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N T R 

Introduction 

o D u c T o N 

Welcome to Borland's Turbo Assembler, a multi-pass assembler 
with forward-reference resolution, assembly speeds of up to 
48,000 lines per minute (on an IBM PS/2 model 60), MASM 
compatibility, and an optional Ideal mode extended syntax. 
Whether you're a novice or an experienced programmer, you'll 
appreciate these features along with a number of others we've 
provided to make programming in assembly language easier. 
We'll mention just a few of the highlights here and describe them 
in detailla ter in the book: 

• full 80386 support 
• improved syntax type-checking 
• simplified segmentation directives 

• improved listing controls 

• PUSH, POP extensions 
• extended CALL statement with arguments and optional 

language parameter 

• local labels 
!!! local stack symbols and calling arguments in procedures 

• structures and unions 

• nested directives 
• Quirks mode to emulate MASM 

• full source debugging output for Turbo Debugger 

• built-in cross-reference utility (TCREF) 

• configura tion and command files 

Turbo Assembler is a powerful command-line assembler that 
takes your source (.ASM) files and produces object (.OBJ) 
modules. You then use TLINK.EXE, Borland's high-speed linker 
program, to link your object modules and create executable (.EXE) 
files. 



Turbo Assembler is set up to work with the 80x86 and 80x87 
processor families. (For more information about the instruction 
sets of the 8Ox86/80x87 families, consult the Intel data books.) 

Hardware and software requirements 

Turbo Assembler runs on the IBM PC family of computers, 
including the XT, AT, and PS/2, along with all true compatibles. 
Turbo Assembler requires MS-DOS 2.0 or later, and at least 256K 
of memory. 

Turbo Assembler generates instructions for the 8086, 80186, 80286, 
and 80386 processors. It also generates floating-point instructions 
for the 8087, 80287, and 80387 numeric coprocessors. 

About the manuals 

2 

Turbo Assembler comes with two books and a quick-reference 
guide: Turbo Assembler User's Guide (this book), Turbo Assembler 
Reference Guide, and Turbo Assembler Quick-Reference Guide. The 
User's Guide provides basic instructions for using Turbo 
Assembler and a thorough examination of assembler 
programming. The Reference Guide describes the operators, 
predefined symbols, and directives Turbo Assembler uses. The 
Quick Reference is a handy guide to processor and coprocessor 
instructions. 

Here's a more detailed look at what the User's Guide contains. 

The User's Guide Chapter 1: Installing Turbo Assembler tells you about the files on 
your distribution disks and what you need to do to install Turbo 
Assembler on your system. 

Chapter 2: Getting started In Turbo Assembler provides you with 
an introduction to programming in assembly language, and a few 
sample programs to make you comfortable using the command
line switches. 

Chapter 3: Command-line reference details all the command-line 
options, plus tells you about using the configuration file and 
command files. 

Turbo Assembler User's Guide 



Chapter 4: The nature of assembly language leads you through a 
discussion of computers in general and the 8088 processor in 
particular. 

Chapter 5: The elements of an assembler program describes the 
basic components of assembler, with some good solid information 
about directives, instructions, accessing memory, segments, and 
more. 

Chapter 6: More about programming In Turbo Assembler goes one 
step further than Chapter 5, discussing some advanced aspects of 
Turbo Assembler-more about directives, string instructions, and 
so on. This chapter also covers some common pitfalls you may 
encounter as an assembly progralnmer. 

Chapter 7: Interfacing Turbo Assembler with Turbo C describes 
how to use Turbo C, a high-level language, with assembly 
language. We detail how to link assembler modules to Turbo C 
and how to call Turbo Assembler functions from Turbo C. 

Chapter 8: Interfacing Turbo Assembler with Turbo Pascal tells 
you how to interface your assembler code with your Turbo Pascal 
code; sample programs are also provided. 

Chapter 9: Advanced programming In Turbo Assembler provides 
you with more details about everything we've touched on in 
earlier chapters, such as segment override prefixes, macros, 
segment directives, and so on. 

Chapter 10: The 80386 and other processors covers programming 
with the 80386. 

Chapter 11: Turbo Assembler Ideal mode tells you all about Ideal 
mode and why you'll want to use it. 

References lists several useful books about assembly 
programming. 

Notational conventions 

Introduction 

When we talk about IBM PCs or compatibles, we're referring to 
any computer that uses the 8088, 8086, 80186, 80286, and 80386 
chips (all of these chips are commonly referred to as 80x86). When 
discussing PC-OOS, DOS, or MS-DOS, we're referring to version 
2.0 or greater of the operating system. 

3 



All typefaces were produced by Borland's Sprint: The Professional 
Word Processor, output on a PostScript printer. The different 
typefaces displayed are used for the following purposes: 

Italics In text, italics represent labels, placeholders, 
variables, and arrays. In syntax expressions, 
placeholders are set in italics to indicate that they 
are user-defined. 

Boldface Boldface is used in text for directives, instructions, 
symbols, and operators, as well as for command
line options. 

CAPITALS In text, capital letters are used to represent 
instructions, directives, registers, and operators. 

Monospace Monospace type is used to display any sample 
code, text or code that appears on your screen, and 
any text that you must actually type to assemble, 
link, and run a program. 

Keycaps In text, keycaps are used to indicate a key on your 
keyboard. It is often used when describing a key 
you must press to perform a particular function; 
for example, "Press Enter after typing your program 
name at the prompt." 

How to contact Borland 
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If, after reading this manual and using Turbo Assembler, you 
would like to contact Borland with comments, questions, or 
suggestions, we suggest the following procedures: 

• The best way is to log on to Borland's forum on CompuServe: 
Type GO BPROGB at the main CompuServe menu and follow the 
menus to Turbo Assembler. Leave your questions or comments 
here for the support staff to process . 

• If you prefer, write a letter detailing your problem and send it 
to 

Technical Support Department 
Borland International 

P.O. Box 660001 
1700 Green Hills Drive 

Scotts Valley, CA 95066 U.S.A. 
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• You can also telephone our Technical Support department at 
(408) 438-5300. To help us handle your problem as quickly as 
possible, have these items handy before you call: 

• product name and version number 
• product serial number 
• computer make and model number 
• operating system and version number 

If you're not familiar with Borland's No-Nonsense License 
statement, now's the time to read the agreement at the front of this 
manual and mail in your completed product registration card. 

5 



6 Turbo Assembler User's Guide 



c H 

Files on disk 

A p T E R 

1 

Installing Turbo Assembler 

Before we get you up to speed on programming in assembler, 
you'll need to get one thing out of the way. Take the Turbo 
Assembler disks and make copies (via DOS) of each one to create 
your "working" copies. Once you've done that, put the original 
disks away. (There's a fee to replace disks that you damage, so 
only use the originals to make backups and work copies.) 

If you are going to use Turbo Assembler as a replacement for 
MASM, read Appendix B in the Reference Manual to see in which 
areas Turbo Assembler behaves differently from MASM. 

Note: Be sure to read the README file before working with 
Turbo Assembler. This file contains the latest information about 
the program, as well as corrections and/or additions to the 
manuals. 

• TASM.EXE: Turbo Assembler 

• TLINK.EXE: Turbo Linker 
• MAKE.EXE: Command-line MAKE utility 

• TLIB.EXE: Turbo Librarian 
• README.COM: Program to display README file 
• README: Any last minute information about the software and 

documentation 
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• TCREF.EXE: A source file cross-reference utility 

• OBJXREF.COM: Object file cross-reference utility 

• GREP.COM: Grep utility 

• TOUCH.COM: A file-update utility 

• INSTALL.EXE: Installation program 

• MMACROS.ARC: An archived file of MASM mode macros 

Installing Turbo Assembler 

8 

The INSTALL disk contains a program called INST ALL.EXE that 
will assist you with the installation of Turbo Assembler 1.0. There 
are two options for installation: 

1. Hard Disk Users: This option allows you to pick the 
subdirectories where the files will be loaded. 

2. Floppy Disk Users: This option will install the files necessary 
to use Turbo Assembler on a two-drive system. Be sure to 
have four fonnatted disks ready before you start. 

To start the installation, change your current drive to the one that 
has the INSTALL program on it and type INSTALL. You will be 
given instructions for each prompt in a box at the bottom of the 
screen. For example, if you will be installing from drive A, type 

INSTALL 

Before you install Turbo Assembler, be sure to read the README 
file to get further infonnation about this release. 

Note: If you will be running INSTALL on a laptop or any other 
system that uses an LCD display, you should set your system to 
black-and-white mode before running INSTALL. You can do this 
from DOS with the following command line: 

mode bw80 

You can also force INSTALL to come up in black-and-white mode 
by using the Ib switch: 

INSTALL /b 
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Getting staried with Turbo Assembler 

If you've never programmed in assembly language before, this is 
the place to begin. You might have heard that assembly language 
programming is a black art suited only to hackers and wizards. 
Don't believe it! Assembly language is nothing more than a 
human form of the language of the computer itself and, as you'd 
expect, the computer's own language is highly logical. As you 
might also expect, assembly language is very powerful-in fact, 
assembly language is the only way to tap the full power of the 
Intel80x86 family, the processors at the heart of the IBM PC 
family and compatibles. 

You can write whole programs in nothing but assembly language 
or you can, if you want, mix assembly language into programs 
written in Turbo C, Turbo Pascal, Turbo Prolog, Turbo Basic, and 
other languages. Either way, with assembly language, you can 
write small and blindingly fast programs. As important as speed 
is the assembly language code's ability to control every aspect of 
your computer's operation, down to the last tick of the system 
dock. 

In this chapter, we'll introduce you to assembly language and 
explore the unique qualities of assembly language programming. 
You'll enter and run several working assembly language 
programs, both to get a feel for the language and to get used to 
working with the assembler. 

Chapter 5, "The elements of an assembler program," picks up 
where this chapter leaves off, covering the structure of ~n 
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assembly language program and fundamental program elements 
and summing up everything you've learned with a full-fledged 
example program. 

Chapter 6, "More about programming in Turbo Assembler," 
continues to explore assembly language programming, and 
Chapter 9 , "Advanced programming in Turbo Assembler," 
progresses to memory models, macros, and other advanced 
topics. 

Naturally, we can't make you expert assembly language 
programmers in the course of a few chapters; we're simply 
introducing you to assembly language and getting you started on 
the road to writing your own programs. We strongly suggest that 
you get one of the many excellent books devoted entirely to 
assembly language programming and PC architecture (see the 
references at the end of this book). In addition, you may find 
IBM's DOS Technical Reference, BIOS Interface Technical Reference, 
and Personal Computer XT Technical Reference manuals to be useful 
reference material; these manuals document the assembly 
language programming interface to the systems software and 
hardware of IBM's personal computers. 

Before you read further, you might want to read Chapter 3, 
"Command-line reference," to familiarize yourself with the 
command-line options. You should also install Turbo Assembler 
(make working copies of your Turbo Assembler disks or copy the 
files from your Turbo Assembler disks onto your hard disk) as 
described in Chapter 1, ''Installing Turbo Assembler," if you 
haven't already done so. 

One final point: Assembly language is a complex topic, and there 
are many things you will need to know in order to write even a 
relatively simple assembly language program. Sometimes we'll 
have to use features in our examples that we haven't discussed 
yet, simply because we have to start somewhere. Bear with us; we'll 
explain everything in due course. If, at any time, you're curious 
about a specific feature, just look in Chapter 3, "Directives," in the 
Reference Guide. 

With that out of the way, and with Chapter 3 of the second 
volume close at hand, it's time to create your first assembly 
language program. 

You can follow this tutorial step by step, typing in all the code 
examples as you go, or you can unpack the example file on disk 
(when you install Turbo Assembler) and have all the programs at 
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your fingertips. (Whatever your decision, the file names are 
provided at the beginning of each example for your convenience. 

Writing your first Turbo Assembler program 

Assembling your 
first program 

In the world of programming, the first program is traditionally a 
program that displays the message, "Hello, world" and that's as 
good a place as any for us to start. 

Get into your text editor of choice (one that outputs ASCII files), 
and type in the following lines that make up the program 
HELLO.ASM: 

.MODEL small 

.STACK 100h 
• DATA 

HelloMessage DB 'Hello, world' ,13,10,'$' 
.CODE 
mov ax,@data 
mov ds,ax iset OS to point to the data segment 
mov ah,9 iDOS print string function 
mov dx,OFFSET HelloMessage ipoint to "Hello, world" 
int 21h idisplay "Hello, world" 
mov ah,4ch iDOS terminate program function 
int 21h iterminate the program 
END 

As soon as you've entered HELLO.ASM, save it to disk. 

If you're familiar with C or Pascal, you might be thinking that the 
assembler version of "Hello, world" seems a bit long. Well, yes, 
assembler programs do tend to be long because each assembler 
instruction by itself does less than a C or Pascal instruction. On 
the other hand, you've got complete freedom in combining those 
assembler instructions in any way you want. That means that, 
unlike C and Pascal, assembler lets you program the computer to 
do anything it's capable of-and that's often worth typing a few 
extra lines. 

Now that you've saved HELLO.ASM, you'll want to run it. Before 
you can run the program, though, you'll have to convert it into an 
executable (able to be run or executed) form. This requires two 
additional steps, assembling and linking, as shown in Figure 2.1, 
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Figure 2.1 
The edit, assemble, link, and 

run cycle 

12 

which depicts the complete edit, assemble, link, and run program 
development cycle. 

Create a New Program 

Assembler Source File 
HELLO.ASM 

Assemble 

! 
Object File 

HELLO.OBJ 

I 
Link 

l 
Executable File 

HELLO.EXE 

I 
Run 

! 
(If changes are needed) ~ 

The assembly step turns your source code into an intermediate 
form called an object module, and the linking step combines one or 
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Linking your first 
program 

more object modules into an executable program. You can do 
your assembling and linking from the command line. 

To assemble HELLO.ASM, type 

TASM hello 

Unless you specify another file name, HELLO.ASM will be 
assembled to HELLO.OBJ. (Note that you don't need to type in 
the file extension name; Turbo Assembler assumes .ASM in this 
case.) This is what you'll see onscreen: 

Turbo Assembler Version 2.0 Copyright (c) 1988, 1990 by Borland 
International, Inc. 

Assembling file: HELLO.ASM 
Error messages: None 
Warning messages: None 
Passes: 1 
Remaining memory: 266K 

You won't receive any warnings or errors if you typed 
HELLO.ASM exactly as shown. If you get warnings or errors, 
they'll appear onscreen, along with the line numbers to indicate 
where they occurred. If you get errors, check your code and make 
sure it's precisely the same as the code we've shown you, then 
assemble the program again. 

After you've successfully assembled HELLO.ASM, you're only 
one step away from running your first assembler program. Once 
you've linked the just-assembled object code into an executable 
form, you can run the program. 

To link the program, you'll use TLINK, the linker accompanying 
Turbo Assembler. At the command line, type 

TLINK hello 

Again, there's no need to enter the extension name; TLINK 
assumes it's .OBJ. When linking completes (again, after a few 
seconds at most), the linker automatically gives the .EXE file the 
same name as your object file, unless you've specified otherwise. 
When linking is successful, this message appears onscreen: 

Turbo Link Version 3.0 Copyright (c) 1987, 1990 by Borland 
International, Inc. 
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Running your first 

Errors can occur during the linking process, although that's 
unlikely with this example program. If you do receive any link 
errors (they'll appear onscreen), modify your code to exactly 
rna tch the code shown here, then assemble and link again. 

program Now you're ready to run your program. Type hello at the DOS 
prompt. The message 

Hello, world 

will be displayed onscreen. And that's all there is to it-you've 
just created and run your first Turbo Assembler program! 

What happened? 

14 

Now that you've gotten HELLO.ASM up and running, let's go 
back and figure out exactly what happened along the path from 
entering text to running the program. 

When you first entered the assembler source code, the text was 
stored by your text editor in memory. If the computer had been 
turned off at this point, for whatever reason, the source code 
would have been lost; consequently, we suggest you save your 
source code early and often in order to avert possible tragedy. 
When you saved the source code to disk, a permanent copy of the 
text was stored in the file HELLO.ASM, where it would survive 
even if you shut off your computer. (HELLO.ASM might not 
survive a disk crash, however, so we also suggest that you back 
up your disks regularly.) HELLO.ASM is a standard ASCII text 
file; you can display it at the DOS prompt by typing 

type hello.asm 

and you can edit it with any text editor. 

When you assembled HELLO.ASM, Turbo Assembler turned the 
text instructions in HELLO.ASM into their binary equivalents in 
the object file HELLO.OBI. HELLO.OBI is an intermediate file, 
partway between source code and an executable file. HELLO.OBI 
contains all the information needed to make executable code out 
of the instructions that started out in HELLO.ASM, but it's in a 
form that can readily be combined with other object files into a 
single program. In Chapter 6, "More about programming in 
Turbo Assembler," you'll see how useful this can be when you're 
developing large programs. 

Turbo Assembler User's Guide 



Next, when you linked HELLO.OB], TLINK converted it into the 
executable file HELLO.EXE. Finally, you ran HELLO.EXE when 
you typed hello at the prompt. 

Now type 

dir hello.* 

to list the various HELLO files on your disk. You'll find 
HELLO.ASM, HELLO.OB], HELLO.EXE, and HELLO.MAP. 

Modifying your first Turbo Assembler program 

Now go back to your editor and modify your program to accept a 
bit of input from the outside world. (The outside world is you, 
typing at your keyboard.) Change the code to the following: 

.MODEL small 

.STACK 100h 
• DATA 

TimePrompt DB 'Is it after 12 noon (Y/N)?$' 
GoodMorningMessage LABEL BYTE 

DB 13,10,'Good morning, world!',13,10,'$' 
GoodAfternoonMessage LABEL BYTE 

DB 13,10,'Good afternoon, world!' ,13,10,'$' 
• CODE 
mov 
mov 
mov 
mov 
int 
mov 

ax,@data 
ds,ax 
dx,OFFSET TimePrompt 
ah,9 
21h 
ah,1 

iset OS to point to data segment 
;point to the time prompt 
;DOS print string function # 
idisplay the time prompt 
;DOS get character function # 

int 
cmp 
jz 

21h 
al,'y' 
IsAfternoon 

;get a single-character response 
ityped lowercase y for after noon? 
iyes, it's after noon 

cmp al,'Y' 
jnz IsMorning 

IsAfternoon: 

ityped uppercase Y for after noon? 
ino, it's before noon 

mov dx,OFFSET GoodAfternoonMessage ;point to the afternoon 
; greeting 

jmp DisplayGreeting 
IsMorning: 

mov dx,OFFSET GoodMorningMessage ;point to the before noon 
i greeting 

DisplayGreeting: 
mov ah,9 
int 21h 
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mov ah,4ch 
int 21h 
END 

;005 terminate program function t 
;terminate the program 

You've added two important new capabilities to your program: 
input and decision-making. This program asks you whether it's 
after noon, then accepts a single-character response from the 
keyboard. If the character typed is an uppercase or lowercase Y, 
the program displays a greeting appropriate for the afternoon; 
otherwise, it gives a morning greeting. All the essential elements 
of a useful program-input from the outside world, data 
processing and decision-making, and output to the outside 
world-are present in this code. 

Save the modified program to disk. (This replaces your original 
version of HELLO.ASM with the modified code, so the original 
version will be lost.) Then reassemble and relink the program just 
as you did in the previous examples. Run the program again by 
typing hello at. the DOS prompt. The message 

Is it after 12 noon (YIN)? 

is displayed, with the cursor blinking after the question mark, 
waiting for your response. Press Y. The program responds 

Good afternoon, world! 

HELLO.ASM is now an interactive, decision-making program. 

In the course of your assembler programming, you will surely 
make a wide variety of mistakes in typing and in program syntax. 
Turbo Assembler ca tches many mistakes for you as it assembles 
your code, reporting all such errors. The mistakes reported fall 
into two categories: warnings and errors. Turbo Assembler 
displays a warning message if it detects something suspicious, but 
not necessarily wrong, in your code; sometimes warnings can be 
ignored, but it's always best to check them out and make sure you 
understand the problem. Turbo Assembler displays an error 
message if it encounters something clearly wrong in your code 
that makes it impossible to complete assembly and generate an 
object file. 

In other words, warnings are cautionary or nonfatal, while errors 
must be fixed before you can run a program. The many error and 
warning messages Turbo Assembler can generate are covered in 
Appendix E in the Reference Guide. 
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Sending output to 
a printer 

As with any programming language, Turbo Assembler can't catch 
logic errors for you. Turbo Assembler can tell you whether your 
code can be assembled, but it can't tell you whether the assembled 
code will perform as you intended it to-only you can be the 
judge of that. 

Don't worry if the example code doesn't make much sense to you 
right now. Even programmers experienced in other languages 
take some time to become fluent in 8086 assembly language; 
there's really nothing quite like it under the sun. At this point, 
you're just getting a feel for what assembler programs look like. 
Later in this chapter, and in Chapter 5, "The elements of an 
assembler program," we'll cover each of the elements of the 
programs presented. 

To list or send your program to a printer, consult your specific 
text editor's manual. Turbo Assembler source files are normal 
ASCII text files, so you can also print any assembler source file 
from the DOS prompt with the PRINT command. 

The printer is a handy output device; not only will you sometimes 
want to send your program files to the printer, but you'll also 
want your programs to send output to the printer on occasion. 
The following is a version of the "Hello, world" program that 
displays its output on the printer rather than on the screen: 

.MODEL small 

.STACK 100h 
• DATA 

HelloMessage DB 'Hello, world' ,13,10,12 
HELLO_MESSAGE_LENGTH EQU $ - HelloMessage 

• CODE 
mov ax,@data 
mov ds,ax 
mov ah,40h 

;set OS to point to the data segment 
;DOS write to device function f 

mov bx,4 
mov cx,HELLO_MESSAGE_LENGTH 
mov dx,OFFSET HelloMessage 
int 21h 
mov ah,4ch 
int 21h 
END 

;printer handle 
;number of characters to print 
i string to print 
iprint "Hello, world" 
;DOS terminate program function f 
;terminate the program 

In this version of the "Hello, world" program, you've replaced the 
OOS function to print a string on the screen with a OOS function 
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that sends a string to a selected device or file-in this case, the 
printer. Enter and run the program, and see that a sheet con
taining the familiar ''Hello, world" message is printed. (Don't 
forget to save the program before running it. Again, this saves the 
modified code in HELLO.ASM, and the previous version of the 
program will be lost.) 

You can modify this program to send output to the screen rather 
than to the printer, displaying "Hello, world" onscreen again, 
simply by changing 

mov bx,4 ;printer handle 

to 

mov bx,l ;standard output handle 

Make this change, then reassemble and relink before running the 
program again. You'll note that when the output is displayed on 
the screen, the final character shown is the universal symbol for 
"female" (~). This is actually a formfeed character, which the 
program sent to the printer to force it to eject the sheet on which 
you'd printed "Hello, world." Since the screen doesn't have 
sheets, it doesn't know about formfeeds, so it simply displays the 
corresponding member of the PC's character set when told to 
print a formfeed character. 

Writing your second Turbo Assembler program 
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Now you're ready to enter and run a program that actually does 
something, REVERSE.ASM. Go back into your text editor and 
enter the following: 

.MODEL small 

.STACK 100h 
• DATA 

MAXIMUM_STRING_LENGTH EQU 1000 
StringToReverse DB MAXIMUM_STRING_LENGTH DUP(?) 
ReverseString DB MAXIMUM_STRING_LENGTH DUP(?) 

• CODE 
mov ax,@data 
mov ds,ax 
mov ah,3fh 
mov bx,O 

;set DS to point to the data segment 
;DOS read from handle function f 
;standard input handle 

mov cx,MAXIMUM_STRING_LENGTH ;read up to maximum number of 
; characters 
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Running 

mov dx,OFFSET StringToReverse istore the string here 
int 21h iget the string 
and ax,ax iwere any characters read? 
jz Done ino, so you're done 
mov cx,ax iPut string length in ex, where 

i you can use it as a counter 
push cx isave the string length 
mov bx,OFFSET StringToReverse 
mov .si,OFFSET ReverseString 
add si,cx 
dec si ipoint to the end of the 

i reverse string buffer 
ReverseLoop: 

mov aI, [bx] 
mov [si],al 
inc bx 
dec si 

loop ReverseLoop 
pop cx 
mov ah,40h 
mov bx,l 

iget the next character 
istore the characters in reverse order 
ipoint to next character 
ipoint to previous location 
i in reverse buffer 
imove next character, if any 
iget back the string length 
iDOS write from handle function f 

mov dx,OFFSET ReverseString 
int 21h 

istandard output handle 
iprint this string 
iprint the reversed string 

Done: 
mov ah,4ch 
int 21h 
END 

iDOS terminate program function f 
iterminate the program 

You'll see what the program actually does in a moment; first, as 
always, you should save your work. 

REVERSE.ASM To run REVERSE.ASM, you must first assemble it; type 

TASM reverse 

then type 

TLINK reverse 

to create the executable file. 

Type reverse at the prompt to run your program. If Turbo 
Assembler reports any errors or warnings, carefully check your 
code to see that it matches the code shown previously, then try 
running the program again. 
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After you run your program, the cursor will sit blinking onscreen. 
Apparently, the program is waiting for you to type something. 
Try typing 

ABCDEFG 

then press Enter. The program displays 

GFEDCBA 

and ends. Type reverse agam at the command line. This time, type 

0123456789 

and press Enter. The program displays 

9876543210 

Now it's clear what REVERSE.ASM does: It reverses whatever 
string of characters you type in. Speedy manipulation of 
characters and strings is one of the areas in which assembly 
language excels, as you'll see in the next few chapters. 

Congratulations! You've entered, assembled, linked, and run 
several assembler programs, and you've seen the fundamentals of 
assembler programming-input, processing, and output-in 
action. 

If you don't want an object file but you do want a listing file, or if 
you want a cross-reference file but don't want a listing file or 
object file, you can specify the null device (NUL) as the file name. 
For example, 

TASM FILE1"NUL, 

assembles file FILEl.ASM to object file FILE1.0BJ, doesn't 
produce a listing file, and creates a cross-reference file FILEl.XRF. 

Now you're ready to learn the basic elements of assembler 
programming, covered in Chapter 5, liThe elements of an 
assembler program." 
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3 

Command-line reference 

This chapter is dedicated to familiarizing you with Turbo 
Assembler's command-line options. We'll describe each of the 
command-line options you can use to alter the assembler's 
behavior, then show how and when to use command files. Finally, 
we describe the configuration file. 

Starting Turbo Assembler from DOS 

Turbo Assembler has a very powerful and flexible command-line 
syntax. If you start Turbo Assembler without giving it any 
arguments, like this, 

TASM 

you'll get a screenful of help describing many of the command
line options and the syntax for specifying the files you want to 
assemble. Figure 3.1 shows you how this looks. 
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Figure 3.1 
Turbo Assembler command 

line 
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Turbo Assembler Version 2.0 Copyright (C) 1988, 1990 by Borland 
International, Inc. 

Syntax: TASM [options] source [,object] [,listing] [,xref] 

/a,/s 
/c 
/dSYM[=VAL] 
/e,/r 
/h,/? 
/iPATH 
/jCMD 
/khl,/ksl 
/l,/la 
/ml,/mx,/mu 
/mvl 
/ml 
/n 
/p 
/q 
/t 
/wO,/wl,/w2 
/w-xxx,/w+xxx 
/x 
/z 
/zi,/zd 

Alphabetic or Source-code segment ordering 
Generate cross-reference in listing 
Define symbol SYM = 0, or = value VAL 
Emulated or Real floating-point instructions 
Display this help screen 
Search PATH for include files 
Jam in assembler directive CMD (eg. /jIDEAL) 
Hash table capacity I, String space capacity I 
Generate listing: l=normal listing, la=expanded listing 
Case sensitivity on symbols: ml=all, mx=globals, mu=none 
Set maximum valid length for symbols 
Allow I mUltiple passes to resolve forward references 
Suppress symbol tables in listing 
Check for code segment overrides in protected mode 
Suppress OBJ records not needed for linking 
Suppress messages if successful assembly 
Set warning level: wO=none, w1=w2=warnings on 
Disable (-) or enable (+) warning xxx 
Include false conditionals in listing 
Display source line with error message 
Debug info: zi=full, zd=line numbers only 

With the command-line options, you can specify the name of one 
or more files that you want to assemble, as well as any options 
that control how the files get assembled. 

The general form of the command line looks like this: 

TASM fileset [; fileset] ... 

The semicolon (i) after the left bracket (D allows you to assemble 
multiple groups of files on one command line by separating the 
file groups. If you prefer, you can set different options for each set 
of filesi for example, 

TASM Ie FILE1; la FILE2 

assembles FILE1.ASM with the Ie command-line option and 
assembles file FILE2.ASM with the la command-line option. 

In the general form of the command line, fileset can be 

[option] ••• sourcefile [[+] sourcefile] ... 
[, [objfile] [, [listfile] , [, [xreffile]]]] 

This syntax shows that a group of files can start off with any 
options you want to apply to those files, followed by the files you 
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want to assemble. A file name can be a single file name, or it can 
use the normal OOS wildcard characters If- and ? to specify 
multiple files to assemble. If your file name does not have an 
extension, Turbo Assembler adds the .ASM extension. For 
example, to assemble all the .ASM files in the current directory, 
you would type 

TASM * 
If you want to assemble multiple files, you can separate their 
names with the plus sign (+): 

TASM MYFILEI + MYFlLE2 

You can follow the file name you want to assemble by an optional 
object file name, listing file name, and a cross-reference file name. 
If you do not specify an object file or listing file, Turbo Assembler 
creates an object file with the same name as the source file and an 
extension of .OBJ. 

A listing file is not generated unless you explicitly request one. To 
request one, place a comma after the object file name, followed by 
a listing file name. If you don't explicitly provide a listing file 
name, Turbo Assembler creates a listing file with the same name 
as the source file and the extension .LST. If you supply a listing 
file name without an extension, .LST is appended to it. 

A cross-reference file is not generated unless you explicitly 
request one. To request one, place a comma after the listing file 
name, followed by a cross-reference file name. If you don't 
explicitly provide a cross-reference file name, Turbo Assembler 
creates a cross-reference file with the same name as the source file 
and the extension .XRF. If you supply a cross-reference file name 
without an extension,.XRF is appended to it. (TCREF, a cross
reference utility, is described Oil disk.) 

If you want to accept the default object file name and also request 
a listing file, you must supply the comma that separates the object 
file name from the listing file name: 

TASM FILEl" TEST 

This assembles FILEl.ASM to FILE1.0BJ and creates a listing file 
named TEST.LST. 

If you want to accept the default object and listing file names and 
also request a cross-reference file, you must supply the commas 
that separate the file names: 
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TASM MYFILE",MYXREF 

This assembles file MYFILE.ASM to MYFILE.OBJ, with a listing in 
file MYFILE.LST and a cross-reference in MYXREF.XRF. 

If you use wildcards to specify the source files to assemble, you 
can also use wildcards to indicate the object and listing file names. 
For example, if your current directory contains XXI.ASM and 
XX2.ASM, the command line 

TASM XX*,YY* 

assembles all the files that start with XX, generates object files that 
start with W, and derives the remainder of the name from the 
source file ·name. The resulting object files are therefore called 
YYI.OBJ and YY2.0BJ. 

If you don't want an object file but you do want a listing file, or if 
you want a cross-reference file but don't want a listing file or 
object file, you can specify the null device (NUL) as the file name. 
For example, 

TASM FlLEl"NUL, 

assembles file FILE1.ASM to object file FILE1.0BJ, doesn't 
produce a listing file, and creates a cross-reference file FILEI.XRF. 

Command-line options 

24 

The command-line options let you control the behavior of the 
assembler, and how it outputs information to the screen, listing, 
and object file. Turbo Assembler provides you with some options 
that produce no action, but are accepted for compatibility with the 
current and previous versions of MASM: 

Ib Sets buffer size 
Iv Displays extra statistics 

You can enter options using any combination of uppercase and 
lowercase letters. You can also enter your options in any order 
except where you have multiple II or Ij options; these are 
processed in sequence. When using the Id option, you must also 
be careful to define symbols before using them in subsequent Id 
options. 

Note: You can override command-line options by using 
conflicting directives in your source code. 
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/a 

/b 

Figure 3.1 on page 22 summarizes the Turbo Assembler 
command-line options; here's a detailed description of each 
option. 

Function Specifies alphabetical segment-ordering 

Syntax fa 

la 

Remarks The la option tells Turbo Assembler to place segments in the object file in 
alphabetical order. This is the same as using the .ALPHA directive in your 
source file. 

You usually only have to use this option if you want to assemble a source 
file that was written for very early versions of the IBM or Microsoft 
assemblers. 

The Is option reverses the effect of this option by returning to the default 
sequential segment-ordering. 

If you specify sequential segment-ordering with the .SEQ directive in 
your source file, it will override any la you provide on the command line. 

Example TASM / a TEST! 

This command line creates an object file, TEST1.0BJ, that has its segments 
in alphabetical order. 

Syntax fb 

Remarks The Ib option is included for compatibility. It performs no action and has 
no effect on the assembly. 
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Function Enables cross-reference in listing file 

Syntax Ie 

Remarks The Ie option enables cross-reference information in the listing file. Turbo 
Assembler adds the cross-reference information to the symbol table at the 
end of the listing file. This means that, in order to see the cross-reference 
information, you must either explicitly specify a listing file on the 
command line or use the II option to enable the listing file. 

For each symbol, the cross-reference shows the line on which it is defined 
and all lines that refer to it. 

Example TASM /1 /e TEST! 

This code creates a listing file that also has cross-reference information in 
the symbol table. 

Function Defines a symbol 

Syntax Idsymbol [=value or expression] 

Remarks The Id option defines a symbol for your source file, exactly as if it were 
defined on the first line of your file with the = directive. You can use this 
option as many times as you want on the command line. 

You can only define a symbol as being equal to another symbol or a 
constant value. You can't use an expression with operators to the right of 
the equal sign (=). For example, IdX=9 and IdX= Yare allowed, but 
IdX= Y -4 is not allowed. 

Example TASM /dMAX=lO /dMIN=2 TESTl 

This command line defines two symbols, MAX and MIN, that other 
statements in the source file TESTl.ASM can refer to. 
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/e 

Function Generates floating-point emulator instructions 

Syntax Ie 

Ie 

Remarks The Ie option tells Turbo Assembler to generate floating-point instructions 
that will be executed by a software floating-point emulator. Use this 
option if your program contains a floating-point emulation library that 
mimics the functions of the 80x87 numeric coprocessor. 

Normally, you would only use this option if your assembler module is 
part of a program written in a high-level language that uses a floating
point emulation library. (Turbo C, Turbo Pascal, Turbo Basic, and Turbo 
Prolog all support floating-point emulation.) You can't just link an 
assembler program with the emulation library, since the library expects to 
have been initialized by the compiler's startup code. 

The Ir option reverses the effect of this option by enabling the assembly of 
real floating-point instructions that can only be executed by a numeric 
coprocessor. 

If you use the NOEMUL directive in your source file, it will override the Ie 
option on the command line. 

The Ie command-line option has the same effect as using the EMUL 
directive at the start of your source file, and is also the same as using the 
IjEMUL command-line option. 

Example TASM / e SECANT 
TCC -f TRIG.C SECANT.OBJ 

The first command line assembles a module with emulated floating-point 
instructions. The second command line compiles a C source module with 
floating-point emulation and then links it with the object file from the 
assembler. 

/h or /? 

Function Displays a help screen 

Syntax /h or /? 

Remarks The Ih option tells Turbo Assembler to display a help screen that describes 
the command-line syntax. This includes a list of the options, as well as the 
various file names you can supply. The 11 option does the same thing. 
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Example TASM /h 

Function Sets an Include file path 

Syntax /iPATH 

Remarks The II option lets you tell Turbo Assembler where to look for files that are 
included in your source file by using the INCLUDE directive. You can 
place more than one II option on the command line (the number is only 
limited by RAM). 

When Turbo Assembler encounters an INCLUDE directive, the location 
where it searches for the Include file is determined by whether the file 
name in the INCLUDE directive has a directory path or is just a simple file 
name. 

If you supply a directory path as part of the file name, that path is tried 
first, then Turbo Assembler searches the directories specified by II 
command-line options in the order they appear on the command line. It 
then looks in any directories specified by II options in a configuration file. 

If you don't supply a directory path as part of the file name, Turbo 
Assembler searches first in the directories specified by II command-line 
options, then it looks in any directories specified by II options in a 
configuration file, and finally it looks in the current directory. 

Example TASM / i \ INCLUDE / iD: \INCLUDE TEST! 

If the source file contains the statement 

INCLUDE MYMACS.INC 

Turbo Assembler will first look for \ INCLUDE \ MYMACS.INC, then it 
will look for D:\INCLUDE\MYMACS.INC. If it still hasn't found the file, 
it will look for MYMACS.INC in the current directory. If the statement in 
your source file had been 

INCLUDE INCS\MYMACS.INC 

Turbo Assembler would first look for INCS\MYMACS.INC and then it 
would look for \INCLUDE\MYMACS.INC, and finally for D:\ 
INCLUDE\MYMACS.INC. 
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/kh 

Function Defines an assembler startup directive 

Syntax /jdirective 

Ij 

Remarks The Ij option lets you specify a directive that will be assembled before the 
first line of the source file. directive can be any Turbo Assembler directive 
that does not take any arguments, such as .286, IDEAL, %MACS, I 

NOJUMPS, and so on. See Chapter 3 in the Reference Guide for a complete 
description of all Turbo Assembler directives. 

You can put more than one Ij option on the command line; they are 
processed from left to right across the command line. 

Example TASM /j .286 /jIDEAL TEST! 

This code assembles the file TEST1.ASM with 80286 instructions enabled 
and Ideal mode expression-parsing enabled. 

Function Sets the maximum number of symbols allowed 

Syntax /khnsymbols 

Remarks The Ikh option sets the maximum number of symbols that your program 
can contain. If you don't use this option, your program can only have a 
maximum of 8,192 symbols; using this option increases the number of 
symbols to nsymbols, up to a maximum of 32,768. 

Use this option if you get the Out of hash space message when assembling 
your program. 

You can also use this option to reduce the total number of symbols below 
the default 8,192. This releases some memory that can be used when you 
are trying to assemble a program but don't have enough available 
memory. 

Example TASM /khlOOOO BIGFILE 

This command tells Turbo Assembler to reserve space for 10,000 symbols 
when assembling the file BIGFILE. 
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/ks 

/ks 

/1 

/10 

Function Sets the maximum size of Turbo Assembler's string space 

Syntax /kskbytes 

Remarks Usually the string size is determined automatically and does not need to 
be adjusted. However, if you have a source file that results in an Out of 
string space message, you might want to increase the string space size by 
using this option. Try starting with a value of 100, and increase it until 
your program assembles without error. The maximum allowable value for 
kbytes is 255. 

Example TASM Iksl50 SFILE 

This tells Turbo Assembler to reserve 150K of string space. 

Function Generates a listing file 

Syntax Ii 

Remarks The II option indicates that you want a listing file, even if you did not 
explicitly ~pecify it on the command line. The listing file will have the 
same name as the source file, with an extension of .LST. 

Example TASM 11 TEST! 

This command line requests a listing file that will be named TEST1.LST. 

Function Shows high-level interface code in listing file 

Syntax /la 

Remarks The Iia option tells Turbo Assembler to show all generated code in the 
listing file, including the code that gets generated as a result of the high
level language interface .MODEL directive. 

Example TASM Ila FILEl 
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1m 

Iml 

Function 

Syntax 

Remarks 

Sets the maximum number of assembly passes 

Im[npasses] 

1m 

Normally, Turbo Assembler functions as a single-pass assembler. The 1m 
option allows you to specify the maximum number of passes that the 
assembler should make during the assembly process. T ASM automatically 
decides whether it can perform less than the number of passes specified. If 
you don't specify npasses, a default of five is used. 

Some modules contain constructions that assemble properly only when 
two passes are done. If multiple passes are not enabled, such a module 
will produce at least one "Pass-dependent construction encountered" 
warning. If the 1m option is enabled, Turbo Assembler will assemble this 
module correctly but will not optimize the code by removing NOPs, no 
matter how many passes are allowed. The warning IIModule is pass 
dependent-<:ompatibility pass was done" is displayed if this occurs. 

Example TASM 1M2 TESTl 

This tells Turbo Assembler to use up to two passes when assembling 
TESTl. 

Function Treats symbols as case-sensitive 

Syntax Iml 

Remarks The Iml option tells Turbo Assembler to treat all symbol names as case
sensitive. Normally, uppercase and lowercase letters are considered 
equivalent so that the names ABCxyz, abcxyz, and ABCXYZ would all refer 
to the same symbol. If you specify the Iml option, these three symbols will 
be treated as distinct. Even when you specify Iml, you can still enter any 
assembler keyword in uppercase or lowercase. Keywords are the symbols 
built into the assembler that have special meanings, such as instruction 
mnemonics, directives, and operators. 

Example TASM Iml TESTl 

where TESTl.ASM contains the following statements: 

abc OW 0 
ABC OW 1 inot a duplicate symbol 
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/mu 

/mu 

/mv# 

/mx 

Mov Ax,!Bp] imixed case OK in keywords 

Function Converts symbols to uppercase 

Syntax /mu 

Remarks The Imu option tells Turbo Assembler to ignore the case of all symbols. By 
default, Turbo Assembler specifies that any lowercase letters in symbols 
will be converted to uppercase unless you change it by using the Iml 
directive. 

Example TASM /mu TEST! 

makes sure that all symbols are converted to uppercase (which is the 
default): 

EXTRN myfunc:NEAR 
call myfunc idon't know if declared as 

i MYFUNC, Myfunc, ••. 

Function Sets the maximum length of symbols. 

Syntax tmv' 

Remarks The Imv# option sets the maximum length of symbols that T ASM will 
distinguish between. For example, if you set Imv3, TASM will see ABCC 
and ABCD as the same symbol, but not AB. 

Function Makes public and external symbols case-sensitive 

Syntax /rnx 

Remarks The Imx option tells Turbo Assembler to treat only external and public 
symbols as case-sensitive. All other symbols used (within the source file) 
are treated as uppercase. 
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In 

Ip 

/mx 

You should use this directive when you call routines in other modules 
that were compiled or assembled so that case-sensitivity is preserved; for 
example, modules compiled by Turbo C. 

Example TASM Irnx TEST1; 

where TESTl.ASM contains the following source lines: 

EXTRN Cfunc:NEAR 
rnyproc PROC NEAR 
call Cfunc 

Function Suppresses symbol table in listing file 

Syntax In 

Remarks The In option indicates that you don't want the usual symbol table at the 
end of the listing file. Normally, a complete symbol table listing appears at 
the end of the file, showing all symbols, their types, and their values. 

You must specify a listing file, either explicitly on the command line or by 
using the II option; otherwise, In has no effect. 

Example TASM II In TEST! 

This code generates a listing file showing the generated code only, and not 
the value of your symbols. 

Function Checks for impure code in protected mode 

Syntax Ip 

Remarks The Ip option specifies that you want to be warned about any instructions 
that generate "impure" code in protected mode. Instructions that move 
data into memory by using a CS: override in protected mode are 
considered impure because they might not work correctly unless you take 
special measures. 

You only need to use this option if you are writing a program that runs on 
the 80286 or 80386 in protected mode. 

Example TASM Ip TEST! 
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where TEST1.ASM contains the following statements: 

.286P 
CODE SEGMENT 
temp OW ? 

mov CS:temp,O ;impure in protected mode 

Function Suppresses .OBI records not needed for linking 

Syntax /q 

Remarks The Iq option removes the copyright and file dependency records from 
the resulting .OBI files, making it smaller. Don't use this option if you are 
using MAKE or a similar program that relies on the dependency records. 

Function Generates real floating-point instructions 

Syntax Ir 

Remarks The Ir option tells Turbo Assembler to generate real floating-point 
instructions (instead of generating emulated floating-point instructions). 
Use this option if your program is going to run on machines equipped 
with an 8Ox87 numeric coprocessor. 

The Ie option reverses the effect of this option in generating emulated 
floating-point instructions. 

If you use the EMUL directive in your source file, it will override the Ir 
option on the command line. 

The Ir command-line option has the same effect as using the NOEMUL 
directive at the start of your source file, and is also the same as using the 
IjNOEMUL command-line option. 

Example TASM /r SECANT 
TPC /$N+ /$E- TRIG. PAS 

The first command line assembles a module with real floating-point 
instructions. The second compiles a Pascal source module with real 
floating-point instructions that links in the object file from the assembler. 
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Is 

It 

Iv 

Function Specifies sequential segment-ordering 

Syntax Is 

/s 

Remarks The Is option tells Turbo Assembler to place segments in the object file in 
the order in which they were encountered in the source file. By default, 
Turbo Assembler uses segment-ordering, unless you change it by placing 
an Is option in the configuration file. 

If you specify alphabetical segment-ordering in your source file with the 
.ALPHA directive, it will override Is on the command line. 

Example TASM Is TEST! 

This code creates an object file (TEST1.0BJ) that has its segments ordered 
exactly as they were specified in the source file. 

Function Suppresses messages on successful assembly 

Syntax It 

Remarks The It option stops any display by Turbo Assembler unless warning or 
error messages result from the assembly. 

You can use this option when you are assembling many modules, and you 
only want warning or error messages to be displayed onscreen. 

Example TASM It TEST! 

Syntax Iv 

Remarks The Iv option is included for compatibility. It performs no action and has 
no effect on the assembly. 
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Function Con troIs the generation of warning messages 

Syntax /w 
w- [warnclass] 
w+ [warnclass] 

Remarks The Iw option controls which warning messages are emitted by Turbo 
Assembler. 

If you specify Iw by itself, "mild" warnings are enabled. Mild warnings 
merely indicate that you can improve some aspect of your code's 
efficiency. 

If you specify Iw- without warnclass, all warnings are disabled. If you 
follow Iw- with warnclass, only that warning is disabled. Each warning 
message has a three-letter identifier: 

ALN Segment alignment 
ASS Assuming segment is 16-bit 
BRK Brackets needed 
ICG Inefficient code generation 
LCO Location counter overflow 
OPI Open IF conditional 
OPP Open procedure 
OPS Open segment 
OVF Arithmetic overflow 
POC Pass-dependent construction 
PQK Assuming constant for [const] wa~ing 
PRO Write-to memory in protected mode needs CS override 
RES Reserved word warning 
TPI Turbo Pascal illegal warning 

If you specify Iw+ without warnclass, all warnings are enabled. If you 
specify Iw+ with warnclass from the preceding list, only that warning will 
be enabled. 

By default, Turbo Assembler first starts assembling your file with all 
warnings enabled except the inefficient code-generation (ICG) and the 
write-to-memory in protected mode (PRO) warnings. 

You can use the WARN and NOWARN directives within your source file to 
control whether a particular warning is allowed for a certain range of 
source lines. See Chapter 3 in the Reference Guide for more information on 
these directives. 
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Iz 

Example TASM Iw TEST! 

The following statement in TEST1.ASM issues a warning message that 
would not have appeared without the Iw option: 

mov bx,ABC ;inefficient code generation warning 
ABC = 1 

With the command line 

TASM Iw-OVF TEST2 

no warnings are generated if TEST2.ASM contains 

dw lOOOh * 20h 

Function Includes false conditionals in listing 

Syntax Ix 

/w 

Remarks If a conditional IF, IFNDEF, IFDEF, and so forth evaluates to False, the Ix 
option causes the statements inside the conditional block to appear in the 
listing file. This option also causes the conditional directives themselves to 
be listed; normally they are not. 

You must specify a listing file on the command line or via the II option, 
otherwise Ix has no effect. 

You can use the .LFCOND, .SFCOND, and .TFCOND directives to override 
the effects of the Ix option. 

Example TASM Ix TESTl 

Function Displays source lines along with error messages 

Syntax Iz 

Remarks The Iz option tells Turbo Assembler to display the corresponding line 
from the source file when an error message is generated. The line that 
caused the error is displayed before the error message. With this option 
disabled, Turbo Assembler just displays a message that describes the 
error. 
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/zi 

Example TASM / z TEST! 

Function Enables line-number information in object files 

Syntax /zd 

Remarks The Izd option causes Turbo Assembler to place line-number information 
in the object file. This lets Borland's stand-alone debugger, Turbo 
Debugger, display the current location in your source code, but does not 
put the information in the object file that would allow the debugger to 
access your data items. 

If you run out of memory when trying to debug your program under 
Turbo Debugger, you can use Izd for some modules and Izi for others. 

Example TASM / zd TEST! 

Function Enables debug information in object file 

Syntax /zi 

Remarks The Izi option tells Turbo Assembler to output complete debugging 
information to the object file. This includes line-number records to 
synchronize source code display and data type information to allow you 
to examine and modify your program's data. 

The Izi option lets you use all the features of Turbo Debugger to step 
through your program and examine or change your data items. You can 
use Izi on all your program's modules, or just on those you're interested in 
debugging. Since the Izi switch adds information to the object and 
executable programs, you might not want to use it on all your modules if 
you run out of memory when running a program under Turbo Debugger. 

Example TASM /zi TEST! 
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Indirect command files 

At any point when entering a command line, Turbo Assembler 
lets you specify an indirect command file by preceding its name 
with an "at" sign (@). For example, 

TASM /dTESTMODE @MYPROJ.TA 

causes the contents of the file MYPROJ.TA to become part of the 
command line, exactly as if you had typed in its contents directly. 

This useful feature lets you put your most frequently used 
command lines and file lists in a separate file. And you don't have 
to place your entire command line in one indirect file, since you 
can use more than one indirect file on the command line and can 
also mix indirect command files with normal arguments; for 
example, 

TASM @MYFILES @IOLIBS /dBUF=1024 

This way you can keep long lists of standard files and options in 
files, so that you can quickly and easily alter the behavior of an 
individual assembly run. 

You can either put all your file names and options on a single line 
in the command file or you can split them across as many lines as 
you want. 

The configuration file 

Turbo Assembler also lets you put your most frequently used 
options into a configuration file in the current directory. If 
running on DOS 3.x or later, it also looks in the directory that 
TASM was loaded from. This way, when you run Turbo 
Assembler, it looks for a file called T ASM.CFG in your current 
directory. If Turbo Assembler finds the file, it treats it as an 
indirect file and processes it before anything else on the command 
line. 

This is helpful when you have all the source files for a project in a 
single directory and you know that, for example, you always 
want to assemble with emulated floating-point instructions (the Ie 
option). You can place that option in the TASM.CFG file, so you 
don't have to specify that option each time you start Turbo 
Assembler. 
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The contents of the configuration file have exactly the same 
format as an indirect file. The file can contain any valid 
command-line options, on as many lines as you want. The options 
are treated as if they all appeared on one line. 

The contents of the configuration file are processed before any 
arguments on the command line. This lets you override any 
options set in the configuration file by simply placing an option 
with the opposite effect on the command line. For example, if 
your configuration file contains 

la Ie 

and you invoke Turbo Assembler with 

TASM Is Ir MYFILE 

where MYFILE is your program file, your file will be assembled 
with sequential segment-ordering (Is) and real floating-point 
instructions (lr), even though the configuration file contained the 
la and Ie options that specified alphabetical segment-ordering and 
emulated floating-point instructions. 

Turbo Assembler User's Guide 



c H A p T E R 

4 

The nature of assembly language 

Earlier, we said that assembly language is the computer's own 
language. In order to understand what that means, you first need 
to understand exactly what a computer is. Then we'll teach you 
just what it is that makes assembly language unique among the 
many languages of the computer world. 

In this chapter we'll cover the nature of computers in general, and 
the 8086 processor in particular, to give you an understanding of 
the special strengths of assembly language programming on the 
8086. We'll also discuss issues of assembly language 
programming specifically related to the IBM PC. 

The architecture of a computer 

Deep down, a computer is nothing more than a device that moves 
data from one place to another, sometimes transforming the data 
in various logical and arithmetical ways. For our purposes, 
however, it's more useful to view a computer as a system 
consisting of five functional subsystems-input, control, 
arithmetic and logical processing, memory, and output-as 
shown in Figure 4.1. 

(For the moment, we're talking about computers in general; we'll 
get to the 8088 shortly.) 
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Figure 4.1 
Five subsystems 

Arithmetic Subsystem 

(Add, subtract, 
multiply, divide, 
and, or, 
exclusive-or, etc.) 

Input Output 

Subsystem Control Subsystem 
Subsystem 

(Keyboard, 
(Overall Coordination) 

(Display, 
Mouse, Printer, 
Joystick, Plotter, 
Disk) Disk) 

Memory Subsystem 

(Up to 1 megabyte of 
RAM and/or ROM) 

The arithmetic subsystem of the computer is the aspect most 
people think of when they think ofa computer. After all, what is a 
computer if not a number-cruncher? As it turns out, though, most 
computers spend very little time crunching numbers, and a great 
deal of time working with character strings and performing input 
and output; what need does a word processor have for 
arithmetic? Nonetheless, the arithmetic subsystem is important, 
for it is there that not only addition, subtraction, multiplication, 
and division are performed, but logical operations (such as and, 
or, and exclusive-or) as well. 

It's all very well to perform arithmetic, but where do the source 
values for, say, addition come from, and where does the result of 
each operation go? The computer's memory subsystem comes into 
play here, providing instantly accessible storage for many 
thousands of characters or numbers. Computers also have floppy 
and hard disk drives, which provide permanent (but relatively 
slow) storage for enormous amounts of data, but these are 
actually input/output (I/O) devices, not part of the memory 
subsystem. 
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Programs without Input and 
output tend to be rare, since 
they can't accept new data 

(rom the outside world and 
can't do anything with what

ever results they do 
generate. 

The making of 
assembly 

language 

The input subsystem allows programs to manipulate data from 
the outside world, ranging from single keystrokes to mouse 
motions to whole databases stored in disk files. The output 
subsystem lets programs display prompts and results on screens 
and printers, and send data to disk files and tapes. 

Finally, the control subsystem ties together the operation of the 
other four subsystems and controls data movement. 

The control and arithmetic subsystems together form what is 
known as the processing unit, or processor. A processor forms the 
core of any computer, providing data processing and controlling 
the memory, input, and output subsystems. The processor sets the 
tone for any computer, since it controls the operation of each of 
the subsystems and coordinates them into a smoothly functioning 
unit. 

Nowadays, an entire processor is frequently built on a single chip. 
For instance, the 8088 is a processor on a chip, complete with 
arithmetic processing, control, and interfaces to input, output, and 
memory. 

It's with the processor that we make the connection between the 
architecture of the computer and the unique nature of assembly 
language. 

We've said that the processor orchestrates the activities of the five 
subsystems of a computer-adding values, moving them about 
from memory to output, and so on-but that begs a fundamental 
question: How does the processor know which operations to 
perform? So far, the computer has all the capabilities we need, but 
no script to follow. 

The answer is surprisingly simple: The processor fetches data 
from memory, and that data tells it what to do next. Data that tells 
a processor what to do is usually called "instructions," but 
instructions are simply values stored in memory, just like any 
other data. The set of instructions that a processor can execute 
(the instruction set) corresponds exactly to the actions that that 
processor's hardware can perform. Put another way, a processor's 
instructions comprise all the operations that any software can 
ever ask the processor to do. 
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For example, if a processor lacks a multiplication instruction, then 
there is no way the hardware of that computer can perform a 
multiplication. Multiplication can instead be performed in 
software by perfonning adds and shifts, but this tends to be much 
slower. The key point here is that a processor's instruction set 
reflects the actions that the computer's hardware is inherently 
capable of perfonning. By the same token, each processor's 
assembly language is unique to that processor because each 
processor has unique capabilities and, therefore, a unique 
instruction set. 

Each instruction value has a specific, well-defined meaning to a 
given processor. For example, the instruction value 4 tells the 8088 
to add the value stored at the next memory address to the AL 
register. (Don't worry about what the AL register is right now
we'll get to that soon.) Consequently, a processor can be put 
through a desired sequence of actions by an appropriate series of 
instruction values; indeed, a program is nothing more than a 
sequence of instruction values. 

How does a processor know which instruction to execute next? By 
maintaining an internal pointer that points to the place in 
memory where the value of the next instruction to be performed 
is stored. When that next instruction is read from memory and 
executed, the pointer is advanced to the following instruction. 
Some instructions can set the instruction pointer to a new value; 
this gives a processor the ability to execute nonsequential series of 
instructions, and even the ability to perform different series of 
instructions depending on certain conditions. 

Great, but what does that have to do with assembly language? 
Just this: A processor's instruction set is that processor's assembly 
language. Or, rather, assembly language is a human-oriented form 
of a processor's instruction set (known as the processor's machine 
language), which an assembler such as Turbo Assembler then 
converts to machine language. While assembly language and 
machine language are functionally equivalent, assembly language 
is much easier for people to program in. After all, surely you'd 
rather program with instructions like 

add al,l 

than with 

4 
1 
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wouldn't you? Both forms work equally well, but assembly 
language lets you work with mnemonic names for machine
language instructions, with the assembler translating from 
mnemonic instructions to their machine-language equivalents. 
This is, of course, a tremendous advantage, since humans simply 
don't think very well in purely numeric languages. Basically, 
assembly language is a direct analog to machine language, but 
implemented in a form with which humans can work efficiently. 

The good news about assembly language is that it lets you control 
the processor's actions one by one, for maximum efficiency. The 
bad news is that each of the processor's actions, taken 
individually, tend to do relatively little, reflecting the limited 
repertoire of which the processor is actually capable. For example, 
the process of adding two long integers and storing the result in a 
third long integer takes only one line in C: 

i = j + k; 

but requires six lines in 8088 assembler: 

mov ax, [j] 

mov dx, [j+2] 
add ax, [k] 

adc dx, [k+2] 
mov [i],ax 

mov [i+2] ,dx 

Of course, the C code compiles to no less (and possibly more) 
than the same six machine language instructions required by the 
assembler code, but it is easier to write the one line of C code than 
the six lines of assembler. (Remember, assembler instructions 
reflect the basic ability of the computer, and programs written in 
all languages must eventually be translated to machine language 
before they can be run.) 

Why use assembler at all if it's harder to program in than other 
languages? For one thing, assembler lets you reach any part of 
memory and control any input or output device directly, since 
assembly language programs can do anything the processor is 
capable of. For another, because assembler is the native language 
of the computer, it stands to reason that well-written assembler 
code must be the fastest code possible. The quality of the code 
produced by any other language suffers from the need to translate 
from that language to machine language, but assembler code 
maps directly to machine language, with not one whit of 
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efficiency lost. In assembly language, you tell the computer what 
to do, and it does it-no more and no less. 

Of course, if you write an inefficient assembler program, it won't 
run very rapidly, since the processor does exactly what assembly 
language programs specify. Similarly, assembly language has 
relatively little built-in support for data-type conversion, or fc;>r 
guarding against mistakes, such as accidentally overwriting a 
variable or running off the end of an array. What all this means is 
that assembly language gives you the ability to write wonderfully 
fast and clever programs, but those programs demand more care 
and skill from you as a programmer than do programs written in 
other languages. 

Now that you understand how a processor and its assembly 
language relate to one another, let's look specifically at assembly 
language for the 8088. 

The 8088 and 8086 processors 

46 

The 8088 is the processor used in the IBM PC and XT computers, 
which form perhaps one of the most successful line of computers. 
However, the 8088 is actually only one of a family of processors 
known as the iAPx86 family. Other members of this family 
include the 8086 processor used in the IBM Models 25 and 30; the 
80286 processor used in the IBM AT, and the IBM PS/2 Models 50 
and 60; and the 80386 processor used in the IBM PS/2 Model 80. 
Each of these processors is, in some way, different from the 8088. 
Chapter 10, liThe 80386 and other processors," provides a detailed 
discussion of the various members of the iAPx86 family. The one 
thing all iAPx86 family processors share is the ability to run code 
written for the 8086 and 8088 processors. 

The 8086 is actually the root of the iAPx86 family tree. The 8088 is 
just an 8086 with a scaled-down external data bus; while the 8086 
can transfer data to and from memory 16 bits at a time, the 8088 
can transfer data only 8 bits at a time. The two processors have 
exactly the same instruction sets. Consequently, the assembly 
language used to program the IBM PC and its successors is 
properly known as 8086 assembly language, not 8088 assembly 
language. For the remainder of this chapter, understand that 8086 
assembly language includes the 8088 as well. 
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The capabilities of 
the 8086 

The 8086 runs at 4.77 or 8 MHz 
speeds; the 80286 can run at 

6, 8, 10, 12, 16, and 20 MHz: 
the 80386 can run at 16, 20, 

25, and 33 MHz. 

Memory 

By today's standards, the 8086 is a processor of modest 
capabilities. After all, the 8086 was designed ten years ago, and 
ten years of technological evolution have brought major 
innovations to the chip-design field. Nonetheless, the 8086 
remains an important processor. One reason for this is the sheer 
number of IBM PCs and compatibles; no one can afford to ignore 
ten-million-plus computers. Another reason, however, is that the 
8086 meets the needs, even today, of advanced software. 

The 8086 can address a large amount of memory (over one million 
characters or other byte-sized-8-bit-values), has a powerful 
instruction set, and properly programmed can support high
performance programs. But the 8086 is not a super-fast processor, 
not every language is capable of providing decent performance on 
the 8086, and no other language can match assembly language 
when it comes to writing excellent 8086 programs. 

The resources the 8086 provides to the assembly language 
programmer are memory, input and output (I/O) interfacing, 
registers, and, of course, instructions. We'll explore those 
resources next. 

The 8086 is capable of addressing 1 megabyte (which is 2 to the 
20th power or 1,048,576 storage locations, each of which is 8 bits 
long) of memory at anyone time. The first byte of memory is at 
address 0, and the last byte of memory "is at address OFFFFFh as 
shown in Figure 4.2 on page 48. 

(The last address, OFFFFFb, was given in hexadecimal, or base 16, 
notation as denoted by the h suffix; it is equivalent to 1,048,575 in 
the familiar decimal, or base 10, notation.) Fluency in hexadecimal 
notation is essential in assembly language programming. We'll 
touch on hexadecimal notation in Chapter 5, liThe elements of an 
assembler program." 
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Figure 4.2 
Memory address 

space of the 8086 

48 

Hexadecimal 
Address 
00000 
00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
OOOOA 
OOOOB 
OOOOC 
00000 
OOOOE 
OOOOF 
00010 

FFFEF 
FFFFO 
FFFF1 
FFFF2 
FFFF3 
FFFF4 
FFFF5 
FFFF6 
FFFF7 
FFFF8 
FFFF9 
FFFFA 
FFFFB 
FFFFC 
FFFFD 
FFFFE 
FFFFF 

Decimal 
Address 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

1048559 
1048560 
1048561 
1048562 
1048563 
1048564 
1048565 
1048566 
1048567 
1048568 
1048569 
1048570 
1048571 
1048572 
1048573 
1048574 
1048575 

One byte, 8 bits long, can hold one character, or one integer value 
in the range 0 to 255. That doesn't mean that the 8086 can't handle 
larger values. Two bytes taken together (known as a word) can 
hold one integer value in the range 0 to 65,535; the 8086 can 
manipulate word values as readily as byte values. 

Four bytes taken together (known as a doubleword, or dword) can 
hold one integer value in the range 0 to 4,294,967,295, or can hold 
one single-precision floating-point value. Eight bytes together 
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(known as a quadword, or qword) can hold one double-precision 
floating-point value. The 8086 doesn't handle these two data types 
directly; however, the 8087 numeric coprocessor can work directly 
with floating-point values and extended precision integer values, 
and given the proper software, the 8086 can be made to handle 
virtually any data type, albeit fairly slowly. 

At any time, an 8086 program can read or change the contents of 
any of the more than 1,000,000 bytes of memory. For example, the 
code fragment 

mov ax,O 
mov ds,ax 
mov bx,O 
mov aI, [bx] 

loads the contents of the byte at address 0 into the AL register. 
Don't worry about the details here; the point is that the 8086's 
memory address space provides for storage of slightly more than 
1,000,000 working values that the 8086 can access quickly and 
flexibly. 

One megabyte (Mb) is a considerable amount of memory, far 
more than the 64K (2 to the 16th power, or 65,536 bytes) 
addressable by the processors that preceded the 8086. On the 
other hand, the 8086's latest descendent, the 80386, can address 
about 4,000 times as much memory as the 8086, so you can see 
that the 8086 is, in fact, a little squeezed for memory space. Also, 
in the IBM PC, only 640K of the 1 Mb address space is actually 
available for use as general-purpose memory; the rest of the 
address space is dedicated to use by system software and the 
memory used for the display. Then, too, don't forget that 
instructions, as well as data, are stored in memory, so both 
program code and data must fit into no more than 640K of 
memory on the PC. 

While the 8086 is capable of addressing 1 Mb of memory, it does 
not make it particularly easy to access more than 64K at anyone 
time, due to a rather peculiar feature known as segmentation. We'll 
look at segmentation in a later section, liThe segment registers," 
on page 61. 
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Input and output 

Figure 4.3 
Separate memory 
and I/O address of 

8086 

50 

The 8086 supports input and output devices in two ways: through 
input/output (I/O) instructions and through memory addresses. 
Some input and output devices are controlled through ports, 
which are special I/O addresses in a 64K address space that's 
separate from the 1 Mb memory address space, as shown in 
Figure 4.3. 

Memory 
Address 

00000 
00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
OOOOA 

FFFF5 
FFFF6 
FFFF7 

~ 

FFFF8 1---------1 
FFFF9 
FFFFA J.--------1 

FFFFB 1---------1 

FFFFC J.--------1 

FFFFD 1---------1 
FFFFE 1---------1 
FFFFF I.--____ ----l 

I/O Address 
.(fQr1l 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
OOOA 

~ 

FFF5 J.--------i 

FFF6 J.--------i 
FFF7 
FFF8 I---------i 

FFF9 J.--------i 

FFFA J.--------i 

FFFB I---------i 
FFFC J.--------i 

FFFD I---------i 
FFFE I---------i 
FFFF 1.--____ ----1 

There are far fewer I/O addresses on the 8086 than there are 
memory addresses; while there are technically 64K I/O addresses 
on the PC, practically speaking, only 4K I/O addresses are 
available. Consequently, I/O addresses are not used for storing 
values, but rather for providing control and data channels to 
input and output devices. For example, serial devices such as 
modems are controlled entirely through a few I/O addresses. 
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More on IN and our, and I/O 
In general, In Chapter 5. 

Registers 

I/O addresses can be accessed only with two special instructions, 
IN and OUT, which are used for nothing else. For example, 

out dx,al 

sends the contents of the AL register to the I/O port selected by 
the DX register. 

Some output devices are memory-mapped, meaning they are 
controlled through normal memory addresses rather than I/O. 
This is particularly true of display adapters, which can take up 
16K, 32K, or even 256K of the 8086's memory address space with 
their bit maps (the arrays of bytes describing the dots that the 
adapters display on the screen). . 

A given device can be controlled through both I/O ports and 
memory-mapped addresses. In fact, most display adapters 
respond to I/O instructions for some functions and to memory 
addresses for others. 

The 8086 offers a few fast, on-chip storage elements known as 
registers. You might think of registers as memory locations that 
the 8086 can access faster than it can access regular memory, but 
that's only part of what makes registers special. Each of the 
registers has a unique nature, and provides certain capabilities 
that no other register or memory location supports. 

The registers fall into four categories: the flags register, the 
general-purpose registers, the instruction pointer, and the 
segment registers, as shown in Figure 4.4. Let's look at each in 
turn. 
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Figure 4.4 
Registers of the 

8086 15 Bit Number 0 

FLAGS I I<Flags 
Register 

AX AH AL 

BX BH BL 

ex CH CL 

ox DH DL General-
Purpose 

51 Registers 

01 

BP 

SP 

IP 
1<lnstructlon 

Pointer 

CS 

OS Segment 

ES 
Registers 

SS 
15 Bit Number 0 

The flags register The 16-bit flags register contains all pertinent information about 
the state of the 8086 and the results of recent instructions, as 
shown in Figure 4.5. 
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Figure 4.5 
Flags register of the 

8086 

Other registers and memory 
contain data: the flags 

register contains information 
about relationships between 

data, about the results of 
operations, and about the 

state of the 8086 itself. 

Bit Number 

Flag Bits 

o = Overflow Flag T = Trap Flag A = Auxiliary Carry Flag 

D = Direction Flag S = Sign Flag P = Parity Flag 

= Interrupt Flag Z = Zero Flag C = Carry Flag 

For example, if you wanted to know whether a subtraction 
produced a zero result, you would check the zero flag (the Z bit in 
the flags register) immediately after the instruction; if it were set, 
you would know the result was zero. Other flags, such as the 
carry and overflow flags, similarly report the results of arithmetic 
and logical operations. 

Other flags control modes of operation of the 8086. The direction 
flag controls the direction in which the string instructions move, 
and the interrupt flag controls whether external hardware, such as 
a keyboard or modem, is allowed to halt the current code 
temporarily so that urgent needs can be serviced. The trap flag is 
used only by software that debugs other software. 

The flags register isn't modified or read directly. Instead, the flags 
register is generally controlled through special instructions (such 
as CLD, STI, and CMC) and through arithmetic and logical 
instructions that modify certain flags. Likewise, the contents of 
certain bits of the flags register affect the operation of instructions 
such as JZ, RCR, and MOVSB. The flags register is not really used 
as a storage location, but is rather the status and control network 
of the 8086. 
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The general-purpose 
registers 

The eight general-purpose registers of the 8086 (each 16 bits long) 
are involved in the operation of most instructions, as source and 
destination for calculations and data moves, as pointers to 
memory, and as counters. Each of the general-purpose registers 
can store any 16-bit value, can be loaded from and written to 
memory, and can be used in arithmetic and logical operations. For 
example, this code fragment 

· . . 
mov ax,S 
mov dx,9 
add ax,dx 

loads the value 5 in AX, loads the value 9 in OX, and adds the two 
values together, storing the result, 14, back into the AX register. 
ex, SI, or any of the other general-purpose registers could have 
been substituted for AX or DX in this example, with equal 
success. 

Beyond the common ability to store values and serve as source 
and destination for data manipulation instructions, however, each 
of the general-purpose registers has its own personality. Let's look 
at each of the general-purpose registers separately. 

The AX register 

The AX register is also known as the accumulator. It is always 
involved when you perform multiplication and division, and is 
also the most efficient register to use for some arithmetic, logical, 
and data-movement operations. 

The lower 8 bits of the AX register are also known as the AL 
register (for A-Low), and the upper 8 bits of the AX register are 
also known as the AH register (for A-High). This can be 
convenient for handling byte-sized data, since it allows AX to 
serve as two separate registers. The following code sets AH to 0, 
copies the value to AL, then adds 1 to AL: 

· . . 
mov ah,O 
mov al,ah 
inc al · . . 
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The BX register can be 
treated as two 8-blt registers, 

BH and BL. 

The ex register can be 
treated as two 8-blt registers, 

CHandCL. 

The end result is that AX is set to 1. The BX, ex, and OX registers 
can similarly serve as either one 16-bit register or two 8-bit 
registers. 

The BX register 

The BX register can point to memory locations. We'll cover this in 
more detail in Chapter 5, but, briefly, a 16-bit value stored in BX 
can be used as a part of the address of a memory location to be 
accessed. For instance, the following code loads AL with the 
contents of memory address 9: 

mov ax,O 
mov ds,ax 
mov bx,9 
mov aI, [bx] 

You'll notice that we loaded the OS register with 0 (by way of AX) 
before accessing the memory location pointed to by BX. This is a 
result of the segmented nature of 8086 memory that we referred 
to previously-a topic we'll return to in the section "The Segment 
Registers" (page 61). By default, when BX is used as a memory 
pointer, it points relative to the OS segment register. 

The ex register 

The CX register's specialty is counting. Suppose you wanted to 
repeat a block of instructions 10 times. You could do that with 

mov cx,lO 
BeginningOfLoop: 

<instructions to be repeated> 

sub ex,l 
jnz BeginningOfLoop 

Don't worry about unfamiliar elements of this program; the 
important point is that the instructions between the label 
BeginningOfLoop and the JNZ instruction are executed repeatedly 
until ex becomes o. Notice that two instructions-SUB eX,1 and 
JNZ BeginningOfLoop-are required in order to count down CX 
and jump back to BeginningOfLoop if ex is not yet o. 

Chapter 4, The nature of assembly language 55 



The DX register can be 
treated as two 8-blt registers, 

DHandDL. 
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Counting down and looping is a frequently used program 
element, so the 8086 provides a special instruction to make loops 
faster and more compact. Not surprisingly, that instruction is 
called LOOP. The LOOP instruction subtracts 1 from ex: and 
jumps if CX isn't 0, all in one instruction. The following is 
equivalent to the last example: 

. . . 
mov cx,lO 

BeginningOfLoop: 

<instructions to be repeated> 

loop BeginningOfLoop 

We'll cover looping again in Chapter 5; for now, just remember 
that the ex: register is especially useful for counting and looping. 

The OX register 

The OX register is the only register that can be used as an I/O 
address pointer with the IN and OUT instructions. In fact, there is 
no way to address I/O ports 256 through 65,535 without using 
OX. For example, the following code writes the value 62 to I/O 
port 1000: 

mov al,62 
mov dx,lOOO 
out dx,al 

The other unique properties of OX relate to division and 
multiplication. When you divide a 32-bit dividend by a 16-bit 
divisor, the upper 16 bits of the dividend must be placed in OX; 
after the division, the remainder of the division is stored in OX. 
(The lower 16 bits of the dividend must be placed in AX, and the 
quotient is stored in AX.) Similarly, when you multiply two 16-bit 
factors, the upper 16 bits of the product are stored in OX (the 
lower 16 bits of the product are stored in AX). 

The SI register 

Like the BX register, the SI register can be used as a memory 
pointer. For example, 
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mov ax,O 
mov ds,ax 
mov si,20 
mov aI, [si] 

loads the 8-bit value stored at address 20 into AL. SI becomes an 
unusually powerful memory pointer when used with the 8086's 
string instructions. For example, 

cld 
mov ax,O 
mov ds,ax 
mov si,20 
lodsb 

not only loads AX with the value at the memory address pointed 
to by SI, but also adds 1 to SI. This can be very effective when 
accessing a sequential series of memory locations, such as a text 
string. Better still, the string instructions can be made to 
automatically repeat their actions any number of times, so a single 
instruction can perform hundreds or even thousands of actions. 
We'll discuss the string instructions in detail in Chapter 6. 

The 01 register 

The 01 register is much like the SI register in that it can be used as 
a memory pointer and has special properties when used with the 
powerful string instructions. For example, 

mov ax,O 
mov ds,ax 
mov di,1024 
add bl, [di] 

adds the 8-bit value stored at address 1024 to BL. The 01 register 
is a little different from SI when it comes to string instructions; 
where SI always serves as a source memory pointer for string 
instructions, 01 always serves as a destination memory pointer. 
Moreover, with the string instructions, SI normally addresses 
memory relative to the OS segment register, while 01 always 
addresses memory relative to the ES segment register. (When SI 
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Chapter 7 explaIns how and 
why C uses the stack to pass 

parameters. 

58 

and 01 are used as memory pointers with non string instructions, 
they always point relative to OS.) For example, 

cld 
mov dx,O 
mov es,dx 
mov di,2048 
stosb 

uses the SlOSB string instruction to both store the value in AL at 
the memory address pointed to by 01 and add 1 to OI. But we're 
getting ahead of ourselves here; you need to learn about segments 
and segment registers before you can study the string instruc
tions. Again, we'll look at the string instructions in Chapter 6, 
''More about programming in Turbo Assembler." 

The BP register 

Like BX, 51, and 01, the BP register can be used as a memory 
pointer, but with a difference. While the BX, 51, and 01 registers 
normally act as memory pointers relative to the OS segment 
register (or, in the case of OJ used with the string instructions, the 
ES segment register), BP points relative to 55, the stack segment 
register. 

Once again, we're getting ahead of ourselves, since we haven't 
covered segments yet, but the principle is as follows: One useful 
way to pass parameters to a subroutine is by pushing the 
parameters onto the stack. C and Pascal do this. 

The stack resides in the segment pointed to by 55, or the stack 
segment. Data, on the other hand, normally resides in the 
segment pointed to by OS, or the data segment. Since BX, 51, and 
OJ normally point to the data segment, there's no efficient way to 
use BX, 51, or OJ to point to parameters passed on the stack 
because the stack is usually in a different segment altogether. 

BP solves this problem by providing addressing into the stack 
segment. For example, 

. . . 
push bp 
mov bp,sp 
mov ax, [bp+4] 
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accesses the stack segment to load AX. with the first parameter 
passed by a Turbo C call to an assembler subroutine. 

In short, BP is designed to provide support for parameters, local 
variables, and other stack-based memory-addressing needs. 

The SP register 

The SP register, also known as the stack pointer, is the least general 
of the general-purpose registers, for it is almost always dedicated 
to a specific purpose: maintaining the stack. The stack is an area of 
memory into which values can be stored and from which they can 
be retrieved on a last-in, first-out basis; that is, the last value 
stored onto the stack is the first value you'll get when you read a 
value from the stack. The classic analogy for the stack is that of a 
stack of dishes. Since you can only add plates at the top of the 
stack and remove them from the top of the stack, it stands to 
reason that the first plate you put on the stack will be the last 
plate you can remove. 

The SP register points to the top of the stack at any given time; as 
with the stack of dishes, the top of the stack is the location at 
which the next value placed on the stack will be stored. The action 
of placing a value on the stack is known as pushing a value on the 
stack, and, indeed, the PUSH instruction is used to place values on 
the stack. Similarly, the action of retrieving a value from the stack 
is known as popping a value from the stack, and the POP 
instruction is used to retrieve values from the stack. 

For example, Figure 4.6 illustrates how SP, AX, and BX change as 
the following code is executed, assuming that SP is initially set to 
1,000: 

mov ax,l 
push ax 
mov bx,2 
push bx 
pop ax 
pop bx 

While the 8086 allows you to store values in SP, and add to or 
subtract from the value stored in SP, just as with the other 
general-purpose registers, you should never do this unless you 
know exactly what you're doing. If you change SP, you're 
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Figure 4.6 
AX. BK SP. and the 

stack 
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changing the location of the top of the stack, and that can quickly 
lead to disaster. 

Why? Well, pushes and pops aren't the only way the stack is used. 
Whenever you call to or return from a subroutine (a procedure or 
function), the stack is used. Also, some system resources, such as 
the keyboard and the system clock, use the stack when they 
interrupt the 8086 in order to perform their functions. What this 
means is that the stack might be needed at any time. If you change 
SP, even if only for a few instructions, then the correct stack might 
not be available when some system resource needs it. 

At start: 

AX ? 

BX ? 

SP 1000 

After moy ax,1 I push ax: 

AX 1 

ex ? 

SP 998 

After moy bx,21 push bx: 

AX 1 

BX 2 

SP 996 

After pop ax: 

AX 2 

BX 2 

SP 998 

After pop bx: 

AX 2 

BX 1 

SP 1000 

996 

998 

.------'r 1000 

I 996 

W ....--_r 998 

1000 

....---- 996 U 998 

1000 

I 996 

....---- 998 W 1000 

996· ? 

998 .1 

~------~-~1000 ? L..--_____ ....J 
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In short, leave SP alone unless you know just what you're doing. 
Feel free to perform pushes, pops, calls, and returns, but don't 
change the value of SP directly. Any of the other seven general
purpose registers can be changed directly at any time. 

The instruction pointer The instruction pointer (lP) always contains the memory offset at 
which the next instruction to be executed is stored. As one 
instruction is executed, the instruction pointer is advanced to 
point to the instruction at the next memory address. Normally, 
the instruction at the next memory address is the next instruction 
executed, but some instructions, such as calls and jumps, can 
cause the instruction pointer to be loaded with a new value, 
thereby branching to other code. 

The instruction pointer can't be written to or read from directly; 
only branching instructions such as those just described can load 
the instruction pointer with a new value. 

The instruction pointer does not, by itself, fully specify the 
address at which the next instruction to be executed resides. Once 
again, the segmented nature of 8086 memory addressing 
complicates the picture. For instruction fetching, the CS segment 
register provides a base address, and the instruction pointer then 
provides an offset from that base address. 

Each time we've talked about addressing memory, we've run into 
segments, and each time we've postponed a full explanation until 
the time came to talk about segments. That time has come. 

The segment registers Now we come to a most unusual aspect of the 8086-memory 
segmentation. The basic premise of segmentation is this: The 8086 
is capable of addressing 1 Mb of memory. Twenty-bit memory 
addresses are required to address all locations in a 1 Mb memory 
space. However, the 8086 only uses 16-bit pointers to memory; for 
example, recall that the 16-bit BX register can be used to point to 
memory. How, then, does the 8086 reconcile 16-bit pointers with a 
20-bit address space? 

The answer is that the 8086 uses a two-part memory-addressing 
scheme. True, 16-bit memory pointers are used, but these form 
only part of the full memory address. Each 16-bit memory pointer, 
or memory offset, is combin~d with the contents of a 16-bit 
segment register to form a full20-bit memory address. 
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Figure 4.7 
20-blt memory 

addresses 

Segments and offsets are combined as follows: The segment value 
is shifted left by 4 bits (multiplied by 16) and then added to the 
offset as shown in Figure 4.7. 

16-81t 
Segment Register 

Segment Value 
Times 16 Equals 

A 20-81t Value 

20-81t Memory Address 

So, for example, consider the following code: 

. . . 
mov ax,lOOOh 
mov ds,ax 
mov si,201h 
mov dl, lsi] 

16-81t 
Offset 

Here the OS segment register is set to 1000h, and SI is set to 201h, 
which we can represent as the segment:offset pair 1000:201h. 
(Segment:offset calculations can only be performed efficiently in 
base 16-another good reason to familiarize yourself with 
hexadecimal notation.) DL is loaded from the address 
«DS ,. 16) + S1), or «1000h ,. 16) + 201h): 
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Figure 4.8 
Calculation of 

memory address by 
mov 

l000h 
x 16 

10000h 
+ 201h 

10201h 

Figure 4.8 illustrates this example. 

os 1000h 

10000h 

Memory 
Address 

10201h 

SI 201h 

Another way to look at this is to simply shift the segment value 
left 4 bits, or one hexadecimal digit, which is the same as 
multiplying by 16: 

10000 
+ 201 

10201 

You can now see that programs can only access the 8086's full 
1 Mb memory space by using segment:offset pairs. In fact, you 
must always use segment:offset pairs to access memory; all the 
instructions and addressing modes of the 8086 default to 
operating relative to one or another of the segment registers, 
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although some instructions can be explicitly told to use a different 
segment register if desired. 

Rarely will you actually load a number into a segment register. 
Instead, you'll load segment registers with segment names, which 
are turned into numbers in the course of assembling, linking, and 
running a program. This is necessary because there's no way to 
tell beforehand where in memory a given segment will reside; it 
all depends on the version of DOS, the number and size of 
memory-resident programs, and the memory needs of the rest of 
the program. Using segment names lets Turbo Assembler and 
DOS deal with all those complications. 

The most common segment name is @data, which refers to the 
default data segment when the simplified segment directives are 
used. For example, 

.MODEL small 
• DATA 

Varl DW 0 

.CODE 
mov ax,@data 
mov ds,ax 

END 

loads OS to point to the default data segment, in which Varl 
resides. 

Once again, we're getting a bit ahead; in the next chapter, we'll 
discuss the simplified segment directives and the loading of 
segment registers. 

The use of segments on the 8086 has a couple of interesting 
implications. For one thing, only a 64K block of memory is 
addressable relative to a segment register at anyone time because 
64K is the maximum amount of memory that can be addressed 
with a 16-bit offset. This means that it can be a real nuisance to 
handle large (greater than 64K) blocks of data on the 8086, since 
both a segment register and the offset value must be changed 
frequently. 

The addressing of large blocks of memory on the 8086 is made 
still more difficult because, unlike the general-purpose registers, 
the segment registers cannot serve as either source or destina tion 
for arithmetic and logical instructions. In fact, the only operations 
that can be performed on segment registers involve copying 
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values between segment registers and either general-purpose 
registers or memory. For instance, adding 100 to the ES register 
requires the following: 

mov ax,es 
add ax,lOO 
mov es,ax 

The upshot of all this is that the 8086 is best suited to handling 
memory in chunks no larger than 64K. 

A second implication of the use of segments is that any given 
memory location is addressable with many possible 
segment:offset combinations. For instance, the memory address 
100h is addressable with segment:offset values of 0:100h, l:FUh, 
2:EOh, and so on, since all those segment:offset pairs work out to 
address 100h. 

Like the general-purpose registers, each segment register plays a 
specific role. The es register points to program code, the OS 
register points to data, the SS register points to the stack, and the 
ES segment is a wildcard ("extra") segment, free to point 
wherever it's needed. Let's look at the segment registers in a bit 
more detail. 

The CS register 

The es register points to the start of the 64K memory block, or 
code segment, in which the next instruction to be executed resides. 
The next instruction to be executed resides at the offset specified 
by IP in the code segment; that is, at the segment:offset address 
eS:IP. The 8086 can never fetch an instruction from a segment 
other than that defined byeS. 

The es register can be changed by a number of instructions, 
including certain jumps, calls, and returns. The CS register cannot 
be loaded directly under any circumstances. 

No memory-addressing modes or memory pointers other than IP 
normally operate relative to es. 
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Memory addressing Is 
discussed further In Chapter 

5. 
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The OS register 

The OS register points to the start of the data segment, which is 
the 64K memory block where most memory operands reside. 
Normally, memory offsets involving BX, SI, or DI operate relative 
to OS, as do direct memory addresses. The data segment is, 
basically, what its name implies: the segment in which the current 
data set normally resides. 

The ES register 

The ES register points to the start of a 64K memory block known 
as the extra segment. As the name implies, the extra segment isn't 
dedicated to anyone purpose, but is available for whatever needs 
arise. Sometimes, the extra segment is used to make an additional 
64K block of memory available for data storage, but accessing 
memory in the extra segment is normally less efficient than 
accessing memory in the data segment, as discussed in Chapter 9, 
"Advanced programming in Turbo Assembler." 

Where the extra segment really shines is when the string 
instructions are used. All string instructions that write to memory 
use ES:DI as the memory address to write to. This means that ES 
is extremely useful as the destination segment for block copies, 
string comparisons, memory scanning, and clearing blocks of 
memory. We'll look at the string instructions and the use of ES 
registers in connection with them in Chapter 6, "More about 
programming in Turbo Assembler." 

The 55 register 

The SS register points to the start of the stack segment, which is 
the 64K memory block, where the stack resides. All instructions 
that implicitly use the SP register-including pushes, pops, calls, 
and returns-work in the stack segment because SP is only 
capable of addressing memory in the stack segment. 

As we discussed earlier, the BP register also operates relative to 
the stack segment. This allows BP to be used for addressing 
parameters and variables that are stored on the stack. (Again, we 
discuss memory addressing in detail in the next chapter.) 
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The 8086 
instruction set To a programmer, the key resource of the 8086 is the instruction 

set. As we discussed earlier, the instruction set includes all the 
actions that a programmer can possibly tell the 8086 to perform. 
(The complete instruction set of Turbo Assembler is in the Quick 
Reference Guide.) 

There are many instructions in the 8086 instruction set that 
perform a wide variety of actions, ranging from doing nothing 
(NaP) to copying as many as 65,535 bytes (REP MOVSB). We will 
spend much of the rest of this chapter, and chapters 5, 6, and 9 as 
well, covering the 8086's instruction set in detail. 

The IBM PC and XT 

We've focused on 8086 assembly language, but the truth of the 
matter is that the 8086 processor is just part of a computer system, 
and the hardware configuration and operating system of a 
computer greatly affect assembly language programming. 

The vast majority of programs written for the 8086 processor (and 
perhaps the majority of programs written in the history of 
computers) have been written for the IBM PC and XT and 
compatible computers, running the MS-DOS operating system. 
Turbo Assembler itself runs under the MS-DOS operating system 
on IBM PCs, XTs, and compatibles (from now on referred to 
simply as the IBM PC), so it's likely that you're planning to use 
your copy of Turbo Assembler to develop assembler programs for 
the IBM PC environment. 

Without knowledge of the hardware configuration and the 
operating system your assembler programs will run under, there's 
no way for you to perform input or output, or even terminate 
your programs. We haven't the space to cover nearly all the 
capabilities of the IBM PC and its system software, but we'll show 
you a few of the basic features of the PC. We suggest you read 
more on your own in the books and manuals suggested at the 
beginning of this chapter. 
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Input and output 
devices All IBM PCs provide a keyboard, a display adapter and a monitor, 

and a floppy disk drive. Modems, printers, mice, and hard disks 
are frequently installed as well. Each of these devices is controlled 
with a fairly complex series of accesses to I/O ports or memory 
(or both). For example, selecting a new video mode on the Color 
Graphics Adapter (CGA) requires over 30 OUT instructions; 
keyboard, modem, and disk control sequences are more 
complicated still. 

Does this mean that you need to master endless control sequences 
in order to write useful assembler programs on the IBM PC? Not 
at all; your PC's systems software already does most of the work 
for you. 

Systems software 
for the IBM PC Systems software is software that serves as a control and interface 

layer between applications software, such as Turbo Assembler 
and Quattro, and the hardware of your computer, as shown in 
Figure 4.9. 

68 

In particular, systems software handles the complexities of 
interfacing to individual devices. For example, several hundred 
lines of assembly language code are required in order for your PC 
to process a single keystroke, but your assembler programs can 
get keystrokes by invoking just one system function. This is made 
possible by the two main systems software components of the PC: 
OOS and the BIOS (Basic Input/Output System). 

In Figure 4.9, the OOS and BIOS systems software serves as a 
control and interface layer between applications software and the 
hardware of the IBM PC. Applications software always has the 
option of controlling the hardware directly, but should use 005 
or BIOS functions instead whenever possible. 
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Figure 4.9 
DOS and BIOS 

systems software as 
a control and 

interface layer Applications Software 

DOS 

Accessed through Int 21 h DOS 
functions and other Interrupts. 

BIOS 

Accessed through BIOS 
functions by way of several 

Interrupts. 

IBM PC Hardware 
------------------------------------------------

Display adapter, keyboard, printer, disk, mouse, joystick, and so 
on. Accessed at UO ports and/or memory locations, depending 

on the specific hardware Item. 

DOS DOS (short for Disk Operating System-also known as MS-DOS 
and PC-DOS) is the program that controls your computer from 
the moment it reads the disk at power-up until you turn the 
power off. DOS takes up part of your precious 640K of available 
memory, but there's no helping that, since without DOS your PC 
is a very expensive paperweight. It's DOS that provides you with 
the A> prompt (or C>, or whatever the prompt is on your 
computer), and it's DOS that accepts and executes commands 
such as DIR. 

That's just the visible part of DOS. It also provides a broad array 
of functions that are used heavily by just about every application. 
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IBM's DOS Technical 
Reference manual Is the 

primary reference for DOS 
functions. 

It's through DOS functions that applications read from and write 
to files, get keystrokes, allocate memory, run other programs, and 
even set and get the time of day. For example, the assembler code 

rnov ah,2 
rnov dl,'A' 
int 21h 

;DOS function to display a character 
;A is the character to display 
;invoke DOS to execute the function 

invokes the OOS "Display Output" function in order to display 
the character A at the current cursor location on the screen. 

You should use OOS functions to perform operations such as 
keyboard and file input, screen and file output, and printing 
whenever possible. Since DOS itself is actually nothing but an 
assembler program, it is certainly possible for you to do with your 
own code everything that OOS functions do, but that's generally 
not a good idea. Not all PC-compatible computers are alike, and 
OOS frequently masks differences between makes of computers; 
if you ignore the OOS functions and go straight to the hardware, 
your programs might not run on other computers. 

Then, too, programs that go around OOS might not coexist with 
other programs, most notably memory-resident programs such as 
SideKick and SuperKey. Besides, why spend time writing extra 
code when OOS has already done the work for you? In short, 
whenever a OOS function can do what you need done, use it! 

In cases where OOS simply doesn't provide the functions you 
need, it's time to use a BIOS function. We'll cover BIOS functions 
shortly, but first let's take a look at some OOS functions that fulfill 
essential needs: input, output, and program termination. 

Getting keystrokes 

Typing at the keyboard is the fundamental means of user 
interaction with the PC. OOS provides a number of functions by 
which an assembler program can obtain keystrokes; we're only 
going to discuss one of those functions. 

