on the PC.

While the 8086 is capable of addressing 1 Mb of memory, it does
not make it particularly easy to access more than 64K at anyone
time, due to a rather peculiar feature known as segmentation. We'll
look at segmentation in a later section, liThe segment registers,"
on page 61.

Chapter 4, The nature of assembly language 49

Input and output

Figure 4.3
Separate memory
and I/O address of

8086

50

The 8086 supports input and output devices in two ways: through
input/output (I/O) instructions and through memory addresses.
Some input and output devices are controlled through ports,
which are special I/O addresses in a 64K address space that's
separate from the 1 Mb memory address space, as shown in
Figure 4.3.

Memory
Address

00000
00001
00002
00003
00004
00005
00006
00007
00008
00009
OOOOA

FFFF5
FFFF6
FFFF7

~

FFFF8 1---------1
FFFF9
FFFFA J.--------1

FFFFB 1---------1

FFFFC J.--------1

FFFFD 1---------1
FFFFE 1---------1
FFFFF I.--____ ----l

I/O Address
.(fQr1l

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
OOOA

~

FFF5 J.--------i

FFF6 J.--------i
FFF7
FFF8 I---------i

FFF9 J.--------i

FFFA J.--------i

FFFB I---------i
FFFC J.--------i

FFFD I---------i
FFFE I---------i
FFFF 1.--____ ----1

There are far fewer I/O addresses on the 8086 than there are
memory addresses; while there are technically 64K I/O addresses
on the PC, practically speaking, only 4K I/O addresses are
available. Consequently, I/O addresses are not used for storing
values, but rather for providing control and data channels to
input and output devices. For example, serial devices such as
modems are controlled entirely through a few I/O addresses.

Turbo Assembler User's Guide

More on IN and our, and I/O
In general, In Chapter 5.

Registers

I/O addresses can be accessed only with two special instructions,
IN and OUT, which are used for nothing else. For example,

out dx,al

sends the contents of the AL register to the I/O port selected by
the DX register.

Some output devices are memory-mapped, meaning they are
controlled through normal memory addresses rather than I/O.
This is particularly true of display adapters, which can take up
16K, 32K, or even 256K of the 8086's memory address space with
their bit maps (the arrays of bytes describing the dots that the
adapters display on the screen). .

A given device can be controlled through both I/O ports and
memory-mapped addresses. In fact, most display adapters
respond to I/O instructions for some functions and to memory
addresses for others.

The 8086 offers a few fast, on-chip storage elements known as
registers. You might think of registers as memory locations that
the 8086 can access faster than it can access regular memory, but
that's only part of what makes registers special. Each of the
registers has a unique nature, and provides certain capabilities
that no other register or memory location supports.

The registers fall into four categories: the flags register, the
general-purpose registers, the instruction pointer, and the
segment registers, as shown in Figure 4.4. Let's look at each in
turn.

Chapter 4, The nature of assembly language 51

Figure 4.4
Registers of the

8086 15 Bit Number 0

FLAGS I I<Flags
Register

AX AH AL

BX BH BL

ex CH CL

ox DH DL General-
Purpose

51 Registers

01

BP

SP

IP
1<lnstructlon

Pointer

CS

OS Segment

ES
Registers

SS
15 Bit Number 0

The flags register The 16-bit flags register contains all pertinent information about
the state of the 8086 and the results of recent instructions, as
shown in Figure 4.5.

52 Turbo Assembler User's Guide

Figure 4.5
Flags register of the

8086

Other registers and memory
contain data: the flags

register contains information
about relationships between

data, about the results of
operations, and about the

state of the 8086 itself.

Bit Number

Flag Bits

o = Overflow Flag T = Trap Flag A = Auxiliary Carry Flag

D = Direction Flag S = Sign Flag P = Parity Flag

= Interrupt Flag Z = Zero Flag C = Carry Flag

For example, if you wanted to know whether a subtraction
produced a zero result, you would check the zero flag (the Z bit in
the flags register) immediately after the instruction; if it were set,
you would know the result was zero. Other flags, such as the
carry and overflow flags, similarly report the results of arithmetic
and logical operations.

Other flags control modes of operation of the 8086. The direction
flag controls the direction in which the string instructions move,
and the interrupt flag controls whether external hardware, such as
a keyboard or modem, is allowed to halt the current code
temporarily so that urgent needs can be serviced. The trap flag is
used only by software that debugs other software.

The flags register isn't modified or read directly. Instead, the flags
register is generally controlled through special instructions (such
as CLD, STI, and CMC) and through arithmetic and logical
instructions that modify certain flags. Likewise, the contents of
certain bits of the flags register affect the operation of instructions
such as JZ, RCR, and MOVSB. The flags register is not really used
as a storage location, but is rather the status and control network
of the 8086.

Chapter 4, The nature of assembly language 53

54

The general-purpose
registers

The eight general-purpose registers of the 8086 (each 16 bits long)
are involved in the operation of most instructions, as source and
destination for calculations and data moves, as pointers to
memory, and as counters. Each of the general-purpose registers
can store any 16-bit value, can be loaded from and written to
memory, and can be used in arithmetic and logical operations. For
example, this code fragment

· . .
mov ax,S
mov dx,9
add ax,dx

loads the value 5 in AX, loads the value 9 in OX, and adds the two
values together, storing the result, 14, back into the AX register.
ex, SI, or any of the other general-purpose registers could have
been substituted for AX or DX in this example, with equal
success.

Beyond the common ability to store values and serve as source
and destination for data manipulation instructions, however, each
of the general-purpose registers has its own personality. Let's look
at each of the general-purpose registers separately.

The AX register

The AX register is also known as the accumulator. It is always
involved when you perform multiplication and division, and is
also the most efficient register to use for some arithmetic, logical,
and data-movement operations.

The lower 8 bits of the AX register are also known as the AL
register (for A-Low), and the upper 8 bits of the AX register are
also known as the AH register (for A-High). This can be
convenient for handling byte-sized data, since it allows AX to
serve as two separate registers. The following code sets AH to 0,
copies the value to AL, then adds 1 to AL:

· . .
mov ah,O
mov al,ah
inc al · . .

Turbo Assembler User's Guide

The BX register can be
treated as two 8-blt registers,

BH and BL.

The ex register can be
treated as two 8-blt registers,

CHandCL.

The end result is that AX is set to 1. The BX, ex, and OX registers
can similarly serve as either one 16-bit register or two 8-bit
registers.

The BX register

The BX register can point to memory locations. We'll cover this in
more detail in Chapter 5, but, briefly, a 16-bit value stored in BX
can be used as a part of the address of a memory location to be
accessed. For instance, the following code loads AL with the
contents of memory address 9:

mov ax,O
mov ds,ax
mov bx,9
mov aI, [bx]

You'll notice that we loaded the OS register with 0 (by way of AX)
before accessing the memory location pointed to by BX. This is a
result of the segmented nature of 8086 memory that we referred
to previously-a topic we'll return to in the section "The Segment
Registers" (page 61). By default, when BX is used as a memory
pointer, it points relative to the OS segment register.

The ex register

The CX register's specialty is counting. Suppose you wanted to
repeat a block of instructions 10 times. You could do that with

mov cx,lO
BeginningOfLoop:

<instructions to be repeated>

sub ex,l
jnz BeginningOfLoop

Don't worry about unfamiliar elements of this program; the
important point is that the instructions between the label
BeginningOfLoop and the JNZ instruction are executed repeatedly
until ex becomes o. Notice that two instructions-SUB eX,1 and
JNZ BeginningOfLoop-are required in order to count down CX
and jump back to BeginningOfLoop if ex is not yet o.

Chapter 4, The nature of assembly language 55

The DX register can be
treated as two 8-blt registers,

DHandDL.

56

Counting down and looping is a frequently used program
element, so the 8086 provides a special instruction to make loops
faster and more compact. Not surprisingly, that instruction is
called LOOP. The LOOP instruction subtracts 1 from ex: and
jumps if CX isn't 0, all in one instruction. The following is
equivalent to the last example:

. . .
mov cx,lO

BeginningOfLoop:

<instructions to be repeated>

loop BeginningOfLoop

We'll cover looping again in Chapter 5; for now, just remember
that the ex: register is especially useful for counting and looping.

The OX register

The OX register is the only register that can be used as an I/O
address pointer with the IN and OUT instructions. In fact, there is
no way to address I/O ports 256 through 65,535 without using
OX. For example, the following code writes the value 62 to I/O
port 1000:

mov al,62
mov dx,lOOO
out dx,al

The other unique properties of OX relate to division and
multiplication. When you divide a 32-bit dividend by a 16-bit
divisor, the upper 16 bits of the dividend must be placed in OX;
after the division, the remainder of the division is stored in OX.
(The lower 16 bits of the dividend must be placed in AX, and the
quotient is stored in AX.) Similarly, when you multiply two 16-bit
factors, the upper 16 bits of the product are stored in OX (the
lower 16 bits of the product are stored in AX).

The SI register

Like the BX register, the SI register can be used as a memory
pointer. For example,

Turbo Assembler User's Guide

mov ax,O
mov ds,ax
mov si,20
mov aI, [si]

loads the 8-bit value stored at address 20 into AL. SI becomes an
unusually powerful memory pointer when used with the 8086's
string instructions. For example,

cld
mov ax,O
mov ds,ax
mov si,20
lodsb

not only loads AX with the value at the memory address pointed
to by SI, but also adds 1 to SI. This can be very effective when
accessing a sequential series of memory locations, such as a text
string. Better still, the string instructions can be made to
automatically repeat their actions any number of times, so a single
instruction can perform hundreds or even thousands of actions.
We'll discuss the string instructions in detail in Chapter 6.

The 01 register

The 01 register is much like the SI register in that it can be used as
a memory pointer and has special properties when used with the
powerful string instructions. For example,

mov ax,O
mov ds,ax
mov di,1024
add bl, [di]

adds the 8-bit value stored at address 1024 to BL. The 01 register
is a little different from SI when it comes to string instructions;
where SI always serves as a source memory pointer for string
instructions, 01 always serves as a destination memory pointer.
Moreover, with the string instructions, SI normally addresses
memory relative to the OS segment register, while 01 always
addresses memory relative to the ES segment register. (When SI

Chapter 4, The nature of assembly language 57

Chapter 7 explaIns how and
why C uses the stack to pass

parameters.

58

and 01 are used as memory pointers with non string instructions,
they always point relative to OS.) For example,

cld
mov dx,O
mov es,dx
mov di,2048
stosb

uses the SlOSB string instruction to both store the value in AL at
the memory address pointed to by 01 and add 1 to OI. But we're
getting ahead of ourselves here; you need to learn about segments
and segment registers before you can study the string instruc
tions. Again, we'll look at the string instructions in Chapter 6,
''More about programming in Turbo Assembler."

The BP register

Like BX, 51, and 01, the BP register can be used as a memory
pointer, but with a difference. While the BX, 51, and 01 registers
normally act as memory pointers relative to the OS segment
register (or, in the case of OJ used with the string instructions, the
ES segment register), BP points relative to 55, the stack segment
register.

Once again, we're getting ahead of ourselves, since we haven't
covered segments yet, but the principle is as follows: One useful
way to pass parameters to a subroutine is by pushing the
parameters onto the stack. C and Pascal do this.

The stack resides in the segment pointed to by 55, or the stack
segment. Data, on the other hand, normally resides in the
segment pointed to by OS, or the data segment. Since BX, 51, and
OJ normally point to the data segment, there's no efficient way to
use BX, 51, or OJ to point to parameters passed on the stack
because the stack is usually in a different segment altogether.

BP solves this problem by providing addressing into the stack
segment. For example,

. . .
push bp
mov bp,sp
mov ax, [bp+4]

Turbo Assembler User's Guide

accesses the stack segment to load AX. with the first parameter
passed by a Turbo C call to an assembler subroutine.

In short, BP is designed to provide support for parameters, local
variables, and other stack-based memory-addressing needs.

The SP register

The SP register, also known as the stack pointer, is the least general
of the general-purpose registers, for it is almost always dedicated
to a specific purpose: maintaining the stack. The stack is an area of
memory into which values can be stored and from which they can
be retrieved on a last-in, first-out basis; that is, the last value
stored onto the stack is the first value you'll get when you read a
value from the stack. The classic analogy for the stack is that of a
stack of dishes. Since you can only add plates at the top of the
stack and remove them from the top of the stack, it stands to
reason that the first plate you put on the stack will be the last
plate you can remove.

The SP register points to the top of the stack at any given time; as
with the stack of dishes, the top of the stack is the location at
which the next value placed on the stack will be stored. The action
of placing a value on the stack is known as pushing a value on the
stack, and, indeed, the PUSH instruction is used to place values on
the stack. Similarly, the action of retrieving a value from the stack
is known as popping a value from the stack, and the POP
instruction is used to retrieve values from the stack.

For example, Figure 4.6 illustrates how SP, AX, and BX change as
the following code is executed, assuming that SP is initially set to
1,000:

mov ax,l
push ax
mov bx,2
push bx
pop ax
pop bx

While the 8086 allows you to store values in SP, and add to or
subtract from the value stored in SP, just as with the other
general-purpose registers, you should never do this unless you
know exactly what you're doing. If you change SP, you're

Chapter 4. The nature of assembly language 59

Figure 4.6
AX. BK SP. and the

stack

60

changing the location of the top of the stack, and that can quickly
lead to disaster.

Why? Well, pushes and pops aren't the only way the stack is used.
Whenever you call to or return from a subroutine (a procedure or
function), the stack is used. Also, some system resources, such as
the keyboard and the system clock, use the stack when they
interrupt the 8086 in order to perform their functions. What this
means is that the stack might be needed at any time. If you change
SP, even if only for a few instructions, then the correct stack might
not be available when some system resource needs it.

At start:

AX ?

BX ?

SP 1000

After moy ax,1 I push ax:

AX 1

ex ?

SP 998

After moy bx,21 push bx:

AX 1

BX 2

SP 996

After pop ax:

AX 2

BX 2

SP 998

After pop bx:

AX 2

BX 1

SP 1000

996

998

.------'r 1000

I 996

W--_r 998

1000

....---- 996 U 998

1000

I 996

....---- 998 W 1000

996· ?

998 .1

~------~-~1000 ? L..--_____J

Turbo Assembler User's Guide

In short, leave SP alone unless you know just what you're doing.
Feel free to perform pushes, pops, calls, and returns, but don't
change the value of SP directly. Any of the other seven general
purpose registers can be changed directly at any time.

The instruction pointer The instruction pointer (lP) always contains the memory offset at
which the next instruction to be executed is stored. As one
instruction is executed, the instruction pointer is advanced to
point to the instruction at the next memory address. Normally,
the instruction at the next memory address is the next instruction
executed, but some instructions, such as calls and jumps, can
cause the instruction pointer to be loaded with a new value,
thereby branching to other code.

The instruction pointer can't be written to or read from directly;
only branching instructions such as those just described can load
the instruction pointer with a new value.

The instruction pointer does not, by itself, fully specify the
address at which the next instruction to be executed resides. Once
again, the segmented nature of 8086 memory addressing
complicates the picture. For instruction fetching, the CS segment
register provides a base address, and the instruction pointer then
provides an offset from that base address.

Each time we've talked about addressing memory, we've run into
segments, and each time we've postponed a full explanation until
the time came to talk about segments. That time has come.

The segment registers Now we come to a most unusual aspect of the 8086-memory
segmentation. The basic premise of segmentation is this: The 8086
is capable of addressing 1 Mb of memory. Twenty-bit memory
addresses are required to address all locations in a 1 Mb memory
space. However, the 8086 only uses 16-bit pointers to memory; for
example, recall that the 16-bit BX register can be used to point to
memory. How, then, does the 8086 reconcile 16-bit pointers with a
20-bit address space?

The answer is that the 8086 uses a two-part memory-addressing
scheme. True, 16-bit memory pointers are used, but these form
only part of the full memory address. Each 16-bit memory pointer,
or memory offset, is combin~d with the contents of a 16-bit
segment register to form a full20-bit memory address.

Chapter 4, The nature of assembly language 61

62

Figure 4.7
20-blt memory

addresses

Segments and offsets are combined as follows: The segment value
is shifted left by 4 bits (multiplied by 16) and then added to the
offset as shown in Figure 4.7.

16-81t
Segment Register

Segment Value
Times 16 Equals

A 20-81t Value

20-81t Memory Address

So, for example, consider the following code:

. . .
mov ax,lOOOh
mov ds,ax
mov si,201h
mov dl, lsi]

16-81t
Offset

Here the OS segment register is set to 1000h, and SI is set to 201h,
which we can represent as the segment:offset pair 1000:201h.
(Segment:offset calculations can only be performed efficiently in
base 16-another good reason to familiarize yourself with
hexadecimal notation.) DL is loaded from the address
«DS ,. 16) + S1), or «1000h ,. 16) + 201h):

Turbo Assembler User's Guide

Figure 4.8
Calculation of

memory address by
mov

l000h
x 16

10000h
+ 201h

10201h

Figure 4.8 illustrates this example.

os 1000h

10000h

Memory
Address

10201h

SI 201h

Another way to look at this is to simply shift the segment value
left 4 bits, or one hexadecimal digit, which is the same as
multiplying by 16:

10000
+ 201

10201

You can now see that programs can only access the 8086's full
1 Mb memory space by using segment:offset pairs. In fact, you
must always use segment:offset pairs to access memory; all the
instructions and addressing modes of the 8086 default to
operating relative to one or another of the segment registers,

Chapter 4. The nature of assembly language 63

64

although some instructions can be explicitly told to use a different
segment register if desired.

Rarely will you actually load a number into a segment register.
Instead, you'll load segment registers with segment names, which
are turned into numbers in the course of assembling, linking, and
running a program. This is necessary because there's no way to
tell beforehand where in memory a given segment will reside; it
all depends on the version of DOS, the number and size of
memory-resident programs, and the memory needs of the rest of
the program. Using segment names lets Turbo Assembler and
DOS deal with all those complications.

The most common segment name is @data, which refers to the
default data segment when the simplified segment directives are
used. For example,

.MODEL small
• DATA

Varl DW 0

.CODE
mov ax,@data
mov ds,ax

END

loads OS to point to the default data segment, in which Varl
resides.

Once again, we're getting a bit ahead; in the next chapter, we'll
discuss the simplified segment directives and the loading of
segment registers.

The use of segments on the 8086 has a couple of interesting
implications. For one thing, only a 64K block of memory is
addressable relative to a segment register at anyone time because
64K is the maximum amount of memory that can be addressed
with a 16-bit offset. This means that it can be a real nuisance to
handle large (greater than 64K) blocks of data on the 8086, since
both a segment register and the offset value must be changed
frequently.

The addressing of large blocks of memory on the 8086 is made
still more difficult because, unlike the general-purpose registers,
the segment registers cannot serve as either source or destina tion
for arithmetic and logical instructions. In fact, the only operations
that can be performed on segment registers involve copying

Turbo Assembler User's Guide

values between segment registers and either general-purpose
registers or memory. For instance, adding 100 to the ES register
requires the following:

mov ax,es
add ax,lOO
mov es,ax

The upshot of all this is that the 8086 is best suited to handling
memory in chunks no larger than 64K.

A second implication of the use of segments is that any given
memory location is addressable with many possible
segment:offset combinations. For instance, the memory address
100h is addressable with segment:offset values of 0:100h, l:FUh,
2:EOh, and so on, since all those segment:offset pairs work out to
address 100h.

Like the general-purpose registers, each segment register plays a
specific role. The es register points to program code, the OS
register points to data, the SS register points to the stack, and the
ES segment is a wildcard ("extra") segment, free to point
wherever it's needed. Let's look at the segment registers in a bit
more detail.

The CS register

The es register points to the start of the 64K memory block, or
code segment, in which the next instruction to be executed resides.
The next instruction to be executed resides at the offset specified
by IP in the code segment; that is, at the segment:offset address
eS:IP. The 8086 can never fetch an instruction from a segment
other than that defined byeS.

The es register can be changed by a number of instructions,
including certain jumps, calls, and returns. The CS register cannot
be loaded directly under any circumstances.

No memory-addressing modes or memory pointers other than IP
normally operate relative to es.

Chapter 4, The nature of assembly language 6S

Memory addressing Is
discussed further In Chapter

5.

66

The OS register

The OS register points to the start of the data segment, which is
the 64K memory block where most memory operands reside.
Normally, memory offsets involving BX, SI, or DI operate relative
to OS, as do direct memory addresses. The data segment is,
basically, what its name implies: the segment in which the current
data set normally resides.

The ES register

The ES register points to the start of a 64K memory block known
as the extra segment. As the name implies, the extra segment isn't
dedicated to anyone purpose, but is available for whatever needs
arise. Sometimes, the extra segment is used to make an additional
64K block of memory available for data storage, but accessing
memory in the extra segment is normally less efficient than
accessing memory in the data segment, as discussed in Chapter 9,
"Advanced programming in Turbo Assembler."

Where the extra segment really shines is when the string
instructions are used. All string instructions that write to memory
use ES:DI as the memory address to write to. This means that ES
is extremely useful as the destination segment for block copies,
string comparisons, memory scanning, and clearing blocks of
memory. We'll look at the string instructions and the use of ES
registers in connection with them in Chapter 6, "More about
programming in Turbo Assembler."

The 55 register

The SS register points to the start of the stack segment, which is
the 64K memory block, where the stack resides. All instructions
that implicitly use the SP register-including pushes, pops, calls,
and returns-work in the stack segment because SP is only
capable of addressing memory in the stack segment.

As we discussed earlier, the BP register also operates relative to
the stack segment. This allows BP to be used for addressing
parameters and variables that are stored on the stack. (Again, we
discuss memory addressing in detail in the next chapter.)

Turbo Assembler User's Guide

The 8086
instruction set To a programmer, the key resource of the 8086 is the instruction

set. As we discussed earlier, the instruction set includes all the
actions that a programmer can possibly tell the 8086 to perform.
(The complete instruction set of Turbo Assembler is in the Quick
Reference Guide.)

There are many instructions in the 8086 instruction set that
perform a wide variety of actions, ranging from doing nothing
(NaP) to copying as many as 65,535 bytes (REP MOVSB). We will
spend much of the rest of this chapter, and chapters 5, 6, and 9 as
well, covering the 8086's instruction set in detail.

The IBM PC and XT

We've focused on 8086 assembly language, but the truth of the
matter is that the 8086 processor is just part of a computer system,
and the hardware configuration and operating system of a
computer greatly affect assembly language programming.

The vast majority of programs written for the 8086 processor (and
perhaps the majority of programs written in the history of
computers) have been written for the IBM PC and XT and
compatible computers, running the MS-DOS operating system.
Turbo Assembler itself runs under the MS-DOS operating system
on IBM PCs, XTs, and compatibles (from now on referred to
simply as the IBM PC), so it's likely that you're planning to use
your copy of Turbo Assembler to develop assembler programs for
the IBM PC environment.

Without knowledge of the hardware configuration and the
operating system your assembler programs will run under, there's
no way for you to perform input or output, or even terminate
your programs. We haven't the space to cover nearly all the
capabilities of the IBM PC and its system software, but we'll show
you a few of the basic features of the PC. We suggest you read
more on your own in the books and manuals suggested at the
beginning of this chapter.

Chapter 4, The nature of assembly language 67

Input and output
devices All IBM PCs provide a keyboard, a display adapter and a monitor,

and a floppy disk drive. Modems, printers, mice, and hard disks
are frequently installed as well. Each of these devices is controlled
with a fairly complex series of accesses to I/O ports or memory
(or both). For example, selecting a new video mode on the Color
Graphics Adapter (CGA) requires over 30 OUT instructions;
keyboard, modem, and disk control sequences are more
complicated still.

Does this mean that you need to master endless control sequences
in order to write useful assembler programs on the IBM PC? Not
at all; your PC's systems software already does most of the work
for you.

Systems software
for the IBM PC Systems software is software that serves as a control and interface

layer between applications software, such as Turbo Assembler
and Quattro, and the hardware of your computer, as shown in
Figure 4.9.

68

In particular, systems software handles the complexities of
interfacing to individual devices. For example, several hundred
lines of assembly language code are required in order for your PC
to process a single keystroke, but your assembler programs can
get keystrokes by invoking just one system function. This is made
possible by the two main systems software components of the PC:
OOS and the BIOS (Basic Input/Output System).

In Figure 4.9, the OOS and BIOS systems software serves as a
control and interface layer between applications software and the
hardware of the IBM PC. Applications software always has the
option of controlling the hardware directly, but should use 005
or BIOS functions instead whenever possible.

Turbo Assembler User's Guide

Figure 4.9
DOS and BIOS

systems software as
a control and

interface layer Applications Software

DOS

Accessed through Int 21 h DOS
functions and other Interrupts.

BIOS

Accessed through BIOS
functions by way of several

Interrupts.

IBM PC Hardware
--

Display adapter, keyboard, printer, disk, mouse, joystick, and so
on. Accessed at UO ports and/or memory locations, depending

on the specific hardware Item.

DOS DOS (short for Disk Operating System-also known as MS-DOS
and PC-DOS) is the program that controls your computer from
the moment it reads the disk at power-up until you turn the
power off. DOS takes up part of your precious 640K of available
memory, but there's no helping that, since without DOS your PC
is a very expensive paperweight. It's DOS that provides you with
the A> prompt (or C>, or whatever the prompt is on your
computer), and it's DOS that accepts and executes commands
such as DIR.

That's just the visible part of DOS. It also provides a broad array
of functions that are used heavily by just about every application.

Chapter 4, The nature of assembly language 69

70

IBM's DOS Technical
Reference manual Is the

primary reference for DOS
functions.

It's through DOS functions that applications read from and write
to files, get keystrokes, allocate memory, run other programs, and
even set and get the time of day. For example, the assembler code

rnov ah,2
rnov dl,'A'
int 21h

;DOS function to display a character
;A is the character to display
;invoke DOS to execute the function

invokes the OOS "Display Output" function in order to display
the character A at the current cursor location on the screen.

You should use OOS functions to perform operations such as
keyboard and file input, screen and file output, and printing
whenever possible. Since DOS itself is actually nothing but an
assembler program, it is certainly possible for you to do with your
own code everything that OOS functions do, but that's generally
not a good idea. Not all PC-compatible computers are alike, and
OOS frequently masks differences between makes of computers;
if you ignore the OOS functions and go straight to the hardware,
your programs might not run on other computers.

Then, too, programs that go around OOS might not coexist with
other programs, most notably memory-resident programs such as
SideKick and SuperKey. Besides, why spend time writing extra
code when OOS has already done the work for you? In short,
whenever a OOS function can do what you need done, use it!

In cases where OOS simply doesn't provide the functions you
need, it's time to use a BIOS function. We'll cover BIOS functions
shortly, but first let's take a look at some OOS functions that fulfill
essential needs: input, output, and program termination.

Getting keystrokes

Typing at the keyboard is the fundamental means of user
interaction with the PC. OOS provides a number of functions by
which an assembler program can obtain keystrokes; we're only
going to discuss one of those functions.

Perhaps the simplest means of getting keystrokes is with the
"Keyboard Input" function, DOS function number 1. OOS
functions are invoked by placing the function number in AH and
then executing an INT 21 h instruction. (The actual operation of the
INT instruction is a bit complex, but right now, all you need to
know is that you must execute an INT 21h instruction each time

Turbo Assembler User's GuIde

you want to invoke a DOS function.} The next character typed at
the keyboard is returned in AL.

For example, when this code is executed,

mov ah,l
int 21h . . .

DOS places the next character typed at the keyboard into AL.
Note that if there is no keystroke waiting to be read, DOS waits
until a key is pressed, so this function can take an indefinitely
long period of time to complete.

Displaying characters on the screen

If keystrokes are the means of user interaction with software, the
screen is the complement. The PC is capable of all sorts of
displays, ranging from color text to high-resolution graphics, but
for the moment, we'll just go over displaying characters.

DOS function number 2 is a straightforward way to print a
character. Simply put 2 in AH and the character in DL, then
invoke DOS with INT 21 h. The following code echoes each
character typed to the screen:

mov ah,l
int 21h
mov ah,2
mov dl,al
int 21h

;get next key pressed

;move character read from AL to DL
idisplay the character

Several other functions are available for reading and printing
characters and character strings, and you'll encounter some of
them in the example programs in this manual. Since a whole book
would be needed to cover all the DOS functions, we can't cover
them here. We strongly recommend, however, that you do get one
or more of the books and manuals listed at the end of this book
and learn more about the DOS functions-they're a key resource
in assembler programming.

There's one more point we'd like to make about keyboard, screen,
and file input and output in assembly language. Those of you
who are used to scant and prlntf in C and Readln and Writeln in
Pascal might be surprised to learn that DOS (and hence assembly

Chapter 4. The nature of assembly language 71

72

language) provides no support whatsoever for fonnatted input
and output; OOS only handles character and string input and
·output. In C, all you need to do to print an integer variable i is
this:

printf("%d\n",i);

C automatically converts the integer value, which is stored in a
16-bit memory location, into a string of ASCII characters and
prints the characters. In assembler, your code must explicitly
convert variables to character strings before displaying them.
Likewise, OOS only knows how to read characters and strings
from the keyboard, so you'll have to write code to convert
characters and strings entered by the user to other data types in
your assembler programs.

At the end of the next chapter, we'll show you an example
program that illustrates exactly what you have to do in an
assembler program to print out the value of a variable. For now,
bear in mind that DOS functions can print a character, or a string
of characters-and that's it. It's up to you to convert your data to
the character fonn that DOS can handle.

Ending a program

Now that you know a bit about reading and writing a program,
let's write a simple program that does nothing but echo one line of
keystrokes to the screen. You know all the OOS functions you'll
need, save one: You have no way to end the program once it's
finished executing.

Again, those of you familiar with C or Pascal might think that
assembler programs would simply end when they come to the
end of the main program, but that's not the case. You must
explicitly invoke a DOS function in order to terminate your
assembler programs.

There are several DOS functions for terminating programs, but
the preferred method is to execute a DOS function number 4Ch
(that's 76, for those of you who prefer decimal). With that
knowledge, here's the complete echo program
(ECHOCHAR.ASM):

.MODEL small

.STACK lOOh
• CODE

EchoLoop:

Turbo Assembler User's Guide

The BIOS

IBM's BIOS Interface
Technical Reference manual

is the primary reference for
BIOS functions.

mov ah,l
int 21h
cmp al,13
jz EchoDone
mov dl,al
mov ah,2
int 21h
jmp EchoLoop

EchoDone:
mov ah,4ch
int 21h
END

iDOS keyboard input function f
iget the next key
iwas the key the Enter key?
iyes, so we're done echoing
iput the character into DL
iDOS display output function
idisplay the character
iecho the next character

iDOS terminate program function f
iterminate the program

Enter the program exactly as shown and run it. You'll see that
each character you type appears twice; once when it is echoed by
DOS as it's typed, and once as your program echoes it. The
important point about this program is that it reads keystrokes,
writes characters to the display, and terminates, all by way of
DOS functions.

Sometimes DOS functions just don't meet your needs; then it's
time to turn to the PC's Basic Input/Output System, or BIOS.
Unlike DOS and applications software, the BIOS is not loaded
from disk and does not take up any of your 640K of available
memory; instead, the BIOS is stored in Read-Only Memory
(ROM) in the portion of the 8086's address space reserved for
system functions.

The BIOS is the lowest-level software in the PC; even DOS uses
BIOS functions to control the hardware. It's better to use BIOS
functions than to control hardware directly, since, like DOS, the
BIOS can mask differences between various computers and
devices. On the other hand, you should use DOS functions rather
than BIOS functions whenever you can, since programs that use
the BIOS can conflict with other programs, and tend to be less
portable across a variety of computer models.

Selecting display modes

The most pressing reason to use the BIOS is for controlling the
display, since DOS provides virtually no support for the rich
display capabilities of the PC. Only by invoking BIOS functions
can you set the screen mode, control colors, get display adapter
information, and so on. For example, the following code invokes
the BIOS to set the screen to four-color graphics mode on a CGA:

Chapter 4, The nature of assembly language 73

74

Sometimes you
absolutely need

to go to the
hardware

Other resources

mov ah,O
mov al,4
int lOh

;BIOS set mode function f
;mode number for 320x200 4-color graphics
;execute BIOS video interrupt to set mode

If you recall that we said that over 30 OUT instructions are
required to set a video mode, you'll realize that the BIOS "Set
Mode" function saves you a great deal of work.

The BIOS provides a variety of functions other than those related
to display control, including keystroke-handling and disk control.
In general, however, you're better off performing these tasks
through DOS functions.

Now that you've heard all the reasons to use DOS functions (or, if
absolutely necessary, BIOS functions), it's time to admit that
sometimes you just flat-out have to access the hardware directly.
For instance, communications software has to control the PC;s
serial port directly with IN and OUT instructions, since neither
DOS nor the BIOS provides adequate support for serial
communications. Similarly, high-performance graphics must be
performed by accessing display memory directly, since DOS
doesn't support graphics, and the BIOS does so only in a painfully
slow manner.

The basic rule about going to the hardware is to make sure you
have no alternative. If there's a DOS or BIOS function you can use,
use it; if not, access the hardware directly. Mer all, the object-of
programming is to produce useful programs, not to follow rules.
On the other hand, the fewer rules you break, the fewer problems
you'll generally have.

The PC provides a number of other hardware and software
resources for the assembly language programmer. We can't go
into those resources here, but we can list a few; for more
information, refer to the materials mentioned at the start of this
chapter .

• The ANSI.SYS driver provides enhanced display control
without the need for BIOS functions.

Turbo Assembler User's Guide

• The system timers support a time-of-day clock; they also
support sound-generation via the PC's speaker and precision
timing .

• The optional 8087 numeric coprocessor speeds up floating-point
calculations by orders of magnitude.

Chapter 4, The nature of assembly language 75

76 Turbo Assembler User's Guide

c H A p T E R

5

The elements of an assembler program

Now that you understand what it is that makes assembly
language unique, you're ready to tackle the nuts and bolts of
assembler programming.

You'll spend this chapter learning about the fundamental
components of an assembler program. First, we'll teach you about
the minimum requirements of a working assembler program.
Next, we'll discuss the various components of a line, and the
ways in which they can be combined. Along the way, you'llieam
a good bit about instructions, directives, and the ways in which
assembler programs can access memory. You'll find out how
segments are defined and used in Turbo Assembler, and you'll

. look at the allocation and initialization of memory variables.
Finally, we'll look at some commonly used instructions.

That's a lot of ground to cover, but when you're done with this
chapter, you'll know enough to start writing programs. You can,
put that knowledge to work with a word-counting program
provided at the end of the chapter.

Still, this chapter only begins to explore the many aspects of
assembly language, so Chapter 6, ''More about programming in
Turbo Assembler," and Chapter 9, 1/ Advanced programming in
Turbo Assembler," continue on to new assembly language topics.

Chapter 5, The elements of an assembler program 77

The components and structure of an assembler
program

78

Now that you've developed an understanding of what 8086
assembly language is, you're ready to start writing assembler
programs. Let's start by looking at the minimum requirements of
a working assembler program. Even a simple assembler program
requires quite a few lines. For instance, consider the following
program:

• MODEL small
.STACK 200h
• DATA

DisplayString DB 13,10

ThreeChars DB 3 DUP (?)

DB '$'

• CODE
Begin:

mov ax,@data
mov ds,ax
mov bx,OFFSET ThreeChars

mov ah,1
int 21h
dec al
mov [bx],al
inc bx

int 21h
dec al
mov [bx),al
inc bx

int 21h
dec al
mov [bx],al
mov dx,OFFSET DisplayString

mov ah,9
int 21h
mov ah,4ch
int 21h

inear code and data models
i512-byte stack
istart of the data segment
icarriage-return/linefeed pair
i to start a new line
istorage for three characters
i typed at the keyboard
ia trailing "$" to tell DOS when
i to stop printing DisplayString
i when function 9 is executed
istart of the code segment

ipoint DS to the data segment
ipoint to the storage location
i for first character
iDOS keyboard input function f
;get the next key pressed
;subtract 1 from the character
istore the modified character
;point to the storage location
i for the next character
;get the next key pressed
;subtract 1 from the character
istore the modified character
ipoint to the storage location
i for the next character
iget the next key pressed
isubtract 1 from the character
istore the modified character
ipoint to the string of
i modified characters
iDOS print string function f
iprint the modified characters
iDOS end program function f
iend the program

Turbo Assembler User's Guide

Reserved words

END Begin ;directive to mark the end of the source
; code and to indicate where to start
; execution when the progra~ is run

This program contains the simplified segment directives .MODEL,
.STACK, .DATA, and .CODE, as well as the END directive. Segment
directives, either simplified or standard, are required in every
assembler program in order to define and control segment usage,
and the END directive must always terminate assembler code.
We'll cover both segment directives and END in this chapter, and
some other directives as well.

Directives only provide the framework for an assembler program,
though; you also need lines in your source code that actually do
something, lines like

mov (bx],al

and

inc dx

These are instruction mnemonics, corresponding to the
instruction set of the 8086 that you learned about in chapter 4.
Before you can use either instructions or directives, however, you
must first learn about the format of a line of assembler code,
which we'll get to right after a cursory look at Turbo Assembler's
reserved words.

In case you were wondering what the first example program
does, enter it, type in IBM, and the program will respond

HAL

The program reads three characters, subtracts the value 1 from
each of them, and prints the result.

Turbo Assembler reserved words, or keywords, are strictly for
use by the assembler; you can't use them for defining your own
equates, labels, or procedure names. Rather, you should think of
reserved words as the building blocks of assembly language. The
words listed in Table 5.1 include operators (+, *, -, +), directives
(.386, ASSUME, MASM, QUIRKS), and predefined symbols
(??tlme, ??verslon, @WordSlze), which are like predefined
equates, and aliases.

Chapter 5, The elements of an assembler program 79

Table 5.1: TASM reserved words

@datasize @filename NAME .RADIX
??date ??fllename NE RECORD

= DB FWORD NEAR REPT
? DO GE %NEWPAGE .SALL
[] %0 EPTH GLOBAL %NOCONDS SEG
I OF GROUP %NOCREF SEGMENT
() DISPLAY GT %NOCTLS .SEQ
+ DOSSEG HIGH NOEMUL .SFCOND

DP IDEAL %NOINCL SHL
* DQ IF NOJUMPS SHORT

DT IF1 %NOLIST SHR
.186 DUP IF2 NOLOCALS SIZE
.286 OW IFB %NOMACS SIZESTR
.286C DWORD IFDEF NOMASM51 SMALL
.286P ELSE IFDIF NOMULTERRS SMART
.287 ELSEIF IFDIFI NOSMART STACK
.386 EMUL IFE %NOSYMS .STACK
.386C END IRON NOT STRUC
.387 ENDIF IRDNI NOTHING SUBSTR
.8086 . ENDM IFNB %NOTRUNC SUBTTL
.8087 ENDP IFNDEF NOWARN %SUBTTL
ALIGN ENDS %lNCL OFFSET %SYMS
.ALPHA EQ INCLUDE OR SYMTYPE
AND EQU INCLUDELIB ORG °kTABSIZE
ARG ERR INSTR %OUT TBYTE
ASSUME .ERR IRP P186 %TEXT
%BIN .ERR1 IRPC P286 .TFCOND
BYTE .ERR2 JUMPS P286N THIS
CATSTR .ERRB LABEL P287 ??time
@Code .ERRDEF .LALL P386 TITLE
CODESEG ERRDIF LARGE P386N %TITLE
@CodeSize ERRDIFI LE P386P %TRUNC
COMM ERRE LENGTH P387 TYPE
COMMENT ERRIDN .LFCOND P8086 .TYPE
%CONDS ERRIDNI %LlNUM P8087 UDATASEG
.CONST ERRIFNB %LlST PAGE UFARDATA
CONST ERRIFNDEF .LlST %PAGESIZE UNION
@Cpu ERRNB LOCAL PARA UNKNOWN
%CREF ERRNDEF LOCALS %PCNT USES
.CREF ERRNZ LOW PN087 ??version
%CREFALL EVEN LT %POPLCTL WARN
%CREFREF EVEN DATA MACRO PROC WIDTH
%CREFUREF EXITM %MACS PTR WORD
%CTLS EXTRN MASK PUBLIC @WordSize
@Curseg FAR MASM PURGE .XALL
@data FAR DATA MASM51 %PUSHLCTL .XCREF
• DATA @fardata MOD PWORD .XLlST
. DATA? .FARDATA MODEL QUIRKS XOR
DATAPTR @fardata? .MODEL QWORD
DATASEG • FA R DATA? MULTERRS RADIX

80 Turbo Assembler User's Guide

The format of a line

Assembly language source code lines follow this format:

<label> <instruction/directive> <operands> <icomment>

where <label> is an optional symbolic name; <instruction/directive>
is either the mnemonic for an instruction or a directive;
<operands> contains a combination of zero, one, or two (or
sometimes more) constants, memory references, register
references, and text strings, as required by the particular
instruction or directive; <;comment> is an optional comment.

A backslash (\) can be placed almost anywhere as a line
continuation character. It cannot be used to break up strings or
identifiers. The backslash means "read the next line in at this
point and continue processing." This way you can use it naturally
without losing the ability to comment each line the way you like.
For example,

foo mystructure \
<0, \
1, \
2>

iStart of structure fill.
iZero value is first.
iOne value.
iTwo value and end of structure.

There are contexts where the line-continuation character is not
recognized. In general, it isn't recognized in any context where
characters are treated as text rather than identifiers, numbers, or
strings, or in MASM mode when the line continuation is used in
the first two symbols in the statement. For example,

ifdif <123\>,<456\>

does not recognize the two enclosed line-continuation characters.

comment \

begins a comment block, but does not define a near symbol called
COMMENT.

The line-continuation character is also not recognized inside of
macro definitions. It is recognized, however, when the macro is
expanded.

Let's look more closely at each of these elements of assembly
language code.

Chapter 5, The elements of an assembler program 81

Labels

82

Labels are nothing more than names used for referring to
numbers and character strings or memory locations within a
program. Labels let you give names to memory variables, values,
and the locations of particular instructions. For example, the
following code, which calculates five factorial (1 x 2 x 3 x 4 x 5 =
120), uses several labels:

. MODEL small

.STACK 200h
• DATA

FactorialValue ow ?
Factorial OW?

• CODE:
FiveFactorial PROC

mov ax,@data
mov ds,ax
mov [FactorialValue],l
mov [Factorial],2
mov cx,4

FiveFactorialLoop:
mov ax, [Factorial Value]
mul [Factorial]
mov [FactorialValue],ax
inc [Factorial]
loop FiveFactorialLoop
ret

FiveFactorial ENDP
END

The labels FactorialValue and Factorial are equivalent to the
addresses of two 16-bit variables; they're used to refer to those
two variables later in the code. The label FiveFactorial is the name
of the subroutine (or function or procedure) containing the code,
allowing other parts of this program to call this code. Finally, the
label FiveFactorialLoop is equivalent to the address of the
instruction

mov ax, [Factorial Value]

so that the LOOP at the end of the code can branch back to that
particular instruction.

Labels can consist of the following characters:

A-Z a-z @ $? 0-9

Turbo Assembler User's Guide

ADD AX,DX Is forced to the
right because of the length

of DoAdditlon, making for
less readable code.

A period (.) is also allowed in MASM mode (discussed in Chapter
11), as the first character only. The digits 0-9 cannot be used as the
first character of a label. A single $ or ? has a special meaning, so
neither can be used as a user symbol name.

Each label must be defined only once; that is, labels must be
unique. (There are exceptions to this rule; for example, special
labels defined with the = directive and local labels in macros and
Ideal mode subroutines.) Labels can be used as operands any
number of times.

A label can appear on a line by itself, that is, on a line without an
instruction or directive. In this case, the value of the label is the
address of the instruction or directive on the next line in the
program. For instance, in the code

jrnp DoAddition

DoAddition:
add ax,dx

the next instruction executed after the JMP instruction, which
branches to the label DoAddition, is ADD AX,DX. The preceding
example is exactly the same as

jmp DoAddition

DoAddition: add ax,dx

There are two advantages to putting each label on its own line.
First, when you put each label on its own line, it's easier to use
long labels without messing up the format of your assembler
source code. Second, it's easier to add a new instruction right at a
label if the label's not on the same line as an instruction. To
convert the last example to

jrnp DoAddition

DoAddition: rnov dx, [MemVar]
add ax,dx

you would have to split DoAddition from ADD AX,DX and then
add the new text. By contrast, if DoAddition were on a line by itself

Chapter 5. The elements of an assembler program 83

Chapter 3 In the Reference
Guide lists aI/ directives. The

registers of the 8086 are listed
In Chapter 4.

84

(as in the earlier example), you could simply add a new line after
DoAddition and be done with it.

A label cannot be the same as any of the built-in symbols used in
expressions. This includes the register names (AX, BX, and so on),
and the operators used in expressions (PTR, BYTE, WORD, and so
on). You also cannot use any of the I Fxxx directives or .ERRxxx
directives as label names. A few other symbols reserved by Turbo
Assembler can only be used in certain contexts: These include
NAME, INCLUDE, and COMMENT, which can be used as structure
member names but not as general-purpose symbols. (Refer to
Chapter 9 for more about structures.)

A safe approach is to avoid using any of the built-in symbol
names for your labels. As an example, the labels

bx DW a
PTR:

would be unacceptable, since BX is a register and PTR is an
expression operator. However, the label

Old BX DW a

would be fine.

The following are examples of acceptable labels:

MainLoop
calc_long_sum
ErrorO
iterate
Draw$Dot
Delay_lOa_milliseconds

Both labels that appear on lines without directives or instruction
mnemonics and labels that appear on lines with instructions must
end with a colon. The colon merely ends the label, and is not part
of the label itself. For example, in

LoopTop:
mov aI, [sil
inc si
and al,al
jz Done
jmp LoopTop

Done: ret

Turbo Assembler User's Guide

Instruction
mnemonics and

directives

the labels LoopTop and Done are defined with colons, but
references to those labels do not use colons.

Other labels generally should not have colons. The example code
at the start of this section provides several instances of labels
without colons.

Make your labels meaningful. Contrast

cmp al,'a'
jb NotALowerCaseLetter
cmp aI,' z'
ja NotALowerCaseLetter
sub al,20h ;convert to uppercase

NotALowerCaseLetter:

and

cmp al,'a'
jb Pl
cmp al,'z'
ja Pl
sub al,20h ;convert to uppercase

Pl:

The version with descriptive labels is largely self-documenting,
while the second version is cryptic, to say the least. Labels can
also contain underscores; if you prefer, you can use labels like
noCa_lower _case_letter or Not_A_Lower _Case_Letter. It's purely a
matter of taste.

The key field in a line of assembler code is the <instruction/
directive> field. This field can contain either an instruction
mnemonic or a directive, two very different beasts.

You've encountered instruction mnemonics earlier in this chapter;
they're the human-readable names for the machine-language
instructions the 8086 executes directly. MOV, ADD, MUL, and JMP
are all instruction mnemonics, corresponding directly to the data
movement, addition, multiplication, and branching instructions of
the 8086.

Chapter 5, The elements of an assembler program 85

86

Turbo Assembler assembles each instruction mnemonic directly
to the corresponding machine-language instruction. Whenever
you insert one instruction mnemonic in an assembler program,
the result is one corresponding machine-language instruction in
the executable code.

Directives are quite the opposite of instruction mnemonics: They
generate no executable code at all, but rather control various
aspects of how Turbo Assembler operates, from the type of code
assembled (8086,80286,80386, and so on), to the segments used,
to the way in which listing files are generated. Although the
distinction blurs at times, you might think of instruction
mnemonics as generating the actual 8086 machine-language
program, while directives are responsible for providing high-level
features of Turbo Assembler that make assembly language
programming easier.

We will spend much of this manual teaching you about the
various instruction mnemonics and directives provided by Turbo
Assembler, all of which are discussed in Chapter 3 of the Reference
Guide as well. There are a few directives that you'll need in every
program you write, most notably the segment directives, which
we'll cover in a section later in this chapter called "Segment
directives" on page 103. Another directive you'll always need is
the END directive, which we'll look at next.

The END directive Each and every program must contain an END directive to mark
the end of the program's source code. Any lines following an END
directive are ignored by Turbo Assembler. If you omit the END
directive, an error is generated; you might think that the end of
the file would mark the end of the program, but not so-an END
directive is always required.

END is typical of directives in general in that it generates no code.
For example,

.M)DEL small
• STACK 200h
• CODE

ProgramStart:
mov ah,4ch
int 21h
END ProgramStart

is perhaps the simplest possible assembler program, doing
nothing more than immediately returning to DOS. Note the use of

Turbo Assembler User's Guide

If you have two addresses In
your program, TLINK will use

the first one It finds and
Ignore the other.

the END directive to terminate the bit of code this program
consists of.

You've no doubt noticed that ProgramStart appears on the same
line with END in the example. Besides terminating programs, END
optionally does double duty by indicating where execution
should begin when the program is run. For any of a number of
reasons, you may not want to start executing a program with the
first instruction in the .EXE file; END takes care of such cases. For
example, suppose you run the program assembled and linked
from this code (DELAY.ASM):

.MODEL small

.STACK 200h

.CODE
Delay:

mov cx,O
DelayLoop:

loop DelayLoop
ret

ProgramStart:
call D~lay

mov ah,4ch
int 21h
END ProgramStart

ipause for the time required to
i execute 64K loops

Execution does not start with the first instruction in the source
code, the MOV CX,O at label Delay. Instead, execution starts with
the CALL Delay instruction at label ProgramStart, as specified by
the END directive.

In a program consisting of only one module (that is, one source
code file), the END directive should always specify the start
address for the program. In a program consisting of more than
one module, only the END directive in the module containing the
instruction at which the program is to start should specify the
start address; the END directives in all other modules should
appear as END, and nothing more. Think of it this way: Every
program needs a place to start-but it would make no sense to
have two or more places to start. Make sure you have one-and
only one-start address per program.

Chapter 5, The elements of an assembler program 87

Operands

88

Instruction mnemonics and directives tell Turbo Assembler what
to do. Operands, on the other hand, tell Turbo Assembler what
registers, parameters, memory locations, and so on to associate
with each instance of an instruction or directive. A MOV
instruction means nothing by itself; operands are necessary to tell
Turbo Assembler where to move the value from and where to
store it.

Zero, one, two, or more operands are required for various
instructions, and virtually any number of operands that will fit on
a single line can be accepted by various directives; the correct
number of operands depends on the specific instruction or
directive. (Occasionally, three operands are allowed.) Possible
operands include registers, constant values, labels, memory
variables, and text strings.

It's pretty obvious what an instruction with one operand does: It
operates on that one operand. For example,

push ax

pushes AX onto the stack. Instructions with no operands are more
obvious still. However, what about the case of an instruction with
two operands, one of which is the source and the other the
destination? For instance, when the 8086 executes

mov ax,bx

which register is it that gets read out, and which register is it that
receives that value?

You might think that the English equivalent of this instruction
would read, "Move the contents of AX into BX," but that's not the
case. Instead, the MOV instruction moves the contents of BX into
AX. With MOV instructions, mentally substitute an equal sign for
the comma between the two operands and then treat the line like
a C (or Pascal) assignment statement. With this approach, the
MOV example would translate into

ax = bx;

Admittedly, it's a bit confusing having the rightmost operand as
the source, but at least 8086 assembly language is consistent in

. this respect. You'll soon get used to it.

Turbo Assembler User's Guide

Register operands Registers are perhaps the most frequently used operands for
instructions. Registers can serve as either source or destination
and can even contain an address to jump to under certain
circumstances. There's very little that can be done with constants,
labels, or memory variables that can't be done with registers; on
the other hand, there are a number of instructions that can only
use register operands.

Here are some examples of instructions with register operands:

mov di,ax
push di
xchg ah,dl
ror dx,cl
in al,dx
inc si

Register operands can be mixed with other sorts of operands:

mov al,l
add [BaseCount],cx
cmp 51, [bx]

There's really very little to explain about the use of register
operands. To use a register as an operand, you specify that
register's name as an operand to an instruction, and the
instruction uses that register. If there are two operands, and the
register is the rightmost operand, it's the source register; if it's the
leftmost operand, it's the destination register and may also be one
of the source registers if the instruction requires two sources. For
instance, in

mov cx,l
mov dx,2
sub dx,cx

ex is set to 1, OX is set to 2, and then ex is subtracted from OX
with the result, 1, stored back in OX. ex is the rightmost operand
to the SUB instruction, so it's one source register; OX is the
leftmost operand, so it's both the other source and the destination.
By the way, the action of the preceding SUB instruction is
expressed in English as "subtract ex from OX." Using the
approach of converting to e code to make sense of two-operand
instruction, the previous SUB instruction translates to this:

Chapter 5, The elements of an assembler program 89

90

dx -= ex;

In Pascal, it translates to this: dx := dx-cx;

Constant operands Registers are fine for storing variable values, but often you just
need a constant value for an operand. For example, suppose you
want to count 51 down by 4 in a loop, repeating the loop until 51
reaches zero. You could use

CountByFourLoop:

dec si
dec si
dec si
dec si
jnz CountByFourLoop

but it's much easier to use

CountByFourLoop:

sub si,4
jnz CountByFourLoop

Characters can be used as constant operands as well, since a
character has a well-defined value. For example, since the
character A has the decimal value 65, these two instructions are
equivalent:

sub al,'A'
sub al,65

Constant values can be specified in binary, octal, or hexadecimal
notation, as well as in decimal. We'll discuss those notations in a
later section entitled "Bits, bytes, and bases" (page 116).

Constant operands can never be the leftmost of two operands,
since it's clearly not possible for a constant to be the destination
operand. Constant operands can, however, be used pretty much
anywhere that using a value for a source operand makes sense.
The 8086 does impose some limitations on the use of constants;
for example, you can't push a constant value {this is only a

Turbo Assembler User's Guide

restriction of 8086/8088). To push the value 5, you must execute
two instructions:

mov ax,S
push ax . . .

You'll have to learn special cases where constants aren't allowed
on a case-by-case basis. Fortunately, there aren't many such
instructions, and, of course, Turbo Assembler lets you know right
away if you try to use a constant incorrectly.

Expressions Constant expressions can be used wherever constant values are
accepted. Turbo Assembler supports full expression evaluation,
including nested parentheses, arithmetic, logical, and relational
operators, and a variety of operators for such purposes as
extracting the segment and offset components of labels and
determining the size of memory variables.

For example, the code

MemVar DB 0
NextVar DB ?

mov ax,SEG MemVar
mov ds,ax
mov bx,OFFSET MemVar+((3*2)-S)
mov BYTE PTR [bx],l

uses the SEG operator to load the constant value of the segment
Mem Var resides in into AX. and then copies that value from AX. to
OS. Next, this code uses a complex expression, involving the *, +,
-, and OFFSET operators, that resolves to the value OFFSET
MemVar+l, which is nothing more than the address of NextVar.
Finally, the BYTE PTR operator is used to select a byte-sized
operation when storing the constant value 1 to the location
pointed to by BX, which is NextVar.

An important point about expressions is that all expressions must
resolve to a constant value. OFFSET MemVar is a constant value--
the offset of MemVar in its segment. After all, while the value
stored at MemVar may change, MemVar itself certainly isn't going
to move.

Chapter 5, The elements of an assembler program 91

Turbo Assembler can evaluate expressions consisting of constant
values as it assembles your code, precisely because constant
values are always known. To Turbo Assembler, OFFSET
MemVar+2 is just like 5 + 2; since all the component parts of this
expression are unchanging and well-defined at assembly time, the
expression can be resolved to a single constant value.

Here are the operators that can be used in expressions:

<>, 0, D, LENGTH, MASK, SIZE, WIDTH

• (structure member selector)

HIGH, LOW

+,-(unary)

: (segment override)

OFFSET, PTR, SEG, THIS, TYPE

*, /, MOD, SHL, SHR

+, - (binary)

EQ, GE, GT, LE, L T, NE

NOT

AND

OR,XOR

LARGE, SHORT, SMALL, .TYPE

Many operators are self-explanatory, doing just what you'd
expect them to do in any arithmetic expression. We'll explain
operators as we come to them in this chapter. In the meantime,
refer to Chapter 2 of the Reference Guide if you've any questions
about specific operators.

Label operands Labels can serve as operands to many instructions. Given the
proper operators, labels can be used to generate constant values.
For example,

MemWord ow 1

mov al,SIZE MemWord

92 Turbo Assembler User's Guide

Memory-addressing
modes

moves 2, the size in bytes of the memory variable Mem Word, into
AL. In this context, a label can become part of an expression, as
illustrated in the last section.

Labels can also be used as the destinations of CALL and JM~
instructions. For example, in

cmp ax,lOO
ja IsAbovelOO

IsAbovelOO:

the JA instruction jumps to the address specified by the operand
IsAbovel00 if AX. is above 100. Again, in this capacity labels are
used as constants, specifying memory addresses to be branched
to.

Finally, labels can be used as operands in much the same way as
registers are-as source or destination operands to data
manipulation instruc~ions. The code

TempVar DW ?

mov [TempVar],ax
sub ax, [TempVar]

invariably leaves AX. containing zero, since the first instruction
writes the value stored in AX. to the memory variable TempVar,
and the second instruction subtracts the value stored in TempVar
from AX.

The use of labels as operands is part of the larger topic of
memory-addressing modes, which we'll explore next.

When you use a memory operand, exactly how do you specify
which memory location you want to work with? The obvious
answer is to give the name of the desired memory variable, as we
did in the last section. You can subtract the memory variable
Debts from the memory variable Assets with

Assets OW
Debts DW ?

mov ax, [Debts]

Chapter 5, The elements of an assembler program 93

94

FIgure 5.1
The memory

location of the
character strIng

Charstrlng

sub [Assets],ax

There's more to memory-addressing than meets the eye, though.
Suppose you have a character string named CharString,
containing the letters ABCDEFGHIJKLM, which starts at offset
100 in the data segment, as shown in Figure 5.1.

~

99
CharString ----1 __ 100

101
102
103
104
105
106
107
108
109
110
111
112
113
114

?
'A'
'B'
'C'
'0'
'E'
'F'
'G'
'H'
'I'
'J'
'K'
'L'
'M'
0
?

How can you read the ninth character, I, which is at address lOB?
In C, you can just use

C = CharString[8];

And in Pascal, you can use

C := CharString[9];

But how can you do the same in assembler? Certainly, referencing
CharString directly isn't going to do the trick, since the character
at CharString is A.

Actually, assembly language supports several different ways to
handle the addressing of character strings, arrays, and data
buffers. The simplest way to read the ninth character of Char String
is

• DATA
CharString DB 'ABCDEFGHIJKLM',O

Turbo Assembler User's Guide

Figure 5.2
Addressing the

character string
Charstrlng

• CODE

mov ax,@data
mov ds,ax
mov aI, [CharString+8]

In this case, this is the same as

mov aI, [100+8] (Ideal mode)
mov al,ds:[lOO+8] (MASM mode)

since CharString starts at offset 100. Turbo Assembler treats
everything between square brackets as an address, so the offset of
CharString and 8 are added together and used as a memory
address. The instruction effectively becomes

mov aI, [108]
mov al,ds: [108]

(Ideal mode)
(MASM mode)

as shown in Figure 5.2.

~

99
CharString • 100

101
102
103
104
105
106
107

CharString + 8 ~ 108
109
110
111
112
113
114

?
'A'
'B'
'C'
'0'
'E'
'F'
'G'
'H'
'I'
'J'
'K'
'L'
'M'
0
?

ALI

This sort of addressing, where a memory location is specified
either by its name or by its name plus some constant, is known as
direct addressing. While direct addressing is straightforward to
use, it's not very flexible because it accesses the same memory
address every time. Let's look at another, more flexible way to
address memory.

Chapter 5, The elements of an assembler program 95

I

Figure 5.3
Using BX to address

Charstrlng

96

Consider the following, which also loads the ninth character of
CharString into AL:

mov bx,OFFSET CharString+8
mov aI, [bx]

This example uses BX to point to the ninth character. The first
instruction loads BX with the offset of CharString (remember that
the OFFSET operator returns the memory offset of a labeD, plus 8.
(This is an expression, with Turbo Assembler doing the OFFSET
calculation and the addition at assembly time.) The second
instruction specifies that AL should be loaded with the contents of
the memory offset pointed to by BX, as shown in Figure 5.3.

99
CharString ---ta_ 100

BX I 108

101
102
103
104
105
106
107

I~ 108
109
110
111
112
113
114

~

?
'A'
'B'
'C'
'0' ALI
'E'
'F'
'G'
'H'
'I'
'J'
'K'
'L'
'M'
0
?

It's the square brackets that indicate that the memory location
pointed to by BX, rather than BX itself, should be the source
operand. Don't forget the brackets when using BX as a memory
pointer; for example,

mov ax, [bx] iload AX from the memory offset
i pointed to by BX

and

mov ax,bx iload AX with the contents of BX

are two very different instructions.

Turbo Assembler User's Guide

Why bother to first load BX with the offset of a memory variable
and then access memory using BX as a pointer, when a single
instruction with a direct operand does the same thing? The special
quality of registers used as memory pointers is that, unlike
instructions that use direct operands, instructions that use
registers as pointers can point to different memory addresses at
different times in the execution of a program.

Suppose you want to find the last character of a null-terminated
CharString. In order to do this, you must start at the first character
of CharString, search for the zero byte that ends the string, and
then back up one character to read the last character. There's no
way to do this with direct addressing, since the string could be of
any length. Using BX as a pointer register, though, does the trick
nicely:

rnov bx,OFFSET CharString
FindLastCharLoop:

rnov aI, [bx]
crop
je
inc

al,O
FoundEndOfString
bx

jrnp FindLastCharLoop

;point to string start

;get next string char
;is this the zero byte?
;yes, back to last char
;point to next char
;check the next char

FoundEndOfString:
dec bx ;point back to last char
rnov aI, [bx] ;get the last char in the string

If you're going to search through memory for characters or
words, if you're going to manipulate arrays, or if you're going to
copy blocks of data about, you'll find that pointer registers are
invaluable.

BX is not the only register that can be used as a memory pointer.
BP, 51, and DI can also be used, along with an optional constant
value or label. The general form of a memory operand looks like
this:

[base registertindex+register+displacement]

or

[base registertindex] [register+displacement]

where base register is BX or BP, index register is 51 or DI, and
displacement is any 16-bit constant value, including expressions
and labels. The three components are added together by the 8086
each time an instruction using a memory operand is executed.

Chapter 5, The elements of an assembler program 97

98

Each of the three parts of a memory operand is optional, although
. obviously you must use at least one of the three (or else you'd
have no memory address at a11!). Here's how the elements of a
memory operand look in another format:

BX 51
or + or + displacement

BP D1

(base) (index)

It works out that there are 16 ways to specify a memory address:

• [displacement] • [bp+displacement]

• [bx] • [bx+displacement]

• lsi] • [si+displacement]

• [di] • [di+displacement]

• [bx+si] • [bx+si+displacement]

• [bx+di] • [bx+di+displacement]

• [bp+si] • [bp+si+displacement]

• [bp+di] • [bp+di+displacement]

where, again, displacement is anything that works out to a 16-bit
constant value.

Sixteen addressing modes certainly seem like a lot, but if you look
at the preceding list, you'll see that all those addressing modes are
built from nothing more than a few elements combined in a few
different ways. Here are some more ways you can load the ninth
character of Char5tring into AL, using the various addressing
modes:

• DATA
CharString DB 'ABCDEFGHIJKLM',O

• CODE
mov ax,@data
mov ds,ax

mov si,OFFSET CharString+8
mov aI, [si]

Turbo Assembler User's Guide

rnov bx,B
rnov aI, [CharString+bx]

rnov bx,OFFSET CharString
rnov aI, [bx+B]

rnov si,B
rnov aI, [CharString+si]

rnov bx,OFFSET CharString
rnov di,B
rnov aI, [bx+di]

rnov si,OFFSET CharString
rnov bx,B
rnov aI, [si+bx]

rnov bx,OFFSET CharString
rnov si,7
rnov aI, [bx+si+l]

rnov bx,3
rnov si,S
rnov aI, [bx+CharString+si]

Believe it or not, all these instructions reference exactly the same
memory location, [CharStringl+8.

There are several interesting points about this example. First, you
should understand that a plus (+) sign used inside square
brackets has a special meaning. At assembly time, Turbo
Assembler adds together all the constant values inside square
brackets, so that

rnov [10+bx+l+si+l00],cl

effectively becomes

rnov [bx+si+lll],cl

Then, when the instruction is actually executed (when the
program is run), the memory-addressing operands are added
together on the fly by the 8086. If BX contains 25 and 51 contains
52, then CL is stored to the memory address 25 + 52 + 111 = 188
when the MOV instruction is executed. The key here is that it's the
8086 that adds together the base register, the index register, and
the displacement when this instruction is executed. To put it
another way, Turbo Assembler adds the constants at assembly

Chapter 5, The elements of an assembler program 99

BP can be made to address
the data segment, and BX,
Sf, and DI can be made to

address the stack segment.
or the code segment, or the

extra segment, by use of
segment override prefixes.
Chapter 9 covers segment

override prefixes; most of the
time, though, you won't
need them, and for now

we 'I/Ignore theIr exIstence.

100

Pick a style for your own
code and stick with It.

time, while the 8086 adds together the base and/or index and/or
displacement fields as the instruction is actually executed.

You might have noticed that we haven't used BP.in any of the
examples so far. That's because BP behaves a little differently from
BX. Recall that while BX is used as an offset into the data segment,
BP is used as an offset into the stack segment. That means that BP
can't normally be used to address CharString, which resides in the
data segment (more on segments shortly).

An explanation of the use of BP to address the stack segment is
given in Chapter 4. For now, it's enough to know that BP can be
used just as we've used BX in the examples, except that the data
addressed must reside in the stack segment when BP is used.

Finally, the square brackets around direct addresses are optional.
That is,

mov aI, [MemVar]

and

mov aI, MemVar

do exactly the same thing. Nonetheless, we strongly recommend
placing square brackets around all memory references, in order to
red uce confusion and make your code as clear as possible. At
some point, you'll undoubtedly come across code that lacks
square brackets, since some people feel that the bracketless code is
more intuitive. As usual, it's a matter of taste, and you'll find that
your programming goes more smoothly if you choose a single
memory-addressing style and use it consistently.

You'll also run across memory-addressing forms like

mov al,CharString[bx]

and even

mov al,CharString[bx] [si]t1

All these forms are the same as putting the memory-addressing
elements inside a single pair of square brackets and separating
them with plus signs; the last example is the same as

mov aI, iCharStringtbxtsitl]

Square brackets around register pointers to memory are not
optional. Without square brackets, for instance, BX is treated as an
operand, not as a pointer to an operand.

Turbo Assembler User's Guide

Comments

Comments make It easy for
you or someone else to look

over the code and quickly
understand It.

Last, but surely not least, we come to the comment field.
Comments don't actually do anything, in the sense that they don't
affect the code of the executable file generated by Turbo
Assembler, but that doesn't mean they're not important.

Most likely, you already know how to program in some high-level
language-C, Pascal, Prolog, or whatever-since few people
begin their programming careers with assembly language. As you
learned that language, no doubt you were advised time and time
again to comment carefully. That's good advice, since both
complexity and passing time can make any program inscrutable
even to its author.

By comparison with assembly language, though, a Pascal
program is virtually self-documenting. Pascal code is full of
neatly delineated control structures, strongly typed variables,
arithmetic expressions, and procedure and function calls comple,te
with formal and actual parameters.

Assembly language, on the other hand, has no built-in control
structures, strong but erratically enforced data-typing, no
arithmetic expressions involving variables, and no inherent
parameter-passing mechanism. In short, assembler code is about
as far from structured, easily maintained code as you're ever
likely to see. This doesn't mean that assembler programs can't be
structured, or that they can't be maintained, but rather that you
must use comments (and subroutines and macros as well) to raise
assembler code above its natural cryptic level.

There are all sorts of ways to comment assembler code. One
useful approach is to put a comment at the right margin of each
instruction that might benefit from a bit of explanation. Fdr
instance, you've certainly got a better shot at understanding

mov [bx],al istore the modified character

at a glance than

mov [bx],al

You don't have to comment every line; after a while, comments
like

mov ah,l iDOS keyboard input function t

Chapter 5, The elements of an assembler program 101

102

int 21h iinvoke DOS to get the next key press

cease to serve any useful purpose. That doesn't mean you
shouldn't comment such lines, though; instead, make your
comments short and to the point:

mov ah,l
int 21h iget the next key press

Another good commenting technique is to use lines of only
comments to describe blocks of code. These comments can
describe code operation at a higher level than comments for
individual lines can. For example, consider the following:

i Generate a checksum byte for the transfer buffer.

mov bx,OFFSET TransferBuffer
mov cx,TRANSFER_BUFFER_LENGTH
sub al,al iclear the checksum accumulator

Checksum:
add al, [bx]
inc bx
loop Checksum

iadd in the current byte's value
ipoint to the next byte

Note that we didn't comment every line. In light of the comment
for this block of code, it's obvious that BX is loaded with the
address of the transfer buffer, and that ex: is loaded with the
length of the buffer. The key here is that the comment for this
block of seven lines neatly summarizes the operation of the code,
so the comments for the individual lines become less important.
Someone skimming through the code is likely to benefit more
from the block comments than from the line comments.

Another still higher-level commenting technique is that of
preceding each subroutine with a descriptive comment header.
Such a header can contain a description of the subroutine, a
summary of inputs and outputs, register preservation
information, and miscellaneous notes on the subroutine's
operation. For example,

i Function to return the byte-sized checksum of a data buffer.

Turbo Assembler User's Guide

Input:
DS:BX - a pointer to the start of the buffer
CX - the length of the buffer

i Output:
AL - the buffer checksum

Registers destroyed:
BX, CX

i NOTE: The buffer must not exceed 64K in length, and must
i not cross a segment boundary.

Checksum PROC NEAR
sub al,al iclear the checksum accumulator

Checksum:
add aI, [bx]
inc bx
loop Checksum
ret

Checksum ENDP

iadd in the current byte's value
ipoint to the next byte

If you think about it, you'll realize that once a subroutine is
written and working properly, there's rarely any reason to ever
look at the code of that subroutine again. What you will want to
know is exactly what happens when you call that subroutine; in
other words, you'll often want to know just how that subroutine
interacts with the code that's calling it. A descriptive header such
as the one we've written meets that need very well.

There are many other commenting techniques, and you'll no
doubt develop one suited to your programming style. The
important thing is to make it a point to comment your code
thoroughly from the start, so that commenting becomes an
integral part of your programming style.

Segment directives

In both this chapter and the last, we've spent considerable time
discussing what segments are and how they affect the code you
write. There's one thing we haven't dealt with yet, though, and
that's how Turbo Assembler knows exactly which segment or
segments data and code reside in.

Segment control is one of the more complex aspects of 8086
assembly language; accordingly, Turbo Assembler provides not

Chapter 5, The elements of an a~mbler program 103

See Chapter 9, -Advanced
programming In Turbo

Assembler- for a detailed
explanation of segment

directives.

Simplified

one but two sets of segment control directives. The first set,
consisting of the simplified segment directives, makes segment
control relatively easy and is ideal for linking assembler modules
to high-level languages, but supports only some of the segment
related features of which Turbo Assembler is capable. The second
set, consisting of the standard segment directives, is more
complicated to use, but provides the complete segment control
required by demanding assembler applications.

Next, we'll look at both the simplified and the standard segment
directives. We'll just give you an overview of how to use the
segment directives so you'll know enough to write your own
programs.

segment The key simplified segment directives are .STACK, .CODE, .DATA,
directives .MODEL, and DOSSEG. We'll cover these in two groups in this

section, starting with .STACK, .CODE, and .DATA .

. STACK, .CODE, and
. DATA

.STACK, .CODE, and .DATA define the stack, code, and data
segments, respectively .. STACK controls the size of the stack. For
example,

. STACK 200h

defines a stack 200h (512) bytes long. That's really all you have to
do as far as the stack is concerned; just make sure you've got a

For Information about .STACK directive in your program, and Turbo Assembler handles
exceptions to using .STACK, the stack for you. 200h is a good stack size for normal programs,
see the section -Forgetting although heavily stack-oriented programs-for instance,

the stack or reserving a too-
small stack- on page 230 In programs using recursion-might require larger stacks.

Chapter 6.

104

.CODE marks the start of your program's code segment. You
might think it would be obvious to Turbo Assembler that all your
instructions belong in the code segment. Actually, though, Turbo
Assembler lets you have many code segments (by using the
standard segment directives), and .CODE tells Turbo Assembler
exactly which code segment to place your instructions in.
Defining your code segment is even simpler than defining your
stack segment, since there are no operands to .CODE. For
example,

.CODE

Turbo Assembler User's Guide

sub ax,ax
mov cx,lOO

;set the accumulator to zero
;. of loops to execute

.DATA is a bit more complex. As you'd expect, .DATA marks the
start of your data segment. You should place your memory
variables in this segment. For example,

. DATA
TopBoundary
Counter
ErrorMessage

DW 100
DW ?
DB Odh,Oah,'***Error***' ,0dh,Oah,'$'

That's certainly straightforward. The complex part of .DATA (and
it's really not that complex) is that you must explicitly load the DS
segment register with the symbol @data before you can access
memory locations in the segment defined by .DATA. Since a
segment register can be loaded from either a general-purpose
register or a memory location, but can't be loaded with a constant,
the OS segment register is generally loaded with a two-instruction
sequence along the lines of

mov ax,@data
mov ds,ax

(Any general-purpose register could be used instead of AX.) The
preceding sequence sets OS to point to the data segment that
starts with the .DATA directive.

The following program displays the text stored at DataString on
the screen (DSL YSm.ASM on disk):

.r-KlDEL small
• STACK 200h
• DATA

DataString DB 'This text is in the data segmentS'
. CODE

ProgramStart:
mov bx,@data
mov ds,bx ;set DS to the .DATA segment
mov dx,OFFSET DataString ;point DX to the offset

; of DataString in
; the .DATA segment

mov ah,9 ;DOS print string function f
int 2lh ;invoke DOS to print string

Chapter 5, The elements of an assembler program 105

106

mov ah,4ch iDOS terminate program function t
int 21h iinvoke DOS to end program
END ProgramStart

Without the two instructions that set the OS register to the
segment defined with .DATA, the print string function wouldn't
work properly. Data S tring resides in the .DATA segment and
cannot be accessed unless OS is set to that segment. You might
want to think of it this way: When you invoke DOS to print a
string, you pass the full segment:offset address of the string in
OS:OX. Only after you loaded OS with the .DATA segment and
OX with the offset of DataString did you have a full segment:offset
pointer to DataString.

You may well wonder at this point why it is that you have to load
OS, but not CS or 55. Then, too, what about ES?

Well, you never have to load CS explicitly because DOS does that
for you when you run a program. After all, if CS weren't already
set when the time came to execute the first instruction of a
program, the 8086 wouldn't know where to find the instruction,
and the program would never run. This may not be obvious to
you right now, but trust us-CS is automatically set when a
program begins, and you never need to load it explicitly.

Likewise, 55 is set by DOS before a program begins, and generally
stays the same for the duration of the program. While it is possible
to change 55, it's rarely desirable, and it's certainly not something
you'll want to attempt unless you know exactly what you're
doing. So, like CS, 55 is automatically set when a program begins,
and need not be touched thereafter.

OS is quite different. While CS points to instructions, and 55
points to the stack, OS points to data. Programs don't directly
manipulate instructions or stacks-but they do constantly
manipulate data directly. What's more, programs might want to
get at data in any of several different segments at any time;
remember that the 8086 allows you to access any memory location
in a 1 Mb range, but only in blocks of 64K (relative to a segment
register) at a time.

You may well want to load OS with one segment, access data in
that segment, and then load OS with another segment in order to
access a different block of data. In small- and medium-sized
programs, such as those we've presented here, you'll never need
more than one data segment, but larger programs often use
multiple data segments. Also, you'll need to load OS with

Turbo Assembler User's Guide

different values if you want to access system memory areas, such
as the memory locations used by the BIOS.

The upshot of all this is that Turbo Assembler lets you set DS to
any segment at any time. In return for this flexibility, you must
explicitly set DS to the segment you want-usually @data, which
is equivalent to the segment that starts with .DATA-before you
access memory locations in that segment.

The ES segment register is loaded just like DS. Often, you won't
need to bother with ES at all, but when you do need to access a
memory location in the segment pointed to by ES, you must first
load ES with that segment. For example, the following program
loads ES with the .DATA segment, then loads a character to print
from that segment via ES:

.MJDEL small
• STACK 200h
• DATA

Output Char DB ' B'
• CODE

ProgramStart:
mov dx,@data
mov es,dx ;set ES to the .DATA segment
mov bx,OFFSET OutputChar ;point BX to offset of Output Char
mov al,es:[bx] ;get character to output from

; segment pointed to by ES
mov ah,2 ;DOS display output function I
int 21h ;invoke DOS to print character
mov ah,4ch ;DOS terminate program function I
int 21h ;invoke DOS to end program
END ProgramStart

Note that ES is loaded with the two-instruction sequence

mov dx,@data
mov es,dx

just as DS was earlier.

Admittedly, there's no particular reason to use ES rather than DS
in this example, and, in fact, using ES meant that we had to use an
ES: segment override prefix (as discussed in Chapter 9). However,
there are many occasions when it's handy to have ES set to one
segment while DS is set to another, particularly when the string
instructions are used.

Chapter 5~ The elements of an assembler program 107

DOSSEG

See Chapter 3 In the
Reference Guide for more

on DOSSEG.

The DOSSEG directive causes the segments in an assembler
program to be grouped according to the Microsoft segment
ordering conventions. For now, you don't need to worry about
what that means; all you need to know is that almost all stand
alone assembler programs will work just fine if you start them
with DOSSEG.

While it is not necessary to specify DOSSEG when linking
assembler modules to a high-level language, since the high-level
language automatically selects Microsoft segment-ordering,
DOSSEG doesn't hurt and is a useful reminder of the sort of
segment-ordering that is in effect.

All this means is that the simplest approach is to use DOSSEG as
the first line in all your programs (unless you have a specific
reason not to). That way, you'll be" able to rely on a consistent
segment order .

. MODEL The .MODEL directive specifies the memory model for an
assembler module that uses the simplified segment directives.
Note that near code is branched to (jumped to) by loading the IP
register only, while far code is branched to by loading both CS
and IP. Similarly, near data is accessed with just an offset, while
far data must be accessed with a full segment:offset address. In
short, far means that full 32-bit segment:offset addresses are used,
while near means that 16-bit offsets can be used.

These are the available memory models:

tiny Both program code and program data must fit within
the same 64K segment. Both code and data are near.

small Program code must fit within a single 64K segment,
and program data must fit within a separate 64K
segment. Both code and data are near.

medium Program code may be larger then 64K, but program
data must fit within a single 64K segment. Code is far,
while data is near.

compact Program code must fit within a single 64K segment,
but program data may be larger than 64K. Code is
near, while data is far. No single data array may be
greater than 64K.

108 Turbo Assembler User's Guide

large Both program code and program data may be larger
than 64K, but no single data array may be larger than
64K. Both code and data are far.

huge Both program code and program data may be larger
than 64K, and data arrays may exceed 64K in size.
Both code and data are far. Pointers to elements
within an array are far.

Note that, from an assembler point of view, large and huge are
identical. Huge model does not automatically support data arrays
larger than 64K.

Few assembler programs require more than 64K of code or data,
so the small model serves well in most applications. You should
use the small model whenever possible, because far code
(medium, large, and huge models) makes program execution
slower; far data (compact, large, and huge models) is considerably
harder to manage in assembler.

The memory models described here correspond to the memory
models used by Turbo C (and many other compilers for the PC).
Whenever you link an assembler module to a high-level language,
be sure to use the correct .MODEL directive .. MODEL makes sure
that assembler segment names correspond to those used by high
level languages, and that labels of type PROC, which are used to
name subroutines, procedures, and functions, default to the
type-near or far-used by high-level languages .

• MODEL is required if you're using the simplified segment
directives, since otherwise Turbo Assembler wouldn't know how
to set up the segments defined with .CODE and .DATA .. MODEL
must precede .CODE, .DATA, and .STACK.

Here's the framework of a program using simplified segment
directives:

.MJDEL small

. STACK 200h
• DATA

MemVar DW 0

• CODE
ProgramStart:

mov ax,@data
mov ds,ax
mov ax, [MemVar]

Chapter 5, The elements of an assembler program 109

110

mov ah,4ch
int 21h
END ProgramStart

Other simplified There are several other less commonly used segment directives.
segment directives You'll need these only for large or sophisticated assembler

programs, so we'll just mention them now to let you know they
exist; refer to Chapter 9 for more information .

. DATA? is used just like .DATA except that it defines that portion
of the data segment containing uninitialized data. This is usually
used in an assembler module linked to a high-level language .

. FAR DATA lets you define a far data segment, that is, a data
segment other than the standard @data segment shared by all
modules .. FARDATA allows an assembler module to define its
own data segment of up to 64K in size. If a .FARDATA directiv~
has been given, @fardata is the name of the far data segment
Specified by that directive, just as @data is the name of the data
segment specified by .DATA .

. FARDATA? is much like .FARDATA except that it defines an
uninitialized far segment. As with .FARDATA and @fardata, if-a
.FARDATA? directive has been given, @fardata? is the name of
the far data segment specified by that directive .

. CONST defines that portion of the data segment containing
constant data. Once again, this only matters when linking
assembler code to a high-level language.

Some useful predefined labels are available when the simplified
segment directives are used:

• @FlleName is the name of the file being assembled.

• @Curseg is the name of the segment Turbo Assembler is
currently assembling into.

• @CodeSlze is 0 in memory models with near code segments
(tiny, small, and compact) and 1 in memory models with far
code segments (medium, large, and huge).

• Likewise, @DataSlzeis 0 in memory models with near data
segments (tiny, small, and medium), 1 in compact and large
memory models, and 2 in the huge model.

Turbo Assembler User's Guide

Standard
segment

directives

This example Isn't terribly
complicated, but It's clear

that the standard segment
directives are more complex
than the simplified segment

directives. Chapter 9
describes the standard ones

In detail.

Next, we'll show the same sample program framework from the
last section, but this time we'll use the standard segment
directives SEGMENT, ENDS, and ASSUME:

DGROUP GROUP _DATA, STACK
ASSUME cs:_TEXT, ds:_DATA,

STACK SEGMENT PARA STACK 'STACK'
DB 200h DUP (?)