Perhaps the simplest means of getting keystrokes is with the 
"Keyboard Input" function, DOS function number 1. OOS 
functions are invoked by placing the function number in AH and 
then executing an INT 21 h instruction. (The actual operation of the 
INT instruction is a bit complex, but right now, all you need to 
know is that you must execute an INT 21h instruction each time 

Turbo Assembler User's GuIde 



you want to invoke a DOS function.} The next character typed at 
the keyboard is returned in AL. 

For example, when this code is executed, 

mov ah,l 
int 21h . . . 

DOS places the next character typed at the keyboard into AL. 
Note that if there is no keystroke waiting to be read, DOS waits 
until a key is pressed, so this function can take an indefinitely 
long period of time to complete. 

Displaying characters on the screen 

If keystrokes are the means of user interaction with software, the 
screen is the complement. The PC is capable of all sorts of 
displays, ranging from color text to high-resolution graphics, but 
for the moment, we'll just go over displaying characters. 

DOS function number 2 is a straightforward way to print a 
character. Simply put 2 in AH and the character in DL, then 
invoke DOS with INT 21 h. The following code echoes each 
character typed to the screen: 

mov ah,l 
int 21h 
mov ah,2 
mov dl,al 
int 21h 

;get next key pressed 

;move character read from AL to DL 
idisplay the character 

Several other functions are available for reading and printing 
characters and character strings, and you'll encounter some of 
them in the example programs in this manual. Since a whole book 
would be needed to cover all the DOS functions, we can't cover 
them here. We strongly recommend, however, that you do get one 
or more of the books and manuals listed at the end of this book 
and learn more about the DOS functions-they're a key resource 
in assembler programming. 

There's one more point we'd like to make about keyboard, screen, 
and file input and output in assembly language. Those of you 
who are used to scant and prlntf in C and Readln and Writeln in 
Pascal might be surprised to learn that DOS (and hence assembly 
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language) provides no support whatsoever for fonnatted input 
and output; OOS only handles character and string input and 
·output. In C, all you need to do to print an integer variable i is 
this: 

printf("%d\n",i); 

C automatically converts the integer value, which is stored in a 
16-bit memory location, into a string of ASCII characters and 
prints the characters. In assembler, your code must explicitly 
convert variables to character strings before displaying them. 
Likewise, OOS only knows how to read characters and strings 
from the keyboard, so you'll have to write code to convert 
characters and strings entered by the user to other data types in 
your assembler programs. 

At the end of the next chapter, we'll show you an example 
program that illustrates exactly what you have to do in an 
assembler program to print out the value of a variable. For now, 
bear in mind that DOS functions can print a character, or a string 
of characters-and that's it. It's up to you to convert your data to 
the character fonn that DOS can handle. 

Ending a program 

Now that you know a bit about reading and writing a program, 
let's write a simple program that does nothing but echo one line of 
keystrokes to the screen. You know all the OOS functions you'll 
need, save one: You have no way to end the program once it's 
finished executing. 

Again, those of you familiar with C or Pascal might think that 
assembler programs would simply end when they come to the 
end of the main program, but that's not the case. You must 
explicitly invoke a DOS function in order to terminate your 
assembler programs. 

There are several DOS functions for terminating programs, but 
the preferred method is to execute a DOS function number 4Ch 
(that's 76, for those of you who prefer decimal). With that 
knowledge, here's the complete echo program 
(ECHOCHAR.ASM): 

.MODEL small 

.STACK lOOh 
• CODE 

EchoLoop: 
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The BIOS 

IBM's BIOS Interface 
Technical Reference manual 

is the primary reference for 
BIOS functions. 

mov ah,l 
int 21h 
cmp al,13 
jz EchoDone 
mov dl,al 
mov ah,2 
int 21h 
jmp EchoLoop 

EchoDone: 
mov ah,4ch 
int 21h 
END 

iDOS keyboard input function f 
iget the next key 
iwas the key the Enter key? 
iyes, so we're done echoing 
iput the character into DL 
iDOS display output function 
idisplay the character 
iecho the next character 

iDOS terminate program function f 
iterminate the program 

Enter the program exactly as shown and run it. You'll see that 
each character you type appears twice; once when it is echoed by 
DOS as it's typed, and once as your program echoes it. The 
important point about this program is that it reads keystrokes, 
writes characters to the display, and terminates, all by way of 
DOS functions. 

Sometimes DOS functions just don't meet your needs; then it's 
time to turn to the PC's Basic Input/Output System, or BIOS. 
Unlike DOS and applications software, the BIOS is not loaded 
from disk and does not take up any of your 640K of available 
memory; instead, the BIOS is stored in Read-Only Memory 
(ROM) in the portion of the 8086's address space reserved for 
system functions. 

The BIOS is the lowest-level software in the PC; even DOS uses 
BIOS functions to control the hardware. It's better to use BIOS 
functions than to control hardware directly, since, like DOS, the 
BIOS can mask differences between various computers and 
devices. On the other hand, you should use DOS functions rather 
than BIOS functions whenever you can, since programs that use 
the BIOS can conflict with other programs, and tend to be less 
portable across a variety of computer models. 

Selecting display modes 

The most pressing reason to use the BIOS is for controlling the 
display, since DOS provides virtually no support for the rich 
display capabilities of the PC. Only by invoking BIOS functions 
can you set the screen mode, control colors, get display adapter 
information, and so on. For example, the following code invokes 
the BIOS to set the screen to four-color graphics mode on a CGA: 
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Sometimes you 
absolutely need 

to go to the 
hardware 

Other resources 

mov ah,O 
mov al,4 
int lOh 

;BIOS set mode function f 
;mode number for 320x200 4-color graphics 
;execute BIOS video interrupt to set mode 

If you recall that we said that over 30 OUT instructions are 
required to set a video mode, you'll realize that the BIOS "Set 
Mode" function saves you a great deal of work. 

The BIOS provides a variety of functions other than those related 
to display control, including keystroke-handling and disk control. 
In general, however, you're better off performing these tasks 
through DOS functions. 

Now that you've heard all the reasons to use DOS functions (or, if 
absolutely necessary, BIOS functions), it's time to admit that 
sometimes you just flat-out have to access the hardware directly. 
For instance, communications software has to control the PC;s 
serial port directly with IN and OUT instructions, since neither 
DOS nor the BIOS provides adequate support for serial 
communications. Similarly, high-performance graphics must be 
performed by accessing display memory directly, since DOS 
doesn't support graphics, and the BIOS does so only in a painfully 
slow manner. 

The basic rule about going to the hardware is to make sure you 
have no alternative. If there's a DOS or BIOS function you can use, 
use it; if not, access the hardware directly. Mer all, the object-of 
programming is to produce useful programs, not to follow rules. 
On the other hand, the fewer rules you break, the fewer problems 
you'll generally have. 

The PC provides a number of other hardware and software 
resources for the assembly language programmer. We can't go 
into those resources here, but we can list a few; for more 
information, refer to the materials mentioned at the start of this 
chapter . 

• The ANSI.SYS driver provides enhanced display control 
without the need for BIOS functions. 
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• The system timers support a time-of-day clock; they also 
support sound-generation via the PC's speaker and precision 
timing . 

• The optional 8087 numeric coprocessor speeds up floating-point 
calculations by orders of magnitude. 
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c H A p T E R 

5 

The elements of an assembler program 

Now that you understand what it is that makes assembly 
language unique, you're ready to tackle the nuts and bolts of 
assembler programming. 

You'll spend this chapter learning about the fundamental 
components of an assembler program. First, we'll teach you about 
the minimum requirements of a working assembler program. 
Next, we'll discuss the various components of a line, and the 
ways in which they can be combined. Along the way, you'llieam 
a good bit about instructions, directives, and the ways in which 
assembler programs can access memory. You'll find out how 
segments are defined and used in Turbo Assembler, and you'll 

. look at the allocation and initialization of memory variables. 
Finally, we'll look at some commonly used instructions. 

That's a lot of ground to cover, but when you're done with this 
chapter, you'll know enough to start writing programs. You can, 
put that knowledge to work with a word-counting program 
provided at the end of the chapter. 

Still, this chapter only begins to explore the many aspects of 
assembly language, so Chapter 6, ''More about programming in 
Turbo Assembler," and Chapter 9, 1/ Advanced programming in 
Turbo Assembler," continue on to new assembly language topics. 
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The components and structure of an assembler 
program 
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Now that you've developed an understanding of what 8086 
assembly language is, you're ready to start writing assembler 
programs. Let's start by looking at the minimum requirements of 
a working assembler program. Even a simple assembler program 
requires quite a few lines. For instance, consider the following 
program: 

• MODEL small 
.STACK 200h 
• DATA 

DisplayString DB 13,10 

ThreeChars DB 3 DUP (?) 

DB '$' 

• CODE 
Begin: 

mov ax,@data 
mov ds,ax 
mov bx,OFFSET ThreeChars 

mov ah,1 
int 21h 
dec al 
mov [bx],al 
inc bx 

int 21h 
dec al 
mov [bx),al 
inc bx 

int 21h 
dec al 
mov [bx],al 
mov dx,OFFSET DisplayString 

mov ah,9 
int 21h 
mov ah,4ch 
int 21h 

inear code and data models 
i512-byte stack 
istart of the data segment 
icarriage-return/linefeed pair 
i to start a new line 
istorage for three characters 
i typed at the keyboard 
ia trailing "$" to tell DOS when 
i to stop printing DisplayString 
i when function 9 is executed 
istart of the code segment 

ipoint DS to the data segment 
ipoint to the storage location 
i for first character 
iDOS keyboard input function f 
;get the next key pressed 
;subtract 1 from the character 
istore the modified character 
;point to the storage location 
i for the next character 
;get the next key pressed 
;subtract 1 from the character 
istore the modified character 
ipoint to the storage location 
i for the next character 
iget the next key pressed 
isubtract 1 from the character 
istore the modified character 
ipoint to the string of 
i modified characters 
iDOS print string function f 
iprint the modified characters 
iDOS end program function f 
iend the program 
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Reserved words 

END Begin ;directive to mark the end of the source 
; code and to indicate where to start 
; execution when the progra~ is run 

This program contains the simplified segment directives .MODEL, 
.STACK, .DATA, and .CODE, as well as the END directive. Segment 
directives, either simplified or standard, are required in every 
assembler program in order to define and control segment usage, 
and the END directive must always terminate assembler code. 
We'll cover both segment directives and END in this chapter, and 
some other directives as well. 

Directives only provide the framework for an assembler program, 
though; you also need lines in your source code that actually do 
something, lines like 

mov (bx],al 

and 

inc dx 

These are instruction mnemonics, corresponding to the 
instruction set of the 8086 that you learned about in chapter 4. 
Before you can use either instructions or directives, however, you 
must first learn about the format of a line of assembler code, 
which we'll get to right after a cursory look at Turbo Assembler's 
reserved words. 

In case you were wondering what the first example program 
does, enter it, type in IBM, and the program will respond 

HAL 

The program reads three characters, subtracts the value 1 from 
each of them, and prints the result. 

Turbo Assembler reserved words, or keywords, are strictly for 
use by the assembler; you can't use them for defining your own 
equates, labels, or procedure names. Rather, you should think of 
reserved words as the building blocks of assembly language. The 
words listed in Table 5.1 include operators (+, *, -, +), directives 
(.386, ASSUME, MASM, QUIRKS), and predefined symbols 
(??tlme, ??verslon, @WordSlze), which are like predefined 
equates, and aliases. 
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Table 5.1: TASM reserved words 

@datasize @filename NAME .RADIX 
??date ??fllename NE RECORD 

= DB FWORD NEAR REPT 
? DO GE %NEWPAGE .SALL 
[] %0 EPTH GLOBAL %NOCONDS SEG 
I OF GROUP %NOCREF SEGMENT 
() DISPLAY GT %NOCTLS .SEQ 
+ DOSSEG HIGH NOEMUL .SFCOND 

DP IDEAL %NOINCL SHL 
* DQ IF NOJUMPS SHORT 

DT IF1 %NOLIST SHR 
.186 DUP IF2 NOLOCALS SIZE 
.286 OW IFB %NOMACS SIZESTR 
.286C DWORD IFDEF NOMASM51 SMALL 
.286P ELSE IFDIF NOMULTERRS SMART 
.287 ELSEIF IFDIFI NOSMART STACK 
.386 EMUL IFE %NOSYMS .STACK 
.386C END IRON NOT STRUC 
.387 ENDIF IRDNI NOTHING SUBSTR 
.8086 . ENDM IFNB %NOTRUNC SUBTTL 
.8087 ENDP IFNDEF NOWARN %SUBTTL 
ALIGN ENDS %lNCL OFFSET %SYMS 
.ALPHA EQ INCLUDE OR SYMTYPE 
AND EQU INCLUDELIB ORG °kTABSIZE 
ARG ERR INSTR %OUT TBYTE 
ASSUME .ERR IRP P186 %TEXT 
%BIN .ERR1 IRPC P286 .TFCOND 
BYTE .ERR2 JUMPS P286N THIS 
CATSTR .ERRB LABEL P287 ??time 
@Code .ERRDEF .LALL P386 TITLE 
CODESEG ERRDIF LARGE P386N %TITLE 
@CodeSize ERRDIFI LE P386P %TRUNC 
COMM ERRE LENGTH P387 TYPE 
COMMENT ERRIDN .LFCOND P8086 .TYPE 
%CONDS ERRIDNI %LlNUM P8087 UDATASEG 
.CONST ERRIFNB %LlST PAGE UFARDATA 
CONST ERRIFNDEF .LlST %PAGESIZE UNION 
@Cpu ERRNB LOCAL PARA UNKNOWN 
%CREF ERRNDEF LOCALS %PCNT USES 
.CREF ERRNZ LOW PN087 ??version 
%CREFALL EVEN LT %POPLCTL WARN 
%CREFREF EVEN DATA MACRO PROC WIDTH 
%CREFUREF EXITM %MACS PTR WORD 
%CTLS EXTRN MASK PUBLIC @WordSize 
@Curseg FAR MASM PURGE .XALL 
@data FAR DATA MASM51 %PUSHLCTL .XCREF 
• DATA @fardata MOD PWORD .XLlST 
. DATA? .FARDATA MODEL QUIRKS XOR 
DATAPTR @fardata? .MODEL QWORD 
DATASEG • FA R DATA? MULTERRS RADIX 
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The format of a line 

Assembly language source code lines follow this format: 

<label> <instruction/directive> <operands> <icomment> 

where <label> is an optional symbolic name; <instruction/directive> 
is either the mnemonic for an instruction or a directive; 
<operands> contains a combination of zero, one, or two (or 
sometimes more) constants, memory references, register 
references, and text strings, as required by the particular 
instruction or directive; <;comment> is an optional comment. 

A backslash (\) can be placed almost anywhere as a line
continuation character. It cannot be used to break up strings or 
identifiers. The backslash means "read the next line in at this 
point and continue processing." This way you can use it naturally 
without losing the ability to comment each line the way you like. 
For example, 

foo mystructure \ 
<0, \ 
1, \ 
2> 

iStart of structure fill. 
iZero value is first. 
iOne value. 
iTwo value and end of structure. 

There are contexts where the line-continuation character is not 
recognized. In general, it isn't recognized in any context where 
characters are treated as text rather than identifiers, numbers, or 
strings, or in MASM mode when the line continuation is used in 
the first two symbols in the statement. For example, 

ifdif <123\>,<456\> 

does not recognize the two enclosed line-continuation characters. 

comment \ 

begins a comment block, but does not define a near symbol called 
COMMENT. 

The line-continuation character is also not recognized inside of 
macro definitions. It is recognized, however, when the macro is 
expanded. 

Let's look more closely at each of these elements of assembly 
language code. 
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Labels are nothing more than names used for referring to 
numbers and character strings or memory locations within a 
program. Labels let you give names to memory variables, values, 
and the locations of particular instructions. For example, the 
following code, which calculates five factorial (1 x 2 x 3 x 4 x 5 = 
120), uses several labels: 

. MODEL small 

.STACK 200h 
• DATA 

FactorialValue ow ? 
Factorial OW? 

• CODE: 
FiveFactorial PROC 

mov ax,@data 
mov ds,ax 
mov [FactorialValue],l 
mov [Factorial],2 
mov cx,4 

FiveFactorialLoop: 
mov ax, [Factorial Value] 
mul [Factorial] 
mov [FactorialValue],ax 
inc [Factorial] 
loop FiveFactorialLoop 
ret 

FiveFactorial ENDP 
END 

The labels FactorialValue and Factorial are equivalent to the 
addresses of two 16-bit variables; they're used to refer to those 
two variables later in the code. The label FiveFactorial is the name 
of the subroutine (or function or procedure) containing the code, 
allowing other parts of this program to call this code. Finally, the 
label FiveFactorialLoop is equivalent to the address of the 
instruction 

mov ax, [Factorial Value] 

so that the LOOP at the end of the code can branch back to that 
particular instruction. 

Labels can consist of the following characters: 

A-Z a-z @ $ ? 0-9 
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ADD AX,DX Is forced to the 
right because of the length 

of DoAdditlon, making for 
less readable code. 

A period (.) is also allowed in MASM mode (discussed in Chapter 
11), as the first character only. The digits 0-9 cannot be used as the 
first character of a label. A single $ or ? has a special meaning, so 
neither can be used as a user symbol name. 

Each label must be defined only once; that is, labels must be 
unique. (There are exceptions to this rule; for example, special 
labels defined with the = directive and local labels in macros and 
Ideal mode subroutines.) Labels can be used as operands any 
number of times. 

A label can appear on a line by itself, that is, on a line without an 
instruction or directive. In this case, the value of the label is the 
address of the instruction or directive on the next line in the 
program. For instance, in the code 

jrnp DoAddition 

DoAddition: 
add ax,dx 

the next instruction executed after the JMP instruction, which 
branches to the label DoAddition, is ADD AX,DX. The preceding 
example is exactly the same as 

jmp DoAddition 

DoAddition: add ax,dx 

There are two advantages to putting each label on its own line. 
First, when you put each label on its own line, it's easier to use 
long labels without messing up the format of your assembler 
source code. Second, it's easier to add a new instruction right at a 
label if the label's not on the same line as an instruction. To 
convert the last example to 

jrnp DoAddition 

DoAddition: rnov dx, [MemVar] 
add ax,dx 

you would have to split DoAddition from ADD AX,DX and then 
add the new text. By contrast, if DoAddition were on a line by itself 
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registers of the 8086 are listed 
In Chapter 4. 
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(as in the earlier example), you could simply add a new line after 
DoAddition and be done with it. 

A label cannot be the same as any of the built-in symbols used in 
expressions. This includes the register names (AX, BX, and so on), 
and the operators used in expressions (PTR, BYTE, WORD, and so 
on). You also cannot use any of the I Fxxx directives or .ERRxxx 
directives as label names. A few other symbols reserved by Turbo 
Assembler can only be used in certain contexts: These include 
NAME, INCLUDE, and COMMENT, which can be used as structure 
member names but not as general-purpose symbols. (Refer to 
Chapter 9 for more about structures.) 

A safe approach is to avoid using any of the built-in symbol 
names for your labels. As an example, the labels 

bx DW a 
PTR: 

would be unacceptable, since BX is a register and PTR is an 
expression operator. However, the label 

Old BX DW a 

would be fine. 

The following are examples of acceptable labels: 

MainLoop 
calc_long_sum 
ErrorO 
iterate 
Draw$Dot 
Delay_lOa_milliseconds 

Both labels that appear on lines without directives or instruction 
mnemonics and labels that appear on lines with instructions must 
end with a colon. The colon merely ends the label, and is not part 
of the label itself. For example, in 

LoopTop: 
mov aI, [sil 
inc si 
and al,al 
jz Done 
jmp LoopTop 

Done: ret 
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Instruction 
mnemonics and 

directives 

the labels LoopTop and Done are defined with colons, but 
references to those labels do not use colons. 

Other labels generally should not have colons. The example code 
at the start of this section provides several instances of labels 
without colons. 

Make your labels meaningful. Contrast 

cmp al,'a' 
jb NotALowerCaseLetter 
cmp aI,' z' 
ja NotALowerCaseLetter 
sub al,20h ;convert to uppercase 

NotALowerCaseLetter: 

and 

cmp al,'a' 
jb Pl 
cmp al,'z' 
ja Pl 
sub al,20h ;convert to uppercase 

Pl: 

The version with descriptive labels is largely self-documenting, 
while the second version is cryptic, to say the least. Labels can 
also contain underscores; if you prefer, you can use labels like 
noCa_lower _case_letter or Not_A_Lower _Case_Letter. It's purely a 
matter of taste. 

The key field in a line of assembler code is the <instruction/ 
directive> field. This field can contain either an instruction 
mnemonic or a directive, two very different beasts. 

You've encountered instruction mnemonics earlier in this chapter; 
they're the human-readable names for the machine-language 
instructions the 8086 executes directly. MOV, ADD, MUL, and JMP 
are all instruction mnemonics, corresponding directly to the data 
movement, addition, multiplication, and branching instructions of 
the 8086. 
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Turbo Assembler assembles each instruction mnemonic directly 
to the corresponding machine-language instruction. Whenever 
you insert one instruction mnemonic in an assembler program, 
the result is one corresponding machine-language instruction in 
the executable code. 

Directives are quite the opposite of instruction mnemonics: They 
generate no executable code at all, but rather control various 
aspects of how Turbo Assembler operates, from the type of code 
assembled (8086,80286,80386, and so on), to the segments used, 
to the way in which listing files are generated. Although the 
distinction blurs at times, you might think of instruction 
mnemonics as generating the actual 8086 machine-language 
program, while directives are responsible for providing high-level 
features of Turbo Assembler that make assembly language 
programming easier. 

We will spend much of this manual teaching you about the 
various instruction mnemonics and directives provided by Turbo 
Assembler, all of which are discussed in Chapter 3 of the Reference 
Guide as well. There are a few directives that you'll need in every 
program you write, most notably the segment directives, which 
we'll cover in a section later in this chapter called "Segment 
directives" on page 103. Another directive you'll always need is 
the END directive, which we'll look at next. 

The END directive Each and every program must contain an END directive to mark 
the end of the program's source code. Any lines following an END 
directive are ignored by Turbo Assembler. If you omit the END 
directive, an error is generated; you might think that the end of 
the file would mark the end of the program, but not so-an END 
directive is always required. 

END is typical of directives in general in that it generates no code. 
For example, 

.M)DEL small 
• STACK 200h 
• CODE 

ProgramStart: 
mov ah,4ch 
int 21h 
END ProgramStart 

is perhaps the simplest possible assembler program, doing 
nothing more than immediately returning to DOS. Note the use of 
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If you have two addresses In 
your program, TLINK will use 

the first one It finds and 
Ignore the other. 

the END directive to terminate the bit of code this program 
consists of. 

You've no doubt noticed that ProgramStart appears on the same 
line with END in the example. Besides terminating programs, END 
optionally does double duty by indicating where execution 
should begin when the program is run. For any of a number of 
reasons, you may not want to start executing a program with the 
first instruction in the .EXE file; END takes care of such cases. For 
example, suppose you run the program assembled and linked 
from this code (DELAY.ASM): 

.MODEL small 

.STACK 200h 

.CODE 
Delay: 

mov cx,O 
DelayLoop: 

loop DelayLoop 
ret 

ProgramStart: 
call D~lay 

mov ah,4ch 
int 21h 
END ProgramStart 

ipause for the time required to 
i execute 64K loops 

Execution does not start with the first instruction in the source 
code, the MOV CX,O at label Delay. Instead, execution starts with 
the CALL Delay instruction at label ProgramStart, as specified by 
the END directive. 

In a program consisting of only one module (that is, one source 
code file), the END directive should always specify the start 
address for the program. In a program consisting of more than 
one module, only the END directive in the module containing the 
instruction at which the program is to start should specify the 
start address; the END directives in all other modules should 
appear as END, and nothing more. Think of it this way: Every 
program needs a place to start-but it would make no sense to 
have two or more places to start. Make sure you have one-and 
only one-start address per program. 
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Instruction mnemonics and directives tell Turbo Assembler what 
to do. Operands, on the other hand, tell Turbo Assembler what 
registers, parameters, memory locations, and so on to associate 
with each instance of an instruction or directive. A MOV 
instruction means nothing by itself; operands are necessary to tell 
Turbo Assembler where to move the value from and where to 
store it. 

Zero, one, two, or more operands are required for various 
instructions, and virtually any number of operands that will fit on 
a single line can be accepted by various directives; the correct 
number of operands depends on the specific instruction or 
directive. (Occasionally, three operands are allowed.) Possible 
operands include registers, constant values, labels, memory 
variables, and text strings. 

It's pretty obvious what an instruction with one operand does: It 
operates on that one operand. For example, 

push ax 

pushes AX onto the stack. Instructions with no operands are more 
obvious still. However, what about the case of an instruction with 
two operands, one of which is the source and the other the 
destination? For instance, when the 8086 executes 

mov ax,bx 

which register is it that gets read out, and which register is it that 
receives that value? 

You might think that the English equivalent of this instruction 
would read, "Move the contents of AX into BX," but that's not the 
case. Instead, the MOV instruction moves the contents of BX into 
AX. With MOV instructions, mentally substitute an equal sign for 
the comma between the two operands and then treat the line like 
a C (or Pascal) assignment statement. With this approach, the 
MOV example would translate into 

ax = bx; 

Admittedly, it's a bit confusing having the rightmost operand as 
the source, but at least 8086 assembly language is consistent in 

. this respect. You'll soon get used to it. 
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Register operands Registers are perhaps the most frequently used operands for 
instructions. Registers can serve as either source or destination 
and can even contain an address to jump to under certain 
circumstances. There's very little that can be done with constants, 
labels, or memory variables that can't be done with registers; on 
the other hand, there are a number of instructions that can only 
use register operands. 

Here are some examples of instructions with register operands: 

mov di,ax 
push di 
xchg ah,dl 
ror dx,cl 
in al,dx 
inc si 

Register operands can be mixed with other sorts of operands: 

mov al,l 
add [BaseCount],cx 
cmp 51, [bx] 

There's really very little to explain about the use of register 
operands. To use a register as an operand, you specify that 
register's name as an operand to an instruction, and the 
instruction uses that register. If there are two operands, and the 
register is the rightmost operand, it's the source register; if it's the 
leftmost operand, it's the destination register and may also be one 
of the source registers if the instruction requires two sources. For 
instance, in 

mov cx,l 
mov dx,2 
sub dx,cx 

ex is set to 1, OX is set to 2, and then ex is subtracted from OX 
with the result, 1, stored back in OX. ex is the rightmost operand 
to the SUB instruction, so it's one source register; OX is the 
leftmost operand, so it's both the other source and the destination. 
By the way, the action of the preceding SUB instruction is 
expressed in English as "subtract ex from OX." Using the 
approach of converting to e code to make sense of two-operand 
instruction, the previous SUB instruction translates to this: 
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dx -= ex; 

In Pascal, it translates to this: dx := dx-cx; 

Constant operands Registers are fine for storing variable values, but often you just 
need a constant value for an operand. For example, suppose you 
want to count 51 down by 4 in a loop, repeating the loop until 51 
reaches zero. You could use 

CountByFourLoop: 

dec si 
dec si 
dec si 
dec si 
jnz CountByFourLoop 

but it's much easier to use 

CountByFourLoop: 

sub si,4 
jnz CountByFourLoop 

Characters can be used as constant operands as well, since a 
character has a well-defined value. For example, since the 
character A has the decimal value 65, these two instructions are 
equivalent: 

sub al,'A' 
sub al,65 

Constant values can be specified in binary, octal, or hexadecimal 
notation, as well as in decimal. We'll discuss those notations in a 
later section entitled "Bits, bytes, and bases" (page 116). 

Constant operands can never be the leftmost of two operands, 
since it's clearly not possible for a constant to be the destination 
operand. Constant operands can, however, be used pretty much 
anywhere that using a value for a source operand makes sense. 
The 8086 does impose some limitations on the use of constants; 
for example, you can't push a constant value {this is only a 
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restriction of 8086/8088). To push the value 5, you must execute 
two instructions: 

mov ax,S 
push ax . . . 

You'll have to learn special cases where constants aren't allowed 
on a case-by-case basis. Fortunately, there aren't many such 
instructions, and, of course, Turbo Assembler lets you know right 
away if you try to use a constant incorrectly. 

Expressions Constant expressions can be used wherever constant values are 
accepted. Turbo Assembler supports full expression evaluation, 
including nested parentheses, arithmetic, logical, and relational 
operators, and a variety of operators for such purposes as 
extracting the segment and offset components of labels and 
determining the size of memory variables. 

For example, the code 

MemVar DB 0 
NextVar DB ? 

mov ax,SEG MemVar 
mov ds,ax 
mov bx,OFFSET MemVar+((3*2)-S) 
mov BYTE PTR [bx],l 

uses the SEG operator to load the constant value of the segment 
Mem Var resides in into AX. and then copies that value from AX. to 
OS. Next, this code uses a complex expression, involving the *, +, 
-, and OFFSET operators, that resolves to the value OFFSET 
MemVar+l, which is nothing more than the address of NextVar. 
Finally, the BYTE PTR operator is used to select a byte-sized 
operation when storing the constant value 1 to the location 
pointed to by BX, which is NextVar. 

An important point about expressions is that all expressions must 
resolve to a constant value. OFFSET MemVar is a constant value--
the offset of MemVar in its segment. After all, while the value 
stored at MemVar may change, MemVar itself certainly isn't going 
to move. 
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Turbo Assembler can evaluate expressions consisting of constant 
values as it assembles your code, precisely because constant 
values are always known. To Turbo Assembler, OFFSET 
MemVar+2 is just like 5 + 2; since all the component parts of this 
expression are unchanging and well-defined at assembly time, the 
expression can be resolved to a single constant value. 

Here are the operators that can be used in expressions: 

<>, 0, D, LENGTH, MASK, SIZE, WIDTH 

• (structure member selector) 

HIGH, LOW 

+,-(unary) 

: (segment override) 

OFFSET, PTR, SEG, THIS, TYPE 

*, /, MOD, SHL, SHR 

+, - (binary) 

EQ, GE, GT, LE, L T, NE 

NOT 

AND 

OR,XOR 

LARGE, SHORT, SMALL, .TYPE 

Many operators are self-explanatory, doing just what you'd 
expect them to do in any arithmetic expression. We'll explain 
operators as we come to them in this chapter. In the meantime, 
refer to Chapter 2 of the Reference Guide if you've any questions 
about specific operators. 

Label operands Labels can serve as operands to many instructions. Given the 
proper operators, labels can be used to generate constant values. 
For example, 

MemWord ow 1 

mov al,SIZE MemWord 
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Memory-addressing 
modes 

moves 2, the size in bytes of the memory variable Mem Word, into 
AL. In this context, a label can become part of an expression, as 
illustrated in the last section. 

Labels can also be used as the destinations of CALL and JM~ 
instructions. For example, in 

cmp ax,lOO 
ja IsAbovelOO 

IsAbovelOO: 

the JA instruction jumps to the address specified by the operand 
IsAbovel00 if AX. is above 100. Again, in this capacity labels are 
used as constants, specifying memory addresses to be branched 
to. 

Finally, labels can be used as operands in much the same way as 
registers are-as source or destination operands to data 
manipulation instruc~ions. The code 

TempVar DW ? 

mov [TempVar],ax 
sub ax, [TempVar] 

invariably leaves AX. containing zero, since the first instruction 
writes the value stored in AX. to the memory variable TempVar, 
and the second instruction subtracts the value stored in TempVar 
from AX. 

The use of labels as operands is part of the larger topic of 
memory-addressing modes, which we'll explore next. 

When you use a memory operand, exactly how do you specify 
which memory location you want to work with? The obvious 
answer is to give the name of the desired memory variable, as we 
did in the last section. You can subtract the memory variable 
Debts from the memory variable Assets with 

Assets OW 
Debts DW ? 

mov ax, [Debts] 
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FIgure 5.1 
The memory 

location of the 
character strIng 

Charstrlng 

sub [Assets],ax 

There's more to memory-addressing than meets the eye, though. 
Suppose you have a character string named CharString, 
containing the letters ABCDEFGHIJKLM, which starts at offset 
100 in the data segment, as shown in Figure 5.1. 

~ 

99 
CharString ----1 __ 100 

101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 

? 
'A' 
'B' 
'C' 
'0' 
'E' 
'F' 
'G' 
'H' 
'I' 
'J' 
'K' 
'L' 
'M' 
0 
? 

How can you read the ninth character, I, which is at address lOB? 
In C, you can just use 

C = CharString[8]; 

And in Pascal, you can use 

C := CharString[9]; 

But how can you do the same in assembler? Certainly, referencing 
CharString directly isn't going to do the trick, since the character 
at CharString is A. 

Actually, assembly language supports several different ways to 
handle the addressing of character strings, arrays, and data 
buffers. The simplest way to read the ninth character of Char String 
is 

• DATA 
CharString DB 'ABCDEFGHIJKLM',O 
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Figure 5.2 
Addressing the 

character string 
Charstrlng 

• CODE 

mov ax,@data 
mov ds,ax 
mov aI, [CharString+8] 

In this case, this is the same as 

mov aI, [100+8] (Ideal mode) 
mov al,ds:[lOO+8] (MASM mode) 

since CharString starts at offset 100. Turbo Assembler treats 
everything between square brackets as an address, so the offset of 
CharString and 8 are added together and used as a memory 
address. The instruction effectively becomes 

mov aI, [108] 
mov al,ds: [108] 

(Ideal mode) 
(MASM mode) 

as shown in Figure 5.2. 

~ 

99 
CharString • 100 

101 
102 
103 
104 
105 
106 
107 

CharString + 8 ~ 108 
109 
110 
111 
112 
113 
114 

? 
'A' 
'B' 
'C' 
'0' 
'E' 
'F' 
'G' 
'H' 
'I' 
'J' 
'K' 
'L' 
'M' 
0 
? 

ALI 

This sort of addressing, where a memory location is specified 
either by its name or by its name plus some constant, is known as 
direct addressing. While direct addressing is straightforward to 
use, it's not very flexible because it accesses the same memory 
address every time. Let's look at another, more flexible way to 
address memory. 
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Figure 5.3 
Using BX to address 

Charstrlng 

96 

Consider the following, which also loads the ninth character of 
CharString into AL: 

mov bx,OFFSET CharString+8 
mov aI, [bx] 

This example uses BX to point to the ninth character. The first 
instruction loads BX with the offset of CharString (remember that 
the OFFSET operator returns the memory offset of a labeD, plus 8. 
(This is an expression, with Turbo Assembler doing the OFFSET 
calculation and the addition at assembly time.) The second 
instruction specifies that AL should be loaded with the contents of 
the memory offset pointed to by BX, as shown in Figure 5.3. 

99 
CharString ---ta_ 100 

BX I 108 

101 
102 
103 
104 
105 
106 
107 

I~ 108 
109 
110 
111 
112 
113 
114 

~ 

? 
'A' 
'B' 
'C' 
'0' ALI 
'E' 
'F' 
'G' 
'H' 
'I' 
'J' 
'K' 
'L' 
'M' 
0 
? 

It's the square brackets that indicate that the memory location 
pointed to by BX, rather than BX itself, should be the source 
operand. Don't forget the brackets when using BX as a memory 
pointer; for example, 

mov ax, [bx] iload AX from the memory offset 
i pointed to by BX 

and 

mov ax,bx iload AX with the contents of BX 

are two very different instructions. 
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Why bother to first load BX with the offset of a memory variable 
and then access memory using BX as a pointer, when a single 
instruction with a direct operand does the same thing? The special 
quality of registers used as memory pointers is that, unlike 
instructions that use direct operands, instructions that use 
registers as pointers can point to different memory addresses at 
different times in the execution of a program. 

Suppose you want to find the last character of a null-terminated 
CharString. In order to do this, you must start at the first character 
of CharString, search for the zero byte that ends the string, and 
then back up one character to read the last character. There's no 
way to do this with direct addressing, since the string could be of 
any length. Using BX as a pointer register, though, does the trick 
nicely: 

rnov bx,OFFSET CharString 
FindLastCharLoop: 

rnov aI, [bx] 
crop 
je 
inc 

al,O 
FoundEndOfString 
bx 

jrnp FindLastCharLoop 

;point to string start 

;get next string char 
;is this the zero byte? 
;yes, back to last char 
;point to next char 
;check the next char 

FoundEndOfString: 
dec bx ;point back to last char 
rnov aI, [bx] ;get the last char in the string 

If you're going to search through memory for characters or 
words, if you're going to manipulate arrays, or if you're going to 
copy blocks of data about, you'll find that pointer registers are 
invaluable. 

BX is not the only register that can be used as a memory pointer. 
BP, 51, and DI can also be used, along with an optional constant 
value or label. The general form of a memory operand looks like 
this: 

[base registertindex+register+displacement] 

or 

[base registertindex] [register+displacement] 

where base register is BX or BP, index register is 51 or DI, and 
displacement is any 16-bit constant value, including expressions 
and labels. The three components are added together by the 8086 
each time an instruction using a memory operand is executed. 
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Each of the three parts of a memory operand is optional, although 
. obviously you must use at least one of the three (or else you'd 
have no memory address at a11!). Here's how the elements of a 
memory operand look in another format: 

BX 51 
or + or + displacement 

BP D1 

(base) (index) 

It works out that there are 16 ways to specify a memory address: 

• [displacement] • [bp+displacement] 

• [bx] • [bx+displacement] 

• lsi] • [si+displacement] 

• [di] • [di+displacement] 

• [bx+si] • [bx+si+displacement] 

• [bx+di] • [bx+di+displacement] 

• [bp+si] • [bp+si+displacement] 

• [bp+di] • [bp+di+displacement] 

where, again, displacement is anything that works out to a 16-bit 
constant value. 

Sixteen addressing modes certainly seem like a lot, but if you look 
at the preceding list, you'll see that all those addressing modes are 
built from nothing more than a few elements combined in a few 
different ways. Here are some more ways you can load the ninth 
character of Char5tring into AL, using the various addressing 
modes: 

• DATA 
CharString DB 'ABCDEFGHIJKLM',O 

• CODE 
mov ax,@data 
mov ds,ax 

mov si,OFFSET CharString+8 
mov aI, [si] 
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rnov bx,B 
rnov aI, [CharString+bx] 

rnov bx,OFFSET CharString 
rnov aI, [bx+B] 

rnov si,B 
rnov aI, [CharString+si] 

rnov bx,OFFSET CharString 
rnov di,B 
rnov aI, [bx+di] 

rnov si,OFFSET CharString 
rnov bx,B 
rnov aI, [si+bx] 

rnov bx,OFFSET CharString 
rnov si,7 
rnov aI, [bx+si+l] 

rnov bx,3 
rnov si,S 
rnov aI, [bx+CharString+si] 

Believe it or not, all these instructions reference exactly the same 
memory location, [CharStringl+8. 

There are several interesting points about this example. First, you 
should understand that a plus (+) sign used inside square 
brackets has a special meaning. At assembly time, Turbo 
Assembler adds together all the constant values inside square 
brackets, so that 

rnov [10+bx+l+si+l00],cl 

effectively becomes 

rnov [bx+si+lll],cl 

Then, when the instruction is actually executed (when the 
program is run), the memory-addressing operands are added 
together on the fly by the 8086. If BX contains 25 and 51 contains 
52, then CL is stored to the memory address 25 + 52 + 111 = 188 
when the MOV instruction is executed. The key here is that it's the 
8086 that adds together the base register, the index register, and 
the displacement when this instruction is executed. To put it 
another way, Turbo Assembler adds the constants at assembly 

Chapter 5, The elements of an assembler program 99 



BP can be made to address 
the data segment, and BX, 
Sf, and DI can be made to 

address the stack segment. 
or the code segment, or the 

extra segment, by use of 
segment override prefixes. 
Chapter 9 covers segment 

override prefixes; most of the 
time, though, you won't 
need them, and for now 

we 'I/Ignore theIr exIstence. 
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Pick a style for your own 
code and stick with It. 

time, while the 8086 adds together the base and/or index and/or 
displacement fields as the instruction is actually executed. 

You might have noticed that we haven't used BP.in any of the 
examples so far. That's because BP behaves a little differently from 
BX. Recall that while BX is used as an offset into the data segment, 
BP is used as an offset into the stack segment. That means that BP 
can't normally be used to address CharString, which resides in the 
data segment (more on segments shortly). 

An explanation of the use of BP to address the stack segment is 
given in Chapter 4. For now, it's enough to know that BP can be 
used just as we've used BX in the examples, except that the data 
addressed must reside in the stack segment when BP is used. 

Finally, the square brackets around direct addresses are optional. 
That is, 

mov aI, [MemVar] 

and 

mov aI, MemVar 

do exactly the same thing. Nonetheless, we strongly recommend 
placing square brackets around all memory references, in order to 
red uce confusion and make your code as clear as possible. At 
some point, you'll undoubtedly come across code that lacks 
square brackets, since some people feel that the bracketless code is 
more intuitive. As usual, it's a matter of taste, and you'll find that 
your programming goes more smoothly if you choose a single 
memory-addressing style and use it consistently. 

You'll also run across memory-addressing forms like 

mov al,CharString[bx] 

and even 

mov al,CharString[bx] [si]t1 

All these forms are the same as putting the memory-addressing 
elements inside a single pair of square brackets and separating 
them with plus signs; the last example is the same as 

mov aI, iCharStringtbxtsitl] 

Square brackets around register pointers to memory are not 
optional. Without square brackets, for instance, BX is treated as an 
operand, not as a pointer to an operand. 
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Comments 

Comments make It easy for 
you or someone else to look 

over the code and quickly 
understand It. 

Last, but surely not least, we come to the comment field. 
Comments don't actually do anything, in the sense that they don't 
affect the code of the executable file generated by Turbo 
Assembler, but that doesn't mean they're not important. 

Most likely, you already know how to program in some high-level 
language-C, Pascal, Prolog, or whatever-since few people 
begin their programming careers with assembly language. As you 
learned that language, no doubt you were advised time and time 
again to comment carefully. That's good advice, since both 
complexity and passing time can make any program inscrutable 
even to its author. 

By comparison with assembly language, though, a Pascal 
program is virtually self-documenting. Pascal code is full of 
neatly delineated control structures, strongly typed variables, 
arithmetic expressions, and procedure and function calls comple,te 
with formal and actual parameters. 

Assembly language, on the other hand, has no built-in control 
structures, strong but erratically enforced data-typing, no 
arithmetic expressions involving variables, and no inherent 
parameter-passing mechanism. In short, assembler code is about 
as far from structured, easily maintained code as you're ever 
likely to see. This doesn't mean that assembler programs can't be 
structured, or that they can't be maintained, but rather that you 
must use comments (and subroutines and macros as well) to raise 
assembler code above its natural cryptic level. 

There are all sorts of ways to comment assembler code. One 
useful approach is to put a comment at the right margin of each 
instruction that might benefit from a bit of explanation. Fdr 
instance, you've certainly got a better shot at understanding 

mov [bx],al istore the modified character 

at a glance than 

mov [bx],al 

You don't have to comment every line; after a while, comments 
like 

mov ah,l iDOS keyboard input function t 
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int 21h iinvoke DOS to get the next key press 

cease to serve any useful purpose. That doesn't mean you 
shouldn't comment such lines, though; instead, make your 
comments short and to the point: 

mov ah,l 
int 21h iget the next key press 

Another good commenting technique is to use lines of only 
comments to describe blocks of code. These comments can 
describe code operation at a higher level than comments for 
individual lines can. For example, consider the following: 

i Generate a checksum byte for the transfer buffer. 

mov bx,OFFSET TransferBuffer 
mov cx,TRANSFER_BUFFER_LENGTH 
sub al,al iclear the checksum accumulator 

Checksum: 
add al, [bx] 
inc bx 
loop Checksum 

iadd in the current byte's value 
ipoint to the next byte 

Note that we didn't comment every line. In light of the comment 
for this block of code, it's obvious that BX is loaded with the 
address of the transfer buffer, and that ex: is loaded with the 
length of the buffer. The key here is that the comment for this 
block of seven lines neatly summarizes the operation of the code, 
so the comments for the individual lines become less important. 
Someone skimming through the code is likely to benefit more 
from the block comments than from the line comments. 

Another still higher-level commenting technique is that of 
preceding each subroutine with a descriptive comment header. 
Such a header can contain a description of the subroutine, a 
summary of inputs and outputs, register preservation 
information, and miscellaneous notes on the subroutine's 
operation. For example, 

i Function to return the byte-sized checksum of a data buffer. 
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Input: 
DS:BX - a pointer to the start of the buffer 
CX - the length of the buffer 

i Output: 
AL - the buffer checksum 

Registers destroyed: 
BX, CX 

i NOTE: The buffer must not exceed 64K in length, and must 
i not cross a segment boundary. 

Checksum PROC NEAR 
sub al,al iclear the checksum accumulator 

Checksum: 
add aI, [bx] 
inc bx 
loop Checksum 
ret 

Checksum ENDP 

iadd in the current byte's value 
ipoint to the next byte 

If you think about it, you'll realize that once a subroutine is 
written and working properly, there's rarely any reason to ever 
look at the code of that subroutine again. What you will want to 
know is exactly what happens when you call that subroutine; in 
other words, you'll often want to know just how that subroutine 
interacts with the code that's calling it. A descriptive header such 
as the one we've written meets that need very well. 

There are many other commenting techniques, and you'll no 
doubt develop one suited to your programming style. The 
important thing is to make it a point to comment your code 
thoroughly from the start, so that commenting becomes an 
integral part of your programming style. 

Segment directives 

In both this chapter and the last, we've spent considerable time 
discussing what segments are and how they affect the code you 
write. There's one thing we haven't dealt with yet, though, and 
that's how Turbo Assembler knows exactly which segment or 
segments data and code reside in. 

Segment control is one of the more complex aspects of 8086 
assembly language; accordingly, Turbo Assembler provides not 
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See Chapter 9, -Advanced 
programming In Turbo 

Assembler- for a detailed 
explanation of segment 

directives. 

Simplified 

one but two sets of segment control directives. The first set, 
consisting of the simplified segment directives, makes segment 
control relatively easy and is ideal for linking assembler modules 
to high-level languages, but supports only some of the segment
related features of which Turbo Assembler is capable. The second 
set, consisting of the standard segment directives, is more 
complicated to use, but provides the complete segment control 
required by demanding assembler applications. 

Next, we'll look at both the simplified and the standard segment 
directives. We'll just give you an overview of how to use the 
segment directives so you'll know enough to write your own 
programs. 

segment The key simplified segment directives are .STACK, .CODE, .DATA, 
directives .MODEL, and DOSSEG. We'll cover these in two groups in this 

section, starting with .STACK, .CODE, and .DATA . 

. STACK, .CODE, and 
. DATA 

.STACK, .CODE, and .DATA define the stack, code, and data 
segments, respectively .. STACK controls the size of the stack. For 
example, 

. STACK 200h 

defines a stack 200h (512) bytes long. That's really all you have to 
do as far as the stack is concerned; just make sure you've got a 

For Information about .STACK directive in your program, and Turbo Assembler handles 
exceptions to using .STACK, the stack for you. 200h is a good stack size for normal programs, 
see the section -Forgetting although heavily stack-oriented programs-for instance, 

the stack or reserving a too-
small stack- on page 230 In programs using recursion-might require larger stacks. 

Chapter 6. 
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.CODE marks the start of your program's code segment. You 
might think it would be obvious to Turbo Assembler that all your 
instructions belong in the code segment. Actually, though, Turbo 
Assembler lets you have many code segments (by using the 
standard segment directives), and .CODE tells Turbo Assembler 
exactly which code segment to place your instructions in. 
Defining your code segment is even simpler than defining your 
stack segment, since there are no operands to .CODE. For 
example, 

.CODE 
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sub ax,ax 
mov cx,lOO 

;set the accumulator to zero 
;. of loops to execute 

.DATA is a bit more complex. As you'd expect, .DATA marks the 
start of your data segment. You should place your memory 
variables in this segment. For example, 

. DATA 
TopBoundary 
Counter 
ErrorMessage 

DW 100 
DW ? 
DB Odh,Oah,'***Error***' ,0dh,Oah,'$' 

That's certainly straightforward. The complex part of .DATA (and 
it's really not that complex) is that you must explicitly load the DS 
segment register with the symbol @data before you can access 
memory locations in the segment defined by .DATA. Since a 
segment register can be loaded from either a general-purpose 
register or a memory location, but can't be loaded with a constant, 
the OS segment register is generally loaded with a two-instruction 
sequence along the lines of 

mov ax,@data 
mov ds,ax 

(Any general-purpose register could be used instead of AX.) The 
preceding sequence sets OS to point to the data segment that 
starts with the .DATA directive. 

The following program displays the text stored at DataString on 
the screen (DSL YSm.ASM on disk): 

.r-KlDEL small 
• STACK 200h 
• DATA 

DataString DB 'This text is in the data segmentS' 
. CODE 

ProgramStart: 
mov bx,@data 
mov ds,bx ;set DS to the .DATA segment 
mov dx,OFFSET DataString ;point DX to the offset 

; of DataString in 
; the .DATA segment 

mov ah,9 ;DOS print string function f 
int 2lh ;invoke DOS to print string 
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mov ah,4ch iDOS terminate program function t 
int 21h iinvoke DOS to end program 
END ProgramStart 

Without the two instructions that set the OS register to the 
segment defined with .DATA, the print string function wouldn't 
work properly. Data S tring resides in the .DATA segment and 
cannot be accessed unless OS is set to that segment. You might 
want to think of it this way: When you invoke DOS to print a 
string, you pass the full segment:offset address of the string in 
OS:OX. Only after you loaded OS with the .DATA segment and 
OX with the offset of DataString did you have a full segment:offset 
pointer to DataString. 

You may well wonder at this point why it is that you have to load 
OS, but not CS or 55. Then, too, what about ES? 

Well, you never have to load CS explicitly because DOS does that 
for you when you run a program. After all, if CS weren't already 
set when the time came to execute the first instruction of a 
program, the 8086 wouldn't know where to find the instruction, 
and the program would never run. This may not be obvious to 
you right now, but trust us-CS is automatically set when a 
program begins, and you never need to load it explicitly. 

Likewise, 55 is set by DOS before a program begins, and generally 
stays the same for the duration of the program. While it is possible 
to change 55, it's rarely desirable, and it's certainly not something 
you'll want to attempt unless you know exactly what you're 
doing. So, like CS, 55 is automatically set when a program begins, 
and need not be touched thereafter. 

OS is quite different. While CS points to instructions, and 55 
points to the stack, OS points to data. Programs don't directly 
manipulate instructions or stacks-but they do constantly 
manipulate data directly. What's more, programs might want to 
get at data in any of several different segments at any time; 
remember that the 8086 allows you to access any memory location 
in a 1 Mb range, but only in blocks of 64K (relative to a segment 
register) at a time. 

You may well want to load OS with one segment, access data in 
that segment, and then load OS with another segment in order to 
access a different block of data. In small- and medium-sized 
programs, such as those we've presented here, you'll never need 
more than one data segment, but larger programs often use 
multiple data segments. Also, you'll need to load OS with 
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different values if you want to access system memory areas, such 
as the memory locations used by the BIOS. 

The upshot of all this is that Turbo Assembler lets you set DS to 
any segment at any time. In return for this flexibility, you must 
explicitly set DS to the segment you want-usually @data, which 
is equivalent to the segment that starts with .DATA-before you 
access memory locations in that segment. 

The ES segment register is loaded just like DS. Often, you won't 
need to bother with ES at all, but when you do need to access a 
memory location in the segment pointed to by ES, you must first 
load ES with that segment. For example, the following program 
loads ES with the .DATA segment, then loads a character to print 
from that segment via ES: 

.MJDEL small 
• STACK 200h 
• DATA 

Output Char DB ' B' 
• CODE 

ProgramStart: 
mov dx,@data 
mov es,dx ;set ES to the .DATA segment 
mov bx,OFFSET OutputChar ;point BX to offset of Output Char 
mov al,es:[bx] ;get character to output from 

; segment pointed to by ES 
mov ah,2 ;DOS display output function I 
int 21h ;invoke DOS to print character 
mov ah,4ch ;DOS terminate program function I 
int 21h ;invoke DOS to end program 
END ProgramStart 

Note that ES is loaded with the two-instruction sequence 

mov dx,@data 
mov es,dx 

just as DS was earlier. 

Admittedly, there's no particular reason to use ES rather than DS 
in this example, and, in fact, using ES meant that we had to use an 
ES: segment override prefix (as discussed in Chapter 9). However, 
there are many occasions when it's handy to have ES set to one 
segment while DS is set to another, particularly when the string 
instructions are used. 
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DOSSEG 

See Chapter 3 In the 
Reference Guide for more 

on DOSSEG. 

The DOSSEG directive causes the segments in an assembler 
program to be grouped according to the Microsoft segment
ordering conventions. For now, you don't need to worry about 
what that means; all you need to know is that almost all stand
alone assembler programs will work just fine if you start them 
with DOSSEG. 

While it is not necessary to specify DOSSEG when linking 
assembler modules to a high-level language, since the high-level 
language automatically selects Microsoft segment-ordering, 
DOSSEG doesn't hurt and is a useful reminder of the sort of 
segment-ordering that is in effect. 

All this means is that the simplest approach is to use DOSSEG as 
the first line in all your programs (unless you have a specific 
reason not to). That way, you'll be" able to rely on a consistent 
segment order . 

. MODEL The .MODEL directive specifies the memory model for an 
assembler module that uses the simplified segment directives. 
Note that near code is branched to (jumped to) by loading the IP 
register only, while far code is branched to by loading both CS 
and IP. Similarly, near data is accessed with just an offset, while 
far data must be accessed with a full segment:offset address. In 
short, far means that full 32-bit segment:offset addresses are used, 
while near means that 16-bit offsets can be used. 

These are the available memory models: 

tiny Both program code and program data must fit within 
the same 64K segment. Both code and data are near. 

small Program code must fit within a single 64K segment, 
and program data must fit within a separate 64K 
segment. Both code and data are near. 

medium Program code may be larger then 64K, but program 
data must fit within a single 64K segment. Code is far, 
while data is near. 

compact Program code must fit within a single 64K segment, 
but program data may be larger than 64K. Code is 
near, while data is far. No single data array may be 
greater than 64K. 
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large Both program code and program data may be larger 
than 64K, but no single data array may be larger than 
64K. Both code and data are far. 

huge Both program code and program data may be larger 
than 64K, and data arrays may exceed 64K in size. 
Both code and data are far. Pointers to elements 
within an array are far. 

Note that, from an assembler point of view, large and huge are 
identical. Huge model does not automatically support data arrays 
larger than 64K. 

Few assembler programs require more than 64K of code or data, 
so the small model serves well in most applications. You should 
use the small model whenever possible, because far code 
(medium, large, and huge models) makes program execution 
slower; far data (compact, large, and huge models) is considerably 
harder to manage in assembler. 

The memory models described here correspond to the memory 
models used by Turbo C (and many other compilers for the PC). 
Whenever you link an assembler module to a high-level language, 
be sure to use the correct .MODEL directive .. MODEL makes sure 
that assembler segment names correspond to those used by high
level languages, and that labels of type PROC, which are used to 
name subroutines, procedures, and functions, default to the 
type-near or far-used by high-level languages . 

• MODEL is required if you're using the simplified segment 
directives, since otherwise Turbo Assembler wouldn't know how 
to set up the segments defined with .CODE and .DATA .. MODEL 
must precede .CODE, .DATA, and .STACK. 

Here's the framework of a program using simplified segment 
directives: 

.MJDEL small 

. STACK 200h 
• DATA 

MemVar DW 0 

• CODE 
ProgramStart: 

mov ax,@data 
mov ds,ax 
mov ax, [MemVar] 
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mov ah,4ch 
int 21h 
END ProgramStart 

Other simplified There are several other less commonly used segment directives. 
segment directives You'll need these only for large or sophisticated assembler 

programs, so we'll just mention them now to let you know they 
exist; refer to Chapter 9 for more information . 

. DATA? is used just like .DATA except that it defines that portion 
of the data segment containing uninitialized data. This is usually 
used in an assembler module linked to a high-level language . 

. FAR DATA lets you define a far data segment, that is, a data 
segment other than the standard @data segment shared by all 
modules .. FARDATA allows an assembler module to define its 
own data segment of up to 64K in size. If a .FARDATA directiv~ 
has been given, @fardata is the name of the far data segment 
Specified by that directive, just as @data is the name of the data 
segment specified by .DATA . 

. FARDATA? is much like .FARDATA except that it defines an 
uninitialized far segment. As with .FARDATA and @fardata, if-a 
.FARDATA? directive has been given, @fardata? is the name of 
the far data segment specified by that directive . 

. CONST defines that portion of the data segment containing 
constant data. Once again, this only matters when linking 
assembler code to a high-level language. 

Some useful predefined labels are available when the simplified 
segment directives are used: 

• @FlleName is the name of the file being assembled. 

• @Curseg is the name of the segment Turbo Assembler is 
currently assembling into. 

• @CodeSlze is 0 in memory models with near code segments 
(tiny, small, and compact) and 1 in memory models with far 
code segments (medium, large, and huge). 

• Likewise, @DataSlzeis 0 in memory models with near data 
segments (tiny, small, and medium), 1 in compact and large 
memory models, and 2 in the huge model. 
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Standard 
segment 

directives 

This example Isn't terribly 
complicated, but It's clear 

that the standard segment 
directives are more complex 
than the simplified segment 

directives. Chapter 9 
describes the standard ones 

In detail. 

Next, we'll show the same sample program framework from the 
last section, but this time we'll use the standard segment 
directives SEGMENT, ENDS, and ASSUME: 

DGROUP GROUP _DATA, STACK 
ASSUME cs:_TEXT, ds:_DATA, 

STACK SEGMENT PARA STACK 'STACK' 
DB 200h DUP (?) 

STACK ENDS 
DATA SEGMENT WORD PUBLIC 'DATA' 

MemVar OW 0 

DATA ENDS 
TEXT SEGMENT WORD PUBLIC 'CODE' 

ProgramStart: 
mov ax,_DATA 
mov ds,ax 
mov ax, [MemVar] 

mov ah,4ch 
int 21h 

TEXT ENDS 
END ProgramStart 

ss:STACK 

Now you know why the simplified segment directives are called 
"simplified"! However, much of what the simplified segment 
directives do is intended to make it easier to link assembler 
modules to high-level languages and is unnecessary in stand
alone assembler programs. Here's the Hello, world program using 
standard segment directives: 

STACK SEGMENT PARA STACK 'STACK' 
DB 200h DUP (?) 

STACK ENDS 

Data SEGMENT WORD 'DATA' 
HelloMessage DB 'Hello, world' ,13,10,'$' 
Data ENDS 

Code SEGMENT WORD 'CODE' 
ASSUME cs:Code, ds:Data 

ProgramStart: 
mov ax, Data 
mov ds,ax iset OS to the Data segment 
mov dx,OFFSET HelloMessage iDS:DX points to 

i the hello message 
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mov ah,9 iDOS print string function t 
int 2lh iprint the hello string 
mov ah,4ch iDOS terminate program function t 
int 2lh iend the program 

Code ENDS 
END ProgramStart 

In this section, we're only going to give you an idea what each 
standard segment directive does. 

The SEGMENT directive The SEGMENT directive defines the start ofa segment. The label 
accompanying the SEGMENT directive is the name of the 
segment; for example, 

Cseg SEGMENT 

defines the start of a segment named Cseg. The SEGMENT 
directive may optionally specify a number of segment attributes, 
including alignment on a byte, word, doubleword, paragraph (16 
byte), or page (256 byte) memory boundary. Other attributes 
include the way in which the segment can be combined with 
other segments with the same name and the class of the segment. 

The ENDS directive The ENDS directive defines the end of a segment. For example, 

Cseg ENDS 

ends the segment named Cseg, which was started earlier with the 
SEGMENT directive. When you use the standard segment 
directives, you must explicitly end every segment. 

The ASSUME directive The ASSUME directive tells Turbo Assembler what segment a 
given segment register is currently set to. An ASSUME CS: 
directive is required in every program that uses the standard 
segment directives, since Turbo Assembler needs to know about 
the code segment in order to set up an executable program. 
ASSUME OS: and ASSUME ES: are usually used as well so that 
Turbo Assembler knows what memory locations you can address 
at any given time. 
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ASSUME lets Turbo Assembler check that each access to a named 
memory variable is valid, given the current segment register 
settings. For example, consider the following: 

Datal SEGMENT WORD ' DATA' 
Varl OW 0 
Datal ENDS 

Data2 SEGMENT WORD ' DATA' 
Var2 OW 0 
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Data2 ENDS 

Code SEGMENT WORD 'CODE' 
ASSUME cs:Code 

ProgramStart: 
mov ax, Datal 
mov ds,ax ;set OS to Datal 
ASSUME ds:Datal 
mov ax, [Var2] ;try to load Var2 into AX--this will 

. . . 
mov 
int 

Code ENDS 
END 

ah,4ch 
2lh 

; cause an error, since Var2 can't 
; be reached in segment Datal 

;DOS terminate program function I 
;end the program 

ProgramStart 

Turbo Assembler flags an error in this code because the code tries 
to access memory variable Var2 when OS is set to segment Datal, 
and Var2 can't be addressed unless OS is set to segment Datal. 

It's important to understand that Turbo Assembler doesn't 
actually know that OS has been set to Datal; rather, by using the 
ASSUME statement, you told Turbo Assembler to make that 

,assumption. ASSUME is your way to tell Turbo Assembler what 
the segment registers are set to at any given time, so that Turbo 
Assembler can let you know when you've attempted the 
impossible. 

Turbo Assembler can't catch all such mistakes, however. 
Whenever a memory reference involves a named memory 
variable, such as previous Varl or Var2, Turbo Assembler can 
check the validity of that reference, since each named memory 
variable is explicitly associated with a segment. There's no way 
Turbo Assembler can know what segment an instruction like 

mov ai, [bx] 

is intended to access, though. In such a case, Turbo Assembler 
must assume that the segment OS is set to is the segment you 
want to access. 

If a segment register doesn't currently point to any named 
segment, you can use NOTHING with ASSUME to convey that 
information to Turbo Assembler. For example, 

mov ax,Ob800h 
mov ds,ax 
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ASSUME ds:NOTHING 

sets DS to point to the color text screen and then informs Turbo 
Assembler that OS doesn't point to any named segment. Here's 
another way to point to the color text screen: 

ColorTextSeg SEGMENT AT OB800h 
ColorTextMemory LABEL BYTE 
ColorTextSeg ENDS 

mov ax,ColorTextSeg 
mov ds,ax 
ASSUME ds:ColorTextSeg 

Note that the AT directive that follows SEGMENT provides an 
explicit starting address for the segment. 

One final point about ASSUME: It may cause Turbo Assembler to 
use a different segment register than you expect to access memory 
in some cases. For example, consider the following code: 

Datal SEGMENT WORD ' DATA' 
Varl DW 0 
Datal ENDS 

Data2 SEGMENT WORD ' DATA' 
Var2 DW 0 
Data2 ENDS 

Code SEGMENT WORD 'CODE' 
ASSUME cs:Code 

ProgramStart: 
mov 
mov 
ASSUME 
mov 
mov 
ASSUME 
mov 

mov 
int 

Code ENDS 
END 

ax, Datal 
ds,ax 
ds:Datal 
ax,Data2 
es,ax 
es:Data2 
ax, [Var2] 

ah,4ch 
2lh 

ProgramStart 

;set DS to Datal 

;set ES to Data2 

;load Var2 into AX--Turbo Assembler 
; tells the 8086 to load 
; relative to ES, since Var2 
; can't be reached relative to DS 

;DOS terminate program function • 
;end the program 
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Segment override prefixes, 
and the standard segment 

directives In general, are 
discussed In Chapter 9. 

Simplified versus 
standard 
segment 

directives 

This example should look familiar; it's a modified version of the 
code we used earlier to show how ASSUME lets Turbo Assembler 
tell you when you've attempted an impossible memory reference. 
In this example, though, no error is reported, but that doesn't 
mean Turbo Assembler is letting you make a mistake. Instead, 
Turbo Assembler modifies 

mov ax, [Var2] 

to access Var2 relative to the ES segment register rather than the 
DS segment register. 

What happens is this: The two ASSUME directives have informed 
Turbo Assembler that DS is set to the Datal segment and that ES 
is set to the Data2 segment. Then, when the MOV instruction 
attempts to access Var2, which is in the Data2 segment, Turbo 
Assembler correctly concludes that there's no way Var2 can be 
accessed relative to OS; however, Var2 can be accessed relative to 
ES. Consequently, Turbo Assembler inserts a special code known 
as a segment override prefix before the MOV instruction in order to 
tell the 8086 to use the ES rather than the OS segment register. 

What does all this mean to you? It means that if you're careful to 
use ASSUME directives to let Turbo Assembler know the current 
OS and ES settings, Turbo Assembler can automatically help you 
out by checking that accesses to named memory variables are 
possible, and can even select the correct segment automatically in 
some cases. 

Now that you've seen both the simplified and standard segment 
directives, the question remains: Which set of segment directives 
should you use? The answer depends on the sort of assembler 
programming you need to do. 

If you're linking assembler modules to a high-level language, 
you'll almost always want to use the simplified segment 
directives. The simplified segment directives do a good job of 
taking care of the segment-naming and memory-model details 
associated with the interface to high-level languages. 

If you're writing small- or medium-sized stand-alone assembler 
programs, you'll generally want to use the simplified segment 
directives, since they're easier to use and make programs more 
readable. 
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If you're writing large stand-alone assembler programs with 
many segments and mixed -model programming (both near and 
far code and/or near and far data in the same program), you'll 
need to use the standard segment directives, since only with the 
standard segment directives do you get full control over segment 
type, alignment, naming, and the way in which segments are 
combined. 

The rule of thumb is this: Use the simplified segment directives 
until you find you need the complete control over segment 
definition that only the standard segment directives can provide. 

Allocating data 
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Bits, bytes, and 

Now that you know how to create segments, let's look at how to 
fill those segments with meaningful data. The stack segment is no 
problem; the stack resides there, and you can access the stack with 
PUSH, POP, and addressing by way of the BP register. The code 
segment is filled with the instructions generated by the instruc
tion mnemonics in your programs, so that's no problem either. 

That leaves the data segment. Turbo Assembler provides you 
with a variety of ways to define variables in the data segment, 
both initialized to some value and uninitialized. In order to 
understand the sorts of data Turbo Assembler lets you define, we 
must first teach you a bit about the fundamentals of assembler 
data types. 

bases The fundamental unit of storage in a computer is a hit. A bit can 
store either the value 1 or the value O. A bit, by itself, is not very 
useful. The 8086 doesn't deal directly with bits; in fact, it deals 
with nothing smaller than a byte, which consists of 8 bits. 

Since a bit is effectively a base 2 digit, a byte contains an 8-bit, 
base 2 number. The largest possible 8-bit, base 2 number follows: 

2 to the Oth power: 1 
2 to the 1st power: 2 
2 to the 2nd power: 4 
2 to the 3rd power: 8 
2 to the 4th power: 16 
2 to the 5th power: 32 
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2 to the 6th power: 
2 to the 7th power: 

64 
+ 128 

255 

This means that a byte can store one value in the range a to 255. 

Each of the 8086's 8-bit registers (AL, AH, BL, BH, CL, CH, DL, 
and DH) stores exactly 1 byte. Each of the 8086'5 1,000,000-plus 
addressable memory locations can also store exactly 1 byte. 

The PC's character set (which includes uppercase and lowercase 
letters, the digits 0 t09, special graphics, scientific, and foreign 
characters, and assorted punctuation and other characters) 
consists of precisely 256 characters in all. Does that number sound 
familiar? It should, since the PC's character set was designed so 
that 1 byte can store 1 character. 

So now you know about the byte, which is the smallest unit that 
the 8086 can address, and which can store one character, one 
unsigned value between 0 and 255, or one signed value in the 
range -128 to +127. A byte is clearly inadequate for many 
assembler programming tasks, such as storing integer and 
floating-point values and storing memory pointers. 

The next larger storage unit of the 8086 is the 16-bit word. A word 
is twice the size of a byte (16 bits). In fact, a word is stored in 
memory at two consecutive byte locations; the 8086's memory 
address space can be thought of as 500,OOO-plus words. Each of 
the 8086's 16-bit registers (AX, BX, CX, DX, 51, Dr, BP, SP, CS, DS, 
ES, SS, IP, and the flags register) stores one word. A word 
contains a 16-bit, base 2 number. The largest possible 16-bit base 2 
number follows: 

2 to the Oth power: 1 
2 to the 1st power: 2 
2 to the 2nd power: 4 
2 to the 3rd power: 8 
2 to the 4th power: 16 
2 to the 5th power: 32 
2 to the 6th power: 64 
2 to the 7th power: 128 
2 to the 8th power: 256 
2 to the 9th power: 512 
2 to the 10th power: 1024 
2 to the 11th power: 2048 
2 to the 12th power: 4096 
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2 to the 13th power: 8192 
2 to the 14th power: 16384 
2 to the 15th power: + 32768 

65535 

That's also the maximum size of an unsigned integer-which is no 
coincidence, since integers are 16 bits long. Signed integers (which 
can range from -32,768 to +32,767) are stored in words as well. 

Since words are 16 bits in size, they can address any offset in a 
given segment, so word-sized values are large enough to be used 
as memory pointers. As you'll recall, the word-sized BX, BP, 51, 
and DI registers are used as memory pointers. 

The values stored in 32-bit (4-byte) units are known as 
doublewords, or dwords. While the 8086 can't manipulate 32-bit 
integer values directly, instructions such as AOC and SBB make it 
possible to do 32-bit integer arithmetic with two successive 16-bit 
operations. Doublewords support unsigned integers in the range 
o to 4,294,967,295 and signed integers in the range -2,147,483,648 
to +2,147,483,647. 

The 8086 can load a segment:offset pointer from a doubleword 
into both a segment register and a general-purpose register with 
an LOS or LES instruction, but that's as far as direct support for 
doublewords goes. Single-precision floating-point numbers are 
also stored in doublewords. (Single-precision numbers require 4 
bytes and can handle values from 10-38 to 1038.) 

Each double-precision floating-point value requires a full 8 bytes. 
Such 64-bit values are known as quadwords. The 8086 has no 
built-in support for quad words. However, the 8087 numeric 
coprocessor uses quadwords as its basic data type. (Double
precision numbers handle values that range from 10-308 to 10308 

and have an accuracy up to 16 digits.) 

Turbo Assembler supports one more data size for temporary 
(intermediate) floating-point values, a data element 10 bytes in 
length. This 10-byte data element can also be used to store packed 
binary-coded decimal (BCD) values, in which each byte stores 
two decimal digits. 

It's worth noting that the 8086 stores word and doubleword 
values in memory, low byte first. That is, if a word value is stored 
at address 0, then bits 7 to 0 of the value are stored at address 0, 
and bits 15 to 8 are stored at address I, as illustrated by Figure 
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Figure 5.4 
storing WordVar 
and DwordVar. 

Decimal, binary, octal, 
and hexadecimal 

notation 

5.4.(WordVar contains the value 199Fh; DwordVar contains the 
value 12345678h.) 

WordVar ----1__ 0 
1 
2 
3 
4 

DWordVar ---- 5 
6 
7 
8 
9 

9Fh 
19h 

? 
? 
? 

78h 
56h 
34h 
12h 

? 

~ 

Similarly, if a doubleword value is stored at address 5, bits 7-0 are 
stored at address 5, bits 15-8 are stored at address 6, bits 23-16 are 
stored at address 7, and bits 31-24 are stored at address 8. This 
may seem a bit odd, but it's the way that every processor in the 
iAPx86 family works. 

Now that you know the assembly language data types, the next 
question is, IIHow do you represent values?" Decimal (base 10) 
values are easy, since we've been using decimal notation all our 
lives. It's certainly easy enough to type 

mov cx,100 ;set loop counter to 100 

and, indeed, Turbo Assembler assumes that values are expressed 
in decimal unless you indicate otherwise. Unfortunately, decimal 
is not particularly well suited for many aspects of assembly 
language because computers are binary (base 2) devices. 

Well, then, it seems logical to use binary notation in assembler 
programs. You can indicate to Turbo Assembler that a number is 
expressed in binary notation simply by putting a b at the end of 
the number. (Of course, the number must consist only of Os and 1s 
because those are the only two digits in binary notation.) For 
instance, decimalS is expressed in binary as 101b. 

The problem with binary notation is that base 2 numbers are so 
long that they're hard to use. This occurs because each base 2 digit 
can store only two possible values, 0 and 1, as shown in Table 5.1. 

For instance, here's the last example in binary notation: 

mov cx,1100100b ;set loop counter to 100 decimal 
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Word and doublew~rd binary values are even harder to read and 
use. 

If you're not already familiar with these notations, we strongly 
suggest that you get a good book on the topic, since fluency with 
binary, octal, and hexadecimal notation is a key element in 
assembly language programming. 

Decimal Binary Octal Hexadecimal 

0 0 0 0 
1 1 1 1 
2 10 2 2 
3 11 3 3 
4 100 4 4 
5 101 5 5 
6 110 6 6 
7 111 7 7 
8 1000 10 8 
9 1001 11 9 

10 1010 12 A 
11 1011 13 B 
12 1100 14 C 
13 1101 15 D 
14 1110 16 E 
15 1111 17 F 
16 10000 20 10 
17 10001 21 11 
18 10010 22 12 
19 10011 23 13 
20 10100 24 14 
21 10101 25 15 
22 10110 26 16 
23 10111 27 17 
24 11000 30 18 
25 11001 31 19 
26 11010 32 1A 

256 100000000 400 100 

4096 1000000000000 10000 1000 

65536 10000000000000000 200000 10000 

There are two notations, octal and hexadecimal, that are not only 
well matched to the underlying binary nature of the computer, 
but are also reasonably compact. 
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The suffix 0 Indicates octal 
notation: you can also use 

the suffix q, which Isn't so 
easily confused with zero. 

Figure 5.5 
From binary 

001100100 (decimal 
100) to octal 1440 

Figure 5.6 
From binary 

01100100 (decimal 
100) to 

hexadecimal 64 

Octal, or base 8, notation uses the digits 0 to 7, displayed in a 3-
bit-per-digit form. Figure 5.5 shows how the bits of the binary 
value 001100100b (100 decimal) can be collected in groups of three 
bits to form the octal value 1440. 

Binary 

Octal 144 

Consequently, octal numbers are only one third as long as their 
binary equivalents. In octal, the last example becomes 

mov cx,1440 iset loop counter to 100 decimal 

Octal notation works perfectly well and is widely used in some 
parts of the computer world. By and large, however, IBM PC 
programmers almost always use hexadecimal (base 16) notation 
rather than octal. 

Each hexadecimal digit can take on any of 16 values. Here's how 
you count from zero in hexadecimal: 

a 1 2 3 4 5 6 7 8 9 ABC D E F 10 ..• 

The letters after 9 are the six additional hexadecimal digits A to F. 
(Lowercase a to f can also be used.) While it might seem strange 
to use letters as digits, you've got no choice, since you need 16 
digits and there are only 10 traditional decimal digits. Figure 5.6 
shows how the bits of the binary value 01100100b (100 decimal) 
can be collected in groups of 4 bits to form the hexadecimal value 
64h. (Hexadecimal numbers are denoted with an h suffix.) 

Binary 

~r-=r 
Hexadecimal 6 4 
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Hexadecimal notation essentially displays values in 4-bits-per
digit form, as shown in Figure 5.6. Consequently, hexadecimal 
numbers are only one-fourth as long as their binary equivalents. 
In fact, any offset or other word value can be expressed in just 
four hexadecimal digits. In hexadecimal, the last example 
becomes 

mov cx,64h ;set loop counter to 100 decimal 

Hexadecimal numbers must begin with one of the digits 0 to 9, 
since a hexadecimal number like BAD4 could be mistaken for the 
label BAD4h. Here's an example where the hexadecimal value 
OBAD4h and the label BAD4h coexist: 

• DATA 

BAD4h DW ° . . . 
• CODE 

;label BAD4h 

mov ax,OBAD4h ;loads AX with a hexadecimal 

mov ax,BAD4h 

; constant (the leading ° dictates 
; that this is a constant) 

;loads AX from the memory 
; variable BAD4h (the lack of a 
; leading ° dictates that this 
; is a label) 

In general, only an operand starting with a digit 0 to 9 can be a 
constant numeric value. 

Floating-point numbers can be denoted in one of two ways. First, 
you can specify a floating-point value in the familiar mantissa/ 
exponent form; for example, 

1.1 
-12.45 

1. OE12 
252.123E-6 

Turbo Assembler converts the mantissa/ exponent form to binary 
form following floating-point format. If you wish, you may 
specify floating-point values directly in IEEE or Microsoft binary 
form by specifying the number in hexadecimal and placing an r 
suffix at the end of the value. 

Real numbers can only be used with the DD, DQ, and DT 
directives, which we discuss later. If you choose to use the r suffix, 
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you must specify exactly the maximum number of hexadecimal 
digits for the data type you're initializing (plus a leading zero, if 
necessary); for example, 

DD 40000000r 
DO OC014CCCCCCCCCCCCr 

DT 4037D529AE9E86000000r 

;2.0 (exactly 8 long) 
;-5.2 (16 long plus 
; a leading zero) 
;1.2EI7 (exactly 20 long) 

In general, it's much simpler to use the mantissa/exponent form. 

The letter d can be used as a suffix to indicate that a number is 
decimal. Why would you ever need to use the d suffix when 
Turbo Assembler assumes that all numbers are decimal? As you 
might have guessed, the answer is that you can tell Turbo 
Assembler to assume that numbers are in some notation other 
than decimal. This is done with the .RADIX directive, which we'll 
cover in the next section. 

Finally, character constant values can be used with the characters 
enclosed in single or double quotes. The value of a character is its 
ASCII value. For instance, all the following lines load the 
character A into AL: 

mov al,65 
mov al,41h 
mov al,'A' 
mov al,"A" 

Where can values in the various notations we've described be 
used? Binary, octal, decimal, hexadecimal, and character values 
can be used anywhere a constant can be used; for example, 

mov ax,1001b 
add cx,5bh 
sub [Count],1770 
and al,1 
mov aI,' A' 

Floating-point values can only be used with DO, OQ, and DT; BCD 
(Binary Coded Decimal) values can only be used with CT. 

Default radix selection Most of the time, you'll probably want to use decimal values by 
default, simply because that's the most familiar notation. 
Occasionally, however, it's convenient to have numbers without 
suffixes default to another notation-that's when the .RADIX 
directive is needed. (Radix means "base of a numbering system," 
by the way.) 
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Incidentally. the operand to 
.RADIX Is always decimal, no 

matter what default notation 
Is selected: In other words, 

one .RADIX directive doesn't 
affect the notation of the 

next .RADIX directive ~ 
operand. 
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.RADIX selects the base in which numbers without suffixes are 
assumed to be specified. For example, 

.RADIX 16 

selects base 16, or hexadecimal, as the default notation. The 
following code illustrates the effect of the .RADIX directive: 

. . . 
• RADIX 
mov 
• RADIX 
sub 

• RADIX 
add 

. . . 

16 
ax,100 
10 
ax,100 

2 
ax,100 

;select base 16, hexadecimal, as default 
;= 100h, or 256 decimal 
;select base 10, decimal, as default 
;-100 decimal, result is 
; 256 - 100 = 156 decimal 
;select base 2, binary, as default 
;+100b, or 4 decimal result is 
; 156 + 4 = 160 decimal 

. RADIX can select base 2,8, 10, or 16 as the default. 

There is a potential problem to consider when you use the .RADIX 
directive. No matter what default notation is selected, values 
specified with DO, DQ, and DT are assumed to be decimal values 
unless a suffix is used. This means that in 

.RADIX 16 
DD 1E? 

1E7 is taken to be 1 times 10 to the seventh power, not 1E711. In 
fact, you're best advised to place the h suffix on all hexadecimal 
values even after a .RADIX 16 directive. Why? Remember that b 
and d are valid suffixes, specifying binary and decimal notation, 
respectively. Unfortunately, band d are also valid hexadecimal 
digits. If .RADIX 16 is in effect, what is Turbo Assembler to make 
of numbers like 129D and 101B? 

As it happens, Turbo Assembler always pays attention to valid 
suffixes, so 129D is 129 decimal and 101B is 101 binary, or 5 
decimal. What this means is that even when .RADIX 16 is in effect, 
any hexadecimal number ending in b or d must have an h suffix. 
Given that, it's simplest just to put h suffixes on all hexadecimal 
numbers, and given that, it becomes clear that, in general, it's not 
particularly useful to use .RADIX 16. 
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Initialized data 
Now we're ready to look at the ways in which Turbo Assembler 
lets you define memory variables. First, let's look at the definition 
of initialized data. 

The data definition directives, DB, DW, DD, DF, DP, DQ, and DT, 
let you define memory variables of varying data sizes as follows: 

DB 1 byte 
DW 2 bytes = one word 
DD 4 bytes = one doubleword 
DF, DP 6 bytes = one far pointer word (386) 
DQ 8 bytes = one quad word 
DT 10 bytes 

For example, this code defines five initialized memory variables 
and illustrates how some of those variables might be used . 

• DATA 
ByteVar 
WordVar 
DwordVar 
OwordVar 
TwordVar 

mov 
mov 
int 

DB ' z' 
OW 101b 
DO 2BFh 
DO 3070 
DT 100 

ah,2 
dl, [ByteVar] 
21h 

add ax, [WordVar] 

i1 byte 
i2 bytes (1 word) 
i4 bytes (1 doubleword) 
i8 bytes (1 quadword) 
i10 bytes 

iDOS display output function f 
icharacter to display 
iinvoke DOS to display the character 

add WORD PTR [DwordVar],ax 
adc WORD PTR [DwordVar+2],dx 

Initializing arrays Multiple values may appear with a single data definition 
directive. For instance, 

SampleArray ow 0, 1, 2, 3, 4 

creates the five-entry array SampleArray, made up of word-sized 
elements, as shown in Figure 5.7. Any number of values that will 
fit on a line may be used with the data definition directives. 
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Figure 5.7 
Example of f1ve

entry array 

Initializing character 
strings 

? 
SampleArray o • 

1 
2 
3 
4 
? 

What if you want to define an array that's too large to fit on a 
single line? Just add more lines; it's not required that a label be 
used with the data definition directives. For instance, this code 
creates an array of doubleword-sized elements named 
SquaresArray, consisting of the squares of the first 15 integers: 

. . . 
SquaresArray 00 0, 1, 4, 9, 16 

00 25, 36, 49, 64, 81 
00 100, 121, 144, 169, 196 

Turbo Assembler lets you define blocks of memory initialized to a 
given value with the DUP operator. For example, 

BlankArray ow 100h oUP (0) 

creates an array BlankArray, consisting of 256 (decimal) words 
initialized to zero. Likewise, this creates an array of 92 bytes, each 
initialized to the character A: 

ArrayOfA DB 92 OUP (' A') 

What about creating character strings? Characters are valid 
operands to the data definition directives, so you could define a 
character string as follows: 

String DB 'A', 'B', 'C', '0' 

You don't have to do all that typing, though, since Turbo 
Assembler provides a handy shortcut: 

String DB 'ABCO' 

!fyou want to use a C-style string, which is terminated with a 
zero byte, you have to explicitly put the zero byte at the end. 
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Likewise, uyou want carriage-return or linefeed characters, you 
have to insert them as well. The following defines a string of text 
followed by a carriage-return character, a linefeed character, and a 
tennina ting zero byte: 

HelloString DB 'Hello, world' ,Odh,Oah,O 

You must print carriage-return/linefeed pairs in order to advance 
to the left margin of the next line. For example, the program 

.OODEL small 

.STACK 200h 
• DATA 

Stringl DB 
String2 DB 
String3 DB 

.CODE 
ProgramStart: 

mov 
mov 
mov 
mov 
int 
mov 
int 
mov 
int 
mov 
int 
END 

'Linel' ,'$' 
'Line2' ,'$' 
'Line3' ,'$' 

ax,@data 
ds,ax 
ah,9 
dx,OFFSET Stringl 
2lh 
dx,OFFSET String2 
2lh 
dx,OFFSET String3 
2lh 
ah,4ch 
2lh 
ProgramStart 

prints the following output: 

LinelLine2Line3 

;DOS print string function f 
;string to print 
;invoke DOS to print string 
;string to print 
;invoke DOS to print string 
;string to print 
;invoke DOS to print string 
;DOS terminate program function 

If, however, you add a carriage-return/linefeed pair at the end of 
each string, 

Stringl DB 
String2 DB 
String3 DB 

'Linel' ,Odh,Oah,'$' 
'Line2',Odh,Oah,'$' 
'Line3',Odh,Oah,'$' 

the output becomes 

Linel 
Line2 
Line3 
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Initializing with 
expressions and labels 

The initial value of an initialized variable must be a constant, but 
it doesn't necessarily have to be a number. Expressions are fine: 

TestVar DW ((924/2)+1) 

as are labels: 

. DATA 
Buffer DW 16 DUP (0) 
BufferPointer DW Buffer 

Whenever a label is used as an operand to a data definition 
directive, it's the value of the label itself that's used, not the value 
stored at that label. In the last example, the initial value of 
BufferPointer is the offset in the .DATA segment of Buffer, not the 
value zero that's stored at Buffer, much as if OFFSET Buffer had 
been used to initialize BufferPointer. In other words, given the 
previous initialization of BufferPointer, both 

mov ax, OFFSET Buffer 

and 

mov ax, [BufferPointer] 

load AX with the same value, the offset of Buffer. 

Labels can be used in data definition expressions. For example, 
the following code initializes the variable WordArrayLengfh to the 
length in bytes of WordArray: 

• DATA 
WordArray DW 50 DUP (0) 
WordArrayEnd LABEL WORD 
WordArrayLength DW (WordArrayEnd - WordArray) 

If you wanted to calculate the length of WordArray in words rather 
than bytes, you could do it simply by dividing the length in bytes 
by two: 

WordArrayLengthlnWords DW (WordArrayEnd - WordArray) / 2 

128 Turbo Assembler User's Guide 



Uninitialized data 
Sometimes it doesn't make sense to assign an mitial value to a 
memory variable. For instance, suppose your program reads the 
next ten characters typed at the keyboard into an array named 
KeyBuffer as follows: 

mov cx,10 if of characters to read 
mov bx,OFFSET KeyBuffer ithe characters will be 

GetKeyLoop: 
mov ah,l 
int 21h 
mov [bx),al 
inc bx 
loop GetKeyLoop 

i stored in Key Buffer 

iDOS keyboard input function f 
;get the next key pressed 
isave the character 
ipoint to storage location for next key 

You could define KeyBuffer to be initialized with 

Key Buffer DB 10 DUP (0) 

but that really doesn't make much sense, since the initial values in 
KeyBuffer are immediately overwritten in GetKeyLoop. What you 
really need is a way to define a memory variable as uninitialized, 
and Turbo Assembler provides that capability with the question 
mark (?). 

The question mark tells Turbo Assembler you are reserving a 
storage location, but not initializing it. For example, the proper 
way to define KeyBuffer in the last example is like this: 

KeyBuffer DB 10 DUP (?) 

This line reserves 10 bytes starting at the label KeyBuffer, but does 
not set those bytes to any specific value. 

Of course, whenever you use an uninitialized memory variable, 
you must be sure to initialize it in your program before using it. 
For instance, it would be a mistake to use the contents of KeyBuffer 
in the last example before filling it, since the initial values stored 
in KeyBuffer are not defined. 
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Named memory 

130 

locations So far, we've seen how to name memory locations by preceding a 
data definition directive such as DB with a label. The LABEL 
directive is another handy way to name a memory location, 
without allocating any storage. 

LABEL lets you specify both a label's name and its type without 
having to define any data. For example, the following is another 
way to define the array KeyBuffer used in the last example: 

KeyBuffer LABEL BYTE 
DB 10 DUP (?) 

The label types that can be defined with LABEL include 

BYTE 
WORD 
DWORD 
FWORD 

PWORD 
aWORD 
TBYTE 
NEAR 

FAR 
PROC 
UNKNOWN 

BYTE, WORD, DWORD, FWORD, PWORD, aWORD, and TBYTE 
are self-explanatory, labeling 1-,2-,4-,6-,8-, and lO-byte data 
items, respectively. Here's an example of initializing a memory 
variable as a pair of bytes but accessing it as a word: 

. DATA 
WordVar LABEL WORD 

DB 1,2 

.CODE 

mov ax, [WordVar] 

When this code is executed, AL is loaded with 1 (the first byte of 
WJrdVar), and AH is loaded with 2. 

NEAR and FAR are used in code to select the type of call or jump 
needed to reach a certain label. For example, here the first JMP is 
a far jump (loading both CS and IP) because it is to a FAR label, 
while the second jump is a near jump (loading only IP) because it 
is to a NEAR label. 
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FarLabel and NearLabel 
both describe the same 

address, that of the MOV 
Instruction, but allow you to 

branch to that location In 
two different ways. 

• CODE 

FarLabel LABEL FAR 
NearLabel LABEL NEAR 

rnov ax,l 

jrnp FarLabel 

jrnp NearLabel 

When you are using the simplified segment directives, PRoe is a 
handy way to define a label in the appropriate size, near or far, for 
the current code model. When the memory model is tiny, small, 
or compact, LABEL PROe is the same as LABEL NEAR; when the 
memory model is medium, large, or huge, LABEL PROe is the 
same as LABEL FAR. This means that if you change the memory 
model, you can change certain labels automatically as well. 

For example, in 

.IDDEL small 

.CODE 

EntryPoint LABEL PROC 

EntryPoint is near, but if you change the memory model to large, 
EntryPoint will become far. Normally, you will use the PRoe 
directive (discussed in the section "Subroutines" on page 161), 
rather than LABEL, to define the sort of entry points that you 
would want to have change as the memory model changes; 
however, sometimes you'll need more than one entry point into a 
subroutine and then you'll need LABEL, as well as PROe. 

Finally, we come to LABEL UNKNOWN. UNKNOWN is simply a 
way of saying that you're not sure what data type a label is going 
to be used as. If you're familiar with C, UNKNOWN is similar to 
C's void type. As an example of UNKNOWN, suppose you have a 
memory variable, TempVar, that's sometimes accessed as a byte 
and sometimes accessed as a word. The following code does the 
job by using LABEL UNKNOWN: 

• DATA 
TernpVar LABEL UNKNOWN 
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DB ?,? 

• CODE 

mov [TempVar],ax 

add dl, [TempVar] 

Up to this point, you've learned a lot about the nature of assembly 
language, fundamental assembler concepts, and the structure of 
assembler programs. Now that you've got that solid foundation, 
it's time to focus on assembler instructions, which form the part of 
any assembler program that actually puts the 8086 through its 
paces. Let's start with the most basic of assembler operations
moving data. 

MOV is the instruction that moves data on the 8086. Actually, MOV 
is something of a misnomer; COpy might be more like it, since 
MOV actually stores a copy of the source operand in the 
destination operand, without affecting the source. For example, 

mov ax,O 
mov bx,9 
mov ax,bx . . . 

first stores the constant 0 in AX, then stores the constant 9 in BX, 
and finally copies the contents of BX to AX as shown in these next 
few diagrams. 

After rnov ax,O: 

AX 

ex 

After rnov bx, 9: 

o 

? 
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AX 

BX 

Mer mav ax, bx: 

AX 

BX 

o 

9 

9 

9 

Note that the value 9 is not moved from BX to AX, but is rather 
copied from BX to AX. 

MOV accepts almost any pair of operands that makes sense except 
when a segment register is an operand. (We'll discuss this 
situation in the section "Accessing Segment Registers" on page 
138.) Any of the following can be used for the source (right-hand) 
operand to MOV: 

• a constant 
• an expression that resolves to a constant 

• a general-purpose register 

• a memory location accessed with any of the addressing modes 
discussed in the section "Memory-addressing modes" on page 
93 

Either a general-purpose register or a memory location can be 
used for the destination (left-hand) operand to MOV. 

size In assembly language, it's possible to copy byte or word values 
with the MOV instruction. Let's look at how Turbo Assembler 
determines what data size to work with. 

In many cases, the operands to MOV tell Turbo Assembler exactly 
what the data size should be. If a register is involved, then the 
data size must be the size of that register. For example, the data 
sizes of the following instructions are clear: 

mov al,! 
mov dx,si 
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mov bx, [di) 
mov [bp+si+2),al 

iword-sized 
ibyte-sized 

Likewise, named memory locations have inherent sizes, so the 
data sizes of the following instructions are known to Turbo 
Assembler: 

• DATA 
TestChar DB ? 
TempPointer OW TestChar 

. CODE 

mov [TestChar),'A' 
mov [TempPointer),O 

Sometimes, though, you'll have a MOV instruction that has no 
defined size whatsoever. For example, there's no way Turbo 
Assembler can be sure whether the following instruction should 
store a byte- or word-sized value: 

mov [bx),l 

and, in fact, Turbo Assembler will complain that it doesn't know 
how to assemble such an instruction. It would also be handy to be 
able to handle the case where you want to temporarily access a 
word-sized variable as a byte, or vice versa. 

Turbo Assembler gives you a means to flexibly define data size in 
the form of the WORD PTR and BYTE PTR operators. WORD PTR 
tells Turbo Assembler to treat a given memory operand as word
sized, and BYTE PTR tells Turbo Assembler to treat a given 
memory operand as byte-sized, regardless of its predefined size. 
For example, the last example could be made to store a word
sized value 1 to the word pointed to by BX with 

mov WORD PTR [bx),l 

or could be made to store a byte-sized value 1 to the byte pointed 
to by BX with 

mov BYTE PTR [bx),l 

Note that WORD PTR and BYTE PTR make no sense when 
applied to registers, since registers are always a fixed size; in this 
case, WORD PTR and BYTE PTR are ignored. Similarly, WORD 

Turbo Assembler User's Guide 



Signed versus 
unsigned data 

PTR and BYTE PTR are ignored when applied to a constant, 
which always takes on the same size as the destination operand. 

WORD PTR and BYTE PTR have another use, which is to 
temporarily select a different data size for a named memory 
variable. Why would that be useful? Consider the following: 

• DATA 
Sourcel DO l2345h 
Source2 DO 5432lh 
Sum DD ? 

. CODE 

mov ax, WORD PTR [Sourcel] ;get low word of 
; Sourcel 

mov dx,WORD PTR [Sourcel+2] ;get high word of 
; Sourcel 

add ax, WORD PTR [Source2] ;add to Source2 
; low word 

adc dx,WORD PTR [Source2+2] ;add to Source2 
; high word 

mov WORD PTR [Sum],ax ;store low word of sum 
mov WORD PTR [Sumt2],dx ;store high word of sum 

The variables this example works with are all long integers or 
doublewords. However, the 8086 can't perform doubleword 
addition directly, so you have to break up the addition into a 
series of word-sized operations. WORD PTR lets you access parts 
of Sourcel, Source2, and Sum as words, even though the variables 
themselves are doublewords. 

While the FAR PTR and NEAR PTR operators don't strictly affect 
data size, they are similar to WORD PTR and BYTE PTR. FAR PTR 
forces a label that is the target of a jump or call to be treated as a 
far label, causing the jump or call to load both CS and IP. NEAR 
PTR, on the other hand, forces a label to be treated as a near label, 
which is branched to by loading only IP. 

Both signed and unsigned numbers are made up of a series of 
binary digits. The distinction between the two is made by you, the 
assembler programmer, not by the 8086 itself. For example, the 
value OFFFFh can be either 65,535 or -1, depending on how your 
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Converting 

program chooses to interpret it. How do you know that OFFFFh is 
-1? Add 1 to it, 

mov ax,Offffh 
add ax,l · . . 

and you'll find that the result is 0, which is just what you'd expect 
to get from adding -1 and 1 together. 

The same ADD instruction works just fine whether you're 
considering the operands to be signed or unsigned. For example, 
suppose you were to subtract 1 from OFFFFh as follows: 

· . . 
mov ax,Offffh 
sub ax,l · . . 

The result would be OFFFEh, which is either 65,534 (as an 
unsigned number) or -2 (as a signed number). 

If this seems confusing, you should read one of the books 
recommended at the end of this book in order to learn more about 
two's complement arithmetic, the means by which the 8086 handles 
signed numbers. Unfortunately, we haven't the space to cover 
signed arithmetic here, although it's a useful subject for an 
assembler programmer to understand. Right now, you just need 
to know that ADD, SUB, ADC, and SBB work equally well with 
signed and unsigned numbers, so no special instructions are 
needed for signed addition and subtraction. Sign does matter for 
multiplication and division, as you'll see later; it also matte~ 
when you're converting between data sizes and when you're 
executing conditional jumps. 

between data Sometimes it's necessary to convert words to bytes, or vice versa. 
sizes This is one area where it matters whether the values are signed or 

unsigned. 

First, let's look at converting a word to a byte. That's simple; just 
toss away the high byte of the word. For example, 

mov ax,S 
mov bl,al 
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converts the word value 5 in AX to the byte value 5 in BL. Of 
course, you must be sure that the value you're converting will fit 
in a byte; trying to convert 100h to a byte with 

mov dx,lOOh 
mov al,dl 

would be fruitless, since only the lower byte, which is 0, would be 
stored in AL. 

Converting an unsigned byte to a word is simply a matter of 
zeroing the upper byte of the word. For example, 

mov e!,12 
mov al,e! 
mov ah,O 

converts the unsigned byte value 12 in CL to the unsigned word 
value 12 in AX. 

Converting a signed byte to a word is a bit more complex, so the 
8086 provides you with a special instruction to handle that task: 
CBW. CBW converts a signed byte in AL to a signed word in AX. 
The following code converts the signed byte value -1 in OH to the 
signed word value -1 in OX: 

mov dh,-l 
mov al,dh 
cbw 
mov dx,ax 

The 8086 also provides a special instruction, CWO, for converting 
a signed word in AX to a signed doubleword in OX:AX (the high 
word is in OX). The following converts the signed word value 
+ 10,000 in AX to the signed doubleword value +10,000 in OX:AX: 

mov ax,lOOOO 
cwd 

Unsigned word values can be converted to unsigned doubleword 
values by zeroing the high word of the value. 
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Although the MOV instruction can be used to move values to and 
from segment registers, this is a special case, more limited than 
other uses of MOV. If a segment register is one operand to MOV, 
the other operand must be a general-purpose register or a 
memory location. It's not possible to load a constant directly into a 
segment register, and one segment register may not be copied 
directly to another segment register. 

Since segment names are constants, it's necessary to load segment 
registers by way of a general-purpose register or a memory 
variable. For example, here are two ways to set ES to the .DATA 
segment: 

• DATA 
DataSeg ow @data 

• CODE 

mov ax,@data 
mov es,ax 

mov es, [DataSeg] 

What you'd like to do, but can't, is this: 

mov es,@data ithis won't work! 

In order to copy the contents of one segment register to another 
segment register, you have to pass the value through a general
purpose register or memory. For example, both 

mov ax,cs 
mov ds,ax · . . 

and 

· . . 
push cs 
pop ds · . . 
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and from the 

stack 

Exchanging data 

copy the contents of CS to OS. The first method executes faster, 
but the second is smaller in code size. 

It's worth noting that it's not only the MOV instruction that limits 
you when it comes to the use of segment registers; most 
instructions can't use segment registers as operands at all. 
Segment registers can be pushed to and popped from the stack, 
but that's about it; they can't be used in addition, subtraction, 
logical opera tions, or comparisons. 

You've already encountered the stack, the last-in, first-out storage 
area in the stack segment. The top of the stack is always pointed 
to by SP. The MOV instruction can be used to access data on the 
stack via memory-addressing modes that use BP as a base pointer; 
for example, 

mov ax, [bp+4J 

loads AX. with the contents of the word at offset BP+4 in the stack 
segment. (See Chapter 4 for a discussion of accessing the stack via 
BP.) 

Most often, the stack is accessed with PUSH and POP. PUSH 
stores the operand on top of the stack, and POP retrieves the 
value on the top of the stack and stores it in the operand. For 
example, 

. . . 
mov ax,l 
push ax 
pop bx 

pushes the value in AX. (which is 1) on top of the stack, then pops 
1 from the top of the stack and stores it in BX. 

The XCHG instruction lets you swap the contents of two 
operands. This is a convenient way to perform an operation that 
would otherwise require three instructions. For example, 

xchg ax,dx 

swaps the contents of AX. and DX, an operation that is equivalent 
to 
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. . . 
push ax 
mov ax,dx 
pop dx 

So far, we've discussed moving data between constant values, 
registers, and the memory address space of the 8086. As you'll 
recall, the 8086 has a second, independent address space, known 
as the input/output, or I/O, address space. The 65,536 I/O 
addresses, or ports, are generally used as control-and-data 
channels to devices such as disk drives, display adapters, 
keyboards, and printers. 

Most of the 8086's instructions, including MOV, can only access 
operands in the memory address space. Only two instructions, IN 
and OUT, can access I/O ports. 

IN copies a value from a selected I/O port into AL or AX. The I/O 
port address that serves as the source can be selected in one of 
two ways. If the I/O port address is less than 256 (lOOh), you can 
specify the address as part of the instruction; for example, 

in al,41h 

copies a byte from I/O port 41h to AL. 

Alternatively, you can use DX to point to the I/O port to be read: 

mov dx,41h 
in al,dx 

Why bother using DX as an I/O pointer? For one thing, if the I/O 
port address is greater than 255, you must use ox. For another, 
the use of OX gives you more flexibility in addressing I/O ports; 
for instance, a subroutine can use a passed I/O port pointer by 
loading it into DX. 

Don't be fooled by the syntax of the IN instruction; AL and AX are 
the only possible destination operands. Likewise, OX and a 
constant value less than 256 are the only possible source 
operands. Much as you might like to, you can never use an 
instruction like 

in bh,si ;this won't work! 
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Arithmetic 

OUT is exactly like IN, except that AL or AX is the source operand, 
and an I/O port pointed to by DX or a constant value less than 
256 is the destination operand. The following code sets I/O port 
3B4h to OFh: 

mov dx,3b4h 
mov al,Ofh 
out dx,al 

Data movement is certainly important, since a computer spends 
much of its time moving data about from here to there. Still, it's 
equally important to be able to manipulate the data by 
performing arithmetic and logical operations on it. Next, we'll 
take a look at the arithmetic and logical operations supported by 
the 8086. 

operations Even if your PC doesn't spend all its time crunching numbers, 
you know that it could if you needed it to. After all, spreadsheets, 
database programs, and engineering packages all run on the PC. 
Given that, it's pretty obvious that the 8086 must be a powerful 
math engine, right? 

Well, yes and no. While it's certainly true that software that runs 
on the 8086 can do wonderful math, the 8086 itself provides 
surprisingly rudimentary arithmetic capabilities. For starters, the 
8086 has no instructions to support any sort of floating-point 
arithmetic (arithmetic with numbers such as 5.2 and 1.03E17, as 
opposed to arithmetic with integers), let alone transcendental 
functions; that's the job of the 8087 numeric coprocessor. This 
doesn't mean that 8086 programs can't do floating-point 
arithmetic; certainly, spreadsheets run on PCs without 8087s. 
However, 8086 programs must perform floating-point arithmetic 
by a slow, involved series of shift, add, and test instructions, 
rather than with a single speedy instruction, as can be done with 
the 8087. 

Also, the 8086 provides no arithmetic or logical instructions that 
can directly handle operands larger than 16 bits. 
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subtraction 

What arithmetic operations does the 8086 have built-in support for, 
then? Well, the 8086 can perform 8- and 16-bit signed and 
unsigned addition, subtraction, multiplication, and division, and 
has special, fast instructions for incrementing and decrementing 
operands. The 8086 also provides support for addition and 
subtraction of values larger than 16 bits, although operations on 
such values require multiple instructions. 

We've already encountered the ADD and SUB instructions in 
many of our example programs. They operate much as you'd 
expect. ADD adds the contents of the source (right-hand) operand 
to the contents of the destination operand, and stores the result 
back in the destination operand. SUB is the same except that it 
subtracts the source operand from the destination. 

So, for example, this code first loads the value 99 stored at BaseVal 
into DX, then adds the constant 11 to it, resulting in the value 110 
in OX, and finally subtracts the value 10 stored at Adjust from OX . 

• DATA 
BaseVal DW 99 
Adjust DW 10 

• CODE 

mov dx, [BaseVal] 
add dx,ll 
sub dx,[Adjust] 

The result: 100 is stored in DX. 

32-bit operands 

ADD and SUB work with either 8- or 16-bit operands. If you want 
to add or subtract, say, 32-bit operands, you must break the 
operation into a series of word-sized operations and use ADC or 
SBB. 

When you add two operands, the 8086 stores a status in the carry 
flag (the C bit in the flags register) that indicates whether there 
was a carry out of the destination; that is, whether the result of the 
addition was too large to fit in the destination. You're familiar 
with the concept of carry-in decimal arithmetic; if you add 90 and 
10, you get a carry-out to the third digit: 
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90 
+ 10 

100 

Now consider this addition of two hexadecimal values: 

FFFF 
+ 1 

10000 

The lower word of the result is zero, and the carry is 1, since the 
result, 10000h, doesn't fit into 16 bits. 

ADe is just like ADD except that it takes the carry flag (which was 
presumably set by a previous addition) into account. Whenever 
you add two values that are larger than a word, add the lower 
(least significant) words of the values together first with ADD, 
then add the remaining words of the values together with one or 
more ADC instructions, adding the most-significant words last. 
For example, the following code adds a doubleword value stored 
in CX:BX to a doubleword value stored in DX:AX: 

add ax,bx 
adc dx,cx 

and the following adds the quad word value at DoubleLongl to the 
quadword value at DoubleLong2: 

mov ax, [DoubleLong1] 
add [DoubleLong2],ax 
mov ax, [DoubleLong1+2] 
adc [DoubleLong2+2],ax 
mov ax, [DoubleLong1+4] 
adc [DoubleLong2+4],ax 
mov ax, [DoubleLong1+6] 
adc [DoubleLong2+6],ax 

see operates along much the same lines as ADe. As see 
performs a subtraction, it takes into account any borrow that 
occurred during the previous subtraction. For example, the 
following code subtracts a doubleword value stored in CX:BX 
from a doubleword value stored in DX:AX: 
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sub ax,bx 
sbb dx,cx 

With both ADC and SBB, you must make sure that the carry flag 
hasn't changed since the last addition or subtraction, or else the 
carry /borrow,status stored in the carry flag would be lost. For 
instance, the following will not add CX:BX to DX:AX correctly: 

add ax,bx 
sub si,si 
adc dx,cx 

iadd the lower words 
iset S1 to 0 (clears the carry flag) 
iadd the upper words ••• 
i this won't work properly, since the 
i carry flag from the add has been destroyed! . . . 

Incrementing and decrementing 

When an assembler program needs to perform an addition, odds 
are good that it will be adding the value 1. This is known as 
incrementing. Likewise, the value 1 is often subtracted from 
registers and memory variables. This is known as decrementing. 
For operations such as counting down or counting up, and for 
advancing pointer registers through memory, incrementing and 
decrementing are all the addition and subtraction that's needed. 

In recognition of the frequent need for incrementing and 
decrementing, the 8086 provides the instructions INC and DEC. As 
you might expect, INC adds 1 to a register or memory variable, 
and DEC subtracts 1 from a register or memory variable. 

For example, the following code fills the 10-byte array T empArray 
with the numbers 0, 1,2,3,4,5, 6, 7,8,9: 

• DATA 
TempArray DB 10 DUP (?) 
FillCount DW ? 

• CODE 

mov al,O 

mov bx,OFFSET TempArray 
mov [FillCount),10 

FillTempArrayLoop: 
mov [bx),al 

ifirst value to store 
i in TempArray 
ipoint BX to TempArray 
if of elements to fill 

iset the current element 
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inc bx 

inc al 
dec [FillCount] 

jnz FillTempArrayLoop 

Why would you want to use, say, 

inc bx 

instead of 

add bx,l 

; of TempArray 
;point to next element of 
; TempArray 
;next value to store 
;count down t of elements 
; to fill 
;do another element if we 
; haven't filled all elements 

since they do the same thing? Well, where the ADD is 3 bytes long, 
the INC is only 1 byte long, and executes faster as well. In fact, it's 
more compact to perform two INC instructions than to add 2 to a 
word-sized register. (Increments and decrements of byte-sized 
register and INC instructions than to add 2 to a 
word-sized register. (Increments and decrements of byte-sized 
register and memory variables are 2 bytes long-still shorter than 
adding or subtracting.) 

In short, INC and DEC are the most efficient instructions available 
for incrementing and decrementing registers and memory 
variables. Use them whenever you can. 

The 8086 can perform certain types of integer multiplication and 
division. This is one of the strong points of the 8086, since many 
microprocessors provide no direct support at all for 
multiplication and division, and it's fairly complex to perform 
those operations in software. 

The MUL instruction multiplies two 8- or 16-bit unsigned factors 
together, generating a 16- or 32-bit product. Let's look at the 8-bit
by-8-bit multiply first. 

One of the factors to an 8-bit-by-8-bit MUL must be stored in AL; 
the other may be in any 8-bit general-purpose register or memory 
operand. MUL always stores the 16-bit product in AX. For 
example, 

mov al,25 
mov dh,40 
mul dh 

Chapter 5, The elements of an assembler program 145 



146 

multiplies AL times DH, placing the result, 1000, in AX. Note that 
MUL only requires one operand; the other factor is always AL (or 
AX, in the case of a 16-bit-by-16-bit multiply). 

A 16-bit-by-16-bit MUL is similar; one factor must be stored in AX, 
while the other may be in any 16-bit, general-purpose register or 
memory operand. MUL puts the 32-bit product in DX:AX, with the 
lower (least significant) 16 bits of the product in AX and the upper 
(most significant) 16 bits of the product in DX. For instance, 

rnov ax,lOOO 
rnul ax 

loads AX with 1000 and then squares AX, placing the result, 
1,000,000, in DX:AX. 

Unlike addition and subtraction, multiplication does care whether 
the operands are signed or unsigned, so there's a second 
multiplication instruction, IMUL, for multiplying 8- or 16-bit 
signed factors. Apart from handling signed values, IMUL is just 
like MUL. The code 

rnov al,-2 
rnov ah,lO 
irnul ah 

stores the value -20 in AX. 

The 8086 lets you divide a 32-bit value by a 16-bit value, or a 16-
bit value by an 8-bit value, with certain restrictions. Let's look at 
16-bit-by-8-bit division first. 

In 16-bit-by-8-bit unsigned division, the dividend must be stored 
in AX. The 8-bit divisor may be in any 8-bit, general-purpose 
register or memory variable. DIV always puts the 8-bit quotient in 
AL, and the 8-bit remainder in AH. For example, 

rnov ax,5l 
rnov dl,lO 
div dl 

results in 5 (51 divided by 10) in AL and 1 (the remainder of 51 
divided by 10) in AH. 
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Note that the quotient is an 8-bit value. This means that the result 
of a l6-bit-by-8-bit division must be no larger than 255. If the 
quotient is too large, an interrupt 0 (the divide-by-zero interrupt) 
is generated. The code 

mov ax,Offffh 
mov bl,l 
div bl 

generates a divide-by-zero interrupt. (As you might expect, a 
divide-by-zero interrupt is also generated if zero is used as a 
divisor.) 

For 32-bit-by-16-bit division, the dividend must be stored in 
OX:AX. The l6-bit divisor may be in any l6-bit, general-purpose 
register or memory variable. DIV always puts the l6-bit quotient 
in AX, and the l6-bit remainder in OX. For example, 

mov ax,2 
mov dx,l 
mov bx,10h 
div bx 

;load DX:AX with 10002h 

results in lOOOh (l0002h divided by lOh) in AX and 2 (the 
remainder of lOO02h divided by 10h) in OX. 

Again, the quotient is only a 16-bit value, so the result of a 32-bit
by-16-bit division must be no larger than OFFFFh, or 65,535, else a 
divide-by-zero interrupt is generated. 

Like multiplication, division cares whether signed or unsigned 
operands are used. DIV is used for unsigned operands, and IDIV is 
used for signed operands. For example, this stores -6 in AX and 
-67 in OX: 

. DATA 
TestDivisor DW 100 

• CODE 

mov ax,-667 
cwd 
idiv [TestDivisor] 

Chapter 5, The elements of an assembler program 

;set DX:AX to -667 

147 



Changing sign Finally, we come to the NEG instruction, with which you can 
reverse the sign of the contents of a general-purpose register or 
memory variable. For example, the code 

Logical 
operations 

Table 5.2 
The operation of 

the 8086 AND, OR. 
and XOR logical 

Instructions 

mov ax,l ;set AX to 1 
neg ax ;negate AX, which becomes -1 
mov bx,ax ;copy AX to BX 
neg bx ;negate BX, which becomes 1 . . . 

ends up with -1 in AX and 1 in BX. 

Turbo Assembler supports a full set of instructions that perform 
logical operations, including AND, OR, XOR, and NOT. These 
instructions are very useful for manipulating individual bits 
within a byte or word, and for performing Boolean algebra. 

Given two source bits, the logical instructions produce the results 
shown in Table 5.2. The logical instructions perform these bit-wise 
operations on corresponding bits of the source operands; for 
example, 

and ax,dx 

performs a logical AND with bit 0 of AX and bit 0 of OX as the 
source bits and bit 0 of AX as the destination, and does the same 
for bit 1, bit 2, and so on, up to bit 15. 

Source Bit A Source Bit B AANDB AORB AXORB 

0 0 0 0 0 
0 1 0 1 1 
1 0 0 1 1 
1 1 1 1 0 

The AND instruction combines two operands according to the 
rules shown in Table 5.2, setting each bit in the destination to 1 
only if both corresponding source bits are 1. AND lets you isolate a 
specific bit, or force specific bits to O. For example, 

. . . 
mov dx,3dah 
in al,dx 
and al,l 
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isolates bit 0 of the status byte of the Color /Graphics Adapter 
(CGA). This code leaves AL set to 1 if display memory on the 
CGA can be updated without causing snow, and set to 0 
otherwise. 

The OR instruction combines two operands according to the rules 
shown in Table 5.2, setting each bit in the destination to 1 if either 
of the corresponding source bits is 1. OR lets you force a specific 
bit(s) to 1. For example, 

mov ax,40h 
mov ds,ax 
mov bx,lOh 
or WORD PTR [bx],0030h 

forces both bit 5 and bit 4 of the BIOS equipment flag word to 1, 
causing the BIOS to support the monochrome display adapter. 

The XOR instruction combines two operands according to the 
rules shown in Table 5.2 (page 148), setting each bit in the 
destination to 1 only if one of the corresponding source bits is 0, 
and the other is 1. This lets you flip the value of selected bits 
within a byte. For example, 

mov al,OlOlOlOlb 
xor al,llllOOOOb 

sets AL to 10100101b, or ASh. The key here is that when AL is 
exc1usive-ORed with 11110000b, or OFOh, the 1 bits in OFOh flip the 
value of the corresponding bits in AL, while the 0 bits in OFOh 
leave the corresponding bits in AL unchanged. The result is that 
all bits in the upper nibble of AL are changed, while all bits in the 
lower nibble of AL remain the same. 

By the way, XOR is a handy way to zero a register. For instance, 
this code sets AX to 0: 

xor ,ax,ax 

Finally, NOT simply flips each bit in the operand to the opposite 
state, just as if an XOR with a source operand of OFFh had been 
executed. For instance, consider 

mov bl,lOllOOOlb 
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Shifts and rotates 

Figure 5.8 
Example of a shift 

left 

150 

not bi 
xor bl,Offh 

iflip BL to OlOOlllOb 
iflip BL back to l0110001b 

The 8086 provides a variety of means by which to move bits left 
or right in a register or memory variable. The simplest of these is 
the logical shift. 

SHL (shift left, also known as SAL) moves each bit in the 
destination one place to the left, or toward the most-significant 
bit. Figure 5.8 shows how the value 10010110b (96h or 150 
decimal) stored in AL is shifted left with SHL AL,t. The result is 
the value 00101100b (2Ch or 44 decimal), which is stored back in 
AL. The carry flag is set to 1. 

Carry AL 

CH ~o 
Bit 7 6 5 4 3 2 1 0 

The most-significant bit is shifted out.of the operand altogether 
and into the carry flag, and a 0 is shifted into the least-significant 
bit. 

Of what use is a left shift? The most common use of SHL is to 
perform fast multiplies by powers of two, since each SHL 
multiplies the operand by 2. For example, the following code 
multiplies OX by 16: 

shl dx,l iDX * 2 
shl dx,l iDX * 4 
shl dx,1 iDX * 8 
shl dx,1 iDX * 16 

Multiplying by shifts is much faster than using the MUL 
instruction. 

You'll notice that there's a second operand to SHL in the previous 
example, the value 1. This indicates that OX should be shifted left 
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Figure 5.9 
Example of SAR 
(arithmetic right 

shift) 

by 1 bit. Unfortunately, the 8086 doesn't support 2, 3, or any 
constant value other than 1 for a shift amount. However, CL can 
be used to supply a shift count; for instance, 

rnov cl,4 
shl dx,cl 

multiplies DX times 16, just as the last example did. 

If there's a left shift, it seems logical that there must also be a right 
shift, and there is-in fact, there are two right shifts. 

SHR (shift right) is much like SHL: It shifts the bits in the operand 
to the right, either by 1 or CL bits, then shifts the least-significant 
bit into the carry flag and shifts 0 into the most-significant bit. 
SHR is a quick way to do unsigned division by powers of two. 

SAR (arithmetic shift right) is just like SHR, except that with SAR, 
the most-significant bit of the operand is shifted right to the next 
bit, and then back to itself. Figure 5.9 shows how the value 
10010110b (96h or-106 in signed decimal) stored in AL is shifted 
right with SAR AL,1. The result is the value 11001011b (OCBh or 
-53 in signed decimal), which is stored back in AL. The carry flag 
is set to O. 

Carry 

~----------------------~~ 
Bit 7 6 5 4 3 2 1 o 

This has the effect of preserving the sign of the operand, so SAR is 
useful for performing signed division by powers of two. For 
example, 

rnov bx,-4 
sar bx,l 

leaves -2 stored in BX. 
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Figure 5.10 
Example of ROR 

(rotate right) 

There are also four rotate instructions: ROR, ROL, RCR, and RCL. 
ROR is like SHR, except that the least-significant bit is shifted back 
into the most-significant bit, as well as to the carry flag. Figure 
5.10 shows how.the value 10010110b (96h or 150 decimal) stored 
in AL is rotated right with ROR AL, 1. The result is the value 
01001011b (04Bh or 75 in decimal), which is stored back in AL. 
The carry flag is set to O. 

AL 

Bit 7 6 5 4 3 2 1 o 

ROL reverses the action of ROR, shifting the operand in a circular 
fashion, but to the left, with the most-significant bit shifting back 
into the least-significant bit. ROR and ROL are useful for 
realigning the bits in a byte or word. For example, 

mov si,49Flh 
mov e!,4 
ror si,e! 

leaves 149Fh in 51, moving bits 3-0 to bits 15-12, bits 7-4 to bits 3-0, 
and so on. 

RCR and RCL are a bit different. RCR is like a right shift in which 
the most-significant bit is shifted in from the carry flag. Figure 
5.11 shows how the value 100101106 (96h or 150 decimal) stored in 
AL is rotated right through the carry flag, which initially contains 
the value 1, with ROR AL, 1. The result is the value 11001011b 
(OCBh or 203 in decimal), which is stored back in AL. The carry 
flag is set to O. 
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Figure 5.11 
Example of RCR 

(rotate right and 
carry) 

Bit 7 6 5 4 3 2 1 o 

Likewise, RCL is like a left shift in which the least-significant bit is 
shifted in from the carry flag. RCR and RCL are useful for shifts 
involving multiple-word operands. For instance, the following 
multip~ies the doubleword value in DX:AX by 4: 

shl ax,l 
rci dx,l 
shl ax,l 
rci dx,l 

ibit 15 of AX is shifted into carry 
icarry is shifted into bit 0 of DX 
ibit 15 of AX is shifted into carry 
icarry is shifted into bit 0 of DX 

The rotate instructions, like the shift instructions, can shift an 
operand either by 1 bit or by the number of bits specified by CL. 

Loops and jumps 

Up until now, you've seen th~ 8086 execute instructions in strict 
sequence, with each instruction executing immediately after the 
instruction at the preceding address. Given the code 

mov ax, [BaseCountj 
add ax,4 

push ax 

you could be very sure that the ADD would execute immediately 
after the MOV, and the PUSH some time after that. 

If that were all the 8086 could do, it would be a dull computer 
indeed. A fundamental feature of any useful computer is the 
presence of an instruction that can jump, or branch, to an 
instruction other than the one following it in memory. Equally 
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Unconditional 

important is the ability to branch conditionally, depending on a 
status or on the result of an operation. Naturally, the 8086 has 
instructions for both sorts of branching; in addition, the 8086 
provides special branching instructions to facilitate repeated 
processing of a block of instructions. 

jumps The fundamental branching instruction of the 8086 is the JMP 
instruction. JMP instructs the 8086 to execute the instruction at the 
target label as the next instruction after the JMP. For example, 
when this code is finished 

rnov ax,l 
jrnp AddTwoToAX 

AddOneToAX: 
inc ax 
jrnp AXIsSet 

AddTwoToAX: 
inc ax 

AXIsSet: 

AX contains 3, and the ADD and JMP instructions following the 
label AddOneToAX are never executed. Here, the instruction 

jrnp AddTwoToAX 

instructs the 8086 to set IP, the instruction pointer, to the offset of 
the label AddTwoToAX, so the next instruction executed is 

add ax,2 

An operator sometimes used with JMP is SHORT. JMP usually 
uses a 16-bit displacement to point to the destination label; 
SHORT instructs Turbo Assembler to use an 8-bit displacement 
instead, thereby saving 1 byte per JMP. For instance, the last 
example is 2 bytes shorter as 

rnov ax,l 
jrnp SHORT AddTwoToAX 

AddOneToAX: 
inc ax 
jrnp SHORT AXIs Set 

AddTwoToAX: 
inc ax 
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AXIsSet: 

The drawback to using SHORT is that short jumps can only reach 
labels within 128 bytes of the JMP instruction, so in some cases 
Turbo Assembler can inform you that it can't reach a given label 
with a short jump. It only makes sense to use SHORT on forward 
jumps, since Turbo Assembler automatically makes backward 
jumps short if a short jump will reach the destination, and long 
otherwise. 

JMP can also be used to jump to another code segment, loading 
both CS and IP with a single instruction. For example, 

CSegl SEGMENT 
ASSUME cs:Csegl 

FarTarget LABEL FAR 

Csegl ENDS 

Cseg2 SEGMENT 
ASSUME cs:Cseg2 

jmp FarTarget ithis is a far jump 

Cseg2 ENDS 

performs a far jump. 

If you wish, you can use the FAR PTR operator to force a label to 
be treated as far; for instance, 

jmp FAR PTR NearLabel 
nop 

NearLabel: 

performs a far jump to NearLabel, even though NearLAbel is in the 
same code segment as the JMP instruction. 

Finally, you can jump to an address stored in a register or 
memory variable. For example, 

mov ax,OFFSET TestLabel 
jmp ax 
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TestLabel: 

branches to TestLabel, as does 

• DATA 
JumpTarget DW TestLabel 

• CODE 

jmp [JumpTarget] 

TestLabel: 

Jumps such as those described in the last section are only part of 
what you need to write useful programs. You really need to be 
able to write code that's capable of making decisions, and that's 
what the conditional jumps give you. 

A conditional jump instruction can either branch or not to a 
destination label, depending on the state of the flags register. For 
example, consider the following: 

mov 
int 
cmp 
je 
mov 

AWasTyped: 
push 

ah,l 
21h 
aI, 'A' 
AWasTyped 
[TempByte],al 

ax 

iDOS keyboard input function 
iget the next key press 
iwas capital "A" pressed? 
iyes, handle it specially 
ino, store the character 

isave the char on the stack 

First, this code gets a key press by way of a DOS function. Then it 
uses the CMP instruction to compare the character typed to the 
character A. The CMP instruction is like a SUB that doesn't affect 
anything; the whole purpose of CMP is to let you compare two 
operands without changing them. CMP does, however, set the 
flags just as SUB would. So, in the preceding code the zero flag is 
set to 1 only if AL con tains the character A. 

Now we come to the crux of the example. JE is a conditional jump 
instruction that branches only if the zero flag is 1. Otherwise, the 
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Table 5.3 
Conditional jump 

instructions 

instruction immediately following JE, in this case a MOV 
instruction, is executed. The zero flag will be set in the previous 
example only if the A key is pressed, and only then will the 8086 
branch to the PUSH instruction at the label A Was Typed. 

The 8086 provides a remarkable variety of conditional jumps, 
giving you the ability to branch on just about any flag or 
combination of flags you could imagine (and several more 
besides). You can jump conditionally on the state of the zero, 
carry, sign, parity, and overflow flags, and on the combination of 
flags that indicate the results of operations with signed numbers. 

Table 5.3 summarizes the conditional jump instructions. 

Name Meaning Rags Checked 

JB/JNAE Jump if below CF=l 
Jump if not above or equal to 

JAElJNB Jump if above or equal to CF=O 
Jump if not below 

JBElJNA Jump if below or equal to CF=lorZF=l 
Jump if not above 

JAlJNBE Jump if above CF=O and ZF=O 
Jump if not below or equal to 

JElJZ Jump if equal to ZF=l 

JNElJNZ Jump if not equal to ZF=O 

JUJNGE Jump if less than SF~F 
Jump if not greater than or equal to 

JGElJNL Jump if greater than or equal to SF=OF 
Jump if not less than 

JLElJNG Jump if less than or equal to ZF=l orSF~F 
Jump if not greater than 

JG/JNLE Jump if greater than ZF=O or SF=OF 
Jump if not less than or equal to 

JP/JPE Jump if parity PF=l 
Jump if parity even to 

JNP/JPO Jump if no parity PF=O 
Jump if parity odd 

JS Jump if sign SF=l 

JNS Jump if not sign SF=O 

JC Jump if carry CF=l 

JNC Jump if not carry CF=O 

JO Jump if overflow OF=l 
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Table 5.3: Conditional Jump Instructions (continued) 

JNO Jump if not overflow OF=O 

CF = carry flag; SF = sign flag; OF = overflow flag; ZF = zero flag; PF = parity flag 

For more information about synonyms and the conditional jump 
instructions in general, consult Chapter 6, which also provides 
detailed information about the ways in which each 8086 
instruction can modify the flags register. 

Flexible as they are, the conditional jump instructions have a 
serious limitation: They are always short jumps. In other words, 
the destination label for a conditional jump instruction must be 
within 128 bytes of the instruction. 

For example, Turbo Assembler can't assemble 

JumpTarget: . . . 
DB 1000 DUP (?) 

dec ax 
jnz JumpTarget 

since /umpTarget is over 1000 bytes away from the JNZ 
instruction. This is what's needed in a case like this: 

JumpTarget: 

DB 

dec 
jz 
jmp 

SkipJump: 

1000 DUP (?) 

ax 
SkipJump 
JumpTarget 

Here, a conditional jump is used to make the decision about 
whether to make a long unconditional jump. 

One sort of programming construct that can be built with 
conditional jumps is the loop. A loop is nothing more than a block 
of code that ends with a conditional jump, so that the code can be 

Turbo Assembler User's Guide 



executed repeatedly until a tennination condition is reached. You 
might be familiar with looping constructs such as for and while in 
C, while and repeat in Pascal, and FOR in BASIC. 

What are loops used for? They're used to manipulate arrays, test 
the status of I/O ports until a certain state is reached, clear blocks 
of memory, read strings from the keyboard, display strings on the 
screen, and more. Loops are the basic means of handling anything 
that requires repeating a given action. As such, they're used 
frequently; so frequently, in fact, that the 8086 provides several 
special instructions just for looping: LOOP, LOOPE, LOOPNE, and 
JCXZ. 

Let's look at LOOP first. Suppose you wanted to print the 17 
characters in the string TestString. You could do it with this code: 

• DATA 
TestString 

. CODE 

DB 'This is a test ••• ' 

mov cx,1? 
mov bx,OFFSET TestString 

PrintStringLoop: 
mov dl, [bx] ;get the next character 
inc 
mov 
int 
dec 
jnz 

bx 
ah,2 
21h 
cx 
PrintStringLoop 

;point to the following char 
;DOS display output fn t 
;invoke DOS to print character 
;count down the string length 
;do the next character, 
; if any remain 

However, there's a better way. You may remember that earlier we 
noted that CX is especially useful for code that loops. Here's how 

loop PrintStringLoop 

does just what 

dec cx 
jnz PrintStringLoop 

does, and does it faster and in one less byte. Whenever you have a 
loop that repeats until a counter reaches 0, just keep the count in 
CX and use the LOOP instruction. . 
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What about loops that have more complex termination conditions 
than a simple counter counting down? LOOPE and LOOPNE 
provide for two such cases. 

LOOPE does the same thing LOOP does, except LooPE will end 
the loop (fail to branch) if either ex counts down to 0 or the zero 
flag is set to 1. (Remember that the zero flag is set to 1 if the last 
arithmetic result was 0, or if the two operands to the last 
comparison were not equal.) Similarly, LOOPNE will end the loop 
if either ex counts down to 0 or the zero flag is cleared to O. 

Imagine you want to repeat a loop, saving key presses, until 
either the Enter key has been pressed or 128 characters have been 
read and stored. The following code uses LOOPNE to do the job: 

• DATA 
Key Buffer 

• CODE 

DB 

mov cx,12B 

12B DUP (?) 

mov bx,OFFSET KeyBuffer 
KeyLoop: 

mov 
int 
mov 
inc 
cmp 

ah,1 
21h 
[bx),al 
bx 
al,Odh 

;DOS keyboard input function t 
;read the next key 
;store the key 
;set pointer for next key 
;was it the enter key? 

loopne KeyLoop ;if not, get another key, unless we've 
; already read the maximum t of keys 

LOOPE is also known as LooPZ, and LOOPNE is also known as 
LOOPNZ, just as JE is also known as JZ. 

There's one more loop-related instruction, and that's JCXZ. JCXZ 
branches only if ex is 0; this is a useful way to test ex before 
beginning a loop. For example, the following code, which is called 
with BX pointing to a block of bytes to be set to 0 and ex 
containing the length of the block, uses JCXZ to skip the entire 
loop if ex is 0: 

jcxz SkipLoop 
ClearLoop: 

mov BYTE PTR [si),O 

inc si 

;if CX is 0, there's nothing to do 

;set the next byte to ° 
;point to the next byte to clear 
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loop ClearLoop 
SkipLoop: 

iclear the next character, if any 

Why is it desirable to skip the loop if ex is O? Well, if you execute 
LOOP with CX equal to 0, CX is decremented to OFFFFh, and the 
LOOP instruction branches to the destination label. Then the loop 
is executed 65,535 more times! What you want here is a ex setting 
of 0 to mean that no bytes are to be zeroed, not 65,536 bytes. JCXZ 
lets you test for that case quickly and efficiently. 

There are a couple of interesting notes about the looping 
instructions. First, be aware that a looping instruction, like a 
conditional jump, can only branch to a label within a range of 
about 128 bytes before or after the looping instruction. Loops 
larger than about 128 bytes require use of the "conditional jump 
around an unconditional jump" technique described in the 
previous section, "Conditional Jumps" (page 156). Second, it's 
important to realize that none of the looping instructions affect 
the flags in any way. This means that 

loop LoopTop 

isn't exactly the same as 

dec cx 
jnz LoopTop 

since DEC alters the overflow, sign, zero, auxiliary carry, and 
parity flags, while LOOP alters no flags at all. By the same token, 
the DEC instruction isn't exactly the same as 

sub cx,l 
jnz LoopTop 

since SUB affects the carry flag, while the DEC instruction does 
not. True, these are small differences, but it's important to 
understand the instruction set thoroughly when programming in 
assembly language. 

So far, we've only looked at programs consisting of a single long 
chunk of code. Each program has started at the top of the code, 
executed each instruction in turn (with an occasional detour for 
looping or decision-making), and then ended at the bottom of the 
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Figure 5.12 
Operation of a 

subroutine 

code. That's fine for small programs, but larger programs require 
a programming construct known as a subroutine. 

You're probably familiar with subroutines from a high-level 
language. In C, subroutines are known as functions, and in Pascal 
and Basic, they're known as procedures and functions. 
Subroutines, procedures, and functions all amount to the same 
thing-a separate section of code that accepts well-defined inputs, 
performs a certain action, and optionally returns a specific result 
value. 

Subroutines let you build programs in a modular fashion, with 
the subroutines hiding the details of specific tasks so you can 
focus on the overall flow of the program. Subroutines can also 
make programs far more compact, since a single subroutine can 
be called from many places in a program, and can even perform 
different functions when passed different values. In a large 
program (whether written in assembler, C, Pascal, or some other 
language), subroutines are essential to creating orderly, 
maintainable code. 

The fundamental operation of a subroutine is illustrated by Figure 
5.12. 

(IP is loaded with 1110, 
and 1007 is pushed on 

1000 moval,1 
the stack) 

DoCalc:1110 shl ai, 1 

1002 movbl,3 1112 add al,bl 

1004 call DoCalc 1114 and al,7 

1007 movah,2 .. L 1116 add al,'O' 

1009 Int 21h 
(The value 
on top of the 1118 ret 
stack, 1007, is popped 
into IP) 

The code that calls the subroutine executes a CALL instruction, 
. which pushes the address of the next instruction onto the stack 

and then loads IP with the address of the desired subroutine, 
thereby branching to the subroutine. The subroutine then 
executes just as any other code would. Subroutines can-and 
often do-contain calls to other subroutines; in fact, properly 
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designed subroutines can even call themselves, a practice known 
as recursion. 

When the subroutine has finished its task, it executes a RET 
instruction, which pops into IP the address pushed by the original 
CALL instruction. This causes execution of the calling routine to 
resume at the instruction following the CALL instruction. 

For example, the following program prints the three strings: 

Hello, world! 
Hello, solar system! 
Hello, universe! 

by using the subroutine PrintString: 

.IDDEL small 
• STACK 200h 
• DATA 

WorldMessage DB 'Hello, world!' ,Odh,Oah,O 
'Hello, solar system!' ,Odh,Oah,O 
'Hello, universe!' ,Odh,Oah,O 

SolarMessage DB 
UniverseMessage DB 

• CODE 
ProgramStart PRoe NEAR 

mov ax,@data 
mov ds,ax 
mov bx,OFFSET WorldMessage 
call PrintString iprint Hello, world! 
mov bx,OFFSET SolarMessage 
call PrintString iprint Hello, solar system! 
mov bx,OFFSET UniverseMessage 
call PrintString iprint Hello, universe! 
mov ah,4ch iDOS terminate program fn f 
int 21h i ••• and done 

ProgramStart ENDP 

Subroutine to print a null-terminated string on the screen. 

Input: 
DS:BX - pointer to string to print. 

Registers destroyed: AX, BX 

PrintString PROC NEAR 
PrintStringLoop: 

mov dl, [bx] 
and dl,dl 
jz EndPrintString 

inc bx 
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iget the next char of the string 
;is the character's value zero? 
iif so, then we're done with the 
i string 
ipoint to the next character 

163 



164 

mov ah,2 iDOS display output function 
int 21h iinvoke DOS to print the char 
jmp PrintStringLoop iprint the next char, if any 

EndPrintString: 
ret ;return to calling program 

PrintString 
ENDP 
END ProgramStart 

There are two things to note here. First, PrintString is not hard
wired to print a specific string, but rather prints whatever string 
the calling program points to by way of BX. Second, two new 
directives, PROC and ENDP, are used to bracket PrintString. 

PROC is used to start a procedure. The label associated with 
PROC, in this case PrintString, is the name of the procedure, just 
as if 

Print String LABEL PROC 

had been used. PROC does something more, though: It specifies 
whether near or far RET instructions should be used within that 
procedure. 

Let's take a moment to examine the implications of that last 
statement. Recall that when a near label is branched to, IP is 
loaded with a new value. When a far label is branched to, both CS 
and IP are loaded. If a CALL instruction references a far label, 
both CS and IP are loaded, just as with a jump. 

It stands to reason, then, that both CS and IP must be pushed 
when a far call occurs; otherwise, how could a RET instruction 
have enough information to return to the calling code? Think of it 
this way: If a far call loaded CS and IP, but pushed only IP, then a 
return could only load IP from the top of the stack. The result of 
the RET would be a CS:IP consisting of the CS of the called 
routine paired with the IP of the calling routine, which clearly 
makes no sense. 

Instead, what happens is that both CS and IP are pushed by a call 
to a far label. How, though, will Turbo Assembler know what 
type of returns, far or near, to generate in a given subroutine? One 
way is for you to specify the type of each return explicitly, with 
the RETN (near return) and RETF (far return) instructions. 
However, a better answer lies with the PROC and ENDP 
directives. 
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Small is the memory model 
default. 

The ENDP directive marks the end of subroutines that start with 
PROC directives. A given ENDP marks the end of the subroutine 
that started with PROC and the same label. For example, 

TestSub PROC NEAR 

TestSub ENDP 

marks the beginning and end of the subroutine TestSub. 

PROC and ENDP don't actually generate any code; they're 
directives, not instructions. What they do do is control the type of 
RET instructions used in a given subroutine. 

If the operand to a PROC directive is NEAR, then all RET 
instructions between that PROC directive and the corresponding 
ENDP directive are assembled as near returns. If, on the other 
hand, the operand to a PROC directive is FAR, then all RET 
instructions within that procedure are assembled as far returns. 

So, for example, to change the type of all RET instructions in the 
TestSub example to far, change the PROC directive to 

TestSub PROC FAR 

In general, it's best to use near subroutines whenever possible, 
since far calls are larger and slower than near calls, and far returns 
are slower than near returns. However, far subroutines become 
necessary when you need more than 64K of program code. 

If you're using the simplified segment directives, it's better still to 
use the PROC directive without any operand at all, as in 

TestSub PROC 

When Turbo Assembler encounters such a directive, it 
automatically makes the procedure near or far according to the 
memory model selected with the .MODEL directive. Tiny-, small-, 
and compact-model programs have near calls, while medium-, 
large-, and huge-model programs have far calls. For example, in 

.MJDEL small 

TestSub PROC 

TestSub is near-callable, while in 
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passing 

When register-passing, 
carefully comment each 

subroutine as to which 
parameters It expects to 

receive and In which 
registers they should be 

placed. 

Chapters 7 and 8 provide 
details about the 

parameter-passing 
conventions of Turbo C and 

Turbo Pascal and provide 
sample assembler code. 

Returning values 
Chapters 7 and 8 provide 

the details of the return-value 
conventions of Turbo C and 

Turbo Pascal. 
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.IDDEL large 

TestSub PROC 

TestSub is far-callable. 

Information is often passed to subroutines by the code that calls 
them (referred to as the "calling code"). For instance, the example 
program in the last section used the BX register to pass a pointer 
to the PrintString subroutine. This action is known as parameter
passing, where the parameters tell the subroutine exactly what to 
do. 

There are two commonly used ways to pass parameters: in the 
registers and on the stack. Register-passing is often used by pure 
assembler code, while stack-passing is used by most high-level 
languages, including Pascal and C, and by assembler subroutines 
called by those languages. 

Passing parameters in registers is as simple as it sounds-just put 
the parameter values in the appropriate registers and call the 
subroutine. Each subroutine can have its own parameter 
requirements, although you'll find it easiest to establish some 
conventions and stick with them in order to avoid confusion. For 
example, you might want to make it a rule that the first pointer 
parameter is always passed in BX, the second in SI, and so on. 

Passing parameters on the stack is a bit more complex. If you use 
stack-passing, you'll probably want to use the convention 
established by your favorite high-level language to easily link 
your assembler subroutines to code written in that language. 

Subroutines often return values to the calling code. In assembler 
subroutines that are going to be called from a high-level language, 
you must follow that language's conventions for returning values. 
For example, C-callable functions must return 8- and 16-bit values 
(chars, Ints, and near pointers) in AX, and 32-bit values (longs and 
far pointers) in DX:AX. 

In pure assembler code, you have complete freedom about how to 
return values; you can put them in any register you wish. In fact, 

Turbo Assembler User's Guide 



Preserving 

subroutines can even return status information in the flags 
register, in the form of carry or zero flag settings. However, once 
again, it's best to establish and follow some conventions. One 
useful convention is to return 8-bit values in AL and 16-bit values 
in AX; that way, you'll get in the habit of not expecting valuable 
information in AX to remain unchanged by calls. 

The major problem with using subroutine return values in 
assembler is that, in the course of returning information, 
subroutines may destroy information that's important to the 
calling routine. In assembler, it's easy to code a call to a subroutine 
without remembering that the subroutine returns a value in, say, 
51 (or that the subroutine simply alters 51); then you've got a 
program bug that might be hard to find. 

For this reason, it's best to keep the number of values a subroutine 
returns in the registers to a minimum-preferably no more than 
one-and to return additional values by storing them at memory 
locations indicated by passed pointers, as both C and Pascal do. 

registers Preserving registers properly during subroutine calls is, in 
general, a major problem of assembler programming. In modem 
high-level languages, a subroutine normally can't modify the 
calling code's variables unless the calling code explicitly makes 
that possible. Not so in assembler, where the calling code's 
variables are often stored in the same registers that the subroutine 
uses. For example, if a subroutine modifies a register that the 
calling code sets before the call but uses after the call, you've got a 
bug. 

One solution to this problem is that as each subroutine is entered, 
it always pushes all the registers that it uses, and then restores the 
registers by popping them before returning to the calling code. 
Unfortunately, this is time-consuming and requires a considerable 
amount of code. Another option is to make it a rule that calling 
code should never expect subroutines to preserve registers, and 
so should always preserve any registers it cares about. This is 
unattractive because a large part of the reason to use assembler is 
the freedom to use registers efficiently. 

In short, there's a conflict between speed and ease of coding in 
assembly language. If you're going to use assembler, you might as 
well write fast, compact code, and that means being intelligent 
about register preservation and playing an active part in making 

Chapter 5. The elements of an assembler program 167 



sure each subroutine call produces no register conflicts. Your best 
approach is to comment each subroutine carefully as to the 
registers it destroys, and then refer to those comments each time 
you use a CALL instruction. 

The sort of attention to detail involved both in keeping an eye on 
register preservation and in using registers as effectively as 
possible is an important part of good assembly language 
programming. High-level languages do those things for you-but 
then again, high-level languages can't create programs as fast and 
compact as those you're going to write in assembler. 

An example assembly language program 
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Let's put together what you've learned so far. This example 
program, WCOUNT.ASM, counts the number of words in a file 
and displays the count on the screen. 

Program to count the number of words in a file. Words are 
delimited by whitespace, which consists of spaces, tabs, 
carriage returns, and linefeeds. 

Usage: wc <filename. ext 

Select standard segment-ordering 
.MODEL small icode and data each fit in 64K 
.STACK 200h i512-byte stack 
• DATA 

Count OW 0 
InWhitespace DB ? 

TempChar DB? 

iused to count words 
iset to 1 when the last 
i·character read was whites pace 
itemporary storage used by 
i GetNextCharacter 

Result DB 'Word count: ',SOUP (?) 

CountlnsertEnd LABEL BYTE 
istring printed to report count 
iused to find the end of the 
i area the count value string 
i is stored in 

DB Odh,Oah,'$' iDOS fn #9 expects strings to 

• CODE 
ProgramStart: 

mov ax,@data 

i end with a dollar sign 

mov ds,ax ipoint OS to the .DATA segment 
mov [InWhitespace),l iassume we're in whitespace, 
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CountLoop: 
call 
jz 
call 
jz 
cmp 

jz 

inc 

mov 

jmp 
IsWhitespace: 

mov 
jrnp 

since the first non
whitespace we'll find will 
mark the start of a word 

GetNextCharacter iget next character to check 
CountOone i ••• if any 
IsCharacterWhitespace iis it whitespace? 
IsWhitespace iyes 
[InWhitespace],O icharacter is not whitespace-

i are we currently in 
i whitespace? 

CountLoop iwe're not in whitespace, and 

[Count] 

the character isn't white
i space, so we're done with 
i this character 
iwe are in whitespace, and the 

character is not whitespace, 
so we just found the start of 
a new word 

[InWhitespace],O imark that we're no longer in 
i whitespace 

CountLoop ido the next character 

[InWhitespace],l imark that we're in whitespace 
Count Loop ido the next character 

We're done counting--report the results. 

CountDone: 
mov ax, [Count] inumber to convert to a string 
mov bx,OFFSET CountInsertEnd-l 

ipoint to the end of the string 
; to put the number in 

mov cx,S ;number of digits to convert 
call ConvertNumberToString ;make the number a string 
mov bx,OFFSET Result ;point to result string 
call PrintString ;print the count 
mov ah,4ch ;OOS terminate program fn t 
int 21h ;end the program 

Subroutine to get the next character from the standard input. 

Input: None 

Output: 
AL = character, if one was available 
Z flag = ° (NZ) if character available, 

= 1 (Z) if end of file reached 

Chapter 5, The elements of an assembler program 169 



170 

; Registers destroyed: AH, BX, CX, OX 

GetNextCharacter PROC 
mov ah,3fh 
mov bx,O 
mov 
mov 
int 
jc 

cmp 

cx,l 
·dx,OFFSET TempChar 
21h 
NoCharacterRead 

[TempChar],lah 

jne NotControlZ 

iDOS read from file fn # 
;standard input handle 
;read one character 
;put the char in TempChar 
;get the next character 
iif DOS reports an error, 
i then treat it as the end 
; of the file 
;was it Control-Z? 
; (marks end of some files) 
ino 

NoCharacterRead: 
sub ax,ax imark no character read 

NotControlZ: 
and ax,ax 

mov aI, [TempChar] 
ret 

iset Z flag to reflect whether 
a char was read (NZ), or the 
end of file was reached (Z). 
Note that DOS fn 13fh sets 
AX to the number of 
characters read 

ireturn the character read 
;done 

GetNextCharacter ENDP 

Subroutine to report whether a given character is whitespace. 

Input: 
AL = character to check 

Output: 
Z flag = 0 (NZ) if character is not whitespace 

= 1 (Z) if character is whitespace 

Registers destroyed: none 

IsCharacterWhitespace PROC 
cmp 
jz 
cmp 
jz 
cmp 

jz 
cmp 

aI,' , 
EndIsCharacterWhitespace 
al,09h 
EndIsCharacterWhitespace 
al,Odh 

EndIsCharacterWhitespace 
al,Oah 

i is it a space? 
iif so, it's whitespace 
; is it a tab? 
iif so, it's whitespace 
;is it a carriage 
i return? 
iif so, it's whitespace 
;is it a linefeed? If 

so, it's whitespace, 
; so return Z; ,if not, 
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it's not whitespace, 
so return NZ as set 
by cmp 

EndIsCharacterWhitespace: 
ret 

IsCharacterWhitespace ENDP 

Subroutine to convert a binary number to a text string. 

Input: 
AX = number to convert 
DS:BX = pointer to end of string to store text in 
CX = number of digits to convert 

Output: None 

Registers destroyed: AX, BX, CX, DX, SI 

ConvertNumberToString 
mov si,10 

ConvertLoop: 
sub dx,dx 
div si 

PROC 
iused to divide by 10 

iconvert AX to doubleword in DX:AX 
idivide number by 10. Remainder is in 
i DX--this is a one-digit decimal 
i number. Number/10 is in AX 

add dl,'O' iconvert remainder to a text character 
mov [bx],dl iPut this digit in the string 
dec bx ipoint to the location for the 

i next most-significant digit 
loop ConvertLoop ido the next digit, if any 
ret 

ConvertNumberToString ENDP 

Subroutine to print a string on the display. 

Input: 
DS:BX = pointer to string to print 

Output: None 

Registers destroyed: None 

PrintString 
push 
push 
mov 
mov 
int 
pop 

PROC 
ax 
dx 
ah,9 
dx,bx 
21h 
dx 
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ipreserve registers in this subroutine 
iDOS print string function t 
ipoint DS:DX to the string to print 
iinvoke DOS to print the string 
irestore registers we changed 
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pop 
ret 

PrintString 
END 

ax 

ENDP 
ProgramStart 

WCOUNT.EXE should be run from the DOS prompt, with input 
redirected from the file you want to do a word count on. For 
example, to count the number of words in WCOUNT.ASM, you'd 
type 

wcount <wcount.asm 

at the DOS prompt, and a few seconds later you'd get the result: 

Word count: 874 

There are several points of interest regarding WCOUNT.ASM. For 
one thing, WCOUNT.ASM uses subroutines to handle the details 
of reading a character, checking whether a character is white
space, converting the count to a string, and printing a string. This 
helps keep the main program of WCOUNT.ASM small and easy 
to understand. 

Another advantage of using subroutines is the ease with which 
you can change the operation of the program. If, for instance, you 
needed to change the definition of whitespace to include the equal 
sign, you could alter the Is Whitespace subroutine; the main 
program wouldn't change at all. 

Note that both GetNextCharacter and IsWhitespace return status 
information in the zero flag; GetNextCharacter also returns the 
character in AL. The zero flag is ideal for returning yes/no sorts of 
status, while AL (or AX) is good for returning values. 

Finally, note the amount of code involved in producing text 
output in assembler. In order to print the integer word-count 
value, we had to first convert the count to a text string by 
repeatedly dividing it by 10 and adding the character "0" to the 
remainder. Only then could we call DOS to print the text string. 
That's a far cry from the simple C statement 

printf("Word count: %d\n",Count); 

On the other hand, once you've written subroutines, such as 
ConvertNumberToString, you can reuse them as often as necessary 
in other programs. You'll find that you'll build up a library of 
useful assembler subroutines, which will help you write future 
programs more quickly and easily. 
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c H A p T E R 

6 

More about programming in Turbo 
Assembler 

You've certainly learned a great deal about assembly language in 
the last few chapters, but there's still much more to learn. And in 
this chapter, we'll cover some fairly advanced but very useful 
aspects of Turbo Assembler and assembly language 
programming. 

These are some of the topics we'll cover in this chapter: 

• Turbo Assembler's directives EQU and =, which allow you to 
assign names to values and text strings 

• Turbo Assembler's powerful string instructions 

• Turbo Assembler's ability to assemble several source files 
separately and then use TLINK to link them together into a 
single program 

• Turbo Assembler's ability to include separate source code files 
into any assembler program 

• Turbo Assembler's sophisticated source listing files 

It's possible to write assembler programs so that they'll assemble 
one way under certain circumstances and another way under 
others. We'll look at why that's useful and the directives that make 
it possible. Finally, we'll cover some of the more common and 
subtle pitfalls you're likely to run into as an assembler 
programmer. 
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You might not need all this infonnation today, but you should at 
least skim the chapter so you'll know where to look when you do 
need something. 

Using equate substitutions 

The EQU directive 
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We'll begin by looking at using the EQU and] directives to assign 
values and text strings to labels. This feature is very useful in 
making assembler programs clear and easy to maintain. 

It's obvious why we use labels to name variables, subroutines, and 
specific instructions: How could we refer to those program 
elements as instruction operands if we didn't name them? 
Perhaps less obvious, but nonetheless important, is the need for 
labels equated to values and text strings. 

EQU allows you to assign a numeric value or text string to a label; 
a reference to an EQU label is translated to the literal equivalent of 
that label. For example, consider the following: 

END_OF_DATA EQU '!' 
STORAGE_BUFFER_SIZE EQU 1000 

• DATA 
StorageBuffer DB STORAGE_BUFFER_SIZE DUP (1) 

.CODE 
mov ax,@data 
mov ds,ax 
sub di,di 

StorageLoop: 
mov ah,l 
int 21h 
mov [StorageBuffer+di],al 
cmp al,END_OF_DATA 
je DataAcquired 
inc di 
cmp di,STORAGE_BUFFER_SIZE 

jb StorageLoop 
iThe buffer overflowed ••• 

iWe've acquired the data 

iset buffer pointer to 0 

iget the next key press 
isave the next key press 
iwas it the end-of-data key? 
iyes, go process the data 
icount this key press 
ihave we overflowed 
i the buffer? 
ino, go get another key 
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DataAcquired: 

Here, Eau defines two labels: STORAGE_BUFFER_SIZE and 
END_OF _DATA. The END_OF _DATA label is equated to the 
character "!" and is compared to each key press to see if the end of 
the data has been reached. This illustrates one great advantage of 
using equates: Labels tend to be far more informative than 
constant values. After all, the purpose of 

crnp al,END_OF_DATA 

is certainly clearer than the purpose of 

crnp aI,'!' 

The use of STORAGE_BUFFER_SIZE illustrates another good 
reason to use equates. STORAGE_BUFFER_SIZE, which is set to 
the constant value 1000, is used both to create a storage buffer 
1000 bytes long and to check whether the buffer has overflowed. 
You could have used the constant 1000 in both places, although 
that would have been less informative than the label 
STORAGE_BUFFER_SIZE. 

Now, however, suppose that you want to change the size of the 
storage buffer. You need only change the operand to a single Eau 
directive, and'presto-you've made the change everywhere in the 
program! Granted, it wouldn't have been too hard to change two 
constants, but a given equated symbol can be used in dozens or 
even hundreds of places in a single module, and then it's much 
easier (and less error-prone) to change a single equate than to 
change dozens or hundreds of constants. 

The operand to an equated label can contain labels, equated or 
otherwise. For example, 

TABLE OFFSET EQU lOOOh 
INDEX START EQU (TABLE_OFFSET+2) 
DICT START EQU (TABLE_OFFSET+IOOh) 

rnov ax, WORD PTR [bx+INDEX_START] iget first index entry 

lea si, [bx+DICT_START] ipoint to the first 
i dictionary entry 

is equivalent to 
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Parentheses around the 
operand to an EQU directive 

aren't required, but they 
help to visually del/mff the 

operand. 
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mov ax,WORD PTR [bx+1000h+2] 
lea si, [bx+1000h+100h] 

Equated labels are handy for transforming the myriad interrupts, 
ports, and memory locations of the PC into readily understood 
names. The following illustrates some such uses of EQU: 

DOS INT 
CGA STATUS 
VSYNC MASK 

EQU 2lh ;the DOS function interrupt 
EQU 3dah ;the CGA status port 
EQU OOOOlOOOb ;isolates the bit in the CGA 

BIOS SEGMENT EQU 40h 
EQUIPMENT_FLAG EQU lOh 

mov ah,2 
mov dl,' Z' 
int OOS INT 

; status port that reports when 
; you can update the screen 
; without snow 
;the segment BIOS stores data in 
;the offset in the BIOS segment 
; of the equipment flag variable 

;print a "Z" 

;Wait until it's safe to update the screen without causing snow 
mov dx,CGA_STATUS 

WaitForVerticalSync: 
in al,dx 
and al,VSYNC_MASK 

;get the CGA status 
;vertical sync yet? 

jz WaitForVerticalSync ;no, wait some more 

mov ax, BIOS_SEGMENT 
mov ds,ax 
mov bx,EQUIPMENT_FLAG 
and BYTE PTR [bx],NOT 30h 
or BYTE PTR [bx],20h 

;point DS to BIOS data segment 
;point to the equipment flag 

;force the equipment flag to 
; select aO-column color mode 

Equated labels that are based on other equated labels extend the 
concept of using equates to make it easier to change your 
programs. For instance, if in the previous example you wanted to 
move all references to the table 10 bytes closer to BX, you'd only 
have to change the equate for TABLE_OFFSET to 

TABLE OFFSET EQU (lOOOh-10) 

and reassemble. Then both INDEX_START and DIeT _START 
would adjust along with TABLE_OFFSET, since their values are 
based on TABLE_OFFSET. 
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EQU can be used to set a label to contain a text string as well as a 
value. For example, the following uses an equated label to store a 
text string to be printed: 

EQUATED_STRING EQU 'This text started life in an EQU directiveS' 

TextMessage DB EQUATED_STRING 

mov dx,OFFSET TextMessage 
mov ah,9 
int 21h ;print TextMessage 

Labels equated to text strings can appear as operands. For 
example, 

REGISTER BX EQU BX 

mov ax,REGISTER_BX 

assembles to 

mov ax,bx 

There's no great utility to substituting an equated label for a 
register, but you could, for instance, use equated labels or ARG to 
name parameters passed on the stack, and dynamic storage 
allocated on the stack: 

C near model-callable subroutine to add three int parameters 
and return the int result. Function prototype: 

int AddThree(int I,int J,int K) 

Temp EQU [bp-2] 
I EQU [bp+4] 
J EQU [bp+6] 
K EQU [bp+8] 

AddThree PROC 
push bp 
mov bp,sp 
sub sp,2 
mov ax, I 
add ax,J 
mov Temp, ax 

;save caller's BP 
;point to stack frame 
iallocate space for Temp 
;get I 
;calculate I+J 
;save I+J 
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The $ predefined 
symbol 

mov ax,K 
add ax,Temp 
mov sp,bp 
pop bp 
ret 

AddThree ENDP 

iget K 
icalculate I+J+K 
ideallocate space for Temp 
;restore caller's BP 

Basically, you can use EQU to name any text string you could 
otherwise use as an operand. You can actually use an equated 
label in the instruction/directive field as well as in the operand 
field; although, it's hard to imagine a use for that. 

You can use the angle brackets « and» to force an operand to 
EQU to be considered a text string rather than an expression. For 
example, 

TABLE OFFSET EQU 1 
INDEX START EQU <TABLE_OFFSET+2> 

assigns the text string "TABLE_OFFSET+2" to INDEX_START, 
while 

TABLE OFFSET EQU 1 
INDEX START EQU TABLE_OFFSET+2 

assigns the value 3 (the result of 1 + 2) to INDEX_ST ART. In 
general, it's a good practice to put angle brackets around text 
string operands to EQU to make sure those operands aren't 
evaluated as expressions by accident. 

Once a given label is equated to a value or text string with EQU in 
a given source module, it can never be redefined in that module. 
The following is guaranteed to produce an error: 

X EQU 1 

X EQU 101 

If you need to redefine equated labels (and there are, on occasion, 
some very good reasons to do so), you'll need to use the = 
directive, which we'll discuss shortly. 

Recall that Turbo Assembler offers several predefined symbols, 
such as @data. Another simple but surprisingly useful predefined 
symbol is $, which is always set to the current value of the 
location counter. In other words, $ is always equal to the current 
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$ can be used In expressions, 
or anywhere else a constant 

maybe used. 

The = directive 

offset in the segment that Turbo Assembler is currently 
assembling into. $ is a constant offset value, just as OFFSET 
MemVaris. 

$ is particularly handy for calculating data and code lengths. For 
example, suppose you want to equate the symbol 
STRING_LENGTH to the length in bytes of a string. Without $, 
you'd have to do the following: 

StringStart LABEL BYTE 
db Odh,Oah,'Hello, world' ,0dh,Oah 

String End LABEL BYTE 
STRING_LENGTH EQU (StringEnd-StringStart) 

with $, though, all you need is 

StringStart LABEL BYTE 
db Odh,Oah,'Hello, world' ,0dh,Oah 

STRING_LENGTH EQU (S-StringStart) 

Here's how you'd calculate the length in words of an array of 
words: 

WordArray DW 90h, 25h, 0, 1Gh, 23h _ 
WORD ARRAY LENGTH EQU (($-WordArray)/2) 

Of course, you could count the individual elements by hand, but 
with longer arrays and strings, that would quickly become 
tedious. 

Incidentally, three other useful predefined variables are ??date, 
??tlme, and ??filename. ??date contains the date of assembly, as 
a quoted text string in the form 01/02/87. The ??tlme variable 
contains the time of assembly in the form 13:45:06, and 
??filename contains the name of the file being assembled in the 
form of an 8-character quoted text string such as IITEST.ASM". 

The = directive is like the EQU directive in all respects save one: 
Where labels defined with EQU can never be redefined (an error 
occurs if they are), labels defined with = can be redefined freely. 
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This is very useful for labels that need to be changed on the fly, or 
that are reused within a single source module. 

For example, the following code uses = to generate a lookup table 
for the first 100 multiples of 10: 

• DATA 
MultiplesOf10 LABEL WORD 
TEMP = 0 

REPT 100 
DW TEMP 

TEMP = TEMP+10 
ENDM 

shl bx,l iBX is I to multiply by 10. 
i Shift left to mUltiply * 2 
i for lookup in word-sized table 

mov ax, [MultiplesOf10+bx] iget the number * 10 

All operands to = must resolve to a numeric value; unlike EaU, = 
cannot be used to assign text strings to labels. 

The string instructions 

180 

We've come to the most unusual and powerful instructions of the 
8086-the string instructions. String instructions are like no other 
8086 instructions in that they can both access memory and 
increment or decrement a pointer register in a single instruction. 
A single string instruction can access memory as many as 130,000 
times! 

As their name implies, string instructions are particularly useful 
for manipulating text strings. String instructions are equally adept 
at handling arrays, data buffers, and any sort of string of bytes or 
words. You should strive to use the string instructions whenever 
possible, since they are, as a rule, shorter and faster than 
equivalent combinations of normal 8086 instructions such as MOV, 
INC, and LOOP. 

We'll examine the string instructions in two functional groups: the 
string instructions used for data movement (LODS, STOS, and 
MOVS), and the string instructions used for data scanning and 
comparison (SCAS and CMPS). 
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Data movement 
string instructions The data movement string instructions are much like the MOV 

instruction, but do more than MOV and operate faster. We'll look 
at LOOS first. Note that the direction flag controls the direction in 
which pointer registers are changed for all string instructions. 

LODS LOOS, which loads a byte or word from memory into the 
accumulator, comes in two flavors, LOOSB and LOOSW. LOOSB 
loads the byte addressed by DS:SI into AL, and either increments 
or decrements SI, depending on the state of the direction flag. If 
the direction flag is 0 (set with CLO), then SI is incremented, and if 
the direction flag is 1 (set with STO), then SI is decremented. This 
is not true only of LOOSB; the direction flag controls the direction 
in which pointer registers are changed for all string instructions. 

For example, the LOOSB in ~he following code, 

cld 
mov si,O 
lodsb 

loads AL with contents of the byte at offset 0 in the data segment 
and increments SI to 1. That's equivalent to 

mov si,O 
mov aI, lsi] 
inc si 

However, 

lodsb 

is considerably faster (and 2 bytes smaller) than 

mov aI, lsi] 
inc si 

LOOSW is just like LOOSB, save that the word addressed by DS:SI 
is loaded into AX, and SI is either incremented or decremented by 
2, rather than 1. For example, 

std 
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mov si,10 
lodsw . . . 

loads the word at offset 10 in the data segment into AX, then 
decrements 51 by 2 to 8. 

STOS STOS is the complement to LODS, writing a byte or word value in 
the accumulator to the memory location pointed to by E5:DI, and 
incrementing or decrementing DI. STOSB writes the byte iI:t AL to 
the memory location E5:DI, then increments or decrements DI, 
depending on the direction flag. For example, 

std 
mov di,Offffh 
mov al,55h 
stosb 

writes the value 55h to the byte at offset OFFFFh in the segment 
pointed to by E5, then decrements DI to OFFFEh. 

STOSW does much the same, writing a word value in AX to 
address ES:DI, then incrementing or decrementing DI by 2. For 
instance, 

cld 
mov di,Offeh 
mov ax,102h 
stosw . . . 

writes the word value 102h in AX to offset OFFEh in the segment 
pointed to by E5, then increments DI to 10OOh. 

LODS and STOS work nicely together for copying buffers. For 
example, the following subroutine copies the zero-terminated 
string at DS:5I to the string at ES:DI: 

; Subroutine to copy one zero-terminated string to another. 

; Input: 
DS:SI - string to copy from 
ES:DI - string to copy to 

; Output: None 
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Registers destroyed: AL, SI, DI 

CopyString 
cld 

CopyStringLoop: 
lodsb 
stosb 
cmp al,O 

PROC 

jnz CopyStringLoop 
ret 

CopyString ENDP 

imake SI and DI increment with string 
i instructions 

iget source string character 
istore char in destination string 
iwas the char zero to end the string? 
ino, do next character 
iyes, done 

You could equally well use LODS and STOS to copy blocks of 
bytes that aren't zero-terminated with a loop like 

mov cx,ARRAY_LENGTH_IN_WORDS 
mov si,OFFSET SourceArray 
mov ax,SEG SourceArray 
mov ds,ax 
mov di,OFFSET DestArray 
mov ax,SEG DestArray 
mov es,ax 
cld 

CopyLoop: 
lodsw 
stosw 
loop Copy Loop 

However, there's an even better way to move a byte or word from 
one memory location to another, and that's with the MOVS 
instruction. 

MOVS MOVS is like LODS and STOS rolled into one. MOVS reads the 
byte or word stored at DS:SI, then writes that value to the address 
ES:DI. The byte or word never passes through a register at all, so 
AX isn't modified. MOVSB is as short as any instruction can be, at 
only 1 byte long, and is even faster than the LODS/STOS 
combination. With MOVS, the last example becomes still faster: 

mov cx,ARRAY_LENGTH_IN_WORDS 
mov si,OFFSET SourceArray 
mov ax,SEG SourceArray 
mov ds,ax 
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Repeating a string 
instruction 

mov di,OFFSET DestArray 
mov ax,SEG DestArray 
mov es,ax 
cld 

CopyLoop: 
movsw 
loop CopyLoop 

While the code in the last example looks pretty efficient, you may 
well be thinking that what you'd really like to do is get rid of that 
LOOP instruction and move the whole array with a single 
instruction. You're in luck-the 8086 gives you that option with 
the string instructions in the form of the REP prefix. 

REP isn't an instruction; instead, it's an instruction prefix. 
Instruction prefixes modify the operation of the following 
instruction. What REP does is tell the following string instruction 
to execute repeatedly until the ex register reaches zero. (If ex is 
zero when the repeated instruction begins, the instruction 
executes zero times-in other words, it doesn't do anything at all.) 

Using REP, you can replace 

CopyLoop: 
movsw 
loop Copy Loop 

in the last example with 

rep movsw 

That single instruction will move a block of as many as 65,535 
words (OFFFFh) from memory starting at DS:SI to memory 
starting at ES:DI. 

Of course, a string instruction repeated 65,535 times doesn't 
execute anywhere near as quickly as an instruction executed once; 
all those memory accesses take time. However, each repetition of 
a repeated string instruction executes more quickly than would a 
single instance of that string instruction, making repeated string 
instructions a very fast way to read from, write to, or copy 
memory. 

REP can be used with LODS and STOS as well as with MOVS (and 
also with the SCAS and CMPS instructions, which we'll discuss 
next). It's useful to repeat STOS to clear or fill blocks of memory; 
for example, 
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String pOinter overrun 

Data scanning 
string instructions 

seAS 

cld 
mov ax,SEG WordArray 
mov es,ax 
mov di,OFFSET WordArray 
sub aX,ax 
mov cx,WORD_ARRAY_LENGTH 
rep stosw 

fills l'\brdArray with zeros. There's no correspondingly useful 
application for repeating LODS. 

REP can only cause string instructions to repeat. An instruction 
like 

rep mov aI, [bx] 

which doesn't make a whole lot of sense anyhow, ignores the REP 
prefix and executes as a plain old 

mov aI, [bx] 

Note that when a string instruction is executed, it increments or 
decrements 51, 01, or both after memory is accessed. This means 
that after the instruction the pointer registers don't point to the 
memory location just accessed; instead, they point to the next 
memory location to be accessed. This is actually very convenient, 
since it allows you to build efficient loops such as those in the 
examples in the last section. It can, however, occasionally cause 
confusion, especially with the data scanning string instructions, 
which we'll discuss next. 

Now we'll look at the data scanning string instructions, SCAS and 
CMPS, which are used for scanning and comparing blocks of 
memory. 

SCAS is used to scan memory for a match or non-match of a 
particular byte or word value. As with all string instructions, 
SCAS comes in two forms, SCAse and SCA~W. 

SCASe compares AL to the byte value at address ES:OI, setting 
the flags to reflect the comparison, just as if a CMP instruction had 
been executed. As with STOSB, 01 is incremented or decremented 
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by seAse. For example, the following finds the first lowercase t 
in the string TextString: 

• DATA 
TextString DB 'Test text',O 
TEXT_STR1NG_LENGTH EQU ($-TextString) 

.CODE 

mov ax,@data 
mov es,ax 
mov di,OFFSET TextString 

mov al,'t' 
mov cx,TEXT_STR1NG_LENGTH 
cld 

ScanJor_t_Loop: 
scasb 
je Found t 
loop Scan_For_t_Loop 

iNo "t" found 

i"t" found 
Found t: 

dec di 

iES:D1 points to the start of 
i TextString 
icharacter to scan for 
ilength of string to scan 
iscan with D1 incrementing 

idoes ES:DI match AL? 
iyes, we found "t" 
ino, scan next character 

ipoint back to offset of "t" 

Note that D1 is decremented after t is found in this example, 
which reflects the string pointer overrun we discussed earlier. 
When this code performs the final, successful SeASe, D1 is 
incremented after the comparison, since the last thing a string 
instruction does is increment or decrement its pointer{s). As a 
result, D1 points to the byte after the t that was found and must be 
adjusted to compensate for the overrun and point to the t. 

You might get a better feel for what seAse does by comparing its 
use in the last example to similar code without string instructions: 

ScanJor_t_Loop: 
cmp es: [di], al 
je Found_t 
inc dl 
loop Scan_For_t_Loop 

idoes ES:D1 match AL 
iyes, we found "t" 

ino, scan next character 

The last example isn't exactly the same as the seAse example 
preceding it, however, since seAse increments D1 immediately 
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and the last example i~ements it after the JE instruction in order 
to a void altering the flags set by CM P. 

This brings up an important point about string instructions in 
general. String instructions never set the flags to reflect the 
chang~s they make to 51, 01, and/or ex. LOOS, STOS, and MOVS 
don't change any flags, and SCAS and CMPS only change flags 
according to the results of the comparisons they make. 

It certainly would be handy to be able to reduce the loop in the 
previous example to a single instruction, and, as you've probably 
guessed, REP lets you do just that. However, you might want to 
stop the loop on either a match or a non-match. Here are two 
forms of REP to use with SCAS (and CMPS as well)-REPE and 
REPNE. 

REPE (also known as REPZ) tells the 8086 to repeat SCAS (or 
CMPS) until either ex becomes zero or a non-match occurs. You 
might think of REPE as being the "repeat while equal" prefix. 
Likewise, REPNE (also known as REPNZ) tells the 8086 to repeat 
SCAS (or CMPS) until either ex becomes zero or a match occurs. 
Think of REPNE as being the "repeat while not equal" prefix. 

Here's code that uses a single repeated SCAse instruction to scan 
TextString for the character t: 

mov ax,@data 
mov es,ax 
mov di,OFFSET TextString 

mov al,'t' 
mov cx,TEXT_STR1NG_LENGTH 
cld 
repne scasb 

je Found t 
i No lit" found 

i"t" found 
Found t: 

dec di 

iES:D1 points to the start of 
i TextString 
icharacter to scan for 
ilength of string to scan 
iscan with D1 incrementing 
iscan the whole string to see 
i if there's at least one "t" 
i yes, we found lit II 

ipoint back to offset of "til 

Like all string instructions, SCAS increments its pointer register, 
01, if the direction flag is 0 (cleared with CLO), and decrements OJ 
if the direction flag is 1 (set with STO). 
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SCASW is a word-sized form of SCASB, comparing AX to E5:0I, 
and incrementing or decrementing 01 by two rather than one at 
the end of each execution. The following code uses REPE SCASW 
to find the last nonzero entry in an array of word-sized integers: 

mov ax,SEG ShortIntArray 
mov es,ax 
mov di,OFFSET ShortIntArray+((ARRAY_LEN_IN_WORDS-l) *2) 

;ES:DI points to the end of 
; ShortIntArray 

mov cx,ARRAY_LEN_IN_WORDS 
sub ax,ax 
std 

repe scasw 

jne FoundNonZero 

;search for non-match with zero 
;search backward from end, 
; decrementing DI 
;search until we come to a 
; nonzero word or run out of 
; array 

;The whole array is filled with zeros. 

;We found a nonzero element--adjust DI for overrun to point to it. 
FoundNonZero: 

inc di 
inc di 

CMPS The CMPS string instruction is designed to let you compare two 
strings of bytes or words. A single repetition of CMPS compares 
two memory locations, then increments both 51 and 01. You 
might think of CMPS as being like a MOVS that compares two 
memory locations instead of copying one memory location to 
another. 

CMPSB compares the byte at DS:5I to the byte at E5:0I, sets the 
flags accordingly, and increments or decrements 51 and 01, 
depending on the direction flag. AX is not modified in any way. 

Like the other string instructions, CMPS comes in both byte and 
word sizes, can either increment or decrement 51 and 01, and will 
repeat if preceded by a REP prefix. Here's the code to check 
whether the first 50 elements in two word-sized arrays are 
identical, using REP CMPSW: 

mov si,OFFSET Arrayl 
mov ax,SEG Arrayl 
mov ds,ax 
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Using operands 
with string 

instructions 

mov di,OFFSET Array2 
mov ax,SEG Array2 
mov es,ax 
mov cx,50 
cld 
repe cmpsw 

icompare the first 50 elements, at most 

jne ArraysAreDifferent 
iFirst 50 elements are identical. 

iAt least one element differs between the two arrays. 
ArraysAreDifferent: 

dec si 
dec si 
dec di 
dec di 

ipoint back to the element that differed 
;both arrays 

We've only looked at the explicit byte and word forms of the 
string instructions so far; in other words, we've looked at LOOSB 
and LODSW, but haven't used LOOS. It's acceptable to use the 
nonexplicit versions of the string instructions, as long as you 
provide operands so that Turbo Assembler knows whether you 
want byte- or word-sized operations. 

For example, the following is acceptable and is equivalent to 
MOVSB: 

• DATA 
Stringl LABEL BYTE 

db ' abcdefghi' 
STRINGl_LENGTH EQU ($-Stringl) 
String2 DB 50 DUP (?) 

.CODE 
mov ax,@data 
mov ds,ax 
mov es,ax 
mov si,OFFSET Stringl 
mov di,OFFSET String2 
mov cx,STRINGl_LENGTH 
cld 
rep movs es:[String2], [Stringl] 
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Since you specified Stringl and String2 as operands to MOVS, 
Turbo Assembler makes the data size of the MOVS instruction the 
data size of the operands, which is byte in this case. 

There's a catch to using operands with string instructions, 
however. String instruction operands aren't real operands, in the 
sense that they're built into the instruction; a string instruction 
just uses whatever SI and/or DI happen to be when that 
instruction is executed. The operands are only used to set data 
size, not to actually load pointers. Look at it this way: When you 
use an instruction like 

mov aI, [Stringl] 

the offset of Stringl is built right into the machine-language 
instruction for MOV. However, when you use 

lods [Stringl] 

the machine-language instruction assembled is just the single byte 
for LOOSB; Stringl is not built into the instruction. It's your 
responsibility to make sure that DS:SI points to the start of Stringl 
in this case. 

Operands to string instructions are sort of like using the ASSUME 
directive for segments. ASSUME doesn't actually set a segment 
register; it just tells Turbo Assembler how you have set a segment 
register so Turbo Assembler can do error-checking for you. 

Similarly, operands to string instructions don't set any registers; 
they just tell Turbo Assembler what you've set SI and/or DI to so 
Turbo Assembler can determine operand size and do error
checking. Refer to the section "Relying on the operand(s) to a 
string instruction" on page 242 for further discussion of operands 
to string instructions. 

In the section "Pitfalls with string instructions" on page 235, we 
discuss several points to look out for when using the string 
instructions. 

Multimodule programs 

190 

Sooner or later, you're going to outgrow keeping each program's 
source code in a single file. Single-file source code is fine for short 
programs, such as the examples in this manual, but even 
medium-sized programs must be broken into several files, or 

Turbo Assembler User's Guide 



modules, that are assembled separately and linked together. The 
primary advantage of multimodule programs is that after you 
edit the source code, you only need to reassemble the modules 
you've changed, rather than every line of the program. Also, it's 
much easier to find your way around several short files than one 
massive file. 

It's surprisingly easy to create multimodule programs. Turbo 
Assembler provides three directives to support such programs: 
PUBLIC, EXTRN, and GLOBAL. We'll look at each in tum, but 
before we do, we'll look at a sample program consisting of two 
modules, so that you'll understand the context in which we're 
discussing the multimodule directives. Here's the main program, 
MAIN.ASM: 

• MODEL small 
• STACK 200h 
• DATA 

DB 'Hello,',O Stringl 
String2 

GLOBAL 
FinalString 

.CODE 
EXTRN 

DB 'world' ,0dh,Oah,'S',0 
FinalString:BYTE 
DB- 50 DUP (?) 

ConcatenateStrings:PROC 
ProgramStart: 

mov ax,@data 
mov ds,ax 
mov ax, OFFSET Stringl 
mov bx,OFFSET String2 
call ConcatenateStrings 

mov ah,9 
mov dx,OFFSET FinalString 
int 21h 
mov ah,4ch 
int 21h 
END ProgramStart 

icombine the two strings 
i into a single string 

iprint the resulting string 

iand done 

And here's the other module of the program, SUB1.ASM: 

. MODEL small 
• DATA 
GLOBAL FinalString:BYTE 
.CODE 

Subroutine copies first one string, and then another 
to FinalString. 
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Input: 
DS:AX = pointer to first string to copy 
DS:BX = pointer to second string to copy 

Output: None 

Registers destroyed: AL, SI, DI, ES 

PUBLIC ConcatenateStrings 
ConcatenateStrings PROC 

cld istrings count up 
mov di,SEG FinalString 
mov es,di 
mov di,OFFSET FinalString iES:DI points to destination 
mov si,ax ifirst string to copy StringlLoop: 
lodsb iget string 1 character 
and aI, al i is it O? 
jz DoString2 iyes, done with string 1 
stosb isave string 1 character 
jmp StringlLoop 

DoString2: 
mov si,bx 
lodsb 
stosb 

and al,al 
jnz String2Loop 
ret 

ConcatenateString ENDP 
END 

isecond string to copy String2Loop: 
iget string 2 character 
isave string 2 character 
i (including 0 when we find it) 
iis it O? 
ino, do next character 
idone 

These two modules would be assembled separately with 

TASM main 

and 

TASM subl 

and would then be linked into the program MAIN.EXE with 

tlink main+subl 

When run with the command 

main 

MAIN.EXE displays the output (you guessed it) 

Hello, world 
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The PUBLIC 

Now that you've seen a multimodule program in action, let's 
examine the three directives that make multimodule 
programming possible. 

directive What the PUBLIC directive does is simple enough: It instructs 
Turbo Assembler to make the associated label or labels available 
to other modules. Labels of almost any sort, including procedure 
names, memory variable names, and equated labels, may be made 
available to other modules by way of PUBLIC. For example, 

• DATA 
PUBLIC 

ARRAY LENGTH 
MemVar 
Array1 

.CODE 

MemVar, Array1, ARRAY_LENGTH 
EQU 100 
DW 10 
DB ARRAY LENGTH DUP (?l 

PUBLIC NearProc, FarProc 
NearProc PROC NEAR 

NearProc ENDP 

FarProc LABEL PROC 

END 

Here the names of an equated label, a word variable, an array, a 
near procedure, and a far procedure are made available to any 
other module that is linked to this module. 

There is one sort of label that cannot be made public, and that's an 
equated label that is not equal to a 1- or 2-byte constant value. For 
example, the following labels couldn't be made public: 

LONG VALUE EQU 10000h 
TEXT SYMBOL EQU <Text String> 

Turbo Assembler normally ignores case when assembling, so all 
public labels are normally converted to uppercase. If you want 
case-sensitivity for public labels, you must use either the Iml or 
Imx command-line switch to Turbo Assembler in all modules that 
contain or reference public labels. 

For example, without Iml or Imx, other modules won't be able to 
distinguish between the following two labels: 
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You don't need to have a 
.MODEL directive In effect to 

use this feature. 

The EXTRN 

PUBLIC Symbol 1 , SYMBOL 1 

When you use the Imx command-line switch to allow case 
sensitivity for public and external symbols, you must be careful to 
use the proper case for the symbol name in the PUBLIC or EXTRN 
directive. Turbo Assembler makes the symbol available to other 
modules with the name that appears in the EXTRN or PUBUC 
directive, not how it appears where defined or referred to 
elsewhere in the module. For example, 

PUBLIC Abc 
abC Dw 

causes the name Abc to become public, not abC. 

You can also specify a language for each symbol in a PUBLIC 
directive. Valid languages are C, PASCAL, BASIC, FORTRAN, 
PROLOG, and NOLANGUAGE. This causes any language-specific 
rules to be applied to a symbol name automatically before it is 
published in the object file. For instance, if you declare 

PUBLIC C myproc 

then the symbol myproc in the source file will actually be 
published to the outside world as _myproc, since the convention 
for the C language is to precede symbol names with an 
underscore character. Using a language specifier in a PUBLIC 
directive temporarily overrides the current language setting 
(default or one established with the .MODEL directive). 

directive In the last section, we used PUBUC to make the labels MemVar, 
Arrayl, ArrayLength, NearProc, and FarProc available to other 
modules. The next question is, "How do other modules reference 
those labels?" 

The EXTRN directive is used to make public labels from other 
modules available in a given module. Once EXTRN has been used 
to make a public label from another module available, that label 
can be used just as if it were defined in the current module. Here's 
how another module would use EXTRN to reference the public 
labels we defined in the last section: 

. . . 
• DATA 
EXTRN MemVar:WORD,Arrayl:BYTE,ARRAY_LENGTH:ABS 
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• CODE 
EXTRN NearProc:NEAR,FarProc:FAR 

mov ax, [MemVar] 
mov bx,OFFSET Arrayl 
mov cx,ARRAY_LENGTH 

call NearProc 

call FarProc 

Note that all five labels are used as you'd normally use labels; 
only the EXTRN directives differ from single-module assembler 
source code. 

Each label declared with EXTRN is followed by a colon and a type. 
The type is necessary because Turbo Assembler has no way of 
knowing what sort of label you've declared with EXTRN unless 
you tell it. With one exception, the types that can be used with 
external labels are the same as those that can be used with the 
LABEL directive. Available types are 

ABS An absolute value 
BYTE A byte-sized data variable 
DATAPTR A near or far data pointer, depending on the 

DWORD 
FAR 
FWORD 
NEAR 

PRoe 

QWORD 
Structure Name 
TBYTE 
UNKNOWN 
WORD 

current memory model 
A doubleword-sized (4 byte) data variable 
A far code label (branched to by loading CS:IP) 
A 6-byte data variable 
A near code label (branched to by loading IP 
only) 
A procedure code label, near or far according 
to.MODEL 
A quadword-sized (8 byte) data variable 
Name of a user-defined STRUe type 
A lO-byte data variable 
An unknown type 
A word-sized (2 byte) data variable 

The only unfamiliar external data type is ABS, which is used to 
declare a label that's defined in its original module with EQU or =; 
in other words, a label that is simply a name for a constant value 
and is not associated with a code or data address. 

It's important that you specify the correct data type for external 
labels, since Turbo Assembler has to generate code on the basis of 
the data types you specify, and has no way of knowing if you've 
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You don't need to have a 
.MODEL directive In effect to 

use this feature. 
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made an incorrect specification. For instance, if you accidentally 
typed 

.CODE 
EXTRN FarProc:NEAR 

call FarProc 

given 

PUBLIC FarProc 
FarProc PROC FAR 

ret 
FarProc ENDP 

in another module, Turbo Assembler would generate a near call 
to FarProc, in accordance with the data type you specified with 
EXTRN. This code surely wouldn't work properly, since FarProc is 
actually a far procedure and ends with a far RET instruction. 

As described in the last section, Turbo Assembler is normally 
case-insensitive, and public la];>els are normally converted to 
uppercase. This means that external labels are normally expected 
to be uppercase. Use the Iml or Imx command-line switch if you 
want case-sensitive external labels. 

You can also specify a language for each symbol in an EXTRN 
directive. Valid languages are C, PASCAL, BASIC, FORTRAN, 
PROLOG, and NOLANGUAGE. This ,causes any language-specific 
rules to be applied to a symbol name automatically before it is 
published in the object file. For instance, if you declare 

EXTRN C myproc:NEAR 

then the symbol myproc in the source file will actually refer to the 
. external symbol_myproc. Using a language specifier in an EXTRN 
directive temporarily overrides the current language setting 
(default or one established with the .MODEL directive). 
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The GLOBAL 
directive At this point, you may well wonder why it takes two directives, 

PUBLIC and EXTRN, to do a single job-sharing labels between 
modules. Actually, the only reason two directives are required is 
for compatibility with other assemblers; Turbo Assembler gives 
you the GLOBAL directive, which does everything both PUBLIC 
and EXTRN do. 

If you declare a label global and then define it (with DB, DW, 
PROC, LABEL, or the like), then that label is made available to 
other modules, just as if you'd used PUBLIC instead of GLOBAL. 
If, on the other hand, you declare a label global and then use it 
without defining it, then that label is treated as an extemallabel, 
just as if you'd used EXTRN. 