STACK ENDS
DATA SEGMENT WORD PUBLIC 'DATA'

MemVar OW 0

DATA ENDS
TEXT SEGMENT WORD PUBLIC 'CODE'

ProgramStart:
mov ax,_DATA
mov ds,ax
mov ax, [MemVar]

mov ah,4ch
int 21h

TEXT ENDS
END ProgramStart

ss:STACK

Now you know why the simplified segment directives are called
"simplified"! However, much of what the simplified segment
directives do is intended to make it easier to link assembler
modules to high-level languages and is unnecessary in stand
alone assembler programs. Here's the Hello, world program using
standard segment directives:

STACK SEGMENT PARA STACK 'STACK'
DB 200h DUP (?)

STACK ENDS

Data SEGMENT WORD 'DATA'
HelloMessage DB 'Hello, world' ,13,10,'$'
Data ENDS

Code SEGMENT WORD 'CODE'
ASSUME cs:Code, ds:Data

ProgramStart:
mov ax, Data
mov ds,ax iset OS to the Data segment
mov dx,OFFSET HelloMessage iDS:DX points to

i the hello message

Chapter 5, The elements of an assembler program 111

mov ah,9 iDOS print string function t
int 2lh iprint the hello string
mov ah,4ch iDOS terminate program function t
int 2lh iend the program

Code ENDS
END ProgramStart

In this section, we're only going to give you an idea what each
standard segment directive does.

The SEGMENT directive The SEGMENT directive defines the start ofa segment. The label
accompanying the SEGMENT directive is the name of the
segment; for example,

Cseg SEGMENT

defines the start of a segment named Cseg. The SEGMENT
directive may optionally specify a number of segment attributes,
including alignment on a byte, word, doubleword, paragraph (16
byte), or page (256 byte) memory boundary. Other attributes
include the way in which the segment can be combined with
other segments with the same name and the class of the segment.

The ENDS directive The ENDS directive defines the end of a segment. For example,

Cseg ENDS

ends the segment named Cseg, which was started earlier with the
SEGMENT directive. When you use the standard segment
directives, you must explicitly end every segment.

The ASSUME directive The ASSUME directive tells Turbo Assembler what segment a
given segment register is currently set to. An ASSUME CS:
directive is required in every program that uses the standard
segment directives, since Turbo Assembler needs to know about
the code segment in order to set up an executable program.
ASSUME OS: and ASSUME ES: are usually used as well so that
Turbo Assembler knows what memory locations you can address
at any given time.

112

ASSUME lets Turbo Assembler check that each access to a named
memory variable is valid, given the current segment register
settings. For example, consider the following:

Datal SEGMENT WORD ' DATA'
Varl OW 0
Datal ENDS

Data2 SEGMENT WORD ' DATA'
Var2 OW 0

Turbo Assembler User's Guide

Data2 ENDS

Code SEGMENT WORD 'CODE'
ASSUME cs:Code

ProgramStart:
mov ax, Datal
mov ds,ax ;set OS to Datal
ASSUME ds:Datal
mov ax, [Var2] ;try to load Var2 into AX--this will

. . .
mov
int

Code ENDS
END

ah,4ch
2lh

; cause an error, since Var2 can't
; be reached in segment Datal

;DOS terminate program function I
;end the program

ProgramStart

Turbo Assembler flags an error in this code because the code tries
to access memory variable Var2 when OS is set to segment Datal,
and Var2 can't be addressed unless OS is set to segment Datal.

It's important to understand that Turbo Assembler doesn't
actually know that OS has been set to Datal; rather, by using the
ASSUME statement, you told Turbo Assembler to make that

,assumption. ASSUME is your way to tell Turbo Assembler what
the segment registers are set to at any given time, so that Turbo
Assembler can let you know when you've attempted the
impossible.

Turbo Assembler can't catch all such mistakes, however.
Whenever a memory reference involves a named memory
variable, such as previous Varl or Var2, Turbo Assembler can
check the validity of that reference, since each named memory
variable is explicitly associated with a segment. There's no way
Turbo Assembler can know what segment an instruction like

mov ai, [bx]

is intended to access, though. In such a case, Turbo Assembler
must assume that the segment OS is set to is the segment you
want to access.

If a segment register doesn't currently point to any named
segment, you can use NOTHING with ASSUME to convey that
information to Turbo Assembler. For example,

mov ax,Ob800h
mov ds,ax

Chapter 5, The elements of an assembler program 113

114

ASSUME ds:NOTHING

sets DS to point to the color text screen and then informs Turbo
Assembler that OS doesn't point to any named segment. Here's
another way to point to the color text screen:

ColorTextSeg SEGMENT AT OB800h
ColorTextMemory LABEL BYTE
ColorTextSeg ENDS

mov ax,ColorTextSeg
mov ds,ax
ASSUME ds:ColorTextSeg

Note that the AT directive that follows SEGMENT provides an
explicit starting address for the segment.

One final point about ASSUME: It may cause Turbo Assembler to
use a different segment register than you expect to access memory
in some cases. For example, consider the following code:

Datal SEGMENT WORD ' DATA'
Varl DW 0
Datal ENDS

Data2 SEGMENT WORD ' DATA'
Var2 DW 0
Data2 ENDS

Code SEGMENT WORD 'CODE'
ASSUME cs:Code

ProgramStart:
mov
mov
ASSUME
mov
mov
ASSUME
mov

mov
int

Code ENDS
END

ax, Datal
ds,ax
ds:Datal
ax,Data2
es,ax
es:Data2
ax, [Var2]

ah,4ch
2lh

ProgramStart

;set DS to Datal

;set ES to Data2

;load Var2 into AX--Turbo Assembler
; tells the 8086 to load
; relative to ES, since Var2
; can't be reached relative to DS

;DOS terminate program function •
;end the program

Turbo Assembler User's Guide

Segment override prefixes,
and the standard segment

directives In general, are
discussed In Chapter 9.

Simplified versus
standard
segment

directives

This example should look familiar; it's a modified version of the
code we used earlier to show how ASSUME lets Turbo Assembler
tell you when you've attempted an impossible memory reference.
In this example, though, no error is reported, but that doesn't
mean Turbo Assembler is letting you make a mistake. Instead,
Turbo Assembler modifies

mov ax, [Var2]

to access Var2 relative to the ES segment register rather than the
DS segment register.

What happens is this: The two ASSUME directives have informed
Turbo Assembler that DS is set to the Datal segment and that ES
is set to the Data2 segment. Then, when the MOV instruction
attempts to access Var2, which is in the Data2 segment, Turbo
Assembler correctly concludes that there's no way Var2 can be
accessed relative to OS; however, Var2 can be accessed relative to
ES. Consequently, Turbo Assembler inserts a special code known
as a segment override prefix before the MOV instruction in order to
tell the 8086 to use the ES rather than the OS segment register.

What does all this mean to you? It means that if you're careful to
use ASSUME directives to let Turbo Assembler know the current
OS and ES settings, Turbo Assembler can automatically help you
out by checking that accesses to named memory variables are
possible, and can even select the correct segment automatically in
some cases.

Now that you've seen both the simplified and standard segment
directives, the question remains: Which set of segment directives
should you use? The answer depends on the sort of assembler
programming you need to do.

If you're linking assembler modules to a high-level language,
you'll almost always want to use the simplified segment
directives. The simplified segment directives do a good job of
taking care of the segment-naming and memory-model details
associated with the interface to high-level languages.

If you're writing small- or medium-sized stand-alone assembler
programs, you'll generally want to use the simplified segment
directives, since they're easier to use and make programs more
readable.

Chapter 5, The elements of an assembler program 115

If you're writing large stand-alone assembler programs with
many segments and mixed -model programming (both near and
far code and/or near and far data in the same program), you'll
need to use the standard segment directives, since only with the
standard segment directives do you get full control over segment
type, alignment, naming, and the way in which segments are
combined.

The rule of thumb is this: Use the simplified segment directives
until you find you need the complete control over segment
definition that only the standard segment directives can provide.

Allocating data

116

Bits, bytes, and

Now that you know how to create segments, let's look at how to
fill those segments with meaningful data. The stack segment is no
problem; the stack resides there, and you can access the stack with
PUSH, POP, and addressing by way of the BP register. The code
segment is filled with the instructions generated by the instruc
tion mnemonics in your programs, so that's no problem either.

That leaves the data segment. Turbo Assembler provides you
with a variety of ways to define variables in the data segment,
both initialized to some value and uninitialized. In order to
understand the sorts of data Turbo Assembler lets you define, we
must first teach you a bit about the fundamentals of assembler
data types.

bases The fundamental unit of storage in a computer is a hit. A bit can
store either the value 1 or the value O. A bit, by itself, is not very
useful. The 8086 doesn't deal directly with bits; in fact, it deals
with nothing smaller than a byte, which consists of 8 bits.

Since a bit is effectively a base 2 digit, a byte contains an 8-bit,
base 2 number. The largest possible 8-bit, base 2 number follows:

2 to the Oth power: 1
2 to the 1st power: 2
2 to the 2nd power: 4
2 to the 3rd power: 8
2 to the 4th power: 16
2 to the 5th power: 32

Turbo Assembler User's Guide

2 to the 6th power:
2 to the 7th power:

64
+ 128

255

This means that a byte can store one value in the range a to 255.

Each of the 8086's 8-bit registers (AL, AH, BL, BH, CL, CH, DL,
and DH) stores exactly 1 byte. Each of the 8086'5 1,000,000-plus
addressable memory locations can also store exactly 1 byte.

The PC's character set (which includes uppercase and lowercase
letters, the digits 0 t09, special graphics, scientific, and foreign
characters, and assorted punctuation and other characters)
consists of precisely 256 characters in all. Does that number sound
familiar? It should, since the PC's character set was designed so
that 1 byte can store 1 character.

So now you know about the byte, which is the smallest unit that
the 8086 can address, and which can store one character, one
unsigned value between 0 and 255, or one signed value in the
range -128 to +127. A byte is clearly inadequate for many
assembler programming tasks, such as storing integer and
floating-point values and storing memory pointers.

The next larger storage unit of the 8086 is the 16-bit word. A word
is twice the size of a byte (16 bits). In fact, a word is stored in
memory at two consecutive byte locations; the 8086's memory
address space can be thought of as 500,OOO-plus words. Each of
the 8086's 16-bit registers (AX, BX, CX, DX, 51, Dr, BP, SP, CS, DS,
ES, SS, IP, and the flags register) stores one word. A word
contains a 16-bit, base 2 number. The largest possible 16-bit base 2
number follows:

2 to the Oth power: 1
2 to the 1st power: 2
2 to the 2nd power: 4
2 to the 3rd power: 8
2 to the 4th power: 16
2 to the 5th power: 32
2 to the 6th power: 64
2 to the 7th power: 128
2 to the 8th power: 256
2 to the 9th power: 512
2 to the 10th power: 1024
2 to the 11th power: 2048
2 to the 12th power: 4096

Chapter 5, The elements of an assembler program 117

118

2 to the 13th power: 8192
2 to the 14th power: 16384
2 to the 15th power: + 32768

65535

That's also the maximum size of an unsigned integer-which is no
coincidence, since integers are 16 bits long. Signed integers (which
can range from -32,768 to +32,767) are stored in words as well.

Since words are 16 bits in size, they can address any offset in a
given segment, so word-sized values are large enough to be used
as memory pointers. As you'll recall, the word-sized BX, BP, 51,
and DI registers are used as memory pointers.

The values stored in 32-bit (4-byte) units are known as
doublewords, or dwords. While the 8086 can't manipulate 32-bit
integer values directly, instructions such as AOC and SBB make it
possible to do 32-bit integer arithmetic with two successive 16-bit
operations. Doublewords support unsigned integers in the range
o to 4,294,967,295 and signed integers in the range -2,147,483,648
to +2,147,483,647.

The 8086 can load a segment:offset pointer from a doubleword
into both a segment register and a general-purpose register with
an LOS or LES instruction, but that's as far as direct support for
doublewords goes. Single-precision floating-point numbers are
also stored in doublewords. (Single-precision numbers require 4
bytes and can handle values from 10-38 to 1038.)

Each double-precision floating-point value requires a full 8 bytes.
Such 64-bit values are known as quadwords. The 8086 has no
built-in support for quad words. However, the 8087 numeric
coprocessor uses quadwords as its basic data type. (Double
precision numbers handle values that range from 10-308 to 10308

and have an accuracy up to 16 digits.)

Turbo Assembler supports one more data size for temporary
(intermediate) floating-point values, a data element 10 bytes in
length. This 10-byte data element can also be used to store packed
binary-coded decimal (BCD) values, in which each byte stores
two decimal digits.

It's worth noting that the 8086 stores word and doubleword
values in memory, low byte first. That is, if a word value is stored
at address 0, then bits 7 to 0 of the value are stored at address 0,
and bits 15 to 8 are stored at address I, as illustrated by Figure

Turbo Assembler User's Guide

Figure 5.4
storing WordVar
and DwordVar.

Decimal, binary, octal,
and hexadecimal

notation

5.4.(WordVar contains the value 199Fh; DwordVar contains the
value 12345678h.)

WordVar ----1__ 0
1
2
3
4

DWordVar ---- 5
6
7
8
9

9Fh
19h

?
?
?

78h
56h
34h
12h

?

~

Similarly, if a doubleword value is stored at address 5, bits 7-0 are
stored at address 5, bits 15-8 are stored at address 6, bits 23-16 are
stored at address 7, and bits 31-24 are stored at address 8. This
may seem a bit odd, but it's the way that every processor in the
iAPx86 family works.

Now that you know the assembly language data types, the next
question is, IIHow do you represent values?" Decimal (base 10)
values are easy, since we've been using decimal notation all our
lives. It's certainly easy enough to type

mov cx,100 ;set loop counter to 100

and, indeed, Turbo Assembler assumes that values are expressed
in decimal unless you indicate otherwise. Unfortunately, decimal
is not particularly well suited for many aspects of assembly
language because computers are binary (base 2) devices.

Well, then, it seems logical to use binary notation in assembler
programs. You can indicate to Turbo Assembler that a number is
expressed in binary notation simply by putting a b at the end of
the number. (Of course, the number must consist only of Os and 1s
because those are the only two digits in binary notation.) For
instance, decimalS is expressed in binary as 101b.

The problem with binary notation is that base 2 numbers are so
long that they're hard to use. This occurs because each base 2 digit
can store only two possible values, 0 and 1, as shown in Table 5.1.

For instance, here's the last example in binary notation:

mov cx,1100100b ;set loop counter to 100 decimal

Chapter 5, The elements of an assembler program 119

Word and doublew~rd binary values are even harder to read and
use.

If you're not already familiar with these notations, we strongly
suggest that you get a good book on the topic, since fluency with
binary, octal, and hexadecimal notation is a key element in
assembly language programming.

Decimal Binary Octal Hexadecimal

0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9

10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10
17 10001 21 11
18 10010 22 12
19 10011 23 13
20 10100 24 14
21 10101 25 15
22 10110 26 16
23 10111 27 17
24 11000 30 18
25 11001 31 19
26 11010 32 1A

256 100000000 400 100

4096 1000000000000 10000 1000

65536 10000000000000000 200000 10000

There are two notations, octal and hexadecimal, that are not only
well matched to the underlying binary nature of the computer,
but are also reasonably compact.

120 Turbo Assembler User's Guide

The suffix 0 Indicates octal
notation: you can also use

the suffix q, which Isn't so
easily confused with zero.

Figure 5.5
From binary

001100100 (decimal
100) to octal 1440

Figure 5.6
From binary

01100100 (decimal
100) to

hexadecimal 64

Octal, or base 8, notation uses the digits 0 to 7, displayed in a 3-
bit-per-digit form. Figure 5.5 shows how the bits of the binary
value 001100100b (100 decimal) can be collected in groups of three
bits to form the octal value 1440.

Binary

Octal 144

Consequently, octal numbers are only one third as long as their
binary equivalents. In octal, the last example becomes

mov cx,1440 iset loop counter to 100 decimal

Octal notation works perfectly well and is widely used in some
parts of the computer world. By and large, however, IBM PC
programmers almost always use hexadecimal (base 16) notation
rather than octal.

Each hexadecimal digit can take on any of 16 values. Here's how
you count from zero in hexadecimal:

a 1 2 3 4 5 6 7 8 9 ABC D E F 10 ..•

The letters after 9 are the six additional hexadecimal digits A to F.
(Lowercase a to f can also be used.) While it might seem strange
to use letters as digits, you've got no choice, since you need 16
digits and there are only 10 traditional decimal digits. Figure 5.6
shows how the bits of the binary value 01100100b (100 decimal)
can be collected in groups of 4 bits to form the hexadecimal value
64h. (Hexadecimal numbers are denoted with an h suffix.)

Binary

~r-=r
Hexadecimal 6 4

Chapter 5, The elements of an assembler program 121

122

Hexadecimal notation essentially displays values in 4-bits-per
digit form, as shown in Figure 5.6. Consequently, hexadecimal
numbers are only one-fourth as long as their binary equivalents.
In fact, any offset or other word value can be expressed in just
four hexadecimal digits. In hexadecimal, the last example
becomes

mov cx,64h ;set loop counter to 100 decimal

Hexadecimal numbers must begin with one of the digits 0 to 9,
since a hexadecimal number like BAD4 could be mistaken for the
label BAD4h. Here's an example where the hexadecimal value
OBAD4h and the label BAD4h coexist:

• DATA

BAD4h DW ° . . .
• CODE

;label BAD4h

mov ax,OBAD4h ;loads AX with a hexadecimal

mov ax,BAD4h

; constant (the leading ° dictates
; that this is a constant)

;loads AX from the memory
; variable BAD4h (the lack of a
; leading ° dictates that this
; is a label)

In general, only an operand starting with a digit 0 to 9 can be a
constant numeric value.

Floating-point numbers can be denoted in one of two ways. First,
you can specify a floating-point value in the familiar mantissa/
exponent form; for example,

1.1
-12.45

1. OE12
252.123E-6

Turbo Assembler converts the mantissa/ exponent form to binary
form following floating-point format. If you wish, you may
specify floating-point values directly in IEEE or Microsoft binary
form by specifying the number in hexadecimal and placing an r
suffix at the end of the value.

Real numbers can only be used with the DD, DQ, and DT
directives, which we discuss later. If you choose to use the r suffix,

Turbo Assembler User's Guide

you must specify exactly the maximum number of hexadecimal
digits for the data type you're initializing (plus a leading zero, if
necessary); for example,

DD 40000000r
DO OC014CCCCCCCCCCCCr

DT 4037D529AE9E86000000r

;2.0 (exactly 8 long)
;-5.2 (16 long plus
; a leading zero)
;1.2EI7 (exactly 20 long)

In general, it's much simpler to use the mantissa/exponent form.

The letter d can be used as a suffix to indicate that a number is
decimal. Why would you ever need to use the d suffix when
Turbo Assembler assumes that all numbers are decimal? As you
might have guessed, the answer is that you can tell Turbo
Assembler to assume that numbers are in some notation other
than decimal. This is done with the .RADIX directive, which we'll
cover in the next section.

Finally, character constant values can be used with the characters
enclosed in single or double quotes. The value of a character is its
ASCII value. For instance, all the following lines load the
character A into AL:

mov al,65
mov al,41h
mov al,'A'
mov al,"A"

Where can values in the various notations we've described be
used? Binary, octal, decimal, hexadecimal, and character values
can be used anywhere a constant can be used; for example,

mov ax,1001b
add cx,5bh
sub [Count],1770
and al,1
mov aI,' A'

Floating-point values can only be used with DO, OQ, and DT; BCD
(Binary Coded Decimal) values can only be used with CT.

Default radix selection Most of the time, you'll probably want to use decimal values by
default, simply because that's the most familiar notation.
Occasionally, however, it's convenient to have numbers without
suffixes default to another notation-that's when the .RADIX
directive is needed. (Radix means "base of a numbering system,"
by the way.)

Chapter 5, The elements of an assembler program 123

Incidentally. the operand to
.RADIX Is always decimal, no

matter what default notation
Is selected: In other words,

one .RADIX directive doesn't
affect the notation of the

next .RADIX directive ~
operand.

124

.RADIX selects the base in which numbers without suffixes are
assumed to be specified. For example,

.RADIX 16

selects base 16, or hexadecimal, as the default notation. The
following code illustrates the effect of the .RADIX directive:

. . .
• RADIX
mov
• RADIX
sub

• RADIX
add

. . .

16
ax,100
10
ax,100

2
ax,100

;select base 16, hexadecimal, as default
;= 100h, or 256 decimal
;select base 10, decimal, as default
;-100 decimal, result is
; 256 - 100 = 156 decimal
;select base 2, binary, as default
;+100b, or 4 decimal result is
; 156 + 4 = 160 decimal

. RADIX can select base 2,8, 10, or 16 as the default.

There is a potential problem to consider when you use the .RADIX
directive. No matter what default notation is selected, values
specified with DO, DQ, and DT are assumed to be decimal values
unless a suffix is used. This means that in

.RADIX 16
DD 1E?

1E7 is taken to be 1 times 10 to the seventh power, not 1E711. In
fact, you're best advised to place the h suffix on all hexadecimal
values even after a .RADIX 16 directive. Why? Remember that b
and d are valid suffixes, specifying binary and decimal notation,
respectively. Unfortunately, band d are also valid hexadecimal
digits. If .RADIX 16 is in effect, what is Turbo Assembler to make
of numbers like 129D and 101B?

As it happens, Turbo Assembler always pays attention to valid
suffixes, so 129D is 129 decimal and 101B is 101 binary, or 5
decimal. What this means is that even when .RADIX 16 is in effect,
any hexadecimal number ending in b or d must have an h suffix.
Given that, it's simplest just to put h suffixes on all hexadecimal
numbers, and given that, it becomes clear that, in general, it's not
particularly useful to use .RADIX 16.

Turbo Assembler User's Guide

Initialized data
Now we're ready to look at the ways in which Turbo Assembler
lets you define memory variables. First, let's look at the definition
of initialized data.

The data definition directives, DB, DW, DD, DF, DP, DQ, and DT,
let you define memory variables of varying data sizes as follows:

DB 1 byte
DW 2 bytes = one word
DD 4 bytes = one doubleword
DF, DP 6 bytes = one far pointer word (386)
DQ 8 bytes = one quad word
DT 10 bytes

For example, this code defines five initialized memory variables
and illustrates how some of those variables might be used .

• DATA
ByteVar
WordVar
DwordVar
OwordVar
TwordVar

mov
mov
int

DB ' z'
OW 101b
DO 2BFh
DO 3070
DT 100

ah,2
dl, [ByteVar]
21h

add ax, [WordVar]

i1 byte
i2 bytes (1 word)
i4 bytes (1 doubleword)
i8 bytes (1 quadword)
i10 bytes

iDOS display output function f
icharacter to display
iinvoke DOS to display the character

add WORD PTR [DwordVar],ax
adc WORD PTR [DwordVar+2],dx

Initializing arrays Multiple values may appear with a single data definition
directive. For instance,

SampleArray ow 0, 1, 2, 3, 4

creates the five-entry array SampleArray, made up of word-sized
elements, as shown in Figure 5.7. Any number of values that will
fit on a line may be used with the data definition directives.

Chapter 5, The elements of an assembler program 125

126

Figure 5.7
Example of f1ve

entry array

Initializing character
strings

?
SampleArray o •

1
2
3
4
?

What if you want to define an array that's too large to fit on a
single line? Just add more lines; it's not required that a label be
used with the data definition directives. For instance, this code
creates an array of doubleword-sized elements named
SquaresArray, consisting of the squares of the first 15 integers:

. . .
SquaresArray 00 0, 1, 4, 9, 16

00 25, 36, 49, 64, 81
00 100, 121, 144, 169, 196

Turbo Assembler lets you define blocks of memory initialized to a
given value with the DUP operator. For example,

BlankArray ow 100h oUP (0)

creates an array BlankArray, consisting of 256 (decimal) words
initialized to zero. Likewise, this creates an array of 92 bytes, each
initialized to the character A:

ArrayOfA DB 92 OUP (' A')

What about creating character strings? Characters are valid
operands to the data definition directives, so you could define a
character string as follows:

String DB 'A', 'B', 'C', '0'

You don't have to do all that typing, though, since Turbo
Assembler provides a handy shortcut:

String DB 'ABCO'

!fyou want to use a C-style string, which is terminated with a
zero byte, you have to explicitly put the zero byte at the end.

Turbo Assembler User's Guide

Likewise, uyou want carriage-return or linefeed characters, you
have to insert them as well. The following defines a string of text
followed by a carriage-return character, a linefeed character, and a
tennina ting zero byte:

HelloString DB 'Hello, world' ,Odh,Oah,O

You must print carriage-return/linefeed pairs in order to advance
to the left margin of the next line. For example, the program

.OODEL small

.STACK 200h
• DATA

Stringl DB
String2 DB
String3 DB

.CODE
ProgramStart:

mov
mov
mov
mov
int
mov
int
mov
int
mov
int
END

'Linel' ,'$'
'Line2' ,'$'
'Line3' ,'$'

ax,@data
ds,ax
ah,9
dx,OFFSET Stringl
2lh
dx,OFFSET String2
2lh
dx,OFFSET String3
2lh
ah,4ch
2lh
ProgramStart

prints the following output:

LinelLine2Line3

;DOS print string function f
;string to print
;invoke DOS to print string
;string to print
;invoke DOS to print string
;string to print
;invoke DOS to print string
;DOS terminate program function

If, however, you add a carriage-return/linefeed pair at the end of
each string,

Stringl DB
String2 DB
String3 DB

'Linel' ,Odh,Oah,'$'
'Line2',Odh,Oah,'$'
'Line3',Odh,Oah,'$'

the output becomes

Linel
Line2
Line3

Chapter 5, The elements of an assembler program 127

Initializing with
expressions and labels

The initial value of an initialized variable must be a constant, but
it doesn't necessarily have to be a number. Expressions are fine:

TestVar DW ((924/2)+1)

as are labels:

. DATA
Buffer DW 16 DUP (0)
BufferPointer DW Buffer

Whenever a label is used as an operand to a data definition
directive, it's the value of the label itself that's used, not the value
stored at that label. In the last example, the initial value of
BufferPointer is the offset in the .DATA segment of Buffer, not the
value zero that's stored at Buffer, much as if OFFSET Buffer had
been used to initialize BufferPointer. In other words, given the
previous initialization of BufferPointer, both

mov ax, OFFSET Buffer

and

mov ax, [BufferPointer]

load AX with the same value, the offset of Buffer.

Labels can be used in data definition expressions. For example,
the following code initializes the variable WordArrayLengfh to the
length in bytes of WordArray:

• DATA
WordArray DW 50 DUP (0)
WordArrayEnd LABEL WORD
WordArrayLength DW (WordArrayEnd - WordArray)

If you wanted to calculate the length of WordArray in words rather
than bytes, you could do it simply by dividing the length in bytes
by two:

WordArrayLengthlnWords DW (WordArrayEnd - WordArray) / 2

128 Turbo Assembler User's Guide

Uninitialized data
Sometimes it doesn't make sense to assign an mitial value to a
memory variable. For instance, suppose your program reads the
next ten characters typed at the keyboard into an array named
KeyBuffer as follows:

mov cx,10 if of characters to read
mov bx,OFFSET KeyBuffer ithe characters will be

GetKeyLoop:
mov ah,l
int 21h
mov [bx),al
inc bx
loop GetKeyLoop

i stored in Key Buffer

iDOS keyboard input function f
;get the next key pressed
isave the character
ipoint to storage location for next key

You could define KeyBuffer to be initialized with

Key Buffer DB 10 DUP (0)

but that really doesn't make much sense, since the initial values in
KeyBuffer are immediately overwritten in GetKeyLoop. What you
really need is a way to define a memory variable as uninitialized,
and Turbo Assembler provides that capability with the question
mark (?).

The question mark tells Turbo Assembler you are reserving a
storage location, but not initializing it. For example, the proper
way to define KeyBuffer in the last example is like this:

KeyBuffer DB 10 DUP (?)

This line reserves 10 bytes starting at the label KeyBuffer, but does
not set those bytes to any specific value.

Of course, whenever you use an uninitialized memory variable,
you must be sure to initialize it in your program before using it.
For instance, it would be a mistake to use the contents of KeyBuffer
in the last example before filling it, since the initial values stored
in KeyBuffer are not defined.

Chapter 5, The elements of an assembler program 129

Named memory

130

locations So far, we've seen how to name memory locations by preceding a
data definition directive such as DB with a label. The LABEL
directive is another handy way to name a memory location,
without allocating any storage.

LABEL lets you specify both a label's name and its type without
having to define any data. For example, the following is another
way to define the array KeyBuffer used in the last example:

KeyBuffer LABEL BYTE
DB 10 DUP (?)

The label types that can be defined with LABEL include

BYTE
WORD
DWORD
FWORD

PWORD
aWORD
TBYTE
NEAR

FAR
PROC
UNKNOWN

BYTE, WORD, DWORD, FWORD, PWORD, aWORD, and TBYTE
are self-explanatory, labeling 1-,2-,4-,6-,8-, and lO-byte data
items, respectively. Here's an example of initializing a memory
variable as a pair of bytes but accessing it as a word:

. DATA
WordVar LABEL WORD

DB 1,2

.CODE

mov ax, [WordVar]

When this code is executed, AL is loaded with 1 (the first byte of
WJrdVar), and AH is loaded with 2.

NEAR and FAR are used in code to select the type of call or jump
needed to reach a certain label. For example, here the first JMP is
a far jump (loading both CS and IP) because it is to a FAR label,
while the second jump is a near jump (loading only IP) because it
is to a NEAR label.

Turbo Assembler User's Guide

FarLabel and NearLabel
both describe the same

address, that of the MOV
Instruction, but allow you to

branch to that location In
two different ways.

• CODE

FarLabel LABEL FAR
NearLabel LABEL NEAR

rnov ax,l

jrnp FarLabel

jrnp NearLabel

When you are using the simplified segment directives, PRoe is a
handy way to define a label in the appropriate size, near or far, for
the current code model. When the memory model is tiny, small,
or compact, LABEL PROe is the same as LABEL NEAR; when the
memory model is medium, large, or huge, LABEL PROe is the
same as LABEL FAR. This means that if you change the memory
model, you can change certain labels automatically as well.

For example, in

.IDDEL small

.CODE

EntryPoint LABEL PROC

EntryPoint is near, but if you change the memory model to large,
EntryPoint will become far. Normally, you will use the PRoe
directive (discussed in the section "Subroutines" on page 161),
rather than LABEL, to define the sort of entry points that you
would want to have change as the memory model changes;
however, sometimes you'll need more than one entry point into a
subroutine and then you'll need LABEL, as well as PROe.

Finally, we come to LABEL UNKNOWN. UNKNOWN is simply a
way of saying that you're not sure what data type a label is going
to be used as. If you're familiar with C, UNKNOWN is similar to
C's void type. As an example of UNKNOWN, suppose you have a
memory variable, TempVar, that's sometimes accessed as a byte
and sometimes accessed as a word. The following code does the
job by using LABEL UNKNOWN:

• DATA
TernpVar LABEL UNKNOWN

Chapter 5, The elements of an assembler program 131

Moving data

132

DB ?,?

• CODE

mov [TempVar],ax

add dl, [TempVar]

Up to this point, you've learned a lot about the nature of assembly
language, fundamental assembler concepts, and the structure of
assembler programs. Now that you've got that solid foundation,
it's time to focus on assembler instructions, which form the part of
any assembler program that actually puts the 8086 through its
paces. Let's start with the most basic of assembler operations
moving data.

MOV is the instruction that moves data on the 8086. Actually, MOV
is something of a misnomer; COpy might be more like it, since
MOV actually stores a copy of the source operand in the
destination operand, without affecting the source. For example,

mov ax,O
mov bx,9
mov ax,bx . . .

first stores the constant 0 in AX, then stores the constant 9 in BX,
and finally copies the contents of BX to AX as shown in these next
few diagrams.

After rnov ax,O:

AX

ex

After rnov bx, 9:

o

?

Turbo Assembler User's Guide

Selecting data

AX

BX

Mer mav ax, bx:

AX

BX

o

9

9

9

Note that the value 9 is not moved from BX to AX, but is rather
copied from BX to AX.

MOV accepts almost any pair of operands that makes sense except
when a segment register is an operand. (We'll discuss this
situation in the section "Accessing Segment Registers" on page
138.) Any of the following can be used for the source (right-hand)
operand to MOV:

• a constant
• an expression that resolves to a constant

• a general-purpose register

• a memory location accessed with any of the addressing modes
discussed in the section "Memory-addressing modes" on page
93

Either a general-purpose register or a memory location can be
used for the destination (left-hand) operand to MOV.

size In assembly language, it's possible to copy byte or word values
with the MOV instruction. Let's look at how Turbo Assembler
determines what data size to work with.

In many cases, the operands to MOV tell Turbo Assembler exactly
what the data size should be. If a register is involved, then the
data size must be the size of that register. For example, the data
sizes of the following instructions are clear:

mov al,!
mov dx,si

Chapter 5, The elements of an assembler program

;byte-sized
;word-sized

133

134

mov bx, [di)
mov [bp+si+2),al

iword-sized
ibyte-sized

Likewise, named memory locations have inherent sizes, so the
data sizes of the following instructions are known to Turbo
Assembler:

• DATA
TestChar DB ?
TempPointer OW TestChar

. CODE

mov [TestChar),'A'
mov [TempPointer),O

Sometimes, though, you'll have a MOV instruction that has no
defined size whatsoever. For example, there's no way Turbo
Assembler can be sure whether the following instruction should
store a byte- or word-sized value:

mov [bx),l

and, in fact, Turbo Assembler will complain that it doesn't know
how to assemble such an instruction. It would also be handy to be
able to handle the case where you want to temporarily access a
word-sized variable as a byte, or vice versa.

Turbo Assembler gives you a means to flexibly define data size in
the form of the WORD PTR and BYTE PTR operators. WORD PTR
tells Turbo Assembler to treat a given memory operand as word
sized, and BYTE PTR tells Turbo Assembler to treat a given
memory operand as byte-sized, regardless of its predefined size.
For example, the last example could be made to store a word
sized value 1 to the word pointed to by BX with

mov WORD PTR [bx),l

or could be made to store a byte-sized value 1 to the byte pointed
to by BX with

mov BYTE PTR [bx),l

Note that WORD PTR and BYTE PTR make no sense when
applied to registers, since registers are always a fixed size; in this
case, WORD PTR and BYTE PTR are ignored. Similarly, WORD

Turbo Assembler User's Guide

Signed versus
unsigned data

PTR and BYTE PTR are ignored when applied to a constant,
which always takes on the same size as the destination operand.

WORD PTR and BYTE PTR have another use, which is to
temporarily select a different data size for a named memory
variable. Why would that be useful? Consider the following:

• DATA
Sourcel DO l2345h
Source2 DO 5432lh
Sum DD ?

. CODE

mov ax, WORD PTR [Sourcel] ;get low word of
; Sourcel

mov dx,WORD PTR [Sourcel+2] ;get high word of
; Sourcel

add ax, WORD PTR [Source2] ;add to Source2
; low word

adc dx,WORD PTR [Source2+2] ;add to Source2
; high word

mov WORD PTR [Sum],ax ;store low word of sum
mov WORD PTR [Sumt2],dx ;store high word of sum

The variables this example works with are all long integers or
doublewords. However, the 8086 can't perform doubleword
addition directly, so you have to break up the addition into a
series of word-sized operations. WORD PTR lets you access parts
of Sourcel, Source2, and Sum as words, even though the variables
themselves are doublewords.

While the FAR PTR and NEAR PTR operators don't strictly affect
data size, they are similar to WORD PTR and BYTE PTR. FAR PTR
forces a label that is the target of a jump or call to be treated as a
far label, causing the jump or call to load both CS and IP. NEAR
PTR, on the other hand, forces a label to be treated as a near label,
which is branched to by loading only IP.

Both signed and unsigned numbers are made up of a series of
binary digits. The distinction between the two is made by you, the
assembler programmer, not by the 8086 itself. For example, the
value OFFFFh can be either 65,535 or -1, depending on how your

Chapter 5, The elements of an assembler program 135

136

Converting

program chooses to interpret it. How do you know that OFFFFh is
-1? Add 1 to it,

mov ax,Offffh
add ax,l · . .

and you'll find that the result is 0, which is just what you'd expect
to get from adding -1 and 1 together.

The same ADD instruction works just fine whether you're
considering the operands to be signed or unsigned. For example,
suppose you were to subtract 1 from OFFFFh as follows:

· . .
mov ax,Offffh
sub ax,l · . .

The result would be OFFFEh, which is either 65,534 (as an
unsigned number) or -2 (as a signed number).

If this seems confusing, you should read one of the books
recommended at the end of this book in order to learn more about
two's complement arithmetic, the means by which the 8086 handles
signed numbers. Unfortunately, we haven't the space to cover
signed arithmetic here, although it's a useful subject for an
assembler programmer to understand. Right now, you just need
to know that ADD, SUB, ADC, and SBB work equally well with
signed and unsigned numbers, so no special instructions are
needed for signed addition and subtraction. Sign does matter for
multiplication and division, as you'll see later; it also matte~
when you're converting between data sizes and when you're
executing conditional jumps.

between data Sometimes it's necessary to convert words to bytes, or vice versa.
sizes This is one area where it matters whether the values are signed or

unsigned.

First, let's look at converting a word to a byte. That's simple; just
toss away the high byte of the word. For example,

mov ax,S
mov bl,al

Turbo Assembler User's Guide

converts the word value 5 in AX to the byte value 5 in BL. Of
course, you must be sure that the value you're converting will fit
in a byte; trying to convert 100h to a byte with

mov dx,lOOh
mov al,dl

would be fruitless, since only the lower byte, which is 0, would be
stored in AL.

Converting an unsigned byte to a word is simply a matter of
zeroing the upper byte of the word. For example,

mov e!,12
mov al,e!
mov ah,O

converts the unsigned byte value 12 in CL to the unsigned word
value 12 in AX.

Converting a signed byte to a word is a bit more complex, so the
8086 provides you with a special instruction to handle that task:
CBW. CBW converts a signed byte in AL to a signed word in AX.
The following code converts the signed byte value -1 in OH to the
signed word value -1 in OX:

mov dh,-l
mov al,dh
cbw
mov dx,ax

The 8086 also provides a special instruction, CWO, for converting
a signed word in AX to a signed doubleword in OX:AX (the high
word is in OX). The following converts the signed word value
+ 10,000 in AX to the signed doubleword value +10,000 in OX:AX:

mov ax,lOOOO
cwd

Unsigned word values can be converted to unsigned doubleword
values by zeroing the high word of the value.

Chapter 5, The elements of an assembler program 137

Accessing
segment registers

138

Although the MOV instruction can be used to move values to and
from segment registers, this is a special case, more limited than
other uses of MOV. If a segment register is one operand to MOV,
the other operand must be a general-purpose register or a
memory location. It's not possible to load a constant directly into a
segment register, and one segment register may not be copied
directly to another segment register.

Since segment names are constants, it's necessary to load segment
registers by way of a general-purpose register or a memory
variable. For example, here are two ways to set ES to the .DATA
segment:

• DATA
DataSeg ow @data

• CODE

mov ax,@data
mov es,ax

mov es, [DataSeg]

What you'd like to do, but can't, is this:

mov es,@data ithis won't work!

In order to copy the contents of one segment register to another
segment register, you have to pass the value through a general
purpose register or memory. For example, both

mov ax,cs
mov ds,ax · . .

and

· . .
push cs
pop ds · . .

Turbo Assembler User's Guide

Moving data to
and from the

stack

Exchanging data

copy the contents of CS to OS. The first method executes faster,
but the second is smaller in code size.

It's worth noting that it's not only the MOV instruction that limits
you when it comes to the use of segment registers; most
instructions can't use segment registers as operands at all.
Segment registers can be pushed to and popped from the stack,
but that's about it; they can't be used in addition, subtraction,
logical opera tions, or comparisons.

You've already encountered the stack, the last-in, first-out storage
area in the stack segment. The top of the stack is always pointed
to by SP. The MOV instruction can be used to access data on the
stack via memory-addressing modes that use BP as a base pointer;
for example,

mov ax, [bp+4J

loads AX. with the contents of the word at offset BP+4 in the stack
segment. (See Chapter 4 for a discussion of accessing the stack via
BP.)

Most often, the stack is accessed with PUSH and POP. PUSH
stores the operand on top of the stack, and POP retrieves the
value on the top of the stack and stores it in the operand. For
example,

. . .
mov ax,l
push ax
pop bx

pushes the value in AX. (which is 1) on top of the stack, then pops
1 from the top of the stack and stores it in BX.

The XCHG instruction lets you swap the contents of two
operands. This is a convenient way to perform an operation that
would otherwise require three instructions. For example,

xchg ax,dx

swaps the contents of AX. and DX, an operation that is equivalent
to

Chapter 51 The elements of an assembler program 139

I/O

140

. . .
push ax
mov ax,dx
pop dx

So far, we've discussed moving data between constant values,
registers, and the memory address space of the 8086. As you'll
recall, the 8086 has a second, independent address space, known
as the input/output, or I/O, address space. The 65,536 I/O
addresses, or ports, are generally used as control-and-data
channels to devices such as disk drives, display adapters,
keyboards, and printers.

Most of the 8086's instructions, including MOV, can only access
operands in the memory address space. Only two instructions, IN
and OUT, can access I/O ports.

IN copies a value from a selected I/O port into AL or AX. The I/O
port address that serves as the source can be selected in one of
two ways. If the I/O port address is less than 256 (lOOh), you can
specify the address as part of the instruction; for example,

in al,41h

copies a byte from I/O port 41h to AL.

Alternatively, you can use DX to point to the I/O port to be read:

mov dx,41h
in al,dx

Why bother using DX as an I/O pointer? For one thing, if the I/O
port address is greater than 255, you must use ox. For another,
the use of OX gives you more flexibility in addressing I/O ports;
for instance, a subroutine can use a passed I/O port pointer by
loading it into DX.

Don't be fooled by the syntax of the IN instruction; AL and AX are
the only possible destination operands. Likewise, OX and a
constant value less than 256 are the only possible source
operands. Much as you might like to, you can never use an
instruction like

in bh,si ;this won't work!

Turbo Assembler User's Guide

Operations

Arithmetic

OUT is exactly like IN, except that AL or AX is the source operand,
and an I/O port pointed to by DX or a constant value less than
256 is the destination operand. The following code sets I/O port
3B4h to OFh:

mov dx,3b4h
mov al,Ofh
out dx,al

Data movement is certainly important, since a computer spends
much of its time moving data about from here to there. Still, it's
equally important to be able to manipulate the data by
performing arithmetic and logical operations on it. Next, we'll
take a look at the arithmetic and logical operations supported by
the 8086.

operations Even if your PC doesn't spend all its time crunching numbers,
you know that it could if you needed it to. After all, spreadsheets,
database programs, and engineering packages all run on the PC.
Given that, it's pretty obvious that the 8086 must be a powerful
math engine, right?

Well, yes and no. While it's certainly true that software that runs
on the 8086 can do wonderful math, the 8086 itself provides
surprisingly rudimentary arithmetic capabilities. For starters, the
8086 has no instructions to support any sort of floating-point
arithmetic (arithmetic with numbers such as 5.2 and 1.03E17, as
opposed to arithmetic with integers), let alone transcendental
functions; that's the job of the 8087 numeric coprocessor. This
doesn't mean that 8086 programs can't do floating-point
arithmetic; certainly, spreadsheets run on PCs without 8087s.
However, 8086 programs must perform floating-point arithmetic
by a slow, involved series of shift, add, and test instructions,
rather than with a single speedy instruction, as can be done with
the 8087.

Also, the 8086 provides no arithmetic or logical instructions that
can directly handle operands larger than 16 bits.

Chapter 5, The elements of an assembler program 141

142

Addition and
subtraction

What arithmetic operations does the 8086 have built-in support for,
then? Well, the 8086 can perform 8- and 16-bit signed and
unsigned addition, subtraction, multiplication, and division, and
has special, fast instructions for incrementing and decrementing
operands. The 8086 also provides support for addition and
subtraction of values larger than 16 bits, although operations on
such values require multiple instructions.

We've already encountered the ADD and SUB instructions in
many of our example programs. They operate much as you'd
expect. ADD adds the contents of the source (right-hand) operand
to the contents of the destination operand, and stores the result
back in the destination operand. SUB is the same except that it
subtracts the source operand from the destination.

So, for example, this code first loads the value 99 stored at BaseVal
into DX, then adds the constant 11 to it, resulting in the value 110
in OX, and finally subtracts the value 10 stored at Adjust from OX .

• DATA
BaseVal DW 99
Adjust DW 10

• CODE

mov dx, [BaseVal]
add dx,ll
sub dx,[Adjust]

The result: 100 is stored in DX.

32-bit operands

ADD and SUB work with either 8- or 16-bit operands. If you want
to add or subtract, say, 32-bit operands, you must break the
operation into a series of word-sized operations and use ADC or
SBB.

When you add two operands, the 8086 stores a status in the carry
flag (the C bit in the flags register) that indicates whether there
was a carry out of the destination; that is, whether the result of the
addition was too large to fit in the destination. You're familiar
with the concept of carry-in decimal arithmetic; if you add 90 and
10, you get a carry-out to the third digit:

Turbo Assembler User's Guide

90
+ 10

100

Now consider this addition of two hexadecimal values:

FFFF
+ 1

10000

The lower word of the result is zero, and the carry is 1, since the
result, 10000h, doesn't fit into 16 bits.

ADe is just like ADD except that it takes the carry flag (which was
presumably set by a previous addition) into account. Whenever
you add two values that are larger than a word, add the lower
(least significant) words of the values together first with ADD,
then add the remaining words of the values together with one or
more ADC instructions, adding the most-significant words last.
For example, the following code adds a doubleword value stored
in CX:BX to a doubleword value stored in DX:AX:

add ax,bx
adc dx,cx

and the following adds the quad word value at DoubleLongl to the
quadword value at DoubleLong2:

mov ax, [DoubleLong1]
add [DoubleLong2],ax
mov ax, [DoubleLong1+2]
adc [DoubleLong2+2],ax
mov ax, [DoubleLong1+4]
adc [DoubleLong2+4],ax
mov ax, [DoubleLong1+6]
adc [DoubleLong2+6],ax

see operates along much the same lines as ADe. As see
performs a subtraction, it takes into account any borrow that
occurred during the previous subtraction. For example, the
following code subtracts a doubleword value stored in CX:BX
from a doubleword value stored in DX:AX:

Chapter 5, The elements of an assembler program 143

144

sub ax,bx
sbb dx,cx

With both ADC and SBB, you must make sure that the carry flag
hasn't changed since the last addition or subtraction, or else the
carry /borrow,status stored in the carry flag would be lost. For
instance, the following will not add CX:BX to DX:AX correctly:

add ax,bx
sub si,si
adc dx,cx

iadd the lower words
iset S1 to 0 (clears the carry flag)
iadd the upper words •••
i this won't work properly, since the
i carry flag from the add has been destroyed! . . .

Incrementing and decrementing

When an assembler program needs to perform an addition, odds
are good that it will be adding the value 1. This is known as
incrementing. Likewise, the value 1 is often subtracted from
registers and memory variables. This is known as decrementing.
For operations such as counting down or counting up, and for
advancing pointer registers through memory, incrementing and
decrementing are all the addition and subtraction that's needed.

In recognition of the frequent need for incrementing and
decrementing, the 8086 provides the instructions INC and DEC. As
you might expect, INC adds 1 to a register or memory variable,
and DEC subtracts 1 from a register or memory variable.

For example, the following code fills the 10-byte array T empArray
with the numbers 0, 1,2,3,4,5, 6, 7,8,9:

• DATA
TempArray DB 10 DUP (?)
FillCount DW ?

• CODE

mov al,O

mov bx,OFFSET TempArray
mov [FillCount),10

FillTempArrayLoop:
mov [bx),al

ifirst value to store
i in TempArray
ipoint BX to TempArray
if of elements to fill

iset the current element

Turbo Assembler User's Guide

Multiplication and
division

inc bx

inc al
dec [FillCount]

jnz FillTempArrayLoop

Why would you want to use, say,

inc bx

instead of

add bx,l

; of TempArray
;point to next element of
; TempArray
;next value to store
;count down t of elements
; to fill
;do another element if we
; haven't filled all elements

since they do the same thing? Well, where the ADD is 3 bytes long,
the INC is only 1 byte long, and executes faster as well. In fact, it's
more compact to perform two INC instructions than to add 2 to a
word-sized register. (Increments and decrements of byte-sized
register and INC instructions than to add 2 to a
word-sized register. (Increments and decrements of byte-sized
register and memory variables are 2 bytes long-still shorter than
adding or subtracting.)

In short, INC and DEC are the most efficient instructions available
for incrementing and decrementing registers and memory
variables. Use them whenever you can.

The 8086 can perform certain types of integer multiplication and
division. This is one of the strong points of the 8086, since many
microprocessors provide no direct support at all for
multiplication and division, and it's fairly complex to perform
those operations in software.

The MUL instruction multiplies two 8- or 16-bit unsigned factors
together, generating a 16- or 32-bit product. Let's look at the 8-bit
by-8-bit multiply first.

One of the factors to an 8-bit-by-8-bit MUL must be stored in AL;
the other may be in any 8-bit general-purpose register or memory
operand. MUL always stores the 16-bit product in AX. For
example,

mov al,25
mov dh,40
mul dh

Chapter 5, The elements of an assembler program 145

146

multiplies AL times DH, placing the result, 1000, in AX. Note that
MUL only requires one operand; the other factor is always AL (or
AX, in the case of a 16-bit-by-16-bit multiply).

A 16-bit-by-16-bit MUL is similar; one factor must be stored in AX,
while the other may be in any 16-bit, general-purpose register or
memory operand. MUL puts the 32-bit product in DX:AX, with the
lower (least significant) 16 bits of the product in AX and the upper
(most significant) 16 bits of the product in DX. For instance,

rnov ax,lOOO
rnul ax

loads AX with 1000 and then squares AX, placing the result,
1,000,000, in DX:AX.

Unlike addition and subtraction, multiplication does care whether
the operands are signed or unsigned, so there's a second
multiplication instruction, IMUL, for multiplying 8- or 16-bit
signed factors. Apart from handling signed values, IMUL is just
like MUL. The code

rnov al,-2
rnov ah,lO
irnul ah

stores the value -20 in AX.

The 8086 lets you divide a 32-bit value by a 16-bit value, or a 16-
bit value by an 8-bit value, with certain restrictions. Let's look at
16-bit-by-8-bit division first.

In 16-bit-by-8-bit unsigned division, the dividend must be stored
in AX. The 8-bit divisor may be in any 8-bit, general-purpose
register or memory variable. DIV always puts the 8-bit quotient in
AL, and the 8-bit remainder in AH. For example,

rnov ax,5l
rnov dl,lO
div dl

results in 5 (51 divided by 10) in AL and 1 (the remainder of 51
divided by 10) in AH.

Turbo Assembler User's Guide

Note that the quotient is an 8-bit value. This means that the result
of a l6-bit-by-8-bit division must be no larger than 255. If the
quotient is too large, an interrupt 0 (the divide-by-zero interrupt)
is generated. The code

mov ax,Offffh
mov bl,l
div bl

generates a divide-by-zero interrupt. (As you might expect, a
divide-by-zero interrupt is also generated if zero is used as a
divisor.)

For 32-bit-by-16-bit division, the dividend must be stored in
OX:AX. The l6-bit divisor may be in any l6-bit, general-purpose
register or memory variable. DIV always puts the l6-bit quotient
in AX, and the l6-bit remainder in OX. For example,

mov ax,2
mov dx,l
mov bx,10h
div bx

;load DX:AX with 10002h

results in lOOOh (l0002h divided by lOh) in AX and 2 (the
remainder of lOO02h divided by 10h) in OX.

Again, the quotient is only a 16-bit value, so the result of a 32-bit
by-16-bit division must be no larger than OFFFFh, or 65,535, else a
divide-by-zero interrupt is generated.

Like multiplication, division cares whether signed or unsigned
operands are used. DIV is used for unsigned operands, and IDIV is
used for signed operands. For example, this stores -6 in AX and
-67 in OX:

. DATA
TestDivisor DW 100

• CODE

mov ax,-667
cwd
idiv [TestDivisor]

Chapter 5, The elements of an assembler program

;set DX:AX to -667

147

Changing sign Finally, we come to the NEG instruction, with which you can
reverse the sign of the contents of a general-purpose register or
memory variable. For example, the code

Logical
operations

Table 5.2
The operation of

the 8086 AND, OR.
and XOR logical

Instructions

mov ax,l ;set AX to 1
neg ax ;negate AX, which becomes -1
mov bx,ax ;copy AX to BX
neg bx ;negate BX, which becomes 1 . . .

ends up with -1 in AX and 1 in BX.

Turbo Assembler supports a full set of instructions that perform
logical operations, including AND, OR, XOR, and NOT. These
instructions are very useful for manipulating individual bits
within a byte or word, and for performing Boolean algebra.

Given two source bits, the logical instructions produce the results
shown in Table 5.2. The logical instructions perform these bit-wise
operations on corresponding bits of the source operands; for
example,

and ax,dx

performs a logical AND with bit 0 of AX and bit 0 of OX as the
source bits and bit 0 of AX as the destination, and does the same
for bit 1, bit 2, and so on, up to bit 15.

Source Bit A Source Bit B AANDB AORB AXORB

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

The AND instruction combines two operands according to the
rules shown in Table 5.2, setting each bit in the destination to 1
only if both corresponding source bits are 1. AND lets you isolate a
specific bit, or force specific bits to O. For example,

. . .
mov dx,3dah
in al,dx
and al,l

148 Turbo Assembler User's Guide

isolates bit 0 of the status byte of the Color /Graphics Adapter
(CGA). This code leaves AL set to 1 if display memory on the
CGA can be updated without causing snow, and set to 0
otherwise.

The OR instruction combines two operands according to the rules
shown in Table 5.2, setting each bit in the destination to 1 if either
of the corresponding source bits is 1. OR lets you force a specific
bit(s) to 1. For example,

mov ax,40h
mov ds,ax
mov bx,lOh
or WORD PTR [bx],0030h

forces both bit 5 and bit 4 of the BIOS equipment flag word to 1,
causing the BIOS to support the monochrome display adapter.

The XOR instruction combines two operands according to the
rules shown in Table 5.2 (page 148), setting each bit in the
destination to 1 only if one of the corresponding source bits is 0,
and the other is 1. This lets you flip the value of selected bits
within a byte. For example,

mov al,OlOlOlOlb
xor al,llllOOOOb

sets AL to 10100101b, or ASh. The key here is that when AL is
exc1usive-ORed with 11110000b, or OFOh, the 1 bits in OFOh flip the
value of the corresponding bits in AL, while the 0 bits in OFOh
leave the corresponding bits in AL unchanged. The result is that
all bits in the upper nibble of AL are changed, while all bits in the
lower nibble of AL remain the same.

By the way, XOR is a handy way to zero a register. For instance,
this code sets AX to 0:

xor ,ax,ax

Finally, NOT simply flips each bit in the operand to the opposite
state, just as if an XOR with a source operand of OFFh had been
executed. For instance, consider

mov bl,lOllOOOlb

Chapter 5, The elements of an assembler program 149

Shifts and rotates

Figure 5.8
Example of a shift

left

150

not bi
xor bl,Offh

iflip BL to OlOOlllOb
iflip BL back to l0110001b

The 8086 provides a variety of means by which to move bits left
or right in a register or memory variable. The simplest of these is
the logical shift.

SHL (shift left, also known as SAL) moves each bit in the
destination one place to the left, or toward the most-significant
bit. Figure 5.8 shows how the value 10010110b (96h or 150
decimal) stored in AL is shifted left with SHL AL,t. The result is
the value 00101100b (2Ch or 44 decimal), which is stored back in
AL. The carry flag is set to 1.

Carry AL

CH ~o
Bit 7 6 5 4 3 2 1 0

The most-significant bit is shifted out.of the operand altogether
and into the carry flag, and a 0 is shifted into the least-significant
bit.

Of what use is a left shift? The most common use of SHL is to
perform fast multiplies by powers of two, since each SHL
multiplies the operand by 2. For example, the following code
multiplies OX by 16:

shl dx,l iDX * 2
shl dx,l iDX * 4
shl dx,1 iDX * 8
shl dx,1 iDX * 16

Multiplying by shifts is much faster than using the MUL
instruction.

You'll notice that there's a second operand to SHL in the previous
example, the value 1. This indicates that OX should be shifted left

Turbo Assembler User's Guide

Figure 5.9
Example of SAR
(arithmetic right

shift)

by 1 bit. Unfortunately, the 8086 doesn't support 2, 3, or any
constant value other than 1 for a shift amount. However, CL can
be used to supply a shift count; for instance,

rnov cl,4
shl dx,cl

multiplies DX times 16, just as the last example did.

If there's a left shift, it seems logical that there must also be a right
shift, and there is-in fact, there are two right shifts.

SHR (shift right) is much like SHL: It shifts the bits in the operand
to the right, either by 1 or CL bits, then shifts the least-significant
bit into the carry flag and shifts 0 into the most-significant bit.
SHR is a quick way to do unsigned division by powers of two.

SAR (arithmetic shift right) is just like SHR, except that with SAR,
the most-significant bit of the operand is shifted right to the next
bit, and then back to itself. Figure 5.9 shows how the value
10010110b (96h or-106 in signed decimal) stored in AL is shifted
right with SAR AL,1. The result is the value 11001011b (OCBh or
-53 in signed decimal), which is stored back in AL. The carry flag
is set to O.

Carry

~----------------------~~
Bit 7 6 5 4 3 2 1 o

This has the effect of preserving the sign of the operand, so SAR is
useful for performing signed division by powers of two. For
example,

rnov bx,-4
sar bx,l

leaves -2 stored in BX.

Chapter 5, The elements of an assembler program 151

152

Figure 5.10
Example of ROR

(rotate right)

There are also four rotate instructions: ROR, ROL, RCR, and RCL.
ROR is like SHR, except that the least-significant bit is shifted back
into the most-significant bit, as well as to the carry flag. Figure
5.10 shows how.the value 10010110b (96h or 150 decimal) stored
in AL is rotated right with ROR AL, 1. The result is the value
01001011b (04Bh or 75 in decimal), which is stored back in AL.
The carry flag is set to O.

AL

Bit 7 6 5 4 3 2 1 o

ROL reverses the action of ROR, shifting the operand in a circular
fashion, but to the left, with the most-significant bit shifting back
into the least-significant bit. ROR and ROL are useful for
realigning the bits in a byte or word. For example,

mov si,49Flh
mov e!,4
ror si,e!

leaves 149Fh in 51, moving bits 3-0 to bits 15-12, bits 7-4 to bits 3-0,
and so on.

RCR and RCL are a bit different. RCR is like a right shift in which
the most-significant bit is shifted in from the carry flag. Figure
5.11 shows how the value 100101106 (96h or 150 decimal) stored in
AL is rotated right through the carry flag, which initially contains
the value 1, with ROR AL, 1. The result is the value 11001011b
(OCBh or 203 in decimal), which is stored back in AL. The carry
flag is set to O.

Turbo Assembler User's Guide

Figure 5.11
Example of RCR

(rotate right and
carry)

Bit 7 6 5 4 3 2 1 o

Likewise, RCL is like a left shift in which the least-significant bit is
shifted in from the carry flag. RCR and RCL are useful for shifts
involving multiple-word operands. For instance, the following
multip~ies the doubleword value in DX:AX by 4:

shl ax,l
rci dx,l
shl ax,l
rci dx,l

ibit 15 of AX is shifted into carry
icarry is shifted into bit 0 of DX
ibit 15 of AX is shifted into carry
icarry is shifted into bit 0 of DX

The rotate instructions, like the shift instructions, can shift an
operand either by 1 bit or by the number of bits specified by CL.

Loops and jumps

Up until now, you've seen th~ 8086 execute instructions in strict
sequence, with each instruction executing immediately after the
instruction at the preceding address. Given the code

mov ax, [BaseCountj
add ax,4

push ax

you could be very sure that the ADD would execute immediately
after the MOV, and the PUSH some time after that.

If that were all the 8086 could do, it would be a dull computer
indeed. A fundamental feature of any useful computer is the
presence of an instruction that can jump, or branch, to an
instruction other than the one following it in memory. Equally

Chapter 5, The elements of an assembler program 153

Unconditional

important is the ability to branch conditionally, depending on a
status or on the result of an operation. Naturally, the 8086 has
instructions for both sorts of branching; in addition, the 8086
provides special branching instructions to facilitate repeated
processing of a block of instructions.

jumps The fundamental branching instruction of the 8086 is the JMP
instruction. JMP instructs the 8086 to execute the instruction at the
target label as the next instruction after the JMP. For example,
when this code is finished

rnov ax,l
jrnp AddTwoToAX

AddOneToAX:
inc ax
jrnp AXIsSet

AddTwoToAX:
inc ax

AXIsSet:

AX contains 3, and the ADD and JMP instructions following the
label AddOneToAX are never executed. Here, the instruction

jrnp AddTwoToAX

instructs the 8086 to set IP, the instruction pointer, to the offset of
the label AddTwoToAX, so the next instruction executed is

add ax,2

An operator sometimes used with JMP is SHORT. JMP usually
uses a 16-bit displacement to point to the destination label;
SHORT instructs Turbo Assembler to use an 8-bit displacement
instead, thereby saving 1 byte per JMP. For instance, the last
example is 2 bytes shorter as

rnov ax,l
jrnp SHORT AddTwoToAX

AddOneToAX:
inc ax
jrnp SHORT AXIs Set

AddTwoToAX:
inc ax

154 Turbo Assembler User's Guide

AXIsSet:

The drawback to using SHORT is that short jumps can only reach
labels within 128 bytes of the JMP instruction, so in some cases
Turbo Assembler can inform you that it can't reach a given label
with a short jump. It only makes sense to use SHORT on forward
jumps, since Turbo Assembler automatically makes backward
jumps short if a short jump will reach the destination, and long
otherwise.

JMP can also be used to jump to another code segment, loading
both CS and IP with a single instruction. For example,

CSegl SEGMENT
ASSUME cs:Csegl

FarTarget LABEL FAR

Csegl ENDS

Cseg2 SEGMENT
ASSUME cs:Cseg2

jmp FarTarget ithis is a far jump

Cseg2 ENDS

performs a far jump.

If you wish, you can use the FAR PTR operator to force a label to
be treated as far; for instance,

jmp FAR PTR NearLabel
nop

NearLabel:

performs a far jump to NearLabel, even though NearLAbel is in the
same code segment as the JMP instruction.

Finally, you can jump to an address stored in a register or
memory variable. For example,

mov ax,OFFSET TestLabel
jmp ax

Chapter 5, The elements of an assembler program 155

Conditional jumps

156

TestLabel:

branches to TestLabel, as does

• DATA
JumpTarget DW TestLabel

• CODE

jmp [JumpTarget]

TestLabel:

Jumps such as those described in the last section are only part of
what you need to write useful programs. You really need to be
able to write code that's capable of making decisions, and that's
what the conditional jumps give you.

A conditional jump instruction can either branch or not to a
destination label, depending on the state of the flags register. For
example, consider the following:

mov
int
cmp
je
mov

AWasTyped:
push

ah,l
21h
aI, 'A'
AWasTyped
[TempByte],al

ax

iDOS keyboard input function
iget the next key press
iwas capital "A" pressed?
iyes, handle it specially
ino, store the character

isave the char on the stack

First, this code gets a key press by way of a DOS function. Then it
uses the CMP instruction to compare the character typed to the
character A. The CMP instruction is like a SUB that doesn't affect
anything; the whole purpose of CMP is to let you compare two
operands without changing them. CMP does, however, set the
flags just as SUB would. So, in the preceding code the zero flag is
set to 1 only if AL con tains the character A.

Now we come to the crux of the example. JE is a conditional jump
instruction that branches only if the zero flag is 1. Otherwise, the

Turbo Assembler User's Guide

Table 5.3
Conditional jump

instructions

instruction immediately following JE, in this case a MOV
instruction, is executed. The zero flag will be set in the previous
example only if the A key is pressed, and only then will the 8086
branch to the PUSH instruction at the label A Was Typed.

The 8086 provides a remarkable variety of conditional jumps,
giving you the ability to branch on just about any flag or
combination of flags you could imagine (and several more
besides). You can jump conditionally on the state of the zero,
carry, sign, parity, and overflow flags, and on the combination of
flags that indicate the results of operations with signed numbers.

Table 5.3 summarizes the conditional jump instructions.

Name Meaning Rags Checked

JB/JNAE Jump if below CF=l
Jump if not above or equal to

JAElJNB Jump if above or equal to CF=O
Jump if not below

JBElJNA Jump if below or equal to CF=lorZF=l
Jump if not above

JAlJNBE Jump if above CF=O and ZF=O
Jump if not below or equal to

JElJZ Jump if equal to ZF=l

JNElJNZ Jump if not equal to ZF=O

JUJNGE Jump if less than SF~F
Jump if not greater than or equal to

JGElJNL Jump if greater than or equal to SF=OF
Jump if not less than

JLElJNG Jump if less than or equal to ZF=l orSF~F
Jump if not greater than

JG/JNLE Jump if greater than ZF=O or SF=OF
Jump if not less than or equal to

JP/JPE Jump if parity PF=l
Jump if parity even to

JNP/JPO Jump if no parity PF=O
Jump if parity odd

JS Jump if sign SF=l

JNS Jump if not sign SF=O

JC Jump if carry CF=l

JNC Jump if not carry CF=O

JO Jump if overflow OF=l

Chapter 5, The elements of an assembler program 157

Looping

158

Table 5.3: Conditional Jump Instructions (continued)

JNO Jump if not overflow OF=O

CF = carry flag; SF = sign flag; OF = overflow flag; ZF = zero flag; PF = parity flag

For more information about synonyms and the conditional jump
instructions in general, consult Chapter 6, which also provides
detailed information about the ways in which each 8086
instruction can modify the flags register.

Flexible as they are, the conditional jump instructions have a
serious limitation: They are always short jumps. In other words,
the destination label for a conditional jump instruction must be
within 128 bytes of the instruction.

For example, Turbo Assembler can't assemble

JumpTarget: . . .
DB 1000 DUP (?)

dec ax
jnz JumpTarget

since /umpTarget is over 1000 bytes away from the JNZ
instruction. This is what's needed in a case like this:

JumpTarget:

DB

dec
jz
jmp

SkipJump:

1000 DUP (?)

ax
SkipJump
JumpTarget

Here, a conditional jump is used to make the decision about
whether to make a long unconditional jump.

One sort of programming construct that can be built with
conditional jumps is the loop. A loop is nothing more than a block
of code that ends with a conditional jump, so that the code can be

Turbo Assembler User's Guide

executed repeatedly until a tennination condition is reached. You
might be familiar with looping constructs such as for and while in
C, while and repeat in Pascal, and FOR in BASIC.

What are loops used for? They're used to manipulate arrays, test
the status of I/O ports until a certain state is reached, clear blocks
of memory, read strings from the keyboard, display strings on the
screen, and more. Loops are the basic means of handling anything
that requires repeating a given action. As such, they're used
frequently; so frequently, in fact, that the 8086 provides several
special instructions just for looping: LOOP, LOOPE, LOOPNE, and
JCXZ.

Let's look at LOOP first. Suppose you wanted to print the 17
characters in the string TestString. You could do it with this code:

• DATA
TestString

. CODE

DB 'This is a test ••• '

mov cx,1?
mov bx,OFFSET TestString

PrintStringLoop:
mov dl, [bx] ;get the next character
inc
mov
int
dec
jnz

bx
ah,2
21h
cx
PrintStringLoop

;point to the following char
;DOS display output fn t
;invoke DOS to print character
;count down the string length
;do the next character,
; if any remain

However, there's a better way. You may remember that earlier we
noted that CX is especially useful for code that loops. Here's how

loop PrintStringLoop

does just what

dec cx
jnz PrintStringLoop

does, and does it faster and in one less byte. Whenever you have a
loop that repeats until a counter reaches 0, just keep the count in
CX and use the LOOP instruction. .

Chapter 5, The elements of an assembler program 159

160

What about loops that have more complex termination conditions
than a simple counter counting down? LOOPE and LOOPNE
provide for two such cases.

LOOPE does the same thing LOOP does, except LooPE will end
the loop (fail to branch) if either ex counts down to 0 or the zero
flag is set to 1. (Remember that the zero flag is set to 1 if the last
arithmetic result was 0, or if the two operands to the last
comparison were not equal.) Similarly, LOOPNE will end the loop
if either ex counts down to 0 or the zero flag is cleared to O.

Imagine you want to repeat a loop, saving key presses, until
either the Enter key has been pressed or 128 characters have been
read and stored. The following code uses LOOPNE to do the job:

• DATA
Key Buffer

• CODE

DB

mov cx,12B

12B DUP (?)

mov bx,OFFSET KeyBuffer
KeyLoop:

mov
int
mov
inc
cmp

ah,1
21h
[bx),al
bx
al,Odh

;DOS keyboard input function t
;read the next key
;store the key
;set pointer for next key
;was it the enter key?

loopne KeyLoop ;if not, get another key, unless we've
; already read the maximum t of keys

LOOPE is also known as LooPZ, and LOOPNE is also known as
LOOPNZ, just as JE is also known as JZ.

There's one more loop-related instruction, and that's JCXZ. JCXZ
branches only if ex is 0; this is a useful way to test ex before
beginning a loop. For example, the following code, which is called
with BX pointing to a block of bytes to be set to 0 and ex
containing the length of the block, uses JCXZ to skip the entire
loop if ex is 0:

jcxz SkipLoop
ClearLoop:

mov BYTE PTR [si),O

inc si

;if CX is 0, there's nothing to do

;set the next byte to °
;point to the next byte to clear

Turbo Assembler User's Guide

Subroutines

loop ClearLoop
SkipLoop:

iclear the next character, if any

Why is it desirable to skip the loop if ex is O? Well, if you execute
LOOP with CX equal to 0, CX is decremented to OFFFFh, and the
LOOP instruction branches to the destination label. Then the loop
is executed 65,535 more times! What you want here is a ex setting
of 0 to mean that no bytes are to be zeroed, not 65,536 bytes. JCXZ
lets you test for that case quickly and efficiently.

There are a couple of interesting notes about the looping
instructions. First, be aware that a looping instruction, like a
conditional jump, can only branch to a label within a range of
about 128 bytes before or after the looping instruction. Loops
larger than about 128 bytes require use of the "conditional jump
around an unconditional jump" technique described in the
previous section, "Conditional Jumps" (page 156). Second, it's
important to realize that none of the looping instructions affect
the flags in any way. This means that

loop LoopTop

isn't exactly the same as

dec cx
jnz LoopTop

since DEC alters the overflow, sign, zero, auxiliary carry, and
parity flags, while LOOP alters no flags at all. By the same token,
the DEC instruction isn't exactly the same as

sub cx,l
jnz LoopTop

since SUB affects the carry flag, while the DEC instruction does
not. True, these are small differences, but it's important to
understand the instruction set thoroughly when programming in
assembly language.

So far, we've only looked at programs consisting of a single long
chunk of code. Each program has started at the top of the code,
executed each instruction in turn (with an occasional detour for
looping or decision-making), and then ended at the bottom of the

Chapter 5. The elements of an assembler program 161

How subroutines
work

162

Figure 5.12
Operation of a

subroutine

code. That's fine for small programs, but larger programs require
a programming construct known as a subroutine.

You're probably familiar with subroutines from a high-level
language. In C, subroutines are known as functions, and in Pascal
and Basic, they're known as procedures and functions.
Subroutines, procedures, and functions all amount to the same
thing-a separate section of code that accepts well-defined inputs,
performs a certain action, and optionally returns a specific result
value.

Subroutines let you build programs in a modular fashion, with
the subroutines hiding the details of specific tasks so you can
focus on the overall flow of the program. Subroutines can also
make programs far more compact, since a single subroutine can
be called from many places in a program, and can even perform
different functions when passed different values. In a large
program (whether written in assembler, C, Pascal, or some other
language), subroutines are essential to creating orderly,
maintainable code.

The fundamental operation of a subroutine is illustrated by Figure
5.12.

(IP is loaded with 1110,
and 1007 is pushed on

1000 moval,1
the stack)

DoCalc:1110 shl ai, 1

1002 movbl,3 1112 add al,bl

1004 call DoCalc 1114 and al,7

1007 movah,2 .. L 1116 add al,'O'

1009 Int 21h
(The value
on top of the 1118 ret
stack, 1007, is popped
into IP)

The code that calls the subroutine executes a CALL instruction,
. which pushes the address of the next instruction onto the stack

and then loads IP with the address of the desired subroutine,
thereby branching to the subroutine. The subroutine then
executes just as any other code would. Subroutines can-and
often do-contain calls to other subroutines; in fact, properly

Turbo Assembler User~ Guide

designed subroutines can even call themselves, a practice known
as recursion.

When the subroutine has finished its task, it executes a RET
instruction, which pops into IP the address pushed by the original
CALL instruction. This causes execution of the calling routine to
resume at the instruction following the CALL instruction.

For example, the following program prints the three strings:

Hello, world!
Hello, solar system!
Hello, universe!

by using the subroutine PrintString:

.IDDEL small
• STACK 200h
• DATA

WorldMessage DB 'Hello, world!' ,Odh,Oah,O
'Hello, solar system!' ,Odh,Oah,O
'Hello, universe!' ,Odh,Oah,O

SolarMessage DB
UniverseMessage DB

• CODE
ProgramStart PRoe NEAR

mov ax,@data
mov ds,ax
mov bx,OFFSET WorldMessage
call PrintString iprint Hello, world!
mov bx,OFFSET SolarMessage
call PrintString iprint Hello, solar system!
mov bx,OFFSET UniverseMessage
call PrintString iprint Hello, universe!
mov ah,4ch iDOS terminate program fn f
int 21h i ••• and done

ProgramStart ENDP

Subroutine to print a null-terminated string on the screen.

Input:
DS:BX - pointer to string to print.

Registers destroyed: AX, BX

PrintString PROC NEAR
PrintStringLoop:

mov dl, [bx]
and dl,dl
jz EndPrintString

inc bx

Chapter 5, The elements of an assembler program

iget the next char of the string
;is the character's value zero?
iif so, then we're done with the
i string
ipoint to the next character

163

164

mov ah,2 iDOS display output function
int 21h iinvoke DOS to print the char
jmp PrintStringLoop iprint the next char, if any

EndPrintString:
ret ;return to calling program

PrintString
ENDP
END ProgramStart

There are two things to note here. First, PrintString is not hard
wired to print a specific string, but rather prints whatever string
the calling program points to by way of BX. Second, two new
directives, PROC and ENDP, are used to bracket PrintString.

PROC is used to start a procedure. The label associated with
PROC, in this case PrintString, is the name of the procedure, just
as if

Print String LABEL PROC

had been used. PROC does something more, though: It specifies
whether near or far RET instructions should be used within that
procedure.

Let's take a moment to examine the implications of that last
statement. Recall that when a near label is branched to, IP is
loaded with a new value. When a far label is branched to, both CS
and IP are loaded. If a CALL instruction references a far label,
both CS and IP are loaded, just as with a jump.

It stands to reason, then, that both CS and IP must be pushed
when a far call occurs; otherwise, how could a RET instruction
have enough information to return to the calling code? Think of it
this way: If a far call loaded CS and IP, but pushed only IP, then a
return could only load IP from the top of the stack. The result of
the RET would be a CS:IP consisting of the CS of the called
routine paired with the IP of the calling routine, which clearly
makes no sense.

Instead, what happens is that both CS and IP are pushed by a call
to a far label. How, though, will Turbo Assembler know what
type of returns, far or near, to generate in a given subroutine? One
way is for you to specify the type of each return explicitly, with
the RETN (near return) and RETF (far return) instructions.
However, a better answer lies with the PROC and ENDP
directives.

Turbo Assembler User's Guide

Small is the memory model
default.

The ENDP directive marks the end of subroutines that start with
PROC directives. A given ENDP marks the end of the subroutine
that started with PROC and the same label. For example,

TestSub PROC NEAR

TestSub ENDP

marks the beginning and end of the subroutine TestSub.

PROC and ENDP don't actually generate any code; they're
directives, not instructions. What they do do is control the type of
RET instructions used in a given subroutine.

If the operand to a PROC directive is NEAR, then all RET
instructions between that PROC directive and the corresponding
ENDP directive are assembled as near returns. If, on the other
hand, the operand to a PROC directive is FAR, then all RET
instructions within that procedure are assembled as far returns.

So, for example, to change the type of all RET instructions in the
TestSub example to far, change the PROC directive to

TestSub PROC FAR

In general, it's best to use near subroutines whenever possible,
since far calls are larger and slower than near calls, and far returns
are slower than near returns. However, far subroutines become
necessary when you need more than 64K of program code.

If you're using the simplified segment directives, it's better still to
use the PROC directive without any operand at all, as in

TestSub PROC

When Turbo Assembler encounters such a directive, it
automatically makes the procedure near or far according to the
memory model selected with the .MODEL directive. Tiny-, small-,
and compact-model programs have near calls, while medium-,
large-, and huge-model programs have far calls. For example, in

.MJDEL small

TestSub PROC

TestSub is near-callable, while in

Chapter 5, The elements of an assembler program 165

Parameter
passing

When register-passing,
carefully comment each

subroutine as to which
parameters It expects to

receive and In which
registers they should be

placed.

Chapters 7 and 8 provide
details about the

parameter-passing
conventions of Turbo C and

Turbo Pascal and provide
sample assembler code.

Returning values
Chapters 7 and 8 provide

the details of the return-value
conventions of Turbo C and

Turbo Pascal.

166

.IDDEL large

TestSub PROC

TestSub is far-callable.

Information is often passed to subroutines by the code that calls
them (referred to as the "calling code"). For instance, the example
program in the last section used the BX register to pass a pointer
to the PrintString subroutine. This action is known as parameter
passing, where the parameters tell the subroutine exactly what to
do.

There are two commonly used ways to pass parameters: in the
registers and on the stack. Register-passing is often used by pure
assembler code, while stack-passing is used by most high-level
languages, including Pascal and C, and by assembler subroutines
called by those languages.

Passing parameters in registers is as simple as it sounds-just put
the parameter values in the appropriate registers and call the
subroutine. Each subroutine can have its own parameter
requirements, although you'll find it easiest to establish some
conventions and stick with them in order to avoid confusion. For
example, you might want to make it a rule that the first pointer
parameter is always passed in BX, the second in SI, and so on.

Passing parameters on the stack is a bit more complex. If you use
stack-passing, you'll probably want to use the convention
established by your favorite high-level language to easily link
your assembler subroutines to code written in that language.

Subroutines often return values to the calling code. In assembler
subroutines that are going to be called from a high-level language,
you must follow that language's conventions for returning values.
For example, C-callable functions must return 8- and 16-bit values
(chars, Ints, and near pointers) in AX, and 32-bit values (longs and
far pointers) in DX:AX.

In pure assembler code, you have complete freedom about how to
return values; you can put them in any register you wish. In fact,

Turbo Assembler User's Guide

Preserving

subroutines can even return status information in the flags
register, in the form of carry or zero flag settings. However, once
again, it's best to establish and follow some conventions. One
useful convention is to return 8-bit values in AL and 16-bit values
in AX; that way, you'll get in the habit of not expecting valuable
information in AX to remain unchanged by calls.

The major problem with using subroutine return values in
assembler is that, in the course of returning information,
subroutines may destroy information that's important to the
calling routine. In assembler, it's easy to code a call to a subroutine
without remembering that the subroutine returns a value in, say,
51 (or that the subroutine simply alters 51); then you've got a
program bug that might be hard to find.

For this reason, it's best to keep the number of values a subroutine
returns in the registers to a minimum-preferably no more than
one-and to return additional values by storing them at memory
locations indicated by passed pointers, as both C and Pascal do.

registers Preserving registers properly during subroutine calls is, in
general, a major problem of assembler programming. In modem
high-level languages, a subroutine normally can't modify the
calling code's variables unless the calling code explicitly makes
that possible. Not so in assembler, where the calling code's
variables are often stored in the same registers that the subroutine
uses. For example, if a subroutine modifies a register that the
calling code sets before the call but uses after the call, you've got a
bug.

One solution to this problem is that as each subroutine is entered,
it always pushes all the registers that it uses, and then restores the
registers by popping them before returning to the calling code.
Unfortunately, this is time-consuming and requires a considerable
amount of code. Another option is to make it a rule that calling
code should never expect subroutines to preserve registers, and
so should always preserve any registers it cares about. This is
unattractive because a large part of the reason to use assembler is
the freedom to use registers efficiently.

In short, there's a conflict between speed and ease of coding in
assembly language. If you're going to use assembler, you might as
well write fast, compact code, and that means being intelligent
about register preservation and playing an active part in making

Chapter 5. The elements of an assembler program 167

sure each subroutine call produces no register conflicts. Your best
approach is to comment each subroutine carefully as to the
registers it destroys, and then refer to those comments each time
you use a CALL instruction.

The sort of attention to detail involved both in keeping an eye on
register preservation and in using registers as effectively as
possible is an important part of good assembly language
programming. High-level languages do those things for you-but
then again, high-level languages can't create programs as fast and
compact as those you're going to write in assembler.

An example assembly language program

168

Let's put together what you've learned so far. This example
program, WCOUNT.ASM, counts the number of words in a file
and displays the count on the screen.

Program to count the number of words in a file. Words are
delimited by whitespace, which consists of spaces, tabs,
carriage returns, and linefeeds.

Usage: wc <filename. ext

Select standard segment-ordering
.MODEL small icode and data each fit in 64K
.STACK 200h i512-byte stack
• DATA

Count OW 0
InWhitespace DB ?

TempChar DB?

iused to count words
iset to 1 when the last
i·character read was whites pace
itemporary storage used by
i GetNextCharacter

Result DB 'Word count: ',SOUP (?)

CountlnsertEnd LABEL BYTE
istring printed to report count
iused to find the end of the
i area the count value string
i is stored in

DB Odh,Oah,'$' iDOS fn #9 expects strings to

• CODE
ProgramStart:

mov ax,@data

i end with a dollar sign

mov ds,ax ipoint OS to the .DATA segment
mov [InWhitespace),l iassume we're in whitespace,

Turbo Assembler User's Guide

CountLoop:
call
jz
call
jz
cmp

jz

inc

mov

jmp
IsWhitespace:

mov
jrnp

since the first non
whitespace we'll find will
mark the start of a word

GetNextCharacter iget next character to check
CountOone i ••• if any
IsCharacterWhitespace iis it whitespace?
IsWhitespace iyes
[InWhitespace],O icharacter is not whitespace-

i are we currently in
i whitespace?