For example, consider the following: 

• DATA 
GLOBAL FinalCount:WORD,PrornptString:BYTE 

FinalCount DW? 

.CODE 
GLOBAL DoReport:NEAR,TallyUp:FAR 

TallyUp PROC FAR 

call DoReport 

Here FinalCount and TallyUp are defined, so they're made public 
labels, available to other modules. PromptString and DoReport 
aren't defined in this module, so they're made external labels and 
are assumed to have been made public in some other module. 

One particularly handy place to use GLOBAL is in an Include file. 
(We'll discuss include files in the next section.) Suppose you have 
a set of labels that you want to make available to all the modules 
in a multimodule program. It would be nice to be able to declare 
all those labels in an include file, and then include that file in each 
module. Unfortunately, that's impossible using PUBLIC and 
EXTRN because EXTRN won't work in the module a given label is 
defined in, and PUBLIC will only work in the module a given label 
is defined in. However, GLOBAL will work in all modules, so you 
can make up an include file that declares all the labels of interest 
to be global, and include that file in all your modules. 
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You don't need to have a 
.MODEL directive In effect to 

use this feature. 

Include files 

Include files are rarely used 
for code, since you can 

readily link separate code 
modules together, but It Is 

perfectly acceptable to put 
code Into an Include file, 

should you so desire. 

As with the PUBUC and EXTRN directives, you can specify a 
language for each symbol in a GLOBAL directive. Valid languages 
are C, PASCAL, BASIC, FORTRAN, PROLOG, and NOLANGUAGE. 
This causes any language-specific rules to be applied to a symbol 
name automatically before it is published in the object file. For 
instance, if you declare 

GLOBAL C myproc 

then the symbol myproc in the source file will actually be 
published to the outside world as _myproc. Using a language 
specifier in a GLOBAL directive temporarily overrides the current 
language setting (default or one established with the .MODEL 
directive). 

You'll often find that you'd like to insert the same block of 
assembler source code in several source modules. You may want 
to share equates or macros among different parts of a program, or 
you may simply want to reuse equates or macros in several 
programs. Then, too, you may have a long program that you 
don't want to break into several linkable modules (a program that 
will be stored in ROM, for example), but which is too big to 
conveniently keep in a single file. The INCLUDE directive meets 
all these needs. 

When Turbo Assembler encounters an INCLUDE directive, it 
marks its place in the current assembler module, goes to disk and 
finds the specified include file, and starts assembling the include 
file, just as if the lines in the include file were right in the current 
module. When the end of the include file is reached, Turbo 
Assembler returns to the line after the INCLUDE directive in the 
current module, and resumes assembly there. The key point is 
this: The text of the include file is literally inserted into the 
assembly of the current assembler module at the location of the 
INCLUDE directive. 

For instance, if MAINPROG.ASM contains 

• CODE 
mov ax,1 
INCLUDE INCPROG.ASM 
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Include files can be nested 
arbitrarily deep. 

For compatibility with MASM, 
you can use backward 

slashes (\) In INCLUDE path 
specifications. 

push ax 

and INCPROG.ASM contains 

mov bx,5 
add ax,bx 

then the result of assembling MAINPROC.ASM is exactly 
equivalent to 

• CODE 
mov ax,l 
mov bx,5 
add ax,bx 
push ax 

Include files can be nested (can include another file). You can 
easily tell included lines in a listing file because Turbo Assembler 
places a number at the left end of included lines, which indicates 
how deeply the module files are nested. 

How does Turbo Assembler know where to find Include files? 
Well, if you specify a drive or path as part of the file name 
operand to INCLUDE, Turbo Assembler looks exactly where you 
specify, and nowhere else. If you specify only a file name, with no 
drive or path, Turbo Assembler first searches the current 
directory for the specified file. If Turbo Assembler can't find the 
file in the current directory, it searches the directories specified 

. with the -I command-line switch, if any. For example, given the 
Turbo Assembler command line 

TASM -ic:\include testprog 

and given the line 

INCLUDE MYMACROS.ASM 

in TESTPROG.ASM, Turbo Assembler will first search the current 
directory for MYMACROS.ASM, and, failing that, will search the 
directory C: \INCLUDE. If MYMACROS.ASM isn't in either of 
those places, Turbo Assembler will report an error. 
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The listing file 

The object and/or listing file 
names don't have to match 

the source file name, but 
there s rarely a reason for 

your source file to have one 
name and your object or 

listing files to have another. 

200 

Normally, Turbo Assembler produces only one file as the result of 
assembly: an object (.OBJ) file with the same name as the source 
(.ASM) file. You can, if you wish, ask Turbo Assembler to produce 
a listing file with the extension .LST as well, simply by typing two 
additional commas (or two additional file names) on the 
command line. For example, where 

TASM hello 

assembles HELLO.ASM and produces the object file HELLO.OBI, 
the command line 

TASM hello" 

generates the listing file HELLO.LST, as do both 

TASM hello,hello,hello 

and 

TASM /1 hello 

The listing file is basically the source file annotated with a variety 
of information about the results of the assembly. Turbo Assembler 
lists the actual machine code for each instruction, along with the 
offset in the current segment of the machine code for each line. 
What's more, Turbo Assembler provides tables of information 
about the labels and segments used in the program, including the 
value and type of each label, and the attributes of each segment. 

Turbo Assembler can also, on demand, generate a cross-reference 
table for all labels used in a source file, showing you where each 
label was defined and where it was referenced. (See the Ie 
command-line option in Chapter 3.) 

We'll look at the basics of the listing file first-the assembled 
machine code and offset for each instruction. 
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Annotated 
source code Here's the listing file for the original example program, 

HELLO.ASM: 

Turbo Assembler Version 2.0 

HELLO.ASM 

1 
2 0000 
3 0000 
4 0100 

01-18-90 14:31:58 

DOSSEG 
.MODEL small 
.STACK 100h 
• DATA 

Page 1 

5 0000 48 65 6C 6C 6F 2C 20 + HelloMessage DB 'Hello, world',13,10,12 
77 6F 72 6C 64 OD OA + 
DC 

8 = OOOF 
9 OOOF 
10 0000 B8 DODOs 
11 0003 8E D8 
12 0005 B4 40 
13 0007 BB 0001 
14 OOOA B9 OOOF 
15 DODD BA OOOOr 
16 0010 CD 21 
17 0012 B4 4C 
18 0014 CD 21 
19 

Turbo Assembler Version 2.0 
Symbol Table 

Symbol Name 

??DATE 
??FILENAME 
??TIME 
??VERSION 
@CODE 
@CODESIZE 
@CPU 
@CURSEG 
@DATA 
@DATASIZE 
@FILENAME 
@WORDSIZE 
HELLOMESSAGE 
HELLO MESSAGE LENGTH - -
Groups & Segments 

HELLO_MESSAGE_LENGTH EQU $ - HelloMessage 
.CODE 
mov ax,@data 
mov ds,ax ;set DS to point to data seg 
mov ah,40h ;DOS write to device function t 
mov bx,l ;standard output handle 
mov cx,HELLO_MESSAGE_LENGTH ;number of characters to print 
mov dx,OFFSET HelloMessage ;string to print 
int 21h ;print "Hello, world" 
mov ah,4ch ;DOS terminate program function t 
int 21h ;terminate the program 
END 

01-18-90 14:31:58 

Type Value 

Text "06-29-88" 
Text "HELLO 
Text "16:21:26" 
Number 004A 
Text TEXT 
Text 0 
Text 0101h 
Text TEXT 
Text DGROUP 
Text 0 
Text HELLO 
Text 2 
Byte DGROUP:OOOO 
Number OOOF 

Bit Size Align Combine Class 

Page 2 
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DGROUP 
STACK 

DATA 
TEXT 

202 

Group 
16 0100 Para Stack STACK 
16 OOOF Word Public DATA 
16 0016 Word Public CODE 

The top of each page of the listing file displays a header consisting 
of the version of Turbo Assembler that assembled the file, the date 
and time of assembly, and the page number within the listing. 

There are two parts to the listing file: the annotated source code 
listing and the symbol tables. The original assembler code is 
displayed first, with a header containing the name of the file 
where the source code resides. The assembler source code is 
annotated with information about the machine code Turbo 
Assembler assembled from it. Any errors or warnings 
encountered during assembly are inserted immediately following 
the line they occurred on. 

The code lines in the listing file follow this format: 

<depth> <line number> <offset> <machine code> <source> 

• <depth> indicates the level of nesting of Include files and 
macros within your listing file. 

• <line number> is the number of the line in the listing file (not 
including header and title lines). Line numbers are particularly 
useful when the cross-reference feature of Turbo Assembler, 
which refers to lines by line number, is used. In HELLO.LST, 
the DOSSEG directive is line 1 of the listing file, the .MODEL 
directive is line 2, and so on. 

Be aware that the line numbers in the <line number> field are 
not the source module line numbers. For example, if a macro is 
expanded or a file is included, the line-number field will 
continue to advance, even though the current line in the source 
module stays the same. In order to translate a line number (for 
example, one produced by the cross-referencer) back to the 
source file, you must look up the line number in the listing file, 
then find that same line (by eye, not by number) in the source 
file. 

B <offset> is the offset in the current segment of the start of the 
machine code generated by the associated assembler source 
line. For instance, HelloMessage starts at offset a in the data 
segment. 

• <machine code> is the actual sequence of hexadecimal byte and 
word values that is assembled from the associated assembler 
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source line. For example, MOV AX,@data starts at offset 0 in the 
code segment. The information just to the right of the offset 
field for a given instruction is the machine code assembled from 
that instruction, so the machine code assembled for MOV 
AX,@data is B8 OOOOs (all in hexadecimal). OBBh is the machine 
language instruction to load AX with a constant value, while 
OOOOs is the constant value of @data, which is loaded into AX. 
(Actually, OOOOs is just a placeholder for the value of @data; 
we'll get to that in a minute.) Altogether, the instruction MOV 
AX,@data assembles to 3 bytes of machine code. 

Note that the listing file indicates that the instruction following 
MOV AX,@data, which is MOV DS,AX, starts at offset 3 in the 
code segment. This makes perfect sense, given that MOV 
AX,@data starts at offset 0 and is 3 bytes long. The machine 
code assembled from MOV DS,AX-8e DB-is 2 bytes long, so 
the next instruction should start at offset 5; looking at the listing 
file, we see that that is the case . 

• Finally, <source> is simply the original assembler line, 
comments and all. Some assembler lines, such as those that 
contain only comments, don't generate any machine code; these 
lines have no <offset> or <machine code> fields, but do have a 
line number. 

Recall that we said that the OOOOs value for @data was only a 
placeholder for the real value in the instruction 

rnov ax,@data 

This is because segment values are assigned by the linker, not by 
Turbo Assembler, so Turbo Assembler can't fill in the correct 
value. What Turbo Assembler can do, however, is let you know 
that a given value is a segment value that will be resolved by the 
linker. That's done by appending the letter s to the end of the 
machine code generated for 

rnov ax,@data 

Likewise, the offset in the machine code assembled from 

rnov dx,OFFSET HelloMessage 

ends with r, indicating that the offset might have to be relocated 
when its segment is combined with other segments by the linker. 

Here's the full list of notations used by Turbo Assembler to 
indicate assembly characteristics (such as relocatability): 
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Notation 

r 

s 

sr 

e 
se 
so 
+ 

Meaning 

Indicates offset fixup type for symbols within the 
. module 
Indicates segment fixup type for symbols within the 
module 
Indicates segment and offset fixup type within the 
module 
Indicates offset fixup on an external symbol 
Indicates pointer fixup on an external symbol 
Indicates segment-only fixup 
Indicates object code that has been truncated or 
wrapped to the next line 

In the object code listing, r, s, and sr are used to indicate offset, 
segment, and pointer (segment and offset) fixup types for symbols 
within" the module. e indicates an offset fixup on an external 
symbol, and se indicates a pointer fixup on an external symbol. 
Segment fixups on external symbols appear as s, just like for local 
symbols. The object code field can also contain a + symbol in the 
last column, indicating that there is more object code to display, 
but it has been truncated. 

The leftmost field of the listing is the level counter, which is blank 
when assembling from the main file. Include files cause this field 
to contain a 1 that becomes a 2,3, and so on, for each nested 
include level. Likewise, macro expansions put a level counter in 
this field. 

You may have noticed that the listing file shows some of the 
machine code entries as byte values (two hexadecimal digits) and 
others as word values. There's a logical pattern here: Whenever 
Turbo Assembler assembles machine code that represents a word 
value, such as OFFSET HelloMessage, which is a 16-bit offset, that 
value is shown as a word value. This is useful because, otherwise, 
the low-byte-first approach the 8086 uses for storing words would 
cause words to appear with the bytes reversed. 

For example, the instruction 

mov ax,1234h 

assembles to 3 bytes of machine code: OB8h, 034h, and 012h, in 
tha t order. If Turbo Assembler listed this machine code as 3 bytes, 
it would appear as 

B8 34 12 
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Listing symbol 

with the bytes of the word value swapped. Instead, Turbo 
Assembler lists this machine code as 

B8 1234 

which is certainly easier to read. 

When we discussed the <offset> field, we talked about the offset in 
the current segment of the labels and lines in a program. How do 
you know what segment a given label or line is in? That's the job 
of the listing tables, which we'll cover next. 

tables The second part of the listing file begins with the header "Symbol 
Table" and consists of two tables: one describing the labels used 
in the source code and the other describing the segments used. 

By the way, if you have no use for the symbol table portion of the 
listing file, you can instruct Turbo Assembler to generate only the 
annotated source code portion of the listing with the In 
command-line switch. 

The table of labels The first table, which we'll call the table of labels, lists all the 
labels in the source code in alphabetical order, "along with their 
types and the values to which they were set. For example, the 
listing file HELLO.LST contains the following entry: 

HelloMessage In the last 
section was marked with an 

r, meaning HelloMessage 
may be relocated to another 

offset by the linker as the 
other segments In DGROUP 

are linked into the program. 
The map file produced by 

the linker Is the place to look 
for information about 
segment relocation. 

HELLOMESSAGE BYTE DGROUP:OOOO 

HELLOMESSAGE is the name of the label, or symbol; it's in 
uppercase because Turbo Assembler converts all symbols to 
uppercase unless you use the Imx or Iml command-line switch. 
BYTE represents the data size of the data element referred to by 
the name HelloMessage. DGROUP:OOOO is the value of the label 
HelloMessage, meaning that the string pointed to by the label 
HelloMessage starts at offset 0 in the segment group DGROUP. 

Similarly, ProgramS tart is listed as a label of type near, with the 
value _TEXT:OOOO; _TEXT is the name of the segment defined 
with .CODE, so ProgramStart is at the first address in the code 
segment. As you can see, we've answered an earlier question 
about how to find out what segment a given label is in, since the 
value field of the table of labels reports the segmentin which the 
label resides. 
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The table of groups 
and segments 

Refer to Chapter 10 for 
Information on USE32 

segments. 

The other labels listed in the HELLO.LST listing file are the labels 
that are predefined by Turbo Assembler when the simplified 
segment directives are used. These labels are all set to text strings, 
and contain values such as _TEXT and DGROUP. 

Labels can be any of the following data types: 

ABS DWORD NUMBER 
ALIAS FAR aWORD 
BYTE NEAR STRUCT 

TBYTE 
TEXT 
WORD 

As we discussed at the beginning of this chapter, equated labels 
can be set to any constant value or to a text string; the value field 
of the table of labels reports the values of such labels exactly as 
you set them. For a label associated with memory addresses, such 
as HelioMessage, it's the address of the label that is reported in the 
value field. 

The table of labels is the place to look for type and value 
information about any label used anywhere in your source code. 

The other table in the symbol table portion of the listing is the 
table of groups and segments. Segment groups such as DGROUP 
are simply reported as groups here, since segment groups have no 
attributes of their own, but rather consist of one or more 
segments. The segments making up a group in a given module 
appear directly under that group's name in the table of groups 
and segments, indented two columns to show they belong to the 
group. In HELLO.LST, the segments STACK and _DATA are 
members of the DGROUP segment group. 

Segments do have attributes, and the table of groups and 
segments lists five attributes for each segment. Reading from the 
left, the table of groups and segments reports the data size, overall 
size, alignment, combine type, and class for each segment. We'll 
discuss each of these separately. 

The data size is always 16 except for USE32 segments in code 
assembled for the 80386 processor. 

The segment size is given as four hexadecimal digits. For 
example, the STACK segment is 0200h (512 decimal) bytes long. 

The alignment type describes what sort of memory boundaries a 
segment can start on. These are the possible alignment types: 
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Chapter 9 provides more 
information about alignment 

and combine types and 
segment classes. 

The cross
reference table 

Symbol tables don't cross
reference your labels, 

groups, and segments. 

• BYTE: Segment can start at any address 
• DWORD: Segment can start at any address that is a multiple of 4 

• PAGE: Segment can start at any address that is a multiple of 256 

• PARA: Segment can start at any address that is a multiple of 16 

• WORD: Segment can start at any even address 

In HELLO.LST, the STACK segment starts on a paragraph 
boundary, while the _DATA and _TEXT segments are word
aligned. 

The combine type dictates how segments of the same name are 
combined with a given segment. For example, identically named 
segments with combine-type PUBLIC are concatenated into a 
larger segment, while those with combine-type COMMON are 
overlaid into a single common segment. 

Finally, the segment class specifies the overall class in which a 
segment belongs, such as CODE, DATA, and STACK. The linker 
uses this information to order segments when it links the 
segments into a program. 

The symbol table portion of the listing file normally tells you a 
great deal about labels, groups, and segments, but there are two 
things it doesn't tell you: where labels, groups, and segments are 
defined and where they're used. Cross-referenced symbol 
information makes it easier to find labels and follow program 
execution when debugging a program. 

There are two ways to instruct Turbo Assembler to produce 
cross-reference information in the listing file. The Ie command
line switch is one way to ask Turbo Assembler to place cross
reference information in the listing file; for example, 

TASM Ie hello" 

generates cross-reference information in the listing file 
HELLO.LST. Note, however, that Ie by itself is not enough to 
generate cross-reference information; you must also instruct 
Turbo Assembler to generate a listing file in which the cross
reference information can be placed. 

You can also ask Turbo Assembler to generate a listing file 
containing cross-reference information by adding a fourth field to 
the command line, as in 
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REVERSE.ASM 

1 
2 
3 
4 
5 = 03E8 
6 0000 03EB* (??) 
7 03EB 03E8* (??) 
8 
9 
10 0000 B8 OOOOs 
11 0003 8E 08 
13 0005 B4 3F 
14 0007 BB 0000 
15 OOOA B9 03E8 
16 
17 0000 BA OOOOr 
18 
19 0010 CD 21 
20 0012 23 CO 
21 0014 74 1F 
22 0016 8B C8 
23 
24 0018 51 
25 0019 BB OOOOr 
26 001C BE 03EBr 
27 001F 03 F1 
28 0021 4E 
29 
30 
31 0022 8A 07 
32 0024 88 04 
33 0026 43 
34 0027 4E 
35 
36 0028 E2 F8 
37 002A 59 
38 002B B4 40 
39 0020 BB 0001 
40 0030 BA 03E8r 
41 0033 CD 21 
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TASM hello,hello,hello,hello 

or 

TASM hello", 

Suppose we assemble REVERSE.ASM, the second example 
program you looked at in Chapter 4, with the Ie command-line 
switch: 

TASM Ie reverse" 

Turbo Assembler creates the following listing file, REVERSE.LST: 

DOSSEG 
• MODEL small 
• STACK 200h 
• DATA 

MAXIMUM STRING LENGTH EQU 1000 
StringToReverse DB MAXIMUM STRING LENGTH DUP(?) 
ReverseString DB MAXIMUM=STRING=LENGTH DUP(?) 

• CODE 
ProgramStart: 

mov ax,@data 
mov ds,ax iset OS to point to the data segment 
mov ah,3fh iDOS read from handle function t 
mov bx,O istandard input handle 
mov cx,MAXIMUM STRING LENGTH 

iread up to maximum t of characters 
mov dx,OFFSET StringToReverse 

istore the string here 
int 21h iget the string 
and aX,ax iwere any characters read? 
jz Done ino, so we're done 
mov cX,ax iPut string length in CX, where 

i can use it as a count 
push cx isave the string length 
mov bx,OFFSET StringToReverse 
mov si,OFFSET ReverseString 
add si,cx 
dec si ipoint to the end of the reverse 

i string buffer 
ReverseLoop: 

mov aI, [bx] iget the next character 
mov lsi] ,al istore the characters in reverse order 
inc bx ipoint to next character 
dec si ipoint to previous location in 

i reverse buffer 
loop ReverseLoop imove next character, if any 
pop cx iget back the string length 
mov ah,40h iDOS write from handle function t 
mov bx,l istandard output handle 
mov dx,OFFSET ReverseString iprint this string 
int 21h iprint the reversed string 
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42 
43 0035 B4 4C 
44 0037 CD 21 

45 

Symbol Table 

Symbol Name 

Done: 
mov ah,4ch ;DOS terminate program function I 
int 21h ;terminate the program 

END ProgramStart 

Type Value Cref defined at I 

@code Text TEXT 12 18 
@curseg Text TEXT 12 13 14 18 

21 142 DONE Near TEXT:0035 
MAXIMUM STRING LENGTH Number 03E8 15 6 7 15 

19 45 
- -

PROGRAMSTART Near TEXT:OOOO -
REVERSELOOP Near TEXT:0022 130 36 
REVERSESTRING Byte DGROUP:03E8 t7 26 40 

16 17 25 STRINGTOREVERSE Byte DGROUP:OOOO 

Groups & Segments Bit Size Align Combine Class Cref defined at I 

DGROUP 
STACK 

DATA 
TEXT 

Group 12 2 10 
13 16 0200 Para Stack STACK 

16 07DO Word Public DATA 
16 0039 Word Public CODE 

12 14 
12 2 18 8 

The value of 
MAXIMUM_SmING_LENGTH Is 
a number, 03EBh or decimal 

1000. 

Once again, the listing file contains annotated source code and the 
symbol tables. There's something new in the symbol tables, 
however, and that's the cross-reference field. 

For each symbol (label, group, or segment), the cross-reference 
field lists the line numbers of all the lines in the program on 
which that symbol was referenced. Lines on which a symbol was 
defined are prefixed with a #. 

For example, let's find out where the MAXIMUM_STRING_ 
LENGTH label is defined and used. The listing file informs you 
that it was defined on line 5; if you look at the first part of the 
listing file, you'll see that this is the case. 

The cross-reference field for MAXIMUM_STRING_LENGTH also 
tells you that the label is referenced (but not defined) on lines 6, 7, 
and 15. A glance at the first part of the listing file shows that this 
is correct. 

The Ie switch allows you to enable cross-referencing for an entire 
file. You certainly won't always want a cross-reference listing for 
every symbol-such a listing could be huge for a long source 
module. Turbo Assembler provides you with directives that let 
you enable and disable cross-referencing in selected portions of 
your listings. 
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For compatibility with other 
assemblers, .CREF and .XCREF 

are provided, controlling 
cross-referencing in the same 
way as %CREF and %NOCREF, 

respectively. 
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Controlling the 
listing contents 

and format 

The O/oCREF directive enables cross-referencing for succeeding 
lines. The %NOCREF directive disables cross-referencing for 
succeeding lines. Either of these directives overrides the 
command-line Ie switch. If cross-referencing is enabled anywhere 
in a source module, then the symbol table section reports the lines 
on which all labels, groups, and segments were defined. However, 
only those lines on which the labels, groups, and segments were 
referenced (and for which cross-referencing was enabled) are 
listed as cross-reference entries. 

For example, consider 

%NOCREF 
ProgramStart PROC 

jmp LoopTop 

%CREF 

;line 1 

; line 2 

LoopTop: ;line 3 

loop LoopTop ;line 4 
%NOCREF 
mov ax,OFFSET ProgramStart ;line 5 

Line 1 will be listed as the definition line (with a #) for 
ProgramStart, even though it was in an area in which cross
referencing is turned off because the definition lines for all labels 
are listed if cross-referencing is turned on anywhere in a module. 
Similarly, line 3 will be listed as the definition line for LoopTop. 

Line 4 will appear as a cross-reference line for LoopTop because it 
occurs after %CREF and before %NOCREF. However, line 2 will 
not appear as a cross-reference line for LoopTop, because it occurs 
when cross-referencing is disabled. Likewise, line 5 will not 
appear as a cross-reference for ProgramStart. 

Turbo Assembler gives you a remarkable degree of control over 
which lines of source code should be listed, and over the format 
of the listing file as a whole. The listing control directives fall into 
two categories: the line-listing selection directives, which select 
the information to be included in the listing file, and the listing 
format control directives, which determine the actual format of 
the listing file. 
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The line-listing selection 
directives 

The line-listing selection directives enable or disable inclusion of 
certain lines in the listing file. In general, these directives are 
useful for suppressing from the listing file information that you 
don't care about at the moment, in order to keep the listing file to 
a manageable size. 

%L1ST and %NOUST 

%UST and %NOLIST are the most basic of the line-listing selection 
directives, enabling and disabling inclusion of succeeding lines in 
the listing file. For example, given 

%NOLIST 
mov ax,l 
%LIST 
mov bx,2 
%NOLIST 
add ax,bx 

only the middle line, mov bx, 2, will be included in the listing file. 
By default, %LIST is selected. 

%CONDS and %NOCONDS 

%CONDS and %NOCONDS allow you to enable and disable the 
listing of false conditionals and conditional statements. The listing 
of such conditionals is normally disabled. For example, given the 
code 

%CONDS . 
IFE IS8086 

shl ax,? 
ELSE 

mov el,? 
shl ax,el 

ENDIF 

both of the conditional sections, along with the conditional 
assembly directives, will be placed in the listing file, rather than 
just the conditional section that's true at the time of assembly. 
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%INCL and %NOINCL 

O/OINCL and O/ONOINCL allow you to enable and disable the listing 
of lines included from other files by way of the INCLUDE 
directive. The listing of included text is normally enabled. For 
example, given the code 

%NOINCL 
INCLUDE HEADER.ASM 
%INCL 
INCLUDE INIT.ASM 

the lines included from HEADER.ASM won't be placed in the 
listing file, while the lines included from INIT.ASM will appear in 
the listing file. (However, both INCLUDE directives will appear in 
the listing file.) 

%MACS and %NOMACS 

O/OMACS and O/ONOMACS allow you to enable and disable the 
listing of the text of macro expansions. The listing of macro 
expansions is normally disabled. For example, given the code 

MAKE BYTE MACRO VALUE 
DB VALUE 
ENDM 

%NOMACS 
MAKE BYTE 1 
%MACS 
MAKE BYTE 2 

the text generated by the first expansion of the MAKE_BYTE 
macro, DB 1, won't appear in the listing file, while the text 
generated by the second expansion of MAKE_BYTE, DB 2, will 
appear in the listing file. (However, both MACRO directives 
appear in the listing file.) 

%CTLS and %NOCTLS 

O/OCTLS and O/ONOCTLS allow you to enable and disable the listing 
of listing control directives themselves. The listing of listing 
control directives is normally disabled. For example, given the 
code 
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The listing format 
control directives 

%NOCTLS 
%NOINCL 
%CTLS 
%NOMACS 

the listing control directive O/ONOINCL won't appear in the listing 
file, while the listing control directive O/ONOMACS will. 

&UREF and %NOUREF 

O/OUREF and O/ONOUREF allow you to enable and disable the listing 
of unreferenced symbols-in other words, symbols that are 
defined but never used-in the symbol tables. The listing of 
unreferenced symbols is normally enabled. You must specify a 
cross-reference listing in order for those two options to have any 
effect. 

%SYMS and %NOSYMS 

O/OSYMS and O/ONOSYMS allow you to enable and disable the 
inclusion of the symbol tables in the listing file. The inclusion of 
the symbol tables in the listing file is normally enabled. 

The listing format control directives alter the format of the listing 
file. You can use these directives to tailor the appearance of the 
listing file to your tastes and needs. 

The O/OTITLE directive selects a title to be printed at the top of each 
page of the annotated source code portion of the listing file. Only 
one title can be specified in a given program. The O/OSUBTTL 
directive selects a subtitle to be printed below the title on each 
page of the listing. Any number of subtitles can be specified in a 
program. For example, if the source module SP ACEW AR.ASM 
contained the directives 

%TITLE 'Space Wars Game Program' 
%SUBTTL 'Gravitational Effects Subroutines' 

each page of the annotated source code would start with the lines 

Turbo Assembler Version 2.0 1-18-90 21:53:35 Page 1 SPACEWAR.ASM 
Space Wars Game Program 
Gravitational Effects Subroutines 
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%NEWPAGE forces Turbo Assembler to start a new page in the 
listing file. 

%TRUNC instructs Turbo Assembler to truncate fields that exceed 
their maximum width, while %NOTRUNC instructs Turbo 
Assembler to wrap fields that exceed their maximum width to the 
next line. Normally, fields that overflow are not truncated. Note 
that %NOTRUNC is on by default. 

%PAGESIZE specifies the height in rows and width in columns of 
the listing pages Turbo Assembler generates. For example, 

%PAGESIZE 66,132 

instructs Turbo Assembler to generate pages 132 columns wide by 
66 rows high. Note that O/oPAGESIZE does not send page size 
commands to the printer; rather, you should set up the printer 
before printing the listing file, then use %PAGESIZE to instruct 
Turbo Assembler to generate pages that match the way you've set 
up your printer. 

Field-width directives 

Five directives control the width of the five fields of the annotated 
source code portion of the listing file. The full format of a line in 
this section of the listing file is 

<depth> <line number> <offset> <machine code> <source> 

Earlier we described four of the five fields; the fifth field is the 
<depth> field, which indicates how many macro or include levels 
deep the current line is nested. For example, if the current line is 
produced by a macro that itself is called from within a macro, 
then the depth field will read 2. 

The %DEPTH directive specifies the width in characters of the 
<depth> field. The %LlNUM directive specifies the width in 
characters of the <line number> field. The %PCNT directive 
specifies the width of the <offset> field. (If you think of this field as 
the "program counter" field, %PCNT is easier to remember.) The 
%BIN directive specifies the width of the <machine code> field. 
Finally, the % TEXT directive specifies the width of the <source> 
field. 
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%PUSHLCTL and %POPLCTL 

You might, at times, want to briefly change the current listing 
control state and then restore it. Perhaps, in order to list every 
byte of a data table, you need to enable wrapping and adjust the 
width of the fields, or perhaps you want to enable listing of all 
types of lines for debugging purposes. After you modify the 
listing control state, it can be a real nuisance to restore the listing 
controls to their previous state, especially since some of the listing 
controls may have been set in an Include file or in some far
distant part of the source module. 

Turbo Assembler provides the %PUSHLCTL and %POPLCTL 
directives to handle this situation. %PUSHLCTL pushes the 
current listing control state onto an internal stack, and 
%POPLCTL pops the current listing control state from that stack. 
(Both directives have a maximum of 16 levels.) These two 
directives only save and restore the listing controls that can be 
enabled and disabled (like %TRUNC and %NOTRUNC), and not 
those that take a numeric argument (like %BIN). For example, in 
the following code, the listing control state is exactly the same 
after %POPLCTL as it was before %PUSHLCTL: 

%LIST 
%TRUNC 
%PUSHLCTL 
%NOLIST 
%NOTRUNC 
%NEWPAGE 

%POPLCTL 

Other listing control Turbo Assembler provides several other listing control directives 
directives for compatibility with other assemblers. These directives include 

TITLE, SUBTTL, PAGE, .UST, .XLlST, .LFCOND, .SFCOND, 
.TFCOND, .LALL, .SALL, and .XALL. (Refer to Chapter 2 of the 
Reference Guide for details on these directives.) 

Displaying a message during assembly 

Turbo Assembler provides two directives that allow you to 
display a string on the console during assembly: DISPLAY and 
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%OUT. These directives can be used to report on the progress of 
an assembly, either to let you know how far the assembly has 
progressed or to let you know that a certain part of the code has 
been reached. 

The two directives are essentially the same except that DISPLAY 
displays a quoted string onscreen and %OUT displays a 
nonquoted string onscreen. For instance, the following code 

DISPLAY 'This message produced by DISPLAY' 
%OUT This message produced by %OUT 

displays the following lines onscreen: 

This message produced by DISPLAY 
This message produced by %OUT 

Assembling source code conditionally 

216 

You'll find there are times when it would be very useful to be able 
to have a single assembler source module assemble to any of 
several different versions of a program. For example, you might 
want two versions of a given program: one version that uses 
standard 8086 instructions and one version that takes advantage 
of the powerful instructions of the 80186 and 80286. 

You could maintain two separate source modules, one for each 
version, but then you'd have a hard time keeping both modules 
up to date. The simplest sol?tion would be to build both versions 
into a single source module, with a single equated label that 
selects which version gets assembled at any given time. 

Turbo Assembler's conditional assembly directives give you this 
capability and more. Consider the following code: 

IF IS8086 

ELSE 

mov ax,3dah 
push ax 

push 3dah 
ENDIF 

call GetAdapterStatus 
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Conditional 
assembly 
directives 

IF and IFE 

If the value of the labellS8086 is nonzero, then the parameter 
value 3dah is pushed on the stack with the two-step process 
required by the 8086. If, however, 1S8086 is zero, then the 
parameter value is pushed directly, using a special form of PUSH 
that's available on the 80186 and 80286, but not the 8086. The code 
in this example uses conditional assembly to support two versions 
of the same program, one for the 8086 and one for the 80186 and 
80286. 

Turbo Assembler supports a variety of conditional assembly 
directives, and also gives you the ability to generate assembly 
errors in a variety of ways. We'll look at the conditional assembly 
directives first. 

The simplest and most useful conditional assembly directives are 
IF and IFE, which are used in conjunction with ENOIF and, 
optionally, ELSE. IFDEF and IFNDEF are also frequently used, 
while IFB, IFNB, IRON, IFOIF, IF1, and IF2 are useful in certain 
situations. 

IF causes the following block of code (up to the matching ELSE or 
ENDIF) to be assembled only if the value of the operand is 
nonzero. The operand may be a constant value or an expression 
that evaluates to a constant value. For example, 

IF REPORT ASSEMBLY STATUS - -
DISPLAY 'Reached assembly checkpoint l' 

ENDIF 

displays 

Reached assembly checkpoint 1 

when the IF is reached only if REPORT_ASSEMBLY _STATUS is nonzero. 

An IF conditional can be terminated with either ENDIF or ELSE. If 
an IF conditional is terminated with ELSE, then the code 
following ELSE is assembled only if the operand to the associated 
IF was zero. The block of code following the ELSE must be 
terminated with an ENOIF. 

IF conditionals can also be nested. For instance, this code 
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;See whether arrays are to be defined (otherwise, they're 
; allocated dynamically) 
IF DEFINE ARRAY 
;Make sure the array isn't too long 

IF (ARRAY_LENGTH GT MAX_ARRAY_LENGTH) 
ARRAY LENGTH MAX ARRAY LENGTH - -

ENDIF 
;Set the array to an initial value if that's indicated 

IF INITIALIZE ARRAY 
Array DB ARRAY LENGTH DUP (INITIAL_ARRAY_VALUE) 

ELSE 
Array DB ARRAY LENGTH DUP (?) 

ENDIF 
ENDIF 

nests an IF and an IF .... ELSE inside another IF. 

IFE is exactly like IF except that the following code is assembled 
only if the operand is zero. The code associated with the following 
IFE directive always assembles: 

IFE 0 

ENDIF 

Like IF, IFE can have an associated ELSE directive. 

Understand that the conditional assembly directives operate at 
assembly time only, not when the program is run. These are not 
like If statements in C, executing different code depending on 
some run-time condition; instead, they assemble different code 
depending on some assembly-time condition. 

IFDEF and IFNDEF IF and IFE are your primary tools for building programs that can 
assemble into more than one version. Two other directives that 
are useful in this connection are IFDEF and IFNDEF. 

The block of code between an IFDEF directive and its associated 
ENDIF is assembled only if the label that's the operand to IFDEF 
exists (that is, if the label has already been defined when the 
IFDEF directive is executed). For example, given the code 

DEFINED_LABEL EQU 0 

IFDEF DEFINED LABEL 
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DB 0 
ENDIF 

the DB directive will assemble; if, however, you were to delete the 
equate that sets DEFINED_LABEL (and assuming DEFINED_LABEL isn't 
set anywhere else in the program), then the DB directive would not 
be assembled. Note that the value of DEFINED LABEL doesn't matter 
to IFDEF. 

IFNDEF is the opposite of IFDEF, assembling its associated code 
only if the label that's the operand is not defined. 

You may well wonder what IFDEF and IFNDEF are used for. One 
use is guarding against attempts to define the same label twice 
with EQU in a complex program; if the label's already defined, 
you can use IFDEF to avoid defining it again and causing an error. 
Another use is selecting the version of a program to be assembled, 
much like what was done with IF previously; instead of checking 
to see whether, say, INITIAUZE_ARRAYS is zero or nonzero, you 
could simply check to see whether it is defined at all. 

One handy way to select program version is by way of the Id 
command-line switch. Id defines the associated label, and 
optionally assigns that label a value. So, for example, you could 
use a command line like 

TASM /dINITIALIZE ARRAYS=l test 

to assemble the program TEST.ASM with the label 
INITIALIZE ARRAYS set to 1. 

While that's undeniably useful, there's a potential problem here. 
What if you're relying on INITIALIZE_ARRAYS being set on the 
command line, but forget to type the appropriate Id switch? Also, 
suppose you want to initialize arrays as a special case, and don't 
want to be bothered with typing /dINITIALIZE _ARRAYS at other 
times? 

IFNDEF comes to your rescue in this case. You can use IFNDEF to 
test whether INITIALIZE_ARRAYS is already defined (from the 
command line), and then initialize it only if it's not already set. 
That way, the command-line definition takes precedence, but 
there's a default state for the label if no command-line definition 
was specified. Here's the code to define INITIALIZE_ARRAYS only if 
it's not already defined: 
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Other conditional 
assembly directives 

IFNDEF INITIALIZE ARRAYS 
INITIALIZE ARRAYS EQU 0 idefault to not initializing 
ENDIF 

When you use IFNDEF this way to define an undefined symbol, 
you'll get a warning message indicating that you are using a 
pass-dependent construction. You can ignore this message if all 
you are doing is defining a symbol inside the IFNDEF conditional 
block. The message happens because Turbo Assembler can't tell if 
you are going to put instructions or directives inside the block. If 
you do more in the block than just define a symbol, you will 
probably want to enable multi-pass processing with the 1m switch. 
If you are only defining a symbol, enabling multi-pass processing 
will cause the warning to not be given. 

The IFB, IFNB, IFIDN, and IFDIF directives are used for testing 
parameters passed to macros. (Macros are discussed in Chapter 9, 
/I Advanced programming in Turbo Assembler.") IFB causes its 
associated code to be assembled If the macro parameter that is its 
operand is blank, while IFNB does the same if its operand is not 
blank. IFB and IFNB are sort of the equivalent of IFNDEF and 
IFDEF for macro parameters. 

For example, consider the macro TEST, defined as 

i Macro to define a byte or a word. 

Input: 
VALUE = value of byte or word 
DEFINE_WORD = 1 to define a word, 0 to define a byte 

i Note: If PARM2 is not specified, a byte is defined. 

TEST MACRO VALUE, DEFINE_WORD 
IFB <DEFINE WORD> 

DB VALUE 
ELSE 

IF DEFINE WORD 
DW VALUE 

ELSE 
DB VALUE 

ENDIF 
ENDIF 

ENDM 

idefine a byte if PARM2 is blank 

idefine a word if PARM2 is nonzero 

idefine a byte if PARM2 is zero 
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If TEST is invoked with 

TEST 19 

then a byte with the value 19 is defined, while if TEST is invoked 
with 

TEST 19,1 

then a word with the value 19 is defined. 

IFIDN causes its associated code to be assembled if the two macro 
parameters that are its operands are identical, while IFDIF does 
the same if its pair of operands are different. For example, the 
following macro, which converts a signed byte to a signed word 
in AX, doesn't bother to copy the source operand to AL if the 
source operand is AL: 

; Macro to convert a signed byte in an a-bit register or 
; named memory location to a signed word in AX. 

Input: 
SIGNED_BYTE - the name of the register or memory location 

containing the signed byte to convert to a signed word 

MAKE SIGNED WORD MACRO 
IFDIFI 

mov 
ENDIF 

cbw 
ENDM 

-
<AL>,<SIGNED_BYTE> 
al,SIGNED_BYTE 

SIGNED BYTE 
;make sure the operand isn't AL 

IFIDN and IFDIF are sensitive to the case of their arguments. Their 
companion directives IFIDNI and IFDIR treat as equivalent 
uppercase and lowercase letters in their arguments. 

Note that angle brackets are required around all operands to IFB, 
IFNB, IFIDN, and IFDIF. 

If you don't use the 1m command-line switch to enable multiple 
passes, then IF1 is always considered true, and IF2 is always 
considered false because there is never a second pass. A "Pass
dependent construction encountered" warning is displayed in 
this circumstance if Turbo Assembler encounters either IF1 or IF2 
in a module. 

If you use the 1m command-line switch, two passes are done 
automatically if your module contains either IF1 or IF2. In this 
case, IF1 is true on the first pass, IF2 is true on the second pass, 
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ELSEIF family of 
directives 

and a "Module is pass-dependent--compatibility pass was done" 
warning is also displayed. 

Each of the IF family of directives (IF, IFB, IFIDN, and so on) has a 
related member in the ELSEIF family (for example, ELSEIF, 
ELSEIFB, ELSEIFIDN). They act like a combination of the ELSE 
directive with one of the IF directives. You can use them to make 
your code more readable when you want to test against multiple 
conditions or values and only assemble a single block of code. 
Consider the following code fragment: 

IF BUFLENGTH GT 1000 
CALL DOBIGBUF 

ELSE 
IF BUFLENGTH GT 100 

CALL MEDIUMBUF 
ELSE 

IF BUFLENGTH GT 10 
CALL SMALLBUF 

ELSE 
CALL TINYBUFP 

ENDIF 
ENDIF 

ENDIF 

You can use the ELSEIF directive to improve the readability of 
this code: 

IF BUFLENGTH GT 1000 
CALL DOBIGBUF 

ELSEIF BUFLENGTH GT 100 
CALL MEDIUMBUF 

ELSEIF BUFLENGTH GT 10 
CALL SMALLBUF 

ELSE 
CALL TINYBUF 

ENDIF 

This roughly corresponds to the case or switch statements in 
Pascal and C. However, this capability is actually far more 
general, since you don't have to use the same kind of ELSEIF test 
throughout the conditional code block. For example, the 
following is perfectly valid: 

PUSHREG MACRO ARG 
IFIDN <ARG>,<INDEX> 

push si 
push di 
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Conditional error 

ELSEIFB <ARG> 
push ax 

ENDIF 
ENDM 

directives Turbo Assembler allows you to unconditionally or conditionally 
generate assembly errors with the conditional error directives: 

.ERR .ERRB .ERRDIFI .ERRIDNI 

.ERR1 .ERRDEF .ERRE .ERRNB 

.ERR2 .ERRDIF .ERRIDN .ERRNDEF 
.ERRNZ 

Why on earth would you intentionally generate an assembly 
error? Well, the conditional error directives allow you to catch a 
variety of mistakes in your programs, such as equated labels that 
are too large or too small, labels that aren't defined, and missing 
macro parameters. 

Take another look at the list of conditional error directives. You'll 
note that the conditional error directives are very similar to the 
conditional assembler directives, and that's no coincidence, since 
most of the conditional error directives test the same conditions. 
For example, .ERRNDEF generates an error if the operand label is 
not defined, just as IFNDEF assembles the associated code if the 
operand label is not defined . 

. ERR, .ERR1, and .ERR2 Whenever Turbo Assembler encounters the .ERR directive, an 
error is generated. By itself, that's not a particularly useful 
function; however, .ERR is useful when combined with a 
conditional assembly directive. 

For example, suppose you want to generate an error if the equate 
for the length of a given array is set to too large a number. The 
following code would do the job: 

IF (ARRAY_LENGTH GT MAX_ARRAY_LENGTHl 
.ERR 

ENDIF 

If the array isn't too long, Turbo Assembler won't assemble the 
code within the IF block, so the .ERR directive will never be 
assembled, and no error will be generated . 

. ERR1 and .ERR2 do just what .ERR does, but only on pass 1 or 
pass 2, respectively. Ify,ou don't use the 1m command-line switch 
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to enable multiple passes, then .ERR1 will always display an 
error; .ERR2 will never display an error, because there is never a 
second pass. A "Pass-dependent construction encountered" 
warning is displayed in this circumstance if Turbo Assembler 
encounters either .ERR1 or .ERR2 in a module. 

If you use the 1m command-line switch, two passes are done 
automatically if your module contains either .ERR1 or .ERR2. In 
this case, .ERR1 displays an error on the first pass, .ERR2 displays 
an error on the second pass, and a "Module is pass-dependent
compatibility pass was done" warning is also displayed . 

. ERRE and .ERRNZ The .ERRE directive generates an error if its operand, which must 
evaluate to a constant expression, is equal to zero . . ERRE is 
equivalent to performing .lFE combined with .ERR. For example, 

.ERRE TEST LABEL-l 

is equivalent to 

IFE TEST LABEL-l 
.ERRE 

ENDIF 

.ERRE can be used to generate an error when a relational 
expression returns false, since the value of a false expression is O. 

Similarly, the .ERRNZ directive generates an error if its operand is 
not equal to zero; this is equivalent to IF followed by .ERR . 
. ERRNZ can be used to generate an error when a relational 
expression returns true, since the value of a true expression is 
nonzero. For example, 

.ERRNZ ARRAY LENGTH GT MAX ARRAY LENGTH - --

performs the same action as do the IF and .ERR directives in the 
example in the last section . 

. ERRDEF and .ERRNDEF .ERRDEF generates an error if the label that is its operand is 
defined, while .ERRNDEF generates an error if the label that is its 
operand is undefined. These directives let you perform the 
equivalent of IFDEF or IFNDEF and .ERR in a single line. For 
example, 

.ERRNDEF MAX PATH LENGTH 

is equivalent to 

IFNDEF MAX PATH LENGTH 
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Other conditional error 
directives 

The macro also uses .ERRIDN 
to make sure that PARM21sn 't 
DX, In which case it would be 

wiped out when PARM 1 Is 
loaded. 

.ERR 
ENDIF 

The four remaining conditional error directives are intended for 
use in macros only, and are directly analogous to the four 
conditional assembly directives intended for use in macros that 
we discussed in the previous section, "Other Conditional 
Assembly Directives," on page 220 . 

. ERRB generates an error if the macro parameter that is its 
operand is blank, and .ERRNB generates an error if the macro 
parameter that is its operand is not blank. .ERRIDN generates an 
error if the two macro parameters that are its operands are 
identical, and .ERRDIF generates an error if the two macro 
parameters that are its operands are different. 

For example, the following macro generates an error if it's 
invoked with any number of parameters other than two. This is 
accomplished by using .ERRB and .ERRNB to make sure that 
PARM2 isn't blank and PARM3 is blank. 

i Macro to add two constants, registers, or named memory 
locations and store the result in DX. 

Input: 
PARMl - one operand to add 
PARM2 - the other operand to add 

ADD TWO OPERANDS MACRO PARMl,PARM2,PARM3 
.ERRB <PARM2> ithere must be two parameters 
.ERRNB <PARM3> ; ••• but not three 
.ERRIDN <PARM2>,<DX> isecond parameter can't be DX 
mov dx,PARMl 
add dx, PARM2 
ENDM 

Pitfalls in assembler programming 

Each computer language has its own set of oft-encountered 
programming problems, and assembly language is certainly no 
exception. Here are some of the common pitfalls of assembly
language programming, along with tips on how to avoid them. 
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Forgetting to 
return to DOS In Pascal, C, and other languages, a program ends automatically 

and returns to DOS when there is no more code to execute, even if 
no explicit termination command was written into the program. 
Not so in assembly language, where only those actions that you 
explicitly request are performed. When you run a program that 
has no command to return to OOS, execution simply continues 
right past the end of the program's code and into whatever code 
happens to be in the adjacent memory. 

For example, consider the following program: 

. MODEL small 

.CODE 
DoNothing PROC NEAR 

nop 
DoNothing ENDP 

END DoNothing 

Past experience might lead you to think that either the ENDP 
directive or the END directive properly terminates this program, 
just as } and end. do in C and Pascal, but that's not the case. The 
executable code generated by assembling and linking this 
program consists only of a single NOP instruction. In assembler, 
the ENDP directive-like all directives-generates no code; it's 
simply a note to the assembler that the code for the DoNo thing 
procedure has ended. Similarly, the END DoNothing directive 
merely tells the assembler that the code for this module has 
ended, and that the program should start execution at DoNo thing. 
Nowhere in the source code are instructions generated to transfer 
control back to 005 when the program is finished; as a result, 
when the program is run, whatever random instructions happen 
to be lying in memory at the address following the NOP will be 
executed immediately following the NOP. At this point, all bets 
are off, with a hung computer and a soft or hard reboot far more 
likely than the desired return to 005. 

While there are several means by which an assembler program 
can return to 005, the recommended technique is to execute 005 
function 4Ch. The following version of the preceding program 
termina tes properly: 
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Forgetting a RET 
instruction 

• MODEL small 
.CODE 

DoNothing PROC NEAR 
nop 
mov ah,4Ch 
int 21h 

DoNothing ENDP 
END DoNothing 

;DOS terminate process function 
;invoke DOS to end program 

Always remember that directives don't generate code, and that 
Turbo Assembler generates programs that do exactly what your 
source code tells them to do, no more and no less. 

Recall that the proper invocation of a subroutine consists of a call 
to the subroutine from another section of code, execution of the 
subroutine, and a return from the subroutine to the calling code. 
Remember to insert a RET instruction in each subroutine, so that 
the RETurn to the calling code occurs. When typing a program, 
it's easy to skip a RET and end up with code like this: 

; Subroutine to mUltiply a value by 80. 
; Input: AX - value to multiply by 80 
; Output: DX:AX - product 

MultiplyBy80 PROC NEAR 
mov dx,80 
mul dx 

MultiplyBy80 ENDP 

; Subroutine to get the next key press. 
; Output: AL - next key pressed 
; AH destroyed 

Get Key PROC NEAR 
mov ah,l 

, int 21h 
ret 

Get Key PROC NEAR 

The MultiplyByBO ENDP,directive can fool you into thinking that 
MultiplyByBO has been terminated properly, when in fact the call 
to MultiplyByBO not only multiplies AX by 80 but also continues 
on into GetKey and returns the next key typed in AL. The proper 
code for MultiplyByBO is 

Subroutine to mUltiply a value by 80. 
; Input: AX - value to multiply by 80 
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Generating the 
wrong type of 

return 

; Output: DX:AX - product 

MultiplyBy80 PROC NEAR 
rnov dx,80 
rnul dx 
ret 

MultiplyBy80 ENDP 

The PROC directive has two effec~s. First, it defines a name by 
which a procedure can be called. Second, it controls whether the 
procedure is a near or far procedure. 

The type of a procedure-near or far-is used by the assembler to 
determine what type of calls to generate when that procedure is 
called from within the same source file. The type of a procedure is 
also used to determine the type of RET performed when the 
procedure returns control to the calling code. Consider the 
following code: 

; Near subroutine to shift DX:AX right 2 bits. 

LongShiftRight2 PROC NEAR 
shr dx,+ 
rer ax,l ;shift DX:AX right 1 bit 
shr dx,l 
rer ax,l ;shift DX:AX right another bit 
ret 

LongShiftRight2 ENDP 

Turbo Assembler makes the RET in this code near, since 
LongShiftRight2 is a near procedure. If the PROC directive is 
changed to read 

LongShiftRight2 PROC FAR 

however, a far RET is generated. 

So far, everything makes sense. After all, the RET instructions in a 
procedure should match the type of the procedure, shouldn't 
they? 

Yes and no. The problem is that it's possible and often desirable to 
group several subroutines in the same procedure. Since these 
subroutines lack an associated PROC directive, their RET 
instructions take on the type of the overall procedure, which is 
not necessarily the correct type for the individual subroutines. For 
example, 
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; Far subroutine to shift DX:AX right 2 bits. 

LongShiftRight2 PROC FAR 
call LongShiftRight 
call LongShiftRight 
ret 

LongShiftRight: 
shr dx,l 
rcr ax,l 
ret 

LongShiftRight2 ENDP 

;shift DX:AX right 1 bit 
;shift DX:AX 'right another bit 

;shift DX:AX right 1 bit 

does not work properly. LongShiftRight2 makes near calls to 
LongShiftRight, since they are both in the same code segment. 
However, since LongShiftRight is embedded in the LongShiftRight2 
procedure, the return at the end of LongShiftRight subroutine 
becomes a far RET, and matching far calls with near returns is 
likely to lead to a crash. 

One good solution is to make sure that each subroutine has an 
associated PROC directive. Nested PROC directives work well: 

; Far subroutine to shift DX:AX right 2 bits. 

LongShiftRight2 PROC FAR 
call LongShiftRight 
call LongShiftRight 
ret 

LongShiftRight 
shr dx,l 
rcr ax,l 
ret 

PROC NEAR 

LongShiftRight ENDP 
LongShiftRight2 ENDP 

;shift DX:AX right 1 bit 
;shift DX:AX right another bit 

;shift DX:AX right 1 bit 

as do sequential PROC directives: 

; Far subroutine to shift DX:AX right 2 bits. 

LongShiftRight2 PROC FAR 
call LongShiftRight 
call LongShiftRight 
ret 

LongShiftRight2 ENDP 
LongShiftRight PROC NEAR 

shr dx,l 
rcr ax,l 
ret 

LongShiftRight ENDP 

Chapter 6, More about programming in Turbo Assembler 

;shift DX:AX right 1 bit 
;shift DX:AX right another bit 

;shift DX:AX right 1 bit 

229 



Reversing 

You can also use RETN and RETF to explicitly generate a near or 
far return, respectively. You can use these outside of a procedure 
defined with the PRoe directive and rest assured that the correct 
return will always be generated. 

operands To many people, the order of instruction operands in 8086 
assembly language seems backward, and there is certainly some 
justification for this viewpoint. If the line 

Forgetting the 
stack or reserving 
a too small stack 

230 

mov ax,bx 

meant "move AX. to BX," the line would scan smoothly from left 
to right, and this is the way many microprocessor manufacturers 
have designed their assembly languages. However, Intel took a 
different approach with 8086 assembly language; for us the line 
means "move BX to AX," and that can sometimes cause 
confusion. 

The thinking behind the ordering of Intel's operands is that the 
operands appear in the same order as they would in C or Pascal 
code, with the destination on the left. Consequently, one way to 
think of operand -ordering in 8086 assembly language is to 
mentally insert an equal sign in place of the comma between 
operands and reword the line to form an assignment. For 
example, think of 

mov ax,bx 

as 

ax = bx 

Constant operands, such as 

add bx, (OFFSET BaseTable * 4) t 2 

which can be thought of as 

bx t= (OFFSET BaseTable * 4) t 2 

also lend themselves to this approach. 

In most cases, you are treading on thin ice if you don't explicitly 
alloca te space for a stack. Programs without an allocated stack 
will sometimes run, since the default stack may happen to fall in 
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Writing .EXE rather than 
. COM programs and 

reserving ample stack space 
Is a simple way to avoid 

these potential problems. 

Calling a 
subroutine that 

wipes out 
needed registers 

an unused area of memory. But there is no assurance that these 
programs will run under all circumstances, since not a single byte 
is guaranteed to be available for the stack. 

Most programs should have a .STACK directive to reserve space 
for the stack, and for each program that directive should reserve 
more than enough space for the deepest stack you can conceive of 
the program using. 

Why more than enough space rather than just enough space? In 
general, it's difficult to be sure just how much stack space a given 
program needs, and the sort of bugs that occur when the stack 
grows in to other parts of the program and overwrites them are 
often very difficult to reproduce and track down. Then, too, many 
debuggers use a little extra space on the stack when getting 
control back from a program. So be generous when allocating 
stack space, and save yourself future headaches. A minimum 
stack size of 512 bytes is a good rule of thumb. 

The only assembler programs that should not have a stack 
allocated are programs that are going to be made into .COM or 
.BIN files .. BIN files contain code hard-wired to run at a specific 
address, and since .BIN files are generally used as interpreted 
BASIC subroutines, they use BASIC's stack. .COM programs run 
with the stack at the very top of the program's segment (which is a 
maximum of 64K long, or less if there's less than 64K available), so 
the maximum size of the stack is simply the amount of memory 
left in the program's segment. Beware if any of the .COM 
programs you write approach 64K in size, since the stack shrinks 
accordingly. Also be aware that large .COM programs may 
encounter stack problems when run on computers with little 
available memory or when run from a 005 shell under another 
program. 

When writing assembler code, it's easy to think of the registers as 
local variables, dedicated to the use of the procedure you're 
working on at the moment. In particular, there's a tendency to 
assume that registers are unchanged by calls to other procedures. 
It just isn't so, though-the registers are global variables, and each 
procedure can preserve or destroy any or all registers. 

As an example, consider the following: 
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mov bx, [TableBase] 
mov ax, [Element] 
call DivideBy10 
add bx,ax 

ipoint BX to base of table 
iget element t 
idivide element t by 10 
ipoint to appropriate entry 

Subroutine to divide a value by 10. 
Input: AX - value to divide by 10 

i Output: AX - value divided by 10 
DX - remainder of value divided by 10 

i BX destroyed. 

DivideBy10 PROC NEAR 
mov dx,O 
mov bx,10 
div bx 
ret 

DivideBy10 ENDP 

iprepare DX:AX as 32-bit dividend 
iBX is the 16-bit divisor 

The calling routine assumes that BX is preserved by DivideByl0, 
when in fact DivideByl0 sets BX to 10. There are a number of 
possible solutions in this particular case. BX could be pushed and 
popped either at the start or end of DivideByl0: 

mov bx, [TableBase] 
mov ax, [Element] 
call DivideBy10 
add bx,ax 

;point BX to base of table 
iget element t 
idivide element t by 10 
ipoint to appropriate entry 

Subroutine to divide a value by 10. 
Input: AX - value to divide by 10 

i Output: AX - value divided by 10 
DX - remainder of value divided by 10 

DivideBy10 PROC NEAR 
push bx 
mov dx,O 
mov bx,10 
div bx 
pop bx 
ret 

DivideBy10 ENDP 

ipreserve BX 
iprepare DX:AX as 32-bit dividend 
iBX is the 16-bit divisor 

irestore original BX 

or in the calling routine around the call to DivideByl0: 

mov bx, [TableBase] 
mov ax, [Element] 
push bx 

ipoint BX to base of table 
;get element t 
ipreserve table base 
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call DivideBy10 
pop bx 
add bx,ax 

idivide element I by 10 
irestore table base 
ipoint to appropriate entry 

Subroutine to divide a value by 10. 
Input: AX - value to divide by 10 

i Output: AX - value divided by 10 
DX - remainder of value divided by 10 

DivideBy10 PROe NEAR 
mov dx,O 
mov bx,10 
div bx 
ret 

DivideBy10 ENDP 

iprepare DX:AX as 32-bit dividend 
iBX is the 16-bit divisor 

or BX could simply be loaded after, rather than before, the call 

mov ax, [Element] 
call DivideBy10 
mov bx, [TableBase] 
add bx,ax 

iget element I 
idivide element I by 10 
ipoint BX to base of table 
ipoint to appropriate entry 

Subroutine to divide a value by 10. 
Input: AX - value to divide by 10 
Output: AX - value divided by 10 

DX - remainder of value divided by 10 

DivideBy10 PROe NEAR 
mov dx,O 
mov bx,10 
div bx 
ret 

DivideBy10 ENDP 

iprepare DX:AX as 32-bit dividend 
iBX is the 16-bit divisor 

An obvious solution to the general problem of subroutines that' 
accidentally clobber registers is for all subroutines to preserve all 
registers as a matter of course. Unfortunately, pushing and 
popping registers takes time and code space, negating some of the 
advantages of programming in assembler. Another approach is to 
preface each subroutine with a comment indicating which 
registers are preserved and which are destroyed. Then carefully 
check that there are no problems in each case where you must ,(, 
assume a register is preserved across a subroutine call. Yet ,'", 
another approach is to explicitly preserve needed registers in 
calling,routines. 
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The profusion of conditional jumps in assembly language (JE, 
JNE, JC, JNC, JA, JB, JG, and so on) allows tremendous flexibility 
in writing code-and also makes it easy to select the wrong jump 
for a given purpose. Moreover, since condition-handling in 
assembly language requires at least two separate lines, one for the 
comparison and one for the conditional jump (and many more 
lines for complex conditions), assembly language condition
handling is less intuitive and more prone to errors than 
condition-handling in C and Pascal. 

• One common error is the use of JA, JB, JAE, or JBE for 
comparing signed values or, similarly, the use of JG, JL, JGE, or 
JLE for comparing unsigned values. 

• Another common error is the use of, say, JA when JAE was 
intended. Remember that without the e on the end of JAE, JBE, 
JLE, or JGE, the comparison does not include the case where 
the two operands are equal. 

• And yet another common error is the use of inverted logic, such 
as JS when JNS was intended. 

One approach that can help minimize errors when using 
conditional jumps is to comment the tests and conditional jumps 
in C-like notation. For example, 

if ( Length > MaxLength ) 

mov ax, [Length] 
cmp ax, [MaxLength] 
jng LengthIsLessThanMax 

jmp EndMaxLengthTest 

} else { 

LengthIsLessThanMax: 

EndMaxLengthTest: 

Turbo Assembler User's Guide 



Pitfalls with string 
instructions 

Forgetting about REP 
string overrun 

String instructions are uniquely powerful among 8086 
instructions, and with that power come some unique problems, 
which are described next. 

String instructions have a curious property: After they're 
executed, the pointers they use wind up pointing to an address 1 
byte away (or 2 bytes if a word instruction) from the last address 
processed. For example, after this code executes 

cld 
mov si,O 
lodsb 

irnake string instructions count up 
ipoint to offset a 
iread the byte at offset a 

51 will contain 1, not O. This makes sense, since the next LOOSe is 
likely to want to access address 1, and the LOOSe after that to 
access address 2, but it can cause some confusion with repeated 
string instructions, especially REP SCAS and REP CMPS. 
Consider the code 

cld 
les di, [bp+ScanString] 
mov cx,MAX_STRING_LEN 
mov al,O 
repne scasb 

imake string instructions count up 
ipoint ES:DI to the string to scan 
icheck up to the longest string 
isearch for the terminating null 
iperform search 

Suppose ES is 2000h, DI is 0, and the memory starting at 2000:0000 
contains 

41h 61h 72h 64h OOh 

After this code executes, DI will contain 5, the offset of the byte 
after the 0 byte that was found. In order to return a pointer to the 
last character in the string, the preceding code would have to read 

cld 
les di, [bp+ScanString] 
mov cx,MAX_STRING_LEN 
mov al,O 
repne scasb 
jne NoMatch 

imake string instructions count up 
ipoint ES:DI to the string to scan 
icheck up to the longest string 
isearch for the terminating zero 
iperform search 
ierror-terminating zero not found 
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dec di ;point back to the zero 
dec di ;point back to last character 
ret 

NoMatch: 
mov di,O ;return a null pointer 
mov es,di 
ret 

Remember also that when the direction flag is set, causing string 
instructions to count down, DI will point to the byte before, not 
after, the last character scanned. 

Similar confusion can arise because ex is decremented during 
REP SCAS and REP CMPS one more time than might be 
expected. ex is not only decremented once for each byte that 
matches the "repeat while" condition (equal or not equal), but 
also once for the byte that fails to match the "repeat while" 
condition and thereby causes the instruction to terminate. For 
instance, if in the last example the byte at 2000:0000 contained 
zero, after execution ex would contain MAX_STRING_LEN -1, 
even though not a single nonzero character was found. A 
subroutine to count the number of characters in a string must 
account for this: 

; Returns the length of a zero-terminated string in bytes. 
; Input: ES:DI - start of string 
; Output: AX - length of string, not including terminating 0 

ES:DI - points to last byte of string, or 
0000:0000 if terminating 0 not found 

StringLength PROe NEAR 
cld 
push cx 
mov cx,OFFFFh 
mov al,O 
repne scasb 
jne StringLengthError 
mov ax,OFFFFh 
sub ax,cx 
dec ax 
dec di 
dec di 
jmp short StringLengthEnd 

StringLengthError: 
mov di,O 
mov es,di 

StringLengthEnd: 

;search counts up 
;preserve ex 
;maximum length to search 
;terminating byte to search for 
;search for the terminating 0 
;error if end of string not found 
;maximum length searched 
;see how many bytes were counted 
;don't count the terminating zero 
;point back to terminating zero 

;point back to last character 

;return a null pointer 
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Relying on a zero ex to 
cover a whole 

segment 

pop cx irestore the original CX 
ret 

StringLength ENDP 

Another potential problem arising from ex counting on the byte 
that terminates a REP SCAS or REP CMPS is that ex might be 
zero at the end of the comparison even though the termination 
condition was found. This code does not correctly evaluate 
whether two arrays are the same, since ex will count down to 
zero when comparing two non-equal arrays that differ only at the 
last byte: 

repz cmpsb 
jcxz ArraysAreTheSame 

The correct code for testing array equality is 

repz cmpsb 
jz ArraysAreTheSame 

In short, ex should be used only as a count of the bytes scanned 
by REP SCAS and REP CMPS, not as an indicator of whether the 
data scanned or compared was equal or non-equal. 

If you find yourself having trouble figuring out just what repeated 
string instructions will do in your programs, one good approach 
is to use either pencil and paper or a debugger to trace, step-by
step, through the workings of your repeated string code. 

Any repeated string instruction executed with ex equal to zero 
will do nothing. Period. This can be convenient in that there's no 
need to check for the zero case before executing a repeated string 
instruction; on the other hand, there's no way to access every byte 
in a segment with a byte-sized string instruction. For example, the 
following code 'scans the segment at ES for the first occurrence of 
the letter A: 

cld 
sub di,di 
mov al,'A' 
mov cx,OFFFFh 
repne SCASb 
je AFound 

isearches count up 
istart at offset zero 
isearch for letter 'A' 
ifirst scan the first 64 Kb-l bytes 
iscan the first 64 Kb-l bytes 
i found it 
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scasb 
je AFound 

AFound: 

ididn't find it yet-scan the last byte 
ifound it at the last byte 
i there's no letter 'A' in this segment 

iDI - 1 points to the letter 'A' 

There's an asymmetry in the 8086 instruction set concerning the 
use of zero ex values when counting. While repeated string 
instructions don't do anything if ex is 0, the LOOP instruction 
does execute if ex is 0, decrementing ex to OFFFFh and jumping 
to the loop address. This means that a full64K can be processed in 
a single loop. The preceding example of scanning the segment at 
ES for the letter A can be implemented with LOOP as 

cld 
sub di,di 
mov al,'A' 
sub cx,cx 

ASearchLoop: 
scasb 
je AFound 
loop ASearchLoop 

AFound: 

isearches count up 
istart at offset zero 

isearch 64 Kb bytes 

icheck the next byte 
iit's a letter 'A' 
ithere's no letter 'A' in this segment 

iDI - 1 points to the letter 'A' 

On the other hand, the case of ex equal to zero does have to be 
specially checked for when using LOOP in those cases where ex 
equal to zero really does mean, "Don't do anything"; otherwise, 
64K loops instead of zero loops will be executed with potentially 
disastrous results. The JCXZ instruction helps you handle such 
cases: 

Subroutine to fill up to 64K -1 byte with a given byte value. 
Input: AL - fill value 

ex - number of bytes to fill 
DS:BX - first address to fill 

BX, ex altered. 

FillBytes PRoe NEAR 
jcxz FillBytesEnd 

FillBytesLoop: 
mov [bx],al 
inc bx 
loop FillBytesLoop 

FillBytesEnd: 
ret 

iif the I of bytes to fill is 0, done 

i fill a byte 
ipoint to the next byte 
ido for the number of bytes specified 
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for a repeated string 

comparison 

FillBytes ENDP 

Without JCXZ, FillBytes would fill the entire segment pointed to 
by E5 with AL when ex was zero, instead of leaving memory 
unchanged. 

When a string instruction is executed, its associated pointer or 
pointers-51 or DI or both-increment. Or decrement. It all 
depends on the state of the direction flag. 

The direction flag can be cleared with CLD to cause string 
instructions to increment (count up) and can be set with STD to 
cause string instructions to decrement (count down). Once cleared 
or set, the direction flag stays in the same state until either 
another CLD or STD is executed or the flags are popped from the 
stack with POPF or IRET. While it's handy to be able to program 
the direction flag once and then execute a series of string 
instructions that all operate in the same direction, the direction 
flag can also be responsible for intermittent and hard-to-find bugs 
by causing string instructions to behave differently, depending on 
code that executed much earlier. 

Why is this? In most programs, the direction flag is almost always 
cleared, since counting up is intuitively easier than counting 
down and works fine in most cases. There are, however, certain 
cases where only counting down will do. You can get in the habit 
of assuming that the direction flag will always be cleared, but 
forget to clear the flag after one of the few procedures that sets the 
direction flag. The result will be that parts of your program that 
require counting up will work perfectly-except after executing 
that one procedure that leaves the direction flag set. 

The remedy is obvious. Always program the direction flag to the 
desired state before using string instructions if there is any chance 
that the direction flag is not already programmed correctly. In 
general, it's a good idea to program the direction flag correctly at 
the beginning of any procedure that uses string instructions. 

The CMPS instruction compares two areas of memory, while the 
SCAS instruction compares the accumulator to an area of 
memory. When prefixed by REPE, either of these instructions can 
perform a comparison until either ex becomes zero or a not-equal 
comparison occurs. When prefixed by REPNE, either instruction 
can perform a comparison until either ex becomes zero or an 
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Refer to Chapter 9 for an 
explanation of segment 

prefixes. 

equal comparison occurs. Unforhmately, it's easy to become 
confused about which of the REP prefixes does what. 

A good way to remember the function of a given REP prefix is to 
mentally insert a "while" after the "rep" portion of the prefix. 
Then REPE becomes "rep while e," or "repeat while equal," and 
REPNE becomes "rep while ne," or "repeat while not equa1." 

Each string instruction defaults to using a source segment (if any) 
of OS, and a destination segment (if any) of ES. It's easy to forget 
this and try to perform, say, a STOSB to the data segment, since 
that's where all the data you're processing with non string 
instructions normally resides. Similarly, it's common to 
accidentally write code such as 

cld 
mov al,O 
mov cx,80 
repe scasb 
jz AllZero 
dec di 
mov aI, [di] 

AllZero: 

icount up while searching 

ilength of buffer 
ifind first nonzero character, if any 
ino nonzero character 
ipoint back to first nonzero character 
iget first nonzero character 

The problem with this code is that unless DS and ES are the same, 
the last MOV won't load the correct byte into AL, since STOSB 
operates relative to ES and MOV operates relative to DS. The 
correct code would use a segment override prefix on the move. 

cld 
mov al,O 
mov cx,80 
repe scasb 
jz AllZero 
dec di 
mov al,es:[di] 

AllZero: 

icount up while searching 

ilength of buffer 
ifind first nonzero character, if any 
ino nonzero character 
ipoint back to first nonzero character 
iget first nonzero character (from ES!) 

Also, remember that while it is possible to override OS as the 
string source segment, as, for example, in 
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Converting incorrectly 
from byte to word 

operations 

lods es:[SourceArray] 

it is not possible to override ES as the string destination segment, 
so this code won't work: 

stos ds:[DestArray] 

In fact, Turbo Assembler catches this as an error during assembly. 

In general, it's desirable to use the largest possible data size 
(usually word, but dword on an 80386) for a string instruction, 
since string instructions with larger data sizes often run faster. For 
example, 

mov cx,200 

shr cx,l 
rep movsw 

inumber of bytes to move 

iconvert from t of bytes to t of words 
imove the block a word at a time 

runs about 50% faster on an 8088 than 

mov cx,200 inumber of bytes to move 

rep movsb imove the block a byte at a time 

There are a couple of potential pitfalls here, though. First, the 
conversion from a byte count to a word count by a simple 

shr cx,l 

loses a byte if CX is odd, since the least-significant bit is shifted 
out. Cases where CX might be odd can be handled with the 
following conditional code: 

shr cx,l 
jnc MoveWord 
movsb 

MoveWord: 
rep movsw 

iconvert to word count 
iodd byte count? 
iyes, odd byte count, so move odd byte 

imove even t of bytes a word at a time 
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Second, make sure you remember SHR divides the byte count by 
two. Using, say, STOSW with a byte rather than a word count can 
wipe out other data and cause all sorts of problems. For example, 

mov cx,200 ;number of bytes to move 

rep movsw ;move the block a word at a time 

will wipe out the 200 bytes (100 words) immediately following the 
destination block. 

USing multiple prefixes "String instructions with multiple prefixes do not work reliably 
and should generally be avoided. An example is this code 

Relying on the 
operand(s) to a string 

instruction 

rep movs es:[DestArray],ss:[SourceArray] 

which has both a REP prefix and an SS segment override prefix. 
Multiple prefixes are a problem because string instructions can be 
interrupted in the middle of repeated execution by a hardware 
interrupt. On some Intel processors, including the 8086 and 8088, 
when a string instruction with multiple prefixes resumes after an 
interrupt has been serviced, all prefixes other than the last are 
ignored. As a result, the instruction might not be repeated the 
correct number of times or the wrong segment might be accessed. 

If you absolutely must use a string instruction with multiple 
prefixes, disable interrupts for the duration of the instruction, as 
follows: 

cli 
rep movs es:[DestArray],ss:[SourceArray] 
sti 

The optional operand or operands to a string instruction are used 
for data sizing and segment overrides, only, and do not guarantee 
that the memory location referenced will actually be accessed. For 
example, 

DestArray dw 256 dup (?) 

cld ;count up during fill 
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mov al,'*' 
mov cx,256 
mov di,O 
rep stos es:[DestArray] 

ibyte to fill with 
inumber of words to fill 
istart address for fill 
ido the fill 

sets the 256 bytes starting at offset 0 in segment ES to the asterisk 
character, regardless of where DestArray is located. All that 
ES:[DestArray) does is tell the assembler to use a STOSW, since 
DestArray is an array of words. It is the contents of SI and/or DI, 
not the operands, thafdetermine what offsets are accessed by 
string instructions. Nonetheless, using the optional operand or 
operands with string instructions can be a useful way of ensuring 
that you're not accidentally performing, say, word-sized accesses 
to a byte array. 

Similarly, the optional operand to the XLAT instruction is used for 
type-checking and segment overrides only. The code 

LookUpTable LABEL BYTE 

ASCIITable LABEL BYTE 

mov bx,OFFSET ASCIITable 
mov aI, [CharacterToTranslate] 
xlat [LookUpTable] 

ipoint to look-up table 
iget the byte looked up 
ilook the byte up 

looks up the byte at location AL in ASCIITable, not LookUpTable, 
but assembles just fine because all XLAT does with its one 
operand is make sure that it is byte-sized and looks for a segment 
override. The XLAT instruction always looks up the contents of 
offset BX+AL, regardless of any operand used. 

Since assembler programs are written in the 8086's native 
language, any changes in the 'states of the registers and flags of 
the 8086 are of keen interest to the assembly language program
mer. Most of the ways in which assembler programs can alter the 
state of the processor are obvious and straightforward. For 
example, 

add bx, [Grade] 

adds the 16-bit value at location Grade to BX and updates the 
overflow, sign, zero, auxiliary carry, parity, and carry flags to 
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Source and 

destination for the 
MULand IMUL 

Instructions 
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reflect the outcome of the addition. Some instructions produce 
less obvious changes in the state of the processor, though. Here's a 
quick look at some such instructions. 

Multiplication-whether it be 8 bit by 8 bit, 16 bit by 16 bit, or 32 
bit by 32 bit-always destroys the contents of at least one register 
other than the portion of the accumulator used as a source 
operand. This is inevitable given that the result of an 8 bit by 8 bit 
multiplication can be as large as 16 bits in size, the result of a 
16 bit by 16 bit multiplication can be 32 bits in size, and the result 
of a 32 bit by 32 bit multiplication can be 64 bits in size. Multipli
cation source and destination operands are shown in Table 6.1. 

Source Source Destination 
operand Explicit Implied 
size in bits operand operand High Low Example 

8x8 reg8" AL AH AL mul dl 

16x16 reg16 .... AX DX AX imul bx 

32x32t reg32:t: EAX EDX EAX mul esi 

.. regS can be any of AH, AL, BH, BL, CH, CL, OH, or OL. 

.... reg16 can be any of AX, BX, CX, OX, 51, 01, BP, or SP. 

t 32 x 32 multiples are not supported by the 8086, 8088, 80186, 80188, or 80286. 

t reg32 can be any of EAX, EBX, ECX, EOX, ESI, EDI, EBP, or ESP. 

While this seems simple enough, there's a glaring lack of detail in 
the syntax of the MUL and IMUL instructions, since only one of the 
two source operands and the size of the operation are explicitly 
stated; both the portion of the accumulator used as a source 
operand and the registers used as the destination are merely 
implied. This lack of detail makes it easy to overlook the extra 
register that's destroyed. For instance, there are many cases in 
which the result of, say, a given 16-bit by 16-bit multiplication is 
known by the programmer to be guaranteed to fit in AX, and in 
such cases, there's a tendency to forget that DX gets wiped out 
too. Just remember that every use of MUL and IMUL wipes out not 
only AL, AX, or EAX, but also AH, DX, or EDX as well. 
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Expecting certain 
instructions to alter the 

carry flag 

The string instructions (MOVS, STOS, LODS, CMPS, and SCAS) 
can affect several of the flags and as many as three registers 
during execution of a single instruction. As with the MUL 
instruction, the many effects of the string instructions are not 
explicitly expressed in the operands to those instructions. When 
you use string instructions, remember that either SI or DI or both 
either increment or decrement (depending on the state of the 
direction flag) on each execution of a string instruction. ex is also 
decremented at least once and possibly as far as zero each time a 
string instruction with a REP prefix is used. 

While some instructions affect registers or flags unexpectedly, 
other instructions 'don't affectall the flags you might expect them 
to. For example, 

inc ah 

seems logically equivalent to 

add ah,l 

and so it is-with a single exception. Where ADD sets the carry 
flag if the result is too large for the destination, INC does not affect 
the carry flag in any way. As a result, 

add ax,l 
adc dx,O 

is a valid way to increment a 32-bit value stored in DX:AX, while 

inc ax 
adc dx,O 

is not. The same is true of DEC, while LOOP, LOOPZ, and 
LOOPNZ don't affect any flags at all. Actually, this can sometimes 
be used to your advantage, since under certain circumstances it 
can be handy to execute one of these instructions without 
destroying the current carry flag setting. The important thing is to 
know exactly what each instruction you use does. 
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Confusing 
memory and 

immediate 
operands 

Flags last only until the next instruction that alters them, which is 
not very long, by and large. It's a good practice to act on flags as 
soon as possible after they are set, thereby avoiding all sorts of 
potential bugs. For example, it's often tempting to test a condition, 
set a register or two, and only then branch according to the result 

. of the test. The code 

cmp ax,l 
mov ax,O 
jg HandlePositive 

is a perfectly valid way to test the status of AX, then force it to 
zero before jumping to the code that handles the status. On the 
other hand, the code 

cmp ax,l 
sub ax,ax 
jg HandlePositive 

which seems appealing because it is both shorter and faster than 
the first case, does not work because the subtraction wipes out all 
the flag settings generated by the compare. This is typical of the 
sort of problem that can result from delaying the use of a flag 
status. 

An assembler program can refer either to the offset of a memory 
variable or to the value stored in that memory variable. 
Unfortunately, assembly language is neither strict nor intuitive 
about the ways in which these two types of references can be . 
made, and as a result, offset and value references to a memory 
variable are often confused. 

Figure 6.1 illustrates the distinction between the offset and the 
value of a memory variable. The offset of the word-sized variable 
MemLoc is 5002h, while the value of MemLoc is 1234h. 
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Figure 6.1 
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In Figure 6.1, the offset of the word-sized variable MemLoc is the 
constant value SOO2h, obtained with the OFFSET operator. For 
example, , 

rnov bx,OFFSET MernLoc 

loads S002h into BX. The value SO02h is an immediate operand; in 
other words, it is built right into the instruction and never 
changes. 

The value of MemLoc is 1234h, read from the memory at offset 
S002h in the data segment. One way to read this value is by 
loading BX, 51, DI, or BP with the offset of MemLoc and using that 
register to address memory. The code 

rnov bx,OFFSET MernLoc 
rnov ax, [bx] 

loads the value of MemLoc, 1234h, into AX. Alternatively, the 
value of MemLoc can be loaded directly into AX with either 

rnov ax,MernLoc 

or 

rnov ax, [MernLoc] 

Here the value 1234h is obtained as a direct, rather than an 
immediate, operand; the MOV instruction has the offset S002h 
built into it, and loads AX with the value at S002h, which in this 
case happens to be 1234h. Consequently, the value 1234h is not 
permanently associated with MemLoc. For instance, 

rnov [MernLoc],5555h 
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mov ax, [MemLoc] 

loads the value 5555h, not 1234h, into AX. 

The key point is that while the offset of MemLoc is a constant 
value that describes a fixed address in the data segment, the value 
of MemLoc is the changeable number stored at that memory 
address. The instructions 

mov [MemLoc],l 
add [MernLoc],2 

make the value of MemLoc 3, but the instruction 

add OFFSET MernLoc,2 

is equivalent to 

add 5002h,2 

which is nonsensical, since it's impossible to add one constant to 
another.~ 

A surprisingly common problem is that in the heat of coding a 
program, OFFSET is sometimes forgotten, leaving, for example, 

mov si,MernLoc 

when the offset of MemLoc is desired. At first glance, this line 
doesn't look wrong, and since MemLoc is a word-sized variable, 
this line will not cause an assembly-time error. However, at run
time 5I will be loaded with the data at MemLoc (1234h in Figure 
6.1 on page 247), rather than the offset of MemLoc (5002h in Figure 
6.1}-with unpredictable results. 

There is no sure-fire way to avoid this prqblem, but you might 
want to make it a rule to enclose all references to memory in 
square brackets. Then references to address constants will be 
prefixed with OFFSET and references to memory will be enclosed 
in square brackets, thus eliminating the ambiguous use of 
memory variable names. This convention makes the functions of 

mov si,OFFSET MernLoc 

and 

mov si, [MemLoc] 

instantly clear, while 

mov si,MemLoc 

should set off mental alarms. 
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Causing segment 
wraparound One of the most difficult aspects of programming the 8086 is that 

memory isn't accessible as one long array of bytes, but is rather 
made available in chunks of 64K relative to segment registers. 
Segments can introduce subtle bugs, since if ~ program attempts 
to access an address past the end of a segment, it actually ends up 
wrapping back to access the start of that segment instead. 

As an example, suppose that the memory starting at 10000h 
contains the data shown in Figure 6.2. When DS is set to 1000h, 
code that accesses the string "Testing" at 1000:FFF9 wraps back to 
address the byte at 1000:0000 as the next byte addressed after the 
gat 1000:FFFF because offsets cannot exceed OFFFFh, the 
maximum 16-bit value. 

Now suppose that the following subroutine is called with DS:SI 
equal to 1000:FFF9 in order to convert the string "Testing" at 
10OO:FFF9 to uppercase: 

Subroutine to convert a zero-terminated string to uppercase. 
i Input: DS:SI - pointer to string. 

ToUpper PROC NEAR 
mov aI, lsi] 
cmp al,O 
jz ToUpperDone 
cmp aI,' a' 
jb ToUpperNext 
cmp aI,' z' 
ja ToUpperNext 
and al,NOT 20h 
mov [si], al 

ToUpperNext: 
inc si 
jmp ToUpper 

ToUpperDone: 
ret 

ToUpper ENDP 

iget the next character 
i if zero ••• 
i ••• done with string 
iis it a lowercase letter? 
inot lowercase 

inot lowercase 
iit's lowercase, so make it uppercase 
isave the uppercase version 

ipoint to the next character 
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Figure 6.2 
An example of 

segment 
wraparound 

10000 

10001 

10002 

10003 

10004 

1FFF9 

1FFFA 

1FFFB 

1FFFC 

1FFFO 

1FFFE 

1FFFF 

20000 

21 

90 

29 

52 

7F 

54 ('T') 

65 ('e') 

73 ('s') 

74 ('t') 

69 ('i') 

6E ('n') 

67 ('g') 

00 (NULL) 

~ 

-

First byte addressable 
relative to OS = 1000h 
(Address 1000:0000) 

Last byte addressable 
relative to OS = 1000h 
(Address 1000:FFFF) 

After ToUpper processes the first seven characters of the string, SI 
will increment from OFFFFh to O. (Recall that SI is only a 16-bit 
register and so can't count higher than OFFFFh.) The zero byte 
stored at address 20000h that terminates the string is never 
reached; instead ToUpper starts to convert the unrelated bytes at 
10000h to uppercase, and doesn't stop until it happens to 
encounter a 0 byte. At some later point, these altered bytes may 
cause this program to perform incorrectly. Often, it is very 
difficult to trace bugs caused by such accidentally altered bytes 
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Failing to 
preserve 

everything in an 
interrupt handler 

back to the routine that wrapped off the end of a segment, since 
the cause can be far distant from the symptom in time and may be 
in a totally unrelated portion of the source code. 

There's no simple rule of thumb here, other than always making 
sure your code doesn't unwittingly try to run off the end of a 
segment. It is also very dangerous (to your sanity, at least) to try 
to access a word at offset OFFFFh; the machine will hang. 

An interrupt handler is a routine that is jumped to whenever a 
given hardware interrupt, such as the keyboard interrupt, occurs. 
Interrupt handlers perform a variety of actions, such as buffering 
keys or updating the system clock. An interrupt might occur at 
any time, in the middle of any code, so an interrupt handler must 
leave the registers and flags of the processor in exactly the same 
state on exit from the handler as they were in on entry to the 
handler. Were this not done, the code executing when an interrupt 
occurs might suddenly find that the state of the processor has 
changed unpredictably. 

For instance, if the code 

mov ax, [ReturnValuel 
ret 

were executing, an interrupt could occur between the two 
instructions. If the interrupt handler fails to preserve the contents 
of AX, the value returned to the calling program would be based 
on what the interrupt handler did rather than on the contents of 
the Return Value variable. 

Consequently, every interrupt handler should explicitly preserve 
the contents of all registers. While it is valid to explicitly preserve 
only those registers that the handler modifies, it's good insurance 
to just push all registers on entry to an interrupt handler and pop 
all registers on exit. After all, you might go back someday and 
change the code of the interrupt handler-so that it modifies 
additional registers-but forget to add instructions to preserve 
those registers. 

It is not necessary to save the flags in an interrupt handler. When 
an interrupt occurs, the flags are automatically pushed on the 
stack, and when the interrupt handler executes an IRET to return 
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Forgetting group 
overrides in 

operands and 
data tables 

Figure 6.3 
Three segments 

grouped into one 
segment group 

252 

to the interrupted program, the flags are automatically restored 
from the stack. 

A corollary to the absolute necessity of preserving all registers in 
an interrupt handler is this: Make no assumptions about the state of 
the registers or flags when an interr~pt handler is entered. A classic 
example of this is an interrupt handler that executes string 
instructions without first explicitly setting the direction flag. 
Remember, any sort of code can be executing when an interrupt 
occurs, so after you save the interrupted code's registers, you 
must immediately set up the registers (including segment 
registers) and flags as needed by your code before doing anything 
else. 

The concept of a segment group is simple and useful: You specify 
that several segments belong in the same group, and the linker 
combines those segments into a single segment, with all the data 
in all the grouped segments addressable relative to the same 
segment register. Figure 6.3 illustrates three segments, Segl, Seg2, 
and Seg3, grouped into GroupSeg. 

-. _. 
_. Seg1 
----_. 

(SK long) _. 
_. 

_. 
_. 
_. 

----
_. Seg2 
_. 
_. 

(12K long) ----
-. _. 
_. 

_. 
_. Seg3 
_. 
_. 

(SK long) _. 

Offset 0 In GroupSeg ------ = offset 0 In Seg1 

-

-

Offset 2000h In GroupSeg 
= offset 0 In Seg2 

Offset 5000h In GroupSeg 
= offset 0 In Seg3 
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All three segments are addressable simultaneously, relative to a 
single segment register loaded with the base address of GroupSeg. 

Segment groups allow you to logically partition data into a 
number of areas without having to load a segment register every 
time you want to switch from one of those logical data areas to 
another. 

Unfortunately, there are a few problems with the way the 
Microsoft Macro Assembler (MASM) handles segment groups, so 
until Turbo Assembler came along, segment groups were quite a 
nuisance in assembler. They were, however, an unavoidable 
nuisance, for they are required in order to link assembler code to 
high-level languages such as C. 

Turbo Assembler Ideal mode has none of the problems with 
group overrides described in this section. This is yet another good 
reason to make the switch from MASM-style coding to Ideal 
mode. 

One problem MASM has with segment groups is that MASM 
treats all offsets obtained with the OFFSET operator in a given 
grouped segment as offsets into that segment, rather than as 
offsets into the segment group. For example, given the segment 
grouping shown in Figure 6.3, the assembler would assemble 

mov ax,OFFSET VaIl 

into 

mov ax,O 

since Varl is at offset 0 in Seg2, even though Var1 is at offset 2000h 
in GroupSeg. Since data in segment groups is always intended to 
be addressed relative to the segment group rather than the 
individual segments, this creates quite a problem. 

There is a solution to this problem, and that's using a group 
override prefix. The line 

mov ax,OFFSET GIoupSeg:Varl 

does assemble the offset of Varl correctly, calculating it relative to 
the segment group, GroupSeg. 

MASM has another, similar problem concerning data tables used 
with segment groups. Just as with the OFFSET operator, offsets 
assembled into data tables are generated relative to segments, not 

Chapter 6, More about programming in Turbo Assembler 253 



254 

segment groups. The following code shows an example of this 
problem. 

Stack 
DB 

SEGMENT WORD STACK 'STACK' 
512 DUP(?) ireserve space for a 1/2K stack 

Stack ENDS 

i Define data segment group DGROUP, consisting of Datal & Data2. 

DGROUP GROUP Datal, Data2 

i The first segment in DGROUP. 

Datal 
Scratch 
Datal 

SEGMENT WORD PUBLIC 'DATA' 
DB 100h DUP(O) ia 256-byte scratch buffer 
ENDS 

; The second segment in DGROUP. 

Data2 
Buffer 

SEGMENT woRn PUBLIC 'DATA' 
DB 100hDUP('@') ia 256-byte buffer, 

BufferPtr DW Buffer 
Data2 ENDS 

Code SEGMENT PARA PUBLIC 'CODE' 
ASSUME CS:Code, DS:DGROUP 

Start PROC NEAR 
mov ax,DGROUP 
mov ds,ax 

i set to @-signs 
ia pointer to Buffer 

mov bx,OFFSET DGROUP:BufferPtr 
ipoint DS to DGROUP 
ipoint to buffer pointer 

Note: The DGROUP: group override is required to get the 
correct offset. 

mov bx, [bx] ipoint to the buffer itself 

(Code to handle the buffer would go here.) 

mov ah,4Ch 
int 21h 

Start ENDP 
Code ENDS 

END Start 

iDOS terminate function 
iterminate & return to DOS 

In this code, the offset of BufferPtr in 
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rnov bx,OFFSET OGROUP:BufferPtr 

assembles correctly, since the DGROUP: group override prefix is 
used. However, the other reference to an offset, in 

BufferPtr ow Buffer 

which should cause the value of BufferPtr to be initialized to the 
offset of Buffer, does not assemble correctly, since the offset of 
Buffer is taken relative to the Data2 segment rather than relative to 
the DGROUP segment group. The solution is again a DGROUP 
override prefix; change 

to 

BufferPtr ow Buffer 

BufferPtr ow OGROUP:Buffer ia pointer to Buffer 

i Note: The OGROUP: group override is required to get the 
i correct offset. 

Omission of group override prefixes when using segment groups 
in MASM/Quirks mode can lead to some nasty bugs, since your 
programs might read, modify, or jump to the wrong area of 
memory. As a general rule, don't use groups in assembler with 
MASM/Quirks mode unless you have to. When you have to use 
groups in MASM/Quirks mode, as when interfacing to high-level 
languages, constantly remind yourself to prefix group overrides 
when specifying the offsets of all grouped data. The group 
overrides are easy enough to use-the trick is remembering to use 
them. 

A useful technique for dealing with grouped segments in 
MASM/Quirks mode is using LEA instead of MOV OFFSET. For 
example, 

lea ax,Varl 

has the same effect as 

mov ax, OFFSET GroupSeg:Varl 

without requiring a group override prefix. However, LEA is a byte 
larger and a little slower than MOV OFFSET. 

By the way, segment group problems occur only with offsets, not 
with memory accesses. Lines such as 

mov ax, [Varl] 
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c H A p T E R 

7 

Interfacing Turbo Assembler with Turbo 
C 

While many programmers can-and do-develop entire 
programs in assembly language, many others prefer to do the 
bulk of their programming in a high-level language, dipping into 
assembly language only when low-level control or very high
performance code is required. Still others prefer to program 
primarily in assembler, taking occasional advantage of high-level 
language libraries and constructs. 

_ Turbo C lends itself particularly well to supporting mixed C and 
assembler code on an as-needed basis, providing not one but two 
mechanisms for integrating assembler and C code. The inline 
assembly feature of Turbo C provides a quick and simple way to 
put assembler code directly into a C function. For those who 
prefer to do their assembler programming in separate modules 
written entirely in assembly language, Turbo Assembler modules 
can be assembled separately and linked to Turbo C code. 

First, we'll cover the use of inline assembly in Turbo C. Next, 
we'll discuss the details of linking separately assembled Turbo 
Assembler modules to Turbo C, and explore the process of calling 
Turbo Assembler functions from Turbo C code. Finally, we'll 
cover calling Turbo C functions from Turbo Assembler code. 
(Note: When we refer to Turbo C, we mean versions 1.5 and 
greater.) Let's begin. 
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Using inline assembly in Turbo C 

The high-performance code 
in Turbo CS libraries Is written 

In inline assembly. 
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If you were to think of an ideal way to use assembler to fine-tune 
a C program, you would probably ask for the ability to insert 
assembler instructions at just those critical places in C code where 
the speed and low-level control of assembler would result in a 
dramatic improvement in performance. While you're at it, you 
might as well wish away the traditional complexities of 
interfacing assembler with C. Better still, you'd like to be able to 
do all this without changing any other C code one bit, so that 
already-working C code won't have to be altered. 

Turbo C fulfills every item on your wish list with inline assembly. 
Inline assembly is nothing less than the ability to place virtually 
any assembler code anywhere in your C programs, with full 
access to C constants, variables, and even functions. In truth, 
inline assembly is good for more than just fine-tuning, since it's 
very nearly as powerful as programming strictly in assembler. 
Inline assembly lets you use just as much or as little assembler in 
your C programs as you'd like, without having to worry about 
the details of mixing the two. 

Consider the following C code, which is an example of inline 
assembly: 

i = 0; 
asm dec WORD PTR i; 
itt; 

1* set i to ° (in C) *1 
1* decrement i (in assembler) */ 

1* increment i (in C) *1 

The first and last lines look normal enough, but what is that 
middle line? As you've probably guessed, the line starting with 
a5m is inline assembly code. If you were to use a debugger to look 
at the executable code this C source compiles to, you would find 

mov WORD PTR [bp-02J,OOOO 
dec WORD PTR [bp-02J 
inc WORD PTR [bp-02J 

with the inline assembly DEC instruction nestled between the 
compiled code for 

i = 0; 

and 
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There are a few limitations on 
what Inline assembler code Is 

allowed to do; see the 
section ·Umitat/ons of inline 

assembly" on page 
274. 

itt; 

Basically, each time the Turbo C compiler encounters the 8sm 
keyword that indicates inline assembly, it drops the associated 
assembler line directly into the compiled code with only one 
change: References to C variables are transformed into the 
appropriate assembler equivalent, just as the reference to i in the 
preceding example was changed to WORD PTR [BP-02j. In short, the 
asm keyword lets you insert virtually any assembler code 
anywhere in your C code. 

The ability to drop assembler code directly into the code Turbo C 
generates might sound a bit dangerous, and, in truth, inline 
assembly does have its risks. While Turbo C takes care to compile 
its code so as to avoid many potentially hazardous interactions 
with inline assembly, there's no doubt that ill-behaved inline 
assembly code can cause serious bugs. 

On the other hand, any poorly written assembler code, whether 
it's inline or in a separate module, has the potential to run amuck; 
that's the price to be paid for the speed and low-level control of 
assembly language. Besides, bugs are far less common in inline 
assembly code than in pure assembler code, since Turbo C attends 
to many programming details, such as entering and exiting 
functions, passing parameters, and allocating variables. All in all, 
the ability to easily fine-tune and turbo-charge portions of your C 
code with inline assembly is well worth the trouble of having to 
iron out the occasional assembler bug. 

Here are some Important notes about Inline assembly: 

1. You must invoke TCC.EXE, the command-line version of 
Turbo C, in order to use inline assembly. TC.EXE, the user
interface version of Turbo C, does not support inline assembly. 

2. It's very possible that the version ofTLINK that came with 
your copy of Turbo Assembler is not the same version that 
came with your copy of Turbo C. Since important 
enhancements were made to TLINK in order to support Turbo 
Assembler, and since further enhancements will no doubt be 
made, it is important that you link Turbo C modules 
containing inline assembly with the most recent version of 
TLINK that you have. The safest way to accomplish this is to 
make sure that there's only one TLINK.EXE file on the disk 
you use to run the linker; that TLINK.EXE file should have the 
latest version number of all the TLINK.EXE files you've 
received with other Borland products. 

Chapter 7, Interfacing Turbo Assembler with 'Turbo C 259 



How inline 
assembly works Normally, Turbo C compiles each file of C source code directly to 

an object file, then invokes TLINK to tie the object files together 
into an executable program. Figure 7.1 shows such a compile
and -link cycle. To start this cycle, you enter the command line 

Figure 7.1 

tee filename 

which instructs Turbo C to first compile FILENAME.C to 
FILENAME.OB] and then invoke TLINK to link FILENAME.OB] 
into FILENAME.EXE. 

Turbo C compile 
and link cycle 

260 

C Source File 
FILENAME.C 

Object File 
FILENAME.OBJ 

Executable File 
FILENAME.EXE 

Compile 

When inline assembly is used, however, Turbo C automatically 
adds one extra step to the compile-and-link sequence. 
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Turbo C handles each module containing inline assembly code by 
first compiling the whole module to an assembly language source 
file, then invoking Turbo Assembler to assemble the resulting 
assembler code to an object file, and finally invoking TLINK to 
link the object files together. Figure 7.2 illustrates this process, 
showing how Turbo C produces an executable file from a C 
source file containing inline assembly code. You start this cycle 
with the command line 

tee -B filename 

which instructs Turbo C to first compile FILENAME.ASM, then 
invoke Turbo Assembler to assemble FILENAME.ASM to 
FILENAME.OBJ, and finally invoke TLINK to link 
FILENAME.OBJ into FILENAME.EXE. 

Inline assembly code is simply passed along by Turbo C to the 
assembly language file. The beauty of this system is that Turbo C 
need not understand anything about assembling the inline code; 
instead, Turbo C compiles C code to the same level-assembler 
code-as the inline assembly code and lets Turbo Assembler do 
the assembling. 

To see exactly how Turbo C handles inline assembly, enter the 
following program under the name PLUSONE.C (or load it from 
the example disk): 

'include <stdio.h> 

int main(void) 

int TestValue; 

scanf("%d",&TestValue); 
asm inc WORD PTR TestValue; 
printf("%d",TestValue); 

/* get the value to increment */ 
/* increment it (in assembler) */ 
/* print the incremented value */ 

and compile it with the command line 

tcc -5 plusone 
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Figure 7.2 
Turbo C compile. 

assembly. and link 
cycle 

This code should give you a 
strong appreciation for all 

the work Turbo C saves you 
by supporting inline 

assembly. 

C Source File 
FILENAME.C 

Assembler Source File 
FILENAME.ASM 

Executable File 
FILENAME.EXE 

Compile 

Assemble 

The -S option instructs Turbo C to compile to assembler code and 
then stop, so the file PLUSONE.ASM should now be on your disk. 
In PLUSONE.ASM you should find 

ifndef ??version 
?debug macro 

ENDM 
ENDIF 
name Plus one 

TEXT SEGMENT BYTE PUBLIC 'CODE' 
DGROUP GROUP _DATA,_BSS 

ASSUME cs:_TEXT,ds:DGROUP,ss:DGROUP 
TEXT ENDS 
DATA SEGMENT WORD PUBLIC 'DATA' 
d@ LABEL BYTE 
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d@w LABEL WORD -
DATA ENDS 
BSS SEGMENT WORD PUBLIC 'BSS' 
b@ LABEL BYTE -
b@w LABEL WORD -

?debug C E90156E11009706C75736F6E652E63 
?debug C E90009B9100F696E636C7564655C737464696F2E68 
?debug C E90009B91010696E636C7564655C7374646172672E68 

BSS ENDS 
TEXT SEGMENT BYTE PUBLIC 'CODE' 

?debug L 3 
main PROC NEAR 

push bp 
mov bp,sp 
dec sp 
dec sp 
?debug L 8 
lea ax,WORD PTR [bp-2] 
push ax 
mov ax,OFFSET DGROUP:_s@ 
push ax 

Here:S the assembler code call NEAR PTR scanf 
for the scant call, followed by -

pop ex 
the inline assembler pop ex 

instruction to increment ?debug L 9 TestValue, followed by the 
assembler code for the prlnff inc WORD PTR [bp-2] 

code. ?debug L 10 
push WORD PTR [bp-2] 
mov ax,OFFSET DGROUP: s@+3 -
push ax 
call NEAR PTR _printf 
pop ex 
pop ex 

@1: 
?debug L 12 
mov sp,bp 
pop bp 
ret 

main ENDP 
TEXT ENDS 

-
DATA SEGMENT WORD PUBLIC 'DATA' 
s@ LABEL BYTE -

DB 37 
DB 100 

Turbo C automatically DB 0 
translates the C variable DB 37 

TestValue to the equivalent DB 100 
assembler addressing of that DB 0 variable, (BP-2). 

DATA ENDS 

Chapter 7, Interfacing Turbo Assembler with Turbo C 263 



How Turbo C knows to 
use inline assembly 

mode 

264 

TEXT SEGMENT BYTE PUBLIC 'CODE' 
EXTRN _printf:NEAR 
EXTRN scanf:NEAR 

TEXT ENDS 
PUBLIC main 
END 

Turbo C compiled the scant call to assembly language, dropped 
the inline assembly code directly into the assembler output file, 
and then compiled the prlntf call to assembler. The resulting file is 
a valid assembler source file, ready to be assembled with Turbo 
Assembler. 

Had you not used the -S option, Turbo C would have proceeded 
to invoke Turbo Assembler to assemble PLUSONE.ASM and 
would then have invoked TLINK to link the resultant object file, 
PLUSONE.OBJ, into the executable file PLUSONE.EXE. This is the 
normal mode of operation of Turbo C with inline assembler; we 
used -S for explanatory purposes only, so that we could examine 
the intermediate assembly language step Turbo C uses when 
supporting inline assembly. The -S option is not particularly 
useful when compiling code to be linked into executable 
programs, but provides a handy means by which to examine both 
the instructions surrounding your inline assembly code and the 
code generated by Turbo C in general. If you're ever uncertain 
about exactly what code you're generating with inline assembly, 
just examine the .ASM file produced with the -S option. 

Normally, Turbo C compiles C code directly to object code. There 
are several ways to tell Turbo C to support inline assembly by 
compiling to assembly language and then invoking Turbo 
Assembler. 

The -8 command-line option instructs Turbo C to generate object 
files by way of compiling to assembler code, then invoking Turbo 
Assembler to assemble that code. 

The -S command-line option instructs Turbo C to compile to 
assembler code, and then stop. The .ASM file generated by Turbo 
C when the -S option is specified can then be separately 
assembled and linked to other C and assembler modules. Except 
when debugging or simply exploring, there's generally no reason 
to use -S in preference to -8. 

The #pragma directive 

Ipragma inline 
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Invoking Turbo 
Assembler for inline 

assembly 

See the README file on the 
distribution disk for 

information about how to 
patch those versions of Tee. 

has the same effect as the -B command-line option, instructing 
Turbo C to compile to assembly and then invoke Turbo 
Assembler to assemble the result. When Turbo C encounters 
#pragma Inllne, compilation restarts in assembler output mode. 
Consequently, it's best to place the #pragma Inllne directive as 
close to the start of the C source code as possible, since any C 
source code preceding #pragma Inllne will be compiled twice, 
once in normal C-to-object mode and again in C-to-assembler 
mode. While this doesn't hurt anything, it does waste time. 

Finally, if Turbo C encounters inline assembly code in the absence 
of -B, -S, and #pragma Inllne, the compi}er issues a warning like 

Warning test.c 6: Restarting compile using assembly in function main 

and then restarts compilation in assembler-output mode, just as if 
a #pragma inline directive had been encountered at that point. 
Make it a point to avoid this warning by using the -B option or 
#pragma Inllne, since restarting compilation on encountering 
inline assembly makes for relatively slow compiles. 

In order for Turbo C to be able to invoke Turbo Assembler, Turbo 
C must first be able to find Turbo Assembler. Exactly how this 
happens varies with different versions of Turbo C. 

Versions of Turbo C later than 1.5 expect to find Turbo Assembler 
under the file name T ASM.EXE in either the current directory or 
one of the directories pointed to by the DOS PATH environment 
variable. Basically, Turbo C can invoke Turbo Assembler under 
the same circumstances in which you could type the command 

TASM 

and run Turbo Assembler from the command-line prompt. So, if 
you have Turbo Assembler in the current directory or anywhere 
in your command search path, Turbo C will automatically find it 
and run it to perform inline assembly. 

Versions 1.0 and 1.5 of Turbo C behave a little differently. Since 
these versions of Turbo C were written before Turbo Assembler 
existed, they invoke MASM, the Microsoft Macro Assembler, to 
perform inline assembly. Consequently, these versions of Turbo C 
search the current directory and the command search path for the 
file MASM.EXE, rather than the file T ASM.EXE, and so do not 
automatically use Turbo Assembler. 
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Where Turbo C 
assembles inline 

assembly 

Inline assembly code can end up in either Turbo C's code segment 
or Turbo C's data segment. Inline assembly code located within a 
function is assembled into Turbo C's code segment, while inline 
assembly code located outside a function is assembled into Turbo 
C's data segment. 

For example, the C code 

1* Table of square values *1 

asm SquareLookUpTable label word; 
asm dw 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100; 

1* Function to look up the square of a value between a and 10 *1 

int LookUpSquare(int Value) 
( 

asm mov bx,Value; 1* get the value to square *1 
asm shl bx,l; 1* mUltiply it by 2 to look up in 

a table of word-sized elements *1 
asm mov ax, [SquareLookUpTable+bx); 1* look up the square *1 
return(_AX); 1* return the result *1 

puts the data for SquareLookUpTable in Turbo C's data segment 
and the inline assembly code inside LookUpSquare in Turbo C's 
code segment. The data could equally well be placed in the code 
segment; consider the following version of LookUpSquare, where 
SquareLookUpTable is in Turbo C's code segment: 

1* Function to look up the square of a value between a and 10 *1 
int LookUpSquare(int Value) 
( 

asm jmp SkipAroundData 1* jump past the data table *1 

1* Table of square values *1 
asm SquareLookUpTable label word; 
asm dw 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100; 

SkipAroundData: 
asm mov bx,Value; 1* get the value to square *1 
asm shl bx,l; 1* mUltiply it by 2 to look up 

in a table of word-sized elements *1 
asm mov ax, [SquareLookUpTable+bx); 1* look up the square *1 
return(_AX); 1* return the result *1 

Since SquareLookUpTable is in Turbo C's code segment, it would 
seem that a CS: segment override prefix should be required in 
order to read from it. In fact, this code automatically assembles 
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with a CS: prefix on the access to SquareLookUpTable; Turbo C 
generates the correct assembler code to let Turbo Assembler know 
which segment SquareLookUpTable is in, and Turbo Assembler 
then generates segment override prefixes as needed. 

Use the -1 switch for If you want to use assembler instructions unique to the 80186 
80186/80286 processor, such as 

instructions 
shr ax,3 

and 

push 1 

it's easiest to use the -1 command-line option to Turbo C, as in 
this example, 

tee -1 -B heapmgr 

.where HEAPMGR.C is a program that contains inline assembly 
instructions unique to the 80186. 

The primary purpose of the -1 option is to instruct Turbo C to 
take advantage of the full 80186 instruction set when compiling, 
but the -1 option also causes Turbo C to insert the .186 directive at 
the start of the output assembler file; this instructs Turbo 
Assembler to assemble the full 80186 instruction set. Without the 
.186 directive, Turbo Assembler will flag inline assembly 
instructions unique to the 80186 as errors. If you want to assemble 
80186 instructions without having Turbo C use the full 80186 
instruction set, just insert the line 

asm .186; 

at the start of each Turbo C module containing inline 80186 
instructions. This line will be passed through to the assembler file, 
where it will instruct Turbo Assembler to assemble 80186 
instructions. 

While Turbo C provides no built-in support for 80386, 80287, and 
80387 processors, inline assembly that supports the 80286, 80287, 
80386, and 80387 can be enabled in a similar manner, with the 
a5m keyword and the .286, .286C, .286P, .386, .386C, .386C, .287, 
and .387 Turbo Assembler directives. 

The line 

asm .186; 
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The format of 
inline assembly 

statements 

See "Memory and address 
operand limitations" on 
page 274 for Important 

Information regarding label. 
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Semicolons in inline 
assembly 

Comments in in line 
assembly 

illustrates an important point about inline assembly: Any valid 
assembler line can be passed to the assembler file by use of the 
8sm prefix, including segment directives, equates, macros, and so 
on. 

Inline assembly statements are much like normal assembler lines, 
but there are a few differences. The format of an inline assembly 
statement is 

asrn [<label>] <instruction/directive> <operands> <; or newline> 

where 

• The 8sm keyword must start every inline assembly statement. 

• [<label>] is a valid assembler label. The square brackets indicate 
that label is optional, just as it is in assembler. 

• <instruction/directive> is any valid assembler instruction or 
directive. 

• <operands> contains the operand{s) acceptable to the instruction 
or directive; it can also reference C constants, variables, and 
labels within the limitations described in the section 
''Limitations of inline assembly" on page 274. 

• <; or newline> is a semicolon or a newline, either of which 
signals the end of the 8sm statement. 

One aspect of inline assembly that no C purist could miss is that, 
alone among C statements, inline assembly statements do not 
require a terminating semicolon. A semicolon can be used to 
terminate each statement, but the end of the line will do just as 
well. So, unless you're planning to put multiple inline assembly 
statements on each line (which is not a good practice from the 
perspective of clarity), semicolons are purely optional. While this 
may not seem to be in the spirit of C, it is in keeping with the 
convention adopted by several UNIX-based compilers. 

The previous description of the format of an inline assembly 
statement lacks one key element-a comment field. While 
semicolons can be placed at the end of inline assembly statements, 
semicolons do not begin comment fields in inline assembly code. 

How, then, are you to comment your inline assembly code? 
Strangely enough, with C comments. Actually, that's not strange 
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Accessing structure/ 
union elements 

a t all, for the C preprocessor processes inline assembly code along 
with the rest of your C code. This has the advantage of allowing 
you to use a uniform commenting style throughout your C 
programs containing inline assembly, and also makes it possible 
to use C-defined symbolic names in both C and inline assembly 
code. For example, in 

idefine CONSTANT 51 
int i; 

i = CONSTANT; /* set i to constant value */ 
asm sub WORD PTR i,CONSTANT; /* subtract const value from i */ 

both C and inline assembly code use the C-defined symbol 
CONSTANT, and i winds up equal to O. 

The last example illustrates one wonderful feature of inline 
assembly, which is that the operand field might contain direct 
references not only to C-defined symbolic names but also to C 
variables. As you will see later in this chapter, accessing C 
variables in assembler is normally a messy task, and convenient 
reference to C variables is a primary reason why inline assembler 
is the preferred way to integrate assembler and C for most 
applications. 

Inline assembly code can directly reference structure elements. 
For example, 

struct Student 
char Teacher[30]; 
int Grade; 

JohnQPublic; 

asm mov ax, JohnQPublic.Grade; 

loads AX with the contents of member Grade of the Student type 
structure JohnQPublic. 

Inline assembly code can also access structure elements addressed 
relative to a base or index register. For instance, 

asm mov bx,OFFSET JohnQPublic; 
asm mov ax, [bx] .Grade; 
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An example of 
inline assembly 

also loads AX. with member Grade of /ohnQPublic. Since Grade is at 
offset 30 in the Student structure, the last example actually 
becomes 

asm mov bx,OFFSET JohnQPublic; 
asm mov ax, [bx]+30 

The ability to access structure elements relative to a pointer 
register is very powerful, since it allows inline assembly code to 
handle arrays of structures and passed pointers to structures. 

If, however, two or more structures that you're accessing with 
inline assembly code have the same member name, you must 
insert the following: 

asm mov bx,[di]. (struct tm) tm hour> alt 

For example, 

struct Student 
char Teacher[30]; 
int Grade; 

JohnQPublic; 

struct Teacher 
int Grade; 
long Income; 

) ; 

asm mov ax, JohnQPublic. (struct Student) Grade 

So far, you've seen a variety of code fragments that use inline 
assembly, but no real working inline assembly programs. This 
section remedies that situation by presenting a program that 
employs inline assembly to greatly speed the process of 
converting text to uppercase. The code presented in this section 
serves both as an example of what inline assembly can do and as a 
template to which you can refer to as you develop your own 
inline assembly code. 
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Take a moment to examine the programming problem to be 
solved by the sample program. We'd like to develop a function, 
named StringToUpper, that copies one string to another string, 
converting all lowercase characters to uppercase in the process. 
We'd also like to have this function work equally well with all 
strings in all memory models. One good way to do this is to have 
far string pointers passed to the function, since pohi.ters to near 
strings can always be cast to pointers to far strings, but the reverse 
is not always true. 

Unfortunately, we run into a performance issue here. ,While Turbo 
C handles far pointers perfectly well, far pointer-handling in 
Turbo C is much slower than near pointer-handling. This isn't a 
shortcoming of Turbo C, but rather an unavoidable effect when 
programming the 8086 in a high-level language. 

On the other hand, string and far pointer-handling is one area in 
which assembler excels. The logical solution, then, is to use inline 
assembly to handle the far pointers and string copying, while 
letting Turbo C take care of everything else. The following 
program, STRING UP .C, does exactly that: 

/* Program to demonstrate the use of StringToUpper(). It calls 
StringToUpper to convert TestString to uppercase in Upper
CaseString, then prints UpperCaseString and its length. */ 

Ipragma inl1ne 
linclude <stdio.h> 

/* Function prototype for StringToUpper() */ 
extern unsigned int StringToUpper( 
unsigned char far * DestFarString, 
unsigned char far * SourceFarString); 

Idefine MAX STRING LENGTH 100 - -

char *TestString = "This Started Out As Lowercase!"; 

char UpperCaseString[MAx_STRING_LENGTH]; 

main () 
( 

unsigned int StringLength; 

/* Copy an uppercase version of TestString 
to UpperCaseString */ 

StringLength = StringToUpper{UpperCaseString, TestString); 

/* Display the results of the conversion */ 
printf("Original string:\n%s\n\n", TestString); 
printf ("Uppercase string: \n%'s \n \n", UpperCaseString); 
printf("Number of characters: %d\n\n", StringLength); 
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/* Function to perform high-speed translation to uppercase from 
one far string to another 

Input: 
DestFarString - array in which to store uppercased 

string (will be zero-terminated) 
SourceFarString - string containing characters to be 

converted to all uppercase (must be 
zero-terminated) 

Returns: 
The length of the source string in characters, not 
counting the terminating zero. */ 

unsigned int StringToUpper(unsigned char far * DestFarString, 
unsigned char far * SourceFarString) 

unsigned int CharacterCount; 

'define LOWER CASE A 'a' 
'define LOWER CASE Z 'z' 

asm ADJUST VALUE EQU 20h; 

asm cld; 
asm push ds; 
asm Ids si,SourceFarString; 

asm les di,DestFarString; 

CharacterCount = 0; 
StringToUpperLoop: 

asm lodsb; 
asm cmp aI, LOWER_CASE_A; 

asm jb SaveCharacter; 
asm cmp aI, LOWER_CASE_Z; 

asm ja SaveCharacter; 
asm sub aI, ADJUST_VALUE; 

SaveCharacter: 
asm stosb; 
CharacterCount++; 
asm and al,al; 
asm jnz StringToUpperLoop; 

CharacterCount--; 
asm pop ds; 
return(CharacterCount); 

/* 

/* amount to subtract from 
lowercase letters to make 

them uppercase 

/* save C's data segment 
/* load far pointer to 

source string 
/* load far pointer to 

destination string 
/* count of characters 

/* get the next character 
/* if < a then it's not a 

lowercase letter 

/* if > z then it's not a 
lowercase letter 

/* it's lowercase; make it 
uppercase 

/* save the character 
/* count this character 

/* is this the ending O? 
/* no, process the next, 

char, if any 
don't count the terminating 0 

/* restore C's data segment 

*/ 

*/ 

*/ 

*/ 
*/ 

*/ 

*/ 

*/ 

*/ 

*/ 
*/ 
*/ 

*/ 
*/ 
*/ 
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When run, STRINGUP.C displays the output 

Original string: 
This Started Out As Lowercase! 

Uppercase string: 
THIS STARTED OUT AS LOWERCASE! 

Number of characters: 30 

demonstrating that it does indeed convert all lowercase letters to 
uppercase. 

The heart of S1RINGUP.C is the function StringToUpper, which 
performs the entire process of string copying and conversion to 
uppercase. StringToUpper is written in both C and inline assembly, 
and accepts two far pointers as parameters. One far pointer points 
to a string containing text; the other far pointer points to another 
string, to which the text in the first string is to be copied with all 
lowercase letters converted to uppercase. The function declaration 
and parameter definition are all handled in C, and, indeed, a 
function prototype for StringToUpper appears at the start of the 
program. The main program calls StringToUpper just as if it were 
written in pure C. In short, all the ad vantages of programming in 
Turbo C are available, even though StringToUpper contains inline 
assembly code. 

The body of StringToUpper is written in a mixture of C and inline 
assembly. Assembler is used to read each character from the 
source string, to check and, if need be, translate the character to 
upperca~e, and to write the character to the destination string. 
Inline assembly allows StringToUpper to use the powerful LOOSB 
and STOSB string instructions to read and write the characters. 

In writing StringToUpper, we knew that we wouldn't need to 
access any data in Turbo C's data segment, so we simply pushed 
DS at the start of the function, then set DS to point to the source 
string and left it there for the rest of the function. One great 
advantage that inline assembly has over a pure C implementation 
is this ability to load the far pointers once at the start of the 
function and then never reload them until the function is done. By 
contrast, Turbo C and other high-level languages generally reload 
far pointers every time they are used. The ability to load far 
pointers just once means that StringToUpper processes far strings 
as rapidly as if they were near strings. 
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One other interesting point about StringToUpper is the way in 
which C and assembler statements are mixed. #define is used to 
set LOWER_CASE_A and LOWER_CASE_Z, while the assembler 
EQU directive is used to set ADJUST _VALUE, but all three 
symbols are used in the same fashion by the inline assembly code. 
Substitution for the C-defined_symbols is done by the Turbo C 
preproces~or, while substitution for ADJUST _VALUE is done by 
Turbo Assembler, but both can be used by inline assembly code. 

C statements to manipulate CharacterCount are sprinkled 
throughout StringToUpper. This was done only to illustrate that C 
code and inline assembly code can be intermixed. CharacterCount 
could just as easily have been maintained directly by inline 
assembly code in a free register, such as CX or DX; StringToUpper 
would then have run faster. 

Freely intermixing C code and inline assembly code carries risks if 
you don't understand exactly what code Turbo C generates in 
between your inline assembly statements. Using the Turbo C's-S 
compiler option is the best way to explore what happens when 
you mix inline assembly and C code. For instance, you can learn 
exactly how the C and inline assembly code in StringToUpper fit 
together by compiling STRINGUP.C with the -S option and 
examining the output file STRINGUP.ASM. 

STRINGUP.C vividly demonstrates the excellent payback that 
judicious use ofinline assembly provides. In StringToUpper, the 
insertion of just 15 inline assembly statements approximately 
doubles string-handling speed over equivalent C code. 

There are very few limitations as to how inline assembly might be 
used; by and large, inline assembly statements are simply passed 
through to Turbo Assembler unchanged. There are, however, 
notable limitations involving certain memory and address 
operands, and a few other restrictions concerning register usage 
rules and the lack of default sizing of automatic C variables used 
in inline assembly. 

The only alterations Turbo C makes to inline assembly statements 
is to convert memory and memory address references, such as 
variable names and jump destinations, from their C 
representations to the assembler equivalents. These alterations 
introduce two limitations: Inline assembly jump instructions can 
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only reference C labels, while inline assembly non-jump 
instructions can reference anything but C labels. For example, 

. . . 
asm jz NoDec; 
asm dec cx; 

NoDec: 

is fine, but 

. . . 
asm jnz NoDec; 
asm dec cx; 
asm NoDec: 

will not compile properly. Similarly, inline assembly jumps 
cannot have ~nction names as operands. Inline assembly 
instructions other than jumps can have any operands except C 
labels. For example, 

asm BaseValue DB '0'; 

asm mov al,BYTE PTR BaseValue; 

compiles, but 

BaseValue: 
asm DB '0'; 

asm mov al,BYTE PTR BaseValue; 

does not compile. Note that a call is not considered a jump, so 
valid operands to inline assembly calls include C function names 
and assembler labels, but not C labels. If a C function name is 
referenced in inline assembly code, it must be prefixed with an 
underscore; see the section "Underscores" on page 290 for details. 
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Lack of default 
automatic variable 

sizing in inline assembly 

When Turbo C replaces a reference to an automatic variable in an 
inline assembly statement with an operand like [BP-02], it does 
not place a size operator, such as WORD PTR or BYTE PTR, into 
the altered statement. This means that 

int i; 

asm mov ax,i; 

is output to the assembler file as 

mov ax, [bp-02] 

In this case, there's no problem, since the use of AX tells Turbo 
Assembler that this is a 16-bit memory reference. Moreover, the 
lack of a size operator gives you complete flexibility in controlling 
operand size in inline assembly. However, consider 

int i; 

asm mov i,O; 
asm inc i; 

which becomes 

mov [bp-02],O 
inc [bp-02] 

Neither of these instructions has an inherent size, so Turbo 
Assembler can't assemble them. Consequently, when you refer to 
an automatic variable in Turbo Assembler without a register as 
either the source or the destination, be sure to use a size operator. 
The last example works just fine as 

int i; 

asm mov WORD PTR i,O; 
asm inc BYTE PTR i; 
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The need to preseNe 
registers 

Disadvantages of 
inline assembly 

versus pure C 

At the end of any inline assembly code you write, the following 
registers must contain the same values as they did at the start of 
the inline code: BP, SP, es, OS, and 55. Failure to observe this rule 
can result in frequent program crashes and system reboots. AX, 
BX, ex, DX, 51, DI, ES, and the flags may be freely altered by 
inline code. 

Preserving calling functions and register variables 

Turbo e requires that 51 and DI, which are used as register 
variables, not be destroyed by function calls. Happily, you don't 
have to worry about explicitly preserving 51 or DI if you use them 
in inline assembly code. If Turbo e detects any use of those 
registers in inline assembly, it preserves them at the start of the 
function and restores them at the end-yet another of the 
conveniences of using inline assembly. 

Suppressing internal register variables 

Since register variables are stored in 51 and DI, there would seem 
to be the potential for conflict between register variables in a 
given module and 4tline assembly code that uses 51 or DI in that 
same module. Again, though, Turbo e anticipates this problem; 
any use of 51 or DI in inline code will disable the use of that 
register to store register variables. 

Turbo eversion 1.0 did not guarantee avoidance of conflict 
between register variables and inline assembly code. If you are 
using version 1.0, you should either explicitly preserve 51 and DI 
before using them in inline code or update to the latest version of 
the compiler. 

We've spent a good bit of time exploring how inline assembly 
works and learning about the potential benefits of inline 
assembly. Wh~e inline assembly is a splendid feature for many 
applications, it does have certain disadvantages. Let's review 
those disadvantages, so you can make informed decisions about 
when to use inline assembly in your programs. 
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Reduced portability 
and maintainability 

The very thing that makes inline assembly code so effective-the 
ability to program the 8086 processor directly-also detracts from 
a primary strength ofC, portability. If you use inline assembly, it's 
a pretty safe bet that you won't be able to port your code to 
another processor or C compiler without changes. 

Similarly, inline assembly code lacks the clear and concise 
formatting C provides, and is often unstructured as well. 
Consequently, inline assembly code is generally more difficult to 
read and maintain than C code. 

When you use inline assembly code, it's a good practice to isolate 
the inline code in self-contained modules, and to structure the 
inline code carefully with plenty of comments. That way, it's easy 
to maintain the code, and it's a relatively simple matter to find the 
inline assembly code and rewrite it in C if you need to port the 
program to a different environment. 

Slower compilation Compilation of C modules containing inline assembly code is 
considerably slower than compilation of pure C code, primarily 
because inline assembly code must effectively be compiled twice, 
first by Turbo C and then again by Turbo Assembler. If Turbo C 
has to restart compilation because neither the -B option, the-S 
option, nor #pragma Inllne was used, compilation time for inline 
assembly becomes longer still. Fortunately, slow compilation of 
modules containing inline assembly is less of a problem now than 
it was in the past, since Turbo Assembler is so much faster than 
earlier assemblers. 

Available with Tee only As we mentioned earlier, the inline assembly feature is unique to 
TCC.EXE, the command-line version of Turbo C. TC.EXE, the 
integrated development environment version of Turbo C, does 
not support inline assembly. 
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Optimization loss When inline assembly is used, Turbo C loses some control over 
the code of your programs, since you can directly insert any 
assembler statements into any C code. To some extent, you, as the 
inline assembly programmer, must compensate for this, by 
avoiding certain disruptive actions, such as failing to preserve the 
DS register or writing to the wrong area of memory. 

On the other hand, Turbo C doesn't require you to follow all its 
internal rules when you program in inline assembler; if it did, 
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Error trace-back 
limitations 

you'd scarcely be better off using inline assembly than if you 
programmed in C and let Turbo C generate the code. What Turbo 
C does do is turn off some of its optimizations in functions 
containing inline assembly statements, thereby allowing you a 
relatively free hand in coding inline assembly. For example, some 
portions of the jump optimizer are turned off when inline 
assembly is used, and register variables are disabled if the inline 
code uses SI and DI. This partial loss of optimization is worth 
considering, given that you are presumably using inline assembly 
in order to boost code quality to its maximum. 

If you are greatly concerned about producing the fastest or most 
compact code with inline assembly, you might want to write your 
functions that contain inline assembly code entirely in inline 
assembly-that is, don't mix C and inline assembly code within 
the same function. That way, you have control of the code in the 
inline assembly functions, Turbo C has control of the code in the 
C functions, and both you and Turbo C are free to generate the 
best possible code without restrictions. 

Since Turbo C does little error-checking of inline assembly 
statements, errors in inline assembly code are often detected by 
Turbo Assembler, not Turbo C. Unfortunately, it can sometimes 
be difficult to relate the error messages produced by Turbo 
Assembler back to the original C source code, since the error 
messages and the line numbers they display are based on the 
.ASM file output by Turbo C and not the C code itself. 

For example, in the course of compiling TEST.C, a C program 
containing inline assembly code, Turbo Assembler might 
complain about an incorrectly sized operand on line 23; 
unfortunately, "23" refers to the number of the error-producing 
line in TEST.ASM, the intermediate assembler file Turbo C 
generated for Turbo Assembler to assemble. You're on your own 
when it comes to figuring out what line in TEST.C is ultimately 
responsible for the error. 

Your best bet in a case like this is to first locate the line causing the 
error in the intermediate .ASM file, which is left on the disk by 
Turbo C whenever Turbo Assembler reports assembly errors. The 
.ASM file contains special comments that identify the line in the C 
source file from which each block of assembler statements was 
generated; for example, the assembler lines following 

; ?debug L 15 
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were generated from line 15 of the C source file. Once you've 
located the line that caused the error in the .ASM file, you can 
then use the line-number comments to map the error-generating 
line back to the C source file. 

Debugging limitations Versions of Turbo C up to and including version 1.5 can't 
generate source-level debugging infonnation (infonnation 
required to let you see C source code as you debug) for modules 
containing inline assembly code. When inline assembly is used, 
Turbo C versions 1.5 and earlier generate plain assembler code 
with no embedded debugging infonnation. Source-level 
debugging capabilities are lost, and only assembler-level 
debugging of C modules containing inline code is possible. 

Develop in C and 
compile the final code 

with inline assembly 

280 

Later versions of Turbo C take advantage of special Turbo 
Assembler features to provide state-of-the-art, source-level 
debugging when used with Turbo Debugger to debug modules 
containing inline assembly code (and pure C modules too, of 
course). 

In light of the disadvantages of inline assembly we've just 
discussed, it may seem that in line assembly should be used as 
sparingly as possible. Not so. The trick is to use inline assembly at 
the right point in the development cycle-at the end. 

Most of the disadvantages of inline assembly boil down to a 
single problem: Inline assembly can slow down the edit/ compile/ 
debug cycle considerably. Slower compilation, inability to use the 
integrated environment, and difficulty in finding compilation 
errors all mean that development of code containing inline 
assembly statements will probably be slower than development of 
pure C code. Still, the proper use of inline assembly can result in 
dramatic improvements in code quality. What to do? 

The answer is simple. Initially, develop each program entirely in 
C, taking full advantage of the excellent development 
environment provided by TC.EXE. When a program reaches full 
functionality, with the code debugged and running smoothly, 
switch to TCC.EXE and begin to convert critical portions of the 
program to inline assembly code. This approach allows you to 
develop and debug your overall program efficiently, then isolate 
and enhance selected sections of the code when it comes time to 
fine-tune the program. 
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Calling Turbo Assembler functions from Turbo C 

Figure 7.3 
Compile, assemble, 
and link with Turbo 

C, Turbo Assembler, 
and TLiNK 

C and assembler have traditionally been mixed by writing 
separate modules entirely in C or assembler, compiling the C 
modules and assembling the assembler modules, and then linking 
the separately compiled modules together. Turbo C modules can 
readily be linked with Turbo Assembler modules in this fashion. 
Figure 7.3 shows how to do this. 

C Source File 
FILENAM1.C 

Object File 
FILENAM1.0BJ 

Assembler Source File 
FILENAM2.ASM 

Executable File 
FILENAM1.EXE 

Object File 
FILENAM2.0BJ 

The executable file is produced from mixed C and assembler 
source files. You start this cycle with 

tee filenaml filenam2.asm 

This instructs Turbo C to first compile FILENAM1.C to 
FILENAM1.0BJ, then invoke Turbo Assembler to assemble 
FILENAM2.ASM to FILENAM2.0BJ, and finally invoke TLINK 
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to link FILENAM1.0B] and FILENAM2.0B] into 
FILENAM1.EXE. 

Separate compilation is very useful for programs that have sizable 
amounts of assembler code, since it makes the full power of Turbo 
Assembler available and allows you to do your assembly 
language programming in a pure assembler environment, 
without the 8sm keywords, extra compilation time, and C-related 
overhead of inline assembly. 

There is a price to be paid for separate compilation: The assembler 
programmer must attend to all the details of interfacing C and 
assembler code. Where Turbo C handles segment specification, 
parameter-passing, reference to C variables, register variable 
preservation, and the like for inline assembly, separately compiled 
assembler functions must explicitly do all that and more. 

There are two major aspects to interfacing Turbo C and Turbo 
Assembler. First, the various parts of the C and assembler code 
must be linked together properly, and functions and variables in 
each part of the code must be made available to the rest of the 
code as needed. Second, the assembler code must properly handle 
C-style function calls. This includes accessing passed parameters, 
returning values, and following the register preservation rules 
required of C functions. 

Let's start by examining the rules for linking together Turbo C and 
Turbo Assembler code. 

In order to link Turbo C and Turbo Assembler modules together, 
three things must happen: 

• The Turbo Assembler modules must use a Turbo C-compatible 
segment-naming scheme. 

• The Turbo C and Turbo Assembler modules must share 
appropriate function and variable names in a form acceptable 
to Turbo C. 

• TLINK must be used to combine the modules into an 
executable program. 

This says nothing about what the Turbo Assembler modules 
actually do; at this point, we're only concerned with creating a 
framework within which C-compatible Turbo Assembler 
functions can be written. 
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Memory models and 
segments 

See -standard segment 
directives· in Chapter 5, 

page 111, for an introduction 
to the simplified segment 

directives. 

Underscores U prefix many 
of the labels in DoTota/ 

because they are normally 
required by Turbo C. For 

more detail, see the section 
-Underscores· on page 290. 

For a given assembler function to be callable from C, that function 
must use the same memory model as the C program and must use 
a C-compatible code segment. Likewise, in order for data defined 
in an assembler module to be accessed by C code (or for C data to 
be accessed by assembler code), the assembler code must follow C 
data segment-naming conventions. 

Memory models and segment-handling can be quite complex to 
implement in assembler. Fortunately, Turbo Assembler does 
virtually all the work of implementing Turbo C-compatible 
memory models and segments for you in the form of the 
simplified segment directives. 

Simplified segment directives and Turbo C 

The DOSSEG directive instructs Turbo Assembler to order 
segments according to the Intel segment-ordering conventions, 
the same conventions followed by Turbo C (and many other 
popular language products, including those from Microsoft). 

The .MODEL directive tells Turbo Assembler that segments 
created with the simplified segment directives should be 
compatible with the selected memory model (tiny, small, compact, 
medium, large, or huge), and controls the default type (near or 
far) of procedures created with the PROC directive. Memory 
models defined with the .MODEL directive are compatible with 
the equivalently named Turbo C models. 

Finally, the .CODE, .DATA, .DATA, .FARDATA, .FARDATA, and 
.CONST simplified segment directives generate Turbo C
compatible segments. 

For example, consider the following Turbo Assembler module, 
named OOTOTAL.ASM: 

i select Intel-convention segment ordering 
• MODEL small iselect small model (near code and data) 
. DATA iTC-compatible initialized data segment 
EXTRN _Repetitions:WORD iexternally defined 
PUBLIC _StartingValue iavailable to other modules 

_StartingValue DW 0 
• DATA? iTC-compatible uninitialized data segment 

RunningTotal DW? 
• CODE iTC-compatible code segment 
PUBLIC DoTotal 
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DoTotal 
mov 
mov 
mov 

TotalLoop: 
inc 
loop 
mov 
ret 

DoTotal 
END 

PROC ;function (near-callable in small model) 
cx,[_Repetitions] ;f of counts to do 
ax, [_StartingValue] 
[RunningTotal],ax ;set initial value 

[RunningTotal] ;RunningTotal++ 
TotalLoop 
ax, [RunningTotal] ;return final total 

ENDP 

The assembler procedure _DoTotal is readily callable from a 
small-model Turbo C program with the statement 

DoTotalO ; 

Note that _DoTotal expects some other part of the program to 
define the external variable Repetitions. Similarly, the variable 
StartingValue is made public, so other portions of the program can 
access it. The following Turbo C module, SHOWTOT.C, accesses 
public data in DOTOTAL.ASM and provides external data to 
OOTOTAL.ASM: 

extern int StartingValue; 
extern int DoTotal(void); 
int Repetitions; 
mainO 
{ 

int i; 
Repetitions = 10; 
StartingValue = 2; 
printf("%d\n", DoTotal()); 

To create the executable program SHOWTOT.EXE from 
SHOWTOT.C and OOTOTAL.ASM, enter the command line 

tcc showtot dototal.asm 

If you wanted to link _DoTotal to a compact-model C program, 
you would simply change the .MODEL directive to .MODEL 
COMPACT. If you wanted to use a far segment in 
OOTOTAL.ASM, you could use the .FARDATA directive. 

In short, generating the correct segment ordering, memory model, 
and segment names for linking with Turbo C is a snap with the 
simplified segment directives. 
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For an overview of Turbo C 
segment usage, refer to 

Chapter 4 of the Turbo C 
Programmer's Guide. 

Old-style segment directives and Turbo C 

Simply put, it's a nuisance interfacing Turbo Assembler code to C 
code using the old-style segment directives. For example, if you 
replace the simplified segment directives in OOTOT AL.ASM with 
old-style segment directives, you get 

DGROUP GROUP _DATA,_BSS 
DATA SEGMENT WORD PUBLIC 'DATA' 

EXTRN _Repetitions:WORD 
PUBLIC _StartingValue 

_StartingValue DW 0 
DATA ENDS 
BSS SEGMENT WORD PUBLIC 'BSS' -

RunningTotal OW? 
BSS ENDS 
TEXT SEGMENT BYTE PUBLIC 'CODE' 

iexternally defined 
iavailable to other modules 

ASSUME cs:_TEXT,ds:DGROUP,ss:DGROUP 
PUBLIC DoTotal 

DoTotal PROC ifunction (near-callable 
i in small model) 

mov 
mov 
mov 

Total1oop: 
inc 
loop 
mov 
ret 

DoTotal ENDP 
TEXT ENDS 

END 

cx, [_Repetitions] if of counts to do 
ax, [_StartingValue] 
[RunningTotal),ax iset initial value 

[RunningTotal] iRunningTotal++ 
TotalLoop 
ax, [RunningTotal] ireturn final total 

The version with old-style segment directives is not only longer, 
but also much harder to read and harder to change to match a 
different C memory model. When you're interfacing to Turbo C, 
there's generally no advantage to using the old-style segment 
directives. If you still want to use the old-style segment directives 
when interfacing to Turbo C, you'll have to identify the correct 
segments for the memory model your C code uses. 

The easiest way to determine the appropriate old-style segment 
directives for linking with a given Turbo C program is to compile 
the main module of the Turbo C program in the desired memory 
model with the -S option, which causes Turbo C to generate an 
assembler version of the C code. In that C code, you'll find all the 
old-style segment directives used by Turbo C; just copy them into 
your assembler code. For example, if you enter the command 
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tcc -S showtot.c 

the file SHOWTOT.ASM is generated: 

ifndef ??version 
?debug macro 

TEXT 
DGROUP 

TEXT 
DATA 
d@ -
d@w -
DATA 
BSS -

_b@ 
_b@w 

BSS 
TEXT 

main 

@1: 

ENDM 
ENDIF 
NAME showtot 
SEGMENT BYTE PUBLIC 'CODE' 
GROUP _DATA,_BSS 
ASSUME cs:_TEXT,ds:DGROUP,ss:DGROUP 
ENDS 
SEGMENT WORD PUBLIC 'DATA' 
LABEL BYTE 
LABEL WORD 
ENDS 
SEGMENT WORD PUBLIC 'BSS' 
LABEL BYTE 
LABEL WORD 
?debug C E91481D5100973686F77746F742E63 
ENDS 
SEGMENT BYTE PUBLIC 'CODE' 
?debug L 3 
PROC NEAR 
?debug L 6 
mov WORD PTR DGROUP:_Repetitions,lO 
?debug L 7 
mov WORD PTR DGROUP:_StartingValue,2 
?debug L 8 
call NEAR PTR DoTotal 
push ax 
mov ax,offset DGROUP:_s@ 
push ax 
call NEAR PTR _printf 
pop cx 
pop cx 

?debug L 9 
ret 

main ENDP 
TEXT ENDS 
BSS SEGMENT WORD PUBLIC 'BSS' -

_Repetitions LABEL WORD 
DB 2 dup (?) 
?debug C E9 

BSS ENDS 
DATA SEGMENT WORD PUBLIC 'DATA' 

_s@ LABEL BYTE 
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Chapter 9 covers segment 
directives in detail. 

Table 7.1 
Register settings 

when Turbo C 
enters assembler 

DB 37 
DB 100 
DB 10 
DB a 

DATA ENDS 
EXTRN _StartingValue:WORD 

TEXT SEGMENT BYTE PUBLIC 'CODE' 
EXTRN DoTotal:NEAR 
EXTRN _printf:NEAR 

TEXT ENDS -
PUBLIC _Repetitions 
PUBLIC main 
END 

The segment directives for _DATA (the initialized data segment), 
_TEXT (the code segment), and _BSS (the uninitialized data 
segment), along with the GROUP and ASSUME directives, are in 
read y-to-assemble form, so you can use them as is. 

Segment defaults: When Is it necessary to load segments? 

Under some circumstances, your C-callable assembler functions 
might have to load D5 and/or E5 in order to access data. It's also 
useful to know the relationships between the settings of the 
segment registers on a call from Turbo C, since sometimes 
assembler code can take advantage of the equivalence of two 
segment registers. Let's take a moment to examine the settings of 
the segment registers when an assembler function is called from 
Turbo C, the relationships between the segment registers, and the 
cases in which an assembler function might need to load one or 
more segment registers. 

On entry to an assembler function from Turbo C, the C5 and D5 
registers have the following settings, depending on the memory 
model in use (55 is always used for the stack segment, and E5 is 
always used as a scratch segment register): 

Model 

Tiny 
Small 
Compact 
Medium 
Large 
Huge 

cs 

_TEXT 
TEXT 

-TEXT 
fllename_ TEXT 
filename_TEXT 
filename_TEXT 

os 

DGROUP 
DGROUP 
DGROUP 
DGROUP 
DGROUP 
calling_filename_DATA 
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filename is the name of the assembler module, and callingJilename 
is the name of the module calling the assembler module. 

In the tiny model, _TEXT and DGROUP are the same, so CS equals 
OS on entry to functions. Also in the tiny, small, and medium 
models, SS equals OS on entry to functions. 

So, when is it necessary to load a segment register in a C-callable 
assembler function? For starters, you should.never have to (or 
want to) directly load the CS or SS registers. CS is automatically 
set as needed on far calls, jumps, and returns, and can't be 
tampered with otherwise. SS always points to the stack segment, 
which should never change during the course of a program 
(unless you're writing code that switches stacks, in which case 
you had best know exactly what you're doing!). 

ES is always available for you to use as you wish. You can use ES 
to point at far data, or you can load ES with the destination 
segment for a string instruction. 

That leaves the OS register. In all Turbo C models other than the 
huge model, OS points to the static data segment (DGROUP) on 
entry to functions, and that's generally where you'll want to leave 
it. You can always use ES to access far data, although you may 
find it desirable to instead temporarily point OS to far data that 
you're going to access intensively, thereby saving many segment 
override instructions in your code. For example, you could access 
a far segment in either of the following ways: 

or 

.FARDATA 
Counter DW 0 

• CODE 
PUBLIC AsmFunction 

AsmFunction PROC 

mov ax,@fardata 
mov 
inc 

es,ax 
es: [Counter] 

AsmFunction ENDP 

ipoint ES to far data segment 
iincrement counter variable 
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.FARDATA 
Counter DW 0 

.CODE 
PUBLIC AsmFunction 

AsmFunction PROC 

ASSUME ds:@fardata 
mov ax,@fardata 
mov ds,ax 
inc [Counter] 
ASSUME ds:@data 
mov ax,@data 
mov ds,ax 

AsmFunction ENDP 

ipoint DS to far data segment 
iincrement counter variable 

ipoint DS back to DGROUP 

The second version has the advantage of not requiring an ES: 
override on each memory access to the far data segment. If you do 
load OS to point to a far segment, be sure to restore it as in the 
preceding example before attempting to access any variables in 
DGROUP. Even if you don't access DGROUP in a given assembler 
function, be sure to restore OS before exiting, since Turbo C 
assumes that functions leave OS unchanged. 

Handling OS in C-callable huge model functions is a bit different. 
In the huge model, Turbo C doesn't use DGROUP at all. Instead, 
each module has its own data segment, which is a far segment 
relative to all the other modules in the program; there is no 
commonly shared near data segment. On entry to a function in 
the huge model, OS should be set to point to that module's far 
segment and left there for the remainder of the function, as 
follows: 

.FARDATA 

. CODE 
PUBLIC AsmFunction 

AsmFunction PROC 
push ds 
mov ax,@fardata 
mov ds,ax 

pop ds 
ret 
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AsmFunction ENDP 

Note that the original state of DS is preserved with a PUSH on 
entry to AsmFunction and restored with a POP before exiting; even 
in the huge model, Turbo C requires all functions to preserve DS. 

Publics and externals Turbo Assembler code can call C functions and reference external 
C variables, and Turbo C code can likewise call public Turbo 
Assembler functions and reference public Turbo Assembler 
variables. Once Turbo C-compatible segments are set up in Turbo 
Assembler, as described in the preceding sections, only the 
following few simple rules need be observed in order to share 
functions and variables between Turbo C and Turbo Assembler. 
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Underscores 

Normally, Turbo C expects all external labels to start with an 
underscore character C). Turbo C automatically prefixes an 
underscore to all function and external variable names when 
they're used in C code, so you only need to attend to underscores 
in your assembler code. You must be sure that all assembler 
references to Turbo C functions and variables begin with 
underscores, and you must begin all assembler functions and 
variables that are made public and referenced by Turbo C code 
with underscores. 

For example, the following C code, 

extern int ToggleFlag(); 
int Flag; 
main() 
{ 

ToggleFlag () ; 

links properly with the following assembler program: 

.M:lDEL small 
• DATA 
EXTRN Jlag:WORD 
.CODE 
PUBLIC _ToggleFlag 

_ToggleFlag PROC 
cmp [Jlag],O iis the flag reset? 
jz SetFlag iyes, set it 
mov [Jlag],O ino, reset it 
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Labels not referenced by C 
code, such'as SetRag, don't 

need leading underscores. 

jmp short EndToggleFlag ;done 
SetFlag: 

;set flag 
EndToggleFlag: 

ret 
_ToggleFlag ENDP 

END 

When you use the C language specifier in your EXTRN and 
PUBLIC directives, 

DOSSEG 
• MODEL SMALL 
• DATA 
EXTRN C Flag:word 
.CODE 
PUBLIC C ToggleFlag 

ToggleFlag PROC 
cmp [Flag],O 
jz Set Flag 
mov [Flag],O 
jmp short EndToggleFlag 

SetFlag: 
mov [Flag],l 

EndToggleFlag: 
ret 

ToggleFlag ENDP 
END 

Turbo Assembler causes the underscores to be prefixed auto
matically when Flag and ToggleFlag are published in the object 
module. 

By the way, it is possible to tell Turbo C not to use underscores by 
using the -u- command-line option. But you have to purchase the 
run-time library source from Borland and recompile the libraries 
with underscores disabled in order to use the -u- option. (See 
"Pascal calling conventions" on page 307 for information on the 
-p option, which disables the use of underscores and case
sensitivity.) 

The significance of uppercase and lowercase 

Turbo Assembler is normally insensitive to case when handling 
symbolic names, making no distinction between uppercase and 
lowercase letters. Since C is case-sensitive, it's desirable to have 
Turbo Assembler be case-sensitive, at least for those symbols that 
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are shared between assembler and C. Iml and Imx make this 
possible. 

The Iml command-line switch causes Turbo Assembler to become 
case-sensitive for all symbols. The Imx command-line switch 
causes Turbo Assembler to become case-sensitive for public 
(PUBLIC), external (EXTRN), global (GLOBAL), and communal 
(COMM) symbols only. 

Label types 

While assembler programs are free to access any variable as data 
of any size (8 bit, 16 bit, 32 bit, and so on), it is generally a good 
idea to access variables in their native size. For instance, it usually 
causes problems if you write a word to a byte variable: 

SrnallCount DB ° 
rnov WORD PTR [SrnallCount],Offffh 

Consequently, it's important that your assembler EXTRN 
statements that declare external C variables specify the right size 
for those variables, since Turbo Assembler has only your 
declaratio?1 to go by when deciding what size access to generate to 
a C variable. Given the statement 

char c 

in a C program, the assembler code 

EXTRN c: WORD 

inc [c] 

could lead to nasty problems, since every 256th time the 
assembler code incremented c, c would turn over. And, since c is 
erroneously declared as a word variable, the byte at OFFSET c + 1 
would incorrectly be incremented, with unpredictable results. 

Correspondence between C and assembler data types is as 
follows: 
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C Data Type 

unsigned char 
char 
enurn 
unsigned short 
short 
unsigned int 
int 
unsigned long 
long 
float 
double 
long double 
near'" 
far '" 

Far externals 

Assembler Data Type 

byte 
byte 
word 
word 
word 
word 
word 
dword 
dword 
dword 
qword 
tbyte 
word 
dword 

If you're using the simplified segment directives, EXTRN 
declarations of symbols in far segments must not be placed within 
any segment, since Turbo Assembler considers symbols declared 
within a given segment to be associated with that segment. This 
has its drawbacks: Turbo Assembler cannot check the address
ability of symbols declared EXTRN outside any segment, and so 
can neither generate segment overrides as needed nor inform you 
when you attempt to access that variable when the correct 
segment is not loaded. Turbo Assembler still assembles the 
correct code for references to such external symbols, but can no 
longer provide the normal degree of segment addressability 
checking. 

If you want to (though we discourage it), you can use the old
style segment directives to explicitly declare the segment each 
external symbol is in and then place the EXTRN directive for that 
symbol inside the segment declaration. However, this is a good 
bit of work; if you don't mind taking responsibility for making 
sure that the correct segment is loaded when you access far data, 
it's easiest to just put EXTRN declarations of far symbols outside 
all segments. For example, suppose that FILE1.ASM contains 

.FARDATA 
FilelVariable DB 0 

Then ifFILE1.ASM is linked to FILE2.ASM, which contains 
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• DATA 
EXTRN FilelVariable:BYTE 
• CODE 

Start PROC 
mov ax,SEG FilelVariable 
mov ds,ax 

SEG Filel Variable will not return the correct segment. The EXTRN 
directive is placed within the scope of the DATA directive of 
FILE2.ASM, so Turbo Assembler considers FilelVariable to be in 
the near DATA segment of FILE2.ASM, rather than in the 
FARDATA segment. 

The following code for FILE2.ASM allows SEG Filel Variable to 
return the correct segment: 

• DATA 
@eurseg ENDS 

EXTRN FilelVariable:BYTE 
.CODE 

Start PROC 
mov ax,SEG FilelVariable 
mov ds,ax 

The trick here is that the @curseg ENDS directive ends the .DATA 
segment, so no segment directive is in effect when Filel Variable is 
declared external. 

Linker .command line The simplest way to link Turbo C modules with Turbo Assembler 
modules is to enter a single Turbo C command line and let Turbo 
C do all the work. Given the proper command line, Turbo C will 
compile the C code, invoke Turbo Assembler to do the 
assembling, and invoke TLINK to link the object files into an 
executable file. Suppose, for example, that you have a program 
consisting of the C files MAIN.C and ST AT.C and the assembler 
files SUMM.ASM and DISPLAY.ASM. The command line 
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tee main stat summ.asm display.asm 

compiles MAIN.C and STAT.C, assembles SUMM.ASM and 
DISPLAY.ASM, and links all four object files, along with the C 
start-up code and any required library functions, into MAIN.EXE. 
You only need remember the .ASM extensions when typing your 
assembler file names. 
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Between Turbo 
Assembler and 

Turbo C 

Parameter-passing 

Read about Pascal calling 
conventIons on page 307. 

If you use TLINK in stand-alone mode, the object files generated 
by Turbo Assembler are standard object modules and are treated 
just like C object modules. 

Now that you understand how to build and link C-compatible 
assembler modules, you need to learn what sort of code you can 
put into C-callable assembler functions. There are three areas to 
examine here: receiving passed parameters, using registers, and 
returning values to the calling code. 

Turbo C passes parameters to functions on the stack. Before 
calling a function, Turbo C first pushes the parameters to that 
function onto the stack, starting with the rightmost parameter and 
ending with the leftmost parameter. The C function call 

Test (i, j, 1); 

compiles to 

mov ax,l 
push ax 
push WORD PTR DGROUP:_j 
push WORD PTR DGROUP: i 
call NEAR PTR Test 
add sp,6 

in which you can clearly see the rightmost parameter, 1, being 
pushed first, then j, and finally i. 

Upon return from a function, the parameters that were pushed on 
the stack are still there, but are no longer of any use. Consequent
ly, immediately following each function call, Turbo C adjusts the 
stack pointer back to the value it contained before the parameters 
were pushed, thereby discarding the parameters. In the previous 
example, the three parameters of 2 bytes each take up 6 bytes of 
stack space altogether, so Turbo C adds 6 to the stack pointer to 
discard the parameters after the call to Test. The important point 
here is that under C calling conventions, the calling code is 
responsible for discarding the parameters from the stack. 

Assembler functions can access parameters passed on the stack 
relative to the BP register. For example, suppose the function Test 
in the previous example is the following assembler function: 
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Figure 7.4 
state of the stack 

Just before 
executing Test's first 

Instruction 
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. MODEL small 
• CODE 
PUBLIC Test 

Test PROC 
push bp 
mov bp,sp 
mov ax, [bp+4] jget parameter 1 
add ax, [bp+6] jadd parameter 2 to parameter 1 
sub ax, [bp+8] ;subtract parameter 3 from sum 
pop bp 
ret 

Test ENDP 
END 

You can see that Test is getting the parameters passed by the C 
code from the stack, relative to BP. (Remember that BP addresses 
the stack segment.> But just how are you to know where to find the 
parameters relative to BP? 

Figure 7.4 shows what the stack looks like just before the first 
instruction in Test is executed: 

i = 25; 
j = 4; 
Test(i, j, 1) i 

SP ., Return Address 

SP+ 2 25 ( I ) 

SP+ 4 4 (j) 

SP+ 6 1 

The parameters to Test are at fixed locations relative to SP, 
starting at the stack location 2 bytes higher than the location of the 
return address that was pushed by the call. After loading BP with 
SP, you can access the parameters relative to BP. However, you 
must first preserve BP, since the calling C code expects you to 
return with BP unchanged. Pushing BP changes all the offsets on 
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Figure 7.5 
state of the stack 

after PUSH and 
MOV 

the stack. Figure 7.5 shows the stack after these lines of code are 
executed: 

push bp 
mov bp,sp 

SP 

SP+ 2 

SP+ 4 

SP+ 6 

SP+ 8 

• Caller's BP • BP 

Return Address BP+ 2 

25 ( I) BP+ 4 

4 (j) BP+ 6 

1 BP+ 8 

This is the standard C stack frame, the organization of a function's 
parameters and automatic variables on the stack. As you can see, 
no matter how many parameters a C program might have, the 
leftmost parameter is always stored at the stack address 
immediately above the pushed return address, the next parameter 
to the right is stored just above the leftmost parameter, and so on. 
As long as you know the order and type of the passed parameters, 
you always know where to find them on the stack. 

Space for automatic variables can be reserved by subtracting the 
required number of bytes from SP. For example, room for a 100-
byte automatic array could be reserved by starting Test with 

push bp 
mov bp,sp 
sub sp,lOO 

as shown in Figure 7.6. 
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Figure 7.6 
state of the stack 
after PUSH. MOV. 

and SUB 
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SP --I----BP - 100 

SP + 100 ~ Caller's BP • BP 

SP + 102 Return Address BP+ 2 

SP + 104 25 (I) BP+ 4 

SP+ 106 4 (j) BP+ 6 

SP + 108 1 BP+ 8 

Since the portion of the stack holding automatic variables is at a 
lower address than BP, negative offsets from BP are used to 
address automatic variables. For example, 

mov BYTE PTR [bp-100],O 

would set the first byte of the IOO-byte array you reserved earlier 
to zero. Passed parameters, on the other hand, are always 
addressed at positive offsets from BP. 

While you can, if you wish, allocate space for automatic variables 
as shown previously, Turbo Assembler provides a special version 
of the LOCAL directive that makes allocation and naming of 
automatic variables a snap. When LOCAL is encountered within a 
procedure, it is assumed to define automatic variables for that 
procedure. For example, 

LOCAL LocalArray:BYTE:l00,LocalCount:WORD = AUTO_SIZE 

defines the automatic variables LocalArray and LocalCount. 
LocalArray is actually a label equated to [BP-I00], and LocalCount 
is actually a label equated to [BP-I02], but you can use them as 
variable names without ever needing to know their values. 
AUTO _SIZE is the total number of bytes of automatic storage 
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required; you must subtract this value from SP in order to allocate 
space for the automatic variables. 

Here's how you might use LOCAL: 

TestSub PROC 
LOCAL LocaIArray:BYTE:100,LocaICount:WORD=AUTO_SIZE 
push bp 
mov bp,sp 
sub sp,AUTO_SIZE 
mov [LocaICount],10 

mov cx, [LocalCount] 
mov al,'A' 
lea bx, [LocalArray] 

FillLoop: 
mov [bx],al 
inc bx 
loop FillLoop 
mov sp,bp 

pop bp 
ret 

TestSub ENDP 

ipreserve caller's stack frame pointer 
iset up our own stack frame pointer 
;allocate room for automatic variables 
iset local count variable to 10 
i (LocalCount is actually [BP-102]) 

;get count from local variable 
;we'll fill with character IIAII 
ipoint to local array 
; (LocalArray is actually [BP-100]) 

; fill next byte 
ipoint to following byte 
ido next byte, if any 
;deallocate storage for automatic 
; variables (add sp,AUTO_SIZE would 
; also have worked) 
;restore caller's stack frame pointer 

In this example, note that the first field after the definition of a 
given automatic variable is the data type of the variable: BYTE, 
WORD, DWORD, NEAR, and so on. The second field after the 
definition of a given automatic variable is the number of elements 
of that variable's type to reserve for that variable. This field is 
optional and defines an automatic array if used; if it is omitted, 
one element of the specified type is reserved. Consequently, 
LocalArray consists of 100 byte-sized elements, while LocalCount 
consists of 1 word-sized element. 

Also note that the LOCAL line in the preceding example ends with 
=AUTO_SIZE. This field, beginning with an equal sign, is 
optional; if present, it sets the label following the equal sign to the 
number of bytes of automatic storage required. You must then use 
that label to allocate and deallocate storage for automatic 
variables, since the LCCAL directive only generates labels, and 
doesn't actually generate any code or data storage. To put this 
another way: LOCAL doesn't allocate automatic variables, but 
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simply generates labels that you can readily use to both allocate 
storage for and access automatic variables. 

A very handy feature of LOCAL is that the labels for both the 
automatic variables and the total automatic variable size are 
limited in scope to the procedure they're used in, so you're free to 
reuse an automatic variable name in another procedure. 

As you can see, LOCAL makes it much easier to define and use 
automatic variables. Note that the LOCAL directive has a 
completely different meaning when used in macros, as discussed 
in Chapter 9. 

By the way, Turbo C handles stack frames in just the way we've 
described here. You may well find it instructive to compile a few 
Turbo C modules with the -S option and look at the assembler 
code Turbo C generates to see how Turbo C creates and uses stack 
frames. 

So far, so good, but there are further complications. First of all, 
this business of accessing parameters at constant offsets from BP 
is a nuisance; not only is it easy to make mistakes, but if you add 
another parameter, all the other stack frame offsets in the function 
must be changed. For example, suppose you change Test to accept 
four parameters: 

Test (Flag, i, j, 1); 

Suddenly i is at offset 6, not offset 4, j is at offset 8, not offset 6, 
and so on. You can use equates for the parameter offsets: 

Flag 
AddParm1 
AddParm2 
SubParm1 

EQU 
EQU 6 
EQU 8 
EQU 10 

mov ax, [bp+AddParm1] 
add ax, [bp+AddParm2] 
sub ax, [bp+SubParm1] 

but it's still a nuisance to calculate the offsets and maintain them. 
There's a more serious problem, too: The size of the pushed return 
address grows by 2 bytes in far code models, as do the sizes of 
passed code pointers and data pointer in far code and far data 
models, respectively. Writing a function that can be easily 
assembled to access the stack frame properly in any memory 
model would thus seem to be a difficult task. 
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Fear not. Turbo Assembler provides you with the ARG directive, 
which makes it easy to handle passed parameters in your 
assembler routines. 

The ARG directive automatically generates the correct stack 
offsets for the variables you specify. For example, 

arg FiIIArray:WORD,Count:WORD,FiIIValue:BYTE 

specifies three parameters: FillArray, a word-sized parameter; 
Count, a word-sized parameter, and FillValue, a byte-sized' 
parameter. ARG actually sets the label FillArray to [BP+4] 
(assuming the example code resides in a near procedure), the 
label Count to [BP+6], and the label FillValue to [BP+8]. However, 
ARG is valuable precisely because you can use ARG-defined labels 
without ever knowing the values they're set to. 

For example, suppose you've got a function FillSub, called from C 
as follows: 

main () 
{ 

jdefine ARRAY LENGTH 100 
char TestArray[ARRAY_LENGTH]i 

FiIISub(TestArray,ARRAY_LENGTH,'*')i 

You could use ARG in FillSub to handle the parameters as follows: 

FillSub PROC NEAR 
ARG FiIIArray:WORD,Count:WORD,FiIIValue:BYTE 
push bp ipreserve caller's stack frame 
mov bp,sp iset our own stack frame 
mov bx, [FiIIArray] iget pointer to array to fill 
mov cx, [Count] iget length to fill 
mov aI, [Fill Value] iget value to fill with 

FillLoop: 
mov [bx],al ifill a character 
inc bx 
loop Fi llLoop 
pop bp 
ret 

FillSub ENDP 

;point to next character 
;do next character 
;restore caller's stack frame 

That's really all it takes to handle passed parameters with ARG. 
Better yet, ARG automatically accounts for the different sizes of 
near and far returns. Another convenience is that the labels 
defined with ARG are limited in scope to the procedure they're 
used in when you declare them using the local label prefix (see 
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LOCALS in the Reference Guide}. So you need never worry about 
conflict between parameter names in different procedures. 

Preserving registers As far as Turbo C is concerned, C-callable assembler functions can 
do anything they please, as long as they preserve the following 
registers: BP, SP, CS, OS, and 55. While these registers can be 
altered during the course of an assembler function, when the 
calling code is returned, they must be exactly as they were when 
the assembler function was called. AX, BX, CX, OX, ES, and the 
flags can be changed in any way. 

51 and 01 are special cases, since they're used by Turbo C as 
register variables. If register variables are enabled in the C 
module calling your assembler function, you must preserve 51 
and 01; but if register variables are not enabled, 51 and 01 need 
not be preserved. 

It's good practice to always preserve 51 and 01 in your C-callable 
assembler functions, regardless of whether register variables are 
enabled. You never know when you might link a given assembler 
module to a different C module, or recompile your C code with 
register variables enabled, without remembering that your 
assembler code needs to be changed as well. 

Returning values A C-callable assembler function can return a value, just like a C 
function. Function values are returned as follows: 

Return Value Type 

unsigned char 
char 
enum 
unsigned short 
short 
unsigned int 
int 
unsigned long 
long 
float 
double 
long double 
near" 
far" 

Return Value Location 

AX 
AX 
AX 
AX 
AX 
AX 
AX 
DX:AX 
DX:AX 
8087 top-of-stack (TOS) register (ST(O» 
8087 top-of-stack (TOS) register (ST(O» 
8087 top-of-stack (TOS) register (ST(O» 
AX 
DX:AX 

In general, 8- and 16-bit values are returned in AX, and 32-bit 
values are returned in DX:AX, with the high 16 bits of the value in 
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DX. Floating-point values are returned in ST(O), which is the 
8087's top-of-stack (TOS) register, or in the 8087 emulator's TOS 
register if the floating-point emulator is being used. 

Structures are a bit more complex. Structures that are 1 or 2 bytes 
in length are returned in AX, and structures that are 4 bytes in 
length are returned in DX:AX. Three-byte structures and 
structures larger than 4 bytes must be stored in a static data area, 
and a pointer to that static data must then be returned. As with all 
pointers, near pointers to structures are returned in AX, and far 
pointers to structures are returned in DX:AX. 

Let's look at a small model C-callable assembler function, 
FindLastChar, that returns a pointer to the last character of a 
passed string. The C prototype for this function would be 

extern char * FindLastChar(char * StringToScan)i 

where StringToScan is the nonempty string for which a pointer to 
the last character is to be returned. 

Here's FindLastChar: 

.r-KlDEL small 

. CODE 
PUBLIC FindLastChar 

FindLastChar PROC 
push bp 
mov bp,sp 
cld iwe need string instructions to count up 
mov ax,ds 
mov es,ax iset ES to point to the near data segment 
mov di, ipoint ES:DI to start of passed string 
mov al,O ;search for the null that ends the string 
mov cx,Offffh isearch up to 64K-l bytes 
repnz scasb ilook for the null 
dec di ipoint back to the null 
dec di ipoint back to the last character 
mov ax,di ireturn the near pointer in AX 
pop bp 
ret 

FindLastChar ENDP 
END 

The final result, the near pointer to the last character in the passed 
string, is returned in AX. 
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Calling an 
assembler 

function from C 
Now look at an example of Turbo C code calling a Turbo 
Assembler function. The following Turbo Assembler module, 
COUNT.ASM, contains the function LineCount, which returns 
counts of the number of lines and characters in a passed string: 

Small model C-callable assembler function to count the number 
of lines and characters in a zero-terminated string. 

Function prototype: 
extern unsigned int LineCount(char * near StringToCount, 

unsigned int near * CharacterCountPtr); 
Input: 

char near * StringToCount: pointer to the string on which 
a line count is to be performed 

unsigned int near * CharacterCountPtr: pointer to the 
int variable in which the character count is 
to be stored 

NEWLINE EQU 

DOSSEG 

Dah ;the linefeed character is C's 
; newline character 

. MODEL small 

. CODE 
PUBLIC 

LineCount 
push 
mov 
push 

mov 
sub 
mov 

LineCountLoop: 
lodsb 
and 
jz 
inc 
cmp 
jnz 
inc 
jmp 

EndLineCount: 
inc 

LineCount 
PROC 
bp 
bp,sp 
si 

si, [bp+4] 
cX,cx 
dx,cx 

ipreserve calling program's 
i register variable, if any 
ipoint SI to the string 
;set character count to D 
;set line count to D 

;get the next character 
al,al iis it null, to end the string? 
EndLineCount iyes, we're done 
cx ;no, count another character 
al,NEWLINE ;is it a newline? 
LineCountLoop ;no, check the next character 
dx ;yes, count another line 
LineCountLoop 

dx ;count the line that ends with the 
; null character 
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mov bx, [bp+6) ipoint to the location at which to 
i return the character count 

mov [bx),cx iset the character count variable 
mov ax,dx ireturn line count as function value 
pop si irestore calling program's register 

i variable, if any 
pop bp 
ret 

LineCount ENDP 
END 

The following C module, CALLCT.C, is a sample invocation of 
the LineCount function: 

char * TestString="Line 1 \nline 2\nline 3" i 
extern unsigned int LineCount(char * StringToCount, 

unsigned int * CharacterCountPtr)i 
main () 
{ 

unsigned int LCounti 
unsigned int CCounti 

LCount = LineCount(TestString, &CCount)i 
printf("Lines: %d\nCharacters: %d\n", LCount, CCount)i 

The two modules are compiled and linked together with the· 
command line 

tcc -ms callct count.asm 

As shown here, LineCount will only work when linked to small
model C programs, since pointer sizes and locations on the stack 
frame change in other models. Here's a version of LineCount, 
COUNTLG.ASM, that will work with large-model C programs 
(but not small-model ones, unless far pointers are passed, and 
LineCount is declared far): 

i Large model C-callable assembler function to count the number 
of lines and characters in a zero-terminated string. 

Function prototype: 
extern unsigned int LineCount(char * far StringToCount, 

unsigned int * far CharacterCountPtr)i 
char far * StringToCount: pointer to the string on which 

a line count is to be performed 

unsigned int far * CharacterCountPtr: pointer to the 
int variable in which the character count 
is to be stored 
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NEWLINE EQU Oah ithe linefeed character is C's newline 
i character 

.MODEL large 
• CODE 
PUBLIC 

LineCount 
push 
mov 
push 

push 
Ids 
sub 
mov 

LineCountLoop: 
lodsb 
and 
jz 
inc 
cmp 
jnz 
inc 
jmp 

EndLineCount: 
inc 

les 

mov 
mov 

pop 
pop 

LineCount 
PROC 
bp 
bp,sp 
si 

ds 
si, [bpt6] 
cx,cx 
dx,cx 

ipreserve calling program's 
i register variable, if any 
ipreserve C's standard data seg 
ipoint DS:SI to the string 
iset character count to 0 
iset line count to 0 

iget the next character 
al,al iis it null, to end the string? 
EndLineCount iyes, we're done 
cx ino, count another character 
al,NEWLINE iis it a newline? 
LineCountLoop ino, check the next character 
dx iyes, count another line 
LineCountLoop 

dx 

bx, [bp+10] 

es:[bx],cx 
ax,dx 

ds 
si 

icount line ending with null 
i character 
ipoint ES:BX to the location at 
i which to return char count 
iset the char count variable 
ireturn the line count as 
i the function value 
irestore C's standard data seg 
irestore calling program's 
i register variable, if any 

pop bp 
ret 

LineCount ENDP 
END 

COUNTLG.ASM can be linked to CALLCT.C with the following 
command line: 

tcc -ml callct countlg.asm 
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Pascal calling 
conventions 

See Chapter 8 for more 
Information about Pascal 

calling conventions. 

So far, you've seen how C normally passes parameters to func
tions by having the calling code push parameters right to left, call 
the function, and discard the parameters from the stack after the 
call. Turbo C is also capable of following the conventions used by 
Pascal programs in which parameters are passed from left to right 
and the called program discards the parameters from the stack. In 
Turbo C, Pascal conventions are enabled with the -p command
line option or the pascal keyword. 

Here's an example of an assembler function that uses Pascal 
conventions: 

; Called as: TEST(i, j, k); 

i equ 8 ;leftmost parameter 
j equ 
k equ 4 ;rightmost parameter 

.MJDEL small 

. CODE 
PUBLIC TEST 

TEST PROC 
push bp 
mov bp,sp 
mov ax, [bp+i] ;get i 
add ax, [bp+j] ;add j to i 
sub ax, [bp+k] ;subtract k from the sum 
pop bp 
ret 6 ;return, discarding 6 parameter bytes 

TEST ENDP 
END 

Figure 7.7 shows the stack frame after MOV BP,5P has been 
executed. 

Note that RET 6 is used by the called function to clear the passed 
parameters from the stack. 

Pascal calling conventions also require all external and public 
symbols to be in uppercase, with no leading underscores. Why 
would you ever want to use Pascal calling conventions in a C 
program? Code that uses Pascal conventions tends to be 
somewhat smaller and faster than normal C code, since there's no 
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need to execute an ADD SP n instruction to discard the 
parameters after each call. 

Figure 7.7 
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Calling Turbo C from Turbo Assembler 

308 

Link in the C 

Although it's most common to call assembler functions from C to 
perform specialized tasks, you may on occasion want to call C 
functions from assembler. As it turns out, it's actually easier to call 
a Turbo C function from a Turbo Assembler function than the 
reverse, since no stack-frame handling on the part of the 
assembler code is required. Let's take a quick look at the 
requirements for calling Turbo C functions from assembler. 

startup code As a general rule, it's a good idea to only call Turbo C library 
functions from assembler code in programs that link in the C 
startup module as the first module linked. This "safe" class 
includes all programs that are linked from TC.EXE or with a 
TCC.EXE command line, and programs that are linked directly 
with TLINK that have COT, COS, CDC, COM, COL, or COH as the 
first file to link. 

You should generally not call Turbo C library functions from 
programs that don't link in the C startup module, since some 
Turbo C library functions will not operate properly if the startup 
code is not linked in. !fyou really want to call Turbo C library 
functions from such programs, we suggest you look at the startup 
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Make sure you've 
got the right 

segment setup 

Performing the 
call 

source code (the file CO.ASM on the Turbo C distribution disks) 
and purchase the C library source code from Borland, so you can 
be sure to provide the proper initializa tion for the library 
functions you need. Another possible approach is to simply link 
each desired library function to an assembler program, called 
X.ASM for instance, which does nothing but call each function, 
linking them together with a command line like this: 

tlink x,x"cm.lib 

where m is the first letter of the desired memory model (t for tiny, 
5 for small, and so on). If TLINK reports any undefined symbols, 
then that library function can't be called unless the C startup code 
is linked into the program. 

Note: Calling user-defined C functions that in turn call C library 
functions falls into the same category as calling library functions 
directly; lack of the C startup can potentially cause problems for 
any assembler program that calls C library functions, directly or 
indirectly. 

As we learned earlier, you must make sure that Turbo C and 
Turbo Assembler are using the same memory model and that the 
segments you use in Turbo Assembler match those used by Turbo 
C. Refer to the previous section, "The framework," (page 282) if 
you need a refresher on matching memory models and segments. 
Also, remember to put EXTRN directives for far symbols either 
outside all segments or inside the correct segment. 

You've already learned how Turbo C prepares for and executes 
fu.TIction calls in the section "Calling Turbo Assembler functions 
from Turbo C" on page 281. We'll briefly review the mechanics of 
C function calls, this time from the perspective of calling Turbo C 
functions from Turbo Assembler. 

All you need to. do when passing parameters to a Turbo C 
function is push the rightmost parameter first, then the next 
rightmost parameter, and so on, until the leftmost parameter has 
been pushed. Then just call the function. For example, when 
programming in Turbo C, to call the Turbo C library function 
strcpy to copy SourceString to DestString, you would enter 
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strcpy(DestString, SourceString); 

To perform the same call in assembler, you would use 

lea ax,SourceString 
lea bx,DestString 
push ax 
push bx 
call _strcpy 
add sp,4 

;rightmost parameter 
;leftmost parameter 
;push rightmost first 
;push leftmost next 
;copy the string 
;discard the parameters 

Don't forget to discard the parameters by adjusting SP after the 
call. 

You can simplify your code and make it language independent at 
the same time by taking advantage of Turbo Assembler's CALL 
instruction extension: 

call destination [language [,argl] ••• ] 

where language is C, PASCAL, BASIC, FORTRAN, PROLOC or 
NOLANGUAGE, and arg is any valid argument to the routine 
that can be directly pushed onto the processor stack. 

Using this feature, the preceding code can be reduced to 

lea ax,SourceString 
lea bx,DestString 
call strcpy c,bx,ax 

Turbo Assembler automatically inserts instructions to push the 
arguments in the correct order for C (AX first, then BX), performs 
the call to _strcpy (Turbo Assembler automatically inserts an 
underscore in front of the name for C), and cleans up the stack 
after the call. 

If you're calling a C function that uses Pascal calling conventions, 
you have to push the parameters left to right and not adjust SP 
afterward: 

lea bx,DestString 
lea ax,SourceString 
push bx 
push ax 
call STRCPY 

;leftmost parameter 
;rightmost parameter 
;push leftmost first 
;push rightmost next 
;copy the string 
;leave the stack alone 

Again, you can use Turbo Assembler's CALL instruction extension 
to simplify your code: 

lea bx,DestString ;leftmost parameter 
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function from 

Turbo Assembler 

lea ax,SourceString irightmost parameter 
call strcpy pascal,bx,ax 

Turbo Assembler automatically inserts instructions to push the 
arguments in the correct order for Pascal (BX first, then AX) and 
performs the call to STRCPY (converting the name to all 
uppercase, as is the Pascal convention). 

Of course, the last example assumes that you've recompiled 
strcpy with the -p switch, since the standard library version of 
strcpy uses C rather than Pascal calling conventions. C functions 
return values as described in the section "Returning values" (page 
302); 8- and 16-bit values in AX, 32-bit values in OX:AX, floating
point values in the 8087 TOS register, and structures in various 
ways according to size. 

Rely on C functions to preserve the following registers and only 
the following registers: 51, 01, BP, OS, 55, SP, and CS. Registers 
AX, BX, CX, OX, ES, and the flags may be changed arbitrarily. 

One case in which you might wish to call a Turbo C function from 
Turbo Assembler is when you need to perform complex 
calculations. This is especially true when mixed integer and 
floating-point calculations are involved; while it's certainly 
possible to perform such operations in assembler, it's simpler to 
let C handle the details of type conversion and floating-point 
arithmetic. 

Let's look at an example of assembler code that calls a Turbo C 
function in order to get a floating-point calculation performed. In 
fact, let's look at an example in which a Turbo C function passes a 
series of integer numbers to a Turbo Assembler function, which 
sums the numbers and in turn calls another Turbo C function to 
perform the floating-point calculation of the average value of the 
series. 

The C portion of the program in CALCA VG.C is 

extern float Average(int far * ValuePtr, int NumberOfValues)i 
'define NUMBER_OF_TEST_VALUES 10 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10 
} i 

main () 
{ 
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printf("The average value is: %f\n", 
Average(TestValues, NUMBER_OF_TEST_VALUES))i 

float IntDivide(int Dividend, int Divisor) 
( 

return ( (float) Dividend / (float) Divisor )i 

and the assembler portion of the program in A VERAGE.ASM is 

Turbo C-callable small-model function that returns the average 
of a set of integer values. Calls the Turbo C function 
IntDivide() to perform the final division. 

Function prototype: 
extern float Average(int far * ValuePtr, int NumberOfValues)i 

Input: 
int far * ValuePtr: 
int NumberOfValues: 

ithe array of values to average 
ithe number of values to average 

• MODEL small 
EXTRN IntDivide:PROC 
• CODE 
PUBLIC 

_Average 
push 
mov 
les 
mov 
mov 

AverageLoop: 
add 
add 
loop 
push 

_Average 

push 
call 
add 
pop 
ret 

END 

_Average 
PROC 
bp 
bp,sp 
bx, [bp+4] 
cx, [bp+8] 
ax,O 

ax,es: [bx] 
bx,2 
AverageLoop 
WORD PTR [bp+8] 

ipoint ES:BX to array of values 
it of values to average 
iclear the running total 

iadd the current value 
ipoint to the next value 

iget back the number of values 
i passed to IntDivide as the 
i rightmost parameter 

ax ipass the total as the leftmost parameter 
_IntDivide ;calculate the floating-point average 
sp,4 ;discard the parameters 
bp 

;average is in 8087's TOS register 
ENDP 

The C main function passes a pointer to the array of integers 
TestValues and the length of the array to the assembler function 
Average. Average sums the integers, then passes the sum and the 
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number of values to the C function IntDivide. IntDivide casts the 
sum and number of values to floating-point numbers and 
calculates the average value, doing in a single line of C code what 
would have taken several assembler lines. IntDivide returns the 
average to Average in the 8087 TOS register, and Average just leaves 
the average in the TOS register and returns to main. 

CALCAVG.C and AVERAGE.ASM could be compiled and linked 
into the executable program CALCA VG.EXE with the command 

tee ealeavg average.asm 

Note that Average will handle both small and large data models 
without the need for any code change, since a far pointer is 
passed in all models. All that would be needed to support large 
code models (huge, large, and medium) would be use of the 
appropriate .MODEL directive. 

Taking full advantage of Turbo Assembler's language
independent extensions, the assembly code in the previous 
example could be written more concisely as 

DOSSEG 
. MODEL small,C 
EXTRN C IntDivide:PROC 
.CODE 
PUBLIC C Average 

Average PROC C ValuePtr:DWORD,NumberOfValues:WORD 
les bx,ValuePtr 
mov cx,NumberOfValues 
mov ax,O 

AverageLoop: 
add ax,es:[bx] 
add bx,2 ipoint to the next value 

AverageLoop loop 
call 
ret 

IntDivide C,ax,NumberOfValues 

Average 
END 

ENDP 
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c H A p T E R 

8 

Interfacing Turbo Assembler with Turbo 
Pascal 

Unless a version number is 
stated specifically. when 

referring to Turbo Pascal, we 
mean versions 4.0 and 

greater. 

Turbo Assembler provides extensive and powerful facilities to let 
you add assembly language code to your Turbo Pascal programs. 
In this chapter, we'll tell you everything you need to know to 
make full use of these facilities, including lots of examples and 
"inside" information. 

Why use Turbo Assembler with Turbo Pascal? Most of the 
programs you're likely to write can be written entirely in Turbo 
Pascal. Unlike most Pascals, Turbo Pascal lets you access virtually 
all of your machine's resources directly through the Port[], Mem[], 
MemW[], and MemL[] arrays, and you can call the BIOS and 
operating system with the IntrO and MsDosO procedures. 

Why, then, would you want to use assembly language with Turbo 
Pascal? The two most likely reasons: to perform the relatively few 
operations that are not directly available from Turbo Pascal and to 
take advantage of the raw speed that only assembly language can 
provide. (Turbo Pascal itself is so quick because it is written in 
assembly language.) This chapter shows you how and when to 
harness the power of assembly language with Turbo Pascal. 

The Turbo Pascal memory map 

Before you can begin writing assembly language code to work 
with Turbo Pascal programs, it's important to understand how the 
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Figure 8.1 
Memory map of a 

Turbo Pascal 5.0 
program 
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The program 
segment prefix 

compiler lays out information in memory. The Turbo Pascal 
memory model embodies aspects of both the medium and the 
large models, which are described in Chapter 5. There is a single 
global data segment, allowing fast access to global variables and 
typed constants through DS. However, each unit has its own code 
segment, and the heap can grow to use all available memory. 
Addresses in Turbo Pascal are always passed as far (32-bit) 
pointers so that they can reference objects anywhere in memory. 

The memory map of a Turbo Pascal program looks like this: 

os 

SS 

Heap 
Ptr 

~ 

Low Memory 

Program Segment Prefix 
(256 Bytes) 

Main Program Code Segment 

Last Unit Code Segment 

. 
First Unit Code Segment 

Run Time Library Code Segment 

Typed Constants 

-
---

--------------------------------Global Variables 

t 
Stack (Grows downward) 

Heap (Grows upward) 

t 
t 

Heap "free list" (Grows downward) 

High Memory 

Maximum 
code segment 
si.ze: 64K 

___ End of . EXE 
file 

~t9c~ Sii:~ 
Minimum: 1K 
Default: 16K 
Maximum: 64K 

No size limit 

Maximum free 
list size: 64K 

The program segment prefix (PSP) is a 256-byte area created by MS
DOS when the program is loaded. Among other things, it contains 
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Code segments 

The global data 

infonnation about command-line parameters used to invoke the 
program, the amount of available memory, and the DOS 
environment (a list of string variables used by DOS). 

In Turbo Pascal 3.0, the segment address of the PSP was the same 
as that of all the rest of the code. This is no longer the case. In 
Turbo Pascal versions 4.0 and later, the main program, t~e units it 
uses, and the run-time library all occupy different segments. 
Turbo Pascal therefore stores the segment address of the PSP in a 
predeclared global variable called PrefixSeg, so that you can gain 
access to PSP infonnation. 

Every Turbo Pascal program has at least two code segments: one 
for the code of the main program and one for the run-time library . 
In addition, each unit's code occupies a separate code segment. 
Since each code segment can be up to 64K in size, your program 
can occupy as much memory as you want (subject, of course, to 
what is available on the machine). Programmers who fonnerly 
used overlays to generate programs larger than 64K can now keep 
all the code in memory for faster execution. Viewed from Turbo 
Assembler, the code segment into which an assembly language 
module is linked has the name CODE, or CSEG. 

segment Turbo Pascal's global data segment follows the run-time library 
code segment. It contains up to 64K of initialized and uninitial
ized data: typed constants and global variables. As in Turbo Pascal 
3.0, typed constants are really not constants at all, but variables 
that start with a pre-initialized value when the program is loaded. 
But unlike Turbo Pascal 3.0, Turbo Pascal 4.0 does not place typed 
constants in the code segment. Instead, Turbo Pascal 4.0 places 
typed constants in the global data segment, where it can access 
them even more quickly than Turbo 3.0 could. The global data 
segment has the name DATA, or DSEG, when it's referenced from 
a Turbo Assembler module. 

The stack 
In Turbo Pascal 4.0 and later, the global data segment is above the 
stack. Note that this arrangement is different from the one used in 
Turbo Pascal 3.0. The stack and heap do not grow toward each 
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The heap 

other. Instead, a fixed amount of memory is alloca ted for the 
stack. The default size, 16K, is more than enough for the vast 
majority of programs; however, you can specify a stack size as 
small as 1K (for short programs) or as large as 64K (for programs 
with a lot of recursion). Stack and heap sizes can be selected with 
the $m compiler directive. 

As in most 80x86 programs, the stack pointer starts at the top of 
the stack segment and grows downward. Whenever a procedure 
or function is called, Turbo Pascal normally checks to make sure 
that the stack is not exhausted. This check can be turned off with 
the {$s-} compiler directive. 