CountLoop iwe're not in whitespace, and

[Count]

the character isn't white
i space, so we're done with
i this character
iwe are in whitespace, and the

character is not whitespace,
so we just found the start of
a new word

[InWhitespace],O imark that we're no longer in
i whitespace

CountLoop ido the next character

[InWhitespace],l imark that we're in whitespace
Count Loop ido the next character

We're done counting--report the results.

CountDone:
mov ax, [Count] inumber to convert to a string
mov bx,OFFSET CountInsertEnd-l

ipoint to the end of the string
; to put the number in

mov cx,S ;number of digits to convert
call ConvertNumberToString ;make the number a string
mov bx,OFFSET Result ;point to result string
call PrintString ;print the count
mov ah,4ch ;OOS terminate program fn t
int 21h ;end the program

Subroutine to get the next character from the standard input.

Input: None

Output:
AL = character, if one was available
Z flag = ° (NZ) if character available,

= 1 (Z) if end of file reached

Chapter 5, The elements of an assembler program 169

170

; Registers destroyed: AH, BX, CX, OX

GetNextCharacter PROC
mov ah,3fh
mov bx,O
mov
mov
int
jc

cmp

cx,l
·dx,OFFSET TempChar
21h
NoCharacterRead

[TempChar],lah

jne NotControlZ

iDOS read from file fn #
;standard input handle
;read one character
;put the char in TempChar
;get the next character
iif DOS reports an error,
i then treat it as the end
; of the file
;was it Control-Z?
; (marks end of some files)
ino

NoCharacterRead:
sub ax,ax imark no character read

NotControlZ:
and ax,ax

mov aI, [TempChar]
ret

iset Z flag to reflect whether
a char was read (NZ), or the
end of file was reached (Z).
Note that DOS fn 13fh sets
AX to the number of
characters read

ireturn the character read
;done

GetNextCharacter ENDP

Subroutine to report whether a given character is whitespace.

Input:
AL = character to check

Output:
Z flag = 0 (NZ) if character is not whitespace

= 1 (Z) if character is whitespace

Registers destroyed: none

IsCharacterWhitespace PROC
cmp
jz
cmp
jz
cmp

jz
cmp

aI,' ,
EndIsCharacterWhitespace
al,09h
EndIsCharacterWhitespace
al,Odh

EndIsCharacterWhitespace
al,Oah

i is it a space?
iif so, it's whitespace
; is it a tab?
iif so, it's whitespace
;is it a carriage
i return?
iif so, it's whitespace
;is it a linefeed? If

so, it's whitespace,
; so return Z; ,if not,

Turbo Assembler User's Guide

it's not whitespace,
so return NZ as set
by cmp

EndIsCharacterWhitespace:
ret

IsCharacterWhitespace ENDP

Subroutine to convert a binary number to a text string.

Input:
AX = number to convert
DS:BX = pointer to end of string to store text in
CX = number of digits to convert

Output: None

Registers destroyed: AX, BX, CX, DX, SI

ConvertNumberToString
mov si,10

ConvertLoop:
sub dx,dx
div si

PROC
iused to divide by 10

iconvert AX to doubleword in DX:AX
idivide number by 10. Remainder is in
i DX--this is a one-digit decimal
i number. Number/10 is in AX

add dl,'O' iconvert remainder to a text character
mov [bx],dl iPut this digit in the string
dec bx ipoint to the location for the

i next most-significant digit
loop ConvertLoop ido the next digit, if any
ret

ConvertNumberToString ENDP

Subroutine to print a string on the display.

Input:
DS:BX = pointer to string to print

Output: None

Registers destroyed: None

PrintString
push
push
mov
mov
int
pop

PROC
ax
dx
ah,9
dx,bx
21h
dx

Chapter 5, The elements of an assembler program

ipreserve registers in this subroutine
iDOS print string function t
ipoint DS:DX to the string to print
iinvoke DOS to print the string
irestore registers we changed

171

172

pop
ret

PrintString
END

ax

ENDP
ProgramStart

WCOUNT.EXE should be run from the DOS prompt, with input
redirected from the file you want to do a word count on. For
example, to count the number of words in WCOUNT.ASM, you'd
type

wcount <wcount.asm

at the DOS prompt, and a few seconds later you'd get the result:

Word count: 874

There are several points of interest regarding WCOUNT.ASM. For
one thing, WCOUNT.ASM uses subroutines to handle the details
of reading a character, checking whether a character is white
space, converting the count to a string, and printing a string. This
helps keep the main program of WCOUNT.ASM small and easy
to understand.

Another advantage of using subroutines is the ease with which
you can change the operation of the program. If, for instance, you
needed to change the definition of whitespace to include the equal
sign, you could alter the Is Whitespace subroutine; the main
program wouldn't change at all.

Note that both GetNextCharacter and IsWhitespace return status
information in the zero flag; GetNextCharacter also returns the
character in AL. The zero flag is ideal for returning yes/no sorts of
status, while AL (or AX) is good for returning values.

Finally, note the amount of code involved in producing text
output in assembler. In order to print the integer word-count
value, we had to first convert the count to a text string by
repeatedly dividing it by 10 and adding the character "0" to the
remainder. Only then could we call DOS to print the text string.
That's a far cry from the simple C statement

printf("Word count: %d\n",Count);

On the other hand, once you've written subroutines, such as
ConvertNumberToString, you can reuse them as often as necessary
in other programs. You'll find that you'll build up a library of
useful assembler subroutines, which will help you write future
programs more quickly and easily.

Turbo Assembler User's Guide

c H A p T E R

6

More about programming in Turbo
Assembler

You've certainly learned a great deal about assembly language in
the last few chapters, but there's still much more to learn. And in
this chapter, we'll cover some fairly advanced but very useful
aspects of Turbo Assembler and assembly language
programming.

These are some of the topics we'll cover in this chapter:

• Turbo Assembler's directives EQU and =, which allow you to
assign names to values and text strings

• Turbo Assembler's powerful string instructions

• Turbo Assembler's ability to assemble several source files
separately and then use TLINK to link them together into a
single program

• Turbo Assembler's ability to include separate source code files
into any assembler program

• Turbo Assembler's sophisticated source listing files

It's possible to write assembler programs so that they'll assemble
one way under certain circumstances and another way under
others. We'll look at why that's useful and the directives that make
it possible. Finally, we'll cover some of the more common and
subtle pitfalls you're likely to run into as an assembler
programmer.

Chapter 6, More about programming In Turbo Assembler 173

You might not need all this infonnation today, but you should at
least skim the chapter so you'll know where to look when you do
need something.

Using equate substitutions

The EQU directive

174

We'll begin by looking at using the EQU and] directives to assign
values and text strings to labels. This feature is very useful in
making assembler programs clear and easy to maintain.

It's obvious why we use labels to name variables, subroutines, and
specific instructions: How could we refer to those program
elements as instruction operands if we didn't name them?
Perhaps less obvious, but nonetheless important, is the need for
labels equated to values and text strings.

EQU allows you to assign a numeric value or text string to a label;
a reference to an EQU label is translated to the literal equivalent of
that label. For example, consider the following:

END_OF_DATA EQU '!'
STORAGE_BUFFER_SIZE EQU 1000

• DATA
StorageBuffer DB STORAGE_BUFFER_SIZE DUP (1)

.CODE
mov ax,@data
mov ds,ax
sub di,di

StorageLoop:
mov ah,l
int 21h
mov [StorageBuffer+di],al
cmp al,END_OF_DATA
je DataAcquired
inc di
cmp di,STORAGE_BUFFER_SIZE

jb StorageLoop
iThe buffer overflowed •••

iWe've acquired the data

iset buffer pointer to 0

iget the next key press
isave the next key press
iwas it the end-of-data key?
iyes, go process the data
icount this key press
ihave we overflowed
i the buffer?
ino, go get another key

Turbo Assembler User's Guide

DataAcquired:

Here, Eau defines two labels: STORAGE_BUFFER_SIZE and
END_OF _DATA. The END_OF _DATA label is equated to the
character "!" and is compared to each key press to see if the end of
the data has been reached. This illustrates one great advantage of
using equates: Labels tend to be far more informative than
constant values. After all, the purpose of

crnp al,END_OF_DATA

is certainly clearer than the purpose of

crnp aI,'!'

The use of STORAGE_BUFFER_SIZE illustrates another good
reason to use equates. STORAGE_BUFFER_SIZE, which is set to
the constant value 1000, is used both to create a storage buffer
1000 bytes long and to check whether the buffer has overflowed.
You could have used the constant 1000 in both places, although
that would have been less informative than the label
STORAGE_BUFFER_SIZE.

Now, however, suppose that you want to change the size of the
storage buffer. You need only change the operand to a single Eau
directive, and'presto-you've made the change everywhere in the
program! Granted, it wouldn't have been too hard to change two
constants, but a given equated symbol can be used in dozens or
even hundreds of places in a single module, and then it's much
easier (and less error-prone) to change a single equate than to
change dozens or hundreds of constants.

The operand to an equated label can contain labels, equated or
otherwise. For example,

TABLE OFFSET EQU lOOOh
INDEX START EQU (TABLE_OFFSET+2)
DICT START EQU (TABLE_OFFSET+IOOh)

rnov ax, WORD PTR [bx+INDEX_START] iget first index entry

lea si, [bx+DICT_START] ipoint to the first
i dictionary entry

is equivalent to

Chapter 6, More about programming In Turbo Assembler 175

Parentheses around the
operand to an EQU directive

aren't required, but they
help to visually del/mff the

operand.

176

mov ax,WORD PTR [bx+1000h+2]
lea si, [bx+1000h+100h]

Equated labels are handy for transforming the myriad interrupts,
ports, and memory locations of the PC into readily understood
names. The following illustrates some such uses of EQU:

DOS INT
CGA STATUS
VSYNC MASK

EQU 2lh ;the DOS function interrupt
EQU 3dah ;the CGA status port
EQU OOOOlOOOb ;isolates the bit in the CGA

BIOS SEGMENT EQU 40h
EQUIPMENT_FLAG EQU lOh

mov ah,2
mov dl,' Z'
int OOS INT

; status port that reports when
; you can update the screen
; without snow
;the segment BIOS stores data in
;the offset in the BIOS segment
; of the equipment flag variable

;print a "Z"

;Wait until it's safe to update the screen without causing snow
mov dx,CGA_STATUS

WaitForVerticalSync:
in al,dx
and al,VSYNC_MASK

;get the CGA status
;vertical sync yet?

jz WaitForVerticalSync ;no, wait some more

mov ax, BIOS_SEGMENT
mov ds,ax
mov bx,EQUIPMENT_FLAG
and BYTE PTR [bx],NOT 30h
or BYTE PTR [bx],20h

;point DS to BIOS data segment
;point to the equipment flag

;force the equipment flag to
; select aO-column color mode

Equated labels that are based on other equated labels extend the
concept of using equates to make it easier to change your
programs. For instance, if in the previous example you wanted to
move all references to the table 10 bytes closer to BX, you'd only
have to change the equate for TABLE_OFFSET to

TABLE OFFSET EQU (lOOOh-10)

and reassemble. Then both INDEX_START and DIeT _START
would adjust along with TABLE_OFFSET, since their values are
based on TABLE_OFFSET.

Turbo Assembler User's Guide

EQU can be used to set a label to contain a text string as well as a
value. For example, the following uses an equated label to store a
text string to be printed:

EQUATED_STRING EQU 'This text started life in an EQU directiveS'

TextMessage DB EQUATED_STRING

mov dx,OFFSET TextMessage
mov ah,9
int 21h ;print TextMessage

Labels equated to text strings can appear as operands. For
example,

REGISTER BX EQU BX

mov ax,REGISTER_BX

assembles to

mov ax,bx

There's no great utility to substituting an equated label for a
register, but you could, for instance, use equated labels or ARG to
name parameters passed on the stack, and dynamic storage
allocated on the stack:

C near model-callable subroutine to add three int parameters
and return the int result. Function prototype:

int AddThree(int I,int J,int K)

Temp EQU [bp-2]
I EQU [bp+4]
J EQU [bp+6]
K EQU [bp+8]

AddThree PROC
push bp
mov bp,sp
sub sp,2
mov ax, I
add ax,J
mov Temp, ax

;save caller's BP
;point to stack frame
iallocate space for Temp
;get I
;calculate I+J
;save I+J

Chapter 6, More about programming In Turbo Assembler 177

178

The $ predefined
symbol

mov ax,K
add ax,Temp
mov sp,bp
pop bp
ret

AddThree ENDP

iget K
icalculate I+J+K
ideallocate space for Temp
;restore caller's BP

Basically, you can use EQU to name any text string you could
otherwise use as an operand. You can actually use an equated
label in the instruction/directive field as well as in the operand
field; although, it's hard to imagine a use for that.

You can use the angle brackets « and» to force an operand to
EQU to be considered a text string rather than an expression. For
example,

TABLE OFFSET EQU 1
INDEX START EQU <TABLE_OFFSET+2>

assigns the text string "TABLE_OFFSET+2" to INDEX_START,
while

TABLE OFFSET EQU 1
INDEX START EQU TABLE_OFFSET+2

assigns the value 3 (the result of 1 + 2) to INDEX_ST ART. In
general, it's a good practice to put angle brackets around text
string operands to EQU to make sure those operands aren't
evaluated as expressions by accident.

Once a given label is equated to a value or text string with EQU in
a given source module, it can never be redefined in that module.
The following is guaranteed to produce an error:

X EQU 1

X EQU 101

If you need to redefine equated labels (and there are, on occasion,
some very good reasons to do so), you'll need to use the =
directive, which we'll discuss shortly.

Recall that Turbo Assembler offers several predefined symbols,
such as @data. Another simple but surprisingly useful predefined
symbol is $, which is always set to the current value of the
location counter. In other words, $ is always equal to the current

Turbo Assembler User's Guide

$ can be used In expressions,
or anywhere else a constant

maybe used.

The = directive

offset in the segment that Turbo Assembler is currently
assembling into. $ is a constant offset value, just as OFFSET
MemVaris.

$ is particularly handy for calculating data and code lengths. For
example, suppose you want to equate the symbol
STRING_LENGTH to the length in bytes of a string. Without $,
you'd have to do the following:

StringStart LABEL BYTE
db Odh,Oah,'Hello, world' ,0dh,Oah

String End LABEL BYTE
STRING_LENGTH EQU (StringEnd-StringStart)

with $, though, all you need is

StringStart LABEL BYTE
db Odh,Oah,'Hello, world' ,0dh,Oah

STRING_LENGTH EQU (S-StringStart)

Here's how you'd calculate the length in words of an array of
words:

WordArray DW 90h, 25h, 0, 1Gh, 23h _
WORD ARRAY LENGTH EQU (($-WordArray)/2)

Of course, you could count the individual elements by hand, but
with longer arrays and strings, that would quickly become
tedious.

Incidentally, three other useful predefined variables are ??date,
??tlme, and ??filename. ??date contains the date of assembly, as
a quoted text string in the form 01/02/87. The ??tlme variable
contains the time of assembly in the form 13:45:06, and
??filename contains the name of the file being assembled in the
form of an 8-character quoted text string such as IITEST.ASM".

The = directive is like the EQU directive in all respects save one:
Where labels defined with EQU can never be redefined (an error
occurs if they are), labels defined with = can be redefined freely.

Chapter 6, More about programming In Turbo Assembler 179

This is very useful for labels that need to be changed on the fly, or
that are reused within a single source module.

For example, the following code uses = to generate a lookup table
for the first 100 multiples of 10:

• DATA
MultiplesOf10 LABEL WORD
TEMP = 0

REPT 100
DW TEMP

TEMP = TEMP+10
ENDM

shl bx,l iBX is I to multiply by 10.
i Shift left to mUltiply * 2
i for lookup in word-sized table

mov ax, [MultiplesOf10+bx] iget the number * 10

All operands to = must resolve to a numeric value; unlike EaU, =
cannot be used to assign text strings to labels.

The string instructions

180

We've come to the most unusual and powerful instructions of the
8086-the string instructions. String instructions are like no other
8086 instructions in that they can both access memory and
increment or decrement a pointer register in a single instruction.
A single string instruction can access memory as many as 130,000
times!

As their name implies, string instructions are particularly useful
for manipulating text strings. String instructions are equally adept
at handling arrays, data buffers, and any sort of string of bytes or
words. You should strive to use the string instructions whenever
possible, since they are, as a rule, shorter and faster than
equivalent combinations of normal 8086 instructions such as MOV,
INC, and LOOP.

We'll examine the string instructions in two functional groups: the
string instructions used for data movement (LODS, STOS, and
MOVS), and the string instructions used for data scanning and
comparison (SCAS and CMPS).

Turbo Assembler User's Guide

Data movement
string instructions The data movement string instructions are much like the MOV

instruction, but do more than MOV and operate faster. We'll look
at LOOS first. Note that the direction flag controls the direction in
which pointer registers are changed for all string instructions.

LODS LOOS, which loads a byte or word from memory into the
accumulator, comes in two flavors, LOOSB and LOOSW. LOOSB
loads the byte addressed by DS:SI into AL, and either increments
or decrements SI, depending on the state of the direction flag. If
the direction flag is 0 (set with CLO), then SI is incremented, and if
the direction flag is 1 (set with STO), then SI is decremented. This
is not true only of LOOSB; the direction flag controls the direction
in which pointer registers are changed for all string instructions.

For example, the LOOSB in ~he following code,

cld
mov si,O
lodsb

loads AL with contents of the byte at offset 0 in the data segment
and increments SI to 1. That's equivalent to

mov si,O
mov aI, lsi]
inc si

However,

lodsb

is considerably faster (and 2 bytes smaller) than

mov aI, lsi]
inc si

LOOSW is just like LOOSB, save that the word addressed by DS:SI
is loaded into AX, and SI is either incremented or decremented by
2, rather than 1. For example,

std

Chapter 6, More about programming In Turbo Assembler 181

182

mov si,10
lodsw . . .

loads the word at offset 10 in the data segment into AX, then
decrements 51 by 2 to 8.

STOS STOS is the complement to LODS, writing a byte or word value in
the accumulator to the memory location pointed to by E5:DI, and
incrementing or decrementing DI. STOSB writes the byte iI:t AL to
the memory location E5:DI, then increments or decrements DI,
depending on the direction flag. For example,

std
mov di,Offffh
mov al,55h
stosb

writes the value 55h to the byte at offset OFFFFh in the segment
pointed to by E5, then decrements DI to OFFFEh.

STOSW does much the same, writing a word value in AX to
address ES:DI, then incrementing or decrementing DI by 2. For
instance,

cld
mov di,Offeh
mov ax,102h
stosw . . .

writes the word value 102h in AX to offset OFFEh in the segment
pointed to by E5, then increments DI to 10OOh.

LODS and STOS work nicely together for copying buffers. For
example, the following subroutine copies the zero-terminated
string at DS:5I to the string at ES:DI:

; Subroutine to copy one zero-terminated string to another.

; Input:
DS:SI - string to copy from
ES:DI - string to copy to

; Output: None

Turbo Assembler User's Guide

Registers destroyed: AL, SI, DI

CopyString
cld

CopyStringLoop:
lodsb
stosb
cmp al,O

PROC

jnz CopyStringLoop
ret

CopyString ENDP

imake SI and DI increment with string
i instructions

iget source string character
istore char in destination string
iwas the char zero to end the string?
ino, do next character
iyes, done

You could equally well use LODS and STOS to copy blocks of
bytes that aren't zero-terminated with a loop like

mov cx,ARRAY_LENGTH_IN_WORDS
mov si,OFFSET SourceArray
mov ax,SEG SourceArray
mov ds,ax
mov di,OFFSET DestArray
mov ax,SEG DestArray
mov es,ax
cld

CopyLoop:
lodsw
stosw
loop Copy Loop

However, there's an even better way to move a byte or word from
one memory location to another, and that's with the MOVS
instruction.

MOVS MOVS is like LODS and STOS rolled into one. MOVS reads the
byte or word stored at DS:SI, then writes that value to the address
ES:DI. The byte or word never passes through a register at all, so
AX isn't modified. MOVSB is as short as any instruction can be, at
only 1 byte long, and is even faster than the LODS/STOS
combination. With MOVS, the last example becomes still faster:

mov cx,ARRAY_LENGTH_IN_WORDS
mov si,OFFSET SourceArray
mov ax,SEG SourceArray
mov ds,ax

Chapter 6. More about programming In Turbo Assembler 183

184

Repeating a string
instruction

mov di,OFFSET DestArray
mov ax,SEG DestArray
mov es,ax
cld

CopyLoop:
movsw
loop CopyLoop

While the code in the last example looks pretty efficient, you may
well be thinking that what you'd really like to do is get rid of that
LOOP instruction and move the whole array with a single
instruction. You're in luck-the 8086 gives you that option with
the string instructions in the form of the REP prefix.

REP isn't an instruction; instead, it's an instruction prefix.
Instruction prefixes modify the operation of the following
instruction. What REP does is tell the following string instruction
to execute repeatedly until the ex register reaches zero. (If ex is
zero when the repeated instruction begins, the instruction
executes zero times-in other words, it doesn't do anything at all.)

Using REP, you can replace

CopyLoop:
movsw
loop Copy Loop

in the last example with

rep movsw

That single instruction will move a block of as many as 65,535
words (OFFFFh) from memory starting at DS:SI to memory
starting at ES:DI.

Of course, a string instruction repeated 65,535 times doesn't
execute anywhere near as quickly as an instruction executed once;
all those memory accesses take time. However, each repetition of
a repeated string instruction executes more quickly than would a
single instance of that string instruction, making repeated string
instructions a very fast way to read from, write to, or copy
memory.

REP can be used with LODS and STOS as well as with MOVS (and
also with the SCAS and CMPS instructions, which we'll discuss
next). It's useful to repeat STOS to clear or fill blocks of memory;
for example,

Turbo Assembler User's Guide

String pOinter overrun

Data scanning
string instructions

seAS

cld
mov ax,SEG WordArray
mov es,ax
mov di,OFFSET WordArray
sub aX,ax
mov cx,WORD_ARRAY_LENGTH
rep stosw

fills l'\brdArray with zeros. There's no correspondingly useful
application for repeating LODS.

REP can only cause string instructions to repeat. An instruction
like

rep mov aI, [bx]

which doesn't make a whole lot of sense anyhow, ignores the REP
prefix and executes as a plain old

mov aI, [bx]

Note that when a string instruction is executed, it increments or
decrements 51, 01, or both after memory is accessed. This means
that after the instruction the pointer registers don't point to the
memory location just accessed; instead, they point to the next
memory location to be accessed. This is actually very convenient,
since it allows you to build efficient loops such as those in the
examples in the last section. It can, however, occasionally cause
confusion, especially with the data scanning string instructions,
which we'll discuss next.

Now we'll look at the data scanning string instructions, SCAS and
CMPS, which are used for scanning and comparing blocks of
memory.

SCAS is used to scan memory for a match or non-match of a
particular byte or word value. As with all string instructions,
SCAS comes in two forms, SCAse and SCA~W.

SCASe compares AL to the byte value at address ES:OI, setting
the flags to reflect the comparison, just as if a CMP instruction had
been executed. As with STOSB, 01 is incremented or decremented

Chapter 6, More about programming In Turbo Assembler 185

186

by seAse. For example, the following finds the first lowercase t
in the string TextString:

• DATA
TextString DB 'Test text',O
TEXT_STR1NG_LENGTH EQU ($-TextString)

.CODE

mov ax,@data
mov es,ax
mov di,OFFSET TextString

mov al,'t'
mov cx,TEXT_STR1NG_LENGTH
cld

ScanJor_t_Loop:
scasb
je Found t
loop Scan_For_t_Loop

iNo "t" found

i"t" found
Found t:

dec di

iES:D1 points to the start of
i TextString
icharacter to scan for
ilength of string to scan
iscan with D1 incrementing

idoes ES:DI match AL?
iyes, we found "t"
ino, scan next character

ipoint back to offset of "t"

Note that D1 is decremented after t is found in this example,
which reflects the string pointer overrun we discussed earlier.
When this code performs the final, successful SeASe, D1 is
incremented after the comparison, since the last thing a string
instruction does is increment or decrement its pointer{s). As a
result, D1 points to the byte after the t that was found and must be
adjusted to compensate for the overrun and point to the t.

You might get a better feel for what seAse does by comparing its
use in the last example to similar code without string instructions:

ScanJor_t_Loop:
cmp es: [di], al
je Found_t
inc dl
loop Scan_For_t_Loop

idoes ES:D1 match AL
iyes, we found "t"

ino, scan next character

The last example isn't exactly the same as the seAse example
preceding it, however, since seAse increments D1 immediately

Turbo Assembler User's Guide

and the last example i~ements it after the JE instruction in order
to a void altering the flags set by CM P.

This brings up an important point about string instructions in
general. String instructions never set the flags to reflect the
chang~s they make to 51, 01, and/or ex. LOOS, STOS, and MOVS
don't change any flags, and SCAS and CMPS only change flags
according to the results of the comparisons they make.

It certainly would be handy to be able to reduce the loop in the
previous example to a single instruction, and, as you've probably
guessed, REP lets you do just that. However, you might want to
stop the loop on either a match or a non-match. Here are two
forms of REP to use with SCAS (and CMPS as well)-REPE and
REPNE.

REPE (also known as REPZ) tells the 8086 to repeat SCAS (or
CMPS) until either ex becomes zero or a non-match occurs. You
might think of REPE as being the "repeat while equal" prefix.
Likewise, REPNE (also known as REPNZ) tells the 8086 to repeat
SCAS (or CMPS) until either ex becomes zero or a match occurs.
Think of REPNE as being the "repeat while not equal" prefix.

Here's code that uses a single repeated SCAse instruction to scan
TextString for the character t:

mov ax,@data
mov es,ax
mov di,OFFSET TextString

mov al,'t'
mov cx,TEXT_STR1NG_LENGTH
cld
repne scasb

je Found t
i No lit" found

i"t" found
Found t:

dec di

iES:D1 points to the start of
i TextString
icharacter to scan for
ilength of string to scan
iscan with D1 incrementing
iscan the whole string to see
i if there's at least one "t"
i yes, we found lit II

ipoint back to offset of "til

Like all string instructions, SCAS increments its pointer register,
01, if the direction flag is 0 (cleared with CLO), and decrements OJ
if the direction flag is 1 (set with STO).

Chapter 6, More about programming In Turbo Assembler 187

SCASW is a word-sized form of SCASB, comparing AX to E5:0I,
and incrementing or decrementing 01 by two rather than one at
the end of each execution. The following code uses REPE SCASW
to find the last nonzero entry in an array of word-sized integers:

mov ax,SEG ShortIntArray
mov es,ax
mov di,OFFSET ShortIntArray+((ARRAY_LEN_IN_WORDS-l) *2)

;ES:DI points to the end of
; ShortIntArray

mov cx,ARRAY_LEN_IN_WORDS
sub ax,ax
std

repe scasw

jne FoundNonZero

;search for non-match with zero
;search backward from end,
; decrementing DI
;search until we come to a
; nonzero word or run out of
; array

;The whole array is filled with zeros.

;We found a nonzero element--adjust DI for overrun to point to it.
FoundNonZero:

inc di
inc di

CMPS The CMPS string instruction is designed to let you compare two
strings of bytes or words. A single repetition of CMPS compares
two memory locations, then increments both 51 and 01. You
might think of CMPS as being like a MOVS that compares two
memory locations instead of copying one memory location to
another.

CMPSB compares the byte at DS:5I to the byte at E5:0I, sets the
flags accordingly, and increments or decrements 51 and 01,
depending on the direction flag. AX is not modified in any way.

Like the other string instructions, CMPS comes in both byte and
word sizes, can either increment or decrement 51 and 01, and will
repeat if preceded by a REP prefix. Here's the code to check
whether the first 50 elements in two word-sized arrays are
identical, using REP CMPSW:

mov si,OFFSET Arrayl
mov ax,SEG Arrayl
mov ds,ax

188 Turbo Assembler User's Guide

Using operands
with string

instructions

mov di,OFFSET Array2
mov ax,SEG Array2
mov es,ax
mov cx,50
cld
repe cmpsw

icompare the first 50 elements, at most

jne ArraysAreDifferent
iFirst 50 elements are identical.

iAt least one element differs between the two arrays.
ArraysAreDifferent:

dec si
dec si
dec di
dec di

ipoint back to the element that differed
;both arrays

We've only looked at the explicit byte and word forms of the
string instructions so far; in other words, we've looked at LOOSB
and LODSW, but haven't used LOOS. It's acceptable to use the
nonexplicit versions of the string instructions, as long as you
provide operands so that Turbo Assembler knows whether you
want byte- or word-sized operations.

For example, the following is acceptable and is equivalent to
MOVSB:

• DATA
Stringl LABEL BYTE

db ' abcdefghi'
STRINGl_LENGTH EQU ($-Stringl)
String2 DB 50 DUP (?)

.CODE
mov ax,@data
mov ds,ax
mov es,ax
mov si,OFFSET Stringl
mov di,OFFSET String2
mov cx,STRINGl_LENGTH
cld
rep movs es:[String2], [Stringl]

Chapter 6, More about programming In Turbo Assembler 189

Since you specified Stringl and String2 as operands to MOVS,
Turbo Assembler makes the data size of the MOVS instruction the
data size of the operands, which is byte in this case.

There's a catch to using operands with string instructions,
however. String instruction operands aren't real operands, in the
sense that they're built into the instruction; a string instruction
just uses whatever SI and/or DI happen to be when that
instruction is executed. The operands are only used to set data
size, not to actually load pointers. Look at it this way: When you
use an instruction like

mov aI, [Stringl]

the offset of Stringl is built right into the machine-language
instruction for MOV. However, when you use

lods [Stringl]

the machine-language instruction assembled is just the single byte
for LOOSB; Stringl is not built into the instruction. It's your
responsibility to make sure that DS:SI points to the start of Stringl
in this case.

Operands to string instructions are sort of like using the ASSUME
directive for segments. ASSUME doesn't actually set a segment
register; it just tells Turbo Assembler how you have set a segment
register so Turbo Assembler can do error-checking for you.

Similarly, operands to string instructions don't set any registers;
they just tell Turbo Assembler what you've set SI and/or DI to so
Turbo Assembler can determine operand size and do error
checking. Refer to the section "Relying on the operand(s) to a
string instruction" on page 242 for further discussion of operands
to string instructions.

In the section "Pitfalls with string instructions" on page 235, we
discuss several points to look out for when using the string
instructions.

Multimodule programs

190

Sooner or later, you're going to outgrow keeping each program's
source code in a single file. Single-file source code is fine for short
programs, such as the examples in this manual, but even
medium-sized programs must be broken into several files, or

Turbo Assembler User's Guide

modules, that are assembled separately and linked together. The
primary advantage of multimodule programs is that after you
edit the source code, you only need to reassemble the modules
you've changed, rather than every line of the program. Also, it's
much easier to find your way around several short files than one
massive file.

It's surprisingly easy to create multimodule programs. Turbo
Assembler provides three directives to support such programs:
PUBLIC, EXTRN, and GLOBAL. We'll look at each in tum, but
before we do, we'll look at a sample program consisting of two
modules, so that you'll understand the context in which we're
discussing the multimodule directives. Here's the main program,
MAIN.ASM:

• MODEL small
• STACK 200h
• DATA

DB 'Hello,',O Stringl
String2

GLOBAL
FinalString

.CODE
EXTRN

DB 'world' ,0dh,Oah,'S',0
FinalString:BYTE
DB- 50 DUP (?)

ConcatenateStrings:PROC
ProgramStart:

mov ax,@data
mov ds,ax
mov ax, OFFSET Stringl
mov bx,OFFSET String2
call ConcatenateStrings

mov ah,9
mov dx,OFFSET FinalString
int 21h
mov ah,4ch
int 21h
END ProgramStart

icombine the two strings
i into a single string

iprint the resulting string

iand done

And here's the other module of the program, SUB1.ASM:

. MODEL small
• DATA
GLOBAL FinalString:BYTE
.CODE

Subroutine copies first one string, and then another
to FinalString.

Chapter 6, More about programming in Turbo Assembler 191

192

Input:
DS:AX = pointer to first string to copy
DS:BX = pointer to second string to copy

Output: None

Registers destroyed: AL, SI, DI, ES

PUBLIC ConcatenateStrings
ConcatenateStrings PROC

cld istrings count up
mov di,SEG FinalString
mov es,di
mov di,OFFSET FinalString iES:DI points to destination
mov si,ax ifirst string to copy StringlLoop:
lodsb iget string 1 character
and aI, al i is it O?
jz DoString2 iyes, done with string 1
stosb isave string 1 character
jmp StringlLoop

DoString2:
mov si,bx
lodsb
stosb

and al,al
jnz String2Loop
ret

ConcatenateString ENDP
END

isecond string to copy String2Loop:
iget string 2 character
isave string 2 character
i (including 0 when we find it)
iis it O?
ino, do next character
idone

These two modules would be assembled separately with

TASM main

and

TASM subl

and would then be linked into the program MAIN.EXE with

tlink main+subl

When run with the command

main

MAIN.EXE displays the output (you guessed it)

Hello, world

Turbo Assembler User's Guide

The PUBLIC

Now that you've seen a multimodule program in action, let's
examine the three directives that make multimodule
programming possible.

directive What the PUBLIC directive does is simple enough: It instructs
Turbo Assembler to make the associated label or labels available
to other modules. Labels of almost any sort, including procedure
names, memory variable names, and equated labels, may be made
available to other modules by way of PUBLIC. For example,

• DATA
PUBLIC

ARRAY LENGTH
MemVar
Array1

.CODE

MemVar, Array1, ARRAY_LENGTH
EQU 100
DW 10
DB ARRAY LENGTH DUP (?l

PUBLIC NearProc, FarProc
NearProc PROC NEAR

NearProc ENDP

FarProc LABEL PROC

END

Here the names of an equated label, a word variable, an array, a
near procedure, and a far procedure are made available to any
other module that is linked to this module.

There is one sort of label that cannot be made public, and that's an
equated label that is not equal to a 1- or 2-byte constant value. For
example, the following labels couldn't be made public:

LONG VALUE EQU 10000h
TEXT SYMBOL EQU <Text String>

Turbo Assembler normally ignores case when assembling, so all
public labels are normally converted to uppercase. If you want
case-sensitivity for public labels, you must use either the Iml or
Imx command-line switch to Turbo Assembler in all modules that
contain or reference public labels.

For example, without Iml or Imx, other modules won't be able to
distinguish between the following two labels:

Chapter 6, More about programming In Turbo Assembler 193

You don't need to have a
.MODEL directive In effect to

use this feature.

The EXTRN

PUBLIC Symbol 1 , SYMBOL 1

When you use the Imx command-line switch to allow case
sensitivity for public and external symbols, you must be careful to
use the proper case for the symbol name in the PUBLIC or EXTRN
directive. Turbo Assembler makes the symbol available to other
modules with the name that appears in the EXTRN or PUBUC
directive, not how it appears where defined or referred to
elsewhere in the module. For example,

PUBLIC Abc
abC Dw

causes the name Abc to become public, not abC.

You can also specify a language for each symbol in a PUBLIC
directive. Valid languages are C, PASCAL, BASIC, FORTRAN,
PROLOG, and NOLANGUAGE. This causes any language-specific
rules to be applied to a symbol name automatically before it is
published in the object file. For instance, if you declare

PUBLIC C myproc

then the symbol myproc in the source file will actually be
published to the outside world as _myproc, since the convention
for the C language is to precede symbol names with an
underscore character. Using a language specifier in a PUBLIC
directive temporarily overrides the current language setting
(default or one established with the .MODEL directive).

directive In the last section, we used PUBUC to make the labels MemVar,
Arrayl, ArrayLength, NearProc, and FarProc available to other
modules. The next question is, "How do other modules reference
those labels?"

The EXTRN directive is used to make public labels from other
modules available in a given module. Once EXTRN has been used
to make a public label from another module available, that label
can be used just as if it were defined in the current module. Here's
how another module would use EXTRN to reference the public
labels we defined in the last section:

. . .
• DATA
EXTRN MemVar:WORD,Arrayl:BYTE,ARRAY_LENGTH:ABS

194 Turbo Assembler User's Guide

• CODE
EXTRN NearProc:NEAR,FarProc:FAR

mov ax, [MemVar]
mov bx,OFFSET Arrayl
mov cx,ARRAY_LENGTH

call NearProc

call FarProc

Note that all five labels are used as you'd normally use labels;
only the EXTRN directives differ from single-module assembler
source code.

Each label declared with EXTRN is followed by a colon and a type.
The type is necessary because Turbo Assembler has no way of
knowing what sort of label you've declared with EXTRN unless
you tell it. With one exception, the types that can be used with
external labels are the same as those that can be used with the
LABEL directive. Available types are

ABS An absolute value
BYTE A byte-sized data variable
DATAPTR A near or far data pointer, depending on the

DWORD
FAR
FWORD
NEAR

PRoe

QWORD
Structure Name
TBYTE
UNKNOWN
WORD

current memory model
A doubleword-sized (4 byte) data variable
A far code label (branched to by loading CS:IP)
A 6-byte data variable
A near code label (branched to by loading IP
only)
A procedure code label, near or far according
to.MODEL
A quadword-sized (8 byte) data variable
Name of a user-defined STRUe type
A lO-byte data variable
An unknown type
A word-sized (2 byte) data variable

The only unfamiliar external data type is ABS, which is used to
declare a label that's defined in its original module with EQU or =;
in other words, a label that is simply a name for a constant value
and is not associated with a code or data address.

It's important that you specify the correct data type for external
labels, since Turbo Assembler has to generate code on the basis of
the data types you specify, and has no way of knowing if you've

Chapter 6, More about programming In Turbo Assembler 195

You don't need to have a
.MODEL directive In effect to

use this feature.

196

made an incorrect specification. For instance, if you accidentally
typed

.CODE
EXTRN FarProc:NEAR

call FarProc

given

PUBLIC FarProc
FarProc PROC FAR

ret
FarProc ENDP

in another module, Turbo Assembler would generate a near call
to FarProc, in accordance with the data type you specified with
EXTRN. This code surely wouldn't work properly, since FarProc is
actually a far procedure and ends with a far RET instruction.

As described in the last section, Turbo Assembler is normally
case-insensitive, and public la];>els are normally converted to
uppercase. This means that external labels are normally expected
to be uppercase. Use the Iml or Imx command-line switch if you
want case-sensitive external labels.

You can also specify a language for each symbol in an EXTRN
directive. Valid languages are C, PASCAL, BASIC, FORTRAN,
PROLOG, and NOLANGUAGE. This ,causes any language-specific
rules to be applied to a symbol name automatically before it is
published in the object file. For instance, if you declare

EXTRN C myproc:NEAR

then the symbol myproc in the source file will actually refer to the
. external symbol_myproc. Using a language specifier in an EXTRN
directive temporarily overrides the current language setting
(default or one established with the .MODEL directive).

Turbo Assembler User's Guide

The GLOBAL
directive At this point, you may well wonder why it takes two directives,

PUBLIC and EXTRN, to do a single job-sharing labels between
modules. Actually, the only reason two directives are required is
for compatibility with other assemblers; Turbo Assembler gives
you the GLOBAL directive, which does everything both PUBLIC
and EXTRN do.

If you declare a label global and then define it (with DB, DW,
PROC, LABEL, or the like), then that label is made available to
other modules, just as if you'd used PUBLIC instead of GLOBAL.
If, on the other hand, you declare a label global and then use it
without defining it, then that label is treated as an extemallabel,
just as if you'd used EXTRN.

For example, consider the following:

• DATA
GLOBAL FinalCount:WORD,PrornptString:BYTE

FinalCount DW?

.CODE
GLOBAL DoReport:NEAR,TallyUp:FAR

TallyUp PROC FAR

call DoReport

Here FinalCount and TallyUp are defined, so they're made public
labels, available to other modules. PromptString and DoReport
aren't defined in this module, so they're made external labels and
are assumed to have been made public in some other module.

One particularly handy place to use GLOBAL is in an Include file.
(We'll discuss include files in the next section.) Suppose you have
a set of labels that you want to make available to all the modules
in a multimodule program. It would be nice to be able to declare
all those labels in an include file, and then include that file in each
module. Unfortunately, that's impossible using PUBLIC and
EXTRN because EXTRN won't work in the module a given label is
defined in, and PUBLIC will only work in the module a given label
is defined in. However, GLOBAL will work in all modules, so you
can make up an include file that declares all the labels of interest
to be global, and include that file in all your modules.

Chapter 6, More about programming In Turbo Assembler 197

You don't need to have a
.MODEL directive In effect to

use this feature.

Include files

Include files are rarely used
for code, since you can

readily link separate code
modules together, but It Is

perfectly acceptable to put
code Into an Include file,

should you so desire.

As with the PUBUC and EXTRN directives, you can specify a
language for each symbol in a GLOBAL directive. Valid languages
are C, PASCAL, BASIC, FORTRAN, PROLOG, and NOLANGUAGE.
This causes any language-specific rules to be applied to a symbol
name automatically before it is published in the object file. For
instance, if you declare

GLOBAL C myproc

then the symbol myproc in the source file will actually be
published to the outside world as _myproc. Using a language
specifier in a GLOBAL directive temporarily overrides the current
language setting (default or one established with the .MODEL
directive).

You'll often find that you'd like to insert the same block of
assembler source code in several source modules. You may want
to share equates or macros among different parts of a program, or
you may simply want to reuse equates or macros in several
programs. Then, too, you may have a long program that you
don't want to break into several linkable modules (a program that
will be stored in ROM, for example), but which is too big to
conveniently keep in a single file. The INCLUDE directive meets
all these needs.

When Turbo Assembler encounters an INCLUDE directive, it
marks its place in the current assembler module, goes to disk and
finds the specified include file, and starts assembling the include
file, just as if the lines in the include file were right in the current
module. When the end of the include file is reached, Turbo
Assembler returns to the line after the INCLUDE directive in the
current module, and resumes assembly there. The key point is
this: The text of the include file is literally inserted into the
assembly of the current assembler module at the location of the
INCLUDE directive.

For instance, if MAINPROG.ASM contains

• CODE
mov ax,1
INCLUDE INCPROG.ASM

198 Turbo Assembler User's Guide

Include files can be nested
arbitrarily deep.

For compatibility with MASM,
you can use backward

slashes (\) In INCLUDE path
specifications.

push ax

and INCPROG.ASM contains

mov bx,5
add ax,bx

then the result of assembling MAINPROC.ASM is exactly
equivalent to

• CODE
mov ax,l
mov bx,5
add ax,bx
push ax

Include files can be nested (can include another file). You can
easily tell included lines in a listing file because Turbo Assembler
places a number at the left end of included lines, which indicates
how deeply the module files are nested.

How does Turbo Assembler know where to find Include files?
Well, if you specify a drive or path as part of the file name
operand to INCLUDE, Turbo Assembler looks exactly where you
specify, and nowhere else. If you specify only a file name, with no
drive or path, Turbo Assembler first searches the current
directory for the specified file. If Turbo Assembler can't find the
file in the current directory, it searches the directories specified

. with the -I command-line switch, if any. For example, given the
Turbo Assembler command line

TASM -ic:\include testprog

and given the line

INCLUDE MYMACROS.ASM

in TESTPROG.ASM, Turbo Assembler will first search the current
directory for MYMACROS.ASM, and, failing that, will search the
directory C: \INCLUDE. If MYMACROS.ASM isn't in either of
those places, Turbo Assembler will report an error.

Chapter 6, More about programming in Turbo Assembler 199

The listing file

The object and/or listing file
names don't have to match

the source file name, but
there s rarely a reason for

your source file to have one
name and your object or

listing files to have another.

200

Normally, Turbo Assembler produces only one file as the result of
assembly: an object (.OBJ) file with the same name as the source
(.ASM) file. You can, if you wish, ask Turbo Assembler to produce
a listing file with the extension .LST as well, simply by typing two
additional commas (or two additional file names) on the
command line. For example, where

TASM hello

assembles HELLO.ASM and produces the object file HELLO.OBI,
the command line

TASM hello"

generates the listing file HELLO.LST, as do both

TASM hello,hello,hello

and

TASM /1 hello

The listing file is basically the source file annotated with a variety
of information about the results of the assembly. Turbo Assembler
lists the actual machine code for each instruction, along with the
offset in the current segment of the machine code for each line.
What's more, Turbo Assembler provides tables of information
about the labels and segments used in the program, including the
value and type of each label, and the attributes of each segment.

Turbo Assembler can also, on demand, generate a cross-reference
table for all labels used in a source file, showing you where each
label was defined and where it was referenced. (See the Ie
command-line option in Chapter 3.)

We'll look at the basics of the listing file first-the assembled
machine code and offset for each instruction.

Turbo Assembler User's Guide

Annotated
source code Here's the listing file for the original example program,

HELLO.ASM:

Turbo Assembler Version 2.0

HELLO.ASM

1
2 0000
3 0000
4 0100

01-18-90 14:31:58

DOSSEG
.MODEL small
.STACK 100h
• DATA

Page 1

5 0000 48 65 6C 6C 6F 2C 20 + HelloMessage DB 'Hello, world',13,10,12
77 6F 72 6C 64 OD OA +
DC

8 = OOOF
9 OOOF
10 0000 B8 DODOs
11 0003 8E D8
12 0005 B4 40
13 0007 BB 0001
14 OOOA B9 OOOF
15 DODD BA OOOOr
16 0010 CD 21
17 0012 B4 4C
18 0014 CD 21
19

Turbo Assembler Version 2.0
Symbol Table

Symbol Name

??DATE
??FILENAME
??TIME
??VERSION
@CODE
@CODESIZE
@CPU
@CURSEG
@DATA
@DATASIZE
@FILENAME
@WORDSIZE
HELLOMESSAGE
HELLO MESSAGE LENGTH - -
Groups & Segments

HELLO_MESSAGE_LENGTH EQU $ - HelloMessage
.CODE
mov ax,@data
mov ds,ax ;set DS to point to data seg
mov ah,40h ;DOS write to device function t
mov bx,l ;standard output handle
mov cx,HELLO_MESSAGE_LENGTH ;number of characters to print
mov dx,OFFSET HelloMessage ;string to print
int 21h ;print "Hello, world"
mov ah,4ch ;DOS terminate program function t
int 21h ;terminate the program
END

01-18-90 14:31:58

Type Value

Text "06-29-88"
Text "HELLO
Text "16:21:26"
Number 004A
Text TEXT
Text 0
Text 0101h
Text TEXT
Text DGROUP
Text 0
Text HELLO
Text 2
Byte DGROUP:OOOO
Number OOOF

Bit Size Align Combine Class

Page 2

Chapter 6. More about programming In Turbo Assembler 201

DGROUP
STACK

DATA
TEXT

202

Group
16 0100 Para Stack STACK
16 OOOF Word Public DATA
16 0016 Word Public CODE

The top of each page of the listing file displays a header consisting
of the version of Turbo Assembler that assembled the file, the date
and time of assembly, and the page number within the listing.

There are two parts to the listing file: the annotated source code
listing and the symbol tables. The original assembler code is
displayed first, with a header containing the name of the file
where the source code resides. The assembler source code is
annotated with information about the machine code Turbo
Assembler assembled from it. Any errors or warnings
encountered during assembly are inserted immediately following
the line they occurred on.

The code lines in the listing file follow this format:

<depth> <line number> <offset> <machine code> <source>

• <depth> indicates the level of nesting of Include files and
macros within your listing file.

• <line number> is the number of the line in the listing file (not
including header and title lines). Line numbers are particularly
useful when the cross-reference feature of Turbo Assembler,
which refers to lines by line number, is used. In HELLO.LST,
the DOSSEG directive is line 1 of the listing file, the .MODEL
directive is line 2, and so on.

Be aware that the line numbers in the <line number> field are
not the source module line numbers. For example, if a macro is
expanded or a file is included, the line-number field will
continue to advance, even though the current line in the source
module stays the same. In order to translate a line number (for
example, one produced by the cross-referencer) back to the
source file, you must look up the line number in the listing file,
then find that same line (by eye, not by number) in the source
file.

B <offset> is the offset in the current segment of the start of the
machine code generated by the associated assembler source
line. For instance, HelloMessage starts at offset a in the data
segment.

• <machine code> is the actual sequence of hexadecimal byte and
word values that is assembled from the associated assembler

Turbo Assembler User's Guide

source line. For example, MOV AX,@data starts at offset 0 in the
code segment. The information just to the right of the offset
field for a given instruction is the machine code assembled from
that instruction, so the machine code assembled for MOV
AX,@data is B8 OOOOs (all in hexadecimal). OBBh is the machine
language instruction to load AX with a constant value, while
OOOOs is the constant value of @data, which is loaded into AX.
(Actually, OOOOs is just a placeholder for the value of @data;
we'll get to that in a minute.) Altogether, the instruction MOV
AX,@data assembles to 3 bytes of machine code.

Note that the listing file indicates that the instruction following
MOV AX,@data, which is MOV DS,AX, starts at offset 3 in the
code segment. This makes perfect sense, given that MOV
AX,@data starts at offset 0 and is 3 bytes long. The machine
code assembled from MOV DS,AX-8e DB-is 2 bytes long, so
the next instruction should start at offset 5; looking at the listing
file, we see that that is the case .

• Finally, <source> is simply the original assembler line,
comments and all. Some assembler lines, such as those that
contain only comments, don't generate any machine code; these
lines have no <offset> or <machine code> fields, but do have a
line number.

Recall that we said that the OOOOs value for @data was only a
placeholder for the real value in the instruction

rnov ax,@data

This is because segment values are assigned by the linker, not by
Turbo Assembler, so Turbo Assembler can't fill in the correct
value. What Turbo Assembler can do, however, is let you know
that a given value is a segment value that will be resolved by the
linker. That's done by appending the letter s to the end of the
machine code generated for

rnov ax,@data

Likewise, the offset in the machine code assembled from

rnov dx,OFFSET HelloMessage

ends with r, indicating that the offset might have to be relocated
when its segment is combined with other segments by the linker.

Here's the full list of notations used by Turbo Assembler to
indicate assembly characteristics (such as relocatability):

Chapter 6, More about programming in Turbo Assembler 203

204

Notation

r

s

sr

e
se
so
+

Meaning

Indicates offset fixup type for symbols within the
. module
Indicates segment fixup type for symbols within the
module
Indicates segment and offset fixup type within the
module
Indicates offset fixup on an external symbol
Indicates pointer fixup on an external symbol
Indicates segment-only fixup
Indicates object code that has been truncated or
wrapped to the next line

In the object code listing, r, s, and sr are used to indicate offset,
segment, and pointer (segment and offset) fixup types for symbols
within" the module. e indicates an offset fixup on an external
symbol, and se indicates a pointer fixup on an external symbol.
Segment fixups on external symbols appear as s, just like for local
symbols. The object code field can also contain a + symbol in the
last column, indicating that there is more object code to display,
but it has been truncated.

The leftmost field of the listing is the level counter, which is blank
when assembling from the main file. Include files cause this field
to contain a 1 that becomes a 2,3, and so on, for each nested
include level. Likewise, macro expansions put a level counter in
this field.

You may have noticed that the listing file shows some of the
machine code entries as byte values (two hexadecimal digits) and
others as word values. There's a logical pattern here: Whenever
Turbo Assembler assembles machine code that represents a word
value, such as OFFSET HelloMessage, which is a 16-bit offset, that
value is shown as a word value. This is useful because, otherwise,
the low-byte-first approach the 8086 uses for storing words would
cause words to appear with the bytes reversed.

For example, the instruction

mov ax,1234h

assembles to 3 bytes of machine code: OB8h, 034h, and 012h, in
tha t order. If Turbo Assembler listed this machine code as 3 bytes,
it would appear as

B8 34 12

Turbo Assembler User's Guide

Listing symbol

with the bytes of the word value swapped. Instead, Turbo
Assembler lists this machine code as

B8 1234

which is certainly easier to read.

When we discussed the <offset> field, we talked about the offset in
the current segment of the labels and lines in a program. How do
you know what segment a given label or line is in? That's the job
of the listing tables, which we'll cover next.

tables The second part of the listing file begins with the header "Symbol
Table" and consists of two tables: one describing the labels used
in the source code and the other describing the segments used.

By the way, if you have no use for the symbol table portion of the
listing file, you can instruct Turbo Assembler to generate only the
annotated source code portion of the listing with the In
command-line switch.

The table of labels The first table, which we'll call the table of labels, lists all the
labels in the source code in alphabetical order, "along with their
types and the values to which they were set. For example, the
listing file HELLO.LST contains the following entry:

HelloMessage In the last
section was marked with an

r, meaning HelloMessage
may be relocated to another

offset by the linker as the
other segments In DGROUP

are linked into the program.
The map file produced by

the linker Is the place to look
for information about
segment relocation.

HELLOMESSAGE BYTE DGROUP:OOOO

HELLOMESSAGE is the name of the label, or symbol; it's in
uppercase because Turbo Assembler converts all symbols to
uppercase unless you use the Imx or Iml command-line switch.
BYTE represents the data size of the data element referred to by
the name HelloMessage. DGROUP:OOOO is the value of the label
HelloMessage, meaning that the string pointed to by the label
HelloMessage starts at offset 0 in the segment group DGROUP.

Similarly, ProgramS tart is listed as a label of type near, with the
value _TEXT:OOOO; _TEXT is the name of the segment defined
with .CODE, so ProgramStart is at the first address in the code
segment. As you can see, we've answered an earlier question
about how to find out what segment a given label is in, since the
value field of the table of labels reports the segmentin which the
label resides.

Chapter 6, More about programming In Turbo Assembler 205

206

The table of groups
and segments

Refer to Chapter 10 for
Information on USE32

segments.

The other labels listed in the HELLO.LST listing file are the labels
that are predefined by Turbo Assembler when the simplified
segment directives are used. These labels are all set to text strings,
and contain values such as _TEXT and DGROUP.

Labels can be any of the following data types:

ABS DWORD NUMBER
ALIAS FAR aWORD
BYTE NEAR STRUCT

TBYTE
TEXT
WORD

As we discussed at the beginning of this chapter, equated labels
can be set to any constant value or to a text string; the value field
of the table of labels reports the values of such labels exactly as
you set them. For a label associated with memory addresses, such
as HelioMessage, it's the address of the label that is reported in the
value field.

The table of labels is the place to look for type and value
information about any label used anywhere in your source code.

The other table in the symbol table portion of the listing is the
table of groups and segments. Segment groups such as DGROUP
are simply reported as groups here, since segment groups have no
attributes of their own, but rather consist of one or more
segments. The segments making up a group in a given module
appear directly under that group's name in the table of groups
and segments, indented two columns to show they belong to the
group. In HELLO.LST, the segments STACK and _DATA are
members of the DGROUP segment group.

Segments do have attributes, and the table of groups and
segments lists five attributes for each segment. Reading from the
left, the table of groups and segments reports the data size, overall
size, alignment, combine type, and class for each segment. We'll
discuss each of these separately.

The data size is always 16 except for USE32 segments in code
assembled for the 80386 processor.

The segment size is given as four hexadecimal digits. For
example, the STACK segment is 0200h (512 decimal) bytes long.

The alignment type describes what sort of memory boundaries a
segment can start on. These are the possible alignment types:

Turbo Assembler User's Guide

Chapter 9 provides more
information about alignment

and combine types and
segment classes.

The cross
reference table

Symbol tables don't cross
reference your labels,

groups, and segments.

• BYTE: Segment can start at any address
• DWORD: Segment can start at any address that is a multiple of 4

• PAGE: Segment can start at any address that is a multiple of 256

• PARA: Segment can start at any address that is a multiple of 16

• WORD: Segment can start at any even address

In HELLO.LST, the STACK segment starts on a paragraph
boundary, while the _DATA and _TEXT segments are word
aligned.

The combine type dictates how segments of the same name are
combined with a given segment. For example, identically named
segments with combine-type PUBLIC are concatenated into a
larger segment, while those with combine-type COMMON are
overlaid into a single common segment.

Finally, the segment class specifies the overall class in which a
segment belongs, such as CODE, DATA, and STACK. The linker
uses this information to order segments when it links the
segments into a program.

The symbol table portion of the listing file normally tells you a
great deal about labels, groups, and segments, but there are two
things it doesn't tell you: where labels, groups, and segments are
defined and where they're used. Cross-referenced symbol
information makes it easier to find labels and follow program
execution when debugging a program.

There are two ways to instruct Turbo Assembler to produce
cross-reference information in the listing file. The Ie command
line switch is one way to ask Turbo Assembler to place cross
reference information in the listing file; for example,

TASM Ie hello"

generates cross-reference information in the listing file
HELLO.LST. Note, however, that Ie by itself is not enough to
generate cross-reference information; you must also instruct
Turbo Assembler to generate a listing file in which the cross
reference information can be placed.

You can also ask Turbo Assembler to generate a listing file
containing cross-reference information by adding a fourth field to
the command line, as in

Chapter 6, More about programming In Turbo Assembler 207

REVERSE.ASM

1
2
3
4
5 = 03E8
6 0000 03EB* (??)
7 03EB 03E8* (??)
8
9
10 0000 B8 OOOOs
11 0003 8E 08
13 0005 B4 3F
14 0007 BB 0000
15 OOOA B9 03E8
16
17 0000 BA OOOOr
18
19 0010 CD 21
20 0012 23 CO
21 0014 74 1F
22 0016 8B C8
23
24 0018 51
25 0019 BB OOOOr
26 001C BE 03EBr
27 001F 03 F1
28 0021 4E
29
30
31 0022 8A 07
32 0024 88 04
33 0026 43
34 0027 4E
35
36 0028 E2 F8
37 002A 59
38 002B B4 40
39 0020 BB 0001
40 0030 BA 03E8r
41 0033 CD 21

208

TASM hello,hello,hello,hello

or

TASM hello",

Suppose we assemble REVERSE.ASM, the second example
program you looked at in Chapter 4, with the Ie command-line
switch:

TASM Ie reverse"

Turbo Assembler creates the following listing file, REVERSE.LST:

DOSSEG
• MODEL small
• STACK 200h
• DATA

MAXIMUM STRING LENGTH EQU 1000
StringToReverse DB MAXIMUM STRING LENGTH DUP(?)
ReverseString DB MAXIMUM=STRING=LENGTH DUP(?)

• CODE
ProgramStart:

mov ax,@data
mov ds,ax iset OS to point to the data segment
mov ah,3fh iDOS read from handle function t
mov bx,O istandard input handle
mov cx,MAXIMUM STRING LENGTH

iread up to maximum t of characters
mov dx,OFFSET StringToReverse

istore the string here
int 21h iget the string
and aX,ax iwere any characters read?
jz Done ino, so we're done
mov cX,ax iPut string length in CX, where

i can use it as a count
push cx isave the string length
mov bx,OFFSET StringToReverse
mov si,OFFSET ReverseString
add si,cx
dec si ipoint to the end of the reverse

i string buffer
ReverseLoop:

mov aI, [bx] iget the next character
mov lsi] ,al istore the characters in reverse order
inc bx ipoint to next character
dec si ipoint to previous location in

i reverse buffer
loop ReverseLoop imove next character, if any
pop cx iget back the string length
mov ah,40h iDOS write from handle function t
mov bx,l istandard output handle
mov dx,OFFSET ReverseString iprint this string
int 21h iprint the reversed string

Turbo Assembler User's Guide

42
43 0035 B4 4C
44 0037 CD 21

45

Symbol Table

Symbol Name

Done:
mov ah,4ch ;DOS terminate program function I
int 21h ;terminate the program

END ProgramStart

Type Value Cref defined at I

@code Text TEXT 12 18
@curseg Text TEXT 12 13 14 18

21 142 DONE Near TEXT:0035
MAXIMUM STRING LENGTH Number 03E8 15 6 7 15

19 45
- -

PROGRAMSTART Near TEXT:OOOO -
REVERSELOOP Near TEXT:0022 130 36
REVERSESTRING Byte DGROUP:03E8 t7 26 40

16 17 25 STRINGTOREVERSE Byte DGROUP:OOOO

Groups & Segments Bit Size Align Combine Class Cref defined at I

DGROUP
STACK

DATA
TEXT

Group 12 2 10
13 16 0200 Para Stack STACK

16 07DO Word Public DATA
16 0039 Word Public CODE

12 14
12 2 18 8

The value of
MAXIMUM_SmING_LENGTH Is
a number, 03EBh or decimal

1000.

Once again, the listing file contains annotated source code and the
symbol tables. There's something new in the symbol tables,
however, and that's the cross-reference field.

For each symbol (label, group, or segment), the cross-reference
field lists the line numbers of all the lines in the program on
which that symbol was referenced. Lines on which a symbol was
defined are prefixed with a #.

For example, let's find out where the MAXIMUM_STRING_
LENGTH label is defined and used. The listing file informs you
that it was defined on line 5; if you look at the first part of the
listing file, you'll see that this is the case.

The cross-reference field for MAXIMUM_STRING_LENGTH also
tells you that the label is referenced (but not defined) on lines 6, 7,
and 15. A glance at the first part of the listing file shows that this
is correct.

The Ie switch allows you to enable cross-referencing for an entire
file. You certainly won't always want a cross-reference listing for
every symbol-such a listing could be huge for a long source
module. Turbo Assembler provides you with directives that let
you enable and disable cross-referencing in selected portions of
your listings.

Chapter 6, More about programming In Turbo Assembler 209

For compatibility with other
assemblers, .CREF and .XCREF

are provided, controlling
cross-referencing in the same
way as %CREF and %NOCREF,

respectively.

210

Controlling the
listing contents

and format

The O/oCREF directive enables cross-referencing for succeeding
lines. The %NOCREF directive disables cross-referencing for
succeeding lines. Either of these directives overrides the
command-line Ie switch. If cross-referencing is enabled anywhere
in a source module, then the symbol table section reports the lines
on which all labels, groups, and segments were defined. However,
only those lines on which the labels, groups, and segments were
referenced (and for which cross-referencing was enabled) are
listed as cross-reference entries.

For example, consider

%NOCREF
ProgramStart PROC

jmp LoopTop

%CREF

;line 1

; line 2

LoopTop: ;line 3

loop LoopTop ;line 4
%NOCREF
mov ax,OFFSET ProgramStart ;line 5

Line 1 will be listed as the definition line (with a #) for
ProgramStart, even though it was in an area in which cross
referencing is turned off because the definition lines for all labels
are listed if cross-referencing is turned on anywhere in a module.
Similarly, line 3 will be listed as the definition line for LoopTop.

Line 4 will appear as a cross-reference line for LoopTop because it
occurs after %CREF and before %NOCREF. However, line 2 will
not appear as a cross-reference line for LoopTop, because it occurs
when cross-referencing is disabled. Likewise, line 5 will not
appear as a cross-reference for ProgramStart.

Turbo Assembler gives you a remarkable degree of control over
which lines of source code should be listed, and over the format
of the listing file as a whole. The listing control directives fall into
two categories: the line-listing selection directives, which select
the information to be included in the listing file, and the listing
format control directives, which determine the actual format of
the listing file.

Turbo Assembler User's Guide

The line-listing selection
directives

The line-listing selection directives enable or disable inclusion of
certain lines in the listing file. In general, these directives are
useful for suppressing from the listing file information that you
don't care about at the moment, in order to keep the listing file to
a manageable size.

%L1ST and %NOUST

%UST and %NOLIST are the most basic of the line-listing selection
directives, enabling and disabling inclusion of succeeding lines in
the listing file. For example, given

%NOLIST
mov ax,l
%LIST
mov bx,2
%NOLIST
add ax,bx

only the middle line, mov bx, 2, will be included in the listing file.
By default, %LIST is selected.

%CONDS and %NOCONDS

%CONDS and %NOCONDS allow you to enable and disable the
listing of false conditionals and conditional statements. The listing
of such conditionals is normally disabled. For example, given the
code

%CONDS .
IFE IS8086

shl ax,?
ELSE

mov el,?
shl ax,el

ENDIF

both of the conditional sections, along with the conditional
assembly directives, will be placed in the listing file, rather than
just the conditional section that's true at the time of assembly.

Chapter 6. More about programming In Turbo Assembler 211

212

%INCL and %NOINCL

O/OINCL and O/ONOINCL allow you to enable and disable the listing
of lines included from other files by way of the INCLUDE
directive. The listing of included text is normally enabled. For
example, given the code

%NOINCL
INCLUDE HEADER.ASM
%INCL
INCLUDE INIT.ASM

the lines included from HEADER.ASM won't be placed in the
listing file, while the lines included from INIT.ASM will appear in
the listing file. (However, both INCLUDE directives will appear in
the listing file.)

%MACS and %NOMACS

O/OMACS and O/ONOMACS allow you to enable and disable the
listing of the text of macro expansions. The listing of macro
expansions is normally disabled. For example, given the code

MAKE BYTE MACRO VALUE
DB VALUE
ENDM

%NOMACS
MAKE BYTE 1
%MACS
MAKE BYTE 2

the text generated by the first expansion of the MAKE_BYTE
macro, DB 1, won't appear in the listing file, while the text
generated by the second expansion of MAKE_BYTE, DB 2, will
appear in the listing file. (However, both MACRO directives
appear in the listing file.)

%CTLS and %NOCTLS

O/OCTLS and O/ONOCTLS allow you to enable and disable the listing
of listing control directives themselves. The listing of listing
control directives is normally disabled. For example, given the
code

Turbo Assembler User's Guide

The listing format
control directives

%NOCTLS
%NOINCL
%CTLS
%NOMACS

the listing control directive O/ONOINCL won't appear in the listing
file, while the listing control directive O/ONOMACS will.

&UREF and %NOUREF

O/OUREF and O/ONOUREF allow you to enable and disable the listing
of unreferenced symbols-in other words, symbols that are
defined but never used-in the symbol tables. The listing of
unreferenced symbols is normally enabled. You must specify a
cross-reference listing in order for those two options to have any
effect.

%SYMS and %NOSYMS

O/OSYMS and O/ONOSYMS allow you to enable and disable the
inclusion of the symbol tables in the listing file. The inclusion of
the symbol tables in the listing file is normally enabled.

The listing format control directives alter the format of the listing
file. You can use these directives to tailor the appearance of the
listing file to your tastes and needs.

The O/OTITLE directive selects a title to be printed at the top of each
page of the annotated source code portion of the listing file. Only
one title can be specified in a given program. The O/OSUBTTL
directive selects a subtitle to be printed below the title on each
page of the listing. Any number of subtitles can be specified in a
program. For example, if the source module SP ACEW AR.ASM
contained the directives

%TITLE 'Space Wars Game Program'
%SUBTTL 'Gravitational Effects Subroutines'

each page of the annotated source code would start with the lines

Turbo Assembler Version 2.0 1-18-90 21:53:35 Page 1 SPACEWAR.ASM
Space Wars Game Program
Gravitational Effects Subroutines

Chapter 6. More about programming in Turbo Assembler 213

214

%NEWPAGE forces Turbo Assembler to start a new page in the
listing file.

%TRUNC instructs Turbo Assembler to truncate fields that exceed
their maximum width, while %NOTRUNC instructs Turbo
Assembler to wrap fields that exceed their maximum width to the
next line. Normally, fields that overflow are not truncated. Note
that %NOTRUNC is on by default.

%PAGESIZE specifies the height in rows and width in columns of
the listing pages Turbo Assembler generates. For example,

%PAGESIZE 66,132

instructs Turbo Assembler to generate pages 132 columns wide by
66 rows high. Note that O/oPAGESIZE does not send page size
commands to the printer; rather, you should set up the printer
before printing the listing file, then use %PAGESIZE to instruct
Turbo Assembler to generate pages that match the way you've set
up your printer.

Field-width directives

Five directives control the width of the five fields of the annotated
source code portion of the listing file. The full format of a line in
this section of the listing file is

<depth> <line number> <offset> <machine code> <source>

Earlier we described four of the five fields; the fifth field is the
<depth> field, which indicates how many macro or include levels
deep the current line is nested. For example, if the current line is
produced by a macro that itself is called from within a macro,
then the depth field will read 2.

The %DEPTH directive specifies the width in characters of the
<depth> field. The %LlNUM directive specifies the width in
characters of the <line number> field. The %PCNT directive
specifies the width of the <offset> field. (If you think of this field as
the "program counter" field, %PCNT is easier to remember.) The
%BIN directive specifies the width of the <machine code> field.
Finally, the % TEXT directive specifies the width of the <source>
field.

Turbo Assembler User's Guide

%PUSHLCTL and %POPLCTL

You might, at times, want to briefly change the current listing
control state and then restore it. Perhaps, in order to list every
byte of a data table, you need to enable wrapping and adjust the
width of the fields, or perhaps you want to enable listing of all
types of lines for debugging purposes. After you modify the
listing control state, it can be a real nuisance to restore the listing
controls to their previous state, especially since some of the listing
controls may have been set in an Include file or in some far
distant part of the source module.

Turbo Assembler provides the %PUSHLCTL and %POPLCTL
directives to handle this situation. %PUSHLCTL pushes the
current listing control state onto an internal stack, and
%POPLCTL pops the current listing control state from that stack.
(Both directives have a maximum of 16 levels.) These two
directives only save and restore the listing controls that can be
enabled and disabled (like %TRUNC and %NOTRUNC), and not
those that take a numeric argument (like %BIN). For example, in
the following code, the listing control state is exactly the same
after %POPLCTL as it was before %PUSHLCTL:

%LIST
%TRUNC
%PUSHLCTL
%NOLIST
%NOTRUNC
%NEWPAGE

%POPLCTL

Other listing control Turbo Assembler provides several other listing control directives
directives for compatibility with other assemblers. These directives include

TITLE, SUBTTL, PAGE, .UST, .XLlST, .LFCOND, .SFCOND,
.TFCOND, .LALL, .SALL, and .XALL. (Refer to Chapter 2 of the
Reference Guide for details on these directives.)

Displaying a message during assembly

Turbo Assembler provides two directives that allow you to
display a string on the console during assembly: DISPLAY and

Chapter 6, More about programming in Turbo Assembler 215

%OUT. These directives can be used to report on the progress of
an assembly, either to let you know how far the assembly has
progressed or to let you know that a certain part of the code has
been reached.

The two directives are essentially the same except that DISPLAY
displays a quoted string onscreen and %OUT displays a
nonquoted string onscreen. For instance, the following code

DISPLAY 'This message produced by DISPLAY'
%OUT This message produced by %OUT

displays the following lines onscreen:

This message produced by DISPLAY
This message produced by %OUT

Assembling source code conditionally

216

You'll find there are times when it would be very useful to be able
to have a single assembler source module assemble to any of
several different versions of a program. For example, you might
want two versions of a given program: one version that uses
standard 8086 instructions and one version that takes advantage
of the powerful instructions of the 80186 and 80286.

You could maintain two separate source modules, one for each
version, but then you'd have a hard time keeping both modules
up to date. The simplest sol?tion would be to build both versions
into a single source module, with a single equated label that
selects which version gets assembled at any given time.

Turbo Assembler's conditional assembly directives give you this
capability and more. Consider the following code:

IF IS8086

ELSE

mov ax,3dah
push ax

push 3dah
ENDIF

call GetAdapterStatus

Turbo Assembler User's Guide

Conditional
assembly
directives

IF and IFE

If the value of the labellS8086 is nonzero, then the parameter
value 3dah is pushed on the stack with the two-step process
required by the 8086. If, however, 1S8086 is zero, then the
parameter value is pushed directly, using a special form of PUSH
that's available on the 80186 and 80286, but not the 8086. The code
in this example uses conditional assembly to support two versions
of the same program, one for the 8086 and one for the 80186 and
80286.

Turbo Assembler supports a variety of conditional assembly
directives, and also gives you the ability to generate assembly
errors in a variety of ways. We'll look at the conditional assembly
directives first.

The simplest and most useful conditional assembly directives are
IF and IFE, which are used in conjunction with ENOIF and,
optionally, ELSE. IFDEF and IFNDEF are also frequently used,
while IFB, IFNB, IRON, IFOIF, IF1, and IF2 are useful in certain
situations.

IF causes the following block of code (up to the matching ELSE or
ENDIF) to be assembled only if the value of the operand is
nonzero. The operand may be a constant value or an expression
that evaluates to a constant value. For example,

IF REPORT ASSEMBLY STATUS - -
DISPLAY 'Reached assembly checkpoint l'

ENDIF

displays

Reached assembly checkpoint 1

when the IF is reached only if REPORT_ASSEMBLY _STATUS is nonzero.

An IF conditional can be terminated with either ENDIF or ELSE. If
an IF conditional is terminated with ELSE, then the code
following ELSE is assembled only if the operand to the associated
IF was zero. The block of code following the ELSE must be
terminated with an ENOIF.

IF conditionals can also be nested. For instance, this code

Chapter 6, More about programming In Turbo Assembler 217

218

;See whether arrays are to be defined (otherwise, they're
; allocated dynamically)
IF DEFINE ARRAY
;Make sure the array isn't too long

IF (ARRAY_LENGTH GT MAX_ARRAY_LENGTH)
ARRAY LENGTH MAX ARRAY LENGTH - -

ENDIF
;Set the array to an initial value if that's indicated

IF INITIALIZE ARRAY
Array DB ARRAY LENGTH DUP (INITIAL_ARRAY_VALUE)

ELSE
Array DB ARRAY LENGTH DUP (?)

ENDIF
ENDIF

nests an IF and an IF ELSE inside another IF.

IFE is exactly like IF except that the following code is assembled
only if the operand is zero. The code associated with the following
IFE directive always assembles:

IFE 0

ENDIF

Like IF, IFE can have an associated ELSE directive.

Understand that the conditional assembly directives operate at
assembly time only, not when the program is run. These are not
like If statements in C, executing different code depending on
some run-time condition; instead, they assemble different code
depending on some assembly-time condition.

IFDEF and IFNDEF IF and IFE are your primary tools for building programs that can
assemble into more than one version. Two other directives that
are useful in this connection are IFDEF and IFNDEF.

The block of code between an IFDEF directive and its associated
ENDIF is assembled only if the label that's the operand to IFDEF
exists (that is, if the label has already been defined when the
IFDEF directive is executed). For example, given the code

DEFINED_LABEL EQU 0

IFDEF DEFINED LABEL

Turbo Assembler User's Guide

DB 0
ENDIF

the DB directive will assemble; if, however, you were to delete the
equate that sets DEFINED_LABEL (and assuming DEFINED_LABEL isn't
set anywhere else in the program), then the DB directive would not
be assembled. Note that the value of DEFINED LABEL doesn't matter
to IFDEF.

IFNDEF is the opposite of IFDEF, assembling its associated code
only if the label that's the operand is not defined.

You may well wonder what IFDEF and IFNDEF are used for. One
use is guarding against attempts to define the same label twice
with EQU in a complex program; if the label's already defined,
you can use IFDEF to avoid defining it again and causing an error.
Another use is selecting the version of a program to be assembled,
much like what was done with IF previously; instead of checking
to see whether, say, INITIAUZE_ARRAYS is zero or nonzero, you
could simply check to see whether it is defined at all.

One handy way to select program version is by way of the Id
command-line switch. Id defines the associated label, and
optionally assigns that label a value. So, for example, you could
use a command line like

TASM /dINITIALIZE ARRAYS=l test

to assemble the program TEST.ASM with the label
INITIALIZE ARRAYS set to 1.

While that's undeniably useful, there's a potential problem here.
What if you're relying on INITIALIZE_ARRAYS being set on the
command line, but forget to type the appropriate Id switch? Also,
suppose you want to initialize arrays as a special case, and don't
want to be bothered with typing /dINITIALIZE _ARRAYS at other
times?

IFNDEF comes to your rescue in this case. You can use IFNDEF to
test whether INITIALIZE_ARRAYS is already defined (from the
command line), and then initialize it only if it's not already set.
That way, the command-line definition takes precedence, but
there's a default state for the label if no command-line definition
was specified. Here's the code to define INITIALIZE_ARRAYS only if
it's not already defined:

Chapter 6, More about programming In Turbo Assembler 219

220

Other conditional
assembly directives

IFNDEF INITIALIZE ARRAYS
INITIALIZE ARRAYS EQU 0 idefault to not initializing
ENDIF

When you use IFNDEF this way to define an undefined symbol,
you'll get a warning message indicating that you are using a
pass-dependent construction. You can ignore this message if all
you are doing is defining a symbol inside the IFNDEF conditional
block. The message happens because Turbo Assembler can't tell if
you are going to put instructions or directives inside the block. If
you do more in the block than just define a symbol, you will
probably want to enable multi-pass processing with the 1m switch.
If you are only defining a symbol, enabling multi-pass processing
will cause the warning to not be given.

The IFB, IFNB, IFIDN, and IFDIF directives are used for testing
parameters passed to macros. (Macros are discussed in Chapter 9,
/I Advanced programming in Turbo Assembler.") IFB causes its
associated code to be assembled If the macro parameter that is its
operand is blank, while IFNB does the same if its operand is not
blank. IFB and IFNB are sort of the equivalent of IFNDEF and
IFDEF for macro parameters.

For example, consider the macro TEST, defined as

i Macro to define a byte or a word.

Input:
VALUE = value of byte or word
DEFINE_WORD = 1 to define a word, 0 to define a byte

i Note: If PARM2 is not specified, a byte is defined.

TEST MACRO VALUE, DEFINE_WORD
IFB <DEFINE WORD>

DB VALUE
ELSE

IF DEFINE WORD
DW VALUE

ELSE
DB VALUE

ENDIF
ENDIF

ENDM

idefine a byte if PARM2 is blank

idefine a word if PARM2 is nonzero

idefine a byte if PARM2 is zero

Turbo Assembler User's Guide

If TEST is invoked with

TEST 19

then a byte with the value 19 is defined, while if TEST is invoked
with

TEST 19,1

then a word with the value 19 is defined.

IFIDN causes its associated code to be assembled if the two macro
parameters that are its operands are identical, while IFDIF does
the same if its pair of operands are different. For example, the
following macro, which converts a signed byte to a signed word
in AX, doesn't bother to copy the source operand to AL if the
source operand is AL:

; Macro to convert a signed byte in an a-bit register or
; named memory location to a signed word in AX.

Input:
SIGNED_BYTE - the name of the register or memory location

containing the signed byte to convert to a signed word

MAKE SIGNED WORD MACRO
IFDIFI

mov
ENDIF

cbw
ENDM

-
<AL>,<SIGNED_BYTE>
al,SIGNED_BYTE

SIGNED BYTE
;make sure the operand isn't AL

IFIDN and IFDIF are sensitive to the case of their arguments. Their
companion directives IFIDNI and IFDIR treat as equivalent
uppercase and lowercase letters in their arguments.

Note that angle brackets are required around all operands to IFB,
IFNB, IFIDN, and IFDIF.

If you don't use the 1m command-line switch to enable multiple
passes, then IF1 is always considered true, and IF2 is always
considered false because there is never a second pass. A "Pass
dependent construction encountered" warning is displayed in
this circumstance if Turbo Assembler encounters either IF1 or IF2
in a module.

If you use the 1m command-line switch, two passes are done
automatically if your module contains either IF1 or IF2. In this
case, IF1 is true on the first pass, IF2 is true on the second pass,

Chapter 6, More about programming In Turbo Assembler 221

222

ELSEIF family of
directives

and a "Module is pass-dependent--compatibility pass was done"
warning is also displayed.

Each of the IF family of directives (IF, IFB, IFIDN, and so on) has a
related member in the ELSEIF family (for example, ELSEIF,
ELSEIFB, ELSEIFIDN). They act like a combination of the ELSE
directive with one of the IF directives. You can use them to make
your code more readable when you want to test against multiple
conditions or values and only assemble a single block of code.
Consider the following code fragment:

IF BUFLENGTH GT 1000
CALL DOBIGBUF

ELSE
IF BUFLENGTH GT 100

CALL MEDIUMBUF
ELSE

IF BUFLENGTH GT 10
CALL SMALLBUF

ELSE
CALL TINYBUFP

ENDIF
ENDIF

ENDIF

You can use the ELSEIF directive to improve the readability of
this code:

IF BUFLENGTH GT 1000
CALL DOBIGBUF

ELSEIF BUFLENGTH GT 100
CALL MEDIUMBUF

ELSEIF BUFLENGTH GT 10
CALL SMALLBUF

ELSE
CALL TINYBUF

ENDIF

This roughly corresponds to the case or switch statements in
Pascal and C. However, this capability is actually far more
general, since you don't have to use the same kind of ELSEIF test
throughout the conditional code block. For example, the
following is perfectly valid:

PUSHREG MACRO ARG
IFIDN <ARG>,<INDEX>

push si
push di

Turbo Assembler User's Guide

Conditional error

ELSEIFB <ARG>
push ax

ENDIF
ENDM

directives Turbo Assembler allows you to unconditionally or conditionally
generate assembly errors with the conditional error directives:

.ERR .ERRB .ERRDIFI .ERRIDNI

.ERR1 .ERRDEF .ERRE .ERRNB

.ERR2 .ERRDIF .ERRIDN .ERRNDEF
.ERRNZ

Why on earth would you intentionally generate an assembly
error? Well, the conditional error directives allow you to catch a
variety of mistakes in your programs, such as equated labels that
are too large or too small, labels that aren't defined, and missing
macro parameters.

Take another look at the list of conditional error directives. You'll
note that the conditional error directives are very similar to the
conditional assembler directives, and that's no coincidence, since
most of the conditional error directives test the same conditions.
For example, .ERRNDEF generates an error if the operand label is
not defined, just as IFNDEF assembles the associated code if the
operand label is not defined .

. ERR, .ERR1, and .ERR2 Whenever Turbo Assembler encounters the .ERR directive, an
error is generated. By itself, that's not a particularly useful
function; however, .ERR is useful when combined with a
conditional assembly directive.

For example, suppose you want to generate an error if the equate
for the length of a given array is set to too large a number. The
following code would do the job:

IF (ARRAY_LENGTH GT MAX_ARRAY_LENGTHl
.ERR

ENDIF

If the array isn't too long, Turbo Assembler won't assemble the
code within the IF block, so the .ERR directive will never be
assembled, and no error will be generated .

. ERR1 and .ERR2 do just what .ERR does, but only on pass 1 or
pass 2, respectively. Ify,ou don't use the 1m command-line switch

Chapter 6, More about programming In Turbo Assembler 223

to enable multiple passes, then .ERR1 will always display an
error; .ERR2 will never display an error, because there is never a
second pass. A "Pass-dependent construction encountered"
warning is displayed in this circumstance if Turbo Assembler
encounters either .ERR1 or .ERR2 in a module.