At the top of the Turbo Pascal memory map is the heap. By 
default, the heap takes up all memory not allocated for the code, 
data, and stack segments, but the $m directive can be used to limit 
the maximum size of the heap. (It can also be used to prevent the 
program from running if a minimum amount of heap space is not 
available.) 

Storage is allocated dynamically on the heap, beginning from the 
bottom, each time you do a NewO or GetMemO. Space is freed 
when you do a Dispose, Release, or FreeMem. When Dispose and 
FreeMem are used, Turbo Pascal 4.0 keeps track of free areas in the 
middle of the heap using a data structure called a free list. The free 
list, which can be up to 64K in size, grows downward from the 
very top of the heap area. 

Register use in Turbo Pascal 

318 

Like Turbo Pascal 3.0, Turbo Pascal 4.0 imposes a minimum of 
restrictions on register use. When a call is made to a function or 
procedure, the values of only three registers must be preserved: 
stack segment (S5), data segment (DS), and base pointer (BP). DS 
points to the global data segment (called DATA), and SS points to 
the stack segment. BP is used by each procedure or function to 
reference its activation record-the stack space it uses for 
parameters, local variables, and temporary storage. All sub
programs must also adjust the stack pointer (SP) before exiting, so 
that the parameters no longer remain on the stack. 
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Near or for? 

Any subprogram can be 
forced to be for by the {Sf+J 

compiler directive. 

Because a Turbo Pascal program contains multiple code segments, 
it uses a mixture of near and far calls to access procedures and 
functions. What's the difference? Well, a near call can only be used 
to access a subprogram that resides in the same code segment 
where the call. is made, while a far call can access a subprogram 
anywhere in memory. This flexibility incurs a small penalty, 
however: A far call takes a bit more time and space than a near 
call. 

Each subprogram in your Turbo Pascal program must be written 
(either by the compiler or by you) to be called in only one of these 
two ways. Which should you choose? Subprograms declared in 
the Interface section of a unit must always be far so that they can 
be called from other units. But subprograms declared in the main 
program, or declared only in the Implementation section of a unit, 
are usually near. 

When you write assembly language routines to interface with 
Turbo Pascal, you must check to make sure that your routine has 
the correct "distance." Turbo Pascal does not report an error if 
you declare a PROC as near in assembly language when the 
corresponding external procedure declaration is positioned in 
such a way that it needs to be far. 

Sharing information with Turbo Pascal 

The $1 compiler 
directive and 

external 
subprograms 

The two keys to using Turbo Assembler with Turbo Pascal are the 
{$l} compiler directive and the external subprogram declaration. 
The directive {$l MYFILE.OBJ} causes Turbo Pascal to look for 
MYFILE.OBJ, a file in standard MS-DOS linkable object format, and 
link it into your Turbo Pascal program. If the file name given in 
the {$l} directive does not have an extension, .OBI is assumed. 

Each Turbo Assembler procedure or function that you want to be 
visible within the Turbo Pascal program must be declared as a 
PUBLIC symbol, and must have a corresponding external 
declaration within that program. The syntax of an external 
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procedure or function declaration in Turbo Pascal is very similar 
to that of a forward declaration: 

procedure AsmProc(a : Integer; b : Real); eztetnal; 

function AsmFunc(c : Word; d : Byte); ezteInll; 

These declarations might correspond to the following declarations 
within your Turbo Assembler program: 

CODE SEGMENT BYTE PUBLIC 
AsmProc PROC NEAR 

PUBLIC AsmProc 

AsmProc ENDP 

AsmFunc PROC FAR 
PUBLIC Bar 

AsmFunc ENDP 
CODE ENDS 

A Turbo Pascal external procedure declaration must be at the 
outermost level of the program or unit; that is, it may not be 
nested within another procedure declaration. An attempt to 
declare an external procedure at any other level will cause a 
compile-time error. 

1111" Turbo Pascal does not check to make sure that PROCs declared 
with the near and far attributes correspond to near and far 
subprograms in your Turbo Pascal program. In fact, it does not 
even check to see whether the public labels AsmProc and AsmFunc 
are the names of PROCs. It is up to you to make sure that the 
assembly language and Pascal declarations are consistent. 

The PUBLIC 
directive Only labels that are declared PUBLIC in an assembly language 

module are visible to Turbo Pascal. Labels are the only objects 
that can be exported from assembly language to Turbo Pascal. 
Further, every label that is made PUBLIC must have a 
corresponding procedure or function declaration in the Turbo 
Pascal program, or the compiler will report an error. A public 
label need not be part of a PROC declaration. As far as Turbo 
Pascal is concerned, 

AsmLabel PROC FAR 
PUBLIC Bar 
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The EXTRN 
directive 

This Includes variables 
declared after the {$I} 

complier directive and the 
extemal declarat/on(s) 

associated with the module. 

and 

AsmLabel: 
PUBLIC Bar 

are equivalent. 

A Turbo Assembler module can access any Turbo Pascal 
procedure, function, variable, or typed constant that is declared at 
the outermost level of the program or unit to which it is linked. 
Turbo Pascal labels and ordinary constants are not visible to the 
assembly language. 

Suppose your Turbo Pascal program declares the following global 
variables: 

var 
a : Byte; 
b : Word; 
c Shortint; 
d : Integer; 
e : Real; 
f : Single; 
g : Double; 
h : Extended; 
i : Comp; 

: Pointer; 

You can access any of these variables inside your assembly 
language program with EXTRN declarations, as follows: 

EXTRN A : BYTE ;1 byte 
EXTRN B : WORD ;2 bytes 
EXTRN C : BYTE ;Assembly language treats signed & unsigned alike 
EXTRN D : WORD ;Ditto 
EXTRN E : FWORD ;6-byte software real 
EXTRN F : DWORD ;4-byte IEEE floating point 
EXTRN G : QWORD ;8-byte IEEE double-precision floating point 
EXTRN H : TBYTE ;10-byte IEEE temporary floating point 
EXTRN I : QWORD ;8087 8-byte signed integer 
EXTRN J : DWORD ;Turbo Pascal pointer 

You can access Turbo Pascal procedures and functions-including 
library routines-in a similar manner. Suppose you have a Turbo 
Pascal unit that looks like this: 

unit Sample; 
{ Sample unit that defines several pascal procedures that are 
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called from an assembly language procedure. 

interface 

procedure TestSample; 

procedure PublicProc; {Must be far since it's visible outside I 

ilIpleaentation 

var 
A : word; 

procedure AsmProc; exte~l; 
{$L ASMPROC.OBJI 

procedure PublicProc; 
begin ( PublicProc I 

Writeln('In PublicProc'); 
end; {PublicProc I 

procedure NearProc; { Must be near 
begin ( NearProc I 

Writeln('In NearProc'); 
end; {NearProc I 

{$F+I 
procedure FarProc; { Must be far due to compiler directive 

begin ( FarProc I 
Writeln('In FarProc'); 

end; {FarProc I 

{$F-I 

procedure TestSample; 
begin { TestSample } 

Writeln('In TestSample'); 
A := 10; 
Writeln('Value of A before ASMPROC = , ,A); 
AsmProc; 
Writeln('Value of A after ASMPROC = , ,A); 

end { TestSample I; 

end. 

The procedure AsmProc can call procedures PublicProc, NearProc, 
or FarProc by using EXTRN directives as follows: 

DATA SEGMENT WORD PUBLIC 
ASSUME DS:DATA 
EXTRN A:WORD 

DATA ENDS 

CODE SEGMENT BYTE PUBLIC 
ASSUME CS:CODE 

;variable from the unit 

EXTRN PublicProc: FAR ;far procedure 
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Restrictions on using 
EXTRN objects 

; (exported by the unit) 
EXTRN NearProc: NEAR ;near procedure (local to unit) 
EXTRN FarProc : FAR ifar procedure 

AsmProc PROC NEAR 
PUBLIC AsmProc 

AsmProc 
CODE 

call FAR PTR PublicProc 
call NearProc 
call 
mov 
sub 
mov 
ret 
ENDP 
ENDS 
END 

FAR PTR FarProc 
cx,ds:A 
cx,2 
ds:A,cx 

; (local but forced far) 

;pull in var A from the unit 
;do something to change it 
;store it back 

The main program that tests this Pascal unit and assembler code 
follows: 

proqraa TSample; u... Sample; 
begin 

TestSample; 
end. 

To build the sample program with the command -line compiler 
and the assembler, use the following batch file commands: 

TASM ASMPROC 
TPC /B TSAMPLE 
TSAMPLE 

Since an external subprogram must be declared at the outermost 
procedural level of your Turbo Pascal program, you can't use 
EXTRN declarations to access objects that are local to a procedure 
or function. However, your Turbo Assembler subprogram can 
receive these objects as value or var parameters when it's called 
from Turbo Pascal. 

Turbo Pascal's qualified identifier syntax, which uses a unit name 
followed by a period to access an object in a specific unit, is not 
compatible with Turbo Assembler's syntax rules and will 
therefore be rejected. The declaration 

EXTRN SYSTEM.Assign : FAR 

produces a Turbo Assembler error message. 
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Using segment 
fixups 

There are two other minor restrictions on the use of EXTRN 
objects with Turbo Pascal. The first is that references to 
procedures and functions cannot use address arithmetic. Thus, if 
you declare 

EXTRN PublicProc : FAR 

you can't write a statement such as 

call 'PublicProc + 42 

The second restriction is that the Turbo Pascal linker will not 
recognize operators that chop words into bytes, so you cannot 
apply these operators to EXTRN objects. For instance, if you 
declare 

EXTRN i : WORD 

you can't use the expressions LOW i or HIGH i in your Turbo 
Assembler module. 

Turbo Pascal generates .EXE files, which can be loaded at any 
available address in your PC's memory. Since the program cannot 
know in advance where a given segment of your program will be 
loaded, the linker tells the DOS .EXE loader to fix up all references 
to segments in your program when it is loaded. After the fixups 
are done, all references to segments (such as CODE and DATA) 
contain the correct values. 

Your Turbo Assembler code can use this facility to obtain the 
segment addresses of objects at run time. For instance, suppose 
your program needs to change the value of DS, but you don't 
want to spend the cycles required to save the original contents on 
the stack or move them to a temporary location. Instead, you can 
use the Turbo Assembler SEG operator as follows: 

mov ax,SEG DATA iget actual address of Turbo Pascal's global DS 
mov ds,ax iput it in DS for Turbo Pascal to use 

When your Turbo program is loaded, DOS will plug the correct 
value for SEG DATA right into the immediate operand field of the 
MOV instruction. This is the fastest way to reload the segment 
register. 
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Dead code 
elimination 

This technique is also necessary to allow interrupt service routines 
to save information in Turbo Pascal's global data segment. DS will 
not necessarily contain Turbo Pascal's DS at interrupt time, but 
the preceding sequence can be used to gain access to Turbo Pascal 
variables and typed constants. 

Turbo Pascal features dead code elimination, which means that it 
does not include code for routines that are never executed when it 
writes the final.EXE file. But, because it does not have complete 
information about the contents of your Turbo Assembler 
modules, Turbo Pascal can only perform limited optimization on 
them. 

Turbo Pascal will eliminate the code of an .OB} module if and only 
if no calls are made to any visible procedure or function in that 
module. Conversely, if any routine in the module is referenced, 
the entire module stays. 

1111" To make the most efficient use of Turbo's dead code elimination 
feature, it's a good idea to break up your assembly language into 
small modules with only a few routines each. Doing so will allow 
Turbo to "trim the fat" from your finished program, if it can. 

Turbo Pascal parameter-passing conventions 

Value parameters 

Turbo Pascal passes parameters using the CPU's stack (or, in the 
case of Single, Double, Extended, or Comp value parameters, the 
numeric processor's stack). Parameters are always evaluated and 
pushed on the stack in the order they appear in the declaration of 
the subprogram, from left to right. In this section, we'll explain 
how these parameters are represented. 

A value parameter is a parameter whose value cannot be changed 
by the subprogram to which it is passed. Unlike many compilers, 
Turbo Pascal does not blindly copy every value parameter onto 
the CPU stack; the method used depends on the type, as we 
explain in this and the ne~t few pages. 
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Scalar types Value parameters of all the scalar types (Boolean, Char, Shortint, 
Byte, Integer, Word, Longint, subrange types, and enumerated 
types) are passed as values on the CPU stack. If an object is 1 byte 
in size, it is pushed as a full 16-bit word; however, the most
significant byte of that word contains no useful information. (This 
byte cannot be relied on to be 0, as it could in Turbo Pascal 
versions 3.0 and earlier.) If the object is 2 bytes in size, it is simply 
pushed as is. If the object is 4 bytes long (a Longint), it is pushed 
as two 16-bit words. As is standard on the 8088 family of 
processors, the most-significant word is pushed first and occupies 
the higher address on the stack. 

Note that the Comp type, while it is an Integer type, is not 
considered to be a scalar type for the purposes of parameter
passing. Thus, in Turbo Pascal 4.0, value parameters of this type 
are passed on the 8087 stack, not the CPU stack. In Turbo Pascal 
5.0, values of the Comp type are passed on the main CPU stack. 

Reals Value parameters of the type Real (Turbo Pascal's 6-byte software 
floating-point type) are passed as 6 bytes on the stack. This is the 
only type larger than 4 bytes that is ever passed on the stack. 

Single, Double, 
Extended, and Comp: 

The 8087 types 

In Turbo Pascal 4.0, value parameters of the 8087 types are passed 
on the coprocessor stack, not the CPU stack. Since the 8087 stack 
is only eight levels deep, a Turbo Pascal 4.0 subprogram cannot 
have more than eight 8087-type value parameters. Al18087-type 
parameters must be popped from the numeric processor stack 
before the subprogram returns. 

Turbo Pascal 5.0 uses the same parameter-passing conventions for 
8087 values as Turbo C does: They are passed on the main CPU 
stack with the other parameters. 

Pointers Value parameters of all pointer types are pushed directly on the 
stack as far pointers-first a word containing the segment, then 
another containing the offset. The segment occupies the higher 
address, in accordance with Intel conventions. Your Turbo 
Assembler program can use the LOS or LES instruction to retrieve 
a pointer parameter. 
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Strings 

For more Information, refer to 
Chapter 13, "Overlays," In 

the Turbo Pascal Reference 
Guide (5.0). 

Records and arrays 

Sets 

For more information, refer to 
Chapter 13, "Overlays," in 

the Turbo Pascal Reference 
Guide (5.0). 

Variable 
parameters 

String parameters, regardless of size, are usually not pushed on 
the stack. Instead, Turbo Pascal pushes a far pointer to the string. 
It's the responsibility of the called subprogram not to change the 
string referenced by the pointer; the subprogram must make and 
work on a copy of the string, if necessary. 

The only exception to this rule is when a routine in overlaid unit 
A passes a string constant as a value parameter to a routine in 
overlaid unit B. In this context, an overlaid unit means any unit 
compiled with ($o+} (Overlays Allowed). In this case, temporary 
storage is reserved on the stack for the string constant before the 
call is made and the stack address is passed to the routine in unit 
B. 

Records and arrays that are exactly I, 2, or 4 bytes long are 
duplicated directly onto the stack when they are passed as value 
parameters. If an array or record object is any other size 
(including 3 bytes), a pointer to it is pushed instead. In the case of 
records and arrays that aren't 1,2, or 4 bytes long, the subpro
gram must make a local copy of the structure if it modifies it. 

Sets, like strings, are usually not pushed verbatim on the stack. 
Instead, a pointer to the set is pushed. The pointer received by the 
subprogram will point to a "normalized" 32 byte representation 
of the set. The first bit of the lowest byte of this set will always 
correspond to the element of the base type (or its parent type) 
with the ordinal value O. . 

The only exception to this rule is when a routine in overlaid unit 
A passes a set constant as a value parameter to a routine in 
overlaid unit B. In this context, an overlaid unit means any unit 
compiled with ($O+} (Overlays Allowed). In this case, temporary 
storage is reserved on the stack for the set constant before the call 
is made and the stack address is passed to the routine in unit B. 

All var parameters are passed exactly the same way: as far 
pointers to their actual locations in memory. 
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Stack 
maintenance 

If you use the .MODEL, PROC, 
and ARG directives, the 

assembler automatically 
adds the number of 

parameter bytes to be 
popped to all RET Instructions. 

Accessing 
oarameters 

When cdmputing parmater 
locations, take Into account 
any registers whose contents 

you might have pushed. 

Using BP to address the 
stack 

328 

Turbo Pascal expects that all parameters on the main CPU stack 
will be removed before a subprogram returns. 

There are two ways to adjust the stack. You can use the RETN 
instruction (where N is the number of bytes of parameters 
pushed), or you can save the return address in registers (or in 
memory) and pop the parameters off one by one. The popping 
technique is useful when you're optimizing for speed on the 8086 
and 8088 (the slowest processors in the family), where base-plus
offset addressing costs eight cycles (minimum) per access. It can 
also save space, since a POP instruction takes only a single byte. 

When your Turbo Assembler routine receives control, the top of 
the stack contains a return address (two or four words, depending 
on whether the routine is near or far) and, above it, any 
parameters being passed. 

There are three basic techniques for accessing the parameters 
passed to your Turbo Assembler routine by Turbo Pascal. You can 

• use the BP register to address the stack 
• use another base or index register to get the parameters 

• pop the return address, then pop the parameters 

The first and second techniques are somewhat complicated, and 
we cover them in the next two sections. The third technique 
involves popping the return address into a safe place and then 
popping the parameters into registers. This technique works best 
when your routine does not require any local variable space. 

The first (and most often used) technique for accessing the 
parameters passed from Turbo Pascal to Turbo Assembler is to 
use the BP register to address the stack, like this: 

CODE SEGMENT 
ASSUME cs:CODE 

MyProc PROC FAR 
PUBLIC MyProc 
EQU WORD PTR [bp+6] 
EQU WORD PTR [bp+8] 
push bp 

iprocedure MyProc(i,j : integer)i 

ij above saved BP & return address 
ii just above j 
iffiust preserve caller's BP 
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mov bp,sp 
mov ax,i 

imake BP point to top of stack 
iaddress i via BP 

In computing the stack offsets of parameters to be accessed in this 
way, remember to allow 2 bytes for the saved BP register. 

1111. Note the use of text equates for the parameters in this example. 
These help to make the code more mnemonic. They have only one 
minor drawback: Because only the eau directive can be used to 
do this kind of equate (not the = directive), you will not be able to 
redefine the symbols i and j again in the same Turbo Assembler 
source file. One way to get around this is to use more descriptive 
parameter names so that they do not repeat; another is to 
assemble each routine separately. 

The ARG directive 

When you access your parameters via the BP register, however, 
Turbo Assembler provides an alternative to calculating stack 
offsets and performing text equates-the ARG directive. Used 
inside a PROC, the ARG directive automatically determines the 
offsets of the parameters relative to BP. It also calculates the size 
of the parameter block for use in the RET instruction. Because the 
symbols created by the ARG directive are defined only within the 
surrounding PROC, you do not need unique parameter names for 
each procedure or function. 

Here's how the preceding example looks rewritten with the ARG 
directive: 

CODE SEGMENT 
ASSUME cs:CODE 

MyProc PROC FAR ;procedure MyProc(i,j : integer); external; 
PUBLIC MyProc 
ARG j : WORD, i: WORD = RetBytes 
push bp ;must preserve caller's BP 
mov bp,sp ;make BP point to the top of the stack 
mov ax,i iaddress i via BP 

Turbo Assembler's ARG directive creates local symbols for the 
parameters i and j. The line 

ARG j: WORD, i : WORD = RetBytes 

automatically equates the symbol i to [WORD PTR BP+6], the 
symbol j to [WORD PTR BP+8], and the symbol RetBytes to the 
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number 4 (the size in bytes of the parameter block) for the 
duration of the procedure. The values take into account both the 
pushed BP and the size of the return address; if MyProc were a 
NEAR PROC, i would have been equated to [BP+4], j to [BP+6], 
and RetBytes would still have contained the value 4 (so that, in 
either case, MyProc could end with the instruction RET RetBytes). 

1111" When you use the ARG directive, remember to list the parameters 
in reverse order. You would place the last parameter in the Turbo 
Pascal procedure (or function) header first in the ARG directive, 
and vice versa. 

See Chapter 3 In the 
Reference Guide for 

complete Information on the 
ARG directive. 

.MODEL and Turbo 
Pascal 

Another precaution is in order when you use the ARG directive 
with Turbo Pascal. Unlike some other languages, Turbo Pascal 
always pushes a byte-sized value parameter as a full 16-bit 
word-and you are responsible for telling Turbo Assembler about 
the extra byte. For instance, suppose you wrote a function whose 
Pascal declaration looked like this: 

function MyProc(i,j : Char) : string; exter.oali 

The ARG directive for this procedure would have to look 
something like this: 

ARG j : BYTE: 2, i : BYTE : 2 = RetBytes RETURNS result : DWORD 

The: 2 after each argument is necessary to tell Turbo Assembler 
that each character is pushed as an array of 2 bytes (where, in this 
case, the upper byte of each pair holds no useful information). 

In a function that returns a string (like the previous one), the 
RETURNS option in the ARG directive lets you define a variable 
that equates to a place on the stack that points to the temporary 
function result (discussed shortly). The variable in the RETURNS 
portion of ARG doesn't affect the size (in bytes) of the parameter 
block. 

The .MODEL directive with a parameter of TP ASCAL sets up 
simplified segmentation, memory model, and language support. 
Previously, you've seen how to set up an assembler program for 
Pascal procedures and functions. Here's the same example 
recoded to use the .MODEL and PROC directives: 

.MODEL TPASCAL 
• CODE 

MyProc PROC FAR i:BYTE,j:BYTE RETURNS result:DWORD 
PUBLIC MyProc 
mov ax,i 
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ret 

Notice that now you don't specify the parameters in reverse order 
and a lot of other statements are not required. Using TPASCAL 
with the .MODEL directive sets up Pascal calling conventions, 
defines the segment names, does the PUSH BP and MOV BP,SP, 
and also sets up the return with POP BP and RETN (where N is 
the number of parameter bytes). 

USing another base or The second way to access parameters is to use another base or 
index register index register-BX, 51, or Ol-to get them from the stack. 

Remember, however, that the default segment for these registers 
is OS, not 55; you will have to use a segment override or change a 
segment register to use them. 

Here's how to use BX to get at your parameters: 

CODE SEGMENT 
ASSUME cs:CODE 

MyProc PROC FAR iprocedure MyProc(i,j : integer)i 
PUBLIC MyProc 
EQU WORD PTR ss:[bx+4] ;j above return address 
EQU WORD PTR ss: [bx+6] ;i just above j 
mov bx,sp ;make BX point to top of stack 
mov ax,i ;address i via BX 

In routines where a small number of references are made to 
parameters, this technique saves time and space. Why? Because 
BX, unlike BP, need not be restored at the end of the routine. 

Function results in Turbo Pascal 

Turbo Pascal functions return their results in different ways 
depending on the result type. 

Scalar function results Function results of scalar types are returned in CPU registers. 
Values of 1 byte are returned in AL, 2-byte values in AX, and 
4-byte values in OX:AX (most-significant word in OX). 
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Real function results 

8087 function results 

String function results 
Don't remove the function 

result pointer from the stack: 
Turbo Pascal expects it to be 

available after the call. 

Function results of Turbo Pascal's 6-byte software real type are 
returned in three CPU registers. The most-significant word goes 
in DX, the middle word in BX, and the least-significant word in 
AX. 

Function results of 8087 types are returned in the 8087's "top-of
stack" register, ST(O) (or just ST). 

Function results of a string type are returned in a temporary area 
allocated by Turbo Pascal before the call. A far pointer to this area 
is pushed on the stack before the first parameter is pushed. Note 
that this pointer is not part of the parameter list. 

Pointer function results 

Pointer function results are returned in DX:AX (segment:offset). 

Allocating space for local data 

Allocating private 
static storage 
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Your Turbo Assembler routines can allocate space for their own 
variables-both static (remaining between calls) and volatile 
(disappearing after a call). We'll discuss how to do both in the 
next two sections. 

Turbo Pascal allows your Turbo Assembler program to reserve 
space for static variables in the global data segment (DATA, or 
DSEG). To allocate the space, simply use directives such as DB, 
DW, and so on, like this: 

DATA SEGMENT PUBLIC 
MyInt DW? 
MyByte DB? 

DATA ENDS 

iReserve a word 
iReserve a byte 

Two important restrictions apply to variables allocated by Turbo 
Assembler in the global data segment. First, these variables are 
private-they cannot be made visible to your Turbo Pascal 
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Allocating volatile 
storage 

The LOCAL directive Is used to 
create symbols and allocate 

space for local variables. 

program (though you can pass pointers to them). Second, they 
can't be pre-initialized, as typed constants are. The statement 

MyInt DW 42 ithis will NOT initialize Mylnt to 42 

will not cause an error when the module is linked into your Turbo 
program, but Mylnt will not actually start with the value 42 when 
the program is run. 

You can get around these restrictions by declaring Turbo Pascal 
variables or typed constants and using the EXTRN directive to 
make them visible to Turbo Assembler. 

Your Turbo Assembler routines can also allocate volatile storage 
(local variables) on the stack for the duration of each call. This 
storage must be reclaimed and the BP register restored before the 
routine returns. In the following example, the procedure MyProc 
reserves space for two integer variables, a and b: 

CODE SEGMENT 
ASSUME cs:CODE 

MyProc PROC FAR iprocedure MyProc(i Integer)i 
PUBLIC MyProc 
LOCAL a : WORD, b : WORD = LocalSpace 

ia at [bp-2], b at [bp-4] 
i EQU WORD PTR [bp+6] iparameter i above saved BP 

push bp 
mov bp,sp 
sub sp,LocalSpace 
mov ax,42 
mov a,ax 
xor ax,ax 
mov b,ax 

mov sp,bp 
pop bp 
ret 2 

MyProc ENDP 
CODE ENDS 

END 

The statement 

i and return address 
imust preserve caller's BP 
imake BP point to top of stack 
imake room for the two words 
iload A's initial value into AX 
iand thence into A 
iclear AX 
iand initialize B to 0 
ido whatever needs to be done 
ithis restores the original SP 
ithis restores the original BP 
ithis pops the word parameter 

LOCAL a : WORD, b : WORD = LocalSpace 
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equates the symbol a to [BP-2], the symbol b to [BP-4], and the 
symbol LocalSpace to the number 4 (the size of the local variable 
area) for the duration of the procedure. There is no corresponding 
statement to create symbols that reference parameters, so you 
must still equate i to [BP+6]. 

A more clever way to initialize local variables is to push their 
values instead of decrementing SP. Thus, you might replace the 
SUB SP, LocalSpace with 

mov ax,42 iget the initial value for A 
push ax iPut it in A 
xor ax,ax izero AX 
push ax iand move the zero into B 

1111" If you use this method, be sure to keep careful track of the stack! 
The symbols a and b should not be referenced before the pushes 
are performed. 

Other optimizations include using the PUSH CONST instructions 
to initialize local variables (available on the 80186, 80286, and 
80386), or saving BP in a register instead of pushing it (if there is a 
register to spare). 

Assembly language routines for Turbo Pascal 

General-purpose 
hex conversion 

routine 

334 

In this section, we've provided some examples of assembly 
language routines that you can call from a Turbo Pascal program. 

The bytes at num are converted to a string of hex digits of length 
(byteCount * 2). Since each byte produces two characters, the 
maximum value of byteCount is 127 (not checked). For speed, we 
use an add-daa-adc-daa sequence to convert each nibble to a hex 
digit (1 nibble equals.4 bits). 

HexStr is written to be called with a far call. This means that it 
should be declared either in the Interface section of a Turbo Pascal 
unit or with the $/+ compiler directive active. 

CODE SEGMENT 
ASSUME cs:CODE,ds:NOTHING 

i Parameters (+2 because of push bp) 

byteCount EQU BYTE PTR ss:[bp+6] 
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num EQU DWORD PTR ss:[bp+8] 

; Function result address (+2 because of push bpI 

resultPtr EQU DWORD PTR ss:[bp+l2] 

HexStr 

HexLoop: 

HexStr 
CODE 

PROC FAR 
PUBLIC HexStr 

push bp 
mov bp,sp 
les di,resultPtr 
mov dx,ds 
Ids si,num 
mov al,byteCount 
xor ah,ah 
mov cx,ax 
add si,ax 
dec si 
shl ax,l 
cld 
stosb 

std 
lodsb 
mov ah,al 
shr al,l 
shr al,l 
shr al,l 
shr al,l 
add al,90h 
daa 
adc al,40h 
daa 
cld 
stosb 
mov al,ah 
and al,OFh 
add al,90h 
daa 
adc al,40h 
daa 
stosb 
loop HexLoop 
mov ds,dx 
pop bp 
ret 6 
ENDP 
ENDS 
END 
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;get pointer into stack 
;get address of function result 
;save Turbo's DS in DX 
;get number address 
;how many bytes? 
imake a word 
ikeep track of bytes in CX 
;start from MS byte of number 

;how many digits? (2/byte) 
;store t digits (going forward) 
;in destination string's length byte 

;scan number from MSB to LSB 
;get next byte 
;save it 
;extract high nibble 

ispecial hex conversion sequence 
;using ADDs and DAA's 

;nibble now converted to ASCII 
;store ASCII going up 

;repeat conversion for low nibble 

;keep going until done 
;restore Turbo's DS 

iparameters take 6 bytes 
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The sample Pascal program that uses HexSfr follows: 

prograa HexTest; 
var 

num : Word; 

{$F+} 

function HexStr (var num; byteCount Byte) .tr1ng; exter.nal; 

{$L HEXSTR.OBJ} 

{$F-} 
be¢n 

num := $face; 
Writeln('The Converted Hex String is 

"' , HexStr (num, sizeof (num) ) , "" ) ; 
end. 

Use the following batch file commands to build and run the 
example Pascal and assembly program: 

TASM HEXSTR 
TPC HEXTEST 
HEXTEST 

If you use the .MODEL directive, the program HexStr could be 
written like this: 

.MODEL TPASCAL 
• CODE 

HexStr PROC FAR num:DWORD,byteCount:BYTE RETURNS resultPtr:DWORD 
PUBLIC HexStr 

HexLoop: 

les di,resultPtr 
mov dx,ds 
Ids si,num 
mov al,byteCount 
xor ah,ah 
mov cx,ax 
add si,ax 
dec si 
shl ax,l 
cld 
stosb 

std 
lodsb 
mov ah,al 
shr al,l 
shr al,l 
shr al,l 
shr al,l 

;get address of function result 
;save Turbo's DS in DX 
;get number address 
;how many bytes? 
;make a word 
;keep track of bytes in CX 
;start from MS byte of number 

;how many digits? (2/byte) 
;store # digits (going forward) 
;in destination string's length byte 

;scan number from MSB to LSB 
; get next byte 
;save it 
;extract high nibble 
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Exchanging two 
variables 

add al,90h 
daa 
adc al,40h 
daa 
cld 
stosb 
mov al,ah 
and al,OFh 
add al,90h 
daa 
adc al,40h 
daa 
stosb 
loop HexLoop 
mov ds,dx 
ret 

HexStr ENDP 
CODE ENDS 

END 

ispecial hex conversion sequence 
iusing ADDs and DAA's 

inibble now converted to ASCII 
istore ASCII going up 

irepeat conversion for low nibble 

ikeep going until done 
irestore Turbo's DS 

You can use the same sample Pascal program and just assemble 
the alternative HexStr, recompiling the sample program with the 
same batch file commands. 

With this procedure, you can exchange two variables of size count. 
If count is 0, the processor will attempt to exchange 64K. 

CODE SEGMENT 
ASSUME cs:CODE,ds:NOTHING 

i Parameters (note that offset are +2 because of push bp) 

varl 
var2 
count 

Exchange 

carry) 

EQU 
EQU 
EQU 

DWORD PTR ss:[bp+12] 
DWORD PTR ss:[bp+8] 
WORD PTR ss:[bp+6] 

PROC FAR 
PUBLIC Exchange 
cld 
mov dx,ds 
push bp 
mov bp,sp 
Ids si,varl 
les di,var2 
mov cx,count 
shr cx,l 

;exchange goes upward 
isave DS 

i9~t stack base 
iget first address 
iget second address 
iget number of bytes to move 
iget word count (low bit -> 
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jnc ExchangeWords ;if no odd byte, enter loop 
mov aI, es: [di] ;read odd byte from var2 
movsb ;move a byte from varl to var2 
mov [si-l],al ;write var2 byte to varl 
jz Finis ;done if only 1 byte to exchange 

ExchangeWords: 
mov bx,-2 ;BX is a handy place to keep -2 

ExchangeLoop: 
mov ax,es: [di] iread a word from var2 
movsw ;do a move from varl to var2 
mov [bx] lsi] ,ax ;write var2 word to varl 
loop ExchangeLoop ;repeat "count div 2" times 

Finis: 
mov ds,dx ;get back Turbo's DS 
pop bp 
ret 10 

Exchange ENDP 
CODE ENDS 

END 

The sample Pascal program that uses Exchange follows: 

program TextExchange; 

type 
EmployeeRecord = record 

Name 
Address 
City 
State 
Zip 

end; 
var 

.trlng[30] ; 

.trlng[ 30]; 

.tring[15] ; 

.tring[2] ; 

.tring[lO] ; 

OldEmployee, NewEmployee EmployeeRecord; 

{$F+} 

procedure Exchange(var Varl,Var2; Count Word); external; 
{$L XCHANGE.OBJ} 
{$F-} 
begin 

with OldEmployee do 
begin 

Name := 'John Smith'; 
Address := '123 F Street'; 
City := 'Scotts Valley': 
State := 'CA'; 
Zip := '90000-0000'; 

end; 
with NewEmployee do 
begin 
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Name := 'Mary Jones'i 
Address := '9471 41st Avenue'i 
City := 'New York'; 
State := 'NY'; 
Zip := '10000-1111'i 

endi 
Writeln('Before: ' ,OldEmployee.Name,' , ,NewEmployee.Name); 
Exchange(OldEmployee,NewEmployee,sizeof(OldEmployee)); 
Writeln('After: ',OldEmployee.Name,' , ,NewEmployee.Name)i 
Exchange(OldEmployee,NewEmployee,sizeof(OldEmployee))i 
Writeln('After: ' ,OldEmployee.Name,' , ,NewEmployee.Name)i 

end. 

To build and run the example Pascal and assembler program, use 
the following batch file commands: 

TASM XCHANGE 
TPC XCHANGE 
XCHANGE 

Using the .MODEL directive, the Exchange assembly language 
program would be written as 

.MODEL TPASCAL 

.CODE 
Exchange PROC FAR var1:DWORD,var2:DWORD,count:WORD 

PUBLIC Exchangei 
cld 
mov 
Ids 
les 
mov 
shr 
jnc 
mov 
movsb 
mov 
jz 

ExchangeWords: 
mov 

ExchangeLoop: 
mov 
movsw 

iexchange goes upward 
dx,ds isave DS 
si,var1 iget first address 
di,var2 iget second address 
cx,count iget number of bytes to move 
cx,l iget word count (low bit -) carry) 
ExchangeWords iif no odd byte, enter loop 
al,es:[di] ;read odd byte from var2 

[si-1],al 
Finis 

bx,-2 

ax,es: [di] 

;move a byte from var1 to var2 
iwrite var2 byte to var1 
idone if only 1 byte to exchange 

iBX is a handy place to keep -2 

iread a word from var2 
ido a move from var1 to var2 

mov [bx] [si],ax iwrite var2 word to var1 
loop ExchangeLoop irepeat "count div 2" times 

Finis: 
mov 
ret 

Exchange ENDP 
CODE ENDS 

ds,dx 
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iget back Turbo's DS 
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Scanning the 
DOS environment 

340 

END 

You can use the same sample Pascal program and just assemble 
the alternative Exchange, recompiling the sample program with 
the same batch file commands. 

With the EnvString function, you can scan the DOS environment 
for a string of the form s=SOMESTRING and return 
SOMESTRING if it is found. 

DATA SEGMENT PUBLIC 
EXTRN prefixSeg WORD igives location of PSP 

DATA ENDS 
CODE SEGMENT PUBLIC' 

ASSUME cs:CODE,ds:DATA 

EnvString PROC FAR 
PUBLIC EnvString 
push bp 
cld ;work upward 
mov es, [prefixSeg] ilook at PSP 
mov es,es: [2Ch] iES:DI points at environment 
xor di,di ;which is paragraph-aligned 
mov bp,sp ;find the parameter address 
Ids si,ss: [bp+6] ;which is right above the 

; return address 
ASSUME ds:NOTHING 
lodsb ;look at length 
or al,al ; is it zero? 
jz RetNul ;if so, return 
mov ah,al ;otherwise, save in AH 
mov dx,si ;DS:DX contains pointer 

; to first parm char 
xor al,al ;make a zero 

Compare: 
mov ch,al ;we want ch=O for next count, 

; if any 
mov si,dx ;get back pointer to 

; string sought 
mov cl,ah ;get length 
mov si,dx ;get pointer to string sought 
repe cmpsb ;compare bytes 
jne Skip ;if fails, try next string 
cmp byte ptr es:[di],'=' 

;compare succeeded; is next 
; char '='? 

jne NoEqual ; if not, still no match 
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Found: 
mov aX,es imake DS:SI point to string 

i we found 
mov ds,ax 
mov si,pi 
inc si iget past the equal (=) sign 
les bx, ss: [bp+10] iget address of function result 
mov di,bx iPut it in ES:DI 
inc di iget past the length byte 
mov cl,255 iset up a maximum length 

CopyLoop: 
lodsb iget a byte 
or al,al izero test 
jz Done iif zero, we're done 
stosb iPut it in the result 
loop CopyLoop imove up to 255 bytes 

Done: not cl iwe've been decrementing CL 
i from 255 during save 

mov es: [bx],cl isave the length 
mov ax,SEG DATA 
mov ds,ax irestore DS 
ASSUME ds:DATA 
pop bp 
ret 4 
ASSUME ds:NOTHING 

Skip: 
dec di icheck for null from this 

i character on 
NoEqual: 

mov cx, 7FFFh isearch a long way if necessary 
sub cx,di ienvironment never >32K 
jbe RetNul iif we're past end, leave 
repne scasb ilook for the next null 
jcxz RetNul iexit if not found 
cmp byte ptr es:[di],al isecond null in a row? 
jne Compare iif not, try again 

RetNul: 
les di,ss: [bp+l0] iget address of result 
stosb istore a zero there 
mov ax,SEG DATA 
mov ds,ax irestore DS 
ASSUME ds:DATA 
pop bp 
ret 4 

EnvString ENDP 
CODE ENDS 

END 

The sample Pascal program that uses EnvString follows: 
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prograa EnvTest; 
( program looks for environment strings 

var 
EnvVariable : stringi 

EnvValue : stringi 

($F+) 

function EnvString{s:.t~) .tringi exteInal; 
($L ENVSTR.OBJ) 
($F-) 
begin 

EnvVariable := 'PROMPT'i 
EnvValue := EnvString(EnvVariable)i 
if EnvValue=', then EnvValue := '*** not found ***'i 
Writeln('Environment Variable:' ,EnvVariable, 'Value:' ,EnvValue); 

end. 

To build and run the example Pascal and assembler program, use 
the following batch file commands: 

TASM ENVSTR 
TPC ENVTEST 
ENVTEST 

If you used the .MODEL directive, the EnvString assembly 
language program would be written like this: 

.MODEL TPASCAL 
• DATA 
EXTRN prefixSeg : WORD ;gives location of PSP 
.CODE 

EnvString PROC FAR EnvVar:DWORD RETURNS EnvVal:DWORD 
PUBLIC EnvString 
cld 
mov 
mov 
xor 
mov 
Ids 

ASSUME 
lodsb 
or 
jz 
mov 
mov 

xor 
Compare: 

es, [prefixSeg] 
es, es: [2Ch] 
di,di 

;work upward 
ilook at PSP 
;ES:DI points at environment 
;which is paragraph-aligned 
;find the parameter address 
;which is right above the 

bp,sp 
si,EnvVar 

ds:NOTHING 

al,al 
RetNul 
ah,al 
dx,si 

al,al 

; return address 

ilook at length 
iis it zero? 
;if so, return 
iotherwise, save in AH 
iDS:DX contains pointer to 
i first parm character 
imake a zero 
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Found: 

CopyLoop: 

Done: 

Skip: 

NoEqual: 

RetNul: 

mov ch,al iwe want ch=O for next count, if any 
mov si,dx iget back pointer to string sought 
mov cl,ah iget length 
mov si,dx iget pointer to string sought 
repe cmpsb icompare bytes 
jne Skip iif compare fails, try next string 
cmp byte ptr es:[di),'=' 

jne 

mov 
mov 
mov 
inc 
les 
mov 
inc 
mov 

lodsb 
or 
jz 
stosb 
loop 
not 

mov 
mov 

NoEqual 

aX,es 
ds,ax 
si,di 
si 
bx,EnvVal 
di,bx 
di 
cl,255 

al,al 
Done 

Copy Loop 
cl 

es:[bx),cl 
ax,SEG DATA 

mov ds,ax 
ASSUME ds:DATA 
ret 
ASSUME ds:NOTHING 

dec 

mov 
sub 
jbe 
repne 
jcxz 

di 

cx,7FFFh 
cx,di 
RetNul 
scasb 
RetNul 

icompare succeededi is next char '=' 
iif not, still no match 

imake DS:SI point to string we found 

iget past the equal (=) sign 
iget address of function result 
iput it in ES:DI 
iget past the length byte 
iset up a maximum length 

iget a byte 
izero test 
iif zero, we're done 
iput it in the result 
imove up to 255 bytes 
;we've been decrementing CL from 

255 during save 
isave the length 

irestore DS 

;check for null from this char on 

isearch a long way if necessary 
ienvironment never >32K 
;if we're past end, leave 
;look for the next null 

iexit if not found 
cmp byte ptr es: [di),al ;second null in a row? 
jne Compare iif not, try again 

les di,EnvVal 
stosb 
mov ax,SEG DATA 
mov . ds,ax 
ASSUME ds:DATA 
ret 

;get address of result 
istore a zero there 

irestore DS 
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E~tring ENDP 
CODE ENDS 

END 

You can use the same sample Pascal program and just assemble 
the alternative EnvString, recompiling the sample program with 
the same batch file commands. 
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c H A p T E R 

9 

Advanced programming in Turbo 
Assembler 

Over the course of the beginning chapters of this manual, we've 
covered the essentials of assembler programming, and then some. 
Now we're ready to get into several advanced features of Turbo 
Assembler. 

In this chapter, we'll explore several aspects of assembler 
programming that we've only touched on so far, such as segment 
override prefixes, macros, the segment directives, and writing 
programs that contain multiple code and data segments. We'll 
also look at some useful features that you haven't seen before, 
including local labels, automatic jump-sizing, forward references, 
and the data structure directives. 

Segment override prefixes 

Most of the time, memory operands specify memory locations in 
the segment pointed to by the DS segment register. For example, 
the instruction sequence 

mov bx,lOh 
mov si,S 
mov ax, [bx+si+l] 
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loads the word stored at offset 16h in the segment pointed to by 
DS into AX. Another way to put this is to say that AX is loaded 
from the memory address DS:0016. 

One exception to the rule of loading from the segment pointed to 
by DS is that the STOS and MOVS string instructions write to the 
segment pointed to by ES, and the SCAS and CMPS string 
instructions take source operands from the segment pointed to by 
E5. (One of the source operands to CMPS is in the data segment, 
and one is in the extra segment.> 

Another exception is that any memory operand involving BP 
accesses the segment pointed to by SS. For example, 

mov bp,lOOOh 
mov aI, [bp+6] . . , 

loads AL with the contents of memory location S5:1006. 

Suppose, however, you'd like to access a location in the CS 
segment as a memory operand; that's useful for jump tables, 
especially in multisegment programs. Or suppose you'd like to 
access a location on the stack with BX, or a location in DS with BP, 
or a location in ES with a nonstring instruction. Can you do that? 

The answer is yes. You can use segment override prefixes to make 
many instructions access the segment of your choice. For 
example, 

mov bx,lOOh 
mov cl,ss:[bx+lOh] 

loads CL with the contents of offset 110h in the stack segment, 
and 

mov bp,200h 
mov si,cs:[bp+l] 

loads S1 with the contents of offset 201h in the code segment. 

Basically, all you need to do to cause a given instruction to access 
a segment other than its default segment is put a segment 
override prefix-CS:, DS:, ES:, or SS:-in front of the memory 
operand for that instru~tion. 
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An alternate form 

Incidentally, segment override prefixes aren't called "prefixes" 
because they prefix memory operands in the instruction line. 
Rather, a segment override prefix is actually an instruction prefix 
byte, which modifies the operation of the instruction that follows 
it, just as the REP prefix that we discu~sed in Chapter 6 is an 
instruction prefix byte. So, for example, when the 8086 encounters 
the instruction bytes 

AO 00 00 

which form the instruction 

mov al, [0] 

it loads AL with the contents of offset 0 in the data segment. 
However, since the value of the ES: segment override prefix is 
26h, when the 8086 encounters 

26 AO 00 00 

which forms the instruction 

mov al,es: [0] 

it loads AL with the contents of offset 0 in the extra segment, not 
the data segment. 

Turbo Assembler supports an alternate segment override prefix 
form, where you put the segment override prefix on a separate 
line. The separate line-segment overrides are SEGCS for a CS: 
segment override, SEGOS for a OS: segment override, SEGES for 
an ES: segment override, and SEGSS for an 5S: segment override. 
Each of these will override the next line of code only, not all 
subsequent lines. For example, the following stores OX to offset 
999h in the extra segment: 

mov si,999h 
seges 
mov [si],dx 

This alternate form is useful for putting segment override prefixes 
on instructions that have no operands, such as LOOSB. The 
following loads AL from SS:SI: 

segss 
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When segment 
override prefixes Segment override prefixes don't work with all instructions. For 

don I t work . example, string instruction accesses to the extra segment can't be 
overridden. That is, 

lods es:[ByteVar] 

is fine, loading AL from ES:SI, but 

stos ds:[ByteVar] 

can't work. If you do try to override a string instruction access to 
the extra segment as shown above, Turbo Assembler will let you 
know that's not allowed. However, if you use SEGCS or the like to 
create a segment override, Turbo Assembler doesn't know what 
instruction you're going to override and so can't generate an error 
in such cases. For example, 

segds 
stosb 

won't generate an assembly error, but STOSS will still write to the 
extra segment, not the data segment. 

Along the same lines, be aware that segment override prefixes can 
never affect accesses to the stack. Pushes to the stack always go to 
the stack segment, and pops from the stack always come from the 
stack segment. For instance, an instruction such as 

segcs 
push [bx] 

uses the segment override prefix to select the segment from which 
the value to be pushed should be fetched; that value is written to 
offset SP-2 in the stack segment, as always. Likewise, instructions 
are always fetched from the segment pointed to byeS. 

See Chapfer6 fordefails. You should generally avoid mixing segment override prefixes 
with REP prefixes, since problems can result if an instruction 
using both overrides is interrupted. 
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Accessing 
multiple segments 

Local labels 

Segment override prefixes are useful whenever you need to access 
multiple segments. This necessity can arise, for example, if you 
need to access data stored both on the stack and in the data 
segment, which commonly occurs when the stack is used for 
dynamically allocated variables and the data segment is used for 
static variables. Another possibility is that a program simply has 
more than 64K of data, so accesses to any of several segments may 
be needed at any time. 

One particularly useful application for segment override prefixes 
occurs when you mix string and nonstring instructions. For 
example, suppose that for a given string you want to convert all 
characters with values less than 20h to spaces. The following code 
uses a segment override prefix to perform that task efficiently: 

mov ax,SEG StringToConvert 
mov es,ax 
mov di,OFFSET StringToConvert iES:OI points to the 

i string to convert 
cld ;make STOSB increment OI 

ConvertLoop: 
mov al,es:[di] 
and al,al 
jz ConvertLoopOone 
cmp al,20h 
jnb SaveChar 
mov al,' , 

SaveChar: 
stosb 

jmp Convert Loop 
ConvertLoopOone: 

stosb 

iget the next character 
iis it the end of string? 
iyes, done 
ido we need to convert it? 
ino, save it 
imake it a space 

isave this character and 
i point to the next 
icheck the next character 

iend the string with a zero 

Local labels-labels with limited scope-are one of the pleasures of 
using Turbo Assembler. Let's look at why you might need them. 
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Suppose you have several sections of code in a source module 
that perform similar functions. For example, consider the 
following: 

Sub! PROC 
sub ax,ax 

IntCountLoop: 
add ax, [bx] 
inc bx 
inc bx 
loop IntCountLoop 
ret 

Sub! ENDP 

Sub2 PROC 
sub ax,ax 
mov dx,ax 

LongCountLoop: 
add ax, [bx] 
adc dx, [bx+2] 
add bx,4 
loop LongCountLoop 
ret 

Sub2 ENDP 

When two sections of code perform similar functions, it often 
, follows that they'll contain similar labels. For example, Subl and 

Sub2 each contain a label that marks the top of a counting loop. 

When there are only a few labels in a whole program, you can 
easily make sure that all the labels are different. In large 
programs, however, it can become a nuisance. Then, too, it's 
common practice to take a subroutine that works, block-copy it 
and rename it, and modify it into a new subroutine. The problem 
with this is that it's easy to forget to change a label here or there, 
causing the new subroutine to jump to a label in the old 
subroutine. For example, if you copied and modified Subl to 
make Sub2, you could inadvertently end up with 

Sub2 PROC 
sub ax,ax 
mov dx,ax 

LongCountLoop: 
add ax, [bx] 
adc dx,[bx+2] 
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add bx,4 
loop IntCountLoop 
ret 

Sub2 ENDP 

which would jump to the middle of Subl-with potentially 
disastrous results. 

What you really need, then, is a type of label that is limited in 
scope to a single subroutine, so it won't conflict with labels in 
other subroutines. 

That's just what local labels are. Local labels, which by default 
usually start with two at-signs (@@), are limited in scope to the 
range of instructions between two non-local labels. (Non-local 
labels are those defined with PROC and labels ending with colons 
that don't start with two at-signs.) As far as Turbo Assembler is 
concerned, local labels don't even exist outside the range 
delimited by the nearest non-local labels. 

Symbols that you define with the LABEL directive do not cause a 
new local symbol block to start. 

For example, you can use local labels to change the code at the 
beginning of this section with 

LOCALS 
Subl PROC 

sub ax,ax 
@@CountLoop: 

add ax, [bx] 
inc bx 
inc bx 
loop @@CountLoop 
ret 

Subl ENDP 

Sub2 PROC 
sub ax,ax 
mov dx,ax 

@@CountLoop: 
add ax, [bx] 
adc dx, [bx+2] 
add bx,4 
loop @@CountLoop 
ret 

Sub2 ENDP 
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Here you need not worry about the loop label in one subroutine 
conflicting with the label in the other subroutine, and there's no 
chance that one subroutine will accidentally jump to a label in the 
other subroutine. 

You'll note that we used the LOCALS directive before we used 
any local labels. In MASM mode, local labels are disabled by 
default, and must be enabled with LOCALS before you can use 
them. In Ideal mode, local labels are normally enabled, although 
you can disable them with NOLOCALS if you want. 

Local labels are also useful when you've got several short 
conditional jumps in a subroutine, and you don't want to have to 
spend time thinking of unique names for them. For example, you 
might want to use local labels when you're testing for any of 
several values: 

LOCALS 
crnp aI,' A' 
jnz @@Pl 
jrnp HandleA 

@@Pl: 
crnp al,'B' 
jnz @@P2 
jrnp HandleB 

@@P2: 
crnp al,'C' 
jnz @@P3 
jrnp HandleC 

@@P3: 

With local labels, you don't have to worry about whether labels 
like Pl are used elsewhere in the program. 

Remember, any non-local label delimits the scope of a local label. 
For instance, the following wouldn't assemble: 

Subl PROC NEAR 

LOCALS 
@@CountLoop: 

add ax, [bx] 
jnz NotZero 
inc dx 
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NotZero: 
inc bx 
inc bx 
loop @@CountLoop 

The problem here is that the non-local label NotZero lies between 
the LOOP instruction's reference to the local label @@CountLoop 
and the definition of @@CountLoop. The scope of a local variable 
extends only to the nearest non-local label, so when Turbo 
Assembler assembles the LOOP instruction, the local label 
@@CountLoop is nowhere to be found. 

You can change the local symbol prefix from the normal two at
signs (00) to any other two characters that can be used at the start 
of a symbol name. You do this by putting the new prefix 
characters as an argument to the LOCALS directive: 

LOCALS 

This sets the local symbol prefix to two underscore characters. 
This can be useful if you want to start using local symbols in a 
module that already has symbols that start with the default local 
symbol prefix. 

When you change the local symbol prefix in this manner, local 
symbols are automatically enabled at the same time, exactly as if 
you had used the LOCALS directive without any argument. If you 
subsequently use the NOLOCALS directive to disable local 
symbols, Turbo Assembler also remembers the prefix characters 
that you specified. This lets you simply use LOCALS with no 
arguments to restore local symbols with the prefix you previously 
specified. 

Automatic jump-sizing 

Many years ago, the designers of the 8086 decided that the 
conditional jump instructions would only support I-byte jump 
displacements. This meant that each conditional jump would only 
be capable of jumping to a destination within about 128 bytes of 
the conditional jump instruction itself. . 

Today, of course, those conditional jumps are with us still, and 
they're both a blessing and a curse. While the 8086's conditional 
jump instructions sometimes make for compact code (since the 
conditional jump instructions are only 2 bytes long), they also 
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often make for awkward, inefficient code, since 5-byte instruction 
sequences like this 

jnz NotZero 
jrnp IsZero 

NotZero: 

are required when conditional jump destinations are too far away 
to reach with a I-byte displacement. 

Worse, there's no way to know beforehand whether a given 
conditional jump will reach a given label, so you're put in the 
position of trying to jump to the label directly, thereby risking an 
assembly error, or coding a conditional jump around an 
unconditional jump, thereby possibly wasting 3 bytes and 
slowing execution. Stin more annoying is the all-too-common 
occurrence of a "Relative jump out of range" error when you add 
an instruction or two inside a loop. 

While Turbo Assembler can't solve all the conditional-jump 
problems of the 8086, it comes close by way of the JUMPS 
directive. Once you've specified JUMPS, Turbo Assembler 
automatically turns normal conditional jumps into conditional 
jumps around unconditional jumps whenever that's what it takes 
to reach the destina tion label. 

How does automatic jump-sizing work? Consider the following 
code: 

JUMPS 
RepeatLoop: 

jrnp SkipOverData 
DB lOOh DUP (?) 

SkipOverData: 

dec dx 

jnz RepeatLoop 

Clearly, the JNZ at the bottom of the loop can't reach RepeatLoop, 
. since over 256 bytes lie between the two. Since JUMPS was 

specified, however, no assembly-time error will result. Instead, 
Turbo Assembler actually assembles this code into the equivalent 
of 
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RepeatLoop: 
jrnp SkipOverData 
DB lOOh DUP (?) iternporary data storage in CS 

SkipOverData: 

dec dx 
jz $+5 
jrnp RepeatLoop 

automatically using a JZ and a JMP in place of the JNZ at the 
bottom of the loop. 

Turbo Assembler doesn't always generate a conditional/ 
unconditional jump pair when JUMPS is active; the conditional 
jump you specify is always used if it will reach the destination. 
For instance, the following assembles with JNZ at the bottom of 
the loop, since here the destination label is near enough to reach 
with a I-byte displacement: 

JUMPS 
RepeatLoop: 

add BYTE PTR [bx],l 
inc bx 
dec dx 
jnz RepeatLoop 

As we mentioned earlier, Turbo Assembler's automatic jump
sizing doesn't solve all the 8086's problems with conditional 
jumps. Turbo Assembler always handles automatic sizing of 
backward jumps (jumps to labels earlier in the code than a given 
jump instruction) perfectly, with nary a wasted byte or 
instruction. 

Since Turbo Assembler normally functions as a single-pass 
assembler, a compromise is required when automatically sizing 
forward jumps. The good news is that forward conditional jumps 
to near labels always assemble if automatic jump-sizing is 
enabled; the bad news is that several extra NOP instructions are 
inserted if it turns out that a conditional jump could have reached 
the destination label after all. You can avoid this problem by 
using Turbo Assembler's multiple-pass capability (invoked with 
the 1m command-line switch), although this does slow assembly 
speed slightly. 
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A moment's thought will make it clear why automatic sizing of 
forward jumps with a single pass can't always generate optimal 
code. When Turbo Assembler reaches a conditional jump 
instruction that makes a forward reference, there's no way to 
know how far away that label is; after all, Turbo Assembler hasn't 
even encountered that label yet. With automatic jump-sizing 
enabled, Turbo Assembler would like to generate a conditional 
jump (a 2-byte instruction) if the destination is near enough to 
read directly, and a conditional jump around an unconditional 
jump (a 2-byte instruction followed by a 3-byte instruction) 
otherwise. Unfortunately, Turbo Assembler doesn't yet know 
whether a 2-byte instruction br a 5 ... byie pair of instructions is 
necessary when it encounters a conditiorial forward jump. 

Still~ Turbo Assembler has to pick some siZe right away, in order to 
know where to assemble the following instructions. Consequent
ly, Turbo Assembler ha.s no alternative but to make the safe choice 
and reserve 5 bytes for a coriditional/unconditional jump pair. 
Then, if Turbo Assembler later reaches the destination label and 
decides that a 2-byte instruction will do the trick, it will assemble 
a conditional jump, followed by three NOP instructions that fill 
out the 5 reserved bytes. 

Suppose Turbo Assembler is assembling the following: 

JUMPS 
jzDestLabel 
inc ax 

If JZ can't reach DestLabel directly, Turbo Assembler assembles 
the equivalent of the following: 

jnz $+5 
jrnp DestLabel 
inc ax 

;2 bytes long 
;3 bytes long 

If, on the other hand, JZ can reach DestLabel directly, Turbo 
Assembler assembles the following: 

jz DestLabel 
nop 
nop 
nop 

;2 bytes long 
;each nop is 1 byte long 
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NOJUMPS is always selected 
at the start of assembly,' if 

you want to use automatic 
jump-sizing, you must 

explicitly enable it with the 
JUMPS directive. 

inc ax 

The key here is that Turbo Assembler must take up 5 bytes for 
each automatically sized forward conditional jump, so three NOP 
instructions are inserted in automatically sized forward 
conditional jumps that can reach their destinations. Those three 
NOP instructions take up space and take time to execute (3 cycles 
each on an 8086). Consequently, you're best advised to use 
automatically sized forward conditional jumps sparingly, or else 
enable Turbo Assembler's multi-pass capability, whenever you're 
particularly sensitive to code size and performance issues. 

If you're writing a program containing high-performance code, 
you might want to enable automatic jump-sizing for noncritical 
sections of your program, but disable automatic jump-sizing in 
the key code sections. Alternatively, you might want to enable 
automatic jump-sizing for backward jumps but disable it for 
forward jumps. You can do this by pairing the JUMPS instruction 
with the NOJUMPS instruction, which turns off automatic jump
sizing. 

For example, the following uses automatic jump-sizing for the 
backward jump, but not for the forward jump: 

LoopTop: 

lodsb 
cmp al,80h 
NOJUMPS 
jb SaveByteValue 
neg al 

SaveByteValue: 
stosb 

dec dx 
JUMPS 
jnz LoopTop 

Here, we've directly specified a 2-byte conditional jump for the 
forward jump to SaveByte Value, but let Turbo Assembler select the 
best code for the backward jump to LoopTop. 
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1111., In the last section, you saw an example of how forward 
conditional jumps can make Turbo Assembler generate less 
efficient code when automatic jump-sizing is enabled without 
performing multiple passes. The truth of the matter is that all 
sorts of forward references can cause problems for Turbo 
Assembler, so you should avoid forward references-that is, 
references to labels farther on in the code-whenever possible. 

Why? Well, as Turbo Assembler assembles a source module, it 
makes a single pass through the code, progressing steadily from 
the first line in the source module to the last. This means that 
Turbo Assembler assembles the first line in a module, then the 
second line, then the third line, and so on. While that may seem 
obvious, the implication of the order in which Turbo Assembler 
assembles lines may be less obvious: Turbo Assembler doesn't 
know anything about a line until it reaches it, and so forward 
references force Turbo Assembler to make assumptions, which 
might turn out to be incorrect. If those assumptions are indeed 
incorrect, Turbo Assembler might generate less than maximally 
efficient code. Even if Turbo Assembler can generate efficient 
code, it might be necessary to go back to earlier lines and make 
corrections, and so assembly might take more time than it 
otherwise would. 

Consider the following: 

jrnp DestLabel 

DestLabel: 

When Turbo Assembler encounters the line 

jrnp DestLabel 

it hasn't reached the definition of the label DestLabel yet; 
consequently, Turbo Assembler has no idea whether DestLabel is 
near or far, and, if it's near, whether it can be reached with a I-byte 
displacement or whether a full2-byte displacement is needed. 
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Consequently, Turbo Assembler needs to make an assumption 
about the nature of DestLabel in order to continue assembling. 

Turbo Assembler could assume that DestLabel is far and reserve 5 
bytes for a far JMP instruction; however, most jumps are 3-byte 
near jumps, and it would be a shame to waste 2 bytes on every 
forward-referenced near jump. At the opposite end of the 
spectrum, Turbo Assembler could assume DestLabel can be 
reached with a single-byte displacement and reserve just 2 bytes 
for a JMP SHORT instruction; the problem here is that many 
jumps are not short, and if Turbo Assembler reserved only 2 
bytes, an error would occur if the jump proved to be either near 
or far. 

As a compromise, Turbo Assembler assumes that all forward 
jumps are near, unless you specify otherwise with either the 
SHORT or the FAR PTR operator. Three bytes are always 
reserved for forward jumps. If a forward jump turns out to be far, 
an error results; you must always use FAR PTR to allow forward 
jumps to far labels to assemble. That's a bit of a nuisance, but if 
you forget the FAR PTR, Turbo Assembler will simply inform 
you that a data type override is required, and you can insert the 
required FA~ PTR operator and reassemble. 

If, on the other hand, a forward jump proves to be short, Turbo 
Assembler assembles a short jump, but inserts a NOP instruction 
to pad out the 3 bytes that were reserved for the jump, thereby 
wasting a byte. For example, Turbo Assembler assembles this: 

jrnp DestLabe'l 
DestLabel: 

into this: 

jrnp SHORT DestLabel 
nop 

DestLabel: 
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While the jump works perfectly well, and executes quickly, it is 
larger than it needs to be. Of course, you can use the SHORT 
operator to turn any forward-referenced jump into a true 2-byte 
instruction, but that's not as convenient as if Turbo Assembler 
:were able to ge~erate the appropriate jump automatically. 

It's important to understand that it's the forward reference that's 
the culprit here. If Turbo Assembler knew the distance to the 
destination label, the most efficient jump could be assembled. But 
with forward references, Turbo Assembler can't know the 
distance to the destination until it reaches it, and it can't reach the 
destination until it assembles the forward-referenced jump. Turbo 
Assembler resolves this dilemma by making a simplifying 
assumption that allows assembly to proceed, but at the possible 
cost of larger code than is necessary. 

1111" Whenever Turbo Assembler does know the type of a jump
SHORT, NEAR, or FAR-the most efficient possible code can be 
generated. Consequently, it's a good idea to use the SHORT 
operator on short forward jumps (and, of course, FAR PTR is 
required for far forward jumps). 

Jumps aren't the only instructions that you should avoid using 
with forward referencesj forward references to data can easily 
generate inefficient code as well. Consider the following: 

.CODE 

mov bl,Value . . . 
Value EQU 1 

When Turbo Assembler reaches the MOV instruction, there's no 
way to know whether Value is an equated label or a memory 
variable. If Value is a memory variable, a 4-byte instruction will be 
required, while if Value is an equated label (one that's used as a 
constant), a 2-byte instruction will do the job. 

As usual, Turbo Assembler must assume the worst in order to 
continue assembling, so 4 bytes are reserved for the MOV 
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This is true even if you use a 
type override on forward 
references to that label. 

instruction. Then, when Value is reached and discovered to be an 
equated label rather than a memory variable, Turbo Assembler 
must go back to the MOV instruction and make it a 2-byte 
instruction with a constant operand, and must insert two NOP 
instructions to fill out the third and fourth bytes that were 
reserved. Note that none of this would have happened if Value 
had been defined before the MOV instruction, since Turbo 
Assembler would have known that Value wasn't a memory 
variable. 

In fact, backward references present none of the problems of 
forward references, since Turbo Assembler always knows 
everything there is to know about backward-referenced labels. As 
a result, Turbo Assembler always automatically assembles the 
most efficient possible code for instructions that involve only 
backward-referenced operands. This makes it highly desirable to 
avoid forward references whenever possible. 

You might wonder if the forward-referencing problems with calls 
are as severe as they are for jumps. The answer is no. Forward
referenced far calls must have FAR PTR type overrides, since 
Turbo Assembler assumes forward calls are near. Since there is no 
such thing as a short call; inefficient code for calls is never 
generated. 

Many forward references result in an assembly error rather than 
inefficient code. For example, forward references to equated labels 
can't be assembled, and forward references to far labels can't be 
assembled without a type override. 

Even when Turbo Assembler can generate efficient code for 
forward references, assembly is slower than for backward 
references. This happens because whenever it encounters a label 
that has previously been forward-referenced, Turbo Assembler· 
must return to each instruction that performed a forward 
reference to that label and assemble it properly, now that the 
value and type of that label are known. 

The conclusion is clear: Avoid forward references in your code 
whenever possible, to let Turbo Assembler generate the best 
possible code as quickly as possible. If you force multiple passes 
to be performed by using the 1m command-line switch, optimal 
code will be genera ted, but the assembly process will take longer 
than it would have with a single pass. Put data definitions at the 
beginning of your source modules before the code that references 
them. When you can't avoid forward references, always use a 
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type of label you're working with. 

Using repeat blocks and macros 

Repeat blocks 
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One of the things a computer does well is repetitive work. You 
might get bored with typing dozens of values for DB directives, or 
with entering slight variations on the same code over and over, 
but your computer will never tire of such work. Turbo Assembler 
provides repeat blocks and macros to free you from just that sort 
of monotonous work. 

A repeat block starts with the REPT directive and ends with the 
ENDM directive. The code within the repeat block is assembled 
the number of times specified by the operand to the REPT 
directive. For example, 

REPT 10 
OW 0 
ENOM 

generates the same code as 

ow 0 
ow 0 
ow 0 
ow 0 
ow 0 
ow 0 
ow 0 
ow 0 
ow 0 
ow . 0 

That doesn't seem earthshaking, particularly given that 

ow 10 OUP (0) 

does the same thing, but now let's combine repeat blocks and the 
= directive to make a table of the first ten integers: 
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IntVal 0 
REPT 10 
DW IntVal 

IntVal IntVa1+1 
ENDM 

This generates the equivalent of 

DW 0 
DW 1 
DW 2 
DW 3 
DW 
DW 5 
DW 6 
DW 
DW 8 
DW 9 

Try doing that with CUP! Better yet, if you want the first 100 
integers, all you need do is change the operand to REPT to 100; 
that's certainly a lot easier than typing 100 lines. 

One excellent application for REPT is in the generation of tables 
used for fast multiplication and division. For example, the 
following multiplies a number between 0 and 99 (stored in BX) by 
10-very rapidly-and places the result in AX . 

• DATA 
TableOfMultiplesOf10 LABEL WORD 
BaseVal 0 

REPT 100 
DW BaseVal 

BaseVal BaseVal+10 
ENDM 

• CODE 

shl bx,l iprepare for look up in 
; table of word-sized entries 

mov ax, [TableOfMultiplesOf10+bx] ;look up the result of 
; mUltiplication times 10 

Keep in mind that the text in a repeat block is simply assembled 
as many times as the operand to REPT dictates. There's no 
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Repeat blocks and 
variable parameters 

difference between executing a repeat block 10 times and making 
9 additional copies of the code in a repeat block and then 
assembling all 10 instances of the code. 

This means that any valid assembler code, including instructions, 
can be placed within a repeat block. For example, the following 
generates code to divide the 32-bit unsigned value in DX:AX by 
16: 

REPT 4 
shr dx,1 
rer ax,1 
ENDM 

Repeat blocks can be nested. For instance, the following generates 
10 NOP instructions: 

REPT 5 
REPT 2 
nop 
ENDM 
ENDM 

IRP and IRPC provide two means by which to provide a variable 
parameter to each pass of a repeat block. 

IRP substitutes the first entry in a list for a parameter on the first 
repetition of a repeat block, the second entry on the second 
repetition, and so on until the list is used up. For example, 

IRP PARM,<O,1,4,9,16,25> 
DB PARM 
ENDM 

generates 

DB 0 
DB 1 
DB 
DB 9 
DB 16 
DB 25 
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Macros 

IRPC is similar, save that it substitutes one character from a string 
on each repetition of a repeat block. The following code sets the 
zero flag if AL is equal to any of the characters in the string that's 
the second argument to IRPC: 

IRPC TEST_CHAR,azklg 
cmp al,'&TEST_CHAR&' 
jz EndCompare 
ENDM 

EndCompare: 

The last example uses the ampersand (&) to force evaluation of 
the repeat block parameter TEST _CHAR, even within quotes. The 
ampersand is a macro operator that works in a repeat block 
because repeat blocks are actually a type of macro. Other macro 
features, such as the LOCAL and EXITM directives, also work in 
repeat blocks. We'll discuss macros next. 

The basic operation of a macro is quite simple: You assign a name 
to a block of text, or a macro; then, when Turbo Assembler 
encounters that macro name later in your source code, the block 
of text associated with the name is assembled. You might think of 
the macro name being expanded into the full text of the macro; 
hence the term macro expansion is often used to describe the 
substitution of macro text for a macro name. 

A useful analogy is an include file. When Turbo Assembler 
encounters an INCLUDE directive, the text in the specified file is 
immediately assembled, just as if it were in the source module 
containing the I~CLUDE. If a second INCLUDE of the same file is 
encountered, Turbo Assembler assembles that text again. 

Macros are similar to include files in that the text, or body, of the 
macro is assembled each time the macro name is encountered. 
Macros are actually a great deal more flexible than include files, 
however, since they can optionally be passed parameters and can 
contain local labels. They are much faster than include files, since 
the text of a macro does not have to be read from disk. Let's take 
a look at basic macro operation. 

The following code uses the macro MULTIPLY_BY _4 to multiply 
the value in AX by 4, storing the result in DX:AX: 
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MULTIPLY BY 4 MACRO 
sub dx,dx 
shl ax,l 
rcl dx,l 
shl ax,l 
rcl dx, 1 
ENDM 

mov ax, [MemVar] 
MULTIPLY BY 4 
mov WORD PTR [Result],ax 
mov WORD PTR [Resultt2],dx 

When Turbo Assembler encounters MULTIPLY_BY _4, it 
assembles the four instructions that make up the body of that 
macro on the spot. It's almost as if a new instruction has been 
defined, MULTIPLY_BY _4, which you can use just as you use 
MOV and MUL. Of course, that new macro instruction consists of 
five 8086 instructions, but it's certainly easier to read the previous 
code with the macro than without. 

You could just as well have used a subroutine named MultiplyBy4 
instead of a macro in this example, as follows: 

MultiplyBy4 PROC 
sub dx,dx 
shl ax,l 
rcl dx,l 
shl ax,l 
rcl dx,l 
ret 

MultiplyBy4 ENDP 

mov ax, [MemVar] 
call MultiplyBy4 
mov WORD PTR [Result],ax 
mov WORD PTR [Resultt2],dx 

How do you choose between subroutines and macros? Well, 
you'll generally produce smaller code by using a subroutine, since 
with subroutines the code for a specific task is assembled only 
once, with calls to that code sprinkled throughout the program. 
However, you'll produce faster code with macros, since macros 
avoid the overhead of CALL and RET instructions. Moreover, a 
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single macro can be tailored to generate slightly different code for 
a number of similar tasks, while a subroutine can't. 

What sort of flexibility does a macro provide? Macro flexibility is 
limited only by your imagination, since macros can accept 
parameters and can contain conditional assembly directives. 
Macro parameters appear as operands to the MACRO directive. 
For example, V ALUE and LENGTH are parameters to the macro 
FILL_ARRAY, defined as follows: 

FILL ARRAY MACRO VALUE, LENGTH 
REPT LENGTH 
DB VALUE 
ENDM 
ENDM 

When a macro is invoked, parameters to the macro can be placed 
as operands to the macro invocation. For example, FILL_ARRAY 
could be invoked as 

ByteArray LABEL BYTE 
FILL ARRAY 2,9 

The parameters that appear in the macro invocation (2 and 9 in 
the previous code) are known as actual parameters. The parameters 
that appear in the macro definition (VALUE and LENGTH in the 
preceding code) are known as formal parameters. Each time a 
macro is· invoked, the formal parameters are set to the values of 
the corresponding actual parameters before the macro is 
expanded, so 

ByteArray LABEL BYTE 
FILL ARRAY 2,9 

causes the following code to assemble: 

ByteArray LABEL BYTE 
REPT 9 
DB 2 
ENDM 
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The values of the actual parameters to a macro invocation are 
substituted for the formal parameters in the macro definition, so 
you can generate different macro code simply by changing the 
actual parameters used in a macro invocation. For instance, if you 
wanted to initialize ByteArray to be 8 bytes in length, initialized to 
OFFh, and ByteArray2 to be lOOh bytes long, initialized to 0, all 
you'd need would be 

ByteArray LABEL BYTE 
FILL_ARRAY Offh,S 

ByteArray2 LABEL BYTE 
FILL_ARRAY O,lOOh 

Formal parameters can be used anywhere in a macro. However, 
there's a problem when formal parameters are mixed with other 
text. For example, in the macro 

PUSH WORD REG MACRO RLETTER 
push RLETTERx 
ENDM 

Turbo Assembler can't know whether the string RLETTER 
embedded in RLETTERx is the name of the formal parameter or 
part of the operand to PUSH, so it assumes it's part of the operand. 
Alas, pushing RLETTERx isn't likely to succeed unless you 
happen to have memory variable of that name, and the desired 
result of pushing a register wouldn't be achieved in any case. 

The solution is to enclose the formal parameter name in a pair of 
ampersands (&&). When Turbo Assembler encounters macro text 
enclosed in ampersands, it checks first to see whether that text is 
the name of a formal parameter; if so, it substitutes the value of 
tha t parameter. 

For example, the following expansion of PUSH_WORD _REG, 

PUSH WORD REG 
push &RLETTER&x 
ENDM 

MACRO RLETTER 

PUSH WORD REG b 

assembles to 
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push bx 

Ampersands are required only when there might be a question 
about a reference to a formal parameter; for example, they're not 
needed in 

PUSH WORD REG MACRO REGISTER 
push REGISTER 
ENDM 

However, it never hurts to use ampersands, so use them 
whenever you're in doubt about whether they're needed. 

Nesting macros You've already seen that macros can contain repeat blocks. 

Macros and 
conditionals 

Macros can invoke other macros as well; this is known as nesting 
macros. For example, in 

PUSH WORD REG 
push REGISTER 
ENDM 

MACRO REGISTER 

PUSH ALL REGS MACRO 
IRP REG,<AX,BX,CX,DX,SI,DI,BP,SP> 
PUSH WORD REG REG 
ENDM 
ENDM 

the macro PUSH_ALL_REGS contains a repeat block, which in 
turn contains an invocation of the macro PUSH_WORD _REG. 

Perhaps the most powerful feature of macros is their ability to 
contain conditional assembly directives. This allows a single 
macro to assemble different sorts of code depending on the state 
of equated labels and parameters to each macro invocation. 

For example, we'll return to the earlier example of a macro that 
performs multiplication. In this case, however, if the factor passed 

'. as a parameter to the new MULTIPLY macro is any power of two, 
we'll multiply by using the faster shift and rotate instructions; 
otherwise, we'll use the MUL instruction. Here's the macro: 

MULTIPLY MACRO FACTOR 

i Check FACTOR against each of the 16 possible powers of two. 
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IS POWER OF TWO = 0 - --
COUNT 15 
POWER OF TWO 8000h 

REPT 16 
IF POWER_OF_TWO EO FACTOR 
IS POWER OF TWO = 1 

ENDIF 
COUNT 

EXITM 

COUNT-1 

;FACTOR is a power of two 

POWER OF TWO 
ENDM 

POWER OF TWO SHR 1 

IF IS POWER OF TWO 
sub dx,dx 
REPT COUNT 
shl ax,l 

ELSE 

ENDIF 

re! dx,l 
ENDM 

mov dx,FACTOR 
mul dx 

ENDM 

MULTIPLY actually checks on the fly whether the multiplication 
is by a power of two and assembles the appropriate code. So the 
code 

MULTIPLY 10 

assembles to 

mov dx,10 
mul dx 

but the code, 

MULTIPLY 8 

assembles to 

sub dx,dx 
shl ax,l 
re! dx,l 
shl ax,l 
reI dx,l 
shl ax,l 
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Don't confuse macros with 
subroutines, and don't 

confuse conditional 
assembly with If statements 

and the like in high-level 
languages. 

Stopping expansion 
with EXITM 

Defining labels within 
macros 

reI dx,l 

Bear in mind that macros are expanded at assembly time, not at 
run-time. MULTIPLY assembles new code each time it is invoked; 
the IF directive in MULTIPLY determines which instructions get 
assembled. 

The next example contains a directive you haven't seen before: 
EXITM. The EXITM directive instructs Turbo Assembler to stop 
expanding the current macro or repeat block. If, however, the 
current macro or repeat block is nested inside another macro or 
repeat block, expansion of the nesting macro or repeat block 
continues. 

Shiftn MACRO OP,N 
Count = 0 

REPT N 
shl OP,N 

Count = Count + 1 
IF Count GE 8 

EXITM 
ENDIF 
ENDM 

ino more than 8 allowed 

One potential problem with macros arises when you define a label 
within a macro. For example, the following causes an error due to 
the redefinition of SlcipLabel, since each expansion of the macro 
DO _DEC defines SkipLabel: 

DO DEC MACRO 
jexz SkipLabel 
dee ex 

SkipLabel: 
ENDM 

DO DEC 

DO DEC 

Fortunately, Turbo Assembler provides a simple solution in the 
form of the LOCAL directive. A LOCAL directive in a given macro 
causes the scope of the specified label or labels to be restricted to 
that macro. For example, LOCAL can be used as follows to allow 
the last example to assemble: 
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DO DEC MACRO 
LOCAL SkipLabel 
jexz SkipLabel 
dec ex 

SkipLabel: 
ENDM 

If LOCAL is used in a macro, it must be used immediately 
following the MACRO directive. Multiple labels can be declared 
local with a single LOCAL directive, and multiple LOCAL 
directives can be used: 

TEST MACRO 
LOCAL 
LOCAL 

ENDM 

MACRO 
LoopTop,LoopEnd,Skiplne 
NoEvent,MaeroDone 

The names actually assigned to local labels are of the form 

??XXXX 

where XXXX is a hexadecimal number between 0 and OFFFFh. 
Consequently, you should not assign your own labels names that 
start with ??, since these might conflict with the local labels Turbo 
Assembler generates. 

Forward references to macros are not allowed; macros must be 
defined before they're invoked. This makes good sense, in light of 
our earlier discussion of forward references, since Turbo 
Assembler has no idea how many bytes it would have to reserve 
for a forward-referenced macro. Otherwise, though, macros can 
be defined anywhere in a source module. 

Any valid assembler line can appear in a macro. This includes 
data definition directives, as well as code, and even includes 
segment directives, labels of all sorts, and listing control 
directives. 

There are several conditional assembly directives that are 
designed specifically for use in macros; these include IFDIF, IFIDN, 
IFDIFI, IFIDNI, IFB, and IFNB. There are also several conditional 
error directives for use in macros, including ERRDIF, ERRIDN, 
ERRDIFI, ERRIDNI, ERRB, and ERRNB. 
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The special operators are all 
defined more fully In Chapter 

2 of the Reference Guide. 

There are a number of special operators that you can use within 
macros: 

& 
<> 

% 

" 

Substitute operator 
Literal text string operator 
Quoted character opera tor 
Expression evaluate opera tor 
Suppressed comment 

The & substitution operator has been discussed in the previous 
section on macros. 

Fancy data structures 

Consult Chapter 11 to learn 
more about the enhanced 

features of Ideal mode. 

Turbo Assembler provides three directives to ease the task of 
managing complex data structures: STRUC, RECORD, and UNION. 
You've probably noticed that the directive names are similar to 
those used by high-level languages, and, indeed, there are some 
similarities between Turbo Assembler's data structure directives 
and those of high-level languages. 

Don't be misled, however; as you will see, assembly language 
data structure directives, while helpful, are less sophisticated than 
those of high-level languages. For example, assembly language 
doesn't limit the scope of the name of a structure element to that 
structure, so every structure element name must be unique in its 
source module. 

Also, unlike C and Pascal, assembly language data structure 
directives are conveniences, not necessities; there are ways to 
handle data structures, records, and unions in assembler without 
using the data structure directives. Nonetheless, the data 
structure directives are convenient and well worth knowing 
about. 

The following discussion applies to Turbo Assembler operating in 
MASM mode. In Ideal mode, Turbo Assembler supports 
considerably more powerful forms of the data structure 
directives. 

One point about Turbo Assembler's fancy data structures before 
we begin: Structures, records, and unions can appear anywhere in 
a source module, as long as they are never forward-referenced by 
instructions or directives. 
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The STRUC 
directive The STRUC directive, which lets you define a data structure, is 

useful whenever you have to deal with data that's partitioned into 
logical groups. For those of you who are familiar with C, STRUC 
is similar to C's struct statement. 

For example, suppose you want to define a data structure 
containing a name, age, and income for one client. Here's such a 
structure: 

CLIENT STRUC 
NAME DB 'Name goes here •••• ' 
AGE DW 
INCOME DD 
CLIENT ENDS 

The CUENT structure contains three fields: The NAME field, 
which contains a name up to 20 characters in length; the AGE 
field, which contains an age stored as a 16-bit value; and the 
INCOME field, which contains an income stored as a 32-bit value. 

You could use the CUENT structure as follows: 

CLIENT STRUC 
NAME DB 'Name goes here ..•• ' 
AGE DW 
INCOME DD 
CLIENT ENDS 

• DATA 
MisterBark CLIENT <'John Q. Bark' ,32,10000> 

.CODE 

mov ax, [MisterBark.Age] 
mov bx,OFFSET MisterBark 
mov ax, WORD PTR [bx.INCOME] 
mov dx,WORD PTR [bx.INCOME+2] 

There's much to examine in this example. First, notice that 
structure definitions end with the ENDS directive. This is the 
same directive that ends segment definitions. It's all right to nest 
structure definitions inside segment definitions. For example, the 
folloWing defines a structure inside a data segment: 
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Data SEGMENT WORD PUBLIC 'DATA' 

Test STRUC 

Test ENDS 

Data ENDS 

Second, note that the variable MisterBark of structure type CUENT 
is created as if there were a new data type named CUENT, and in 
fact that's exactly what you've done by defining the CUENT 
structure. In fact, if you use the SIZE operator on a CUENT 
structure, you'll get the value 26, which is the size of the structure. 

When MisterBark is created, three parameters to the declaration 
are provided within angle brackets. These parameters become the 
initial values for the corresponding fields of MisterBark; the string 
'John Q. Bark' is the initial value of the NAME field, 32 is the 
initial value of the AGE field, and 10,000 is the initial value of the 
INCOME field. 

You need not specify the initial value of any or all of the fields of a 
structured variable when you create it. For example, 

MisterBark CLIENT <> 

doesn't initialize any of the fields of MisterBark, and 

MisterBark CLIENT <,,19757> 

initializes only the INCOME field. However, the angle brackets 
are required even if no fields are initialized. 

If you don't specify an initial value when you create a memory 
variable, there are two possible ways in which the initial value of 
each field can be set. If you specified a value for a given field 
when you defined the structure type, that's the default value 
assigned to that field. If you specified a question mark for a given 
field when you defined the structure type, the default value for 
that field is O. 

For example, in the following code, an initial value is specified for 
only one field of MisterBark-the NAME field-when MisterBark is 
created. However, an initial value is specified for the AGE field 
when the CUENT structure is defined, so that's the value assigned 
to the AGE field of MisterBark. No value is specified in either place 
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for the INCOME field, so the INCOME field is initialized to O. 
Here's the example: 

CLIENT STRUC 
NAME DB 'Name goes here •••• ' 
AGE DW 21 
INCOME DD 
CLIENT ENDS 

• DATA 
MisterBark CLIENT <'John Q. Bark'> 

The result of this code is that the NAME field is initialized to 'John 
Q. Bark', the AGE field is initialized to 21, and the INCOME field 
is initialized to O. Note that the initial value for the NAME field 
specified when MisterBark is created overrides the initial value 
specified when the CUENT structure was defined. 

You can initialize arrays of structures with the DUP operator. For 
example, 

Clients CLIENT 52 DUP «» 
creates the array Clients,·consisting of 52 structures of type 
CUENT, each initialized to the default values. 

If you look back to the original structure example, you'll see a 
new operator there-the period (.) operator. The period operator 
is actually just another form of the plus operator for memory
addressing; that is, all the following lines do exactly the same 
thing: 

mov ax, [bx.AGE] 
mov ax, [bx].AGE 
mov ax, [bx+AGE] 
mov ax, [bx]+AtE 

The period operator is often used with structure references for 
consistency with C notation, which also uses the period operator, 
and to make it clear that a structure field is being accessed; you 
can use whichever operator you prefer-period or plus. 

The structure fields defined with the STRUC directive are actually 
labels equated to the offset of the field in the structure. Given the 
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Advantages and 
disadvantages of using 

STRUC 

earlier definition for CUENT and MisterBark, the following two 
lines are equivalent: 

mov [MisterBark.AGE] ,ax 
mov [MisterBark+20] ,ax 

and this would work as well: 

AGE_FIELD EQU 20 

mov [MisterBark+AGE_FIELD],ax. 

Why use STRUC, then? For one thing, structure fields provide 
data-typing; Turbo Assembler knows MisterBark.AGE in the first 
example is a word-sized variable, since there AGE is a structure 
element, but MisterBark+AGE in the second example has no 
inherent size. 

For another, it's much easier to change a structure definition than 
to change constant offsets, or even a set of equates. For example, if 
you decided that the NAME field should be 30 characters long, all 
you'd have to do is change the entry for NAME in the CLIENT 
definition. !fyou were using equates, you'd have to manually 
calculate and change the offsets of both the AGE and INCOME 
fields; in a larger structure, you'd have quite a bit of work to do. 

Finally, STRUC makes it easy to create and initialize data 
structures. 

In short, STRUC is a convenient and maintainable way to create 
and access data structures. On the other hand, assembler data 
structures are by no means as error-proof as C data structures. For 
example, when you use a register to point to a data structure, 
there's no way for Turbo Assembler to tell whether the register 
contains a pointer to a valid data structure of that type. In the 
following code, BX is loaded with 0, but there's no way for Turbo 
Assembler to know whether or not there's a valid CUENT data 
structure at offset 0: 

mov bx,O 
mov dx, [bx.AGE] 
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This is not a problem with assembly language; rather, it reflects 
the nature of assembly language. When there's a choice between 
letting you have complete freedom in programming and 
protecting you from yourself, assembly language gives you the 
freedom. The important thing to keep in mind is that Turbo 
Assembler can perform only limited error-checking on your 
structure references; it's up to you to make sure you've got the 
right pointers loaded. 

Unique structure field names 

One somewhat annoying result of the fact that structure field 
names are actually just labels is that structure field names must be 
unique in their source module. For example, if you defined the 
CUENTstructure in a given source module, you couldn't have a 
label named INCOME anywhere else in that module, not even in 
another structure. INCOME is just a label with the value 22, and 
of course, you can't have two labels with the same name in a 
single source module. The following will produce an error, due to 
the attempted redefinition of AGE: 

CLIENT STRUC 
NAME DB 'Name goes here .... ' 
AGE DW? 
INCOME DD ? 
CLIENT ENDS 

AGE EQU 21 

Nesting structures 

Structures can be nested; for example, 

. DATA 

AGE STRUC STRUC 
YEARS DW? 
MONTHS DW ? 
AGE STRUC ENDS 

CLIENT 'STRUC 
NAME DB 'Name goes here .... ' 
AGE AGE STRUC <> 
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INCOME DW 
CLIENT ENDS 

MisterBark CLIENT <> 

• CODE 

mov dx, [MisterBark.AGE.MONTHS] 
mov si,OFFSET MisterBark 
mov ex, [si.AGE.YEARS] 

nests an AGE_STRUC structure named AGE in the CUENT 
structure, then references the MONTHS and YEARS fields of AGE 
in the CUENT structure MisterBark. 

Initializing structures 

There are a few cautions regarding the initialization of structures. 
First, if you attempt to initialize a string field of a structure with a 
string tha t is longer than the field, an assembly error will be 
generated. 

Second, the only kind of field that can be initialized with a string 
value is a string field. The following would not assemble: 

TEST STRUC 
TEXT DB 30 DUP {' 'l 
TEST ENDS 

TStrue TEST <'Test string'> 

even though TEXT was initialized to spaces, because Turbo 
Assembler considers TEXT to be an array of 30 spaces, not a string 
of 30 characters. The following would assemble: 

TEST STRUC 
TEXT DB 'String goes here •.••••..•••.. ' 
TEST ENDS 

TStrue TEST <'Test string'> 

Third, while you can define more than one data element as 
belonging to a single structure field, you can only initialize, at 
most, one element per field when you create an instance of that 
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Refer to Chapter 11 for 
Information about Ideal 

mode. 

The RECORD 

structure. For example, in the following code, when TestStruc is 
created, the first byte of field A is initialized to 1, and the first byte 
of field B is initialized to 2, while the second byte of each field is 
initialized to 20h (a space): 

T STRUC 
A DB Offh,Offh 
B DB Offh,Offh 
T ENDS 

TestStruc T <1,2> 

In this section, we've discussed the MASM mode version of the 
STRUC directive. In Ideal mode, the STRUC directive is 
considerably more powerful, providing more of the features 
available to structures in high-level languages. 

directive The RECORD directive provides you with a means to define bit 
fields within a byte or word. The bit field definitions can then be 
used to generate masks to isolate one or more of the bit fields, as 
well as shift counts to right-justify any bit field. The RECORD 
directive bears no relation to the Pascal record statement. 

Suppose you want to define a data structure that contains three 
1-bit flags and a 12-bit value. You could do this with the RECORD 
directive as follows: 

TEST REC RECORD FLAG1:1,FLAG2:1,FLAG3:1,TVAL:12 

This example defines three flags, named FLAG1, FLAG2, and 
FLAG3, and a data field named TVAL. The value after the colon 
for each field specifies that field's size in bits; each of the flags is 
one bit in size, and TV AL is 12 bits in size. 

How are the fields stored within the record? That's a bit complex. 
The first field, FLAG1, is the leftmost (most significant) bit of the 
record. The second field, FLAG2, is the next most significant bit of 
the record, and so on, until you reach TV AL, which ends at the 
least significant bit of the record. However, the record is only 15 
bits in size, leaving one bit in the word unaccounted for. (Records 
are always exactly 8 or 16 bits long.) The rule is that records as a 
whole are always right-justified in a byte or word. 
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Figure 9.1 
Locations and initial 

values of the fields 
in TRec 

As we said, it's a bit complex. Here's an example to clarify things. 
A record of type TEST _REC is defined with a line like 

TRee TEST_REC <1,O,O,52h> 

Here we've created the variable TRee of record type TEST _REC. 
The values in the angle brackets are made the initial values of the 
corresponding fields, so the FLAGl field of TRee is initialized to 1, 
the FLAG2 and FLAG3 fields are initialized to 0, and the TVAL 
field is initialized to S2h. Figure 9.1 shows the locations and initial 
values of the four fields of TRee. 

TVAL 

l 
TRee 52h 

Bit 15 14 13 12 11 o 

If the overall size of a record (the sum total of all the fields) is 8 
bits or less, the record is stored in a byte; otherwise, the record is 
stored in a word. Records longer than 16 bits are not supported 
except when 80386 assembly is enabled; in which case, records up 
to 32 bits in size are allowed. 

Initializing a record variable is much like initializing a structure 
variable. If you specify an initial value for a given record field 
when you create the record variable, the field is initialized to that 
value, as illustrated by the last example. 

If you don't specify an initial value for a given record field when 
you create a record variable, there are two possible default values. 
When you create a record type, you can optionally specify a 
default value for any or all fields. For example, 

TEST REC RECORD FLAG1:l=1,FLAG2:1=O,FLAG3:1,TVAL:12=Offfh 

specifies default values of 1 for FLAG1, 0 for FLAG2, and OFFFh 
for TV AL, with no explicit default value for FLAG3. The default 
value for any field lacking an explicit default value is 0, so the 
default value for FLAG3 is O. 

So, given the following definition of TEST _REC and creation of 
TRee 

. DATA 
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TEST REC RECORD FLAG1:1=1,FLAG2:1=0, FLAG3: 1, TVAL: 12=Offfh 

TRee TEST_REC <,1,,2> 

the fields are initialized as follows: 

• FLAGI initialized to 1 
• FLAG2 initialized to 1 
• FLAG3 initialized to 0 
• TV AL initialized to 2 

The overall value of the record variable TRee is 6002h. Note that 
initial values specified when a record variable is created override 
initial values specified when the record type is defined. 

Once defined, a record type is much like any other data type. You 
can, for example, use a record type with the SIZE operator, and 
you can define arrays of records with the DUP operator. For 
example, the following declares an array of 90 records of type 
TEST_REe: 

TReeArray TEST_REC 90 DUP «1,1,1,0» 

As with STRUC field names, record field names are labels. Since 
labels can only be defined once in a source module, this means 
that all record field names must be unique within their source 
module. 

Accessing records Now that you know how to create a record and how the various 
fields in a record are stored, you're ready to learn how to access 
records. You might reasonably think that you could access record 
fields the way you access structure fields, as in 

mov aI, [TRee.FLAG2] ;this doesn't work!!! 

but that's not the case. The 8086 can only work with 8- or 16-bit 
wide memory operands, so there's no way to load a 1-bit field, for 
instance, into a register. What you can do with record fields is 
determine their size in bytes, determine how many bits they need 
to be shifted to be right-justified, and generate masks to isolate 
them. In other words, even though the 8086 doesn't let you work 
directly with record fields, Turbo Assembler supports 
manipulating record fields with instructions such as AND and 
SHR. 
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The value of a given record field is the number of bits by which 
you'd have to shift the record in order to right-justify that field 
(that is, place bit ° of the field at bit ° of the record). For instance, 

mov al,FLAG1 
mov ah,TVAL 

loads AL with 14 and AH with 0, so 

mov ax, [TRee] 
mov el,FLAG1 
shr ax,el 

right-justifies the FLAGl field of TRee in AX. 

The value of a given record type itself is the byte or word value 
that would be generated by creating a record with given initial 
values. For example, 

mov ax,TEST_REC <1,1,1,Offfh> 

loads AX with 7FFFh, the value you'd get if you created a 
TEST _REC type record with the initial values <l,l,l,OFFFh>. Bear 
iIi mind the distinction between loading AX with the record type 
TEST _REC, as in the last example, and loading AX with the 
record variable TRee, as in 

TEST REC RECORD FLAG1:1=1,FLAG2:1=O,FLAG3:1,TVAL:12=Offfh 

TRee TEST REC <,1,,2> 

.CODE 

mov ax, [TRee] 

which loads AX with 6002h, the value of the variable TRee. 

The WIDTH operator 

The WIDTH operator returns the size of a record or record field in 
bits. For example, the following line stores 15, the number of bits 
in a TEST _REC record, in AL: 

mov aI, WIDTH TEST_REC ;size of a TEST_REC record in bits 
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and the following stores 1, the width of each of the flag fields, in 
AL, AH, and BL, and 12, the width of the TV AL field, in BH: 

mov aI, WIDTH FLAG! 
mov ah,WIDTH FLAG2 
rnov bI,WIDTH FLAG3 
rnov bh,WIDTH TVAL 

The MASK operator 

Finally, the MASK operator returns a mask sUitable for isolating a 
record or record field with the AND instruction. For example, 

rnov ax,MASK TEST_REC 

stores 7FFFh in AX, and 

rnov ax,MASK TEST_REC 
rnov dx, [TRee] 
and dx,ax 

stores the value of the record TRee in DX, masking off bit 15, 
which isn't part of the TEST_REC record. 

MASK is more useful for isolating an individual record field. The 
following detects whether the FLAG3 field of TRee is set: 

rnov ax, [TRee] 
and ax, MASK FLAG3 
jz FIag3NotSet 

Note that the TEST instruction can be used non-destructively in 
place of AND; the following performs the same test as the 
previous example without modifying any registers or memory 
locations: 

jz FIag3NotSet 

The MASK operator is also useful for manipulating record fields 
in conjunction with the shift instructions, as you'll see shortly. 
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Why use records Now you've seen what records are and how they're used. When 
would you really want to use records? Well, records aren't used 
all that often, but they are handy when you've got multiple data 
fields encoded in a single byte or word. Some variables used by 
the BIOS are structured as records. For example, the low byte of 
the BIOS equipment flag variable, which stores equipment-related 
information (such as what video adapter is active and the number 
of floppy drives present) is a record of the structure 

EQ_FLAG RECORD NUMDISKS:2,VIDEO:2,RSRVD:2,MATHCHIP:l,AREDISKS:l 

where NUMDISKS is the number of floppy disk drives installed 
minus 1; VIDEO indicates what sort of display adapter is 
currently active; RSRVD is a field reserved for different uses in 
different IBM microcomputers; MATHCHIP is 1 if a numeric 
coprocessor such as an 8087 is installed; ARE DISKS is 1 if any 
floppy disk drives are installed. 

Here's a function that uses the EQ_FLAG record and the record 
operators to return the setting of the display adapter field of the 
BIOS equipment flag variable: 

i Returns current setting of the display adapter field of 
i the BIOS equipment flag variable. 

i Input: None 

i Output: 
AL = 0 if no display adapter is currently selected 

1 if 40x25 color display is currently selected 
2 if 80x25 color display is currently selected 
3 if 80x25 monochrome display is currently selected 

i Registers destroyed: AX,CL,ES 

EQ_FLAG RECORD NUMDISKS:2,VIDEO:2,RSRVD:2,MATHCHIP:l,AREDISKS:l 

GetBIOSEquipmentFlag 
mov ax,40h 
mov es,ax 
mov al,es:[lOh] 
and al,MASK VIDEO 
mov cl, VIDEO 

PROC 

ipoint ES to the BIOS data segment 
iget the low bit of the equipment flag 
iisolate the display adapter field 
iget the number of bits to shift 
i the display adapter field right to 
i right-justify it 
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See Chapter 11 for 
information about Ideal 

mode. 

shr al,cl iright-justify display adapter field 
ret 

GetBIOSEquipmentFlag ENDP 

Here's a complementary function that sets the display adapter 
field of the BIOS equipment flag to a specified value: 

Sets the display adapter field of the BIOS equipment flag 
variable. 

Input: 
AL = 0 if no display adapter is currently selected 

1 if 40x25 color display is currently selected 
2 if 80x25 color display is currently selected 
3 if 80x25 monochrome display is currently selected 

Output: None 

Registers destroyed: AX,CX,ES 

EQ_FLAG RECORD NUMDISKS:2,VIDEO:2,RSRVD:2,MATHCHIP:l,AREDISKS:l 

SetBIOSEquipmentFlag PROC 
mov cx,40h 
mov es,cx 
mov el, VIDEO 

shl al,e! 
mov ah,es: [lOh] 
and ah,NOT MASK VIDEO 
and aI, MASK VIDEO 

or al,ah 

ipoint ES to the BIOS data segment 
iget the number of bits to shift 
i the passed value left to align it 
i with the display adapter field 
ialign the value 
iget the low bit of equipment flag 
iclear the display adapter field 
imake sure the new display adapter 
i field setting is valid 
iinsert the new display adapter 
i field setting in the equipment 
i flag value 

rnov es:[lOh],al iset the new equipment flag 
ret 

SetBIOSEquipmentFlag ENDP 

In this section, we've discussed the MASM mode version of the 
RECORD directive. The Ideal mode version of the RECORD 
directive differs slightly from the MASM mode version. 

Turbo Assembler User's Guide 



The UNION 
directive The UNION directive provides a way to reference a given memory 

location as more than one data type. UNION is similar to C's union 
statement. 

Suppose you have a counter that you use sometimes as an 8-bit 
counter and sometimes as a 16-bit counter. You could declare it to 
be a union of the two with 

FLEX COUNT UNION 
COUNT8 DB? 
COUNT16 DW 
FLEX COUNT ENDS 

Note that, as with STRUC, UNION definitions must end with 
ENDS. 

Given the previous definition of the FLEX_COUNT union, you 
could create and use a dual-purpose counter as follows: 

• DATA 
Counter FLEX COUNT <?,?> 

.CODE 

mov [Counter.COUNT16],Offffh 
LoopTop: 

dec [Counter.COUNT16] 
jnz ShortLoopTop 

mov [Counter.COUNT8],255 
ShortLoopTop: 

dec [Counter.COUNT8] 
jnz ShortLoopTop 

As with STRUC, the period operator is used to reference union 
fields; the plus operator could be used as well. Referencing a 
variable by way of its union fields is equivalent to using type 
overrides. The preceding example is equivalent to 
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• DATA 
Counter DW ? 

.CODE 

mov WORD PTR [Counter],Offffh 
LoopTop: 

dec WORD PTR [Counter] 
jnz LoopTop 

mov BYTE PTR [Counter],255 
ShortLoopTop: 

dec BYTE PTR [Counter] 
jnz ShortLoopTop 

The advantage of using a union over type overrides is that you're 
much more likely to use the correct union element name than you 
are to remember the type override in every instance. Also, the 
multiple-mode operation of a union variable is instantly apparent 
when you look at the variable's definition, so code containing 
unions is easier to understand and maintain. 

You can nest both unions and structures within unions. For 
example, the following union allows a 4-byte memory variable to 
be accessed as either a doubleword-sized segment:offset pointer 
or as a word-sized offset variable and a word-sized segment 
variable: 

SEG OFF STRUC 
POFF OW ? 
PSEG DW ? 
SEG OFF ENDS 

PUN ION UNION 
DPTR DO 
XPTR SEG OFF <> 
PUNION ENDS 

.CODE 

mov [bx.XPTR.POFF],si 
mov [bx.XPTR.PSEG],ds 

les di, [bx.DPTR] 
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mode. 

As with STRUC and RECORD, the field names defined with 
UNION are normal labels, with no scope limitations. 
Consequently, union field names must be unique in their source 
module. 

In this section, we've discussed the MASM mode version of the 
UNION directive. In Ideal mode, the UNION directive is 
considerably more powerful, providing more of the features 
available to structures in high-level languages. 

Segment directives 

The SEGMENT 

In Chapter 5, you learned how to use the simplified segment 
directives, and you learned enough about the standard segment 
directives to be able to make a working program. Now we're 
going to discuss each of the standard segment directives in detail, 
and provide you with more information about what the 
simplified segment directives do. We're also going to show you a 
sample program that uses several code and data segments, to give 
you a feel for how multisegment programs operate. 

Recall that the simplified segment directives are easier to use but 
less powerful than the standard segment directives. The standard 
segment directives we cover in the next sections are SEGMENT, 
GROUP, and ASSUME. 

directive The SEGMENT directive is used to start a segment. Each 
SEGMENT directive must have a matching ENDS to terminate that 
segment. Unlike the simplified segment directives, SEGMENT 
gives you complete control over the attributes of each segment. 

The complete form of the SEGMENT directive is 

name SEGMENT align combine use 'class' 

where align, combine, use, and class are all optional. We'll discuss 
each of these fields in turn. 
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The name and align 
fields 

name is the name of the segment. Segment names are labels, so 
they must be unique in their source modules. The same name 
must be used with ENDS when the segment is ended. 

align specifies the memory boundary on which the segment 
should start. The following are valid alignments: 

• BYTE uses the next available byte address . 
.. DWORD uses the next doubleword-aligned address. 

• PAGE uses the next page address (256-byte aligned). 

• PARA uses the next paragraph address (16-byte aligned). 

• WORD uses the next word-aligned address. 

If no alignment is explicitly specified, paragraph-alignment is 
used. 

Byte-alignment makes for the most compact programs. Word
alignment is preferable on 16-bit computers such as the AT, since 
16-bit processors operate more efficiently on word-aligned data; 
doubleword-alignment is preferable on 32-bit computers for 
much the same reason. Paragraph-alignment is necessary for 
segments that will be a full64K long. 

The combine field combine controls the manner in which segments of the same name 
in other modules will be combined with this segment when the 
modules that make up the program are linked together. combine 
can be anyone of the following types: 

AT 
COMMON 
MEMORY 
PRIVATE 

PUBLIC 
STACK 
VIRTUAL 

You might find it useful to refer to the later section (on page 400), 
"The simplified segment directives," which shows the combine 
types used by high-level languages. 

A combine type of AT causes the start of the segment to be placed 
at a specific address in memory. No code is actually generated; 
instead, AT segments are used as templates for accessing memory 
areas such as the ROM BIOS data segment and display memory. 
For example, 

VGA GRAPHICS MEMORY SEGMENT AT OAOOOh - -
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BitMapStart LABEL BYTE 
VGA GRAPHICS MEMORY ENDS - -

mov ax,VGA_GRAPHICS_MEMORY 
mov eS,ax 
ASSUME es:VGA GRAPHICS MEMORY - -
mov di,OFFSET BitMapStart 
mov cx,08000h 
sub aX,ax 
cld 
rep stosw 

clears the VGA graphics screen. 

The combine type COMMON specifies that the beginning of this 
segment and the beginning of all other segments of the same 
name should be aligned, so that the segments overlay each other. 
The total segment size is only the size of the largest segment of 
this name. One way in which the COMMON combine type can be 
used is by including a file that defines a COMMON segment in 
each module referencing that segment, so that all modules 
effectively share exactly the same segment. 

The combine type PUBLIC instructs the linker to concatenate this 
segment with other segments of the same name, so the segments 
are effectively pieced together to make a larger segment. The total 
size of the segment is the sum of the size of all segments of this 
name. As with all segments, the total size of PUBLIC segments 
can't exceed 64K. PUBLIC is used when multiple modules share 
the same segment, but each defines its own variables. Variables in 
PUBLIC segments are often shared between modules by way of 
GLOBAL directives. 

The MEMORY combine type is the same as PUBLIC. 

The combine type STACK instructs the linker to concatenate all 
segments of this name into one segment, and to build the EXE file 
so that SS:SP is set to point to the end of this segment when the 
program is run. This is a specialized combine type to be used for 
the stack and nothing else. 

A combine type of VIRTUAL defines a special kind of segment, 
which will be treated as a common area and attached to another 
segment at link time. The VIRTUAL segment is assumed to be 
attached to the enclosing segment. The VIRTUAL segment also 
inherits its attributes from the enclosing segment. The ASSUME 
directive considers a VIRTUAL segment to be a part of its parent 

Chapter 9, Advanced programming in Turbo Assembler 391 



The use and class fields 
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Segment size, type, 
name, and nesting 

segment; in all other ways, a VIRTUAL segment is treated just like 
a normal segment. The linker treats virtual segments as a common 
area that will be combined across modules. This permits static 
data that comes into many modules from Include files to be 
shared. 

Finally, the combine type PRIVATE instructs the linker not to 
combine this segment with any other segments. This allows you 
to define segments that are local to a given module, without 
having to worry about possible conflicts if segments of the same 
name are used in other modules. Segments default to combine 
type PRIVATE if no combine type is specified. 

The use field of the SEGMENT directive is for 80386 assembly 
only; Chapter 10 offers more information on the use field. 

The class field is used to control the order in which the linker 
places segments. All segments of a given class are placed in a 
contiguous block of memory, no matter what their order is in the 
source code. The section liThe simplified segment directives" 
shows the classes used by high-level languages; for simplicity, 
you might want to follow these conventions. 

The cumulative size of the segments in a class is limited only by 
the availability of memory at run-time; however, no individual 
segment can exceed 64K. 

Note that the class type, if present, must be enclosed in quotes. 
Also, class types must be unique in their source modules; that is, 
no label used in a given module may have the same name as a 
class type used in that module. 

You can define the same segment name multiple times in the 
same source module; all instances are considered to refer to a 
single segment. However, you must make sure that all definitions 
of a given segment in a source module have the same attributes; 
otherwise, Turbo Assembler will generate an error. 

One handy way to avoid such errors is to specify attributes only 
the first time you define a segment in a given source module. 
When a redefined segment with no attributes is encountered, 
Turbo Assembler automatically uses the attributes specified when 
the segment was first defined. 

Finally, segments can be nested, which means you can define a 
segment before you end an earlier segment, as follows: 

Turbo Assembler User's Guide 



Segment-ordering 

DataSeg SEGMENT PARA PUBLIC 'DATA' 

DataSeg2 SEGMENT PARA PRIVATE 'FAR_DATA' 

DataSeg2. ENDS 

DataSeg ENDS 

Nesting is not generally useful, but there is at least one case where 
it's handy, and that's in a macro. In order to define a segment in a 
macro, you'd normally have to end and then restart the current 
segment, and to do that you'd need to know the current segment's 
name, which is not necessarily obvious in the context of a macro. 
By contrast, segment-nesting allows you to define a segment 
without ever knowing what the name of the current segment is, as 
follows: 

TEST MACRO 

TestSeg SEGMENT WORD PRIVATE 'FAR DATA' 

TestSeg ENDS 

ENDM 

After a nested segment ends, Turbo Assembler simply resumes 
assembling into the segment that was active when the nested 
segment began. 

By and large, you don't need to worry about the order in which 
the segments end up in the .EXE files you create. First of all, the 
order in which segments appear in .EXE files doesn't often matter. 
Second, most of the cases in which you might care about segment 
order are easily handled by a high-level language compiler or the 
DOSSEG directive. If you're linking to a high-level language, that 
language's compiler will usually control the segment order. If 
you're writing a pure assembler program and have specified the 
DOSSEG directive, your segments will end up in Microsoft
standard segment order, as follows: 

• Segments of class CODE 
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• Segments of class other than CODE that are not part of 
DGROUP 

• Segments that are part of DGROUP, in the following order: 

• Segments of classes other than STACK and BSS 
• Segments of class BSS 
• Segments of class STACK 

If you're curious about the order in which the linker is placing 
your segments, just use the Is command-line switch to instruct 
TLINK to generate a detailed segment map file and take a look at 
the map file. 

A question remains: How are segments ordered if you aren't 
linking to a high-level language and you don't use the DOSSEG 
directive? Most of the time, you'll have no need to know the 
answer to that question, but in case it does matter to you, here's 
the answer. (It's a bit more complex than you might think.) 

When no explicit segment-ordering, such as that forced by 
DOSSEG, is in effect, the linker groups all segments of a given 
class together, where the class of a segment is specified by the 
class field of the SEGMENT directive. The groups of segments 
themselves are placed in the .EXE file simply in the order in 
which the linker encounters them; the first segment class the 
linker encounters in loading the .OB] files is placed first in the 
.EXE file, the second segment class encountered comes next, and 
so on. This means that the order in which .OB] files are linked 
affects the final order of the segments in the .EXE file. 

Now you've got the segments loosely ordered by class. How, then, 
are the segments within each class ordered? Once again, they're 
placed in the .EXE file in the order in which the linker 
encountered them. One factor here is the order in which the .OB] 
files are linked; another factor is the order in which the segments 
are placed in each .OB] file. Turbo Assembler gives you two 
choices regarding the order in which segments appear in .OB] 
files. 

The .SEQ directive instructs Turbo Assembler to place segments 
in the .OB] file in the order in which they appear in the source file. 
With sequential-ordering, the order of the segments in a given 
source module can affect the order of the segments in the .EXE 
file. This is the default mode of operation of Turbo Assembler, so 
sequential segment-ordering will occur even if you omit the .SEQ 
directive, as long as the .ALPHA directive is not used. 
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The GROUP 

The .ALPHA directive instructs Turbo Assembler to place 
segments in the .OBI file in alphabetic order. With alphabetic
ordering, the order of the segments in a given source module does 
not affect the order of the segments in the .EXE file. This is the 
default mode of operation of some older assemblers, so you may, 
on occasion, have to use .ALPHA in order to get assembler 
programs to run properly. 

So, now you've got segments loosely ordered by class, and 
ordered within the class by the order of appearance of the 
segments. You can control the order of appearance of segments 
within the class both by the order in which .OBI files are linked 
and by the .SEQ and .ALPHA directives. If .SEQ is selected, the 
order of appearance of segments in a given source module can 
affect the order of the segments in the .EXE file. 

You can see that segment-ordering is no simple matter. Odds are, 
though, that you'll never have to worry about segment order; it 
doesn't usually make any difference anyway, and when it does, a 
high-level compiler or the DOSSEG directive generally takes care 
of segment-ordering for you. 

directive The GROUP directive is used to combine two or more segments 
into one logical entity, so that all the segments can be addressed 
relative to a single segment register. 

Suppose you have a program that accesses data in two segments. 
Normally, you'd have to load a segment register and perform a 
new ASSUME each time you wanted to access first one segment 
and then the other; that's both time-consuming and a nuisance. It's 
far easier to combine the segments into a single group named 
DataGroup, load DS with the start of DataGroup, ASSUME DS to 
DataGroup, and then access either segment at any time. Here's the 
code: 

DataGroup GROUP DataSegl,DataSeg2 

DataSegl SEGMENT PARA PUBLIC 'DATA' 
MemVarl DW 0 
DataSegl ENDS 

DataSeg2 SEGMENT PARA PUBLIC 'DATA' 
MemVar2 DW 0 
DataSeg2 ENDS 
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mov ax,DataGroup 
mov ds,ax 
ASSUME ds:DataGroup 

mov ax, IMemVarl] 
mov IMemVar2],ax 

Why would you want to use groups, when using a single segment 
name and the combine type PUBLIC produces the same result 
more easily? Actually, in pure assembler programs, there's not 
that much need for groups, although you can certainly use them if 
you want. Groups are primarily used when interfadng assembler 
code to high-level languages. In particular, the group DGROUP is 
used by high-level languages to allow the stack, initialized near 
data, uninitialized near data, and constant segments to be 
accessed relative to a single segment register. 

1111" The one key rule with groups is that all the segments in a group 
must lie within a single 64K segment, since they must all be 
accessed relative to a single segment register. Bear in mind that 
segment-ordering is dependent on many factors, as discussed in 
the last section, so segments might lie some distance apart if 
you're not careful. The safest approach is to declare all segments 
in a group to be of the same class, and to define them one after the 
other at the start of all modules they're defined in. 

However, when you are either linking to a high-level language or 
have used the DOSSEG directive anywhere in your program, 
there's no need to worry about making sure that the segments in 
DGROUP are kept together; in both these cases, the linker 
automatically makes all segments in DGROUP adjacent. 

While the segments in a group must fit within a 64K segment, 
they do not have to be contiguous once they're linked. Non
grouped segments can lie between the segments that make up a 
group. 

1111" If you do use a group, you must be careful always to use the 
group name with ASSUME when you load a segment to point to 
the group. Otherwise, Turbo Assembler will generate offsets 
relative to the segment start, not the group start, even though the 
segment register is pointing to the group start. For example, the 
following would cause errors given the previous definition of 
DGROUP: 
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The ASSUME 

mov ax,DGROUP 
mov ds,ax 
ASSUME ds:Stack ;will produce incorrect offsets! 

Instead, use 

mov ax,DGROUP 
mov ds,ax 
ASSUME ds:DGROUP 

In short, if you load a segment register to point to a group, be sure 
to ASSUME to that group, not to any of its component segments. 

MASM, the Microsoft Macro Assembler, has a bug regarding the 
OFFSET operator with groups. This bug also surfaces when 
initializing data to the address of labels in a group. In the interests 
of compatibility, Turbo Assembler reproduces this bug. The 
workaround for this bug is always to place group override 
prefixes on labels when you use them with the OFFSET operator 
or use them to initialize data. 

directive The ASSUME directive lets you tell Turbo Assembler what 
segment or group a given segment register is pointing to. Note 
that this is not the same as actually loading a segment register to 
point to that segment; you must do that separately with the MOV 
instruction. The purpose of ASSUME is to allow Turbo Assembler 
to check the validity of your memory references and to insert 
segment override prefixes automatically on your memory 
accesses as needed. 

An ASSUME for CS must appear before any code in each source 
module, so that Turbo Assembler knows what segment to assume 
the instructions are in, for purposes of jumps, calls, and setting 
the starting address of the program. 

Other ASSUME directives for the various segment registers can be 
inserted as often as needed in any source module. The assumed 
segment for any segment register can be changed whenever you 
wish. Any or all segment assumptions can be changed with a 
single ASSUME directive. 
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You can specify an assumption for a segment register with either 
a segment name, a group name, or a segment extracted from a 
label with the SEG operator. Additionally, you can use the 
NOTHING keyword to instruct Turbo Assembler to assume that 
any or all segment registers aren't pointing to any segment. 

Here's an example of using ASSUME: 

Stack SEGMENT PARA STACK 'STACK' 
DB 512 DUP (0) 

Stack ENDS 
TGROUP GROUP DataSeg1,DataSeg2 
DataSeg1 SEGMENT PARA PUBLIC 'DATA' 

DataSeg1 ENDS 
DataSeg2 SEGMENT PARA PUBLIC 'DATA' 

DataSeg2 ENDS 

DataSeg3 SEGMENT PARA PUBLIC 'DATA' 
MemVar DW 0 

DataSeg3 ENDS 

CodeSeg SEGMENT PARA PUBLIC 'CODE' 
ASSUME cs:CodeSeg,ds:TGROUP,ss:Stack,es:NOTHING 

ProgramStart: 
mov ax,TGROUP 
mov ds,ax 
ASSUME ds:TGROUP 

mov ax,SEG MemVar 
mov es,ax 
ASSUME es:SEG MemVar 

push ds 
pop es 
mov ax,CodeSeg 
mov ds,ax 
ASSUME ds:CodeSeg,es:TGROUP 

CodeSeg ENDS 
END ProgramStart 

;same as DataSeg3 

If an ASSUME directive refers to a group, the specified segment 
register is assumed to point to the start of that group. However, if 
an ASSUME directive refers to a segment that's part of a group, 
the segment register is assumed to point to the start of the 
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segment, not the group. This can cause problems, since segment 
registers are generally set to point to the start of groups, not 
segments that make groups. For example, the following would 
load AX. from the wrong memory location, since OS points to the 
start of TGROUP, but the ASSUME statement incorrectly indicates 
that OS points to the start of DataSeg2: 

TGROUP GROUP DataSegl,DataSeg2 
DataSegl SEGMENT PARA PUBLIC 'DATA' 

DataSegl ENDS 
DataSeg2 SEGMENT PARA PUBLIC 'DATA' 
MemVar DW 0 
DataSeg2 ENDS 

CodeSeg SEGMENT PARA PUBLIC 'CODE' 
ASSUME cs:CodeSeg 

mov ax,TGROUP 
mov ds,ax 
ASSUME ds:DataSeg2 
mov ax, [MemVarl 

;not correct!!! (should be TGROUP) 
;will load from the wrong offset, 

relative to DataSeg2 rather than 
; TGROUP 

When you use the simplified segment directives, it's generally not 
necessary to use ASSUME, since Turbo Assembler automatically 
generates the appropriate segment assumptions. However, if you 
change any segment registers while you're using the simplified 
segment directives, you will have to perform the appropriate 
ASSUME directives. For example, the following sets OS to point to 
the .DATA segment, the .CODE segment, the .FARDATA segment, 
and finally back to the .DATA segment: 

. DATA 

.FARDATA 

. CODE 
mov ax,@data 
mov ds,ax 
ASSUME ds:@data 

mov ax,@code 
mov ds,ax 
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ASSUME ds:@code 

mov ax,@fardata 
mov ds,ax 
ASSUME ds:@fardata 

mov ax,@data 
mov ds,ax 
ASSUME ds:@data 

As we've pointed out before, the ASSUME directive can cause 
Turbo Assembler to insert segment override prefixes on memory 
accesses whenever Turbo Assembler (operating on the basis of the 
ASSUME directives you've issued) thinks that's necessary to access 
a given memory variable. For example, Turbo Assembler will put 
an ES: override on the instruction that accesses MemVar in the 
following code, since the ASSUME directive incorrectly indicates 
that DS can't reach the segment where MemVar resides: 

DataSeg SEGMENT PARA PUBLIC 'DATA' 
MemVar DB ? 

DataSeg ENDS 

CodeSeg SEGMENT PARA PUBLIC 'CODE' 
ASSUME cs:CodeSeg,ds:NOTHING,es:DataSeg 

mov ax,DataSeg 
mov ds,ax 
mov es,ax 
mov [MemVarl,l 

We discussed the simplified segment directives in some detail in 
Chapter 5. However, the main aspect of simplified segment 
directives that we haven't covered yet is exactly what segments 
the various simplified segment directives create. That's not 
something you'll normally have to know, but if you're mixing 
simplified and standard segment directives, you might need that 
information. 

The segments and segment groups created by the .CODE, .DATA, 
.DATA?, .STACK, .CONST, .FARDATA, and .FARDATA? directives 
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depend on the memory model selected by the .MODEL directive. 
The following tables show the correspondence of memory models 
and the segments created by the simplified segment directives: 

Table 9.1 
Directive Name Align Combine Class Group Default segments 

and types for tiny 
memory model .CODE TEXT WORD PUBLIC 'CODE' DGROUP 

.FARDATA FAR_DATA PARA private 'FAR DATA' 

.FARDATA? FAR BSS PARA private 'FAR-BSS' 

.DATA DATA WORD PUBLIC 'DATA' DGROUP 

.CONST CaNST WORD PUBLIC 'CONsr DGROUP 

.DATA? BSS WORD PUBLIC 'BSS' DGROUP 

.STACK- STACK PARA STACK 'STACK' DGROUP 

- STACK not assumed to be in DGROUP if FARSTACK specified. 

Table 9.2 
Default segments Directive Name Align Combine Class Group 

and types for small 
memory model .CODE TEXT WORD PUBLIC 'CODE' 

.FARDATA FAR_DATA PARA private 'FAR DATA' 

.FARDATA? FAR BSS PARA private 'FAR-BSS' 

.DATA _DATA WORD PUBLIC 'DATA' DGROUP 

.CONST CaNST WORD PUBLIC 'CaNST' DGROUP 

.DATA? BSS WORD PUBLIC 'BSS' DGROUP 

.STACK- STACK PARA STACK 'STACK' DGROUP 

- STACK not assumed to be in DGROUP if FARSTACK specified. 

Table 9.3 
Default segments Directive Name Align Combine Class Group 

and types for 
medium memory .CODE name_TEXT WORD PUBLIC 'CODE' 

model .FARDATA FAR DATA PARA private 'FAR DATA' 
.FARDATA? FAR=BSS PARA private 'FAR-BSS' 
.DATA DATA WORD PUBLIC 'DATA' DGROUP 
.CONST CaNST WORD PUBLIC 'CONsr DGROUP 
.DATA? BSS WORD PUBLIC 'BSS' DGROUP 
.STACK- STACK PARA STACK 'STACK' DGROUP 

- STACK not assumed to be in DGROUP if FARSTACK specified. 

Table 9.4 
Default segments Directive Name Align Combine Class Group 

and types for 
compact memory .CODE _TEXT WORD PUBLIC 'CODE' 

model .FARDATA FAR DATA PARA private 'FAR DATA' 
.FARDATA? FAR=BSS PARA private 'FAR=BSS' 
.DATA DATA WORD PUBLIC 'DATA' DGROUP 
.CONST CaNST WORD PUBLIC 'CONsr DGROUP 
.DATA? BSS WORD PUBLIC 'BSS' DGROUP 
.STACK- STACK PARA STACK 'STACK' DGROUP 

- STACK not assumed to be in DGROUP if FARSTACK specified. 
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Table 9.5 
Default segments 

and types for large 
or huge memory 

model 

Table 9.6 
Default segments 

and types for Turbo 
Pascal (TPASCAL) 

memory model 

402 

Directive Name Align Combine Class Group 

.CODE name TEXT WORD PUBLIC 'CODE' 

.FARDATA FAR-DATA PARA private 'FAR_DATA' 

.FARDATA? FAR-BSS PARA private 'FAR BSS' 

.DATA _DATA WORD PUBLIC 'DATA' DGROUP 

.CONST CONST WORD PUBLIC 'CONST' DGROUP 

.DATA? BSS WORD PUBLIC 'BSS' DGROUP 

.STACK" STACK PARA STACK 'STACK' DGROUP 

"STACK not assumed to be in DGROUP if FARSTACK specified. 

Directive Name Align Combine 

.CODE CODE BYTE PUBLIC 

.DATA DATA WORD PUBLIC 

In past chapters, you've probably noticed that programs using the 
simplified segment directives don't need ASSUME, GROUP, or 
ENDS directives. The .MODEL directive automatically performs 
the appropriate ASSUME directives for the selected memory 
mode, assuming the segments shown in the preceding tables . 
. MODEL also performs the group definition for DGROUP, as 
shown in the previous tables. 

As for ENDS, the start of a new segment with a simplified 
segment directive-for example, .CODE or .DATA-automatically 
ends the current segment, if there is one. 

Take a look now at the more esoteric simplified segment 
directives: .DATA?, .CONST, .FARDATA, and .FARDATA? 
.FARDATA is really the only one of these you'll ever use in a pure 
assembler program; the others are strictly for matching the 
segment usage of high-level languages . 

. DATA? starts the segment that is to contain uninitialized near 
data in DGROUP. Since both the .DATA and .DATA? segments are 
in the same group, there's really no reason not to simply skip 
using .DATA? altogether and use question marks 'to define 
uninitialized data in the .DATA segment, except when you're 
following the conventions of a high-level language . 

. CONST, which starts the segment that is to contain constant near 
data in DGROUP, falls into the same category as .DATA? You 
might as well put your constant data in .DATA and skip .CONST, 
except when you're following the conventions of a high-level 
language. 
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.FARDATA is used to create a far data segment unique to a given 
source module; that is, a segment that's not shared with any other 
module. That segment is named FAR_DATA but is of combine 
type PRIVATE, so it's not combined with any other segment . 
. FARDATA allows you to define up to 64K of local data storage in 
each module. Of course, if you use .FARDATA, you must set a 
segment register to point to that segment, as follows: 

.MODEL small 
• DATA 

InitValue DW 0 
.FARDATA 

MemArray DW 100 DUP (?) 
.CODE 

mov ax,@data 
mov ds,ax 
mov ax,@fardata 
mov es,ax 
mov ax, [InitValue] 
ASSUME es:@fardatai 
mov di,OFFSET MemArray 
mov cx,100 
cld 
rep stosw 

Note that the predefined label @fardata contains the name of the 
segment defined with the .FARDATA directive. 

While a segment defined with .FARDATA isn't shared with any 
other module (as, for example, the segment defined with .DATA 
is), you can use GLOBAL to share specific variables in the 
.FARDATA segment with other modules. For example, the 
following makes MemVar available to other modules: 

. MODEL small 

.FARDATA 
GLOBAL MemVar:WORD 

MemVar DW 0 

Another module could then reference MemVar as follows: 

. MODEL small 
GLOBAL MemVar:WORD 
• DATA 

. CODE 
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A multisegment 
program 

mov ax,SEG MemVar 
mov ds,ax 
ASSUME ds:SEG MemVar 
mov ax, [MemVar] 

Note that the declaration of MemVar as GLOBAL comes before 
any segment is declared. This is necessary because a global 
declaration of a given variable must be performed either inside 
the variable's segment or outside all segments. Since, by 
definition, no module can share another module's .FARDATA 
segment, the declaration of MemVar must be performed outside 
all segments. . 

.FARDATA? is much like .FARDATA, except that it creates a 
private segment named FAR_BSS. FAR_BSS segments are used 
by high-level languages for uninitialized far data. If you're not 
interfacing to a high-level language, there's no reason you 
shouldn't define your uninitialized far data in the segment 
defined with .FARDATA and forget about .FARDATA? True, the 
.FARDATA segment gives you an additional64K of far storage, 
but if you really need more than 64K of far storage that's unique 
to a given module, you should probably be using the standard 
segment directives anyway. 

If you do use .FARDATA?, the predefined label @fardata? 
contains the name of the segment defined by .FARDATA, suitable 
for use in ASSUME directives and in loading segment registers. 

The next program has two code segments and two data segments. 
This is hardly a comprehensive example of multisegment 
programming, but we don't have the space for a program running 
to hundreds or thousands of lines; this one will serve to give you 
a feel for switching data segments, loading full segment:offset 
pointers, and calling code in other segments. 

Here's the example: 

; Program to demonstrate use of multiple code and data segments. 

; Reads a string from the console, stores it in one data 
segment, copies the string to another data segment, converting 
it to lowercase in the process, then prints the string to the 
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console. Uses functions in another code segment to read, 
print, and copy the string. 

Stack 
DB 

SEGMENT PARA STACK 'STACK' 
512 DUP (?) 

Stack ENDS 

. MAX_STRING_LENGTH EQU 1000 

SourceDataSeg SEGMENT PARA PRIVATE 'DATA' 
InputBuffer DB MAX_STRING_LENGTH DUP (?) 
SourceDataSeg ENDS 

DestDataSeg 
OutputBuffer 
DestDataSeg 

SEGMENT PARA PRIVATE 'DATA' 
DB MAX_STRING_LENGTH DUP (?) 
ENDS 

SubCode SEGMENT PARA PRIVATE 'CODE' 
ASSUME cs:SubCode 

Subroutine to read a string from the console. String end is 
marked by a carriage-return, which is converted to a 
carriage-returnflinefeed pair so it will advance to the next 
line when printed. A a is added to terminate the string. 

Input: 
ES:DI - location to store string at 

Output: None 

Registers destroyed: AX,DI 

GetString PROC FAR 
GetStringLoop: 

mov ah,l 
int 21h 
stosb 
cmp aI, 13 
jnz GetStringLoop 
mov BYTE PTR es: [di],10 
mov BYTB PTR es: [di+1],0 

ret 
GetString ENDP 

;get the next character 
isave it 
iis it a carriage-return? 
ino-not done yet 

iend the string with a linefeed 
; and with a zero 

Subroutine to copy a string, converting it to lowercase. 

Input: 
DS:SI - string to copy 
ES;DI - place to put string 
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Output: None 

Registers destroyed: AL, SI, DI 

CopyLowercase PROC FAR 
CopyLoop: 

lodsb 
cmp aI,' A' 
jb NotUpper 
cmp al,'Z' 
ja NotUpper 
add al,20h iconvert to lowercase if it's uppercase 

NotUpper: 
stosb 
and al,al 
jnz CopyLoop 
ret 

iwas that the 0 that ends the string? 
ino, copy another character 

CopyLowercase ENDP 

Subroutine to display a string to the console. 

Input: 
DS:SI - string to display 

Output: None 

Registers destroyed: AH,DL,SI 

DisplayString PROC FAR 
DisplayStringLoop: 

mov dl, [si) 
and dl,dl 
jz DisplayStringDone 
inc si 
mov ah,2 
int 21h 
jmp DisplayStringLoop 

DisplayStringDone: 
ret 

DisplayString ENDP 
Sub Code ENDS 

iget the next character 
iis this the 0 that ends the string? 
iyes, we're done 
ipoint to the following character 

idisplay the character 

Code SEGMENT 
ASSUME 

ProgramStart: 
cld 

PARA PRIVATE 'CODE' 
cs:Code,ds:NOTHING,es:NOTHING,ss:Stack 

imake string instructions increment 
i their pointer registers 

Read a string from the console into InputBuffer. 
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mov ax,SourceDataSeg 
mov es,ax 
ASSUME es:SourceDataSeg 
mov di,OFFSET InputBuffer 
call GetString iread string from the console and 

i store it at ES:DI 

Print a linefeed to advance to the next line. 

mov ah,2 
mov dl,lO 
int 21h 

Copy the string from InputBuffer to OutputBuffer, converting 
it to lowercase in the process. 

push es 
pop ds 
ASSUME ds:SourceDataSeg 
mov ax,DestDataSeg 
mov es,ax 
ASSUME es:DestDataSeg 
mov si,OFFSET InputBuffer 
mov di,OFFSET Output Buffer 
call CopyLowercase 

Display the lowercase string. 

push es 
pop ds 
ASSUME ds:DestDataSeg 
mov si,OFFSET OutputBuffer 
call DisplayString 

Done. 

mov ah,4ch 
int 21h 

Code ENDS 
END ProgramStart 

iCOPY from DS:SI •.. 
i ... to ES:DI. .. 
i ••. making it lowercase 

idisplay string at DS:SI 
i to the console 

1111. Note that, in this example, the subroutines come before the main 
program. This is done in order to avoid forward references, since 
the subroutines and the main program reside in different code 
segments. If the main program came first, you'd have to put FAR 
PTR overrides on each subroutine call because Turbo Assembler 
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can't automatically assemble far forward-referenced jumps. Given 
the way the program is organized, however, all the subroutine 
calls are backward references, so Turbo Assembler can 
automatically generate far calls to the subroutines. 

Otherwise, the program is quite straightforward. The subroutines 
use full segment:offset pointers to data, and the main program 
sets DS and ES to different data segments as needed. Note the use 
of the string instructions when copying the string and converting 
it to lowercase; since LODS defaults to using OS and STOS uses 
ES, these instructions are ideally suited for use in code that must 
access two segments at once. 
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10 

The 80386 and other processors 

So far, we've focused on assembly language programming for the 
8086 processor. (We've also implicitly covered the 8088, which is 
used in the IBM PC and XT, since the 8088 is basically an 8086 
with an 8-bit external data bus.) 

The 8086 is not the only processor Turbo Assembler supports, 
however; there is a whole family of 8086-superset processors, 
known as the iAPx86 family, and a family of math coprocessors 
that are supersets of the 8087, as well. 

The most exciting member of the iAPx86 family is, without a 
doubt, the 80386, which brings minicomputer power to personal 
computers. Nonetheless, each of the members of the iAPx86 
family has interesting enhancements over the basic 8086. 

First, we'll look at the ways in which the 80186 and 80286 
processors extend the capabilities of the 8086. Next, we'll look at 
80386 programming to see how to enable Turbo Assembler's 
80386 features, examine the new segment types used in 80386 
programming, and look at the new registers, addressing modes, 
and instructions of the 80386. After that, we'll examine Turbo 
Assembler's powerful ability to mix 16- and 32-bit instructions 
and segments, and we'll look at some sample 80386 code. Finally, 
we'll take a brief look at the ways in which the 80287 and 80387 
math coprocessors extend the capabilities of the 8087. 
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Switching processor types in assembler code 

For the remainder of this 
chapter, all references made 
to the 8086 apply to the 8088 

oswell. 

410 

Turbo Assembler defaults to supporting the assembly of 8086 
code only. In order for Turbo Assembler to support another 
iAPx86-family processor or coprocessor, you must issue the 
appropriate directive. The following directives tell Turbo 
Assembler what type of processor to support when it's assembling 
code: 

.186 

.286 
.286C 
.286P 

.287 

.386 
.386C 
.386P 

.387 

.8086 
.8087 

These directives can be inserted anywhere in assembler source 
files, and take effect immediately. Multiple processor-type 
directives can be placed in a single source file; at any given point 
in a source file, the last processor type specified is the processor 
type currently selected. 

The .8086 directive can be used anytime to instruct Turbo 
Assembler to return to supporting 8086 assembly only. For 
example, the following function adds two 32-bit values by using 
8086 code, then 80386 code, and finally 8086 code again: 

.MODEL small 
• CODE 

Add32 PROC 

Add32 

mov ax, [bp+4] 
mov dx, [bp+6] 
mov bx, [bp+8] 
mov ex, [bpi 10] 
.386 
shl eax,16 
mov ax,dx 
rol eax,16 
mov dx,cx 
shl edx,16 
mov dx,bx 
add eax,edx 
rol eax,16 
mov dx,ax 
shr eax,16 
.8086 
ret 

ENDP 
END 

;get low half of source 1 
;get high half of source 1 
;get low half of source 2 
;get high half of source 2 
;use 80386 registers for actual addition 

;put 32 bits of source 1 in EAX 

;put 32 bits of source 2 in EDX 

;add source 1 and source 2 

;put high half of result in DX 
;low half of result is in AX 
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The 80186 and 80188 

The 80186 is the iAPx86-family processor most like the 8086. The 
80186 supports all the instructions of the 8086 and adds a few new 
instructions, along with extended forms of some 8086 
instructions. In addition, the 80186 is considerably faster than the 
8086 at many operations, especially memory address calculations, 
so the 80186 runs code written for the 8086 at a significantly 
higher speed than does the 8086. 

The 80188 is program-compatible with the 80186; the only 
difference between the two is that the 80186 has a 16-bit external 
data bus, and the 80188 has an 8-bit external data bus. 

Turbo Assembler support for assembly of 80186 code is enabled 
with the .186 directive. 

For information about 80 186 Next, let's take a look at the new and extended instructions of the 
instructions, see Chapter 3 of 80186. 

the Reference Guide. 

New instructions 
Warningl Before we begin, take note that the 8086 does not recognize any of 

the instructions we're about to discuss. Consequently, any 
program that uses even one of the new or extended instructions of 
the 80186 won't run on an 8086. 

Here are the new 80186 instructions: 

BOUND 
ENTER 

INS 
LEAVE 

OUTS 
POPA 

PUSHA 

PUSHA and POPA PUSHA and POPA provide an efficient means by which to push 
and pop all eight general-purpose registers. PUSHA pushes the 
eight general-purpose registers onto the stack in the order AX, 
CX, DX, BX, SP, BP, 51, DI. POPA pops DI, 51, BP, BX, DX, CX, and 
AX from the stack, reversing the action of PUSHA. SP is not 
popped by POPA; instead, SP is incremented by 16, the length of 
the block of registers pushed on the stack by PUSHA, and the 
value of SP pushed by PUSHA is cleared from the stack by POPA 
and thrown away. The segment registers, the flags, and the 
instruction pointer are not affected by PUSHA or POPA. 

For example, the code 
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Don't forget to use the .186 
directive to enable 80 186 

assembly before using 
80 186-specific Instructions 
such as PUSHA and POPA. 

.186 

SampleFunction PROC 
pusha 

412 

popa 
ret 

SampleFunction ENDP 

preserves all 8 general-purpose registers with just two instruc
tions, rather than the 16 instructions required to push and pop 
each register separately. 

Be aware that while PUSHA is faster than eight separate PUSH 
instructions, it is slower than three or four pushes; if you only 
need to preserve a few registers, it's best to save just those 
registers with PUSH. The same is true of POPA and POP. 

ENTER and LEAVE ENTER and LEAVE are used to set up and discard stack frames, in 
which passed parameters and local (automatic) variables can be 
accessed relative to BP. ENTER and LEAVE are particularly useful 
when interfacing assembler functions to stack-oriented languages 
such as C. (See Chapters 7 and 8 for information on interfacing 
assembler functions to Turbo C and Turbo Pascal.) 

ENTER preserves the calling routine's BP, sets BP to point to the 
start of the passed parameters (if any) in a new stack frame, 
adjusts SP as needed to allocate room for local variables, and even 
copies a block of pointers to higher-level stack frames into the 
new stack frame if necessary. 

LEAVE undoes everything ENTER does, restoring both BP and SP 
to the state they were in before the corresponding ENTER was 
executed. 

For example, the following function uses ENTER to set up a C
compatible stack frame with 20 bytes reserved for local variables, 
and uses LEAVE to discard that stack frame and restore the calling 
code's stack frame: 
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SampleFunction PROC 
enter 20,0 

leave 
ret 

SampleFunction ENDP 

The first operand to ENTER is a 16-bit immediate value specifying 
the number of bytes to reserve for local variables in the new stack 
frame. The second operand to ENTER is an 8-bit immediate value 
specifying the nesting level of the function for which the new 
stack frame is being created; basically, this operand specifies the 
number of stack frame pointers to be copied from the calling 
code's stack frame into the new stack frame. 

1111" A RET instruction is required after LEAVE in order to return to 
the calling code; LEAVE discards the current stack frame, but does 
not perform a return. 

Warningl ENTER and LEAVE do not preserve any of the calling code's 
registers; PUSH and POP or PUSHA and POPA should be used for 
this purpose. 

BOUND BOUND checks that a 16-bit value is within a signed range 
specified by two adjacent words of memory, with the upper 
bound stored at the address immediately above the lower bound. 
Both bounds are treated as signed values, so a maXimum range of 
-32,768 to +32,767, inclusive, can be specified. Values matching 
the upper and lower bounds are considered to fall within the 
specified range. 

BOUND is generally used to guard against attempts to access 
before the beginning or past the end of an array. For example, this 
code checks whether BX is in the range a to 99, inclusive, before 
using it as an index into the laO-byte array TestArray . 

• DATA 
TestArrayBounds LABEL DWORD 

DW 0 
DW 99 

TestArray DB 100 DUP (?) 

.CODE 

mov ax,@data 
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mov ds,ax 

bound bx, [TestArrayBounds] 
mov aI, [TestArray+bx] 

If BX is not in the range, an INT 5 is generated. An interrupt
handler for INT 5 must, of course, be set up before BOUND can be 
used. 

The first operand to BOUND is the 16-bit general-purpose register 
containing the value to be range-checked. The second operand to 
BOUND is the doubleword containing the range. This doubleword 
contains the signed 16-bit lower bound as its lower word and the 
signed 16-bit upper bound as its upper word. 

Warningl One tricky point about BOUND is that the instruction pointer 
pushed when INT 5 is generated by a failed bounds test points to 
the BOUND instruction that caused the INT 5, not the following 
instruction. If the failing condition is not corrected by the INT 5 
handler before it executes an IRET, the same BOUND instruction 
will generate another INT 5, and so on, indefinitely. Consequently, 
INT 5 handlers for BOUND instructions should either issue a 
message and terminate the program without executing an IRET or 
correct the out-of-range condition before executing an IRET to 
continue. 

INS and OUTS INS and OUTS support efficient data transfer between I/O ports 
and memory. 

INS moves one or more bytes (or words) from an I/O port 
pointed to by DX to a memory array pointed to by E5:DI, 
incrementing DI by 1 (or 2) after each byte (or word) is transferred 
(or decrementing 51 if the direction flag is set). DX is not affected 
by INS. As with all string instructions that write to memory, the 
use of E5 as the destination segment cannot be overridden. 

OUTS moves one or more bytes (or words) from a memory array 
pointed to by D5:51 to an I/O port pointed to by DX, 
incrementing 51 by 1 (or 2) after each byte (or word) is transferred 
(or decrementing 51 if the direction flag is set). DX is not affected 
by OUTS. A segment register other than DS can be selected with a 
segment override prefix. The following code uses INSB to copy a 
block of 300h bytes to memory from I/O port 3000h, then uses 
OUTSB to copy that block of bytes to I/O port 3001h: 
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cld 
mov ax,@data 
mov ds,ax 
mov es,ax 
mov dx,3000h 
mov di,OFFSET Buffer 
mov cx,300h 
rep insb ;copy 300h bytes to buffer from port 
mov dx,3001h 
mov si,OFFSET Buffer 
mov cx,300h 
rep outsb ;copy 300h bytes from buffer to port 

Extended 8086 
instructions The 80186 offers extended versions of several 8086 instructions as 

well: 

Pushing immediate 
values 

IMUL 
PUSH 
RCL 
RCR 

ROL 
ROR 
SAL 

SAR 
SHL 
SHR 

While the 8086 can push register or memory operands only, the 
80186 can push an immediate value as well: 

push 19 

Pushing an immediate value is useful for passing constant 
parameters to functions on the stack. For example, the 8086 code 
for this C call, 

Average(S, 2); 

is this: 

mov ax,2 
push ax 
mov ax,S 
push ax 
call _Average 
add sp,4 

And it can be reduced to this on the 80186: 

push 2 
push S 
call _Average 
add sp,4 
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Shifting and rotating by 
immediate values 

416 

Multiplying by an 
immediate value 

Note that while the 8086 processor does not have a PUSH 
immediate value instruction, Turbo Assembler 2.0's syntax allows 
you to specify such an instruction in your source file. When the 
PUSH instruction is encountered, it's replaced in the object code 
by a 10-byte sequence, which simulates this operation while 
preserving all registers and flags. 

While the 8086 can only rotate or shift by either 1 bit or the 
number of bits specified by the contents of CL, the 80186 can 
rotate or shift by a constant value: 

ror ax,3 
shl dl,7 

This is convenient for performing multi-bit shifts without having 
to load CL with the shift count. For example, the following 8086 
code to multiply AX by 256, 

mov el,S 
shl ax,el 

becomes this on the 80186: 

shl ax,S 

The 8086 can only multiply an 8- or 16-bit register or memory 
operand by AL or AX, placing the result in AX or DX:AX. The 
80186 provides two new forms of multiplication for use when the 
product of a 16-bit multiplication will fit in 16 bits. 

One new form of multiplication multiplies a 16-bit register by a 
16-bit immediate value and stores the result back in the 16-bit 
register. For example, this code multiplies DX by 4 and places the 
product in DX: 

imul dx,4 

The first operand, which can be any 16-bit general-purpose 
register, is both the source of one of the factors and the destination 
for the product. The second operand, which must be a 16-bit 
immediate value, is the other factor. 

The other new form of multiplication multiplies a 16-bit register 
or memory location by a 16-bit immediate value and stores the 
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The 80286 

result in a specified 16-bit register. For example, this code 
multiplies DX by 600h and places the product in CX: 

imul cx,dx,600h 

Similarly, this code multiplies the 16-bit value at [BX+SI+ 1] by 3 
and places the product in AX. 

imul ax, [bxtsitl],3 

The first operand to this form of IMUL is the destination for the 
product. This operand can be any 16-bit general-purpose register. 
The second operand, which can be any 16-bit general-purpose 
register or memory location, is the source of one of the factors. 
The third operand, which must be a 16-bit immediate value, is the 
other factor. 

A bit of thought will show that the first of the new forms of 
multiplication is actually just a subset of the second new form. For 
example, this following code, 

imul si,lO 

is just a shorthand form of 

imul si,si,lO 

The underlying hex code is the same for both new forms of the 
IMUL instruction. Nonetheless, it's convenient to be able to use the 
simpler two-operand IMUL when the same register serves as both 
source and destination. 

1111. With either of the new forms of multiplication, any portion of the 
result that does not fit in 16 bits is lost; if significant bits are lost 
(when the result is a signed value), the carry and overflow flags 
are set. The new forms of multiplication make no distinction 
between signed and unsigned multiplication, since the result is 
only 16 bits long, and the lower 16 bits of the product of both 
signed and unsigned 16-bit by 16-bit multiplies are always the 
same. Consequently, only the IMUL instruction can be used to 
denote the new forms of multiplication. 

The 80286 was the first iAPx86-family processor to eliminate the 
1-MB memory limitation and the first to support memory 
protection and virtual memory. The 80286 provides all the 
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Enabling 80286 

instructions of the 8086 and 80186, and adds a number of 
instructions that support management of a sophisticated memory 
architecture. 

The 80286 has two modes of operation: real mode and protected 
mode. An 80286 operating in real mode is much like an 80186, 
providing exactly the same instruction set and nothing more. This 
is the mode in which 80286-based computers, such as the IBM AT, 
run PC-OOS and applications such as Quattro and Turbo Pascal. 

The memory management features of the 80286 are available only 
in protected mode. And it's only in this mode that multiple 
programs can be run at once without interfering with each other, 
and more than 1 MB of memory can be addressed. This is the 
mode in which 80286-based computers run OS/2. 

Here are the protected-mode instructions of the 80286: 

CLTS LlDT LMSW 
LGDT LLDT L TR 

These 80286 instructions are intended for operating system usage 
only; applications should never need to (or be able to) use 
protected-mode instructions. The use of these instructions and the 
protected mode of the 80286 in general are specialized and 
complex topics that we won't go into in this manual. 

The 80286 adds two new status states to the flags register: the 
nested task bit and the I/O privilege-level field. Like the 
protected-mode instructions, both bits are intended for use by 
systems software only and are of no concern to the applications 
programmer. The 80286 also contains several new registers that 
can be manipulated only with protected-mode instructions, such 
as the Task register, the Machine Status Word register, and the 
Global Descriptor Table register; again, these registers are not 
used by applications, so we will not cover them in this manual. 

assembly Turbo Assembler support for assembly of nonprotected-mode 
80286 code is enabled with the .286 directive. (The .286C directive 
also enables Turbo Assembler support for 80286 instructions, for 
compatibility with earlier assemblers.) 

Note that the .286 directive implicitly enables support for a118086 
and 80186 instructions, since the 80286 supports the full 
instruction set of earlier iAPx86-family processors. 
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For detailed information 
about 80286 Instructions, 
refer to Chapter 3 of the 

Reference Guide. 

The 80386 

Selecting 80386 
assembly. mode 

Support for protected-mode 80286 instructions is enabled with the 
.286P directive. Nonprotected-mode 80286 instructions are 
enabled by the .286P directive as well, just as if a .286 directive 
had been executed. 

One important point about protected-mode 80286 instructions is 
that the 8086 and 80186 do not recognize any of these instructions. 
Consequently, any program that uses protected-mode instructions 
won't run on an 8086 or 80186. However, the 80386 does support 
both the protected-mode and nonprotected-mode instructions of 
the 80286. 

The 80386 processor is a landmark in the evolution of the 
microcomputer, providing new and extended instructions, an 
expanded set of 32-bit registers, linear segments up to 4 gigabytes 
long, the ability to emulate multiple 8086 processors 
simultaneously, a barrel shifter for fast shifts and rotates, paged 
memory, higher clock speeds than any previous iAPx86-family 
processor (resulting in faster execution), and more. As you might 
expect, extensions to 8086/80186/80286 assembly language are 
needed to support the full power of the 80386. Turbo Assembler 
provides a full set of 80386 extensions, supporting all modes and 
features of the 80386. 

The 80386 is a remarkably sophisticated processor-orders of 
magnitude more complex than the 8086-so we can't cover the 
many aspects of programming the 80386. We can, however, take a 
look at the 80386 support built into Turbo Assembler. 

As with the 80286, there are two sorts of 80386 instructions, 
privileged and non-privileged. Any program can execute non
privileged instructions, while only programs executing at a 
current privilege level of 0 (the most-privileged level) can execute 
privileged instructions. The privileged instructions of the 80386 
are a superset of the 80286's privileged instructions and, like 80286 
privileged instructions, are intended for operating system use 
only. 

Support for non-privileged 80386 instructions is enabled with the 
.386 directive. (The .386C directive enables Turbo Assembler 
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support for 80386 instructions for compatibility with earlier 
assemblers.) 

1111" The .386 directive implicitly enables support for all 8086 and 
80186 instructions and all 80286 non-privileged instructions, since 
the 80386 supports the full instruction set of earlier iAPx86-family 
processors. 

New segment 

Support for privileged 80386 instructions is enabled with the 
.386P directive. Non-privileged 80386 instructions are enabled by 
the .386P directive as well, just as if a .386 directive had been 
executed. Since the 80386 supports all privileged instructions of 
the 80286, the .386P directive implicitly enables support for all 
80286 privileged inshuctions. 

types The ability of the 80386 to support either 80286-style 64K 
segments or linear segments up to 4 gigabytes (GB) in length 
requires two new segment types, USE16 and USE32. 

A 16-bit offset, either stored in a base or index register (BX, 51, DI, 
or BP) or used as a direct addressing offset, is all that's needed in 
order to point to any location in a 64K segment. This is the mode 
of operation of the 80286 (and the 8086). 80386 segments that have 
a maximum length of 64K are given a use type of USE16, as 
follows: 

.386 

DataSeg SEGMENT USEl6 
Varl DW ? 
Ptrl DW Varl 
DataSeg ENDS 

CodeSeg SEGMENT USEl6 
ASSUME cs:CodeSeg 
mov ax,DataSeg 
mov fs, ax 
ASSUME fs:DataSeg 
mov [Varl],O 
mov bx, [Ptrl) 
inc WORD PTR fs:[bx] 

CodeSeg ENDS 

;set Varl to zero 
;load a l6-bit pointer to Varl 
;increment Varl 
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Note the use of FS, one of the two new extra segments (along with 
GS) available on the 80386. 

Note also that an offset stored in any of the 80386's eight general
purpose 32-bit registers can be used to address a USE16 segment, 
as long as the magnitude of the offset doesn't exceed OFFFFh 
(65535). 

A 32-bit offset, stored in any of the eight general-purpose 32-bit 
registers or used as a direct addressing offset, is needed to point 
to any given location in a 4 GB segment. 80386 segments that have 
a maximum length of 4 GB are given a use type of USE32, as 
follows: 

.386 

BigDataSeg SEGMENT USE32 
Varl DW ? 

Ptrl DD Varl 
BigDataSeg ENDS 

CodeSeg SEGMENT USEl6 
ASSUME cs:CodeSeg 
mov ax,BigDataSeg 
mov fs,ax 
ASSUME fs:BigDataSeg 
mov [Varl],O 
mov eax, [Ptrl] 
inc WORD PTR fs: [eax] 

CodeSeg ENDS 

iset Varl to zero 
iload 32-bit pointer to Varl 
iincrement Varl 

Note the use of EAX as a pointer register; the 80386 allows all 
eight general-purpose 32-bit registers (EAX, EBX, ECX, EDX, ES1, 
ED1, EBP, and ESP) to be used as either base or index registers, as 
discussed in 'New addressing modes" on page 431. 

The SMALL and LARGE operators can be used to override the 
default offset size of a given operand. SMALL forces the use of a 
16-bit offset, and LARGE forces the use of a 32-bit offset. For 
example, 

.386 

CodeSeg SEGMENT USEl6 
ASSUME cs:CodeSeg 
mov ax,DataSeg 
mov ds,ax 
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See • New addressing 
modes· on page 431. 

ASSUME ds:DataSeg 
mov ax, [LARGE TestLoc] 

CodeSeg ENDS 

DataSeg SEGMENT USE32 
TestLoc DW 0 
DataSeg ENDS 

successfully makes a forward reference to TestLoc (even though 
TestLoc is in a USE32 segment> by using LARGE to force the 
reference to TestLoc to be performed with a 32-bit offset. Without 
the LARGE override, an error would be generated, since the 
assembler assumes 16-bit offsets for forward references made 
within the USE16 segment CodeSeg. 

The action of SMALL and LARGE is actually a bit more subtle than 
a simple selection between 16- and 32-bit offset size. SMALL 
instructs Turbo Assembler to assemble a given instruction for use 
with the 8086's 16-bit addressing modes, which are inherently 
capable of addressing only 64K of memory. LARGE, on the other 
hand, instructs Turbo Assembler to assemble a given instruction 
to use the 80386's new 32-bit addressing modes, which are capable 
of addressing 4 GB of memory. 

For example, the code 

.386 

CodeSeg SEGMENT USE16 

mov ax, [SMALL ebxtesitl] 

CodeSeg ENDS 

assembles to 

mov ax, [bxtsitl] 

Here, SMALL told Turbo Assembler to use an 8086-style 16-bit 
addressing mode, so instead of EBX and E5I, the assembled code 
uses BX and 51. However, the code 

.386 
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Simplified segment 
directives and 80386 

segment types 

CodeSeg SEGMENT USE16 

mov ax, [SMALL eax+ecx+lj 

CodeSeg ENDS 

will not assemble, since EAX+ECX+ 1 is not a valid 16-bit memory 
addressing mode. (On the other hand, EAX+ECX+ 1 is a valid 32-
bit memory addressing mode, as you will see in the section ''New 
addressing modes.") 

Take a look at the section, "Mixing 16-bit and 32-bit instructions 
and segments," on page 446 for more information about SMALL 
and LARGE and for information regarding the interaction of small 
and large operators with USE16 and USE32 segments. The issue 
of selection between USE32 and USE16 segments is also covered 
in that section. 

One important implication of the selection of USE16 or USE3~ 
segments concerns the size of indirect jumps. You'll find out 
about this in the section entitled "The 32-bit instruction pointer" 
(page 428). 

If neither USE32 nor USE16 is specified in a segment definition, 
USE32 is always assumed when assembling for the 80386. 

If you use both .386 and the simplified segment directives, 
segments default to DWORD alignment. This makes sense, given 
that 80386-based computers run fastest with doubleword-aligned 
data. 

When you use the simplified segment directives, Turbo 
Assembler generates USE32 segments if .386 is given before the 
.MODEL directive, and USE16 segments if .386 is given after the 
.MODEL directive. For example, this code creates 32-bit code and 
data segments: 

.386 

. MODEL large 

. DATA 

. CODE 

while this code creates 16-bit code and segments: 

. MODEL large 
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The FWORD 48-bit data 
type 
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.386 

. DATA 

• CODE 

An interesting point about USE32 segments is that the size of a far 
pointer (that is, a full segment:offset pointer) to a location in a 
USE32 segment is 6 bytes rather than the customary 4 bytes 
because offsets in USE32 segments are 32 bits in size. For 
example, with a USE16 segment, a far pointer to an 8000h-byte 
buffer Buffer is stored in 4 bytes and loaded as follows: 

.386 

DataSeg 
Buffer 
BufferPtr LABEL 

DataSeg 

DW 
DW 

SEGMENT USE16 
DB 8000h DUP (?) 

miORO 
OFFSET Buffer 
SEG Buffer 
ENDS 

CodeSeg SEGMENT USE16 
ASSUME cs:CodeSeg 
mov ax,DataSeg 
mov ds,ax 
ASSUME ds:DataSeg 
les bx,[BufferPtr] ;load ES:BX with 16-bit segment 

; and 16-bit offset of Buffer 

CodeSeg ENDS 

With a USE32 segment, on the other hand, a far pointer to Buffer is 
stored in 6 bytes and loaded as follows: 

.386 

DataSeg SEGMENT USE32 
Buffer DB 8000h DUP (?) 
BufferPtr LABEL FWORO 

DD OFFSET Buffer 
DW SEG Buffer 

DataSeg ENDS 

CodeSeg SEGMENT USE32 
ASSUME cs:CodeSeg 
mov ax,DataSeg 
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mov ds,ax 
ASSUME ds:DataSeg 

les ebx, [BufferPtr] ;load ES:EBX with 16-bit segment 
; and 32-bit offset of Buffer 

CodeSeg ENDS 

1111" Note the use of the new FWORD data type. FWORD values are 6 
bytes long. FWORD PTR operators can be used just like BYTE 
PTR, WORD PTR, and DWORD PTR operators. 

New registers 

19s esi,FWORD PTR [BufferPtr] 

There is also a new directive, OF, for defining 6-byte variables: 

.386 

DataSeg SEGMENT USE32 
FPtr OF ? 

DataSeg ENDS 

CodeSeg SEGMENT USE32 
ASSUME cs:CodeSeg 
mov ax, DataSeg 
mov ds,ax 
ASSUME ds:DataSeg 
mov eax,OFFSET DestinationFunction 
mov DWORD PTR [FPtr],eax 
mov ax,SEG DestinationFunction 
mov WORD PTR [FPtr+4],ax 
jmp [FPtr] 

CodeSeg ENDS 

The 80386 extends the general-purpose registers, flags register, 
and instruction pointer of the 8086 to 32 bits in size, and adds two 
new segment registers. Figure 10.1 shows the register set of the 
80386; the 80386 extensions to the basic 8086 register set are 
shaded. 

In addition, the 80386 contains several special registers, some new 
and some compatible with the 80286, that can be manipulated 
only with privileged instructions. As with the 80286, these 
registers are used only by systems software, so we won't cover 
them in this manual. 
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Figure 10.1 
The registers of the 

80386 
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Segment 
Registers 

Let's examine the new registers of the 80386. 

The 32-bit general- The 32-bit versions of the general-purpose registers are called 
purpose registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP. The lower 16 bits 

of these registers form the 8086's set of 16-bit registers we've come 
to know so well; for example, the lower 16 bits of EAX are register 
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AX. Similarly, the lower 8 bits of EAX are register AL. 
Consequently, portions of register EAX may now be referred to by 
four different names: the 32-bit EAX register, the 16-bit AX 
register, and the 8-bit AH and AL registers. The same is true of 
EBX, ECX, and EDX. 

The 32-bit general-purpose registers of the 80386 are used in the 
same way as the 16- and 8-bit registers. For example, this code 
stores 1 in EAX, sets EBX to 0, and adds EAX to EBX: 

rnov eax,l 
sub ebx,ebx 
add ebx,eax 

The 32-bit general-purpose registers can be used wherever the 
familiar 16-bit registers can be used. 

There is one slight shortcoming in accessing 32-bit registers: 
There's no way to use the upper 16 bits of a 32-bit register diiectly 
as a 16-bit register. If you want to use the upper 8 bits of AX as a 
register, you can just refer to AH; and if you want to use the lower 
16 bits of ESI as a register, you can just refer to SI. But there's no 
equivalent way to refer to the upper 16 bits of, say, EAX. This can 
be a nuisance when you're working with a mixture of word- and 
doubleword-sized values, but there is a reasonable workaround. 

To access the upper 16 bits of a 32-bit register, just rotate the 
register 16 bits in either direction, access the lower 16 bits of the 
register, and rotate the register 16 bits again. For instance, the 
following code loads a 16-bit value into AX, rotates EDX 16 bits to 
swap the high and low words of EDX, moves AX into DX, and 
swaps the high and low words of EDX again. 

rnov ax, [Sarnple16BitValue] 
ror edx,16 
rnov dx,ax 
ror edx,16 

. The net effect: The value initially loaded into AX is ultimately 
moved into the high word of EDX. While this procedure is 
awkward, it is not as slow as it might seem; thanks to the 80386's 
barrel shifter, each ROR instruction takes only three cycles to 
execute. 
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The 32-bit instruction 
pointer 

The lower word of the 80386's flags register is identical to the 
80286's flags register. The upper 16 bits of the 80386's flags register 
contains two new flags. One of the new flags indicates whether 
the 80386 is currently executing as a virtual 8086, and the other 
new flag is intended for use in writing debugging tools. These 
flags are generally not used by applications software. 

The 80386's instruction pointer is 32 bits in size, in contrast to the 
8086's 16-bit instruction pointer. This extended instruction pointer 
supports code segments up to 4 GB in length. 

The 80386's extended instruction pointer creates some 
complications in specifying indirect jumps via memory. For 
example, the following code clearly specifies a far indirect jump 
with a 16-bit segment and a 32-bit offset: 

jmp [FWORD PTR JumpVector] 

Consider the following, however: 

jmp [OWORD PTR JumpVector] 

Is this a near 32-bit indirect jump or a far indirect jump with a 16-
bit segment and a 16-bit offset? Either type of jump may 
legitimately be specified with a DWORD operand. 

Here's where the LARGE and SMALL operators come in handy. 
The construct 

jmp SMALL [OWORD PTR JumpVector] 

assembles as a far indirect jump to the address specified by the 
16-bit segment and 16-bit offset stored at /umpVector, and 

jmp LARGE [OWORD PTR JumpVector] 

assembles as a near indirect jump to the address specified by the 
current CS and the 32-bit offset stored at /umpVector. In the first 
case, the SMALL operator instructs Turbo Assembler to treat the 
jump as if it were occurring from a USE16 segment; in USE16 
segments, 32-bit indirect jump operands consist of a 16-bit 
segment and a 16-bit offset. In the second case, the LARGE 
operator instructs Turbo Assembler to treat the jump as if it were 
occurring in a USE32 segment; in USE32 segments, 32-bit indirect 
jump operands consist of 32-bit offsets only. 
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1111., Note that SMALL and LARGE appear outside the brackets in the 
preceding examples; the positioning of SMALL and LARGE is 
significant. When SMALL and LARGE appear outside the 
brackets, they affect the operand size, in this case, the size of the 
jump. When SMALL and LARGE appear inside the brackets, they 
affect the address size. For example, this code instructs Turbo 
Assembler to use a near 32-bit offset to point to lumpVector, but 
does not tell Turbo Assembler whether to treat the value stored at 
lump Vector as a near 32-bit offset or a far 16-bit segment and 16-bit 
offset combination: 

jrnp [LARGE DWORD PTR JurnpVector] 

50 this does not resolve the original problem of determining the 
type of the jump. 

1111., LARGE and SMALL can be used both inside and outside the 
brackets in a single expression. For instance, this code specifies a 
far indirect jump to the 16-bit segment and 16-bit offset address 
stored at the doubleword variable lumpVector, which is itself 
addressed with a near 32-bit offset: 

jrnp SMALL [LARGE DWORD PTR JurnpVector] 

New segment registers The 80386 adds two new segment registers, FS and G5 to the four 
segment registers supported by the 8086. The two new segment 
registers are not dedicated to any particular function, and no 
instructions or addressing modes access FS or G5 by default. 
Consequently, the use of FS or G5 is never required, but they can 
be handy for code that accesses data in several segments at once. 

FS and GS are used just as E5 is used for nonstring instructions, 
by means of a segment override prefix. The override prefix may 
be explicit: 

.386 

TestSeg SEGMENT USEl6 
SCRATCH_LEN EQU lOOOh 
Scratch DB SCRATCH LEN DUP (?) 
TestSeg ENDS 

CodeSeg SEGMENT USEl6 
ASSUME cs:CodeSeg 
rnov ax,TestSeg 
rnov fs,ax 
rnov bx,OFFSET Scratch 
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rnov cx,SCRATCH_LEN 
rnov al,O 

Clear Scratch: 
rnov fs: [bx] , al 
inc bx 
loop ClearScratch 

CodeSeg ENDS 

or implicit, by way of an ASSUME directive: 

.386 

TestSeg SEGMENT USE16 
SCRATCH_LEN EQU lOOOh 
Scratch DB SCRATCH LEN DUP (?) 
TestSeg ENDS 

CodeSeg SEGMENT USE16 
ASSUME cs:CodeSeg 
rnov ax,TestSeg 
rnov gs,ax 
ASSUME gs:TestSeg 
sub bx,bx 
rnov cx,SCRATCH_LEN 
rnov al,O 

Clear Scratch: 
rnov [Scratch+bx],al 
inc bx 
loop Clear Scratch 

CodeSeg ENDS 

In the last example, the directive ASSUME GS:TestSeg told Turbo 
Assembler to insert an override prefix automatically on each 
access by name (as opposed to access by pointer register) to 
variables in TestSeg, so you didn't have to type the override prefix 
explicitly. The override prefix is, however, still there in the 
executable code, adding an extra byte to the size of each 
instruction that accesses memory by way of the FS or GS register. 
Consequently, whenever possible, it's preferable to use the DS 
register (or the ES register as the destination of a string 
instruction) instead of the FS or GS register. 
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New addressing 
modes The 80386 supports all the memory addressing modes of the 8086, 

80186, and 80286, and adds a set of powerful new addressing 
modes as well. Any of the eight 32-bit, general-purpose registers 
of the 80386 may be used as a base register, and any 32-bit, 
general-purpose register other than 5P may be used as an index 
register. By contrast, the 8086 allows only BX and BP to be used as 
base registers, and only 51 and 01 to be used as index registers. 

For example, suppose that EDI contains 1oo00h and EAX contains 
4. Then the following code is a perfectly legal instruction on the 
80386, incrementing the byte at offset 10006h (lOooOh + 4 + 2) in 
the segment pointed to by os: 

inc BYTE PTR [editeaxt2] 

Here's another example of the 80386's new addressing capabilities: 

mov ecx, [espt4] 
mov ebx, [espt8] 
mov WORD PTR [ecxtebx],O 

The 80386 can do still more in the new addressing modes, 
however. The index register can be multiplied by 2, 4, or 8 as part 
of the calculation of the memory address, simply by placing *2, *4, 
or *8 after the index register, a feature known as index scaling. For 
instance, the ninth doubleword-sized entry in the table 
DwordTable can be loaded into EAX with this code: 

mov ebx,8 
mov eax, [DwordTabletebx*4] 

which is equivalent to 

mov ebx,8 
shl ebx,2 
mov eax, [DwordTabletebx] 
shr ebx,2 

Index scaling can be extremely useful for accessing elements in 
word, doubleword, and quad word arrays. For example, consider 
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the following code, which sorts the elements in a word array in 
ascending order: 

.386 

CodeSeg SEGMENT USE32 
ASSUME cs:CodeSeg 

Sorts a word array in ascending order. 

Input: 
DS:EBX - pointer to start of word array to sort 
EDX - 1ength of array in word elements 

Registers destroyed: 
AX, ECX, EDX, ESI, EDI 

SortWordArray PROC 
and edx,edx 
jz EndSortWordArray 
mov esi,O 

SortOnNextWord: 
dec edx 
jz EndSortWordArray 
mov ecx,edx 

mov edi,esi 

CompareToAIIRemainingWords: 

icompare element 0 to all other 
; elements first 

;count down number to compare 

;number of elements to compare 
; this element against 
;compare this element to all 
; remaining elements 

inc edi ;index of next element to compare 
mov ax, [ebx+esi*2] 
cmp ax, [ebx+edi*2] 

jbe NoSwap 
xchg ax, [ebx+edi*2] 
mov [ebx+esi*2],ax 

NoSwap: 

;is the current element less 
; than the compared element? 
;yes, no need to swap them 
;swap the current and 
; compared elements 

loop CompareToAllRemainingWords 
inc esi ;point to next element to compare 

; to all remaining elements 
jmp SortOnNextWord 

EndSortWordArray: 
ret 

SortWordArray ENDP 

CodeSeg ENDS 
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Sortlt\brdArray keeps the element numbers, or indexes, of the 
current and compared elements in ES1 and ED!. These values are 
not pointers, or counts by two, even though the array is a word 
array; rather, they are simple scalar array indexes, just as n is an 
array index in the C statement 

i = Array[n]i 

The key in SortWordArray is that the index scaling feature of the 
80386 allows you to multiply the indexes by two as part of the 
memory addressing field, thereby converting the indexes to 
offsets into a word array. 

1111" If only one register is used to address memory, that register is 
always considered to be the base register. If two registers are used 
to address memory, the leftmost register inside the brackets is 
considered the base register, and the rightmost register is 
considered the index register. If, however, scaling is used with <:>ne 
of two registers inside the brackets, the scaled register is always 
considered to be the index register. 

The question of which register is the base register is important 
because by default the base register controls the segment to which 
a given memory access refers. Memory accesses made with EBP 
or ESP as the base register refer to the segment pointed to by 55, 
while memory accesses made with EAX, EBX, ECX, EOX, ES1, or 
E01 as the base register refer to the segment pointed to by OS. For 
example, the following instructions refer to OS: 

mov aI, [eax] 
xehg edx,[ebx+ebp] 
shr BYTE PTR [esi+esp+2],1 
mov [ebp*2+edx],ah 
sub ex, [esi+esi*2] 

and the following instructions refer to 55: 

rol WORD PTR [ebp],l 
dee DWORD PTR [esp+4] 
add ax, [eax*2+esp] 
mov [ebp*2],edi 

The default segment selected by the base register can be 
overridden with either an explicit segment override prefix or as 
the result of an ASSUME directive. For example, 

.386 

TestSeg SEGMENT USE32 
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Arrayl DW 100h DUP (0) 
TestSeg ENDS 

CodeSeg SEGMENT USEl6 
ASSUME cs:CodeSeg 
mov ax,TestSeg 
mov fs,ax 
ASSUME fs:TestSeg 
mov dx, [ebx+Arrayl] 

mov esi,OFFSET Arrayl 
mov cx,lOOh 

IncLoop: 
inc WORD PTR fs:[esi] 
inc esi 
inc esi 
loop IncLoop 

CodeSeg ENDS 

;implicit override as a result of 
; ASSUME 

;explicit override 

The new addressing modes of the 80386 work with 32-bit . 
memory-addressing registers only; 16-bit registers can only be 
used for memory addressing in the same limited way that they 
are on the 8086. For example, the following MOV instruction is 
illegal, even on an 80386: 

mov ax, [cx+dx+lOh] 

Index scaling of 16-bit registers is also not allowed. And 16- and 
32-bit registers can't be combined for memory-addressing 
purposes; so, for example, this code cannot be used: 

add dx, [bx+eax] 

Next, we're going to take a look at the new and extended 
instructions of the 80386. 

Keep in mind that the 8086,80186, and 80286 do not recognize 
any of the new and extended instructions we're about to discuss. 
Consequently, any program that uses the new or extended 
instructions of the 80386 won't run on earlier processors. 

Here are the new instructions of the 80386: 

BSF 
BSR 

BTR 
BTS 

LFS 
LGS 

MOVZX 
SETxx 
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BT 
BTC 

CDa 
CWDE 

LSS 
MOVSX 

SHLD 
SHRD 

Testing bits The bit-test instructions of the 80386 are BT, BTC, BTR, and BTS. 
BT is the basic bit-test operation, copying the value of a specified 
bit into the carry flag. For example, the following code jumps to 
Bit3Isl only if bit 3 of EAX is nonzero: 

bt eax,3 
jc Bit3Isl 

Bit3Isl: 

If EAX contains 0OO00008h, this code will jump to Bit3Isl; if EAX 
contains OFFFFFFF7h, the preceding code will not jump. The first 
operand to BT is the 16- or 32-bit, general-purpose register or 
memory location containing the bit to test. The second operand is 
the bit number to test, specified by either an 8-bit immediate 
value or the contents of a 16- or 32-bit, general-purpose register. If 
a register is used as the second operand, its size must match the 
size of the first operand. 

Note that the number of the bit to test can be specified by a 
register as well as an immediate value, and the field to be bit
tested can be in memory as well as in a register. Here's a valid way 
to set the carry flag to the state of bit 5 of the word at the address 
Table+ebx+esi .. 2: 

mov ax,S 
bt WORD PTR [Tabletebxtesi*2],ax 

Remember that bit numbers are counted from zero at the least
significant bit up to the most-significant bit. If AL contains 80h, 
then bit 7 of AL is set. 

BTC is exactly like BT except that the value copied to the carry 
flag is the complement of the specified bit. That is, the carry flag is 
1 if the specified bit is 0, and the carry flag is 0 if the specified bit 
is 1. BTC saves the need for a CMC instruction whenever a carry 
status is required that is the inverse of the bit under test. ' 

BTR is also just like BT except that the specified bit is set to 0 after 
its value is copied to the carry flag. Similarly, BTS sets the 
specified bit to 1 after its value is copied to the carry flag. These 
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bit-test instructions are useful for both testing and setting the 
status of a flag in a single indivisible instruction. (By indivisible, 
we mean that it is impossible for an interrupt to occur between 
the testing of the flag and the setting of the flag to the new value.) 

Scanning bits The BSF and BSR instructions of the 80386 are useful for finding 
the first or last bit that is nonzero in a word or dword operand. 
BSF scans the source operand, starting with bit 0 (the least
significant bit), for the first bit that is nonzero. If all bits in the 
source operand are zero, the zero flag is cleared; otherwise, the 
zero flag is set and the bit number of the first nonzero bit found is 
loaded irtto the destination register. 

As an example, this code uses BSF to locate the first (least
significant) nonzero bit in DX; since the first nonzero bit in DX is 
located at bit 2, a 2 is loaded into CX. 

mov dx,OOOllOlOlOlOllOOb 
bsf cx,dx 
jnz AIIBitsAreZero 
shr dx,cl 

AllBit sAreZero: 

CL is then used as the value to shift DX by, with the result that DX 
is shifted to the right by exactly the amount needed to move the 
least-significant nonzero bit to bit O. 

The second operand to BSF is the 16- or 32-bit, general-purpose 
register or memory location to scan, and the first operand is the 
16- or 32-bit, general-purpose register in which to store the 
number of the first nonzero bit in the scanned data. Both 
operands must be the same size. 

BSR is similar to BSF except that BSR scans from the most
significant bit of the source operand toward the least-significant 
bit. In this example, the index of the most-significant nonzero bit 
in TestVar,27, is placed in EAX: 

TestVar DD OFFFFFOOh 

bsr eax, [TestVar] 
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Moving data with sign
or zero-extension 

Converting to DWORD 
or QWORD data 

MOVZX and MOVSX allow you to copy an 8- or 16-bit value into a 
. 16- or 32-bit, general-purpose register without wasting 

instructions on extending the value to the destination size. 
MOVZX pads out the most-significant bits of the destination with 
zeros, while MOVSX sign-extends the value to the destination's 
size. Both instructions are used just like a standard MOV. 

For example, with 8086 instructions, the following is required to 
copy an unsigned value in DL to BX: 

mov bl,dl 
sub bh,bh 

while on the 80386, the single instruction 

movzx bx,dl 

does the job. Sign-extension is even tougher with 8086 
instructions. To copy the signed byte-memory variable TestByte to 
DX without MOVSX, the following is required: 

mov aI, [TestByte] 
cbw 
mov dx,ax 

but MOVSX does the job with just one instruction: 

movsx dx, [TestByte] 

MOVZX and MOVSX can also move 8-bit values to 32-bit registers: 

movsx eax,al 

The 8086 provides the CBW and CWO instructions for converting 
signed byte values in AL to signed words, and signed word 
values in AX to signed doublewords, respectively. The 80386 adds 
two more signed conversion instructions, CWDE and COQ, which 
make good use of the 80386's 32-bit registers. 

CWDE converts a signed word value stored in AX into a signed 
doubleword value, just as CWO does. The difference between the 
two is that while CWO places the 32-bit result in DX:AX, CWOE 
places the 32-bit result in EAX, where it can readily be 
manipulated by the 80386's 32-bit instructions. 

Chapter 70, The 80386 and other processors 437 



Shifting across multiple 
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For example, the end result of 

mov ax,-l 
ewde 

is the 32-bit value -1 in EAX. 

CDa converts a signed doubleword value in EAX into a signed 
quad word (8-byte) value in EDX:EAX. The code 

mov eax,-7 
edq 

stores the value -7 in the 64-bit register pair EDX:EAX, with the 
high doubleword of the result, OFFFFFFFFh, stored in EDX, and 
the low doubleword of the result, OFFFFFFF9h (-7), stored in EAX. 

Multiple-word shifts-for example, shifting a 32-bit value 4 bits to 
the left-are a nuisance on the 8086, since each word must be 
shifted one bit at a time, with bits flowing one by one from one 
register to the next through the carry flag. The SHRD and SHLD 
instructions of the 80386 remedy this situation by supporting 
multiple-bit shifts across two registers, or between a register and a 
memory location. 

For example, suppose a 32-bit value is stored in DX:AX on an 
8086. The following is required to shift that 32-bit value left 
(toward the most-significant bit) by four bit positions: . 

shl ax,l 
reI dx,l 
shl ax,l 
rc1 dx,l 
shl ax,l 
rcl dx,l 
shl ax,l 
rc1 dx,l 

On an 80386, the same result can be accomplished with just two 
instructions: 

shId dx,ax,4 
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Setting bytes 
conditionally 

shl ax,4 

(Of course, the whole 32-bit value could simply have been stored 
in EAX and shifted with 

shl eax,4 

but the example code was intended to illustrate the advantage of 
using SHLD rather than 8086 instructions.) 

The first operand to SHLD is the 16- or 32-bit, general-purpose 
register or memory location to shift; the second operand is the 16-
or 32-bit, general-purpose register to shift bits in from; and the 
third operand is the number of bits to shift by. The sizes of the 
first and second operands must match. The third operand may be 
either an immediate value or CL; in the latter case, the destination 
is shifted the number of bits specified by CL. 

SHRD is much like SHLD, but shifts from the most-significant bit 
toward the least-significant bit. In this example, the 64-bit value 
stored in TestQV\brd is shifted right by 7 bits: 

mov el,7 
mov eax,DWORD PTR [TestQword+4] 
shrd DWORD PTR [TestQword],eax,cl 
shr eax,el 
mov DWORD PTR [TestQword+4],eax 

A common application for conditional tests and jumps is to set a 
memory location to reflect a certain status. For instance, you may 
want to set flags to indicate whether two variables are equal, 
whether a pointer is null, or whether the carry flag was set by a 
previous operation. The 8086 is less than ideal for such 
operations, since multiple instructions (including time-wasting 
jumps) are required to set a flag to reflect the results of a 
conditional test. The 80386 provides the powerful group of SET 
instructions to speed such test-and-set cases. 

For example, imagine that you want to set the memory variable 
TestFlag only if the most-significant bit of AX is set. On the 8086, 
you would have to do the following: 

mov [TestFlag],O iassume the MSB isn't set 
test ah,80h 
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jz MSBNotSet 
mov [TestFlag],l 

MSBNotSet: 

On the 80386, all you need do is this: 

test ah,80h 
setnz [TestFlag] 

and TestFlag will be set to 1 if bit 7 of AH is 1, and to 0 if bit 7 of 
AHisO. 

You can test any of the familiar jump conditions with a SET 
instruction: SETNC sets the destination to 1 if the carry flag is 0 
and resets the destination to 0 if the carry flag is 1; SETS sets the 
destination if the sign flag is 1 and resets it if the sign flag is 0; and 
so on. The operand to a SET instruction may be an 8-bit, general
purpose register or an 8-bit memory variable; 16- and 32-bit 
operands are not permitted. 

Loading SS, FS, and GS The 8086 instruction LOS allows you to load both DS and one of 
the general-purpose registers from memory with a single 
instruction, thereby setting up a far pointer very efficiently. LES 
provides a similar capability, but loads ES instead of D5. The 
80386 adds three new instructions for loading far pointers: LSS, 
LFS, and LGS, which load far pointers based on the 55, FS, and 
G5 segment registers, respectively. 
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For example, this loads a far pointer to the video bit map at 
AOOO:OOOO into GS:BX: 

DataSeg SEGMENT USE16 
ScreenPointer LABEL DWORD 

dw 0 
dw OAOOOh 

DataSeg ENDS 

CodeSeg SEGMENT USE16 
ASSUME cs:CodeSeg, ds:DataSeg 
mov ax, DataSeg 
mov ds,ax 

19s bx, [ScreenPointer] 
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Extended 

CodeSeg ENDS 

As with LOS and LES, either small or large far pointers may be 
loaded with LSS, LFS, and LGSi see the section entitled "The 
FWORD 48-bit data type" on page 424 for information about 
small and large far po in ters. 

instructions The 80386 not only adds a number of powerful new instructions 
to the 8086/80186/80286 instruction set, but extends a number of 
existing instructions as well. The extended instructions follow: 

CMPS 
IMUL 
INS 
IRET 
J,A 
JAE 
JB 
JBE 

JC 
JCXZ 
JE 
JG 
JGE 
JL 
JLE 
JNA 

JNAE 
JNB 
JNBE 
JNC 
JNE 
JNG 
JNGE 
JNL 

JNLE 
JNO 
JNP 
JNS 
JNZ 
JO 
JP 
JPE 

JPO 
JS 
JZ 
LOOS 
LOOP 
MOV 
MOVS 

OUTS 
POPA 
POPF 
PUSHA 
PUSHF 
SCAS 
STOS 

In addition, many instructions can handle 32-bit operands on the 
80386, even though their mnemonics haven't explicitly changed. 

Special versions of The 80386 supports special forms of the MOV instruction that 
MOV allow code running at privilege level 0 (the most-privileged level) 

to move data between the 32-bit, general-purpose registers and 
special 80386 registers. Here are the 80386 registers that can be 
accessed in this way: 

CRO 
CR2 
CR3 

DRO 
DR1 
DR2 

DR3 
DR6 
DR7 

TR6 
TR7 

For example, debug register DRO could be loaded with a linear 
address to be trapped on with 

.386P 

mov eax,OFFSET FunctionEntry 
mov drO,eax 

and the system control flags could be loaded from control register 
CRO into EDX with 
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.386P 

rnov edx,crO 

Note that the .386P directive must be in effect in order for Turbo 
Assembler to assemble the special forms of MOV, since they are 
pri vileged instructions. . 

In general, the special 80386 registers that can be accessed by the 
new forms of the MOV instruction are used by systems software 
only, and are not used by applications. 

Many 8086 instructions are extended to take on new 32-bit 
addressing and operand capabilities on the 80386. The following 
code performs a 32-bit subtraction of the 32-bit EBX register from 
the 32-bit variable at address EBP+EAX ,. 8+10h, with 32-bit 
registers used to point to the destination memory location: 

sub DWORD PTR [ebp+eax*8+10h],ebx 

The 32-bit capabilities added to most 8086 instructions don't 
require a new instruction mnemonic; the 32-bit nature of the 
operation is generally indicated by the operands or by the 
segment type the operation occurs in. Several 8086 instructions 
do, however, require new mnemonics in order to support their 
extended 32-bit, 80386 capabilities. We'll look at these instructions 
next. 

New versions of LOOP and JCXZ 

The LOOP, LOOPE, LOOPNE, and JCXZ instructions normally 
operate on the 16-bit CX register. The 80386 provides both 16-bit 
and 32-bit versions of these instructions; the 32-bit versions' 
operate on ECX rather than CX. 