If you use the 1m command-line switch, two passes are done
automatically if your module contains either .ERR1 or .ERR2. In
this case, .ERR1 displays an error on the first pass, .ERR2 displays
an error on the second pass, and a "Module is pass-dependent
compatibility pass was done" warning is also displayed .

. ERRE and .ERRNZ The .ERRE directive generates an error if its operand, which must
evaluate to a constant expression, is equal to zero . . ERRE is
equivalent to performing .lFE combined with .ERR. For example,

.ERRE TEST LABEL-l

is equivalent to

IFE TEST LABEL-l
.ERRE

ENDIF

.ERRE can be used to generate an error when a relational
expression returns false, since the value of a false expression is O.

Similarly, the .ERRNZ directive generates an error if its operand is
not equal to zero; this is equivalent to IF followed by .ERR .
. ERRNZ can be used to generate an error when a relational
expression returns true, since the value of a true expression is
nonzero. For example,

.ERRNZ ARRAY LENGTH GT MAX ARRAY LENGTH - --

performs the same action as do the IF and .ERR directives in the
example in the last section .

. ERRDEF and .ERRNDEF .ERRDEF generates an error if the label that is its operand is
defined, while .ERRNDEF generates an error if the label that is its
operand is undefined. These directives let you perform the
equivalent of IFDEF or IFNDEF and .ERR in a single line. For
example,

.ERRNDEF MAX PATH LENGTH

is equivalent to

IFNDEF MAX PATH LENGTH

224 Turbo Assembler User's Guide

Other conditional error
directives

The macro also uses .ERRIDN
to make sure that PARM21sn 't
DX, In which case it would be

wiped out when PARM 1 Is
loaded.

.ERR
ENDIF

The four remaining conditional error directives are intended for
use in macros only, and are directly analogous to the four
conditional assembly directives intended for use in macros that
we discussed in the previous section, "Other Conditional
Assembly Directives," on page 220 .

. ERRB generates an error if the macro parameter that is its
operand is blank, and .ERRNB generates an error if the macro
parameter that is its operand is not blank. .ERRIDN generates an
error if the two macro parameters that are its operands are
identical, and .ERRDIF generates an error if the two macro
parameters that are its operands are different.

For example, the following macro generates an error if it's
invoked with any number of parameters other than two. This is
accomplished by using .ERRB and .ERRNB to make sure that
PARM2 isn't blank and PARM3 is blank.

i Macro to add two constants, registers, or named memory
locations and store the result in DX.

Input:
PARMl - one operand to add
PARM2 - the other operand to add

ADD TWO OPERANDS MACRO PARMl,PARM2,PARM3
.ERRB <PARM2> ithere must be two parameters
.ERRNB <PARM3> ; ••• but not three
.ERRIDN <PARM2>,<DX> isecond parameter can't be DX
mov dx,PARMl
add dx, PARM2
ENDM

Pitfalls in assembler programming

Each computer language has its own set of oft-encountered
programming problems, and assembly language is certainly no
exception. Here are some of the common pitfalls of assembly
language programming, along with tips on how to avoid them.

Chapter 6, More about programming In Turbo Assembler 225

226

Forgetting to
return to DOS In Pascal, C, and other languages, a program ends automatically

and returns to DOS when there is no more code to execute, even if
no explicit termination command was written into the program.
Not so in assembly language, where only those actions that you
explicitly request are performed. When you run a program that
has no command to return to OOS, execution simply continues
right past the end of the program's code and into whatever code
happens to be in the adjacent memory.

For example, consider the following program:

. MODEL small

.CODE
DoNothing PROC NEAR

nop
DoNothing ENDP

END DoNothing

Past experience might lead you to think that either the ENDP
directive or the END directive properly terminates this program,
just as } and end. do in C and Pascal, but that's not the case. The
executable code generated by assembling and linking this
program consists only of a single NOP instruction. In assembler,
the ENDP directive-like all directives-generates no code; it's
simply a note to the assembler that the code for the DoNo thing
procedure has ended. Similarly, the END DoNothing directive
merely tells the assembler that the code for this module has
ended, and that the program should start execution at DoNo thing.
Nowhere in the source code are instructions generated to transfer
control back to 005 when the program is finished; as a result,
when the program is run, whatever random instructions happen
to be lying in memory at the address following the NOP will be
executed immediately following the NOP. At this point, all bets
are off, with a hung computer and a soft or hard reboot far more
likely than the desired return to 005.

While there are several means by which an assembler program
can return to 005, the recommended technique is to execute 005
function 4Ch. The following version of the preceding program
termina tes properly:

Turbo Assembler User's Guide

Forgetting a RET
instruction

• MODEL small
.CODE

DoNothing PROC NEAR
nop
mov ah,4Ch
int 21h

DoNothing ENDP
END DoNothing

;DOS terminate process function
;invoke DOS to end program

Always remember that directives don't generate code, and that
Turbo Assembler generates programs that do exactly what your
source code tells them to do, no more and no less.

Recall that the proper invocation of a subroutine consists of a call
to the subroutine from another section of code, execution of the
subroutine, and a return from the subroutine to the calling code.
Remember to insert a RET instruction in each subroutine, so that
the RETurn to the calling code occurs. When typing a program,
it's easy to skip a RET and end up with code like this:

; Subroutine to mUltiply a value by 80.
; Input: AX - value to multiply by 80
; Output: DX:AX - product

MultiplyBy80 PROC NEAR
mov dx,80
mul dx

MultiplyBy80 ENDP

; Subroutine to get the next key press.
; Output: AL - next key pressed
; AH destroyed

Get Key PROC NEAR
mov ah,l

, int 21h
ret

Get Key PROC NEAR

The MultiplyByBO ENDP,directive can fool you into thinking that
MultiplyByBO has been terminated properly, when in fact the call
to MultiplyByBO not only multiplies AX by 80 but also continues
on into GetKey and returns the next key typed in AL. The proper
code for MultiplyByBO is

Subroutine to mUltiply a value by 80.
; Input: AX - value to multiply by 80

Chapter 6, More about programming in Turbo Assembler 227

228

Generating the
wrong type of

return

; Output: DX:AX - product

MultiplyBy80 PROC NEAR
rnov dx,80
rnul dx
ret

MultiplyBy80 ENDP

The PROC directive has two effec~s. First, it defines a name by
which a procedure can be called. Second, it controls whether the
procedure is a near or far procedure.

The type of a procedure-near or far-is used by the assembler to
determine what type of calls to generate when that procedure is
called from within the same source file. The type of a procedure is
also used to determine the type of RET performed when the
procedure returns control to the calling code. Consider the
following code:

; Near subroutine to shift DX:AX right 2 bits.

LongShiftRight2 PROC NEAR
shr dx,+
rer ax,l ;shift DX:AX right 1 bit
shr dx,l
rer ax,l ;shift DX:AX right another bit
ret

LongShiftRight2 ENDP

Turbo Assembler makes the RET in this code near, since
LongShiftRight2 is a near procedure. If the PROC directive is
changed to read

LongShiftRight2 PROC FAR

however, a far RET is generated.

So far, everything makes sense. After all, the RET instructions in a
procedure should match the type of the procedure, shouldn't
they?

Yes and no. The problem is that it's possible and often desirable to
group several subroutines in the same procedure. Since these
subroutines lack an associated PROC directive, their RET
instructions take on the type of the overall procedure, which is
not necessarily the correct type for the individual subroutines. For
example,

Turbo Assembler User's Guide

; Far subroutine to shift DX:AX right 2 bits.

LongShiftRight2 PROC FAR
call LongShiftRight
call LongShiftRight
ret

LongShiftRight:
shr dx,l
rcr ax,l
ret

LongShiftRight2 ENDP

;shift DX:AX right 1 bit
;shift DX:AX 'right another bit

;shift DX:AX right 1 bit

does not work properly. LongShiftRight2 makes near calls to
LongShiftRight, since they are both in the same code segment.
However, since LongShiftRight is embedded in the LongShiftRight2
procedure, the return at the end of LongShiftRight subroutine
becomes a far RET, and matching far calls with near returns is
likely to lead to a crash.

One good solution is to make sure that each subroutine has an
associated PROC directive. Nested PROC directives work well:

; Far subroutine to shift DX:AX right 2 bits.

LongShiftRight2 PROC FAR
call LongShiftRight
call LongShiftRight
ret

LongShiftRight
shr dx,l
rcr ax,l
ret

PROC NEAR

LongShiftRight ENDP
LongShiftRight2 ENDP

;shift DX:AX right 1 bit
;shift DX:AX right another bit

;shift DX:AX right 1 bit

as do sequential PROC directives:

; Far subroutine to shift DX:AX right 2 bits.

LongShiftRight2 PROC FAR
call LongShiftRight
call LongShiftRight
ret

LongShiftRight2 ENDP
LongShiftRight PROC NEAR

shr dx,l
rcr ax,l
ret

LongShiftRight ENDP

Chapter 6, More about programming in Turbo Assembler

;shift DX:AX right 1 bit
;shift DX:AX right another bit

;shift DX:AX right 1 bit

229

Reversing

You can also use RETN and RETF to explicitly generate a near or
far return, respectively. You can use these outside of a procedure
defined with the PRoe directive and rest assured that the correct
return will always be generated.

operands To many people, the order of instruction operands in 8086
assembly language seems backward, and there is certainly some
justification for this viewpoint. If the line

Forgetting the
stack or reserving
a too small stack

230

mov ax,bx

meant "move AX. to BX," the line would scan smoothly from left
to right, and this is the way many microprocessor manufacturers
have designed their assembly languages. However, Intel took a
different approach with 8086 assembly language; for us the line
means "move BX to AX," and that can sometimes cause
confusion.

The thinking behind the ordering of Intel's operands is that the
operands appear in the same order as they would in C or Pascal
code, with the destination on the left. Consequently, one way to
think of operand -ordering in 8086 assembly language is to
mentally insert an equal sign in place of the comma between
operands and reword the line to form an assignment. For
example, think of

mov ax,bx

as

ax = bx

Constant operands, such as

add bx, (OFFSET BaseTable * 4) t 2

which can be thought of as

bx t= (OFFSET BaseTable * 4) t 2

also lend themselves to this approach.

In most cases, you are treading on thin ice if you don't explicitly
alloca te space for a stack. Programs without an allocated stack
will sometimes run, since the default stack may happen to fall in

Turbo Assembler User's Guide

Writing .EXE rather than
. COM programs and

reserving ample stack space
Is a simple way to avoid

these potential problems.

Calling a
subroutine that

wipes out
needed registers

an unused area of memory. But there is no assurance that these
programs will run under all circumstances, since not a single byte
is guaranteed to be available for the stack.

Most programs should have a .STACK directive to reserve space
for the stack, and for each program that directive should reserve
more than enough space for the deepest stack you can conceive of
the program using.

Why more than enough space rather than just enough space? In
general, it's difficult to be sure just how much stack space a given
program needs, and the sort of bugs that occur when the stack
grows in to other parts of the program and overwrites them are
often very difficult to reproduce and track down. Then, too, many
debuggers use a little extra space on the stack when getting
control back from a program. So be generous when allocating
stack space, and save yourself future headaches. A minimum
stack size of 512 bytes is a good rule of thumb.

The only assembler programs that should not have a stack
allocated are programs that are going to be made into .COM or
.BIN files .. BIN files contain code hard-wired to run at a specific
address, and since .BIN files are generally used as interpreted
BASIC subroutines, they use BASIC's stack. .COM programs run
with the stack at the very top of the program's segment (which is a
maximum of 64K long, or less if there's less than 64K available), so
the maximum size of the stack is simply the amount of memory
left in the program's segment. Beware if any of the .COM
programs you write approach 64K in size, since the stack shrinks
accordingly. Also be aware that large .COM programs may
encounter stack problems when run on computers with little
available memory or when run from a 005 shell under another
program.

When writing assembler code, it's easy to think of the registers as
local variables, dedicated to the use of the procedure you're
working on at the moment. In particular, there's a tendency to
assume that registers are unchanged by calls to other procedures.
It just isn't so, though-the registers are global variables, and each
procedure can preserve or destroy any or all registers.

As an example, consider the following:

Chapter 6. More about programming in Turbo Assembler 231

232

mov bx, [TableBase]
mov ax, [Element]
call DivideBy10
add bx,ax

ipoint BX to base of table
iget element t
idivide element t by 10
ipoint to appropriate entry

Subroutine to divide a value by 10.
Input: AX - value to divide by 10

i Output: AX - value divided by 10
DX - remainder of value divided by 10

i BX destroyed.

DivideBy10 PROC NEAR
mov dx,O
mov bx,10
div bx
ret

DivideBy10 ENDP

iprepare DX:AX as 32-bit dividend
iBX is the 16-bit divisor

The calling routine assumes that BX is preserved by DivideByl0,
when in fact DivideByl0 sets BX to 10. There are a number of
possible solutions in this particular case. BX could be pushed and
popped either at the start or end of DivideByl0:

mov bx, [TableBase]
mov ax, [Element]
call DivideBy10
add bx,ax

;point BX to base of table
iget element t
idivide element t by 10
ipoint to appropriate entry

Subroutine to divide a value by 10.
Input: AX - value to divide by 10

i Output: AX - value divided by 10
DX - remainder of value divided by 10

DivideBy10 PROC NEAR
push bx
mov dx,O
mov bx,10
div bx
pop bx
ret

DivideBy10 ENDP

ipreserve BX
iprepare DX:AX as 32-bit dividend
iBX is the 16-bit divisor

irestore original BX

or in the calling routine around the call to DivideByl0:

mov bx, [TableBase]
mov ax, [Element]
push bx

ipoint BX to base of table
;get element t
ipreserve table base

Turbo Assembler User's Guide

call DivideBy10
pop bx
add bx,ax

idivide element I by 10
irestore table base
ipoint to appropriate entry

Subroutine to divide a value by 10.
Input: AX - value to divide by 10

i Output: AX - value divided by 10
DX - remainder of value divided by 10

DivideBy10 PROe NEAR
mov dx,O
mov bx,10
div bx
ret

DivideBy10 ENDP

iprepare DX:AX as 32-bit dividend
iBX is the 16-bit divisor

or BX could simply be loaded after, rather than before, the call

mov ax, [Element]
call DivideBy10
mov bx, [TableBase]
add bx,ax

iget element I
idivide element I by 10
ipoint BX to base of table
ipoint to appropriate entry

Subroutine to divide a value by 10.
Input: AX - value to divide by 10
Output: AX - value divided by 10

DX - remainder of value divided by 10

DivideBy10 PROe NEAR
mov dx,O
mov bx,10
div bx
ret

DivideBy10 ENDP

iprepare DX:AX as 32-bit dividend
iBX is the 16-bit divisor

An obvious solution to the general problem of subroutines that'
accidentally clobber registers is for all subroutines to preserve all
registers as a matter of course. Unfortunately, pushing and
popping registers takes time and code space, negating some of the
advantages of programming in assembler. Another approach is to
preface each subroutine with a comment indicating which
registers are preserved and which are destroyed. Then carefully
check that there are no problems in each case where you must ,(,
assume a register is preserved across a subroutine call. Yet ,'",
another approach is to explicitly preserve needed registers in
calling,routines.

Chapter 6, More about programming In Turbo Assembler 233

Using the wrong
sense for a

conditional jump

234

The profusion of conditional jumps in assembly language (JE,
JNE, JC, JNC, JA, JB, JG, and so on) allows tremendous flexibility
in writing code-and also makes it easy to select the wrong jump
for a given purpose. Moreover, since condition-handling in
assembly language requires at least two separate lines, one for the
comparison and one for the conditional jump (and many more
lines for complex conditions), assembly language condition
handling is less intuitive and more prone to errors than
condition-handling in C and Pascal.

• One common error is the use of JA, JB, JAE, or JBE for
comparing signed values or, similarly, the use of JG, JL, JGE, or
JLE for comparing unsigned values.

• Another common error is the use of, say, JA when JAE was
intended. Remember that without the e on the end of JAE, JBE,
JLE, or JGE, the comparison does not include the case where
the two operands are equal.

• And yet another common error is the use of inverted logic, such
as JS when JNS was intended.

One approach that can help minimize errors when using
conditional jumps is to comment the tests and conditional jumps
in C-like notation. For example,

if (Length > MaxLength)

mov ax, [Length]
cmp ax, [MaxLength]
jng LengthIsLessThanMax

jmp EndMaxLengthTest

} else {

LengthIsLessThanMax:

EndMaxLengthTest:

Turbo Assembler User's Guide

Pitfalls with string
instructions

Forgetting about REP
string overrun

String instructions are uniquely powerful among 8086
instructions, and with that power come some unique problems,
which are described next.

String instructions have a curious property: After they're
executed, the pointers they use wind up pointing to an address 1
byte away (or 2 bytes if a word instruction) from the last address
processed. For example, after this code executes

cld
mov si,O
lodsb

irnake string instructions count up
ipoint to offset a
iread the byte at offset a

51 will contain 1, not O. This makes sense, since the next LOOSe is
likely to want to access address 1, and the LOOSe after that to
access address 2, but it can cause some confusion with repeated
string instructions, especially REP SCAS and REP CMPS.
Consider the code

cld
les di, [bp+ScanString]
mov cx,MAX_STRING_LEN
mov al,O
repne scasb

imake string instructions count up
ipoint ES:DI to the string to scan
icheck up to the longest string
isearch for the terminating null
iperform search

Suppose ES is 2000h, DI is 0, and the memory starting at 2000:0000
contains

41h 61h 72h 64h OOh

After this code executes, DI will contain 5, the offset of the byte
after the 0 byte that was found. In order to return a pointer to the
last character in the string, the preceding code would have to read

cld
les di, [bp+ScanString]
mov cx,MAX_STRING_LEN
mov al,O
repne scasb
jne NoMatch

imake string instructions count up
ipoint ES:DI to the string to scan
icheck up to the longest string
isearch for the terminating zero
iperform search
ierror-terminating zero not found

Chapter 6, More about programming in Turbo Assembler 235

236

dec di ;point back to the zero
dec di ;point back to last character
ret

NoMatch:
mov di,O ;return a null pointer
mov es,di
ret

Remember also that when the direction flag is set, causing string
instructions to count down, DI will point to the byte before, not
after, the last character scanned.

Similar confusion can arise because ex is decremented during
REP SCAS and REP CMPS one more time than might be
expected. ex is not only decremented once for each byte that
matches the "repeat while" condition (equal or not equal), but
also once for the byte that fails to match the "repeat while"
condition and thereby causes the instruction to terminate. For
instance, if in the last example the byte at 2000:0000 contained
zero, after execution ex would contain MAX_STRING_LEN -1,
even though not a single nonzero character was found. A
subroutine to count the number of characters in a string must
account for this:

; Returns the length of a zero-terminated string in bytes.
; Input: ES:DI - start of string
; Output: AX - length of string, not including terminating 0

ES:DI - points to last byte of string, or
0000:0000 if terminating 0 not found

StringLength PROe NEAR
cld
push cx
mov cx,OFFFFh
mov al,O
repne scasb
jne StringLengthError
mov ax,OFFFFh
sub ax,cx
dec ax
dec di
dec di
jmp short StringLengthEnd

StringLengthError:
mov di,O
mov es,di

StringLengthEnd:

;search counts up
;preserve ex
;maximum length to search
;terminating byte to search for
;search for the terminating 0
;error if end of string not found
;maximum length searched
;see how many bytes were counted
;don't count the terminating zero
;point back to terminating zero

;point back to last character

;return a null pointer

Turbo Assembler User's Guide

Relying on a zero ex to
cover a whole

segment

pop cx irestore the original CX
ret

StringLength ENDP

Another potential problem arising from ex counting on the byte
that terminates a REP SCAS or REP CMPS is that ex might be
zero at the end of the comparison even though the termination
condition was found. This code does not correctly evaluate
whether two arrays are the same, since ex will count down to
zero when comparing two non-equal arrays that differ only at the
last byte:

repz cmpsb
jcxz ArraysAreTheSame

The correct code for testing array equality is

repz cmpsb
jz ArraysAreTheSame

In short, ex should be used only as a count of the bytes scanned
by REP SCAS and REP CMPS, not as an indicator of whether the
data scanned or compared was equal or non-equal.

If you find yourself having trouble figuring out just what repeated
string instructions will do in your programs, one good approach
is to use either pencil and paper or a debugger to trace, step-by
step, through the workings of your repeated string code.

Any repeated string instruction executed with ex equal to zero
will do nothing. Period. This can be convenient in that there's no
need to check for the zero case before executing a repeated string
instruction; on the other hand, there's no way to access every byte
in a segment with a byte-sized string instruction. For example, the
following code 'scans the segment at ES for the first occurrence of
the letter A:

cld
sub di,di
mov al,'A'
mov cx,OFFFFh
repne SCASb
je AFound

isearches count up
istart at offset zero
isearch for letter 'A'
ifirst scan the first 64 Kb-l bytes
iscan the first 64 Kb-l bytes
i found it

Chapter 6. More about programming in Turbo Assembler 237

238

scasb
je AFound

AFound:

ididn't find it yet-scan the last byte
ifound it at the last byte
i there's no letter 'A' in this segment

iDI - 1 points to the letter 'A'

There's an asymmetry in the 8086 instruction set concerning the
use of zero ex values when counting. While repeated string
instructions don't do anything if ex is 0, the LOOP instruction
does execute if ex is 0, decrementing ex to OFFFFh and jumping
to the loop address. This means that a full64K can be processed in
a single loop. The preceding example of scanning the segment at
ES for the letter A can be implemented with LOOP as

cld
sub di,di
mov al,'A'
sub cx,cx

ASearchLoop:
scasb
je AFound
loop ASearchLoop

AFound:

isearches count up
istart at offset zero

isearch 64 Kb bytes

icheck the next byte
iit's a letter 'A'
ithere's no letter 'A' in this segment

iDI - 1 points to the letter 'A'

On the other hand, the case of ex equal to zero does have to be
specially checked for when using LOOP in those cases where ex
equal to zero really does mean, "Don't do anything"; otherwise,
64K loops instead of zero loops will be executed with potentially
disastrous results. The JCXZ instruction helps you handle such
cases:

Subroutine to fill up to 64K -1 byte with a given byte value.
Input: AL - fill value

ex - number of bytes to fill
DS:BX - first address to fill

BX, ex altered.

FillBytes PRoe NEAR
jcxz FillBytesEnd

FillBytesLoop:
mov [bx],al
inc bx
loop FillBytesLoop

FillBytesEnd:
ret

iif the I of bytes to fill is 0, done

i fill a byte
ipoint to the next byte
ido for the number of bytes specified

Turbo Assembler User's Guide

Using incorrect
direction flag settings

Using the wrong sense
for a repeated string

comparison

FillBytes ENDP

Without JCXZ, FillBytes would fill the entire segment pointed to
by E5 with AL when ex was zero, instead of leaving memory
unchanged.

When a string instruction is executed, its associated pointer or
pointers-51 or DI or both-increment. Or decrement. It all
depends on the state of the direction flag.

The direction flag can be cleared with CLD to cause string
instructions to increment (count up) and can be set with STD to
cause string instructions to decrement (count down). Once cleared
or set, the direction flag stays in the same state until either
another CLD or STD is executed or the flags are popped from the
stack with POPF or IRET. While it's handy to be able to program
the direction flag once and then execute a series of string
instructions that all operate in the same direction, the direction
flag can also be responsible for intermittent and hard-to-find bugs
by causing string instructions to behave differently, depending on
code that executed much earlier.

Why is this? In most programs, the direction flag is almost always
cleared, since counting up is intuitively easier than counting
down and works fine in most cases. There are, however, certain
cases where only counting down will do. You can get in the habit
of assuming that the direction flag will always be cleared, but
forget to clear the flag after one of the few procedures that sets the
direction flag. The result will be that parts of your program that
require counting up will work perfectly-except after executing
that one procedure that leaves the direction flag set.

The remedy is obvious. Always program the direction flag to the
desired state before using string instructions if there is any chance
that the direction flag is not already programmed correctly. In
general, it's a good idea to program the direction flag correctly at
the beginning of any procedure that uses string instructions.

The CMPS instruction compares two areas of memory, while the
SCAS instruction compares the accumulator to an area of
memory. When prefixed by REPE, either of these instructions can
perform a comparison until either ex becomes zero or a not-equal
comparison occurs. When prefixed by REPNE, either instruction
can perform a comparison until either ex becomes zero or an

Chapter 6, More about programming In Turbo Assembler 239

Forgetting about string
segment defaults

240

Refer to Chapter 9 for an
explanation of segment

prefixes.

equal comparison occurs. Unforhmately, it's easy to become
confused about which of the REP prefixes does what.

A good way to remember the function of a given REP prefix is to
mentally insert a "while" after the "rep" portion of the prefix.
Then REPE becomes "rep while e," or "repeat while equal," and
REPNE becomes "rep while ne," or "repeat while not equa1."

Each string instruction defaults to using a source segment (if any)
of OS, and a destination segment (if any) of ES. It's easy to forget
this and try to perform, say, a STOSB to the data segment, since
that's where all the data you're processing with non string
instructions normally resides. Similarly, it's common to
accidentally write code such as

cld
mov al,O
mov cx,80
repe scasb
jz AllZero
dec di
mov aI, [di]

AllZero:

icount up while searching

ilength of buffer
ifind first nonzero character, if any
ino nonzero character
ipoint back to first nonzero character
iget first nonzero character

The problem with this code is that unless DS and ES are the same,
the last MOV won't load the correct byte into AL, since STOSB
operates relative to ES and MOV operates relative to DS. The
correct code would use a segment override prefix on the move.

cld
mov al,O
mov cx,80
repe scasb
jz AllZero
dec di
mov al,es:[di]

AllZero:

icount up while searching

ilength of buffer
ifind first nonzero character, if any
ino nonzero character
ipoint back to first nonzero character
iget first nonzero character (from ES!)

Also, remember that while it is possible to override OS as the
string source segment, as, for example, in

Turbo Assembler User's Guide

Converting incorrectly
from byte to word

operations

lods es:[SourceArray]

it is not possible to override ES as the string destination segment,
so this code won't work:

stos ds:[DestArray]

In fact, Turbo Assembler catches this as an error during assembly.

In general, it's desirable to use the largest possible data size
(usually word, but dword on an 80386) for a string instruction,
since string instructions with larger data sizes often run faster. For
example,

mov cx,200

shr cx,l
rep movsw

inumber of bytes to move

iconvert from t of bytes to t of words
imove the block a word at a time

runs about 50% faster on an 8088 than

mov cx,200 inumber of bytes to move

rep movsb imove the block a byte at a time

There are a couple of potential pitfalls here, though. First, the
conversion from a byte count to a word count by a simple

shr cx,l

loses a byte if CX is odd, since the least-significant bit is shifted
out. Cases where CX might be odd can be handled with the
following conditional code:

shr cx,l
jnc MoveWord
movsb

MoveWord:
rep movsw

iconvert to word count
iodd byte count?
iyes, odd byte count, so move odd byte

imove even t of bytes a word at a time

Chapter 6, More about programming in Turbo Assembler 241

Second, make sure you remember SHR divides the byte count by
two. Using, say, STOSW with a byte rather than a word count can
wipe out other data and cause all sorts of problems. For example,

mov cx,200 ;number of bytes to move

rep movsw ;move the block a word at a time

will wipe out the 200 bytes (100 words) immediately following the
destination block.

USing multiple prefixes "String instructions with multiple prefixes do not work reliably
and should generally be avoided. An example is this code

Relying on the
operand(s) to a string

instruction

rep movs es:[DestArray],ss:[SourceArray]

which has both a REP prefix and an SS segment override prefix.
Multiple prefixes are a problem because string instructions can be
interrupted in the middle of repeated execution by a hardware
interrupt. On some Intel processors, including the 8086 and 8088,
when a string instruction with multiple prefixes resumes after an
interrupt has been serviced, all prefixes other than the last are
ignored. As a result, the instruction might not be repeated the
correct number of times or the wrong segment might be accessed.

If you absolutely must use a string instruction with multiple
prefixes, disable interrupts for the duration of the instruction, as
follows:

cli
rep movs es:[DestArray],ss:[SourceArray]
sti

The optional operand or operands to a string instruction are used
for data sizing and segment overrides, only, and do not guarantee
that the memory location referenced will actually be accessed. For
example,

DestArray dw 256 dup (?)

cld ;count up during fill

242 Turbo Assembler User's Guide

Forgetting about
unusual side

effects

mov al,'*'
mov cx,256
mov di,O
rep stos es:[DestArray]

ibyte to fill with
inumber of words to fill
istart address for fill
ido the fill

sets the 256 bytes starting at offset 0 in segment ES to the asterisk
character, regardless of where DestArray is located. All that
ES:[DestArray) does is tell the assembler to use a STOSW, since
DestArray is an array of words. It is the contents of SI and/or DI,
not the operands, thafdetermine what offsets are accessed by
string instructions. Nonetheless, using the optional operand or
operands with string instructions can be a useful way of ensuring
that you're not accidentally performing, say, word-sized accesses
to a byte array.

Similarly, the optional operand to the XLAT instruction is used for
type-checking and segment overrides only. The code

LookUpTable LABEL BYTE

ASCIITable LABEL BYTE

mov bx,OFFSET ASCIITable
mov aI, [CharacterToTranslate]
xlat [LookUpTable]

ipoint to look-up table
iget the byte looked up
ilook the byte up

looks up the byte at location AL in ASCIITable, not LookUpTable,
but assembles just fine because all XLAT does with its one
operand is make sure that it is byte-sized and looks for a segment
override. The XLAT instruction always looks up the contents of
offset BX+AL, regardless of any operand used.

Since assembler programs are written in the 8086's native
language, any changes in the 'states of the registers and flags of
the 8086 are of keen interest to the assembly language program
mer. Most of the ways in which assembler programs can alter the
state of the processor are obvious and straightforward. For
example,

add bx, [Grade]

adds the 16-bit value at location Grade to BX and updates the
overflow, sign, zero, auxiliary carry, parity, and carry flags to

Chapter 6, More about programming In Turbo Assembler 243

Wiping out a register
with multiplication

Table 6.1
Source and

destination for the
MULand IMUL

Instructions

244

reflect the outcome of the addition. Some instructions produce
less obvious changes in the state of the processor, though. Here's a
quick look at some such instructions.

Multiplication-whether it be 8 bit by 8 bit, 16 bit by 16 bit, or 32
bit by 32 bit-always destroys the contents of at least one register
other than the portion of the accumulator used as a source
operand. This is inevitable given that the result of an 8 bit by 8 bit
multiplication can be as large as 16 bits in size, the result of a
16 bit by 16 bit multiplication can be 32 bits in size, and the result
of a 32 bit by 32 bit multiplication can be 64 bits in size. Multipli
cation source and destination operands are shown in Table 6.1.

Source Source Destination
operand Explicit Implied
size in bits operand operand High Low Example

8x8 reg8" AL AH AL mul dl

16x16 reg16 AX DX AX imul bx

32x32t reg32:t: EAX EDX EAX mul esi

.. regS can be any of AH, AL, BH, BL, CH, CL, OH, or OL.

.... reg16 can be any of AX, BX, CX, OX, 51, 01, BP, or SP.

t 32 x 32 multiples are not supported by the 8086, 8088, 80186, 80188, or 80286.

t reg32 can be any of EAX, EBX, ECX, EOX, ESI, EDI, EBP, or ESP.

While this seems simple enough, there's a glaring lack of detail in
the syntax of the MUL and IMUL instructions, since only one of the
two source operands and the size of the operation are explicitly
stated; both the portion of the accumulator used as a source
operand and the registers used as the destination are merely
implied. This lack of detail makes it easy to overlook the extra
register that's destroyed. For instance, there are many cases in
which the result of, say, a given 16-bit by 16-bit multiplication is
known by the programmer to be guaranteed to fit in AX, and in
such cases, there's a tendency to forget that DX gets wiped out
too. Just remember that every use of MUL and IMUL wipes out not
only AL, AX, or EAX, but also AH, DX, or EDX as well.

Turbo Assembler User's Guide

Forgetting that string
instructions alter
several registers

Expecting certain
instructions to alter the

carry flag

The string instructions (MOVS, STOS, LODS, CMPS, and SCAS)
can affect several of the flags and as many as three registers
during execution of a single instruction. As with the MUL
instruction, the many effects of the string instructions are not
explicitly expressed in the operands to those instructions. When
you use string instructions, remember that either SI or DI or both
either increment or decrement (depending on the state of the
direction flag) on each execution of a string instruction. ex is also
decremented at least once and possibly as far as zero each time a
string instruction with a REP prefix is used.

While some instructions affect registers or flags unexpectedly,
other instructions 'don't affectall the flags you might expect them
to. For example,

inc ah

seems logically equivalent to

add ah,l

and so it is-with a single exception. Where ADD sets the carry
flag if the result is too large for the destination, INC does not affect
the carry flag in any way. As a result,

add ax,l
adc dx,O

is a valid way to increment a 32-bit value stored in DX:AX, while

inc ax
adc dx,O

is not. The same is true of DEC, while LOOP, LOOPZ, and
LOOPNZ don't affect any flags at all. Actually, this can sometimes
be used to your advantage, since under certain circumstances it
can be handy to execute one of these instructions without
destroying the current carry flag setting. The important thing is to
know exactly what each instruction you use does.

Chapter 6, More about programming in Turbo Assembler 245

Waiting too long to use
flags

246

Confusing
memory and

immediate
operands

Flags last only until the next instruction that alters them, which is
not very long, by and large. It's a good practice to act on flags as
soon as possible after they are set, thereby avoiding all sorts of
potential bugs. For example, it's often tempting to test a condition,
set a register or two, and only then branch according to the result

. of the test. The code

cmp ax,l
mov ax,O
jg HandlePositive

is a perfectly valid way to test the status of AX, then force it to
zero before jumping to the code that handles the status. On the
other hand, the code

cmp ax,l
sub ax,ax
jg HandlePositive

which seems appealing because it is both shorter and faster than
the first case, does not work because the subtraction wipes out all
the flag settings generated by the compare. This is typical of the
sort of problem that can result from delaying the use of a flag
status.

An assembler program can refer either to the offset of a memory
variable or to the value stored in that memory variable.
Unfortunately, assembly language is neither strict nor intuitive
about the ways in which these two types of references can be .
made, and as a result, offset and value references to a memory
variable are often confused.

Figure 6.1 illustrates the distinction between the offset and the
value of a memory variable. The offset of the word-sized variable
MemLoc is 5002h, while the value of MemLoc is 1234h.

Turbo Assembler User's Guide

Figure 6.1
Memory variables:

offset vs. value

3000:4FFE

3000:5000

3000:5002
The offset =r-
of MemLoc 3000:5004

3000:5006

0001

205F

(1234 '\

9145

0000

The value
MemLoc of

In Figure 6.1, the offset of the word-sized variable MemLoc is the
constant value SOO2h, obtained with the OFFSET operator. For
example, ,

rnov bx,OFFSET MernLoc

loads S002h into BX. The value SO02h is an immediate operand; in
other words, it is built right into the instruction and never
changes.

The value of MemLoc is 1234h, read from the memory at offset
S002h in the data segment. One way to read this value is by
loading BX, 51, DI, or BP with the offset of MemLoc and using that
register to address memory. The code

rnov bx,OFFSET MernLoc
rnov ax, [bx]

loads the value of MemLoc, 1234h, into AX. Alternatively, the
value of MemLoc can be loaded directly into AX with either

rnov ax,MernLoc

or

rnov ax, [MernLoc]

Here the value 1234h is obtained as a direct, rather than an
immediate, operand; the MOV instruction has the offset S002h
built into it, and loads AX with the value at S002h, which in this
case happens to be 1234h. Consequently, the value 1234h is not
permanently associated with MemLoc. For instance,

rnov [MernLoc],5555h

Chapter 6, More about programming in Turbo Assembler 247

248

mov ax, [MemLoc]

loads the value 5555h, not 1234h, into AX.

The key point is that while the offset of MemLoc is a constant
value that describes a fixed address in the data segment, the value
of MemLoc is the changeable number stored at that memory
address. The instructions

mov [MemLoc],l
add [MernLoc],2

make the value of MemLoc 3, but the instruction

add OFFSET MernLoc,2

is equivalent to

add 5002h,2

which is nonsensical, since it's impossible to add one constant to
another.~

A surprisingly common problem is that in the heat of coding a
program, OFFSET is sometimes forgotten, leaving, for example,

mov si,MernLoc

when the offset of MemLoc is desired. At first glance, this line
doesn't look wrong, and since MemLoc is a word-sized variable,
this line will not cause an assembly-time error. However, at run
time 5I will be loaded with the data at MemLoc (1234h in Figure
6.1 on page 247), rather than the offset of MemLoc (5002h in Figure
6.1}-with unpredictable results.

There is no sure-fire way to avoid this prqblem, but you might
want to make it a rule to enclose all references to memory in
square brackets. Then references to address constants will be
prefixed with OFFSET and references to memory will be enclosed
in square brackets, thus eliminating the ambiguous use of
memory variable names. This convention makes the functions of

mov si,OFFSET MernLoc

and

mov si, [MemLoc]

instantly clear, while

mov si,MemLoc

should set off mental alarms.

Turbo Assembler User's Guide

Causing segment
wraparound One of the most difficult aspects of programming the 8086 is that

memory isn't accessible as one long array of bytes, but is rather
made available in chunks of 64K relative to segment registers.
Segments can introduce subtle bugs, since if ~ program attempts
to access an address past the end of a segment, it actually ends up
wrapping back to access the start of that segment instead.

As an example, suppose that the memory starting at 10000h
contains the data shown in Figure 6.2. When DS is set to 1000h,
code that accesses the string "Testing" at 1000:FFF9 wraps back to
address the byte at 1000:0000 as the next byte addressed after the
gat 1000:FFFF because offsets cannot exceed OFFFFh, the
maximum 16-bit value.

Now suppose that the following subroutine is called with DS:SI
equal to 1000:FFF9 in order to convert the string "Testing" at
10OO:FFF9 to uppercase:

Subroutine to convert a zero-terminated string to uppercase.
i Input: DS:SI - pointer to string.

ToUpper PROC NEAR
mov aI, lsi]
cmp al,O
jz ToUpperDone
cmp aI,' a'
jb ToUpperNext
cmp aI,' z'
ja ToUpperNext
and al,NOT 20h
mov [si], al

ToUpperNext:
inc si
jmp ToUpper

ToUpperDone:
ret

ToUpper ENDP

iget the next character
i if zero •••
i ••• done with string
iis it a lowercase letter?
inot lowercase

inot lowercase
iit's lowercase, so make it uppercase
isave the uppercase version

ipoint to the next character

Chapter 6, More about programming In Turbo Assembler 249

250

Figure 6.2
An example of

segment
wraparound

10000

10001

10002

10003

10004

1FFF9

1FFFA

1FFFB

1FFFC

1FFFO

1FFFE

1FFFF

20000

21

90

29

52

7F

54 ('T')

65 ('e')

73 ('s')

74 ('t')

69 ('i')

6E ('n')

67 ('g')

00 (NULL)

~

-

First byte addressable
relative to OS = 1000h
(Address 1000:0000)

Last byte addressable
relative to OS = 1000h
(Address 1000:FFFF)

After ToUpper processes the first seven characters of the string, SI
will increment from OFFFFh to O. (Recall that SI is only a 16-bit
register and so can't count higher than OFFFFh.) The zero byte
stored at address 20000h that terminates the string is never
reached; instead ToUpper starts to convert the unrelated bytes at
10000h to uppercase, and doesn't stop until it happens to
encounter a 0 byte. At some later point, these altered bytes may
cause this program to perform incorrectly. Often, it is very
difficult to trace bugs caused by such accidentally altered bytes

Turbo Assembler User's Guide

Failing to
preserve

everything in an
interrupt handler

back to the routine that wrapped off the end of a segment, since
the cause can be far distant from the symptom in time and may be
in a totally unrelated portion of the source code.

There's no simple rule of thumb here, other than always making
sure your code doesn't unwittingly try to run off the end of a
segment. It is also very dangerous (to your sanity, at least) to try
to access a word at offset OFFFFh; the machine will hang.

An interrupt handler is a routine that is jumped to whenever a
given hardware interrupt, such as the keyboard interrupt, occurs.
Interrupt handlers perform a variety of actions, such as buffering
keys or updating the system clock. An interrupt might occur at
any time, in the middle of any code, so an interrupt handler must
leave the registers and flags of the processor in exactly the same
state on exit from the handler as they were in on entry to the
handler. Were this not done, the code executing when an interrupt
occurs might suddenly find that the state of the processor has
changed unpredictably.

For instance, if the code

mov ax, [ReturnValuel
ret

were executing, an interrupt could occur between the two
instructions. If the interrupt handler fails to preserve the contents
of AX, the value returned to the calling program would be based
on what the interrupt handler did rather than on the contents of
the Return Value variable.

Consequently, every interrupt handler should explicitly preserve
the contents of all registers. While it is valid to explicitly preserve
only those registers that the handler modifies, it's good insurance
to just push all registers on entry to an interrupt handler and pop
all registers on exit. After all, you might go back someday and
change the code of the interrupt handler-so that it modifies
additional registers-but forget to add instructions to preserve
those registers.

It is not necessary to save the flags in an interrupt handler. When
an interrupt occurs, the flags are automatically pushed on the
stack, and when the interrupt handler executes an IRET to return

Chapter 6, More about programming in Turbo Assembler 251

Forgetting group
overrides in

operands and
data tables

Figure 6.3
Three segments

grouped into one
segment group

252

to the interrupted program, the flags are automatically restored
from the stack.

A corollary to the absolute necessity of preserving all registers in
an interrupt handler is this: Make no assumptions about the state of
the registers or flags when an interr~pt handler is entered. A classic
example of this is an interrupt handler that executes string
instructions without first explicitly setting the direction flag.
Remember, any sort of code can be executing when an interrupt
occurs, so after you save the interrupted code's registers, you
must immediately set up the registers (including segment
registers) and flags as needed by your code before doing anything
else.

The concept of a segment group is simple and useful: You specify
that several segments belong in the same group, and the linker
combines those segments into a single segment, with all the data
in all the grouped segments addressable relative to the same
segment register. Figure 6.3 illustrates three segments, Segl, Seg2,
and Seg3, grouped into GroupSeg.

-. _.
_. Seg1
----_.

(SK long) _.
_.

_.
_.
_.

_. Seg2
_.
_.

(12K long) ----
-. _.
_.

_.
_. Seg3
_.
_.

(SK long) _.

Offset 0 In GroupSeg ------ = offset 0 In Seg1

-

-

Offset 2000h In GroupSeg
= offset 0 In Seg2

Offset 5000h In GroupSeg
= offset 0 In Seg3

Turbo Assembler User's Guide

All three segments are addressable simultaneously, relative to a
single segment register loaded with the base address of GroupSeg.

Segment groups allow you to logically partition data into a
number of areas without having to load a segment register every
time you want to switch from one of those logical data areas to
another.

Unfortunately, there are a few problems with the way the
Microsoft Macro Assembler (MASM) handles segment groups, so
until Turbo Assembler came along, segment groups were quite a
nuisance in assembler. They were, however, an unavoidable
nuisance, for they are required in order to link assembler code to
high-level languages such as C.

Turbo Assembler Ideal mode has none of the problems with
group overrides described in this section. This is yet another good
reason to make the switch from MASM-style coding to Ideal
mode.

One problem MASM has with segment groups is that MASM
treats all offsets obtained with the OFFSET operator in a given
grouped segment as offsets into that segment, rather than as
offsets into the segment group. For example, given the segment
grouping shown in Figure 6.3, the assembler would assemble

mov ax,OFFSET VaIl

into

mov ax,O

since Varl is at offset 0 in Seg2, even though Var1 is at offset 2000h
in GroupSeg. Since data in segment groups is always intended to
be addressed relative to the segment group rather than the
individual segments, this creates quite a problem.

There is a solution to this problem, and that's using a group
override prefix. The line

mov ax,OFFSET GIoupSeg:Varl

does assemble the offset of Varl correctly, calculating it relative to
the segment group, GroupSeg.

MASM has another, similar problem concerning data tables used
with segment groups. Just as with the OFFSET operator, offsets
assembled into data tables are generated relative to segments, not

Chapter 6, More about programming in Turbo Assembler 253

254

segment groups. The following code shows an example of this
problem.

Stack
DB

SEGMENT WORD STACK 'STACK'
512 DUP(?) ireserve space for a 1/2K stack

Stack ENDS

i Define data segment group DGROUP, consisting of Datal & Data2.

DGROUP GROUP Datal, Data2

i The first segment in DGROUP.

Datal
Scratch
Datal

SEGMENT WORD PUBLIC 'DATA'
DB 100h DUP(O) ia 256-byte scratch buffer
ENDS

; The second segment in DGROUP.

Data2
Buffer

SEGMENT woRn PUBLIC 'DATA'
DB 100hDUP('@') ia 256-byte buffer,

BufferPtr DW Buffer
Data2 ENDS

Code SEGMENT PARA PUBLIC 'CODE'
ASSUME CS:Code, DS:DGROUP

Start PROC NEAR
mov ax,DGROUP
mov ds,ax

i set to @-signs
ia pointer to Buffer

mov bx,OFFSET DGROUP:BufferPtr
ipoint DS to DGROUP
ipoint to buffer pointer

Note: The DGROUP: group override is required to get the
correct offset.

mov bx, [bx] ipoint to the buffer itself

(Code to handle the buffer would go here.)

mov ah,4Ch
int 21h

Start ENDP
Code ENDS

END Start

iDOS terminate function
iterminate & return to DOS

In this code, the offset of BufferPtr in

Turbo Assembler User's Guide

rnov bx,OFFSET OGROUP:BufferPtr

assembles correctly, since the DGROUP: group override prefix is
used. However, the other reference to an offset, in

BufferPtr ow Buffer

which should cause the value of BufferPtr to be initialized to the
offset of Buffer, does not assemble correctly, since the offset of
Buffer is taken relative to the Data2 segment rather than relative to
the DGROUP segment group. The solution is again a DGROUP
override prefix; change

to

BufferPtr ow Buffer

BufferPtr ow OGROUP:Buffer ia pointer to Buffer

i Note: The OGROUP: group override is required to get the
i correct offset.

Omission of group override prefixes when using segment groups
in MASM/Quirks mode can lead to some nasty bugs, since your
programs might read, modify, or jump to the wrong area of
memory. As a general rule, don't use groups in assembler with
MASM/Quirks mode unless you have to. When you have to use
groups in MASM/Quirks mode, as when interfacing to high-level
languages, constantly remind yourself to prefix group overrides
when specifying the offsets of all grouped data. The group
overrides are easy enough to use-the trick is remembering to use
them.

A useful technique for dealing with grouped segments in
MASM/Quirks mode is using LEA instead of MOV OFFSET. For
example,

lea ax,Varl

has the same effect as

mov ax, OFFSET GroupSeg:Varl

without requiring a group override prefix. However, LEA is a byte
larger and a little slower than MOV OFFSET.

By the way, segment group problems occur only with offsets, not
with memory accesses. Lines such as

mov ax, [Varl]

Chapter 6, More about programming in Turbo Assembler 255

do not require group override prefixes.

256 Turbo Assembler User's Guide

c H A p T E R

7

Interfacing Turbo Assembler with Turbo
C

While many programmers can-and do-develop entire
programs in assembly language, many others prefer to do the
bulk of their programming in a high-level language, dipping into
assembly language only when low-level control or very high
performance code is required. Still others prefer to program
primarily in assembler, taking occasional advantage of high-level
language libraries and constructs.

_ Turbo C lends itself particularly well to supporting mixed C and
assembler code on an as-needed basis, providing not one but two
mechanisms for integrating assembler and C code. The inline
assembly feature of Turbo C provides a quick and simple way to
put assembler code directly into a C function. For those who
prefer to do their assembler programming in separate modules
written entirely in assembly language, Turbo Assembler modules
can be assembled separately and linked to Turbo C code.

First, we'll cover the use of inline assembly in Turbo C. Next,
we'll discuss the details of linking separately assembled Turbo
Assembler modules to Turbo C, and explore the process of calling
Turbo Assembler functions from Turbo C code. Finally, we'll
cover calling Turbo C functions from Turbo Assembler code.
(Note: When we refer to Turbo C, we mean versions 1.5 and
greater.) Let's begin.

Chapter 7, Interfacing Turbo Assembler with Turbo C 257

Using inline assembly in Turbo C

The high-performance code
in Turbo CS libraries Is written

In inline assembly.

258

If you were to think of an ideal way to use assembler to fine-tune
a C program, you would probably ask for the ability to insert
assembler instructions at just those critical places in C code where
the speed and low-level control of assembler would result in a
dramatic improvement in performance. While you're at it, you
might as well wish away the traditional complexities of
interfacing assembler with C. Better still, you'd like to be able to
do all this without changing any other C code one bit, so that
already-working C code won't have to be altered.

Turbo C fulfills every item on your wish list with inline assembly.
Inline assembly is nothing less than the ability to place virtually
any assembler code anywhere in your C programs, with full
access to C constants, variables, and even functions. In truth,
inline assembly is good for more than just fine-tuning, since it's
very nearly as powerful as programming strictly in assembler.
Inline assembly lets you use just as much or as little assembler in
your C programs as you'd like, without having to worry about
the details of mixing the two.

Consider the following C code, which is an example of inline
assembly:

i = 0;
asm dec WORD PTR i;
itt;

1* set i to ° (in C) *1
1* decrement i (in assembler) */

1* increment i (in C) *1

The first and last lines look normal enough, but what is that
middle line? As you've probably guessed, the line starting with
a5m is inline assembly code. If you were to use a debugger to look
at the executable code this C source compiles to, you would find

mov WORD PTR [bp-02J,OOOO
dec WORD PTR [bp-02J
inc WORD PTR [bp-02J

with the inline assembly DEC instruction nestled between the
compiled code for

i = 0;

and

Turbo Assembler User's Guide

There are a few limitations on
what Inline assembler code Is

allowed to do; see the
section ·Umitat/ons of inline

assembly" on page
274.

itt;

Basically, each time the Turbo C compiler encounters the 8sm
keyword that indicates inline assembly, it drops the associated
assembler line directly into the compiled code with only one
change: References to C variables are transformed into the
appropriate assembler equivalent, just as the reference to i in the
preceding example was changed to WORD PTR [BP-02j. In short, the
asm keyword lets you insert virtually any assembler code
anywhere in your C code.

The ability to drop assembler code directly into the code Turbo C
generates might sound a bit dangerous, and, in truth, inline
assembly does have its risks. While Turbo C takes care to compile
its code so as to avoid many potentially hazardous interactions
with inline assembly, there's no doubt that ill-behaved inline
assembly code can cause serious bugs.

On the other hand, any poorly written assembler code, whether
it's inline or in a separate module, has the potential to run amuck;
that's the price to be paid for the speed and low-level control of
assembly language. Besides, bugs are far less common in inline
assembly code than in pure assembler code, since Turbo C attends
to many programming details, such as entering and exiting
functions, passing parameters, and allocating variables. All in all,
the ability to easily fine-tune and turbo-charge portions of your C
code with inline assembly is well worth the trouble of having to
iron out the occasional assembler bug.

Here are some Important notes about Inline assembly:

1. You must invoke TCC.EXE, the command-line version of
Turbo C, in order to use inline assembly. TC.EXE, the user
interface version of Turbo C, does not support inline assembly.

2. It's very possible that the version ofTLINK that came with
your copy of Turbo Assembler is not the same version that
came with your copy of Turbo C. Since important
enhancements were made to TLINK in order to support Turbo
Assembler, and since further enhancements will no doubt be
made, it is important that you link Turbo C modules
containing inline assembly with the most recent version of
TLINK that you have. The safest way to accomplish this is to
make sure that there's only one TLINK.EXE file on the disk
you use to run the linker; that TLINK.EXE file should have the
latest version number of all the TLINK.EXE files you've
received with other Borland products.

Chapter 7, Interfacing Turbo Assembler with 'Turbo C 259

How inline
assembly works Normally, Turbo C compiles each file of C source code directly to

an object file, then invokes TLINK to tie the object files together
into an executable program. Figure 7.1 shows such a compile
and -link cycle. To start this cycle, you enter the command line

Figure 7.1

tee filename

which instructs Turbo C to first compile FILENAME.C to
FILENAME.OB] and then invoke TLINK to link FILENAME.OB]
into FILENAME.EXE.

Turbo C compile
and link cycle

260

C Source File
FILENAME.C

Object File
FILENAME.OBJ

Executable File
FILENAME.EXE

Compile

When inline assembly is used, however, Turbo C automatically
adds one extra step to the compile-and-link sequence.

Turbo Assembler User's Guide

Turbo C handles each module containing inline assembly code by
first compiling the whole module to an assembly language source
file, then invoking Turbo Assembler to assemble the resulting
assembler code to an object file, and finally invoking TLINK to
link the object files together. Figure 7.2 illustrates this process,
showing how Turbo C produces an executable file from a C
source file containing inline assembly code. You start this cycle
with the command line

tee -B filename

which instructs Turbo C to first compile FILENAME.ASM, then
invoke Turbo Assembler to assemble FILENAME.ASM to
FILENAME.OBJ, and finally invoke TLINK to link
FILENAME.OBJ into FILENAME.EXE.

Inline assembly code is simply passed along by Turbo C to the
assembly language file. The beauty of this system is that Turbo C
need not understand anything about assembling the inline code;
instead, Turbo C compiles C code to the same level-assembler
code-as the inline assembly code and lets Turbo Assembler do
the assembling.

To see exactly how Turbo C handles inline assembly, enter the
following program under the name PLUSONE.C (or load it from
the example disk):

'include <stdio.h>

int main(void)

int TestValue;

scanf("%d",&TestValue);
asm inc WORD PTR TestValue;
printf("%d",TestValue);

/* get the value to increment */
/* increment it (in assembler) */
/* print the incremented value */

and compile it with the command line

tcc -5 plusone

Chapter 7, Interfacing Turbo Assembler with Turbo C 261

Figure 7.2
Turbo C compile.

assembly. and link
cycle

This code should give you a
strong appreciation for all

the work Turbo C saves you
by supporting inline

assembly.

C Source File
FILENAME.C

Assembler Source File
FILENAME.ASM

Executable File
FILENAME.EXE

Compile

Assemble

The -S option instructs Turbo C to compile to assembler code and
then stop, so the file PLUSONE.ASM should now be on your disk.
In PLUSONE.ASM you should find

ifndef ??version
?debug macro

ENDM
ENDIF
name Plus one

TEXT SEGMENT BYTE PUBLIC 'CODE'
DGROUP GROUP _DATA,_BSS

ASSUME cs:_TEXT,ds:DGROUP,ss:DGROUP
TEXT ENDS
DATA SEGMENT WORD PUBLIC 'DATA'
d@ LABEL BYTE

262 Turbo Assembler User's Guide

d@w LABEL WORD -
DATA ENDS
BSS SEGMENT WORD PUBLIC 'BSS'
b@ LABEL BYTE -
b@w LABEL WORD -

?debug C E90156E11009706C75736F6E652E63
?debug C E90009B9100F696E636C7564655C737464696F2E68
?debug C E90009B91010696E636C7564655C7374646172672E68

BSS ENDS
TEXT SEGMENT BYTE PUBLIC 'CODE'

?debug L 3
main PROC NEAR

push bp
mov bp,sp
dec sp
dec sp
?debug L 8
lea ax,WORD PTR [bp-2]
push ax
mov ax,OFFSET DGROUP:_s@
push ax

Here:S the assembler code call NEAR PTR scanf
for the scant call, followed by -

pop ex
the inline assembler pop ex

instruction to increment ?debug L 9 TestValue, followed by the
assembler code for the prlnff inc WORD PTR [bp-2]

code. ?debug L 10
push WORD PTR [bp-2]
mov ax,OFFSET DGROUP: s@+3 -
push ax
call NEAR PTR _printf
pop ex
pop ex

@1:
?debug L 12
mov sp,bp
pop bp
ret

main ENDP
TEXT ENDS

-
DATA SEGMENT WORD PUBLIC 'DATA'
s@ LABEL BYTE -

DB 37
DB 100

Turbo C automatically DB 0
translates the C variable DB 37

TestValue to the equivalent DB 100
assembler addressing of that DB 0 variable, (BP-2).

DATA ENDS

Chapter 7, Interfacing Turbo Assembler with Turbo C 263

How Turbo C knows to
use inline assembly

mode

264

TEXT SEGMENT BYTE PUBLIC 'CODE'
EXTRN _printf:NEAR
EXTRN scanf:NEAR

TEXT ENDS
PUBLIC main
END

Turbo C compiled the scant call to assembly language, dropped
the inline assembly code directly into the assembler output file,
and then compiled the prlntf call to assembler. The resulting file is
a valid assembler source file, ready to be assembled with Turbo
Assembler.

Had you not used the -S option, Turbo C would have proceeded
to invoke Turbo Assembler to assemble PLUSONE.ASM and
would then have invoked TLINK to link the resultant object file,
PLUSONE.OBJ, into the executable file PLUSONE.EXE. This is the
normal mode of operation of Turbo C with inline assembler; we
used -S for explanatory purposes only, so that we could examine
the intermediate assembly language step Turbo C uses when
supporting inline assembly. The -S option is not particularly
useful when compiling code to be linked into executable
programs, but provides a handy means by which to examine both
the instructions surrounding your inline assembly code and the
code generated by Turbo C in general. If you're ever uncertain
about exactly what code you're generating with inline assembly,
just examine the .ASM file produced with the -S option.

Normally, Turbo C compiles C code directly to object code. There
are several ways to tell Turbo C to support inline assembly by
compiling to assembly language and then invoking Turbo
Assembler.

The -8 command-line option instructs Turbo C to generate object
files by way of compiling to assembler code, then invoking Turbo
Assembler to assemble that code.

The -S command-line option instructs Turbo C to compile to
assembler code, and then stop. The .ASM file generated by Turbo
C when the -S option is specified can then be separately
assembled and linked to other C and assembler modules. Except
when debugging or simply exploring, there's generally no reason
to use -S in preference to -8.

The #pragma directive

Ipragma inline

Turbo Assembler User's Guide

Invoking Turbo
Assembler for inline

assembly

See the README file on the
distribution disk for

information about how to
patch those versions of Tee.

has the same effect as the -B command-line option, instructing
Turbo C to compile to assembly and then invoke Turbo
Assembler to assemble the result. When Turbo C encounters
#pragma Inllne, compilation restarts in assembler output mode.
Consequently, it's best to place the #pragma Inllne directive as
close to the start of the C source code as possible, since any C
source code preceding #pragma Inllne will be compiled twice,
once in normal C-to-object mode and again in C-to-assembler
mode. While this doesn't hurt anything, it does waste time.

Finally, if Turbo C encounters inline assembly code in the absence
of -B, -S, and #pragma Inllne, the compi}er issues a warning like

Warning test.c 6: Restarting compile using assembly in function main

and then restarts compilation in assembler-output mode, just as if
a #pragma inline directive had been encountered at that point.
Make it a point to avoid this warning by using the -B option or
#pragma Inllne, since restarting compilation on encountering
inline assembly makes for relatively slow compiles.

In order for Turbo C to be able to invoke Turbo Assembler, Turbo
C must first be able to find Turbo Assembler. Exactly how this
happens varies with different versions of Turbo C.

Versions of Turbo C later than 1.5 expect to find Turbo Assembler
under the file name T ASM.EXE in either the current directory or
one of the directories pointed to by the DOS PATH environment
variable. Basically, Turbo C can invoke Turbo Assembler under
the same circumstances in which you could type the command

TASM

and run Turbo Assembler from the command-line prompt. So, if
you have Turbo Assembler in the current directory or anywhere
in your command search path, Turbo C will automatically find it
and run it to perform inline assembly.

Versions 1.0 and 1.5 of Turbo C behave a little differently. Since
these versions of Turbo C were written before Turbo Assembler
existed, they invoke MASM, the Microsoft Macro Assembler, to
perform inline assembly. Consequently, these versions of Turbo C
search the current directory and the command search path for the
file MASM.EXE, rather than the file T ASM.EXE, and so do not
automatically use Turbo Assembler.

Chapter 7, Interfacing Turbo Assembler with Turbo C 265

266

Where Turbo C
assembles inline

assembly

Inline assembly code can end up in either Turbo C's code segment
or Turbo C's data segment. Inline assembly code located within a
function is assembled into Turbo C's code segment, while inline
assembly code located outside a function is assembled into Turbo
C's data segment.

For example, the C code

1* Table of square values *1

asm SquareLookUpTable label word;
asm dw 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100;

1* Function to look up the square of a value between a and 10 *1

int LookUpSquare(int Value)
(

asm mov bx,Value; 1* get the value to square *1
asm shl bx,l; 1* mUltiply it by 2 to look up in

a table of word-sized elements *1
asm mov ax, [SquareLookUpTable+bx); 1* look up the square *1
return(_AX); 1* return the result *1

puts the data for SquareLookUpTable in Turbo C's data segment
and the inline assembly code inside LookUpSquare in Turbo C's
code segment. The data could equally well be placed in the code
segment; consider the following version of LookUpSquare, where
SquareLookUpTable is in Turbo C's code segment:

1* Function to look up the square of a value between a and 10 *1
int LookUpSquare(int Value)
(

asm jmp SkipAroundData 1* jump past the data table *1

1* Table of square values *1
asm SquareLookUpTable label word;
asm dw 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100;

SkipAroundData:
asm mov bx,Value; 1* get the value to square *1
asm shl bx,l; 1* mUltiply it by 2 to look up

in a table of word-sized elements *1
asm mov ax, [SquareLookUpTable+bx); 1* look up the square *1
return(_AX); 1* return the result *1

Since SquareLookUpTable is in Turbo C's code segment, it would
seem that a CS: segment override prefix should be required in
order to read from it. In fact, this code automatically assembles

Turbo Assembler User's Guide

with a CS: prefix on the access to SquareLookUpTable; Turbo C
generates the correct assembler code to let Turbo Assembler know
which segment SquareLookUpTable is in, and Turbo Assembler
then generates segment override prefixes as needed.

Use the -1 switch for If you want to use assembler instructions unique to the 80186
80186/80286 processor, such as

instructions
shr ax,3

and

push 1

it's easiest to use the -1 command-line option to Turbo C, as in
this example,

tee -1 -B heapmgr

.where HEAPMGR.C is a program that contains inline assembly
instructions unique to the 80186.

The primary purpose of the -1 option is to instruct Turbo C to
take advantage of the full 80186 instruction set when compiling,
but the -1 option also causes Turbo C to insert the .186 directive at
the start of the output assembler file; this instructs Turbo
Assembler to assemble the full 80186 instruction set. Without the
.186 directive, Turbo Assembler will flag inline assembly
instructions unique to the 80186 as errors. If you want to assemble
80186 instructions without having Turbo C use the full 80186
instruction set, just insert the line

asm .186;

at the start of each Turbo C module containing inline 80186
instructions. This line will be passed through to the assembler file,
where it will instruct Turbo Assembler to assemble 80186
instructions.

While Turbo C provides no built-in support for 80386, 80287, and
80387 processors, inline assembly that supports the 80286, 80287,
80386, and 80387 can be enabled in a similar manner, with the
a5m keyword and the .286, .286C, .286P, .386, .386C, .386C, .287,
and .387 Turbo Assembler directives.

The line

asm .186;

Chapter 7, Interfacing Turbo Assembler with Turbo C 267

The format of
inline assembly

statements

See "Memory and address
operand limitations" on
page 274 for Important

Information regarding label.

268

Semicolons in inline
assembly

Comments in in line
assembly

illustrates an important point about inline assembly: Any valid
assembler line can be passed to the assembler file by use of the
8sm prefix, including segment directives, equates, macros, and so
on.

Inline assembly statements are much like normal assembler lines,
but there are a few differences. The format of an inline assembly
statement is

asrn [<label>] <instruction/directive> <operands> <; or newline>

where

• The 8sm keyword must start every inline assembly statement.

• [<label>] is a valid assembler label. The square brackets indicate
that label is optional, just as it is in assembler.

• <instruction/directive> is any valid assembler instruction or
directive.

• <operands> contains the operand{s) acceptable to the instruction
or directive; it can also reference C constants, variables, and
labels within the limitations described in the section
''Limitations of inline assembly" on page 274.

• <; or newline> is a semicolon or a newline, either of which
signals the end of the 8sm statement.

One aspect of inline assembly that no C purist could miss is that,
alone among C statements, inline assembly statements do not
require a terminating semicolon. A semicolon can be used to
terminate each statement, but the end of the line will do just as
well. So, unless you're planning to put multiple inline assembly
statements on each line (which is not a good practice from the
perspective of clarity), semicolons are purely optional. While this
may not seem to be in the spirit of C, it is in keeping with the
convention adopted by several UNIX-based compilers.

The previous description of the format of an inline assembly
statement lacks one key element-a comment field. While
semicolons can be placed at the end of inline assembly statements,
semicolons do not begin comment fields in inline assembly code.

How, then, are you to comment your inline assembly code?
Strangely enough, with C comments. Actually, that's not strange

Turbo Assembler User's Guide

Accessing structure/
union elements

a t all, for the C preprocessor processes inline assembly code along
with the rest of your C code. This has the advantage of allowing
you to use a uniform commenting style throughout your C
programs containing inline assembly, and also makes it possible
to use C-defined symbolic names in both C and inline assembly
code. For example, in

idefine CONSTANT 51
int i;

i = CONSTANT; /* set i to constant value */
asm sub WORD PTR i,CONSTANT; /* subtract const value from i */

both C and inline assembly code use the C-defined symbol
CONSTANT, and i winds up equal to O.

The last example illustrates one wonderful feature of inline
assembly, which is that the operand field might contain direct
references not only to C-defined symbolic names but also to C
variables. As you will see later in this chapter, accessing C
variables in assembler is normally a messy task, and convenient
reference to C variables is a primary reason why inline assembler
is the preferred way to integrate assembler and C for most
applications.

Inline assembly code can directly reference structure elements.
For example,

struct Student
char Teacher[30];
int Grade;

JohnQPublic;

asm mov ax, JohnQPublic.Grade;

loads AX with the contents of member Grade of the Student type
structure JohnQPublic.

Inline assembly code can also access structure elements addressed
relative to a base or index register. For instance,

asm mov bx,OFFSET JohnQPublic;
asm mov ax, [bx] .Grade;

Chapter 7, Interfacing Turbo Assembler with Turbo C 269

270

An example of
inline assembly

also loads AX. with member Grade of /ohnQPublic. Since Grade is at
offset 30 in the Student structure, the last example actually
becomes

asm mov bx,OFFSET JohnQPublic;
asm mov ax, [bx]+30

The ability to access structure elements relative to a pointer
register is very powerful, since it allows inline assembly code to
handle arrays of structures and passed pointers to structures.

If, however, two or more structures that you're accessing with
inline assembly code have the same member name, you must
insert the following:

asm mov bx,[di]. (struct tm) tm hour> alt

For example,

struct Student
char Teacher[30];
int Grade;

JohnQPublic;

struct Teacher
int Grade;
long Income;

) ;

asm mov ax, JohnQPublic. (struct Student) Grade

So far, you've seen a variety of code fragments that use inline
assembly, but no real working inline assembly programs. This
section remedies that situation by presenting a program that
employs inline assembly to greatly speed the process of
converting text to uppercase. The code presented in this section
serves both as an example of what inline assembly can do and as a
template to which you can refer to as you develop your own
inline assembly code.

Turbo Assembler User's Guide

Take a moment to examine the programming problem to be
solved by the sample program. We'd like to develop a function,
named StringToUpper, that copies one string to another string,
converting all lowercase characters to uppercase in the process.
We'd also like to have this function work equally well with all
strings in all memory models. One good way to do this is to have
far string pointers passed to the function, since pohi.ters to near
strings can always be cast to pointers to far strings, but the reverse
is not always true.

Unfortunately, we run into a performance issue here. ,While Turbo
C handles far pointers perfectly well, far pointer-handling in
Turbo C is much slower than near pointer-handling. This isn't a
shortcoming of Turbo C, but rather an unavoidable effect when
programming the 8086 in a high-level language.

On the other hand, string and far pointer-handling is one area in
which assembler excels. The logical solution, then, is to use inline
assembly to handle the far pointers and string copying, while
letting Turbo C take care of everything else. The following
program, STRING UP .C, does exactly that:

/* Program to demonstrate the use of StringToUpper(). It calls
StringToUpper to convert TestString to uppercase in Upper
CaseString, then prints UpperCaseString and its length. */

Ipragma inl1ne
linclude <stdio.h>

/* Function prototype for StringToUpper() */
extern unsigned int StringToUpper(
unsigned char far * DestFarString,
unsigned char far * SourceFarString);

Idefine MAX STRING LENGTH 100 - -

char *TestString = "This Started Out As Lowercase!";

char UpperCaseString[MAx_STRING_LENGTH];

main ()
(

unsigned int StringLength;

/* Copy an uppercase version of TestString
to UpperCaseString */

StringLength = StringToUpper{UpperCaseString, TestString);

/* Display the results of the conversion */
printf("Original string:\n%s\n\n", TestString);
printf ("Uppercase string: \n%'s \n \n", UpperCaseString);
printf("Number of characters: %d\n\n", StringLength);

Chapter 7, Interfacing Turbo Assembler with Turbo C 271

272

/* Function to perform high-speed translation to uppercase from
one far string to another

Input:
DestFarString - array in which to store uppercased

string (will be zero-terminated)
SourceFarString - string containing characters to be

converted to all uppercase (must be
zero-terminated)

Returns:
The length of the source string in characters, not
counting the terminating zero. */

unsigned int StringToUpper(unsigned char far * DestFarString,
unsigned char far * SourceFarString)

unsigned int CharacterCount;

'define LOWER CASE A 'a'
'define LOWER CASE Z 'z'

asm ADJUST VALUE EQU 20h;

asm cld;
asm push ds;
asm Ids si,SourceFarString;

asm les di,DestFarString;

CharacterCount = 0;
StringToUpperLoop:

asm lodsb;
asm cmp aI, LOWER_CASE_A;

asm jb SaveCharacter;
asm cmp aI, LOWER_CASE_Z;

asm ja SaveCharacter;
asm sub aI, ADJUST_VALUE;

SaveCharacter:
asm stosb;
CharacterCount++;
asm and al,al;
asm jnz StringToUpperLoop;

CharacterCount--;
asm pop ds;
return(CharacterCount);

/*

/* amount to subtract from
lowercase letters to make

them uppercase

/* save C's data segment
/* load far pointer to

source string
/* load far pointer to

destination string
/* count of characters

/* get the next character
/* if < a then it's not a

lowercase letter

/* if > z then it's not a
lowercase letter

/* it's lowercase; make it
uppercase

/* save the character
/* count this character

/* is this the ending O?
/* no, process the next,

char, if any
don't count the terminating 0

/* restore C's data segment

*/

*/

*/

*/
*/

*/

*/

*/

*/

*/
*/
*/

*/
*/
*/

Turbo Assembler User's Guide

When run, STRINGUP.C displays the output

Original string:
This Started Out As Lowercase!

Uppercase string:
THIS STARTED OUT AS LOWERCASE!

Number of characters: 30

demonstrating that it does indeed convert all lowercase letters to
uppercase.

The heart of S1RINGUP.C is the function StringToUpper, which
performs the entire process of string copying and conversion to
uppercase. StringToUpper is written in both C and inline assembly,
and accepts two far pointers as parameters. One far pointer points
to a string containing text; the other far pointer points to another
string, to which the text in the first string is to be copied with all
lowercase letters converted to uppercase. The function declaration
and parameter definition are all handled in C, and, indeed, a
function prototype for StringToUpper appears at the start of the
program. The main program calls StringToUpper just as if it were
written in pure C. In short, all the ad vantages of programming in
Turbo C are available, even though StringToUpper contains inline
assembly code.

The body of StringToUpper is written in a mixture of C and inline
assembly. Assembler is used to read each character from the
source string, to check and, if need be, translate the character to
upperca~e, and to write the character to the destination string.
Inline assembly allows StringToUpper to use the powerful LOOSB
and STOSB string instructions to read and write the characters.

In writing StringToUpper, we knew that we wouldn't need to
access any data in Turbo C's data segment, so we simply pushed
DS at the start of the function, then set DS to point to the source
string and left it there for the rest of the function. One great
advantage that inline assembly has over a pure C implementation
is this ability to load the far pointers once at the start of the
function and then never reload them until the function is done. By
contrast, Turbo C and other high-level languages generally reload
far pointers every time they are used. The ability to load far
pointers just once means that StringToUpper processes far strings
as rapidly as if they were near strings.

Chapter 7, Interfacing Turbo Assembler with Turbo C 273

Limitations of
inline assembly

Memory and address
operand limitations

274

One other interesting point about StringToUpper is the way in
which C and assembler statements are mixed. #define is used to
set LOWER_CASE_A and LOWER_CASE_Z, while the assembler
EQU directive is used to set ADJUST _VALUE, but all three
symbols are used in the same fashion by the inline assembly code.
Substitution for the C-defined_symbols is done by the Turbo C
preproces~or, while substitution for ADJUST _VALUE is done by
Turbo Assembler, but both can be used by inline assembly code.

C statements to manipulate CharacterCount are sprinkled
throughout StringToUpper. This was done only to illustrate that C
code and inline assembly code can be intermixed. CharacterCount
could just as easily have been maintained directly by inline
assembly code in a free register, such as CX or DX; StringToUpper
would then have run faster.

Freely intermixing C code and inline assembly code carries risks if
you don't understand exactly what code Turbo C generates in
between your inline assembly statements. Using the Turbo C's-S
compiler option is the best way to explore what happens when
you mix inline assembly and C code. For instance, you can learn
exactly how the C and inline assembly code in StringToUpper fit
together by compiling STRINGUP.C with the -S option and
examining the output file STRINGUP.ASM.

STRINGUP.C vividly demonstrates the excellent payback that
judicious use ofinline assembly provides. In StringToUpper, the
insertion of just 15 inline assembly statements approximately
doubles string-handling speed over equivalent C code.

There are very few limitations as to how inline assembly might be
used; by and large, inline assembly statements are simply passed
through to Turbo Assembler unchanged. There are, however,
notable limitations involving certain memory and address
operands, and a few other restrictions concerning register usage
rules and the lack of default sizing of automatic C variables used
in inline assembly.

The only alterations Turbo C makes to inline assembly statements
is to convert memory and memory address references, such as
variable names and jump destinations, from their C
representations to the assembler equivalents. These alterations
introduce two limitations: Inline assembly jump instructions can

Turbo Assembler User's Guide

only reference C labels, while inline assembly non-jump
instructions can reference anything but C labels. For example,

. . .
asm jz NoDec;
asm dec cx;

NoDec:

is fine, but

. . .
asm jnz NoDec;
asm dec cx;
asm NoDec:

will not compile properly. Similarly, inline assembly jumps
cannot have ~nction names as operands. Inline assembly
instructions other than jumps can have any operands except C
labels. For example,

asm BaseValue DB '0';

asm mov al,BYTE PTR BaseValue;

compiles, but

BaseValue:
asm DB '0';

asm mov al,BYTE PTR BaseValue;

does not compile. Note that a call is not considered a jump, so
valid operands to inline assembly calls include C function names
and assembler labels, but not C labels. If a C function name is
referenced in inline assembly code, it must be prefixed with an
underscore; see the section "Underscores" on page 290 for details.

Chapter 7. Interfacing Turbo Assembler with Turbo C 275

Lack of default
automatic variable

sizing in inline assembly

When Turbo C replaces a reference to an automatic variable in an
inline assembly statement with an operand like [BP-02], it does
not place a size operator, such as WORD PTR or BYTE PTR, into
the altered statement. This means that

int i;

asm mov ax,i;

is output to the assembler file as

mov ax, [bp-02]

In this case, there's no problem, since the use of AX tells Turbo
Assembler that this is a 16-bit memory reference. Moreover, the
lack of a size operator gives you complete flexibility in controlling
operand size in inline assembly. However, consider

int i;

asm mov i,O;
asm inc i;

which becomes

mov [bp-02],O
inc [bp-02]

Neither of these instructions has an inherent size, so Turbo
Assembler can't assemble them. Consequently, when you refer to
an automatic variable in Turbo Assembler without a register as
either the source or the destination, be sure to use a size operator.
The last example works just fine as

int i;

asm mov WORD PTR i,O;
asm inc BYTE PTR i;

276 Turbo Assembler User's Guide

The need to preseNe
registers

Disadvantages of
inline assembly

versus pure C

At the end of any inline assembly code you write, the following
registers must contain the same values as they did at the start of
the inline code: BP, SP, es, OS, and 55. Failure to observe this rule
can result in frequent program crashes and system reboots. AX,
BX, ex, DX, 51, DI, ES, and the flags may be freely altered by
inline code.

Preserving calling functions and register variables

Turbo e requires that 51 and DI, which are used as register
variables, not be destroyed by function calls. Happily, you don't
have to worry about explicitly preserving 51 or DI if you use them
in inline assembly code. If Turbo e detects any use of those
registers in inline assembly, it preserves them at the start of the
function and restores them at the end-yet another of the
conveniences of using inline assembly.

Suppressing internal register variables

Since register variables are stored in 51 and DI, there would seem
to be the potential for conflict between register variables in a
given module and 4tline assembly code that uses 51 or DI in that
same module. Again, though, Turbo e anticipates this problem;
any use of 51 or DI in inline code will disable the use of that
register to store register variables.

Turbo eversion 1.0 did not guarantee avoidance of conflict
between register variables and inline assembly code. If you are
using version 1.0, you should either explicitly preserve 51 and DI
before using them in inline code or update to the latest version of
the compiler.

We've spent a good bit of time exploring how inline assembly
works and learning about the potential benefits of inline
assembly. Wh~e inline assembly is a splendid feature for many
applications, it does have certain disadvantages. Let's review
those disadvantages, so you can make informed decisions about
when to use inline assembly in your programs.

Chapter 7, Interfacing Turbo Assembler with Turbo C 277

Reduced portability
and maintainability

The very thing that makes inline assembly code so effective-the
ability to program the 8086 processor directly-also detracts from
a primary strength ofC, portability. If you use inline assembly, it's
a pretty safe bet that you won't be able to port your code to
another processor or C compiler without changes.

Similarly, inline assembly code lacks the clear and concise
formatting C provides, and is often unstructured as well.
Consequently, inline assembly code is generally more difficult to
read and maintain than C code.

When you use inline assembly code, it's a good practice to isolate
the inline code in self-contained modules, and to structure the
inline code carefully with plenty of comments. That way, it's easy
to maintain the code, and it's a relatively simple matter to find the
inline assembly code and rewrite it in C if you need to port the
program to a different environment.

Slower compilation Compilation of C modules containing inline assembly code is
considerably slower than compilation of pure C code, primarily
because inline assembly code must effectively be compiled twice,
first by Turbo C and then again by Turbo Assembler. If Turbo C
has to restart compilation because neither the -B option, the-S
option, nor #pragma Inllne was used, compilation time for inline
assembly becomes longer still. Fortunately, slow compilation of
modules containing inline assembly is less of a problem now than
it was in the past, since Turbo Assembler is so much faster than
earlier assemblers.

Available with Tee only As we mentioned earlier, the inline assembly feature is unique to
TCC.EXE, the command-line version of Turbo C. TC.EXE, the
integrated development environment version of Turbo C, does
not support inline assembly.

278

Optimization loss When inline assembly is used, Turbo C loses some control over
the code of your programs, since you can directly insert any
assembler statements into any C code. To some extent, you, as the
inline assembly programmer, must compensate for this, by
avoiding certain disruptive actions, such as failing to preserve the
DS register or writing to the wrong area of memory.

On the other hand, Turbo C doesn't require you to follow all its
internal rules when you program in inline assembler; if it did,

Turbo Assembler User's Guide

Error trace-back
limitations

you'd scarcely be better off using inline assembly than if you
programmed in C and let Turbo C generate the code. What Turbo
C does do is turn off some of its optimizations in functions
containing inline assembly statements, thereby allowing you a
relatively free hand in coding inline assembly. For example, some
portions of the jump optimizer are turned off when inline
assembly is used, and register variables are disabled if the inline
code uses SI and DI. This partial loss of optimization is worth
considering, given that you are presumably using inline assembly
in order to boost code quality to its maximum.

If you are greatly concerned about producing the fastest or most
compact code with inline assembly, you might want to write your
functions that contain inline assembly code entirely in inline
assembly-that is, don't mix C and inline assembly code within
the same function. That way, you have control of the code in the
inline assembly functions, Turbo C has control of the code in the
C functions, and both you and Turbo C are free to generate the
best possible code without restrictions.

Since Turbo C does little error-checking of inline assembly
statements, errors in inline assembly code are often detected by
Turbo Assembler, not Turbo C. Unfortunately, it can sometimes
be difficult to relate the error messages produced by Turbo
Assembler back to the original C source code, since the error
messages and the line numbers they display are based on the
.ASM file output by Turbo C and not the C code itself.

For example, in the course of compiling TEST.C, a C program
containing inline assembly code, Turbo Assembler might
complain about an incorrectly sized operand on line 23;
unfortunately, "23" refers to the number of the error-producing
line in TEST.ASM, the intermediate assembler file Turbo C
generated for Turbo Assembler to assemble. You're on your own
when it comes to figuring out what line in TEST.C is ultimately
responsible for the error.

Your best bet in a case like this is to first locate the line causing the
error in the intermediate .ASM file, which is left on the disk by
Turbo C whenever Turbo Assembler reports assembly errors. The
.ASM file contains special comments that identify the line in the C
source file from which each block of assembler statements was
generated; for example, the assembler lines following

; ?debug L 15

Chapter 7, Interfacing Turbo Assembler with Turbo C 279

were generated from line 15 of the C source file. Once you've
located the line that caused the error in the .ASM file, you can
then use the line-number comments to map the error-generating
line back to the C source file.

Debugging limitations Versions of Turbo C up to and including version 1.5 can't
generate source-level debugging infonnation (infonnation
required to let you see C source code as you debug) for modules
containing inline assembly code. When inline assembly is used,
Turbo C versions 1.5 and earlier generate plain assembler code
with no embedded debugging infonnation. Source-level
debugging capabilities are lost, and only assembler-level
debugging of C modules containing inline code is possible.

Develop in C and
compile the final code

with inline assembly

280

Later versions of Turbo C take advantage of special Turbo
Assembler features to provide state-of-the-art, source-level
debugging when used with Turbo Debugger to debug modules
containing inline assembly code (and pure C modules too, of
course).

In light of the disadvantages of inline assembly we've just
discussed, it may seem that in line assembly should be used as
sparingly as possible. Not so. The trick is to use inline assembly at
the right point in the development cycle-at the end.

Most of the disadvantages of inline assembly boil down to a
single problem: Inline assembly can slow down the edit/ compile/
debug cycle considerably. Slower compilation, inability to use the
integrated environment, and difficulty in finding compilation
errors all mean that development of code containing inline
assembly statements will probably be slower than development of
pure C code. Still, the proper use of inline assembly can result in
dramatic improvements in code quality. What to do?

The answer is simple. Initially, develop each program entirely in
C, taking full advantage of the excellent development
environment provided by TC.EXE. When a program reaches full
functionality, with the code debugged and running smoothly,
switch to TCC.EXE and begin to convert critical portions of the
program to inline assembly code. This approach allows you to
develop and debug your overall program efficiently, then isolate
and enhance selected sections of the code when it comes time to
fine-tune the program.

Turbo Assembler User's Guide

Calling Turbo Assembler functions from Turbo C

Figure 7.3
Compile, assemble,
and link with Turbo

C, Turbo Assembler,
and TLiNK

C and assembler have traditionally been mixed by writing
separate modules entirely in C or assembler, compiling the C
modules and assembling the assembler modules, and then linking
the separately compiled modules together. Turbo C modules can
readily be linked with Turbo Assembler modules in this fashion.
Figure 7.3 shows how to do this.

C Source File
FILENAM1.C

Object File
FILENAM1.0BJ

Assembler Source File
FILENAM2.ASM

Executable File
FILENAM1.EXE

Object File
FILENAM2.0BJ

The executable file is produced from mixed C and assembler
source files. You start this cycle with

tee filenaml filenam2.asm

This instructs Turbo C to first compile FILENAM1.C to
FILENAM1.0BJ, then invoke Turbo Assembler to assemble
FILENAM2.ASM to FILENAM2.0BJ, and finally invoke TLINK

Chapter 7, Interfacing Turbo Assembler with Turbo C 281

The framework

282

to link FILENAM1.0B] and FILENAM2.0B] into
FILENAM1.EXE.

Separate compilation is very useful for programs that have sizable
amounts of assembler code, since it makes the full power of Turbo
Assembler available and allows you to do your assembly
language programming in a pure assembler environment,
without the 8sm keywords, extra compilation time, and C-related
overhead of inline assembly.

There is a price to be paid for separate compilation: The assembler
programmer must attend to all the details of interfacing C and
assembler code. Where Turbo C handles segment specification,
parameter-passing, reference to C variables, register variable
preservation, and the like for inline assembly, separately compiled
assembler functions must explicitly do all that and more.

There are two major aspects to interfacing Turbo C and Turbo
Assembler. First, the various parts of the C and assembler code
must be linked together properly, and functions and variables in
each part of the code must be made available to the rest of the
code as needed. Second, the assembler code must properly handle
C-style function calls. This includes accessing passed parameters,
returning values, and following the register preservation rules
required of C functions.

Let's start by examining the rules for linking together Turbo C and
Turbo Assembler code.

In order to link Turbo C and Turbo Assembler modules together,
three things must happen:

• The Turbo Assembler modules must use a Turbo C-compatible
segment-naming scheme.

• The Turbo C and Turbo Assembler modules must share
appropriate function and variable names in a form acceptable
to Turbo C.

• TLINK must be used to combine the modules into an
executable program.

This says nothing about what the Turbo Assembler modules
actually do; at this point, we're only concerned with creating a
framework within which C-compatible Turbo Assembler
functions can be written.

Turbo Assembler User's Guide

Memory models and
segments

See -standard segment
directives· in Chapter 5,

page 111, for an introduction
to the simplified segment

directives.

Underscores U prefix many
of the labels in DoTota/

because they are normally
required by Turbo C. For

more detail, see the section
-Underscores· on page 290.

For a given assembler function to be callable from C, that function
must use the same memory model as the C program and must use
a C-compatible code segment. Likewise, in order for data defined
in an assembler module to be accessed by C code (or for C data to
be accessed by assembler code), the assembler code must follow C
data segment-naming conventions.

Memory models and segment-handling can be quite complex to
implement in assembler. Fortunately, Turbo Assembler does
virtually all the work of implementing Turbo C-compatible
memory models and segments for you in the form of the
simplified segment directives.

Simplified segment directives and Turbo C

The DOSSEG directive instructs Turbo Assembler to order
segments according to the Intel segment-ordering conventions,
the same conventions followed by Turbo C (and many other
popular language products, including those from Microsoft).

The .MODEL directive tells Turbo Assembler that segments
created with the simplified segment directives should be
compatible with the selected memory model (tiny, small, compact,
medium, large, or huge), and controls the default type (near or
far) of procedures created with the PROC directive. Memory
models defined with the .MODEL directive are compatible with
the equivalently named Turbo C models.

Finally, the .CODE, .DATA, .DATA, .FARDATA, .FARDATA, and
.CONST simplified segment directives generate Turbo C
compatible segments.

For example, consider the following Turbo Assembler module,
named OOTOTAL.ASM:

i select Intel-convention segment ordering
• MODEL small iselect small model (near code and data)
. DATA iTC-compatible initialized data segment
EXTRN _Repetitions:WORD iexternally defined
PUBLIC _StartingValue iavailable to other modules

_StartingValue DW 0
• DATA? iTC-compatible uninitialized data segment

RunningTotal DW?
• CODE iTC-compatible code segment
PUBLIC DoTotal

Chapter 7, Interfacing Turbo Assembler with Turbo C 283

284

DoTotal
mov
mov
mov

TotalLoop:
inc
loop
mov
ret

DoTotal
END

PROC ;function (near-callable in small model)
cx,[_Repetitions] ;f of counts to do
ax, [_StartingValue]
[RunningTotal],ax ;set initial value

[RunningTotal] ;RunningTotal++
TotalLoop
ax, [RunningTotal] ;return final total

ENDP

The assembler procedure _DoTotal is readily callable from a
small-model Turbo C program with the statement

DoTotalO ;

Note that _DoTotal expects some other part of the program to
define the external variable Repetitions. Similarly, the variable
StartingValue is made public, so other portions of the program can
access it. The following Turbo C module, SHOWTOT.C, accesses
public data in DOTOTAL.ASM and provides external data to
OOTOTAL.ASM:

extern int StartingValue;
extern int DoTotal(void);
int Repetitions;
mainO
{

int i;
Repetitions = 10;
StartingValue = 2;
printf("%d\n", DoTotal());

To create the executable program SHOWTOT.EXE from
SHOWTOT.C and OOTOTAL.ASM, enter the command line

tcc showtot dototal.asm

If you wanted to link _DoTotal to a compact-model C program,
you would simply change the .MODEL directive to .MODEL
COMPACT. If you wanted to use a far segment in
OOTOTAL.ASM, you could use the .FARDATA directive.

In short, generating the correct segment ordering, memory model,
and segment names for linking with Turbo C is a snap with the
simplified segment directives.

Turbo Assembler User's Guide

For an overview of Turbo C
segment usage, refer to

Chapter 4 of the Turbo C
Programmer's Guide.

Old-style segment directives and Turbo C

Simply put, it's a nuisance interfacing Turbo Assembler code to C
code using the old-style segment directives. For example, if you
replace the simplified segment directives in OOTOT AL.ASM with
old-style segment directives, you get

DGROUP GROUP _DATA,_BSS
DATA SEGMENT WORD PUBLIC 'DATA'

EXTRN _Repetitions:WORD
PUBLIC _StartingValue

_StartingValue DW 0
DATA ENDS
BSS SEGMENT WORD PUBLIC 'BSS' -

RunningTotal OW?
BSS ENDS
TEXT SEGMENT BYTE PUBLIC 'CODE'

iexternally defined
iavailable to other modules

ASSUME cs:_TEXT,ds:DGROUP,ss:DGROUP
PUBLIC DoTotal

DoTotal PROC ifunction (near-callable
i in small model)

mov
mov
mov

Total1oop:
inc
loop
mov
ret

DoTotal ENDP
TEXT ENDS

END

cx, [_Repetitions] if of counts to do
ax, [_StartingValue]
[RunningTotal),ax iset initial value

[RunningTotal] iRunningTotal++
TotalLoop
ax, [RunningTotal] ireturn final total

The version with old-style segment directives is not only longer,
but also much harder to read and harder to change to match a
different C memory model. When you're interfacing to Turbo C,
there's generally no advantage to using the old-style segment
directives. If you still want to use the old-style segment directives
when interfacing to Turbo C, you'll have to identify the correct
segments for the memory model your C code uses.

The easiest way to determine the appropriate old-style segment
directives for linking with a given Turbo C program is to compile
the main module of the Turbo C program in the desired memory
model with the -S option, which causes Turbo C to generate an
assembler version of the C code. In that C code, you'll find all the
old-style segment directives used by Turbo C; just copy them into
your assembler code. For example, if you enter the command

Chapter 7, Interfacing Turbo Assembler with Turbo C 285

tcc -S showtot.c

the file SHOWTOT.ASM is generated:

ifndef ??version
?debug macro

TEXT
DGROUP

TEXT
DATA
d@ -
d@w -
DATA
BSS -

_b@
_b@w

BSS
TEXT

main

@1:

ENDM
ENDIF
NAME showtot
SEGMENT BYTE PUBLIC 'CODE'
GROUP _DATA,_BSS
ASSUME cs:_TEXT,ds:DGROUP,ss:DGROUP
ENDS
SEGMENT WORD PUBLIC 'DATA'
LABEL BYTE
LABEL WORD
ENDS
SEGMENT WORD PUBLIC 'BSS'
LABEL BYTE
LABEL WORD
?debug C E91481D5100973686F77746F742E63
ENDS
SEGMENT BYTE PUBLIC 'CODE'
?debug L 3
PROC NEAR
?debug L 6
mov WORD PTR DGROUP:_Repetitions,lO
?debug L 7
mov WORD PTR DGROUP:_StartingValue,2
?debug L 8
call NEAR PTR DoTotal
push ax
mov ax,offset DGROUP:_s@
push ax
call NEAR PTR _printf
pop cx
pop cx

?debug L 9
ret

main ENDP
TEXT ENDS
BSS SEGMENT WORD PUBLIC 'BSS' -

_Repetitions LABEL WORD
DB 2 dup (?)
?debug C E9

BSS ENDS
DATA SEGMENT WORD PUBLIC 'DATA'

_s@ LABEL BYTE

286 Turbo Assembler User's Guide

Chapter 9 covers segment
directives in detail.

Table 7.1
Register settings

when Turbo C
enters assembler

DB 37
DB 100
DB 10
DB a

DATA ENDS
EXTRN _StartingValue:WORD

TEXT SEGMENT BYTE PUBLIC 'CODE'
EXTRN DoTotal:NEAR
EXTRN _printf:NEAR

TEXT ENDS -
PUBLIC _Repetitions
PUBLIC main
END

The segment directives for _DATA (the initialized data segment),
_TEXT (the code segment), and _BSS (the uninitialized data
segment), along with the GROUP and ASSUME directives, are in
read y-to-assemble form, so you can use them as is.

Segment defaults: When Is it necessary to load segments?

Under some circumstances, your C-callable assembler functions
might have to load D5 and/or E5 in order to access data. It's also
useful to know the relationships between the settings of the
segment registers on a call from Turbo C, since sometimes
assembler code can take advantage of the equivalence of two
segment registers. Let's take a moment to examine the settings of
the segment registers when an assembler function is called from
Turbo C, the relationships between the segment registers, and the
cases in which an assembler function might need to load one or
more segment registers.

On entry to an assembler function from Turbo C, the C5 and D5
registers have the following settings, depending on the memory
model in use (55 is always used for the stack segment, and E5 is
always used as a scratch segment register):

Model

Tiny
Small
Compact
Medium
Large
Huge

cs

_TEXT
TEXT

-TEXT
fllename_ TEXT
filename_TEXT
filename_TEXT

os

DGROUP
DGROUP
DGROUP
DGROUP
DGROUP
calling_filename_DATA

Chapter 7, Interfacing Turbo Assembler with Turbo C 287

288

filename is the name of the assembler module, and callingJilename
is the name of the module calling the assembler module.

In the tiny model, _TEXT and DGROUP are the same, so CS equals
OS on entry to functions. Also in the tiny, small, and medium
models, SS equals OS on entry to functions.

So, when is it necessary to load a segment register in a C-callable
assembler function? For starters, you should.never have to (or
want to) directly load the CS or SS registers. CS is automatically
set as needed on far calls, jumps, and returns, and can't be
tampered with otherwise. SS always points to the stack segment,
which should never change during the course of a program
(unless you're writing code that switches stacks, in which case
you had best know exactly what you're doing!).

ES is always available for you to use as you wish. You can use ES
to point at far data, or you can load ES with the destination
segment for a string instruction.

That leaves the OS register. In all Turbo C models other than the
huge model, OS points to the static data segment (DGROUP) on
entry to functions, and that's generally where you'll want to leave
it. You can always use ES to access far data, although you may
find it desirable to instead temporarily point OS to far data that
you're going to access intensively, thereby saving many segment
override instructions in your code. For example, you could access
a far segment in either of the following ways:

or

.FARDATA
Counter DW 0

• CODE
PUBLIC AsmFunction

AsmFunction PROC

mov ax,@fardata
mov
inc

es,ax
es: [Counter]

AsmFunction ENDP

ipoint ES to far data segment
iincrement counter variable

Turbo Assembler User's Guide

.FARDATA
Counter DW 0

.CODE
PUBLIC AsmFunction

AsmFunction PROC

ASSUME ds:@fardata
mov ax,@fardata
mov ds,ax
inc [Counter]
ASSUME ds:@data
mov ax,@data
mov ds,ax

AsmFunction ENDP

ipoint DS to far data segment
iincrement counter variable

ipoint DS back to DGROUP

The second version has the advantage of not requiring an ES:
override on each memory access to the far data segment. If you do
load OS to point to a far segment, be sure to restore it as in the
preceding example before attempting to access any variables in
DGROUP. Even if you don't access DGROUP in a given assembler
function, be sure to restore OS before exiting, since Turbo C
assumes that functions leave OS unchanged.

Handling OS in C-callable huge model functions is a bit different.
In the huge model, Turbo C doesn't use DGROUP at all. Instead,
each module has its own data segment, which is a far segment
relative to all the other modules in the program; there is no
commonly shared near data segment. On entry to a function in
the huge model, OS should be set to point to that module's far
segment and left there for the remainder of the function, as
follows:

.FARDATA

. CODE
PUBLIC AsmFunction

AsmFunction PROC
push ds
mov ax,@fardata
mov ds,ax

pop ds
ret

Chapter 7, Interfacing Turbo Assembler with Turbo C 289

AsmFunction ENDP

Note that the original state of DS is preserved with a PUSH on
entry to AsmFunction and restored with a POP before exiting; even
in the huge model, Turbo C requires all functions to preserve DS.

Publics and externals Turbo Assembler code can call C functions and reference external
C variables, and Turbo C code can likewise call public Turbo
Assembler functions and reference public Turbo Assembler
variables. Once Turbo C-compatible segments are set up in Turbo
Assembler, as described in the preceding sections, only the
following few simple rules need be observed in order to share
functions and variables between Turbo C and Turbo Assembler.

290

Underscores

Normally, Turbo C expects all external labels to start with an
underscore character C). Turbo C automatically prefixes an
underscore to all function and external variable names when
they're used in C code, so you only need to attend to underscores
in your assembler code. You must be sure that all assembler
references to Turbo C functions and variables begin with
underscores, and you must begin all assembler functions and
variables that are made public and referenced by Turbo C code
with underscores.

For example, the following C code,

extern int ToggleFlag();
int Flag;
main()
{

ToggleFlag () ;

links properly with the following assembler program:

.M:lDEL small
• DATA
EXTRN Jlag:WORD
.CODE
PUBLIC _ToggleFlag

_ToggleFlag PROC
cmp [Jlag],O iis the flag reset?
jz SetFlag iyes, set it
mov [Jlag],O ino, reset it

Turbo Assembler User's Guide

Labels not referenced by C
code, such'as SetRag, don't

need leading underscores.

jmp short EndToggleFlag ;done
SetFlag:

;set flag
EndToggleFlag:

ret
_ToggleFlag ENDP

END

When you use the C language specifier in your EXTRN and
PUBLIC directives,

DOSSEG
• MODEL SMALL
• DATA
EXTRN C Flag:word
.CODE
PUBLIC C ToggleFlag

ToggleFlag PROC
cmp [Flag],O
jz Set Flag
mov [Flag],O
jmp short EndToggleFlag

SetFlag:
mov [Flag],l

EndToggleFlag:
ret

ToggleFlag ENDP
END

Turbo Assembler causes the underscores to be prefixed auto
matically when Flag and ToggleFlag are published in the object
module.

By the way, it is possible to tell Turbo C not to use underscores by
using the -u- command-line option. But you have to purchase the
run-time library source from Borland and recompile the libraries
with underscores disabled in order to use the -u- option. (See
"Pascal calling conventions" on page 307 for information on the
-p option, which disables the use of underscores and case
sensitivity.)

The significance of uppercase and lowercase

Turbo Assembler is normally insensitive to case when handling
symbolic names, making no distinction between uppercase and
lowercase letters. Since C is case-sensitive, it's desirable to have
Turbo Assembler be case-sensitive, at least for those symbols that

Chapter 7, Interfacing Turbo Assembler with Turbo C 291

292

are shared between assembler and C. Iml and Imx make this
possible.

The Iml command-line switch causes Turbo Assembler to become
case-sensitive for all symbols. The Imx command-line switch
causes Turbo Assembler to become case-sensitive for public
(PUBLIC), external (EXTRN), global (GLOBAL), and communal
(COMM) symbols only.

Label types

While assembler programs are free to access any variable as data
of any size (8 bit, 16 bit, 32 bit, and so on), it is generally a good
idea to access variables in their native size. For instance, it usually
causes problems if you write a word to a byte variable:

SrnallCount DB °
rnov WORD PTR [SrnallCount],Offffh

Consequently, it's important that your assembler EXTRN
statements that declare external C variables specify the right size
for those variables, since Turbo Assembler has only your
declaratio?1 to go by when deciding what size access to generate to
a C variable. Given the statement

char c

in a C program, the assembler code

EXTRN c: WORD

inc [c]

could lead to nasty problems, since every 256th time the
assembler code incremented c, c would turn over. And, since c is
erroneously declared as a word variable, the byte at OFFSET c + 1
would incorrectly be incremented, with unpredictable results.

Correspondence between C and assembler data types is as
follows:

Turbo Assembler User's Guide

C Data Type

unsigned char
char
enurn
unsigned short
short
unsigned int
int
unsigned long
long
float
double
long double
near'"
far '"

Far externals

Assembler Data Type

byte
byte
word
word
word
word
word
dword
dword
dword
qword
tbyte
word
dword

If you're using the simplified segment directives, EXTRN
declarations of symbols in far segments must not be placed within
any segment, since Turbo Assembler considers symbols declared
within a given segment to be associated with that segment. This
has its drawbacks: Turbo Assembler cannot check the address
ability of symbols declared EXTRN outside any segment, and so
can neither generate segment overrides as needed nor inform you
when you attempt to access that variable when the correct
segment is not loaded. Turbo Assembler still assembles the
correct code for references to such external symbols, but can no
longer provide the normal degree of segment addressability
checking.

If you want to (though we discourage it), you can use the old
style segment directives to explicitly declare the segment each
external symbol is in and then place the EXTRN directive for that
symbol inside the segment declaration. However, this is a good
bit of work; if you don't mind taking responsibility for making
sure that the correct segment is loaded when you access far data,
it's easiest to just put EXTRN declarations of far symbols outside
all segments. For example, suppose that FILE1.ASM contains

.FARDATA
FilelVariable DB 0

Then ifFILE1.ASM is linked to FILE2.ASM, which contains

Chapter 7, Interfacing Turbo Assembler with Turbo C 293

• DATA
EXTRN FilelVariable:BYTE
• CODE

Start PROC
mov ax,SEG FilelVariable
mov ds,ax

SEG Filel Variable will not return the correct segment. The EXTRN
directive is placed within the scope of the DATA directive of
FILE2.ASM, so Turbo Assembler considers FilelVariable to be in
the near DATA segment of FILE2.ASM, rather than in the
FARDATA segment.

The following code for FILE2.ASM allows SEG Filel Variable to
return the correct segment:

• DATA
@eurseg ENDS

EXTRN FilelVariable:BYTE
.CODE

Start PROC
mov ax,SEG FilelVariable
mov ds,ax

The trick here is that the @curseg ENDS directive ends the .DATA
segment, so no segment directive is in effect when Filel Variable is
declared external.

Linker .command line The simplest way to link Turbo C modules with Turbo Assembler
modules is to enter a single Turbo C command line and let Turbo
C do all the work. Given the proper command line, Turbo C will
compile the C code, invoke Turbo Assembler to do the
assembling, and invoke TLINK to link the object files into an
executable file. Suppose, for example, that you have a program
consisting of the C files MAIN.C and ST AT.C and the assembler
files SUMM.ASM and DISPLAY.ASM. The command line

294

tee main stat summ.asm display.asm

compiles MAIN.C and STAT.C, assembles SUMM.ASM and
DISPLAY.ASM, and links all four object files, along with the C
start-up code and any required library functions, into MAIN.EXE.
You only need remember the .ASM extensions when typing your
assembler file names.

Turbo Assembler User's Guide

Between Turbo
Assembler and

Turbo C

Parameter-passing

Read about Pascal calling
conventIons on page 307.

If you use TLINK in stand-alone mode, the object files generated
by Turbo Assembler are standard object modules and are treated
just like C object modules.

Now that you understand how to build and link C-compatible
assembler modules, you need to learn what sort of code you can
put into C-callable assembler functions. There are three areas to
examine here: receiving passed parameters, using registers, and
returning values to the calling code.

Turbo C passes parameters to functions on the stack. Before
calling a function, Turbo C first pushes the parameters to that
function onto the stack, starting with the rightmost parameter and
ending with the leftmost parameter. The C function call

Test (i, j, 1);

compiles to

mov ax,l
push ax
push WORD PTR DGROUP:_j
push WORD PTR DGROUP: i
call NEAR PTR Test
add sp,6

in which you can clearly see the rightmost parameter, 1, being
pushed first, then j, and finally i.

Upon return from a function, the parameters that were pushed on
the stack are still there, but are no longer of any use. Consequent
ly, immediately following each function call, Turbo C adjusts the
stack pointer back to the value it contained before the parameters
were pushed, thereby discarding the parameters. In the previous
example, the three parameters of 2 bytes each take up 6 bytes of
stack space altogether, so Turbo C adds 6 to the stack pointer to
discard the parameters after the call to Test. The important point
here is that under C calling conventions, the calling code is
responsible for discarding the parameters from the stack.

Assembler functions can access parameters passed on the stack
relative to the BP register. For example, suppose the function Test
in the previous example is the following assembler function:

Chapter 7, Interfacing Turbo Assembler with Turbo C 295

Figure 7.4
state of the stack

Just before
executing Test's first

Instruction

296

. MODEL small
• CODE
PUBLIC Test

Test PROC
push bp
mov bp,sp
mov ax, [bp+4] jget parameter 1
add ax, [bp+6] jadd parameter 2 to parameter 1
sub ax, [bp+8] ;subtract parameter 3 from sum
pop bp
ret

Test ENDP
END

You can see that Test is getting the parameters passed by the C
code from the stack, relative to BP. (Remember that BP addresses
the stack segment.> But just how are you to know where to find the
parameters relative to BP?

Figure 7.4 shows what the stack looks like just before the first
instruction in Test is executed:

i = 25;
j = 4;
Test(i, j, 1) i

SP ., Return Address

SP+ 2 25 (I)

SP+ 4 4 (j)

SP+ 6 1

The parameters to Test are at fixed locations relative to SP,
starting at the stack location 2 bytes higher than the location of the
return address that was pushed by the call. After loading BP with
SP, you can access the parameters relative to BP. However, you
must first preserve BP, since the calling C code expects you to
return with BP unchanged. Pushing BP changes all the offsets on

Turbo Assembler User's Guide

Figure 7.5
state of the stack

after PUSH and
MOV

the stack. Figure 7.5 shows the stack after these lines of code are
executed:

push bp
mov bp,sp

SP

SP+ 2

SP+ 4

SP+ 6

SP+ 8

• Caller's BP • BP

Return Address BP+ 2

25 (I) BP+ 4

4 (j) BP+ 6

1 BP+ 8

This is the standard C stack frame, the organization of a function's
parameters and automatic variables on the stack. As you can see,
no matter how many parameters a C program might have, the
leftmost parameter is always stored at the stack address
immediately above the pushed return address, the next parameter
to the right is stored just above the leftmost parameter, and so on.
As long as you know the order and type of the passed parameters,
you always know where to find them on the stack.

Space for automatic variables can be reserved by subtracting the
required number of bytes from SP. For example, room for a 100-
byte automatic array could be reserved by starting Test with

push bp
mov bp,sp
sub sp,lOO

as shown in Figure 7.6.

Chapter 7, Interfacing Turbo Assembler with Turbo C 297

Figure 7.6
state of the stack
after PUSH. MOV.

and SUB

298

SP --I----BP - 100

SP + 100 ~ Caller's BP • BP

SP + 102 Return Address BP+ 2

SP + 104 25 (I) BP+ 4

SP+ 106 4 (j) BP+ 6

SP + 108 1 BP+ 8

Since the portion of the stack holding automatic variables is at a
lower address than BP, negative offsets from BP are used to
address automatic variables. For example,

mov BYTE PTR [bp-100],O

would set the first byte of the IOO-byte array you reserved earlier
to zero. Passed parameters, on the other hand, are always
addressed at positive offsets from BP.

While you can, if you wish, allocate space for automatic variables
as shown previously, Turbo Assembler provides a special version
of the LOCAL directive that makes allocation and naming of
automatic variables a snap. When LOCAL is encountered within a
procedure, it is assumed to define automatic variables for that
procedure. For example,

LOCAL LocalArray:BYTE:l00,LocalCount:WORD = AUTO_SIZE

defines the automatic variables LocalArray and LocalCount.
LocalArray is actually a label equated to [BP-I00], and LocalCount
is actually a label equated to [BP-I02], but you can use them as
variable names without ever needing to know their values.
AUTO _SIZE is the total number of bytes of automatic storage

Turbo Assembler User's Guide

required; you must subtract this value from SP in order to allocate
space for the automatic variables.

Here's how you might use LOCAL:

TestSub PROC
LOCAL LocaIArray:BYTE:100,LocaICount:WORD=AUTO_SIZE
push bp
mov bp,sp
sub sp,AUTO_SIZE
mov [LocaICount],10

mov cx, [LocalCount]
mov al,'A'
lea bx, [LocalArray]

FillLoop:
mov [bx],al
inc bx
loop FillLoop
mov sp,bp

pop bp
ret

TestSub ENDP

ipreserve caller's stack frame pointer
iset up our own stack frame pointer
;allocate room for automatic variables
iset local count variable to 10
i (LocalCount is actually [BP-102])

;get count from local variable
;we'll fill with character IIAII
ipoint to local array
; (LocalArray is actually [BP-100])

; fill next byte
ipoint to following byte
ido next byte, if any
;deallocate storage for automatic
; variables (add sp,AUTO_SIZE would
; also have worked)
;restore caller's stack frame pointer

In this example, note that the first field after the definition of a
given automatic variable is the data type of the variable: BYTE,
WORD, DWORD, NEAR, and so on. The second field after the
definition of a given automatic variable is the number of elements
of that variable's type to reserve for that variable. This field is
optional and defines an automatic array if used; if it is omitted,
one element of the specified type is reserved. Consequently,
LocalArray consists of 100 byte-sized elements, while LocalCount
consists of 1 word-sized element.

Also note that the LOCAL line in the preceding example ends with
=AUTO_SIZE. This field, beginning with an equal sign, is
optional; if present, it sets the label following the equal sign to the
number of bytes of automatic storage required. You must then use
that label to allocate and deallocate storage for automatic
variables, since the LCCAL directive only generates labels, and
doesn't actually generate any code or data storage. To put this
another way: LOCAL doesn't allocate automatic variables, but

Chaoter 7, Interfacing Turbo Assembler with Turbo C 299

Refer to Chapter 3 in the
Reference Guide for

additional Information about
both forms of the LOCAL

directive.

300

simply generates labels that you can readily use to both allocate
storage for and access automatic variables.

A very handy feature of LOCAL is that the labels for both the
automatic variables and the total automatic variable size are
limited in scope to the procedure they're used in, so you're free to
reuse an automatic variable name in another procedure.

As you can see, LOCAL makes it much easier to define and use
automatic variables. Note that the LOCAL directive has a
completely different meaning when used in macros, as discussed
in Chapter 9.

By the way, Turbo C handles stack frames in just the way we've
described here. You may well find it instructive to compile a few
Turbo C modules with the -S option and look at the assembler
code Turbo C generates to see how Turbo C creates and uses stack
frames.

So far, so good, but there are further complications. First of all,
this business of accessing parameters at constant offsets from BP
is a nuisance; not only is it easy to make mistakes, but if you add
another parameter, all the other stack frame offsets in the function
must be changed. For example, suppose you change Test to accept
four parameters:

Test (Flag, i, j, 1);

Suddenly i is at offset 6, not offset 4, j is at offset 8, not offset 6,
and so on. You can use equates for the parameter offsets:

Flag
AddParm1
AddParm2
SubParm1

EQU
EQU 6
EQU 8
EQU 10

mov ax, [bp+AddParm1]
add ax, [bp+AddParm2]
sub ax, [bp+SubParm1]

but it's still a nuisance to calculate the offsets and maintain them.
There's a more serious problem, too: The size of the pushed return
address grows by 2 bytes in far code models, as do the sizes of
passed code pointers and data pointer in far code and far data
models, respectively. Writing a function that can be easily
assembled to access the stack frame properly in any memory
model would thus seem to be a difficult task.

Turbo Assembler User's Guide

Look at Chapter 3 in the
Reference Guide for

additional information about
the ARG directive.

Fear not. Turbo Assembler provides you with the ARG directive,
which makes it easy to handle passed parameters in your
assembler routines.

The ARG directive automatically generates the correct stack
offsets for the variables you specify. For example,

arg FiIIArray:WORD,Count:WORD,FiIIValue:BYTE

specifies three parameters: FillArray, a word-sized parameter;
Count, a word-sized parameter, and FillValue, a byte-sized'
parameter. ARG actually sets the label FillArray to [BP+4]
(assuming the example code resides in a near procedure), the
label Count to [BP+6], and the label FillValue to [BP+8]. However,
ARG is valuable precisely because you can use ARG-defined labels
without ever knowing the values they're set to.

For example, suppose you've got a function FillSub, called from C
as follows:

main ()
{

jdefine ARRAY LENGTH 100
char TestArray[ARRAY_LENGTH]i

FiIISub(TestArray,ARRAY_LENGTH,'*')i

You could use ARG in FillSub to handle the parameters as follows:

FillSub PROC NEAR
ARG FiIIArray:WORD,Count:WORD,FiIIValue:BYTE
push bp ipreserve caller's stack frame
mov bp,sp iset our own stack frame
mov bx, [FiIIArray] iget pointer to array to fill
mov cx, [Count] iget length to fill
mov aI, [Fill Value] iget value to fill with

FillLoop:
mov [bx],al ifill a character
inc bx
loop Fi llLoop
pop bp
ret

FillSub ENDP

;point to next character
;do next character
;restore caller's stack frame

That's really all it takes to handle passed parameters with ARG.
Better yet, ARG automatically accounts for the different sizes of
near and far returns. Another convenience is that the labels
defined with ARG are limited in scope to the procedure they're
used in when you declare them using the local label prefix (see

Chapter 7, Interfacing Turbo Assembler with Turbo C 301

302

LOCALS in the Reference Guide}. So you need never worry about
conflict between parameter names in different procedures.

Preserving registers As far as Turbo C is concerned, C-callable assembler functions can
do anything they please, as long as they preserve the following
registers: BP, SP, CS, OS, and 55. While these registers can be
altered during the course of an assembler function, when the
calling code is returned, they must be exactly as they were when
the assembler function was called. AX, BX, CX, OX, ES, and the
flags can be changed in any way.

51 and 01 are special cases, since they're used by Turbo C as
register variables. If register variables are enabled in the C
module calling your assembler function, you must preserve 51
and 01; but if register variables are not enabled, 51 and 01 need
not be preserved.

It's good practice to always preserve 51 and 01 in your C-callable
assembler functions, regardless of whether register variables are
enabled. You never know when you might link a given assembler
module to a different C module, or recompile your C code with
register variables enabled, without remembering that your
assembler code needs to be changed as well.

Returning values A C-callable assembler function can return a value, just like a C
function. Function values are returned as follows:

Return Value Type

unsigned char
char
enum
unsigned short
short
unsigned int
int
unsigned long
long
float
double
long double
near"
far"

Return Value Location

AX
AX
AX
AX
AX
AX
AX
DX:AX
DX:AX
8087 top-of-stack (TOS) register (ST(O»
8087 top-of-stack (TOS) register (ST(O»
8087 top-of-stack (TOS) register (ST(O»
AX
DX:AX

In general, 8- and 16-bit values are returned in AX, and 32-bit
values are returned in DX:AX, with the high 16 bits of the value in

Turbo Assembler User's Guide

DX. Floating-point values are returned in ST(O), which is the
8087's top-of-stack (TOS) register, or in the 8087 emulator's TOS
register if the floating-point emulator is being used.

Structures are a bit more complex. Structures that are 1 or 2 bytes
in length are returned in AX, and structures that are 4 bytes in
length are returned in DX:AX. Three-byte structures and
structures larger than 4 bytes must be stored in a static data area,
and a pointer to that static data must then be returned. As with all
pointers, near pointers to structures are returned in AX, and far
pointers to structures are returned in DX:AX.

Let's look at a small model C-callable assembler function,
FindLastChar, that returns a pointer to the last character of a
passed string. The C prototype for this function would be

extern char * FindLastChar(char * StringToScan)i

where StringToScan is the nonempty string for which a pointer to
the last character is to be returned.

Here's FindLastChar:

.r-KlDEL small

. CODE
PUBLIC FindLastChar

FindLastChar PROC
push bp
mov bp,sp
cld iwe need string instructions to count up
mov ax,ds
mov es,ax iset ES to point to the near data segment
mov di, ipoint ES:DI to start of passed string
mov al,O ;search for the null that ends the string
mov cx,Offffh isearch up to 64K-l bytes
repnz scasb ilook for the null
dec di ipoint back to the null
dec di ipoint back to the last character
mov ax,di ireturn the near pointer in AX
pop bp
ret

FindLastChar ENDP
END

The final result, the near pointer to the last character in the passed
string, is returned in AX.

Chapter 7, Interfacing Turbo Assembler with Turbo C 303

304

Calling an
assembler

function from C
Now look at an example of Turbo C code calling a Turbo
Assembler function. The following Turbo Assembler module,
COUNT.ASM, contains the function LineCount, which returns
counts of the number of lines and characters in a passed string:

Small model C-callable assembler function to count the number
of lines and characters in a zero-terminated string.

Function prototype:
extern unsigned int LineCount(char * near StringToCount,

unsigned int near * CharacterCountPtr);
Input:

char near * StringToCount: pointer to the string on which
a line count is to be performed

unsigned int near * CharacterCountPtr: pointer to the
int variable in which the character count is
to be stored

NEWLINE EQU

DOSSEG

Dah ;the linefeed character is C's
; newline character

. MODEL small

. CODE
PUBLIC

LineCount
push
mov
push

mov
sub
mov

LineCountLoop:
lodsb
and
jz
inc
cmp
jnz
inc
jmp

EndLineCount:
inc

LineCount
PROC
bp
bp,sp
si

si, [bp+4]
cX,cx
dx,cx

ipreserve calling program's
i register variable, if any
ipoint SI to the string
;set character count to D
;set line count to D

;get the next character
al,al iis it null, to end the string?
EndLineCount iyes, we're done
cx ;no, count another character
al,NEWLINE ;is it a newline?
LineCountLoop ;no, check the next character
dx ;yes, count another line
LineCountLoop

dx ;count the line that ends with the
; null character

Turbo Assembler User's Guide

mov bx, [bp+6) ipoint to the location at which to
i return the character count

mov [bx),cx iset the character count variable
mov ax,dx ireturn line count as function value
pop si irestore calling program's register

i variable, if any
pop bp
ret

LineCount ENDP
END

The following C module, CALLCT.C, is a sample invocation of
the LineCount function:

char * TestString="Line 1 \nline 2\nline 3" i
extern unsigned int LineCount(char * StringToCount,

unsigned int * CharacterCountPtr)i
main ()
{

unsigned int LCounti
unsigned int CCounti

LCount = LineCount(TestString, &CCount)i
printf("Lines: %d\nCharacters: %d\n", LCount, CCount)i

The two modules are compiled and linked together with the·
command line

tcc -ms callct count.asm

As shown here, LineCount will only work when linked to small
model C programs, since pointer sizes and locations on the stack
frame change in other models. Here's a version of LineCount,
COUNTLG.ASM, that will work with large-model C programs
(but not small-model ones, unless far pointers are passed, and
LineCount is declared far):

i Large model C-callable assembler function to count the number
of lines and characters in a zero-terminated string.

Function prototype:
extern unsigned int LineCount(char * far StringToCount,

unsigned int * far CharacterCountPtr)i
char far * StringToCount: pointer to the string on which

a line count is to be performed

unsigned int far * CharacterCountPtr: pointer to the
int variable in which the character count
is to be stored

Chapter 7, Interfacing Turbo Assembler with Turbo C 305

306

NEWLINE EQU Oah ithe linefeed character is C's newline
i character

.MODEL large
• CODE
PUBLIC

LineCount
push
mov
push

push
Ids
sub
mov

LineCountLoop:
lodsb
and
jz
inc
cmp
jnz
inc
jmp

EndLineCount:
inc

les

mov
mov

pop
pop

LineCount
PROC
bp
bp,sp
si

ds
si, [bpt6]
cx,cx
dx,cx

ipreserve calling program's
i register variable, if any
ipreserve C's standard data seg
ipoint DS:SI to the string
iset character count to 0
iset line count to 0

iget the next character
al,al iis it null, to end the string?
EndLineCount iyes, we're done
cx ino, count another character
al,NEWLINE iis it a newline?
LineCountLoop ino, check the next character
dx iyes, count another line
LineCountLoop

dx

bx, [bp+10]

es:[bx],cx
ax,dx

ds
si

icount line ending with null
i character
ipoint ES:BX to the location at
i which to return char count
iset the char count variable
ireturn the line count as
i the function value
irestore C's standard data seg
irestore calling program's
i register variable, if any

pop bp
ret

LineCount ENDP
END

COUNTLG.ASM can be linked to CALLCT.C with the following
command line:

tcc -ml callct countlg.asm

Turbo Assembler User's Guide

Pascal calling
conventions

See Chapter 8 for more
Information about Pascal

calling conventions.

So far, you've seen how C normally passes parameters to func
tions by having the calling code push parameters right to left, call
the function, and discard the parameters from the stack after the
call. Turbo C is also capable of following the conventions used by
Pascal programs in which parameters are passed from left to right
and the called program discards the parameters from the stack. In
Turbo C, Pascal conventions are enabled with the -p command
line option or the pascal keyword.

Here's an example of an assembler function that uses Pascal
conventions:

; Called as: TEST(i, j, k);

i equ 8 ;leftmost parameter
j equ
k equ 4 ;rightmost parameter

.MJDEL small

. CODE
PUBLIC TEST

TEST PROC
push bp
mov bp,sp
mov ax, [bp+i] ;get i
add ax, [bp+j] ;add j to i
sub ax, [bp+k] ;subtract k from the sum
pop bp
ret 6 ;return, discarding 6 parameter bytes

TEST ENDP
END

Figure 7.7 shows the stack frame after MOV BP,5P has been
executed.

Note that RET 6 is used by the called function to clear the passed
parameters from the stack.

Pascal calling conventions also require all external and public
symbols to be in uppercase, with no leading underscores. Why
would you ever want to use Pascal calling conventions in a C
program? Code that uses Pascal conventions tends to be
somewhat smaller and faster than normal C code, since there's no

Chapter 7, Interfacing Turbo Assembler with Turbo C 307

need to execute an ADD SP n instruction to discard the
parameters after each call.

Figure 7.7
state of the stack
Immediately after

MOVBP,SP
SP

SP+ 2

SP+ 4

SP+ 6

SP+ 8

Caller's BP -----BP

BP+ 2

BP+ 4

BP+ 6

BP+ 8

•
Return Address

k

Calling Turbo C from Turbo Assembler

308

Link in the C

Although it's most common to call assembler functions from C to
perform specialized tasks, you may on occasion want to call C
functions from assembler. As it turns out, it's actually easier to call
a Turbo C function from a Turbo Assembler function than the
reverse, since no stack-frame handling on the part of the
assembler code is required. Let's take a quick look at the
requirements for calling Turbo C functions from assembler.

startup code As a general rule, it's a good idea to only call Turbo C library
functions from assembler code in programs that link in the C
startup module as the first module linked. This "safe" class
includes all programs that are linked from TC.EXE or with a
TCC.EXE command line, and programs that are linked directly
with TLINK that have COT, COS, CDC, COM, COL, or COH as the
first file to link.

You should generally not call Turbo C library functions from
programs that don't link in the C startup module, since some
Turbo C library functions will not operate properly if the startup
code is not linked in. !fyou really want to call Turbo C library
functions from such programs, we suggest you look at the startup

Turbo Assembler User's Guide

Make sure you've
got the right

segment setup

Performing the
call

source code (the file CO.ASM on the Turbo C distribution disks)
and purchase the C library source code from Borland, so you can
be sure to provide the proper initializa tion for the library
functions you need. Another possible approach is to simply link
each desired library function to an assembler program, called
X.ASM for instance, which does nothing but call each function,
linking them together with a command line like this:

tlink x,x"cm.lib

where m is the first letter of the desired memory model (t for tiny,
5 for small, and so on). If TLINK reports any undefined symbols,
then that library function can't be called unless the C startup code
is linked into the program.

Note: Calling user-defined C functions that in turn call C library
functions falls into the same category as calling library functions
directly; lack of the C startup can potentially cause problems for
any assembler program that calls C library functions, directly or
indirectly.

As we learned earlier, you must make sure that Turbo C and
Turbo Assembler are using the same memory model and that the
segments you use in Turbo Assembler match those used by Turbo
C. Refer to the previous section, "The framework," (page 282) if
you need a refresher on matching memory models and segments.
Also, remember to put EXTRN directives for far symbols either
outside all segments or inside the correct segment.

You've already learned how Turbo C prepares for and executes
fu.TIction calls in the section "Calling Turbo Assembler functions
from Turbo C" on page 281. We'll briefly review the mechanics of
C function calls, this time from the perspective of calling Turbo C
functions from Turbo Assembler.

All you need to. do when passing parameters to a Turbo C
function is push the rightmost parameter first, then the next
rightmost parameter, and so on, until the leftmost parameter has
been pushed. Then just call the function. For example, when
programming in Turbo C, to call the Turbo C library function
strcpy to copy SourceString to DestString, you would enter

Chapter 7, Interfacing Turbo Assembler with Turbo C 309

310

strcpy(DestString, SourceString);

To perform the same call in assembler, you would use

lea ax,SourceString
lea bx,DestString
push ax
push bx
call _strcpy
add sp,4

;rightmost parameter
;leftmost parameter
;push rightmost first
;push leftmost next
;copy the string
;discard the parameters

Don't forget to discard the parameters by adjusting SP after the
call.

You can simplify your code and make it language independent at
the same time by taking advantage of Turbo Assembler's CALL
instruction extension:

call destination [language [,argl] •••]

where language is C, PASCAL, BASIC, FORTRAN, PROLOC or
NOLANGUAGE, and arg is any valid argument to the routine
that can be directly pushed onto the processor stack.

Using this feature, the preceding code can be reduced to

lea ax,SourceString
lea bx,DestString
call strcpy c,bx,ax

Turbo Assembler automatically inserts instructions to push the
arguments in the correct order for C (AX first, then BX), performs
the call to _strcpy (Turbo Assembler automatically inserts an
underscore in front of the name for C), and cleans up the stack
after the call.

If you're calling a C function that uses Pascal calling conventions,
you have to push the parameters left to right and not adjust SP
afterward:

lea bx,DestString
lea ax,SourceString
push bx
push ax
call STRCPY

;leftmost parameter
;rightmost parameter
;push leftmost first
;push rightmost next
;copy the string
;leave the stack alone

Again, you can use Turbo Assembler's CALL instruction extension
to simplify your code:

lea bx,DestString ;leftmost parameter

Turbo Assembler User's Guide

Calling a Turbo C
function from

Turbo Assembler

lea ax,SourceString irightmost parameter
call strcpy pascal,bx,ax

Turbo Assembler automatically inserts instructions to push the
arguments in the correct order for Pascal (BX first, then AX) and
performs the call to STRCPY (converting the name to all
uppercase, as is the Pascal convention).

Of course, the last example assumes that you've recompiled
strcpy with the -p switch, since the standard library version of
strcpy uses C rather than Pascal calling conventions. C functions
return values as described in the section "Returning values" (page
302); 8- and 16-bit values in AX, 32-bit values in OX:AX, floating
point values in the 8087 TOS register, and structures in various
ways according to size.

Rely on C functions to preserve the following registers and only
the following registers: 51, 01, BP, OS, 55, SP, and CS. Registers
AX, BX, CX, OX, ES, and the flags may be changed arbitrarily.

One case in which you might wish to call a Turbo C function from
Turbo Assembler is when you need to perform complex
calculations. This is especially true when mixed integer and
floating-point calculations are involved; while it's certainly
possible to perform such operations in assembler, it's simpler to
let C handle the details of type conversion and floating-point
arithmetic.

Let's look at an example of assembler code that calls a Turbo C
function in order to get a floating-point calculation performed. In
fact, let's look at an example in which a Turbo C function passes a
series of integer numbers to a Turbo Assembler function, which
sums the numbers and in turn calls another Turbo C function to
perform the floating-point calculation of the average value of the
series.

The C portion of the program in CALCA VG.C is

extern float Average(int far * ValuePtr, int NumberOfValues)i
'define NUMBER_OF_TEST_VALUES 10

1, 2, 3, 4, 5, 6, 7, 8, 9, 10
} i

main ()
{

Chapter 7. Interfacing Turbo Assembler with Turbo C 311

312

printf("The average value is: %f\n",
Average(TestValues, NUMBER_OF_TEST_VALUES))i

float IntDivide(int Dividend, int Divisor)
(

return ((float) Dividend / (float) Divisor)i

and the assembler portion of the program in A VERAGE.ASM is

Turbo C-callable small-model function that returns the average
of a set of integer values. Calls the Turbo C function
IntDivide() to perform the final division.

Function prototype:
extern float Average(int far * ValuePtr, int NumberOfValues)i

Input:
int far * ValuePtr:
int NumberOfValues:

ithe array of values to average
ithe number of values to average

• MODEL small
EXTRN IntDivide:PROC
• CODE
PUBLIC

_Average
push
mov
les
mov
mov

AverageLoop:
add
add
loop
push

_Average

push
call
add
pop
ret

END

_Average
PROC
bp
bp,sp
bx, [bp+4]
cx, [bp+8]
ax,O

ax,es: [bx]
bx,2
AverageLoop
WORD PTR [bp+8]

ipoint ES:BX to array of values
it of values to average
iclear the running total

iadd the current value
ipoint to the next value

iget back the number of values
i passed to IntDivide as the
i rightmost parameter

ax ipass the total as the leftmost parameter
_IntDivide ;calculate the floating-point average
sp,4 ;discard the parameters
bp

;average is in 8087's TOS register
ENDP

The C main function passes a pointer to the array of integers
TestValues and the length of the array to the assembler function
Average. Average sums the integers, then passes the sum and the

Turbo Assembler User's Guide

number of values to the C function IntDivide. IntDivide casts the
sum and number of values to floating-point numbers and
calculates the average value, doing in a single line of C code what
would have taken several assembler lines. IntDivide returns the
average to Average in the 8087 TOS register, and Average just leaves
the average in the TOS register and returns to main.

CALCAVG.C and AVERAGE.ASM could be compiled and linked
into the executable program CALCA VG.EXE with the command

tee ealeavg average.asm

Note that Average will handle both small and large data models
without the need for any code change, since a far pointer is
passed in all models. All that would be needed to support large
code models (huge, large, and medium) would be use of the
appropriate .MODEL directive.

Taking full advantage of Turbo Assembler's language
independent extensions, the assembly code in the previous
example could be written more concisely as

DOSSEG
. MODEL small,C
EXTRN C IntDivide:PROC
.CODE
PUBLIC C Average

Average PROC C ValuePtr:DWORD,NumberOfValues:WORD
les bx,ValuePtr
mov cx,NumberOfValues
mov ax,O

AverageLoop:
add ax,es:[bx]
add bx,2 ipoint to the next value

AverageLoop loop
call
ret

IntDivide C,ax,NumberOfValues

Average
END

ENDP

Chapter 7, Interfacing Turbo Assembler with Turbo C 313

314 Turbo Assembler User's Guide

c H A p T E R

8

Interfacing Turbo Assembler with Turbo
Pascal

Unless a version number is
stated specifically. when

referring to Turbo Pascal, we
mean versions 4.0 and

greater.

Turbo Assembler provides extensive and powerful facilities to let
you add assembly language code to your Turbo Pascal programs.
In this chapter, we'll tell you everything you need to know to
make full use of these facilities, including lots of examples and
"inside" information.

Why use Turbo Assembler with Turbo Pascal? Most of the
programs you're likely to write can be written entirely in Turbo
Pascal. Unlike most Pascals, Turbo Pascal lets you access virtually
all of your machine's resources directly through the Port[], Mem[],
MemW[], and MemL[] arrays, and you can call the BIOS and
operating system with the IntrO and MsDosO procedures.

Why, then, would you want to use assembly language with Turbo
Pascal? The two most likely reasons: to perform the relatively few
operations that are not directly available from Turbo Pascal and to
take advantage of the raw speed that only assembly language can
provide. (Turbo Pascal itself is so quick because it is written in
assembly language.) This chapter shows you how and when to
harness the power of assembly language with Turbo Pascal.

The Turbo Pascal memory map

Before you can begin writing assembly language code to work
with Turbo Pascal programs, it's important to understand how the

Chapter 8, Interfacing Turbo Assembler with Turbo Pascal 315

Figure 8.1
Memory map of a

Turbo Pascal 5.0
program

316

The program
segment prefix

compiler lays out information in memory. The Turbo Pascal
memory model embodies aspects of both the medium and the
large models, which are described in Chapter 5. There is a single
global data segment, allowing fast access to global variables and
typed constants through DS. However, each unit has its own code
segment, and the heap can grow to use all available memory.
Addresses in Turbo Pascal are always passed as far (32-bit)
pointers so that they can reference objects anywhere in memory.

The memory map of a Turbo Pascal program looks like this:

os

SS

Heap
Ptr

~

Low Memory

Program Segment Prefix
(256 Bytes)

Main Program Code Segment

Last Unit Code Segment

.
First Unit Code Segment

Run Time Library Code Segment

Typed Constants

-

--------------------------------Global Variables

t
Stack (Grows downward)

Heap (Grows upward)

t
t

Heap "free list" (Grows downward)

High Memory

Maximum
code segment
si.ze: 64K

___ End of . EXE
file

~t9c~ Sii:~
Minimum: 1K
Default: 16K
Maximum: 64K

No size limit

Maximum free
list size: 64K

The program segment prefix (PSP) is a 256-byte area created by MS
DOS when the program is loaded. Among other things, it contains

Turbo Assembler User's Guide

Code segments

The global data

infonnation about command-line parameters used to invoke the
program, the amount of available memory, and the DOS
environment (a list of string variables used by DOS).

In Turbo Pascal 3.0, the segment address of the PSP was the same
as that of all the rest of the code. This is no longer the case. In
Turbo Pascal versions 4.0 and later, the main program, t~e units it
uses, and the run-time library all occupy different segments.
Turbo Pascal therefore stores the segment address of the PSP in a
predeclared global variable called PrefixSeg, so that you can gain
access to PSP infonnation.

Every Turbo Pascal program has at least two code segments: one
for the code of the main program and one for the run-time library .
In addition, each unit's code occupies a separate code segment.
Since each code segment can be up to 64K in size, your program
can occupy as much memory as you want (subject, of course, to
what is available on the machine). Programmers who fonnerly
used overlays to generate programs larger than 64K can now keep
all the code in memory for faster execution. Viewed from Turbo
Assembler, the code segment into which an assembly language
module is linked has the name CODE, or CSEG.

segment Turbo Pascal's global data segment follows the run-time library
code segment. It contains up to 64K of initialized and uninitial
ized data: typed constants and global variables. As in Turbo Pascal
3.0, typed constants are really not constants at all, but variables
that start with a pre-initialized value when the program is loaded.
But unlike Turbo Pascal 3.0, Turbo Pascal 4.0 does not place typed
constants in the code segment. Instead, Turbo Pascal 4.0 places
typed constants in the global data segment, where it can access
them even more quickly than Turbo 3.0 could. The global data
segment has the name DATA, or DSEG, when it's referenced from
a Turbo Assembler module.

The stack
In Turbo Pascal 4.0 and later, the global data segment is above the
stack. Note that this arrangement is different from the one used in
Turbo Pascal 3.0. The stack and heap do not grow toward each

Chapter 8, Interfacing Turbo Assembler with Turbo Pascal 317

The heap

other. Instead, a fixed amount of memory is alloca ted for the
stack. The default size, 16K, is more than enough for the vast
majority of programs; however, you can specify a stack size as
small as 1K (for short programs) or as large as 64K (for programs
with a lot of recursion). Stack and heap sizes can be selected with
the $m compiler directive.

As in most 80x86 programs, the stack pointer starts at the top of
the stack segment and grows downward. Whenever a procedure
or function is called, Turbo Pascal normally checks to make sure
that the stack is not exhausted. This check can be turned off with
the {$s-} compiler directive.

At the top of the Turbo Pascal memory map is the heap. By
default, the heap takes up all memory not allocated for the code,
data, and stack segments, but the $m directive can be used to limit
the maximum size of the heap. (It can also be used to prevent the
program from running if a minimum amount of heap space is not
available.)

Storage is allocated dynamically on the heap, beginning from the
bottom, each time you do a NewO or GetMemO. Space is freed
when you do a Dispose, Release, or FreeMem. When Dispose and
FreeMem are used, Turbo Pascal 4.0 keeps track of free areas in the
middle of the heap using a data structure called a free list. The free
list, which can be up to 64K in size, grows downward from the
very top of the heap area.

Register use in Turbo Pascal

318

Like Turbo Pascal 3.0, Turbo Pascal 4.0 imposes a minimum of
restrictions on register use. When a call is made to a function or
procedure, the values of only three registers must be preserved:
stack segment (S5), data segment (DS), and base pointer (BP). DS
points to the global data segment (called DATA), and SS points to
the stack segment. BP is used by each procedure or function to
reference its activation record-the stack space it uses for
parameters, local variables, and temporary storage. All sub
programs must also adjust the stack pointer (SP) before exiting, so
that the parameters no longer remain on the stack.

Turbo Assembler User's Guide

Near or for?

Any subprogram can be
forced to be for by the {Sf+J

compiler directive.

Because a Turbo Pascal program contains multiple code segments,
it uses a mixture of near and far calls to access procedures and
functions. What's the difference? Well, a near call can only be used
to access a subprogram that resides in the same code segment
where the call. is made, while a far call can access a subprogram
anywhere in memory. This flexibility incurs a small penalty,
however: A far call takes a bit more time and space than a near
call.

Each subprogram in your Turbo Pascal program must be written
(either by the compiler or by you) to be called in only one of these
two ways. Which should you choose? Subprograms declared in
the Interface section of a unit must always be far so that they can
be called from other units. But subprograms declared in the main
program, or declared only in the Implementation section of a unit,
are usually near.

When you write assembly language routines to interface with
Turbo Pascal, you must check to make sure that your routine has
the correct "distance." Turbo Pascal does not report an error if
you declare a PROC as near in assembly language when the
corresponding external procedure declaration is positioned in
such a way that it needs to be far.

Sharing information with Turbo Pascal

The $1 compiler
directive and

external
subprograms

The two keys to using Turbo Assembler with Turbo Pascal are the
{$l} compiler directive and the external subprogram declaration.
The directive {$l MYFILE.OBJ} causes Turbo Pascal to look for
MYFILE.OBJ, a file in standard MS-DOS linkable object format, and
link it into your Turbo Pascal program. If the file name given in
the {$l} directive does not have an extension, .OBI is assumed.

Each Turbo Assembler procedure or function that you want to be
visible within the Turbo Pascal program must be declared as a
PUBLIC symbol, and must have a corresponding external
declaration within that program. The syntax of an external

Chapter 8, Interfacing Turbo Assembler with Turbo Pascal 319

320

procedure or function declaration in Turbo Pascal is very similar
to that of a forward declaration:

procedure AsmProc(a : Integer; b : Real); eztetnal;

function AsmFunc(c : Word; d : Byte); ezteInll;

These declarations might correspond to the following declarations
within your Turbo Assembler program:

CODE SEGMENT BYTE PUBLIC
AsmProc PROC NEAR

PUBLIC AsmProc

AsmProc ENDP

AsmFunc PROC FAR
PUBLIC Bar

AsmFunc ENDP
CODE ENDS

A Turbo Pascal external procedure declaration must be at the
outermost level of the program or unit; that is, it may not be
nested within another procedure declaration. An attempt to
declare an external procedure at any other level will cause a
compile-time error.

1111" Turbo Pascal does not check to make sure that PROCs declared
with the near and far attributes correspond to near and far
subprograms in your Turbo Pascal program. In fact, it does not
even check to see whether the public labels AsmProc and AsmFunc
are the names of PROCs. It is up to you to make sure that the
assembly language and Pascal declarations are consistent.

The PUBLIC
directive Only labels that are declared PUBLIC in an assembly language

module are visible to Turbo Pascal. Labels are the only objects
that can be exported from assembly language to Turbo Pascal.
Further, every label that is made PUBLIC must have a
corresponding procedure or function declaration in the Turbo
Pascal program, or the compiler will report an error. A public
label need not be part of a PROC declaration. As far as Turbo
Pascal is concerned,

AsmLabel PROC FAR
PUBLIC Bar

Turbo Assembler User's Guide

The EXTRN
directive

This Includes variables
declared after the {$I}

complier directive and the
extemal declarat/on(s)

associated with the module.

and

AsmLabel:
PUBLIC Bar

are equivalent.

A Turbo Assembler module can access any Turbo Pascal
procedure, function, variable, or typed constant that is declared at
the outermost level of the program or unit to which it is linked.
Turbo Pascal labels and ordinary constants are not visible to the
assembly language.

Suppose your Turbo Pascal program declares the following global
variables:

var
a : Byte;
b : Word;
c Shortint;
d : Integer;
e : Real;
f : Single;
g : Double;
h : Extended;
i : Comp;

: Pointer;

You can access any of these variables inside your assembly
language program with EXTRN declarations, as follows:

EXTRN A : BYTE ;1 byte
EXTRN B : WORD ;2 bytes
EXTRN C : BYTE ;Assembly language treats signed & unsigned alike
EXTRN D : WORD ;Ditto
EXTRN E : FWORD ;6-byte software real
EXTRN F : DWORD ;4-byte IEEE floating point
EXTRN G : QWORD ;8-byte IEEE double-precision floating point
EXTRN H : TBYTE ;10-byte IEEE temporary floating point
EXTRN I : QWORD ;8087 8-byte signed integer
EXTRN J : DWORD ;Turbo Pascal pointer

You can access Turbo Pascal procedures and functions-including
library routines-in a similar manner. Suppose you have a Turbo
Pascal unit that looks like this:

unit Sample;
{ Sample unit that defines several pascal procedures that are

Chapter 8. Interfacing Turbo Assembler with Turbo Pascal 321

322

called from an assembly language procedure.

interface

procedure TestSample;

procedure PublicProc; {Must be far since it's visible outside I

ilIpleaentation

var
A : word;

procedure AsmProc; exte~l;
{$L ASMPROC.OBJI

procedure PublicProc;
begin (PublicProc I

Writeln('In PublicProc');
end; {PublicProc I

procedure NearProc; { Must be near
begin (NearProc I

Writeln('In NearProc');
end; {NearProc I

{$F+I
procedure FarProc; { Must be far due to compiler directive

begin (FarProc I
Writeln('In FarProc');

end; {FarProc I

{$F-I

procedure TestSample;
begin { TestSample }

Writeln('In TestSample');
A := 10;
Writeln('Value of A before ASMPROC = , ,A);
AsmProc;
Writeln('Value of A after ASMPROC = , ,A);

end { TestSample I;

end.

The procedure AsmProc can call procedures PublicProc, NearProc,
or FarProc by using EXTRN directives as follows:

DATA SEGMENT WORD PUBLIC
ASSUME DS:DATA
EXTRN A:WORD

DATA ENDS

CODE SEGMENT BYTE PUBLIC
ASSUME CS:CODE

;variable from the unit

EXTRN PublicProc: FAR ;far procedure

Turbo Assembler User's Guide

Restrictions on using
EXTRN objects

; (exported by the unit)
EXTRN NearProc: NEAR ;near procedure (local to unit)
EXTRN FarProc : FAR ifar procedure

AsmProc PROC NEAR
PUBLIC AsmProc

AsmProc
CODE

call FAR PTR PublicProc
call NearProc
call
mov
sub
mov
ret
ENDP
ENDS
END

FAR PTR FarProc
cx,ds:A
cx,2
ds:A,cx

; (local but forced far)

;pull in var A from the unit
;do something to change it
;store it back

The main program that tests this Pascal unit and assembler code
follows:

proqraa TSample; u... Sample;
begin

TestSample;
end.

To build the sample program with the command -line compiler
and the assembler, use the following batch file commands:

TASM ASMPROC
TPC /B TSAMPLE
TSAMPLE

Since an external subprogram must be declared at the outermost
procedural level of your Turbo Pascal program, you can't use
EXTRN declarations to access objects that are local to a procedure
or function. However, your Turbo Assembler subprogram can
receive these objects as value or var parameters when it's called
from Turbo Pascal.

Turbo Pascal's qualified identifier syntax, which uses a unit name
followed by a period to access an object in a specific unit, is not
compatible with Turbo Assembler's syntax rules and will
therefore be rejected. The declaration

EXTRN SYSTEM.Assign : FAR

produces a Turbo Assembler error message.

Chapter 8, Interfacing Turbo Assembler with Turbo Pascal 323

324

Using segment
fixups

There are two other minor restrictions on the use of EXTRN
objects with Turbo Pascal. The first is that references to
procedures and functions cannot use address arithmetic. Thus, if
you declare

EXTRN PublicProc : FAR

you can't write a statement such as

call 'PublicProc + 42

The second restriction is that the Turbo Pascal linker will not
recognize operators that chop words into bytes, so you cannot
apply these operators to EXTRN objects. For instance, if you
declare

EXTRN i : WORD

you can't use the expressions LOW i or HIGH i in your Turbo
Assembler module.

Turbo Pascal generates .EXE files, which can be loaded at any
available address in your PC's memory. Since the program cannot
know in advance where a given segment of your program will be
loaded, the linker tells the DOS .EXE loader to fix up all references
to segments in your program when it is loaded. After the fixups
are done, all references to segments (such as CODE and DATA)
contain the correct values.

Your Turbo Assembler code can use this facility to obtain the
segment addresses of objects at run time. For instance, suppose
your program needs to change the value of DS, but you don't
want to spend the cycles required to save the original contents on
the stack or move them to a temporary location. Instead, you can
use the Turbo Assembler SEG operator as follows:

mov ax,SEG DATA iget actual address of Turbo Pascal's global DS
mov ds,ax iput it in DS for Turbo Pascal to use

When your Turbo program is loaded, DOS will plug the correct
value for SEG DATA right into the immediate operand field of the
MOV instruction. This is the fastest way to reload the segment
register.

Turbo Assembler User's Guide

Dead code
elimination

This technique is also necessary to allow interrupt service routines
to save information in Turbo Pascal's global data segment. DS will
not necessarily contain Turbo Pascal's DS at interrupt time, but
the preceding sequence can be used to gain access to Turbo Pascal
variables and typed constants.

Turbo Pascal features dead code elimination, which means that it
does not include code for routines that are never executed when it
writes the final.EXE file. But, because it does not have complete
information about the contents of your Turbo Assembler
modules, Turbo Pascal can only perform limited optimization on
them.

Turbo Pascal will eliminate the code of an .OB} module if and only
if no calls are made to any visible procedure or function in that
module. Conversely, if any routine in the module is referenced,
the entire module stays.

1111" To make the most efficient use of Turbo's dead code elimination
feature, it's a good idea to break up your assembly language into
small modules with only a few routines each. Doing so will allow
Turbo to "trim the fat" from your finished program, if it can.

Turbo Pascal parameter-passing conventions

Value parameters

Turbo Pascal passes parameters using the CPU's stack (or, in the
case of Single, Double, Extended, or Comp value parameters, the
numeric processor's stack). Parameters are always evaluated and
pushed on the stack in the order they appear in the declaration of
the subprogram, from left to right. In this section, we'll explain
how these parameters are represented.

A value parameter is a parameter whose value cannot be changed
by the subprogram to which it is passed. Unlike many compilers,
Turbo Pascal does not blindly copy every value parameter onto
the CPU stack; the method used depends on the type, as we
explain in this and the ne~t few pages.

Chapter 8, Interfacing Turbo Assembler with Turbo Pascal 325

Scalar types Value parameters of all the scalar types (Boolean, Char, Shortint,
Byte, Integer, Word, Longint, subrange types, and enumerated
types) are passed as values on the CPU stack. If an object is 1 byte
in size, it is pushed as a full 16-bit word; however, the most
significant byte of that word contains no useful information. (This
byte cannot be relied on to be 0, as it could in Turbo Pascal
versions 3.0 and earlier.) If the object is 2 bytes in size, it is simply
pushed as is. If the object is 4 bytes long (a Longint), it is pushed
as two 16-bit words. As is standard on the 8088 family of
processors, the most-significant word is pushed first and occupies
the higher address on the stack.

Note that the Comp type, while it is an Integer type, is not
considered to be a scalar type for the purposes of parameter
passing. Thus, in Turbo Pascal 4.0, value parameters of this type
are passed on the 8087 stack, not the CPU stack. In Turbo Pascal
5.0, values of the Comp type are passed on the main CPU stack.

Reals Value parameters of the type Real (Turbo Pascal's 6-byte software
floating-point type) are passed as 6 bytes on the stack. This is the
only type larger than 4 bytes that is ever passed on the stack.

Single, Double,
Extended, and Comp:

The 8087 types

In Turbo Pascal 4.0, value parameters of the 8087 types are passed
on the coprocessor stack, not the CPU stack. Since the 8087 stack
is only eight levels deep, a Turbo Pascal 4.0 subprogram cannot
have more than eight 8087-type value parameters. Al18087-type
parameters must be popped from the numeric processor stack
before the subprogram returns.

Turbo Pascal 5.0 uses the same parameter-passing conventions for
8087 values as Turbo C does: They are passed on the main CPU
stack with the other parameters.

Pointers Value parameters of all pointer types are pushed directly on the
stack as far pointers-first a word containing the segment, then
another containing the offset. The segment occupies the higher
address, in accordance with Intel conventions. Your Turbo
Assembler program can use the LOS or LES instruction to retrieve
a pointer parameter.

326 Turbo Assembler User's Guide

Strings

For more Information, refer to
Chapter 13, "Overlays," In

the Turbo Pascal Reference
Guide (5.0).

Records and arrays

Sets

For more information, refer to
Chapter 13, "Overlays," in

the Turbo Pascal Reference
Guide (5.0).

Variable
parameters

String parameters, regardless of size, are usually not pushed on
the stack. Instead, Turbo Pascal pushes a far pointer to the string.
It's the responsibility of the called subprogram not to change the
string referenced by the pointer; the subprogram must make and
work on a copy of the string, if necessary.

The only exception to this rule is when a routine in overlaid unit
A passes a string constant as a value parameter to a routine in
overlaid unit B. In this context, an overlaid unit means any unit
compiled with ($o+} (Overlays Allowed). In this case, temporary
storage is reserved on the stack for the string constant before the
call is made and the stack address is passed to the routine in unit
B.

Records and arrays that are exactly I, 2, or 4 bytes long are
duplicated directly onto the stack when they are passed as value
parameters. If an array or record object is any other size
(including 3 bytes), a pointer to it is pushed instead. In the case of
records and arrays that aren't 1,2, or 4 bytes long, the subpro
gram must make a local copy of the structure if it modifies it.

Sets, like strings, are usually not pushed verbatim on the stack.
Instead, a pointer to the set is pushed. The pointer received by the
subprogram will point to a "normalized" 32 byte representation
of the set. The first bit of the lowest byte of this set will always
correspond to the element of the base type (or its parent type)
with the ordinal value O. .

The only exception to this rule is when a routine in overlaid unit
A passes a set constant as a value parameter to a routine in
overlaid unit B. In this context, an overlaid unit means any unit
compiled with ($O+} (Overlays Allowed). In this case, temporary
storage is reserved on the stack for the set constant before the call
is made and the stack address is passed to the routine in unit B.

All var parameters are passed exactly the same way: as far
pointers to their actual locations in memory.

Chapter 8, Interfacing Turbo Assembler with Turbo Pascal 327

Stack
maintenance

If you use the .MODEL, PROC,
and ARG directives, the

assembler automatically
adds the number of

parameter bytes to be
popped to all RET Instructions.

Accessing
oarameters

When cdmputing parmater
locations, take Into account
any registers whose contents

you might have pushed.

Using BP to address the
stack

328

Turbo Pascal expects that all parameters on the main CPU stack
will be removed before a subprogram returns.

There are two ways to adjust the stack. You can use the RETN
instruction (where N is the number of bytes of parameters
pushed), or you can save the return address in registers (or in
memory) and pop the parameters off one by one. The popping
technique is useful when you're optimizing for speed on the 8086
and 8088 (the slowest processors in the family), where base-plus
offset addressing costs eight cycles (minimum) per access. It can
also save space, since a POP instruction takes only a single byte.

When your Turbo Assembler routine receives control, the top of
the stack contains a return address (two or four words, depending
on whether the routine is near or far) and, above it, any
parameters being passed.

There are three basic techniques for accessing the parameters
passed to your Turbo Assembler routine by Turbo Pascal. You can

• use the BP register to address the stack
• use another base or index register to get the parameters

• pop the return address, then pop the parameters

The first and second techniques are somewhat complicated, and
we cover them in the next two sections. The third technique
involves popping the return address into a safe place and then
popping the parameters into registers. This technique works best
when your routine does not require any local variable space.

The first (and most often used) technique for accessing the
parameters passed from Turbo Pascal to Turbo Assembler is to
use the BP register to address the stack, like this:

CODE SEGMENT
ASSUME cs:CODE

MyProc PROC FAR
PUBLIC MyProc
EQU WORD PTR [bp+6]
EQU WORD PTR [bp+8]
push bp

iprocedure MyProc(i,j : integer)i

ij above saved BP & return address
ii just above j
iffiust preserve caller's BP

Turbo Assembler User's Guide

mov bp,sp
mov ax,i

imake BP point to top of stack
iaddress i via BP

In computing the stack offsets of parameters to be accessed in this
way, remember to allow 2 bytes for the saved BP register.

1111. Note the use of text equates for the parameters in this example.
These help to make the code more mnemonic. They have only one
minor drawback: Because only the eau directive can be used to
do this kind of equate (not the = directive), you will not be able to
redefine the symbols i and j again in the same Turbo Assembler
source file. One way to get around this is to use more descriptive
parameter names so that they do not repeat; another is to
assemble each routine separately.

The ARG directive

When you access your parameters via the BP register, however,
Turbo Assembler provides an alternative to calculating stack
offsets and performing text equates-the ARG directive. Used
inside a PROC, the ARG directive automatically determines the
offsets of the parameters relative to BP. It also calculates the size
of the parameter block for use in the RET instruction. Because the
symbols created by the ARG directive are defined only within the
surrounding PROC, you do not need unique parameter names for
each procedure or function.

Here's how the preceding example looks rewritten with the ARG
directive:

CODE SEGMENT
ASSUME cs:CODE

MyProc PROC FAR ;procedure MyProc(i,j : integer); external;
PUBLIC MyProc
ARG j : WORD, i: WORD = RetBytes
push bp ;must preserve caller's BP
mov bp,sp ;make BP point to the top of the stack
mov ax,i iaddress i via BP

Turbo Assembler's ARG directive creates local symbols for the
parameters i and j. The line

ARG j: WORD, i : WORD = RetBytes

automatically equates the symbol i to [WORD PTR BP+6], the
symbol j to [WORD PTR BP+8], and the symbol RetBytes to the

Chapter 8, Interfacing Turbo Assembler with Turbo Pascal 329

number 4 (the size in bytes of the parameter block) for the
duration of the procedure. The values take into account both the
pushed BP and the size of the return address; if MyProc were a
NEAR PROC, i would have been equated to [BP+4], j to [BP+6],
and RetBytes would still have contained the value 4 (so that, in
either case, MyProc could end with the instruction RET RetBytes).

1111" When you use the ARG directive, remember to list the parameters
in reverse order. You would place the last parameter in the Turbo
Pascal procedure (or function) header first in the ARG directive,
and vice versa.

See Chapter 3 In the
Reference Guide for

complete Information on the
ARG directive.

.MODEL and Turbo
Pascal

Another precaution is in order when you use the ARG directive
with Turbo Pascal. Unlike some other languages, Turbo Pascal
always pushes a byte-sized value parameter as a full 16-bit
word-and you are responsible for telling Turbo Assembler about
the extra byte. For instance, suppose you wrote a function whose
Pascal declaration looked like this:

function MyProc(i,j : Char) : string; exter.oali

The ARG directive for this procedure would have to look
something like this:

ARG j : BYTE: 2, i : BYTE : 2 = RetBytes RETURNS result : DWORD

The: 2 after each argument is necessary to tell Turbo Assembler
that each character is pushed as an array of 2 bytes (where, in this
case, the upper byte of each pair holds no useful information).

In a function that returns a string (like the previous one), the
RETURNS option in the ARG directive lets you define a variable
that equates to a place on the stack that points to the temporary
function result (discussed shortly). The variable in the RETURNS
portion of ARG doesn't affect the size (in bytes) of the parameter
block.

The .MODEL directive with a parameter of TP ASCAL sets up
simplified segmentation, memory model, and language support.
Previously, you've seen how to set up an assembler program for
Pascal procedures and functions. Here's the same example
recoded to use the .MODEL and PROC directives:

.MODEL TPASCAL
• CODE

MyProc PROC FAR i:BYTE,j:BYTE RETURNS result:DWORD
PUBLIC MyProc
mov ax,i

330 Turbo Assembler User's Guide

ret

Notice that now you don't specify the parameters in reverse order
and a lot of other statements are not required. Using TPASCAL
with the .MODEL directive sets up Pascal calling conventions,
defines the segment names, does the PUSH BP and MOV BP,SP,
and also sets up the return with POP BP and RETN (where N is
the number of parameter bytes).

USing another base or The second way to access parameters is to use another base or
index register index register-BX, 51, or Ol-to get them from the stack.

Remember, however, that the default segment for these registers
is OS, not 55; you will have to use a segment override or change a
segment register to use them.

Here's how to use BX to get at your parameters:

CODE SEGMENT
ASSUME cs:CODE

MyProc PROC FAR iprocedure MyProc(i,j : integer)i
PUBLIC MyProc
EQU WORD PTR ss:[bx+4] ;j above return address
EQU WORD PTR ss: [bx+6] ;i just above j
mov bx,sp ;make BX point to top of stack
mov ax,i ;address i via BX

In routines where a small number of references are made to
parameters, this technique saves time and space. Why? Because
BX, unlike BP, need not be restored at the end of the routine.

Function results in Turbo Pascal

Turbo Pascal functions return their results in different ways
depending on the result type.

Scalar function results Function results of scalar types are returned in CPU registers.
Values of 1 byte are returned in AL, 2-byte values in AX, and
4-byte values in OX:AX (most-significant word in OX).

Chapter 8, Interfacing Turbo Assembler with Turbo Pascal 331

Real function results

8087 function results

String function results
Don't remove the function

result pointer from the stack:
Turbo Pascal expects it to be

available after the call.

Function results of Turbo Pascal's 6-byte software real type are
returned in three CPU registers. The most-significant word goes
in DX, the middle word in BX, and the least-significant word in
AX.

Function results of 8087 types are returned in the 8087's "top-of
stack" register, ST(O) (or just ST).

Function results of a string type are returned in a temporary area
allocated by Turbo Pascal before the call. A far pointer to this area
is pushed on the stack before the first parameter is pushed. Note
that this pointer is not part of the parameter list.

Pointer function results

Pointer function results are returned in DX:AX (segment:offset).

Allocating space for local data

Allocating private
static storage

332

Your Turbo Assembler routines can allocate space for their own
variables-both static (remaining between calls) and volatile
(disappearing after a call). We'll discuss how to do both in the
next two sections.

Turbo Pascal allows your Turbo Assembler program to reserve
space for static variables in the global data segment (DATA, or
DSEG). To allocate the space, simply use directives such as DB,
DW, and so on, like this:

DATA SEGMENT PUBLIC
MyInt DW?
MyByte DB?

DATA ENDS

iReserve a word
iReserve a byte

Two important restrictions apply to variables allocated by Turbo
Assembler in the global data segment. First, these variables are
private-they cannot be made visible to your Turbo Pascal

Turbo Assembler User's Guide

Allocating volatile
storage

The LOCAL directive Is used to
create symbols and allocate

space for local variables.

program (though you can pass pointers to them). Second, they
can't be pre-initialized, as typed constants are. The statement

MyInt DW 42 ithis will NOT initialize Mylnt to 42

will not cause an error when the module is linked into your Turbo
program, but Mylnt will not actually start with the value 42 when
the program is run.

You can get around these restrictions by declaring Turbo Pascal
variables or typed constants and using the EXTRN directive to
make them visible to Turbo Assembler.

Your Turbo Assembler routines can also allocate volatile storage
(local variables) on the stack for the duration of each call. This
storage must be reclaimed and the BP register restored before the
routine returns. In the following example, the procedure MyProc
reserves space for two integer variables, a and b:

CODE SEGMENT
ASSUME cs:CODE

MyProc PROC FAR iprocedure MyProc(i Integer)i
PUBLIC MyProc
LOCAL a : WORD, b : WORD = LocalSpace

ia at [bp-2], b at [bp-4]
i EQU WORD PTR [bp+6] iparameter i above saved BP

push bp
mov bp,sp
sub sp,LocalSpace
mov ax,42
mov a,ax
xor ax,ax
mov b,ax

mov sp,bp
pop bp
ret 2

MyProc ENDP
CODE ENDS

END

The statement

i and return address
imust preserve caller's BP
imake BP point to top of stack
imake room for the two words
iload A's initial value into AX
iand thence into A
iclear AX
iand initialize B to 0
ido whatever needs to be done
ithis restores the original SP
ithis restores the original BP
ithis pops the word parameter

LOCAL a : WORD, b : WORD = LocalSpace

Chapter 8, Interfacing Turbo Assembler with Turbo Pascal 333

equates the symbol a to [BP-2], the symbol b to [BP-4], and the
symbol LocalSpace to the number 4 (the size of the local variable
area) for the duration of the procedure. There is no corresponding
statement to create symbols that reference parameters, so you
must still equate i to [BP+6].

A more clever way to initialize local variables is to push their
values instead of decrementing SP. Thus, you might replace the
SUB SP, LocalSpace with

mov ax,42 iget the initial value for A
push ax iPut it in A
xor ax,ax izero AX
push ax iand move the zero into B

1111" If you use this method, be sure to keep careful track of the stack!
The symbols a and b should not be referenced before the pushes
are performed.

Other optimizations include using the PUSH CONST instructions
to initialize local variables (available on the 80186, 80286, and
80386), or saving BP in a register instead of pushing it (if there is a
register to spare).

Assembly language routines for Turbo Pascal

General-purpose
hex conversion

routine

334

In this section, we've provided some examples of assembly
language routines that you can call from a Turbo Pascal program.

The bytes at num are converted to a string of hex digits of length
(byteCount * 2). Since each byte produces two characters, the
maximum value of byteCount is 127 (not checked). For speed, we
use an add-daa-adc-daa sequence to convert each nibble to a hex
digit (1 nibble equals.4 bits).

HexStr is written to be called with a far call. This means that it
should be declared either in the Interface section of a Turbo Pascal
unit or with the $/+ compiler directive active.

CODE SEGMENT
ASSUME cs:CODE,ds:NOTHING

i Parameters (+2 because of push bp)

byteCount EQU BYTE PTR ss:[bp+6]

Turbo Assembler User's Guide

num EQU DWORD PTR ss:[bp+8]

; Function result address (+2 because of push bpI

resultPtr EQU DWORD PTR ss:[bp+l2]

HexStr

HexLoop:

HexStr
CODE

PROC FAR
PUBLIC HexStr

push bp
mov bp,sp
les di,resultPtr
mov dx,ds
Ids si,num
mov al,byteCount
xor ah,ah
mov cx,ax
add si,ax
dec si
shl ax,l
cld
stosb

std
lodsb
mov ah,al
shr al,l
shr al,l
shr al,l
shr al,l
add al,90h
daa
adc al,40h
daa
cld
stosb
mov al,ah
and al,OFh
add al,90h
daa
adc al,40h
daa
stosb
loop HexLoop
mov ds,dx
pop bp
ret 6
ENDP
ENDS
END

Chapter 8, Interfacing Turbo Assembler with Turbo Pascal

;get pointer into stack
;get address of function result
;save Turbo's DS in DX
;get number address
;how many bytes?
imake a word
ikeep track of bytes in CX
;start from MS byte of number

;how many digits? (2/byte)
;store t digits (going forward)
;in destination string's length byte

;scan number from MSB to LSB
;get next byte
;save it
;extract high nibble

ispecial hex conversion sequence
;using ADDs and DAA's

;nibble now converted to ASCII
;store ASCII going up

;repeat conversion for low nibble

;keep going until done
;restore Turbo's DS

iparameters take 6 bytes

335

336

The sample Pascal program that uses HexSfr follows:

prograa HexTest;
var

num : Word;

{$F+}

function HexStr (var num; byteCount Byte) .tr1ng; exter.nal;

{$L HEXSTR.OBJ}

{$F-}
be¢n

num := $face;
Writeln('The Converted Hex String is

"' , HexStr (num, sizeof (num)) , "") ;
end.