The LOOP, LOOPE, and LOOPNE instructions use either CX or 
ECX as the loop counter, depending on whether the segment they 
are in is a 16-bit or a 32-bit segment. If you want to make sure that 
CX is always used as the loop control register, even in a 32-bit 
segment, use the word form of these instructions: LOOPW, 
LOOPWE, and LOOPWNE. Likewise, if you want to make sure 
that ECX is always used as the loop control register, use the 
double-word form of these instructions: LOOPD, LOOPDE, and 
LOOPDNE. 
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LOOPD decrements ECX and jumps to the destination offset if the 
resulting value is not zero. For example, the following loop is 
executed 80000000h times: 

mov ecx,80000000h 
LoopTop: 

loopd LoopTop 

LOOPDE decrements ECX and jumps to the destination offset 
while the zero flag is 1 and ECX is not zero. (LOOPDZ is another 
form of the same instruction.) Similarly, LOOPDNE decrements 
ECX and jumps to the destination offset while the zero flag is 0 
and ECX is not zero. (LOOPDNZ is equivalent.) For instance, the 
following loop repeats until either the value read from the I/O 
port at DX becomes 09h or the port has been checked 10000000h 
times, whichever comes first: 

mov ecx,lOOOOOOOh 
LoopTop: 

in al,dx 
cmp al,09h 
loopdne LoopTop 
jnz TimedOut 

TimedOut: 

Note that the action of JNZ in this example reflects the result of 
the comparison, not of LOOPDNE, since loop instructions don't 
affect the status flags. The 80386 also provides a version of JCXZ 
suited to 32-bit operations. Where JCXZ jumps if CX is zero, 
JECXZ jumps if ECX is zero. For example, the following loop is 
capable of handling 32-bit counts: 

LoopTop: 
jecxz LoopEnd 

jmp LoopTop 
LoopEnd: 
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New versions of the string InstrucHons 

On the 80386, all string instructions may operate on byte, word, or 
doubleword values. The doubleword versions of the string 
instructions simply end with d rather than the usual w or b. The 
new instructions follow: 

CMPSD 
INSD 
LODSD 

MOVSD 
OUTSD 

SCASD 
STOSD 

Each of these instructions works with 32 bits of data at a time, and 
increments or decrements its associated pointer registers by four 
on each repetition. For example, the following code fragment uses 
MOVSD to copy the two doublewords starting at the offset 
DwordTable to the two doublewords starting at the offset Buffer: 

eld 
mov si,OFFSET DwordTable 
mov di,OFFSET Buffer 
mov ex,2 
rep movsd 

This produces the same result as the following code, which uses 
MOVSB: 

eld 
mov si,OFFSET DwordTable 
mov di,OFFSET Buffer 
mov ex,S 
rep movsb 

1111" One way to think of the doubleword string instructions is that 
their relationship to the word string instructions is similar to that 
of the word string instructions to the byte string instructions. 

IRETD 

IRETD is similar to IRET. It pops EIP, then CS as a doubleword 
(discarding the higher word), then EFLAGS as a doubleword. 
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PUSHFD and POPFD 

PUSHFD pushes the fu1l32-bit flags register of the 80386 onto the 
stack. POPFD pops the fu1l32-bit flags register from the stack. 

By contrast, PUSHF and POPF push and pop only the lower 16 
bits of the flags register. 

PUSHAD and POPAD 

PUSHAD pushes the eight 32-bit general-purpose registers onto 
the stack in the following order: EAX, ECX, EOX, EBX, ESP, EBP, 
ESI, ED!. The value pushed for ESP is the value of ESP at the start 
of the PUSHAD instruction. POPAD pops seven of the eight 32-bit, 
general-purpose registers from the stack, reversing the order of 
PUSHAD so that EOI, ESI, EBP, EBX, EOX, ECX, and EAX can be 
saved with PUSHAD and then restored with POPAD. ESP is not 
restored by POPAD, but instead is incremented by 32 to discard 
the block of the eight 32-bit, general-purpose registers previously 
pushed by PUSHAD from the stack. The previously pushed value 
of ESP is ignored. 

By contrast, PUSHA and POPA push and pop only the lower 16 
bits of the eight general-purpose registers. 

New versions of IMUL In addition to the 8086/80186/80286 forms of IMUL, the 80386 
provides what is perhaps the most convenient form of IMUL yet: 
Any general-purpose register or memory location can be 
multiplied by any general-purpose register with the result stored 
back in one of the source registers. Gone is the need to have one 
of the operands be a constant, or for the accumulator to be the 
destination. For example, .' 

irnul ebx, [edi*4+4] 

multiplies EBX by the doubleword value stored at memory 
address edi *4+4, and stores the result back into EBX. 

As you can see, the first operand to this form of IMUL is the 
destination register; this operand may be any 16- or 32-bit, 
general-purpose register. The second operand may be any 16- or 
32-bit, general-purpose register or memory location. The sizes of 
the two operands must match. The overflow and carry flags are 
set to 1 if the result, considered a signed value, is too large for the 
destination. 
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As you might expect, the 80386 also extends the 8086/80186/ 
80286 forms of IMUL to support 32-bit operands. For example, this 
code multiplies ECX times 10000000h and stores the result in EBP: 

imul ebp,ecx,lOOOOOOOh 

and this multiplies EAX times EBX and stores the result in 
EDX:EAX: 

imul ebx 

Normally, you'll want to have only 16-bit (USE16) segments. Even 
in this case, you can still use the 32-bit registers for arithmetic and 
logical operations. 

You can also use any combination of 16-bit and 32-bit data and 
code segments. Unless you are writing operating system software 
and know exactly what you are doing, there is absolutely no 
reason for you to use 32-bit code segments. Unless you take 
special measures to switch the processor into a mode suitable for 
executing 32-bit code segments, there is no way they'll work 
under DOS. Future operating systems may give you ways to 
meaningfully use 32-bit code segments, but for now, you 
shouldn't use them. 

However, there is no reason why you can't use 32-bit data 
segments in your programs and take advantage of the "flat" 
addressing provided 1;>y the 32-bit registers of the 80386. 

Let's review the key aspects of USE16 and USE32 segments. 
USE16 segments can be a maximum of 64K in length, so any 
location in a USE16 segment can be pointed to with a 16-bit 
address. USE32 segments, on the other hand, can be as long as 4 
GB in length, so a 32-bit address is required to point to an 
arbitrary location in a USE32 segment. 

Clearly, if you need segments longer than 64K, you must use 
USE32. By contrast, there's no case in which you must use USE16 
segments. This may well lead you to wonder why we don't just 
simplify things and use 32-bit segments all the time. The answer 
lies in the way in which the 80386 supports word and 
doubleword operands and 16- and 32-bit offsets. 

The 80386 evolved from the 8086, which uses a single bit to 
distinguish between its only two operand sizes, 8- and 16-bits. 
The 8086 has a single set of memory-addressing modes-the 
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familiar modes involving BX, 51, 01, and BP-supporting 16-bit 
offsets only. This code fragment has an 8-bit operand size and 
uses an 8086-style 16-bit addressing mode to address memory: 

mov aI, [bx+l000h] 

In USE16 code segments, the 80386 normally still uses the same 
bit as does the 8086 to select between 8- and 16-bit operands and 
still uses 16-bit offsets. However, any given instruction in a USE16 
segment may be converted to support 32-bit operands by placing 
an operand-size prefix (066h) before the instruction; in this case, 
the size bit of the instruction selects between 8- and 32-bit 
operands instead of 8- and 16-bit operands. 

Similarly, any given instruction in a USE16 segment may be 
converted to use the 80386's 32-bit addressing modes (a large 
address, as described in the earlier section ''Newadd.ressing 
modes" on page 431) by placing an address-size prefix (067h) 
before the instruction. 

For example, the code assembled from 

.386 

DataSeg SEGMENT USE16 
TestLoc DD 
DataSeg ENDS 

CodeSeg SEGMENT USE16 
mov ax,DataSeg 
mov ds,ax 
ASSUME ds:DataSeg 
db 66h 
mov ax, WORD PTR [TestLoc] 

CodeSeg ENDS 

loads the 4 bytes at TestLoc into EAX, rather than the 2 bytes at 
TestLoc into AX because the operand-size prefix transforms the 
operand size of the instruction to 32 bits. 

Along the same lines, instructions in USE32 code segments 
normally access 8- or 32-bit operands and nonnally use the 32-bit 
addressing modes of the 80386; however, operand-size and 
address-size prefixes can be used to cause individual instructions 
to operate in 16-bit mode (that is, 8086 mode, with word operands 
and/or small addresses), just as if they were in a USE16 segment. 
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In short, the operand-size and address-size prefixes can cause an 
instruction executing in a USE16 code segment to act as if it were 
in a USE32 segment, and can cause an instruction executing in a 
USE32 code segment to act as if it were in a USE16 segment. 

Don't worry about learning to use operand-size and address-size 
prefixes in your 80386 code; the generation of the prefixes 
necessary to use 16-bit features in USE32 segments or 32-bit 
features in USE16 segments is handled by Turbo Assembler 
transparently to the programmer. For example, if you use the 
following instruction in a USE32 code segment, 

mov [bx],ax 

Turbo Assembler automatically prefixes the instruction with ali 
operand-Size prefix and an address-size prefix. We've explained 
the workings of the size prefixes here only so you'll understand 
the key element in selecting between 16- and 32-bit segment sizes: 
the need to minimize the number of size prefixes generated. 

Suppose, for example, that you selected a USE16 segment and 
then only referred to doubleword-sized operands, addressed with 
32-bit addressing modes, such as 

mov eax, [edxtecx*2tl] 

Turbo Assembler would have to generate operand-size and/or 
address-size prefixes for virtually every instruction in your code 
causing the size of your code to balloon and performance to 
suffer. Given a USE32 segment, however, the same code would 
require no size prefixes at all. 

You can now see that the segment-size selection process is a bit 
more complex than it seemed. If you need a segment larger than 
64K, you must select a USE32 segment. If you need a segment 
smaller than 64K, you should select a USE32 segment if you use 
more 32- than 16-bit operands and addressing modes. And you 
should select a USE16 segment if the reverse is true. It's not 
always easy to tell which segment type would be more efficient, 
but you can always assemble your code both ways and see which 
is more compact. 

Now you can also see why the LARGE and SMALL operators are 
sometimes necessary to allow forward references to assemble. 
Since the USE type of the code segment determines the default 
size of address references, forward references are assumed to be 
of the same size as the code segment USE type. LARGE must be 
used for forward references from USE16 code segments to USE32 
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An example 
80386 function 

data segments, and you may want to use SMALL in order to force 
use of 16-bit addressing for forward references from USE32 code 
segments to USE16 data segments. 

Let's look at some sample 80386 code. Desirable as it would be to 
examine a complete 80386 program, that's just not possible right 
now, since there's no widely used 80386-based operating system, 
and therefore no standard way to request memory, accept 
keystrokes, display output, or even terminate a program. Instead, 
let's look at a complete function written in 80386 assembler. 

Our sample function, named CalcPrimes, takes advantage of the 
tremendous length of a USE32 segment to calculate all primes in a 
given range in a very straightforward way; the function simply 
calculates all multiples of all numbers in the range 2 to the 
maximum prime desired, marking every multiple in a single huge 
table as being non-prime. On an 8086, this approach would work 
well only for arrays shorter than 64K, the maximum segment size, 
and would break down entirely at 1 MB, the maximum amount of 
memory the 8086 processor can address. 

By contrast, USE32 segments and 32-bit registers make it possible 
for the 80386 to easily handle a table up to nearly 4 GB in length; 
in fact, the 80386 can, with help from paged memory, even handle 
memory requirements in the terabyte (1000 GB) range! Of course, 
the calculation times for checking such enormous primes would 
be unacceptably long, but that's the point; unlike the 8086 and 
80286, the 80386's memory-addressing architecture is not a 
limiting factor for programs requiring tremendous amounts of 
memory. 

Here's CalcPrimes: 

; Sample 80386 code to calculate all primes between 
; 0 and MAX_PRIME (inclusive). 

; Input: None 

; Output: 
ES:EAX - a pointer to PrimeFlags, which contains a 1 at 
the offset of each number that is a prime and a 0 at 
the offset of each number that is not a prime. 

; Registers destroyed: 
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EAX, EBX 

Based on an algorithm presented in "Environments," 
by Charles Petzold, PC Magazine, Vol. 7, No.2 . 

• 386 

MAX_PRIME EQU 1000000 ;highest I to check for being prime 

SEGMENT USE32 DataSeg 
PrimeFlags 
DataSeg 

DB (MAX_PRIME + 1) DUP (?) 
ENDS 

CodeSeg SEGMENT USE32 
ASSUME cs:CodeSeg 

CalcPrimes PROC 
push ds ;save caller's DS 
mov ax,DataSeg 
mov ds,ax 
ASSUME ds:DataSeg 
mov es,ax 
ASSUME es:DataSeg 

Assume all numbers in the specified range are primes. 

mov al,1 
mov edi,OFFSET PrimeFlags 
mov ecx,MAX_PRIME+l 
cld 
rep stosb 

Now eliminate all numbers that aren't primes by calculating all 
mUltiples (other than times 1) less than or equal to MAX_PRIMES 
of all numbers up to MAX_PRIME. 

mov eax,2 ;start with 2, since 0 & 1 are primes, 
and can't be used for elimination 
of mUltiples 

PrimeLoop: 
mov ebx,eax ;base value to calculate 

all multiples of 
MultipleLoop: 

add ebx,eax 
cmp ebx, MAX_PRIME 

ja CheckNextBaseValue 
mov [PrimeFlags+ebx],0 

jmp MultipleLoop 
CheckNextBaseValue: 

;calculate next mUltiple 
;have we checked all 
; mUltiples of this number? 
;yes, go to next number 
;this number is not prime, since 
; it's a multiple of something 
;eliminate the next mUltiple 
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inc eax 

cmp eax,MAX_PRIME 
jb PrimeLoop 

ipoint to next base value (the 
i next value to calculate all 
i mUltiples of) 
ihave we eliminated all multiples? 
ino, check the next set 

i Return a pointer to the table of prime and non-prime statuses 
in ES:EAX. 

mov eax,OFFSET PrimeFlags 
pop ds irestore caller's DS 
ret 

CalcPrimes ENDP 
CodeSeg ENDS 

END 

Notice how easily the 80386 allows you to handle 32-bit integers 
and an array 1,000,000 bytes in length; in fact, the whole function 
is, remarkably, only 20 bytes in length. CalcPrimes returns, as its 
result, a large far pointer to the table PrimeFlags, in which the 
offset corresponding to each number contains a 1 if that number is 
prime and a 0 if that number is not prime. For example, 
PrimeFlags+3 would be I, since 3 is a prime number, and 
PrimeFlags+4 would be 0, since 4 is not. 

The length of PrimeFlags, and the largest number to be checked as 
to whether it is a prime, are defined by the equated symbol 
MAX_PRIME. It would actually be more practical to have the 
calling routine pass the address of a table of arbitrary size to 
CalcPrimes, along with the largest number to be checked (which 
would presumably also be the length of the table minus 1). 
CalcPrimes could then meet the prime-calculation needs of any 
calling code on the fly, rather than having to be reassembled to 
handle new table sizes. The preceding example uses a local 
PrimeFlags primarily to illustrate the use of USE32. 

A version of CalcPrimes that works with passed table and table 
length parameters follows: 

i Sample 80386 code to calculate all primes between 
i 0 and a specified value (inclusive). 

i Input (assumes a large far call, with 6 bytes of return address 
; pushed on the stack): 

ESP+06h on entry (last parameter pushed) - the 
doubleword value of the maximum number to be checked as 
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to whether it is a prime. 

ESP+OAh on entry (first parameter pushed) - a large far 
(6 byte offset) pointer to the table in which to store a 
1 at the offset of each number that is a prime and a 0 at 
the offset of each number that is not a prime. The table 
must be at least [ESP+06h]+1 bytes in length, where 
[ESP+06h] is the other parameter. 

Output: None 

Registers destroyed: 
EAX, EBX, EDX, ED! 

Based on an algorithm presented in "Environments," 
by Charles Petzold, PC Magazine, Vol. 7, No.2 . 

• 386 

CodeSeg SEGMENT USE32 
ASSUME cs:CodeSeg 

CalcPrimes PROC FAR 
push es 
push fs 

Get parameters. 

mov ecx, [esp+4+06h] 
lfs edx, [esp+4+0ah] 

isave caller's ES 
isave caller's FS 

Assume all numbers in the specified range are primes. 

push fs 
pop es 
mov al,1 
mov edi,edx 
cld 
push ecx 
inc ecx 
rep stosb 
pop ecx 

ipoint ES to table's segment 

isave maximum number to check 
iset up to maximum number, inclusive 

iget back maximum number to check 

Now eliminate all numbers that aren't primes by calculating all 
mUltiples (other than times 1) less than or equal to the 
maximum number to check of all numbers up to the maximum number 
to check 

mov eax,2 ;start with 2, since 0 & 1 are primes, and 
; can't be used for elimination of mUltiples 
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The 80287 

For detailed information 
about 80287 instructions, see 
Chapter 3 in the Reference 

Guide. 

The 80387 

PrimeLoop: 
mov ebx,eax ;base value to calculate all mUltiples of 

MultipleLoop: 
add ebx,eax ;calculate next mUltiple 
cmp ebx,ecx ;have we checked all multiples of number? 
ja CheckNextBaseValue ;yes, go to next number 
mov BYTE PTR fs: [edx+ebxJ,O ;this number is not prime, 

; since it's a mUltiple of 
; something 

jmp MultipleLoop ;eliminate the next multiple 
CheckNextBaseValue: 

inc eax 

cmp eax,ecx 
jb PrimeLoop 
pop fs 
pop es 
ret 

CalcPrimes ENDP 
CodeSeg ENDS 

END 

;point to next base value (the next value 
; to calculate all mUltiples ofl 
;have we eliminated all multiples? 
;no, check the next set of mUltiples 
;restore caller's FS 
;restore caller's ES 

The instruction set of the 80287 math coprocessor is exactly the 
same as the instruction set of the 8087, with one exception. The 
exception is the FSETPM instruction of the 80287, which places 
the 80287 in protected mode. 80287 protected mode corresponds 
to the protected mode of the 80286 processor, with which the 
80287 is normally coupled (although the 80287 is sometimes used 
with the 80386 as well). Of course, any program that uses FSETPM 
will not run on an 8087, since the 8087 doesn't support that 
instruction. 

Turbo Assembler support for 80287 assembly is enabled with the 
.287 directive. 

The instruction set of the 80387 math coprocessor is a superset of 
the 8087 /80287 instruction set. The new instructions of the 80387 
follow: 

FCOS FSINCOS FUCOMP 
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FPREM1 
FSIN 

FUCOM FUCOMPP 

FUCOM performs an unordered compare between ST(O) and 
another 80387 register. This instruction is just like FCOM except 
that the result status is set to unordered if one of the operands is a 
NAN, rather than generating an invalid-operation exception as 
FCOM does in that case. FUCOMP performs an unordered 
compare and pops the 80387's stack, and FUCOMPP performs an 
unordered compare and pops the stack twice. 

FCOS calculates the cosine of the ST(O) register, FSIN calculates 
the sine of the ST(O) register, and FSINCOS calculates the sine and 
cosine of the ST(O) register. 

FPREM1 calculates an IEEE-compatible remainder of ST(O) 
divided by ST(1). 

1111" Don't forget that any program that uses any of these instructions 
will not run on an 8087 or 80287. Also, because the 80387 handles 
real-mode and protected-mode operations in the same way, it 
ignores the FSETPM instruction on the 80287. 

For detailed Information Turbo Assembler support for 80387 assembly is enabled with the 
about 80387 Instructions, see .387 directive. 
Chapter 3 of the Reference 

Guide. 
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c H A p T E R 

1 1 

Turbo Assembler Ideal Mode 

For those of you who are struggling to.make MASM do your 
bidding, this may be the most important chapter in the manual. In 
addition to near-perfect compatibility with MASM syntax, Turbo 
Assembler smooths the bumps and grinds of assembly language 
programming with a MASM derivative we call Ideal mode. 

Among other things, Ideal mode lets you know solely by looking 
at the source text exactly how an expression or instruction 
operand will behave. There's no need to memorize a storehouse of 
knowledge for all MASM's many quirks and tricks. Instead, with 
Ideal mode, you write clear, concise expressions that do exactly 
what you want. 

Ideal mode uses nearly all MASM's same keywords, operators, 
and statement constructions. This means you can explore Ideal 
mode's features one at a time without having to learn a large 
number of new rules or keywords. All Ideal mode features are 
extensions or reorganizations of existing MASM capabilities. 

This chapter describes the features of Ideal mode and explains 
how using Ideal mode's new syntax rules can save you time and 
effort. We'll also discuss in detail all the new capabilities of Ideal 
mode and explain the differences between Ideal and MASM 
syntaxes. 

Chapter 7 7, Turbo Assembler Ideal Mode 455 



What is Ideal mode? 

Turbo Assembler's Ideal mode introduces a new syntax for 
expressions and instruction operands. The new syntax isn't 
radically different from existing MASM syntax; rather, Ideal mode 
is a simpler and cleaner implementation of MASM operators and 
keywords, using forms that make better sense, both to you and to 
Turbo Assembler. 

Ideal mode adds strict type-checking to expressions. Strict type
checking helps reduce errors caused by assigning values of the 
wrong types to registers and variables, and by using constructions 
that appear correct in the source text but are assembled differently 
than you expect. Instead of playing guessing games with values 
and expressions, as Ideal mode lets you write code that makes 
logical and aesthetic sense . 

. Because of strict type-checking, Ideal mode expressions are both 
easier to understand and less prone to producing unexpected 
results. And, as a result, many of the MASM problems we warn 
you about in other chapters disappear under Ideal mode's 
watchful eye. 

Ideal mode also has a number of features that make programming 
easier for novices and experts alike. Some of these features 
include the following: 

• duplicate member names among multiple structures 
II complex HIGH and LOW expressions 
• predictable EQU processing 
• correct handling of grouped data segments 
• improved consistency among directives 
II sensible bracketed expressions 

Why use Ideal mode? 

456 

There are many good reasons why you should use Turbo 
Assembler's Ideal mode. If you are just learning assembly 
language, you can easily construct Ideal mode expressions and 
statements that have the effects you desire. You don't have to 
fiddle around tryi~g different things until you get an instruction 
that does what you want. If you are an experienced assembly 
language programmer, you can use Ideal mode features to write 
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complex programs using language extensions such as nestable 
structures and unions. 

As a direct benefit of a cleaner syntax, Ideal mode assembles files 
30% faster than MASM mode. The larger your projects and files, 
the more savings in assembly time you'll gain by switching to 
Ideal mode. 

Strong type-checking rules, enforced by Ideal mode, let Turbo 
Assembler catch errors that you would otherwise have to find at 
run-time or by debugging your code. This is similar to the way 
high-level language compilers assist you by pointing out 
questionable constructions and mismatched data sizes. 

Although Ideal mode uses a different syntax for some 
expressions, you can still write programs that assemble equally 
well in both MASM and Ideal modes. You can also switch 
between MASM and Ideal modes as often as necessary within the 
same source file. This is especially helpful when you're 
experimenting with Ideal mode features, or when you're 
converting existing programs written in the MASM syntax. You 
can switch to Ideal mode for new code that you add to your 
source files, while you maintain full MASM compatibility for 
other portions of your program. 

Entering and leaving Ideal mode 

Use the IDEAL and MASM directives to switch between Ideal and 
MASM modes. Turbo Assembler always starts assembling a 
source file in MASM mode. To switch to Ideal mode, include the 
IDEAL directive in your source file before using any Ideal mode 
capabilities. From then on, or until the next MASM directive, all 
statements behave as described in this chapter. You can switch 
back and forth between MASM and Ideal modes in a source file as 
many times as you wish and at any place. Here's a sample: 

DATA SEGMENT 
abc LABEL BYTE 
xyz DW 0 
DATA ENDS 

IDEAL 

SEGMENT CODE 
PROC MyProc 
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istart in MASM mode 
iabc addresses xyz as a byte 
idefine a word at label xyz 
iend of data segment 

iswitch to Ideal mode 

isegment keyword now comes first 
iproc keyword comes first, too 
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ENDP MyProc 
ENDS 

MASM 

CODE SEGMENT 
Func2 PROC 

iIdeal mode programming goes here 

irepeating MyProc label is optional 
irepeating segment name not required 

iswitch back to MASM mode 

iname now required before segment keyword 
iname now comes before proc keyword, too 

iMASM-mode programming goes here 

IDEAL iswitch to Ideal mode again! 

MASM 

Func2 ENDP 
CODE ENDS 

ido some programming in Ideal mode 

iback to MASM mode. Getting dizzy? 

iname again required before keyword 
iname again required here 

As you can see, in Ideal mode, directive keywords such as PRoe 
and SEGMENT appear before the identifying symbol names, the 
reverse of MASM's order. Also, you have the option of repeating a 
segment or procedure name after the ENDP and ENDS directives. 
Adding the name can help clarify the program by identifying the 
segment or procedure that is ending. This is a good idea, 
especially in programs that nest multiple segments and 
procedures. You don't have to include the symbol name after 
ENDP and ENDS, however. 

MASM and Ideal mode differences 

458 

This section describes the main differences between Ideal and 
MASM modes. If you know MASM, you may want to experiment 
with individual features by converting small sections of your 
existing programs to Ideal mode. Just remember to surround the 
new code with the IDEAL and MASM keywords. By following this 
scheme, a kind of learn-as-you-go approach to Ideal mode 
proficiency, you can assemble your current programs without 
having to revise every instruction to use Ideal mode's special 
features. Eventually, of course, you may decide to program 
exclusively in Ideal mode. Or you may choose to mix and match 
MASM and Ideal mode modules. The choice is yours to make. 
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Ideal mode 
tokens Turbo Assembler reads and understands your program by 

dividing the text into individual words or symbols called tokens. 
Examples of tokens include labels such as V ALUE, NAME, or 
AGE, and other symbols, numbers, parts of expressions, and 
arithmetic operators such as +, -, '" and /. 

Two types of tokens, symbols and floating-point numbers, have 
slightly different forms in Ideal mode. As described next, these 
changes clarify several ambiguities in the MASM syntax. 

Symbol tokens In Ideal mode, a period (.) is not permitted as part of a symbol 
name. You can use a period only as a structure member operator 
or in a floating-point number. 

Structure and union members (some people call them fields) are 
not defined as global symbols, accessible from every place in your
program. Structure and union members exist only within the 
structure to which they belong. This lets you have multiple 
structures that contain members with the same names. You can 
also duplicate member names outside of a structure for other 
purposes, as in this sample: 

Pennies DW 0 
STRUC Heaven 
Dimes DW ? 
Nickels DW? 
Pennies DW? 
ENDS 
Take Heaven <> 

ino conflict 

They say you can't take it with you but, just in case they're wrong, 
this example shows how to create a variable with three fields, 
storing your net worth in dimes, nickels, and pennies in a 
structure named Heaven. The fields Dimes and Nickels are unique 
to the structure. Pennies, though, occurs twice. First, there's 
Pennies outside the structure's pearly gates, and then there's 
Pennies from Heaven. 

Seriously, this example demonstrates that the same name, Pennies, 
can occur both inside and outside of a structure with no conflict, 
something that you can't do in MASM to save your soul. 

The variable Pennies outside of Heaven is distinct from the 
member Pennies used inside the structure. Consequently, to 
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Duplicate member 
names 

reference a duplicated name inside of a structure requires three 
elements: the structure name, a period, and the member name. In 
this example, Take.Pennies equals the offset of the Pennies field 
inside Heaven. Pennies alone, however, equals the offset to the 
variable outside of the structure. 

Ideal mode also lets you duplicate member names in different 
structures. The members can be of the same or of different types, 
as in the following two structures, both of which have Size fields 
of the same type and in the same postion, plus Amount fields of 
different types in different positions: 

STRUC SomeStuff 
Size DW ? 
Flag DB ? 
Amount DW ? 
ENDS 

STRUC OtherStuff 
Size DW 
Amount DB ? 
ENDS 

ino conflict here 
inor here 

Floating-point tokens In Ideal mode, floating-point decimal numbers must always 
include a period (.): 

460 

FP DT l.Oe? ildeal mode floating-point value 

This defines a lO-byte floating-point value, named FP, equal to 
1.0e7. In MASM mode, you can use the acceptable, though less 
clear, form: 

FP DT lE? iMASM mode floating-point value 

This may not seem so bad until you consider what happens if, in 
an earlier section of the program, you issue a .RADIX 16 command 
that changes the default number base from decimal to hexa
decimal. In this case, disaster strikes as MASM now assembles 
your floating-point value as the hexadecimal number OlE7! By 
requiring you to use a decimal point, Ideal mode never 
accidentally confuses floating-point and hexadecimal numbers 
this way. 
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EQU and = 
directives EQU definitions, also called equates, are always treated as text in 

Ideal mode. In MASM mode, equates are sometimes treated as 
text and, at other times, as numbers. Consider these-examples:, 

1111" 

Expressions and 
operands 

Square brackets 
operator 

;Declare a few equates 
A 4 
B 5 
C EQU B + A 
B 6 

;Declare a variable 
V DW C ;9 in MASM mode, 10 in Ideal mode 

MASM evaluates B + A when processing the EQU expression. At 
this time, A equals 4 and B equals 5; therefore, C equals 9. Ideal 
mode processes the same expression differently, storing in string 
form everything that follows EQU, in this case, B + A. Later, Ideal 
mode substitutes this string where C appears. In this example, 
because the expression evaluation is delayed until the declaration 
of variable V and because B was previously redefined to 6, 
variable V equals 10 (6+4) in Ideal mode. 

In Ideal mode, EQU always defines a string. An equal sign (=) 
always defines a calculated expression. It might help you to 
remember this rule if you visualize an equal sign (=) evaluating 
expressions immediately and EQU delaying expression evaluation 
until the place where the constant name appears. By the way, 
some people refer to this as "early" and "late" binding. 

The biggest difference between Ideal and MASM mode 
expressions is the way square brackets function. In Ideal mode, 
square brackets always refer to the contents of the enclosed 
quantity. Brackets never cause implied additions to occur. Many 
standard MASM constructions, therefore, are not permitted by 
Ideal mode. 

In Ideal mode, square brackets must be used in order to get the 
contents of an item. For example, 

mov ax,wordptr 
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displays a warning message. You are are trying to load a pointer 
(wordptr) into a register (AX). The correct form is 

mov ax, [wordptr] 

Plainly, you are loading the contents of the location addressed by 
wordptr (in the current data segment at DS) into AX. 

If you wish to refer to the offset of a symbol within a segment, 
you must explicitly use the OFFSET operator, as in this example: 

mov ax, OFFSET wordptr 

Example operands Let's examine a few confusing, though typical, bracketed 
operands that MASM mode accepts, and then compare the 
examples with the correct and easier-to-understand forms that 
Ideal mode requires. As you'll see, Ideal mode's unambiguous use 
of brackets helps make your intentions perfectly clear: 

mov ax, [bx] lsi] iMASM mode 

This causes a syntax error in Ideal mode. If brackets specify the 
contents of memory, then this instruction appears to be loading 
both the value addressed by BX and the value addressed by 51 
into AX at the same time. Of course, you can do no such thing. 
What you probably mean, and what Ideal mode requires, is this: 

mov ax, [bx+si] ildeal mode 

Now, the instruction is clear. The contents of the memory location 
at the OFFSET BX+SI, relative to the current data segment 
addressed by OS, is loaded into AX. (The size of the memory 
location is a 16-bit word because AX is a 16-bit register. If you 
replace AX with AL, or another 8-bit register, then the size of the 
memory location is a byte.) Here's a similar example: 

mov ax,es: [bx] lsi] iMASM mode 

This also causes an Ideal mode error. The instruction seems to be 
saying, "apply an ES: segment override to the value addressed by 
BX, and add the whole shebang to the contents of the memory 
location addressed by 51, loading the result (whatever that is) into 
AX." This is senseless, of course, and you probably mean this: 

mov ax, [es:bx+si] ildeal mode 

Good! This adds the BX and SIregisters together, giving an offset 
value relative to segment register ES, overridden from the default 
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data segment DS. The 16-bit contents of this location is loaded 
into AX. Here's another MASM example that you'll often see: 

mov ax,6[bx] iMASM mode 

A mathematician might think you are multiplying 6 times the 
value of the location addressed by BX. Or, is this some kind of 
undocumented array indexing technique, or just a typing error? 
Actually, it's none of the above, as the Ideal mode form shows 

mov ax, [bx+6] ildeal mode 

Of course! You want to load into AX the contents of the location 
in the current data segment 6 bytes away from the offset specified 
by BX. More clear than that, you cannot get. Expressions in 
MASM mode, though, are not always so understandable: 

mov ax,es:[bp+8] [si+6] iMASM mode 

Let's see, you take the value 8 bytes away from BP, apply a 
segment override ES:, and ... no, the override must go with the 
value 6 bytes from SI. But no, that's not right, maybe you take the 
value at BP+8, add to the contents of [SI+6], apply an override 
and ... Oh, forget it! Ideal mode makes this and other complex 
operands easy to read and easy to write: 

mov ax, [es:bp+si+14] ildeal mode 

Obviously, the value located at offset BP+SI+ 14 in segment ES is 
loaded into AX, plain and simple. Believe it or not, there's more: 

mov aI, BYTE PTR [bx] iMASM mode 

MASM apparently allows you to specify the contents of memory 
locations as byte pointers, at least that's what this instruction 
appears to be doing. You can, of course, point to bytes or words 
only with pointers (registers and labels) as Ideal mode makes 
perfectly evident: 

mov aI, [BYTE PTR bx] ildeal mode 

Obviously, you are telling Turbo Assembler that BX is a byte 
pointer, loading into register AL the byte located BX bytes from 
the start of the current data segment. One more example and then 
we're done: 

rep movs BYTE PTR [di], lsi] iMASM mode 

MASM appears to allow you to convert characters addressed by 
DI (and maybe SI?) into byte pointers. Of course, you can't do 
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Operators 
Chapter 2 In the reference 

manuallisfs operator 
precedence and completely 

describes all operators in 
MASM and Ideal modes. 

Periods in structure 
members 

that. What you no doubt mean, and what Ideal mode wants to 
see, is this: 

rep movs [BYTE PTR di], [BYTE PTR si] ildeal mode 

Although this is longer, registers DI and 51 are clearly byte 
pointers for the MOVS instruction. 

These examples, are by no means complete, and you probably will 
encounter many other confusing MASM operands with brackets. 
When this happens, try switching to Ideal mode, even if just for 
that one instruction. Then, use the foregoing samples as guides to 
rewriting the instruction in a form that you can understand. By 
doing this, you can use Ideal mode not only to help you write 
better and more readable programs, but also to help you 
understand bracketed constructions that, in MA5M, are 
frequently about as clear as mud on a foggy day. 

The changes made to the expression operators in Ideal mode 
increase the power and flexibility of some operators while leaving 
unchanged the overall behavior of expressions. The precedence 
levels of some operators have been changed to facilitate common 
operator combinations. 

For specifing accurately the structure members to which you ;re 
referring, the period (.) structure member operator is far more 
strict in Ideal mode. The expression to the left of a period must be 
a structure pointer. The expression to the right must be a member 
name in that structure. Using the earlier SomeStuff and OtherS tuff 
structure examples, here's how to load registers with the values of 
specific structure members: 

iDeclare variables using the structure types 
S Stuff SomeStuff <> ° Stuff OtherStuff <> 
mov ax, [S_Stuff.Amount] 
mov bl, [O_Stuff.Amount] 

iload word value 
iload byte value 

Pointers to structures Often, you'll want to use a register containing the address of a 
structure, in other words, the offset to the first byte of a structure 
stored in memory. Or you might have a memory variable that 
addresses a structure. In these cases, to reference a specific 
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The SYMTYPE operator 

The HIGH and LOW 
operators 

structure member by name, you must tell Turbo Assembler which 
structure you are referring to: 

mov ex, [(SorneStuff PTR bx) .Amount] 

This lets Turbo Assembler know that BX is a pointer to a SomeS tuff 
structure and that you want to load the contents of the Amount 
field from that structure into register CX. The parentheses are 
required because the period (.) operator has higher precedence 
than PTR. Without parentheses, Ideal mode tries to bind Amount 
to BX, which is impossible, of course, because registers do have 
field names. Only structures have field names and, therefore, you 
must convert pointers to structures before referring to fields in 
structures that the registers address. 

Because an Ideal mode symbol cannot start with a period, the 
.TYPE operator in MASM mode is named SYMTYPE in Ideal 
mode (see Chapter 1 in the Reference Guide). Despite the name 
change, the directive works identically in both modes with one 
exception: SYMTYPE will not return a value for an undefined 
identifier. Otherwise, this operator returns the types of various 
symbols. 

Abyte DB 0 
Aword DW 0 
Array DD 20 DUP (8) 
Btype SYMTYPE Abyte ;1 
Wtype SYMTYPE Aword ;2 
Atype SYMTYPE Array ;4 

In Ideal mode, the HIGH and LOW operators have two meanings. 
Usually, HIGH specifies the high (most-significant) byte of a 
constant and LOW specifies the LOW (least-significant) byte as in 

MaxVal 1234h 
mov ah, HIGH MaxVal ;loads 12h into AH 
rnov aI, LOW MaxVal ;loads 34h into AL 

In Ideal mode, HIGH and LOW can be used also to select the high 
or low part of a memory-referencing expression: 

WordVal DW 0 
DblVal DD 0 
QVal DQ 0 

mov bl, [BYTE LOW WordVal] 
mov ax, [WORD HIGH DblVal] 
mov ax, [WORD LOW QVal] 
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The Optional PTR 
operator 

The first MOV instruction loads BL with the low byte of the 2-byte 
word labeled by W1rdVal. The second MOV loads AX with the 
high word of the 4-byte value stored at DblVal. The third MOV 
loads AX with the lowest word of the 8-byte (quadword) value at 
QVal. Notice that the syntax is the same as for the PTR operator, 
with BYTE or WORD keywords before the LOW or HIGH 
operators, followed by a memory-referencing expression. 

You can also use HIGH and LOW together to extract just the 
information you need from a multiple-byte value: 

OVal 00 12345678h 
rnov aI, [BYTE LOW WORD HIGH OVal] ;loads 34h into AL 

In combination with BYTE and WORD, the LOW and HIGH 
keywords extract bytes and words from any position in a variable. 
Here, DVal is a doubleword, 4-byte quantity. To better 
understand complex combinations such as this, read the 
expression from left to right. In this case, the move instruction 
loads AL with lithe low byte (BYTE LOW) of the high word 
(WORD HIGH) of Dval." 

You can use shorthand pointer overrides in expressions. To do 
this, omit the PTR operator. For example, 

[BYTE PTR OverTheRainbow] 

in Ideal mode shorthand is the same as 

[BYTE OverTheRainbow] 

The SIZE operator The SIZE operator in Ideal mode reports the actual number of 
bytes occupied by a data item. This makes it easy to determine the 
lengths of strings: ' 

theTitle OB "The Sun Also Rises" 
theAuthor OB "Ernest Hemingway", 0 
titleSize SIZE theTitle ; Ideal--18, MASM--l 
authorSize SIZE theAuthor ; Ideal--16, MASM--l 

In this example, theTitle and theAuthor are strings. In MASM 
mode, the SIZE operator equals the LENGTH of a name multiplied 
by its TYPE. The LENGTH equals the number of items allocated, in 
this case 1. (Even though a string has multiple characters, 
LENGTH considers strings to be single-byte items by virtue of the 
DB directive.) The TYPE value for DB is also 1. Consequently, in 
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Directives 

MASM mode, both titleSize and author Size equal 1, which is not 
much help in trying to calculate the string lengths. 

In Ideal mode, SIZE returns the number of bytes occupied by the 
first item after storage-allocation directives like DB or DW. 
Because of this, titleSize equals the number of characters in 
theTitle. Likewise, author Size equals the number of characters in 
the string, theAuthor. Notice, however, that theAuthor ends in a 0 
byte, marking the string end. SIZE does not take this byte into 
account, returning only the number of characters in the preceding 
string. In fact, SIZE returns the length of only the first item in any 
list of multiple values. For example, 

CountDown DB 9,8,7,6,5,4,3,2,1,"Blast off" 
TwoLines DB "First line", 13, 10, "Second line" 
eDsize SIZE CountDown ; 1 
TLsize SIZE TwoLines ;10 

Here, CountDown addresses 9-byte values followed by the string, 
"Blast off." Even so, SIZE of CountDown (CDSize) in both Ideal 
and MASM modes equals 1, the size of the first element in the list. 
The same is not true of the second example, TwoLines, which is a 
typical way to store two strings separated with an ASCII carriage 
return (13) and linefeed (10). But the two strings are labeled in the 
program under one name, TwoLines. SIZE again returns the size of 
the first item in this series, in this case, the string "First line." In 
Ideal mode, TLSize equals 10, the number of characters in the 
string. In MASM mode, TLSize equals 1, the size of the first DB 
element, a single byte (character). 

Directives in Ideal mode function identically and, in most cases, 
have the same names as their MASM-mode equivalents. 
However, there are a few important differences among similar 
directives in both modes, as this section explains. 

. Listing controls Because a symbol cannot start with a period (.) in Ideal mode, all 
MASM mode listing controls begin with percent signs (%). Also, 
several names have been changed to more accurately describe the 
operations controlled by the directives. The following table shows 
the listing control directives in both modes: 
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Directives starting with 
a period (.) 
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MASMmode 

.CREF 

.LALL 

.LFCOND 

.LIST 

.SFCOND 

.xALL 

.xCREF 

.XLIST 

Ideal mode 

%CREF 
%MACS 
%CONDS 
% LIST 
%NOCONDS 
%NOMACS 
%NOCREF 
%NOLISf 

Because the percent sign (%) starts all listing control directives in 
Ideal mode, the o/oOUT directive in MASM mode becomes 
DISPLAY in Ideal mode: 

DISPLAY "Starting to Assemble I/O Driver" 

Other MASM directives that start with periods (.) are renamed for 
clarity. For instance, all processor control directives such as .286, 
which look more like a number than a directive, now start with P, 
as in P286N. All forced error directives of the form .ERRxxx have 
been renamed ERRIFxxx. Several other directives have the same 
names minus the leading periods. 

The following table lists the directives that start with a period in 
MASM mode and the Ideal mode equivalents: 

MASM mode Ideal mode MASM mode Ideal mode 

.186 P186 .ERR2 ERRIF2 

.286 P286N .ERRB ERRIFB 

.286C P286N .ERRDEF ERRIFDEF 

.286P P286 .ERRDIF ERRIFDIF 

.287 P287 .ERRDIFI ERRIFDIFI 

.386 P386N .ERRE ERRIFE 

.386C P386N .ERRIDN ERRIFlDN 

.386P P386 .ERRIDNI ERRIFIDNI 

.387 P387 .ERRNB ERRIFNB 

.8086 P8086 .ERRNDEF ERRIFNDEF 

.8087 P8087 .ERRNZ ERRIF 

.CODE CODESEG .FARDATA FAR DATA 

.CONST CONST .FARDATA? UFARDATA 

. DATA DATASEG .MODEL MODEL 
• DATA? UDATASEG .RADIX RADIX 
.ERR ERR .STACK STACK 
.ERR1 ERRIF1 
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Reversed directive and 
symbol name 

Quoted strings as 
arguments to directives 

Ideal mode's parsing order is simpler than MASM's. If the first 
token is a keyword, it determines the operation to be performed 
by the directive. If the first token is not a keyword, then the 
second token determines the operation. 

Because of this change, some operations have reversed directive 
and symbol name orders, as the next table details: 

MASMmode 

name ENDP 
name ENDS 
name GROUP segs 
name LABEL type 
name MACRO args 
name PROC type 
name RECORD args 
name SEGMENT args 
nameSTRUC 
name UNION 

Ideal mode 

ENDP [name] 
ENDS [name] 
GROUP name segs 
LABEL name type 
MACRO name args 
PROC name type 
RECORD name args 
SEGMENT name args 
STRUCname 
UNION name 

Notice that ENDS and ENDP do not require matching names to 
close the definitions. If you include a name, spell it the same as 
you did in the preceding SEGMENT or PRoe directive. Some 
programmers always include the name to add extra readability to 
their programs. This is especially useful when you're using nested 
procedures or segments, but it isn't required. 

Some directives are identical in both MASM and Ideal modes. For 
example, the following directives define symbols as part of the 
language syntax and, therefore, are the same in both modes: 

= 
DB 

DD 
OF 
DP 

DQ 
DT 
DW 
EQU 

The INCLUDE directive takes a quoted file name in Ideal mode: 

INCLUDE "MYDEFS.INC" 

In MASM mode you don't have to use quotes: 

INCLUDE MYDEFS.INC 

0/0 TITLE and O/OSUBTTL also require their title strings to be 
surrounded by quotes: 
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Segments and 
groups 

Accessing data in a 
segment belonging to 

a group 

%TITLE "Macro Definitions" 
%SUBTTL "Block Structuring Macros" 

;comment ignored 
;comment ignored 

As these two examples demonstrate, requiring quotes around 
titles and subtitles lets you add comments at the ends of these 
lines. The comments are not included in the listing file. In MASM 
mode, everything after .TITLE and .SUBTTL becomes part of the 
title string, including any comments. 

The way Turbo Assembler handles segments and groups in Ideal 
mode can make a difference in getting a program up and running. 
If you're like most people, you probably shudder at the thought 
of dealing with a bug that has anything to do with the interaction 
of segments and groups. 

Much of the difficulty in this process stems from the arbitrary 
way that MASM and, therefore, Turbo Assembler's MASM mode, 
make assumptions about references to data or code within a 
group. Fortunately, Ideal mode alleviates some of the more 
nagging problems caused by MASM segment and group 
directives as you'll see in the information that follows. 

In Ideal mode, any data item in a segment that is part of a group 
is considered to be principally a member of the group, not of the 
segment. An explicit segment override must be used for Turbo 
Assembler to recognize the data item as a member of the segment. 

MASM mode handles this differently: Sometimes a symbol is 
. considered to be part of the segment instead of the group. In 
particular, MASM mode treats a symbol as part of a segment 
when the symbol is used with the OFFSET operator but as part of 
a group when the symbol is used as a pointer in a data allocation. 
This can be confusing because, when you directly access the data 
without OFFSET, MASM incorrectly generates the reference 
relative to the segment instead of the group. 

An example will help explain how you can easily get into trouble 
with MASM's addressing quirks. Consider the following 
incomplete MASM program, which declares three data segments: 

dsegl SEGMENT PARA PUBLIC 'data' 
vl DB 0 
dsegl ENDS 

dseg2 SEGMENT PARA PUBLIC 'data' 
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v2 DB 0 
dseg2 ENDS 

dseg3 SEGMENT PARA PUBLIC 'data' 
v3 DB 0 
dseg3 ENDS 

DGROUP GROUP dsegl,dseg2,dseg3 
cseg SEGMENT PARA PUBLIC 'code' 

ASSUME cs:cseg,ds:DGROUP 

start: 
rnov ax, OFFSET vl 
rnov bx,OFFSET v2 
rnov cx,OFFSET v3 

cseg ENDS 
END start 

The three segments, dseg1, dseg2, and dseg3, are grouped under 
one name, DGROUP. As a result, all the variables in the individual 
segments are stored together in memory. In the program source 
text, each of the individual segments declares a byte variable, 
labeled v1, v2, and v3. 

In the code portion of this MASM program, the offset addresses of 
the three variables are loaded into registers AX, BX, and ex. 
Because of the earlier ASSUME directive and because the data 
segments were grouped together, you might think that MASM 
would calculate the offets to the variables relative to the entire 
group in which the variables are eventually stored in memory. 

But this is not what happens! Despite your intentions, MASM 
calculates the offsets of the variables relative to the individual 
segments, dseg1, dseg2, and dseg3. It does this even though the 
three segments are combined into one data segment in memory, 
addressed here by register DS. It makes no sense to take the 
offsets of variables relative to individual segments in the program 
text when those segments are combined into a single segment in 
memory. The only way to address such variables is to refer to 
their offsets relative to the entire group. 

To fix the problem in MASM requires you to specify the group 
name along with the OFFSET keyword: 

rnov ax,OFFSET DGROUP:vl 
rnov bx,OFFSET DGROUP:v2 
rnov cx,OFFSET DGROUP:v3 
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far code labels 

472 

Although this now assembles correctly and loads the offsets of vl, 
v2, and v3 relative to DGROUP (which collects the individual 
segments), you might easily forget to specify the DGROUP 
qualifier. If you make this mistake, the offset values will not 
correctly locate the variables in memory and you'll receive no 
indication from MASM that anything is amiss. In Ideal mode, 
there's no need to go to all this trouble: . 

IDEAL 
SEGMENT dsegl PARA PUBLIC 'data' 
vl DB a 
ENDS 

SEGMENT dseg2 PARA PUBLIC 'data' 
v2 DB a 
ENDS 

SEGMENT dseg3 PARA PUBLIC 'data' 
v3 DB a 
ENDS 

GROUP DGROUP dsegl,dseg2,dseg3 
SEGMENT cseg PARA PUBLIC 'code' 

ASSUME cs:cseg, ds:DGROUP 

start: 
mov ax,OFFSET vl 
mov ax,OFFSET v2 
mov ax,OFFSET v3 

ENDS 
END start 

The offsets to vl, v2, and v3 are correctly calculated relative to the 
group that collects the individual segments to which the variables 
belong. Ideal mode does not require the DGROUP qualifier to 
refer to variables in grouped segments. MASM mode does require 
the qualifier and, even worse, gives no warning of a serious 
problem should you forget to specify the group name in every 
single reference. 

When you define near and far LABEL or PROC symbols, 
references to a symbol are relative to the group containing the 
segment. If a symbol's segment is not part of a group, the symbol 
is relative to the segment. This means you do not have to 
ASSUME CS to a segment in order to define near or far symbols. 
In MASM mode, 
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External, public, 
and global 

symbols 

CODE SEGMENT 
ASSUME cs:CODE 

XYZ PROC FAR 

XYZ ENDP 
CODE ENDS 

iMASM procedure code 

becomes the following in Ideal mode: 

SEGMENT CODE 
PROC XYZ FAR 

ENDP 
ENDS 

ildeal mode procedure code 

This change doesn't add any new capabilities to MASM mode. 
But it does relieve you of telling the assembler something Ideal 
mode can usually figure out by itself. 

Wherever you must supply a type (BYTE, WORD, and so on), for 
example, with the EXTRN or GLOBAL directives, you can use a 
structure name: 

STRUC MoreStuff 
HisStuff DB 0 
HerStuff DW 0 
ItsStuff DB 0 
ENDS 
EXTRN SNAME:MoreStuff 

This capability, combined with the enhancements to the period (.) 
operator described earlier, lets you refer to structure members 
that are external to your source module. This is exactly as if you 
had declared the members inside both modules. The SIZE 
operator also correctly reports the size of external data structures. 
Every PUBLIC symbol emitted in Ideal mode occurs where 
PUBLIC is specified. This is also useful for redefining variables. 
MASM mode emits all the public symbols at the end of the 
program, limiting the ways in which you can redefine public 
symbols. For example, 
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Miscellaneous 
differences 

Suppressed fixups 

Operand for BOUND 
instruction 

Perfect = 8 
PUBLIC Perfect ;declare Perfect public 

Perfect = 10 ;redefine Perfect's value 

In Ideal mode, the PUBLIC Perfect equals 8, even though the 
module redefines Perfect after the PUBLIC declaration. In MASM 
mode, because the PUBUC symbols are emitted at the end of the 
module, another module that imports this symbol via an EXTRN 
declaration receives a Perfect 10. 

This section describes a few additional differences between 
MASM and Ideal modes. 

Turbo Assembler in Ideal mode does not generate segment
relative fixups for private segments that are page- or paragraph
aligned. Because the linker does not require such fixups, 
assembling programs in Ideal mode can result in smaller object 
files that also link more quickly than object files generated by 
MASM mode. The following demonstrates how superfluous 
fixups occur in MASM but not in Ideal mod~: 

SEGMENT DATA PRIVATE PARA 
VAR1 DB 0 
VAR2 DW 0 
ENDS 
SEGMENT CODE 

ASSUME ds:DATA 
mov ax,VAR2 

ENDS 
;no fixup needed 

This difference has no effect on code that you write. The 
documentation here is simply for your information. 

The BOUND instruction expects a WORD operand, not a DWORD. 
This lets you define the lower and upper bounds as two constant 
words, eliminating the need to convert the operand to a DWORD 
with an explicit DWORD PTR. In MASM mode, you must write 

BOUNDS DW 1,4 
BOUND DWORD PTR BOUNDS 

;lower and upper bounds 
;required for MASM mode 

but, in Ideal mode, you need only write 

BOUNDS DW 1,4 
BOUND [BOUNDS] 

;lower and upper bounds 
;legal in Ideal mode 
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Comments inside In Ideal mode, comments within macros are treated as strings. To 
macros substitute a dummy parameter within a macro comment, you 

must precede the parameter with an ampersand (&): 

MACRO DOUBLE ARG 
shl ARG,l 

ENDM 
;rnultiply &ARG by two 

When you use this macro in Ideal mode with DOUBLE BX, the 
listing file shows 

shl bx,l ;rnultiply BX by two 

On the other hand, if the macro is defined as 

MACRO DOUBLE ARG 
shl ARG,l 

ENDM 
;rnultiply ARG by two 

the listing file does not replace ARG: 

shl bx,l ;rnultiply ARG by two 

Local symbols Turbo Assembler's local symbol capability is automatically 
enabled when you switch to Ideal mode, exactly as if you had 
entered the LOCALS directive. 

A comparison of MASM and Ideal mode 
programming 

To wrap up this chapter and give you a feeling for the differences 
between Ideal and MASM modes, here is the same program in 
both Ideal and MASM mode. By reading through these examples 
and by examining the numbered comments after the listings, 
you'll be able to appreciate the advantages offered by Ideal mode 
syntax. 

Please understand that these programs are not intended as 
examples of good programming style: The instructions merely 
demonstrate the Ideal mode concepts discussed in this chapter, 
and show only a sampling of the most common Ideal mode 
capabilities and differences from MASM. 
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The example programs read a single line from the console, 
convert the text to uppercase, and then display the result before 
returning to 005. To mark where the program code differs in the 
MASM and Ideal mode programs, we've added a comment 
(beginning with a semicolon) and a number. For example, ; #4 
directs you to read the corresponding description number 4 
following the listings in the section /I An Analysis of MASM And 
Ideal Modes" on page 479. Also, to make the Ideal mode 
differences stand out, we've stripped most of the comments from 
its example. Read the first program to understand how the code 
operates. Read the second program to compare the Ideal-mode 
enhancements. 

MASM mode sample program 

; File <masexmpl.asm> 
; MASM mode example program to uppercase a line 

TITLE Example MASM Program ;this comment is in the title! 
.286 

bufsize = 128 

dosint MACRO intnum 
mov ah,intnum 
int 21h 

ENDM 

STK SEGMENT STACK 
DB 100h DUP (?) 

STK ENDS 

DATA SEGMENT WORD 
inbuf DB 
outbuf DB 
DATA ENDS 

bufsize DUP (?) 

bufsize DUP (?) 

DGROUP GROUP STK,DATA 

CODE SEGMENT WORD 
ASSUME cs:CODE 

start: • 
mov ax,DGROUP 
mov ds,ax 
ASSUME ds:DGROUP 
mov dx,OFFSET DGROUP:inbuf 
xor bx,bx 
call readline 
mov bx,ax 
mov inbuf[bx],O 
push ax 

;size of input and output buffers 

;assign FN number to AH 
;call DOS function &INTNUM 

;reserve stack space 

;input buffer 
;output buffer 

;group stack and data segs 

;assume CS is code seg 

;assign address of DGROUP 
;segment to DS 
;default data segment is DS 
;load into DX inbuf offset 
;standard input 
iread one line 
;assign length to BX 
;add null terminator 
;save AX on stack 
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call mungline 
pop cx 
mov dx,OFFSET DGROUP:outbuf 
mov bx,1 
dosint 40h 
dosint 4ch 

;convert line to uppercase 
;restore count 
;load into DX outbuf offset 
;standard output 
;write file function 
;exit to OOS 

;Read a line, called with dx => buffer, returns count in AX 
readline PROC NEAR 

mov cx,bufsize 
dosint 3fh 
and ax,ax 
ret 

readline ENDP 

;Convert line to uppercase 
mungline PROC NEAR 

mov si,OFFSET DGROUP:inbuf 
mov di,O 

@@uloop: 
cmp BYTE PTR[si],O 
je @@done 
mov aI, [si] 
and aI, not 'a' - 'A' 
mov outbuf[di],al 
inc si 
inc di 
jmp @@uloop 

@@done: ret 
mung line ENDP 
CODE ENDS 

;specify buffer size 
;read file function 
;set zero flag on count 
;return to caller 

;address inbuf with SI 
; initialize DI 

; end of text? 
;if yes, jump to @@done 
;else get next character 
;convert to uppercase 
;store in output buffer 
;better to use lodsb,stosb 
; .•. this is just an example! 
;continue converting text 

;end of procedure 
;end of code segment 

END start ;end of text and OOS entry point 

Ideal mode sample program 

File <idlexmpl.asm> 
Ideal mode example program to uppercase a line 

IDEAL 
%TITLE 
P286N 

"Example Ideal-Mode Program" 

BufSize 128 

MACRO dosint intnum 
mov ah,intnum 
int 21h 

ENDM 

SEGMENT STK STACK 
DB 100h DUP (?) 
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;n 
;12 
;#3 

;14 

; 15 
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ENDS 

SEGMENT DATA WORD 
inbuf DB Bufsize DUP (1) 
outbuf DB bufSize DUP (1) 
ENDS DATA 

GROUP DGROUP STK,DATA 

SEGMENT CODE WORD 
ASSUME cs:CODE 

start: 
mov ax,DGROUP 
mov ds,ax 
ASSUME ds:DGROUP 
mov dx,OFFSET inbuf 
xor bx,bx 
call readline 
mov bx,ax 
mov [inbuf + bx],O 
push ax 
call mungline 
pop cx 
mov dx,OFFSET outbuf 
mov bx,1 
dosint 40h 
dosint 4ch 

i.6 

i .7 

i'S 

i.9 

ino 

in1 

in2 

in3 

iRead a line, called with dx => buffer, returns count in AX 
PROC readline NEAR i.14 

ENDP 

mov cx,BufSize 
dosint 3fh 
and ax,ax 
ret 

iConvert line to uppercase 
PROC mung line NEAR 

mov si,OFFSET inbuf 
mov di,O 

@@uloop: 
cmp [BYTE si],O 
je @@done 
mov aI, lsi] 
and al,not 'a' - 'A' 
mov [outbuf + di],al 
inc si 
inc di 

LODSB/STOSB 
jmp @@uloop 

@@done: ret 

ins 

in6 
in7 

iUS 

;U9 
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An analysis of 
MASM And Ideal 

modes 

ENDP mung line 
ENDS 

END start 

; 120 
; 121 

The following paragraphs detail the differences between MASM 
and Ideal mode constructions, directives, and operands in the two 
previous programs. The numbers refer to the comments in the 
Ideal mode example. Compare these lines with the MASM 
example. 

1. Use the IDEAL directive to switch into Ideal mode. By default, 
Turbo Assembler always starts assembling your source file in 
MASM mode. You need to use the MASM directive only when 
you want to switch back into MASM mode after having earlier 
switched to Ideal mode. 

2. The percent sign in front of %TITLE reminds you that this 
directive affects the listing file (if you decide to create one by 
specifying a listing file name or by using the IL command-line 
option when you assemble the program). Ideal mode uses 
% TITLE instead of TITLE (without the percent sign) all:d also 
requires you to surround the title string with quotes (II II). This 
lets you put a comment on the line that, in MASM mode, 
becomes part of the title-probably not what you intended. 

3. The .286 directive in MASM mode is P286N in Ideal mode. 
Because symbols cannot start with a period (.) in Ideal mode, 
all MASM processor and other directives that start with 
periods are changed. The statement in the listing does not 
serve any useful purpose in this program other than to show 
the difference between the two modes. The program does not 
use any 80286 instructions. 

4. In Ideal mode, the name of the macro comes after the MACRO 
directive, not before as in MASM mode. 

5. The name of the segment in a SEGMENT directive comes after 
the directive in Ideal mode. 

6. When you use ENDS to close a segment in Ideal mode, you 
don't need to supply the matching segment name as you do in 
MASM mode. (You may add the name after the ENDS 
directive, however, if you prefer.) 

7. Same as 5. Again, the SEGMENT keyword comes before the 
name. 
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8. If you supply a matching segment name for the ENDS 
directive, the name comes after the directive and not before as 
in MASM mode. You can delete the name (DATA) if you wish. 

9. In Ideal mode, the GROUP directive precedes the name of the 
data segment group (which is DGROUP). After this comes the 
list of data segments you are grouping under this name. In 
MASM, GROUP and the name are reversed. 

10. Same as 5. The SEGMENT keyword precedes the name. 
11. You don't have to use a group qualifier here with the OFFSET 

operator. Ideal mode presumes that INBUF is relative to the 
start of DGROUP because INBUF is inside one of the individual 
segments collected under this group name. In MASM, you 
have to remember to specify DGROUP: inbuf to correctly 
locate offsets to variables in grouped segments. 

12. The [lNBUF+BX] operand is valid in both Ideal and MASM 
modes, but the same line in the MASM mode version, 
INBUF[BX], is not valid in Ideal mode. In Ideal mode, all 
memory-referencing operands must be surrounded by square 
brackets. 

13. Same as 11. Here again, you do not need to specify the group 
name to reference a variable in a grouped segment. In MASM, 
to obtain the correct offset to OUTBUF, you have to write 
DGROUP:outbuf. Forget the DGROUP qualifier and, in this 
example, you'd store your output in the stack, with no 
warning from MASM that something is seriously wrong! 

14. The name of a procedure in a PROC directive comes after the 
directive, not before as required by MASM mode. 

15. When you use ENDP to close a procedure in Ideal mode, you 
don't have to supply the matching procedure name as you do 
in MASM mode. 

16. Same as 14. The PROC directive proceeds the procedure name. 

17. Same as 11. Again, you don't need to write DGROUP:inbuf, as 
you do in MASM. 

18. In Ideal mode, you can optionally omit the PTR operator when 
you set the size of an expression. The MASM mode expression 
BYTE PTR ABC is identical to BYTE ABC in Ideal mode. 

19. Same as 12. In Ideal mode, to refer to the contents of memory, 
always put the memory-referencing expression inside 
brackets. 

20. Optionally place a matching procedure name after the ENDP 
directive, not before as in MASM mode. 

Turbo Assembler User's Guide 



21. Same as 6. ENDS does not require a matching segment name, 
although you can add the name if you prefer. 
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conditional error directives 223 
conditional jumps See jumps, conditional 
conditional tests (80386) 439 
conditionals 

assembler vs. other languages 234 
in listing files 37 

suppressing 211 
vs Turbo C's 218 

%CONDS directive 211 
configuration files 39 
.CONST directive 110, 402 
constants 

$178 
as operands 90 
character 123 
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expressions 91 
restrictions on 90 

conversion 
bytes to words 137 

problems 241 
data sizes 136 
words to doublewords 137 

copying data See data, copying 
counting 

ex register and 55 
%CREF directive 209 
.CREF directive 210 
CREF table 207 
cross-reference 

generating 23 
in listing files 26, 207 

cross-reference utility See TCREF utility, See 
OBJXREF utility 

CS override 33 
CS register 65 

ASSUME directive and 112,397 
subroutines and 164 

CSEG 317 
%CTLS directive 212 
@curseg symbol 110 
CWO instruction 137 
CWOE instruction 437 
CX register 55 

D 

LOOP instructions and 442 
loops and 159 
repeated string instructions 237 

/d option 26 
--d switch 219 
data 

allocating 116-141 
converting size 136 
copying 132 
forward references 360 
initialization 125 
moving 132-141 

80386 437 
string instructions 181 

scanning 185, 436 
size 133 

BYTE PfR operator 134 
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string instructions 189 
WORD PfR operator 134 

swapping 139 
types 116, 130 

labels 195 
multiple 387 
TurboC292 
UNKNOWN 131 

uninitialized 129 
.DATA? directive 110,402 
.DATA directive 105 

ES register and 107 
data segment 66, 116-141 

.CONST directive 110 

.DATA? directive 110 

.DATA directive 105 

.FARDATA directive 110 
multiple 404 
Turbo Pascal 317 

data structures See structures 
@data symbol 105 
date 74 
??Date variable 179 
DB directive 125 
DD directive 123, 125 
debugging 38 
DEC instruction 144 

effect on carry flag 245 
decimal notation 119 
decrementing, defined 144 
%DEPfH directive 214 
DF directive 125 

80386 425 
DGROUP396 
DH register 56 
DI register 57, 66 

as memory pointer 97 
string instructions 185 

direct addressing 95 
direction flag 53 

incorrect setting 239 
string instructions and 181 

directives See also individual listings 
conditional assembly 217 
conditional error 223 
data definition 125 
defined 86 

Index 

Ideal mode 467 
period in 468 
processor control 468 
processor-type 410 
segments 79, 103, 112, 389-408 
startup 29 
string space 30 
symbols 29 

Disk Operating System See DOS 
DISPLAY directive 216 
displaying characters See characters, displaying 
DIV instruction 146 
divide-by-zero interrupt 147 
division 145 

AX register and 54 
DX register and 56 
REPf directive and 363 
signed 146 

SARand 151 
unsigned 147 

SHRand 151 
DL register 56 
dollar sign symbol 178 

in labels 82 
DOS 69 

calling 70 
character display 71 
keyboard input 70 
PSP 316 
returning to 226 
terminating programs 72 
wildcards 22 

DOSSEG directive 108, 393 
Turbo C and 283 

doublewords 118 
converting to quad words 437 
converting to words 137 

DP directive 125 
DQ directive 123, 125 
DS register 66 

ASSUME directive and 112 
BIOSand 107 
.DAT A directive and 105 
memory operands and 345 
string instructions and 240 

DSEG317 
DT directive 123 
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DUP operator 126 
REPTvs.363 
structures and 376 

DW directive 125 
DWORD type 130 
DX register 56 

E 

division 147 
I/O 140 
multiplication 146 

/eoption 27 
EAX register 426 
EBP register 426 
EBX register 426 
ECX register 426 
EDI register 426 
EDX register 426 
ELSE directive 217 
ELSEIF directives 222 
EMUL directive 27 
END directive 79, 86 

start address and 87 
ENDIF directive 217 
ENDM directive 362 
ENDP directive 

Ideal mode 469 
subroutines and 164 

ENDS directive 112, 389, 402 
Ideal mode 469 

ENTER instruction (80186) 412 
EQU directive 174 

angle brackets and 178 
Ideal vs. MASM mode 456, 461 

equal (=) directive 26 
equate substitutions 174 
equates 

text and numeric 461 
.ERR1 directive 223 
.ERR2 directive 223 
.ERR directive 223 
.ERRB directive 225 
.ERRDEF directive 224 
.ERRE directive 224 
.ERRNB directive 225 
.ERRNDEF directive 224 
.ERRNZ directive 224 
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error messages 16 
conditional 223 
source file line display 37 

errors, programming 225-256, See also pitfalls 
ES register 66 

ASSUME directive and 112 
.DATA directive and 107 
LES instruction and 440 
string instructions and 240, 346 

ESI register 426 
ESP register 426 
exclamation mark operator 

within macros 373 
.EXE files 1, 13 
execution, END directive and 87 
EXITM directive 371 
expressions 91 

Ideal mode 461 
initializing variables 128 
operators in 92 

external symbols See symbols, external 
extra segment 66 

segment overrides and 348 
EXTRN directive 194 

F 

Ideal vs. MASM mode 473 
Turbo C and 293 
Turbo Pascal and 321 

far data 108, 110 
Ideal mode 472 

FAR PTR operator 135 
forward jumps and 360 

far subroutines 165 
FAR type 130 

FAR PTR operator and 135 
.FARDATA? directive 110,404 
@fardata? symbol 110 
.FARDATAdirective 110,402 
@fardata symbol 110 
FCOS instruction 454 
@FileName symbol 110 
??Filename variable 179 
files 

.ASM23 
configuration 39 
include 198 
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indirect 39 
listing 23, 200, See also listing files 

flags register 52 
80286 418 
80386 428 
problems 246 
string instructions 187 

floating-point 
emulation 27 
Ideal vs. MASM mode 460 
instructions 2 
numbers 118, 122 
operations 75 

format, code 81 
forward references 358 

structures 373 
to macros 372 

FPREM1 instruction 454 
FS register 429 

LES instruction and 440 
FSEfPM instruction 453 
FSIN instruction 454 
FSINCOS instruction 454 
FUCOM instruction 454 
FUCOMP instruction 454 
FUCOMPP instruction 454 
FWORD type 130 

80386 424 

G 
general-purpose registers 54, See also 

individ uallistings 
80386 426 
AX 54 
BP58 
BX55 
changing sign 147 
CX55 
0157 
DX56 
5156 
SP59 

GLOBAL directive 197 
Ideal vs. MASM mode 473 

graphics 74 
GREP.COM8 
GROUP directive 395 

Index 

Ideal vs. MASM mode 470 
grouping segments 252,395 

Ideal mode 470 
GS register 429 

LES instruction and 440 

H 
/hoption27 
hard ware, direct access to 74 
heap, Turbo Pascal 318 
help screen, displaying 27 
hexadecimal notation 62, 121 
high-level languages 

80186 and 412 
linking to 109-110, 115, 253 
returning values 166 
segment groups 396 
segment ordering 393 

HIGH operator 
Ideal mode 465 

huge memory model 109 

/i option 28 
-i switch 199 
iAPx86 processor family 46, 409 
IBM PC 

features 67 
1/068 
systems software 68 

IBM XT See IBM PC 
IDEAL directive 457 
Ideal mode 1, 455-481 

BOUND instruction 474 
directives 467 
equates and 461 
expressions 461 
external symbols 473 
floating-point numbers 460 
group overrides 253 
listing controls 467 
local labels 352 
local symbols 475 
macro comments 475 
near/far data 472 
operands 461 
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operators 464 
segment fixups 474 
segment groups 470 
speed 457 
structures/unions 460, 473 
tokens 459 

IOIV instruction 147 
IFl directive 221 
IF2 directive 221 
IF directive 217 
IFB directive 220 
IFDIF directive 220 
lFE directive 218 
IPION directive 220 
IFNB directive 220 
IMUL instruction 146 

80186 416 
80386445 
problems 244 

IN instruction 56, 140 
INC instruction 144 

effect on carry flag 245 
%INCL directive 212 
INCLUDE directive 28, 198 

Ideal mode 469 
include files 198 

GLOBAL directive and 197 
setting path 28 
suppressing in listing files 212 

incrementing, defined 144 
indirect addressing 95 
indirect command files 39 
initialization 

arrays 125 
character strings 126 
data 125 
expressions and 128 
labels and 128 
record variables 381 
structures 379 

inline assembly 
Turbo C 258-280 

format 268 
limitations 274 

input/output See I/O 
INS instruction (80186) 414 
INST ALL.EXE 8 
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installation 8 
instruction mnemonics See mnemonics 
instruction pointer 61, 65 

80386 428 
instruction prefixes 184 
instruction set See also individual listings 

8086 67 
INT instruction 

character display and 71 
keyboard input and 71 

integers 
32-bit 118 
64-bit 118 
lO-byte 118 
long 118 
short 118 

interrupt flag 53 
interrupt handler 

preserving registers 251 
interrupts 

0147 
divide-by-zero 147 

I/O 140 
8086 50 
80186 414 
AL register 140 
AX register 140 
OX regist~r 56, 140 
formatted 71 
IBM PC 68 
keyboard 70 
operations 42 

IP register 61, 65 
80386 428 
subroutines and 164 

IRETD instruction 
80386 444 

IRP instruction 
repeat blocks and 364 

IRPC instruction 
repeat blocks and 364 

J 
/j option 29 
JA instruction 157 
JAE instruction 157 
JB instruction 157 
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JBE instruction 157 
JC instruction 157 
JCXZ instruction 160, 238 

80386 443 
JE instruction 156, 157 
JECXZ instruction 

80386 443 
jEMUL option 27 
JG instruction 157 
JGE instruction 157. 
JL instruction 157 
JLE instruction 157 
JMP instruction 154 

labels and 93 
JNA instruction 157 
JNAE instruction 157 
JNB instruction 157 
JNBE instruction 157 
JNC instruction 157 
JNE instruction 157 
JNG instruction 157 
JNGE instruction 157 
JNL instruction 157 
JNLE instruction 157 
JNO instruction 158 
JNP instruction 157 
JNS instruction 157 
JNZ instruction 157 

80386 443 
JO instruction 157 
JP instruction 157 
JPE instruction 157 
JS instruction 157 
jumps 

80386 428, 443 
conditional 156 

local labels and 352 
problems with 234 
size of 353 

FARPTRand 155 
forward referenced 358 
limitations in Turbo C 274 
short 154 
unconditional 154 

JUMPS directive 354 
JZ instruction 157, 160 

Index 

K 
keyboard input, DOS functions 70 
keywords 31 
/kh option 29 
/ks option 30 

L 
$1 directive (Turbo Pascal) 319 
/1 option 26, 30, 33 
/la option 30 
LABEL directive 130,351 
labels 

= directive and 179 
as operators 92 
conditional jumps and 352 
conflicting definitions 219 
data types 195 
EQU directive and 174 
equating to values/strings 174 
external 194 

Turbo C and 290 
EXTRN directive and 194 
for memory locations 130 
Ideal mode 352 
in macros 371 
initializing variables 128 
listing 205 
loca1349 
MASM mode 352 
modules and 193-197, 349 
PUBLIC directive and 193 
redefining 179 
requirements 82 
undefined 224 

language elements 81 
large memory model 108 
LARGE operator 

80386 and 421 
LEA instruction 

vs. MOV OFFSET 255 
LEAVE instruction (80186) 412 
LES instruction 440 
LFCOND directive 37 
line continuation character 199 
linking See also TLINK utility 

first program 13 
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high-Ievellanguages 115 
returning values 166 

Turbo C 253, 294, 308 
%LINUM directive 214 
%LIST directive 211 
listing files 23, 200-215 

control directives 210 
Ideal mode 467 
MASM mode 468 

%CREF directive 209 
cross-reference information 26, 207 
false conditionals in 37 
format 213 
generating 30 
high-level code in 30 
%NOCREF directive 209 
numbers in 199 
page size 214 
suppressing lines 210 
symbol tables 

suppressing 33, 205 
titles 213 

Ideal mode 469 
LOCAL directive 

in macros 371 
Turbo C and 298 

local symbols 
Ideal vs. MASM mode 475 

LOCALS directive 352 
LODS instruction 181 

multiple segments and 408 
LODSB instruction 181 

segment override and 347 
LODSW instruction 181 
logical operations 42, 148 
long integers 118 
LOOP instruction 56, 159 

80386 442 
effect on carry flag 245 
problems 238 

LooPD instruction (80386) 442 
LooPDE instruction (80386) 443 
LooPDNE instruction (80386) 443 
LooPE·instruction 160 

80386 442 
looping 158 

ex register and 55 
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LooPNE instruction 160 
80386 442 

LooPZ instruction 160 
LOW operator 

Ideal mode 465 
.LST files 23, 200 

M 
1m option 31 
machine language, defined 44 
MACRO directive 372 
macros 365 

comments 
Ideal mode 475 

conditional assembly directives 369 
conditional error directives 225 
expansion 

EXITM directive 371 
suppressing listing 212 

forward referenced 372 
labels in 371 
nested segments 393 
operators within 372 
subroutines vs. 366 

%MACS directive 212 
MAKE.EXE 7 
MASK operator 384 
MASM compatibility 1,82,210,215,253 

equates 461 
expressions 461 
Ideal mode vs. 455-481 
listing control directives 468 
local labels 352 
OFFSET operator bug 397 
segment groups 397, 470 
segment ordering 108 
structures 373 
Turbo C and 265 

MASM directive 457 
MASM mode See MASM compatibility 

. math, 8086 141 
math coprocessor See numeric coprocessor 
medium memory model 108 
memory 

addressing 
80386 431 
large blocks 64 
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modes 93 
square brackets and 100 

blocks of 126, 184 
comparing blocks 185 
defining variables 125 
direct addressing 95 
filling blocks of 184 
indirect addressing 95 
management (80286) 418 
mapping 51 
models 

FAR type and 130 
.MODEL directive and 108 
NEAR type and 130 
PROC type and 131 
segments and 400 
TurboC282 
Turbo Pascal 315 

naming locations 130 
operands 97 

BP ~egister and 346 
DS register and 345 
ES register and 346 

pointers 96 
BP register and 58 
BX register and 55 
CS register and 65 
DI register and 57 
DS register and 66 
ES register and 66 
51 register and 56 
SP register and 59 
55 register and 66 

reserving 129 
scanning 185 
segment names 64 
segmentation 61 
string instructions and 57, 58 
variables 

problems 246 
MEMORY combine type 391 
messages 

displaying during assembly 215 
suppressing 35 

Microsoft Assembler See MASM compatibility 
mixed-model programming 

segment directives and 115 

Index 

Iml option 31 
-ml switch 193 
MMACROS.ARC 8 
'mnemonics, defined 85 
.MODEL directive 108, 402 
modular programming 162, 190 

END directive and 87 
EXTRN directive 194 
.FARDATA segment and 403 
GLOBAL directive 197 
loca1labels 349 
PUBLIC directive 193 

MOV instruction 132-139 
80386 441 
addressing modes and 98 
forward references 360 
string instructions vs. 181 
vs. LEA 255 

moving data See data, moving 
MOVS instruction 183 

ES register and 346 
MOVSB instruction 183 

80386 444 
MOVSD instruction 

80386 444 
MOVSW instruction 183 
MOVSX instruction 437 
MOVZX instruction 437 
MS-DOS See DOS 
.MSFLOAT directive 122 
Imu option 32 
MUL instruction 145 

problems 244 
multiple prefixes 242 
multiplication 145 

80386 445 
AX register and 54 
DX register and 56 
pitfalls 244 
REPf directive and 363 
SHLand 150 
signed 146 
unsigned 145 

I mV# option 32 
I mx option 32 
-ml switch 193 
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N 
/noption 33 
-n switch 205 
names 82 
near data 108 

Ideal mode 472 
NEAR PfR operator 135 
near subroutines 165 
NEAR type 130 

NEARPTRoperatorand 135 
NEG instruction 147 
%NEWPAGE directive 213 
%NOCONDS directive 211 
.NOCREF directive 210 
%NOCREF directive 209 
%NOCTLS directive 212 
NOEMUL directive 27 
%NOINCL directive 212 
NO]UMPS directive 357 
%NOLISf directive 211 
NOLOCALS directive 352 
%NOMACS directive 212 
%NOSYMS directive 213 
NOT instruction 149 
NOTHING directive 398 
NOTHING keyword 113 
%NOTRUNC directive 214 
%NOUREF directive 213 
NUL device 24 
numbers 

in labels 82, 174 
include files and 199 
signed 135 
unsigned 135 

numeric coprocessor 27, 453 

o 
.OB] files 1, 13 
.OB] files 

suppressing 34 
object See object files 
object files 

debugging information in 38 
line number information in 38 
segment ordering 25, 35 
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object modules 
defined 12 

OB]XREF.COM 8 
octal notation 120 
OFFSET operator 

MASM vs. Ideal mode 470 
problems 247, 253 

offsets 
$ symbol and 178 

operands 
character 90 
constant 90 
defined 88 
Ideal mode 461 
label 92 
limitations in Turbo C 274 
memory 97 

BP register and 346 
ES register and 346 

order of 230 
register 89 
source/ destination 88 
string instructions with 189 

operators See also individual listings 
expressions and 92 
Ideal vs. MASM mode 464 
macros 372 

optimization, Turbo Pascal 325 
options, command line See command-line 

options 
OR instruction 149 
OS/2418 
OUT instruction 56, 140 
%OUT directive 216 
OUTS instruction (80186) 414 
overflow flag 53 

conditional jumps and 157 

p 
/p option 33 
%PAGESIZE directive 214 
parameter passing 

registers 166 
stack 166 
testing 220 
TurboC 295 
Turbo Pascal 325 
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parameters 
formal 367 
macros and 367 

parity flag 
conditional jumps and 157 

parsing order 
Ideal mode 469 

Pascal See Turbo Pascal 
PC-DOS See DOS 
%PCNT directive 214 
percent sign 

Ideal mode 468 
percent sign operator 

within macros 373 
period 

in directives 468 
in labels 82 

Ideal mode 459 
in structures 

Ideal mode 464 
operator 376 

pitfalls 225-256 
carry flag 245 
conditional jumps 234 
converting bytes to words 241 
direction flag 239 
flags 246 
interrupt handler 251 
linking to Turbo C 253 
LOOP instruction 238 
memory variables 246 
multiple prefixes 242 
multiplication 244 
OFFSET operator 247 
REP prefix 239 
REP string overrun 235 
returns 228 
reversing operands 230 
segment groups 252 
segment wraparound 249 
stack allocation 230 
string comparisons 239 
string instruction operands 242 
string instructions 235, 245 
string segment defaults 240 
subroutines 227, 228, 231 
termination 226 

Index 

wiping out registers 231 
zeroCX237 

plus operator 376 
plus sign 23 
pointers 

defined 44 
I/O 

OX register 140 
OX register and 56 

memory 55, 96 
BP register and 58 
CS register and 65 
01 register and 57 
OS register and 66 
ES register and 66 
51 register and 56 
SP register and 59 
55 register and 66 

segment:offset 118 
segmentation and 61 
to structures 

Ideal mode 464 
POP instruction 59, 139 
POPA instruction (80186) 411 
POP AO instruction 

80386 445 
POPFD instruction 

80386 445 
%POPLCTL directive 215 
#pragma directive 264 
predefined symbols See symbols 
prefixes 184 

local label 353 
multiple 242 
segment override 345 

printing, first program 17 
PRIV ATE combine type 392 
PROC directive 131,351 

high-level languages and 109 
subroutines and 164, 228 

processor, defined 43 
Program Segment Prefix (PSP) 316 
program structure 78-172 
program termination 72, 79, 86 

problems with 226 
Prolog See Turbo Prolog 
protected mode 33 
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80286 418 
80287453 

protected mode instructions 
80286 418 

PSP 316 
PTR operator 

Ideal mode 466 
PUBLIC combine type 391 
PUBLIC directive 193 

Ideal mode 473 
Turbo Pascal and 320 

public functions 
Turbo C and 290 

public labels 193-197 
Ideal mode 473 

PUSH instruction 59, 139 
80186 415 

PUSHA instruction (80186) 411 
PUSHAD instruction 

80386445 
PUSHFD instruction 

80386445 
%PUSHLCTL directive 215 
PWORDtype 130 

Q 
Iq option 34 
quad words 118 

converting to doublewords 437 
question mark 

in labels 82 
uninitialized data and 129 

QWORD type 130 

R 
Ir option 27, 34 
.RADIX directive 123 
RCL instruction 153 
RCR instruction 152 
README.COM 7 
real mode (80286) 418 
real numbers 122 
RECORD directive 380 
records 381 
recursion 163 
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registers See also individual listings 
8086 51 
80386 425 
32-bit 426 
as operands 89 
incrementing I decrementing 144 
parameter passing 166 
preserving 167, 231 
preserving (Turbo C) 277, 302 
setting to zero 149 
Turbo Pascal 318 

REP prefix 
problems 239 
segment override and 348 
string overruns 235 

REPE instruction 187 
repeating instructions 184, 362 
REPNE instruction 187 
REPNZ instruction 187 
REPT directive 362 

DUPvs.363 
REPZ instruction 187 
reserved words 80 
RET instruction 

PROC directive and 228 
subroutines and 162,227 

ROL instruction 152 
ROR instruction 151 
rotates 151 

5 
-5 option (Turbo C) 262 
IS option 394 
I s option 25, 35 
SAL instruction 150 
SAR instruction 151 
SBB instruction 143 
SCAS instruction 185 

ES register and 346 
repeating 239 

SCASB instruction 185 
screen mode 

ANSI.SYS 74 
BIOS and 73 

SEG operator 
Turbo Pascal and 324 

SEGMENT directive 112, 389 
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segment:offset pointers 118, 404 
segments 

80386 420, 446 
accessing multiple 349 
alignment 

80386 423 
types 206, 390 

alphabetical order 394 
code 65, 104, 404 

Turbo Pascal 317 
combine types 207, 390 
current 112 
data 66, 105, 110, 404 
directives 79, 103, 389-408 

80386 423 
high-level languages and 115 
simplified 104-110, 399, 400 

symbols and 110 
standard 111-116 
Turbo C and 283 

end of 112 
extra 66 
fixups 

Ideal vs. MASM mode 474 
groups 395 

Ideal mode and 456, 470 
MASM mode 470 
problems 252 
Turbo C and 253 

listing 206 
multiple 404 
names 64, 392 
nesting 392 
ordering 25, 108, 392, 393 
override 

prefixes 345 
registers 61, See also individ uallistings 

80386 429 
CS65 
DS 66, 105 
ES 66, 107 
FS429 
GS429 
memory pointers to 56, 57 
moving data between 138 
SS66 

sequential order 25, 35, 394 

Index 

stack 66 
start of 112 
Turbo C and 282 
USE16420 
USE32420 
wraparound problem 249 

semicolon 22 
inline assembly and 268 

semicolon operator 
within macros 373 

SEQ directive 25 
.SEQ directive 394 
serial communications 74 
SET instruction 440 
SETNC instruction 440 
SETS instruction 440 
SFCONri directive 37 
shifts 150 

multiple word (80386) 438 
SHL instrl:lction 150 

80186 416 
SHLD instruction 438 
short integers 118 
SHORT operator 154 

forward jumps and 360 
SHR instruction 151 

80186 416 
records and 382 

SHRD instruction 439 
SI register 56, 66 

as memory pointer 97 
string instructions 185 

sign, changing 147 
sign flag 

conditional jumps and 157 
signed conversion instructions 437 
signed division 146 

SARand 151 
signed multiplication 146 
signed numbers 135 
simplified segment directives 104-110 

80386 423 
ASSUME and 399, 400 

size of data See data, size 
SIZE operator 

Ideal mode 466, 473 
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slash 
include files and 199 

small memory model 108 
SMALL operator 

80386 and 421 
source files 

include files 28 
symbols 26 

SP register 59, 66 
speaker 75 
square brackets 100 

Ideal mode 461 
MASM mode 461 

SS register 
LES instruction and 440 
memory operands and 346 
memory pointers to 58 

stack 
80186 instructions 412 
allocating 230 
combine types and 391 
MOV instruction and 139 
parameter passing 166 
pointer 59, 66 
segment 66 
segment override and 348 
size of 104 
Turbo Pascal 317 

STACK combine type 391 
.ST ACK directive 104, 230 
stack segment register (SS) 

memory pointers to 58 
standard segment directives 111-116 
start address 

END directive and 87 
statistics, displaying 24 
STD instruction 239 
STOS instruction 182 

ES register and 346 
multiple segments and 408 

STOSB instruction 58, 182 
STOSW instruction 182 

pitfalls 241 
string instructions 180 

80386 444 
BP register 58 
bytes vs. words 189 
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CMPS 188 
data movement 181 
decrementing 239 
DI register 57 
direction flag 239 
effect on registers 245 
ES register 107 
extra segment 66, 348 
flags 187 
incrementing 239 
LODS 181 
mixing with non-string 349 
MOVS 183 
multiple prefixes 242 
operands to 242 
pitfalls 235 
REP prefix 184, 187 
repeating 184, 187, 235 
SCAS 185 
SI register 57 
stos 182 

strings . 
assigning to hll,Jels 174 
comparing 239 
displaying 216 
initialization 126 
quoted (Ideal mode) 469 

STRUC directive 374 
structures 373-389 

DUP operator and 376 
forward references 373 
Ideal mode 380, 460, 473 
initialization 379 
MASM mode 373 
period operator 376 
Turbo C 269, 303 

SUB instruction 142 
subroutines 161 

far 165 
local labels 349 
macros vs. 366 
near 165 
preserving registers 231 
RET instruction 227 

subtraction 142 
%SUBTTL directive 213 
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symbol tables 
listing files 205 

cross-referencing 26 
suppressing 33,205,213 

symbols 
case-sensitive 31, 32 
@CodeSize 110 
@curseg 110 
@data 105 
defining 26 
external 32 

Ideal mode 473 
Turbo C and 293 

@fardata 110 
@fardata? 110 
@FileName 110 
Ideal mode 459 
length of 32 
local 

Ideal mode 475 
public 32 
restrictions 26 
unreferenced 213 
uppercase 32 

%SYMS directive 213 
.SYMTYPE operator 

Ideal mode 465 
syntax, command-line See command-line 

syntax 
system timers 74 
systems software 

IBM PC 68 

T 
/t option 35 
T ASM.CFG files 39 
TASM.EXE 7 
TBYTE type 130 
TCREF 1 
TCREF.EXE 7 
termination 72 

DOS functions 72 
END directive and 79, 86 
problems with 226 

TEST 
ANDvs.384 

%TEXT directive 214 

Index 

text strings See strings 
TFCOND directive 37 
time 74 
??Time variable 179 
timers 74 
tiny memory model 108 
%TITLE directive 213 

Ideal mode 469 
TLIB.EXE 7 
TLINK 1, 13, 294, 308 

segment ordering 394 
Turbo C version 259 

TLINK.EXE 7 
tokens 

Ideal mode 459 
TOUCH.COM8 
trap flag 53 
%TRUNC directive 214 
Turbo C 257-313 

80186/80286 processor 267 
80186 and 412 
-1 option 267 
ARG directive and 300 
assembler modules in 27 
assembly language vs 45 
-B option 264 
case sensitivity 32, 291 
code segment 282 
data types 292 
external symbols 293 
floating-point emulation 27 
inline assembly 258-280 

comments 268 
format 268 
limitations 274 
semicolon 268 

jumps 274 
linking to 253, 308 
LOCAL directive and 298 
MASMand 265 
memory models 282 
operand limitations 274 
parameter passing 295 
Pascal calling conventions 307 
path-naming conventions 199 
period operator 376 
#pragma directive 264 
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public functions and 290 
register preservation 277, 302 
returning values 302 
-S option 262 
segment directives and 283 
structures 269, 303 

Turbo Debugger 1, 38 
Turbo Librarian See TLIB utility 
Turbo Link See TLINK utility 
Turbo Pascal 315-344 

allocating local data 332 
data segment 317 
EXTRN directive 321 
functions results 331 
heap 318 
making assembler information available to 
320 
making information available to assembler 
321 
memory map 315 
memory models 315 
near / far calls 319 
optimization 325 
parameter passing 325 
PUBLIC directive 320 
register usage 318 
returning values 331 
segment fixups 324 
stack 317 

tutorial 9-75 
two-pass assemblers 

compatibility with 223 
two's complement arithmetic 136 
type-checking 

Ideal mode 456 
type specifiers 130 
.TYPE operator 

Ideal mode 465 
typefaces in this manual 3 
types See data, types 

u 
unconditional jumps See jumps, unconditional 
underscore 

Turbo C and 290 
uninitialized data 129 
UNION directive 387 
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unions 
Ideal vs. MASM mode 460 

UNKNOWN type 131 
unsigned division 147 

SHRand 151 
unsigned multiplication 145 
unsigned numbers 135 
%UREF directive 213 
USE16 segment 420, 446 
USE32 segment 420, 446 

V 
/v option 24, 35 
variables 

changing sign 147 
converting to strings 72 
incrementing/decrementing 144 
inline assembly and 276 
memory 125 
record 381 
uninitialized 129 

W 
/woption 36 
warning messages 16 

"mild" 36 
generating 36 

WIDTH operator 383 
wildcards See DOS wildcards 
WORD PTR operator 134 
WORD type 130 
words 117 

X 

CMPSWand 188 
converting to bytes 137 
converting to doublewords 137 
LODSWand 181 
MOVSWand 183 
SCASW and 187 
srOSWand 182 
string instructions 189 
WORD PTR operator 134 

/xoption 37 
.xRF files 23 
XCHG instruction 139 
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XLAT instruction 
operands to 243 

XOR instruction 149 

Z 
/z option 37 

Index 

/ zd option 38 
zero ex value 

string instructions and 237 
zero flag 53 

conditional jumps and 156 
loops and 160 

/ zi option 38 
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