Use the following batch file commands to build and run the
example Pascal and assembly program:

TASM HEXSTR
TPC HEXTEST
HEXTEST

If you use the .MODEL directive, the program HexStr could be
written like this:

.MODEL TPASCAL
• CODE

HexStr PROC FAR num:DWORD,byteCount:BYTE RETURNS resultPtr:DWORD
PUBLIC HexStr

HexLoop:

les di,resultPtr
mov dx,ds
Ids si,num
mov al,byteCount
xor ah,ah
mov cx,ax
add si,ax
dec si
shl ax,l
cld
stosb

std
lodsb
mov ah,al
shr al,l
shr al,l
shr al,l
shr al,l

;get address of function result
;save Turbo's DS in DX
;get number address
;how many bytes?
;make a word
;keep track of bytes in CX
;start from MS byte of number

;how many digits? (2/byte)
;store # digits (going forward)
;in destination string's length byte

;scan number from MSB to LSB
; get next byte
;save it
;extract high nibble

Turbo Assembler User's Guide

Exchanging two
variables

add al,90h
daa
adc al,40h
daa
cld
stosb
mov al,ah
and al,OFh
add al,90h
daa
adc al,40h
daa
stosb
loop HexLoop
mov ds,dx
ret

HexStr ENDP
CODE ENDS

END

ispecial hex conversion sequence
iusing ADDs and DAA's

inibble now converted to ASCII
istore ASCII going up

irepeat conversion for low nibble

ikeep going until done
irestore Turbo's DS

You can use the same sample Pascal program and just assemble
the alternative HexStr, recompiling the sample program with the
same batch file commands.

With this procedure, you can exchange two variables of size count.
If count is 0, the processor will attempt to exchange 64K.

CODE SEGMENT
ASSUME cs:CODE,ds:NOTHING

i Parameters (note that offset are +2 because of push bp)

varl
var2
count

Exchange

carry)

EQU
EQU
EQU

DWORD PTR ss:[bp+12]
DWORD PTR ss:[bp+8]
WORD PTR ss:[bp+6]

PROC FAR
PUBLIC Exchange
cld
mov dx,ds
push bp
mov bp,sp
Ids si,varl
les di,var2
mov cx,count
shr cx,l

;exchange goes upward
isave DS

i9~t stack base
iget first address
iget second address
iget number of bytes to move
iget word count (low bit ->

Chapter 8, Interfacing Turbo Assembler with Turbo Pascal 337

338

jnc ExchangeWords ;if no odd byte, enter loop
mov aI, es: [di] ;read odd byte from var2
movsb ;move a byte from varl to var2
mov [si-l],al ;write var2 byte to varl
jz Finis ;done if only 1 byte to exchange

ExchangeWords:
mov bx,-2 ;BX is a handy place to keep -2

ExchangeLoop:
mov ax,es: [di] iread a word from var2
movsw ;do a move from varl to var2
mov [bx] lsi] ,ax ;write var2 word to varl
loop ExchangeLoop ;repeat "count div 2" times

Finis:
mov ds,dx ;get back Turbo's DS
pop bp
ret 10

Exchange ENDP
CODE ENDS

END

The sample Pascal program that uses Exchange follows:

program TextExchange;

type
EmployeeRecord = record

Name
Address
City
State
Zip

end;
var

.trlng[30] ;

.trlng[30];

.tring[15] ;

.tring[2] ;

.tring[lO] ;

OldEmployee, NewEmployee EmployeeRecord;

{$F+}

procedure Exchange(var Varl,Var2; Count Word); external;
{$L XCHANGE.OBJ}
{$F-}
begin

with OldEmployee do
begin

Name := 'John Smith';
Address := '123 F Street';
City := 'Scotts Valley':
State := 'CA';
Zip := '90000-0000';

end;
with NewEmployee do
begin

Turbo Assembler User's Guide

Name := 'Mary Jones'i
Address := '9471 41st Avenue'i
City := 'New York';
State := 'NY';
Zip := '10000-1111'i

endi
Writeln('Before: ' ,OldEmployee.Name,' , ,NewEmployee.Name);
Exchange(OldEmployee,NewEmployee,sizeof(OldEmployee));
Writeln('After: ',OldEmployee.Name,' , ,NewEmployee.Name)i
Exchange(OldEmployee,NewEmployee,sizeof(OldEmployee))i
Writeln('After: ' ,OldEmployee.Name,' , ,NewEmployee.Name)i

end.

To build and run the example Pascal and assembler program, use
the following batch file commands:

TASM XCHANGE
TPC XCHANGE
XCHANGE

Using the .MODEL directive, the Exchange assembly language
program would be written as

.MODEL TPASCAL

.CODE
Exchange PROC FAR var1:DWORD,var2:DWORD,count:WORD

PUBLIC Exchangei
cld
mov
Ids
les
mov
shr
jnc
mov
movsb
mov
jz

ExchangeWords:
mov

ExchangeLoop:
mov
movsw

iexchange goes upward
dx,ds isave DS
si,var1 iget first address
di,var2 iget second address
cx,count iget number of bytes to move
cx,l iget word count (low bit -) carry)
ExchangeWords iif no odd byte, enter loop
al,es:[di] ;read odd byte from var2

[si-1],al
Finis

bx,-2

ax,es: [di]

;move a byte from var1 to var2
iwrite var2 byte to var1
idone if only 1 byte to exchange

iBX is a handy place to keep -2

iread a word from var2
ido a move from var1 to var2

mov [bx] [si],ax iwrite var2 word to var1
loop ExchangeLoop irepeat "count div 2" times

Finis:
mov
ret

Exchange ENDP
CODE ENDS

ds,dx

Chapter 8, Interfacing Turbo Assembler with Turbo Pascal

iget back Turbo's DS

339

Scanning the
DOS environment

340

END

You can use the same sample Pascal program and just assemble
the alternative Exchange, recompiling the sample program with
the same batch file commands.

With the EnvString function, you can scan the DOS environment
for a string of the form s=SOMESTRING and return
SOMESTRING if it is found.

DATA SEGMENT PUBLIC
EXTRN prefixSeg WORD igives location of PSP

DATA ENDS
CODE SEGMENT PUBLIC'

ASSUME cs:CODE,ds:DATA

EnvString PROC FAR
PUBLIC EnvString
push bp
cld ;work upward
mov es, [prefixSeg] ilook at PSP
mov es,es: [2Ch] iES:DI points at environment
xor di,di ;which is paragraph-aligned
mov bp,sp ;find the parameter address
Ids si,ss: [bp+6] ;which is right above the

; return address
ASSUME ds:NOTHING
lodsb ;look at length
or al,al ; is it zero?
jz RetNul ;if so, return
mov ah,al ;otherwise, save in AH
mov dx,si ;DS:DX contains pointer

; to first parm char
xor al,al ;make a zero

Compare:
mov ch,al ;we want ch=O for next count,

; if any
mov si,dx ;get back pointer to

; string sought
mov cl,ah ;get length
mov si,dx ;get pointer to string sought
repe cmpsb ;compare bytes
jne Skip ;if fails, try next string
cmp byte ptr es:[di],'='

;compare succeeded; is next
; char '='?

jne NoEqual ; if not, still no match

Turbo Assembler User's Guide

Found:
mov aX,es imake DS:SI point to string

i we found
mov ds,ax
mov si,pi
inc si iget past the equal (=) sign
les bx, ss: [bp+10] iget address of function result
mov di,bx iPut it in ES:DI
inc di iget past the length byte
mov cl,255 iset up a maximum length

CopyLoop:
lodsb iget a byte
or al,al izero test
jz Done iif zero, we're done
stosb iPut it in the result
loop CopyLoop imove up to 255 bytes

Done: not cl iwe've been decrementing CL
i from 255 during save

mov es: [bx],cl isave the length
mov ax,SEG DATA
mov ds,ax irestore DS
ASSUME ds:DATA
pop bp
ret 4
ASSUME ds:NOTHING

Skip:
dec di icheck for null from this

i character on
NoEqual:

mov cx, 7FFFh isearch a long way if necessary
sub cx,di ienvironment never >32K
jbe RetNul iif we're past end, leave
repne scasb ilook for the next null
jcxz RetNul iexit if not found
cmp byte ptr es:[di],al isecond null in a row?
jne Compare iif not, try again

RetNul:
les di,ss: [bp+l0] iget address of result
stosb istore a zero there
mov ax,SEG DATA
mov ds,ax irestore DS
ASSUME ds:DATA
pop bp
ret 4

EnvString ENDP
CODE ENDS

END

The sample Pascal program that uses EnvString follows:

Chapter 8, Interfacing Turbo Assembler with Turbo Pascal 341

342

prograa EnvTest;
(program looks for environment strings

var
EnvVariable : stringi

EnvValue : stringi

($F+)

function EnvString{s:.t~) .tringi exteInal;
($L ENVSTR.OBJ)
($F-)
begin

EnvVariable := 'PROMPT'i
EnvValue := EnvString(EnvVariable)i
if EnvValue=', then EnvValue := '*** not found ***'i
Writeln('Environment Variable:' ,EnvVariable, 'Value:' ,EnvValue);

end.

To build and run the example Pascal and assembler program, use
the following batch file commands:

TASM ENVSTR
TPC ENVTEST
ENVTEST

If you used the .MODEL directive, the EnvString assembly
language program would be written like this:

.MODEL TPASCAL
• DATA
EXTRN prefixSeg : WORD ;gives location of PSP
.CODE

EnvString PROC FAR EnvVar:DWORD RETURNS EnvVal:DWORD
PUBLIC EnvString
cld
mov
mov
xor
mov
Ids

ASSUME
lodsb
or
jz
mov
mov

xor
Compare:

es, [prefixSeg]
es, es: [2Ch]
di,di

;work upward
ilook at PSP
;ES:DI points at environment
;which is paragraph-aligned
;find the parameter address
;which is right above the

bp,sp
si,EnvVar

ds:NOTHING

al,al
RetNul
ah,al
dx,si

al,al

; return address

ilook at length
iis it zero?
;if so, return
iotherwise, save in AH
iDS:DX contains pointer to
i first parm character
imake a zero

Turbo Assembler User's Guide

Found:

CopyLoop:

Done:

Skip:

NoEqual:

RetNul:

mov ch,al iwe want ch=O for next count, if any
mov si,dx iget back pointer to string sought
mov cl,ah iget length
mov si,dx iget pointer to string sought
repe cmpsb icompare bytes
jne Skip iif compare fails, try next string
cmp byte ptr es:[di),'='

jne

mov
mov
mov
inc
les
mov
inc
mov

lodsb
or
jz
stosb
loop
not

mov
mov

NoEqual

aX,es
ds,ax
si,di
si
bx,EnvVal
di,bx
di
cl,255

al,al
Done

Copy Loop
cl

es:[bx),cl
ax,SEG DATA

mov ds,ax
ASSUME ds:DATA
ret
ASSUME ds:NOTHING

dec

mov
sub
jbe
repne
jcxz

di

cx,7FFFh
cx,di
RetNul
scasb
RetNul

icompare succeededi is next char '='
iif not, still no match

imake DS:SI point to string we found

iget past the equal (=) sign
iget address of function result
iput it in ES:DI
iget past the length byte
iset up a maximum length

iget a byte
izero test
iif zero, we're done
iput it in the result
imove up to 255 bytes
;we've been decrementing CL from

255 during save
isave the length

irestore DS

;check for null from this char on

isearch a long way if necessary
ienvironment never >32K
;if we're past end, leave
;look for the next null

iexit if not found
cmp byte ptr es: [di),al ;second null in a row?
jne Compare iif not, try again

les di,EnvVal
stosb
mov ax,SEG DATA
mov . ds,ax
ASSUME ds:DATA
ret

;get address of result
istore a zero there

irestore DS

Chapter 8, Interfacing Turbo Assembler with Turbo Pascal 343

344

E~tring ENDP
CODE ENDS

END

You can use the same sample Pascal program and just assemble
the alternative EnvString, recompiling the sample program with
the same batch file commands.

Turbo Assembler User's Guide

c H A p T E R

9

Advanced programming in Turbo
Assembler

Over the course of the beginning chapters of this manual, we've
covered the essentials of assembler programming, and then some.
Now we're ready to get into several advanced features of Turbo
Assembler.

In this chapter, we'll explore several aspects of assembler
programming that we've only touched on so far, such as segment
override prefixes, macros, the segment directives, and writing
programs that contain multiple code and data segments. We'll
also look at some useful features that you haven't seen before,
including local labels, automatic jump-sizing, forward references,
and the data structure directives.

Segment override prefixes

Most of the time, memory operands specify memory locations in
the segment pointed to by the DS segment register. For example,
the instruction sequence

mov bx,lOh
mov si,S
mov ax, [bx+si+l]

Chapter 9, Advanced programming in Turbo Assembler 345

346

loads the word stored at offset 16h in the segment pointed to by
DS into AX. Another way to put this is to say that AX is loaded
from the memory address DS:0016.

One exception to the rule of loading from the segment pointed to
by DS is that the STOS and MOVS string instructions write to the
segment pointed to by ES, and the SCAS and CMPS string
instructions take source operands from the segment pointed to by
E5. (One of the source operands to CMPS is in the data segment,
and one is in the extra segment.>

Another exception is that any memory operand involving BP
accesses the segment pointed to by SS. For example,

mov bp,lOOOh
mov aI, [bp+6] . . ,

loads AL with the contents of memory location S5:1006.

Suppose, however, you'd like to access a location in the CS
segment as a memory operand; that's useful for jump tables,
especially in multisegment programs. Or suppose you'd like to
access a location on the stack with BX, or a location in DS with BP,
or a location in ES with a nonstring instruction. Can you do that?

The answer is yes. You can use segment override prefixes to make
many instructions access the segment of your choice. For
example,

mov bx,lOOh
mov cl,ss:[bx+lOh]

loads CL with the contents of offset 110h in the stack segment,
and

mov bp,200h
mov si,cs:[bp+l]

loads S1 with the contents of offset 201h in the code segment.

Basically, all you need to do to cause a given instruction to access
a segment other than its default segment is put a segment
override prefix-CS:, DS:, ES:, or SS:-in front of the memory
operand for that instru~tion.

Turbo Assembler User's GuIde

An alternate form

Incidentally, segment override prefixes aren't called "prefixes"
because they prefix memory operands in the instruction line.
Rather, a segment override prefix is actually an instruction prefix
byte, which modifies the operation of the instruction that follows
it, just as the REP prefix that we discu~sed in Chapter 6 is an
instruction prefix byte. So, for example, when the 8086 encounters
the instruction bytes

AO 00 00

which form the instruction

mov al, [0]

it loads AL with the contents of offset 0 in the data segment.
However, since the value of the ES: segment override prefix is
26h, when the 8086 encounters

26 AO 00 00

which forms the instruction

mov al,es: [0]

it loads AL with the contents of offset 0 in the extra segment, not
the data segment.

Turbo Assembler supports an alternate segment override prefix
form, where you put the segment override prefix on a separate
line. The separate line-segment overrides are SEGCS for a CS:
segment override, SEGOS for a OS: segment override, SEGES for
an ES: segment override, and SEGSS for an 5S: segment override.
Each of these will override the next line of code only, not all
subsequent lines. For example, the following stores OX to offset
999h in the extra segment:

mov si,999h
seges
mov [si],dx

This alternate form is useful for putting segment override prefixes
on instructions that have no operands, such as LOOSB. The
following loads AL from SS:SI:

segss

Chapter 9, Advanced programming In Turbo Assembler 347

lodsb

When segment
override prefixes Segment override prefixes don't work with all instructions. For

don I t work . example, string instruction accesses to the extra segment can't be
overridden. That is,

lods es:[ByteVar]

is fine, loading AL from ES:SI, but

stos ds:[ByteVar]

can't work. If you do try to override a string instruction access to
the extra segment as shown above, Turbo Assembler will let you
know that's not allowed. However, if you use SEGCS or the like to
create a segment override, Turbo Assembler doesn't know what
instruction you're going to override and so can't generate an error
in such cases. For example,

segds
stosb

won't generate an assembly error, but STOSS will still write to the
extra segment, not the data segment.

Along the same lines, be aware that segment override prefixes can
never affect accesses to the stack. Pushes to the stack always go to
the stack segment, and pops from the stack always come from the
stack segment. For instance, an instruction such as

segcs
push [bx]

uses the segment override prefix to select the segment from which
the value to be pushed should be fetched; that value is written to
offset SP-2 in the stack segment, as always. Likewise, instructions
are always fetched from the segment pointed to byeS.

See Chapfer6 fordefails. You should generally avoid mixing segment override prefixes
with REP prefixes, since problems can result if an instruction
using both overrides is interrupted.

348 Turbo Assembler User's' GuIde

Accessing
multiple segments

Local labels

Segment override prefixes are useful whenever you need to access
multiple segments. This necessity can arise, for example, if you
need to access data stored both on the stack and in the data
segment, which commonly occurs when the stack is used for
dynamically allocated variables and the data segment is used for
static variables. Another possibility is that a program simply has
more than 64K of data, so accesses to any of several segments may
be needed at any time.

One particularly useful application for segment override prefixes
occurs when you mix string and nonstring instructions. For
example, suppose that for a given string you want to convert all
characters with values less than 20h to spaces. The following code
uses a segment override prefix to perform that task efficiently:

mov ax,SEG StringToConvert
mov es,ax
mov di,OFFSET StringToConvert iES:OI points to the

i string to convert
cld ;make STOSB increment OI

ConvertLoop:
mov al,es:[di]
and al,al
jz ConvertLoopOone
cmp al,20h
jnb SaveChar
mov al,' ,

SaveChar:
stosb

jmp Convert Loop
ConvertLoopOone:

stosb

iget the next character
iis it the end of string?
iyes, done
ido we need to convert it?
ino, save it
imake it a space

isave this character and
i point to the next
icheck the next character

iend the string with a zero

Local labels-labels with limited scope-are one of the pleasures of
using Turbo Assembler. Let's look at why you might need them.

Chapter 9, Advanced programming in Turbo Assembler 349

350

Suppose you have several sections of code in a source module
that perform similar functions. For example, consider the
following:

Sub! PROC
sub ax,ax

IntCountLoop:
add ax, [bx]
inc bx
inc bx
loop IntCountLoop
ret

Sub! ENDP

Sub2 PROC
sub ax,ax
mov dx,ax

LongCountLoop:
add ax, [bx]
adc dx, [bx+2]
add bx,4
loop LongCountLoop
ret

Sub2 ENDP

When two sections of code perform similar functions, it often
, follows that they'll contain similar labels. For example, Subl and

Sub2 each contain a label that marks the top of a counting loop.

When there are only a few labels in a whole program, you can
easily make sure that all the labels are different. In large
programs, however, it can become a nuisance. Then, too, it's
common practice to take a subroutine that works, block-copy it
and rename it, and modify it into a new subroutine. The problem
with this is that it's easy to forget to change a label here or there,
causing the new subroutine to jump to a label in the old
subroutine. For example, if you copied and modified Subl to
make Sub2, you could inadvertently end up with

Sub2 PROC
sub ax,ax
mov dx,ax

LongCountLoop:
add ax, [bx]
adc dx,[bx+2]

Turbo Assembler User's Guide

add bx,4
loop IntCountLoop
ret

Sub2 ENDP

which would jump to the middle of Subl-with potentially
disastrous results.

What you really need, then, is a type of label that is limited in
scope to a single subroutine, so it won't conflict with labels in
other subroutines.

That's just what local labels are. Local labels, which by default
usually start with two at-signs (@@), are limited in scope to the
range of instructions between two non-local labels. (Non-local
labels are those defined with PROC and labels ending with colons
that don't start with two at-signs.) As far as Turbo Assembler is
concerned, local labels don't even exist outside the range
delimited by the nearest non-local labels.

Symbols that you define with the LABEL directive do not cause a
new local symbol block to start.

For example, you can use local labels to change the code at the
beginning of this section with

LOCALS
Subl PROC

sub ax,ax
@@CountLoop:

add ax, [bx]
inc bx
inc bx
loop @@CountLoop
ret

Subl ENDP

Sub2 PROC
sub ax,ax
mov dx,ax

@@CountLoop:
add ax, [bx]
adc dx, [bx+2]
add bx,4
loop @@CountLoop
ret

Sub2 ENDP

Chapter 9, Advanced programming in Turbo Assembler 351

352

Here you need not worry about the loop label in one subroutine
conflicting with the label in the other subroutine, and there's no
chance that one subroutine will accidentally jump to a label in the
other subroutine.

You'll note that we used the LOCALS directive before we used
any local labels. In MASM mode, local labels are disabled by
default, and must be enabled with LOCALS before you can use
them. In Ideal mode, local labels are normally enabled, although
you can disable them with NOLOCALS if you want.

Local labels are also useful when you've got several short
conditional jumps in a subroutine, and you don't want to have to
spend time thinking of unique names for them. For example, you
might want to use local labels when you're testing for any of
several values:

LOCALS
crnp aI,' A'
jnz @@Pl
jrnp HandleA

@@Pl:
crnp al,'B'
jnz @@P2
jrnp HandleB

@@P2:
crnp al,'C'
jnz @@P3
jrnp HandleC

@@P3:

With local labels, you don't have to worry about whether labels
like Pl are used elsewhere in the program.

Remember, any non-local label delimits the scope of a local label.
For instance, the following wouldn't assemble:

Subl PROC NEAR

LOCALS
@@CountLoop:

add ax, [bx]
jnz NotZero
inc dx

Turbo Assembler User's Guide

NotZero:
inc bx
inc bx
loop @@CountLoop

The problem here is that the non-local label NotZero lies between
the LOOP instruction's reference to the local label @@CountLoop
and the definition of @@CountLoop. The scope of a local variable
extends only to the nearest non-local label, so when Turbo
Assembler assembles the LOOP instruction, the local label
@@CountLoop is nowhere to be found.

You can change the local symbol prefix from the normal two at
signs (00) to any other two characters that can be used at the start
of a symbol name. You do this by putting the new prefix
characters as an argument to the LOCALS directive:

LOCALS

This sets the local symbol prefix to two underscore characters.
This can be useful if you want to start using local symbols in a
module that already has symbols that start with the default local
symbol prefix.

When you change the local symbol prefix in this manner, local
symbols are automatically enabled at the same time, exactly as if
you had used the LOCALS directive without any argument. If you
subsequently use the NOLOCALS directive to disable local
symbols, Turbo Assembler also remembers the prefix characters
that you specified. This lets you simply use LOCALS with no
arguments to restore local symbols with the prefix you previously
specified.

Automatic jump-sizing

Many years ago, the designers of the 8086 decided that the
conditional jump instructions would only support I-byte jump
displacements. This meant that each conditional jump would only
be capable of jumping to a destination within about 128 bytes of
the conditional jump instruction itself. .

Today, of course, those conditional jumps are with us still, and
they're both a blessing and a curse. While the 8086's conditional
jump instructions sometimes make for compact code (since the
conditional jump instructions are only 2 bytes long), they also

Chapter 9, Advanced programming in Turbo Assembler 353

354

often make for awkward, inefficient code, since 5-byte instruction
sequences like this

jnz NotZero
jrnp IsZero

NotZero:

are required when conditional jump destinations are too far away
to reach with a I-byte displacement.

Worse, there's no way to know beforehand whether a given
conditional jump will reach a given label, so you're put in the
position of trying to jump to the label directly, thereby risking an
assembly error, or coding a conditional jump around an
unconditional jump, thereby possibly wasting 3 bytes and
slowing execution. Stin more annoying is the all-too-common
occurrence of a "Relative jump out of range" error when you add
an instruction or two inside a loop.

While Turbo Assembler can't solve all the conditional-jump
problems of the 8086, it comes close by way of the JUMPS
directive. Once you've specified JUMPS, Turbo Assembler
automatically turns normal conditional jumps into conditional
jumps around unconditional jumps whenever that's what it takes
to reach the destina tion label.

How does automatic jump-sizing work? Consider the following
code:

JUMPS
RepeatLoop:

jrnp SkipOverData
DB lOOh DUP (?)

SkipOverData:

dec dx

jnz RepeatLoop

Clearly, the JNZ at the bottom of the loop can't reach RepeatLoop,
. since over 256 bytes lie between the two. Since JUMPS was

specified, however, no assembly-time error will result. Instead,
Turbo Assembler actually assembles this code into the equivalent
of

Turbo Assembler User's Guide

RepeatLoop:
jrnp SkipOverData
DB lOOh DUP (?) iternporary data storage in CS

SkipOverData:

dec dx
jz $+5
jrnp RepeatLoop

automatically using a JZ and a JMP in place of the JNZ at the
bottom of the loop.

Turbo Assembler doesn't always generate a conditional/
unconditional jump pair when JUMPS is active; the conditional
jump you specify is always used if it will reach the destination.
For instance, the following assembles with JNZ at the bottom of
the loop, since here the destination label is near enough to reach
with a I-byte displacement:

JUMPS
RepeatLoop:

add BYTE PTR [bx],l
inc bx
dec dx
jnz RepeatLoop

As we mentioned earlier, Turbo Assembler's automatic jump
sizing doesn't solve all the 8086's problems with conditional
jumps. Turbo Assembler always handles automatic sizing of
backward jumps (jumps to labels earlier in the code than a given
jump instruction) perfectly, with nary a wasted byte or
instruction.

Since Turbo Assembler normally functions as a single-pass
assembler, a compromise is required when automatically sizing
forward jumps. The good news is that forward conditional jumps
to near labels always assemble if automatic jump-sizing is
enabled; the bad news is that several extra NOP instructions are
inserted if it turns out that a conditional jump could have reached
the destination label after all. You can avoid this problem by
using Turbo Assembler's multiple-pass capability (invoked with
the 1m command-line switch), although this does slow assembly
speed slightly.

Chapter 9, Advanced programming In Turbo Assembler 355

356

A moment's thought will make it clear why automatic sizing of
forward jumps with a single pass can't always generate optimal
code. When Turbo Assembler reaches a conditional jump
instruction that makes a forward reference, there's no way to
know how far away that label is; after all, Turbo Assembler hasn't
even encountered that label yet. With automatic jump-sizing
enabled, Turbo Assembler would like to generate a conditional
jump (a 2-byte instruction) if the destination is near enough to
read directly, and a conditional jump around an unconditional
jump (a 2-byte instruction followed by a 3-byte instruction)
otherwise. Unfortunately, Turbo Assembler doesn't yet know
whether a 2-byte instruction br a 5 ... byie pair of instructions is
necessary when it encounters a conditiorial forward jump.

Still~ Turbo Assembler has to pick some siZe right away, in order to
know where to assemble the following instructions. Consequent
ly, Turbo Assembler ha.s no alternative but to make the safe choice
and reserve 5 bytes for a coriditional/unconditional jump pair.
Then, if Turbo Assembler later reaches the destination label and
decides that a 2-byte instruction will do the trick, it will assemble
a conditional jump, followed by three NOP instructions that fill
out the 5 reserved bytes.

Suppose Turbo Assembler is assembling the following:

JUMPS
jzDestLabel
inc ax

If JZ can't reach DestLabel directly, Turbo Assembler assembles
the equivalent of the following:

jnz $+5
jrnp DestLabel
inc ax

;2 bytes long
;3 bytes long

If, on the other hand, JZ can reach DestLabel directly, Turbo
Assembler assembles the following:

jz DestLabel
nop
nop
nop

;2 bytes long
;each nop is 1 byte long

Turbo Assembler User's Guide

NOJUMPS is always selected
at the start of assembly,' if

you want to use automatic
jump-sizing, you must

explicitly enable it with the
JUMPS directive.

inc ax

The key here is that Turbo Assembler must take up 5 bytes for
each automatically sized forward conditional jump, so three NOP
instructions are inserted in automatically sized forward
conditional jumps that can reach their destinations. Those three
NOP instructions take up space and take time to execute (3 cycles
each on an 8086). Consequently, you're best advised to use
automatically sized forward conditional jumps sparingly, or else
enable Turbo Assembler's multi-pass capability, whenever you're
particularly sensitive to code size and performance issues.

If you're writing a program containing high-performance code,
you might want to enable automatic jump-sizing for noncritical
sections of your program, but disable automatic jump-sizing in
the key code sections. Alternatively, you might want to enable
automatic jump-sizing for backward jumps but disable it for
forward jumps. You can do this by pairing the JUMPS instruction
with the NOJUMPS instruction, which turns off automatic jump
sizing.

For example, the following uses automatic jump-sizing for the
backward jump, but not for the forward jump:

LoopTop:

lodsb
cmp al,80h
NOJUMPS
jb SaveByteValue
neg al

SaveByteValue:
stosb

dec dx
JUMPS
jnz LoopTop

Here, we've directly specified a 2-byte conditional jump for the
forward jump to SaveByte Value, but let Turbo Assembler select the
best code for the backward jump to LoopTop.

Chapter 9, Advanced programming in Turbo Assembler 357

Forward references to code and data

358

1111., In the last section, you saw an example of how forward
conditional jumps can make Turbo Assembler generate less
efficient code when automatic jump-sizing is enabled without
performing multiple passes. The truth of the matter is that all
sorts of forward references can cause problems for Turbo
Assembler, so you should avoid forward references-that is,
references to labels farther on in the code-whenever possible.

Why? Well, as Turbo Assembler assembles a source module, it
makes a single pass through the code, progressing steadily from
the first line in the source module to the last. This means that
Turbo Assembler assembles the first line in a module, then the
second line, then the third line, and so on. While that may seem
obvious, the implication of the order in which Turbo Assembler
assembles lines may be less obvious: Turbo Assembler doesn't
know anything about a line until it reaches it, and so forward
references force Turbo Assembler to make assumptions, which
might turn out to be incorrect. If those assumptions are indeed
incorrect, Turbo Assembler might generate less than maximally
efficient code. Even if Turbo Assembler can generate efficient
code, it might be necessary to go back to earlier lines and make
corrections, and so assembly might take more time than it
otherwise would.

Consider the following:

jrnp DestLabel

DestLabel:

When Turbo Assembler encounters the line

jrnp DestLabel

it hasn't reached the definition of the label DestLabel yet;
consequently, Turbo Assembler has no idea whether DestLabel is
near or far, and, if it's near, whether it can be reached with a I-byte
displacement or whether a full2-byte displacement is needed.

Turbo Assembler User's Guide

Consequently, Turbo Assembler needs to make an assumption
about the nature of DestLabel in order to continue assembling.

Turbo Assembler could assume that DestLabel is far and reserve 5
bytes for a far JMP instruction; however, most jumps are 3-byte
near jumps, and it would be a shame to waste 2 bytes on every
forward-referenced near jump. At the opposite end of the
spectrum, Turbo Assembler could assume DestLabel can be
reached with a single-byte displacement and reserve just 2 bytes
for a JMP SHORT instruction; the problem here is that many
jumps are not short, and if Turbo Assembler reserved only 2
bytes, an error would occur if the jump proved to be either near
or far.

As a compromise, Turbo Assembler assumes that all forward
jumps are near, unless you specify otherwise with either the
SHORT or the FAR PTR operator. Three bytes are always
reserved for forward jumps. If a forward jump turns out to be far,
an error results; you must always use FAR PTR to allow forward
jumps to far labels to assemble. That's a bit of a nuisance, but if
you forget the FAR PTR, Turbo Assembler will simply inform
you that a data type override is required, and you can insert the
required FA~ PTR operator and reassemble.

If, on the other hand, a forward jump proves to be short, Turbo
Assembler assembles a short jump, but inserts a NOP instruction
to pad out the 3 bytes that were reserved for the jump, thereby
wasting a byte. For example, Turbo Assembler assembles this:

jrnp DestLabe'l
DestLabel:

into this:

jrnp SHORT DestLabel
nop

DestLabel:

Chapter 9, Advanced programming in Turbo Assembler 359

360

While the jump works perfectly well, and executes quickly, it is
larger than it needs to be. Of course, you can use the SHORT
operator to turn any forward-referenced jump into a true 2-byte
instruction, but that's not as convenient as if Turbo Assembler
:were able to ge~erate the appropriate jump automatically.

It's important to understand that it's the forward reference that's
the culprit here. If Turbo Assembler knew the distance to the
destination label, the most efficient jump could be assembled. But
with forward references, Turbo Assembler can't know the
distance to the destination until it reaches it, and it can't reach the
destination until it assembles the forward-referenced jump. Turbo
Assembler resolves this dilemma by making a simplifying
assumption that allows assembly to proceed, but at the possible
cost of larger code than is necessary.

1111" Whenever Turbo Assembler does know the type of a jump
SHORT, NEAR, or FAR-the most efficient possible code can be
generated. Consequently, it's a good idea to use the SHORT
operator on short forward jumps (and, of course, FAR PTR is
required for far forward jumps).

Jumps aren't the only instructions that you should avoid using
with forward referencesj forward references to data can easily
generate inefficient code as well. Consider the following:

.CODE

mov bl,Value . . .
Value EQU 1

When Turbo Assembler reaches the MOV instruction, there's no
way to know whether Value is an equated label or a memory
variable. If Value is a memory variable, a 4-byte instruction will be
required, while if Value is an equated label (one that's used as a
constant), a 2-byte instruction will do the job.

As usual, Turbo Assembler must assume the worst in order to
continue assembling, so 4 bytes are reserved for the MOV

Turbo Assembler User's Guide

This is true even if you use a
type override on forward
references to that label.

instruction. Then, when Value is reached and discovered to be an
equated label rather than a memory variable, Turbo Assembler
must go back to the MOV instruction and make it a 2-byte
instruction with a constant operand, and must insert two NOP
instructions to fill out the third and fourth bytes that were
reserved. Note that none of this would have happened if Value
had been defined before the MOV instruction, since Turbo
Assembler would have known that Value wasn't a memory
variable.

In fact, backward references present none of the problems of
forward references, since Turbo Assembler always knows
everything there is to know about backward-referenced labels. As
a result, Turbo Assembler always automatically assembles the
most efficient possible code for instructions that involve only
backward-referenced operands. This makes it highly desirable to
avoid forward references whenever possible.

You might wonder if the forward-referencing problems with calls
are as severe as they are for jumps. The answer is no. Forward
referenced far calls must have FAR PTR type overrides, since
Turbo Assembler assumes forward calls are near. Since there is no
such thing as a short call; inefficient code for calls is never
generated.

Many forward references result in an assembly error rather than
inefficient code. For example, forward references to equated labels
can't be assembled, and forward references to far labels can't be
assembled without a type override.

Even when Turbo Assembler can generate efficient code for
forward references, assembly is slower than for backward
references. This happens because whenever it encounters a label
that has previously been forward-referenced, Turbo Assembler·
must return to each instruction that performed a forward
reference to that label and assemble it properly, now that the
value and type of that label are known.

The conclusion is clear: Avoid forward references in your code
whenever possible, to let Turbo Assembler generate the best
possible code as quickly as possible. If you force multiple passes
to be performed by using the 1m command-line switch, optimal
code will be genera ted, but the assembly process will take longer
than it would have with a single pass. Put data definitions at the
beginning of your source modules before the code that references
them. When you can't avoid forward references, always use a

Chapter 9, Advanced programming in Turbo Assembler 361

type override operator to let Turbo Assembler know exactly what
type of label you're working with.

Using repeat blocks and macros

Repeat blocks

362

One of the things a computer does well is repetitive work. You
might get bored with typing dozens of values for DB directives, or
with entering slight variations on the same code over and over,
but your computer will never tire of such work. Turbo Assembler
provides repeat blocks and macros to free you from just that sort
of monotonous work.

A repeat block starts with the REPT directive and ends with the
ENDM directive. The code within the repeat block is assembled
the number of times specified by the operand to the REPT
directive. For example,

REPT 10
OW 0
ENOM

generates the same code as

ow 0
ow 0
ow 0
ow 0
ow 0
ow 0
ow 0
ow 0
ow 0
ow . 0

That doesn't seem earthshaking, particularly given that

ow 10 OUP (0)

does the same thing, but now let's combine repeat blocks and the
= directive to make a table of the first ten integers:

Turbo Assembler User's Guide

IntVal 0
REPT 10
DW IntVal

IntVal IntVa1+1
ENDM

This generates the equivalent of

DW 0
DW 1
DW 2
DW 3
DW
DW 5
DW 6
DW
DW 8
DW 9

Try doing that with CUP! Better yet, if you want the first 100
integers, all you need do is change the operand to REPT to 100;
that's certainly a lot easier than typing 100 lines.

One excellent application for REPT is in the generation of tables
used for fast multiplication and division. For example, the
following multiplies a number between 0 and 99 (stored in BX) by
10-very rapidly-and places the result in AX .

• DATA
TableOfMultiplesOf10 LABEL WORD
BaseVal 0

REPT 100
DW BaseVal

BaseVal BaseVal+10
ENDM

• CODE

shl bx,l iprepare for look up in
; table of word-sized entries

mov ax, [TableOfMultiplesOf10+bx] ;look up the result of
; mUltiplication times 10

Keep in mind that the text in a repeat block is simply assembled
as many times as the operand to REPT dictates. There's no

Chapter 9, Advanced programming in Turbo Assembler 363

364

Repeat blocks and
variable parameters

difference between executing a repeat block 10 times and making
9 additional copies of the code in a repeat block and then
assembling all 10 instances of the code.

This means that any valid assembler code, including instructions,
can be placed within a repeat block. For example, the following
generates code to divide the 32-bit unsigned value in DX:AX by
16:

REPT 4
shr dx,1
rer ax,1
ENDM

Repeat blocks can be nested. For instance, the following generates
10 NOP instructions:

REPT 5
REPT 2
nop
ENDM
ENDM

IRP and IRPC provide two means by which to provide a variable
parameter to each pass of a repeat block.

IRP substitutes the first entry in a list for a parameter on the first
repetition of a repeat block, the second entry on the second
repetition, and so on until the list is used up. For example,

IRP PARM,<O,1,4,9,16,25>
DB PARM
ENDM

generates

DB 0
DB 1
DB
DB 9
DB 16
DB 25

Turbo Assembler User's Guide

Macros

IRPC is similar, save that it substitutes one character from a string
on each repetition of a repeat block. The following code sets the
zero flag if AL is equal to any of the characters in the string that's
the second argument to IRPC:

IRPC TEST_CHAR,azklg
cmp al,'&TEST_CHAR&'
jz EndCompare
ENDM

EndCompare:

The last example uses the ampersand (&) to force evaluation of
the repeat block parameter TEST _CHAR, even within quotes. The
ampersand is a macro operator that works in a repeat block
because repeat blocks are actually a type of macro. Other macro
features, such as the LOCAL and EXITM directives, also work in
repeat blocks. We'll discuss macros next.

The basic operation of a macro is quite simple: You assign a name
to a block of text, or a macro; then, when Turbo Assembler
encounters that macro name later in your source code, the block
of text associated with the name is assembled. You might think of
the macro name being expanded into the full text of the macro;
hence the term macro expansion is often used to describe the
substitution of macro text for a macro name.

A useful analogy is an include file. When Turbo Assembler
encounters an INCLUDE directive, the text in the specified file is
immediately assembled, just as if it were in the source module
containing the I~CLUDE. If a second INCLUDE of the same file is
encountered, Turbo Assembler assembles that text again.

Macros are similar to include files in that the text, or body, of the
macro is assembled each time the macro name is encountered.
Macros are actually a great deal more flexible than include files,
however, since they can optionally be passed parameters and can
contain local labels. They are much faster than include files, since
the text of a macro does not have to be read from disk. Let's take
a look at basic macro operation.

The following code uses the macro MULTIPLY_BY _4 to multiply
the value in AX by 4, storing the result in DX:AX:

Chapter 9, Advanced programming in Turbo Assembler 365

In general, you'l/ want to use
subroutines for minimum

code size, and macros for
speed and flexibility.

366

MULTIPLY BY 4 MACRO
sub dx,dx
shl ax,l
rcl dx,l
shl ax,l
rcl dx, 1
ENDM

mov ax, [MemVar]
MULTIPLY BY 4
mov WORD PTR [Result],ax
mov WORD PTR [Resultt2],dx

When Turbo Assembler encounters MULTIPLY_BY _4, it
assembles the four instructions that make up the body of that
macro on the spot. It's almost as if a new instruction has been
defined, MULTIPLY_BY _4, which you can use just as you use
MOV and MUL. Of course, that new macro instruction consists of
five 8086 instructions, but it's certainly easier to read the previous
code with the macro than without.

You could just as well have used a subroutine named MultiplyBy4
instead of a macro in this example, as follows:

MultiplyBy4 PROC
sub dx,dx
shl ax,l
rcl dx,l
shl ax,l
rcl dx,l
ret

MultiplyBy4 ENDP

mov ax, [MemVar]
call MultiplyBy4
mov WORD PTR [Result],ax
mov WORD PTR [Resultt2],dx

How do you choose between subroutines and macros? Well,
you'll generally produce smaller code by using a subroutine, since
with subroutines the code for a specific task is assembled only
once, with calls to that code sprinkled throughout the program.
However, you'll produce faster code with macros, since macros
avoid the overhead of CALL and RET instructions. Moreover, a

Turbo Assembler User's Guide

single macro can be tailored to generate slightly different code for
a number of similar tasks, while a subroutine can't.

What sort of flexibility does a macro provide? Macro flexibility is
limited only by your imagination, since macros can accept
parameters and can contain conditional assembly directives.
Macro parameters appear as operands to the MACRO directive.
For example, V ALUE and LENGTH are parameters to the macro
FILL_ARRAY, defined as follows:

FILL ARRAY MACRO VALUE, LENGTH
REPT LENGTH
DB VALUE
ENDM
ENDM

When a macro is invoked, parameters to the macro can be placed
as operands to the macro invocation. For example, FILL_ARRAY
could be invoked as

ByteArray LABEL BYTE
FILL ARRAY 2,9

The parameters that appear in the macro invocation (2 and 9 in
the previous code) are known as actual parameters. The parameters
that appear in the macro definition (VALUE and LENGTH in the
preceding code) are known as formal parameters. Each time a
macro is· invoked, the formal parameters are set to the values of
the corresponding actual parameters before the macro is
expanded, so

ByteArray LABEL BYTE
FILL ARRAY 2,9

causes the following code to assemble:

ByteArray LABEL BYTE
REPT 9
DB 2
ENDM

Chapter 9, Advanced programming in Turbo Assembler 367

If such text isn't the name of
a formal parameter, Turbo

Assembler Ignores the
ampersands.

368

The values of the actual parameters to a macro invocation are
substituted for the formal parameters in the macro definition, so
you can generate different macro code simply by changing the
actual parameters used in a macro invocation. For instance, if you
wanted to initialize ByteArray to be 8 bytes in length, initialized to
OFFh, and ByteArray2 to be lOOh bytes long, initialized to 0, all
you'd need would be

ByteArray LABEL BYTE
FILL_ARRAY Offh,S

ByteArray2 LABEL BYTE
FILL_ARRAY O,lOOh

Formal parameters can be used anywhere in a macro. However,
there's a problem when formal parameters are mixed with other
text. For example, in the macro

PUSH WORD REG MACRO RLETTER
push RLETTERx
ENDM

Turbo Assembler can't know whether the string RLETTER
embedded in RLETTERx is the name of the formal parameter or
part of the operand to PUSH, so it assumes it's part of the operand.
Alas, pushing RLETTERx isn't likely to succeed unless you
happen to have memory variable of that name, and the desired
result of pushing a register wouldn't be achieved in any case.

The solution is to enclose the formal parameter name in a pair of
ampersands (&&). When Turbo Assembler encounters macro text
enclosed in ampersands, it checks first to see whether that text is
the name of a formal parameter; if so, it substitutes the value of
tha t parameter.

For example, the following expansion of PUSH_WORD _REG,

PUSH WORD REG
push &RLETTER&x
ENDM

MACRO RLETTER

PUSH WORD REG b

assembles to

Turbo Assembler User's 'Guide

push bx

Ampersands are required only when there might be a question
about a reference to a formal parameter; for example, they're not
needed in

PUSH WORD REG MACRO REGISTER
push REGISTER
ENDM

However, it never hurts to use ampersands, so use them
whenever you're in doubt about whether they're needed.

Nesting macros You've already seen that macros can contain repeat blocks.

Macros and
conditionals

Macros can invoke other macros as well; this is known as nesting
macros. For example, in

PUSH WORD REG
push REGISTER
ENDM

MACRO REGISTER

PUSH ALL REGS MACRO
IRP REG,<AX,BX,CX,DX,SI,DI,BP,SP>
PUSH WORD REG REG
ENDM
ENDM

the macro PUSH_ALL_REGS contains a repeat block, which in
turn contains an invocation of the macro PUSH_WORD _REG.

Perhaps the most powerful feature of macros is their ability to
contain conditional assembly directives. This allows a single
macro to assemble different sorts of code depending on the state
of equated labels and parameters to each macro invocation.

For example, we'll return to the earlier example of a macro that
performs multiplication. In this case, however, if the factor passed

'. as a parameter to the new MULTIPLY macro is any power of two,
we'll multiply by using the faster shift and rotate instructions;
otherwise, we'll use the MUL instruction. Here's the macro:

MULTIPLY MACRO FACTOR

i Check FACTOR against each of the 16 possible powers of two.

Chapter 9, Advanced programming In Turbo Assembler 369

370

IS POWER OF TWO = 0 - --
COUNT 15
POWER OF TWO 8000h

REPT 16
IF POWER_OF_TWO EO FACTOR
IS POWER OF TWO = 1

ENDIF
COUNT

EXITM

COUNT-1

;FACTOR is a power of two

POWER OF TWO
ENDM

POWER OF TWO SHR 1

IF IS POWER OF TWO
sub dx,dx
REPT COUNT
shl ax,l

ELSE

ENDIF

re! dx,l
ENDM

mov dx,FACTOR
mul dx

ENDM

MULTIPLY actually checks on the fly whether the multiplication
is by a power of two and assembles the appropriate code. So the
code

MULTIPLY 10

assembles to

mov dx,10
mul dx

but the code,

MULTIPLY 8

assembles to

sub dx,dx
shl ax,l
re! dx,l
shl ax,l
reI dx,l
shl ax,l

Turbo Assembler User's Guide

Don't confuse macros with
subroutines, and don't

confuse conditional
assembly with If statements

and the like in high-level
languages.

Stopping expansion
with EXITM

Defining labels within
macros

reI dx,l

Bear in mind that macros are expanded at assembly time, not at
run-time. MULTIPLY assembles new code each time it is invoked;
the IF directive in MULTIPLY determines which instructions get
assembled.

The next example contains a directive you haven't seen before:
EXITM. The EXITM directive instructs Turbo Assembler to stop
expanding the current macro or repeat block. If, however, the
current macro or repeat block is nested inside another macro or
repeat block, expansion of the nesting macro or repeat block
continues.

Shiftn MACRO OP,N
Count = 0

REPT N
shl OP,N

Count = Count + 1
IF Count GE 8

EXITM
ENDIF
ENDM

ino more than 8 allowed

One potential problem with macros arises when you define a label
within a macro. For example, the following causes an error due to
the redefinition of SlcipLabel, since each expansion of the macro
DO _DEC defines SkipLabel:

DO DEC MACRO
jexz SkipLabel
dee ex

SkipLabel:
ENDM

DO DEC

DO DEC

Fortunately, Turbo Assembler provides a simple solution in the
form of the LOCAL directive. A LOCAL directive in a given macro
causes the scope of the specified label or labels to be restricted to
that macro. For example, LOCAL can be used as follows to allow
the last example to assemble:

Chapter 9, Advanced programming in Turbo Assembler 371

Refer to Chapter 6 in this
manual and Chapter 31n the

Reference Guide for
Information about these

directives.

372

DO DEC MACRO
LOCAL SkipLabel
jexz SkipLabel
dec ex

SkipLabel:
ENDM

If LOCAL is used in a macro, it must be used immediately
following the MACRO directive. Multiple labels can be declared
local with a single LOCAL directive, and multiple LOCAL
directives can be used:

TEST MACRO
LOCAL
LOCAL

ENDM

MACRO
LoopTop,LoopEnd,Skiplne
NoEvent,MaeroDone

The names actually assigned to local labels are of the form

??XXXX

where XXXX is a hexadecimal number between 0 and OFFFFh.
Consequently, you should not assign your own labels names that
start with ??, since these might conflict with the local labels Turbo
Assembler generates.

Forward references to macros are not allowed; macros must be
defined before they're invoked. This makes good sense, in light of
our earlier discussion of forward references, since Turbo
Assembler has no idea how many bytes it would have to reserve
for a forward-referenced macro. Otherwise, though, macros can
be defined anywhere in a source module.

Any valid assembler line can appear in a macro. This includes
data definition directives, as well as code, and even includes
segment directives, labels of all sorts, and listing control
directives.

There are several conditional assembly directives that are
designed specifically for use in macros; these include IFDIF, IFIDN,
IFDIFI, IFIDNI, IFB, and IFNB. There are also several conditional
error directives for use in macros, including ERRDIF, ERRIDN,
ERRDIFI, ERRIDNI, ERRB, and ERRNB.

Turbo Assembler User's Guide

The special operators are all
defined more fully In Chapter

2 of the Reference Guide.

There are a number of special operators that you can use within
macros:

&
<>

%

"

Substitute operator
Literal text string operator
Quoted character opera tor
Expression evaluate opera tor
Suppressed comment

The & substitution operator has been discussed in the previous
section on macros.

Fancy data structures

Consult Chapter 11 to learn
more about the enhanced

features of Ideal mode.

Turbo Assembler provides three directives to ease the task of
managing complex data structures: STRUC, RECORD, and UNION.
You've probably noticed that the directive names are similar to
those used by high-level languages, and, indeed, there are some
similarities between Turbo Assembler's data structure directives
and those of high-level languages.

Don't be misled, however; as you will see, assembly language
data structure directives, while helpful, are less sophisticated than
those of high-level languages. For example, assembly language
doesn't limit the scope of the name of a structure element to that
structure, so every structure element name must be unique in its
source module.

Also, unlike C and Pascal, assembly language data structure
directives are conveniences, not necessities; there are ways to
handle data structures, records, and unions in assembler without
using the data structure directives. Nonetheless, the data
structure directives are convenient and well worth knowing
about.

The following discussion applies to Turbo Assembler operating in
MASM mode. In Ideal mode, Turbo Assembler supports
considerably more powerful forms of the data structure
directives.

One point about Turbo Assembler's fancy data structures before
we begin: Structures, records, and unions can appear anywhere in
a source module, as long as they are never forward-referenced by
instructions or directives.

Chapter 9, Advanced programming In Turbo Assembler 373

374

The STRUC
directive The STRUC directive, which lets you define a data structure, is

useful whenever you have to deal with data that's partitioned into
logical groups. For those of you who are familiar with C, STRUC
is similar to C's struct statement.

For example, suppose you want to define a data structure
containing a name, age, and income for one client. Here's such a
structure:

CLIENT STRUC
NAME DB 'Name goes here •••• '
AGE DW
INCOME DD
CLIENT ENDS

The CUENT structure contains three fields: The NAME field,
which contains a name up to 20 characters in length; the AGE
field, which contains an age stored as a 16-bit value; and the
INCOME field, which contains an income stored as a 32-bit value.

You could use the CUENT structure as follows:

CLIENT STRUC
NAME DB 'Name goes here ..•• '
AGE DW
INCOME DD
CLIENT ENDS

• DATA
MisterBark CLIENT <'John Q. Bark' ,32,10000>

.CODE

mov ax, [MisterBark.Age]
mov bx,OFFSET MisterBark
mov ax, WORD PTR [bx.INCOME]
mov dx,WORD PTR [bx.INCOME+2]

There's much to examine in this example. First, notice that
structure definitions end with the ENDS directive. This is the
same directive that ends segment definitions. It's all right to nest
structure definitions inside segment definitions. For example, the
folloWing defines a structure inside a data segment:

Turbo Assembler User's Guide

Data SEGMENT WORD PUBLIC 'DATA'

Test STRUC

Test ENDS

Data ENDS

Second, note that the variable MisterBark of structure type CUENT
is created as if there were a new data type named CUENT, and in
fact that's exactly what you've done by defining the CUENT
structure. In fact, if you use the SIZE operator on a CUENT
structure, you'll get the value 26, which is the size of the structure.

When MisterBark is created, three parameters to the declaration
are provided within angle brackets. These parameters become the
initial values for the corresponding fields of MisterBark; the string
'John Q. Bark' is the initial value of the NAME field, 32 is the
initial value of the AGE field, and 10,000 is the initial value of the
INCOME field.

You need not specify the initial value of any or all of the fields of a
structured variable when you create it. For example,

MisterBark CLIENT <>

doesn't initialize any of the fields of MisterBark, and

MisterBark CLIENT <,,19757>

initializes only the INCOME field. However, the angle brackets
are required even if no fields are initialized.

If you don't specify an initial value when you create a memory
variable, there are two possible ways in which the initial value of
each field can be set. If you specified a value for a given field
when you defined the structure type, that's the default value
assigned to that field. If you specified a question mark for a given
field when you defined the structure type, the default value for
that field is O.

For example, in the following code, an initial value is specified for
only one field of MisterBark-the NAME field-when MisterBark is
created. However, an initial value is specified for the AGE field
when the CUENT structure is defined, so that's the value assigned
to the AGE field of MisterBark. No value is specified in either place

Chapter 9, Advanced programming in Turbo Assembler 375

376

for the INCOME field, so the INCOME field is initialized to O.
Here's the example:

CLIENT STRUC
NAME DB 'Name goes here •••• '
AGE DW 21
INCOME DD
CLIENT ENDS

• DATA
MisterBark CLIENT <'John Q. Bark'>

The result of this code is that the NAME field is initialized to 'John
Q. Bark', the AGE field is initialized to 21, and the INCOME field
is initialized to O. Note that the initial value for the NAME field
specified when MisterBark is created overrides the initial value
specified when the CUENT structure was defined.

You can initialize arrays of structures with the DUP operator. For
example,

Clients CLIENT 52 DUP «»
creates the array Clients,·consisting of 52 structures of type
CUENT, each initialized to the default values.

If you look back to the original structure example, you'll see a
new operator there-the period (.) operator. The period operator
is actually just another form of the plus operator for memory
addressing; that is, all the following lines do exactly the same
thing:

mov ax, [bx.AGE]
mov ax, [bx].AGE
mov ax, [bx+AGE]
mov ax, [bx]+AtE

The period operator is often used with structure references for
consistency with C notation, which also uses the period operator,
and to make it clear that a structure field is being accessed; you
can use whichever operator you prefer-period or plus.

The structure fields defined with the STRUC directive are actually
labels equated to the offset of the field in the structure. Given the

Turbo Assembler User's Guide

Advantages and
disadvantages of using

STRUC

earlier definition for CUENT and MisterBark, the following two
lines are equivalent:

mov [MisterBark.AGE] ,ax
mov [MisterBark+20] ,ax

and this would work as well:

AGE_FIELD EQU 20

mov [MisterBark+AGE_FIELD],ax.

Why use STRUC, then? For one thing, structure fields provide
data-typing; Turbo Assembler knows MisterBark.AGE in the first
example is a word-sized variable, since there AGE is a structure
element, but MisterBark+AGE in the second example has no
inherent size.

For another, it's much easier to change a structure definition than
to change constant offsets, or even a set of equates. For example, if
you decided that the NAME field should be 30 characters long, all
you'd have to do is change the entry for NAME in the CLIENT
definition. !fyou were using equates, you'd have to manually
calculate and change the offsets of both the AGE and INCOME
fields; in a larger structure, you'd have quite a bit of work to do.

Finally, STRUC makes it easy to create and initialize data
structures.

In short, STRUC is a convenient and maintainable way to create
and access data structures. On the other hand, assembler data
structures are by no means as error-proof as C data structures. For
example, when you use a register to point to a data structure,
there's no way for Turbo Assembler to tell whether the register
contains a pointer to a valid data structure of that type. In the
following code, BX is loaded with 0, but there's no way for Turbo
Assembler to know whether or not there's a valid CUENT data
structure at offset 0:

mov bx,O
mov dx, [bx.AGE]

Chapter 9, Advanced programming in Turbo Assembler 377

This is not a problem with assembly language; rather, it reflects
the nature of assembly language. When there's a choice between
letting you have complete freedom in programming and
protecting you from yourself, assembly language gives you the
freedom. The important thing to keep in mind is that Turbo
Assembler can perform only limited error-checking on your
structure references; it's up to you to make sure you've got the
right pointers loaded.

Unique structure field names

One somewhat annoying result of the fact that structure field
names are actually just labels is that structure field names must be
unique in their source module. For example, if you defined the
CUENTstructure in a given source module, you couldn't have a
label named INCOME anywhere else in that module, not even in
another structure. INCOME is just a label with the value 22, and
of course, you can't have two labels with the same name in a
single source module. The following will produce an error, due to
the attempted redefinition of AGE:

CLIENT STRUC
NAME DB 'Name goes here '
AGE DW?
INCOME DD ?
CLIENT ENDS

AGE EQU 21

Nesting structures

Structures can be nested; for example,

. DATA

AGE STRUC STRUC
YEARS DW?
MONTHS DW ?
AGE STRUC ENDS

CLIENT 'STRUC
NAME DB 'Name goes here '
AGE AGE STRUC <>

378 Turbo Assembler User's Guide

INCOME DW
CLIENT ENDS

MisterBark CLIENT <>

• CODE

mov dx, [MisterBark.AGE.MONTHS]
mov si,OFFSET MisterBark
mov ex, [si.AGE.YEARS]

nests an AGE_STRUC structure named AGE in the CUENT
structure, then references the MONTHS and YEARS fields of AGE
in the CUENT structure MisterBark.

Initializing structures

There are a few cautions regarding the initialization of structures.
First, if you attempt to initialize a string field of a structure with a
string tha t is longer than the field, an assembly error will be
generated.

Second, the only kind of field that can be initialized with a string
value is a string field. The following would not assemble:

TEST STRUC
TEXT DB 30 DUP {' 'l
TEST ENDS

TStrue TEST <'Test string'>

even though TEXT was initialized to spaces, because Turbo
Assembler considers TEXT to be an array of 30 spaces, not a string
of 30 characters. The following would assemble:

TEST STRUC
TEXT DB 'String goes here •.••••..•••.. '
TEST ENDS

TStrue TEST <'Test string'>

Third, while you can define more than one data element as
belonging to a single structure field, you can only initialize, at
most, one element per field when you create an instance of that

Chapter 9, Advanced programming in Turbo Assembler 379

380

Refer to Chapter 11 for
Information about Ideal

mode.

The RECORD

structure. For example, in the following code, when TestStruc is
created, the first byte of field A is initialized to 1, and the first byte
of field B is initialized to 2, while the second byte of each field is
initialized to 20h (a space):

T STRUC
A DB Offh,Offh
B DB Offh,Offh
T ENDS

TestStruc T <1,2>

In this section, we've discussed the MASM mode version of the
STRUC directive. In Ideal mode, the STRUC directive is
considerably more powerful, providing more of the features
available to structures in high-level languages.

directive The RECORD directive provides you with a means to define bit
fields within a byte or word. The bit field definitions can then be
used to generate masks to isolate one or more of the bit fields, as
well as shift counts to right-justify any bit field. The RECORD
directive bears no relation to the Pascal record statement.

Suppose you want to define a data structure that contains three
1-bit flags and a 12-bit value. You could do this with the RECORD
directive as follows:

TEST REC RECORD FLAG1:1,FLAG2:1,FLAG3:1,TVAL:12

This example defines three flags, named FLAG1, FLAG2, and
FLAG3, and a data field named TVAL. The value after the colon
for each field specifies that field's size in bits; each of the flags is
one bit in size, and TV AL is 12 bits in size.

How are the fields stored within the record? That's a bit complex.
The first field, FLAG1, is the leftmost (most significant) bit of the
record. The second field, FLAG2, is the next most significant bit of
the record, and so on, until you reach TV AL, which ends at the
least significant bit of the record. However, the record is only 15
bits in size, leaving one bit in the word unaccounted for. (Records
are always exactly 8 or 16 bits long.) The rule is that records as a
whole are always right-justified in a byte or word.

Turbo Assembler User's Guide

Figure 9.1
Locations and initial

values of the fields
in TRec

As we said, it's a bit complex. Here's an example to clarify things.
A record of type TEST _REC is defined with a line like

TRee TEST_REC <1,O,O,52h>

Here we've created the variable TRee of record type TEST _REC.
The values in the angle brackets are made the initial values of the
corresponding fields, so the FLAGl field of TRee is initialized to 1,
the FLAG2 and FLAG3 fields are initialized to 0, and the TVAL
field is initialized to S2h. Figure 9.1 shows the locations and initial
values of the four fields of TRee.

TVAL

l
TRee 52h

Bit 15 14 13 12 11 o

If the overall size of a record (the sum total of all the fields) is 8
bits or less, the record is stored in a byte; otherwise, the record is
stored in a word. Records longer than 16 bits are not supported
except when 80386 assembly is enabled; in which case, records up
to 32 bits in size are allowed.

Initializing a record variable is much like initializing a structure
variable. If you specify an initial value for a given record field
when you create the record variable, the field is initialized to that
value, as illustrated by the last example.

If you don't specify an initial value for a given record field when
you create a record variable, there are two possible default values.
When you create a record type, you can optionally specify a
default value for any or all fields. For example,

TEST REC RECORD FLAG1:l=1,FLAG2:1=O,FLAG3:1,TVAL:12=Offfh

specifies default values of 1 for FLAG1, 0 for FLAG2, and OFFFh
for TV AL, with no explicit default value for FLAG3. The default
value for any field lacking an explicit default value is 0, so the
default value for FLAG3 is O.

So, given the following definition of TEST _REC and creation of
TRee

. DATA

Chapter 9, Advanced programming in Turbo Assembler 381

382

TEST REC RECORD FLAG1:1=1,FLAG2:1=0, FLAG3: 1, TVAL: 12=Offfh

TRee TEST_REC <,1,,2>

the fields are initialized as follows:

• FLAGI initialized to 1
• FLAG2 initialized to 1
• FLAG3 initialized to 0
• TV AL initialized to 2

The overall value of the record variable TRee is 6002h. Note that
initial values specified when a record variable is created override
initial values specified when the record type is defined.

Once defined, a record type is much like any other data type. You
can, for example, use a record type with the SIZE operator, and
you can define arrays of records with the DUP operator. For
example, the following declares an array of 90 records of type
TEST_REe:

TReeArray TEST_REC 90 DUP «1,1,1,0»

As with STRUC field names, record field names are labels. Since
labels can only be defined once in a source module, this means
that all record field names must be unique within their source
module.

Accessing records Now that you know how to create a record and how the various
fields in a record are stored, you're ready to learn how to access
records. You might reasonably think that you could access record
fields the way you access structure fields, as in

mov aI, [TRee.FLAG2] ;this doesn't work!!!

but that's not the case. The 8086 can only work with 8- or 16-bit
wide memory operands, so there's no way to load a 1-bit field, for
instance, into a register. What you can do with record fields is
determine their size in bytes, determine how many bits they need
to be shifted to be right-justified, and generate masks to isolate
them. In other words, even though the 8086 doesn't let you work
directly with record fields, Turbo Assembler supports
manipulating record fields with instructions such as AND and
SHR.

Turbo Assembler User's Guide

The value of a given record field is the number of bits by which
you'd have to shift the record in order to right-justify that field
(that is, place bit ° of the field at bit ° of the record). For instance,

mov al,FLAG1
mov ah,TVAL

loads AL with 14 and AH with 0, so

mov ax, [TRee]
mov el,FLAG1
shr ax,el

right-justifies the FLAGl field of TRee in AX.

The value of a given record type itself is the byte or word value
that would be generated by creating a record with given initial
values. For example,

mov ax,TEST_REC <1,1,1,Offfh>

loads AX with 7FFFh, the value you'd get if you created a
TEST _REC type record with the initial values <l,l,l,OFFFh>. Bear
iIi mind the distinction between loading AX with the record type
TEST _REC, as in the last example, and loading AX with the
record variable TRee, as in

TEST REC RECORD FLAG1:1=1,FLAG2:1=O,FLAG3:1,TVAL:12=Offfh

TRee TEST REC <,1,,2>

.CODE

mov ax, [TRee]

which loads AX with 6002h, the value of the variable TRee.

The WIDTH operator

The WIDTH operator returns the size of a record or record field in
bits. For example, the following line stores 15, the number of bits
in a TEST _REC record, in AL:

mov aI, WIDTH TEST_REC ;size of a TEST_REC record in bits

Chapter 9, Advanced programming in Turbo Assembler 383

384

and the following stores 1, the width of each of the flag fields, in
AL, AH, and BL, and 12, the width of the TV AL field, in BH:

mov aI, WIDTH FLAG!
mov ah,WIDTH FLAG2
rnov bI,WIDTH FLAG3
rnov bh,WIDTH TVAL

The MASK operator

Finally, the MASK operator returns a mask sUitable for isolating a
record or record field with the AND instruction. For example,

rnov ax,MASK TEST_REC

stores 7FFFh in AX, and

rnov ax,MASK TEST_REC
rnov dx, [TRee]
and dx,ax

stores the value of the record TRee in DX, masking off bit 15,
which isn't part of the TEST_REC record.

MASK is more useful for isolating an individual record field. The
following detects whether the FLAG3 field of TRee is set:

rnov ax, [TRee]
and ax, MASK FLAG3
jz FIag3NotSet

Note that the TEST instruction can be used non-destructively in
place of AND; the following performs the same test as the
previous example without modifying any registers or memory
locations:

jz FIag3NotSet

The MASK operator is also useful for manipulating record fields
in conjunction with the shift instructions, as you'll see shortly.

Turbo Assembler User's Guide

Why use records Now you've seen what records are and how they're used. When
would you really want to use records? Well, records aren't used
all that often, but they are handy when you've got multiple data
fields encoded in a single byte or word. Some variables used by
the BIOS are structured as records. For example, the low byte of
the BIOS equipment flag variable, which stores equipment-related
information (such as what video adapter is active and the number
of floppy drives present) is a record of the structure

EQ_FLAG RECORD NUMDISKS:2,VIDEO:2,RSRVD:2,MATHCHIP:l,AREDISKS:l

where NUMDISKS is the number of floppy disk drives installed
minus 1; VIDEO indicates what sort of display adapter is
currently active; RSRVD is a field reserved for different uses in
different IBM microcomputers; MATHCHIP is 1 if a numeric
coprocessor such as an 8087 is installed; ARE DISKS is 1 if any
floppy disk drives are installed.

Here's a function that uses the EQ_FLAG record and the record
operators to return the setting of the display adapter field of the
BIOS equipment flag variable:

i Returns current setting of the display adapter field of
i the BIOS equipment flag variable.

i Input: None

i Output:
AL = 0 if no display adapter is currently selected

1 if 40x25 color display is currently selected
2 if 80x25 color display is currently selected
3 if 80x25 monochrome display is currently selected

i Registers destroyed: AX,CL,ES

EQ_FLAG RECORD NUMDISKS:2,VIDEO:2,RSRVD:2,MATHCHIP:l,AREDISKS:l

GetBIOSEquipmentFlag
mov ax,40h
mov es,ax
mov al,es:[lOh]
and al,MASK VIDEO
mov cl, VIDEO

PROC

ipoint ES to the BIOS data segment
iget the low bit of the equipment flag
iisolate the display adapter field
iget the number of bits to shift
i the display adapter field right to
i right-justify it

Chapter 9, Advanced programming in Turbo Assembler 385

386

See Chapter 11 for
information about Ideal

mode.

shr al,cl iright-justify display adapter field
ret

GetBIOSEquipmentFlag ENDP

Here's a complementary function that sets the display adapter
field of the BIOS equipment flag to a specified value:

Sets the display adapter field of the BIOS equipment flag
variable.

Input:
AL = 0 if no display adapter is currently selected

1 if 40x25 color display is currently selected
2 if 80x25 color display is currently selected
3 if 80x25 monochrome display is currently selected

Output: None

Registers destroyed: AX,CX,ES

EQ_FLAG RECORD NUMDISKS:2,VIDEO:2,RSRVD:2,MATHCHIP:l,AREDISKS:l

SetBIOSEquipmentFlag PROC
mov cx,40h
mov es,cx
mov el, VIDEO

shl al,e!
mov ah,es: [lOh]
and ah,NOT MASK VIDEO
and aI, MASK VIDEO

or al,ah

ipoint ES to the BIOS data segment
iget the number of bits to shift
i the passed value left to align it
i with the display adapter field
ialign the value
iget the low bit of equipment flag
iclear the display adapter field
imake sure the new display adapter
i field setting is valid
iinsert the new display adapter
i field setting in the equipment
i flag value

rnov es:[lOh],al iset the new equipment flag
ret

SetBIOSEquipmentFlag ENDP

In this section, we've discussed the MASM mode version of the
RECORD directive. The Ideal mode version of the RECORD
directive differs slightly from the MASM mode version.

Turbo Assembler User's Guide

The UNION
directive The UNION directive provides a way to reference a given memory

location as more than one data type. UNION is similar to C's union
statement.

Suppose you have a counter that you use sometimes as an 8-bit
counter and sometimes as a 16-bit counter. You could declare it to
be a union of the two with

FLEX COUNT UNION
COUNT8 DB?
COUNT16 DW
FLEX COUNT ENDS

Note that, as with STRUC, UNION definitions must end with
ENDS.

Given the previous definition of the FLEX_COUNT union, you
could create and use a dual-purpose counter as follows:

• DATA
Counter FLEX COUNT <?,?>

.CODE

mov [Counter.COUNT16],Offffh
LoopTop:

dec [Counter.COUNT16]
jnz ShortLoopTop

mov [Counter.COUNT8],255
ShortLoopTop:

dec [Counter.COUNT8]
jnz ShortLoopTop

As with STRUC, the period operator is used to reference union
fields; the plus operator could be used as well. Referencing a
variable by way of its union fields is equivalent to using type
overrides. The preceding example is equivalent to

Chapter 9, Advanced programming in Turbo Assembler 387

388

• DATA
Counter DW ?

.CODE

mov WORD PTR [Counter],Offffh
LoopTop:

dec WORD PTR [Counter]
jnz LoopTop

mov BYTE PTR [Counter],255
ShortLoopTop:

dec BYTE PTR [Counter]
jnz ShortLoopTop

The advantage of using a union over type overrides is that you're
much more likely to use the correct union element name than you
are to remember the type override in every instance. Also, the
multiple-mode operation of a union variable is instantly apparent
when you look at the variable's definition, so code containing
unions is easier to understand and maintain.

You can nest both unions and structures within unions. For
example, the following union allows a 4-byte memory variable to
be accessed as either a doubleword-sized segment:offset pointer
or as a word-sized offset variable and a word-sized segment
variable:

SEG OFF STRUC
POFF OW ?
PSEG DW ?
SEG OFF ENDS

PUN ION UNION
DPTR DO
XPTR SEG OFF <>
PUNION ENDS

.CODE

mov [bx.XPTR.POFF],si
mov [bx.XPTR.PSEG],ds

les di, [bx.DPTR]

Turbo Assembler User's Guide

Refer to Chapter 11 for
information about Ideal

mode.

As with STRUC and RECORD, the field names defined with
UNION are normal labels, with no scope limitations.
Consequently, union field names must be unique in their source
module.

In this section, we've discussed the MASM mode version of the
UNION directive. In Ideal mode, the UNION directive is
considerably more powerful, providing more of the features
available to structures in high-level languages.

Segment directives

The SEGMENT

In Chapter 5, you learned how to use the simplified segment
directives, and you learned enough about the standard segment
directives to be able to make a working program. Now we're
going to discuss each of the standard segment directives in detail,
and provide you with more information about what the
simplified segment directives do. We're also going to show you a
sample program that uses several code and data segments, to give
you a feel for how multisegment programs operate.

Recall that the simplified segment directives are easier to use but
less powerful than the standard segment directives. The standard
segment directives we cover in the next sections are SEGMENT,
GROUP, and ASSUME.

directive The SEGMENT directive is used to start a segment. Each
SEGMENT directive must have a matching ENDS to terminate that
segment. Unlike the simplified segment directives, SEGMENT
gives you complete control over the attributes of each segment.

The complete form of the SEGMENT directive is

name SEGMENT align combine use 'class'

where align, combine, use, and class are all optional. We'll discuss
each of these fields in turn.

Chapter 9, Advanced programming in Turbo Assembler 389

390

The name and align
fields

name is the name of the segment. Segment names are labels, so
they must be unique in their source modules. The same name
must be used with ENDS when the segment is ended.

align specifies the memory boundary on which the segment
should start. The following are valid alignments:

• BYTE uses the next available byte address .
.. DWORD uses the next doubleword-aligned address.

• PAGE uses the next page address (256-byte aligned).

• PARA uses the next paragraph address (16-byte aligned).

• WORD uses the next word-aligned address.

If no alignment is explicitly specified, paragraph-alignment is
used.

Byte-alignment makes for the most compact programs. Word
alignment is preferable on 16-bit computers such as the AT, since
16-bit processors operate more efficiently on word-aligned data;
doubleword-alignment is preferable on 32-bit computers for
much the same reason. Paragraph-alignment is necessary for
segments that will be a full64K long.

The combine field combine controls the manner in which segments of the same name
in other modules will be combined with this segment when the
modules that make up the program are linked together. combine
can be anyone of the following types:

AT
COMMON
MEMORY
PRIVATE

PUBLIC
STACK
VIRTUAL

You might find it useful to refer to the later section (on page 400),
"The simplified segment directives," which shows the combine
types used by high-level languages.

A combine type of AT causes the start of the segment to be placed
at a specific address in memory. No code is actually generated;
instead, AT segments are used as templates for accessing memory
areas such as the ROM BIOS data segment and display memory.
For example,

VGA GRAPHICS MEMORY SEGMENT AT OAOOOh - -

Turbo Assembler User's Guide

BitMapStart LABEL BYTE
VGA GRAPHICS MEMORY ENDS - -

mov ax,VGA_GRAPHICS_MEMORY
mov eS,ax
ASSUME es:VGA GRAPHICS MEMORY - -
mov di,OFFSET BitMapStart
mov cx,08000h
sub aX,ax
cld
rep stosw

clears the VGA graphics screen.

The combine type COMMON specifies that the beginning of this
segment and the beginning of all other segments of the same
name should be aligned, so that the segments overlay each other.
The total segment size is only the size of the largest segment of
this name. One way in which the COMMON combine type can be
used is by including a file that defines a COMMON segment in
each module referencing that segment, so that all modules
effectively share exactly the same segment.

The combine type PUBLIC instructs the linker to concatenate this
segment with other segments of the same name, so the segments
are effectively pieced together to make a larger segment. The total
size of the segment is the sum of the size of all segments of this
name. As with all segments, the total size of PUBLIC segments
can't exceed 64K. PUBLIC is used when multiple modules share
the same segment, but each defines its own variables. Variables in
PUBLIC segments are often shared between modules by way of
GLOBAL directives.

The MEMORY combine type is the same as PUBLIC.

The combine type STACK instructs the linker to concatenate all
segments of this name into one segment, and to build the EXE file
so that SS:SP is set to point to the end of this segment when the
program is run. This is a specialized combine type to be used for
the stack and nothing else.

A combine type of VIRTUAL defines a special kind of segment,
which will be treated as a common area and attached to another
segment at link time. The VIRTUAL segment is assumed to be
attached to the enclosing segment. The VIRTUAL segment also
inherits its attributes from the enclosing segment. The ASSUME
directive considers a VIRTUAL segment to be a part of its parent

Chapter 9, Advanced programming in Turbo Assembler 391

The use and class fields

The next section has more
information about segment

ordering.

392

Segment size, type,
name, and nesting

segment; in all other ways, a VIRTUAL segment is treated just like
a normal segment. The linker treats virtual segments as a common
area that will be combined across modules. This permits static
data that comes into many modules from Include files to be
shared.

Finally, the combine type PRIVATE instructs the linker not to
combine this segment with any other segments. This allows you
to define segments that are local to a given module, without
having to worry about possible conflicts if segments of the same
name are used in other modules. Segments default to combine
type PRIVATE if no combine type is specified.

The use field of the SEGMENT directive is for 80386 assembly
only; Chapter 10 offers more information on the use field.

The class field is used to control the order in which the linker
places segments. All segments of a given class are placed in a
contiguous block of memory, no matter what their order is in the
source code. The section liThe simplified segment directives"
shows the classes used by high-level languages; for simplicity,
you might want to follow these conventions.

The cumulative size of the segments in a class is limited only by
the availability of memory at run-time; however, no individual
segment can exceed 64K.

Note that the class type, if present, must be enclosed in quotes.
Also, class types must be unique in their source modules; that is,
no label used in a given module may have the same name as a
class type used in that module.

You can define the same segment name multiple times in the
same source module; all instances are considered to refer to a
single segment. However, you must make sure that all definitions
of a given segment in a source module have the same attributes;
otherwise, Turbo Assembler will generate an error.

One handy way to avoid such errors is to specify attributes only
the first time you define a segment in a given source module.
When a redefined segment with no attributes is encountered,
Turbo Assembler automatically uses the attributes specified when
the segment was first defined.

Finally, segments can be nested, which means you can define a
segment before you end an earlier segment, as follows:

Turbo Assembler User's Guide

Segment-ordering

DataSeg SEGMENT PARA PUBLIC 'DATA'

DataSeg2 SEGMENT PARA PRIVATE 'FAR_DATA'

DataSeg2. ENDS

DataSeg ENDS

Nesting is not generally useful, but there is at least one case where
it's handy, and that's in a macro. In order to define a segment in a
macro, you'd normally have to end and then restart the current
segment, and to do that you'd need to know the current segment's
name, which is not necessarily obvious in the context of a macro.
By contrast, segment-nesting allows you to define a segment
without ever knowing what the name of the current segment is, as
follows:

TEST MACRO

TestSeg SEGMENT WORD PRIVATE 'FAR DATA'

TestSeg ENDS

ENDM

After a nested segment ends, Turbo Assembler simply resumes
assembling into the segment that was active when the nested
segment began.

By and large, you don't need to worry about the order in which
the segments end up in the .EXE files you create. First of all, the
order in which segments appear in .EXE files doesn't often matter.
Second, most of the cases in which you might care about segment
order are easily handled by a high-level language compiler or the
DOSSEG directive. If you're linking to a high-level language, that
language's compiler will usually control the segment order. If
you're writing a pure assembler program and have specified the
DOSSEG directive, your segments will end up in Microsoft
standard segment order, as follows:

• Segments of class CODE

Chapter 9, Advanced programming in Turbo Assembler 393

394

• Segments of class other than CODE that are not part of
DGROUP

• Segments that are part of DGROUP, in the following order:

• Segments of classes other than STACK and BSS
• Segments of class BSS
• Segments of class STACK

If you're curious about the order in which the linker is placing
your segments, just use the Is command-line switch to instruct
TLINK to generate a detailed segment map file and take a look at
the map file.

A question remains: How are segments ordered if you aren't
linking to a high-level language and you don't use the DOSSEG
directive? Most of the time, you'll have no need to know the
answer to that question, but in case it does matter to you, here's
the answer. (It's a bit more complex than you might think.)

When no explicit segment-ordering, such as that forced by
DOSSEG, is in effect, the linker groups all segments of a given
class together, where the class of a segment is specified by the
class field of the SEGMENT directive. The groups of segments
themselves are placed in the .EXE file simply in the order in
which the linker encounters them; the first segment class the
linker encounters in loading the .OB] files is placed first in the
.EXE file, the second segment class encountered comes next, and
so on. This means that the order in which .OB] files are linked
affects the final order of the segments in the .EXE file.

Now you've got the segments loosely ordered by class. How, then,
are the segments within each class ordered? Once again, they're
placed in the .EXE file in the order in which the linker
encountered them. One factor here is the order in which the .OB]
files are linked; another factor is the order in which the segments
are placed in each .OB] file. Turbo Assembler gives you two
choices regarding the order in which segments appear in .OB]
files.

The .SEQ directive instructs Turbo Assembler to place segments
in the .OB] file in the order in which they appear in the source file.
With sequential-ordering, the order of the segments in a given
source module can affect the order of the segments in the .EXE
file. This is the default mode of operation of Turbo Assembler, so
sequential segment-ordering will occur even if you omit the .SEQ
directive, as long as the .ALPHA directive is not used.

Turbo Assembler User's Guide

The GROUP

The .ALPHA directive instructs Turbo Assembler to place
segments in the .OBI file in alphabetic order. With alphabetic
ordering, the order of the segments in a given source module does
not affect the order of the segments in the .EXE file. This is the
default mode of operation of some older assemblers, so you may,
on occasion, have to use .ALPHA in order to get assembler
programs to run properly.

So, now you've got segments loosely ordered by class, and
ordered within the class by the order of appearance of the
segments. You can control the order of appearance of segments
within the class both by the order in which .OBI files are linked
and by the .SEQ and .ALPHA directives. If .SEQ is selected, the
order of appearance of segments in a given source module can
affect the order of the segments in the .EXE file.

You can see that segment-ordering is no simple matter. Odds are,
though, that you'll never have to worry about segment order; it
doesn't usually make any difference anyway, and when it does, a
high-level compiler or the DOSSEG directive generally takes care
of segment-ordering for you.

directive The GROUP directive is used to combine two or more segments
into one logical entity, so that all the segments can be addressed
relative to a single segment register.

Suppose you have a program that accesses data in two segments.
Normally, you'd have to load a segment register and perform a
new ASSUME each time you wanted to access first one segment
and then the other; that's both time-consuming and a nuisance. It's
far easier to combine the segments into a single group named
DataGroup, load DS with the start of DataGroup, ASSUME DS to
DataGroup, and then access either segment at any time. Here's the
code:

DataGroup GROUP DataSegl,DataSeg2

DataSegl SEGMENT PARA PUBLIC 'DATA'
MemVarl DW 0
DataSegl ENDS

DataSeg2 SEGMENT PARA PUBLIC 'DATA'
MemVar2 DW 0
DataSeg2 ENDS

. Chapter 9, Advanced programming in Turbo Assembler 395

mov ax,DataGroup
mov ds,ax
ASSUME ds:DataGroup

mov ax, IMemVarl]
mov IMemVar2],ax

Why would you want to use groups, when using a single segment
name and the combine type PUBLIC produces the same result
more easily? Actually, in pure assembler programs, there's not
that much need for groups, although you can certainly use them if
you want. Groups are primarily used when interfadng assembler
code to high-level languages. In particular, the group DGROUP is
used by high-level languages to allow the stack, initialized near
data, uninitialized near data, and constant segments to be
accessed relative to a single segment register.

1111" The one key rule with groups is that all the segments in a group
must lie within a single 64K segment, since they must all be
accessed relative to a single segment register. Bear in mind that
segment-ordering is dependent on many factors, as discussed in
the last section, so segments might lie some distance apart if
you're not careful. The safest approach is to declare all segments
in a group to be of the same class, and to define them one after the
other at the start of all modules they're defined in.

However, when you are either linking to a high-level language or
have used the DOSSEG directive anywhere in your program,
there's no need to worry about making sure that the segments in
DGROUP are kept together; in both these cases, the linker
automatically makes all segments in DGROUP adjacent.

While the segments in a group must fit within a 64K segment,
they do not have to be contiguous once they're linked. Non
grouped segments can lie between the segments that make up a
group.

1111" If you do use a group, you must be careful always to use the
group name with ASSUME when you load a segment to point to
the group. Otherwise, Turbo Assembler will generate offsets
relative to the segment start, not the group start, even though the
segment register is pointing to the group start. For example, the
following would cause errors given the previous definition of
DGROUP:

396 Turbo Assembler User's Guide

See • Forgetting group
overrides in operands and

data tables, • on page 252 in
Chapter 6 for more

information.

The ASSUME

mov ax,DGROUP
mov ds,ax
ASSUME ds:Stack ;will produce incorrect offsets!

Instead, use

mov ax,DGROUP
mov ds,ax
ASSUME ds:DGROUP

In short, if you load a segment register to point to a group, be sure
to ASSUME to that group, not to any of its component segments.

MASM, the Microsoft Macro Assembler, has a bug regarding the
OFFSET operator with groups. This bug also surfaces when
initializing data to the address of labels in a group. In the interests
of compatibility, Turbo Assembler reproduces this bug. The
workaround for this bug is always to place group override
prefixes on labels when you use them with the OFFSET operator
or use them to initialize data.

directive The ASSUME directive lets you tell Turbo Assembler what
segment or group a given segment register is pointing to. Note
that this is not the same as actually loading a segment register to
point to that segment; you must do that separately with the MOV
instruction. The purpose of ASSUME is to allow Turbo Assembler
to check the validity of your memory references and to insert
segment override prefixes automatically on your memory
accesses as needed.

An ASSUME for CS must appear before any code in each source
module, so that Turbo Assembler knows what segment to assume
the instructions are in, for purposes of jumps, calls, and setting
the starting address of the program.

Other ASSUME directives for the various segment registers can be
inserted as often as needed in any source module. The assumed
segment for any segment register can be changed whenever you
wish. Any or all segment assumptions can be changed with a
single ASSUME directive.

Chapter 9, Advanced programming in Turbo Assembler 397

398

You can specify an assumption for a segment register with either
a segment name, a group name, or a segment extracted from a
label with the SEG operator. Additionally, you can use the
NOTHING keyword to instruct Turbo Assembler to assume that
any or all segment registers aren't pointing to any segment.

Here's an example of using ASSUME:

Stack SEGMENT PARA STACK 'STACK'
DB 512 DUP (0)

Stack ENDS
TGROUP GROUP DataSeg1,DataSeg2
DataSeg1 SEGMENT PARA PUBLIC 'DATA'

DataSeg1 ENDS
DataSeg2 SEGMENT PARA PUBLIC 'DATA'

DataSeg2 ENDS

DataSeg3 SEGMENT PARA PUBLIC 'DATA'
MemVar DW 0

DataSeg3 ENDS

CodeSeg SEGMENT PARA PUBLIC 'CODE'
ASSUME cs:CodeSeg,ds:TGROUP,ss:Stack,es:NOTHING

ProgramStart:
mov ax,TGROUP
mov ds,ax
ASSUME ds:TGROUP

mov ax,SEG MemVar
mov es,ax
ASSUME es:SEG MemVar

push ds
pop es
mov ax,CodeSeg
mov ds,ax
ASSUME ds:CodeSeg,es:TGROUP

CodeSeg ENDS
END ProgramStart

;same as DataSeg3

If an ASSUME directive refers to a group, the specified segment
register is assumed to point to the start of that group. However, if
an ASSUME directive refers to a segment that's part of a group,
the segment register is assumed to point to the start of the

Turbo Assembler User's Guide

segment, not the group. This can cause problems, since segment
registers are generally set to point to the start of groups, not
segments that make groups. For example, the following would
load AX. from the wrong memory location, since OS points to the
start of TGROUP, but the ASSUME statement incorrectly indicates
that OS points to the start of DataSeg2:

TGROUP GROUP DataSegl,DataSeg2
DataSegl SEGMENT PARA PUBLIC 'DATA'

DataSegl ENDS
DataSeg2 SEGMENT PARA PUBLIC 'DATA'
MemVar DW 0
DataSeg2 ENDS

CodeSeg SEGMENT PARA PUBLIC 'CODE'
ASSUME cs:CodeSeg

mov ax,TGROUP
mov ds,ax
ASSUME ds:DataSeg2
mov ax, [MemVarl

;not correct!!! (should be TGROUP)
;will load from the wrong offset,

relative to DataSeg2 rather than
; TGROUP

When you use the simplified segment directives, it's generally not
necessary to use ASSUME, since Turbo Assembler automatically
generates the appropriate segment assumptions. However, if you
change any segment registers while you're using the simplified
segment directives, you will have to perform the appropriate
ASSUME directives. For example, the following sets OS to point to
the .DATA segment, the .CODE segment, the .FARDATA segment,
and finally back to the .DATA segment:

. DATA

.FARDATA

. CODE
mov ax,@data
mov ds,ax
ASSUME ds:@data

mov ax,@code
mov ds,ax

Chapter 9, Advanced programming In Turbo Assembler 399

You should exercise care
that your ASSUME directives

correspond to the actual
settings of the segment

registers at all times.

400

The simplified
segment

directives

Memory models are dis
cussed In Chapter 5.

ASSUME ds:@code

mov ax,@fardata
mov ds,ax
ASSUME ds:@fardata

mov ax,@data
mov ds,ax
ASSUME ds:@data

As we've pointed out before, the ASSUME directive can cause
Turbo Assembler to insert segment override prefixes on memory
accesses whenever Turbo Assembler (operating on the basis of the
ASSUME directives you've issued) thinks that's necessary to access
a given memory variable. For example, Turbo Assembler will put
an ES: override on the instruction that accesses MemVar in the
following code, since the ASSUME directive incorrectly indicates
that DS can't reach the segment where MemVar resides:

DataSeg SEGMENT PARA PUBLIC 'DATA'
MemVar DB ?

DataSeg ENDS

CodeSeg SEGMENT PARA PUBLIC 'CODE'
ASSUME cs:CodeSeg,ds:NOTHING,es:DataSeg

mov ax,DataSeg
mov ds,ax
mov es,ax
mov [MemVarl,l

We discussed the simplified segment directives in some detail in
Chapter 5. However, the main aspect of simplified segment
directives that we haven't covered yet is exactly what segments
the various simplified segment directives create. That's not
something you'll normally have to know, but if you're mixing
simplified and standard segment directives, you might need that
information.

The segments and segment groups created by the .CODE, .DATA,
.DATA?, .STACK, .CONST, .FARDATA, and .FARDATA? directives

Turbo Assembler User's Guide

depend on the memory model selected by the .MODEL directive.
The following tables show the correspondence of memory models
and the segments created by the simplified segment directives:

Table 9.1
Directive Name Align Combine Class Group Default segments

and types for tiny
memory model .CODE TEXT WORD PUBLIC 'CODE' DGROUP

.FARDATA FAR_DATA PARA private 'FAR DATA'

.FARDATA? FAR BSS PARA private 'FAR-BSS'

.DATA DATA WORD PUBLIC 'DATA' DGROUP

.CONST CaNST WORD PUBLIC 'CONsr DGROUP

.DATA? BSS WORD PUBLIC 'BSS' DGROUP

.STACK- STACK PARA STACK 'STACK' DGROUP

- STACK not assumed to be in DGROUP if FARSTACK specified.

Table 9.2
Default segments Directive Name Align Combine Class Group

and types for small
memory model .CODE TEXT WORD PUBLIC 'CODE'

.FARDATA FAR_DATA PARA private 'FAR DATA'

.FARDATA? FAR BSS PARA private 'FAR-BSS'

.DATA _DATA WORD PUBLIC 'DATA' DGROUP

.CONST CaNST WORD PUBLIC 'CaNST' DGROUP

.DATA? BSS WORD PUBLIC 'BSS' DGROUP

.STACK- STACK PARA STACK 'STACK' DGROUP

- STACK not assumed to be in DGROUP if FARSTACK specified.

Table 9.3
Default segments Directive Name Align Combine Class Group

and types for
medium memory .CODE name_TEXT WORD PUBLIC 'CODE'

model .FARDATA FAR DATA PARA private 'FAR DATA'
.FARDATA? FAR=BSS PARA private 'FAR-BSS'
.DATA DATA WORD PUBLIC 'DATA' DGROUP
.CONST CaNST WORD PUBLIC 'CONsr DGROUP
.DATA? BSS WORD PUBLIC 'BSS' DGROUP
.STACK- STACK PARA STACK 'STACK' DGROUP

- STACK not assumed to be in DGROUP if FARSTACK specified.

Table 9.4
Default segments Directive Name Align Combine Class Group

and types for
compact memory .CODE _TEXT WORD PUBLIC 'CODE'

model .FARDATA FAR DATA PARA private 'FAR DATA'
.FARDATA? FAR=BSS PARA private 'FAR=BSS'
.DATA DATA WORD PUBLIC 'DATA' DGROUP
.CONST CaNST WORD PUBLIC 'CONsr DGROUP
.DATA? BSS WORD PUBLIC 'BSS' DGROUP
.STACK- STACK PARA STACK 'STACK' DGROUP

- STACK not assumed to be in DGROUP if FARSTACK specified.

Chapter 9, Advanced programming in Turbo Assembler 401

Table 9.5
Default segments

and types for large
or huge memory

model

Table 9.6
Default segments

and types for Turbo
Pascal (TPASCAL)

memory model

402

Directive Name Align Combine Class Group

.CODE name TEXT WORD PUBLIC 'CODE'

.FARDATA FAR-DATA PARA private 'FAR_DATA'

.FARDATA? FAR-BSS PARA private 'FAR BSS'

.DATA _DATA WORD PUBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

.DATA? BSS WORD PUBLIC 'BSS' DGROUP

.STACK" STACK PARA STACK 'STACK' DGROUP

"STACK not assumed to be in DGROUP if FARSTACK specified.

Directive Name Align Combine

.CODE CODE BYTE PUBLIC

.DATA DATA WORD PUBLIC

In past chapters, you've probably noticed that programs using the
simplified segment directives don't need ASSUME, GROUP, or
ENDS directives. The .MODEL directive automatically performs
the appropriate ASSUME directives for the selected memory
mode, assuming the segments shown in the preceding tables .
. MODEL also performs the group definition for DGROUP, as
shown in the previous tables.

As for ENDS, the start of a new segment with a simplified
segment directive-for example, .CODE or .DATA-automatically
ends the current segment, if there is one.

Take a look now at the more esoteric simplified segment
directives: .DATA?, .CONST, .FARDATA, and .FARDATA?
.FARDATA is really the only one of these you'll ever use in a pure
assembler program; the others are strictly for matching the
segment usage of high-level languages .

. DATA? starts the segment that is to contain uninitialized near
data in DGROUP. Since both the .DATA and .DATA? segments are
in the same group, there's really no reason not to simply skip
using .DATA? altogether and use question marks 'to define
uninitialized data in the .DATA segment, except when you're
following the conventions of a high-level language .

. CONST, which starts the segment that is to contain constant near
data in DGROUP, falls into the same category as .DATA? You
might as well put your constant data in .DATA and skip .CONST,
except when you're following the conventions of a high-level
language.

Turbo Assembler User's Guide

.FARDATA is used to create a far data segment unique to a given
source module; that is, a segment that's not shared with any other
module. That segment is named FAR_DATA but is of combine
type PRIVATE, so it's not combined with any other segment .
. FARDATA allows you to define up to 64K of local data storage in
each module. Of course, if you use .FARDATA, you must set a
segment register to point to that segment, as follows:

.MODEL small
• DATA

InitValue DW 0
.FARDATA

MemArray DW 100 DUP (?)
.CODE

mov ax,@data
mov ds,ax
mov ax,@fardata
mov es,ax
mov ax, [InitValue]
ASSUME es:@fardatai
mov di,OFFSET MemArray
mov cx,100
cld
rep stosw

Note that the predefined label @fardata contains the name of the
segment defined with the .FARDATA directive.

While a segment defined with .FARDATA isn't shared with any
other module (as, for example, the segment defined with .DATA
is), you can use GLOBAL to share specific variables in the
.FARDATA segment with other modules. For example, the
following makes MemVar available to other modules:

. MODEL small

.FARDATA
GLOBAL MemVar:WORD

MemVar DW 0

Another module could then reference MemVar as follows:

. MODEL small
GLOBAL MemVar:WORD
• DATA

. CODE

Chapter 9, Advanced programming in Turbo Assembler 403

404

A multisegment
program

mov ax,SEG MemVar
mov ds,ax
ASSUME ds:SEG MemVar
mov ax, [MemVar]

Note that the declaration of MemVar as GLOBAL comes before
any segment is declared. This is necessary because a global
declaration of a given variable must be performed either inside
the variable's segment or outside all segments. Since, by
definition, no module can share another module's .FARDATA
segment, the declaration of MemVar must be performed outside
all segments. .

.FARDATA? is much like .FARDATA, except that it creates a
private segment named FAR_BSS. FAR_BSS segments are used
by high-level languages for uninitialized far data. If you're not
interfacing to a high-level language, there's no reason you
shouldn't define your uninitialized far data in the segment
defined with .FARDATA and forget about .FARDATA? True, the
.FARDATA segment gives you an additional64K of far storage,
but if you really need more than 64K of far storage that's unique
to a given module, you should probably be using the standard
segment directives anyway.

If you do use .FARDATA?, the predefined label @fardata?
contains the name of the segment defined by .FARDATA, suitable
for use in ASSUME directives and in loading segment registers.

The next program has two code segments and two data segments.
This is hardly a comprehensive example of multisegment
programming, but we don't have the space for a program running
to hundreds or thousands of lines; this one will serve to give you
a feel for switching data segments, loading full segment:offset
pointers, and calling code in other segments.

Here's the example:

; Program to demonstrate use of multiple code and data segments.

; Reads a string from the console, stores it in one data
segment, copies the string to another data segment, converting
it to lowercase in the process, then prints the string to the

Turbo Assembler User's Guide

console. Uses functions in another code segment to read,
print, and copy the string.

Stack
DB

SEGMENT PARA STACK 'STACK'
512 DUP (?)

Stack ENDS

. MAX_STRING_LENGTH EQU 1000

SourceDataSeg SEGMENT PARA PRIVATE 'DATA'
InputBuffer DB MAX_STRING_LENGTH DUP (?)
SourceDataSeg ENDS

DestDataSeg
OutputBuffer
DestDataSeg

SEGMENT PARA PRIVATE 'DATA'
DB MAX_STRING_LENGTH DUP (?)
ENDS

SubCode SEGMENT PARA PRIVATE 'CODE'
ASSUME cs:SubCode

Subroutine to read a string from the console. String end is
marked by a carriage-return, which is converted to a
carriage-returnflinefeed pair so it will advance to the next
line when printed. A a is added to terminate the string.

Input:
ES:DI - location to store string at

Output: None

Registers destroyed: AX,DI

GetString PROC FAR
GetStringLoop:

mov ah,l
int 21h
stosb
cmp aI, 13
jnz GetStringLoop
mov BYTE PTR es: [di],10
mov BYTB PTR es: [di+1],0

ret
GetString ENDP

;get the next character
isave it
iis it a carriage-return?
ino-not done yet

iend the string with a linefeed
; and with a zero

Subroutine to copy a string, converting it to lowercase.

Input:
DS:SI - string to copy
ES;DI - place to put string

Chapter 9, Advanced programming in Turbo Assembler 405

406

Output: None

Registers destroyed: AL, SI, DI

CopyLowercase PROC FAR
CopyLoop:

lodsb
cmp aI,' A'
jb NotUpper
cmp al,'Z'
ja NotUpper
add al,20h iconvert to lowercase if it's uppercase

NotUpper:
stosb
and al,al
jnz CopyLoop
ret

iwas that the 0 that ends the string?
ino, copy another character

CopyLowercase ENDP

Subroutine to display a string to the console.

Input:
DS:SI - string to display

Output: None

Registers destroyed: AH,DL,SI

DisplayString PROC FAR
DisplayStringLoop:

mov dl, [si)
and dl,dl
jz DisplayStringDone
inc si
mov ah,2
int 21h
jmp DisplayStringLoop

DisplayStringDone:
ret

DisplayString ENDP
Sub Code ENDS

iget the next character
iis this the 0 that ends the string?
iyes, we're done
ipoint to the following character

idisplay the character

Code SEGMENT
ASSUME

ProgramStart:
cld

PARA PRIVATE 'CODE'
cs:Code,ds:NOTHING,es:NOTHING,ss:Stack

imake string instructions increment
i their pointer registers

Read a string from the console into InputBuffer.

Turbo Assembler User's Guide

mov ax,SourceDataSeg
mov es,ax
ASSUME es:SourceDataSeg
mov di,OFFSET InputBuffer
call GetString iread string from the console and

i store it at ES:DI

Print a linefeed to advance to the next line.

mov ah,2
mov dl,lO
int 21h

Copy the string from InputBuffer to OutputBuffer, converting
it to lowercase in the process.

push es
pop ds
ASSUME ds:SourceDataSeg
mov ax,DestDataSeg
mov es,ax
ASSUME es:DestDataSeg
mov si,OFFSET InputBuffer
mov di,OFFSET Output Buffer
call CopyLowercase

Display the lowercase string.

push es
pop ds
ASSUME ds:DestDataSeg
mov si,OFFSET OutputBuffer
call DisplayString

Done.

mov ah,4ch
int 21h

Code ENDS
END ProgramStart

iCOPY from DS:SI •..
i ... to ES:DI. ..
i ••. making it lowercase

idisplay string at DS:SI
i to the console

1111. Note that, in this example, the subroutines come before the main
program. This is done in order to avoid forward references, since
the subroutines and the main program reside in different code
segments. If the main program came first, you'd have to put FAR
PTR overrides on each subroutine call because Turbo Assembler

Chapter 9, Advanced programming In Turbo Assembler 407

408

can't automatically assemble far forward-referenced jumps. Given
the way the program is organized, however, all the subroutine
calls are backward references, so Turbo Assembler can
automatically generate far calls to the subroutines.

Otherwise, the program is quite straightforward. The subroutines
use full segment:offset pointers to data, and the main program
sets DS and ES to different data segments as needed. Note the use
of the string instructions when copying the string and converting
it to lowercase; since LODS defaults to using OS and STOS uses
ES, these instructions are ideally suited for use in code that must
access two segments at once.

Turbo Assembler User's Guide

c H A p T E R

10

The 80386 and other processors

So far, we've focused on assembly language programming for the
8086 processor. (We've also implicitly covered the 8088, which is
used in the IBM PC and XT, since the 8088 is basically an 8086
with an 8-bit external data bus.)

The 8086 is not the only processor Turbo Assembler supports,
however; there is a whole family of 8086-superset processors,
known as the iAPx86 family, and a family of math coprocessors
that are supersets of the 8087, as well.

The most exciting member of the iAPx86 family is, without a
doubt, the 80386, which brings minicomputer power to personal
computers. Nonetheless, each of the members of the iAPx86
family has interesting enhancements over the basic 8086.

First, we'll look at the ways in which the 80186 and 80286
processors extend the capabilities of the 8086. Next, we'll look at
80386 programming to see how to enable Turbo Assembler's
80386 features, examine the new segment types used in 80386
programming, and look at the new registers, addressing modes,
and instructions of the 80386. After that, we'll examine Turbo
Assembler's powerful ability to mix 16- and 32-bit instructions
and segments, and we'll look at some sample 80386 code. Finally,
we'll take a brief look at the ways in which the 80287 and 80387
math coprocessors extend the capabilities of the 8087.

Chapter 70, The 80386 and other processors 409

Switching processor types in assembler code

For the remainder of this
chapter, all references made
to the 8086 apply to the 8088

oswell.

410

Turbo Assembler defaults to supporting the assembly of 8086
code only. In order for Turbo Assembler to support another
iAPx86-family processor or coprocessor, you must issue the
appropriate directive. The following directives tell Turbo
Assembler what type of processor to support when it's assembling
code:

.186

.286
.286C
.286P

.287

.386
.386C
.386P

.387

.8086
.8087

These directives can be inserted anywhere in assembler source
files, and take effect immediately. Multiple processor-type
directives can be placed in a single source file; at any given point
in a source file, the last processor type specified is the processor
type currently selected.

The .8086 directive can be used anytime to instruct Turbo
Assembler to return to supporting 8086 assembly only. For
example, the following function adds two 32-bit values by using
8086 code, then 80386 code, and finally 8086 code again:

.MODEL small
• CODE

Add32 PROC

Add32

mov ax, [bp+4]
mov dx, [bp+6]
mov bx, [bp+8]
mov ex, [bpi 10]
.386
shl eax,16
mov ax,dx
rol eax,16
mov dx,cx
shl edx,16
mov dx,bx
add eax,edx
rol eax,16
mov dx,ax
shr eax,16
.8086
ret

ENDP
END

;get low half of source 1
;get high half of source 1
;get low half of source 2
;get high half of source 2
;use 80386 registers for actual addition

;put 32 bits of source 1 in EAX

;put 32 bits of source 2 in EDX

;add source 1 and source 2

;put high half of result in DX
;low half of result is in AX

Turbo Assembler User's Guide

The 80186 and 80188

The 80186 is the iAPx86-family processor most like the 8086. The
80186 supports all the instructions of the 8086 and adds a few new
instructions, along with extended forms of some 8086
instructions. In addition, the 80186 is considerably faster than the
8086 at many operations, especially memory address calculations,
so the 80186 runs code written for the 8086 at a significantly
higher speed than does the 8086.

The 80188 is program-compatible with the 80186; the only
difference between the two is that the 80186 has a 16-bit external
data bus, and the 80188 has an 8-bit external data bus.

Turbo Assembler support for assembly of 80186 code is enabled
with the .186 directive.

For information about 80 186 Next, let's take a look at the new and extended instructions of the
instructions, see Chapter 3 of 80186.

the Reference Guide.

New instructions
Warningl Before we begin, take note that the 8086 does not recognize any of

the instructions we're about to discuss. Consequently, any
program that uses even one of the new or extended instructions of
the 80186 won't run on an 8086.

Here are the new 80186 instructions:

BOUND
ENTER

INS
LEAVE

OUTS
POPA

PUSHA

PUSHA and POPA PUSHA and POPA provide an efficient means by which to push
and pop all eight general-purpose registers. PUSHA pushes the
eight general-purpose registers onto the stack in the order AX,
CX, DX, BX, SP, BP, 51, DI. POPA pops DI, 51, BP, BX, DX, CX, and
AX from the stack, reversing the action of PUSHA. SP is not
popped by POPA; instead, SP is incremented by 16, the length of
the block of registers pushed on the stack by PUSHA, and the
value of SP pushed by PUSHA is cleared from the stack by POPA
and thrown away. The segment registers, the flags, and the
instruction pointer are not affected by PUSHA or POPA.

For example, the code

Chapter 70, The 80386 and other processors 411

Don't forget to use the .186
directive to enable 80 186

assembly before using
80 186-specific Instructions
such as PUSHA and POPA.

.186

SampleFunction PROC
pusha

412

popa
ret

SampleFunction ENDP

preserves all 8 general-purpose registers with just two instruc
tions, rather than the 16 instructions required to push and pop
each register separately.

Be aware that while PUSHA is faster than eight separate PUSH
instructions, it is slower than three or four pushes; if you only
need to preserve a few registers, it's best to save just those
registers with PUSH. The same is true of POPA and POP.

ENTER and LEAVE ENTER and LEAVE are used to set up and discard stack frames, in
which passed parameters and local (automatic) variables can be
accessed relative to BP. ENTER and LEAVE are particularly useful
when interfacing assembler functions to stack-oriented languages
such as C. (See Chapters 7 and 8 for information on interfacing
assembler functions to Turbo C and Turbo Pascal.)

ENTER preserves the calling routine's BP, sets BP to point to the
start of the passed parameters (if any) in a new stack frame,
adjusts SP as needed to allocate room for local variables, and even
copies a block of pointers to higher-level stack frames into the
new stack frame if necessary.

LEAVE undoes everything ENTER does, restoring both BP and SP
to the state they were in before the corresponding ENTER was
executed.

For example, the following function uses ENTER to set up a C
compatible stack frame with 20 bytes reserved for local variables,
and uses LEAVE to discard that stack frame and restore the calling
code's stack frame:

Turbo Assembler User's Guide

SampleFunction PROC
enter 20,0

leave
ret

SampleFunction ENDP

The first operand to ENTER is a 16-bit immediate value specifying
the number of bytes to reserve for local variables in the new stack
frame. The second operand to ENTER is an 8-bit immediate value
specifying the nesting level of the function for which the new
stack frame is being created; basically, this operand specifies the
number of stack frame pointers to be copied from the calling
code's stack frame into the new stack frame.

1111" A RET instruction is required after LEAVE in order to return to
the calling code; LEAVE discards the current stack frame, but does
not perform a return.

Warningl ENTER and LEAVE do not preserve any of the calling code's
registers; PUSH and POP or PUSHA and POPA should be used for
this purpose.

BOUND BOUND checks that a 16-bit value is within a signed range
specified by two adjacent words of memory, with the upper
bound stored at the address immediately above the lower bound.
Both bounds are treated as signed values, so a maXimum range of
-32,768 to +32,767, inclusive, can be specified. Values matching
the upper and lower bounds are considered to fall within the
specified range.

BOUND is generally used to guard against attempts to access
before the beginning or past the end of an array. For example, this
code checks whether BX is in the range a to 99, inclusive, before
using it as an index into the laO-byte array TestArray .

• DATA
TestArrayBounds LABEL DWORD

DW 0
DW 99

TestArray DB 100 DUP (?)

.CODE

mov ax,@data

Chapter 70, The 80386 and other processors

;lower array bound (inclusive)
;upper array bound (inclusive)

413

414

mov ds,ax

bound bx, [TestArrayBounds]
mov aI, [TestArray+bx]

If BX is not in the range, an INT 5 is generated. An interrupt
handler for INT 5 must, of course, be set up before BOUND can be
used.

The first operand to BOUND is the 16-bit general-purpose register
containing the value to be range-checked. The second operand to
BOUND is the doubleword containing the range. This doubleword
contains the signed 16-bit lower bound as its lower word and the
signed 16-bit upper bound as its upper word.

Warningl One tricky point about BOUND is that the instruction pointer
pushed when INT 5 is generated by a failed bounds test points to
the BOUND instruction that caused the INT 5, not the following
instruction. If the failing condition is not corrected by the INT 5
handler before it executes an IRET, the same BOUND instruction
will generate another INT 5, and so on, indefinitely. Consequently,
INT 5 handlers for BOUND instructions should either issue a
message and terminate the program without executing an IRET or
correct the out-of-range condition before executing an IRET to
continue.

INS and OUTS INS and OUTS support efficient data transfer between I/O ports
and memory.

INS moves one or more bytes (or words) from an I/O port
pointed to by DX to a memory array pointed to by E5:DI,
incrementing DI by 1 (or 2) after each byte (or word) is transferred
(or decrementing 51 if the direction flag is set). DX is not affected
by INS. As with all string instructions that write to memory, the
use of E5 as the destination segment cannot be overridden.

OUTS moves one or more bytes (or words) from a memory array
pointed to by D5:51 to an I/O port pointed to by DX,
incrementing 51 by 1 (or 2) after each byte (or word) is transferred
(or decrementing 51 if the direction flag is set). DX is not affected
by OUTS. A segment register other than DS can be selected with a
segment override prefix. The following code uses INSB to copy a
block of 300h bytes to memory from I/O port 3000h, then uses
OUTSB to copy that block of bytes to I/O port 3001h:

Turbo Assembler User's Guide

cld
mov ax,@data
mov ds,ax
mov es,ax
mov dx,3000h
mov di,OFFSET Buffer
mov cx,300h
rep insb ;copy 300h bytes to buffer from port
mov dx,3001h
mov si,OFFSET Buffer
mov cx,300h
rep outsb ;copy 300h bytes from buffer to port

Extended 8086
instructions The 80186 offers extended versions of several 8086 instructions as

well:

Pushing immediate
values

IMUL
PUSH
RCL
RCR

ROL
ROR
SAL

SAR
SHL
SHR

While the 8086 can push register or memory operands only, the
80186 can push an immediate value as well:

push 19

Pushing an immediate value is useful for passing constant
parameters to functions on the stack. For example, the 8086 code
for this C call,

Average(S, 2);

is this:

mov ax,2
push ax
mov ax,S
push ax
call _Average
add sp,4

And it can be reduced to this on the 80186:

push 2
push S
call _Average
add sp,4

Chapter 70, The 80386 and other processors 415

Shifting and rotating by
immediate values

416

Multiplying by an
immediate value

Note that while the 8086 processor does not have a PUSH
immediate value instruction, Turbo Assembler 2.0's syntax allows
you to specify such an instruction in your source file. When the
PUSH instruction is encountered, it's replaced in the object code
by a 10-byte sequence, which simulates this operation while
preserving all registers and flags.

While the 8086 can only rotate or shift by either 1 bit or the
number of bits specified by the contents of CL, the 80186 can
rotate or shift by a constant value:

ror ax,3
shl dl,7

This is convenient for performing multi-bit shifts without having
to load CL with the shift count. For example, the following 8086
code to multiply AX by 256,

mov el,S
shl ax,el

becomes this on the 80186:

shl ax,S

The 8086 can only multiply an 8- or 16-bit register or memory
operand by AL or AX, placing the result in AX or DX:AX. The
80186 provides two new forms of multiplication for use when the
product of a 16-bit multiplication will fit in 16 bits.

One new form of multiplication multiplies a 16-bit register by a
16-bit immediate value and stores the result back in the 16-bit
register. For example, this code multiplies DX by 4 and places the
product in DX:

imul dx,4

The first operand, which can be any 16-bit general-purpose
register, is both the source of one of the factors and the destination
for the product. The second operand, which must be a 16-bit
immediate value, is the other factor.

The other new form of multiplication multiplies a 16-bit register
or memory location by a 16-bit immediate value and stores the

Turbo Assembler User's Guide

The 80286

result in a specified 16-bit register. For example, this code
multiplies DX by 600h and places the product in CX:

imul cx,dx,600h

Similarly, this code multiplies the 16-bit value at [BX+SI+ 1] by 3
and places the product in AX.

imul ax, [bxtsitl],3

The first operand to this form of IMUL is the destination for the
product. This operand can be any 16-bit general-purpose register.
The second operand, which can be any 16-bit general-purpose
register or memory location, is the source of one of the factors.
The third operand, which must be a 16-bit immediate value, is the
other factor.

A bit of thought will show that the first of the new forms of
multiplication is actually just a subset of the second new form. For
example, this following code,

imul si,lO

is just a shorthand form of

imul si,si,lO

The underlying hex code is the same for both new forms of the
IMUL instruction. Nonetheless, it's convenient to be able to use the
simpler two-operand IMUL when the same register serves as both
source and destination.

1111. With either of the new forms of multiplication, any portion of the
result that does not fit in 16 bits is lost; if significant bits are lost
(when the result is a signed value), the carry and overflow flags
are set. The new forms of multiplication make no distinction
between signed and unsigned multiplication, since the result is
only 16 bits long, and the lower 16 bits of the product of both
signed and unsigned 16-bit by 16-bit multiplies are always the
same. Consequently, only the IMUL instruction can be used to
denote the new forms of multiplication.

The 80286 was the first iAPx86-family processor to eliminate the
1-MB memory limitation and the first to support memory
protection and virtual memory. The 80286 provides all the

Chapter 70, The 80386 and other processors 417

Enabling 80286

instructions of the 8086 and 80186, and adds a number of
instructions that support management of a sophisticated memory
architecture.

The 80286 has two modes of operation: real mode and protected
mode. An 80286 operating in real mode is much like an 80186,
providing exactly the same instruction set and nothing more. This
is the mode in which 80286-based computers, such as the IBM AT,
run PC-OOS and applications such as Quattro and Turbo Pascal.

The memory management features of the 80286 are available only
in protected mode. And it's only in this mode that multiple
programs can be run at once without interfering with each other,
and more than 1 MB of memory can be addressed. This is the
mode in which 80286-based computers run OS/2.

Here are the protected-mode instructions of the 80286:

CLTS LlDT LMSW
LGDT LLDT L TR

These 80286 instructions are intended for operating system usage
only; applications should never need to (or be able to) use
protected-mode instructions. The use of these instructions and the
protected mode of the 80286 in general are specialized and
complex topics that we won't go into in this manual.

The 80286 adds two new status states to the flags register: the
nested task bit and the I/O privilege-level field. Like the
protected-mode instructions, both bits are intended for use by
systems software only and are of no concern to the applications
programmer. The 80286 also contains several new registers that
can be manipulated only with protected-mode instructions, such
as the Task register, the Machine Status Word register, and the
Global Descriptor Table register; again, these registers are not
used by applications, so we will not cover them in this manual.

assembly Turbo Assembler support for assembly of nonprotected-mode
80286 code is enabled with the .286 directive. (The .286C directive
also enables Turbo Assembler support for 80286 instructions, for
compatibility with earlier assemblers.)

Note that the .286 directive implicitly enables support for a118086
and 80186 instructions, since the 80286 supports the full
instruction set of earlier iAPx86-family processors.

418 Turbo Assembler User's Guide

For detailed information
about 80286 Instructions,
refer to Chapter 3 of the

Reference Guide.

The 80386

Selecting 80386
assembly. mode

Support for protected-mode 80286 instructions is enabled with the
.286P directive. Nonprotected-mode 80286 instructions are
enabled by the .286P directive as well, just as if a .286 directive
had been executed.

One important point about protected-mode 80286 instructions is
that the 8086 and 80186 do not recognize any of these instructions.
Consequently, any program that uses protected-mode instructions
won't run on an 8086 or 80186. However, the 80386 does support
both the protected-mode and nonprotected-mode instructions of
the 80286.

The 80386 processor is a landmark in the evolution of the
microcomputer, providing new and extended instructions, an
expanded set of 32-bit registers, linear segments up to 4 gigabytes
long, the ability to emulate multiple 8086 processors
simultaneously, a barrel shifter for fast shifts and rotates, paged
memory, higher clock speeds than any previous iAPx86-family
processor (resulting in faster execution), and more. As you might
expect, extensions to 8086/80186/80286 assembly language are
needed to support the full power of the 80386. Turbo Assembler
provides a full set of 80386 extensions, supporting all modes and
features of the 80386.

The 80386 is a remarkably sophisticated processor-orders of
magnitude more complex than the 8086-so we can't cover the
many aspects of programming the 80386. We can, however, take a
look at the 80386 support built into Turbo Assembler.

As with the 80286, there are two sorts of 80386 instructions,
privileged and non-privileged. Any program can execute non
privileged instructions, while only programs executing at a
current privilege level of 0 (the most-privileged level) can execute
privileged instructions. The privileged instructions of the 80386
are a superset of the 80286's privileged instructions and, like 80286
privileged instructions, are intended for operating system use
only.

Support for non-privileged 80386 instructions is enabled with the
.386 directive. (The .386C directive enables Turbo Assembler

Chapter 70, The 80386 and other processors 419

support for 80386 instructions for compatibility with earlier
assemblers.)

1111" The .386 directive implicitly enables support for all 8086 and
80186 instructions and all 80286 non-privileged instructions, since
the 80386 supports the full instruction set of earlier iAPx86-family
processors.

New segment

Support for privileged 80386 instructions is enabled with the
.386P directive. Non-privileged 80386 instructions are enabled by
the .386P directive as well, just as if a .386 directive had been
executed. Since the 80386 supports all privileged instructions of
the 80286, the .386P directive implicitly enables support for all
80286 privileged inshuctions.

types The ability of the 80386 to support either 80286-style 64K
segments or linear segments up to 4 gigabytes (GB) in length
requires two new segment types, USE16 and USE32.

A 16-bit offset, either stored in a base or index register (BX, 51, DI,
or BP) or used as a direct addressing offset, is all that's needed in
order to point to any location in a 64K segment. This is the mode
of operation of the 80286 (and the 8086). 80386 segments that have
a maximum length of 64K are given a use type of USE16, as
follows:

.386

DataSeg SEGMENT USEl6
Varl DW ?
Ptrl DW Varl
DataSeg ENDS

CodeSeg SEGMENT USEl6
ASSUME cs:CodeSeg
mov ax,DataSeg
mov fs, ax
ASSUME fs:DataSeg
mov [Varl],O
mov bx, [Ptrl)
inc WORD PTR fs:[bx]

CodeSeg ENDS

;set Varl to zero
;load a l6-bit pointer to Varl
;increment Varl

420 Turbo Assembler User's Guide

Note the use of FS, one of the two new extra segments (along with
GS) available on the 80386.

Note also that an offset stored in any of the 80386's eight general
purpose 32-bit registers can be used to address a USE16 segment,
as long as the magnitude of the offset doesn't exceed OFFFFh
(65535).

A 32-bit offset, stored in any of the eight general-purpose 32-bit
registers or used as a direct addressing offset, is needed to point
to any given location in a 4 GB segment. 80386 segments that have
a maximum length of 4 GB are given a use type of USE32, as
follows:

.386

BigDataSeg SEGMENT USE32
Varl DW ?

Ptrl DD Varl
BigDataSeg ENDS

CodeSeg SEGMENT USEl6
ASSUME cs:CodeSeg
mov ax,BigDataSeg
mov fs,ax
ASSUME fs:BigDataSeg
mov [Varl],O
mov eax, [Ptrl]
inc WORD PTR fs: [eax]

CodeSeg ENDS

iset Varl to zero
iload 32-bit pointer to Varl
iincrement Varl

Note the use of EAX as a pointer register; the 80386 allows all
eight general-purpose 32-bit registers (EAX, EBX, ECX, EDX, ES1,
ED1, EBP, and ESP) to be used as either base or index registers, as
discussed in 'New addressing modes" on page 431.

The SMALL and LARGE operators can be used to override the
default offset size of a given operand. SMALL forces the use of a
16-bit offset, and LARGE forces the use of a 32-bit offset. For
example,

.386

CodeSeg SEGMENT USEl6
ASSUME cs:CodeSeg
mov ax,DataSeg
mov ds,ax

Chapter 10, The 80386 and other processors 421

422

See • New addressing
modes· on page 431.

ASSUME ds:DataSeg
mov ax, [LARGE TestLoc]

CodeSeg ENDS

DataSeg SEGMENT USE32
TestLoc DW 0
DataSeg ENDS

successfully makes a forward reference to TestLoc (even though
TestLoc is in a USE32 segment> by using LARGE to force the
reference to TestLoc to be performed with a 32-bit offset. Without
the LARGE override, an error would be generated, since the
assembler assumes 16-bit offsets for forward references made
within the USE16 segment CodeSeg.

The action of SMALL and LARGE is actually a bit more subtle than
a simple selection between 16- and 32-bit offset size. SMALL
instructs Turbo Assembler to assemble a given instruction for use
with the 8086's 16-bit addressing modes, which are inherently
capable of addressing only 64K of memory. LARGE, on the other
hand, instructs Turbo Assembler to assemble a given instruction
to use the 80386's new 32-bit addressing modes, which are capable
of addressing 4 GB of memory.

For example, the code

.386

CodeSeg SEGMENT USE16

mov ax, [SMALL ebxtesitl]

CodeSeg ENDS

assembles to

mov ax, [bxtsitl]

Here, SMALL told Turbo Assembler to use an 8086-style 16-bit
addressing mode, so instead of EBX and E5I, the assembled code
uses BX and 51. However, the code

.386

Turbo Assembler User's Guide

Simplified segment
directives and 80386

segment types

CodeSeg SEGMENT USE16

mov ax, [SMALL eax+ecx+lj

CodeSeg ENDS

will not assemble, since EAX+ECX+ 1 is not a valid 16-bit memory
addressing mode. (On the other hand, EAX+ECX+ 1 is a valid 32-
bit memory addressing mode, as you will see in the section ''New
addressing modes.")

Take a look at the section, "Mixing 16-bit and 32-bit instructions
and segments," on page 446 for more information about SMALL
and LARGE and for information regarding the interaction of small
and large operators with USE16 and USE32 segments. The issue
of selection between USE32 and USE16 segments is also covered
in that section.

One important implication of the selection of USE16 or USE3~
segments concerns the size of indirect jumps. You'll find out
about this in the section entitled "The 32-bit instruction pointer"
(page 428).

If neither USE32 nor USE16 is specified in a segment definition,
USE32 is always assumed when assembling for the 80386.

If you use both .386 and the simplified segment directives,
segments default to DWORD alignment. This makes sense, given
that 80386-based computers run fastest with doubleword-aligned
data.

When you use the simplified segment directives, Turbo
Assembler generates USE32 segments if .386 is given before the
.MODEL directive, and USE16 segments if .386 is given after the
.MODEL directive. For example, this code creates 32-bit code and
data segments:

.386

. MODEL large

. DATA

. CODE

while this code creates 16-bit code and segments:

. MODEL large

Chapter 10, The 80386 and other processors 423

The FWORD 48-bit data
type

424

.386

. DATA

• CODE

An interesting point about USE32 segments is that the size of a far
pointer (that is, a full segment:offset pointer) to a location in a
USE32 segment is 6 bytes rather than the customary 4 bytes
because offsets in USE32 segments are 32 bits in size. For
example, with a USE16 segment, a far pointer to an 8000h-byte
buffer Buffer is stored in 4 bytes and loaded as follows:

.386

DataSeg
Buffer
BufferPtr LABEL

DataSeg

DW
DW

SEGMENT USE16
DB 8000h DUP (?)

miORO
OFFSET Buffer
SEG Buffer
ENDS

CodeSeg SEGMENT USE16
ASSUME cs:CodeSeg
mov ax,DataSeg
mov ds,ax
ASSUME ds:DataSeg
les bx,[BufferPtr] ;load ES:BX with 16-bit segment

; and 16-bit offset of Buffer

CodeSeg ENDS

With a USE32 segment, on the other hand, a far pointer to Buffer is
stored in 6 bytes and loaded as follows:

.386

DataSeg SEGMENT USE32
Buffer DB 8000h DUP (?)
BufferPtr LABEL FWORO

DD OFFSET Buffer
DW SEG Buffer

DataSeg ENDS

CodeSeg SEGMENT USE32
ASSUME cs:CodeSeg
mov ax,DataSeg

Turbo Assembler User's Guide

mov ds,ax
ASSUME ds:DataSeg

les ebx, [BufferPtr] ;load ES:EBX with 16-bit segment
; and 32-bit offset of Buffer

CodeSeg ENDS

1111" Note the use of the new FWORD data type. FWORD values are 6
bytes long. FWORD PTR operators can be used just like BYTE
PTR, WORD PTR, and DWORD PTR operators.

New registers

19s esi,FWORD PTR [BufferPtr]

There is also a new directive, OF, for defining 6-byte variables:

.386

DataSeg SEGMENT USE32
FPtr OF ?

DataSeg ENDS

CodeSeg SEGMENT USE32
ASSUME cs:CodeSeg
mov ax, DataSeg
mov ds,ax
ASSUME ds:DataSeg
mov eax,OFFSET DestinationFunction
mov DWORD PTR [FPtr],eax
mov ax,SEG DestinationFunction
mov WORD PTR [FPtr+4],ax
jmp [FPtr]

CodeSeg ENDS

The 80386 extends the general-purpose registers, flags register,
and instruction pointer of the 8086 to 32 bits in size, and adds two
new segment registers. Figure 10.1 shows the register set of the
80386; the 80386 extensions to the basic 8086 register set are
shaded.

In addition, the 80386 contains several special registers, some new
and some compatible with the 80286, that can be manipulated
only with privileged instructions. As with the 80286, these
registers are used only by systems software, so we won't cover
them in this manual.

Chapter 70, The 80386 and other processors 425

Figure 10.1
The registers of the

80386

426

EAX

EBX

ECX

EOX

ESI

EOI

EBP

ESP

EIP

EFLAGS

31 16 15

=I~~!~!~.=!~!~!~!~~=~!~!~!~~~=!~!~!~~~::!~!~!~~~~=~~~!~~~!~=!~!~!~!~::!~!~!~!~!=~!~j~~~~~=!~!~!~!~=~~~~jjji~===I=P ====~I < ~:I~~e~tion
t;:;;;:ljj~~j~j=~~~j~~~~=~~~~~~~~~=~~~~~j~~=~j~~~~~~~=~~~~~jj~~=~~~~~~~~:=~~~~~~~~~=j~j~j~j~j=~jj~j~jj~=t:!j~~~~1L..--_F_LA_G_S_---II < ~ :~I~t e r
31 16 15 0

CS

OS

ES

FS

GS

SS

15 o

I I
Ijjjj~j~1~1~~11~11
1!~!~!~!~!~!~!j!j!j!j!j!j!j!1!j!j!j!1!j!j!~!j!j!j!j!~!j!~!j!1!1!1!~1~!~1~!~!~j~!~!j!j!~!~~~1
I I
15 o

Segment
Registers

Let's examine the new registers of the 80386.

The 32-bit general- The 32-bit versions of the general-purpose registers are called
purpose registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP. The lower 16 bits

of these registers form the 8086's set of 16-bit registers we've come
to know so well; for example, the lower 16 bits of EAX are register

Turbo Assembler User's Guide

AX. Similarly, the lower 8 bits of EAX are register AL.
Consequently, portions of register EAX may now be referred to by
four different names: the 32-bit EAX register, the 16-bit AX
register, and the 8-bit AH and AL registers. The same is true of
EBX, ECX, and EDX.

The 32-bit general-purpose registers of the 80386 are used in the
same way as the 16- and 8-bit registers. For example, this code
stores 1 in EAX, sets EBX to 0, and adds EAX to EBX:

rnov eax,l
sub ebx,ebx
add ebx,eax

The 32-bit general-purpose registers can be used wherever the
familiar 16-bit registers can be used.

There is one slight shortcoming in accessing 32-bit registers:
There's no way to use the upper 16 bits of a 32-bit register diiectly
as a 16-bit register. If you want to use the upper 8 bits of AX as a
register, you can just refer to AH; and if you want to use the lower
16 bits of ESI as a register, you can just refer to SI. But there's no
equivalent way to refer to the upper 16 bits of, say, EAX. This can
be a nuisance when you're working with a mixture of word- and
doubleword-sized values, but there is a reasonable workaround.

To access the upper 16 bits of a 32-bit register, just rotate the
register 16 bits in either direction, access the lower 16 bits of the
register, and rotate the register 16 bits again. For instance, the
following code loads a 16-bit value into AX, rotates EDX 16 bits to
swap the high and low words of EDX, moves AX into DX, and
swaps the high and low words of EDX again.

rnov ax, [Sarnple16BitValue]
ror edx,16
rnov dx,ax
ror edx,16

. The net effect: The value initially loaded into AX is ultimately
moved into the high word of EDX. While this procedure is
awkward, it is not as slow as it might seem; thanks to the 80386's
barrel shifter, each ROR instruction takes only three cycles to
execute.

Chapter 70, The 80386 and other processors 427

The 32-bit flags register

428

The 32-bit instruction
pointer

The lower word of the 80386's flags register is identical to the
80286's flags register. The upper 16 bits of the 80386's flags register
contains two new flags. One of the new flags indicates whether
the 80386 is currently executing as a virtual 8086, and the other
new flag is intended for use in writing debugging tools. These
flags are generally not used by applications software.

The 80386's instruction pointer is 32 bits in size, in contrast to the
8086's 16-bit instruction pointer. This extended instruction pointer
supports code segments up to 4 GB in length.

The 80386's extended instruction pointer creates some
complications in specifying indirect jumps via memory. For
example, the following code clearly specifies a far indirect jump
with a 16-bit segment and a 32-bit offset:

jmp [FWORD PTR JumpVector]

Consider the following, however:

jmp [OWORD PTR JumpVector]

Is this a near 32-bit indirect jump or a far indirect jump with a 16-
bit segment and a 16-bit offset? Either type of jump may
legitimately be specified with a DWORD operand.

Here's where the LARGE and SMALL operators come in handy.
The construct

jmp SMALL [OWORD PTR JumpVector]

assembles as a far indirect jump to the address specified by the
16-bit segment and 16-bit offset stored at /umpVector, and

jmp LARGE [OWORD PTR JumpVector]

assembles as a near indirect jump to the address specified by the
current CS and the 32-bit offset stored at /umpVector. In the first
case, the SMALL operator instructs Turbo Assembler to treat the
jump as if it were occurring from a USE16 segment; in USE16
segments, 32-bit indirect jump operands consist of a 16-bit
segment and a 16-bit offset. In the second case, the LARGE
operator instructs Turbo Assembler to treat the jump as if it were
occurring in a USE32 segment; in USE32 segments, 32-bit indirect
jump operands consist of 32-bit offsets only.

Turbo Assembler User's Guide

1111., Note that SMALL and LARGE appear outside the brackets in the
preceding examples; the positioning of SMALL and LARGE is
significant. When SMALL and LARGE appear outside the
brackets, they affect the operand size, in this case, the size of the
jump. When SMALL and LARGE appear inside the brackets, they
affect the address size. For example, this code instructs Turbo
Assembler to use a near 32-bit offset to point to lumpVector, but
does not tell Turbo Assembler whether to treat the value stored at
lump Vector as a near 32-bit offset or a far 16-bit segment and 16-bit
offset combination:

jrnp [LARGE DWORD PTR JurnpVector]

50 this does not resolve the original problem of determining the
type of the jump.

1111., LARGE and SMALL can be used both inside and outside the
brackets in a single expression. For instance, this code specifies a
far indirect jump to the 16-bit segment and 16-bit offset address
stored at the doubleword variable lumpVector, which is itself
addressed with a near 32-bit offset:

jrnp SMALL [LARGE DWORD PTR JurnpVector]

New segment registers The 80386 adds two new segment registers, FS and G5 to the four
segment registers supported by the 8086. The two new segment
registers are not dedicated to any particular function, and no
instructions or addressing modes access FS or G5 by default.
Consequently, the use of FS or G5 is never required, but they can
be handy for code that accesses data in several segments at once.

FS and GS are used just as E5 is used for nonstring instructions,
by means of a segment override prefix. The override prefix may
be explicit:

.386

TestSeg SEGMENT USEl6
SCRATCH_LEN EQU lOOOh
Scratch DB SCRATCH LEN DUP (?)
TestSeg ENDS

CodeSeg SEGMENT USEl6
ASSUME cs:CodeSeg
rnov ax,TestSeg
rnov fs,ax
rnov bx,OFFSET Scratch

Chapter 70, The 80386 and other processors 429

430

rnov cx,SCRATCH_LEN
rnov al,O

Clear Scratch:
rnov fs: [bx] , al
inc bx
loop ClearScratch

CodeSeg ENDS

or implicit, by way of an ASSUME directive:

.386

TestSeg SEGMENT USE16
SCRATCH_LEN EQU lOOOh
Scratch DB SCRATCH LEN DUP (?)
TestSeg ENDS

CodeSeg SEGMENT USE16
ASSUME cs:CodeSeg
rnov ax,TestSeg
rnov gs,ax
ASSUME gs:TestSeg
sub bx,bx
rnov cx,SCRATCH_LEN
rnov al,O

Clear Scratch:
rnov [Scratch+bx],al
inc bx
loop Clear Scratch

CodeSeg ENDS

In the last example, the directive ASSUME GS:TestSeg told Turbo
Assembler to insert an override prefix automatically on each
access by name (as opposed to access by pointer register) to
variables in TestSeg, so you didn't have to type the override prefix
explicitly. The override prefix is, however, still there in the
executable code, adding an extra byte to the size of each
instruction that accesses memory by way of the FS or GS register.
Consequently, whenever possible, it's preferable to use the DS
register (or the ES register as the destination of a string
instruction) instead of the FS or GS register.

Turbo Assembler User's Guide

New addressing
modes The 80386 supports all the memory addressing modes of the 8086,

80186, and 80286, and adds a set of powerful new addressing
modes as well. Any of the eight 32-bit, general-purpose registers
of the 80386 may be used as a base register, and any 32-bit,
general-purpose register other than 5P may be used as an index
register. By contrast, the 8086 allows only BX and BP to be used as
base registers, and only 51 and 01 to be used as index registers.

For example, suppose that EDI contains 1oo00h and EAX contains
4. Then the following code is a perfectly legal instruction on the
80386, incrementing the byte at offset 10006h (lOooOh + 4 + 2) in
the segment pointed to by os:

inc BYTE PTR [editeaxt2]

Here's another example of the 80386's new addressing capabilities:

mov ecx, [espt4]
mov ebx, [espt8]
mov WORD PTR [ecxtebx],O

The 80386 can do still more in the new addressing modes,
however. The index register can be multiplied by 2, 4, or 8 as part
of the calculation of the memory address, simply by placing *2, *4,
or *8 after the index register, a feature known as index scaling. For
instance, the ninth doubleword-sized entry in the table
DwordTable can be loaded into EAX with this code:

mov ebx,8
mov eax, [DwordTabletebx*4]

which is equivalent to

mov ebx,8
shl ebx,2
mov eax, [DwordTabletebx]
shr ebx,2

Index scaling can be extremely useful for accessing elements in
word, doubleword, and quad word arrays. For example, consider

Chapter 70, The 80386 and other processors 431

the following code, which sorts the elements in a word array in
ascending order:

.386

CodeSeg SEGMENT USE32
ASSUME cs:CodeSeg

Sorts a word array in ascending order.

Input:
DS:EBX - pointer to start of word array to sort
EDX - 1ength of array in word elements

Registers destroyed:
AX, ECX, EDX, ESI, EDI

SortWordArray PROC
and edx,edx
jz EndSortWordArray
mov esi,O

SortOnNextWord:
dec edx
jz EndSortWordArray
mov ecx,edx

mov edi,esi

CompareToAIIRemainingWords:

icompare element 0 to all other
; elements first

;count down number to compare

;number of elements to compare
; this element against
;compare this element to all
; remaining elements

inc edi ;index of next element to compare
mov ax, [ebx+esi*2]
cmp ax, [ebx+edi*2]

jbe NoSwap
xchg ax, [ebx+edi*2]
mov [ebx+esi*2],ax

NoSwap:

;is the current element less
; than the compared element?
;yes, no need to swap them
;swap the current and
; compared elements

loop CompareToAllRemainingWords
inc esi ;point to next element to compare

; to all remaining elements
jmp SortOnNextWord

EndSortWordArray:
ret

SortWordArray ENDP

CodeSeg ENDS

432 Turbo Assembler User's Guide

Sortlt\brdArray keeps the element numbers, or indexes, of the
current and compared elements in ES1 and ED!. These values are
not pointers, or counts by two, even though the array is a word
array; rather, they are simple scalar array indexes, just as n is an
array index in the C statement

i = Array[n]i

The key in SortWordArray is that the index scaling feature of the
80386 allows you to multiply the indexes by two as part of the
memory addressing field, thereby converting the indexes to
offsets into a word array.

1111" If only one register is used to address memory, that register is
always considered to be the base register. If two registers are used
to address memory, the leftmost register inside the brackets is
considered the base register, and the rightmost register is
considered the index register. If, however, scaling is used with <:>ne
of two registers inside the brackets, the scaled register is always
considered to be the index register.

The question of which register is the base register is important
because by default the base register controls the segment to which
a given memory access refers. Memory accesses made with EBP
or ESP as the base register refer to the segment pointed to by 55,
while memory accesses made with EAX, EBX, ECX, EOX, ES1, or
E01 as the base register refer to the segment pointed to by OS. For
example, the following instructions refer to OS:

mov aI, [eax]
xehg edx,[ebx+ebp]
shr BYTE PTR [esi+esp+2],1
mov [ebp*2+edx],ah
sub ex, [esi+esi*2]

and the following instructions refer to 55:

rol WORD PTR [ebp],l
dee DWORD PTR [esp+4]
add ax, [eax*2+esp]
mov [ebp*2],edi

The default segment selected by the base register can be
overridden with either an explicit segment override prefix or as
the result of an ASSUME directive. For example,

.386

TestSeg SEGMENT USE32

Chapter 10, The 80386 and other processors 433

New instructions
For detailed information

about 80386 instructions, see
Chapter 3 In the Reference

Guide.

434

Arrayl DW 100h DUP (0)
TestSeg ENDS

CodeSeg SEGMENT USEl6
ASSUME cs:CodeSeg
mov ax,TestSeg
mov fs,ax
ASSUME fs:TestSeg
mov dx, [ebx+Arrayl]

mov esi,OFFSET Arrayl
mov cx,lOOh

IncLoop:
inc WORD PTR fs:[esi]
inc esi
inc esi
loop IncLoop

CodeSeg ENDS

;implicit override as a result of
; ASSUME

;explicit override

The new addressing modes of the 80386 work with 32-bit .
memory-addressing registers only; 16-bit registers can only be
used for memory addressing in the same limited way that they
are on the 8086. For example, the following MOV instruction is
illegal, even on an 80386:

mov ax, [cx+dx+lOh]

Index scaling of 16-bit registers is also not allowed. And 16- and
32-bit registers can't be combined for memory-addressing
purposes; so, for example, this code cannot be used:

add dx, [bx+eax]

Next, we're going to take a look at the new and extended
instructions of the 80386.

Keep in mind that the 8086,80186, and 80286 do not recognize
any of the new and extended instructions we're about to discuss.
Consequently, any program that uses the new or extended
instructions of the 80386 won't run on earlier processors.

Here are the new instructions of the 80386:

BSF
BSR

BTR
BTS

LFS
LGS

MOVZX
SETxx

Turbo Assembler User's Guide

BT
BTC

CDa
CWDE

LSS
MOVSX

SHLD
SHRD

Testing bits The bit-test instructions of the 80386 are BT, BTC, BTR, and BTS.
BT is the basic bit-test operation, copying the value of a specified
bit into the carry flag. For example, the following code jumps to
Bit3Isl only if bit 3 of EAX is nonzero:

bt eax,3
jc Bit3Isl

Bit3Isl:

If EAX contains 0OO00008h, this code will jump to Bit3Isl; if EAX
contains OFFFFFFF7h, the preceding code will not jump. The first
operand to BT is the 16- or 32-bit, general-purpose register or
memory location containing the bit to test. The second operand is
the bit number to test, specified by either an 8-bit immediate
value or the contents of a 16- or 32-bit, general-purpose register. If
a register is used as the second operand, its size must match the
size of the first operand.

Note that the number of the bit to test can be specified by a
register as well as an immediate value, and the field to be bit
tested can be in memory as well as in a register. Here's a valid way
to set the carry flag to the state of bit 5 of the word at the address
Table+ebx+esi .. 2:

mov ax,S
bt WORD PTR [Tabletebxtesi*2],ax

Remember that bit numbers are counted from zero at the least
significant bit up to the most-significant bit. If AL contains 80h,
then bit 7 of AL is set.

BTC is exactly like BT except that the value copied to the carry
flag is the complement of the specified bit. That is, the carry flag is
1 if the specified bit is 0, and the carry flag is 0 if the specified bit
is 1. BTC saves the need for a CMC instruction whenever a carry
status is required that is the inverse of the bit under test. '

BTR is also just like BT except that the specified bit is set to 0 after
its value is copied to the carry flag. Similarly, BTS sets the
specified bit to 1 after its value is copied to the carry flag. These

Chapter 70, The 80386 and other processors 435

436

bit-test instructions are useful for both testing and setting the
status of a flag in a single indivisible instruction. (By indivisible,
we mean that it is impossible for an interrupt to occur between
the testing of the flag and the setting of the flag to the new value.)

Scanning bits The BSF and BSR instructions of the 80386 are useful for finding
the first or last bit that is nonzero in a word or dword operand.
BSF scans the source operand, starting with bit 0 (the least
significant bit), for the first bit that is nonzero. If all bits in the
source operand are zero, the zero flag is cleared; otherwise, the
zero flag is set and the bit number of the first nonzero bit found is
loaded irtto the destination register.

As an example, this code uses BSF to locate the first (least
significant) nonzero bit in DX; since the first nonzero bit in DX is
located at bit 2, a 2 is loaded into CX.

mov dx,OOOllOlOlOlOllOOb
bsf cx,dx
jnz AIIBitsAreZero
shr dx,cl

AllBit sAreZero:

CL is then used as the value to shift DX by, with the result that DX
is shifted to the right by exactly the amount needed to move the
least-significant nonzero bit to bit O.

The second operand to BSF is the 16- or 32-bit, general-purpose
register or memory location to scan, and the first operand is the
16- or 32-bit, general-purpose register in which to store the
number of the first nonzero bit in the scanned data. Both
operands must be the same size.

BSR is similar to BSF except that BSR scans from the most
significant bit of the source operand toward the least-significant
bit. In this example, the index of the most-significant nonzero bit
in TestVar,27, is placed in EAX:

TestVar DD OFFFFFOOh

bsr eax, [TestVar]

Turbo Assembler User's Guide

Moving data with sign
or zero-extension

Converting to DWORD
or QWORD data

MOVZX and MOVSX allow you to copy an 8- or 16-bit value into a
. 16- or 32-bit, general-purpose register without wasting

instructions on extending the value to the destination size.
MOVZX pads out the most-significant bits of the destination with
zeros, while MOVSX sign-extends the value to the destination's
size. Both instructions are used just like a standard MOV.

For example, with 8086 instructions, the following is required to
copy an unsigned value in DL to BX:

mov bl,dl
sub bh,bh

while on the 80386, the single instruction

movzx bx,dl

does the job. Sign-extension is even tougher with 8086
instructions. To copy the signed byte-memory variable TestByte to
DX without MOVSX, the following is required:

mov aI, [TestByte]
cbw
mov dx,ax

but MOVSX does the job with just one instruction:

movsx dx, [TestByte]

MOVZX and MOVSX can also move 8-bit values to 32-bit registers:

movsx eax,al

The 8086 provides the CBW and CWO instructions for converting
signed byte values in AL to signed words, and signed word
values in AX to signed doublewords, respectively. The 80386 adds
two more signed conversion instructions, CWDE and COQ, which
make good use of the 80386's 32-bit registers.

CWDE converts a signed word value stored in AX into a signed
doubleword value, just as CWO does. The difference between the
two is that while CWO places the 32-bit result in DX:AX, CWOE
places the 32-bit result in EAX, where it can readily be
manipulated by the 80386's 32-bit instructions.

Chapter 70, The 80386 and other processors 437

Shifting across multiple
words

438

For example, the end result of

mov ax,-l
ewde

is the 32-bit value -1 in EAX.

CDa converts a signed doubleword value in EAX into a signed
quad word (8-byte) value in EDX:EAX. The code

mov eax,-7
edq

stores the value -7 in the 64-bit register pair EDX:EAX, with the
high doubleword of the result, OFFFFFFFFh, stored in EDX, and
the low doubleword of the result, OFFFFFFF9h (-7), stored in EAX.

Multiple-word shifts-for example, shifting a 32-bit value 4 bits to
the left-are a nuisance on the 8086, since each word must be
shifted one bit at a time, with bits flowing one by one from one
register to the next through the carry flag. The SHRD and SHLD
instructions of the 80386 remedy this situation by supporting
multiple-bit shifts across two registers, or between a register and a
memory location.

For example, suppose a 32-bit value is stored in DX:AX on an
8086. The following is required to shift that 32-bit value left
(toward the most-significant bit) by four bit positions: .

shl ax,l
reI dx,l
shl ax,l
rc1 dx,l
shl ax,l
rcl dx,l
shl ax,l
rc1 dx,l

On an 80386, the same result can be accomplished with just two
instructions:

shId dx,ax,4

Turbo Assembler User's Guide

Setting bytes
conditionally

shl ax,4

(Of course, the whole 32-bit value could simply have been stored
in EAX and shifted with

shl eax,4

but the example code was intended to illustrate the advantage of
using SHLD rather than 8086 instructions.)

The first operand to SHLD is the 16- or 32-bit, general-purpose
register or memory location to shift; the second operand is the 16-
or 32-bit, general-purpose register to shift bits in from; and the
third operand is the number of bits to shift by. The sizes of the
first and second operands must match. The third operand may be
either an immediate value or CL; in the latter case, the destination
is shifted the number of bits specified by CL.

SHRD is much like SHLD, but shifts from the most-significant bit
toward the least-significant bit. In this example, the 64-bit value
stored in TestQV\brd is shifted right by 7 bits:

mov el,7
mov eax,DWORD PTR [TestQword+4]
shrd DWORD PTR [TestQword],eax,cl
shr eax,el
mov DWORD PTR [TestQword+4],eax

A common application for conditional tests and jumps is to set a
memory location to reflect a certain status. For instance, you may
want to set flags to indicate whether two variables are equal,
whether a pointer is null, or whether the carry flag was set by a
previous operation. The 8086 is less than ideal for such
operations, since multiple instructions (including time-wasting
jumps) are required to set a flag to reflect the results of a
conditional test. The 80386 provides the powerful group of SET
instructions to speed such test-and-set cases.

For example, imagine that you want to set the memory variable
TestFlag only if the most-significant bit of AX is set. On the 8086,
you would have to do the following:

mov [TestFlag],O iassume the MSB isn't set
test ah,80h

Chapter 70, The 80386 and other processors 439

jz MSBNotSet
mov [TestFlag],l

MSBNotSet:

On the 80386, all you need do is this:

test ah,80h
setnz [TestFlag]

and TestFlag will be set to 1 if bit 7 of AH is 1, and to 0 if bit 7 of
AHisO.

You can test any of the familiar jump conditions with a SET
instruction: SETNC sets the destination to 1 if the carry flag is 0
and resets the destination to 0 if the carry flag is 1; SETS sets the
destination if the sign flag is 1 and resets it if the sign flag is 0; and
so on. The operand to a SET instruction may be an 8-bit, general
purpose register or an 8-bit memory variable; 16- and 32-bit
operands are not permitted.

Loading SS, FS, and GS The 8086 instruction LOS allows you to load both DS and one of
the general-purpose registers from memory with a single
instruction, thereby setting up a far pointer very efficiently. LES
provides a similar capability, but loads ES instead of D5. The
80386 adds three new instructions for loading far pointers: LSS,
LFS, and LGS, which load far pointers based on the 55, FS, and
G5 segment registers, respectively.

440

For example, this loads a far pointer to the video bit map at
AOOO:OOOO into GS:BX:

DataSeg SEGMENT USE16
ScreenPointer LABEL DWORD

dw 0
dw OAOOOh

DataSeg ENDS

CodeSeg SEGMENT USE16
ASSUME cs:CodeSeg, ds:DataSeg
mov ax, DataSeg
mov ds,ax

19s bx, [ScreenPointer]

Turbo Assembler User's Guide

Extended

CodeSeg ENDS

As with LOS and LES, either small or large far pointers may be
loaded with LSS, LFS, and LGSi see the section entitled "The
FWORD 48-bit data type" on page 424 for information about
small and large far po in ters.

instructions The 80386 not only adds a number of powerful new instructions
to the 8086/80186/80286 instruction set, but extends a number of
existing instructions as well. The extended instructions follow:

CMPS
IMUL
INS
IRET
J,A
JAE
JB
JBE

JC
JCXZ
JE
JG
JGE
JL
JLE
JNA

JNAE
JNB
JNBE
JNC
JNE
JNG
JNGE
JNL

JNLE
JNO
JNP
JNS
JNZ
JO
JP
JPE

JPO
JS
JZ
LOOS
LOOP
MOV
MOVS

OUTS
POPA
POPF
PUSHA
PUSHF
SCAS
STOS

In addition, many instructions can handle 32-bit operands on the
80386, even though their mnemonics haven't explicitly changed.

Special versions of The 80386 supports special forms of the MOV instruction that
MOV allow code running at privilege level 0 (the most-privileged level)

to move data between the 32-bit, general-purpose registers and
special 80386 registers. Here are the 80386 registers that can be
accessed in this way:

CRO
CR2
CR3

DRO
DR1
DR2

DR3
DR6
DR7

TR6
TR7

For example, debug register DRO could be loaded with a linear
address to be trapped on with

.386P

mov eax,OFFSET FunctionEntry
mov drO,eax

and the system control flags could be loaded from control register
CRO into EDX with

Chapter 70, The 80386 and other processors 441

32-bit versions of 8086
instructions

442

.386P

rnov edx,crO

Note that the .386P directive must be in effect in order for Turbo
Assembler to assemble the special forms of MOV, since they are
pri vileged instructions. .

In general, the special 80386 registers that can be accessed by the
new forms of the MOV instruction are used by systems software
only, and are not used by applications.

Many 8086 instructions are extended to take on new 32-bit
addressing and operand capabilities on the 80386. The following
code performs a 32-bit subtraction of the 32-bit EBX register from
the 32-bit variable at address EBP+EAX ,. 8+10h, with 32-bit
registers used to point to the destination memory location:

sub DWORD PTR [ebp+eax*8+10h],ebx

The 32-bit capabilities added to most 8086 instructions don't
require a new instruction mnemonic; the 32-bit nature of the
operation is generally indicated by the operands or by the
segment type the operation occurs in. Several 8086 instructions
do, however, require new mnemonics in order to support their
extended 32-bit, 80386 capabilities. We'll look at these instructions
next.

New versions of LOOP and JCXZ

The LOOP, LOOPE, LOOPNE, and JCXZ instructions normally
operate on the 16-bit CX register. The 80386 provides both 16-bit
and 32-bit versions of these instructions; the 32-bit versions'
operate on ECX rather than CX.

The LOOP, LOOPE, and LOOPNE instructions use either CX or
ECX as the loop counter, depending on whether the segment they
are in is a 16-bit or a 32-bit segment. If you want to make sure that
CX is always used as the loop control register, even in a 32-bit
segment, use the word form of these instructions: LOOPW,
LOOPWE, and LOOPWNE. Likewise, if you want to make sure
that ECX is always used as the loop control register, use the
double-word form of these instructions: LOOPD, LOOPDE, and
LOOPDNE.

Turbo Assembler User's Guide

LOOPD decrements ECX and jumps to the destination offset if the
resulting value is not zero. For example, the following loop is
executed 80000000h times:

mov ecx,80000000h
LoopTop:

loopd LoopTop

LOOPDE decrements ECX and jumps to the destination offset
while the zero flag is 1 and ECX is not zero. (LOOPDZ is another
form of the same instruction.) Similarly, LOOPDNE decrements
ECX and jumps to the destination offset while the zero flag is 0
and ECX is not zero. (LOOPDNZ is equivalent.) For instance, the
following loop repeats until either the value read from the I/O
port at DX becomes 09h or the port has been checked 10000000h
times, whichever comes first:

mov ecx,lOOOOOOOh
LoopTop:

in al,dx
cmp al,09h
loopdne LoopTop
jnz TimedOut

TimedOut:

Note that the action of JNZ in this example reflects the result of
the comparison, not of LOOPDNE, since loop instructions don't
affect the status flags. The 80386 also provides a version of JCXZ
suited to 32-bit operations. Where JCXZ jumps if CX is zero,
JECXZ jumps if ECX is zero. For example, the following loop is
capable of handling 32-bit counts:

LoopTop:
jecxz LoopEnd

jmp LoopTop
LoopEnd:

Chapter 70, The 80386 and other processors 443

444

New versions of the string InstrucHons

On the 80386, all string instructions may operate on byte, word, or
doubleword values. The doubleword versions of the string
instructions simply end with d rather than the usual w or b. The
new instructions follow:

CMPSD
INSD
LODSD

MOVSD
OUTSD

SCASD
STOSD

Each of these instructions works with 32 bits of data at a time, and
increments or decrements its associated pointer registers by four
on each repetition. For example, the following code fragment uses
MOVSD to copy the two doublewords starting at the offset
DwordTable to the two doublewords starting at the offset Buffer:

eld
mov si,OFFSET DwordTable
mov di,OFFSET Buffer
mov ex,2
rep movsd

This produces the same result as the following code, which uses
MOVSB:

eld
mov si,OFFSET DwordTable
mov di,OFFSET Buffer
mov ex,S
rep movsb

1111" One way to think of the doubleword string instructions is that
their relationship to the word string instructions is similar to that
of the word string instructions to the byte string instructions.

IRETD

IRETD is similar to IRET. It pops EIP, then CS as a doubleword
(discarding the higher word), then EFLAGS as a doubleword.

Turbo Assembler User's Guide

PUSHFD and POPFD

PUSHFD pushes the fu1l32-bit flags register of the 80386 onto the
stack. POPFD pops the fu1l32-bit flags register from the stack.

By contrast, PUSHF and POPF push and pop only the lower 16
bits of the flags register.

PUSHAD and POPAD

PUSHAD pushes the eight 32-bit general-purpose registers onto
the stack in the following order: EAX, ECX, EOX, EBX, ESP, EBP,
ESI, ED!. The value pushed for ESP is the value of ESP at the start
of the PUSHAD instruction. POPAD pops seven of the eight 32-bit,
general-purpose registers from the stack, reversing the order of
PUSHAD so that EOI, ESI, EBP, EBX, EOX, ECX, and EAX can be
saved with PUSHAD and then restored with POPAD. ESP is not
restored by POPAD, but instead is incremented by 32 to discard
the block of the eight 32-bit, general-purpose registers previously
pushed by PUSHAD from the stack. The previously pushed value
of ESP is ignored.

By contrast, PUSHA and POPA push and pop only the lower 16
bits of the eight general-purpose registers.

New versions of IMUL In addition to the 8086/80186/80286 forms of IMUL, the 80386
provides what is perhaps the most convenient form of IMUL yet:
Any general-purpose register or memory location can be
multiplied by any general-purpose register with the result stored
back in one of the source registers. Gone is the need to have one
of the operands be a constant, or for the accumulator to be the
destination. For example, .'

irnul ebx, [edi*4+4]

multiplies EBX by the doubleword value stored at memory
address edi *4+4, and stores the result back into EBX.

As you can see, the first operand to this form of IMUL is the
destination register; this operand may be any 16- or 32-bit,
general-purpose register. The second operand may be any 16- or
32-bit, general-purpose register or memory location. The sizes of
the two operands must match. The overflow and carry flags are
set to 1 if the result, considered a signed value, is too large for the
destination.

Chapter, 70, The 80386 and other processors 445

Mixing 16-bit and
32-bit instructions

and segments

USE32 code segments only
work In protected mode.

446

As you might expect, the 80386 also extends the 8086/80186/
80286 forms of IMUL to support 32-bit operands. For example, this
code multiplies ECX times 10000000h and stores the result in EBP:

imul ebp,ecx,lOOOOOOOh

and this multiplies EAX times EBX and stores the result in
EDX:EAX:

imul ebx

Normally, you'll want to have only 16-bit (USE16) segments. Even
in this case, you can still use the 32-bit registers for arithmetic and
logical operations.

You can also use any combination of 16-bit and 32-bit data and
code segments. Unless you are writing operating system software
and know exactly what you are doing, there is absolutely no
reason for you to use 32-bit code segments. Unless you take
special measures to switch the processor into a mode suitable for
executing 32-bit code segments, there is no way they'll work
under DOS. Future operating systems may give you ways to
meaningfully use 32-bit code segments, but for now, you
shouldn't use them.

However, there is no reason why you can't use 32-bit data
segments in your programs and take advantage of the "flat"
addressing provided 1;>y the 32-bit registers of the 80386.

Let's review the key aspects of USE16 and USE32 segments.
USE16 segments can be a maximum of 64K in length, so any
location in a USE16 segment can be pointed to with a 16-bit
address. USE32 segments, on the other hand, can be as long as 4
GB in length, so a 32-bit address is required to point to an
arbitrary location in a USE32 segment.

Clearly, if you need segments longer than 64K, you must use
USE32. By contrast, there's no case in which you must use USE16
segments. This may well lead you to wonder why we don't just
simplify things and use 32-bit segments all the time. The answer
lies in the way in which the 80386 supports word and
doubleword operands and 16- and 32-bit offsets.

The 80386 evolved from the 8086, which uses a single bit to
distinguish between its only two operand sizes, 8- and 16-bits.
The 8086 has a single set of memory-addressing modes-the

Turbo Assembler User's Guide

familiar modes involving BX, 51, 01, and BP-supporting 16-bit
offsets only. This code fragment has an 8-bit operand size and
uses an 8086-style 16-bit addressing mode to address memory:

mov aI, [bx+l000h]

In USE16 code segments, the 80386 normally still uses the same
bit as does the 8086 to select between 8- and 16-bit operands and
still uses 16-bit offsets. However, any given instruction in a USE16
segment may be converted to support 32-bit operands by placing
an operand-size prefix (066h) before the instruction; in this case,
the size bit of the instruction selects between 8- and 32-bit
operands instead of 8- and 16-bit operands.

Similarly, any given instruction in a USE16 segment may be
converted to use the 80386's 32-bit addressing modes (a large
address, as described in the earlier section ''Newadd.ressing
modes" on page 431) by placing an address-size prefix (067h)
before the instruction.

For example, the code assembled from

.386

DataSeg SEGMENT USE16
TestLoc DD
DataSeg ENDS

CodeSeg SEGMENT USE16
mov ax,DataSeg
mov ds,ax
ASSUME ds:DataSeg
db 66h
mov ax, WORD PTR [TestLoc]

CodeSeg ENDS

loads the 4 bytes at TestLoc into EAX, rather than the 2 bytes at
TestLoc into AX because the operand-size prefix transforms the
operand size of the instruction to 32 bits.

Along the same lines, instructions in USE32 code segments
normally access 8- or 32-bit operands and nonnally use the 32-bit
addressing modes of the 80386; however, operand-size and
address-size prefixes can be used to cause individual instructions
to operate in 16-bit mode (that is, 8086 mode, with word operands
and/or small addresses), just as if they were in a USE16 segment.

Chapter 70, The 80386 and other processors 447

448

In short, the operand-size and address-size prefixes can cause an
instruction executing in a USE16 code segment to act as if it were
in a USE32 segment, and can cause an instruction executing in a
USE32 code segment to act as if it were in a USE16 segment.

Don't worry about learning to use operand-size and address-size
prefixes in your 80386 code; the generation of the prefixes
necessary to use 16-bit features in USE32 segments or 32-bit
features in USE16 segments is handled by Turbo Assembler
transparently to the programmer. For example, if you use the
following instruction in a USE32 code segment,

mov [bx],ax

Turbo Assembler automatically prefixes the instruction with ali
operand-Size prefix and an address-size prefix. We've explained
the workings of the size prefixes here only so you'll understand
the key element in selecting between 16- and 32-bit segment sizes:
the need to minimize the number of size prefixes generated.

Suppose, for example, that you selected a USE16 segment and
then only referred to doubleword-sized operands, addressed with
32-bit addressing modes, such as

mov eax, [edxtecx*2tl]

Turbo Assembler would have to generate operand-size and/or
address-size prefixes for virtually every instruction in your code
causing the size of your code to balloon and performance to
suffer. Given a USE32 segment, however, the same code would
require no size prefixes at all.

You can now see that the segment-size selection process is a bit
more complex than it seemed. If you need a segment larger than
64K, you must select a USE32 segment. If you need a segment
smaller than 64K, you should select a USE32 segment if you use
more 32- than 16-bit operands and addressing modes. And you
should select a USE16 segment if the reverse is true. It's not
always easy to tell which segment type would be more efficient,
but you can always assemble your code both ways and see which
is more compact.

Now you can also see why the LARGE and SMALL operators are
sometimes necessary to allow forward references to assemble.
Since the USE type of the code segment determines the default
size of address references, forward references are assumed to be
of the same size as the code segment USE type. LARGE must be
used for forward references from USE16 code segments to USE32

Turbo Assembler User's Guide

An example
80386 function

data segments, and you may want to use SMALL in order to force
use of 16-bit addressing for forward references from USE32 code
segments to USE16 data segments.

Let's look at some sample 80386 code. Desirable as it would be to
examine a complete 80386 program, that's just not possible right
now, since there's no widely used 80386-based operating system,
and therefore no standard way to request memory, accept
keystrokes, display output, or even terminate a program. Instead,
let's look at a complete function written in 80386 assembler.

Our sample function, named CalcPrimes, takes advantage of the
tremendous length of a USE32 segment to calculate all primes in a
given range in a very straightforward way; the function simply
calculates all multiples of all numbers in the range 2 to the
maximum prime desired, marking every multiple in a single huge
table as being non-prime. On an 8086, this approach would work
well only for arrays shorter than 64K, the maximum segment size,
and would break down entirely at 1 MB, the maximum amount of
memory the 8086 processor can address.

By contrast, USE32 segments and 32-bit registers make it possible
for the 80386 to easily handle a table up to nearly 4 GB in length;
in fact, the 80386 can, with help from paged memory, even handle
memory requirements in the terabyte (1000 GB) range! Of course,
the calculation times for checking such enormous primes would
be unacceptably long, but that's the point; unlike the 8086 and
80286, the 80386's memory-addressing architecture is not a
limiting factor for programs requiring tremendous amounts of
memory.

Here's CalcPrimes:

; Sample 80386 code to calculate all primes between
; 0 and MAX_PRIME (inclusive).

; Input: None

; Output:
ES:EAX - a pointer to PrimeFlags, which contains a 1 at
the offset of each number that is a prime and a 0 at
the offset of each number that is not a prime.

; Registers destroyed:

Chapter· 70, The 80386 and other processors 449

450

EAX, EBX

Based on an algorithm presented in "Environments,"
by Charles Petzold, PC Magazine, Vol. 7, No.2 .

• 386

MAX_PRIME EQU 1000000 ;highest I to check for being prime

SEGMENT USE32 DataSeg
PrimeFlags
DataSeg

DB (MAX_PRIME + 1) DUP (?)
ENDS

CodeSeg SEGMENT USE32
ASSUME cs:CodeSeg

CalcPrimes PROC
push ds ;save caller's DS
mov ax,DataSeg
mov ds,ax
ASSUME ds:DataSeg
mov es,ax
ASSUME es:DataSeg

Assume all numbers in the specified range are primes.

mov al,1
mov edi,OFFSET PrimeFlags
mov ecx,MAX_PRIME+l
cld
rep stosb

Now eliminate all numbers that aren't primes by calculating all
mUltiples (other than times 1) less than or equal to MAX_PRIMES
of all numbers up to MAX_PRIME.

mov eax,2 ;start with 2, since 0 & 1 are primes,
and can't be used for elimination
of mUltiples

PrimeLoop:
mov ebx,eax ;base value to calculate

all multiples of
MultipleLoop:

add ebx,eax
cmp ebx, MAX_PRIME

ja CheckNextBaseValue
mov [PrimeFlags+ebx],0

jmp MultipleLoop
CheckNextBaseValue:

;calculate next mUltiple
;have we checked all
; mUltiples of this number?
;yes, go to next number
;this number is not prime, since
; it's a multiple of something
;eliminate the next mUltiple

Turbo Assembler User's Guide

inc eax

cmp eax,MAX_PRIME
jb PrimeLoop

ipoint to next base value (the
i next value to calculate all
i mUltiples of)
ihave we eliminated all multiples?
ino, check the next set

i Return a pointer to the table of prime and non-prime statuses
in ES:EAX.

mov eax,OFFSET PrimeFlags
pop ds irestore caller's DS
ret

CalcPrimes ENDP
CodeSeg ENDS

END

Notice how easily the 80386 allows you to handle 32-bit integers
and an array 1,000,000 bytes in length; in fact, the whole function
is, remarkably, only 20 bytes in length. CalcPrimes returns, as its
result, a large far pointer to the table PrimeFlags, in which the
offset corresponding to each number contains a 1 if that number is
prime and a 0 if that number is not prime. For example,
PrimeFlags+3 would be I, since 3 is a prime number, and
PrimeFlags+4 would be 0, since 4 is not.

The length of PrimeFlags, and the largest number to be checked as
to whether it is a prime, are defined by the equated symbol
MAX_PRIME. It would actually be more practical to have the
calling routine pass the address of a table of arbitrary size to
CalcPrimes, along with the largest number to be checked (which
would presumably also be the length of the table minus 1).
CalcPrimes could then meet the prime-calculation needs of any
calling code on the fly, rather than having to be reassembled to
handle new table sizes. The preceding example uses a local
PrimeFlags primarily to illustrate the use of USE32.

A version of CalcPrimes that works with passed table and table
length parameters follows:

i Sample 80386 code to calculate all primes between
i 0 and a specified value (inclusive).

i Input (assumes a large far call, with 6 bytes of return address
; pushed on the stack):

ESP+06h on entry (last parameter pushed) - the
doubleword value of the maximum number to be checked as

Chapter 70, The 80386 and other processors 451

452

to whether it is a prime.

ESP+OAh on entry (first parameter pushed) - a large far
(6 byte offset) pointer to the table in which to store a
1 at the offset of each number that is a prime and a 0 at
the offset of each number that is not a prime. The table
must be at least [ESP+06h]+1 bytes in length, where
[ESP+06h] is the other parameter.

Output: None

Registers destroyed:
EAX, EBX, EDX, ED!

Based on an algorithm presented in "Environments,"
by Charles Petzold, PC Magazine, Vol. 7, No.2 .

• 386

CodeSeg SEGMENT USE32
ASSUME cs:CodeSeg

CalcPrimes PROC FAR
push es
push fs

Get parameters.

mov ecx, [esp+4+06h]
lfs edx, [esp+4+0ah]

isave caller's ES
isave caller's FS

Assume all numbers in the specified range are primes.

push fs
pop es
mov al,1
mov edi,edx
cld
push ecx
inc ecx
rep stosb
pop ecx

ipoint ES to table's segment

isave maximum number to check
iset up to maximum number, inclusive

iget back maximum number to check

Now eliminate all numbers that aren't primes by calculating all
mUltiples (other than times 1) less than or equal to the
maximum number to check of all numbers up to the maximum number
to check

mov eax,2 ;start with 2, since 0 & 1 are primes, and
; can't be used for elimination of mUltiples

Turbo Assembler User's Guide

The 80287

For detailed information
about 80287 instructions, see
Chapter 3 in the Reference

Guide.

The 80387

PrimeLoop:
mov ebx,eax ;base value to calculate all mUltiples of

MultipleLoop:
add ebx,eax ;calculate next mUltiple
cmp ebx,ecx ;have we checked all multiples of number?
ja CheckNextBaseValue ;yes, go to next number
mov BYTE PTR fs: [edx+ebxJ,O ;this number is not prime,

; since it's a mUltiple of
; something

jmp MultipleLoop ;eliminate the next multiple
CheckNextBaseValue:

inc eax

cmp eax,ecx
jb PrimeLoop
pop fs
pop es
ret

CalcPrimes ENDP
CodeSeg ENDS

END

;point to next base value (the next value
; to calculate all mUltiples ofl
;have we eliminated all multiples?
;no, check the next set of mUltiples
;restore caller's FS
;restore caller's ES

The instruction set of the 80287 math coprocessor is exactly the
same as the instruction set of the 8087, with one exception. The
exception is the FSETPM instruction of the 80287, which places
the 80287 in protected mode. 80287 protected mode corresponds
to the protected mode of the 80286 processor, with which the
80287 is normally coupled (although the 80287 is sometimes used
with the 80386 as well). Of course, any program that uses FSETPM
will not run on an 8087, since the 8087 doesn't support that
instruction.

Turbo Assembler support for 80287 assembly is enabled with the
.287 directive.

The instruction set of the 80387 math coprocessor is a superset of
the 8087 /80287 instruction set. The new instructions of the 80387
follow:

FCOS FSINCOS FUCOMP

Chapter 10, The 80386 and other processors 453

FPREM1
FSIN

FUCOM FUCOMPP

FUCOM performs an unordered compare between ST(O) and
another 80387 register. This instruction is just like FCOM except
that the result status is set to unordered if one of the operands is a
NAN, rather than generating an invalid-operation exception as
FCOM does in that case. FUCOMP performs an unordered
compare and pops the 80387's stack, and FUCOMPP performs an
unordered compare and pops the stack twice.

FCOS calculates the cosine of the ST(O) register, FSIN calculates
the sine of the ST(O) register, and FSINCOS calculates the sine and
cosine of the ST(O) register.

FPREM1 calculates an IEEE-compatible remainder of ST(O)
divided by ST(1).

1111" Don't forget that any program that uses any of these instructions
will not run on an 8087 or 80287. Also, because the 80387 handles
real-mode and protected-mode operations in the same way, it
ignores the FSETPM instruction on the 80287.

For detailed Information Turbo Assembler support for 80387 assembly is enabled with the
about 80387 Instructions, see .387 directive.
Chapter 3 of the Reference

Guide.

454 Turbo Assembler User's Guide

c H A p T E R

1 1

Turbo Assembler Ideal Mode

For those of you who are struggling to.make MASM do your
bidding, this may be the most important chapter in the manual. In
addition to near-perfect compatibility with MASM syntax, Turbo
Assembler smooths the bumps and grinds of assembly language
programming with a MASM derivative we call Ideal mode.

Among other things, Ideal mode lets you know solely by looking
at the source text exactly how an expression or instruction
operand will behave. There's no need to memorize a storehouse of
knowledge for all MASM's many quirks and tricks. Instead, with
Ideal mode, you write clear, concise expressions that do exactly
what you want.

Ideal mode uses nearly all MASM's same keywords, operators,
and statement constructions. This means you can explore Ideal
mode's features one at a time without having to learn a large
number of new rules or keywords. All Ideal mode features are
extensions or reorganizations of existing MASM capabilities.

This chapter describes the features of Ideal mode and explains
how using Ideal mode's new syntax rules can save you time and
effort. We'll also discuss in detail all the new capabilities of Ideal
mode and explain the differences between Ideal and MASM
syntaxes.

Chapter 7 7, Turbo Assembler Ideal Mode 455

What is Ideal mode?

Turbo Assembler's Ideal mode introduces a new syntax for
expressions and instruction operands. The new syntax isn't
radically different from existing MASM syntax; rather, Ideal mode
is a simpler and cleaner implementation of MASM operators and
keywords, using forms that make better sense, both to you and to
Turbo Assembler.

Ideal mode adds strict type-checking to expressions. Strict type
checking helps reduce errors caused by assigning values of the
wrong types to registers and variables, and by using constructions
that appear correct in the source text but are assembled differently
than you expect. Instead of playing guessing games with values
and expressions, as Ideal mode lets you write code that makes
logical and aesthetic sense .

. Because of strict type-checking, Ideal mode expressions are both
easier to understand and less prone to producing unexpected
results. And, as a result, many of the MASM problems we warn
you about in other chapters disappear under Ideal mode's
watchful eye.

Ideal mode also has a number of features that make programming
easier for novices and experts alike. Some of these features
include the following:

• duplicate member names among multiple structures
II complex HIGH and LOW expressions
• predictable EQU processing
• correct handling of grouped data segments
• improved consistency among directives
II sensible bracketed expressions

Why use Ideal mode?

456

There are many good reasons why you should use Turbo
Assembler's Ideal mode. If you are just learning assembly
language, you can easily construct Ideal mode expressions and
statements that have the effects you desire. You don't have to
fiddle around tryi~g different things until you get an instruction
that does what you want. If you are an experienced assembly
language programmer, you can use Ideal mode features to write

Turbo Assembler User's Guide

complex programs using language extensions such as nestable
structures and unions.

As a direct benefit of a cleaner syntax, Ideal mode assembles files
30% faster than MASM mode. The larger your projects and files,
the more savings in assembly time you'll gain by switching to
Ideal mode.

Strong type-checking rules, enforced by Ideal mode, let Turbo
Assembler catch errors that you would otherwise have to find at
run-time or by debugging your code. This is similar to the way
high-level language compilers assist you by pointing out
questionable constructions and mismatched data sizes.

Although Ideal mode uses a different syntax for some
expressions, you can still write programs that assemble equally
well in both MASM and Ideal modes. You can also switch
between MASM and Ideal modes as often as necessary within the
same source file. This is especially helpful when you're
experimenting with Ideal mode features, or when you're
converting existing programs written in the MASM syntax. You
can switch to Ideal mode for new code that you add to your
source files, while you maintain full MASM compatibility for
other portions of your program.

Entering and leaving Ideal mode

Use the IDEAL and MASM directives to switch between Ideal and
MASM modes. Turbo Assembler always starts assembling a
source file in MASM mode. To switch to Ideal mode, include the
IDEAL directive in your source file before using any Ideal mode
capabilities. From then on, or until the next MASM directive, all
statements behave as described in this chapter. You can switch
back and forth between MASM and Ideal modes in a source file as
many times as you wish and at any place. Here's a sample:

DATA SEGMENT
abc LABEL BYTE
xyz DW 0
DATA ENDS

IDEAL

SEGMENT CODE
PROC MyProc

Chapter 7 7, Turbo Assembler Ideal Mode

istart in MASM mode
iabc addresses xyz as a byte
idefine a word at label xyz
iend of data segment

iswitch to Ideal mode

isegment keyword now comes first
iproc keyword comes first, too

457

ENDP MyProc
ENDS

MASM

CODE SEGMENT
Func2 PROC

iIdeal mode programming goes here

irepeating MyProc label is optional
irepeating segment name not required

iswitch back to MASM mode

iname now required before segment keyword
iname now comes before proc keyword, too

iMASM-mode programming goes here

IDEAL iswitch to Ideal mode again!

MASM

Func2 ENDP
CODE ENDS

ido some programming in Ideal mode

iback to MASM mode. Getting dizzy?

iname again required before keyword
iname again required here

As you can see, in Ideal mode, directive keywords such as PRoe
and SEGMENT appear before the identifying symbol names, the
reverse of MASM's order. Also, you have the option of repeating a
segment or procedure name after the ENDP and ENDS directives.
Adding the name can help clarify the program by identifying the
segment or procedure that is ending. This is a good idea,
especially in programs that nest multiple segments and
procedures. You don't have to include the symbol name after
ENDP and ENDS, however.

MASM and Ideal mode differences

458

This section describes the main differences between Ideal and
MASM modes. If you know MASM, you may want to experiment
with individual features by converting small sections of your
existing programs to Ideal mode. Just remember to surround the
new code with the IDEAL and MASM keywords. By following this
scheme, a kind of learn-as-you-go approach to Ideal mode
proficiency, you can assemble your current programs without
having to revise every instruction to use Ideal mode's special
features. Eventually, of course, you may decide to program
exclusively in Ideal mode. Or you may choose to mix and match
MASM and Ideal mode modules. The choice is yours to make.

Turbo Assembler User's Guide

Ideal mode
tokens Turbo Assembler reads and understands your program by

dividing the text into individual words or symbols called tokens.
Examples of tokens include labels such as V ALUE, NAME, or
AGE, and other symbols, numbers, parts of expressions, and
arithmetic operators such as +, -, '" and /.

Two types of tokens, symbols and floating-point numbers, have
slightly different forms in Ideal mode. As described next, these
changes clarify several ambiguities in the MASM syntax.

Symbol tokens In Ideal mode, a period (.) is not permitted as part of a symbol
name. You can use a period only as a structure member operator
or in a floating-point number.

Structure and union members (some people call them fields) are
not defined as global symbols, accessible from every place in your
program. Structure and union members exist only within the
structure to which they belong. This lets you have multiple
structures that contain members with the same names. You can
also duplicate member names outside of a structure for other
purposes, as in this sample:

Pennies DW 0
STRUC Heaven
Dimes DW ?
Nickels DW?
Pennies DW?
ENDS
Take Heaven <>

ino conflict

They say you can't take it with you but, just in case they're wrong,
this example shows how to create a variable with three fields,
storing your net worth in dimes, nickels, and pennies in a
structure named Heaven. The fields Dimes and Nickels are unique
to the structure. Pennies, though, occurs twice. First, there's
Pennies outside the structure's pearly gates, and then there's
Pennies from Heaven.

Seriously, this example demonstrates that the same name, Pennies,
can occur both inside and outside of a structure with no conflict,
something that you can't do in MASM to save your soul.

The variable Pennies outside of Heaven is distinct from the
member Pennies used inside the structure. Consequently, to

Chapter 7 7, Turbo Assembler Ideal Mode 459

Duplicate member
names

reference a duplicated name inside of a structure requires three
elements: the structure name, a period, and the member name. In
this example, Take.Pennies equals the offset of the Pennies field
inside Heaven. Pennies alone, however, equals the offset to the
variable outside of the structure.

Ideal mode also lets you duplicate member names in different
structures. The members can be of the same or of different types,
as in the following two structures, both of which have Size fields
of the same type and in the same postion, plus Amount fields of
different types in different positions:

STRUC SomeStuff
Size DW ?
Flag DB ?
Amount DW ?
ENDS

STRUC OtherStuff
Size DW
Amount DB ?
ENDS

ino conflict here
inor here

Floating-point tokens In Ideal mode, floating-point decimal numbers must always
include a period (.):

460

FP DT l.Oe? ildeal mode floating-point value

This defines a lO-byte floating-point value, named FP, equal to
1.0e7. In MASM mode, you can use the acceptable, though less
clear, form:

FP DT lE? iMASM mode floating-point value

This may not seem so bad until you consider what happens if, in
an earlier section of the program, you issue a .RADIX 16 command
that changes the default number base from decimal to hexa
decimal. In this case, disaster strikes as MASM now assembles
your floating-point value as the hexadecimal number OlE7! By
requiring you to use a decimal point, Ideal mode never
accidentally confuses floating-point and hexadecimal numbers
this way.

Turbo Assembler User's Guide

EQU and =
directives EQU definitions, also called equates, are always treated as text in

Ideal mode. In MASM mode, equates are sometimes treated as
text and, at other times, as numbers. Consider these-examples:,

1111"

Expressions and
operands

Square brackets
operator

;Declare a few equates
A 4
B 5
C EQU B + A
B 6

;Declare a variable
V DW C ;9 in MASM mode, 10 in Ideal mode

MASM evaluates B + A when processing the EQU expression. At
this time, A equals 4 and B equals 5; therefore, C equals 9. Ideal
mode processes the same expression differently, storing in string
form everything that follows EQU, in this case, B + A. Later, Ideal
mode substitutes this string where C appears. In this example,
because the expression evaluation is delayed until the declaration
of variable V and because B was previously redefined to 6,
variable V equals 10 (6+4) in Ideal mode.

In Ideal mode, EQU always defines a string. An equal sign (=)
always defines a calculated expression. It might help you to
remember this rule if you visualize an equal sign (=) evaluating
expressions immediately and EQU delaying expression evaluation
until the place where the constant name appears. By the way,
some people refer to this as "early" and "late" binding.

The biggest difference between Ideal and MASM mode
expressions is the way square brackets function. In Ideal mode,
square brackets always refer to the contents of the enclosed
quantity. Brackets never cause implied additions to occur. Many
standard MASM constructions, therefore, are not permitted by
Ideal mode.

In Ideal mode, square brackets must be used in order to get the
contents of an item. For example,

mov ax,wordptr

Chapter 7 7, Turbo Assembler Ideal Mode 461

462

displays a warning message. You are are trying to load a pointer
(wordptr) into a register (AX). The correct form is

mov ax, [wordptr]

Plainly, you are loading the contents of the location addressed by
wordptr (in the current data segment at DS) into AX.

If you wish to refer to the offset of a symbol within a segment,
you must explicitly use the OFFSET operator, as in this example:

mov ax, OFFSET wordptr

Example operands Let's examine a few confusing, though typical, bracketed
operands that MASM mode accepts, and then compare the
examples with the correct and easier-to-understand forms that
Ideal mode requires. As you'll see, Ideal mode's unambiguous use
of brackets helps make your intentions perfectly clear:

mov ax, [bx] lsi] iMASM mode

This causes a syntax error in Ideal mode. If brackets specify the
contents of memory, then this instruction appears to be loading
both the value addressed by BX and the value addressed by 51
into AX at the same time. Of course, you can do no such thing.
What you probably mean, and what Ideal mode requires, is this:

mov ax, [bx+si] ildeal mode

Now, the instruction is clear. The contents of the memory location
at the OFFSET BX+SI, relative to the current data segment
addressed by OS, is loaded into AX. (The size of the memory
location is a 16-bit word because AX is a 16-bit register. If you
replace AX with AL, or another 8-bit register, then the size of the
memory location is a byte.) Here's a similar example:

mov ax,es: [bx] lsi] iMASM mode

This also causes an Ideal mode error. The instruction seems to be
saying, "apply an ES: segment override to the value addressed by
BX, and add the whole shebang to the contents of the memory
location addressed by 51, loading the result (whatever that is) into
AX." This is senseless, of course, and you probably mean this:

mov ax, [es:bx+si] ildeal mode

Good! This adds the BX and SIregisters together, giving an offset
value relative to segment register ES, overridden from the default

Turbo Assembler User's Guide

data segment DS. The 16-bit contents of this location is loaded
into AX. Here's another MASM example that you'll often see:

mov ax,6[bx] iMASM mode

A mathematician might think you are multiplying 6 times the
value of the location addressed by BX. Or, is this some kind of
undocumented array indexing technique, or just a typing error?
Actually, it's none of the above, as the Ideal mode form shows

mov ax, [bx+6] ildeal mode

Of course! You want to load into AX the contents of the location
in the current data segment 6 bytes away from the offset specified
by BX. More clear than that, you cannot get. Expressions in
MASM mode, though, are not always so understandable:

mov ax,es:[bp+8] [si+6] iMASM mode

Let's see, you take the value 8 bytes away from BP, apply a
segment override ES:, and ... no, the override must go with the
value 6 bytes from SI. But no, that's not right, maybe you take the
value at BP+8, add to the contents of [SI+6], apply an override
and ... Oh, forget it! Ideal mode makes this and other complex
operands easy to read and easy to write:

mov ax, [es:bp+si+14] ildeal mode

Obviously, the value located at offset BP+SI+ 14 in segment ES is
loaded into AX, plain and simple. Believe it or not, there's more:

mov aI, BYTE PTR [bx] iMASM mode

MASM apparently allows you to specify the contents of memory
locations as byte pointers, at least that's what this instruction
appears to be doing. You can, of course, point to bytes or words
only with pointers (registers and labels) as Ideal mode makes
perfectly evident:

mov aI, [BYTE PTR bx] ildeal mode

Obviously, you are telling Turbo Assembler that BX is a byte
pointer, loading into register AL the byte located BX bytes from
the start of the current data segment. One more example and then
we're done:

rep movs BYTE PTR [di], lsi] iMASM mode

MASM appears to allow you to convert characters addressed by
DI (and maybe SI?) into byte pointers. Of course, you can't do

Chapter 7 7 I Turbo Assembler Ideal Mode 463

Operators
Chapter 2 In the reference

manuallisfs operator
precedence and completely

describes all operators in
MASM and Ideal modes.

Periods in structure
members

that. What you no doubt mean, and what Ideal mode wants to
see, is this:

rep movs [BYTE PTR di], [BYTE PTR si] ildeal mode

Although this is longer, registers DI and 51 are clearly byte
pointers for the MOVS instruction.

These examples, are by no means complete, and you probably will
encounter many other confusing MASM operands with brackets.
When this happens, try switching to Ideal mode, even if just for
that one instruction. Then, use the foregoing samples as guides to
rewriting the instruction in a form that you can understand. By
doing this, you can use Ideal mode not only to help you write
better and more readable programs, but also to help you
understand bracketed constructions that, in MA5M, are
frequently about as clear as mud on a foggy day.

The changes made to the expression operators in Ideal mode
increase the power and flexibility of some operators while leaving
unchanged the overall behavior of expressions. The precedence
levels of some operators have been changed to facilitate common
operator combinations.

For specifing accurately the structure members to which you ;re
referring, the period (.) structure member operator is far more
strict in Ideal mode. The expression to the left of a period must be
a structure pointer. The expression to the right must be a member
name in that structure. Using the earlier SomeStuff and OtherS tuff
structure examples, here's how to load registers with the values of
specific structure members:

iDeclare variables using the structure types
S Stuff SomeStuff <> ° Stuff OtherStuff <>
mov ax, [S_Stuff.Amount]
mov bl, [O_Stuff.Amount]

iload word value
iload byte value

Pointers to structures Often, you'll want to use a register containing the address of a
structure, in other words, the offset to the first byte of a structure
stored in memory. Or you might have a memory variable that
addresses a structure. In these cases, to reference a specific

464 Turbo Assembler User's Guide

The SYMTYPE operator

The HIGH and LOW
operators

structure member by name, you must tell Turbo Assembler which
structure you are referring to:

mov ex, [(SorneStuff PTR bx) .Amount]

This lets Turbo Assembler know that BX is a pointer to a SomeS tuff
structure and that you want to load the contents of the Amount
field from that structure into register CX. The parentheses are
required because the period (.) operator has higher precedence
than PTR. Without parentheses, Ideal mode tries to bind Amount
to BX, which is impossible, of course, because registers do have
field names. Only structures have field names and, therefore, you
must convert pointers to structures before referring to fields in
structures that the registers address.

Because an Ideal mode symbol cannot start with a period, the
.TYPE operator in MASM mode is named SYMTYPE in Ideal
mode (see Chapter 1 in the Reference Guide). Despite the name
change, the directive works identically in both modes with one
exception: SYMTYPE will not return a value for an undefined
identifier. Otherwise, this operator returns the types of various
symbols.

Abyte DB 0
Aword DW 0
Array DD 20 DUP (8)
Btype SYMTYPE Abyte ;1
Wtype SYMTYPE Aword ;2
Atype SYMTYPE Array ;4

In Ideal mode, the HIGH and LOW operators have two meanings.
Usually, HIGH specifies the high (most-significant) byte of a
constant and LOW specifies the LOW (least-significant) byte as in

MaxVal 1234h
mov ah, HIGH MaxVal ;loads 12h into AH
rnov aI, LOW MaxVal ;loads 34h into AL

In Ideal mode, HIGH and LOW can be used also to select the high
or low part of a memory-referencing expression:

WordVal DW 0
DblVal DD 0
QVal DQ 0

mov bl, [BYTE LOW WordVal]
mov ax, [WORD HIGH DblVal]
mov ax, [WORD LOW QVal]

Chapter 7 7, Turbo Assembler Ideal Mode 465

466

The Optional PTR
operator

The first MOV instruction loads BL with the low byte of the 2-byte
word labeled by W1rdVal. The second MOV loads AX with the
high word of the 4-byte value stored at DblVal. The third MOV
loads AX with the lowest word of the 8-byte (quadword) value at
QVal. Notice that the syntax is the same as for the PTR operator,
with BYTE or WORD keywords before the LOW or HIGH
operators, followed by a memory-referencing expression.

You can also use HIGH and LOW together to extract just the
information you need from a multiple-byte value:

OVal 00 12345678h
rnov aI, [BYTE LOW WORD HIGH OVal] ;loads 34h into AL

In combination with BYTE and WORD, the LOW and HIGH
keywords extract bytes and words from any position in a variable.
Here, DVal is a doubleword, 4-byte quantity. To better
understand complex combinations such as this, read the
expression from left to right. In this case, the move instruction
loads AL with lithe low byte (BYTE LOW) of the high word
(WORD HIGH) of Dval."

You can use shorthand pointer overrides in expressions. To do
this, omit the PTR operator. For example,

[BYTE PTR OverTheRainbow]

in Ideal mode shorthand is the same as

[BYTE OverTheRainbow]

The SIZE operator The SIZE operator in Ideal mode reports the actual number of
bytes occupied by a data item. This makes it easy to determine the
lengths of strings: '

theTitle OB "The Sun Also Rises"
theAuthor OB "Ernest Hemingway", 0
titleSize SIZE theTitle ; Ideal--18, MASM--l
authorSize SIZE theAuthor ; Ideal--16, MASM--l

In this example, theTitle and theAuthor are strings. In MASM
mode, the SIZE operator equals the LENGTH of a name multiplied
by its TYPE. The LENGTH equals the number of items allocated, in
this case 1. (Even though a string has multiple characters,
LENGTH considers strings to be single-byte items by virtue of the
DB directive.) The TYPE value for DB is also 1. Consequently, in

Turbo Assembler User's Guide

Directives

MASM mode, both titleSize and author Size equal 1, which is not
much help in trying to calculate the string lengths.

In Ideal mode, SIZE returns the number of bytes occupied by the
first item after storage-allocation directives like DB or DW.
Because of this, titleSize equals the number of characters in
theTitle. Likewise, author Size equals the number of characters in
the string, theAuthor. Notice, however, that theAuthor ends in a 0
byte, marking the string end. SIZE does not take this byte into
account, returning only the number of characters in the preceding
string. In fact, SIZE returns the length of only the first item in any
list of multiple values. For example,

CountDown DB 9,8,7,6,5,4,3,2,1,"Blast off"
TwoLines DB "First line", 13, 10, "Second line"
eDsize SIZE CountDown ; 1
TLsize SIZE TwoLines ;10

Here, CountDown addresses 9-byte values followed by the string,
"Blast off." Even so, SIZE of CountDown (CDSize) in both Ideal
and MASM modes equals 1, the size of the first element in the list.
The same is not true of the second example, TwoLines, which is a
typical way to store two strings separated with an ASCII carriage
return (13) and linefeed (10). But the two strings are labeled in the
program under one name, TwoLines. SIZE again returns the size of
the first item in this series, in this case, the string "First line." In
Ideal mode, TLSize equals 10, the number of characters in the
string. In MASM mode, TLSize equals 1, the size of the first DB
element, a single byte (character).

Directives in Ideal mode function identically and, in most cases,
have the same names as their MASM-mode equivalents.
However, there are a few important differences among similar
directives in both modes, as this section explains.

. Listing controls Because a symbol cannot start with a period (.) in Ideal mode, all
MASM mode listing controls begin with percent signs (%). Also,
several names have been changed to more accurately describe the
operations controlled by the directives. The following table shows
the listing control directives in both modes:

Chapter 7 7 I Turbo Assembler Ideal Mode 467

Directives starting with
a period (.)

468

MASMmode

.CREF

.LALL

.LFCOND

.LIST

.SFCOND

.xALL

.xCREF

.XLIST

Ideal mode

%CREF
%MACS
%CONDS
% LIST
%NOCONDS
%NOMACS
%NOCREF
%NOLISf

Because the percent sign (%) starts all listing control directives in
Ideal mode, the o/oOUT directive in MASM mode becomes
DISPLAY in Ideal mode:

DISPLAY "Starting to Assemble I/O Driver"

Other MASM directives that start with periods (.) are renamed for
clarity. For instance, all processor control directives such as .286,
which look more like a number than a directive, now start with P,
as in P286N. All forced error directives of the form .ERRxxx have
been renamed ERRIFxxx. Several other directives have the same
names minus the leading periods.

The following table lists the directives that start with a period in
MASM mode and the Ideal mode equivalents:

MASM mode Ideal mode MASM mode Ideal mode

.186 P186 .ERR2 ERRIF2

.286 P286N .ERRB ERRIFB

.286C P286N .ERRDEF ERRIFDEF

.286P P286 .ERRDIF ERRIFDIF

.287 P287 .ERRDIFI ERRIFDIFI

.386 P386N .ERRE ERRIFE

.386C P386N .ERRIDN ERRIFlDN

.386P P386 .ERRIDNI ERRIFIDNI

.387 P387 .ERRNB ERRIFNB

.8086 P8086 .ERRNDEF ERRIFNDEF

.8087 P8087 .ERRNZ ERRIF

.CODE CODESEG .FARDATA FAR DATA

.CONST CONST .FARDATA? UFARDATA

. DATA DATASEG .MODEL MODEL
• DATA? UDATASEG .RADIX RADIX
.ERR ERR .STACK STACK
.ERR1 ERRIF1

Turbo Assembler User's Guide

Reversed directive and
symbol name

Quoted strings as
arguments to directives

Ideal mode's parsing order is simpler than MASM's. If the first
token is a keyword, it determines the operation to be performed
by the directive. If the first token is not a keyword, then the
second token determines the operation.

Because of this change, some operations have reversed directive
and symbol name orders, as the next table details:

MASMmode

name ENDP
name ENDS
name GROUP segs
name LABEL type
name MACRO args
name PROC type
name RECORD args
name SEGMENT args
nameSTRUC
name UNION

Ideal mode

ENDP [name]
ENDS [name]
GROUP name segs
LABEL name type
MACRO name args
PROC name type
RECORD name args
SEGMENT name args
STRUCname
UNION name

Notice that ENDS and ENDP do not require matching names to
close the definitions. If you include a name, spell it the same as
you did in the preceding SEGMENT or PRoe directive. Some
programmers always include the name to add extra readability to
their programs. This is especially useful when you're using nested
procedures or segments, but it isn't required.

Some directives are identical in both MASM and Ideal modes. For
example, the following directives define symbols as part of the
language syntax and, therefore, are the same in both modes:

=
DB

DD
OF
DP

DQ
DT
DW
EQU

The INCLUDE directive takes a quoted file name in Ideal mode:

INCLUDE "MYDEFS.INC"

In MASM mode you don't have to use quotes:

INCLUDE MYDEFS.INC

0/0 TITLE and O/OSUBTTL also require their title strings to be
surrounded by quotes:

Chapter 7 7 I Turbo Assembler Ideal Mode 469

Segments and
groups

Accessing data in a
segment belonging to

a group

%TITLE "Macro Definitions"
%SUBTTL "Block Structuring Macros"

;comment ignored
;comment ignored

As these two examples demonstrate, requiring quotes around
titles and subtitles lets you add comments at the ends of these
lines. The comments are not included in the listing file. In MASM
mode, everything after .TITLE and .SUBTTL becomes part of the
title string, including any comments.

The way Turbo Assembler handles segments and groups in Ideal
mode can make a difference in getting a program up and running.
If you're like most people, you probably shudder at the thought
of dealing with a bug that has anything to do with the interaction
of segments and groups.

Much of the difficulty in this process stems from the arbitrary
way that MASM and, therefore, Turbo Assembler's MASM mode,
make assumptions about references to data or code within a
group. Fortunately, Ideal mode alleviates some of the more
nagging problems caused by MASM segment and group
directives as you'll see in the information that follows.

In Ideal mode, any data item in a segment that is part of a group
is considered to be principally a member of the group, not of the
segment. An explicit segment override must be used for Turbo
Assembler to recognize the data item as a member of the segment.

MASM mode handles this differently: Sometimes a symbol is
. considered to be part of the segment instead of the group. In
particular, MASM mode treats a symbol as part of a segment
when the symbol is used with the OFFSET operator but as part of
a group when the symbol is used as a pointer in a data allocation.
This can be confusing because, when you directly access the data
without OFFSET, MASM incorrectly generates the reference
relative to the segment instead of the group.

An example will help explain how you can easily get into trouble
with MASM's addressing quirks. Consider the following
incomplete MASM program, which declares three data segments:

dsegl SEGMENT PARA PUBLIC 'data'
vl DB 0
dsegl ENDS

dseg2 SEGMENT PARA PUBLIC 'data'

470 Turbo Assembler User's Guide

v2 DB 0
dseg2 ENDS

dseg3 SEGMENT PARA PUBLIC 'data'
v3 DB 0
dseg3 ENDS

DGROUP GROUP dsegl,dseg2,dseg3
cseg SEGMENT PARA PUBLIC 'code'

ASSUME cs:cseg,ds:DGROUP

start:
rnov ax, OFFSET vl
rnov bx,OFFSET v2
rnov cx,OFFSET v3

cseg ENDS
END start

The three segments, dseg1, dseg2, and dseg3, are grouped under
one name, DGROUP. As a result, all the variables in the individual
segments are stored together in memory. In the program source
text, each of the individual segments declares a byte variable,
labeled v1, v2, and v3.

In the code portion of this MASM program, the offset addresses of
the three variables are loaded into registers AX, BX, and ex.
Because of the earlier ASSUME directive and because the data
segments were grouped together, you might think that MASM
would calculate the offets to the variables relative to the entire
group in which the variables are eventually stored in memory.

But this is not what happens! Despite your intentions, MASM
calculates the offsets of the variables relative to the individual
segments, dseg1, dseg2, and dseg3. It does this even though the
three segments are combined into one data segment in memory,
addressed here by register DS. It makes no sense to take the
offsets of variables relative to individual segments in the program
text when those segments are combined into a single segment in
memory. The only way to address such variables is to refer to
their offsets relative to the entire group.

To fix the problem in MASM requires you to specify the group
name along with the OFFSET keyword:

rnov ax,OFFSET DGROUP:vl
rnov bx,OFFSET DGROUP:v2
rnov cx,OFFSET DGROUP:v3

Chapter 7 7, Turbo Assembler Ideal Mode 471

Defining near or
far code labels

472

Although this now assembles correctly and loads the offsets of vl,
v2, and v3 relative to DGROUP (which collects the individual
segments), you might easily forget to specify the DGROUP
qualifier. If you make this mistake, the offset values will not
correctly locate the variables in memory and you'll receive no
indication from MASM that anything is amiss. In Ideal mode,
there's no need to go to all this trouble: .

IDEAL
SEGMENT dsegl PARA PUBLIC 'data'
vl DB a
ENDS

SEGMENT dseg2 PARA PUBLIC 'data'
v2 DB a
ENDS

SEGMENT dseg3 PARA PUBLIC 'data'
v3 DB a
ENDS

GROUP DGROUP dsegl,dseg2,dseg3
SEGMENT cseg PARA PUBLIC 'code'

ASSUME cs:cseg, ds:DGROUP

start:
mov ax,OFFSET vl
mov ax,OFFSET v2
mov ax,OFFSET v3

ENDS
END start

The offsets to vl, v2, and v3 are correctly calculated relative to the
group that collects the individual segments to which the variables
belong. Ideal mode does not require the DGROUP qualifier to
refer to variables in grouped segments. MASM mode does require
the qualifier and, even worse, gives no warning of a serious
problem should you forget to specify the group name in every
single reference.

When you define near and far LABEL or PROC symbols,
references to a symbol are relative to the group containing the
segment. If a symbol's segment is not part of a group, the symbol
is relative to the segment. This means you do not have to
ASSUME CS to a segment in order to define near or far symbols.
In MASM mode,

Turbo Assembler User's Guide

External, public,
and global

symbols

CODE SEGMENT
ASSUME cs:CODE

XYZ PROC FAR

XYZ ENDP
CODE ENDS

iMASM procedure code

becomes the following in Ideal mode:

SEGMENT CODE
PROC XYZ FAR

ENDP
ENDS

ildeal mode procedure code

This change doesn't add any new capabilities to MASM mode.
But it does relieve you of telling the assembler something Ideal
mode can usually figure out by itself.

Wherever you must supply a type (BYTE, WORD, and so on), for
example, with the EXTRN or GLOBAL directives, you can use a
structure name:

STRUC MoreStuff
HisStuff DB 0
HerStuff DW 0
ItsStuff DB 0
ENDS
EXTRN SNAME:MoreStuff

This capability, combined with the enhancements to the period (.)
operator described earlier, lets you refer to structure members
that are external to your source module. This is exactly as if you
had declared the members inside both modules. The SIZE
operator also correctly reports the size of external data structures.
Every PUBLIC symbol emitted in Ideal mode occurs where
PUBLIC is specified. This is also useful for redefining variables.
MASM mode emits all the public symbols at the end of the
program, limiting the ways in which you can redefine public
symbols. For example,

Chapter 7 7, Turbo Assembler Ideal Mode 473

474

Miscellaneous
differences

Suppressed fixups

Operand for BOUND
instruction

Perfect = 8
PUBLIC Perfect ;declare Perfect public

Perfect = 10 ;redefine Perfect's value

In Ideal mode, the PUBLIC Perfect equals 8, even though the
module redefines Perfect after the PUBLIC declaration. In MASM
mode, because the PUBUC symbols are emitted at the end of the
module, another module that imports this symbol via an EXTRN
declaration receives a Perfect 10.

This section describes a few additional differences between
MASM and Ideal modes.

Turbo Assembler in Ideal mode does not generate segment
relative fixups for private segments that are page- or paragraph
aligned. Because the linker does not require such fixups,
assembling programs in Ideal mode can result in smaller object
files that also link more quickly than object files generated by
MASM mode. The following demonstrates how superfluous
fixups occur in MASM but not in Ideal mod~:

SEGMENT DATA PRIVATE PARA
VAR1 DB 0
VAR2 DW 0
ENDS
SEGMENT CODE

ASSUME ds:DATA
mov ax,VAR2

ENDS
;no fixup needed

This difference has no effect on code that you write. The
documentation here is simply for your information.

The BOUND instruction expects a WORD operand, not a DWORD.
This lets you define the lower and upper bounds as two constant
words, eliminating the need to convert the operand to a DWORD
with an explicit DWORD PTR. In MASM mode, you must write

BOUNDS DW 1,4
BOUND DWORD PTR BOUNDS

;lower and upper bounds
;required for MASM mode

but, in Ideal mode, you need only write

BOUNDS DW 1,4
BOUND [BOUNDS]

;lower and upper bounds
;legal in Ideal mode

Turbo Assembler User's Guide

Comments inside In Ideal mode, comments within macros are treated as strings. To
macros substitute a dummy parameter within a macro comment, you

must precede the parameter with an ampersand (&):

MACRO DOUBLE ARG
shl ARG,l

ENDM
;rnultiply &ARG by two

When you use this macro in Ideal mode with DOUBLE BX, the
listing file shows

shl bx,l ;rnultiply BX by two

On the other hand, if the macro is defined as

MACRO DOUBLE ARG
shl ARG,l

ENDM
;rnultiply ARG by two

the listing file does not replace ARG:

shl bx,l ;rnultiply ARG by two

Local symbols Turbo Assembler's local symbol capability is automatically
enabled when you switch to Ideal mode, exactly as if you had
entered the LOCALS directive.

A comparison of MASM and Ideal mode
programming

To wrap up this chapter and give you a feeling for the differences
between Ideal and MASM modes, here is the same program in
both Ideal and MASM mode. By reading through these examples
and by examining the numbered comments after the listings,
you'll be able to appreciate the advantages offered by Ideal mode
syntax.

Please understand that these programs are not intended as
examples of good programming style: The instructions merely
demonstrate the Ideal mode concepts discussed in this chapter,
and show only a sampling of the most common Ideal mode
capabilities and differences from MASM.

Chapter 7 7 I Turbo Assembler Ideal Mode 475

476

The example programs read a single line from the console,
convert the text to uppercase, and then display the result before
returning to 005. To mark where the program code differs in the
MASM and Ideal mode programs, we've added a comment
(beginning with a semicolon) and a number. For example, ; #4
directs you to read the corresponding description number 4
following the listings in the section /I An Analysis of MASM And
Ideal Modes" on page 479. Also, to make the Ideal mode
differences stand out, we've stripped most of the comments from
its example. Read the first program to understand how the code
operates. Read the second program to compare the Ideal-mode
enhancements.

MASM mode sample program

; File <masexmpl.asm>
; MASM mode example program to uppercase a line

TITLE Example MASM Program ;this comment is in the title!
.286

bufsize = 128

dosint MACRO intnum
mov ah,intnum
int 21h

ENDM

STK SEGMENT STACK
DB 100h DUP (?)

STK ENDS

DATA SEGMENT WORD
inbuf DB
outbuf DB
DATA ENDS

bufsize DUP (?)

bufsize DUP (?)

DGROUP GROUP STK,DATA

CODE SEGMENT WORD
ASSUME cs:CODE

start: •
mov ax,DGROUP
mov ds,ax
ASSUME ds:DGROUP
mov dx,OFFSET DGROUP:inbuf
xor bx,bx
call readline
mov bx,ax
mov inbuf[bx],O
push ax

;size of input and output buffers

;assign FN number to AH
;call DOS function &INTNUM

;reserve stack space

;input buffer
;output buffer

;group stack and data segs

;assume CS is code seg

;assign address of DGROUP
;segment to DS
;default data segment is DS
;load into DX inbuf offset
;standard input
iread one line
;assign length to BX
;add null terminator
;save AX on stack

Turbo Assembler User's Guide

call mungline
pop cx
mov dx,OFFSET DGROUP:outbuf
mov bx,1
dosint 40h
dosint 4ch

;convert line to uppercase
;restore count
;load into DX outbuf offset
;standard output
;write file function
;exit to OOS

;Read a line, called with dx => buffer, returns count in AX
readline PROC NEAR

mov cx,bufsize
dosint 3fh
and ax,ax
ret

readline ENDP

;Convert line to uppercase
mungline PROC NEAR

mov si,OFFSET DGROUP:inbuf
mov di,O

@@uloop:
cmp BYTE PTR[si],O
je @@done
mov aI, [si]
and aI, not 'a' - 'A'
mov outbuf[di],al
inc si
inc di
jmp @@uloop

@@done: ret
mung line ENDP
CODE ENDS

;specify buffer size
;read file function
;set zero flag on count
;return to caller

;address inbuf with SI
; initialize DI

; end of text?
;if yes, jump to @@done
;else get next character
;convert to uppercase
;store in output buffer
;better to use lodsb,stosb
; .•. this is just an example!
;continue converting text

;end of procedure
;end of code segment

END start ;end of text and OOS entry point

Ideal mode sample program

File <idlexmpl.asm>
Ideal mode example program to uppercase a line

IDEAL
%TITLE
P286N

"Example Ideal-Mode Program"

BufSize 128

MACRO dosint intnum
mov ah,intnum
int 21h

ENDM

SEGMENT STK STACK
DB 100h DUP (?)

Chapter 11, Turbo Assembler Ideal Mode

;n
;12
;#3

;14

; 15

477

478

ENDS

SEGMENT DATA WORD
inbuf DB Bufsize DUP (1)
outbuf DB bufSize DUP (1)
ENDS DATA

GROUP DGROUP STK,DATA

SEGMENT CODE WORD
ASSUME cs:CODE

start:
mov ax,DGROUP
mov ds,ax
ASSUME ds:DGROUP
mov dx,OFFSET inbuf
xor bx,bx
call readline
mov bx,ax
mov [inbuf + bx],O
push ax
call mungline
pop cx
mov dx,OFFSET outbuf
mov bx,1
dosint 40h
dosint 4ch

i.6

i .7

i'S

i.9

ino

in1

in2

in3

iRead a line, called with dx => buffer, returns count in AX
PROC readline NEAR i.14

ENDP

mov cx,BufSize
dosint 3fh
and ax,ax
ret

iConvert line to uppercase
PROC mung line NEAR

mov si,OFFSET inbuf
mov di,O

@@uloop:
cmp [BYTE si],O
je @@done
mov aI, lsi]
and al,not 'a' - 'A'
mov [outbuf + di],al
inc si
inc di

LODSB/STOSB
jmp @@uloop

@@done: ret

ins

in6
in7

iUS

;U9

Turbo Assembler User's Guide

An analysis of
MASM And Ideal

modes

ENDP mung line
ENDS

END start

; 120
; 121

The following paragraphs detail the differences between MASM
and Ideal mode constructions, directives, and operands in the two
previous programs. The numbers refer to the comments in the
Ideal mode example. Compare these lines with the MASM
example.

1. Use the IDEAL directive to switch into Ideal mode. By default,
Turbo Assembler always starts assembling your source file in
MASM mode. You need to use the MASM directive only when
you want to switch back into MASM mode after having earlier
switched to Ideal mode.

2. The percent sign in front of %TITLE reminds you that this
directive affects the listing file (if you decide to create one by
specifying a listing file name or by using the IL command-line
option when you assemble the program). Ideal mode uses
% TITLE instead of TITLE (without the percent sign) all:d also
requires you to surround the title string with quotes (II II). This
lets you put a comment on the line that, in MASM mode,
becomes part of the title-probably not what you intended.

3. The .286 directive in MASM mode is P286N in Ideal mode.
Because symbols cannot start with a period (.) in Ideal mode,
all MASM processor and other directives that start with
periods are changed. The statement in the listing does not
serve any useful purpose in this program other than to show
the difference between the two modes. The program does not
use any 80286 instructions.

4. In Ideal mode, the name of the macro comes after the MACRO
directive, not before as in MASM mode.

5. The name of the segment in a SEGMENT directive comes after
the directive in Ideal mode.

6. When you use ENDS to close a segment in Ideal mode, you
don't need to supply the matching segment name as you do in
MASM mode. (You may add the name after the ENDS
directive, however, if you prefer.)

7. Same as 5. Again, the SEGMENT keyword comes before the
name.

Chapter 7 7 I Turbo Assembler Ideal Mode 479

480

8. If you supply a matching segment name for the ENDS
directive, the name comes after the directive and not before as
in MASM mode. You can delete the name (DATA) if you wish.

9. In Ideal mode, the GROUP directive precedes the name of the
data segment group (which is DGROUP). After this comes the
list of data segments you are grouping under this name. In
MASM, GROUP and the name are reversed.

10. Same as 5. The SEGMENT keyword precedes the name.
11. You don't have to use a group qualifier here with the OFFSET

operator. Ideal mode presumes that INBUF is relative to the
start of DGROUP because INBUF is inside one of the individual
segments collected under this group name. In MASM, you
have to remember to specify DGROUP: inbuf to correctly
locate offsets to variables in grouped segments.

12. The [lNBUF+BX] operand is valid in both Ideal and MASM
modes, but the same line in the MASM mode version,
INBUF[BX], is not valid in Ideal mode. In Ideal mode, all
memory-referencing operands must be surrounded by square
brackets.

13. Same as 11. Here again, you do not need to specify the group
name to reference a variable in a grouped segment. In MASM,
to obtain the correct offset to OUTBUF, you have to write
DGROUP:outbuf. Forget the DGROUP qualifier and, in this
example, you'd store your output in the stack, with no
warning from MASM that something is seriously wrong!

14. The name of a procedure in a PROC directive comes after the
directive, not before as required by MASM mode.

15. When you use ENDP to close a procedure in Ideal mode, you
don't have to supply the matching procedure name as you do
in MASM mode.

16. Same as 14. The PROC directive proceeds the procedure name.

17. Same as 11. Again, you don't need to write DGROUP:inbuf, as
you do in MASM.

18. In Ideal mode, you can optionally omit the PTR operator when
you set the size of an expression. The MASM mode expression
BYTE PTR ABC is identical to BYTE ABC in Ideal mode.

19. Same as 12. In Ideal mode, to refer to the contents of memory,
always put the memory-referencing expression inside
brackets.

20. Optionally place a matching procedure name after the ENDP
directive, not before as in MASM mode.

Turbo Assembler User's Guide

21. Same as 6. ENDS does not require a matching segment name,
although you can add the name if you prefer.

481

482 Turbo Assembler User's Guide

References

References

Crawford, John H., and Patrick P.Gelsinger. Programming the
80386. Alameda: Sybex, Inc., 1987.

Duncan, Ray. Advanced MS-DOS. Redmond: Microsoft Press,
1986.

Lafore, Robert. Assembly Language Primer for the IBM PC & XI.
New York: The Waite Group, 1984.

Murray, William H., and Chris Pappas. 80386/80286 Assembly
Language Programming. Berkeley: Osborne/McGraw-Hill, 1986.

Norton, Peter, and John Socha. Peter Norton's Assembly Language
Book for the IBM PC. New York: Brady Communications, 1986.

Rector, Russell, and George Alexy. The 8086 Book. Berkeley:
Osborne/McGraw-Hill, 1980.

Sargent III, Murray, and Richard L. Shoemaker. The IBM PC from
the Inside Out. Reading: Addison-Wesley, 1986.

Skinner, Thomas P. An Introduction to Assembly Language
Programming for the 8086 Family. New York: John Wiley & Sons,
Inc., 1985.

Turley, James L. Advanced 80386 Programming Techniques.
Berkeley: Osborne/McGraw-Hill, 1988.

Wilton, Richard. Programmer's Guide to PC and PS/2 Video Systems.
Redmond: Microsoft Press, 1987.

483

484 Turbo Assembler User's Guide

N

80287 coprocessor 453
protected mode 453

80387 coprocessor 453
new instructions 454

.8086 directive 410
80186 processor 411-417

BOUND instruction 413
ENTER instruction 412
extended 8086 instructions 415
INS instruction 414
LEAVE instruction 412
multiplying immediate values 416
OUTS instruction 414
pop A instruction 411
protected mode 33
PUSHA instruction 411
pushing immediate values 415
shifts/ rotates 416
Turbo C and 267

80188 processor 411
80286 processor 417

memory management 418
modes 418
protected mode 33, 418
registers 418
Turbo C and 267

80386 processor 419-453
32-bit instructions 442
48-bit type 424
6-byte variables 425
addressing modes 431
bit scanning 436
bit testing 435
conditional tests 439
converting values 437
DF directive 425
loading pointers 440
LOOP 442
mixing 16-bit/32-bit segments 446

Index

D E

MOV 441
multiple-word shifts 438
multiplication 445
new instructions 434
privileged instructions 419
record size 381
registers 425
segment directives 423
string instructions 444

8087 coprocessor 27, 75
Turbo C and 302

.186 directive 411

.286 directive 418

.386 directive 419

.387 directive 454
8086 processor

architecture 46
1/050
instruction set 67
math capabilities 141
memory 47
registers 51

8088 processor 43, 46, 409, 410
<> (angle brackets)

conditional directives and 221
EQU directive and 178

<> (angle brackets) operator
within macros 373

.386C directive 419

.286P directive 418

.386P directive 420
[] (square brackets)

direct addressing and 100
Ideal mode 461
MASM mode 461

16-bit integers 118
32-bit integers 118
64-bit integers 118
32-bit operations 142

x

485

10-byte integers 118
\ (line continuation character) 199
;; operator

within macros 373
1 option (Turbo C) 267
. (period) character

Ideal mode 459, 464
in directives 468

. (period) operator 376
& character

parameters and 368
= directive 26, 179
! operator

within macros 373
& operator

within macros 373
% sign

Ideal mode directives and 468
@-sign :39

loca11abels and 351
% sign operator

within macros 373
$ symbol 178

in labels 82
? symbol

in labels 82
uninitialized data and 129

A
/ a option 25, 35
ABStype 195
absolute value 195
accumulator 54, 181
AOC instruction 143
ADD instruction 142

effect on carry flag 245'
addition 142
addressing modes 93

80386431
AH register 54

division 146
AL register 54

division 146
I/O 140
multiplication 145
returning values 167

.ALPHA directive 394

486

ALPHA directive 25, 35
ampersand, parameters and 368
AND instruction 148

records and 382
TESfvs.384

angle brackets 178
conditional directives and 221

angle brackets operator
within macros 373

ANSI.SYS 74
architecture (computer) 41
ARG directive

Turbo C and 300
arithmetic operations 42, 141

signed numbers 136
arrays

initialization 125
asm (keyword) 258
.ASM files 1, 23
assembling

conditional 216
first program 12
inline

Turbo C 258-280
number of passes 31

assembly language
defined 44
Turbo C vs. 45

ASSUME directive 112, 190, 397
CS register and 397
group names and 396

AT combine type 390
at-sign 39
AX register 54

B

division 146, 147
I/O 140
multiplication 145
returning values 167

-B option (Turbo C) 264
/b option 24
/soption 25
backslash

include files and 199
base notation

.RADIX directive and 123

Turbo Assembler User's Guide

BASIC See Turbo Basic
Basic Input/Output System See BIOS
BCD values 118
BH register 55
%BIN directive 214
'BIN files

stack and 231
binary notation 119
BIOS 73

colors 73
OS segment 107
screen mode 73

bit fields 380
bits 116

manipulating 148
scanning (80386) 436
shifting 150
testing (80386) 435

BL register 55
Boolean algebra 148
BOUND instruction

80186413
Ideal mode 474

bounds checking 413
BP register 58

as memory pointer 97, 100
memory operands and 346

branching instructions 153
instruction pointer and 61

BSF instruction 436
BSR instruction 436
BT instruction 435
BTC instruction 435
BTR instruction 435
BTS instruction 435
buffers

copying 182
size of 24

BX register 55, 66
as memory pointer 96
division 147

BYrE PTR operator 134
BYrE type 130
bytes 117

BYTE PTR operator 134
CMPSB 188
converting to words 137, 241

Index

LOOSB instruction 181
MOVSB instruction 183
SCASB instruction 185
setting conditionally 439
STOSB instruction 182
string instructions 189

c
C SeeTurboC
/c option 26
CALL instruction

labels and 93
subroutines and 162

calls, forward references and 361
carry flag 53

32-bit arithmetic 143
unexpected effects 245

case sensitivity
assembler routines and 32
public labels and 193
TurboC291

CBW instruction 137
CDQ instruction 438
CGA68
CH register 55
character constants 123
characters

as operands 90
displaying 71
DOS functions 71
initializing strings 126

CL register 55
rotates 153
shifts 151

CLD instruction 181,239
CMP instruction

SCASvs.185
CMPS instruction 188

ES register and 346
repeating 239

CMPSB instruction 188
CMPSW instruction 188
code-checking 33
.CODE directive 104
code segment 65

multiple 404
Turbo C 282

487

Turbo Pascal 317
@codeSize symbol 110
colon, in labels 84
Color Graphics Adapter See CGA
colors, BIOS and 73
.COM files

stack and 231
combine types 207

AT 390
COMMON 391
MEMORY 391
PRIVATE 392
PUBLIC 391
STACK 391

command files
indirect 39

command-line syntax 22
help screen 27

comments 101
Ideal mode 475
inline assembly and 268

COMMON combine type 391
communications software 74
compact memory model 108
comparisons 185

repeating 239
compatibility with other assemblers 197,210,

221, 253, See also MASM compatibility
compiler options See individual listings
conditional assembly

directives 216
macros and 369

conditional error directives 223
conditional jumps See jumps, conditional
conditional tests (80386) 439
conditionals

assembler vs. other languages 234
in listing files 37

suppressing 211
vs Turbo C's 218

%CONDS directive 211
configuration files 39
.CONST directive 110, 402
constants

$178
as operands 90
character 123

488

expressions 91
restrictions on 90

conversion
bytes to words 137

problems 241
data sizes 136
words to doublewords 137

copying data See data, copying
counting

ex register and 55
%CREF directive 209
.CREF directive 210
CREF table 207
cross-reference

generating 23
in listing files 26, 207

cross-reference utility See TCREF utility, See
OBJXREF utility

CS override 33
CS register 65

ASSUME directive and 112,397
subroutines and 164

CSEG 317
%CTLS directive 212
@curseg symbol 110
CWO instruction 137
CWOE instruction 437
CX register 55

D

LOOP instructions and 442
loops and 159
repeated string instructions 237

/d option 26
--d switch 219
data

allocating 116-141
converting size 136
copying 132
forward references 360
initialization 125
moving 132-141

80386 437
string instructions 181

scanning 185, 436
size 133

BYTE PfR operator 134

Turbo Assembler User's Guide

string instructions 189
WORD PfR operator 134

swapping 139
types 116, 130

labels 195
multiple 387
TurboC292
UNKNOWN 131

uninitialized 129
.DATA? directive 110,402
.DATA directive 105

ES register and 107
data segment 66, 116-141

.CONST directive 110

.DATA? directive 110

.DATA directive 105

.FARDATA directive 110
multiple 404
Turbo Pascal 317

data structures See structures
@data symbol 105
date 74
??Date variable 179
DB directive 125
DD directive 123, 125
debugging 38
DEC instruction 144

effect on carry flag 245
decimal notation 119
decrementing, defined 144
%DEPfH directive 214
DF directive 125

80386 425
DGROUP396
DH register 56
DI register 57, 66

as memory pointer 97
string instructions 185

direct addressing 95
direction flag 53

incorrect setting 239
string instructions and 181

directives See also individual listings
conditional assembly 217
conditional error 223
data definition 125
defined 86

Index

Ideal mode 467
period in 468
processor control 468
processor-type 410
segments 79, 103, 112, 389-408
startup 29
string space 30
symbols 29

Disk Operating System See DOS
DISPLAY directive 216
displaying characters See characters, displaying
DIV instruction 146
divide-by-zero interrupt 147
division 145

AX register and 54
DX register and 56
REPf directive and 363
signed 146

SARand 151
unsigned 147

SHRand 151
DL register 56
dollar sign symbol 178

in labels 82
DOS 69

calling 70
character display 71
keyboard input 70
PSP 316
returning to 226
terminating programs 72
wildcards 22

DOSSEG directive 108, 393
Turbo C and 283

doublewords 118
converting to quad words 437
converting to words 137

DP directive 125
DQ directive 123, 125
DS register 66

ASSUME directive and 112
BIOSand 107
.DAT A directive and 105
memory operands and 345
string instructions and 240

DSEG317
DT directive 123

489

DUP operator 126
REPTvs.363
structures and 376

DW directive 125
DWORD type 130
DX register 56

E

division 147
I/O 140
multiplication 146

/eoption 27
EAX register 426
EBP register 426
EBX register 426
ECX register 426
EDI register 426
EDX register 426
ELSE directive 217
ELSEIF directives 222
EMUL directive 27
END directive 79, 86

start address and 87
ENDIF directive 217
ENDM directive 362
ENDP directive

Ideal mode 469
subroutines and 164

ENDS directive 112, 389, 402
Ideal mode 469

ENTER instruction (80186) 412
EQU directive 174

angle brackets and 178
Ideal vs. MASM mode 456, 461

equal (=) directive 26
equate substitutions 174
equates

text and numeric 461
.ERR1 directive 223
.ERR2 directive 223
.ERR directive 223
.ERRB directive 225
.ERRDEF directive 224
.ERRE directive 224
.ERRNB directive 225
.ERRNDEF directive 224
.ERRNZ directive 224

490

error messages 16
conditional 223
source file line display 37

errors, programming 225-256, See also pitfalls
ES register 66

ASSUME directive and 112
.DATA directive and 107
LES instruction and 440
string instructions and 240, 346

ESI register 426
ESP register 426
exclamation mark operator

within macros 373
.EXE files 1, 13
execution, END directive and 87
EXITM directive 371
expressions 91

Ideal mode 461
initializing variables 128
operators in 92

external symbols See symbols, external
extra segment 66

segment overrides and 348
EXTRN directive 194

F

Ideal vs. MASM mode 473
Turbo C and 293
Turbo Pascal and 321

far data 108, 110
Ideal mode 472

FAR PTR operator 135
forward jumps and 360

far subroutines 165
FAR type 130

FAR PTR operator and 135
.FARDATA? directive 110,404
@fardata? symbol 110
.FARDATAdirective 110,402
@fardata symbol 110
FCOS instruction 454
@FileName symbol 110
??Filename variable 179
files

.ASM23
configuration 39
include 198

Turbo Assembler User's Guide

indirect 39
listing 23, 200, See also listing files

flags register 52
80286 418
80386 428
problems 246
string instructions 187

floating-point
emulation 27
Ideal vs. MASM mode 460
instructions 2
numbers 118, 122
operations 75

format, code 81
forward references 358

structures 373
to macros 372

FPREM1 instruction 454
FS register 429

LES instruction and 440
FSEfPM instruction 453
FSIN instruction 454
FSINCOS instruction 454
FUCOM instruction 454
FUCOMP instruction 454
FUCOMPP instruction 454
FWORD type 130

80386 424

G
general-purpose registers 54, See also

individ uallistings
80386 426
AX 54
BP58
BX55
changing sign 147
CX55
0157
DX56
5156
SP59

GLOBAL directive 197
Ideal vs. MASM mode 473

graphics 74
GREP.COM8
GROUP directive 395

Index

Ideal vs. MASM mode 470
grouping segments 252,395

Ideal mode 470
GS register 429

LES instruction and 440

H
/hoption27
hard ware, direct access to 74
heap, Turbo Pascal 318
help screen, displaying 27
hexadecimal notation 62, 121
high-level languages

80186 and 412
linking to 109-110, 115, 253
returning values 166
segment groups 396
segment ordering 393

HIGH operator
Ideal mode 465

huge memory model 109

/i option 28
-i switch 199
iAPx86 processor family 46, 409
IBM PC

features 67
1/068
systems software 68

IBM XT See IBM PC
IDEAL directive 457
Ideal mode 1, 455-481

BOUND instruction 474
directives 467
equates and 461
expressions 461
external symbols 473
floating-point numbers 460
group overrides 253
listing controls 467
local labels 352
local symbols 475
macro comments 475
near/far data 472
operands 461

491

operators 464
segment fixups 474
segment groups 470
speed 457
structures/unions 460, 473
tokens 459

IOIV instruction 147
IFl directive 221
IF2 directive 221
IF directive 217
IFB directive 220
IFDIF directive 220
lFE directive 218
IPION directive 220
IFNB directive 220
IMUL instruction 146

80186 416
80386445
problems 244

IN instruction 56, 140
INC instruction 144

effect on carry flag 245
%INCL directive 212
INCLUDE directive 28, 198

Ideal mode 469
include files 198

GLOBAL directive and 197
setting path 28
suppressing in listing files 212

incrementing, defined 144
indirect addressing 95
indirect command files 39
initialization

arrays 125
character strings 126
data 125
expressions and 128
labels and 128
record variables 381
structures 379

inline assembly
Turbo C 258-280

format 268
limitations 274

input/output See I/O
INS instruction (80186) 414
INST ALL.EXE 8

492

installation 8
instruction mnemonics See mnemonics
instruction pointer 61, 65

80386 428
instruction prefixes 184
instruction set See also individual listings

8086 67
INT instruction

character display and 71
keyboard input and 71

integers
32-bit 118
64-bit 118
lO-byte 118
long 118
short 118

interrupt flag 53
interrupt handler

preserving registers 251
interrupts

0147
divide-by-zero 147

I/O 140
8086 50
80186 414
AL register 140
AX register 140
OX regist~r 56, 140
formatted 71
IBM PC 68
keyboard 70
operations 42

IP register 61, 65
80386 428
subroutines and 164

IRETD instruction
80386 444

IRP instruction
repeat blocks and 364

IRPC instruction
repeat blocks and 364

J
/j option 29
JA instruction 157
JAE instruction 157
JB instruction 157

Turbo Assembler User's Guide

JBE instruction 157
JC instruction 157
JCXZ instruction 160, 238

80386 443
JE instruction 156, 157
JECXZ instruction

80386 443
jEMUL option 27
JG instruction 157
JGE instruction 157.
JL instruction 157
JLE instruction 157
JMP instruction 154

labels and 93
JNA instruction 157
JNAE instruction 157
JNB instruction 157
JNBE instruction 157
JNC instruction 157
JNE instruction 157
JNG instruction 157
JNGE instruction 157
JNL instruction 157
JNLE instruction 157
JNO instruction 158
JNP instruction 157
JNS instruction 157
JNZ instruction 157

80386 443
JO instruction 157
JP instruction 157
JPE instruction 157
JS instruction 157
jumps

80386 428, 443
conditional 156

local labels and 352
problems with 234
size of 353

FARPTRand 155
forward referenced 358
limitations in Turbo C 274
short 154
unconditional 154

JUMPS directive 354
JZ instruction 157, 160

Index

K
keyboard input, DOS functions 70
keywords 31
/kh option 29
/ks option 30

L
$1 directive (Turbo Pascal) 319
/1 option 26, 30, 33
/la option 30
LABEL directive 130,351
labels

= directive and 179
as operators 92
conditional jumps and 352
conflicting definitions 219
data types 195
EQU directive and 174
equating to values/strings 174
external 194

Turbo C and 290
EXTRN directive and 194
for memory locations 130
Ideal mode 352
in macros 371
initializing variables 128
listing 205
loca1349
MASM mode 352
modules and 193-197, 349
PUBLIC directive and 193
redefining 179
requirements 82
undefined 224

language elements 81
large memory model 108
LARGE operator

80386 and 421
LEA instruction

vs. MOV OFFSET 255
LEAVE instruction (80186) 412
LES instruction 440
LFCOND directive 37
line continuation character 199
linking See also TLINK utility

first program 13

493

high-Ievellanguages 115
returning values 166

Turbo C 253, 294, 308
%LINUM directive 214
%LIST directive 211
listing files 23, 200-215

control directives 210
Ideal mode 467
MASM mode 468

%CREF directive 209
cross-reference information 26, 207
false conditionals in 37
format 213
generating 30
high-level code in 30
%NOCREF directive 209
numbers in 199
page size 214
suppressing lines 210
symbol tables

suppressing 33, 205
titles 213

Ideal mode 469
LOCAL directive

in macros 371
Turbo C and 298

local symbols
Ideal vs. MASM mode 475

LOCALS directive 352
LODS instruction 181

multiple segments and 408
LODSB instruction 181

segment override and 347
LODSW instruction 181
logical operations 42, 148
long integers 118
LOOP instruction 56, 159

80386 442
effect on carry flag 245
problems 238

LooPD instruction (80386) 442
LooPDE instruction (80386) 443
LooPDNE instruction (80386) 443
LooPE·instruction 160

80386 442
looping 158

ex register and 55

494

LooPNE instruction 160
80386 442

LooPZ instruction 160
LOW operator

Ideal mode 465
.LST files 23, 200

M
1m option 31
machine language, defined 44
MACRO directive 372
macros 365

comments
Ideal mode 475

conditional assembly directives 369
conditional error directives 225
expansion

EXITM directive 371
suppressing listing 212

forward referenced 372
labels in 371
nested segments 393
operators within 372
subroutines vs. 366

%MACS directive 212
MAKE.EXE 7
MASK operator 384
MASM compatibility 1,82,210,215,253

equates 461
expressions 461
Ideal mode vs. 455-481
listing control directives 468
local labels 352
OFFSET operator bug 397
segment groups 397, 470
segment ordering 108
structures 373
Turbo C and 265

MASM directive 457
MASM mode See MASM compatibility

. math, 8086 141
math coprocessor See numeric coprocessor
medium memory model 108
memory

addressing
80386 431
large blocks 64

Turbo Assembler User's Guide

modes 93
square brackets and 100

blocks of 126, 184
comparing blocks 185
defining variables 125
direct addressing 95
filling blocks of 184
indirect addressing 95
management (80286) 418
mapping 51
models

FAR type and 130
.MODEL directive and 108
NEAR type and 130
PROC type and 131
segments and 400
TurboC282
Turbo Pascal 315

naming locations 130
operands 97

BP ~egister and 346
DS register and 345
ES register and 346

pointers 96
BP register and 58
BX register and 55
CS register and 65
DI register and 57
DS register and 66
ES register and 66
51 register and 56
SP register and 59
55 register and 66

reserving 129
scanning 185
segment names 64
segmentation 61
string instructions and 57, 58
variables

problems 246
MEMORY combine type 391
messages

displaying during assembly 215
suppressing 35

Microsoft Assembler See MASM compatibility
mixed-model programming

segment directives and 115

Index

Iml option 31
-ml switch 193
MMACROS.ARC 8
'mnemonics, defined 85
.MODEL directive 108, 402
modular programming 162, 190

END directive and 87
EXTRN directive 194
.FARDATA segment and 403
GLOBAL directive 197
loca1labels 349
PUBLIC directive 193

MOV instruction 132-139
80386 441
addressing modes and 98
forward references 360
string instructions vs. 181
vs. LEA 255

moving data See data, moving
MOVS instruction 183

ES register and 346
MOVSB instruction 183

80386 444
MOVSD instruction

80386 444
MOVSW instruction 183
MOVSX instruction 437
MOVZX instruction 437
MS-DOS See DOS
.MSFLOAT directive 122
Imu option 32
MUL instruction 145

problems 244
multiple prefixes 242
multiplication 145

80386 445
AX register and 54
DX register and 56
pitfalls 244
REPf directive and 363
SHLand 150
signed 146
unsigned 145

I mV# option 32
I mx option 32
-ml switch 193

495

N
/noption 33
-n switch 205
names 82
near data 108

Ideal mode 472
NEAR PfR operator 135
near subroutines 165
NEAR type 130

NEARPTRoperatorand 135
NEG instruction 147
%NEWPAGE directive 213
%NOCONDS directive 211
.NOCREF directive 210
%NOCREF directive 209
%NOCTLS directive 212
NOEMUL directive 27
%NOINCL directive 212
NO]UMPS directive 357
%NOLISf directive 211
NOLOCALS directive 352
%NOMACS directive 212
%NOSYMS directive 213
NOT instruction 149
NOTHING directive 398
NOTHING keyword 113
%NOTRUNC directive 214
%NOUREF directive 213
NUL device 24
numbers

in labels 82, 174
include files and 199
signed 135
unsigned 135

numeric coprocessor 27, 453

o
.OB] files 1, 13
.OB] files

suppressing 34
object See object files
object files

debugging information in 38
line number information in 38
segment ordering 25, 35

496

object modules
defined 12

OB]XREF.COM 8
octal notation 120
OFFSET operator

MASM vs. Ideal mode 470
problems 247, 253

offsets
$ symbol and 178

operands
character 90
constant 90
defined 88
Ideal mode 461
label 92
limitations in Turbo C 274
memory 97

BP register and 346
ES register and 346

order of 230
register 89
source/ destination 88
string instructions with 189

operators See also individual listings
expressions and 92
Ideal vs. MASM mode 464
macros 372

optimization, Turbo Pascal 325
options, command line See command-line

options
OR instruction 149
OS/2418
OUT instruction 56, 140
%OUT directive 216
OUTS instruction (80186) 414
overflow flag 53

conditional jumps and 157

p
/p option 33
%PAGESIZE directive 214
parameter passing

registers 166
stack 166
testing 220
TurboC 295
Turbo Pascal 325

Turbo Assembler User's Guide

parameters
formal 367
macros and 367

parity flag
conditional jumps and 157

parsing order
Ideal mode 469

Pascal See Turbo Pascal
PC-DOS See DOS
%PCNT directive 214
percent sign

Ideal mode 468
percent sign operator

within macros 373
period

in directives 468
in labels 82

Ideal mode 459
in structures

Ideal mode 464
operator 376

pitfalls 225-256
carry flag 245
conditional jumps 234
converting bytes to words 241
direction flag 239
flags 246
interrupt handler 251
linking to Turbo C 253
LOOP instruction 238
memory variables 246
multiple prefixes 242
multiplication 244
OFFSET operator 247
REP prefix 239
REP string overrun 235
returns 228
reversing operands 230
segment groups 252
segment wraparound 249
stack allocation 230
string comparisons 239
string instruction operands 242
string instructions 235, 245
string segment defaults 240
subroutines 227, 228, 231
termination 226

Index

wiping out registers 231
zeroCX237

plus operator 376
plus sign 23
pointers

defined 44
I/O

OX register 140
OX register and 56

memory 55, 96
BP register and 58
CS register and 65
01 register and 57
OS register and 66
ES register and 66
51 register and 56
SP register and 59
55 register and 66

segment:offset 118
segmentation and 61
to structures

Ideal mode 464
POP instruction 59, 139
POPA instruction (80186) 411
POP AO instruction

80386 445
POPFD instruction

80386 445
%POPLCTL directive 215
#pragma directive 264
predefined symbols See symbols
prefixes 184

local label 353
multiple 242
segment override 345

printing, first program 17
PRIV ATE combine type 392
PROC directive 131,351

high-level languages and 109
subroutines and 164, 228

processor, defined 43
Program Segment Prefix (PSP) 316
program structure 78-172
program termination 72, 79, 86

problems with 226
Prolog See Turbo Prolog
protected mode 33

497

80286 418
80287453

protected mode instructions
80286 418

PSP 316
PTR operator

Ideal mode 466
PUBLIC combine type 391
PUBLIC directive 193

Ideal mode 473
Turbo Pascal and 320

public functions
Turbo C and 290

public labels 193-197
Ideal mode 473

PUSH instruction 59, 139
80186 415

PUSHA instruction (80186) 411
PUSHAD instruction

80386445
PUSHFD instruction

80386445
%PUSHLCTL directive 215
PWORDtype 130

Q
Iq option 34
quad words 118

converting to doublewords 437
question mark

in labels 82
uninitialized data and 129

QWORD type 130

R
Ir option 27, 34
.RADIX directive 123
RCL instruction 153
RCR instruction 152
README.COM 7
real mode (80286) 418
real numbers 122
RECORD directive 380
records 381
recursion 163

498

registers See also individual listings
8086 51
80386 425
32-bit 426
as operands 89
incrementing I decrementing 144
parameter passing 166
preserving 167, 231
preserving (Turbo C) 277, 302
setting to zero 149
Turbo Pascal 318

REP prefix
problems 239
segment override and 348
string overruns 235

REPE instruction 187
repeating instructions 184, 362
REPNE instruction 187
REPNZ instruction 187
REPT directive 362

DUPvs.363
REPZ instruction 187
reserved words 80
RET instruction

PROC directive and 228
subroutines and 162,227

ROL instruction 152
ROR instruction 151
rotates 151

5
-5 option (Turbo C) 262
IS option 394
I s option 25, 35
SAL instruction 150
SAR instruction 151
SBB instruction 143
SCAS instruction 185

ES register and 346
repeating 239

SCASB instruction 185
screen mode

ANSI.SYS 74
BIOS and 73

SEG operator
Turbo Pascal and 324

SEGMENT directive 112, 389

Turbo Assembler User's Guide

segment:offset pointers 118, 404
segments

80386 420, 446
accessing multiple 349
alignment

80386 423
types 206, 390

alphabetical order 394
code 65, 104, 404

Turbo Pascal 317
combine types 207, 390
current 112
data 66, 105, 110, 404
directives 79, 103, 389-408

80386 423
high-level languages and 115
simplified 104-110, 399, 400

symbols and 110
standard 111-116
Turbo C and 283

end of 112
extra 66
fixups

Ideal vs. MASM mode 474
groups 395

Ideal mode and 456, 470
MASM mode 470
problems 252
Turbo C and 253

listing 206
multiple 404
names 64, 392
nesting 392
ordering 25, 108, 392, 393
override

prefixes 345
registers 61, See also individ uallistings

80386 429
CS65
DS 66, 105
ES 66, 107
FS429
GS429
memory pointers to 56, 57
moving data between 138
SS66

sequential order 25, 35, 394

Index

stack 66
start of 112
Turbo C and 282
USE16420
USE32420
wraparound problem 249

semicolon 22
inline assembly and 268

semicolon operator
within macros 373

SEQ directive 25
.SEQ directive 394
serial communications 74
SET instruction 440
SETNC instruction 440
SETS instruction 440
SFCONri directive 37
shifts 150

multiple word (80386) 438
SHL instrl:lction 150

80186 416
SHLD instruction 438
short integers 118
SHORT operator 154

forward jumps and 360
SHR instruction 151

80186 416
records and 382

SHRD instruction 439
SI register 56, 66

as memory pointer 97
string instructions 185

sign, changing 147
sign flag

conditional jumps and 157
signed conversion instructions 437
signed division 146

SARand 151
signed multiplication 146
signed numbers 135
simplified segment directives 104-110

80386 423
ASSUME and 399, 400

size of data See data, size
SIZE operator

Ideal mode 466, 473

499

slash
include files and 199

small memory model 108
SMALL operator

80386 and 421
source files

include files 28
symbols 26

SP register 59, 66
speaker 75
square brackets 100

Ideal mode 461
MASM mode 461

SS register
LES instruction and 440
memory operands and 346
memory pointers to 58

stack
80186 instructions 412
allocating 230
combine types and 391
MOV instruction and 139
parameter passing 166
pointer 59, 66
segment 66
segment override and 348
size of 104
Turbo Pascal 317

STACK combine type 391
.ST ACK directive 104, 230
stack segment register (SS)

memory pointers to 58
standard segment directives 111-116
start address

END directive and 87
statistics, displaying 24
STD instruction 239
STOS instruction 182

ES register and 346
multiple segments and 408

STOSB instruction 58, 182
STOSW instruction 182

pitfalls 241
string instructions 180

80386 444
BP register 58
bytes vs. words 189

500

CMPS 188
data movement 181
decrementing 239
DI register 57
direction flag 239
effect on registers 245
ES register 107
extra segment 66, 348
flags 187
incrementing 239
LODS 181
mixing with non-string 349
MOVS 183
multiple prefixes 242
operands to 242
pitfalls 235
REP prefix 184, 187
repeating 184, 187, 235
SCAS 185
SI register 57
stos 182

strings .
assigning to hll,Jels 174
comparing 239
displaying 216
initialization 126
quoted (Ideal mode) 469

STRUC directive 374
structures 373-389

DUP operator and 376
forward references 373
Ideal mode 380, 460, 473
initialization 379
MASM mode 373
period operator 376
Turbo C 269, 303

SUB instruction 142
subroutines 161

far 165
local labels 349
macros vs. 366
near 165
preserving registers 231
RET instruction 227

subtraction 142
%SUBTTL directive 213

Turbo Assembler User's Guide

symbol tables
listing files 205

cross-referencing 26
suppressing 33,205,213

symbols
case-sensitive 31, 32
@CodeSize 110
@curseg 110
@data 105
defining 26
external 32

Ideal mode 473
Turbo C and 293

@fardata 110
@fardata? 110
@FileName 110
Ideal mode 459
length of 32
local

Ideal mode 475
public 32
restrictions 26
unreferenced 213
uppercase 32

%SYMS directive 213
.SYMTYPE operator

Ideal mode 465
syntax, command-line See command-line

syntax
system timers 74
systems software

IBM PC 68

T
/t option 35
T ASM.CFG files 39
TASM.EXE 7
TBYTE type 130
TCREF 1
TCREF.EXE 7
termination 72

DOS functions 72
END directive and 79, 86
problems with 226

TEST
ANDvs.384

%TEXT directive 214

Index

text strings See strings
TFCOND directive 37
time 74
??Time variable 179
timers 74
tiny memory model 108
%TITLE directive 213

Ideal mode 469
TLIB.EXE 7
TLINK 1, 13, 294, 308

segment ordering 394
Turbo C version 259

TLINK.EXE 7
tokens

Ideal mode 459
TOUCH.COM8
trap flag 53
%TRUNC directive 214
Turbo C 257-313

80186/80286 processor 267
80186 and 412
-1 option 267
ARG directive and 300
assembler modules in 27
assembly language vs 45
-B option 264
case sensitivity 32, 291
code segment 282
data types 292
external symbols 293
floating-point emulation 27
inline assembly 258-280

comments 268
format 268
limitations 274
semicolon 268

jumps 274
linking to 253, 308
LOCAL directive and 298
MASMand 265
memory models 282
operand limitations 274
parameter passing 295
Pascal calling conventions 307
path-naming conventions 199
period operator 376
#pragma directive 264

501

public functions and 290
register preservation 277, 302
returning values 302
-S option 262
segment directives and 283
structures 269, 303

Turbo Debugger 1, 38
Turbo Librarian See TLIB utility
Turbo Link See TLINK utility
Turbo Pascal 315-344

allocating local data 332
data segment 317
EXTRN directive 321
functions results 331
heap 318
making assembler information available to
320
making information available to assembler
321
memory map 315
memory models 315
near / far calls 319
optimization 325
parameter passing 325
PUBLIC directive 320
register usage 318
returning values 331
segment fixups 324
stack 317

tutorial 9-75
two-pass assemblers

compatibility with 223
two's complement arithmetic 136
type-checking

Ideal mode 456
type specifiers 130
.TYPE operator

Ideal mode 465
typefaces in this manual 3
types See data, types

u
unconditional jumps See jumps, unconditional
underscore

Turbo C and 290
uninitialized data 129
UNION directive 387

502

unions
Ideal vs. MASM mode 460

UNKNOWN type 131
unsigned division 147

SHRand 151
unsigned multiplication 145
unsigned numbers 135
%UREF directive 213
USE16 segment 420, 446
USE32 segment 420, 446

V
/v option 24, 35
variables

changing sign 147
converting to strings 72
incrementing/decrementing 144
inline assembly and 276
memory 125
record 381
uninitialized 129

W
/woption 36
warning messages 16

"mild" 36
generating 36

WIDTH operator 383
wildcards See DOS wildcards
WORD PTR operator 134
WORD type 130
words 117

X

CMPSWand 188
converting to bytes 137
converting to doublewords 137
LODSWand 181
MOVSWand 183
SCASW and 187
srOSWand 182
string instructions 189
WORD PTR operator 134

/xoption 37
.xRF files 23
XCHG instruction 139

Turbo Assembler User's Guide

XLAT instruction
operands to 243

XOR instruction 149

Z
/z option 37

Index

/ zd option 38
zero ex value

string instructions and 237
zero flag 53

conditional jumps and 156
loops and 160

/ zi option 38

503

T RB
A E BLERO

BORLAND

1800 GREEN HILLS ROAO, P 0, BOX 660001 , scons VALLEY, CA 95067-0001 , (408)438-5300 • PART. 15MN-ASOO2-20 • BOR 1491
UNIT 8 PAVlUONS, RUSCOMBE BUSINES6 PARK, TWYfORD, BERKSHIRE RG 10 9NN, ENGLAND
43 AVENUE DE L'EUROPE - BP 6, 78141 VEUlY VlLLACOUBLAY CEDEX fRANCE

